xref: /linux/net/ipv4/tcp_input.c (revision a48395f22b8c8687ceb77ae3014a0eabcd4bf688)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/proto_memory.h>
76 #include <net/inet_common.h>
77 #include <linux/ipsec.h>
78 #include <asm/unaligned.h>
79 #include <linux/errqueue.h>
80 #include <trace/events/tcp.h>
81 #include <linux/jump_label_ratelimit.h>
82 #include <net/busy_poll.h>
83 #include <net/mptcp.h>
84 
85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86 
87 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
88 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
89 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
90 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
91 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
92 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
93 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
94 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
95 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
96 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
97 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
99 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
103 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
104 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
105 
106 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
109 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
110 
111 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
112 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
113 
114 #define REXMIT_NONE	0 /* no loss recovery to do */
115 #define REXMIT_LOST	1 /* retransmit packets marked lost */
116 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
117 
118 #if IS_ENABLED(CONFIG_TLS_DEVICE)
119 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
120 
121 void clean_acked_data_enable(struct inet_connection_sock *icsk,
122 			     void (*cad)(struct sock *sk, u32 ack_seq))
123 {
124 	icsk->icsk_clean_acked = cad;
125 	static_branch_deferred_inc(&clean_acked_data_enabled);
126 }
127 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
128 
129 void clean_acked_data_disable(struct inet_connection_sock *icsk)
130 {
131 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
132 	icsk->icsk_clean_acked = NULL;
133 }
134 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
135 
136 void clean_acked_data_flush(void)
137 {
138 	static_key_deferred_flush(&clean_acked_data_enabled);
139 }
140 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
141 #endif
142 
143 #ifdef CONFIG_CGROUP_BPF
144 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
145 {
146 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
147 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
149 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
150 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
151 	struct bpf_sock_ops_kern sock_ops;
152 
153 	if (likely(!unknown_opt && !parse_all_opt))
154 		return;
155 
156 	/* The skb will be handled in the
157 	 * bpf_skops_established() or
158 	 * bpf_skops_write_hdr_opt().
159 	 */
160 	switch (sk->sk_state) {
161 	case TCP_SYN_RECV:
162 	case TCP_SYN_SENT:
163 	case TCP_LISTEN:
164 		return;
165 	}
166 
167 	sock_owned_by_me(sk);
168 
169 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
170 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
171 	sock_ops.is_fullsock = 1;
172 	sock_ops.sk = sk;
173 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
174 
175 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
176 }
177 
178 static void bpf_skops_established(struct sock *sk, int bpf_op,
179 				  struct sk_buff *skb)
180 {
181 	struct bpf_sock_ops_kern sock_ops;
182 
183 	sock_owned_by_me(sk);
184 
185 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
186 	sock_ops.op = bpf_op;
187 	sock_ops.is_fullsock = 1;
188 	sock_ops.sk = sk;
189 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
190 	if (skb)
191 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
192 
193 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
194 }
195 #else
196 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
197 {
198 }
199 
200 static void bpf_skops_established(struct sock *sk, int bpf_op,
201 				  struct sk_buff *skb)
202 {
203 }
204 #endif
205 
206 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
207 				    unsigned int len)
208 {
209 	struct net_device *dev;
210 
211 	rcu_read_lock();
212 	dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
213 	if (!dev || len >= READ_ONCE(dev->mtu))
214 		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
215 			dev ? dev->name : "Unknown driver");
216 	rcu_read_unlock();
217 }
218 
219 /* Adapt the MSS value used to make delayed ack decision to the
220  * real world.
221  */
222 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
223 {
224 	struct inet_connection_sock *icsk = inet_csk(sk);
225 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
226 	unsigned int len;
227 
228 	icsk->icsk_ack.last_seg_size = 0;
229 
230 	/* skb->len may jitter because of SACKs, even if peer
231 	 * sends good full-sized frames.
232 	 */
233 	len = skb_shinfo(skb)->gso_size ? : skb->len;
234 	if (len >= icsk->icsk_ack.rcv_mss) {
235 		/* Note: divides are still a bit expensive.
236 		 * For the moment, only adjust scaling_ratio
237 		 * when we update icsk_ack.rcv_mss.
238 		 */
239 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
240 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
241 
242 			do_div(val, skb->truesize);
243 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
244 		}
245 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
246 					       tcp_sk(sk)->advmss);
247 		/* Account for possibly-removed options */
248 		DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
249 				tcp_gro_dev_warn, sk, skb, len);
250 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
251 		 * set then it is likely the end of an application write. So
252 		 * more data may not be arriving soon, and yet the data sender
253 		 * may be waiting for an ACK if cwnd-bound or using TX zero
254 		 * copy. So we set ICSK_ACK_PUSHED here so that
255 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
256 		 * reads all of the data and is not ping-pong. If len > MSS
257 		 * then this logic does not matter (and does not hurt) because
258 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
259 		 * reads data and there is more than an MSS of unACKed data.
260 		 */
261 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
262 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
263 	} else {
264 		/* Otherwise, we make more careful check taking into account,
265 		 * that SACKs block is variable.
266 		 *
267 		 * "len" is invariant segment length, including TCP header.
268 		 */
269 		len += skb->data - skb_transport_header(skb);
270 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
271 		    /* If PSH is not set, packet should be
272 		     * full sized, provided peer TCP is not badly broken.
273 		     * This observation (if it is correct 8)) allows
274 		     * to handle super-low mtu links fairly.
275 		     */
276 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
277 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
278 			/* Subtract also invariant (if peer is RFC compliant),
279 			 * tcp header plus fixed timestamp option length.
280 			 * Resulting "len" is MSS free of SACK jitter.
281 			 */
282 			len -= tcp_sk(sk)->tcp_header_len;
283 			icsk->icsk_ack.last_seg_size = len;
284 			if (len == lss) {
285 				icsk->icsk_ack.rcv_mss = len;
286 				return;
287 			}
288 		}
289 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
290 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
291 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
292 	}
293 }
294 
295 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
296 {
297 	struct inet_connection_sock *icsk = inet_csk(sk);
298 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
299 
300 	if (quickacks == 0)
301 		quickacks = 2;
302 	quickacks = min(quickacks, max_quickacks);
303 	if (quickacks > icsk->icsk_ack.quick)
304 		icsk->icsk_ack.quick = quickacks;
305 }
306 
307 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
308 {
309 	struct inet_connection_sock *icsk = inet_csk(sk);
310 
311 	tcp_incr_quickack(sk, max_quickacks);
312 	inet_csk_exit_pingpong_mode(sk);
313 	icsk->icsk_ack.ato = TCP_ATO_MIN;
314 }
315 
316 /* Send ACKs quickly, if "quick" count is not exhausted
317  * and the session is not interactive.
318  */
319 
320 static bool tcp_in_quickack_mode(struct sock *sk)
321 {
322 	const struct inet_connection_sock *icsk = inet_csk(sk);
323 	const struct dst_entry *dst = __sk_dst_get(sk);
324 
325 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
326 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
327 }
328 
329 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
330 {
331 	if (tp->ecn_flags & TCP_ECN_OK)
332 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
333 }
334 
335 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
336 {
337 	if (tcp_hdr(skb)->cwr) {
338 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
339 
340 		/* If the sender is telling us it has entered CWR, then its
341 		 * cwnd may be very low (even just 1 packet), so we should ACK
342 		 * immediately.
343 		 */
344 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
345 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
346 	}
347 }
348 
349 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
350 {
351 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
352 }
353 
354 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
355 {
356 	struct tcp_sock *tp = tcp_sk(sk);
357 
358 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
359 	case INET_ECN_NOT_ECT:
360 		/* Funny extension: if ECT is not set on a segment,
361 		 * and we already seen ECT on a previous segment,
362 		 * it is probably a retransmit.
363 		 */
364 		if (tp->ecn_flags & TCP_ECN_SEEN)
365 			tcp_enter_quickack_mode(sk, 2);
366 		break;
367 	case INET_ECN_CE:
368 		if (tcp_ca_needs_ecn(sk))
369 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
370 
371 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
372 			/* Better not delay acks, sender can have a very low cwnd */
373 			tcp_enter_quickack_mode(sk, 2);
374 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
375 		}
376 		tp->ecn_flags |= TCP_ECN_SEEN;
377 		break;
378 	default:
379 		if (tcp_ca_needs_ecn(sk))
380 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
381 		tp->ecn_flags |= TCP_ECN_SEEN;
382 		break;
383 	}
384 }
385 
386 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
387 {
388 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
389 		__tcp_ecn_check_ce(sk, skb);
390 }
391 
392 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
393 {
394 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
395 		tp->ecn_flags &= ~TCP_ECN_OK;
396 }
397 
398 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
399 {
400 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
401 		tp->ecn_flags &= ~TCP_ECN_OK;
402 }
403 
404 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
405 {
406 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
407 		return true;
408 	return false;
409 }
410 
411 /* Buffer size and advertised window tuning.
412  *
413  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
414  */
415 
416 static void tcp_sndbuf_expand(struct sock *sk)
417 {
418 	const struct tcp_sock *tp = tcp_sk(sk);
419 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
420 	int sndmem, per_mss;
421 	u32 nr_segs;
422 
423 	/* Worst case is non GSO/TSO : each frame consumes one skb
424 	 * and skb->head is kmalloced using power of two area of memory
425 	 */
426 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
427 		  MAX_TCP_HEADER +
428 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
429 
430 	per_mss = roundup_pow_of_two(per_mss) +
431 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
432 
433 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
434 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
435 
436 	/* Fast Recovery (RFC 5681 3.2) :
437 	 * Cubic needs 1.7 factor, rounded to 2 to include
438 	 * extra cushion (application might react slowly to EPOLLOUT)
439 	 */
440 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
441 	sndmem *= nr_segs * per_mss;
442 
443 	if (sk->sk_sndbuf < sndmem)
444 		WRITE_ONCE(sk->sk_sndbuf,
445 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
446 }
447 
448 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
449  *
450  * All tcp_full_space() is split to two parts: "network" buffer, allocated
451  * forward and advertised in receiver window (tp->rcv_wnd) and
452  * "application buffer", required to isolate scheduling/application
453  * latencies from network.
454  * window_clamp is maximal advertised window. It can be less than
455  * tcp_full_space(), in this case tcp_full_space() - window_clamp
456  * is reserved for "application" buffer. The less window_clamp is
457  * the smoother our behaviour from viewpoint of network, but the lower
458  * throughput and the higher sensitivity of the connection to losses. 8)
459  *
460  * rcv_ssthresh is more strict window_clamp used at "slow start"
461  * phase to predict further behaviour of this connection.
462  * It is used for two goals:
463  * - to enforce header prediction at sender, even when application
464  *   requires some significant "application buffer". It is check #1.
465  * - to prevent pruning of receive queue because of misprediction
466  *   of receiver window. Check #2.
467  *
468  * The scheme does not work when sender sends good segments opening
469  * window and then starts to feed us spaghetti. But it should work
470  * in common situations. Otherwise, we have to rely on queue collapsing.
471  */
472 
473 /* Slow part of check#2. */
474 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
475 			     unsigned int skbtruesize)
476 {
477 	const struct tcp_sock *tp = tcp_sk(sk);
478 	/* Optimize this! */
479 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
480 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
481 
482 	while (tp->rcv_ssthresh <= window) {
483 		if (truesize <= skb->len)
484 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
485 
486 		truesize >>= 1;
487 		window >>= 1;
488 	}
489 	return 0;
490 }
491 
492 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
493  * can play nice with us, as sk_buff and skb->head might be either
494  * freed or shared with up to MAX_SKB_FRAGS segments.
495  * Only give a boost to drivers using page frag(s) to hold the frame(s),
496  * and if no payload was pulled in skb->head before reaching us.
497  */
498 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
499 {
500 	u32 truesize = skb->truesize;
501 
502 	if (adjust && !skb_headlen(skb)) {
503 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
504 		/* paranoid check, some drivers might be buggy */
505 		if (unlikely((int)truesize < (int)skb->len))
506 			truesize = skb->truesize;
507 	}
508 	return truesize;
509 }
510 
511 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
512 			    bool adjust)
513 {
514 	struct tcp_sock *tp = tcp_sk(sk);
515 	int room;
516 
517 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
518 
519 	if (room <= 0)
520 		return;
521 
522 	/* Check #1 */
523 	if (!tcp_under_memory_pressure(sk)) {
524 		unsigned int truesize = truesize_adjust(adjust, skb);
525 		int incr;
526 
527 		/* Check #2. Increase window, if skb with such overhead
528 		 * will fit to rcvbuf in future.
529 		 */
530 		if (tcp_win_from_space(sk, truesize) <= skb->len)
531 			incr = 2 * tp->advmss;
532 		else
533 			incr = __tcp_grow_window(sk, skb, truesize);
534 
535 		if (incr) {
536 			incr = max_t(int, incr, 2 * skb->len);
537 			tp->rcv_ssthresh += min(room, incr);
538 			inet_csk(sk)->icsk_ack.quick |= 1;
539 		}
540 	} else {
541 		/* Under pressure:
542 		 * Adjust rcv_ssthresh according to reserved mem
543 		 */
544 		tcp_adjust_rcv_ssthresh(sk);
545 	}
546 }
547 
548 /* 3. Try to fixup all. It is made immediately after connection enters
549  *    established state.
550  */
551 static void tcp_init_buffer_space(struct sock *sk)
552 {
553 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
554 	struct tcp_sock *tp = tcp_sk(sk);
555 	int maxwin;
556 
557 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
558 		tcp_sndbuf_expand(sk);
559 
560 	tcp_mstamp_refresh(tp);
561 	tp->rcvq_space.time = tp->tcp_mstamp;
562 	tp->rcvq_space.seq = tp->copied_seq;
563 
564 	maxwin = tcp_full_space(sk);
565 
566 	if (tp->window_clamp >= maxwin) {
567 		WRITE_ONCE(tp->window_clamp, maxwin);
568 
569 		if (tcp_app_win && maxwin > 4 * tp->advmss)
570 			WRITE_ONCE(tp->window_clamp,
571 				   max(maxwin - (maxwin >> tcp_app_win),
572 				       4 * tp->advmss));
573 	}
574 
575 	/* Force reservation of one segment. */
576 	if (tcp_app_win &&
577 	    tp->window_clamp > 2 * tp->advmss &&
578 	    tp->window_clamp + tp->advmss > maxwin)
579 		WRITE_ONCE(tp->window_clamp,
580 			   max(2 * tp->advmss, maxwin - tp->advmss));
581 
582 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
583 	tp->snd_cwnd_stamp = tcp_jiffies32;
584 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
585 				    (u32)TCP_INIT_CWND * tp->advmss);
586 }
587 
588 /* 4. Recalculate window clamp after socket hit its memory bounds. */
589 static void tcp_clamp_window(struct sock *sk)
590 {
591 	struct tcp_sock *tp = tcp_sk(sk);
592 	struct inet_connection_sock *icsk = inet_csk(sk);
593 	struct net *net = sock_net(sk);
594 	int rmem2;
595 
596 	icsk->icsk_ack.quick = 0;
597 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
598 
599 	if (sk->sk_rcvbuf < rmem2 &&
600 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
601 	    !tcp_under_memory_pressure(sk) &&
602 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
603 		WRITE_ONCE(sk->sk_rcvbuf,
604 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
605 	}
606 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
607 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
608 }
609 
610 /* Initialize RCV_MSS value.
611  * RCV_MSS is an our guess about MSS used by the peer.
612  * We haven't any direct information about the MSS.
613  * It's better to underestimate the RCV_MSS rather than overestimate.
614  * Overestimations make us ACKing less frequently than needed.
615  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
616  */
617 void tcp_initialize_rcv_mss(struct sock *sk)
618 {
619 	const struct tcp_sock *tp = tcp_sk(sk);
620 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
621 
622 	hint = min(hint, tp->rcv_wnd / 2);
623 	hint = min(hint, TCP_MSS_DEFAULT);
624 	hint = max(hint, TCP_MIN_MSS);
625 
626 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
627 }
628 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
629 
630 /* Receiver "autotuning" code.
631  *
632  * The algorithm for RTT estimation w/o timestamps is based on
633  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
634  * <https://public.lanl.gov/radiant/pubs.html#DRS>
635  *
636  * More detail on this code can be found at
637  * <http://staff.psc.edu/jheffner/>,
638  * though this reference is out of date.  A new paper
639  * is pending.
640  */
641 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
642 {
643 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
644 	long m = sample;
645 
646 	if (new_sample != 0) {
647 		/* If we sample in larger samples in the non-timestamp
648 		 * case, we could grossly overestimate the RTT especially
649 		 * with chatty applications or bulk transfer apps which
650 		 * are stalled on filesystem I/O.
651 		 *
652 		 * Also, since we are only going for a minimum in the
653 		 * non-timestamp case, we do not smooth things out
654 		 * else with timestamps disabled convergence takes too
655 		 * long.
656 		 */
657 		if (!win_dep) {
658 			m -= (new_sample >> 3);
659 			new_sample += m;
660 		} else {
661 			m <<= 3;
662 			if (m < new_sample)
663 				new_sample = m;
664 		}
665 	} else {
666 		/* No previous measure. */
667 		new_sample = m << 3;
668 	}
669 
670 	tp->rcv_rtt_est.rtt_us = new_sample;
671 }
672 
673 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
674 {
675 	u32 delta_us;
676 
677 	if (tp->rcv_rtt_est.time == 0)
678 		goto new_measure;
679 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
680 		return;
681 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
682 	if (!delta_us)
683 		delta_us = 1;
684 	tcp_rcv_rtt_update(tp, delta_us, 1);
685 
686 new_measure:
687 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
688 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
689 }
690 
691 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp)
692 {
693 	u32 delta, delta_us;
694 
695 	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
696 	if (tp->tcp_usec_ts)
697 		return delta;
698 
699 	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
700 		if (!delta)
701 			delta = 1;
702 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
703 		return delta_us;
704 	}
705 	return -1;
706 }
707 
708 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
709 					  const struct sk_buff *skb)
710 {
711 	struct tcp_sock *tp = tcp_sk(sk);
712 
713 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
714 		return;
715 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
716 
717 	if (TCP_SKB_CB(skb)->end_seq -
718 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
719 		s32 delta = tcp_rtt_tsopt_us(tp);
720 
721 		if (delta >= 0)
722 			tcp_rcv_rtt_update(tp, delta, 0);
723 	}
724 }
725 
726 /*
727  * This function should be called every time data is copied to user space.
728  * It calculates the appropriate TCP receive buffer space.
729  */
730 void tcp_rcv_space_adjust(struct sock *sk)
731 {
732 	struct tcp_sock *tp = tcp_sk(sk);
733 	u32 copied;
734 	int time;
735 
736 	trace_tcp_rcv_space_adjust(sk);
737 
738 	tcp_mstamp_refresh(tp);
739 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
740 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
741 		return;
742 
743 	/* Number of bytes copied to user in last RTT */
744 	copied = tp->copied_seq - tp->rcvq_space.seq;
745 	if (copied <= tp->rcvq_space.space)
746 		goto new_measure;
747 
748 	/* A bit of theory :
749 	 * copied = bytes received in previous RTT, our base window
750 	 * To cope with packet losses, we need a 2x factor
751 	 * To cope with slow start, and sender growing its cwin by 100 %
752 	 * every RTT, we need a 4x factor, because the ACK we are sending
753 	 * now is for the next RTT, not the current one :
754 	 * <prev RTT . ><current RTT .. ><next RTT .... >
755 	 */
756 
757 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)) {
758 		u64 rcvwin, grow;
759 		int rcvbuf;
760 
761 		/* minimal window to cope with packet losses, assuming
762 		 * steady state. Add some cushion because of small variations.
763 		 */
764 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
765 
766 		/* Accommodate for sender rate increase (eg. slow start) */
767 		grow = rcvwin * (copied - tp->rcvq_space.space);
768 		do_div(grow, tp->rcvq_space.space);
769 		rcvwin += (grow << 1);
770 
771 		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
772 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
773 		if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
774 			if (rcvbuf > sk->sk_rcvbuf) {
775 				WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
776 
777 				/* Make the window clamp follow along.  */
778 				WRITE_ONCE(tp->window_clamp,
779 					   tcp_win_from_space(sk, rcvbuf));
780 			}
781 		} else {
782 			/* Make the window clamp follow along while being bounded
783 			 * by SO_RCVBUF.
784 			 */
785 			int clamp = tcp_win_from_space(sk, min(rcvbuf, sk->sk_rcvbuf));
786 
787 			if (clamp > tp->window_clamp)
788 				WRITE_ONCE(tp->window_clamp, clamp);
789 		}
790 	}
791 	tp->rcvq_space.space = copied;
792 
793 new_measure:
794 	tp->rcvq_space.seq = tp->copied_seq;
795 	tp->rcvq_space.time = tp->tcp_mstamp;
796 }
797 
798 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
799 {
800 #if IS_ENABLED(CONFIG_IPV6)
801 	struct inet_connection_sock *icsk = inet_csk(sk);
802 
803 	if (skb->protocol == htons(ETH_P_IPV6))
804 		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
805 #endif
806 }
807 
808 /* There is something which you must keep in mind when you analyze the
809  * behavior of the tp->ato delayed ack timeout interval.  When a
810  * connection starts up, we want to ack as quickly as possible.  The
811  * problem is that "good" TCP's do slow start at the beginning of data
812  * transmission.  The means that until we send the first few ACK's the
813  * sender will sit on his end and only queue most of his data, because
814  * he can only send snd_cwnd unacked packets at any given time.  For
815  * each ACK we send, he increments snd_cwnd and transmits more of his
816  * queue.  -DaveM
817  */
818 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
819 {
820 	struct tcp_sock *tp = tcp_sk(sk);
821 	struct inet_connection_sock *icsk = inet_csk(sk);
822 	u32 now;
823 
824 	inet_csk_schedule_ack(sk);
825 
826 	tcp_measure_rcv_mss(sk, skb);
827 
828 	tcp_rcv_rtt_measure(tp);
829 
830 	now = tcp_jiffies32;
831 
832 	if (!icsk->icsk_ack.ato) {
833 		/* The _first_ data packet received, initialize
834 		 * delayed ACK engine.
835 		 */
836 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
837 		icsk->icsk_ack.ato = TCP_ATO_MIN;
838 	} else {
839 		int m = now - icsk->icsk_ack.lrcvtime;
840 
841 		if (m <= TCP_ATO_MIN / 2) {
842 			/* The fastest case is the first. */
843 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
844 		} else if (m < icsk->icsk_ack.ato) {
845 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
846 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
847 				icsk->icsk_ack.ato = icsk->icsk_rto;
848 		} else if (m > icsk->icsk_rto) {
849 			/* Too long gap. Apparently sender failed to
850 			 * restart window, so that we send ACKs quickly.
851 			 */
852 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
853 		}
854 	}
855 	icsk->icsk_ack.lrcvtime = now;
856 	tcp_save_lrcv_flowlabel(sk, skb);
857 
858 	tcp_ecn_check_ce(sk, skb);
859 
860 	if (skb->len >= 128)
861 		tcp_grow_window(sk, skb, true);
862 }
863 
864 /* Called to compute a smoothed rtt estimate. The data fed to this
865  * routine either comes from timestamps, or from segments that were
866  * known _not_ to have been retransmitted [see Karn/Partridge
867  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
868  * piece by Van Jacobson.
869  * NOTE: the next three routines used to be one big routine.
870  * To save cycles in the RFC 1323 implementation it was better to break
871  * it up into three procedures. -- erics
872  */
873 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
874 {
875 	struct tcp_sock *tp = tcp_sk(sk);
876 	long m = mrtt_us; /* RTT */
877 	u32 srtt = tp->srtt_us;
878 
879 	/*	The following amusing code comes from Jacobson's
880 	 *	article in SIGCOMM '88.  Note that rtt and mdev
881 	 *	are scaled versions of rtt and mean deviation.
882 	 *	This is designed to be as fast as possible
883 	 *	m stands for "measurement".
884 	 *
885 	 *	On a 1990 paper the rto value is changed to:
886 	 *	RTO = rtt + 4 * mdev
887 	 *
888 	 * Funny. This algorithm seems to be very broken.
889 	 * These formulae increase RTO, when it should be decreased, increase
890 	 * too slowly, when it should be increased quickly, decrease too quickly
891 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
892 	 * does not matter how to _calculate_ it. Seems, it was trap
893 	 * that VJ failed to avoid. 8)
894 	 */
895 	if (srtt != 0) {
896 		m -= (srtt >> 3);	/* m is now error in rtt est */
897 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
898 		if (m < 0) {
899 			m = -m;		/* m is now abs(error) */
900 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
901 			/* This is similar to one of Eifel findings.
902 			 * Eifel blocks mdev updates when rtt decreases.
903 			 * This solution is a bit different: we use finer gain
904 			 * for mdev in this case (alpha*beta).
905 			 * Like Eifel it also prevents growth of rto,
906 			 * but also it limits too fast rto decreases,
907 			 * happening in pure Eifel.
908 			 */
909 			if (m > 0)
910 				m >>= 3;
911 		} else {
912 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
913 		}
914 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
915 		if (tp->mdev_us > tp->mdev_max_us) {
916 			tp->mdev_max_us = tp->mdev_us;
917 			if (tp->mdev_max_us > tp->rttvar_us)
918 				tp->rttvar_us = tp->mdev_max_us;
919 		}
920 		if (after(tp->snd_una, tp->rtt_seq)) {
921 			if (tp->mdev_max_us < tp->rttvar_us)
922 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
923 			tp->rtt_seq = tp->snd_nxt;
924 			tp->mdev_max_us = tcp_rto_min_us(sk);
925 
926 			tcp_bpf_rtt(sk, mrtt_us, srtt);
927 		}
928 	} else {
929 		/* no previous measure. */
930 		srtt = m << 3;		/* take the measured time to be rtt */
931 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
932 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
933 		tp->mdev_max_us = tp->rttvar_us;
934 		tp->rtt_seq = tp->snd_nxt;
935 
936 		tcp_bpf_rtt(sk, mrtt_us, srtt);
937 	}
938 	tp->srtt_us = max(1U, srtt);
939 }
940 
941 static void tcp_update_pacing_rate(struct sock *sk)
942 {
943 	const struct tcp_sock *tp = tcp_sk(sk);
944 	u64 rate;
945 
946 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
947 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
948 
949 	/* current rate is (cwnd * mss) / srtt
950 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
951 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
952 	 *
953 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
954 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
955 	 *	 end of slow start and should slow down.
956 	 */
957 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
958 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
959 	else
960 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
961 
962 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
963 
964 	if (likely(tp->srtt_us))
965 		do_div(rate, tp->srtt_us);
966 
967 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
968 	 * without any lock. We want to make sure compiler wont store
969 	 * intermediate values in this location.
970 	 */
971 	WRITE_ONCE(sk->sk_pacing_rate,
972 		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
973 }
974 
975 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
976  * routine referred to above.
977  */
978 static void tcp_set_rto(struct sock *sk)
979 {
980 	const struct tcp_sock *tp = tcp_sk(sk);
981 	/* Old crap is replaced with new one. 8)
982 	 *
983 	 * More seriously:
984 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
985 	 *    It cannot be less due to utterly erratic ACK generation made
986 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
987 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
988 	 *    is invisible. Actually, Linux-2.4 also generates erratic
989 	 *    ACKs in some circumstances.
990 	 */
991 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
992 
993 	/* 2. Fixups made earlier cannot be right.
994 	 *    If we do not estimate RTO correctly without them,
995 	 *    all the algo is pure shit and should be replaced
996 	 *    with correct one. It is exactly, which we pretend to do.
997 	 */
998 
999 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
1000 	 * guarantees that rto is higher.
1001 	 */
1002 	tcp_bound_rto(sk);
1003 }
1004 
1005 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1006 {
1007 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1008 
1009 	if (!cwnd)
1010 		cwnd = TCP_INIT_CWND;
1011 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1012 }
1013 
1014 struct tcp_sacktag_state {
1015 	/* Timestamps for earliest and latest never-retransmitted segment
1016 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1017 	 * but congestion control should still get an accurate delay signal.
1018 	 */
1019 	u64	first_sackt;
1020 	u64	last_sackt;
1021 	u32	reord;
1022 	u32	sack_delivered;
1023 	int	flag;
1024 	unsigned int mss_now;
1025 	struct rate_sample *rate;
1026 };
1027 
1028 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1029  * and spurious retransmission information if this DSACK is unlikely caused by
1030  * sender's action:
1031  * - DSACKed sequence range is larger than maximum receiver's window.
1032  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1033  */
1034 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1035 			  u32 end_seq, struct tcp_sacktag_state *state)
1036 {
1037 	u32 seq_len, dup_segs = 1;
1038 
1039 	if (!before(start_seq, end_seq))
1040 		return 0;
1041 
1042 	seq_len = end_seq - start_seq;
1043 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1044 	if (seq_len > tp->max_window)
1045 		return 0;
1046 	if (seq_len > tp->mss_cache)
1047 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1048 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1049 		state->flag |= FLAG_DSACK_TLP;
1050 
1051 	tp->dsack_dups += dup_segs;
1052 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1053 	if (tp->dsack_dups > tp->total_retrans)
1054 		return 0;
1055 
1056 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1057 	/* We increase the RACK ordering window in rounds where we receive
1058 	 * DSACKs that may have been due to reordering causing RACK to trigger
1059 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1060 	 * without having seen reordering, or that match TLP probes (TLP
1061 	 * is timer-driven, not triggered by RACK).
1062 	 */
1063 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1064 		tp->rack.dsack_seen = 1;
1065 
1066 	state->flag |= FLAG_DSACKING_ACK;
1067 	/* A spurious retransmission is delivered */
1068 	state->sack_delivered += dup_segs;
1069 
1070 	return dup_segs;
1071 }
1072 
1073 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1074  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1075  * distance is approximated in full-mss packet distance ("reordering").
1076  */
1077 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1078 				      const int ts)
1079 {
1080 	struct tcp_sock *tp = tcp_sk(sk);
1081 	const u32 mss = tp->mss_cache;
1082 	u32 fack, metric;
1083 
1084 	fack = tcp_highest_sack_seq(tp);
1085 	if (!before(low_seq, fack))
1086 		return;
1087 
1088 	metric = fack - low_seq;
1089 	if ((metric > tp->reordering * mss) && mss) {
1090 #if FASTRETRANS_DEBUG > 1
1091 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1092 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1093 			 tp->reordering,
1094 			 0,
1095 			 tp->sacked_out,
1096 			 tp->undo_marker ? tp->undo_retrans : 0);
1097 #endif
1098 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1099 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1100 	}
1101 
1102 	/* This exciting event is worth to be remembered. 8) */
1103 	tp->reord_seen++;
1104 	NET_INC_STATS(sock_net(sk),
1105 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1106 }
1107 
1108  /* This must be called before lost_out or retrans_out are updated
1109   * on a new loss, because we want to know if all skbs previously
1110   * known to be lost have already been retransmitted, indicating
1111   * that this newly lost skb is our next skb to retransmit.
1112   */
1113 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1114 {
1115 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1116 	    (tp->retransmit_skb_hint &&
1117 	     before(TCP_SKB_CB(skb)->seq,
1118 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1119 		tp->retransmit_skb_hint = skb;
1120 }
1121 
1122 /* Sum the number of packets on the wire we have marked as lost, and
1123  * notify the congestion control module that the given skb was marked lost.
1124  */
1125 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1126 {
1127 	tp->lost += tcp_skb_pcount(skb);
1128 }
1129 
1130 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1131 {
1132 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1133 	struct tcp_sock *tp = tcp_sk(sk);
1134 
1135 	if (sacked & TCPCB_SACKED_ACKED)
1136 		return;
1137 
1138 	tcp_verify_retransmit_hint(tp, skb);
1139 	if (sacked & TCPCB_LOST) {
1140 		if (sacked & TCPCB_SACKED_RETRANS) {
1141 			/* Account for retransmits that are lost again */
1142 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1143 			tp->retrans_out -= tcp_skb_pcount(skb);
1144 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1145 				      tcp_skb_pcount(skb));
1146 			tcp_notify_skb_loss_event(tp, skb);
1147 		}
1148 	} else {
1149 		tp->lost_out += tcp_skb_pcount(skb);
1150 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1151 		tcp_notify_skb_loss_event(tp, skb);
1152 	}
1153 }
1154 
1155 /* Updates the delivered and delivered_ce counts */
1156 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1157 				bool ece_ack)
1158 {
1159 	tp->delivered += delivered;
1160 	if (ece_ack)
1161 		tp->delivered_ce += delivered;
1162 }
1163 
1164 /* This procedure tags the retransmission queue when SACKs arrive.
1165  *
1166  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1167  * Packets in queue with these bits set are counted in variables
1168  * sacked_out, retrans_out and lost_out, correspondingly.
1169  *
1170  * Valid combinations are:
1171  * Tag  InFlight	Description
1172  * 0	1		- orig segment is in flight.
1173  * S	0		- nothing flies, orig reached receiver.
1174  * L	0		- nothing flies, orig lost by net.
1175  * R	2		- both orig and retransmit are in flight.
1176  * L|R	1		- orig is lost, retransmit is in flight.
1177  * S|R  1		- orig reached receiver, retrans is still in flight.
1178  * (L|S|R is logically valid, it could occur when L|R is sacked,
1179  *  but it is equivalent to plain S and code short-circuits it to S.
1180  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1181  *
1182  * These 6 states form finite state machine, controlled by the following events:
1183  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1184  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1185  * 3. Loss detection event of two flavors:
1186  *	A. Scoreboard estimator decided the packet is lost.
1187  *	   A'. Reno "three dupacks" marks head of queue lost.
1188  *	B. SACK arrives sacking SND.NXT at the moment, when the
1189  *	   segment was retransmitted.
1190  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1191  *
1192  * It is pleasant to note, that state diagram turns out to be commutative,
1193  * so that we are allowed not to be bothered by order of our actions,
1194  * when multiple events arrive simultaneously. (see the function below).
1195  *
1196  * Reordering detection.
1197  * --------------------
1198  * Reordering metric is maximal distance, which a packet can be displaced
1199  * in packet stream. With SACKs we can estimate it:
1200  *
1201  * 1. SACK fills old hole and the corresponding segment was not
1202  *    ever retransmitted -> reordering. Alas, we cannot use it
1203  *    when segment was retransmitted.
1204  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1205  *    for retransmitted and already SACKed segment -> reordering..
1206  * Both of these heuristics are not used in Loss state, when we cannot
1207  * account for retransmits accurately.
1208  *
1209  * SACK block validation.
1210  * ----------------------
1211  *
1212  * SACK block range validation checks that the received SACK block fits to
1213  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1214  * Note that SND.UNA is not included to the range though being valid because
1215  * it means that the receiver is rather inconsistent with itself reporting
1216  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1217  * perfectly valid, however, in light of RFC2018 which explicitly states
1218  * that "SACK block MUST reflect the newest segment.  Even if the newest
1219  * segment is going to be discarded ...", not that it looks very clever
1220  * in case of head skb. Due to potentional receiver driven attacks, we
1221  * choose to avoid immediate execution of a walk in write queue due to
1222  * reneging and defer head skb's loss recovery to standard loss recovery
1223  * procedure that will eventually trigger (nothing forbids us doing this).
1224  *
1225  * Implements also blockage to start_seq wrap-around. Problem lies in the
1226  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1227  * there's no guarantee that it will be before snd_nxt (n). The problem
1228  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1229  * wrap (s_w):
1230  *
1231  *         <- outs wnd ->                          <- wrapzone ->
1232  *         u     e      n                         u_w   e_w  s n_w
1233  *         |     |      |                          |     |   |  |
1234  * |<------------+------+----- TCP seqno space --------------+---------->|
1235  * ...-- <2^31 ->|                                           |<--------...
1236  * ...---- >2^31 ------>|                                    |<--------...
1237  *
1238  * Current code wouldn't be vulnerable but it's better still to discard such
1239  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1240  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1241  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1242  * equal to the ideal case (infinite seqno space without wrap caused issues).
1243  *
1244  * With D-SACK the lower bound is extended to cover sequence space below
1245  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1246  * again, D-SACK block must not to go across snd_una (for the same reason as
1247  * for the normal SACK blocks, explained above). But there all simplicity
1248  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1249  * fully below undo_marker they do not affect behavior in anyway and can
1250  * therefore be safely ignored. In rare cases (which are more or less
1251  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1252  * fragmentation and packet reordering past skb's retransmission. To consider
1253  * them correctly, the acceptable range must be extended even more though
1254  * the exact amount is rather hard to quantify. However, tp->max_window can
1255  * be used as an exaggerated estimate.
1256  */
1257 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1258 				   u32 start_seq, u32 end_seq)
1259 {
1260 	/* Too far in future, or reversed (interpretation is ambiguous) */
1261 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1262 		return false;
1263 
1264 	/* Nasty start_seq wrap-around check (see comments above) */
1265 	if (!before(start_seq, tp->snd_nxt))
1266 		return false;
1267 
1268 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1269 	 * start_seq == snd_una is non-sensical (see comments above)
1270 	 */
1271 	if (after(start_seq, tp->snd_una))
1272 		return true;
1273 
1274 	if (!is_dsack || !tp->undo_marker)
1275 		return false;
1276 
1277 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1278 	if (after(end_seq, tp->snd_una))
1279 		return false;
1280 
1281 	if (!before(start_seq, tp->undo_marker))
1282 		return true;
1283 
1284 	/* Too old */
1285 	if (!after(end_seq, tp->undo_marker))
1286 		return false;
1287 
1288 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1289 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1290 	 */
1291 	return !before(start_seq, end_seq - tp->max_window);
1292 }
1293 
1294 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1295 			    struct tcp_sack_block_wire *sp, int num_sacks,
1296 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1297 {
1298 	struct tcp_sock *tp = tcp_sk(sk);
1299 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1300 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1301 	u32 dup_segs;
1302 
1303 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1304 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1305 	} else if (num_sacks > 1) {
1306 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1307 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1308 
1309 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1310 			return false;
1311 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1312 	} else {
1313 		return false;
1314 	}
1315 
1316 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1317 	if (!dup_segs) {	/* Skip dubious DSACK */
1318 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1319 		return false;
1320 	}
1321 
1322 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1323 
1324 	/* D-SACK for already forgotten data... Do dumb counting. */
1325 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1326 	    !after(end_seq_0, prior_snd_una) &&
1327 	    after(end_seq_0, tp->undo_marker))
1328 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1329 
1330 	return true;
1331 }
1332 
1333 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1334  * the incoming SACK may not exactly match but we can find smaller MSS
1335  * aligned portion of it that matches. Therefore we might need to fragment
1336  * which may fail and creates some hassle (caller must handle error case
1337  * returns).
1338  *
1339  * FIXME: this could be merged to shift decision code
1340  */
1341 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1342 				  u32 start_seq, u32 end_seq)
1343 {
1344 	int err;
1345 	bool in_sack;
1346 	unsigned int pkt_len;
1347 	unsigned int mss;
1348 
1349 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1350 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1351 
1352 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1353 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1354 		mss = tcp_skb_mss(skb);
1355 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1356 
1357 		if (!in_sack) {
1358 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1359 			if (pkt_len < mss)
1360 				pkt_len = mss;
1361 		} else {
1362 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1363 			if (pkt_len < mss)
1364 				return -EINVAL;
1365 		}
1366 
1367 		/* Round if necessary so that SACKs cover only full MSSes
1368 		 * and/or the remaining small portion (if present)
1369 		 */
1370 		if (pkt_len > mss) {
1371 			unsigned int new_len = (pkt_len / mss) * mss;
1372 			if (!in_sack && new_len < pkt_len)
1373 				new_len += mss;
1374 			pkt_len = new_len;
1375 		}
1376 
1377 		if (pkt_len >= skb->len && !in_sack)
1378 			return 0;
1379 
1380 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1381 				   pkt_len, mss, GFP_ATOMIC);
1382 		if (err < 0)
1383 			return err;
1384 	}
1385 
1386 	return in_sack;
1387 }
1388 
1389 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1390 static u8 tcp_sacktag_one(struct sock *sk,
1391 			  struct tcp_sacktag_state *state, u8 sacked,
1392 			  u32 start_seq, u32 end_seq,
1393 			  int dup_sack, int pcount,
1394 			  u64 xmit_time)
1395 {
1396 	struct tcp_sock *tp = tcp_sk(sk);
1397 
1398 	/* Account D-SACK for retransmitted packet. */
1399 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1400 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1401 		    after(end_seq, tp->undo_marker))
1402 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1403 		if ((sacked & TCPCB_SACKED_ACKED) &&
1404 		    before(start_seq, state->reord))
1405 				state->reord = start_seq;
1406 	}
1407 
1408 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1409 	if (!after(end_seq, tp->snd_una))
1410 		return sacked;
1411 
1412 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1413 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1414 
1415 		if (sacked & TCPCB_SACKED_RETRANS) {
1416 			/* If the segment is not tagged as lost,
1417 			 * we do not clear RETRANS, believing
1418 			 * that retransmission is still in flight.
1419 			 */
1420 			if (sacked & TCPCB_LOST) {
1421 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1422 				tp->lost_out -= pcount;
1423 				tp->retrans_out -= pcount;
1424 			}
1425 		} else {
1426 			if (!(sacked & TCPCB_RETRANS)) {
1427 				/* New sack for not retransmitted frame,
1428 				 * which was in hole. It is reordering.
1429 				 */
1430 				if (before(start_seq,
1431 					   tcp_highest_sack_seq(tp)) &&
1432 				    before(start_seq, state->reord))
1433 					state->reord = start_seq;
1434 
1435 				if (!after(end_seq, tp->high_seq))
1436 					state->flag |= FLAG_ORIG_SACK_ACKED;
1437 				if (state->first_sackt == 0)
1438 					state->first_sackt = xmit_time;
1439 				state->last_sackt = xmit_time;
1440 			}
1441 
1442 			if (sacked & TCPCB_LOST) {
1443 				sacked &= ~TCPCB_LOST;
1444 				tp->lost_out -= pcount;
1445 			}
1446 		}
1447 
1448 		sacked |= TCPCB_SACKED_ACKED;
1449 		state->flag |= FLAG_DATA_SACKED;
1450 		tp->sacked_out += pcount;
1451 		/* Out-of-order packets delivered */
1452 		state->sack_delivered += pcount;
1453 
1454 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1455 		if (tp->lost_skb_hint &&
1456 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1457 			tp->lost_cnt_hint += pcount;
1458 	}
1459 
1460 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1461 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1462 	 * are accounted above as well.
1463 	 */
1464 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1465 		sacked &= ~TCPCB_SACKED_RETRANS;
1466 		tp->retrans_out -= pcount;
1467 	}
1468 
1469 	return sacked;
1470 }
1471 
1472 /* Shift newly-SACKed bytes from this skb to the immediately previous
1473  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1474  */
1475 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1476 			    struct sk_buff *skb,
1477 			    struct tcp_sacktag_state *state,
1478 			    unsigned int pcount, int shifted, int mss,
1479 			    bool dup_sack)
1480 {
1481 	struct tcp_sock *tp = tcp_sk(sk);
1482 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1483 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1484 
1485 	BUG_ON(!pcount);
1486 
1487 	/* Adjust counters and hints for the newly sacked sequence
1488 	 * range but discard the return value since prev is already
1489 	 * marked. We must tag the range first because the seq
1490 	 * advancement below implicitly advances
1491 	 * tcp_highest_sack_seq() when skb is highest_sack.
1492 	 */
1493 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1494 			start_seq, end_seq, dup_sack, pcount,
1495 			tcp_skb_timestamp_us(skb));
1496 	tcp_rate_skb_delivered(sk, skb, state->rate);
1497 
1498 	if (skb == tp->lost_skb_hint)
1499 		tp->lost_cnt_hint += pcount;
1500 
1501 	TCP_SKB_CB(prev)->end_seq += shifted;
1502 	TCP_SKB_CB(skb)->seq += shifted;
1503 
1504 	tcp_skb_pcount_add(prev, pcount);
1505 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1506 	tcp_skb_pcount_add(skb, -pcount);
1507 
1508 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1509 	 * in theory this shouldn't be necessary but as long as DSACK
1510 	 * code can come after this skb later on it's better to keep
1511 	 * setting gso_size to something.
1512 	 */
1513 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1514 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1515 
1516 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1517 	if (tcp_skb_pcount(skb) <= 1)
1518 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1519 
1520 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1521 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1522 
1523 	if (skb->len > 0) {
1524 		BUG_ON(!tcp_skb_pcount(skb));
1525 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1526 		return false;
1527 	}
1528 
1529 	/* Whole SKB was eaten :-) */
1530 
1531 	if (skb == tp->retransmit_skb_hint)
1532 		tp->retransmit_skb_hint = prev;
1533 	if (skb == tp->lost_skb_hint) {
1534 		tp->lost_skb_hint = prev;
1535 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1536 	}
1537 
1538 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1539 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1540 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1541 		TCP_SKB_CB(prev)->end_seq++;
1542 
1543 	if (skb == tcp_highest_sack(sk))
1544 		tcp_advance_highest_sack(sk, skb);
1545 
1546 	tcp_skb_collapse_tstamp(prev, skb);
1547 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1548 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1549 
1550 	tcp_rtx_queue_unlink_and_free(skb, sk);
1551 
1552 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1553 
1554 	return true;
1555 }
1556 
1557 /* I wish gso_size would have a bit more sane initialization than
1558  * something-or-zero which complicates things
1559  */
1560 static int tcp_skb_seglen(const struct sk_buff *skb)
1561 {
1562 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1563 }
1564 
1565 /* Shifting pages past head area doesn't work */
1566 static int skb_can_shift(const struct sk_buff *skb)
1567 {
1568 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1569 }
1570 
1571 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1572 		  int pcount, int shiftlen)
1573 {
1574 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1575 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1576 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1577 	 * even if current MSS is bigger.
1578 	 */
1579 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1580 		return 0;
1581 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1582 		return 0;
1583 	return skb_shift(to, from, shiftlen);
1584 }
1585 
1586 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1587  * skb.
1588  */
1589 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1590 					  struct tcp_sacktag_state *state,
1591 					  u32 start_seq, u32 end_seq,
1592 					  bool dup_sack)
1593 {
1594 	struct tcp_sock *tp = tcp_sk(sk);
1595 	struct sk_buff *prev;
1596 	int mss;
1597 	int pcount = 0;
1598 	int len;
1599 	int in_sack;
1600 
1601 	/* Normally R but no L won't result in plain S */
1602 	if (!dup_sack &&
1603 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1604 		goto fallback;
1605 	if (!skb_can_shift(skb))
1606 		goto fallback;
1607 	/* This frame is about to be dropped (was ACKed). */
1608 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1609 		goto fallback;
1610 
1611 	/* Can only happen with delayed DSACK + discard craziness */
1612 	prev = skb_rb_prev(skb);
1613 	if (!prev)
1614 		goto fallback;
1615 
1616 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1617 		goto fallback;
1618 
1619 	if (!tcp_skb_can_collapse(prev, skb))
1620 		goto fallback;
1621 
1622 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1623 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1624 
1625 	if (in_sack) {
1626 		len = skb->len;
1627 		pcount = tcp_skb_pcount(skb);
1628 		mss = tcp_skb_seglen(skb);
1629 
1630 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1631 		 * drop this restriction as unnecessary
1632 		 */
1633 		if (mss != tcp_skb_seglen(prev))
1634 			goto fallback;
1635 	} else {
1636 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1637 			goto noop;
1638 		/* CHECKME: This is non-MSS split case only?, this will
1639 		 * cause skipped skbs due to advancing loop btw, original
1640 		 * has that feature too
1641 		 */
1642 		if (tcp_skb_pcount(skb) <= 1)
1643 			goto noop;
1644 
1645 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1646 		if (!in_sack) {
1647 			/* TODO: head merge to next could be attempted here
1648 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1649 			 * though it might not be worth of the additional hassle
1650 			 *
1651 			 * ...we can probably just fallback to what was done
1652 			 * previously. We could try merging non-SACKed ones
1653 			 * as well but it probably isn't going to buy off
1654 			 * because later SACKs might again split them, and
1655 			 * it would make skb timestamp tracking considerably
1656 			 * harder problem.
1657 			 */
1658 			goto fallback;
1659 		}
1660 
1661 		len = end_seq - TCP_SKB_CB(skb)->seq;
1662 		BUG_ON(len < 0);
1663 		BUG_ON(len > skb->len);
1664 
1665 		/* MSS boundaries should be honoured or else pcount will
1666 		 * severely break even though it makes things bit trickier.
1667 		 * Optimize common case to avoid most of the divides
1668 		 */
1669 		mss = tcp_skb_mss(skb);
1670 
1671 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1672 		 * drop this restriction as unnecessary
1673 		 */
1674 		if (mss != tcp_skb_seglen(prev))
1675 			goto fallback;
1676 
1677 		if (len == mss) {
1678 			pcount = 1;
1679 		} else if (len < mss) {
1680 			goto noop;
1681 		} else {
1682 			pcount = len / mss;
1683 			len = pcount * mss;
1684 		}
1685 	}
1686 
1687 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1688 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1689 		goto fallback;
1690 
1691 	if (!tcp_skb_shift(prev, skb, pcount, len))
1692 		goto fallback;
1693 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1694 		goto out;
1695 
1696 	/* Hole filled allows collapsing with the next as well, this is very
1697 	 * useful when hole on every nth skb pattern happens
1698 	 */
1699 	skb = skb_rb_next(prev);
1700 	if (!skb)
1701 		goto out;
1702 
1703 	if (!skb_can_shift(skb) ||
1704 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1705 	    (mss != tcp_skb_seglen(skb)))
1706 		goto out;
1707 
1708 	if (!tcp_skb_can_collapse(prev, skb))
1709 		goto out;
1710 	len = skb->len;
1711 	pcount = tcp_skb_pcount(skb);
1712 	if (tcp_skb_shift(prev, skb, pcount, len))
1713 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1714 				len, mss, 0);
1715 
1716 out:
1717 	return prev;
1718 
1719 noop:
1720 	return skb;
1721 
1722 fallback:
1723 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1724 	return NULL;
1725 }
1726 
1727 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1728 					struct tcp_sack_block *next_dup,
1729 					struct tcp_sacktag_state *state,
1730 					u32 start_seq, u32 end_seq,
1731 					bool dup_sack_in)
1732 {
1733 	struct tcp_sock *tp = tcp_sk(sk);
1734 	struct sk_buff *tmp;
1735 
1736 	skb_rbtree_walk_from(skb) {
1737 		int in_sack = 0;
1738 		bool dup_sack = dup_sack_in;
1739 
1740 		/* queue is in-order => we can short-circuit the walk early */
1741 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1742 			break;
1743 
1744 		if (next_dup  &&
1745 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1746 			in_sack = tcp_match_skb_to_sack(sk, skb,
1747 							next_dup->start_seq,
1748 							next_dup->end_seq);
1749 			if (in_sack > 0)
1750 				dup_sack = true;
1751 		}
1752 
1753 		/* skb reference here is a bit tricky to get right, since
1754 		 * shifting can eat and free both this skb and the next,
1755 		 * so not even _safe variant of the loop is enough.
1756 		 */
1757 		if (in_sack <= 0) {
1758 			tmp = tcp_shift_skb_data(sk, skb, state,
1759 						 start_seq, end_seq, dup_sack);
1760 			if (tmp) {
1761 				if (tmp != skb) {
1762 					skb = tmp;
1763 					continue;
1764 				}
1765 
1766 				in_sack = 0;
1767 			} else {
1768 				in_sack = tcp_match_skb_to_sack(sk, skb,
1769 								start_seq,
1770 								end_seq);
1771 			}
1772 		}
1773 
1774 		if (unlikely(in_sack < 0))
1775 			break;
1776 
1777 		if (in_sack) {
1778 			TCP_SKB_CB(skb)->sacked =
1779 				tcp_sacktag_one(sk,
1780 						state,
1781 						TCP_SKB_CB(skb)->sacked,
1782 						TCP_SKB_CB(skb)->seq,
1783 						TCP_SKB_CB(skb)->end_seq,
1784 						dup_sack,
1785 						tcp_skb_pcount(skb),
1786 						tcp_skb_timestamp_us(skb));
1787 			tcp_rate_skb_delivered(sk, skb, state->rate);
1788 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1789 				list_del_init(&skb->tcp_tsorted_anchor);
1790 
1791 			if (!before(TCP_SKB_CB(skb)->seq,
1792 				    tcp_highest_sack_seq(tp)))
1793 				tcp_advance_highest_sack(sk, skb);
1794 		}
1795 	}
1796 	return skb;
1797 }
1798 
1799 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1800 {
1801 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1802 	struct sk_buff *skb;
1803 
1804 	while (*p) {
1805 		parent = *p;
1806 		skb = rb_to_skb(parent);
1807 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1808 			p = &parent->rb_left;
1809 			continue;
1810 		}
1811 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1812 			p = &parent->rb_right;
1813 			continue;
1814 		}
1815 		return skb;
1816 	}
1817 	return NULL;
1818 }
1819 
1820 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1821 					u32 skip_to_seq)
1822 {
1823 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1824 		return skb;
1825 
1826 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1827 }
1828 
1829 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1830 						struct sock *sk,
1831 						struct tcp_sack_block *next_dup,
1832 						struct tcp_sacktag_state *state,
1833 						u32 skip_to_seq)
1834 {
1835 	if (!next_dup)
1836 		return skb;
1837 
1838 	if (before(next_dup->start_seq, skip_to_seq)) {
1839 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1840 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1841 				       next_dup->start_seq, next_dup->end_seq,
1842 				       1);
1843 	}
1844 
1845 	return skb;
1846 }
1847 
1848 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1849 {
1850 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1851 }
1852 
1853 static int
1854 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1855 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1856 {
1857 	struct tcp_sock *tp = tcp_sk(sk);
1858 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1859 				    TCP_SKB_CB(ack_skb)->sacked);
1860 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1861 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1862 	struct tcp_sack_block *cache;
1863 	struct sk_buff *skb;
1864 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1865 	int used_sacks;
1866 	bool found_dup_sack = false;
1867 	int i, j;
1868 	int first_sack_index;
1869 
1870 	state->flag = 0;
1871 	state->reord = tp->snd_nxt;
1872 
1873 	if (!tp->sacked_out)
1874 		tcp_highest_sack_reset(sk);
1875 
1876 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1877 					 num_sacks, prior_snd_una, state);
1878 
1879 	/* Eliminate too old ACKs, but take into
1880 	 * account more or less fresh ones, they can
1881 	 * contain valid SACK info.
1882 	 */
1883 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1884 		return 0;
1885 
1886 	if (!tp->packets_out)
1887 		goto out;
1888 
1889 	used_sacks = 0;
1890 	first_sack_index = 0;
1891 	for (i = 0; i < num_sacks; i++) {
1892 		bool dup_sack = !i && found_dup_sack;
1893 
1894 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1895 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1896 
1897 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1898 					    sp[used_sacks].start_seq,
1899 					    sp[used_sacks].end_seq)) {
1900 			int mib_idx;
1901 
1902 			if (dup_sack) {
1903 				if (!tp->undo_marker)
1904 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1905 				else
1906 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1907 			} else {
1908 				/* Don't count olds caused by ACK reordering */
1909 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1910 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1911 					continue;
1912 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1913 			}
1914 
1915 			NET_INC_STATS(sock_net(sk), mib_idx);
1916 			if (i == 0)
1917 				first_sack_index = -1;
1918 			continue;
1919 		}
1920 
1921 		/* Ignore very old stuff early */
1922 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1923 			if (i == 0)
1924 				first_sack_index = -1;
1925 			continue;
1926 		}
1927 
1928 		used_sacks++;
1929 	}
1930 
1931 	/* order SACK blocks to allow in order walk of the retrans queue */
1932 	for (i = used_sacks - 1; i > 0; i--) {
1933 		for (j = 0; j < i; j++) {
1934 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1935 				swap(sp[j], sp[j + 1]);
1936 
1937 				/* Track where the first SACK block goes to */
1938 				if (j == first_sack_index)
1939 					first_sack_index = j + 1;
1940 			}
1941 		}
1942 	}
1943 
1944 	state->mss_now = tcp_current_mss(sk);
1945 	skb = NULL;
1946 	i = 0;
1947 
1948 	if (!tp->sacked_out) {
1949 		/* It's already past, so skip checking against it */
1950 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1951 	} else {
1952 		cache = tp->recv_sack_cache;
1953 		/* Skip empty blocks in at head of the cache */
1954 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1955 		       !cache->end_seq)
1956 			cache++;
1957 	}
1958 
1959 	while (i < used_sacks) {
1960 		u32 start_seq = sp[i].start_seq;
1961 		u32 end_seq = sp[i].end_seq;
1962 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1963 		struct tcp_sack_block *next_dup = NULL;
1964 
1965 		if (found_dup_sack && ((i + 1) == first_sack_index))
1966 			next_dup = &sp[i + 1];
1967 
1968 		/* Skip too early cached blocks */
1969 		while (tcp_sack_cache_ok(tp, cache) &&
1970 		       !before(start_seq, cache->end_seq))
1971 			cache++;
1972 
1973 		/* Can skip some work by looking recv_sack_cache? */
1974 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1975 		    after(end_seq, cache->start_seq)) {
1976 
1977 			/* Head todo? */
1978 			if (before(start_seq, cache->start_seq)) {
1979 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1980 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1981 						       state,
1982 						       start_seq,
1983 						       cache->start_seq,
1984 						       dup_sack);
1985 			}
1986 
1987 			/* Rest of the block already fully processed? */
1988 			if (!after(end_seq, cache->end_seq))
1989 				goto advance_sp;
1990 
1991 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1992 						       state,
1993 						       cache->end_seq);
1994 
1995 			/* ...tail remains todo... */
1996 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1997 				/* ...but better entrypoint exists! */
1998 				skb = tcp_highest_sack(sk);
1999 				if (!skb)
2000 					break;
2001 				cache++;
2002 				goto walk;
2003 			}
2004 
2005 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
2006 			/* Check overlap against next cached too (past this one already) */
2007 			cache++;
2008 			continue;
2009 		}
2010 
2011 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2012 			skb = tcp_highest_sack(sk);
2013 			if (!skb)
2014 				break;
2015 		}
2016 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2017 
2018 walk:
2019 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2020 				       start_seq, end_seq, dup_sack);
2021 
2022 advance_sp:
2023 		i++;
2024 	}
2025 
2026 	/* Clear the head of the cache sack blocks so we can skip it next time */
2027 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2028 		tp->recv_sack_cache[i].start_seq = 0;
2029 		tp->recv_sack_cache[i].end_seq = 0;
2030 	}
2031 	for (j = 0; j < used_sacks; j++)
2032 		tp->recv_sack_cache[i++] = sp[j];
2033 
2034 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2035 		tcp_check_sack_reordering(sk, state->reord, 0);
2036 
2037 	tcp_verify_left_out(tp);
2038 out:
2039 
2040 #if FASTRETRANS_DEBUG > 0
2041 	WARN_ON((int)tp->sacked_out < 0);
2042 	WARN_ON((int)tp->lost_out < 0);
2043 	WARN_ON((int)tp->retrans_out < 0);
2044 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2045 #endif
2046 	return state->flag;
2047 }
2048 
2049 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2050  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2051  */
2052 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2053 {
2054 	u32 holes;
2055 
2056 	holes = max(tp->lost_out, 1U);
2057 	holes = min(holes, tp->packets_out);
2058 
2059 	if ((tp->sacked_out + holes) > tp->packets_out) {
2060 		tp->sacked_out = tp->packets_out - holes;
2061 		return true;
2062 	}
2063 	return false;
2064 }
2065 
2066 /* If we receive more dupacks than we expected counting segments
2067  * in assumption of absent reordering, interpret this as reordering.
2068  * The only another reason could be bug in receiver TCP.
2069  */
2070 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2071 {
2072 	struct tcp_sock *tp = tcp_sk(sk);
2073 
2074 	if (!tcp_limit_reno_sacked(tp))
2075 		return;
2076 
2077 	tp->reordering = min_t(u32, tp->packets_out + addend,
2078 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2079 	tp->reord_seen++;
2080 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2081 }
2082 
2083 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2084 
2085 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2086 {
2087 	if (num_dupack) {
2088 		struct tcp_sock *tp = tcp_sk(sk);
2089 		u32 prior_sacked = tp->sacked_out;
2090 		s32 delivered;
2091 
2092 		tp->sacked_out += num_dupack;
2093 		tcp_check_reno_reordering(sk, 0);
2094 		delivered = tp->sacked_out - prior_sacked;
2095 		if (delivered > 0)
2096 			tcp_count_delivered(tp, delivered, ece_ack);
2097 		tcp_verify_left_out(tp);
2098 	}
2099 }
2100 
2101 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2102 
2103 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2104 {
2105 	struct tcp_sock *tp = tcp_sk(sk);
2106 
2107 	if (acked > 0) {
2108 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2109 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2110 				    ece_ack);
2111 		if (acked - 1 >= tp->sacked_out)
2112 			tp->sacked_out = 0;
2113 		else
2114 			tp->sacked_out -= acked - 1;
2115 	}
2116 	tcp_check_reno_reordering(sk, acked);
2117 	tcp_verify_left_out(tp);
2118 }
2119 
2120 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2121 {
2122 	tp->sacked_out = 0;
2123 }
2124 
2125 void tcp_clear_retrans(struct tcp_sock *tp)
2126 {
2127 	tp->retrans_out = 0;
2128 	tp->lost_out = 0;
2129 	tp->undo_marker = 0;
2130 	tp->undo_retrans = -1;
2131 	tp->sacked_out = 0;
2132 	tp->rto_stamp = 0;
2133 	tp->total_rto = 0;
2134 	tp->total_rto_recoveries = 0;
2135 	tp->total_rto_time = 0;
2136 }
2137 
2138 static inline void tcp_init_undo(struct tcp_sock *tp)
2139 {
2140 	tp->undo_marker = tp->snd_una;
2141 
2142 	/* Retransmission still in flight may cause DSACKs later. */
2143 	/* First, account for regular retransmits in flight: */
2144 	tp->undo_retrans = tp->retrans_out;
2145 	/* Next, account for TLP retransmits in flight: */
2146 	if (tp->tlp_high_seq && tp->tlp_retrans)
2147 		tp->undo_retrans++;
2148 	/* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2149 	if (!tp->undo_retrans)
2150 		tp->undo_retrans = -1;
2151 }
2152 
2153 static bool tcp_is_rack(const struct sock *sk)
2154 {
2155 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2156 		TCP_RACK_LOSS_DETECTION;
2157 }
2158 
2159 /* If we detect SACK reneging, forget all SACK information
2160  * and reset tags completely, otherwise preserve SACKs. If receiver
2161  * dropped its ofo queue, we will know this due to reneging detection.
2162  */
2163 static void tcp_timeout_mark_lost(struct sock *sk)
2164 {
2165 	struct tcp_sock *tp = tcp_sk(sk);
2166 	struct sk_buff *skb, *head;
2167 	bool is_reneg;			/* is receiver reneging on SACKs? */
2168 
2169 	head = tcp_rtx_queue_head(sk);
2170 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2171 	if (is_reneg) {
2172 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2173 		tp->sacked_out = 0;
2174 		/* Mark SACK reneging until we recover from this loss event. */
2175 		tp->is_sack_reneg = 1;
2176 	} else if (tcp_is_reno(tp)) {
2177 		tcp_reset_reno_sack(tp);
2178 	}
2179 
2180 	skb = head;
2181 	skb_rbtree_walk_from(skb) {
2182 		if (is_reneg)
2183 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2184 		else if (tcp_is_rack(sk) && skb != head &&
2185 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2186 			continue; /* Don't mark recently sent ones lost yet */
2187 		tcp_mark_skb_lost(sk, skb);
2188 	}
2189 	tcp_verify_left_out(tp);
2190 	tcp_clear_all_retrans_hints(tp);
2191 }
2192 
2193 /* Enter Loss state. */
2194 void tcp_enter_loss(struct sock *sk)
2195 {
2196 	const struct inet_connection_sock *icsk = inet_csk(sk);
2197 	struct tcp_sock *tp = tcp_sk(sk);
2198 	struct net *net = sock_net(sk);
2199 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2200 	u8 reordering;
2201 
2202 	tcp_timeout_mark_lost(sk);
2203 
2204 	/* Reduce ssthresh if it has not yet been made inside this window. */
2205 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2206 	    !after(tp->high_seq, tp->snd_una) ||
2207 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2208 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2209 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2210 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2211 		tcp_ca_event(sk, CA_EVENT_LOSS);
2212 		tcp_init_undo(tp);
2213 	}
2214 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2215 	tp->snd_cwnd_cnt   = 0;
2216 	tp->snd_cwnd_stamp = tcp_jiffies32;
2217 
2218 	/* Timeout in disordered state after receiving substantial DUPACKs
2219 	 * suggests that the degree of reordering is over-estimated.
2220 	 */
2221 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2222 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2223 	    tp->sacked_out >= reordering)
2224 		tp->reordering = min_t(unsigned int, tp->reordering,
2225 				       reordering);
2226 
2227 	tcp_set_ca_state(sk, TCP_CA_Loss);
2228 	tp->high_seq = tp->snd_nxt;
2229 	tp->tlp_high_seq = 0;
2230 	tcp_ecn_queue_cwr(tp);
2231 
2232 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2233 	 * loss recovery is underway except recurring timeout(s) on
2234 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2235 	 */
2236 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2237 		   (new_recovery || icsk->icsk_retransmits) &&
2238 		   !inet_csk(sk)->icsk_mtup.probe_size;
2239 }
2240 
2241 /* If ACK arrived pointing to a remembered SACK, it means that our
2242  * remembered SACKs do not reflect real state of receiver i.e.
2243  * receiver _host_ is heavily congested (or buggy).
2244  *
2245  * To avoid big spurious retransmission bursts due to transient SACK
2246  * scoreboard oddities that look like reneging, we give the receiver a
2247  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2248  * restore sanity to the SACK scoreboard. If the apparent reneging
2249  * persists until this RTO then we'll clear the SACK scoreboard.
2250  */
2251 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2252 {
2253 	if (*ack_flag & FLAG_SACK_RENEGING &&
2254 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2255 		struct tcp_sock *tp = tcp_sk(sk);
2256 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2257 					  msecs_to_jiffies(10));
2258 
2259 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2260 					  delay, TCP_RTO_MAX);
2261 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2262 		return true;
2263 	}
2264 	return false;
2265 }
2266 
2267 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2268  * counter when SACK is enabled (without SACK, sacked_out is used for
2269  * that purpose).
2270  *
2271  * With reordering, holes may still be in flight, so RFC3517 recovery
2272  * uses pure sacked_out (total number of SACKed segments) even though
2273  * it violates the RFC that uses duplicate ACKs, often these are equal
2274  * but when e.g. out-of-window ACKs or packet duplication occurs,
2275  * they differ. Since neither occurs due to loss, TCP should really
2276  * ignore them.
2277  */
2278 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2279 {
2280 	return tp->sacked_out + 1;
2281 }
2282 
2283 /* Linux NewReno/SACK/ECN state machine.
2284  * --------------------------------------
2285  *
2286  * "Open"	Normal state, no dubious events, fast path.
2287  * "Disorder"   In all the respects it is "Open",
2288  *		but requires a bit more attention. It is entered when
2289  *		we see some SACKs or dupacks. It is split of "Open"
2290  *		mainly to move some processing from fast path to slow one.
2291  * "CWR"	CWND was reduced due to some Congestion Notification event.
2292  *		It can be ECN, ICMP source quench, local device congestion.
2293  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2294  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2295  *
2296  * tcp_fastretrans_alert() is entered:
2297  * - each incoming ACK, if state is not "Open"
2298  * - when arrived ACK is unusual, namely:
2299  *	* SACK
2300  *	* Duplicate ACK.
2301  *	* ECN ECE.
2302  *
2303  * Counting packets in flight is pretty simple.
2304  *
2305  *	in_flight = packets_out - left_out + retrans_out
2306  *
2307  *	packets_out is SND.NXT-SND.UNA counted in packets.
2308  *
2309  *	retrans_out is number of retransmitted segments.
2310  *
2311  *	left_out is number of segments left network, but not ACKed yet.
2312  *
2313  *		left_out = sacked_out + lost_out
2314  *
2315  *     sacked_out: Packets, which arrived to receiver out of order
2316  *		   and hence not ACKed. With SACKs this number is simply
2317  *		   amount of SACKed data. Even without SACKs
2318  *		   it is easy to give pretty reliable estimate of this number,
2319  *		   counting duplicate ACKs.
2320  *
2321  *       lost_out: Packets lost by network. TCP has no explicit
2322  *		   "loss notification" feedback from network (for now).
2323  *		   It means that this number can be only _guessed_.
2324  *		   Actually, it is the heuristics to predict lossage that
2325  *		   distinguishes different algorithms.
2326  *
2327  *	F.e. after RTO, when all the queue is considered as lost,
2328  *	lost_out = packets_out and in_flight = retrans_out.
2329  *
2330  *		Essentially, we have now a few algorithms detecting
2331  *		lost packets.
2332  *
2333  *		If the receiver supports SACK:
2334  *
2335  *		RFC6675/3517: It is the conventional algorithm. A packet is
2336  *		considered lost if the number of higher sequence packets
2337  *		SACKed is greater than or equal the DUPACK thoreshold
2338  *		(reordering). This is implemented in tcp_mark_head_lost and
2339  *		tcp_update_scoreboard.
2340  *
2341  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2342  *		(2017-) that checks timing instead of counting DUPACKs.
2343  *		Essentially a packet is considered lost if it's not S/ACKed
2344  *		after RTT + reordering_window, where both metrics are
2345  *		dynamically measured and adjusted. This is implemented in
2346  *		tcp_rack_mark_lost.
2347  *
2348  *		If the receiver does not support SACK:
2349  *
2350  *		NewReno (RFC6582): in Recovery we assume that one segment
2351  *		is lost (classic Reno). While we are in Recovery and
2352  *		a partial ACK arrives, we assume that one more packet
2353  *		is lost (NewReno). This heuristics are the same in NewReno
2354  *		and SACK.
2355  *
2356  * Really tricky (and requiring careful tuning) part of algorithm
2357  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2358  * The first determines the moment _when_ we should reduce CWND and,
2359  * hence, slow down forward transmission. In fact, it determines the moment
2360  * when we decide that hole is caused by loss, rather than by a reorder.
2361  *
2362  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2363  * holes, caused by lost packets.
2364  *
2365  * And the most logically complicated part of algorithm is undo
2366  * heuristics. We detect false retransmits due to both too early
2367  * fast retransmit (reordering) and underestimated RTO, analyzing
2368  * timestamps and D-SACKs. When we detect that some segments were
2369  * retransmitted by mistake and CWND reduction was wrong, we undo
2370  * window reduction and abort recovery phase. This logic is hidden
2371  * inside several functions named tcp_try_undo_<something>.
2372  */
2373 
2374 /* This function decides, when we should leave Disordered state
2375  * and enter Recovery phase, reducing congestion window.
2376  *
2377  * Main question: may we further continue forward transmission
2378  * with the same cwnd?
2379  */
2380 static bool tcp_time_to_recover(struct sock *sk, int flag)
2381 {
2382 	struct tcp_sock *tp = tcp_sk(sk);
2383 
2384 	/* Trick#1: The loss is proven. */
2385 	if (tp->lost_out)
2386 		return true;
2387 
2388 	/* Not-A-Trick#2 : Classic rule... */
2389 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2390 		return true;
2391 
2392 	return false;
2393 }
2394 
2395 /* Detect loss in event "A" above by marking head of queue up as lost.
2396  * For RFC3517 SACK, a segment is considered lost if it
2397  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2398  * the maximum SACKed segments to pass before reaching this limit.
2399  */
2400 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2401 {
2402 	struct tcp_sock *tp = tcp_sk(sk);
2403 	struct sk_buff *skb;
2404 	int cnt;
2405 	/* Use SACK to deduce losses of new sequences sent during recovery */
2406 	const u32 loss_high = tp->snd_nxt;
2407 
2408 	WARN_ON(packets > tp->packets_out);
2409 	skb = tp->lost_skb_hint;
2410 	if (skb) {
2411 		/* Head already handled? */
2412 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2413 			return;
2414 		cnt = tp->lost_cnt_hint;
2415 	} else {
2416 		skb = tcp_rtx_queue_head(sk);
2417 		cnt = 0;
2418 	}
2419 
2420 	skb_rbtree_walk_from(skb) {
2421 		/* TODO: do this better */
2422 		/* this is not the most efficient way to do this... */
2423 		tp->lost_skb_hint = skb;
2424 		tp->lost_cnt_hint = cnt;
2425 
2426 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2427 			break;
2428 
2429 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2430 			cnt += tcp_skb_pcount(skb);
2431 
2432 		if (cnt > packets)
2433 			break;
2434 
2435 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2436 			tcp_mark_skb_lost(sk, skb);
2437 
2438 		if (mark_head)
2439 			break;
2440 	}
2441 	tcp_verify_left_out(tp);
2442 }
2443 
2444 /* Account newly detected lost packet(s) */
2445 
2446 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2447 {
2448 	struct tcp_sock *tp = tcp_sk(sk);
2449 
2450 	if (tcp_is_sack(tp)) {
2451 		int sacked_upto = tp->sacked_out - tp->reordering;
2452 		if (sacked_upto >= 0)
2453 			tcp_mark_head_lost(sk, sacked_upto, 0);
2454 		else if (fast_rexmit)
2455 			tcp_mark_head_lost(sk, 1, 1);
2456 	}
2457 }
2458 
2459 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2460 {
2461 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2462 	       before(tp->rx_opt.rcv_tsecr, when);
2463 }
2464 
2465 /* skb is spurious retransmitted if the returned timestamp echo
2466  * reply is prior to the skb transmission time
2467  */
2468 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2469 				     const struct sk_buff *skb)
2470 {
2471 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2472 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2473 }
2474 
2475 /* Nothing was retransmitted or returned timestamp is less
2476  * than timestamp of the first retransmission.
2477  */
2478 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2479 {
2480 	return tp->retrans_stamp &&
2481 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2482 }
2483 
2484 /* Undo procedures. */
2485 
2486 /* We can clear retrans_stamp when there are no retransmissions in the
2487  * window. It would seem that it is trivially available for us in
2488  * tp->retrans_out, however, that kind of assumptions doesn't consider
2489  * what will happen if errors occur when sending retransmission for the
2490  * second time. ...It could the that such segment has only
2491  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2492  * the head skb is enough except for some reneging corner cases that
2493  * are not worth the effort.
2494  *
2495  * Main reason for all this complexity is the fact that connection dying
2496  * time now depends on the validity of the retrans_stamp, in particular,
2497  * that successive retransmissions of a segment must not advance
2498  * retrans_stamp under any conditions.
2499  */
2500 static bool tcp_any_retrans_done(const struct sock *sk)
2501 {
2502 	const struct tcp_sock *tp = tcp_sk(sk);
2503 	struct sk_buff *skb;
2504 
2505 	if (tp->retrans_out)
2506 		return true;
2507 
2508 	skb = tcp_rtx_queue_head(sk);
2509 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2510 		return true;
2511 
2512 	return false;
2513 }
2514 
2515 static void DBGUNDO(struct sock *sk, const char *msg)
2516 {
2517 #if FASTRETRANS_DEBUG > 1
2518 	struct tcp_sock *tp = tcp_sk(sk);
2519 	struct inet_sock *inet = inet_sk(sk);
2520 
2521 	if (sk->sk_family == AF_INET) {
2522 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2523 			 msg,
2524 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2525 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2526 			 tp->snd_ssthresh, tp->prior_ssthresh,
2527 			 tp->packets_out);
2528 	}
2529 #if IS_ENABLED(CONFIG_IPV6)
2530 	else if (sk->sk_family == AF_INET6) {
2531 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2532 			 msg,
2533 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2534 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2535 			 tp->snd_ssthresh, tp->prior_ssthresh,
2536 			 tp->packets_out);
2537 	}
2538 #endif
2539 #endif
2540 }
2541 
2542 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2543 {
2544 	struct tcp_sock *tp = tcp_sk(sk);
2545 
2546 	if (unmark_loss) {
2547 		struct sk_buff *skb;
2548 
2549 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2550 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2551 		}
2552 		tp->lost_out = 0;
2553 		tcp_clear_all_retrans_hints(tp);
2554 	}
2555 
2556 	if (tp->prior_ssthresh) {
2557 		const struct inet_connection_sock *icsk = inet_csk(sk);
2558 
2559 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2560 
2561 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2562 			tp->snd_ssthresh = tp->prior_ssthresh;
2563 			tcp_ecn_withdraw_cwr(tp);
2564 		}
2565 	}
2566 	tp->snd_cwnd_stamp = tcp_jiffies32;
2567 	tp->undo_marker = 0;
2568 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2569 }
2570 
2571 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2572 {
2573 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2574 }
2575 
2576 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2577 {
2578 	struct tcp_sock *tp = tcp_sk(sk);
2579 
2580 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2581 		/* Hold old state until something *above* high_seq
2582 		 * is ACKed. For Reno it is MUST to prevent false
2583 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2584 		if (!tcp_any_retrans_done(sk))
2585 			tp->retrans_stamp = 0;
2586 		return true;
2587 	}
2588 	return false;
2589 }
2590 
2591 /* People celebrate: "We love our President!" */
2592 static bool tcp_try_undo_recovery(struct sock *sk)
2593 {
2594 	struct tcp_sock *tp = tcp_sk(sk);
2595 
2596 	if (tcp_may_undo(tp)) {
2597 		int mib_idx;
2598 
2599 		/* Happy end! We did not retransmit anything
2600 		 * or our original transmission succeeded.
2601 		 */
2602 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2603 		tcp_undo_cwnd_reduction(sk, false);
2604 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2605 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2606 		else
2607 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2608 
2609 		NET_INC_STATS(sock_net(sk), mib_idx);
2610 	} else if (tp->rack.reo_wnd_persist) {
2611 		tp->rack.reo_wnd_persist--;
2612 	}
2613 	if (tcp_is_non_sack_preventing_reopen(sk))
2614 		return true;
2615 	tcp_set_ca_state(sk, TCP_CA_Open);
2616 	tp->is_sack_reneg = 0;
2617 	return false;
2618 }
2619 
2620 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2621 static bool tcp_try_undo_dsack(struct sock *sk)
2622 {
2623 	struct tcp_sock *tp = tcp_sk(sk);
2624 
2625 	if (tp->undo_marker && !tp->undo_retrans) {
2626 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2627 					       tp->rack.reo_wnd_persist + 1);
2628 		DBGUNDO(sk, "D-SACK");
2629 		tcp_undo_cwnd_reduction(sk, false);
2630 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2631 		return true;
2632 	}
2633 	return false;
2634 }
2635 
2636 /* Undo during loss recovery after partial ACK or using F-RTO. */
2637 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2638 {
2639 	struct tcp_sock *tp = tcp_sk(sk);
2640 
2641 	if (frto_undo || tcp_may_undo(tp)) {
2642 		tcp_undo_cwnd_reduction(sk, true);
2643 
2644 		DBGUNDO(sk, "partial loss");
2645 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2646 		if (frto_undo)
2647 			NET_INC_STATS(sock_net(sk),
2648 					LINUX_MIB_TCPSPURIOUSRTOS);
2649 		inet_csk(sk)->icsk_retransmits = 0;
2650 		if (tcp_is_non_sack_preventing_reopen(sk))
2651 			return true;
2652 		if (frto_undo || tcp_is_sack(tp)) {
2653 			tcp_set_ca_state(sk, TCP_CA_Open);
2654 			tp->is_sack_reneg = 0;
2655 		}
2656 		return true;
2657 	}
2658 	return false;
2659 }
2660 
2661 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2662  * It computes the number of packets to send (sndcnt) based on packets newly
2663  * delivered:
2664  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2665  *	cwnd reductions across a full RTT.
2666  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2667  *      But when SND_UNA is acked without further losses,
2668  *      slow starts cwnd up to ssthresh to speed up the recovery.
2669  */
2670 static void tcp_init_cwnd_reduction(struct sock *sk)
2671 {
2672 	struct tcp_sock *tp = tcp_sk(sk);
2673 
2674 	tp->high_seq = tp->snd_nxt;
2675 	tp->tlp_high_seq = 0;
2676 	tp->snd_cwnd_cnt = 0;
2677 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2678 	tp->prr_delivered = 0;
2679 	tp->prr_out = 0;
2680 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2681 	tcp_ecn_queue_cwr(tp);
2682 }
2683 
2684 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2685 {
2686 	struct tcp_sock *tp = tcp_sk(sk);
2687 	int sndcnt = 0;
2688 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2689 
2690 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2691 		return;
2692 
2693 	tp->prr_delivered += newly_acked_sacked;
2694 	if (delta < 0) {
2695 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2696 			       tp->prior_cwnd - 1;
2697 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2698 	} else {
2699 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2700 			       newly_acked_sacked);
2701 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2702 			sndcnt++;
2703 		sndcnt = min(delta, sndcnt);
2704 	}
2705 	/* Force a fast retransmit upon entering fast recovery */
2706 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2707 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2708 }
2709 
2710 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2711 {
2712 	struct tcp_sock *tp = tcp_sk(sk);
2713 
2714 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2715 		return;
2716 
2717 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2718 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2719 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2720 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2721 		tp->snd_cwnd_stamp = tcp_jiffies32;
2722 	}
2723 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2724 }
2725 
2726 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2727 void tcp_enter_cwr(struct sock *sk)
2728 {
2729 	struct tcp_sock *tp = tcp_sk(sk);
2730 
2731 	tp->prior_ssthresh = 0;
2732 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2733 		tp->undo_marker = 0;
2734 		tcp_init_cwnd_reduction(sk);
2735 		tcp_set_ca_state(sk, TCP_CA_CWR);
2736 	}
2737 }
2738 EXPORT_SYMBOL(tcp_enter_cwr);
2739 
2740 static void tcp_try_keep_open(struct sock *sk)
2741 {
2742 	struct tcp_sock *tp = tcp_sk(sk);
2743 	int state = TCP_CA_Open;
2744 
2745 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2746 		state = TCP_CA_Disorder;
2747 
2748 	if (inet_csk(sk)->icsk_ca_state != state) {
2749 		tcp_set_ca_state(sk, state);
2750 		tp->high_seq = tp->snd_nxt;
2751 	}
2752 }
2753 
2754 static void tcp_try_to_open(struct sock *sk, int flag)
2755 {
2756 	struct tcp_sock *tp = tcp_sk(sk);
2757 
2758 	tcp_verify_left_out(tp);
2759 
2760 	if (!tcp_any_retrans_done(sk))
2761 		tp->retrans_stamp = 0;
2762 
2763 	if (flag & FLAG_ECE)
2764 		tcp_enter_cwr(sk);
2765 
2766 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2767 		tcp_try_keep_open(sk);
2768 	}
2769 }
2770 
2771 static void tcp_mtup_probe_failed(struct sock *sk)
2772 {
2773 	struct inet_connection_sock *icsk = inet_csk(sk);
2774 
2775 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2776 	icsk->icsk_mtup.probe_size = 0;
2777 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2778 }
2779 
2780 static void tcp_mtup_probe_success(struct sock *sk)
2781 {
2782 	struct tcp_sock *tp = tcp_sk(sk);
2783 	struct inet_connection_sock *icsk = inet_csk(sk);
2784 	u64 val;
2785 
2786 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2787 
2788 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2789 	do_div(val, icsk->icsk_mtup.probe_size);
2790 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2791 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2792 
2793 	tp->snd_cwnd_cnt = 0;
2794 	tp->snd_cwnd_stamp = tcp_jiffies32;
2795 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2796 
2797 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2798 	icsk->icsk_mtup.probe_size = 0;
2799 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2800 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2801 }
2802 
2803 /* Sometimes we deduce that packets have been dropped due to reasons other than
2804  * congestion, like path MTU reductions or failed client TFO attempts. In these
2805  * cases we call this function to retransmit as many packets as cwnd allows,
2806  * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2807  * non-zero value (and may do so in a later calling context due to TSQ), we
2808  * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2809  * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2810  * are using the correct retrans_stamp and don't declare ETIMEDOUT
2811  * prematurely).
2812  */
2813 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2814 {
2815 	const struct inet_connection_sock *icsk = inet_csk(sk);
2816 	struct tcp_sock *tp = tcp_sk(sk);
2817 
2818 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2819 		tp->high_seq = tp->snd_nxt;
2820 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2821 		tp->prior_ssthresh = 0;
2822 		tp->undo_marker = 0;
2823 		tcp_set_ca_state(sk, TCP_CA_Loss);
2824 	}
2825 	tcp_xmit_retransmit_queue(sk);
2826 }
2827 
2828 /* Do a simple retransmit without using the backoff mechanisms in
2829  * tcp_timer. This is used for path mtu discovery.
2830  * The socket is already locked here.
2831  */
2832 void tcp_simple_retransmit(struct sock *sk)
2833 {
2834 	struct tcp_sock *tp = tcp_sk(sk);
2835 	struct sk_buff *skb;
2836 	int mss;
2837 
2838 	/* A fastopen SYN request is stored as two separate packets within
2839 	 * the retransmit queue, this is done by tcp_send_syn_data().
2840 	 * As a result simply checking the MSS of the frames in the queue
2841 	 * will not work for the SYN packet.
2842 	 *
2843 	 * Us being here is an indication of a path MTU issue so we can
2844 	 * assume that the fastopen SYN was lost and just mark all the
2845 	 * frames in the retransmit queue as lost. We will use an MSS of
2846 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2847 	 */
2848 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2849 		mss = -1;
2850 	else
2851 		mss = tcp_current_mss(sk);
2852 
2853 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2854 		if (tcp_skb_seglen(skb) > mss)
2855 			tcp_mark_skb_lost(sk, skb);
2856 	}
2857 
2858 	tcp_clear_retrans_hints_partial(tp);
2859 
2860 	if (!tp->lost_out)
2861 		return;
2862 
2863 	if (tcp_is_reno(tp))
2864 		tcp_limit_reno_sacked(tp);
2865 
2866 	tcp_verify_left_out(tp);
2867 
2868 	/* Don't muck with the congestion window here.
2869 	 * Reason is that we do not increase amount of _data_
2870 	 * in network, but units changed and effective
2871 	 * cwnd/ssthresh really reduced now.
2872 	 */
2873 	tcp_non_congestion_loss_retransmit(sk);
2874 }
2875 EXPORT_SYMBOL(tcp_simple_retransmit);
2876 
2877 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2878 {
2879 	struct tcp_sock *tp = tcp_sk(sk);
2880 	int mib_idx;
2881 
2882 	if (tcp_is_reno(tp))
2883 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2884 	else
2885 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2886 
2887 	NET_INC_STATS(sock_net(sk), mib_idx);
2888 
2889 	tp->prior_ssthresh = 0;
2890 	tcp_init_undo(tp);
2891 
2892 	if (!tcp_in_cwnd_reduction(sk)) {
2893 		if (!ece_ack)
2894 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2895 		tcp_init_cwnd_reduction(sk);
2896 	}
2897 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2898 }
2899 
2900 static void tcp_update_rto_time(struct tcp_sock *tp)
2901 {
2902 	if (tp->rto_stamp) {
2903 		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2904 		tp->rto_stamp = 0;
2905 	}
2906 }
2907 
2908 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2909  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2910  */
2911 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2912 			     int *rexmit)
2913 {
2914 	struct tcp_sock *tp = tcp_sk(sk);
2915 	bool recovered = !before(tp->snd_una, tp->high_seq);
2916 
2917 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2918 	    tcp_try_undo_loss(sk, false))
2919 		return;
2920 
2921 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2922 		/* Step 3.b. A timeout is spurious if not all data are
2923 		 * lost, i.e., never-retransmitted data are (s)acked.
2924 		 */
2925 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2926 		    tcp_try_undo_loss(sk, true))
2927 			return;
2928 
2929 		if (after(tp->snd_nxt, tp->high_seq)) {
2930 			if (flag & FLAG_DATA_SACKED || num_dupack)
2931 				tp->frto = 0; /* Step 3.a. loss was real */
2932 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2933 			tp->high_seq = tp->snd_nxt;
2934 			/* Step 2.b. Try send new data (but deferred until cwnd
2935 			 * is updated in tcp_ack()). Otherwise fall back to
2936 			 * the conventional recovery.
2937 			 */
2938 			if (!tcp_write_queue_empty(sk) &&
2939 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2940 				*rexmit = REXMIT_NEW;
2941 				return;
2942 			}
2943 			tp->frto = 0;
2944 		}
2945 	}
2946 
2947 	if (recovered) {
2948 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2949 		tcp_try_undo_recovery(sk);
2950 		return;
2951 	}
2952 	if (tcp_is_reno(tp)) {
2953 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2954 		 * delivered. Lower inflight to clock out (re)transmissions.
2955 		 */
2956 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2957 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2958 		else if (flag & FLAG_SND_UNA_ADVANCED)
2959 			tcp_reset_reno_sack(tp);
2960 	}
2961 	*rexmit = REXMIT_LOST;
2962 }
2963 
2964 static bool tcp_force_fast_retransmit(struct sock *sk)
2965 {
2966 	struct tcp_sock *tp = tcp_sk(sk);
2967 
2968 	return after(tcp_highest_sack_seq(tp),
2969 		     tp->snd_una + tp->reordering * tp->mss_cache);
2970 }
2971 
2972 /* Undo during fast recovery after partial ACK. */
2973 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2974 				 bool *do_lost)
2975 {
2976 	struct tcp_sock *tp = tcp_sk(sk);
2977 
2978 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2979 		/* Plain luck! Hole if filled with delayed
2980 		 * packet, rather than with a retransmit. Check reordering.
2981 		 */
2982 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2983 
2984 		/* We are getting evidence that the reordering degree is higher
2985 		 * than we realized. If there are no retransmits out then we
2986 		 * can undo. Otherwise we clock out new packets but do not
2987 		 * mark more packets lost or retransmit more.
2988 		 */
2989 		if (tp->retrans_out)
2990 			return true;
2991 
2992 		if (!tcp_any_retrans_done(sk))
2993 			tp->retrans_stamp = 0;
2994 
2995 		DBGUNDO(sk, "partial recovery");
2996 		tcp_undo_cwnd_reduction(sk, true);
2997 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2998 		tcp_try_keep_open(sk);
2999 	} else {
3000 		/* Partial ACK arrived. Force fast retransmit. */
3001 		*do_lost = tcp_force_fast_retransmit(sk);
3002 	}
3003 	return false;
3004 }
3005 
3006 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3007 {
3008 	struct tcp_sock *tp = tcp_sk(sk);
3009 
3010 	if (tcp_rtx_queue_empty(sk))
3011 		return;
3012 
3013 	if (unlikely(tcp_is_reno(tp))) {
3014 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3015 	} else if (tcp_is_rack(sk)) {
3016 		u32 prior_retrans = tp->retrans_out;
3017 
3018 		if (tcp_rack_mark_lost(sk))
3019 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
3020 		if (prior_retrans > tp->retrans_out)
3021 			*ack_flag |= FLAG_LOST_RETRANS;
3022 	}
3023 }
3024 
3025 /* Process an event, which can update packets-in-flight not trivially.
3026  * Main goal of this function is to calculate new estimate for left_out,
3027  * taking into account both packets sitting in receiver's buffer and
3028  * packets lost by network.
3029  *
3030  * Besides that it updates the congestion state when packet loss or ECN
3031  * is detected. But it does not reduce the cwnd, it is done by the
3032  * congestion control later.
3033  *
3034  * It does _not_ decide what to send, it is made in function
3035  * tcp_xmit_retransmit_queue().
3036  */
3037 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3038 				  int num_dupack, int *ack_flag, int *rexmit)
3039 {
3040 	struct inet_connection_sock *icsk = inet_csk(sk);
3041 	struct tcp_sock *tp = tcp_sk(sk);
3042 	int fast_rexmit = 0, flag = *ack_flag;
3043 	bool ece_ack = flag & FLAG_ECE;
3044 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3045 				      tcp_force_fast_retransmit(sk));
3046 
3047 	if (!tp->packets_out && tp->sacked_out)
3048 		tp->sacked_out = 0;
3049 
3050 	/* Now state machine starts.
3051 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3052 	if (ece_ack)
3053 		tp->prior_ssthresh = 0;
3054 
3055 	/* B. In all the states check for reneging SACKs. */
3056 	if (tcp_check_sack_reneging(sk, ack_flag))
3057 		return;
3058 
3059 	/* C. Check consistency of the current state. */
3060 	tcp_verify_left_out(tp);
3061 
3062 	/* D. Check state exit conditions. State can be terminated
3063 	 *    when high_seq is ACKed. */
3064 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3065 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3066 		tp->retrans_stamp = 0;
3067 	} else if (!before(tp->snd_una, tp->high_seq)) {
3068 		switch (icsk->icsk_ca_state) {
3069 		case TCP_CA_CWR:
3070 			/* CWR is to be held something *above* high_seq
3071 			 * is ACKed for CWR bit to reach receiver. */
3072 			if (tp->snd_una != tp->high_seq) {
3073 				tcp_end_cwnd_reduction(sk);
3074 				tcp_set_ca_state(sk, TCP_CA_Open);
3075 			}
3076 			break;
3077 
3078 		case TCP_CA_Recovery:
3079 			if (tcp_is_reno(tp))
3080 				tcp_reset_reno_sack(tp);
3081 			if (tcp_try_undo_recovery(sk))
3082 				return;
3083 			tcp_end_cwnd_reduction(sk);
3084 			break;
3085 		}
3086 	}
3087 
3088 	/* E. Process state. */
3089 	switch (icsk->icsk_ca_state) {
3090 	case TCP_CA_Recovery:
3091 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3092 			if (tcp_is_reno(tp))
3093 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3094 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3095 			return;
3096 
3097 		if (tcp_try_undo_dsack(sk))
3098 			tcp_try_to_open(sk, flag);
3099 
3100 		tcp_identify_packet_loss(sk, ack_flag);
3101 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3102 			if (!tcp_time_to_recover(sk, flag))
3103 				return;
3104 			/* Undo reverts the recovery state. If loss is evident,
3105 			 * starts a new recovery (e.g. reordering then loss);
3106 			 */
3107 			tcp_enter_recovery(sk, ece_ack);
3108 		}
3109 		break;
3110 	case TCP_CA_Loss:
3111 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3112 		if (icsk->icsk_ca_state != TCP_CA_Loss)
3113 			tcp_update_rto_time(tp);
3114 		tcp_identify_packet_loss(sk, ack_flag);
3115 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3116 		      (*ack_flag & FLAG_LOST_RETRANS)))
3117 			return;
3118 		/* Change state if cwnd is undone or retransmits are lost */
3119 		fallthrough;
3120 	default:
3121 		if (tcp_is_reno(tp)) {
3122 			if (flag & FLAG_SND_UNA_ADVANCED)
3123 				tcp_reset_reno_sack(tp);
3124 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3125 		}
3126 
3127 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3128 			tcp_try_undo_dsack(sk);
3129 
3130 		tcp_identify_packet_loss(sk, ack_flag);
3131 		if (!tcp_time_to_recover(sk, flag)) {
3132 			tcp_try_to_open(sk, flag);
3133 			return;
3134 		}
3135 
3136 		/* MTU probe failure: don't reduce cwnd */
3137 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3138 		    icsk->icsk_mtup.probe_size &&
3139 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3140 			tcp_mtup_probe_failed(sk);
3141 			/* Restores the reduction we did in tcp_mtup_probe() */
3142 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3143 			tcp_simple_retransmit(sk);
3144 			return;
3145 		}
3146 
3147 		/* Otherwise enter Recovery state */
3148 		tcp_enter_recovery(sk, ece_ack);
3149 		fast_rexmit = 1;
3150 	}
3151 
3152 	if (!tcp_is_rack(sk) && do_lost)
3153 		tcp_update_scoreboard(sk, fast_rexmit);
3154 	*rexmit = REXMIT_LOST;
3155 }
3156 
3157 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3158 {
3159 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3160 	struct tcp_sock *tp = tcp_sk(sk);
3161 
3162 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3163 		/* If the remote keeps returning delayed ACKs, eventually
3164 		 * the min filter would pick it up and overestimate the
3165 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3166 		 */
3167 		return;
3168 	}
3169 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3170 			   rtt_us ? : jiffies_to_usecs(1));
3171 }
3172 
3173 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3174 			       long seq_rtt_us, long sack_rtt_us,
3175 			       long ca_rtt_us, struct rate_sample *rs)
3176 {
3177 	const struct tcp_sock *tp = tcp_sk(sk);
3178 
3179 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3180 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3181 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3182 	 * is acked (RFC6298).
3183 	 */
3184 	if (seq_rtt_us < 0)
3185 		seq_rtt_us = sack_rtt_us;
3186 
3187 	/* RTTM Rule: A TSecr value received in a segment is used to
3188 	 * update the averaged RTT measurement only if the segment
3189 	 * acknowledges some new data, i.e., only if it advances the
3190 	 * left edge of the send window.
3191 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3192 	 */
3193 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3194 	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3195 		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp);
3196 
3197 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3198 	if (seq_rtt_us < 0)
3199 		return false;
3200 
3201 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3202 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3203 	 * values will be skipped with the seq_rtt_us < 0 check above.
3204 	 */
3205 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3206 	tcp_rtt_estimator(sk, seq_rtt_us);
3207 	tcp_set_rto(sk);
3208 
3209 	/* RFC6298: only reset backoff on valid RTT measurement. */
3210 	inet_csk(sk)->icsk_backoff = 0;
3211 	return true;
3212 }
3213 
3214 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3215 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3216 {
3217 	struct rate_sample rs;
3218 	long rtt_us = -1L;
3219 
3220 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3221 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3222 
3223 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3224 }
3225 
3226 
3227 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3228 {
3229 	const struct inet_connection_sock *icsk = inet_csk(sk);
3230 
3231 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3232 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3233 }
3234 
3235 /* Restart timer after forward progress on connection.
3236  * RFC2988 recommends to restart timer to now+rto.
3237  */
3238 void tcp_rearm_rto(struct sock *sk)
3239 {
3240 	const struct inet_connection_sock *icsk = inet_csk(sk);
3241 	struct tcp_sock *tp = tcp_sk(sk);
3242 
3243 	/* If the retrans timer is currently being used by Fast Open
3244 	 * for SYN-ACK retrans purpose, stay put.
3245 	 */
3246 	if (rcu_access_pointer(tp->fastopen_rsk))
3247 		return;
3248 
3249 	if (!tp->packets_out) {
3250 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3251 	} else {
3252 		u32 rto = inet_csk(sk)->icsk_rto;
3253 		/* Offset the time elapsed after installing regular RTO */
3254 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3255 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3256 			s64 delta_us = tcp_rto_delta_us(sk);
3257 			/* delta_us may not be positive if the socket is locked
3258 			 * when the retrans timer fires and is rescheduled.
3259 			 */
3260 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3261 		}
3262 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3263 				     TCP_RTO_MAX);
3264 	}
3265 }
3266 
3267 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3268 static void tcp_set_xmit_timer(struct sock *sk)
3269 {
3270 	if (!tcp_schedule_loss_probe(sk, true))
3271 		tcp_rearm_rto(sk);
3272 }
3273 
3274 /* If we get here, the whole TSO packet has not been acked. */
3275 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3276 {
3277 	struct tcp_sock *tp = tcp_sk(sk);
3278 	u32 packets_acked;
3279 
3280 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3281 
3282 	packets_acked = tcp_skb_pcount(skb);
3283 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3284 		return 0;
3285 	packets_acked -= tcp_skb_pcount(skb);
3286 
3287 	if (packets_acked) {
3288 		BUG_ON(tcp_skb_pcount(skb) == 0);
3289 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3290 	}
3291 
3292 	return packets_acked;
3293 }
3294 
3295 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3296 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3297 {
3298 	const struct skb_shared_info *shinfo;
3299 
3300 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3301 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3302 		return;
3303 
3304 	shinfo = skb_shinfo(skb);
3305 	if (!before(shinfo->tskey, prior_snd_una) &&
3306 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3307 		tcp_skb_tsorted_save(skb) {
3308 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3309 		} tcp_skb_tsorted_restore(skb);
3310 	}
3311 }
3312 
3313 /* Remove acknowledged frames from the retransmission queue. If our packet
3314  * is before the ack sequence we can discard it as it's confirmed to have
3315  * arrived at the other end.
3316  */
3317 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3318 			       u32 prior_fack, u32 prior_snd_una,
3319 			       struct tcp_sacktag_state *sack, bool ece_ack)
3320 {
3321 	const struct inet_connection_sock *icsk = inet_csk(sk);
3322 	u64 first_ackt, last_ackt;
3323 	struct tcp_sock *tp = tcp_sk(sk);
3324 	u32 prior_sacked = tp->sacked_out;
3325 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3326 	struct sk_buff *skb, *next;
3327 	bool fully_acked = true;
3328 	long sack_rtt_us = -1L;
3329 	long seq_rtt_us = -1L;
3330 	long ca_rtt_us = -1L;
3331 	u32 pkts_acked = 0;
3332 	bool rtt_update;
3333 	int flag = 0;
3334 
3335 	first_ackt = 0;
3336 
3337 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3338 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3339 		const u32 start_seq = scb->seq;
3340 		u8 sacked = scb->sacked;
3341 		u32 acked_pcount;
3342 
3343 		/* Determine how many packets and what bytes were acked, tso and else */
3344 		if (after(scb->end_seq, tp->snd_una)) {
3345 			if (tcp_skb_pcount(skb) == 1 ||
3346 			    !after(tp->snd_una, scb->seq))
3347 				break;
3348 
3349 			acked_pcount = tcp_tso_acked(sk, skb);
3350 			if (!acked_pcount)
3351 				break;
3352 			fully_acked = false;
3353 		} else {
3354 			acked_pcount = tcp_skb_pcount(skb);
3355 		}
3356 
3357 		if (unlikely(sacked & TCPCB_RETRANS)) {
3358 			if (sacked & TCPCB_SACKED_RETRANS)
3359 				tp->retrans_out -= acked_pcount;
3360 			flag |= FLAG_RETRANS_DATA_ACKED;
3361 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3362 			last_ackt = tcp_skb_timestamp_us(skb);
3363 			WARN_ON_ONCE(last_ackt == 0);
3364 			if (!first_ackt)
3365 				first_ackt = last_ackt;
3366 
3367 			if (before(start_seq, reord))
3368 				reord = start_seq;
3369 			if (!after(scb->end_seq, tp->high_seq))
3370 				flag |= FLAG_ORIG_SACK_ACKED;
3371 		}
3372 
3373 		if (sacked & TCPCB_SACKED_ACKED) {
3374 			tp->sacked_out -= acked_pcount;
3375 		} else if (tcp_is_sack(tp)) {
3376 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3377 			if (!tcp_skb_spurious_retrans(tp, skb))
3378 				tcp_rack_advance(tp, sacked, scb->end_seq,
3379 						 tcp_skb_timestamp_us(skb));
3380 		}
3381 		if (sacked & TCPCB_LOST)
3382 			tp->lost_out -= acked_pcount;
3383 
3384 		tp->packets_out -= acked_pcount;
3385 		pkts_acked += acked_pcount;
3386 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3387 
3388 		/* Initial outgoing SYN's get put onto the write_queue
3389 		 * just like anything else we transmit.  It is not
3390 		 * true data, and if we misinform our callers that
3391 		 * this ACK acks real data, we will erroneously exit
3392 		 * connection startup slow start one packet too
3393 		 * quickly.  This is severely frowned upon behavior.
3394 		 */
3395 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3396 			flag |= FLAG_DATA_ACKED;
3397 		} else {
3398 			flag |= FLAG_SYN_ACKED;
3399 			tp->retrans_stamp = 0;
3400 		}
3401 
3402 		if (!fully_acked)
3403 			break;
3404 
3405 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3406 
3407 		next = skb_rb_next(skb);
3408 		if (unlikely(skb == tp->retransmit_skb_hint))
3409 			tp->retransmit_skb_hint = NULL;
3410 		if (unlikely(skb == tp->lost_skb_hint))
3411 			tp->lost_skb_hint = NULL;
3412 		tcp_highest_sack_replace(sk, skb, next);
3413 		tcp_rtx_queue_unlink_and_free(skb, sk);
3414 	}
3415 
3416 	if (!skb)
3417 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3418 
3419 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3420 		tp->snd_up = tp->snd_una;
3421 
3422 	if (skb) {
3423 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3424 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3425 			flag |= FLAG_SACK_RENEGING;
3426 	}
3427 
3428 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3429 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3430 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3431 
3432 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3433 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3434 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3435 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3436 			/* Conservatively mark a delayed ACK. It's typically
3437 			 * from a lone runt packet over the round trip to
3438 			 * a receiver w/o out-of-order or CE events.
3439 			 */
3440 			flag |= FLAG_ACK_MAYBE_DELAYED;
3441 		}
3442 	}
3443 	if (sack->first_sackt) {
3444 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3445 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3446 	}
3447 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3448 					ca_rtt_us, sack->rate);
3449 
3450 	if (flag & FLAG_ACKED) {
3451 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3452 		if (unlikely(icsk->icsk_mtup.probe_size &&
3453 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3454 			tcp_mtup_probe_success(sk);
3455 		}
3456 
3457 		if (tcp_is_reno(tp)) {
3458 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3459 
3460 			/* If any of the cumulatively ACKed segments was
3461 			 * retransmitted, non-SACK case cannot confirm that
3462 			 * progress was due to original transmission due to
3463 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3464 			 * the packets may have been never retransmitted.
3465 			 */
3466 			if (flag & FLAG_RETRANS_DATA_ACKED)
3467 				flag &= ~FLAG_ORIG_SACK_ACKED;
3468 		} else {
3469 			int delta;
3470 
3471 			/* Non-retransmitted hole got filled? That's reordering */
3472 			if (before(reord, prior_fack))
3473 				tcp_check_sack_reordering(sk, reord, 0);
3474 
3475 			delta = prior_sacked - tp->sacked_out;
3476 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3477 		}
3478 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3479 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3480 						    tcp_skb_timestamp_us(skb))) {
3481 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3482 		 * after when the head was last (re)transmitted. Otherwise the
3483 		 * timeout may continue to extend in loss recovery.
3484 		 */
3485 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3486 	}
3487 
3488 	if (icsk->icsk_ca_ops->pkts_acked) {
3489 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3490 					     .rtt_us = sack->rate->rtt_us };
3491 
3492 		sample.in_flight = tp->mss_cache *
3493 			(tp->delivered - sack->rate->prior_delivered);
3494 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3495 	}
3496 
3497 #if FASTRETRANS_DEBUG > 0
3498 	WARN_ON((int)tp->sacked_out < 0);
3499 	WARN_ON((int)tp->lost_out < 0);
3500 	WARN_ON((int)tp->retrans_out < 0);
3501 	if (!tp->packets_out && tcp_is_sack(tp)) {
3502 		icsk = inet_csk(sk);
3503 		if (tp->lost_out) {
3504 			pr_debug("Leak l=%u %d\n",
3505 				 tp->lost_out, icsk->icsk_ca_state);
3506 			tp->lost_out = 0;
3507 		}
3508 		if (tp->sacked_out) {
3509 			pr_debug("Leak s=%u %d\n",
3510 				 tp->sacked_out, icsk->icsk_ca_state);
3511 			tp->sacked_out = 0;
3512 		}
3513 		if (tp->retrans_out) {
3514 			pr_debug("Leak r=%u %d\n",
3515 				 tp->retrans_out, icsk->icsk_ca_state);
3516 			tp->retrans_out = 0;
3517 		}
3518 	}
3519 #endif
3520 	return flag;
3521 }
3522 
3523 static void tcp_ack_probe(struct sock *sk)
3524 {
3525 	struct inet_connection_sock *icsk = inet_csk(sk);
3526 	struct sk_buff *head = tcp_send_head(sk);
3527 	const struct tcp_sock *tp = tcp_sk(sk);
3528 
3529 	/* Was it a usable window open? */
3530 	if (!head)
3531 		return;
3532 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3533 		icsk->icsk_backoff = 0;
3534 		icsk->icsk_probes_tstamp = 0;
3535 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3536 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3537 		 * This function is not for random using!
3538 		 */
3539 	} else {
3540 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3541 
3542 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3543 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3544 	}
3545 }
3546 
3547 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3548 {
3549 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3550 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3551 }
3552 
3553 /* Decide wheather to run the increase function of congestion control. */
3554 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3555 {
3556 	/* If reordering is high then always grow cwnd whenever data is
3557 	 * delivered regardless of its ordering. Otherwise stay conservative
3558 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3559 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3560 	 * cwnd in tcp_fastretrans_alert() based on more states.
3561 	 */
3562 	if (tcp_sk(sk)->reordering >
3563 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3564 		return flag & FLAG_FORWARD_PROGRESS;
3565 
3566 	return flag & FLAG_DATA_ACKED;
3567 }
3568 
3569 /* The "ultimate" congestion control function that aims to replace the rigid
3570  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3571  * It's called toward the end of processing an ACK with precise rate
3572  * information. All transmission or retransmission are delayed afterwards.
3573  */
3574 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3575 			     int flag, const struct rate_sample *rs)
3576 {
3577 	const struct inet_connection_sock *icsk = inet_csk(sk);
3578 
3579 	if (icsk->icsk_ca_ops->cong_control) {
3580 		icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3581 		return;
3582 	}
3583 
3584 	if (tcp_in_cwnd_reduction(sk)) {
3585 		/* Reduce cwnd if state mandates */
3586 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3587 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3588 		/* Advance cwnd if state allows */
3589 		tcp_cong_avoid(sk, ack, acked_sacked);
3590 	}
3591 	tcp_update_pacing_rate(sk);
3592 }
3593 
3594 /* Check that window update is acceptable.
3595  * The function assumes that snd_una<=ack<=snd_next.
3596  */
3597 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3598 					const u32 ack, const u32 ack_seq,
3599 					const u32 nwin)
3600 {
3601 	return	after(ack, tp->snd_una) ||
3602 		after(ack_seq, tp->snd_wl1) ||
3603 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3604 }
3605 
3606 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3607 {
3608 #ifdef CONFIG_TCP_AO
3609 	struct tcp_ao_info *ao;
3610 
3611 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3612 		return;
3613 
3614 	ao = rcu_dereference_protected(tp->ao_info,
3615 				       lockdep_sock_is_held((struct sock *)tp));
3616 	if (ao && ack < tp->snd_una) {
3617 		ao->snd_sne++;
3618 		trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3619 	}
3620 #endif
3621 }
3622 
3623 /* If we update tp->snd_una, also update tp->bytes_acked */
3624 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3625 {
3626 	u32 delta = ack - tp->snd_una;
3627 
3628 	sock_owned_by_me((struct sock *)tp);
3629 	tp->bytes_acked += delta;
3630 	tcp_snd_sne_update(tp, ack);
3631 	tp->snd_una = ack;
3632 }
3633 
3634 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3635 {
3636 #ifdef CONFIG_TCP_AO
3637 	struct tcp_ao_info *ao;
3638 
3639 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3640 		return;
3641 
3642 	ao = rcu_dereference_protected(tp->ao_info,
3643 				       lockdep_sock_is_held((struct sock *)tp));
3644 	if (ao && seq < tp->rcv_nxt) {
3645 		ao->rcv_sne++;
3646 		trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3647 	}
3648 #endif
3649 }
3650 
3651 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3652 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3653 {
3654 	u32 delta = seq - tp->rcv_nxt;
3655 
3656 	sock_owned_by_me((struct sock *)tp);
3657 	tp->bytes_received += delta;
3658 	tcp_rcv_sne_update(tp, seq);
3659 	WRITE_ONCE(tp->rcv_nxt, seq);
3660 }
3661 
3662 /* Update our send window.
3663  *
3664  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3665  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3666  */
3667 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3668 				 u32 ack_seq)
3669 {
3670 	struct tcp_sock *tp = tcp_sk(sk);
3671 	int flag = 0;
3672 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3673 
3674 	if (likely(!tcp_hdr(skb)->syn))
3675 		nwin <<= tp->rx_opt.snd_wscale;
3676 
3677 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3678 		flag |= FLAG_WIN_UPDATE;
3679 		tcp_update_wl(tp, ack_seq);
3680 
3681 		if (tp->snd_wnd != nwin) {
3682 			tp->snd_wnd = nwin;
3683 
3684 			/* Note, it is the only place, where
3685 			 * fast path is recovered for sending TCP.
3686 			 */
3687 			tp->pred_flags = 0;
3688 			tcp_fast_path_check(sk);
3689 
3690 			if (!tcp_write_queue_empty(sk))
3691 				tcp_slow_start_after_idle_check(sk);
3692 
3693 			if (nwin > tp->max_window) {
3694 				tp->max_window = nwin;
3695 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3696 			}
3697 		}
3698 	}
3699 
3700 	tcp_snd_una_update(tp, ack);
3701 
3702 	return flag;
3703 }
3704 
3705 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3706 				   u32 *last_oow_ack_time)
3707 {
3708 	/* Paired with the WRITE_ONCE() in this function. */
3709 	u32 val = READ_ONCE(*last_oow_ack_time);
3710 
3711 	if (val) {
3712 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3713 
3714 		if (0 <= elapsed &&
3715 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3716 			NET_INC_STATS(net, mib_idx);
3717 			return true;	/* rate-limited: don't send yet! */
3718 		}
3719 	}
3720 
3721 	/* Paired with the prior READ_ONCE() and with itself,
3722 	 * as we might be lockless.
3723 	 */
3724 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3725 
3726 	return false;	/* not rate-limited: go ahead, send dupack now! */
3727 }
3728 
3729 /* Return true if we're currently rate-limiting out-of-window ACKs and
3730  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3731  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3732  * attacks that send repeated SYNs or ACKs for the same connection. To
3733  * do this, we do not send a duplicate SYNACK or ACK if the remote
3734  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3735  */
3736 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3737 			  int mib_idx, u32 *last_oow_ack_time)
3738 {
3739 	/* Data packets without SYNs are not likely part of an ACK loop. */
3740 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3741 	    !tcp_hdr(skb)->syn)
3742 		return false;
3743 
3744 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3745 }
3746 
3747 /* RFC 5961 7 [ACK Throttling] */
3748 static void tcp_send_challenge_ack(struct sock *sk)
3749 {
3750 	struct tcp_sock *tp = tcp_sk(sk);
3751 	struct net *net = sock_net(sk);
3752 	u32 count, now, ack_limit;
3753 
3754 	/* First check our per-socket dupack rate limit. */
3755 	if (__tcp_oow_rate_limited(net,
3756 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3757 				   &tp->last_oow_ack_time))
3758 		return;
3759 
3760 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3761 	if (ack_limit == INT_MAX)
3762 		goto send_ack;
3763 
3764 	/* Then check host-wide RFC 5961 rate limit. */
3765 	now = jiffies / HZ;
3766 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3767 		u32 half = (ack_limit + 1) >> 1;
3768 
3769 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3770 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3771 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3772 	}
3773 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3774 	if (count > 0) {
3775 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3776 send_ack:
3777 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3778 		tcp_send_ack(sk);
3779 	}
3780 }
3781 
3782 static void tcp_store_ts_recent(struct tcp_sock *tp)
3783 {
3784 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3785 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3786 }
3787 
3788 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3789 {
3790 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3791 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3792 		 * extra check below makes sure this can only happen
3793 		 * for pure ACK frames.  -DaveM
3794 		 *
3795 		 * Not only, also it occurs for expired timestamps.
3796 		 */
3797 
3798 		if (tcp_paws_check(&tp->rx_opt, 0))
3799 			tcp_store_ts_recent(tp);
3800 	}
3801 }
3802 
3803 /* This routine deals with acks during a TLP episode and ends an episode by
3804  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3805  */
3806 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3807 {
3808 	struct tcp_sock *tp = tcp_sk(sk);
3809 
3810 	if (before(ack, tp->tlp_high_seq))
3811 		return;
3812 
3813 	if (!tp->tlp_retrans) {
3814 		/* TLP of new data has been acknowledged */
3815 		tp->tlp_high_seq = 0;
3816 	} else if (flag & FLAG_DSACK_TLP) {
3817 		/* This DSACK means original and TLP probe arrived; no loss */
3818 		tp->tlp_high_seq = 0;
3819 	} else if (after(ack, tp->tlp_high_seq)) {
3820 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3821 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3822 		 */
3823 		tcp_init_cwnd_reduction(sk);
3824 		tcp_set_ca_state(sk, TCP_CA_CWR);
3825 		tcp_end_cwnd_reduction(sk);
3826 		tcp_try_keep_open(sk);
3827 		NET_INC_STATS(sock_net(sk),
3828 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3829 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3830 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3831 		/* Pure dupack: original and TLP probe arrived; no loss */
3832 		tp->tlp_high_seq = 0;
3833 	}
3834 }
3835 
3836 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3837 {
3838 	const struct inet_connection_sock *icsk = inet_csk(sk);
3839 
3840 	if (icsk->icsk_ca_ops->in_ack_event)
3841 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3842 }
3843 
3844 /* Congestion control has updated the cwnd already. So if we're in
3845  * loss recovery then now we do any new sends (for FRTO) or
3846  * retransmits (for CA_Loss or CA_recovery) that make sense.
3847  */
3848 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3849 {
3850 	struct tcp_sock *tp = tcp_sk(sk);
3851 
3852 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3853 		return;
3854 
3855 	if (unlikely(rexmit == REXMIT_NEW)) {
3856 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3857 					  TCP_NAGLE_OFF);
3858 		if (after(tp->snd_nxt, tp->high_seq))
3859 			return;
3860 		tp->frto = 0;
3861 	}
3862 	tcp_xmit_retransmit_queue(sk);
3863 }
3864 
3865 /* Returns the number of packets newly acked or sacked by the current ACK */
3866 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3867 {
3868 	const struct net *net = sock_net(sk);
3869 	struct tcp_sock *tp = tcp_sk(sk);
3870 	u32 delivered;
3871 
3872 	delivered = tp->delivered - prior_delivered;
3873 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3874 	if (flag & FLAG_ECE)
3875 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3876 
3877 	return delivered;
3878 }
3879 
3880 /* This routine deals with incoming acks, but not outgoing ones. */
3881 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3882 {
3883 	struct inet_connection_sock *icsk = inet_csk(sk);
3884 	struct tcp_sock *tp = tcp_sk(sk);
3885 	struct tcp_sacktag_state sack_state;
3886 	struct rate_sample rs = { .prior_delivered = 0 };
3887 	u32 prior_snd_una = tp->snd_una;
3888 	bool is_sack_reneg = tp->is_sack_reneg;
3889 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3890 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3891 	int num_dupack = 0;
3892 	int prior_packets = tp->packets_out;
3893 	u32 delivered = tp->delivered;
3894 	u32 lost = tp->lost;
3895 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3896 	u32 prior_fack;
3897 
3898 	sack_state.first_sackt = 0;
3899 	sack_state.rate = &rs;
3900 	sack_state.sack_delivered = 0;
3901 
3902 	/* We very likely will need to access rtx queue. */
3903 	prefetch(sk->tcp_rtx_queue.rb_node);
3904 
3905 	/* If the ack is older than previous acks
3906 	 * then we can probably ignore it.
3907 	 */
3908 	if (before(ack, prior_snd_una)) {
3909 		u32 max_window;
3910 
3911 		/* do not accept ACK for bytes we never sent. */
3912 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3913 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3914 		if (before(ack, prior_snd_una - max_window)) {
3915 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3916 				tcp_send_challenge_ack(sk);
3917 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3918 		}
3919 		goto old_ack;
3920 	}
3921 
3922 	/* If the ack includes data we haven't sent yet, discard
3923 	 * this segment (RFC793 Section 3.9).
3924 	 */
3925 	if (after(ack, tp->snd_nxt))
3926 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3927 
3928 	if (after(ack, prior_snd_una)) {
3929 		flag |= FLAG_SND_UNA_ADVANCED;
3930 		icsk->icsk_retransmits = 0;
3931 
3932 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3933 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3934 			if (icsk->icsk_clean_acked)
3935 				icsk->icsk_clean_acked(sk, ack);
3936 #endif
3937 	}
3938 
3939 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3940 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3941 
3942 	/* ts_recent update must be made after we are sure that the packet
3943 	 * is in window.
3944 	 */
3945 	if (flag & FLAG_UPDATE_TS_RECENT)
3946 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3947 
3948 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3949 	    FLAG_SND_UNA_ADVANCED) {
3950 		/* Window is constant, pure forward advance.
3951 		 * No more checks are required.
3952 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3953 		 */
3954 		tcp_update_wl(tp, ack_seq);
3955 		tcp_snd_una_update(tp, ack);
3956 		flag |= FLAG_WIN_UPDATE;
3957 
3958 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3959 
3960 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3961 	} else {
3962 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3963 
3964 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3965 			flag |= FLAG_DATA;
3966 		else
3967 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3968 
3969 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3970 
3971 		if (TCP_SKB_CB(skb)->sacked)
3972 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3973 							&sack_state);
3974 
3975 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3976 			flag |= FLAG_ECE;
3977 			ack_ev_flags |= CA_ACK_ECE;
3978 		}
3979 
3980 		if (sack_state.sack_delivered)
3981 			tcp_count_delivered(tp, sack_state.sack_delivered,
3982 					    flag & FLAG_ECE);
3983 
3984 		if (flag & FLAG_WIN_UPDATE)
3985 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3986 
3987 		tcp_in_ack_event(sk, ack_ev_flags);
3988 	}
3989 
3990 	/* This is a deviation from RFC3168 since it states that:
3991 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3992 	 * the congestion window, it SHOULD set the CWR bit only on the first
3993 	 * new data packet that it transmits."
3994 	 * We accept CWR on pure ACKs to be more robust
3995 	 * with widely-deployed TCP implementations that do this.
3996 	 */
3997 	tcp_ecn_accept_cwr(sk, skb);
3998 
3999 	/* We passed data and got it acked, remove any soft error
4000 	 * log. Something worked...
4001 	 */
4002 	WRITE_ONCE(sk->sk_err_soft, 0);
4003 	icsk->icsk_probes_out = 0;
4004 	tp->rcv_tstamp = tcp_jiffies32;
4005 	if (!prior_packets)
4006 		goto no_queue;
4007 
4008 	/* See if we can take anything off of the retransmit queue. */
4009 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
4010 				    &sack_state, flag & FLAG_ECE);
4011 
4012 	tcp_rack_update_reo_wnd(sk, &rs);
4013 
4014 	if (tp->tlp_high_seq)
4015 		tcp_process_tlp_ack(sk, ack, flag);
4016 
4017 	if (tcp_ack_is_dubious(sk, flag)) {
4018 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
4019 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4020 			num_dupack = 1;
4021 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
4022 			if (!(flag & FLAG_DATA))
4023 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4024 		}
4025 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4026 				      &rexmit);
4027 	}
4028 
4029 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
4030 	if (flag & FLAG_SET_XMIT_TIMER)
4031 		tcp_set_xmit_timer(sk);
4032 
4033 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4034 		sk_dst_confirm(sk);
4035 
4036 	delivered = tcp_newly_delivered(sk, delivered, flag);
4037 	lost = tp->lost - lost;			/* freshly marked lost */
4038 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4039 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4040 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4041 	tcp_xmit_recovery(sk, rexmit);
4042 	return 1;
4043 
4044 no_queue:
4045 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4046 	if (flag & FLAG_DSACKING_ACK) {
4047 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4048 				      &rexmit);
4049 		tcp_newly_delivered(sk, delivered, flag);
4050 	}
4051 	/* If this ack opens up a zero window, clear backoff.  It was
4052 	 * being used to time the probes, and is probably far higher than
4053 	 * it needs to be for normal retransmission.
4054 	 */
4055 	tcp_ack_probe(sk);
4056 
4057 	if (tp->tlp_high_seq)
4058 		tcp_process_tlp_ack(sk, ack, flag);
4059 	return 1;
4060 
4061 old_ack:
4062 	/* If data was SACKed, tag it and see if we should send more data.
4063 	 * If data was DSACKed, see if we can undo a cwnd reduction.
4064 	 */
4065 	if (TCP_SKB_CB(skb)->sacked) {
4066 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4067 						&sack_state);
4068 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4069 				      &rexmit);
4070 		tcp_newly_delivered(sk, delivered, flag);
4071 		tcp_xmit_recovery(sk, rexmit);
4072 	}
4073 
4074 	return 0;
4075 }
4076 
4077 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4078 				      bool syn, struct tcp_fastopen_cookie *foc,
4079 				      bool exp_opt)
4080 {
4081 	/* Valid only in SYN or SYN-ACK with an even length.  */
4082 	if (!foc || !syn || len < 0 || (len & 1))
4083 		return;
4084 
4085 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4086 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4087 		memcpy(foc->val, cookie, len);
4088 	else if (len != 0)
4089 		len = -1;
4090 	foc->len = len;
4091 	foc->exp = exp_opt;
4092 }
4093 
4094 static bool smc_parse_options(const struct tcphdr *th,
4095 			      struct tcp_options_received *opt_rx,
4096 			      const unsigned char *ptr,
4097 			      int opsize)
4098 {
4099 #if IS_ENABLED(CONFIG_SMC)
4100 	if (static_branch_unlikely(&tcp_have_smc)) {
4101 		if (th->syn && !(opsize & 1) &&
4102 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4103 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4104 			opt_rx->smc_ok = 1;
4105 			return true;
4106 		}
4107 	}
4108 #endif
4109 	return false;
4110 }
4111 
4112 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4113  * value on success.
4114  */
4115 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4116 {
4117 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4118 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4119 	u16 mss = 0;
4120 
4121 	while (length > 0) {
4122 		int opcode = *ptr++;
4123 		int opsize;
4124 
4125 		switch (opcode) {
4126 		case TCPOPT_EOL:
4127 			return mss;
4128 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4129 			length--;
4130 			continue;
4131 		default:
4132 			if (length < 2)
4133 				return mss;
4134 			opsize = *ptr++;
4135 			if (opsize < 2) /* "silly options" */
4136 				return mss;
4137 			if (opsize > length)
4138 				return mss;	/* fail on partial options */
4139 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4140 				u16 in_mss = get_unaligned_be16(ptr);
4141 
4142 				if (in_mss) {
4143 					if (user_mss && user_mss < in_mss)
4144 						in_mss = user_mss;
4145 					mss = in_mss;
4146 				}
4147 			}
4148 			ptr += opsize - 2;
4149 			length -= opsize;
4150 		}
4151 	}
4152 	return mss;
4153 }
4154 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4155 
4156 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4157  * But, this can also be called on packets in the established flow when
4158  * the fast version below fails.
4159  */
4160 void tcp_parse_options(const struct net *net,
4161 		       const struct sk_buff *skb,
4162 		       struct tcp_options_received *opt_rx, int estab,
4163 		       struct tcp_fastopen_cookie *foc)
4164 {
4165 	const unsigned char *ptr;
4166 	const struct tcphdr *th = tcp_hdr(skb);
4167 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4168 
4169 	ptr = (const unsigned char *)(th + 1);
4170 	opt_rx->saw_tstamp = 0;
4171 	opt_rx->saw_unknown = 0;
4172 
4173 	while (length > 0) {
4174 		int opcode = *ptr++;
4175 		int opsize;
4176 
4177 		switch (opcode) {
4178 		case TCPOPT_EOL:
4179 			return;
4180 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4181 			length--;
4182 			continue;
4183 		default:
4184 			if (length < 2)
4185 				return;
4186 			opsize = *ptr++;
4187 			if (opsize < 2) /* "silly options" */
4188 				return;
4189 			if (opsize > length)
4190 				return;	/* don't parse partial options */
4191 			switch (opcode) {
4192 			case TCPOPT_MSS:
4193 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4194 					u16 in_mss = get_unaligned_be16(ptr);
4195 					if (in_mss) {
4196 						if (opt_rx->user_mss &&
4197 						    opt_rx->user_mss < in_mss)
4198 							in_mss = opt_rx->user_mss;
4199 						opt_rx->mss_clamp = in_mss;
4200 					}
4201 				}
4202 				break;
4203 			case TCPOPT_WINDOW:
4204 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4205 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4206 					__u8 snd_wscale = *(__u8 *)ptr;
4207 					opt_rx->wscale_ok = 1;
4208 					if (snd_wscale > TCP_MAX_WSCALE) {
4209 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4210 								     __func__,
4211 								     snd_wscale,
4212 								     TCP_MAX_WSCALE);
4213 						snd_wscale = TCP_MAX_WSCALE;
4214 					}
4215 					opt_rx->snd_wscale = snd_wscale;
4216 				}
4217 				break;
4218 			case TCPOPT_TIMESTAMP:
4219 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4220 				    ((estab && opt_rx->tstamp_ok) ||
4221 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4222 					opt_rx->saw_tstamp = 1;
4223 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4224 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4225 				}
4226 				break;
4227 			case TCPOPT_SACK_PERM:
4228 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4229 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4230 					opt_rx->sack_ok = TCP_SACK_SEEN;
4231 					tcp_sack_reset(opt_rx);
4232 				}
4233 				break;
4234 
4235 			case TCPOPT_SACK:
4236 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4237 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4238 				   opt_rx->sack_ok) {
4239 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4240 				}
4241 				break;
4242 #ifdef CONFIG_TCP_MD5SIG
4243 			case TCPOPT_MD5SIG:
4244 				/* The MD5 Hash has already been
4245 				 * checked (see tcp_v{4,6}_rcv()).
4246 				 */
4247 				break;
4248 #endif
4249 #ifdef CONFIG_TCP_AO
4250 			case TCPOPT_AO:
4251 				/* TCP AO has already been checked
4252 				 * (see tcp_inbound_ao_hash()).
4253 				 */
4254 				break;
4255 #endif
4256 			case TCPOPT_FASTOPEN:
4257 				tcp_parse_fastopen_option(
4258 					opsize - TCPOLEN_FASTOPEN_BASE,
4259 					ptr, th->syn, foc, false);
4260 				break;
4261 
4262 			case TCPOPT_EXP:
4263 				/* Fast Open option shares code 254 using a
4264 				 * 16 bits magic number.
4265 				 */
4266 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4267 				    get_unaligned_be16(ptr) ==
4268 				    TCPOPT_FASTOPEN_MAGIC) {
4269 					tcp_parse_fastopen_option(opsize -
4270 						TCPOLEN_EXP_FASTOPEN_BASE,
4271 						ptr + 2, th->syn, foc, true);
4272 					break;
4273 				}
4274 
4275 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4276 					break;
4277 
4278 				opt_rx->saw_unknown = 1;
4279 				break;
4280 
4281 			default:
4282 				opt_rx->saw_unknown = 1;
4283 			}
4284 			ptr += opsize-2;
4285 			length -= opsize;
4286 		}
4287 	}
4288 }
4289 EXPORT_SYMBOL(tcp_parse_options);
4290 
4291 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4292 {
4293 	const __be32 *ptr = (const __be32 *)(th + 1);
4294 
4295 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4296 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4297 		tp->rx_opt.saw_tstamp = 1;
4298 		++ptr;
4299 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4300 		++ptr;
4301 		if (*ptr)
4302 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4303 		else
4304 			tp->rx_opt.rcv_tsecr = 0;
4305 		return true;
4306 	}
4307 	return false;
4308 }
4309 
4310 /* Fast parse options. This hopes to only see timestamps.
4311  * If it is wrong it falls back on tcp_parse_options().
4312  */
4313 static bool tcp_fast_parse_options(const struct net *net,
4314 				   const struct sk_buff *skb,
4315 				   const struct tcphdr *th, struct tcp_sock *tp)
4316 {
4317 	/* In the spirit of fast parsing, compare doff directly to constant
4318 	 * values.  Because equality is used, short doff can be ignored here.
4319 	 */
4320 	if (th->doff == (sizeof(*th) / 4)) {
4321 		tp->rx_opt.saw_tstamp = 0;
4322 		return false;
4323 	} else if (tp->rx_opt.tstamp_ok &&
4324 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4325 		if (tcp_parse_aligned_timestamp(tp, th))
4326 			return true;
4327 	}
4328 
4329 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4330 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4331 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4332 
4333 	return true;
4334 }
4335 
4336 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4337 /*
4338  * Parse Signature options
4339  */
4340 int tcp_do_parse_auth_options(const struct tcphdr *th,
4341 			      const u8 **md5_hash, const u8 **ao_hash)
4342 {
4343 	int length = (th->doff << 2) - sizeof(*th);
4344 	const u8 *ptr = (const u8 *)(th + 1);
4345 	unsigned int minlen = TCPOLEN_MD5SIG;
4346 
4347 	if (IS_ENABLED(CONFIG_TCP_AO))
4348 		minlen = sizeof(struct tcp_ao_hdr) + 1;
4349 
4350 	*md5_hash = NULL;
4351 	*ao_hash = NULL;
4352 
4353 	/* If not enough data remaining, we can short cut */
4354 	while (length >= minlen) {
4355 		int opcode = *ptr++;
4356 		int opsize;
4357 
4358 		switch (opcode) {
4359 		case TCPOPT_EOL:
4360 			return 0;
4361 		case TCPOPT_NOP:
4362 			length--;
4363 			continue;
4364 		default:
4365 			opsize = *ptr++;
4366 			if (opsize < 2 || opsize > length)
4367 				return -EINVAL;
4368 			if (opcode == TCPOPT_MD5SIG) {
4369 				if (opsize != TCPOLEN_MD5SIG)
4370 					return -EINVAL;
4371 				if (unlikely(*md5_hash || *ao_hash))
4372 					return -EEXIST;
4373 				*md5_hash = ptr;
4374 			} else if (opcode == TCPOPT_AO) {
4375 				if (opsize <= sizeof(struct tcp_ao_hdr))
4376 					return -EINVAL;
4377 				if (unlikely(*md5_hash || *ao_hash))
4378 					return -EEXIST;
4379 				*ao_hash = ptr;
4380 			}
4381 		}
4382 		ptr += opsize - 2;
4383 		length -= opsize;
4384 	}
4385 	return 0;
4386 }
4387 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4388 #endif
4389 
4390 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4391  *
4392  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4393  * it can pass through stack. So, the following predicate verifies that
4394  * this segment is not used for anything but congestion avoidance or
4395  * fast retransmit. Moreover, we even are able to eliminate most of such
4396  * second order effects, if we apply some small "replay" window (~RTO)
4397  * to timestamp space.
4398  *
4399  * All these measures still do not guarantee that we reject wrapped ACKs
4400  * on networks with high bandwidth, when sequence space is recycled fastly,
4401  * but it guarantees that such events will be very rare and do not affect
4402  * connection seriously. This doesn't look nice, but alas, PAWS is really
4403  * buggy extension.
4404  *
4405  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4406  * states that events when retransmit arrives after original data are rare.
4407  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4408  * the biggest problem on large power networks even with minor reordering.
4409  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4410  * up to bandwidth of 18Gigabit/sec. 8) ]
4411  */
4412 
4413 /* Estimates max number of increments of remote peer TSval in
4414  * a replay window (based on our current RTO estimation).
4415  */
4416 static u32 tcp_tsval_replay(const struct sock *sk)
4417 {
4418 	/* If we use usec TS resolution,
4419 	 * then expect the remote peer to use the same resolution.
4420 	 */
4421 	if (tcp_sk(sk)->tcp_usec_ts)
4422 		return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4423 
4424 	/* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4425 	 * We know that some OS (including old linux) can use 1200 Hz.
4426 	 */
4427 	return inet_csk(sk)->icsk_rto * 1200 / HZ;
4428 }
4429 
4430 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4431 {
4432 	const struct tcp_sock *tp = tcp_sk(sk);
4433 	const struct tcphdr *th = tcp_hdr(skb);
4434 	u32 seq = TCP_SKB_CB(skb)->seq;
4435 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4436 
4437 	return	/* 1. Pure ACK with correct sequence number. */
4438 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4439 
4440 		/* 2. ... and duplicate ACK. */
4441 		ack == tp->snd_una &&
4442 
4443 		/* 3. ... and does not update window. */
4444 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4445 
4446 		/* 4. ... and sits in replay window. */
4447 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <=
4448 		tcp_tsval_replay(sk);
4449 }
4450 
4451 static inline bool tcp_paws_discard(const struct sock *sk,
4452 				   const struct sk_buff *skb)
4453 {
4454 	const struct tcp_sock *tp = tcp_sk(sk);
4455 
4456 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4457 	       !tcp_disordered_ack(sk, skb);
4458 }
4459 
4460 /* Check segment sequence number for validity.
4461  *
4462  * Segment controls are considered valid, if the segment
4463  * fits to the window after truncation to the window. Acceptability
4464  * of data (and SYN, FIN, of course) is checked separately.
4465  * See tcp_data_queue(), for example.
4466  *
4467  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4468  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4469  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4470  * (borrowed from freebsd)
4471  */
4472 
4473 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4474 					 u32 seq, u32 end_seq)
4475 {
4476 	if (before(end_seq, tp->rcv_wup))
4477 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4478 
4479 	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4480 		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4481 
4482 	return SKB_NOT_DROPPED_YET;
4483 }
4484 
4485 
4486 void tcp_done_with_error(struct sock *sk, int err)
4487 {
4488 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4489 	WRITE_ONCE(sk->sk_err, err);
4490 	smp_wmb();
4491 
4492 	tcp_write_queue_purge(sk);
4493 	tcp_done(sk);
4494 
4495 	if (!sock_flag(sk, SOCK_DEAD))
4496 		sk_error_report(sk);
4497 }
4498 EXPORT_SYMBOL(tcp_done_with_error);
4499 
4500 /* When we get a reset we do this. */
4501 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4502 {
4503 	int err;
4504 
4505 	trace_tcp_receive_reset(sk);
4506 
4507 	/* mptcp can't tell us to ignore reset pkts,
4508 	 * so just ignore the return value of mptcp_incoming_options().
4509 	 */
4510 	if (sk_is_mptcp(sk))
4511 		mptcp_incoming_options(sk, skb);
4512 
4513 	/* We want the right error as BSD sees it (and indeed as we do). */
4514 	switch (sk->sk_state) {
4515 	case TCP_SYN_SENT:
4516 		err = ECONNREFUSED;
4517 		break;
4518 	case TCP_CLOSE_WAIT:
4519 		err = EPIPE;
4520 		break;
4521 	case TCP_CLOSE:
4522 		return;
4523 	default:
4524 		err = ECONNRESET;
4525 	}
4526 	tcp_done_with_error(sk, err);
4527 }
4528 
4529 /*
4530  * 	Process the FIN bit. This now behaves as it is supposed to work
4531  *	and the FIN takes effect when it is validly part of sequence
4532  *	space. Not before when we get holes.
4533  *
4534  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4535  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4536  *	TIME-WAIT)
4537  *
4538  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4539  *	close and we go into CLOSING (and later onto TIME-WAIT)
4540  *
4541  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4542  */
4543 void tcp_fin(struct sock *sk)
4544 {
4545 	struct tcp_sock *tp = tcp_sk(sk);
4546 
4547 	inet_csk_schedule_ack(sk);
4548 
4549 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4550 	sock_set_flag(sk, SOCK_DONE);
4551 
4552 	switch (sk->sk_state) {
4553 	case TCP_SYN_RECV:
4554 	case TCP_ESTABLISHED:
4555 		/* Move to CLOSE_WAIT */
4556 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4557 		inet_csk_enter_pingpong_mode(sk);
4558 		break;
4559 
4560 	case TCP_CLOSE_WAIT:
4561 	case TCP_CLOSING:
4562 		/* Received a retransmission of the FIN, do
4563 		 * nothing.
4564 		 */
4565 		break;
4566 	case TCP_LAST_ACK:
4567 		/* RFC793: Remain in the LAST-ACK state. */
4568 		break;
4569 
4570 	case TCP_FIN_WAIT1:
4571 		/* This case occurs when a simultaneous close
4572 		 * happens, we must ack the received FIN and
4573 		 * enter the CLOSING state.
4574 		 */
4575 		tcp_send_ack(sk);
4576 		tcp_set_state(sk, TCP_CLOSING);
4577 		break;
4578 	case TCP_FIN_WAIT2:
4579 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4580 		tcp_send_ack(sk);
4581 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4582 		break;
4583 	default:
4584 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4585 		 * cases we should never reach this piece of code.
4586 		 */
4587 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4588 		       __func__, sk->sk_state);
4589 		break;
4590 	}
4591 
4592 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4593 	 * Probably, we should reset in this case. For now drop them.
4594 	 */
4595 	skb_rbtree_purge(&tp->out_of_order_queue);
4596 	if (tcp_is_sack(tp))
4597 		tcp_sack_reset(&tp->rx_opt);
4598 
4599 	if (!sock_flag(sk, SOCK_DEAD)) {
4600 		sk->sk_state_change(sk);
4601 
4602 		/* Do not send POLL_HUP for half duplex close. */
4603 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4604 		    sk->sk_state == TCP_CLOSE)
4605 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4606 		else
4607 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4608 	}
4609 }
4610 
4611 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4612 				  u32 end_seq)
4613 {
4614 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4615 		if (before(seq, sp->start_seq))
4616 			sp->start_seq = seq;
4617 		if (after(end_seq, sp->end_seq))
4618 			sp->end_seq = end_seq;
4619 		return true;
4620 	}
4621 	return false;
4622 }
4623 
4624 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4625 {
4626 	struct tcp_sock *tp = tcp_sk(sk);
4627 
4628 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4629 		int mib_idx;
4630 
4631 		if (before(seq, tp->rcv_nxt))
4632 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4633 		else
4634 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4635 
4636 		NET_INC_STATS(sock_net(sk), mib_idx);
4637 
4638 		tp->rx_opt.dsack = 1;
4639 		tp->duplicate_sack[0].start_seq = seq;
4640 		tp->duplicate_sack[0].end_seq = end_seq;
4641 	}
4642 }
4643 
4644 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4645 {
4646 	struct tcp_sock *tp = tcp_sk(sk);
4647 
4648 	if (!tp->rx_opt.dsack)
4649 		tcp_dsack_set(sk, seq, end_seq);
4650 	else
4651 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4652 }
4653 
4654 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4655 {
4656 	/* When the ACK path fails or drops most ACKs, the sender would
4657 	 * timeout and spuriously retransmit the same segment repeatedly.
4658 	 * If it seems our ACKs are not reaching the other side,
4659 	 * based on receiving a duplicate data segment with new flowlabel
4660 	 * (suggesting the sender suffered an RTO), and we are not already
4661 	 * repathing due to our own RTO, then rehash the socket to repath our
4662 	 * packets.
4663 	 */
4664 #if IS_ENABLED(CONFIG_IPV6)
4665 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4666 	    skb->protocol == htons(ETH_P_IPV6) &&
4667 	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4668 	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4669 	    sk_rethink_txhash(sk))
4670 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4671 
4672 	/* Save last flowlabel after a spurious retrans. */
4673 	tcp_save_lrcv_flowlabel(sk, skb);
4674 #endif
4675 }
4676 
4677 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4678 {
4679 	struct tcp_sock *tp = tcp_sk(sk);
4680 
4681 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4682 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4683 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4684 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4685 
4686 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4687 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4688 
4689 			tcp_rcv_spurious_retrans(sk, skb);
4690 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4691 				end_seq = tp->rcv_nxt;
4692 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4693 		}
4694 	}
4695 
4696 	tcp_send_ack(sk);
4697 }
4698 
4699 /* These routines update the SACK block as out-of-order packets arrive or
4700  * in-order packets close up the sequence space.
4701  */
4702 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4703 {
4704 	int this_sack;
4705 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4706 	struct tcp_sack_block *swalk = sp + 1;
4707 
4708 	/* See if the recent change to the first SACK eats into
4709 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4710 	 */
4711 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4712 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4713 			int i;
4714 
4715 			/* Zap SWALK, by moving every further SACK up by one slot.
4716 			 * Decrease num_sacks.
4717 			 */
4718 			tp->rx_opt.num_sacks--;
4719 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4720 				sp[i] = sp[i + 1];
4721 			continue;
4722 		}
4723 		this_sack++;
4724 		swalk++;
4725 	}
4726 }
4727 
4728 void tcp_sack_compress_send_ack(struct sock *sk)
4729 {
4730 	struct tcp_sock *tp = tcp_sk(sk);
4731 
4732 	if (!tp->compressed_ack)
4733 		return;
4734 
4735 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4736 		__sock_put(sk);
4737 
4738 	/* Since we have to send one ack finally,
4739 	 * substract one from tp->compressed_ack to keep
4740 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4741 	 */
4742 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4743 		      tp->compressed_ack - 1);
4744 
4745 	tp->compressed_ack = 0;
4746 	tcp_send_ack(sk);
4747 }
4748 
4749 /* Reasonable amount of sack blocks included in TCP SACK option
4750  * The max is 4, but this becomes 3 if TCP timestamps are there.
4751  * Given that SACK packets might be lost, be conservative and use 2.
4752  */
4753 #define TCP_SACK_BLOCKS_EXPECTED 2
4754 
4755 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4756 {
4757 	struct tcp_sock *tp = tcp_sk(sk);
4758 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4759 	int cur_sacks = tp->rx_opt.num_sacks;
4760 	int this_sack;
4761 
4762 	if (!cur_sacks)
4763 		goto new_sack;
4764 
4765 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4766 		if (tcp_sack_extend(sp, seq, end_seq)) {
4767 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4768 				tcp_sack_compress_send_ack(sk);
4769 			/* Rotate this_sack to the first one. */
4770 			for (; this_sack > 0; this_sack--, sp--)
4771 				swap(*sp, *(sp - 1));
4772 			if (cur_sacks > 1)
4773 				tcp_sack_maybe_coalesce(tp);
4774 			return;
4775 		}
4776 	}
4777 
4778 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4779 		tcp_sack_compress_send_ack(sk);
4780 
4781 	/* Could not find an adjacent existing SACK, build a new one,
4782 	 * put it at the front, and shift everyone else down.  We
4783 	 * always know there is at least one SACK present already here.
4784 	 *
4785 	 * If the sack array is full, forget about the last one.
4786 	 */
4787 	if (this_sack >= TCP_NUM_SACKS) {
4788 		this_sack--;
4789 		tp->rx_opt.num_sacks--;
4790 		sp--;
4791 	}
4792 	for (; this_sack > 0; this_sack--, sp--)
4793 		*sp = *(sp - 1);
4794 
4795 new_sack:
4796 	/* Build the new head SACK, and we're done. */
4797 	sp->start_seq = seq;
4798 	sp->end_seq = end_seq;
4799 	tp->rx_opt.num_sacks++;
4800 }
4801 
4802 /* RCV.NXT advances, some SACKs should be eaten. */
4803 
4804 static void tcp_sack_remove(struct tcp_sock *tp)
4805 {
4806 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4807 	int num_sacks = tp->rx_opt.num_sacks;
4808 	int this_sack;
4809 
4810 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4811 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4812 		tp->rx_opt.num_sacks = 0;
4813 		return;
4814 	}
4815 
4816 	for (this_sack = 0; this_sack < num_sacks;) {
4817 		/* Check if the start of the sack is covered by RCV.NXT. */
4818 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4819 			int i;
4820 
4821 			/* RCV.NXT must cover all the block! */
4822 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4823 
4824 			/* Zap this SACK, by moving forward any other SACKS. */
4825 			for (i = this_sack+1; i < num_sacks; i++)
4826 				tp->selective_acks[i-1] = tp->selective_acks[i];
4827 			num_sacks--;
4828 			continue;
4829 		}
4830 		this_sack++;
4831 		sp++;
4832 	}
4833 	tp->rx_opt.num_sacks = num_sacks;
4834 }
4835 
4836 /**
4837  * tcp_try_coalesce - try to merge skb to prior one
4838  * @sk: socket
4839  * @to: prior buffer
4840  * @from: buffer to add in queue
4841  * @fragstolen: pointer to boolean
4842  *
4843  * Before queueing skb @from after @to, try to merge them
4844  * to reduce overall memory use and queue lengths, if cost is small.
4845  * Packets in ofo or receive queues can stay a long time.
4846  * Better try to coalesce them right now to avoid future collapses.
4847  * Returns true if caller should free @from instead of queueing it
4848  */
4849 static bool tcp_try_coalesce(struct sock *sk,
4850 			     struct sk_buff *to,
4851 			     struct sk_buff *from,
4852 			     bool *fragstolen)
4853 {
4854 	int delta;
4855 
4856 	*fragstolen = false;
4857 
4858 	/* Its possible this segment overlaps with prior segment in queue */
4859 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4860 		return false;
4861 
4862 	if (!tcp_skb_can_collapse_rx(to, from))
4863 		return false;
4864 
4865 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4866 		return false;
4867 
4868 	atomic_add(delta, &sk->sk_rmem_alloc);
4869 	sk_mem_charge(sk, delta);
4870 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4871 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4872 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4873 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4874 
4875 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4876 		TCP_SKB_CB(to)->has_rxtstamp = true;
4877 		to->tstamp = from->tstamp;
4878 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4879 	}
4880 
4881 	return true;
4882 }
4883 
4884 static bool tcp_ooo_try_coalesce(struct sock *sk,
4885 			     struct sk_buff *to,
4886 			     struct sk_buff *from,
4887 			     bool *fragstolen)
4888 {
4889 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4890 
4891 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4892 	if (res) {
4893 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4894 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4895 
4896 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4897 	}
4898 	return res;
4899 }
4900 
4901 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4902 			    enum skb_drop_reason reason)
4903 {
4904 	sk_drops_add(sk, skb);
4905 	sk_skb_reason_drop(sk, skb, reason);
4906 }
4907 
4908 /* This one checks to see if we can put data from the
4909  * out_of_order queue into the receive_queue.
4910  */
4911 static void tcp_ofo_queue(struct sock *sk)
4912 {
4913 	struct tcp_sock *tp = tcp_sk(sk);
4914 	__u32 dsack_high = tp->rcv_nxt;
4915 	bool fin, fragstolen, eaten;
4916 	struct sk_buff *skb, *tail;
4917 	struct rb_node *p;
4918 
4919 	p = rb_first(&tp->out_of_order_queue);
4920 	while (p) {
4921 		skb = rb_to_skb(p);
4922 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4923 			break;
4924 
4925 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4926 			__u32 dsack = dsack_high;
4927 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4928 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4929 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4930 		}
4931 		p = rb_next(p);
4932 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4933 
4934 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4935 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4936 			continue;
4937 		}
4938 
4939 		tail = skb_peek_tail(&sk->sk_receive_queue);
4940 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4941 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4942 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4943 		if (!eaten)
4944 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4945 		else
4946 			kfree_skb_partial(skb, fragstolen);
4947 
4948 		if (unlikely(fin)) {
4949 			tcp_fin(sk);
4950 			/* tcp_fin() purges tp->out_of_order_queue,
4951 			 * so we must end this loop right now.
4952 			 */
4953 			break;
4954 		}
4955 	}
4956 }
4957 
4958 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4959 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4960 
4961 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4962 				 unsigned int size)
4963 {
4964 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4965 	    !sk_rmem_schedule(sk, skb, size)) {
4966 
4967 		if (tcp_prune_queue(sk, skb) < 0)
4968 			return -1;
4969 
4970 		while (!sk_rmem_schedule(sk, skb, size)) {
4971 			if (!tcp_prune_ofo_queue(sk, skb))
4972 				return -1;
4973 		}
4974 	}
4975 	return 0;
4976 }
4977 
4978 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4979 {
4980 	struct tcp_sock *tp = tcp_sk(sk);
4981 	struct rb_node **p, *parent;
4982 	struct sk_buff *skb1;
4983 	u32 seq, end_seq;
4984 	bool fragstolen;
4985 
4986 	tcp_save_lrcv_flowlabel(sk, skb);
4987 	tcp_ecn_check_ce(sk, skb);
4988 
4989 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4990 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4991 		sk->sk_data_ready(sk);
4992 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4993 		return;
4994 	}
4995 
4996 	/* Disable header prediction. */
4997 	tp->pred_flags = 0;
4998 	inet_csk_schedule_ack(sk);
4999 
5000 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
5001 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
5002 	seq = TCP_SKB_CB(skb)->seq;
5003 	end_seq = TCP_SKB_CB(skb)->end_seq;
5004 
5005 	p = &tp->out_of_order_queue.rb_node;
5006 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5007 		/* Initial out of order segment, build 1 SACK. */
5008 		if (tcp_is_sack(tp)) {
5009 			tp->rx_opt.num_sacks = 1;
5010 			tp->selective_acks[0].start_seq = seq;
5011 			tp->selective_acks[0].end_seq = end_seq;
5012 		}
5013 		rb_link_node(&skb->rbnode, NULL, p);
5014 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5015 		tp->ooo_last_skb = skb;
5016 		goto end;
5017 	}
5018 
5019 	/* In the typical case, we are adding an skb to the end of the list.
5020 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
5021 	 */
5022 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
5023 				 skb, &fragstolen)) {
5024 coalesce_done:
5025 		/* For non sack flows, do not grow window to force DUPACK
5026 		 * and trigger fast retransmit.
5027 		 */
5028 		if (tcp_is_sack(tp))
5029 			tcp_grow_window(sk, skb, true);
5030 		kfree_skb_partial(skb, fragstolen);
5031 		skb = NULL;
5032 		goto add_sack;
5033 	}
5034 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
5035 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
5036 		parent = &tp->ooo_last_skb->rbnode;
5037 		p = &parent->rb_right;
5038 		goto insert;
5039 	}
5040 
5041 	/* Find place to insert this segment. Handle overlaps on the way. */
5042 	parent = NULL;
5043 	while (*p) {
5044 		parent = *p;
5045 		skb1 = rb_to_skb(parent);
5046 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
5047 			p = &parent->rb_left;
5048 			continue;
5049 		}
5050 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
5051 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5052 				/* All the bits are present. Drop. */
5053 				NET_INC_STATS(sock_net(sk),
5054 					      LINUX_MIB_TCPOFOMERGE);
5055 				tcp_drop_reason(sk, skb,
5056 						SKB_DROP_REASON_TCP_OFOMERGE);
5057 				skb = NULL;
5058 				tcp_dsack_set(sk, seq, end_seq);
5059 				goto add_sack;
5060 			}
5061 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5062 				/* Partial overlap. */
5063 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5064 			} else {
5065 				/* skb's seq == skb1's seq and skb covers skb1.
5066 				 * Replace skb1 with skb.
5067 				 */
5068 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5069 						&tp->out_of_order_queue);
5070 				tcp_dsack_extend(sk,
5071 						 TCP_SKB_CB(skb1)->seq,
5072 						 TCP_SKB_CB(skb1)->end_seq);
5073 				NET_INC_STATS(sock_net(sk),
5074 					      LINUX_MIB_TCPOFOMERGE);
5075 				tcp_drop_reason(sk, skb1,
5076 						SKB_DROP_REASON_TCP_OFOMERGE);
5077 				goto merge_right;
5078 			}
5079 		} else if (tcp_ooo_try_coalesce(sk, skb1,
5080 						skb, &fragstolen)) {
5081 			goto coalesce_done;
5082 		}
5083 		p = &parent->rb_right;
5084 	}
5085 insert:
5086 	/* Insert segment into RB tree. */
5087 	rb_link_node(&skb->rbnode, parent, p);
5088 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5089 
5090 merge_right:
5091 	/* Remove other segments covered by skb. */
5092 	while ((skb1 = skb_rb_next(skb)) != NULL) {
5093 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5094 			break;
5095 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5096 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5097 					 end_seq);
5098 			break;
5099 		}
5100 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5101 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5102 				 TCP_SKB_CB(skb1)->end_seq);
5103 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5104 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5105 	}
5106 	/* If there is no skb after us, we are the last_skb ! */
5107 	if (!skb1)
5108 		tp->ooo_last_skb = skb;
5109 
5110 add_sack:
5111 	if (tcp_is_sack(tp))
5112 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5113 end:
5114 	if (skb) {
5115 		/* For non sack flows, do not grow window to force DUPACK
5116 		 * and trigger fast retransmit.
5117 		 */
5118 		if (tcp_is_sack(tp))
5119 			tcp_grow_window(sk, skb, false);
5120 		skb_condense(skb);
5121 		skb_set_owner_r(skb, sk);
5122 	}
5123 }
5124 
5125 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5126 				      bool *fragstolen)
5127 {
5128 	int eaten;
5129 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5130 
5131 	eaten = (tail &&
5132 		 tcp_try_coalesce(sk, tail,
5133 				  skb, fragstolen)) ? 1 : 0;
5134 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5135 	if (!eaten) {
5136 		__skb_queue_tail(&sk->sk_receive_queue, skb);
5137 		skb_set_owner_r(skb, sk);
5138 	}
5139 	return eaten;
5140 }
5141 
5142 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5143 {
5144 	struct sk_buff *skb;
5145 	int err = -ENOMEM;
5146 	int data_len = 0;
5147 	bool fragstolen;
5148 
5149 	if (size == 0)
5150 		return 0;
5151 
5152 	if (size > PAGE_SIZE) {
5153 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5154 
5155 		data_len = npages << PAGE_SHIFT;
5156 		size = data_len + (size & ~PAGE_MASK);
5157 	}
5158 	skb = alloc_skb_with_frags(size - data_len, data_len,
5159 				   PAGE_ALLOC_COSTLY_ORDER,
5160 				   &err, sk->sk_allocation);
5161 	if (!skb)
5162 		goto err;
5163 
5164 	skb_put(skb, size - data_len);
5165 	skb->data_len = data_len;
5166 	skb->len = size;
5167 
5168 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5169 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5170 		goto err_free;
5171 	}
5172 
5173 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5174 	if (err)
5175 		goto err_free;
5176 
5177 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5178 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5179 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5180 
5181 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5182 		WARN_ON_ONCE(fragstolen); /* should not happen */
5183 		__kfree_skb(skb);
5184 	}
5185 	return size;
5186 
5187 err_free:
5188 	kfree_skb(skb);
5189 err:
5190 	return err;
5191 
5192 }
5193 
5194 void tcp_data_ready(struct sock *sk)
5195 {
5196 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5197 		sk->sk_data_ready(sk);
5198 }
5199 
5200 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5201 {
5202 	struct tcp_sock *tp = tcp_sk(sk);
5203 	enum skb_drop_reason reason;
5204 	bool fragstolen;
5205 	int eaten;
5206 
5207 	/* If a subflow has been reset, the packet should not continue
5208 	 * to be processed, drop the packet.
5209 	 */
5210 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5211 		__kfree_skb(skb);
5212 		return;
5213 	}
5214 
5215 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5216 		__kfree_skb(skb);
5217 		return;
5218 	}
5219 	skb_dst_drop(skb);
5220 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5221 
5222 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5223 	tp->rx_opt.dsack = 0;
5224 
5225 	/*  Queue data for delivery to the user.
5226 	 *  Packets in sequence go to the receive queue.
5227 	 *  Out of sequence packets to the out_of_order_queue.
5228 	 */
5229 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5230 		if (tcp_receive_window(tp) == 0) {
5231 			/* Some stacks are known to send bare FIN packets
5232 			 * in a loop even if we send RWIN 0 in our ACK.
5233 			 * Accepting this FIN does not hurt memory pressure
5234 			 * because the FIN flag will simply be merged to the
5235 			 * receive queue tail skb in most cases.
5236 			 */
5237 			if (!skb->len &&
5238 			    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5239 				goto queue_and_out;
5240 
5241 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5242 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5243 			goto out_of_window;
5244 		}
5245 
5246 		/* Ok. In sequence. In window. */
5247 queue_and_out:
5248 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5249 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5250 			inet_csk(sk)->icsk_ack.pending |=
5251 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5252 			inet_csk_schedule_ack(sk);
5253 			sk->sk_data_ready(sk);
5254 
5255 			if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5256 				reason = SKB_DROP_REASON_PROTO_MEM;
5257 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5258 				goto drop;
5259 			}
5260 			sk_forced_mem_schedule(sk, skb->truesize);
5261 		}
5262 
5263 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5264 		if (skb->len)
5265 			tcp_event_data_recv(sk, skb);
5266 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5267 			tcp_fin(sk);
5268 
5269 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5270 			tcp_ofo_queue(sk);
5271 
5272 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5273 			 * gap in queue is filled.
5274 			 */
5275 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5276 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5277 		}
5278 
5279 		if (tp->rx_opt.num_sacks)
5280 			tcp_sack_remove(tp);
5281 
5282 		tcp_fast_path_check(sk);
5283 
5284 		if (eaten > 0)
5285 			kfree_skb_partial(skb, fragstolen);
5286 		if (!sock_flag(sk, SOCK_DEAD))
5287 			tcp_data_ready(sk);
5288 		return;
5289 	}
5290 
5291 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5292 		tcp_rcv_spurious_retrans(sk, skb);
5293 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5294 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5295 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5296 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5297 
5298 out_of_window:
5299 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5300 		inet_csk_schedule_ack(sk);
5301 drop:
5302 		tcp_drop_reason(sk, skb, reason);
5303 		return;
5304 	}
5305 
5306 	/* Out of window. F.e. zero window probe. */
5307 	if (!before(TCP_SKB_CB(skb)->seq,
5308 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5309 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5310 		goto out_of_window;
5311 	}
5312 
5313 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5314 		/* Partial packet, seq < rcv_next < end_seq */
5315 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5316 
5317 		/* If window is closed, drop tail of packet. But after
5318 		 * remembering D-SACK for its head made in previous line.
5319 		 */
5320 		if (!tcp_receive_window(tp)) {
5321 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5322 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5323 			goto out_of_window;
5324 		}
5325 		goto queue_and_out;
5326 	}
5327 
5328 	tcp_data_queue_ofo(sk, skb);
5329 }
5330 
5331 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5332 {
5333 	if (list)
5334 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5335 
5336 	return skb_rb_next(skb);
5337 }
5338 
5339 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5340 					struct sk_buff_head *list,
5341 					struct rb_root *root)
5342 {
5343 	struct sk_buff *next = tcp_skb_next(skb, list);
5344 
5345 	if (list)
5346 		__skb_unlink(skb, list);
5347 	else
5348 		rb_erase(&skb->rbnode, root);
5349 
5350 	__kfree_skb(skb);
5351 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5352 
5353 	return next;
5354 }
5355 
5356 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5357 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5358 {
5359 	struct rb_node **p = &root->rb_node;
5360 	struct rb_node *parent = NULL;
5361 	struct sk_buff *skb1;
5362 
5363 	while (*p) {
5364 		parent = *p;
5365 		skb1 = rb_to_skb(parent);
5366 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5367 			p = &parent->rb_left;
5368 		else
5369 			p = &parent->rb_right;
5370 	}
5371 	rb_link_node(&skb->rbnode, parent, p);
5372 	rb_insert_color(&skb->rbnode, root);
5373 }
5374 
5375 /* Collapse contiguous sequence of skbs head..tail with
5376  * sequence numbers start..end.
5377  *
5378  * If tail is NULL, this means until the end of the queue.
5379  *
5380  * Segments with FIN/SYN are not collapsed (only because this
5381  * simplifies code)
5382  */
5383 static void
5384 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5385 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5386 {
5387 	struct sk_buff *skb = head, *n;
5388 	struct sk_buff_head tmp;
5389 	bool end_of_skbs;
5390 
5391 	/* First, check that queue is collapsible and find
5392 	 * the point where collapsing can be useful.
5393 	 */
5394 restart:
5395 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5396 		n = tcp_skb_next(skb, list);
5397 
5398 		/* No new bits? It is possible on ofo queue. */
5399 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5400 			skb = tcp_collapse_one(sk, skb, list, root);
5401 			if (!skb)
5402 				break;
5403 			goto restart;
5404 		}
5405 
5406 		/* The first skb to collapse is:
5407 		 * - not SYN/FIN and
5408 		 * - bloated or contains data before "start" or
5409 		 *   overlaps to the next one and mptcp allow collapsing.
5410 		 */
5411 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5412 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5413 		     before(TCP_SKB_CB(skb)->seq, start))) {
5414 			end_of_skbs = false;
5415 			break;
5416 		}
5417 
5418 		if (n && n != tail && tcp_skb_can_collapse_rx(skb, n) &&
5419 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5420 			end_of_skbs = false;
5421 			break;
5422 		}
5423 
5424 		/* Decided to skip this, advance start seq. */
5425 		start = TCP_SKB_CB(skb)->end_seq;
5426 	}
5427 	if (end_of_skbs ||
5428 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5429 		return;
5430 
5431 	__skb_queue_head_init(&tmp);
5432 
5433 	while (before(start, end)) {
5434 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5435 		struct sk_buff *nskb;
5436 
5437 		nskb = alloc_skb(copy, GFP_ATOMIC);
5438 		if (!nskb)
5439 			break;
5440 
5441 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5442 		skb_copy_decrypted(nskb, skb);
5443 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5444 		if (list)
5445 			__skb_queue_before(list, skb, nskb);
5446 		else
5447 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5448 		skb_set_owner_r(nskb, sk);
5449 		mptcp_skb_ext_move(nskb, skb);
5450 
5451 		/* Copy data, releasing collapsed skbs. */
5452 		while (copy > 0) {
5453 			int offset = start - TCP_SKB_CB(skb)->seq;
5454 			int size = TCP_SKB_CB(skb)->end_seq - start;
5455 
5456 			BUG_ON(offset < 0);
5457 			if (size > 0) {
5458 				size = min(copy, size);
5459 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5460 					BUG();
5461 				TCP_SKB_CB(nskb)->end_seq += size;
5462 				copy -= size;
5463 				start += size;
5464 			}
5465 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5466 				skb = tcp_collapse_one(sk, skb, list, root);
5467 				if (!skb ||
5468 				    skb == tail ||
5469 				    !tcp_skb_can_collapse_rx(nskb, skb) ||
5470 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5471 					goto end;
5472 			}
5473 		}
5474 	}
5475 end:
5476 	skb_queue_walk_safe(&tmp, skb, n)
5477 		tcp_rbtree_insert(root, skb);
5478 }
5479 
5480 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5481  * and tcp_collapse() them until all the queue is collapsed.
5482  */
5483 static void tcp_collapse_ofo_queue(struct sock *sk)
5484 {
5485 	struct tcp_sock *tp = tcp_sk(sk);
5486 	u32 range_truesize, sum_tiny = 0;
5487 	struct sk_buff *skb, *head;
5488 	u32 start, end;
5489 
5490 	skb = skb_rb_first(&tp->out_of_order_queue);
5491 new_range:
5492 	if (!skb) {
5493 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5494 		return;
5495 	}
5496 	start = TCP_SKB_CB(skb)->seq;
5497 	end = TCP_SKB_CB(skb)->end_seq;
5498 	range_truesize = skb->truesize;
5499 
5500 	for (head = skb;;) {
5501 		skb = skb_rb_next(skb);
5502 
5503 		/* Range is terminated when we see a gap or when
5504 		 * we are at the queue end.
5505 		 */
5506 		if (!skb ||
5507 		    after(TCP_SKB_CB(skb)->seq, end) ||
5508 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5509 			/* Do not attempt collapsing tiny skbs */
5510 			if (range_truesize != head->truesize ||
5511 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5512 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5513 					     head, skb, start, end);
5514 			} else {
5515 				sum_tiny += range_truesize;
5516 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5517 					return;
5518 			}
5519 			goto new_range;
5520 		}
5521 
5522 		range_truesize += skb->truesize;
5523 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5524 			start = TCP_SKB_CB(skb)->seq;
5525 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5526 			end = TCP_SKB_CB(skb)->end_seq;
5527 	}
5528 }
5529 
5530 /*
5531  * Clean the out-of-order queue to make room.
5532  * We drop high sequences packets to :
5533  * 1) Let a chance for holes to be filled.
5534  *    This means we do not drop packets from ooo queue if their sequence
5535  *    is before incoming packet sequence.
5536  * 2) not add too big latencies if thousands of packets sit there.
5537  *    (But if application shrinks SO_RCVBUF, we could still end up
5538  *     freeing whole queue here)
5539  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5540  *
5541  * Return true if queue has shrunk.
5542  */
5543 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5544 {
5545 	struct tcp_sock *tp = tcp_sk(sk);
5546 	struct rb_node *node, *prev;
5547 	bool pruned = false;
5548 	int goal;
5549 
5550 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5551 		return false;
5552 
5553 	goal = sk->sk_rcvbuf >> 3;
5554 	node = &tp->ooo_last_skb->rbnode;
5555 
5556 	do {
5557 		struct sk_buff *skb = rb_to_skb(node);
5558 
5559 		/* If incoming skb would land last in ofo queue, stop pruning. */
5560 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5561 			break;
5562 		pruned = true;
5563 		prev = rb_prev(node);
5564 		rb_erase(node, &tp->out_of_order_queue);
5565 		goal -= skb->truesize;
5566 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5567 		tp->ooo_last_skb = rb_to_skb(prev);
5568 		if (!prev || goal <= 0) {
5569 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5570 			    !tcp_under_memory_pressure(sk))
5571 				break;
5572 			goal = sk->sk_rcvbuf >> 3;
5573 		}
5574 		node = prev;
5575 	} while (node);
5576 
5577 	if (pruned) {
5578 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5579 		/* Reset SACK state.  A conforming SACK implementation will
5580 		 * do the same at a timeout based retransmit.  When a connection
5581 		 * is in a sad state like this, we care only about integrity
5582 		 * of the connection not performance.
5583 		 */
5584 		if (tp->rx_opt.sack_ok)
5585 			tcp_sack_reset(&tp->rx_opt);
5586 	}
5587 	return pruned;
5588 }
5589 
5590 /* Reduce allocated memory if we can, trying to get
5591  * the socket within its memory limits again.
5592  *
5593  * Return less than zero if we should start dropping frames
5594  * until the socket owning process reads some of the data
5595  * to stabilize the situation.
5596  */
5597 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5598 {
5599 	struct tcp_sock *tp = tcp_sk(sk);
5600 
5601 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5602 
5603 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5604 		tcp_clamp_window(sk);
5605 	else if (tcp_under_memory_pressure(sk))
5606 		tcp_adjust_rcv_ssthresh(sk);
5607 
5608 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5609 		return 0;
5610 
5611 	tcp_collapse_ofo_queue(sk);
5612 	if (!skb_queue_empty(&sk->sk_receive_queue))
5613 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5614 			     skb_peek(&sk->sk_receive_queue),
5615 			     NULL,
5616 			     tp->copied_seq, tp->rcv_nxt);
5617 
5618 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5619 		return 0;
5620 
5621 	/* Collapsing did not help, destructive actions follow.
5622 	 * This must not ever occur. */
5623 
5624 	tcp_prune_ofo_queue(sk, in_skb);
5625 
5626 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5627 		return 0;
5628 
5629 	/* If we are really being abused, tell the caller to silently
5630 	 * drop receive data on the floor.  It will get retransmitted
5631 	 * and hopefully then we'll have sufficient space.
5632 	 */
5633 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5634 
5635 	/* Massive buffer overcommit. */
5636 	tp->pred_flags = 0;
5637 	return -1;
5638 }
5639 
5640 static bool tcp_should_expand_sndbuf(struct sock *sk)
5641 {
5642 	const struct tcp_sock *tp = tcp_sk(sk);
5643 
5644 	/* If the user specified a specific send buffer setting, do
5645 	 * not modify it.
5646 	 */
5647 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5648 		return false;
5649 
5650 	/* If we are under global TCP memory pressure, do not expand.  */
5651 	if (tcp_under_memory_pressure(sk)) {
5652 		int unused_mem = sk_unused_reserved_mem(sk);
5653 
5654 		/* Adjust sndbuf according to reserved mem. But make sure
5655 		 * it never goes below SOCK_MIN_SNDBUF.
5656 		 * See sk_stream_moderate_sndbuf() for more details.
5657 		 */
5658 		if (unused_mem > SOCK_MIN_SNDBUF)
5659 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5660 
5661 		return false;
5662 	}
5663 
5664 	/* If we are under soft global TCP memory pressure, do not expand.  */
5665 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5666 		return false;
5667 
5668 	/* If we filled the congestion window, do not expand.  */
5669 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5670 		return false;
5671 
5672 	return true;
5673 }
5674 
5675 static void tcp_new_space(struct sock *sk)
5676 {
5677 	struct tcp_sock *tp = tcp_sk(sk);
5678 
5679 	if (tcp_should_expand_sndbuf(sk)) {
5680 		tcp_sndbuf_expand(sk);
5681 		tp->snd_cwnd_stamp = tcp_jiffies32;
5682 	}
5683 
5684 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5685 }
5686 
5687 /* Caller made space either from:
5688  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5689  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5690  *
5691  * We might be able to generate EPOLLOUT to the application if:
5692  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5693  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5694  *    small enough that tcp_stream_memory_free() decides it
5695  *    is time to generate EPOLLOUT.
5696  */
5697 void tcp_check_space(struct sock *sk)
5698 {
5699 	/* pairs with tcp_poll() */
5700 	smp_mb();
5701 	if (sk->sk_socket &&
5702 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5703 		tcp_new_space(sk);
5704 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5705 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5706 	}
5707 }
5708 
5709 static inline void tcp_data_snd_check(struct sock *sk)
5710 {
5711 	tcp_push_pending_frames(sk);
5712 	tcp_check_space(sk);
5713 }
5714 
5715 /*
5716  * Check if sending an ack is needed.
5717  */
5718 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5719 {
5720 	struct tcp_sock *tp = tcp_sk(sk);
5721 	unsigned long rtt, delay;
5722 
5723 	    /* More than one full frame received... */
5724 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5725 	     /* ... and right edge of window advances far enough.
5726 	      * (tcp_recvmsg() will send ACK otherwise).
5727 	      * If application uses SO_RCVLOWAT, we want send ack now if
5728 	      * we have not received enough bytes to satisfy the condition.
5729 	      */
5730 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5731 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5732 	    /* We ACK each frame or... */
5733 	    tcp_in_quickack_mode(sk) ||
5734 	    /* Protocol state mandates a one-time immediate ACK */
5735 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5736 		/* If we are running from __release_sock() in user context,
5737 		 * Defer the ack until tcp_release_cb().
5738 		 */
5739 		if (sock_owned_by_user_nocheck(sk) &&
5740 		    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5741 			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5742 			return;
5743 		}
5744 send_now:
5745 		tcp_send_ack(sk);
5746 		return;
5747 	}
5748 
5749 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5750 		tcp_send_delayed_ack(sk);
5751 		return;
5752 	}
5753 
5754 	if (!tcp_is_sack(tp) ||
5755 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5756 		goto send_now;
5757 
5758 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5759 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5760 		tp->dup_ack_counter = 0;
5761 	}
5762 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5763 		tp->dup_ack_counter++;
5764 		goto send_now;
5765 	}
5766 	tp->compressed_ack++;
5767 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5768 		return;
5769 
5770 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5771 
5772 	rtt = tp->rcv_rtt_est.rtt_us;
5773 	if (tp->srtt_us && tp->srtt_us < rtt)
5774 		rtt = tp->srtt_us;
5775 
5776 	delay = min_t(unsigned long,
5777 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5778 		      rtt * (NSEC_PER_USEC >> 3)/20);
5779 	sock_hold(sk);
5780 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5781 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5782 			       HRTIMER_MODE_REL_PINNED_SOFT);
5783 }
5784 
5785 static inline void tcp_ack_snd_check(struct sock *sk)
5786 {
5787 	if (!inet_csk_ack_scheduled(sk)) {
5788 		/* We sent a data segment already. */
5789 		return;
5790 	}
5791 	__tcp_ack_snd_check(sk, 1);
5792 }
5793 
5794 /*
5795  *	This routine is only called when we have urgent data
5796  *	signaled. Its the 'slow' part of tcp_urg. It could be
5797  *	moved inline now as tcp_urg is only called from one
5798  *	place. We handle URGent data wrong. We have to - as
5799  *	BSD still doesn't use the correction from RFC961.
5800  *	For 1003.1g we should support a new option TCP_STDURG to permit
5801  *	either form (or just set the sysctl tcp_stdurg).
5802  */
5803 
5804 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5805 {
5806 	struct tcp_sock *tp = tcp_sk(sk);
5807 	u32 ptr = ntohs(th->urg_ptr);
5808 
5809 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5810 		ptr--;
5811 	ptr += ntohl(th->seq);
5812 
5813 	/* Ignore urgent data that we've already seen and read. */
5814 	if (after(tp->copied_seq, ptr))
5815 		return;
5816 
5817 	/* Do not replay urg ptr.
5818 	 *
5819 	 * NOTE: interesting situation not covered by specs.
5820 	 * Misbehaving sender may send urg ptr, pointing to segment,
5821 	 * which we already have in ofo queue. We are not able to fetch
5822 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5823 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5824 	 * situations. But it is worth to think about possibility of some
5825 	 * DoSes using some hypothetical application level deadlock.
5826 	 */
5827 	if (before(ptr, tp->rcv_nxt))
5828 		return;
5829 
5830 	/* Do we already have a newer (or duplicate) urgent pointer? */
5831 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5832 		return;
5833 
5834 	/* Tell the world about our new urgent pointer. */
5835 	sk_send_sigurg(sk);
5836 
5837 	/* We may be adding urgent data when the last byte read was
5838 	 * urgent. To do this requires some care. We cannot just ignore
5839 	 * tp->copied_seq since we would read the last urgent byte again
5840 	 * as data, nor can we alter copied_seq until this data arrives
5841 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5842 	 *
5843 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5844 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5845 	 * and expect that both A and B disappear from stream. This is _wrong_.
5846 	 * Though this happens in BSD with high probability, this is occasional.
5847 	 * Any application relying on this is buggy. Note also, that fix "works"
5848 	 * only in this artificial test. Insert some normal data between A and B and we will
5849 	 * decline of BSD again. Verdict: it is better to remove to trap
5850 	 * buggy users.
5851 	 */
5852 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5853 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5854 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5855 		tp->copied_seq++;
5856 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5857 			__skb_unlink(skb, &sk->sk_receive_queue);
5858 			__kfree_skb(skb);
5859 		}
5860 	}
5861 
5862 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5863 	WRITE_ONCE(tp->urg_seq, ptr);
5864 
5865 	/* Disable header prediction. */
5866 	tp->pred_flags = 0;
5867 }
5868 
5869 /* This is the 'fast' part of urgent handling. */
5870 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5871 {
5872 	struct tcp_sock *tp = tcp_sk(sk);
5873 
5874 	/* Check if we get a new urgent pointer - normally not. */
5875 	if (unlikely(th->urg))
5876 		tcp_check_urg(sk, th);
5877 
5878 	/* Do we wait for any urgent data? - normally not... */
5879 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5880 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5881 			  th->syn;
5882 
5883 		/* Is the urgent pointer pointing into this packet? */
5884 		if (ptr < skb->len) {
5885 			u8 tmp;
5886 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5887 				BUG();
5888 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5889 			if (!sock_flag(sk, SOCK_DEAD))
5890 				sk->sk_data_ready(sk);
5891 		}
5892 	}
5893 }
5894 
5895 /* Accept RST for rcv_nxt - 1 after a FIN.
5896  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5897  * FIN is sent followed by a RST packet. The RST is sent with the same
5898  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5899  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5900  * ACKs on the closed socket. In addition middleboxes can drop either the
5901  * challenge ACK or a subsequent RST.
5902  */
5903 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5904 {
5905 	const struct tcp_sock *tp = tcp_sk(sk);
5906 
5907 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5908 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5909 					       TCPF_CLOSING));
5910 }
5911 
5912 /* Does PAWS and seqno based validation of an incoming segment, flags will
5913  * play significant role here.
5914  */
5915 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5916 				  const struct tcphdr *th, int syn_inerr)
5917 {
5918 	struct tcp_sock *tp = tcp_sk(sk);
5919 	SKB_DR(reason);
5920 
5921 	/* RFC1323: H1. Apply PAWS check first. */
5922 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5923 	    tp->rx_opt.saw_tstamp &&
5924 	    tcp_paws_discard(sk, skb)) {
5925 		if (!th->rst) {
5926 			if (unlikely(th->syn))
5927 				goto syn_challenge;
5928 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5929 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5930 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5931 						  &tp->last_oow_ack_time))
5932 				tcp_send_dupack(sk, skb);
5933 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5934 			goto discard;
5935 		}
5936 		/* Reset is accepted even if it did not pass PAWS. */
5937 	}
5938 
5939 	/* Step 1: check sequence number */
5940 	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5941 	if (reason) {
5942 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5943 		 * (RST) segments are validated by checking their SEQ-fields."
5944 		 * And page 69: "If an incoming segment is not acceptable,
5945 		 * an acknowledgment should be sent in reply (unless the RST
5946 		 * bit is set, if so drop the segment and return)".
5947 		 */
5948 		if (!th->rst) {
5949 			if (th->syn)
5950 				goto syn_challenge;
5951 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5952 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5953 						  &tp->last_oow_ack_time))
5954 				tcp_send_dupack(sk, skb);
5955 		} else if (tcp_reset_check(sk, skb)) {
5956 			goto reset;
5957 		}
5958 		goto discard;
5959 	}
5960 
5961 	/* Step 2: check RST bit */
5962 	if (th->rst) {
5963 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5964 		 * FIN and SACK too if available):
5965 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5966 		 * the right-most SACK block,
5967 		 * then
5968 		 *     RESET the connection
5969 		 * else
5970 		 *     Send a challenge ACK
5971 		 */
5972 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5973 		    tcp_reset_check(sk, skb))
5974 			goto reset;
5975 
5976 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5977 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5978 			int max_sack = sp[0].end_seq;
5979 			int this_sack;
5980 
5981 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5982 			     ++this_sack) {
5983 				max_sack = after(sp[this_sack].end_seq,
5984 						 max_sack) ?
5985 					sp[this_sack].end_seq : max_sack;
5986 			}
5987 
5988 			if (TCP_SKB_CB(skb)->seq == max_sack)
5989 				goto reset;
5990 		}
5991 
5992 		/* Disable TFO if RST is out-of-order
5993 		 * and no data has been received
5994 		 * for current active TFO socket
5995 		 */
5996 		if (tp->syn_fastopen && !tp->data_segs_in &&
5997 		    sk->sk_state == TCP_ESTABLISHED)
5998 			tcp_fastopen_active_disable(sk);
5999 		tcp_send_challenge_ack(sk);
6000 		SKB_DR_SET(reason, TCP_RESET);
6001 		goto discard;
6002 	}
6003 
6004 	/* step 3: check security and precedence [ignored] */
6005 
6006 	/* step 4: Check for a SYN
6007 	 * RFC 5961 4.2 : Send a challenge ack
6008 	 */
6009 	if (th->syn) {
6010 		if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
6011 		    TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
6012 		    TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
6013 		    TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
6014 			goto pass;
6015 syn_challenge:
6016 		if (syn_inerr)
6017 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6018 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
6019 		tcp_send_challenge_ack(sk);
6020 		SKB_DR_SET(reason, TCP_INVALID_SYN);
6021 		goto discard;
6022 	}
6023 
6024 pass:
6025 	bpf_skops_parse_hdr(sk, skb);
6026 
6027 	return true;
6028 
6029 discard:
6030 	tcp_drop_reason(sk, skb, reason);
6031 	return false;
6032 
6033 reset:
6034 	tcp_reset(sk, skb);
6035 	__kfree_skb(skb);
6036 	return false;
6037 }
6038 
6039 /*
6040  *	TCP receive function for the ESTABLISHED state.
6041  *
6042  *	It is split into a fast path and a slow path. The fast path is
6043  * 	disabled when:
6044  *	- A zero window was announced from us - zero window probing
6045  *        is only handled properly in the slow path.
6046  *	- Out of order segments arrived.
6047  *	- Urgent data is expected.
6048  *	- There is no buffer space left
6049  *	- Unexpected TCP flags/window values/header lengths are received
6050  *	  (detected by checking the TCP header against pred_flags)
6051  *	- Data is sent in both directions. Fast path only supports pure senders
6052  *	  or pure receivers (this means either the sequence number or the ack
6053  *	  value must stay constant)
6054  *	- Unexpected TCP option.
6055  *
6056  *	When these conditions are not satisfied it drops into a standard
6057  *	receive procedure patterned after RFC793 to handle all cases.
6058  *	The first three cases are guaranteed by proper pred_flags setting,
6059  *	the rest is checked inline. Fast processing is turned on in
6060  *	tcp_data_queue when everything is OK.
6061  */
6062 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6063 {
6064 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6065 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
6066 	struct tcp_sock *tp = tcp_sk(sk);
6067 	unsigned int len = skb->len;
6068 
6069 	/* TCP congestion window tracking */
6070 	trace_tcp_probe(sk, skb);
6071 
6072 	tcp_mstamp_refresh(tp);
6073 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6074 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6075 	/*
6076 	 *	Header prediction.
6077 	 *	The code loosely follows the one in the famous
6078 	 *	"30 instruction TCP receive" Van Jacobson mail.
6079 	 *
6080 	 *	Van's trick is to deposit buffers into socket queue
6081 	 *	on a device interrupt, to call tcp_recv function
6082 	 *	on the receive process context and checksum and copy
6083 	 *	the buffer to user space. smart...
6084 	 *
6085 	 *	Our current scheme is not silly either but we take the
6086 	 *	extra cost of the net_bh soft interrupt processing...
6087 	 *	We do checksum and copy also but from device to kernel.
6088 	 */
6089 
6090 	tp->rx_opt.saw_tstamp = 0;
6091 
6092 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6093 	 *	if header_prediction is to be made
6094 	 *	'S' will always be tp->tcp_header_len >> 2
6095 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6096 	 *  turn it off	(when there are holes in the receive
6097 	 *	 space for instance)
6098 	 *	PSH flag is ignored.
6099 	 */
6100 
6101 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6102 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6103 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6104 		int tcp_header_len = tp->tcp_header_len;
6105 
6106 		/* Timestamp header prediction: tcp_header_len
6107 		 * is automatically equal to th->doff*4 due to pred_flags
6108 		 * match.
6109 		 */
6110 
6111 		/* Check timestamp */
6112 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6113 			/* No? Slow path! */
6114 			if (!tcp_parse_aligned_timestamp(tp, th))
6115 				goto slow_path;
6116 
6117 			/* If PAWS failed, check it more carefully in slow path */
6118 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6119 				goto slow_path;
6120 
6121 			/* DO NOT update ts_recent here, if checksum fails
6122 			 * and timestamp was corrupted part, it will result
6123 			 * in a hung connection since we will drop all
6124 			 * future packets due to the PAWS test.
6125 			 */
6126 		}
6127 
6128 		if (len <= tcp_header_len) {
6129 			/* Bulk data transfer: sender */
6130 			if (len == tcp_header_len) {
6131 				/* Predicted packet is in window by definition.
6132 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6133 				 * Hence, check seq<=rcv_wup reduces to:
6134 				 */
6135 				if (tcp_header_len ==
6136 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6137 				    tp->rcv_nxt == tp->rcv_wup)
6138 					tcp_store_ts_recent(tp);
6139 
6140 				/* We know that such packets are checksummed
6141 				 * on entry.
6142 				 */
6143 				tcp_ack(sk, skb, 0);
6144 				__kfree_skb(skb);
6145 				tcp_data_snd_check(sk);
6146 				/* When receiving pure ack in fast path, update
6147 				 * last ts ecr directly instead of calling
6148 				 * tcp_rcv_rtt_measure_ts()
6149 				 */
6150 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6151 				return;
6152 			} else { /* Header too small */
6153 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6154 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6155 				goto discard;
6156 			}
6157 		} else {
6158 			int eaten = 0;
6159 			bool fragstolen = false;
6160 
6161 			if (tcp_checksum_complete(skb))
6162 				goto csum_error;
6163 
6164 			if ((int)skb->truesize > sk->sk_forward_alloc)
6165 				goto step5;
6166 
6167 			/* Predicted packet is in window by definition.
6168 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6169 			 * Hence, check seq<=rcv_wup reduces to:
6170 			 */
6171 			if (tcp_header_len ==
6172 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6173 			    tp->rcv_nxt == tp->rcv_wup)
6174 				tcp_store_ts_recent(tp);
6175 
6176 			tcp_rcv_rtt_measure_ts(sk, skb);
6177 
6178 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6179 
6180 			/* Bulk data transfer: receiver */
6181 			skb_dst_drop(skb);
6182 			__skb_pull(skb, tcp_header_len);
6183 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6184 
6185 			tcp_event_data_recv(sk, skb);
6186 
6187 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6188 				/* Well, only one small jumplet in fast path... */
6189 				tcp_ack(sk, skb, FLAG_DATA);
6190 				tcp_data_snd_check(sk);
6191 				if (!inet_csk_ack_scheduled(sk))
6192 					goto no_ack;
6193 			} else {
6194 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6195 			}
6196 
6197 			__tcp_ack_snd_check(sk, 0);
6198 no_ack:
6199 			if (eaten)
6200 				kfree_skb_partial(skb, fragstolen);
6201 			tcp_data_ready(sk);
6202 			return;
6203 		}
6204 	}
6205 
6206 slow_path:
6207 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6208 		goto csum_error;
6209 
6210 	if (!th->ack && !th->rst && !th->syn) {
6211 		reason = SKB_DROP_REASON_TCP_FLAGS;
6212 		goto discard;
6213 	}
6214 
6215 	/*
6216 	 *	Standard slow path.
6217 	 */
6218 
6219 	if (!tcp_validate_incoming(sk, skb, th, 1))
6220 		return;
6221 
6222 step5:
6223 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6224 	if ((int)reason < 0) {
6225 		reason = -reason;
6226 		goto discard;
6227 	}
6228 	tcp_rcv_rtt_measure_ts(sk, skb);
6229 
6230 	/* Process urgent data. */
6231 	tcp_urg(sk, skb, th);
6232 
6233 	/* step 7: process the segment text */
6234 	tcp_data_queue(sk, skb);
6235 
6236 	tcp_data_snd_check(sk);
6237 	tcp_ack_snd_check(sk);
6238 	return;
6239 
6240 csum_error:
6241 	reason = SKB_DROP_REASON_TCP_CSUM;
6242 	trace_tcp_bad_csum(skb);
6243 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6244 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6245 
6246 discard:
6247 	tcp_drop_reason(sk, skb, reason);
6248 }
6249 EXPORT_SYMBOL(tcp_rcv_established);
6250 
6251 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6252 {
6253 	struct inet_connection_sock *icsk = inet_csk(sk);
6254 	struct tcp_sock *tp = tcp_sk(sk);
6255 
6256 	tcp_mtup_init(sk);
6257 	icsk->icsk_af_ops->rebuild_header(sk);
6258 	tcp_init_metrics(sk);
6259 
6260 	/* Initialize the congestion window to start the transfer.
6261 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6262 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6263 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6264 	 * retransmission has occurred.
6265 	 */
6266 	if (tp->total_retrans > 1 && tp->undo_marker)
6267 		tcp_snd_cwnd_set(tp, 1);
6268 	else
6269 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6270 	tp->snd_cwnd_stamp = tcp_jiffies32;
6271 
6272 	bpf_skops_established(sk, bpf_op, skb);
6273 	/* Initialize congestion control unless BPF initialized it already: */
6274 	if (!icsk->icsk_ca_initialized)
6275 		tcp_init_congestion_control(sk);
6276 	tcp_init_buffer_space(sk);
6277 }
6278 
6279 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6280 {
6281 	struct tcp_sock *tp = tcp_sk(sk);
6282 	struct inet_connection_sock *icsk = inet_csk(sk);
6283 
6284 	tcp_ao_finish_connect(sk, skb);
6285 	tcp_set_state(sk, TCP_ESTABLISHED);
6286 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6287 
6288 	if (skb) {
6289 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6290 		security_inet_conn_established(sk, skb);
6291 		sk_mark_napi_id(sk, skb);
6292 	}
6293 
6294 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6295 
6296 	/* Prevent spurious tcp_cwnd_restart() on first data
6297 	 * packet.
6298 	 */
6299 	tp->lsndtime = tcp_jiffies32;
6300 
6301 	if (sock_flag(sk, SOCK_KEEPOPEN))
6302 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6303 
6304 	if (!tp->rx_opt.snd_wscale)
6305 		__tcp_fast_path_on(tp, tp->snd_wnd);
6306 	else
6307 		tp->pred_flags = 0;
6308 }
6309 
6310 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6311 				    struct tcp_fastopen_cookie *cookie)
6312 {
6313 	struct tcp_sock *tp = tcp_sk(sk);
6314 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6315 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6316 	bool syn_drop = false;
6317 
6318 	if (mss == tp->rx_opt.user_mss) {
6319 		struct tcp_options_received opt;
6320 
6321 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6322 		tcp_clear_options(&opt);
6323 		opt.user_mss = opt.mss_clamp = 0;
6324 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6325 		mss = opt.mss_clamp;
6326 	}
6327 
6328 	if (!tp->syn_fastopen) {
6329 		/* Ignore an unsolicited cookie */
6330 		cookie->len = -1;
6331 	} else if (tp->total_retrans) {
6332 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6333 		 * acknowledges data. Presumably the remote received only
6334 		 * the retransmitted (regular) SYNs: either the original
6335 		 * SYN-data or the corresponding SYN-ACK was dropped.
6336 		 */
6337 		syn_drop = (cookie->len < 0 && data);
6338 	} else if (cookie->len < 0 && !tp->syn_data) {
6339 		/* We requested a cookie but didn't get it. If we did not use
6340 		 * the (old) exp opt format then try so next time (try_exp=1).
6341 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6342 		 */
6343 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6344 	}
6345 
6346 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6347 
6348 	if (data) { /* Retransmit unacked data in SYN */
6349 		if (tp->total_retrans)
6350 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6351 		else
6352 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6353 		skb_rbtree_walk_from(data)
6354 			 tcp_mark_skb_lost(sk, data);
6355 		tcp_non_congestion_loss_retransmit(sk);
6356 		NET_INC_STATS(sock_net(sk),
6357 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6358 		return true;
6359 	}
6360 	tp->syn_data_acked = tp->syn_data;
6361 	if (tp->syn_data_acked) {
6362 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6363 		/* SYN-data is counted as two separate packets in tcp_ack() */
6364 		if (tp->delivered > 1)
6365 			--tp->delivered;
6366 	}
6367 
6368 	tcp_fastopen_add_skb(sk, synack);
6369 
6370 	return false;
6371 }
6372 
6373 static void smc_check_reset_syn(struct tcp_sock *tp)
6374 {
6375 #if IS_ENABLED(CONFIG_SMC)
6376 	if (static_branch_unlikely(&tcp_have_smc)) {
6377 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6378 			tp->syn_smc = 0;
6379 	}
6380 #endif
6381 }
6382 
6383 static void tcp_try_undo_spurious_syn(struct sock *sk)
6384 {
6385 	struct tcp_sock *tp = tcp_sk(sk);
6386 	u32 syn_stamp;
6387 
6388 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6389 	 * spurious if the ACK's timestamp option echo value matches the
6390 	 * original SYN timestamp.
6391 	 */
6392 	syn_stamp = tp->retrans_stamp;
6393 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6394 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6395 		tp->undo_marker = 0;
6396 }
6397 
6398 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6399 					 const struct tcphdr *th)
6400 {
6401 	struct inet_connection_sock *icsk = inet_csk(sk);
6402 	struct tcp_sock *tp = tcp_sk(sk);
6403 	struct tcp_fastopen_cookie foc = { .len = -1 };
6404 	int saved_clamp = tp->rx_opt.mss_clamp;
6405 	bool fastopen_fail;
6406 	SKB_DR(reason);
6407 
6408 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6409 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6410 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6411 
6412 	if (th->ack) {
6413 		/* rfc793:
6414 		 * "If the state is SYN-SENT then
6415 		 *    first check the ACK bit
6416 		 *      If the ACK bit is set
6417 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6418 		 *        a reset (unless the RST bit is set, if so drop
6419 		 *        the segment and return)"
6420 		 */
6421 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6422 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6423 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6424 			if (icsk->icsk_retransmits == 0)
6425 				inet_csk_reset_xmit_timer(sk,
6426 						ICSK_TIME_RETRANS,
6427 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6428 			SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6429 			goto reset_and_undo;
6430 		}
6431 
6432 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6433 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6434 			     tcp_time_stamp_ts(tp))) {
6435 			NET_INC_STATS(sock_net(sk),
6436 					LINUX_MIB_PAWSACTIVEREJECTED);
6437 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6438 			goto reset_and_undo;
6439 		}
6440 
6441 		/* Now ACK is acceptable.
6442 		 *
6443 		 * "If the RST bit is set
6444 		 *    If the ACK was acceptable then signal the user "error:
6445 		 *    connection reset", drop the segment, enter CLOSED state,
6446 		 *    delete TCB, and return."
6447 		 */
6448 
6449 		if (th->rst) {
6450 			tcp_reset(sk, skb);
6451 consume:
6452 			__kfree_skb(skb);
6453 			return 0;
6454 		}
6455 
6456 		/* rfc793:
6457 		 *   "fifth, if neither of the SYN or RST bits is set then
6458 		 *    drop the segment and return."
6459 		 *
6460 		 *    See note below!
6461 		 *                                        --ANK(990513)
6462 		 */
6463 		if (!th->syn) {
6464 			SKB_DR_SET(reason, TCP_FLAGS);
6465 			goto discard_and_undo;
6466 		}
6467 		/* rfc793:
6468 		 *   "If the SYN bit is on ...
6469 		 *    are acceptable then ...
6470 		 *    (our SYN has been ACKed), change the connection
6471 		 *    state to ESTABLISHED..."
6472 		 */
6473 
6474 		tcp_ecn_rcv_synack(tp, th);
6475 
6476 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6477 		tcp_try_undo_spurious_syn(sk);
6478 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6479 
6480 		/* Ok.. it's good. Set up sequence numbers and
6481 		 * move to established.
6482 		 */
6483 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6484 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6485 
6486 		/* RFC1323: The window in SYN & SYN/ACK segments is
6487 		 * never scaled.
6488 		 */
6489 		tp->snd_wnd = ntohs(th->window);
6490 
6491 		if (!tp->rx_opt.wscale_ok) {
6492 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6493 			WRITE_ONCE(tp->window_clamp,
6494 				   min(tp->window_clamp, 65535U));
6495 		}
6496 
6497 		if (tp->rx_opt.saw_tstamp) {
6498 			tp->rx_opt.tstamp_ok	   = 1;
6499 			tp->tcp_header_len =
6500 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6501 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6502 			tcp_store_ts_recent(tp);
6503 		} else {
6504 			tp->tcp_header_len = sizeof(struct tcphdr);
6505 		}
6506 
6507 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6508 		tcp_initialize_rcv_mss(sk);
6509 
6510 		/* Remember, tcp_poll() does not lock socket!
6511 		 * Change state from SYN-SENT only after copied_seq
6512 		 * is initialized. */
6513 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6514 
6515 		smc_check_reset_syn(tp);
6516 
6517 		smp_mb();
6518 
6519 		tcp_finish_connect(sk, skb);
6520 
6521 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6522 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6523 
6524 		if (!sock_flag(sk, SOCK_DEAD)) {
6525 			sk->sk_state_change(sk);
6526 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6527 		}
6528 		if (fastopen_fail)
6529 			return -1;
6530 		if (sk->sk_write_pending ||
6531 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6532 		    inet_csk_in_pingpong_mode(sk)) {
6533 			/* Save one ACK. Data will be ready after
6534 			 * several ticks, if write_pending is set.
6535 			 *
6536 			 * It may be deleted, but with this feature tcpdumps
6537 			 * look so _wonderfully_ clever, that I was not able
6538 			 * to stand against the temptation 8)     --ANK
6539 			 */
6540 			inet_csk_schedule_ack(sk);
6541 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6542 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6543 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6544 			goto consume;
6545 		}
6546 		tcp_send_ack(sk);
6547 		return -1;
6548 	}
6549 
6550 	/* No ACK in the segment */
6551 
6552 	if (th->rst) {
6553 		/* rfc793:
6554 		 * "If the RST bit is set
6555 		 *
6556 		 *      Otherwise (no ACK) drop the segment and return."
6557 		 */
6558 		SKB_DR_SET(reason, TCP_RESET);
6559 		goto discard_and_undo;
6560 	}
6561 
6562 	/* PAWS check. */
6563 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6564 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6565 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6566 		goto discard_and_undo;
6567 	}
6568 	if (th->syn) {
6569 		/* We see SYN without ACK. It is attempt of
6570 		 * simultaneous connect with crossed SYNs.
6571 		 * Particularly, it can be connect to self.
6572 		 */
6573 #ifdef CONFIG_TCP_AO
6574 		struct tcp_ao_info *ao;
6575 
6576 		ao = rcu_dereference_protected(tp->ao_info,
6577 					       lockdep_sock_is_held(sk));
6578 		if (ao) {
6579 			WRITE_ONCE(ao->risn, th->seq);
6580 			ao->rcv_sne = 0;
6581 		}
6582 #endif
6583 		tcp_set_state(sk, TCP_SYN_RECV);
6584 
6585 		if (tp->rx_opt.saw_tstamp) {
6586 			tp->rx_opt.tstamp_ok = 1;
6587 			tcp_store_ts_recent(tp);
6588 			tp->tcp_header_len =
6589 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6590 		} else {
6591 			tp->tcp_header_len = sizeof(struct tcphdr);
6592 		}
6593 
6594 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6595 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6596 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6597 
6598 		/* RFC1323: The window in SYN & SYN/ACK segments is
6599 		 * never scaled.
6600 		 */
6601 		tp->snd_wnd    = ntohs(th->window);
6602 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6603 		tp->max_window = tp->snd_wnd;
6604 
6605 		tcp_ecn_rcv_syn(tp, th);
6606 
6607 		tcp_mtup_init(sk);
6608 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6609 		tcp_initialize_rcv_mss(sk);
6610 
6611 		tcp_send_synack(sk);
6612 #if 0
6613 		/* Note, we could accept data and URG from this segment.
6614 		 * There are no obstacles to make this (except that we must
6615 		 * either change tcp_recvmsg() to prevent it from returning data
6616 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6617 		 *
6618 		 * However, if we ignore data in ACKless segments sometimes,
6619 		 * we have no reasons to accept it sometimes.
6620 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6621 		 * is not flawless. So, discard packet for sanity.
6622 		 * Uncomment this return to process the data.
6623 		 */
6624 		return -1;
6625 #else
6626 		goto consume;
6627 #endif
6628 	}
6629 	/* "fifth, if neither of the SYN or RST bits is set then
6630 	 * drop the segment and return."
6631 	 */
6632 
6633 discard_and_undo:
6634 	tcp_clear_options(&tp->rx_opt);
6635 	tp->rx_opt.mss_clamp = saved_clamp;
6636 	tcp_drop_reason(sk, skb, reason);
6637 	return 0;
6638 
6639 reset_and_undo:
6640 	tcp_clear_options(&tp->rx_opt);
6641 	tp->rx_opt.mss_clamp = saved_clamp;
6642 	/* we can reuse/return @reason to its caller to handle the exception */
6643 	return reason;
6644 }
6645 
6646 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6647 {
6648 	struct tcp_sock *tp = tcp_sk(sk);
6649 	struct request_sock *req;
6650 
6651 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6652 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6653 	 */
6654 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6655 		tcp_try_undo_recovery(sk);
6656 
6657 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6658 	tcp_update_rto_time(tp);
6659 	tp->retrans_stamp = 0;
6660 	inet_csk(sk)->icsk_retransmits = 0;
6661 
6662 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6663 	 * we no longer need req so release it.
6664 	 */
6665 	req = rcu_dereference_protected(tp->fastopen_rsk,
6666 					lockdep_sock_is_held(sk));
6667 	reqsk_fastopen_remove(sk, req, false);
6668 
6669 	/* Re-arm the timer because data may have been sent out.
6670 	 * This is similar to the regular data transmission case
6671 	 * when new data has just been ack'ed.
6672 	 *
6673 	 * (TFO) - we could try to be more aggressive and
6674 	 * retransmitting any data sooner based on when they
6675 	 * are sent out.
6676 	 */
6677 	tcp_rearm_rto(sk);
6678 }
6679 
6680 /*
6681  *	This function implements the receiving procedure of RFC 793 for
6682  *	all states except ESTABLISHED and TIME_WAIT.
6683  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6684  *	address independent.
6685  */
6686 
6687 enum skb_drop_reason
6688 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6689 {
6690 	struct tcp_sock *tp = tcp_sk(sk);
6691 	struct inet_connection_sock *icsk = inet_csk(sk);
6692 	const struct tcphdr *th = tcp_hdr(skb);
6693 	struct request_sock *req;
6694 	int queued = 0;
6695 	SKB_DR(reason);
6696 
6697 	switch (sk->sk_state) {
6698 	case TCP_CLOSE:
6699 		SKB_DR_SET(reason, TCP_CLOSE);
6700 		goto discard;
6701 
6702 	case TCP_LISTEN:
6703 		if (th->ack)
6704 			return SKB_DROP_REASON_TCP_FLAGS;
6705 
6706 		if (th->rst) {
6707 			SKB_DR_SET(reason, TCP_RESET);
6708 			goto discard;
6709 		}
6710 		if (th->syn) {
6711 			if (th->fin) {
6712 				SKB_DR_SET(reason, TCP_FLAGS);
6713 				goto discard;
6714 			}
6715 			/* It is possible that we process SYN packets from backlog,
6716 			 * so we need to make sure to disable BH and RCU right there.
6717 			 */
6718 			rcu_read_lock();
6719 			local_bh_disable();
6720 			icsk->icsk_af_ops->conn_request(sk, skb);
6721 			local_bh_enable();
6722 			rcu_read_unlock();
6723 
6724 			consume_skb(skb);
6725 			return 0;
6726 		}
6727 		SKB_DR_SET(reason, TCP_FLAGS);
6728 		goto discard;
6729 
6730 	case TCP_SYN_SENT:
6731 		tp->rx_opt.saw_tstamp = 0;
6732 		tcp_mstamp_refresh(tp);
6733 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6734 		if (queued >= 0)
6735 			return queued;
6736 
6737 		/* Do step6 onward by hand. */
6738 		tcp_urg(sk, skb, th);
6739 		__kfree_skb(skb);
6740 		tcp_data_snd_check(sk);
6741 		return 0;
6742 	}
6743 
6744 	tcp_mstamp_refresh(tp);
6745 	tp->rx_opt.saw_tstamp = 0;
6746 	req = rcu_dereference_protected(tp->fastopen_rsk,
6747 					lockdep_sock_is_held(sk));
6748 	if (req) {
6749 		bool req_stolen;
6750 
6751 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6752 		    sk->sk_state != TCP_FIN_WAIT1);
6753 
6754 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6755 			SKB_DR_SET(reason, TCP_FASTOPEN);
6756 			goto discard;
6757 		}
6758 	}
6759 
6760 	if (!th->ack && !th->rst && !th->syn) {
6761 		SKB_DR_SET(reason, TCP_FLAGS);
6762 		goto discard;
6763 	}
6764 	if (!tcp_validate_incoming(sk, skb, th, 0))
6765 		return 0;
6766 
6767 	/* step 5: check the ACK field */
6768 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6769 				  FLAG_UPDATE_TS_RECENT |
6770 				  FLAG_NO_CHALLENGE_ACK);
6771 
6772 	if ((int)reason <= 0) {
6773 		if (sk->sk_state == TCP_SYN_RECV) {
6774 			/* send one RST */
6775 			if (!reason)
6776 				return SKB_DROP_REASON_TCP_OLD_ACK;
6777 			return -reason;
6778 		}
6779 		/* accept old ack during closing */
6780 		if ((int)reason < 0) {
6781 			tcp_send_challenge_ack(sk);
6782 			reason = -reason;
6783 			goto discard;
6784 		}
6785 	}
6786 	SKB_DR_SET(reason, NOT_SPECIFIED);
6787 	switch (sk->sk_state) {
6788 	case TCP_SYN_RECV:
6789 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6790 		if (!tp->srtt_us)
6791 			tcp_synack_rtt_meas(sk, req);
6792 
6793 		if (req) {
6794 			tcp_rcv_synrecv_state_fastopen(sk);
6795 		} else {
6796 			tcp_try_undo_spurious_syn(sk);
6797 			tp->retrans_stamp = 0;
6798 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6799 					  skb);
6800 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6801 		}
6802 		tcp_ao_established(sk);
6803 		smp_mb();
6804 		tcp_set_state(sk, TCP_ESTABLISHED);
6805 		sk->sk_state_change(sk);
6806 
6807 		/* Note, that this wakeup is only for marginal crossed SYN case.
6808 		 * Passively open sockets are not waked up, because
6809 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6810 		 */
6811 		if (sk->sk_socket)
6812 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6813 
6814 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6815 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6816 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6817 
6818 		if (tp->rx_opt.tstamp_ok)
6819 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6820 
6821 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6822 			tcp_update_pacing_rate(sk);
6823 
6824 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6825 		tp->lsndtime = tcp_jiffies32;
6826 
6827 		tcp_initialize_rcv_mss(sk);
6828 		tcp_fast_path_on(tp);
6829 		if (sk->sk_shutdown & SEND_SHUTDOWN)
6830 			tcp_shutdown(sk, SEND_SHUTDOWN);
6831 		break;
6832 
6833 	case TCP_FIN_WAIT1: {
6834 		int tmo;
6835 
6836 		if (req)
6837 			tcp_rcv_synrecv_state_fastopen(sk);
6838 
6839 		if (tp->snd_una != tp->write_seq)
6840 			break;
6841 
6842 		tcp_set_state(sk, TCP_FIN_WAIT2);
6843 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6844 
6845 		sk_dst_confirm(sk);
6846 
6847 		if (!sock_flag(sk, SOCK_DEAD)) {
6848 			/* Wake up lingering close() */
6849 			sk->sk_state_change(sk);
6850 			break;
6851 		}
6852 
6853 		if (READ_ONCE(tp->linger2) < 0) {
6854 			tcp_done(sk);
6855 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6856 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6857 		}
6858 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6859 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6860 			/* Receive out of order FIN after close() */
6861 			if (tp->syn_fastopen && th->fin)
6862 				tcp_fastopen_active_disable(sk);
6863 			tcp_done(sk);
6864 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6865 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6866 		}
6867 
6868 		tmo = tcp_fin_time(sk);
6869 		if (tmo > TCP_TIMEWAIT_LEN) {
6870 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6871 		} else if (th->fin || sock_owned_by_user(sk)) {
6872 			/* Bad case. We could lose such FIN otherwise.
6873 			 * It is not a big problem, but it looks confusing
6874 			 * and not so rare event. We still can lose it now,
6875 			 * if it spins in bh_lock_sock(), but it is really
6876 			 * marginal case.
6877 			 */
6878 			inet_csk_reset_keepalive_timer(sk, tmo);
6879 		} else {
6880 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6881 			goto consume;
6882 		}
6883 		break;
6884 	}
6885 
6886 	case TCP_CLOSING:
6887 		if (tp->snd_una == tp->write_seq) {
6888 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6889 			goto consume;
6890 		}
6891 		break;
6892 
6893 	case TCP_LAST_ACK:
6894 		if (tp->snd_una == tp->write_seq) {
6895 			tcp_update_metrics(sk);
6896 			tcp_done(sk);
6897 			goto consume;
6898 		}
6899 		break;
6900 	}
6901 
6902 	/* step 6: check the URG bit */
6903 	tcp_urg(sk, skb, th);
6904 
6905 	/* step 7: process the segment text */
6906 	switch (sk->sk_state) {
6907 	case TCP_CLOSE_WAIT:
6908 	case TCP_CLOSING:
6909 	case TCP_LAST_ACK:
6910 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6911 			/* If a subflow has been reset, the packet should not
6912 			 * continue to be processed, drop the packet.
6913 			 */
6914 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6915 				goto discard;
6916 			break;
6917 		}
6918 		fallthrough;
6919 	case TCP_FIN_WAIT1:
6920 	case TCP_FIN_WAIT2:
6921 		/* RFC 793 says to queue data in these states,
6922 		 * RFC 1122 says we MUST send a reset.
6923 		 * BSD 4.4 also does reset.
6924 		 */
6925 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6926 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6927 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6928 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6929 				tcp_reset(sk, skb);
6930 				return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6931 			}
6932 		}
6933 		fallthrough;
6934 	case TCP_ESTABLISHED:
6935 		tcp_data_queue(sk, skb);
6936 		queued = 1;
6937 		break;
6938 	}
6939 
6940 	/* tcp_data could move socket to TIME-WAIT */
6941 	if (sk->sk_state != TCP_CLOSE) {
6942 		tcp_data_snd_check(sk);
6943 		tcp_ack_snd_check(sk);
6944 	}
6945 
6946 	if (!queued) {
6947 discard:
6948 		tcp_drop_reason(sk, skb, reason);
6949 	}
6950 	return 0;
6951 
6952 consume:
6953 	__kfree_skb(skb);
6954 	return 0;
6955 }
6956 EXPORT_SYMBOL(tcp_rcv_state_process);
6957 
6958 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6959 {
6960 	struct inet_request_sock *ireq = inet_rsk(req);
6961 
6962 	if (family == AF_INET)
6963 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6964 				    &ireq->ir_rmt_addr, port);
6965 #if IS_ENABLED(CONFIG_IPV6)
6966 	else if (family == AF_INET6)
6967 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6968 				    &ireq->ir_v6_rmt_addr, port);
6969 #endif
6970 }
6971 
6972 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6973  *
6974  * If we receive a SYN packet with these bits set, it means a
6975  * network is playing bad games with TOS bits. In order to
6976  * avoid possible false congestion notifications, we disable
6977  * TCP ECN negotiation.
6978  *
6979  * Exception: tcp_ca wants ECN. This is required for DCTCP
6980  * congestion control: Linux DCTCP asserts ECT on all packets,
6981  * including SYN, which is most optimal solution; however,
6982  * others, such as FreeBSD do not.
6983  *
6984  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6985  * set, indicating the use of a future TCP extension (such as AccECN). See
6986  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6987  * extensions.
6988  */
6989 static void tcp_ecn_create_request(struct request_sock *req,
6990 				   const struct sk_buff *skb,
6991 				   const struct sock *listen_sk,
6992 				   const struct dst_entry *dst)
6993 {
6994 	const struct tcphdr *th = tcp_hdr(skb);
6995 	const struct net *net = sock_net(listen_sk);
6996 	bool th_ecn = th->ece && th->cwr;
6997 	bool ect, ecn_ok;
6998 	u32 ecn_ok_dst;
6999 
7000 	if (!th_ecn)
7001 		return;
7002 
7003 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
7004 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
7005 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
7006 
7007 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
7008 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
7009 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
7010 		inet_rsk(req)->ecn_ok = 1;
7011 }
7012 
7013 static void tcp_openreq_init(struct request_sock *req,
7014 			     const struct tcp_options_received *rx_opt,
7015 			     struct sk_buff *skb, const struct sock *sk)
7016 {
7017 	struct inet_request_sock *ireq = inet_rsk(req);
7018 
7019 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
7020 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
7021 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
7022 	tcp_rsk(req)->snt_synack = 0;
7023 	tcp_rsk(req)->last_oow_ack_time = 0;
7024 	req->mss = rx_opt->mss_clamp;
7025 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
7026 	ireq->tstamp_ok = rx_opt->tstamp_ok;
7027 	ireq->sack_ok = rx_opt->sack_ok;
7028 	ireq->snd_wscale = rx_opt->snd_wscale;
7029 	ireq->wscale_ok = rx_opt->wscale_ok;
7030 	ireq->acked = 0;
7031 	ireq->ecn_ok = 0;
7032 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
7033 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
7034 	ireq->ir_mark = inet_request_mark(sk, skb);
7035 #if IS_ENABLED(CONFIG_SMC)
7036 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
7037 			tcp_sk(sk)->smc_hs_congested(sk));
7038 #endif
7039 }
7040 
7041 /*
7042  * Return true if a syncookie should be sent
7043  */
7044 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7045 {
7046 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7047 	const char *msg = "Dropping request";
7048 	struct net *net = sock_net(sk);
7049 	bool want_cookie = false;
7050 	u8 syncookies;
7051 
7052 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7053 
7054 #ifdef CONFIG_SYN_COOKIES
7055 	if (syncookies) {
7056 		msg = "Sending cookies";
7057 		want_cookie = true;
7058 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7059 	} else
7060 #endif
7061 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7062 
7063 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7064 	    xchg(&queue->synflood_warned, 1) == 0) {
7065 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7066 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7067 					proto, inet6_rcv_saddr(sk),
7068 					sk->sk_num, msg);
7069 		} else {
7070 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7071 					proto, &sk->sk_rcv_saddr,
7072 					sk->sk_num, msg);
7073 		}
7074 	}
7075 
7076 	return want_cookie;
7077 }
7078 
7079 static void tcp_reqsk_record_syn(const struct sock *sk,
7080 				 struct request_sock *req,
7081 				 const struct sk_buff *skb)
7082 {
7083 	if (tcp_sk(sk)->save_syn) {
7084 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7085 		struct saved_syn *saved_syn;
7086 		u32 mac_hdrlen;
7087 		void *base;
7088 
7089 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7090 			base = skb_mac_header(skb);
7091 			mac_hdrlen = skb_mac_header_len(skb);
7092 			len += mac_hdrlen;
7093 		} else {
7094 			base = skb_network_header(skb);
7095 			mac_hdrlen = 0;
7096 		}
7097 
7098 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7099 				    GFP_ATOMIC);
7100 		if (saved_syn) {
7101 			saved_syn->mac_hdrlen = mac_hdrlen;
7102 			saved_syn->network_hdrlen = skb_network_header_len(skb);
7103 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7104 			memcpy(saved_syn->data, base, len);
7105 			req->saved_syn = saved_syn;
7106 		}
7107 	}
7108 }
7109 
7110 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7111  * used for SYN cookie generation.
7112  */
7113 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7114 			  const struct tcp_request_sock_ops *af_ops,
7115 			  struct sock *sk, struct tcphdr *th)
7116 {
7117 	struct tcp_sock *tp = tcp_sk(sk);
7118 	u16 mss;
7119 
7120 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7121 	    !inet_csk_reqsk_queue_is_full(sk))
7122 		return 0;
7123 
7124 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7125 		return 0;
7126 
7127 	if (sk_acceptq_is_full(sk)) {
7128 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7129 		return 0;
7130 	}
7131 
7132 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7133 	if (!mss)
7134 		mss = af_ops->mss_clamp;
7135 
7136 	return mss;
7137 }
7138 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7139 
7140 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7141 		     const struct tcp_request_sock_ops *af_ops,
7142 		     struct sock *sk, struct sk_buff *skb)
7143 {
7144 	struct tcp_fastopen_cookie foc = { .len = -1 };
7145 	struct tcp_options_received tmp_opt;
7146 	struct tcp_sock *tp = tcp_sk(sk);
7147 	struct net *net = sock_net(sk);
7148 	struct sock *fastopen_sk = NULL;
7149 	struct request_sock *req;
7150 	bool want_cookie = false;
7151 	struct dst_entry *dst;
7152 	struct flowi fl;
7153 	u8 syncookies;
7154 	u32 isn;
7155 
7156 #ifdef CONFIG_TCP_AO
7157 	const struct tcp_ao_hdr *aoh;
7158 #endif
7159 
7160 	isn = __this_cpu_read(tcp_tw_isn);
7161 	if (isn) {
7162 		/* TW buckets are converted to open requests without
7163 		 * limitations, they conserve resources and peer is
7164 		 * evidently real one.
7165 		 */
7166 		__this_cpu_write(tcp_tw_isn, 0);
7167 	} else {
7168 		syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7169 
7170 		if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7171 			want_cookie = tcp_syn_flood_action(sk,
7172 							   rsk_ops->slab_name);
7173 			if (!want_cookie)
7174 				goto drop;
7175 		}
7176 	}
7177 
7178 	if (sk_acceptq_is_full(sk)) {
7179 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7180 		goto drop;
7181 	}
7182 
7183 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7184 	if (!req)
7185 		goto drop;
7186 
7187 	req->syncookie = want_cookie;
7188 	tcp_rsk(req)->af_specific = af_ops;
7189 	tcp_rsk(req)->ts_off = 0;
7190 	tcp_rsk(req)->req_usec_ts = false;
7191 #if IS_ENABLED(CONFIG_MPTCP)
7192 	tcp_rsk(req)->is_mptcp = 0;
7193 #endif
7194 
7195 	tcp_clear_options(&tmp_opt);
7196 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7197 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7198 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7199 			  want_cookie ? NULL : &foc);
7200 
7201 	if (want_cookie && !tmp_opt.saw_tstamp)
7202 		tcp_clear_options(&tmp_opt);
7203 
7204 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7205 		tmp_opt.smc_ok = 0;
7206 
7207 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7208 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7209 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7210 
7211 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7212 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7213 
7214 	dst = af_ops->route_req(sk, skb, &fl, req, isn);
7215 	if (!dst)
7216 		goto drop_and_free;
7217 
7218 	if (tmp_opt.tstamp_ok) {
7219 		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7220 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7221 	}
7222 	if (!want_cookie && !isn) {
7223 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7224 
7225 		/* Kill the following clause, if you dislike this way. */
7226 		if (!syncookies &&
7227 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7228 		     (max_syn_backlog >> 2)) &&
7229 		    !tcp_peer_is_proven(req, dst)) {
7230 			/* Without syncookies last quarter of
7231 			 * backlog is filled with destinations,
7232 			 * proven to be alive.
7233 			 * It means that we continue to communicate
7234 			 * to destinations, already remembered
7235 			 * to the moment of synflood.
7236 			 */
7237 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7238 				    rsk_ops->family);
7239 			goto drop_and_release;
7240 		}
7241 
7242 		isn = af_ops->init_seq(skb);
7243 	}
7244 
7245 	tcp_ecn_create_request(req, skb, sk, dst);
7246 
7247 	if (want_cookie) {
7248 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7249 		if (!tmp_opt.tstamp_ok)
7250 			inet_rsk(req)->ecn_ok = 0;
7251 	}
7252 
7253 #ifdef CONFIG_TCP_AO
7254 	if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7255 		goto drop_and_release; /* Invalid TCP options */
7256 	if (aoh) {
7257 		tcp_rsk(req)->used_tcp_ao = true;
7258 		tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7259 		tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7260 
7261 	} else {
7262 		tcp_rsk(req)->used_tcp_ao = false;
7263 	}
7264 #endif
7265 	tcp_rsk(req)->snt_isn = isn;
7266 	tcp_rsk(req)->txhash = net_tx_rndhash();
7267 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7268 	tcp_openreq_init_rwin(req, sk, dst);
7269 	sk_rx_queue_set(req_to_sk(req), skb);
7270 	if (!want_cookie) {
7271 		tcp_reqsk_record_syn(sk, req, skb);
7272 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7273 	}
7274 	if (fastopen_sk) {
7275 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7276 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7277 		/* Add the child socket directly into the accept queue */
7278 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7279 			reqsk_fastopen_remove(fastopen_sk, req, false);
7280 			bh_unlock_sock(fastopen_sk);
7281 			sock_put(fastopen_sk);
7282 			goto drop_and_free;
7283 		}
7284 		sk->sk_data_ready(sk);
7285 		bh_unlock_sock(fastopen_sk);
7286 		sock_put(fastopen_sk);
7287 	} else {
7288 		tcp_rsk(req)->tfo_listener = false;
7289 		if (!want_cookie) {
7290 			req->timeout = tcp_timeout_init((struct sock *)req);
7291 			if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7292 								    req->timeout))) {
7293 				reqsk_free(req);
7294 				return 0;
7295 			}
7296 
7297 		}
7298 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7299 				    !want_cookie ? TCP_SYNACK_NORMAL :
7300 						   TCP_SYNACK_COOKIE,
7301 				    skb);
7302 		if (want_cookie) {
7303 			reqsk_free(req);
7304 			return 0;
7305 		}
7306 	}
7307 	reqsk_put(req);
7308 	return 0;
7309 
7310 drop_and_release:
7311 	dst_release(dst);
7312 drop_and_free:
7313 	__reqsk_free(req);
7314 drop:
7315 	tcp_listendrop(sk);
7316 	return 0;
7317 }
7318 EXPORT_SYMBOL(tcp_conn_request);
7319