1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: 25 * Pedro Roque : Fast Retransmit/Recovery. 26 * Two receive queues. 27 * Retransmit queue handled by TCP. 28 * Better retransmit timer handling. 29 * New congestion avoidance. 30 * Header prediction. 31 * Variable renaming. 32 * 33 * Eric : Fast Retransmit. 34 * Randy Scott : MSS option defines. 35 * Eric Schenk : Fixes to slow start algorithm. 36 * Eric Schenk : Yet another double ACK bug. 37 * Eric Schenk : Delayed ACK bug fixes. 38 * Eric Schenk : Floyd style fast retrans war avoidance. 39 * David S. Miller : Don't allow zero congestion window. 40 * Eric Schenk : Fix retransmitter so that it sends 41 * next packet on ack of previous packet. 42 * Andi Kleen : Moved open_request checking here 43 * and process RSTs for open_requests. 44 * Andi Kleen : Better prune_queue, and other fixes. 45 * Andrey Savochkin: Fix RTT measurements in the presence of 46 * timestamps. 47 * Andrey Savochkin: Check sequence numbers correctly when 48 * removing SACKs due to in sequence incoming 49 * data segments. 50 * Andi Kleen: Make sure we never ack data there is not 51 * enough room for. Also make this condition 52 * a fatal error if it might still happen. 53 * Andi Kleen: Add tcp_measure_rcv_mss to make 54 * connections with MSS<min(MTU,ann. MSS) 55 * work without delayed acks. 56 * Andi Kleen: Process packets with PSH set in the 57 * fast path. 58 * J Hadi Salim: ECN support 59 * Andrei Gurtov, 60 * Pasi Sarolahti, 61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 62 * engine. Lots of bugs are found. 63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 64 */ 65 66 #include <linux/config.h> 67 #include <linux/mm.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <net/tcp.h> 71 #include <net/inet_common.h> 72 #include <linux/ipsec.h> 73 #include <asm/unaligned.h> 74 75 int sysctl_tcp_timestamps = 1; 76 int sysctl_tcp_window_scaling = 1; 77 int sysctl_tcp_sack = 1; 78 int sysctl_tcp_fack = 1; 79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn; 81 int sysctl_tcp_dsack = 1; 82 int sysctl_tcp_app_win = 31; 83 int sysctl_tcp_adv_win_scale = 2; 84 85 int sysctl_tcp_stdurg; 86 int sysctl_tcp_rfc1337; 87 int sysctl_tcp_max_orphans = NR_FILE; 88 int sysctl_tcp_frto; 89 int sysctl_tcp_nometrics_save; 90 91 int sysctl_tcp_moderate_rcvbuf = 1; 92 int sysctl_tcp_abc = 1; 93 94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 100 #define FLAG_ECE 0x40 /* ECE in this ACK */ 101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 103 104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 108 109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0) 110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2) 111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4) 112 113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 114 115 /* Adapt the MSS value used to make delayed ack decision to the 116 * real world. 117 */ 118 static inline void tcp_measure_rcv_mss(struct sock *sk, 119 const struct sk_buff *skb) 120 { 121 struct inet_connection_sock *icsk = inet_csk(sk); 122 const unsigned int lss = icsk->icsk_ack.last_seg_size; 123 unsigned int len; 124 125 icsk->icsk_ack.last_seg_size = 0; 126 127 /* skb->len may jitter because of SACKs, even if peer 128 * sends good full-sized frames. 129 */ 130 len = skb->len; 131 if (len >= icsk->icsk_ack.rcv_mss) { 132 icsk->icsk_ack.rcv_mss = len; 133 } else { 134 /* Otherwise, we make more careful check taking into account, 135 * that SACKs block is variable. 136 * 137 * "len" is invariant segment length, including TCP header. 138 */ 139 len += skb->data - skb->h.raw; 140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 141 /* If PSH is not set, packet should be 142 * full sized, provided peer TCP is not badly broken. 143 * This observation (if it is correct 8)) allows 144 * to handle super-low mtu links fairly. 145 */ 146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) { 148 /* Subtract also invariant (if peer is RFC compliant), 149 * tcp header plus fixed timestamp option length. 150 * Resulting "len" is MSS free of SACK jitter. 151 */ 152 len -= tcp_sk(sk)->tcp_header_len; 153 icsk->icsk_ack.last_seg_size = len; 154 if (len == lss) { 155 icsk->icsk_ack.rcv_mss = len; 156 return; 157 } 158 } 159 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 160 } 161 } 162 163 static void tcp_incr_quickack(struct sock *sk) 164 { 165 struct inet_connection_sock *icsk = inet_csk(sk); 166 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 167 168 if (quickacks==0) 169 quickacks=2; 170 if (quickacks > icsk->icsk_ack.quick) 171 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 172 } 173 174 void tcp_enter_quickack_mode(struct sock *sk) 175 { 176 struct inet_connection_sock *icsk = inet_csk(sk); 177 tcp_incr_quickack(sk); 178 icsk->icsk_ack.pingpong = 0; 179 icsk->icsk_ack.ato = TCP_ATO_MIN; 180 } 181 182 /* Send ACKs quickly, if "quick" count is not exhausted 183 * and the session is not interactive. 184 */ 185 186 static inline int tcp_in_quickack_mode(const struct sock *sk) 187 { 188 const struct inet_connection_sock *icsk = inet_csk(sk); 189 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 190 } 191 192 /* Buffer size and advertised window tuning. 193 * 194 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 195 */ 196 197 static void tcp_fixup_sndbuf(struct sock *sk) 198 { 199 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 200 sizeof(struct sk_buff); 201 202 if (sk->sk_sndbuf < 3 * sndmem) 203 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 204 } 205 206 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 207 * 208 * All tcp_full_space() is split to two parts: "network" buffer, allocated 209 * forward and advertised in receiver window (tp->rcv_wnd) and 210 * "application buffer", required to isolate scheduling/application 211 * latencies from network. 212 * window_clamp is maximal advertised window. It can be less than 213 * tcp_full_space(), in this case tcp_full_space() - window_clamp 214 * is reserved for "application" buffer. The less window_clamp is 215 * the smoother our behaviour from viewpoint of network, but the lower 216 * throughput and the higher sensitivity of the connection to losses. 8) 217 * 218 * rcv_ssthresh is more strict window_clamp used at "slow start" 219 * phase to predict further behaviour of this connection. 220 * It is used for two goals: 221 * - to enforce header prediction at sender, even when application 222 * requires some significant "application buffer". It is check #1. 223 * - to prevent pruning of receive queue because of misprediction 224 * of receiver window. Check #2. 225 * 226 * The scheme does not work when sender sends good segments opening 227 * window and then starts to feed us spaghetti. But it should work 228 * in common situations. Otherwise, we have to rely on queue collapsing. 229 */ 230 231 /* Slow part of check#2. */ 232 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp, 233 const struct sk_buff *skb) 234 { 235 /* Optimize this! */ 236 int truesize = tcp_win_from_space(skb->truesize)/2; 237 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2; 238 239 while (tp->rcv_ssthresh <= window) { 240 if (truesize <= skb->len) 241 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 242 243 truesize >>= 1; 244 window >>= 1; 245 } 246 return 0; 247 } 248 249 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp, 250 struct sk_buff *skb) 251 { 252 /* Check #1 */ 253 if (tp->rcv_ssthresh < tp->window_clamp && 254 (int)tp->rcv_ssthresh < tcp_space(sk) && 255 !tcp_memory_pressure) { 256 int incr; 257 258 /* Check #2. Increase window, if skb with such overhead 259 * will fit to rcvbuf in future. 260 */ 261 if (tcp_win_from_space(skb->truesize) <= skb->len) 262 incr = 2*tp->advmss; 263 else 264 incr = __tcp_grow_window(sk, tp, skb); 265 266 if (incr) { 267 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp); 268 inet_csk(sk)->icsk_ack.quick |= 1; 269 } 270 } 271 } 272 273 /* 3. Tuning rcvbuf, when connection enters established state. */ 274 275 static void tcp_fixup_rcvbuf(struct sock *sk) 276 { 277 struct tcp_sock *tp = tcp_sk(sk); 278 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 279 280 /* Try to select rcvbuf so that 4 mss-sized segments 281 * will fit to window and corresponding skbs will fit to our rcvbuf. 282 * (was 3; 4 is minimum to allow fast retransmit to work.) 283 */ 284 while (tcp_win_from_space(rcvmem) < tp->advmss) 285 rcvmem += 128; 286 if (sk->sk_rcvbuf < 4 * rcvmem) 287 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 288 } 289 290 /* 4. Try to fixup all. It is made immediately after connection enters 291 * established state. 292 */ 293 static void tcp_init_buffer_space(struct sock *sk) 294 { 295 struct tcp_sock *tp = tcp_sk(sk); 296 int maxwin; 297 298 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 299 tcp_fixup_rcvbuf(sk); 300 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 301 tcp_fixup_sndbuf(sk); 302 303 tp->rcvq_space.space = tp->rcv_wnd; 304 305 maxwin = tcp_full_space(sk); 306 307 if (tp->window_clamp >= maxwin) { 308 tp->window_clamp = maxwin; 309 310 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 311 tp->window_clamp = max(maxwin - 312 (maxwin >> sysctl_tcp_app_win), 313 4 * tp->advmss); 314 } 315 316 /* Force reservation of one segment. */ 317 if (sysctl_tcp_app_win && 318 tp->window_clamp > 2 * tp->advmss && 319 tp->window_clamp + tp->advmss > maxwin) 320 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 321 322 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 323 tp->snd_cwnd_stamp = tcp_time_stamp; 324 } 325 326 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 327 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp) 328 { 329 struct inet_connection_sock *icsk = inet_csk(sk); 330 331 icsk->icsk_ack.quick = 0; 332 333 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 334 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 335 !tcp_memory_pressure && 336 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 337 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 338 sysctl_tcp_rmem[2]); 339 } 340 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 341 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss); 342 } 343 344 /* Receiver "autotuning" code. 345 * 346 * The algorithm for RTT estimation w/o timestamps is based on 347 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 348 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 349 * 350 * More detail on this code can be found at 351 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 352 * though this reference is out of date. A new paper 353 * is pending. 354 */ 355 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 356 { 357 u32 new_sample = tp->rcv_rtt_est.rtt; 358 long m = sample; 359 360 if (m == 0) 361 m = 1; 362 363 if (new_sample != 0) { 364 /* If we sample in larger samples in the non-timestamp 365 * case, we could grossly overestimate the RTT especially 366 * with chatty applications or bulk transfer apps which 367 * are stalled on filesystem I/O. 368 * 369 * Also, since we are only going for a minimum in the 370 * non-timestamp case, we do not smooth things out 371 * else with timestamps disabled convergence takes too 372 * long. 373 */ 374 if (!win_dep) { 375 m -= (new_sample >> 3); 376 new_sample += m; 377 } else if (m < new_sample) 378 new_sample = m << 3; 379 } else { 380 /* No previous measure. */ 381 new_sample = m << 3; 382 } 383 384 if (tp->rcv_rtt_est.rtt != new_sample) 385 tp->rcv_rtt_est.rtt = new_sample; 386 } 387 388 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 389 { 390 if (tp->rcv_rtt_est.time == 0) 391 goto new_measure; 392 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 393 return; 394 tcp_rcv_rtt_update(tp, 395 jiffies - tp->rcv_rtt_est.time, 396 1); 397 398 new_measure: 399 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 400 tp->rcv_rtt_est.time = tcp_time_stamp; 401 } 402 403 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb) 404 { 405 struct tcp_sock *tp = tcp_sk(sk); 406 if (tp->rx_opt.rcv_tsecr && 407 (TCP_SKB_CB(skb)->end_seq - 408 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 409 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 410 } 411 412 /* 413 * This function should be called every time data is copied to user space. 414 * It calculates the appropriate TCP receive buffer space. 415 */ 416 void tcp_rcv_space_adjust(struct sock *sk) 417 { 418 struct tcp_sock *tp = tcp_sk(sk); 419 int time; 420 int space; 421 422 if (tp->rcvq_space.time == 0) 423 goto new_measure; 424 425 time = tcp_time_stamp - tp->rcvq_space.time; 426 if (time < (tp->rcv_rtt_est.rtt >> 3) || 427 tp->rcv_rtt_est.rtt == 0) 428 return; 429 430 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 431 432 space = max(tp->rcvq_space.space, space); 433 434 if (tp->rcvq_space.space != space) { 435 int rcvmem; 436 437 tp->rcvq_space.space = space; 438 439 if (sysctl_tcp_moderate_rcvbuf) { 440 int new_clamp = space; 441 442 /* Receive space grows, normalize in order to 443 * take into account packet headers and sk_buff 444 * structure overhead. 445 */ 446 space /= tp->advmss; 447 if (!space) 448 space = 1; 449 rcvmem = (tp->advmss + MAX_TCP_HEADER + 450 16 + sizeof(struct sk_buff)); 451 while (tcp_win_from_space(rcvmem) < tp->advmss) 452 rcvmem += 128; 453 space *= rcvmem; 454 space = min(space, sysctl_tcp_rmem[2]); 455 if (space > sk->sk_rcvbuf) { 456 sk->sk_rcvbuf = space; 457 458 /* Make the window clamp follow along. */ 459 tp->window_clamp = new_clamp; 460 } 461 } 462 } 463 464 new_measure: 465 tp->rcvq_space.seq = tp->copied_seq; 466 tp->rcvq_space.time = tcp_time_stamp; 467 } 468 469 /* There is something which you must keep in mind when you analyze the 470 * behavior of the tp->ato delayed ack timeout interval. When a 471 * connection starts up, we want to ack as quickly as possible. The 472 * problem is that "good" TCP's do slow start at the beginning of data 473 * transmission. The means that until we send the first few ACK's the 474 * sender will sit on his end and only queue most of his data, because 475 * he can only send snd_cwnd unacked packets at any given time. For 476 * each ACK we send, he increments snd_cwnd and transmits more of his 477 * queue. -DaveM 478 */ 479 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) 480 { 481 struct inet_connection_sock *icsk = inet_csk(sk); 482 u32 now; 483 484 inet_csk_schedule_ack(sk); 485 486 tcp_measure_rcv_mss(sk, skb); 487 488 tcp_rcv_rtt_measure(tp); 489 490 now = tcp_time_stamp; 491 492 if (!icsk->icsk_ack.ato) { 493 /* The _first_ data packet received, initialize 494 * delayed ACK engine. 495 */ 496 tcp_incr_quickack(sk); 497 icsk->icsk_ack.ato = TCP_ATO_MIN; 498 } else { 499 int m = now - icsk->icsk_ack.lrcvtime; 500 501 if (m <= TCP_ATO_MIN/2) { 502 /* The fastest case is the first. */ 503 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 504 } else if (m < icsk->icsk_ack.ato) { 505 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 506 if (icsk->icsk_ack.ato > icsk->icsk_rto) 507 icsk->icsk_ack.ato = icsk->icsk_rto; 508 } else if (m > icsk->icsk_rto) { 509 /* Too long gap. Apparently sender failed to 510 * restart window, so that we send ACKs quickly. 511 */ 512 tcp_incr_quickack(sk); 513 sk_stream_mem_reclaim(sk); 514 } 515 } 516 icsk->icsk_ack.lrcvtime = now; 517 518 TCP_ECN_check_ce(tp, skb); 519 520 if (skb->len >= 128) 521 tcp_grow_window(sk, tp, skb); 522 } 523 524 /* Called to compute a smoothed rtt estimate. The data fed to this 525 * routine either comes from timestamps, or from segments that were 526 * known _not_ to have been retransmitted [see Karn/Partridge 527 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 528 * piece by Van Jacobson. 529 * NOTE: the next three routines used to be one big routine. 530 * To save cycles in the RFC 1323 implementation it was better to break 531 * it up into three procedures. -- erics 532 */ 533 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 534 { 535 struct tcp_sock *tp = tcp_sk(sk); 536 long m = mrtt; /* RTT */ 537 538 /* The following amusing code comes from Jacobson's 539 * article in SIGCOMM '88. Note that rtt and mdev 540 * are scaled versions of rtt and mean deviation. 541 * This is designed to be as fast as possible 542 * m stands for "measurement". 543 * 544 * On a 1990 paper the rto value is changed to: 545 * RTO = rtt + 4 * mdev 546 * 547 * Funny. This algorithm seems to be very broken. 548 * These formulae increase RTO, when it should be decreased, increase 549 * too slowly, when it should be increased quickly, decrease too quickly 550 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 551 * does not matter how to _calculate_ it. Seems, it was trap 552 * that VJ failed to avoid. 8) 553 */ 554 if(m == 0) 555 m = 1; 556 if (tp->srtt != 0) { 557 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 558 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 559 if (m < 0) { 560 m = -m; /* m is now abs(error) */ 561 m -= (tp->mdev >> 2); /* similar update on mdev */ 562 /* This is similar to one of Eifel findings. 563 * Eifel blocks mdev updates when rtt decreases. 564 * This solution is a bit different: we use finer gain 565 * for mdev in this case (alpha*beta). 566 * Like Eifel it also prevents growth of rto, 567 * but also it limits too fast rto decreases, 568 * happening in pure Eifel. 569 */ 570 if (m > 0) 571 m >>= 3; 572 } else { 573 m -= (tp->mdev >> 2); /* similar update on mdev */ 574 } 575 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 576 if (tp->mdev > tp->mdev_max) { 577 tp->mdev_max = tp->mdev; 578 if (tp->mdev_max > tp->rttvar) 579 tp->rttvar = tp->mdev_max; 580 } 581 if (after(tp->snd_una, tp->rtt_seq)) { 582 if (tp->mdev_max < tp->rttvar) 583 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2; 584 tp->rtt_seq = tp->snd_nxt; 585 tp->mdev_max = TCP_RTO_MIN; 586 } 587 } else { 588 /* no previous measure. */ 589 tp->srtt = m<<3; /* take the measured time to be rtt */ 590 tp->mdev = m<<1; /* make sure rto = 3*rtt */ 591 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 592 tp->rtt_seq = tp->snd_nxt; 593 } 594 } 595 596 /* Calculate rto without backoff. This is the second half of Van Jacobson's 597 * routine referred to above. 598 */ 599 static inline void tcp_set_rto(struct sock *sk) 600 { 601 const struct tcp_sock *tp = tcp_sk(sk); 602 /* Old crap is replaced with new one. 8) 603 * 604 * More seriously: 605 * 1. If rtt variance happened to be less 50msec, it is hallucination. 606 * It cannot be less due to utterly erratic ACK generation made 607 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 608 * to do with delayed acks, because at cwnd>2 true delack timeout 609 * is invisible. Actually, Linux-2.4 also generates erratic 610 * ACKs in some circumstances. 611 */ 612 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 613 614 /* 2. Fixups made earlier cannot be right. 615 * If we do not estimate RTO correctly without them, 616 * all the algo is pure shit and should be replaced 617 * with correct one. It is exactly, which we pretend to do. 618 */ 619 } 620 621 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 622 * guarantees that rto is higher. 623 */ 624 static inline void tcp_bound_rto(struct sock *sk) 625 { 626 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 627 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 628 } 629 630 /* Save metrics learned by this TCP session. 631 This function is called only, when TCP finishes successfully 632 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 633 */ 634 void tcp_update_metrics(struct sock *sk) 635 { 636 struct tcp_sock *tp = tcp_sk(sk); 637 struct dst_entry *dst = __sk_dst_get(sk); 638 639 if (sysctl_tcp_nometrics_save) 640 return; 641 642 dst_confirm(dst); 643 644 if (dst && (dst->flags&DST_HOST)) { 645 const struct inet_connection_sock *icsk = inet_csk(sk); 646 int m; 647 648 if (icsk->icsk_backoff || !tp->srtt) { 649 /* This session failed to estimate rtt. Why? 650 * Probably, no packets returned in time. 651 * Reset our results. 652 */ 653 if (!(dst_metric_locked(dst, RTAX_RTT))) 654 dst->metrics[RTAX_RTT-1] = 0; 655 return; 656 } 657 658 m = dst_metric(dst, RTAX_RTT) - tp->srtt; 659 660 /* If newly calculated rtt larger than stored one, 661 * store new one. Otherwise, use EWMA. Remember, 662 * rtt overestimation is always better than underestimation. 663 */ 664 if (!(dst_metric_locked(dst, RTAX_RTT))) { 665 if (m <= 0) 666 dst->metrics[RTAX_RTT-1] = tp->srtt; 667 else 668 dst->metrics[RTAX_RTT-1] -= (m>>3); 669 } 670 671 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 672 if (m < 0) 673 m = -m; 674 675 /* Scale deviation to rttvar fixed point */ 676 m >>= 1; 677 if (m < tp->mdev) 678 m = tp->mdev; 679 680 if (m >= dst_metric(dst, RTAX_RTTVAR)) 681 dst->metrics[RTAX_RTTVAR-1] = m; 682 else 683 dst->metrics[RTAX_RTTVAR-1] -= 684 (dst->metrics[RTAX_RTTVAR-1] - m)>>2; 685 } 686 687 if (tp->snd_ssthresh >= 0xFFFF) { 688 /* Slow start still did not finish. */ 689 if (dst_metric(dst, RTAX_SSTHRESH) && 690 !dst_metric_locked(dst, RTAX_SSTHRESH) && 691 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 692 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 693 if (!dst_metric_locked(dst, RTAX_CWND) && 694 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 695 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd; 696 } else if (tp->snd_cwnd > tp->snd_ssthresh && 697 icsk->icsk_ca_state == TCP_CA_Open) { 698 /* Cong. avoidance phase, cwnd is reliable. */ 699 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 700 dst->metrics[RTAX_SSTHRESH-1] = 701 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 702 if (!dst_metric_locked(dst, RTAX_CWND)) 703 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; 704 } else { 705 /* Else slow start did not finish, cwnd is non-sense, 706 ssthresh may be also invalid. 707 */ 708 if (!dst_metric_locked(dst, RTAX_CWND)) 709 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; 710 if (dst->metrics[RTAX_SSTHRESH-1] && 711 !dst_metric_locked(dst, RTAX_SSTHRESH) && 712 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) 713 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 714 } 715 716 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 717 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && 718 tp->reordering != sysctl_tcp_reordering) 719 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 720 } 721 } 722 } 723 724 /* Numbers are taken from RFC2414. */ 725 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 726 { 727 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 728 729 if (!cwnd) { 730 if (tp->mss_cache > 1460) 731 cwnd = 2; 732 else 733 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 734 } 735 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 736 } 737 738 /* Initialize metrics on socket. */ 739 740 static void tcp_init_metrics(struct sock *sk) 741 { 742 struct tcp_sock *tp = tcp_sk(sk); 743 struct dst_entry *dst = __sk_dst_get(sk); 744 745 if (dst == NULL) 746 goto reset; 747 748 dst_confirm(dst); 749 750 if (dst_metric_locked(dst, RTAX_CWND)) 751 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 752 if (dst_metric(dst, RTAX_SSTHRESH)) { 753 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 754 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 755 tp->snd_ssthresh = tp->snd_cwnd_clamp; 756 } 757 if (dst_metric(dst, RTAX_REORDERING) && 758 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 759 tp->rx_opt.sack_ok &= ~2; 760 tp->reordering = dst_metric(dst, RTAX_REORDERING); 761 } 762 763 if (dst_metric(dst, RTAX_RTT) == 0) 764 goto reset; 765 766 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 767 goto reset; 768 769 /* Initial rtt is determined from SYN,SYN-ACK. 770 * The segment is small and rtt may appear much 771 * less than real one. Use per-dst memory 772 * to make it more realistic. 773 * 774 * A bit of theory. RTT is time passed after "normal" sized packet 775 * is sent until it is ACKed. In normal circumstances sending small 776 * packets force peer to delay ACKs and calculation is correct too. 777 * The algorithm is adaptive and, provided we follow specs, it 778 * NEVER underestimate RTT. BUT! If peer tries to make some clever 779 * tricks sort of "quick acks" for time long enough to decrease RTT 780 * to low value, and then abruptly stops to do it and starts to delay 781 * ACKs, wait for troubles. 782 */ 783 if (dst_metric(dst, RTAX_RTT) > tp->srtt) { 784 tp->srtt = dst_metric(dst, RTAX_RTT); 785 tp->rtt_seq = tp->snd_nxt; 786 } 787 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { 788 tp->mdev = dst_metric(dst, RTAX_RTTVAR); 789 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 790 } 791 tcp_set_rto(sk); 792 tcp_bound_rto(sk); 793 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 794 goto reset; 795 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 796 tp->snd_cwnd_stamp = tcp_time_stamp; 797 return; 798 799 reset: 800 /* Play conservative. If timestamps are not 801 * supported, TCP will fail to recalculate correct 802 * rtt, if initial rto is too small. FORGET ALL AND RESET! 803 */ 804 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 805 tp->srtt = 0; 806 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 807 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 808 } 809 } 810 811 static void tcp_update_reordering(struct sock *sk, const int metric, 812 const int ts) 813 { 814 struct tcp_sock *tp = tcp_sk(sk); 815 if (metric > tp->reordering) { 816 tp->reordering = min(TCP_MAX_REORDERING, metric); 817 818 /* This exciting event is worth to be remembered. 8) */ 819 if (ts) 820 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); 821 else if (IsReno(tp)) 822 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); 823 else if (IsFack(tp)) 824 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); 825 else 826 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); 827 #if FASTRETRANS_DEBUG > 1 828 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 829 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 830 tp->reordering, 831 tp->fackets_out, 832 tp->sacked_out, 833 tp->undo_marker ? tp->undo_retrans : 0); 834 #endif 835 /* Disable FACK yet. */ 836 tp->rx_opt.sack_ok &= ~2; 837 } 838 } 839 840 /* This procedure tags the retransmission queue when SACKs arrive. 841 * 842 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 843 * Packets in queue with these bits set are counted in variables 844 * sacked_out, retrans_out and lost_out, correspondingly. 845 * 846 * Valid combinations are: 847 * Tag InFlight Description 848 * 0 1 - orig segment is in flight. 849 * S 0 - nothing flies, orig reached receiver. 850 * L 0 - nothing flies, orig lost by net. 851 * R 2 - both orig and retransmit are in flight. 852 * L|R 1 - orig is lost, retransmit is in flight. 853 * S|R 1 - orig reached receiver, retrans is still in flight. 854 * (L|S|R is logically valid, it could occur when L|R is sacked, 855 * but it is equivalent to plain S and code short-curcuits it to S. 856 * L|S is logically invalid, it would mean -1 packet in flight 8)) 857 * 858 * These 6 states form finite state machine, controlled by the following events: 859 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 860 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 861 * 3. Loss detection event of one of three flavors: 862 * A. Scoreboard estimator decided the packet is lost. 863 * A'. Reno "three dupacks" marks head of queue lost. 864 * A''. Its FACK modfication, head until snd.fack is lost. 865 * B. SACK arrives sacking data transmitted after never retransmitted 866 * hole was sent out. 867 * C. SACK arrives sacking SND.NXT at the moment, when the 868 * segment was retransmitted. 869 * 4. D-SACK added new rule: D-SACK changes any tag to S. 870 * 871 * It is pleasant to note, that state diagram turns out to be commutative, 872 * so that we are allowed not to be bothered by order of our actions, 873 * when multiple events arrive simultaneously. (see the function below). 874 * 875 * Reordering detection. 876 * -------------------- 877 * Reordering metric is maximal distance, which a packet can be displaced 878 * in packet stream. With SACKs we can estimate it: 879 * 880 * 1. SACK fills old hole and the corresponding segment was not 881 * ever retransmitted -> reordering. Alas, we cannot use it 882 * when segment was retransmitted. 883 * 2. The last flaw is solved with D-SACK. D-SACK arrives 884 * for retransmitted and already SACKed segment -> reordering.. 885 * Both of these heuristics are not used in Loss state, when we cannot 886 * account for retransmits accurately. 887 */ 888 static int 889 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una) 890 { 891 const struct inet_connection_sock *icsk = inet_csk(sk); 892 struct tcp_sock *tp = tcp_sk(sk); 893 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked; 894 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2); 895 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3; 896 int reord = tp->packets_out; 897 int prior_fackets; 898 u32 lost_retrans = 0; 899 int flag = 0; 900 int dup_sack = 0; 901 int i; 902 903 if (!tp->sacked_out) 904 tp->fackets_out = 0; 905 prior_fackets = tp->fackets_out; 906 907 /* SACK fastpath: 908 * if the only SACK change is the increase of the end_seq of 909 * the first block then only apply that SACK block 910 * and use retrans queue hinting otherwise slowpath */ 911 flag = 1; 912 for (i = 0; i< num_sacks; i++) { 913 __u32 start_seq = ntohl(sp[i].start_seq); 914 __u32 end_seq = ntohl(sp[i].end_seq); 915 916 if (i == 0){ 917 if (tp->recv_sack_cache[i].start_seq != start_seq) 918 flag = 0; 919 } else { 920 if ((tp->recv_sack_cache[i].start_seq != start_seq) || 921 (tp->recv_sack_cache[i].end_seq != end_seq)) 922 flag = 0; 923 } 924 tp->recv_sack_cache[i].start_seq = start_seq; 925 tp->recv_sack_cache[i].end_seq = end_seq; 926 927 /* Check for D-SACK. */ 928 if (i == 0) { 929 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq; 930 931 if (before(start_seq, ack)) { 932 dup_sack = 1; 933 tp->rx_opt.sack_ok |= 4; 934 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); 935 } else if (num_sacks > 1 && 936 !after(end_seq, ntohl(sp[1].end_seq)) && 937 !before(start_seq, ntohl(sp[1].start_seq))) { 938 dup_sack = 1; 939 tp->rx_opt.sack_ok |= 4; 940 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); 941 } 942 943 /* D-SACK for already forgotten data... 944 * Do dumb counting. */ 945 if (dup_sack && 946 !after(end_seq, prior_snd_una) && 947 after(end_seq, tp->undo_marker)) 948 tp->undo_retrans--; 949 950 /* Eliminate too old ACKs, but take into 951 * account more or less fresh ones, they can 952 * contain valid SACK info. 953 */ 954 if (before(ack, prior_snd_una - tp->max_window)) 955 return 0; 956 } 957 } 958 959 if (flag) 960 num_sacks = 1; 961 else { 962 int j; 963 tp->fastpath_skb_hint = NULL; 964 965 /* order SACK blocks to allow in order walk of the retrans queue */ 966 for (i = num_sacks-1; i > 0; i--) { 967 for (j = 0; j < i; j++){ 968 if (after(ntohl(sp[j].start_seq), 969 ntohl(sp[j+1].start_seq))){ 970 sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq); 971 sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq); 972 sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq); 973 sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq); 974 } 975 976 } 977 } 978 } 979 980 /* clear flag as used for different purpose in following code */ 981 flag = 0; 982 983 for (i=0; i<num_sacks; i++, sp++) { 984 struct sk_buff *skb; 985 __u32 start_seq = ntohl(sp->start_seq); 986 __u32 end_seq = ntohl(sp->end_seq); 987 int fack_count; 988 989 /* Use SACK fastpath hint if valid */ 990 if (tp->fastpath_skb_hint) { 991 skb = tp->fastpath_skb_hint; 992 fack_count = tp->fastpath_cnt_hint; 993 } else { 994 skb = sk->sk_write_queue.next; 995 fack_count = 0; 996 } 997 998 /* Event "B" in the comment above. */ 999 if (after(end_seq, tp->high_seq)) 1000 flag |= FLAG_DATA_LOST; 1001 1002 sk_stream_for_retrans_queue_from(skb, sk) { 1003 int in_sack, pcount; 1004 u8 sacked; 1005 1006 tp->fastpath_skb_hint = skb; 1007 tp->fastpath_cnt_hint = fack_count; 1008 1009 /* The retransmission queue is always in order, so 1010 * we can short-circuit the walk early. 1011 */ 1012 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1013 break; 1014 1015 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1016 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1017 1018 pcount = tcp_skb_pcount(skb); 1019 1020 if (pcount > 1 && !in_sack && 1021 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1022 unsigned int pkt_len; 1023 1024 in_sack = !after(start_seq, 1025 TCP_SKB_CB(skb)->seq); 1026 1027 if (!in_sack) 1028 pkt_len = (start_seq - 1029 TCP_SKB_CB(skb)->seq); 1030 else 1031 pkt_len = (end_seq - 1032 TCP_SKB_CB(skb)->seq); 1033 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size)) 1034 break; 1035 pcount = tcp_skb_pcount(skb); 1036 } 1037 1038 fack_count += pcount; 1039 1040 sacked = TCP_SKB_CB(skb)->sacked; 1041 1042 /* Account D-SACK for retransmitted packet. */ 1043 if ((dup_sack && in_sack) && 1044 (sacked & TCPCB_RETRANS) && 1045 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1046 tp->undo_retrans--; 1047 1048 /* The frame is ACKed. */ 1049 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) { 1050 if (sacked&TCPCB_RETRANS) { 1051 if ((dup_sack && in_sack) && 1052 (sacked&TCPCB_SACKED_ACKED)) 1053 reord = min(fack_count, reord); 1054 } else { 1055 /* If it was in a hole, we detected reordering. */ 1056 if (fack_count < prior_fackets && 1057 !(sacked&TCPCB_SACKED_ACKED)) 1058 reord = min(fack_count, reord); 1059 } 1060 1061 /* Nothing to do; acked frame is about to be dropped. */ 1062 continue; 1063 } 1064 1065 if ((sacked&TCPCB_SACKED_RETRANS) && 1066 after(end_seq, TCP_SKB_CB(skb)->ack_seq) && 1067 (!lost_retrans || after(end_seq, lost_retrans))) 1068 lost_retrans = end_seq; 1069 1070 if (!in_sack) 1071 continue; 1072 1073 if (!(sacked&TCPCB_SACKED_ACKED)) { 1074 if (sacked & TCPCB_SACKED_RETRANS) { 1075 /* If the segment is not tagged as lost, 1076 * we do not clear RETRANS, believing 1077 * that retransmission is still in flight. 1078 */ 1079 if (sacked & TCPCB_LOST) { 1080 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1081 tp->lost_out -= tcp_skb_pcount(skb); 1082 tp->retrans_out -= tcp_skb_pcount(skb); 1083 1084 /* clear lost hint */ 1085 tp->retransmit_skb_hint = NULL; 1086 } 1087 } else { 1088 /* New sack for not retransmitted frame, 1089 * which was in hole. It is reordering. 1090 */ 1091 if (!(sacked & TCPCB_RETRANS) && 1092 fack_count < prior_fackets) 1093 reord = min(fack_count, reord); 1094 1095 if (sacked & TCPCB_LOST) { 1096 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1097 tp->lost_out -= tcp_skb_pcount(skb); 1098 1099 /* clear lost hint */ 1100 tp->retransmit_skb_hint = NULL; 1101 } 1102 } 1103 1104 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; 1105 flag |= FLAG_DATA_SACKED; 1106 tp->sacked_out += tcp_skb_pcount(skb); 1107 1108 if (fack_count > tp->fackets_out) 1109 tp->fackets_out = fack_count; 1110 } else { 1111 if (dup_sack && (sacked&TCPCB_RETRANS)) 1112 reord = min(fack_count, reord); 1113 } 1114 1115 /* D-SACK. We can detect redundant retransmission 1116 * in S|R and plain R frames and clear it. 1117 * undo_retrans is decreased above, L|R frames 1118 * are accounted above as well. 1119 */ 1120 if (dup_sack && 1121 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) { 1122 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1123 tp->retrans_out -= tcp_skb_pcount(skb); 1124 tp->retransmit_skb_hint = NULL; 1125 } 1126 } 1127 } 1128 1129 /* Check for lost retransmit. This superb idea is 1130 * borrowed from "ratehalving". Event "C". 1131 * Later note: FACK people cheated me again 8), 1132 * we have to account for reordering! Ugly, 1133 * but should help. 1134 */ 1135 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) { 1136 struct sk_buff *skb; 1137 1138 sk_stream_for_retrans_queue(skb, sk) { 1139 if (after(TCP_SKB_CB(skb)->seq, lost_retrans)) 1140 break; 1141 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1142 continue; 1143 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) && 1144 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) && 1145 (IsFack(tp) || 1146 !before(lost_retrans, 1147 TCP_SKB_CB(skb)->ack_seq + tp->reordering * 1148 tp->mss_cache))) { 1149 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1150 tp->retrans_out -= tcp_skb_pcount(skb); 1151 1152 /* clear lost hint */ 1153 tp->retransmit_skb_hint = NULL; 1154 1155 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1156 tp->lost_out += tcp_skb_pcount(skb); 1157 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1158 flag |= FLAG_DATA_SACKED; 1159 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); 1160 } 1161 } 1162 } 1163 } 1164 1165 tp->left_out = tp->sacked_out + tp->lost_out; 1166 1167 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss) 1168 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0); 1169 1170 #if FASTRETRANS_DEBUG > 0 1171 BUG_TRAP((int)tp->sacked_out >= 0); 1172 BUG_TRAP((int)tp->lost_out >= 0); 1173 BUG_TRAP((int)tp->retrans_out >= 0); 1174 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); 1175 #endif 1176 return flag; 1177 } 1178 1179 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new 1180 * segments to see from the next ACKs whether any data was really missing. 1181 * If the RTO was spurious, new ACKs should arrive. 1182 */ 1183 void tcp_enter_frto(struct sock *sk) 1184 { 1185 const struct inet_connection_sock *icsk = inet_csk(sk); 1186 struct tcp_sock *tp = tcp_sk(sk); 1187 struct sk_buff *skb; 1188 1189 tp->frto_counter = 1; 1190 1191 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1192 tp->snd_una == tp->high_seq || 1193 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1194 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1195 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1196 tcp_ca_event(sk, CA_EVENT_FRTO); 1197 } 1198 1199 /* Have to clear retransmission markers here to keep the bookkeeping 1200 * in shape, even though we are not yet in Loss state. 1201 * If something was really lost, it is eventually caught up 1202 * in tcp_enter_frto_loss. 1203 */ 1204 tp->retrans_out = 0; 1205 tp->undo_marker = tp->snd_una; 1206 tp->undo_retrans = 0; 1207 1208 sk_stream_for_retrans_queue(skb, sk) { 1209 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS; 1210 } 1211 tcp_sync_left_out(tp); 1212 1213 tcp_set_ca_state(sk, TCP_CA_Open); 1214 tp->frto_highmark = tp->snd_nxt; 1215 } 1216 1217 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1218 * which indicates that we should follow the traditional RTO recovery, 1219 * i.e. mark everything lost and do go-back-N retransmission. 1220 */ 1221 static void tcp_enter_frto_loss(struct sock *sk) 1222 { 1223 struct tcp_sock *tp = tcp_sk(sk); 1224 struct sk_buff *skb; 1225 int cnt = 0; 1226 1227 tp->sacked_out = 0; 1228 tp->lost_out = 0; 1229 tp->fackets_out = 0; 1230 1231 sk_stream_for_retrans_queue(skb, sk) { 1232 cnt += tcp_skb_pcount(skb); 1233 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1234 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1235 1236 /* Do not mark those segments lost that were 1237 * forward transmitted after RTO 1238 */ 1239 if (!after(TCP_SKB_CB(skb)->end_seq, 1240 tp->frto_highmark)) { 1241 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1242 tp->lost_out += tcp_skb_pcount(skb); 1243 } 1244 } else { 1245 tp->sacked_out += tcp_skb_pcount(skb); 1246 tp->fackets_out = cnt; 1247 } 1248 } 1249 tcp_sync_left_out(tp); 1250 1251 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1; 1252 tp->snd_cwnd_cnt = 0; 1253 tp->snd_cwnd_stamp = tcp_time_stamp; 1254 tp->undo_marker = 0; 1255 tp->frto_counter = 0; 1256 1257 tp->reordering = min_t(unsigned int, tp->reordering, 1258 sysctl_tcp_reordering); 1259 tcp_set_ca_state(sk, TCP_CA_Loss); 1260 tp->high_seq = tp->frto_highmark; 1261 TCP_ECN_queue_cwr(tp); 1262 1263 clear_all_retrans_hints(tp); 1264 } 1265 1266 void tcp_clear_retrans(struct tcp_sock *tp) 1267 { 1268 tp->left_out = 0; 1269 tp->retrans_out = 0; 1270 1271 tp->fackets_out = 0; 1272 tp->sacked_out = 0; 1273 tp->lost_out = 0; 1274 1275 tp->undo_marker = 0; 1276 tp->undo_retrans = 0; 1277 } 1278 1279 /* Enter Loss state. If "how" is not zero, forget all SACK information 1280 * and reset tags completely, otherwise preserve SACKs. If receiver 1281 * dropped its ofo queue, we will know this due to reneging detection. 1282 */ 1283 void tcp_enter_loss(struct sock *sk, int how) 1284 { 1285 const struct inet_connection_sock *icsk = inet_csk(sk); 1286 struct tcp_sock *tp = tcp_sk(sk); 1287 struct sk_buff *skb; 1288 int cnt = 0; 1289 1290 /* Reduce ssthresh if it has not yet been made inside this window. */ 1291 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 1292 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1293 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1294 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1295 tcp_ca_event(sk, CA_EVENT_LOSS); 1296 } 1297 tp->snd_cwnd = 1; 1298 tp->snd_cwnd_cnt = 0; 1299 tp->snd_cwnd_stamp = tcp_time_stamp; 1300 1301 tp->bytes_acked = 0; 1302 tcp_clear_retrans(tp); 1303 1304 /* Push undo marker, if it was plain RTO and nothing 1305 * was retransmitted. */ 1306 if (!how) 1307 tp->undo_marker = tp->snd_una; 1308 1309 sk_stream_for_retrans_queue(skb, sk) { 1310 cnt += tcp_skb_pcount(skb); 1311 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1312 tp->undo_marker = 0; 1313 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1314 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1315 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1316 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1317 tp->lost_out += tcp_skb_pcount(skb); 1318 } else { 1319 tp->sacked_out += tcp_skb_pcount(skb); 1320 tp->fackets_out = cnt; 1321 } 1322 } 1323 tcp_sync_left_out(tp); 1324 1325 tp->reordering = min_t(unsigned int, tp->reordering, 1326 sysctl_tcp_reordering); 1327 tcp_set_ca_state(sk, TCP_CA_Loss); 1328 tp->high_seq = tp->snd_nxt; 1329 TCP_ECN_queue_cwr(tp); 1330 1331 clear_all_retrans_hints(tp); 1332 } 1333 1334 static int tcp_check_sack_reneging(struct sock *sk) 1335 { 1336 struct sk_buff *skb; 1337 1338 /* If ACK arrived pointing to a remembered SACK, 1339 * it means that our remembered SACKs do not reflect 1340 * real state of receiver i.e. 1341 * receiver _host_ is heavily congested (or buggy). 1342 * Do processing similar to RTO timeout. 1343 */ 1344 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL && 1345 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 1346 struct inet_connection_sock *icsk = inet_csk(sk); 1347 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); 1348 1349 tcp_enter_loss(sk, 1); 1350 icsk->icsk_retransmits++; 1351 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue)); 1352 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1353 icsk->icsk_rto, TCP_RTO_MAX); 1354 return 1; 1355 } 1356 return 0; 1357 } 1358 1359 static inline int tcp_fackets_out(struct tcp_sock *tp) 1360 { 1361 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out; 1362 } 1363 1364 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 1365 { 1366 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 1367 } 1368 1369 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp) 1370 { 1371 return tp->packets_out && 1372 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue)); 1373 } 1374 1375 /* Linux NewReno/SACK/FACK/ECN state machine. 1376 * -------------------------------------- 1377 * 1378 * "Open" Normal state, no dubious events, fast path. 1379 * "Disorder" In all the respects it is "Open", 1380 * but requires a bit more attention. It is entered when 1381 * we see some SACKs or dupacks. It is split of "Open" 1382 * mainly to move some processing from fast path to slow one. 1383 * "CWR" CWND was reduced due to some Congestion Notification event. 1384 * It can be ECN, ICMP source quench, local device congestion. 1385 * "Recovery" CWND was reduced, we are fast-retransmitting. 1386 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 1387 * 1388 * tcp_fastretrans_alert() is entered: 1389 * - each incoming ACK, if state is not "Open" 1390 * - when arrived ACK is unusual, namely: 1391 * * SACK 1392 * * Duplicate ACK. 1393 * * ECN ECE. 1394 * 1395 * Counting packets in flight is pretty simple. 1396 * 1397 * in_flight = packets_out - left_out + retrans_out 1398 * 1399 * packets_out is SND.NXT-SND.UNA counted in packets. 1400 * 1401 * retrans_out is number of retransmitted segments. 1402 * 1403 * left_out is number of segments left network, but not ACKed yet. 1404 * 1405 * left_out = sacked_out + lost_out 1406 * 1407 * sacked_out: Packets, which arrived to receiver out of order 1408 * and hence not ACKed. With SACKs this number is simply 1409 * amount of SACKed data. Even without SACKs 1410 * it is easy to give pretty reliable estimate of this number, 1411 * counting duplicate ACKs. 1412 * 1413 * lost_out: Packets lost by network. TCP has no explicit 1414 * "loss notification" feedback from network (for now). 1415 * It means that this number can be only _guessed_. 1416 * Actually, it is the heuristics to predict lossage that 1417 * distinguishes different algorithms. 1418 * 1419 * F.e. after RTO, when all the queue is considered as lost, 1420 * lost_out = packets_out and in_flight = retrans_out. 1421 * 1422 * Essentially, we have now two algorithms counting 1423 * lost packets. 1424 * 1425 * FACK: It is the simplest heuristics. As soon as we decided 1426 * that something is lost, we decide that _all_ not SACKed 1427 * packets until the most forward SACK are lost. I.e. 1428 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 1429 * It is absolutely correct estimate, if network does not reorder 1430 * packets. And it loses any connection to reality when reordering 1431 * takes place. We use FACK by default until reordering 1432 * is suspected on the path to this destination. 1433 * 1434 * NewReno: when Recovery is entered, we assume that one segment 1435 * is lost (classic Reno). While we are in Recovery and 1436 * a partial ACK arrives, we assume that one more packet 1437 * is lost (NewReno). This heuristics are the same in NewReno 1438 * and SACK. 1439 * 1440 * Imagine, that's all! Forget about all this shamanism about CWND inflation 1441 * deflation etc. CWND is real congestion window, never inflated, changes 1442 * only according to classic VJ rules. 1443 * 1444 * Really tricky (and requiring careful tuning) part of algorithm 1445 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 1446 * The first determines the moment _when_ we should reduce CWND and, 1447 * hence, slow down forward transmission. In fact, it determines the moment 1448 * when we decide that hole is caused by loss, rather than by a reorder. 1449 * 1450 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 1451 * holes, caused by lost packets. 1452 * 1453 * And the most logically complicated part of algorithm is undo 1454 * heuristics. We detect false retransmits due to both too early 1455 * fast retransmit (reordering) and underestimated RTO, analyzing 1456 * timestamps and D-SACKs. When we detect that some segments were 1457 * retransmitted by mistake and CWND reduction was wrong, we undo 1458 * window reduction and abort recovery phase. This logic is hidden 1459 * inside several functions named tcp_try_undo_<something>. 1460 */ 1461 1462 /* This function decides, when we should leave Disordered state 1463 * and enter Recovery phase, reducing congestion window. 1464 * 1465 * Main question: may we further continue forward transmission 1466 * with the same cwnd? 1467 */ 1468 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp) 1469 { 1470 __u32 packets_out; 1471 1472 /* Trick#1: The loss is proven. */ 1473 if (tp->lost_out) 1474 return 1; 1475 1476 /* Not-A-Trick#2 : Classic rule... */ 1477 if (tcp_fackets_out(tp) > tp->reordering) 1478 return 1; 1479 1480 /* Trick#3 : when we use RFC2988 timer restart, fast 1481 * retransmit can be triggered by timeout of queue head. 1482 */ 1483 if (tcp_head_timedout(sk, tp)) 1484 return 1; 1485 1486 /* Trick#4: It is still not OK... But will it be useful to delay 1487 * recovery more? 1488 */ 1489 packets_out = tp->packets_out; 1490 if (packets_out <= tp->reordering && 1491 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 1492 !tcp_may_send_now(sk, tp)) { 1493 /* We have nothing to send. This connection is limited 1494 * either by receiver window or by application. 1495 */ 1496 return 1; 1497 } 1498 1499 return 0; 1500 } 1501 1502 /* If we receive more dupacks than we expected counting segments 1503 * in assumption of absent reordering, interpret this as reordering. 1504 * The only another reason could be bug in receiver TCP. 1505 */ 1506 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1507 { 1508 struct tcp_sock *tp = tcp_sk(sk); 1509 u32 holes; 1510 1511 holes = max(tp->lost_out, 1U); 1512 holes = min(holes, tp->packets_out); 1513 1514 if ((tp->sacked_out + holes) > tp->packets_out) { 1515 tp->sacked_out = tp->packets_out - holes; 1516 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1517 } 1518 } 1519 1520 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1521 1522 static void tcp_add_reno_sack(struct sock *sk) 1523 { 1524 struct tcp_sock *tp = tcp_sk(sk); 1525 tp->sacked_out++; 1526 tcp_check_reno_reordering(sk, 0); 1527 tcp_sync_left_out(tp); 1528 } 1529 1530 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1531 1532 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked) 1533 { 1534 if (acked > 0) { 1535 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1536 if (acked-1 >= tp->sacked_out) 1537 tp->sacked_out = 0; 1538 else 1539 tp->sacked_out -= acked-1; 1540 } 1541 tcp_check_reno_reordering(sk, acked); 1542 tcp_sync_left_out(tp); 1543 } 1544 1545 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1546 { 1547 tp->sacked_out = 0; 1548 tp->left_out = tp->lost_out; 1549 } 1550 1551 /* Mark head of queue up as lost. */ 1552 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp, 1553 int packets, u32 high_seq) 1554 { 1555 struct sk_buff *skb; 1556 int cnt; 1557 1558 BUG_TRAP(packets <= tp->packets_out); 1559 if (tp->lost_skb_hint) { 1560 skb = tp->lost_skb_hint; 1561 cnt = tp->lost_cnt_hint; 1562 } else { 1563 skb = sk->sk_write_queue.next; 1564 cnt = 0; 1565 } 1566 1567 sk_stream_for_retrans_queue_from(skb, sk) { 1568 /* TODO: do this better */ 1569 /* this is not the most efficient way to do this... */ 1570 tp->lost_skb_hint = skb; 1571 tp->lost_cnt_hint = cnt; 1572 cnt += tcp_skb_pcount(skb); 1573 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq)) 1574 break; 1575 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1576 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1577 tp->lost_out += tcp_skb_pcount(skb); 1578 1579 /* clear xmit_retransmit_queue hints 1580 * if this is beyond hint */ 1581 if(tp->retransmit_skb_hint != NULL && 1582 before(TCP_SKB_CB(skb)->seq, 1583 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) { 1584 1585 tp->retransmit_skb_hint = NULL; 1586 } 1587 } 1588 } 1589 tcp_sync_left_out(tp); 1590 } 1591 1592 /* Account newly detected lost packet(s) */ 1593 1594 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp) 1595 { 1596 if (IsFack(tp)) { 1597 int lost = tp->fackets_out - tp->reordering; 1598 if (lost <= 0) 1599 lost = 1; 1600 tcp_mark_head_lost(sk, tp, lost, tp->high_seq); 1601 } else { 1602 tcp_mark_head_lost(sk, tp, 1, tp->high_seq); 1603 } 1604 1605 /* New heuristics: it is possible only after we switched 1606 * to restart timer each time when something is ACKed. 1607 * Hence, we can detect timed out packets during fast 1608 * retransmit without falling to slow start. 1609 */ 1610 if (tcp_head_timedout(sk, tp)) { 1611 struct sk_buff *skb; 1612 1613 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint 1614 : sk->sk_write_queue.next; 1615 1616 sk_stream_for_retrans_queue_from(skb, sk) { 1617 if (!tcp_skb_timedout(sk, skb)) 1618 break; 1619 1620 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1621 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1622 tp->lost_out += tcp_skb_pcount(skb); 1623 1624 /* clear xmit_retrans hint */ 1625 if (tp->retransmit_skb_hint && 1626 before(TCP_SKB_CB(skb)->seq, 1627 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 1628 1629 tp->retransmit_skb_hint = NULL; 1630 } 1631 } 1632 1633 tp->scoreboard_skb_hint = skb; 1634 1635 tcp_sync_left_out(tp); 1636 } 1637 } 1638 1639 /* CWND moderation, preventing bursts due to too big ACKs 1640 * in dubious situations. 1641 */ 1642 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 1643 { 1644 tp->snd_cwnd = min(tp->snd_cwnd, 1645 tcp_packets_in_flight(tp)+tcp_max_burst(tp)); 1646 tp->snd_cwnd_stamp = tcp_time_stamp; 1647 } 1648 1649 /* Decrease cwnd each second ack. */ 1650 static void tcp_cwnd_down(struct sock *sk) 1651 { 1652 const struct inet_connection_sock *icsk = inet_csk(sk); 1653 struct tcp_sock *tp = tcp_sk(sk); 1654 int decr = tp->snd_cwnd_cnt + 1; 1655 1656 tp->snd_cwnd_cnt = decr&1; 1657 decr >>= 1; 1658 1659 if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk)) 1660 tp->snd_cwnd -= decr; 1661 1662 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1); 1663 tp->snd_cwnd_stamp = tcp_time_stamp; 1664 } 1665 1666 /* Nothing was retransmitted or returned timestamp is less 1667 * than timestamp of the first retransmission. 1668 */ 1669 static inline int tcp_packet_delayed(struct tcp_sock *tp) 1670 { 1671 return !tp->retrans_stamp || 1672 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 1673 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0); 1674 } 1675 1676 /* Undo procedures. */ 1677 1678 #if FASTRETRANS_DEBUG > 1 1679 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg) 1680 { 1681 struct inet_sock *inet = inet_sk(sk); 1682 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n", 1683 msg, 1684 NIPQUAD(inet->daddr), ntohs(inet->dport), 1685 tp->snd_cwnd, tp->left_out, 1686 tp->snd_ssthresh, tp->prior_ssthresh, 1687 tp->packets_out); 1688 } 1689 #else 1690 #define DBGUNDO(x...) do { } while (0) 1691 #endif 1692 1693 static void tcp_undo_cwr(struct sock *sk, const int undo) 1694 { 1695 struct tcp_sock *tp = tcp_sk(sk); 1696 1697 if (tp->prior_ssthresh) { 1698 const struct inet_connection_sock *icsk = inet_csk(sk); 1699 1700 if (icsk->icsk_ca_ops->undo_cwnd) 1701 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 1702 else 1703 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1); 1704 1705 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 1706 tp->snd_ssthresh = tp->prior_ssthresh; 1707 TCP_ECN_withdraw_cwr(tp); 1708 } 1709 } else { 1710 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 1711 } 1712 tcp_moderate_cwnd(tp); 1713 tp->snd_cwnd_stamp = tcp_time_stamp; 1714 1715 /* There is something screwy going on with the retrans hints after 1716 an undo */ 1717 clear_all_retrans_hints(tp); 1718 } 1719 1720 static inline int tcp_may_undo(struct tcp_sock *tp) 1721 { 1722 return tp->undo_marker && 1723 (!tp->undo_retrans || tcp_packet_delayed(tp)); 1724 } 1725 1726 /* People celebrate: "We love our President!" */ 1727 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp) 1728 { 1729 if (tcp_may_undo(tp)) { 1730 /* Happy end! We did not retransmit anything 1731 * or our original transmission succeeded. 1732 */ 1733 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 1734 tcp_undo_cwr(sk, 1); 1735 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 1736 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1737 else 1738 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); 1739 tp->undo_marker = 0; 1740 } 1741 if (tp->snd_una == tp->high_seq && IsReno(tp)) { 1742 /* Hold old state until something *above* high_seq 1743 * is ACKed. For Reno it is MUST to prevent false 1744 * fast retransmits (RFC2582). SACK TCP is safe. */ 1745 tcp_moderate_cwnd(tp); 1746 return 1; 1747 } 1748 tcp_set_ca_state(sk, TCP_CA_Open); 1749 return 0; 1750 } 1751 1752 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 1753 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp) 1754 { 1755 if (tp->undo_marker && !tp->undo_retrans) { 1756 DBGUNDO(sk, tp, "D-SACK"); 1757 tcp_undo_cwr(sk, 1); 1758 tp->undo_marker = 0; 1759 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); 1760 } 1761 } 1762 1763 /* Undo during fast recovery after partial ACK. */ 1764 1765 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp, 1766 int acked) 1767 { 1768 /* Partial ACK arrived. Force Hoe's retransmit. */ 1769 int failed = IsReno(tp) || tp->fackets_out>tp->reordering; 1770 1771 if (tcp_may_undo(tp)) { 1772 /* Plain luck! Hole if filled with delayed 1773 * packet, rather than with a retransmit. 1774 */ 1775 if (tp->retrans_out == 0) 1776 tp->retrans_stamp = 0; 1777 1778 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 1779 1780 DBGUNDO(sk, tp, "Hoe"); 1781 tcp_undo_cwr(sk, 0); 1782 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); 1783 1784 /* So... Do not make Hoe's retransmit yet. 1785 * If the first packet was delayed, the rest 1786 * ones are most probably delayed as well. 1787 */ 1788 failed = 0; 1789 } 1790 return failed; 1791 } 1792 1793 /* Undo during loss recovery after partial ACK. */ 1794 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp) 1795 { 1796 if (tcp_may_undo(tp)) { 1797 struct sk_buff *skb; 1798 sk_stream_for_retrans_queue(skb, sk) { 1799 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1800 } 1801 1802 clear_all_retrans_hints(tp); 1803 1804 DBGUNDO(sk, tp, "partial loss"); 1805 tp->lost_out = 0; 1806 tp->left_out = tp->sacked_out; 1807 tcp_undo_cwr(sk, 1); 1808 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1809 inet_csk(sk)->icsk_retransmits = 0; 1810 tp->undo_marker = 0; 1811 if (!IsReno(tp)) 1812 tcp_set_ca_state(sk, TCP_CA_Open); 1813 return 1; 1814 } 1815 return 0; 1816 } 1817 1818 static inline void tcp_complete_cwr(struct sock *sk) 1819 { 1820 struct tcp_sock *tp = tcp_sk(sk); 1821 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 1822 tp->snd_cwnd_stamp = tcp_time_stamp; 1823 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 1824 } 1825 1826 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag) 1827 { 1828 tp->left_out = tp->sacked_out; 1829 1830 if (tp->retrans_out == 0) 1831 tp->retrans_stamp = 0; 1832 1833 if (flag&FLAG_ECE) 1834 tcp_enter_cwr(sk); 1835 1836 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 1837 int state = TCP_CA_Open; 1838 1839 if (tp->left_out || tp->retrans_out || tp->undo_marker) 1840 state = TCP_CA_Disorder; 1841 1842 if (inet_csk(sk)->icsk_ca_state != state) { 1843 tcp_set_ca_state(sk, state); 1844 tp->high_seq = tp->snd_nxt; 1845 } 1846 tcp_moderate_cwnd(tp); 1847 } else { 1848 tcp_cwnd_down(sk); 1849 } 1850 } 1851 1852 /* Process an event, which can update packets-in-flight not trivially. 1853 * Main goal of this function is to calculate new estimate for left_out, 1854 * taking into account both packets sitting in receiver's buffer and 1855 * packets lost by network. 1856 * 1857 * Besides that it does CWND reduction, when packet loss is detected 1858 * and changes state of machine. 1859 * 1860 * It does _not_ decide what to send, it is made in function 1861 * tcp_xmit_retransmit_queue(). 1862 */ 1863 static void 1864 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una, 1865 int prior_packets, int flag) 1866 { 1867 struct inet_connection_sock *icsk = inet_csk(sk); 1868 struct tcp_sock *tp = tcp_sk(sk); 1869 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP)); 1870 1871 /* Some technical things: 1872 * 1. Reno does not count dupacks (sacked_out) automatically. */ 1873 if (!tp->packets_out) 1874 tp->sacked_out = 0; 1875 /* 2. SACK counts snd_fack in packets inaccurately. */ 1876 if (tp->sacked_out == 0) 1877 tp->fackets_out = 0; 1878 1879 /* Now state machine starts. 1880 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 1881 if (flag&FLAG_ECE) 1882 tp->prior_ssthresh = 0; 1883 1884 /* B. In all the states check for reneging SACKs. */ 1885 if (tp->sacked_out && tcp_check_sack_reneging(sk)) 1886 return; 1887 1888 /* C. Process data loss notification, provided it is valid. */ 1889 if ((flag&FLAG_DATA_LOST) && 1890 before(tp->snd_una, tp->high_seq) && 1891 icsk->icsk_ca_state != TCP_CA_Open && 1892 tp->fackets_out > tp->reordering) { 1893 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq); 1894 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); 1895 } 1896 1897 /* D. Synchronize left_out to current state. */ 1898 tcp_sync_left_out(tp); 1899 1900 /* E. Check state exit conditions. State can be terminated 1901 * when high_seq is ACKed. */ 1902 if (icsk->icsk_ca_state == TCP_CA_Open) { 1903 if (!sysctl_tcp_frto) 1904 BUG_TRAP(tp->retrans_out == 0); 1905 tp->retrans_stamp = 0; 1906 } else if (!before(tp->snd_una, tp->high_seq)) { 1907 switch (icsk->icsk_ca_state) { 1908 case TCP_CA_Loss: 1909 icsk->icsk_retransmits = 0; 1910 if (tcp_try_undo_recovery(sk, tp)) 1911 return; 1912 break; 1913 1914 case TCP_CA_CWR: 1915 /* CWR is to be held something *above* high_seq 1916 * is ACKed for CWR bit to reach receiver. */ 1917 if (tp->snd_una != tp->high_seq) { 1918 tcp_complete_cwr(sk); 1919 tcp_set_ca_state(sk, TCP_CA_Open); 1920 } 1921 break; 1922 1923 case TCP_CA_Disorder: 1924 tcp_try_undo_dsack(sk, tp); 1925 if (!tp->undo_marker || 1926 /* For SACK case do not Open to allow to undo 1927 * catching for all duplicate ACKs. */ 1928 IsReno(tp) || tp->snd_una != tp->high_seq) { 1929 tp->undo_marker = 0; 1930 tcp_set_ca_state(sk, TCP_CA_Open); 1931 } 1932 break; 1933 1934 case TCP_CA_Recovery: 1935 if (IsReno(tp)) 1936 tcp_reset_reno_sack(tp); 1937 if (tcp_try_undo_recovery(sk, tp)) 1938 return; 1939 tcp_complete_cwr(sk); 1940 break; 1941 } 1942 } 1943 1944 /* F. Process state. */ 1945 switch (icsk->icsk_ca_state) { 1946 case TCP_CA_Recovery: 1947 if (prior_snd_una == tp->snd_una) { 1948 if (IsReno(tp) && is_dupack) 1949 tcp_add_reno_sack(sk); 1950 } else { 1951 int acked = prior_packets - tp->packets_out; 1952 if (IsReno(tp)) 1953 tcp_remove_reno_sacks(sk, tp, acked); 1954 is_dupack = tcp_try_undo_partial(sk, tp, acked); 1955 } 1956 break; 1957 case TCP_CA_Loss: 1958 if (flag&FLAG_DATA_ACKED) 1959 icsk->icsk_retransmits = 0; 1960 if (!tcp_try_undo_loss(sk, tp)) { 1961 tcp_moderate_cwnd(tp); 1962 tcp_xmit_retransmit_queue(sk); 1963 return; 1964 } 1965 if (icsk->icsk_ca_state != TCP_CA_Open) 1966 return; 1967 /* Loss is undone; fall through to processing in Open state. */ 1968 default: 1969 if (IsReno(tp)) { 1970 if (tp->snd_una != prior_snd_una) 1971 tcp_reset_reno_sack(tp); 1972 if (is_dupack) 1973 tcp_add_reno_sack(sk); 1974 } 1975 1976 if (icsk->icsk_ca_state == TCP_CA_Disorder) 1977 tcp_try_undo_dsack(sk, tp); 1978 1979 if (!tcp_time_to_recover(sk, tp)) { 1980 tcp_try_to_open(sk, tp, flag); 1981 return; 1982 } 1983 1984 /* Otherwise enter Recovery state */ 1985 1986 if (IsReno(tp)) 1987 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); 1988 else 1989 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); 1990 1991 tp->high_seq = tp->snd_nxt; 1992 tp->prior_ssthresh = 0; 1993 tp->undo_marker = tp->snd_una; 1994 tp->undo_retrans = tp->retrans_out; 1995 1996 if (icsk->icsk_ca_state < TCP_CA_CWR) { 1997 if (!(flag&FLAG_ECE)) 1998 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1999 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2000 TCP_ECN_queue_cwr(tp); 2001 } 2002 2003 tp->bytes_acked = 0; 2004 tp->snd_cwnd_cnt = 0; 2005 tcp_set_ca_state(sk, TCP_CA_Recovery); 2006 } 2007 2008 if (is_dupack || tcp_head_timedout(sk, tp)) 2009 tcp_update_scoreboard(sk, tp); 2010 tcp_cwnd_down(sk); 2011 tcp_xmit_retransmit_queue(sk); 2012 } 2013 2014 /* Read draft-ietf-tcplw-high-performance before mucking 2015 * with this code. (Supersedes RFC1323) 2016 */ 2017 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 2018 { 2019 /* RTTM Rule: A TSecr value received in a segment is used to 2020 * update the averaged RTT measurement only if the segment 2021 * acknowledges some new data, i.e., only if it advances the 2022 * left edge of the send window. 2023 * 2024 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2025 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 2026 * 2027 * Changed: reset backoff as soon as we see the first valid sample. 2028 * If we do not, we get strongly overestimated rto. With timestamps 2029 * samples are accepted even from very old segments: f.e., when rtt=1 2030 * increases to 8, we retransmit 5 times and after 8 seconds delayed 2031 * answer arrives rto becomes 120 seconds! If at least one of segments 2032 * in window is lost... Voila. --ANK (010210) 2033 */ 2034 struct tcp_sock *tp = tcp_sk(sk); 2035 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2036 tcp_rtt_estimator(sk, seq_rtt); 2037 tcp_set_rto(sk); 2038 inet_csk(sk)->icsk_backoff = 0; 2039 tcp_bound_rto(sk); 2040 } 2041 2042 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 2043 { 2044 /* We don't have a timestamp. Can only use 2045 * packets that are not retransmitted to determine 2046 * rtt estimates. Also, we must not reset the 2047 * backoff for rto until we get a non-retransmitted 2048 * packet. This allows us to deal with a situation 2049 * where the network delay has increased suddenly. 2050 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 2051 */ 2052 2053 if (flag & FLAG_RETRANS_DATA_ACKED) 2054 return; 2055 2056 tcp_rtt_estimator(sk, seq_rtt); 2057 tcp_set_rto(sk); 2058 inet_csk(sk)->icsk_backoff = 0; 2059 tcp_bound_rto(sk); 2060 } 2061 2062 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 2063 const s32 seq_rtt) 2064 { 2065 const struct tcp_sock *tp = tcp_sk(sk); 2066 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 2067 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2068 tcp_ack_saw_tstamp(sk, flag); 2069 else if (seq_rtt >= 0) 2070 tcp_ack_no_tstamp(sk, seq_rtt, flag); 2071 } 2072 2073 static inline void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt, 2074 u32 in_flight, int good) 2075 { 2076 const struct inet_connection_sock *icsk = inet_csk(sk); 2077 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good); 2078 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2079 } 2080 2081 /* Restart timer after forward progress on connection. 2082 * RFC2988 recommends to restart timer to now+rto. 2083 */ 2084 2085 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp) 2086 { 2087 if (!tp->packets_out) { 2088 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2089 } else { 2090 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2091 } 2092 } 2093 2094 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb, 2095 __u32 now, __s32 *seq_rtt) 2096 { 2097 struct tcp_sock *tp = tcp_sk(sk); 2098 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2099 __u32 seq = tp->snd_una; 2100 __u32 packets_acked; 2101 int acked = 0; 2102 2103 /* If we get here, the whole TSO packet has not been 2104 * acked. 2105 */ 2106 BUG_ON(!after(scb->end_seq, seq)); 2107 2108 packets_acked = tcp_skb_pcount(skb); 2109 if (tcp_trim_head(sk, skb, seq - scb->seq)) 2110 return 0; 2111 packets_acked -= tcp_skb_pcount(skb); 2112 2113 if (packets_acked) { 2114 __u8 sacked = scb->sacked; 2115 2116 acked |= FLAG_DATA_ACKED; 2117 if (sacked) { 2118 if (sacked & TCPCB_RETRANS) { 2119 if (sacked & TCPCB_SACKED_RETRANS) 2120 tp->retrans_out -= packets_acked; 2121 acked |= FLAG_RETRANS_DATA_ACKED; 2122 *seq_rtt = -1; 2123 } else if (*seq_rtt < 0) 2124 *seq_rtt = now - scb->when; 2125 if (sacked & TCPCB_SACKED_ACKED) 2126 tp->sacked_out -= packets_acked; 2127 if (sacked & TCPCB_LOST) 2128 tp->lost_out -= packets_acked; 2129 if (sacked & TCPCB_URG) { 2130 if (tp->urg_mode && 2131 !before(seq, tp->snd_up)) 2132 tp->urg_mode = 0; 2133 } 2134 } else if (*seq_rtt < 0) 2135 *seq_rtt = now - scb->when; 2136 2137 if (tp->fackets_out) { 2138 __u32 dval = min(tp->fackets_out, packets_acked); 2139 tp->fackets_out -= dval; 2140 } 2141 tp->packets_out -= packets_acked; 2142 2143 BUG_ON(tcp_skb_pcount(skb) == 0); 2144 BUG_ON(!before(scb->seq, scb->end_seq)); 2145 } 2146 2147 return acked; 2148 } 2149 2150 static inline u32 tcp_usrtt(const struct sk_buff *skb) 2151 { 2152 struct timeval tv, now; 2153 2154 do_gettimeofday(&now); 2155 skb_get_timestamp(skb, &tv); 2156 return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec); 2157 } 2158 2159 /* Remove acknowledged frames from the retransmission queue. */ 2160 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p) 2161 { 2162 struct tcp_sock *tp = tcp_sk(sk); 2163 const struct inet_connection_sock *icsk = inet_csk(sk); 2164 struct sk_buff *skb; 2165 __u32 now = tcp_time_stamp; 2166 int acked = 0; 2167 __s32 seq_rtt = -1; 2168 u32 pkts_acked = 0; 2169 void (*rtt_sample)(struct sock *sk, u32 usrtt) 2170 = icsk->icsk_ca_ops->rtt_sample; 2171 2172 while ((skb = skb_peek(&sk->sk_write_queue)) && 2173 skb != sk->sk_send_head) { 2174 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2175 __u8 sacked = scb->sacked; 2176 2177 /* If our packet is before the ack sequence we can 2178 * discard it as it's confirmed to have arrived at 2179 * the other end. 2180 */ 2181 if (after(scb->end_seq, tp->snd_una)) { 2182 if (tcp_skb_pcount(skb) > 1 && 2183 after(tp->snd_una, scb->seq)) 2184 acked |= tcp_tso_acked(sk, skb, 2185 now, &seq_rtt); 2186 break; 2187 } 2188 2189 /* Initial outgoing SYN's get put onto the write_queue 2190 * just like anything else we transmit. It is not 2191 * true data, and if we misinform our callers that 2192 * this ACK acks real data, we will erroneously exit 2193 * connection startup slow start one packet too 2194 * quickly. This is severely frowned upon behavior. 2195 */ 2196 if (!(scb->flags & TCPCB_FLAG_SYN)) { 2197 acked |= FLAG_DATA_ACKED; 2198 ++pkts_acked; 2199 } else { 2200 acked |= FLAG_SYN_ACKED; 2201 tp->retrans_stamp = 0; 2202 } 2203 2204 if (sacked) { 2205 if (sacked & TCPCB_RETRANS) { 2206 if(sacked & TCPCB_SACKED_RETRANS) 2207 tp->retrans_out -= tcp_skb_pcount(skb); 2208 acked |= FLAG_RETRANS_DATA_ACKED; 2209 seq_rtt = -1; 2210 } else if (seq_rtt < 0) { 2211 seq_rtt = now - scb->when; 2212 if (rtt_sample) 2213 (*rtt_sample)(sk, tcp_usrtt(skb)); 2214 } 2215 if (sacked & TCPCB_SACKED_ACKED) 2216 tp->sacked_out -= tcp_skb_pcount(skb); 2217 if (sacked & TCPCB_LOST) 2218 tp->lost_out -= tcp_skb_pcount(skb); 2219 if (sacked & TCPCB_URG) { 2220 if (tp->urg_mode && 2221 !before(scb->end_seq, tp->snd_up)) 2222 tp->urg_mode = 0; 2223 } 2224 } else if (seq_rtt < 0) { 2225 seq_rtt = now - scb->when; 2226 if (rtt_sample) 2227 (*rtt_sample)(sk, tcp_usrtt(skb)); 2228 } 2229 tcp_dec_pcount_approx(&tp->fackets_out, skb); 2230 tcp_packets_out_dec(tp, skb); 2231 __skb_unlink(skb, &sk->sk_write_queue); 2232 sk_stream_free_skb(sk, skb); 2233 clear_all_retrans_hints(tp); 2234 } 2235 2236 if (acked&FLAG_ACKED) { 2237 tcp_ack_update_rtt(sk, acked, seq_rtt); 2238 tcp_ack_packets_out(sk, tp); 2239 2240 if (icsk->icsk_ca_ops->pkts_acked) 2241 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked); 2242 } 2243 2244 #if FASTRETRANS_DEBUG > 0 2245 BUG_TRAP((int)tp->sacked_out >= 0); 2246 BUG_TRAP((int)tp->lost_out >= 0); 2247 BUG_TRAP((int)tp->retrans_out >= 0); 2248 if (!tp->packets_out && tp->rx_opt.sack_ok) { 2249 const struct inet_connection_sock *icsk = inet_csk(sk); 2250 if (tp->lost_out) { 2251 printk(KERN_DEBUG "Leak l=%u %d\n", 2252 tp->lost_out, icsk->icsk_ca_state); 2253 tp->lost_out = 0; 2254 } 2255 if (tp->sacked_out) { 2256 printk(KERN_DEBUG "Leak s=%u %d\n", 2257 tp->sacked_out, icsk->icsk_ca_state); 2258 tp->sacked_out = 0; 2259 } 2260 if (tp->retrans_out) { 2261 printk(KERN_DEBUG "Leak r=%u %d\n", 2262 tp->retrans_out, icsk->icsk_ca_state); 2263 tp->retrans_out = 0; 2264 } 2265 } 2266 #endif 2267 *seq_rtt_p = seq_rtt; 2268 return acked; 2269 } 2270 2271 static void tcp_ack_probe(struct sock *sk) 2272 { 2273 const struct tcp_sock *tp = tcp_sk(sk); 2274 struct inet_connection_sock *icsk = inet_csk(sk); 2275 2276 /* Was it a usable window open? */ 2277 2278 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq, 2279 tp->snd_una + tp->snd_wnd)) { 2280 icsk->icsk_backoff = 0; 2281 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 2282 /* Socket must be waked up by subsequent tcp_data_snd_check(). 2283 * This function is not for random using! 2284 */ 2285 } else { 2286 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2287 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2288 TCP_RTO_MAX); 2289 } 2290 } 2291 2292 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 2293 { 2294 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 2295 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 2296 } 2297 2298 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 2299 { 2300 const struct tcp_sock *tp = tcp_sk(sk); 2301 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 2302 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 2303 } 2304 2305 /* Check that window update is acceptable. 2306 * The function assumes that snd_una<=ack<=snd_next. 2307 */ 2308 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack, 2309 const u32 ack_seq, const u32 nwin) 2310 { 2311 return (after(ack, tp->snd_una) || 2312 after(ack_seq, tp->snd_wl1) || 2313 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 2314 } 2315 2316 /* Update our send window. 2317 * 2318 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 2319 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 2320 */ 2321 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp, 2322 struct sk_buff *skb, u32 ack, u32 ack_seq) 2323 { 2324 int flag = 0; 2325 u32 nwin = ntohs(skb->h.th->window); 2326 2327 if (likely(!skb->h.th->syn)) 2328 nwin <<= tp->rx_opt.snd_wscale; 2329 2330 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 2331 flag |= FLAG_WIN_UPDATE; 2332 tcp_update_wl(tp, ack, ack_seq); 2333 2334 if (tp->snd_wnd != nwin) { 2335 tp->snd_wnd = nwin; 2336 2337 /* Note, it is the only place, where 2338 * fast path is recovered for sending TCP. 2339 */ 2340 tp->pred_flags = 0; 2341 tcp_fast_path_check(sk, tp); 2342 2343 if (nwin > tp->max_window) { 2344 tp->max_window = nwin; 2345 tcp_sync_mss(sk, tp->pmtu_cookie); 2346 } 2347 } 2348 } 2349 2350 tp->snd_una = ack; 2351 2352 return flag; 2353 } 2354 2355 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una) 2356 { 2357 struct tcp_sock *tp = tcp_sk(sk); 2358 2359 tcp_sync_left_out(tp); 2360 2361 if (tp->snd_una == prior_snd_una || 2362 !before(tp->snd_una, tp->frto_highmark)) { 2363 /* RTO was caused by loss, start retransmitting in 2364 * go-back-N slow start 2365 */ 2366 tcp_enter_frto_loss(sk); 2367 return; 2368 } 2369 2370 if (tp->frto_counter == 1) { 2371 /* First ACK after RTO advances the window: allow two new 2372 * segments out. 2373 */ 2374 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 2375 } else { 2376 /* Also the second ACK after RTO advances the window. 2377 * The RTO was likely spurious. Reduce cwnd and continue 2378 * in congestion avoidance 2379 */ 2380 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2381 tcp_moderate_cwnd(tp); 2382 } 2383 2384 /* F-RTO affects on two new ACKs following RTO. 2385 * At latest on third ACK the TCP behavior is back to normal. 2386 */ 2387 tp->frto_counter = (tp->frto_counter + 1) % 3; 2388 } 2389 2390 /* This routine deals with incoming acks, but not outgoing ones. */ 2391 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 2392 { 2393 struct inet_connection_sock *icsk = inet_csk(sk); 2394 struct tcp_sock *tp = tcp_sk(sk); 2395 u32 prior_snd_una = tp->snd_una; 2396 u32 ack_seq = TCP_SKB_CB(skb)->seq; 2397 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2398 u32 prior_in_flight; 2399 s32 seq_rtt; 2400 int prior_packets; 2401 2402 /* If the ack is newer than sent or older than previous acks 2403 * then we can probably ignore it. 2404 */ 2405 if (after(ack, tp->snd_nxt)) 2406 goto uninteresting_ack; 2407 2408 if (before(ack, prior_snd_una)) 2409 goto old_ack; 2410 2411 if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR) 2412 tp->bytes_acked += ack - prior_snd_una; 2413 2414 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 2415 /* Window is constant, pure forward advance. 2416 * No more checks are required. 2417 * Note, we use the fact that SND.UNA>=SND.WL2. 2418 */ 2419 tcp_update_wl(tp, ack, ack_seq); 2420 tp->snd_una = ack; 2421 flag |= FLAG_WIN_UPDATE; 2422 2423 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 2424 2425 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); 2426 } else { 2427 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 2428 flag |= FLAG_DATA; 2429 else 2430 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); 2431 2432 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq); 2433 2434 if (TCP_SKB_CB(skb)->sacked) 2435 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2436 2437 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th)) 2438 flag |= FLAG_ECE; 2439 2440 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 2441 } 2442 2443 /* We passed data and got it acked, remove any soft error 2444 * log. Something worked... 2445 */ 2446 sk->sk_err_soft = 0; 2447 tp->rcv_tstamp = tcp_time_stamp; 2448 prior_packets = tp->packets_out; 2449 if (!prior_packets) 2450 goto no_queue; 2451 2452 prior_in_flight = tcp_packets_in_flight(tp); 2453 2454 /* See if we can take anything off of the retransmit queue. */ 2455 flag |= tcp_clean_rtx_queue(sk, &seq_rtt); 2456 2457 if (tp->frto_counter) 2458 tcp_process_frto(sk, prior_snd_una); 2459 2460 if (tcp_ack_is_dubious(sk, flag)) { 2461 /* Advance CWND, if state allows this. */ 2462 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag)) 2463 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0); 2464 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag); 2465 } else { 2466 if ((flag & FLAG_DATA_ACKED)) 2467 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1); 2468 } 2469 2470 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP)) 2471 dst_confirm(sk->sk_dst_cache); 2472 2473 return 1; 2474 2475 no_queue: 2476 icsk->icsk_probes_out = 0; 2477 2478 /* If this ack opens up a zero window, clear backoff. It was 2479 * being used to time the probes, and is probably far higher than 2480 * it needs to be for normal retransmission. 2481 */ 2482 if (sk->sk_send_head) 2483 tcp_ack_probe(sk); 2484 return 1; 2485 2486 old_ack: 2487 if (TCP_SKB_CB(skb)->sacked) 2488 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2489 2490 uninteresting_ack: 2491 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 2492 return 0; 2493 } 2494 2495 2496 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 2497 * But, this can also be called on packets in the established flow when 2498 * the fast version below fails. 2499 */ 2500 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab) 2501 { 2502 unsigned char *ptr; 2503 struct tcphdr *th = skb->h.th; 2504 int length=(th->doff*4)-sizeof(struct tcphdr); 2505 2506 ptr = (unsigned char *)(th + 1); 2507 opt_rx->saw_tstamp = 0; 2508 2509 while(length>0) { 2510 int opcode=*ptr++; 2511 int opsize; 2512 2513 switch (opcode) { 2514 case TCPOPT_EOL: 2515 return; 2516 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 2517 length--; 2518 continue; 2519 default: 2520 opsize=*ptr++; 2521 if (opsize < 2) /* "silly options" */ 2522 return; 2523 if (opsize > length) 2524 return; /* don't parse partial options */ 2525 switch(opcode) { 2526 case TCPOPT_MSS: 2527 if(opsize==TCPOLEN_MSS && th->syn && !estab) { 2528 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr)); 2529 if (in_mss) { 2530 if (opt_rx->user_mss && opt_rx->user_mss < in_mss) 2531 in_mss = opt_rx->user_mss; 2532 opt_rx->mss_clamp = in_mss; 2533 } 2534 } 2535 break; 2536 case TCPOPT_WINDOW: 2537 if(opsize==TCPOLEN_WINDOW && th->syn && !estab) 2538 if (sysctl_tcp_window_scaling) { 2539 __u8 snd_wscale = *(__u8 *) ptr; 2540 opt_rx->wscale_ok = 1; 2541 if (snd_wscale > 14) { 2542 if(net_ratelimit()) 2543 printk(KERN_INFO "tcp_parse_options: Illegal window " 2544 "scaling value %d >14 received.\n", 2545 snd_wscale); 2546 snd_wscale = 14; 2547 } 2548 opt_rx->snd_wscale = snd_wscale; 2549 } 2550 break; 2551 case TCPOPT_TIMESTAMP: 2552 if(opsize==TCPOLEN_TIMESTAMP) { 2553 if ((estab && opt_rx->tstamp_ok) || 2554 (!estab && sysctl_tcp_timestamps)) { 2555 opt_rx->saw_tstamp = 1; 2556 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr)); 2557 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4))); 2558 } 2559 } 2560 break; 2561 case TCPOPT_SACK_PERM: 2562 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) { 2563 if (sysctl_tcp_sack) { 2564 opt_rx->sack_ok = 1; 2565 tcp_sack_reset(opt_rx); 2566 } 2567 } 2568 break; 2569 2570 case TCPOPT_SACK: 2571 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 2572 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 2573 opt_rx->sack_ok) { 2574 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 2575 } 2576 }; 2577 ptr+=opsize-2; 2578 length-=opsize; 2579 }; 2580 } 2581 } 2582 2583 /* Fast parse options. This hopes to only see timestamps. 2584 * If it is wrong it falls back on tcp_parse_options(). 2585 */ 2586 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 2587 struct tcp_sock *tp) 2588 { 2589 if (th->doff == sizeof(struct tcphdr)>>2) { 2590 tp->rx_opt.saw_tstamp = 0; 2591 return 0; 2592 } else if (tp->rx_opt.tstamp_ok && 2593 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 2594 __u32 *ptr = (__u32 *)(th + 1); 2595 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 2596 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 2597 tp->rx_opt.saw_tstamp = 1; 2598 ++ptr; 2599 tp->rx_opt.rcv_tsval = ntohl(*ptr); 2600 ++ptr; 2601 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 2602 return 1; 2603 } 2604 } 2605 tcp_parse_options(skb, &tp->rx_opt, 1); 2606 return 1; 2607 } 2608 2609 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 2610 { 2611 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 2612 tp->rx_opt.ts_recent_stamp = xtime.tv_sec; 2613 } 2614 2615 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 2616 { 2617 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 2618 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 2619 * extra check below makes sure this can only happen 2620 * for pure ACK frames. -DaveM 2621 * 2622 * Not only, also it occurs for expired timestamps. 2623 */ 2624 2625 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 2626 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 2627 tcp_store_ts_recent(tp); 2628 } 2629 } 2630 2631 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 2632 * 2633 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 2634 * it can pass through stack. So, the following predicate verifies that 2635 * this segment is not used for anything but congestion avoidance or 2636 * fast retransmit. Moreover, we even are able to eliminate most of such 2637 * second order effects, if we apply some small "replay" window (~RTO) 2638 * to timestamp space. 2639 * 2640 * All these measures still do not guarantee that we reject wrapped ACKs 2641 * on networks with high bandwidth, when sequence space is recycled fastly, 2642 * but it guarantees that such events will be very rare and do not affect 2643 * connection seriously. This doesn't look nice, but alas, PAWS is really 2644 * buggy extension. 2645 * 2646 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 2647 * states that events when retransmit arrives after original data are rare. 2648 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 2649 * the biggest problem on large power networks even with minor reordering. 2650 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 2651 * up to bandwidth of 18Gigabit/sec. 8) ] 2652 */ 2653 2654 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 2655 { 2656 struct tcp_sock *tp = tcp_sk(sk); 2657 struct tcphdr *th = skb->h.th; 2658 u32 seq = TCP_SKB_CB(skb)->seq; 2659 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2660 2661 return (/* 1. Pure ACK with correct sequence number. */ 2662 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 2663 2664 /* 2. ... and duplicate ACK. */ 2665 ack == tp->snd_una && 2666 2667 /* 3. ... and does not update window. */ 2668 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 2669 2670 /* 4. ... and sits in replay window. */ 2671 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 2672 } 2673 2674 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb) 2675 { 2676 const struct tcp_sock *tp = tcp_sk(sk); 2677 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 2678 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 2679 !tcp_disordered_ack(sk, skb)); 2680 } 2681 2682 /* Check segment sequence number for validity. 2683 * 2684 * Segment controls are considered valid, if the segment 2685 * fits to the window after truncation to the window. Acceptability 2686 * of data (and SYN, FIN, of course) is checked separately. 2687 * See tcp_data_queue(), for example. 2688 * 2689 * Also, controls (RST is main one) are accepted using RCV.WUP instead 2690 * of RCV.NXT. Peer still did not advance his SND.UNA when we 2691 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 2692 * (borrowed from freebsd) 2693 */ 2694 2695 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 2696 { 2697 return !before(end_seq, tp->rcv_wup) && 2698 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 2699 } 2700 2701 /* When we get a reset we do this. */ 2702 static void tcp_reset(struct sock *sk) 2703 { 2704 /* We want the right error as BSD sees it (and indeed as we do). */ 2705 switch (sk->sk_state) { 2706 case TCP_SYN_SENT: 2707 sk->sk_err = ECONNREFUSED; 2708 break; 2709 case TCP_CLOSE_WAIT: 2710 sk->sk_err = EPIPE; 2711 break; 2712 case TCP_CLOSE: 2713 return; 2714 default: 2715 sk->sk_err = ECONNRESET; 2716 } 2717 2718 if (!sock_flag(sk, SOCK_DEAD)) 2719 sk->sk_error_report(sk); 2720 2721 tcp_done(sk); 2722 } 2723 2724 /* 2725 * Process the FIN bit. This now behaves as it is supposed to work 2726 * and the FIN takes effect when it is validly part of sequence 2727 * space. Not before when we get holes. 2728 * 2729 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 2730 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 2731 * TIME-WAIT) 2732 * 2733 * If we are in FINWAIT-1, a received FIN indicates simultaneous 2734 * close and we go into CLOSING (and later onto TIME-WAIT) 2735 * 2736 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 2737 */ 2738 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 2739 { 2740 struct tcp_sock *tp = tcp_sk(sk); 2741 2742 inet_csk_schedule_ack(sk); 2743 2744 sk->sk_shutdown |= RCV_SHUTDOWN; 2745 sock_set_flag(sk, SOCK_DONE); 2746 2747 switch (sk->sk_state) { 2748 case TCP_SYN_RECV: 2749 case TCP_ESTABLISHED: 2750 /* Move to CLOSE_WAIT */ 2751 tcp_set_state(sk, TCP_CLOSE_WAIT); 2752 inet_csk(sk)->icsk_ack.pingpong = 1; 2753 break; 2754 2755 case TCP_CLOSE_WAIT: 2756 case TCP_CLOSING: 2757 /* Received a retransmission of the FIN, do 2758 * nothing. 2759 */ 2760 break; 2761 case TCP_LAST_ACK: 2762 /* RFC793: Remain in the LAST-ACK state. */ 2763 break; 2764 2765 case TCP_FIN_WAIT1: 2766 /* This case occurs when a simultaneous close 2767 * happens, we must ack the received FIN and 2768 * enter the CLOSING state. 2769 */ 2770 tcp_send_ack(sk); 2771 tcp_set_state(sk, TCP_CLOSING); 2772 break; 2773 case TCP_FIN_WAIT2: 2774 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 2775 tcp_send_ack(sk); 2776 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 2777 break; 2778 default: 2779 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 2780 * cases we should never reach this piece of code. 2781 */ 2782 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 2783 __FUNCTION__, sk->sk_state); 2784 break; 2785 }; 2786 2787 /* It _is_ possible, that we have something out-of-order _after_ FIN. 2788 * Probably, we should reset in this case. For now drop them. 2789 */ 2790 __skb_queue_purge(&tp->out_of_order_queue); 2791 if (tp->rx_opt.sack_ok) 2792 tcp_sack_reset(&tp->rx_opt); 2793 sk_stream_mem_reclaim(sk); 2794 2795 if (!sock_flag(sk, SOCK_DEAD)) { 2796 sk->sk_state_change(sk); 2797 2798 /* Do not send POLL_HUP for half duplex close. */ 2799 if (sk->sk_shutdown == SHUTDOWN_MASK || 2800 sk->sk_state == TCP_CLOSE) 2801 sk_wake_async(sk, 1, POLL_HUP); 2802 else 2803 sk_wake_async(sk, 1, POLL_IN); 2804 } 2805 } 2806 2807 static __inline__ int 2808 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq) 2809 { 2810 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 2811 if (before(seq, sp->start_seq)) 2812 sp->start_seq = seq; 2813 if (after(end_seq, sp->end_seq)) 2814 sp->end_seq = end_seq; 2815 return 1; 2816 } 2817 return 0; 2818 } 2819 2820 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) 2821 { 2822 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 2823 if (before(seq, tp->rcv_nxt)) 2824 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); 2825 else 2826 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); 2827 2828 tp->rx_opt.dsack = 1; 2829 tp->duplicate_sack[0].start_seq = seq; 2830 tp->duplicate_sack[0].end_seq = end_seq; 2831 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok); 2832 } 2833 } 2834 2835 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) 2836 { 2837 if (!tp->rx_opt.dsack) 2838 tcp_dsack_set(tp, seq, end_seq); 2839 else 2840 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 2841 } 2842 2843 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 2844 { 2845 struct tcp_sock *tp = tcp_sk(sk); 2846 2847 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 2848 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 2849 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 2850 tcp_enter_quickack_mode(sk); 2851 2852 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 2853 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2854 2855 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 2856 end_seq = tp->rcv_nxt; 2857 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); 2858 } 2859 } 2860 2861 tcp_send_ack(sk); 2862 } 2863 2864 /* These routines update the SACK block as out-of-order packets arrive or 2865 * in-order packets close up the sequence space. 2866 */ 2867 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 2868 { 2869 int this_sack; 2870 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2871 struct tcp_sack_block *swalk = sp+1; 2872 2873 /* See if the recent change to the first SACK eats into 2874 * or hits the sequence space of other SACK blocks, if so coalesce. 2875 */ 2876 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) { 2877 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 2878 int i; 2879 2880 /* Zap SWALK, by moving every further SACK up by one slot. 2881 * Decrease num_sacks. 2882 */ 2883 tp->rx_opt.num_sacks--; 2884 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 2885 for(i=this_sack; i < tp->rx_opt.num_sacks; i++) 2886 sp[i] = sp[i+1]; 2887 continue; 2888 } 2889 this_sack++, swalk++; 2890 } 2891 } 2892 2893 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2) 2894 { 2895 __u32 tmp; 2896 2897 tmp = sack1->start_seq; 2898 sack1->start_seq = sack2->start_seq; 2899 sack2->start_seq = tmp; 2900 2901 tmp = sack1->end_seq; 2902 sack1->end_seq = sack2->end_seq; 2903 sack2->end_seq = tmp; 2904 } 2905 2906 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 2907 { 2908 struct tcp_sock *tp = tcp_sk(sk); 2909 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2910 int cur_sacks = tp->rx_opt.num_sacks; 2911 int this_sack; 2912 2913 if (!cur_sacks) 2914 goto new_sack; 2915 2916 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) { 2917 if (tcp_sack_extend(sp, seq, end_seq)) { 2918 /* Rotate this_sack to the first one. */ 2919 for (; this_sack>0; this_sack--, sp--) 2920 tcp_sack_swap(sp, sp-1); 2921 if (cur_sacks > 1) 2922 tcp_sack_maybe_coalesce(tp); 2923 return; 2924 } 2925 } 2926 2927 /* Could not find an adjacent existing SACK, build a new one, 2928 * put it at the front, and shift everyone else down. We 2929 * always know there is at least one SACK present already here. 2930 * 2931 * If the sack array is full, forget about the last one. 2932 */ 2933 if (this_sack >= 4) { 2934 this_sack--; 2935 tp->rx_opt.num_sacks--; 2936 sp--; 2937 } 2938 for(; this_sack > 0; this_sack--, sp--) 2939 *sp = *(sp-1); 2940 2941 new_sack: 2942 /* Build the new head SACK, and we're done. */ 2943 sp->start_seq = seq; 2944 sp->end_seq = end_seq; 2945 tp->rx_opt.num_sacks++; 2946 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 2947 } 2948 2949 /* RCV.NXT advances, some SACKs should be eaten. */ 2950 2951 static void tcp_sack_remove(struct tcp_sock *tp) 2952 { 2953 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2954 int num_sacks = tp->rx_opt.num_sacks; 2955 int this_sack; 2956 2957 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 2958 if (skb_queue_empty(&tp->out_of_order_queue)) { 2959 tp->rx_opt.num_sacks = 0; 2960 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 2961 return; 2962 } 2963 2964 for(this_sack = 0; this_sack < num_sacks; ) { 2965 /* Check if the start of the sack is covered by RCV.NXT. */ 2966 if (!before(tp->rcv_nxt, sp->start_seq)) { 2967 int i; 2968 2969 /* RCV.NXT must cover all the block! */ 2970 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); 2971 2972 /* Zap this SACK, by moving forward any other SACKS. */ 2973 for (i=this_sack+1; i < num_sacks; i++) 2974 tp->selective_acks[i-1] = tp->selective_acks[i]; 2975 num_sacks--; 2976 continue; 2977 } 2978 this_sack++; 2979 sp++; 2980 } 2981 if (num_sacks != tp->rx_opt.num_sacks) { 2982 tp->rx_opt.num_sacks = num_sacks; 2983 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 2984 } 2985 } 2986 2987 /* This one checks to see if we can put data from the 2988 * out_of_order queue into the receive_queue. 2989 */ 2990 static void tcp_ofo_queue(struct sock *sk) 2991 { 2992 struct tcp_sock *tp = tcp_sk(sk); 2993 __u32 dsack_high = tp->rcv_nxt; 2994 struct sk_buff *skb; 2995 2996 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 2997 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 2998 break; 2999 3000 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 3001 __u32 dsack = dsack_high; 3002 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 3003 dsack_high = TCP_SKB_CB(skb)->end_seq; 3004 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); 3005 } 3006 3007 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3008 SOCK_DEBUG(sk, "ofo packet was already received \n"); 3009 __skb_unlink(skb, &tp->out_of_order_queue); 3010 __kfree_skb(skb); 3011 continue; 3012 } 3013 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 3014 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3015 TCP_SKB_CB(skb)->end_seq); 3016 3017 __skb_unlink(skb, &tp->out_of_order_queue); 3018 __skb_queue_tail(&sk->sk_receive_queue, skb); 3019 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3020 if(skb->h.th->fin) 3021 tcp_fin(skb, sk, skb->h.th); 3022 } 3023 } 3024 3025 static int tcp_prune_queue(struct sock *sk); 3026 3027 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 3028 { 3029 struct tcphdr *th = skb->h.th; 3030 struct tcp_sock *tp = tcp_sk(sk); 3031 int eaten = -1; 3032 3033 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 3034 goto drop; 3035 3036 __skb_pull(skb, th->doff*4); 3037 3038 TCP_ECN_accept_cwr(tp, skb); 3039 3040 if (tp->rx_opt.dsack) { 3041 tp->rx_opt.dsack = 0; 3042 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, 3043 4 - tp->rx_opt.tstamp_ok); 3044 } 3045 3046 /* Queue data for delivery to the user. 3047 * Packets in sequence go to the receive queue. 3048 * Out of sequence packets to the out_of_order_queue. 3049 */ 3050 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3051 if (tcp_receive_window(tp) == 0) 3052 goto out_of_window; 3053 3054 /* Ok. In sequence. In window. */ 3055 if (tp->ucopy.task == current && 3056 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 3057 sock_owned_by_user(sk) && !tp->urg_data) { 3058 int chunk = min_t(unsigned int, skb->len, 3059 tp->ucopy.len); 3060 3061 __set_current_state(TASK_RUNNING); 3062 3063 local_bh_enable(); 3064 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 3065 tp->ucopy.len -= chunk; 3066 tp->copied_seq += chunk; 3067 eaten = (chunk == skb->len && !th->fin); 3068 tcp_rcv_space_adjust(sk); 3069 } 3070 local_bh_disable(); 3071 } 3072 3073 if (eaten <= 0) { 3074 queue_and_out: 3075 if (eaten < 0 && 3076 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3077 !sk_stream_rmem_schedule(sk, skb))) { 3078 if (tcp_prune_queue(sk) < 0 || 3079 !sk_stream_rmem_schedule(sk, skb)) 3080 goto drop; 3081 } 3082 sk_stream_set_owner_r(skb, sk); 3083 __skb_queue_tail(&sk->sk_receive_queue, skb); 3084 } 3085 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3086 if(skb->len) 3087 tcp_event_data_recv(sk, tp, skb); 3088 if(th->fin) 3089 tcp_fin(skb, sk, th); 3090 3091 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3092 tcp_ofo_queue(sk); 3093 3094 /* RFC2581. 4.2. SHOULD send immediate ACK, when 3095 * gap in queue is filled. 3096 */ 3097 if (skb_queue_empty(&tp->out_of_order_queue)) 3098 inet_csk(sk)->icsk_ack.pingpong = 0; 3099 } 3100 3101 if (tp->rx_opt.num_sacks) 3102 tcp_sack_remove(tp); 3103 3104 tcp_fast_path_check(sk, tp); 3105 3106 if (eaten > 0) 3107 __kfree_skb(skb); 3108 else if (!sock_flag(sk, SOCK_DEAD)) 3109 sk->sk_data_ready(sk, 0); 3110 return; 3111 } 3112 3113 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3114 /* A retransmit, 2nd most common case. Force an immediate ack. */ 3115 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3116 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3117 3118 out_of_window: 3119 tcp_enter_quickack_mode(sk); 3120 inet_csk_schedule_ack(sk); 3121 drop: 3122 __kfree_skb(skb); 3123 return; 3124 } 3125 3126 /* Out of window. F.e. zero window probe. */ 3127 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 3128 goto out_of_window; 3129 3130 tcp_enter_quickack_mode(sk); 3131 3132 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3133 /* Partial packet, seq < rcv_next < end_seq */ 3134 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 3135 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3136 TCP_SKB_CB(skb)->end_seq); 3137 3138 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 3139 3140 /* If window is closed, drop tail of packet. But after 3141 * remembering D-SACK for its head made in previous line. 3142 */ 3143 if (!tcp_receive_window(tp)) 3144 goto out_of_window; 3145 goto queue_and_out; 3146 } 3147 3148 TCP_ECN_check_ce(tp, skb); 3149 3150 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3151 !sk_stream_rmem_schedule(sk, skb)) { 3152 if (tcp_prune_queue(sk) < 0 || 3153 !sk_stream_rmem_schedule(sk, skb)) 3154 goto drop; 3155 } 3156 3157 /* Disable header prediction. */ 3158 tp->pred_flags = 0; 3159 inet_csk_schedule_ack(sk); 3160 3161 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 3162 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3163 3164 sk_stream_set_owner_r(skb, sk); 3165 3166 if (!skb_peek(&tp->out_of_order_queue)) { 3167 /* Initial out of order segment, build 1 SACK. */ 3168 if (tp->rx_opt.sack_ok) { 3169 tp->rx_opt.num_sacks = 1; 3170 tp->rx_opt.dsack = 0; 3171 tp->rx_opt.eff_sacks = 1; 3172 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 3173 tp->selective_acks[0].end_seq = 3174 TCP_SKB_CB(skb)->end_seq; 3175 } 3176 __skb_queue_head(&tp->out_of_order_queue,skb); 3177 } else { 3178 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 3179 u32 seq = TCP_SKB_CB(skb)->seq; 3180 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3181 3182 if (seq == TCP_SKB_CB(skb1)->end_seq) { 3183 __skb_append(skb1, skb, &tp->out_of_order_queue); 3184 3185 if (!tp->rx_opt.num_sacks || 3186 tp->selective_acks[0].end_seq != seq) 3187 goto add_sack; 3188 3189 /* Common case: data arrive in order after hole. */ 3190 tp->selective_acks[0].end_seq = end_seq; 3191 return; 3192 } 3193 3194 /* Find place to insert this segment. */ 3195 do { 3196 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 3197 break; 3198 } while ((skb1 = skb1->prev) != 3199 (struct sk_buff*)&tp->out_of_order_queue); 3200 3201 /* Do skb overlap to previous one? */ 3202 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue && 3203 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 3204 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3205 /* All the bits are present. Drop. */ 3206 __kfree_skb(skb); 3207 tcp_dsack_set(tp, seq, end_seq); 3208 goto add_sack; 3209 } 3210 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 3211 /* Partial overlap. */ 3212 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq); 3213 } else { 3214 skb1 = skb1->prev; 3215 } 3216 } 3217 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); 3218 3219 /* And clean segments covered by new one as whole. */ 3220 while ((skb1 = skb->next) != 3221 (struct sk_buff*)&tp->out_of_order_queue && 3222 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 3223 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3224 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq); 3225 break; 3226 } 3227 __skb_unlink(skb1, &tp->out_of_order_queue); 3228 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq); 3229 __kfree_skb(skb1); 3230 } 3231 3232 add_sack: 3233 if (tp->rx_opt.sack_ok) 3234 tcp_sack_new_ofo_skb(sk, seq, end_seq); 3235 } 3236 } 3237 3238 /* Collapse contiguous sequence of skbs head..tail with 3239 * sequence numbers start..end. 3240 * Segments with FIN/SYN are not collapsed (only because this 3241 * simplifies code) 3242 */ 3243 static void 3244 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 3245 struct sk_buff *head, struct sk_buff *tail, 3246 u32 start, u32 end) 3247 { 3248 struct sk_buff *skb; 3249 3250 /* First, check that queue is collapsible and find 3251 * the point where collapsing can be useful. */ 3252 for (skb = head; skb != tail; ) { 3253 /* No new bits? It is possible on ofo queue. */ 3254 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3255 struct sk_buff *next = skb->next; 3256 __skb_unlink(skb, list); 3257 __kfree_skb(skb); 3258 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3259 skb = next; 3260 continue; 3261 } 3262 3263 /* The first skb to collapse is: 3264 * - not SYN/FIN and 3265 * - bloated or contains data before "start" or 3266 * overlaps to the next one. 3267 */ 3268 if (!skb->h.th->syn && !skb->h.th->fin && 3269 (tcp_win_from_space(skb->truesize) > skb->len || 3270 before(TCP_SKB_CB(skb)->seq, start) || 3271 (skb->next != tail && 3272 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 3273 break; 3274 3275 /* Decided to skip this, advance start seq. */ 3276 start = TCP_SKB_CB(skb)->end_seq; 3277 skb = skb->next; 3278 } 3279 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3280 return; 3281 3282 while (before(start, end)) { 3283 struct sk_buff *nskb; 3284 int header = skb_headroom(skb); 3285 int copy = SKB_MAX_ORDER(header, 0); 3286 3287 /* Too big header? This can happen with IPv6. */ 3288 if (copy < 0) 3289 return; 3290 if (end-start < copy) 3291 copy = end-start; 3292 nskb = alloc_skb(copy+header, GFP_ATOMIC); 3293 if (!nskb) 3294 return; 3295 skb_reserve(nskb, header); 3296 memcpy(nskb->head, skb->head, header); 3297 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head); 3298 nskb->h.raw = nskb->head + (skb->h.raw-skb->head); 3299 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head); 3300 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 3301 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 3302 __skb_insert(nskb, skb->prev, skb, list); 3303 sk_stream_set_owner_r(nskb, sk); 3304 3305 /* Copy data, releasing collapsed skbs. */ 3306 while (copy > 0) { 3307 int offset = start - TCP_SKB_CB(skb)->seq; 3308 int size = TCP_SKB_CB(skb)->end_seq - start; 3309 3310 if (offset < 0) BUG(); 3311 if (size > 0) { 3312 size = min(copy, size); 3313 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 3314 BUG(); 3315 TCP_SKB_CB(nskb)->end_seq += size; 3316 copy -= size; 3317 start += size; 3318 } 3319 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3320 struct sk_buff *next = skb->next; 3321 __skb_unlink(skb, list); 3322 __kfree_skb(skb); 3323 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3324 skb = next; 3325 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3326 return; 3327 } 3328 } 3329 } 3330 } 3331 3332 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 3333 * and tcp_collapse() them until all the queue is collapsed. 3334 */ 3335 static void tcp_collapse_ofo_queue(struct sock *sk) 3336 { 3337 struct tcp_sock *tp = tcp_sk(sk); 3338 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 3339 struct sk_buff *head; 3340 u32 start, end; 3341 3342 if (skb == NULL) 3343 return; 3344 3345 start = TCP_SKB_CB(skb)->seq; 3346 end = TCP_SKB_CB(skb)->end_seq; 3347 head = skb; 3348 3349 for (;;) { 3350 skb = skb->next; 3351 3352 /* Segment is terminated when we see gap or when 3353 * we are at the end of all the queue. */ 3354 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 3355 after(TCP_SKB_CB(skb)->seq, end) || 3356 before(TCP_SKB_CB(skb)->end_seq, start)) { 3357 tcp_collapse(sk, &tp->out_of_order_queue, 3358 head, skb, start, end); 3359 head = skb; 3360 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 3361 break; 3362 /* Start new segment */ 3363 start = TCP_SKB_CB(skb)->seq; 3364 end = TCP_SKB_CB(skb)->end_seq; 3365 } else { 3366 if (before(TCP_SKB_CB(skb)->seq, start)) 3367 start = TCP_SKB_CB(skb)->seq; 3368 if (after(TCP_SKB_CB(skb)->end_seq, end)) 3369 end = TCP_SKB_CB(skb)->end_seq; 3370 } 3371 } 3372 } 3373 3374 /* Reduce allocated memory if we can, trying to get 3375 * the socket within its memory limits again. 3376 * 3377 * Return less than zero if we should start dropping frames 3378 * until the socket owning process reads some of the data 3379 * to stabilize the situation. 3380 */ 3381 static int tcp_prune_queue(struct sock *sk) 3382 { 3383 struct tcp_sock *tp = tcp_sk(sk); 3384 3385 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 3386 3387 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); 3388 3389 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 3390 tcp_clamp_window(sk, tp); 3391 else if (tcp_memory_pressure) 3392 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 3393 3394 tcp_collapse_ofo_queue(sk); 3395 tcp_collapse(sk, &sk->sk_receive_queue, 3396 sk->sk_receive_queue.next, 3397 (struct sk_buff*)&sk->sk_receive_queue, 3398 tp->copied_seq, tp->rcv_nxt); 3399 sk_stream_mem_reclaim(sk); 3400 3401 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3402 return 0; 3403 3404 /* Collapsing did not help, destructive actions follow. 3405 * This must not ever occur. */ 3406 3407 /* First, purge the out_of_order queue. */ 3408 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3409 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED); 3410 __skb_queue_purge(&tp->out_of_order_queue); 3411 3412 /* Reset SACK state. A conforming SACK implementation will 3413 * do the same at a timeout based retransmit. When a connection 3414 * is in a sad state like this, we care only about integrity 3415 * of the connection not performance. 3416 */ 3417 if (tp->rx_opt.sack_ok) 3418 tcp_sack_reset(&tp->rx_opt); 3419 sk_stream_mem_reclaim(sk); 3420 } 3421 3422 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3423 return 0; 3424 3425 /* If we are really being abused, tell the caller to silently 3426 * drop receive data on the floor. It will get retransmitted 3427 * and hopefully then we'll have sufficient space. 3428 */ 3429 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); 3430 3431 /* Massive buffer overcommit. */ 3432 tp->pred_flags = 0; 3433 return -1; 3434 } 3435 3436 3437 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 3438 * As additional protections, we do not touch cwnd in retransmission phases, 3439 * and if application hit its sndbuf limit recently. 3440 */ 3441 void tcp_cwnd_application_limited(struct sock *sk) 3442 { 3443 struct tcp_sock *tp = tcp_sk(sk); 3444 3445 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 3446 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 3447 /* Limited by application or receiver window. */ 3448 u32 win_used = max(tp->snd_cwnd_used, 2U); 3449 if (win_used < tp->snd_cwnd) { 3450 tp->snd_ssthresh = tcp_current_ssthresh(sk); 3451 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 3452 } 3453 tp->snd_cwnd_used = 0; 3454 } 3455 tp->snd_cwnd_stamp = tcp_time_stamp; 3456 } 3457 3458 static inline int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp) 3459 { 3460 /* If the user specified a specific send buffer setting, do 3461 * not modify it. 3462 */ 3463 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 3464 return 0; 3465 3466 /* If we are under global TCP memory pressure, do not expand. */ 3467 if (tcp_memory_pressure) 3468 return 0; 3469 3470 /* If we are under soft global TCP memory pressure, do not expand. */ 3471 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 3472 return 0; 3473 3474 /* If we filled the congestion window, do not expand. */ 3475 if (tp->packets_out >= tp->snd_cwnd) 3476 return 0; 3477 3478 return 1; 3479 } 3480 3481 /* When incoming ACK allowed to free some skb from write_queue, 3482 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 3483 * on the exit from tcp input handler. 3484 * 3485 * PROBLEM: sndbuf expansion does not work well with largesend. 3486 */ 3487 static void tcp_new_space(struct sock *sk) 3488 { 3489 struct tcp_sock *tp = tcp_sk(sk); 3490 3491 if (tcp_should_expand_sndbuf(sk, tp)) { 3492 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 3493 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), 3494 demanded = max_t(unsigned int, tp->snd_cwnd, 3495 tp->reordering + 1); 3496 sndmem *= 2*demanded; 3497 if (sndmem > sk->sk_sndbuf) 3498 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 3499 tp->snd_cwnd_stamp = tcp_time_stamp; 3500 } 3501 3502 sk->sk_write_space(sk); 3503 } 3504 3505 static inline void tcp_check_space(struct sock *sk) 3506 { 3507 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 3508 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 3509 if (sk->sk_socket && 3510 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 3511 tcp_new_space(sk); 3512 } 3513 } 3514 3515 static __inline__ void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp) 3516 { 3517 tcp_push_pending_frames(sk, tp); 3518 tcp_check_space(sk); 3519 } 3520 3521 /* 3522 * Check if sending an ack is needed. 3523 */ 3524 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 3525 { 3526 struct tcp_sock *tp = tcp_sk(sk); 3527 3528 /* More than one full frame received... */ 3529 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 3530 /* ... and right edge of window advances far enough. 3531 * (tcp_recvmsg() will send ACK otherwise). Or... 3532 */ 3533 && __tcp_select_window(sk) >= tp->rcv_wnd) || 3534 /* We ACK each frame or... */ 3535 tcp_in_quickack_mode(sk) || 3536 /* We have out of order data. */ 3537 (ofo_possible && 3538 skb_peek(&tp->out_of_order_queue))) { 3539 /* Then ack it now */ 3540 tcp_send_ack(sk); 3541 } else { 3542 /* Else, send delayed ack. */ 3543 tcp_send_delayed_ack(sk); 3544 } 3545 } 3546 3547 static __inline__ void tcp_ack_snd_check(struct sock *sk) 3548 { 3549 if (!inet_csk_ack_scheduled(sk)) { 3550 /* We sent a data segment already. */ 3551 return; 3552 } 3553 __tcp_ack_snd_check(sk, 1); 3554 } 3555 3556 /* 3557 * This routine is only called when we have urgent data 3558 * signaled. Its the 'slow' part of tcp_urg. It could be 3559 * moved inline now as tcp_urg is only called from one 3560 * place. We handle URGent data wrong. We have to - as 3561 * BSD still doesn't use the correction from RFC961. 3562 * For 1003.1g we should support a new option TCP_STDURG to permit 3563 * either form (or just set the sysctl tcp_stdurg). 3564 */ 3565 3566 static void tcp_check_urg(struct sock * sk, struct tcphdr * th) 3567 { 3568 struct tcp_sock *tp = tcp_sk(sk); 3569 u32 ptr = ntohs(th->urg_ptr); 3570 3571 if (ptr && !sysctl_tcp_stdurg) 3572 ptr--; 3573 ptr += ntohl(th->seq); 3574 3575 /* Ignore urgent data that we've already seen and read. */ 3576 if (after(tp->copied_seq, ptr)) 3577 return; 3578 3579 /* Do not replay urg ptr. 3580 * 3581 * NOTE: interesting situation not covered by specs. 3582 * Misbehaving sender may send urg ptr, pointing to segment, 3583 * which we already have in ofo queue. We are not able to fetch 3584 * such data and will stay in TCP_URG_NOTYET until will be eaten 3585 * by recvmsg(). Seems, we are not obliged to handle such wicked 3586 * situations. But it is worth to think about possibility of some 3587 * DoSes using some hypothetical application level deadlock. 3588 */ 3589 if (before(ptr, tp->rcv_nxt)) 3590 return; 3591 3592 /* Do we already have a newer (or duplicate) urgent pointer? */ 3593 if (tp->urg_data && !after(ptr, tp->urg_seq)) 3594 return; 3595 3596 /* Tell the world about our new urgent pointer. */ 3597 sk_send_sigurg(sk); 3598 3599 /* We may be adding urgent data when the last byte read was 3600 * urgent. To do this requires some care. We cannot just ignore 3601 * tp->copied_seq since we would read the last urgent byte again 3602 * as data, nor can we alter copied_seq until this data arrives 3603 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 3604 * 3605 * NOTE. Double Dutch. Rendering to plain English: author of comment 3606 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 3607 * and expect that both A and B disappear from stream. This is _wrong_. 3608 * Though this happens in BSD with high probability, this is occasional. 3609 * Any application relying on this is buggy. Note also, that fix "works" 3610 * only in this artificial test. Insert some normal data between A and B and we will 3611 * decline of BSD again. Verdict: it is better to remove to trap 3612 * buggy users. 3613 */ 3614 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 3615 !sock_flag(sk, SOCK_URGINLINE) && 3616 tp->copied_seq != tp->rcv_nxt) { 3617 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 3618 tp->copied_seq++; 3619 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 3620 __skb_unlink(skb, &sk->sk_receive_queue); 3621 __kfree_skb(skb); 3622 } 3623 } 3624 3625 tp->urg_data = TCP_URG_NOTYET; 3626 tp->urg_seq = ptr; 3627 3628 /* Disable header prediction. */ 3629 tp->pred_flags = 0; 3630 } 3631 3632 /* This is the 'fast' part of urgent handling. */ 3633 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 3634 { 3635 struct tcp_sock *tp = tcp_sk(sk); 3636 3637 /* Check if we get a new urgent pointer - normally not. */ 3638 if (th->urg) 3639 tcp_check_urg(sk,th); 3640 3641 /* Do we wait for any urgent data? - normally not... */ 3642 if (tp->urg_data == TCP_URG_NOTYET) { 3643 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 3644 th->syn; 3645 3646 /* Is the urgent pointer pointing into this packet? */ 3647 if (ptr < skb->len) { 3648 u8 tmp; 3649 if (skb_copy_bits(skb, ptr, &tmp, 1)) 3650 BUG(); 3651 tp->urg_data = TCP_URG_VALID | tmp; 3652 if (!sock_flag(sk, SOCK_DEAD)) 3653 sk->sk_data_ready(sk, 0); 3654 } 3655 } 3656 } 3657 3658 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 3659 { 3660 struct tcp_sock *tp = tcp_sk(sk); 3661 int chunk = skb->len - hlen; 3662 int err; 3663 3664 local_bh_enable(); 3665 if (skb->ip_summed==CHECKSUM_UNNECESSARY) 3666 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 3667 else 3668 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 3669 tp->ucopy.iov); 3670 3671 if (!err) { 3672 tp->ucopy.len -= chunk; 3673 tp->copied_seq += chunk; 3674 tcp_rcv_space_adjust(sk); 3675 } 3676 3677 local_bh_disable(); 3678 return err; 3679 } 3680 3681 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 3682 { 3683 int result; 3684 3685 if (sock_owned_by_user(sk)) { 3686 local_bh_enable(); 3687 result = __tcp_checksum_complete(skb); 3688 local_bh_disable(); 3689 } else { 3690 result = __tcp_checksum_complete(skb); 3691 } 3692 return result; 3693 } 3694 3695 static __inline__ int 3696 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 3697 { 3698 return skb->ip_summed != CHECKSUM_UNNECESSARY && 3699 __tcp_checksum_complete_user(sk, skb); 3700 } 3701 3702 /* 3703 * TCP receive function for the ESTABLISHED state. 3704 * 3705 * It is split into a fast path and a slow path. The fast path is 3706 * disabled when: 3707 * - A zero window was announced from us - zero window probing 3708 * is only handled properly in the slow path. 3709 * - Out of order segments arrived. 3710 * - Urgent data is expected. 3711 * - There is no buffer space left 3712 * - Unexpected TCP flags/window values/header lengths are received 3713 * (detected by checking the TCP header against pred_flags) 3714 * - Data is sent in both directions. Fast path only supports pure senders 3715 * or pure receivers (this means either the sequence number or the ack 3716 * value must stay constant) 3717 * - Unexpected TCP option. 3718 * 3719 * When these conditions are not satisfied it drops into a standard 3720 * receive procedure patterned after RFC793 to handle all cases. 3721 * The first three cases are guaranteed by proper pred_flags setting, 3722 * the rest is checked inline. Fast processing is turned on in 3723 * tcp_data_queue when everything is OK. 3724 */ 3725 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 3726 struct tcphdr *th, unsigned len) 3727 { 3728 struct tcp_sock *tp = tcp_sk(sk); 3729 3730 /* 3731 * Header prediction. 3732 * The code loosely follows the one in the famous 3733 * "30 instruction TCP receive" Van Jacobson mail. 3734 * 3735 * Van's trick is to deposit buffers into socket queue 3736 * on a device interrupt, to call tcp_recv function 3737 * on the receive process context and checksum and copy 3738 * the buffer to user space. smart... 3739 * 3740 * Our current scheme is not silly either but we take the 3741 * extra cost of the net_bh soft interrupt processing... 3742 * We do checksum and copy also but from device to kernel. 3743 */ 3744 3745 tp->rx_opt.saw_tstamp = 0; 3746 3747 /* pred_flags is 0xS?10 << 16 + snd_wnd 3748 * if header_prediction is to be made 3749 * 'S' will always be tp->tcp_header_len >> 2 3750 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 3751 * turn it off (when there are holes in the receive 3752 * space for instance) 3753 * PSH flag is ignored. 3754 */ 3755 3756 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 3757 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3758 int tcp_header_len = tp->tcp_header_len; 3759 3760 /* Timestamp header prediction: tcp_header_len 3761 * is automatically equal to th->doff*4 due to pred_flags 3762 * match. 3763 */ 3764 3765 /* Check timestamp */ 3766 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 3767 __u32 *ptr = (__u32 *)(th + 1); 3768 3769 /* No? Slow path! */ 3770 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3771 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) 3772 goto slow_path; 3773 3774 tp->rx_opt.saw_tstamp = 1; 3775 ++ptr; 3776 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3777 ++ptr; 3778 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3779 3780 /* If PAWS failed, check it more carefully in slow path */ 3781 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 3782 goto slow_path; 3783 3784 /* DO NOT update ts_recent here, if checksum fails 3785 * and timestamp was corrupted part, it will result 3786 * in a hung connection since we will drop all 3787 * future packets due to the PAWS test. 3788 */ 3789 } 3790 3791 if (len <= tcp_header_len) { 3792 /* Bulk data transfer: sender */ 3793 if (len == tcp_header_len) { 3794 /* Predicted packet is in window by definition. 3795 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3796 * Hence, check seq<=rcv_wup reduces to: 3797 */ 3798 if (tcp_header_len == 3799 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 3800 tp->rcv_nxt == tp->rcv_wup) 3801 tcp_store_ts_recent(tp); 3802 3803 tcp_rcv_rtt_measure_ts(sk, skb); 3804 3805 /* We know that such packets are checksummed 3806 * on entry. 3807 */ 3808 tcp_ack(sk, skb, 0); 3809 __kfree_skb(skb); 3810 tcp_data_snd_check(sk, tp); 3811 return 0; 3812 } else { /* Header too small */ 3813 TCP_INC_STATS_BH(TCP_MIB_INERRS); 3814 goto discard; 3815 } 3816 } else { 3817 int eaten = 0; 3818 3819 if (tp->ucopy.task == current && 3820 tp->copied_seq == tp->rcv_nxt && 3821 len - tcp_header_len <= tp->ucopy.len && 3822 sock_owned_by_user(sk)) { 3823 __set_current_state(TASK_RUNNING); 3824 3825 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 3826 /* Predicted packet is in window by definition. 3827 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3828 * Hence, check seq<=rcv_wup reduces to: 3829 */ 3830 if (tcp_header_len == 3831 (sizeof(struct tcphdr) + 3832 TCPOLEN_TSTAMP_ALIGNED) && 3833 tp->rcv_nxt == tp->rcv_wup) 3834 tcp_store_ts_recent(tp); 3835 3836 tcp_rcv_rtt_measure_ts(sk, skb); 3837 3838 __skb_pull(skb, tcp_header_len); 3839 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3840 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); 3841 eaten = 1; 3842 } 3843 } 3844 if (!eaten) { 3845 if (tcp_checksum_complete_user(sk, skb)) 3846 goto csum_error; 3847 3848 /* Predicted packet is in window by definition. 3849 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3850 * Hence, check seq<=rcv_wup reduces to: 3851 */ 3852 if (tcp_header_len == 3853 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 3854 tp->rcv_nxt == tp->rcv_wup) 3855 tcp_store_ts_recent(tp); 3856 3857 tcp_rcv_rtt_measure_ts(sk, skb); 3858 3859 if ((int)skb->truesize > sk->sk_forward_alloc) 3860 goto step5; 3861 3862 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); 3863 3864 /* Bulk data transfer: receiver */ 3865 __skb_pull(skb,tcp_header_len); 3866 __skb_queue_tail(&sk->sk_receive_queue, skb); 3867 sk_stream_set_owner_r(skb, sk); 3868 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3869 } 3870 3871 tcp_event_data_recv(sk, tp, skb); 3872 3873 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 3874 /* Well, only one small jumplet in fast path... */ 3875 tcp_ack(sk, skb, FLAG_DATA); 3876 tcp_data_snd_check(sk, tp); 3877 if (!inet_csk_ack_scheduled(sk)) 3878 goto no_ack; 3879 } 3880 3881 __tcp_ack_snd_check(sk, 0); 3882 no_ack: 3883 if (eaten) 3884 __kfree_skb(skb); 3885 else 3886 sk->sk_data_ready(sk, 0); 3887 return 0; 3888 } 3889 } 3890 3891 slow_path: 3892 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb)) 3893 goto csum_error; 3894 3895 /* 3896 * RFC1323: H1. Apply PAWS check first. 3897 */ 3898 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 3899 tcp_paws_discard(sk, skb)) { 3900 if (!th->rst) { 3901 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 3902 tcp_send_dupack(sk, skb); 3903 goto discard; 3904 } 3905 /* Resets are accepted even if PAWS failed. 3906 3907 ts_recent update must be made after we are sure 3908 that the packet is in window. 3909 */ 3910 } 3911 3912 /* 3913 * Standard slow path. 3914 */ 3915 3916 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 3917 /* RFC793, page 37: "In all states except SYN-SENT, all reset 3918 * (RST) segments are validated by checking their SEQ-fields." 3919 * And page 69: "If an incoming segment is not acceptable, 3920 * an acknowledgment should be sent in reply (unless the RST bit 3921 * is set, if so drop the segment and return)". 3922 */ 3923 if (!th->rst) 3924 tcp_send_dupack(sk, skb); 3925 goto discard; 3926 } 3927 3928 if(th->rst) { 3929 tcp_reset(sk); 3930 goto discard; 3931 } 3932 3933 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3934 3935 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3936 TCP_INC_STATS_BH(TCP_MIB_INERRS); 3937 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 3938 tcp_reset(sk); 3939 return 1; 3940 } 3941 3942 step5: 3943 if(th->ack) 3944 tcp_ack(sk, skb, FLAG_SLOWPATH); 3945 3946 tcp_rcv_rtt_measure_ts(sk, skb); 3947 3948 /* Process urgent data. */ 3949 tcp_urg(sk, skb, th); 3950 3951 /* step 7: process the segment text */ 3952 tcp_data_queue(sk, skb); 3953 3954 tcp_data_snd_check(sk, tp); 3955 tcp_ack_snd_check(sk); 3956 return 0; 3957 3958 csum_error: 3959 TCP_INC_STATS_BH(TCP_MIB_INERRS); 3960 3961 discard: 3962 __kfree_skb(skb); 3963 return 0; 3964 } 3965 3966 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 3967 struct tcphdr *th, unsigned len) 3968 { 3969 struct tcp_sock *tp = tcp_sk(sk); 3970 int saved_clamp = tp->rx_opt.mss_clamp; 3971 3972 tcp_parse_options(skb, &tp->rx_opt, 0); 3973 3974 if (th->ack) { 3975 struct inet_connection_sock *icsk; 3976 /* rfc793: 3977 * "If the state is SYN-SENT then 3978 * first check the ACK bit 3979 * If the ACK bit is set 3980 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 3981 * a reset (unless the RST bit is set, if so drop 3982 * the segment and return)" 3983 * 3984 * We do not send data with SYN, so that RFC-correct 3985 * test reduces to: 3986 */ 3987 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 3988 goto reset_and_undo; 3989 3990 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3991 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 3992 tcp_time_stamp)) { 3993 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); 3994 goto reset_and_undo; 3995 } 3996 3997 /* Now ACK is acceptable. 3998 * 3999 * "If the RST bit is set 4000 * If the ACK was acceptable then signal the user "error: 4001 * connection reset", drop the segment, enter CLOSED state, 4002 * delete TCB, and return." 4003 */ 4004 4005 if (th->rst) { 4006 tcp_reset(sk); 4007 goto discard; 4008 } 4009 4010 /* rfc793: 4011 * "fifth, if neither of the SYN or RST bits is set then 4012 * drop the segment and return." 4013 * 4014 * See note below! 4015 * --ANK(990513) 4016 */ 4017 if (!th->syn) 4018 goto discard_and_undo; 4019 4020 /* rfc793: 4021 * "If the SYN bit is on ... 4022 * are acceptable then ... 4023 * (our SYN has been ACKed), change the connection 4024 * state to ESTABLISHED..." 4025 */ 4026 4027 TCP_ECN_rcv_synack(tp, th); 4028 if (tp->ecn_flags&TCP_ECN_OK) 4029 sock_set_flag(sk, SOCK_NO_LARGESEND); 4030 4031 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4032 tcp_ack(sk, skb, FLAG_SLOWPATH); 4033 4034 /* Ok.. it's good. Set up sequence numbers and 4035 * move to established. 4036 */ 4037 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4038 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4039 4040 /* RFC1323: The window in SYN & SYN/ACK segments is 4041 * never scaled. 4042 */ 4043 tp->snd_wnd = ntohs(th->window); 4044 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 4045 4046 if (!tp->rx_opt.wscale_ok) { 4047 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 4048 tp->window_clamp = min(tp->window_clamp, 65535U); 4049 } 4050 4051 if (tp->rx_opt.saw_tstamp) { 4052 tp->rx_opt.tstamp_ok = 1; 4053 tp->tcp_header_len = 4054 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4055 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4056 tcp_store_ts_recent(tp); 4057 } else { 4058 tp->tcp_header_len = sizeof(struct tcphdr); 4059 } 4060 4061 if (tp->rx_opt.sack_ok && sysctl_tcp_fack) 4062 tp->rx_opt.sack_ok |= 2; 4063 4064 tcp_sync_mss(sk, tp->pmtu_cookie); 4065 tcp_initialize_rcv_mss(sk); 4066 4067 /* Remember, tcp_poll() does not lock socket! 4068 * Change state from SYN-SENT only after copied_seq 4069 * is initialized. */ 4070 tp->copied_seq = tp->rcv_nxt; 4071 mb(); 4072 tcp_set_state(sk, TCP_ESTABLISHED); 4073 4074 /* Make sure socket is routed, for correct metrics. */ 4075 tp->af_specific->rebuild_header(sk); 4076 4077 tcp_init_metrics(sk); 4078 4079 tcp_init_congestion_control(sk); 4080 4081 /* Prevent spurious tcp_cwnd_restart() on first data 4082 * packet. 4083 */ 4084 tp->lsndtime = tcp_time_stamp; 4085 4086 tcp_init_buffer_space(sk); 4087 4088 if (sock_flag(sk, SOCK_KEEPOPEN)) 4089 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 4090 4091 if (!tp->rx_opt.snd_wscale) 4092 __tcp_fast_path_on(tp, tp->snd_wnd); 4093 else 4094 tp->pred_flags = 0; 4095 4096 if (!sock_flag(sk, SOCK_DEAD)) { 4097 sk->sk_state_change(sk); 4098 sk_wake_async(sk, 0, POLL_OUT); 4099 } 4100 4101 icsk = inet_csk(sk); 4102 4103 if (sk->sk_write_pending || 4104 icsk->icsk_accept_queue.rskq_defer_accept || 4105 icsk->icsk_ack.pingpong) { 4106 /* Save one ACK. Data will be ready after 4107 * several ticks, if write_pending is set. 4108 * 4109 * It may be deleted, but with this feature tcpdumps 4110 * look so _wonderfully_ clever, that I was not able 4111 * to stand against the temptation 8) --ANK 4112 */ 4113 inet_csk_schedule_ack(sk); 4114 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 4115 icsk->icsk_ack.ato = TCP_ATO_MIN; 4116 tcp_incr_quickack(sk); 4117 tcp_enter_quickack_mode(sk); 4118 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 4119 TCP_DELACK_MAX, TCP_RTO_MAX); 4120 4121 discard: 4122 __kfree_skb(skb); 4123 return 0; 4124 } else { 4125 tcp_send_ack(sk); 4126 } 4127 return -1; 4128 } 4129 4130 /* No ACK in the segment */ 4131 4132 if (th->rst) { 4133 /* rfc793: 4134 * "If the RST bit is set 4135 * 4136 * Otherwise (no ACK) drop the segment and return." 4137 */ 4138 4139 goto discard_and_undo; 4140 } 4141 4142 /* PAWS check. */ 4143 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0)) 4144 goto discard_and_undo; 4145 4146 if (th->syn) { 4147 /* We see SYN without ACK. It is attempt of 4148 * simultaneous connect with crossed SYNs. 4149 * Particularly, it can be connect to self. 4150 */ 4151 tcp_set_state(sk, TCP_SYN_RECV); 4152 4153 if (tp->rx_opt.saw_tstamp) { 4154 tp->rx_opt.tstamp_ok = 1; 4155 tcp_store_ts_recent(tp); 4156 tp->tcp_header_len = 4157 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4158 } else { 4159 tp->tcp_header_len = sizeof(struct tcphdr); 4160 } 4161 4162 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4163 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4164 4165 /* RFC1323: The window in SYN & SYN/ACK segments is 4166 * never scaled. 4167 */ 4168 tp->snd_wnd = ntohs(th->window); 4169 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4170 tp->max_window = tp->snd_wnd; 4171 4172 TCP_ECN_rcv_syn(tp, th); 4173 if (tp->ecn_flags&TCP_ECN_OK) 4174 sock_set_flag(sk, SOCK_NO_LARGESEND); 4175 4176 tcp_sync_mss(sk, tp->pmtu_cookie); 4177 tcp_initialize_rcv_mss(sk); 4178 4179 4180 tcp_send_synack(sk); 4181 #if 0 4182 /* Note, we could accept data and URG from this segment. 4183 * There are no obstacles to make this. 4184 * 4185 * However, if we ignore data in ACKless segments sometimes, 4186 * we have no reasons to accept it sometimes. 4187 * Also, seems the code doing it in step6 of tcp_rcv_state_process 4188 * is not flawless. So, discard packet for sanity. 4189 * Uncomment this return to process the data. 4190 */ 4191 return -1; 4192 #else 4193 goto discard; 4194 #endif 4195 } 4196 /* "fifth, if neither of the SYN or RST bits is set then 4197 * drop the segment and return." 4198 */ 4199 4200 discard_and_undo: 4201 tcp_clear_options(&tp->rx_opt); 4202 tp->rx_opt.mss_clamp = saved_clamp; 4203 goto discard; 4204 4205 reset_and_undo: 4206 tcp_clear_options(&tp->rx_opt); 4207 tp->rx_opt.mss_clamp = saved_clamp; 4208 return 1; 4209 } 4210 4211 4212 /* 4213 * This function implements the receiving procedure of RFC 793 for 4214 * all states except ESTABLISHED and TIME_WAIT. 4215 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 4216 * address independent. 4217 */ 4218 4219 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 4220 struct tcphdr *th, unsigned len) 4221 { 4222 struct tcp_sock *tp = tcp_sk(sk); 4223 int queued = 0; 4224 4225 tp->rx_opt.saw_tstamp = 0; 4226 4227 switch (sk->sk_state) { 4228 case TCP_CLOSE: 4229 goto discard; 4230 4231 case TCP_LISTEN: 4232 if(th->ack) 4233 return 1; 4234 4235 if(th->rst) 4236 goto discard; 4237 4238 if(th->syn) { 4239 if(tp->af_specific->conn_request(sk, skb) < 0) 4240 return 1; 4241 4242 /* Now we have several options: In theory there is 4243 * nothing else in the frame. KA9Q has an option to 4244 * send data with the syn, BSD accepts data with the 4245 * syn up to the [to be] advertised window and 4246 * Solaris 2.1 gives you a protocol error. For now 4247 * we just ignore it, that fits the spec precisely 4248 * and avoids incompatibilities. It would be nice in 4249 * future to drop through and process the data. 4250 * 4251 * Now that TTCP is starting to be used we ought to 4252 * queue this data. 4253 * But, this leaves one open to an easy denial of 4254 * service attack, and SYN cookies can't defend 4255 * against this problem. So, we drop the data 4256 * in the interest of security over speed. 4257 */ 4258 goto discard; 4259 } 4260 goto discard; 4261 4262 case TCP_SYN_SENT: 4263 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 4264 if (queued >= 0) 4265 return queued; 4266 4267 /* Do step6 onward by hand. */ 4268 tcp_urg(sk, skb, th); 4269 __kfree_skb(skb); 4270 tcp_data_snd_check(sk, tp); 4271 return 0; 4272 } 4273 4274 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4275 tcp_paws_discard(sk, skb)) { 4276 if (!th->rst) { 4277 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4278 tcp_send_dupack(sk, skb); 4279 goto discard; 4280 } 4281 /* Reset is accepted even if it did not pass PAWS. */ 4282 } 4283 4284 /* step 1: check sequence number */ 4285 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4286 if (!th->rst) 4287 tcp_send_dupack(sk, skb); 4288 goto discard; 4289 } 4290 4291 /* step 2: check RST bit */ 4292 if(th->rst) { 4293 tcp_reset(sk); 4294 goto discard; 4295 } 4296 4297 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4298 4299 /* step 3: check security and precedence [ignored] */ 4300 4301 /* step 4: 4302 * 4303 * Check for a SYN in window. 4304 */ 4305 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4306 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4307 tcp_reset(sk); 4308 return 1; 4309 } 4310 4311 /* step 5: check the ACK field */ 4312 if (th->ack) { 4313 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 4314 4315 switch(sk->sk_state) { 4316 case TCP_SYN_RECV: 4317 if (acceptable) { 4318 tp->copied_seq = tp->rcv_nxt; 4319 mb(); 4320 tcp_set_state(sk, TCP_ESTABLISHED); 4321 sk->sk_state_change(sk); 4322 4323 /* Note, that this wakeup is only for marginal 4324 * crossed SYN case. Passively open sockets 4325 * are not waked up, because sk->sk_sleep == 4326 * NULL and sk->sk_socket == NULL. 4327 */ 4328 if (sk->sk_socket) { 4329 sk_wake_async(sk,0,POLL_OUT); 4330 } 4331 4332 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 4333 tp->snd_wnd = ntohs(th->window) << 4334 tp->rx_opt.snd_wscale; 4335 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 4336 TCP_SKB_CB(skb)->seq); 4337 4338 /* tcp_ack considers this ACK as duplicate 4339 * and does not calculate rtt. 4340 * Fix it at least with timestamps. 4341 */ 4342 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4343 !tp->srtt) 4344 tcp_ack_saw_tstamp(sk, 0); 4345 4346 if (tp->rx_opt.tstamp_ok) 4347 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4348 4349 /* Make sure socket is routed, for 4350 * correct metrics. 4351 */ 4352 tp->af_specific->rebuild_header(sk); 4353 4354 tcp_init_metrics(sk); 4355 4356 tcp_init_congestion_control(sk); 4357 4358 /* Prevent spurious tcp_cwnd_restart() on 4359 * first data packet. 4360 */ 4361 tp->lsndtime = tcp_time_stamp; 4362 4363 tcp_initialize_rcv_mss(sk); 4364 tcp_init_buffer_space(sk); 4365 tcp_fast_path_on(tp); 4366 } else { 4367 return 1; 4368 } 4369 break; 4370 4371 case TCP_FIN_WAIT1: 4372 if (tp->snd_una == tp->write_seq) { 4373 tcp_set_state(sk, TCP_FIN_WAIT2); 4374 sk->sk_shutdown |= SEND_SHUTDOWN; 4375 dst_confirm(sk->sk_dst_cache); 4376 4377 if (!sock_flag(sk, SOCK_DEAD)) 4378 /* Wake up lingering close() */ 4379 sk->sk_state_change(sk); 4380 else { 4381 int tmo; 4382 4383 if (tp->linger2 < 0 || 4384 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4385 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 4386 tcp_done(sk); 4387 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4388 return 1; 4389 } 4390 4391 tmo = tcp_fin_time(sk); 4392 if (tmo > TCP_TIMEWAIT_LEN) { 4393 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 4394 } else if (th->fin || sock_owned_by_user(sk)) { 4395 /* Bad case. We could lose such FIN otherwise. 4396 * It is not a big problem, but it looks confusing 4397 * and not so rare event. We still can lose it now, 4398 * if it spins in bh_lock_sock(), but it is really 4399 * marginal case. 4400 */ 4401 inet_csk_reset_keepalive_timer(sk, tmo); 4402 } else { 4403 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 4404 goto discard; 4405 } 4406 } 4407 } 4408 break; 4409 4410 case TCP_CLOSING: 4411 if (tp->snd_una == tp->write_seq) { 4412 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4413 goto discard; 4414 } 4415 break; 4416 4417 case TCP_LAST_ACK: 4418 if (tp->snd_una == tp->write_seq) { 4419 tcp_update_metrics(sk); 4420 tcp_done(sk); 4421 goto discard; 4422 } 4423 break; 4424 } 4425 } else 4426 goto discard; 4427 4428 /* step 6: check the URG bit */ 4429 tcp_urg(sk, skb, th); 4430 4431 /* step 7: process the segment text */ 4432 switch (sk->sk_state) { 4433 case TCP_CLOSE_WAIT: 4434 case TCP_CLOSING: 4435 case TCP_LAST_ACK: 4436 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4437 break; 4438 case TCP_FIN_WAIT1: 4439 case TCP_FIN_WAIT2: 4440 /* RFC 793 says to queue data in these states, 4441 * RFC 1122 says we MUST send a reset. 4442 * BSD 4.4 also does reset. 4443 */ 4444 if (sk->sk_shutdown & RCV_SHUTDOWN) { 4445 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4446 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 4447 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4448 tcp_reset(sk); 4449 return 1; 4450 } 4451 } 4452 /* Fall through */ 4453 case TCP_ESTABLISHED: 4454 tcp_data_queue(sk, skb); 4455 queued = 1; 4456 break; 4457 } 4458 4459 /* tcp_data could move socket to TIME-WAIT */ 4460 if (sk->sk_state != TCP_CLOSE) { 4461 tcp_data_snd_check(sk, tp); 4462 tcp_ack_snd_check(sk); 4463 } 4464 4465 if (!queued) { 4466 discard: 4467 __kfree_skb(skb); 4468 } 4469 return 0; 4470 } 4471 4472 EXPORT_SYMBOL(sysctl_tcp_ecn); 4473 EXPORT_SYMBOL(sysctl_tcp_reordering); 4474 EXPORT_SYMBOL(sysctl_tcp_abc); 4475 EXPORT_SYMBOL(tcp_parse_options); 4476 EXPORT_SYMBOL(tcp_rcv_established); 4477 EXPORT_SYMBOL(tcp_rcv_state_process); 4478