1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: 25 * Pedro Roque : Fast Retransmit/Recovery. 26 * Two receive queues. 27 * Retransmit queue handled by TCP. 28 * Better retransmit timer handling. 29 * New congestion avoidance. 30 * Header prediction. 31 * Variable renaming. 32 * 33 * Eric : Fast Retransmit. 34 * Randy Scott : MSS option defines. 35 * Eric Schenk : Fixes to slow start algorithm. 36 * Eric Schenk : Yet another double ACK bug. 37 * Eric Schenk : Delayed ACK bug fixes. 38 * Eric Schenk : Floyd style fast retrans war avoidance. 39 * David S. Miller : Don't allow zero congestion window. 40 * Eric Schenk : Fix retransmitter so that it sends 41 * next packet on ack of previous packet. 42 * Andi Kleen : Moved open_request checking here 43 * and process RSTs for open_requests. 44 * Andi Kleen : Better prune_queue, and other fixes. 45 * Andrey Savochkin: Fix RTT measurements in the presence of 46 * timestamps. 47 * Andrey Savochkin: Check sequence numbers correctly when 48 * removing SACKs due to in sequence incoming 49 * data segments. 50 * Andi Kleen: Make sure we never ack data there is not 51 * enough room for. Also make this condition 52 * a fatal error if it might still happen. 53 * Andi Kleen: Add tcp_measure_rcv_mss to make 54 * connections with MSS<min(MTU,ann. MSS) 55 * work without delayed acks. 56 * Andi Kleen: Process packets with PSH set in the 57 * fast path. 58 * J Hadi Salim: ECN support 59 * Andrei Gurtov, 60 * Pasi Sarolahti, 61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 62 * engine. Lots of bugs are found. 63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 64 */ 65 66 #include <linux/mm.h> 67 #include <linux/module.h> 68 #include <linux/sysctl.h> 69 #include <net/tcp.h> 70 #include <net/inet_common.h> 71 #include <linux/ipsec.h> 72 #include <asm/unaligned.h> 73 #include <net/netdma.h> 74 75 int sysctl_tcp_timestamps __read_mostly = 1; 76 int sysctl_tcp_window_scaling __read_mostly = 1; 77 int sysctl_tcp_sack __read_mostly = 1; 78 int sysctl_tcp_fack __read_mostly = 1; 79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn __read_mostly; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 2; 84 85 int sysctl_tcp_stdurg __read_mostly; 86 int sysctl_tcp_rfc1337 __read_mostly; 87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 88 int sysctl_tcp_frto __read_mostly; 89 int sysctl_tcp_frto_response __read_mostly; 90 int sysctl_tcp_nometrics_save __read_mostly; 91 92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 93 int sysctl_tcp_abc __read_mostly; 94 95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 101 #define FLAG_ECE 0x40 /* ECE in this ACK */ 102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 105 106 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 107 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 108 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 109 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 110 111 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0) 112 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2) 113 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4) 114 115 #define IsSackFrto() (sysctl_tcp_frto == 0x2) 116 117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 118 119 /* Adapt the MSS value used to make delayed ack decision to the 120 * real world. 121 */ 122 static void tcp_measure_rcv_mss(struct sock *sk, 123 const struct sk_buff *skb) 124 { 125 struct inet_connection_sock *icsk = inet_csk(sk); 126 const unsigned int lss = icsk->icsk_ack.last_seg_size; 127 unsigned int len; 128 129 icsk->icsk_ack.last_seg_size = 0; 130 131 /* skb->len may jitter because of SACKs, even if peer 132 * sends good full-sized frames. 133 */ 134 len = skb_shinfo(skb)->gso_size ?: skb->len; 135 if (len >= icsk->icsk_ack.rcv_mss) { 136 icsk->icsk_ack.rcv_mss = len; 137 } else { 138 /* Otherwise, we make more careful check taking into account, 139 * that SACKs block is variable. 140 * 141 * "len" is invariant segment length, including TCP header. 142 */ 143 len += skb->data - skb_transport_header(skb); 144 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 145 /* If PSH is not set, packet should be 146 * full sized, provided peer TCP is not badly broken. 147 * This observation (if it is correct 8)) allows 148 * to handle super-low mtu links fairly. 149 */ 150 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 151 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 152 /* Subtract also invariant (if peer is RFC compliant), 153 * tcp header plus fixed timestamp option length. 154 * Resulting "len" is MSS free of SACK jitter. 155 */ 156 len -= tcp_sk(sk)->tcp_header_len; 157 icsk->icsk_ack.last_seg_size = len; 158 if (len == lss) { 159 icsk->icsk_ack.rcv_mss = len; 160 return; 161 } 162 } 163 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 166 } 167 } 168 169 static void tcp_incr_quickack(struct sock *sk) 170 { 171 struct inet_connection_sock *icsk = inet_csk(sk); 172 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 173 174 if (quickacks==0) 175 quickacks=2; 176 if (quickacks > icsk->icsk_ack.quick) 177 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 178 } 179 180 void tcp_enter_quickack_mode(struct sock *sk) 181 { 182 struct inet_connection_sock *icsk = inet_csk(sk); 183 tcp_incr_quickack(sk); 184 icsk->icsk_ack.pingpong = 0; 185 icsk->icsk_ack.ato = TCP_ATO_MIN; 186 } 187 188 /* Send ACKs quickly, if "quick" count is not exhausted 189 * and the session is not interactive. 190 */ 191 192 static inline int tcp_in_quickack_mode(const struct sock *sk) 193 { 194 const struct inet_connection_sock *icsk = inet_csk(sk); 195 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 196 } 197 198 /* Buffer size and advertised window tuning. 199 * 200 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 201 */ 202 203 static void tcp_fixup_sndbuf(struct sock *sk) 204 { 205 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 206 sizeof(struct sk_buff); 207 208 if (sk->sk_sndbuf < 3 * sndmem) 209 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 210 } 211 212 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 213 * 214 * All tcp_full_space() is split to two parts: "network" buffer, allocated 215 * forward and advertised in receiver window (tp->rcv_wnd) and 216 * "application buffer", required to isolate scheduling/application 217 * latencies from network. 218 * window_clamp is maximal advertised window. It can be less than 219 * tcp_full_space(), in this case tcp_full_space() - window_clamp 220 * is reserved for "application" buffer. The less window_clamp is 221 * the smoother our behaviour from viewpoint of network, but the lower 222 * throughput and the higher sensitivity of the connection to losses. 8) 223 * 224 * rcv_ssthresh is more strict window_clamp used at "slow start" 225 * phase to predict further behaviour of this connection. 226 * It is used for two goals: 227 * - to enforce header prediction at sender, even when application 228 * requires some significant "application buffer". It is check #1. 229 * - to prevent pruning of receive queue because of misprediction 230 * of receiver window. Check #2. 231 * 232 * The scheme does not work when sender sends good segments opening 233 * window and then starts to feed us spaghetti. But it should work 234 * in common situations. Otherwise, we have to rely on queue collapsing. 235 */ 236 237 /* Slow part of check#2. */ 238 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 239 { 240 struct tcp_sock *tp = tcp_sk(sk); 241 /* Optimize this! */ 242 int truesize = tcp_win_from_space(skb->truesize)/2; 243 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2; 244 245 while (tp->rcv_ssthresh <= window) { 246 if (truesize <= skb->len) 247 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 248 249 truesize >>= 1; 250 window >>= 1; 251 } 252 return 0; 253 } 254 255 static void tcp_grow_window(struct sock *sk, 256 struct sk_buff *skb) 257 { 258 struct tcp_sock *tp = tcp_sk(sk); 259 260 /* Check #1 */ 261 if (tp->rcv_ssthresh < tp->window_clamp && 262 (int)tp->rcv_ssthresh < tcp_space(sk) && 263 !tcp_memory_pressure) { 264 int incr; 265 266 /* Check #2. Increase window, if skb with such overhead 267 * will fit to rcvbuf in future. 268 */ 269 if (tcp_win_from_space(skb->truesize) <= skb->len) 270 incr = 2*tp->advmss; 271 else 272 incr = __tcp_grow_window(sk, skb); 273 274 if (incr) { 275 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp); 276 inet_csk(sk)->icsk_ack.quick |= 1; 277 } 278 } 279 } 280 281 /* 3. Tuning rcvbuf, when connection enters established state. */ 282 283 static void tcp_fixup_rcvbuf(struct sock *sk) 284 { 285 struct tcp_sock *tp = tcp_sk(sk); 286 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 287 288 /* Try to select rcvbuf so that 4 mss-sized segments 289 * will fit to window and corresponding skbs will fit to our rcvbuf. 290 * (was 3; 4 is minimum to allow fast retransmit to work.) 291 */ 292 while (tcp_win_from_space(rcvmem) < tp->advmss) 293 rcvmem += 128; 294 if (sk->sk_rcvbuf < 4 * rcvmem) 295 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 296 } 297 298 /* 4. Try to fixup all. It is made immediately after connection enters 299 * established state. 300 */ 301 static void tcp_init_buffer_space(struct sock *sk) 302 { 303 struct tcp_sock *tp = tcp_sk(sk); 304 int maxwin; 305 306 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 307 tcp_fixup_rcvbuf(sk); 308 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 309 tcp_fixup_sndbuf(sk); 310 311 tp->rcvq_space.space = tp->rcv_wnd; 312 313 maxwin = tcp_full_space(sk); 314 315 if (tp->window_clamp >= maxwin) { 316 tp->window_clamp = maxwin; 317 318 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 319 tp->window_clamp = max(maxwin - 320 (maxwin >> sysctl_tcp_app_win), 321 4 * tp->advmss); 322 } 323 324 /* Force reservation of one segment. */ 325 if (sysctl_tcp_app_win && 326 tp->window_clamp > 2 * tp->advmss && 327 tp->window_clamp + tp->advmss > maxwin) 328 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 329 330 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 331 tp->snd_cwnd_stamp = tcp_time_stamp; 332 } 333 334 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 335 static void tcp_clamp_window(struct sock *sk) 336 { 337 struct tcp_sock *tp = tcp_sk(sk); 338 struct inet_connection_sock *icsk = inet_csk(sk); 339 340 icsk->icsk_ack.quick = 0; 341 342 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 343 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 344 !tcp_memory_pressure && 345 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 346 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 347 sysctl_tcp_rmem[2]); 348 } 349 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 350 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss); 351 } 352 353 354 /* Initialize RCV_MSS value. 355 * RCV_MSS is an our guess about MSS used by the peer. 356 * We haven't any direct information about the MSS. 357 * It's better to underestimate the RCV_MSS rather than overestimate. 358 * Overestimations make us ACKing less frequently than needed. 359 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 360 */ 361 void tcp_initialize_rcv_mss(struct sock *sk) 362 { 363 struct tcp_sock *tp = tcp_sk(sk); 364 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 365 366 hint = min(hint, tp->rcv_wnd/2); 367 hint = min(hint, TCP_MIN_RCVMSS); 368 hint = max(hint, TCP_MIN_MSS); 369 370 inet_csk(sk)->icsk_ack.rcv_mss = hint; 371 } 372 373 /* Receiver "autotuning" code. 374 * 375 * The algorithm for RTT estimation w/o timestamps is based on 376 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 377 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 378 * 379 * More detail on this code can be found at 380 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 381 * though this reference is out of date. A new paper 382 * is pending. 383 */ 384 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 385 { 386 u32 new_sample = tp->rcv_rtt_est.rtt; 387 long m = sample; 388 389 if (m == 0) 390 m = 1; 391 392 if (new_sample != 0) { 393 /* If we sample in larger samples in the non-timestamp 394 * case, we could grossly overestimate the RTT especially 395 * with chatty applications or bulk transfer apps which 396 * are stalled on filesystem I/O. 397 * 398 * Also, since we are only going for a minimum in the 399 * non-timestamp case, we do not smooth things out 400 * else with timestamps disabled convergence takes too 401 * long. 402 */ 403 if (!win_dep) { 404 m -= (new_sample >> 3); 405 new_sample += m; 406 } else if (m < new_sample) 407 new_sample = m << 3; 408 } else { 409 /* No previous measure. */ 410 new_sample = m << 3; 411 } 412 413 if (tp->rcv_rtt_est.rtt != new_sample) 414 tp->rcv_rtt_est.rtt = new_sample; 415 } 416 417 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 418 { 419 if (tp->rcv_rtt_est.time == 0) 420 goto new_measure; 421 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 422 return; 423 tcp_rcv_rtt_update(tp, 424 jiffies - tp->rcv_rtt_est.time, 425 1); 426 427 new_measure: 428 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 429 tp->rcv_rtt_est.time = tcp_time_stamp; 430 } 431 432 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb) 433 { 434 struct tcp_sock *tp = tcp_sk(sk); 435 if (tp->rx_opt.rcv_tsecr && 436 (TCP_SKB_CB(skb)->end_seq - 437 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 438 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 439 } 440 441 /* 442 * This function should be called every time data is copied to user space. 443 * It calculates the appropriate TCP receive buffer space. 444 */ 445 void tcp_rcv_space_adjust(struct sock *sk) 446 { 447 struct tcp_sock *tp = tcp_sk(sk); 448 int time; 449 int space; 450 451 if (tp->rcvq_space.time == 0) 452 goto new_measure; 453 454 time = tcp_time_stamp - tp->rcvq_space.time; 455 if (time < (tp->rcv_rtt_est.rtt >> 3) || 456 tp->rcv_rtt_est.rtt == 0) 457 return; 458 459 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 460 461 space = max(tp->rcvq_space.space, space); 462 463 if (tp->rcvq_space.space != space) { 464 int rcvmem; 465 466 tp->rcvq_space.space = space; 467 468 if (sysctl_tcp_moderate_rcvbuf && 469 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 470 int new_clamp = space; 471 472 /* Receive space grows, normalize in order to 473 * take into account packet headers and sk_buff 474 * structure overhead. 475 */ 476 space /= tp->advmss; 477 if (!space) 478 space = 1; 479 rcvmem = (tp->advmss + MAX_TCP_HEADER + 480 16 + sizeof(struct sk_buff)); 481 while (tcp_win_from_space(rcvmem) < tp->advmss) 482 rcvmem += 128; 483 space *= rcvmem; 484 space = min(space, sysctl_tcp_rmem[2]); 485 if (space > sk->sk_rcvbuf) { 486 sk->sk_rcvbuf = space; 487 488 /* Make the window clamp follow along. */ 489 tp->window_clamp = new_clamp; 490 } 491 } 492 } 493 494 new_measure: 495 tp->rcvq_space.seq = tp->copied_seq; 496 tp->rcvq_space.time = tcp_time_stamp; 497 } 498 499 /* There is something which you must keep in mind when you analyze the 500 * behavior of the tp->ato delayed ack timeout interval. When a 501 * connection starts up, we want to ack as quickly as possible. The 502 * problem is that "good" TCP's do slow start at the beginning of data 503 * transmission. The means that until we send the first few ACK's the 504 * sender will sit on his end and only queue most of his data, because 505 * he can only send snd_cwnd unacked packets at any given time. For 506 * each ACK we send, he increments snd_cwnd and transmits more of his 507 * queue. -DaveM 508 */ 509 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 510 { 511 struct tcp_sock *tp = tcp_sk(sk); 512 struct inet_connection_sock *icsk = inet_csk(sk); 513 u32 now; 514 515 inet_csk_schedule_ack(sk); 516 517 tcp_measure_rcv_mss(sk, skb); 518 519 tcp_rcv_rtt_measure(tp); 520 521 now = tcp_time_stamp; 522 523 if (!icsk->icsk_ack.ato) { 524 /* The _first_ data packet received, initialize 525 * delayed ACK engine. 526 */ 527 tcp_incr_quickack(sk); 528 icsk->icsk_ack.ato = TCP_ATO_MIN; 529 } else { 530 int m = now - icsk->icsk_ack.lrcvtime; 531 532 if (m <= TCP_ATO_MIN/2) { 533 /* The fastest case is the first. */ 534 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 535 } else if (m < icsk->icsk_ack.ato) { 536 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 537 if (icsk->icsk_ack.ato > icsk->icsk_rto) 538 icsk->icsk_ack.ato = icsk->icsk_rto; 539 } else if (m > icsk->icsk_rto) { 540 /* Too long gap. Apparently sender failed to 541 * restart window, so that we send ACKs quickly. 542 */ 543 tcp_incr_quickack(sk); 544 sk_stream_mem_reclaim(sk); 545 } 546 } 547 icsk->icsk_ack.lrcvtime = now; 548 549 TCP_ECN_check_ce(tp, skb); 550 551 if (skb->len >= 128) 552 tcp_grow_window(sk, skb); 553 } 554 555 /* Called to compute a smoothed rtt estimate. The data fed to this 556 * routine either comes from timestamps, or from segments that were 557 * known _not_ to have been retransmitted [see Karn/Partridge 558 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 559 * piece by Van Jacobson. 560 * NOTE: the next three routines used to be one big routine. 561 * To save cycles in the RFC 1323 implementation it was better to break 562 * it up into three procedures. -- erics 563 */ 564 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 565 { 566 struct tcp_sock *tp = tcp_sk(sk); 567 long m = mrtt; /* RTT */ 568 569 /* The following amusing code comes from Jacobson's 570 * article in SIGCOMM '88. Note that rtt and mdev 571 * are scaled versions of rtt and mean deviation. 572 * This is designed to be as fast as possible 573 * m stands for "measurement". 574 * 575 * On a 1990 paper the rto value is changed to: 576 * RTO = rtt + 4 * mdev 577 * 578 * Funny. This algorithm seems to be very broken. 579 * These formulae increase RTO, when it should be decreased, increase 580 * too slowly, when it should be increased quickly, decrease too quickly 581 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 582 * does not matter how to _calculate_ it. Seems, it was trap 583 * that VJ failed to avoid. 8) 584 */ 585 if (m == 0) 586 m = 1; 587 if (tp->srtt != 0) { 588 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 589 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 590 if (m < 0) { 591 m = -m; /* m is now abs(error) */ 592 m -= (tp->mdev >> 2); /* similar update on mdev */ 593 /* This is similar to one of Eifel findings. 594 * Eifel blocks mdev updates when rtt decreases. 595 * This solution is a bit different: we use finer gain 596 * for mdev in this case (alpha*beta). 597 * Like Eifel it also prevents growth of rto, 598 * but also it limits too fast rto decreases, 599 * happening in pure Eifel. 600 */ 601 if (m > 0) 602 m >>= 3; 603 } else { 604 m -= (tp->mdev >> 2); /* similar update on mdev */ 605 } 606 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 607 if (tp->mdev > tp->mdev_max) { 608 tp->mdev_max = tp->mdev; 609 if (tp->mdev_max > tp->rttvar) 610 tp->rttvar = tp->mdev_max; 611 } 612 if (after(tp->snd_una, tp->rtt_seq)) { 613 if (tp->mdev_max < tp->rttvar) 614 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2; 615 tp->rtt_seq = tp->snd_nxt; 616 tp->mdev_max = TCP_RTO_MIN; 617 } 618 } else { 619 /* no previous measure. */ 620 tp->srtt = m<<3; /* take the measured time to be rtt */ 621 tp->mdev = m<<1; /* make sure rto = 3*rtt */ 622 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 623 tp->rtt_seq = tp->snd_nxt; 624 } 625 } 626 627 /* Calculate rto without backoff. This is the second half of Van Jacobson's 628 * routine referred to above. 629 */ 630 static inline void tcp_set_rto(struct sock *sk) 631 { 632 const struct tcp_sock *tp = tcp_sk(sk); 633 /* Old crap is replaced with new one. 8) 634 * 635 * More seriously: 636 * 1. If rtt variance happened to be less 50msec, it is hallucination. 637 * It cannot be less due to utterly erratic ACK generation made 638 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 639 * to do with delayed acks, because at cwnd>2 true delack timeout 640 * is invisible. Actually, Linux-2.4 also generates erratic 641 * ACKs in some circumstances. 642 */ 643 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 644 645 /* 2. Fixups made earlier cannot be right. 646 * If we do not estimate RTO correctly without them, 647 * all the algo is pure shit and should be replaced 648 * with correct one. It is exactly, which we pretend to do. 649 */ 650 } 651 652 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 653 * guarantees that rto is higher. 654 */ 655 static inline void tcp_bound_rto(struct sock *sk) 656 { 657 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 658 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 659 } 660 661 /* Save metrics learned by this TCP session. 662 This function is called only, when TCP finishes successfully 663 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 664 */ 665 void tcp_update_metrics(struct sock *sk) 666 { 667 struct tcp_sock *tp = tcp_sk(sk); 668 struct dst_entry *dst = __sk_dst_get(sk); 669 670 if (sysctl_tcp_nometrics_save) 671 return; 672 673 dst_confirm(dst); 674 675 if (dst && (dst->flags&DST_HOST)) { 676 const struct inet_connection_sock *icsk = inet_csk(sk); 677 int m; 678 679 if (icsk->icsk_backoff || !tp->srtt) { 680 /* This session failed to estimate rtt. Why? 681 * Probably, no packets returned in time. 682 * Reset our results. 683 */ 684 if (!(dst_metric_locked(dst, RTAX_RTT))) 685 dst->metrics[RTAX_RTT-1] = 0; 686 return; 687 } 688 689 m = dst_metric(dst, RTAX_RTT) - tp->srtt; 690 691 /* If newly calculated rtt larger than stored one, 692 * store new one. Otherwise, use EWMA. Remember, 693 * rtt overestimation is always better than underestimation. 694 */ 695 if (!(dst_metric_locked(dst, RTAX_RTT))) { 696 if (m <= 0) 697 dst->metrics[RTAX_RTT-1] = tp->srtt; 698 else 699 dst->metrics[RTAX_RTT-1] -= (m>>3); 700 } 701 702 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 703 if (m < 0) 704 m = -m; 705 706 /* Scale deviation to rttvar fixed point */ 707 m >>= 1; 708 if (m < tp->mdev) 709 m = tp->mdev; 710 711 if (m >= dst_metric(dst, RTAX_RTTVAR)) 712 dst->metrics[RTAX_RTTVAR-1] = m; 713 else 714 dst->metrics[RTAX_RTTVAR-1] -= 715 (dst->metrics[RTAX_RTTVAR-1] - m)>>2; 716 } 717 718 if (tp->snd_ssthresh >= 0xFFFF) { 719 /* Slow start still did not finish. */ 720 if (dst_metric(dst, RTAX_SSTHRESH) && 721 !dst_metric_locked(dst, RTAX_SSTHRESH) && 722 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 723 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 724 if (!dst_metric_locked(dst, RTAX_CWND) && 725 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 726 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd; 727 } else if (tp->snd_cwnd > tp->snd_ssthresh && 728 icsk->icsk_ca_state == TCP_CA_Open) { 729 /* Cong. avoidance phase, cwnd is reliable. */ 730 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 731 dst->metrics[RTAX_SSTHRESH-1] = 732 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 733 if (!dst_metric_locked(dst, RTAX_CWND)) 734 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; 735 } else { 736 /* Else slow start did not finish, cwnd is non-sense, 737 ssthresh may be also invalid. 738 */ 739 if (!dst_metric_locked(dst, RTAX_CWND)) 740 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; 741 if (dst->metrics[RTAX_SSTHRESH-1] && 742 !dst_metric_locked(dst, RTAX_SSTHRESH) && 743 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) 744 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 745 } 746 747 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 748 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && 749 tp->reordering != sysctl_tcp_reordering) 750 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 751 } 752 } 753 } 754 755 /* Numbers are taken from RFC2414. */ 756 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 757 { 758 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 759 760 if (!cwnd) { 761 if (tp->mss_cache > 1460) 762 cwnd = 2; 763 else 764 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 765 } 766 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 767 } 768 769 /* Set slow start threshold and cwnd not falling to slow start */ 770 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 771 { 772 struct tcp_sock *tp = tcp_sk(sk); 773 const struct inet_connection_sock *icsk = inet_csk(sk); 774 775 tp->prior_ssthresh = 0; 776 tp->bytes_acked = 0; 777 if (icsk->icsk_ca_state < TCP_CA_CWR) { 778 tp->undo_marker = 0; 779 if (set_ssthresh) 780 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 781 tp->snd_cwnd = min(tp->snd_cwnd, 782 tcp_packets_in_flight(tp) + 1U); 783 tp->snd_cwnd_cnt = 0; 784 tp->high_seq = tp->snd_nxt; 785 tp->snd_cwnd_stamp = tcp_time_stamp; 786 TCP_ECN_queue_cwr(tp); 787 788 tcp_set_ca_state(sk, TCP_CA_CWR); 789 } 790 } 791 792 /* Initialize metrics on socket. */ 793 794 static void tcp_init_metrics(struct sock *sk) 795 { 796 struct tcp_sock *tp = tcp_sk(sk); 797 struct dst_entry *dst = __sk_dst_get(sk); 798 799 if (dst == NULL) 800 goto reset; 801 802 dst_confirm(dst); 803 804 if (dst_metric_locked(dst, RTAX_CWND)) 805 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 806 if (dst_metric(dst, RTAX_SSTHRESH)) { 807 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 808 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 809 tp->snd_ssthresh = tp->snd_cwnd_clamp; 810 } 811 if (dst_metric(dst, RTAX_REORDERING) && 812 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 813 tp->rx_opt.sack_ok &= ~2; 814 tp->reordering = dst_metric(dst, RTAX_REORDERING); 815 } 816 817 if (dst_metric(dst, RTAX_RTT) == 0) 818 goto reset; 819 820 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 821 goto reset; 822 823 /* Initial rtt is determined from SYN,SYN-ACK. 824 * The segment is small and rtt may appear much 825 * less than real one. Use per-dst memory 826 * to make it more realistic. 827 * 828 * A bit of theory. RTT is time passed after "normal" sized packet 829 * is sent until it is ACKed. In normal circumstances sending small 830 * packets force peer to delay ACKs and calculation is correct too. 831 * The algorithm is adaptive and, provided we follow specs, it 832 * NEVER underestimate RTT. BUT! If peer tries to make some clever 833 * tricks sort of "quick acks" for time long enough to decrease RTT 834 * to low value, and then abruptly stops to do it and starts to delay 835 * ACKs, wait for troubles. 836 */ 837 if (dst_metric(dst, RTAX_RTT) > tp->srtt) { 838 tp->srtt = dst_metric(dst, RTAX_RTT); 839 tp->rtt_seq = tp->snd_nxt; 840 } 841 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { 842 tp->mdev = dst_metric(dst, RTAX_RTTVAR); 843 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 844 } 845 tcp_set_rto(sk); 846 tcp_bound_rto(sk); 847 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 848 goto reset; 849 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 850 tp->snd_cwnd_stamp = tcp_time_stamp; 851 return; 852 853 reset: 854 /* Play conservative. If timestamps are not 855 * supported, TCP will fail to recalculate correct 856 * rtt, if initial rto is too small. FORGET ALL AND RESET! 857 */ 858 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 859 tp->srtt = 0; 860 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 861 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 862 } 863 } 864 865 static void tcp_update_reordering(struct sock *sk, const int metric, 866 const int ts) 867 { 868 struct tcp_sock *tp = tcp_sk(sk); 869 if (metric > tp->reordering) { 870 tp->reordering = min(TCP_MAX_REORDERING, metric); 871 872 /* This exciting event is worth to be remembered. 8) */ 873 if (ts) 874 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); 875 else if (IsReno(tp)) 876 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); 877 else if (IsFack(tp)) 878 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); 879 else 880 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); 881 #if FASTRETRANS_DEBUG > 1 882 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 883 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 884 tp->reordering, 885 tp->fackets_out, 886 tp->sacked_out, 887 tp->undo_marker ? tp->undo_retrans : 0); 888 #endif 889 /* Disable FACK yet. */ 890 tp->rx_opt.sack_ok &= ~2; 891 } 892 } 893 894 /* This procedure tags the retransmission queue when SACKs arrive. 895 * 896 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 897 * Packets in queue with these bits set are counted in variables 898 * sacked_out, retrans_out and lost_out, correspondingly. 899 * 900 * Valid combinations are: 901 * Tag InFlight Description 902 * 0 1 - orig segment is in flight. 903 * S 0 - nothing flies, orig reached receiver. 904 * L 0 - nothing flies, orig lost by net. 905 * R 2 - both orig and retransmit are in flight. 906 * L|R 1 - orig is lost, retransmit is in flight. 907 * S|R 1 - orig reached receiver, retrans is still in flight. 908 * (L|S|R is logically valid, it could occur when L|R is sacked, 909 * but it is equivalent to plain S and code short-curcuits it to S. 910 * L|S is logically invalid, it would mean -1 packet in flight 8)) 911 * 912 * These 6 states form finite state machine, controlled by the following events: 913 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 914 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 915 * 3. Loss detection event of one of three flavors: 916 * A. Scoreboard estimator decided the packet is lost. 917 * A'. Reno "three dupacks" marks head of queue lost. 918 * A''. Its FACK modfication, head until snd.fack is lost. 919 * B. SACK arrives sacking data transmitted after never retransmitted 920 * hole was sent out. 921 * C. SACK arrives sacking SND.NXT at the moment, when the 922 * segment was retransmitted. 923 * 4. D-SACK added new rule: D-SACK changes any tag to S. 924 * 925 * It is pleasant to note, that state diagram turns out to be commutative, 926 * so that we are allowed not to be bothered by order of our actions, 927 * when multiple events arrive simultaneously. (see the function below). 928 * 929 * Reordering detection. 930 * -------------------- 931 * Reordering metric is maximal distance, which a packet can be displaced 932 * in packet stream. With SACKs we can estimate it: 933 * 934 * 1. SACK fills old hole and the corresponding segment was not 935 * ever retransmitted -> reordering. Alas, we cannot use it 936 * when segment was retransmitted. 937 * 2. The last flaw is solved with D-SACK. D-SACK arrives 938 * for retransmitted and already SACKed segment -> reordering.. 939 * Both of these heuristics are not used in Loss state, when we cannot 940 * account for retransmits accurately. 941 */ 942 static int 943 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una) 944 { 945 const struct inet_connection_sock *icsk = inet_csk(sk); 946 struct tcp_sock *tp = tcp_sk(sk); 947 unsigned char *ptr = (skb_transport_header(ack_skb) + 948 TCP_SKB_CB(ack_skb)->sacked); 949 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2); 950 struct sk_buff *cached_skb; 951 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3; 952 int reord = tp->packets_out; 953 int prior_fackets; 954 u32 lost_retrans = 0; 955 int flag = 0; 956 int dup_sack = 0; 957 int cached_fack_count; 958 int i; 959 int first_sack_index; 960 961 if (!tp->sacked_out) 962 tp->fackets_out = 0; 963 prior_fackets = tp->fackets_out; 964 965 /* Check for D-SACK. */ 966 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) { 967 dup_sack = 1; 968 tp->rx_opt.sack_ok |= 4; 969 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); 970 } else if (num_sacks > 1 && 971 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) && 972 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) { 973 dup_sack = 1; 974 tp->rx_opt.sack_ok |= 4; 975 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); 976 } 977 978 /* D-SACK for already forgotten data... 979 * Do dumb counting. */ 980 if (dup_sack && 981 !after(ntohl(sp[0].end_seq), prior_snd_una) && 982 after(ntohl(sp[0].end_seq), tp->undo_marker)) 983 tp->undo_retrans--; 984 985 /* Eliminate too old ACKs, but take into 986 * account more or less fresh ones, they can 987 * contain valid SACK info. 988 */ 989 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 990 return 0; 991 992 /* SACK fastpath: 993 * if the only SACK change is the increase of the end_seq of 994 * the first block then only apply that SACK block 995 * and use retrans queue hinting otherwise slowpath */ 996 flag = 1; 997 for (i = 0; i < num_sacks; i++) { 998 __be32 start_seq = sp[i].start_seq; 999 __be32 end_seq = sp[i].end_seq; 1000 1001 if (i == 0) { 1002 if (tp->recv_sack_cache[i].start_seq != start_seq) 1003 flag = 0; 1004 } else { 1005 if ((tp->recv_sack_cache[i].start_seq != start_seq) || 1006 (tp->recv_sack_cache[i].end_seq != end_seq)) 1007 flag = 0; 1008 } 1009 tp->recv_sack_cache[i].start_seq = start_seq; 1010 tp->recv_sack_cache[i].end_seq = end_seq; 1011 } 1012 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */ 1013 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) { 1014 tp->recv_sack_cache[i].start_seq = 0; 1015 tp->recv_sack_cache[i].end_seq = 0; 1016 } 1017 1018 first_sack_index = 0; 1019 if (flag) 1020 num_sacks = 1; 1021 else { 1022 int j; 1023 tp->fastpath_skb_hint = NULL; 1024 1025 /* order SACK blocks to allow in order walk of the retrans queue */ 1026 for (i = num_sacks-1; i > 0; i--) { 1027 for (j = 0; j < i; j++){ 1028 if (after(ntohl(sp[j].start_seq), 1029 ntohl(sp[j+1].start_seq))){ 1030 struct tcp_sack_block_wire tmp; 1031 1032 tmp = sp[j]; 1033 sp[j] = sp[j+1]; 1034 sp[j+1] = tmp; 1035 1036 /* Track where the first SACK block goes to */ 1037 if (j == first_sack_index) 1038 first_sack_index = j+1; 1039 } 1040 1041 } 1042 } 1043 } 1044 1045 /* clear flag as used for different purpose in following code */ 1046 flag = 0; 1047 1048 /* Use SACK fastpath hint if valid */ 1049 cached_skb = tp->fastpath_skb_hint; 1050 cached_fack_count = tp->fastpath_cnt_hint; 1051 if (!cached_skb) { 1052 cached_skb = tcp_write_queue_head(sk); 1053 cached_fack_count = 0; 1054 } 1055 1056 for (i=0; i<num_sacks; i++, sp++) { 1057 struct sk_buff *skb; 1058 __u32 start_seq = ntohl(sp->start_seq); 1059 __u32 end_seq = ntohl(sp->end_seq); 1060 int fack_count; 1061 1062 skb = cached_skb; 1063 fack_count = cached_fack_count; 1064 1065 /* Event "B" in the comment above. */ 1066 if (after(end_seq, tp->high_seq)) 1067 flag |= FLAG_DATA_LOST; 1068 1069 tcp_for_write_queue_from(skb, sk) { 1070 int in_sack, pcount; 1071 u8 sacked; 1072 1073 if (skb == tcp_send_head(sk)) 1074 break; 1075 1076 cached_skb = skb; 1077 cached_fack_count = fack_count; 1078 if (i == first_sack_index) { 1079 tp->fastpath_skb_hint = skb; 1080 tp->fastpath_cnt_hint = fack_count; 1081 } 1082 1083 /* The retransmission queue is always in order, so 1084 * we can short-circuit the walk early. 1085 */ 1086 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1087 break; 1088 1089 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1090 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1091 1092 pcount = tcp_skb_pcount(skb); 1093 1094 if (pcount > 1 && !in_sack && 1095 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1096 unsigned int pkt_len; 1097 1098 in_sack = !after(start_seq, 1099 TCP_SKB_CB(skb)->seq); 1100 1101 if (!in_sack) 1102 pkt_len = (start_seq - 1103 TCP_SKB_CB(skb)->seq); 1104 else 1105 pkt_len = (end_seq - 1106 TCP_SKB_CB(skb)->seq); 1107 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size)) 1108 break; 1109 pcount = tcp_skb_pcount(skb); 1110 } 1111 1112 fack_count += pcount; 1113 1114 sacked = TCP_SKB_CB(skb)->sacked; 1115 1116 /* Account D-SACK for retransmitted packet. */ 1117 if ((dup_sack && in_sack) && 1118 (sacked & TCPCB_RETRANS) && 1119 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1120 tp->undo_retrans--; 1121 1122 /* The frame is ACKed. */ 1123 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) { 1124 if (sacked&TCPCB_RETRANS) { 1125 if ((dup_sack && in_sack) && 1126 (sacked&TCPCB_SACKED_ACKED)) 1127 reord = min(fack_count, reord); 1128 } else { 1129 /* If it was in a hole, we detected reordering. */ 1130 if (fack_count < prior_fackets && 1131 !(sacked&TCPCB_SACKED_ACKED)) 1132 reord = min(fack_count, reord); 1133 } 1134 1135 /* Nothing to do; acked frame is about to be dropped. */ 1136 continue; 1137 } 1138 1139 if ((sacked&TCPCB_SACKED_RETRANS) && 1140 after(end_seq, TCP_SKB_CB(skb)->ack_seq) && 1141 (!lost_retrans || after(end_seq, lost_retrans))) 1142 lost_retrans = end_seq; 1143 1144 if (!in_sack) 1145 continue; 1146 1147 if (!(sacked&TCPCB_SACKED_ACKED)) { 1148 if (sacked & TCPCB_SACKED_RETRANS) { 1149 /* If the segment is not tagged as lost, 1150 * we do not clear RETRANS, believing 1151 * that retransmission is still in flight. 1152 */ 1153 if (sacked & TCPCB_LOST) { 1154 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1155 tp->lost_out -= tcp_skb_pcount(skb); 1156 tp->retrans_out -= tcp_skb_pcount(skb); 1157 1158 /* clear lost hint */ 1159 tp->retransmit_skb_hint = NULL; 1160 } 1161 } else { 1162 /* New sack for not retransmitted frame, 1163 * which was in hole. It is reordering. 1164 */ 1165 if (!(sacked & TCPCB_RETRANS) && 1166 fack_count < prior_fackets) 1167 reord = min(fack_count, reord); 1168 1169 if (sacked & TCPCB_LOST) { 1170 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1171 tp->lost_out -= tcp_skb_pcount(skb); 1172 1173 /* clear lost hint */ 1174 tp->retransmit_skb_hint = NULL; 1175 } 1176 /* SACK enhanced F-RTO detection. 1177 * Set flag if and only if non-rexmitted 1178 * segments below frto_highmark are 1179 * SACKed (RFC4138; Appendix B). 1180 * Clearing correct due to in-order walk 1181 */ 1182 if (after(end_seq, tp->frto_highmark)) { 1183 flag &= ~FLAG_ONLY_ORIG_SACKED; 1184 } else { 1185 if (!(sacked & TCPCB_RETRANS)) 1186 flag |= FLAG_ONLY_ORIG_SACKED; 1187 } 1188 } 1189 1190 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; 1191 flag |= FLAG_DATA_SACKED; 1192 tp->sacked_out += tcp_skb_pcount(skb); 1193 1194 if (fack_count > tp->fackets_out) 1195 tp->fackets_out = fack_count; 1196 } else { 1197 if (dup_sack && (sacked&TCPCB_RETRANS)) 1198 reord = min(fack_count, reord); 1199 } 1200 1201 /* D-SACK. We can detect redundant retransmission 1202 * in S|R and plain R frames and clear it. 1203 * undo_retrans is decreased above, L|R frames 1204 * are accounted above as well. 1205 */ 1206 if (dup_sack && 1207 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) { 1208 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1209 tp->retrans_out -= tcp_skb_pcount(skb); 1210 tp->retransmit_skb_hint = NULL; 1211 } 1212 } 1213 } 1214 1215 /* Check for lost retransmit. This superb idea is 1216 * borrowed from "ratehalving". Event "C". 1217 * Later note: FACK people cheated me again 8), 1218 * we have to account for reordering! Ugly, 1219 * but should help. 1220 */ 1221 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) { 1222 struct sk_buff *skb; 1223 1224 tcp_for_write_queue(skb, sk) { 1225 if (skb == tcp_send_head(sk)) 1226 break; 1227 if (after(TCP_SKB_CB(skb)->seq, lost_retrans)) 1228 break; 1229 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1230 continue; 1231 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) && 1232 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) && 1233 (IsFack(tp) || 1234 !before(lost_retrans, 1235 TCP_SKB_CB(skb)->ack_seq + tp->reordering * 1236 tp->mss_cache))) { 1237 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1238 tp->retrans_out -= tcp_skb_pcount(skb); 1239 1240 /* clear lost hint */ 1241 tp->retransmit_skb_hint = NULL; 1242 1243 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1244 tp->lost_out += tcp_skb_pcount(skb); 1245 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1246 flag |= FLAG_DATA_SACKED; 1247 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); 1248 } 1249 } 1250 } 1251 } 1252 1253 tp->left_out = tp->sacked_out + tp->lost_out; 1254 1255 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss && 1256 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1257 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0); 1258 1259 #if FASTRETRANS_DEBUG > 0 1260 BUG_TRAP((int)tp->sacked_out >= 0); 1261 BUG_TRAP((int)tp->lost_out >= 0); 1262 BUG_TRAP((int)tp->retrans_out >= 0); 1263 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); 1264 #endif 1265 return flag; 1266 } 1267 1268 /* F-RTO can only be used if TCP has never retransmitted anything other than 1269 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 1270 */ 1271 int tcp_use_frto(struct sock *sk) 1272 { 1273 const struct tcp_sock *tp = tcp_sk(sk); 1274 struct sk_buff *skb; 1275 1276 if (!sysctl_tcp_frto) 1277 return 0; 1278 1279 if (IsSackFrto()) 1280 return 1; 1281 1282 /* Avoid expensive walking of rexmit queue if possible */ 1283 if (tp->retrans_out > 1) 1284 return 0; 1285 1286 skb = tcp_write_queue_head(sk); 1287 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 1288 tcp_for_write_queue_from(skb, sk) { 1289 if (skb == tcp_send_head(sk)) 1290 break; 1291 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1292 return 0; 1293 /* Short-circuit when first non-SACKed skb has been checked */ 1294 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) 1295 break; 1296 } 1297 return 1; 1298 } 1299 1300 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 1301 * recovery a bit and use heuristics in tcp_process_frto() to detect if 1302 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 1303 * keep retrans_out counting accurate (with SACK F-RTO, other than head 1304 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 1305 * bits are handled if the Loss state is really to be entered (in 1306 * tcp_enter_frto_loss). 1307 * 1308 * Do like tcp_enter_loss() would; when RTO expires the second time it 1309 * does: 1310 * "Reduce ssthresh if it has not yet been made inside this window." 1311 */ 1312 void tcp_enter_frto(struct sock *sk) 1313 { 1314 const struct inet_connection_sock *icsk = inet_csk(sk); 1315 struct tcp_sock *tp = tcp_sk(sk); 1316 struct sk_buff *skb; 1317 1318 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 1319 tp->snd_una == tp->high_seq || 1320 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 1321 !icsk->icsk_retransmits)) { 1322 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1323 /* Our state is too optimistic in ssthresh() call because cwnd 1324 * is not reduced until tcp_enter_frto_loss() when previous FRTO 1325 * recovery has not yet completed. Pattern would be this: RTO, 1326 * Cumulative ACK, RTO (2xRTO for the same segment does not end 1327 * up here twice). 1328 * RFC4138 should be more specific on what to do, even though 1329 * RTO is quite unlikely to occur after the first Cumulative ACK 1330 * due to back-off and complexity of triggering events ... 1331 */ 1332 if (tp->frto_counter) { 1333 u32 stored_cwnd; 1334 stored_cwnd = tp->snd_cwnd; 1335 tp->snd_cwnd = 2; 1336 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1337 tp->snd_cwnd = stored_cwnd; 1338 } else { 1339 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1340 } 1341 /* ... in theory, cong.control module could do "any tricks" in 1342 * ssthresh(), which means that ca_state, lost bits and lost_out 1343 * counter would have to be faked before the call occurs. We 1344 * consider that too expensive, unlikely and hacky, so modules 1345 * using these in ssthresh() must deal these incompatibility 1346 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 1347 */ 1348 tcp_ca_event(sk, CA_EVENT_FRTO); 1349 } 1350 1351 tp->undo_marker = tp->snd_una; 1352 tp->undo_retrans = 0; 1353 1354 skb = tcp_write_queue_head(sk); 1355 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 1356 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1357 tp->retrans_out -= tcp_skb_pcount(skb); 1358 } 1359 tcp_sync_left_out(tp); 1360 1361 /* Earlier loss recovery underway (see RFC4138; Appendix B). 1362 * The last condition is necessary at least in tp->frto_counter case. 1363 */ 1364 if (IsSackFrto() && (tp->frto_counter || 1365 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 1366 after(tp->high_seq, tp->snd_una)) { 1367 tp->frto_highmark = tp->high_seq; 1368 } else { 1369 tp->frto_highmark = tp->snd_nxt; 1370 } 1371 tcp_set_ca_state(sk, TCP_CA_Disorder); 1372 tp->high_seq = tp->snd_nxt; 1373 tp->frto_counter = 1; 1374 } 1375 1376 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1377 * which indicates that we should follow the traditional RTO recovery, 1378 * i.e. mark everything lost and do go-back-N retransmission. 1379 */ 1380 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 1381 { 1382 struct tcp_sock *tp = tcp_sk(sk); 1383 struct sk_buff *skb; 1384 int cnt = 0; 1385 1386 tp->sacked_out = 0; 1387 tp->lost_out = 0; 1388 tp->fackets_out = 0; 1389 tp->retrans_out = 0; 1390 1391 tcp_for_write_queue(skb, sk) { 1392 if (skb == tcp_send_head(sk)) 1393 break; 1394 cnt += tcp_skb_pcount(skb); 1395 /* 1396 * Count the retransmission made on RTO correctly (only when 1397 * waiting for the first ACK and did not get it)... 1398 */ 1399 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) { 1400 tp->retrans_out += tcp_skb_pcount(skb); 1401 /* ...enter this if branch just for the first segment */ 1402 flag |= FLAG_DATA_ACKED; 1403 } else { 1404 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1405 } 1406 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1407 1408 /* Do not mark those segments lost that were 1409 * forward transmitted after RTO 1410 */ 1411 if (!after(TCP_SKB_CB(skb)->end_seq, 1412 tp->frto_highmark)) { 1413 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1414 tp->lost_out += tcp_skb_pcount(skb); 1415 } 1416 } else { 1417 tp->sacked_out += tcp_skb_pcount(skb); 1418 tp->fackets_out = cnt; 1419 } 1420 } 1421 tcp_sync_left_out(tp); 1422 1423 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 1424 tp->snd_cwnd_cnt = 0; 1425 tp->snd_cwnd_stamp = tcp_time_stamp; 1426 tp->undo_marker = 0; 1427 tp->frto_counter = 0; 1428 1429 tp->reordering = min_t(unsigned int, tp->reordering, 1430 sysctl_tcp_reordering); 1431 tcp_set_ca_state(sk, TCP_CA_Loss); 1432 tp->high_seq = tp->frto_highmark; 1433 TCP_ECN_queue_cwr(tp); 1434 1435 clear_all_retrans_hints(tp); 1436 } 1437 1438 void tcp_clear_retrans(struct tcp_sock *tp) 1439 { 1440 tp->left_out = 0; 1441 tp->retrans_out = 0; 1442 1443 tp->fackets_out = 0; 1444 tp->sacked_out = 0; 1445 tp->lost_out = 0; 1446 1447 tp->undo_marker = 0; 1448 tp->undo_retrans = 0; 1449 } 1450 1451 /* Enter Loss state. If "how" is not zero, forget all SACK information 1452 * and reset tags completely, otherwise preserve SACKs. If receiver 1453 * dropped its ofo queue, we will know this due to reneging detection. 1454 */ 1455 void tcp_enter_loss(struct sock *sk, int how) 1456 { 1457 const struct inet_connection_sock *icsk = inet_csk(sk); 1458 struct tcp_sock *tp = tcp_sk(sk); 1459 struct sk_buff *skb; 1460 int cnt = 0; 1461 1462 /* Reduce ssthresh if it has not yet been made inside this window. */ 1463 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 1464 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1465 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1466 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1467 tcp_ca_event(sk, CA_EVENT_LOSS); 1468 } 1469 tp->snd_cwnd = 1; 1470 tp->snd_cwnd_cnt = 0; 1471 tp->snd_cwnd_stamp = tcp_time_stamp; 1472 1473 tp->bytes_acked = 0; 1474 tcp_clear_retrans(tp); 1475 1476 /* Push undo marker, if it was plain RTO and nothing 1477 * was retransmitted. */ 1478 if (!how) 1479 tp->undo_marker = tp->snd_una; 1480 1481 tcp_for_write_queue(skb, sk) { 1482 if (skb == tcp_send_head(sk)) 1483 break; 1484 cnt += tcp_skb_pcount(skb); 1485 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1486 tp->undo_marker = 0; 1487 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1488 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1489 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1490 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1491 tp->lost_out += tcp_skb_pcount(skb); 1492 } else { 1493 tp->sacked_out += tcp_skb_pcount(skb); 1494 tp->fackets_out = cnt; 1495 } 1496 } 1497 tcp_sync_left_out(tp); 1498 1499 tp->reordering = min_t(unsigned int, tp->reordering, 1500 sysctl_tcp_reordering); 1501 tcp_set_ca_state(sk, TCP_CA_Loss); 1502 tp->high_seq = tp->snd_nxt; 1503 TCP_ECN_queue_cwr(tp); 1504 /* Abort FRTO algorithm if one is in progress */ 1505 tp->frto_counter = 0; 1506 1507 clear_all_retrans_hints(tp); 1508 } 1509 1510 static int tcp_check_sack_reneging(struct sock *sk) 1511 { 1512 struct sk_buff *skb; 1513 1514 /* If ACK arrived pointing to a remembered SACK, 1515 * it means that our remembered SACKs do not reflect 1516 * real state of receiver i.e. 1517 * receiver _host_ is heavily congested (or buggy). 1518 * Do processing similar to RTO timeout. 1519 */ 1520 if ((skb = tcp_write_queue_head(sk)) != NULL && 1521 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 1522 struct inet_connection_sock *icsk = inet_csk(sk); 1523 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); 1524 1525 tcp_enter_loss(sk, 1); 1526 icsk->icsk_retransmits++; 1527 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 1528 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1529 icsk->icsk_rto, TCP_RTO_MAX); 1530 return 1; 1531 } 1532 return 0; 1533 } 1534 1535 static inline int tcp_fackets_out(struct tcp_sock *tp) 1536 { 1537 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out; 1538 } 1539 1540 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 1541 { 1542 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 1543 } 1544 1545 static inline int tcp_head_timedout(struct sock *sk) 1546 { 1547 struct tcp_sock *tp = tcp_sk(sk); 1548 1549 return tp->packets_out && 1550 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 1551 } 1552 1553 /* Linux NewReno/SACK/FACK/ECN state machine. 1554 * -------------------------------------- 1555 * 1556 * "Open" Normal state, no dubious events, fast path. 1557 * "Disorder" In all the respects it is "Open", 1558 * but requires a bit more attention. It is entered when 1559 * we see some SACKs or dupacks. It is split of "Open" 1560 * mainly to move some processing from fast path to slow one. 1561 * "CWR" CWND was reduced due to some Congestion Notification event. 1562 * It can be ECN, ICMP source quench, local device congestion. 1563 * "Recovery" CWND was reduced, we are fast-retransmitting. 1564 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 1565 * 1566 * tcp_fastretrans_alert() is entered: 1567 * - each incoming ACK, if state is not "Open" 1568 * - when arrived ACK is unusual, namely: 1569 * * SACK 1570 * * Duplicate ACK. 1571 * * ECN ECE. 1572 * 1573 * Counting packets in flight is pretty simple. 1574 * 1575 * in_flight = packets_out - left_out + retrans_out 1576 * 1577 * packets_out is SND.NXT-SND.UNA counted in packets. 1578 * 1579 * retrans_out is number of retransmitted segments. 1580 * 1581 * left_out is number of segments left network, but not ACKed yet. 1582 * 1583 * left_out = sacked_out + lost_out 1584 * 1585 * sacked_out: Packets, which arrived to receiver out of order 1586 * and hence not ACKed. With SACKs this number is simply 1587 * amount of SACKed data. Even without SACKs 1588 * it is easy to give pretty reliable estimate of this number, 1589 * counting duplicate ACKs. 1590 * 1591 * lost_out: Packets lost by network. TCP has no explicit 1592 * "loss notification" feedback from network (for now). 1593 * It means that this number can be only _guessed_. 1594 * Actually, it is the heuristics to predict lossage that 1595 * distinguishes different algorithms. 1596 * 1597 * F.e. after RTO, when all the queue is considered as lost, 1598 * lost_out = packets_out and in_flight = retrans_out. 1599 * 1600 * Essentially, we have now two algorithms counting 1601 * lost packets. 1602 * 1603 * FACK: It is the simplest heuristics. As soon as we decided 1604 * that something is lost, we decide that _all_ not SACKed 1605 * packets until the most forward SACK are lost. I.e. 1606 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 1607 * It is absolutely correct estimate, if network does not reorder 1608 * packets. And it loses any connection to reality when reordering 1609 * takes place. We use FACK by default until reordering 1610 * is suspected on the path to this destination. 1611 * 1612 * NewReno: when Recovery is entered, we assume that one segment 1613 * is lost (classic Reno). While we are in Recovery and 1614 * a partial ACK arrives, we assume that one more packet 1615 * is lost (NewReno). This heuristics are the same in NewReno 1616 * and SACK. 1617 * 1618 * Imagine, that's all! Forget about all this shamanism about CWND inflation 1619 * deflation etc. CWND is real congestion window, never inflated, changes 1620 * only according to classic VJ rules. 1621 * 1622 * Really tricky (and requiring careful tuning) part of algorithm 1623 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 1624 * The first determines the moment _when_ we should reduce CWND and, 1625 * hence, slow down forward transmission. In fact, it determines the moment 1626 * when we decide that hole is caused by loss, rather than by a reorder. 1627 * 1628 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 1629 * holes, caused by lost packets. 1630 * 1631 * And the most logically complicated part of algorithm is undo 1632 * heuristics. We detect false retransmits due to both too early 1633 * fast retransmit (reordering) and underestimated RTO, analyzing 1634 * timestamps and D-SACKs. When we detect that some segments were 1635 * retransmitted by mistake and CWND reduction was wrong, we undo 1636 * window reduction and abort recovery phase. This logic is hidden 1637 * inside several functions named tcp_try_undo_<something>. 1638 */ 1639 1640 /* This function decides, when we should leave Disordered state 1641 * and enter Recovery phase, reducing congestion window. 1642 * 1643 * Main question: may we further continue forward transmission 1644 * with the same cwnd? 1645 */ 1646 static int tcp_time_to_recover(struct sock *sk) 1647 { 1648 struct tcp_sock *tp = tcp_sk(sk); 1649 __u32 packets_out; 1650 1651 /* Do not perform any recovery during FRTO algorithm */ 1652 if (tp->frto_counter) 1653 return 0; 1654 1655 /* Trick#1: The loss is proven. */ 1656 if (tp->lost_out) 1657 return 1; 1658 1659 /* Not-A-Trick#2 : Classic rule... */ 1660 if (tcp_fackets_out(tp) > tp->reordering) 1661 return 1; 1662 1663 /* Trick#3 : when we use RFC2988 timer restart, fast 1664 * retransmit can be triggered by timeout of queue head. 1665 */ 1666 if (tcp_head_timedout(sk)) 1667 return 1; 1668 1669 /* Trick#4: It is still not OK... But will it be useful to delay 1670 * recovery more? 1671 */ 1672 packets_out = tp->packets_out; 1673 if (packets_out <= tp->reordering && 1674 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 1675 !tcp_may_send_now(sk)) { 1676 /* We have nothing to send. This connection is limited 1677 * either by receiver window or by application. 1678 */ 1679 return 1; 1680 } 1681 1682 return 0; 1683 } 1684 1685 /* If we receive more dupacks than we expected counting segments 1686 * in assumption of absent reordering, interpret this as reordering. 1687 * The only another reason could be bug in receiver TCP. 1688 */ 1689 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1690 { 1691 struct tcp_sock *tp = tcp_sk(sk); 1692 u32 holes; 1693 1694 holes = max(tp->lost_out, 1U); 1695 holes = min(holes, tp->packets_out); 1696 1697 if ((tp->sacked_out + holes) > tp->packets_out) { 1698 tp->sacked_out = tp->packets_out - holes; 1699 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1700 } 1701 } 1702 1703 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1704 1705 static void tcp_add_reno_sack(struct sock *sk) 1706 { 1707 struct tcp_sock *tp = tcp_sk(sk); 1708 tp->sacked_out++; 1709 tcp_check_reno_reordering(sk, 0); 1710 tcp_sync_left_out(tp); 1711 } 1712 1713 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1714 1715 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1716 { 1717 struct tcp_sock *tp = tcp_sk(sk); 1718 1719 if (acked > 0) { 1720 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1721 if (acked-1 >= tp->sacked_out) 1722 tp->sacked_out = 0; 1723 else 1724 tp->sacked_out -= acked-1; 1725 } 1726 tcp_check_reno_reordering(sk, acked); 1727 tcp_sync_left_out(tp); 1728 } 1729 1730 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1731 { 1732 tp->sacked_out = 0; 1733 tp->left_out = tp->lost_out; 1734 } 1735 1736 /* Mark head of queue up as lost. */ 1737 static void tcp_mark_head_lost(struct sock *sk, 1738 int packets, u32 high_seq) 1739 { 1740 struct tcp_sock *tp = tcp_sk(sk); 1741 struct sk_buff *skb; 1742 int cnt; 1743 1744 BUG_TRAP(packets <= tp->packets_out); 1745 if (tp->lost_skb_hint) { 1746 skb = tp->lost_skb_hint; 1747 cnt = tp->lost_cnt_hint; 1748 } else { 1749 skb = tcp_write_queue_head(sk); 1750 cnt = 0; 1751 } 1752 1753 tcp_for_write_queue_from(skb, sk) { 1754 if (skb == tcp_send_head(sk)) 1755 break; 1756 /* TODO: do this better */ 1757 /* this is not the most efficient way to do this... */ 1758 tp->lost_skb_hint = skb; 1759 tp->lost_cnt_hint = cnt; 1760 cnt += tcp_skb_pcount(skb); 1761 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq)) 1762 break; 1763 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1764 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1765 tp->lost_out += tcp_skb_pcount(skb); 1766 1767 /* clear xmit_retransmit_queue hints 1768 * if this is beyond hint */ 1769 if (tp->retransmit_skb_hint != NULL && 1770 before(TCP_SKB_CB(skb)->seq, 1771 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 1772 tp->retransmit_skb_hint = NULL; 1773 1774 } 1775 } 1776 tcp_sync_left_out(tp); 1777 } 1778 1779 /* Account newly detected lost packet(s) */ 1780 1781 static void tcp_update_scoreboard(struct sock *sk) 1782 { 1783 struct tcp_sock *tp = tcp_sk(sk); 1784 1785 if (IsFack(tp)) { 1786 int lost = tp->fackets_out - tp->reordering; 1787 if (lost <= 0) 1788 lost = 1; 1789 tcp_mark_head_lost(sk, lost, tp->high_seq); 1790 } else { 1791 tcp_mark_head_lost(sk, 1, tp->high_seq); 1792 } 1793 1794 /* New heuristics: it is possible only after we switched 1795 * to restart timer each time when something is ACKed. 1796 * Hence, we can detect timed out packets during fast 1797 * retransmit without falling to slow start. 1798 */ 1799 if (!IsReno(tp) && tcp_head_timedout(sk)) { 1800 struct sk_buff *skb; 1801 1802 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint 1803 : tcp_write_queue_head(sk); 1804 1805 tcp_for_write_queue_from(skb, sk) { 1806 if (skb == tcp_send_head(sk)) 1807 break; 1808 if (!tcp_skb_timedout(sk, skb)) 1809 break; 1810 1811 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1812 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1813 tp->lost_out += tcp_skb_pcount(skb); 1814 1815 /* clear xmit_retrans hint */ 1816 if (tp->retransmit_skb_hint && 1817 before(TCP_SKB_CB(skb)->seq, 1818 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 1819 1820 tp->retransmit_skb_hint = NULL; 1821 } 1822 } 1823 1824 tp->scoreboard_skb_hint = skb; 1825 1826 tcp_sync_left_out(tp); 1827 } 1828 } 1829 1830 /* CWND moderation, preventing bursts due to too big ACKs 1831 * in dubious situations. 1832 */ 1833 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 1834 { 1835 tp->snd_cwnd = min(tp->snd_cwnd, 1836 tcp_packets_in_flight(tp)+tcp_max_burst(tp)); 1837 tp->snd_cwnd_stamp = tcp_time_stamp; 1838 } 1839 1840 /* Lower bound on congestion window is slow start threshold 1841 * unless congestion avoidance choice decides to overide it. 1842 */ 1843 static inline u32 tcp_cwnd_min(const struct sock *sk) 1844 { 1845 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1846 1847 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 1848 } 1849 1850 /* Decrease cwnd each second ack. */ 1851 static void tcp_cwnd_down(struct sock *sk) 1852 { 1853 struct tcp_sock *tp = tcp_sk(sk); 1854 int decr = tp->snd_cwnd_cnt + 1; 1855 1856 tp->snd_cwnd_cnt = decr&1; 1857 decr >>= 1; 1858 1859 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 1860 tp->snd_cwnd -= decr; 1861 1862 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1); 1863 tp->snd_cwnd_stamp = tcp_time_stamp; 1864 } 1865 1866 /* Nothing was retransmitted or returned timestamp is less 1867 * than timestamp of the first retransmission. 1868 */ 1869 static inline int tcp_packet_delayed(struct tcp_sock *tp) 1870 { 1871 return !tp->retrans_stamp || 1872 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 1873 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0); 1874 } 1875 1876 /* Undo procedures. */ 1877 1878 #if FASTRETRANS_DEBUG > 1 1879 static void DBGUNDO(struct sock *sk, const char *msg) 1880 { 1881 struct tcp_sock *tp = tcp_sk(sk); 1882 struct inet_sock *inet = inet_sk(sk); 1883 1884 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n", 1885 msg, 1886 NIPQUAD(inet->daddr), ntohs(inet->dport), 1887 tp->snd_cwnd, tp->left_out, 1888 tp->snd_ssthresh, tp->prior_ssthresh, 1889 tp->packets_out); 1890 } 1891 #else 1892 #define DBGUNDO(x...) do { } while (0) 1893 #endif 1894 1895 static void tcp_undo_cwr(struct sock *sk, const int undo) 1896 { 1897 struct tcp_sock *tp = tcp_sk(sk); 1898 1899 if (tp->prior_ssthresh) { 1900 const struct inet_connection_sock *icsk = inet_csk(sk); 1901 1902 if (icsk->icsk_ca_ops->undo_cwnd) 1903 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 1904 else 1905 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1); 1906 1907 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 1908 tp->snd_ssthresh = tp->prior_ssthresh; 1909 TCP_ECN_withdraw_cwr(tp); 1910 } 1911 } else { 1912 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 1913 } 1914 tcp_moderate_cwnd(tp); 1915 tp->snd_cwnd_stamp = tcp_time_stamp; 1916 1917 /* There is something screwy going on with the retrans hints after 1918 an undo */ 1919 clear_all_retrans_hints(tp); 1920 } 1921 1922 static inline int tcp_may_undo(struct tcp_sock *tp) 1923 { 1924 return tp->undo_marker && 1925 (!tp->undo_retrans || tcp_packet_delayed(tp)); 1926 } 1927 1928 /* People celebrate: "We love our President!" */ 1929 static int tcp_try_undo_recovery(struct sock *sk) 1930 { 1931 struct tcp_sock *tp = tcp_sk(sk); 1932 1933 if (tcp_may_undo(tp)) { 1934 /* Happy end! We did not retransmit anything 1935 * or our original transmission succeeded. 1936 */ 1937 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 1938 tcp_undo_cwr(sk, 1); 1939 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 1940 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1941 else 1942 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); 1943 tp->undo_marker = 0; 1944 } 1945 if (tp->snd_una == tp->high_seq && IsReno(tp)) { 1946 /* Hold old state until something *above* high_seq 1947 * is ACKed. For Reno it is MUST to prevent false 1948 * fast retransmits (RFC2582). SACK TCP is safe. */ 1949 tcp_moderate_cwnd(tp); 1950 return 1; 1951 } 1952 tcp_set_ca_state(sk, TCP_CA_Open); 1953 return 0; 1954 } 1955 1956 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 1957 static void tcp_try_undo_dsack(struct sock *sk) 1958 { 1959 struct tcp_sock *tp = tcp_sk(sk); 1960 1961 if (tp->undo_marker && !tp->undo_retrans) { 1962 DBGUNDO(sk, "D-SACK"); 1963 tcp_undo_cwr(sk, 1); 1964 tp->undo_marker = 0; 1965 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); 1966 } 1967 } 1968 1969 /* Undo during fast recovery after partial ACK. */ 1970 1971 static int tcp_try_undo_partial(struct sock *sk, int acked) 1972 { 1973 struct tcp_sock *tp = tcp_sk(sk); 1974 /* Partial ACK arrived. Force Hoe's retransmit. */ 1975 int failed = IsReno(tp) || tp->fackets_out>tp->reordering; 1976 1977 if (tcp_may_undo(tp)) { 1978 /* Plain luck! Hole if filled with delayed 1979 * packet, rather than with a retransmit. 1980 */ 1981 if (tp->retrans_out == 0) 1982 tp->retrans_stamp = 0; 1983 1984 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 1985 1986 DBGUNDO(sk, "Hoe"); 1987 tcp_undo_cwr(sk, 0); 1988 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); 1989 1990 /* So... Do not make Hoe's retransmit yet. 1991 * If the first packet was delayed, the rest 1992 * ones are most probably delayed as well. 1993 */ 1994 failed = 0; 1995 } 1996 return failed; 1997 } 1998 1999 /* Undo during loss recovery after partial ACK. */ 2000 static int tcp_try_undo_loss(struct sock *sk) 2001 { 2002 struct tcp_sock *tp = tcp_sk(sk); 2003 2004 if (tcp_may_undo(tp)) { 2005 struct sk_buff *skb; 2006 tcp_for_write_queue(skb, sk) { 2007 if (skb == tcp_send_head(sk)) 2008 break; 2009 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2010 } 2011 2012 clear_all_retrans_hints(tp); 2013 2014 DBGUNDO(sk, "partial loss"); 2015 tp->lost_out = 0; 2016 tp->left_out = tp->sacked_out; 2017 tcp_undo_cwr(sk, 1); 2018 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 2019 inet_csk(sk)->icsk_retransmits = 0; 2020 tp->undo_marker = 0; 2021 if (!IsReno(tp)) 2022 tcp_set_ca_state(sk, TCP_CA_Open); 2023 return 1; 2024 } 2025 return 0; 2026 } 2027 2028 static inline void tcp_complete_cwr(struct sock *sk) 2029 { 2030 struct tcp_sock *tp = tcp_sk(sk); 2031 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2032 tp->snd_cwnd_stamp = tcp_time_stamp; 2033 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2034 } 2035 2036 static void tcp_try_to_open(struct sock *sk, int flag) 2037 { 2038 struct tcp_sock *tp = tcp_sk(sk); 2039 2040 tp->left_out = tp->sacked_out; 2041 2042 if (tp->retrans_out == 0) 2043 tp->retrans_stamp = 0; 2044 2045 if (flag&FLAG_ECE) 2046 tcp_enter_cwr(sk, 1); 2047 2048 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2049 int state = TCP_CA_Open; 2050 2051 if (tp->left_out || tp->retrans_out || tp->undo_marker) 2052 state = TCP_CA_Disorder; 2053 2054 if (inet_csk(sk)->icsk_ca_state != state) { 2055 tcp_set_ca_state(sk, state); 2056 tp->high_seq = tp->snd_nxt; 2057 } 2058 tcp_moderate_cwnd(tp); 2059 } else { 2060 tcp_cwnd_down(sk); 2061 } 2062 } 2063 2064 static void tcp_mtup_probe_failed(struct sock *sk) 2065 { 2066 struct inet_connection_sock *icsk = inet_csk(sk); 2067 2068 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2069 icsk->icsk_mtup.probe_size = 0; 2070 } 2071 2072 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb) 2073 { 2074 struct tcp_sock *tp = tcp_sk(sk); 2075 struct inet_connection_sock *icsk = inet_csk(sk); 2076 2077 /* FIXME: breaks with very large cwnd */ 2078 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2079 tp->snd_cwnd = tp->snd_cwnd * 2080 tcp_mss_to_mtu(sk, tp->mss_cache) / 2081 icsk->icsk_mtup.probe_size; 2082 tp->snd_cwnd_cnt = 0; 2083 tp->snd_cwnd_stamp = tcp_time_stamp; 2084 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 2085 2086 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2087 icsk->icsk_mtup.probe_size = 0; 2088 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2089 } 2090 2091 2092 /* Process an event, which can update packets-in-flight not trivially. 2093 * Main goal of this function is to calculate new estimate for left_out, 2094 * taking into account both packets sitting in receiver's buffer and 2095 * packets lost by network. 2096 * 2097 * Besides that it does CWND reduction, when packet loss is detected 2098 * and changes state of machine. 2099 * 2100 * It does _not_ decide what to send, it is made in function 2101 * tcp_xmit_retransmit_queue(). 2102 */ 2103 static void 2104 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una, 2105 int prior_packets, int flag) 2106 { 2107 struct inet_connection_sock *icsk = inet_csk(sk); 2108 struct tcp_sock *tp = tcp_sk(sk); 2109 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP)); 2110 2111 /* Some technical things: 2112 * 1. Reno does not count dupacks (sacked_out) automatically. */ 2113 if (!tp->packets_out) 2114 tp->sacked_out = 0; 2115 /* 2. SACK counts snd_fack in packets inaccurately. */ 2116 if (tp->sacked_out == 0) 2117 tp->fackets_out = 0; 2118 2119 /* Now state machine starts. 2120 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2121 if (flag&FLAG_ECE) 2122 tp->prior_ssthresh = 0; 2123 2124 /* B. In all the states check for reneging SACKs. */ 2125 if (tp->sacked_out && tcp_check_sack_reneging(sk)) 2126 return; 2127 2128 /* C. Process data loss notification, provided it is valid. */ 2129 if ((flag&FLAG_DATA_LOST) && 2130 before(tp->snd_una, tp->high_seq) && 2131 icsk->icsk_ca_state != TCP_CA_Open && 2132 tp->fackets_out > tp->reordering) { 2133 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq); 2134 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); 2135 } 2136 2137 /* D. Synchronize left_out to current state. */ 2138 tcp_sync_left_out(tp); 2139 2140 /* E. Check state exit conditions. State can be terminated 2141 * when high_seq is ACKed. */ 2142 if (icsk->icsk_ca_state == TCP_CA_Open) { 2143 BUG_TRAP(tp->retrans_out == 0); 2144 tp->retrans_stamp = 0; 2145 } else if (!before(tp->snd_una, tp->high_seq)) { 2146 switch (icsk->icsk_ca_state) { 2147 case TCP_CA_Loss: 2148 icsk->icsk_retransmits = 0; 2149 if (tcp_try_undo_recovery(sk)) 2150 return; 2151 break; 2152 2153 case TCP_CA_CWR: 2154 /* CWR is to be held something *above* high_seq 2155 * is ACKed for CWR bit to reach receiver. */ 2156 if (tp->snd_una != tp->high_seq) { 2157 tcp_complete_cwr(sk); 2158 tcp_set_ca_state(sk, TCP_CA_Open); 2159 } 2160 break; 2161 2162 case TCP_CA_Disorder: 2163 tcp_try_undo_dsack(sk); 2164 if (!tp->undo_marker || 2165 /* For SACK case do not Open to allow to undo 2166 * catching for all duplicate ACKs. */ 2167 IsReno(tp) || tp->snd_una != tp->high_seq) { 2168 tp->undo_marker = 0; 2169 tcp_set_ca_state(sk, TCP_CA_Open); 2170 } 2171 break; 2172 2173 case TCP_CA_Recovery: 2174 if (IsReno(tp)) 2175 tcp_reset_reno_sack(tp); 2176 if (tcp_try_undo_recovery(sk)) 2177 return; 2178 tcp_complete_cwr(sk); 2179 break; 2180 } 2181 } 2182 2183 /* F. Process state. */ 2184 switch (icsk->icsk_ca_state) { 2185 case TCP_CA_Recovery: 2186 if (prior_snd_una == tp->snd_una) { 2187 if (IsReno(tp) && is_dupack) 2188 tcp_add_reno_sack(sk); 2189 } else { 2190 int acked = prior_packets - tp->packets_out; 2191 if (IsReno(tp)) 2192 tcp_remove_reno_sacks(sk, acked); 2193 is_dupack = tcp_try_undo_partial(sk, acked); 2194 } 2195 break; 2196 case TCP_CA_Loss: 2197 if (flag&FLAG_DATA_ACKED) 2198 icsk->icsk_retransmits = 0; 2199 if (!tcp_try_undo_loss(sk)) { 2200 tcp_moderate_cwnd(tp); 2201 tcp_xmit_retransmit_queue(sk); 2202 return; 2203 } 2204 if (icsk->icsk_ca_state != TCP_CA_Open) 2205 return; 2206 /* Loss is undone; fall through to processing in Open state. */ 2207 default: 2208 if (IsReno(tp)) { 2209 if (tp->snd_una != prior_snd_una) 2210 tcp_reset_reno_sack(tp); 2211 if (is_dupack) 2212 tcp_add_reno_sack(sk); 2213 } 2214 2215 if (icsk->icsk_ca_state == TCP_CA_Disorder) 2216 tcp_try_undo_dsack(sk); 2217 2218 if (!tcp_time_to_recover(sk)) { 2219 tcp_try_to_open(sk, flag); 2220 return; 2221 } 2222 2223 /* MTU probe failure: don't reduce cwnd */ 2224 if (icsk->icsk_ca_state < TCP_CA_CWR && 2225 icsk->icsk_mtup.probe_size && 2226 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2227 tcp_mtup_probe_failed(sk); 2228 /* Restores the reduction we did in tcp_mtup_probe() */ 2229 tp->snd_cwnd++; 2230 tcp_simple_retransmit(sk); 2231 return; 2232 } 2233 2234 /* Otherwise enter Recovery state */ 2235 2236 if (IsReno(tp)) 2237 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); 2238 else 2239 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); 2240 2241 tp->high_seq = tp->snd_nxt; 2242 tp->prior_ssthresh = 0; 2243 tp->undo_marker = tp->snd_una; 2244 tp->undo_retrans = tp->retrans_out; 2245 2246 if (icsk->icsk_ca_state < TCP_CA_CWR) { 2247 if (!(flag&FLAG_ECE)) 2248 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2249 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2250 TCP_ECN_queue_cwr(tp); 2251 } 2252 2253 tp->bytes_acked = 0; 2254 tp->snd_cwnd_cnt = 0; 2255 tcp_set_ca_state(sk, TCP_CA_Recovery); 2256 } 2257 2258 if (is_dupack || tcp_head_timedout(sk)) 2259 tcp_update_scoreboard(sk); 2260 tcp_cwnd_down(sk); 2261 tcp_xmit_retransmit_queue(sk); 2262 } 2263 2264 /* Read draft-ietf-tcplw-high-performance before mucking 2265 * with this code. (Supersedes RFC1323) 2266 */ 2267 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 2268 { 2269 /* RTTM Rule: A TSecr value received in a segment is used to 2270 * update the averaged RTT measurement only if the segment 2271 * acknowledges some new data, i.e., only if it advances the 2272 * left edge of the send window. 2273 * 2274 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2275 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 2276 * 2277 * Changed: reset backoff as soon as we see the first valid sample. 2278 * If we do not, we get strongly overestimated rto. With timestamps 2279 * samples are accepted even from very old segments: f.e., when rtt=1 2280 * increases to 8, we retransmit 5 times and after 8 seconds delayed 2281 * answer arrives rto becomes 120 seconds! If at least one of segments 2282 * in window is lost... Voila. --ANK (010210) 2283 */ 2284 struct tcp_sock *tp = tcp_sk(sk); 2285 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2286 tcp_rtt_estimator(sk, seq_rtt); 2287 tcp_set_rto(sk); 2288 inet_csk(sk)->icsk_backoff = 0; 2289 tcp_bound_rto(sk); 2290 } 2291 2292 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 2293 { 2294 /* We don't have a timestamp. Can only use 2295 * packets that are not retransmitted to determine 2296 * rtt estimates. Also, we must not reset the 2297 * backoff for rto until we get a non-retransmitted 2298 * packet. This allows us to deal with a situation 2299 * where the network delay has increased suddenly. 2300 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 2301 */ 2302 2303 if (flag & FLAG_RETRANS_DATA_ACKED) 2304 return; 2305 2306 tcp_rtt_estimator(sk, seq_rtt); 2307 tcp_set_rto(sk); 2308 inet_csk(sk)->icsk_backoff = 0; 2309 tcp_bound_rto(sk); 2310 } 2311 2312 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 2313 const s32 seq_rtt) 2314 { 2315 const struct tcp_sock *tp = tcp_sk(sk); 2316 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 2317 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2318 tcp_ack_saw_tstamp(sk, flag); 2319 else if (seq_rtt >= 0) 2320 tcp_ack_no_tstamp(sk, seq_rtt, flag); 2321 } 2322 2323 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt, 2324 u32 in_flight, int good) 2325 { 2326 const struct inet_connection_sock *icsk = inet_csk(sk); 2327 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good); 2328 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2329 } 2330 2331 /* Restart timer after forward progress on connection. 2332 * RFC2988 recommends to restart timer to now+rto. 2333 */ 2334 2335 static void tcp_ack_packets_out(struct sock *sk) 2336 { 2337 struct tcp_sock *tp = tcp_sk(sk); 2338 2339 if (!tp->packets_out) { 2340 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2341 } else { 2342 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2343 } 2344 } 2345 2346 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb, 2347 __u32 now, __s32 *seq_rtt) 2348 { 2349 struct tcp_sock *tp = tcp_sk(sk); 2350 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2351 __u32 seq = tp->snd_una; 2352 __u32 packets_acked; 2353 int acked = 0; 2354 2355 /* If we get here, the whole TSO packet has not been 2356 * acked. 2357 */ 2358 BUG_ON(!after(scb->end_seq, seq)); 2359 2360 packets_acked = tcp_skb_pcount(skb); 2361 if (tcp_trim_head(sk, skb, seq - scb->seq)) 2362 return 0; 2363 packets_acked -= tcp_skb_pcount(skb); 2364 2365 if (packets_acked) { 2366 __u8 sacked = scb->sacked; 2367 2368 acked |= FLAG_DATA_ACKED; 2369 if (sacked) { 2370 if (sacked & TCPCB_RETRANS) { 2371 if (sacked & TCPCB_SACKED_RETRANS) 2372 tp->retrans_out -= packets_acked; 2373 acked |= FLAG_RETRANS_DATA_ACKED; 2374 *seq_rtt = -1; 2375 } else if (*seq_rtt < 0) 2376 *seq_rtt = now - scb->when; 2377 if (sacked & TCPCB_SACKED_ACKED) 2378 tp->sacked_out -= packets_acked; 2379 if (sacked & TCPCB_LOST) 2380 tp->lost_out -= packets_acked; 2381 if (sacked & TCPCB_URG) { 2382 if (tp->urg_mode && 2383 !before(seq, tp->snd_up)) 2384 tp->urg_mode = 0; 2385 } 2386 } else if (*seq_rtt < 0) 2387 *seq_rtt = now - scb->when; 2388 2389 if (tp->fackets_out) { 2390 __u32 dval = min(tp->fackets_out, packets_acked); 2391 tp->fackets_out -= dval; 2392 } 2393 tp->packets_out -= packets_acked; 2394 2395 BUG_ON(tcp_skb_pcount(skb) == 0); 2396 BUG_ON(!before(scb->seq, scb->end_seq)); 2397 } 2398 2399 return acked; 2400 } 2401 2402 /* Remove acknowledged frames from the retransmission queue. */ 2403 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p) 2404 { 2405 struct tcp_sock *tp = tcp_sk(sk); 2406 const struct inet_connection_sock *icsk = inet_csk(sk); 2407 struct sk_buff *skb; 2408 __u32 now = tcp_time_stamp; 2409 int acked = 0; 2410 int prior_packets = tp->packets_out; 2411 __s32 seq_rtt = -1; 2412 ktime_t last_ackt = ktime_set(0,0); 2413 2414 while ((skb = tcp_write_queue_head(sk)) && 2415 skb != tcp_send_head(sk)) { 2416 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2417 __u8 sacked = scb->sacked; 2418 2419 /* If our packet is before the ack sequence we can 2420 * discard it as it's confirmed to have arrived at 2421 * the other end. 2422 */ 2423 if (after(scb->end_seq, tp->snd_una)) { 2424 if (tcp_skb_pcount(skb) > 1 && 2425 after(tp->snd_una, scb->seq)) 2426 acked |= tcp_tso_acked(sk, skb, 2427 now, &seq_rtt); 2428 break; 2429 } 2430 2431 /* Initial outgoing SYN's get put onto the write_queue 2432 * just like anything else we transmit. It is not 2433 * true data, and if we misinform our callers that 2434 * this ACK acks real data, we will erroneously exit 2435 * connection startup slow start one packet too 2436 * quickly. This is severely frowned upon behavior. 2437 */ 2438 if (!(scb->flags & TCPCB_FLAG_SYN)) { 2439 acked |= FLAG_DATA_ACKED; 2440 } else { 2441 acked |= FLAG_SYN_ACKED; 2442 tp->retrans_stamp = 0; 2443 } 2444 2445 /* MTU probing checks */ 2446 if (icsk->icsk_mtup.probe_size) { 2447 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) { 2448 tcp_mtup_probe_success(sk, skb); 2449 } 2450 } 2451 2452 if (sacked) { 2453 if (sacked & TCPCB_RETRANS) { 2454 if (sacked & TCPCB_SACKED_RETRANS) 2455 tp->retrans_out -= tcp_skb_pcount(skb); 2456 acked |= FLAG_RETRANS_DATA_ACKED; 2457 seq_rtt = -1; 2458 } else if (seq_rtt < 0) { 2459 seq_rtt = now - scb->when; 2460 last_ackt = skb->tstamp; 2461 } 2462 if (sacked & TCPCB_SACKED_ACKED) 2463 tp->sacked_out -= tcp_skb_pcount(skb); 2464 if (sacked & TCPCB_LOST) 2465 tp->lost_out -= tcp_skb_pcount(skb); 2466 if (sacked & TCPCB_URG) { 2467 if (tp->urg_mode && 2468 !before(scb->end_seq, tp->snd_up)) 2469 tp->urg_mode = 0; 2470 } 2471 } else if (seq_rtt < 0) { 2472 seq_rtt = now - scb->when; 2473 last_ackt = skb->tstamp; 2474 } 2475 tcp_dec_pcount_approx(&tp->fackets_out, skb); 2476 tcp_packets_out_dec(tp, skb); 2477 tcp_unlink_write_queue(skb, sk); 2478 sk_stream_free_skb(sk, skb); 2479 clear_all_retrans_hints(tp); 2480 } 2481 2482 if (acked&FLAG_ACKED) { 2483 u32 pkts_acked = prior_packets - tp->packets_out; 2484 const struct tcp_congestion_ops *ca_ops 2485 = inet_csk(sk)->icsk_ca_ops; 2486 2487 tcp_ack_update_rtt(sk, acked, seq_rtt); 2488 tcp_ack_packets_out(sk); 2489 2490 if (ca_ops->pkts_acked) 2491 ca_ops->pkts_acked(sk, pkts_acked, last_ackt); 2492 } 2493 2494 #if FASTRETRANS_DEBUG > 0 2495 BUG_TRAP((int)tp->sacked_out >= 0); 2496 BUG_TRAP((int)tp->lost_out >= 0); 2497 BUG_TRAP((int)tp->retrans_out >= 0); 2498 if (!tp->packets_out && tp->rx_opt.sack_ok) { 2499 const struct inet_connection_sock *icsk = inet_csk(sk); 2500 if (tp->lost_out) { 2501 printk(KERN_DEBUG "Leak l=%u %d\n", 2502 tp->lost_out, icsk->icsk_ca_state); 2503 tp->lost_out = 0; 2504 } 2505 if (tp->sacked_out) { 2506 printk(KERN_DEBUG "Leak s=%u %d\n", 2507 tp->sacked_out, icsk->icsk_ca_state); 2508 tp->sacked_out = 0; 2509 } 2510 if (tp->retrans_out) { 2511 printk(KERN_DEBUG "Leak r=%u %d\n", 2512 tp->retrans_out, icsk->icsk_ca_state); 2513 tp->retrans_out = 0; 2514 } 2515 } 2516 #endif 2517 *seq_rtt_p = seq_rtt; 2518 return acked; 2519 } 2520 2521 static void tcp_ack_probe(struct sock *sk) 2522 { 2523 const struct tcp_sock *tp = tcp_sk(sk); 2524 struct inet_connection_sock *icsk = inet_csk(sk); 2525 2526 /* Was it a usable window open? */ 2527 2528 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, 2529 tp->snd_una + tp->snd_wnd)) { 2530 icsk->icsk_backoff = 0; 2531 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 2532 /* Socket must be waked up by subsequent tcp_data_snd_check(). 2533 * This function is not for random using! 2534 */ 2535 } else { 2536 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2537 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2538 TCP_RTO_MAX); 2539 } 2540 } 2541 2542 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 2543 { 2544 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 2545 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 2546 } 2547 2548 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 2549 { 2550 const struct tcp_sock *tp = tcp_sk(sk); 2551 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 2552 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 2553 } 2554 2555 /* Check that window update is acceptable. 2556 * The function assumes that snd_una<=ack<=snd_next. 2557 */ 2558 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack, 2559 const u32 ack_seq, const u32 nwin) 2560 { 2561 return (after(ack, tp->snd_una) || 2562 after(ack_seq, tp->snd_wl1) || 2563 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 2564 } 2565 2566 /* Update our send window. 2567 * 2568 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 2569 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 2570 */ 2571 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 2572 u32 ack_seq) 2573 { 2574 struct tcp_sock *tp = tcp_sk(sk); 2575 int flag = 0; 2576 u32 nwin = ntohs(tcp_hdr(skb)->window); 2577 2578 if (likely(!tcp_hdr(skb)->syn)) 2579 nwin <<= tp->rx_opt.snd_wscale; 2580 2581 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 2582 flag |= FLAG_WIN_UPDATE; 2583 tcp_update_wl(tp, ack, ack_seq); 2584 2585 if (tp->snd_wnd != nwin) { 2586 tp->snd_wnd = nwin; 2587 2588 /* Note, it is the only place, where 2589 * fast path is recovered for sending TCP. 2590 */ 2591 tp->pred_flags = 0; 2592 tcp_fast_path_check(sk); 2593 2594 if (nwin > tp->max_window) { 2595 tp->max_window = nwin; 2596 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 2597 } 2598 } 2599 } 2600 2601 tp->snd_una = ack; 2602 2603 return flag; 2604 } 2605 2606 /* A very conservative spurious RTO response algorithm: reduce cwnd and 2607 * continue in congestion avoidance. 2608 */ 2609 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 2610 { 2611 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2612 tp->snd_cwnd_cnt = 0; 2613 TCP_ECN_queue_cwr(tp); 2614 tcp_moderate_cwnd(tp); 2615 } 2616 2617 /* A conservative spurious RTO response algorithm: reduce cwnd using 2618 * rate halving and continue in congestion avoidance. 2619 */ 2620 static void tcp_ratehalving_spur_to_response(struct sock *sk) 2621 { 2622 tcp_enter_cwr(sk, 0); 2623 } 2624 2625 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 2626 { 2627 if (flag&FLAG_ECE) 2628 tcp_ratehalving_spur_to_response(sk); 2629 else 2630 tcp_undo_cwr(sk, 1); 2631 } 2632 2633 /* F-RTO spurious RTO detection algorithm (RFC4138) 2634 * 2635 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 2636 * comments). State (ACK number) is kept in frto_counter. When ACK advances 2637 * window (but not to or beyond highest sequence sent before RTO): 2638 * On First ACK, send two new segments out. 2639 * On Second ACK, RTO was likely spurious. Do spurious response (response 2640 * algorithm is not part of the F-RTO detection algorithm 2641 * given in RFC4138 but can be selected separately). 2642 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 2643 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 2644 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 2645 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 2646 * 2647 * Rationale: if the RTO was spurious, new ACKs should arrive from the 2648 * original window even after we transmit two new data segments. 2649 * 2650 * SACK version: 2651 * on first step, wait until first cumulative ACK arrives, then move to 2652 * the second step. In second step, the next ACK decides. 2653 * 2654 * F-RTO is implemented (mainly) in four functions: 2655 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 2656 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 2657 * called when tcp_use_frto() showed green light 2658 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 2659 * - tcp_enter_frto_loss() is called if there is not enough evidence 2660 * to prove that the RTO is indeed spurious. It transfers the control 2661 * from F-RTO to the conventional RTO recovery 2662 */ 2663 static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag) 2664 { 2665 struct tcp_sock *tp = tcp_sk(sk); 2666 2667 tcp_sync_left_out(tp); 2668 2669 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 2670 if (flag&FLAG_DATA_ACKED) 2671 inet_csk(sk)->icsk_retransmits = 0; 2672 2673 if (!before(tp->snd_una, tp->frto_highmark)) { 2674 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 2675 return 1; 2676 } 2677 2678 if (!IsSackFrto() || IsReno(tp)) { 2679 /* RFC4138 shortcoming in step 2; should also have case c): 2680 * ACK isn't duplicate nor advances window, e.g., opposite dir 2681 * data, winupdate 2682 */ 2683 if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) && 2684 !(flag&FLAG_FORWARD_PROGRESS)) 2685 return 1; 2686 2687 if (!(flag&FLAG_DATA_ACKED)) { 2688 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 2689 flag); 2690 return 1; 2691 } 2692 } else { 2693 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 2694 /* Prevent sending of new data. */ 2695 tp->snd_cwnd = min(tp->snd_cwnd, 2696 tcp_packets_in_flight(tp)); 2697 return 1; 2698 } 2699 2700 if ((tp->frto_counter >= 2) && 2701 (!(flag&FLAG_FORWARD_PROGRESS) || 2702 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) { 2703 /* RFC4138 shortcoming (see comment above) */ 2704 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP)) 2705 return 1; 2706 2707 tcp_enter_frto_loss(sk, 3, flag); 2708 return 1; 2709 } 2710 } 2711 2712 if (tp->frto_counter == 1) { 2713 /* Sending of the next skb must be allowed or no FRTO */ 2714 if (!tcp_send_head(sk) || 2715 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, 2716 tp->snd_una + tp->snd_wnd)) { 2717 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), 2718 flag); 2719 return 1; 2720 } 2721 2722 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 2723 tp->frto_counter = 2; 2724 return 1; 2725 } else { 2726 switch (sysctl_tcp_frto_response) { 2727 case 2: 2728 tcp_undo_spur_to_response(sk, flag); 2729 break; 2730 case 1: 2731 tcp_conservative_spur_to_response(tp); 2732 break; 2733 default: 2734 tcp_ratehalving_spur_to_response(sk); 2735 break; 2736 } 2737 tp->frto_counter = 0; 2738 } 2739 return 0; 2740 } 2741 2742 /* This routine deals with incoming acks, but not outgoing ones. */ 2743 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 2744 { 2745 struct inet_connection_sock *icsk = inet_csk(sk); 2746 struct tcp_sock *tp = tcp_sk(sk); 2747 u32 prior_snd_una = tp->snd_una; 2748 u32 ack_seq = TCP_SKB_CB(skb)->seq; 2749 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2750 u32 prior_in_flight; 2751 s32 seq_rtt; 2752 int prior_packets; 2753 int frto_cwnd = 0; 2754 2755 /* If the ack is newer than sent or older than previous acks 2756 * then we can probably ignore it. 2757 */ 2758 if (after(ack, tp->snd_nxt)) 2759 goto uninteresting_ack; 2760 2761 if (before(ack, prior_snd_una)) 2762 goto old_ack; 2763 2764 if (sysctl_tcp_abc) { 2765 if (icsk->icsk_ca_state < TCP_CA_CWR) 2766 tp->bytes_acked += ack - prior_snd_una; 2767 else if (icsk->icsk_ca_state == TCP_CA_Loss) 2768 /* we assume just one segment left network */ 2769 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache); 2770 } 2771 2772 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 2773 /* Window is constant, pure forward advance. 2774 * No more checks are required. 2775 * Note, we use the fact that SND.UNA>=SND.WL2. 2776 */ 2777 tcp_update_wl(tp, ack, ack_seq); 2778 tp->snd_una = ack; 2779 flag |= FLAG_WIN_UPDATE; 2780 2781 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 2782 2783 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); 2784 } else { 2785 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 2786 flag |= FLAG_DATA; 2787 else 2788 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); 2789 2790 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 2791 2792 if (TCP_SKB_CB(skb)->sacked) 2793 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2794 2795 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 2796 flag |= FLAG_ECE; 2797 2798 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 2799 } 2800 2801 /* We passed data and got it acked, remove any soft error 2802 * log. Something worked... 2803 */ 2804 sk->sk_err_soft = 0; 2805 tp->rcv_tstamp = tcp_time_stamp; 2806 prior_packets = tp->packets_out; 2807 if (!prior_packets) 2808 goto no_queue; 2809 2810 prior_in_flight = tcp_packets_in_flight(tp); 2811 2812 /* See if we can take anything off of the retransmit queue. */ 2813 flag |= tcp_clean_rtx_queue(sk, &seq_rtt); 2814 2815 if (tp->frto_counter) 2816 frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag); 2817 2818 if (tcp_ack_is_dubious(sk, flag)) { 2819 /* Advance CWND, if state allows this. */ 2820 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 2821 tcp_may_raise_cwnd(sk, flag)) 2822 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0); 2823 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag); 2824 } else { 2825 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 2826 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1); 2827 } 2828 2829 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP)) 2830 dst_confirm(sk->sk_dst_cache); 2831 2832 return 1; 2833 2834 no_queue: 2835 icsk->icsk_probes_out = 0; 2836 2837 /* If this ack opens up a zero window, clear backoff. It was 2838 * being used to time the probes, and is probably far higher than 2839 * it needs to be for normal retransmission. 2840 */ 2841 if (tcp_send_head(sk)) 2842 tcp_ack_probe(sk); 2843 return 1; 2844 2845 old_ack: 2846 if (TCP_SKB_CB(skb)->sacked) 2847 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2848 2849 uninteresting_ack: 2850 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 2851 return 0; 2852 } 2853 2854 2855 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 2856 * But, this can also be called on packets in the established flow when 2857 * the fast version below fails. 2858 */ 2859 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab) 2860 { 2861 unsigned char *ptr; 2862 struct tcphdr *th = tcp_hdr(skb); 2863 int length=(th->doff*4)-sizeof(struct tcphdr); 2864 2865 ptr = (unsigned char *)(th + 1); 2866 opt_rx->saw_tstamp = 0; 2867 2868 while (length > 0) { 2869 int opcode=*ptr++; 2870 int opsize; 2871 2872 switch (opcode) { 2873 case TCPOPT_EOL: 2874 return; 2875 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 2876 length--; 2877 continue; 2878 default: 2879 opsize=*ptr++; 2880 if (opsize < 2) /* "silly options" */ 2881 return; 2882 if (opsize > length) 2883 return; /* don't parse partial options */ 2884 switch (opcode) { 2885 case TCPOPT_MSS: 2886 if (opsize==TCPOLEN_MSS && th->syn && !estab) { 2887 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr)); 2888 if (in_mss) { 2889 if (opt_rx->user_mss && opt_rx->user_mss < in_mss) 2890 in_mss = opt_rx->user_mss; 2891 opt_rx->mss_clamp = in_mss; 2892 } 2893 } 2894 break; 2895 case TCPOPT_WINDOW: 2896 if (opsize==TCPOLEN_WINDOW && th->syn && !estab) 2897 if (sysctl_tcp_window_scaling) { 2898 __u8 snd_wscale = *(__u8 *) ptr; 2899 opt_rx->wscale_ok = 1; 2900 if (snd_wscale > 14) { 2901 if (net_ratelimit()) 2902 printk(KERN_INFO "tcp_parse_options: Illegal window " 2903 "scaling value %d >14 received.\n", 2904 snd_wscale); 2905 snd_wscale = 14; 2906 } 2907 opt_rx->snd_wscale = snd_wscale; 2908 } 2909 break; 2910 case TCPOPT_TIMESTAMP: 2911 if (opsize==TCPOLEN_TIMESTAMP) { 2912 if ((estab && opt_rx->tstamp_ok) || 2913 (!estab && sysctl_tcp_timestamps)) { 2914 opt_rx->saw_tstamp = 1; 2915 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr)); 2916 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4))); 2917 } 2918 } 2919 break; 2920 case TCPOPT_SACK_PERM: 2921 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) { 2922 if (sysctl_tcp_sack) { 2923 opt_rx->sack_ok = 1; 2924 tcp_sack_reset(opt_rx); 2925 } 2926 } 2927 break; 2928 2929 case TCPOPT_SACK: 2930 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 2931 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 2932 opt_rx->sack_ok) { 2933 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 2934 } 2935 #ifdef CONFIG_TCP_MD5SIG 2936 case TCPOPT_MD5SIG: 2937 /* 2938 * The MD5 Hash has already been 2939 * checked (see tcp_v{4,6}_do_rcv()). 2940 */ 2941 break; 2942 #endif 2943 } 2944 2945 ptr+=opsize-2; 2946 length-=opsize; 2947 } 2948 } 2949 } 2950 2951 /* Fast parse options. This hopes to only see timestamps. 2952 * If it is wrong it falls back on tcp_parse_options(). 2953 */ 2954 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 2955 struct tcp_sock *tp) 2956 { 2957 if (th->doff == sizeof(struct tcphdr)>>2) { 2958 tp->rx_opt.saw_tstamp = 0; 2959 return 0; 2960 } else if (tp->rx_opt.tstamp_ok && 2961 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 2962 __be32 *ptr = (__be32 *)(th + 1); 2963 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 2964 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 2965 tp->rx_opt.saw_tstamp = 1; 2966 ++ptr; 2967 tp->rx_opt.rcv_tsval = ntohl(*ptr); 2968 ++ptr; 2969 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 2970 return 1; 2971 } 2972 } 2973 tcp_parse_options(skb, &tp->rx_opt, 1); 2974 return 1; 2975 } 2976 2977 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 2978 { 2979 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 2980 tp->rx_opt.ts_recent_stamp = get_seconds(); 2981 } 2982 2983 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 2984 { 2985 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 2986 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 2987 * extra check below makes sure this can only happen 2988 * for pure ACK frames. -DaveM 2989 * 2990 * Not only, also it occurs for expired timestamps. 2991 */ 2992 2993 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 2994 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 2995 tcp_store_ts_recent(tp); 2996 } 2997 } 2998 2999 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3000 * 3001 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3002 * it can pass through stack. So, the following predicate verifies that 3003 * this segment is not used for anything but congestion avoidance or 3004 * fast retransmit. Moreover, we even are able to eliminate most of such 3005 * second order effects, if we apply some small "replay" window (~RTO) 3006 * to timestamp space. 3007 * 3008 * All these measures still do not guarantee that we reject wrapped ACKs 3009 * on networks with high bandwidth, when sequence space is recycled fastly, 3010 * but it guarantees that such events will be very rare and do not affect 3011 * connection seriously. This doesn't look nice, but alas, PAWS is really 3012 * buggy extension. 3013 * 3014 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3015 * states that events when retransmit arrives after original data are rare. 3016 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3017 * the biggest problem on large power networks even with minor reordering. 3018 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3019 * up to bandwidth of 18Gigabit/sec. 8) ] 3020 */ 3021 3022 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3023 { 3024 struct tcp_sock *tp = tcp_sk(sk); 3025 struct tcphdr *th = tcp_hdr(skb); 3026 u32 seq = TCP_SKB_CB(skb)->seq; 3027 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3028 3029 return (/* 1. Pure ACK with correct sequence number. */ 3030 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3031 3032 /* 2. ... and duplicate ACK. */ 3033 ack == tp->snd_una && 3034 3035 /* 3. ... and does not update window. */ 3036 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3037 3038 /* 4. ... and sits in replay window. */ 3039 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3040 } 3041 3042 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb) 3043 { 3044 const struct tcp_sock *tp = tcp_sk(sk); 3045 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 3046 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 3047 !tcp_disordered_ack(sk, skb)); 3048 } 3049 3050 /* Check segment sequence number for validity. 3051 * 3052 * Segment controls are considered valid, if the segment 3053 * fits to the window after truncation to the window. Acceptability 3054 * of data (and SYN, FIN, of course) is checked separately. 3055 * See tcp_data_queue(), for example. 3056 * 3057 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3058 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3059 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3060 * (borrowed from freebsd) 3061 */ 3062 3063 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 3064 { 3065 return !before(end_seq, tp->rcv_wup) && 3066 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3067 } 3068 3069 /* When we get a reset we do this. */ 3070 static void tcp_reset(struct sock *sk) 3071 { 3072 /* We want the right error as BSD sees it (and indeed as we do). */ 3073 switch (sk->sk_state) { 3074 case TCP_SYN_SENT: 3075 sk->sk_err = ECONNREFUSED; 3076 break; 3077 case TCP_CLOSE_WAIT: 3078 sk->sk_err = EPIPE; 3079 break; 3080 case TCP_CLOSE: 3081 return; 3082 default: 3083 sk->sk_err = ECONNRESET; 3084 } 3085 3086 if (!sock_flag(sk, SOCK_DEAD)) 3087 sk->sk_error_report(sk); 3088 3089 tcp_done(sk); 3090 } 3091 3092 /* 3093 * Process the FIN bit. This now behaves as it is supposed to work 3094 * and the FIN takes effect when it is validly part of sequence 3095 * space. Not before when we get holes. 3096 * 3097 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3098 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3099 * TIME-WAIT) 3100 * 3101 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3102 * close and we go into CLOSING (and later onto TIME-WAIT) 3103 * 3104 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3105 */ 3106 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 3107 { 3108 struct tcp_sock *tp = tcp_sk(sk); 3109 3110 inet_csk_schedule_ack(sk); 3111 3112 sk->sk_shutdown |= RCV_SHUTDOWN; 3113 sock_set_flag(sk, SOCK_DONE); 3114 3115 switch (sk->sk_state) { 3116 case TCP_SYN_RECV: 3117 case TCP_ESTABLISHED: 3118 /* Move to CLOSE_WAIT */ 3119 tcp_set_state(sk, TCP_CLOSE_WAIT); 3120 inet_csk(sk)->icsk_ack.pingpong = 1; 3121 break; 3122 3123 case TCP_CLOSE_WAIT: 3124 case TCP_CLOSING: 3125 /* Received a retransmission of the FIN, do 3126 * nothing. 3127 */ 3128 break; 3129 case TCP_LAST_ACK: 3130 /* RFC793: Remain in the LAST-ACK state. */ 3131 break; 3132 3133 case TCP_FIN_WAIT1: 3134 /* This case occurs when a simultaneous close 3135 * happens, we must ack the received FIN and 3136 * enter the CLOSING state. 3137 */ 3138 tcp_send_ack(sk); 3139 tcp_set_state(sk, TCP_CLOSING); 3140 break; 3141 case TCP_FIN_WAIT2: 3142 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3143 tcp_send_ack(sk); 3144 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3145 break; 3146 default: 3147 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3148 * cases we should never reach this piece of code. 3149 */ 3150 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 3151 __FUNCTION__, sk->sk_state); 3152 break; 3153 } 3154 3155 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3156 * Probably, we should reset in this case. For now drop them. 3157 */ 3158 __skb_queue_purge(&tp->out_of_order_queue); 3159 if (tp->rx_opt.sack_ok) 3160 tcp_sack_reset(&tp->rx_opt); 3161 sk_stream_mem_reclaim(sk); 3162 3163 if (!sock_flag(sk, SOCK_DEAD)) { 3164 sk->sk_state_change(sk); 3165 3166 /* Do not send POLL_HUP for half duplex close. */ 3167 if (sk->sk_shutdown == SHUTDOWN_MASK || 3168 sk->sk_state == TCP_CLOSE) 3169 sk_wake_async(sk, 1, POLL_HUP); 3170 else 3171 sk_wake_async(sk, 1, POLL_IN); 3172 } 3173 } 3174 3175 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq) 3176 { 3177 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3178 if (before(seq, sp->start_seq)) 3179 sp->start_seq = seq; 3180 if (after(end_seq, sp->end_seq)) 3181 sp->end_seq = end_seq; 3182 return 1; 3183 } 3184 return 0; 3185 } 3186 3187 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) 3188 { 3189 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 3190 if (before(seq, tp->rcv_nxt)) 3191 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); 3192 else 3193 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); 3194 3195 tp->rx_opt.dsack = 1; 3196 tp->duplicate_sack[0].start_seq = seq; 3197 tp->duplicate_sack[0].end_seq = end_seq; 3198 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok); 3199 } 3200 } 3201 3202 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) 3203 { 3204 if (!tp->rx_opt.dsack) 3205 tcp_dsack_set(tp, seq, end_seq); 3206 else 3207 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3208 } 3209 3210 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 3211 { 3212 struct tcp_sock *tp = tcp_sk(sk); 3213 3214 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3215 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3216 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3217 tcp_enter_quickack_mode(sk); 3218 3219 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 3220 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3221 3222 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3223 end_seq = tp->rcv_nxt; 3224 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); 3225 } 3226 } 3227 3228 tcp_send_ack(sk); 3229 } 3230 3231 /* These routines update the SACK block as out-of-order packets arrive or 3232 * in-order packets close up the sequence space. 3233 */ 3234 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 3235 { 3236 int this_sack; 3237 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3238 struct tcp_sack_block *swalk = sp+1; 3239 3240 /* See if the recent change to the first SACK eats into 3241 * or hits the sequence space of other SACK blocks, if so coalesce. 3242 */ 3243 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) { 3244 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 3245 int i; 3246 3247 /* Zap SWALK, by moving every further SACK up by one slot. 3248 * Decrease num_sacks. 3249 */ 3250 tp->rx_opt.num_sacks--; 3251 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3252 for (i=this_sack; i < tp->rx_opt.num_sacks; i++) 3253 sp[i] = sp[i+1]; 3254 continue; 3255 } 3256 this_sack++, swalk++; 3257 } 3258 } 3259 3260 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2) 3261 { 3262 __u32 tmp; 3263 3264 tmp = sack1->start_seq; 3265 sack1->start_seq = sack2->start_seq; 3266 sack2->start_seq = tmp; 3267 3268 tmp = sack1->end_seq; 3269 sack1->end_seq = sack2->end_seq; 3270 sack2->end_seq = tmp; 3271 } 3272 3273 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3274 { 3275 struct tcp_sock *tp = tcp_sk(sk); 3276 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3277 int cur_sacks = tp->rx_opt.num_sacks; 3278 int this_sack; 3279 3280 if (!cur_sacks) 3281 goto new_sack; 3282 3283 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) { 3284 if (tcp_sack_extend(sp, seq, end_seq)) { 3285 /* Rotate this_sack to the first one. */ 3286 for (; this_sack>0; this_sack--, sp--) 3287 tcp_sack_swap(sp, sp-1); 3288 if (cur_sacks > 1) 3289 tcp_sack_maybe_coalesce(tp); 3290 return; 3291 } 3292 } 3293 3294 /* Could not find an adjacent existing SACK, build a new one, 3295 * put it at the front, and shift everyone else down. We 3296 * always know there is at least one SACK present already here. 3297 * 3298 * If the sack array is full, forget about the last one. 3299 */ 3300 if (this_sack >= 4) { 3301 this_sack--; 3302 tp->rx_opt.num_sacks--; 3303 sp--; 3304 } 3305 for (; this_sack > 0; this_sack--, sp--) 3306 *sp = *(sp-1); 3307 3308 new_sack: 3309 /* Build the new head SACK, and we're done. */ 3310 sp->start_seq = seq; 3311 sp->end_seq = end_seq; 3312 tp->rx_opt.num_sacks++; 3313 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3314 } 3315 3316 /* RCV.NXT advances, some SACKs should be eaten. */ 3317 3318 static void tcp_sack_remove(struct tcp_sock *tp) 3319 { 3320 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3321 int num_sacks = tp->rx_opt.num_sacks; 3322 int this_sack; 3323 3324 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 3325 if (skb_queue_empty(&tp->out_of_order_queue)) { 3326 tp->rx_opt.num_sacks = 0; 3327 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 3328 return; 3329 } 3330 3331 for (this_sack = 0; this_sack < num_sacks; ) { 3332 /* Check if the start of the sack is covered by RCV.NXT. */ 3333 if (!before(tp->rcv_nxt, sp->start_seq)) { 3334 int i; 3335 3336 /* RCV.NXT must cover all the block! */ 3337 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); 3338 3339 /* Zap this SACK, by moving forward any other SACKS. */ 3340 for (i=this_sack+1; i < num_sacks; i++) 3341 tp->selective_acks[i-1] = tp->selective_acks[i]; 3342 num_sacks--; 3343 continue; 3344 } 3345 this_sack++; 3346 sp++; 3347 } 3348 if (num_sacks != tp->rx_opt.num_sacks) { 3349 tp->rx_opt.num_sacks = num_sacks; 3350 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3351 } 3352 } 3353 3354 /* This one checks to see if we can put data from the 3355 * out_of_order queue into the receive_queue. 3356 */ 3357 static void tcp_ofo_queue(struct sock *sk) 3358 { 3359 struct tcp_sock *tp = tcp_sk(sk); 3360 __u32 dsack_high = tp->rcv_nxt; 3361 struct sk_buff *skb; 3362 3363 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 3364 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 3365 break; 3366 3367 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 3368 __u32 dsack = dsack_high; 3369 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 3370 dsack_high = TCP_SKB_CB(skb)->end_seq; 3371 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); 3372 } 3373 3374 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3375 SOCK_DEBUG(sk, "ofo packet was already received \n"); 3376 __skb_unlink(skb, &tp->out_of_order_queue); 3377 __kfree_skb(skb); 3378 continue; 3379 } 3380 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 3381 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3382 TCP_SKB_CB(skb)->end_seq); 3383 3384 __skb_unlink(skb, &tp->out_of_order_queue); 3385 __skb_queue_tail(&sk->sk_receive_queue, skb); 3386 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3387 if (tcp_hdr(skb)->fin) 3388 tcp_fin(skb, sk, tcp_hdr(skb)); 3389 } 3390 } 3391 3392 static int tcp_prune_queue(struct sock *sk); 3393 3394 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 3395 { 3396 struct tcphdr *th = tcp_hdr(skb); 3397 struct tcp_sock *tp = tcp_sk(sk); 3398 int eaten = -1; 3399 3400 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 3401 goto drop; 3402 3403 __skb_pull(skb, th->doff*4); 3404 3405 TCP_ECN_accept_cwr(tp, skb); 3406 3407 if (tp->rx_opt.dsack) { 3408 tp->rx_opt.dsack = 0; 3409 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, 3410 4 - tp->rx_opt.tstamp_ok); 3411 } 3412 3413 /* Queue data for delivery to the user. 3414 * Packets in sequence go to the receive queue. 3415 * Out of sequence packets to the out_of_order_queue. 3416 */ 3417 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3418 if (tcp_receive_window(tp) == 0) 3419 goto out_of_window; 3420 3421 /* Ok. In sequence. In window. */ 3422 if (tp->ucopy.task == current && 3423 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 3424 sock_owned_by_user(sk) && !tp->urg_data) { 3425 int chunk = min_t(unsigned int, skb->len, 3426 tp->ucopy.len); 3427 3428 __set_current_state(TASK_RUNNING); 3429 3430 local_bh_enable(); 3431 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 3432 tp->ucopy.len -= chunk; 3433 tp->copied_seq += chunk; 3434 eaten = (chunk == skb->len && !th->fin); 3435 tcp_rcv_space_adjust(sk); 3436 } 3437 local_bh_disable(); 3438 } 3439 3440 if (eaten <= 0) { 3441 queue_and_out: 3442 if (eaten < 0 && 3443 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3444 !sk_stream_rmem_schedule(sk, skb))) { 3445 if (tcp_prune_queue(sk) < 0 || 3446 !sk_stream_rmem_schedule(sk, skb)) 3447 goto drop; 3448 } 3449 sk_stream_set_owner_r(skb, sk); 3450 __skb_queue_tail(&sk->sk_receive_queue, skb); 3451 } 3452 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3453 if (skb->len) 3454 tcp_event_data_recv(sk, skb); 3455 if (th->fin) 3456 tcp_fin(skb, sk, th); 3457 3458 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3459 tcp_ofo_queue(sk); 3460 3461 /* RFC2581. 4.2. SHOULD send immediate ACK, when 3462 * gap in queue is filled. 3463 */ 3464 if (skb_queue_empty(&tp->out_of_order_queue)) 3465 inet_csk(sk)->icsk_ack.pingpong = 0; 3466 } 3467 3468 if (tp->rx_opt.num_sacks) 3469 tcp_sack_remove(tp); 3470 3471 tcp_fast_path_check(sk); 3472 3473 if (eaten > 0) 3474 __kfree_skb(skb); 3475 else if (!sock_flag(sk, SOCK_DEAD)) 3476 sk->sk_data_ready(sk, 0); 3477 return; 3478 } 3479 3480 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3481 /* A retransmit, 2nd most common case. Force an immediate ack. */ 3482 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3483 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3484 3485 out_of_window: 3486 tcp_enter_quickack_mode(sk); 3487 inet_csk_schedule_ack(sk); 3488 drop: 3489 __kfree_skb(skb); 3490 return; 3491 } 3492 3493 /* Out of window. F.e. zero window probe. */ 3494 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 3495 goto out_of_window; 3496 3497 tcp_enter_quickack_mode(sk); 3498 3499 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3500 /* Partial packet, seq < rcv_next < end_seq */ 3501 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 3502 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3503 TCP_SKB_CB(skb)->end_seq); 3504 3505 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 3506 3507 /* If window is closed, drop tail of packet. But after 3508 * remembering D-SACK for its head made in previous line. 3509 */ 3510 if (!tcp_receive_window(tp)) 3511 goto out_of_window; 3512 goto queue_and_out; 3513 } 3514 3515 TCP_ECN_check_ce(tp, skb); 3516 3517 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3518 !sk_stream_rmem_schedule(sk, skb)) { 3519 if (tcp_prune_queue(sk) < 0 || 3520 !sk_stream_rmem_schedule(sk, skb)) 3521 goto drop; 3522 } 3523 3524 /* Disable header prediction. */ 3525 tp->pred_flags = 0; 3526 inet_csk_schedule_ack(sk); 3527 3528 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 3529 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3530 3531 sk_stream_set_owner_r(skb, sk); 3532 3533 if (!skb_peek(&tp->out_of_order_queue)) { 3534 /* Initial out of order segment, build 1 SACK. */ 3535 if (tp->rx_opt.sack_ok) { 3536 tp->rx_opt.num_sacks = 1; 3537 tp->rx_opt.dsack = 0; 3538 tp->rx_opt.eff_sacks = 1; 3539 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 3540 tp->selective_acks[0].end_seq = 3541 TCP_SKB_CB(skb)->end_seq; 3542 } 3543 __skb_queue_head(&tp->out_of_order_queue,skb); 3544 } else { 3545 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 3546 u32 seq = TCP_SKB_CB(skb)->seq; 3547 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3548 3549 if (seq == TCP_SKB_CB(skb1)->end_seq) { 3550 __skb_append(skb1, skb, &tp->out_of_order_queue); 3551 3552 if (!tp->rx_opt.num_sacks || 3553 tp->selective_acks[0].end_seq != seq) 3554 goto add_sack; 3555 3556 /* Common case: data arrive in order after hole. */ 3557 tp->selective_acks[0].end_seq = end_seq; 3558 return; 3559 } 3560 3561 /* Find place to insert this segment. */ 3562 do { 3563 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 3564 break; 3565 } while ((skb1 = skb1->prev) != 3566 (struct sk_buff*)&tp->out_of_order_queue); 3567 3568 /* Do skb overlap to previous one? */ 3569 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue && 3570 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 3571 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3572 /* All the bits are present. Drop. */ 3573 __kfree_skb(skb); 3574 tcp_dsack_set(tp, seq, end_seq); 3575 goto add_sack; 3576 } 3577 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 3578 /* Partial overlap. */ 3579 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq); 3580 } else { 3581 skb1 = skb1->prev; 3582 } 3583 } 3584 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); 3585 3586 /* And clean segments covered by new one as whole. */ 3587 while ((skb1 = skb->next) != 3588 (struct sk_buff*)&tp->out_of_order_queue && 3589 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 3590 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3591 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq); 3592 break; 3593 } 3594 __skb_unlink(skb1, &tp->out_of_order_queue); 3595 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq); 3596 __kfree_skb(skb1); 3597 } 3598 3599 add_sack: 3600 if (tp->rx_opt.sack_ok) 3601 tcp_sack_new_ofo_skb(sk, seq, end_seq); 3602 } 3603 } 3604 3605 /* Collapse contiguous sequence of skbs head..tail with 3606 * sequence numbers start..end. 3607 * Segments with FIN/SYN are not collapsed (only because this 3608 * simplifies code) 3609 */ 3610 static void 3611 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 3612 struct sk_buff *head, struct sk_buff *tail, 3613 u32 start, u32 end) 3614 { 3615 struct sk_buff *skb; 3616 3617 /* First, check that queue is collapsible and find 3618 * the point where collapsing can be useful. */ 3619 for (skb = head; skb != tail; ) { 3620 /* No new bits? It is possible on ofo queue. */ 3621 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3622 struct sk_buff *next = skb->next; 3623 __skb_unlink(skb, list); 3624 __kfree_skb(skb); 3625 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3626 skb = next; 3627 continue; 3628 } 3629 3630 /* The first skb to collapse is: 3631 * - not SYN/FIN and 3632 * - bloated or contains data before "start" or 3633 * overlaps to the next one. 3634 */ 3635 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 3636 (tcp_win_from_space(skb->truesize) > skb->len || 3637 before(TCP_SKB_CB(skb)->seq, start) || 3638 (skb->next != tail && 3639 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 3640 break; 3641 3642 /* Decided to skip this, advance start seq. */ 3643 start = TCP_SKB_CB(skb)->end_seq; 3644 skb = skb->next; 3645 } 3646 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 3647 return; 3648 3649 while (before(start, end)) { 3650 struct sk_buff *nskb; 3651 int header = skb_headroom(skb); 3652 int copy = SKB_MAX_ORDER(header, 0); 3653 3654 /* Too big header? This can happen with IPv6. */ 3655 if (copy < 0) 3656 return; 3657 if (end-start < copy) 3658 copy = end-start; 3659 nskb = alloc_skb(copy+header, GFP_ATOMIC); 3660 if (!nskb) 3661 return; 3662 3663 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 3664 skb_set_network_header(nskb, (skb_network_header(skb) - 3665 skb->head)); 3666 skb_set_transport_header(nskb, (skb_transport_header(skb) - 3667 skb->head)); 3668 skb_reserve(nskb, header); 3669 memcpy(nskb->head, skb->head, header); 3670 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 3671 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 3672 __skb_insert(nskb, skb->prev, skb, list); 3673 sk_stream_set_owner_r(nskb, sk); 3674 3675 /* Copy data, releasing collapsed skbs. */ 3676 while (copy > 0) { 3677 int offset = start - TCP_SKB_CB(skb)->seq; 3678 int size = TCP_SKB_CB(skb)->end_seq - start; 3679 3680 BUG_ON(offset < 0); 3681 if (size > 0) { 3682 size = min(copy, size); 3683 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 3684 BUG(); 3685 TCP_SKB_CB(nskb)->end_seq += size; 3686 copy -= size; 3687 start += size; 3688 } 3689 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3690 struct sk_buff *next = skb->next; 3691 __skb_unlink(skb, list); 3692 __kfree_skb(skb); 3693 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3694 skb = next; 3695 if (skb == tail || 3696 tcp_hdr(skb)->syn || 3697 tcp_hdr(skb)->fin) 3698 return; 3699 } 3700 } 3701 } 3702 } 3703 3704 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 3705 * and tcp_collapse() them until all the queue is collapsed. 3706 */ 3707 static void tcp_collapse_ofo_queue(struct sock *sk) 3708 { 3709 struct tcp_sock *tp = tcp_sk(sk); 3710 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 3711 struct sk_buff *head; 3712 u32 start, end; 3713 3714 if (skb == NULL) 3715 return; 3716 3717 start = TCP_SKB_CB(skb)->seq; 3718 end = TCP_SKB_CB(skb)->end_seq; 3719 head = skb; 3720 3721 for (;;) { 3722 skb = skb->next; 3723 3724 /* Segment is terminated when we see gap or when 3725 * we are at the end of all the queue. */ 3726 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 3727 after(TCP_SKB_CB(skb)->seq, end) || 3728 before(TCP_SKB_CB(skb)->end_seq, start)) { 3729 tcp_collapse(sk, &tp->out_of_order_queue, 3730 head, skb, start, end); 3731 head = skb; 3732 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 3733 break; 3734 /* Start new segment */ 3735 start = TCP_SKB_CB(skb)->seq; 3736 end = TCP_SKB_CB(skb)->end_seq; 3737 } else { 3738 if (before(TCP_SKB_CB(skb)->seq, start)) 3739 start = TCP_SKB_CB(skb)->seq; 3740 if (after(TCP_SKB_CB(skb)->end_seq, end)) 3741 end = TCP_SKB_CB(skb)->end_seq; 3742 } 3743 } 3744 } 3745 3746 /* Reduce allocated memory if we can, trying to get 3747 * the socket within its memory limits again. 3748 * 3749 * Return less than zero if we should start dropping frames 3750 * until the socket owning process reads some of the data 3751 * to stabilize the situation. 3752 */ 3753 static int tcp_prune_queue(struct sock *sk) 3754 { 3755 struct tcp_sock *tp = tcp_sk(sk); 3756 3757 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 3758 3759 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); 3760 3761 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 3762 tcp_clamp_window(sk); 3763 else if (tcp_memory_pressure) 3764 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 3765 3766 tcp_collapse_ofo_queue(sk); 3767 tcp_collapse(sk, &sk->sk_receive_queue, 3768 sk->sk_receive_queue.next, 3769 (struct sk_buff*)&sk->sk_receive_queue, 3770 tp->copied_seq, tp->rcv_nxt); 3771 sk_stream_mem_reclaim(sk); 3772 3773 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3774 return 0; 3775 3776 /* Collapsing did not help, destructive actions follow. 3777 * This must not ever occur. */ 3778 3779 /* First, purge the out_of_order queue. */ 3780 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3781 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED); 3782 __skb_queue_purge(&tp->out_of_order_queue); 3783 3784 /* Reset SACK state. A conforming SACK implementation will 3785 * do the same at a timeout based retransmit. When a connection 3786 * is in a sad state like this, we care only about integrity 3787 * of the connection not performance. 3788 */ 3789 if (tp->rx_opt.sack_ok) 3790 tcp_sack_reset(&tp->rx_opt); 3791 sk_stream_mem_reclaim(sk); 3792 } 3793 3794 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3795 return 0; 3796 3797 /* If we are really being abused, tell the caller to silently 3798 * drop receive data on the floor. It will get retransmitted 3799 * and hopefully then we'll have sufficient space. 3800 */ 3801 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); 3802 3803 /* Massive buffer overcommit. */ 3804 tp->pred_flags = 0; 3805 return -1; 3806 } 3807 3808 3809 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 3810 * As additional protections, we do not touch cwnd in retransmission phases, 3811 * and if application hit its sndbuf limit recently. 3812 */ 3813 void tcp_cwnd_application_limited(struct sock *sk) 3814 { 3815 struct tcp_sock *tp = tcp_sk(sk); 3816 3817 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 3818 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 3819 /* Limited by application or receiver window. */ 3820 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 3821 u32 win_used = max(tp->snd_cwnd_used, init_win); 3822 if (win_used < tp->snd_cwnd) { 3823 tp->snd_ssthresh = tcp_current_ssthresh(sk); 3824 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 3825 } 3826 tp->snd_cwnd_used = 0; 3827 } 3828 tp->snd_cwnd_stamp = tcp_time_stamp; 3829 } 3830 3831 static int tcp_should_expand_sndbuf(struct sock *sk) 3832 { 3833 struct tcp_sock *tp = tcp_sk(sk); 3834 3835 /* If the user specified a specific send buffer setting, do 3836 * not modify it. 3837 */ 3838 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 3839 return 0; 3840 3841 /* If we are under global TCP memory pressure, do not expand. */ 3842 if (tcp_memory_pressure) 3843 return 0; 3844 3845 /* If we are under soft global TCP memory pressure, do not expand. */ 3846 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 3847 return 0; 3848 3849 /* If we filled the congestion window, do not expand. */ 3850 if (tp->packets_out >= tp->snd_cwnd) 3851 return 0; 3852 3853 return 1; 3854 } 3855 3856 /* When incoming ACK allowed to free some skb from write_queue, 3857 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 3858 * on the exit from tcp input handler. 3859 * 3860 * PROBLEM: sndbuf expansion does not work well with largesend. 3861 */ 3862 static void tcp_new_space(struct sock *sk) 3863 { 3864 struct tcp_sock *tp = tcp_sk(sk); 3865 3866 if (tcp_should_expand_sndbuf(sk)) { 3867 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 3868 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), 3869 demanded = max_t(unsigned int, tp->snd_cwnd, 3870 tp->reordering + 1); 3871 sndmem *= 2*demanded; 3872 if (sndmem > sk->sk_sndbuf) 3873 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 3874 tp->snd_cwnd_stamp = tcp_time_stamp; 3875 } 3876 3877 sk->sk_write_space(sk); 3878 } 3879 3880 static void tcp_check_space(struct sock *sk) 3881 { 3882 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 3883 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 3884 if (sk->sk_socket && 3885 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 3886 tcp_new_space(sk); 3887 } 3888 } 3889 3890 static inline void tcp_data_snd_check(struct sock *sk) 3891 { 3892 tcp_push_pending_frames(sk); 3893 tcp_check_space(sk); 3894 } 3895 3896 /* 3897 * Check if sending an ack is needed. 3898 */ 3899 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 3900 { 3901 struct tcp_sock *tp = tcp_sk(sk); 3902 3903 /* More than one full frame received... */ 3904 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 3905 /* ... and right edge of window advances far enough. 3906 * (tcp_recvmsg() will send ACK otherwise). Or... 3907 */ 3908 && __tcp_select_window(sk) >= tp->rcv_wnd) || 3909 /* We ACK each frame or... */ 3910 tcp_in_quickack_mode(sk) || 3911 /* We have out of order data. */ 3912 (ofo_possible && 3913 skb_peek(&tp->out_of_order_queue))) { 3914 /* Then ack it now */ 3915 tcp_send_ack(sk); 3916 } else { 3917 /* Else, send delayed ack. */ 3918 tcp_send_delayed_ack(sk); 3919 } 3920 } 3921 3922 static inline void tcp_ack_snd_check(struct sock *sk) 3923 { 3924 if (!inet_csk_ack_scheduled(sk)) { 3925 /* We sent a data segment already. */ 3926 return; 3927 } 3928 __tcp_ack_snd_check(sk, 1); 3929 } 3930 3931 /* 3932 * This routine is only called when we have urgent data 3933 * signaled. Its the 'slow' part of tcp_urg. It could be 3934 * moved inline now as tcp_urg is only called from one 3935 * place. We handle URGent data wrong. We have to - as 3936 * BSD still doesn't use the correction from RFC961. 3937 * For 1003.1g we should support a new option TCP_STDURG to permit 3938 * either form (or just set the sysctl tcp_stdurg). 3939 */ 3940 3941 static void tcp_check_urg(struct sock * sk, struct tcphdr * th) 3942 { 3943 struct tcp_sock *tp = tcp_sk(sk); 3944 u32 ptr = ntohs(th->urg_ptr); 3945 3946 if (ptr && !sysctl_tcp_stdurg) 3947 ptr--; 3948 ptr += ntohl(th->seq); 3949 3950 /* Ignore urgent data that we've already seen and read. */ 3951 if (after(tp->copied_seq, ptr)) 3952 return; 3953 3954 /* Do not replay urg ptr. 3955 * 3956 * NOTE: interesting situation not covered by specs. 3957 * Misbehaving sender may send urg ptr, pointing to segment, 3958 * which we already have in ofo queue. We are not able to fetch 3959 * such data and will stay in TCP_URG_NOTYET until will be eaten 3960 * by recvmsg(). Seems, we are not obliged to handle such wicked 3961 * situations. But it is worth to think about possibility of some 3962 * DoSes using some hypothetical application level deadlock. 3963 */ 3964 if (before(ptr, tp->rcv_nxt)) 3965 return; 3966 3967 /* Do we already have a newer (or duplicate) urgent pointer? */ 3968 if (tp->urg_data && !after(ptr, tp->urg_seq)) 3969 return; 3970 3971 /* Tell the world about our new urgent pointer. */ 3972 sk_send_sigurg(sk); 3973 3974 /* We may be adding urgent data when the last byte read was 3975 * urgent. To do this requires some care. We cannot just ignore 3976 * tp->copied_seq since we would read the last urgent byte again 3977 * as data, nor can we alter copied_seq until this data arrives 3978 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 3979 * 3980 * NOTE. Double Dutch. Rendering to plain English: author of comment 3981 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 3982 * and expect that both A and B disappear from stream. This is _wrong_. 3983 * Though this happens in BSD with high probability, this is occasional. 3984 * Any application relying on this is buggy. Note also, that fix "works" 3985 * only in this artificial test. Insert some normal data between A and B and we will 3986 * decline of BSD again. Verdict: it is better to remove to trap 3987 * buggy users. 3988 */ 3989 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 3990 !sock_flag(sk, SOCK_URGINLINE) && 3991 tp->copied_seq != tp->rcv_nxt) { 3992 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 3993 tp->copied_seq++; 3994 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 3995 __skb_unlink(skb, &sk->sk_receive_queue); 3996 __kfree_skb(skb); 3997 } 3998 } 3999 4000 tp->urg_data = TCP_URG_NOTYET; 4001 tp->urg_seq = ptr; 4002 4003 /* Disable header prediction. */ 4004 tp->pred_flags = 0; 4005 } 4006 4007 /* This is the 'fast' part of urgent handling. */ 4008 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 4009 { 4010 struct tcp_sock *tp = tcp_sk(sk); 4011 4012 /* Check if we get a new urgent pointer - normally not. */ 4013 if (th->urg) 4014 tcp_check_urg(sk,th); 4015 4016 /* Do we wait for any urgent data? - normally not... */ 4017 if (tp->urg_data == TCP_URG_NOTYET) { 4018 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4019 th->syn; 4020 4021 /* Is the urgent pointer pointing into this packet? */ 4022 if (ptr < skb->len) { 4023 u8 tmp; 4024 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4025 BUG(); 4026 tp->urg_data = TCP_URG_VALID | tmp; 4027 if (!sock_flag(sk, SOCK_DEAD)) 4028 sk->sk_data_ready(sk, 0); 4029 } 4030 } 4031 } 4032 4033 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4034 { 4035 struct tcp_sock *tp = tcp_sk(sk); 4036 int chunk = skb->len - hlen; 4037 int err; 4038 4039 local_bh_enable(); 4040 if (skb_csum_unnecessary(skb)) 4041 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4042 else 4043 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4044 tp->ucopy.iov); 4045 4046 if (!err) { 4047 tp->ucopy.len -= chunk; 4048 tp->copied_seq += chunk; 4049 tcp_rcv_space_adjust(sk); 4050 } 4051 4052 local_bh_disable(); 4053 return err; 4054 } 4055 4056 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 4057 { 4058 __sum16 result; 4059 4060 if (sock_owned_by_user(sk)) { 4061 local_bh_enable(); 4062 result = __tcp_checksum_complete(skb); 4063 local_bh_disable(); 4064 } else { 4065 result = __tcp_checksum_complete(skb); 4066 } 4067 return result; 4068 } 4069 4070 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 4071 { 4072 return !skb_csum_unnecessary(skb) && 4073 __tcp_checksum_complete_user(sk, skb); 4074 } 4075 4076 #ifdef CONFIG_NET_DMA 4077 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen) 4078 { 4079 struct tcp_sock *tp = tcp_sk(sk); 4080 int chunk = skb->len - hlen; 4081 int dma_cookie; 4082 int copied_early = 0; 4083 4084 if (tp->ucopy.wakeup) 4085 return 0; 4086 4087 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 4088 tp->ucopy.dma_chan = get_softnet_dma(); 4089 4090 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 4091 4092 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 4093 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list); 4094 4095 if (dma_cookie < 0) 4096 goto out; 4097 4098 tp->ucopy.dma_cookie = dma_cookie; 4099 copied_early = 1; 4100 4101 tp->ucopy.len -= chunk; 4102 tp->copied_seq += chunk; 4103 tcp_rcv_space_adjust(sk); 4104 4105 if ((tp->ucopy.len == 0) || 4106 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 4107 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 4108 tp->ucopy.wakeup = 1; 4109 sk->sk_data_ready(sk, 0); 4110 } 4111 } else if (chunk > 0) { 4112 tp->ucopy.wakeup = 1; 4113 sk->sk_data_ready(sk, 0); 4114 } 4115 out: 4116 return copied_early; 4117 } 4118 #endif /* CONFIG_NET_DMA */ 4119 4120 /* 4121 * TCP receive function for the ESTABLISHED state. 4122 * 4123 * It is split into a fast path and a slow path. The fast path is 4124 * disabled when: 4125 * - A zero window was announced from us - zero window probing 4126 * is only handled properly in the slow path. 4127 * - Out of order segments arrived. 4128 * - Urgent data is expected. 4129 * - There is no buffer space left 4130 * - Unexpected TCP flags/window values/header lengths are received 4131 * (detected by checking the TCP header against pred_flags) 4132 * - Data is sent in both directions. Fast path only supports pure senders 4133 * or pure receivers (this means either the sequence number or the ack 4134 * value must stay constant) 4135 * - Unexpected TCP option. 4136 * 4137 * When these conditions are not satisfied it drops into a standard 4138 * receive procedure patterned after RFC793 to handle all cases. 4139 * The first three cases are guaranteed by proper pred_flags setting, 4140 * the rest is checked inline. Fast processing is turned on in 4141 * tcp_data_queue when everything is OK. 4142 */ 4143 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 4144 struct tcphdr *th, unsigned len) 4145 { 4146 struct tcp_sock *tp = tcp_sk(sk); 4147 4148 /* 4149 * Header prediction. 4150 * The code loosely follows the one in the famous 4151 * "30 instruction TCP receive" Van Jacobson mail. 4152 * 4153 * Van's trick is to deposit buffers into socket queue 4154 * on a device interrupt, to call tcp_recv function 4155 * on the receive process context and checksum and copy 4156 * the buffer to user space. smart... 4157 * 4158 * Our current scheme is not silly either but we take the 4159 * extra cost of the net_bh soft interrupt processing... 4160 * We do checksum and copy also but from device to kernel. 4161 */ 4162 4163 tp->rx_opt.saw_tstamp = 0; 4164 4165 /* pred_flags is 0xS?10 << 16 + snd_wnd 4166 * if header_prediction is to be made 4167 * 'S' will always be tp->tcp_header_len >> 2 4168 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 4169 * turn it off (when there are holes in the receive 4170 * space for instance) 4171 * PSH flag is ignored. 4172 */ 4173 4174 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 4175 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4176 int tcp_header_len = tp->tcp_header_len; 4177 4178 /* Timestamp header prediction: tcp_header_len 4179 * is automatically equal to th->doff*4 due to pred_flags 4180 * match. 4181 */ 4182 4183 /* Check timestamp */ 4184 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 4185 __be32 *ptr = (__be32 *)(th + 1); 4186 4187 /* No? Slow path! */ 4188 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4189 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) 4190 goto slow_path; 4191 4192 tp->rx_opt.saw_tstamp = 1; 4193 ++ptr; 4194 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4195 ++ptr; 4196 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 4197 4198 /* If PAWS failed, check it more carefully in slow path */ 4199 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 4200 goto slow_path; 4201 4202 /* DO NOT update ts_recent here, if checksum fails 4203 * and timestamp was corrupted part, it will result 4204 * in a hung connection since we will drop all 4205 * future packets due to the PAWS test. 4206 */ 4207 } 4208 4209 if (len <= tcp_header_len) { 4210 /* Bulk data transfer: sender */ 4211 if (len == tcp_header_len) { 4212 /* Predicted packet is in window by definition. 4213 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4214 * Hence, check seq<=rcv_wup reduces to: 4215 */ 4216 if (tcp_header_len == 4217 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4218 tp->rcv_nxt == tp->rcv_wup) 4219 tcp_store_ts_recent(tp); 4220 4221 /* We know that such packets are checksummed 4222 * on entry. 4223 */ 4224 tcp_ack(sk, skb, 0); 4225 __kfree_skb(skb); 4226 tcp_data_snd_check(sk); 4227 return 0; 4228 } else { /* Header too small */ 4229 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4230 goto discard; 4231 } 4232 } else { 4233 int eaten = 0; 4234 int copied_early = 0; 4235 4236 if (tp->copied_seq == tp->rcv_nxt && 4237 len - tcp_header_len <= tp->ucopy.len) { 4238 #ifdef CONFIG_NET_DMA 4239 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 4240 copied_early = 1; 4241 eaten = 1; 4242 } 4243 #endif 4244 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) { 4245 __set_current_state(TASK_RUNNING); 4246 4247 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 4248 eaten = 1; 4249 } 4250 if (eaten) { 4251 /* Predicted packet is in window by definition. 4252 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4253 * Hence, check seq<=rcv_wup reduces to: 4254 */ 4255 if (tcp_header_len == 4256 (sizeof(struct tcphdr) + 4257 TCPOLEN_TSTAMP_ALIGNED) && 4258 tp->rcv_nxt == tp->rcv_wup) 4259 tcp_store_ts_recent(tp); 4260 4261 tcp_rcv_rtt_measure_ts(sk, skb); 4262 4263 __skb_pull(skb, tcp_header_len); 4264 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4265 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); 4266 } 4267 if (copied_early) 4268 tcp_cleanup_rbuf(sk, skb->len); 4269 } 4270 if (!eaten) { 4271 if (tcp_checksum_complete_user(sk, skb)) 4272 goto csum_error; 4273 4274 /* Predicted packet is in window by definition. 4275 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4276 * Hence, check seq<=rcv_wup reduces to: 4277 */ 4278 if (tcp_header_len == 4279 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4280 tp->rcv_nxt == tp->rcv_wup) 4281 tcp_store_ts_recent(tp); 4282 4283 tcp_rcv_rtt_measure_ts(sk, skb); 4284 4285 if ((int)skb->truesize > sk->sk_forward_alloc) 4286 goto step5; 4287 4288 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); 4289 4290 /* Bulk data transfer: receiver */ 4291 __skb_pull(skb,tcp_header_len); 4292 __skb_queue_tail(&sk->sk_receive_queue, skb); 4293 sk_stream_set_owner_r(skb, sk); 4294 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4295 } 4296 4297 tcp_event_data_recv(sk, skb); 4298 4299 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 4300 /* Well, only one small jumplet in fast path... */ 4301 tcp_ack(sk, skb, FLAG_DATA); 4302 tcp_data_snd_check(sk); 4303 if (!inet_csk_ack_scheduled(sk)) 4304 goto no_ack; 4305 } 4306 4307 __tcp_ack_snd_check(sk, 0); 4308 no_ack: 4309 #ifdef CONFIG_NET_DMA 4310 if (copied_early) 4311 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 4312 else 4313 #endif 4314 if (eaten) 4315 __kfree_skb(skb); 4316 else 4317 sk->sk_data_ready(sk, 0); 4318 return 0; 4319 } 4320 } 4321 4322 slow_path: 4323 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb)) 4324 goto csum_error; 4325 4326 /* 4327 * RFC1323: H1. Apply PAWS check first. 4328 */ 4329 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4330 tcp_paws_discard(sk, skb)) { 4331 if (!th->rst) { 4332 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4333 tcp_send_dupack(sk, skb); 4334 goto discard; 4335 } 4336 /* Resets are accepted even if PAWS failed. 4337 4338 ts_recent update must be made after we are sure 4339 that the packet is in window. 4340 */ 4341 } 4342 4343 /* 4344 * Standard slow path. 4345 */ 4346 4347 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4348 /* RFC793, page 37: "In all states except SYN-SENT, all reset 4349 * (RST) segments are validated by checking their SEQ-fields." 4350 * And page 69: "If an incoming segment is not acceptable, 4351 * an acknowledgment should be sent in reply (unless the RST bit 4352 * is set, if so drop the segment and return)". 4353 */ 4354 if (!th->rst) 4355 tcp_send_dupack(sk, skb); 4356 goto discard; 4357 } 4358 4359 if (th->rst) { 4360 tcp_reset(sk); 4361 goto discard; 4362 } 4363 4364 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4365 4366 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4367 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4368 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4369 tcp_reset(sk); 4370 return 1; 4371 } 4372 4373 step5: 4374 if (th->ack) 4375 tcp_ack(sk, skb, FLAG_SLOWPATH); 4376 4377 tcp_rcv_rtt_measure_ts(sk, skb); 4378 4379 /* Process urgent data. */ 4380 tcp_urg(sk, skb, th); 4381 4382 /* step 7: process the segment text */ 4383 tcp_data_queue(sk, skb); 4384 4385 tcp_data_snd_check(sk); 4386 tcp_ack_snd_check(sk); 4387 return 0; 4388 4389 csum_error: 4390 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4391 4392 discard: 4393 __kfree_skb(skb); 4394 return 0; 4395 } 4396 4397 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 4398 struct tcphdr *th, unsigned len) 4399 { 4400 struct tcp_sock *tp = tcp_sk(sk); 4401 struct inet_connection_sock *icsk = inet_csk(sk); 4402 int saved_clamp = tp->rx_opt.mss_clamp; 4403 4404 tcp_parse_options(skb, &tp->rx_opt, 0); 4405 4406 if (th->ack) { 4407 /* rfc793: 4408 * "If the state is SYN-SENT then 4409 * first check the ACK bit 4410 * If the ACK bit is set 4411 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 4412 * a reset (unless the RST bit is set, if so drop 4413 * the segment and return)" 4414 * 4415 * We do not send data with SYN, so that RFC-correct 4416 * test reduces to: 4417 */ 4418 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 4419 goto reset_and_undo; 4420 4421 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4422 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 4423 tcp_time_stamp)) { 4424 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); 4425 goto reset_and_undo; 4426 } 4427 4428 /* Now ACK is acceptable. 4429 * 4430 * "If the RST bit is set 4431 * If the ACK was acceptable then signal the user "error: 4432 * connection reset", drop the segment, enter CLOSED state, 4433 * delete TCB, and return." 4434 */ 4435 4436 if (th->rst) { 4437 tcp_reset(sk); 4438 goto discard; 4439 } 4440 4441 /* rfc793: 4442 * "fifth, if neither of the SYN or RST bits is set then 4443 * drop the segment and return." 4444 * 4445 * See note below! 4446 * --ANK(990513) 4447 */ 4448 if (!th->syn) 4449 goto discard_and_undo; 4450 4451 /* rfc793: 4452 * "If the SYN bit is on ... 4453 * are acceptable then ... 4454 * (our SYN has been ACKed), change the connection 4455 * state to ESTABLISHED..." 4456 */ 4457 4458 TCP_ECN_rcv_synack(tp, th); 4459 4460 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4461 tcp_ack(sk, skb, FLAG_SLOWPATH); 4462 4463 /* Ok.. it's good. Set up sequence numbers and 4464 * move to established. 4465 */ 4466 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4467 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4468 4469 /* RFC1323: The window in SYN & SYN/ACK segments is 4470 * never scaled. 4471 */ 4472 tp->snd_wnd = ntohs(th->window); 4473 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 4474 4475 if (!tp->rx_opt.wscale_ok) { 4476 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 4477 tp->window_clamp = min(tp->window_clamp, 65535U); 4478 } 4479 4480 if (tp->rx_opt.saw_tstamp) { 4481 tp->rx_opt.tstamp_ok = 1; 4482 tp->tcp_header_len = 4483 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4484 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4485 tcp_store_ts_recent(tp); 4486 } else { 4487 tp->tcp_header_len = sizeof(struct tcphdr); 4488 } 4489 4490 if (tp->rx_opt.sack_ok && sysctl_tcp_fack) 4491 tp->rx_opt.sack_ok |= 2; 4492 4493 tcp_mtup_init(sk); 4494 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4495 tcp_initialize_rcv_mss(sk); 4496 4497 /* Remember, tcp_poll() does not lock socket! 4498 * Change state from SYN-SENT only after copied_seq 4499 * is initialized. */ 4500 tp->copied_seq = tp->rcv_nxt; 4501 smp_mb(); 4502 tcp_set_state(sk, TCP_ESTABLISHED); 4503 4504 security_inet_conn_established(sk, skb); 4505 4506 /* Make sure socket is routed, for correct metrics. */ 4507 icsk->icsk_af_ops->rebuild_header(sk); 4508 4509 tcp_init_metrics(sk); 4510 4511 tcp_init_congestion_control(sk); 4512 4513 /* Prevent spurious tcp_cwnd_restart() on first data 4514 * packet. 4515 */ 4516 tp->lsndtime = tcp_time_stamp; 4517 4518 tcp_init_buffer_space(sk); 4519 4520 if (sock_flag(sk, SOCK_KEEPOPEN)) 4521 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 4522 4523 if (!tp->rx_opt.snd_wscale) 4524 __tcp_fast_path_on(tp, tp->snd_wnd); 4525 else 4526 tp->pred_flags = 0; 4527 4528 if (!sock_flag(sk, SOCK_DEAD)) { 4529 sk->sk_state_change(sk); 4530 sk_wake_async(sk, 0, POLL_OUT); 4531 } 4532 4533 if (sk->sk_write_pending || 4534 icsk->icsk_accept_queue.rskq_defer_accept || 4535 icsk->icsk_ack.pingpong) { 4536 /* Save one ACK. Data will be ready after 4537 * several ticks, if write_pending is set. 4538 * 4539 * It may be deleted, but with this feature tcpdumps 4540 * look so _wonderfully_ clever, that I was not able 4541 * to stand against the temptation 8) --ANK 4542 */ 4543 inet_csk_schedule_ack(sk); 4544 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 4545 icsk->icsk_ack.ato = TCP_ATO_MIN; 4546 tcp_incr_quickack(sk); 4547 tcp_enter_quickack_mode(sk); 4548 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 4549 TCP_DELACK_MAX, TCP_RTO_MAX); 4550 4551 discard: 4552 __kfree_skb(skb); 4553 return 0; 4554 } else { 4555 tcp_send_ack(sk); 4556 } 4557 return -1; 4558 } 4559 4560 /* No ACK in the segment */ 4561 4562 if (th->rst) { 4563 /* rfc793: 4564 * "If the RST bit is set 4565 * 4566 * Otherwise (no ACK) drop the segment and return." 4567 */ 4568 4569 goto discard_and_undo; 4570 } 4571 4572 /* PAWS check. */ 4573 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0)) 4574 goto discard_and_undo; 4575 4576 if (th->syn) { 4577 /* We see SYN without ACK. It is attempt of 4578 * simultaneous connect with crossed SYNs. 4579 * Particularly, it can be connect to self. 4580 */ 4581 tcp_set_state(sk, TCP_SYN_RECV); 4582 4583 if (tp->rx_opt.saw_tstamp) { 4584 tp->rx_opt.tstamp_ok = 1; 4585 tcp_store_ts_recent(tp); 4586 tp->tcp_header_len = 4587 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4588 } else { 4589 tp->tcp_header_len = sizeof(struct tcphdr); 4590 } 4591 4592 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4593 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4594 4595 /* RFC1323: The window in SYN & SYN/ACK segments is 4596 * never scaled. 4597 */ 4598 tp->snd_wnd = ntohs(th->window); 4599 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4600 tp->max_window = tp->snd_wnd; 4601 4602 TCP_ECN_rcv_syn(tp, th); 4603 4604 tcp_mtup_init(sk); 4605 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4606 tcp_initialize_rcv_mss(sk); 4607 4608 4609 tcp_send_synack(sk); 4610 #if 0 4611 /* Note, we could accept data and URG from this segment. 4612 * There are no obstacles to make this. 4613 * 4614 * However, if we ignore data in ACKless segments sometimes, 4615 * we have no reasons to accept it sometimes. 4616 * Also, seems the code doing it in step6 of tcp_rcv_state_process 4617 * is not flawless. So, discard packet for sanity. 4618 * Uncomment this return to process the data. 4619 */ 4620 return -1; 4621 #else 4622 goto discard; 4623 #endif 4624 } 4625 /* "fifth, if neither of the SYN or RST bits is set then 4626 * drop the segment and return." 4627 */ 4628 4629 discard_and_undo: 4630 tcp_clear_options(&tp->rx_opt); 4631 tp->rx_opt.mss_clamp = saved_clamp; 4632 goto discard; 4633 4634 reset_and_undo: 4635 tcp_clear_options(&tp->rx_opt); 4636 tp->rx_opt.mss_clamp = saved_clamp; 4637 return 1; 4638 } 4639 4640 4641 /* 4642 * This function implements the receiving procedure of RFC 793 for 4643 * all states except ESTABLISHED and TIME_WAIT. 4644 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 4645 * address independent. 4646 */ 4647 4648 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 4649 struct tcphdr *th, unsigned len) 4650 { 4651 struct tcp_sock *tp = tcp_sk(sk); 4652 struct inet_connection_sock *icsk = inet_csk(sk); 4653 int queued = 0; 4654 4655 tp->rx_opt.saw_tstamp = 0; 4656 4657 switch (sk->sk_state) { 4658 case TCP_CLOSE: 4659 goto discard; 4660 4661 case TCP_LISTEN: 4662 if (th->ack) 4663 return 1; 4664 4665 if (th->rst) 4666 goto discard; 4667 4668 if (th->syn) { 4669 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 4670 return 1; 4671 4672 /* Now we have several options: In theory there is 4673 * nothing else in the frame. KA9Q has an option to 4674 * send data with the syn, BSD accepts data with the 4675 * syn up to the [to be] advertised window and 4676 * Solaris 2.1 gives you a protocol error. For now 4677 * we just ignore it, that fits the spec precisely 4678 * and avoids incompatibilities. It would be nice in 4679 * future to drop through and process the data. 4680 * 4681 * Now that TTCP is starting to be used we ought to 4682 * queue this data. 4683 * But, this leaves one open to an easy denial of 4684 * service attack, and SYN cookies can't defend 4685 * against this problem. So, we drop the data 4686 * in the interest of security over speed unless 4687 * it's still in use. 4688 */ 4689 kfree_skb(skb); 4690 return 0; 4691 } 4692 goto discard; 4693 4694 case TCP_SYN_SENT: 4695 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 4696 if (queued >= 0) 4697 return queued; 4698 4699 /* Do step6 onward by hand. */ 4700 tcp_urg(sk, skb, th); 4701 __kfree_skb(skb); 4702 tcp_data_snd_check(sk); 4703 return 0; 4704 } 4705 4706 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4707 tcp_paws_discard(sk, skb)) { 4708 if (!th->rst) { 4709 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4710 tcp_send_dupack(sk, skb); 4711 goto discard; 4712 } 4713 /* Reset is accepted even if it did not pass PAWS. */ 4714 } 4715 4716 /* step 1: check sequence number */ 4717 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4718 if (!th->rst) 4719 tcp_send_dupack(sk, skb); 4720 goto discard; 4721 } 4722 4723 /* step 2: check RST bit */ 4724 if (th->rst) { 4725 tcp_reset(sk); 4726 goto discard; 4727 } 4728 4729 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4730 4731 /* step 3: check security and precedence [ignored] */ 4732 4733 /* step 4: 4734 * 4735 * Check for a SYN in window. 4736 */ 4737 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4738 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4739 tcp_reset(sk); 4740 return 1; 4741 } 4742 4743 /* step 5: check the ACK field */ 4744 if (th->ack) { 4745 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 4746 4747 switch (sk->sk_state) { 4748 case TCP_SYN_RECV: 4749 if (acceptable) { 4750 tp->copied_seq = tp->rcv_nxt; 4751 smp_mb(); 4752 tcp_set_state(sk, TCP_ESTABLISHED); 4753 sk->sk_state_change(sk); 4754 4755 /* Note, that this wakeup is only for marginal 4756 * crossed SYN case. Passively open sockets 4757 * are not waked up, because sk->sk_sleep == 4758 * NULL and sk->sk_socket == NULL. 4759 */ 4760 if (sk->sk_socket) { 4761 sk_wake_async(sk,0,POLL_OUT); 4762 } 4763 4764 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 4765 tp->snd_wnd = ntohs(th->window) << 4766 tp->rx_opt.snd_wscale; 4767 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 4768 TCP_SKB_CB(skb)->seq); 4769 4770 /* tcp_ack considers this ACK as duplicate 4771 * and does not calculate rtt. 4772 * Fix it at least with timestamps. 4773 */ 4774 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4775 !tp->srtt) 4776 tcp_ack_saw_tstamp(sk, 0); 4777 4778 if (tp->rx_opt.tstamp_ok) 4779 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4780 4781 /* Make sure socket is routed, for 4782 * correct metrics. 4783 */ 4784 icsk->icsk_af_ops->rebuild_header(sk); 4785 4786 tcp_init_metrics(sk); 4787 4788 tcp_init_congestion_control(sk); 4789 4790 /* Prevent spurious tcp_cwnd_restart() on 4791 * first data packet. 4792 */ 4793 tp->lsndtime = tcp_time_stamp; 4794 4795 tcp_mtup_init(sk); 4796 tcp_initialize_rcv_mss(sk); 4797 tcp_init_buffer_space(sk); 4798 tcp_fast_path_on(tp); 4799 } else { 4800 return 1; 4801 } 4802 break; 4803 4804 case TCP_FIN_WAIT1: 4805 if (tp->snd_una == tp->write_seq) { 4806 tcp_set_state(sk, TCP_FIN_WAIT2); 4807 sk->sk_shutdown |= SEND_SHUTDOWN; 4808 dst_confirm(sk->sk_dst_cache); 4809 4810 if (!sock_flag(sk, SOCK_DEAD)) 4811 /* Wake up lingering close() */ 4812 sk->sk_state_change(sk); 4813 else { 4814 int tmo; 4815 4816 if (tp->linger2 < 0 || 4817 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4818 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 4819 tcp_done(sk); 4820 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4821 return 1; 4822 } 4823 4824 tmo = tcp_fin_time(sk); 4825 if (tmo > TCP_TIMEWAIT_LEN) { 4826 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 4827 } else if (th->fin || sock_owned_by_user(sk)) { 4828 /* Bad case. We could lose such FIN otherwise. 4829 * It is not a big problem, but it looks confusing 4830 * and not so rare event. We still can lose it now, 4831 * if it spins in bh_lock_sock(), but it is really 4832 * marginal case. 4833 */ 4834 inet_csk_reset_keepalive_timer(sk, tmo); 4835 } else { 4836 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 4837 goto discard; 4838 } 4839 } 4840 } 4841 break; 4842 4843 case TCP_CLOSING: 4844 if (tp->snd_una == tp->write_seq) { 4845 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4846 goto discard; 4847 } 4848 break; 4849 4850 case TCP_LAST_ACK: 4851 if (tp->snd_una == tp->write_seq) { 4852 tcp_update_metrics(sk); 4853 tcp_done(sk); 4854 goto discard; 4855 } 4856 break; 4857 } 4858 } else 4859 goto discard; 4860 4861 /* step 6: check the URG bit */ 4862 tcp_urg(sk, skb, th); 4863 4864 /* step 7: process the segment text */ 4865 switch (sk->sk_state) { 4866 case TCP_CLOSE_WAIT: 4867 case TCP_CLOSING: 4868 case TCP_LAST_ACK: 4869 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4870 break; 4871 case TCP_FIN_WAIT1: 4872 case TCP_FIN_WAIT2: 4873 /* RFC 793 says to queue data in these states, 4874 * RFC 1122 says we MUST send a reset. 4875 * BSD 4.4 also does reset. 4876 */ 4877 if (sk->sk_shutdown & RCV_SHUTDOWN) { 4878 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4879 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 4880 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4881 tcp_reset(sk); 4882 return 1; 4883 } 4884 } 4885 /* Fall through */ 4886 case TCP_ESTABLISHED: 4887 tcp_data_queue(sk, skb); 4888 queued = 1; 4889 break; 4890 } 4891 4892 /* tcp_data could move socket to TIME-WAIT */ 4893 if (sk->sk_state != TCP_CLOSE) { 4894 tcp_data_snd_check(sk); 4895 tcp_ack_snd_check(sk); 4896 } 4897 4898 if (!queued) { 4899 discard: 4900 __kfree_skb(skb); 4901 } 4902 return 0; 4903 } 4904 4905 EXPORT_SYMBOL(sysctl_tcp_ecn); 4906 EXPORT_SYMBOL(sysctl_tcp_reordering); 4907 EXPORT_SYMBOL(tcp_parse_options); 4908 EXPORT_SYMBOL(tcp_rcv_established); 4909 EXPORT_SYMBOL(tcp_rcv_state_process); 4910 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 4911