1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 struct net_device *dev; 209 210 rcu_read_lock(); 211 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 212 if (!dev || len >= READ_ONCE(dev->mtu)) 213 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 214 dev ? dev->name : "Unknown driver"); 215 rcu_read_unlock(); 216 } 217 218 /* Adapt the MSS value used to make delayed ack decision to the 219 * real world. 220 */ 221 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 222 { 223 struct inet_connection_sock *icsk = inet_csk(sk); 224 const unsigned int lss = icsk->icsk_ack.last_seg_size; 225 unsigned int len; 226 227 icsk->icsk_ack.last_seg_size = 0; 228 229 /* skb->len may jitter because of SACKs, even if peer 230 * sends good full-sized frames. 231 */ 232 len = skb_shinfo(skb)->gso_size ? : skb->len; 233 if (len >= icsk->icsk_ack.rcv_mss) { 234 /* Note: divides are still a bit expensive. 235 * For the moment, only adjust scaling_ratio 236 * when we update icsk_ack.rcv_mss. 237 */ 238 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 239 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 240 241 do_div(val, skb->truesize); 242 tcp_sk(sk)->scaling_ratio = val ? val : 1; 243 } 244 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 245 tcp_sk(sk)->advmss); 246 /* Account for possibly-removed options */ 247 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE, 248 tcp_gro_dev_warn, sk, skb, len); 249 /* If the skb has a len of exactly 1*MSS and has the PSH bit 250 * set then it is likely the end of an application write. So 251 * more data may not be arriving soon, and yet the data sender 252 * may be waiting for an ACK if cwnd-bound or using TX zero 253 * copy. So we set ICSK_ACK_PUSHED here so that 254 * tcp_cleanup_rbuf() will send an ACK immediately if the app 255 * reads all of the data and is not ping-pong. If len > MSS 256 * then this logic does not matter (and does not hurt) because 257 * tcp_cleanup_rbuf() will always ACK immediately if the app 258 * reads data and there is more than an MSS of unACKed data. 259 */ 260 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 261 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 262 } else { 263 /* Otherwise, we make more careful check taking into account, 264 * that SACKs block is variable. 265 * 266 * "len" is invariant segment length, including TCP header. 267 */ 268 len += skb->data - skb_transport_header(skb); 269 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 270 /* If PSH is not set, packet should be 271 * full sized, provided peer TCP is not badly broken. 272 * This observation (if it is correct 8)) allows 273 * to handle super-low mtu links fairly. 274 */ 275 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 276 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 277 /* Subtract also invariant (if peer is RFC compliant), 278 * tcp header plus fixed timestamp option length. 279 * Resulting "len" is MSS free of SACK jitter. 280 */ 281 len -= tcp_sk(sk)->tcp_header_len; 282 icsk->icsk_ack.last_seg_size = len; 283 if (len == lss) { 284 icsk->icsk_ack.rcv_mss = len; 285 return; 286 } 287 } 288 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 289 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 290 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 291 } 292 } 293 294 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 295 { 296 struct inet_connection_sock *icsk = inet_csk(sk); 297 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 298 299 if (quickacks == 0) 300 quickacks = 2; 301 quickacks = min(quickacks, max_quickacks); 302 if (quickacks > icsk->icsk_ack.quick) 303 icsk->icsk_ack.quick = quickacks; 304 } 305 306 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 307 { 308 struct inet_connection_sock *icsk = inet_csk(sk); 309 310 tcp_incr_quickack(sk, max_quickacks); 311 inet_csk_exit_pingpong_mode(sk); 312 icsk->icsk_ack.ato = TCP_ATO_MIN; 313 } 314 315 /* Send ACKs quickly, if "quick" count is not exhausted 316 * and the session is not interactive. 317 */ 318 319 static bool tcp_in_quickack_mode(struct sock *sk) 320 { 321 const struct inet_connection_sock *icsk = inet_csk(sk); 322 const struct dst_entry *dst = __sk_dst_get(sk); 323 324 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 325 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 326 } 327 328 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 329 { 330 if (tp->ecn_flags & TCP_ECN_OK) 331 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 332 } 333 334 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 335 { 336 if (tcp_hdr(skb)->cwr) { 337 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 338 339 /* If the sender is telling us it has entered CWR, then its 340 * cwnd may be very low (even just 1 packet), so we should ACK 341 * immediately. 342 */ 343 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 344 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 345 } 346 } 347 348 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 349 { 350 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 351 } 352 353 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 354 { 355 struct tcp_sock *tp = tcp_sk(sk); 356 357 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 358 case INET_ECN_NOT_ECT: 359 /* Funny extension: if ECT is not set on a segment, 360 * and we already seen ECT on a previous segment, 361 * it is probably a retransmit. 362 */ 363 if (tp->ecn_flags & TCP_ECN_SEEN) 364 tcp_enter_quickack_mode(sk, 2); 365 break; 366 case INET_ECN_CE: 367 if (tcp_ca_needs_ecn(sk)) 368 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 369 370 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 371 /* Better not delay acks, sender can have a very low cwnd */ 372 tcp_enter_quickack_mode(sk, 2); 373 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 374 } 375 tp->ecn_flags |= TCP_ECN_SEEN; 376 break; 377 default: 378 if (tcp_ca_needs_ecn(sk)) 379 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 380 tp->ecn_flags |= TCP_ECN_SEEN; 381 break; 382 } 383 } 384 385 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 386 { 387 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 388 __tcp_ecn_check_ce(sk, skb); 389 } 390 391 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 392 { 393 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 394 tp->ecn_flags &= ~TCP_ECN_OK; 395 } 396 397 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 398 { 399 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 400 tp->ecn_flags &= ~TCP_ECN_OK; 401 } 402 403 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 404 { 405 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 406 return true; 407 return false; 408 } 409 410 /* Buffer size and advertised window tuning. 411 * 412 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 413 */ 414 415 static void tcp_sndbuf_expand(struct sock *sk) 416 { 417 const struct tcp_sock *tp = tcp_sk(sk); 418 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 419 int sndmem, per_mss; 420 u32 nr_segs; 421 422 /* Worst case is non GSO/TSO : each frame consumes one skb 423 * and skb->head is kmalloced using power of two area of memory 424 */ 425 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 426 MAX_TCP_HEADER + 427 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 428 429 per_mss = roundup_pow_of_two(per_mss) + 430 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 431 432 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 433 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 434 435 /* Fast Recovery (RFC 5681 3.2) : 436 * Cubic needs 1.7 factor, rounded to 2 to include 437 * extra cushion (application might react slowly to EPOLLOUT) 438 */ 439 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 440 sndmem *= nr_segs * per_mss; 441 442 if (sk->sk_sndbuf < sndmem) 443 WRITE_ONCE(sk->sk_sndbuf, 444 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 445 } 446 447 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 448 * 449 * All tcp_full_space() is split to two parts: "network" buffer, allocated 450 * forward and advertised in receiver window (tp->rcv_wnd) and 451 * "application buffer", required to isolate scheduling/application 452 * latencies from network. 453 * window_clamp is maximal advertised window. It can be less than 454 * tcp_full_space(), in this case tcp_full_space() - window_clamp 455 * is reserved for "application" buffer. The less window_clamp is 456 * the smoother our behaviour from viewpoint of network, but the lower 457 * throughput and the higher sensitivity of the connection to losses. 8) 458 * 459 * rcv_ssthresh is more strict window_clamp used at "slow start" 460 * phase to predict further behaviour of this connection. 461 * It is used for two goals: 462 * - to enforce header prediction at sender, even when application 463 * requires some significant "application buffer". It is check #1. 464 * - to prevent pruning of receive queue because of misprediction 465 * of receiver window. Check #2. 466 * 467 * The scheme does not work when sender sends good segments opening 468 * window and then starts to feed us spaghetti. But it should work 469 * in common situations. Otherwise, we have to rely on queue collapsing. 470 */ 471 472 /* Slow part of check#2. */ 473 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 474 unsigned int skbtruesize) 475 { 476 const struct tcp_sock *tp = tcp_sk(sk); 477 /* Optimize this! */ 478 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 479 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 480 481 while (tp->rcv_ssthresh <= window) { 482 if (truesize <= skb->len) 483 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 484 485 truesize >>= 1; 486 window >>= 1; 487 } 488 return 0; 489 } 490 491 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 492 * can play nice with us, as sk_buff and skb->head might be either 493 * freed or shared with up to MAX_SKB_FRAGS segments. 494 * Only give a boost to drivers using page frag(s) to hold the frame(s), 495 * and if no payload was pulled in skb->head before reaching us. 496 */ 497 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 498 { 499 u32 truesize = skb->truesize; 500 501 if (adjust && !skb_headlen(skb)) { 502 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 503 /* paranoid check, some drivers might be buggy */ 504 if (unlikely((int)truesize < (int)skb->len)) 505 truesize = skb->truesize; 506 } 507 return truesize; 508 } 509 510 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 511 bool adjust) 512 { 513 struct tcp_sock *tp = tcp_sk(sk); 514 int room; 515 516 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 517 518 if (room <= 0) 519 return; 520 521 /* Check #1 */ 522 if (!tcp_under_memory_pressure(sk)) { 523 unsigned int truesize = truesize_adjust(adjust, skb); 524 int incr; 525 526 /* Check #2. Increase window, if skb with such overhead 527 * will fit to rcvbuf in future. 528 */ 529 if (tcp_win_from_space(sk, truesize) <= skb->len) 530 incr = 2 * tp->advmss; 531 else 532 incr = __tcp_grow_window(sk, skb, truesize); 533 534 if (incr) { 535 incr = max_t(int, incr, 2 * skb->len); 536 tp->rcv_ssthresh += min(room, incr); 537 inet_csk(sk)->icsk_ack.quick |= 1; 538 } 539 } else { 540 /* Under pressure: 541 * Adjust rcv_ssthresh according to reserved mem 542 */ 543 tcp_adjust_rcv_ssthresh(sk); 544 } 545 } 546 547 /* 3. Try to fixup all. It is made immediately after connection enters 548 * established state. 549 */ 550 static void tcp_init_buffer_space(struct sock *sk) 551 { 552 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 553 struct tcp_sock *tp = tcp_sk(sk); 554 int maxwin; 555 556 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 557 tcp_sndbuf_expand(sk); 558 559 tcp_mstamp_refresh(tp); 560 tp->rcvq_space.time = tp->tcp_mstamp; 561 tp->rcvq_space.seq = tp->copied_seq; 562 563 maxwin = tcp_full_space(sk); 564 565 if (tp->window_clamp >= maxwin) { 566 tp->window_clamp = maxwin; 567 568 if (tcp_app_win && maxwin > 4 * tp->advmss) 569 tp->window_clamp = max(maxwin - 570 (maxwin >> tcp_app_win), 571 4 * tp->advmss); 572 } 573 574 /* Force reservation of one segment. */ 575 if (tcp_app_win && 576 tp->window_clamp > 2 * tp->advmss && 577 tp->window_clamp + tp->advmss > maxwin) 578 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 579 580 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 581 tp->snd_cwnd_stamp = tcp_jiffies32; 582 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 583 (u32)TCP_INIT_CWND * tp->advmss); 584 } 585 586 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 587 static void tcp_clamp_window(struct sock *sk) 588 { 589 struct tcp_sock *tp = tcp_sk(sk); 590 struct inet_connection_sock *icsk = inet_csk(sk); 591 struct net *net = sock_net(sk); 592 int rmem2; 593 594 icsk->icsk_ack.quick = 0; 595 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 596 597 if (sk->sk_rcvbuf < rmem2 && 598 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 599 !tcp_under_memory_pressure(sk) && 600 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 601 WRITE_ONCE(sk->sk_rcvbuf, 602 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 603 } 604 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 605 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 606 } 607 608 /* Initialize RCV_MSS value. 609 * RCV_MSS is an our guess about MSS used by the peer. 610 * We haven't any direct information about the MSS. 611 * It's better to underestimate the RCV_MSS rather than overestimate. 612 * Overestimations make us ACKing less frequently than needed. 613 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 614 */ 615 void tcp_initialize_rcv_mss(struct sock *sk) 616 { 617 const struct tcp_sock *tp = tcp_sk(sk); 618 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 619 620 hint = min(hint, tp->rcv_wnd / 2); 621 hint = min(hint, TCP_MSS_DEFAULT); 622 hint = max(hint, TCP_MIN_MSS); 623 624 inet_csk(sk)->icsk_ack.rcv_mss = hint; 625 } 626 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 627 628 /* Receiver "autotuning" code. 629 * 630 * The algorithm for RTT estimation w/o timestamps is based on 631 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 632 * <https://public.lanl.gov/radiant/pubs.html#DRS> 633 * 634 * More detail on this code can be found at 635 * <http://staff.psc.edu/jheffner/>, 636 * though this reference is out of date. A new paper 637 * is pending. 638 */ 639 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 640 { 641 u32 new_sample = tp->rcv_rtt_est.rtt_us; 642 long m = sample; 643 644 if (new_sample != 0) { 645 /* If we sample in larger samples in the non-timestamp 646 * case, we could grossly overestimate the RTT especially 647 * with chatty applications or bulk transfer apps which 648 * are stalled on filesystem I/O. 649 * 650 * Also, since we are only going for a minimum in the 651 * non-timestamp case, we do not smooth things out 652 * else with timestamps disabled convergence takes too 653 * long. 654 */ 655 if (!win_dep) { 656 m -= (new_sample >> 3); 657 new_sample += m; 658 } else { 659 m <<= 3; 660 if (m < new_sample) 661 new_sample = m; 662 } 663 } else { 664 /* No previous measure. */ 665 new_sample = m << 3; 666 } 667 668 tp->rcv_rtt_est.rtt_us = new_sample; 669 } 670 671 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 672 { 673 u32 delta_us; 674 675 if (tp->rcv_rtt_est.time == 0) 676 goto new_measure; 677 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 678 return; 679 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 680 if (!delta_us) 681 delta_us = 1; 682 tcp_rcv_rtt_update(tp, delta_us, 1); 683 684 new_measure: 685 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 686 tp->rcv_rtt_est.time = tp->tcp_mstamp; 687 } 688 689 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp) 690 { 691 u32 delta, delta_us; 692 693 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; 694 if (tp->tcp_usec_ts) 695 return delta; 696 697 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 698 if (!delta) 699 delta = 1; 700 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 701 return delta_us; 702 } 703 return -1; 704 } 705 706 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 707 const struct sk_buff *skb) 708 { 709 struct tcp_sock *tp = tcp_sk(sk); 710 711 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 712 return; 713 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 714 715 if (TCP_SKB_CB(skb)->end_seq - 716 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 717 s32 delta = tcp_rtt_tsopt_us(tp); 718 719 if (delta >= 0) 720 tcp_rcv_rtt_update(tp, delta, 0); 721 } 722 } 723 724 /* 725 * This function should be called every time data is copied to user space. 726 * It calculates the appropriate TCP receive buffer space. 727 */ 728 void tcp_rcv_space_adjust(struct sock *sk) 729 { 730 struct tcp_sock *tp = tcp_sk(sk); 731 u32 copied; 732 int time; 733 734 trace_tcp_rcv_space_adjust(sk); 735 736 tcp_mstamp_refresh(tp); 737 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 738 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 739 return; 740 741 /* Number of bytes copied to user in last RTT */ 742 copied = tp->copied_seq - tp->rcvq_space.seq; 743 if (copied <= tp->rcvq_space.space) 744 goto new_measure; 745 746 /* A bit of theory : 747 * copied = bytes received in previous RTT, our base window 748 * To cope with packet losses, we need a 2x factor 749 * To cope with slow start, and sender growing its cwin by 100 % 750 * every RTT, we need a 4x factor, because the ACK we are sending 751 * now is for the next RTT, not the current one : 752 * <prev RTT . ><current RTT .. ><next RTT .... > 753 */ 754 755 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 756 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 757 u64 rcvwin, grow; 758 int rcvbuf; 759 760 /* minimal window to cope with packet losses, assuming 761 * steady state. Add some cushion because of small variations. 762 */ 763 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 764 765 /* Accommodate for sender rate increase (eg. slow start) */ 766 grow = rcvwin * (copied - tp->rcvq_space.space); 767 do_div(grow, tp->rcvq_space.space); 768 rcvwin += (grow << 1); 769 770 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 771 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 772 if (rcvbuf > sk->sk_rcvbuf) { 773 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 774 775 /* Make the window clamp follow along. */ 776 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 777 } 778 } 779 tp->rcvq_space.space = copied; 780 781 new_measure: 782 tp->rcvq_space.seq = tp->copied_seq; 783 tp->rcvq_space.time = tp->tcp_mstamp; 784 } 785 786 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 787 { 788 #if IS_ENABLED(CONFIG_IPV6) 789 struct inet_connection_sock *icsk = inet_csk(sk); 790 791 if (skb->protocol == htons(ETH_P_IPV6)) 792 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 793 #endif 794 } 795 796 /* There is something which you must keep in mind when you analyze the 797 * behavior of the tp->ato delayed ack timeout interval. When a 798 * connection starts up, we want to ack as quickly as possible. The 799 * problem is that "good" TCP's do slow start at the beginning of data 800 * transmission. The means that until we send the first few ACK's the 801 * sender will sit on his end and only queue most of his data, because 802 * he can only send snd_cwnd unacked packets at any given time. For 803 * each ACK we send, he increments snd_cwnd and transmits more of his 804 * queue. -DaveM 805 */ 806 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 807 { 808 struct tcp_sock *tp = tcp_sk(sk); 809 struct inet_connection_sock *icsk = inet_csk(sk); 810 u32 now; 811 812 inet_csk_schedule_ack(sk); 813 814 tcp_measure_rcv_mss(sk, skb); 815 816 tcp_rcv_rtt_measure(tp); 817 818 now = tcp_jiffies32; 819 820 if (!icsk->icsk_ack.ato) { 821 /* The _first_ data packet received, initialize 822 * delayed ACK engine. 823 */ 824 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 825 icsk->icsk_ack.ato = TCP_ATO_MIN; 826 } else { 827 int m = now - icsk->icsk_ack.lrcvtime; 828 829 if (m <= TCP_ATO_MIN / 2) { 830 /* The fastest case is the first. */ 831 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 832 } else if (m < icsk->icsk_ack.ato) { 833 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 834 if (icsk->icsk_ack.ato > icsk->icsk_rto) 835 icsk->icsk_ack.ato = icsk->icsk_rto; 836 } else if (m > icsk->icsk_rto) { 837 /* Too long gap. Apparently sender failed to 838 * restart window, so that we send ACKs quickly. 839 */ 840 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 841 } 842 } 843 icsk->icsk_ack.lrcvtime = now; 844 tcp_save_lrcv_flowlabel(sk, skb); 845 846 tcp_ecn_check_ce(sk, skb); 847 848 if (skb->len >= 128) 849 tcp_grow_window(sk, skb, true); 850 } 851 852 /* Called to compute a smoothed rtt estimate. The data fed to this 853 * routine either comes from timestamps, or from segments that were 854 * known _not_ to have been retransmitted [see Karn/Partridge 855 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 856 * piece by Van Jacobson. 857 * NOTE: the next three routines used to be one big routine. 858 * To save cycles in the RFC 1323 implementation it was better to break 859 * it up into three procedures. -- erics 860 */ 861 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 862 { 863 struct tcp_sock *tp = tcp_sk(sk); 864 long m = mrtt_us; /* RTT */ 865 u32 srtt = tp->srtt_us; 866 867 /* The following amusing code comes from Jacobson's 868 * article in SIGCOMM '88. Note that rtt and mdev 869 * are scaled versions of rtt and mean deviation. 870 * This is designed to be as fast as possible 871 * m stands for "measurement". 872 * 873 * On a 1990 paper the rto value is changed to: 874 * RTO = rtt + 4 * mdev 875 * 876 * Funny. This algorithm seems to be very broken. 877 * These formulae increase RTO, when it should be decreased, increase 878 * too slowly, when it should be increased quickly, decrease too quickly 879 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 880 * does not matter how to _calculate_ it. Seems, it was trap 881 * that VJ failed to avoid. 8) 882 */ 883 if (srtt != 0) { 884 m -= (srtt >> 3); /* m is now error in rtt est */ 885 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 886 if (m < 0) { 887 m = -m; /* m is now abs(error) */ 888 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 889 /* This is similar to one of Eifel findings. 890 * Eifel blocks mdev updates when rtt decreases. 891 * This solution is a bit different: we use finer gain 892 * for mdev in this case (alpha*beta). 893 * Like Eifel it also prevents growth of rto, 894 * but also it limits too fast rto decreases, 895 * happening in pure Eifel. 896 */ 897 if (m > 0) 898 m >>= 3; 899 } else { 900 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 901 } 902 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 903 if (tp->mdev_us > tp->mdev_max_us) { 904 tp->mdev_max_us = tp->mdev_us; 905 if (tp->mdev_max_us > tp->rttvar_us) 906 tp->rttvar_us = tp->mdev_max_us; 907 } 908 if (after(tp->snd_una, tp->rtt_seq)) { 909 if (tp->mdev_max_us < tp->rttvar_us) 910 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 911 tp->rtt_seq = tp->snd_nxt; 912 tp->mdev_max_us = tcp_rto_min_us(sk); 913 914 tcp_bpf_rtt(sk); 915 } 916 } else { 917 /* no previous measure. */ 918 srtt = m << 3; /* take the measured time to be rtt */ 919 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 920 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 921 tp->mdev_max_us = tp->rttvar_us; 922 tp->rtt_seq = tp->snd_nxt; 923 924 tcp_bpf_rtt(sk); 925 } 926 tp->srtt_us = max(1U, srtt); 927 } 928 929 static void tcp_update_pacing_rate(struct sock *sk) 930 { 931 const struct tcp_sock *tp = tcp_sk(sk); 932 u64 rate; 933 934 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 935 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 936 937 /* current rate is (cwnd * mss) / srtt 938 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 939 * In Congestion Avoidance phase, set it to 120 % the current rate. 940 * 941 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 942 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 943 * end of slow start and should slow down. 944 */ 945 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 946 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 947 else 948 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 949 950 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 951 952 if (likely(tp->srtt_us)) 953 do_div(rate, tp->srtt_us); 954 955 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 956 * without any lock. We want to make sure compiler wont store 957 * intermediate values in this location. 958 */ 959 WRITE_ONCE(sk->sk_pacing_rate, 960 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 961 } 962 963 /* Calculate rto without backoff. This is the second half of Van Jacobson's 964 * routine referred to above. 965 */ 966 static void tcp_set_rto(struct sock *sk) 967 { 968 const struct tcp_sock *tp = tcp_sk(sk); 969 /* Old crap is replaced with new one. 8) 970 * 971 * More seriously: 972 * 1. If rtt variance happened to be less 50msec, it is hallucination. 973 * It cannot be less due to utterly erratic ACK generation made 974 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 975 * to do with delayed acks, because at cwnd>2 true delack timeout 976 * is invisible. Actually, Linux-2.4 also generates erratic 977 * ACKs in some circumstances. 978 */ 979 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 980 981 /* 2. Fixups made earlier cannot be right. 982 * If we do not estimate RTO correctly without them, 983 * all the algo is pure shit and should be replaced 984 * with correct one. It is exactly, which we pretend to do. 985 */ 986 987 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 988 * guarantees that rto is higher. 989 */ 990 tcp_bound_rto(sk); 991 } 992 993 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 994 { 995 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 996 997 if (!cwnd) 998 cwnd = TCP_INIT_CWND; 999 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 1000 } 1001 1002 struct tcp_sacktag_state { 1003 /* Timestamps for earliest and latest never-retransmitted segment 1004 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1005 * but congestion control should still get an accurate delay signal. 1006 */ 1007 u64 first_sackt; 1008 u64 last_sackt; 1009 u32 reord; 1010 u32 sack_delivered; 1011 int flag; 1012 unsigned int mss_now; 1013 struct rate_sample *rate; 1014 }; 1015 1016 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1017 * and spurious retransmission information if this DSACK is unlikely caused by 1018 * sender's action: 1019 * - DSACKed sequence range is larger than maximum receiver's window. 1020 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1021 */ 1022 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1023 u32 end_seq, struct tcp_sacktag_state *state) 1024 { 1025 u32 seq_len, dup_segs = 1; 1026 1027 if (!before(start_seq, end_seq)) 1028 return 0; 1029 1030 seq_len = end_seq - start_seq; 1031 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1032 if (seq_len > tp->max_window) 1033 return 0; 1034 if (seq_len > tp->mss_cache) 1035 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1036 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1037 state->flag |= FLAG_DSACK_TLP; 1038 1039 tp->dsack_dups += dup_segs; 1040 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1041 if (tp->dsack_dups > tp->total_retrans) 1042 return 0; 1043 1044 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1045 /* We increase the RACK ordering window in rounds where we receive 1046 * DSACKs that may have been due to reordering causing RACK to trigger 1047 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1048 * without having seen reordering, or that match TLP probes (TLP 1049 * is timer-driven, not triggered by RACK). 1050 */ 1051 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1052 tp->rack.dsack_seen = 1; 1053 1054 state->flag |= FLAG_DSACKING_ACK; 1055 /* A spurious retransmission is delivered */ 1056 state->sack_delivered += dup_segs; 1057 1058 return dup_segs; 1059 } 1060 1061 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1062 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1063 * distance is approximated in full-mss packet distance ("reordering"). 1064 */ 1065 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1066 const int ts) 1067 { 1068 struct tcp_sock *tp = tcp_sk(sk); 1069 const u32 mss = tp->mss_cache; 1070 u32 fack, metric; 1071 1072 fack = tcp_highest_sack_seq(tp); 1073 if (!before(low_seq, fack)) 1074 return; 1075 1076 metric = fack - low_seq; 1077 if ((metric > tp->reordering * mss) && mss) { 1078 #if FASTRETRANS_DEBUG > 1 1079 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1080 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1081 tp->reordering, 1082 0, 1083 tp->sacked_out, 1084 tp->undo_marker ? tp->undo_retrans : 0); 1085 #endif 1086 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1087 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1088 } 1089 1090 /* This exciting event is worth to be remembered. 8) */ 1091 tp->reord_seen++; 1092 NET_INC_STATS(sock_net(sk), 1093 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1094 } 1095 1096 /* This must be called before lost_out or retrans_out are updated 1097 * on a new loss, because we want to know if all skbs previously 1098 * known to be lost have already been retransmitted, indicating 1099 * that this newly lost skb is our next skb to retransmit. 1100 */ 1101 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1102 { 1103 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1104 (tp->retransmit_skb_hint && 1105 before(TCP_SKB_CB(skb)->seq, 1106 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1107 tp->retransmit_skb_hint = skb; 1108 } 1109 1110 /* Sum the number of packets on the wire we have marked as lost, and 1111 * notify the congestion control module that the given skb was marked lost. 1112 */ 1113 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1114 { 1115 tp->lost += tcp_skb_pcount(skb); 1116 } 1117 1118 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1119 { 1120 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1121 struct tcp_sock *tp = tcp_sk(sk); 1122 1123 if (sacked & TCPCB_SACKED_ACKED) 1124 return; 1125 1126 tcp_verify_retransmit_hint(tp, skb); 1127 if (sacked & TCPCB_LOST) { 1128 if (sacked & TCPCB_SACKED_RETRANS) { 1129 /* Account for retransmits that are lost again */ 1130 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1131 tp->retrans_out -= tcp_skb_pcount(skb); 1132 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1133 tcp_skb_pcount(skb)); 1134 tcp_notify_skb_loss_event(tp, skb); 1135 } 1136 } else { 1137 tp->lost_out += tcp_skb_pcount(skb); 1138 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1139 tcp_notify_skb_loss_event(tp, skb); 1140 } 1141 } 1142 1143 /* Updates the delivered and delivered_ce counts */ 1144 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1145 bool ece_ack) 1146 { 1147 tp->delivered += delivered; 1148 if (ece_ack) 1149 tp->delivered_ce += delivered; 1150 } 1151 1152 /* This procedure tags the retransmission queue when SACKs arrive. 1153 * 1154 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1155 * Packets in queue with these bits set are counted in variables 1156 * sacked_out, retrans_out and lost_out, correspondingly. 1157 * 1158 * Valid combinations are: 1159 * Tag InFlight Description 1160 * 0 1 - orig segment is in flight. 1161 * S 0 - nothing flies, orig reached receiver. 1162 * L 0 - nothing flies, orig lost by net. 1163 * R 2 - both orig and retransmit are in flight. 1164 * L|R 1 - orig is lost, retransmit is in flight. 1165 * S|R 1 - orig reached receiver, retrans is still in flight. 1166 * (L|S|R is logically valid, it could occur when L|R is sacked, 1167 * but it is equivalent to plain S and code short-curcuits it to S. 1168 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1169 * 1170 * These 6 states form finite state machine, controlled by the following events: 1171 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1172 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1173 * 3. Loss detection event of two flavors: 1174 * A. Scoreboard estimator decided the packet is lost. 1175 * A'. Reno "three dupacks" marks head of queue lost. 1176 * B. SACK arrives sacking SND.NXT at the moment, when the 1177 * segment was retransmitted. 1178 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1179 * 1180 * It is pleasant to note, that state diagram turns out to be commutative, 1181 * so that we are allowed not to be bothered by order of our actions, 1182 * when multiple events arrive simultaneously. (see the function below). 1183 * 1184 * Reordering detection. 1185 * -------------------- 1186 * Reordering metric is maximal distance, which a packet can be displaced 1187 * in packet stream. With SACKs we can estimate it: 1188 * 1189 * 1. SACK fills old hole and the corresponding segment was not 1190 * ever retransmitted -> reordering. Alas, we cannot use it 1191 * when segment was retransmitted. 1192 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1193 * for retransmitted and already SACKed segment -> reordering.. 1194 * Both of these heuristics are not used in Loss state, when we cannot 1195 * account for retransmits accurately. 1196 * 1197 * SACK block validation. 1198 * ---------------------- 1199 * 1200 * SACK block range validation checks that the received SACK block fits to 1201 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1202 * Note that SND.UNA is not included to the range though being valid because 1203 * it means that the receiver is rather inconsistent with itself reporting 1204 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1205 * perfectly valid, however, in light of RFC2018 which explicitly states 1206 * that "SACK block MUST reflect the newest segment. Even if the newest 1207 * segment is going to be discarded ...", not that it looks very clever 1208 * in case of head skb. Due to potentional receiver driven attacks, we 1209 * choose to avoid immediate execution of a walk in write queue due to 1210 * reneging and defer head skb's loss recovery to standard loss recovery 1211 * procedure that will eventually trigger (nothing forbids us doing this). 1212 * 1213 * Implements also blockage to start_seq wrap-around. Problem lies in the 1214 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1215 * there's no guarantee that it will be before snd_nxt (n). The problem 1216 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1217 * wrap (s_w): 1218 * 1219 * <- outs wnd -> <- wrapzone -> 1220 * u e n u_w e_w s n_w 1221 * | | | | | | | 1222 * |<------------+------+----- TCP seqno space --------------+---------->| 1223 * ...-- <2^31 ->| |<--------... 1224 * ...---- >2^31 ------>| |<--------... 1225 * 1226 * Current code wouldn't be vulnerable but it's better still to discard such 1227 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1228 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1229 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1230 * equal to the ideal case (infinite seqno space without wrap caused issues). 1231 * 1232 * With D-SACK the lower bound is extended to cover sequence space below 1233 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1234 * again, D-SACK block must not to go across snd_una (for the same reason as 1235 * for the normal SACK blocks, explained above). But there all simplicity 1236 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1237 * fully below undo_marker they do not affect behavior in anyway and can 1238 * therefore be safely ignored. In rare cases (which are more or less 1239 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1240 * fragmentation and packet reordering past skb's retransmission. To consider 1241 * them correctly, the acceptable range must be extended even more though 1242 * the exact amount is rather hard to quantify. However, tp->max_window can 1243 * be used as an exaggerated estimate. 1244 */ 1245 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1246 u32 start_seq, u32 end_seq) 1247 { 1248 /* Too far in future, or reversed (interpretation is ambiguous) */ 1249 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1250 return false; 1251 1252 /* Nasty start_seq wrap-around check (see comments above) */ 1253 if (!before(start_seq, tp->snd_nxt)) 1254 return false; 1255 1256 /* In outstanding window? ...This is valid exit for D-SACKs too. 1257 * start_seq == snd_una is non-sensical (see comments above) 1258 */ 1259 if (after(start_seq, tp->snd_una)) 1260 return true; 1261 1262 if (!is_dsack || !tp->undo_marker) 1263 return false; 1264 1265 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1266 if (after(end_seq, tp->snd_una)) 1267 return false; 1268 1269 if (!before(start_seq, tp->undo_marker)) 1270 return true; 1271 1272 /* Too old */ 1273 if (!after(end_seq, tp->undo_marker)) 1274 return false; 1275 1276 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1277 * start_seq < undo_marker and end_seq >= undo_marker. 1278 */ 1279 return !before(start_seq, end_seq - tp->max_window); 1280 } 1281 1282 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1283 struct tcp_sack_block_wire *sp, int num_sacks, 1284 u32 prior_snd_una, struct tcp_sacktag_state *state) 1285 { 1286 struct tcp_sock *tp = tcp_sk(sk); 1287 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1288 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1289 u32 dup_segs; 1290 1291 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1292 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1293 } else if (num_sacks > 1) { 1294 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1295 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1296 1297 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1298 return false; 1299 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1300 } else { 1301 return false; 1302 } 1303 1304 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1305 if (!dup_segs) { /* Skip dubious DSACK */ 1306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1307 return false; 1308 } 1309 1310 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1311 1312 /* D-SACK for already forgotten data... Do dumb counting. */ 1313 if (tp->undo_marker && tp->undo_retrans > 0 && 1314 !after(end_seq_0, prior_snd_una) && 1315 after(end_seq_0, tp->undo_marker)) 1316 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1317 1318 return true; 1319 } 1320 1321 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1322 * the incoming SACK may not exactly match but we can find smaller MSS 1323 * aligned portion of it that matches. Therefore we might need to fragment 1324 * which may fail and creates some hassle (caller must handle error case 1325 * returns). 1326 * 1327 * FIXME: this could be merged to shift decision code 1328 */ 1329 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1330 u32 start_seq, u32 end_seq) 1331 { 1332 int err; 1333 bool in_sack; 1334 unsigned int pkt_len; 1335 unsigned int mss; 1336 1337 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1338 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1339 1340 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1341 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1342 mss = tcp_skb_mss(skb); 1343 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1344 1345 if (!in_sack) { 1346 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1347 if (pkt_len < mss) 1348 pkt_len = mss; 1349 } else { 1350 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1351 if (pkt_len < mss) 1352 return -EINVAL; 1353 } 1354 1355 /* Round if necessary so that SACKs cover only full MSSes 1356 * and/or the remaining small portion (if present) 1357 */ 1358 if (pkt_len > mss) { 1359 unsigned int new_len = (pkt_len / mss) * mss; 1360 if (!in_sack && new_len < pkt_len) 1361 new_len += mss; 1362 pkt_len = new_len; 1363 } 1364 1365 if (pkt_len >= skb->len && !in_sack) 1366 return 0; 1367 1368 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1369 pkt_len, mss, GFP_ATOMIC); 1370 if (err < 0) 1371 return err; 1372 } 1373 1374 return in_sack; 1375 } 1376 1377 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1378 static u8 tcp_sacktag_one(struct sock *sk, 1379 struct tcp_sacktag_state *state, u8 sacked, 1380 u32 start_seq, u32 end_seq, 1381 int dup_sack, int pcount, 1382 u64 xmit_time) 1383 { 1384 struct tcp_sock *tp = tcp_sk(sk); 1385 1386 /* Account D-SACK for retransmitted packet. */ 1387 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1388 if (tp->undo_marker && tp->undo_retrans > 0 && 1389 after(end_seq, tp->undo_marker)) 1390 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1391 if ((sacked & TCPCB_SACKED_ACKED) && 1392 before(start_seq, state->reord)) 1393 state->reord = start_seq; 1394 } 1395 1396 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1397 if (!after(end_seq, tp->snd_una)) 1398 return sacked; 1399 1400 if (!(sacked & TCPCB_SACKED_ACKED)) { 1401 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1402 1403 if (sacked & TCPCB_SACKED_RETRANS) { 1404 /* If the segment is not tagged as lost, 1405 * we do not clear RETRANS, believing 1406 * that retransmission is still in flight. 1407 */ 1408 if (sacked & TCPCB_LOST) { 1409 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1410 tp->lost_out -= pcount; 1411 tp->retrans_out -= pcount; 1412 } 1413 } else { 1414 if (!(sacked & TCPCB_RETRANS)) { 1415 /* New sack for not retransmitted frame, 1416 * which was in hole. It is reordering. 1417 */ 1418 if (before(start_seq, 1419 tcp_highest_sack_seq(tp)) && 1420 before(start_seq, state->reord)) 1421 state->reord = start_seq; 1422 1423 if (!after(end_seq, tp->high_seq)) 1424 state->flag |= FLAG_ORIG_SACK_ACKED; 1425 if (state->first_sackt == 0) 1426 state->first_sackt = xmit_time; 1427 state->last_sackt = xmit_time; 1428 } 1429 1430 if (sacked & TCPCB_LOST) { 1431 sacked &= ~TCPCB_LOST; 1432 tp->lost_out -= pcount; 1433 } 1434 } 1435 1436 sacked |= TCPCB_SACKED_ACKED; 1437 state->flag |= FLAG_DATA_SACKED; 1438 tp->sacked_out += pcount; 1439 /* Out-of-order packets delivered */ 1440 state->sack_delivered += pcount; 1441 1442 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1443 if (tp->lost_skb_hint && 1444 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1445 tp->lost_cnt_hint += pcount; 1446 } 1447 1448 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1449 * frames and clear it. undo_retrans is decreased above, L|R frames 1450 * are accounted above as well. 1451 */ 1452 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1453 sacked &= ~TCPCB_SACKED_RETRANS; 1454 tp->retrans_out -= pcount; 1455 } 1456 1457 return sacked; 1458 } 1459 1460 /* Shift newly-SACKed bytes from this skb to the immediately previous 1461 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1462 */ 1463 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1464 struct sk_buff *skb, 1465 struct tcp_sacktag_state *state, 1466 unsigned int pcount, int shifted, int mss, 1467 bool dup_sack) 1468 { 1469 struct tcp_sock *tp = tcp_sk(sk); 1470 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1471 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1472 1473 BUG_ON(!pcount); 1474 1475 /* Adjust counters and hints for the newly sacked sequence 1476 * range but discard the return value since prev is already 1477 * marked. We must tag the range first because the seq 1478 * advancement below implicitly advances 1479 * tcp_highest_sack_seq() when skb is highest_sack. 1480 */ 1481 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1482 start_seq, end_seq, dup_sack, pcount, 1483 tcp_skb_timestamp_us(skb)); 1484 tcp_rate_skb_delivered(sk, skb, state->rate); 1485 1486 if (skb == tp->lost_skb_hint) 1487 tp->lost_cnt_hint += pcount; 1488 1489 TCP_SKB_CB(prev)->end_seq += shifted; 1490 TCP_SKB_CB(skb)->seq += shifted; 1491 1492 tcp_skb_pcount_add(prev, pcount); 1493 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1494 tcp_skb_pcount_add(skb, -pcount); 1495 1496 /* When we're adding to gso_segs == 1, gso_size will be zero, 1497 * in theory this shouldn't be necessary but as long as DSACK 1498 * code can come after this skb later on it's better to keep 1499 * setting gso_size to something. 1500 */ 1501 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1502 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1503 1504 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1505 if (tcp_skb_pcount(skb) <= 1) 1506 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1507 1508 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1509 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1510 1511 if (skb->len > 0) { 1512 BUG_ON(!tcp_skb_pcount(skb)); 1513 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1514 return false; 1515 } 1516 1517 /* Whole SKB was eaten :-) */ 1518 1519 if (skb == tp->retransmit_skb_hint) 1520 tp->retransmit_skb_hint = prev; 1521 if (skb == tp->lost_skb_hint) { 1522 tp->lost_skb_hint = prev; 1523 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1524 } 1525 1526 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1527 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1528 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1529 TCP_SKB_CB(prev)->end_seq++; 1530 1531 if (skb == tcp_highest_sack(sk)) 1532 tcp_advance_highest_sack(sk, skb); 1533 1534 tcp_skb_collapse_tstamp(prev, skb); 1535 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1536 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1537 1538 tcp_rtx_queue_unlink_and_free(skb, sk); 1539 1540 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1541 1542 return true; 1543 } 1544 1545 /* I wish gso_size would have a bit more sane initialization than 1546 * something-or-zero which complicates things 1547 */ 1548 static int tcp_skb_seglen(const struct sk_buff *skb) 1549 { 1550 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1551 } 1552 1553 /* Shifting pages past head area doesn't work */ 1554 static int skb_can_shift(const struct sk_buff *skb) 1555 { 1556 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1557 } 1558 1559 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1560 int pcount, int shiftlen) 1561 { 1562 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1563 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1564 * to make sure not storing more than 65535 * 8 bytes per skb, 1565 * even if current MSS is bigger. 1566 */ 1567 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1568 return 0; 1569 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1570 return 0; 1571 return skb_shift(to, from, shiftlen); 1572 } 1573 1574 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1575 * skb. 1576 */ 1577 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1578 struct tcp_sacktag_state *state, 1579 u32 start_seq, u32 end_seq, 1580 bool dup_sack) 1581 { 1582 struct tcp_sock *tp = tcp_sk(sk); 1583 struct sk_buff *prev; 1584 int mss; 1585 int pcount = 0; 1586 int len; 1587 int in_sack; 1588 1589 /* Normally R but no L won't result in plain S */ 1590 if (!dup_sack && 1591 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1592 goto fallback; 1593 if (!skb_can_shift(skb)) 1594 goto fallback; 1595 /* This frame is about to be dropped (was ACKed). */ 1596 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1597 goto fallback; 1598 1599 /* Can only happen with delayed DSACK + discard craziness */ 1600 prev = skb_rb_prev(skb); 1601 if (!prev) 1602 goto fallback; 1603 1604 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1605 goto fallback; 1606 1607 if (!tcp_skb_can_collapse(prev, skb)) 1608 goto fallback; 1609 1610 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1611 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1612 1613 if (in_sack) { 1614 len = skb->len; 1615 pcount = tcp_skb_pcount(skb); 1616 mss = tcp_skb_seglen(skb); 1617 1618 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1619 * drop this restriction as unnecessary 1620 */ 1621 if (mss != tcp_skb_seglen(prev)) 1622 goto fallback; 1623 } else { 1624 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1625 goto noop; 1626 /* CHECKME: This is non-MSS split case only?, this will 1627 * cause skipped skbs due to advancing loop btw, original 1628 * has that feature too 1629 */ 1630 if (tcp_skb_pcount(skb) <= 1) 1631 goto noop; 1632 1633 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1634 if (!in_sack) { 1635 /* TODO: head merge to next could be attempted here 1636 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1637 * though it might not be worth of the additional hassle 1638 * 1639 * ...we can probably just fallback to what was done 1640 * previously. We could try merging non-SACKed ones 1641 * as well but it probably isn't going to buy off 1642 * because later SACKs might again split them, and 1643 * it would make skb timestamp tracking considerably 1644 * harder problem. 1645 */ 1646 goto fallback; 1647 } 1648 1649 len = end_seq - TCP_SKB_CB(skb)->seq; 1650 BUG_ON(len < 0); 1651 BUG_ON(len > skb->len); 1652 1653 /* MSS boundaries should be honoured or else pcount will 1654 * severely break even though it makes things bit trickier. 1655 * Optimize common case to avoid most of the divides 1656 */ 1657 mss = tcp_skb_mss(skb); 1658 1659 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1660 * drop this restriction as unnecessary 1661 */ 1662 if (mss != tcp_skb_seglen(prev)) 1663 goto fallback; 1664 1665 if (len == mss) { 1666 pcount = 1; 1667 } else if (len < mss) { 1668 goto noop; 1669 } else { 1670 pcount = len / mss; 1671 len = pcount * mss; 1672 } 1673 } 1674 1675 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1676 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1677 goto fallback; 1678 1679 if (!tcp_skb_shift(prev, skb, pcount, len)) 1680 goto fallback; 1681 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1682 goto out; 1683 1684 /* Hole filled allows collapsing with the next as well, this is very 1685 * useful when hole on every nth skb pattern happens 1686 */ 1687 skb = skb_rb_next(prev); 1688 if (!skb) 1689 goto out; 1690 1691 if (!skb_can_shift(skb) || 1692 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1693 (mss != tcp_skb_seglen(skb))) 1694 goto out; 1695 1696 if (!tcp_skb_can_collapse(prev, skb)) 1697 goto out; 1698 len = skb->len; 1699 pcount = tcp_skb_pcount(skb); 1700 if (tcp_skb_shift(prev, skb, pcount, len)) 1701 tcp_shifted_skb(sk, prev, skb, state, pcount, 1702 len, mss, 0); 1703 1704 out: 1705 return prev; 1706 1707 noop: 1708 return skb; 1709 1710 fallback: 1711 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1712 return NULL; 1713 } 1714 1715 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1716 struct tcp_sack_block *next_dup, 1717 struct tcp_sacktag_state *state, 1718 u32 start_seq, u32 end_seq, 1719 bool dup_sack_in) 1720 { 1721 struct tcp_sock *tp = tcp_sk(sk); 1722 struct sk_buff *tmp; 1723 1724 skb_rbtree_walk_from(skb) { 1725 int in_sack = 0; 1726 bool dup_sack = dup_sack_in; 1727 1728 /* queue is in-order => we can short-circuit the walk early */ 1729 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1730 break; 1731 1732 if (next_dup && 1733 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1734 in_sack = tcp_match_skb_to_sack(sk, skb, 1735 next_dup->start_seq, 1736 next_dup->end_seq); 1737 if (in_sack > 0) 1738 dup_sack = true; 1739 } 1740 1741 /* skb reference here is a bit tricky to get right, since 1742 * shifting can eat and free both this skb and the next, 1743 * so not even _safe variant of the loop is enough. 1744 */ 1745 if (in_sack <= 0) { 1746 tmp = tcp_shift_skb_data(sk, skb, state, 1747 start_seq, end_seq, dup_sack); 1748 if (tmp) { 1749 if (tmp != skb) { 1750 skb = tmp; 1751 continue; 1752 } 1753 1754 in_sack = 0; 1755 } else { 1756 in_sack = tcp_match_skb_to_sack(sk, skb, 1757 start_seq, 1758 end_seq); 1759 } 1760 } 1761 1762 if (unlikely(in_sack < 0)) 1763 break; 1764 1765 if (in_sack) { 1766 TCP_SKB_CB(skb)->sacked = 1767 tcp_sacktag_one(sk, 1768 state, 1769 TCP_SKB_CB(skb)->sacked, 1770 TCP_SKB_CB(skb)->seq, 1771 TCP_SKB_CB(skb)->end_seq, 1772 dup_sack, 1773 tcp_skb_pcount(skb), 1774 tcp_skb_timestamp_us(skb)); 1775 tcp_rate_skb_delivered(sk, skb, state->rate); 1776 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1777 list_del_init(&skb->tcp_tsorted_anchor); 1778 1779 if (!before(TCP_SKB_CB(skb)->seq, 1780 tcp_highest_sack_seq(tp))) 1781 tcp_advance_highest_sack(sk, skb); 1782 } 1783 } 1784 return skb; 1785 } 1786 1787 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1788 { 1789 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1790 struct sk_buff *skb; 1791 1792 while (*p) { 1793 parent = *p; 1794 skb = rb_to_skb(parent); 1795 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1796 p = &parent->rb_left; 1797 continue; 1798 } 1799 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1800 p = &parent->rb_right; 1801 continue; 1802 } 1803 return skb; 1804 } 1805 return NULL; 1806 } 1807 1808 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1809 u32 skip_to_seq) 1810 { 1811 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1812 return skb; 1813 1814 return tcp_sacktag_bsearch(sk, skip_to_seq); 1815 } 1816 1817 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1818 struct sock *sk, 1819 struct tcp_sack_block *next_dup, 1820 struct tcp_sacktag_state *state, 1821 u32 skip_to_seq) 1822 { 1823 if (!next_dup) 1824 return skb; 1825 1826 if (before(next_dup->start_seq, skip_to_seq)) { 1827 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1828 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1829 next_dup->start_seq, next_dup->end_seq, 1830 1); 1831 } 1832 1833 return skb; 1834 } 1835 1836 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1837 { 1838 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1839 } 1840 1841 static int 1842 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1843 u32 prior_snd_una, struct tcp_sacktag_state *state) 1844 { 1845 struct tcp_sock *tp = tcp_sk(sk); 1846 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1847 TCP_SKB_CB(ack_skb)->sacked); 1848 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1849 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1850 struct tcp_sack_block *cache; 1851 struct sk_buff *skb; 1852 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1853 int used_sacks; 1854 bool found_dup_sack = false; 1855 int i, j; 1856 int first_sack_index; 1857 1858 state->flag = 0; 1859 state->reord = tp->snd_nxt; 1860 1861 if (!tp->sacked_out) 1862 tcp_highest_sack_reset(sk); 1863 1864 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1865 num_sacks, prior_snd_una, state); 1866 1867 /* Eliminate too old ACKs, but take into 1868 * account more or less fresh ones, they can 1869 * contain valid SACK info. 1870 */ 1871 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1872 return 0; 1873 1874 if (!tp->packets_out) 1875 goto out; 1876 1877 used_sacks = 0; 1878 first_sack_index = 0; 1879 for (i = 0; i < num_sacks; i++) { 1880 bool dup_sack = !i && found_dup_sack; 1881 1882 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1883 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1884 1885 if (!tcp_is_sackblock_valid(tp, dup_sack, 1886 sp[used_sacks].start_seq, 1887 sp[used_sacks].end_seq)) { 1888 int mib_idx; 1889 1890 if (dup_sack) { 1891 if (!tp->undo_marker) 1892 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1893 else 1894 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1895 } else { 1896 /* Don't count olds caused by ACK reordering */ 1897 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1898 !after(sp[used_sacks].end_seq, tp->snd_una)) 1899 continue; 1900 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1901 } 1902 1903 NET_INC_STATS(sock_net(sk), mib_idx); 1904 if (i == 0) 1905 first_sack_index = -1; 1906 continue; 1907 } 1908 1909 /* Ignore very old stuff early */ 1910 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1911 if (i == 0) 1912 first_sack_index = -1; 1913 continue; 1914 } 1915 1916 used_sacks++; 1917 } 1918 1919 /* order SACK blocks to allow in order walk of the retrans queue */ 1920 for (i = used_sacks - 1; i > 0; i--) { 1921 for (j = 0; j < i; j++) { 1922 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1923 swap(sp[j], sp[j + 1]); 1924 1925 /* Track where the first SACK block goes to */ 1926 if (j == first_sack_index) 1927 first_sack_index = j + 1; 1928 } 1929 } 1930 } 1931 1932 state->mss_now = tcp_current_mss(sk); 1933 skb = NULL; 1934 i = 0; 1935 1936 if (!tp->sacked_out) { 1937 /* It's already past, so skip checking against it */ 1938 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1939 } else { 1940 cache = tp->recv_sack_cache; 1941 /* Skip empty blocks in at head of the cache */ 1942 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1943 !cache->end_seq) 1944 cache++; 1945 } 1946 1947 while (i < used_sacks) { 1948 u32 start_seq = sp[i].start_seq; 1949 u32 end_seq = sp[i].end_seq; 1950 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1951 struct tcp_sack_block *next_dup = NULL; 1952 1953 if (found_dup_sack && ((i + 1) == first_sack_index)) 1954 next_dup = &sp[i + 1]; 1955 1956 /* Skip too early cached blocks */ 1957 while (tcp_sack_cache_ok(tp, cache) && 1958 !before(start_seq, cache->end_seq)) 1959 cache++; 1960 1961 /* Can skip some work by looking recv_sack_cache? */ 1962 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1963 after(end_seq, cache->start_seq)) { 1964 1965 /* Head todo? */ 1966 if (before(start_seq, cache->start_seq)) { 1967 skb = tcp_sacktag_skip(skb, sk, start_seq); 1968 skb = tcp_sacktag_walk(skb, sk, next_dup, 1969 state, 1970 start_seq, 1971 cache->start_seq, 1972 dup_sack); 1973 } 1974 1975 /* Rest of the block already fully processed? */ 1976 if (!after(end_seq, cache->end_seq)) 1977 goto advance_sp; 1978 1979 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1980 state, 1981 cache->end_seq); 1982 1983 /* ...tail remains todo... */ 1984 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1985 /* ...but better entrypoint exists! */ 1986 skb = tcp_highest_sack(sk); 1987 if (!skb) 1988 break; 1989 cache++; 1990 goto walk; 1991 } 1992 1993 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1994 /* Check overlap against next cached too (past this one already) */ 1995 cache++; 1996 continue; 1997 } 1998 1999 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 2000 skb = tcp_highest_sack(sk); 2001 if (!skb) 2002 break; 2003 } 2004 skb = tcp_sacktag_skip(skb, sk, start_seq); 2005 2006 walk: 2007 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2008 start_seq, end_seq, dup_sack); 2009 2010 advance_sp: 2011 i++; 2012 } 2013 2014 /* Clear the head of the cache sack blocks so we can skip it next time */ 2015 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2016 tp->recv_sack_cache[i].start_seq = 0; 2017 tp->recv_sack_cache[i].end_seq = 0; 2018 } 2019 for (j = 0; j < used_sacks; j++) 2020 tp->recv_sack_cache[i++] = sp[j]; 2021 2022 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2023 tcp_check_sack_reordering(sk, state->reord, 0); 2024 2025 tcp_verify_left_out(tp); 2026 out: 2027 2028 #if FASTRETRANS_DEBUG > 0 2029 WARN_ON((int)tp->sacked_out < 0); 2030 WARN_ON((int)tp->lost_out < 0); 2031 WARN_ON((int)tp->retrans_out < 0); 2032 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2033 #endif 2034 return state->flag; 2035 } 2036 2037 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2038 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2039 */ 2040 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2041 { 2042 u32 holes; 2043 2044 holes = max(tp->lost_out, 1U); 2045 holes = min(holes, tp->packets_out); 2046 2047 if ((tp->sacked_out + holes) > tp->packets_out) { 2048 tp->sacked_out = tp->packets_out - holes; 2049 return true; 2050 } 2051 return false; 2052 } 2053 2054 /* If we receive more dupacks than we expected counting segments 2055 * in assumption of absent reordering, interpret this as reordering. 2056 * The only another reason could be bug in receiver TCP. 2057 */ 2058 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2059 { 2060 struct tcp_sock *tp = tcp_sk(sk); 2061 2062 if (!tcp_limit_reno_sacked(tp)) 2063 return; 2064 2065 tp->reordering = min_t(u32, tp->packets_out + addend, 2066 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2067 tp->reord_seen++; 2068 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2069 } 2070 2071 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2072 2073 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2074 { 2075 if (num_dupack) { 2076 struct tcp_sock *tp = tcp_sk(sk); 2077 u32 prior_sacked = tp->sacked_out; 2078 s32 delivered; 2079 2080 tp->sacked_out += num_dupack; 2081 tcp_check_reno_reordering(sk, 0); 2082 delivered = tp->sacked_out - prior_sacked; 2083 if (delivered > 0) 2084 tcp_count_delivered(tp, delivered, ece_ack); 2085 tcp_verify_left_out(tp); 2086 } 2087 } 2088 2089 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2090 2091 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2092 { 2093 struct tcp_sock *tp = tcp_sk(sk); 2094 2095 if (acked > 0) { 2096 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2097 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2098 ece_ack); 2099 if (acked - 1 >= tp->sacked_out) 2100 tp->sacked_out = 0; 2101 else 2102 tp->sacked_out -= acked - 1; 2103 } 2104 tcp_check_reno_reordering(sk, acked); 2105 tcp_verify_left_out(tp); 2106 } 2107 2108 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2109 { 2110 tp->sacked_out = 0; 2111 } 2112 2113 void tcp_clear_retrans(struct tcp_sock *tp) 2114 { 2115 tp->retrans_out = 0; 2116 tp->lost_out = 0; 2117 tp->undo_marker = 0; 2118 tp->undo_retrans = -1; 2119 tp->sacked_out = 0; 2120 tp->rto_stamp = 0; 2121 tp->total_rto = 0; 2122 tp->total_rto_recoveries = 0; 2123 tp->total_rto_time = 0; 2124 } 2125 2126 static inline void tcp_init_undo(struct tcp_sock *tp) 2127 { 2128 tp->undo_marker = tp->snd_una; 2129 /* Retransmission still in flight may cause DSACKs later. */ 2130 tp->undo_retrans = tp->retrans_out ? : -1; 2131 } 2132 2133 static bool tcp_is_rack(const struct sock *sk) 2134 { 2135 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2136 TCP_RACK_LOSS_DETECTION; 2137 } 2138 2139 /* If we detect SACK reneging, forget all SACK information 2140 * and reset tags completely, otherwise preserve SACKs. If receiver 2141 * dropped its ofo queue, we will know this due to reneging detection. 2142 */ 2143 static void tcp_timeout_mark_lost(struct sock *sk) 2144 { 2145 struct tcp_sock *tp = tcp_sk(sk); 2146 struct sk_buff *skb, *head; 2147 bool is_reneg; /* is receiver reneging on SACKs? */ 2148 2149 head = tcp_rtx_queue_head(sk); 2150 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2151 if (is_reneg) { 2152 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2153 tp->sacked_out = 0; 2154 /* Mark SACK reneging until we recover from this loss event. */ 2155 tp->is_sack_reneg = 1; 2156 } else if (tcp_is_reno(tp)) { 2157 tcp_reset_reno_sack(tp); 2158 } 2159 2160 skb = head; 2161 skb_rbtree_walk_from(skb) { 2162 if (is_reneg) 2163 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2164 else if (tcp_is_rack(sk) && skb != head && 2165 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2166 continue; /* Don't mark recently sent ones lost yet */ 2167 tcp_mark_skb_lost(sk, skb); 2168 } 2169 tcp_verify_left_out(tp); 2170 tcp_clear_all_retrans_hints(tp); 2171 } 2172 2173 /* Enter Loss state. */ 2174 void tcp_enter_loss(struct sock *sk) 2175 { 2176 const struct inet_connection_sock *icsk = inet_csk(sk); 2177 struct tcp_sock *tp = tcp_sk(sk); 2178 struct net *net = sock_net(sk); 2179 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2180 u8 reordering; 2181 2182 tcp_timeout_mark_lost(sk); 2183 2184 /* Reduce ssthresh if it has not yet been made inside this window. */ 2185 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2186 !after(tp->high_seq, tp->snd_una) || 2187 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2188 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2189 tp->prior_cwnd = tcp_snd_cwnd(tp); 2190 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2191 tcp_ca_event(sk, CA_EVENT_LOSS); 2192 tcp_init_undo(tp); 2193 } 2194 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2195 tp->snd_cwnd_cnt = 0; 2196 tp->snd_cwnd_stamp = tcp_jiffies32; 2197 2198 /* Timeout in disordered state after receiving substantial DUPACKs 2199 * suggests that the degree of reordering is over-estimated. 2200 */ 2201 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2202 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2203 tp->sacked_out >= reordering) 2204 tp->reordering = min_t(unsigned int, tp->reordering, 2205 reordering); 2206 2207 tcp_set_ca_state(sk, TCP_CA_Loss); 2208 tp->high_seq = tp->snd_nxt; 2209 tcp_ecn_queue_cwr(tp); 2210 2211 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2212 * loss recovery is underway except recurring timeout(s) on 2213 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2214 */ 2215 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2216 (new_recovery || icsk->icsk_retransmits) && 2217 !inet_csk(sk)->icsk_mtup.probe_size; 2218 } 2219 2220 /* If ACK arrived pointing to a remembered SACK, it means that our 2221 * remembered SACKs do not reflect real state of receiver i.e. 2222 * receiver _host_ is heavily congested (or buggy). 2223 * 2224 * To avoid big spurious retransmission bursts due to transient SACK 2225 * scoreboard oddities that look like reneging, we give the receiver a 2226 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2227 * restore sanity to the SACK scoreboard. If the apparent reneging 2228 * persists until this RTO then we'll clear the SACK scoreboard. 2229 */ 2230 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2231 { 2232 if (*ack_flag & FLAG_SACK_RENEGING && 2233 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2234 struct tcp_sock *tp = tcp_sk(sk); 2235 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2236 msecs_to_jiffies(10)); 2237 2238 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2239 delay, TCP_RTO_MAX); 2240 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2241 return true; 2242 } 2243 return false; 2244 } 2245 2246 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2247 * counter when SACK is enabled (without SACK, sacked_out is used for 2248 * that purpose). 2249 * 2250 * With reordering, holes may still be in flight, so RFC3517 recovery 2251 * uses pure sacked_out (total number of SACKed segments) even though 2252 * it violates the RFC that uses duplicate ACKs, often these are equal 2253 * but when e.g. out-of-window ACKs or packet duplication occurs, 2254 * they differ. Since neither occurs due to loss, TCP should really 2255 * ignore them. 2256 */ 2257 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2258 { 2259 return tp->sacked_out + 1; 2260 } 2261 2262 /* Linux NewReno/SACK/ECN state machine. 2263 * -------------------------------------- 2264 * 2265 * "Open" Normal state, no dubious events, fast path. 2266 * "Disorder" In all the respects it is "Open", 2267 * but requires a bit more attention. It is entered when 2268 * we see some SACKs or dupacks. It is split of "Open" 2269 * mainly to move some processing from fast path to slow one. 2270 * "CWR" CWND was reduced due to some Congestion Notification event. 2271 * It can be ECN, ICMP source quench, local device congestion. 2272 * "Recovery" CWND was reduced, we are fast-retransmitting. 2273 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2274 * 2275 * tcp_fastretrans_alert() is entered: 2276 * - each incoming ACK, if state is not "Open" 2277 * - when arrived ACK is unusual, namely: 2278 * * SACK 2279 * * Duplicate ACK. 2280 * * ECN ECE. 2281 * 2282 * Counting packets in flight is pretty simple. 2283 * 2284 * in_flight = packets_out - left_out + retrans_out 2285 * 2286 * packets_out is SND.NXT-SND.UNA counted in packets. 2287 * 2288 * retrans_out is number of retransmitted segments. 2289 * 2290 * left_out is number of segments left network, but not ACKed yet. 2291 * 2292 * left_out = sacked_out + lost_out 2293 * 2294 * sacked_out: Packets, which arrived to receiver out of order 2295 * and hence not ACKed. With SACKs this number is simply 2296 * amount of SACKed data. Even without SACKs 2297 * it is easy to give pretty reliable estimate of this number, 2298 * counting duplicate ACKs. 2299 * 2300 * lost_out: Packets lost by network. TCP has no explicit 2301 * "loss notification" feedback from network (for now). 2302 * It means that this number can be only _guessed_. 2303 * Actually, it is the heuristics to predict lossage that 2304 * distinguishes different algorithms. 2305 * 2306 * F.e. after RTO, when all the queue is considered as lost, 2307 * lost_out = packets_out and in_flight = retrans_out. 2308 * 2309 * Essentially, we have now a few algorithms detecting 2310 * lost packets. 2311 * 2312 * If the receiver supports SACK: 2313 * 2314 * RFC6675/3517: It is the conventional algorithm. A packet is 2315 * considered lost if the number of higher sequence packets 2316 * SACKed is greater than or equal the DUPACK thoreshold 2317 * (reordering). This is implemented in tcp_mark_head_lost and 2318 * tcp_update_scoreboard. 2319 * 2320 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2321 * (2017-) that checks timing instead of counting DUPACKs. 2322 * Essentially a packet is considered lost if it's not S/ACKed 2323 * after RTT + reordering_window, where both metrics are 2324 * dynamically measured and adjusted. This is implemented in 2325 * tcp_rack_mark_lost. 2326 * 2327 * If the receiver does not support SACK: 2328 * 2329 * NewReno (RFC6582): in Recovery we assume that one segment 2330 * is lost (classic Reno). While we are in Recovery and 2331 * a partial ACK arrives, we assume that one more packet 2332 * is lost (NewReno). This heuristics are the same in NewReno 2333 * and SACK. 2334 * 2335 * Really tricky (and requiring careful tuning) part of algorithm 2336 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2337 * The first determines the moment _when_ we should reduce CWND and, 2338 * hence, slow down forward transmission. In fact, it determines the moment 2339 * when we decide that hole is caused by loss, rather than by a reorder. 2340 * 2341 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2342 * holes, caused by lost packets. 2343 * 2344 * And the most logically complicated part of algorithm is undo 2345 * heuristics. We detect false retransmits due to both too early 2346 * fast retransmit (reordering) and underestimated RTO, analyzing 2347 * timestamps and D-SACKs. When we detect that some segments were 2348 * retransmitted by mistake and CWND reduction was wrong, we undo 2349 * window reduction and abort recovery phase. This logic is hidden 2350 * inside several functions named tcp_try_undo_<something>. 2351 */ 2352 2353 /* This function decides, when we should leave Disordered state 2354 * and enter Recovery phase, reducing congestion window. 2355 * 2356 * Main question: may we further continue forward transmission 2357 * with the same cwnd? 2358 */ 2359 static bool tcp_time_to_recover(struct sock *sk, int flag) 2360 { 2361 struct tcp_sock *tp = tcp_sk(sk); 2362 2363 /* Trick#1: The loss is proven. */ 2364 if (tp->lost_out) 2365 return true; 2366 2367 /* Not-A-Trick#2 : Classic rule... */ 2368 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2369 return true; 2370 2371 return false; 2372 } 2373 2374 /* Detect loss in event "A" above by marking head of queue up as lost. 2375 * For RFC3517 SACK, a segment is considered lost if it 2376 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2377 * the maximum SACKed segments to pass before reaching this limit. 2378 */ 2379 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2380 { 2381 struct tcp_sock *tp = tcp_sk(sk); 2382 struct sk_buff *skb; 2383 int cnt; 2384 /* Use SACK to deduce losses of new sequences sent during recovery */ 2385 const u32 loss_high = tp->snd_nxt; 2386 2387 WARN_ON(packets > tp->packets_out); 2388 skb = tp->lost_skb_hint; 2389 if (skb) { 2390 /* Head already handled? */ 2391 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2392 return; 2393 cnt = tp->lost_cnt_hint; 2394 } else { 2395 skb = tcp_rtx_queue_head(sk); 2396 cnt = 0; 2397 } 2398 2399 skb_rbtree_walk_from(skb) { 2400 /* TODO: do this better */ 2401 /* this is not the most efficient way to do this... */ 2402 tp->lost_skb_hint = skb; 2403 tp->lost_cnt_hint = cnt; 2404 2405 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2406 break; 2407 2408 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2409 cnt += tcp_skb_pcount(skb); 2410 2411 if (cnt > packets) 2412 break; 2413 2414 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2415 tcp_mark_skb_lost(sk, skb); 2416 2417 if (mark_head) 2418 break; 2419 } 2420 tcp_verify_left_out(tp); 2421 } 2422 2423 /* Account newly detected lost packet(s) */ 2424 2425 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2426 { 2427 struct tcp_sock *tp = tcp_sk(sk); 2428 2429 if (tcp_is_sack(tp)) { 2430 int sacked_upto = tp->sacked_out - tp->reordering; 2431 if (sacked_upto >= 0) 2432 tcp_mark_head_lost(sk, sacked_upto, 0); 2433 else if (fast_rexmit) 2434 tcp_mark_head_lost(sk, 1, 1); 2435 } 2436 } 2437 2438 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2439 { 2440 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2441 before(tp->rx_opt.rcv_tsecr, when); 2442 } 2443 2444 /* skb is spurious retransmitted if the returned timestamp echo 2445 * reply is prior to the skb transmission time 2446 */ 2447 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2448 const struct sk_buff *skb) 2449 { 2450 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2451 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); 2452 } 2453 2454 /* Nothing was retransmitted or returned timestamp is less 2455 * than timestamp of the first retransmission. 2456 */ 2457 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2458 { 2459 return tp->retrans_stamp && 2460 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2461 } 2462 2463 /* Undo procedures. */ 2464 2465 /* We can clear retrans_stamp when there are no retransmissions in the 2466 * window. It would seem that it is trivially available for us in 2467 * tp->retrans_out, however, that kind of assumptions doesn't consider 2468 * what will happen if errors occur when sending retransmission for the 2469 * second time. ...It could the that such segment has only 2470 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2471 * the head skb is enough except for some reneging corner cases that 2472 * are not worth the effort. 2473 * 2474 * Main reason for all this complexity is the fact that connection dying 2475 * time now depends on the validity of the retrans_stamp, in particular, 2476 * that successive retransmissions of a segment must not advance 2477 * retrans_stamp under any conditions. 2478 */ 2479 static bool tcp_any_retrans_done(const struct sock *sk) 2480 { 2481 const struct tcp_sock *tp = tcp_sk(sk); 2482 struct sk_buff *skb; 2483 2484 if (tp->retrans_out) 2485 return true; 2486 2487 skb = tcp_rtx_queue_head(sk); 2488 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2489 return true; 2490 2491 return false; 2492 } 2493 2494 static void DBGUNDO(struct sock *sk, const char *msg) 2495 { 2496 #if FASTRETRANS_DEBUG > 1 2497 struct tcp_sock *tp = tcp_sk(sk); 2498 struct inet_sock *inet = inet_sk(sk); 2499 2500 if (sk->sk_family == AF_INET) { 2501 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2502 msg, 2503 &inet->inet_daddr, ntohs(inet->inet_dport), 2504 tcp_snd_cwnd(tp), tcp_left_out(tp), 2505 tp->snd_ssthresh, tp->prior_ssthresh, 2506 tp->packets_out); 2507 } 2508 #if IS_ENABLED(CONFIG_IPV6) 2509 else if (sk->sk_family == AF_INET6) { 2510 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2511 msg, 2512 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2513 tcp_snd_cwnd(tp), tcp_left_out(tp), 2514 tp->snd_ssthresh, tp->prior_ssthresh, 2515 tp->packets_out); 2516 } 2517 #endif 2518 #endif 2519 } 2520 2521 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2522 { 2523 struct tcp_sock *tp = tcp_sk(sk); 2524 2525 if (unmark_loss) { 2526 struct sk_buff *skb; 2527 2528 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2529 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2530 } 2531 tp->lost_out = 0; 2532 tcp_clear_all_retrans_hints(tp); 2533 } 2534 2535 if (tp->prior_ssthresh) { 2536 const struct inet_connection_sock *icsk = inet_csk(sk); 2537 2538 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2539 2540 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2541 tp->snd_ssthresh = tp->prior_ssthresh; 2542 tcp_ecn_withdraw_cwr(tp); 2543 } 2544 } 2545 tp->snd_cwnd_stamp = tcp_jiffies32; 2546 tp->undo_marker = 0; 2547 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2548 } 2549 2550 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2551 { 2552 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2553 } 2554 2555 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2556 { 2557 struct tcp_sock *tp = tcp_sk(sk); 2558 2559 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2560 /* Hold old state until something *above* high_seq 2561 * is ACKed. For Reno it is MUST to prevent false 2562 * fast retransmits (RFC2582). SACK TCP is safe. */ 2563 if (!tcp_any_retrans_done(sk)) 2564 tp->retrans_stamp = 0; 2565 return true; 2566 } 2567 return false; 2568 } 2569 2570 /* People celebrate: "We love our President!" */ 2571 static bool tcp_try_undo_recovery(struct sock *sk) 2572 { 2573 struct tcp_sock *tp = tcp_sk(sk); 2574 2575 if (tcp_may_undo(tp)) { 2576 int mib_idx; 2577 2578 /* Happy end! We did not retransmit anything 2579 * or our original transmission succeeded. 2580 */ 2581 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2582 tcp_undo_cwnd_reduction(sk, false); 2583 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2584 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2585 else 2586 mib_idx = LINUX_MIB_TCPFULLUNDO; 2587 2588 NET_INC_STATS(sock_net(sk), mib_idx); 2589 } else if (tp->rack.reo_wnd_persist) { 2590 tp->rack.reo_wnd_persist--; 2591 } 2592 if (tcp_is_non_sack_preventing_reopen(sk)) 2593 return true; 2594 tcp_set_ca_state(sk, TCP_CA_Open); 2595 tp->is_sack_reneg = 0; 2596 return false; 2597 } 2598 2599 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2600 static bool tcp_try_undo_dsack(struct sock *sk) 2601 { 2602 struct tcp_sock *tp = tcp_sk(sk); 2603 2604 if (tp->undo_marker && !tp->undo_retrans) { 2605 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2606 tp->rack.reo_wnd_persist + 1); 2607 DBGUNDO(sk, "D-SACK"); 2608 tcp_undo_cwnd_reduction(sk, false); 2609 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2610 return true; 2611 } 2612 return false; 2613 } 2614 2615 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2616 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2617 { 2618 struct tcp_sock *tp = tcp_sk(sk); 2619 2620 if (frto_undo || tcp_may_undo(tp)) { 2621 tcp_undo_cwnd_reduction(sk, true); 2622 2623 DBGUNDO(sk, "partial loss"); 2624 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2625 if (frto_undo) 2626 NET_INC_STATS(sock_net(sk), 2627 LINUX_MIB_TCPSPURIOUSRTOS); 2628 inet_csk(sk)->icsk_retransmits = 0; 2629 if (tcp_is_non_sack_preventing_reopen(sk)) 2630 return true; 2631 if (frto_undo || tcp_is_sack(tp)) { 2632 tcp_set_ca_state(sk, TCP_CA_Open); 2633 tp->is_sack_reneg = 0; 2634 } 2635 return true; 2636 } 2637 return false; 2638 } 2639 2640 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2641 * It computes the number of packets to send (sndcnt) based on packets newly 2642 * delivered: 2643 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2644 * cwnd reductions across a full RTT. 2645 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2646 * But when SND_UNA is acked without further losses, 2647 * slow starts cwnd up to ssthresh to speed up the recovery. 2648 */ 2649 static void tcp_init_cwnd_reduction(struct sock *sk) 2650 { 2651 struct tcp_sock *tp = tcp_sk(sk); 2652 2653 tp->high_seq = tp->snd_nxt; 2654 tp->tlp_high_seq = 0; 2655 tp->snd_cwnd_cnt = 0; 2656 tp->prior_cwnd = tcp_snd_cwnd(tp); 2657 tp->prr_delivered = 0; 2658 tp->prr_out = 0; 2659 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2660 tcp_ecn_queue_cwr(tp); 2661 } 2662 2663 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2664 { 2665 struct tcp_sock *tp = tcp_sk(sk); 2666 int sndcnt = 0; 2667 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2668 2669 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2670 return; 2671 2672 tp->prr_delivered += newly_acked_sacked; 2673 if (delta < 0) { 2674 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2675 tp->prior_cwnd - 1; 2676 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2677 } else { 2678 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2679 newly_acked_sacked); 2680 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2681 sndcnt++; 2682 sndcnt = min(delta, sndcnt); 2683 } 2684 /* Force a fast retransmit upon entering fast recovery */ 2685 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2686 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2687 } 2688 2689 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2690 { 2691 struct tcp_sock *tp = tcp_sk(sk); 2692 2693 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2694 return; 2695 2696 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2697 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2698 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2699 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2700 tp->snd_cwnd_stamp = tcp_jiffies32; 2701 } 2702 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2703 } 2704 2705 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2706 void tcp_enter_cwr(struct sock *sk) 2707 { 2708 struct tcp_sock *tp = tcp_sk(sk); 2709 2710 tp->prior_ssthresh = 0; 2711 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2712 tp->undo_marker = 0; 2713 tcp_init_cwnd_reduction(sk); 2714 tcp_set_ca_state(sk, TCP_CA_CWR); 2715 } 2716 } 2717 EXPORT_SYMBOL(tcp_enter_cwr); 2718 2719 static void tcp_try_keep_open(struct sock *sk) 2720 { 2721 struct tcp_sock *tp = tcp_sk(sk); 2722 int state = TCP_CA_Open; 2723 2724 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2725 state = TCP_CA_Disorder; 2726 2727 if (inet_csk(sk)->icsk_ca_state != state) { 2728 tcp_set_ca_state(sk, state); 2729 tp->high_seq = tp->snd_nxt; 2730 } 2731 } 2732 2733 static void tcp_try_to_open(struct sock *sk, int flag) 2734 { 2735 struct tcp_sock *tp = tcp_sk(sk); 2736 2737 tcp_verify_left_out(tp); 2738 2739 if (!tcp_any_retrans_done(sk)) 2740 tp->retrans_stamp = 0; 2741 2742 if (flag & FLAG_ECE) 2743 tcp_enter_cwr(sk); 2744 2745 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2746 tcp_try_keep_open(sk); 2747 } 2748 } 2749 2750 static void tcp_mtup_probe_failed(struct sock *sk) 2751 { 2752 struct inet_connection_sock *icsk = inet_csk(sk); 2753 2754 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2755 icsk->icsk_mtup.probe_size = 0; 2756 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2757 } 2758 2759 static void tcp_mtup_probe_success(struct sock *sk) 2760 { 2761 struct tcp_sock *tp = tcp_sk(sk); 2762 struct inet_connection_sock *icsk = inet_csk(sk); 2763 u64 val; 2764 2765 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2766 2767 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2768 do_div(val, icsk->icsk_mtup.probe_size); 2769 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2770 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2771 2772 tp->snd_cwnd_cnt = 0; 2773 tp->snd_cwnd_stamp = tcp_jiffies32; 2774 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2775 2776 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2777 icsk->icsk_mtup.probe_size = 0; 2778 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2779 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2780 } 2781 2782 /* Do a simple retransmit without using the backoff mechanisms in 2783 * tcp_timer. This is used for path mtu discovery. 2784 * The socket is already locked here. 2785 */ 2786 void tcp_simple_retransmit(struct sock *sk) 2787 { 2788 const struct inet_connection_sock *icsk = inet_csk(sk); 2789 struct tcp_sock *tp = tcp_sk(sk); 2790 struct sk_buff *skb; 2791 int mss; 2792 2793 /* A fastopen SYN request is stored as two separate packets within 2794 * the retransmit queue, this is done by tcp_send_syn_data(). 2795 * As a result simply checking the MSS of the frames in the queue 2796 * will not work for the SYN packet. 2797 * 2798 * Us being here is an indication of a path MTU issue so we can 2799 * assume that the fastopen SYN was lost and just mark all the 2800 * frames in the retransmit queue as lost. We will use an MSS of 2801 * -1 to mark all frames as lost, otherwise compute the current MSS. 2802 */ 2803 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2804 mss = -1; 2805 else 2806 mss = tcp_current_mss(sk); 2807 2808 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2809 if (tcp_skb_seglen(skb) > mss) 2810 tcp_mark_skb_lost(sk, skb); 2811 } 2812 2813 tcp_clear_retrans_hints_partial(tp); 2814 2815 if (!tp->lost_out) 2816 return; 2817 2818 if (tcp_is_reno(tp)) 2819 tcp_limit_reno_sacked(tp); 2820 2821 tcp_verify_left_out(tp); 2822 2823 /* Don't muck with the congestion window here. 2824 * Reason is that we do not increase amount of _data_ 2825 * in network, but units changed and effective 2826 * cwnd/ssthresh really reduced now. 2827 */ 2828 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2829 tp->high_seq = tp->snd_nxt; 2830 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2831 tp->prior_ssthresh = 0; 2832 tp->undo_marker = 0; 2833 tcp_set_ca_state(sk, TCP_CA_Loss); 2834 } 2835 tcp_xmit_retransmit_queue(sk); 2836 } 2837 EXPORT_SYMBOL(tcp_simple_retransmit); 2838 2839 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2840 { 2841 struct tcp_sock *tp = tcp_sk(sk); 2842 int mib_idx; 2843 2844 if (tcp_is_reno(tp)) 2845 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2846 else 2847 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2848 2849 NET_INC_STATS(sock_net(sk), mib_idx); 2850 2851 tp->prior_ssthresh = 0; 2852 tcp_init_undo(tp); 2853 2854 if (!tcp_in_cwnd_reduction(sk)) { 2855 if (!ece_ack) 2856 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2857 tcp_init_cwnd_reduction(sk); 2858 } 2859 tcp_set_ca_state(sk, TCP_CA_Recovery); 2860 } 2861 2862 static void tcp_update_rto_time(struct tcp_sock *tp) 2863 { 2864 if (tp->rto_stamp) { 2865 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; 2866 tp->rto_stamp = 0; 2867 } 2868 } 2869 2870 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2871 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2872 */ 2873 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2874 int *rexmit) 2875 { 2876 struct tcp_sock *tp = tcp_sk(sk); 2877 bool recovered = !before(tp->snd_una, tp->high_seq); 2878 2879 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2880 tcp_try_undo_loss(sk, false)) 2881 return; 2882 2883 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2884 /* Step 3.b. A timeout is spurious if not all data are 2885 * lost, i.e., never-retransmitted data are (s)acked. 2886 */ 2887 if ((flag & FLAG_ORIG_SACK_ACKED) && 2888 tcp_try_undo_loss(sk, true)) 2889 return; 2890 2891 if (after(tp->snd_nxt, tp->high_seq)) { 2892 if (flag & FLAG_DATA_SACKED || num_dupack) 2893 tp->frto = 0; /* Step 3.a. loss was real */ 2894 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2895 tp->high_seq = tp->snd_nxt; 2896 /* Step 2.b. Try send new data (but deferred until cwnd 2897 * is updated in tcp_ack()). Otherwise fall back to 2898 * the conventional recovery. 2899 */ 2900 if (!tcp_write_queue_empty(sk) && 2901 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2902 *rexmit = REXMIT_NEW; 2903 return; 2904 } 2905 tp->frto = 0; 2906 } 2907 } 2908 2909 if (recovered) { 2910 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2911 tcp_try_undo_recovery(sk); 2912 return; 2913 } 2914 if (tcp_is_reno(tp)) { 2915 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2916 * delivered. Lower inflight to clock out (re)transmissions. 2917 */ 2918 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2919 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2920 else if (flag & FLAG_SND_UNA_ADVANCED) 2921 tcp_reset_reno_sack(tp); 2922 } 2923 *rexmit = REXMIT_LOST; 2924 } 2925 2926 static bool tcp_force_fast_retransmit(struct sock *sk) 2927 { 2928 struct tcp_sock *tp = tcp_sk(sk); 2929 2930 return after(tcp_highest_sack_seq(tp), 2931 tp->snd_una + tp->reordering * tp->mss_cache); 2932 } 2933 2934 /* Undo during fast recovery after partial ACK. */ 2935 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2936 bool *do_lost) 2937 { 2938 struct tcp_sock *tp = tcp_sk(sk); 2939 2940 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2941 /* Plain luck! Hole if filled with delayed 2942 * packet, rather than with a retransmit. Check reordering. 2943 */ 2944 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2945 2946 /* We are getting evidence that the reordering degree is higher 2947 * than we realized. If there are no retransmits out then we 2948 * can undo. Otherwise we clock out new packets but do not 2949 * mark more packets lost or retransmit more. 2950 */ 2951 if (tp->retrans_out) 2952 return true; 2953 2954 if (!tcp_any_retrans_done(sk)) 2955 tp->retrans_stamp = 0; 2956 2957 DBGUNDO(sk, "partial recovery"); 2958 tcp_undo_cwnd_reduction(sk, true); 2959 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2960 tcp_try_keep_open(sk); 2961 } else { 2962 /* Partial ACK arrived. Force fast retransmit. */ 2963 *do_lost = tcp_force_fast_retransmit(sk); 2964 } 2965 return false; 2966 } 2967 2968 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2969 { 2970 struct tcp_sock *tp = tcp_sk(sk); 2971 2972 if (tcp_rtx_queue_empty(sk)) 2973 return; 2974 2975 if (unlikely(tcp_is_reno(tp))) { 2976 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2977 } else if (tcp_is_rack(sk)) { 2978 u32 prior_retrans = tp->retrans_out; 2979 2980 if (tcp_rack_mark_lost(sk)) 2981 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2982 if (prior_retrans > tp->retrans_out) 2983 *ack_flag |= FLAG_LOST_RETRANS; 2984 } 2985 } 2986 2987 /* Process an event, which can update packets-in-flight not trivially. 2988 * Main goal of this function is to calculate new estimate for left_out, 2989 * taking into account both packets sitting in receiver's buffer and 2990 * packets lost by network. 2991 * 2992 * Besides that it updates the congestion state when packet loss or ECN 2993 * is detected. But it does not reduce the cwnd, it is done by the 2994 * congestion control later. 2995 * 2996 * It does _not_ decide what to send, it is made in function 2997 * tcp_xmit_retransmit_queue(). 2998 */ 2999 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3000 int num_dupack, int *ack_flag, int *rexmit) 3001 { 3002 struct inet_connection_sock *icsk = inet_csk(sk); 3003 struct tcp_sock *tp = tcp_sk(sk); 3004 int fast_rexmit = 0, flag = *ack_flag; 3005 bool ece_ack = flag & FLAG_ECE; 3006 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3007 tcp_force_fast_retransmit(sk)); 3008 3009 if (!tp->packets_out && tp->sacked_out) 3010 tp->sacked_out = 0; 3011 3012 /* Now state machine starts. 3013 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3014 if (ece_ack) 3015 tp->prior_ssthresh = 0; 3016 3017 /* B. In all the states check for reneging SACKs. */ 3018 if (tcp_check_sack_reneging(sk, ack_flag)) 3019 return; 3020 3021 /* C. Check consistency of the current state. */ 3022 tcp_verify_left_out(tp); 3023 3024 /* D. Check state exit conditions. State can be terminated 3025 * when high_seq is ACKed. */ 3026 if (icsk->icsk_ca_state == TCP_CA_Open) { 3027 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3028 tp->retrans_stamp = 0; 3029 } else if (!before(tp->snd_una, tp->high_seq)) { 3030 switch (icsk->icsk_ca_state) { 3031 case TCP_CA_CWR: 3032 /* CWR is to be held something *above* high_seq 3033 * is ACKed for CWR bit to reach receiver. */ 3034 if (tp->snd_una != tp->high_seq) { 3035 tcp_end_cwnd_reduction(sk); 3036 tcp_set_ca_state(sk, TCP_CA_Open); 3037 } 3038 break; 3039 3040 case TCP_CA_Recovery: 3041 if (tcp_is_reno(tp)) 3042 tcp_reset_reno_sack(tp); 3043 if (tcp_try_undo_recovery(sk)) 3044 return; 3045 tcp_end_cwnd_reduction(sk); 3046 break; 3047 } 3048 } 3049 3050 /* E. Process state. */ 3051 switch (icsk->icsk_ca_state) { 3052 case TCP_CA_Recovery: 3053 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3054 if (tcp_is_reno(tp)) 3055 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3056 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3057 return; 3058 3059 if (tcp_try_undo_dsack(sk)) 3060 tcp_try_keep_open(sk); 3061 3062 tcp_identify_packet_loss(sk, ack_flag); 3063 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3064 if (!tcp_time_to_recover(sk, flag)) 3065 return; 3066 /* Undo reverts the recovery state. If loss is evident, 3067 * starts a new recovery (e.g. reordering then loss); 3068 */ 3069 tcp_enter_recovery(sk, ece_ack); 3070 } 3071 break; 3072 case TCP_CA_Loss: 3073 tcp_process_loss(sk, flag, num_dupack, rexmit); 3074 if (icsk->icsk_ca_state != TCP_CA_Loss) 3075 tcp_update_rto_time(tp); 3076 tcp_identify_packet_loss(sk, ack_flag); 3077 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3078 (*ack_flag & FLAG_LOST_RETRANS))) 3079 return; 3080 /* Change state if cwnd is undone or retransmits are lost */ 3081 fallthrough; 3082 default: 3083 if (tcp_is_reno(tp)) { 3084 if (flag & FLAG_SND_UNA_ADVANCED) 3085 tcp_reset_reno_sack(tp); 3086 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3087 } 3088 3089 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3090 tcp_try_undo_dsack(sk); 3091 3092 tcp_identify_packet_loss(sk, ack_flag); 3093 if (!tcp_time_to_recover(sk, flag)) { 3094 tcp_try_to_open(sk, flag); 3095 return; 3096 } 3097 3098 /* MTU probe failure: don't reduce cwnd */ 3099 if (icsk->icsk_ca_state < TCP_CA_CWR && 3100 icsk->icsk_mtup.probe_size && 3101 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3102 tcp_mtup_probe_failed(sk); 3103 /* Restores the reduction we did in tcp_mtup_probe() */ 3104 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3105 tcp_simple_retransmit(sk); 3106 return; 3107 } 3108 3109 /* Otherwise enter Recovery state */ 3110 tcp_enter_recovery(sk, ece_ack); 3111 fast_rexmit = 1; 3112 } 3113 3114 if (!tcp_is_rack(sk) && do_lost) 3115 tcp_update_scoreboard(sk, fast_rexmit); 3116 *rexmit = REXMIT_LOST; 3117 } 3118 3119 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3120 { 3121 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3122 struct tcp_sock *tp = tcp_sk(sk); 3123 3124 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3125 /* If the remote keeps returning delayed ACKs, eventually 3126 * the min filter would pick it up and overestimate the 3127 * prop. delay when it expires. Skip suspected delayed ACKs. 3128 */ 3129 return; 3130 } 3131 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3132 rtt_us ? : jiffies_to_usecs(1)); 3133 } 3134 3135 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3136 long seq_rtt_us, long sack_rtt_us, 3137 long ca_rtt_us, struct rate_sample *rs) 3138 { 3139 const struct tcp_sock *tp = tcp_sk(sk); 3140 3141 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3142 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3143 * Karn's algorithm forbids taking RTT if some retransmitted data 3144 * is acked (RFC6298). 3145 */ 3146 if (seq_rtt_us < 0) 3147 seq_rtt_us = sack_rtt_us; 3148 3149 /* RTTM Rule: A TSecr value received in a segment is used to 3150 * update the averaged RTT measurement only if the segment 3151 * acknowledges some new data, i.e., only if it advances the 3152 * left edge of the send window. 3153 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3154 */ 3155 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && 3156 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) 3157 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp); 3158 3159 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3160 if (seq_rtt_us < 0) 3161 return false; 3162 3163 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3164 * always taken together with ACK, SACK, or TS-opts. Any negative 3165 * values will be skipped with the seq_rtt_us < 0 check above. 3166 */ 3167 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3168 tcp_rtt_estimator(sk, seq_rtt_us); 3169 tcp_set_rto(sk); 3170 3171 /* RFC6298: only reset backoff on valid RTT measurement. */ 3172 inet_csk(sk)->icsk_backoff = 0; 3173 return true; 3174 } 3175 3176 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3177 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3178 { 3179 struct rate_sample rs; 3180 long rtt_us = -1L; 3181 3182 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3183 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3184 3185 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3186 } 3187 3188 3189 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3190 { 3191 const struct inet_connection_sock *icsk = inet_csk(sk); 3192 3193 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3194 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3195 } 3196 3197 /* Restart timer after forward progress on connection. 3198 * RFC2988 recommends to restart timer to now+rto. 3199 */ 3200 void tcp_rearm_rto(struct sock *sk) 3201 { 3202 const struct inet_connection_sock *icsk = inet_csk(sk); 3203 struct tcp_sock *tp = tcp_sk(sk); 3204 3205 /* If the retrans timer is currently being used by Fast Open 3206 * for SYN-ACK retrans purpose, stay put. 3207 */ 3208 if (rcu_access_pointer(tp->fastopen_rsk)) 3209 return; 3210 3211 if (!tp->packets_out) { 3212 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3213 } else { 3214 u32 rto = inet_csk(sk)->icsk_rto; 3215 /* Offset the time elapsed after installing regular RTO */ 3216 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3217 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3218 s64 delta_us = tcp_rto_delta_us(sk); 3219 /* delta_us may not be positive if the socket is locked 3220 * when the retrans timer fires and is rescheduled. 3221 */ 3222 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3223 } 3224 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3225 TCP_RTO_MAX); 3226 } 3227 } 3228 3229 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3230 static void tcp_set_xmit_timer(struct sock *sk) 3231 { 3232 if (!tcp_schedule_loss_probe(sk, true)) 3233 tcp_rearm_rto(sk); 3234 } 3235 3236 /* If we get here, the whole TSO packet has not been acked. */ 3237 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3238 { 3239 struct tcp_sock *tp = tcp_sk(sk); 3240 u32 packets_acked; 3241 3242 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3243 3244 packets_acked = tcp_skb_pcount(skb); 3245 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3246 return 0; 3247 packets_acked -= tcp_skb_pcount(skb); 3248 3249 if (packets_acked) { 3250 BUG_ON(tcp_skb_pcount(skb) == 0); 3251 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3252 } 3253 3254 return packets_acked; 3255 } 3256 3257 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3258 const struct sk_buff *ack_skb, u32 prior_snd_una) 3259 { 3260 const struct skb_shared_info *shinfo; 3261 3262 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3263 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3264 return; 3265 3266 shinfo = skb_shinfo(skb); 3267 if (!before(shinfo->tskey, prior_snd_una) && 3268 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3269 tcp_skb_tsorted_save(skb) { 3270 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3271 } tcp_skb_tsorted_restore(skb); 3272 } 3273 } 3274 3275 /* Remove acknowledged frames from the retransmission queue. If our packet 3276 * is before the ack sequence we can discard it as it's confirmed to have 3277 * arrived at the other end. 3278 */ 3279 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3280 u32 prior_fack, u32 prior_snd_una, 3281 struct tcp_sacktag_state *sack, bool ece_ack) 3282 { 3283 const struct inet_connection_sock *icsk = inet_csk(sk); 3284 u64 first_ackt, last_ackt; 3285 struct tcp_sock *tp = tcp_sk(sk); 3286 u32 prior_sacked = tp->sacked_out; 3287 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3288 struct sk_buff *skb, *next; 3289 bool fully_acked = true; 3290 long sack_rtt_us = -1L; 3291 long seq_rtt_us = -1L; 3292 long ca_rtt_us = -1L; 3293 u32 pkts_acked = 0; 3294 bool rtt_update; 3295 int flag = 0; 3296 3297 first_ackt = 0; 3298 3299 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3300 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3301 const u32 start_seq = scb->seq; 3302 u8 sacked = scb->sacked; 3303 u32 acked_pcount; 3304 3305 /* Determine how many packets and what bytes were acked, tso and else */ 3306 if (after(scb->end_seq, tp->snd_una)) { 3307 if (tcp_skb_pcount(skb) == 1 || 3308 !after(tp->snd_una, scb->seq)) 3309 break; 3310 3311 acked_pcount = tcp_tso_acked(sk, skb); 3312 if (!acked_pcount) 3313 break; 3314 fully_acked = false; 3315 } else { 3316 acked_pcount = tcp_skb_pcount(skb); 3317 } 3318 3319 if (unlikely(sacked & TCPCB_RETRANS)) { 3320 if (sacked & TCPCB_SACKED_RETRANS) 3321 tp->retrans_out -= acked_pcount; 3322 flag |= FLAG_RETRANS_DATA_ACKED; 3323 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3324 last_ackt = tcp_skb_timestamp_us(skb); 3325 WARN_ON_ONCE(last_ackt == 0); 3326 if (!first_ackt) 3327 first_ackt = last_ackt; 3328 3329 if (before(start_seq, reord)) 3330 reord = start_seq; 3331 if (!after(scb->end_seq, tp->high_seq)) 3332 flag |= FLAG_ORIG_SACK_ACKED; 3333 } 3334 3335 if (sacked & TCPCB_SACKED_ACKED) { 3336 tp->sacked_out -= acked_pcount; 3337 } else if (tcp_is_sack(tp)) { 3338 tcp_count_delivered(tp, acked_pcount, ece_ack); 3339 if (!tcp_skb_spurious_retrans(tp, skb)) 3340 tcp_rack_advance(tp, sacked, scb->end_seq, 3341 tcp_skb_timestamp_us(skb)); 3342 } 3343 if (sacked & TCPCB_LOST) 3344 tp->lost_out -= acked_pcount; 3345 3346 tp->packets_out -= acked_pcount; 3347 pkts_acked += acked_pcount; 3348 tcp_rate_skb_delivered(sk, skb, sack->rate); 3349 3350 /* Initial outgoing SYN's get put onto the write_queue 3351 * just like anything else we transmit. It is not 3352 * true data, and if we misinform our callers that 3353 * this ACK acks real data, we will erroneously exit 3354 * connection startup slow start one packet too 3355 * quickly. This is severely frowned upon behavior. 3356 */ 3357 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3358 flag |= FLAG_DATA_ACKED; 3359 } else { 3360 flag |= FLAG_SYN_ACKED; 3361 tp->retrans_stamp = 0; 3362 } 3363 3364 if (!fully_acked) 3365 break; 3366 3367 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3368 3369 next = skb_rb_next(skb); 3370 if (unlikely(skb == tp->retransmit_skb_hint)) 3371 tp->retransmit_skb_hint = NULL; 3372 if (unlikely(skb == tp->lost_skb_hint)) 3373 tp->lost_skb_hint = NULL; 3374 tcp_highest_sack_replace(sk, skb, next); 3375 tcp_rtx_queue_unlink_and_free(skb, sk); 3376 } 3377 3378 if (!skb) 3379 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3380 3381 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3382 tp->snd_up = tp->snd_una; 3383 3384 if (skb) { 3385 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3386 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3387 flag |= FLAG_SACK_RENEGING; 3388 } 3389 3390 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3391 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3392 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3393 3394 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3395 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3396 sack->rate->prior_delivered + 1 == tp->delivered && 3397 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3398 /* Conservatively mark a delayed ACK. It's typically 3399 * from a lone runt packet over the round trip to 3400 * a receiver w/o out-of-order or CE events. 3401 */ 3402 flag |= FLAG_ACK_MAYBE_DELAYED; 3403 } 3404 } 3405 if (sack->first_sackt) { 3406 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3407 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3408 } 3409 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3410 ca_rtt_us, sack->rate); 3411 3412 if (flag & FLAG_ACKED) { 3413 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3414 if (unlikely(icsk->icsk_mtup.probe_size && 3415 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3416 tcp_mtup_probe_success(sk); 3417 } 3418 3419 if (tcp_is_reno(tp)) { 3420 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3421 3422 /* If any of the cumulatively ACKed segments was 3423 * retransmitted, non-SACK case cannot confirm that 3424 * progress was due to original transmission due to 3425 * lack of TCPCB_SACKED_ACKED bits even if some of 3426 * the packets may have been never retransmitted. 3427 */ 3428 if (flag & FLAG_RETRANS_DATA_ACKED) 3429 flag &= ~FLAG_ORIG_SACK_ACKED; 3430 } else { 3431 int delta; 3432 3433 /* Non-retransmitted hole got filled? That's reordering */ 3434 if (before(reord, prior_fack)) 3435 tcp_check_sack_reordering(sk, reord, 0); 3436 3437 delta = prior_sacked - tp->sacked_out; 3438 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3439 } 3440 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3441 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3442 tcp_skb_timestamp_us(skb))) { 3443 /* Do not re-arm RTO if the sack RTT is measured from data sent 3444 * after when the head was last (re)transmitted. Otherwise the 3445 * timeout may continue to extend in loss recovery. 3446 */ 3447 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3448 } 3449 3450 if (icsk->icsk_ca_ops->pkts_acked) { 3451 struct ack_sample sample = { .pkts_acked = pkts_acked, 3452 .rtt_us = sack->rate->rtt_us }; 3453 3454 sample.in_flight = tp->mss_cache * 3455 (tp->delivered - sack->rate->prior_delivered); 3456 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3457 } 3458 3459 #if FASTRETRANS_DEBUG > 0 3460 WARN_ON((int)tp->sacked_out < 0); 3461 WARN_ON((int)tp->lost_out < 0); 3462 WARN_ON((int)tp->retrans_out < 0); 3463 if (!tp->packets_out && tcp_is_sack(tp)) { 3464 icsk = inet_csk(sk); 3465 if (tp->lost_out) { 3466 pr_debug("Leak l=%u %d\n", 3467 tp->lost_out, icsk->icsk_ca_state); 3468 tp->lost_out = 0; 3469 } 3470 if (tp->sacked_out) { 3471 pr_debug("Leak s=%u %d\n", 3472 tp->sacked_out, icsk->icsk_ca_state); 3473 tp->sacked_out = 0; 3474 } 3475 if (tp->retrans_out) { 3476 pr_debug("Leak r=%u %d\n", 3477 tp->retrans_out, icsk->icsk_ca_state); 3478 tp->retrans_out = 0; 3479 } 3480 } 3481 #endif 3482 return flag; 3483 } 3484 3485 static void tcp_ack_probe(struct sock *sk) 3486 { 3487 struct inet_connection_sock *icsk = inet_csk(sk); 3488 struct sk_buff *head = tcp_send_head(sk); 3489 const struct tcp_sock *tp = tcp_sk(sk); 3490 3491 /* Was it a usable window open? */ 3492 if (!head) 3493 return; 3494 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3495 icsk->icsk_backoff = 0; 3496 icsk->icsk_probes_tstamp = 0; 3497 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3498 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3499 * This function is not for random using! 3500 */ 3501 } else { 3502 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3503 3504 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3505 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3506 } 3507 } 3508 3509 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3510 { 3511 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3512 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3513 } 3514 3515 /* Decide wheather to run the increase function of congestion control. */ 3516 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3517 { 3518 /* If reordering is high then always grow cwnd whenever data is 3519 * delivered regardless of its ordering. Otherwise stay conservative 3520 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3521 * new SACK or ECE mark may first advance cwnd here and later reduce 3522 * cwnd in tcp_fastretrans_alert() based on more states. 3523 */ 3524 if (tcp_sk(sk)->reordering > 3525 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3526 return flag & FLAG_FORWARD_PROGRESS; 3527 3528 return flag & FLAG_DATA_ACKED; 3529 } 3530 3531 /* The "ultimate" congestion control function that aims to replace the rigid 3532 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3533 * It's called toward the end of processing an ACK with precise rate 3534 * information. All transmission or retransmission are delayed afterwards. 3535 */ 3536 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3537 int flag, const struct rate_sample *rs) 3538 { 3539 const struct inet_connection_sock *icsk = inet_csk(sk); 3540 3541 if (icsk->icsk_ca_ops->cong_control) { 3542 icsk->icsk_ca_ops->cong_control(sk, rs); 3543 return; 3544 } 3545 3546 if (tcp_in_cwnd_reduction(sk)) { 3547 /* Reduce cwnd if state mandates */ 3548 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3549 } else if (tcp_may_raise_cwnd(sk, flag)) { 3550 /* Advance cwnd if state allows */ 3551 tcp_cong_avoid(sk, ack, acked_sacked); 3552 } 3553 tcp_update_pacing_rate(sk); 3554 } 3555 3556 /* Check that window update is acceptable. 3557 * The function assumes that snd_una<=ack<=snd_next. 3558 */ 3559 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3560 const u32 ack, const u32 ack_seq, 3561 const u32 nwin) 3562 { 3563 return after(ack, tp->snd_una) || 3564 after(ack_seq, tp->snd_wl1) || 3565 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3566 } 3567 3568 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack) 3569 { 3570 #ifdef CONFIG_TCP_AO 3571 struct tcp_ao_info *ao; 3572 3573 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3574 return; 3575 3576 ao = rcu_dereference_protected(tp->ao_info, 3577 lockdep_sock_is_held((struct sock *)tp)); 3578 if (ao && ack < tp->snd_una) 3579 ao->snd_sne++; 3580 #endif 3581 } 3582 3583 /* If we update tp->snd_una, also update tp->bytes_acked */ 3584 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3585 { 3586 u32 delta = ack - tp->snd_una; 3587 3588 sock_owned_by_me((struct sock *)tp); 3589 tp->bytes_acked += delta; 3590 tcp_snd_sne_update(tp, ack); 3591 tp->snd_una = ack; 3592 } 3593 3594 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq) 3595 { 3596 #ifdef CONFIG_TCP_AO 3597 struct tcp_ao_info *ao; 3598 3599 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3600 return; 3601 3602 ao = rcu_dereference_protected(tp->ao_info, 3603 lockdep_sock_is_held((struct sock *)tp)); 3604 if (ao && seq < tp->rcv_nxt) 3605 ao->rcv_sne++; 3606 #endif 3607 } 3608 3609 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3610 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3611 { 3612 u32 delta = seq - tp->rcv_nxt; 3613 3614 sock_owned_by_me((struct sock *)tp); 3615 tp->bytes_received += delta; 3616 tcp_rcv_sne_update(tp, seq); 3617 WRITE_ONCE(tp->rcv_nxt, seq); 3618 } 3619 3620 /* Update our send window. 3621 * 3622 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3623 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3624 */ 3625 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3626 u32 ack_seq) 3627 { 3628 struct tcp_sock *tp = tcp_sk(sk); 3629 int flag = 0; 3630 u32 nwin = ntohs(tcp_hdr(skb)->window); 3631 3632 if (likely(!tcp_hdr(skb)->syn)) 3633 nwin <<= tp->rx_opt.snd_wscale; 3634 3635 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3636 flag |= FLAG_WIN_UPDATE; 3637 tcp_update_wl(tp, ack_seq); 3638 3639 if (tp->snd_wnd != nwin) { 3640 tp->snd_wnd = nwin; 3641 3642 /* Note, it is the only place, where 3643 * fast path is recovered for sending TCP. 3644 */ 3645 tp->pred_flags = 0; 3646 tcp_fast_path_check(sk); 3647 3648 if (!tcp_write_queue_empty(sk)) 3649 tcp_slow_start_after_idle_check(sk); 3650 3651 if (nwin > tp->max_window) { 3652 tp->max_window = nwin; 3653 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3654 } 3655 } 3656 } 3657 3658 tcp_snd_una_update(tp, ack); 3659 3660 return flag; 3661 } 3662 3663 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3664 u32 *last_oow_ack_time) 3665 { 3666 /* Paired with the WRITE_ONCE() in this function. */ 3667 u32 val = READ_ONCE(*last_oow_ack_time); 3668 3669 if (val) { 3670 s32 elapsed = (s32)(tcp_jiffies32 - val); 3671 3672 if (0 <= elapsed && 3673 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3674 NET_INC_STATS(net, mib_idx); 3675 return true; /* rate-limited: don't send yet! */ 3676 } 3677 } 3678 3679 /* Paired with the prior READ_ONCE() and with itself, 3680 * as we might be lockless. 3681 */ 3682 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3683 3684 return false; /* not rate-limited: go ahead, send dupack now! */ 3685 } 3686 3687 /* Return true if we're currently rate-limiting out-of-window ACKs and 3688 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3689 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3690 * attacks that send repeated SYNs or ACKs for the same connection. To 3691 * do this, we do not send a duplicate SYNACK or ACK if the remote 3692 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3693 */ 3694 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3695 int mib_idx, u32 *last_oow_ack_time) 3696 { 3697 /* Data packets without SYNs are not likely part of an ACK loop. */ 3698 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3699 !tcp_hdr(skb)->syn) 3700 return false; 3701 3702 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3703 } 3704 3705 /* RFC 5961 7 [ACK Throttling] */ 3706 static void tcp_send_challenge_ack(struct sock *sk) 3707 { 3708 struct tcp_sock *tp = tcp_sk(sk); 3709 struct net *net = sock_net(sk); 3710 u32 count, now, ack_limit; 3711 3712 /* First check our per-socket dupack rate limit. */ 3713 if (__tcp_oow_rate_limited(net, 3714 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3715 &tp->last_oow_ack_time)) 3716 return; 3717 3718 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3719 if (ack_limit == INT_MAX) 3720 goto send_ack; 3721 3722 /* Then check host-wide RFC 5961 rate limit. */ 3723 now = jiffies / HZ; 3724 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3725 u32 half = (ack_limit + 1) >> 1; 3726 3727 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3728 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3729 get_random_u32_inclusive(half, ack_limit + half - 1)); 3730 } 3731 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3732 if (count > 0) { 3733 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3734 send_ack: 3735 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3736 tcp_send_ack(sk); 3737 } 3738 } 3739 3740 static void tcp_store_ts_recent(struct tcp_sock *tp) 3741 { 3742 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3743 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3744 } 3745 3746 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3747 { 3748 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3749 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3750 * extra check below makes sure this can only happen 3751 * for pure ACK frames. -DaveM 3752 * 3753 * Not only, also it occurs for expired timestamps. 3754 */ 3755 3756 if (tcp_paws_check(&tp->rx_opt, 0)) 3757 tcp_store_ts_recent(tp); 3758 } 3759 } 3760 3761 /* This routine deals with acks during a TLP episode and ends an episode by 3762 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3763 */ 3764 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3765 { 3766 struct tcp_sock *tp = tcp_sk(sk); 3767 3768 if (before(ack, tp->tlp_high_seq)) 3769 return; 3770 3771 if (!tp->tlp_retrans) { 3772 /* TLP of new data has been acknowledged */ 3773 tp->tlp_high_seq = 0; 3774 } else if (flag & FLAG_DSACK_TLP) { 3775 /* This DSACK means original and TLP probe arrived; no loss */ 3776 tp->tlp_high_seq = 0; 3777 } else if (after(ack, tp->tlp_high_seq)) { 3778 /* ACK advances: there was a loss, so reduce cwnd. Reset 3779 * tlp_high_seq in tcp_init_cwnd_reduction() 3780 */ 3781 tcp_init_cwnd_reduction(sk); 3782 tcp_set_ca_state(sk, TCP_CA_CWR); 3783 tcp_end_cwnd_reduction(sk); 3784 tcp_try_keep_open(sk); 3785 NET_INC_STATS(sock_net(sk), 3786 LINUX_MIB_TCPLOSSPROBERECOVERY); 3787 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3788 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3789 /* Pure dupack: original and TLP probe arrived; no loss */ 3790 tp->tlp_high_seq = 0; 3791 } 3792 } 3793 3794 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3795 { 3796 const struct inet_connection_sock *icsk = inet_csk(sk); 3797 3798 if (icsk->icsk_ca_ops->in_ack_event) 3799 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3800 } 3801 3802 /* Congestion control has updated the cwnd already. So if we're in 3803 * loss recovery then now we do any new sends (for FRTO) or 3804 * retransmits (for CA_Loss or CA_recovery) that make sense. 3805 */ 3806 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3807 { 3808 struct tcp_sock *tp = tcp_sk(sk); 3809 3810 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3811 return; 3812 3813 if (unlikely(rexmit == REXMIT_NEW)) { 3814 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3815 TCP_NAGLE_OFF); 3816 if (after(tp->snd_nxt, tp->high_seq)) 3817 return; 3818 tp->frto = 0; 3819 } 3820 tcp_xmit_retransmit_queue(sk); 3821 } 3822 3823 /* Returns the number of packets newly acked or sacked by the current ACK */ 3824 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3825 { 3826 const struct net *net = sock_net(sk); 3827 struct tcp_sock *tp = tcp_sk(sk); 3828 u32 delivered; 3829 3830 delivered = tp->delivered - prior_delivered; 3831 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3832 if (flag & FLAG_ECE) 3833 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3834 3835 return delivered; 3836 } 3837 3838 /* This routine deals with incoming acks, but not outgoing ones. */ 3839 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3840 { 3841 struct inet_connection_sock *icsk = inet_csk(sk); 3842 struct tcp_sock *tp = tcp_sk(sk); 3843 struct tcp_sacktag_state sack_state; 3844 struct rate_sample rs = { .prior_delivered = 0 }; 3845 u32 prior_snd_una = tp->snd_una; 3846 bool is_sack_reneg = tp->is_sack_reneg; 3847 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3848 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3849 int num_dupack = 0; 3850 int prior_packets = tp->packets_out; 3851 u32 delivered = tp->delivered; 3852 u32 lost = tp->lost; 3853 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3854 u32 prior_fack; 3855 3856 sack_state.first_sackt = 0; 3857 sack_state.rate = &rs; 3858 sack_state.sack_delivered = 0; 3859 3860 /* We very likely will need to access rtx queue. */ 3861 prefetch(sk->tcp_rtx_queue.rb_node); 3862 3863 /* If the ack is older than previous acks 3864 * then we can probably ignore it. 3865 */ 3866 if (before(ack, prior_snd_una)) { 3867 u32 max_window; 3868 3869 /* do not accept ACK for bytes we never sent. */ 3870 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3871 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3872 if (before(ack, prior_snd_una - max_window)) { 3873 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3874 tcp_send_challenge_ack(sk); 3875 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3876 } 3877 goto old_ack; 3878 } 3879 3880 /* If the ack includes data we haven't sent yet, discard 3881 * this segment (RFC793 Section 3.9). 3882 */ 3883 if (after(ack, tp->snd_nxt)) 3884 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3885 3886 if (after(ack, prior_snd_una)) { 3887 flag |= FLAG_SND_UNA_ADVANCED; 3888 icsk->icsk_retransmits = 0; 3889 3890 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3891 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3892 if (icsk->icsk_clean_acked) 3893 icsk->icsk_clean_acked(sk, ack); 3894 #endif 3895 } 3896 3897 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3898 rs.prior_in_flight = tcp_packets_in_flight(tp); 3899 3900 /* ts_recent update must be made after we are sure that the packet 3901 * is in window. 3902 */ 3903 if (flag & FLAG_UPDATE_TS_RECENT) 3904 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3905 3906 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3907 FLAG_SND_UNA_ADVANCED) { 3908 /* Window is constant, pure forward advance. 3909 * No more checks are required. 3910 * Note, we use the fact that SND.UNA>=SND.WL2. 3911 */ 3912 tcp_update_wl(tp, ack_seq); 3913 tcp_snd_una_update(tp, ack); 3914 flag |= FLAG_WIN_UPDATE; 3915 3916 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3917 3918 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3919 } else { 3920 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3921 3922 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3923 flag |= FLAG_DATA; 3924 else 3925 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3926 3927 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3928 3929 if (TCP_SKB_CB(skb)->sacked) 3930 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3931 &sack_state); 3932 3933 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3934 flag |= FLAG_ECE; 3935 ack_ev_flags |= CA_ACK_ECE; 3936 } 3937 3938 if (sack_state.sack_delivered) 3939 tcp_count_delivered(tp, sack_state.sack_delivered, 3940 flag & FLAG_ECE); 3941 3942 if (flag & FLAG_WIN_UPDATE) 3943 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3944 3945 tcp_in_ack_event(sk, ack_ev_flags); 3946 } 3947 3948 /* This is a deviation from RFC3168 since it states that: 3949 * "When the TCP data sender is ready to set the CWR bit after reducing 3950 * the congestion window, it SHOULD set the CWR bit only on the first 3951 * new data packet that it transmits." 3952 * We accept CWR on pure ACKs to be more robust 3953 * with widely-deployed TCP implementations that do this. 3954 */ 3955 tcp_ecn_accept_cwr(sk, skb); 3956 3957 /* We passed data and got it acked, remove any soft error 3958 * log. Something worked... 3959 */ 3960 WRITE_ONCE(sk->sk_err_soft, 0); 3961 icsk->icsk_probes_out = 0; 3962 tp->rcv_tstamp = tcp_jiffies32; 3963 if (!prior_packets) 3964 goto no_queue; 3965 3966 /* See if we can take anything off of the retransmit queue. */ 3967 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3968 &sack_state, flag & FLAG_ECE); 3969 3970 tcp_rack_update_reo_wnd(sk, &rs); 3971 3972 if (tp->tlp_high_seq) 3973 tcp_process_tlp_ack(sk, ack, flag); 3974 3975 if (tcp_ack_is_dubious(sk, flag)) { 3976 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3977 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3978 num_dupack = 1; 3979 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3980 if (!(flag & FLAG_DATA)) 3981 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3982 } 3983 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3984 &rexmit); 3985 } 3986 3987 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3988 if (flag & FLAG_SET_XMIT_TIMER) 3989 tcp_set_xmit_timer(sk); 3990 3991 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3992 sk_dst_confirm(sk); 3993 3994 delivered = tcp_newly_delivered(sk, delivered, flag); 3995 lost = tp->lost - lost; /* freshly marked lost */ 3996 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3997 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3998 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3999 tcp_xmit_recovery(sk, rexmit); 4000 return 1; 4001 4002 no_queue: 4003 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 4004 if (flag & FLAG_DSACKING_ACK) { 4005 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4006 &rexmit); 4007 tcp_newly_delivered(sk, delivered, flag); 4008 } 4009 /* If this ack opens up a zero window, clear backoff. It was 4010 * being used to time the probes, and is probably far higher than 4011 * it needs to be for normal retransmission. 4012 */ 4013 tcp_ack_probe(sk); 4014 4015 if (tp->tlp_high_seq) 4016 tcp_process_tlp_ack(sk, ack, flag); 4017 return 1; 4018 4019 old_ack: 4020 /* If data was SACKed, tag it and see if we should send more data. 4021 * If data was DSACKed, see if we can undo a cwnd reduction. 4022 */ 4023 if (TCP_SKB_CB(skb)->sacked) { 4024 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4025 &sack_state); 4026 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4027 &rexmit); 4028 tcp_newly_delivered(sk, delivered, flag); 4029 tcp_xmit_recovery(sk, rexmit); 4030 } 4031 4032 return 0; 4033 } 4034 4035 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4036 bool syn, struct tcp_fastopen_cookie *foc, 4037 bool exp_opt) 4038 { 4039 /* Valid only in SYN or SYN-ACK with an even length. */ 4040 if (!foc || !syn || len < 0 || (len & 1)) 4041 return; 4042 4043 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4044 len <= TCP_FASTOPEN_COOKIE_MAX) 4045 memcpy(foc->val, cookie, len); 4046 else if (len != 0) 4047 len = -1; 4048 foc->len = len; 4049 foc->exp = exp_opt; 4050 } 4051 4052 static bool smc_parse_options(const struct tcphdr *th, 4053 struct tcp_options_received *opt_rx, 4054 const unsigned char *ptr, 4055 int opsize) 4056 { 4057 #if IS_ENABLED(CONFIG_SMC) 4058 if (static_branch_unlikely(&tcp_have_smc)) { 4059 if (th->syn && !(opsize & 1) && 4060 opsize >= TCPOLEN_EXP_SMC_BASE && 4061 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4062 opt_rx->smc_ok = 1; 4063 return true; 4064 } 4065 } 4066 #endif 4067 return false; 4068 } 4069 4070 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4071 * value on success. 4072 */ 4073 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4074 { 4075 const unsigned char *ptr = (const unsigned char *)(th + 1); 4076 int length = (th->doff * 4) - sizeof(struct tcphdr); 4077 u16 mss = 0; 4078 4079 while (length > 0) { 4080 int opcode = *ptr++; 4081 int opsize; 4082 4083 switch (opcode) { 4084 case TCPOPT_EOL: 4085 return mss; 4086 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4087 length--; 4088 continue; 4089 default: 4090 if (length < 2) 4091 return mss; 4092 opsize = *ptr++; 4093 if (opsize < 2) /* "silly options" */ 4094 return mss; 4095 if (opsize > length) 4096 return mss; /* fail on partial options */ 4097 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4098 u16 in_mss = get_unaligned_be16(ptr); 4099 4100 if (in_mss) { 4101 if (user_mss && user_mss < in_mss) 4102 in_mss = user_mss; 4103 mss = in_mss; 4104 } 4105 } 4106 ptr += opsize - 2; 4107 length -= opsize; 4108 } 4109 } 4110 return mss; 4111 } 4112 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4113 4114 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4115 * But, this can also be called on packets in the established flow when 4116 * the fast version below fails. 4117 */ 4118 void tcp_parse_options(const struct net *net, 4119 const struct sk_buff *skb, 4120 struct tcp_options_received *opt_rx, int estab, 4121 struct tcp_fastopen_cookie *foc) 4122 { 4123 const unsigned char *ptr; 4124 const struct tcphdr *th = tcp_hdr(skb); 4125 int length = (th->doff * 4) - sizeof(struct tcphdr); 4126 4127 ptr = (const unsigned char *)(th + 1); 4128 opt_rx->saw_tstamp = 0; 4129 opt_rx->saw_unknown = 0; 4130 4131 while (length > 0) { 4132 int opcode = *ptr++; 4133 int opsize; 4134 4135 switch (opcode) { 4136 case TCPOPT_EOL: 4137 return; 4138 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4139 length--; 4140 continue; 4141 default: 4142 if (length < 2) 4143 return; 4144 opsize = *ptr++; 4145 if (opsize < 2) /* "silly options" */ 4146 return; 4147 if (opsize > length) 4148 return; /* don't parse partial options */ 4149 switch (opcode) { 4150 case TCPOPT_MSS: 4151 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4152 u16 in_mss = get_unaligned_be16(ptr); 4153 if (in_mss) { 4154 if (opt_rx->user_mss && 4155 opt_rx->user_mss < in_mss) 4156 in_mss = opt_rx->user_mss; 4157 opt_rx->mss_clamp = in_mss; 4158 } 4159 } 4160 break; 4161 case TCPOPT_WINDOW: 4162 if (opsize == TCPOLEN_WINDOW && th->syn && 4163 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4164 __u8 snd_wscale = *(__u8 *)ptr; 4165 opt_rx->wscale_ok = 1; 4166 if (snd_wscale > TCP_MAX_WSCALE) { 4167 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4168 __func__, 4169 snd_wscale, 4170 TCP_MAX_WSCALE); 4171 snd_wscale = TCP_MAX_WSCALE; 4172 } 4173 opt_rx->snd_wscale = snd_wscale; 4174 } 4175 break; 4176 case TCPOPT_TIMESTAMP: 4177 if ((opsize == TCPOLEN_TIMESTAMP) && 4178 ((estab && opt_rx->tstamp_ok) || 4179 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4180 opt_rx->saw_tstamp = 1; 4181 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4182 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4183 } 4184 break; 4185 case TCPOPT_SACK_PERM: 4186 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4187 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4188 opt_rx->sack_ok = TCP_SACK_SEEN; 4189 tcp_sack_reset(opt_rx); 4190 } 4191 break; 4192 4193 case TCPOPT_SACK: 4194 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4195 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4196 opt_rx->sack_ok) { 4197 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4198 } 4199 break; 4200 #ifdef CONFIG_TCP_MD5SIG 4201 case TCPOPT_MD5SIG: 4202 /* The MD5 Hash has already been 4203 * checked (see tcp_v{4,6}_rcv()). 4204 */ 4205 break; 4206 #endif 4207 case TCPOPT_FASTOPEN: 4208 tcp_parse_fastopen_option( 4209 opsize - TCPOLEN_FASTOPEN_BASE, 4210 ptr, th->syn, foc, false); 4211 break; 4212 4213 case TCPOPT_EXP: 4214 /* Fast Open option shares code 254 using a 4215 * 16 bits magic number. 4216 */ 4217 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4218 get_unaligned_be16(ptr) == 4219 TCPOPT_FASTOPEN_MAGIC) { 4220 tcp_parse_fastopen_option(opsize - 4221 TCPOLEN_EXP_FASTOPEN_BASE, 4222 ptr + 2, th->syn, foc, true); 4223 break; 4224 } 4225 4226 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4227 break; 4228 4229 opt_rx->saw_unknown = 1; 4230 break; 4231 4232 default: 4233 opt_rx->saw_unknown = 1; 4234 } 4235 ptr += opsize-2; 4236 length -= opsize; 4237 } 4238 } 4239 } 4240 EXPORT_SYMBOL(tcp_parse_options); 4241 4242 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4243 { 4244 const __be32 *ptr = (const __be32 *)(th + 1); 4245 4246 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4247 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4248 tp->rx_opt.saw_tstamp = 1; 4249 ++ptr; 4250 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4251 ++ptr; 4252 if (*ptr) 4253 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4254 else 4255 tp->rx_opt.rcv_tsecr = 0; 4256 return true; 4257 } 4258 return false; 4259 } 4260 4261 /* Fast parse options. This hopes to only see timestamps. 4262 * If it is wrong it falls back on tcp_parse_options(). 4263 */ 4264 static bool tcp_fast_parse_options(const struct net *net, 4265 const struct sk_buff *skb, 4266 const struct tcphdr *th, struct tcp_sock *tp) 4267 { 4268 /* In the spirit of fast parsing, compare doff directly to constant 4269 * values. Because equality is used, short doff can be ignored here. 4270 */ 4271 if (th->doff == (sizeof(*th) / 4)) { 4272 tp->rx_opt.saw_tstamp = 0; 4273 return false; 4274 } else if (tp->rx_opt.tstamp_ok && 4275 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4276 if (tcp_parse_aligned_timestamp(tp, th)) 4277 return true; 4278 } 4279 4280 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4281 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4282 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4283 4284 return true; 4285 } 4286 4287 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4288 /* 4289 * Parse Signature options 4290 */ 4291 int tcp_do_parse_auth_options(const struct tcphdr *th, 4292 const u8 **md5_hash, const u8 **ao_hash) 4293 { 4294 int length = (th->doff << 2) - sizeof(*th); 4295 const u8 *ptr = (const u8 *)(th + 1); 4296 unsigned int minlen = TCPOLEN_MD5SIG; 4297 4298 if (IS_ENABLED(CONFIG_TCP_AO)) 4299 minlen = sizeof(struct tcp_ao_hdr) + 1; 4300 4301 *md5_hash = NULL; 4302 *ao_hash = NULL; 4303 4304 /* If not enough data remaining, we can short cut */ 4305 while (length >= minlen) { 4306 int opcode = *ptr++; 4307 int opsize; 4308 4309 switch (opcode) { 4310 case TCPOPT_EOL: 4311 return 0; 4312 case TCPOPT_NOP: 4313 length--; 4314 continue; 4315 default: 4316 opsize = *ptr++; 4317 if (opsize < 2 || opsize > length) 4318 return -EINVAL; 4319 if (opcode == TCPOPT_MD5SIG) { 4320 if (opsize != TCPOLEN_MD5SIG) 4321 return -EINVAL; 4322 if (unlikely(*md5_hash || *ao_hash)) 4323 return -EEXIST; 4324 *md5_hash = ptr; 4325 } else if (opcode == TCPOPT_AO) { 4326 if (opsize <= sizeof(struct tcp_ao_hdr)) 4327 return -EINVAL; 4328 if (unlikely(*md5_hash || *ao_hash)) 4329 return -EEXIST; 4330 *ao_hash = ptr; 4331 } 4332 } 4333 ptr += opsize - 2; 4334 length -= opsize; 4335 } 4336 return 0; 4337 } 4338 EXPORT_SYMBOL(tcp_do_parse_auth_options); 4339 #endif 4340 4341 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4342 * 4343 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4344 * it can pass through stack. So, the following predicate verifies that 4345 * this segment is not used for anything but congestion avoidance or 4346 * fast retransmit. Moreover, we even are able to eliminate most of such 4347 * second order effects, if we apply some small "replay" window (~RTO) 4348 * to timestamp space. 4349 * 4350 * All these measures still do not guarantee that we reject wrapped ACKs 4351 * on networks with high bandwidth, when sequence space is recycled fastly, 4352 * but it guarantees that such events will be very rare and do not affect 4353 * connection seriously. This doesn't look nice, but alas, PAWS is really 4354 * buggy extension. 4355 * 4356 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4357 * states that events when retransmit arrives after original data are rare. 4358 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4359 * the biggest problem on large power networks even with minor reordering. 4360 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4361 * up to bandwidth of 18Gigabit/sec. 8) ] 4362 */ 4363 4364 /* Estimates max number of increments of remote peer TSval in 4365 * a replay window (based on our current RTO estimation). 4366 */ 4367 static u32 tcp_tsval_replay(const struct sock *sk) 4368 { 4369 /* If we use usec TS resolution, 4370 * then expect the remote peer to use the same resolution. 4371 */ 4372 if (tcp_sk(sk)->tcp_usec_ts) 4373 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ); 4374 4375 /* RFC 7323 recommends a TSval clock between 1ms and 1sec. 4376 * We know that some OS (including old linux) can use 1200 Hz. 4377 */ 4378 return inet_csk(sk)->icsk_rto * 1200 / HZ; 4379 } 4380 4381 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4382 { 4383 const struct tcp_sock *tp = tcp_sk(sk); 4384 const struct tcphdr *th = tcp_hdr(skb); 4385 u32 seq = TCP_SKB_CB(skb)->seq; 4386 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4387 4388 return /* 1. Pure ACK with correct sequence number. */ 4389 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4390 4391 /* 2. ... and duplicate ACK. */ 4392 ack == tp->snd_una && 4393 4394 /* 3. ... and does not update window. */ 4395 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4396 4397 /* 4. ... and sits in replay window. */ 4398 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= 4399 tcp_tsval_replay(sk); 4400 } 4401 4402 static inline bool tcp_paws_discard(const struct sock *sk, 4403 const struct sk_buff *skb) 4404 { 4405 const struct tcp_sock *tp = tcp_sk(sk); 4406 4407 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4408 !tcp_disordered_ack(sk, skb); 4409 } 4410 4411 /* Check segment sequence number for validity. 4412 * 4413 * Segment controls are considered valid, if the segment 4414 * fits to the window after truncation to the window. Acceptability 4415 * of data (and SYN, FIN, of course) is checked separately. 4416 * See tcp_data_queue(), for example. 4417 * 4418 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4419 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4420 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4421 * (borrowed from freebsd) 4422 */ 4423 4424 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4425 u32 seq, u32 end_seq) 4426 { 4427 if (before(end_seq, tp->rcv_wup)) 4428 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4429 4430 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4431 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4432 4433 return SKB_NOT_DROPPED_YET; 4434 } 4435 4436 /* When we get a reset we do this. */ 4437 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4438 { 4439 trace_tcp_receive_reset(sk); 4440 4441 /* mptcp can't tell us to ignore reset pkts, 4442 * so just ignore the return value of mptcp_incoming_options(). 4443 */ 4444 if (sk_is_mptcp(sk)) 4445 mptcp_incoming_options(sk, skb); 4446 4447 /* We want the right error as BSD sees it (and indeed as we do). */ 4448 switch (sk->sk_state) { 4449 case TCP_SYN_SENT: 4450 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 4451 break; 4452 case TCP_CLOSE_WAIT: 4453 WRITE_ONCE(sk->sk_err, EPIPE); 4454 break; 4455 case TCP_CLOSE: 4456 return; 4457 default: 4458 WRITE_ONCE(sk->sk_err, ECONNRESET); 4459 } 4460 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4461 smp_wmb(); 4462 4463 tcp_write_queue_purge(sk); 4464 tcp_done(sk); 4465 4466 if (!sock_flag(sk, SOCK_DEAD)) 4467 sk_error_report(sk); 4468 } 4469 4470 /* 4471 * Process the FIN bit. This now behaves as it is supposed to work 4472 * and the FIN takes effect when it is validly part of sequence 4473 * space. Not before when we get holes. 4474 * 4475 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4476 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4477 * TIME-WAIT) 4478 * 4479 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4480 * close and we go into CLOSING (and later onto TIME-WAIT) 4481 * 4482 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4483 */ 4484 void tcp_fin(struct sock *sk) 4485 { 4486 struct tcp_sock *tp = tcp_sk(sk); 4487 4488 inet_csk_schedule_ack(sk); 4489 4490 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4491 sock_set_flag(sk, SOCK_DONE); 4492 4493 switch (sk->sk_state) { 4494 case TCP_SYN_RECV: 4495 case TCP_ESTABLISHED: 4496 /* Move to CLOSE_WAIT */ 4497 tcp_set_state(sk, TCP_CLOSE_WAIT); 4498 inet_csk_enter_pingpong_mode(sk); 4499 break; 4500 4501 case TCP_CLOSE_WAIT: 4502 case TCP_CLOSING: 4503 /* Received a retransmission of the FIN, do 4504 * nothing. 4505 */ 4506 break; 4507 case TCP_LAST_ACK: 4508 /* RFC793: Remain in the LAST-ACK state. */ 4509 break; 4510 4511 case TCP_FIN_WAIT1: 4512 /* This case occurs when a simultaneous close 4513 * happens, we must ack the received FIN and 4514 * enter the CLOSING state. 4515 */ 4516 tcp_send_ack(sk); 4517 tcp_set_state(sk, TCP_CLOSING); 4518 break; 4519 case TCP_FIN_WAIT2: 4520 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4521 tcp_send_ack(sk); 4522 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4523 break; 4524 default: 4525 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4526 * cases we should never reach this piece of code. 4527 */ 4528 pr_err("%s: Impossible, sk->sk_state=%d\n", 4529 __func__, sk->sk_state); 4530 break; 4531 } 4532 4533 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4534 * Probably, we should reset in this case. For now drop them. 4535 */ 4536 skb_rbtree_purge(&tp->out_of_order_queue); 4537 if (tcp_is_sack(tp)) 4538 tcp_sack_reset(&tp->rx_opt); 4539 4540 if (!sock_flag(sk, SOCK_DEAD)) { 4541 sk->sk_state_change(sk); 4542 4543 /* Do not send POLL_HUP for half duplex close. */ 4544 if (sk->sk_shutdown == SHUTDOWN_MASK || 4545 sk->sk_state == TCP_CLOSE) 4546 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4547 else 4548 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4549 } 4550 } 4551 4552 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4553 u32 end_seq) 4554 { 4555 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4556 if (before(seq, sp->start_seq)) 4557 sp->start_seq = seq; 4558 if (after(end_seq, sp->end_seq)) 4559 sp->end_seq = end_seq; 4560 return true; 4561 } 4562 return false; 4563 } 4564 4565 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4566 { 4567 struct tcp_sock *tp = tcp_sk(sk); 4568 4569 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4570 int mib_idx; 4571 4572 if (before(seq, tp->rcv_nxt)) 4573 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4574 else 4575 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4576 4577 NET_INC_STATS(sock_net(sk), mib_idx); 4578 4579 tp->rx_opt.dsack = 1; 4580 tp->duplicate_sack[0].start_seq = seq; 4581 tp->duplicate_sack[0].end_seq = end_seq; 4582 } 4583 } 4584 4585 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4586 { 4587 struct tcp_sock *tp = tcp_sk(sk); 4588 4589 if (!tp->rx_opt.dsack) 4590 tcp_dsack_set(sk, seq, end_seq); 4591 else 4592 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4593 } 4594 4595 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4596 { 4597 /* When the ACK path fails or drops most ACKs, the sender would 4598 * timeout and spuriously retransmit the same segment repeatedly. 4599 * If it seems our ACKs are not reaching the other side, 4600 * based on receiving a duplicate data segment with new flowlabel 4601 * (suggesting the sender suffered an RTO), and we are not already 4602 * repathing due to our own RTO, then rehash the socket to repath our 4603 * packets. 4604 */ 4605 #if IS_ENABLED(CONFIG_IPV6) 4606 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 4607 skb->protocol == htons(ETH_P_IPV6) && 4608 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 4609 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 4610 sk_rethink_txhash(sk)) 4611 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4612 4613 /* Save last flowlabel after a spurious retrans. */ 4614 tcp_save_lrcv_flowlabel(sk, skb); 4615 #endif 4616 } 4617 4618 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4619 { 4620 struct tcp_sock *tp = tcp_sk(sk); 4621 4622 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4623 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4624 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4625 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4626 4627 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4628 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4629 4630 tcp_rcv_spurious_retrans(sk, skb); 4631 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4632 end_seq = tp->rcv_nxt; 4633 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4634 } 4635 } 4636 4637 tcp_send_ack(sk); 4638 } 4639 4640 /* These routines update the SACK block as out-of-order packets arrive or 4641 * in-order packets close up the sequence space. 4642 */ 4643 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4644 { 4645 int this_sack; 4646 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4647 struct tcp_sack_block *swalk = sp + 1; 4648 4649 /* See if the recent change to the first SACK eats into 4650 * or hits the sequence space of other SACK blocks, if so coalesce. 4651 */ 4652 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4653 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4654 int i; 4655 4656 /* Zap SWALK, by moving every further SACK up by one slot. 4657 * Decrease num_sacks. 4658 */ 4659 tp->rx_opt.num_sacks--; 4660 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4661 sp[i] = sp[i + 1]; 4662 continue; 4663 } 4664 this_sack++; 4665 swalk++; 4666 } 4667 } 4668 4669 void tcp_sack_compress_send_ack(struct sock *sk) 4670 { 4671 struct tcp_sock *tp = tcp_sk(sk); 4672 4673 if (!tp->compressed_ack) 4674 return; 4675 4676 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4677 __sock_put(sk); 4678 4679 /* Since we have to send one ack finally, 4680 * substract one from tp->compressed_ack to keep 4681 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4682 */ 4683 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4684 tp->compressed_ack - 1); 4685 4686 tp->compressed_ack = 0; 4687 tcp_send_ack(sk); 4688 } 4689 4690 /* Reasonable amount of sack blocks included in TCP SACK option 4691 * The max is 4, but this becomes 3 if TCP timestamps are there. 4692 * Given that SACK packets might be lost, be conservative and use 2. 4693 */ 4694 #define TCP_SACK_BLOCKS_EXPECTED 2 4695 4696 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4697 { 4698 struct tcp_sock *tp = tcp_sk(sk); 4699 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4700 int cur_sacks = tp->rx_opt.num_sacks; 4701 int this_sack; 4702 4703 if (!cur_sacks) 4704 goto new_sack; 4705 4706 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4707 if (tcp_sack_extend(sp, seq, end_seq)) { 4708 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4709 tcp_sack_compress_send_ack(sk); 4710 /* Rotate this_sack to the first one. */ 4711 for (; this_sack > 0; this_sack--, sp--) 4712 swap(*sp, *(sp - 1)); 4713 if (cur_sacks > 1) 4714 tcp_sack_maybe_coalesce(tp); 4715 return; 4716 } 4717 } 4718 4719 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4720 tcp_sack_compress_send_ack(sk); 4721 4722 /* Could not find an adjacent existing SACK, build a new one, 4723 * put it at the front, and shift everyone else down. We 4724 * always know there is at least one SACK present already here. 4725 * 4726 * If the sack array is full, forget about the last one. 4727 */ 4728 if (this_sack >= TCP_NUM_SACKS) { 4729 this_sack--; 4730 tp->rx_opt.num_sacks--; 4731 sp--; 4732 } 4733 for (; this_sack > 0; this_sack--, sp--) 4734 *sp = *(sp - 1); 4735 4736 new_sack: 4737 /* Build the new head SACK, and we're done. */ 4738 sp->start_seq = seq; 4739 sp->end_seq = end_seq; 4740 tp->rx_opt.num_sacks++; 4741 } 4742 4743 /* RCV.NXT advances, some SACKs should be eaten. */ 4744 4745 static void tcp_sack_remove(struct tcp_sock *tp) 4746 { 4747 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4748 int num_sacks = tp->rx_opt.num_sacks; 4749 int this_sack; 4750 4751 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4752 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4753 tp->rx_opt.num_sacks = 0; 4754 return; 4755 } 4756 4757 for (this_sack = 0; this_sack < num_sacks;) { 4758 /* Check if the start of the sack is covered by RCV.NXT. */ 4759 if (!before(tp->rcv_nxt, sp->start_seq)) { 4760 int i; 4761 4762 /* RCV.NXT must cover all the block! */ 4763 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4764 4765 /* Zap this SACK, by moving forward any other SACKS. */ 4766 for (i = this_sack+1; i < num_sacks; i++) 4767 tp->selective_acks[i-1] = tp->selective_acks[i]; 4768 num_sacks--; 4769 continue; 4770 } 4771 this_sack++; 4772 sp++; 4773 } 4774 tp->rx_opt.num_sacks = num_sacks; 4775 } 4776 4777 /** 4778 * tcp_try_coalesce - try to merge skb to prior one 4779 * @sk: socket 4780 * @to: prior buffer 4781 * @from: buffer to add in queue 4782 * @fragstolen: pointer to boolean 4783 * 4784 * Before queueing skb @from after @to, try to merge them 4785 * to reduce overall memory use and queue lengths, if cost is small. 4786 * Packets in ofo or receive queues can stay a long time. 4787 * Better try to coalesce them right now to avoid future collapses. 4788 * Returns true if caller should free @from instead of queueing it 4789 */ 4790 static bool tcp_try_coalesce(struct sock *sk, 4791 struct sk_buff *to, 4792 struct sk_buff *from, 4793 bool *fragstolen) 4794 { 4795 int delta; 4796 4797 *fragstolen = false; 4798 4799 /* Its possible this segment overlaps with prior segment in queue */ 4800 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4801 return false; 4802 4803 if (!mptcp_skb_can_collapse(to, from)) 4804 return false; 4805 4806 #ifdef CONFIG_TLS_DEVICE 4807 if (from->decrypted != to->decrypted) 4808 return false; 4809 #endif 4810 4811 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4812 return false; 4813 4814 atomic_add(delta, &sk->sk_rmem_alloc); 4815 sk_mem_charge(sk, delta); 4816 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4817 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4818 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4819 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4820 4821 if (TCP_SKB_CB(from)->has_rxtstamp) { 4822 TCP_SKB_CB(to)->has_rxtstamp = true; 4823 to->tstamp = from->tstamp; 4824 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4825 } 4826 4827 return true; 4828 } 4829 4830 static bool tcp_ooo_try_coalesce(struct sock *sk, 4831 struct sk_buff *to, 4832 struct sk_buff *from, 4833 bool *fragstolen) 4834 { 4835 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4836 4837 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4838 if (res) { 4839 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4840 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4841 4842 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4843 } 4844 return res; 4845 } 4846 4847 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4848 enum skb_drop_reason reason) 4849 { 4850 sk_drops_add(sk, skb); 4851 kfree_skb_reason(skb, reason); 4852 } 4853 4854 /* This one checks to see if we can put data from the 4855 * out_of_order queue into the receive_queue. 4856 */ 4857 static void tcp_ofo_queue(struct sock *sk) 4858 { 4859 struct tcp_sock *tp = tcp_sk(sk); 4860 __u32 dsack_high = tp->rcv_nxt; 4861 bool fin, fragstolen, eaten; 4862 struct sk_buff *skb, *tail; 4863 struct rb_node *p; 4864 4865 p = rb_first(&tp->out_of_order_queue); 4866 while (p) { 4867 skb = rb_to_skb(p); 4868 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4869 break; 4870 4871 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4872 __u32 dsack = dsack_high; 4873 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4874 dsack_high = TCP_SKB_CB(skb)->end_seq; 4875 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4876 } 4877 p = rb_next(p); 4878 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4879 4880 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4881 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4882 continue; 4883 } 4884 4885 tail = skb_peek_tail(&sk->sk_receive_queue); 4886 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4887 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4888 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4889 if (!eaten) 4890 __skb_queue_tail(&sk->sk_receive_queue, skb); 4891 else 4892 kfree_skb_partial(skb, fragstolen); 4893 4894 if (unlikely(fin)) { 4895 tcp_fin(sk); 4896 /* tcp_fin() purges tp->out_of_order_queue, 4897 * so we must end this loop right now. 4898 */ 4899 break; 4900 } 4901 } 4902 } 4903 4904 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4905 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4906 4907 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4908 unsigned int size) 4909 { 4910 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4911 !sk_rmem_schedule(sk, skb, size)) { 4912 4913 if (tcp_prune_queue(sk, skb) < 0) 4914 return -1; 4915 4916 while (!sk_rmem_schedule(sk, skb, size)) { 4917 if (!tcp_prune_ofo_queue(sk, skb)) 4918 return -1; 4919 } 4920 } 4921 return 0; 4922 } 4923 4924 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4925 { 4926 struct tcp_sock *tp = tcp_sk(sk); 4927 struct rb_node **p, *parent; 4928 struct sk_buff *skb1; 4929 u32 seq, end_seq; 4930 bool fragstolen; 4931 4932 tcp_save_lrcv_flowlabel(sk, skb); 4933 tcp_ecn_check_ce(sk, skb); 4934 4935 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4936 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4937 sk->sk_data_ready(sk); 4938 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4939 return; 4940 } 4941 4942 /* Disable header prediction. */ 4943 tp->pred_flags = 0; 4944 inet_csk_schedule_ack(sk); 4945 4946 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4947 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4948 seq = TCP_SKB_CB(skb)->seq; 4949 end_seq = TCP_SKB_CB(skb)->end_seq; 4950 4951 p = &tp->out_of_order_queue.rb_node; 4952 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4953 /* Initial out of order segment, build 1 SACK. */ 4954 if (tcp_is_sack(tp)) { 4955 tp->rx_opt.num_sacks = 1; 4956 tp->selective_acks[0].start_seq = seq; 4957 tp->selective_acks[0].end_seq = end_seq; 4958 } 4959 rb_link_node(&skb->rbnode, NULL, p); 4960 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4961 tp->ooo_last_skb = skb; 4962 goto end; 4963 } 4964 4965 /* In the typical case, we are adding an skb to the end of the list. 4966 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4967 */ 4968 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4969 skb, &fragstolen)) { 4970 coalesce_done: 4971 /* For non sack flows, do not grow window to force DUPACK 4972 * and trigger fast retransmit. 4973 */ 4974 if (tcp_is_sack(tp)) 4975 tcp_grow_window(sk, skb, true); 4976 kfree_skb_partial(skb, fragstolen); 4977 skb = NULL; 4978 goto add_sack; 4979 } 4980 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4981 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4982 parent = &tp->ooo_last_skb->rbnode; 4983 p = &parent->rb_right; 4984 goto insert; 4985 } 4986 4987 /* Find place to insert this segment. Handle overlaps on the way. */ 4988 parent = NULL; 4989 while (*p) { 4990 parent = *p; 4991 skb1 = rb_to_skb(parent); 4992 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4993 p = &parent->rb_left; 4994 continue; 4995 } 4996 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4997 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4998 /* All the bits are present. Drop. */ 4999 NET_INC_STATS(sock_net(sk), 5000 LINUX_MIB_TCPOFOMERGE); 5001 tcp_drop_reason(sk, skb, 5002 SKB_DROP_REASON_TCP_OFOMERGE); 5003 skb = NULL; 5004 tcp_dsack_set(sk, seq, end_seq); 5005 goto add_sack; 5006 } 5007 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 5008 /* Partial overlap. */ 5009 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 5010 } else { 5011 /* skb's seq == skb1's seq and skb covers skb1. 5012 * Replace skb1 with skb. 5013 */ 5014 rb_replace_node(&skb1->rbnode, &skb->rbnode, 5015 &tp->out_of_order_queue); 5016 tcp_dsack_extend(sk, 5017 TCP_SKB_CB(skb1)->seq, 5018 TCP_SKB_CB(skb1)->end_seq); 5019 NET_INC_STATS(sock_net(sk), 5020 LINUX_MIB_TCPOFOMERGE); 5021 tcp_drop_reason(sk, skb1, 5022 SKB_DROP_REASON_TCP_OFOMERGE); 5023 goto merge_right; 5024 } 5025 } else if (tcp_ooo_try_coalesce(sk, skb1, 5026 skb, &fragstolen)) { 5027 goto coalesce_done; 5028 } 5029 p = &parent->rb_right; 5030 } 5031 insert: 5032 /* Insert segment into RB tree. */ 5033 rb_link_node(&skb->rbnode, parent, p); 5034 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5035 5036 merge_right: 5037 /* Remove other segments covered by skb. */ 5038 while ((skb1 = skb_rb_next(skb)) != NULL) { 5039 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5040 break; 5041 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5042 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5043 end_seq); 5044 break; 5045 } 5046 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5047 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5048 TCP_SKB_CB(skb1)->end_seq); 5049 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5050 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5051 } 5052 /* If there is no skb after us, we are the last_skb ! */ 5053 if (!skb1) 5054 tp->ooo_last_skb = skb; 5055 5056 add_sack: 5057 if (tcp_is_sack(tp)) 5058 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5059 end: 5060 if (skb) { 5061 /* For non sack flows, do not grow window to force DUPACK 5062 * and trigger fast retransmit. 5063 */ 5064 if (tcp_is_sack(tp)) 5065 tcp_grow_window(sk, skb, false); 5066 skb_condense(skb); 5067 skb_set_owner_r(skb, sk); 5068 } 5069 } 5070 5071 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5072 bool *fragstolen) 5073 { 5074 int eaten; 5075 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5076 5077 eaten = (tail && 5078 tcp_try_coalesce(sk, tail, 5079 skb, fragstolen)) ? 1 : 0; 5080 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5081 if (!eaten) { 5082 __skb_queue_tail(&sk->sk_receive_queue, skb); 5083 skb_set_owner_r(skb, sk); 5084 } 5085 return eaten; 5086 } 5087 5088 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5089 { 5090 struct sk_buff *skb; 5091 int err = -ENOMEM; 5092 int data_len = 0; 5093 bool fragstolen; 5094 5095 if (size == 0) 5096 return 0; 5097 5098 if (size > PAGE_SIZE) { 5099 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5100 5101 data_len = npages << PAGE_SHIFT; 5102 size = data_len + (size & ~PAGE_MASK); 5103 } 5104 skb = alloc_skb_with_frags(size - data_len, data_len, 5105 PAGE_ALLOC_COSTLY_ORDER, 5106 &err, sk->sk_allocation); 5107 if (!skb) 5108 goto err; 5109 5110 skb_put(skb, size - data_len); 5111 skb->data_len = data_len; 5112 skb->len = size; 5113 5114 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5115 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5116 goto err_free; 5117 } 5118 5119 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5120 if (err) 5121 goto err_free; 5122 5123 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5124 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5125 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5126 5127 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5128 WARN_ON_ONCE(fragstolen); /* should not happen */ 5129 __kfree_skb(skb); 5130 } 5131 return size; 5132 5133 err_free: 5134 kfree_skb(skb); 5135 err: 5136 return err; 5137 5138 } 5139 5140 void tcp_data_ready(struct sock *sk) 5141 { 5142 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5143 sk->sk_data_ready(sk); 5144 } 5145 5146 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5147 { 5148 struct tcp_sock *tp = tcp_sk(sk); 5149 enum skb_drop_reason reason; 5150 bool fragstolen; 5151 int eaten; 5152 5153 /* If a subflow has been reset, the packet should not continue 5154 * to be processed, drop the packet. 5155 */ 5156 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5157 __kfree_skb(skb); 5158 return; 5159 } 5160 5161 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5162 __kfree_skb(skb); 5163 return; 5164 } 5165 skb_dst_drop(skb); 5166 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5167 5168 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5169 tp->rx_opt.dsack = 0; 5170 5171 /* Queue data for delivery to the user. 5172 * Packets in sequence go to the receive queue. 5173 * Out of sequence packets to the out_of_order_queue. 5174 */ 5175 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5176 if (tcp_receive_window(tp) == 0) { 5177 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5178 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5179 goto out_of_window; 5180 } 5181 5182 /* Ok. In sequence. In window. */ 5183 queue_and_out: 5184 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5185 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5186 inet_csk(sk)->icsk_ack.pending |= 5187 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5188 inet_csk_schedule_ack(sk); 5189 sk->sk_data_ready(sk); 5190 5191 if (skb_queue_len(&sk->sk_receive_queue)) { 5192 reason = SKB_DROP_REASON_PROTO_MEM; 5193 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5194 goto drop; 5195 } 5196 sk_forced_mem_schedule(sk, skb->truesize); 5197 } 5198 5199 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5200 if (skb->len) 5201 tcp_event_data_recv(sk, skb); 5202 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5203 tcp_fin(sk); 5204 5205 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5206 tcp_ofo_queue(sk); 5207 5208 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5209 * gap in queue is filled. 5210 */ 5211 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5212 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5213 } 5214 5215 if (tp->rx_opt.num_sacks) 5216 tcp_sack_remove(tp); 5217 5218 tcp_fast_path_check(sk); 5219 5220 if (eaten > 0) 5221 kfree_skb_partial(skb, fragstolen); 5222 if (!sock_flag(sk, SOCK_DEAD)) 5223 tcp_data_ready(sk); 5224 return; 5225 } 5226 5227 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5228 tcp_rcv_spurious_retrans(sk, skb); 5229 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5230 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5231 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5232 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5233 5234 out_of_window: 5235 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5236 inet_csk_schedule_ack(sk); 5237 drop: 5238 tcp_drop_reason(sk, skb, reason); 5239 return; 5240 } 5241 5242 /* Out of window. F.e. zero window probe. */ 5243 if (!before(TCP_SKB_CB(skb)->seq, 5244 tp->rcv_nxt + tcp_receive_window(tp))) { 5245 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5246 goto out_of_window; 5247 } 5248 5249 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5250 /* Partial packet, seq < rcv_next < end_seq */ 5251 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5252 5253 /* If window is closed, drop tail of packet. But after 5254 * remembering D-SACK for its head made in previous line. 5255 */ 5256 if (!tcp_receive_window(tp)) { 5257 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5258 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5259 goto out_of_window; 5260 } 5261 goto queue_and_out; 5262 } 5263 5264 tcp_data_queue_ofo(sk, skb); 5265 } 5266 5267 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5268 { 5269 if (list) 5270 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5271 5272 return skb_rb_next(skb); 5273 } 5274 5275 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5276 struct sk_buff_head *list, 5277 struct rb_root *root) 5278 { 5279 struct sk_buff *next = tcp_skb_next(skb, list); 5280 5281 if (list) 5282 __skb_unlink(skb, list); 5283 else 5284 rb_erase(&skb->rbnode, root); 5285 5286 __kfree_skb(skb); 5287 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5288 5289 return next; 5290 } 5291 5292 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5293 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5294 { 5295 struct rb_node **p = &root->rb_node; 5296 struct rb_node *parent = NULL; 5297 struct sk_buff *skb1; 5298 5299 while (*p) { 5300 parent = *p; 5301 skb1 = rb_to_skb(parent); 5302 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5303 p = &parent->rb_left; 5304 else 5305 p = &parent->rb_right; 5306 } 5307 rb_link_node(&skb->rbnode, parent, p); 5308 rb_insert_color(&skb->rbnode, root); 5309 } 5310 5311 /* Collapse contiguous sequence of skbs head..tail with 5312 * sequence numbers start..end. 5313 * 5314 * If tail is NULL, this means until the end of the queue. 5315 * 5316 * Segments with FIN/SYN are not collapsed (only because this 5317 * simplifies code) 5318 */ 5319 static void 5320 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5321 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5322 { 5323 struct sk_buff *skb = head, *n; 5324 struct sk_buff_head tmp; 5325 bool end_of_skbs; 5326 5327 /* First, check that queue is collapsible and find 5328 * the point where collapsing can be useful. 5329 */ 5330 restart: 5331 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5332 n = tcp_skb_next(skb, list); 5333 5334 /* No new bits? It is possible on ofo queue. */ 5335 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5336 skb = tcp_collapse_one(sk, skb, list, root); 5337 if (!skb) 5338 break; 5339 goto restart; 5340 } 5341 5342 /* The first skb to collapse is: 5343 * - not SYN/FIN and 5344 * - bloated or contains data before "start" or 5345 * overlaps to the next one and mptcp allow collapsing. 5346 */ 5347 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5348 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5349 before(TCP_SKB_CB(skb)->seq, start))) { 5350 end_of_skbs = false; 5351 break; 5352 } 5353 5354 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5355 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5356 end_of_skbs = false; 5357 break; 5358 } 5359 5360 /* Decided to skip this, advance start seq. */ 5361 start = TCP_SKB_CB(skb)->end_seq; 5362 } 5363 if (end_of_skbs || 5364 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5365 return; 5366 5367 __skb_queue_head_init(&tmp); 5368 5369 while (before(start, end)) { 5370 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5371 struct sk_buff *nskb; 5372 5373 nskb = alloc_skb(copy, GFP_ATOMIC); 5374 if (!nskb) 5375 break; 5376 5377 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5378 #ifdef CONFIG_TLS_DEVICE 5379 nskb->decrypted = skb->decrypted; 5380 #endif 5381 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5382 if (list) 5383 __skb_queue_before(list, skb, nskb); 5384 else 5385 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5386 skb_set_owner_r(nskb, sk); 5387 mptcp_skb_ext_move(nskb, skb); 5388 5389 /* Copy data, releasing collapsed skbs. */ 5390 while (copy > 0) { 5391 int offset = start - TCP_SKB_CB(skb)->seq; 5392 int size = TCP_SKB_CB(skb)->end_seq - start; 5393 5394 BUG_ON(offset < 0); 5395 if (size > 0) { 5396 size = min(copy, size); 5397 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5398 BUG(); 5399 TCP_SKB_CB(nskb)->end_seq += size; 5400 copy -= size; 5401 start += size; 5402 } 5403 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5404 skb = tcp_collapse_one(sk, skb, list, root); 5405 if (!skb || 5406 skb == tail || 5407 !mptcp_skb_can_collapse(nskb, skb) || 5408 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5409 goto end; 5410 #ifdef CONFIG_TLS_DEVICE 5411 if (skb->decrypted != nskb->decrypted) 5412 goto end; 5413 #endif 5414 } 5415 } 5416 } 5417 end: 5418 skb_queue_walk_safe(&tmp, skb, n) 5419 tcp_rbtree_insert(root, skb); 5420 } 5421 5422 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5423 * and tcp_collapse() them until all the queue is collapsed. 5424 */ 5425 static void tcp_collapse_ofo_queue(struct sock *sk) 5426 { 5427 struct tcp_sock *tp = tcp_sk(sk); 5428 u32 range_truesize, sum_tiny = 0; 5429 struct sk_buff *skb, *head; 5430 u32 start, end; 5431 5432 skb = skb_rb_first(&tp->out_of_order_queue); 5433 new_range: 5434 if (!skb) { 5435 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5436 return; 5437 } 5438 start = TCP_SKB_CB(skb)->seq; 5439 end = TCP_SKB_CB(skb)->end_seq; 5440 range_truesize = skb->truesize; 5441 5442 for (head = skb;;) { 5443 skb = skb_rb_next(skb); 5444 5445 /* Range is terminated when we see a gap or when 5446 * we are at the queue end. 5447 */ 5448 if (!skb || 5449 after(TCP_SKB_CB(skb)->seq, end) || 5450 before(TCP_SKB_CB(skb)->end_seq, start)) { 5451 /* Do not attempt collapsing tiny skbs */ 5452 if (range_truesize != head->truesize || 5453 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5454 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5455 head, skb, start, end); 5456 } else { 5457 sum_tiny += range_truesize; 5458 if (sum_tiny > sk->sk_rcvbuf >> 3) 5459 return; 5460 } 5461 goto new_range; 5462 } 5463 5464 range_truesize += skb->truesize; 5465 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5466 start = TCP_SKB_CB(skb)->seq; 5467 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5468 end = TCP_SKB_CB(skb)->end_seq; 5469 } 5470 } 5471 5472 /* 5473 * Clean the out-of-order queue to make room. 5474 * We drop high sequences packets to : 5475 * 1) Let a chance for holes to be filled. 5476 * This means we do not drop packets from ooo queue if their sequence 5477 * is before incoming packet sequence. 5478 * 2) not add too big latencies if thousands of packets sit there. 5479 * (But if application shrinks SO_RCVBUF, we could still end up 5480 * freeing whole queue here) 5481 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5482 * 5483 * Return true if queue has shrunk. 5484 */ 5485 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5486 { 5487 struct tcp_sock *tp = tcp_sk(sk); 5488 struct rb_node *node, *prev; 5489 bool pruned = false; 5490 int goal; 5491 5492 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5493 return false; 5494 5495 goal = sk->sk_rcvbuf >> 3; 5496 node = &tp->ooo_last_skb->rbnode; 5497 5498 do { 5499 struct sk_buff *skb = rb_to_skb(node); 5500 5501 /* If incoming skb would land last in ofo queue, stop pruning. */ 5502 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5503 break; 5504 pruned = true; 5505 prev = rb_prev(node); 5506 rb_erase(node, &tp->out_of_order_queue); 5507 goal -= skb->truesize; 5508 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5509 tp->ooo_last_skb = rb_to_skb(prev); 5510 if (!prev || goal <= 0) { 5511 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5512 !tcp_under_memory_pressure(sk)) 5513 break; 5514 goal = sk->sk_rcvbuf >> 3; 5515 } 5516 node = prev; 5517 } while (node); 5518 5519 if (pruned) { 5520 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5521 /* Reset SACK state. A conforming SACK implementation will 5522 * do the same at a timeout based retransmit. When a connection 5523 * is in a sad state like this, we care only about integrity 5524 * of the connection not performance. 5525 */ 5526 if (tp->rx_opt.sack_ok) 5527 tcp_sack_reset(&tp->rx_opt); 5528 } 5529 return pruned; 5530 } 5531 5532 /* Reduce allocated memory if we can, trying to get 5533 * the socket within its memory limits again. 5534 * 5535 * Return less than zero if we should start dropping frames 5536 * until the socket owning process reads some of the data 5537 * to stabilize the situation. 5538 */ 5539 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5540 { 5541 struct tcp_sock *tp = tcp_sk(sk); 5542 5543 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5544 5545 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5546 tcp_clamp_window(sk); 5547 else if (tcp_under_memory_pressure(sk)) 5548 tcp_adjust_rcv_ssthresh(sk); 5549 5550 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5551 return 0; 5552 5553 tcp_collapse_ofo_queue(sk); 5554 if (!skb_queue_empty(&sk->sk_receive_queue)) 5555 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5556 skb_peek(&sk->sk_receive_queue), 5557 NULL, 5558 tp->copied_seq, tp->rcv_nxt); 5559 5560 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5561 return 0; 5562 5563 /* Collapsing did not help, destructive actions follow. 5564 * This must not ever occur. */ 5565 5566 tcp_prune_ofo_queue(sk, in_skb); 5567 5568 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5569 return 0; 5570 5571 /* If we are really being abused, tell the caller to silently 5572 * drop receive data on the floor. It will get retransmitted 5573 * and hopefully then we'll have sufficient space. 5574 */ 5575 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5576 5577 /* Massive buffer overcommit. */ 5578 tp->pred_flags = 0; 5579 return -1; 5580 } 5581 5582 static bool tcp_should_expand_sndbuf(struct sock *sk) 5583 { 5584 const struct tcp_sock *tp = tcp_sk(sk); 5585 5586 /* If the user specified a specific send buffer setting, do 5587 * not modify it. 5588 */ 5589 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5590 return false; 5591 5592 /* If we are under global TCP memory pressure, do not expand. */ 5593 if (tcp_under_memory_pressure(sk)) { 5594 int unused_mem = sk_unused_reserved_mem(sk); 5595 5596 /* Adjust sndbuf according to reserved mem. But make sure 5597 * it never goes below SOCK_MIN_SNDBUF. 5598 * See sk_stream_moderate_sndbuf() for more details. 5599 */ 5600 if (unused_mem > SOCK_MIN_SNDBUF) 5601 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5602 5603 return false; 5604 } 5605 5606 /* If we are under soft global TCP memory pressure, do not expand. */ 5607 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5608 return false; 5609 5610 /* If we filled the congestion window, do not expand. */ 5611 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5612 return false; 5613 5614 return true; 5615 } 5616 5617 static void tcp_new_space(struct sock *sk) 5618 { 5619 struct tcp_sock *tp = tcp_sk(sk); 5620 5621 if (tcp_should_expand_sndbuf(sk)) { 5622 tcp_sndbuf_expand(sk); 5623 tp->snd_cwnd_stamp = tcp_jiffies32; 5624 } 5625 5626 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5627 } 5628 5629 /* Caller made space either from: 5630 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5631 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5632 * 5633 * We might be able to generate EPOLLOUT to the application if: 5634 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5635 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5636 * small enough that tcp_stream_memory_free() decides it 5637 * is time to generate EPOLLOUT. 5638 */ 5639 void tcp_check_space(struct sock *sk) 5640 { 5641 /* pairs with tcp_poll() */ 5642 smp_mb(); 5643 if (sk->sk_socket && 5644 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5645 tcp_new_space(sk); 5646 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5647 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5648 } 5649 } 5650 5651 static inline void tcp_data_snd_check(struct sock *sk) 5652 { 5653 tcp_push_pending_frames(sk); 5654 tcp_check_space(sk); 5655 } 5656 5657 /* 5658 * Check if sending an ack is needed. 5659 */ 5660 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5661 { 5662 struct tcp_sock *tp = tcp_sk(sk); 5663 unsigned long rtt, delay; 5664 5665 /* More than one full frame received... */ 5666 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5667 /* ... and right edge of window advances far enough. 5668 * (tcp_recvmsg() will send ACK otherwise). 5669 * If application uses SO_RCVLOWAT, we want send ack now if 5670 * we have not received enough bytes to satisfy the condition. 5671 */ 5672 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5673 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5674 /* We ACK each frame or... */ 5675 tcp_in_quickack_mode(sk) || 5676 /* Protocol state mandates a one-time immediate ACK */ 5677 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5678 /* If we are running from __release_sock() in user context, 5679 * Defer the ack until tcp_release_cb(). 5680 */ 5681 if (sock_owned_by_user_nocheck(sk) && 5682 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { 5683 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5684 return; 5685 } 5686 send_now: 5687 tcp_send_ack(sk); 5688 return; 5689 } 5690 5691 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5692 tcp_send_delayed_ack(sk); 5693 return; 5694 } 5695 5696 if (!tcp_is_sack(tp) || 5697 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5698 goto send_now; 5699 5700 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5701 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5702 tp->dup_ack_counter = 0; 5703 } 5704 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5705 tp->dup_ack_counter++; 5706 goto send_now; 5707 } 5708 tp->compressed_ack++; 5709 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5710 return; 5711 5712 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5713 5714 rtt = tp->rcv_rtt_est.rtt_us; 5715 if (tp->srtt_us && tp->srtt_us < rtt) 5716 rtt = tp->srtt_us; 5717 5718 delay = min_t(unsigned long, 5719 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5720 rtt * (NSEC_PER_USEC >> 3)/20); 5721 sock_hold(sk); 5722 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5723 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5724 HRTIMER_MODE_REL_PINNED_SOFT); 5725 } 5726 5727 static inline void tcp_ack_snd_check(struct sock *sk) 5728 { 5729 if (!inet_csk_ack_scheduled(sk)) { 5730 /* We sent a data segment already. */ 5731 return; 5732 } 5733 __tcp_ack_snd_check(sk, 1); 5734 } 5735 5736 /* 5737 * This routine is only called when we have urgent data 5738 * signaled. Its the 'slow' part of tcp_urg. It could be 5739 * moved inline now as tcp_urg is only called from one 5740 * place. We handle URGent data wrong. We have to - as 5741 * BSD still doesn't use the correction from RFC961. 5742 * For 1003.1g we should support a new option TCP_STDURG to permit 5743 * either form (or just set the sysctl tcp_stdurg). 5744 */ 5745 5746 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5747 { 5748 struct tcp_sock *tp = tcp_sk(sk); 5749 u32 ptr = ntohs(th->urg_ptr); 5750 5751 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5752 ptr--; 5753 ptr += ntohl(th->seq); 5754 5755 /* Ignore urgent data that we've already seen and read. */ 5756 if (after(tp->copied_seq, ptr)) 5757 return; 5758 5759 /* Do not replay urg ptr. 5760 * 5761 * NOTE: interesting situation not covered by specs. 5762 * Misbehaving sender may send urg ptr, pointing to segment, 5763 * which we already have in ofo queue. We are not able to fetch 5764 * such data and will stay in TCP_URG_NOTYET until will be eaten 5765 * by recvmsg(). Seems, we are not obliged to handle such wicked 5766 * situations. But it is worth to think about possibility of some 5767 * DoSes using some hypothetical application level deadlock. 5768 */ 5769 if (before(ptr, tp->rcv_nxt)) 5770 return; 5771 5772 /* Do we already have a newer (or duplicate) urgent pointer? */ 5773 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5774 return; 5775 5776 /* Tell the world about our new urgent pointer. */ 5777 sk_send_sigurg(sk); 5778 5779 /* We may be adding urgent data when the last byte read was 5780 * urgent. To do this requires some care. We cannot just ignore 5781 * tp->copied_seq since we would read the last urgent byte again 5782 * as data, nor can we alter copied_seq until this data arrives 5783 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5784 * 5785 * NOTE. Double Dutch. Rendering to plain English: author of comment 5786 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5787 * and expect that both A and B disappear from stream. This is _wrong_. 5788 * Though this happens in BSD with high probability, this is occasional. 5789 * Any application relying on this is buggy. Note also, that fix "works" 5790 * only in this artificial test. Insert some normal data between A and B and we will 5791 * decline of BSD again. Verdict: it is better to remove to trap 5792 * buggy users. 5793 */ 5794 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5795 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5796 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5797 tp->copied_seq++; 5798 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5799 __skb_unlink(skb, &sk->sk_receive_queue); 5800 __kfree_skb(skb); 5801 } 5802 } 5803 5804 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5805 WRITE_ONCE(tp->urg_seq, ptr); 5806 5807 /* Disable header prediction. */ 5808 tp->pred_flags = 0; 5809 } 5810 5811 /* This is the 'fast' part of urgent handling. */ 5812 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5813 { 5814 struct tcp_sock *tp = tcp_sk(sk); 5815 5816 /* Check if we get a new urgent pointer - normally not. */ 5817 if (unlikely(th->urg)) 5818 tcp_check_urg(sk, th); 5819 5820 /* Do we wait for any urgent data? - normally not... */ 5821 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5822 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5823 th->syn; 5824 5825 /* Is the urgent pointer pointing into this packet? */ 5826 if (ptr < skb->len) { 5827 u8 tmp; 5828 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5829 BUG(); 5830 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5831 if (!sock_flag(sk, SOCK_DEAD)) 5832 sk->sk_data_ready(sk); 5833 } 5834 } 5835 } 5836 5837 /* Accept RST for rcv_nxt - 1 after a FIN. 5838 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5839 * FIN is sent followed by a RST packet. The RST is sent with the same 5840 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5841 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5842 * ACKs on the closed socket. In addition middleboxes can drop either the 5843 * challenge ACK or a subsequent RST. 5844 */ 5845 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5846 { 5847 const struct tcp_sock *tp = tcp_sk(sk); 5848 5849 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5850 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5851 TCPF_CLOSING)); 5852 } 5853 5854 /* Does PAWS and seqno based validation of an incoming segment, flags will 5855 * play significant role here. 5856 */ 5857 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5858 const struct tcphdr *th, int syn_inerr) 5859 { 5860 struct tcp_sock *tp = tcp_sk(sk); 5861 SKB_DR(reason); 5862 5863 /* RFC1323: H1. Apply PAWS check first. */ 5864 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5865 tp->rx_opt.saw_tstamp && 5866 tcp_paws_discard(sk, skb)) { 5867 if (!th->rst) { 5868 if (unlikely(th->syn)) 5869 goto syn_challenge; 5870 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5871 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5872 LINUX_MIB_TCPACKSKIPPEDPAWS, 5873 &tp->last_oow_ack_time)) 5874 tcp_send_dupack(sk, skb); 5875 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5876 goto discard; 5877 } 5878 /* Reset is accepted even if it did not pass PAWS. */ 5879 } 5880 5881 /* Step 1: check sequence number */ 5882 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5883 if (reason) { 5884 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5885 * (RST) segments are validated by checking their SEQ-fields." 5886 * And page 69: "If an incoming segment is not acceptable, 5887 * an acknowledgment should be sent in reply (unless the RST 5888 * bit is set, if so drop the segment and return)". 5889 */ 5890 if (!th->rst) { 5891 if (th->syn) 5892 goto syn_challenge; 5893 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5894 LINUX_MIB_TCPACKSKIPPEDSEQ, 5895 &tp->last_oow_ack_time)) 5896 tcp_send_dupack(sk, skb); 5897 } else if (tcp_reset_check(sk, skb)) { 5898 goto reset; 5899 } 5900 goto discard; 5901 } 5902 5903 /* Step 2: check RST bit */ 5904 if (th->rst) { 5905 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5906 * FIN and SACK too if available): 5907 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5908 * the right-most SACK block, 5909 * then 5910 * RESET the connection 5911 * else 5912 * Send a challenge ACK 5913 */ 5914 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5915 tcp_reset_check(sk, skb)) 5916 goto reset; 5917 5918 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5919 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5920 int max_sack = sp[0].end_seq; 5921 int this_sack; 5922 5923 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5924 ++this_sack) { 5925 max_sack = after(sp[this_sack].end_seq, 5926 max_sack) ? 5927 sp[this_sack].end_seq : max_sack; 5928 } 5929 5930 if (TCP_SKB_CB(skb)->seq == max_sack) 5931 goto reset; 5932 } 5933 5934 /* Disable TFO if RST is out-of-order 5935 * and no data has been received 5936 * for current active TFO socket 5937 */ 5938 if (tp->syn_fastopen && !tp->data_segs_in && 5939 sk->sk_state == TCP_ESTABLISHED) 5940 tcp_fastopen_active_disable(sk); 5941 tcp_send_challenge_ack(sk); 5942 SKB_DR_SET(reason, TCP_RESET); 5943 goto discard; 5944 } 5945 5946 /* step 3: check security and precedence [ignored] */ 5947 5948 /* step 4: Check for a SYN 5949 * RFC 5961 4.2 : Send a challenge ack 5950 */ 5951 if (th->syn) { 5952 syn_challenge: 5953 if (syn_inerr) 5954 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5955 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5956 tcp_send_challenge_ack(sk); 5957 SKB_DR_SET(reason, TCP_INVALID_SYN); 5958 goto discard; 5959 } 5960 5961 bpf_skops_parse_hdr(sk, skb); 5962 5963 return true; 5964 5965 discard: 5966 tcp_drop_reason(sk, skb, reason); 5967 return false; 5968 5969 reset: 5970 tcp_reset(sk, skb); 5971 __kfree_skb(skb); 5972 return false; 5973 } 5974 5975 /* 5976 * TCP receive function for the ESTABLISHED state. 5977 * 5978 * It is split into a fast path and a slow path. The fast path is 5979 * disabled when: 5980 * - A zero window was announced from us - zero window probing 5981 * is only handled properly in the slow path. 5982 * - Out of order segments arrived. 5983 * - Urgent data is expected. 5984 * - There is no buffer space left 5985 * - Unexpected TCP flags/window values/header lengths are received 5986 * (detected by checking the TCP header against pred_flags) 5987 * - Data is sent in both directions. Fast path only supports pure senders 5988 * or pure receivers (this means either the sequence number or the ack 5989 * value must stay constant) 5990 * - Unexpected TCP option. 5991 * 5992 * When these conditions are not satisfied it drops into a standard 5993 * receive procedure patterned after RFC793 to handle all cases. 5994 * The first three cases are guaranteed by proper pred_flags setting, 5995 * the rest is checked inline. Fast processing is turned on in 5996 * tcp_data_queue when everything is OK. 5997 */ 5998 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5999 { 6000 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 6001 const struct tcphdr *th = (const struct tcphdr *)skb->data; 6002 struct tcp_sock *tp = tcp_sk(sk); 6003 unsigned int len = skb->len; 6004 6005 /* TCP congestion window tracking */ 6006 trace_tcp_probe(sk, skb); 6007 6008 tcp_mstamp_refresh(tp); 6009 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 6010 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 6011 /* 6012 * Header prediction. 6013 * The code loosely follows the one in the famous 6014 * "30 instruction TCP receive" Van Jacobson mail. 6015 * 6016 * Van's trick is to deposit buffers into socket queue 6017 * on a device interrupt, to call tcp_recv function 6018 * on the receive process context and checksum and copy 6019 * the buffer to user space. smart... 6020 * 6021 * Our current scheme is not silly either but we take the 6022 * extra cost of the net_bh soft interrupt processing... 6023 * We do checksum and copy also but from device to kernel. 6024 */ 6025 6026 tp->rx_opt.saw_tstamp = 0; 6027 6028 /* pred_flags is 0xS?10 << 16 + snd_wnd 6029 * if header_prediction is to be made 6030 * 'S' will always be tp->tcp_header_len >> 2 6031 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6032 * turn it off (when there are holes in the receive 6033 * space for instance) 6034 * PSH flag is ignored. 6035 */ 6036 6037 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6038 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6039 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6040 int tcp_header_len = tp->tcp_header_len; 6041 6042 /* Timestamp header prediction: tcp_header_len 6043 * is automatically equal to th->doff*4 due to pred_flags 6044 * match. 6045 */ 6046 6047 /* Check timestamp */ 6048 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6049 /* No? Slow path! */ 6050 if (!tcp_parse_aligned_timestamp(tp, th)) 6051 goto slow_path; 6052 6053 /* If PAWS failed, check it more carefully in slow path */ 6054 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 6055 goto slow_path; 6056 6057 /* DO NOT update ts_recent here, if checksum fails 6058 * and timestamp was corrupted part, it will result 6059 * in a hung connection since we will drop all 6060 * future packets due to the PAWS test. 6061 */ 6062 } 6063 6064 if (len <= tcp_header_len) { 6065 /* Bulk data transfer: sender */ 6066 if (len == tcp_header_len) { 6067 /* Predicted packet is in window by definition. 6068 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6069 * Hence, check seq<=rcv_wup reduces to: 6070 */ 6071 if (tcp_header_len == 6072 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6073 tp->rcv_nxt == tp->rcv_wup) 6074 tcp_store_ts_recent(tp); 6075 6076 /* We know that such packets are checksummed 6077 * on entry. 6078 */ 6079 tcp_ack(sk, skb, 0); 6080 __kfree_skb(skb); 6081 tcp_data_snd_check(sk); 6082 /* When receiving pure ack in fast path, update 6083 * last ts ecr directly instead of calling 6084 * tcp_rcv_rtt_measure_ts() 6085 */ 6086 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6087 return; 6088 } else { /* Header too small */ 6089 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6090 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6091 goto discard; 6092 } 6093 } else { 6094 int eaten = 0; 6095 bool fragstolen = false; 6096 6097 if (tcp_checksum_complete(skb)) 6098 goto csum_error; 6099 6100 if ((int)skb->truesize > sk->sk_forward_alloc) 6101 goto step5; 6102 6103 /* Predicted packet is in window by definition. 6104 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6105 * Hence, check seq<=rcv_wup reduces to: 6106 */ 6107 if (tcp_header_len == 6108 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6109 tp->rcv_nxt == tp->rcv_wup) 6110 tcp_store_ts_recent(tp); 6111 6112 tcp_rcv_rtt_measure_ts(sk, skb); 6113 6114 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6115 6116 /* Bulk data transfer: receiver */ 6117 skb_dst_drop(skb); 6118 __skb_pull(skb, tcp_header_len); 6119 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6120 6121 tcp_event_data_recv(sk, skb); 6122 6123 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6124 /* Well, only one small jumplet in fast path... */ 6125 tcp_ack(sk, skb, FLAG_DATA); 6126 tcp_data_snd_check(sk); 6127 if (!inet_csk_ack_scheduled(sk)) 6128 goto no_ack; 6129 } else { 6130 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6131 } 6132 6133 __tcp_ack_snd_check(sk, 0); 6134 no_ack: 6135 if (eaten) 6136 kfree_skb_partial(skb, fragstolen); 6137 tcp_data_ready(sk); 6138 return; 6139 } 6140 } 6141 6142 slow_path: 6143 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6144 goto csum_error; 6145 6146 if (!th->ack && !th->rst && !th->syn) { 6147 reason = SKB_DROP_REASON_TCP_FLAGS; 6148 goto discard; 6149 } 6150 6151 /* 6152 * Standard slow path. 6153 */ 6154 6155 if (!tcp_validate_incoming(sk, skb, th, 1)) 6156 return; 6157 6158 step5: 6159 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6160 if ((int)reason < 0) { 6161 reason = -reason; 6162 goto discard; 6163 } 6164 tcp_rcv_rtt_measure_ts(sk, skb); 6165 6166 /* Process urgent data. */ 6167 tcp_urg(sk, skb, th); 6168 6169 /* step 7: process the segment text */ 6170 tcp_data_queue(sk, skb); 6171 6172 tcp_data_snd_check(sk); 6173 tcp_ack_snd_check(sk); 6174 return; 6175 6176 csum_error: 6177 reason = SKB_DROP_REASON_TCP_CSUM; 6178 trace_tcp_bad_csum(skb); 6179 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6180 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6181 6182 discard: 6183 tcp_drop_reason(sk, skb, reason); 6184 } 6185 EXPORT_SYMBOL(tcp_rcv_established); 6186 6187 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6188 { 6189 struct inet_connection_sock *icsk = inet_csk(sk); 6190 struct tcp_sock *tp = tcp_sk(sk); 6191 6192 tcp_mtup_init(sk); 6193 icsk->icsk_af_ops->rebuild_header(sk); 6194 tcp_init_metrics(sk); 6195 6196 /* Initialize the congestion window to start the transfer. 6197 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6198 * retransmitted. In light of RFC6298 more aggressive 1sec 6199 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6200 * retransmission has occurred. 6201 */ 6202 if (tp->total_retrans > 1 && tp->undo_marker) 6203 tcp_snd_cwnd_set(tp, 1); 6204 else 6205 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6206 tp->snd_cwnd_stamp = tcp_jiffies32; 6207 6208 bpf_skops_established(sk, bpf_op, skb); 6209 /* Initialize congestion control unless BPF initialized it already: */ 6210 if (!icsk->icsk_ca_initialized) 6211 tcp_init_congestion_control(sk); 6212 tcp_init_buffer_space(sk); 6213 } 6214 6215 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6216 { 6217 struct tcp_sock *tp = tcp_sk(sk); 6218 struct inet_connection_sock *icsk = inet_csk(sk); 6219 6220 tcp_ao_finish_connect(sk, skb); 6221 tcp_set_state(sk, TCP_ESTABLISHED); 6222 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6223 6224 if (skb) { 6225 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6226 security_inet_conn_established(sk, skb); 6227 sk_mark_napi_id(sk, skb); 6228 } 6229 6230 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6231 6232 /* Prevent spurious tcp_cwnd_restart() on first data 6233 * packet. 6234 */ 6235 tp->lsndtime = tcp_jiffies32; 6236 6237 if (sock_flag(sk, SOCK_KEEPOPEN)) 6238 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6239 6240 if (!tp->rx_opt.snd_wscale) 6241 __tcp_fast_path_on(tp, tp->snd_wnd); 6242 else 6243 tp->pred_flags = 0; 6244 } 6245 6246 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6247 struct tcp_fastopen_cookie *cookie) 6248 { 6249 struct tcp_sock *tp = tcp_sk(sk); 6250 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6251 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6252 bool syn_drop = false; 6253 6254 if (mss == tp->rx_opt.user_mss) { 6255 struct tcp_options_received opt; 6256 6257 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6258 tcp_clear_options(&opt); 6259 opt.user_mss = opt.mss_clamp = 0; 6260 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6261 mss = opt.mss_clamp; 6262 } 6263 6264 if (!tp->syn_fastopen) { 6265 /* Ignore an unsolicited cookie */ 6266 cookie->len = -1; 6267 } else if (tp->total_retrans) { 6268 /* SYN timed out and the SYN-ACK neither has a cookie nor 6269 * acknowledges data. Presumably the remote received only 6270 * the retransmitted (regular) SYNs: either the original 6271 * SYN-data or the corresponding SYN-ACK was dropped. 6272 */ 6273 syn_drop = (cookie->len < 0 && data); 6274 } else if (cookie->len < 0 && !tp->syn_data) { 6275 /* We requested a cookie but didn't get it. If we did not use 6276 * the (old) exp opt format then try so next time (try_exp=1). 6277 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6278 */ 6279 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6280 } 6281 6282 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6283 6284 if (data) { /* Retransmit unacked data in SYN */ 6285 if (tp->total_retrans) 6286 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6287 else 6288 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6289 skb_rbtree_walk_from(data) 6290 tcp_mark_skb_lost(sk, data); 6291 tcp_xmit_retransmit_queue(sk); 6292 NET_INC_STATS(sock_net(sk), 6293 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6294 return true; 6295 } 6296 tp->syn_data_acked = tp->syn_data; 6297 if (tp->syn_data_acked) { 6298 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6299 /* SYN-data is counted as two separate packets in tcp_ack() */ 6300 if (tp->delivered > 1) 6301 --tp->delivered; 6302 } 6303 6304 tcp_fastopen_add_skb(sk, synack); 6305 6306 return false; 6307 } 6308 6309 static void smc_check_reset_syn(struct tcp_sock *tp) 6310 { 6311 #if IS_ENABLED(CONFIG_SMC) 6312 if (static_branch_unlikely(&tcp_have_smc)) { 6313 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6314 tp->syn_smc = 0; 6315 } 6316 #endif 6317 } 6318 6319 static void tcp_try_undo_spurious_syn(struct sock *sk) 6320 { 6321 struct tcp_sock *tp = tcp_sk(sk); 6322 u32 syn_stamp; 6323 6324 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6325 * spurious if the ACK's timestamp option echo value matches the 6326 * original SYN timestamp. 6327 */ 6328 syn_stamp = tp->retrans_stamp; 6329 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6330 syn_stamp == tp->rx_opt.rcv_tsecr) 6331 tp->undo_marker = 0; 6332 } 6333 6334 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6335 const struct tcphdr *th) 6336 { 6337 struct inet_connection_sock *icsk = inet_csk(sk); 6338 struct tcp_sock *tp = tcp_sk(sk); 6339 struct tcp_fastopen_cookie foc = { .len = -1 }; 6340 int saved_clamp = tp->rx_opt.mss_clamp; 6341 bool fastopen_fail; 6342 SKB_DR(reason); 6343 6344 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6345 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6346 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6347 6348 if (th->ack) { 6349 /* rfc793: 6350 * "If the state is SYN-SENT then 6351 * first check the ACK bit 6352 * If the ACK bit is set 6353 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6354 * a reset (unless the RST bit is set, if so drop 6355 * the segment and return)" 6356 */ 6357 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6358 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6359 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6360 if (icsk->icsk_retransmits == 0) 6361 inet_csk_reset_xmit_timer(sk, 6362 ICSK_TIME_RETRANS, 6363 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6364 goto reset_and_undo; 6365 } 6366 6367 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6368 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6369 tcp_time_stamp_ts(tp))) { 6370 NET_INC_STATS(sock_net(sk), 6371 LINUX_MIB_PAWSACTIVEREJECTED); 6372 goto reset_and_undo; 6373 } 6374 6375 /* Now ACK is acceptable. 6376 * 6377 * "If the RST bit is set 6378 * If the ACK was acceptable then signal the user "error: 6379 * connection reset", drop the segment, enter CLOSED state, 6380 * delete TCB, and return." 6381 */ 6382 6383 if (th->rst) { 6384 tcp_reset(sk, skb); 6385 consume: 6386 __kfree_skb(skb); 6387 return 0; 6388 } 6389 6390 /* rfc793: 6391 * "fifth, if neither of the SYN or RST bits is set then 6392 * drop the segment and return." 6393 * 6394 * See note below! 6395 * --ANK(990513) 6396 */ 6397 if (!th->syn) { 6398 SKB_DR_SET(reason, TCP_FLAGS); 6399 goto discard_and_undo; 6400 } 6401 /* rfc793: 6402 * "If the SYN bit is on ... 6403 * are acceptable then ... 6404 * (our SYN has been ACKed), change the connection 6405 * state to ESTABLISHED..." 6406 */ 6407 6408 tcp_ecn_rcv_synack(tp, th); 6409 6410 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6411 tcp_try_undo_spurious_syn(sk); 6412 tcp_ack(sk, skb, FLAG_SLOWPATH); 6413 6414 /* Ok.. it's good. Set up sequence numbers and 6415 * move to established. 6416 */ 6417 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6418 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6419 6420 /* RFC1323: The window in SYN & SYN/ACK segments is 6421 * never scaled. 6422 */ 6423 tp->snd_wnd = ntohs(th->window); 6424 6425 if (!tp->rx_opt.wscale_ok) { 6426 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6427 tp->window_clamp = min(tp->window_clamp, 65535U); 6428 } 6429 6430 if (tp->rx_opt.saw_tstamp) { 6431 tp->rx_opt.tstamp_ok = 1; 6432 tp->tcp_header_len = 6433 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6434 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6435 tcp_store_ts_recent(tp); 6436 } else { 6437 tp->tcp_header_len = sizeof(struct tcphdr); 6438 } 6439 6440 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6441 tcp_initialize_rcv_mss(sk); 6442 6443 /* Remember, tcp_poll() does not lock socket! 6444 * Change state from SYN-SENT only after copied_seq 6445 * is initialized. */ 6446 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6447 6448 smc_check_reset_syn(tp); 6449 6450 smp_mb(); 6451 6452 tcp_finish_connect(sk, skb); 6453 6454 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6455 tcp_rcv_fastopen_synack(sk, skb, &foc); 6456 6457 if (!sock_flag(sk, SOCK_DEAD)) { 6458 sk->sk_state_change(sk); 6459 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6460 } 6461 if (fastopen_fail) 6462 return -1; 6463 if (sk->sk_write_pending || 6464 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6465 inet_csk_in_pingpong_mode(sk)) { 6466 /* Save one ACK. Data will be ready after 6467 * several ticks, if write_pending is set. 6468 * 6469 * It may be deleted, but with this feature tcpdumps 6470 * look so _wonderfully_ clever, that I was not able 6471 * to stand against the temptation 8) --ANK 6472 */ 6473 inet_csk_schedule_ack(sk); 6474 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6475 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6476 TCP_DELACK_MAX, TCP_RTO_MAX); 6477 goto consume; 6478 } 6479 tcp_send_ack(sk); 6480 return -1; 6481 } 6482 6483 /* No ACK in the segment */ 6484 6485 if (th->rst) { 6486 /* rfc793: 6487 * "If the RST bit is set 6488 * 6489 * Otherwise (no ACK) drop the segment and return." 6490 */ 6491 SKB_DR_SET(reason, TCP_RESET); 6492 goto discard_and_undo; 6493 } 6494 6495 /* PAWS check. */ 6496 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6497 tcp_paws_reject(&tp->rx_opt, 0)) { 6498 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6499 goto discard_and_undo; 6500 } 6501 if (th->syn) { 6502 /* We see SYN without ACK. It is attempt of 6503 * simultaneous connect with crossed SYNs. 6504 * Particularly, it can be connect to self. 6505 */ 6506 #ifdef CONFIG_TCP_AO 6507 struct tcp_ao_info *ao; 6508 6509 ao = rcu_dereference_protected(tp->ao_info, 6510 lockdep_sock_is_held(sk)); 6511 if (ao) { 6512 WRITE_ONCE(ao->risn, th->seq); 6513 ao->rcv_sne = 0; 6514 } 6515 #endif 6516 tcp_set_state(sk, TCP_SYN_RECV); 6517 6518 if (tp->rx_opt.saw_tstamp) { 6519 tp->rx_opt.tstamp_ok = 1; 6520 tcp_store_ts_recent(tp); 6521 tp->tcp_header_len = 6522 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6523 } else { 6524 tp->tcp_header_len = sizeof(struct tcphdr); 6525 } 6526 6527 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6528 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6529 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6530 6531 /* RFC1323: The window in SYN & SYN/ACK segments is 6532 * never scaled. 6533 */ 6534 tp->snd_wnd = ntohs(th->window); 6535 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6536 tp->max_window = tp->snd_wnd; 6537 6538 tcp_ecn_rcv_syn(tp, th); 6539 6540 tcp_mtup_init(sk); 6541 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6542 tcp_initialize_rcv_mss(sk); 6543 6544 tcp_send_synack(sk); 6545 #if 0 6546 /* Note, we could accept data and URG from this segment. 6547 * There are no obstacles to make this (except that we must 6548 * either change tcp_recvmsg() to prevent it from returning data 6549 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6550 * 6551 * However, if we ignore data in ACKless segments sometimes, 6552 * we have no reasons to accept it sometimes. 6553 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6554 * is not flawless. So, discard packet for sanity. 6555 * Uncomment this return to process the data. 6556 */ 6557 return -1; 6558 #else 6559 goto consume; 6560 #endif 6561 } 6562 /* "fifth, if neither of the SYN or RST bits is set then 6563 * drop the segment and return." 6564 */ 6565 6566 discard_and_undo: 6567 tcp_clear_options(&tp->rx_opt); 6568 tp->rx_opt.mss_clamp = saved_clamp; 6569 tcp_drop_reason(sk, skb, reason); 6570 return 0; 6571 6572 reset_and_undo: 6573 tcp_clear_options(&tp->rx_opt); 6574 tp->rx_opt.mss_clamp = saved_clamp; 6575 return 1; 6576 } 6577 6578 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6579 { 6580 struct tcp_sock *tp = tcp_sk(sk); 6581 struct request_sock *req; 6582 6583 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6584 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6585 */ 6586 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6587 tcp_try_undo_recovery(sk); 6588 6589 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6590 tcp_update_rto_time(tp); 6591 tp->retrans_stamp = 0; 6592 inet_csk(sk)->icsk_retransmits = 0; 6593 6594 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6595 * we no longer need req so release it. 6596 */ 6597 req = rcu_dereference_protected(tp->fastopen_rsk, 6598 lockdep_sock_is_held(sk)); 6599 reqsk_fastopen_remove(sk, req, false); 6600 6601 /* Re-arm the timer because data may have been sent out. 6602 * This is similar to the regular data transmission case 6603 * when new data has just been ack'ed. 6604 * 6605 * (TFO) - we could try to be more aggressive and 6606 * retransmitting any data sooner based on when they 6607 * are sent out. 6608 */ 6609 tcp_rearm_rto(sk); 6610 } 6611 6612 /* 6613 * This function implements the receiving procedure of RFC 793 for 6614 * all states except ESTABLISHED and TIME_WAIT. 6615 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6616 * address independent. 6617 */ 6618 6619 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6620 { 6621 struct tcp_sock *tp = tcp_sk(sk); 6622 struct inet_connection_sock *icsk = inet_csk(sk); 6623 const struct tcphdr *th = tcp_hdr(skb); 6624 struct request_sock *req; 6625 int queued = 0; 6626 bool acceptable; 6627 SKB_DR(reason); 6628 6629 switch (sk->sk_state) { 6630 case TCP_CLOSE: 6631 SKB_DR_SET(reason, TCP_CLOSE); 6632 goto discard; 6633 6634 case TCP_LISTEN: 6635 if (th->ack) 6636 return 1; 6637 6638 if (th->rst) { 6639 SKB_DR_SET(reason, TCP_RESET); 6640 goto discard; 6641 } 6642 if (th->syn) { 6643 if (th->fin) { 6644 SKB_DR_SET(reason, TCP_FLAGS); 6645 goto discard; 6646 } 6647 /* It is possible that we process SYN packets from backlog, 6648 * so we need to make sure to disable BH and RCU right there. 6649 */ 6650 rcu_read_lock(); 6651 local_bh_disable(); 6652 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6653 local_bh_enable(); 6654 rcu_read_unlock(); 6655 6656 if (!acceptable) 6657 return 1; 6658 consume_skb(skb); 6659 return 0; 6660 } 6661 SKB_DR_SET(reason, TCP_FLAGS); 6662 goto discard; 6663 6664 case TCP_SYN_SENT: 6665 tp->rx_opt.saw_tstamp = 0; 6666 tcp_mstamp_refresh(tp); 6667 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6668 if (queued >= 0) 6669 return queued; 6670 6671 /* Do step6 onward by hand. */ 6672 tcp_urg(sk, skb, th); 6673 __kfree_skb(skb); 6674 tcp_data_snd_check(sk); 6675 return 0; 6676 } 6677 6678 tcp_mstamp_refresh(tp); 6679 tp->rx_opt.saw_tstamp = 0; 6680 req = rcu_dereference_protected(tp->fastopen_rsk, 6681 lockdep_sock_is_held(sk)); 6682 if (req) { 6683 bool req_stolen; 6684 6685 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6686 sk->sk_state != TCP_FIN_WAIT1); 6687 6688 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6689 SKB_DR_SET(reason, TCP_FASTOPEN); 6690 goto discard; 6691 } 6692 } 6693 6694 if (!th->ack && !th->rst && !th->syn) { 6695 SKB_DR_SET(reason, TCP_FLAGS); 6696 goto discard; 6697 } 6698 if (!tcp_validate_incoming(sk, skb, th, 0)) 6699 return 0; 6700 6701 /* step 5: check the ACK field */ 6702 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6703 FLAG_UPDATE_TS_RECENT | 6704 FLAG_NO_CHALLENGE_ACK) > 0; 6705 6706 if (!acceptable) { 6707 if (sk->sk_state == TCP_SYN_RECV) 6708 return 1; /* send one RST */ 6709 tcp_send_challenge_ack(sk); 6710 SKB_DR_SET(reason, TCP_OLD_ACK); 6711 goto discard; 6712 } 6713 switch (sk->sk_state) { 6714 case TCP_SYN_RECV: 6715 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6716 if (!tp->srtt_us) 6717 tcp_synack_rtt_meas(sk, req); 6718 6719 if (req) { 6720 tcp_rcv_synrecv_state_fastopen(sk); 6721 } else { 6722 tcp_try_undo_spurious_syn(sk); 6723 tp->retrans_stamp = 0; 6724 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6725 skb); 6726 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6727 } 6728 tcp_ao_established(sk); 6729 smp_mb(); 6730 tcp_set_state(sk, TCP_ESTABLISHED); 6731 sk->sk_state_change(sk); 6732 6733 /* Note, that this wakeup is only for marginal crossed SYN case. 6734 * Passively open sockets are not waked up, because 6735 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6736 */ 6737 if (sk->sk_socket) 6738 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6739 6740 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6741 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6742 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6743 6744 if (tp->rx_opt.tstamp_ok) 6745 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6746 6747 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6748 tcp_update_pacing_rate(sk); 6749 6750 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6751 tp->lsndtime = tcp_jiffies32; 6752 6753 tcp_initialize_rcv_mss(sk); 6754 tcp_fast_path_on(tp); 6755 break; 6756 6757 case TCP_FIN_WAIT1: { 6758 int tmo; 6759 6760 if (req) 6761 tcp_rcv_synrecv_state_fastopen(sk); 6762 6763 if (tp->snd_una != tp->write_seq) 6764 break; 6765 6766 tcp_set_state(sk, TCP_FIN_WAIT2); 6767 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6768 6769 sk_dst_confirm(sk); 6770 6771 if (!sock_flag(sk, SOCK_DEAD)) { 6772 /* Wake up lingering close() */ 6773 sk->sk_state_change(sk); 6774 break; 6775 } 6776 6777 if (READ_ONCE(tp->linger2) < 0) { 6778 tcp_done(sk); 6779 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6780 return 1; 6781 } 6782 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6783 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6784 /* Receive out of order FIN after close() */ 6785 if (tp->syn_fastopen && th->fin) 6786 tcp_fastopen_active_disable(sk); 6787 tcp_done(sk); 6788 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6789 return 1; 6790 } 6791 6792 tmo = tcp_fin_time(sk); 6793 if (tmo > TCP_TIMEWAIT_LEN) { 6794 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6795 } else if (th->fin || sock_owned_by_user(sk)) { 6796 /* Bad case. We could lose such FIN otherwise. 6797 * It is not a big problem, but it looks confusing 6798 * and not so rare event. We still can lose it now, 6799 * if it spins in bh_lock_sock(), but it is really 6800 * marginal case. 6801 */ 6802 inet_csk_reset_keepalive_timer(sk, tmo); 6803 } else { 6804 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6805 goto consume; 6806 } 6807 break; 6808 } 6809 6810 case TCP_CLOSING: 6811 if (tp->snd_una == tp->write_seq) { 6812 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6813 goto consume; 6814 } 6815 break; 6816 6817 case TCP_LAST_ACK: 6818 if (tp->snd_una == tp->write_seq) { 6819 tcp_update_metrics(sk); 6820 tcp_done(sk); 6821 goto consume; 6822 } 6823 break; 6824 } 6825 6826 /* step 6: check the URG bit */ 6827 tcp_urg(sk, skb, th); 6828 6829 /* step 7: process the segment text */ 6830 switch (sk->sk_state) { 6831 case TCP_CLOSE_WAIT: 6832 case TCP_CLOSING: 6833 case TCP_LAST_ACK: 6834 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6835 /* If a subflow has been reset, the packet should not 6836 * continue to be processed, drop the packet. 6837 */ 6838 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6839 goto discard; 6840 break; 6841 } 6842 fallthrough; 6843 case TCP_FIN_WAIT1: 6844 case TCP_FIN_WAIT2: 6845 /* RFC 793 says to queue data in these states, 6846 * RFC 1122 says we MUST send a reset. 6847 * BSD 4.4 also does reset. 6848 */ 6849 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6850 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6851 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6852 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6853 tcp_reset(sk, skb); 6854 return 1; 6855 } 6856 } 6857 fallthrough; 6858 case TCP_ESTABLISHED: 6859 tcp_data_queue(sk, skb); 6860 queued = 1; 6861 break; 6862 } 6863 6864 /* tcp_data could move socket to TIME-WAIT */ 6865 if (sk->sk_state != TCP_CLOSE) { 6866 tcp_data_snd_check(sk); 6867 tcp_ack_snd_check(sk); 6868 } 6869 6870 if (!queued) { 6871 discard: 6872 tcp_drop_reason(sk, skb, reason); 6873 } 6874 return 0; 6875 6876 consume: 6877 __kfree_skb(skb); 6878 return 0; 6879 } 6880 EXPORT_SYMBOL(tcp_rcv_state_process); 6881 6882 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6883 { 6884 struct inet_request_sock *ireq = inet_rsk(req); 6885 6886 if (family == AF_INET) 6887 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6888 &ireq->ir_rmt_addr, port); 6889 #if IS_ENABLED(CONFIG_IPV6) 6890 else if (family == AF_INET6) 6891 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6892 &ireq->ir_v6_rmt_addr, port); 6893 #endif 6894 } 6895 6896 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6897 * 6898 * If we receive a SYN packet with these bits set, it means a 6899 * network is playing bad games with TOS bits. In order to 6900 * avoid possible false congestion notifications, we disable 6901 * TCP ECN negotiation. 6902 * 6903 * Exception: tcp_ca wants ECN. This is required for DCTCP 6904 * congestion control: Linux DCTCP asserts ECT on all packets, 6905 * including SYN, which is most optimal solution; however, 6906 * others, such as FreeBSD do not. 6907 * 6908 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6909 * set, indicating the use of a future TCP extension (such as AccECN). See 6910 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6911 * extensions. 6912 */ 6913 static void tcp_ecn_create_request(struct request_sock *req, 6914 const struct sk_buff *skb, 6915 const struct sock *listen_sk, 6916 const struct dst_entry *dst) 6917 { 6918 const struct tcphdr *th = tcp_hdr(skb); 6919 const struct net *net = sock_net(listen_sk); 6920 bool th_ecn = th->ece && th->cwr; 6921 bool ect, ecn_ok; 6922 u32 ecn_ok_dst; 6923 6924 if (!th_ecn) 6925 return; 6926 6927 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6928 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6929 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6930 6931 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6932 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6933 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6934 inet_rsk(req)->ecn_ok = 1; 6935 } 6936 6937 static void tcp_openreq_init(struct request_sock *req, 6938 const struct tcp_options_received *rx_opt, 6939 struct sk_buff *skb, const struct sock *sk) 6940 { 6941 struct inet_request_sock *ireq = inet_rsk(req); 6942 6943 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6944 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6945 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6946 tcp_rsk(req)->snt_synack = 0; 6947 tcp_rsk(req)->last_oow_ack_time = 0; 6948 req->mss = rx_opt->mss_clamp; 6949 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6950 ireq->tstamp_ok = rx_opt->tstamp_ok; 6951 ireq->sack_ok = rx_opt->sack_ok; 6952 ireq->snd_wscale = rx_opt->snd_wscale; 6953 ireq->wscale_ok = rx_opt->wscale_ok; 6954 ireq->acked = 0; 6955 ireq->ecn_ok = 0; 6956 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6957 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6958 ireq->ir_mark = inet_request_mark(sk, skb); 6959 #if IS_ENABLED(CONFIG_SMC) 6960 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6961 tcp_sk(sk)->smc_hs_congested(sk)); 6962 #endif 6963 } 6964 6965 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6966 struct sock *sk_listener, 6967 bool attach_listener) 6968 { 6969 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6970 attach_listener); 6971 6972 if (req) { 6973 struct inet_request_sock *ireq = inet_rsk(req); 6974 6975 ireq->ireq_opt = NULL; 6976 #if IS_ENABLED(CONFIG_IPV6) 6977 ireq->pktopts = NULL; 6978 #endif 6979 atomic64_set(&ireq->ir_cookie, 0); 6980 ireq->ireq_state = TCP_NEW_SYN_RECV; 6981 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6982 ireq->ireq_family = sk_listener->sk_family; 6983 req->timeout = TCP_TIMEOUT_INIT; 6984 } 6985 6986 return req; 6987 } 6988 EXPORT_SYMBOL(inet_reqsk_alloc); 6989 6990 /* 6991 * Return true if a syncookie should be sent 6992 */ 6993 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6994 { 6995 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6996 const char *msg = "Dropping request"; 6997 struct net *net = sock_net(sk); 6998 bool want_cookie = false; 6999 u8 syncookies; 7000 7001 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7002 7003 #ifdef CONFIG_SYN_COOKIES 7004 if (syncookies) { 7005 msg = "Sending cookies"; 7006 want_cookie = true; 7007 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 7008 } else 7009 #endif 7010 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 7011 7012 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 7013 xchg(&queue->synflood_warned, 1) == 0) { 7014 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 7015 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 7016 proto, inet6_rcv_saddr(sk), 7017 sk->sk_num, msg); 7018 } else { 7019 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7020 proto, &sk->sk_rcv_saddr, 7021 sk->sk_num, msg); 7022 } 7023 } 7024 7025 return want_cookie; 7026 } 7027 7028 static void tcp_reqsk_record_syn(const struct sock *sk, 7029 struct request_sock *req, 7030 const struct sk_buff *skb) 7031 { 7032 if (tcp_sk(sk)->save_syn) { 7033 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7034 struct saved_syn *saved_syn; 7035 u32 mac_hdrlen; 7036 void *base; 7037 7038 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7039 base = skb_mac_header(skb); 7040 mac_hdrlen = skb_mac_header_len(skb); 7041 len += mac_hdrlen; 7042 } else { 7043 base = skb_network_header(skb); 7044 mac_hdrlen = 0; 7045 } 7046 7047 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7048 GFP_ATOMIC); 7049 if (saved_syn) { 7050 saved_syn->mac_hdrlen = mac_hdrlen; 7051 saved_syn->network_hdrlen = skb_network_header_len(skb); 7052 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7053 memcpy(saved_syn->data, base, len); 7054 req->saved_syn = saved_syn; 7055 } 7056 } 7057 } 7058 7059 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7060 * used for SYN cookie generation. 7061 */ 7062 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7063 const struct tcp_request_sock_ops *af_ops, 7064 struct sock *sk, struct tcphdr *th) 7065 { 7066 struct tcp_sock *tp = tcp_sk(sk); 7067 u16 mss; 7068 7069 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7070 !inet_csk_reqsk_queue_is_full(sk)) 7071 return 0; 7072 7073 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7074 return 0; 7075 7076 if (sk_acceptq_is_full(sk)) { 7077 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7078 return 0; 7079 } 7080 7081 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7082 if (!mss) 7083 mss = af_ops->mss_clamp; 7084 7085 return mss; 7086 } 7087 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 7088 7089 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7090 const struct tcp_request_sock_ops *af_ops, 7091 struct sock *sk, struct sk_buff *skb) 7092 { 7093 struct tcp_fastopen_cookie foc = { .len = -1 }; 7094 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 7095 struct tcp_options_received tmp_opt; 7096 struct tcp_sock *tp = tcp_sk(sk); 7097 struct net *net = sock_net(sk); 7098 struct sock *fastopen_sk = NULL; 7099 struct request_sock *req; 7100 bool want_cookie = false; 7101 struct dst_entry *dst; 7102 struct flowi fl; 7103 u8 syncookies; 7104 7105 #ifdef CONFIG_TCP_AO 7106 const struct tcp_ao_hdr *aoh; 7107 #endif 7108 7109 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7110 7111 /* TW buckets are converted to open requests without 7112 * limitations, they conserve resources and peer is 7113 * evidently real one. 7114 */ 7115 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { 7116 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 7117 if (!want_cookie) 7118 goto drop; 7119 } 7120 7121 if (sk_acceptq_is_full(sk)) { 7122 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7123 goto drop; 7124 } 7125 7126 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7127 if (!req) 7128 goto drop; 7129 7130 req->syncookie = want_cookie; 7131 tcp_rsk(req)->af_specific = af_ops; 7132 tcp_rsk(req)->ts_off = 0; 7133 tcp_rsk(req)->req_usec_ts = false; 7134 #if IS_ENABLED(CONFIG_MPTCP) 7135 tcp_rsk(req)->is_mptcp = 0; 7136 #endif 7137 7138 tcp_clear_options(&tmp_opt); 7139 tmp_opt.mss_clamp = af_ops->mss_clamp; 7140 tmp_opt.user_mss = tp->rx_opt.user_mss; 7141 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7142 want_cookie ? NULL : &foc); 7143 7144 if (want_cookie && !tmp_opt.saw_tstamp) 7145 tcp_clear_options(&tmp_opt); 7146 7147 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7148 tmp_opt.smc_ok = 0; 7149 7150 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7151 tcp_openreq_init(req, &tmp_opt, skb, sk); 7152 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7153 7154 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7155 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7156 7157 dst = af_ops->route_req(sk, skb, &fl, req); 7158 if (!dst) 7159 goto drop_and_free; 7160 7161 if (tmp_opt.tstamp_ok) { 7162 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 7163 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7164 } 7165 if (!want_cookie && !isn) { 7166 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7167 7168 /* Kill the following clause, if you dislike this way. */ 7169 if (!syncookies && 7170 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7171 (max_syn_backlog >> 2)) && 7172 !tcp_peer_is_proven(req, dst)) { 7173 /* Without syncookies last quarter of 7174 * backlog is filled with destinations, 7175 * proven to be alive. 7176 * It means that we continue to communicate 7177 * to destinations, already remembered 7178 * to the moment of synflood. 7179 */ 7180 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7181 rsk_ops->family); 7182 goto drop_and_release; 7183 } 7184 7185 isn = af_ops->init_seq(skb); 7186 } 7187 7188 tcp_ecn_create_request(req, skb, sk, dst); 7189 7190 if (want_cookie) { 7191 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7192 if (!tmp_opt.tstamp_ok) 7193 inet_rsk(req)->ecn_ok = 0; 7194 } 7195 7196 #ifdef CONFIG_TCP_AO 7197 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 7198 goto drop_and_release; /* Invalid TCP options */ 7199 if (aoh) { 7200 tcp_rsk(req)->used_tcp_ao = true; 7201 tcp_rsk(req)->ao_rcv_next = aoh->keyid; 7202 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid; 7203 7204 } else { 7205 tcp_rsk(req)->used_tcp_ao = false; 7206 } 7207 #endif 7208 tcp_rsk(req)->snt_isn = isn; 7209 tcp_rsk(req)->txhash = net_tx_rndhash(); 7210 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7211 tcp_openreq_init_rwin(req, sk, dst); 7212 sk_rx_queue_set(req_to_sk(req), skb); 7213 if (!want_cookie) { 7214 tcp_reqsk_record_syn(sk, req, skb); 7215 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7216 } 7217 if (fastopen_sk) { 7218 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7219 &foc, TCP_SYNACK_FASTOPEN, skb); 7220 /* Add the child socket directly into the accept queue */ 7221 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7222 reqsk_fastopen_remove(fastopen_sk, req, false); 7223 bh_unlock_sock(fastopen_sk); 7224 sock_put(fastopen_sk); 7225 goto drop_and_free; 7226 } 7227 sk->sk_data_ready(sk); 7228 bh_unlock_sock(fastopen_sk); 7229 sock_put(fastopen_sk); 7230 } else { 7231 tcp_rsk(req)->tfo_listener = false; 7232 if (!want_cookie) { 7233 req->timeout = tcp_timeout_init((struct sock *)req); 7234 inet_csk_reqsk_queue_hash_add(sk, req, req->timeout); 7235 } 7236 af_ops->send_synack(sk, dst, &fl, req, &foc, 7237 !want_cookie ? TCP_SYNACK_NORMAL : 7238 TCP_SYNACK_COOKIE, 7239 skb); 7240 if (want_cookie) { 7241 reqsk_free(req); 7242 return 0; 7243 } 7244 } 7245 reqsk_put(req); 7246 return 0; 7247 7248 drop_and_release: 7249 dst_release(dst); 7250 drop_and_free: 7251 __reqsk_free(req); 7252 drop: 7253 tcp_listendrop(sk); 7254 return 0; 7255 } 7256 EXPORT_SYMBOL(tcp_conn_request); 7257