xref: /linux/net/ipv4/tcp_input.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
84 
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
90 
91 int sysctl_tcp_moderate_rcvbuf = 1;
92 int sysctl_tcp_abc = 1;
93 
94 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
95 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
96 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
97 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
98 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
99 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
100 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
101 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
102 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112 
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114 
115 /* Adapt the MSS value used to make delayed ack decision to the
116  * real world.
117  */
118 static inline void tcp_measure_rcv_mss(struct sock *sk,
119 				       const struct sk_buff *skb)
120 {
121 	struct inet_connection_sock *icsk = inet_csk(sk);
122 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 	unsigned int len;
124 
125 	icsk->icsk_ack.last_seg_size = 0;
126 
127 	/* skb->len may jitter because of SACKs, even if peer
128 	 * sends good full-sized frames.
129 	 */
130 	len = skb->len;
131 	if (len >= icsk->icsk_ack.rcv_mss) {
132 		icsk->icsk_ack.rcv_mss = len;
133 	} else {
134 		/* Otherwise, we make more careful check taking into account,
135 		 * that SACKs block is variable.
136 		 *
137 		 * "len" is invariant segment length, including TCP header.
138 		 */
139 		len += skb->data - skb->h.raw;
140 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 		    /* If PSH is not set, packet should be
142 		     * full sized, provided peer TCP is not badly broken.
143 		     * This observation (if it is correct 8)) allows
144 		     * to handle super-low mtu links fairly.
145 		     */
146 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 			/* Subtract also invariant (if peer is RFC compliant),
149 			 * tcp header plus fixed timestamp option length.
150 			 * Resulting "len" is MSS free of SACK jitter.
151 			 */
152 			len -= tcp_sk(sk)->tcp_header_len;
153 			icsk->icsk_ack.last_seg_size = len;
154 			if (len == lss) {
155 				icsk->icsk_ack.rcv_mss = len;
156 				return;
157 			}
158 		}
159 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
160 	}
161 }
162 
163 static void tcp_incr_quickack(struct sock *sk)
164 {
165 	struct inet_connection_sock *icsk = inet_csk(sk);
166 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
167 
168 	if (quickacks==0)
169 		quickacks=2;
170 	if (quickacks > icsk->icsk_ack.quick)
171 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
172 }
173 
174 void tcp_enter_quickack_mode(struct sock *sk)
175 {
176 	struct inet_connection_sock *icsk = inet_csk(sk);
177 	tcp_incr_quickack(sk);
178 	icsk->icsk_ack.pingpong = 0;
179 	icsk->icsk_ack.ato = TCP_ATO_MIN;
180 }
181 
182 /* Send ACKs quickly, if "quick" count is not exhausted
183  * and the session is not interactive.
184  */
185 
186 static inline int tcp_in_quickack_mode(const struct sock *sk)
187 {
188 	const struct inet_connection_sock *icsk = inet_csk(sk);
189 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
190 }
191 
192 /* Buffer size and advertised window tuning.
193  *
194  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
195  */
196 
197 static void tcp_fixup_sndbuf(struct sock *sk)
198 {
199 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
200 		     sizeof(struct sk_buff);
201 
202 	if (sk->sk_sndbuf < 3 * sndmem)
203 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
204 }
205 
206 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
207  *
208  * All tcp_full_space() is split to two parts: "network" buffer, allocated
209  * forward and advertised in receiver window (tp->rcv_wnd) and
210  * "application buffer", required to isolate scheduling/application
211  * latencies from network.
212  * window_clamp is maximal advertised window. It can be less than
213  * tcp_full_space(), in this case tcp_full_space() - window_clamp
214  * is reserved for "application" buffer. The less window_clamp is
215  * the smoother our behaviour from viewpoint of network, but the lower
216  * throughput and the higher sensitivity of the connection to losses. 8)
217  *
218  * rcv_ssthresh is more strict window_clamp used at "slow start"
219  * phase to predict further behaviour of this connection.
220  * It is used for two goals:
221  * - to enforce header prediction at sender, even when application
222  *   requires some significant "application buffer". It is check #1.
223  * - to prevent pruning of receive queue because of misprediction
224  *   of receiver window. Check #2.
225  *
226  * The scheme does not work when sender sends good segments opening
227  * window and then starts to feed us spaghetti. But it should work
228  * in common situations. Otherwise, we have to rely on queue collapsing.
229  */
230 
231 /* Slow part of check#2. */
232 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
233 			     const struct sk_buff *skb)
234 {
235 	/* Optimize this! */
236 	int truesize = tcp_win_from_space(skb->truesize)/2;
237 	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
238 
239 	while (tp->rcv_ssthresh <= window) {
240 		if (truesize <= skb->len)
241 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
242 
243 		truesize >>= 1;
244 		window >>= 1;
245 	}
246 	return 0;
247 }
248 
249 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
250 				   struct sk_buff *skb)
251 {
252 	/* Check #1 */
253 	if (tp->rcv_ssthresh < tp->window_clamp &&
254 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
255 	    !tcp_memory_pressure) {
256 		int incr;
257 
258 		/* Check #2. Increase window, if skb with such overhead
259 		 * will fit to rcvbuf in future.
260 		 */
261 		if (tcp_win_from_space(skb->truesize) <= skb->len)
262 			incr = 2*tp->advmss;
263 		else
264 			incr = __tcp_grow_window(sk, tp, skb);
265 
266 		if (incr) {
267 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
268 			inet_csk(sk)->icsk_ack.quick |= 1;
269 		}
270 	}
271 }
272 
273 /* 3. Tuning rcvbuf, when connection enters established state. */
274 
275 static void tcp_fixup_rcvbuf(struct sock *sk)
276 {
277 	struct tcp_sock *tp = tcp_sk(sk);
278 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
279 
280 	/* Try to select rcvbuf so that 4 mss-sized segments
281 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
282 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
283 	 */
284 	while (tcp_win_from_space(rcvmem) < tp->advmss)
285 		rcvmem += 128;
286 	if (sk->sk_rcvbuf < 4 * rcvmem)
287 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
288 }
289 
290 /* 4. Try to fixup all. It is made immediately after connection enters
291  *    established state.
292  */
293 static void tcp_init_buffer_space(struct sock *sk)
294 {
295 	struct tcp_sock *tp = tcp_sk(sk);
296 	int maxwin;
297 
298 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
299 		tcp_fixup_rcvbuf(sk);
300 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
301 		tcp_fixup_sndbuf(sk);
302 
303 	tp->rcvq_space.space = tp->rcv_wnd;
304 
305 	maxwin = tcp_full_space(sk);
306 
307 	if (tp->window_clamp >= maxwin) {
308 		tp->window_clamp = maxwin;
309 
310 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
311 			tp->window_clamp = max(maxwin -
312 					       (maxwin >> sysctl_tcp_app_win),
313 					       4 * tp->advmss);
314 	}
315 
316 	/* Force reservation of one segment. */
317 	if (sysctl_tcp_app_win &&
318 	    tp->window_clamp > 2 * tp->advmss &&
319 	    tp->window_clamp + tp->advmss > maxwin)
320 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
321 
322 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
323 	tp->snd_cwnd_stamp = tcp_time_stamp;
324 }
325 
326 /* 5. Recalculate window clamp after socket hit its memory bounds. */
327 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
328 {
329 	struct inet_connection_sock *icsk = inet_csk(sk);
330 
331 	icsk->icsk_ack.quick = 0;
332 
333 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
334 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
335 	    !tcp_memory_pressure &&
336 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
337 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
338 				    sysctl_tcp_rmem[2]);
339 	}
340 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
341 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
342 }
343 
344 /* Receiver "autotuning" code.
345  *
346  * The algorithm for RTT estimation w/o timestamps is based on
347  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
348  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
349  *
350  * More detail on this code can be found at
351  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
352  * though this reference is out of date.  A new paper
353  * is pending.
354  */
355 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
356 {
357 	u32 new_sample = tp->rcv_rtt_est.rtt;
358 	long m = sample;
359 
360 	if (m == 0)
361 		m = 1;
362 
363 	if (new_sample != 0) {
364 		/* If we sample in larger samples in the non-timestamp
365 		 * case, we could grossly overestimate the RTT especially
366 		 * with chatty applications or bulk transfer apps which
367 		 * are stalled on filesystem I/O.
368 		 *
369 		 * Also, since we are only going for a minimum in the
370 		 * non-timestamp case, we do not smooth things out
371 		 * else with timestamps disabled convergence takes too
372 		 * long.
373 		 */
374 		if (!win_dep) {
375 			m -= (new_sample >> 3);
376 			new_sample += m;
377 		} else if (m < new_sample)
378 			new_sample = m << 3;
379 	} else {
380 		/* No previous measure. */
381 		new_sample = m << 3;
382 	}
383 
384 	if (tp->rcv_rtt_est.rtt != new_sample)
385 		tp->rcv_rtt_est.rtt = new_sample;
386 }
387 
388 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
389 {
390 	if (tp->rcv_rtt_est.time == 0)
391 		goto new_measure;
392 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
393 		return;
394 	tcp_rcv_rtt_update(tp,
395 			   jiffies - tp->rcv_rtt_est.time,
396 			   1);
397 
398 new_measure:
399 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
400 	tp->rcv_rtt_est.time = tcp_time_stamp;
401 }
402 
403 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
404 {
405 	struct tcp_sock *tp = tcp_sk(sk);
406 	if (tp->rx_opt.rcv_tsecr &&
407 	    (TCP_SKB_CB(skb)->end_seq -
408 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
409 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
410 }
411 
412 /*
413  * This function should be called every time data is copied to user space.
414  * It calculates the appropriate TCP receive buffer space.
415  */
416 void tcp_rcv_space_adjust(struct sock *sk)
417 {
418 	struct tcp_sock *tp = tcp_sk(sk);
419 	int time;
420 	int space;
421 
422 	if (tp->rcvq_space.time == 0)
423 		goto new_measure;
424 
425 	time = tcp_time_stamp - tp->rcvq_space.time;
426 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
427 	    tp->rcv_rtt_est.rtt == 0)
428 		return;
429 
430 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
431 
432 	space = max(tp->rcvq_space.space, space);
433 
434 	if (tp->rcvq_space.space != space) {
435 		int rcvmem;
436 
437 		tp->rcvq_space.space = space;
438 
439 		if (sysctl_tcp_moderate_rcvbuf) {
440 			int new_clamp = space;
441 
442 			/* Receive space grows, normalize in order to
443 			 * take into account packet headers and sk_buff
444 			 * structure overhead.
445 			 */
446 			space /= tp->advmss;
447 			if (!space)
448 				space = 1;
449 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
450 				  16 + sizeof(struct sk_buff));
451 			while (tcp_win_from_space(rcvmem) < tp->advmss)
452 				rcvmem += 128;
453 			space *= rcvmem;
454 			space = min(space, sysctl_tcp_rmem[2]);
455 			if (space > sk->sk_rcvbuf) {
456 				sk->sk_rcvbuf = space;
457 
458 				/* Make the window clamp follow along.  */
459 				tp->window_clamp = new_clamp;
460 			}
461 		}
462 	}
463 
464 new_measure:
465 	tp->rcvq_space.seq = tp->copied_seq;
466 	tp->rcvq_space.time = tcp_time_stamp;
467 }
468 
469 /* There is something which you must keep in mind when you analyze the
470  * behavior of the tp->ato delayed ack timeout interval.  When a
471  * connection starts up, we want to ack as quickly as possible.  The
472  * problem is that "good" TCP's do slow start at the beginning of data
473  * transmission.  The means that until we send the first few ACK's the
474  * sender will sit on his end and only queue most of his data, because
475  * he can only send snd_cwnd unacked packets at any given time.  For
476  * each ACK we send, he increments snd_cwnd and transmits more of his
477  * queue.  -DaveM
478  */
479 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
480 {
481 	struct inet_connection_sock *icsk = inet_csk(sk);
482 	u32 now;
483 
484 	inet_csk_schedule_ack(sk);
485 
486 	tcp_measure_rcv_mss(sk, skb);
487 
488 	tcp_rcv_rtt_measure(tp);
489 
490 	now = tcp_time_stamp;
491 
492 	if (!icsk->icsk_ack.ato) {
493 		/* The _first_ data packet received, initialize
494 		 * delayed ACK engine.
495 		 */
496 		tcp_incr_quickack(sk);
497 		icsk->icsk_ack.ato = TCP_ATO_MIN;
498 	} else {
499 		int m = now - icsk->icsk_ack.lrcvtime;
500 
501 		if (m <= TCP_ATO_MIN/2) {
502 			/* The fastest case is the first. */
503 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
504 		} else if (m < icsk->icsk_ack.ato) {
505 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
506 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
507 				icsk->icsk_ack.ato = icsk->icsk_rto;
508 		} else if (m > icsk->icsk_rto) {
509 			/* Too long gap. Apparently sender failed to
510 			 * restart window, so that we send ACKs quickly.
511 			 */
512 			tcp_incr_quickack(sk);
513 			sk_stream_mem_reclaim(sk);
514 		}
515 	}
516 	icsk->icsk_ack.lrcvtime = now;
517 
518 	TCP_ECN_check_ce(tp, skb);
519 
520 	if (skb->len >= 128)
521 		tcp_grow_window(sk, tp, skb);
522 }
523 
524 /* Called to compute a smoothed rtt estimate. The data fed to this
525  * routine either comes from timestamps, or from segments that were
526  * known _not_ to have been retransmitted [see Karn/Partridge
527  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
528  * piece by Van Jacobson.
529  * NOTE: the next three routines used to be one big routine.
530  * To save cycles in the RFC 1323 implementation it was better to break
531  * it up into three procedures. -- erics
532  */
533 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
534 {
535 	struct tcp_sock *tp = tcp_sk(sk);
536 	long m = mrtt; /* RTT */
537 
538 	/*	The following amusing code comes from Jacobson's
539 	 *	article in SIGCOMM '88.  Note that rtt and mdev
540 	 *	are scaled versions of rtt and mean deviation.
541 	 *	This is designed to be as fast as possible
542 	 *	m stands for "measurement".
543 	 *
544 	 *	On a 1990 paper the rto value is changed to:
545 	 *	RTO = rtt + 4 * mdev
546 	 *
547 	 * Funny. This algorithm seems to be very broken.
548 	 * These formulae increase RTO, when it should be decreased, increase
549 	 * too slowly, when it should be increased quickly, decrease too quickly
550 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
551 	 * does not matter how to _calculate_ it. Seems, it was trap
552 	 * that VJ failed to avoid. 8)
553 	 */
554 	if(m == 0)
555 		m = 1;
556 	if (tp->srtt != 0) {
557 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
558 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
559 		if (m < 0) {
560 			m = -m;		/* m is now abs(error) */
561 			m -= (tp->mdev >> 2);   /* similar update on mdev */
562 			/* This is similar to one of Eifel findings.
563 			 * Eifel blocks mdev updates when rtt decreases.
564 			 * This solution is a bit different: we use finer gain
565 			 * for mdev in this case (alpha*beta).
566 			 * Like Eifel it also prevents growth of rto,
567 			 * but also it limits too fast rto decreases,
568 			 * happening in pure Eifel.
569 			 */
570 			if (m > 0)
571 				m >>= 3;
572 		} else {
573 			m -= (tp->mdev >> 2);   /* similar update on mdev */
574 		}
575 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
576 		if (tp->mdev > tp->mdev_max) {
577 			tp->mdev_max = tp->mdev;
578 			if (tp->mdev_max > tp->rttvar)
579 				tp->rttvar = tp->mdev_max;
580 		}
581 		if (after(tp->snd_una, tp->rtt_seq)) {
582 			if (tp->mdev_max < tp->rttvar)
583 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
584 			tp->rtt_seq = tp->snd_nxt;
585 			tp->mdev_max = TCP_RTO_MIN;
586 		}
587 	} else {
588 		/* no previous measure. */
589 		tp->srtt = m<<3;	/* take the measured time to be rtt */
590 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
591 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
592 		tp->rtt_seq = tp->snd_nxt;
593 	}
594 }
595 
596 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
597  * routine referred to above.
598  */
599 static inline void tcp_set_rto(struct sock *sk)
600 {
601 	const struct tcp_sock *tp = tcp_sk(sk);
602 	/* Old crap is replaced with new one. 8)
603 	 *
604 	 * More seriously:
605 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
606 	 *    It cannot be less due to utterly erratic ACK generation made
607 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
608 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
609 	 *    is invisible. Actually, Linux-2.4 also generates erratic
610 	 *    ACKs in some circumstances.
611 	 */
612 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
613 
614 	/* 2. Fixups made earlier cannot be right.
615 	 *    If we do not estimate RTO correctly without them,
616 	 *    all the algo is pure shit and should be replaced
617 	 *    with correct one. It is exactly, which we pretend to do.
618 	 */
619 }
620 
621 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
622  * guarantees that rto is higher.
623  */
624 static inline void tcp_bound_rto(struct sock *sk)
625 {
626 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
627 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
628 }
629 
630 /* Save metrics learned by this TCP session.
631    This function is called only, when TCP finishes successfully
632    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
633  */
634 void tcp_update_metrics(struct sock *sk)
635 {
636 	struct tcp_sock *tp = tcp_sk(sk);
637 	struct dst_entry *dst = __sk_dst_get(sk);
638 
639 	if (sysctl_tcp_nometrics_save)
640 		return;
641 
642 	dst_confirm(dst);
643 
644 	if (dst && (dst->flags&DST_HOST)) {
645 		const struct inet_connection_sock *icsk = inet_csk(sk);
646 		int m;
647 
648 		if (icsk->icsk_backoff || !tp->srtt) {
649 			/* This session failed to estimate rtt. Why?
650 			 * Probably, no packets returned in time.
651 			 * Reset our results.
652 			 */
653 			if (!(dst_metric_locked(dst, RTAX_RTT)))
654 				dst->metrics[RTAX_RTT-1] = 0;
655 			return;
656 		}
657 
658 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
659 
660 		/* If newly calculated rtt larger than stored one,
661 		 * store new one. Otherwise, use EWMA. Remember,
662 		 * rtt overestimation is always better than underestimation.
663 		 */
664 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
665 			if (m <= 0)
666 				dst->metrics[RTAX_RTT-1] = tp->srtt;
667 			else
668 				dst->metrics[RTAX_RTT-1] -= (m>>3);
669 		}
670 
671 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
672 			if (m < 0)
673 				m = -m;
674 
675 			/* Scale deviation to rttvar fixed point */
676 			m >>= 1;
677 			if (m < tp->mdev)
678 				m = tp->mdev;
679 
680 			if (m >= dst_metric(dst, RTAX_RTTVAR))
681 				dst->metrics[RTAX_RTTVAR-1] = m;
682 			else
683 				dst->metrics[RTAX_RTTVAR-1] -=
684 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
685 		}
686 
687 		if (tp->snd_ssthresh >= 0xFFFF) {
688 			/* Slow start still did not finish. */
689 			if (dst_metric(dst, RTAX_SSTHRESH) &&
690 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
691 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
692 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
693 			if (!dst_metric_locked(dst, RTAX_CWND) &&
694 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
695 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
696 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
697 			   icsk->icsk_ca_state == TCP_CA_Open) {
698 			/* Cong. avoidance phase, cwnd is reliable. */
699 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
700 				dst->metrics[RTAX_SSTHRESH-1] =
701 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
702 			if (!dst_metric_locked(dst, RTAX_CWND))
703 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
704 		} else {
705 			/* Else slow start did not finish, cwnd is non-sense,
706 			   ssthresh may be also invalid.
707 			 */
708 			if (!dst_metric_locked(dst, RTAX_CWND))
709 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
710 			if (dst->metrics[RTAX_SSTHRESH-1] &&
711 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
712 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
713 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
714 		}
715 
716 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
717 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
718 			    tp->reordering != sysctl_tcp_reordering)
719 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
720 		}
721 	}
722 }
723 
724 /* Numbers are taken from RFC2414.  */
725 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
726 {
727 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
728 
729 	if (!cwnd) {
730 		if (tp->mss_cache > 1460)
731 			cwnd = 2;
732 		else
733 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
734 	}
735 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
736 }
737 
738 /* Initialize metrics on socket. */
739 
740 static void tcp_init_metrics(struct sock *sk)
741 {
742 	struct tcp_sock *tp = tcp_sk(sk);
743 	struct dst_entry *dst = __sk_dst_get(sk);
744 
745 	if (dst == NULL)
746 		goto reset;
747 
748 	dst_confirm(dst);
749 
750 	if (dst_metric_locked(dst, RTAX_CWND))
751 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
752 	if (dst_metric(dst, RTAX_SSTHRESH)) {
753 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
754 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
755 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
756 	}
757 	if (dst_metric(dst, RTAX_REORDERING) &&
758 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
759 		tp->rx_opt.sack_ok &= ~2;
760 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
761 	}
762 
763 	if (dst_metric(dst, RTAX_RTT) == 0)
764 		goto reset;
765 
766 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
767 		goto reset;
768 
769 	/* Initial rtt is determined from SYN,SYN-ACK.
770 	 * The segment is small and rtt may appear much
771 	 * less than real one. Use per-dst memory
772 	 * to make it more realistic.
773 	 *
774 	 * A bit of theory. RTT is time passed after "normal" sized packet
775 	 * is sent until it is ACKed. In normal circumstances sending small
776 	 * packets force peer to delay ACKs and calculation is correct too.
777 	 * The algorithm is adaptive and, provided we follow specs, it
778 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
779 	 * tricks sort of "quick acks" for time long enough to decrease RTT
780 	 * to low value, and then abruptly stops to do it and starts to delay
781 	 * ACKs, wait for troubles.
782 	 */
783 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
784 		tp->srtt = dst_metric(dst, RTAX_RTT);
785 		tp->rtt_seq = tp->snd_nxt;
786 	}
787 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
788 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
789 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
790 	}
791 	tcp_set_rto(sk);
792 	tcp_bound_rto(sk);
793 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
794 		goto reset;
795 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
796 	tp->snd_cwnd_stamp = tcp_time_stamp;
797 	return;
798 
799 reset:
800 	/* Play conservative. If timestamps are not
801 	 * supported, TCP will fail to recalculate correct
802 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
803 	 */
804 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
805 		tp->srtt = 0;
806 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
807 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
808 	}
809 }
810 
811 static void tcp_update_reordering(struct sock *sk, const int metric,
812 				  const int ts)
813 {
814 	struct tcp_sock *tp = tcp_sk(sk);
815 	if (metric > tp->reordering) {
816 		tp->reordering = min(TCP_MAX_REORDERING, metric);
817 
818 		/* This exciting event is worth to be remembered. 8) */
819 		if (ts)
820 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
821 		else if (IsReno(tp))
822 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
823 		else if (IsFack(tp))
824 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
825 		else
826 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
827 #if FASTRETRANS_DEBUG > 1
828 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
829 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
830 		       tp->reordering,
831 		       tp->fackets_out,
832 		       tp->sacked_out,
833 		       tp->undo_marker ? tp->undo_retrans : 0);
834 #endif
835 		/* Disable FACK yet. */
836 		tp->rx_opt.sack_ok &= ~2;
837 	}
838 }
839 
840 /* This procedure tags the retransmission queue when SACKs arrive.
841  *
842  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
843  * Packets in queue with these bits set are counted in variables
844  * sacked_out, retrans_out and lost_out, correspondingly.
845  *
846  * Valid combinations are:
847  * Tag  InFlight	Description
848  * 0	1		- orig segment is in flight.
849  * S	0		- nothing flies, orig reached receiver.
850  * L	0		- nothing flies, orig lost by net.
851  * R	2		- both orig and retransmit are in flight.
852  * L|R	1		- orig is lost, retransmit is in flight.
853  * S|R  1		- orig reached receiver, retrans is still in flight.
854  * (L|S|R is logically valid, it could occur when L|R is sacked,
855  *  but it is equivalent to plain S and code short-curcuits it to S.
856  *  L|S is logically invalid, it would mean -1 packet in flight 8))
857  *
858  * These 6 states form finite state machine, controlled by the following events:
859  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
860  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
861  * 3. Loss detection event of one of three flavors:
862  *	A. Scoreboard estimator decided the packet is lost.
863  *	   A'. Reno "three dupacks" marks head of queue lost.
864  *	   A''. Its FACK modfication, head until snd.fack is lost.
865  *	B. SACK arrives sacking data transmitted after never retransmitted
866  *	   hole was sent out.
867  *	C. SACK arrives sacking SND.NXT at the moment, when the
868  *	   segment was retransmitted.
869  * 4. D-SACK added new rule: D-SACK changes any tag to S.
870  *
871  * It is pleasant to note, that state diagram turns out to be commutative,
872  * so that we are allowed not to be bothered by order of our actions,
873  * when multiple events arrive simultaneously. (see the function below).
874  *
875  * Reordering detection.
876  * --------------------
877  * Reordering metric is maximal distance, which a packet can be displaced
878  * in packet stream. With SACKs we can estimate it:
879  *
880  * 1. SACK fills old hole and the corresponding segment was not
881  *    ever retransmitted -> reordering. Alas, we cannot use it
882  *    when segment was retransmitted.
883  * 2. The last flaw is solved with D-SACK. D-SACK arrives
884  *    for retransmitted and already SACKed segment -> reordering..
885  * Both of these heuristics are not used in Loss state, when we cannot
886  * account for retransmits accurately.
887  */
888 static int
889 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
890 {
891 	const struct inet_connection_sock *icsk = inet_csk(sk);
892 	struct tcp_sock *tp = tcp_sk(sk);
893 	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
894 	struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
895 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
896 	int reord = tp->packets_out;
897 	int prior_fackets;
898 	u32 lost_retrans = 0;
899 	int flag = 0;
900 	int dup_sack = 0;
901 	int i;
902 
903 	if (!tp->sacked_out)
904 		tp->fackets_out = 0;
905 	prior_fackets = tp->fackets_out;
906 
907 	/* SACK fastpath:
908 	 * if the only SACK change is the increase of the end_seq of
909 	 * the first block then only apply that SACK block
910 	 * and use retrans queue hinting otherwise slowpath */
911 	flag = 1;
912 	for (i = 0; i< num_sacks; i++) {
913 		__u32 start_seq = ntohl(sp[i].start_seq);
914 		__u32 end_seq =	 ntohl(sp[i].end_seq);
915 
916 		if (i == 0){
917 			if (tp->recv_sack_cache[i].start_seq != start_seq)
918 				flag = 0;
919 		} else {
920 			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
921 			    (tp->recv_sack_cache[i].end_seq != end_seq))
922 				flag = 0;
923 		}
924 		tp->recv_sack_cache[i].start_seq = start_seq;
925 		tp->recv_sack_cache[i].end_seq = end_seq;
926 
927 		/* Check for D-SACK. */
928 		if (i == 0) {
929 			u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
930 
931 			if (before(start_seq, ack)) {
932 				dup_sack = 1;
933 				tp->rx_opt.sack_ok |= 4;
934 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
935 			} else if (num_sacks > 1 &&
936 				   !after(end_seq, ntohl(sp[1].end_seq)) &&
937 				   !before(start_seq, ntohl(sp[1].start_seq))) {
938 				dup_sack = 1;
939 				tp->rx_opt.sack_ok |= 4;
940 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
941 			}
942 
943 			/* D-SACK for already forgotten data...
944 			 * Do dumb counting. */
945 			if (dup_sack &&
946 			    !after(end_seq, prior_snd_una) &&
947 			    after(end_seq, tp->undo_marker))
948 				tp->undo_retrans--;
949 
950 			/* Eliminate too old ACKs, but take into
951 			 * account more or less fresh ones, they can
952 			 * contain valid SACK info.
953 			 */
954 			if (before(ack, prior_snd_una - tp->max_window))
955 				return 0;
956 		}
957 	}
958 
959 	if (flag)
960 		num_sacks = 1;
961 	else {
962 		int j;
963 		tp->fastpath_skb_hint = NULL;
964 
965 		/* order SACK blocks to allow in order walk of the retrans queue */
966 		for (i = num_sacks-1; i > 0; i--) {
967 			for (j = 0; j < i; j++){
968 				if (after(ntohl(sp[j].start_seq),
969 					  ntohl(sp[j+1].start_seq))){
970 					sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq);
971 					sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq);
972 					sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq);
973 					sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq);
974 				}
975 
976 			}
977 		}
978 	}
979 
980 	/* clear flag as used for different purpose in following code */
981 	flag = 0;
982 
983 	for (i=0; i<num_sacks; i++, sp++) {
984 		struct sk_buff *skb;
985 		__u32 start_seq = ntohl(sp->start_seq);
986 		__u32 end_seq = ntohl(sp->end_seq);
987 		int fack_count;
988 
989 		/* Use SACK fastpath hint if valid */
990 		if (tp->fastpath_skb_hint) {
991 			skb = tp->fastpath_skb_hint;
992 			fack_count = tp->fastpath_cnt_hint;
993 		} else {
994 			skb = sk->sk_write_queue.next;
995 			fack_count = 0;
996 		}
997 
998 		/* Event "B" in the comment above. */
999 		if (after(end_seq, tp->high_seq))
1000 			flag |= FLAG_DATA_LOST;
1001 
1002 		sk_stream_for_retrans_queue_from(skb, sk) {
1003 			int in_sack, pcount;
1004 			u8 sacked;
1005 
1006 			tp->fastpath_skb_hint = skb;
1007 			tp->fastpath_cnt_hint = fack_count;
1008 
1009 			/* The retransmission queue is always in order, so
1010 			 * we can short-circuit the walk early.
1011 			 */
1012 			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1013 				break;
1014 
1015 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1016 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1017 
1018 			pcount = tcp_skb_pcount(skb);
1019 
1020 			if (pcount > 1 && !in_sack &&
1021 			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1022 				unsigned int pkt_len;
1023 
1024 				in_sack = !after(start_seq,
1025 						 TCP_SKB_CB(skb)->seq);
1026 
1027 				if (!in_sack)
1028 					pkt_len = (start_seq -
1029 						   TCP_SKB_CB(skb)->seq);
1030 				else
1031 					pkt_len = (end_seq -
1032 						   TCP_SKB_CB(skb)->seq);
1033 				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size))
1034 					break;
1035 				pcount = tcp_skb_pcount(skb);
1036 			}
1037 
1038 			fack_count += pcount;
1039 
1040 			sacked = TCP_SKB_CB(skb)->sacked;
1041 
1042 			/* Account D-SACK for retransmitted packet. */
1043 			if ((dup_sack && in_sack) &&
1044 			    (sacked & TCPCB_RETRANS) &&
1045 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1046 				tp->undo_retrans--;
1047 
1048 			/* The frame is ACKed. */
1049 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1050 				if (sacked&TCPCB_RETRANS) {
1051 					if ((dup_sack && in_sack) &&
1052 					    (sacked&TCPCB_SACKED_ACKED))
1053 						reord = min(fack_count, reord);
1054 				} else {
1055 					/* If it was in a hole, we detected reordering. */
1056 					if (fack_count < prior_fackets &&
1057 					    !(sacked&TCPCB_SACKED_ACKED))
1058 						reord = min(fack_count, reord);
1059 				}
1060 
1061 				/* Nothing to do; acked frame is about to be dropped. */
1062 				continue;
1063 			}
1064 
1065 			if ((sacked&TCPCB_SACKED_RETRANS) &&
1066 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1067 			    (!lost_retrans || after(end_seq, lost_retrans)))
1068 				lost_retrans = end_seq;
1069 
1070 			if (!in_sack)
1071 				continue;
1072 
1073 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1074 				if (sacked & TCPCB_SACKED_RETRANS) {
1075 					/* If the segment is not tagged as lost,
1076 					 * we do not clear RETRANS, believing
1077 					 * that retransmission is still in flight.
1078 					 */
1079 					if (sacked & TCPCB_LOST) {
1080 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1081 						tp->lost_out -= tcp_skb_pcount(skb);
1082 						tp->retrans_out -= tcp_skb_pcount(skb);
1083 
1084 						/* clear lost hint */
1085 						tp->retransmit_skb_hint = NULL;
1086 					}
1087 				} else {
1088 					/* New sack for not retransmitted frame,
1089 					 * which was in hole. It is reordering.
1090 					 */
1091 					if (!(sacked & TCPCB_RETRANS) &&
1092 					    fack_count < prior_fackets)
1093 						reord = min(fack_count, reord);
1094 
1095 					if (sacked & TCPCB_LOST) {
1096 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1097 						tp->lost_out -= tcp_skb_pcount(skb);
1098 
1099 						/* clear lost hint */
1100 						tp->retransmit_skb_hint = NULL;
1101 					}
1102 				}
1103 
1104 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1105 				flag |= FLAG_DATA_SACKED;
1106 				tp->sacked_out += tcp_skb_pcount(skb);
1107 
1108 				if (fack_count > tp->fackets_out)
1109 					tp->fackets_out = fack_count;
1110 			} else {
1111 				if (dup_sack && (sacked&TCPCB_RETRANS))
1112 					reord = min(fack_count, reord);
1113 			}
1114 
1115 			/* D-SACK. We can detect redundant retransmission
1116 			 * in S|R and plain R frames and clear it.
1117 			 * undo_retrans is decreased above, L|R frames
1118 			 * are accounted above as well.
1119 			 */
1120 			if (dup_sack &&
1121 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1122 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1123 				tp->retrans_out -= tcp_skb_pcount(skb);
1124 				tp->retransmit_skb_hint = NULL;
1125 			}
1126 		}
1127 	}
1128 
1129 	/* Check for lost retransmit. This superb idea is
1130 	 * borrowed from "ratehalving". Event "C".
1131 	 * Later note: FACK people cheated me again 8),
1132 	 * we have to account for reordering! Ugly,
1133 	 * but should help.
1134 	 */
1135 	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1136 		struct sk_buff *skb;
1137 
1138 		sk_stream_for_retrans_queue(skb, sk) {
1139 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1140 				break;
1141 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1142 				continue;
1143 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1144 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1145 			    (IsFack(tp) ||
1146 			     !before(lost_retrans,
1147 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1148 				     tp->mss_cache))) {
1149 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1150 				tp->retrans_out -= tcp_skb_pcount(skb);
1151 
1152 				/* clear lost hint */
1153 				tp->retransmit_skb_hint = NULL;
1154 
1155 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1156 					tp->lost_out += tcp_skb_pcount(skb);
1157 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1158 					flag |= FLAG_DATA_SACKED;
1159 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1160 				}
1161 			}
1162 		}
1163 	}
1164 
1165 	tp->left_out = tp->sacked_out + tp->lost_out;
1166 
1167 	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1168 		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1169 
1170 #if FASTRETRANS_DEBUG > 0
1171 	BUG_TRAP((int)tp->sacked_out >= 0);
1172 	BUG_TRAP((int)tp->lost_out >= 0);
1173 	BUG_TRAP((int)tp->retrans_out >= 0);
1174 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1175 #endif
1176 	return flag;
1177 }
1178 
1179 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1180  * segments to see from the next ACKs whether any data was really missing.
1181  * If the RTO was spurious, new ACKs should arrive.
1182  */
1183 void tcp_enter_frto(struct sock *sk)
1184 {
1185 	const struct inet_connection_sock *icsk = inet_csk(sk);
1186 	struct tcp_sock *tp = tcp_sk(sk);
1187 	struct sk_buff *skb;
1188 
1189 	tp->frto_counter = 1;
1190 
1191 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1192             tp->snd_una == tp->high_seq ||
1193             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1194 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1195 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1196 		tcp_ca_event(sk, CA_EVENT_FRTO);
1197 	}
1198 
1199 	/* Have to clear retransmission markers here to keep the bookkeeping
1200 	 * in shape, even though we are not yet in Loss state.
1201 	 * If something was really lost, it is eventually caught up
1202 	 * in tcp_enter_frto_loss.
1203 	 */
1204 	tp->retrans_out = 0;
1205 	tp->undo_marker = tp->snd_una;
1206 	tp->undo_retrans = 0;
1207 
1208 	sk_stream_for_retrans_queue(skb, sk) {
1209 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1210 	}
1211 	tcp_sync_left_out(tp);
1212 
1213 	tcp_set_ca_state(sk, TCP_CA_Open);
1214 	tp->frto_highmark = tp->snd_nxt;
1215 }
1216 
1217 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1218  * which indicates that we should follow the traditional RTO recovery,
1219  * i.e. mark everything lost and do go-back-N retransmission.
1220  */
1221 static void tcp_enter_frto_loss(struct sock *sk)
1222 {
1223 	struct tcp_sock *tp = tcp_sk(sk);
1224 	struct sk_buff *skb;
1225 	int cnt = 0;
1226 
1227 	tp->sacked_out = 0;
1228 	tp->lost_out = 0;
1229 	tp->fackets_out = 0;
1230 
1231 	sk_stream_for_retrans_queue(skb, sk) {
1232 		cnt += tcp_skb_pcount(skb);
1233 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1234 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1235 
1236 			/* Do not mark those segments lost that were
1237 			 * forward transmitted after RTO
1238 			 */
1239 			if (!after(TCP_SKB_CB(skb)->end_seq,
1240 				   tp->frto_highmark)) {
1241 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1242 				tp->lost_out += tcp_skb_pcount(skb);
1243 			}
1244 		} else {
1245 			tp->sacked_out += tcp_skb_pcount(skb);
1246 			tp->fackets_out = cnt;
1247 		}
1248 	}
1249 	tcp_sync_left_out(tp);
1250 
1251 	tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1252 	tp->snd_cwnd_cnt = 0;
1253 	tp->snd_cwnd_stamp = tcp_time_stamp;
1254 	tp->undo_marker = 0;
1255 	tp->frto_counter = 0;
1256 
1257 	tp->reordering = min_t(unsigned int, tp->reordering,
1258 					     sysctl_tcp_reordering);
1259 	tcp_set_ca_state(sk, TCP_CA_Loss);
1260 	tp->high_seq = tp->frto_highmark;
1261 	TCP_ECN_queue_cwr(tp);
1262 
1263 	clear_all_retrans_hints(tp);
1264 }
1265 
1266 void tcp_clear_retrans(struct tcp_sock *tp)
1267 {
1268 	tp->left_out = 0;
1269 	tp->retrans_out = 0;
1270 
1271 	tp->fackets_out = 0;
1272 	tp->sacked_out = 0;
1273 	tp->lost_out = 0;
1274 
1275 	tp->undo_marker = 0;
1276 	tp->undo_retrans = 0;
1277 }
1278 
1279 /* Enter Loss state. If "how" is not zero, forget all SACK information
1280  * and reset tags completely, otherwise preserve SACKs. If receiver
1281  * dropped its ofo queue, we will know this due to reneging detection.
1282  */
1283 void tcp_enter_loss(struct sock *sk, int how)
1284 {
1285 	const struct inet_connection_sock *icsk = inet_csk(sk);
1286 	struct tcp_sock *tp = tcp_sk(sk);
1287 	struct sk_buff *skb;
1288 	int cnt = 0;
1289 
1290 	/* Reduce ssthresh if it has not yet been made inside this window. */
1291 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1292 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1293 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1294 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1295 		tcp_ca_event(sk, CA_EVENT_LOSS);
1296 	}
1297 	tp->snd_cwnd	   = 1;
1298 	tp->snd_cwnd_cnt   = 0;
1299 	tp->snd_cwnd_stamp = tcp_time_stamp;
1300 
1301 	tp->bytes_acked = 0;
1302 	tcp_clear_retrans(tp);
1303 
1304 	/* Push undo marker, if it was plain RTO and nothing
1305 	 * was retransmitted. */
1306 	if (!how)
1307 		tp->undo_marker = tp->snd_una;
1308 
1309 	sk_stream_for_retrans_queue(skb, sk) {
1310 		cnt += tcp_skb_pcount(skb);
1311 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1312 			tp->undo_marker = 0;
1313 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1314 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1315 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1316 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1317 			tp->lost_out += tcp_skb_pcount(skb);
1318 		} else {
1319 			tp->sacked_out += tcp_skb_pcount(skb);
1320 			tp->fackets_out = cnt;
1321 		}
1322 	}
1323 	tcp_sync_left_out(tp);
1324 
1325 	tp->reordering = min_t(unsigned int, tp->reordering,
1326 					     sysctl_tcp_reordering);
1327 	tcp_set_ca_state(sk, TCP_CA_Loss);
1328 	tp->high_seq = tp->snd_nxt;
1329 	TCP_ECN_queue_cwr(tp);
1330 
1331 	clear_all_retrans_hints(tp);
1332 }
1333 
1334 static int tcp_check_sack_reneging(struct sock *sk)
1335 {
1336 	struct sk_buff *skb;
1337 
1338 	/* If ACK arrived pointing to a remembered SACK,
1339 	 * it means that our remembered SACKs do not reflect
1340 	 * real state of receiver i.e.
1341 	 * receiver _host_ is heavily congested (or buggy).
1342 	 * Do processing similar to RTO timeout.
1343 	 */
1344 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1345 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1346 		struct inet_connection_sock *icsk = inet_csk(sk);
1347 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1348 
1349 		tcp_enter_loss(sk, 1);
1350 		icsk->icsk_retransmits++;
1351 		tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1352 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1353 					  icsk->icsk_rto, TCP_RTO_MAX);
1354 		return 1;
1355 	}
1356 	return 0;
1357 }
1358 
1359 static inline int tcp_fackets_out(struct tcp_sock *tp)
1360 {
1361 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1362 }
1363 
1364 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1365 {
1366 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1367 }
1368 
1369 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1370 {
1371 	return tp->packets_out &&
1372 	       tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1373 }
1374 
1375 /* Linux NewReno/SACK/FACK/ECN state machine.
1376  * --------------------------------------
1377  *
1378  * "Open"	Normal state, no dubious events, fast path.
1379  * "Disorder"   In all the respects it is "Open",
1380  *		but requires a bit more attention. It is entered when
1381  *		we see some SACKs or dupacks. It is split of "Open"
1382  *		mainly to move some processing from fast path to slow one.
1383  * "CWR"	CWND was reduced due to some Congestion Notification event.
1384  *		It can be ECN, ICMP source quench, local device congestion.
1385  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1386  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1387  *
1388  * tcp_fastretrans_alert() is entered:
1389  * - each incoming ACK, if state is not "Open"
1390  * - when arrived ACK is unusual, namely:
1391  *	* SACK
1392  *	* Duplicate ACK.
1393  *	* ECN ECE.
1394  *
1395  * Counting packets in flight is pretty simple.
1396  *
1397  *	in_flight = packets_out - left_out + retrans_out
1398  *
1399  *	packets_out is SND.NXT-SND.UNA counted in packets.
1400  *
1401  *	retrans_out is number of retransmitted segments.
1402  *
1403  *	left_out is number of segments left network, but not ACKed yet.
1404  *
1405  *		left_out = sacked_out + lost_out
1406  *
1407  *     sacked_out: Packets, which arrived to receiver out of order
1408  *		   and hence not ACKed. With SACKs this number is simply
1409  *		   amount of SACKed data. Even without SACKs
1410  *		   it is easy to give pretty reliable estimate of this number,
1411  *		   counting duplicate ACKs.
1412  *
1413  *       lost_out: Packets lost by network. TCP has no explicit
1414  *		   "loss notification" feedback from network (for now).
1415  *		   It means that this number can be only _guessed_.
1416  *		   Actually, it is the heuristics to predict lossage that
1417  *		   distinguishes different algorithms.
1418  *
1419  *	F.e. after RTO, when all the queue is considered as lost,
1420  *	lost_out = packets_out and in_flight = retrans_out.
1421  *
1422  *		Essentially, we have now two algorithms counting
1423  *		lost packets.
1424  *
1425  *		FACK: It is the simplest heuristics. As soon as we decided
1426  *		that something is lost, we decide that _all_ not SACKed
1427  *		packets until the most forward SACK are lost. I.e.
1428  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1429  *		It is absolutely correct estimate, if network does not reorder
1430  *		packets. And it loses any connection to reality when reordering
1431  *		takes place. We use FACK by default until reordering
1432  *		is suspected on the path to this destination.
1433  *
1434  *		NewReno: when Recovery is entered, we assume that one segment
1435  *		is lost (classic Reno). While we are in Recovery and
1436  *		a partial ACK arrives, we assume that one more packet
1437  *		is lost (NewReno). This heuristics are the same in NewReno
1438  *		and SACK.
1439  *
1440  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1441  *  deflation etc. CWND is real congestion window, never inflated, changes
1442  *  only according to classic VJ rules.
1443  *
1444  * Really tricky (and requiring careful tuning) part of algorithm
1445  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1446  * The first determines the moment _when_ we should reduce CWND and,
1447  * hence, slow down forward transmission. In fact, it determines the moment
1448  * when we decide that hole is caused by loss, rather than by a reorder.
1449  *
1450  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1451  * holes, caused by lost packets.
1452  *
1453  * And the most logically complicated part of algorithm is undo
1454  * heuristics. We detect false retransmits due to both too early
1455  * fast retransmit (reordering) and underestimated RTO, analyzing
1456  * timestamps and D-SACKs. When we detect that some segments were
1457  * retransmitted by mistake and CWND reduction was wrong, we undo
1458  * window reduction and abort recovery phase. This logic is hidden
1459  * inside several functions named tcp_try_undo_<something>.
1460  */
1461 
1462 /* This function decides, when we should leave Disordered state
1463  * and enter Recovery phase, reducing congestion window.
1464  *
1465  * Main question: may we further continue forward transmission
1466  * with the same cwnd?
1467  */
1468 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1469 {
1470 	__u32 packets_out;
1471 
1472 	/* Trick#1: The loss is proven. */
1473 	if (tp->lost_out)
1474 		return 1;
1475 
1476 	/* Not-A-Trick#2 : Classic rule... */
1477 	if (tcp_fackets_out(tp) > tp->reordering)
1478 		return 1;
1479 
1480 	/* Trick#3 : when we use RFC2988 timer restart, fast
1481 	 * retransmit can be triggered by timeout of queue head.
1482 	 */
1483 	if (tcp_head_timedout(sk, tp))
1484 		return 1;
1485 
1486 	/* Trick#4: It is still not OK... But will it be useful to delay
1487 	 * recovery more?
1488 	 */
1489 	packets_out = tp->packets_out;
1490 	if (packets_out <= tp->reordering &&
1491 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1492 	    !tcp_may_send_now(sk, tp)) {
1493 		/* We have nothing to send. This connection is limited
1494 		 * either by receiver window or by application.
1495 		 */
1496 		return 1;
1497 	}
1498 
1499 	return 0;
1500 }
1501 
1502 /* If we receive more dupacks than we expected counting segments
1503  * in assumption of absent reordering, interpret this as reordering.
1504  * The only another reason could be bug in receiver TCP.
1505  */
1506 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1507 {
1508 	struct tcp_sock *tp = tcp_sk(sk);
1509 	u32 holes;
1510 
1511 	holes = max(tp->lost_out, 1U);
1512 	holes = min(holes, tp->packets_out);
1513 
1514 	if ((tp->sacked_out + holes) > tp->packets_out) {
1515 		tp->sacked_out = tp->packets_out - holes;
1516 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1517 	}
1518 }
1519 
1520 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1521 
1522 static void tcp_add_reno_sack(struct sock *sk)
1523 {
1524 	struct tcp_sock *tp = tcp_sk(sk);
1525 	tp->sacked_out++;
1526 	tcp_check_reno_reordering(sk, 0);
1527 	tcp_sync_left_out(tp);
1528 }
1529 
1530 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1531 
1532 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1533 {
1534 	if (acked > 0) {
1535 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1536 		if (acked-1 >= tp->sacked_out)
1537 			tp->sacked_out = 0;
1538 		else
1539 			tp->sacked_out -= acked-1;
1540 	}
1541 	tcp_check_reno_reordering(sk, acked);
1542 	tcp_sync_left_out(tp);
1543 }
1544 
1545 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1546 {
1547 	tp->sacked_out = 0;
1548 	tp->left_out = tp->lost_out;
1549 }
1550 
1551 /* Mark head of queue up as lost. */
1552 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1553 			       int packets, u32 high_seq)
1554 {
1555 	struct sk_buff *skb;
1556 	int cnt;
1557 
1558 	BUG_TRAP(packets <= tp->packets_out);
1559 	if (tp->lost_skb_hint) {
1560 		skb = tp->lost_skb_hint;
1561 		cnt = tp->lost_cnt_hint;
1562 	} else {
1563 		skb = sk->sk_write_queue.next;
1564 		cnt = 0;
1565 	}
1566 
1567 	sk_stream_for_retrans_queue_from(skb, sk) {
1568 		/* TODO: do this better */
1569 		/* this is not the most efficient way to do this... */
1570 		tp->lost_skb_hint = skb;
1571 		tp->lost_cnt_hint = cnt;
1572 		cnt += tcp_skb_pcount(skb);
1573 		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1574 			break;
1575 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1576 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1577 			tp->lost_out += tcp_skb_pcount(skb);
1578 
1579 			/* clear xmit_retransmit_queue hints
1580 			 *  if this is beyond hint */
1581 			if(tp->retransmit_skb_hint != NULL &&
1582 			   before(TCP_SKB_CB(skb)->seq,
1583 				  TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1584 
1585 				tp->retransmit_skb_hint = NULL;
1586 			}
1587 		}
1588 	}
1589 	tcp_sync_left_out(tp);
1590 }
1591 
1592 /* Account newly detected lost packet(s) */
1593 
1594 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1595 {
1596 	if (IsFack(tp)) {
1597 		int lost = tp->fackets_out - tp->reordering;
1598 		if (lost <= 0)
1599 			lost = 1;
1600 		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1601 	} else {
1602 		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1603 	}
1604 
1605 	/* New heuristics: it is possible only after we switched
1606 	 * to restart timer each time when something is ACKed.
1607 	 * Hence, we can detect timed out packets during fast
1608 	 * retransmit without falling to slow start.
1609 	 */
1610 	if (tcp_head_timedout(sk, tp)) {
1611 		struct sk_buff *skb;
1612 
1613 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1614 			: sk->sk_write_queue.next;
1615 
1616 		sk_stream_for_retrans_queue_from(skb, sk) {
1617 			if (!tcp_skb_timedout(sk, skb))
1618 				break;
1619 
1620 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1621 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1622 				tp->lost_out += tcp_skb_pcount(skb);
1623 
1624 				/* clear xmit_retrans hint */
1625 				if (tp->retransmit_skb_hint &&
1626 				    before(TCP_SKB_CB(skb)->seq,
1627 					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1628 
1629 					tp->retransmit_skb_hint = NULL;
1630 			}
1631 		}
1632 
1633 		tp->scoreboard_skb_hint = skb;
1634 
1635 		tcp_sync_left_out(tp);
1636 	}
1637 }
1638 
1639 /* CWND moderation, preventing bursts due to too big ACKs
1640  * in dubious situations.
1641  */
1642 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1643 {
1644 	tp->snd_cwnd = min(tp->snd_cwnd,
1645 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1646 	tp->snd_cwnd_stamp = tcp_time_stamp;
1647 }
1648 
1649 /* Decrease cwnd each second ack. */
1650 static void tcp_cwnd_down(struct sock *sk)
1651 {
1652 	const struct inet_connection_sock *icsk = inet_csk(sk);
1653 	struct tcp_sock *tp = tcp_sk(sk);
1654 	int decr = tp->snd_cwnd_cnt + 1;
1655 
1656 	tp->snd_cwnd_cnt = decr&1;
1657 	decr >>= 1;
1658 
1659 	if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk))
1660 		tp->snd_cwnd -= decr;
1661 
1662 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1663 	tp->snd_cwnd_stamp = tcp_time_stamp;
1664 }
1665 
1666 /* Nothing was retransmitted or returned timestamp is less
1667  * than timestamp of the first retransmission.
1668  */
1669 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1670 {
1671 	return !tp->retrans_stamp ||
1672 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1673 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1674 }
1675 
1676 /* Undo procedures. */
1677 
1678 #if FASTRETRANS_DEBUG > 1
1679 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1680 {
1681 	struct inet_sock *inet = inet_sk(sk);
1682 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1683 	       msg,
1684 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1685 	       tp->snd_cwnd, tp->left_out,
1686 	       tp->snd_ssthresh, tp->prior_ssthresh,
1687 	       tp->packets_out);
1688 }
1689 #else
1690 #define DBGUNDO(x...) do { } while (0)
1691 #endif
1692 
1693 static void tcp_undo_cwr(struct sock *sk, const int undo)
1694 {
1695 	struct tcp_sock *tp = tcp_sk(sk);
1696 
1697 	if (tp->prior_ssthresh) {
1698 		const struct inet_connection_sock *icsk = inet_csk(sk);
1699 
1700 		if (icsk->icsk_ca_ops->undo_cwnd)
1701 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1702 		else
1703 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1704 
1705 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1706 			tp->snd_ssthresh = tp->prior_ssthresh;
1707 			TCP_ECN_withdraw_cwr(tp);
1708 		}
1709 	} else {
1710 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1711 	}
1712 	tcp_moderate_cwnd(tp);
1713 	tp->snd_cwnd_stamp = tcp_time_stamp;
1714 
1715 	/* There is something screwy going on with the retrans hints after
1716 	   an undo */
1717 	clear_all_retrans_hints(tp);
1718 }
1719 
1720 static inline int tcp_may_undo(struct tcp_sock *tp)
1721 {
1722 	return tp->undo_marker &&
1723 		(!tp->undo_retrans || tcp_packet_delayed(tp));
1724 }
1725 
1726 /* People celebrate: "We love our President!" */
1727 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1728 {
1729 	if (tcp_may_undo(tp)) {
1730 		/* Happy end! We did not retransmit anything
1731 		 * or our original transmission succeeded.
1732 		 */
1733 		DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1734 		tcp_undo_cwr(sk, 1);
1735 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1736 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1737 		else
1738 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1739 		tp->undo_marker = 0;
1740 	}
1741 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1742 		/* Hold old state until something *above* high_seq
1743 		 * is ACKed. For Reno it is MUST to prevent false
1744 		 * fast retransmits (RFC2582). SACK TCP is safe. */
1745 		tcp_moderate_cwnd(tp);
1746 		return 1;
1747 	}
1748 	tcp_set_ca_state(sk, TCP_CA_Open);
1749 	return 0;
1750 }
1751 
1752 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1753 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1754 {
1755 	if (tp->undo_marker && !tp->undo_retrans) {
1756 		DBGUNDO(sk, tp, "D-SACK");
1757 		tcp_undo_cwr(sk, 1);
1758 		tp->undo_marker = 0;
1759 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1760 	}
1761 }
1762 
1763 /* Undo during fast recovery after partial ACK. */
1764 
1765 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1766 				int acked)
1767 {
1768 	/* Partial ACK arrived. Force Hoe's retransmit. */
1769 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1770 
1771 	if (tcp_may_undo(tp)) {
1772 		/* Plain luck! Hole if filled with delayed
1773 		 * packet, rather than with a retransmit.
1774 		 */
1775 		if (tp->retrans_out == 0)
1776 			tp->retrans_stamp = 0;
1777 
1778 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1779 
1780 		DBGUNDO(sk, tp, "Hoe");
1781 		tcp_undo_cwr(sk, 0);
1782 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1783 
1784 		/* So... Do not make Hoe's retransmit yet.
1785 		 * If the first packet was delayed, the rest
1786 		 * ones are most probably delayed as well.
1787 		 */
1788 		failed = 0;
1789 	}
1790 	return failed;
1791 }
1792 
1793 /* Undo during loss recovery after partial ACK. */
1794 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1795 {
1796 	if (tcp_may_undo(tp)) {
1797 		struct sk_buff *skb;
1798 		sk_stream_for_retrans_queue(skb, sk) {
1799 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1800 		}
1801 
1802 		clear_all_retrans_hints(tp);
1803 
1804 		DBGUNDO(sk, tp, "partial loss");
1805 		tp->lost_out = 0;
1806 		tp->left_out = tp->sacked_out;
1807 		tcp_undo_cwr(sk, 1);
1808 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1809 		inet_csk(sk)->icsk_retransmits = 0;
1810 		tp->undo_marker = 0;
1811 		if (!IsReno(tp))
1812 			tcp_set_ca_state(sk, TCP_CA_Open);
1813 		return 1;
1814 	}
1815 	return 0;
1816 }
1817 
1818 static inline void tcp_complete_cwr(struct sock *sk)
1819 {
1820 	struct tcp_sock *tp = tcp_sk(sk);
1821 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1822 	tp->snd_cwnd_stamp = tcp_time_stamp;
1823 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1824 }
1825 
1826 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1827 {
1828 	tp->left_out = tp->sacked_out;
1829 
1830 	if (tp->retrans_out == 0)
1831 		tp->retrans_stamp = 0;
1832 
1833 	if (flag&FLAG_ECE)
1834 		tcp_enter_cwr(sk);
1835 
1836 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1837 		int state = TCP_CA_Open;
1838 
1839 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
1840 			state = TCP_CA_Disorder;
1841 
1842 		if (inet_csk(sk)->icsk_ca_state != state) {
1843 			tcp_set_ca_state(sk, state);
1844 			tp->high_seq = tp->snd_nxt;
1845 		}
1846 		tcp_moderate_cwnd(tp);
1847 	} else {
1848 		tcp_cwnd_down(sk);
1849 	}
1850 }
1851 
1852 /* Process an event, which can update packets-in-flight not trivially.
1853  * Main goal of this function is to calculate new estimate for left_out,
1854  * taking into account both packets sitting in receiver's buffer and
1855  * packets lost by network.
1856  *
1857  * Besides that it does CWND reduction, when packet loss is detected
1858  * and changes state of machine.
1859  *
1860  * It does _not_ decide what to send, it is made in function
1861  * tcp_xmit_retransmit_queue().
1862  */
1863 static void
1864 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1865 		      int prior_packets, int flag)
1866 {
1867 	struct inet_connection_sock *icsk = inet_csk(sk);
1868 	struct tcp_sock *tp = tcp_sk(sk);
1869 	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1870 
1871 	/* Some technical things:
1872 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
1873 	if (!tp->packets_out)
1874 		tp->sacked_out = 0;
1875         /* 2. SACK counts snd_fack in packets inaccurately. */
1876 	if (tp->sacked_out == 0)
1877 		tp->fackets_out = 0;
1878 
1879         /* Now state machine starts.
1880 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1881 	if (flag&FLAG_ECE)
1882 		tp->prior_ssthresh = 0;
1883 
1884 	/* B. In all the states check for reneging SACKs. */
1885 	if (tp->sacked_out && tcp_check_sack_reneging(sk))
1886 		return;
1887 
1888 	/* C. Process data loss notification, provided it is valid. */
1889 	if ((flag&FLAG_DATA_LOST) &&
1890 	    before(tp->snd_una, tp->high_seq) &&
1891 	    icsk->icsk_ca_state != TCP_CA_Open &&
1892 	    tp->fackets_out > tp->reordering) {
1893 		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1894 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1895 	}
1896 
1897 	/* D. Synchronize left_out to current state. */
1898 	tcp_sync_left_out(tp);
1899 
1900 	/* E. Check state exit conditions. State can be terminated
1901 	 *    when high_seq is ACKed. */
1902 	if (icsk->icsk_ca_state == TCP_CA_Open) {
1903 		if (!sysctl_tcp_frto)
1904 			BUG_TRAP(tp->retrans_out == 0);
1905 		tp->retrans_stamp = 0;
1906 	} else if (!before(tp->snd_una, tp->high_seq)) {
1907 		switch (icsk->icsk_ca_state) {
1908 		case TCP_CA_Loss:
1909 			icsk->icsk_retransmits = 0;
1910 			if (tcp_try_undo_recovery(sk, tp))
1911 				return;
1912 			break;
1913 
1914 		case TCP_CA_CWR:
1915 			/* CWR is to be held something *above* high_seq
1916 			 * is ACKed for CWR bit to reach receiver. */
1917 			if (tp->snd_una != tp->high_seq) {
1918 				tcp_complete_cwr(sk);
1919 				tcp_set_ca_state(sk, TCP_CA_Open);
1920 			}
1921 			break;
1922 
1923 		case TCP_CA_Disorder:
1924 			tcp_try_undo_dsack(sk, tp);
1925 			if (!tp->undo_marker ||
1926 			    /* For SACK case do not Open to allow to undo
1927 			     * catching for all duplicate ACKs. */
1928 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
1929 				tp->undo_marker = 0;
1930 				tcp_set_ca_state(sk, TCP_CA_Open);
1931 			}
1932 			break;
1933 
1934 		case TCP_CA_Recovery:
1935 			if (IsReno(tp))
1936 				tcp_reset_reno_sack(tp);
1937 			if (tcp_try_undo_recovery(sk, tp))
1938 				return;
1939 			tcp_complete_cwr(sk);
1940 			break;
1941 		}
1942 	}
1943 
1944 	/* F. Process state. */
1945 	switch (icsk->icsk_ca_state) {
1946 	case TCP_CA_Recovery:
1947 		if (prior_snd_una == tp->snd_una) {
1948 			if (IsReno(tp) && is_dupack)
1949 				tcp_add_reno_sack(sk);
1950 		} else {
1951 			int acked = prior_packets - tp->packets_out;
1952 			if (IsReno(tp))
1953 				tcp_remove_reno_sacks(sk, tp, acked);
1954 			is_dupack = tcp_try_undo_partial(sk, tp, acked);
1955 		}
1956 		break;
1957 	case TCP_CA_Loss:
1958 		if (flag&FLAG_DATA_ACKED)
1959 			icsk->icsk_retransmits = 0;
1960 		if (!tcp_try_undo_loss(sk, tp)) {
1961 			tcp_moderate_cwnd(tp);
1962 			tcp_xmit_retransmit_queue(sk);
1963 			return;
1964 		}
1965 		if (icsk->icsk_ca_state != TCP_CA_Open)
1966 			return;
1967 		/* Loss is undone; fall through to processing in Open state. */
1968 	default:
1969 		if (IsReno(tp)) {
1970 			if (tp->snd_una != prior_snd_una)
1971 				tcp_reset_reno_sack(tp);
1972 			if (is_dupack)
1973 				tcp_add_reno_sack(sk);
1974 		}
1975 
1976 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
1977 			tcp_try_undo_dsack(sk, tp);
1978 
1979 		if (!tcp_time_to_recover(sk, tp)) {
1980 			tcp_try_to_open(sk, tp, flag);
1981 			return;
1982 		}
1983 
1984 		/* Otherwise enter Recovery state */
1985 
1986 		if (IsReno(tp))
1987 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
1988 		else
1989 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
1990 
1991 		tp->high_seq = tp->snd_nxt;
1992 		tp->prior_ssthresh = 0;
1993 		tp->undo_marker = tp->snd_una;
1994 		tp->undo_retrans = tp->retrans_out;
1995 
1996 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
1997 			if (!(flag&FLAG_ECE))
1998 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
1999 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2000 			TCP_ECN_queue_cwr(tp);
2001 		}
2002 
2003 		tp->bytes_acked = 0;
2004 		tp->snd_cwnd_cnt = 0;
2005 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2006 	}
2007 
2008 	if (is_dupack || tcp_head_timedout(sk, tp))
2009 		tcp_update_scoreboard(sk, tp);
2010 	tcp_cwnd_down(sk);
2011 	tcp_xmit_retransmit_queue(sk);
2012 }
2013 
2014 /* Read draft-ietf-tcplw-high-performance before mucking
2015  * with this code. (Supersedes RFC1323)
2016  */
2017 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2018 {
2019 	/* RTTM Rule: A TSecr value received in a segment is used to
2020 	 * update the averaged RTT measurement only if the segment
2021 	 * acknowledges some new data, i.e., only if it advances the
2022 	 * left edge of the send window.
2023 	 *
2024 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2025 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2026 	 *
2027 	 * Changed: reset backoff as soon as we see the first valid sample.
2028 	 * If we do not, we get strongly overestimated rto. With timestamps
2029 	 * samples are accepted even from very old segments: f.e., when rtt=1
2030 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2031 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2032 	 * in window is lost... Voila.	 			--ANK (010210)
2033 	 */
2034 	struct tcp_sock *tp = tcp_sk(sk);
2035 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2036 	tcp_rtt_estimator(sk, seq_rtt);
2037 	tcp_set_rto(sk);
2038 	inet_csk(sk)->icsk_backoff = 0;
2039 	tcp_bound_rto(sk);
2040 }
2041 
2042 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2043 {
2044 	/* We don't have a timestamp. Can only use
2045 	 * packets that are not retransmitted to determine
2046 	 * rtt estimates. Also, we must not reset the
2047 	 * backoff for rto until we get a non-retransmitted
2048 	 * packet. This allows us to deal with a situation
2049 	 * where the network delay has increased suddenly.
2050 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2051 	 */
2052 
2053 	if (flag & FLAG_RETRANS_DATA_ACKED)
2054 		return;
2055 
2056 	tcp_rtt_estimator(sk, seq_rtt);
2057 	tcp_set_rto(sk);
2058 	inet_csk(sk)->icsk_backoff = 0;
2059 	tcp_bound_rto(sk);
2060 }
2061 
2062 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2063 				      const s32 seq_rtt)
2064 {
2065 	const struct tcp_sock *tp = tcp_sk(sk);
2066 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2067 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2068 		tcp_ack_saw_tstamp(sk, flag);
2069 	else if (seq_rtt >= 0)
2070 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2071 }
2072 
2073 static inline void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2074 				  u32 in_flight, int good)
2075 {
2076 	const struct inet_connection_sock *icsk = inet_csk(sk);
2077 	icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2078 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2079 }
2080 
2081 /* Restart timer after forward progress on connection.
2082  * RFC2988 recommends to restart timer to now+rto.
2083  */
2084 
2085 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2086 {
2087 	if (!tp->packets_out) {
2088 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2089 	} else {
2090 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2091 	}
2092 }
2093 
2094 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2095 			 __u32 now, __s32 *seq_rtt)
2096 {
2097 	struct tcp_sock *tp = tcp_sk(sk);
2098 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2099 	__u32 seq = tp->snd_una;
2100 	__u32 packets_acked;
2101 	int acked = 0;
2102 
2103 	/* If we get here, the whole TSO packet has not been
2104 	 * acked.
2105 	 */
2106 	BUG_ON(!after(scb->end_seq, seq));
2107 
2108 	packets_acked = tcp_skb_pcount(skb);
2109 	if (tcp_trim_head(sk, skb, seq - scb->seq))
2110 		return 0;
2111 	packets_acked -= tcp_skb_pcount(skb);
2112 
2113 	if (packets_acked) {
2114 		__u8 sacked = scb->sacked;
2115 
2116 		acked |= FLAG_DATA_ACKED;
2117 		if (sacked) {
2118 			if (sacked & TCPCB_RETRANS) {
2119 				if (sacked & TCPCB_SACKED_RETRANS)
2120 					tp->retrans_out -= packets_acked;
2121 				acked |= FLAG_RETRANS_DATA_ACKED;
2122 				*seq_rtt = -1;
2123 			} else if (*seq_rtt < 0)
2124 				*seq_rtt = now - scb->when;
2125 			if (sacked & TCPCB_SACKED_ACKED)
2126 				tp->sacked_out -= packets_acked;
2127 			if (sacked & TCPCB_LOST)
2128 				tp->lost_out -= packets_acked;
2129 			if (sacked & TCPCB_URG) {
2130 				if (tp->urg_mode &&
2131 				    !before(seq, tp->snd_up))
2132 					tp->urg_mode = 0;
2133 			}
2134 		} else if (*seq_rtt < 0)
2135 			*seq_rtt = now - scb->when;
2136 
2137 		if (tp->fackets_out) {
2138 			__u32 dval = min(tp->fackets_out, packets_acked);
2139 			tp->fackets_out -= dval;
2140 		}
2141 		tp->packets_out -= packets_acked;
2142 
2143 		BUG_ON(tcp_skb_pcount(skb) == 0);
2144 		BUG_ON(!before(scb->seq, scb->end_seq));
2145 	}
2146 
2147 	return acked;
2148 }
2149 
2150 static inline u32 tcp_usrtt(const struct sk_buff *skb)
2151 {
2152 	struct timeval tv, now;
2153 
2154 	do_gettimeofday(&now);
2155 	skb_get_timestamp(skb, &tv);
2156 	return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec);
2157 }
2158 
2159 /* Remove acknowledged frames from the retransmission queue. */
2160 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2161 {
2162 	struct tcp_sock *tp = tcp_sk(sk);
2163 	const struct inet_connection_sock *icsk = inet_csk(sk);
2164 	struct sk_buff *skb;
2165 	__u32 now = tcp_time_stamp;
2166 	int acked = 0;
2167 	__s32 seq_rtt = -1;
2168 	u32 pkts_acked = 0;
2169 	void (*rtt_sample)(struct sock *sk, u32 usrtt)
2170 		= icsk->icsk_ca_ops->rtt_sample;
2171 
2172 	while ((skb = skb_peek(&sk->sk_write_queue)) &&
2173 	       skb != sk->sk_send_head) {
2174 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2175 		__u8 sacked = scb->sacked;
2176 
2177 		/* If our packet is before the ack sequence we can
2178 		 * discard it as it's confirmed to have arrived at
2179 		 * the other end.
2180 		 */
2181 		if (after(scb->end_seq, tp->snd_una)) {
2182 			if (tcp_skb_pcount(skb) > 1 &&
2183 			    after(tp->snd_una, scb->seq))
2184 				acked |= tcp_tso_acked(sk, skb,
2185 						       now, &seq_rtt);
2186 			break;
2187 		}
2188 
2189 		/* Initial outgoing SYN's get put onto the write_queue
2190 		 * just like anything else we transmit.  It is not
2191 		 * true data, and if we misinform our callers that
2192 		 * this ACK acks real data, we will erroneously exit
2193 		 * connection startup slow start one packet too
2194 		 * quickly.  This is severely frowned upon behavior.
2195 		 */
2196 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2197 			acked |= FLAG_DATA_ACKED;
2198 			++pkts_acked;
2199 		} else {
2200 			acked |= FLAG_SYN_ACKED;
2201 			tp->retrans_stamp = 0;
2202 		}
2203 
2204 		if (sacked) {
2205 			if (sacked & TCPCB_RETRANS) {
2206 				if(sacked & TCPCB_SACKED_RETRANS)
2207 					tp->retrans_out -= tcp_skb_pcount(skb);
2208 				acked |= FLAG_RETRANS_DATA_ACKED;
2209 				seq_rtt = -1;
2210 			} else if (seq_rtt < 0) {
2211 				seq_rtt = now - scb->when;
2212 				if (rtt_sample)
2213 					(*rtt_sample)(sk, tcp_usrtt(skb));
2214 			}
2215 			if (sacked & TCPCB_SACKED_ACKED)
2216 				tp->sacked_out -= tcp_skb_pcount(skb);
2217 			if (sacked & TCPCB_LOST)
2218 				tp->lost_out -= tcp_skb_pcount(skb);
2219 			if (sacked & TCPCB_URG) {
2220 				if (tp->urg_mode &&
2221 				    !before(scb->end_seq, tp->snd_up))
2222 					tp->urg_mode = 0;
2223 			}
2224 		} else if (seq_rtt < 0) {
2225 			seq_rtt = now - scb->when;
2226 			if (rtt_sample)
2227 				(*rtt_sample)(sk, tcp_usrtt(skb));
2228 		}
2229 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2230 		tcp_packets_out_dec(tp, skb);
2231 		__skb_unlink(skb, &sk->sk_write_queue);
2232 		sk_stream_free_skb(sk, skb);
2233 		clear_all_retrans_hints(tp);
2234 	}
2235 
2236 	if (acked&FLAG_ACKED) {
2237 		tcp_ack_update_rtt(sk, acked, seq_rtt);
2238 		tcp_ack_packets_out(sk, tp);
2239 
2240 		if (icsk->icsk_ca_ops->pkts_acked)
2241 			icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2242 	}
2243 
2244 #if FASTRETRANS_DEBUG > 0
2245 	BUG_TRAP((int)tp->sacked_out >= 0);
2246 	BUG_TRAP((int)tp->lost_out >= 0);
2247 	BUG_TRAP((int)tp->retrans_out >= 0);
2248 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2249 		const struct inet_connection_sock *icsk = inet_csk(sk);
2250 		if (tp->lost_out) {
2251 			printk(KERN_DEBUG "Leak l=%u %d\n",
2252 			       tp->lost_out, icsk->icsk_ca_state);
2253 			tp->lost_out = 0;
2254 		}
2255 		if (tp->sacked_out) {
2256 			printk(KERN_DEBUG "Leak s=%u %d\n",
2257 			       tp->sacked_out, icsk->icsk_ca_state);
2258 			tp->sacked_out = 0;
2259 		}
2260 		if (tp->retrans_out) {
2261 			printk(KERN_DEBUG "Leak r=%u %d\n",
2262 			       tp->retrans_out, icsk->icsk_ca_state);
2263 			tp->retrans_out = 0;
2264 		}
2265 	}
2266 #endif
2267 	*seq_rtt_p = seq_rtt;
2268 	return acked;
2269 }
2270 
2271 static void tcp_ack_probe(struct sock *sk)
2272 {
2273 	const struct tcp_sock *tp = tcp_sk(sk);
2274 	struct inet_connection_sock *icsk = inet_csk(sk);
2275 
2276 	/* Was it a usable window open? */
2277 
2278 	if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2279 		   tp->snd_una + tp->snd_wnd)) {
2280 		icsk->icsk_backoff = 0;
2281 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2282 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2283 		 * This function is not for random using!
2284 		 */
2285 	} else {
2286 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2287 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2288 					  TCP_RTO_MAX);
2289 	}
2290 }
2291 
2292 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2293 {
2294 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2295 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2296 }
2297 
2298 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2299 {
2300 	const struct tcp_sock *tp = tcp_sk(sk);
2301 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2302 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2303 }
2304 
2305 /* Check that window update is acceptable.
2306  * The function assumes that snd_una<=ack<=snd_next.
2307  */
2308 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2309 					const u32 ack_seq, const u32 nwin)
2310 {
2311 	return (after(ack, tp->snd_una) ||
2312 		after(ack_seq, tp->snd_wl1) ||
2313 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2314 }
2315 
2316 /* Update our send window.
2317  *
2318  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2319  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2320  */
2321 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2322 				 struct sk_buff *skb, u32 ack, u32 ack_seq)
2323 {
2324 	int flag = 0;
2325 	u32 nwin = ntohs(skb->h.th->window);
2326 
2327 	if (likely(!skb->h.th->syn))
2328 		nwin <<= tp->rx_opt.snd_wscale;
2329 
2330 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2331 		flag |= FLAG_WIN_UPDATE;
2332 		tcp_update_wl(tp, ack, ack_seq);
2333 
2334 		if (tp->snd_wnd != nwin) {
2335 			tp->snd_wnd = nwin;
2336 
2337 			/* Note, it is the only place, where
2338 			 * fast path is recovered for sending TCP.
2339 			 */
2340 			tp->pred_flags = 0;
2341 			tcp_fast_path_check(sk, tp);
2342 
2343 			if (nwin > tp->max_window) {
2344 				tp->max_window = nwin;
2345 				tcp_sync_mss(sk, tp->pmtu_cookie);
2346 			}
2347 		}
2348 	}
2349 
2350 	tp->snd_una = ack;
2351 
2352 	return flag;
2353 }
2354 
2355 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2356 {
2357 	struct tcp_sock *tp = tcp_sk(sk);
2358 
2359 	tcp_sync_left_out(tp);
2360 
2361 	if (tp->snd_una == prior_snd_una ||
2362 	    !before(tp->snd_una, tp->frto_highmark)) {
2363 		/* RTO was caused by loss, start retransmitting in
2364 		 * go-back-N slow start
2365 		 */
2366 		tcp_enter_frto_loss(sk);
2367 		return;
2368 	}
2369 
2370 	if (tp->frto_counter == 1) {
2371 		/* First ACK after RTO advances the window: allow two new
2372 		 * segments out.
2373 		 */
2374 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2375 	} else {
2376 		/* Also the second ACK after RTO advances the window.
2377 		 * The RTO was likely spurious. Reduce cwnd and continue
2378 		 * in congestion avoidance
2379 		 */
2380 		tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2381 		tcp_moderate_cwnd(tp);
2382 	}
2383 
2384 	/* F-RTO affects on two new ACKs following RTO.
2385 	 * At latest on third ACK the TCP behavior is back to normal.
2386 	 */
2387 	tp->frto_counter = (tp->frto_counter + 1) % 3;
2388 }
2389 
2390 /* This routine deals with incoming acks, but not outgoing ones. */
2391 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2392 {
2393 	struct inet_connection_sock *icsk = inet_csk(sk);
2394 	struct tcp_sock *tp = tcp_sk(sk);
2395 	u32 prior_snd_una = tp->snd_una;
2396 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2397 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2398 	u32 prior_in_flight;
2399 	s32 seq_rtt;
2400 	int prior_packets;
2401 
2402 	/* If the ack is newer than sent or older than previous acks
2403 	 * then we can probably ignore it.
2404 	 */
2405 	if (after(ack, tp->snd_nxt))
2406 		goto uninteresting_ack;
2407 
2408 	if (before(ack, prior_snd_una))
2409 		goto old_ack;
2410 
2411 	if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR)
2412 		tp->bytes_acked += ack - prior_snd_una;
2413 
2414 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2415 		/* Window is constant, pure forward advance.
2416 		 * No more checks are required.
2417 		 * Note, we use the fact that SND.UNA>=SND.WL2.
2418 		 */
2419 		tcp_update_wl(tp, ack, ack_seq);
2420 		tp->snd_una = ack;
2421 		flag |= FLAG_WIN_UPDATE;
2422 
2423 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2424 
2425 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2426 	} else {
2427 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2428 			flag |= FLAG_DATA;
2429 		else
2430 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2431 
2432 		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2433 
2434 		if (TCP_SKB_CB(skb)->sacked)
2435 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2436 
2437 		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2438 			flag |= FLAG_ECE;
2439 
2440 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2441 	}
2442 
2443 	/* We passed data and got it acked, remove any soft error
2444 	 * log. Something worked...
2445 	 */
2446 	sk->sk_err_soft = 0;
2447 	tp->rcv_tstamp = tcp_time_stamp;
2448 	prior_packets = tp->packets_out;
2449 	if (!prior_packets)
2450 		goto no_queue;
2451 
2452 	prior_in_flight = tcp_packets_in_flight(tp);
2453 
2454 	/* See if we can take anything off of the retransmit queue. */
2455 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2456 
2457 	if (tp->frto_counter)
2458 		tcp_process_frto(sk, prior_snd_una);
2459 
2460 	if (tcp_ack_is_dubious(sk, flag)) {
2461 		/* Advance CWND, if state allows this. */
2462 		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2463 			tcp_cong_avoid(sk, ack,  seq_rtt, prior_in_flight, 0);
2464 		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2465 	} else {
2466 		if ((flag & FLAG_DATA_ACKED))
2467 			tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2468 	}
2469 
2470 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2471 		dst_confirm(sk->sk_dst_cache);
2472 
2473 	return 1;
2474 
2475 no_queue:
2476 	icsk->icsk_probes_out = 0;
2477 
2478 	/* If this ack opens up a zero window, clear backoff.  It was
2479 	 * being used to time the probes, and is probably far higher than
2480 	 * it needs to be for normal retransmission.
2481 	 */
2482 	if (sk->sk_send_head)
2483 		tcp_ack_probe(sk);
2484 	return 1;
2485 
2486 old_ack:
2487 	if (TCP_SKB_CB(skb)->sacked)
2488 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2489 
2490 uninteresting_ack:
2491 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2492 	return 0;
2493 }
2494 
2495 
2496 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2497  * But, this can also be called on packets in the established flow when
2498  * the fast version below fails.
2499  */
2500 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2501 {
2502 	unsigned char *ptr;
2503 	struct tcphdr *th = skb->h.th;
2504 	int length=(th->doff*4)-sizeof(struct tcphdr);
2505 
2506 	ptr = (unsigned char *)(th + 1);
2507 	opt_rx->saw_tstamp = 0;
2508 
2509 	while(length>0) {
2510 	  	int opcode=*ptr++;
2511 		int opsize;
2512 
2513 		switch (opcode) {
2514 			case TCPOPT_EOL:
2515 				return;
2516 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2517 				length--;
2518 				continue;
2519 			default:
2520 				opsize=*ptr++;
2521 				if (opsize < 2) /* "silly options" */
2522 					return;
2523 				if (opsize > length)
2524 					return;	/* don't parse partial options */
2525 	  			switch(opcode) {
2526 				case TCPOPT_MSS:
2527 					if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2528 						u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2529 						if (in_mss) {
2530 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2531 								in_mss = opt_rx->user_mss;
2532 							opt_rx->mss_clamp = in_mss;
2533 						}
2534 					}
2535 					break;
2536 				case TCPOPT_WINDOW:
2537 					if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2538 						if (sysctl_tcp_window_scaling) {
2539 							__u8 snd_wscale = *(__u8 *) ptr;
2540 							opt_rx->wscale_ok = 1;
2541 							if (snd_wscale > 14) {
2542 								if(net_ratelimit())
2543 									printk(KERN_INFO "tcp_parse_options: Illegal window "
2544 									       "scaling value %d >14 received.\n",
2545 									       snd_wscale);
2546 								snd_wscale = 14;
2547 							}
2548 							opt_rx->snd_wscale = snd_wscale;
2549 						}
2550 					break;
2551 				case TCPOPT_TIMESTAMP:
2552 					if(opsize==TCPOLEN_TIMESTAMP) {
2553 						if ((estab && opt_rx->tstamp_ok) ||
2554 						    (!estab && sysctl_tcp_timestamps)) {
2555 							opt_rx->saw_tstamp = 1;
2556 							opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2557 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2558 						}
2559 					}
2560 					break;
2561 				case TCPOPT_SACK_PERM:
2562 					if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2563 						if (sysctl_tcp_sack) {
2564 							opt_rx->sack_ok = 1;
2565 							tcp_sack_reset(opt_rx);
2566 						}
2567 					}
2568 					break;
2569 
2570 				case TCPOPT_SACK:
2571 					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2572 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2573 					   opt_rx->sack_ok) {
2574 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2575 					}
2576 	  			};
2577 	  			ptr+=opsize-2;
2578 	  			length-=opsize;
2579 	  	};
2580 	}
2581 }
2582 
2583 /* Fast parse options. This hopes to only see timestamps.
2584  * If it is wrong it falls back on tcp_parse_options().
2585  */
2586 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2587 					 struct tcp_sock *tp)
2588 {
2589 	if (th->doff == sizeof(struct tcphdr)>>2) {
2590 		tp->rx_opt.saw_tstamp = 0;
2591 		return 0;
2592 	} else if (tp->rx_opt.tstamp_ok &&
2593 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2594 		__u32 *ptr = (__u32 *)(th + 1);
2595 		if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2596 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2597 			tp->rx_opt.saw_tstamp = 1;
2598 			++ptr;
2599 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2600 			++ptr;
2601 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2602 			return 1;
2603 		}
2604 	}
2605 	tcp_parse_options(skb, &tp->rx_opt, 1);
2606 	return 1;
2607 }
2608 
2609 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2610 {
2611 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2612 	tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2613 }
2614 
2615 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2616 {
2617 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2618 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2619 		 * extra check below makes sure this can only happen
2620 		 * for pure ACK frames.  -DaveM
2621 		 *
2622 		 * Not only, also it occurs for expired timestamps.
2623 		 */
2624 
2625 		if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2626 		   xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2627 			tcp_store_ts_recent(tp);
2628 	}
2629 }
2630 
2631 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2632  *
2633  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2634  * it can pass through stack. So, the following predicate verifies that
2635  * this segment is not used for anything but congestion avoidance or
2636  * fast retransmit. Moreover, we even are able to eliminate most of such
2637  * second order effects, if we apply some small "replay" window (~RTO)
2638  * to timestamp space.
2639  *
2640  * All these measures still do not guarantee that we reject wrapped ACKs
2641  * on networks with high bandwidth, when sequence space is recycled fastly,
2642  * but it guarantees that such events will be very rare and do not affect
2643  * connection seriously. This doesn't look nice, but alas, PAWS is really
2644  * buggy extension.
2645  *
2646  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2647  * states that events when retransmit arrives after original data are rare.
2648  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2649  * the biggest problem on large power networks even with minor reordering.
2650  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2651  * up to bandwidth of 18Gigabit/sec. 8) ]
2652  */
2653 
2654 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2655 {
2656 	struct tcp_sock *tp = tcp_sk(sk);
2657 	struct tcphdr *th = skb->h.th;
2658 	u32 seq = TCP_SKB_CB(skb)->seq;
2659 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2660 
2661 	return (/* 1. Pure ACK with correct sequence number. */
2662 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2663 
2664 		/* 2. ... and duplicate ACK. */
2665 		ack == tp->snd_una &&
2666 
2667 		/* 3. ... and does not update window. */
2668 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2669 
2670 		/* 4. ... and sits in replay window. */
2671 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2672 }
2673 
2674 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2675 {
2676 	const struct tcp_sock *tp = tcp_sk(sk);
2677 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2678 		xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2679 		!tcp_disordered_ack(sk, skb));
2680 }
2681 
2682 /* Check segment sequence number for validity.
2683  *
2684  * Segment controls are considered valid, if the segment
2685  * fits to the window after truncation to the window. Acceptability
2686  * of data (and SYN, FIN, of course) is checked separately.
2687  * See tcp_data_queue(), for example.
2688  *
2689  * Also, controls (RST is main one) are accepted using RCV.WUP instead
2690  * of RCV.NXT. Peer still did not advance his SND.UNA when we
2691  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2692  * (borrowed from freebsd)
2693  */
2694 
2695 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2696 {
2697 	return	!before(end_seq, tp->rcv_wup) &&
2698 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2699 }
2700 
2701 /* When we get a reset we do this. */
2702 static void tcp_reset(struct sock *sk)
2703 {
2704 	/* We want the right error as BSD sees it (and indeed as we do). */
2705 	switch (sk->sk_state) {
2706 		case TCP_SYN_SENT:
2707 			sk->sk_err = ECONNREFUSED;
2708 			break;
2709 		case TCP_CLOSE_WAIT:
2710 			sk->sk_err = EPIPE;
2711 			break;
2712 		case TCP_CLOSE:
2713 			return;
2714 		default:
2715 			sk->sk_err = ECONNRESET;
2716 	}
2717 
2718 	if (!sock_flag(sk, SOCK_DEAD))
2719 		sk->sk_error_report(sk);
2720 
2721 	tcp_done(sk);
2722 }
2723 
2724 /*
2725  * 	Process the FIN bit. This now behaves as it is supposed to work
2726  *	and the FIN takes effect when it is validly part of sequence
2727  *	space. Not before when we get holes.
2728  *
2729  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2730  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
2731  *	TIME-WAIT)
2732  *
2733  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
2734  *	close and we go into CLOSING (and later onto TIME-WAIT)
2735  *
2736  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2737  */
2738 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2739 {
2740 	struct tcp_sock *tp = tcp_sk(sk);
2741 
2742 	inet_csk_schedule_ack(sk);
2743 
2744 	sk->sk_shutdown |= RCV_SHUTDOWN;
2745 	sock_set_flag(sk, SOCK_DONE);
2746 
2747 	switch (sk->sk_state) {
2748 		case TCP_SYN_RECV:
2749 		case TCP_ESTABLISHED:
2750 			/* Move to CLOSE_WAIT */
2751 			tcp_set_state(sk, TCP_CLOSE_WAIT);
2752 			inet_csk(sk)->icsk_ack.pingpong = 1;
2753 			break;
2754 
2755 		case TCP_CLOSE_WAIT:
2756 		case TCP_CLOSING:
2757 			/* Received a retransmission of the FIN, do
2758 			 * nothing.
2759 			 */
2760 			break;
2761 		case TCP_LAST_ACK:
2762 			/* RFC793: Remain in the LAST-ACK state. */
2763 			break;
2764 
2765 		case TCP_FIN_WAIT1:
2766 			/* This case occurs when a simultaneous close
2767 			 * happens, we must ack the received FIN and
2768 			 * enter the CLOSING state.
2769 			 */
2770 			tcp_send_ack(sk);
2771 			tcp_set_state(sk, TCP_CLOSING);
2772 			break;
2773 		case TCP_FIN_WAIT2:
2774 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
2775 			tcp_send_ack(sk);
2776 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2777 			break;
2778 		default:
2779 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
2780 			 * cases we should never reach this piece of code.
2781 			 */
2782 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2783 			       __FUNCTION__, sk->sk_state);
2784 			break;
2785 	};
2786 
2787 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
2788 	 * Probably, we should reset in this case. For now drop them.
2789 	 */
2790 	__skb_queue_purge(&tp->out_of_order_queue);
2791 	if (tp->rx_opt.sack_ok)
2792 		tcp_sack_reset(&tp->rx_opt);
2793 	sk_stream_mem_reclaim(sk);
2794 
2795 	if (!sock_flag(sk, SOCK_DEAD)) {
2796 		sk->sk_state_change(sk);
2797 
2798 		/* Do not send POLL_HUP for half duplex close. */
2799 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
2800 		    sk->sk_state == TCP_CLOSE)
2801 			sk_wake_async(sk, 1, POLL_HUP);
2802 		else
2803 			sk_wake_async(sk, 1, POLL_IN);
2804 	}
2805 }
2806 
2807 static __inline__ int
2808 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2809 {
2810 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2811 		if (before(seq, sp->start_seq))
2812 			sp->start_seq = seq;
2813 		if (after(end_seq, sp->end_seq))
2814 			sp->end_seq = end_seq;
2815 		return 1;
2816 	}
2817 	return 0;
2818 }
2819 
2820 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2821 {
2822 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2823 		if (before(seq, tp->rcv_nxt))
2824 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2825 		else
2826 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2827 
2828 		tp->rx_opt.dsack = 1;
2829 		tp->duplicate_sack[0].start_seq = seq;
2830 		tp->duplicate_sack[0].end_seq = end_seq;
2831 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2832 	}
2833 }
2834 
2835 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2836 {
2837 	if (!tp->rx_opt.dsack)
2838 		tcp_dsack_set(tp, seq, end_seq);
2839 	else
2840 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2841 }
2842 
2843 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2844 {
2845 	struct tcp_sock *tp = tcp_sk(sk);
2846 
2847 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2848 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2849 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2850 		tcp_enter_quickack_mode(sk);
2851 
2852 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2853 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2854 
2855 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2856 				end_seq = tp->rcv_nxt;
2857 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2858 		}
2859 	}
2860 
2861 	tcp_send_ack(sk);
2862 }
2863 
2864 /* These routines update the SACK block as out-of-order packets arrive or
2865  * in-order packets close up the sequence space.
2866  */
2867 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2868 {
2869 	int this_sack;
2870 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2871 	struct tcp_sack_block *swalk = sp+1;
2872 
2873 	/* See if the recent change to the first SACK eats into
2874 	 * or hits the sequence space of other SACK blocks, if so coalesce.
2875 	 */
2876 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2877 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2878 			int i;
2879 
2880 			/* Zap SWALK, by moving every further SACK up by one slot.
2881 			 * Decrease num_sacks.
2882 			 */
2883 			tp->rx_opt.num_sacks--;
2884 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2885 			for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2886 				sp[i] = sp[i+1];
2887 			continue;
2888 		}
2889 		this_sack++, swalk++;
2890 	}
2891 }
2892 
2893 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2894 {
2895 	__u32 tmp;
2896 
2897 	tmp = sack1->start_seq;
2898 	sack1->start_seq = sack2->start_seq;
2899 	sack2->start_seq = tmp;
2900 
2901 	tmp = sack1->end_seq;
2902 	sack1->end_seq = sack2->end_seq;
2903 	sack2->end_seq = tmp;
2904 }
2905 
2906 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2907 {
2908 	struct tcp_sock *tp = tcp_sk(sk);
2909 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2910 	int cur_sacks = tp->rx_opt.num_sacks;
2911 	int this_sack;
2912 
2913 	if (!cur_sacks)
2914 		goto new_sack;
2915 
2916 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2917 		if (tcp_sack_extend(sp, seq, end_seq)) {
2918 			/* Rotate this_sack to the first one. */
2919 			for (; this_sack>0; this_sack--, sp--)
2920 				tcp_sack_swap(sp, sp-1);
2921 			if (cur_sacks > 1)
2922 				tcp_sack_maybe_coalesce(tp);
2923 			return;
2924 		}
2925 	}
2926 
2927 	/* Could not find an adjacent existing SACK, build a new one,
2928 	 * put it at the front, and shift everyone else down.  We
2929 	 * always know there is at least one SACK present already here.
2930 	 *
2931 	 * If the sack array is full, forget about the last one.
2932 	 */
2933 	if (this_sack >= 4) {
2934 		this_sack--;
2935 		tp->rx_opt.num_sacks--;
2936 		sp--;
2937 	}
2938 	for(; this_sack > 0; this_sack--, sp--)
2939 		*sp = *(sp-1);
2940 
2941 new_sack:
2942 	/* Build the new head SACK, and we're done. */
2943 	sp->start_seq = seq;
2944 	sp->end_seq = end_seq;
2945 	tp->rx_opt.num_sacks++;
2946 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2947 }
2948 
2949 /* RCV.NXT advances, some SACKs should be eaten. */
2950 
2951 static void tcp_sack_remove(struct tcp_sock *tp)
2952 {
2953 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2954 	int num_sacks = tp->rx_opt.num_sacks;
2955 	int this_sack;
2956 
2957 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2958 	if (skb_queue_empty(&tp->out_of_order_queue)) {
2959 		tp->rx_opt.num_sacks = 0;
2960 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
2961 		return;
2962 	}
2963 
2964 	for(this_sack = 0; this_sack < num_sacks; ) {
2965 		/* Check if the start of the sack is covered by RCV.NXT. */
2966 		if (!before(tp->rcv_nxt, sp->start_seq)) {
2967 			int i;
2968 
2969 			/* RCV.NXT must cover all the block! */
2970 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
2971 
2972 			/* Zap this SACK, by moving forward any other SACKS. */
2973 			for (i=this_sack+1; i < num_sacks; i++)
2974 				tp->selective_acks[i-1] = tp->selective_acks[i];
2975 			num_sacks--;
2976 			continue;
2977 		}
2978 		this_sack++;
2979 		sp++;
2980 	}
2981 	if (num_sacks != tp->rx_opt.num_sacks) {
2982 		tp->rx_opt.num_sacks = num_sacks;
2983 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2984 	}
2985 }
2986 
2987 /* This one checks to see if we can put data from the
2988  * out_of_order queue into the receive_queue.
2989  */
2990 static void tcp_ofo_queue(struct sock *sk)
2991 {
2992 	struct tcp_sock *tp = tcp_sk(sk);
2993 	__u32 dsack_high = tp->rcv_nxt;
2994 	struct sk_buff *skb;
2995 
2996 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
2997 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
2998 			break;
2999 
3000 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3001 			__u32 dsack = dsack_high;
3002 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3003 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3004 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3005 		}
3006 
3007 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3008 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3009 			__skb_unlink(skb, &tp->out_of_order_queue);
3010 			__kfree_skb(skb);
3011 			continue;
3012 		}
3013 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3014 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3015 			   TCP_SKB_CB(skb)->end_seq);
3016 
3017 		__skb_unlink(skb, &tp->out_of_order_queue);
3018 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3019 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3020 		if(skb->h.th->fin)
3021 			tcp_fin(skb, sk, skb->h.th);
3022 	}
3023 }
3024 
3025 static int tcp_prune_queue(struct sock *sk);
3026 
3027 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3028 {
3029 	struct tcphdr *th = skb->h.th;
3030 	struct tcp_sock *tp = tcp_sk(sk);
3031 	int eaten = -1;
3032 
3033 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3034 		goto drop;
3035 
3036 	__skb_pull(skb, th->doff*4);
3037 
3038 	TCP_ECN_accept_cwr(tp, skb);
3039 
3040 	if (tp->rx_opt.dsack) {
3041 		tp->rx_opt.dsack = 0;
3042 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3043 						    4 - tp->rx_opt.tstamp_ok);
3044 	}
3045 
3046 	/*  Queue data for delivery to the user.
3047 	 *  Packets in sequence go to the receive queue.
3048 	 *  Out of sequence packets to the out_of_order_queue.
3049 	 */
3050 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3051 		if (tcp_receive_window(tp) == 0)
3052 			goto out_of_window;
3053 
3054 		/* Ok. In sequence. In window. */
3055 		if (tp->ucopy.task == current &&
3056 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3057 		    sock_owned_by_user(sk) && !tp->urg_data) {
3058 			int chunk = min_t(unsigned int, skb->len,
3059 							tp->ucopy.len);
3060 
3061 			__set_current_state(TASK_RUNNING);
3062 
3063 			local_bh_enable();
3064 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3065 				tp->ucopy.len -= chunk;
3066 				tp->copied_seq += chunk;
3067 				eaten = (chunk == skb->len && !th->fin);
3068 				tcp_rcv_space_adjust(sk);
3069 			}
3070 			local_bh_disable();
3071 		}
3072 
3073 		if (eaten <= 0) {
3074 queue_and_out:
3075 			if (eaten < 0 &&
3076 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3077 			     !sk_stream_rmem_schedule(sk, skb))) {
3078 				if (tcp_prune_queue(sk) < 0 ||
3079 				    !sk_stream_rmem_schedule(sk, skb))
3080 					goto drop;
3081 			}
3082 			sk_stream_set_owner_r(skb, sk);
3083 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3084 		}
3085 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3086 		if(skb->len)
3087 			tcp_event_data_recv(sk, tp, skb);
3088 		if(th->fin)
3089 			tcp_fin(skb, sk, th);
3090 
3091 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3092 			tcp_ofo_queue(sk);
3093 
3094 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3095 			 * gap in queue is filled.
3096 			 */
3097 			if (skb_queue_empty(&tp->out_of_order_queue))
3098 				inet_csk(sk)->icsk_ack.pingpong = 0;
3099 		}
3100 
3101 		if (tp->rx_opt.num_sacks)
3102 			tcp_sack_remove(tp);
3103 
3104 		tcp_fast_path_check(sk, tp);
3105 
3106 		if (eaten > 0)
3107 			__kfree_skb(skb);
3108 		else if (!sock_flag(sk, SOCK_DEAD))
3109 			sk->sk_data_ready(sk, 0);
3110 		return;
3111 	}
3112 
3113 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3114 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3115 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3116 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3117 
3118 out_of_window:
3119 		tcp_enter_quickack_mode(sk);
3120 		inet_csk_schedule_ack(sk);
3121 drop:
3122 		__kfree_skb(skb);
3123 		return;
3124 	}
3125 
3126 	/* Out of window. F.e. zero window probe. */
3127 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3128 		goto out_of_window;
3129 
3130 	tcp_enter_quickack_mode(sk);
3131 
3132 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3133 		/* Partial packet, seq < rcv_next < end_seq */
3134 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3135 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3136 			   TCP_SKB_CB(skb)->end_seq);
3137 
3138 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3139 
3140 		/* If window is closed, drop tail of packet. But after
3141 		 * remembering D-SACK for its head made in previous line.
3142 		 */
3143 		if (!tcp_receive_window(tp))
3144 			goto out_of_window;
3145 		goto queue_and_out;
3146 	}
3147 
3148 	TCP_ECN_check_ce(tp, skb);
3149 
3150 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3151 	    !sk_stream_rmem_schedule(sk, skb)) {
3152 		if (tcp_prune_queue(sk) < 0 ||
3153 		    !sk_stream_rmem_schedule(sk, skb))
3154 			goto drop;
3155 	}
3156 
3157 	/* Disable header prediction. */
3158 	tp->pred_flags = 0;
3159 	inet_csk_schedule_ack(sk);
3160 
3161 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3162 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3163 
3164 	sk_stream_set_owner_r(skb, sk);
3165 
3166 	if (!skb_peek(&tp->out_of_order_queue)) {
3167 		/* Initial out of order segment, build 1 SACK. */
3168 		if (tp->rx_opt.sack_ok) {
3169 			tp->rx_opt.num_sacks = 1;
3170 			tp->rx_opt.dsack     = 0;
3171 			tp->rx_opt.eff_sacks = 1;
3172 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3173 			tp->selective_acks[0].end_seq =
3174 						TCP_SKB_CB(skb)->end_seq;
3175 		}
3176 		__skb_queue_head(&tp->out_of_order_queue,skb);
3177 	} else {
3178 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3179 		u32 seq = TCP_SKB_CB(skb)->seq;
3180 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3181 
3182 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3183 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3184 
3185 			if (!tp->rx_opt.num_sacks ||
3186 			    tp->selective_acks[0].end_seq != seq)
3187 				goto add_sack;
3188 
3189 			/* Common case: data arrive in order after hole. */
3190 			tp->selective_acks[0].end_seq = end_seq;
3191 			return;
3192 		}
3193 
3194 		/* Find place to insert this segment. */
3195 		do {
3196 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3197 				break;
3198 		} while ((skb1 = skb1->prev) !=
3199 			 (struct sk_buff*)&tp->out_of_order_queue);
3200 
3201 		/* Do skb overlap to previous one? */
3202 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3203 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3204 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3205 				/* All the bits are present. Drop. */
3206 				__kfree_skb(skb);
3207 				tcp_dsack_set(tp, seq, end_seq);
3208 				goto add_sack;
3209 			}
3210 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3211 				/* Partial overlap. */
3212 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3213 			} else {
3214 				skb1 = skb1->prev;
3215 			}
3216 		}
3217 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3218 
3219 		/* And clean segments covered by new one as whole. */
3220 		while ((skb1 = skb->next) !=
3221 		       (struct sk_buff*)&tp->out_of_order_queue &&
3222 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3223 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3224 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3225 			       break;
3226 		       }
3227 		       __skb_unlink(skb1, &tp->out_of_order_queue);
3228 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3229 		       __kfree_skb(skb1);
3230 		}
3231 
3232 add_sack:
3233 		if (tp->rx_opt.sack_ok)
3234 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3235 	}
3236 }
3237 
3238 /* Collapse contiguous sequence of skbs head..tail with
3239  * sequence numbers start..end.
3240  * Segments with FIN/SYN are not collapsed (only because this
3241  * simplifies code)
3242  */
3243 static void
3244 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3245 	     struct sk_buff *head, struct sk_buff *tail,
3246 	     u32 start, u32 end)
3247 {
3248 	struct sk_buff *skb;
3249 
3250 	/* First, check that queue is collapsible and find
3251 	 * the point where collapsing can be useful. */
3252 	for (skb = head; skb != tail; ) {
3253 		/* No new bits? It is possible on ofo queue. */
3254 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3255 			struct sk_buff *next = skb->next;
3256 			__skb_unlink(skb, list);
3257 			__kfree_skb(skb);
3258 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3259 			skb = next;
3260 			continue;
3261 		}
3262 
3263 		/* The first skb to collapse is:
3264 		 * - not SYN/FIN and
3265 		 * - bloated or contains data before "start" or
3266 		 *   overlaps to the next one.
3267 		 */
3268 		if (!skb->h.th->syn && !skb->h.th->fin &&
3269 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3270 		     before(TCP_SKB_CB(skb)->seq, start) ||
3271 		     (skb->next != tail &&
3272 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3273 			break;
3274 
3275 		/* Decided to skip this, advance start seq. */
3276 		start = TCP_SKB_CB(skb)->end_seq;
3277 		skb = skb->next;
3278 	}
3279 	if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3280 		return;
3281 
3282 	while (before(start, end)) {
3283 		struct sk_buff *nskb;
3284 		int header = skb_headroom(skb);
3285 		int copy = SKB_MAX_ORDER(header, 0);
3286 
3287 		/* Too big header? This can happen with IPv6. */
3288 		if (copy < 0)
3289 			return;
3290 		if (end-start < copy)
3291 			copy = end-start;
3292 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3293 		if (!nskb)
3294 			return;
3295 		skb_reserve(nskb, header);
3296 		memcpy(nskb->head, skb->head, header);
3297 		nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3298 		nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3299 		nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3300 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3301 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3302 		__skb_insert(nskb, skb->prev, skb, list);
3303 		sk_stream_set_owner_r(nskb, sk);
3304 
3305 		/* Copy data, releasing collapsed skbs. */
3306 		while (copy > 0) {
3307 			int offset = start - TCP_SKB_CB(skb)->seq;
3308 			int size = TCP_SKB_CB(skb)->end_seq - start;
3309 
3310 			if (offset < 0) BUG();
3311 			if (size > 0) {
3312 				size = min(copy, size);
3313 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3314 					BUG();
3315 				TCP_SKB_CB(nskb)->end_seq += size;
3316 				copy -= size;
3317 				start += size;
3318 			}
3319 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3320 				struct sk_buff *next = skb->next;
3321 				__skb_unlink(skb, list);
3322 				__kfree_skb(skb);
3323 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3324 				skb = next;
3325 				if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3326 					return;
3327 			}
3328 		}
3329 	}
3330 }
3331 
3332 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3333  * and tcp_collapse() them until all the queue is collapsed.
3334  */
3335 static void tcp_collapse_ofo_queue(struct sock *sk)
3336 {
3337 	struct tcp_sock *tp = tcp_sk(sk);
3338 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3339 	struct sk_buff *head;
3340 	u32 start, end;
3341 
3342 	if (skb == NULL)
3343 		return;
3344 
3345 	start = TCP_SKB_CB(skb)->seq;
3346 	end = TCP_SKB_CB(skb)->end_seq;
3347 	head = skb;
3348 
3349 	for (;;) {
3350 		skb = skb->next;
3351 
3352 		/* Segment is terminated when we see gap or when
3353 		 * we are at the end of all the queue. */
3354 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3355 		    after(TCP_SKB_CB(skb)->seq, end) ||
3356 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3357 			tcp_collapse(sk, &tp->out_of_order_queue,
3358 				     head, skb, start, end);
3359 			head = skb;
3360 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3361 				break;
3362 			/* Start new segment */
3363 			start = TCP_SKB_CB(skb)->seq;
3364 			end = TCP_SKB_CB(skb)->end_seq;
3365 		} else {
3366 			if (before(TCP_SKB_CB(skb)->seq, start))
3367 				start = TCP_SKB_CB(skb)->seq;
3368 			if (after(TCP_SKB_CB(skb)->end_seq, end))
3369 				end = TCP_SKB_CB(skb)->end_seq;
3370 		}
3371 	}
3372 }
3373 
3374 /* Reduce allocated memory if we can, trying to get
3375  * the socket within its memory limits again.
3376  *
3377  * Return less than zero if we should start dropping frames
3378  * until the socket owning process reads some of the data
3379  * to stabilize the situation.
3380  */
3381 static int tcp_prune_queue(struct sock *sk)
3382 {
3383 	struct tcp_sock *tp = tcp_sk(sk);
3384 
3385 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3386 
3387 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3388 
3389 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3390 		tcp_clamp_window(sk, tp);
3391 	else if (tcp_memory_pressure)
3392 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3393 
3394 	tcp_collapse_ofo_queue(sk);
3395 	tcp_collapse(sk, &sk->sk_receive_queue,
3396 		     sk->sk_receive_queue.next,
3397 		     (struct sk_buff*)&sk->sk_receive_queue,
3398 		     tp->copied_seq, tp->rcv_nxt);
3399 	sk_stream_mem_reclaim(sk);
3400 
3401 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3402 		return 0;
3403 
3404 	/* Collapsing did not help, destructive actions follow.
3405 	 * This must not ever occur. */
3406 
3407 	/* First, purge the out_of_order queue. */
3408 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3409 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3410 		__skb_queue_purge(&tp->out_of_order_queue);
3411 
3412 		/* Reset SACK state.  A conforming SACK implementation will
3413 		 * do the same at a timeout based retransmit.  When a connection
3414 		 * is in a sad state like this, we care only about integrity
3415 		 * of the connection not performance.
3416 		 */
3417 		if (tp->rx_opt.sack_ok)
3418 			tcp_sack_reset(&tp->rx_opt);
3419 		sk_stream_mem_reclaim(sk);
3420 	}
3421 
3422 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3423 		return 0;
3424 
3425 	/* If we are really being abused, tell the caller to silently
3426 	 * drop receive data on the floor.  It will get retransmitted
3427 	 * and hopefully then we'll have sufficient space.
3428 	 */
3429 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3430 
3431 	/* Massive buffer overcommit. */
3432 	tp->pred_flags = 0;
3433 	return -1;
3434 }
3435 
3436 
3437 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3438  * As additional protections, we do not touch cwnd in retransmission phases,
3439  * and if application hit its sndbuf limit recently.
3440  */
3441 void tcp_cwnd_application_limited(struct sock *sk)
3442 {
3443 	struct tcp_sock *tp = tcp_sk(sk);
3444 
3445 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3446 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3447 		/* Limited by application or receiver window. */
3448 		u32 win_used = max(tp->snd_cwnd_used, 2U);
3449 		if (win_used < tp->snd_cwnd) {
3450 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3451 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3452 		}
3453 		tp->snd_cwnd_used = 0;
3454 	}
3455 	tp->snd_cwnd_stamp = tcp_time_stamp;
3456 }
3457 
3458 static inline int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3459 {
3460 	/* If the user specified a specific send buffer setting, do
3461 	 * not modify it.
3462 	 */
3463 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3464 		return 0;
3465 
3466 	/* If we are under global TCP memory pressure, do not expand.  */
3467 	if (tcp_memory_pressure)
3468 		return 0;
3469 
3470 	/* If we are under soft global TCP memory pressure, do not expand.  */
3471 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3472 		return 0;
3473 
3474 	/* If we filled the congestion window, do not expand.  */
3475 	if (tp->packets_out >= tp->snd_cwnd)
3476 		return 0;
3477 
3478 	return 1;
3479 }
3480 
3481 /* When incoming ACK allowed to free some skb from write_queue,
3482  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3483  * on the exit from tcp input handler.
3484  *
3485  * PROBLEM: sndbuf expansion does not work well with largesend.
3486  */
3487 static void tcp_new_space(struct sock *sk)
3488 {
3489 	struct tcp_sock *tp = tcp_sk(sk);
3490 
3491 	if (tcp_should_expand_sndbuf(sk, tp)) {
3492  		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3493 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3494 		    demanded = max_t(unsigned int, tp->snd_cwnd,
3495 						   tp->reordering + 1);
3496 		sndmem *= 2*demanded;
3497 		if (sndmem > sk->sk_sndbuf)
3498 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3499 		tp->snd_cwnd_stamp = tcp_time_stamp;
3500 	}
3501 
3502 	sk->sk_write_space(sk);
3503 }
3504 
3505 static inline void tcp_check_space(struct sock *sk)
3506 {
3507 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3508 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3509 		if (sk->sk_socket &&
3510 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3511 			tcp_new_space(sk);
3512 	}
3513 }
3514 
3515 static __inline__ void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3516 {
3517 	tcp_push_pending_frames(sk, tp);
3518 	tcp_check_space(sk);
3519 }
3520 
3521 /*
3522  * Check if sending an ack is needed.
3523  */
3524 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3525 {
3526 	struct tcp_sock *tp = tcp_sk(sk);
3527 
3528 	    /* More than one full frame received... */
3529 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3530 	     /* ... and right edge of window advances far enough.
3531 	      * (tcp_recvmsg() will send ACK otherwise). Or...
3532 	      */
3533 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3534 	    /* We ACK each frame or... */
3535 	    tcp_in_quickack_mode(sk) ||
3536 	    /* We have out of order data. */
3537 	    (ofo_possible &&
3538 	     skb_peek(&tp->out_of_order_queue))) {
3539 		/* Then ack it now */
3540 		tcp_send_ack(sk);
3541 	} else {
3542 		/* Else, send delayed ack. */
3543 		tcp_send_delayed_ack(sk);
3544 	}
3545 }
3546 
3547 static __inline__ void tcp_ack_snd_check(struct sock *sk)
3548 {
3549 	if (!inet_csk_ack_scheduled(sk)) {
3550 		/* We sent a data segment already. */
3551 		return;
3552 	}
3553 	__tcp_ack_snd_check(sk, 1);
3554 }
3555 
3556 /*
3557  *	This routine is only called when we have urgent data
3558  *	signaled. Its the 'slow' part of tcp_urg. It could be
3559  *	moved inline now as tcp_urg is only called from one
3560  *	place. We handle URGent data wrong. We have to - as
3561  *	BSD still doesn't use the correction from RFC961.
3562  *	For 1003.1g we should support a new option TCP_STDURG to permit
3563  *	either form (or just set the sysctl tcp_stdurg).
3564  */
3565 
3566 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3567 {
3568 	struct tcp_sock *tp = tcp_sk(sk);
3569 	u32 ptr = ntohs(th->urg_ptr);
3570 
3571 	if (ptr && !sysctl_tcp_stdurg)
3572 		ptr--;
3573 	ptr += ntohl(th->seq);
3574 
3575 	/* Ignore urgent data that we've already seen and read. */
3576 	if (after(tp->copied_seq, ptr))
3577 		return;
3578 
3579 	/* Do not replay urg ptr.
3580 	 *
3581 	 * NOTE: interesting situation not covered by specs.
3582 	 * Misbehaving sender may send urg ptr, pointing to segment,
3583 	 * which we already have in ofo queue. We are not able to fetch
3584 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3585 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3586 	 * situations. But it is worth to think about possibility of some
3587 	 * DoSes using some hypothetical application level deadlock.
3588 	 */
3589 	if (before(ptr, tp->rcv_nxt))
3590 		return;
3591 
3592 	/* Do we already have a newer (or duplicate) urgent pointer? */
3593 	if (tp->urg_data && !after(ptr, tp->urg_seq))
3594 		return;
3595 
3596 	/* Tell the world about our new urgent pointer. */
3597 	sk_send_sigurg(sk);
3598 
3599 	/* We may be adding urgent data when the last byte read was
3600 	 * urgent. To do this requires some care. We cannot just ignore
3601 	 * tp->copied_seq since we would read the last urgent byte again
3602 	 * as data, nor can we alter copied_seq until this data arrives
3603 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3604 	 *
3605 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3606 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3607 	 * and expect that both A and B disappear from stream. This is _wrong_.
3608 	 * Though this happens in BSD with high probability, this is occasional.
3609 	 * Any application relying on this is buggy. Note also, that fix "works"
3610 	 * only in this artificial test. Insert some normal data between A and B and we will
3611 	 * decline of BSD again. Verdict: it is better to remove to trap
3612 	 * buggy users.
3613 	 */
3614 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3615 	    !sock_flag(sk, SOCK_URGINLINE) &&
3616 	    tp->copied_seq != tp->rcv_nxt) {
3617 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3618 		tp->copied_seq++;
3619 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3620 			__skb_unlink(skb, &sk->sk_receive_queue);
3621 			__kfree_skb(skb);
3622 		}
3623 	}
3624 
3625 	tp->urg_data   = TCP_URG_NOTYET;
3626 	tp->urg_seq    = ptr;
3627 
3628 	/* Disable header prediction. */
3629 	tp->pred_flags = 0;
3630 }
3631 
3632 /* This is the 'fast' part of urgent handling. */
3633 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3634 {
3635 	struct tcp_sock *tp = tcp_sk(sk);
3636 
3637 	/* Check if we get a new urgent pointer - normally not. */
3638 	if (th->urg)
3639 		tcp_check_urg(sk,th);
3640 
3641 	/* Do we wait for any urgent data? - normally not... */
3642 	if (tp->urg_data == TCP_URG_NOTYET) {
3643 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3644 			  th->syn;
3645 
3646 		/* Is the urgent pointer pointing into this packet? */
3647 		if (ptr < skb->len) {
3648 			u8 tmp;
3649 			if (skb_copy_bits(skb, ptr, &tmp, 1))
3650 				BUG();
3651 			tp->urg_data = TCP_URG_VALID | tmp;
3652 			if (!sock_flag(sk, SOCK_DEAD))
3653 				sk->sk_data_ready(sk, 0);
3654 		}
3655 	}
3656 }
3657 
3658 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3659 {
3660 	struct tcp_sock *tp = tcp_sk(sk);
3661 	int chunk = skb->len - hlen;
3662 	int err;
3663 
3664 	local_bh_enable();
3665 	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3666 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3667 	else
3668 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3669 						       tp->ucopy.iov);
3670 
3671 	if (!err) {
3672 		tp->ucopy.len -= chunk;
3673 		tp->copied_seq += chunk;
3674 		tcp_rcv_space_adjust(sk);
3675 	}
3676 
3677 	local_bh_disable();
3678 	return err;
3679 }
3680 
3681 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3682 {
3683 	int result;
3684 
3685 	if (sock_owned_by_user(sk)) {
3686 		local_bh_enable();
3687 		result = __tcp_checksum_complete(skb);
3688 		local_bh_disable();
3689 	} else {
3690 		result = __tcp_checksum_complete(skb);
3691 	}
3692 	return result;
3693 }
3694 
3695 static __inline__ int
3696 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3697 {
3698 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3699 		__tcp_checksum_complete_user(sk, skb);
3700 }
3701 
3702 /*
3703  *	TCP receive function for the ESTABLISHED state.
3704  *
3705  *	It is split into a fast path and a slow path. The fast path is
3706  * 	disabled when:
3707  *	- A zero window was announced from us - zero window probing
3708  *        is only handled properly in the slow path.
3709  *	- Out of order segments arrived.
3710  *	- Urgent data is expected.
3711  *	- There is no buffer space left
3712  *	- Unexpected TCP flags/window values/header lengths are received
3713  *	  (detected by checking the TCP header against pred_flags)
3714  *	- Data is sent in both directions. Fast path only supports pure senders
3715  *	  or pure receivers (this means either the sequence number or the ack
3716  *	  value must stay constant)
3717  *	- Unexpected TCP option.
3718  *
3719  *	When these conditions are not satisfied it drops into a standard
3720  *	receive procedure patterned after RFC793 to handle all cases.
3721  *	The first three cases are guaranteed by proper pred_flags setting,
3722  *	the rest is checked inline. Fast processing is turned on in
3723  *	tcp_data_queue when everything is OK.
3724  */
3725 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3726 			struct tcphdr *th, unsigned len)
3727 {
3728 	struct tcp_sock *tp = tcp_sk(sk);
3729 
3730 	/*
3731 	 *	Header prediction.
3732 	 *	The code loosely follows the one in the famous
3733 	 *	"30 instruction TCP receive" Van Jacobson mail.
3734 	 *
3735 	 *	Van's trick is to deposit buffers into socket queue
3736 	 *	on a device interrupt, to call tcp_recv function
3737 	 *	on the receive process context and checksum and copy
3738 	 *	the buffer to user space. smart...
3739 	 *
3740 	 *	Our current scheme is not silly either but we take the
3741 	 *	extra cost of the net_bh soft interrupt processing...
3742 	 *	We do checksum and copy also but from device to kernel.
3743 	 */
3744 
3745 	tp->rx_opt.saw_tstamp = 0;
3746 
3747 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
3748 	 *	if header_prediction is to be made
3749 	 *	'S' will always be tp->tcp_header_len >> 2
3750 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
3751 	 *  turn it off	(when there are holes in the receive
3752 	 *	 space for instance)
3753 	 *	PSH flag is ignored.
3754 	 */
3755 
3756 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3757 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3758 		int tcp_header_len = tp->tcp_header_len;
3759 
3760 		/* Timestamp header prediction: tcp_header_len
3761 		 * is automatically equal to th->doff*4 due to pred_flags
3762 		 * match.
3763 		 */
3764 
3765 		/* Check timestamp */
3766 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3767 			__u32 *ptr = (__u32 *)(th + 1);
3768 
3769 			/* No? Slow path! */
3770 			if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3771 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3772 				goto slow_path;
3773 
3774 			tp->rx_opt.saw_tstamp = 1;
3775 			++ptr;
3776 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3777 			++ptr;
3778 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3779 
3780 			/* If PAWS failed, check it more carefully in slow path */
3781 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3782 				goto slow_path;
3783 
3784 			/* DO NOT update ts_recent here, if checksum fails
3785 			 * and timestamp was corrupted part, it will result
3786 			 * in a hung connection since we will drop all
3787 			 * future packets due to the PAWS test.
3788 			 */
3789 		}
3790 
3791 		if (len <= tcp_header_len) {
3792 			/* Bulk data transfer: sender */
3793 			if (len == tcp_header_len) {
3794 				/* Predicted packet is in window by definition.
3795 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3796 				 * Hence, check seq<=rcv_wup reduces to:
3797 				 */
3798 				if (tcp_header_len ==
3799 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3800 				    tp->rcv_nxt == tp->rcv_wup)
3801 					tcp_store_ts_recent(tp);
3802 
3803 				tcp_rcv_rtt_measure_ts(sk, skb);
3804 
3805 				/* We know that such packets are checksummed
3806 				 * on entry.
3807 				 */
3808 				tcp_ack(sk, skb, 0);
3809 				__kfree_skb(skb);
3810 				tcp_data_snd_check(sk, tp);
3811 				return 0;
3812 			} else { /* Header too small */
3813 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
3814 				goto discard;
3815 			}
3816 		} else {
3817 			int eaten = 0;
3818 
3819 			if (tp->ucopy.task == current &&
3820 			    tp->copied_seq == tp->rcv_nxt &&
3821 			    len - tcp_header_len <= tp->ucopy.len &&
3822 			    sock_owned_by_user(sk)) {
3823 				__set_current_state(TASK_RUNNING);
3824 
3825 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3826 					/* Predicted packet is in window by definition.
3827 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3828 					 * Hence, check seq<=rcv_wup reduces to:
3829 					 */
3830 					if (tcp_header_len ==
3831 					    (sizeof(struct tcphdr) +
3832 					     TCPOLEN_TSTAMP_ALIGNED) &&
3833 					    tp->rcv_nxt == tp->rcv_wup)
3834 						tcp_store_ts_recent(tp);
3835 
3836 					tcp_rcv_rtt_measure_ts(sk, skb);
3837 
3838 					__skb_pull(skb, tcp_header_len);
3839 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3840 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3841 					eaten = 1;
3842 				}
3843 			}
3844 			if (!eaten) {
3845 				if (tcp_checksum_complete_user(sk, skb))
3846 					goto csum_error;
3847 
3848 				/* Predicted packet is in window by definition.
3849 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3850 				 * Hence, check seq<=rcv_wup reduces to:
3851 				 */
3852 				if (tcp_header_len ==
3853 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3854 				    tp->rcv_nxt == tp->rcv_wup)
3855 					tcp_store_ts_recent(tp);
3856 
3857 				tcp_rcv_rtt_measure_ts(sk, skb);
3858 
3859 				if ((int)skb->truesize > sk->sk_forward_alloc)
3860 					goto step5;
3861 
3862 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3863 
3864 				/* Bulk data transfer: receiver */
3865 				__skb_pull(skb,tcp_header_len);
3866 				__skb_queue_tail(&sk->sk_receive_queue, skb);
3867 				sk_stream_set_owner_r(skb, sk);
3868 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3869 			}
3870 
3871 			tcp_event_data_recv(sk, tp, skb);
3872 
3873 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3874 				/* Well, only one small jumplet in fast path... */
3875 				tcp_ack(sk, skb, FLAG_DATA);
3876 				tcp_data_snd_check(sk, tp);
3877 				if (!inet_csk_ack_scheduled(sk))
3878 					goto no_ack;
3879 			}
3880 
3881 			__tcp_ack_snd_check(sk, 0);
3882 no_ack:
3883 			if (eaten)
3884 				__kfree_skb(skb);
3885 			else
3886 				sk->sk_data_ready(sk, 0);
3887 			return 0;
3888 		}
3889 	}
3890 
3891 slow_path:
3892 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3893 		goto csum_error;
3894 
3895 	/*
3896 	 * RFC1323: H1. Apply PAWS check first.
3897 	 */
3898 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3899 	    tcp_paws_discard(sk, skb)) {
3900 		if (!th->rst) {
3901 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3902 			tcp_send_dupack(sk, skb);
3903 			goto discard;
3904 		}
3905 		/* Resets are accepted even if PAWS failed.
3906 
3907 		   ts_recent update must be made after we are sure
3908 		   that the packet is in window.
3909 		 */
3910 	}
3911 
3912 	/*
3913 	 *	Standard slow path.
3914 	 */
3915 
3916 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
3917 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
3918 		 * (RST) segments are validated by checking their SEQ-fields."
3919 		 * And page 69: "If an incoming segment is not acceptable,
3920 		 * an acknowledgment should be sent in reply (unless the RST bit
3921 		 * is set, if so drop the segment and return)".
3922 		 */
3923 		if (!th->rst)
3924 			tcp_send_dupack(sk, skb);
3925 		goto discard;
3926 	}
3927 
3928 	if(th->rst) {
3929 		tcp_reset(sk);
3930 		goto discard;
3931 	}
3932 
3933 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3934 
3935 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3936 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
3937 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
3938 		tcp_reset(sk);
3939 		return 1;
3940 	}
3941 
3942 step5:
3943 	if(th->ack)
3944 		tcp_ack(sk, skb, FLAG_SLOWPATH);
3945 
3946 	tcp_rcv_rtt_measure_ts(sk, skb);
3947 
3948 	/* Process urgent data. */
3949 	tcp_urg(sk, skb, th);
3950 
3951 	/* step 7: process the segment text */
3952 	tcp_data_queue(sk, skb);
3953 
3954 	tcp_data_snd_check(sk, tp);
3955 	tcp_ack_snd_check(sk);
3956 	return 0;
3957 
3958 csum_error:
3959 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
3960 
3961 discard:
3962 	__kfree_skb(skb);
3963 	return 0;
3964 }
3965 
3966 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
3967 					 struct tcphdr *th, unsigned len)
3968 {
3969 	struct tcp_sock *tp = tcp_sk(sk);
3970 	int saved_clamp = tp->rx_opt.mss_clamp;
3971 
3972 	tcp_parse_options(skb, &tp->rx_opt, 0);
3973 
3974 	if (th->ack) {
3975 		struct inet_connection_sock *icsk;
3976 		/* rfc793:
3977 		 * "If the state is SYN-SENT then
3978 		 *    first check the ACK bit
3979 		 *      If the ACK bit is set
3980 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
3981 		 *        a reset (unless the RST bit is set, if so drop
3982 		 *        the segment and return)"
3983 		 *
3984 		 *  We do not send data with SYN, so that RFC-correct
3985 		 *  test reduces to:
3986 		 */
3987 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
3988 			goto reset_and_undo;
3989 
3990 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3991 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
3992 			     tcp_time_stamp)) {
3993 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
3994 			goto reset_and_undo;
3995 		}
3996 
3997 		/* Now ACK is acceptable.
3998 		 *
3999 		 * "If the RST bit is set
4000 		 *    If the ACK was acceptable then signal the user "error:
4001 		 *    connection reset", drop the segment, enter CLOSED state,
4002 		 *    delete TCB, and return."
4003 		 */
4004 
4005 		if (th->rst) {
4006 			tcp_reset(sk);
4007 			goto discard;
4008 		}
4009 
4010 		/* rfc793:
4011 		 *   "fifth, if neither of the SYN or RST bits is set then
4012 		 *    drop the segment and return."
4013 		 *
4014 		 *    See note below!
4015 		 *                                        --ANK(990513)
4016 		 */
4017 		if (!th->syn)
4018 			goto discard_and_undo;
4019 
4020 		/* rfc793:
4021 		 *   "If the SYN bit is on ...
4022 		 *    are acceptable then ...
4023 		 *    (our SYN has been ACKed), change the connection
4024 		 *    state to ESTABLISHED..."
4025 		 */
4026 
4027 		TCP_ECN_rcv_synack(tp, th);
4028 		if (tp->ecn_flags&TCP_ECN_OK)
4029 			sock_set_flag(sk, SOCK_NO_LARGESEND);
4030 
4031 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4032 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4033 
4034 		/* Ok.. it's good. Set up sequence numbers and
4035 		 * move to established.
4036 		 */
4037 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4038 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4039 
4040 		/* RFC1323: The window in SYN & SYN/ACK segments is
4041 		 * never scaled.
4042 		 */
4043 		tp->snd_wnd = ntohs(th->window);
4044 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4045 
4046 		if (!tp->rx_opt.wscale_ok) {
4047 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4048 			tp->window_clamp = min(tp->window_clamp, 65535U);
4049 		}
4050 
4051 		if (tp->rx_opt.saw_tstamp) {
4052 			tp->rx_opt.tstamp_ok	   = 1;
4053 			tp->tcp_header_len =
4054 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4055 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4056 			tcp_store_ts_recent(tp);
4057 		} else {
4058 			tp->tcp_header_len = sizeof(struct tcphdr);
4059 		}
4060 
4061 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4062 			tp->rx_opt.sack_ok |= 2;
4063 
4064 		tcp_sync_mss(sk, tp->pmtu_cookie);
4065 		tcp_initialize_rcv_mss(sk);
4066 
4067 		/* Remember, tcp_poll() does not lock socket!
4068 		 * Change state from SYN-SENT only after copied_seq
4069 		 * is initialized. */
4070 		tp->copied_seq = tp->rcv_nxt;
4071 		mb();
4072 		tcp_set_state(sk, TCP_ESTABLISHED);
4073 
4074 		/* Make sure socket is routed, for correct metrics.  */
4075 		tp->af_specific->rebuild_header(sk);
4076 
4077 		tcp_init_metrics(sk);
4078 
4079 		tcp_init_congestion_control(sk);
4080 
4081 		/* Prevent spurious tcp_cwnd_restart() on first data
4082 		 * packet.
4083 		 */
4084 		tp->lsndtime = tcp_time_stamp;
4085 
4086 		tcp_init_buffer_space(sk);
4087 
4088 		if (sock_flag(sk, SOCK_KEEPOPEN))
4089 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4090 
4091 		if (!tp->rx_opt.snd_wscale)
4092 			__tcp_fast_path_on(tp, tp->snd_wnd);
4093 		else
4094 			tp->pred_flags = 0;
4095 
4096 		if (!sock_flag(sk, SOCK_DEAD)) {
4097 			sk->sk_state_change(sk);
4098 			sk_wake_async(sk, 0, POLL_OUT);
4099 		}
4100 
4101 		icsk = inet_csk(sk);
4102 
4103 		if (sk->sk_write_pending ||
4104 		    icsk->icsk_accept_queue.rskq_defer_accept ||
4105 		    icsk->icsk_ack.pingpong) {
4106 			/* Save one ACK. Data will be ready after
4107 			 * several ticks, if write_pending is set.
4108 			 *
4109 			 * It may be deleted, but with this feature tcpdumps
4110 			 * look so _wonderfully_ clever, that I was not able
4111 			 * to stand against the temptation 8)     --ANK
4112 			 */
4113 			inet_csk_schedule_ack(sk);
4114 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4115 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4116 			tcp_incr_quickack(sk);
4117 			tcp_enter_quickack_mode(sk);
4118 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4119 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4120 
4121 discard:
4122 			__kfree_skb(skb);
4123 			return 0;
4124 		} else {
4125 			tcp_send_ack(sk);
4126 		}
4127 		return -1;
4128 	}
4129 
4130 	/* No ACK in the segment */
4131 
4132 	if (th->rst) {
4133 		/* rfc793:
4134 		 * "If the RST bit is set
4135 		 *
4136 		 *      Otherwise (no ACK) drop the segment and return."
4137 		 */
4138 
4139 		goto discard_and_undo;
4140 	}
4141 
4142 	/* PAWS check. */
4143 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4144 		goto discard_and_undo;
4145 
4146 	if (th->syn) {
4147 		/* We see SYN without ACK. It is attempt of
4148 		 * simultaneous connect with crossed SYNs.
4149 		 * Particularly, it can be connect to self.
4150 		 */
4151 		tcp_set_state(sk, TCP_SYN_RECV);
4152 
4153 		if (tp->rx_opt.saw_tstamp) {
4154 			tp->rx_opt.tstamp_ok = 1;
4155 			tcp_store_ts_recent(tp);
4156 			tp->tcp_header_len =
4157 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4158 		} else {
4159 			tp->tcp_header_len = sizeof(struct tcphdr);
4160 		}
4161 
4162 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4163 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4164 
4165 		/* RFC1323: The window in SYN & SYN/ACK segments is
4166 		 * never scaled.
4167 		 */
4168 		tp->snd_wnd    = ntohs(th->window);
4169 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4170 		tp->max_window = tp->snd_wnd;
4171 
4172 		TCP_ECN_rcv_syn(tp, th);
4173 		if (tp->ecn_flags&TCP_ECN_OK)
4174 			sock_set_flag(sk, SOCK_NO_LARGESEND);
4175 
4176 		tcp_sync_mss(sk, tp->pmtu_cookie);
4177 		tcp_initialize_rcv_mss(sk);
4178 
4179 
4180 		tcp_send_synack(sk);
4181 #if 0
4182 		/* Note, we could accept data and URG from this segment.
4183 		 * There are no obstacles to make this.
4184 		 *
4185 		 * However, if we ignore data in ACKless segments sometimes,
4186 		 * we have no reasons to accept it sometimes.
4187 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4188 		 * is not flawless. So, discard packet for sanity.
4189 		 * Uncomment this return to process the data.
4190 		 */
4191 		return -1;
4192 #else
4193 		goto discard;
4194 #endif
4195 	}
4196 	/* "fifth, if neither of the SYN or RST bits is set then
4197 	 * drop the segment and return."
4198 	 */
4199 
4200 discard_and_undo:
4201 	tcp_clear_options(&tp->rx_opt);
4202 	tp->rx_opt.mss_clamp = saved_clamp;
4203 	goto discard;
4204 
4205 reset_and_undo:
4206 	tcp_clear_options(&tp->rx_opt);
4207 	tp->rx_opt.mss_clamp = saved_clamp;
4208 	return 1;
4209 }
4210 
4211 
4212 /*
4213  *	This function implements the receiving procedure of RFC 793 for
4214  *	all states except ESTABLISHED and TIME_WAIT.
4215  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4216  *	address independent.
4217  */
4218 
4219 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4220 			  struct tcphdr *th, unsigned len)
4221 {
4222 	struct tcp_sock *tp = tcp_sk(sk);
4223 	int queued = 0;
4224 
4225 	tp->rx_opt.saw_tstamp = 0;
4226 
4227 	switch (sk->sk_state) {
4228 	case TCP_CLOSE:
4229 		goto discard;
4230 
4231 	case TCP_LISTEN:
4232 		if(th->ack)
4233 			return 1;
4234 
4235 		if(th->rst)
4236 			goto discard;
4237 
4238 		if(th->syn) {
4239 			if(tp->af_specific->conn_request(sk, skb) < 0)
4240 				return 1;
4241 
4242 			/* Now we have several options: In theory there is
4243 			 * nothing else in the frame. KA9Q has an option to
4244 			 * send data with the syn, BSD accepts data with the
4245 			 * syn up to the [to be] advertised window and
4246 			 * Solaris 2.1 gives you a protocol error. For now
4247 			 * we just ignore it, that fits the spec precisely
4248 			 * and avoids incompatibilities. It would be nice in
4249 			 * future to drop through and process the data.
4250 			 *
4251 			 * Now that TTCP is starting to be used we ought to
4252 			 * queue this data.
4253 			 * But, this leaves one open to an easy denial of
4254 		 	 * service attack, and SYN cookies can't defend
4255 			 * against this problem. So, we drop the data
4256 			 * in the interest of security over speed.
4257 			 */
4258 			goto discard;
4259 		}
4260 		goto discard;
4261 
4262 	case TCP_SYN_SENT:
4263 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4264 		if (queued >= 0)
4265 			return queued;
4266 
4267 		/* Do step6 onward by hand. */
4268 		tcp_urg(sk, skb, th);
4269 		__kfree_skb(skb);
4270 		tcp_data_snd_check(sk, tp);
4271 		return 0;
4272 	}
4273 
4274 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4275 	    tcp_paws_discard(sk, skb)) {
4276 		if (!th->rst) {
4277 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4278 			tcp_send_dupack(sk, skb);
4279 			goto discard;
4280 		}
4281 		/* Reset is accepted even if it did not pass PAWS. */
4282 	}
4283 
4284 	/* step 1: check sequence number */
4285 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4286 		if (!th->rst)
4287 			tcp_send_dupack(sk, skb);
4288 		goto discard;
4289 	}
4290 
4291 	/* step 2: check RST bit */
4292 	if(th->rst) {
4293 		tcp_reset(sk);
4294 		goto discard;
4295 	}
4296 
4297 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4298 
4299 	/* step 3: check security and precedence [ignored] */
4300 
4301 	/*	step 4:
4302 	 *
4303 	 *	Check for a SYN in window.
4304 	 */
4305 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4306 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4307 		tcp_reset(sk);
4308 		return 1;
4309 	}
4310 
4311 	/* step 5: check the ACK field */
4312 	if (th->ack) {
4313 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4314 
4315 		switch(sk->sk_state) {
4316 		case TCP_SYN_RECV:
4317 			if (acceptable) {
4318 				tp->copied_seq = tp->rcv_nxt;
4319 				mb();
4320 				tcp_set_state(sk, TCP_ESTABLISHED);
4321 				sk->sk_state_change(sk);
4322 
4323 				/* Note, that this wakeup is only for marginal
4324 				 * crossed SYN case. Passively open sockets
4325 				 * are not waked up, because sk->sk_sleep ==
4326 				 * NULL and sk->sk_socket == NULL.
4327 				 */
4328 				if (sk->sk_socket) {
4329 					sk_wake_async(sk,0,POLL_OUT);
4330 				}
4331 
4332 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4333 				tp->snd_wnd = ntohs(th->window) <<
4334 					      tp->rx_opt.snd_wscale;
4335 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4336 					    TCP_SKB_CB(skb)->seq);
4337 
4338 				/* tcp_ack considers this ACK as duplicate
4339 				 * and does not calculate rtt.
4340 				 * Fix it at least with timestamps.
4341 				 */
4342 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4343 				    !tp->srtt)
4344 					tcp_ack_saw_tstamp(sk, 0);
4345 
4346 				if (tp->rx_opt.tstamp_ok)
4347 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4348 
4349 				/* Make sure socket is routed, for
4350 				 * correct metrics.
4351 				 */
4352 				tp->af_specific->rebuild_header(sk);
4353 
4354 				tcp_init_metrics(sk);
4355 
4356 				tcp_init_congestion_control(sk);
4357 
4358 				/* Prevent spurious tcp_cwnd_restart() on
4359 				 * first data packet.
4360 				 */
4361 				tp->lsndtime = tcp_time_stamp;
4362 
4363 				tcp_initialize_rcv_mss(sk);
4364 				tcp_init_buffer_space(sk);
4365 				tcp_fast_path_on(tp);
4366 			} else {
4367 				return 1;
4368 			}
4369 			break;
4370 
4371 		case TCP_FIN_WAIT1:
4372 			if (tp->snd_una == tp->write_seq) {
4373 				tcp_set_state(sk, TCP_FIN_WAIT2);
4374 				sk->sk_shutdown |= SEND_SHUTDOWN;
4375 				dst_confirm(sk->sk_dst_cache);
4376 
4377 				if (!sock_flag(sk, SOCK_DEAD))
4378 					/* Wake up lingering close() */
4379 					sk->sk_state_change(sk);
4380 				else {
4381 					int tmo;
4382 
4383 					if (tp->linger2 < 0 ||
4384 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4385 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4386 						tcp_done(sk);
4387 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4388 						return 1;
4389 					}
4390 
4391 					tmo = tcp_fin_time(sk);
4392 					if (tmo > TCP_TIMEWAIT_LEN) {
4393 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4394 					} else if (th->fin || sock_owned_by_user(sk)) {
4395 						/* Bad case. We could lose such FIN otherwise.
4396 						 * It is not a big problem, but it looks confusing
4397 						 * and not so rare event. We still can lose it now,
4398 						 * if it spins in bh_lock_sock(), but it is really
4399 						 * marginal case.
4400 						 */
4401 						inet_csk_reset_keepalive_timer(sk, tmo);
4402 					} else {
4403 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4404 						goto discard;
4405 					}
4406 				}
4407 			}
4408 			break;
4409 
4410 		case TCP_CLOSING:
4411 			if (tp->snd_una == tp->write_seq) {
4412 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4413 				goto discard;
4414 			}
4415 			break;
4416 
4417 		case TCP_LAST_ACK:
4418 			if (tp->snd_una == tp->write_seq) {
4419 				tcp_update_metrics(sk);
4420 				tcp_done(sk);
4421 				goto discard;
4422 			}
4423 			break;
4424 		}
4425 	} else
4426 		goto discard;
4427 
4428 	/* step 6: check the URG bit */
4429 	tcp_urg(sk, skb, th);
4430 
4431 	/* step 7: process the segment text */
4432 	switch (sk->sk_state) {
4433 	case TCP_CLOSE_WAIT:
4434 	case TCP_CLOSING:
4435 	case TCP_LAST_ACK:
4436 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4437 			break;
4438 	case TCP_FIN_WAIT1:
4439 	case TCP_FIN_WAIT2:
4440 		/* RFC 793 says to queue data in these states,
4441 		 * RFC 1122 says we MUST send a reset.
4442 		 * BSD 4.4 also does reset.
4443 		 */
4444 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4445 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4446 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4447 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4448 				tcp_reset(sk);
4449 				return 1;
4450 			}
4451 		}
4452 		/* Fall through */
4453 	case TCP_ESTABLISHED:
4454 		tcp_data_queue(sk, skb);
4455 		queued = 1;
4456 		break;
4457 	}
4458 
4459 	/* tcp_data could move socket to TIME-WAIT */
4460 	if (sk->sk_state != TCP_CLOSE) {
4461 		tcp_data_snd_check(sk, tp);
4462 		tcp_ack_snd_check(sk);
4463 	}
4464 
4465 	if (!queued) {
4466 discard:
4467 		__kfree_skb(skb);
4468 	}
4469 	return 0;
4470 }
4471 
4472 EXPORT_SYMBOL(sysctl_tcp_ecn);
4473 EXPORT_SYMBOL(sysctl_tcp_reordering);
4474 EXPORT_SYMBOL(sysctl_tcp_abc);
4475 EXPORT_SYMBOL(tcp_parse_options);
4476 EXPORT_SYMBOL(tcp_rcv_established);
4477 EXPORT_SYMBOL(tcp_rcv_state_process);
4478