1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/proto_memory.h> 76 #include <net/inet_common.h> 77 #include <linux/ipsec.h> 78 #include <asm/unaligned.h> 79 #include <linux/errqueue.h> 80 #include <trace/events/tcp.h> 81 #include <linux/jump_label_ratelimit.h> 82 #include <net/busy_poll.h> 83 #include <net/mptcp.h> 84 85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 86 87 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 88 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 89 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 90 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 91 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 92 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 93 #define FLAG_ECE 0x40 /* ECE in this ACK */ 94 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 95 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 96 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 97 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 98 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 99 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 100 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 101 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 102 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 103 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 104 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 105 106 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 107 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 108 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 109 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 110 111 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 112 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 113 114 #define REXMIT_NONE 0 /* no loss recovery to do */ 115 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 116 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 117 118 #if IS_ENABLED(CONFIG_TLS_DEVICE) 119 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 120 121 void clean_acked_data_enable(struct inet_connection_sock *icsk, 122 void (*cad)(struct sock *sk, u32 ack_seq)) 123 { 124 icsk->icsk_clean_acked = cad; 125 static_branch_deferred_inc(&clean_acked_data_enabled); 126 } 127 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 128 129 void clean_acked_data_disable(struct inet_connection_sock *icsk) 130 { 131 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 132 icsk->icsk_clean_acked = NULL; 133 } 134 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 135 136 void clean_acked_data_flush(void) 137 { 138 static_key_deferred_flush(&clean_acked_data_enabled); 139 } 140 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 141 #endif 142 143 #ifdef CONFIG_CGROUP_BPF 144 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 145 { 146 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 147 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 148 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 149 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 150 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 151 struct bpf_sock_ops_kern sock_ops; 152 153 if (likely(!unknown_opt && !parse_all_opt)) 154 return; 155 156 /* The skb will be handled in the 157 * bpf_skops_established() or 158 * bpf_skops_write_hdr_opt(). 159 */ 160 switch (sk->sk_state) { 161 case TCP_SYN_RECV: 162 case TCP_SYN_SENT: 163 case TCP_LISTEN: 164 return; 165 } 166 167 sock_owned_by_me(sk); 168 169 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 170 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 171 sock_ops.is_fullsock = 1; 172 sock_ops.sk = sk; 173 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 174 175 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 176 } 177 178 static void bpf_skops_established(struct sock *sk, int bpf_op, 179 struct sk_buff *skb) 180 { 181 struct bpf_sock_ops_kern sock_ops; 182 183 sock_owned_by_me(sk); 184 185 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 186 sock_ops.op = bpf_op; 187 sock_ops.is_fullsock = 1; 188 sock_ops.sk = sk; 189 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 190 if (skb) 191 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 192 193 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 194 } 195 #else 196 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 197 { 198 } 199 200 static void bpf_skops_established(struct sock *sk, int bpf_op, 201 struct sk_buff *skb) 202 { 203 } 204 #endif 205 206 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb, 207 unsigned int len) 208 { 209 struct net_device *dev; 210 211 rcu_read_lock(); 212 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 213 if (!dev || len >= READ_ONCE(dev->mtu)) 214 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 215 dev ? dev->name : "Unknown driver"); 216 rcu_read_unlock(); 217 } 218 219 /* Adapt the MSS value used to make delayed ack decision to the 220 * real world. 221 */ 222 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 223 { 224 struct inet_connection_sock *icsk = inet_csk(sk); 225 const unsigned int lss = icsk->icsk_ack.last_seg_size; 226 unsigned int len; 227 228 icsk->icsk_ack.last_seg_size = 0; 229 230 /* skb->len may jitter because of SACKs, even if peer 231 * sends good full-sized frames. 232 */ 233 len = skb_shinfo(skb)->gso_size ? : skb->len; 234 if (len >= icsk->icsk_ack.rcv_mss) { 235 /* Note: divides are still a bit expensive. 236 * For the moment, only adjust scaling_ratio 237 * when we update icsk_ack.rcv_mss. 238 */ 239 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 240 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 241 242 do_div(val, skb->truesize); 243 tcp_sk(sk)->scaling_ratio = val ? val : 1; 244 } 245 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 246 tcp_sk(sk)->advmss); 247 /* Account for possibly-removed options */ 248 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE, 249 tcp_gro_dev_warn, sk, skb, len); 250 /* If the skb has a len of exactly 1*MSS and has the PSH bit 251 * set then it is likely the end of an application write. So 252 * more data may not be arriving soon, and yet the data sender 253 * may be waiting for an ACK if cwnd-bound or using TX zero 254 * copy. So we set ICSK_ACK_PUSHED here so that 255 * tcp_cleanup_rbuf() will send an ACK immediately if the app 256 * reads all of the data and is not ping-pong. If len > MSS 257 * then this logic does not matter (and does not hurt) because 258 * tcp_cleanup_rbuf() will always ACK immediately if the app 259 * reads data and there is more than an MSS of unACKed data. 260 */ 261 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 262 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 263 } else { 264 /* Otherwise, we make more careful check taking into account, 265 * that SACKs block is variable. 266 * 267 * "len" is invariant segment length, including TCP header. 268 */ 269 len += skb->data - skb_transport_header(skb); 270 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 271 /* If PSH is not set, packet should be 272 * full sized, provided peer TCP is not badly broken. 273 * This observation (if it is correct 8)) allows 274 * to handle super-low mtu links fairly. 275 */ 276 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 277 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 278 /* Subtract also invariant (if peer is RFC compliant), 279 * tcp header plus fixed timestamp option length. 280 * Resulting "len" is MSS free of SACK jitter. 281 */ 282 len -= tcp_sk(sk)->tcp_header_len; 283 icsk->icsk_ack.last_seg_size = len; 284 if (len == lss) { 285 icsk->icsk_ack.rcv_mss = len; 286 return; 287 } 288 } 289 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 290 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 291 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 292 } 293 } 294 295 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 296 { 297 struct inet_connection_sock *icsk = inet_csk(sk); 298 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 299 300 if (quickacks == 0) 301 quickacks = 2; 302 quickacks = min(quickacks, max_quickacks); 303 if (quickacks > icsk->icsk_ack.quick) 304 icsk->icsk_ack.quick = quickacks; 305 } 306 307 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 308 { 309 struct inet_connection_sock *icsk = inet_csk(sk); 310 311 tcp_incr_quickack(sk, max_quickacks); 312 inet_csk_exit_pingpong_mode(sk); 313 icsk->icsk_ack.ato = TCP_ATO_MIN; 314 } 315 316 /* Send ACKs quickly, if "quick" count is not exhausted 317 * and the session is not interactive. 318 */ 319 320 static bool tcp_in_quickack_mode(struct sock *sk) 321 { 322 const struct inet_connection_sock *icsk = inet_csk(sk); 323 const struct dst_entry *dst = __sk_dst_get(sk); 324 325 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 326 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 327 } 328 329 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 330 { 331 if (tp->ecn_flags & TCP_ECN_OK) 332 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 333 } 334 335 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 336 { 337 if (tcp_hdr(skb)->cwr) { 338 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 339 340 /* If the sender is telling us it has entered CWR, then its 341 * cwnd may be very low (even just 1 packet), so we should ACK 342 * immediately. 343 */ 344 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 345 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 346 } 347 } 348 349 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 350 { 351 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 352 } 353 354 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 355 { 356 struct tcp_sock *tp = tcp_sk(sk); 357 358 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 359 case INET_ECN_NOT_ECT: 360 /* Funny extension: if ECT is not set on a segment, 361 * and we already seen ECT on a previous segment, 362 * it is probably a retransmit. 363 */ 364 if (tp->ecn_flags & TCP_ECN_SEEN) 365 tcp_enter_quickack_mode(sk, 2); 366 break; 367 case INET_ECN_CE: 368 if (tcp_ca_needs_ecn(sk)) 369 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 370 371 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 372 /* Better not delay acks, sender can have a very low cwnd */ 373 tcp_enter_quickack_mode(sk, 2); 374 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 375 } 376 tp->ecn_flags |= TCP_ECN_SEEN; 377 break; 378 default: 379 if (tcp_ca_needs_ecn(sk)) 380 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 381 tp->ecn_flags |= TCP_ECN_SEEN; 382 break; 383 } 384 } 385 386 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 387 { 388 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 389 __tcp_ecn_check_ce(sk, skb); 390 } 391 392 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 393 { 394 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 395 tp->ecn_flags &= ~TCP_ECN_OK; 396 } 397 398 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 399 { 400 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 401 tp->ecn_flags &= ~TCP_ECN_OK; 402 } 403 404 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 405 { 406 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 407 return true; 408 return false; 409 } 410 411 /* Buffer size and advertised window tuning. 412 * 413 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 414 */ 415 416 static void tcp_sndbuf_expand(struct sock *sk) 417 { 418 const struct tcp_sock *tp = tcp_sk(sk); 419 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 420 int sndmem, per_mss; 421 u32 nr_segs; 422 423 /* Worst case is non GSO/TSO : each frame consumes one skb 424 * and skb->head is kmalloced using power of two area of memory 425 */ 426 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 427 MAX_TCP_HEADER + 428 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 429 430 per_mss = roundup_pow_of_two(per_mss) + 431 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 432 433 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 434 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 435 436 /* Fast Recovery (RFC 5681 3.2) : 437 * Cubic needs 1.7 factor, rounded to 2 to include 438 * extra cushion (application might react slowly to EPOLLOUT) 439 */ 440 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 441 sndmem *= nr_segs * per_mss; 442 443 if (sk->sk_sndbuf < sndmem) 444 WRITE_ONCE(sk->sk_sndbuf, 445 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 446 } 447 448 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 449 * 450 * All tcp_full_space() is split to two parts: "network" buffer, allocated 451 * forward and advertised in receiver window (tp->rcv_wnd) and 452 * "application buffer", required to isolate scheduling/application 453 * latencies from network. 454 * window_clamp is maximal advertised window. It can be less than 455 * tcp_full_space(), in this case tcp_full_space() - window_clamp 456 * is reserved for "application" buffer. The less window_clamp is 457 * the smoother our behaviour from viewpoint of network, but the lower 458 * throughput and the higher sensitivity of the connection to losses. 8) 459 * 460 * rcv_ssthresh is more strict window_clamp used at "slow start" 461 * phase to predict further behaviour of this connection. 462 * It is used for two goals: 463 * - to enforce header prediction at sender, even when application 464 * requires some significant "application buffer". It is check #1. 465 * - to prevent pruning of receive queue because of misprediction 466 * of receiver window. Check #2. 467 * 468 * The scheme does not work when sender sends good segments opening 469 * window and then starts to feed us spaghetti. But it should work 470 * in common situations. Otherwise, we have to rely on queue collapsing. 471 */ 472 473 /* Slow part of check#2. */ 474 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 475 unsigned int skbtruesize) 476 { 477 const struct tcp_sock *tp = tcp_sk(sk); 478 /* Optimize this! */ 479 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 480 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 481 482 while (tp->rcv_ssthresh <= window) { 483 if (truesize <= skb->len) 484 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 485 486 truesize >>= 1; 487 window >>= 1; 488 } 489 return 0; 490 } 491 492 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 493 * can play nice with us, as sk_buff and skb->head might be either 494 * freed or shared with up to MAX_SKB_FRAGS segments. 495 * Only give a boost to drivers using page frag(s) to hold the frame(s), 496 * and if no payload was pulled in skb->head before reaching us. 497 */ 498 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 499 { 500 u32 truesize = skb->truesize; 501 502 if (adjust && !skb_headlen(skb)) { 503 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 504 /* paranoid check, some drivers might be buggy */ 505 if (unlikely((int)truesize < (int)skb->len)) 506 truesize = skb->truesize; 507 } 508 return truesize; 509 } 510 511 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 512 bool adjust) 513 { 514 struct tcp_sock *tp = tcp_sk(sk); 515 int room; 516 517 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 518 519 if (room <= 0) 520 return; 521 522 /* Check #1 */ 523 if (!tcp_under_memory_pressure(sk)) { 524 unsigned int truesize = truesize_adjust(adjust, skb); 525 int incr; 526 527 /* Check #2. Increase window, if skb with such overhead 528 * will fit to rcvbuf in future. 529 */ 530 if (tcp_win_from_space(sk, truesize) <= skb->len) 531 incr = 2 * tp->advmss; 532 else 533 incr = __tcp_grow_window(sk, skb, truesize); 534 535 if (incr) { 536 incr = max_t(int, incr, 2 * skb->len); 537 tp->rcv_ssthresh += min(room, incr); 538 inet_csk(sk)->icsk_ack.quick |= 1; 539 } 540 } else { 541 /* Under pressure: 542 * Adjust rcv_ssthresh according to reserved mem 543 */ 544 tcp_adjust_rcv_ssthresh(sk); 545 } 546 } 547 548 /* 3. Try to fixup all. It is made immediately after connection enters 549 * established state. 550 */ 551 static void tcp_init_buffer_space(struct sock *sk) 552 { 553 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 554 struct tcp_sock *tp = tcp_sk(sk); 555 int maxwin; 556 557 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 558 tcp_sndbuf_expand(sk); 559 560 tcp_mstamp_refresh(tp); 561 tp->rcvq_space.time = tp->tcp_mstamp; 562 tp->rcvq_space.seq = tp->copied_seq; 563 564 maxwin = tcp_full_space(sk); 565 566 if (tp->window_clamp >= maxwin) { 567 WRITE_ONCE(tp->window_clamp, maxwin); 568 569 if (tcp_app_win && maxwin > 4 * tp->advmss) 570 WRITE_ONCE(tp->window_clamp, 571 max(maxwin - (maxwin >> tcp_app_win), 572 4 * tp->advmss)); 573 } 574 575 /* Force reservation of one segment. */ 576 if (tcp_app_win && 577 tp->window_clamp > 2 * tp->advmss && 578 tp->window_clamp + tp->advmss > maxwin) 579 WRITE_ONCE(tp->window_clamp, 580 max(2 * tp->advmss, maxwin - tp->advmss)); 581 582 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 583 tp->snd_cwnd_stamp = tcp_jiffies32; 584 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 585 (u32)TCP_INIT_CWND * tp->advmss); 586 } 587 588 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 589 static void tcp_clamp_window(struct sock *sk) 590 { 591 struct tcp_sock *tp = tcp_sk(sk); 592 struct inet_connection_sock *icsk = inet_csk(sk); 593 struct net *net = sock_net(sk); 594 int rmem2; 595 596 icsk->icsk_ack.quick = 0; 597 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 598 599 if (sk->sk_rcvbuf < rmem2 && 600 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 601 !tcp_under_memory_pressure(sk) && 602 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 603 WRITE_ONCE(sk->sk_rcvbuf, 604 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 605 } 606 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 607 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 608 } 609 610 /* Initialize RCV_MSS value. 611 * RCV_MSS is an our guess about MSS used by the peer. 612 * We haven't any direct information about the MSS. 613 * It's better to underestimate the RCV_MSS rather than overestimate. 614 * Overestimations make us ACKing less frequently than needed. 615 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 616 */ 617 void tcp_initialize_rcv_mss(struct sock *sk) 618 { 619 const struct tcp_sock *tp = tcp_sk(sk); 620 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 621 622 hint = min(hint, tp->rcv_wnd / 2); 623 hint = min(hint, TCP_MSS_DEFAULT); 624 hint = max(hint, TCP_MIN_MSS); 625 626 inet_csk(sk)->icsk_ack.rcv_mss = hint; 627 } 628 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 629 630 /* Receiver "autotuning" code. 631 * 632 * The algorithm for RTT estimation w/o timestamps is based on 633 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 634 * <https://public.lanl.gov/radiant/pubs.html#DRS> 635 * 636 * More detail on this code can be found at 637 * <http://staff.psc.edu/jheffner/>, 638 * though this reference is out of date. A new paper 639 * is pending. 640 */ 641 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 642 { 643 u32 new_sample = tp->rcv_rtt_est.rtt_us; 644 long m = sample; 645 646 if (new_sample != 0) { 647 /* If we sample in larger samples in the non-timestamp 648 * case, we could grossly overestimate the RTT especially 649 * with chatty applications or bulk transfer apps which 650 * are stalled on filesystem I/O. 651 * 652 * Also, since we are only going for a minimum in the 653 * non-timestamp case, we do not smooth things out 654 * else with timestamps disabled convergence takes too 655 * long. 656 */ 657 if (!win_dep) { 658 m -= (new_sample >> 3); 659 new_sample += m; 660 } else { 661 m <<= 3; 662 if (m < new_sample) 663 new_sample = m; 664 } 665 } else { 666 /* No previous measure. */ 667 new_sample = m << 3; 668 } 669 670 tp->rcv_rtt_est.rtt_us = new_sample; 671 } 672 673 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 674 { 675 u32 delta_us; 676 677 if (tp->rcv_rtt_est.time == 0) 678 goto new_measure; 679 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 680 return; 681 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 682 if (!delta_us) 683 delta_us = 1; 684 tcp_rcv_rtt_update(tp, delta_us, 1); 685 686 new_measure: 687 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 688 tp->rcv_rtt_est.time = tp->tcp_mstamp; 689 } 690 691 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp) 692 { 693 u32 delta, delta_us; 694 695 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; 696 if (tp->tcp_usec_ts) 697 return delta; 698 699 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 700 if (!delta) 701 delta = 1; 702 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 703 return delta_us; 704 } 705 return -1; 706 } 707 708 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 709 const struct sk_buff *skb) 710 { 711 struct tcp_sock *tp = tcp_sk(sk); 712 713 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 714 return; 715 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 716 717 if (TCP_SKB_CB(skb)->end_seq - 718 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 719 s32 delta = tcp_rtt_tsopt_us(tp); 720 721 if (delta >= 0) 722 tcp_rcv_rtt_update(tp, delta, 0); 723 } 724 } 725 726 /* 727 * This function should be called every time data is copied to user space. 728 * It calculates the appropriate TCP receive buffer space. 729 */ 730 void tcp_rcv_space_adjust(struct sock *sk) 731 { 732 struct tcp_sock *tp = tcp_sk(sk); 733 u32 copied; 734 int time; 735 736 trace_tcp_rcv_space_adjust(sk); 737 738 tcp_mstamp_refresh(tp); 739 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 740 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 741 return; 742 743 /* Number of bytes copied to user in last RTT */ 744 copied = tp->copied_seq - tp->rcvq_space.seq; 745 if (copied <= tp->rcvq_space.space) 746 goto new_measure; 747 748 /* A bit of theory : 749 * copied = bytes received in previous RTT, our base window 750 * To cope with packet losses, we need a 2x factor 751 * To cope with slow start, and sender growing its cwin by 100 % 752 * every RTT, we need a 4x factor, because the ACK we are sending 753 * now is for the next RTT, not the current one : 754 * <prev RTT . ><current RTT .. ><next RTT .... > 755 */ 756 757 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 758 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 759 u64 rcvwin, grow; 760 int rcvbuf; 761 762 /* minimal window to cope with packet losses, assuming 763 * steady state. Add some cushion because of small variations. 764 */ 765 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 766 767 /* Accommodate for sender rate increase (eg. slow start) */ 768 grow = rcvwin * (copied - tp->rcvq_space.space); 769 do_div(grow, tp->rcvq_space.space); 770 rcvwin += (grow << 1); 771 772 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 773 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 774 if (rcvbuf > sk->sk_rcvbuf) { 775 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 776 777 /* Make the window clamp follow along. */ 778 WRITE_ONCE(tp->window_clamp, 779 tcp_win_from_space(sk, rcvbuf)); 780 } 781 } 782 tp->rcvq_space.space = copied; 783 784 new_measure: 785 tp->rcvq_space.seq = tp->copied_seq; 786 tp->rcvq_space.time = tp->tcp_mstamp; 787 } 788 789 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 790 { 791 #if IS_ENABLED(CONFIG_IPV6) 792 struct inet_connection_sock *icsk = inet_csk(sk); 793 794 if (skb->protocol == htons(ETH_P_IPV6)) 795 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 796 #endif 797 } 798 799 /* There is something which you must keep in mind when you analyze the 800 * behavior of the tp->ato delayed ack timeout interval. When a 801 * connection starts up, we want to ack as quickly as possible. The 802 * problem is that "good" TCP's do slow start at the beginning of data 803 * transmission. The means that until we send the first few ACK's the 804 * sender will sit on his end and only queue most of his data, because 805 * he can only send snd_cwnd unacked packets at any given time. For 806 * each ACK we send, he increments snd_cwnd and transmits more of his 807 * queue. -DaveM 808 */ 809 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 810 { 811 struct tcp_sock *tp = tcp_sk(sk); 812 struct inet_connection_sock *icsk = inet_csk(sk); 813 u32 now; 814 815 inet_csk_schedule_ack(sk); 816 817 tcp_measure_rcv_mss(sk, skb); 818 819 tcp_rcv_rtt_measure(tp); 820 821 now = tcp_jiffies32; 822 823 if (!icsk->icsk_ack.ato) { 824 /* The _first_ data packet received, initialize 825 * delayed ACK engine. 826 */ 827 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 828 icsk->icsk_ack.ato = TCP_ATO_MIN; 829 } else { 830 int m = now - icsk->icsk_ack.lrcvtime; 831 832 if (m <= TCP_ATO_MIN / 2) { 833 /* The fastest case is the first. */ 834 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 835 } else if (m < icsk->icsk_ack.ato) { 836 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 837 if (icsk->icsk_ack.ato > icsk->icsk_rto) 838 icsk->icsk_ack.ato = icsk->icsk_rto; 839 } else if (m > icsk->icsk_rto) { 840 /* Too long gap. Apparently sender failed to 841 * restart window, so that we send ACKs quickly. 842 */ 843 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 844 } 845 } 846 icsk->icsk_ack.lrcvtime = now; 847 tcp_save_lrcv_flowlabel(sk, skb); 848 849 tcp_ecn_check_ce(sk, skb); 850 851 if (skb->len >= 128) 852 tcp_grow_window(sk, skb, true); 853 } 854 855 /* Called to compute a smoothed rtt estimate. The data fed to this 856 * routine either comes from timestamps, or from segments that were 857 * known _not_ to have been retransmitted [see Karn/Partridge 858 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 859 * piece by Van Jacobson. 860 * NOTE: the next three routines used to be one big routine. 861 * To save cycles in the RFC 1323 implementation it was better to break 862 * it up into three procedures. -- erics 863 */ 864 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 865 { 866 struct tcp_sock *tp = tcp_sk(sk); 867 long m = mrtt_us; /* RTT */ 868 u32 srtt = tp->srtt_us; 869 870 /* The following amusing code comes from Jacobson's 871 * article in SIGCOMM '88. Note that rtt and mdev 872 * are scaled versions of rtt and mean deviation. 873 * This is designed to be as fast as possible 874 * m stands for "measurement". 875 * 876 * On a 1990 paper the rto value is changed to: 877 * RTO = rtt + 4 * mdev 878 * 879 * Funny. This algorithm seems to be very broken. 880 * These formulae increase RTO, when it should be decreased, increase 881 * too slowly, when it should be increased quickly, decrease too quickly 882 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 883 * does not matter how to _calculate_ it. Seems, it was trap 884 * that VJ failed to avoid. 8) 885 */ 886 if (srtt != 0) { 887 m -= (srtt >> 3); /* m is now error in rtt est */ 888 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 889 if (m < 0) { 890 m = -m; /* m is now abs(error) */ 891 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 892 /* This is similar to one of Eifel findings. 893 * Eifel blocks mdev updates when rtt decreases. 894 * This solution is a bit different: we use finer gain 895 * for mdev in this case (alpha*beta). 896 * Like Eifel it also prevents growth of rto, 897 * but also it limits too fast rto decreases, 898 * happening in pure Eifel. 899 */ 900 if (m > 0) 901 m >>= 3; 902 } else { 903 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 904 } 905 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 906 if (tp->mdev_us > tp->mdev_max_us) { 907 tp->mdev_max_us = tp->mdev_us; 908 if (tp->mdev_max_us > tp->rttvar_us) 909 tp->rttvar_us = tp->mdev_max_us; 910 } 911 if (after(tp->snd_una, tp->rtt_seq)) { 912 if (tp->mdev_max_us < tp->rttvar_us) 913 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 914 tp->rtt_seq = tp->snd_nxt; 915 tp->mdev_max_us = tcp_rto_min_us(sk); 916 917 tcp_bpf_rtt(sk, mrtt_us, srtt); 918 } 919 } else { 920 /* no previous measure. */ 921 srtt = m << 3; /* take the measured time to be rtt */ 922 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 923 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 924 tp->mdev_max_us = tp->rttvar_us; 925 tp->rtt_seq = tp->snd_nxt; 926 927 tcp_bpf_rtt(sk, mrtt_us, srtt); 928 } 929 tp->srtt_us = max(1U, srtt); 930 } 931 932 static void tcp_update_pacing_rate(struct sock *sk) 933 { 934 const struct tcp_sock *tp = tcp_sk(sk); 935 u64 rate; 936 937 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 938 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 939 940 /* current rate is (cwnd * mss) / srtt 941 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 942 * In Congestion Avoidance phase, set it to 120 % the current rate. 943 * 944 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 945 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 946 * end of slow start and should slow down. 947 */ 948 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 949 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 950 else 951 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 952 953 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 954 955 if (likely(tp->srtt_us)) 956 do_div(rate, tp->srtt_us); 957 958 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 959 * without any lock. We want to make sure compiler wont store 960 * intermediate values in this location. 961 */ 962 WRITE_ONCE(sk->sk_pacing_rate, 963 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 964 } 965 966 /* Calculate rto without backoff. This is the second half of Van Jacobson's 967 * routine referred to above. 968 */ 969 static void tcp_set_rto(struct sock *sk) 970 { 971 const struct tcp_sock *tp = tcp_sk(sk); 972 /* Old crap is replaced with new one. 8) 973 * 974 * More seriously: 975 * 1. If rtt variance happened to be less 50msec, it is hallucination. 976 * It cannot be less due to utterly erratic ACK generation made 977 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 978 * to do with delayed acks, because at cwnd>2 true delack timeout 979 * is invisible. Actually, Linux-2.4 also generates erratic 980 * ACKs in some circumstances. 981 */ 982 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 983 984 /* 2. Fixups made earlier cannot be right. 985 * If we do not estimate RTO correctly without them, 986 * all the algo is pure shit and should be replaced 987 * with correct one. It is exactly, which we pretend to do. 988 */ 989 990 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 991 * guarantees that rto is higher. 992 */ 993 tcp_bound_rto(sk); 994 } 995 996 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 997 { 998 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 999 1000 if (!cwnd) 1001 cwnd = TCP_INIT_CWND; 1002 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 1003 } 1004 1005 struct tcp_sacktag_state { 1006 /* Timestamps for earliest and latest never-retransmitted segment 1007 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1008 * but congestion control should still get an accurate delay signal. 1009 */ 1010 u64 first_sackt; 1011 u64 last_sackt; 1012 u32 reord; 1013 u32 sack_delivered; 1014 int flag; 1015 unsigned int mss_now; 1016 struct rate_sample *rate; 1017 }; 1018 1019 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1020 * and spurious retransmission information if this DSACK is unlikely caused by 1021 * sender's action: 1022 * - DSACKed sequence range is larger than maximum receiver's window. 1023 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1024 */ 1025 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1026 u32 end_seq, struct tcp_sacktag_state *state) 1027 { 1028 u32 seq_len, dup_segs = 1; 1029 1030 if (!before(start_seq, end_seq)) 1031 return 0; 1032 1033 seq_len = end_seq - start_seq; 1034 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1035 if (seq_len > tp->max_window) 1036 return 0; 1037 if (seq_len > tp->mss_cache) 1038 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1039 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1040 state->flag |= FLAG_DSACK_TLP; 1041 1042 tp->dsack_dups += dup_segs; 1043 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1044 if (tp->dsack_dups > tp->total_retrans) 1045 return 0; 1046 1047 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1048 /* We increase the RACK ordering window in rounds where we receive 1049 * DSACKs that may have been due to reordering causing RACK to trigger 1050 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1051 * without having seen reordering, or that match TLP probes (TLP 1052 * is timer-driven, not triggered by RACK). 1053 */ 1054 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1055 tp->rack.dsack_seen = 1; 1056 1057 state->flag |= FLAG_DSACKING_ACK; 1058 /* A spurious retransmission is delivered */ 1059 state->sack_delivered += dup_segs; 1060 1061 return dup_segs; 1062 } 1063 1064 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1065 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1066 * distance is approximated in full-mss packet distance ("reordering"). 1067 */ 1068 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1069 const int ts) 1070 { 1071 struct tcp_sock *tp = tcp_sk(sk); 1072 const u32 mss = tp->mss_cache; 1073 u32 fack, metric; 1074 1075 fack = tcp_highest_sack_seq(tp); 1076 if (!before(low_seq, fack)) 1077 return; 1078 1079 metric = fack - low_seq; 1080 if ((metric > tp->reordering * mss) && mss) { 1081 #if FASTRETRANS_DEBUG > 1 1082 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1083 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1084 tp->reordering, 1085 0, 1086 tp->sacked_out, 1087 tp->undo_marker ? tp->undo_retrans : 0); 1088 #endif 1089 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1090 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1091 } 1092 1093 /* This exciting event is worth to be remembered. 8) */ 1094 tp->reord_seen++; 1095 NET_INC_STATS(sock_net(sk), 1096 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1097 } 1098 1099 /* This must be called before lost_out or retrans_out are updated 1100 * on a new loss, because we want to know if all skbs previously 1101 * known to be lost have already been retransmitted, indicating 1102 * that this newly lost skb is our next skb to retransmit. 1103 */ 1104 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1105 { 1106 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1107 (tp->retransmit_skb_hint && 1108 before(TCP_SKB_CB(skb)->seq, 1109 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1110 tp->retransmit_skb_hint = skb; 1111 } 1112 1113 /* Sum the number of packets on the wire we have marked as lost, and 1114 * notify the congestion control module that the given skb was marked lost. 1115 */ 1116 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1117 { 1118 tp->lost += tcp_skb_pcount(skb); 1119 } 1120 1121 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1122 { 1123 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1124 struct tcp_sock *tp = tcp_sk(sk); 1125 1126 if (sacked & TCPCB_SACKED_ACKED) 1127 return; 1128 1129 tcp_verify_retransmit_hint(tp, skb); 1130 if (sacked & TCPCB_LOST) { 1131 if (sacked & TCPCB_SACKED_RETRANS) { 1132 /* Account for retransmits that are lost again */ 1133 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1134 tp->retrans_out -= tcp_skb_pcount(skb); 1135 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1136 tcp_skb_pcount(skb)); 1137 tcp_notify_skb_loss_event(tp, skb); 1138 } 1139 } else { 1140 tp->lost_out += tcp_skb_pcount(skb); 1141 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1142 tcp_notify_skb_loss_event(tp, skb); 1143 } 1144 } 1145 1146 /* Updates the delivered and delivered_ce counts */ 1147 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1148 bool ece_ack) 1149 { 1150 tp->delivered += delivered; 1151 if (ece_ack) 1152 tp->delivered_ce += delivered; 1153 } 1154 1155 /* This procedure tags the retransmission queue when SACKs arrive. 1156 * 1157 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1158 * Packets in queue with these bits set are counted in variables 1159 * sacked_out, retrans_out and lost_out, correspondingly. 1160 * 1161 * Valid combinations are: 1162 * Tag InFlight Description 1163 * 0 1 - orig segment is in flight. 1164 * S 0 - nothing flies, orig reached receiver. 1165 * L 0 - nothing flies, orig lost by net. 1166 * R 2 - both orig and retransmit are in flight. 1167 * L|R 1 - orig is lost, retransmit is in flight. 1168 * S|R 1 - orig reached receiver, retrans is still in flight. 1169 * (L|S|R is logically valid, it could occur when L|R is sacked, 1170 * but it is equivalent to plain S and code short-circuits it to S. 1171 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1172 * 1173 * These 6 states form finite state machine, controlled by the following events: 1174 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1175 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1176 * 3. Loss detection event of two flavors: 1177 * A. Scoreboard estimator decided the packet is lost. 1178 * A'. Reno "three dupacks" marks head of queue lost. 1179 * B. SACK arrives sacking SND.NXT at the moment, when the 1180 * segment was retransmitted. 1181 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1182 * 1183 * It is pleasant to note, that state diagram turns out to be commutative, 1184 * so that we are allowed not to be bothered by order of our actions, 1185 * when multiple events arrive simultaneously. (see the function below). 1186 * 1187 * Reordering detection. 1188 * -------------------- 1189 * Reordering metric is maximal distance, which a packet can be displaced 1190 * in packet stream. With SACKs we can estimate it: 1191 * 1192 * 1. SACK fills old hole and the corresponding segment was not 1193 * ever retransmitted -> reordering. Alas, we cannot use it 1194 * when segment was retransmitted. 1195 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1196 * for retransmitted and already SACKed segment -> reordering.. 1197 * Both of these heuristics are not used in Loss state, when we cannot 1198 * account for retransmits accurately. 1199 * 1200 * SACK block validation. 1201 * ---------------------- 1202 * 1203 * SACK block range validation checks that the received SACK block fits to 1204 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1205 * Note that SND.UNA is not included to the range though being valid because 1206 * it means that the receiver is rather inconsistent with itself reporting 1207 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1208 * perfectly valid, however, in light of RFC2018 which explicitly states 1209 * that "SACK block MUST reflect the newest segment. Even if the newest 1210 * segment is going to be discarded ...", not that it looks very clever 1211 * in case of head skb. Due to potentional receiver driven attacks, we 1212 * choose to avoid immediate execution of a walk in write queue due to 1213 * reneging and defer head skb's loss recovery to standard loss recovery 1214 * procedure that will eventually trigger (nothing forbids us doing this). 1215 * 1216 * Implements also blockage to start_seq wrap-around. Problem lies in the 1217 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1218 * there's no guarantee that it will be before snd_nxt (n). The problem 1219 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1220 * wrap (s_w): 1221 * 1222 * <- outs wnd -> <- wrapzone -> 1223 * u e n u_w e_w s n_w 1224 * | | | | | | | 1225 * |<------------+------+----- TCP seqno space --------------+---------->| 1226 * ...-- <2^31 ->| |<--------... 1227 * ...---- >2^31 ------>| |<--------... 1228 * 1229 * Current code wouldn't be vulnerable but it's better still to discard such 1230 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1231 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1232 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1233 * equal to the ideal case (infinite seqno space without wrap caused issues). 1234 * 1235 * With D-SACK the lower bound is extended to cover sequence space below 1236 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1237 * again, D-SACK block must not to go across snd_una (for the same reason as 1238 * for the normal SACK blocks, explained above). But there all simplicity 1239 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1240 * fully below undo_marker they do not affect behavior in anyway and can 1241 * therefore be safely ignored. In rare cases (which are more or less 1242 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1243 * fragmentation and packet reordering past skb's retransmission. To consider 1244 * them correctly, the acceptable range must be extended even more though 1245 * the exact amount is rather hard to quantify. However, tp->max_window can 1246 * be used as an exaggerated estimate. 1247 */ 1248 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1249 u32 start_seq, u32 end_seq) 1250 { 1251 /* Too far in future, or reversed (interpretation is ambiguous) */ 1252 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1253 return false; 1254 1255 /* Nasty start_seq wrap-around check (see comments above) */ 1256 if (!before(start_seq, tp->snd_nxt)) 1257 return false; 1258 1259 /* In outstanding window? ...This is valid exit for D-SACKs too. 1260 * start_seq == snd_una is non-sensical (see comments above) 1261 */ 1262 if (after(start_seq, tp->snd_una)) 1263 return true; 1264 1265 if (!is_dsack || !tp->undo_marker) 1266 return false; 1267 1268 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1269 if (after(end_seq, tp->snd_una)) 1270 return false; 1271 1272 if (!before(start_seq, tp->undo_marker)) 1273 return true; 1274 1275 /* Too old */ 1276 if (!after(end_seq, tp->undo_marker)) 1277 return false; 1278 1279 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1280 * start_seq < undo_marker and end_seq >= undo_marker. 1281 */ 1282 return !before(start_seq, end_seq - tp->max_window); 1283 } 1284 1285 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1286 struct tcp_sack_block_wire *sp, int num_sacks, 1287 u32 prior_snd_una, struct tcp_sacktag_state *state) 1288 { 1289 struct tcp_sock *tp = tcp_sk(sk); 1290 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1291 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1292 u32 dup_segs; 1293 1294 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1295 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1296 } else if (num_sacks > 1) { 1297 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1298 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1299 1300 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1301 return false; 1302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1303 } else { 1304 return false; 1305 } 1306 1307 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1308 if (!dup_segs) { /* Skip dubious DSACK */ 1309 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1310 return false; 1311 } 1312 1313 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1314 1315 /* D-SACK for already forgotten data... Do dumb counting. */ 1316 if (tp->undo_marker && tp->undo_retrans > 0 && 1317 !after(end_seq_0, prior_snd_una) && 1318 after(end_seq_0, tp->undo_marker)) 1319 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1320 1321 return true; 1322 } 1323 1324 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1325 * the incoming SACK may not exactly match but we can find smaller MSS 1326 * aligned portion of it that matches. Therefore we might need to fragment 1327 * which may fail and creates some hassle (caller must handle error case 1328 * returns). 1329 * 1330 * FIXME: this could be merged to shift decision code 1331 */ 1332 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1333 u32 start_seq, u32 end_seq) 1334 { 1335 int err; 1336 bool in_sack; 1337 unsigned int pkt_len; 1338 unsigned int mss; 1339 1340 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1341 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1342 1343 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1344 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1345 mss = tcp_skb_mss(skb); 1346 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1347 1348 if (!in_sack) { 1349 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1350 if (pkt_len < mss) 1351 pkt_len = mss; 1352 } else { 1353 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1354 if (pkt_len < mss) 1355 return -EINVAL; 1356 } 1357 1358 /* Round if necessary so that SACKs cover only full MSSes 1359 * and/or the remaining small portion (if present) 1360 */ 1361 if (pkt_len > mss) { 1362 unsigned int new_len = (pkt_len / mss) * mss; 1363 if (!in_sack && new_len < pkt_len) 1364 new_len += mss; 1365 pkt_len = new_len; 1366 } 1367 1368 if (pkt_len >= skb->len && !in_sack) 1369 return 0; 1370 1371 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1372 pkt_len, mss, GFP_ATOMIC); 1373 if (err < 0) 1374 return err; 1375 } 1376 1377 return in_sack; 1378 } 1379 1380 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1381 static u8 tcp_sacktag_one(struct sock *sk, 1382 struct tcp_sacktag_state *state, u8 sacked, 1383 u32 start_seq, u32 end_seq, 1384 int dup_sack, int pcount, 1385 u64 xmit_time) 1386 { 1387 struct tcp_sock *tp = tcp_sk(sk); 1388 1389 /* Account D-SACK for retransmitted packet. */ 1390 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1391 if (tp->undo_marker && tp->undo_retrans > 0 && 1392 after(end_seq, tp->undo_marker)) 1393 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1394 if ((sacked & TCPCB_SACKED_ACKED) && 1395 before(start_seq, state->reord)) 1396 state->reord = start_seq; 1397 } 1398 1399 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1400 if (!after(end_seq, tp->snd_una)) 1401 return sacked; 1402 1403 if (!(sacked & TCPCB_SACKED_ACKED)) { 1404 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1405 1406 if (sacked & TCPCB_SACKED_RETRANS) { 1407 /* If the segment is not tagged as lost, 1408 * we do not clear RETRANS, believing 1409 * that retransmission is still in flight. 1410 */ 1411 if (sacked & TCPCB_LOST) { 1412 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1413 tp->lost_out -= pcount; 1414 tp->retrans_out -= pcount; 1415 } 1416 } else { 1417 if (!(sacked & TCPCB_RETRANS)) { 1418 /* New sack for not retransmitted frame, 1419 * which was in hole. It is reordering. 1420 */ 1421 if (before(start_seq, 1422 tcp_highest_sack_seq(tp)) && 1423 before(start_seq, state->reord)) 1424 state->reord = start_seq; 1425 1426 if (!after(end_seq, tp->high_seq)) 1427 state->flag |= FLAG_ORIG_SACK_ACKED; 1428 if (state->first_sackt == 0) 1429 state->first_sackt = xmit_time; 1430 state->last_sackt = xmit_time; 1431 } 1432 1433 if (sacked & TCPCB_LOST) { 1434 sacked &= ~TCPCB_LOST; 1435 tp->lost_out -= pcount; 1436 } 1437 } 1438 1439 sacked |= TCPCB_SACKED_ACKED; 1440 state->flag |= FLAG_DATA_SACKED; 1441 tp->sacked_out += pcount; 1442 /* Out-of-order packets delivered */ 1443 state->sack_delivered += pcount; 1444 1445 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1446 if (tp->lost_skb_hint && 1447 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1448 tp->lost_cnt_hint += pcount; 1449 } 1450 1451 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1452 * frames and clear it. undo_retrans is decreased above, L|R frames 1453 * are accounted above as well. 1454 */ 1455 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1456 sacked &= ~TCPCB_SACKED_RETRANS; 1457 tp->retrans_out -= pcount; 1458 } 1459 1460 return sacked; 1461 } 1462 1463 /* Shift newly-SACKed bytes from this skb to the immediately previous 1464 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1465 */ 1466 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1467 struct sk_buff *skb, 1468 struct tcp_sacktag_state *state, 1469 unsigned int pcount, int shifted, int mss, 1470 bool dup_sack) 1471 { 1472 struct tcp_sock *tp = tcp_sk(sk); 1473 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1474 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1475 1476 BUG_ON(!pcount); 1477 1478 /* Adjust counters and hints for the newly sacked sequence 1479 * range but discard the return value since prev is already 1480 * marked. We must tag the range first because the seq 1481 * advancement below implicitly advances 1482 * tcp_highest_sack_seq() when skb is highest_sack. 1483 */ 1484 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1485 start_seq, end_seq, dup_sack, pcount, 1486 tcp_skb_timestamp_us(skb)); 1487 tcp_rate_skb_delivered(sk, skb, state->rate); 1488 1489 if (skb == tp->lost_skb_hint) 1490 tp->lost_cnt_hint += pcount; 1491 1492 TCP_SKB_CB(prev)->end_seq += shifted; 1493 TCP_SKB_CB(skb)->seq += shifted; 1494 1495 tcp_skb_pcount_add(prev, pcount); 1496 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1497 tcp_skb_pcount_add(skb, -pcount); 1498 1499 /* When we're adding to gso_segs == 1, gso_size will be zero, 1500 * in theory this shouldn't be necessary but as long as DSACK 1501 * code can come after this skb later on it's better to keep 1502 * setting gso_size to something. 1503 */ 1504 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1505 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1506 1507 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1508 if (tcp_skb_pcount(skb) <= 1) 1509 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1510 1511 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1512 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1513 1514 if (skb->len > 0) { 1515 BUG_ON(!tcp_skb_pcount(skb)); 1516 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1517 return false; 1518 } 1519 1520 /* Whole SKB was eaten :-) */ 1521 1522 if (skb == tp->retransmit_skb_hint) 1523 tp->retransmit_skb_hint = prev; 1524 if (skb == tp->lost_skb_hint) { 1525 tp->lost_skb_hint = prev; 1526 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1527 } 1528 1529 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1530 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1531 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1532 TCP_SKB_CB(prev)->end_seq++; 1533 1534 if (skb == tcp_highest_sack(sk)) 1535 tcp_advance_highest_sack(sk, skb); 1536 1537 tcp_skb_collapse_tstamp(prev, skb); 1538 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1539 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1540 1541 tcp_rtx_queue_unlink_and_free(skb, sk); 1542 1543 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1544 1545 return true; 1546 } 1547 1548 /* I wish gso_size would have a bit more sane initialization than 1549 * something-or-zero which complicates things 1550 */ 1551 static int tcp_skb_seglen(const struct sk_buff *skb) 1552 { 1553 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1554 } 1555 1556 /* Shifting pages past head area doesn't work */ 1557 static int skb_can_shift(const struct sk_buff *skb) 1558 { 1559 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1560 } 1561 1562 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1563 int pcount, int shiftlen) 1564 { 1565 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1566 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1567 * to make sure not storing more than 65535 * 8 bytes per skb, 1568 * even if current MSS is bigger. 1569 */ 1570 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1571 return 0; 1572 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1573 return 0; 1574 return skb_shift(to, from, shiftlen); 1575 } 1576 1577 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1578 * skb. 1579 */ 1580 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1581 struct tcp_sacktag_state *state, 1582 u32 start_seq, u32 end_seq, 1583 bool dup_sack) 1584 { 1585 struct tcp_sock *tp = tcp_sk(sk); 1586 struct sk_buff *prev; 1587 int mss; 1588 int pcount = 0; 1589 int len; 1590 int in_sack; 1591 1592 /* Normally R but no L won't result in plain S */ 1593 if (!dup_sack && 1594 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1595 goto fallback; 1596 if (!skb_can_shift(skb)) 1597 goto fallback; 1598 /* This frame is about to be dropped (was ACKed). */ 1599 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1600 goto fallback; 1601 1602 /* Can only happen with delayed DSACK + discard craziness */ 1603 prev = skb_rb_prev(skb); 1604 if (!prev) 1605 goto fallback; 1606 1607 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1608 goto fallback; 1609 1610 if (!tcp_skb_can_collapse(prev, skb)) 1611 goto fallback; 1612 1613 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1614 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1615 1616 if (in_sack) { 1617 len = skb->len; 1618 pcount = tcp_skb_pcount(skb); 1619 mss = tcp_skb_seglen(skb); 1620 1621 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1622 * drop this restriction as unnecessary 1623 */ 1624 if (mss != tcp_skb_seglen(prev)) 1625 goto fallback; 1626 } else { 1627 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1628 goto noop; 1629 /* CHECKME: This is non-MSS split case only?, this will 1630 * cause skipped skbs due to advancing loop btw, original 1631 * has that feature too 1632 */ 1633 if (tcp_skb_pcount(skb) <= 1) 1634 goto noop; 1635 1636 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1637 if (!in_sack) { 1638 /* TODO: head merge to next could be attempted here 1639 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1640 * though it might not be worth of the additional hassle 1641 * 1642 * ...we can probably just fallback to what was done 1643 * previously. We could try merging non-SACKed ones 1644 * as well but it probably isn't going to buy off 1645 * because later SACKs might again split them, and 1646 * it would make skb timestamp tracking considerably 1647 * harder problem. 1648 */ 1649 goto fallback; 1650 } 1651 1652 len = end_seq - TCP_SKB_CB(skb)->seq; 1653 BUG_ON(len < 0); 1654 BUG_ON(len > skb->len); 1655 1656 /* MSS boundaries should be honoured or else pcount will 1657 * severely break even though it makes things bit trickier. 1658 * Optimize common case to avoid most of the divides 1659 */ 1660 mss = tcp_skb_mss(skb); 1661 1662 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1663 * drop this restriction as unnecessary 1664 */ 1665 if (mss != tcp_skb_seglen(prev)) 1666 goto fallback; 1667 1668 if (len == mss) { 1669 pcount = 1; 1670 } else if (len < mss) { 1671 goto noop; 1672 } else { 1673 pcount = len / mss; 1674 len = pcount * mss; 1675 } 1676 } 1677 1678 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1679 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1680 goto fallback; 1681 1682 if (!tcp_skb_shift(prev, skb, pcount, len)) 1683 goto fallback; 1684 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1685 goto out; 1686 1687 /* Hole filled allows collapsing with the next as well, this is very 1688 * useful when hole on every nth skb pattern happens 1689 */ 1690 skb = skb_rb_next(prev); 1691 if (!skb) 1692 goto out; 1693 1694 if (!skb_can_shift(skb) || 1695 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1696 (mss != tcp_skb_seglen(skb))) 1697 goto out; 1698 1699 if (!tcp_skb_can_collapse(prev, skb)) 1700 goto out; 1701 len = skb->len; 1702 pcount = tcp_skb_pcount(skb); 1703 if (tcp_skb_shift(prev, skb, pcount, len)) 1704 tcp_shifted_skb(sk, prev, skb, state, pcount, 1705 len, mss, 0); 1706 1707 out: 1708 return prev; 1709 1710 noop: 1711 return skb; 1712 1713 fallback: 1714 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1715 return NULL; 1716 } 1717 1718 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1719 struct tcp_sack_block *next_dup, 1720 struct tcp_sacktag_state *state, 1721 u32 start_seq, u32 end_seq, 1722 bool dup_sack_in) 1723 { 1724 struct tcp_sock *tp = tcp_sk(sk); 1725 struct sk_buff *tmp; 1726 1727 skb_rbtree_walk_from(skb) { 1728 int in_sack = 0; 1729 bool dup_sack = dup_sack_in; 1730 1731 /* queue is in-order => we can short-circuit the walk early */ 1732 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1733 break; 1734 1735 if (next_dup && 1736 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1737 in_sack = tcp_match_skb_to_sack(sk, skb, 1738 next_dup->start_seq, 1739 next_dup->end_seq); 1740 if (in_sack > 0) 1741 dup_sack = true; 1742 } 1743 1744 /* skb reference here is a bit tricky to get right, since 1745 * shifting can eat and free both this skb and the next, 1746 * so not even _safe variant of the loop is enough. 1747 */ 1748 if (in_sack <= 0) { 1749 tmp = tcp_shift_skb_data(sk, skb, state, 1750 start_seq, end_seq, dup_sack); 1751 if (tmp) { 1752 if (tmp != skb) { 1753 skb = tmp; 1754 continue; 1755 } 1756 1757 in_sack = 0; 1758 } else { 1759 in_sack = tcp_match_skb_to_sack(sk, skb, 1760 start_seq, 1761 end_seq); 1762 } 1763 } 1764 1765 if (unlikely(in_sack < 0)) 1766 break; 1767 1768 if (in_sack) { 1769 TCP_SKB_CB(skb)->sacked = 1770 tcp_sacktag_one(sk, 1771 state, 1772 TCP_SKB_CB(skb)->sacked, 1773 TCP_SKB_CB(skb)->seq, 1774 TCP_SKB_CB(skb)->end_seq, 1775 dup_sack, 1776 tcp_skb_pcount(skb), 1777 tcp_skb_timestamp_us(skb)); 1778 tcp_rate_skb_delivered(sk, skb, state->rate); 1779 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1780 list_del_init(&skb->tcp_tsorted_anchor); 1781 1782 if (!before(TCP_SKB_CB(skb)->seq, 1783 tcp_highest_sack_seq(tp))) 1784 tcp_advance_highest_sack(sk, skb); 1785 } 1786 } 1787 return skb; 1788 } 1789 1790 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1791 { 1792 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1793 struct sk_buff *skb; 1794 1795 while (*p) { 1796 parent = *p; 1797 skb = rb_to_skb(parent); 1798 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1799 p = &parent->rb_left; 1800 continue; 1801 } 1802 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1803 p = &parent->rb_right; 1804 continue; 1805 } 1806 return skb; 1807 } 1808 return NULL; 1809 } 1810 1811 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1812 u32 skip_to_seq) 1813 { 1814 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1815 return skb; 1816 1817 return tcp_sacktag_bsearch(sk, skip_to_seq); 1818 } 1819 1820 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1821 struct sock *sk, 1822 struct tcp_sack_block *next_dup, 1823 struct tcp_sacktag_state *state, 1824 u32 skip_to_seq) 1825 { 1826 if (!next_dup) 1827 return skb; 1828 1829 if (before(next_dup->start_seq, skip_to_seq)) { 1830 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1831 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1832 next_dup->start_seq, next_dup->end_seq, 1833 1); 1834 } 1835 1836 return skb; 1837 } 1838 1839 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1840 { 1841 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1842 } 1843 1844 static int 1845 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1846 u32 prior_snd_una, struct tcp_sacktag_state *state) 1847 { 1848 struct tcp_sock *tp = tcp_sk(sk); 1849 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1850 TCP_SKB_CB(ack_skb)->sacked); 1851 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1852 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1853 struct tcp_sack_block *cache; 1854 struct sk_buff *skb; 1855 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1856 int used_sacks; 1857 bool found_dup_sack = false; 1858 int i, j; 1859 int first_sack_index; 1860 1861 state->flag = 0; 1862 state->reord = tp->snd_nxt; 1863 1864 if (!tp->sacked_out) 1865 tcp_highest_sack_reset(sk); 1866 1867 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1868 num_sacks, prior_snd_una, state); 1869 1870 /* Eliminate too old ACKs, but take into 1871 * account more or less fresh ones, they can 1872 * contain valid SACK info. 1873 */ 1874 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1875 return 0; 1876 1877 if (!tp->packets_out) 1878 goto out; 1879 1880 used_sacks = 0; 1881 first_sack_index = 0; 1882 for (i = 0; i < num_sacks; i++) { 1883 bool dup_sack = !i && found_dup_sack; 1884 1885 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1886 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1887 1888 if (!tcp_is_sackblock_valid(tp, dup_sack, 1889 sp[used_sacks].start_seq, 1890 sp[used_sacks].end_seq)) { 1891 int mib_idx; 1892 1893 if (dup_sack) { 1894 if (!tp->undo_marker) 1895 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1896 else 1897 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1898 } else { 1899 /* Don't count olds caused by ACK reordering */ 1900 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1901 !after(sp[used_sacks].end_seq, tp->snd_una)) 1902 continue; 1903 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1904 } 1905 1906 NET_INC_STATS(sock_net(sk), mib_idx); 1907 if (i == 0) 1908 first_sack_index = -1; 1909 continue; 1910 } 1911 1912 /* Ignore very old stuff early */ 1913 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1914 if (i == 0) 1915 first_sack_index = -1; 1916 continue; 1917 } 1918 1919 used_sacks++; 1920 } 1921 1922 /* order SACK blocks to allow in order walk of the retrans queue */ 1923 for (i = used_sacks - 1; i > 0; i--) { 1924 for (j = 0; j < i; j++) { 1925 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1926 swap(sp[j], sp[j + 1]); 1927 1928 /* Track where the first SACK block goes to */ 1929 if (j == first_sack_index) 1930 first_sack_index = j + 1; 1931 } 1932 } 1933 } 1934 1935 state->mss_now = tcp_current_mss(sk); 1936 skb = NULL; 1937 i = 0; 1938 1939 if (!tp->sacked_out) { 1940 /* It's already past, so skip checking against it */ 1941 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1942 } else { 1943 cache = tp->recv_sack_cache; 1944 /* Skip empty blocks in at head of the cache */ 1945 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1946 !cache->end_seq) 1947 cache++; 1948 } 1949 1950 while (i < used_sacks) { 1951 u32 start_seq = sp[i].start_seq; 1952 u32 end_seq = sp[i].end_seq; 1953 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1954 struct tcp_sack_block *next_dup = NULL; 1955 1956 if (found_dup_sack && ((i + 1) == first_sack_index)) 1957 next_dup = &sp[i + 1]; 1958 1959 /* Skip too early cached blocks */ 1960 while (tcp_sack_cache_ok(tp, cache) && 1961 !before(start_seq, cache->end_seq)) 1962 cache++; 1963 1964 /* Can skip some work by looking recv_sack_cache? */ 1965 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1966 after(end_seq, cache->start_seq)) { 1967 1968 /* Head todo? */ 1969 if (before(start_seq, cache->start_seq)) { 1970 skb = tcp_sacktag_skip(skb, sk, start_seq); 1971 skb = tcp_sacktag_walk(skb, sk, next_dup, 1972 state, 1973 start_seq, 1974 cache->start_seq, 1975 dup_sack); 1976 } 1977 1978 /* Rest of the block already fully processed? */ 1979 if (!after(end_seq, cache->end_seq)) 1980 goto advance_sp; 1981 1982 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1983 state, 1984 cache->end_seq); 1985 1986 /* ...tail remains todo... */ 1987 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1988 /* ...but better entrypoint exists! */ 1989 skb = tcp_highest_sack(sk); 1990 if (!skb) 1991 break; 1992 cache++; 1993 goto walk; 1994 } 1995 1996 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1997 /* Check overlap against next cached too (past this one already) */ 1998 cache++; 1999 continue; 2000 } 2001 2002 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 2003 skb = tcp_highest_sack(sk); 2004 if (!skb) 2005 break; 2006 } 2007 skb = tcp_sacktag_skip(skb, sk, start_seq); 2008 2009 walk: 2010 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2011 start_seq, end_seq, dup_sack); 2012 2013 advance_sp: 2014 i++; 2015 } 2016 2017 /* Clear the head of the cache sack blocks so we can skip it next time */ 2018 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2019 tp->recv_sack_cache[i].start_seq = 0; 2020 tp->recv_sack_cache[i].end_seq = 0; 2021 } 2022 for (j = 0; j < used_sacks; j++) 2023 tp->recv_sack_cache[i++] = sp[j]; 2024 2025 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2026 tcp_check_sack_reordering(sk, state->reord, 0); 2027 2028 tcp_verify_left_out(tp); 2029 out: 2030 2031 #if FASTRETRANS_DEBUG > 0 2032 WARN_ON((int)tp->sacked_out < 0); 2033 WARN_ON((int)tp->lost_out < 0); 2034 WARN_ON((int)tp->retrans_out < 0); 2035 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2036 #endif 2037 return state->flag; 2038 } 2039 2040 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2041 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2042 */ 2043 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2044 { 2045 u32 holes; 2046 2047 holes = max(tp->lost_out, 1U); 2048 holes = min(holes, tp->packets_out); 2049 2050 if ((tp->sacked_out + holes) > tp->packets_out) { 2051 tp->sacked_out = tp->packets_out - holes; 2052 return true; 2053 } 2054 return false; 2055 } 2056 2057 /* If we receive more dupacks than we expected counting segments 2058 * in assumption of absent reordering, interpret this as reordering. 2059 * The only another reason could be bug in receiver TCP. 2060 */ 2061 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2062 { 2063 struct tcp_sock *tp = tcp_sk(sk); 2064 2065 if (!tcp_limit_reno_sacked(tp)) 2066 return; 2067 2068 tp->reordering = min_t(u32, tp->packets_out + addend, 2069 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2070 tp->reord_seen++; 2071 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2072 } 2073 2074 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2075 2076 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2077 { 2078 if (num_dupack) { 2079 struct tcp_sock *tp = tcp_sk(sk); 2080 u32 prior_sacked = tp->sacked_out; 2081 s32 delivered; 2082 2083 tp->sacked_out += num_dupack; 2084 tcp_check_reno_reordering(sk, 0); 2085 delivered = tp->sacked_out - prior_sacked; 2086 if (delivered > 0) 2087 tcp_count_delivered(tp, delivered, ece_ack); 2088 tcp_verify_left_out(tp); 2089 } 2090 } 2091 2092 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2093 2094 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2095 { 2096 struct tcp_sock *tp = tcp_sk(sk); 2097 2098 if (acked > 0) { 2099 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2100 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2101 ece_ack); 2102 if (acked - 1 >= tp->sacked_out) 2103 tp->sacked_out = 0; 2104 else 2105 tp->sacked_out -= acked - 1; 2106 } 2107 tcp_check_reno_reordering(sk, acked); 2108 tcp_verify_left_out(tp); 2109 } 2110 2111 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2112 { 2113 tp->sacked_out = 0; 2114 } 2115 2116 void tcp_clear_retrans(struct tcp_sock *tp) 2117 { 2118 tp->retrans_out = 0; 2119 tp->lost_out = 0; 2120 tp->undo_marker = 0; 2121 tp->undo_retrans = -1; 2122 tp->sacked_out = 0; 2123 tp->rto_stamp = 0; 2124 tp->total_rto = 0; 2125 tp->total_rto_recoveries = 0; 2126 tp->total_rto_time = 0; 2127 } 2128 2129 static inline void tcp_init_undo(struct tcp_sock *tp) 2130 { 2131 tp->undo_marker = tp->snd_una; 2132 2133 /* Retransmission still in flight may cause DSACKs later. */ 2134 /* First, account for regular retransmits in flight: */ 2135 tp->undo_retrans = tp->retrans_out; 2136 /* Next, account for TLP retransmits in flight: */ 2137 if (tp->tlp_high_seq && tp->tlp_retrans) 2138 tp->undo_retrans++; 2139 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2140 if (!tp->undo_retrans) 2141 tp->undo_retrans = -1; 2142 } 2143 2144 static bool tcp_is_rack(const struct sock *sk) 2145 { 2146 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2147 TCP_RACK_LOSS_DETECTION; 2148 } 2149 2150 /* If we detect SACK reneging, forget all SACK information 2151 * and reset tags completely, otherwise preserve SACKs. If receiver 2152 * dropped its ofo queue, we will know this due to reneging detection. 2153 */ 2154 static void tcp_timeout_mark_lost(struct sock *sk) 2155 { 2156 struct tcp_sock *tp = tcp_sk(sk); 2157 struct sk_buff *skb, *head; 2158 bool is_reneg; /* is receiver reneging on SACKs? */ 2159 2160 head = tcp_rtx_queue_head(sk); 2161 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2162 if (is_reneg) { 2163 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2164 tp->sacked_out = 0; 2165 /* Mark SACK reneging until we recover from this loss event. */ 2166 tp->is_sack_reneg = 1; 2167 } else if (tcp_is_reno(tp)) { 2168 tcp_reset_reno_sack(tp); 2169 } 2170 2171 skb = head; 2172 skb_rbtree_walk_from(skb) { 2173 if (is_reneg) 2174 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2175 else if (tcp_is_rack(sk) && skb != head && 2176 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2177 continue; /* Don't mark recently sent ones lost yet */ 2178 tcp_mark_skb_lost(sk, skb); 2179 } 2180 tcp_verify_left_out(tp); 2181 tcp_clear_all_retrans_hints(tp); 2182 } 2183 2184 /* Enter Loss state. */ 2185 void tcp_enter_loss(struct sock *sk) 2186 { 2187 const struct inet_connection_sock *icsk = inet_csk(sk); 2188 struct tcp_sock *tp = tcp_sk(sk); 2189 struct net *net = sock_net(sk); 2190 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2191 u8 reordering; 2192 2193 tcp_timeout_mark_lost(sk); 2194 2195 /* Reduce ssthresh if it has not yet been made inside this window. */ 2196 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2197 !after(tp->high_seq, tp->snd_una) || 2198 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2199 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2200 tp->prior_cwnd = tcp_snd_cwnd(tp); 2201 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2202 tcp_ca_event(sk, CA_EVENT_LOSS); 2203 tcp_init_undo(tp); 2204 } 2205 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2206 tp->snd_cwnd_cnt = 0; 2207 tp->snd_cwnd_stamp = tcp_jiffies32; 2208 2209 /* Timeout in disordered state after receiving substantial DUPACKs 2210 * suggests that the degree of reordering is over-estimated. 2211 */ 2212 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2213 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2214 tp->sacked_out >= reordering) 2215 tp->reordering = min_t(unsigned int, tp->reordering, 2216 reordering); 2217 2218 tcp_set_ca_state(sk, TCP_CA_Loss); 2219 tp->high_seq = tp->snd_nxt; 2220 tp->tlp_high_seq = 0; 2221 tcp_ecn_queue_cwr(tp); 2222 2223 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2224 * loss recovery is underway except recurring timeout(s) on 2225 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2226 */ 2227 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2228 (new_recovery || icsk->icsk_retransmits) && 2229 !inet_csk(sk)->icsk_mtup.probe_size; 2230 } 2231 2232 /* If ACK arrived pointing to a remembered SACK, it means that our 2233 * remembered SACKs do not reflect real state of receiver i.e. 2234 * receiver _host_ is heavily congested (or buggy). 2235 * 2236 * To avoid big spurious retransmission bursts due to transient SACK 2237 * scoreboard oddities that look like reneging, we give the receiver a 2238 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2239 * restore sanity to the SACK scoreboard. If the apparent reneging 2240 * persists until this RTO then we'll clear the SACK scoreboard. 2241 */ 2242 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2243 { 2244 if (*ack_flag & FLAG_SACK_RENEGING && 2245 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2246 struct tcp_sock *tp = tcp_sk(sk); 2247 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2248 msecs_to_jiffies(10)); 2249 2250 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2251 delay, TCP_RTO_MAX); 2252 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2253 return true; 2254 } 2255 return false; 2256 } 2257 2258 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2259 * counter when SACK is enabled (without SACK, sacked_out is used for 2260 * that purpose). 2261 * 2262 * With reordering, holes may still be in flight, so RFC3517 recovery 2263 * uses pure sacked_out (total number of SACKed segments) even though 2264 * it violates the RFC that uses duplicate ACKs, often these are equal 2265 * but when e.g. out-of-window ACKs or packet duplication occurs, 2266 * they differ. Since neither occurs due to loss, TCP should really 2267 * ignore them. 2268 */ 2269 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2270 { 2271 return tp->sacked_out + 1; 2272 } 2273 2274 /* Linux NewReno/SACK/ECN state machine. 2275 * -------------------------------------- 2276 * 2277 * "Open" Normal state, no dubious events, fast path. 2278 * "Disorder" In all the respects it is "Open", 2279 * but requires a bit more attention. It is entered when 2280 * we see some SACKs or dupacks. It is split of "Open" 2281 * mainly to move some processing from fast path to slow one. 2282 * "CWR" CWND was reduced due to some Congestion Notification event. 2283 * It can be ECN, ICMP source quench, local device congestion. 2284 * "Recovery" CWND was reduced, we are fast-retransmitting. 2285 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2286 * 2287 * tcp_fastretrans_alert() is entered: 2288 * - each incoming ACK, if state is not "Open" 2289 * - when arrived ACK is unusual, namely: 2290 * * SACK 2291 * * Duplicate ACK. 2292 * * ECN ECE. 2293 * 2294 * Counting packets in flight is pretty simple. 2295 * 2296 * in_flight = packets_out - left_out + retrans_out 2297 * 2298 * packets_out is SND.NXT-SND.UNA counted in packets. 2299 * 2300 * retrans_out is number of retransmitted segments. 2301 * 2302 * left_out is number of segments left network, but not ACKed yet. 2303 * 2304 * left_out = sacked_out + lost_out 2305 * 2306 * sacked_out: Packets, which arrived to receiver out of order 2307 * and hence not ACKed. With SACKs this number is simply 2308 * amount of SACKed data. Even without SACKs 2309 * it is easy to give pretty reliable estimate of this number, 2310 * counting duplicate ACKs. 2311 * 2312 * lost_out: Packets lost by network. TCP has no explicit 2313 * "loss notification" feedback from network (for now). 2314 * It means that this number can be only _guessed_. 2315 * Actually, it is the heuristics to predict lossage that 2316 * distinguishes different algorithms. 2317 * 2318 * F.e. after RTO, when all the queue is considered as lost, 2319 * lost_out = packets_out and in_flight = retrans_out. 2320 * 2321 * Essentially, we have now a few algorithms detecting 2322 * lost packets. 2323 * 2324 * If the receiver supports SACK: 2325 * 2326 * RFC6675/3517: It is the conventional algorithm. A packet is 2327 * considered lost if the number of higher sequence packets 2328 * SACKed is greater than or equal the DUPACK thoreshold 2329 * (reordering). This is implemented in tcp_mark_head_lost and 2330 * tcp_update_scoreboard. 2331 * 2332 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2333 * (2017-) that checks timing instead of counting DUPACKs. 2334 * Essentially a packet is considered lost if it's not S/ACKed 2335 * after RTT + reordering_window, where both metrics are 2336 * dynamically measured and adjusted. This is implemented in 2337 * tcp_rack_mark_lost. 2338 * 2339 * If the receiver does not support SACK: 2340 * 2341 * NewReno (RFC6582): in Recovery we assume that one segment 2342 * is lost (classic Reno). While we are in Recovery and 2343 * a partial ACK arrives, we assume that one more packet 2344 * is lost (NewReno). This heuristics are the same in NewReno 2345 * and SACK. 2346 * 2347 * Really tricky (and requiring careful tuning) part of algorithm 2348 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2349 * The first determines the moment _when_ we should reduce CWND and, 2350 * hence, slow down forward transmission. In fact, it determines the moment 2351 * when we decide that hole is caused by loss, rather than by a reorder. 2352 * 2353 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2354 * holes, caused by lost packets. 2355 * 2356 * And the most logically complicated part of algorithm is undo 2357 * heuristics. We detect false retransmits due to both too early 2358 * fast retransmit (reordering) and underestimated RTO, analyzing 2359 * timestamps and D-SACKs. When we detect that some segments were 2360 * retransmitted by mistake and CWND reduction was wrong, we undo 2361 * window reduction and abort recovery phase. This logic is hidden 2362 * inside several functions named tcp_try_undo_<something>. 2363 */ 2364 2365 /* This function decides, when we should leave Disordered state 2366 * and enter Recovery phase, reducing congestion window. 2367 * 2368 * Main question: may we further continue forward transmission 2369 * with the same cwnd? 2370 */ 2371 static bool tcp_time_to_recover(struct sock *sk, int flag) 2372 { 2373 struct tcp_sock *tp = tcp_sk(sk); 2374 2375 /* Trick#1: The loss is proven. */ 2376 if (tp->lost_out) 2377 return true; 2378 2379 /* Not-A-Trick#2 : Classic rule... */ 2380 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2381 return true; 2382 2383 return false; 2384 } 2385 2386 /* Detect loss in event "A" above by marking head of queue up as lost. 2387 * For RFC3517 SACK, a segment is considered lost if it 2388 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2389 * the maximum SACKed segments to pass before reaching this limit. 2390 */ 2391 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2392 { 2393 struct tcp_sock *tp = tcp_sk(sk); 2394 struct sk_buff *skb; 2395 int cnt; 2396 /* Use SACK to deduce losses of new sequences sent during recovery */ 2397 const u32 loss_high = tp->snd_nxt; 2398 2399 WARN_ON(packets > tp->packets_out); 2400 skb = tp->lost_skb_hint; 2401 if (skb) { 2402 /* Head already handled? */ 2403 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2404 return; 2405 cnt = tp->lost_cnt_hint; 2406 } else { 2407 skb = tcp_rtx_queue_head(sk); 2408 cnt = 0; 2409 } 2410 2411 skb_rbtree_walk_from(skb) { 2412 /* TODO: do this better */ 2413 /* this is not the most efficient way to do this... */ 2414 tp->lost_skb_hint = skb; 2415 tp->lost_cnt_hint = cnt; 2416 2417 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2418 break; 2419 2420 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2421 cnt += tcp_skb_pcount(skb); 2422 2423 if (cnt > packets) 2424 break; 2425 2426 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2427 tcp_mark_skb_lost(sk, skb); 2428 2429 if (mark_head) 2430 break; 2431 } 2432 tcp_verify_left_out(tp); 2433 } 2434 2435 /* Account newly detected lost packet(s) */ 2436 2437 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2438 { 2439 struct tcp_sock *tp = tcp_sk(sk); 2440 2441 if (tcp_is_sack(tp)) { 2442 int sacked_upto = tp->sacked_out - tp->reordering; 2443 if (sacked_upto >= 0) 2444 tcp_mark_head_lost(sk, sacked_upto, 0); 2445 else if (fast_rexmit) 2446 tcp_mark_head_lost(sk, 1, 1); 2447 } 2448 } 2449 2450 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2451 { 2452 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2453 before(tp->rx_opt.rcv_tsecr, when); 2454 } 2455 2456 /* skb is spurious retransmitted if the returned timestamp echo 2457 * reply is prior to the skb transmission time 2458 */ 2459 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2460 const struct sk_buff *skb) 2461 { 2462 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2463 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); 2464 } 2465 2466 /* Nothing was retransmitted or returned timestamp is less 2467 * than timestamp of the first retransmission. 2468 */ 2469 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2470 { 2471 return tp->retrans_stamp && 2472 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2473 } 2474 2475 /* Undo procedures. */ 2476 2477 /* We can clear retrans_stamp when there are no retransmissions in the 2478 * window. It would seem that it is trivially available for us in 2479 * tp->retrans_out, however, that kind of assumptions doesn't consider 2480 * what will happen if errors occur when sending retransmission for the 2481 * second time. ...It could the that such segment has only 2482 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2483 * the head skb is enough except for some reneging corner cases that 2484 * are not worth the effort. 2485 * 2486 * Main reason for all this complexity is the fact that connection dying 2487 * time now depends on the validity of the retrans_stamp, in particular, 2488 * that successive retransmissions of a segment must not advance 2489 * retrans_stamp under any conditions. 2490 */ 2491 static bool tcp_any_retrans_done(const struct sock *sk) 2492 { 2493 const struct tcp_sock *tp = tcp_sk(sk); 2494 struct sk_buff *skb; 2495 2496 if (tp->retrans_out) 2497 return true; 2498 2499 skb = tcp_rtx_queue_head(sk); 2500 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2501 return true; 2502 2503 return false; 2504 } 2505 2506 static void DBGUNDO(struct sock *sk, const char *msg) 2507 { 2508 #if FASTRETRANS_DEBUG > 1 2509 struct tcp_sock *tp = tcp_sk(sk); 2510 struct inet_sock *inet = inet_sk(sk); 2511 2512 if (sk->sk_family == AF_INET) { 2513 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2514 msg, 2515 &inet->inet_daddr, ntohs(inet->inet_dport), 2516 tcp_snd_cwnd(tp), tcp_left_out(tp), 2517 tp->snd_ssthresh, tp->prior_ssthresh, 2518 tp->packets_out); 2519 } 2520 #if IS_ENABLED(CONFIG_IPV6) 2521 else if (sk->sk_family == AF_INET6) { 2522 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2523 msg, 2524 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2525 tcp_snd_cwnd(tp), tcp_left_out(tp), 2526 tp->snd_ssthresh, tp->prior_ssthresh, 2527 tp->packets_out); 2528 } 2529 #endif 2530 #endif 2531 } 2532 2533 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2534 { 2535 struct tcp_sock *tp = tcp_sk(sk); 2536 2537 if (unmark_loss) { 2538 struct sk_buff *skb; 2539 2540 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2541 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2542 } 2543 tp->lost_out = 0; 2544 tcp_clear_all_retrans_hints(tp); 2545 } 2546 2547 if (tp->prior_ssthresh) { 2548 const struct inet_connection_sock *icsk = inet_csk(sk); 2549 2550 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2551 2552 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2553 tp->snd_ssthresh = tp->prior_ssthresh; 2554 tcp_ecn_withdraw_cwr(tp); 2555 } 2556 } 2557 tp->snd_cwnd_stamp = tcp_jiffies32; 2558 tp->undo_marker = 0; 2559 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2560 } 2561 2562 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2563 { 2564 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2565 } 2566 2567 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2568 { 2569 struct tcp_sock *tp = tcp_sk(sk); 2570 2571 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2572 /* Hold old state until something *above* high_seq 2573 * is ACKed. For Reno it is MUST to prevent false 2574 * fast retransmits (RFC2582). SACK TCP is safe. */ 2575 if (!tcp_any_retrans_done(sk)) 2576 tp->retrans_stamp = 0; 2577 return true; 2578 } 2579 return false; 2580 } 2581 2582 /* People celebrate: "We love our President!" */ 2583 static bool tcp_try_undo_recovery(struct sock *sk) 2584 { 2585 struct tcp_sock *tp = tcp_sk(sk); 2586 2587 if (tcp_may_undo(tp)) { 2588 int mib_idx; 2589 2590 /* Happy end! We did not retransmit anything 2591 * or our original transmission succeeded. 2592 */ 2593 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2594 tcp_undo_cwnd_reduction(sk, false); 2595 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2596 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2597 else 2598 mib_idx = LINUX_MIB_TCPFULLUNDO; 2599 2600 NET_INC_STATS(sock_net(sk), mib_idx); 2601 } else if (tp->rack.reo_wnd_persist) { 2602 tp->rack.reo_wnd_persist--; 2603 } 2604 if (tcp_is_non_sack_preventing_reopen(sk)) 2605 return true; 2606 tcp_set_ca_state(sk, TCP_CA_Open); 2607 tp->is_sack_reneg = 0; 2608 return false; 2609 } 2610 2611 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2612 static bool tcp_try_undo_dsack(struct sock *sk) 2613 { 2614 struct tcp_sock *tp = tcp_sk(sk); 2615 2616 if (tp->undo_marker && !tp->undo_retrans) { 2617 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2618 tp->rack.reo_wnd_persist + 1); 2619 DBGUNDO(sk, "D-SACK"); 2620 tcp_undo_cwnd_reduction(sk, false); 2621 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2622 return true; 2623 } 2624 return false; 2625 } 2626 2627 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2628 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2629 { 2630 struct tcp_sock *tp = tcp_sk(sk); 2631 2632 if (frto_undo || tcp_may_undo(tp)) { 2633 tcp_undo_cwnd_reduction(sk, true); 2634 2635 DBGUNDO(sk, "partial loss"); 2636 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2637 if (frto_undo) 2638 NET_INC_STATS(sock_net(sk), 2639 LINUX_MIB_TCPSPURIOUSRTOS); 2640 inet_csk(sk)->icsk_retransmits = 0; 2641 if (tcp_is_non_sack_preventing_reopen(sk)) 2642 return true; 2643 if (frto_undo || tcp_is_sack(tp)) { 2644 tcp_set_ca_state(sk, TCP_CA_Open); 2645 tp->is_sack_reneg = 0; 2646 } 2647 return true; 2648 } 2649 return false; 2650 } 2651 2652 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2653 * It computes the number of packets to send (sndcnt) based on packets newly 2654 * delivered: 2655 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2656 * cwnd reductions across a full RTT. 2657 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2658 * But when SND_UNA is acked without further losses, 2659 * slow starts cwnd up to ssthresh to speed up the recovery. 2660 */ 2661 static void tcp_init_cwnd_reduction(struct sock *sk) 2662 { 2663 struct tcp_sock *tp = tcp_sk(sk); 2664 2665 tp->high_seq = tp->snd_nxt; 2666 tp->tlp_high_seq = 0; 2667 tp->snd_cwnd_cnt = 0; 2668 tp->prior_cwnd = tcp_snd_cwnd(tp); 2669 tp->prr_delivered = 0; 2670 tp->prr_out = 0; 2671 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2672 tcp_ecn_queue_cwr(tp); 2673 } 2674 2675 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2676 { 2677 struct tcp_sock *tp = tcp_sk(sk); 2678 int sndcnt = 0; 2679 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2680 2681 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2682 return; 2683 2684 tp->prr_delivered += newly_acked_sacked; 2685 if (delta < 0) { 2686 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2687 tp->prior_cwnd - 1; 2688 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2689 } else { 2690 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2691 newly_acked_sacked); 2692 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2693 sndcnt++; 2694 sndcnt = min(delta, sndcnt); 2695 } 2696 /* Force a fast retransmit upon entering fast recovery */ 2697 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2698 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2699 } 2700 2701 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2702 { 2703 struct tcp_sock *tp = tcp_sk(sk); 2704 2705 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2706 return; 2707 2708 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2709 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2710 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2711 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2712 tp->snd_cwnd_stamp = tcp_jiffies32; 2713 } 2714 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2715 } 2716 2717 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2718 void tcp_enter_cwr(struct sock *sk) 2719 { 2720 struct tcp_sock *tp = tcp_sk(sk); 2721 2722 tp->prior_ssthresh = 0; 2723 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2724 tp->undo_marker = 0; 2725 tcp_init_cwnd_reduction(sk); 2726 tcp_set_ca_state(sk, TCP_CA_CWR); 2727 } 2728 } 2729 EXPORT_SYMBOL(tcp_enter_cwr); 2730 2731 static void tcp_try_keep_open(struct sock *sk) 2732 { 2733 struct tcp_sock *tp = tcp_sk(sk); 2734 int state = TCP_CA_Open; 2735 2736 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2737 state = TCP_CA_Disorder; 2738 2739 if (inet_csk(sk)->icsk_ca_state != state) { 2740 tcp_set_ca_state(sk, state); 2741 tp->high_seq = tp->snd_nxt; 2742 } 2743 } 2744 2745 static void tcp_try_to_open(struct sock *sk, int flag) 2746 { 2747 struct tcp_sock *tp = tcp_sk(sk); 2748 2749 tcp_verify_left_out(tp); 2750 2751 if (!tcp_any_retrans_done(sk)) 2752 tp->retrans_stamp = 0; 2753 2754 if (flag & FLAG_ECE) 2755 tcp_enter_cwr(sk); 2756 2757 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2758 tcp_try_keep_open(sk); 2759 } 2760 } 2761 2762 static void tcp_mtup_probe_failed(struct sock *sk) 2763 { 2764 struct inet_connection_sock *icsk = inet_csk(sk); 2765 2766 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2767 icsk->icsk_mtup.probe_size = 0; 2768 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2769 } 2770 2771 static void tcp_mtup_probe_success(struct sock *sk) 2772 { 2773 struct tcp_sock *tp = tcp_sk(sk); 2774 struct inet_connection_sock *icsk = inet_csk(sk); 2775 u64 val; 2776 2777 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2778 2779 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2780 do_div(val, icsk->icsk_mtup.probe_size); 2781 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2782 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2783 2784 tp->snd_cwnd_cnt = 0; 2785 tp->snd_cwnd_stamp = tcp_jiffies32; 2786 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2787 2788 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2789 icsk->icsk_mtup.probe_size = 0; 2790 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2791 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2792 } 2793 2794 /* Sometimes we deduce that packets have been dropped due to reasons other than 2795 * congestion, like path MTU reductions or failed client TFO attempts. In these 2796 * cases we call this function to retransmit as many packets as cwnd allows, 2797 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2798 * non-zero value (and may do so in a later calling context due to TSQ), we 2799 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2800 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2801 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2802 * prematurely). 2803 */ 2804 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2805 { 2806 const struct inet_connection_sock *icsk = inet_csk(sk); 2807 struct tcp_sock *tp = tcp_sk(sk); 2808 2809 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2810 tp->high_seq = tp->snd_nxt; 2811 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2812 tp->prior_ssthresh = 0; 2813 tp->undo_marker = 0; 2814 tcp_set_ca_state(sk, TCP_CA_Loss); 2815 } 2816 tcp_xmit_retransmit_queue(sk); 2817 } 2818 2819 /* Do a simple retransmit without using the backoff mechanisms in 2820 * tcp_timer. This is used for path mtu discovery. 2821 * The socket is already locked here. 2822 */ 2823 void tcp_simple_retransmit(struct sock *sk) 2824 { 2825 struct tcp_sock *tp = tcp_sk(sk); 2826 struct sk_buff *skb; 2827 int mss; 2828 2829 /* A fastopen SYN request is stored as two separate packets within 2830 * the retransmit queue, this is done by tcp_send_syn_data(). 2831 * As a result simply checking the MSS of the frames in the queue 2832 * will not work for the SYN packet. 2833 * 2834 * Us being here is an indication of a path MTU issue so we can 2835 * assume that the fastopen SYN was lost and just mark all the 2836 * frames in the retransmit queue as lost. We will use an MSS of 2837 * -1 to mark all frames as lost, otherwise compute the current MSS. 2838 */ 2839 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2840 mss = -1; 2841 else 2842 mss = tcp_current_mss(sk); 2843 2844 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2845 if (tcp_skb_seglen(skb) > mss) 2846 tcp_mark_skb_lost(sk, skb); 2847 } 2848 2849 tcp_clear_retrans_hints_partial(tp); 2850 2851 if (!tp->lost_out) 2852 return; 2853 2854 if (tcp_is_reno(tp)) 2855 tcp_limit_reno_sacked(tp); 2856 2857 tcp_verify_left_out(tp); 2858 2859 /* Don't muck with the congestion window here. 2860 * Reason is that we do not increase amount of _data_ 2861 * in network, but units changed and effective 2862 * cwnd/ssthresh really reduced now. 2863 */ 2864 tcp_non_congestion_loss_retransmit(sk); 2865 } 2866 EXPORT_SYMBOL(tcp_simple_retransmit); 2867 2868 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2869 { 2870 struct tcp_sock *tp = tcp_sk(sk); 2871 int mib_idx; 2872 2873 if (tcp_is_reno(tp)) 2874 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2875 else 2876 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2877 2878 NET_INC_STATS(sock_net(sk), mib_idx); 2879 2880 tp->prior_ssthresh = 0; 2881 tcp_init_undo(tp); 2882 2883 if (!tcp_in_cwnd_reduction(sk)) { 2884 if (!ece_ack) 2885 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2886 tcp_init_cwnd_reduction(sk); 2887 } 2888 tcp_set_ca_state(sk, TCP_CA_Recovery); 2889 } 2890 2891 static void tcp_update_rto_time(struct tcp_sock *tp) 2892 { 2893 if (tp->rto_stamp) { 2894 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; 2895 tp->rto_stamp = 0; 2896 } 2897 } 2898 2899 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2900 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2901 */ 2902 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2903 int *rexmit) 2904 { 2905 struct tcp_sock *tp = tcp_sk(sk); 2906 bool recovered = !before(tp->snd_una, tp->high_seq); 2907 2908 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2909 tcp_try_undo_loss(sk, false)) 2910 return; 2911 2912 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2913 /* Step 3.b. A timeout is spurious if not all data are 2914 * lost, i.e., never-retransmitted data are (s)acked. 2915 */ 2916 if ((flag & FLAG_ORIG_SACK_ACKED) && 2917 tcp_try_undo_loss(sk, true)) 2918 return; 2919 2920 if (after(tp->snd_nxt, tp->high_seq)) { 2921 if (flag & FLAG_DATA_SACKED || num_dupack) 2922 tp->frto = 0; /* Step 3.a. loss was real */ 2923 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2924 tp->high_seq = tp->snd_nxt; 2925 /* Step 2.b. Try send new data (but deferred until cwnd 2926 * is updated in tcp_ack()). Otherwise fall back to 2927 * the conventional recovery. 2928 */ 2929 if (!tcp_write_queue_empty(sk) && 2930 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2931 *rexmit = REXMIT_NEW; 2932 return; 2933 } 2934 tp->frto = 0; 2935 } 2936 } 2937 2938 if (recovered) { 2939 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2940 tcp_try_undo_recovery(sk); 2941 return; 2942 } 2943 if (tcp_is_reno(tp)) { 2944 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2945 * delivered. Lower inflight to clock out (re)transmissions. 2946 */ 2947 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2948 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2949 else if (flag & FLAG_SND_UNA_ADVANCED) 2950 tcp_reset_reno_sack(tp); 2951 } 2952 *rexmit = REXMIT_LOST; 2953 } 2954 2955 static bool tcp_force_fast_retransmit(struct sock *sk) 2956 { 2957 struct tcp_sock *tp = tcp_sk(sk); 2958 2959 return after(tcp_highest_sack_seq(tp), 2960 tp->snd_una + tp->reordering * tp->mss_cache); 2961 } 2962 2963 /* Undo during fast recovery after partial ACK. */ 2964 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2965 bool *do_lost) 2966 { 2967 struct tcp_sock *tp = tcp_sk(sk); 2968 2969 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2970 /* Plain luck! Hole if filled with delayed 2971 * packet, rather than with a retransmit. Check reordering. 2972 */ 2973 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2974 2975 /* We are getting evidence that the reordering degree is higher 2976 * than we realized. If there are no retransmits out then we 2977 * can undo. Otherwise we clock out new packets but do not 2978 * mark more packets lost or retransmit more. 2979 */ 2980 if (tp->retrans_out) 2981 return true; 2982 2983 if (!tcp_any_retrans_done(sk)) 2984 tp->retrans_stamp = 0; 2985 2986 DBGUNDO(sk, "partial recovery"); 2987 tcp_undo_cwnd_reduction(sk, true); 2988 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2989 tcp_try_keep_open(sk); 2990 } else { 2991 /* Partial ACK arrived. Force fast retransmit. */ 2992 *do_lost = tcp_force_fast_retransmit(sk); 2993 } 2994 return false; 2995 } 2996 2997 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2998 { 2999 struct tcp_sock *tp = tcp_sk(sk); 3000 3001 if (tcp_rtx_queue_empty(sk)) 3002 return; 3003 3004 if (unlikely(tcp_is_reno(tp))) { 3005 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 3006 } else if (tcp_is_rack(sk)) { 3007 u32 prior_retrans = tp->retrans_out; 3008 3009 if (tcp_rack_mark_lost(sk)) 3010 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 3011 if (prior_retrans > tp->retrans_out) 3012 *ack_flag |= FLAG_LOST_RETRANS; 3013 } 3014 } 3015 3016 /* Process an event, which can update packets-in-flight not trivially. 3017 * Main goal of this function is to calculate new estimate for left_out, 3018 * taking into account both packets sitting in receiver's buffer and 3019 * packets lost by network. 3020 * 3021 * Besides that it updates the congestion state when packet loss or ECN 3022 * is detected. But it does not reduce the cwnd, it is done by the 3023 * congestion control later. 3024 * 3025 * It does _not_ decide what to send, it is made in function 3026 * tcp_xmit_retransmit_queue(). 3027 */ 3028 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3029 int num_dupack, int *ack_flag, int *rexmit) 3030 { 3031 struct inet_connection_sock *icsk = inet_csk(sk); 3032 struct tcp_sock *tp = tcp_sk(sk); 3033 int fast_rexmit = 0, flag = *ack_flag; 3034 bool ece_ack = flag & FLAG_ECE; 3035 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3036 tcp_force_fast_retransmit(sk)); 3037 3038 if (!tp->packets_out && tp->sacked_out) 3039 tp->sacked_out = 0; 3040 3041 /* Now state machine starts. 3042 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3043 if (ece_ack) 3044 tp->prior_ssthresh = 0; 3045 3046 /* B. In all the states check for reneging SACKs. */ 3047 if (tcp_check_sack_reneging(sk, ack_flag)) 3048 return; 3049 3050 /* C. Check consistency of the current state. */ 3051 tcp_verify_left_out(tp); 3052 3053 /* D. Check state exit conditions. State can be terminated 3054 * when high_seq is ACKed. */ 3055 if (icsk->icsk_ca_state == TCP_CA_Open) { 3056 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3057 tp->retrans_stamp = 0; 3058 } else if (!before(tp->snd_una, tp->high_seq)) { 3059 switch (icsk->icsk_ca_state) { 3060 case TCP_CA_CWR: 3061 /* CWR is to be held something *above* high_seq 3062 * is ACKed for CWR bit to reach receiver. */ 3063 if (tp->snd_una != tp->high_seq) { 3064 tcp_end_cwnd_reduction(sk); 3065 tcp_set_ca_state(sk, TCP_CA_Open); 3066 } 3067 break; 3068 3069 case TCP_CA_Recovery: 3070 if (tcp_is_reno(tp)) 3071 tcp_reset_reno_sack(tp); 3072 if (tcp_try_undo_recovery(sk)) 3073 return; 3074 tcp_end_cwnd_reduction(sk); 3075 break; 3076 } 3077 } 3078 3079 /* E. Process state. */ 3080 switch (icsk->icsk_ca_state) { 3081 case TCP_CA_Recovery: 3082 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3083 if (tcp_is_reno(tp)) 3084 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3085 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3086 return; 3087 3088 if (tcp_try_undo_dsack(sk)) 3089 tcp_try_to_open(sk, flag); 3090 3091 tcp_identify_packet_loss(sk, ack_flag); 3092 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3093 if (!tcp_time_to_recover(sk, flag)) 3094 return; 3095 /* Undo reverts the recovery state. If loss is evident, 3096 * starts a new recovery (e.g. reordering then loss); 3097 */ 3098 tcp_enter_recovery(sk, ece_ack); 3099 } 3100 break; 3101 case TCP_CA_Loss: 3102 tcp_process_loss(sk, flag, num_dupack, rexmit); 3103 if (icsk->icsk_ca_state != TCP_CA_Loss) 3104 tcp_update_rto_time(tp); 3105 tcp_identify_packet_loss(sk, ack_flag); 3106 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3107 (*ack_flag & FLAG_LOST_RETRANS))) 3108 return; 3109 /* Change state if cwnd is undone or retransmits are lost */ 3110 fallthrough; 3111 default: 3112 if (tcp_is_reno(tp)) { 3113 if (flag & FLAG_SND_UNA_ADVANCED) 3114 tcp_reset_reno_sack(tp); 3115 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3116 } 3117 3118 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3119 tcp_try_undo_dsack(sk); 3120 3121 tcp_identify_packet_loss(sk, ack_flag); 3122 if (!tcp_time_to_recover(sk, flag)) { 3123 tcp_try_to_open(sk, flag); 3124 return; 3125 } 3126 3127 /* MTU probe failure: don't reduce cwnd */ 3128 if (icsk->icsk_ca_state < TCP_CA_CWR && 3129 icsk->icsk_mtup.probe_size && 3130 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3131 tcp_mtup_probe_failed(sk); 3132 /* Restores the reduction we did in tcp_mtup_probe() */ 3133 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3134 tcp_simple_retransmit(sk); 3135 return; 3136 } 3137 3138 /* Otherwise enter Recovery state */ 3139 tcp_enter_recovery(sk, ece_ack); 3140 fast_rexmit = 1; 3141 } 3142 3143 if (!tcp_is_rack(sk) && do_lost) 3144 tcp_update_scoreboard(sk, fast_rexmit); 3145 *rexmit = REXMIT_LOST; 3146 } 3147 3148 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3149 { 3150 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3151 struct tcp_sock *tp = tcp_sk(sk); 3152 3153 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3154 /* If the remote keeps returning delayed ACKs, eventually 3155 * the min filter would pick it up and overestimate the 3156 * prop. delay when it expires. Skip suspected delayed ACKs. 3157 */ 3158 return; 3159 } 3160 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3161 rtt_us ? : jiffies_to_usecs(1)); 3162 } 3163 3164 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3165 long seq_rtt_us, long sack_rtt_us, 3166 long ca_rtt_us, struct rate_sample *rs) 3167 { 3168 const struct tcp_sock *tp = tcp_sk(sk); 3169 3170 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3171 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3172 * Karn's algorithm forbids taking RTT if some retransmitted data 3173 * is acked (RFC6298). 3174 */ 3175 if (seq_rtt_us < 0) 3176 seq_rtt_us = sack_rtt_us; 3177 3178 /* RTTM Rule: A TSecr value received in a segment is used to 3179 * update the averaged RTT measurement only if the segment 3180 * acknowledges some new data, i.e., only if it advances the 3181 * left edge of the send window. 3182 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3183 */ 3184 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && 3185 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) 3186 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp); 3187 3188 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3189 if (seq_rtt_us < 0) 3190 return false; 3191 3192 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3193 * always taken together with ACK, SACK, or TS-opts. Any negative 3194 * values will be skipped with the seq_rtt_us < 0 check above. 3195 */ 3196 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3197 tcp_rtt_estimator(sk, seq_rtt_us); 3198 tcp_set_rto(sk); 3199 3200 /* RFC6298: only reset backoff on valid RTT measurement. */ 3201 inet_csk(sk)->icsk_backoff = 0; 3202 return true; 3203 } 3204 3205 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3206 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3207 { 3208 struct rate_sample rs; 3209 long rtt_us = -1L; 3210 3211 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3212 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3213 3214 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3215 } 3216 3217 3218 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3219 { 3220 const struct inet_connection_sock *icsk = inet_csk(sk); 3221 3222 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3223 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3224 } 3225 3226 /* Restart timer after forward progress on connection. 3227 * RFC2988 recommends to restart timer to now+rto. 3228 */ 3229 void tcp_rearm_rto(struct sock *sk) 3230 { 3231 const struct inet_connection_sock *icsk = inet_csk(sk); 3232 struct tcp_sock *tp = tcp_sk(sk); 3233 3234 /* If the retrans timer is currently being used by Fast Open 3235 * for SYN-ACK retrans purpose, stay put. 3236 */ 3237 if (rcu_access_pointer(tp->fastopen_rsk)) 3238 return; 3239 3240 if (!tp->packets_out) { 3241 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3242 } else { 3243 u32 rto = inet_csk(sk)->icsk_rto; 3244 /* Offset the time elapsed after installing regular RTO */ 3245 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3246 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3247 s64 delta_us = tcp_rto_delta_us(sk); 3248 /* delta_us may not be positive if the socket is locked 3249 * when the retrans timer fires and is rescheduled. 3250 */ 3251 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3252 } 3253 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3254 TCP_RTO_MAX); 3255 } 3256 } 3257 3258 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3259 static void tcp_set_xmit_timer(struct sock *sk) 3260 { 3261 if (!tcp_schedule_loss_probe(sk, true)) 3262 tcp_rearm_rto(sk); 3263 } 3264 3265 /* If we get here, the whole TSO packet has not been acked. */ 3266 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3267 { 3268 struct tcp_sock *tp = tcp_sk(sk); 3269 u32 packets_acked; 3270 3271 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3272 3273 packets_acked = tcp_skb_pcount(skb); 3274 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3275 return 0; 3276 packets_acked -= tcp_skb_pcount(skb); 3277 3278 if (packets_acked) { 3279 BUG_ON(tcp_skb_pcount(skb) == 0); 3280 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3281 } 3282 3283 return packets_acked; 3284 } 3285 3286 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3287 const struct sk_buff *ack_skb, u32 prior_snd_una) 3288 { 3289 const struct skb_shared_info *shinfo; 3290 3291 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3292 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3293 return; 3294 3295 shinfo = skb_shinfo(skb); 3296 if (!before(shinfo->tskey, prior_snd_una) && 3297 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3298 tcp_skb_tsorted_save(skb) { 3299 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3300 } tcp_skb_tsorted_restore(skb); 3301 } 3302 } 3303 3304 /* Remove acknowledged frames from the retransmission queue. If our packet 3305 * is before the ack sequence we can discard it as it's confirmed to have 3306 * arrived at the other end. 3307 */ 3308 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3309 u32 prior_fack, u32 prior_snd_una, 3310 struct tcp_sacktag_state *sack, bool ece_ack) 3311 { 3312 const struct inet_connection_sock *icsk = inet_csk(sk); 3313 u64 first_ackt, last_ackt; 3314 struct tcp_sock *tp = tcp_sk(sk); 3315 u32 prior_sacked = tp->sacked_out; 3316 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3317 struct sk_buff *skb, *next; 3318 bool fully_acked = true; 3319 long sack_rtt_us = -1L; 3320 long seq_rtt_us = -1L; 3321 long ca_rtt_us = -1L; 3322 u32 pkts_acked = 0; 3323 bool rtt_update; 3324 int flag = 0; 3325 3326 first_ackt = 0; 3327 3328 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3329 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3330 const u32 start_seq = scb->seq; 3331 u8 sacked = scb->sacked; 3332 u32 acked_pcount; 3333 3334 /* Determine how many packets and what bytes were acked, tso and else */ 3335 if (after(scb->end_seq, tp->snd_una)) { 3336 if (tcp_skb_pcount(skb) == 1 || 3337 !after(tp->snd_una, scb->seq)) 3338 break; 3339 3340 acked_pcount = tcp_tso_acked(sk, skb); 3341 if (!acked_pcount) 3342 break; 3343 fully_acked = false; 3344 } else { 3345 acked_pcount = tcp_skb_pcount(skb); 3346 } 3347 3348 if (unlikely(sacked & TCPCB_RETRANS)) { 3349 if (sacked & TCPCB_SACKED_RETRANS) 3350 tp->retrans_out -= acked_pcount; 3351 flag |= FLAG_RETRANS_DATA_ACKED; 3352 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3353 last_ackt = tcp_skb_timestamp_us(skb); 3354 WARN_ON_ONCE(last_ackt == 0); 3355 if (!first_ackt) 3356 first_ackt = last_ackt; 3357 3358 if (before(start_seq, reord)) 3359 reord = start_seq; 3360 if (!after(scb->end_seq, tp->high_seq)) 3361 flag |= FLAG_ORIG_SACK_ACKED; 3362 } 3363 3364 if (sacked & TCPCB_SACKED_ACKED) { 3365 tp->sacked_out -= acked_pcount; 3366 } else if (tcp_is_sack(tp)) { 3367 tcp_count_delivered(tp, acked_pcount, ece_ack); 3368 if (!tcp_skb_spurious_retrans(tp, skb)) 3369 tcp_rack_advance(tp, sacked, scb->end_seq, 3370 tcp_skb_timestamp_us(skb)); 3371 } 3372 if (sacked & TCPCB_LOST) 3373 tp->lost_out -= acked_pcount; 3374 3375 tp->packets_out -= acked_pcount; 3376 pkts_acked += acked_pcount; 3377 tcp_rate_skb_delivered(sk, skb, sack->rate); 3378 3379 /* Initial outgoing SYN's get put onto the write_queue 3380 * just like anything else we transmit. It is not 3381 * true data, and if we misinform our callers that 3382 * this ACK acks real data, we will erroneously exit 3383 * connection startup slow start one packet too 3384 * quickly. This is severely frowned upon behavior. 3385 */ 3386 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3387 flag |= FLAG_DATA_ACKED; 3388 } else { 3389 flag |= FLAG_SYN_ACKED; 3390 tp->retrans_stamp = 0; 3391 } 3392 3393 if (!fully_acked) 3394 break; 3395 3396 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3397 3398 next = skb_rb_next(skb); 3399 if (unlikely(skb == tp->retransmit_skb_hint)) 3400 tp->retransmit_skb_hint = NULL; 3401 if (unlikely(skb == tp->lost_skb_hint)) 3402 tp->lost_skb_hint = NULL; 3403 tcp_highest_sack_replace(sk, skb, next); 3404 tcp_rtx_queue_unlink_and_free(skb, sk); 3405 } 3406 3407 if (!skb) 3408 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3409 3410 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3411 tp->snd_up = tp->snd_una; 3412 3413 if (skb) { 3414 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3415 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3416 flag |= FLAG_SACK_RENEGING; 3417 } 3418 3419 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3420 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3421 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3422 3423 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3424 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3425 sack->rate->prior_delivered + 1 == tp->delivered && 3426 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3427 /* Conservatively mark a delayed ACK. It's typically 3428 * from a lone runt packet over the round trip to 3429 * a receiver w/o out-of-order or CE events. 3430 */ 3431 flag |= FLAG_ACK_MAYBE_DELAYED; 3432 } 3433 } 3434 if (sack->first_sackt) { 3435 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3436 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3437 } 3438 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3439 ca_rtt_us, sack->rate); 3440 3441 if (flag & FLAG_ACKED) { 3442 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3443 if (unlikely(icsk->icsk_mtup.probe_size && 3444 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3445 tcp_mtup_probe_success(sk); 3446 } 3447 3448 if (tcp_is_reno(tp)) { 3449 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3450 3451 /* If any of the cumulatively ACKed segments was 3452 * retransmitted, non-SACK case cannot confirm that 3453 * progress was due to original transmission due to 3454 * lack of TCPCB_SACKED_ACKED bits even if some of 3455 * the packets may have been never retransmitted. 3456 */ 3457 if (flag & FLAG_RETRANS_DATA_ACKED) 3458 flag &= ~FLAG_ORIG_SACK_ACKED; 3459 } else { 3460 int delta; 3461 3462 /* Non-retransmitted hole got filled? That's reordering */ 3463 if (before(reord, prior_fack)) 3464 tcp_check_sack_reordering(sk, reord, 0); 3465 3466 delta = prior_sacked - tp->sacked_out; 3467 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3468 } 3469 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3470 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3471 tcp_skb_timestamp_us(skb))) { 3472 /* Do not re-arm RTO if the sack RTT is measured from data sent 3473 * after when the head was last (re)transmitted. Otherwise the 3474 * timeout may continue to extend in loss recovery. 3475 */ 3476 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3477 } 3478 3479 if (icsk->icsk_ca_ops->pkts_acked) { 3480 struct ack_sample sample = { .pkts_acked = pkts_acked, 3481 .rtt_us = sack->rate->rtt_us }; 3482 3483 sample.in_flight = tp->mss_cache * 3484 (tp->delivered - sack->rate->prior_delivered); 3485 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3486 } 3487 3488 #if FASTRETRANS_DEBUG > 0 3489 WARN_ON((int)tp->sacked_out < 0); 3490 WARN_ON((int)tp->lost_out < 0); 3491 WARN_ON((int)tp->retrans_out < 0); 3492 if (!tp->packets_out && tcp_is_sack(tp)) { 3493 icsk = inet_csk(sk); 3494 if (tp->lost_out) { 3495 pr_debug("Leak l=%u %d\n", 3496 tp->lost_out, icsk->icsk_ca_state); 3497 tp->lost_out = 0; 3498 } 3499 if (tp->sacked_out) { 3500 pr_debug("Leak s=%u %d\n", 3501 tp->sacked_out, icsk->icsk_ca_state); 3502 tp->sacked_out = 0; 3503 } 3504 if (tp->retrans_out) { 3505 pr_debug("Leak r=%u %d\n", 3506 tp->retrans_out, icsk->icsk_ca_state); 3507 tp->retrans_out = 0; 3508 } 3509 } 3510 #endif 3511 return flag; 3512 } 3513 3514 static void tcp_ack_probe(struct sock *sk) 3515 { 3516 struct inet_connection_sock *icsk = inet_csk(sk); 3517 struct sk_buff *head = tcp_send_head(sk); 3518 const struct tcp_sock *tp = tcp_sk(sk); 3519 3520 /* Was it a usable window open? */ 3521 if (!head) 3522 return; 3523 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3524 icsk->icsk_backoff = 0; 3525 icsk->icsk_probes_tstamp = 0; 3526 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3527 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3528 * This function is not for random using! 3529 */ 3530 } else { 3531 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3532 3533 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3534 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3535 } 3536 } 3537 3538 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3539 { 3540 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3541 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3542 } 3543 3544 /* Decide wheather to run the increase function of congestion control. */ 3545 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3546 { 3547 /* If reordering is high then always grow cwnd whenever data is 3548 * delivered regardless of its ordering. Otherwise stay conservative 3549 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3550 * new SACK or ECE mark may first advance cwnd here and later reduce 3551 * cwnd in tcp_fastretrans_alert() based on more states. 3552 */ 3553 if (tcp_sk(sk)->reordering > 3554 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3555 return flag & FLAG_FORWARD_PROGRESS; 3556 3557 return flag & FLAG_DATA_ACKED; 3558 } 3559 3560 /* The "ultimate" congestion control function that aims to replace the rigid 3561 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3562 * It's called toward the end of processing an ACK with precise rate 3563 * information. All transmission or retransmission are delayed afterwards. 3564 */ 3565 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3566 int flag, const struct rate_sample *rs) 3567 { 3568 const struct inet_connection_sock *icsk = inet_csk(sk); 3569 3570 if (icsk->icsk_ca_ops->cong_control) { 3571 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs); 3572 return; 3573 } 3574 3575 if (tcp_in_cwnd_reduction(sk)) { 3576 /* Reduce cwnd if state mandates */ 3577 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3578 } else if (tcp_may_raise_cwnd(sk, flag)) { 3579 /* Advance cwnd if state allows */ 3580 tcp_cong_avoid(sk, ack, acked_sacked); 3581 } 3582 tcp_update_pacing_rate(sk); 3583 } 3584 3585 /* Check that window update is acceptable. 3586 * The function assumes that snd_una<=ack<=snd_next. 3587 */ 3588 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3589 const u32 ack, const u32 ack_seq, 3590 const u32 nwin) 3591 { 3592 return after(ack, tp->snd_una) || 3593 after(ack_seq, tp->snd_wl1) || 3594 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3595 } 3596 3597 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack) 3598 { 3599 #ifdef CONFIG_TCP_AO 3600 struct tcp_ao_info *ao; 3601 3602 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3603 return; 3604 3605 ao = rcu_dereference_protected(tp->ao_info, 3606 lockdep_sock_is_held((struct sock *)tp)); 3607 if (ao && ack < tp->snd_una) 3608 ao->snd_sne++; 3609 #endif 3610 } 3611 3612 /* If we update tp->snd_una, also update tp->bytes_acked */ 3613 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3614 { 3615 u32 delta = ack - tp->snd_una; 3616 3617 sock_owned_by_me((struct sock *)tp); 3618 tp->bytes_acked += delta; 3619 tcp_snd_sne_update(tp, ack); 3620 tp->snd_una = ack; 3621 } 3622 3623 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq) 3624 { 3625 #ifdef CONFIG_TCP_AO 3626 struct tcp_ao_info *ao; 3627 3628 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3629 return; 3630 3631 ao = rcu_dereference_protected(tp->ao_info, 3632 lockdep_sock_is_held((struct sock *)tp)); 3633 if (ao && seq < tp->rcv_nxt) 3634 ao->rcv_sne++; 3635 #endif 3636 } 3637 3638 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3639 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3640 { 3641 u32 delta = seq - tp->rcv_nxt; 3642 3643 sock_owned_by_me((struct sock *)tp); 3644 tp->bytes_received += delta; 3645 tcp_rcv_sne_update(tp, seq); 3646 WRITE_ONCE(tp->rcv_nxt, seq); 3647 } 3648 3649 /* Update our send window. 3650 * 3651 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3652 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3653 */ 3654 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3655 u32 ack_seq) 3656 { 3657 struct tcp_sock *tp = tcp_sk(sk); 3658 int flag = 0; 3659 u32 nwin = ntohs(tcp_hdr(skb)->window); 3660 3661 if (likely(!tcp_hdr(skb)->syn)) 3662 nwin <<= tp->rx_opt.snd_wscale; 3663 3664 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3665 flag |= FLAG_WIN_UPDATE; 3666 tcp_update_wl(tp, ack_seq); 3667 3668 if (tp->snd_wnd != nwin) { 3669 tp->snd_wnd = nwin; 3670 3671 /* Note, it is the only place, where 3672 * fast path is recovered for sending TCP. 3673 */ 3674 tp->pred_flags = 0; 3675 tcp_fast_path_check(sk); 3676 3677 if (!tcp_write_queue_empty(sk)) 3678 tcp_slow_start_after_idle_check(sk); 3679 3680 if (nwin > tp->max_window) { 3681 tp->max_window = nwin; 3682 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3683 } 3684 } 3685 } 3686 3687 tcp_snd_una_update(tp, ack); 3688 3689 return flag; 3690 } 3691 3692 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3693 u32 *last_oow_ack_time) 3694 { 3695 /* Paired with the WRITE_ONCE() in this function. */ 3696 u32 val = READ_ONCE(*last_oow_ack_time); 3697 3698 if (val) { 3699 s32 elapsed = (s32)(tcp_jiffies32 - val); 3700 3701 if (0 <= elapsed && 3702 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3703 NET_INC_STATS(net, mib_idx); 3704 return true; /* rate-limited: don't send yet! */ 3705 } 3706 } 3707 3708 /* Paired with the prior READ_ONCE() and with itself, 3709 * as we might be lockless. 3710 */ 3711 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3712 3713 return false; /* not rate-limited: go ahead, send dupack now! */ 3714 } 3715 3716 /* Return true if we're currently rate-limiting out-of-window ACKs and 3717 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3718 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3719 * attacks that send repeated SYNs or ACKs for the same connection. To 3720 * do this, we do not send a duplicate SYNACK or ACK if the remote 3721 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3722 */ 3723 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3724 int mib_idx, u32 *last_oow_ack_time) 3725 { 3726 /* Data packets without SYNs are not likely part of an ACK loop. */ 3727 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3728 !tcp_hdr(skb)->syn) 3729 return false; 3730 3731 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3732 } 3733 3734 /* RFC 5961 7 [ACK Throttling] */ 3735 static void tcp_send_challenge_ack(struct sock *sk) 3736 { 3737 struct tcp_sock *tp = tcp_sk(sk); 3738 struct net *net = sock_net(sk); 3739 u32 count, now, ack_limit; 3740 3741 /* First check our per-socket dupack rate limit. */ 3742 if (__tcp_oow_rate_limited(net, 3743 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3744 &tp->last_oow_ack_time)) 3745 return; 3746 3747 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3748 if (ack_limit == INT_MAX) 3749 goto send_ack; 3750 3751 /* Then check host-wide RFC 5961 rate limit. */ 3752 now = jiffies / HZ; 3753 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3754 u32 half = (ack_limit + 1) >> 1; 3755 3756 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3757 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3758 get_random_u32_inclusive(half, ack_limit + half - 1)); 3759 } 3760 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3761 if (count > 0) { 3762 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3763 send_ack: 3764 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3765 tcp_send_ack(sk); 3766 } 3767 } 3768 3769 static void tcp_store_ts_recent(struct tcp_sock *tp) 3770 { 3771 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3772 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3773 } 3774 3775 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3776 { 3777 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3778 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3779 * extra check below makes sure this can only happen 3780 * for pure ACK frames. -DaveM 3781 * 3782 * Not only, also it occurs for expired timestamps. 3783 */ 3784 3785 if (tcp_paws_check(&tp->rx_opt, 0)) 3786 tcp_store_ts_recent(tp); 3787 } 3788 } 3789 3790 /* This routine deals with acks during a TLP episode and ends an episode by 3791 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3792 */ 3793 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3794 { 3795 struct tcp_sock *tp = tcp_sk(sk); 3796 3797 if (before(ack, tp->tlp_high_seq)) 3798 return; 3799 3800 if (!tp->tlp_retrans) { 3801 /* TLP of new data has been acknowledged */ 3802 tp->tlp_high_seq = 0; 3803 } else if (flag & FLAG_DSACK_TLP) { 3804 /* This DSACK means original and TLP probe arrived; no loss */ 3805 tp->tlp_high_seq = 0; 3806 } else if (after(ack, tp->tlp_high_seq)) { 3807 /* ACK advances: there was a loss, so reduce cwnd. Reset 3808 * tlp_high_seq in tcp_init_cwnd_reduction() 3809 */ 3810 tcp_init_cwnd_reduction(sk); 3811 tcp_set_ca_state(sk, TCP_CA_CWR); 3812 tcp_end_cwnd_reduction(sk); 3813 tcp_try_keep_open(sk); 3814 NET_INC_STATS(sock_net(sk), 3815 LINUX_MIB_TCPLOSSPROBERECOVERY); 3816 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3817 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3818 /* Pure dupack: original and TLP probe arrived; no loss */ 3819 tp->tlp_high_seq = 0; 3820 } 3821 } 3822 3823 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3824 { 3825 const struct inet_connection_sock *icsk = inet_csk(sk); 3826 3827 if (icsk->icsk_ca_ops->in_ack_event) 3828 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3829 } 3830 3831 /* Congestion control has updated the cwnd already. So if we're in 3832 * loss recovery then now we do any new sends (for FRTO) or 3833 * retransmits (for CA_Loss or CA_recovery) that make sense. 3834 */ 3835 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3836 { 3837 struct tcp_sock *tp = tcp_sk(sk); 3838 3839 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3840 return; 3841 3842 if (unlikely(rexmit == REXMIT_NEW)) { 3843 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3844 TCP_NAGLE_OFF); 3845 if (after(tp->snd_nxt, tp->high_seq)) 3846 return; 3847 tp->frto = 0; 3848 } 3849 tcp_xmit_retransmit_queue(sk); 3850 } 3851 3852 /* Returns the number of packets newly acked or sacked by the current ACK */ 3853 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3854 { 3855 const struct net *net = sock_net(sk); 3856 struct tcp_sock *tp = tcp_sk(sk); 3857 u32 delivered; 3858 3859 delivered = tp->delivered - prior_delivered; 3860 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3861 if (flag & FLAG_ECE) 3862 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3863 3864 return delivered; 3865 } 3866 3867 /* This routine deals with incoming acks, but not outgoing ones. */ 3868 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3869 { 3870 struct inet_connection_sock *icsk = inet_csk(sk); 3871 struct tcp_sock *tp = tcp_sk(sk); 3872 struct tcp_sacktag_state sack_state; 3873 struct rate_sample rs = { .prior_delivered = 0 }; 3874 u32 prior_snd_una = tp->snd_una; 3875 bool is_sack_reneg = tp->is_sack_reneg; 3876 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3877 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3878 int num_dupack = 0; 3879 int prior_packets = tp->packets_out; 3880 u32 delivered = tp->delivered; 3881 u32 lost = tp->lost; 3882 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3883 u32 prior_fack; 3884 3885 sack_state.first_sackt = 0; 3886 sack_state.rate = &rs; 3887 sack_state.sack_delivered = 0; 3888 3889 /* We very likely will need to access rtx queue. */ 3890 prefetch(sk->tcp_rtx_queue.rb_node); 3891 3892 /* If the ack is older than previous acks 3893 * then we can probably ignore it. 3894 */ 3895 if (before(ack, prior_snd_una)) { 3896 u32 max_window; 3897 3898 /* do not accept ACK for bytes we never sent. */ 3899 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3900 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3901 if (before(ack, prior_snd_una - max_window)) { 3902 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3903 tcp_send_challenge_ack(sk); 3904 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3905 } 3906 goto old_ack; 3907 } 3908 3909 /* If the ack includes data we haven't sent yet, discard 3910 * this segment (RFC793 Section 3.9). 3911 */ 3912 if (after(ack, tp->snd_nxt)) 3913 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3914 3915 if (after(ack, prior_snd_una)) { 3916 flag |= FLAG_SND_UNA_ADVANCED; 3917 icsk->icsk_retransmits = 0; 3918 3919 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3920 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3921 if (icsk->icsk_clean_acked) 3922 icsk->icsk_clean_acked(sk, ack); 3923 #endif 3924 } 3925 3926 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3927 rs.prior_in_flight = tcp_packets_in_flight(tp); 3928 3929 /* ts_recent update must be made after we are sure that the packet 3930 * is in window. 3931 */ 3932 if (flag & FLAG_UPDATE_TS_RECENT) 3933 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3934 3935 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3936 FLAG_SND_UNA_ADVANCED) { 3937 /* Window is constant, pure forward advance. 3938 * No more checks are required. 3939 * Note, we use the fact that SND.UNA>=SND.WL2. 3940 */ 3941 tcp_update_wl(tp, ack_seq); 3942 tcp_snd_una_update(tp, ack); 3943 flag |= FLAG_WIN_UPDATE; 3944 3945 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3946 3947 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3948 } else { 3949 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3950 3951 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3952 flag |= FLAG_DATA; 3953 else 3954 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3955 3956 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3957 3958 if (TCP_SKB_CB(skb)->sacked) 3959 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3960 &sack_state); 3961 3962 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3963 flag |= FLAG_ECE; 3964 ack_ev_flags |= CA_ACK_ECE; 3965 } 3966 3967 if (sack_state.sack_delivered) 3968 tcp_count_delivered(tp, sack_state.sack_delivered, 3969 flag & FLAG_ECE); 3970 3971 if (flag & FLAG_WIN_UPDATE) 3972 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3973 3974 tcp_in_ack_event(sk, ack_ev_flags); 3975 } 3976 3977 /* This is a deviation from RFC3168 since it states that: 3978 * "When the TCP data sender is ready to set the CWR bit after reducing 3979 * the congestion window, it SHOULD set the CWR bit only on the first 3980 * new data packet that it transmits." 3981 * We accept CWR on pure ACKs to be more robust 3982 * with widely-deployed TCP implementations that do this. 3983 */ 3984 tcp_ecn_accept_cwr(sk, skb); 3985 3986 /* We passed data and got it acked, remove any soft error 3987 * log. Something worked... 3988 */ 3989 WRITE_ONCE(sk->sk_err_soft, 0); 3990 icsk->icsk_probes_out = 0; 3991 tp->rcv_tstamp = tcp_jiffies32; 3992 if (!prior_packets) 3993 goto no_queue; 3994 3995 /* See if we can take anything off of the retransmit queue. */ 3996 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3997 &sack_state, flag & FLAG_ECE); 3998 3999 tcp_rack_update_reo_wnd(sk, &rs); 4000 4001 if (tp->tlp_high_seq) 4002 tcp_process_tlp_ack(sk, ack, flag); 4003 4004 if (tcp_ack_is_dubious(sk, flag)) { 4005 if (!(flag & (FLAG_SND_UNA_ADVANCED | 4006 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 4007 num_dupack = 1; 4008 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 4009 if (!(flag & FLAG_DATA)) 4010 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4011 } 4012 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4013 &rexmit); 4014 } 4015 4016 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 4017 if (flag & FLAG_SET_XMIT_TIMER) 4018 tcp_set_xmit_timer(sk); 4019 4020 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 4021 sk_dst_confirm(sk); 4022 4023 delivered = tcp_newly_delivered(sk, delivered, flag); 4024 lost = tp->lost - lost; /* freshly marked lost */ 4025 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 4026 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 4027 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 4028 tcp_xmit_recovery(sk, rexmit); 4029 return 1; 4030 4031 no_queue: 4032 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 4033 if (flag & FLAG_DSACKING_ACK) { 4034 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4035 &rexmit); 4036 tcp_newly_delivered(sk, delivered, flag); 4037 } 4038 /* If this ack opens up a zero window, clear backoff. It was 4039 * being used to time the probes, and is probably far higher than 4040 * it needs to be for normal retransmission. 4041 */ 4042 tcp_ack_probe(sk); 4043 4044 if (tp->tlp_high_seq) 4045 tcp_process_tlp_ack(sk, ack, flag); 4046 return 1; 4047 4048 old_ack: 4049 /* If data was SACKed, tag it and see if we should send more data. 4050 * If data was DSACKed, see if we can undo a cwnd reduction. 4051 */ 4052 if (TCP_SKB_CB(skb)->sacked) { 4053 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4054 &sack_state); 4055 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4056 &rexmit); 4057 tcp_newly_delivered(sk, delivered, flag); 4058 tcp_xmit_recovery(sk, rexmit); 4059 } 4060 4061 return 0; 4062 } 4063 4064 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4065 bool syn, struct tcp_fastopen_cookie *foc, 4066 bool exp_opt) 4067 { 4068 /* Valid only in SYN or SYN-ACK with an even length. */ 4069 if (!foc || !syn || len < 0 || (len & 1)) 4070 return; 4071 4072 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4073 len <= TCP_FASTOPEN_COOKIE_MAX) 4074 memcpy(foc->val, cookie, len); 4075 else if (len != 0) 4076 len = -1; 4077 foc->len = len; 4078 foc->exp = exp_opt; 4079 } 4080 4081 static bool smc_parse_options(const struct tcphdr *th, 4082 struct tcp_options_received *opt_rx, 4083 const unsigned char *ptr, 4084 int opsize) 4085 { 4086 #if IS_ENABLED(CONFIG_SMC) 4087 if (static_branch_unlikely(&tcp_have_smc)) { 4088 if (th->syn && !(opsize & 1) && 4089 opsize >= TCPOLEN_EXP_SMC_BASE && 4090 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4091 opt_rx->smc_ok = 1; 4092 return true; 4093 } 4094 } 4095 #endif 4096 return false; 4097 } 4098 4099 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4100 * value on success. 4101 */ 4102 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4103 { 4104 const unsigned char *ptr = (const unsigned char *)(th + 1); 4105 int length = (th->doff * 4) - sizeof(struct tcphdr); 4106 u16 mss = 0; 4107 4108 while (length > 0) { 4109 int opcode = *ptr++; 4110 int opsize; 4111 4112 switch (opcode) { 4113 case TCPOPT_EOL: 4114 return mss; 4115 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4116 length--; 4117 continue; 4118 default: 4119 if (length < 2) 4120 return mss; 4121 opsize = *ptr++; 4122 if (opsize < 2) /* "silly options" */ 4123 return mss; 4124 if (opsize > length) 4125 return mss; /* fail on partial options */ 4126 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4127 u16 in_mss = get_unaligned_be16(ptr); 4128 4129 if (in_mss) { 4130 if (user_mss && user_mss < in_mss) 4131 in_mss = user_mss; 4132 mss = in_mss; 4133 } 4134 } 4135 ptr += opsize - 2; 4136 length -= opsize; 4137 } 4138 } 4139 return mss; 4140 } 4141 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4142 4143 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4144 * But, this can also be called on packets in the established flow when 4145 * the fast version below fails. 4146 */ 4147 void tcp_parse_options(const struct net *net, 4148 const struct sk_buff *skb, 4149 struct tcp_options_received *opt_rx, int estab, 4150 struct tcp_fastopen_cookie *foc) 4151 { 4152 const unsigned char *ptr; 4153 const struct tcphdr *th = tcp_hdr(skb); 4154 int length = (th->doff * 4) - sizeof(struct tcphdr); 4155 4156 ptr = (const unsigned char *)(th + 1); 4157 opt_rx->saw_tstamp = 0; 4158 opt_rx->saw_unknown = 0; 4159 4160 while (length > 0) { 4161 int opcode = *ptr++; 4162 int opsize; 4163 4164 switch (opcode) { 4165 case TCPOPT_EOL: 4166 return; 4167 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4168 length--; 4169 continue; 4170 default: 4171 if (length < 2) 4172 return; 4173 opsize = *ptr++; 4174 if (opsize < 2) /* "silly options" */ 4175 return; 4176 if (opsize > length) 4177 return; /* don't parse partial options */ 4178 switch (opcode) { 4179 case TCPOPT_MSS: 4180 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4181 u16 in_mss = get_unaligned_be16(ptr); 4182 if (in_mss) { 4183 if (opt_rx->user_mss && 4184 opt_rx->user_mss < in_mss) 4185 in_mss = opt_rx->user_mss; 4186 opt_rx->mss_clamp = in_mss; 4187 } 4188 } 4189 break; 4190 case TCPOPT_WINDOW: 4191 if (opsize == TCPOLEN_WINDOW && th->syn && 4192 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4193 __u8 snd_wscale = *(__u8 *)ptr; 4194 opt_rx->wscale_ok = 1; 4195 if (snd_wscale > TCP_MAX_WSCALE) { 4196 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4197 __func__, 4198 snd_wscale, 4199 TCP_MAX_WSCALE); 4200 snd_wscale = TCP_MAX_WSCALE; 4201 } 4202 opt_rx->snd_wscale = snd_wscale; 4203 } 4204 break; 4205 case TCPOPT_TIMESTAMP: 4206 if ((opsize == TCPOLEN_TIMESTAMP) && 4207 ((estab && opt_rx->tstamp_ok) || 4208 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4209 opt_rx->saw_tstamp = 1; 4210 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4211 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4212 } 4213 break; 4214 case TCPOPT_SACK_PERM: 4215 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4216 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4217 opt_rx->sack_ok = TCP_SACK_SEEN; 4218 tcp_sack_reset(opt_rx); 4219 } 4220 break; 4221 4222 case TCPOPT_SACK: 4223 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4224 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4225 opt_rx->sack_ok) { 4226 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4227 } 4228 break; 4229 #ifdef CONFIG_TCP_MD5SIG 4230 case TCPOPT_MD5SIG: 4231 /* The MD5 Hash has already been 4232 * checked (see tcp_v{4,6}_rcv()). 4233 */ 4234 break; 4235 #endif 4236 #ifdef CONFIG_TCP_AO 4237 case TCPOPT_AO: 4238 /* TCP AO has already been checked 4239 * (see tcp_inbound_ao_hash()). 4240 */ 4241 break; 4242 #endif 4243 case TCPOPT_FASTOPEN: 4244 tcp_parse_fastopen_option( 4245 opsize - TCPOLEN_FASTOPEN_BASE, 4246 ptr, th->syn, foc, false); 4247 break; 4248 4249 case TCPOPT_EXP: 4250 /* Fast Open option shares code 254 using a 4251 * 16 bits magic number. 4252 */ 4253 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4254 get_unaligned_be16(ptr) == 4255 TCPOPT_FASTOPEN_MAGIC) { 4256 tcp_parse_fastopen_option(opsize - 4257 TCPOLEN_EXP_FASTOPEN_BASE, 4258 ptr + 2, th->syn, foc, true); 4259 break; 4260 } 4261 4262 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4263 break; 4264 4265 opt_rx->saw_unknown = 1; 4266 break; 4267 4268 default: 4269 opt_rx->saw_unknown = 1; 4270 } 4271 ptr += opsize-2; 4272 length -= opsize; 4273 } 4274 } 4275 } 4276 EXPORT_SYMBOL(tcp_parse_options); 4277 4278 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4279 { 4280 const __be32 *ptr = (const __be32 *)(th + 1); 4281 4282 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4283 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4284 tp->rx_opt.saw_tstamp = 1; 4285 ++ptr; 4286 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4287 ++ptr; 4288 if (*ptr) 4289 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4290 else 4291 tp->rx_opt.rcv_tsecr = 0; 4292 return true; 4293 } 4294 return false; 4295 } 4296 4297 /* Fast parse options. This hopes to only see timestamps. 4298 * If it is wrong it falls back on tcp_parse_options(). 4299 */ 4300 static bool tcp_fast_parse_options(const struct net *net, 4301 const struct sk_buff *skb, 4302 const struct tcphdr *th, struct tcp_sock *tp) 4303 { 4304 /* In the spirit of fast parsing, compare doff directly to constant 4305 * values. Because equality is used, short doff can be ignored here. 4306 */ 4307 if (th->doff == (sizeof(*th) / 4)) { 4308 tp->rx_opt.saw_tstamp = 0; 4309 return false; 4310 } else if (tp->rx_opt.tstamp_ok && 4311 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4312 if (tcp_parse_aligned_timestamp(tp, th)) 4313 return true; 4314 } 4315 4316 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4317 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4318 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4319 4320 return true; 4321 } 4322 4323 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4324 /* 4325 * Parse Signature options 4326 */ 4327 int tcp_do_parse_auth_options(const struct tcphdr *th, 4328 const u8 **md5_hash, const u8 **ao_hash) 4329 { 4330 int length = (th->doff << 2) - sizeof(*th); 4331 const u8 *ptr = (const u8 *)(th + 1); 4332 unsigned int minlen = TCPOLEN_MD5SIG; 4333 4334 if (IS_ENABLED(CONFIG_TCP_AO)) 4335 minlen = sizeof(struct tcp_ao_hdr) + 1; 4336 4337 *md5_hash = NULL; 4338 *ao_hash = NULL; 4339 4340 /* If not enough data remaining, we can short cut */ 4341 while (length >= minlen) { 4342 int opcode = *ptr++; 4343 int opsize; 4344 4345 switch (opcode) { 4346 case TCPOPT_EOL: 4347 return 0; 4348 case TCPOPT_NOP: 4349 length--; 4350 continue; 4351 default: 4352 opsize = *ptr++; 4353 if (opsize < 2 || opsize > length) 4354 return -EINVAL; 4355 if (opcode == TCPOPT_MD5SIG) { 4356 if (opsize != TCPOLEN_MD5SIG) 4357 return -EINVAL; 4358 if (unlikely(*md5_hash || *ao_hash)) 4359 return -EEXIST; 4360 *md5_hash = ptr; 4361 } else if (opcode == TCPOPT_AO) { 4362 if (opsize <= sizeof(struct tcp_ao_hdr)) 4363 return -EINVAL; 4364 if (unlikely(*md5_hash || *ao_hash)) 4365 return -EEXIST; 4366 *ao_hash = ptr; 4367 } 4368 } 4369 ptr += opsize - 2; 4370 length -= opsize; 4371 } 4372 return 0; 4373 } 4374 EXPORT_SYMBOL(tcp_do_parse_auth_options); 4375 #endif 4376 4377 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4378 * 4379 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4380 * it can pass through stack. So, the following predicate verifies that 4381 * this segment is not used for anything but congestion avoidance or 4382 * fast retransmit. Moreover, we even are able to eliminate most of such 4383 * second order effects, if we apply some small "replay" window (~RTO) 4384 * to timestamp space. 4385 * 4386 * All these measures still do not guarantee that we reject wrapped ACKs 4387 * on networks with high bandwidth, when sequence space is recycled fastly, 4388 * but it guarantees that such events will be very rare and do not affect 4389 * connection seriously. This doesn't look nice, but alas, PAWS is really 4390 * buggy extension. 4391 * 4392 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4393 * states that events when retransmit arrives after original data are rare. 4394 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4395 * the biggest problem on large power networks even with minor reordering. 4396 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4397 * up to bandwidth of 18Gigabit/sec. 8) ] 4398 */ 4399 4400 /* Estimates max number of increments of remote peer TSval in 4401 * a replay window (based on our current RTO estimation). 4402 */ 4403 static u32 tcp_tsval_replay(const struct sock *sk) 4404 { 4405 /* If we use usec TS resolution, 4406 * then expect the remote peer to use the same resolution. 4407 */ 4408 if (tcp_sk(sk)->tcp_usec_ts) 4409 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ); 4410 4411 /* RFC 7323 recommends a TSval clock between 1ms and 1sec. 4412 * We know that some OS (including old linux) can use 1200 Hz. 4413 */ 4414 return inet_csk(sk)->icsk_rto * 1200 / HZ; 4415 } 4416 4417 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4418 { 4419 const struct tcp_sock *tp = tcp_sk(sk); 4420 const struct tcphdr *th = tcp_hdr(skb); 4421 u32 seq = TCP_SKB_CB(skb)->seq; 4422 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4423 4424 return /* 1. Pure ACK with correct sequence number. */ 4425 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4426 4427 /* 2. ... and duplicate ACK. */ 4428 ack == tp->snd_una && 4429 4430 /* 3. ... and does not update window. */ 4431 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4432 4433 /* 4. ... and sits in replay window. */ 4434 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= 4435 tcp_tsval_replay(sk); 4436 } 4437 4438 static inline bool tcp_paws_discard(const struct sock *sk, 4439 const struct sk_buff *skb) 4440 { 4441 const struct tcp_sock *tp = tcp_sk(sk); 4442 4443 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4444 !tcp_disordered_ack(sk, skb); 4445 } 4446 4447 /* Check segment sequence number for validity. 4448 * 4449 * Segment controls are considered valid, if the segment 4450 * fits to the window after truncation to the window. Acceptability 4451 * of data (and SYN, FIN, of course) is checked separately. 4452 * See tcp_data_queue(), for example. 4453 * 4454 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4455 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4456 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4457 * (borrowed from freebsd) 4458 */ 4459 4460 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4461 u32 seq, u32 end_seq) 4462 { 4463 if (before(end_seq, tp->rcv_wup)) 4464 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4465 4466 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4467 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4468 4469 return SKB_NOT_DROPPED_YET; 4470 } 4471 4472 /* When we get a reset we do this. */ 4473 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4474 { 4475 trace_tcp_receive_reset(sk); 4476 4477 /* mptcp can't tell us to ignore reset pkts, 4478 * so just ignore the return value of mptcp_incoming_options(). 4479 */ 4480 if (sk_is_mptcp(sk)) 4481 mptcp_incoming_options(sk, skb); 4482 4483 /* We want the right error as BSD sees it (and indeed as we do). */ 4484 switch (sk->sk_state) { 4485 case TCP_SYN_SENT: 4486 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 4487 break; 4488 case TCP_CLOSE_WAIT: 4489 WRITE_ONCE(sk->sk_err, EPIPE); 4490 break; 4491 case TCP_CLOSE: 4492 return; 4493 default: 4494 WRITE_ONCE(sk->sk_err, ECONNRESET); 4495 } 4496 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4497 smp_wmb(); 4498 4499 tcp_write_queue_purge(sk); 4500 tcp_done(sk); 4501 4502 if (!sock_flag(sk, SOCK_DEAD)) 4503 sk_error_report(sk); 4504 } 4505 4506 /* 4507 * Process the FIN bit. This now behaves as it is supposed to work 4508 * and the FIN takes effect when it is validly part of sequence 4509 * space. Not before when we get holes. 4510 * 4511 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4512 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4513 * TIME-WAIT) 4514 * 4515 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4516 * close and we go into CLOSING (and later onto TIME-WAIT) 4517 * 4518 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4519 */ 4520 void tcp_fin(struct sock *sk) 4521 { 4522 struct tcp_sock *tp = tcp_sk(sk); 4523 4524 inet_csk_schedule_ack(sk); 4525 4526 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4527 sock_set_flag(sk, SOCK_DONE); 4528 4529 switch (sk->sk_state) { 4530 case TCP_SYN_RECV: 4531 case TCP_ESTABLISHED: 4532 /* Move to CLOSE_WAIT */ 4533 tcp_set_state(sk, TCP_CLOSE_WAIT); 4534 inet_csk_enter_pingpong_mode(sk); 4535 break; 4536 4537 case TCP_CLOSE_WAIT: 4538 case TCP_CLOSING: 4539 /* Received a retransmission of the FIN, do 4540 * nothing. 4541 */ 4542 break; 4543 case TCP_LAST_ACK: 4544 /* RFC793: Remain in the LAST-ACK state. */ 4545 break; 4546 4547 case TCP_FIN_WAIT1: 4548 /* This case occurs when a simultaneous close 4549 * happens, we must ack the received FIN and 4550 * enter the CLOSING state. 4551 */ 4552 tcp_send_ack(sk); 4553 tcp_set_state(sk, TCP_CLOSING); 4554 break; 4555 case TCP_FIN_WAIT2: 4556 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4557 tcp_send_ack(sk); 4558 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4559 break; 4560 default: 4561 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4562 * cases we should never reach this piece of code. 4563 */ 4564 pr_err("%s: Impossible, sk->sk_state=%d\n", 4565 __func__, sk->sk_state); 4566 break; 4567 } 4568 4569 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4570 * Probably, we should reset in this case. For now drop them. 4571 */ 4572 skb_rbtree_purge(&tp->out_of_order_queue); 4573 if (tcp_is_sack(tp)) 4574 tcp_sack_reset(&tp->rx_opt); 4575 4576 if (!sock_flag(sk, SOCK_DEAD)) { 4577 sk->sk_state_change(sk); 4578 4579 /* Do not send POLL_HUP for half duplex close. */ 4580 if (sk->sk_shutdown == SHUTDOWN_MASK || 4581 sk->sk_state == TCP_CLOSE) 4582 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4583 else 4584 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4585 } 4586 } 4587 4588 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4589 u32 end_seq) 4590 { 4591 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4592 if (before(seq, sp->start_seq)) 4593 sp->start_seq = seq; 4594 if (after(end_seq, sp->end_seq)) 4595 sp->end_seq = end_seq; 4596 return true; 4597 } 4598 return false; 4599 } 4600 4601 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4602 { 4603 struct tcp_sock *tp = tcp_sk(sk); 4604 4605 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4606 int mib_idx; 4607 4608 if (before(seq, tp->rcv_nxt)) 4609 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4610 else 4611 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4612 4613 NET_INC_STATS(sock_net(sk), mib_idx); 4614 4615 tp->rx_opt.dsack = 1; 4616 tp->duplicate_sack[0].start_seq = seq; 4617 tp->duplicate_sack[0].end_seq = end_seq; 4618 } 4619 } 4620 4621 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4622 { 4623 struct tcp_sock *tp = tcp_sk(sk); 4624 4625 if (!tp->rx_opt.dsack) 4626 tcp_dsack_set(sk, seq, end_seq); 4627 else 4628 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4629 } 4630 4631 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4632 { 4633 /* When the ACK path fails or drops most ACKs, the sender would 4634 * timeout and spuriously retransmit the same segment repeatedly. 4635 * If it seems our ACKs are not reaching the other side, 4636 * based on receiving a duplicate data segment with new flowlabel 4637 * (suggesting the sender suffered an RTO), and we are not already 4638 * repathing due to our own RTO, then rehash the socket to repath our 4639 * packets. 4640 */ 4641 #if IS_ENABLED(CONFIG_IPV6) 4642 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 4643 skb->protocol == htons(ETH_P_IPV6) && 4644 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 4645 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 4646 sk_rethink_txhash(sk)) 4647 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4648 4649 /* Save last flowlabel after a spurious retrans. */ 4650 tcp_save_lrcv_flowlabel(sk, skb); 4651 #endif 4652 } 4653 4654 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4655 { 4656 struct tcp_sock *tp = tcp_sk(sk); 4657 4658 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4659 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4660 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4661 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4662 4663 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4664 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4665 4666 tcp_rcv_spurious_retrans(sk, skb); 4667 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4668 end_seq = tp->rcv_nxt; 4669 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4670 } 4671 } 4672 4673 tcp_send_ack(sk); 4674 } 4675 4676 /* These routines update the SACK block as out-of-order packets arrive or 4677 * in-order packets close up the sequence space. 4678 */ 4679 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4680 { 4681 int this_sack; 4682 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4683 struct tcp_sack_block *swalk = sp + 1; 4684 4685 /* See if the recent change to the first SACK eats into 4686 * or hits the sequence space of other SACK blocks, if so coalesce. 4687 */ 4688 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4689 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4690 int i; 4691 4692 /* Zap SWALK, by moving every further SACK up by one slot. 4693 * Decrease num_sacks. 4694 */ 4695 tp->rx_opt.num_sacks--; 4696 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4697 sp[i] = sp[i + 1]; 4698 continue; 4699 } 4700 this_sack++; 4701 swalk++; 4702 } 4703 } 4704 4705 void tcp_sack_compress_send_ack(struct sock *sk) 4706 { 4707 struct tcp_sock *tp = tcp_sk(sk); 4708 4709 if (!tp->compressed_ack) 4710 return; 4711 4712 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4713 __sock_put(sk); 4714 4715 /* Since we have to send one ack finally, 4716 * substract one from tp->compressed_ack to keep 4717 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4718 */ 4719 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4720 tp->compressed_ack - 1); 4721 4722 tp->compressed_ack = 0; 4723 tcp_send_ack(sk); 4724 } 4725 4726 /* Reasonable amount of sack blocks included in TCP SACK option 4727 * The max is 4, but this becomes 3 if TCP timestamps are there. 4728 * Given that SACK packets might be lost, be conservative and use 2. 4729 */ 4730 #define TCP_SACK_BLOCKS_EXPECTED 2 4731 4732 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4733 { 4734 struct tcp_sock *tp = tcp_sk(sk); 4735 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4736 int cur_sacks = tp->rx_opt.num_sacks; 4737 int this_sack; 4738 4739 if (!cur_sacks) 4740 goto new_sack; 4741 4742 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4743 if (tcp_sack_extend(sp, seq, end_seq)) { 4744 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4745 tcp_sack_compress_send_ack(sk); 4746 /* Rotate this_sack to the first one. */ 4747 for (; this_sack > 0; this_sack--, sp--) 4748 swap(*sp, *(sp - 1)); 4749 if (cur_sacks > 1) 4750 tcp_sack_maybe_coalesce(tp); 4751 return; 4752 } 4753 } 4754 4755 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4756 tcp_sack_compress_send_ack(sk); 4757 4758 /* Could not find an adjacent existing SACK, build a new one, 4759 * put it at the front, and shift everyone else down. We 4760 * always know there is at least one SACK present already here. 4761 * 4762 * If the sack array is full, forget about the last one. 4763 */ 4764 if (this_sack >= TCP_NUM_SACKS) { 4765 this_sack--; 4766 tp->rx_opt.num_sacks--; 4767 sp--; 4768 } 4769 for (; this_sack > 0; this_sack--, sp--) 4770 *sp = *(sp - 1); 4771 4772 new_sack: 4773 /* Build the new head SACK, and we're done. */ 4774 sp->start_seq = seq; 4775 sp->end_seq = end_seq; 4776 tp->rx_opt.num_sacks++; 4777 } 4778 4779 /* RCV.NXT advances, some SACKs should be eaten. */ 4780 4781 static void tcp_sack_remove(struct tcp_sock *tp) 4782 { 4783 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4784 int num_sacks = tp->rx_opt.num_sacks; 4785 int this_sack; 4786 4787 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4788 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4789 tp->rx_opt.num_sacks = 0; 4790 return; 4791 } 4792 4793 for (this_sack = 0; this_sack < num_sacks;) { 4794 /* Check if the start of the sack is covered by RCV.NXT. */ 4795 if (!before(tp->rcv_nxt, sp->start_seq)) { 4796 int i; 4797 4798 /* RCV.NXT must cover all the block! */ 4799 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4800 4801 /* Zap this SACK, by moving forward any other SACKS. */ 4802 for (i = this_sack+1; i < num_sacks; i++) 4803 tp->selective_acks[i-1] = tp->selective_acks[i]; 4804 num_sacks--; 4805 continue; 4806 } 4807 this_sack++; 4808 sp++; 4809 } 4810 tp->rx_opt.num_sacks = num_sacks; 4811 } 4812 4813 /** 4814 * tcp_try_coalesce - try to merge skb to prior one 4815 * @sk: socket 4816 * @to: prior buffer 4817 * @from: buffer to add in queue 4818 * @fragstolen: pointer to boolean 4819 * 4820 * Before queueing skb @from after @to, try to merge them 4821 * to reduce overall memory use and queue lengths, if cost is small. 4822 * Packets in ofo or receive queues can stay a long time. 4823 * Better try to coalesce them right now to avoid future collapses. 4824 * Returns true if caller should free @from instead of queueing it 4825 */ 4826 static bool tcp_try_coalesce(struct sock *sk, 4827 struct sk_buff *to, 4828 struct sk_buff *from, 4829 bool *fragstolen) 4830 { 4831 int delta; 4832 4833 *fragstolen = false; 4834 4835 /* Its possible this segment overlaps with prior segment in queue */ 4836 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4837 return false; 4838 4839 if (!mptcp_skb_can_collapse(to, from)) 4840 return false; 4841 4842 if (skb_cmp_decrypted(from, to)) 4843 return false; 4844 4845 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4846 return false; 4847 4848 atomic_add(delta, &sk->sk_rmem_alloc); 4849 sk_mem_charge(sk, delta); 4850 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4851 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4852 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4853 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4854 4855 if (TCP_SKB_CB(from)->has_rxtstamp) { 4856 TCP_SKB_CB(to)->has_rxtstamp = true; 4857 to->tstamp = from->tstamp; 4858 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4859 } 4860 4861 return true; 4862 } 4863 4864 static bool tcp_ooo_try_coalesce(struct sock *sk, 4865 struct sk_buff *to, 4866 struct sk_buff *from, 4867 bool *fragstolen) 4868 { 4869 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4870 4871 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4872 if (res) { 4873 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4874 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4875 4876 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4877 } 4878 return res; 4879 } 4880 4881 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4882 enum skb_drop_reason reason) 4883 { 4884 sk_drops_add(sk, skb); 4885 kfree_skb_reason(skb, reason); 4886 } 4887 4888 /* This one checks to see if we can put data from the 4889 * out_of_order queue into the receive_queue. 4890 */ 4891 static void tcp_ofo_queue(struct sock *sk) 4892 { 4893 struct tcp_sock *tp = tcp_sk(sk); 4894 __u32 dsack_high = tp->rcv_nxt; 4895 bool fin, fragstolen, eaten; 4896 struct sk_buff *skb, *tail; 4897 struct rb_node *p; 4898 4899 p = rb_first(&tp->out_of_order_queue); 4900 while (p) { 4901 skb = rb_to_skb(p); 4902 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4903 break; 4904 4905 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4906 __u32 dsack = dsack_high; 4907 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4908 dsack_high = TCP_SKB_CB(skb)->end_seq; 4909 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4910 } 4911 p = rb_next(p); 4912 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4913 4914 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4915 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4916 continue; 4917 } 4918 4919 tail = skb_peek_tail(&sk->sk_receive_queue); 4920 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4921 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4922 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4923 if (!eaten) 4924 __skb_queue_tail(&sk->sk_receive_queue, skb); 4925 else 4926 kfree_skb_partial(skb, fragstolen); 4927 4928 if (unlikely(fin)) { 4929 tcp_fin(sk); 4930 /* tcp_fin() purges tp->out_of_order_queue, 4931 * so we must end this loop right now. 4932 */ 4933 break; 4934 } 4935 } 4936 } 4937 4938 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4939 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4940 4941 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4942 unsigned int size) 4943 { 4944 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4945 !sk_rmem_schedule(sk, skb, size)) { 4946 4947 if (tcp_prune_queue(sk, skb) < 0) 4948 return -1; 4949 4950 while (!sk_rmem_schedule(sk, skb, size)) { 4951 if (!tcp_prune_ofo_queue(sk, skb)) 4952 return -1; 4953 } 4954 } 4955 return 0; 4956 } 4957 4958 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4959 { 4960 struct tcp_sock *tp = tcp_sk(sk); 4961 struct rb_node **p, *parent; 4962 struct sk_buff *skb1; 4963 u32 seq, end_seq; 4964 bool fragstolen; 4965 4966 tcp_save_lrcv_flowlabel(sk, skb); 4967 tcp_ecn_check_ce(sk, skb); 4968 4969 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4970 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4971 sk->sk_data_ready(sk); 4972 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4973 return; 4974 } 4975 4976 /* Disable header prediction. */ 4977 tp->pred_flags = 0; 4978 inet_csk_schedule_ack(sk); 4979 4980 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4981 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4982 seq = TCP_SKB_CB(skb)->seq; 4983 end_seq = TCP_SKB_CB(skb)->end_seq; 4984 4985 p = &tp->out_of_order_queue.rb_node; 4986 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4987 /* Initial out of order segment, build 1 SACK. */ 4988 if (tcp_is_sack(tp)) { 4989 tp->rx_opt.num_sacks = 1; 4990 tp->selective_acks[0].start_seq = seq; 4991 tp->selective_acks[0].end_seq = end_seq; 4992 } 4993 rb_link_node(&skb->rbnode, NULL, p); 4994 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4995 tp->ooo_last_skb = skb; 4996 goto end; 4997 } 4998 4999 /* In the typical case, we are adding an skb to the end of the list. 5000 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 5001 */ 5002 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 5003 skb, &fragstolen)) { 5004 coalesce_done: 5005 /* For non sack flows, do not grow window to force DUPACK 5006 * and trigger fast retransmit. 5007 */ 5008 if (tcp_is_sack(tp)) 5009 tcp_grow_window(sk, skb, true); 5010 kfree_skb_partial(skb, fragstolen); 5011 skb = NULL; 5012 goto add_sack; 5013 } 5014 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 5015 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 5016 parent = &tp->ooo_last_skb->rbnode; 5017 p = &parent->rb_right; 5018 goto insert; 5019 } 5020 5021 /* Find place to insert this segment. Handle overlaps on the way. */ 5022 parent = NULL; 5023 while (*p) { 5024 parent = *p; 5025 skb1 = rb_to_skb(parent); 5026 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 5027 p = &parent->rb_left; 5028 continue; 5029 } 5030 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 5031 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5032 /* All the bits are present. Drop. */ 5033 NET_INC_STATS(sock_net(sk), 5034 LINUX_MIB_TCPOFOMERGE); 5035 tcp_drop_reason(sk, skb, 5036 SKB_DROP_REASON_TCP_OFOMERGE); 5037 skb = NULL; 5038 tcp_dsack_set(sk, seq, end_seq); 5039 goto add_sack; 5040 } 5041 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 5042 /* Partial overlap. */ 5043 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 5044 } else { 5045 /* skb's seq == skb1's seq and skb covers skb1. 5046 * Replace skb1 with skb. 5047 */ 5048 rb_replace_node(&skb1->rbnode, &skb->rbnode, 5049 &tp->out_of_order_queue); 5050 tcp_dsack_extend(sk, 5051 TCP_SKB_CB(skb1)->seq, 5052 TCP_SKB_CB(skb1)->end_seq); 5053 NET_INC_STATS(sock_net(sk), 5054 LINUX_MIB_TCPOFOMERGE); 5055 tcp_drop_reason(sk, skb1, 5056 SKB_DROP_REASON_TCP_OFOMERGE); 5057 goto merge_right; 5058 } 5059 } else if (tcp_ooo_try_coalesce(sk, skb1, 5060 skb, &fragstolen)) { 5061 goto coalesce_done; 5062 } 5063 p = &parent->rb_right; 5064 } 5065 insert: 5066 /* Insert segment into RB tree. */ 5067 rb_link_node(&skb->rbnode, parent, p); 5068 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5069 5070 merge_right: 5071 /* Remove other segments covered by skb. */ 5072 while ((skb1 = skb_rb_next(skb)) != NULL) { 5073 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5074 break; 5075 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5076 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5077 end_seq); 5078 break; 5079 } 5080 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5081 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5082 TCP_SKB_CB(skb1)->end_seq); 5083 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5084 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5085 } 5086 /* If there is no skb after us, we are the last_skb ! */ 5087 if (!skb1) 5088 tp->ooo_last_skb = skb; 5089 5090 add_sack: 5091 if (tcp_is_sack(tp)) 5092 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5093 end: 5094 if (skb) { 5095 /* For non sack flows, do not grow window to force DUPACK 5096 * and trigger fast retransmit. 5097 */ 5098 if (tcp_is_sack(tp)) 5099 tcp_grow_window(sk, skb, false); 5100 skb_condense(skb); 5101 skb_set_owner_r(skb, sk); 5102 } 5103 } 5104 5105 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5106 bool *fragstolen) 5107 { 5108 int eaten; 5109 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5110 5111 eaten = (tail && 5112 tcp_try_coalesce(sk, tail, 5113 skb, fragstolen)) ? 1 : 0; 5114 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5115 if (!eaten) { 5116 __skb_queue_tail(&sk->sk_receive_queue, skb); 5117 skb_set_owner_r(skb, sk); 5118 } 5119 return eaten; 5120 } 5121 5122 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5123 { 5124 struct sk_buff *skb; 5125 int err = -ENOMEM; 5126 int data_len = 0; 5127 bool fragstolen; 5128 5129 if (size == 0) 5130 return 0; 5131 5132 if (size > PAGE_SIZE) { 5133 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5134 5135 data_len = npages << PAGE_SHIFT; 5136 size = data_len + (size & ~PAGE_MASK); 5137 } 5138 skb = alloc_skb_with_frags(size - data_len, data_len, 5139 PAGE_ALLOC_COSTLY_ORDER, 5140 &err, sk->sk_allocation); 5141 if (!skb) 5142 goto err; 5143 5144 skb_put(skb, size - data_len); 5145 skb->data_len = data_len; 5146 skb->len = size; 5147 5148 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5149 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5150 goto err_free; 5151 } 5152 5153 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5154 if (err) 5155 goto err_free; 5156 5157 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5158 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5159 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5160 5161 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5162 WARN_ON_ONCE(fragstolen); /* should not happen */ 5163 __kfree_skb(skb); 5164 } 5165 return size; 5166 5167 err_free: 5168 kfree_skb(skb); 5169 err: 5170 return err; 5171 5172 } 5173 5174 void tcp_data_ready(struct sock *sk) 5175 { 5176 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5177 sk->sk_data_ready(sk); 5178 } 5179 5180 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5181 { 5182 struct tcp_sock *tp = tcp_sk(sk); 5183 enum skb_drop_reason reason; 5184 bool fragstolen; 5185 int eaten; 5186 5187 /* If a subflow has been reset, the packet should not continue 5188 * to be processed, drop the packet. 5189 */ 5190 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5191 __kfree_skb(skb); 5192 return; 5193 } 5194 5195 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5196 __kfree_skb(skb); 5197 return; 5198 } 5199 skb_dst_drop(skb); 5200 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5201 5202 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5203 tp->rx_opt.dsack = 0; 5204 5205 /* Queue data for delivery to the user. 5206 * Packets in sequence go to the receive queue. 5207 * Out of sequence packets to the out_of_order_queue. 5208 */ 5209 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5210 if (tcp_receive_window(tp) == 0) { 5211 /* Some stacks are known to send bare FIN packets 5212 * in a loop even if we send RWIN 0 in our ACK. 5213 * Accepting this FIN does not hurt memory pressure 5214 * because the FIN flag will simply be merged to the 5215 * receive queue tail skb in most cases. 5216 */ 5217 if (!skb->len && 5218 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 5219 goto queue_and_out; 5220 5221 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5222 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5223 goto out_of_window; 5224 } 5225 5226 /* Ok. In sequence. In window. */ 5227 queue_and_out: 5228 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5229 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5230 inet_csk(sk)->icsk_ack.pending |= 5231 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5232 inet_csk_schedule_ack(sk); 5233 sk->sk_data_ready(sk); 5234 5235 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) { 5236 reason = SKB_DROP_REASON_PROTO_MEM; 5237 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5238 goto drop; 5239 } 5240 sk_forced_mem_schedule(sk, skb->truesize); 5241 } 5242 5243 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5244 if (skb->len) 5245 tcp_event_data_recv(sk, skb); 5246 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5247 tcp_fin(sk); 5248 5249 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5250 tcp_ofo_queue(sk); 5251 5252 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5253 * gap in queue is filled. 5254 */ 5255 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5256 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5257 } 5258 5259 if (tp->rx_opt.num_sacks) 5260 tcp_sack_remove(tp); 5261 5262 tcp_fast_path_check(sk); 5263 5264 if (eaten > 0) 5265 kfree_skb_partial(skb, fragstolen); 5266 if (!sock_flag(sk, SOCK_DEAD)) 5267 tcp_data_ready(sk); 5268 return; 5269 } 5270 5271 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5272 tcp_rcv_spurious_retrans(sk, skb); 5273 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5274 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5275 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5276 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5277 5278 out_of_window: 5279 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5280 inet_csk_schedule_ack(sk); 5281 drop: 5282 tcp_drop_reason(sk, skb, reason); 5283 return; 5284 } 5285 5286 /* Out of window. F.e. zero window probe. */ 5287 if (!before(TCP_SKB_CB(skb)->seq, 5288 tp->rcv_nxt + tcp_receive_window(tp))) { 5289 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5290 goto out_of_window; 5291 } 5292 5293 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5294 /* Partial packet, seq < rcv_next < end_seq */ 5295 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5296 5297 /* If window is closed, drop tail of packet. But after 5298 * remembering D-SACK for its head made in previous line. 5299 */ 5300 if (!tcp_receive_window(tp)) { 5301 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5303 goto out_of_window; 5304 } 5305 goto queue_and_out; 5306 } 5307 5308 tcp_data_queue_ofo(sk, skb); 5309 } 5310 5311 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5312 { 5313 if (list) 5314 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5315 5316 return skb_rb_next(skb); 5317 } 5318 5319 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5320 struct sk_buff_head *list, 5321 struct rb_root *root) 5322 { 5323 struct sk_buff *next = tcp_skb_next(skb, list); 5324 5325 if (list) 5326 __skb_unlink(skb, list); 5327 else 5328 rb_erase(&skb->rbnode, root); 5329 5330 __kfree_skb(skb); 5331 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5332 5333 return next; 5334 } 5335 5336 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5337 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5338 { 5339 struct rb_node **p = &root->rb_node; 5340 struct rb_node *parent = NULL; 5341 struct sk_buff *skb1; 5342 5343 while (*p) { 5344 parent = *p; 5345 skb1 = rb_to_skb(parent); 5346 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5347 p = &parent->rb_left; 5348 else 5349 p = &parent->rb_right; 5350 } 5351 rb_link_node(&skb->rbnode, parent, p); 5352 rb_insert_color(&skb->rbnode, root); 5353 } 5354 5355 /* Collapse contiguous sequence of skbs head..tail with 5356 * sequence numbers start..end. 5357 * 5358 * If tail is NULL, this means until the end of the queue. 5359 * 5360 * Segments with FIN/SYN are not collapsed (only because this 5361 * simplifies code) 5362 */ 5363 static void 5364 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5365 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5366 { 5367 struct sk_buff *skb = head, *n; 5368 struct sk_buff_head tmp; 5369 bool end_of_skbs; 5370 5371 /* First, check that queue is collapsible and find 5372 * the point where collapsing can be useful. 5373 */ 5374 restart: 5375 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5376 n = tcp_skb_next(skb, list); 5377 5378 /* No new bits? It is possible on ofo queue. */ 5379 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5380 skb = tcp_collapse_one(sk, skb, list, root); 5381 if (!skb) 5382 break; 5383 goto restart; 5384 } 5385 5386 /* The first skb to collapse is: 5387 * - not SYN/FIN and 5388 * - bloated or contains data before "start" or 5389 * overlaps to the next one and mptcp allow collapsing. 5390 */ 5391 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5392 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5393 before(TCP_SKB_CB(skb)->seq, start))) { 5394 end_of_skbs = false; 5395 break; 5396 } 5397 5398 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5399 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5400 end_of_skbs = false; 5401 break; 5402 } 5403 5404 /* Decided to skip this, advance start seq. */ 5405 start = TCP_SKB_CB(skb)->end_seq; 5406 } 5407 if (end_of_skbs || 5408 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5409 return; 5410 5411 __skb_queue_head_init(&tmp); 5412 5413 while (before(start, end)) { 5414 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5415 struct sk_buff *nskb; 5416 5417 nskb = alloc_skb(copy, GFP_ATOMIC); 5418 if (!nskb) 5419 break; 5420 5421 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5422 skb_copy_decrypted(nskb, skb); 5423 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5424 if (list) 5425 __skb_queue_before(list, skb, nskb); 5426 else 5427 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5428 skb_set_owner_r(nskb, sk); 5429 mptcp_skb_ext_move(nskb, skb); 5430 5431 /* Copy data, releasing collapsed skbs. */ 5432 while (copy > 0) { 5433 int offset = start - TCP_SKB_CB(skb)->seq; 5434 int size = TCP_SKB_CB(skb)->end_seq - start; 5435 5436 BUG_ON(offset < 0); 5437 if (size > 0) { 5438 size = min(copy, size); 5439 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5440 BUG(); 5441 TCP_SKB_CB(nskb)->end_seq += size; 5442 copy -= size; 5443 start += size; 5444 } 5445 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5446 skb = tcp_collapse_one(sk, skb, list, root); 5447 if (!skb || 5448 skb == tail || 5449 !mptcp_skb_can_collapse(nskb, skb) || 5450 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5451 goto end; 5452 if (skb_cmp_decrypted(skb, nskb)) 5453 goto end; 5454 } 5455 } 5456 } 5457 end: 5458 skb_queue_walk_safe(&tmp, skb, n) 5459 tcp_rbtree_insert(root, skb); 5460 } 5461 5462 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5463 * and tcp_collapse() them until all the queue is collapsed. 5464 */ 5465 static void tcp_collapse_ofo_queue(struct sock *sk) 5466 { 5467 struct tcp_sock *tp = tcp_sk(sk); 5468 u32 range_truesize, sum_tiny = 0; 5469 struct sk_buff *skb, *head; 5470 u32 start, end; 5471 5472 skb = skb_rb_first(&tp->out_of_order_queue); 5473 new_range: 5474 if (!skb) { 5475 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5476 return; 5477 } 5478 start = TCP_SKB_CB(skb)->seq; 5479 end = TCP_SKB_CB(skb)->end_seq; 5480 range_truesize = skb->truesize; 5481 5482 for (head = skb;;) { 5483 skb = skb_rb_next(skb); 5484 5485 /* Range is terminated when we see a gap or when 5486 * we are at the queue end. 5487 */ 5488 if (!skb || 5489 after(TCP_SKB_CB(skb)->seq, end) || 5490 before(TCP_SKB_CB(skb)->end_seq, start)) { 5491 /* Do not attempt collapsing tiny skbs */ 5492 if (range_truesize != head->truesize || 5493 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5494 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5495 head, skb, start, end); 5496 } else { 5497 sum_tiny += range_truesize; 5498 if (sum_tiny > sk->sk_rcvbuf >> 3) 5499 return; 5500 } 5501 goto new_range; 5502 } 5503 5504 range_truesize += skb->truesize; 5505 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5506 start = TCP_SKB_CB(skb)->seq; 5507 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5508 end = TCP_SKB_CB(skb)->end_seq; 5509 } 5510 } 5511 5512 /* 5513 * Clean the out-of-order queue to make room. 5514 * We drop high sequences packets to : 5515 * 1) Let a chance for holes to be filled. 5516 * This means we do not drop packets from ooo queue if their sequence 5517 * is before incoming packet sequence. 5518 * 2) not add too big latencies if thousands of packets sit there. 5519 * (But if application shrinks SO_RCVBUF, we could still end up 5520 * freeing whole queue here) 5521 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5522 * 5523 * Return true if queue has shrunk. 5524 */ 5525 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5526 { 5527 struct tcp_sock *tp = tcp_sk(sk); 5528 struct rb_node *node, *prev; 5529 bool pruned = false; 5530 int goal; 5531 5532 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5533 return false; 5534 5535 goal = sk->sk_rcvbuf >> 3; 5536 node = &tp->ooo_last_skb->rbnode; 5537 5538 do { 5539 struct sk_buff *skb = rb_to_skb(node); 5540 5541 /* If incoming skb would land last in ofo queue, stop pruning. */ 5542 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5543 break; 5544 pruned = true; 5545 prev = rb_prev(node); 5546 rb_erase(node, &tp->out_of_order_queue); 5547 goal -= skb->truesize; 5548 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5549 tp->ooo_last_skb = rb_to_skb(prev); 5550 if (!prev || goal <= 0) { 5551 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5552 !tcp_under_memory_pressure(sk)) 5553 break; 5554 goal = sk->sk_rcvbuf >> 3; 5555 } 5556 node = prev; 5557 } while (node); 5558 5559 if (pruned) { 5560 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5561 /* Reset SACK state. A conforming SACK implementation will 5562 * do the same at a timeout based retransmit. When a connection 5563 * is in a sad state like this, we care only about integrity 5564 * of the connection not performance. 5565 */ 5566 if (tp->rx_opt.sack_ok) 5567 tcp_sack_reset(&tp->rx_opt); 5568 } 5569 return pruned; 5570 } 5571 5572 /* Reduce allocated memory if we can, trying to get 5573 * the socket within its memory limits again. 5574 * 5575 * Return less than zero if we should start dropping frames 5576 * until the socket owning process reads some of the data 5577 * to stabilize the situation. 5578 */ 5579 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5580 { 5581 struct tcp_sock *tp = tcp_sk(sk); 5582 5583 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5584 5585 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5586 tcp_clamp_window(sk); 5587 else if (tcp_under_memory_pressure(sk)) 5588 tcp_adjust_rcv_ssthresh(sk); 5589 5590 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5591 return 0; 5592 5593 tcp_collapse_ofo_queue(sk); 5594 if (!skb_queue_empty(&sk->sk_receive_queue)) 5595 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5596 skb_peek(&sk->sk_receive_queue), 5597 NULL, 5598 tp->copied_seq, tp->rcv_nxt); 5599 5600 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5601 return 0; 5602 5603 /* Collapsing did not help, destructive actions follow. 5604 * This must not ever occur. */ 5605 5606 tcp_prune_ofo_queue(sk, in_skb); 5607 5608 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5609 return 0; 5610 5611 /* If we are really being abused, tell the caller to silently 5612 * drop receive data on the floor. It will get retransmitted 5613 * and hopefully then we'll have sufficient space. 5614 */ 5615 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5616 5617 /* Massive buffer overcommit. */ 5618 tp->pred_flags = 0; 5619 return -1; 5620 } 5621 5622 static bool tcp_should_expand_sndbuf(struct sock *sk) 5623 { 5624 const struct tcp_sock *tp = tcp_sk(sk); 5625 5626 /* If the user specified a specific send buffer setting, do 5627 * not modify it. 5628 */ 5629 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5630 return false; 5631 5632 /* If we are under global TCP memory pressure, do not expand. */ 5633 if (tcp_under_memory_pressure(sk)) { 5634 int unused_mem = sk_unused_reserved_mem(sk); 5635 5636 /* Adjust sndbuf according to reserved mem. But make sure 5637 * it never goes below SOCK_MIN_SNDBUF. 5638 * See sk_stream_moderate_sndbuf() for more details. 5639 */ 5640 if (unused_mem > SOCK_MIN_SNDBUF) 5641 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5642 5643 return false; 5644 } 5645 5646 /* If we are under soft global TCP memory pressure, do not expand. */ 5647 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5648 return false; 5649 5650 /* If we filled the congestion window, do not expand. */ 5651 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5652 return false; 5653 5654 return true; 5655 } 5656 5657 static void tcp_new_space(struct sock *sk) 5658 { 5659 struct tcp_sock *tp = tcp_sk(sk); 5660 5661 if (tcp_should_expand_sndbuf(sk)) { 5662 tcp_sndbuf_expand(sk); 5663 tp->snd_cwnd_stamp = tcp_jiffies32; 5664 } 5665 5666 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5667 } 5668 5669 /* Caller made space either from: 5670 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5671 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5672 * 5673 * We might be able to generate EPOLLOUT to the application if: 5674 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5675 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5676 * small enough that tcp_stream_memory_free() decides it 5677 * is time to generate EPOLLOUT. 5678 */ 5679 void tcp_check_space(struct sock *sk) 5680 { 5681 /* pairs with tcp_poll() */ 5682 smp_mb(); 5683 if (sk->sk_socket && 5684 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5685 tcp_new_space(sk); 5686 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5687 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5688 } 5689 } 5690 5691 static inline void tcp_data_snd_check(struct sock *sk) 5692 { 5693 tcp_push_pending_frames(sk); 5694 tcp_check_space(sk); 5695 } 5696 5697 /* 5698 * Check if sending an ack is needed. 5699 */ 5700 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5701 { 5702 struct tcp_sock *tp = tcp_sk(sk); 5703 unsigned long rtt, delay; 5704 5705 /* More than one full frame received... */ 5706 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5707 /* ... and right edge of window advances far enough. 5708 * (tcp_recvmsg() will send ACK otherwise). 5709 * If application uses SO_RCVLOWAT, we want send ack now if 5710 * we have not received enough bytes to satisfy the condition. 5711 */ 5712 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5713 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5714 /* We ACK each frame or... */ 5715 tcp_in_quickack_mode(sk) || 5716 /* Protocol state mandates a one-time immediate ACK */ 5717 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5718 /* If we are running from __release_sock() in user context, 5719 * Defer the ack until tcp_release_cb(). 5720 */ 5721 if (sock_owned_by_user_nocheck(sk) && 5722 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { 5723 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5724 return; 5725 } 5726 send_now: 5727 tcp_send_ack(sk); 5728 return; 5729 } 5730 5731 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5732 tcp_send_delayed_ack(sk); 5733 return; 5734 } 5735 5736 if (!tcp_is_sack(tp) || 5737 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5738 goto send_now; 5739 5740 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5741 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5742 tp->dup_ack_counter = 0; 5743 } 5744 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5745 tp->dup_ack_counter++; 5746 goto send_now; 5747 } 5748 tp->compressed_ack++; 5749 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5750 return; 5751 5752 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5753 5754 rtt = tp->rcv_rtt_est.rtt_us; 5755 if (tp->srtt_us && tp->srtt_us < rtt) 5756 rtt = tp->srtt_us; 5757 5758 delay = min_t(unsigned long, 5759 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5760 rtt * (NSEC_PER_USEC >> 3)/20); 5761 sock_hold(sk); 5762 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5763 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5764 HRTIMER_MODE_REL_PINNED_SOFT); 5765 } 5766 5767 static inline void tcp_ack_snd_check(struct sock *sk) 5768 { 5769 if (!inet_csk_ack_scheduled(sk)) { 5770 /* We sent a data segment already. */ 5771 return; 5772 } 5773 __tcp_ack_snd_check(sk, 1); 5774 } 5775 5776 /* 5777 * This routine is only called when we have urgent data 5778 * signaled. Its the 'slow' part of tcp_urg. It could be 5779 * moved inline now as tcp_urg is only called from one 5780 * place. We handle URGent data wrong. We have to - as 5781 * BSD still doesn't use the correction from RFC961. 5782 * For 1003.1g we should support a new option TCP_STDURG to permit 5783 * either form (or just set the sysctl tcp_stdurg). 5784 */ 5785 5786 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5787 { 5788 struct tcp_sock *tp = tcp_sk(sk); 5789 u32 ptr = ntohs(th->urg_ptr); 5790 5791 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5792 ptr--; 5793 ptr += ntohl(th->seq); 5794 5795 /* Ignore urgent data that we've already seen and read. */ 5796 if (after(tp->copied_seq, ptr)) 5797 return; 5798 5799 /* Do not replay urg ptr. 5800 * 5801 * NOTE: interesting situation not covered by specs. 5802 * Misbehaving sender may send urg ptr, pointing to segment, 5803 * which we already have in ofo queue. We are not able to fetch 5804 * such data and will stay in TCP_URG_NOTYET until will be eaten 5805 * by recvmsg(). Seems, we are not obliged to handle such wicked 5806 * situations. But it is worth to think about possibility of some 5807 * DoSes using some hypothetical application level deadlock. 5808 */ 5809 if (before(ptr, tp->rcv_nxt)) 5810 return; 5811 5812 /* Do we already have a newer (or duplicate) urgent pointer? */ 5813 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5814 return; 5815 5816 /* Tell the world about our new urgent pointer. */ 5817 sk_send_sigurg(sk); 5818 5819 /* We may be adding urgent data when the last byte read was 5820 * urgent. To do this requires some care. We cannot just ignore 5821 * tp->copied_seq since we would read the last urgent byte again 5822 * as data, nor can we alter copied_seq until this data arrives 5823 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5824 * 5825 * NOTE. Double Dutch. Rendering to plain English: author of comment 5826 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5827 * and expect that both A and B disappear from stream. This is _wrong_. 5828 * Though this happens in BSD with high probability, this is occasional. 5829 * Any application relying on this is buggy. Note also, that fix "works" 5830 * only in this artificial test. Insert some normal data between A and B and we will 5831 * decline of BSD again. Verdict: it is better to remove to trap 5832 * buggy users. 5833 */ 5834 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5835 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5836 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5837 tp->copied_seq++; 5838 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5839 __skb_unlink(skb, &sk->sk_receive_queue); 5840 __kfree_skb(skb); 5841 } 5842 } 5843 5844 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5845 WRITE_ONCE(tp->urg_seq, ptr); 5846 5847 /* Disable header prediction. */ 5848 tp->pred_flags = 0; 5849 } 5850 5851 /* This is the 'fast' part of urgent handling. */ 5852 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5853 { 5854 struct tcp_sock *tp = tcp_sk(sk); 5855 5856 /* Check if we get a new urgent pointer - normally not. */ 5857 if (unlikely(th->urg)) 5858 tcp_check_urg(sk, th); 5859 5860 /* Do we wait for any urgent data? - normally not... */ 5861 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5862 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5863 th->syn; 5864 5865 /* Is the urgent pointer pointing into this packet? */ 5866 if (ptr < skb->len) { 5867 u8 tmp; 5868 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5869 BUG(); 5870 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5871 if (!sock_flag(sk, SOCK_DEAD)) 5872 sk->sk_data_ready(sk); 5873 } 5874 } 5875 } 5876 5877 /* Accept RST for rcv_nxt - 1 after a FIN. 5878 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5879 * FIN is sent followed by a RST packet. The RST is sent with the same 5880 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5881 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5882 * ACKs on the closed socket. In addition middleboxes can drop either the 5883 * challenge ACK or a subsequent RST. 5884 */ 5885 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5886 { 5887 const struct tcp_sock *tp = tcp_sk(sk); 5888 5889 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5890 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5891 TCPF_CLOSING)); 5892 } 5893 5894 /* Does PAWS and seqno based validation of an incoming segment, flags will 5895 * play significant role here. 5896 */ 5897 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5898 const struct tcphdr *th, int syn_inerr) 5899 { 5900 struct tcp_sock *tp = tcp_sk(sk); 5901 SKB_DR(reason); 5902 5903 /* RFC1323: H1. Apply PAWS check first. */ 5904 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5905 tp->rx_opt.saw_tstamp && 5906 tcp_paws_discard(sk, skb)) { 5907 if (!th->rst) { 5908 if (unlikely(th->syn)) 5909 goto syn_challenge; 5910 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5911 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5912 LINUX_MIB_TCPACKSKIPPEDPAWS, 5913 &tp->last_oow_ack_time)) 5914 tcp_send_dupack(sk, skb); 5915 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5916 goto discard; 5917 } 5918 /* Reset is accepted even if it did not pass PAWS. */ 5919 } 5920 5921 /* Step 1: check sequence number */ 5922 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5923 if (reason) { 5924 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5925 * (RST) segments are validated by checking their SEQ-fields." 5926 * And page 69: "If an incoming segment is not acceptable, 5927 * an acknowledgment should be sent in reply (unless the RST 5928 * bit is set, if so drop the segment and return)". 5929 */ 5930 if (!th->rst) { 5931 if (th->syn) 5932 goto syn_challenge; 5933 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5934 LINUX_MIB_TCPACKSKIPPEDSEQ, 5935 &tp->last_oow_ack_time)) 5936 tcp_send_dupack(sk, skb); 5937 } else if (tcp_reset_check(sk, skb)) { 5938 goto reset; 5939 } 5940 goto discard; 5941 } 5942 5943 /* Step 2: check RST bit */ 5944 if (th->rst) { 5945 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5946 * FIN and SACK too if available): 5947 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5948 * the right-most SACK block, 5949 * then 5950 * RESET the connection 5951 * else 5952 * Send a challenge ACK 5953 */ 5954 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5955 tcp_reset_check(sk, skb)) 5956 goto reset; 5957 5958 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5959 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5960 int max_sack = sp[0].end_seq; 5961 int this_sack; 5962 5963 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5964 ++this_sack) { 5965 max_sack = after(sp[this_sack].end_seq, 5966 max_sack) ? 5967 sp[this_sack].end_seq : max_sack; 5968 } 5969 5970 if (TCP_SKB_CB(skb)->seq == max_sack) 5971 goto reset; 5972 } 5973 5974 /* Disable TFO if RST is out-of-order 5975 * and no data has been received 5976 * for current active TFO socket 5977 */ 5978 if (tp->syn_fastopen && !tp->data_segs_in && 5979 sk->sk_state == TCP_ESTABLISHED) 5980 tcp_fastopen_active_disable(sk); 5981 tcp_send_challenge_ack(sk); 5982 SKB_DR_SET(reason, TCP_RESET); 5983 goto discard; 5984 } 5985 5986 /* step 3: check security and precedence [ignored] */ 5987 5988 /* step 4: Check for a SYN 5989 * RFC 5961 4.2 : Send a challenge ack 5990 */ 5991 if (th->syn) { 5992 syn_challenge: 5993 if (syn_inerr) 5994 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5995 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5996 tcp_send_challenge_ack(sk); 5997 SKB_DR_SET(reason, TCP_INVALID_SYN); 5998 goto discard; 5999 } 6000 6001 bpf_skops_parse_hdr(sk, skb); 6002 6003 return true; 6004 6005 discard: 6006 tcp_drop_reason(sk, skb, reason); 6007 return false; 6008 6009 reset: 6010 tcp_reset(sk, skb); 6011 __kfree_skb(skb); 6012 return false; 6013 } 6014 6015 /* 6016 * TCP receive function for the ESTABLISHED state. 6017 * 6018 * It is split into a fast path and a slow path. The fast path is 6019 * disabled when: 6020 * - A zero window was announced from us - zero window probing 6021 * is only handled properly in the slow path. 6022 * - Out of order segments arrived. 6023 * - Urgent data is expected. 6024 * - There is no buffer space left 6025 * - Unexpected TCP flags/window values/header lengths are received 6026 * (detected by checking the TCP header against pred_flags) 6027 * - Data is sent in both directions. Fast path only supports pure senders 6028 * or pure receivers (this means either the sequence number or the ack 6029 * value must stay constant) 6030 * - Unexpected TCP option. 6031 * 6032 * When these conditions are not satisfied it drops into a standard 6033 * receive procedure patterned after RFC793 to handle all cases. 6034 * The first three cases are guaranteed by proper pred_flags setting, 6035 * the rest is checked inline. Fast processing is turned on in 6036 * tcp_data_queue when everything is OK. 6037 */ 6038 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 6039 { 6040 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 6041 const struct tcphdr *th = (const struct tcphdr *)skb->data; 6042 struct tcp_sock *tp = tcp_sk(sk); 6043 unsigned int len = skb->len; 6044 6045 /* TCP congestion window tracking */ 6046 trace_tcp_probe(sk, skb); 6047 6048 tcp_mstamp_refresh(tp); 6049 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 6050 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 6051 /* 6052 * Header prediction. 6053 * The code loosely follows the one in the famous 6054 * "30 instruction TCP receive" Van Jacobson mail. 6055 * 6056 * Van's trick is to deposit buffers into socket queue 6057 * on a device interrupt, to call tcp_recv function 6058 * on the receive process context and checksum and copy 6059 * the buffer to user space. smart... 6060 * 6061 * Our current scheme is not silly either but we take the 6062 * extra cost of the net_bh soft interrupt processing... 6063 * We do checksum and copy also but from device to kernel. 6064 */ 6065 6066 tp->rx_opt.saw_tstamp = 0; 6067 6068 /* pred_flags is 0xS?10 << 16 + snd_wnd 6069 * if header_prediction is to be made 6070 * 'S' will always be tp->tcp_header_len >> 2 6071 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6072 * turn it off (when there are holes in the receive 6073 * space for instance) 6074 * PSH flag is ignored. 6075 */ 6076 6077 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6078 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6079 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6080 int tcp_header_len = tp->tcp_header_len; 6081 6082 /* Timestamp header prediction: tcp_header_len 6083 * is automatically equal to th->doff*4 due to pred_flags 6084 * match. 6085 */ 6086 6087 /* Check timestamp */ 6088 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6089 /* No? Slow path! */ 6090 if (!tcp_parse_aligned_timestamp(tp, th)) 6091 goto slow_path; 6092 6093 /* If PAWS failed, check it more carefully in slow path */ 6094 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 6095 goto slow_path; 6096 6097 /* DO NOT update ts_recent here, if checksum fails 6098 * and timestamp was corrupted part, it will result 6099 * in a hung connection since we will drop all 6100 * future packets due to the PAWS test. 6101 */ 6102 } 6103 6104 if (len <= tcp_header_len) { 6105 /* Bulk data transfer: sender */ 6106 if (len == tcp_header_len) { 6107 /* Predicted packet is in window by definition. 6108 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6109 * Hence, check seq<=rcv_wup reduces to: 6110 */ 6111 if (tcp_header_len == 6112 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6113 tp->rcv_nxt == tp->rcv_wup) 6114 tcp_store_ts_recent(tp); 6115 6116 /* We know that such packets are checksummed 6117 * on entry. 6118 */ 6119 tcp_ack(sk, skb, 0); 6120 __kfree_skb(skb); 6121 tcp_data_snd_check(sk); 6122 /* When receiving pure ack in fast path, update 6123 * last ts ecr directly instead of calling 6124 * tcp_rcv_rtt_measure_ts() 6125 */ 6126 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6127 return; 6128 } else { /* Header too small */ 6129 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6130 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6131 goto discard; 6132 } 6133 } else { 6134 int eaten = 0; 6135 bool fragstolen = false; 6136 6137 if (tcp_checksum_complete(skb)) 6138 goto csum_error; 6139 6140 if ((int)skb->truesize > sk->sk_forward_alloc) 6141 goto step5; 6142 6143 /* Predicted packet is in window by definition. 6144 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6145 * Hence, check seq<=rcv_wup reduces to: 6146 */ 6147 if (tcp_header_len == 6148 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6149 tp->rcv_nxt == tp->rcv_wup) 6150 tcp_store_ts_recent(tp); 6151 6152 tcp_rcv_rtt_measure_ts(sk, skb); 6153 6154 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6155 6156 /* Bulk data transfer: receiver */ 6157 skb_dst_drop(skb); 6158 __skb_pull(skb, tcp_header_len); 6159 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6160 6161 tcp_event_data_recv(sk, skb); 6162 6163 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6164 /* Well, only one small jumplet in fast path... */ 6165 tcp_ack(sk, skb, FLAG_DATA); 6166 tcp_data_snd_check(sk); 6167 if (!inet_csk_ack_scheduled(sk)) 6168 goto no_ack; 6169 } else { 6170 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6171 } 6172 6173 __tcp_ack_snd_check(sk, 0); 6174 no_ack: 6175 if (eaten) 6176 kfree_skb_partial(skb, fragstolen); 6177 tcp_data_ready(sk); 6178 return; 6179 } 6180 } 6181 6182 slow_path: 6183 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6184 goto csum_error; 6185 6186 if (!th->ack && !th->rst && !th->syn) { 6187 reason = SKB_DROP_REASON_TCP_FLAGS; 6188 goto discard; 6189 } 6190 6191 /* 6192 * Standard slow path. 6193 */ 6194 6195 if (!tcp_validate_incoming(sk, skb, th, 1)) 6196 return; 6197 6198 step5: 6199 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6200 if ((int)reason < 0) { 6201 reason = -reason; 6202 goto discard; 6203 } 6204 tcp_rcv_rtt_measure_ts(sk, skb); 6205 6206 /* Process urgent data. */ 6207 tcp_urg(sk, skb, th); 6208 6209 /* step 7: process the segment text */ 6210 tcp_data_queue(sk, skb); 6211 6212 tcp_data_snd_check(sk); 6213 tcp_ack_snd_check(sk); 6214 return; 6215 6216 csum_error: 6217 reason = SKB_DROP_REASON_TCP_CSUM; 6218 trace_tcp_bad_csum(skb); 6219 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6220 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6221 6222 discard: 6223 tcp_drop_reason(sk, skb, reason); 6224 } 6225 EXPORT_SYMBOL(tcp_rcv_established); 6226 6227 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6228 { 6229 struct inet_connection_sock *icsk = inet_csk(sk); 6230 struct tcp_sock *tp = tcp_sk(sk); 6231 6232 tcp_mtup_init(sk); 6233 icsk->icsk_af_ops->rebuild_header(sk); 6234 tcp_init_metrics(sk); 6235 6236 /* Initialize the congestion window to start the transfer. 6237 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6238 * retransmitted. In light of RFC6298 more aggressive 1sec 6239 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6240 * retransmission has occurred. 6241 */ 6242 if (tp->total_retrans > 1 && tp->undo_marker) 6243 tcp_snd_cwnd_set(tp, 1); 6244 else 6245 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6246 tp->snd_cwnd_stamp = tcp_jiffies32; 6247 6248 bpf_skops_established(sk, bpf_op, skb); 6249 /* Initialize congestion control unless BPF initialized it already: */ 6250 if (!icsk->icsk_ca_initialized) 6251 tcp_init_congestion_control(sk); 6252 tcp_init_buffer_space(sk); 6253 } 6254 6255 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6256 { 6257 struct tcp_sock *tp = tcp_sk(sk); 6258 struct inet_connection_sock *icsk = inet_csk(sk); 6259 6260 tcp_ao_finish_connect(sk, skb); 6261 tcp_set_state(sk, TCP_ESTABLISHED); 6262 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6263 6264 if (skb) { 6265 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6266 security_inet_conn_established(sk, skb); 6267 sk_mark_napi_id(sk, skb); 6268 } 6269 6270 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6271 6272 /* Prevent spurious tcp_cwnd_restart() on first data 6273 * packet. 6274 */ 6275 tp->lsndtime = tcp_jiffies32; 6276 6277 if (sock_flag(sk, SOCK_KEEPOPEN)) 6278 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6279 6280 if (!tp->rx_opt.snd_wscale) 6281 __tcp_fast_path_on(tp, tp->snd_wnd); 6282 else 6283 tp->pred_flags = 0; 6284 } 6285 6286 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6287 struct tcp_fastopen_cookie *cookie) 6288 { 6289 struct tcp_sock *tp = tcp_sk(sk); 6290 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6291 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6292 bool syn_drop = false; 6293 6294 if (mss == tp->rx_opt.user_mss) { 6295 struct tcp_options_received opt; 6296 6297 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6298 tcp_clear_options(&opt); 6299 opt.user_mss = opt.mss_clamp = 0; 6300 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6301 mss = opt.mss_clamp; 6302 } 6303 6304 if (!tp->syn_fastopen) { 6305 /* Ignore an unsolicited cookie */ 6306 cookie->len = -1; 6307 } else if (tp->total_retrans) { 6308 /* SYN timed out and the SYN-ACK neither has a cookie nor 6309 * acknowledges data. Presumably the remote received only 6310 * the retransmitted (regular) SYNs: either the original 6311 * SYN-data or the corresponding SYN-ACK was dropped. 6312 */ 6313 syn_drop = (cookie->len < 0 && data); 6314 } else if (cookie->len < 0 && !tp->syn_data) { 6315 /* We requested a cookie but didn't get it. If we did not use 6316 * the (old) exp opt format then try so next time (try_exp=1). 6317 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6318 */ 6319 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6320 } 6321 6322 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6323 6324 if (data) { /* Retransmit unacked data in SYN */ 6325 if (tp->total_retrans) 6326 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6327 else 6328 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6329 skb_rbtree_walk_from(data) 6330 tcp_mark_skb_lost(sk, data); 6331 tcp_non_congestion_loss_retransmit(sk); 6332 NET_INC_STATS(sock_net(sk), 6333 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6334 return true; 6335 } 6336 tp->syn_data_acked = tp->syn_data; 6337 if (tp->syn_data_acked) { 6338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6339 /* SYN-data is counted as two separate packets in tcp_ack() */ 6340 if (tp->delivered > 1) 6341 --tp->delivered; 6342 } 6343 6344 tcp_fastopen_add_skb(sk, synack); 6345 6346 return false; 6347 } 6348 6349 static void smc_check_reset_syn(struct tcp_sock *tp) 6350 { 6351 #if IS_ENABLED(CONFIG_SMC) 6352 if (static_branch_unlikely(&tcp_have_smc)) { 6353 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6354 tp->syn_smc = 0; 6355 } 6356 #endif 6357 } 6358 6359 static void tcp_try_undo_spurious_syn(struct sock *sk) 6360 { 6361 struct tcp_sock *tp = tcp_sk(sk); 6362 u32 syn_stamp; 6363 6364 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6365 * spurious if the ACK's timestamp option echo value matches the 6366 * original SYN timestamp. 6367 */ 6368 syn_stamp = tp->retrans_stamp; 6369 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6370 syn_stamp == tp->rx_opt.rcv_tsecr) 6371 tp->undo_marker = 0; 6372 } 6373 6374 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6375 const struct tcphdr *th) 6376 { 6377 struct inet_connection_sock *icsk = inet_csk(sk); 6378 struct tcp_sock *tp = tcp_sk(sk); 6379 struct tcp_fastopen_cookie foc = { .len = -1 }; 6380 int saved_clamp = tp->rx_opt.mss_clamp; 6381 bool fastopen_fail; 6382 SKB_DR(reason); 6383 6384 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6385 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6386 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6387 6388 if (th->ack) { 6389 /* rfc793: 6390 * "If the state is SYN-SENT then 6391 * first check the ACK bit 6392 * If the ACK bit is set 6393 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6394 * a reset (unless the RST bit is set, if so drop 6395 * the segment and return)" 6396 */ 6397 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6398 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6399 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6400 if (icsk->icsk_retransmits == 0) 6401 inet_csk_reset_xmit_timer(sk, 6402 ICSK_TIME_RETRANS, 6403 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6404 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE); 6405 goto reset_and_undo; 6406 } 6407 6408 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6409 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6410 tcp_time_stamp_ts(tp))) { 6411 NET_INC_STATS(sock_net(sk), 6412 LINUX_MIB_PAWSACTIVEREJECTED); 6413 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6414 goto reset_and_undo; 6415 } 6416 6417 /* Now ACK is acceptable. 6418 * 6419 * "If the RST bit is set 6420 * If the ACK was acceptable then signal the user "error: 6421 * connection reset", drop the segment, enter CLOSED state, 6422 * delete TCB, and return." 6423 */ 6424 6425 if (th->rst) { 6426 tcp_reset(sk, skb); 6427 consume: 6428 __kfree_skb(skb); 6429 return 0; 6430 } 6431 6432 /* rfc793: 6433 * "fifth, if neither of the SYN or RST bits is set then 6434 * drop the segment and return." 6435 * 6436 * See note below! 6437 * --ANK(990513) 6438 */ 6439 if (!th->syn) { 6440 SKB_DR_SET(reason, TCP_FLAGS); 6441 goto discard_and_undo; 6442 } 6443 /* rfc793: 6444 * "If the SYN bit is on ... 6445 * are acceptable then ... 6446 * (our SYN has been ACKed), change the connection 6447 * state to ESTABLISHED..." 6448 */ 6449 6450 tcp_ecn_rcv_synack(tp, th); 6451 6452 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6453 tcp_try_undo_spurious_syn(sk); 6454 tcp_ack(sk, skb, FLAG_SLOWPATH); 6455 6456 /* Ok.. it's good. Set up sequence numbers and 6457 * move to established. 6458 */ 6459 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6460 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6461 6462 /* RFC1323: The window in SYN & SYN/ACK segments is 6463 * never scaled. 6464 */ 6465 tp->snd_wnd = ntohs(th->window); 6466 6467 if (!tp->rx_opt.wscale_ok) { 6468 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6469 WRITE_ONCE(tp->window_clamp, 6470 min(tp->window_clamp, 65535U)); 6471 } 6472 6473 if (tp->rx_opt.saw_tstamp) { 6474 tp->rx_opt.tstamp_ok = 1; 6475 tp->tcp_header_len = 6476 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6477 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6478 tcp_store_ts_recent(tp); 6479 } else { 6480 tp->tcp_header_len = sizeof(struct tcphdr); 6481 } 6482 6483 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6484 tcp_initialize_rcv_mss(sk); 6485 6486 /* Remember, tcp_poll() does not lock socket! 6487 * Change state from SYN-SENT only after copied_seq 6488 * is initialized. */ 6489 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6490 6491 smc_check_reset_syn(tp); 6492 6493 smp_mb(); 6494 6495 tcp_finish_connect(sk, skb); 6496 6497 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6498 tcp_rcv_fastopen_synack(sk, skb, &foc); 6499 6500 if (!sock_flag(sk, SOCK_DEAD)) { 6501 sk->sk_state_change(sk); 6502 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6503 } 6504 if (fastopen_fail) 6505 return -1; 6506 if (sk->sk_write_pending || 6507 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6508 inet_csk_in_pingpong_mode(sk)) { 6509 /* Save one ACK. Data will be ready after 6510 * several ticks, if write_pending is set. 6511 * 6512 * It may be deleted, but with this feature tcpdumps 6513 * look so _wonderfully_ clever, that I was not able 6514 * to stand against the temptation 8) --ANK 6515 */ 6516 inet_csk_schedule_ack(sk); 6517 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6518 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6519 TCP_DELACK_MAX, TCP_RTO_MAX); 6520 goto consume; 6521 } 6522 tcp_send_ack(sk); 6523 return -1; 6524 } 6525 6526 /* No ACK in the segment */ 6527 6528 if (th->rst) { 6529 /* rfc793: 6530 * "If the RST bit is set 6531 * 6532 * Otherwise (no ACK) drop the segment and return." 6533 */ 6534 SKB_DR_SET(reason, TCP_RESET); 6535 goto discard_and_undo; 6536 } 6537 6538 /* PAWS check. */ 6539 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6540 tcp_paws_reject(&tp->rx_opt, 0)) { 6541 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6542 goto discard_and_undo; 6543 } 6544 if (th->syn) { 6545 /* We see SYN without ACK. It is attempt of 6546 * simultaneous connect with crossed SYNs. 6547 * Particularly, it can be connect to self. 6548 */ 6549 #ifdef CONFIG_TCP_AO 6550 struct tcp_ao_info *ao; 6551 6552 ao = rcu_dereference_protected(tp->ao_info, 6553 lockdep_sock_is_held(sk)); 6554 if (ao) { 6555 WRITE_ONCE(ao->risn, th->seq); 6556 ao->rcv_sne = 0; 6557 } 6558 #endif 6559 tcp_set_state(sk, TCP_SYN_RECV); 6560 6561 if (tp->rx_opt.saw_tstamp) { 6562 tp->rx_opt.tstamp_ok = 1; 6563 tcp_store_ts_recent(tp); 6564 tp->tcp_header_len = 6565 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6566 } else { 6567 tp->tcp_header_len = sizeof(struct tcphdr); 6568 } 6569 6570 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6571 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6572 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6573 6574 /* RFC1323: The window in SYN & SYN/ACK segments is 6575 * never scaled. 6576 */ 6577 tp->snd_wnd = ntohs(th->window); 6578 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6579 tp->max_window = tp->snd_wnd; 6580 6581 tcp_ecn_rcv_syn(tp, th); 6582 6583 tcp_mtup_init(sk); 6584 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6585 tcp_initialize_rcv_mss(sk); 6586 6587 tcp_send_synack(sk); 6588 #if 0 6589 /* Note, we could accept data and URG from this segment. 6590 * There are no obstacles to make this (except that we must 6591 * either change tcp_recvmsg() to prevent it from returning data 6592 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6593 * 6594 * However, if we ignore data in ACKless segments sometimes, 6595 * we have no reasons to accept it sometimes. 6596 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6597 * is not flawless. So, discard packet for sanity. 6598 * Uncomment this return to process the data. 6599 */ 6600 return -1; 6601 #else 6602 goto consume; 6603 #endif 6604 } 6605 /* "fifth, if neither of the SYN or RST bits is set then 6606 * drop the segment and return." 6607 */ 6608 6609 discard_and_undo: 6610 tcp_clear_options(&tp->rx_opt); 6611 tp->rx_opt.mss_clamp = saved_clamp; 6612 tcp_drop_reason(sk, skb, reason); 6613 return 0; 6614 6615 reset_and_undo: 6616 tcp_clear_options(&tp->rx_opt); 6617 tp->rx_opt.mss_clamp = saved_clamp; 6618 /* we can reuse/return @reason to its caller to handle the exception */ 6619 return reason; 6620 } 6621 6622 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6623 { 6624 struct tcp_sock *tp = tcp_sk(sk); 6625 struct request_sock *req; 6626 6627 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6628 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6629 */ 6630 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6631 tcp_try_undo_recovery(sk); 6632 6633 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6634 tcp_update_rto_time(tp); 6635 tp->retrans_stamp = 0; 6636 inet_csk(sk)->icsk_retransmits = 0; 6637 6638 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6639 * we no longer need req so release it. 6640 */ 6641 req = rcu_dereference_protected(tp->fastopen_rsk, 6642 lockdep_sock_is_held(sk)); 6643 reqsk_fastopen_remove(sk, req, false); 6644 6645 /* Re-arm the timer because data may have been sent out. 6646 * This is similar to the regular data transmission case 6647 * when new data has just been ack'ed. 6648 * 6649 * (TFO) - we could try to be more aggressive and 6650 * retransmitting any data sooner based on when they 6651 * are sent out. 6652 */ 6653 tcp_rearm_rto(sk); 6654 } 6655 6656 /* 6657 * This function implements the receiving procedure of RFC 793 for 6658 * all states except ESTABLISHED and TIME_WAIT. 6659 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6660 * address independent. 6661 */ 6662 6663 enum skb_drop_reason 6664 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6665 { 6666 struct tcp_sock *tp = tcp_sk(sk); 6667 struct inet_connection_sock *icsk = inet_csk(sk); 6668 const struct tcphdr *th = tcp_hdr(skb); 6669 struct request_sock *req; 6670 int queued = 0; 6671 SKB_DR(reason); 6672 6673 switch (sk->sk_state) { 6674 case TCP_CLOSE: 6675 SKB_DR_SET(reason, TCP_CLOSE); 6676 goto discard; 6677 6678 case TCP_LISTEN: 6679 if (th->ack) 6680 return SKB_DROP_REASON_TCP_FLAGS; 6681 6682 if (th->rst) { 6683 SKB_DR_SET(reason, TCP_RESET); 6684 goto discard; 6685 } 6686 if (th->syn) { 6687 if (th->fin) { 6688 SKB_DR_SET(reason, TCP_FLAGS); 6689 goto discard; 6690 } 6691 /* It is possible that we process SYN packets from backlog, 6692 * so we need to make sure to disable BH and RCU right there. 6693 */ 6694 rcu_read_lock(); 6695 local_bh_disable(); 6696 icsk->icsk_af_ops->conn_request(sk, skb); 6697 local_bh_enable(); 6698 rcu_read_unlock(); 6699 6700 consume_skb(skb); 6701 return 0; 6702 } 6703 SKB_DR_SET(reason, TCP_FLAGS); 6704 goto discard; 6705 6706 case TCP_SYN_SENT: 6707 tp->rx_opt.saw_tstamp = 0; 6708 tcp_mstamp_refresh(tp); 6709 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6710 if (queued >= 0) 6711 return queued; 6712 6713 /* Do step6 onward by hand. */ 6714 tcp_urg(sk, skb, th); 6715 __kfree_skb(skb); 6716 tcp_data_snd_check(sk); 6717 return 0; 6718 } 6719 6720 tcp_mstamp_refresh(tp); 6721 tp->rx_opt.saw_tstamp = 0; 6722 req = rcu_dereference_protected(tp->fastopen_rsk, 6723 lockdep_sock_is_held(sk)); 6724 if (req) { 6725 bool req_stolen; 6726 6727 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6728 sk->sk_state != TCP_FIN_WAIT1); 6729 6730 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6731 SKB_DR_SET(reason, TCP_FASTOPEN); 6732 goto discard; 6733 } 6734 } 6735 6736 if (!th->ack && !th->rst && !th->syn) { 6737 SKB_DR_SET(reason, TCP_FLAGS); 6738 goto discard; 6739 } 6740 if (!tcp_validate_incoming(sk, skb, th, 0)) 6741 return 0; 6742 6743 /* step 5: check the ACK field */ 6744 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | 6745 FLAG_UPDATE_TS_RECENT | 6746 FLAG_NO_CHALLENGE_ACK); 6747 6748 if ((int)reason <= 0) { 6749 if (sk->sk_state == TCP_SYN_RECV) { 6750 /* send one RST */ 6751 if (!reason) 6752 return SKB_DROP_REASON_TCP_OLD_ACK; 6753 return -reason; 6754 } 6755 /* accept old ack during closing */ 6756 if ((int)reason < 0) { 6757 tcp_send_challenge_ack(sk); 6758 reason = -reason; 6759 goto discard; 6760 } 6761 } 6762 SKB_DR_SET(reason, NOT_SPECIFIED); 6763 switch (sk->sk_state) { 6764 case TCP_SYN_RECV: 6765 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6766 if (!tp->srtt_us) 6767 tcp_synack_rtt_meas(sk, req); 6768 6769 if (req) { 6770 tcp_rcv_synrecv_state_fastopen(sk); 6771 } else { 6772 tcp_try_undo_spurious_syn(sk); 6773 tp->retrans_stamp = 0; 6774 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6775 skb); 6776 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6777 } 6778 tcp_ao_established(sk); 6779 smp_mb(); 6780 tcp_set_state(sk, TCP_ESTABLISHED); 6781 sk->sk_state_change(sk); 6782 6783 /* Note, that this wakeup is only for marginal crossed SYN case. 6784 * Passively open sockets are not waked up, because 6785 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6786 */ 6787 if (sk->sk_socket) 6788 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6789 6790 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6791 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6792 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6793 6794 if (tp->rx_opt.tstamp_ok) 6795 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6796 6797 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6798 tcp_update_pacing_rate(sk); 6799 6800 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6801 tp->lsndtime = tcp_jiffies32; 6802 6803 tcp_initialize_rcv_mss(sk); 6804 tcp_fast_path_on(tp); 6805 if (sk->sk_shutdown & SEND_SHUTDOWN) 6806 tcp_shutdown(sk, SEND_SHUTDOWN); 6807 break; 6808 6809 case TCP_FIN_WAIT1: { 6810 int tmo; 6811 6812 if (req) 6813 tcp_rcv_synrecv_state_fastopen(sk); 6814 6815 if (tp->snd_una != tp->write_seq) 6816 break; 6817 6818 tcp_set_state(sk, TCP_FIN_WAIT2); 6819 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6820 6821 sk_dst_confirm(sk); 6822 6823 if (!sock_flag(sk, SOCK_DEAD)) { 6824 /* Wake up lingering close() */ 6825 sk->sk_state_change(sk); 6826 break; 6827 } 6828 6829 if (READ_ONCE(tp->linger2) < 0) { 6830 tcp_done(sk); 6831 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6832 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6833 } 6834 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6835 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6836 /* Receive out of order FIN after close() */ 6837 if (tp->syn_fastopen && th->fin) 6838 tcp_fastopen_active_disable(sk); 6839 tcp_done(sk); 6840 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6841 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6842 } 6843 6844 tmo = tcp_fin_time(sk); 6845 if (tmo > TCP_TIMEWAIT_LEN) { 6846 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6847 } else if (th->fin || sock_owned_by_user(sk)) { 6848 /* Bad case. We could lose such FIN otherwise. 6849 * It is not a big problem, but it looks confusing 6850 * and not so rare event. We still can lose it now, 6851 * if it spins in bh_lock_sock(), but it is really 6852 * marginal case. 6853 */ 6854 inet_csk_reset_keepalive_timer(sk, tmo); 6855 } else { 6856 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6857 goto consume; 6858 } 6859 break; 6860 } 6861 6862 case TCP_CLOSING: 6863 if (tp->snd_una == tp->write_seq) { 6864 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6865 goto consume; 6866 } 6867 break; 6868 6869 case TCP_LAST_ACK: 6870 if (tp->snd_una == tp->write_seq) { 6871 tcp_update_metrics(sk); 6872 tcp_done(sk); 6873 goto consume; 6874 } 6875 break; 6876 } 6877 6878 /* step 6: check the URG bit */ 6879 tcp_urg(sk, skb, th); 6880 6881 /* step 7: process the segment text */ 6882 switch (sk->sk_state) { 6883 case TCP_CLOSE_WAIT: 6884 case TCP_CLOSING: 6885 case TCP_LAST_ACK: 6886 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6887 /* If a subflow has been reset, the packet should not 6888 * continue to be processed, drop the packet. 6889 */ 6890 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6891 goto discard; 6892 break; 6893 } 6894 fallthrough; 6895 case TCP_FIN_WAIT1: 6896 case TCP_FIN_WAIT2: 6897 /* RFC 793 says to queue data in these states, 6898 * RFC 1122 says we MUST send a reset. 6899 * BSD 4.4 also does reset. 6900 */ 6901 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6902 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6903 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6904 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6905 tcp_reset(sk, skb); 6906 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6907 } 6908 } 6909 fallthrough; 6910 case TCP_ESTABLISHED: 6911 tcp_data_queue(sk, skb); 6912 queued = 1; 6913 break; 6914 } 6915 6916 /* tcp_data could move socket to TIME-WAIT */ 6917 if (sk->sk_state != TCP_CLOSE) { 6918 tcp_data_snd_check(sk); 6919 tcp_ack_snd_check(sk); 6920 } 6921 6922 if (!queued) { 6923 discard: 6924 tcp_drop_reason(sk, skb, reason); 6925 } 6926 return 0; 6927 6928 consume: 6929 __kfree_skb(skb); 6930 return 0; 6931 } 6932 EXPORT_SYMBOL(tcp_rcv_state_process); 6933 6934 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6935 { 6936 struct inet_request_sock *ireq = inet_rsk(req); 6937 6938 if (family == AF_INET) 6939 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6940 &ireq->ir_rmt_addr, port); 6941 #if IS_ENABLED(CONFIG_IPV6) 6942 else if (family == AF_INET6) 6943 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6944 &ireq->ir_v6_rmt_addr, port); 6945 #endif 6946 } 6947 6948 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6949 * 6950 * If we receive a SYN packet with these bits set, it means a 6951 * network is playing bad games with TOS bits. In order to 6952 * avoid possible false congestion notifications, we disable 6953 * TCP ECN negotiation. 6954 * 6955 * Exception: tcp_ca wants ECN. This is required for DCTCP 6956 * congestion control: Linux DCTCP asserts ECT on all packets, 6957 * including SYN, which is most optimal solution; however, 6958 * others, such as FreeBSD do not. 6959 * 6960 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6961 * set, indicating the use of a future TCP extension (such as AccECN). See 6962 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6963 * extensions. 6964 */ 6965 static void tcp_ecn_create_request(struct request_sock *req, 6966 const struct sk_buff *skb, 6967 const struct sock *listen_sk, 6968 const struct dst_entry *dst) 6969 { 6970 const struct tcphdr *th = tcp_hdr(skb); 6971 const struct net *net = sock_net(listen_sk); 6972 bool th_ecn = th->ece && th->cwr; 6973 bool ect, ecn_ok; 6974 u32 ecn_ok_dst; 6975 6976 if (!th_ecn) 6977 return; 6978 6979 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6980 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6981 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6982 6983 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6984 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6985 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6986 inet_rsk(req)->ecn_ok = 1; 6987 } 6988 6989 static void tcp_openreq_init(struct request_sock *req, 6990 const struct tcp_options_received *rx_opt, 6991 struct sk_buff *skb, const struct sock *sk) 6992 { 6993 struct inet_request_sock *ireq = inet_rsk(req); 6994 6995 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6996 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6997 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6998 tcp_rsk(req)->snt_synack = 0; 6999 tcp_rsk(req)->last_oow_ack_time = 0; 7000 req->mss = rx_opt->mss_clamp; 7001 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 7002 ireq->tstamp_ok = rx_opt->tstamp_ok; 7003 ireq->sack_ok = rx_opt->sack_ok; 7004 ireq->snd_wscale = rx_opt->snd_wscale; 7005 ireq->wscale_ok = rx_opt->wscale_ok; 7006 ireq->acked = 0; 7007 ireq->ecn_ok = 0; 7008 ireq->ir_rmt_port = tcp_hdr(skb)->source; 7009 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 7010 ireq->ir_mark = inet_request_mark(sk, skb); 7011 #if IS_ENABLED(CONFIG_SMC) 7012 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 7013 tcp_sk(sk)->smc_hs_congested(sk)); 7014 #endif 7015 } 7016 7017 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 7018 struct sock *sk_listener, 7019 bool attach_listener) 7020 { 7021 struct request_sock *req = reqsk_alloc(ops, sk_listener, 7022 attach_listener); 7023 7024 if (req) { 7025 struct inet_request_sock *ireq = inet_rsk(req); 7026 7027 ireq->ireq_opt = NULL; 7028 #if IS_ENABLED(CONFIG_IPV6) 7029 ireq->pktopts = NULL; 7030 #endif 7031 atomic64_set(&ireq->ir_cookie, 0); 7032 ireq->ireq_state = TCP_NEW_SYN_RECV; 7033 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 7034 ireq->ireq_family = sk_listener->sk_family; 7035 req->timeout = TCP_TIMEOUT_INIT; 7036 } 7037 7038 return req; 7039 } 7040 EXPORT_SYMBOL(inet_reqsk_alloc); 7041 7042 /* 7043 * Return true if a syncookie should be sent 7044 */ 7045 static bool tcp_syn_flood_action(struct sock *sk, const char *proto) 7046 { 7047 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 7048 const char *msg = "Dropping request"; 7049 struct net *net = sock_net(sk); 7050 bool want_cookie = false; 7051 u8 syncookies; 7052 7053 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7054 7055 #ifdef CONFIG_SYN_COOKIES 7056 if (syncookies) { 7057 msg = "Sending cookies"; 7058 want_cookie = true; 7059 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 7060 } else 7061 #endif 7062 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 7063 7064 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 7065 xchg(&queue->synflood_warned, 1) == 0) { 7066 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 7067 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 7068 proto, inet6_rcv_saddr(sk), 7069 sk->sk_num, msg); 7070 } else { 7071 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7072 proto, &sk->sk_rcv_saddr, 7073 sk->sk_num, msg); 7074 } 7075 } 7076 7077 return want_cookie; 7078 } 7079 7080 static void tcp_reqsk_record_syn(const struct sock *sk, 7081 struct request_sock *req, 7082 const struct sk_buff *skb) 7083 { 7084 if (tcp_sk(sk)->save_syn) { 7085 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7086 struct saved_syn *saved_syn; 7087 u32 mac_hdrlen; 7088 void *base; 7089 7090 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7091 base = skb_mac_header(skb); 7092 mac_hdrlen = skb_mac_header_len(skb); 7093 len += mac_hdrlen; 7094 } else { 7095 base = skb_network_header(skb); 7096 mac_hdrlen = 0; 7097 } 7098 7099 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7100 GFP_ATOMIC); 7101 if (saved_syn) { 7102 saved_syn->mac_hdrlen = mac_hdrlen; 7103 saved_syn->network_hdrlen = skb_network_header_len(skb); 7104 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7105 memcpy(saved_syn->data, base, len); 7106 req->saved_syn = saved_syn; 7107 } 7108 } 7109 } 7110 7111 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7112 * used for SYN cookie generation. 7113 */ 7114 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7115 const struct tcp_request_sock_ops *af_ops, 7116 struct sock *sk, struct tcphdr *th) 7117 { 7118 struct tcp_sock *tp = tcp_sk(sk); 7119 u16 mss; 7120 7121 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7122 !inet_csk_reqsk_queue_is_full(sk)) 7123 return 0; 7124 7125 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7126 return 0; 7127 7128 if (sk_acceptq_is_full(sk)) { 7129 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7130 return 0; 7131 } 7132 7133 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7134 if (!mss) 7135 mss = af_ops->mss_clamp; 7136 7137 return mss; 7138 } 7139 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 7140 7141 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7142 const struct tcp_request_sock_ops *af_ops, 7143 struct sock *sk, struct sk_buff *skb) 7144 { 7145 struct tcp_fastopen_cookie foc = { .len = -1 }; 7146 struct tcp_options_received tmp_opt; 7147 struct tcp_sock *tp = tcp_sk(sk); 7148 struct net *net = sock_net(sk); 7149 struct sock *fastopen_sk = NULL; 7150 struct request_sock *req; 7151 bool want_cookie = false; 7152 struct dst_entry *dst; 7153 struct flowi fl; 7154 u8 syncookies; 7155 u32 isn; 7156 7157 #ifdef CONFIG_TCP_AO 7158 const struct tcp_ao_hdr *aoh; 7159 #endif 7160 7161 isn = __this_cpu_read(tcp_tw_isn); 7162 if (isn) { 7163 /* TW buckets are converted to open requests without 7164 * limitations, they conserve resources and peer is 7165 * evidently real one. 7166 */ 7167 __this_cpu_write(tcp_tw_isn, 0); 7168 } else { 7169 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7170 7171 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) { 7172 want_cookie = tcp_syn_flood_action(sk, 7173 rsk_ops->slab_name); 7174 if (!want_cookie) 7175 goto drop; 7176 } 7177 } 7178 7179 if (sk_acceptq_is_full(sk)) { 7180 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7181 goto drop; 7182 } 7183 7184 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7185 if (!req) 7186 goto drop; 7187 7188 req->syncookie = want_cookie; 7189 tcp_rsk(req)->af_specific = af_ops; 7190 tcp_rsk(req)->ts_off = 0; 7191 tcp_rsk(req)->req_usec_ts = false; 7192 #if IS_ENABLED(CONFIG_MPTCP) 7193 tcp_rsk(req)->is_mptcp = 0; 7194 #endif 7195 7196 tcp_clear_options(&tmp_opt); 7197 tmp_opt.mss_clamp = af_ops->mss_clamp; 7198 tmp_opt.user_mss = tp->rx_opt.user_mss; 7199 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7200 want_cookie ? NULL : &foc); 7201 7202 if (want_cookie && !tmp_opt.saw_tstamp) 7203 tcp_clear_options(&tmp_opt); 7204 7205 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7206 tmp_opt.smc_ok = 0; 7207 7208 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7209 tcp_openreq_init(req, &tmp_opt, skb, sk); 7210 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7211 7212 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7213 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7214 7215 dst = af_ops->route_req(sk, skb, &fl, req, isn); 7216 if (!dst) 7217 goto drop_and_free; 7218 7219 if (tmp_opt.tstamp_ok) { 7220 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 7221 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7222 } 7223 if (!want_cookie && !isn) { 7224 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7225 7226 /* Kill the following clause, if you dislike this way. */ 7227 if (!syncookies && 7228 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7229 (max_syn_backlog >> 2)) && 7230 !tcp_peer_is_proven(req, dst)) { 7231 /* Without syncookies last quarter of 7232 * backlog is filled with destinations, 7233 * proven to be alive. 7234 * It means that we continue to communicate 7235 * to destinations, already remembered 7236 * to the moment of synflood. 7237 */ 7238 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7239 rsk_ops->family); 7240 goto drop_and_release; 7241 } 7242 7243 isn = af_ops->init_seq(skb); 7244 } 7245 7246 tcp_ecn_create_request(req, skb, sk, dst); 7247 7248 if (want_cookie) { 7249 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7250 if (!tmp_opt.tstamp_ok) 7251 inet_rsk(req)->ecn_ok = 0; 7252 } 7253 7254 #ifdef CONFIG_TCP_AO 7255 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 7256 goto drop_and_release; /* Invalid TCP options */ 7257 if (aoh) { 7258 tcp_rsk(req)->used_tcp_ao = true; 7259 tcp_rsk(req)->ao_rcv_next = aoh->keyid; 7260 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid; 7261 7262 } else { 7263 tcp_rsk(req)->used_tcp_ao = false; 7264 } 7265 #endif 7266 tcp_rsk(req)->snt_isn = isn; 7267 tcp_rsk(req)->txhash = net_tx_rndhash(); 7268 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7269 tcp_openreq_init_rwin(req, sk, dst); 7270 sk_rx_queue_set(req_to_sk(req), skb); 7271 if (!want_cookie) { 7272 tcp_reqsk_record_syn(sk, req, skb); 7273 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7274 } 7275 if (fastopen_sk) { 7276 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7277 &foc, TCP_SYNACK_FASTOPEN, skb); 7278 /* Add the child socket directly into the accept queue */ 7279 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7280 reqsk_fastopen_remove(fastopen_sk, req, false); 7281 bh_unlock_sock(fastopen_sk); 7282 sock_put(fastopen_sk); 7283 goto drop_and_free; 7284 } 7285 sk->sk_data_ready(sk); 7286 bh_unlock_sock(fastopen_sk); 7287 sock_put(fastopen_sk); 7288 } else { 7289 tcp_rsk(req)->tfo_listener = false; 7290 if (!want_cookie) { 7291 req->timeout = tcp_timeout_init((struct sock *)req); 7292 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req, 7293 req->timeout))) { 7294 reqsk_free(req); 7295 return 0; 7296 } 7297 7298 } 7299 af_ops->send_synack(sk, dst, &fl, req, &foc, 7300 !want_cookie ? TCP_SYNACK_NORMAL : 7301 TCP_SYNACK_COOKIE, 7302 skb); 7303 if (want_cookie) { 7304 reqsk_free(req); 7305 return 0; 7306 } 7307 } 7308 reqsk_put(req); 7309 return 0; 7310 7311 drop_and_release: 7312 dst_release(dst); 7313 drop_and_free: 7314 __reqsk_free(req); 7315 drop: 7316 tcp_listendrop(sk); 7317 return 0; 7318 } 7319 EXPORT_SYMBOL(tcp_conn_request); 7320