xref: /linux/net/ipv4/tcp_input.c (revision a1e58bbdc969c3fe60addca7f2729779d22a83c1)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91 
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94 
95 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
102 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
109 
110 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 
116 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
117 
118 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
119 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120 
121 /* Adapt the MSS value used to make delayed ack decision to the
122  * real world.
123  */
124 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
125 {
126 	struct inet_connection_sock *icsk = inet_csk(sk);
127 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 	unsigned int len;
129 
130 	icsk->icsk_ack.last_seg_size = 0;
131 
132 	/* skb->len may jitter because of SACKs, even if peer
133 	 * sends good full-sized frames.
134 	 */
135 	len = skb_shinfo(skb)->gso_size ? : skb->len;
136 	if (len >= icsk->icsk_ack.rcv_mss) {
137 		icsk->icsk_ack.rcv_mss = len;
138 	} else {
139 		/* Otherwise, we make more careful check taking into account,
140 		 * that SACKs block is variable.
141 		 *
142 		 * "len" is invariant segment length, including TCP header.
143 		 */
144 		len += skb->data - skb_transport_header(skb);
145 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 		    /* If PSH is not set, packet should be
147 		     * full sized, provided peer TCP is not badly broken.
148 		     * This observation (if it is correct 8)) allows
149 		     * to handle super-low mtu links fairly.
150 		     */
151 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 			/* Subtract also invariant (if peer is RFC compliant),
154 			 * tcp header plus fixed timestamp option length.
155 			 * Resulting "len" is MSS free of SACK jitter.
156 			 */
157 			len -= tcp_sk(sk)->tcp_header_len;
158 			icsk->icsk_ack.last_seg_size = len;
159 			if (len == lss) {
160 				icsk->icsk_ack.rcv_mss = len;
161 				return;
162 			}
163 		}
164 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 	}
168 }
169 
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172 	struct inet_connection_sock *icsk = inet_csk(sk);
173 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174 
175 	if (quickacks == 0)
176 		quickacks = 2;
177 	if (quickacks > icsk->icsk_ack.quick)
178 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180 
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183 	struct inet_connection_sock *icsk = inet_csk(sk);
184 	tcp_incr_quickack(sk);
185 	icsk->icsk_ack.pingpong = 0;
186 	icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188 
189 /* Send ACKs quickly, if "quick" count is not exhausted
190  * and the session is not interactive.
191  */
192 
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195 	const struct inet_connection_sock *icsk = inet_csk(sk);
196 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198 
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201 	if (tp->ecn_flags & TCP_ECN_OK)
202 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204 
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207 	if (tcp_hdr(skb)->cwr)
208 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210 
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215 
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218 	if (tp->ecn_flags & TCP_ECN_OK) {
219 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 		/* Funny extension: if ECT is not set on a segment,
222 		 * it is surely retransmit. It is not in ECN RFC,
223 		 * but Linux follows this rule. */
224 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 			tcp_enter_quickack_mode((struct sock *)tp);
226 	}
227 }
228 
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
232 		tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234 
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
238 		tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240 
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
244 		return 1;
245 	return 0;
246 }
247 
248 /* Buffer size and advertised window tuning.
249  *
250  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251  */
252 
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 		     sizeof(struct sk_buff);
257 
258 	if (sk->sk_sndbuf < 3 * sndmem)
259 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261 
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263  *
264  * All tcp_full_space() is split to two parts: "network" buffer, allocated
265  * forward and advertised in receiver window (tp->rcv_wnd) and
266  * "application buffer", required to isolate scheduling/application
267  * latencies from network.
268  * window_clamp is maximal advertised window. It can be less than
269  * tcp_full_space(), in this case tcp_full_space() - window_clamp
270  * is reserved for "application" buffer. The less window_clamp is
271  * the smoother our behaviour from viewpoint of network, but the lower
272  * throughput and the higher sensitivity of the connection to losses. 8)
273  *
274  * rcv_ssthresh is more strict window_clamp used at "slow start"
275  * phase to predict further behaviour of this connection.
276  * It is used for two goals:
277  * - to enforce header prediction at sender, even when application
278  *   requires some significant "application buffer". It is check #1.
279  * - to prevent pruning of receive queue because of misprediction
280  *   of receiver window. Check #2.
281  *
282  * The scheme does not work when sender sends good segments opening
283  * window and then starts to feed us spaghetti. But it should work
284  * in common situations. Otherwise, we have to rely on queue collapsing.
285  */
286 
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290 	struct tcp_sock *tp = tcp_sk(sk);
291 	/* Optimize this! */
292 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
293 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
294 
295 	while (tp->rcv_ssthresh <= window) {
296 		if (truesize <= skb->len)
297 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298 
299 		truesize >>= 1;
300 		window >>= 1;
301 	}
302 	return 0;
303 }
304 
305 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
306 {
307 	struct tcp_sock *tp = tcp_sk(sk);
308 
309 	/* Check #1 */
310 	if (tp->rcv_ssthresh < tp->window_clamp &&
311 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
312 	    !tcp_memory_pressure) {
313 		int incr;
314 
315 		/* Check #2. Increase window, if skb with such overhead
316 		 * will fit to rcvbuf in future.
317 		 */
318 		if (tcp_win_from_space(skb->truesize) <= skb->len)
319 			incr = 2 * tp->advmss;
320 		else
321 			incr = __tcp_grow_window(sk, skb);
322 
323 		if (incr) {
324 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
325 					       tp->window_clamp);
326 			inet_csk(sk)->icsk_ack.quick |= 1;
327 		}
328 	}
329 }
330 
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332 
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335 	struct tcp_sock *tp = tcp_sk(sk);
336 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337 
338 	/* Try to select rcvbuf so that 4 mss-sized segments
339 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 	 */
342 	while (tcp_win_from_space(rcvmem) < tp->advmss)
343 		rcvmem += 128;
344 	if (sk->sk_rcvbuf < 4 * rcvmem)
345 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347 
348 /* 4. Try to fixup all. It is made immediately after connection enters
349  *    established state.
350  */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353 	struct tcp_sock *tp = tcp_sk(sk);
354 	int maxwin;
355 
356 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 		tcp_fixup_rcvbuf(sk);
358 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 		tcp_fixup_sndbuf(sk);
360 
361 	tp->rcvq_space.space = tp->rcv_wnd;
362 
363 	maxwin = tcp_full_space(sk);
364 
365 	if (tp->window_clamp >= maxwin) {
366 		tp->window_clamp = maxwin;
367 
368 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 			tp->window_clamp = max(maxwin -
370 					       (maxwin >> sysctl_tcp_app_win),
371 					       4 * tp->advmss);
372 	}
373 
374 	/* Force reservation of one segment. */
375 	if (sysctl_tcp_app_win &&
376 	    tp->window_clamp > 2 * tp->advmss &&
377 	    tp->window_clamp + tp->advmss > maxwin)
378 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379 
380 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 	tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383 
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387 	struct tcp_sock *tp = tcp_sk(sk);
388 	struct inet_connection_sock *icsk = inet_csk(sk);
389 
390 	icsk->icsk_ack.quick = 0;
391 
392 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 	    !tcp_memory_pressure &&
395 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 				    sysctl_tcp_rmem[2]);
398 	}
399 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
401 }
402 
403 /* Initialize RCV_MSS value.
404  * RCV_MSS is an our guess about MSS used by the peer.
405  * We haven't any direct information about the MSS.
406  * It's better to underestimate the RCV_MSS rather than overestimate.
407  * Overestimations make us ACKing less frequently than needed.
408  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
409  */
410 void tcp_initialize_rcv_mss(struct sock *sk)
411 {
412 	struct tcp_sock *tp = tcp_sk(sk);
413 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
414 
415 	hint = min(hint, tp->rcv_wnd / 2);
416 	hint = min(hint, TCP_MIN_RCVMSS);
417 	hint = max(hint, TCP_MIN_MSS);
418 
419 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
420 }
421 
422 /* Receiver "autotuning" code.
423  *
424  * The algorithm for RTT estimation w/o timestamps is based on
425  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
426  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
427  *
428  * More detail on this code can be found at
429  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
430  * though this reference is out of date.  A new paper
431  * is pending.
432  */
433 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
434 {
435 	u32 new_sample = tp->rcv_rtt_est.rtt;
436 	long m = sample;
437 
438 	if (m == 0)
439 		m = 1;
440 
441 	if (new_sample != 0) {
442 		/* If we sample in larger samples in the non-timestamp
443 		 * case, we could grossly overestimate the RTT especially
444 		 * with chatty applications or bulk transfer apps which
445 		 * are stalled on filesystem I/O.
446 		 *
447 		 * Also, since we are only going for a minimum in the
448 		 * non-timestamp case, we do not smooth things out
449 		 * else with timestamps disabled convergence takes too
450 		 * long.
451 		 */
452 		if (!win_dep) {
453 			m -= (new_sample >> 3);
454 			new_sample += m;
455 		} else if (m < new_sample)
456 			new_sample = m << 3;
457 	} else {
458 		/* No previous measure. */
459 		new_sample = m << 3;
460 	}
461 
462 	if (tp->rcv_rtt_est.rtt != new_sample)
463 		tp->rcv_rtt_est.rtt = new_sample;
464 }
465 
466 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
467 {
468 	if (tp->rcv_rtt_est.time == 0)
469 		goto new_measure;
470 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
471 		return;
472 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
473 
474 new_measure:
475 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
476 	tp->rcv_rtt_est.time = tcp_time_stamp;
477 }
478 
479 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
480 					  const struct sk_buff *skb)
481 {
482 	struct tcp_sock *tp = tcp_sk(sk);
483 	if (tp->rx_opt.rcv_tsecr &&
484 	    (TCP_SKB_CB(skb)->end_seq -
485 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
486 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487 }
488 
489 /*
490  * This function should be called every time data is copied to user space.
491  * It calculates the appropriate TCP receive buffer space.
492  */
493 void tcp_rcv_space_adjust(struct sock *sk)
494 {
495 	struct tcp_sock *tp = tcp_sk(sk);
496 	int time;
497 	int space;
498 
499 	if (tp->rcvq_space.time == 0)
500 		goto new_measure;
501 
502 	time = tcp_time_stamp - tp->rcvq_space.time;
503 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
504 		return;
505 
506 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
507 
508 	space = max(tp->rcvq_space.space, space);
509 
510 	if (tp->rcvq_space.space != space) {
511 		int rcvmem;
512 
513 		tp->rcvq_space.space = space;
514 
515 		if (sysctl_tcp_moderate_rcvbuf &&
516 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
517 			int new_clamp = space;
518 
519 			/* Receive space grows, normalize in order to
520 			 * take into account packet headers and sk_buff
521 			 * structure overhead.
522 			 */
523 			space /= tp->advmss;
524 			if (!space)
525 				space = 1;
526 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
527 				  16 + sizeof(struct sk_buff));
528 			while (tcp_win_from_space(rcvmem) < tp->advmss)
529 				rcvmem += 128;
530 			space *= rcvmem;
531 			space = min(space, sysctl_tcp_rmem[2]);
532 			if (space > sk->sk_rcvbuf) {
533 				sk->sk_rcvbuf = space;
534 
535 				/* Make the window clamp follow along.  */
536 				tp->window_clamp = new_clamp;
537 			}
538 		}
539 	}
540 
541 new_measure:
542 	tp->rcvq_space.seq = tp->copied_seq;
543 	tp->rcvq_space.time = tcp_time_stamp;
544 }
545 
546 /* There is something which you must keep in mind when you analyze the
547  * behavior of the tp->ato delayed ack timeout interval.  When a
548  * connection starts up, we want to ack as quickly as possible.  The
549  * problem is that "good" TCP's do slow start at the beginning of data
550  * transmission.  The means that until we send the first few ACK's the
551  * sender will sit on his end and only queue most of his data, because
552  * he can only send snd_cwnd unacked packets at any given time.  For
553  * each ACK we send, he increments snd_cwnd and transmits more of his
554  * queue.  -DaveM
555  */
556 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
557 {
558 	struct tcp_sock *tp = tcp_sk(sk);
559 	struct inet_connection_sock *icsk = inet_csk(sk);
560 	u32 now;
561 
562 	inet_csk_schedule_ack(sk);
563 
564 	tcp_measure_rcv_mss(sk, skb);
565 
566 	tcp_rcv_rtt_measure(tp);
567 
568 	now = tcp_time_stamp;
569 
570 	if (!icsk->icsk_ack.ato) {
571 		/* The _first_ data packet received, initialize
572 		 * delayed ACK engine.
573 		 */
574 		tcp_incr_quickack(sk);
575 		icsk->icsk_ack.ato = TCP_ATO_MIN;
576 	} else {
577 		int m = now - icsk->icsk_ack.lrcvtime;
578 
579 		if (m <= TCP_ATO_MIN / 2) {
580 			/* The fastest case is the first. */
581 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
582 		} else if (m < icsk->icsk_ack.ato) {
583 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
584 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
585 				icsk->icsk_ack.ato = icsk->icsk_rto;
586 		} else if (m > icsk->icsk_rto) {
587 			/* Too long gap. Apparently sender failed to
588 			 * restart window, so that we send ACKs quickly.
589 			 */
590 			tcp_incr_quickack(sk);
591 			sk_mem_reclaim(sk);
592 		}
593 	}
594 	icsk->icsk_ack.lrcvtime = now;
595 
596 	TCP_ECN_check_ce(tp, skb);
597 
598 	if (skb->len >= 128)
599 		tcp_grow_window(sk, skb);
600 }
601 
602 static u32 tcp_rto_min(struct sock *sk)
603 {
604 	struct dst_entry *dst = __sk_dst_get(sk);
605 	u32 rto_min = TCP_RTO_MIN;
606 
607 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
608 		rto_min = dst->metrics[RTAX_RTO_MIN - 1];
609 	return rto_min;
610 }
611 
612 /* Called to compute a smoothed rtt estimate. The data fed to this
613  * routine either comes from timestamps, or from segments that were
614  * known _not_ to have been retransmitted [see Karn/Partridge
615  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
616  * piece by Van Jacobson.
617  * NOTE: the next three routines used to be one big routine.
618  * To save cycles in the RFC 1323 implementation it was better to break
619  * it up into three procedures. -- erics
620  */
621 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
622 {
623 	struct tcp_sock *tp = tcp_sk(sk);
624 	long m = mrtt; /* RTT */
625 
626 	/*	The following amusing code comes from Jacobson's
627 	 *	article in SIGCOMM '88.  Note that rtt and mdev
628 	 *	are scaled versions of rtt and mean deviation.
629 	 *	This is designed to be as fast as possible
630 	 *	m stands for "measurement".
631 	 *
632 	 *	On a 1990 paper the rto value is changed to:
633 	 *	RTO = rtt + 4 * mdev
634 	 *
635 	 * Funny. This algorithm seems to be very broken.
636 	 * These formulae increase RTO, when it should be decreased, increase
637 	 * too slowly, when it should be increased quickly, decrease too quickly
638 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
639 	 * does not matter how to _calculate_ it. Seems, it was trap
640 	 * that VJ failed to avoid. 8)
641 	 */
642 	if (m == 0)
643 		m = 1;
644 	if (tp->srtt != 0) {
645 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
646 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
647 		if (m < 0) {
648 			m = -m;		/* m is now abs(error) */
649 			m -= (tp->mdev >> 2);   /* similar update on mdev */
650 			/* This is similar to one of Eifel findings.
651 			 * Eifel blocks mdev updates when rtt decreases.
652 			 * This solution is a bit different: we use finer gain
653 			 * for mdev in this case (alpha*beta).
654 			 * Like Eifel it also prevents growth of rto,
655 			 * but also it limits too fast rto decreases,
656 			 * happening in pure Eifel.
657 			 */
658 			if (m > 0)
659 				m >>= 3;
660 		} else {
661 			m -= (tp->mdev >> 2);   /* similar update on mdev */
662 		}
663 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
664 		if (tp->mdev > tp->mdev_max) {
665 			tp->mdev_max = tp->mdev;
666 			if (tp->mdev_max > tp->rttvar)
667 				tp->rttvar = tp->mdev_max;
668 		}
669 		if (after(tp->snd_una, tp->rtt_seq)) {
670 			if (tp->mdev_max < tp->rttvar)
671 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
672 			tp->rtt_seq = tp->snd_nxt;
673 			tp->mdev_max = tcp_rto_min(sk);
674 		}
675 	} else {
676 		/* no previous measure. */
677 		tp->srtt = m << 3;	/* take the measured time to be rtt */
678 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
679 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
680 		tp->rtt_seq = tp->snd_nxt;
681 	}
682 }
683 
684 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
685  * routine referred to above.
686  */
687 static inline void tcp_set_rto(struct sock *sk)
688 {
689 	const struct tcp_sock *tp = tcp_sk(sk);
690 	/* Old crap is replaced with new one. 8)
691 	 *
692 	 * More seriously:
693 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
694 	 *    It cannot be less due to utterly erratic ACK generation made
695 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
696 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
697 	 *    is invisible. Actually, Linux-2.4 also generates erratic
698 	 *    ACKs in some circumstances.
699 	 */
700 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
701 
702 	/* 2. Fixups made earlier cannot be right.
703 	 *    If we do not estimate RTO correctly without them,
704 	 *    all the algo is pure shit and should be replaced
705 	 *    with correct one. It is exactly, which we pretend to do.
706 	 */
707 }
708 
709 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
710  * guarantees that rto is higher.
711  */
712 static inline void tcp_bound_rto(struct sock *sk)
713 {
714 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
715 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
716 }
717 
718 /* Save metrics learned by this TCP session.
719    This function is called only, when TCP finishes successfully
720    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
721  */
722 void tcp_update_metrics(struct sock *sk)
723 {
724 	struct tcp_sock *tp = tcp_sk(sk);
725 	struct dst_entry *dst = __sk_dst_get(sk);
726 
727 	if (sysctl_tcp_nometrics_save)
728 		return;
729 
730 	dst_confirm(dst);
731 
732 	if (dst && (dst->flags & DST_HOST)) {
733 		const struct inet_connection_sock *icsk = inet_csk(sk);
734 		int m;
735 
736 		if (icsk->icsk_backoff || !tp->srtt) {
737 			/* This session failed to estimate rtt. Why?
738 			 * Probably, no packets returned in time.
739 			 * Reset our results.
740 			 */
741 			if (!(dst_metric_locked(dst, RTAX_RTT)))
742 				dst->metrics[RTAX_RTT - 1] = 0;
743 			return;
744 		}
745 
746 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
747 
748 		/* If newly calculated rtt larger than stored one,
749 		 * store new one. Otherwise, use EWMA. Remember,
750 		 * rtt overestimation is always better than underestimation.
751 		 */
752 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
753 			if (m <= 0)
754 				dst->metrics[RTAX_RTT - 1] = tp->srtt;
755 			else
756 				dst->metrics[RTAX_RTT - 1] -= (m >> 3);
757 		}
758 
759 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
760 			if (m < 0)
761 				m = -m;
762 
763 			/* Scale deviation to rttvar fixed point */
764 			m >>= 1;
765 			if (m < tp->mdev)
766 				m = tp->mdev;
767 
768 			if (m >= dst_metric(dst, RTAX_RTTVAR))
769 				dst->metrics[RTAX_RTTVAR - 1] = m;
770 			else
771 				dst->metrics[RTAX_RTTVAR-1] -=
772 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
773 		}
774 
775 		if (tp->snd_ssthresh >= 0xFFFF) {
776 			/* Slow start still did not finish. */
777 			if (dst_metric(dst, RTAX_SSTHRESH) &&
778 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
779 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
780 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
781 			if (!dst_metric_locked(dst, RTAX_CWND) &&
782 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
783 				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
784 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
785 			   icsk->icsk_ca_state == TCP_CA_Open) {
786 			/* Cong. avoidance phase, cwnd is reliable. */
787 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
788 				dst->metrics[RTAX_SSTHRESH-1] =
789 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
790 			if (!dst_metric_locked(dst, RTAX_CWND))
791 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
792 		} else {
793 			/* Else slow start did not finish, cwnd is non-sense,
794 			   ssthresh may be also invalid.
795 			 */
796 			if (!dst_metric_locked(dst, RTAX_CWND))
797 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
798 			if (dst->metrics[RTAX_SSTHRESH-1] &&
799 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
800 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
801 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
802 		}
803 
804 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
805 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
806 			    tp->reordering != sysctl_tcp_reordering)
807 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
808 		}
809 	}
810 }
811 
812 /* Numbers are taken from RFC3390.
813  *
814  * John Heffner states:
815  *
816  *	The RFC specifies a window of no more than 4380 bytes
817  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
818  *	is a bit misleading because they use a clamp at 4380 bytes
819  *	rather than use a multiplier in the relevant range.
820  */
821 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
822 {
823 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
824 
825 	if (!cwnd) {
826 		if (tp->mss_cache > 1460)
827 			cwnd = 2;
828 		else
829 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
830 	}
831 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
832 }
833 
834 /* Set slow start threshold and cwnd not falling to slow start */
835 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
836 {
837 	struct tcp_sock *tp = tcp_sk(sk);
838 	const struct inet_connection_sock *icsk = inet_csk(sk);
839 
840 	tp->prior_ssthresh = 0;
841 	tp->bytes_acked = 0;
842 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
843 		tp->undo_marker = 0;
844 		if (set_ssthresh)
845 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
846 		tp->snd_cwnd = min(tp->snd_cwnd,
847 				   tcp_packets_in_flight(tp) + 1U);
848 		tp->snd_cwnd_cnt = 0;
849 		tp->high_seq = tp->snd_nxt;
850 		tp->snd_cwnd_stamp = tcp_time_stamp;
851 		TCP_ECN_queue_cwr(tp);
852 
853 		tcp_set_ca_state(sk, TCP_CA_CWR);
854 	}
855 }
856 
857 /*
858  * Packet counting of FACK is based on in-order assumptions, therefore TCP
859  * disables it when reordering is detected
860  */
861 static void tcp_disable_fack(struct tcp_sock *tp)
862 {
863 	/* RFC3517 uses different metric in lost marker => reset on change */
864 	if (tcp_is_fack(tp))
865 		tp->lost_skb_hint = NULL;
866 	tp->rx_opt.sack_ok &= ~2;
867 }
868 
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872 	tp->rx_opt.sack_ok |= 4;
873 }
874 
875 /* Initialize metrics on socket. */
876 
877 static void tcp_init_metrics(struct sock *sk)
878 {
879 	struct tcp_sock *tp = tcp_sk(sk);
880 	struct dst_entry *dst = __sk_dst_get(sk);
881 
882 	if (dst == NULL)
883 		goto reset;
884 
885 	dst_confirm(dst);
886 
887 	if (dst_metric_locked(dst, RTAX_CWND))
888 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 	if (dst_metric(dst, RTAX_SSTHRESH)) {
890 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 	}
894 	if (dst_metric(dst, RTAX_REORDERING) &&
895 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 		tcp_disable_fack(tp);
897 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 	}
899 
900 	if (dst_metric(dst, RTAX_RTT) == 0)
901 		goto reset;
902 
903 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 		goto reset;
905 
906 	/* Initial rtt is determined from SYN,SYN-ACK.
907 	 * The segment is small and rtt may appear much
908 	 * less than real one. Use per-dst memory
909 	 * to make it more realistic.
910 	 *
911 	 * A bit of theory. RTT is time passed after "normal" sized packet
912 	 * is sent until it is ACKed. In normal circumstances sending small
913 	 * packets force peer to delay ACKs and calculation is correct too.
914 	 * The algorithm is adaptive and, provided we follow specs, it
915 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 	 * tricks sort of "quick acks" for time long enough to decrease RTT
917 	 * to low value, and then abruptly stops to do it and starts to delay
918 	 * ACKs, wait for troubles.
919 	 */
920 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 		tp->srtt = dst_metric(dst, RTAX_RTT);
922 		tp->rtt_seq = tp->snd_nxt;
923 	}
924 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
927 	}
928 	tcp_set_rto(sk);
929 	tcp_bound_rto(sk);
930 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931 		goto reset;
932 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 	tp->snd_cwnd_stamp = tcp_time_stamp;
934 	return;
935 
936 reset:
937 	/* Play conservative. If timestamps are not
938 	 * supported, TCP will fail to recalculate correct
939 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 	 */
941 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 		tp->srtt = 0;
943 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945 	}
946 }
947 
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949 				  const int ts)
950 {
951 	struct tcp_sock *tp = tcp_sk(sk);
952 	if (metric > tp->reordering) {
953 		tp->reordering = min(TCP_MAX_REORDERING, metric);
954 
955 		/* This exciting event is worth to be remembered. 8) */
956 		if (ts)
957 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958 		else if (tcp_is_reno(tp))
959 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960 		else if (tcp_is_fack(tp))
961 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 		else
963 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967 		       tp->reordering,
968 		       tp->fackets_out,
969 		       tp->sacked_out,
970 		       tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972 		tcp_disable_fack(tp);
973 	}
974 }
975 
976 /* This procedure tags the retransmission queue when SACKs arrive.
977  *
978  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979  * Packets in queue with these bits set are counted in variables
980  * sacked_out, retrans_out and lost_out, correspondingly.
981  *
982  * Valid combinations are:
983  * Tag  InFlight	Description
984  * 0	1		- orig segment is in flight.
985  * S	0		- nothing flies, orig reached receiver.
986  * L	0		- nothing flies, orig lost by net.
987  * R	2		- both orig and retransmit are in flight.
988  * L|R	1		- orig is lost, retransmit is in flight.
989  * S|R  1		- orig reached receiver, retrans is still in flight.
990  * (L|S|R is logically valid, it could occur when L|R is sacked,
991  *  but it is equivalent to plain S and code short-curcuits it to S.
992  *  L|S is logically invalid, it would mean -1 packet in flight 8))
993  *
994  * These 6 states form finite state machine, controlled by the following events:
995  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997  * 3. Loss detection event of one of three flavors:
998  *	A. Scoreboard estimator decided the packet is lost.
999  *	   A'. Reno "three dupacks" marks head of queue lost.
1000  *	   A''. Its FACK modfication, head until snd.fack is lost.
1001  *	B. SACK arrives sacking data transmitted after never retransmitted
1002  *	   hole was sent out.
1003  *	C. SACK arrives sacking SND.NXT at the moment, when the
1004  *	   segment was retransmitted.
1005  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006  *
1007  * It is pleasant to note, that state diagram turns out to be commutative,
1008  * so that we are allowed not to be bothered by order of our actions,
1009  * when multiple events arrive simultaneously. (see the function below).
1010  *
1011  * Reordering detection.
1012  * --------------------
1013  * Reordering metric is maximal distance, which a packet can be displaced
1014  * in packet stream. With SACKs we can estimate it:
1015  *
1016  * 1. SACK fills old hole and the corresponding segment was not
1017  *    ever retransmitted -> reordering. Alas, we cannot use it
1018  *    when segment was retransmitted.
1019  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020  *    for retransmitted and already SACKed segment -> reordering..
1021  * Both of these heuristics are not used in Loss state, when we cannot
1022  * account for retransmits accurately.
1023  *
1024  * SACK block validation.
1025  * ----------------------
1026  *
1027  * SACK block range validation checks that the received SACK block fits to
1028  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029  * Note that SND.UNA is not included to the range though being valid because
1030  * it means that the receiver is rather inconsistent with itself reporting
1031  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032  * perfectly valid, however, in light of RFC2018 which explicitly states
1033  * that "SACK block MUST reflect the newest segment.  Even if the newest
1034  * segment is going to be discarded ...", not that it looks very clever
1035  * in case of head skb. Due to potentional receiver driven attacks, we
1036  * choose to avoid immediate execution of a walk in write queue due to
1037  * reneging and defer head skb's loss recovery to standard loss recovery
1038  * procedure that will eventually trigger (nothing forbids us doing this).
1039  *
1040  * Implements also blockage to start_seq wrap-around. Problem lies in the
1041  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042  * there's no guarantee that it will be before snd_nxt (n). The problem
1043  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044  * wrap (s_w):
1045  *
1046  *         <- outs wnd ->                          <- wrapzone ->
1047  *         u     e      n                         u_w   e_w  s n_w
1048  *         |     |      |                          |     |   |  |
1049  * |<------------+------+----- TCP seqno space --------------+---------->|
1050  * ...-- <2^31 ->|                                           |<--------...
1051  * ...---- >2^31 ------>|                                    |<--------...
1052  *
1053  * Current code wouldn't be vulnerable but it's better still to discard such
1054  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057  * equal to the ideal case (infinite seqno space without wrap caused issues).
1058  *
1059  * With D-SACK the lower bound is extended to cover sequence space below
1060  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061  * again, D-SACK block must not to go across snd_una (for the same reason as
1062  * for the normal SACK blocks, explained above). But there all simplicity
1063  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064  * fully below undo_marker they do not affect behavior in anyway and can
1065  * therefore be safely ignored. In rare cases (which are more or less
1066  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067  * fragmentation and packet reordering past skb's retransmission. To consider
1068  * them correctly, the acceptable range must be extended even more though
1069  * the exact amount is rather hard to quantify. However, tp->max_window can
1070  * be used as an exaggerated estimate.
1071  */
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 				  u32 start_seq, u32 end_seq)
1074 {
1075 	/* Too far in future, or reversed (interpretation is ambiguous) */
1076 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 		return 0;
1078 
1079 	/* Nasty start_seq wrap-around check (see comments above) */
1080 	if (!before(start_seq, tp->snd_nxt))
1081 		return 0;
1082 
1083 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1084 	 * start_seq == snd_una is non-sensical (see comments above)
1085 	 */
1086 	if (after(start_seq, tp->snd_una))
1087 		return 1;
1088 
1089 	if (!is_dsack || !tp->undo_marker)
1090 		return 0;
1091 
1092 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1093 	if (!after(end_seq, tp->snd_una))
1094 		return 0;
1095 
1096 	if (!before(start_seq, tp->undo_marker))
1097 		return 1;
1098 
1099 	/* Too old */
1100 	if (!after(end_seq, tp->undo_marker))
1101 		return 0;
1102 
1103 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1105 	 */
1106 	return !before(start_seq, end_seq - tp->max_window);
1107 }
1108 
1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110  * Event "C". Later note: FACK people cheated me again 8), we have to account
1111  * for reordering! Ugly, but should help.
1112  *
1113  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114  * less than what is now known to be received by the other end (derived from
1115  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1116  * retransmitted skbs to avoid some costly processing per ACKs.
1117  */
1118 static void tcp_mark_lost_retrans(struct sock *sk)
1119 {
1120 	const struct inet_connection_sock *icsk = inet_csk(sk);
1121 	struct tcp_sock *tp = tcp_sk(sk);
1122 	struct sk_buff *skb;
1123 	int cnt = 0;
1124 	u32 new_low_seq = tp->snd_nxt;
1125 	u32 received_upto = tcp_highest_sack_seq(tp);
1126 
1127 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1128 	    !after(received_upto, tp->lost_retrans_low) ||
1129 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1130 		return;
1131 
1132 	tcp_for_write_queue(skb, sk) {
1133 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1134 
1135 		if (skb == tcp_send_head(sk))
1136 			break;
1137 		if (cnt == tp->retrans_out)
1138 			break;
1139 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1140 			continue;
1141 
1142 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1143 			continue;
1144 
1145 		if (after(received_upto, ack_seq) &&
1146 		    (tcp_is_fack(tp) ||
1147 		     !before(received_upto,
1148 			     ack_seq + tp->reordering * tp->mss_cache))) {
1149 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1150 			tp->retrans_out -= tcp_skb_pcount(skb);
1151 
1152 			/* clear lost hint */
1153 			tp->retransmit_skb_hint = NULL;
1154 
1155 			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1156 				tp->lost_out += tcp_skb_pcount(skb);
1157 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1158 			}
1159 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1160 		} else {
1161 			if (before(ack_seq, new_low_seq))
1162 				new_low_seq = ack_seq;
1163 			cnt += tcp_skb_pcount(skb);
1164 		}
1165 	}
1166 
1167 	if (tp->retrans_out)
1168 		tp->lost_retrans_low = new_low_seq;
1169 }
1170 
1171 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1172 			   struct tcp_sack_block_wire *sp, int num_sacks,
1173 			   u32 prior_snd_una)
1174 {
1175 	u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1176 	u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1177 	int dup_sack = 0;
1178 
1179 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1180 		dup_sack = 1;
1181 		tcp_dsack_seen(tp);
1182 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1183 	} else if (num_sacks > 1) {
1184 		u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1185 		u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1186 
1187 		if (!after(end_seq_0, end_seq_1) &&
1188 		    !before(start_seq_0, start_seq_1)) {
1189 			dup_sack = 1;
1190 			tcp_dsack_seen(tp);
1191 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1192 		}
1193 	}
1194 
1195 	/* D-SACK for already forgotten data... Do dumb counting. */
1196 	if (dup_sack &&
1197 	    !after(end_seq_0, prior_snd_una) &&
1198 	    after(end_seq_0, tp->undo_marker))
1199 		tp->undo_retrans--;
1200 
1201 	return dup_sack;
1202 }
1203 
1204 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1205  * the incoming SACK may not exactly match but we can find smaller MSS
1206  * aligned portion of it that matches. Therefore we might need to fragment
1207  * which may fail and creates some hassle (caller must handle error case
1208  * returns).
1209  */
1210 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1211 				 u32 start_seq, u32 end_seq)
1212 {
1213 	int in_sack, err;
1214 	unsigned int pkt_len;
1215 
1216 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1217 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1218 
1219 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1220 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1221 
1222 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1223 
1224 		if (!in_sack)
1225 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1226 		else
1227 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1228 		err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1229 		if (err < 0)
1230 			return err;
1231 	}
1232 
1233 	return in_sack;
1234 }
1235 
1236 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1237 			   int *reord, int dup_sack, int fack_count)
1238 {
1239 	struct tcp_sock *tp = tcp_sk(sk);
1240 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1241 	int flag = 0;
1242 
1243 	/* Account D-SACK for retransmitted packet. */
1244 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1245 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1246 			tp->undo_retrans--;
1247 		if (sacked & TCPCB_SACKED_ACKED)
1248 			*reord = min(fack_count, *reord);
1249 	}
1250 
1251 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1252 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1253 		return flag;
1254 
1255 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1256 		if (sacked & TCPCB_SACKED_RETRANS) {
1257 			/* If the segment is not tagged as lost,
1258 			 * we do not clear RETRANS, believing
1259 			 * that retransmission is still in flight.
1260 			 */
1261 			if (sacked & TCPCB_LOST) {
1262 				TCP_SKB_CB(skb)->sacked &=
1263 					~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1264 				tp->lost_out -= tcp_skb_pcount(skb);
1265 				tp->retrans_out -= tcp_skb_pcount(skb);
1266 
1267 				/* clear lost hint */
1268 				tp->retransmit_skb_hint = NULL;
1269 			}
1270 		} else {
1271 			if (!(sacked & TCPCB_RETRANS)) {
1272 				/* New sack for not retransmitted frame,
1273 				 * which was in hole. It is reordering.
1274 				 */
1275 				if (before(TCP_SKB_CB(skb)->seq,
1276 					   tcp_highest_sack_seq(tp)))
1277 					*reord = min(fack_count, *reord);
1278 
1279 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1280 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1281 					flag |= FLAG_ONLY_ORIG_SACKED;
1282 			}
1283 
1284 			if (sacked & TCPCB_LOST) {
1285 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1286 				tp->lost_out -= tcp_skb_pcount(skb);
1287 
1288 				/* clear lost hint */
1289 				tp->retransmit_skb_hint = NULL;
1290 			}
1291 		}
1292 
1293 		TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1294 		flag |= FLAG_DATA_SACKED;
1295 		tp->sacked_out += tcp_skb_pcount(skb);
1296 
1297 		fack_count += tcp_skb_pcount(skb);
1298 
1299 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1300 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1301 		    before(TCP_SKB_CB(skb)->seq,
1302 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1303 			tp->lost_cnt_hint += tcp_skb_pcount(skb);
1304 
1305 		if (fack_count > tp->fackets_out)
1306 			tp->fackets_out = fack_count;
1307 
1308 		if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1309 			tcp_advance_highest_sack(sk, skb);
1310 	}
1311 
1312 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1313 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1314 	 * are accounted above as well.
1315 	 */
1316 	if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1317 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1318 		tp->retrans_out -= tcp_skb_pcount(skb);
1319 		tp->retransmit_skb_hint = NULL;
1320 	}
1321 
1322 	return flag;
1323 }
1324 
1325 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1326 					struct tcp_sack_block *next_dup,
1327 					u32 start_seq, u32 end_seq,
1328 					int dup_sack_in, int *fack_count,
1329 					int *reord, int *flag)
1330 {
1331 	tcp_for_write_queue_from(skb, sk) {
1332 		int in_sack = 0;
1333 		int dup_sack = dup_sack_in;
1334 
1335 		if (skb == tcp_send_head(sk))
1336 			break;
1337 
1338 		/* queue is in-order => we can short-circuit the walk early */
1339 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1340 			break;
1341 
1342 		if ((next_dup != NULL) &&
1343 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1344 			in_sack = tcp_match_skb_to_sack(sk, skb,
1345 							next_dup->start_seq,
1346 							next_dup->end_seq);
1347 			if (in_sack > 0)
1348 				dup_sack = 1;
1349 		}
1350 
1351 		if (in_sack <= 0)
1352 			in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1353 							end_seq);
1354 		if (unlikely(in_sack < 0))
1355 			break;
1356 
1357 		if (in_sack)
1358 			*flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1359 						 *fack_count);
1360 
1361 		*fack_count += tcp_skb_pcount(skb);
1362 	}
1363 	return skb;
1364 }
1365 
1366 /* Avoid all extra work that is being done by sacktag while walking in
1367  * a normal way
1368  */
1369 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1370 					u32 skip_to_seq, int *fack_count)
1371 {
1372 	tcp_for_write_queue_from(skb, sk) {
1373 		if (skb == tcp_send_head(sk))
1374 			break;
1375 
1376 		if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1377 			break;
1378 
1379 		*fack_count += tcp_skb_pcount(skb);
1380 	}
1381 	return skb;
1382 }
1383 
1384 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1385 						struct sock *sk,
1386 						struct tcp_sack_block *next_dup,
1387 						u32 skip_to_seq,
1388 						int *fack_count, int *reord,
1389 						int *flag)
1390 {
1391 	if (next_dup == NULL)
1392 		return skb;
1393 
1394 	if (before(next_dup->start_seq, skip_to_seq)) {
1395 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1396 		tcp_sacktag_walk(skb, sk, NULL,
1397 				 next_dup->start_seq, next_dup->end_seq,
1398 				 1, fack_count, reord, flag);
1399 	}
1400 
1401 	return skb;
1402 }
1403 
1404 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1405 {
1406 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1407 }
1408 
1409 static int
1410 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1411 			u32 prior_snd_una)
1412 {
1413 	const struct inet_connection_sock *icsk = inet_csk(sk);
1414 	struct tcp_sock *tp = tcp_sk(sk);
1415 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1416 			      TCP_SKB_CB(ack_skb)->sacked);
1417 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1418 	struct tcp_sack_block sp[4];
1419 	struct tcp_sack_block *cache;
1420 	struct sk_buff *skb;
1421 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1422 	int used_sacks;
1423 	int reord = tp->packets_out;
1424 	int flag = 0;
1425 	int found_dup_sack = 0;
1426 	int fack_count;
1427 	int i, j;
1428 	int first_sack_index;
1429 
1430 	if (!tp->sacked_out) {
1431 		if (WARN_ON(tp->fackets_out))
1432 			tp->fackets_out = 0;
1433 		tcp_highest_sack_reset(sk);
1434 	}
1435 
1436 	found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1437 					 num_sacks, prior_snd_una);
1438 	if (found_dup_sack)
1439 		flag |= FLAG_DSACKING_ACK;
1440 
1441 	/* Eliminate too old ACKs, but take into
1442 	 * account more or less fresh ones, they can
1443 	 * contain valid SACK info.
1444 	 */
1445 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1446 		return 0;
1447 
1448 	if (!tp->packets_out)
1449 		goto out;
1450 
1451 	used_sacks = 0;
1452 	first_sack_index = 0;
1453 	for (i = 0; i < num_sacks; i++) {
1454 		int dup_sack = !i && found_dup_sack;
1455 
1456 		sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1457 		sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1458 
1459 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1460 					    sp[used_sacks].start_seq,
1461 					    sp[used_sacks].end_seq)) {
1462 			if (dup_sack) {
1463 				if (!tp->undo_marker)
1464 					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1465 				else
1466 					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1467 			} else {
1468 				/* Don't count olds caused by ACK reordering */
1469 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1470 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1471 					continue;
1472 				NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1473 			}
1474 			if (i == 0)
1475 				first_sack_index = -1;
1476 			continue;
1477 		}
1478 
1479 		/* Ignore very old stuff early */
1480 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1481 			continue;
1482 
1483 		used_sacks++;
1484 	}
1485 
1486 	/* order SACK blocks to allow in order walk of the retrans queue */
1487 	for (i = used_sacks - 1; i > 0; i--) {
1488 		for (j = 0; j < i; j++) {
1489 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1490 				struct tcp_sack_block tmp;
1491 
1492 				tmp = sp[j];
1493 				sp[j] = sp[j + 1];
1494 				sp[j + 1] = tmp;
1495 
1496 				/* Track where the first SACK block goes to */
1497 				if (j == first_sack_index)
1498 					first_sack_index = j + 1;
1499 			}
1500 		}
1501 	}
1502 
1503 	skb = tcp_write_queue_head(sk);
1504 	fack_count = 0;
1505 	i = 0;
1506 
1507 	if (!tp->sacked_out) {
1508 		/* It's already past, so skip checking against it */
1509 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1510 	} else {
1511 		cache = tp->recv_sack_cache;
1512 		/* Skip empty blocks in at head of the cache */
1513 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1514 		       !cache->end_seq)
1515 			cache++;
1516 	}
1517 
1518 	while (i < used_sacks) {
1519 		u32 start_seq = sp[i].start_seq;
1520 		u32 end_seq = sp[i].end_seq;
1521 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1522 		struct tcp_sack_block *next_dup = NULL;
1523 
1524 		if (found_dup_sack && ((i + 1) == first_sack_index))
1525 			next_dup = &sp[i + 1];
1526 
1527 		/* Event "B" in the comment above. */
1528 		if (after(end_seq, tp->high_seq))
1529 			flag |= FLAG_DATA_LOST;
1530 
1531 		/* Skip too early cached blocks */
1532 		while (tcp_sack_cache_ok(tp, cache) &&
1533 		       !before(start_seq, cache->end_seq))
1534 			cache++;
1535 
1536 		/* Can skip some work by looking recv_sack_cache? */
1537 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1538 		    after(end_seq, cache->start_seq)) {
1539 
1540 			/* Head todo? */
1541 			if (before(start_seq, cache->start_seq)) {
1542 				skb = tcp_sacktag_skip(skb, sk, start_seq,
1543 						       &fack_count);
1544 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1545 						       start_seq,
1546 						       cache->start_seq,
1547 						       dup_sack, &fack_count,
1548 						       &reord, &flag);
1549 			}
1550 
1551 			/* Rest of the block already fully processed? */
1552 			if (!after(end_seq, cache->end_seq))
1553 				goto advance_sp;
1554 
1555 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1556 						       cache->end_seq,
1557 						       &fack_count, &reord,
1558 						       &flag);
1559 
1560 			/* ...tail remains todo... */
1561 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1562 				/* ...but better entrypoint exists! */
1563 				skb = tcp_highest_sack(sk);
1564 				if (skb == NULL)
1565 					break;
1566 				fack_count = tp->fackets_out;
1567 				cache++;
1568 				goto walk;
1569 			}
1570 
1571 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1572 					       &fack_count);
1573 			/* Check overlap against next cached too (past this one already) */
1574 			cache++;
1575 			continue;
1576 		}
1577 
1578 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1579 			skb = tcp_highest_sack(sk);
1580 			if (skb == NULL)
1581 				break;
1582 			fack_count = tp->fackets_out;
1583 		}
1584 		skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1585 
1586 walk:
1587 		skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1588 				       dup_sack, &fack_count, &reord, &flag);
1589 
1590 advance_sp:
1591 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1592 		 * due to in-order walk
1593 		 */
1594 		if (after(end_seq, tp->frto_highmark))
1595 			flag &= ~FLAG_ONLY_ORIG_SACKED;
1596 
1597 		i++;
1598 	}
1599 
1600 	/* Clear the head of the cache sack blocks so we can skip it next time */
1601 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1602 		tp->recv_sack_cache[i].start_seq = 0;
1603 		tp->recv_sack_cache[i].end_seq = 0;
1604 	}
1605 	for (j = 0; j < used_sacks; j++)
1606 		tp->recv_sack_cache[i++] = sp[j];
1607 
1608 	tcp_mark_lost_retrans(sk);
1609 
1610 	tcp_verify_left_out(tp);
1611 
1612 	if ((reord < tp->fackets_out) &&
1613 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1614 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1615 		tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1616 
1617 out:
1618 
1619 #if FASTRETRANS_DEBUG > 0
1620 	BUG_TRAP((int)tp->sacked_out >= 0);
1621 	BUG_TRAP((int)tp->lost_out >= 0);
1622 	BUG_TRAP((int)tp->retrans_out >= 0);
1623 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1624 #endif
1625 	return flag;
1626 }
1627 
1628 /* If we receive more dupacks than we expected counting segments
1629  * in assumption of absent reordering, interpret this as reordering.
1630  * The only another reason could be bug in receiver TCP.
1631  */
1632 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1633 {
1634 	struct tcp_sock *tp = tcp_sk(sk);
1635 	u32 holes;
1636 
1637 	holes = max(tp->lost_out, 1U);
1638 	holes = min(holes, tp->packets_out);
1639 
1640 	if ((tp->sacked_out + holes) > tp->packets_out) {
1641 		tp->sacked_out = tp->packets_out - holes;
1642 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1643 	}
1644 }
1645 
1646 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1647 
1648 static void tcp_add_reno_sack(struct sock *sk)
1649 {
1650 	struct tcp_sock *tp = tcp_sk(sk);
1651 	tp->sacked_out++;
1652 	tcp_check_reno_reordering(sk, 0);
1653 	tcp_verify_left_out(tp);
1654 }
1655 
1656 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1657 
1658 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1659 {
1660 	struct tcp_sock *tp = tcp_sk(sk);
1661 
1662 	if (acked > 0) {
1663 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1664 		if (acked - 1 >= tp->sacked_out)
1665 			tp->sacked_out = 0;
1666 		else
1667 			tp->sacked_out -= acked - 1;
1668 	}
1669 	tcp_check_reno_reordering(sk, acked);
1670 	tcp_verify_left_out(tp);
1671 }
1672 
1673 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1674 {
1675 	tp->sacked_out = 0;
1676 }
1677 
1678 /* F-RTO can only be used if TCP has never retransmitted anything other than
1679  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1680  */
1681 int tcp_use_frto(struct sock *sk)
1682 {
1683 	const struct tcp_sock *tp = tcp_sk(sk);
1684 	struct sk_buff *skb;
1685 
1686 	if (!sysctl_tcp_frto)
1687 		return 0;
1688 
1689 	if (IsSackFrto())
1690 		return 1;
1691 
1692 	/* Avoid expensive walking of rexmit queue if possible */
1693 	if (tp->retrans_out > 1)
1694 		return 0;
1695 
1696 	skb = tcp_write_queue_head(sk);
1697 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1698 	tcp_for_write_queue_from(skb, sk) {
1699 		if (skb == tcp_send_head(sk))
1700 			break;
1701 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1702 			return 0;
1703 		/* Short-circuit when first non-SACKed skb has been checked */
1704 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1705 			break;
1706 	}
1707 	return 1;
1708 }
1709 
1710 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1711  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1712  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1713  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1714  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1715  * bits are handled if the Loss state is really to be entered (in
1716  * tcp_enter_frto_loss).
1717  *
1718  * Do like tcp_enter_loss() would; when RTO expires the second time it
1719  * does:
1720  *  "Reduce ssthresh if it has not yet been made inside this window."
1721  */
1722 void tcp_enter_frto(struct sock *sk)
1723 {
1724 	const struct inet_connection_sock *icsk = inet_csk(sk);
1725 	struct tcp_sock *tp = tcp_sk(sk);
1726 	struct sk_buff *skb;
1727 
1728 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1729 	    tp->snd_una == tp->high_seq ||
1730 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1731 	     !icsk->icsk_retransmits)) {
1732 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1733 		/* Our state is too optimistic in ssthresh() call because cwnd
1734 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1735 		 * recovery has not yet completed. Pattern would be this: RTO,
1736 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1737 		 * up here twice).
1738 		 * RFC4138 should be more specific on what to do, even though
1739 		 * RTO is quite unlikely to occur after the first Cumulative ACK
1740 		 * due to back-off and complexity of triggering events ...
1741 		 */
1742 		if (tp->frto_counter) {
1743 			u32 stored_cwnd;
1744 			stored_cwnd = tp->snd_cwnd;
1745 			tp->snd_cwnd = 2;
1746 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1747 			tp->snd_cwnd = stored_cwnd;
1748 		} else {
1749 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1750 		}
1751 		/* ... in theory, cong.control module could do "any tricks" in
1752 		 * ssthresh(), which means that ca_state, lost bits and lost_out
1753 		 * counter would have to be faked before the call occurs. We
1754 		 * consider that too expensive, unlikely and hacky, so modules
1755 		 * using these in ssthresh() must deal these incompatibility
1756 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1757 		 */
1758 		tcp_ca_event(sk, CA_EVENT_FRTO);
1759 	}
1760 
1761 	tp->undo_marker = tp->snd_una;
1762 	tp->undo_retrans = 0;
1763 
1764 	skb = tcp_write_queue_head(sk);
1765 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1766 		tp->undo_marker = 0;
1767 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1768 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1769 		tp->retrans_out -= tcp_skb_pcount(skb);
1770 	}
1771 	tcp_verify_left_out(tp);
1772 
1773 	/* Too bad if TCP was application limited */
1774 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1775 
1776 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1777 	 * The last condition is necessary at least in tp->frto_counter case.
1778 	 */
1779 	if (IsSackFrto() && (tp->frto_counter ||
1780 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1781 	    after(tp->high_seq, tp->snd_una)) {
1782 		tp->frto_highmark = tp->high_seq;
1783 	} else {
1784 		tp->frto_highmark = tp->snd_nxt;
1785 	}
1786 	tcp_set_ca_state(sk, TCP_CA_Disorder);
1787 	tp->high_seq = tp->snd_nxt;
1788 	tp->frto_counter = 1;
1789 }
1790 
1791 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1792  * which indicates that we should follow the traditional RTO recovery,
1793  * i.e. mark everything lost and do go-back-N retransmission.
1794  */
1795 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1796 {
1797 	struct tcp_sock *tp = tcp_sk(sk);
1798 	struct sk_buff *skb;
1799 
1800 	tp->lost_out = 0;
1801 	tp->retrans_out = 0;
1802 	if (tcp_is_reno(tp))
1803 		tcp_reset_reno_sack(tp);
1804 
1805 	tcp_for_write_queue(skb, sk) {
1806 		if (skb == tcp_send_head(sk))
1807 			break;
1808 
1809 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1810 		/*
1811 		 * Count the retransmission made on RTO correctly (only when
1812 		 * waiting for the first ACK and did not get it)...
1813 		 */
1814 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1815 			/* For some reason this R-bit might get cleared? */
1816 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1817 				tp->retrans_out += tcp_skb_pcount(skb);
1818 			/* ...enter this if branch just for the first segment */
1819 			flag |= FLAG_DATA_ACKED;
1820 		} else {
1821 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1822 				tp->undo_marker = 0;
1823 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1824 		}
1825 
1826 		/* Don't lost mark skbs that were fwd transmitted after RTO */
1827 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) &&
1828 		    !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1829 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1830 			tp->lost_out += tcp_skb_pcount(skb);
1831 		}
1832 	}
1833 	tcp_verify_left_out(tp);
1834 
1835 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1836 	tp->snd_cwnd_cnt = 0;
1837 	tp->snd_cwnd_stamp = tcp_time_stamp;
1838 	tp->frto_counter = 0;
1839 	tp->bytes_acked = 0;
1840 
1841 	tp->reordering = min_t(unsigned int, tp->reordering,
1842 			       sysctl_tcp_reordering);
1843 	tcp_set_ca_state(sk, TCP_CA_Loss);
1844 	tp->high_seq = tp->frto_highmark;
1845 	TCP_ECN_queue_cwr(tp);
1846 
1847 	tcp_clear_retrans_hints_partial(tp);
1848 }
1849 
1850 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1851 {
1852 	tp->retrans_out = 0;
1853 	tp->lost_out = 0;
1854 
1855 	tp->undo_marker = 0;
1856 	tp->undo_retrans = 0;
1857 }
1858 
1859 void tcp_clear_retrans(struct tcp_sock *tp)
1860 {
1861 	tcp_clear_retrans_partial(tp);
1862 
1863 	tp->fackets_out = 0;
1864 	tp->sacked_out = 0;
1865 }
1866 
1867 /* Enter Loss state. If "how" is not zero, forget all SACK information
1868  * and reset tags completely, otherwise preserve SACKs. If receiver
1869  * dropped its ofo queue, we will know this due to reneging detection.
1870  */
1871 void tcp_enter_loss(struct sock *sk, int how)
1872 {
1873 	const struct inet_connection_sock *icsk = inet_csk(sk);
1874 	struct tcp_sock *tp = tcp_sk(sk);
1875 	struct sk_buff *skb;
1876 
1877 	/* Reduce ssthresh if it has not yet been made inside this window. */
1878 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1879 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1880 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1881 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1882 		tcp_ca_event(sk, CA_EVENT_LOSS);
1883 	}
1884 	tp->snd_cwnd	   = 1;
1885 	tp->snd_cwnd_cnt   = 0;
1886 	tp->snd_cwnd_stamp = tcp_time_stamp;
1887 
1888 	tp->bytes_acked = 0;
1889 	tcp_clear_retrans_partial(tp);
1890 
1891 	if (tcp_is_reno(tp))
1892 		tcp_reset_reno_sack(tp);
1893 
1894 	if (!how) {
1895 		/* Push undo marker, if it was plain RTO and nothing
1896 		 * was retransmitted. */
1897 		tp->undo_marker = tp->snd_una;
1898 		tcp_clear_retrans_hints_partial(tp);
1899 	} else {
1900 		tp->sacked_out = 0;
1901 		tp->fackets_out = 0;
1902 		tcp_clear_all_retrans_hints(tp);
1903 	}
1904 
1905 	tcp_for_write_queue(skb, sk) {
1906 		if (skb == tcp_send_head(sk))
1907 			break;
1908 
1909 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1910 			tp->undo_marker = 0;
1911 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1912 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1913 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1914 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1915 			tp->lost_out += tcp_skb_pcount(skb);
1916 		}
1917 	}
1918 	tcp_verify_left_out(tp);
1919 
1920 	tp->reordering = min_t(unsigned int, tp->reordering,
1921 			       sysctl_tcp_reordering);
1922 	tcp_set_ca_state(sk, TCP_CA_Loss);
1923 	tp->high_seq = tp->snd_nxt;
1924 	TCP_ECN_queue_cwr(tp);
1925 	/* Abort F-RTO algorithm if one is in progress */
1926 	tp->frto_counter = 0;
1927 }
1928 
1929 /* If ACK arrived pointing to a remembered SACK, it means that our
1930  * remembered SACKs do not reflect real state of receiver i.e.
1931  * receiver _host_ is heavily congested (or buggy).
1932  *
1933  * Do processing similar to RTO timeout.
1934  */
1935 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1936 {
1937 	if (flag & FLAG_SACK_RENEGING) {
1938 		struct inet_connection_sock *icsk = inet_csk(sk);
1939 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1940 
1941 		tcp_enter_loss(sk, 1);
1942 		icsk->icsk_retransmits++;
1943 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1944 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1945 					  icsk->icsk_rto, TCP_RTO_MAX);
1946 		return 1;
1947 	}
1948 	return 0;
1949 }
1950 
1951 static inline int tcp_fackets_out(struct tcp_sock *tp)
1952 {
1953 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1954 }
1955 
1956 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1957  * counter when SACK is enabled (without SACK, sacked_out is used for
1958  * that purpose).
1959  *
1960  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1961  * segments up to the highest received SACK block so far and holes in
1962  * between them.
1963  *
1964  * With reordering, holes may still be in flight, so RFC3517 recovery
1965  * uses pure sacked_out (total number of SACKed segments) even though
1966  * it violates the RFC that uses duplicate ACKs, often these are equal
1967  * but when e.g. out-of-window ACKs or packet duplication occurs,
1968  * they differ. Since neither occurs due to loss, TCP should really
1969  * ignore them.
1970  */
1971 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1972 {
1973 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1974 }
1975 
1976 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1977 {
1978 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1979 }
1980 
1981 static inline int tcp_head_timedout(struct sock *sk)
1982 {
1983 	struct tcp_sock *tp = tcp_sk(sk);
1984 
1985 	return tp->packets_out &&
1986 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1987 }
1988 
1989 /* Linux NewReno/SACK/FACK/ECN state machine.
1990  * --------------------------------------
1991  *
1992  * "Open"	Normal state, no dubious events, fast path.
1993  * "Disorder"   In all the respects it is "Open",
1994  *		but requires a bit more attention. It is entered when
1995  *		we see some SACKs or dupacks. It is split of "Open"
1996  *		mainly to move some processing from fast path to slow one.
1997  * "CWR"	CWND was reduced due to some Congestion Notification event.
1998  *		It can be ECN, ICMP source quench, local device congestion.
1999  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2000  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2001  *
2002  * tcp_fastretrans_alert() is entered:
2003  * - each incoming ACK, if state is not "Open"
2004  * - when arrived ACK is unusual, namely:
2005  *	* SACK
2006  *	* Duplicate ACK.
2007  *	* ECN ECE.
2008  *
2009  * Counting packets in flight is pretty simple.
2010  *
2011  *	in_flight = packets_out - left_out + retrans_out
2012  *
2013  *	packets_out is SND.NXT-SND.UNA counted in packets.
2014  *
2015  *	retrans_out is number of retransmitted segments.
2016  *
2017  *	left_out is number of segments left network, but not ACKed yet.
2018  *
2019  *		left_out = sacked_out + lost_out
2020  *
2021  *     sacked_out: Packets, which arrived to receiver out of order
2022  *		   and hence not ACKed. With SACKs this number is simply
2023  *		   amount of SACKed data. Even without SACKs
2024  *		   it is easy to give pretty reliable estimate of this number,
2025  *		   counting duplicate ACKs.
2026  *
2027  *       lost_out: Packets lost by network. TCP has no explicit
2028  *		   "loss notification" feedback from network (for now).
2029  *		   It means that this number can be only _guessed_.
2030  *		   Actually, it is the heuristics to predict lossage that
2031  *		   distinguishes different algorithms.
2032  *
2033  *	F.e. after RTO, when all the queue is considered as lost,
2034  *	lost_out = packets_out and in_flight = retrans_out.
2035  *
2036  *		Essentially, we have now two algorithms counting
2037  *		lost packets.
2038  *
2039  *		FACK: It is the simplest heuristics. As soon as we decided
2040  *		that something is lost, we decide that _all_ not SACKed
2041  *		packets until the most forward SACK are lost. I.e.
2042  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2043  *		It is absolutely correct estimate, if network does not reorder
2044  *		packets. And it loses any connection to reality when reordering
2045  *		takes place. We use FACK by default until reordering
2046  *		is suspected on the path to this destination.
2047  *
2048  *		NewReno: when Recovery is entered, we assume that one segment
2049  *		is lost (classic Reno). While we are in Recovery and
2050  *		a partial ACK arrives, we assume that one more packet
2051  *		is lost (NewReno). This heuristics are the same in NewReno
2052  *		and SACK.
2053  *
2054  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2055  *  deflation etc. CWND is real congestion window, never inflated, changes
2056  *  only according to classic VJ rules.
2057  *
2058  * Really tricky (and requiring careful tuning) part of algorithm
2059  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2060  * The first determines the moment _when_ we should reduce CWND and,
2061  * hence, slow down forward transmission. In fact, it determines the moment
2062  * when we decide that hole is caused by loss, rather than by a reorder.
2063  *
2064  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2065  * holes, caused by lost packets.
2066  *
2067  * And the most logically complicated part of algorithm is undo
2068  * heuristics. We detect false retransmits due to both too early
2069  * fast retransmit (reordering) and underestimated RTO, analyzing
2070  * timestamps and D-SACKs. When we detect that some segments were
2071  * retransmitted by mistake and CWND reduction was wrong, we undo
2072  * window reduction and abort recovery phase. This logic is hidden
2073  * inside several functions named tcp_try_undo_<something>.
2074  */
2075 
2076 /* This function decides, when we should leave Disordered state
2077  * and enter Recovery phase, reducing congestion window.
2078  *
2079  * Main question: may we further continue forward transmission
2080  * with the same cwnd?
2081  */
2082 static int tcp_time_to_recover(struct sock *sk)
2083 {
2084 	struct tcp_sock *tp = tcp_sk(sk);
2085 	__u32 packets_out;
2086 
2087 	/* Do not perform any recovery during F-RTO algorithm */
2088 	if (tp->frto_counter)
2089 		return 0;
2090 
2091 	/* Trick#1: The loss is proven. */
2092 	if (tp->lost_out)
2093 		return 1;
2094 
2095 	/* Not-A-Trick#2 : Classic rule... */
2096 	if (tcp_dupack_heurestics(tp) > tp->reordering)
2097 		return 1;
2098 
2099 	/* Trick#3 : when we use RFC2988 timer restart, fast
2100 	 * retransmit can be triggered by timeout of queue head.
2101 	 */
2102 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2103 		return 1;
2104 
2105 	/* Trick#4: It is still not OK... But will it be useful to delay
2106 	 * recovery more?
2107 	 */
2108 	packets_out = tp->packets_out;
2109 	if (packets_out <= tp->reordering &&
2110 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2111 	    !tcp_may_send_now(sk)) {
2112 		/* We have nothing to send. This connection is limited
2113 		 * either by receiver window or by application.
2114 		 */
2115 		return 1;
2116 	}
2117 
2118 	return 0;
2119 }
2120 
2121 /* RFC: This is from the original, I doubt that this is necessary at all:
2122  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2123  * retransmitted past LOST markings in the first place? I'm not fully sure
2124  * about undo and end of connection cases, which can cause R without L?
2125  */
2126 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2127 {
2128 	if ((tp->retransmit_skb_hint != NULL) &&
2129 	    before(TCP_SKB_CB(skb)->seq,
2130 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2131 		tp->retransmit_skb_hint = NULL;
2132 }
2133 
2134 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2135  * is against sacked "cnt", otherwise it's against facked "cnt"
2136  */
2137 static void tcp_mark_head_lost(struct sock *sk, int packets, int fast_rexmit)
2138 {
2139 	struct tcp_sock *tp = tcp_sk(sk);
2140 	struct sk_buff *skb;
2141 	int cnt;
2142 
2143 	BUG_TRAP(packets <= tp->packets_out);
2144 	if (tp->lost_skb_hint) {
2145 		skb = tp->lost_skb_hint;
2146 		cnt = tp->lost_cnt_hint;
2147 	} else {
2148 		skb = tcp_write_queue_head(sk);
2149 		cnt = 0;
2150 	}
2151 
2152 	tcp_for_write_queue_from(skb, sk) {
2153 		if (skb == tcp_send_head(sk))
2154 			break;
2155 		/* TODO: do this better */
2156 		/* this is not the most efficient way to do this... */
2157 		tp->lost_skb_hint = skb;
2158 		tp->lost_cnt_hint = cnt;
2159 
2160 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2161 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2162 			cnt += tcp_skb_pcount(skb);
2163 
2164 		if (((!fast_rexmit || (tp->lost_out > 0)) && (cnt > packets)) ||
2165 		    after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2166 			break;
2167 		if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2168 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2169 			tp->lost_out += tcp_skb_pcount(skb);
2170 			tcp_verify_retransmit_hint(tp, skb);
2171 		}
2172 	}
2173 	tcp_verify_left_out(tp);
2174 }
2175 
2176 /* Account newly detected lost packet(s) */
2177 
2178 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2179 {
2180 	struct tcp_sock *tp = tcp_sk(sk);
2181 
2182 	if (tcp_is_reno(tp)) {
2183 		tcp_mark_head_lost(sk, 1, fast_rexmit);
2184 	} else if (tcp_is_fack(tp)) {
2185 		int lost = tp->fackets_out - tp->reordering;
2186 		if (lost <= 0)
2187 			lost = 1;
2188 		tcp_mark_head_lost(sk, lost, fast_rexmit);
2189 	} else {
2190 		int sacked_upto = tp->sacked_out - tp->reordering;
2191 		if (sacked_upto < 0)
2192 			sacked_upto = 0;
2193 		tcp_mark_head_lost(sk, sacked_upto, fast_rexmit);
2194 	}
2195 
2196 	/* New heuristics: it is possible only after we switched
2197 	 * to restart timer each time when something is ACKed.
2198 	 * Hence, we can detect timed out packets during fast
2199 	 * retransmit without falling to slow start.
2200 	 */
2201 	if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2202 		struct sk_buff *skb;
2203 
2204 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2205 			: tcp_write_queue_head(sk);
2206 
2207 		tcp_for_write_queue_from(skb, sk) {
2208 			if (skb == tcp_send_head(sk))
2209 				break;
2210 			if (!tcp_skb_timedout(sk, skb))
2211 				break;
2212 
2213 			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2214 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2215 				tp->lost_out += tcp_skb_pcount(skb);
2216 				tcp_verify_retransmit_hint(tp, skb);
2217 			}
2218 		}
2219 
2220 		tp->scoreboard_skb_hint = skb;
2221 
2222 		tcp_verify_left_out(tp);
2223 	}
2224 }
2225 
2226 /* CWND moderation, preventing bursts due to too big ACKs
2227  * in dubious situations.
2228  */
2229 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2230 {
2231 	tp->snd_cwnd = min(tp->snd_cwnd,
2232 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2233 	tp->snd_cwnd_stamp = tcp_time_stamp;
2234 }
2235 
2236 /* Lower bound on congestion window is slow start threshold
2237  * unless congestion avoidance choice decides to overide it.
2238  */
2239 static inline u32 tcp_cwnd_min(const struct sock *sk)
2240 {
2241 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2242 
2243 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2244 }
2245 
2246 /* Decrease cwnd each second ack. */
2247 static void tcp_cwnd_down(struct sock *sk, int flag)
2248 {
2249 	struct tcp_sock *tp = tcp_sk(sk);
2250 	int decr = tp->snd_cwnd_cnt + 1;
2251 
2252 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2253 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2254 		tp->snd_cwnd_cnt = decr & 1;
2255 		decr >>= 1;
2256 
2257 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2258 			tp->snd_cwnd -= decr;
2259 
2260 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2261 		tp->snd_cwnd_stamp = tcp_time_stamp;
2262 	}
2263 }
2264 
2265 /* Nothing was retransmitted or returned timestamp is less
2266  * than timestamp of the first retransmission.
2267  */
2268 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2269 {
2270 	return !tp->retrans_stamp ||
2271 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2272 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2273 }
2274 
2275 /* Undo procedures. */
2276 
2277 #if FASTRETRANS_DEBUG > 1
2278 static void DBGUNDO(struct sock *sk, const char *msg)
2279 {
2280 	struct tcp_sock *tp = tcp_sk(sk);
2281 	struct inet_sock *inet = inet_sk(sk);
2282 
2283 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2284 	       msg,
2285 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
2286 	       tp->snd_cwnd, tcp_left_out(tp),
2287 	       tp->snd_ssthresh, tp->prior_ssthresh,
2288 	       tp->packets_out);
2289 }
2290 #else
2291 #define DBGUNDO(x...) do { } while (0)
2292 #endif
2293 
2294 static void tcp_undo_cwr(struct sock *sk, const int undo)
2295 {
2296 	struct tcp_sock *tp = tcp_sk(sk);
2297 
2298 	if (tp->prior_ssthresh) {
2299 		const struct inet_connection_sock *icsk = inet_csk(sk);
2300 
2301 		if (icsk->icsk_ca_ops->undo_cwnd)
2302 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2303 		else
2304 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2305 
2306 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2307 			tp->snd_ssthresh = tp->prior_ssthresh;
2308 			TCP_ECN_withdraw_cwr(tp);
2309 		}
2310 	} else {
2311 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2312 	}
2313 	tcp_moderate_cwnd(tp);
2314 	tp->snd_cwnd_stamp = tcp_time_stamp;
2315 
2316 	/* There is something screwy going on with the retrans hints after
2317 	   an undo */
2318 	tcp_clear_all_retrans_hints(tp);
2319 }
2320 
2321 static inline int tcp_may_undo(struct tcp_sock *tp)
2322 {
2323 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2324 }
2325 
2326 /* People celebrate: "We love our President!" */
2327 static int tcp_try_undo_recovery(struct sock *sk)
2328 {
2329 	struct tcp_sock *tp = tcp_sk(sk);
2330 
2331 	if (tcp_may_undo(tp)) {
2332 		/* Happy end! We did not retransmit anything
2333 		 * or our original transmission succeeded.
2334 		 */
2335 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2336 		tcp_undo_cwr(sk, 1);
2337 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2338 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2339 		else
2340 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2341 		tp->undo_marker = 0;
2342 	}
2343 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2344 		/* Hold old state until something *above* high_seq
2345 		 * is ACKed. For Reno it is MUST to prevent false
2346 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2347 		tcp_moderate_cwnd(tp);
2348 		return 1;
2349 	}
2350 	tcp_set_ca_state(sk, TCP_CA_Open);
2351 	return 0;
2352 }
2353 
2354 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2355 static void tcp_try_undo_dsack(struct sock *sk)
2356 {
2357 	struct tcp_sock *tp = tcp_sk(sk);
2358 
2359 	if (tp->undo_marker && !tp->undo_retrans) {
2360 		DBGUNDO(sk, "D-SACK");
2361 		tcp_undo_cwr(sk, 1);
2362 		tp->undo_marker = 0;
2363 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2364 	}
2365 }
2366 
2367 /* Undo during fast recovery after partial ACK. */
2368 
2369 static int tcp_try_undo_partial(struct sock *sk, int acked)
2370 {
2371 	struct tcp_sock *tp = tcp_sk(sk);
2372 	/* Partial ACK arrived. Force Hoe's retransmit. */
2373 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2374 
2375 	if (tcp_may_undo(tp)) {
2376 		/* Plain luck! Hole if filled with delayed
2377 		 * packet, rather than with a retransmit.
2378 		 */
2379 		if (tp->retrans_out == 0)
2380 			tp->retrans_stamp = 0;
2381 
2382 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2383 
2384 		DBGUNDO(sk, "Hoe");
2385 		tcp_undo_cwr(sk, 0);
2386 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2387 
2388 		/* So... Do not make Hoe's retransmit yet.
2389 		 * If the first packet was delayed, the rest
2390 		 * ones are most probably delayed as well.
2391 		 */
2392 		failed = 0;
2393 	}
2394 	return failed;
2395 }
2396 
2397 /* Undo during loss recovery after partial ACK. */
2398 static int tcp_try_undo_loss(struct sock *sk)
2399 {
2400 	struct tcp_sock *tp = tcp_sk(sk);
2401 
2402 	if (tcp_may_undo(tp)) {
2403 		struct sk_buff *skb;
2404 		tcp_for_write_queue(skb, sk) {
2405 			if (skb == tcp_send_head(sk))
2406 				break;
2407 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2408 		}
2409 
2410 		tcp_clear_all_retrans_hints(tp);
2411 
2412 		DBGUNDO(sk, "partial loss");
2413 		tp->lost_out = 0;
2414 		tcp_undo_cwr(sk, 1);
2415 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2416 		inet_csk(sk)->icsk_retransmits = 0;
2417 		tp->undo_marker = 0;
2418 		if (tcp_is_sack(tp))
2419 			tcp_set_ca_state(sk, TCP_CA_Open);
2420 		return 1;
2421 	}
2422 	return 0;
2423 }
2424 
2425 static inline void tcp_complete_cwr(struct sock *sk)
2426 {
2427 	struct tcp_sock *tp = tcp_sk(sk);
2428 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2429 	tp->snd_cwnd_stamp = tcp_time_stamp;
2430 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2431 }
2432 
2433 static void tcp_try_to_open(struct sock *sk, int flag)
2434 {
2435 	struct tcp_sock *tp = tcp_sk(sk);
2436 
2437 	tcp_verify_left_out(tp);
2438 
2439 	if (tp->retrans_out == 0)
2440 		tp->retrans_stamp = 0;
2441 
2442 	if (flag & FLAG_ECE)
2443 		tcp_enter_cwr(sk, 1);
2444 
2445 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2446 		int state = TCP_CA_Open;
2447 
2448 		if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2449 			state = TCP_CA_Disorder;
2450 
2451 		if (inet_csk(sk)->icsk_ca_state != state) {
2452 			tcp_set_ca_state(sk, state);
2453 			tp->high_seq = tp->snd_nxt;
2454 		}
2455 		tcp_moderate_cwnd(tp);
2456 	} else {
2457 		tcp_cwnd_down(sk, flag);
2458 	}
2459 }
2460 
2461 static void tcp_mtup_probe_failed(struct sock *sk)
2462 {
2463 	struct inet_connection_sock *icsk = inet_csk(sk);
2464 
2465 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2466 	icsk->icsk_mtup.probe_size = 0;
2467 }
2468 
2469 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2470 {
2471 	struct tcp_sock *tp = tcp_sk(sk);
2472 	struct inet_connection_sock *icsk = inet_csk(sk);
2473 
2474 	/* FIXME: breaks with very large cwnd */
2475 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2476 	tp->snd_cwnd = tp->snd_cwnd *
2477 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2478 		       icsk->icsk_mtup.probe_size;
2479 	tp->snd_cwnd_cnt = 0;
2480 	tp->snd_cwnd_stamp = tcp_time_stamp;
2481 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2482 
2483 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2484 	icsk->icsk_mtup.probe_size = 0;
2485 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2486 }
2487 
2488 /* Process an event, which can update packets-in-flight not trivially.
2489  * Main goal of this function is to calculate new estimate for left_out,
2490  * taking into account both packets sitting in receiver's buffer and
2491  * packets lost by network.
2492  *
2493  * Besides that it does CWND reduction, when packet loss is detected
2494  * and changes state of machine.
2495  *
2496  * It does _not_ decide what to send, it is made in function
2497  * tcp_xmit_retransmit_queue().
2498  */
2499 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2500 {
2501 	struct inet_connection_sock *icsk = inet_csk(sk);
2502 	struct tcp_sock *tp = tcp_sk(sk);
2503 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2504 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2505 				    (tcp_fackets_out(tp) > tp->reordering));
2506 	int fast_rexmit = 0;
2507 
2508 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2509 		tp->sacked_out = 0;
2510 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2511 		tp->fackets_out = 0;
2512 
2513 	/* Now state machine starts.
2514 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2515 	if (flag & FLAG_ECE)
2516 		tp->prior_ssthresh = 0;
2517 
2518 	/* B. In all the states check for reneging SACKs. */
2519 	if (tcp_check_sack_reneging(sk, flag))
2520 		return;
2521 
2522 	/* C. Process data loss notification, provided it is valid. */
2523 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2524 	    before(tp->snd_una, tp->high_seq) &&
2525 	    icsk->icsk_ca_state != TCP_CA_Open &&
2526 	    tp->fackets_out > tp->reordering) {
2527 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
2528 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2529 	}
2530 
2531 	/* D. Check consistency of the current state. */
2532 	tcp_verify_left_out(tp);
2533 
2534 	/* E. Check state exit conditions. State can be terminated
2535 	 *    when high_seq is ACKed. */
2536 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2537 		BUG_TRAP(tp->retrans_out == 0);
2538 		tp->retrans_stamp = 0;
2539 	} else if (!before(tp->snd_una, tp->high_seq)) {
2540 		switch (icsk->icsk_ca_state) {
2541 		case TCP_CA_Loss:
2542 			icsk->icsk_retransmits = 0;
2543 			if (tcp_try_undo_recovery(sk))
2544 				return;
2545 			break;
2546 
2547 		case TCP_CA_CWR:
2548 			/* CWR is to be held something *above* high_seq
2549 			 * is ACKed for CWR bit to reach receiver. */
2550 			if (tp->snd_una != tp->high_seq) {
2551 				tcp_complete_cwr(sk);
2552 				tcp_set_ca_state(sk, TCP_CA_Open);
2553 			}
2554 			break;
2555 
2556 		case TCP_CA_Disorder:
2557 			tcp_try_undo_dsack(sk);
2558 			if (!tp->undo_marker ||
2559 			    /* For SACK case do not Open to allow to undo
2560 			     * catching for all duplicate ACKs. */
2561 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2562 				tp->undo_marker = 0;
2563 				tcp_set_ca_state(sk, TCP_CA_Open);
2564 			}
2565 			break;
2566 
2567 		case TCP_CA_Recovery:
2568 			if (tcp_is_reno(tp))
2569 				tcp_reset_reno_sack(tp);
2570 			if (tcp_try_undo_recovery(sk))
2571 				return;
2572 			tcp_complete_cwr(sk);
2573 			break;
2574 		}
2575 	}
2576 
2577 	/* F. Process state. */
2578 	switch (icsk->icsk_ca_state) {
2579 	case TCP_CA_Recovery:
2580 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2581 			if (tcp_is_reno(tp) && is_dupack)
2582 				tcp_add_reno_sack(sk);
2583 		} else
2584 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2585 		break;
2586 	case TCP_CA_Loss:
2587 		if (flag & FLAG_DATA_ACKED)
2588 			icsk->icsk_retransmits = 0;
2589 		if (!tcp_try_undo_loss(sk)) {
2590 			tcp_moderate_cwnd(tp);
2591 			tcp_xmit_retransmit_queue(sk);
2592 			return;
2593 		}
2594 		if (icsk->icsk_ca_state != TCP_CA_Open)
2595 			return;
2596 		/* Loss is undone; fall through to processing in Open state. */
2597 	default:
2598 		if (tcp_is_reno(tp)) {
2599 			if (flag & FLAG_SND_UNA_ADVANCED)
2600 				tcp_reset_reno_sack(tp);
2601 			if (is_dupack)
2602 				tcp_add_reno_sack(sk);
2603 		}
2604 
2605 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2606 			tcp_try_undo_dsack(sk);
2607 
2608 		if (!tcp_time_to_recover(sk)) {
2609 			tcp_try_to_open(sk, flag);
2610 			return;
2611 		}
2612 
2613 		/* MTU probe failure: don't reduce cwnd */
2614 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2615 		    icsk->icsk_mtup.probe_size &&
2616 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2617 			tcp_mtup_probe_failed(sk);
2618 			/* Restores the reduction we did in tcp_mtup_probe() */
2619 			tp->snd_cwnd++;
2620 			tcp_simple_retransmit(sk);
2621 			return;
2622 		}
2623 
2624 		/* Otherwise enter Recovery state */
2625 
2626 		if (tcp_is_reno(tp))
2627 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2628 		else
2629 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2630 
2631 		tp->high_seq = tp->snd_nxt;
2632 		tp->prior_ssthresh = 0;
2633 		tp->undo_marker = tp->snd_una;
2634 		tp->undo_retrans = tp->retrans_out;
2635 
2636 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2637 			if (!(flag & FLAG_ECE))
2638 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2639 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2640 			TCP_ECN_queue_cwr(tp);
2641 		}
2642 
2643 		tp->bytes_acked = 0;
2644 		tp->snd_cwnd_cnt = 0;
2645 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2646 		fast_rexmit = 1;
2647 	}
2648 
2649 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2650 		tcp_update_scoreboard(sk, fast_rexmit);
2651 	tcp_cwnd_down(sk, flag);
2652 	tcp_xmit_retransmit_queue(sk);
2653 }
2654 
2655 /* Read draft-ietf-tcplw-high-performance before mucking
2656  * with this code. (Supersedes RFC1323)
2657  */
2658 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2659 {
2660 	/* RTTM Rule: A TSecr value received in a segment is used to
2661 	 * update the averaged RTT measurement only if the segment
2662 	 * acknowledges some new data, i.e., only if it advances the
2663 	 * left edge of the send window.
2664 	 *
2665 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2666 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2667 	 *
2668 	 * Changed: reset backoff as soon as we see the first valid sample.
2669 	 * If we do not, we get strongly overestimated rto. With timestamps
2670 	 * samples are accepted even from very old segments: f.e., when rtt=1
2671 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2672 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2673 	 * in window is lost... Voila.	 			--ANK (010210)
2674 	 */
2675 	struct tcp_sock *tp = tcp_sk(sk);
2676 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2677 	tcp_rtt_estimator(sk, seq_rtt);
2678 	tcp_set_rto(sk);
2679 	inet_csk(sk)->icsk_backoff = 0;
2680 	tcp_bound_rto(sk);
2681 }
2682 
2683 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2684 {
2685 	/* We don't have a timestamp. Can only use
2686 	 * packets that are not retransmitted to determine
2687 	 * rtt estimates. Also, we must not reset the
2688 	 * backoff for rto until we get a non-retransmitted
2689 	 * packet. This allows us to deal with a situation
2690 	 * where the network delay has increased suddenly.
2691 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2692 	 */
2693 
2694 	if (flag & FLAG_RETRANS_DATA_ACKED)
2695 		return;
2696 
2697 	tcp_rtt_estimator(sk, seq_rtt);
2698 	tcp_set_rto(sk);
2699 	inet_csk(sk)->icsk_backoff = 0;
2700 	tcp_bound_rto(sk);
2701 }
2702 
2703 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2704 				      const s32 seq_rtt)
2705 {
2706 	const struct tcp_sock *tp = tcp_sk(sk);
2707 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2708 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2709 		tcp_ack_saw_tstamp(sk, flag);
2710 	else if (seq_rtt >= 0)
2711 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2712 }
2713 
2714 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2715 {
2716 	const struct inet_connection_sock *icsk = inet_csk(sk);
2717 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2718 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2719 }
2720 
2721 /* Restart timer after forward progress on connection.
2722  * RFC2988 recommends to restart timer to now+rto.
2723  */
2724 static void tcp_rearm_rto(struct sock *sk)
2725 {
2726 	struct tcp_sock *tp = tcp_sk(sk);
2727 
2728 	if (!tp->packets_out) {
2729 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2730 	} else {
2731 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2732 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2733 	}
2734 }
2735 
2736 /* If we get here, the whole TSO packet has not been acked. */
2737 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2738 {
2739 	struct tcp_sock *tp = tcp_sk(sk);
2740 	u32 packets_acked;
2741 
2742 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2743 
2744 	packets_acked = tcp_skb_pcount(skb);
2745 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2746 		return 0;
2747 	packets_acked -= tcp_skb_pcount(skb);
2748 
2749 	if (packets_acked) {
2750 		BUG_ON(tcp_skb_pcount(skb) == 0);
2751 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2752 	}
2753 
2754 	return packets_acked;
2755 }
2756 
2757 /* Remove acknowledged frames from the retransmission queue. If our packet
2758  * is before the ack sequence we can discard it as it's confirmed to have
2759  * arrived at the other end.
2760  */
2761 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2762 {
2763 	struct tcp_sock *tp = tcp_sk(sk);
2764 	const struct inet_connection_sock *icsk = inet_csk(sk);
2765 	struct sk_buff *skb;
2766 	u32 now = tcp_time_stamp;
2767 	int fully_acked = 1;
2768 	int flag = 0;
2769 	u32 pkts_acked = 0;
2770 	u32 reord = tp->packets_out;
2771 	s32 seq_rtt = -1;
2772 	s32 ca_seq_rtt = -1;
2773 	ktime_t last_ackt = net_invalid_timestamp();
2774 
2775 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2776 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2777 		u32 end_seq;
2778 		u32 acked_pcount;
2779 		u8 sacked = scb->sacked;
2780 
2781 		/* Determine how many packets and what bytes were acked, tso and else */
2782 		if (after(scb->end_seq, tp->snd_una)) {
2783 			if (tcp_skb_pcount(skb) == 1 ||
2784 			    !after(tp->snd_una, scb->seq))
2785 				break;
2786 
2787 			acked_pcount = tcp_tso_acked(sk, skb);
2788 			if (!acked_pcount)
2789 				break;
2790 
2791 			fully_acked = 0;
2792 			end_seq = tp->snd_una;
2793 		} else {
2794 			acked_pcount = tcp_skb_pcount(skb);
2795 			end_seq = scb->end_seq;
2796 		}
2797 
2798 		/* MTU probing checks */
2799 		if (fully_acked && icsk->icsk_mtup.probe_size &&
2800 		    !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2801 			tcp_mtup_probe_success(sk, skb);
2802 		}
2803 
2804 		if (sacked & TCPCB_RETRANS) {
2805 			if (sacked & TCPCB_SACKED_RETRANS)
2806 				tp->retrans_out -= acked_pcount;
2807 			flag |= FLAG_RETRANS_DATA_ACKED;
2808 			ca_seq_rtt = -1;
2809 			seq_rtt = -1;
2810 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2811 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
2812 		} else {
2813 			ca_seq_rtt = now - scb->when;
2814 			last_ackt = skb->tstamp;
2815 			if (seq_rtt < 0) {
2816 				seq_rtt = ca_seq_rtt;
2817 			}
2818 			if (!(sacked & TCPCB_SACKED_ACKED))
2819 				reord = min(pkts_acked, reord);
2820 		}
2821 
2822 		if (sacked & TCPCB_SACKED_ACKED)
2823 			tp->sacked_out -= acked_pcount;
2824 		if (sacked & TCPCB_LOST)
2825 			tp->lost_out -= acked_pcount;
2826 
2827 		if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2828 			tp->urg_mode = 0;
2829 
2830 		tp->packets_out -= acked_pcount;
2831 		pkts_acked += acked_pcount;
2832 
2833 		/* Initial outgoing SYN's get put onto the write_queue
2834 		 * just like anything else we transmit.  It is not
2835 		 * true data, and if we misinform our callers that
2836 		 * this ACK acks real data, we will erroneously exit
2837 		 * connection startup slow start one packet too
2838 		 * quickly.  This is severely frowned upon behavior.
2839 		 */
2840 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2841 			flag |= FLAG_DATA_ACKED;
2842 		} else {
2843 			flag |= FLAG_SYN_ACKED;
2844 			tp->retrans_stamp = 0;
2845 		}
2846 
2847 		if (!fully_acked)
2848 			break;
2849 
2850 		tcp_unlink_write_queue(skb, sk);
2851 		sk_wmem_free_skb(sk, skb);
2852 		tcp_clear_all_retrans_hints(tp);
2853 	}
2854 
2855 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2856 		flag |= FLAG_SACK_RENEGING;
2857 
2858 	if (flag & FLAG_ACKED) {
2859 		const struct tcp_congestion_ops *ca_ops
2860 			= inet_csk(sk)->icsk_ca_ops;
2861 
2862 		tcp_ack_update_rtt(sk, flag, seq_rtt);
2863 		tcp_rearm_rto(sk);
2864 
2865 		if (tcp_is_reno(tp)) {
2866 			tcp_remove_reno_sacks(sk, pkts_acked);
2867 		} else {
2868 			/* Non-retransmitted hole got filled? That's reordering */
2869 			if (reord < prior_fackets)
2870 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2871 		}
2872 
2873 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2874 
2875 		if (ca_ops->pkts_acked) {
2876 			s32 rtt_us = -1;
2877 
2878 			/* Is the ACK triggering packet unambiguous? */
2879 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2880 				/* High resolution needed and available? */
2881 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2882 				    !ktime_equal(last_ackt,
2883 						 net_invalid_timestamp()))
2884 					rtt_us = ktime_us_delta(ktime_get_real(),
2885 								last_ackt);
2886 				else if (ca_seq_rtt > 0)
2887 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
2888 			}
2889 
2890 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2891 		}
2892 	}
2893 
2894 #if FASTRETRANS_DEBUG > 0
2895 	BUG_TRAP((int)tp->sacked_out >= 0);
2896 	BUG_TRAP((int)tp->lost_out >= 0);
2897 	BUG_TRAP((int)tp->retrans_out >= 0);
2898 	if (!tp->packets_out && tcp_is_sack(tp)) {
2899 		icsk = inet_csk(sk);
2900 		if (tp->lost_out) {
2901 			printk(KERN_DEBUG "Leak l=%u %d\n",
2902 			       tp->lost_out, icsk->icsk_ca_state);
2903 			tp->lost_out = 0;
2904 		}
2905 		if (tp->sacked_out) {
2906 			printk(KERN_DEBUG "Leak s=%u %d\n",
2907 			       tp->sacked_out, icsk->icsk_ca_state);
2908 			tp->sacked_out = 0;
2909 		}
2910 		if (tp->retrans_out) {
2911 			printk(KERN_DEBUG "Leak r=%u %d\n",
2912 			       tp->retrans_out, icsk->icsk_ca_state);
2913 			tp->retrans_out = 0;
2914 		}
2915 	}
2916 #endif
2917 	return flag;
2918 }
2919 
2920 static void tcp_ack_probe(struct sock *sk)
2921 {
2922 	const struct tcp_sock *tp = tcp_sk(sk);
2923 	struct inet_connection_sock *icsk = inet_csk(sk);
2924 
2925 	/* Was it a usable window open? */
2926 
2927 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2928 		icsk->icsk_backoff = 0;
2929 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2930 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2931 		 * This function is not for random using!
2932 		 */
2933 	} else {
2934 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2935 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2936 					  TCP_RTO_MAX);
2937 	}
2938 }
2939 
2940 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2941 {
2942 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2943 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2944 }
2945 
2946 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2947 {
2948 	const struct tcp_sock *tp = tcp_sk(sk);
2949 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2950 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2951 }
2952 
2953 /* Check that window update is acceptable.
2954  * The function assumes that snd_una<=ack<=snd_next.
2955  */
2956 static inline int tcp_may_update_window(const struct tcp_sock *tp,
2957 					const u32 ack, const u32 ack_seq,
2958 					const u32 nwin)
2959 {
2960 	return (after(ack, tp->snd_una) ||
2961 		after(ack_seq, tp->snd_wl1) ||
2962 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2963 }
2964 
2965 /* Update our send window.
2966  *
2967  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2968  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2969  */
2970 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2971 				 u32 ack_seq)
2972 {
2973 	struct tcp_sock *tp = tcp_sk(sk);
2974 	int flag = 0;
2975 	u32 nwin = ntohs(tcp_hdr(skb)->window);
2976 
2977 	if (likely(!tcp_hdr(skb)->syn))
2978 		nwin <<= tp->rx_opt.snd_wscale;
2979 
2980 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2981 		flag |= FLAG_WIN_UPDATE;
2982 		tcp_update_wl(tp, ack, ack_seq);
2983 
2984 		if (tp->snd_wnd != nwin) {
2985 			tp->snd_wnd = nwin;
2986 
2987 			/* Note, it is the only place, where
2988 			 * fast path is recovered for sending TCP.
2989 			 */
2990 			tp->pred_flags = 0;
2991 			tcp_fast_path_check(sk);
2992 
2993 			if (nwin > tp->max_window) {
2994 				tp->max_window = nwin;
2995 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2996 			}
2997 		}
2998 	}
2999 
3000 	tp->snd_una = ack;
3001 
3002 	return flag;
3003 }
3004 
3005 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3006  * continue in congestion avoidance.
3007  */
3008 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3009 {
3010 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3011 	tp->snd_cwnd_cnt = 0;
3012 	tp->bytes_acked = 0;
3013 	TCP_ECN_queue_cwr(tp);
3014 	tcp_moderate_cwnd(tp);
3015 }
3016 
3017 /* A conservative spurious RTO response algorithm: reduce cwnd using
3018  * rate halving and continue in congestion avoidance.
3019  */
3020 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3021 {
3022 	tcp_enter_cwr(sk, 0);
3023 }
3024 
3025 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3026 {
3027 	if (flag & FLAG_ECE)
3028 		tcp_ratehalving_spur_to_response(sk);
3029 	else
3030 		tcp_undo_cwr(sk, 1);
3031 }
3032 
3033 /* F-RTO spurious RTO detection algorithm (RFC4138)
3034  *
3035  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3036  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3037  * window (but not to or beyond highest sequence sent before RTO):
3038  *   On First ACK,  send two new segments out.
3039  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3040  *                  algorithm is not part of the F-RTO detection algorithm
3041  *                  given in RFC4138 but can be selected separately).
3042  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3043  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3044  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3045  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3046  *
3047  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3048  * original window even after we transmit two new data segments.
3049  *
3050  * SACK version:
3051  *   on first step, wait until first cumulative ACK arrives, then move to
3052  *   the second step. In second step, the next ACK decides.
3053  *
3054  * F-RTO is implemented (mainly) in four functions:
3055  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3056  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3057  *     called when tcp_use_frto() showed green light
3058  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3059  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3060  *     to prove that the RTO is indeed spurious. It transfers the control
3061  *     from F-RTO to the conventional RTO recovery
3062  */
3063 static int tcp_process_frto(struct sock *sk, int flag)
3064 {
3065 	struct tcp_sock *tp = tcp_sk(sk);
3066 
3067 	tcp_verify_left_out(tp);
3068 
3069 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3070 	if (flag & FLAG_DATA_ACKED)
3071 		inet_csk(sk)->icsk_retransmits = 0;
3072 
3073 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3074 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3075 		tp->undo_marker = 0;
3076 
3077 	if (!before(tp->snd_una, tp->frto_highmark)) {
3078 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3079 		return 1;
3080 	}
3081 
3082 	if (!IsSackFrto() || tcp_is_reno(tp)) {
3083 		/* RFC4138 shortcoming in step 2; should also have case c):
3084 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3085 		 * data, winupdate
3086 		 */
3087 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3088 			return 1;
3089 
3090 		if (!(flag & FLAG_DATA_ACKED)) {
3091 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3092 					    flag);
3093 			return 1;
3094 		}
3095 	} else {
3096 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3097 			/* Prevent sending of new data. */
3098 			tp->snd_cwnd = min(tp->snd_cwnd,
3099 					   tcp_packets_in_flight(tp));
3100 			return 1;
3101 		}
3102 
3103 		if ((tp->frto_counter >= 2) &&
3104 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3105 		     ((flag & FLAG_DATA_SACKED) &&
3106 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3107 			/* RFC4138 shortcoming (see comment above) */
3108 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3109 			    (flag & FLAG_NOT_DUP))
3110 				return 1;
3111 
3112 			tcp_enter_frto_loss(sk, 3, flag);
3113 			return 1;
3114 		}
3115 	}
3116 
3117 	if (tp->frto_counter == 1) {
3118 		/* tcp_may_send_now needs to see updated state */
3119 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3120 		tp->frto_counter = 2;
3121 
3122 		if (!tcp_may_send_now(sk))
3123 			tcp_enter_frto_loss(sk, 2, flag);
3124 
3125 		return 1;
3126 	} else {
3127 		switch (sysctl_tcp_frto_response) {
3128 		case 2:
3129 			tcp_undo_spur_to_response(sk, flag);
3130 			break;
3131 		case 1:
3132 			tcp_conservative_spur_to_response(tp);
3133 			break;
3134 		default:
3135 			tcp_ratehalving_spur_to_response(sk);
3136 			break;
3137 		}
3138 		tp->frto_counter = 0;
3139 		tp->undo_marker = 0;
3140 		NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3141 	}
3142 	return 0;
3143 }
3144 
3145 /* This routine deals with incoming acks, but not outgoing ones. */
3146 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3147 {
3148 	struct inet_connection_sock *icsk = inet_csk(sk);
3149 	struct tcp_sock *tp = tcp_sk(sk);
3150 	u32 prior_snd_una = tp->snd_una;
3151 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3152 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3153 	u32 prior_in_flight;
3154 	u32 prior_fackets;
3155 	int prior_packets;
3156 	int frto_cwnd = 0;
3157 
3158 	/* If the ack is newer than sent or older than previous acks
3159 	 * then we can probably ignore it.
3160 	 */
3161 	if (after(ack, tp->snd_nxt))
3162 		goto uninteresting_ack;
3163 
3164 	if (before(ack, prior_snd_una))
3165 		goto old_ack;
3166 
3167 	if (after(ack, prior_snd_una))
3168 		flag |= FLAG_SND_UNA_ADVANCED;
3169 
3170 	if (sysctl_tcp_abc) {
3171 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3172 			tp->bytes_acked += ack - prior_snd_una;
3173 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3174 			/* we assume just one segment left network */
3175 			tp->bytes_acked += min(ack - prior_snd_una,
3176 					       tp->mss_cache);
3177 	}
3178 
3179 	prior_fackets = tp->fackets_out;
3180 	prior_in_flight = tcp_packets_in_flight(tp);
3181 
3182 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3183 		/* Window is constant, pure forward advance.
3184 		 * No more checks are required.
3185 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3186 		 */
3187 		tcp_update_wl(tp, ack, ack_seq);
3188 		tp->snd_una = ack;
3189 		flag |= FLAG_WIN_UPDATE;
3190 
3191 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3192 
3193 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3194 	} else {
3195 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3196 			flag |= FLAG_DATA;
3197 		else
3198 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3199 
3200 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3201 
3202 		if (TCP_SKB_CB(skb)->sacked)
3203 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3204 
3205 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3206 			flag |= FLAG_ECE;
3207 
3208 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3209 	}
3210 
3211 	/* We passed data and got it acked, remove any soft error
3212 	 * log. Something worked...
3213 	 */
3214 	sk->sk_err_soft = 0;
3215 	tp->rcv_tstamp = tcp_time_stamp;
3216 	prior_packets = tp->packets_out;
3217 	if (!prior_packets)
3218 		goto no_queue;
3219 
3220 	/* See if we can take anything off of the retransmit queue. */
3221 	flag |= tcp_clean_rtx_queue(sk, prior_fackets);
3222 
3223 	if (tp->frto_counter)
3224 		frto_cwnd = tcp_process_frto(sk, flag);
3225 	/* Guarantee sacktag reordering detection against wrap-arounds */
3226 	if (before(tp->frto_highmark, tp->snd_una))
3227 		tp->frto_highmark = 0;
3228 
3229 	if (tcp_ack_is_dubious(sk, flag)) {
3230 		/* Advance CWND, if state allows this. */
3231 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3232 		    tcp_may_raise_cwnd(sk, flag))
3233 			tcp_cong_avoid(sk, ack, prior_in_flight);
3234 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3235 				      flag);
3236 	} else {
3237 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3238 			tcp_cong_avoid(sk, ack, prior_in_flight);
3239 	}
3240 
3241 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3242 		dst_confirm(sk->sk_dst_cache);
3243 
3244 	return 1;
3245 
3246 no_queue:
3247 	icsk->icsk_probes_out = 0;
3248 
3249 	/* If this ack opens up a zero window, clear backoff.  It was
3250 	 * being used to time the probes, and is probably far higher than
3251 	 * it needs to be for normal retransmission.
3252 	 */
3253 	if (tcp_send_head(sk))
3254 		tcp_ack_probe(sk);
3255 	return 1;
3256 
3257 old_ack:
3258 	if (TCP_SKB_CB(skb)->sacked)
3259 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3260 
3261 uninteresting_ack:
3262 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3263 	return 0;
3264 }
3265 
3266 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3267  * But, this can also be called on packets in the established flow when
3268  * the fast version below fails.
3269  */
3270 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3271 		       int estab)
3272 {
3273 	unsigned char *ptr;
3274 	struct tcphdr *th = tcp_hdr(skb);
3275 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3276 
3277 	ptr = (unsigned char *)(th + 1);
3278 	opt_rx->saw_tstamp = 0;
3279 
3280 	while (length > 0) {
3281 		int opcode = *ptr++;
3282 		int opsize;
3283 
3284 		switch (opcode) {
3285 		case TCPOPT_EOL:
3286 			return;
3287 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3288 			length--;
3289 			continue;
3290 		default:
3291 			opsize = *ptr++;
3292 			if (opsize < 2) /* "silly options" */
3293 				return;
3294 			if (opsize > length)
3295 				return;	/* don't parse partial options */
3296 			switch (opcode) {
3297 			case TCPOPT_MSS:
3298 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3299 					u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3300 					if (in_mss) {
3301 						if (opt_rx->user_mss &&
3302 						    opt_rx->user_mss < in_mss)
3303 							in_mss = opt_rx->user_mss;
3304 						opt_rx->mss_clamp = in_mss;
3305 					}
3306 				}
3307 				break;
3308 			case TCPOPT_WINDOW:
3309 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3310 				    !estab && sysctl_tcp_window_scaling) {
3311 					__u8 snd_wscale = *(__u8 *)ptr;
3312 					opt_rx->wscale_ok = 1;
3313 					if (snd_wscale > 14) {
3314 						if (net_ratelimit())
3315 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3316 							       "scaling value %d >14 received.\n",
3317 							       snd_wscale);
3318 						snd_wscale = 14;
3319 					}
3320 					opt_rx->snd_wscale = snd_wscale;
3321 				}
3322 				break;
3323 			case TCPOPT_TIMESTAMP:
3324 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3325 				    ((estab && opt_rx->tstamp_ok) ||
3326 				     (!estab && sysctl_tcp_timestamps))) {
3327 					opt_rx->saw_tstamp = 1;
3328 					opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3329 					opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3330 				}
3331 				break;
3332 			case TCPOPT_SACK_PERM:
3333 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3334 				    !estab && sysctl_tcp_sack) {
3335 					opt_rx->sack_ok = 1;
3336 					tcp_sack_reset(opt_rx);
3337 				}
3338 				break;
3339 
3340 			case TCPOPT_SACK:
3341 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3342 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3343 				   opt_rx->sack_ok) {
3344 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3345 				}
3346 				break;
3347 #ifdef CONFIG_TCP_MD5SIG
3348 			case TCPOPT_MD5SIG:
3349 				/*
3350 				 * The MD5 Hash has already been
3351 				 * checked (see tcp_v{4,6}_do_rcv()).
3352 				 */
3353 				break;
3354 #endif
3355 			}
3356 
3357 			ptr += opsize-2;
3358 			length -= opsize;
3359 		}
3360 	}
3361 }
3362 
3363 /* Fast parse options. This hopes to only see timestamps.
3364  * If it is wrong it falls back on tcp_parse_options().
3365  */
3366 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3367 				  struct tcp_sock *tp)
3368 {
3369 	if (th->doff == sizeof(struct tcphdr) >> 2) {
3370 		tp->rx_opt.saw_tstamp = 0;
3371 		return 0;
3372 	} else if (tp->rx_opt.tstamp_ok &&
3373 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3374 		__be32 *ptr = (__be32 *)(th + 1);
3375 		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3376 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3377 			tp->rx_opt.saw_tstamp = 1;
3378 			++ptr;
3379 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3380 			++ptr;
3381 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3382 			return 1;
3383 		}
3384 	}
3385 	tcp_parse_options(skb, &tp->rx_opt, 1);
3386 	return 1;
3387 }
3388 
3389 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3390 {
3391 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3392 	tp->rx_opt.ts_recent_stamp = get_seconds();
3393 }
3394 
3395 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3396 {
3397 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3398 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3399 		 * extra check below makes sure this can only happen
3400 		 * for pure ACK frames.  -DaveM
3401 		 *
3402 		 * Not only, also it occurs for expired timestamps.
3403 		 */
3404 
3405 		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3406 		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3407 			tcp_store_ts_recent(tp);
3408 	}
3409 }
3410 
3411 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3412  *
3413  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3414  * it can pass through stack. So, the following predicate verifies that
3415  * this segment is not used for anything but congestion avoidance or
3416  * fast retransmit. Moreover, we even are able to eliminate most of such
3417  * second order effects, if we apply some small "replay" window (~RTO)
3418  * to timestamp space.
3419  *
3420  * All these measures still do not guarantee that we reject wrapped ACKs
3421  * on networks with high bandwidth, when sequence space is recycled fastly,
3422  * but it guarantees that such events will be very rare and do not affect
3423  * connection seriously. This doesn't look nice, but alas, PAWS is really
3424  * buggy extension.
3425  *
3426  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3427  * states that events when retransmit arrives after original data are rare.
3428  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3429  * the biggest problem on large power networks even with minor reordering.
3430  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3431  * up to bandwidth of 18Gigabit/sec. 8) ]
3432  */
3433 
3434 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3435 {
3436 	struct tcp_sock *tp = tcp_sk(sk);
3437 	struct tcphdr *th = tcp_hdr(skb);
3438 	u32 seq = TCP_SKB_CB(skb)->seq;
3439 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3440 
3441 	return (/* 1. Pure ACK with correct sequence number. */
3442 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3443 
3444 		/* 2. ... and duplicate ACK. */
3445 		ack == tp->snd_una &&
3446 
3447 		/* 3. ... and does not update window. */
3448 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3449 
3450 		/* 4. ... and sits in replay window. */
3451 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3452 }
3453 
3454 static inline int tcp_paws_discard(const struct sock *sk,
3455 				   const struct sk_buff *skb)
3456 {
3457 	const struct tcp_sock *tp = tcp_sk(sk);
3458 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3459 		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3460 		!tcp_disordered_ack(sk, skb));
3461 }
3462 
3463 /* Check segment sequence number for validity.
3464  *
3465  * Segment controls are considered valid, if the segment
3466  * fits to the window after truncation to the window. Acceptability
3467  * of data (and SYN, FIN, of course) is checked separately.
3468  * See tcp_data_queue(), for example.
3469  *
3470  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3471  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3472  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3473  * (borrowed from freebsd)
3474  */
3475 
3476 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3477 {
3478 	return	!before(end_seq, tp->rcv_wup) &&
3479 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3480 }
3481 
3482 /* When we get a reset we do this. */
3483 static void tcp_reset(struct sock *sk)
3484 {
3485 	/* We want the right error as BSD sees it (and indeed as we do). */
3486 	switch (sk->sk_state) {
3487 	case TCP_SYN_SENT:
3488 		sk->sk_err = ECONNREFUSED;
3489 		break;
3490 	case TCP_CLOSE_WAIT:
3491 		sk->sk_err = EPIPE;
3492 		break;
3493 	case TCP_CLOSE:
3494 		return;
3495 	default:
3496 		sk->sk_err = ECONNRESET;
3497 	}
3498 
3499 	if (!sock_flag(sk, SOCK_DEAD))
3500 		sk->sk_error_report(sk);
3501 
3502 	tcp_done(sk);
3503 }
3504 
3505 /*
3506  * 	Process the FIN bit. This now behaves as it is supposed to work
3507  *	and the FIN takes effect when it is validly part of sequence
3508  *	space. Not before when we get holes.
3509  *
3510  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3511  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3512  *	TIME-WAIT)
3513  *
3514  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3515  *	close and we go into CLOSING (and later onto TIME-WAIT)
3516  *
3517  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3518  */
3519 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3520 {
3521 	struct tcp_sock *tp = tcp_sk(sk);
3522 
3523 	inet_csk_schedule_ack(sk);
3524 
3525 	sk->sk_shutdown |= RCV_SHUTDOWN;
3526 	sock_set_flag(sk, SOCK_DONE);
3527 
3528 	switch (sk->sk_state) {
3529 	case TCP_SYN_RECV:
3530 	case TCP_ESTABLISHED:
3531 		/* Move to CLOSE_WAIT */
3532 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3533 		inet_csk(sk)->icsk_ack.pingpong = 1;
3534 		break;
3535 
3536 	case TCP_CLOSE_WAIT:
3537 	case TCP_CLOSING:
3538 		/* Received a retransmission of the FIN, do
3539 		 * nothing.
3540 		 */
3541 		break;
3542 	case TCP_LAST_ACK:
3543 		/* RFC793: Remain in the LAST-ACK state. */
3544 		break;
3545 
3546 	case TCP_FIN_WAIT1:
3547 		/* This case occurs when a simultaneous close
3548 		 * happens, we must ack the received FIN and
3549 		 * enter the CLOSING state.
3550 		 */
3551 		tcp_send_ack(sk);
3552 		tcp_set_state(sk, TCP_CLOSING);
3553 		break;
3554 	case TCP_FIN_WAIT2:
3555 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3556 		tcp_send_ack(sk);
3557 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3558 		break;
3559 	default:
3560 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3561 		 * cases we should never reach this piece of code.
3562 		 */
3563 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3564 		       __FUNCTION__, sk->sk_state);
3565 		break;
3566 	}
3567 
3568 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3569 	 * Probably, we should reset in this case. For now drop them.
3570 	 */
3571 	__skb_queue_purge(&tp->out_of_order_queue);
3572 	if (tcp_is_sack(tp))
3573 		tcp_sack_reset(&tp->rx_opt);
3574 	sk_mem_reclaim(sk);
3575 
3576 	if (!sock_flag(sk, SOCK_DEAD)) {
3577 		sk->sk_state_change(sk);
3578 
3579 		/* Do not send POLL_HUP for half duplex close. */
3580 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3581 		    sk->sk_state == TCP_CLOSE)
3582 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3583 		else
3584 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3585 	}
3586 }
3587 
3588 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3589 				  u32 end_seq)
3590 {
3591 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3592 		if (before(seq, sp->start_seq))
3593 			sp->start_seq = seq;
3594 		if (after(end_seq, sp->end_seq))
3595 			sp->end_seq = end_seq;
3596 		return 1;
3597 	}
3598 	return 0;
3599 }
3600 
3601 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3602 {
3603 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3604 		if (before(seq, tp->rcv_nxt))
3605 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3606 		else
3607 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3608 
3609 		tp->rx_opt.dsack = 1;
3610 		tp->duplicate_sack[0].start_seq = seq;
3611 		tp->duplicate_sack[0].end_seq = end_seq;
3612 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1,
3613 					   4 - tp->rx_opt.tstamp_ok);
3614 	}
3615 }
3616 
3617 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3618 {
3619 	if (!tp->rx_opt.dsack)
3620 		tcp_dsack_set(tp, seq, end_seq);
3621 	else
3622 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3623 }
3624 
3625 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3626 {
3627 	struct tcp_sock *tp = tcp_sk(sk);
3628 
3629 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3630 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3631 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3632 		tcp_enter_quickack_mode(sk);
3633 
3634 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3635 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3636 
3637 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3638 				end_seq = tp->rcv_nxt;
3639 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3640 		}
3641 	}
3642 
3643 	tcp_send_ack(sk);
3644 }
3645 
3646 /* These routines update the SACK block as out-of-order packets arrive or
3647  * in-order packets close up the sequence space.
3648  */
3649 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3650 {
3651 	int this_sack;
3652 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3653 	struct tcp_sack_block *swalk = sp + 1;
3654 
3655 	/* See if the recent change to the first SACK eats into
3656 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3657 	 */
3658 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3659 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3660 			int i;
3661 
3662 			/* Zap SWALK, by moving every further SACK up by one slot.
3663 			 * Decrease num_sacks.
3664 			 */
3665 			tp->rx_opt.num_sacks--;
3666 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3667 						   tp->rx_opt.dsack,
3668 						   4 - tp->rx_opt.tstamp_ok);
3669 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3670 				sp[i] = sp[i + 1];
3671 			continue;
3672 		}
3673 		this_sack++, swalk++;
3674 	}
3675 }
3676 
3677 static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
3678 				 struct tcp_sack_block *sack2)
3679 {
3680 	__u32 tmp;
3681 
3682 	tmp = sack1->start_seq;
3683 	sack1->start_seq = sack2->start_seq;
3684 	sack2->start_seq = tmp;
3685 
3686 	tmp = sack1->end_seq;
3687 	sack1->end_seq = sack2->end_seq;
3688 	sack2->end_seq = tmp;
3689 }
3690 
3691 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3692 {
3693 	struct tcp_sock *tp = tcp_sk(sk);
3694 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3695 	int cur_sacks = tp->rx_opt.num_sacks;
3696 	int this_sack;
3697 
3698 	if (!cur_sacks)
3699 		goto new_sack;
3700 
3701 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3702 		if (tcp_sack_extend(sp, seq, end_seq)) {
3703 			/* Rotate this_sack to the first one. */
3704 			for (; this_sack > 0; this_sack--, sp--)
3705 				tcp_sack_swap(sp, sp - 1);
3706 			if (cur_sacks > 1)
3707 				tcp_sack_maybe_coalesce(tp);
3708 			return;
3709 		}
3710 	}
3711 
3712 	/* Could not find an adjacent existing SACK, build a new one,
3713 	 * put it at the front, and shift everyone else down.  We
3714 	 * always know there is at least one SACK present already here.
3715 	 *
3716 	 * If the sack array is full, forget about the last one.
3717 	 */
3718 	if (this_sack >= 4) {
3719 		this_sack--;
3720 		tp->rx_opt.num_sacks--;
3721 		sp--;
3722 	}
3723 	for (; this_sack > 0; this_sack--, sp--)
3724 		*sp = *(sp - 1);
3725 
3726 new_sack:
3727 	/* Build the new head SACK, and we're done. */
3728 	sp->start_seq = seq;
3729 	sp->end_seq = end_seq;
3730 	tp->rx_opt.num_sacks++;
3731 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack,
3732 				   4 - tp->rx_opt.tstamp_ok);
3733 }
3734 
3735 /* RCV.NXT advances, some SACKs should be eaten. */
3736 
3737 static void tcp_sack_remove(struct tcp_sock *tp)
3738 {
3739 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3740 	int num_sacks = tp->rx_opt.num_sacks;
3741 	int this_sack;
3742 
3743 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3744 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3745 		tp->rx_opt.num_sacks = 0;
3746 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3747 		return;
3748 	}
3749 
3750 	for (this_sack = 0; this_sack < num_sacks;) {
3751 		/* Check if the start of the sack is covered by RCV.NXT. */
3752 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3753 			int i;
3754 
3755 			/* RCV.NXT must cover all the block! */
3756 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3757 
3758 			/* Zap this SACK, by moving forward any other SACKS. */
3759 			for (i=this_sack+1; i < num_sacks; i++)
3760 				tp->selective_acks[i-1] = tp->selective_acks[i];
3761 			num_sacks--;
3762 			continue;
3763 		}
3764 		this_sack++;
3765 		sp++;
3766 	}
3767 	if (num_sacks != tp->rx_opt.num_sacks) {
3768 		tp->rx_opt.num_sacks = num_sacks;
3769 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks +
3770 					   tp->rx_opt.dsack,
3771 					   4 - tp->rx_opt.tstamp_ok);
3772 	}
3773 }
3774 
3775 /* This one checks to see if we can put data from the
3776  * out_of_order queue into the receive_queue.
3777  */
3778 static void tcp_ofo_queue(struct sock *sk)
3779 {
3780 	struct tcp_sock *tp = tcp_sk(sk);
3781 	__u32 dsack_high = tp->rcv_nxt;
3782 	struct sk_buff *skb;
3783 
3784 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3785 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3786 			break;
3787 
3788 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3789 			__u32 dsack = dsack_high;
3790 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3791 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3792 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3793 		}
3794 
3795 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3796 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3797 			__skb_unlink(skb, &tp->out_of_order_queue);
3798 			__kfree_skb(skb);
3799 			continue;
3800 		}
3801 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3802 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3803 			   TCP_SKB_CB(skb)->end_seq);
3804 
3805 		__skb_unlink(skb, &tp->out_of_order_queue);
3806 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3807 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3808 		if (tcp_hdr(skb)->fin)
3809 			tcp_fin(skb, sk, tcp_hdr(skb));
3810 	}
3811 }
3812 
3813 static int tcp_prune_queue(struct sock *sk);
3814 
3815 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3816 {
3817 	struct tcphdr *th = tcp_hdr(skb);
3818 	struct tcp_sock *tp = tcp_sk(sk);
3819 	int eaten = -1;
3820 
3821 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3822 		goto drop;
3823 
3824 	__skb_pull(skb, th->doff * 4);
3825 
3826 	TCP_ECN_accept_cwr(tp, skb);
3827 
3828 	if (tp->rx_opt.dsack) {
3829 		tp->rx_opt.dsack = 0;
3830 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3831 					     4 - tp->rx_opt.tstamp_ok);
3832 	}
3833 
3834 	/*  Queue data for delivery to the user.
3835 	 *  Packets in sequence go to the receive queue.
3836 	 *  Out of sequence packets to the out_of_order_queue.
3837 	 */
3838 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3839 		if (tcp_receive_window(tp) == 0)
3840 			goto out_of_window;
3841 
3842 		/* Ok. In sequence. In window. */
3843 		if (tp->ucopy.task == current &&
3844 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3845 		    sock_owned_by_user(sk) && !tp->urg_data) {
3846 			int chunk = min_t(unsigned int, skb->len,
3847 					  tp->ucopy.len);
3848 
3849 			__set_current_state(TASK_RUNNING);
3850 
3851 			local_bh_enable();
3852 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3853 				tp->ucopy.len -= chunk;
3854 				tp->copied_seq += chunk;
3855 				eaten = (chunk == skb->len && !th->fin);
3856 				tcp_rcv_space_adjust(sk);
3857 			}
3858 			local_bh_disable();
3859 		}
3860 
3861 		if (eaten <= 0) {
3862 queue_and_out:
3863 			if (eaten < 0 &&
3864 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3865 			     !sk_rmem_schedule(sk, skb->truesize))) {
3866 				if (tcp_prune_queue(sk) < 0 ||
3867 				    !sk_rmem_schedule(sk, skb->truesize))
3868 					goto drop;
3869 			}
3870 			skb_set_owner_r(skb, sk);
3871 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3872 		}
3873 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3874 		if (skb->len)
3875 			tcp_event_data_recv(sk, skb);
3876 		if (th->fin)
3877 			tcp_fin(skb, sk, th);
3878 
3879 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3880 			tcp_ofo_queue(sk);
3881 
3882 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3883 			 * gap in queue is filled.
3884 			 */
3885 			if (skb_queue_empty(&tp->out_of_order_queue))
3886 				inet_csk(sk)->icsk_ack.pingpong = 0;
3887 		}
3888 
3889 		if (tp->rx_opt.num_sacks)
3890 			tcp_sack_remove(tp);
3891 
3892 		tcp_fast_path_check(sk);
3893 
3894 		if (eaten > 0)
3895 			__kfree_skb(skb);
3896 		else if (!sock_flag(sk, SOCK_DEAD))
3897 			sk->sk_data_ready(sk, 0);
3898 		return;
3899 	}
3900 
3901 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3902 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3903 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3904 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3905 
3906 out_of_window:
3907 		tcp_enter_quickack_mode(sk);
3908 		inet_csk_schedule_ack(sk);
3909 drop:
3910 		__kfree_skb(skb);
3911 		return;
3912 	}
3913 
3914 	/* Out of window. F.e. zero window probe. */
3915 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3916 		goto out_of_window;
3917 
3918 	tcp_enter_quickack_mode(sk);
3919 
3920 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3921 		/* Partial packet, seq < rcv_next < end_seq */
3922 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3923 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3924 			   TCP_SKB_CB(skb)->end_seq);
3925 
3926 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3927 
3928 		/* If window is closed, drop tail of packet. But after
3929 		 * remembering D-SACK for its head made in previous line.
3930 		 */
3931 		if (!tcp_receive_window(tp))
3932 			goto out_of_window;
3933 		goto queue_and_out;
3934 	}
3935 
3936 	TCP_ECN_check_ce(tp, skb);
3937 
3938 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3939 	    !sk_rmem_schedule(sk, skb->truesize)) {
3940 		if (tcp_prune_queue(sk) < 0 ||
3941 		    !sk_rmem_schedule(sk, skb->truesize))
3942 			goto drop;
3943 	}
3944 
3945 	/* Disable header prediction. */
3946 	tp->pred_flags = 0;
3947 	inet_csk_schedule_ack(sk);
3948 
3949 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3950 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3951 
3952 	skb_set_owner_r(skb, sk);
3953 
3954 	if (!skb_peek(&tp->out_of_order_queue)) {
3955 		/* Initial out of order segment, build 1 SACK. */
3956 		if (tcp_is_sack(tp)) {
3957 			tp->rx_opt.num_sacks = 1;
3958 			tp->rx_opt.dsack     = 0;
3959 			tp->rx_opt.eff_sacks = 1;
3960 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3961 			tp->selective_acks[0].end_seq =
3962 						TCP_SKB_CB(skb)->end_seq;
3963 		}
3964 		__skb_queue_head(&tp->out_of_order_queue, skb);
3965 	} else {
3966 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3967 		u32 seq = TCP_SKB_CB(skb)->seq;
3968 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3969 
3970 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3971 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3972 
3973 			if (!tp->rx_opt.num_sacks ||
3974 			    tp->selective_acks[0].end_seq != seq)
3975 				goto add_sack;
3976 
3977 			/* Common case: data arrive in order after hole. */
3978 			tp->selective_acks[0].end_seq = end_seq;
3979 			return;
3980 		}
3981 
3982 		/* Find place to insert this segment. */
3983 		do {
3984 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3985 				break;
3986 		} while ((skb1 = skb1->prev) !=
3987 			 (struct sk_buff *)&tp->out_of_order_queue);
3988 
3989 		/* Do skb overlap to previous one? */
3990 		if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
3991 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3992 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3993 				/* All the bits are present. Drop. */
3994 				__kfree_skb(skb);
3995 				tcp_dsack_set(tp, seq, end_seq);
3996 				goto add_sack;
3997 			}
3998 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3999 				/* Partial overlap. */
4000 				tcp_dsack_set(tp, seq,
4001 					      TCP_SKB_CB(skb1)->end_seq);
4002 			} else {
4003 				skb1 = skb1->prev;
4004 			}
4005 		}
4006 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
4007 
4008 		/* And clean segments covered by new one as whole. */
4009 		while ((skb1 = skb->next) !=
4010 		       (struct sk_buff *)&tp->out_of_order_queue &&
4011 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
4012 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4013 				tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4014 						 end_seq);
4015 				break;
4016 			}
4017 			__skb_unlink(skb1, &tp->out_of_order_queue);
4018 			tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq,
4019 					 TCP_SKB_CB(skb1)->end_seq);
4020 			__kfree_skb(skb1);
4021 		}
4022 
4023 add_sack:
4024 		if (tcp_is_sack(tp))
4025 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4026 	}
4027 }
4028 
4029 /* Collapse contiguous sequence of skbs head..tail with
4030  * sequence numbers start..end.
4031  * Segments with FIN/SYN are not collapsed (only because this
4032  * simplifies code)
4033  */
4034 static void
4035 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4036 	     struct sk_buff *head, struct sk_buff *tail,
4037 	     u32 start, u32 end)
4038 {
4039 	struct sk_buff *skb;
4040 
4041 	/* First, check that queue is collapsible and find
4042 	 * the point where collapsing can be useful. */
4043 	for (skb = head; skb != tail;) {
4044 		/* No new bits? It is possible on ofo queue. */
4045 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4046 			struct sk_buff *next = skb->next;
4047 			__skb_unlink(skb, list);
4048 			__kfree_skb(skb);
4049 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4050 			skb = next;
4051 			continue;
4052 		}
4053 
4054 		/* The first skb to collapse is:
4055 		 * - not SYN/FIN and
4056 		 * - bloated or contains data before "start" or
4057 		 *   overlaps to the next one.
4058 		 */
4059 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4060 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4061 		     before(TCP_SKB_CB(skb)->seq, start) ||
4062 		     (skb->next != tail &&
4063 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
4064 			break;
4065 
4066 		/* Decided to skip this, advance start seq. */
4067 		start = TCP_SKB_CB(skb)->end_seq;
4068 		skb = skb->next;
4069 	}
4070 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4071 		return;
4072 
4073 	while (before(start, end)) {
4074 		struct sk_buff *nskb;
4075 		unsigned int header = skb_headroom(skb);
4076 		int copy = SKB_MAX_ORDER(header, 0);
4077 
4078 		/* Too big header? This can happen with IPv6. */
4079 		if (copy < 0)
4080 			return;
4081 		if (end - start < copy)
4082 			copy = end - start;
4083 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4084 		if (!nskb)
4085 			return;
4086 
4087 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4088 		skb_set_network_header(nskb, (skb_network_header(skb) -
4089 					      skb->head));
4090 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4091 						skb->head));
4092 		skb_reserve(nskb, header);
4093 		memcpy(nskb->head, skb->head, header);
4094 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4095 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4096 		__skb_insert(nskb, skb->prev, skb, list);
4097 		skb_set_owner_r(nskb, sk);
4098 
4099 		/* Copy data, releasing collapsed skbs. */
4100 		while (copy > 0) {
4101 			int offset = start - TCP_SKB_CB(skb)->seq;
4102 			int size = TCP_SKB_CB(skb)->end_seq - start;
4103 
4104 			BUG_ON(offset < 0);
4105 			if (size > 0) {
4106 				size = min(copy, size);
4107 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4108 					BUG();
4109 				TCP_SKB_CB(nskb)->end_seq += size;
4110 				copy -= size;
4111 				start += size;
4112 			}
4113 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4114 				struct sk_buff *next = skb->next;
4115 				__skb_unlink(skb, list);
4116 				__kfree_skb(skb);
4117 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
4118 				skb = next;
4119 				if (skb == tail ||
4120 				    tcp_hdr(skb)->syn ||
4121 				    tcp_hdr(skb)->fin)
4122 					return;
4123 			}
4124 		}
4125 	}
4126 }
4127 
4128 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4129  * and tcp_collapse() them until all the queue is collapsed.
4130  */
4131 static void tcp_collapse_ofo_queue(struct sock *sk)
4132 {
4133 	struct tcp_sock *tp = tcp_sk(sk);
4134 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4135 	struct sk_buff *head;
4136 	u32 start, end;
4137 
4138 	if (skb == NULL)
4139 		return;
4140 
4141 	start = TCP_SKB_CB(skb)->seq;
4142 	end = TCP_SKB_CB(skb)->end_seq;
4143 	head = skb;
4144 
4145 	for (;;) {
4146 		skb = skb->next;
4147 
4148 		/* Segment is terminated when we see gap or when
4149 		 * we are at the end of all the queue. */
4150 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4151 		    after(TCP_SKB_CB(skb)->seq, end) ||
4152 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4153 			tcp_collapse(sk, &tp->out_of_order_queue,
4154 				     head, skb, start, end);
4155 			head = skb;
4156 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4157 				break;
4158 			/* Start new segment */
4159 			start = TCP_SKB_CB(skb)->seq;
4160 			end = TCP_SKB_CB(skb)->end_seq;
4161 		} else {
4162 			if (before(TCP_SKB_CB(skb)->seq, start))
4163 				start = TCP_SKB_CB(skb)->seq;
4164 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4165 				end = TCP_SKB_CB(skb)->end_seq;
4166 		}
4167 	}
4168 }
4169 
4170 /* Reduce allocated memory if we can, trying to get
4171  * the socket within its memory limits again.
4172  *
4173  * Return less than zero if we should start dropping frames
4174  * until the socket owning process reads some of the data
4175  * to stabilize the situation.
4176  */
4177 static int tcp_prune_queue(struct sock *sk)
4178 {
4179 	struct tcp_sock *tp = tcp_sk(sk);
4180 
4181 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4182 
4183 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4184 
4185 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4186 		tcp_clamp_window(sk);
4187 	else if (tcp_memory_pressure)
4188 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4189 
4190 	tcp_collapse_ofo_queue(sk);
4191 	tcp_collapse(sk, &sk->sk_receive_queue,
4192 		     sk->sk_receive_queue.next,
4193 		     (struct sk_buff *)&sk->sk_receive_queue,
4194 		     tp->copied_seq, tp->rcv_nxt);
4195 	sk_mem_reclaim(sk);
4196 
4197 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4198 		return 0;
4199 
4200 	/* Collapsing did not help, destructive actions follow.
4201 	 * This must not ever occur. */
4202 
4203 	/* First, purge the out_of_order queue. */
4204 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4205 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4206 		__skb_queue_purge(&tp->out_of_order_queue);
4207 
4208 		/* Reset SACK state.  A conforming SACK implementation will
4209 		 * do the same at a timeout based retransmit.  When a connection
4210 		 * is in a sad state like this, we care only about integrity
4211 		 * of the connection not performance.
4212 		 */
4213 		if (tcp_is_sack(tp))
4214 			tcp_sack_reset(&tp->rx_opt);
4215 		sk_mem_reclaim(sk);
4216 	}
4217 
4218 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4219 		return 0;
4220 
4221 	/* If we are really being abused, tell the caller to silently
4222 	 * drop receive data on the floor.  It will get retransmitted
4223 	 * and hopefully then we'll have sufficient space.
4224 	 */
4225 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4226 
4227 	/* Massive buffer overcommit. */
4228 	tp->pred_flags = 0;
4229 	return -1;
4230 }
4231 
4232 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4233  * As additional protections, we do not touch cwnd in retransmission phases,
4234  * and if application hit its sndbuf limit recently.
4235  */
4236 void tcp_cwnd_application_limited(struct sock *sk)
4237 {
4238 	struct tcp_sock *tp = tcp_sk(sk);
4239 
4240 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4241 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4242 		/* Limited by application or receiver window. */
4243 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4244 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4245 		if (win_used < tp->snd_cwnd) {
4246 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4247 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4248 		}
4249 		tp->snd_cwnd_used = 0;
4250 	}
4251 	tp->snd_cwnd_stamp = tcp_time_stamp;
4252 }
4253 
4254 static int tcp_should_expand_sndbuf(struct sock *sk)
4255 {
4256 	struct tcp_sock *tp = tcp_sk(sk);
4257 
4258 	/* If the user specified a specific send buffer setting, do
4259 	 * not modify it.
4260 	 */
4261 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4262 		return 0;
4263 
4264 	/* If we are under global TCP memory pressure, do not expand.  */
4265 	if (tcp_memory_pressure)
4266 		return 0;
4267 
4268 	/* If we are under soft global TCP memory pressure, do not expand.  */
4269 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4270 		return 0;
4271 
4272 	/* If we filled the congestion window, do not expand.  */
4273 	if (tp->packets_out >= tp->snd_cwnd)
4274 		return 0;
4275 
4276 	return 1;
4277 }
4278 
4279 /* When incoming ACK allowed to free some skb from write_queue,
4280  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4281  * on the exit from tcp input handler.
4282  *
4283  * PROBLEM: sndbuf expansion does not work well with largesend.
4284  */
4285 static void tcp_new_space(struct sock *sk)
4286 {
4287 	struct tcp_sock *tp = tcp_sk(sk);
4288 
4289 	if (tcp_should_expand_sndbuf(sk)) {
4290 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4291 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4292 		    demanded = max_t(unsigned int, tp->snd_cwnd,
4293 				     tp->reordering + 1);
4294 		sndmem *= 2 * demanded;
4295 		if (sndmem > sk->sk_sndbuf)
4296 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4297 		tp->snd_cwnd_stamp = tcp_time_stamp;
4298 	}
4299 
4300 	sk->sk_write_space(sk);
4301 }
4302 
4303 static void tcp_check_space(struct sock *sk)
4304 {
4305 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4306 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4307 		if (sk->sk_socket &&
4308 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4309 			tcp_new_space(sk);
4310 	}
4311 }
4312 
4313 static inline void tcp_data_snd_check(struct sock *sk)
4314 {
4315 	tcp_push_pending_frames(sk);
4316 	tcp_check_space(sk);
4317 }
4318 
4319 /*
4320  * Check if sending an ack is needed.
4321  */
4322 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4323 {
4324 	struct tcp_sock *tp = tcp_sk(sk);
4325 
4326 	    /* More than one full frame received... */
4327 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4328 	     /* ... and right edge of window advances far enough.
4329 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4330 	      */
4331 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4332 	    /* We ACK each frame or... */
4333 	    tcp_in_quickack_mode(sk) ||
4334 	    /* We have out of order data. */
4335 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4336 		/* Then ack it now */
4337 		tcp_send_ack(sk);
4338 	} else {
4339 		/* Else, send delayed ack. */
4340 		tcp_send_delayed_ack(sk);
4341 	}
4342 }
4343 
4344 static inline void tcp_ack_snd_check(struct sock *sk)
4345 {
4346 	if (!inet_csk_ack_scheduled(sk)) {
4347 		/* We sent a data segment already. */
4348 		return;
4349 	}
4350 	__tcp_ack_snd_check(sk, 1);
4351 }
4352 
4353 /*
4354  *	This routine is only called when we have urgent data
4355  *	signaled. Its the 'slow' part of tcp_urg. It could be
4356  *	moved inline now as tcp_urg is only called from one
4357  *	place. We handle URGent data wrong. We have to - as
4358  *	BSD still doesn't use the correction from RFC961.
4359  *	For 1003.1g we should support a new option TCP_STDURG to permit
4360  *	either form (or just set the sysctl tcp_stdurg).
4361  */
4362 
4363 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4364 {
4365 	struct tcp_sock *tp = tcp_sk(sk);
4366 	u32 ptr = ntohs(th->urg_ptr);
4367 
4368 	if (ptr && !sysctl_tcp_stdurg)
4369 		ptr--;
4370 	ptr += ntohl(th->seq);
4371 
4372 	/* Ignore urgent data that we've already seen and read. */
4373 	if (after(tp->copied_seq, ptr))
4374 		return;
4375 
4376 	/* Do not replay urg ptr.
4377 	 *
4378 	 * NOTE: interesting situation not covered by specs.
4379 	 * Misbehaving sender may send urg ptr, pointing to segment,
4380 	 * which we already have in ofo queue. We are not able to fetch
4381 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4382 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4383 	 * situations. But it is worth to think about possibility of some
4384 	 * DoSes using some hypothetical application level deadlock.
4385 	 */
4386 	if (before(ptr, tp->rcv_nxt))
4387 		return;
4388 
4389 	/* Do we already have a newer (or duplicate) urgent pointer? */
4390 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4391 		return;
4392 
4393 	/* Tell the world about our new urgent pointer. */
4394 	sk_send_sigurg(sk);
4395 
4396 	/* We may be adding urgent data when the last byte read was
4397 	 * urgent. To do this requires some care. We cannot just ignore
4398 	 * tp->copied_seq since we would read the last urgent byte again
4399 	 * as data, nor can we alter copied_seq until this data arrives
4400 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4401 	 *
4402 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4403 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4404 	 * and expect that both A and B disappear from stream. This is _wrong_.
4405 	 * Though this happens in BSD with high probability, this is occasional.
4406 	 * Any application relying on this is buggy. Note also, that fix "works"
4407 	 * only in this artificial test. Insert some normal data between A and B and we will
4408 	 * decline of BSD again. Verdict: it is better to remove to trap
4409 	 * buggy users.
4410 	 */
4411 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4412 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4413 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4414 		tp->copied_seq++;
4415 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4416 			__skb_unlink(skb, &sk->sk_receive_queue);
4417 			__kfree_skb(skb);
4418 		}
4419 	}
4420 
4421 	tp->urg_data = TCP_URG_NOTYET;
4422 	tp->urg_seq = ptr;
4423 
4424 	/* Disable header prediction. */
4425 	tp->pred_flags = 0;
4426 }
4427 
4428 /* This is the 'fast' part of urgent handling. */
4429 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4430 {
4431 	struct tcp_sock *tp = tcp_sk(sk);
4432 
4433 	/* Check if we get a new urgent pointer - normally not. */
4434 	if (th->urg)
4435 		tcp_check_urg(sk, th);
4436 
4437 	/* Do we wait for any urgent data? - normally not... */
4438 	if (tp->urg_data == TCP_URG_NOTYET) {
4439 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4440 			  th->syn;
4441 
4442 		/* Is the urgent pointer pointing into this packet? */
4443 		if (ptr < skb->len) {
4444 			u8 tmp;
4445 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4446 				BUG();
4447 			tp->urg_data = TCP_URG_VALID | tmp;
4448 			if (!sock_flag(sk, SOCK_DEAD))
4449 				sk->sk_data_ready(sk, 0);
4450 		}
4451 	}
4452 }
4453 
4454 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4455 {
4456 	struct tcp_sock *tp = tcp_sk(sk);
4457 	int chunk = skb->len - hlen;
4458 	int err;
4459 
4460 	local_bh_enable();
4461 	if (skb_csum_unnecessary(skb))
4462 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4463 	else
4464 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4465 						       tp->ucopy.iov);
4466 
4467 	if (!err) {
4468 		tp->ucopy.len -= chunk;
4469 		tp->copied_seq += chunk;
4470 		tcp_rcv_space_adjust(sk);
4471 	}
4472 
4473 	local_bh_disable();
4474 	return err;
4475 }
4476 
4477 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4478 					    struct sk_buff *skb)
4479 {
4480 	__sum16 result;
4481 
4482 	if (sock_owned_by_user(sk)) {
4483 		local_bh_enable();
4484 		result = __tcp_checksum_complete(skb);
4485 		local_bh_disable();
4486 	} else {
4487 		result = __tcp_checksum_complete(skb);
4488 	}
4489 	return result;
4490 }
4491 
4492 static inline int tcp_checksum_complete_user(struct sock *sk,
4493 					     struct sk_buff *skb)
4494 {
4495 	return !skb_csum_unnecessary(skb) &&
4496 	       __tcp_checksum_complete_user(sk, skb);
4497 }
4498 
4499 #ifdef CONFIG_NET_DMA
4500 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4501 				  int hlen)
4502 {
4503 	struct tcp_sock *tp = tcp_sk(sk);
4504 	int chunk = skb->len - hlen;
4505 	int dma_cookie;
4506 	int copied_early = 0;
4507 
4508 	if (tp->ucopy.wakeup)
4509 		return 0;
4510 
4511 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4512 		tp->ucopy.dma_chan = get_softnet_dma();
4513 
4514 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4515 
4516 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4517 							 skb, hlen,
4518 							 tp->ucopy.iov, chunk,
4519 							 tp->ucopy.pinned_list);
4520 
4521 		if (dma_cookie < 0)
4522 			goto out;
4523 
4524 		tp->ucopy.dma_cookie = dma_cookie;
4525 		copied_early = 1;
4526 
4527 		tp->ucopy.len -= chunk;
4528 		tp->copied_seq += chunk;
4529 		tcp_rcv_space_adjust(sk);
4530 
4531 		if ((tp->ucopy.len == 0) ||
4532 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4533 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4534 			tp->ucopy.wakeup = 1;
4535 			sk->sk_data_ready(sk, 0);
4536 		}
4537 	} else if (chunk > 0) {
4538 		tp->ucopy.wakeup = 1;
4539 		sk->sk_data_ready(sk, 0);
4540 	}
4541 out:
4542 	return copied_early;
4543 }
4544 #endif /* CONFIG_NET_DMA */
4545 
4546 /*
4547  *	TCP receive function for the ESTABLISHED state.
4548  *
4549  *	It is split into a fast path and a slow path. The fast path is
4550  * 	disabled when:
4551  *	- A zero window was announced from us - zero window probing
4552  *        is only handled properly in the slow path.
4553  *	- Out of order segments arrived.
4554  *	- Urgent data is expected.
4555  *	- There is no buffer space left
4556  *	- Unexpected TCP flags/window values/header lengths are received
4557  *	  (detected by checking the TCP header against pred_flags)
4558  *	- Data is sent in both directions. Fast path only supports pure senders
4559  *	  or pure receivers (this means either the sequence number or the ack
4560  *	  value must stay constant)
4561  *	- Unexpected TCP option.
4562  *
4563  *	When these conditions are not satisfied it drops into a standard
4564  *	receive procedure patterned after RFC793 to handle all cases.
4565  *	The first three cases are guaranteed by proper pred_flags setting,
4566  *	the rest is checked inline. Fast processing is turned on in
4567  *	tcp_data_queue when everything is OK.
4568  */
4569 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4570 			struct tcphdr *th, unsigned len)
4571 {
4572 	struct tcp_sock *tp = tcp_sk(sk);
4573 
4574 	/*
4575 	 *	Header prediction.
4576 	 *	The code loosely follows the one in the famous
4577 	 *	"30 instruction TCP receive" Van Jacobson mail.
4578 	 *
4579 	 *	Van's trick is to deposit buffers into socket queue
4580 	 *	on a device interrupt, to call tcp_recv function
4581 	 *	on the receive process context and checksum and copy
4582 	 *	the buffer to user space. smart...
4583 	 *
4584 	 *	Our current scheme is not silly either but we take the
4585 	 *	extra cost of the net_bh soft interrupt processing...
4586 	 *	We do checksum and copy also but from device to kernel.
4587 	 */
4588 
4589 	tp->rx_opt.saw_tstamp = 0;
4590 
4591 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4592 	 *	if header_prediction is to be made
4593 	 *	'S' will always be tp->tcp_header_len >> 2
4594 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4595 	 *  turn it off	(when there are holes in the receive
4596 	 *	 space for instance)
4597 	 *	PSH flag is ignored.
4598 	 */
4599 
4600 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4601 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4602 		int tcp_header_len = tp->tcp_header_len;
4603 
4604 		/* Timestamp header prediction: tcp_header_len
4605 		 * is automatically equal to th->doff*4 due to pred_flags
4606 		 * match.
4607 		 */
4608 
4609 		/* Check timestamp */
4610 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4611 			__be32 *ptr = (__be32 *)(th + 1);
4612 
4613 			/* No? Slow path! */
4614 			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4615 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4616 				goto slow_path;
4617 
4618 			tp->rx_opt.saw_tstamp = 1;
4619 			++ptr;
4620 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4621 			++ptr;
4622 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4623 
4624 			/* If PAWS failed, check it more carefully in slow path */
4625 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4626 				goto slow_path;
4627 
4628 			/* DO NOT update ts_recent here, if checksum fails
4629 			 * and timestamp was corrupted part, it will result
4630 			 * in a hung connection since we will drop all
4631 			 * future packets due to the PAWS test.
4632 			 */
4633 		}
4634 
4635 		if (len <= tcp_header_len) {
4636 			/* Bulk data transfer: sender */
4637 			if (len == tcp_header_len) {
4638 				/* Predicted packet is in window by definition.
4639 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4640 				 * Hence, check seq<=rcv_wup reduces to:
4641 				 */
4642 				if (tcp_header_len ==
4643 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4644 				    tp->rcv_nxt == tp->rcv_wup)
4645 					tcp_store_ts_recent(tp);
4646 
4647 				/* We know that such packets are checksummed
4648 				 * on entry.
4649 				 */
4650 				tcp_ack(sk, skb, 0);
4651 				__kfree_skb(skb);
4652 				tcp_data_snd_check(sk);
4653 				return 0;
4654 			} else { /* Header too small */
4655 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4656 				goto discard;
4657 			}
4658 		} else {
4659 			int eaten = 0;
4660 			int copied_early = 0;
4661 
4662 			if (tp->copied_seq == tp->rcv_nxt &&
4663 			    len - tcp_header_len <= tp->ucopy.len) {
4664 #ifdef CONFIG_NET_DMA
4665 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4666 					copied_early = 1;
4667 					eaten = 1;
4668 				}
4669 #endif
4670 				if (tp->ucopy.task == current &&
4671 				    sock_owned_by_user(sk) && !copied_early) {
4672 					__set_current_state(TASK_RUNNING);
4673 
4674 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4675 						eaten = 1;
4676 				}
4677 				if (eaten) {
4678 					/* Predicted packet is in window by definition.
4679 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4680 					 * Hence, check seq<=rcv_wup reduces to:
4681 					 */
4682 					if (tcp_header_len ==
4683 					    (sizeof(struct tcphdr) +
4684 					     TCPOLEN_TSTAMP_ALIGNED) &&
4685 					    tp->rcv_nxt == tp->rcv_wup)
4686 						tcp_store_ts_recent(tp);
4687 
4688 					tcp_rcv_rtt_measure_ts(sk, skb);
4689 
4690 					__skb_pull(skb, tcp_header_len);
4691 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4692 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4693 				}
4694 				if (copied_early)
4695 					tcp_cleanup_rbuf(sk, skb->len);
4696 			}
4697 			if (!eaten) {
4698 				if (tcp_checksum_complete_user(sk, skb))
4699 					goto csum_error;
4700 
4701 				/* Predicted packet is in window by definition.
4702 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4703 				 * Hence, check seq<=rcv_wup reduces to:
4704 				 */
4705 				if (tcp_header_len ==
4706 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4707 				    tp->rcv_nxt == tp->rcv_wup)
4708 					tcp_store_ts_recent(tp);
4709 
4710 				tcp_rcv_rtt_measure_ts(sk, skb);
4711 
4712 				if ((int)skb->truesize > sk->sk_forward_alloc)
4713 					goto step5;
4714 
4715 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4716 
4717 				/* Bulk data transfer: receiver */
4718 				__skb_pull(skb, tcp_header_len);
4719 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4720 				skb_set_owner_r(skb, sk);
4721 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4722 			}
4723 
4724 			tcp_event_data_recv(sk, skb);
4725 
4726 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4727 				/* Well, only one small jumplet in fast path... */
4728 				tcp_ack(sk, skb, FLAG_DATA);
4729 				tcp_data_snd_check(sk);
4730 				if (!inet_csk_ack_scheduled(sk))
4731 					goto no_ack;
4732 			}
4733 
4734 			__tcp_ack_snd_check(sk, 0);
4735 no_ack:
4736 #ifdef CONFIG_NET_DMA
4737 			if (copied_early)
4738 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4739 			else
4740 #endif
4741 			if (eaten)
4742 				__kfree_skb(skb);
4743 			else
4744 				sk->sk_data_ready(sk, 0);
4745 			return 0;
4746 		}
4747 	}
4748 
4749 slow_path:
4750 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
4751 		goto csum_error;
4752 
4753 	/*
4754 	 * RFC1323: H1. Apply PAWS check first.
4755 	 */
4756 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4757 	    tcp_paws_discard(sk, skb)) {
4758 		if (!th->rst) {
4759 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4760 			tcp_send_dupack(sk, skb);
4761 			goto discard;
4762 		}
4763 		/* Resets are accepted even if PAWS failed.
4764 
4765 		   ts_recent update must be made after we are sure
4766 		   that the packet is in window.
4767 		 */
4768 	}
4769 
4770 	/*
4771 	 *	Standard slow path.
4772 	 */
4773 
4774 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4775 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4776 		 * (RST) segments are validated by checking their SEQ-fields."
4777 		 * And page 69: "If an incoming segment is not acceptable,
4778 		 * an acknowledgment should be sent in reply (unless the RST bit
4779 		 * is set, if so drop the segment and return)".
4780 		 */
4781 		if (!th->rst)
4782 			tcp_send_dupack(sk, skb);
4783 		goto discard;
4784 	}
4785 
4786 	if (th->rst) {
4787 		tcp_reset(sk);
4788 		goto discard;
4789 	}
4790 
4791 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4792 
4793 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4794 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4795 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4796 		tcp_reset(sk);
4797 		return 1;
4798 	}
4799 
4800 step5:
4801 	if (th->ack)
4802 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4803 
4804 	tcp_rcv_rtt_measure_ts(sk, skb);
4805 
4806 	/* Process urgent data. */
4807 	tcp_urg(sk, skb, th);
4808 
4809 	/* step 7: process the segment text */
4810 	tcp_data_queue(sk, skb);
4811 
4812 	tcp_data_snd_check(sk);
4813 	tcp_ack_snd_check(sk);
4814 	return 0;
4815 
4816 csum_error:
4817 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4818 
4819 discard:
4820 	__kfree_skb(skb);
4821 	return 0;
4822 }
4823 
4824 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4825 					 struct tcphdr *th, unsigned len)
4826 {
4827 	struct tcp_sock *tp = tcp_sk(sk);
4828 	struct inet_connection_sock *icsk = inet_csk(sk);
4829 	int saved_clamp = tp->rx_opt.mss_clamp;
4830 
4831 	tcp_parse_options(skb, &tp->rx_opt, 0);
4832 
4833 	if (th->ack) {
4834 		/* rfc793:
4835 		 * "If the state is SYN-SENT then
4836 		 *    first check the ACK bit
4837 		 *      If the ACK bit is set
4838 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4839 		 *        a reset (unless the RST bit is set, if so drop
4840 		 *        the segment and return)"
4841 		 *
4842 		 *  We do not send data with SYN, so that RFC-correct
4843 		 *  test reduces to:
4844 		 */
4845 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4846 			goto reset_and_undo;
4847 
4848 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4849 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4850 			     tcp_time_stamp)) {
4851 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4852 			goto reset_and_undo;
4853 		}
4854 
4855 		/* Now ACK is acceptable.
4856 		 *
4857 		 * "If the RST bit is set
4858 		 *    If the ACK was acceptable then signal the user "error:
4859 		 *    connection reset", drop the segment, enter CLOSED state,
4860 		 *    delete TCB, and return."
4861 		 */
4862 
4863 		if (th->rst) {
4864 			tcp_reset(sk);
4865 			goto discard;
4866 		}
4867 
4868 		/* rfc793:
4869 		 *   "fifth, if neither of the SYN or RST bits is set then
4870 		 *    drop the segment and return."
4871 		 *
4872 		 *    See note below!
4873 		 *                                        --ANK(990513)
4874 		 */
4875 		if (!th->syn)
4876 			goto discard_and_undo;
4877 
4878 		/* rfc793:
4879 		 *   "If the SYN bit is on ...
4880 		 *    are acceptable then ...
4881 		 *    (our SYN has been ACKed), change the connection
4882 		 *    state to ESTABLISHED..."
4883 		 */
4884 
4885 		TCP_ECN_rcv_synack(tp, th);
4886 
4887 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4888 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4889 
4890 		/* Ok.. it's good. Set up sequence numbers and
4891 		 * move to established.
4892 		 */
4893 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4894 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4895 
4896 		/* RFC1323: The window in SYN & SYN/ACK segments is
4897 		 * never scaled.
4898 		 */
4899 		tp->snd_wnd = ntohs(th->window);
4900 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4901 
4902 		if (!tp->rx_opt.wscale_ok) {
4903 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4904 			tp->window_clamp = min(tp->window_clamp, 65535U);
4905 		}
4906 
4907 		if (tp->rx_opt.saw_tstamp) {
4908 			tp->rx_opt.tstamp_ok	   = 1;
4909 			tp->tcp_header_len =
4910 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4911 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4912 			tcp_store_ts_recent(tp);
4913 		} else {
4914 			tp->tcp_header_len = sizeof(struct tcphdr);
4915 		}
4916 
4917 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
4918 			tcp_enable_fack(tp);
4919 
4920 		tcp_mtup_init(sk);
4921 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4922 		tcp_initialize_rcv_mss(sk);
4923 
4924 		/* Remember, tcp_poll() does not lock socket!
4925 		 * Change state from SYN-SENT only after copied_seq
4926 		 * is initialized. */
4927 		tp->copied_seq = tp->rcv_nxt;
4928 		smp_mb();
4929 		tcp_set_state(sk, TCP_ESTABLISHED);
4930 
4931 		security_inet_conn_established(sk, skb);
4932 
4933 		/* Make sure socket is routed, for correct metrics.  */
4934 		icsk->icsk_af_ops->rebuild_header(sk);
4935 
4936 		tcp_init_metrics(sk);
4937 
4938 		tcp_init_congestion_control(sk);
4939 
4940 		/* Prevent spurious tcp_cwnd_restart() on first data
4941 		 * packet.
4942 		 */
4943 		tp->lsndtime = tcp_time_stamp;
4944 
4945 		tcp_init_buffer_space(sk);
4946 
4947 		if (sock_flag(sk, SOCK_KEEPOPEN))
4948 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4949 
4950 		if (!tp->rx_opt.snd_wscale)
4951 			__tcp_fast_path_on(tp, tp->snd_wnd);
4952 		else
4953 			tp->pred_flags = 0;
4954 
4955 		if (!sock_flag(sk, SOCK_DEAD)) {
4956 			sk->sk_state_change(sk);
4957 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
4958 		}
4959 
4960 		if (sk->sk_write_pending ||
4961 		    icsk->icsk_accept_queue.rskq_defer_accept ||
4962 		    icsk->icsk_ack.pingpong) {
4963 			/* Save one ACK. Data will be ready after
4964 			 * several ticks, if write_pending is set.
4965 			 *
4966 			 * It may be deleted, but with this feature tcpdumps
4967 			 * look so _wonderfully_ clever, that I was not able
4968 			 * to stand against the temptation 8)     --ANK
4969 			 */
4970 			inet_csk_schedule_ack(sk);
4971 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4972 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4973 			tcp_incr_quickack(sk);
4974 			tcp_enter_quickack_mode(sk);
4975 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4976 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4977 
4978 discard:
4979 			__kfree_skb(skb);
4980 			return 0;
4981 		} else {
4982 			tcp_send_ack(sk);
4983 		}
4984 		return -1;
4985 	}
4986 
4987 	/* No ACK in the segment */
4988 
4989 	if (th->rst) {
4990 		/* rfc793:
4991 		 * "If the RST bit is set
4992 		 *
4993 		 *      Otherwise (no ACK) drop the segment and return."
4994 		 */
4995 
4996 		goto discard_and_undo;
4997 	}
4998 
4999 	/* PAWS check. */
5000 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5001 	    tcp_paws_check(&tp->rx_opt, 0))
5002 		goto discard_and_undo;
5003 
5004 	if (th->syn) {
5005 		/* We see SYN without ACK. It is attempt of
5006 		 * simultaneous connect with crossed SYNs.
5007 		 * Particularly, it can be connect to self.
5008 		 */
5009 		tcp_set_state(sk, TCP_SYN_RECV);
5010 
5011 		if (tp->rx_opt.saw_tstamp) {
5012 			tp->rx_opt.tstamp_ok = 1;
5013 			tcp_store_ts_recent(tp);
5014 			tp->tcp_header_len =
5015 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5016 		} else {
5017 			tp->tcp_header_len = sizeof(struct tcphdr);
5018 		}
5019 
5020 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5021 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5022 
5023 		/* RFC1323: The window in SYN & SYN/ACK segments is
5024 		 * never scaled.
5025 		 */
5026 		tp->snd_wnd    = ntohs(th->window);
5027 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5028 		tp->max_window = tp->snd_wnd;
5029 
5030 		TCP_ECN_rcv_syn(tp, th);
5031 
5032 		tcp_mtup_init(sk);
5033 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5034 		tcp_initialize_rcv_mss(sk);
5035 
5036 		tcp_send_synack(sk);
5037 #if 0
5038 		/* Note, we could accept data and URG from this segment.
5039 		 * There are no obstacles to make this.
5040 		 *
5041 		 * However, if we ignore data in ACKless segments sometimes,
5042 		 * we have no reasons to accept it sometimes.
5043 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5044 		 * is not flawless. So, discard packet for sanity.
5045 		 * Uncomment this return to process the data.
5046 		 */
5047 		return -1;
5048 #else
5049 		goto discard;
5050 #endif
5051 	}
5052 	/* "fifth, if neither of the SYN or RST bits is set then
5053 	 * drop the segment and return."
5054 	 */
5055 
5056 discard_and_undo:
5057 	tcp_clear_options(&tp->rx_opt);
5058 	tp->rx_opt.mss_clamp = saved_clamp;
5059 	goto discard;
5060 
5061 reset_and_undo:
5062 	tcp_clear_options(&tp->rx_opt);
5063 	tp->rx_opt.mss_clamp = saved_clamp;
5064 	return 1;
5065 }
5066 
5067 /*
5068  *	This function implements the receiving procedure of RFC 793 for
5069  *	all states except ESTABLISHED and TIME_WAIT.
5070  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5071  *	address independent.
5072  */
5073 
5074 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5075 			  struct tcphdr *th, unsigned len)
5076 {
5077 	struct tcp_sock *tp = tcp_sk(sk);
5078 	struct inet_connection_sock *icsk = inet_csk(sk);
5079 	int queued = 0;
5080 
5081 	tp->rx_opt.saw_tstamp = 0;
5082 
5083 	switch (sk->sk_state) {
5084 	case TCP_CLOSE:
5085 		goto discard;
5086 
5087 	case TCP_LISTEN:
5088 		if (th->ack)
5089 			return 1;
5090 
5091 		if (th->rst)
5092 			goto discard;
5093 
5094 		if (th->syn) {
5095 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5096 				return 1;
5097 
5098 			/* Now we have several options: In theory there is
5099 			 * nothing else in the frame. KA9Q has an option to
5100 			 * send data with the syn, BSD accepts data with the
5101 			 * syn up to the [to be] advertised window and
5102 			 * Solaris 2.1 gives you a protocol error. For now
5103 			 * we just ignore it, that fits the spec precisely
5104 			 * and avoids incompatibilities. It would be nice in
5105 			 * future to drop through and process the data.
5106 			 *
5107 			 * Now that TTCP is starting to be used we ought to
5108 			 * queue this data.
5109 			 * But, this leaves one open to an easy denial of
5110 			 * service attack, and SYN cookies can't defend
5111 			 * against this problem. So, we drop the data
5112 			 * in the interest of security over speed unless
5113 			 * it's still in use.
5114 			 */
5115 			kfree_skb(skb);
5116 			return 0;
5117 		}
5118 		goto discard;
5119 
5120 	case TCP_SYN_SENT:
5121 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5122 		if (queued >= 0)
5123 			return queued;
5124 
5125 		/* Do step6 onward by hand. */
5126 		tcp_urg(sk, skb, th);
5127 		__kfree_skb(skb);
5128 		tcp_data_snd_check(sk);
5129 		return 0;
5130 	}
5131 
5132 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5133 	    tcp_paws_discard(sk, skb)) {
5134 		if (!th->rst) {
5135 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
5136 			tcp_send_dupack(sk, skb);
5137 			goto discard;
5138 		}
5139 		/* Reset is accepted even if it did not pass PAWS. */
5140 	}
5141 
5142 	/* step 1: check sequence number */
5143 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5144 		if (!th->rst)
5145 			tcp_send_dupack(sk, skb);
5146 		goto discard;
5147 	}
5148 
5149 	/* step 2: check RST bit */
5150 	if (th->rst) {
5151 		tcp_reset(sk);
5152 		goto discard;
5153 	}
5154 
5155 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5156 
5157 	/* step 3: check security and precedence [ignored] */
5158 
5159 	/*	step 4:
5160 	 *
5161 	 *	Check for a SYN in window.
5162 	 */
5163 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5164 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5165 		tcp_reset(sk);
5166 		return 1;
5167 	}
5168 
5169 	/* step 5: check the ACK field */
5170 	if (th->ack) {
5171 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5172 
5173 		switch (sk->sk_state) {
5174 		case TCP_SYN_RECV:
5175 			if (acceptable) {
5176 				tp->copied_seq = tp->rcv_nxt;
5177 				smp_mb();
5178 				tcp_set_state(sk, TCP_ESTABLISHED);
5179 				sk->sk_state_change(sk);
5180 
5181 				/* Note, that this wakeup is only for marginal
5182 				 * crossed SYN case. Passively open sockets
5183 				 * are not waked up, because sk->sk_sleep ==
5184 				 * NULL and sk->sk_socket == NULL.
5185 				 */
5186 				if (sk->sk_socket)
5187 					sk_wake_async(sk,
5188 						      SOCK_WAKE_IO, POLL_OUT);
5189 
5190 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5191 				tp->snd_wnd = ntohs(th->window) <<
5192 					      tp->rx_opt.snd_wscale;
5193 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5194 					    TCP_SKB_CB(skb)->seq);
5195 
5196 				/* tcp_ack considers this ACK as duplicate
5197 				 * and does not calculate rtt.
5198 				 * Fix it at least with timestamps.
5199 				 */
5200 				if (tp->rx_opt.saw_tstamp &&
5201 				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5202 					tcp_ack_saw_tstamp(sk, 0);
5203 
5204 				if (tp->rx_opt.tstamp_ok)
5205 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5206 
5207 				/* Make sure socket is routed, for
5208 				 * correct metrics.
5209 				 */
5210 				icsk->icsk_af_ops->rebuild_header(sk);
5211 
5212 				tcp_init_metrics(sk);
5213 
5214 				tcp_init_congestion_control(sk);
5215 
5216 				/* Prevent spurious tcp_cwnd_restart() on
5217 				 * first data packet.
5218 				 */
5219 				tp->lsndtime = tcp_time_stamp;
5220 
5221 				tcp_mtup_init(sk);
5222 				tcp_initialize_rcv_mss(sk);
5223 				tcp_init_buffer_space(sk);
5224 				tcp_fast_path_on(tp);
5225 			} else {
5226 				return 1;
5227 			}
5228 			break;
5229 
5230 		case TCP_FIN_WAIT1:
5231 			if (tp->snd_una == tp->write_seq) {
5232 				tcp_set_state(sk, TCP_FIN_WAIT2);
5233 				sk->sk_shutdown |= SEND_SHUTDOWN;
5234 				dst_confirm(sk->sk_dst_cache);
5235 
5236 				if (!sock_flag(sk, SOCK_DEAD))
5237 					/* Wake up lingering close() */
5238 					sk->sk_state_change(sk);
5239 				else {
5240 					int tmo;
5241 
5242 					if (tp->linger2 < 0 ||
5243 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5244 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5245 						tcp_done(sk);
5246 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5247 						return 1;
5248 					}
5249 
5250 					tmo = tcp_fin_time(sk);
5251 					if (tmo > TCP_TIMEWAIT_LEN) {
5252 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5253 					} else if (th->fin || sock_owned_by_user(sk)) {
5254 						/* Bad case. We could lose such FIN otherwise.
5255 						 * It is not a big problem, but it looks confusing
5256 						 * and not so rare event. We still can lose it now,
5257 						 * if it spins in bh_lock_sock(), but it is really
5258 						 * marginal case.
5259 						 */
5260 						inet_csk_reset_keepalive_timer(sk, tmo);
5261 					} else {
5262 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5263 						goto discard;
5264 					}
5265 				}
5266 			}
5267 			break;
5268 
5269 		case TCP_CLOSING:
5270 			if (tp->snd_una == tp->write_seq) {
5271 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5272 				goto discard;
5273 			}
5274 			break;
5275 
5276 		case TCP_LAST_ACK:
5277 			if (tp->snd_una == tp->write_seq) {
5278 				tcp_update_metrics(sk);
5279 				tcp_done(sk);
5280 				goto discard;
5281 			}
5282 			break;
5283 		}
5284 	} else
5285 		goto discard;
5286 
5287 	/* step 6: check the URG bit */
5288 	tcp_urg(sk, skb, th);
5289 
5290 	/* step 7: process the segment text */
5291 	switch (sk->sk_state) {
5292 	case TCP_CLOSE_WAIT:
5293 	case TCP_CLOSING:
5294 	case TCP_LAST_ACK:
5295 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5296 			break;
5297 	case TCP_FIN_WAIT1:
5298 	case TCP_FIN_WAIT2:
5299 		/* RFC 793 says to queue data in these states,
5300 		 * RFC 1122 says we MUST send a reset.
5301 		 * BSD 4.4 also does reset.
5302 		 */
5303 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5304 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5305 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5306 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5307 				tcp_reset(sk);
5308 				return 1;
5309 			}
5310 		}
5311 		/* Fall through */
5312 	case TCP_ESTABLISHED:
5313 		tcp_data_queue(sk, skb);
5314 		queued = 1;
5315 		break;
5316 	}
5317 
5318 	/* tcp_data could move socket to TIME-WAIT */
5319 	if (sk->sk_state != TCP_CLOSE) {
5320 		tcp_data_snd_check(sk);
5321 		tcp_ack_snd_check(sk);
5322 	}
5323 
5324 	if (!queued) {
5325 discard:
5326 		__kfree_skb(skb);
5327 	}
5328 	return 0;
5329 }
5330 
5331 EXPORT_SYMBOL(sysctl_tcp_ecn);
5332 EXPORT_SYMBOL(sysctl_tcp_reordering);
5333 EXPORT_SYMBOL(tcp_parse_options);
5334 EXPORT_SYMBOL(tcp_rcv_established);
5335 EXPORT_SYMBOL(tcp_rcv_state_process);
5336 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5337