1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: 25 * Pedro Roque : Fast Retransmit/Recovery. 26 * Two receive queues. 27 * Retransmit queue handled by TCP. 28 * Better retransmit timer handling. 29 * New congestion avoidance. 30 * Header prediction. 31 * Variable renaming. 32 * 33 * Eric : Fast Retransmit. 34 * Randy Scott : MSS option defines. 35 * Eric Schenk : Fixes to slow start algorithm. 36 * Eric Schenk : Yet another double ACK bug. 37 * Eric Schenk : Delayed ACK bug fixes. 38 * Eric Schenk : Floyd style fast retrans war avoidance. 39 * David S. Miller : Don't allow zero congestion window. 40 * Eric Schenk : Fix retransmitter so that it sends 41 * next packet on ack of previous packet. 42 * Andi Kleen : Moved open_request checking here 43 * and process RSTs for open_requests. 44 * Andi Kleen : Better prune_queue, and other fixes. 45 * Andrey Savochkin: Fix RTT measurements in the presence of 46 * timestamps. 47 * Andrey Savochkin: Check sequence numbers correctly when 48 * removing SACKs due to in sequence incoming 49 * data segments. 50 * Andi Kleen: Make sure we never ack data there is not 51 * enough room for. Also make this condition 52 * a fatal error if it might still happen. 53 * Andi Kleen: Add tcp_measure_rcv_mss to make 54 * connections with MSS<min(MTU,ann. MSS) 55 * work without delayed acks. 56 * Andi Kleen: Process packets with PSH set in the 57 * fast path. 58 * J Hadi Salim: ECN support 59 * Andrei Gurtov, 60 * Pasi Sarolahti, 61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 62 * engine. Lots of bugs are found. 63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 64 */ 65 66 #include <linux/mm.h> 67 #include <linux/module.h> 68 #include <linux/sysctl.h> 69 #include <net/tcp.h> 70 #include <net/inet_common.h> 71 #include <linux/ipsec.h> 72 #include <asm/unaligned.h> 73 #include <net/netdma.h> 74 75 int sysctl_tcp_timestamps __read_mostly = 1; 76 int sysctl_tcp_window_scaling __read_mostly = 1; 77 int sysctl_tcp_sack __read_mostly = 1; 78 int sysctl_tcp_fack __read_mostly = 1; 79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn __read_mostly; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 2; 84 85 int sysctl_tcp_stdurg __read_mostly; 86 int sysctl_tcp_rfc1337 __read_mostly; 87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 88 int sysctl_tcp_frto __read_mostly = 2; 89 int sysctl_tcp_frto_response __read_mostly; 90 int sysctl_tcp_nometrics_save __read_mostly; 91 92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 93 int sysctl_tcp_abc __read_mostly; 94 95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 101 #define FLAG_ECE 0x40 /* ECE in this ACK */ 102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 108 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 109 110 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 111 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 112 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 113 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 114 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 115 116 #define IsSackFrto() (sysctl_tcp_frto == 0x2) 117 118 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 119 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 120 121 /* Adapt the MSS value used to make delayed ack decision to the 122 * real world. 123 */ 124 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 125 { 126 struct inet_connection_sock *icsk = inet_csk(sk); 127 const unsigned int lss = icsk->icsk_ack.last_seg_size; 128 unsigned int len; 129 130 icsk->icsk_ack.last_seg_size = 0; 131 132 /* skb->len may jitter because of SACKs, even if peer 133 * sends good full-sized frames. 134 */ 135 len = skb_shinfo(skb)->gso_size ? : skb->len; 136 if (len >= icsk->icsk_ack.rcv_mss) { 137 icsk->icsk_ack.rcv_mss = len; 138 } else { 139 /* Otherwise, we make more careful check taking into account, 140 * that SACKs block is variable. 141 * 142 * "len" is invariant segment length, including TCP header. 143 */ 144 len += skb->data - skb_transport_header(skb); 145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 146 /* If PSH is not set, packet should be 147 * full sized, provided peer TCP is not badly broken. 148 * This observation (if it is correct 8)) allows 149 * to handle super-low mtu links fairly. 150 */ 151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 153 /* Subtract also invariant (if peer is RFC compliant), 154 * tcp header plus fixed timestamp option length. 155 * Resulting "len" is MSS free of SACK jitter. 156 */ 157 len -= tcp_sk(sk)->tcp_header_len; 158 icsk->icsk_ack.last_seg_size = len; 159 if (len == lss) { 160 icsk->icsk_ack.rcv_mss = len; 161 return; 162 } 163 } 164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 167 } 168 } 169 170 static void tcp_incr_quickack(struct sock *sk) 171 { 172 struct inet_connection_sock *icsk = inet_csk(sk); 173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 174 175 if (quickacks == 0) 176 quickacks = 2; 177 if (quickacks > icsk->icsk_ack.quick) 178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 179 } 180 181 void tcp_enter_quickack_mode(struct sock *sk) 182 { 183 struct inet_connection_sock *icsk = inet_csk(sk); 184 tcp_incr_quickack(sk); 185 icsk->icsk_ack.pingpong = 0; 186 icsk->icsk_ack.ato = TCP_ATO_MIN; 187 } 188 189 /* Send ACKs quickly, if "quick" count is not exhausted 190 * and the session is not interactive. 191 */ 192 193 static inline int tcp_in_quickack_mode(const struct sock *sk) 194 { 195 const struct inet_connection_sock *icsk = inet_csk(sk); 196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 197 } 198 199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 200 { 201 if (tp->ecn_flags & TCP_ECN_OK) 202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 203 } 204 205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb) 206 { 207 if (tcp_hdr(skb)->cwr) 208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 209 } 210 211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 212 { 213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 214 } 215 216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb) 217 { 218 if (tp->ecn_flags & TCP_ECN_OK) { 219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags)) 220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 221 /* Funny extension: if ECT is not set on a segment, 222 * it is surely retransmit. It is not in ECN RFC, 223 * but Linux follows this rule. */ 224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags))) 225 tcp_enter_quickack_mode((struct sock *)tp); 226 } 227 } 228 229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th) 230 { 231 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 232 tp->ecn_flags &= ~TCP_ECN_OK; 233 } 234 235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th) 236 { 237 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 238 tp->ecn_flags &= ~TCP_ECN_OK; 239 } 240 241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th) 242 { 243 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 244 return 1; 245 return 0; 246 } 247 248 /* Buffer size and advertised window tuning. 249 * 250 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 251 */ 252 253 static void tcp_fixup_sndbuf(struct sock *sk) 254 { 255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 256 sizeof(struct sk_buff); 257 258 if (sk->sk_sndbuf < 3 * sndmem) 259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 260 } 261 262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 263 * 264 * All tcp_full_space() is split to two parts: "network" buffer, allocated 265 * forward and advertised in receiver window (tp->rcv_wnd) and 266 * "application buffer", required to isolate scheduling/application 267 * latencies from network. 268 * window_clamp is maximal advertised window. It can be less than 269 * tcp_full_space(), in this case tcp_full_space() - window_clamp 270 * is reserved for "application" buffer. The less window_clamp is 271 * the smoother our behaviour from viewpoint of network, but the lower 272 * throughput and the higher sensitivity of the connection to losses. 8) 273 * 274 * rcv_ssthresh is more strict window_clamp used at "slow start" 275 * phase to predict further behaviour of this connection. 276 * It is used for two goals: 277 * - to enforce header prediction at sender, even when application 278 * requires some significant "application buffer". It is check #1. 279 * - to prevent pruning of receive queue because of misprediction 280 * of receiver window. Check #2. 281 * 282 * The scheme does not work when sender sends good segments opening 283 * window and then starts to feed us spaghetti. But it should work 284 * in common situations. Otherwise, we have to rely on queue collapsing. 285 */ 286 287 /* Slow part of check#2. */ 288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 289 { 290 struct tcp_sock *tp = tcp_sk(sk); 291 /* Optimize this! */ 292 int truesize = tcp_win_from_space(skb->truesize) >> 1; 293 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 294 295 while (tp->rcv_ssthresh <= window) { 296 if (truesize <= skb->len) 297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 298 299 truesize >>= 1; 300 window >>= 1; 301 } 302 return 0; 303 } 304 305 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb) 306 { 307 struct tcp_sock *tp = tcp_sk(sk); 308 309 /* Check #1 */ 310 if (tp->rcv_ssthresh < tp->window_clamp && 311 (int)tp->rcv_ssthresh < tcp_space(sk) && 312 !tcp_memory_pressure) { 313 int incr; 314 315 /* Check #2. Increase window, if skb with such overhead 316 * will fit to rcvbuf in future. 317 */ 318 if (tcp_win_from_space(skb->truesize) <= skb->len) 319 incr = 2 * tp->advmss; 320 else 321 incr = __tcp_grow_window(sk, skb); 322 323 if (incr) { 324 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 325 tp->window_clamp); 326 inet_csk(sk)->icsk_ack.quick |= 1; 327 } 328 } 329 } 330 331 /* 3. Tuning rcvbuf, when connection enters established state. */ 332 333 static void tcp_fixup_rcvbuf(struct sock *sk) 334 { 335 struct tcp_sock *tp = tcp_sk(sk); 336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 337 338 /* Try to select rcvbuf so that 4 mss-sized segments 339 * will fit to window and corresponding skbs will fit to our rcvbuf. 340 * (was 3; 4 is minimum to allow fast retransmit to work.) 341 */ 342 while (tcp_win_from_space(rcvmem) < tp->advmss) 343 rcvmem += 128; 344 if (sk->sk_rcvbuf < 4 * rcvmem) 345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 346 } 347 348 /* 4. Try to fixup all. It is made immediately after connection enters 349 * established state. 350 */ 351 static void tcp_init_buffer_space(struct sock *sk) 352 { 353 struct tcp_sock *tp = tcp_sk(sk); 354 int maxwin; 355 356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 357 tcp_fixup_rcvbuf(sk); 358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 359 tcp_fixup_sndbuf(sk); 360 361 tp->rcvq_space.space = tp->rcv_wnd; 362 363 maxwin = tcp_full_space(sk); 364 365 if (tp->window_clamp >= maxwin) { 366 tp->window_clamp = maxwin; 367 368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 369 tp->window_clamp = max(maxwin - 370 (maxwin >> sysctl_tcp_app_win), 371 4 * tp->advmss); 372 } 373 374 /* Force reservation of one segment. */ 375 if (sysctl_tcp_app_win && 376 tp->window_clamp > 2 * tp->advmss && 377 tp->window_clamp + tp->advmss > maxwin) 378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 379 380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 381 tp->snd_cwnd_stamp = tcp_time_stamp; 382 } 383 384 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 385 static void tcp_clamp_window(struct sock *sk) 386 { 387 struct tcp_sock *tp = tcp_sk(sk); 388 struct inet_connection_sock *icsk = inet_csk(sk); 389 390 icsk->icsk_ack.quick = 0; 391 392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 394 !tcp_memory_pressure && 395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 397 sysctl_tcp_rmem[2]); 398 } 399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 400 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 401 } 402 403 /* Initialize RCV_MSS value. 404 * RCV_MSS is an our guess about MSS used by the peer. 405 * We haven't any direct information about the MSS. 406 * It's better to underestimate the RCV_MSS rather than overestimate. 407 * Overestimations make us ACKing less frequently than needed. 408 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 409 */ 410 void tcp_initialize_rcv_mss(struct sock *sk) 411 { 412 struct tcp_sock *tp = tcp_sk(sk); 413 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 414 415 hint = min(hint, tp->rcv_wnd / 2); 416 hint = min(hint, TCP_MIN_RCVMSS); 417 hint = max(hint, TCP_MIN_MSS); 418 419 inet_csk(sk)->icsk_ack.rcv_mss = hint; 420 } 421 422 /* Receiver "autotuning" code. 423 * 424 * The algorithm for RTT estimation w/o timestamps is based on 425 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 426 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 427 * 428 * More detail on this code can be found at 429 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 430 * though this reference is out of date. A new paper 431 * is pending. 432 */ 433 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 434 { 435 u32 new_sample = tp->rcv_rtt_est.rtt; 436 long m = sample; 437 438 if (m == 0) 439 m = 1; 440 441 if (new_sample != 0) { 442 /* If we sample in larger samples in the non-timestamp 443 * case, we could grossly overestimate the RTT especially 444 * with chatty applications or bulk transfer apps which 445 * are stalled on filesystem I/O. 446 * 447 * Also, since we are only going for a minimum in the 448 * non-timestamp case, we do not smooth things out 449 * else with timestamps disabled convergence takes too 450 * long. 451 */ 452 if (!win_dep) { 453 m -= (new_sample >> 3); 454 new_sample += m; 455 } else if (m < new_sample) 456 new_sample = m << 3; 457 } else { 458 /* No previous measure. */ 459 new_sample = m << 3; 460 } 461 462 if (tp->rcv_rtt_est.rtt != new_sample) 463 tp->rcv_rtt_est.rtt = new_sample; 464 } 465 466 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 467 { 468 if (tp->rcv_rtt_est.time == 0) 469 goto new_measure; 470 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 471 return; 472 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1); 473 474 new_measure: 475 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 476 tp->rcv_rtt_est.time = tcp_time_stamp; 477 } 478 479 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 480 const struct sk_buff *skb) 481 { 482 struct tcp_sock *tp = tcp_sk(sk); 483 if (tp->rx_opt.rcv_tsecr && 484 (TCP_SKB_CB(skb)->end_seq - 485 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 486 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 487 } 488 489 /* 490 * This function should be called every time data is copied to user space. 491 * It calculates the appropriate TCP receive buffer space. 492 */ 493 void tcp_rcv_space_adjust(struct sock *sk) 494 { 495 struct tcp_sock *tp = tcp_sk(sk); 496 int time; 497 int space; 498 499 if (tp->rcvq_space.time == 0) 500 goto new_measure; 501 502 time = tcp_time_stamp - tp->rcvq_space.time; 503 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 504 return; 505 506 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 507 508 space = max(tp->rcvq_space.space, space); 509 510 if (tp->rcvq_space.space != space) { 511 int rcvmem; 512 513 tp->rcvq_space.space = space; 514 515 if (sysctl_tcp_moderate_rcvbuf && 516 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 517 int new_clamp = space; 518 519 /* Receive space grows, normalize in order to 520 * take into account packet headers and sk_buff 521 * structure overhead. 522 */ 523 space /= tp->advmss; 524 if (!space) 525 space = 1; 526 rcvmem = (tp->advmss + MAX_TCP_HEADER + 527 16 + sizeof(struct sk_buff)); 528 while (tcp_win_from_space(rcvmem) < tp->advmss) 529 rcvmem += 128; 530 space *= rcvmem; 531 space = min(space, sysctl_tcp_rmem[2]); 532 if (space > sk->sk_rcvbuf) { 533 sk->sk_rcvbuf = space; 534 535 /* Make the window clamp follow along. */ 536 tp->window_clamp = new_clamp; 537 } 538 } 539 } 540 541 new_measure: 542 tp->rcvq_space.seq = tp->copied_seq; 543 tp->rcvq_space.time = tcp_time_stamp; 544 } 545 546 /* There is something which you must keep in mind when you analyze the 547 * behavior of the tp->ato delayed ack timeout interval. When a 548 * connection starts up, we want to ack as quickly as possible. The 549 * problem is that "good" TCP's do slow start at the beginning of data 550 * transmission. The means that until we send the first few ACK's the 551 * sender will sit on his end and only queue most of his data, because 552 * he can only send snd_cwnd unacked packets at any given time. For 553 * each ACK we send, he increments snd_cwnd and transmits more of his 554 * queue. -DaveM 555 */ 556 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 557 { 558 struct tcp_sock *tp = tcp_sk(sk); 559 struct inet_connection_sock *icsk = inet_csk(sk); 560 u32 now; 561 562 inet_csk_schedule_ack(sk); 563 564 tcp_measure_rcv_mss(sk, skb); 565 566 tcp_rcv_rtt_measure(tp); 567 568 now = tcp_time_stamp; 569 570 if (!icsk->icsk_ack.ato) { 571 /* The _first_ data packet received, initialize 572 * delayed ACK engine. 573 */ 574 tcp_incr_quickack(sk); 575 icsk->icsk_ack.ato = TCP_ATO_MIN; 576 } else { 577 int m = now - icsk->icsk_ack.lrcvtime; 578 579 if (m <= TCP_ATO_MIN / 2) { 580 /* The fastest case is the first. */ 581 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 582 } else if (m < icsk->icsk_ack.ato) { 583 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 584 if (icsk->icsk_ack.ato > icsk->icsk_rto) 585 icsk->icsk_ack.ato = icsk->icsk_rto; 586 } else if (m > icsk->icsk_rto) { 587 /* Too long gap. Apparently sender failed to 588 * restart window, so that we send ACKs quickly. 589 */ 590 tcp_incr_quickack(sk); 591 sk_mem_reclaim(sk); 592 } 593 } 594 icsk->icsk_ack.lrcvtime = now; 595 596 TCP_ECN_check_ce(tp, skb); 597 598 if (skb->len >= 128) 599 tcp_grow_window(sk, skb); 600 } 601 602 static u32 tcp_rto_min(struct sock *sk) 603 { 604 struct dst_entry *dst = __sk_dst_get(sk); 605 u32 rto_min = TCP_RTO_MIN; 606 607 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 608 rto_min = dst->metrics[RTAX_RTO_MIN - 1]; 609 return rto_min; 610 } 611 612 /* Called to compute a smoothed rtt estimate. The data fed to this 613 * routine either comes from timestamps, or from segments that were 614 * known _not_ to have been retransmitted [see Karn/Partridge 615 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 616 * piece by Van Jacobson. 617 * NOTE: the next three routines used to be one big routine. 618 * To save cycles in the RFC 1323 implementation it was better to break 619 * it up into three procedures. -- erics 620 */ 621 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 622 { 623 struct tcp_sock *tp = tcp_sk(sk); 624 long m = mrtt; /* RTT */ 625 626 /* The following amusing code comes from Jacobson's 627 * article in SIGCOMM '88. Note that rtt and mdev 628 * are scaled versions of rtt and mean deviation. 629 * This is designed to be as fast as possible 630 * m stands for "measurement". 631 * 632 * On a 1990 paper the rto value is changed to: 633 * RTO = rtt + 4 * mdev 634 * 635 * Funny. This algorithm seems to be very broken. 636 * These formulae increase RTO, when it should be decreased, increase 637 * too slowly, when it should be increased quickly, decrease too quickly 638 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 639 * does not matter how to _calculate_ it. Seems, it was trap 640 * that VJ failed to avoid. 8) 641 */ 642 if (m == 0) 643 m = 1; 644 if (tp->srtt != 0) { 645 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 646 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 647 if (m < 0) { 648 m = -m; /* m is now abs(error) */ 649 m -= (tp->mdev >> 2); /* similar update on mdev */ 650 /* This is similar to one of Eifel findings. 651 * Eifel blocks mdev updates when rtt decreases. 652 * This solution is a bit different: we use finer gain 653 * for mdev in this case (alpha*beta). 654 * Like Eifel it also prevents growth of rto, 655 * but also it limits too fast rto decreases, 656 * happening in pure Eifel. 657 */ 658 if (m > 0) 659 m >>= 3; 660 } else { 661 m -= (tp->mdev >> 2); /* similar update on mdev */ 662 } 663 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 664 if (tp->mdev > tp->mdev_max) { 665 tp->mdev_max = tp->mdev; 666 if (tp->mdev_max > tp->rttvar) 667 tp->rttvar = tp->mdev_max; 668 } 669 if (after(tp->snd_una, tp->rtt_seq)) { 670 if (tp->mdev_max < tp->rttvar) 671 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 672 tp->rtt_seq = tp->snd_nxt; 673 tp->mdev_max = tcp_rto_min(sk); 674 } 675 } else { 676 /* no previous measure. */ 677 tp->srtt = m << 3; /* take the measured time to be rtt */ 678 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 679 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 680 tp->rtt_seq = tp->snd_nxt; 681 } 682 } 683 684 /* Calculate rto without backoff. This is the second half of Van Jacobson's 685 * routine referred to above. 686 */ 687 static inline void tcp_set_rto(struct sock *sk) 688 { 689 const struct tcp_sock *tp = tcp_sk(sk); 690 /* Old crap is replaced with new one. 8) 691 * 692 * More seriously: 693 * 1. If rtt variance happened to be less 50msec, it is hallucination. 694 * It cannot be less due to utterly erratic ACK generation made 695 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 696 * to do with delayed acks, because at cwnd>2 true delack timeout 697 * is invisible. Actually, Linux-2.4 also generates erratic 698 * ACKs in some circumstances. 699 */ 700 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 701 702 /* 2. Fixups made earlier cannot be right. 703 * If we do not estimate RTO correctly without them, 704 * all the algo is pure shit and should be replaced 705 * with correct one. It is exactly, which we pretend to do. 706 */ 707 } 708 709 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 710 * guarantees that rto is higher. 711 */ 712 static inline void tcp_bound_rto(struct sock *sk) 713 { 714 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 715 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 716 } 717 718 /* Save metrics learned by this TCP session. 719 This function is called only, when TCP finishes successfully 720 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 721 */ 722 void tcp_update_metrics(struct sock *sk) 723 { 724 struct tcp_sock *tp = tcp_sk(sk); 725 struct dst_entry *dst = __sk_dst_get(sk); 726 727 if (sysctl_tcp_nometrics_save) 728 return; 729 730 dst_confirm(dst); 731 732 if (dst && (dst->flags & DST_HOST)) { 733 const struct inet_connection_sock *icsk = inet_csk(sk); 734 int m; 735 736 if (icsk->icsk_backoff || !tp->srtt) { 737 /* This session failed to estimate rtt. Why? 738 * Probably, no packets returned in time. 739 * Reset our results. 740 */ 741 if (!(dst_metric_locked(dst, RTAX_RTT))) 742 dst->metrics[RTAX_RTT - 1] = 0; 743 return; 744 } 745 746 m = dst_metric(dst, RTAX_RTT) - tp->srtt; 747 748 /* If newly calculated rtt larger than stored one, 749 * store new one. Otherwise, use EWMA. Remember, 750 * rtt overestimation is always better than underestimation. 751 */ 752 if (!(dst_metric_locked(dst, RTAX_RTT))) { 753 if (m <= 0) 754 dst->metrics[RTAX_RTT - 1] = tp->srtt; 755 else 756 dst->metrics[RTAX_RTT - 1] -= (m >> 3); 757 } 758 759 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 760 if (m < 0) 761 m = -m; 762 763 /* Scale deviation to rttvar fixed point */ 764 m >>= 1; 765 if (m < tp->mdev) 766 m = tp->mdev; 767 768 if (m >= dst_metric(dst, RTAX_RTTVAR)) 769 dst->metrics[RTAX_RTTVAR - 1] = m; 770 else 771 dst->metrics[RTAX_RTTVAR-1] -= 772 (dst->metrics[RTAX_RTTVAR-1] - m)>>2; 773 } 774 775 if (tp->snd_ssthresh >= 0xFFFF) { 776 /* Slow start still did not finish. */ 777 if (dst_metric(dst, RTAX_SSTHRESH) && 778 !dst_metric_locked(dst, RTAX_SSTHRESH) && 779 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 780 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 781 if (!dst_metric_locked(dst, RTAX_CWND) && 782 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 783 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd; 784 } else if (tp->snd_cwnd > tp->snd_ssthresh && 785 icsk->icsk_ca_state == TCP_CA_Open) { 786 /* Cong. avoidance phase, cwnd is reliable. */ 787 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 788 dst->metrics[RTAX_SSTHRESH-1] = 789 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 790 if (!dst_metric_locked(dst, RTAX_CWND)) 791 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; 792 } else { 793 /* Else slow start did not finish, cwnd is non-sense, 794 ssthresh may be also invalid. 795 */ 796 if (!dst_metric_locked(dst, RTAX_CWND)) 797 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; 798 if (dst->metrics[RTAX_SSTHRESH-1] && 799 !dst_metric_locked(dst, RTAX_SSTHRESH) && 800 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) 801 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 802 } 803 804 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 805 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && 806 tp->reordering != sysctl_tcp_reordering) 807 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 808 } 809 } 810 } 811 812 /* Numbers are taken from RFC3390. 813 * 814 * John Heffner states: 815 * 816 * The RFC specifies a window of no more than 4380 bytes 817 * unless 2*MSS > 4380. Reading the pseudocode in the RFC 818 * is a bit misleading because they use a clamp at 4380 bytes 819 * rather than use a multiplier in the relevant range. 820 */ 821 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 822 { 823 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 824 825 if (!cwnd) { 826 if (tp->mss_cache > 1460) 827 cwnd = 2; 828 else 829 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 830 } 831 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 832 } 833 834 /* Set slow start threshold and cwnd not falling to slow start */ 835 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 836 { 837 struct tcp_sock *tp = tcp_sk(sk); 838 const struct inet_connection_sock *icsk = inet_csk(sk); 839 840 tp->prior_ssthresh = 0; 841 tp->bytes_acked = 0; 842 if (icsk->icsk_ca_state < TCP_CA_CWR) { 843 tp->undo_marker = 0; 844 if (set_ssthresh) 845 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 846 tp->snd_cwnd = min(tp->snd_cwnd, 847 tcp_packets_in_flight(tp) + 1U); 848 tp->snd_cwnd_cnt = 0; 849 tp->high_seq = tp->snd_nxt; 850 tp->snd_cwnd_stamp = tcp_time_stamp; 851 TCP_ECN_queue_cwr(tp); 852 853 tcp_set_ca_state(sk, TCP_CA_CWR); 854 } 855 } 856 857 /* 858 * Packet counting of FACK is based on in-order assumptions, therefore TCP 859 * disables it when reordering is detected 860 */ 861 static void tcp_disable_fack(struct tcp_sock *tp) 862 { 863 /* RFC3517 uses different metric in lost marker => reset on change */ 864 if (tcp_is_fack(tp)) 865 tp->lost_skb_hint = NULL; 866 tp->rx_opt.sack_ok &= ~2; 867 } 868 869 /* Take a notice that peer is sending D-SACKs */ 870 static void tcp_dsack_seen(struct tcp_sock *tp) 871 { 872 tp->rx_opt.sack_ok |= 4; 873 } 874 875 /* Initialize metrics on socket. */ 876 877 static void tcp_init_metrics(struct sock *sk) 878 { 879 struct tcp_sock *tp = tcp_sk(sk); 880 struct dst_entry *dst = __sk_dst_get(sk); 881 882 if (dst == NULL) 883 goto reset; 884 885 dst_confirm(dst); 886 887 if (dst_metric_locked(dst, RTAX_CWND)) 888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 889 if (dst_metric(dst, RTAX_SSTHRESH)) { 890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 892 tp->snd_ssthresh = tp->snd_cwnd_clamp; 893 } 894 if (dst_metric(dst, RTAX_REORDERING) && 895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 896 tcp_disable_fack(tp); 897 tp->reordering = dst_metric(dst, RTAX_REORDERING); 898 } 899 900 if (dst_metric(dst, RTAX_RTT) == 0) 901 goto reset; 902 903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 904 goto reset; 905 906 /* Initial rtt is determined from SYN,SYN-ACK. 907 * The segment is small and rtt may appear much 908 * less than real one. Use per-dst memory 909 * to make it more realistic. 910 * 911 * A bit of theory. RTT is time passed after "normal" sized packet 912 * is sent until it is ACKed. In normal circumstances sending small 913 * packets force peer to delay ACKs and calculation is correct too. 914 * The algorithm is adaptive and, provided we follow specs, it 915 * NEVER underestimate RTT. BUT! If peer tries to make some clever 916 * tricks sort of "quick acks" for time long enough to decrease RTT 917 * to low value, and then abruptly stops to do it and starts to delay 918 * ACKs, wait for troubles. 919 */ 920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) { 921 tp->srtt = dst_metric(dst, RTAX_RTT); 922 tp->rtt_seq = tp->snd_nxt; 923 } 924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { 925 tp->mdev = dst_metric(dst, RTAX_RTTVAR); 926 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 927 } 928 tcp_set_rto(sk); 929 tcp_bound_rto(sk); 930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 931 goto reset; 932 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 933 tp->snd_cwnd_stamp = tcp_time_stamp; 934 return; 935 936 reset: 937 /* Play conservative. If timestamps are not 938 * supported, TCP will fail to recalculate correct 939 * rtt, if initial rto is too small. FORGET ALL AND RESET! 940 */ 941 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 942 tp->srtt = 0; 943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 945 } 946 } 947 948 static void tcp_update_reordering(struct sock *sk, const int metric, 949 const int ts) 950 { 951 struct tcp_sock *tp = tcp_sk(sk); 952 if (metric > tp->reordering) { 953 tp->reordering = min(TCP_MAX_REORDERING, metric); 954 955 /* This exciting event is worth to be remembered. 8) */ 956 if (ts) 957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); 958 else if (tcp_is_reno(tp)) 959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); 960 else if (tcp_is_fack(tp)) 961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); 962 else 963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); 964 #if FASTRETRANS_DEBUG > 1 965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 967 tp->reordering, 968 tp->fackets_out, 969 tp->sacked_out, 970 tp->undo_marker ? tp->undo_retrans : 0); 971 #endif 972 tcp_disable_fack(tp); 973 } 974 } 975 976 /* This procedure tags the retransmission queue when SACKs arrive. 977 * 978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 979 * Packets in queue with these bits set are counted in variables 980 * sacked_out, retrans_out and lost_out, correspondingly. 981 * 982 * Valid combinations are: 983 * Tag InFlight Description 984 * 0 1 - orig segment is in flight. 985 * S 0 - nothing flies, orig reached receiver. 986 * L 0 - nothing flies, orig lost by net. 987 * R 2 - both orig and retransmit are in flight. 988 * L|R 1 - orig is lost, retransmit is in flight. 989 * S|R 1 - orig reached receiver, retrans is still in flight. 990 * (L|S|R is logically valid, it could occur when L|R is sacked, 991 * but it is equivalent to plain S and code short-curcuits it to S. 992 * L|S is logically invalid, it would mean -1 packet in flight 8)) 993 * 994 * These 6 states form finite state machine, controlled by the following events: 995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 997 * 3. Loss detection event of one of three flavors: 998 * A. Scoreboard estimator decided the packet is lost. 999 * A'. Reno "three dupacks" marks head of queue lost. 1000 * A''. Its FACK modfication, head until snd.fack is lost. 1001 * B. SACK arrives sacking data transmitted after never retransmitted 1002 * hole was sent out. 1003 * C. SACK arrives sacking SND.NXT at the moment, when the 1004 * segment was retransmitted. 1005 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1006 * 1007 * It is pleasant to note, that state diagram turns out to be commutative, 1008 * so that we are allowed not to be bothered by order of our actions, 1009 * when multiple events arrive simultaneously. (see the function below). 1010 * 1011 * Reordering detection. 1012 * -------------------- 1013 * Reordering metric is maximal distance, which a packet can be displaced 1014 * in packet stream. With SACKs we can estimate it: 1015 * 1016 * 1. SACK fills old hole and the corresponding segment was not 1017 * ever retransmitted -> reordering. Alas, we cannot use it 1018 * when segment was retransmitted. 1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1020 * for retransmitted and already SACKed segment -> reordering.. 1021 * Both of these heuristics are not used in Loss state, when we cannot 1022 * account for retransmits accurately. 1023 * 1024 * SACK block validation. 1025 * ---------------------- 1026 * 1027 * SACK block range validation checks that the received SACK block fits to 1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1029 * Note that SND.UNA is not included to the range though being valid because 1030 * it means that the receiver is rather inconsistent with itself reporting 1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1032 * perfectly valid, however, in light of RFC2018 which explicitly states 1033 * that "SACK block MUST reflect the newest segment. Even if the newest 1034 * segment is going to be discarded ...", not that it looks very clever 1035 * in case of head skb. Due to potentional receiver driven attacks, we 1036 * choose to avoid immediate execution of a walk in write queue due to 1037 * reneging and defer head skb's loss recovery to standard loss recovery 1038 * procedure that will eventually trigger (nothing forbids us doing this). 1039 * 1040 * Implements also blockage to start_seq wrap-around. Problem lies in the 1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1042 * there's no guarantee that it will be before snd_nxt (n). The problem 1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1044 * wrap (s_w): 1045 * 1046 * <- outs wnd -> <- wrapzone -> 1047 * u e n u_w e_w s n_w 1048 * | | | | | | | 1049 * |<------------+------+----- TCP seqno space --------------+---------->| 1050 * ...-- <2^31 ->| |<--------... 1051 * ...---- >2^31 ------>| |<--------... 1052 * 1053 * Current code wouldn't be vulnerable but it's better still to discard such 1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1057 * equal to the ideal case (infinite seqno space without wrap caused issues). 1058 * 1059 * With D-SACK the lower bound is extended to cover sequence space below 1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1061 * again, D-SACK block must not to go across snd_una (for the same reason as 1062 * for the normal SACK blocks, explained above). But there all simplicity 1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1064 * fully below undo_marker they do not affect behavior in anyway and can 1065 * therefore be safely ignored. In rare cases (which are more or less 1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1067 * fragmentation and packet reordering past skb's retransmission. To consider 1068 * them correctly, the acceptable range must be extended even more though 1069 * the exact amount is rather hard to quantify. However, tp->max_window can 1070 * be used as an exaggerated estimate. 1071 */ 1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1073 u32 start_seq, u32 end_seq) 1074 { 1075 /* Too far in future, or reversed (interpretation is ambiguous) */ 1076 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1077 return 0; 1078 1079 /* Nasty start_seq wrap-around check (see comments above) */ 1080 if (!before(start_seq, tp->snd_nxt)) 1081 return 0; 1082 1083 /* In outstanding window? ...This is valid exit for D-SACKs too. 1084 * start_seq == snd_una is non-sensical (see comments above) 1085 */ 1086 if (after(start_seq, tp->snd_una)) 1087 return 1; 1088 1089 if (!is_dsack || !tp->undo_marker) 1090 return 0; 1091 1092 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1093 if (!after(end_seq, tp->snd_una)) 1094 return 0; 1095 1096 if (!before(start_seq, tp->undo_marker)) 1097 return 1; 1098 1099 /* Too old */ 1100 if (!after(end_seq, tp->undo_marker)) 1101 return 0; 1102 1103 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1104 * start_seq < undo_marker and end_seq >= undo_marker. 1105 */ 1106 return !before(start_seq, end_seq - tp->max_window); 1107 } 1108 1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1110 * Event "C". Later note: FACK people cheated me again 8), we have to account 1111 * for reordering! Ugly, but should help. 1112 * 1113 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1114 * less than what is now known to be received by the other end (derived from 1115 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1116 * retransmitted skbs to avoid some costly processing per ACKs. 1117 */ 1118 static void tcp_mark_lost_retrans(struct sock *sk) 1119 { 1120 const struct inet_connection_sock *icsk = inet_csk(sk); 1121 struct tcp_sock *tp = tcp_sk(sk); 1122 struct sk_buff *skb; 1123 int cnt = 0; 1124 u32 new_low_seq = tp->snd_nxt; 1125 u32 received_upto = tcp_highest_sack_seq(tp); 1126 1127 if (!tcp_is_fack(tp) || !tp->retrans_out || 1128 !after(received_upto, tp->lost_retrans_low) || 1129 icsk->icsk_ca_state != TCP_CA_Recovery) 1130 return; 1131 1132 tcp_for_write_queue(skb, sk) { 1133 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1134 1135 if (skb == tcp_send_head(sk)) 1136 break; 1137 if (cnt == tp->retrans_out) 1138 break; 1139 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1140 continue; 1141 1142 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1143 continue; 1144 1145 if (after(received_upto, ack_seq) && 1146 (tcp_is_fack(tp) || 1147 !before(received_upto, 1148 ack_seq + tp->reordering * tp->mss_cache))) { 1149 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1150 tp->retrans_out -= tcp_skb_pcount(skb); 1151 1152 /* clear lost hint */ 1153 tp->retransmit_skb_hint = NULL; 1154 1155 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1156 tp->lost_out += tcp_skb_pcount(skb); 1157 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1158 } 1159 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); 1160 } else { 1161 if (before(ack_seq, new_low_seq)) 1162 new_low_seq = ack_seq; 1163 cnt += tcp_skb_pcount(skb); 1164 } 1165 } 1166 1167 if (tp->retrans_out) 1168 tp->lost_retrans_low = new_low_seq; 1169 } 1170 1171 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb, 1172 struct tcp_sack_block_wire *sp, int num_sacks, 1173 u32 prior_snd_una) 1174 { 1175 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq)); 1176 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq)); 1177 int dup_sack = 0; 1178 1179 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1180 dup_sack = 1; 1181 tcp_dsack_seen(tp); 1182 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); 1183 } else if (num_sacks > 1) { 1184 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq)); 1185 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq)); 1186 1187 if (!after(end_seq_0, end_seq_1) && 1188 !before(start_seq_0, start_seq_1)) { 1189 dup_sack = 1; 1190 tcp_dsack_seen(tp); 1191 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); 1192 } 1193 } 1194 1195 /* D-SACK for already forgotten data... Do dumb counting. */ 1196 if (dup_sack && 1197 !after(end_seq_0, prior_snd_una) && 1198 after(end_seq_0, tp->undo_marker)) 1199 tp->undo_retrans--; 1200 1201 return dup_sack; 1202 } 1203 1204 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1205 * the incoming SACK may not exactly match but we can find smaller MSS 1206 * aligned portion of it that matches. Therefore we might need to fragment 1207 * which may fail and creates some hassle (caller must handle error case 1208 * returns). 1209 */ 1210 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1211 u32 start_seq, u32 end_seq) 1212 { 1213 int in_sack, err; 1214 unsigned int pkt_len; 1215 1216 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1217 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1218 1219 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1220 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1221 1222 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1223 1224 if (!in_sack) 1225 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1226 else 1227 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1228 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size); 1229 if (err < 0) 1230 return err; 1231 } 1232 1233 return in_sack; 1234 } 1235 1236 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk, 1237 int *reord, int dup_sack, int fack_count) 1238 { 1239 struct tcp_sock *tp = tcp_sk(sk); 1240 u8 sacked = TCP_SKB_CB(skb)->sacked; 1241 int flag = 0; 1242 1243 /* Account D-SACK for retransmitted packet. */ 1244 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1245 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1246 tp->undo_retrans--; 1247 if (sacked & TCPCB_SACKED_ACKED) 1248 *reord = min(fack_count, *reord); 1249 } 1250 1251 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1252 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1253 return flag; 1254 1255 if (!(sacked & TCPCB_SACKED_ACKED)) { 1256 if (sacked & TCPCB_SACKED_RETRANS) { 1257 /* If the segment is not tagged as lost, 1258 * we do not clear RETRANS, believing 1259 * that retransmission is still in flight. 1260 */ 1261 if (sacked & TCPCB_LOST) { 1262 TCP_SKB_CB(skb)->sacked &= 1263 ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1264 tp->lost_out -= tcp_skb_pcount(skb); 1265 tp->retrans_out -= tcp_skb_pcount(skb); 1266 1267 /* clear lost hint */ 1268 tp->retransmit_skb_hint = NULL; 1269 } 1270 } else { 1271 if (!(sacked & TCPCB_RETRANS)) { 1272 /* New sack for not retransmitted frame, 1273 * which was in hole. It is reordering. 1274 */ 1275 if (before(TCP_SKB_CB(skb)->seq, 1276 tcp_highest_sack_seq(tp))) 1277 *reord = min(fack_count, *reord); 1278 1279 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1280 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) 1281 flag |= FLAG_ONLY_ORIG_SACKED; 1282 } 1283 1284 if (sacked & TCPCB_LOST) { 1285 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1286 tp->lost_out -= tcp_skb_pcount(skb); 1287 1288 /* clear lost hint */ 1289 tp->retransmit_skb_hint = NULL; 1290 } 1291 } 1292 1293 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; 1294 flag |= FLAG_DATA_SACKED; 1295 tp->sacked_out += tcp_skb_pcount(skb); 1296 1297 fack_count += tcp_skb_pcount(skb); 1298 1299 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1300 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1301 before(TCP_SKB_CB(skb)->seq, 1302 TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1303 tp->lost_cnt_hint += tcp_skb_pcount(skb); 1304 1305 if (fack_count > tp->fackets_out) 1306 tp->fackets_out = fack_count; 1307 1308 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp))) 1309 tcp_advance_highest_sack(sk, skb); 1310 } 1311 1312 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1313 * frames and clear it. undo_retrans is decreased above, L|R frames 1314 * are accounted above as well. 1315 */ 1316 if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) { 1317 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1318 tp->retrans_out -= tcp_skb_pcount(skb); 1319 tp->retransmit_skb_hint = NULL; 1320 } 1321 1322 return flag; 1323 } 1324 1325 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1326 struct tcp_sack_block *next_dup, 1327 u32 start_seq, u32 end_seq, 1328 int dup_sack_in, int *fack_count, 1329 int *reord, int *flag) 1330 { 1331 tcp_for_write_queue_from(skb, sk) { 1332 int in_sack = 0; 1333 int dup_sack = dup_sack_in; 1334 1335 if (skb == tcp_send_head(sk)) 1336 break; 1337 1338 /* queue is in-order => we can short-circuit the walk early */ 1339 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1340 break; 1341 1342 if ((next_dup != NULL) && 1343 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1344 in_sack = tcp_match_skb_to_sack(sk, skb, 1345 next_dup->start_seq, 1346 next_dup->end_seq); 1347 if (in_sack > 0) 1348 dup_sack = 1; 1349 } 1350 1351 if (in_sack <= 0) 1352 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, 1353 end_seq); 1354 if (unlikely(in_sack < 0)) 1355 break; 1356 1357 if (in_sack) 1358 *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack, 1359 *fack_count); 1360 1361 *fack_count += tcp_skb_pcount(skb); 1362 } 1363 return skb; 1364 } 1365 1366 /* Avoid all extra work that is being done by sacktag while walking in 1367 * a normal way 1368 */ 1369 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1370 u32 skip_to_seq, int *fack_count) 1371 { 1372 tcp_for_write_queue_from(skb, sk) { 1373 if (skb == tcp_send_head(sk)) 1374 break; 1375 1376 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1377 break; 1378 1379 *fack_count += tcp_skb_pcount(skb); 1380 } 1381 return skb; 1382 } 1383 1384 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1385 struct sock *sk, 1386 struct tcp_sack_block *next_dup, 1387 u32 skip_to_seq, 1388 int *fack_count, int *reord, 1389 int *flag) 1390 { 1391 if (next_dup == NULL) 1392 return skb; 1393 1394 if (before(next_dup->start_seq, skip_to_seq)) { 1395 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count); 1396 tcp_sacktag_walk(skb, sk, NULL, 1397 next_dup->start_seq, next_dup->end_seq, 1398 1, fack_count, reord, flag); 1399 } 1400 1401 return skb; 1402 } 1403 1404 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache) 1405 { 1406 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1407 } 1408 1409 static int 1410 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, 1411 u32 prior_snd_una) 1412 { 1413 const struct inet_connection_sock *icsk = inet_csk(sk); 1414 struct tcp_sock *tp = tcp_sk(sk); 1415 unsigned char *ptr = (skb_transport_header(ack_skb) + 1416 TCP_SKB_CB(ack_skb)->sacked); 1417 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1418 struct tcp_sack_block sp[4]; 1419 struct tcp_sack_block *cache; 1420 struct sk_buff *skb; 1421 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3; 1422 int used_sacks; 1423 int reord = tp->packets_out; 1424 int flag = 0; 1425 int found_dup_sack = 0; 1426 int fack_count; 1427 int i, j; 1428 int first_sack_index; 1429 1430 if (!tp->sacked_out) { 1431 if (WARN_ON(tp->fackets_out)) 1432 tp->fackets_out = 0; 1433 tcp_highest_sack_reset(sk); 1434 } 1435 1436 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire, 1437 num_sacks, prior_snd_una); 1438 if (found_dup_sack) 1439 flag |= FLAG_DSACKING_ACK; 1440 1441 /* Eliminate too old ACKs, but take into 1442 * account more or less fresh ones, they can 1443 * contain valid SACK info. 1444 */ 1445 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1446 return 0; 1447 1448 if (!tp->packets_out) 1449 goto out; 1450 1451 used_sacks = 0; 1452 first_sack_index = 0; 1453 for (i = 0; i < num_sacks; i++) { 1454 int dup_sack = !i && found_dup_sack; 1455 1456 sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq)); 1457 sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq)); 1458 1459 if (!tcp_is_sackblock_valid(tp, dup_sack, 1460 sp[used_sacks].start_seq, 1461 sp[used_sacks].end_seq)) { 1462 if (dup_sack) { 1463 if (!tp->undo_marker) 1464 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO); 1465 else 1466 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD); 1467 } else { 1468 /* Don't count olds caused by ACK reordering */ 1469 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1470 !after(sp[used_sacks].end_seq, tp->snd_una)) 1471 continue; 1472 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD); 1473 } 1474 if (i == 0) 1475 first_sack_index = -1; 1476 continue; 1477 } 1478 1479 /* Ignore very old stuff early */ 1480 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1481 continue; 1482 1483 used_sacks++; 1484 } 1485 1486 /* order SACK blocks to allow in order walk of the retrans queue */ 1487 for (i = used_sacks - 1; i > 0; i--) { 1488 for (j = 0; j < i; j++) { 1489 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1490 struct tcp_sack_block tmp; 1491 1492 tmp = sp[j]; 1493 sp[j] = sp[j + 1]; 1494 sp[j + 1] = tmp; 1495 1496 /* Track where the first SACK block goes to */ 1497 if (j == first_sack_index) 1498 first_sack_index = j + 1; 1499 } 1500 } 1501 } 1502 1503 skb = tcp_write_queue_head(sk); 1504 fack_count = 0; 1505 i = 0; 1506 1507 if (!tp->sacked_out) { 1508 /* It's already past, so skip checking against it */ 1509 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1510 } else { 1511 cache = tp->recv_sack_cache; 1512 /* Skip empty blocks in at head of the cache */ 1513 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1514 !cache->end_seq) 1515 cache++; 1516 } 1517 1518 while (i < used_sacks) { 1519 u32 start_seq = sp[i].start_seq; 1520 u32 end_seq = sp[i].end_seq; 1521 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1522 struct tcp_sack_block *next_dup = NULL; 1523 1524 if (found_dup_sack && ((i + 1) == first_sack_index)) 1525 next_dup = &sp[i + 1]; 1526 1527 /* Event "B" in the comment above. */ 1528 if (after(end_seq, tp->high_seq)) 1529 flag |= FLAG_DATA_LOST; 1530 1531 /* Skip too early cached blocks */ 1532 while (tcp_sack_cache_ok(tp, cache) && 1533 !before(start_seq, cache->end_seq)) 1534 cache++; 1535 1536 /* Can skip some work by looking recv_sack_cache? */ 1537 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1538 after(end_seq, cache->start_seq)) { 1539 1540 /* Head todo? */ 1541 if (before(start_seq, cache->start_seq)) { 1542 skb = tcp_sacktag_skip(skb, sk, start_seq, 1543 &fack_count); 1544 skb = tcp_sacktag_walk(skb, sk, next_dup, 1545 start_seq, 1546 cache->start_seq, 1547 dup_sack, &fack_count, 1548 &reord, &flag); 1549 } 1550 1551 /* Rest of the block already fully processed? */ 1552 if (!after(end_seq, cache->end_seq)) 1553 goto advance_sp; 1554 1555 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1556 cache->end_seq, 1557 &fack_count, &reord, 1558 &flag); 1559 1560 /* ...tail remains todo... */ 1561 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1562 /* ...but better entrypoint exists! */ 1563 skb = tcp_highest_sack(sk); 1564 if (skb == NULL) 1565 break; 1566 fack_count = tp->fackets_out; 1567 cache++; 1568 goto walk; 1569 } 1570 1571 skb = tcp_sacktag_skip(skb, sk, cache->end_seq, 1572 &fack_count); 1573 /* Check overlap against next cached too (past this one already) */ 1574 cache++; 1575 continue; 1576 } 1577 1578 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1579 skb = tcp_highest_sack(sk); 1580 if (skb == NULL) 1581 break; 1582 fack_count = tp->fackets_out; 1583 } 1584 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count); 1585 1586 walk: 1587 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq, 1588 dup_sack, &fack_count, &reord, &flag); 1589 1590 advance_sp: 1591 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1592 * due to in-order walk 1593 */ 1594 if (after(end_seq, tp->frto_highmark)) 1595 flag &= ~FLAG_ONLY_ORIG_SACKED; 1596 1597 i++; 1598 } 1599 1600 /* Clear the head of the cache sack blocks so we can skip it next time */ 1601 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1602 tp->recv_sack_cache[i].start_seq = 0; 1603 tp->recv_sack_cache[i].end_seq = 0; 1604 } 1605 for (j = 0; j < used_sacks; j++) 1606 tp->recv_sack_cache[i++] = sp[j]; 1607 1608 tcp_mark_lost_retrans(sk); 1609 1610 tcp_verify_left_out(tp); 1611 1612 if ((reord < tp->fackets_out) && 1613 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1614 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1615 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 1616 1617 out: 1618 1619 #if FASTRETRANS_DEBUG > 0 1620 BUG_TRAP((int)tp->sacked_out >= 0); 1621 BUG_TRAP((int)tp->lost_out >= 0); 1622 BUG_TRAP((int)tp->retrans_out >= 0); 1623 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); 1624 #endif 1625 return flag; 1626 } 1627 1628 /* If we receive more dupacks than we expected counting segments 1629 * in assumption of absent reordering, interpret this as reordering. 1630 * The only another reason could be bug in receiver TCP. 1631 */ 1632 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1633 { 1634 struct tcp_sock *tp = tcp_sk(sk); 1635 u32 holes; 1636 1637 holes = max(tp->lost_out, 1U); 1638 holes = min(holes, tp->packets_out); 1639 1640 if ((tp->sacked_out + holes) > tp->packets_out) { 1641 tp->sacked_out = tp->packets_out - holes; 1642 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1643 } 1644 } 1645 1646 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1647 1648 static void tcp_add_reno_sack(struct sock *sk) 1649 { 1650 struct tcp_sock *tp = tcp_sk(sk); 1651 tp->sacked_out++; 1652 tcp_check_reno_reordering(sk, 0); 1653 tcp_verify_left_out(tp); 1654 } 1655 1656 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1657 1658 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1659 { 1660 struct tcp_sock *tp = tcp_sk(sk); 1661 1662 if (acked > 0) { 1663 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1664 if (acked - 1 >= tp->sacked_out) 1665 tp->sacked_out = 0; 1666 else 1667 tp->sacked_out -= acked - 1; 1668 } 1669 tcp_check_reno_reordering(sk, acked); 1670 tcp_verify_left_out(tp); 1671 } 1672 1673 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1674 { 1675 tp->sacked_out = 0; 1676 } 1677 1678 /* F-RTO can only be used if TCP has never retransmitted anything other than 1679 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 1680 */ 1681 int tcp_use_frto(struct sock *sk) 1682 { 1683 const struct tcp_sock *tp = tcp_sk(sk); 1684 struct sk_buff *skb; 1685 1686 if (!sysctl_tcp_frto) 1687 return 0; 1688 1689 if (IsSackFrto()) 1690 return 1; 1691 1692 /* Avoid expensive walking of rexmit queue if possible */ 1693 if (tp->retrans_out > 1) 1694 return 0; 1695 1696 skb = tcp_write_queue_head(sk); 1697 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 1698 tcp_for_write_queue_from(skb, sk) { 1699 if (skb == tcp_send_head(sk)) 1700 break; 1701 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1702 return 0; 1703 /* Short-circuit when first non-SACKed skb has been checked */ 1704 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1705 break; 1706 } 1707 return 1; 1708 } 1709 1710 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 1711 * recovery a bit and use heuristics in tcp_process_frto() to detect if 1712 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 1713 * keep retrans_out counting accurate (with SACK F-RTO, other than head 1714 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 1715 * bits are handled if the Loss state is really to be entered (in 1716 * tcp_enter_frto_loss). 1717 * 1718 * Do like tcp_enter_loss() would; when RTO expires the second time it 1719 * does: 1720 * "Reduce ssthresh if it has not yet been made inside this window." 1721 */ 1722 void tcp_enter_frto(struct sock *sk) 1723 { 1724 const struct inet_connection_sock *icsk = inet_csk(sk); 1725 struct tcp_sock *tp = tcp_sk(sk); 1726 struct sk_buff *skb; 1727 1728 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 1729 tp->snd_una == tp->high_seq || 1730 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 1731 !icsk->icsk_retransmits)) { 1732 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1733 /* Our state is too optimistic in ssthresh() call because cwnd 1734 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 1735 * recovery has not yet completed. Pattern would be this: RTO, 1736 * Cumulative ACK, RTO (2xRTO for the same segment does not end 1737 * up here twice). 1738 * RFC4138 should be more specific on what to do, even though 1739 * RTO is quite unlikely to occur after the first Cumulative ACK 1740 * due to back-off and complexity of triggering events ... 1741 */ 1742 if (tp->frto_counter) { 1743 u32 stored_cwnd; 1744 stored_cwnd = tp->snd_cwnd; 1745 tp->snd_cwnd = 2; 1746 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1747 tp->snd_cwnd = stored_cwnd; 1748 } else { 1749 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1750 } 1751 /* ... in theory, cong.control module could do "any tricks" in 1752 * ssthresh(), which means that ca_state, lost bits and lost_out 1753 * counter would have to be faked before the call occurs. We 1754 * consider that too expensive, unlikely and hacky, so modules 1755 * using these in ssthresh() must deal these incompatibility 1756 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 1757 */ 1758 tcp_ca_event(sk, CA_EVENT_FRTO); 1759 } 1760 1761 tp->undo_marker = tp->snd_una; 1762 tp->undo_retrans = 0; 1763 1764 skb = tcp_write_queue_head(sk); 1765 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1766 tp->undo_marker = 0; 1767 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 1768 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1769 tp->retrans_out -= tcp_skb_pcount(skb); 1770 } 1771 tcp_verify_left_out(tp); 1772 1773 /* Too bad if TCP was application limited */ 1774 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 1775 1776 /* Earlier loss recovery underway (see RFC4138; Appendix B). 1777 * The last condition is necessary at least in tp->frto_counter case. 1778 */ 1779 if (IsSackFrto() && (tp->frto_counter || 1780 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 1781 after(tp->high_seq, tp->snd_una)) { 1782 tp->frto_highmark = tp->high_seq; 1783 } else { 1784 tp->frto_highmark = tp->snd_nxt; 1785 } 1786 tcp_set_ca_state(sk, TCP_CA_Disorder); 1787 tp->high_seq = tp->snd_nxt; 1788 tp->frto_counter = 1; 1789 } 1790 1791 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1792 * which indicates that we should follow the traditional RTO recovery, 1793 * i.e. mark everything lost and do go-back-N retransmission. 1794 */ 1795 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 1796 { 1797 struct tcp_sock *tp = tcp_sk(sk); 1798 struct sk_buff *skb; 1799 1800 tp->lost_out = 0; 1801 tp->retrans_out = 0; 1802 if (tcp_is_reno(tp)) 1803 tcp_reset_reno_sack(tp); 1804 1805 tcp_for_write_queue(skb, sk) { 1806 if (skb == tcp_send_head(sk)) 1807 break; 1808 1809 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1810 /* 1811 * Count the retransmission made on RTO correctly (only when 1812 * waiting for the first ACK and did not get it)... 1813 */ 1814 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 1815 /* For some reason this R-bit might get cleared? */ 1816 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1817 tp->retrans_out += tcp_skb_pcount(skb); 1818 /* ...enter this if branch just for the first segment */ 1819 flag |= FLAG_DATA_ACKED; 1820 } else { 1821 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1822 tp->undo_marker = 0; 1823 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1824 } 1825 1826 /* Don't lost mark skbs that were fwd transmitted after RTO */ 1827 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) && 1828 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) { 1829 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1830 tp->lost_out += tcp_skb_pcount(skb); 1831 } 1832 } 1833 tcp_verify_left_out(tp); 1834 1835 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 1836 tp->snd_cwnd_cnt = 0; 1837 tp->snd_cwnd_stamp = tcp_time_stamp; 1838 tp->frto_counter = 0; 1839 tp->bytes_acked = 0; 1840 1841 tp->reordering = min_t(unsigned int, tp->reordering, 1842 sysctl_tcp_reordering); 1843 tcp_set_ca_state(sk, TCP_CA_Loss); 1844 tp->high_seq = tp->frto_highmark; 1845 TCP_ECN_queue_cwr(tp); 1846 1847 tcp_clear_retrans_hints_partial(tp); 1848 } 1849 1850 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 1851 { 1852 tp->retrans_out = 0; 1853 tp->lost_out = 0; 1854 1855 tp->undo_marker = 0; 1856 tp->undo_retrans = 0; 1857 } 1858 1859 void tcp_clear_retrans(struct tcp_sock *tp) 1860 { 1861 tcp_clear_retrans_partial(tp); 1862 1863 tp->fackets_out = 0; 1864 tp->sacked_out = 0; 1865 } 1866 1867 /* Enter Loss state. If "how" is not zero, forget all SACK information 1868 * and reset tags completely, otherwise preserve SACKs. If receiver 1869 * dropped its ofo queue, we will know this due to reneging detection. 1870 */ 1871 void tcp_enter_loss(struct sock *sk, int how) 1872 { 1873 const struct inet_connection_sock *icsk = inet_csk(sk); 1874 struct tcp_sock *tp = tcp_sk(sk); 1875 struct sk_buff *skb; 1876 1877 /* Reduce ssthresh if it has not yet been made inside this window. */ 1878 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 1879 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1880 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1881 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1882 tcp_ca_event(sk, CA_EVENT_LOSS); 1883 } 1884 tp->snd_cwnd = 1; 1885 tp->snd_cwnd_cnt = 0; 1886 tp->snd_cwnd_stamp = tcp_time_stamp; 1887 1888 tp->bytes_acked = 0; 1889 tcp_clear_retrans_partial(tp); 1890 1891 if (tcp_is_reno(tp)) 1892 tcp_reset_reno_sack(tp); 1893 1894 if (!how) { 1895 /* Push undo marker, if it was plain RTO and nothing 1896 * was retransmitted. */ 1897 tp->undo_marker = tp->snd_una; 1898 tcp_clear_retrans_hints_partial(tp); 1899 } else { 1900 tp->sacked_out = 0; 1901 tp->fackets_out = 0; 1902 tcp_clear_all_retrans_hints(tp); 1903 } 1904 1905 tcp_for_write_queue(skb, sk) { 1906 if (skb == tcp_send_head(sk)) 1907 break; 1908 1909 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1910 tp->undo_marker = 0; 1911 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1912 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1913 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1914 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1915 tp->lost_out += tcp_skb_pcount(skb); 1916 } 1917 } 1918 tcp_verify_left_out(tp); 1919 1920 tp->reordering = min_t(unsigned int, tp->reordering, 1921 sysctl_tcp_reordering); 1922 tcp_set_ca_state(sk, TCP_CA_Loss); 1923 tp->high_seq = tp->snd_nxt; 1924 TCP_ECN_queue_cwr(tp); 1925 /* Abort F-RTO algorithm if one is in progress */ 1926 tp->frto_counter = 0; 1927 } 1928 1929 /* If ACK arrived pointing to a remembered SACK, it means that our 1930 * remembered SACKs do not reflect real state of receiver i.e. 1931 * receiver _host_ is heavily congested (or buggy). 1932 * 1933 * Do processing similar to RTO timeout. 1934 */ 1935 static int tcp_check_sack_reneging(struct sock *sk, int flag) 1936 { 1937 if (flag & FLAG_SACK_RENEGING) { 1938 struct inet_connection_sock *icsk = inet_csk(sk); 1939 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); 1940 1941 tcp_enter_loss(sk, 1); 1942 icsk->icsk_retransmits++; 1943 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 1944 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1945 icsk->icsk_rto, TCP_RTO_MAX); 1946 return 1; 1947 } 1948 return 0; 1949 } 1950 1951 static inline int tcp_fackets_out(struct tcp_sock *tp) 1952 { 1953 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 1954 } 1955 1956 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 1957 * counter when SACK is enabled (without SACK, sacked_out is used for 1958 * that purpose). 1959 * 1960 * Instead, with FACK TCP uses fackets_out that includes both SACKed 1961 * segments up to the highest received SACK block so far and holes in 1962 * between them. 1963 * 1964 * With reordering, holes may still be in flight, so RFC3517 recovery 1965 * uses pure sacked_out (total number of SACKed segments) even though 1966 * it violates the RFC that uses duplicate ACKs, often these are equal 1967 * but when e.g. out-of-window ACKs or packet duplication occurs, 1968 * they differ. Since neither occurs due to loss, TCP should really 1969 * ignore them. 1970 */ 1971 static inline int tcp_dupack_heurestics(struct tcp_sock *tp) 1972 { 1973 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 1974 } 1975 1976 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 1977 { 1978 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 1979 } 1980 1981 static inline int tcp_head_timedout(struct sock *sk) 1982 { 1983 struct tcp_sock *tp = tcp_sk(sk); 1984 1985 return tp->packets_out && 1986 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 1987 } 1988 1989 /* Linux NewReno/SACK/FACK/ECN state machine. 1990 * -------------------------------------- 1991 * 1992 * "Open" Normal state, no dubious events, fast path. 1993 * "Disorder" In all the respects it is "Open", 1994 * but requires a bit more attention. It is entered when 1995 * we see some SACKs or dupacks. It is split of "Open" 1996 * mainly to move some processing from fast path to slow one. 1997 * "CWR" CWND was reduced due to some Congestion Notification event. 1998 * It can be ECN, ICMP source quench, local device congestion. 1999 * "Recovery" CWND was reduced, we are fast-retransmitting. 2000 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2001 * 2002 * tcp_fastretrans_alert() is entered: 2003 * - each incoming ACK, if state is not "Open" 2004 * - when arrived ACK is unusual, namely: 2005 * * SACK 2006 * * Duplicate ACK. 2007 * * ECN ECE. 2008 * 2009 * Counting packets in flight is pretty simple. 2010 * 2011 * in_flight = packets_out - left_out + retrans_out 2012 * 2013 * packets_out is SND.NXT-SND.UNA counted in packets. 2014 * 2015 * retrans_out is number of retransmitted segments. 2016 * 2017 * left_out is number of segments left network, but not ACKed yet. 2018 * 2019 * left_out = sacked_out + lost_out 2020 * 2021 * sacked_out: Packets, which arrived to receiver out of order 2022 * and hence not ACKed. With SACKs this number is simply 2023 * amount of SACKed data. Even without SACKs 2024 * it is easy to give pretty reliable estimate of this number, 2025 * counting duplicate ACKs. 2026 * 2027 * lost_out: Packets lost by network. TCP has no explicit 2028 * "loss notification" feedback from network (for now). 2029 * It means that this number can be only _guessed_. 2030 * Actually, it is the heuristics to predict lossage that 2031 * distinguishes different algorithms. 2032 * 2033 * F.e. after RTO, when all the queue is considered as lost, 2034 * lost_out = packets_out and in_flight = retrans_out. 2035 * 2036 * Essentially, we have now two algorithms counting 2037 * lost packets. 2038 * 2039 * FACK: It is the simplest heuristics. As soon as we decided 2040 * that something is lost, we decide that _all_ not SACKed 2041 * packets until the most forward SACK are lost. I.e. 2042 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2043 * It is absolutely correct estimate, if network does not reorder 2044 * packets. And it loses any connection to reality when reordering 2045 * takes place. We use FACK by default until reordering 2046 * is suspected on the path to this destination. 2047 * 2048 * NewReno: when Recovery is entered, we assume that one segment 2049 * is lost (classic Reno). While we are in Recovery and 2050 * a partial ACK arrives, we assume that one more packet 2051 * is lost (NewReno). This heuristics are the same in NewReno 2052 * and SACK. 2053 * 2054 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2055 * deflation etc. CWND is real congestion window, never inflated, changes 2056 * only according to classic VJ rules. 2057 * 2058 * Really tricky (and requiring careful tuning) part of algorithm 2059 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2060 * The first determines the moment _when_ we should reduce CWND and, 2061 * hence, slow down forward transmission. In fact, it determines the moment 2062 * when we decide that hole is caused by loss, rather than by a reorder. 2063 * 2064 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2065 * holes, caused by lost packets. 2066 * 2067 * And the most logically complicated part of algorithm is undo 2068 * heuristics. We detect false retransmits due to both too early 2069 * fast retransmit (reordering) and underestimated RTO, analyzing 2070 * timestamps and D-SACKs. When we detect that some segments were 2071 * retransmitted by mistake and CWND reduction was wrong, we undo 2072 * window reduction and abort recovery phase. This logic is hidden 2073 * inside several functions named tcp_try_undo_<something>. 2074 */ 2075 2076 /* This function decides, when we should leave Disordered state 2077 * and enter Recovery phase, reducing congestion window. 2078 * 2079 * Main question: may we further continue forward transmission 2080 * with the same cwnd? 2081 */ 2082 static int tcp_time_to_recover(struct sock *sk) 2083 { 2084 struct tcp_sock *tp = tcp_sk(sk); 2085 __u32 packets_out; 2086 2087 /* Do not perform any recovery during F-RTO algorithm */ 2088 if (tp->frto_counter) 2089 return 0; 2090 2091 /* Trick#1: The loss is proven. */ 2092 if (tp->lost_out) 2093 return 1; 2094 2095 /* Not-A-Trick#2 : Classic rule... */ 2096 if (tcp_dupack_heurestics(tp) > tp->reordering) 2097 return 1; 2098 2099 /* Trick#3 : when we use RFC2988 timer restart, fast 2100 * retransmit can be triggered by timeout of queue head. 2101 */ 2102 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2103 return 1; 2104 2105 /* Trick#4: It is still not OK... But will it be useful to delay 2106 * recovery more? 2107 */ 2108 packets_out = tp->packets_out; 2109 if (packets_out <= tp->reordering && 2110 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2111 !tcp_may_send_now(sk)) { 2112 /* We have nothing to send. This connection is limited 2113 * either by receiver window or by application. 2114 */ 2115 return 1; 2116 } 2117 2118 return 0; 2119 } 2120 2121 /* RFC: This is from the original, I doubt that this is necessary at all: 2122 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we 2123 * retransmitted past LOST markings in the first place? I'm not fully sure 2124 * about undo and end of connection cases, which can cause R without L? 2125 */ 2126 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 2127 { 2128 if ((tp->retransmit_skb_hint != NULL) && 2129 before(TCP_SKB_CB(skb)->seq, 2130 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 2131 tp->retransmit_skb_hint = NULL; 2132 } 2133 2134 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is 2135 * is against sacked "cnt", otherwise it's against facked "cnt" 2136 */ 2137 static void tcp_mark_head_lost(struct sock *sk, int packets, int fast_rexmit) 2138 { 2139 struct tcp_sock *tp = tcp_sk(sk); 2140 struct sk_buff *skb; 2141 int cnt; 2142 2143 BUG_TRAP(packets <= tp->packets_out); 2144 if (tp->lost_skb_hint) { 2145 skb = tp->lost_skb_hint; 2146 cnt = tp->lost_cnt_hint; 2147 } else { 2148 skb = tcp_write_queue_head(sk); 2149 cnt = 0; 2150 } 2151 2152 tcp_for_write_queue_from(skb, sk) { 2153 if (skb == tcp_send_head(sk)) 2154 break; 2155 /* TODO: do this better */ 2156 /* this is not the most efficient way to do this... */ 2157 tp->lost_skb_hint = skb; 2158 tp->lost_cnt_hint = cnt; 2159 2160 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2161 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2162 cnt += tcp_skb_pcount(skb); 2163 2164 if (((!fast_rexmit || (tp->lost_out > 0)) && (cnt > packets)) || 2165 after(TCP_SKB_CB(skb)->end_seq, tp->high_seq)) 2166 break; 2167 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) { 2168 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2169 tp->lost_out += tcp_skb_pcount(skb); 2170 tcp_verify_retransmit_hint(tp, skb); 2171 } 2172 } 2173 tcp_verify_left_out(tp); 2174 } 2175 2176 /* Account newly detected lost packet(s) */ 2177 2178 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2179 { 2180 struct tcp_sock *tp = tcp_sk(sk); 2181 2182 if (tcp_is_reno(tp)) { 2183 tcp_mark_head_lost(sk, 1, fast_rexmit); 2184 } else if (tcp_is_fack(tp)) { 2185 int lost = tp->fackets_out - tp->reordering; 2186 if (lost <= 0) 2187 lost = 1; 2188 tcp_mark_head_lost(sk, lost, fast_rexmit); 2189 } else { 2190 int sacked_upto = tp->sacked_out - tp->reordering; 2191 if (sacked_upto < 0) 2192 sacked_upto = 0; 2193 tcp_mark_head_lost(sk, sacked_upto, fast_rexmit); 2194 } 2195 2196 /* New heuristics: it is possible only after we switched 2197 * to restart timer each time when something is ACKed. 2198 * Hence, we can detect timed out packets during fast 2199 * retransmit without falling to slow start. 2200 */ 2201 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) { 2202 struct sk_buff *skb; 2203 2204 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint 2205 : tcp_write_queue_head(sk); 2206 2207 tcp_for_write_queue_from(skb, sk) { 2208 if (skb == tcp_send_head(sk)) 2209 break; 2210 if (!tcp_skb_timedout(sk, skb)) 2211 break; 2212 2213 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) { 2214 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2215 tp->lost_out += tcp_skb_pcount(skb); 2216 tcp_verify_retransmit_hint(tp, skb); 2217 } 2218 } 2219 2220 tp->scoreboard_skb_hint = skb; 2221 2222 tcp_verify_left_out(tp); 2223 } 2224 } 2225 2226 /* CWND moderation, preventing bursts due to too big ACKs 2227 * in dubious situations. 2228 */ 2229 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2230 { 2231 tp->snd_cwnd = min(tp->snd_cwnd, 2232 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2233 tp->snd_cwnd_stamp = tcp_time_stamp; 2234 } 2235 2236 /* Lower bound on congestion window is slow start threshold 2237 * unless congestion avoidance choice decides to overide it. 2238 */ 2239 static inline u32 tcp_cwnd_min(const struct sock *sk) 2240 { 2241 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2242 2243 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2244 } 2245 2246 /* Decrease cwnd each second ack. */ 2247 static void tcp_cwnd_down(struct sock *sk, int flag) 2248 { 2249 struct tcp_sock *tp = tcp_sk(sk); 2250 int decr = tp->snd_cwnd_cnt + 1; 2251 2252 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2253 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2254 tp->snd_cwnd_cnt = decr & 1; 2255 decr >>= 1; 2256 2257 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2258 tp->snd_cwnd -= decr; 2259 2260 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2261 tp->snd_cwnd_stamp = tcp_time_stamp; 2262 } 2263 } 2264 2265 /* Nothing was retransmitted or returned timestamp is less 2266 * than timestamp of the first retransmission. 2267 */ 2268 static inline int tcp_packet_delayed(struct tcp_sock *tp) 2269 { 2270 return !tp->retrans_stamp || 2271 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2272 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0); 2273 } 2274 2275 /* Undo procedures. */ 2276 2277 #if FASTRETRANS_DEBUG > 1 2278 static void DBGUNDO(struct sock *sk, const char *msg) 2279 { 2280 struct tcp_sock *tp = tcp_sk(sk); 2281 struct inet_sock *inet = inet_sk(sk); 2282 2283 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n", 2284 msg, 2285 NIPQUAD(inet->daddr), ntohs(inet->dport), 2286 tp->snd_cwnd, tcp_left_out(tp), 2287 tp->snd_ssthresh, tp->prior_ssthresh, 2288 tp->packets_out); 2289 } 2290 #else 2291 #define DBGUNDO(x...) do { } while (0) 2292 #endif 2293 2294 static void tcp_undo_cwr(struct sock *sk, const int undo) 2295 { 2296 struct tcp_sock *tp = tcp_sk(sk); 2297 2298 if (tp->prior_ssthresh) { 2299 const struct inet_connection_sock *icsk = inet_csk(sk); 2300 2301 if (icsk->icsk_ca_ops->undo_cwnd) 2302 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2303 else 2304 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2305 2306 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 2307 tp->snd_ssthresh = tp->prior_ssthresh; 2308 TCP_ECN_withdraw_cwr(tp); 2309 } 2310 } else { 2311 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2312 } 2313 tcp_moderate_cwnd(tp); 2314 tp->snd_cwnd_stamp = tcp_time_stamp; 2315 2316 /* There is something screwy going on with the retrans hints after 2317 an undo */ 2318 tcp_clear_all_retrans_hints(tp); 2319 } 2320 2321 static inline int tcp_may_undo(struct tcp_sock *tp) 2322 { 2323 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2324 } 2325 2326 /* People celebrate: "We love our President!" */ 2327 static int tcp_try_undo_recovery(struct sock *sk) 2328 { 2329 struct tcp_sock *tp = tcp_sk(sk); 2330 2331 if (tcp_may_undo(tp)) { 2332 /* Happy end! We did not retransmit anything 2333 * or our original transmission succeeded. 2334 */ 2335 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2336 tcp_undo_cwr(sk, 1); 2337 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2338 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 2339 else 2340 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); 2341 tp->undo_marker = 0; 2342 } 2343 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2344 /* Hold old state until something *above* high_seq 2345 * is ACKed. For Reno it is MUST to prevent false 2346 * fast retransmits (RFC2582). SACK TCP is safe. */ 2347 tcp_moderate_cwnd(tp); 2348 return 1; 2349 } 2350 tcp_set_ca_state(sk, TCP_CA_Open); 2351 return 0; 2352 } 2353 2354 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2355 static void tcp_try_undo_dsack(struct sock *sk) 2356 { 2357 struct tcp_sock *tp = tcp_sk(sk); 2358 2359 if (tp->undo_marker && !tp->undo_retrans) { 2360 DBGUNDO(sk, "D-SACK"); 2361 tcp_undo_cwr(sk, 1); 2362 tp->undo_marker = 0; 2363 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); 2364 } 2365 } 2366 2367 /* Undo during fast recovery after partial ACK. */ 2368 2369 static int tcp_try_undo_partial(struct sock *sk, int acked) 2370 { 2371 struct tcp_sock *tp = tcp_sk(sk); 2372 /* Partial ACK arrived. Force Hoe's retransmit. */ 2373 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2374 2375 if (tcp_may_undo(tp)) { 2376 /* Plain luck! Hole if filled with delayed 2377 * packet, rather than with a retransmit. 2378 */ 2379 if (tp->retrans_out == 0) 2380 tp->retrans_stamp = 0; 2381 2382 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2383 2384 DBGUNDO(sk, "Hoe"); 2385 tcp_undo_cwr(sk, 0); 2386 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); 2387 2388 /* So... Do not make Hoe's retransmit yet. 2389 * If the first packet was delayed, the rest 2390 * ones are most probably delayed as well. 2391 */ 2392 failed = 0; 2393 } 2394 return failed; 2395 } 2396 2397 /* Undo during loss recovery after partial ACK. */ 2398 static int tcp_try_undo_loss(struct sock *sk) 2399 { 2400 struct tcp_sock *tp = tcp_sk(sk); 2401 2402 if (tcp_may_undo(tp)) { 2403 struct sk_buff *skb; 2404 tcp_for_write_queue(skb, sk) { 2405 if (skb == tcp_send_head(sk)) 2406 break; 2407 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2408 } 2409 2410 tcp_clear_all_retrans_hints(tp); 2411 2412 DBGUNDO(sk, "partial loss"); 2413 tp->lost_out = 0; 2414 tcp_undo_cwr(sk, 1); 2415 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 2416 inet_csk(sk)->icsk_retransmits = 0; 2417 tp->undo_marker = 0; 2418 if (tcp_is_sack(tp)) 2419 tcp_set_ca_state(sk, TCP_CA_Open); 2420 return 1; 2421 } 2422 return 0; 2423 } 2424 2425 static inline void tcp_complete_cwr(struct sock *sk) 2426 { 2427 struct tcp_sock *tp = tcp_sk(sk); 2428 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2429 tp->snd_cwnd_stamp = tcp_time_stamp; 2430 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2431 } 2432 2433 static void tcp_try_to_open(struct sock *sk, int flag) 2434 { 2435 struct tcp_sock *tp = tcp_sk(sk); 2436 2437 tcp_verify_left_out(tp); 2438 2439 if (tp->retrans_out == 0) 2440 tp->retrans_stamp = 0; 2441 2442 if (flag & FLAG_ECE) 2443 tcp_enter_cwr(sk, 1); 2444 2445 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2446 int state = TCP_CA_Open; 2447 2448 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker) 2449 state = TCP_CA_Disorder; 2450 2451 if (inet_csk(sk)->icsk_ca_state != state) { 2452 tcp_set_ca_state(sk, state); 2453 tp->high_seq = tp->snd_nxt; 2454 } 2455 tcp_moderate_cwnd(tp); 2456 } else { 2457 tcp_cwnd_down(sk, flag); 2458 } 2459 } 2460 2461 static void tcp_mtup_probe_failed(struct sock *sk) 2462 { 2463 struct inet_connection_sock *icsk = inet_csk(sk); 2464 2465 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2466 icsk->icsk_mtup.probe_size = 0; 2467 } 2468 2469 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb) 2470 { 2471 struct tcp_sock *tp = tcp_sk(sk); 2472 struct inet_connection_sock *icsk = inet_csk(sk); 2473 2474 /* FIXME: breaks with very large cwnd */ 2475 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2476 tp->snd_cwnd = tp->snd_cwnd * 2477 tcp_mss_to_mtu(sk, tp->mss_cache) / 2478 icsk->icsk_mtup.probe_size; 2479 tp->snd_cwnd_cnt = 0; 2480 tp->snd_cwnd_stamp = tcp_time_stamp; 2481 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 2482 2483 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2484 icsk->icsk_mtup.probe_size = 0; 2485 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2486 } 2487 2488 /* Process an event, which can update packets-in-flight not trivially. 2489 * Main goal of this function is to calculate new estimate for left_out, 2490 * taking into account both packets sitting in receiver's buffer and 2491 * packets lost by network. 2492 * 2493 * Besides that it does CWND reduction, when packet loss is detected 2494 * and changes state of machine. 2495 * 2496 * It does _not_ decide what to send, it is made in function 2497 * tcp_xmit_retransmit_queue(). 2498 */ 2499 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag) 2500 { 2501 struct inet_connection_sock *icsk = inet_csk(sk); 2502 struct tcp_sock *tp = tcp_sk(sk); 2503 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 2504 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2505 (tcp_fackets_out(tp) > tp->reordering)); 2506 int fast_rexmit = 0; 2507 2508 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2509 tp->sacked_out = 0; 2510 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2511 tp->fackets_out = 0; 2512 2513 /* Now state machine starts. 2514 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2515 if (flag & FLAG_ECE) 2516 tp->prior_ssthresh = 0; 2517 2518 /* B. In all the states check for reneging SACKs. */ 2519 if (tcp_check_sack_reneging(sk, flag)) 2520 return; 2521 2522 /* C. Process data loss notification, provided it is valid. */ 2523 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) && 2524 before(tp->snd_una, tp->high_seq) && 2525 icsk->icsk_ca_state != TCP_CA_Open && 2526 tp->fackets_out > tp->reordering) { 2527 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0); 2528 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); 2529 } 2530 2531 /* D. Check consistency of the current state. */ 2532 tcp_verify_left_out(tp); 2533 2534 /* E. Check state exit conditions. State can be terminated 2535 * when high_seq is ACKed. */ 2536 if (icsk->icsk_ca_state == TCP_CA_Open) { 2537 BUG_TRAP(tp->retrans_out == 0); 2538 tp->retrans_stamp = 0; 2539 } else if (!before(tp->snd_una, tp->high_seq)) { 2540 switch (icsk->icsk_ca_state) { 2541 case TCP_CA_Loss: 2542 icsk->icsk_retransmits = 0; 2543 if (tcp_try_undo_recovery(sk)) 2544 return; 2545 break; 2546 2547 case TCP_CA_CWR: 2548 /* CWR is to be held something *above* high_seq 2549 * is ACKed for CWR bit to reach receiver. */ 2550 if (tp->snd_una != tp->high_seq) { 2551 tcp_complete_cwr(sk); 2552 tcp_set_ca_state(sk, TCP_CA_Open); 2553 } 2554 break; 2555 2556 case TCP_CA_Disorder: 2557 tcp_try_undo_dsack(sk); 2558 if (!tp->undo_marker || 2559 /* For SACK case do not Open to allow to undo 2560 * catching for all duplicate ACKs. */ 2561 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) { 2562 tp->undo_marker = 0; 2563 tcp_set_ca_state(sk, TCP_CA_Open); 2564 } 2565 break; 2566 2567 case TCP_CA_Recovery: 2568 if (tcp_is_reno(tp)) 2569 tcp_reset_reno_sack(tp); 2570 if (tcp_try_undo_recovery(sk)) 2571 return; 2572 tcp_complete_cwr(sk); 2573 break; 2574 } 2575 } 2576 2577 /* F. Process state. */ 2578 switch (icsk->icsk_ca_state) { 2579 case TCP_CA_Recovery: 2580 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2581 if (tcp_is_reno(tp) && is_dupack) 2582 tcp_add_reno_sack(sk); 2583 } else 2584 do_lost = tcp_try_undo_partial(sk, pkts_acked); 2585 break; 2586 case TCP_CA_Loss: 2587 if (flag & FLAG_DATA_ACKED) 2588 icsk->icsk_retransmits = 0; 2589 if (!tcp_try_undo_loss(sk)) { 2590 tcp_moderate_cwnd(tp); 2591 tcp_xmit_retransmit_queue(sk); 2592 return; 2593 } 2594 if (icsk->icsk_ca_state != TCP_CA_Open) 2595 return; 2596 /* Loss is undone; fall through to processing in Open state. */ 2597 default: 2598 if (tcp_is_reno(tp)) { 2599 if (flag & FLAG_SND_UNA_ADVANCED) 2600 tcp_reset_reno_sack(tp); 2601 if (is_dupack) 2602 tcp_add_reno_sack(sk); 2603 } 2604 2605 if (icsk->icsk_ca_state == TCP_CA_Disorder) 2606 tcp_try_undo_dsack(sk); 2607 2608 if (!tcp_time_to_recover(sk)) { 2609 tcp_try_to_open(sk, flag); 2610 return; 2611 } 2612 2613 /* MTU probe failure: don't reduce cwnd */ 2614 if (icsk->icsk_ca_state < TCP_CA_CWR && 2615 icsk->icsk_mtup.probe_size && 2616 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2617 tcp_mtup_probe_failed(sk); 2618 /* Restores the reduction we did in tcp_mtup_probe() */ 2619 tp->snd_cwnd++; 2620 tcp_simple_retransmit(sk); 2621 return; 2622 } 2623 2624 /* Otherwise enter Recovery state */ 2625 2626 if (tcp_is_reno(tp)) 2627 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); 2628 else 2629 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); 2630 2631 tp->high_seq = tp->snd_nxt; 2632 tp->prior_ssthresh = 0; 2633 tp->undo_marker = tp->snd_una; 2634 tp->undo_retrans = tp->retrans_out; 2635 2636 if (icsk->icsk_ca_state < TCP_CA_CWR) { 2637 if (!(flag & FLAG_ECE)) 2638 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2639 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2640 TCP_ECN_queue_cwr(tp); 2641 } 2642 2643 tp->bytes_acked = 0; 2644 tp->snd_cwnd_cnt = 0; 2645 tcp_set_ca_state(sk, TCP_CA_Recovery); 2646 fast_rexmit = 1; 2647 } 2648 2649 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 2650 tcp_update_scoreboard(sk, fast_rexmit); 2651 tcp_cwnd_down(sk, flag); 2652 tcp_xmit_retransmit_queue(sk); 2653 } 2654 2655 /* Read draft-ietf-tcplw-high-performance before mucking 2656 * with this code. (Supersedes RFC1323) 2657 */ 2658 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 2659 { 2660 /* RTTM Rule: A TSecr value received in a segment is used to 2661 * update the averaged RTT measurement only if the segment 2662 * acknowledges some new data, i.e., only if it advances the 2663 * left edge of the send window. 2664 * 2665 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2666 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 2667 * 2668 * Changed: reset backoff as soon as we see the first valid sample. 2669 * If we do not, we get strongly overestimated rto. With timestamps 2670 * samples are accepted even from very old segments: f.e., when rtt=1 2671 * increases to 8, we retransmit 5 times and after 8 seconds delayed 2672 * answer arrives rto becomes 120 seconds! If at least one of segments 2673 * in window is lost... Voila. --ANK (010210) 2674 */ 2675 struct tcp_sock *tp = tcp_sk(sk); 2676 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2677 tcp_rtt_estimator(sk, seq_rtt); 2678 tcp_set_rto(sk); 2679 inet_csk(sk)->icsk_backoff = 0; 2680 tcp_bound_rto(sk); 2681 } 2682 2683 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 2684 { 2685 /* We don't have a timestamp. Can only use 2686 * packets that are not retransmitted to determine 2687 * rtt estimates. Also, we must not reset the 2688 * backoff for rto until we get a non-retransmitted 2689 * packet. This allows us to deal with a situation 2690 * where the network delay has increased suddenly. 2691 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 2692 */ 2693 2694 if (flag & FLAG_RETRANS_DATA_ACKED) 2695 return; 2696 2697 tcp_rtt_estimator(sk, seq_rtt); 2698 tcp_set_rto(sk); 2699 inet_csk(sk)->icsk_backoff = 0; 2700 tcp_bound_rto(sk); 2701 } 2702 2703 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 2704 const s32 seq_rtt) 2705 { 2706 const struct tcp_sock *tp = tcp_sk(sk); 2707 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 2708 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2709 tcp_ack_saw_tstamp(sk, flag); 2710 else if (seq_rtt >= 0) 2711 tcp_ack_no_tstamp(sk, seq_rtt, flag); 2712 } 2713 2714 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 2715 { 2716 const struct inet_connection_sock *icsk = inet_csk(sk); 2717 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 2718 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2719 } 2720 2721 /* Restart timer after forward progress on connection. 2722 * RFC2988 recommends to restart timer to now+rto. 2723 */ 2724 static void tcp_rearm_rto(struct sock *sk) 2725 { 2726 struct tcp_sock *tp = tcp_sk(sk); 2727 2728 if (!tp->packets_out) { 2729 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2730 } else { 2731 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2732 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2733 } 2734 } 2735 2736 /* If we get here, the whole TSO packet has not been acked. */ 2737 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2738 { 2739 struct tcp_sock *tp = tcp_sk(sk); 2740 u32 packets_acked; 2741 2742 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 2743 2744 packets_acked = tcp_skb_pcount(skb); 2745 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2746 return 0; 2747 packets_acked -= tcp_skb_pcount(skb); 2748 2749 if (packets_acked) { 2750 BUG_ON(tcp_skb_pcount(skb) == 0); 2751 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 2752 } 2753 2754 return packets_acked; 2755 } 2756 2757 /* Remove acknowledged frames from the retransmission queue. If our packet 2758 * is before the ack sequence we can discard it as it's confirmed to have 2759 * arrived at the other end. 2760 */ 2761 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets) 2762 { 2763 struct tcp_sock *tp = tcp_sk(sk); 2764 const struct inet_connection_sock *icsk = inet_csk(sk); 2765 struct sk_buff *skb; 2766 u32 now = tcp_time_stamp; 2767 int fully_acked = 1; 2768 int flag = 0; 2769 u32 pkts_acked = 0; 2770 u32 reord = tp->packets_out; 2771 s32 seq_rtt = -1; 2772 s32 ca_seq_rtt = -1; 2773 ktime_t last_ackt = net_invalid_timestamp(); 2774 2775 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 2776 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2777 u32 end_seq; 2778 u32 acked_pcount; 2779 u8 sacked = scb->sacked; 2780 2781 /* Determine how many packets and what bytes were acked, tso and else */ 2782 if (after(scb->end_seq, tp->snd_una)) { 2783 if (tcp_skb_pcount(skb) == 1 || 2784 !after(tp->snd_una, scb->seq)) 2785 break; 2786 2787 acked_pcount = tcp_tso_acked(sk, skb); 2788 if (!acked_pcount) 2789 break; 2790 2791 fully_acked = 0; 2792 end_seq = tp->snd_una; 2793 } else { 2794 acked_pcount = tcp_skb_pcount(skb); 2795 end_seq = scb->end_seq; 2796 } 2797 2798 /* MTU probing checks */ 2799 if (fully_acked && icsk->icsk_mtup.probe_size && 2800 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) { 2801 tcp_mtup_probe_success(sk, skb); 2802 } 2803 2804 if (sacked & TCPCB_RETRANS) { 2805 if (sacked & TCPCB_SACKED_RETRANS) 2806 tp->retrans_out -= acked_pcount; 2807 flag |= FLAG_RETRANS_DATA_ACKED; 2808 ca_seq_rtt = -1; 2809 seq_rtt = -1; 2810 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 2811 flag |= FLAG_NONHEAD_RETRANS_ACKED; 2812 } else { 2813 ca_seq_rtt = now - scb->when; 2814 last_ackt = skb->tstamp; 2815 if (seq_rtt < 0) { 2816 seq_rtt = ca_seq_rtt; 2817 } 2818 if (!(sacked & TCPCB_SACKED_ACKED)) 2819 reord = min(pkts_acked, reord); 2820 } 2821 2822 if (sacked & TCPCB_SACKED_ACKED) 2823 tp->sacked_out -= acked_pcount; 2824 if (sacked & TCPCB_LOST) 2825 tp->lost_out -= acked_pcount; 2826 2827 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up))) 2828 tp->urg_mode = 0; 2829 2830 tp->packets_out -= acked_pcount; 2831 pkts_acked += acked_pcount; 2832 2833 /* Initial outgoing SYN's get put onto the write_queue 2834 * just like anything else we transmit. It is not 2835 * true data, and if we misinform our callers that 2836 * this ACK acks real data, we will erroneously exit 2837 * connection startup slow start one packet too 2838 * quickly. This is severely frowned upon behavior. 2839 */ 2840 if (!(scb->flags & TCPCB_FLAG_SYN)) { 2841 flag |= FLAG_DATA_ACKED; 2842 } else { 2843 flag |= FLAG_SYN_ACKED; 2844 tp->retrans_stamp = 0; 2845 } 2846 2847 if (!fully_acked) 2848 break; 2849 2850 tcp_unlink_write_queue(skb, sk); 2851 sk_wmem_free_skb(sk, skb); 2852 tcp_clear_all_retrans_hints(tp); 2853 } 2854 2855 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2856 flag |= FLAG_SACK_RENEGING; 2857 2858 if (flag & FLAG_ACKED) { 2859 const struct tcp_congestion_ops *ca_ops 2860 = inet_csk(sk)->icsk_ca_ops; 2861 2862 tcp_ack_update_rtt(sk, flag, seq_rtt); 2863 tcp_rearm_rto(sk); 2864 2865 if (tcp_is_reno(tp)) { 2866 tcp_remove_reno_sacks(sk, pkts_acked); 2867 } else { 2868 /* Non-retransmitted hole got filled? That's reordering */ 2869 if (reord < prior_fackets) 2870 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 2871 } 2872 2873 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 2874 2875 if (ca_ops->pkts_acked) { 2876 s32 rtt_us = -1; 2877 2878 /* Is the ACK triggering packet unambiguous? */ 2879 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 2880 /* High resolution needed and available? */ 2881 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 2882 !ktime_equal(last_ackt, 2883 net_invalid_timestamp())) 2884 rtt_us = ktime_us_delta(ktime_get_real(), 2885 last_ackt); 2886 else if (ca_seq_rtt > 0) 2887 rtt_us = jiffies_to_usecs(ca_seq_rtt); 2888 } 2889 2890 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 2891 } 2892 } 2893 2894 #if FASTRETRANS_DEBUG > 0 2895 BUG_TRAP((int)tp->sacked_out >= 0); 2896 BUG_TRAP((int)tp->lost_out >= 0); 2897 BUG_TRAP((int)tp->retrans_out >= 0); 2898 if (!tp->packets_out && tcp_is_sack(tp)) { 2899 icsk = inet_csk(sk); 2900 if (tp->lost_out) { 2901 printk(KERN_DEBUG "Leak l=%u %d\n", 2902 tp->lost_out, icsk->icsk_ca_state); 2903 tp->lost_out = 0; 2904 } 2905 if (tp->sacked_out) { 2906 printk(KERN_DEBUG "Leak s=%u %d\n", 2907 tp->sacked_out, icsk->icsk_ca_state); 2908 tp->sacked_out = 0; 2909 } 2910 if (tp->retrans_out) { 2911 printk(KERN_DEBUG "Leak r=%u %d\n", 2912 tp->retrans_out, icsk->icsk_ca_state); 2913 tp->retrans_out = 0; 2914 } 2915 } 2916 #endif 2917 return flag; 2918 } 2919 2920 static void tcp_ack_probe(struct sock *sk) 2921 { 2922 const struct tcp_sock *tp = tcp_sk(sk); 2923 struct inet_connection_sock *icsk = inet_csk(sk); 2924 2925 /* Was it a usable window open? */ 2926 2927 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 2928 icsk->icsk_backoff = 0; 2929 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 2930 /* Socket must be waked up by subsequent tcp_data_snd_check(). 2931 * This function is not for random using! 2932 */ 2933 } else { 2934 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2935 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2936 TCP_RTO_MAX); 2937 } 2938 } 2939 2940 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 2941 { 2942 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 2943 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 2944 } 2945 2946 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 2947 { 2948 const struct tcp_sock *tp = tcp_sk(sk); 2949 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 2950 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 2951 } 2952 2953 /* Check that window update is acceptable. 2954 * The function assumes that snd_una<=ack<=snd_next. 2955 */ 2956 static inline int tcp_may_update_window(const struct tcp_sock *tp, 2957 const u32 ack, const u32 ack_seq, 2958 const u32 nwin) 2959 { 2960 return (after(ack, tp->snd_una) || 2961 after(ack_seq, tp->snd_wl1) || 2962 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 2963 } 2964 2965 /* Update our send window. 2966 * 2967 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 2968 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 2969 */ 2970 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 2971 u32 ack_seq) 2972 { 2973 struct tcp_sock *tp = tcp_sk(sk); 2974 int flag = 0; 2975 u32 nwin = ntohs(tcp_hdr(skb)->window); 2976 2977 if (likely(!tcp_hdr(skb)->syn)) 2978 nwin <<= tp->rx_opt.snd_wscale; 2979 2980 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 2981 flag |= FLAG_WIN_UPDATE; 2982 tcp_update_wl(tp, ack, ack_seq); 2983 2984 if (tp->snd_wnd != nwin) { 2985 tp->snd_wnd = nwin; 2986 2987 /* Note, it is the only place, where 2988 * fast path is recovered for sending TCP. 2989 */ 2990 tp->pred_flags = 0; 2991 tcp_fast_path_check(sk); 2992 2993 if (nwin > tp->max_window) { 2994 tp->max_window = nwin; 2995 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 2996 } 2997 } 2998 } 2999 3000 tp->snd_una = ack; 3001 3002 return flag; 3003 } 3004 3005 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3006 * continue in congestion avoidance. 3007 */ 3008 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3009 { 3010 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3011 tp->snd_cwnd_cnt = 0; 3012 tp->bytes_acked = 0; 3013 TCP_ECN_queue_cwr(tp); 3014 tcp_moderate_cwnd(tp); 3015 } 3016 3017 /* A conservative spurious RTO response algorithm: reduce cwnd using 3018 * rate halving and continue in congestion avoidance. 3019 */ 3020 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3021 { 3022 tcp_enter_cwr(sk, 0); 3023 } 3024 3025 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3026 { 3027 if (flag & FLAG_ECE) 3028 tcp_ratehalving_spur_to_response(sk); 3029 else 3030 tcp_undo_cwr(sk, 1); 3031 } 3032 3033 /* F-RTO spurious RTO detection algorithm (RFC4138) 3034 * 3035 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3036 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3037 * window (but not to or beyond highest sequence sent before RTO): 3038 * On First ACK, send two new segments out. 3039 * On Second ACK, RTO was likely spurious. Do spurious response (response 3040 * algorithm is not part of the F-RTO detection algorithm 3041 * given in RFC4138 but can be selected separately). 3042 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3043 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3044 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3045 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3046 * 3047 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3048 * original window even after we transmit two new data segments. 3049 * 3050 * SACK version: 3051 * on first step, wait until first cumulative ACK arrives, then move to 3052 * the second step. In second step, the next ACK decides. 3053 * 3054 * F-RTO is implemented (mainly) in four functions: 3055 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3056 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3057 * called when tcp_use_frto() showed green light 3058 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3059 * - tcp_enter_frto_loss() is called if there is not enough evidence 3060 * to prove that the RTO is indeed spurious. It transfers the control 3061 * from F-RTO to the conventional RTO recovery 3062 */ 3063 static int tcp_process_frto(struct sock *sk, int flag) 3064 { 3065 struct tcp_sock *tp = tcp_sk(sk); 3066 3067 tcp_verify_left_out(tp); 3068 3069 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3070 if (flag & FLAG_DATA_ACKED) 3071 inet_csk(sk)->icsk_retransmits = 0; 3072 3073 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3074 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3075 tp->undo_marker = 0; 3076 3077 if (!before(tp->snd_una, tp->frto_highmark)) { 3078 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3079 return 1; 3080 } 3081 3082 if (!IsSackFrto() || tcp_is_reno(tp)) { 3083 /* RFC4138 shortcoming in step 2; should also have case c): 3084 * ACK isn't duplicate nor advances window, e.g., opposite dir 3085 * data, winupdate 3086 */ 3087 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3088 return 1; 3089 3090 if (!(flag & FLAG_DATA_ACKED)) { 3091 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3092 flag); 3093 return 1; 3094 } 3095 } else { 3096 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3097 /* Prevent sending of new data. */ 3098 tp->snd_cwnd = min(tp->snd_cwnd, 3099 tcp_packets_in_flight(tp)); 3100 return 1; 3101 } 3102 3103 if ((tp->frto_counter >= 2) && 3104 (!(flag & FLAG_FORWARD_PROGRESS) || 3105 ((flag & FLAG_DATA_SACKED) && 3106 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3107 /* RFC4138 shortcoming (see comment above) */ 3108 if (!(flag & FLAG_FORWARD_PROGRESS) && 3109 (flag & FLAG_NOT_DUP)) 3110 return 1; 3111 3112 tcp_enter_frto_loss(sk, 3, flag); 3113 return 1; 3114 } 3115 } 3116 3117 if (tp->frto_counter == 1) { 3118 /* tcp_may_send_now needs to see updated state */ 3119 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3120 tp->frto_counter = 2; 3121 3122 if (!tcp_may_send_now(sk)) 3123 tcp_enter_frto_loss(sk, 2, flag); 3124 3125 return 1; 3126 } else { 3127 switch (sysctl_tcp_frto_response) { 3128 case 2: 3129 tcp_undo_spur_to_response(sk, flag); 3130 break; 3131 case 1: 3132 tcp_conservative_spur_to_response(tp); 3133 break; 3134 default: 3135 tcp_ratehalving_spur_to_response(sk); 3136 break; 3137 } 3138 tp->frto_counter = 0; 3139 tp->undo_marker = 0; 3140 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS); 3141 } 3142 return 0; 3143 } 3144 3145 /* This routine deals with incoming acks, but not outgoing ones. */ 3146 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 3147 { 3148 struct inet_connection_sock *icsk = inet_csk(sk); 3149 struct tcp_sock *tp = tcp_sk(sk); 3150 u32 prior_snd_una = tp->snd_una; 3151 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3152 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3153 u32 prior_in_flight; 3154 u32 prior_fackets; 3155 int prior_packets; 3156 int frto_cwnd = 0; 3157 3158 /* If the ack is newer than sent or older than previous acks 3159 * then we can probably ignore it. 3160 */ 3161 if (after(ack, tp->snd_nxt)) 3162 goto uninteresting_ack; 3163 3164 if (before(ack, prior_snd_una)) 3165 goto old_ack; 3166 3167 if (after(ack, prior_snd_una)) 3168 flag |= FLAG_SND_UNA_ADVANCED; 3169 3170 if (sysctl_tcp_abc) { 3171 if (icsk->icsk_ca_state < TCP_CA_CWR) 3172 tp->bytes_acked += ack - prior_snd_una; 3173 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3174 /* we assume just one segment left network */ 3175 tp->bytes_acked += min(ack - prior_snd_una, 3176 tp->mss_cache); 3177 } 3178 3179 prior_fackets = tp->fackets_out; 3180 prior_in_flight = tcp_packets_in_flight(tp); 3181 3182 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3183 /* Window is constant, pure forward advance. 3184 * No more checks are required. 3185 * Note, we use the fact that SND.UNA>=SND.WL2. 3186 */ 3187 tcp_update_wl(tp, ack, ack_seq); 3188 tp->snd_una = ack; 3189 flag |= FLAG_WIN_UPDATE; 3190 3191 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3192 3193 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); 3194 } else { 3195 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3196 flag |= FLAG_DATA; 3197 else 3198 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); 3199 3200 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3201 3202 if (TCP_SKB_CB(skb)->sacked) 3203 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3204 3205 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3206 flag |= FLAG_ECE; 3207 3208 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3209 } 3210 3211 /* We passed data and got it acked, remove any soft error 3212 * log. Something worked... 3213 */ 3214 sk->sk_err_soft = 0; 3215 tp->rcv_tstamp = tcp_time_stamp; 3216 prior_packets = tp->packets_out; 3217 if (!prior_packets) 3218 goto no_queue; 3219 3220 /* See if we can take anything off of the retransmit queue. */ 3221 flag |= tcp_clean_rtx_queue(sk, prior_fackets); 3222 3223 if (tp->frto_counter) 3224 frto_cwnd = tcp_process_frto(sk, flag); 3225 /* Guarantee sacktag reordering detection against wrap-arounds */ 3226 if (before(tp->frto_highmark, tp->snd_una)) 3227 tp->frto_highmark = 0; 3228 3229 if (tcp_ack_is_dubious(sk, flag)) { 3230 /* Advance CWND, if state allows this. */ 3231 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3232 tcp_may_raise_cwnd(sk, flag)) 3233 tcp_cong_avoid(sk, ack, prior_in_flight); 3234 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, 3235 flag); 3236 } else { 3237 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3238 tcp_cong_avoid(sk, ack, prior_in_flight); 3239 } 3240 3241 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3242 dst_confirm(sk->sk_dst_cache); 3243 3244 return 1; 3245 3246 no_queue: 3247 icsk->icsk_probes_out = 0; 3248 3249 /* If this ack opens up a zero window, clear backoff. It was 3250 * being used to time the probes, and is probably far higher than 3251 * it needs to be for normal retransmission. 3252 */ 3253 if (tcp_send_head(sk)) 3254 tcp_ack_probe(sk); 3255 return 1; 3256 3257 old_ack: 3258 if (TCP_SKB_CB(skb)->sacked) 3259 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3260 3261 uninteresting_ack: 3262 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3263 return 0; 3264 } 3265 3266 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3267 * But, this can also be called on packets in the established flow when 3268 * the fast version below fails. 3269 */ 3270 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, 3271 int estab) 3272 { 3273 unsigned char *ptr; 3274 struct tcphdr *th = tcp_hdr(skb); 3275 int length = (th->doff * 4) - sizeof(struct tcphdr); 3276 3277 ptr = (unsigned char *)(th + 1); 3278 opt_rx->saw_tstamp = 0; 3279 3280 while (length > 0) { 3281 int opcode = *ptr++; 3282 int opsize; 3283 3284 switch (opcode) { 3285 case TCPOPT_EOL: 3286 return; 3287 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3288 length--; 3289 continue; 3290 default: 3291 opsize = *ptr++; 3292 if (opsize < 2) /* "silly options" */ 3293 return; 3294 if (opsize > length) 3295 return; /* don't parse partial options */ 3296 switch (opcode) { 3297 case TCPOPT_MSS: 3298 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3299 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr)); 3300 if (in_mss) { 3301 if (opt_rx->user_mss && 3302 opt_rx->user_mss < in_mss) 3303 in_mss = opt_rx->user_mss; 3304 opt_rx->mss_clamp = in_mss; 3305 } 3306 } 3307 break; 3308 case TCPOPT_WINDOW: 3309 if (opsize == TCPOLEN_WINDOW && th->syn && 3310 !estab && sysctl_tcp_window_scaling) { 3311 __u8 snd_wscale = *(__u8 *)ptr; 3312 opt_rx->wscale_ok = 1; 3313 if (snd_wscale > 14) { 3314 if (net_ratelimit()) 3315 printk(KERN_INFO "tcp_parse_options: Illegal window " 3316 "scaling value %d >14 received.\n", 3317 snd_wscale); 3318 snd_wscale = 14; 3319 } 3320 opt_rx->snd_wscale = snd_wscale; 3321 } 3322 break; 3323 case TCPOPT_TIMESTAMP: 3324 if ((opsize == TCPOLEN_TIMESTAMP) && 3325 ((estab && opt_rx->tstamp_ok) || 3326 (!estab && sysctl_tcp_timestamps))) { 3327 opt_rx->saw_tstamp = 1; 3328 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr)); 3329 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4))); 3330 } 3331 break; 3332 case TCPOPT_SACK_PERM: 3333 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3334 !estab && sysctl_tcp_sack) { 3335 opt_rx->sack_ok = 1; 3336 tcp_sack_reset(opt_rx); 3337 } 3338 break; 3339 3340 case TCPOPT_SACK: 3341 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3342 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3343 opt_rx->sack_ok) { 3344 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3345 } 3346 break; 3347 #ifdef CONFIG_TCP_MD5SIG 3348 case TCPOPT_MD5SIG: 3349 /* 3350 * The MD5 Hash has already been 3351 * checked (see tcp_v{4,6}_do_rcv()). 3352 */ 3353 break; 3354 #endif 3355 } 3356 3357 ptr += opsize-2; 3358 length -= opsize; 3359 } 3360 } 3361 } 3362 3363 /* Fast parse options. This hopes to only see timestamps. 3364 * If it is wrong it falls back on tcp_parse_options(). 3365 */ 3366 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 3367 struct tcp_sock *tp) 3368 { 3369 if (th->doff == sizeof(struct tcphdr) >> 2) { 3370 tp->rx_opt.saw_tstamp = 0; 3371 return 0; 3372 } else if (tp->rx_opt.tstamp_ok && 3373 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 3374 __be32 *ptr = (__be32 *)(th + 1); 3375 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3376 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3377 tp->rx_opt.saw_tstamp = 1; 3378 ++ptr; 3379 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3380 ++ptr; 3381 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3382 return 1; 3383 } 3384 } 3385 tcp_parse_options(skb, &tp->rx_opt, 1); 3386 return 1; 3387 } 3388 3389 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3390 { 3391 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3392 tp->rx_opt.ts_recent_stamp = get_seconds(); 3393 } 3394 3395 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3396 { 3397 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3398 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3399 * extra check below makes sure this can only happen 3400 * for pure ACK frames. -DaveM 3401 * 3402 * Not only, also it occurs for expired timestamps. 3403 */ 3404 3405 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 3406 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 3407 tcp_store_ts_recent(tp); 3408 } 3409 } 3410 3411 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3412 * 3413 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3414 * it can pass through stack. So, the following predicate verifies that 3415 * this segment is not used for anything but congestion avoidance or 3416 * fast retransmit. Moreover, we even are able to eliminate most of such 3417 * second order effects, if we apply some small "replay" window (~RTO) 3418 * to timestamp space. 3419 * 3420 * All these measures still do not guarantee that we reject wrapped ACKs 3421 * on networks with high bandwidth, when sequence space is recycled fastly, 3422 * but it guarantees that such events will be very rare and do not affect 3423 * connection seriously. This doesn't look nice, but alas, PAWS is really 3424 * buggy extension. 3425 * 3426 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3427 * states that events when retransmit arrives after original data are rare. 3428 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3429 * the biggest problem on large power networks even with minor reordering. 3430 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3431 * up to bandwidth of 18Gigabit/sec. 8) ] 3432 */ 3433 3434 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3435 { 3436 struct tcp_sock *tp = tcp_sk(sk); 3437 struct tcphdr *th = tcp_hdr(skb); 3438 u32 seq = TCP_SKB_CB(skb)->seq; 3439 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3440 3441 return (/* 1. Pure ACK with correct sequence number. */ 3442 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3443 3444 /* 2. ... and duplicate ACK. */ 3445 ack == tp->snd_una && 3446 3447 /* 3. ... and does not update window. */ 3448 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3449 3450 /* 4. ... and sits in replay window. */ 3451 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3452 } 3453 3454 static inline int tcp_paws_discard(const struct sock *sk, 3455 const struct sk_buff *skb) 3456 { 3457 const struct tcp_sock *tp = tcp_sk(sk); 3458 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 3459 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 3460 !tcp_disordered_ack(sk, skb)); 3461 } 3462 3463 /* Check segment sequence number for validity. 3464 * 3465 * Segment controls are considered valid, if the segment 3466 * fits to the window after truncation to the window. Acceptability 3467 * of data (and SYN, FIN, of course) is checked separately. 3468 * See tcp_data_queue(), for example. 3469 * 3470 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3471 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3472 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3473 * (borrowed from freebsd) 3474 */ 3475 3476 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 3477 { 3478 return !before(end_seq, tp->rcv_wup) && 3479 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3480 } 3481 3482 /* When we get a reset we do this. */ 3483 static void tcp_reset(struct sock *sk) 3484 { 3485 /* We want the right error as BSD sees it (and indeed as we do). */ 3486 switch (sk->sk_state) { 3487 case TCP_SYN_SENT: 3488 sk->sk_err = ECONNREFUSED; 3489 break; 3490 case TCP_CLOSE_WAIT: 3491 sk->sk_err = EPIPE; 3492 break; 3493 case TCP_CLOSE: 3494 return; 3495 default: 3496 sk->sk_err = ECONNRESET; 3497 } 3498 3499 if (!sock_flag(sk, SOCK_DEAD)) 3500 sk->sk_error_report(sk); 3501 3502 tcp_done(sk); 3503 } 3504 3505 /* 3506 * Process the FIN bit. This now behaves as it is supposed to work 3507 * and the FIN takes effect when it is validly part of sequence 3508 * space. Not before when we get holes. 3509 * 3510 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3511 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3512 * TIME-WAIT) 3513 * 3514 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3515 * close and we go into CLOSING (and later onto TIME-WAIT) 3516 * 3517 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3518 */ 3519 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 3520 { 3521 struct tcp_sock *tp = tcp_sk(sk); 3522 3523 inet_csk_schedule_ack(sk); 3524 3525 sk->sk_shutdown |= RCV_SHUTDOWN; 3526 sock_set_flag(sk, SOCK_DONE); 3527 3528 switch (sk->sk_state) { 3529 case TCP_SYN_RECV: 3530 case TCP_ESTABLISHED: 3531 /* Move to CLOSE_WAIT */ 3532 tcp_set_state(sk, TCP_CLOSE_WAIT); 3533 inet_csk(sk)->icsk_ack.pingpong = 1; 3534 break; 3535 3536 case TCP_CLOSE_WAIT: 3537 case TCP_CLOSING: 3538 /* Received a retransmission of the FIN, do 3539 * nothing. 3540 */ 3541 break; 3542 case TCP_LAST_ACK: 3543 /* RFC793: Remain in the LAST-ACK state. */ 3544 break; 3545 3546 case TCP_FIN_WAIT1: 3547 /* This case occurs when a simultaneous close 3548 * happens, we must ack the received FIN and 3549 * enter the CLOSING state. 3550 */ 3551 tcp_send_ack(sk); 3552 tcp_set_state(sk, TCP_CLOSING); 3553 break; 3554 case TCP_FIN_WAIT2: 3555 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3556 tcp_send_ack(sk); 3557 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3558 break; 3559 default: 3560 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3561 * cases we should never reach this piece of code. 3562 */ 3563 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 3564 __FUNCTION__, sk->sk_state); 3565 break; 3566 } 3567 3568 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3569 * Probably, we should reset in this case. For now drop them. 3570 */ 3571 __skb_queue_purge(&tp->out_of_order_queue); 3572 if (tcp_is_sack(tp)) 3573 tcp_sack_reset(&tp->rx_opt); 3574 sk_mem_reclaim(sk); 3575 3576 if (!sock_flag(sk, SOCK_DEAD)) { 3577 sk->sk_state_change(sk); 3578 3579 /* Do not send POLL_HUP for half duplex close. */ 3580 if (sk->sk_shutdown == SHUTDOWN_MASK || 3581 sk->sk_state == TCP_CLOSE) 3582 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 3583 else 3584 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3585 } 3586 } 3587 3588 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 3589 u32 end_seq) 3590 { 3591 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3592 if (before(seq, sp->start_seq)) 3593 sp->start_seq = seq; 3594 if (after(end_seq, sp->end_seq)) 3595 sp->end_seq = end_seq; 3596 return 1; 3597 } 3598 return 0; 3599 } 3600 3601 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) 3602 { 3603 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3604 if (before(seq, tp->rcv_nxt)) 3605 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); 3606 else 3607 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); 3608 3609 tp->rx_opt.dsack = 1; 3610 tp->duplicate_sack[0].start_seq = seq; 3611 tp->duplicate_sack[0].end_seq = end_seq; 3612 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 3613 4 - tp->rx_opt.tstamp_ok); 3614 } 3615 } 3616 3617 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) 3618 { 3619 if (!tp->rx_opt.dsack) 3620 tcp_dsack_set(tp, seq, end_seq); 3621 else 3622 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3623 } 3624 3625 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 3626 { 3627 struct tcp_sock *tp = tcp_sk(sk); 3628 3629 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3630 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3631 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3632 tcp_enter_quickack_mode(sk); 3633 3634 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3635 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3636 3637 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3638 end_seq = tp->rcv_nxt; 3639 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); 3640 } 3641 } 3642 3643 tcp_send_ack(sk); 3644 } 3645 3646 /* These routines update the SACK block as out-of-order packets arrive or 3647 * in-order packets close up the sequence space. 3648 */ 3649 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 3650 { 3651 int this_sack; 3652 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3653 struct tcp_sack_block *swalk = sp + 1; 3654 3655 /* See if the recent change to the first SACK eats into 3656 * or hits the sequence space of other SACK blocks, if so coalesce. 3657 */ 3658 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 3659 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 3660 int i; 3661 3662 /* Zap SWALK, by moving every further SACK up by one slot. 3663 * Decrease num_sacks. 3664 */ 3665 tp->rx_opt.num_sacks--; 3666 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 3667 tp->rx_opt.dsack, 3668 4 - tp->rx_opt.tstamp_ok); 3669 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 3670 sp[i] = sp[i + 1]; 3671 continue; 3672 } 3673 this_sack++, swalk++; 3674 } 3675 } 3676 3677 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, 3678 struct tcp_sack_block *sack2) 3679 { 3680 __u32 tmp; 3681 3682 tmp = sack1->start_seq; 3683 sack1->start_seq = sack2->start_seq; 3684 sack2->start_seq = tmp; 3685 3686 tmp = sack1->end_seq; 3687 sack1->end_seq = sack2->end_seq; 3688 sack2->end_seq = tmp; 3689 } 3690 3691 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3692 { 3693 struct tcp_sock *tp = tcp_sk(sk); 3694 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3695 int cur_sacks = tp->rx_opt.num_sacks; 3696 int this_sack; 3697 3698 if (!cur_sacks) 3699 goto new_sack; 3700 3701 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 3702 if (tcp_sack_extend(sp, seq, end_seq)) { 3703 /* Rotate this_sack to the first one. */ 3704 for (; this_sack > 0; this_sack--, sp--) 3705 tcp_sack_swap(sp, sp - 1); 3706 if (cur_sacks > 1) 3707 tcp_sack_maybe_coalesce(tp); 3708 return; 3709 } 3710 } 3711 3712 /* Could not find an adjacent existing SACK, build a new one, 3713 * put it at the front, and shift everyone else down. We 3714 * always know there is at least one SACK present already here. 3715 * 3716 * If the sack array is full, forget about the last one. 3717 */ 3718 if (this_sack >= 4) { 3719 this_sack--; 3720 tp->rx_opt.num_sacks--; 3721 sp--; 3722 } 3723 for (; this_sack > 0; this_sack--, sp--) 3724 *sp = *(sp - 1); 3725 3726 new_sack: 3727 /* Build the new head SACK, and we're done. */ 3728 sp->start_seq = seq; 3729 sp->end_seq = end_seq; 3730 tp->rx_opt.num_sacks++; 3731 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 3732 4 - tp->rx_opt.tstamp_ok); 3733 } 3734 3735 /* RCV.NXT advances, some SACKs should be eaten. */ 3736 3737 static void tcp_sack_remove(struct tcp_sock *tp) 3738 { 3739 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3740 int num_sacks = tp->rx_opt.num_sacks; 3741 int this_sack; 3742 3743 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 3744 if (skb_queue_empty(&tp->out_of_order_queue)) { 3745 tp->rx_opt.num_sacks = 0; 3746 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 3747 return; 3748 } 3749 3750 for (this_sack = 0; this_sack < num_sacks;) { 3751 /* Check if the start of the sack is covered by RCV.NXT. */ 3752 if (!before(tp->rcv_nxt, sp->start_seq)) { 3753 int i; 3754 3755 /* RCV.NXT must cover all the block! */ 3756 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); 3757 3758 /* Zap this SACK, by moving forward any other SACKS. */ 3759 for (i=this_sack+1; i < num_sacks; i++) 3760 tp->selective_acks[i-1] = tp->selective_acks[i]; 3761 num_sacks--; 3762 continue; 3763 } 3764 this_sack++; 3765 sp++; 3766 } 3767 if (num_sacks != tp->rx_opt.num_sacks) { 3768 tp->rx_opt.num_sacks = num_sacks; 3769 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 3770 tp->rx_opt.dsack, 3771 4 - tp->rx_opt.tstamp_ok); 3772 } 3773 } 3774 3775 /* This one checks to see if we can put data from the 3776 * out_of_order queue into the receive_queue. 3777 */ 3778 static void tcp_ofo_queue(struct sock *sk) 3779 { 3780 struct tcp_sock *tp = tcp_sk(sk); 3781 __u32 dsack_high = tp->rcv_nxt; 3782 struct sk_buff *skb; 3783 3784 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 3785 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 3786 break; 3787 3788 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 3789 __u32 dsack = dsack_high; 3790 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 3791 dsack_high = TCP_SKB_CB(skb)->end_seq; 3792 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); 3793 } 3794 3795 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3796 SOCK_DEBUG(sk, "ofo packet was already received \n"); 3797 __skb_unlink(skb, &tp->out_of_order_queue); 3798 __kfree_skb(skb); 3799 continue; 3800 } 3801 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 3802 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3803 TCP_SKB_CB(skb)->end_seq); 3804 3805 __skb_unlink(skb, &tp->out_of_order_queue); 3806 __skb_queue_tail(&sk->sk_receive_queue, skb); 3807 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3808 if (tcp_hdr(skb)->fin) 3809 tcp_fin(skb, sk, tcp_hdr(skb)); 3810 } 3811 } 3812 3813 static int tcp_prune_queue(struct sock *sk); 3814 3815 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 3816 { 3817 struct tcphdr *th = tcp_hdr(skb); 3818 struct tcp_sock *tp = tcp_sk(sk); 3819 int eaten = -1; 3820 3821 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 3822 goto drop; 3823 3824 __skb_pull(skb, th->doff * 4); 3825 3826 TCP_ECN_accept_cwr(tp, skb); 3827 3828 if (tp->rx_opt.dsack) { 3829 tp->rx_opt.dsack = 0; 3830 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, 3831 4 - tp->rx_opt.tstamp_ok); 3832 } 3833 3834 /* Queue data for delivery to the user. 3835 * Packets in sequence go to the receive queue. 3836 * Out of sequence packets to the out_of_order_queue. 3837 */ 3838 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3839 if (tcp_receive_window(tp) == 0) 3840 goto out_of_window; 3841 3842 /* Ok. In sequence. In window. */ 3843 if (tp->ucopy.task == current && 3844 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 3845 sock_owned_by_user(sk) && !tp->urg_data) { 3846 int chunk = min_t(unsigned int, skb->len, 3847 tp->ucopy.len); 3848 3849 __set_current_state(TASK_RUNNING); 3850 3851 local_bh_enable(); 3852 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 3853 tp->ucopy.len -= chunk; 3854 tp->copied_seq += chunk; 3855 eaten = (chunk == skb->len && !th->fin); 3856 tcp_rcv_space_adjust(sk); 3857 } 3858 local_bh_disable(); 3859 } 3860 3861 if (eaten <= 0) { 3862 queue_and_out: 3863 if (eaten < 0 && 3864 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3865 !sk_rmem_schedule(sk, skb->truesize))) { 3866 if (tcp_prune_queue(sk) < 0 || 3867 !sk_rmem_schedule(sk, skb->truesize)) 3868 goto drop; 3869 } 3870 skb_set_owner_r(skb, sk); 3871 __skb_queue_tail(&sk->sk_receive_queue, skb); 3872 } 3873 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3874 if (skb->len) 3875 tcp_event_data_recv(sk, skb); 3876 if (th->fin) 3877 tcp_fin(skb, sk, th); 3878 3879 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3880 tcp_ofo_queue(sk); 3881 3882 /* RFC2581. 4.2. SHOULD send immediate ACK, when 3883 * gap in queue is filled. 3884 */ 3885 if (skb_queue_empty(&tp->out_of_order_queue)) 3886 inet_csk(sk)->icsk_ack.pingpong = 0; 3887 } 3888 3889 if (tp->rx_opt.num_sacks) 3890 tcp_sack_remove(tp); 3891 3892 tcp_fast_path_check(sk); 3893 3894 if (eaten > 0) 3895 __kfree_skb(skb); 3896 else if (!sock_flag(sk, SOCK_DEAD)) 3897 sk->sk_data_ready(sk, 0); 3898 return; 3899 } 3900 3901 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3902 /* A retransmit, 2nd most common case. Force an immediate ack. */ 3903 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3904 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3905 3906 out_of_window: 3907 tcp_enter_quickack_mode(sk); 3908 inet_csk_schedule_ack(sk); 3909 drop: 3910 __kfree_skb(skb); 3911 return; 3912 } 3913 3914 /* Out of window. F.e. zero window probe. */ 3915 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 3916 goto out_of_window; 3917 3918 tcp_enter_quickack_mode(sk); 3919 3920 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3921 /* Partial packet, seq < rcv_next < end_seq */ 3922 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 3923 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3924 TCP_SKB_CB(skb)->end_seq); 3925 3926 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 3927 3928 /* If window is closed, drop tail of packet. But after 3929 * remembering D-SACK for its head made in previous line. 3930 */ 3931 if (!tcp_receive_window(tp)) 3932 goto out_of_window; 3933 goto queue_and_out; 3934 } 3935 3936 TCP_ECN_check_ce(tp, skb); 3937 3938 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3939 !sk_rmem_schedule(sk, skb->truesize)) { 3940 if (tcp_prune_queue(sk) < 0 || 3941 !sk_rmem_schedule(sk, skb->truesize)) 3942 goto drop; 3943 } 3944 3945 /* Disable header prediction. */ 3946 tp->pred_flags = 0; 3947 inet_csk_schedule_ack(sk); 3948 3949 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 3950 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3951 3952 skb_set_owner_r(skb, sk); 3953 3954 if (!skb_peek(&tp->out_of_order_queue)) { 3955 /* Initial out of order segment, build 1 SACK. */ 3956 if (tcp_is_sack(tp)) { 3957 tp->rx_opt.num_sacks = 1; 3958 tp->rx_opt.dsack = 0; 3959 tp->rx_opt.eff_sacks = 1; 3960 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 3961 tp->selective_acks[0].end_seq = 3962 TCP_SKB_CB(skb)->end_seq; 3963 } 3964 __skb_queue_head(&tp->out_of_order_queue, skb); 3965 } else { 3966 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 3967 u32 seq = TCP_SKB_CB(skb)->seq; 3968 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3969 3970 if (seq == TCP_SKB_CB(skb1)->end_seq) { 3971 __skb_append(skb1, skb, &tp->out_of_order_queue); 3972 3973 if (!tp->rx_opt.num_sacks || 3974 tp->selective_acks[0].end_seq != seq) 3975 goto add_sack; 3976 3977 /* Common case: data arrive in order after hole. */ 3978 tp->selective_acks[0].end_seq = end_seq; 3979 return; 3980 } 3981 3982 /* Find place to insert this segment. */ 3983 do { 3984 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 3985 break; 3986 } while ((skb1 = skb1->prev) != 3987 (struct sk_buff *)&tp->out_of_order_queue); 3988 3989 /* Do skb overlap to previous one? */ 3990 if (skb1 != (struct sk_buff *)&tp->out_of_order_queue && 3991 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 3992 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3993 /* All the bits are present. Drop. */ 3994 __kfree_skb(skb); 3995 tcp_dsack_set(tp, seq, end_seq); 3996 goto add_sack; 3997 } 3998 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 3999 /* Partial overlap. */ 4000 tcp_dsack_set(tp, seq, 4001 TCP_SKB_CB(skb1)->end_seq); 4002 } else { 4003 skb1 = skb1->prev; 4004 } 4005 } 4006 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); 4007 4008 /* And clean segments covered by new one as whole. */ 4009 while ((skb1 = skb->next) != 4010 (struct sk_buff *)&tp->out_of_order_queue && 4011 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 4012 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4013 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, 4014 end_seq); 4015 break; 4016 } 4017 __skb_unlink(skb1, &tp->out_of_order_queue); 4018 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, 4019 TCP_SKB_CB(skb1)->end_seq); 4020 __kfree_skb(skb1); 4021 } 4022 4023 add_sack: 4024 if (tcp_is_sack(tp)) 4025 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4026 } 4027 } 4028 4029 /* Collapse contiguous sequence of skbs head..tail with 4030 * sequence numbers start..end. 4031 * Segments with FIN/SYN are not collapsed (only because this 4032 * simplifies code) 4033 */ 4034 static void 4035 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4036 struct sk_buff *head, struct sk_buff *tail, 4037 u32 start, u32 end) 4038 { 4039 struct sk_buff *skb; 4040 4041 /* First, check that queue is collapsible and find 4042 * the point where collapsing can be useful. */ 4043 for (skb = head; skb != tail;) { 4044 /* No new bits? It is possible on ofo queue. */ 4045 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4046 struct sk_buff *next = skb->next; 4047 __skb_unlink(skb, list); 4048 __kfree_skb(skb); 4049 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 4050 skb = next; 4051 continue; 4052 } 4053 4054 /* The first skb to collapse is: 4055 * - not SYN/FIN and 4056 * - bloated or contains data before "start" or 4057 * overlaps to the next one. 4058 */ 4059 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4060 (tcp_win_from_space(skb->truesize) > skb->len || 4061 before(TCP_SKB_CB(skb)->seq, start) || 4062 (skb->next != tail && 4063 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 4064 break; 4065 4066 /* Decided to skip this, advance start seq. */ 4067 start = TCP_SKB_CB(skb)->end_seq; 4068 skb = skb->next; 4069 } 4070 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4071 return; 4072 4073 while (before(start, end)) { 4074 struct sk_buff *nskb; 4075 unsigned int header = skb_headroom(skb); 4076 int copy = SKB_MAX_ORDER(header, 0); 4077 4078 /* Too big header? This can happen with IPv6. */ 4079 if (copy < 0) 4080 return; 4081 if (end - start < copy) 4082 copy = end - start; 4083 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4084 if (!nskb) 4085 return; 4086 4087 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4088 skb_set_network_header(nskb, (skb_network_header(skb) - 4089 skb->head)); 4090 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4091 skb->head)); 4092 skb_reserve(nskb, header); 4093 memcpy(nskb->head, skb->head, header); 4094 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4095 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4096 __skb_insert(nskb, skb->prev, skb, list); 4097 skb_set_owner_r(nskb, sk); 4098 4099 /* Copy data, releasing collapsed skbs. */ 4100 while (copy > 0) { 4101 int offset = start - TCP_SKB_CB(skb)->seq; 4102 int size = TCP_SKB_CB(skb)->end_seq - start; 4103 4104 BUG_ON(offset < 0); 4105 if (size > 0) { 4106 size = min(copy, size); 4107 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4108 BUG(); 4109 TCP_SKB_CB(nskb)->end_seq += size; 4110 copy -= size; 4111 start += size; 4112 } 4113 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4114 struct sk_buff *next = skb->next; 4115 __skb_unlink(skb, list); 4116 __kfree_skb(skb); 4117 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 4118 skb = next; 4119 if (skb == tail || 4120 tcp_hdr(skb)->syn || 4121 tcp_hdr(skb)->fin) 4122 return; 4123 } 4124 } 4125 } 4126 } 4127 4128 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4129 * and tcp_collapse() them until all the queue is collapsed. 4130 */ 4131 static void tcp_collapse_ofo_queue(struct sock *sk) 4132 { 4133 struct tcp_sock *tp = tcp_sk(sk); 4134 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4135 struct sk_buff *head; 4136 u32 start, end; 4137 4138 if (skb == NULL) 4139 return; 4140 4141 start = TCP_SKB_CB(skb)->seq; 4142 end = TCP_SKB_CB(skb)->end_seq; 4143 head = skb; 4144 4145 for (;;) { 4146 skb = skb->next; 4147 4148 /* Segment is terminated when we see gap or when 4149 * we are at the end of all the queue. */ 4150 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 4151 after(TCP_SKB_CB(skb)->seq, end) || 4152 before(TCP_SKB_CB(skb)->end_seq, start)) { 4153 tcp_collapse(sk, &tp->out_of_order_queue, 4154 head, skb, start, end); 4155 head = skb; 4156 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 4157 break; 4158 /* Start new segment */ 4159 start = TCP_SKB_CB(skb)->seq; 4160 end = TCP_SKB_CB(skb)->end_seq; 4161 } else { 4162 if (before(TCP_SKB_CB(skb)->seq, start)) 4163 start = TCP_SKB_CB(skb)->seq; 4164 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4165 end = TCP_SKB_CB(skb)->end_seq; 4166 } 4167 } 4168 } 4169 4170 /* Reduce allocated memory if we can, trying to get 4171 * the socket within its memory limits again. 4172 * 4173 * Return less than zero if we should start dropping frames 4174 * until the socket owning process reads some of the data 4175 * to stabilize the situation. 4176 */ 4177 static int tcp_prune_queue(struct sock *sk) 4178 { 4179 struct tcp_sock *tp = tcp_sk(sk); 4180 4181 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4182 4183 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); 4184 4185 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4186 tcp_clamp_window(sk); 4187 else if (tcp_memory_pressure) 4188 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4189 4190 tcp_collapse_ofo_queue(sk); 4191 tcp_collapse(sk, &sk->sk_receive_queue, 4192 sk->sk_receive_queue.next, 4193 (struct sk_buff *)&sk->sk_receive_queue, 4194 tp->copied_seq, tp->rcv_nxt); 4195 sk_mem_reclaim(sk); 4196 4197 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4198 return 0; 4199 4200 /* Collapsing did not help, destructive actions follow. 4201 * This must not ever occur. */ 4202 4203 /* First, purge the out_of_order queue. */ 4204 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4205 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED); 4206 __skb_queue_purge(&tp->out_of_order_queue); 4207 4208 /* Reset SACK state. A conforming SACK implementation will 4209 * do the same at a timeout based retransmit. When a connection 4210 * is in a sad state like this, we care only about integrity 4211 * of the connection not performance. 4212 */ 4213 if (tcp_is_sack(tp)) 4214 tcp_sack_reset(&tp->rx_opt); 4215 sk_mem_reclaim(sk); 4216 } 4217 4218 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4219 return 0; 4220 4221 /* If we are really being abused, tell the caller to silently 4222 * drop receive data on the floor. It will get retransmitted 4223 * and hopefully then we'll have sufficient space. 4224 */ 4225 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); 4226 4227 /* Massive buffer overcommit. */ 4228 tp->pred_flags = 0; 4229 return -1; 4230 } 4231 4232 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4233 * As additional protections, we do not touch cwnd in retransmission phases, 4234 * and if application hit its sndbuf limit recently. 4235 */ 4236 void tcp_cwnd_application_limited(struct sock *sk) 4237 { 4238 struct tcp_sock *tp = tcp_sk(sk); 4239 4240 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4241 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4242 /* Limited by application or receiver window. */ 4243 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4244 u32 win_used = max(tp->snd_cwnd_used, init_win); 4245 if (win_used < tp->snd_cwnd) { 4246 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4247 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4248 } 4249 tp->snd_cwnd_used = 0; 4250 } 4251 tp->snd_cwnd_stamp = tcp_time_stamp; 4252 } 4253 4254 static int tcp_should_expand_sndbuf(struct sock *sk) 4255 { 4256 struct tcp_sock *tp = tcp_sk(sk); 4257 4258 /* If the user specified a specific send buffer setting, do 4259 * not modify it. 4260 */ 4261 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4262 return 0; 4263 4264 /* If we are under global TCP memory pressure, do not expand. */ 4265 if (tcp_memory_pressure) 4266 return 0; 4267 4268 /* If we are under soft global TCP memory pressure, do not expand. */ 4269 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 4270 return 0; 4271 4272 /* If we filled the congestion window, do not expand. */ 4273 if (tp->packets_out >= tp->snd_cwnd) 4274 return 0; 4275 4276 return 1; 4277 } 4278 4279 /* When incoming ACK allowed to free some skb from write_queue, 4280 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4281 * on the exit from tcp input handler. 4282 * 4283 * PROBLEM: sndbuf expansion does not work well with largesend. 4284 */ 4285 static void tcp_new_space(struct sock *sk) 4286 { 4287 struct tcp_sock *tp = tcp_sk(sk); 4288 4289 if (tcp_should_expand_sndbuf(sk)) { 4290 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 4291 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), 4292 demanded = max_t(unsigned int, tp->snd_cwnd, 4293 tp->reordering + 1); 4294 sndmem *= 2 * demanded; 4295 if (sndmem > sk->sk_sndbuf) 4296 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4297 tp->snd_cwnd_stamp = tcp_time_stamp; 4298 } 4299 4300 sk->sk_write_space(sk); 4301 } 4302 4303 static void tcp_check_space(struct sock *sk) 4304 { 4305 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4306 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4307 if (sk->sk_socket && 4308 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4309 tcp_new_space(sk); 4310 } 4311 } 4312 4313 static inline void tcp_data_snd_check(struct sock *sk) 4314 { 4315 tcp_push_pending_frames(sk); 4316 tcp_check_space(sk); 4317 } 4318 4319 /* 4320 * Check if sending an ack is needed. 4321 */ 4322 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4323 { 4324 struct tcp_sock *tp = tcp_sk(sk); 4325 4326 /* More than one full frame received... */ 4327 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 4328 /* ... and right edge of window advances far enough. 4329 * (tcp_recvmsg() will send ACK otherwise). Or... 4330 */ 4331 && __tcp_select_window(sk) >= tp->rcv_wnd) || 4332 /* We ACK each frame or... */ 4333 tcp_in_quickack_mode(sk) || 4334 /* We have out of order data. */ 4335 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4336 /* Then ack it now */ 4337 tcp_send_ack(sk); 4338 } else { 4339 /* Else, send delayed ack. */ 4340 tcp_send_delayed_ack(sk); 4341 } 4342 } 4343 4344 static inline void tcp_ack_snd_check(struct sock *sk) 4345 { 4346 if (!inet_csk_ack_scheduled(sk)) { 4347 /* We sent a data segment already. */ 4348 return; 4349 } 4350 __tcp_ack_snd_check(sk, 1); 4351 } 4352 4353 /* 4354 * This routine is only called when we have urgent data 4355 * signaled. Its the 'slow' part of tcp_urg. It could be 4356 * moved inline now as tcp_urg is only called from one 4357 * place. We handle URGent data wrong. We have to - as 4358 * BSD still doesn't use the correction from RFC961. 4359 * For 1003.1g we should support a new option TCP_STDURG to permit 4360 * either form (or just set the sysctl tcp_stdurg). 4361 */ 4362 4363 static void tcp_check_urg(struct sock *sk, struct tcphdr *th) 4364 { 4365 struct tcp_sock *tp = tcp_sk(sk); 4366 u32 ptr = ntohs(th->urg_ptr); 4367 4368 if (ptr && !sysctl_tcp_stdurg) 4369 ptr--; 4370 ptr += ntohl(th->seq); 4371 4372 /* Ignore urgent data that we've already seen and read. */ 4373 if (after(tp->copied_seq, ptr)) 4374 return; 4375 4376 /* Do not replay urg ptr. 4377 * 4378 * NOTE: interesting situation not covered by specs. 4379 * Misbehaving sender may send urg ptr, pointing to segment, 4380 * which we already have in ofo queue. We are not able to fetch 4381 * such data and will stay in TCP_URG_NOTYET until will be eaten 4382 * by recvmsg(). Seems, we are not obliged to handle such wicked 4383 * situations. But it is worth to think about possibility of some 4384 * DoSes using some hypothetical application level deadlock. 4385 */ 4386 if (before(ptr, tp->rcv_nxt)) 4387 return; 4388 4389 /* Do we already have a newer (or duplicate) urgent pointer? */ 4390 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4391 return; 4392 4393 /* Tell the world about our new urgent pointer. */ 4394 sk_send_sigurg(sk); 4395 4396 /* We may be adding urgent data when the last byte read was 4397 * urgent. To do this requires some care. We cannot just ignore 4398 * tp->copied_seq since we would read the last urgent byte again 4399 * as data, nor can we alter copied_seq until this data arrives 4400 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4401 * 4402 * NOTE. Double Dutch. Rendering to plain English: author of comment 4403 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4404 * and expect that both A and B disappear from stream. This is _wrong_. 4405 * Though this happens in BSD with high probability, this is occasional. 4406 * Any application relying on this is buggy. Note also, that fix "works" 4407 * only in this artificial test. Insert some normal data between A and B and we will 4408 * decline of BSD again. Verdict: it is better to remove to trap 4409 * buggy users. 4410 */ 4411 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4412 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4413 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4414 tp->copied_seq++; 4415 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4416 __skb_unlink(skb, &sk->sk_receive_queue); 4417 __kfree_skb(skb); 4418 } 4419 } 4420 4421 tp->urg_data = TCP_URG_NOTYET; 4422 tp->urg_seq = ptr; 4423 4424 /* Disable header prediction. */ 4425 tp->pred_flags = 0; 4426 } 4427 4428 /* This is the 'fast' part of urgent handling. */ 4429 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 4430 { 4431 struct tcp_sock *tp = tcp_sk(sk); 4432 4433 /* Check if we get a new urgent pointer - normally not. */ 4434 if (th->urg) 4435 tcp_check_urg(sk, th); 4436 4437 /* Do we wait for any urgent data? - normally not... */ 4438 if (tp->urg_data == TCP_URG_NOTYET) { 4439 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4440 th->syn; 4441 4442 /* Is the urgent pointer pointing into this packet? */ 4443 if (ptr < skb->len) { 4444 u8 tmp; 4445 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4446 BUG(); 4447 tp->urg_data = TCP_URG_VALID | tmp; 4448 if (!sock_flag(sk, SOCK_DEAD)) 4449 sk->sk_data_ready(sk, 0); 4450 } 4451 } 4452 } 4453 4454 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4455 { 4456 struct tcp_sock *tp = tcp_sk(sk); 4457 int chunk = skb->len - hlen; 4458 int err; 4459 4460 local_bh_enable(); 4461 if (skb_csum_unnecessary(skb)) 4462 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4463 else 4464 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4465 tp->ucopy.iov); 4466 4467 if (!err) { 4468 tp->ucopy.len -= chunk; 4469 tp->copied_seq += chunk; 4470 tcp_rcv_space_adjust(sk); 4471 } 4472 4473 local_bh_disable(); 4474 return err; 4475 } 4476 4477 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4478 struct sk_buff *skb) 4479 { 4480 __sum16 result; 4481 4482 if (sock_owned_by_user(sk)) { 4483 local_bh_enable(); 4484 result = __tcp_checksum_complete(skb); 4485 local_bh_disable(); 4486 } else { 4487 result = __tcp_checksum_complete(skb); 4488 } 4489 return result; 4490 } 4491 4492 static inline int tcp_checksum_complete_user(struct sock *sk, 4493 struct sk_buff *skb) 4494 { 4495 return !skb_csum_unnecessary(skb) && 4496 __tcp_checksum_complete_user(sk, skb); 4497 } 4498 4499 #ifdef CONFIG_NET_DMA 4500 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 4501 int hlen) 4502 { 4503 struct tcp_sock *tp = tcp_sk(sk); 4504 int chunk = skb->len - hlen; 4505 int dma_cookie; 4506 int copied_early = 0; 4507 4508 if (tp->ucopy.wakeup) 4509 return 0; 4510 4511 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 4512 tp->ucopy.dma_chan = get_softnet_dma(); 4513 4514 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 4515 4516 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 4517 skb, hlen, 4518 tp->ucopy.iov, chunk, 4519 tp->ucopy.pinned_list); 4520 4521 if (dma_cookie < 0) 4522 goto out; 4523 4524 tp->ucopy.dma_cookie = dma_cookie; 4525 copied_early = 1; 4526 4527 tp->ucopy.len -= chunk; 4528 tp->copied_seq += chunk; 4529 tcp_rcv_space_adjust(sk); 4530 4531 if ((tp->ucopy.len == 0) || 4532 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 4533 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 4534 tp->ucopy.wakeup = 1; 4535 sk->sk_data_ready(sk, 0); 4536 } 4537 } else if (chunk > 0) { 4538 tp->ucopy.wakeup = 1; 4539 sk->sk_data_ready(sk, 0); 4540 } 4541 out: 4542 return copied_early; 4543 } 4544 #endif /* CONFIG_NET_DMA */ 4545 4546 /* 4547 * TCP receive function for the ESTABLISHED state. 4548 * 4549 * It is split into a fast path and a slow path. The fast path is 4550 * disabled when: 4551 * - A zero window was announced from us - zero window probing 4552 * is only handled properly in the slow path. 4553 * - Out of order segments arrived. 4554 * - Urgent data is expected. 4555 * - There is no buffer space left 4556 * - Unexpected TCP flags/window values/header lengths are received 4557 * (detected by checking the TCP header against pred_flags) 4558 * - Data is sent in both directions. Fast path only supports pure senders 4559 * or pure receivers (this means either the sequence number or the ack 4560 * value must stay constant) 4561 * - Unexpected TCP option. 4562 * 4563 * When these conditions are not satisfied it drops into a standard 4564 * receive procedure patterned after RFC793 to handle all cases. 4565 * The first three cases are guaranteed by proper pred_flags setting, 4566 * the rest is checked inline. Fast processing is turned on in 4567 * tcp_data_queue when everything is OK. 4568 */ 4569 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 4570 struct tcphdr *th, unsigned len) 4571 { 4572 struct tcp_sock *tp = tcp_sk(sk); 4573 4574 /* 4575 * Header prediction. 4576 * The code loosely follows the one in the famous 4577 * "30 instruction TCP receive" Van Jacobson mail. 4578 * 4579 * Van's trick is to deposit buffers into socket queue 4580 * on a device interrupt, to call tcp_recv function 4581 * on the receive process context and checksum and copy 4582 * the buffer to user space. smart... 4583 * 4584 * Our current scheme is not silly either but we take the 4585 * extra cost of the net_bh soft interrupt processing... 4586 * We do checksum and copy also but from device to kernel. 4587 */ 4588 4589 tp->rx_opt.saw_tstamp = 0; 4590 4591 /* pred_flags is 0xS?10 << 16 + snd_wnd 4592 * if header_prediction is to be made 4593 * 'S' will always be tp->tcp_header_len >> 2 4594 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 4595 * turn it off (when there are holes in the receive 4596 * space for instance) 4597 * PSH flag is ignored. 4598 */ 4599 4600 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 4601 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4602 int tcp_header_len = tp->tcp_header_len; 4603 4604 /* Timestamp header prediction: tcp_header_len 4605 * is automatically equal to th->doff*4 due to pred_flags 4606 * match. 4607 */ 4608 4609 /* Check timestamp */ 4610 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 4611 __be32 *ptr = (__be32 *)(th + 1); 4612 4613 /* No? Slow path! */ 4614 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4615 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) 4616 goto slow_path; 4617 4618 tp->rx_opt.saw_tstamp = 1; 4619 ++ptr; 4620 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4621 ++ptr; 4622 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 4623 4624 /* If PAWS failed, check it more carefully in slow path */ 4625 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 4626 goto slow_path; 4627 4628 /* DO NOT update ts_recent here, if checksum fails 4629 * and timestamp was corrupted part, it will result 4630 * in a hung connection since we will drop all 4631 * future packets due to the PAWS test. 4632 */ 4633 } 4634 4635 if (len <= tcp_header_len) { 4636 /* Bulk data transfer: sender */ 4637 if (len == tcp_header_len) { 4638 /* Predicted packet is in window by definition. 4639 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4640 * Hence, check seq<=rcv_wup reduces to: 4641 */ 4642 if (tcp_header_len == 4643 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4644 tp->rcv_nxt == tp->rcv_wup) 4645 tcp_store_ts_recent(tp); 4646 4647 /* We know that such packets are checksummed 4648 * on entry. 4649 */ 4650 tcp_ack(sk, skb, 0); 4651 __kfree_skb(skb); 4652 tcp_data_snd_check(sk); 4653 return 0; 4654 } else { /* Header too small */ 4655 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4656 goto discard; 4657 } 4658 } else { 4659 int eaten = 0; 4660 int copied_early = 0; 4661 4662 if (tp->copied_seq == tp->rcv_nxt && 4663 len - tcp_header_len <= tp->ucopy.len) { 4664 #ifdef CONFIG_NET_DMA 4665 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 4666 copied_early = 1; 4667 eaten = 1; 4668 } 4669 #endif 4670 if (tp->ucopy.task == current && 4671 sock_owned_by_user(sk) && !copied_early) { 4672 __set_current_state(TASK_RUNNING); 4673 4674 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 4675 eaten = 1; 4676 } 4677 if (eaten) { 4678 /* Predicted packet is in window by definition. 4679 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4680 * Hence, check seq<=rcv_wup reduces to: 4681 */ 4682 if (tcp_header_len == 4683 (sizeof(struct tcphdr) + 4684 TCPOLEN_TSTAMP_ALIGNED) && 4685 tp->rcv_nxt == tp->rcv_wup) 4686 tcp_store_ts_recent(tp); 4687 4688 tcp_rcv_rtt_measure_ts(sk, skb); 4689 4690 __skb_pull(skb, tcp_header_len); 4691 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4692 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); 4693 } 4694 if (copied_early) 4695 tcp_cleanup_rbuf(sk, skb->len); 4696 } 4697 if (!eaten) { 4698 if (tcp_checksum_complete_user(sk, skb)) 4699 goto csum_error; 4700 4701 /* Predicted packet is in window by definition. 4702 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4703 * Hence, check seq<=rcv_wup reduces to: 4704 */ 4705 if (tcp_header_len == 4706 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4707 tp->rcv_nxt == tp->rcv_wup) 4708 tcp_store_ts_recent(tp); 4709 4710 tcp_rcv_rtt_measure_ts(sk, skb); 4711 4712 if ((int)skb->truesize > sk->sk_forward_alloc) 4713 goto step5; 4714 4715 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); 4716 4717 /* Bulk data transfer: receiver */ 4718 __skb_pull(skb, tcp_header_len); 4719 __skb_queue_tail(&sk->sk_receive_queue, skb); 4720 skb_set_owner_r(skb, sk); 4721 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4722 } 4723 4724 tcp_event_data_recv(sk, skb); 4725 4726 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 4727 /* Well, only one small jumplet in fast path... */ 4728 tcp_ack(sk, skb, FLAG_DATA); 4729 tcp_data_snd_check(sk); 4730 if (!inet_csk_ack_scheduled(sk)) 4731 goto no_ack; 4732 } 4733 4734 __tcp_ack_snd_check(sk, 0); 4735 no_ack: 4736 #ifdef CONFIG_NET_DMA 4737 if (copied_early) 4738 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 4739 else 4740 #endif 4741 if (eaten) 4742 __kfree_skb(skb); 4743 else 4744 sk->sk_data_ready(sk, 0); 4745 return 0; 4746 } 4747 } 4748 4749 slow_path: 4750 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 4751 goto csum_error; 4752 4753 /* 4754 * RFC1323: H1. Apply PAWS check first. 4755 */ 4756 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4757 tcp_paws_discard(sk, skb)) { 4758 if (!th->rst) { 4759 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4760 tcp_send_dupack(sk, skb); 4761 goto discard; 4762 } 4763 /* Resets are accepted even if PAWS failed. 4764 4765 ts_recent update must be made after we are sure 4766 that the packet is in window. 4767 */ 4768 } 4769 4770 /* 4771 * Standard slow path. 4772 */ 4773 4774 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4775 /* RFC793, page 37: "In all states except SYN-SENT, all reset 4776 * (RST) segments are validated by checking their SEQ-fields." 4777 * And page 69: "If an incoming segment is not acceptable, 4778 * an acknowledgment should be sent in reply (unless the RST bit 4779 * is set, if so drop the segment and return)". 4780 */ 4781 if (!th->rst) 4782 tcp_send_dupack(sk, skb); 4783 goto discard; 4784 } 4785 4786 if (th->rst) { 4787 tcp_reset(sk); 4788 goto discard; 4789 } 4790 4791 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4792 4793 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4794 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4795 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4796 tcp_reset(sk); 4797 return 1; 4798 } 4799 4800 step5: 4801 if (th->ack) 4802 tcp_ack(sk, skb, FLAG_SLOWPATH); 4803 4804 tcp_rcv_rtt_measure_ts(sk, skb); 4805 4806 /* Process urgent data. */ 4807 tcp_urg(sk, skb, th); 4808 4809 /* step 7: process the segment text */ 4810 tcp_data_queue(sk, skb); 4811 4812 tcp_data_snd_check(sk); 4813 tcp_ack_snd_check(sk); 4814 return 0; 4815 4816 csum_error: 4817 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4818 4819 discard: 4820 __kfree_skb(skb); 4821 return 0; 4822 } 4823 4824 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 4825 struct tcphdr *th, unsigned len) 4826 { 4827 struct tcp_sock *tp = tcp_sk(sk); 4828 struct inet_connection_sock *icsk = inet_csk(sk); 4829 int saved_clamp = tp->rx_opt.mss_clamp; 4830 4831 tcp_parse_options(skb, &tp->rx_opt, 0); 4832 4833 if (th->ack) { 4834 /* rfc793: 4835 * "If the state is SYN-SENT then 4836 * first check the ACK bit 4837 * If the ACK bit is set 4838 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 4839 * a reset (unless the RST bit is set, if so drop 4840 * the segment and return)" 4841 * 4842 * We do not send data with SYN, so that RFC-correct 4843 * test reduces to: 4844 */ 4845 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 4846 goto reset_and_undo; 4847 4848 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4849 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 4850 tcp_time_stamp)) { 4851 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); 4852 goto reset_and_undo; 4853 } 4854 4855 /* Now ACK is acceptable. 4856 * 4857 * "If the RST bit is set 4858 * If the ACK was acceptable then signal the user "error: 4859 * connection reset", drop the segment, enter CLOSED state, 4860 * delete TCB, and return." 4861 */ 4862 4863 if (th->rst) { 4864 tcp_reset(sk); 4865 goto discard; 4866 } 4867 4868 /* rfc793: 4869 * "fifth, if neither of the SYN or RST bits is set then 4870 * drop the segment and return." 4871 * 4872 * See note below! 4873 * --ANK(990513) 4874 */ 4875 if (!th->syn) 4876 goto discard_and_undo; 4877 4878 /* rfc793: 4879 * "If the SYN bit is on ... 4880 * are acceptable then ... 4881 * (our SYN has been ACKed), change the connection 4882 * state to ESTABLISHED..." 4883 */ 4884 4885 TCP_ECN_rcv_synack(tp, th); 4886 4887 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4888 tcp_ack(sk, skb, FLAG_SLOWPATH); 4889 4890 /* Ok.. it's good. Set up sequence numbers and 4891 * move to established. 4892 */ 4893 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4894 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4895 4896 /* RFC1323: The window in SYN & SYN/ACK segments is 4897 * never scaled. 4898 */ 4899 tp->snd_wnd = ntohs(th->window); 4900 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 4901 4902 if (!tp->rx_opt.wscale_ok) { 4903 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 4904 tp->window_clamp = min(tp->window_clamp, 65535U); 4905 } 4906 4907 if (tp->rx_opt.saw_tstamp) { 4908 tp->rx_opt.tstamp_ok = 1; 4909 tp->tcp_header_len = 4910 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4911 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4912 tcp_store_ts_recent(tp); 4913 } else { 4914 tp->tcp_header_len = sizeof(struct tcphdr); 4915 } 4916 4917 if (tcp_is_sack(tp) && sysctl_tcp_fack) 4918 tcp_enable_fack(tp); 4919 4920 tcp_mtup_init(sk); 4921 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4922 tcp_initialize_rcv_mss(sk); 4923 4924 /* Remember, tcp_poll() does not lock socket! 4925 * Change state from SYN-SENT only after copied_seq 4926 * is initialized. */ 4927 tp->copied_seq = tp->rcv_nxt; 4928 smp_mb(); 4929 tcp_set_state(sk, TCP_ESTABLISHED); 4930 4931 security_inet_conn_established(sk, skb); 4932 4933 /* Make sure socket is routed, for correct metrics. */ 4934 icsk->icsk_af_ops->rebuild_header(sk); 4935 4936 tcp_init_metrics(sk); 4937 4938 tcp_init_congestion_control(sk); 4939 4940 /* Prevent spurious tcp_cwnd_restart() on first data 4941 * packet. 4942 */ 4943 tp->lsndtime = tcp_time_stamp; 4944 4945 tcp_init_buffer_space(sk); 4946 4947 if (sock_flag(sk, SOCK_KEEPOPEN)) 4948 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 4949 4950 if (!tp->rx_opt.snd_wscale) 4951 __tcp_fast_path_on(tp, tp->snd_wnd); 4952 else 4953 tp->pred_flags = 0; 4954 4955 if (!sock_flag(sk, SOCK_DEAD)) { 4956 sk->sk_state_change(sk); 4957 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 4958 } 4959 4960 if (sk->sk_write_pending || 4961 icsk->icsk_accept_queue.rskq_defer_accept || 4962 icsk->icsk_ack.pingpong) { 4963 /* Save one ACK. Data will be ready after 4964 * several ticks, if write_pending is set. 4965 * 4966 * It may be deleted, but with this feature tcpdumps 4967 * look so _wonderfully_ clever, that I was not able 4968 * to stand against the temptation 8) --ANK 4969 */ 4970 inet_csk_schedule_ack(sk); 4971 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 4972 icsk->icsk_ack.ato = TCP_ATO_MIN; 4973 tcp_incr_quickack(sk); 4974 tcp_enter_quickack_mode(sk); 4975 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 4976 TCP_DELACK_MAX, TCP_RTO_MAX); 4977 4978 discard: 4979 __kfree_skb(skb); 4980 return 0; 4981 } else { 4982 tcp_send_ack(sk); 4983 } 4984 return -1; 4985 } 4986 4987 /* No ACK in the segment */ 4988 4989 if (th->rst) { 4990 /* rfc793: 4991 * "If the RST bit is set 4992 * 4993 * Otherwise (no ACK) drop the segment and return." 4994 */ 4995 4996 goto discard_and_undo; 4997 } 4998 4999 /* PAWS check. */ 5000 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5001 tcp_paws_check(&tp->rx_opt, 0)) 5002 goto discard_and_undo; 5003 5004 if (th->syn) { 5005 /* We see SYN without ACK. It is attempt of 5006 * simultaneous connect with crossed SYNs. 5007 * Particularly, it can be connect to self. 5008 */ 5009 tcp_set_state(sk, TCP_SYN_RECV); 5010 5011 if (tp->rx_opt.saw_tstamp) { 5012 tp->rx_opt.tstamp_ok = 1; 5013 tcp_store_ts_recent(tp); 5014 tp->tcp_header_len = 5015 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5016 } else { 5017 tp->tcp_header_len = sizeof(struct tcphdr); 5018 } 5019 5020 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5021 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5022 5023 /* RFC1323: The window in SYN & SYN/ACK segments is 5024 * never scaled. 5025 */ 5026 tp->snd_wnd = ntohs(th->window); 5027 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5028 tp->max_window = tp->snd_wnd; 5029 5030 TCP_ECN_rcv_syn(tp, th); 5031 5032 tcp_mtup_init(sk); 5033 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5034 tcp_initialize_rcv_mss(sk); 5035 5036 tcp_send_synack(sk); 5037 #if 0 5038 /* Note, we could accept data and URG from this segment. 5039 * There are no obstacles to make this. 5040 * 5041 * However, if we ignore data in ACKless segments sometimes, 5042 * we have no reasons to accept it sometimes. 5043 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5044 * is not flawless. So, discard packet for sanity. 5045 * Uncomment this return to process the data. 5046 */ 5047 return -1; 5048 #else 5049 goto discard; 5050 #endif 5051 } 5052 /* "fifth, if neither of the SYN or RST bits is set then 5053 * drop the segment and return." 5054 */ 5055 5056 discard_and_undo: 5057 tcp_clear_options(&tp->rx_opt); 5058 tp->rx_opt.mss_clamp = saved_clamp; 5059 goto discard; 5060 5061 reset_and_undo: 5062 tcp_clear_options(&tp->rx_opt); 5063 tp->rx_opt.mss_clamp = saved_clamp; 5064 return 1; 5065 } 5066 5067 /* 5068 * This function implements the receiving procedure of RFC 793 for 5069 * all states except ESTABLISHED and TIME_WAIT. 5070 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5071 * address independent. 5072 */ 5073 5074 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5075 struct tcphdr *th, unsigned len) 5076 { 5077 struct tcp_sock *tp = tcp_sk(sk); 5078 struct inet_connection_sock *icsk = inet_csk(sk); 5079 int queued = 0; 5080 5081 tp->rx_opt.saw_tstamp = 0; 5082 5083 switch (sk->sk_state) { 5084 case TCP_CLOSE: 5085 goto discard; 5086 5087 case TCP_LISTEN: 5088 if (th->ack) 5089 return 1; 5090 5091 if (th->rst) 5092 goto discard; 5093 5094 if (th->syn) { 5095 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5096 return 1; 5097 5098 /* Now we have several options: In theory there is 5099 * nothing else in the frame. KA9Q has an option to 5100 * send data with the syn, BSD accepts data with the 5101 * syn up to the [to be] advertised window and 5102 * Solaris 2.1 gives you a protocol error. For now 5103 * we just ignore it, that fits the spec precisely 5104 * and avoids incompatibilities. It would be nice in 5105 * future to drop through and process the data. 5106 * 5107 * Now that TTCP is starting to be used we ought to 5108 * queue this data. 5109 * But, this leaves one open to an easy denial of 5110 * service attack, and SYN cookies can't defend 5111 * against this problem. So, we drop the data 5112 * in the interest of security over speed unless 5113 * it's still in use. 5114 */ 5115 kfree_skb(skb); 5116 return 0; 5117 } 5118 goto discard; 5119 5120 case TCP_SYN_SENT: 5121 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5122 if (queued >= 0) 5123 return queued; 5124 5125 /* Do step6 onward by hand. */ 5126 tcp_urg(sk, skb, th); 5127 __kfree_skb(skb); 5128 tcp_data_snd_check(sk); 5129 return 0; 5130 } 5131 5132 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5133 tcp_paws_discard(sk, skb)) { 5134 if (!th->rst) { 5135 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 5136 tcp_send_dupack(sk, skb); 5137 goto discard; 5138 } 5139 /* Reset is accepted even if it did not pass PAWS. */ 5140 } 5141 5142 /* step 1: check sequence number */ 5143 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5144 if (!th->rst) 5145 tcp_send_dupack(sk, skb); 5146 goto discard; 5147 } 5148 5149 /* step 2: check RST bit */ 5150 if (th->rst) { 5151 tcp_reset(sk); 5152 goto discard; 5153 } 5154 5155 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5156 5157 /* step 3: check security and precedence [ignored] */ 5158 5159 /* step 4: 5160 * 5161 * Check for a SYN in window. 5162 */ 5163 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5164 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 5165 tcp_reset(sk); 5166 return 1; 5167 } 5168 5169 /* step 5: check the ACK field */ 5170 if (th->ack) { 5171 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 5172 5173 switch (sk->sk_state) { 5174 case TCP_SYN_RECV: 5175 if (acceptable) { 5176 tp->copied_seq = tp->rcv_nxt; 5177 smp_mb(); 5178 tcp_set_state(sk, TCP_ESTABLISHED); 5179 sk->sk_state_change(sk); 5180 5181 /* Note, that this wakeup is only for marginal 5182 * crossed SYN case. Passively open sockets 5183 * are not waked up, because sk->sk_sleep == 5184 * NULL and sk->sk_socket == NULL. 5185 */ 5186 if (sk->sk_socket) 5187 sk_wake_async(sk, 5188 SOCK_WAKE_IO, POLL_OUT); 5189 5190 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5191 tp->snd_wnd = ntohs(th->window) << 5192 tp->rx_opt.snd_wscale; 5193 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 5194 TCP_SKB_CB(skb)->seq); 5195 5196 /* tcp_ack considers this ACK as duplicate 5197 * and does not calculate rtt. 5198 * Fix it at least with timestamps. 5199 */ 5200 if (tp->rx_opt.saw_tstamp && 5201 tp->rx_opt.rcv_tsecr && !tp->srtt) 5202 tcp_ack_saw_tstamp(sk, 0); 5203 5204 if (tp->rx_opt.tstamp_ok) 5205 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5206 5207 /* Make sure socket is routed, for 5208 * correct metrics. 5209 */ 5210 icsk->icsk_af_ops->rebuild_header(sk); 5211 5212 tcp_init_metrics(sk); 5213 5214 tcp_init_congestion_control(sk); 5215 5216 /* Prevent spurious tcp_cwnd_restart() on 5217 * first data packet. 5218 */ 5219 tp->lsndtime = tcp_time_stamp; 5220 5221 tcp_mtup_init(sk); 5222 tcp_initialize_rcv_mss(sk); 5223 tcp_init_buffer_space(sk); 5224 tcp_fast_path_on(tp); 5225 } else { 5226 return 1; 5227 } 5228 break; 5229 5230 case TCP_FIN_WAIT1: 5231 if (tp->snd_una == tp->write_seq) { 5232 tcp_set_state(sk, TCP_FIN_WAIT2); 5233 sk->sk_shutdown |= SEND_SHUTDOWN; 5234 dst_confirm(sk->sk_dst_cache); 5235 5236 if (!sock_flag(sk, SOCK_DEAD)) 5237 /* Wake up lingering close() */ 5238 sk->sk_state_change(sk); 5239 else { 5240 int tmo; 5241 5242 if (tp->linger2 < 0 || 5243 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5244 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5245 tcp_done(sk); 5246 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 5247 return 1; 5248 } 5249 5250 tmo = tcp_fin_time(sk); 5251 if (tmo > TCP_TIMEWAIT_LEN) { 5252 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5253 } else if (th->fin || sock_owned_by_user(sk)) { 5254 /* Bad case. We could lose such FIN otherwise. 5255 * It is not a big problem, but it looks confusing 5256 * and not so rare event. We still can lose it now, 5257 * if it spins in bh_lock_sock(), but it is really 5258 * marginal case. 5259 */ 5260 inet_csk_reset_keepalive_timer(sk, tmo); 5261 } else { 5262 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5263 goto discard; 5264 } 5265 } 5266 } 5267 break; 5268 5269 case TCP_CLOSING: 5270 if (tp->snd_una == tp->write_seq) { 5271 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5272 goto discard; 5273 } 5274 break; 5275 5276 case TCP_LAST_ACK: 5277 if (tp->snd_una == tp->write_seq) { 5278 tcp_update_metrics(sk); 5279 tcp_done(sk); 5280 goto discard; 5281 } 5282 break; 5283 } 5284 } else 5285 goto discard; 5286 5287 /* step 6: check the URG bit */ 5288 tcp_urg(sk, skb, th); 5289 5290 /* step 7: process the segment text */ 5291 switch (sk->sk_state) { 5292 case TCP_CLOSE_WAIT: 5293 case TCP_CLOSING: 5294 case TCP_LAST_ACK: 5295 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5296 break; 5297 case TCP_FIN_WAIT1: 5298 case TCP_FIN_WAIT2: 5299 /* RFC 793 says to queue data in these states, 5300 * RFC 1122 says we MUST send a reset. 5301 * BSD 4.4 also does reset. 5302 */ 5303 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5304 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5305 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5306 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 5307 tcp_reset(sk); 5308 return 1; 5309 } 5310 } 5311 /* Fall through */ 5312 case TCP_ESTABLISHED: 5313 tcp_data_queue(sk, skb); 5314 queued = 1; 5315 break; 5316 } 5317 5318 /* tcp_data could move socket to TIME-WAIT */ 5319 if (sk->sk_state != TCP_CLOSE) { 5320 tcp_data_snd_check(sk); 5321 tcp_ack_snd_check(sk); 5322 } 5323 5324 if (!queued) { 5325 discard: 5326 __kfree_skb(skb); 5327 } 5328 return 0; 5329 } 5330 5331 EXPORT_SYMBOL(sysctl_tcp_ecn); 5332 EXPORT_SYMBOL(sysctl_tcp_reordering); 5333 EXPORT_SYMBOL(tcp_parse_options); 5334 EXPORT_SYMBOL(tcp_rcv_established); 5335 EXPORT_SYMBOL(tcp_rcv_state_process); 5336 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 5337