xref: /linux/net/ipv4/tcp_input.c (revision 9ffc93f203c18a70623f21950f1dd473c9ec48cd)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 2;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90 
91 int sysctl_tcp_stdurg __read_mostly;
92 int sysctl_tcp_rfc1337 __read_mostly;
93 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94 int sysctl_tcp_frto __read_mostly = 2;
95 int sysctl_tcp_frto_response __read_mostly;
96 int sysctl_tcp_nometrics_save __read_mostly;
97 
98 int sysctl_tcp_thin_dupack __read_mostly;
99 
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_abc __read_mostly;
102 
103 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
104 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
105 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
106 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
107 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
108 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
109 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
110 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
112 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
115 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
116 
117 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
121 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122 
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 
126 /* Adapt the MSS value used to make delayed ack decision to the
127  * real world.
128  */
129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 {
131 	struct inet_connection_sock *icsk = inet_csk(sk);
132 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
133 	unsigned int len;
134 
135 	icsk->icsk_ack.last_seg_size = 0;
136 
137 	/* skb->len may jitter because of SACKs, even if peer
138 	 * sends good full-sized frames.
139 	 */
140 	len = skb_shinfo(skb)->gso_size ? : skb->len;
141 	if (len >= icsk->icsk_ack.rcv_mss) {
142 		icsk->icsk_ack.rcv_mss = len;
143 	} else {
144 		/* Otherwise, we make more careful check taking into account,
145 		 * that SACKs block is variable.
146 		 *
147 		 * "len" is invariant segment length, including TCP header.
148 		 */
149 		len += skb->data - skb_transport_header(skb);
150 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
151 		    /* If PSH is not set, packet should be
152 		     * full sized, provided peer TCP is not badly broken.
153 		     * This observation (if it is correct 8)) allows
154 		     * to handle super-low mtu links fairly.
155 		     */
156 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
157 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
158 			/* Subtract also invariant (if peer is RFC compliant),
159 			 * tcp header plus fixed timestamp option length.
160 			 * Resulting "len" is MSS free of SACK jitter.
161 			 */
162 			len -= tcp_sk(sk)->tcp_header_len;
163 			icsk->icsk_ack.last_seg_size = len;
164 			if (len == lss) {
165 				icsk->icsk_ack.rcv_mss = len;
166 				return;
167 			}
168 		}
169 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
171 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172 	}
173 }
174 
175 static void tcp_incr_quickack(struct sock *sk)
176 {
177 	struct inet_connection_sock *icsk = inet_csk(sk);
178 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179 
180 	if (quickacks == 0)
181 		quickacks = 2;
182 	if (quickacks > icsk->icsk_ack.quick)
183 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 }
185 
186 static void tcp_enter_quickack_mode(struct sock *sk)
187 {
188 	struct inet_connection_sock *icsk = inet_csk(sk);
189 	tcp_incr_quickack(sk);
190 	icsk->icsk_ack.pingpong = 0;
191 	icsk->icsk_ack.ato = TCP_ATO_MIN;
192 }
193 
194 /* Send ACKs quickly, if "quick" count is not exhausted
195  * and the session is not interactive.
196  */
197 
198 static inline int tcp_in_quickack_mode(const struct sock *sk)
199 {
200 	const struct inet_connection_sock *icsk = inet_csk(sk);
201 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
202 }
203 
204 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 {
206 	if (tp->ecn_flags & TCP_ECN_OK)
207 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208 }
209 
210 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211 {
212 	if (tcp_hdr(skb)->cwr)
213 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215 
216 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 {
218 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219 }
220 
221 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 {
223 	if (!(tp->ecn_flags & TCP_ECN_OK))
224 		return;
225 
226 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
227 	case INET_ECN_NOT_ECT:
228 		/* Funny extension: if ECT is not set on a segment,
229 		 * and we already seen ECT on a previous segment,
230 		 * it is probably a retransmit.
231 		 */
232 		if (tp->ecn_flags & TCP_ECN_SEEN)
233 			tcp_enter_quickack_mode((struct sock *)tp);
234 		break;
235 	case INET_ECN_CE:
236 		tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
237 		/* fallinto */
238 	default:
239 		tp->ecn_flags |= TCP_ECN_SEEN;
240 	}
241 }
242 
243 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
244 {
245 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
246 		tp->ecn_flags &= ~TCP_ECN_OK;
247 }
248 
249 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
250 {
251 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
252 		tp->ecn_flags &= ~TCP_ECN_OK;
253 }
254 
255 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
256 {
257 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
258 		return 1;
259 	return 0;
260 }
261 
262 /* Buffer size and advertised window tuning.
263  *
264  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
265  */
266 
267 static void tcp_fixup_sndbuf(struct sock *sk)
268 {
269 	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
270 
271 	sndmem *= TCP_INIT_CWND;
272 	if (sk->sk_sndbuf < sndmem)
273 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
274 }
275 
276 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
277  *
278  * All tcp_full_space() is split to two parts: "network" buffer, allocated
279  * forward and advertised in receiver window (tp->rcv_wnd) and
280  * "application buffer", required to isolate scheduling/application
281  * latencies from network.
282  * window_clamp is maximal advertised window. It can be less than
283  * tcp_full_space(), in this case tcp_full_space() - window_clamp
284  * is reserved for "application" buffer. The less window_clamp is
285  * the smoother our behaviour from viewpoint of network, but the lower
286  * throughput and the higher sensitivity of the connection to losses. 8)
287  *
288  * rcv_ssthresh is more strict window_clamp used at "slow start"
289  * phase to predict further behaviour of this connection.
290  * It is used for two goals:
291  * - to enforce header prediction at sender, even when application
292  *   requires some significant "application buffer". It is check #1.
293  * - to prevent pruning of receive queue because of misprediction
294  *   of receiver window. Check #2.
295  *
296  * The scheme does not work when sender sends good segments opening
297  * window and then starts to feed us spaghetti. But it should work
298  * in common situations. Otherwise, we have to rely on queue collapsing.
299  */
300 
301 /* Slow part of check#2. */
302 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
303 {
304 	struct tcp_sock *tp = tcp_sk(sk);
305 	/* Optimize this! */
306 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
307 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
308 
309 	while (tp->rcv_ssthresh <= window) {
310 		if (truesize <= skb->len)
311 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
312 
313 		truesize >>= 1;
314 		window >>= 1;
315 	}
316 	return 0;
317 }
318 
319 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
320 {
321 	struct tcp_sock *tp = tcp_sk(sk);
322 
323 	/* Check #1 */
324 	if (tp->rcv_ssthresh < tp->window_clamp &&
325 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
326 	    !sk_under_memory_pressure(sk)) {
327 		int incr;
328 
329 		/* Check #2. Increase window, if skb with such overhead
330 		 * will fit to rcvbuf in future.
331 		 */
332 		if (tcp_win_from_space(skb->truesize) <= skb->len)
333 			incr = 2 * tp->advmss;
334 		else
335 			incr = __tcp_grow_window(sk, skb);
336 
337 		if (incr) {
338 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
339 					       tp->window_clamp);
340 			inet_csk(sk)->icsk_ack.quick |= 1;
341 		}
342 	}
343 }
344 
345 /* 3. Tuning rcvbuf, when connection enters established state. */
346 
347 static void tcp_fixup_rcvbuf(struct sock *sk)
348 {
349 	u32 mss = tcp_sk(sk)->advmss;
350 	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
351 	int rcvmem;
352 
353 	/* Limit to 10 segments if mss <= 1460,
354 	 * or 14600/mss segments, with a minimum of two segments.
355 	 */
356 	if (mss > 1460)
357 		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
358 
359 	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
360 	while (tcp_win_from_space(rcvmem) < mss)
361 		rcvmem += 128;
362 
363 	rcvmem *= icwnd;
364 
365 	if (sk->sk_rcvbuf < rcvmem)
366 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
367 }
368 
369 /* 4. Try to fixup all. It is made immediately after connection enters
370  *    established state.
371  */
372 static void tcp_init_buffer_space(struct sock *sk)
373 {
374 	struct tcp_sock *tp = tcp_sk(sk);
375 	int maxwin;
376 
377 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
378 		tcp_fixup_rcvbuf(sk);
379 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
380 		tcp_fixup_sndbuf(sk);
381 
382 	tp->rcvq_space.space = tp->rcv_wnd;
383 
384 	maxwin = tcp_full_space(sk);
385 
386 	if (tp->window_clamp >= maxwin) {
387 		tp->window_clamp = maxwin;
388 
389 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
390 			tp->window_clamp = max(maxwin -
391 					       (maxwin >> sysctl_tcp_app_win),
392 					       4 * tp->advmss);
393 	}
394 
395 	/* Force reservation of one segment. */
396 	if (sysctl_tcp_app_win &&
397 	    tp->window_clamp > 2 * tp->advmss &&
398 	    tp->window_clamp + tp->advmss > maxwin)
399 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
400 
401 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
402 	tp->snd_cwnd_stamp = tcp_time_stamp;
403 }
404 
405 /* 5. Recalculate window clamp after socket hit its memory bounds. */
406 static void tcp_clamp_window(struct sock *sk)
407 {
408 	struct tcp_sock *tp = tcp_sk(sk);
409 	struct inet_connection_sock *icsk = inet_csk(sk);
410 
411 	icsk->icsk_ack.quick = 0;
412 
413 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
414 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
415 	    !sk_under_memory_pressure(sk) &&
416 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
417 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
418 				    sysctl_tcp_rmem[2]);
419 	}
420 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
421 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
422 }
423 
424 /* Initialize RCV_MSS value.
425  * RCV_MSS is an our guess about MSS used by the peer.
426  * We haven't any direct information about the MSS.
427  * It's better to underestimate the RCV_MSS rather than overestimate.
428  * Overestimations make us ACKing less frequently than needed.
429  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
430  */
431 void tcp_initialize_rcv_mss(struct sock *sk)
432 {
433 	const struct tcp_sock *tp = tcp_sk(sk);
434 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
435 
436 	hint = min(hint, tp->rcv_wnd / 2);
437 	hint = min(hint, TCP_MSS_DEFAULT);
438 	hint = max(hint, TCP_MIN_MSS);
439 
440 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
441 }
442 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
443 
444 /* Receiver "autotuning" code.
445  *
446  * The algorithm for RTT estimation w/o timestamps is based on
447  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
448  * <http://public.lanl.gov/radiant/pubs.html#DRS>
449  *
450  * More detail on this code can be found at
451  * <http://staff.psc.edu/jheffner/>,
452  * though this reference is out of date.  A new paper
453  * is pending.
454  */
455 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
456 {
457 	u32 new_sample = tp->rcv_rtt_est.rtt;
458 	long m = sample;
459 
460 	if (m == 0)
461 		m = 1;
462 
463 	if (new_sample != 0) {
464 		/* If we sample in larger samples in the non-timestamp
465 		 * case, we could grossly overestimate the RTT especially
466 		 * with chatty applications or bulk transfer apps which
467 		 * are stalled on filesystem I/O.
468 		 *
469 		 * Also, since we are only going for a minimum in the
470 		 * non-timestamp case, we do not smooth things out
471 		 * else with timestamps disabled convergence takes too
472 		 * long.
473 		 */
474 		if (!win_dep) {
475 			m -= (new_sample >> 3);
476 			new_sample += m;
477 		} else if (m < new_sample)
478 			new_sample = m << 3;
479 	} else {
480 		/* No previous measure. */
481 		new_sample = m << 3;
482 	}
483 
484 	if (tp->rcv_rtt_est.rtt != new_sample)
485 		tp->rcv_rtt_est.rtt = new_sample;
486 }
487 
488 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
489 {
490 	if (tp->rcv_rtt_est.time == 0)
491 		goto new_measure;
492 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
493 		return;
494 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
495 
496 new_measure:
497 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
498 	tp->rcv_rtt_est.time = tcp_time_stamp;
499 }
500 
501 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
502 					  const struct sk_buff *skb)
503 {
504 	struct tcp_sock *tp = tcp_sk(sk);
505 	if (tp->rx_opt.rcv_tsecr &&
506 	    (TCP_SKB_CB(skb)->end_seq -
507 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
508 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
509 }
510 
511 /*
512  * This function should be called every time data is copied to user space.
513  * It calculates the appropriate TCP receive buffer space.
514  */
515 void tcp_rcv_space_adjust(struct sock *sk)
516 {
517 	struct tcp_sock *tp = tcp_sk(sk);
518 	int time;
519 	int space;
520 
521 	if (tp->rcvq_space.time == 0)
522 		goto new_measure;
523 
524 	time = tcp_time_stamp - tp->rcvq_space.time;
525 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
526 		return;
527 
528 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
529 
530 	space = max(tp->rcvq_space.space, space);
531 
532 	if (tp->rcvq_space.space != space) {
533 		int rcvmem;
534 
535 		tp->rcvq_space.space = space;
536 
537 		if (sysctl_tcp_moderate_rcvbuf &&
538 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
539 			int new_clamp = space;
540 
541 			/* Receive space grows, normalize in order to
542 			 * take into account packet headers and sk_buff
543 			 * structure overhead.
544 			 */
545 			space /= tp->advmss;
546 			if (!space)
547 				space = 1;
548 			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
549 			while (tcp_win_from_space(rcvmem) < tp->advmss)
550 				rcvmem += 128;
551 			space *= rcvmem;
552 			space = min(space, sysctl_tcp_rmem[2]);
553 			if (space > sk->sk_rcvbuf) {
554 				sk->sk_rcvbuf = space;
555 
556 				/* Make the window clamp follow along.  */
557 				tp->window_clamp = new_clamp;
558 			}
559 		}
560 	}
561 
562 new_measure:
563 	tp->rcvq_space.seq = tp->copied_seq;
564 	tp->rcvq_space.time = tcp_time_stamp;
565 }
566 
567 /* There is something which you must keep in mind when you analyze the
568  * behavior of the tp->ato delayed ack timeout interval.  When a
569  * connection starts up, we want to ack as quickly as possible.  The
570  * problem is that "good" TCP's do slow start at the beginning of data
571  * transmission.  The means that until we send the first few ACK's the
572  * sender will sit on his end and only queue most of his data, because
573  * he can only send snd_cwnd unacked packets at any given time.  For
574  * each ACK we send, he increments snd_cwnd and transmits more of his
575  * queue.  -DaveM
576  */
577 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
578 {
579 	struct tcp_sock *tp = tcp_sk(sk);
580 	struct inet_connection_sock *icsk = inet_csk(sk);
581 	u32 now;
582 
583 	inet_csk_schedule_ack(sk);
584 
585 	tcp_measure_rcv_mss(sk, skb);
586 
587 	tcp_rcv_rtt_measure(tp);
588 
589 	now = tcp_time_stamp;
590 
591 	if (!icsk->icsk_ack.ato) {
592 		/* The _first_ data packet received, initialize
593 		 * delayed ACK engine.
594 		 */
595 		tcp_incr_quickack(sk);
596 		icsk->icsk_ack.ato = TCP_ATO_MIN;
597 	} else {
598 		int m = now - icsk->icsk_ack.lrcvtime;
599 
600 		if (m <= TCP_ATO_MIN / 2) {
601 			/* The fastest case is the first. */
602 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
603 		} else if (m < icsk->icsk_ack.ato) {
604 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
605 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
606 				icsk->icsk_ack.ato = icsk->icsk_rto;
607 		} else if (m > icsk->icsk_rto) {
608 			/* Too long gap. Apparently sender failed to
609 			 * restart window, so that we send ACKs quickly.
610 			 */
611 			tcp_incr_quickack(sk);
612 			sk_mem_reclaim(sk);
613 		}
614 	}
615 	icsk->icsk_ack.lrcvtime = now;
616 
617 	TCP_ECN_check_ce(tp, skb);
618 
619 	if (skb->len >= 128)
620 		tcp_grow_window(sk, skb);
621 }
622 
623 /* Called to compute a smoothed rtt estimate. The data fed to this
624  * routine either comes from timestamps, or from segments that were
625  * known _not_ to have been retransmitted [see Karn/Partridge
626  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
627  * piece by Van Jacobson.
628  * NOTE: the next three routines used to be one big routine.
629  * To save cycles in the RFC 1323 implementation it was better to break
630  * it up into three procedures. -- erics
631  */
632 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
633 {
634 	struct tcp_sock *tp = tcp_sk(sk);
635 	long m = mrtt; /* RTT */
636 
637 	/*	The following amusing code comes from Jacobson's
638 	 *	article in SIGCOMM '88.  Note that rtt and mdev
639 	 *	are scaled versions of rtt and mean deviation.
640 	 *	This is designed to be as fast as possible
641 	 *	m stands for "measurement".
642 	 *
643 	 *	On a 1990 paper the rto value is changed to:
644 	 *	RTO = rtt + 4 * mdev
645 	 *
646 	 * Funny. This algorithm seems to be very broken.
647 	 * These formulae increase RTO, when it should be decreased, increase
648 	 * too slowly, when it should be increased quickly, decrease too quickly
649 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
650 	 * does not matter how to _calculate_ it. Seems, it was trap
651 	 * that VJ failed to avoid. 8)
652 	 */
653 	if (m == 0)
654 		m = 1;
655 	if (tp->srtt != 0) {
656 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
657 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
658 		if (m < 0) {
659 			m = -m;		/* m is now abs(error) */
660 			m -= (tp->mdev >> 2);   /* similar update on mdev */
661 			/* This is similar to one of Eifel findings.
662 			 * Eifel blocks mdev updates when rtt decreases.
663 			 * This solution is a bit different: we use finer gain
664 			 * for mdev in this case (alpha*beta).
665 			 * Like Eifel it also prevents growth of rto,
666 			 * but also it limits too fast rto decreases,
667 			 * happening in pure Eifel.
668 			 */
669 			if (m > 0)
670 				m >>= 3;
671 		} else {
672 			m -= (tp->mdev >> 2);   /* similar update on mdev */
673 		}
674 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
675 		if (tp->mdev > tp->mdev_max) {
676 			tp->mdev_max = tp->mdev;
677 			if (tp->mdev_max > tp->rttvar)
678 				tp->rttvar = tp->mdev_max;
679 		}
680 		if (after(tp->snd_una, tp->rtt_seq)) {
681 			if (tp->mdev_max < tp->rttvar)
682 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
683 			tp->rtt_seq = tp->snd_nxt;
684 			tp->mdev_max = tcp_rto_min(sk);
685 		}
686 	} else {
687 		/* no previous measure. */
688 		tp->srtt = m << 3;	/* take the measured time to be rtt */
689 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
690 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
691 		tp->rtt_seq = tp->snd_nxt;
692 	}
693 }
694 
695 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
696  * routine referred to above.
697  */
698 static inline void tcp_set_rto(struct sock *sk)
699 {
700 	const struct tcp_sock *tp = tcp_sk(sk);
701 	/* Old crap is replaced with new one. 8)
702 	 *
703 	 * More seriously:
704 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
705 	 *    It cannot be less due to utterly erratic ACK generation made
706 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
707 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
708 	 *    is invisible. Actually, Linux-2.4 also generates erratic
709 	 *    ACKs in some circumstances.
710 	 */
711 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
712 
713 	/* 2. Fixups made earlier cannot be right.
714 	 *    If we do not estimate RTO correctly without them,
715 	 *    all the algo is pure shit and should be replaced
716 	 *    with correct one. It is exactly, which we pretend to do.
717 	 */
718 
719 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
720 	 * guarantees that rto is higher.
721 	 */
722 	tcp_bound_rto(sk);
723 }
724 
725 /* Save metrics learned by this TCP session.
726    This function is called only, when TCP finishes successfully
727    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
728  */
729 void tcp_update_metrics(struct sock *sk)
730 {
731 	struct tcp_sock *tp = tcp_sk(sk);
732 	struct dst_entry *dst = __sk_dst_get(sk);
733 
734 	if (sysctl_tcp_nometrics_save)
735 		return;
736 
737 	dst_confirm(dst);
738 
739 	if (dst && (dst->flags & DST_HOST)) {
740 		const struct inet_connection_sock *icsk = inet_csk(sk);
741 		int m;
742 		unsigned long rtt;
743 
744 		if (icsk->icsk_backoff || !tp->srtt) {
745 			/* This session failed to estimate rtt. Why?
746 			 * Probably, no packets returned in time.
747 			 * Reset our results.
748 			 */
749 			if (!(dst_metric_locked(dst, RTAX_RTT)))
750 				dst_metric_set(dst, RTAX_RTT, 0);
751 			return;
752 		}
753 
754 		rtt = dst_metric_rtt(dst, RTAX_RTT);
755 		m = rtt - tp->srtt;
756 
757 		/* If newly calculated rtt larger than stored one,
758 		 * store new one. Otherwise, use EWMA. Remember,
759 		 * rtt overestimation is always better than underestimation.
760 		 */
761 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
762 			if (m <= 0)
763 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
764 			else
765 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
766 		}
767 
768 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
769 			unsigned long var;
770 			if (m < 0)
771 				m = -m;
772 
773 			/* Scale deviation to rttvar fixed point */
774 			m >>= 1;
775 			if (m < tp->mdev)
776 				m = tp->mdev;
777 
778 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
779 			if (m >= var)
780 				var = m;
781 			else
782 				var -= (var - m) >> 2;
783 
784 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
785 		}
786 
787 		if (tcp_in_initial_slowstart(tp)) {
788 			/* Slow start still did not finish. */
789 			if (dst_metric(dst, RTAX_SSTHRESH) &&
790 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
791 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
792 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
793 			if (!dst_metric_locked(dst, RTAX_CWND) &&
794 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
795 				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
796 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
797 			   icsk->icsk_ca_state == TCP_CA_Open) {
798 			/* Cong. avoidance phase, cwnd is reliable. */
799 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
800 				dst_metric_set(dst, RTAX_SSTHRESH,
801 					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
802 			if (!dst_metric_locked(dst, RTAX_CWND))
803 				dst_metric_set(dst, RTAX_CWND,
804 					       (dst_metric(dst, RTAX_CWND) +
805 						tp->snd_cwnd) >> 1);
806 		} else {
807 			/* Else slow start did not finish, cwnd is non-sense,
808 			   ssthresh may be also invalid.
809 			 */
810 			if (!dst_metric_locked(dst, RTAX_CWND))
811 				dst_metric_set(dst, RTAX_CWND,
812 					       (dst_metric(dst, RTAX_CWND) +
813 						tp->snd_ssthresh) >> 1);
814 			if (dst_metric(dst, RTAX_SSTHRESH) &&
815 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
816 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
817 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
818 		}
819 
820 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
821 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
822 			    tp->reordering != sysctl_tcp_reordering)
823 				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
824 		}
825 	}
826 }
827 
828 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
829 {
830 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
831 
832 	if (!cwnd)
833 		cwnd = TCP_INIT_CWND;
834 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836 
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840 	struct tcp_sock *tp = tcp_sk(sk);
841 	const struct inet_connection_sock *icsk = inet_csk(sk);
842 
843 	tp->prior_ssthresh = 0;
844 	tp->bytes_acked = 0;
845 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
846 		tp->undo_marker = 0;
847 		if (set_ssthresh)
848 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 		tp->snd_cwnd = min(tp->snd_cwnd,
850 				   tcp_packets_in_flight(tp) + 1U);
851 		tp->snd_cwnd_cnt = 0;
852 		tp->high_seq = tp->snd_nxt;
853 		tp->snd_cwnd_stamp = tcp_time_stamp;
854 		TCP_ECN_queue_cwr(tp);
855 
856 		tcp_set_ca_state(sk, TCP_CA_CWR);
857 	}
858 }
859 
860 /*
861  * Packet counting of FACK is based on in-order assumptions, therefore TCP
862  * disables it when reordering is detected
863  */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866 	/* RFC3517 uses different metric in lost marker => reset on change */
867 	if (tcp_is_fack(tp))
868 		tp->lost_skb_hint = NULL;
869 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
870 }
871 
872 /* Take a notice that peer is sending D-SACKs */
873 static void tcp_dsack_seen(struct tcp_sock *tp)
874 {
875 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
876 }
877 
878 /* Initialize metrics on socket. */
879 
880 static void tcp_init_metrics(struct sock *sk)
881 {
882 	struct tcp_sock *tp = tcp_sk(sk);
883 	struct dst_entry *dst = __sk_dst_get(sk);
884 
885 	if (dst == NULL)
886 		goto reset;
887 
888 	dst_confirm(dst);
889 
890 	if (dst_metric_locked(dst, RTAX_CWND))
891 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
892 	if (dst_metric(dst, RTAX_SSTHRESH)) {
893 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
894 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
895 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
896 	} else {
897 		/* ssthresh may have been reduced unnecessarily during.
898 		 * 3WHS. Restore it back to its initial default.
899 		 */
900 		tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
901 	}
902 	if (dst_metric(dst, RTAX_REORDERING) &&
903 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
904 		tcp_disable_fack(tp);
905 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
906 	}
907 
908 	if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
909 		goto reset;
910 
911 	/* Initial rtt is determined from SYN,SYN-ACK.
912 	 * The segment is small and rtt may appear much
913 	 * less than real one. Use per-dst memory
914 	 * to make it more realistic.
915 	 *
916 	 * A bit of theory. RTT is time passed after "normal" sized packet
917 	 * is sent until it is ACKed. In normal circumstances sending small
918 	 * packets force peer to delay ACKs and calculation is correct too.
919 	 * The algorithm is adaptive and, provided we follow specs, it
920 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
921 	 * tricks sort of "quick acks" for time long enough to decrease RTT
922 	 * to low value, and then abruptly stops to do it and starts to delay
923 	 * ACKs, wait for troubles.
924 	 */
925 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
926 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
927 		tp->rtt_seq = tp->snd_nxt;
928 	}
929 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
930 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
931 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
932 	}
933 	tcp_set_rto(sk);
934 reset:
935 	if (tp->srtt == 0) {
936 		/* RFC2988bis: We've failed to get a valid RTT sample from
937 		 * 3WHS. This is most likely due to retransmission,
938 		 * including spurious one. Reset the RTO back to 3secs
939 		 * from the more aggressive 1sec to avoid more spurious
940 		 * retransmission.
941 		 */
942 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
943 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
944 	}
945 	/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
946 	 * retransmitted. In light of RFC2988bis' more aggressive 1sec
947 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
948 	 * retransmission has occurred.
949 	 */
950 	if (tp->total_retrans > 1)
951 		tp->snd_cwnd = 1;
952 	else
953 		tp->snd_cwnd = tcp_init_cwnd(tp, dst);
954 	tp->snd_cwnd_stamp = tcp_time_stamp;
955 }
956 
957 static void tcp_update_reordering(struct sock *sk, const int metric,
958 				  const int ts)
959 {
960 	struct tcp_sock *tp = tcp_sk(sk);
961 	if (metric > tp->reordering) {
962 		int mib_idx;
963 
964 		tp->reordering = min(TCP_MAX_REORDERING, metric);
965 
966 		/* This exciting event is worth to be remembered. 8) */
967 		if (ts)
968 			mib_idx = LINUX_MIB_TCPTSREORDER;
969 		else if (tcp_is_reno(tp))
970 			mib_idx = LINUX_MIB_TCPRENOREORDER;
971 		else if (tcp_is_fack(tp))
972 			mib_idx = LINUX_MIB_TCPFACKREORDER;
973 		else
974 			mib_idx = LINUX_MIB_TCPSACKREORDER;
975 
976 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
977 #if FASTRETRANS_DEBUG > 1
978 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
979 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
980 		       tp->reordering,
981 		       tp->fackets_out,
982 		       tp->sacked_out,
983 		       tp->undo_marker ? tp->undo_retrans : 0);
984 #endif
985 		tcp_disable_fack(tp);
986 	}
987 }
988 
989 /* This must be called before lost_out is incremented */
990 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
991 {
992 	if ((tp->retransmit_skb_hint == NULL) ||
993 	    before(TCP_SKB_CB(skb)->seq,
994 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
995 		tp->retransmit_skb_hint = skb;
996 
997 	if (!tp->lost_out ||
998 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
999 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1000 }
1001 
1002 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1003 {
1004 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1005 		tcp_verify_retransmit_hint(tp, skb);
1006 
1007 		tp->lost_out += tcp_skb_pcount(skb);
1008 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1009 	}
1010 }
1011 
1012 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1013 					    struct sk_buff *skb)
1014 {
1015 	tcp_verify_retransmit_hint(tp, skb);
1016 
1017 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1018 		tp->lost_out += tcp_skb_pcount(skb);
1019 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1020 	}
1021 }
1022 
1023 /* This procedure tags the retransmission queue when SACKs arrive.
1024  *
1025  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1026  * Packets in queue with these bits set are counted in variables
1027  * sacked_out, retrans_out and lost_out, correspondingly.
1028  *
1029  * Valid combinations are:
1030  * Tag  InFlight	Description
1031  * 0	1		- orig segment is in flight.
1032  * S	0		- nothing flies, orig reached receiver.
1033  * L	0		- nothing flies, orig lost by net.
1034  * R	2		- both orig and retransmit are in flight.
1035  * L|R	1		- orig is lost, retransmit is in flight.
1036  * S|R  1		- orig reached receiver, retrans is still in flight.
1037  * (L|S|R is logically valid, it could occur when L|R is sacked,
1038  *  but it is equivalent to plain S and code short-curcuits it to S.
1039  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1040  *
1041  * These 6 states form finite state machine, controlled by the following events:
1042  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1043  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1044  * 3. Loss detection event of two flavors:
1045  *	A. Scoreboard estimator decided the packet is lost.
1046  *	   A'. Reno "three dupacks" marks head of queue lost.
1047  *	   A''. Its FACK modification, head until snd.fack is lost.
1048  *	B. SACK arrives sacking SND.NXT at the moment, when the
1049  *	   segment was retransmitted.
1050  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1051  *
1052  * It is pleasant to note, that state diagram turns out to be commutative,
1053  * so that we are allowed not to be bothered by order of our actions,
1054  * when multiple events arrive simultaneously. (see the function below).
1055  *
1056  * Reordering detection.
1057  * --------------------
1058  * Reordering metric is maximal distance, which a packet can be displaced
1059  * in packet stream. With SACKs we can estimate it:
1060  *
1061  * 1. SACK fills old hole and the corresponding segment was not
1062  *    ever retransmitted -> reordering. Alas, we cannot use it
1063  *    when segment was retransmitted.
1064  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1065  *    for retransmitted and already SACKed segment -> reordering..
1066  * Both of these heuristics are not used in Loss state, when we cannot
1067  * account for retransmits accurately.
1068  *
1069  * SACK block validation.
1070  * ----------------------
1071  *
1072  * SACK block range validation checks that the received SACK block fits to
1073  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1074  * Note that SND.UNA is not included to the range though being valid because
1075  * it means that the receiver is rather inconsistent with itself reporting
1076  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1077  * perfectly valid, however, in light of RFC2018 which explicitly states
1078  * that "SACK block MUST reflect the newest segment.  Even if the newest
1079  * segment is going to be discarded ...", not that it looks very clever
1080  * in case of head skb. Due to potentional receiver driven attacks, we
1081  * choose to avoid immediate execution of a walk in write queue due to
1082  * reneging and defer head skb's loss recovery to standard loss recovery
1083  * procedure that will eventually trigger (nothing forbids us doing this).
1084  *
1085  * Implements also blockage to start_seq wrap-around. Problem lies in the
1086  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1087  * there's no guarantee that it will be before snd_nxt (n). The problem
1088  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1089  * wrap (s_w):
1090  *
1091  *         <- outs wnd ->                          <- wrapzone ->
1092  *         u     e      n                         u_w   e_w  s n_w
1093  *         |     |      |                          |     |   |  |
1094  * |<------------+------+----- TCP seqno space --------------+---------->|
1095  * ...-- <2^31 ->|                                           |<--------...
1096  * ...---- >2^31 ------>|                                    |<--------...
1097  *
1098  * Current code wouldn't be vulnerable but it's better still to discard such
1099  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1100  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1101  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1102  * equal to the ideal case (infinite seqno space without wrap caused issues).
1103  *
1104  * With D-SACK the lower bound is extended to cover sequence space below
1105  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1106  * again, D-SACK block must not to go across snd_una (for the same reason as
1107  * for the normal SACK blocks, explained above). But there all simplicity
1108  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1109  * fully below undo_marker they do not affect behavior in anyway and can
1110  * therefore be safely ignored. In rare cases (which are more or less
1111  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1112  * fragmentation and packet reordering past skb's retransmission. To consider
1113  * them correctly, the acceptable range must be extended even more though
1114  * the exact amount is rather hard to quantify. However, tp->max_window can
1115  * be used as an exaggerated estimate.
1116  */
1117 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1118 				  u32 start_seq, u32 end_seq)
1119 {
1120 	/* Too far in future, or reversed (interpretation is ambiguous) */
1121 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1122 		return 0;
1123 
1124 	/* Nasty start_seq wrap-around check (see comments above) */
1125 	if (!before(start_seq, tp->snd_nxt))
1126 		return 0;
1127 
1128 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1129 	 * start_seq == snd_una is non-sensical (see comments above)
1130 	 */
1131 	if (after(start_seq, tp->snd_una))
1132 		return 1;
1133 
1134 	if (!is_dsack || !tp->undo_marker)
1135 		return 0;
1136 
1137 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1138 	if (after(end_seq, tp->snd_una))
1139 		return 0;
1140 
1141 	if (!before(start_seq, tp->undo_marker))
1142 		return 1;
1143 
1144 	/* Too old */
1145 	if (!after(end_seq, tp->undo_marker))
1146 		return 0;
1147 
1148 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1149 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1150 	 */
1151 	return !before(start_seq, end_seq - tp->max_window);
1152 }
1153 
1154 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1155  * Event "B". Later note: FACK people cheated me again 8), we have to account
1156  * for reordering! Ugly, but should help.
1157  *
1158  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1159  * less than what is now known to be received by the other end (derived from
1160  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1161  * retransmitted skbs to avoid some costly processing per ACKs.
1162  */
1163 static void tcp_mark_lost_retrans(struct sock *sk)
1164 {
1165 	const struct inet_connection_sock *icsk = inet_csk(sk);
1166 	struct tcp_sock *tp = tcp_sk(sk);
1167 	struct sk_buff *skb;
1168 	int cnt = 0;
1169 	u32 new_low_seq = tp->snd_nxt;
1170 	u32 received_upto = tcp_highest_sack_seq(tp);
1171 
1172 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1173 	    !after(received_upto, tp->lost_retrans_low) ||
1174 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1175 		return;
1176 
1177 	tcp_for_write_queue(skb, sk) {
1178 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1179 
1180 		if (skb == tcp_send_head(sk))
1181 			break;
1182 		if (cnt == tp->retrans_out)
1183 			break;
1184 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1185 			continue;
1186 
1187 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1188 			continue;
1189 
1190 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1191 		 * constraint here (see above) but figuring out that at
1192 		 * least tp->reordering SACK blocks reside between ack_seq
1193 		 * and received_upto is not easy task to do cheaply with
1194 		 * the available datastructures.
1195 		 *
1196 		 * Whether FACK should check here for tp->reordering segs
1197 		 * in-between one could argue for either way (it would be
1198 		 * rather simple to implement as we could count fack_count
1199 		 * during the walk and do tp->fackets_out - fack_count).
1200 		 */
1201 		if (after(received_upto, ack_seq)) {
1202 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1203 			tp->retrans_out -= tcp_skb_pcount(skb);
1204 
1205 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1206 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1207 		} else {
1208 			if (before(ack_seq, new_low_seq))
1209 				new_low_seq = ack_seq;
1210 			cnt += tcp_skb_pcount(skb);
1211 		}
1212 	}
1213 
1214 	if (tp->retrans_out)
1215 		tp->lost_retrans_low = new_low_seq;
1216 }
1217 
1218 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1219 			   struct tcp_sack_block_wire *sp, int num_sacks,
1220 			   u32 prior_snd_una)
1221 {
1222 	struct tcp_sock *tp = tcp_sk(sk);
1223 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1224 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1225 	int dup_sack = 0;
1226 
1227 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1228 		dup_sack = 1;
1229 		tcp_dsack_seen(tp);
1230 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1231 	} else if (num_sacks > 1) {
1232 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1233 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1234 
1235 		if (!after(end_seq_0, end_seq_1) &&
1236 		    !before(start_seq_0, start_seq_1)) {
1237 			dup_sack = 1;
1238 			tcp_dsack_seen(tp);
1239 			NET_INC_STATS_BH(sock_net(sk),
1240 					LINUX_MIB_TCPDSACKOFORECV);
1241 		}
1242 	}
1243 
1244 	/* D-SACK for already forgotten data... Do dumb counting. */
1245 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1246 	    !after(end_seq_0, prior_snd_una) &&
1247 	    after(end_seq_0, tp->undo_marker))
1248 		tp->undo_retrans--;
1249 
1250 	return dup_sack;
1251 }
1252 
1253 struct tcp_sacktag_state {
1254 	int reord;
1255 	int fack_count;
1256 	int flag;
1257 };
1258 
1259 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1260  * the incoming SACK may not exactly match but we can find smaller MSS
1261  * aligned portion of it that matches. Therefore we might need to fragment
1262  * which may fail and creates some hassle (caller must handle error case
1263  * returns).
1264  *
1265  * FIXME: this could be merged to shift decision code
1266  */
1267 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1268 				 u32 start_seq, u32 end_seq)
1269 {
1270 	int in_sack, err;
1271 	unsigned int pkt_len;
1272 	unsigned int mss;
1273 
1274 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1275 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1276 
1277 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1278 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1279 		mss = tcp_skb_mss(skb);
1280 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1281 
1282 		if (!in_sack) {
1283 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1284 			if (pkt_len < mss)
1285 				pkt_len = mss;
1286 		} else {
1287 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1288 			if (pkt_len < mss)
1289 				return -EINVAL;
1290 		}
1291 
1292 		/* Round if necessary so that SACKs cover only full MSSes
1293 		 * and/or the remaining small portion (if present)
1294 		 */
1295 		if (pkt_len > mss) {
1296 			unsigned int new_len = (pkt_len / mss) * mss;
1297 			if (!in_sack && new_len < pkt_len) {
1298 				new_len += mss;
1299 				if (new_len > skb->len)
1300 					return 0;
1301 			}
1302 			pkt_len = new_len;
1303 		}
1304 		err = tcp_fragment(sk, skb, pkt_len, mss);
1305 		if (err < 0)
1306 			return err;
1307 	}
1308 
1309 	return in_sack;
1310 }
1311 
1312 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1313 static u8 tcp_sacktag_one(struct sock *sk,
1314 			  struct tcp_sacktag_state *state, u8 sacked,
1315 			  u32 start_seq, u32 end_seq,
1316 			  int dup_sack, int pcount)
1317 {
1318 	struct tcp_sock *tp = tcp_sk(sk);
1319 	int fack_count = state->fack_count;
1320 
1321 	/* Account D-SACK for retransmitted packet. */
1322 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1323 		if (tp->undo_marker && tp->undo_retrans &&
1324 		    after(end_seq, tp->undo_marker))
1325 			tp->undo_retrans--;
1326 		if (sacked & TCPCB_SACKED_ACKED)
1327 			state->reord = min(fack_count, state->reord);
1328 	}
1329 
1330 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1331 	if (!after(end_seq, tp->snd_una))
1332 		return sacked;
1333 
1334 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1335 		if (sacked & TCPCB_SACKED_RETRANS) {
1336 			/* If the segment is not tagged as lost,
1337 			 * we do not clear RETRANS, believing
1338 			 * that retransmission is still in flight.
1339 			 */
1340 			if (sacked & TCPCB_LOST) {
1341 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1342 				tp->lost_out -= pcount;
1343 				tp->retrans_out -= pcount;
1344 			}
1345 		} else {
1346 			if (!(sacked & TCPCB_RETRANS)) {
1347 				/* New sack for not retransmitted frame,
1348 				 * which was in hole. It is reordering.
1349 				 */
1350 				if (before(start_seq,
1351 					   tcp_highest_sack_seq(tp)))
1352 					state->reord = min(fack_count,
1353 							   state->reord);
1354 
1355 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1356 				if (!after(end_seq, tp->frto_highmark))
1357 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1358 			}
1359 
1360 			if (sacked & TCPCB_LOST) {
1361 				sacked &= ~TCPCB_LOST;
1362 				tp->lost_out -= pcount;
1363 			}
1364 		}
1365 
1366 		sacked |= TCPCB_SACKED_ACKED;
1367 		state->flag |= FLAG_DATA_SACKED;
1368 		tp->sacked_out += pcount;
1369 
1370 		fack_count += pcount;
1371 
1372 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1373 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1374 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1375 			tp->lost_cnt_hint += pcount;
1376 
1377 		if (fack_count > tp->fackets_out)
1378 			tp->fackets_out = fack_count;
1379 	}
1380 
1381 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1382 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1383 	 * are accounted above as well.
1384 	 */
1385 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1386 		sacked &= ~TCPCB_SACKED_RETRANS;
1387 		tp->retrans_out -= pcount;
1388 	}
1389 
1390 	return sacked;
1391 }
1392 
1393 /* Shift newly-SACKed bytes from this skb to the immediately previous
1394  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1395  */
1396 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1397 			   struct tcp_sacktag_state *state,
1398 			   unsigned int pcount, int shifted, int mss,
1399 			   int dup_sack)
1400 {
1401 	struct tcp_sock *tp = tcp_sk(sk);
1402 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1403 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1404 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1405 
1406 	BUG_ON(!pcount);
1407 
1408 	/* Adjust counters and hints for the newly sacked sequence
1409 	 * range but discard the return value since prev is already
1410 	 * marked. We must tag the range first because the seq
1411 	 * advancement below implicitly advances
1412 	 * tcp_highest_sack_seq() when skb is highest_sack.
1413 	 */
1414 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1415 			start_seq, end_seq, dup_sack, pcount);
1416 
1417 	if (skb == tp->lost_skb_hint)
1418 		tp->lost_cnt_hint += pcount;
1419 
1420 	TCP_SKB_CB(prev)->end_seq += shifted;
1421 	TCP_SKB_CB(skb)->seq += shifted;
1422 
1423 	skb_shinfo(prev)->gso_segs += pcount;
1424 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1425 	skb_shinfo(skb)->gso_segs -= pcount;
1426 
1427 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1428 	 * in theory this shouldn't be necessary but as long as DSACK
1429 	 * code can come after this skb later on it's better to keep
1430 	 * setting gso_size to something.
1431 	 */
1432 	if (!skb_shinfo(prev)->gso_size) {
1433 		skb_shinfo(prev)->gso_size = mss;
1434 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1435 	}
1436 
1437 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1438 	if (skb_shinfo(skb)->gso_segs <= 1) {
1439 		skb_shinfo(skb)->gso_size = 0;
1440 		skb_shinfo(skb)->gso_type = 0;
1441 	}
1442 
1443 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1444 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1445 
1446 	if (skb->len > 0) {
1447 		BUG_ON(!tcp_skb_pcount(skb));
1448 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1449 		return 0;
1450 	}
1451 
1452 	/* Whole SKB was eaten :-) */
1453 
1454 	if (skb == tp->retransmit_skb_hint)
1455 		tp->retransmit_skb_hint = prev;
1456 	if (skb == tp->scoreboard_skb_hint)
1457 		tp->scoreboard_skb_hint = prev;
1458 	if (skb == tp->lost_skb_hint) {
1459 		tp->lost_skb_hint = prev;
1460 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1461 	}
1462 
1463 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1464 	if (skb == tcp_highest_sack(sk))
1465 		tcp_advance_highest_sack(sk, skb);
1466 
1467 	tcp_unlink_write_queue(skb, sk);
1468 	sk_wmem_free_skb(sk, skb);
1469 
1470 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1471 
1472 	return 1;
1473 }
1474 
1475 /* I wish gso_size would have a bit more sane initialization than
1476  * something-or-zero which complicates things
1477  */
1478 static int tcp_skb_seglen(const struct sk_buff *skb)
1479 {
1480 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1481 }
1482 
1483 /* Shifting pages past head area doesn't work */
1484 static int skb_can_shift(const struct sk_buff *skb)
1485 {
1486 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1487 }
1488 
1489 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1490  * skb.
1491  */
1492 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1493 					  struct tcp_sacktag_state *state,
1494 					  u32 start_seq, u32 end_seq,
1495 					  int dup_sack)
1496 {
1497 	struct tcp_sock *tp = tcp_sk(sk);
1498 	struct sk_buff *prev;
1499 	int mss;
1500 	int pcount = 0;
1501 	int len;
1502 	int in_sack;
1503 
1504 	if (!sk_can_gso(sk))
1505 		goto fallback;
1506 
1507 	/* Normally R but no L won't result in plain S */
1508 	if (!dup_sack &&
1509 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1510 		goto fallback;
1511 	if (!skb_can_shift(skb))
1512 		goto fallback;
1513 	/* This frame is about to be dropped (was ACKed). */
1514 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1515 		goto fallback;
1516 
1517 	/* Can only happen with delayed DSACK + discard craziness */
1518 	if (unlikely(skb == tcp_write_queue_head(sk)))
1519 		goto fallback;
1520 	prev = tcp_write_queue_prev(sk, skb);
1521 
1522 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1523 		goto fallback;
1524 
1525 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1526 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1527 
1528 	if (in_sack) {
1529 		len = skb->len;
1530 		pcount = tcp_skb_pcount(skb);
1531 		mss = tcp_skb_seglen(skb);
1532 
1533 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1534 		 * drop this restriction as unnecessary
1535 		 */
1536 		if (mss != tcp_skb_seglen(prev))
1537 			goto fallback;
1538 	} else {
1539 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1540 			goto noop;
1541 		/* CHECKME: This is non-MSS split case only?, this will
1542 		 * cause skipped skbs due to advancing loop btw, original
1543 		 * has that feature too
1544 		 */
1545 		if (tcp_skb_pcount(skb) <= 1)
1546 			goto noop;
1547 
1548 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1549 		if (!in_sack) {
1550 			/* TODO: head merge to next could be attempted here
1551 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1552 			 * though it might not be worth of the additional hassle
1553 			 *
1554 			 * ...we can probably just fallback to what was done
1555 			 * previously. We could try merging non-SACKed ones
1556 			 * as well but it probably isn't going to buy off
1557 			 * because later SACKs might again split them, and
1558 			 * it would make skb timestamp tracking considerably
1559 			 * harder problem.
1560 			 */
1561 			goto fallback;
1562 		}
1563 
1564 		len = end_seq - TCP_SKB_CB(skb)->seq;
1565 		BUG_ON(len < 0);
1566 		BUG_ON(len > skb->len);
1567 
1568 		/* MSS boundaries should be honoured or else pcount will
1569 		 * severely break even though it makes things bit trickier.
1570 		 * Optimize common case to avoid most of the divides
1571 		 */
1572 		mss = tcp_skb_mss(skb);
1573 
1574 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1575 		 * drop this restriction as unnecessary
1576 		 */
1577 		if (mss != tcp_skb_seglen(prev))
1578 			goto fallback;
1579 
1580 		if (len == mss) {
1581 			pcount = 1;
1582 		} else if (len < mss) {
1583 			goto noop;
1584 		} else {
1585 			pcount = len / mss;
1586 			len = pcount * mss;
1587 		}
1588 	}
1589 
1590 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1591 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1592 		goto fallback;
1593 
1594 	if (!skb_shift(prev, skb, len))
1595 		goto fallback;
1596 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1597 		goto out;
1598 
1599 	/* Hole filled allows collapsing with the next as well, this is very
1600 	 * useful when hole on every nth skb pattern happens
1601 	 */
1602 	if (prev == tcp_write_queue_tail(sk))
1603 		goto out;
1604 	skb = tcp_write_queue_next(sk, prev);
1605 
1606 	if (!skb_can_shift(skb) ||
1607 	    (skb == tcp_send_head(sk)) ||
1608 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1609 	    (mss != tcp_skb_seglen(skb)))
1610 		goto out;
1611 
1612 	len = skb->len;
1613 	if (skb_shift(prev, skb, len)) {
1614 		pcount += tcp_skb_pcount(skb);
1615 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1616 	}
1617 
1618 out:
1619 	state->fack_count += pcount;
1620 	return prev;
1621 
1622 noop:
1623 	return skb;
1624 
1625 fallback:
1626 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1627 	return NULL;
1628 }
1629 
1630 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1631 					struct tcp_sack_block *next_dup,
1632 					struct tcp_sacktag_state *state,
1633 					u32 start_seq, u32 end_seq,
1634 					int dup_sack_in)
1635 {
1636 	struct tcp_sock *tp = tcp_sk(sk);
1637 	struct sk_buff *tmp;
1638 
1639 	tcp_for_write_queue_from(skb, sk) {
1640 		int in_sack = 0;
1641 		int dup_sack = dup_sack_in;
1642 
1643 		if (skb == tcp_send_head(sk))
1644 			break;
1645 
1646 		/* queue is in-order => we can short-circuit the walk early */
1647 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1648 			break;
1649 
1650 		if ((next_dup != NULL) &&
1651 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1652 			in_sack = tcp_match_skb_to_sack(sk, skb,
1653 							next_dup->start_seq,
1654 							next_dup->end_seq);
1655 			if (in_sack > 0)
1656 				dup_sack = 1;
1657 		}
1658 
1659 		/* skb reference here is a bit tricky to get right, since
1660 		 * shifting can eat and free both this skb and the next,
1661 		 * so not even _safe variant of the loop is enough.
1662 		 */
1663 		if (in_sack <= 0) {
1664 			tmp = tcp_shift_skb_data(sk, skb, state,
1665 						 start_seq, end_seq, dup_sack);
1666 			if (tmp != NULL) {
1667 				if (tmp != skb) {
1668 					skb = tmp;
1669 					continue;
1670 				}
1671 
1672 				in_sack = 0;
1673 			} else {
1674 				in_sack = tcp_match_skb_to_sack(sk, skb,
1675 								start_seq,
1676 								end_seq);
1677 			}
1678 		}
1679 
1680 		if (unlikely(in_sack < 0))
1681 			break;
1682 
1683 		if (in_sack) {
1684 			TCP_SKB_CB(skb)->sacked =
1685 				tcp_sacktag_one(sk,
1686 						state,
1687 						TCP_SKB_CB(skb)->sacked,
1688 						TCP_SKB_CB(skb)->seq,
1689 						TCP_SKB_CB(skb)->end_seq,
1690 						dup_sack,
1691 						tcp_skb_pcount(skb));
1692 
1693 			if (!before(TCP_SKB_CB(skb)->seq,
1694 				    tcp_highest_sack_seq(tp)))
1695 				tcp_advance_highest_sack(sk, skb);
1696 		}
1697 
1698 		state->fack_count += tcp_skb_pcount(skb);
1699 	}
1700 	return skb;
1701 }
1702 
1703 /* Avoid all extra work that is being done by sacktag while walking in
1704  * a normal way
1705  */
1706 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1707 					struct tcp_sacktag_state *state,
1708 					u32 skip_to_seq)
1709 {
1710 	tcp_for_write_queue_from(skb, sk) {
1711 		if (skb == tcp_send_head(sk))
1712 			break;
1713 
1714 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1715 			break;
1716 
1717 		state->fack_count += tcp_skb_pcount(skb);
1718 	}
1719 	return skb;
1720 }
1721 
1722 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1723 						struct sock *sk,
1724 						struct tcp_sack_block *next_dup,
1725 						struct tcp_sacktag_state *state,
1726 						u32 skip_to_seq)
1727 {
1728 	if (next_dup == NULL)
1729 		return skb;
1730 
1731 	if (before(next_dup->start_seq, skip_to_seq)) {
1732 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1733 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1734 				       next_dup->start_seq, next_dup->end_seq,
1735 				       1);
1736 	}
1737 
1738 	return skb;
1739 }
1740 
1741 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1742 {
1743 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1744 }
1745 
1746 static int
1747 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1748 			u32 prior_snd_una)
1749 {
1750 	const struct inet_connection_sock *icsk = inet_csk(sk);
1751 	struct tcp_sock *tp = tcp_sk(sk);
1752 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1753 				    TCP_SKB_CB(ack_skb)->sacked);
1754 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1755 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1756 	struct tcp_sack_block *cache;
1757 	struct tcp_sacktag_state state;
1758 	struct sk_buff *skb;
1759 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1760 	int used_sacks;
1761 	int found_dup_sack = 0;
1762 	int i, j;
1763 	int first_sack_index;
1764 
1765 	state.flag = 0;
1766 	state.reord = tp->packets_out;
1767 
1768 	if (!tp->sacked_out) {
1769 		if (WARN_ON(tp->fackets_out))
1770 			tp->fackets_out = 0;
1771 		tcp_highest_sack_reset(sk);
1772 	}
1773 
1774 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1775 					 num_sacks, prior_snd_una);
1776 	if (found_dup_sack)
1777 		state.flag |= FLAG_DSACKING_ACK;
1778 
1779 	/* Eliminate too old ACKs, but take into
1780 	 * account more or less fresh ones, they can
1781 	 * contain valid SACK info.
1782 	 */
1783 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1784 		return 0;
1785 
1786 	if (!tp->packets_out)
1787 		goto out;
1788 
1789 	used_sacks = 0;
1790 	first_sack_index = 0;
1791 	for (i = 0; i < num_sacks; i++) {
1792 		int dup_sack = !i && found_dup_sack;
1793 
1794 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1795 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1796 
1797 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1798 					    sp[used_sacks].start_seq,
1799 					    sp[used_sacks].end_seq)) {
1800 			int mib_idx;
1801 
1802 			if (dup_sack) {
1803 				if (!tp->undo_marker)
1804 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1805 				else
1806 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1807 			} else {
1808 				/* Don't count olds caused by ACK reordering */
1809 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1810 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1811 					continue;
1812 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1813 			}
1814 
1815 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1816 			if (i == 0)
1817 				first_sack_index = -1;
1818 			continue;
1819 		}
1820 
1821 		/* Ignore very old stuff early */
1822 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1823 			continue;
1824 
1825 		used_sacks++;
1826 	}
1827 
1828 	/* order SACK blocks to allow in order walk of the retrans queue */
1829 	for (i = used_sacks - 1; i > 0; i--) {
1830 		for (j = 0; j < i; j++) {
1831 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1832 				swap(sp[j], sp[j + 1]);
1833 
1834 				/* Track where the first SACK block goes to */
1835 				if (j == first_sack_index)
1836 					first_sack_index = j + 1;
1837 			}
1838 		}
1839 	}
1840 
1841 	skb = tcp_write_queue_head(sk);
1842 	state.fack_count = 0;
1843 	i = 0;
1844 
1845 	if (!tp->sacked_out) {
1846 		/* It's already past, so skip checking against it */
1847 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1848 	} else {
1849 		cache = tp->recv_sack_cache;
1850 		/* Skip empty blocks in at head of the cache */
1851 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1852 		       !cache->end_seq)
1853 			cache++;
1854 	}
1855 
1856 	while (i < used_sacks) {
1857 		u32 start_seq = sp[i].start_seq;
1858 		u32 end_seq = sp[i].end_seq;
1859 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1860 		struct tcp_sack_block *next_dup = NULL;
1861 
1862 		if (found_dup_sack && ((i + 1) == first_sack_index))
1863 			next_dup = &sp[i + 1];
1864 
1865 		/* Skip too early cached blocks */
1866 		while (tcp_sack_cache_ok(tp, cache) &&
1867 		       !before(start_seq, cache->end_seq))
1868 			cache++;
1869 
1870 		/* Can skip some work by looking recv_sack_cache? */
1871 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1872 		    after(end_seq, cache->start_seq)) {
1873 
1874 			/* Head todo? */
1875 			if (before(start_seq, cache->start_seq)) {
1876 				skb = tcp_sacktag_skip(skb, sk, &state,
1877 						       start_seq);
1878 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1879 						       &state,
1880 						       start_seq,
1881 						       cache->start_seq,
1882 						       dup_sack);
1883 			}
1884 
1885 			/* Rest of the block already fully processed? */
1886 			if (!after(end_seq, cache->end_seq))
1887 				goto advance_sp;
1888 
1889 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1890 						       &state,
1891 						       cache->end_seq);
1892 
1893 			/* ...tail remains todo... */
1894 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1895 				/* ...but better entrypoint exists! */
1896 				skb = tcp_highest_sack(sk);
1897 				if (skb == NULL)
1898 					break;
1899 				state.fack_count = tp->fackets_out;
1900 				cache++;
1901 				goto walk;
1902 			}
1903 
1904 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1905 			/* Check overlap against next cached too (past this one already) */
1906 			cache++;
1907 			continue;
1908 		}
1909 
1910 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1911 			skb = tcp_highest_sack(sk);
1912 			if (skb == NULL)
1913 				break;
1914 			state.fack_count = tp->fackets_out;
1915 		}
1916 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1917 
1918 walk:
1919 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1920 				       start_seq, end_seq, dup_sack);
1921 
1922 advance_sp:
1923 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1924 		 * due to in-order walk
1925 		 */
1926 		if (after(end_seq, tp->frto_highmark))
1927 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1928 
1929 		i++;
1930 	}
1931 
1932 	/* Clear the head of the cache sack blocks so we can skip it next time */
1933 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1934 		tp->recv_sack_cache[i].start_seq = 0;
1935 		tp->recv_sack_cache[i].end_seq = 0;
1936 	}
1937 	for (j = 0; j < used_sacks; j++)
1938 		tp->recv_sack_cache[i++] = sp[j];
1939 
1940 	tcp_mark_lost_retrans(sk);
1941 
1942 	tcp_verify_left_out(tp);
1943 
1944 	if ((state.reord < tp->fackets_out) &&
1945 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1946 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1947 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1948 
1949 out:
1950 
1951 #if FASTRETRANS_DEBUG > 0
1952 	WARN_ON((int)tp->sacked_out < 0);
1953 	WARN_ON((int)tp->lost_out < 0);
1954 	WARN_ON((int)tp->retrans_out < 0);
1955 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1956 #endif
1957 	return state.flag;
1958 }
1959 
1960 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1961  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1962  */
1963 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1964 {
1965 	u32 holes;
1966 
1967 	holes = max(tp->lost_out, 1U);
1968 	holes = min(holes, tp->packets_out);
1969 
1970 	if ((tp->sacked_out + holes) > tp->packets_out) {
1971 		tp->sacked_out = tp->packets_out - holes;
1972 		return 1;
1973 	}
1974 	return 0;
1975 }
1976 
1977 /* If we receive more dupacks than we expected counting segments
1978  * in assumption of absent reordering, interpret this as reordering.
1979  * The only another reason could be bug in receiver TCP.
1980  */
1981 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1982 {
1983 	struct tcp_sock *tp = tcp_sk(sk);
1984 	if (tcp_limit_reno_sacked(tp))
1985 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1986 }
1987 
1988 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1989 
1990 static void tcp_add_reno_sack(struct sock *sk)
1991 {
1992 	struct tcp_sock *tp = tcp_sk(sk);
1993 	tp->sacked_out++;
1994 	tcp_check_reno_reordering(sk, 0);
1995 	tcp_verify_left_out(tp);
1996 }
1997 
1998 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1999 
2000 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2001 {
2002 	struct tcp_sock *tp = tcp_sk(sk);
2003 
2004 	if (acked > 0) {
2005 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2006 		if (acked - 1 >= tp->sacked_out)
2007 			tp->sacked_out = 0;
2008 		else
2009 			tp->sacked_out -= acked - 1;
2010 	}
2011 	tcp_check_reno_reordering(sk, acked);
2012 	tcp_verify_left_out(tp);
2013 }
2014 
2015 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2016 {
2017 	tp->sacked_out = 0;
2018 }
2019 
2020 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2021 {
2022 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2023 }
2024 
2025 /* F-RTO can only be used if TCP has never retransmitted anything other than
2026  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2027  */
2028 int tcp_use_frto(struct sock *sk)
2029 {
2030 	const struct tcp_sock *tp = tcp_sk(sk);
2031 	const struct inet_connection_sock *icsk = inet_csk(sk);
2032 	struct sk_buff *skb;
2033 
2034 	if (!sysctl_tcp_frto)
2035 		return 0;
2036 
2037 	/* MTU probe and F-RTO won't really play nicely along currently */
2038 	if (icsk->icsk_mtup.probe_size)
2039 		return 0;
2040 
2041 	if (tcp_is_sackfrto(tp))
2042 		return 1;
2043 
2044 	/* Avoid expensive walking of rexmit queue if possible */
2045 	if (tp->retrans_out > 1)
2046 		return 0;
2047 
2048 	skb = tcp_write_queue_head(sk);
2049 	if (tcp_skb_is_last(sk, skb))
2050 		return 1;
2051 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2052 	tcp_for_write_queue_from(skb, sk) {
2053 		if (skb == tcp_send_head(sk))
2054 			break;
2055 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2056 			return 0;
2057 		/* Short-circuit when first non-SACKed skb has been checked */
2058 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2059 			break;
2060 	}
2061 	return 1;
2062 }
2063 
2064 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2065  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2066  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2067  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2068  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2069  * bits are handled if the Loss state is really to be entered (in
2070  * tcp_enter_frto_loss).
2071  *
2072  * Do like tcp_enter_loss() would; when RTO expires the second time it
2073  * does:
2074  *  "Reduce ssthresh if it has not yet been made inside this window."
2075  */
2076 void tcp_enter_frto(struct sock *sk)
2077 {
2078 	const struct inet_connection_sock *icsk = inet_csk(sk);
2079 	struct tcp_sock *tp = tcp_sk(sk);
2080 	struct sk_buff *skb;
2081 
2082 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2083 	    tp->snd_una == tp->high_seq ||
2084 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2085 	     !icsk->icsk_retransmits)) {
2086 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2087 		/* Our state is too optimistic in ssthresh() call because cwnd
2088 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2089 		 * recovery has not yet completed. Pattern would be this: RTO,
2090 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2091 		 * up here twice).
2092 		 * RFC4138 should be more specific on what to do, even though
2093 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2094 		 * due to back-off and complexity of triggering events ...
2095 		 */
2096 		if (tp->frto_counter) {
2097 			u32 stored_cwnd;
2098 			stored_cwnd = tp->snd_cwnd;
2099 			tp->snd_cwnd = 2;
2100 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2101 			tp->snd_cwnd = stored_cwnd;
2102 		} else {
2103 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2104 		}
2105 		/* ... in theory, cong.control module could do "any tricks" in
2106 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2107 		 * counter would have to be faked before the call occurs. We
2108 		 * consider that too expensive, unlikely and hacky, so modules
2109 		 * using these in ssthresh() must deal these incompatibility
2110 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2111 		 */
2112 		tcp_ca_event(sk, CA_EVENT_FRTO);
2113 	}
2114 
2115 	tp->undo_marker = tp->snd_una;
2116 	tp->undo_retrans = 0;
2117 
2118 	skb = tcp_write_queue_head(sk);
2119 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2120 		tp->undo_marker = 0;
2121 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2122 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2123 		tp->retrans_out -= tcp_skb_pcount(skb);
2124 	}
2125 	tcp_verify_left_out(tp);
2126 
2127 	/* Too bad if TCP was application limited */
2128 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2129 
2130 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2131 	 * The last condition is necessary at least in tp->frto_counter case.
2132 	 */
2133 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2134 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2135 	    after(tp->high_seq, tp->snd_una)) {
2136 		tp->frto_highmark = tp->high_seq;
2137 	} else {
2138 		tp->frto_highmark = tp->snd_nxt;
2139 	}
2140 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2141 	tp->high_seq = tp->snd_nxt;
2142 	tp->frto_counter = 1;
2143 }
2144 
2145 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2146  * which indicates that we should follow the traditional RTO recovery,
2147  * i.e. mark everything lost and do go-back-N retransmission.
2148  */
2149 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2150 {
2151 	struct tcp_sock *tp = tcp_sk(sk);
2152 	struct sk_buff *skb;
2153 
2154 	tp->lost_out = 0;
2155 	tp->retrans_out = 0;
2156 	if (tcp_is_reno(tp))
2157 		tcp_reset_reno_sack(tp);
2158 
2159 	tcp_for_write_queue(skb, sk) {
2160 		if (skb == tcp_send_head(sk))
2161 			break;
2162 
2163 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2164 		/*
2165 		 * Count the retransmission made on RTO correctly (only when
2166 		 * waiting for the first ACK and did not get it)...
2167 		 */
2168 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2169 			/* For some reason this R-bit might get cleared? */
2170 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2171 				tp->retrans_out += tcp_skb_pcount(skb);
2172 			/* ...enter this if branch just for the first segment */
2173 			flag |= FLAG_DATA_ACKED;
2174 		} else {
2175 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2176 				tp->undo_marker = 0;
2177 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2178 		}
2179 
2180 		/* Marking forward transmissions that were made after RTO lost
2181 		 * can cause unnecessary retransmissions in some scenarios,
2182 		 * SACK blocks will mitigate that in some but not in all cases.
2183 		 * We used to not mark them but it was causing break-ups with
2184 		 * receivers that do only in-order receival.
2185 		 *
2186 		 * TODO: we could detect presence of such receiver and select
2187 		 * different behavior per flow.
2188 		 */
2189 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2190 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2191 			tp->lost_out += tcp_skb_pcount(skb);
2192 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2193 		}
2194 	}
2195 	tcp_verify_left_out(tp);
2196 
2197 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2198 	tp->snd_cwnd_cnt = 0;
2199 	tp->snd_cwnd_stamp = tcp_time_stamp;
2200 	tp->frto_counter = 0;
2201 	tp->bytes_acked = 0;
2202 
2203 	tp->reordering = min_t(unsigned int, tp->reordering,
2204 			       sysctl_tcp_reordering);
2205 	tcp_set_ca_state(sk, TCP_CA_Loss);
2206 	tp->high_seq = tp->snd_nxt;
2207 	TCP_ECN_queue_cwr(tp);
2208 
2209 	tcp_clear_all_retrans_hints(tp);
2210 }
2211 
2212 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2213 {
2214 	tp->retrans_out = 0;
2215 	tp->lost_out = 0;
2216 
2217 	tp->undo_marker = 0;
2218 	tp->undo_retrans = 0;
2219 }
2220 
2221 void tcp_clear_retrans(struct tcp_sock *tp)
2222 {
2223 	tcp_clear_retrans_partial(tp);
2224 
2225 	tp->fackets_out = 0;
2226 	tp->sacked_out = 0;
2227 }
2228 
2229 /* Enter Loss state. If "how" is not zero, forget all SACK information
2230  * and reset tags completely, otherwise preserve SACKs. If receiver
2231  * dropped its ofo queue, we will know this due to reneging detection.
2232  */
2233 void tcp_enter_loss(struct sock *sk, int how)
2234 {
2235 	const struct inet_connection_sock *icsk = inet_csk(sk);
2236 	struct tcp_sock *tp = tcp_sk(sk);
2237 	struct sk_buff *skb;
2238 
2239 	/* Reduce ssthresh if it has not yet been made inside this window. */
2240 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2241 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2242 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2243 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2244 		tcp_ca_event(sk, CA_EVENT_LOSS);
2245 	}
2246 	tp->snd_cwnd	   = 1;
2247 	tp->snd_cwnd_cnt   = 0;
2248 	tp->snd_cwnd_stamp = tcp_time_stamp;
2249 
2250 	tp->bytes_acked = 0;
2251 	tcp_clear_retrans_partial(tp);
2252 
2253 	if (tcp_is_reno(tp))
2254 		tcp_reset_reno_sack(tp);
2255 
2256 	if (!how) {
2257 		/* Push undo marker, if it was plain RTO and nothing
2258 		 * was retransmitted. */
2259 		tp->undo_marker = tp->snd_una;
2260 	} else {
2261 		tp->sacked_out = 0;
2262 		tp->fackets_out = 0;
2263 	}
2264 	tcp_clear_all_retrans_hints(tp);
2265 
2266 	tcp_for_write_queue(skb, sk) {
2267 		if (skb == tcp_send_head(sk))
2268 			break;
2269 
2270 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2271 			tp->undo_marker = 0;
2272 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2273 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2274 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2275 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2276 			tp->lost_out += tcp_skb_pcount(skb);
2277 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2278 		}
2279 	}
2280 	tcp_verify_left_out(tp);
2281 
2282 	tp->reordering = min_t(unsigned int, tp->reordering,
2283 			       sysctl_tcp_reordering);
2284 	tcp_set_ca_state(sk, TCP_CA_Loss);
2285 	tp->high_seq = tp->snd_nxt;
2286 	TCP_ECN_queue_cwr(tp);
2287 	/* Abort F-RTO algorithm if one is in progress */
2288 	tp->frto_counter = 0;
2289 }
2290 
2291 /* If ACK arrived pointing to a remembered SACK, it means that our
2292  * remembered SACKs do not reflect real state of receiver i.e.
2293  * receiver _host_ is heavily congested (or buggy).
2294  *
2295  * Do processing similar to RTO timeout.
2296  */
2297 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2298 {
2299 	if (flag & FLAG_SACK_RENEGING) {
2300 		struct inet_connection_sock *icsk = inet_csk(sk);
2301 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2302 
2303 		tcp_enter_loss(sk, 1);
2304 		icsk->icsk_retransmits++;
2305 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2306 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2307 					  icsk->icsk_rto, TCP_RTO_MAX);
2308 		return 1;
2309 	}
2310 	return 0;
2311 }
2312 
2313 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2314 {
2315 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2316 }
2317 
2318 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2319  * counter when SACK is enabled (without SACK, sacked_out is used for
2320  * that purpose).
2321  *
2322  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2323  * segments up to the highest received SACK block so far and holes in
2324  * between them.
2325  *
2326  * With reordering, holes may still be in flight, so RFC3517 recovery
2327  * uses pure sacked_out (total number of SACKed segments) even though
2328  * it violates the RFC that uses duplicate ACKs, often these are equal
2329  * but when e.g. out-of-window ACKs or packet duplication occurs,
2330  * they differ. Since neither occurs due to loss, TCP should really
2331  * ignore them.
2332  */
2333 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2334 {
2335 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2336 }
2337 
2338 static inline int tcp_skb_timedout(const struct sock *sk,
2339 				   const struct sk_buff *skb)
2340 {
2341 	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2342 }
2343 
2344 static inline int tcp_head_timedout(const struct sock *sk)
2345 {
2346 	const struct tcp_sock *tp = tcp_sk(sk);
2347 
2348 	return tp->packets_out &&
2349 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2350 }
2351 
2352 /* Linux NewReno/SACK/FACK/ECN state machine.
2353  * --------------------------------------
2354  *
2355  * "Open"	Normal state, no dubious events, fast path.
2356  * "Disorder"   In all the respects it is "Open",
2357  *		but requires a bit more attention. It is entered when
2358  *		we see some SACKs or dupacks. It is split of "Open"
2359  *		mainly to move some processing from fast path to slow one.
2360  * "CWR"	CWND was reduced due to some Congestion Notification event.
2361  *		It can be ECN, ICMP source quench, local device congestion.
2362  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2363  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2364  *
2365  * tcp_fastretrans_alert() is entered:
2366  * - each incoming ACK, if state is not "Open"
2367  * - when arrived ACK is unusual, namely:
2368  *	* SACK
2369  *	* Duplicate ACK.
2370  *	* ECN ECE.
2371  *
2372  * Counting packets in flight is pretty simple.
2373  *
2374  *	in_flight = packets_out - left_out + retrans_out
2375  *
2376  *	packets_out is SND.NXT-SND.UNA counted in packets.
2377  *
2378  *	retrans_out is number of retransmitted segments.
2379  *
2380  *	left_out is number of segments left network, but not ACKed yet.
2381  *
2382  *		left_out = sacked_out + lost_out
2383  *
2384  *     sacked_out: Packets, which arrived to receiver out of order
2385  *		   and hence not ACKed. With SACKs this number is simply
2386  *		   amount of SACKed data. Even without SACKs
2387  *		   it is easy to give pretty reliable estimate of this number,
2388  *		   counting duplicate ACKs.
2389  *
2390  *       lost_out: Packets lost by network. TCP has no explicit
2391  *		   "loss notification" feedback from network (for now).
2392  *		   It means that this number can be only _guessed_.
2393  *		   Actually, it is the heuristics to predict lossage that
2394  *		   distinguishes different algorithms.
2395  *
2396  *	F.e. after RTO, when all the queue is considered as lost,
2397  *	lost_out = packets_out and in_flight = retrans_out.
2398  *
2399  *		Essentially, we have now two algorithms counting
2400  *		lost packets.
2401  *
2402  *		FACK: It is the simplest heuristics. As soon as we decided
2403  *		that something is lost, we decide that _all_ not SACKed
2404  *		packets until the most forward SACK are lost. I.e.
2405  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2406  *		It is absolutely correct estimate, if network does not reorder
2407  *		packets. And it loses any connection to reality when reordering
2408  *		takes place. We use FACK by default until reordering
2409  *		is suspected on the path to this destination.
2410  *
2411  *		NewReno: when Recovery is entered, we assume that one segment
2412  *		is lost (classic Reno). While we are in Recovery and
2413  *		a partial ACK arrives, we assume that one more packet
2414  *		is lost (NewReno). This heuristics are the same in NewReno
2415  *		and SACK.
2416  *
2417  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2418  *  deflation etc. CWND is real congestion window, never inflated, changes
2419  *  only according to classic VJ rules.
2420  *
2421  * Really tricky (and requiring careful tuning) part of algorithm
2422  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2423  * The first determines the moment _when_ we should reduce CWND and,
2424  * hence, slow down forward transmission. In fact, it determines the moment
2425  * when we decide that hole is caused by loss, rather than by a reorder.
2426  *
2427  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2428  * holes, caused by lost packets.
2429  *
2430  * And the most logically complicated part of algorithm is undo
2431  * heuristics. We detect false retransmits due to both too early
2432  * fast retransmit (reordering) and underestimated RTO, analyzing
2433  * timestamps and D-SACKs. When we detect that some segments were
2434  * retransmitted by mistake and CWND reduction was wrong, we undo
2435  * window reduction and abort recovery phase. This logic is hidden
2436  * inside several functions named tcp_try_undo_<something>.
2437  */
2438 
2439 /* This function decides, when we should leave Disordered state
2440  * and enter Recovery phase, reducing congestion window.
2441  *
2442  * Main question: may we further continue forward transmission
2443  * with the same cwnd?
2444  */
2445 static int tcp_time_to_recover(struct sock *sk)
2446 {
2447 	struct tcp_sock *tp = tcp_sk(sk);
2448 	__u32 packets_out;
2449 
2450 	/* Do not perform any recovery during F-RTO algorithm */
2451 	if (tp->frto_counter)
2452 		return 0;
2453 
2454 	/* Trick#1: The loss is proven. */
2455 	if (tp->lost_out)
2456 		return 1;
2457 
2458 	/* Not-A-Trick#2 : Classic rule... */
2459 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2460 		return 1;
2461 
2462 	/* Trick#3 : when we use RFC2988 timer restart, fast
2463 	 * retransmit can be triggered by timeout of queue head.
2464 	 */
2465 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2466 		return 1;
2467 
2468 	/* Trick#4: It is still not OK... But will it be useful to delay
2469 	 * recovery more?
2470 	 */
2471 	packets_out = tp->packets_out;
2472 	if (packets_out <= tp->reordering &&
2473 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2474 	    !tcp_may_send_now(sk)) {
2475 		/* We have nothing to send. This connection is limited
2476 		 * either by receiver window or by application.
2477 		 */
2478 		return 1;
2479 	}
2480 
2481 	/* If a thin stream is detected, retransmit after first
2482 	 * received dupack. Employ only if SACK is supported in order
2483 	 * to avoid possible corner-case series of spurious retransmissions
2484 	 * Use only if there are no unsent data.
2485 	 */
2486 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2487 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2488 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2489 		return 1;
2490 
2491 	return 0;
2492 }
2493 
2494 /* New heuristics: it is possible only after we switched to restart timer
2495  * each time when something is ACKed. Hence, we can detect timed out packets
2496  * during fast retransmit without falling to slow start.
2497  *
2498  * Usefulness of this as is very questionable, since we should know which of
2499  * the segments is the next to timeout which is relatively expensive to find
2500  * in general case unless we add some data structure just for that. The
2501  * current approach certainly won't find the right one too often and when it
2502  * finally does find _something_ it usually marks large part of the window
2503  * right away (because a retransmission with a larger timestamp blocks the
2504  * loop from advancing). -ij
2505  */
2506 static void tcp_timeout_skbs(struct sock *sk)
2507 {
2508 	struct tcp_sock *tp = tcp_sk(sk);
2509 	struct sk_buff *skb;
2510 
2511 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2512 		return;
2513 
2514 	skb = tp->scoreboard_skb_hint;
2515 	if (tp->scoreboard_skb_hint == NULL)
2516 		skb = tcp_write_queue_head(sk);
2517 
2518 	tcp_for_write_queue_from(skb, sk) {
2519 		if (skb == tcp_send_head(sk))
2520 			break;
2521 		if (!tcp_skb_timedout(sk, skb))
2522 			break;
2523 
2524 		tcp_skb_mark_lost(tp, skb);
2525 	}
2526 
2527 	tp->scoreboard_skb_hint = skb;
2528 
2529 	tcp_verify_left_out(tp);
2530 }
2531 
2532 /* Detect loss in event "A" above by marking head of queue up as lost.
2533  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2534  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2535  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2536  * the maximum SACKed segments to pass before reaching this limit.
2537  */
2538 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2539 {
2540 	struct tcp_sock *tp = tcp_sk(sk);
2541 	struct sk_buff *skb;
2542 	int cnt, oldcnt;
2543 	int err;
2544 	unsigned int mss;
2545 	/* Use SACK to deduce losses of new sequences sent during recovery */
2546 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2547 
2548 	WARN_ON(packets > tp->packets_out);
2549 	if (tp->lost_skb_hint) {
2550 		skb = tp->lost_skb_hint;
2551 		cnt = tp->lost_cnt_hint;
2552 		/* Head already handled? */
2553 		if (mark_head && skb != tcp_write_queue_head(sk))
2554 			return;
2555 	} else {
2556 		skb = tcp_write_queue_head(sk);
2557 		cnt = 0;
2558 	}
2559 
2560 	tcp_for_write_queue_from(skb, sk) {
2561 		if (skb == tcp_send_head(sk))
2562 			break;
2563 		/* TODO: do this better */
2564 		/* this is not the most efficient way to do this... */
2565 		tp->lost_skb_hint = skb;
2566 		tp->lost_cnt_hint = cnt;
2567 
2568 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2569 			break;
2570 
2571 		oldcnt = cnt;
2572 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2573 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2574 			cnt += tcp_skb_pcount(skb);
2575 
2576 		if (cnt > packets) {
2577 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2578 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2579 			    (oldcnt >= packets))
2580 				break;
2581 
2582 			mss = skb_shinfo(skb)->gso_size;
2583 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2584 			if (err < 0)
2585 				break;
2586 			cnt = packets;
2587 		}
2588 
2589 		tcp_skb_mark_lost(tp, skb);
2590 
2591 		if (mark_head)
2592 			break;
2593 	}
2594 	tcp_verify_left_out(tp);
2595 }
2596 
2597 /* Account newly detected lost packet(s) */
2598 
2599 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2600 {
2601 	struct tcp_sock *tp = tcp_sk(sk);
2602 
2603 	if (tcp_is_reno(tp)) {
2604 		tcp_mark_head_lost(sk, 1, 1);
2605 	} else if (tcp_is_fack(tp)) {
2606 		int lost = tp->fackets_out - tp->reordering;
2607 		if (lost <= 0)
2608 			lost = 1;
2609 		tcp_mark_head_lost(sk, lost, 0);
2610 	} else {
2611 		int sacked_upto = tp->sacked_out - tp->reordering;
2612 		if (sacked_upto >= 0)
2613 			tcp_mark_head_lost(sk, sacked_upto, 0);
2614 		else if (fast_rexmit)
2615 			tcp_mark_head_lost(sk, 1, 1);
2616 	}
2617 
2618 	tcp_timeout_skbs(sk);
2619 }
2620 
2621 /* CWND moderation, preventing bursts due to too big ACKs
2622  * in dubious situations.
2623  */
2624 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2625 {
2626 	tp->snd_cwnd = min(tp->snd_cwnd,
2627 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2628 	tp->snd_cwnd_stamp = tcp_time_stamp;
2629 }
2630 
2631 /* Lower bound on congestion window is slow start threshold
2632  * unless congestion avoidance choice decides to overide it.
2633  */
2634 static inline u32 tcp_cwnd_min(const struct sock *sk)
2635 {
2636 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2637 
2638 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2639 }
2640 
2641 /* Decrease cwnd each second ack. */
2642 static void tcp_cwnd_down(struct sock *sk, int flag)
2643 {
2644 	struct tcp_sock *tp = tcp_sk(sk);
2645 	int decr = tp->snd_cwnd_cnt + 1;
2646 
2647 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2648 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2649 		tp->snd_cwnd_cnt = decr & 1;
2650 		decr >>= 1;
2651 
2652 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2653 			tp->snd_cwnd -= decr;
2654 
2655 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2656 		tp->snd_cwnd_stamp = tcp_time_stamp;
2657 	}
2658 }
2659 
2660 /* Nothing was retransmitted or returned timestamp is less
2661  * than timestamp of the first retransmission.
2662  */
2663 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2664 {
2665 	return !tp->retrans_stamp ||
2666 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2667 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2668 }
2669 
2670 /* Undo procedures. */
2671 
2672 #if FASTRETRANS_DEBUG > 1
2673 static void DBGUNDO(struct sock *sk, const char *msg)
2674 {
2675 	struct tcp_sock *tp = tcp_sk(sk);
2676 	struct inet_sock *inet = inet_sk(sk);
2677 
2678 	if (sk->sk_family == AF_INET) {
2679 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2680 		       msg,
2681 		       &inet->inet_daddr, ntohs(inet->inet_dport),
2682 		       tp->snd_cwnd, tcp_left_out(tp),
2683 		       tp->snd_ssthresh, tp->prior_ssthresh,
2684 		       tp->packets_out);
2685 	}
2686 #if IS_ENABLED(CONFIG_IPV6)
2687 	else if (sk->sk_family == AF_INET6) {
2688 		struct ipv6_pinfo *np = inet6_sk(sk);
2689 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2690 		       msg,
2691 		       &np->daddr, ntohs(inet->inet_dport),
2692 		       tp->snd_cwnd, tcp_left_out(tp),
2693 		       tp->snd_ssthresh, tp->prior_ssthresh,
2694 		       tp->packets_out);
2695 	}
2696 #endif
2697 }
2698 #else
2699 #define DBGUNDO(x...) do { } while (0)
2700 #endif
2701 
2702 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2703 {
2704 	struct tcp_sock *tp = tcp_sk(sk);
2705 
2706 	if (tp->prior_ssthresh) {
2707 		const struct inet_connection_sock *icsk = inet_csk(sk);
2708 
2709 		if (icsk->icsk_ca_ops->undo_cwnd)
2710 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2711 		else
2712 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2713 
2714 		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2715 			tp->snd_ssthresh = tp->prior_ssthresh;
2716 			TCP_ECN_withdraw_cwr(tp);
2717 		}
2718 	} else {
2719 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2720 	}
2721 	tp->snd_cwnd_stamp = tcp_time_stamp;
2722 }
2723 
2724 static inline int tcp_may_undo(const struct tcp_sock *tp)
2725 {
2726 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2727 }
2728 
2729 /* People celebrate: "We love our President!" */
2730 static int tcp_try_undo_recovery(struct sock *sk)
2731 {
2732 	struct tcp_sock *tp = tcp_sk(sk);
2733 
2734 	if (tcp_may_undo(tp)) {
2735 		int mib_idx;
2736 
2737 		/* Happy end! We did not retransmit anything
2738 		 * or our original transmission succeeded.
2739 		 */
2740 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2741 		tcp_undo_cwr(sk, true);
2742 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2743 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2744 		else
2745 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2746 
2747 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2748 		tp->undo_marker = 0;
2749 	}
2750 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2751 		/* Hold old state until something *above* high_seq
2752 		 * is ACKed. For Reno it is MUST to prevent false
2753 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2754 		tcp_moderate_cwnd(tp);
2755 		return 1;
2756 	}
2757 	tcp_set_ca_state(sk, TCP_CA_Open);
2758 	return 0;
2759 }
2760 
2761 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2762 static void tcp_try_undo_dsack(struct sock *sk)
2763 {
2764 	struct tcp_sock *tp = tcp_sk(sk);
2765 
2766 	if (tp->undo_marker && !tp->undo_retrans) {
2767 		DBGUNDO(sk, "D-SACK");
2768 		tcp_undo_cwr(sk, true);
2769 		tp->undo_marker = 0;
2770 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2771 	}
2772 }
2773 
2774 /* We can clear retrans_stamp when there are no retransmissions in the
2775  * window. It would seem that it is trivially available for us in
2776  * tp->retrans_out, however, that kind of assumptions doesn't consider
2777  * what will happen if errors occur when sending retransmission for the
2778  * second time. ...It could the that such segment has only
2779  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2780  * the head skb is enough except for some reneging corner cases that
2781  * are not worth the effort.
2782  *
2783  * Main reason for all this complexity is the fact that connection dying
2784  * time now depends on the validity of the retrans_stamp, in particular,
2785  * that successive retransmissions of a segment must not advance
2786  * retrans_stamp under any conditions.
2787  */
2788 static int tcp_any_retrans_done(const struct sock *sk)
2789 {
2790 	const struct tcp_sock *tp = tcp_sk(sk);
2791 	struct sk_buff *skb;
2792 
2793 	if (tp->retrans_out)
2794 		return 1;
2795 
2796 	skb = tcp_write_queue_head(sk);
2797 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2798 		return 1;
2799 
2800 	return 0;
2801 }
2802 
2803 /* Undo during fast recovery after partial ACK. */
2804 
2805 static int tcp_try_undo_partial(struct sock *sk, int acked)
2806 {
2807 	struct tcp_sock *tp = tcp_sk(sk);
2808 	/* Partial ACK arrived. Force Hoe's retransmit. */
2809 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2810 
2811 	if (tcp_may_undo(tp)) {
2812 		/* Plain luck! Hole if filled with delayed
2813 		 * packet, rather than with a retransmit.
2814 		 */
2815 		if (!tcp_any_retrans_done(sk))
2816 			tp->retrans_stamp = 0;
2817 
2818 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2819 
2820 		DBGUNDO(sk, "Hoe");
2821 		tcp_undo_cwr(sk, false);
2822 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2823 
2824 		/* So... Do not make Hoe's retransmit yet.
2825 		 * If the first packet was delayed, the rest
2826 		 * ones are most probably delayed as well.
2827 		 */
2828 		failed = 0;
2829 	}
2830 	return failed;
2831 }
2832 
2833 /* Undo during loss recovery after partial ACK. */
2834 static int tcp_try_undo_loss(struct sock *sk)
2835 {
2836 	struct tcp_sock *tp = tcp_sk(sk);
2837 
2838 	if (tcp_may_undo(tp)) {
2839 		struct sk_buff *skb;
2840 		tcp_for_write_queue(skb, sk) {
2841 			if (skb == tcp_send_head(sk))
2842 				break;
2843 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2844 		}
2845 
2846 		tcp_clear_all_retrans_hints(tp);
2847 
2848 		DBGUNDO(sk, "partial loss");
2849 		tp->lost_out = 0;
2850 		tcp_undo_cwr(sk, true);
2851 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2852 		inet_csk(sk)->icsk_retransmits = 0;
2853 		tp->undo_marker = 0;
2854 		if (tcp_is_sack(tp))
2855 			tcp_set_ca_state(sk, TCP_CA_Open);
2856 		return 1;
2857 	}
2858 	return 0;
2859 }
2860 
2861 static inline void tcp_complete_cwr(struct sock *sk)
2862 {
2863 	struct tcp_sock *tp = tcp_sk(sk);
2864 
2865 	/* Do not moderate cwnd if it's already undone in cwr or recovery. */
2866 	if (tp->undo_marker) {
2867 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2868 			tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2869 		else /* PRR */
2870 			tp->snd_cwnd = tp->snd_ssthresh;
2871 		tp->snd_cwnd_stamp = tcp_time_stamp;
2872 	}
2873 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2874 }
2875 
2876 static void tcp_try_keep_open(struct sock *sk)
2877 {
2878 	struct tcp_sock *tp = tcp_sk(sk);
2879 	int state = TCP_CA_Open;
2880 
2881 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2882 		state = TCP_CA_Disorder;
2883 
2884 	if (inet_csk(sk)->icsk_ca_state != state) {
2885 		tcp_set_ca_state(sk, state);
2886 		tp->high_seq = tp->snd_nxt;
2887 	}
2888 }
2889 
2890 static void tcp_try_to_open(struct sock *sk, int flag)
2891 {
2892 	struct tcp_sock *tp = tcp_sk(sk);
2893 
2894 	tcp_verify_left_out(tp);
2895 
2896 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2897 		tp->retrans_stamp = 0;
2898 
2899 	if (flag & FLAG_ECE)
2900 		tcp_enter_cwr(sk, 1);
2901 
2902 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2903 		tcp_try_keep_open(sk);
2904 		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2905 			tcp_moderate_cwnd(tp);
2906 	} else {
2907 		tcp_cwnd_down(sk, flag);
2908 	}
2909 }
2910 
2911 static void tcp_mtup_probe_failed(struct sock *sk)
2912 {
2913 	struct inet_connection_sock *icsk = inet_csk(sk);
2914 
2915 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2916 	icsk->icsk_mtup.probe_size = 0;
2917 }
2918 
2919 static void tcp_mtup_probe_success(struct sock *sk)
2920 {
2921 	struct tcp_sock *tp = tcp_sk(sk);
2922 	struct inet_connection_sock *icsk = inet_csk(sk);
2923 
2924 	/* FIXME: breaks with very large cwnd */
2925 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2926 	tp->snd_cwnd = tp->snd_cwnd *
2927 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2928 		       icsk->icsk_mtup.probe_size;
2929 	tp->snd_cwnd_cnt = 0;
2930 	tp->snd_cwnd_stamp = tcp_time_stamp;
2931 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2932 
2933 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2934 	icsk->icsk_mtup.probe_size = 0;
2935 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2936 }
2937 
2938 /* Do a simple retransmit without using the backoff mechanisms in
2939  * tcp_timer. This is used for path mtu discovery.
2940  * The socket is already locked here.
2941  */
2942 void tcp_simple_retransmit(struct sock *sk)
2943 {
2944 	const struct inet_connection_sock *icsk = inet_csk(sk);
2945 	struct tcp_sock *tp = tcp_sk(sk);
2946 	struct sk_buff *skb;
2947 	unsigned int mss = tcp_current_mss(sk);
2948 	u32 prior_lost = tp->lost_out;
2949 
2950 	tcp_for_write_queue(skb, sk) {
2951 		if (skb == tcp_send_head(sk))
2952 			break;
2953 		if (tcp_skb_seglen(skb) > mss &&
2954 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2955 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2956 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2957 				tp->retrans_out -= tcp_skb_pcount(skb);
2958 			}
2959 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2960 		}
2961 	}
2962 
2963 	tcp_clear_retrans_hints_partial(tp);
2964 
2965 	if (prior_lost == tp->lost_out)
2966 		return;
2967 
2968 	if (tcp_is_reno(tp))
2969 		tcp_limit_reno_sacked(tp);
2970 
2971 	tcp_verify_left_out(tp);
2972 
2973 	/* Don't muck with the congestion window here.
2974 	 * Reason is that we do not increase amount of _data_
2975 	 * in network, but units changed and effective
2976 	 * cwnd/ssthresh really reduced now.
2977 	 */
2978 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2979 		tp->high_seq = tp->snd_nxt;
2980 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2981 		tp->prior_ssthresh = 0;
2982 		tp->undo_marker = 0;
2983 		tcp_set_ca_state(sk, TCP_CA_Loss);
2984 	}
2985 	tcp_xmit_retransmit_queue(sk);
2986 }
2987 EXPORT_SYMBOL(tcp_simple_retransmit);
2988 
2989 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2990  * (proportional rate reduction with slow start reduction bound) as described in
2991  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2992  * It computes the number of packets to send (sndcnt) based on packets newly
2993  * delivered:
2994  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2995  *	cwnd reductions across a full RTT.
2996  *   2) If packets in flight is lower than ssthresh (such as due to excess
2997  *	losses and/or application stalls), do not perform any further cwnd
2998  *	reductions, but instead slow start up to ssthresh.
2999  */
3000 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3001 					int fast_rexmit, int flag)
3002 {
3003 	struct tcp_sock *tp = tcp_sk(sk);
3004 	int sndcnt = 0;
3005 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3006 
3007 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3008 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3009 			       tp->prior_cwnd - 1;
3010 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3011 	} else {
3012 		sndcnt = min_t(int, delta,
3013 			       max_t(int, tp->prr_delivered - tp->prr_out,
3014 				     newly_acked_sacked) + 1);
3015 	}
3016 
3017 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3018 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3019 }
3020 
3021 /* Process an event, which can update packets-in-flight not trivially.
3022  * Main goal of this function is to calculate new estimate for left_out,
3023  * taking into account both packets sitting in receiver's buffer and
3024  * packets lost by network.
3025  *
3026  * Besides that it does CWND reduction, when packet loss is detected
3027  * and changes state of machine.
3028  *
3029  * It does _not_ decide what to send, it is made in function
3030  * tcp_xmit_retransmit_queue().
3031  */
3032 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3033 				  int newly_acked_sacked, bool is_dupack,
3034 				  int flag)
3035 {
3036 	struct inet_connection_sock *icsk = inet_csk(sk);
3037 	struct tcp_sock *tp = tcp_sk(sk);
3038 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3039 				    (tcp_fackets_out(tp) > tp->reordering));
3040 	int fast_rexmit = 0, mib_idx;
3041 
3042 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
3043 		tp->sacked_out = 0;
3044 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3045 		tp->fackets_out = 0;
3046 
3047 	/* Now state machine starts.
3048 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3049 	if (flag & FLAG_ECE)
3050 		tp->prior_ssthresh = 0;
3051 
3052 	/* B. In all the states check for reneging SACKs. */
3053 	if (tcp_check_sack_reneging(sk, flag))
3054 		return;
3055 
3056 	/* C. Check consistency of the current state. */
3057 	tcp_verify_left_out(tp);
3058 
3059 	/* D. Check state exit conditions. State can be terminated
3060 	 *    when high_seq is ACKed. */
3061 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3062 		WARN_ON(tp->retrans_out != 0);
3063 		tp->retrans_stamp = 0;
3064 	} else if (!before(tp->snd_una, tp->high_seq)) {
3065 		switch (icsk->icsk_ca_state) {
3066 		case TCP_CA_Loss:
3067 			icsk->icsk_retransmits = 0;
3068 			if (tcp_try_undo_recovery(sk))
3069 				return;
3070 			break;
3071 
3072 		case TCP_CA_CWR:
3073 			/* CWR is to be held something *above* high_seq
3074 			 * is ACKed for CWR bit to reach receiver. */
3075 			if (tp->snd_una != tp->high_seq) {
3076 				tcp_complete_cwr(sk);
3077 				tcp_set_ca_state(sk, TCP_CA_Open);
3078 			}
3079 			break;
3080 
3081 		case TCP_CA_Recovery:
3082 			if (tcp_is_reno(tp))
3083 				tcp_reset_reno_sack(tp);
3084 			if (tcp_try_undo_recovery(sk))
3085 				return;
3086 			tcp_complete_cwr(sk);
3087 			break;
3088 		}
3089 	}
3090 
3091 	/* E. Process state. */
3092 	switch (icsk->icsk_ca_state) {
3093 	case TCP_CA_Recovery:
3094 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3095 			if (tcp_is_reno(tp) && is_dupack)
3096 				tcp_add_reno_sack(sk);
3097 		} else
3098 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3099 		break;
3100 	case TCP_CA_Loss:
3101 		if (flag & FLAG_DATA_ACKED)
3102 			icsk->icsk_retransmits = 0;
3103 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3104 			tcp_reset_reno_sack(tp);
3105 		if (!tcp_try_undo_loss(sk)) {
3106 			tcp_moderate_cwnd(tp);
3107 			tcp_xmit_retransmit_queue(sk);
3108 			return;
3109 		}
3110 		if (icsk->icsk_ca_state != TCP_CA_Open)
3111 			return;
3112 		/* Loss is undone; fall through to processing in Open state. */
3113 	default:
3114 		if (tcp_is_reno(tp)) {
3115 			if (flag & FLAG_SND_UNA_ADVANCED)
3116 				tcp_reset_reno_sack(tp);
3117 			if (is_dupack)
3118 				tcp_add_reno_sack(sk);
3119 		}
3120 
3121 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3122 			tcp_try_undo_dsack(sk);
3123 
3124 		if (!tcp_time_to_recover(sk)) {
3125 			tcp_try_to_open(sk, flag);
3126 			return;
3127 		}
3128 
3129 		/* MTU probe failure: don't reduce cwnd */
3130 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3131 		    icsk->icsk_mtup.probe_size &&
3132 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3133 			tcp_mtup_probe_failed(sk);
3134 			/* Restores the reduction we did in tcp_mtup_probe() */
3135 			tp->snd_cwnd++;
3136 			tcp_simple_retransmit(sk);
3137 			return;
3138 		}
3139 
3140 		/* Otherwise enter Recovery state */
3141 
3142 		if (tcp_is_reno(tp))
3143 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3144 		else
3145 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3146 
3147 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3148 
3149 		tp->high_seq = tp->snd_nxt;
3150 		tp->prior_ssthresh = 0;
3151 		tp->undo_marker = tp->snd_una;
3152 		tp->undo_retrans = tp->retrans_out;
3153 
3154 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3155 			if (!(flag & FLAG_ECE))
3156 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3157 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3158 			TCP_ECN_queue_cwr(tp);
3159 		}
3160 
3161 		tp->bytes_acked = 0;
3162 		tp->snd_cwnd_cnt = 0;
3163 		tp->prior_cwnd = tp->snd_cwnd;
3164 		tp->prr_delivered = 0;
3165 		tp->prr_out = 0;
3166 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3167 		fast_rexmit = 1;
3168 	}
3169 
3170 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3171 		tcp_update_scoreboard(sk, fast_rexmit);
3172 	tp->prr_delivered += newly_acked_sacked;
3173 	tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3174 	tcp_xmit_retransmit_queue(sk);
3175 }
3176 
3177 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3178 {
3179 	tcp_rtt_estimator(sk, seq_rtt);
3180 	tcp_set_rto(sk);
3181 	inet_csk(sk)->icsk_backoff = 0;
3182 }
3183 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3184 
3185 /* Read draft-ietf-tcplw-high-performance before mucking
3186  * with this code. (Supersedes RFC1323)
3187  */
3188 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3189 {
3190 	/* RTTM Rule: A TSecr value received in a segment is used to
3191 	 * update the averaged RTT measurement only if the segment
3192 	 * acknowledges some new data, i.e., only if it advances the
3193 	 * left edge of the send window.
3194 	 *
3195 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3196 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3197 	 *
3198 	 * Changed: reset backoff as soon as we see the first valid sample.
3199 	 * If we do not, we get strongly overestimated rto. With timestamps
3200 	 * samples are accepted even from very old segments: f.e., when rtt=1
3201 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3202 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3203 	 * in window is lost... Voila.	 			--ANK (010210)
3204 	 */
3205 	struct tcp_sock *tp = tcp_sk(sk);
3206 
3207 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3208 }
3209 
3210 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3211 {
3212 	/* We don't have a timestamp. Can only use
3213 	 * packets that are not retransmitted to determine
3214 	 * rtt estimates. Also, we must not reset the
3215 	 * backoff for rto until we get a non-retransmitted
3216 	 * packet. This allows us to deal with a situation
3217 	 * where the network delay has increased suddenly.
3218 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3219 	 */
3220 
3221 	if (flag & FLAG_RETRANS_DATA_ACKED)
3222 		return;
3223 
3224 	tcp_valid_rtt_meas(sk, seq_rtt);
3225 }
3226 
3227 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3228 				      const s32 seq_rtt)
3229 {
3230 	const struct tcp_sock *tp = tcp_sk(sk);
3231 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3232 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3233 		tcp_ack_saw_tstamp(sk, flag);
3234 	else if (seq_rtt >= 0)
3235 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3236 }
3237 
3238 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3239 {
3240 	const struct inet_connection_sock *icsk = inet_csk(sk);
3241 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3242 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3243 }
3244 
3245 /* Restart timer after forward progress on connection.
3246  * RFC2988 recommends to restart timer to now+rto.
3247  */
3248 static void tcp_rearm_rto(struct sock *sk)
3249 {
3250 	const struct tcp_sock *tp = tcp_sk(sk);
3251 
3252 	if (!tp->packets_out) {
3253 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3254 	} else {
3255 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3256 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3257 	}
3258 }
3259 
3260 /* If we get here, the whole TSO packet has not been acked. */
3261 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3262 {
3263 	struct tcp_sock *tp = tcp_sk(sk);
3264 	u32 packets_acked;
3265 
3266 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3267 
3268 	packets_acked = tcp_skb_pcount(skb);
3269 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3270 		return 0;
3271 	packets_acked -= tcp_skb_pcount(skb);
3272 
3273 	if (packets_acked) {
3274 		BUG_ON(tcp_skb_pcount(skb) == 0);
3275 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3276 	}
3277 
3278 	return packets_acked;
3279 }
3280 
3281 /* Remove acknowledged frames from the retransmission queue. If our packet
3282  * is before the ack sequence we can discard it as it's confirmed to have
3283  * arrived at the other end.
3284  */
3285 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3286 			       u32 prior_snd_una)
3287 {
3288 	struct tcp_sock *tp = tcp_sk(sk);
3289 	const struct inet_connection_sock *icsk = inet_csk(sk);
3290 	struct sk_buff *skb;
3291 	u32 now = tcp_time_stamp;
3292 	int fully_acked = 1;
3293 	int flag = 0;
3294 	u32 pkts_acked = 0;
3295 	u32 reord = tp->packets_out;
3296 	u32 prior_sacked = tp->sacked_out;
3297 	s32 seq_rtt = -1;
3298 	s32 ca_seq_rtt = -1;
3299 	ktime_t last_ackt = net_invalid_timestamp();
3300 
3301 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3302 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3303 		u32 acked_pcount;
3304 		u8 sacked = scb->sacked;
3305 
3306 		/* Determine how many packets and what bytes were acked, tso and else */
3307 		if (after(scb->end_seq, tp->snd_una)) {
3308 			if (tcp_skb_pcount(skb) == 1 ||
3309 			    !after(tp->snd_una, scb->seq))
3310 				break;
3311 
3312 			acked_pcount = tcp_tso_acked(sk, skb);
3313 			if (!acked_pcount)
3314 				break;
3315 
3316 			fully_acked = 0;
3317 		} else {
3318 			acked_pcount = tcp_skb_pcount(skb);
3319 		}
3320 
3321 		if (sacked & TCPCB_RETRANS) {
3322 			if (sacked & TCPCB_SACKED_RETRANS)
3323 				tp->retrans_out -= acked_pcount;
3324 			flag |= FLAG_RETRANS_DATA_ACKED;
3325 			ca_seq_rtt = -1;
3326 			seq_rtt = -1;
3327 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3328 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3329 		} else {
3330 			ca_seq_rtt = now - scb->when;
3331 			last_ackt = skb->tstamp;
3332 			if (seq_rtt < 0) {
3333 				seq_rtt = ca_seq_rtt;
3334 			}
3335 			if (!(sacked & TCPCB_SACKED_ACKED))
3336 				reord = min(pkts_acked, reord);
3337 		}
3338 
3339 		if (sacked & TCPCB_SACKED_ACKED)
3340 			tp->sacked_out -= acked_pcount;
3341 		if (sacked & TCPCB_LOST)
3342 			tp->lost_out -= acked_pcount;
3343 
3344 		tp->packets_out -= acked_pcount;
3345 		pkts_acked += acked_pcount;
3346 
3347 		/* Initial outgoing SYN's get put onto the write_queue
3348 		 * just like anything else we transmit.  It is not
3349 		 * true data, and if we misinform our callers that
3350 		 * this ACK acks real data, we will erroneously exit
3351 		 * connection startup slow start one packet too
3352 		 * quickly.  This is severely frowned upon behavior.
3353 		 */
3354 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3355 			flag |= FLAG_DATA_ACKED;
3356 		} else {
3357 			flag |= FLAG_SYN_ACKED;
3358 			tp->retrans_stamp = 0;
3359 		}
3360 
3361 		if (!fully_acked)
3362 			break;
3363 
3364 		tcp_unlink_write_queue(skb, sk);
3365 		sk_wmem_free_skb(sk, skb);
3366 		tp->scoreboard_skb_hint = NULL;
3367 		if (skb == tp->retransmit_skb_hint)
3368 			tp->retransmit_skb_hint = NULL;
3369 		if (skb == tp->lost_skb_hint)
3370 			tp->lost_skb_hint = NULL;
3371 	}
3372 
3373 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3374 		tp->snd_up = tp->snd_una;
3375 
3376 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3377 		flag |= FLAG_SACK_RENEGING;
3378 
3379 	if (flag & FLAG_ACKED) {
3380 		const struct tcp_congestion_ops *ca_ops
3381 			= inet_csk(sk)->icsk_ca_ops;
3382 
3383 		if (unlikely(icsk->icsk_mtup.probe_size &&
3384 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3385 			tcp_mtup_probe_success(sk);
3386 		}
3387 
3388 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3389 		tcp_rearm_rto(sk);
3390 
3391 		if (tcp_is_reno(tp)) {
3392 			tcp_remove_reno_sacks(sk, pkts_acked);
3393 		} else {
3394 			int delta;
3395 
3396 			/* Non-retransmitted hole got filled? That's reordering */
3397 			if (reord < prior_fackets)
3398 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3399 
3400 			delta = tcp_is_fack(tp) ? pkts_acked :
3401 						  prior_sacked - tp->sacked_out;
3402 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3403 		}
3404 
3405 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3406 
3407 		if (ca_ops->pkts_acked) {
3408 			s32 rtt_us = -1;
3409 
3410 			/* Is the ACK triggering packet unambiguous? */
3411 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3412 				/* High resolution needed and available? */
3413 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3414 				    !ktime_equal(last_ackt,
3415 						 net_invalid_timestamp()))
3416 					rtt_us = ktime_us_delta(ktime_get_real(),
3417 								last_ackt);
3418 				else if (ca_seq_rtt >= 0)
3419 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3420 			}
3421 
3422 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3423 		}
3424 	}
3425 
3426 #if FASTRETRANS_DEBUG > 0
3427 	WARN_ON((int)tp->sacked_out < 0);
3428 	WARN_ON((int)tp->lost_out < 0);
3429 	WARN_ON((int)tp->retrans_out < 0);
3430 	if (!tp->packets_out && tcp_is_sack(tp)) {
3431 		icsk = inet_csk(sk);
3432 		if (tp->lost_out) {
3433 			printk(KERN_DEBUG "Leak l=%u %d\n",
3434 			       tp->lost_out, icsk->icsk_ca_state);
3435 			tp->lost_out = 0;
3436 		}
3437 		if (tp->sacked_out) {
3438 			printk(KERN_DEBUG "Leak s=%u %d\n",
3439 			       tp->sacked_out, icsk->icsk_ca_state);
3440 			tp->sacked_out = 0;
3441 		}
3442 		if (tp->retrans_out) {
3443 			printk(KERN_DEBUG "Leak r=%u %d\n",
3444 			       tp->retrans_out, icsk->icsk_ca_state);
3445 			tp->retrans_out = 0;
3446 		}
3447 	}
3448 #endif
3449 	return flag;
3450 }
3451 
3452 static void tcp_ack_probe(struct sock *sk)
3453 {
3454 	const struct tcp_sock *tp = tcp_sk(sk);
3455 	struct inet_connection_sock *icsk = inet_csk(sk);
3456 
3457 	/* Was it a usable window open? */
3458 
3459 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3460 		icsk->icsk_backoff = 0;
3461 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3462 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3463 		 * This function is not for random using!
3464 		 */
3465 	} else {
3466 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3467 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3468 					  TCP_RTO_MAX);
3469 	}
3470 }
3471 
3472 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3473 {
3474 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3475 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3476 }
3477 
3478 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3479 {
3480 	const struct tcp_sock *tp = tcp_sk(sk);
3481 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3482 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3483 }
3484 
3485 /* Check that window update is acceptable.
3486  * The function assumes that snd_una<=ack<=snd_next.
3487  */
3488 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3489 					const u32 ack, const u32 ack_seq,
3490 					const u32 nwin)
3491 {
3492 	return	after(ack, tp->snd_una) ||
3493 		after(ack_seq, tp->snd_wl1) ||
3494 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3495 }
3496 
3497 /* Update our send window.
3498  *
3499  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3500  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3501  */
3502 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3503 				 u32 ack_seq)
3504 {
3505 	struct tcp_sock *tp = tcp_sk(sk);
3506 	int flag = 0;
3507 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3508 
3509 	if (likely(!tcp_hdr(skb)->syn))
3510 		nwin <<= tp->rx_opt.snd_wscale;
3511 
3512 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3513 		flag |= FLAG_WIN_UPDATE;
3514 		tcp_update_wl(tp, ack_seq);
3515 
3516 		if (tp->snd_wnd != nwin) {
3517 			tp->snd_wnd = nwin;
3518 
3519 			/* Note, it is the only place, where
3520 			 * fast path is recovered for sending TCP.
3521 			 */
3522 			tp->pred_flags = 0;
3523 			tcp_fast_path_check(sk);
3524 
3525 			if (nwin > tp->max_window) {
3526 				tp->max_window = nwin;
3527 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3528 			}
3529 		}
3530 	}
3531 
3532 	tp->snd_una = ack;
3533 
3534 	return flag;
3535 }
3536 
3537 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3538  * continue in congestion avoidance.
3539  */
3540 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3541 {
3542 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3543 	tp->snd_cwnd_cnt = 0;
3544 	tp->bytes_acked = 0;
3545 	TCP_ECN_queue_cwr(tp);
3546 	tcp_moderate_cwnd(tp);
3547 }
3548 
3549 /* A conservative spurious RTO response algorithm: reduce cwnd using
3550  * rate halving and continue in congestion avoidance.
3551  */
3552 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3553 {
3554 	tcp_enter_cwr(sk, 0);
3555 }
3556 
3557 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3558 {
3559 	if (flag & FLAG_ECE)
3560 		tcp_ratehalving_spur_to_response(sk);
3561 	else
3562 		tcp_undo_cwr(sk, true);
3563 }
3564 
3565 /* F-RTO spurious RTO detection algorithm (RFC4138)
3566  *
3567  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3568  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3569  * window (but not to or beyond highest sequence sent before RTO):
3570  *   On First ACK,  send two new segments out.
3571  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3572  *                  algorithm is not part of the F-RTO detection algorithm
3573  *                  given in RFC4138 but can be selected separately).
3574  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3575  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3576  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3577  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3578  *
3579  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3580  * original window even after we transmit two new data segments.
3581  *
3582  * SACK version:
3583  *   on first step, wait until first cumulative ACK arrives, then move to
3584  *   the second step. In second step, the next ACK decides.
3585  *
3586  * F-RTO is implemented (mainly) in four functions:
3587  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3588  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3589  *     called when tcp_use_frto() showed green light
3590  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3591  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3592  *     to prove that the RTO is indeed spurious. It transfers the control
3593  *     from F-RTO to the conventional RTO recovery
3594  */
3595 static int tcp_process_frto(struct sock *sk, int flag)
3596 {
3597 	struct tcp_sock *tp = tcp_sk(sk);
3598 
3599 	tcp_verify_left_out(tp);
3600 
3601 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3602 	if (flag & FLAG_DATA_ACKED)
3603 		inet_csk(sk)->icsk_retransmits = 0;
3604 
3605 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3606 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3607 		tp->undo_marker = 0;
3608 
3609 	if (!before(tp->snd_una, tp->frto_highmark)) {
3610 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3611 		return 1;
3612 	}
3613 
3614 	if (!tcp_is_sackfrto(tp)) {
3615 		/* RFC4138 shortcoming in step 2; should also have case c):
3616 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3617 		 * data, winupdate
3618 		 */
3619 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3620 			return 1;
3621 
3622 		if (!(flag & FLAG_DATA_ACKED)) {
3623 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3624 					    flag);
3625 			return 1;
3626 		}
3627 	} else {
3628 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3629 			/* Prevent sending of new data. */
3630 			tp->snd_cwnd = min(tp->snd_cwnd,
3631 					   tcp_packets_in_flight(tp));
3632 			return 1;
3633 		}
3634 
3635 		if ((tp->frto_counter >= 2) &&
3636 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3637 		     ((flag & FLAG_DATA_SACKED) &&
3638 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3639 			/* RFC4138 shortcoming (see comment above) */
3640 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3641 			    (flag & FLAG_NOT_DUP))
3642 				return 1;
3643 
3644 			tcp_enter_frto_loss(sk, 3, flag);
3645 			return 1;
3646 		}
3647 	}
3648 
3649 	if (tp->frto_counter == 1) {
3650 		/* tcp_may_send_now needs to see updated state */
3651 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3652 		tp->frto_counter = 2;
3653 
3654 		if (!tcp_may_send_now(sk))
3655 			tcp_enter_frto_loss(sk, 2, flag);
3656 
3657 		return 1;
3658 	} else {
3659 		switch (sysctl_tcp_frto_response) {
3660 		case 2:
3661 			tcp_undo_spur_to_response(sk, flag);
3662 			break;
3663 		case 1:
3664 			tcp_conservative_spur_to_response(tp);
3665 			break;
3666 		default:
3667 			tcp_ratehalving_spur_to_response(sk);
3668 			break;
3669 		}
3670 		tp->frto_counter = 0;
3671 		tp->undo_marker = 0;
3672 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3673 	}
3674 	return 0;
3675 }
3676 
3677 /* This routine deals with incoming acks, but not outgoing ones. */
3678 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3679 {
3680 	struct inet_connection_sock *icsk = inet_csk(sk);
3681 	struct tcp_sock *tp = tcp_sk(sk);
3682 	u32 prior_snd_una = tp->snd_una;
3683 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3684 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3685 	bool is_dupack = false;
3686 	u32 prior_in_flight;
3687 	u32 prior_fackets;
3688 	int prior_packets;
3689 	int prior_sacked = tp->sacked_out;
3690 	int pkts_acked = 0;
3691 	int newly_acked_sacked = 0;
3692 	int frto_cwnd = 0;
3693 
3694 	/* If the ack is older than previous acks
3695 	 * then we can probably ignore it.
3696 	 */
3697 	if (before(ack, prior_snd_una))
3698 		goto old_ack;
3699 
3700 	/* If the ack includes data we haven't sent yet, discard
3701 	 * this segment (RFC793 Section 3.9).
3702 	 */
3703 	if (after(ack, tp->snd_nxt))
3704 		goto invalid_ack;
3705 
3706 	if (after(ack, prior_snd_una))
3707 		flag |= FLAG_SND_UNA_ADVANCED;
3708 
3709 	if (sysctl_tcp_abc) {
3710 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3711 			tp->bytes_acked += ack - prior_snd_una;
3712 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3713 			/* we assume just one segment left network */
3714 			tp->bytes_acked += min(ack - prior_snd_una,
3715 					       tp->mss_cache);
3716 	}
3717 
3718 	prior_fackets = tp->fackets_out;
3719 	prior_in_flight = tcp_packets_in_flight(tp);
3720 
3721 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3722 		/* Window is constant, pure forward advance.
3723 		 * No more checks are required.
3724 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3725 		 */
3726 		tcp_update_wl(tp, ack_seq);
3727 		tp->snd_una = ack;
3728 		flag |= FLAG_WIN_UPDATE;
3729 
3730 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3731 
3732 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3733 	} else {
3734 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3735 			flag |= FLAG_DATA;
3736 		else
3737 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3738 
3739 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3740 
3741 		if (TCP_SKB_CB(skb)->sacked)
3742 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3743 
3744 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3745 			flag |= FLAG_ECE;
3746 
3747 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3748 	}
3749 
3750 	/* We passed data and got it acked, remove any soft error
3751 	 * log. Something worked...
3752 	 */
3753 	sk->sk_err_soft = 0;
3754 	icsk->icsk_probes_out = 0;
3755 	tp->rcv_tstamp = tcp_time_stamp;
3756 	prior_packets = tp->packets_out;
3757 	if (!prior_packets)
3758 		goto no_queue;
3759 
3760 	/* See if we can take anything off of the retransmit queue. */
3761 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3762 
3763 	pkts_acked = prior_packets - tp->packets_out;
3764 	newly_acked_sacked = (prior_packets - prior_sacked) -
3765 			     (tp->packets_out - tp->sacked_out);
3766 
3767 	if (tp->frto_counter)
3768 		frto_cwnd = tcp_process_frto(sk, flag);
3769 	/* Guarantee sacktag reordering detection against wrap-arounds */
3770 	if (before(tp->frto_highmark, tp->snd_una))
3771 		tp->frto_highmark = 0;
3772 
3773 	if (tcp_ack_is_dubious(sk, flag)) {
3774 		/* Advance CWND, if state allows this. */
3775 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3776 		    tcp_may_raise_cwnd(sk, flag))
3777 			tcp_cong_avoid(sk, ack, prior_in_flight);
3778 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3779 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3780 				      is_dupack, flag);
3781 	} else {
3782 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3783 			tcp_cong_avoid(sk, ack, prior_in_flight);
3784 	}
3785 
3786 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3787 		dst_confirm(__sk_dst_get(sk));
3788 
3789 	return 1;
3790 
3791 no_queue:
3792 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3793 	if (flag & FLAG_DSACKING_ACK)
3794 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3795 				      is_dupack, flag);
3796 	/* If this ack opens up a zero window, clear backoff.  It was
3797 	 * being used to time the probes, and is probably far higher than
3798 	 * it needs to be for normal retransmission.
3799 	 */
3800 	if (tcp_send_head(sk))
3801 		tcp_ack_probe(sk);
3802 	return 1;
3803 
3804 invalid_ack:
3805 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3806 	return -1;
3807 
3808 old_ack:
3809 	/* If data was SACKed, tag it and see if we should send more data.
3810 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3811 	 */
3812 	if (TCP_SKB_CB(skb)->sacked) {
3813 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3814 		newly_acked_sacked = tp->sacked_out - prior_sacked;
3815 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3816 				      is_dupack, flag);
3817 	}
3818 
3819 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3820 	return 0;
3821 }
3822 
3823 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3824  * But, this can also be called on packets in the established flow when
3825  * the fast version below fails.
3826  */
3827 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3828 		       const u8 **hvpp, int estab)
3829 {
3830 	const unsigned char *ptr;
3831 	const struct tcphdr *th = tcp_hdr(skb);
3832 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3833 
3834 	ptr = (const unsigned char *)(th + 1);
3835 	opt_rx->saw_tstamp = 0;
3836 
3837 	while (length > 0) {
3838 		int opcode = *ptr++;
3839 		int opsize;
3840 
3841 		switch (opcode) {
3842 		case TCPOPT_EOL:
3843 			return;
3844 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3845 			length--;
3846 			continue;
3847 		default:
3848 			opsize = *ptr++;
3849 			if (opsize < 2) /* "silly options" */
3850 				return;
3851 			if (opsize > length)
3852 				return;	/* don't parse partial options */
3853 			switch (opcode) {
3854 			case TCPOPT_MSS:
3855 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3856 					u16 in_mss = get_unaligned_be16(ptr);
3857 					if (in_mss) {
3858 						if (opt_rx->user_mss &&
3859 						    opt_rx->user_mss < in_mss)
3860 							in_mss = opt_rx->user_mss;
3861 						opt_rx->mss_clamp = in_mss;
3862 					}
3863 				}
3864 				break;
3865 			case TCPOPT_WINDOW:
3866 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3867 				    !estab && sysctl_tcp_window_scaling) {
3868 					__u8 snd_wscale = *(__u8 *)ptr;
3869 					opt_rx->wscale_ok = 1;
3870 					if (snd_wscale > 14) {
3871 						if (net_ratelimit())
3872 							pr_info("%s: Illegal window scaling value %d >14 received\n",
3873 								__func__,
3874 								snd_wscale);
3875 						snd_wscale = 14;
3876 					}
3877 					opt_rx->snd_wscale = snd_wscale;
3878 				}
3879 				break;
3880 			case TCPOPT_TIMESTAMP:
3881 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3882 				    ((estab && opt_rx->tstamp_ok) ||
3883 				     (!estab && sysctl_tcp_timestamps))) {
3884 					opt_rx->saw_tstamp = 1;
3885 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3886 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3887 				}
3888 				break;
3889 			case TCPOPT_SACK_PERM:
3890 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3891 				    !estab && sysctl_tcp_sack) {
3892 					opt_rx->sack_ok = TCP_SACK_SEEN;
3893 					tcp_sack_reset(opt_rx);
3894 				}
3895 				break;
3896 
3897 			case TCPOPT_SACK:
3898 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3899 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3900 				   opt_rx->sack_ok) {
3901 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3902 				}
3903 				break;
3904 #ifdef CONFIG_TCP_MD5SIG
3905 			case TCPOPT_MD5SIG:
3906 				/*
3907 				 * The MD5 Hash has already been
3908 				 * checked (see tcp_v{4,6}_do_rcv()).
3909 				 */
3910 				break;
3911 #endif
3912 			case TCPOPT_COOKIE:
3913 				/* This option is variable length.
3914 				 */
3915 				switch (opsize) {
3916 				case TCPOLEN_COOKIE_BASE:
3917 					/* not yet implemented */
3918 					break;
3919 				case TCPOLEN_COOKIE_PAIR:
3920 					/* not yet implemented */
3921 					break;
3922 				case TCPOLEN_COOKIE_MIN+0:
3923 				case TCPOLEN_COOKIE_MIN+2:
3924 				case TCPOLEN_COOKIE_MIN+4:
3925 				case TCPOLEN_COOKIE_MIN+6:
3926 				case TCPOLEN_COOKIE_MAX:
3927 					/* 16-bit multiple */
3928 					opt_rx->cookie_plus = opsize;
3929 					*hvpp = ptr;
3930 					break;
3931 				default:
3932 					/* ignore option */
3933 					break;
3934 				}
3935 				break;
3936 			}
3937 
3938 			ptr += opsize-2;
3939 			length -= opsize;
3940 		}
3941 	}
3942 }
3943 EXPORT_SYMBOL(tcp_parse_options);
3944 
3945 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3946 {
3947 	const __be32 *ptr = (const __be32 *)(th + 1);
3948 
3949 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3950 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3951 		tp->rx_opt.saw_tstamp = 1;
3952 		++ptr;
3953 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3954 		++ptr;
3955 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3956 		return 1;
3957 	}
3958 	return 0;
3959 }
3960 
3961 /* Fast parse options. This hopes to only see timestamps.
3962  * If it is wrong it falls back on tcp_parse_options().
3963  */
3964 static int tcp_fast_parse_options(const struct sk_buff *skb,
3965 				  const struct tcphdr *th,
3966 				  struct tcp_sock *tp, const u8 **hvpp)
3967 {
3968 	/* In the spirit of fast parsing, compare doff directly to constant
3969 	 * values.  Because equality is used, short doff can be ignored here.
3970 	 */
3971 	if (th->doff == (sizeof(*th) / 4)) {
3972 		tp->rx_opt.saw_tstamp = 0;
3973 		return 0;
3974 	} else if (tp->rx_opt.tstamp_ok &&
3975 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3976 		if (tcp_parse_aligned_timestamp(tp, th))
3977 			return 1;
3978 	}
3979 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3980 	return 1;
3981 }
3982 
3983 #ifdef CONFIG_TCP_MD5SIG
3984 /*
3985  * Parse MD5 Signature option
3986  */
3987 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3988 {
3989 	int length = (th->doff << 2) - sizeof(*th);
3990 	const u8 *ptr = (const u8 *)(th + 1);
3991 
3992 	/* If the TCP option is too short, we can short cut */
3993 	if (length < TCPOLEN_MD5SIG)
3994 		return NULL;
3995 
3996 	while (length > 0) {
3997 		int opcode = *ptr++;
3998 		int opsize;
3999 
4000 		switch(opcode) {
4001 		case TCPOPT_EOL:
4002 			return NULL;
4003 		case TCPOPT_NOP:
4004 			length--;
4005 			continue;
4006 		default:
4007 			opsize = *ptr++;
4008 			if (opsize < 2 || opsize > length)
4009 				return NULL;
4010 			if (opcode == TCPOPT_MD5SIG)
4011 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4012 		}
4013 		ptr += opsize - 2;
4014 		length -= opsize;
4015 	}
4016 	return NULL;
4017 }
4018 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4019 #endif
4020 
4021 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4022 {
4023 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4024 	tp->rx_opt.ts_recent_stamp = get_seconds();
4025 }
4026 
4027 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4028 {
4029 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4030 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
4031 		 * extra check below makes sure this can only happen
4032 		 * for pure ACK frames.  -DaveM
4033 		 *
4034 		 * Not only, also it occurs for expired timestamps.
4035 		 */
4036 
4037 		if (tcp_paws_check(&tp->rx_opt, 0))
4038 			tcp_store_ts_recent(tp);
4039 	}
4040 }
4041 
4042 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4043  *
4044  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4045  * it can pass through stack. So, the following predicate verifies that
4046  * this segment is not used for anything but congestion avoidance or
4047  * fast retransmit. Moreover, we even are able to eliminate most of such
4048  * second order effects, if we apply some small "replay" window (~RTO)
4049  * to timestamp space.
4050  *
4051  * All these measures still do not guarantee that we reject wrapped ACKs
4052  * on networks with high bandwidth, when sequence space is recycled fastly,
4053  * but it guarantees that such events will be very rare and do not affect
4054  * connection seriously. This doesn't look nice, but alas, PAWS is really
4055  * buggy extension.
4056  *
4057  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4058  * states that events when retransmit arrives after original data are rare.
4059  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4060  * the biggest problem on large power networks even with minor reordering.
4061  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4062  * up to bandwidth of 18Gigabit/sec. 8) ]
4063  */
4064 
4065 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4066 {
4067 	const struct tcp_sock *tp = tcp_sk(sk);
4068 	const struct tcphdr *th = tcp_hdr(skb);
4069 	u32 seq = TCP_SKB_CB(skb)->seq;
4070 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4071 
4072 	return (/* 1. Pure ACK with correct sequence number. */
4073 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4074 
4075 		/* 2. ... and duplicate ACK. */
4076 		ack == tp->snd_una &&
4077 
4078 		/* 3. ... and does not update window. */
4079 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4080 
4081 		/* 4. ... and sits in replay window. */
4082 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4083 }
4084 
4085 static inline int tcp_paws_discard(const struct sock *sk,
4086 				   const struct sk_buff *skb)
4087 {
4088 	const struct tcp_sock *tp = tcp_sk(sk);
4089 
4090 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4091 	       !tcp_disordered_ack(sk, skb);
4092 }
4093 
4094 /* Check segment sequence number for validity.
4095  *
4096  * Segment controls are considered valid, if the segment
4097  * fits to the window after truncation to the window. Acceptability
4098  * of data (and SYN, FIN, of course) is checked separately.
4099  * See tcp_data_queue(), for example.
4100  *
4101  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4102  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4103  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4104  * (borrowed from freebsd)
4105  */
4106 
4107 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4108 {
4109 	return	!before(end_seq, tp->rcv_wup) &&
4110 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4111 }
4112 
4113 /* When we get a reset we do this. */
4114 static void tcp_reset(struct sock *sk)
4115 {
4116 	/* We want the right error as BSD sees it (and indeed as we do). */
4117 	switch (sk->sk_state) {
4118 	case TCP_SYN_SENT:
4119 		sk->sk_err = ECONNREFUSED;
4120 		break;
4121 	case TCP_CLOSE_WAIT:
4122 		sk->sk_err = EPIPE;
4123 		break;
4124 	case TCP_CLOSE:
4125 		return;
4126 	default:
4127 		sk->sk_err = ECONNRESET;
4128 	}
4129 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4130 	smp_wmb();
4131 
4132 	if (!sock_flag(sk, SOCK_DEAD))
4133 		sk->sk_error_report(sk);
4134 
4135 	tcp_done(sk);
4136 }
4137 
4138 /*
4139  * 	Process the FIN bit. This now behaves as it is supposed to work
4140  *	and the FIN takes effect when it is validly part of sequence
4141  *	space. Not before when we get holes.
4142  *
4143  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4144  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4145  *	TIME-WAIT)
4146  *
4147  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4148  *	close and we go into CLOSING (and later onto TIME-WAIT)
4149  *
4150  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4151  */
4152 static void tcp_fin(struct sock *sk)
4153 {
4154 	struct tcp_sock *tp = tcp_sk(sk);
4155 
4156 	inet_csk_schedule_ack(sk);
4157 
4158 	sk->sk_shutdown |= RCV_SHUTDOWN;
4159 	sock_set_flag(sk, SOCK_DONE);
4160 
4161 	switch (sk->sk_state) {
4162 	case TCP_SYN_RECV:
4163 	case TCP_ESTABLISHED:
4164 		/* Move to CLOSE_WAIT */
4165 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4166 		inet_csk(sk)->icsk_ack.pingpong = 1;
4167 		break;
4168 
4169 	case TCP_CLOSE_WAIT:
4170 	case TCP_CLOSING:
4171 		/* Received a retransmission of the FIN, do
4172 		 * nothing.
4173 		 */
4174 		break;
4175 	case TCP_LAST_ACK:
4176 		/* RFC793: Remain in the LAST-ACK state. */
4177 		break;
4178 
4179 	case TCP_FIN_WAIT1:
4180 		/* This case occurs when a simultaneous close
4181 		 * happens, we must ack the received FIN and
4182 		 * enter the CLOSING state.
4183 		 */
4184 		tcp_send_ack(sk);
4185 		tcp_set_state(sk, TCP_CLOSING);
4186 		break;
4187 	case TCP_FIN_WAIT2:
4188 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4189 		tcp_send_ack(sk);
4190 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4191 		break;
4192 	default:
4193 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4194 		 * cases we should never reach this piece of code.
4195 		 */
4196 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4197 		       __func__, sk->sk_state);
4198 		break;
4199 	}
4200 
4201 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4202 	 * Probably, we should reset in this case. For now drop them.
4203 	 */
4204 	__skb_queue_purge(&tp->out_of_order_queue);
4205 	if (tcp_is_sack(tp))
4206 		tcp_sack_reset(&tp->rx_opt);
4207 	sk_mem_reclaim(sk);
4208 
4209 	if (!sock_flag(sk, SOCK_DEAD)) {
4210 		sk->sk_state_change(sk);
4211 
4212 		/* Do not send POLL_HUP for half duplex close. */
4213 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4214 		    sk->sk_state == TCP_CLOSE)
4215 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4216 		else
4217 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4218 	}
4219 }
4220 
4221 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4222 				  u32 end_seq)
4223 {
4224 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4225 		if (before(seq, sp->start_seq))
4226 			sp->start_seq = seq;
4227 		if (after(end_seq, sp->end_seq))
4228 			sp->end_seq = end_seq;
4229 		return 1;
4230 	}
4231 	return 0;
4232 }
4233 
4234 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4235 {
4236 	struct tcp_sock *tp = tcp_sk(sk);
4237 
4238 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4239 		int mib_idx;
4240 
4241 		if (before(seq, tp->rcv_nxt))
4242 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4243 		else
4244 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4245 
4246 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4247 
4248 		tp->rx_opt.dsack = 1;
4249 		tp->duplicate_sack[0].start_seq = seq;
4250 		tp->duplicate_sack[0].end_seq = end_seq;
4251 	}
4252 }
4253 
4254 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4255 {
4256 	struct tcp_sock *tp = tcp_sk(sk);
4257 
4258 	if (!tp->rx_opt.dsack)
4259 		tcp_dsack_set(sk, seq, end_seq);
4260 	else
4261 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4262 }
4263 
4264 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4265 {
4266 	struct tcp_sock *tp = tcp_sk(sk);
4267 
4268 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4269 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4270 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4271 		tcp_enter_quickack_mode(sk);
4272 
4273 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4274 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4275 
4276 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4277 				end_seq = tp->rcv_nxt;
4278 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4279 		}
4280 	}
4281 
4282 	tcp_send_ack(sk);
4283 }
4284 
4285 /* These routines update the SACK block as out-of-order packets arrive or
4286  * in-order packets close up the sequence space.
4287  */
4288 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4289 {
4290 	int this_sack;
4291 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4292 	struct tcp_sack_block *swalk = sp + 1;
4293 
4294 	/* See if the recent change to the first SACK eats into
4295 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4296 	 */
4297 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4298 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4299 			int i;
4300 
4301 			/* Zap SWALK, by moving every further SACK up by one slot.
4302 			 * Decrease num_sacks.
4303 			 */
4304 			tp->rx_opt.num_sacks--;
4305 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4306 				sp[i] = sp[i + 1];
4307 			continue;
4308 		}
4309 		this_sack++, swalk++;
4310 	}
4311 }
4312 
4313 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4314 {
4315 	struct tcp_sock *tp = tcp_sk(sk);
4316 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4317 	int cur_sacks = tp->rx_opt.num_sacks;
4318 	int this_sack;
4319 
4320 	if (!cur_sacks)
4321 		goto new_sack;
4322 
4323 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4324 		if (tcp_sack_extend(sp, seq, end_seq)) {
4325 			/* Rotate this_sack to the first one. */
4326 			for (; this_sack > 0; this_sack--, sp--)
4327 				swap(*sp, *(sp - 1));
4328 			if (cur_sacks > 1)
4329 				tcp_sack_maybe_coalesce(tp);
4330 			return;
4331 		}
4332 	}
4333 
4334 	/* Could not find an adjacent existing SACK, build a new one,
4335 	 * put it at the front, and shift everyone else down.  We
4336 	 * always know there is at least one SACK present already here.
4337 	 *
4338 	 * If the sack array is full, forget about the last one.
4339 	 */
4340 	if (this_sack >= TCP_NUM_SACKS) {
4341 		this_sack--;
4342 		tp->rx_opt.num_sacks--;
4343 		sp--;
4344 	}
4345 	for (; this_sack > 0; this_sack--, sp--)
4346 		*sp = *(sp - 1);
4347 
4348 new_sack:
4349 	/* Build the new head SACK, and we're done. */
4350 	sp->start_seq = seq;
4351 	sp->end_seq = end_seq;
4352 	tp->rx_opt.num_sacks++;
4353 }
4354 
4355 /* RCV.NXT advances, some SACKs should be eaten. */
4356 
4357 static void tcp_sack_remove(struct tcp_sock *tp)
4358 {
4359 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4360 	int num_sacks = tp->rx_opt.num_sacks;
4361 	int this_sack;
4362 
4363 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4364 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4365 		tp->rx_opt.num_sacks = 0;
4366 		return;
4367 	}
4368 
4369 	for (this_sack = 0; this_sack < num_sacks;) {
4370 		/* Check if the start of the sack is covered by RCV.NXT. */
4371 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4372 			int i;
4373 
4374 			/* RCV.NXT must cover all the block! */
4375 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4376 
4377 			/* Zap this SACK, by moving forward any other SACKS. */
4378 			for (i=this_sack+1; i < num_sacks; i++)
4379 				tp->selective_acks[i-1] = tp->selective_acks[i];
4380 			num_sacks--;
4381 			continue;
4382 		}
4383 		this_sack++;
4384 		sp++;
4385 	}
4386 	tp->rx_opt.num_sacks = num_sacks;
4387 }
4388 
4389 /* This one checks to see if we can put data from the
4390  * out_of_order queue into the receive_queue.
4391  */
4392 static void tcp_ofo_queue(struct sock *sk)
4393 {
4394 	struct tcp_sock *tp = tcp_sk(sk);
4395 	__u32 dsack_high = tp->rcv_nxt;
4396 	struct sk_buff *skb;
4397 
4398 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4399 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4400 			break;
4401 
4402 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4403 			__u32 dsack = dsack_high;
4404 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4405 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4406 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4407 		}
4408 
4409 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4410 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4411 			__skb_unlink(skb, &tp->out_of_order_queue);
4412 			__kfree_skb(skb);
4413 			continue;
4414 		}
4415 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4416 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4417 			   TCP_SKB_CB(skb)->end_seq);
4418 
4419 		__skb_unlink(skb, &tp->out_of_order_queue);
4420 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4421 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4422 		if (tcp_hdr(skb)->fin)
4423 			tcp_fin(sk);
4424 	}
4425 }
4426 
4427 static int tcp_prune_ofo_queue(struct sock *sk);
4428 static int tcp_prune_queue(struct sock *sk);
4429 
4430 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4431 {
4432 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4433 	    !sk_rmem_schedule(sk, size)) {
4434 
4435 		if (tcp_prune_queue(sk) < 0)
4436 			return -1;
4437 
4438 		if (!sk_rmem_schedule(sk, size)) {
4439 			if (!tcp_prune_ofo_queue(sk))
4440 				return -1;
4441 
4442 			if (!sk_rmem_schedule(sk, size))
4443 				return -1;
4444 		}
4445 	}
4446 	return 0;
4447 }
4448 
4449 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4450 {
4451 	struct tcp_sock *tp = tcp_sk(sk);
4452 	struct sk_buff *skb1;
4453 	u32 seq, end_seq;
4454 
4455 	TCP_ECN_check_ce(tp, skb);
4456 
4457 	if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4458 		/* TODO: should increment a counter */
4459 		__kfree_skb(skb);
4460 		return;
4461 	}
4462 
4463 	/* Disable header prediction. */
4464 	tp->pred_flags = 0;
4465 	inet_csk_schedule_ack(sk);
4466 
4467 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4468 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4469 
4470 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4471 	if (!skb1) {
4472 		/* Initial out of order segment, build 1 SACK. */
4473 		if (tcp_is_sack(tp)) {
4474 			tp->rx_opt.num_sacks = 1;
4475 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4476 			tp->selective_acks[0].end_seq =
4477 						TCP_SKB_CB(skb)->end_seq;
4478 		}
4479 		__skb_queue_head(&tp->out_of_order_queue, skb);
4480 		goto end;
4481 	}
4482 
4483 	seq = TCP_SKB_CB(skb)->seq;
4484 	end_seq = TCP_SKB_CB(skb)->end_seq;
4485 
4486 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4487 		/* Packets in ofo can stay in queue a long time.
4488 		 * Better try to coalesce them right now
4489 		 * to avoid future tcp_collapse_ofo_queue(),
4490 		 * probably the most expensive function in tcp stack.
4491 		 */
4492 		if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) {
4493 			NET_INC_STATS_BH(sock_net(sk),
4494 					 LINUX_MIB_TCPRCVCOALESCE);
4495 			BUG_ON(skb_copy_bits(skb, 0,
4496 					     skb_put(skb1, skb->len),
4497 					     skb->len));
4498 			TCP_SKB_CB(skb1)->end_seq = end_seq;
4499 			TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
4500 			__kfree_skb(skb);
4501 			skb = NULL;
4502 		} else {
4503 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4504 		}
4505 
4506 		if (!tp->rx_opt.num_sacks ||
4507 		    tp->selective_acks[0].end_seq != seq)
4508 			goto add_sack;
4509 
4510 		/* Common case: data arrive in order after hole. */
4511 		tp->selective_acks[0].end_seq = end_seq;
4512 		goto end;
4513 	}
4514 
4515 	/* Find place to insert this segment. */
4516 	while (1) {
4517 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4518 			break;
4519 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4520 			skb1 = NULL;
4521 			break;
4522 		}
4523 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4524 	}
4525 
4526 	/* Do skb overlap to previous one? */
4527 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4528 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4529 			/* All the bits are present. Drop. */
4530 			__kfree_skb(skb);
4531 			skb = NULL;
4532 			tcp_dsack_set(sk, seq, end_seq);
4533 			goto add_sack;
4534 		}
4535 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4536 			/* Partial overlap. */
4537 			tcp_dsack_set(sk, seq,
4538 				      TCP_SKB_CB(skb1)->end_seq);
4539 		} else {
4540 			if (skb_queue_is_first(&tp->out_of_order_queue,
4541 					       skb1))
4542 				skb1 = NULL;
4543 			else
4544 				skb1 = skb_queue_prev(
4545 					&tp->out_of_order_queue,
4546 					skb1);
4547 		}
4548 	}
4549 	if (!skb1)
4550 		__skb_queue_head(&tp->out_of_order_queue, skb);
4551 	else
4552 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4553 
4554 	/* And clean segments covered by new one as whole. */
4555 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4556 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4557 
4558 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4559 			break;
4560 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4561 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4562 					 end_seq);
4563 			break;
4564 		}
4565 		__skb_unlink(skb1, &tp->out_of_order_queue);
4566 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4567 				 TCP_SKB_CB(skb1)->end_seq);
4568 		__kfree_skb(skb1);
4569 	}
4570 
4571 add_sack:
4572 	if (tcp_is_sack(tp))
4573 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4574 end:
4575 	if (skb)
4576 		skb_set_owner_r(skb, sk);
4577 }
4578 
4579 
4580 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4581 {
4582 	const struct tcphdr *th = tcp_hdr(skb);
4583 	struct tcp_sock *tp = tcp_sk(sk);
4584 	int eaten = -1;
4585 
4586 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4587 		goto drop;
4588 
4589 	skb_dst_drop(skb);
4590 	__skb_pull(skb, th->doff * 4);
4591 
4592 	TCP_ECN_accept_cwr(tp, skb);
4593 
4594 	tp->rx_opt.dsack = 0;
4595 
4596 	/*  Queue data for delivery to the user.
4597 	 *  Packets in sequence go to the receive queue.
4598 	 *  Out of sequence packets to the out_of_order_queue.
4599 	 */
4600 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4601 		if (tcp_receive_window(tp) == 0)
4602 			goto out_of_window;
4603 
4604 		/* Ok. In sequence. In window. */
4605 		if (tp->ucopy.task == current &&
4606 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4607 		    sock_owned_by_user(sk) && !tp->urg_data) {
4608 			int chunk = min_t(unsigned int, skb->len,
4609 					  tp->ucopy.len);
4610 
4611 			__set_current_state(TASK_RUNNING);
4612 
4613 			local_bh_enable();
4614 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4615 				tp->ucopy.len -= chunk;
4616 				tp->copied_seq += chunk;
4617 				eaten = (chunk == skb->len);
4618 				tcp_rcv_space_adjust(sk);
4619 			}
4620 			local_bh_disable();
4621 		}
4622 
4623 		if (eaten <= 0) {
4624 queue_and_out:
4625 			if (eaten < 0 &&
4626 			    tcp_try_rmem_schedule(sk, skb->truesize))
4627 				goto drop;
4628 
4629 			skb_set_owner_r(skb, sk);
4630 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4631 		}
4632 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4633 		if (skb->len)
4634 			tcp_event_data_recv(sk, skb);
4635 		if (th->fin)
4636 			tcp_fin(sk);
4637 
4638 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4639 			tcp_ofo_queue(sk);
4640 
4641 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4642 			 * gap in queue is filled.
4643 			 */
4644 			if (skb_queue_empty(&tp->out_of_order_queue))
4645 				inet_csk(sk)->icsk_ack.pingpong = 0;
4646 		}
4647 
4648 		if (tp->rx_opt.num_sacks)
4649 			tcp_sack_remove(tp);
4650 
4651 		tcp_fast_path_check(sk);
4652 
4653 		if (eaten > 0)
4654 			__kfree_skb(skb);
4655 		else if (!sock_flag(sk, SOCK_DEAD))
4656 			sk->sk_data_ready(sk, 0);
4657 		return;
4658 	}
4659 
4660 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4661 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4662 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4663 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4664 
4665 out_of_window:
4666 		tcp_enter_quickack_mode(sk);
4667 		inet_csk_schedule_ack(sk);
4668 drop:
4669 		__kfree_skb(skb);
4670 		return;
4671 	}
4672 
4673 	/* Out of window. F.e. zero window probe. */
4674 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4675 		goto out_of_window;
4676 
4677 	tcp_enter_quickack_mode(sk);
4678 
4679 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4680 		/* Partial packet, seq < rcv_next < end_seq */
4681 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4682 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4683 			   TCP_SKB_CB(skb)->end_seq);
4684 
4685 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4686 
4687 		/* If window is closed, drop tail of packet. But after
4688 		 * remembering D-SACK for its head made in previous line.
4689 		 */
4690 		if (!tcp_receive_window(tp))
4691 			goto out_of_window;
4692 		goto queue_and_out;
4693 	}
4694 
4695 	tcp_data_queue_ofo(sk, skb);
4696 }
4697 
4698 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4699 					struct sk_buff_head *list)
4700 {
4701 	struct sk_buff *next = NULL;
4702 
4703 	if (!skb_queue_is_last(list, skb))
4704 		next = skb_queue_next(list, skb);
4705 
4706 	__skb_unlink(skb, list);
4707 	__kfree_skb(skb);
4708 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4709 
4710 	return next;
4711 }
4712 
4713 /* Collapse contiguous sequence of skbs head..tail with
4714  * sequence numbers start..end.
4715  *
4716  * If tail is NULL, this means until the end of the list.
4717  *
4718  * Segments with FIN/SYN are not collapsed (only because this
4719  * simplifies code)
4720  */
4721 static void
4722 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4723 	     struct sk_buff *head, struct sk_buff *tail,
4724 	     u32 start, u32 end)
4725 {
4726 	struct sk_buff *skb, *n;
4727 	bool end_of_skbs;
4728 
4729 	/* First, check that queue is collapsible and find
4730 	 * the point where collapsing can be useful. */
4731 	skb = head;
4732 restart:
4733 	end_of_skbs = true;
4734 	skb_queue_walk_from_safe(list, skb, n) {
4735 		if (skb == tail)
4736 			break;
4737 		/* No new bits? It is possible on ofo queue. */
4738 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4739 			skb = tcp_collapse_one(sk, skb, list);
4740 			if (!skb)
4741 				break;
4742 			goto restart;
4743 		}
4744 
4745 		/* The first skb to collapse is:
4746 		 * - not SYN/FIN and
4747 		 * - bloated or contains data before "start" or
4748 		 *   overlaps to the next one.
4749 		 */
4750 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4751 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4752 		     before(TCP_SKB_CB(skb)->seq, start))) {
4753 			end_of_skbs = false;
4754 			break;
4755 		}
4756 
4757 		if (!skb_queue_is_last(list, skb)) {
4758 			struct sk_buff *next = skb_queue_next(list, skb);
4759 			if (next != tail &&
4760 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4761 				end_of_skbs = false;
4762 				break;
4763 			}
4764 		}
4765 
4766 		/* Decided to skip this, advance start seq. */
4767 		start = TCP_SKB_CB(skb)->end_seq;
4768 	}
4769 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4770 		return;
4771 
4772 	while (before(start, end)) {
4773 		struct sk_buff *nskb;
4774 		unsigned int header = skb_headroom(skb);
4775 		int copy = SKB_MAX_ORDER(header, 0);
4776 
4777 		/* Too big header? This can happen with IPv6. */
4778 		if (copy < 0)
4779 			return;
4780 		if (end - start < copy)
4781 			copy = end - start;
4782 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4783 		if (!nskb)
4784 			return;
4785 
4786 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4787 		skb_set_network_header(nskb, (skb_network_header(skb) -
4788 					      skb->head));
4789 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4790 						skb->head));
4791 		skb_reserve(nskb, header);
4792 		memcpy(nskb->head, skb->head, header);
4793 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4794 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4795 		__skb_queue_before(list, skb, nskb);
4796 		skb_set_owner_r(nskb, sk);
4797 
4798 		/* Copy data, releasing collapsed skbs. */
4799 		while (copy > 0) {
4800 			int offset = start - TCP_SKB_CB(skb)->seq;
4801 			int size = TCP_SKB_CB(skb)->end_seq - start;
4802 
4803 			BUG_ON(offset < 0);
4804 			if (size > 0) {
4805 				size = min(copy, size);
4806 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4807 					BUG();
4808 				TCP_SKB_CB(nskb)->end_seq += size;
4809 				copy -= size;
4810 				start += size;
4811 			}
4812 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4813 				skb = tcp_collapse_one(sk, skb, list);
4814 				if (!skb ||
4815 				    skb == tail ||
4816 				    tcp_hdr(skb)->syn ||
4817 				    tcp_hdr(skb)->fin)
4818 					return;
4819 			}
4820 		}
4821 	}
4822 }
4823 
4824 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4825  * and tcp_collapse() them until all the queue is collapsed.
4826  */
4827 static void tcp_collapse_ofo_queue(struct sock *sk)
4828 {
4829 	struct tcp_sock *tp = tcp_sk(sk);
4830 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4831 	struct sk_buff *head;
4832 	u32 start, end;
4833 
4834 	if (skb == NULL)
4835 		return;
4836 
4837 	start = TCP_SKB_CB(skb)->seq;
4838 	end = TCP_SKB_CB(skb)->end_seq;
4839 	head = skb;
4840 
4841 	for (;;) {
4842 		struct sk_buff *next = NULL;
4843 
4844 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4845 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4846 		skb = next;
4847 
4848 		/* Segment is terminated when we see gap or when
4849 		 * we are at the end of all the queue. */
4850 		if (!skb ||
4851 		    after(TCP_SKB_CB(skb)->seq, end) ||
4852 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4853 			tcp_collapse(sk, &tp->out_of_order_queue,
4854 				     head, skb, start, end);
4855 			head = skb;
4856 			if (!skb)
4857 				break;
4858 			/* Start new segment */
4859 			start = TCP_SKB_CB(skb)->seq;
4860 			end = TCP_SKB_CB(skb)->end_seq;
4861 		} else {
4862 			if (before(TCP_SKB_CB(skb)->seq, start))
4863 				start = TCP_SKB_CB(skb)->seq;
4864 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4865 				end = TCP_SKB_CB(skb)->end_seq;
4866 		}
4867 	}
4868 }
4869 
4870 /*
4871  * Purge the out-of-order queue.
4872  * Return true if queue was pruned.
4873  */
4874 static int tcp_prune_ofo_queue(struct sock *sk)
4875 {
4876 	struct tcp_sock *tp = tcp_sk(sk);
4877 	int res = 0;
4878 
4879 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4880 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4881 		__skb_queue_purge(&tp->out_of_order_queue);
4882 
4883 		/* Reset SACK state.  A conforming SACK implementation will
4884 		 * do the same at a timeout based retransmit.  When a connection
4885 		 * is in a sad state like this, we care only about integrity
4886 		 * of the connection not performance.
4887 		 */
4888 		if (tp->rx_opt.sack_ok)
4889 			tcp_sack_reset(&tp->rx_opt);
4890 		sk_mem_reclaim(sk);
4891 		res = 1;
4892 	}
4893 	return res;
4894 }
4895 
4896 /* Reduce allocated memory if we can, trying to get
4897  * the socket within its memory limits again.
4898  *
4899  * Return less than zero if we should start dropping frames
4900  * until the socket owning process reads some of the data
4901  * to stabilize the situation.
4902  */
4903 static int tcp_prune_queue(struct sock *sk)
4904 {
4905 	struct tcp_sock *tp = tcp_sk(sk);
4906 
4907 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4908 
4909 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4910 
4911 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4912 		tcp_clamp_window(sk);
4913 	else if (sk_under_memory_pressure(sk))
4914 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4915 
4916 	tcp_collapse_ofo_queue(sk);
4917 	if (!skb_queue_empty(&sk->sk_receive_queue))
4918 		tcp_collapse(sk, &sk->sk_receive_queue,
4919 			     skb_peek(&sk->sk_receive_queue),
4920 			     NULL,
4921 			     tp->copied_seq, tp->rcv_nxt);
4922 	sk_mem_reclaim(sk);
4923 
4924 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4925 		return 0;
4926 
4927 	/* Collapsing did not help, destructive actions follow.
4928 	 * This must not ever occur. */
4929 
4930 	tcp_prune_ofo_queue(sk);
4931 
4932 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4933 		return 0;
4934 
4935 	/* If we are really being abused, tell the caller to silently
4936 	 * drop receive data on the floor.  It will get retransmitted
4937 	 * and hopefully then we'll have sufficient space.
4938 	 */
4939 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4940 
4941 	/* Massive buffer overcommit. */
4942 	tp->pred_flags = 0;
4943 	return -1;
4944 }
4945 
4946 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4947  * As additional protections, we do not touch cwnd in retransmission phases,
4948  * and if application hit its sndbuf limit recently.
4949  */
4950 void tcp_cwnd_application_limited(struct sock *sk)
4951 {
4952 	struct tcp_sock *tp = tcp_sk(sk);
4953 
4954 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4955 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4956 		/* Limited by application or receiver window. */
4957 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4958 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4959 		if (win_used < tp->snd_cwnd) {
4960 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4961 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4962 		}
4963 		tp->snd_cwnd_used = 0;
4964 	}
4965 	tp->snd_cwnd_stamp = tcp_time_stamp;
4966 }
4967 
4968 static int tcp_should_expand_sndbuf(const struct sock *sk)
4969 {
4970 	const struct tcp_sock *tp = tcp_sk(sk);
4971 
4972 	/* If the user specified a specific send buffer setting, do
4973 	 * not modify it.
4974 	 */
4975 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4976 		return 0;
4977 
4978 	/* If we are under global TCP memory pressure, do not expand.  */
4979 	if (sk_under_memory_pressure(sk))
4980 		return 0;
4981 
4982 	/* If we are under soft global TCP memory pressure, do not expand.  */
4983 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4984 		return 0;
4985 
4986 	/* If we filled the congestion window, do not expand.  */
4987 	if (tp->packets_out >= tp->snd_cwnd)
4988 		return 0;
4989 
4990 	return 1;
4991 }
4992 
4993 /* When incoming ACK allowed to free some skb from write_queue,
4994  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4995  * on the exit from tcp input handler.
4996  *
4997  * PROBLEM: sndbuf expansion does not work well with largesend.
4998  */
4999 static void tcp_new_space(struct sock *sk)
5000 {
5001 	struct tcp_sock *tp = tcp_sk(sk);
5002 
5003 	if (tcp_should_expand_sndbuf(sk)) {
5004 		int sndmem = SKB_TRUESIZE(max_t(u32,
5005 						tp->rx_opt.mss_clamp,
5006 						tp->mss_cache) +
5007 					  MAX_TCP_HEADER);
5008 		int demanded = max_t(unsigned int, tp->snd_cwnd,
5009 				     tp->reordering + 1);
5010 		sndmem *= 2 * demanded;
5011 		if (sndmem > sk->sk_sndbuf)
5012 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5013 		tp->snd_cwnd_stamp = tcp_time_stamp;
5014 	}
5015 
5016 	sk->sk_write_space(sk);
5017 }
5018 
5019 static void tcp_check_space(struct sock *sk)
5020 {
5021 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5022 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5023 		if (sk->sk_socket &&
5024 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5025 			tcp_new_space(sk);
5026 	}
5027 }
5028 
5029 static inline void tcp_data_snd_check(struct sock *sk)
5030 {
5031 	tcp_push_pending_frames(sk);
5032 	tcp_check_space(sk);
5033 }
5034 
5035 /*
5036  * Check if sending an ack is needed.
5037  */
5038 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5039 {
5040 	struct tcp_sock *tp = tcp_sk(sk);
5041 
5042 	    /* More than one full frame received... */
5043 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5044 	     /* ... and right edge of window advances far enough.
5045 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5046 	      */
5047 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5048 	    /* We ACK each frame or... */
5049 	    tcp_in_quickack_mode(sk) ||
5050 	    /* We have out of order data. */
5051 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5052 		/* Then ack it now */
5053 		tcp_send_ack(sk);
5054 	} else {
5055 		/* Else, send delayed ack. */
5056 		tcp_send_delayed_ack(sk);
5057 	}
5058 }
5059 
5060 static inline void tcp_ack_snd_check(struct sock *sk)
5061 {
5062 	if (!inet_csk_ack_scheduled(sk)) {
5063 		/* We sent a data segment already. */
5064 		return;
5065 	}
5066 	__tcp_ack_snd_check(sk, 1);
5067 }
5068 
5069 /*
5070  *	This routine is only called when we have urgent data
5071  *	signaled. Its the 'slow' part of tcp_urg. It could be
5072  *	moved inline now as tcp_urg is only called from one
5073  *	place. We handle URGent data wrong. We have to - as
5074  *	BSD still doesn't use the correction from RFC961.
5075  *	For 1003.1g we should support a new option TCP_STDURG to permit
5076  *	either form (or just set the sysctl tcp_stdurg).
5077  */
5078 
5079 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5080 {
5081 	struct tcp_sock *tp = tcp_sk(sk);
5082 	u32 ptr = ntohs(th->urg_ptr);
5083 
5084 	if (ptr && !sysctl_tcp_stdurg)
5085 		ptr--;
5086 	ptr += ntohl(th->seq);
5087 
5088 	/* Ignore urgent data that we've already seen and read. */
5089 	if (after(tp->copied_seq, ptr))
5090 		return;
5091 
5092 	/* Do not replay urg ptr.
5093 	 *
5094 	 * NOTE: interesting situation not covered by specs.
5095 	 * Misbehaving sender may send urg ptr, pointing to segment,
5096 	 * which we already have in ofo queue. We are not able to fetch
5097 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5098 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5099 	 * situations. But it is worth to think about possibility of some
5100 	 * DoSes using some hypothetical application level deadlock.
5101 	 */
5102 	if (before(ptr, tp->rcv_nxt))
5103 		return;
5104 
5105 	/* Do we already have a newer (or duplicate) urgent pointer? */
5106 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5107 		return;
5108 
5109 	/* Tell the world about our new urgent pointer. */
5110 	sk_send_sigurg(sk);
5111 
5112 	/* We may be adding urgent data when the last byte read was
5113 	 * urgent. To do this requires some care. We cannot just ignore
5114 	 * tp->copied_seq since we would read the last urgent byte again
5115 	 * as data, nor can we alter copied_seq until this data arrives
5116 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5117 	 *
5118 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5119 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5120 	 * and expect that both A and B disappear from stream. This is _wrong_.
5121 	 * Though this happens in BSD with high probability, this is occasional.
5122 	 * Any application relying on this is buggy. Note also, that fix "works"
5123 	 * only in this artificial test. Insert some normal data between A and B and we will
5124 	 * decline of BSD again. Verdict: it is better to remove to trap
5125 	 * buggy users.
5126 	 */
5127 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5128 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5129 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5130 		tp->copied_seq++;
5131 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5132 			__skb_unlink(skb, &sk->sk_receive_queue);
5133 			__kfree_skb(skb);
5134 		}
5135 	}
5136 
5137 	tp->urg_data = TCP_URG_NOTYET;
5138 	tp->urg_seq = ptr;
5139 
5140 	/* Disable header prediction. */
5141 	tp->pred_flags = 0;
5142 }
5143 
5144 /* This is the 'fast' part of urgent handling. */
5145 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5146 {
5147 	struct tcp_sock *tp = tcp_sk(sk);
5148 
5149 	/* Check if we get a new urgent pointer - normally not. */
5150 	if (th->urg)
5151 		tcp_check_urg(sk, th);
5152 
5153 	/* Do we wait for any urgent data? - normally not... */
5154 	if (tp->urg_data == TCP_URG_NOTYET) {
5155 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5156 			  th->syn;
5157 
5158 		/* Is the urgent pointer pointing into this packet? */
5159 		if (ptr < skb->len) {
5160 			u8 tmp;
5161 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5162 				BUG();
5163 			tp->urg_data = TCP_URG_VALID | tmp;
5164 			if (!sock_flag(sk, SOCK_DEAD))
5165 				sk->sk_data_ready(sk, 0);
5166 		}
5167 	}
5168 }
5169 
5170 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5171 {
5172 	struct tcp_sock *tp = tcp_sk(sk);
5173 	int chunk = skb->len - hlen;
5174 	int err;
5175 
5176 	local_bh_enable();
5177 	if (skb_csum_unnecessary(skb))
5178 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5179 	else
5180 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5181 						       tp->ucopy.iov);
5182 
5183 	if (!err) {
5184 		tp->ucopy.len -= chunk;
5185 		tp->copied_seq += chunk;
5186 		tcp_rcv_space_adjust(sk);
5187 	}
5188 
5189 	local_bh_disable();
5190 	return err;
5191 }
5192 
5193 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5194 					    struct sk_buff *skb)
5195 {
5196 	__sum16 result;
5197 
5198 	if (sock_owned_by_user(sk)) {
5199 		local_bh_enable();
5200 		result = __tcp_checksum_complete(skb);
5201 		local_bh_disable();
5202 	} else {
5203 		result = __tcp_checksum_complete(skb);
5204 	}
5205 	return result;
5206 }
5207 
5208 static inline int tcp_checksum_complete_user(struct sock *sk,
5209 					     struct sk_buff *skb)
5210 {
5211 	return !skb_csum_unnecessary(skb) &&
5212 	       __tcp_checksum_complete_user(sk, skb);
5213 }
5214 
5215 #ifdef CONFIG_NET_DMA
5216 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5217 				  int hlen)
5218 {
5219 	struct tcp_sock *tp = tcp_sk(sk);
5220 	int chunk = skb->len - hlen;
5221 	int dma_cookie;
5222 	int copied_early = 0;
5223 
5224 	if (tp->ucopy.wakeup)
5225 		return 0;
5226 
5227 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5228 		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5229 
5230 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5231 
5232 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5233 							 skb, hlen,
5234 							 tp->ucopy.iov, chunk,
5235 							 tp->ucopy.pinned_list);
5236 
5237 		if (dma_cookie < 0)
5238 			goto out;
5239 
5240 		tp->ucopy.dma_cookie = dma_cookie;
5241 		copied_early = 1;
5242 
5243 		tp->ucopy.len -= chunk;
5244 		tp->copied_seq += chunk;
5245 		tcp_rcv_space_adjust(sk);
5246 
5247 		if ((tp->ucopy.len == 0) ||
5248 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5249 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5250 			tp->ucopy.wakeup = 1;
5251 			sk->sk_data_ready(sk, 0);
5252 		}
5253 	} else if (chunk > 0) {
5254 		tp->ucopy.wakeup = 1;
5255 		sk->sk_data_ready(sk, 0);
5256 	}
5257 out:
5258 	return copied_early;
5259 }
5260 #endif /* CONFIG_NET_DMA */
5261 
5262 /* Does PAWS and seqno based validation of an incoming segment, flags will
5263  * play significant role here.
5264  */
5265 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5266 			      const struct tcphdr *th, int syn_inerr)
5267 {
5268 	const u8 *hash_location;
5269 	struct tcp_sock *tp = tcp_sk(sk);
5270 
5271 	/* RFC1323: H1. Apply PAWS check first. */
5272 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5273 	    tp->rx_opt.saw_tstamp &&
5274 	    tcp_paws_discard(sk, skb)) {
5275 		if (!th->rst) {
5276 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5277 			tcp_send_dupack(sk, skb);
5278 			goto discard;
5279 		}
5280 		/* Reset is accepted even if it did not pass PAWS. */
5281 	}
5282 
5283 	/* Step 1: check sequence number */
5284 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5285 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5286 		 * (RST) segments are validated by checking their SEQ-fields."
5287 		 * And page 69: "If an incoming segment is not acceptable,
5288 		 * an acknowledgment should be sent in reply (unless the RST
5289 		 * bit is set, if so drop the segment and return)".
5290 		 */
5291 		if (!th->rst)
5292 			tcp_send_dupack(sk, skb);
5293 		goto discard;
5294 	}
5295 
5296 	/* Step 2: check RST bit */
5297 	if (th->rst) {
5298 		tcp_reset(sk);
5299 		goto discard;
5300 	}
5301 
5302 	/* ts_recent update must be made after we are sure that the packet
5303 	 * is in window.
5304 	 */
5305 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5306 
5307 	/* step 3: check security and precedence [ignored] */
5308 
5309 	/* step 4: Check for a SYN in window. */
5310 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5311 		if (syn_inerr)
5312 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5313 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5314 		tcp_reset(sk);
5315 		return -1;
5316 	}
5317 
5318 	return 1;
5319 
5320 discard:
5321 	__kfree_skb(skb);
5322 	return 0;
5323 }
5324 
5325 /*
5326  *	TCP receive function for the ESTABLISHED state.
5327  *
5328  *	It is split into a fast path and a slow path. The fast path is
5329  * 	disabled when:
5330  *	- A zero window was announced from us - zero window probing
5331  *        is only handled properly in the slow path.
5332  *	- Out of order segments arrived.
5333  *	- Urgent data is expected.
5334  *	- There is no buffer space left
5335  *	- Unexpected TCP flags/window values/header lengths are received
5336  *	  (detected by checking the TCP header against pred_flags)
5337  *	- Data is sent in both directions. Fast path only supports pure senders
5338  *	  or pure receivers (this means either the sequence number or the ack
5339  *	  value must stay constant)
5340  *	- Unexpected TCP option.
5341  *
5342  *	When these conditions are not satisfied it drops into a standard
5343  *	receive procedure patterned after RFC793 to handle all cases.
5344  *	The first three cases are guaranteed by proper pred_flags setting,
5345  *	the rest is checked inline. Fast processing is turned on in
5346  *	tcp_data_queue when everything is OK.
5347  */
5348 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5349 			const struct tcphdr *th, unsigned int len)
5350 {
5351 	struct tcp_sock *tp = tcp_sk(sk);
5352 	int res;
5353 
5354 	/*
5355 	 *	Header prediction.
5356 	 *	The code loosely follows the one in the famous
5357 	 *	"30 instruction TCP receive" Van Jacobson mail.
5358 	 *
5359 	 *	Van's trick is to deposit buffers into socket queue
5360 	 *	on a device interrupt, to call tcp_recv function
5361 	 *	on the receive process context and checksum and copy
5362 	 *	the buffer to user space. smart...
5363 	 *
5364 	 *	Our current scheme is not silly either but we take the
5365 	 *	extra cost of the net_bh soft interrupt processing...
5366 	 *	We do checksum and copy also but from device to kernel.
5367 	 */
5368 
5369 	tp->rx_opt.saw_tstamp = 0;
5370 
5371 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5372 	 *	if header_prediction is to be made
5373 	 *	'S' will always be tp->tcp_header_len >> 2
5374 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5375 	 *  turn it off	(when there are holes in the receive
5376 	 *	 space for instance)
5377 	 *	PSH flag is ignored.
5378 	 */
5379 
5380 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5381 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5382 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5383 		int tcp_header_len = tp->tcp_header_len;
5384 
5385 		/* Timestamp header prediction: tcp_header_len
5386 		 * is automatically equal to th->doff*4 due to pred_flags
5387 		 * match.
5388 		 */
5389 
5390 		/* Check timestamp */
5391 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5392 			/* No? Slow path! */
5393 			if (!tcp_parse_aligned_timestamp(tp, th))
5394 				goto slow_path;
5395 
5396 			/* If PAWS failed, check it more carefully in slow path */
5397 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5398 				goto slow_path;
5399 
5400 			/* DO NOT update ts_recent here, if checksum fails
5401 			 * and timestamp was corrupted part, it will result
5402 			 * in a hung connection since we will drop all
5403 			 * future packets due to the PAWS test.
5404 			 */
5405 		}
5406 
5407 		if (len <= tcp_header_len) {
5408 			/* Bulk data transfer: sender */
5409 			if (len == tcp_header_len) {
5410 				/* Predicted packet is in window by definition.
5411 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5412 				 * Hence, check seq<=rcv_wup reduces to:
5413 				 */
5414 				if (tcp_header_len ==
5415 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5416 				    tp->rcv_nxt == tp->rcv_wup)
5417 					tcp_store_ts_recent(tp);
5418 
5419 				/* We know that such packets are checksummed
5420 				 * on entry.
5421 				 */
5422 				tcp_ack(sk, skb, 0);
5423 				__kfree_skb(skb);
5424 				tcp_data_snd_check(sk);
5425 				return 0;
5426 			} else { /* Header too small */
5427 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5428 				goto discard;
5429 			}
5430 		} else {
5431 			int eaten = 0;
5432 			int copied_early = 0;
5433 
5434 			if (tp->copied_seq == tp->rcv_nxt &&
5435 			    len - tcp_header_len <= tp->ucopy.len) {
5436 #ifdef CONFIG_NET_DMA
5437 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5438 					copied_early = 1;
5439 					eaten = 1;
5440 				}
5441 #endif
5442 				if (tp->ucopy.task == current &&
5443 				    sock_owned_by_user(sk) && !copied_early) {
5444 					__set_current_state(TASK_RUNNING);
5445 
5446 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5447 						eaten = 1;
5448 				}
5449 				if (eaten) {
5450 					/* Predicted packet is in window by definition.
5451 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5452 					 * Hence, check seq<=rcv_wup reduces to:
5453 					 */
5454 					if (tcp_header_len ==
5455 					    (sizeof(struct tcphdr) +
5456 					     TCPOLEN_TSTAMP_ALIGNED) &&
5457 					    tp->rcv_nxt == tp->rcv_wup)
5458 						tcp_store_ts_recent(tp);
5459 
5460 					tcp_rcv_rtt_measure_ts(sk, skb);
5461 
5462 					__skb_pull(skb, tcp_header_len);
5463 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5464 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5465 				}
5466 				if (copied_early)
5467 					tcp_cleanup_rbuf(sk, skb->len);
5468 			}
5469 			if (!eaten) {
5470 				if (tcp_checksum_complete_user(sk, skb))
5471 					goto csum_error;
5472 
5473 				/* Predicted packet is in window by definition.
5474 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5475 				 * Hence, check seq<=rcv_wup reduces to:
5476 				 */
5477 				if (tcp_header_len ==
5478 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5479 				    tp->rcv_nxt == tp->rcv_wup)
5480 					tcp_store_ts_recent(tp);
5481 
5482 				tcp_rcv_rtt_measure_ts(sk, skb);
5483 
5484 				if ((int)skb->truesize > sk->sk_forward_alloc)
5485 					goto step5;
5486 
5487 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5488 
5489 				/* Bulk data transfer: receiver */
5490 				__skb_pull(skb, tcp_header_len);
5491 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5492 				skb_set_owner_r(skb, sk);
5493 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5494 			}
5495 
5496 			tcp_event_data_recv(sk, skb);
5497 
5498 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5499 				/* Well, only one small jumplet in fast path... */
5500 				tcp_ack(sk, skb, FLAG_DATA);
5501 				tcp_data_snd_check(sk);
5502 				if (!inet_csk_ack_scheduled(sk))
5503 					goto no_ack;
5504 			}
5505 
5506 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5507 				__tcp_ack_snd_check(sk, 0);
5508 no_ack:
5509 #ifdef CONFIG_NET_DMA
5510 			if (copied_early)
5511 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5512 			else
5513 #endif
5514 			if (eaten)
5515 				__kfree_skb(skb);
5516 			else
5517 				sk->sk_data_ready(sk, 0);
5518 			return 0;
5519 		}
5520 	}
5521 
5522 slow_path:
5523 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5524 		goto csum_error;
5525 
5526 	/*
5527 	 *	Standard slow path.
5528 	 */
5529 
5530 	res = tcp_validate_incoming(sk, skb, th, 1);
5531 	if (res <= 0)
5532 		return -res;
5533 
5534 step5:
5535 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5536 		goto discard;
5537 
5538 	tcp_rcv_rtt_measure_ts(sk, skb);
5539 
5540 	/* Process urgent data. */
5541 	tcp_urg(sk, skb, th);
5542 
5543 	/* step 7: process the segment text */
5544 	tcp_data_queue(sk, skb);
5545 
5546 	tcp_data_snd_check(sk);
5547 	tcp_ack_snd_check(sk);
5548 	return 0;
5549 
5550 csum_error:
5551 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5552 
5553 discard:
5554 	__kfree_skb(skb);
5555 	return 0;
5556 }
5557 EXPORT_SYMBOL(tcp_rcv_established);
5558 
5559 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5560 					 const struct tcphdr *th, unsigned int len)
5561 {
5562 	const u8 *hash_location;
5563 	struct inet_connection_sock *icsk = inet_csk(sk);
5564 	struct tcp_sock *tp = tcp_sk(sk);
5565 	struct tcp_cookie_values *cvp = tp->cookie_values;
5566 	int saved_clamp = tp->rx_opt.mss_clamp;
5567 
5568 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5569 
5570 	if (th->ack) {
5571 		/* rfc793:
5572 		 * "If the state is SYN-SENT then
5573 		 *    first check the ACK bit
5574 		 *      If the ACK bit is set
5575 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5576 		 *        a reset (unless the RST bit is set, if so drop
5577 		 *        the segment and return)"
5578 		 *
5579 		 *  We do not send data with SYN, so that RFC-correct
5580 		 *  test reduces to:
5581 		 */
5582 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5583 			goto reset_and_undo;
5584 
5585 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5586 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5587 			     tcp_time_stamp)) {
5588 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5589 			goto reset_and_undo;
5590 		}
5591 
5592 		/* Now ACK is acceptable.
5593 		 *
5594 		 * "If the RST bit is set
5595 		 *    If the ACK was acceptable then signal the user "error:
5596 		 *    connection reset", drop the segment, enter CLOSED state,
5597 		 *    delete TCB, and return."
5598 		 */
5599 
5600 		if (th->rst) {
5601 			tcp_reset(sk);
5602 			goto discard;
5603 		}
5604 
5605 		/* rfc793:
5606 		 *   "fifth, if neither of the SYN or RST bits is set then
5607 		 *    drop the segment and return."
5608 		 *
5609 		 *    See note below!
5610 		 *                                        --ANK(990513)
5611 		 */
5612 		if (!th->syn)
5613 			goto discard_and_undo;
5614 
5615 		/* rfc793:
5616 		 *   "If the SYN bit is on ...
5617 		 *    are acceptable then ...
5618 		 *    (our SYN has been ACKed), change the connection
5619 		 *    state to ESTABLISHED..."
5620 		 */
5621 
5622 		TCP_ECN_rcv_synack(tp, th);
5623 
5624 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5625 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5626 
5627 		/* Ok.. it's good. Set up sequence numbers and
5628 		 * move to established.
5629 		 */
5630 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5631 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5632 
5633 		/* RFC1323: The window in SYN & SYN/ACK segments is
5634 		 * never scaled.
5635 		 */
5636 		tp->snd_wnd = ntohs(th->window);
5637 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5638 
5639 		if (!tp->rx_opt.wscale_ok) {
5640 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5641 			tp->window_clamp = min(tp->window_clamp, 65535U);
5642 		}
5643 
5644 		if (tp->rx_opt.saw_tstamp) {
5645 			tp->rx_opt.tstamp_ok	   = 1;
5646 			tp->tcp_header_len =
5647 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5648 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5649 			tcp_store_ts_recent(tp);
5650 		} else {
5651 			tp->tcp_header_len = sizeof(struct tcphdr);
5652 		}
5653 
5654 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5655 			tcp_enable_fack(tp);
5656 
5657 		tcp_mtup_init(sk);
5658 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5659 		tcp_initialize_rcv_mss(sk);
5660 
5661 		/* Remember, tcp_poll() does not lock socket!
5662 		 * Change state from SYN-SENT only after copied_seq
5663 		 * is initialized. */
5664 		tp->copied_seq = tp->rcv_nxt;
5665 
5666 		if (cvp != NULL &&
5667 		    cvp->cookie_pair_size > 0 &&
5668 		    tp->rx_opt.cookie_plus > 0) {
5669 			int cookie_size = tp->rx_opt.cookie_plus
5670 					- TCPOLEN_COOKIE_BASE;
5671 			int cookie_pair_size = cookie_size
5672 					     + cvp->cookie_desired;
5673 
5674 			/* A cookie extension option was sent and returned.
5675 			 * Note that each incoming SYNACK replaces the
5676 			 * Responder cookie.  The initial exchange is most
5677 			 * fragile, as protection against spoofing relies
5678 			 * entirely upon the sequence and timestamp (above).
5679 			 * This replacement strategy allows the correct pair to
5680 			 * pass through, while any others will be filtered via
5681 			 * Responder verification later.
5682 			 */
5683 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5684 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5685 				       hash_location, cookie_size);
5686 				cvp->cookie_pair_size = cookie_pair_size;
5687 			}
5688 		}
5689 
5690 		smp_mb();
5691 		tcp_set_state(sk, TCP_ESTABLISHED);
5692 
5693 		security_inet_conn_established(sk, skb);
5694 
5695 		/* Make sure socket is routed, for correct metrics.  */
5696 		icsk->icsk_af_ops->rebuild_header(sk);
5697 
5698 		tcp_init_metrics(sk);
5699 
5700 		tcp_init_congestion_control(sk);
5701 
5702 		/* Prevent spurious tcp_cwnd_restart() on first data
5703 		 * packet.
5704 		 */
5705 		tp->lsndtime = tcp_time_stamp;
5706 
5707 		tcp_init_buffer_space(sk);
5708 
5709 		if (sock_flag(sk, SOCK_KEEPOPEN))
5710 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5711 
5712 		if (!tp->rx_opt.snd_wscale)
5713 			__tcp_fast_path_on(tp, tp->snd_wnd);
5714 		else
5715 			tp->pred_flags = 0;
5716 
5717 		if (!sock_flag(sk, SOCK_DEAD)) {
5718 			sk->sk_state_change(sk);
5719 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5720 		}
5721 
5722 		if (sk->sk_write_pending ||
5723 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5724 		    icsk->icsk_ack.pingpong) {
5725 			/* Save one ACK. Data will be ready after
5726 			 * several ticks, if write_pending is set.
5727 			 *
5728 			 * It may be deleted, but with this feature tcpdumps
5729 			 * look so _wonderfully_ clever, that I was not able
5730 			 * to stand against the temptation 8)     --ANK
5731 			 */
5732 			inet_csk_schedule_ack(sk);
5733 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5734 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5735 			tcp_incr_quickack(sk);
5736 			tcp_enter_quickack_mode(sk);
5737 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5738 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5739 
5740 discard:
5741 			__kfree_skb(skb);
5742 			return 0;
5743 		} else {
5744 			tcp_send_ack(sk);
5745 		}
5746 		return -1;
5747 	}
5748 
5749 	/* No ACK in the segment */
5750 
5751 	if (th->rst) {
5752 		/* rfc793:
5753 		 * "If the RST bit is set
5754 		 *
5755 		 *      Otherwise (no ACK) drop the segment and return."
5756 		 */
5757 
5758 		goto discard_and_undo;
5759 	}
5760 
5761 	/* PAWS check. */
5762 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5763 	    tcp_paws_reject(&tp->rx_opt, 0))
5764 		goto discard_and_undo;
5765 
5766 	if (th->syn) {
5767 		/* We see SYN without ACK. It is attempt of
5768 		 * simultaneous connect with crossed SYNs.
5769 		 * Particularly, it can be connect to self.
5770 		 */
5771 		tcp_set_state(sk, TCP_SYN_RECV);
5772 
5773 		if (tp->rx_opt.saw_tstamp) {
5774 			tp->rx_opt.tstamp_ok = 1;
5775 			tcp_store_ts_recent(tp);
5776 			tp->tcp_header_len =
5777 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5778 		} else {
5779 			tp->tcp_header_len = sizeof(struct tcphdr);
5780 		}
5781 
5782 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5783 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5784 
5785 		/* RFC1323: The window in SYN & SYN/ACK segments is
5786 		 * never scaled.
5787 		 */
5788 		tp->snd_wnd    = ntohs(th->window);
5789 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5790 		tp->max_window = tp->snd_wnd;
5791 
5792 		TCP_ECN_rcv_syn(tp, th);
5793 
5794 		tcp_mtup_init(sk);
5795 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5796 		tcp_initialize_rcv_mss(sk);
5797 
5798 		tcp_send_synack(sk);
5799 #if 0
5800 		/* Note, we could accept data and URG from this segment.
5801 		 * There are no obstacles to make this.
5802 		 *
5803 		 * However, if we ignore data in ACKless segments sometimes,
5804 		 * we have no reasons to accept it sometimes.
5805 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5806 		 * is not flawless. So, discard packet for sanity.
5807 		 * Uncomment this return to process the data.
5808 		 */
5809 		return -1;
5810 #else
5811 		goto discard;
5812 #endif
5813 	}
5814 	/* "fifth, if neither of the SYN or RST bits is set then
5815 	 * drop the segment and return."
5816 	 */
5817 
5818 discard_and_undo:
5819 	tcp_clear_options(&tp->rx_opt);
5820 	tp->rx_opt.mss_clamp = saved_clamp;
5821 	goto discard;
5822 
5823 reset_and_undo:
5824 	tcp_clear_options(&tp->rx_opt);
5825 	tp->rx_opt.mss_clamp = saved_clamp;
5826 	return 1;
5827 }
5828 
5829 /*
5830  *	This function implements the receiving procedure of RFC 793 for
5831  *	all states except ESTABLISHED and TIME_WAIT.
5832  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5833  *	address independent.
5834  */
5835 
5836 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5837 			  const struct tcphdr *th, unsigned int len)
5838 {
5839 	struct tcp_sock *tp = tcp_sk(sk);
5840 	struct inet_connection_sock *icsk = inet_csk(sk);
5841 	int queued = 0;
5842 	int res;
5843 
5844 	tp->rx_opt.saw_tstamp = 0;
5845 
5846 	switch (sk->sk_state) {
5847 	case TCP_CLOSE:
5848 		goto discard;
5849 
5850 	case TCP_LISTEN:
5851 		if (th->ack)
5852 			return 1;
5853 
5854 		if (th->rst)
5855 			goto discard;
5856 
5857 		if (th->syn) {
5858 			if (th->fin)
5859 				goto discard;
5860 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5861 				return 1;
5862 
5863 			/* Now we have several options: In theory there is
5864 			 * nothing else in the frame. KA9Q has an option to
5865 			 * send data with the syn, BSD accepts data with the
5866 			 * syn up to the [to be] advertised window and
5867 			 * Solaris 2.1 gives you a protocol error. For now
5868 			 * we just ignore it, that fits the spec precisely
5869 			 * and avoids incompatibilities. It would be nice in
5870 			 * future to drop through and process the data.
5871 			 *
5872 			 * Now that TTCP is starting to be used we ought to
5873 			 * queue this data.
5874 			 * But, this leaves one open to an easy denial of
5875 			 * service attack, and SYN cookies can't defend
5876 			 * against this problem. So, we drop the data
5877 			 * in the interest of security over speed unless
5878 			 * it's still in use.
5879 			 */
5880 			kfree_skb(skb);
5881 			return 0;
5882 		}
5883 		goto discard;
5884 
5885 	case TCP_SYN_SENT:
5886 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5887 		if (queued >= 0)
5888 			return queued;
5889 
5890 		/* Do step6 onward by hand. */
5891 		tcp_urg(sk, skb, th);
5892 		__kfree_skb(skb);
5893 		tcp_data_snd_check(sk);
5894 		return 0;
5895 	}
5896 
5897 	res = tcp_validate_incoming(sk, skb, th, 0);
5898 	if (res <= 0)
5899 		return -res;
5900 
5901 	/* step 5: check the ACK field */
5902 	if (th->ack) {
5903 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5904 
5905 		switch (sk->sk_state) {
5906 		case TCP_SYN_RECV:
5907 			if (acceptable) {
5908 				tp->copied_seq = tp->rcv_nxt;
5909 				smp_mb();
5910 				tcp_set_state(sk, TCP_ESTABLISHED);
5911 				sk->sk_state_change(sk);
5912 
5913 				/* Note, that this wakeup is only for marginal
5914 				 * crossed SYN case. Passively open sockets
5915 				 * are not waked up, because sk->sk_sleep ==
5916 				 * NULL and sk->sk_socket == NULL.
5917 				 */
5918 				if (sk->sk_socket)
5919 					sk_wake_async(sk,
5920 						      SOCK_WAKE_IO, POLL_OUT);
5921 
5922 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5923 				tp->snd_wnd = ntohs(th->window) <<
5924 					      tp->rx_opt.snd_wscale;
5925 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5926 
5927 				if (tp->rx_opt.tstamp_ok)
5928 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5929 
5930 				/* Make sure socket is routed, for
5931 				 * correct metrics.
5932 				 */
5933 				icsk->icsk_af_ops->rebuild_header(sk);
5934 
5935 				tcp_init_metrics(sk);
5936 
5937 				tcp_init_congestion_control(sk);
5938 
5939 				/* Prevent spurious tcp_cwnd_restart() on
5940 				 * first data packet.
5941 				 */
5942 				tp->lsndtime = tcp_time_stamp;
5943 
5944 				tcp_mtup_init(sk);
5945 				tcp_initialize_rcv_mss(sk);
5946 				tcp_init_buffer_space(sk);
5947 				tcp_fast_path_on(tp);
5948 			} else {
5949 				return 1;
5950 			}
5951 			break;
5952 
5953 		case TCP_FIN_WAIT1:
5954 			if (tp->snd_una == tp->write_seq) {
5955 				tcp_set_state(sk, TCP_FIN_WAIT2);
5956 				sk->sk_shutdown |= SEND_SHUTDOWN;
5957 				dst_confirm(__sk_dst_get(sk));
5958 
5959 				if (!sock_flag(sk, SOCK_DEAD))
5960 					/* Wake up lingering close() */
5961 					sk->sk_state_change(sk);
5962 				else {
5963 					int tmo;
5964 
5965 					if (tp->linger2 < 0 ||
5966 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5967 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5968 						tcp_done(sk);
5969 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5970 						return 1;
5971 					}
5972 
5973 					tmo = tcp_fin_time(sk);
5974 					if (tmo > TCP_TIMEWAIT_LEN) {
5975 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5976 					} else if (th->fin || sock_owned_by_user(sk)) {
5977 						/* Bad case. We could lose such FIN otherwise.
5978 						 * It is not a big problem, but it looks confusing
5979 						 * and not so rare event. We still can lose it now,
5980 						 * if it spins in bh_lock_sock(), but it is really
5981 						 * marginal case.
5982 						 */
5983 						inet_csk_reset_keepalive_timer(sk, tmo);
5984 					} else {
5985 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5986 						goto discard;
5987 					}
5988 				}
5989 			}
5990 			break;
5991 
5992 		case TCP_CLOSING:
5993 			if (tp->snd_una == tp->write_seq) {
5994 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5995 				goto discard;
5996 			}
5997 			break;
5998 
5999 		case TCP_LAST_ACK:
6000 			if (tp->snd_una == tp->write_seq) {
6001 				tcp_update_metrics(sk);
6002 				tcp_done(sk);
6003 				goto discard;
6004 			}
6005 			break;
6006 		}
6007 	} else
6008 		goto discard;
6009 
6010 	/* step 6: check the URG bit */
6011 	tcp_urg(sk, skb, th);
6012 
6013 	/* step 7: process the segment text */
6014 	switch (sk->sk_state) {
6015 	case TCP_CLOSE_WAIT:
6016 	case TCP_CLOSING:
6017 	case TCP_LAST_ACK:
6018 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6019 			break;
6020 	case TCP_FIN_WAIT1:
6021 	case TCP_FIN_WAIT2:
6022 		/* RFC 793 says to queue data in these states,
6023 		 * RFC 1122 says we MUST send a reset.
6024 		 * BSD 4.4 also does reset.
6025 		 */
6026 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6027 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6028 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6029 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6030 				tcp_reset(sk);
6031 				return 1;
6032 			}
6033 		}
6034 		/* Fall through */
6035 	case TCP_ESTABLISHED:
6036 		tcp_data_queue(sk, skb);
6037 		queued = 1;
6038 		break;
6039 	}
6040 
6041 	/* tcp_data could move socket to TIME-WAIT */
6042 	if (sk->sk_state != TCP_CLOSE) {
6043 		tcp_data_snd_check(sk);
6044 		tcp_ack_snd_check(sk);
6045 	}
6046 
6047 	if (!queued) {
6048 discard:
6049 		__kfree_skb(skb);
6050 	}
6051 	return 0;
6052 }
6053 EXPORT_SYMBOL(tcp_rcv_state_process);
6054