1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 #include <trace/events/tcp.h> 79 #include <linux/static_key.h> 80 81 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 82 83 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 84 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 85 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 86 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 87 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 88 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 89 #define FLAG_ECE 0x40 /* ECE in this ACK */ 90 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 91 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 92 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 93 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 94 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 95 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 96 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 97 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 98 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 99 100 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 101 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 102 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 103 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 104 105 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 106 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 107 108 #define REXMIT_NONE 0 /* no loss recovery to do */ 109 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 110 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 111 112 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 113 unsigned int len) 114 { 115 static bool __once __read_mostly; 116 117 if (!__once) { 118 struct net_device *dev; 119 120 __once = true; 121 122 rcu_read_lock(); 123 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 124 if (!dev || len >= dev->mtu) 125 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 126 dev ? dev->name : "Unknown driver"); 127 rcu_read_unlock(); 128 } 129 } 130 131 /* Adapt the MSS value used to make delayed ack decision to the 132 * real world. 133 */ 134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 135 { 136 struct inet_connection_sock *icsk = inet_csk(sk); 137 const unsigned int lss = icsk->icsk_ack.last_seg_size; 138 unsigned int len; 139 140 icsk->icsk_ack.last_seg_size = 0; 141 142 /* skb->len may jitter because of SACKs, even if peer 143 * sends good full-sized frames. 144 */ 145 len = skb_shinfo(skb)->gso_size ? : skb->len; 146 if (len >= icsk->icsk_ack.rcv_mss) { 147 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 148 tcp_sk(sk)->advmss); 149 /* Account for possibly-removed options */ 150 if (unlikely(len > icsk->icsk_ack.rcv_mss + 151 MAX_TCP_OPTION_SPACE)) 152 tcp_gro_dev_warn(sk, skb, len); 153 } else { 154 /* Otherwise, we make more careful check taking into account, 155 * that SACKs block is variable. 156 * 157 * "len" is invariant segment length, including TCP header. 158 */ 159 len += skb->data - skb_transport_header(skb); 160 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 161 /* If PSH is not set, packet should be 162 * full sized, provided peer TCP is not badly broken. 163 * This observation (if it is correct 8)) allows 164 * to handle super-low mtu links fairly. 165 */ 166 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 167 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 168 /* Subtract also invariant (if peer is RFC compliant), 169 * tcp header plus fixed timestamp option length. 170 * Resulting "len" is MSS free of SACK jitter. 171 */ 172 len -= tcp_sk(sk)->tcp_header_len; 173 icsk->icsk_ack.last_seg_size = len; 174 if (len == lss) { 175 icsk->icsk_ack.rcv_mss = len; 176 return; 177 } 178 } 179 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 180 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 181 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 182 } 183 } 184 185 static void tcp_incr_quickack(struct sock *sk) 186 { 187 struct inet_connection_sock *icsk = inet_csk(sk); 188 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 189 190 if (quickacks == 0) 191 quickacks = 2; 192 if (quickacks > icsk->icsk_ack.quick) 193 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 194 } 195 196 static void tcp_enter_quickack_mode(struct sock *sk) 197 { 198 struct inet_connection_sock *icsk = inet_csk(sk); 199 tcp_incr_quickack(sk); 200 icsk->icsk_ack.pingpong = 0; 201 icsk->icsk_ack.ato = TCP_ATO_MIN; 202 } 203 204 /* Send ACKs quickly, if "quick" count is not exhausted 205 * and the session is not interactive. 206 */ 207 208 static bool tcp_in_quickack_mode(struct sock *sk) 209 { 210 const struct inet_connection_sock *icsk = inet_csk(sk); 211 const struct dst_entry *dst = __sk_dst_get(sk); 212 213 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 214 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 215 } 216 217 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 218 { 219 if (tp->ecn_flags & TCP_ECN_OK) 220 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 221 } 222 223 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 224 { 225 if (tcp_hdr(skb)->cwr) 226 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 227 } 228 229 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 230 { 231 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 232 } 233 234 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 235 { 236 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 237 case INET_ECN_NOT_ECT: 238 /* Funny extension: if ECT is not set on a segment, 239 * and we already seen ECT on a previous segment, 240 * it is probably a retransmit. 241 */ 242 if (tp->ecn_flags & TCP_ECN_SEEN) 243 tcp_enter_quickack_mode((struct sock *)tp); 244 break; 245 case INET_ECN_CE: 246 if (tcp_ca_needs_ecn((struct sock *)tp)) 247 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 248 249 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 250 /* Better not delay acks, sender can have a very low cwnd */ 251 tcp_enter_quickack_mode((struct sock *)tp); 252 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 253 } 254 tp->ecn_flags |= TCP_ECN_SEEN; 255 break; 256 default: 257 if (tcp_ca_needs_ecn((struct sock *)tp)) 258 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 259 tp->ecn_flags |= TCP_ECN_SEEN; 260 break; 261 } 262 } 263 264 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 265 { 266 if (tp->ecn_flags & TCP_ECN_OK) 267 __tcp_ecn_check_ce(tp, skb); 268 } 269 270 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 271 { 272 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 273 tp->ecn_flags &= ~TCP_ECN_OK; 274 } 275 276 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 277 { 278 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 279 tp->ecn_flags &= ~TCP_ECN_OK; 280 } 281 282 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 283 { 284 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 285 return true; 286 return false; 287 } 288 289 /* Buffer size and advertised window tuning. 290 * 291 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 292 */ 293 294 static void tcp_sndbuf_expand(struct sock *sk) 295 { 296 const struct tcp_sock *tp = tcp_sk(sk); 297 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 298 int sndmem, per_mss; 299 u32 nr_segs; 300 301 /* Worst case is non GSO/TSO : each frame consumes one skb 302 * and skb->head is kmalloced using power of two area of memory 303 */ 304 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 305 MAX_TCP_HEADER + 306 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 307 308 per_mss = roundup_pow_of_two(per_mss) + 309 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 310 311 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 312 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 313 314 /* Fast Recovery (RFC 5681 3.2) : 315 * Cubic needs 1.7 factor, rounded to 2 to include 316 * extra cushion (application might react slowly to POLLOUT) 317 */ 318 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 319 sndmem *= nr_segs * per_mss; 320 321 if (sk->sk_sndbuf < sndmem) 322 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 323 } 324 325 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 326 * 327 * All tcp_full_space() is split to two parts: "network" buffer, allocated 328 * forward and advertised in receiver window (tp->rcv_wnd) and 329 * "application buffer", required to isolate scheduling/application 330 * latencies from network. 331 * window_clamp is maximal advertised window. It can be less than 332 * tcp_full_space(), in this case tcp_full_space() - window_clamp 333 * is reserved for "application" buffer. The less window_clamp is 334 * the smoother our behaviour from viewpoint of network, but the lower 335 * throughput and the higher sensitivity of the connection to losses. 8) 336 * 337 * rcv_ssthresh is more strict window_clamp used at "slow start" 338 * phase to predict further behaviour of this connection. 339 * It is used for two goals: 340 * - to enforce header prediction at sender, even when application 341 * requires some significant "application buffer". It is check #1. 342 * - to prevent pruning of receive queue because of misprediction 343 * of receiver window. Check #2. 344 * 345 * The scheme does not work when sender sends good segments opening 346 * window and then starts to feed us spaghetti. But it should work 347 * in common situations. Otherwise, we have to rely on queue collapsing. 348 */ 349 350 /* Slow part of check#2. */ 351 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 352 { 353 struct tcp_sock *tp = tcp_sk(sk); 354 /* Optimize this! */ 355 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 356 int window = tcp_win_from_space(sk, sysctl_tcp_rmem[2]) >> 1; 357 358 while (tp->rcv_ssthresh <= window) { 359 if (truesize <= skb->len) 360 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 361 362 truesize >>= 1; 363 window >>= 1; 364 } 365 return 0; 366 } 367 368 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 369 { 370 struct tcp_sock *tp = tcp_sk(sk); 371 372 /* Check #1 */ 373 if (tp->rcv_ssthresh < tp->window_clamp && 374 (int)tp->rcv_ssthresh < tcp_space(sk) && 375 !tcp_under_memory_pressure(sk)) { 376 int incr; 377 378 /* Check #2. Increase window, if skb with such overhead 379 * will fit to rcvbuf in future. 380 */ 381 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 382 incr = 2 * tp->advmss; 383 else 384 incr = __tcp_grow_window(sk, skb); 385 386 if (incr) { 387 incr = max_t(int, incr, 2 * skb->len); 388 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 389 tp->window_clamp); 390 inet_csk(sk)->icsk_ack.quick |= 1; 391 } 392 } 393 } 394 395 /* 3. Tuning rcvbuf, when connection enters established state. */ 396 static void tcp_fixup_rcvbuf(struct sock *sk) 397 { 398 u32 mss = tcp_sk(sk)->advmss; 399 int rcvmem; 400 401 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 402 tcp_default_init_rwnd(mss); 403 404 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 405 * Allow enough cushion so that sender is not limited by our window 406 */ 407 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 408 rcvmem <<= 2; 409 410 if (sk->sk_rcvbuf < rcvmem) 411 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 412 } 413 414 /* 4. Try to fixup all. It is made immediately after connection enters 415 * established state. 416 */ 417 void tcp_init_buffer_space(struct sock *sk) 418 { 419 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 420 struct tcp_sock *tp = tcp_sk(sk); 421 int maxwin; 422 423 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 424 tcp_fixup_rcvbuf(sk); 425 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 426 tcp_sndbuf_expand(sk); 427 428 tp->rcvq_space.space = tp->rcv_wnd; 429 tcp_mstamp_refresh(tp); 430 tp->rcvq_space.time = tp->tcp_mstamp; 431 tp->rcvq_space.seq = tp->copied_seq; 432 433 maxwin = tcp_full_space(sk); 434 435 if (tp->window_clamp >= maxwin) { 436 tp->window_clamp = maxwin; 437 438 if (tcp_app_win && maxwin > 4 * tp->advmss) 439 tp->window_clamp = max(maxwin - 440 (maxwin >> tcp_app_win), 441 4 * tp->advmss); 442 } 443 444 /* Force reservation of one segment. */ 445 if (tcp_app_win && 446 tp->window_clamp > 2 * tp->advmss && 447 tp->window_clamp + tp->advmss > maxwin) 448 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 449 450 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 451 tp->snd_cwnd_stamp = tcp_jiffies32; 452 } 453 454 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 455 static void tcp_clamp_window(struct sock *sk) 456 { 457 struct tcp_sock *tp = tcp_sk(sk); 458 struct inet_connection_sock *icsk = inet_csk(sk); 459 460 icsk->icsk_ack.quick = 0; 461 462 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 463 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 464 !tcp_under_memory_pressure(sk) && 465 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 466 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 467 sysctl_tcp_rmem[2]); 468 } 469 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 470 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 471 } 472 473 /* Initialize RCV_MSS value. 474 * RCV_MSS is an our guess about MSS used by the peer. 475 * We haven't any direct information about the MSS. 476 * It's better to underestimate the RCV_MSS rather than overestimate. 477 * Overestimations make us ACKing less frequently than needed. 478 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 479 */ 480 void tcp_initialize_rcv_mss(struct sock *sk) 481 { 482 const struct tcp_sock *tp = tcp_sk(sk); 483 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 484 485 hint = min(hint, tp->rcv_wnd / 2); 486 hint = min(hint, TCP_MSS_DEFAULT); 487 hint = max(hint, TCP_MIN_MSS); 488 489 inet_csk(sk)->icsk_ack.rcv_mss = hint; 490 } 491 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 492 493 /* Receiver "autotuning" code. 494 * 495 * The algorithm for RTT estimation w/o timestamps is based on 496 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 497 * <http://public.lanl.gov/radiant/pubs.html#DRS> 498 * 499 * More detail on this code can be found at 500 * <http://staff.psc.edu/jheffner/>, 501 * though this reference is out of date. A new paper 502 * is pending. 503 */ 504 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 505 { 506 u32 new_sample = tp->rcv_rtt_est.rtt_us; 507 long m = sample; 508 509 if (m == 0) 510 m = 1; 511 512 if (new_sample != 0) { 513 /* If we sample in larger samples in the non-timestamp 514 * case, we could grossly overestimate the RTT especially 515 * with chatty applications or bulk transfer apps which 516 * are stalled on filesystem I/O. 517 * 518 * Also, since we are only going for a minimum in the 519 * non-timestamp case, we do not smooth things out 520 * else with timestamps disabled convergence takes too 521 * long. 522 */ 523 if (!win_dep) { 524 m -= (new_sample >> 3); 525 new_sample += m; 526 } else { 527 m <<= 3; 528 if (m < new_sample) 529 new_sample = m; 530 } 531 } else { 532 /* No previous measure. */ 533 new_sample = m << 3; 534 } 535 536 tp->rcv_rtt_est.rtt_us = new_sample; 537 } 538 539 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 540 { 541 u32 delta_us; 542 543 if (tp->rcv_rtt_est.time == 0) 544 goto new_measure; 545 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 546 return; 547 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 548 tcp_rcv_rtt_update(tp, delta_us, 1); 549 550 new_measure: 551 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 552 tp->rcv_rtt_est.time = tp->tcp_mstamp; 553 } 554 555 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 556 const struct sk_buff *skb) 557 { 558 struct tcp_sock *tp = tcp_sk(sk); 559 560 if (tp->rx_opt.rcv_tsecr && 561 (TCP_SKB_CB(skb)->end_seq - 562 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 563 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 564 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 565 566 tcp_rcv_rtt_update(tp, delta_us, 0); 567 } 568 } 569 570 /* 571 * This function should be called every time data is copied to user space. 572 * It calculates the appropriate TCP receive buffer space. 573 */ 574 void tcp_rcv_space_adjust(struct sock *sk) 575 { 576 struct tcp_sock *tp = tcp_sk(sk); 577 int time; 578 int copied; 579 580 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 581 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 582 return; 583 584 /* Number of bytes copied to user in last RTT */ 585 copied = tp->copied_seq - tp->rcvq_space.seq; 586 if (copied <= tp->rcvq_space.space) 587 goto new_measure; 588 589 /* A bit of theory : 590 * copied = bytes received in previous RTT, our base window 591 * To cope with packet losses, we need a 2x factor 592 * To cope with slow start, and sender growing its cwin by 100 % 593 * every RTT, we need a 4x factor, because the ACK we are sending 594 * now is for the next RTT, not the current one : 595 * <prev RTT . ><current RTT .. ><next RTT .... > 596 */ 597 598 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 599 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 600 int rcvwin, rcvmem, rcvbuf; 601 602 /* minimal window to cope with packet losses, assuming 603 * steady state. Add some cushion because of small variations. 604 */ 605 rcvwin = (copied << 1) + 16 * tp->advmss; 606 607 /* If rate increased by 25%, 608 * assume slow start, rcvwin = 3 * copied 609 * If rate increased by 50%, 610 * assume sender can use 2x growth, rcvwin = 4 * copied 611 */ 612 if (copied >= 613 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 614 if (copied >= 615 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 616 rcvwin <<= 1; 617 else 618 rcvwin += (rcvwin >> 1); 619 } 620 621 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 622 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 623 rcvmem += 128; 624 625 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 626 if (rcvbuf > sk->sk_rcvbuf) { 627 sk->sk_rcvbuf = rcvbuf; 628 629 /* Make the window clamp follow along. */ 630 tp->window_clamp = rcvwin; 631 } 632 } 633 tp->rcvq_space.space = copied; 634 635 new_measure: 636 tp->rcvq_space.seq = tp->copied_seq; 637 tp->rcvq_space.time = tp->tcp_mstamp; 638 } 639 640 /* There is something which you must keep in mind when you analyze the 641 * behavior of the tp->ato delayed ack timeout interval. When a 642 * connection starts up, we want to ack as quickly as possible. The 643 * problem is that "good" TCP's do slow start at the beginning of data 644 * transmission. The means that until we send the first few ACK's the 645 * sender will sit on his end and only queue most of his data, because 646 * he can only send snd_cwnd unacked packets at any given time. For 647 * each ACK we send, he increments snd_cwnd and transmits more of his 648 * queue. -DaveM 649 */ 650 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 651 { 652 struct tcp_sock *tp = tcp_sk(sk); 653 struct inet_connection_sock *icsk = inet_csk(sk); 654 u32 now; 655 656 inet_csk_schedule_ack(sk); 657 658 tcp_measure_rcv_mss(sk, skb); 659 660 tcp_rcv_rtt_measure(tp); 661 662 now = tcp_jiffies32; 663 664 if (!icsk->icsk_ack.ato) { 665 /* The _first_ data packet received, initialize 666 * delayed ACK engine. 667 */ 668 tcp_incr_quickack(sk); 669 icsk->icsk_ack.ato = TCP_ATO_MIN; 670 } else { 671 int m = now - icsk->icsk_ack.lrcvtime; 672 673 if (m <= TCP_ATO_MIN / 2) { 674 /* The fastest case is the first. */ 675 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 676 } else if (m < icsk->icsk_ack.ato) { 677 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 678 if (icsk->icsk_ack.ato > icsk->icsk_rto) 679 icsk->icsk_ack.ato = icsk->icsk_rto; 680 } else if (m > icsk->icsk_rto) { 681 /* Too long gap. Apparently sender failed to 682 * restart window, so that we send ACKs quickly. 683 */ 684 tcp_incr_quickack(sk); 685 sk_mem_reclaim(sk); 686 } 687 } 688 icsk->icsk_ack.lrcvtime = now; 689 690 tcp_ecn_check_ce(tp, skb); 691 692 if (skb->len >= 128) 693 tcp_grow_window(sk, skb); 694 } 695 696 /* Called to compute a smoothed rtt estimate. The data fed to this 697 * routine either comes from timestamps, or from segments that were 698 * known _not_ to have been retransmitted [see Karn/Partridge 699 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 700 * piece by Van Jacobson. 701 * NOTE: the next three routines used to be one big routine. 702 * To save cycles in the RFC 1323 implementation it was better to break 703 * it up into three procedures. -- erics 704 */ 705 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 706 { 707 struct tcp_sock *tp = tcp_sk(sk); 708 long m = mrtt_us; /* RTT */ 709 u32 srtt = tp->srtt_us; 710 711 /* The following amusing code comes from Jacobson's 712 * article in SIGCOMM '88. Note that rtt and mdev 713 * are scaled versions of rtt and mean deviation. 714 * This is designed to be as fast as possible 715 * m stands for "measurement". 716 * 717 * On a 1990 paper the rto value is changed to: 718 * RTO = rtt + 4 * mdev 719 * 720 * Funny. This algorithm seems to be very broken. 721 * These formulae increase RTO, when it should be decreased, increase 722 * too slowly, when it should be increased quickly, decrease too quickly 723 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 724 * does not matter how to _calculate_ it. Seems, it was trap 725 * that VJ failed to avoid. 8) 726 */ 727 if (srtt != 0) { 728 m -= (srtt >> 3); /* m is now error in rtt est */ 729 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 730 if (m < 0) { 731 m = -m; /* m is now abs(error) */ 732 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 733 /* This is similar to one of Eifel findings. 734 * Eifel blocks mdev updates when rtt decreases. 735 * This solution is a bit different: we use finer gain 736 * for mdev in this case (alpha*beta). 737 * Like Eifel it also prevents growth of rto, 738 * but also it limits too fast rto decreases, 739 * happening in pure Eifel. 740 */ 741 if (m > 0) 742 m >>= 3; 743 } else { 744 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 745 } 746 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 747 if (tp->mdev_us > tp->mdev_max_us) { 748 tp->mdev_max_us = tp->mdev_us; 749 if (tp->mdev_max_us > tp->rttvar_us) 750 tp->rttvar_us = tp->mdev_max_us; 751 } 752 if (after(tp->snd_una, tp->rtt_seq)) { 753 if (tp->mdev_max_us < tp->rttvar_us) 754 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 755 tp->rtt_seq = tp->snd_nxt; 756 tp->mdev_max_us = tcp_rto_min_us(sk); 757 } 758 } else { 759 /* no previous measure. */ 760 srtt = m << 3; /* take the measured time to be rtt */ 761 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 762 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 763 tp->mdev_max_us = tp->rttvar_us; 764 tp->rtt_seq = tp->snd_nxt; 765 } 766 tp->srtt_us = max(1U, srtt); 767 } 768 769 static void tcp_update_pacing_rate(struct sock *sk) 770 { 771 const struct tcp_sock *tp = tcp_sk(sk); 772 u64 rate; 773 774 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 775 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 776 777 /* current rate is (cwnd * mss) / srtt 778 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 779 * In Congestion Avoidance phase, set it to 120 % the current rate. 780 * 781 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 782 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 783 * end of slow start and should slow down. 784 */ 785 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 786 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 787 else 788 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 789 790 rate *= max(tp->snd_cwnd, tp->packets_out); 791 792 if (likely(tp->srtt_us)) 793 do_div(rate, tp->srtt_us); 794 795 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 796 * without any lock. We want to make sure compiler wont store 797 * intermediate values in this location. 798 */ 799 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 800 sk->sk_max_pacing_rate); 801 } 802 803 /* Calculate rto without backoff. This is the second half of Van Jacobson's 804 * routine referred to above. 805 */ 806 static void tcp_set_rto(struct sock *sk) 807 { 808 const struct tcp_sock *tp = tcp_sk(sk); 809 /* Old crap is replaced with new one. 8) 810 * 811 * More seriously: 812 * 1. If rtt variance happened to be less 50msec, it is hallucination. 813 * It cannot be less due to utterly erratic ACK generation made 814 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 815 * to do with delayed acks, because at cwnd>2 true delack timeout 816 * is invisible. Actually, Linux-2.4 also generates erratic 817 * ACKs in some circumstances. 818 */ 819 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 820 821 /* 2. Fixups made earlier cannot be right. 822 * If we do not estimate RTO correctly without them, 823 * all the algo is pure shit and should be replaced 824 * with correct one. It is exactly, which we pretend to do. 825 */ 826 827 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 828 * guarantees that rto is higher. 829 */ 830 tcp_bound_rto(sk); 831 } 832 833 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 834 { 835 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 836 837 if (!cwnd) 838 cwnd = TCP_INIT_CWND; 839 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 840 } 841 842 /* 843 * Packet counting of FACK is based on in-order assumptions, therefore TCP 844 * disables it when reordering is detected 845 */ 846 void tcp_disable_fack(struct tcp_sock *tp) 847 { 848 /* RFC3517 uses different metric in lost marker => reset on change */ 849 if (tcp_is_fack(tp)) 850 tp->lost_skb_hint = NULL; 851 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 852 } 853 854 /* Take a notice that peer is sending D-SACKs */ 855 static void tcp_dsack_seen(struct tcp_sock *tp) 856 { 857 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 858 } 859 860 static void tcp_update_reordering(struct sock *sk, const int metric, 861 const int ts) 862 { 863 struct tcp_sock *tp = tcp_sk(sk); 864 int mib_idx; 865 866 if (WARN_ON_ONCE(metric < 0)) 867 return; 868 869 if (metric > tp->reordering) { 870 tp->reordering = min(sock_net(sk)->ipv4.sysctl_tcp_max_reordering, metric); 871 872 #if FASTRETRANS_DEBUG > 1 873 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 874 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 875 tp->reordering, 876 tp->fackets_out, 877 tp->sacked_out, 878 tp->undo_marker ? tp->undo_retrans : 0); 879 #endif 880 tcp_disable_fack(tp); 881 } 882 883 tp->rack.reord = 1; 884 885 /* This exciting event is worth to be remembered. 8) */ 886 if (ts) 887 mib_idx = LINUX_MIB_TCPTSREORDER; 888 else if (tcp_is_reno(tp)) 889 mib_idx = LINUX_MIB_TCPRENOREORDER; 890 else if (tcp_is_fack(tp)) 891 mib_idx = LINUX_MIB_TCPFACKREORDER; 892 else 893 mib_idx = LINUX_MIB_TCPSACKREORDER; 894 895 NET_INC_STATS(sock_net(sk), mib_idx); 896 } 897 898 /* This must be called before lost_out is incremented */ 899 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 900 { 901 if (!tp->retransmit_skb_hint || 902 before(TCP_SKB_CB(skb)->seq, 903 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 904 tp->retransmit_skb_hint = skb; 905 } 906 907 /* Sum the number of packets on the wire we have marked as lost. 908 * There are two cases we care about here: 909 * a) Packet hasn't been marked lost (nor retransmitted), 910 * and this is the first loss. 911 * b) Packet has been marked both lost and retransmitted, 912 * and this means we think it was lost again. 913 */ 914 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 915 { 916 __u8 sacked = TCP_SKB_CB(skb)->sacked; 917 918 if (!(sacked & TCPCB_LOST) || 919 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 920 tp->lost += tcp_skb_pcount(skb); 921 } 922 923 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 924 { 925 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 926 tcp_verify_retransmit_hint(tp, skb); 927 928 tp->lost_out += tcp_skb_pcount(skb); 929 tcp_sum_lost(tp, skb); 930 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 931 } 932 } 933 934 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 935 { 936 tcp_verify_retransmit_hint(tp, skb); 937 938 tcp_sum_lost(tp, skb); 939 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 940 tp->lost_out += tcp_skb_pcount(skb); 941 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 942 } 943 } 944 945 /* This procedure tags the retransmission queue when SACKs arrive. 946 * 947 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 948 * Packets in queue with these bits set are counted in variables 949 * sacked_out, retrans_out and lost_out, correspondingly. 950 * 951 * Valid combinations are: 952 * Tag InFlight Description 953 * 0 1 - orig segment is in flight. 954 * S 0 - nothing flies, orig reached receiver. 955 * L 0 - nothing flies, orig lost by net. 956 * R 2 - both orig and retransmit are in flight. 957 * L|R 1 - orig is lost, retransmit is in flight. 958 * S|R 1 - orig reached receiver, retrans is still in flight. 959 * (L|S|R is logically valid, it could occur when L|R is sacked, 960 * but it is equivalent to plain S and code short-curcuits it to S. 961 * L|S is logically invalid, it would mean -1 packet in flight 8)) 962 * 963 * These 6 states form finite state machine, controlled by the following events: 964 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 965 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 966 * 3. Loss detection event of two flavors: 967 * A. Scoreboard estimator decided the packet is lost. 968 * A'. Reno "three dupacks" marks head of queue lost. 969 * A''. Its FACK modification, head until snd.fack is lost. 970 * B. SACK arrives sacking SND.NXT at the moment, when the 971 * segment was retransmitted. 972 * 4. D-SACK added new rule: D-SACK changes any tag to S. 973 * 974 * It is pleasant to note, that state diagram turns out to be commutative, 975 * so that we are allowed not to be bothered by order of our actions, 976 * when multiple events arrive simultaneously. (see the function below). 977 * 978 * Reordering detection. 979 * -------------------- 980 * Reordering metric is maximal distance, which a packet can be displaced 981 * in packet stream. With SACKs we can estimate it: 982 * 983 * 1. SACK fills old hole and the corresponding segment was not 984 * ever retransmitted -> reordering. Alas, we cannot use it 985 * when segment was retransmitted. 986 * 2. The last flaw is solved with D-SACK. D-SACK arrives 987 * for retransmitted and already SACKed segment -> reordering.. 988 * Both of these heuristics are not used in Loss state, when we cannot 989 * account for retransmits accurately. 990 * 991 * SACK block validation. 992 * ---------------------- 993 * 994 * SACK block range validation checks that the received SACK block fits to 995 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 996 * Note that SND.UNA is not included to the range though being valid because 997 * it means that the receiver is rather inconsistent with itself reporting 998 * SACK reneging when it should advance SND.UNA. Such SACK block this is 999 * perfectly valid, however, in light of RFC2018 which explicitly states 1000 * that "SACK block MUST reflect the newest segment. Even if the newest 1001 * segment is going to be discarded ...", not that it looks very clever 1002 * in case of head skb. Due to potentional receiver driven attacks, we 1003 * choose to avoid immediate execution of a walk in write queue due to 1004 * reneging and defer head skb's loss recovery to standard loss recovery 1005 * procedure that will eventually trigger (nothing forbids us doing this). 1006 * 1007 * Implements also blockage to start_seq wrap-around. Problem lies in the 1008 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1009 * there's no guarantee that it will be before snd_nxt (n). The problem 1010 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1011 * wrap (s_w): 1012 * 1013 * <- outs wnd -> <- wrapzone -> 1014 * u e n u_w e_w s n_w 1015 * | | | | | | | 1016 * |<------------+------+----- TCP seqno space --------------+---------->| 1017 * ...-- <2^31 ->| |<--------... 1018 * ...---- >2^31 ------>| |<--------... 1019 * 1020 * Current code wouldn't be vulnerable but it's better still to discard such 1021 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1022 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1023 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1024 * equal to the ideal case (infinite seqno space without wrap caused issues). 1025 * 1026 * With D-SACK the lower bound is extended to cover sequence space below 1027 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1028 * again, D-SACK block must not to go across snd_una (for the same reason as 1029 * for the normal SACK blocks, explained above). But there all simplicity 1030 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1031 * fully below undo_marker they do not affect behavior in anyway and can 1032 * therefore be safely ignored. In rare cases (which are more or less 1033 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1034 * fragmentation and packet reordering past skb's retransmission. To consider 1035 * them correctly, the acceptable range must be extended even more though 1036 * the exact amount is rather hard to quantify. However, tp->max_window can 1037 * be used as an exaggerated estimate. 1038 */ 1039 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1040 u32 start_seq, u32 end_seq) 1041 { 1042 /* Too far in future, or reversed (interpretation is ambiguous) */ 1043 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1044 return false; 1045 1046 /* Nasty start_seq wrap-around check (see comments above) */ 1047 if (!before(start_seq, tp->snd_nxt)) 1048 return false; 1049 1050 /* In outstanding window? ...This is valid exit for D-SACKs too. 1051 * start_seq == snd_una is non-sensical (see comments above) 1052 */ 1053 if (after(start_seq, tp->snd_una)) 1054 return true; 1055 1056 if (!is_dsack || !tp->undo_marker) 1057 return false; 1058 1059 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1060 if (after(end_seq, tp->snd_una)) 1061 return false; 1062 1063 if (!before(start_seq, tp->undo_marker)) 1064 return true; 1065 1066 /* Too old */ 1067 if (!after(end_seq, tp->undo_marker)) 1068 return false; 1069 1070 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1071 * start_seq < undo_marker and end_seq >= undo_marker. 1072 */ 1073 return !before(start_seq, end_seq - tp->max_window); 1074 } 1075 1076 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1077 struct tcp_sack_block_wire *sp, int num_sacks, 1078 u32 prior_snd_una) 1079 { 1080 struct tcp_sock *tp = tcp_sk(sk); 1081 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1082 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1083 bool dup_sack = false; 1084 1085 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1086 dup_sack = true; 1087 tcp_dsack_seen(tp); 1088 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1089 } else if (num_sacks > 1) { 1090 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1091 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1092 1093 if (!after(end_seq_0, end_seq_1) && 1094 !before(start_seq_0, start_seq_1)) { 1095 dup_sack = true; 1096 tcp_dsack_seen(tp); 1097 NET_INC_STATS(sock_net(sk), 1098 LINUX_MIB_TCPDSACKOFORECV); 1099 } 1100 } 1101 1102 /* D-SACK for already forgotten data... Do dumb counting. */ 1103 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1104 !after(end_seq_0, prior_snd_una) && 1105 after(end_seq_0, tp->undo_marker)) 1106 tp->undo_retrans--; 1107 1108 return dup_sack; 1109 } 1110 1111 struct tcp_sacktag_state { 1112 int reord; 1113 int fack_count; 1114 /* Timestamps for earliest and latest never-retransmitted segment 1115 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1116 * but congestion control should still get an accurate delay signal. 1117 */ 1118 u64 first_sackt; 1119 u64 last_sackt; 1120 struct rate_sample *rate; 1121 int flag; 1122 unsigned int mss_now; 1123 }; 1124 1125 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1126 * the incoming SACK may not exactly match but we can find smaller MSS 1127 * aligned portion of it that matches. Therefore we might need to fragment 1128 * which may fail and creates some hassle (caller must handle error case 1129 * returns). 1130 * 1131 * FIXME: this could be merged to shift decision code 1132 */ 1133 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1134 u32 start_seq, u32 end_seq) 1135 { 1136 int err; 1137 bool in_sack; 1138 unsigned int pkt_len; 1139 unsigned int mss; 1140 1141 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1142 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1143 1144 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1145 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1146 mss = tcp_skb_mss(skb); 1147 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1148 1149 if (!in_sack) { 1150 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1151 if (pkt_len < mss) 1152 pkt_len = mss; 1153 } else { 1154 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1155 if (pkt_len < mss) 1156 return -EINVAL; 1157 } 1158 1159 /* Round if necessary so that SACKs cover only full MSSes 1160 * and/or the remaining small portion (if present) 1161 */ 1162 if (pkt_len > mss) { 1163 unsigned int new_len = (pkt_len / mss) * mss; 1164 if (!in_sack && new_len < pkt_len) 1165 new_len += mss; 1166 pkt_len = new_len; 1167 } 1168 1169 if (pkt_len >= skb->len && !in_sack) 1170 return 0; 1171 1172 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1173 pkt_len, mss, GFP_ATOMIC); 1174 if (err < 0) 1175 return err; 1176 } 1177 1178 return in_sack; 1179 } 1180 1181 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1182 static u8 tcp_sacktag_one(struct sock *sk, 1183 struct tcp_sacktag_state *state, u8 sacked, 1184 u32 start_seq, u32 end_seq, 1185 int dup_sack, int pcount, 1186 u64 xmit_time) 1187 { 1188 struct tcp_sock *tp = tcp_sk(sk); 1189 int fack_count = state->fack_count; 1190 1191 /* Account D-SACK for retransmitted packet. */ 1192 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1193 if (tp->undo_marker && tp->undo_retrans > 0 && 1194 after(end_seq, tp->undo_marker)) 1195 tp->undo_retrans--; 1196 if (sacked & TCPCB_SACKED_ACKED) 1197 state->reord = min(fack_count, state->reord); 1198 } 1199 1200 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1201 if (!after(end_seq, tp->snd_una)) 1202 return sacked; 1203 1204 if (!(sacked & TCPCB_SACKED_ACKED)) { 1205 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1206 1207 if (sacked & TCPCB_SACKED_RETRANS) { 1208 /* If the segment is not tagged as lost, 1209 * we do not clear RETRANS, believing 1210 * that retransmission is still in flight. 1211 */ 1212 if (sacked & TCPCB_LOST) { 1213 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1214 tp->lost_out -= pcount; 1215 tp->retrans_out -= pcount; 1216 } 1217 } else { 1218 if (!(sacked & TCPCB_RETRANS)) { 1219 /* New sack for not retransmitted frame, 1220 * which was in hole. It is reordering. 1221 */ 1222 if (before(start_seq, 1223 tcp_highest_sack_seq(tp))) 1224 state->reord = min(fack_count, 1225 state->reord); 1226 if (!after(end_seq, tp->high_seq)) 1227 state->flag |= FLAG_ORIG_SACK_ACKED; 1228 if (state->first_sackt == 0) 1229 state->first_sackt = xmit_time; 1230 state->last_sackt = xmit_time; 1231 } 1232 1233 if (sacked & TCPCB_LOST) { 1234 sacked &= ~TCPCB_LOST; 1235 tp->lost_out -= pcount; 1236 } 1237 } 1238 1239 sacked |= TCPCB_SACKED_ACKED; 1240 state->flag |= FLAG_DATA_SACKED; 1241 tp->sacked_out += pcount; 1242 tp->delivered += pcount; /* Out-of-order packets delivered */ 1243 1244 fack_count += pcount; 1245 1246 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1247 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1248 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1249 tp->lost_cnt_hint += pcount; 1250 1251 if (fack_count > tp->fackets_out) 1252 tp->fackets_out = fack_count; 1253 } 1254 1255 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1256 * frames and clear it. undo_retrans is decreased above, L|R frames 1257 * are accounted above as well. 1258 */ 1259 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1260 sacked &= ~TCPCB_SACKED_RETRANS; 1261 tp->retrans_out -= pcount; 1262 } 1263 1264 return sacked; 1265 } 1266 1267 /* Shift newly-SACKed bytes from this skb to the immediately previous 1268 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1269 */ 1270 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1271 struct sk_buff *skb, 1272 struct tcp_sacktag_state *state, 1273 unsigned int pcount, int shifted, int mss, 1274 bool dup_sack) 1275 { 1276 struct tcp_sock *tp = tcp_sk(sk); 1277 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1278 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1279 1280 BUG_ON(!pcount); 1281 1282 /* Adjust counters and hints for the newly sacked sequence 1283 * range but discard the return value since prev is already 1284 * marked. We must tag the range first because the seq 1285 * advancement below implicitly advances 1286 * tcp_highest_sack_seq() when skb is highest_sack. 1287 */ 1288 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1289 start_seq, end_seq, dup_sack, pcount, 1290 skb->skb_mstamp); 1291 tcp_rate_skb_delivered(sk, skb, state->rate); 1292 1293 if (skb == tp->lost_skb_hint) 1294 tp->lost_cnt_hint += pcount; 1295 1296 TCP_SKB_CB(prev)->end_seq += shifted; 1297 TCP_SKB_CB(skb)->seq += shifted; 1298 1299 tcp_skb_pcount_add(prev, pcount); 1300 BUG_ON(tcp_skb_pcount(skb) < pcount); 1301 tcp_skb_pcount_add(skb, -pcount); 1302 1303 /* When we're adding to gso_segs == 1, gso_size will be zero, 1304 * in theory this shouldn't be necessary but as long as DSACK 1305 * code can come after this skb later on it's better to keep 1306 * setting gso_size to something. 1307 */ 1308 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1309 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1310 1311 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1312 if (tcp_skb_pcount(skb) <= 1) 1313 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1314 1315 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1316 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1317 1318 if (skb->len > 0) { 1319 BUG_ON(!tcp_skb_pcount(skb)); 1320 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1321 return false; 1322 } 1323 1324 /* Whole SKB was eaten :-) */ 1325 1326 if (skb == tp->retransmit_skb_hint) 1327 tp->retransmit_skb_hint = prev; 1328 if (skb == tp->lost_skb_hint) { 1329 tp->lost_skb_hint = prev; 1330 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1331 } 1332 1333 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1334 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1335 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1336 TCP_SKB_CB(prev)->end_seq++; 1337 1338 if (skb == tcp_highest_sack(sk)) 1339 tcp_advance_highest_sack(sk, skb); 1340 1341 tcp_skb_collapse_tstamp(prev, skb); 1342 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1343 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1344 1345 tcp_rtx_queue_unlink_and_free(skb, sk); 1346 1347 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1348 1349 return true; 1350 } 1351 1352 /* I wish gso_size would have a bit more sane initialization than 1353 * something-or-zero which complicates things 1354 */ 1355 static int tcp_skb_seglen(const struct sk_buff *skb) 1356 { 1357 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1358 } 1359 1360 /* Shifting pages past head area doesn't work */ 1361 static int skb_can_shift(const struct sk_buff *skb) 1362 { 1363 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1364 } 1365 1366 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1367 * skb. 1368 */ 1369 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1370 struct tcp_sacktag_state *state, 1371 u32 start_seq, u32 end_seq, 1372 bool dup_sack) 1373 { 1374 struct tcp_sock *tp = tcp_sk(sk); 1375 struct sk_buff *prev; 1376 int mss; 1377 int pcount = 0; 1378 int len; 1379 int in_sack; 1380 1381 if (!sk_can_gso(sk)) 1382 goto fallback; 1383 1384 /* Normally R but no L won't result in plain S */ 1385 if (!dup_sack && 1386 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1387 goto fallback; 1388 if (!skb_can_shift(skb)) 1389 goto fallback; 1390 /* This frame is about to be dropped (was ACKed). */ 1391 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1392 goto fallback; 1393 1394 /* Can only happen with delayed DSACK + discard craziness */ 1395 prev = skb_rb_prev(skb); 1396 if (!prev) 1397 goto fallback; 1398 1399 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1400 goto fallback; 1401 1402 if (!tcp_skb_can_collapse_to(prev)) 1403 goto fallback; 1404 1405 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1406 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1407 1408 if (in_sack) { 1409 len = skb->len; 1410 pcount = tcp_skb_pcount(skb); 1411 mss = tcp_skb_seglen(skb); 1412 1413 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1414 * drop this restriction as unnecessary 1415 */ 1416 if (mss != tcp_skb_seglen(prev)) 1417 goto fallback; 1418 } else { 1419 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1420 goto noop; 1421 /* CHECKME: This is non-MSS split case only?, this will 1422 * cause skipped skbs due to advancing loop btw, original 1423 * has that feature too 1424 */ 1425 if (tcp_skb_pcount(skb) <= 1) 1426 goto noop; 1427 1428 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1429 if (!in_sack) { 1430 /* TODO: head merge to next could be attempted here 1431 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1432 * though it might not be worth of the additional hassle 1433 * 1434 * ...we can probably just fallback to what was done 1435 * previously. We could try merging non-SACKed ones 1436 * as well but it probably isn't going to buy off 1437 * because later SACKs might again split them, and 1438 * it would make skb timestamp tracking considerably 1439 * harder problem. 1440 */ 1441 goto fallback; 1442 } 1443 1444 len = end_seq - TCP_SKB_CB(skb)->seq; 1445 BUG_ON(len < 0); 1446 BUG_ON(len > skb->len); 1447 1448 /* MSS boundaries should be honoured or else pcount will 1449 * severely break even though it makes things bit trickier. 1450 * Optimize common case to avoid most of the divides 1451 */ 1452 mss = tcp_skb_mss(skb); 1453 1454 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1455 * drop this restriction as unnecessary 1456 */ 1457 if (mss != tcp_skb_seglen(prev)) 1458 goto fallback; 1459 1460 if (len == mss) { 1461 pcount = 1; 1462 } else if (len < mss) { 1463 goto noop; 1464 } else { 1465 pcount = len / mss; 1466 len = pcount * mss; 1467 } 1468 } 1469 1470 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1471 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1472 goto fallback; 1473 1474 if (!skb_shift(prev, skb, len)) 1475 goto fallback; 1476 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1477 goto out; 1478 1479 /* Hole filled allows collapsing with the next as well, this is very 1480 * useful when hole on every nth skb pattern happens 1481 */ 1482 skb = skb_rb_next(prev); 1483 if (!skb) 1484 goto out; 1485 1486 if (!skb_can_shift(skb) || 1487 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1488 (mss != tcp_skb_seglen(skb))) 1489 goto out; 1490 1491 len = skb->len; 1492 if (skb_shift(prev, skb, len)) { 1493 pcount += tcp_skb_pcount(skb); 1494 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1495 len, mss, 0); 1496 } 1497 1498 out: 1499 state->fack_count += pcount; 1500 return prev; 1501 1502 noop: 1503 return skb; 1504 1505 fallback: 1506 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1507 return NULL; 1508 } 1509 1510 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1511 struct tcp_sack_block *next_dup, 1512 struct tcp_sacktag_state *state, 1513 u32 start_seq, u32 end_seq, 1514 bool dup_sack_in) 1515 { 1516 struct tcp_sock *tp = tcp_sk(sk); 1517 struct sk_buff *tmp; 1518 1519 skb_rbtree_walk_from(skb) { 1520 int in_sack = 0; 1521 bool dup_sack = dup_sack_in; 1522 1523 /* queue is in-order => we can short-circuit the walk early */ 1524 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1525 break; 1526 1527 if (next_dup && 1528 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1529 in_sack = tcp_match_skb_to_sack(sk, skb, 1530 next_dup->start_seq, 1531 next_dup->end_seq); 1532 if (in_sack > 0) 1533 dup_sack = true; 1534 } 1535 1536 /* skb reference here is a bit tricky to get right, since 1537 * shifting can eat and free both this skb and the next, 1538 * so not even _safe variant of the loop is enough. 1539 */ 1540 if (in_sack <= 0) { 1541 tmp = tcp_shift_skb_data(sk, skb, state, 1542 start_seq, end_seq, dup_sack); 1543 if (tmp) { 1544 if (tmp != skb) { 1545 skb = tmp; 1546 continue; 1547 } 1548 1549 in_sack = 0; 1550 } else { 1551 in_sack = tcp_match_skb_to_sack(sk, skb, 1552 start_seq, 1553 end_seq); 1554 } 1555 } 1556 1557 if (unlikely(in_sack < 0)) 1558 break; 1559 1560 if (in_sack) { 1561 TCP_SKB_CB(skb)->sacked = 1562 tcp_sacktag_one(sk, 1563 state, 1564 TCP_SKB_CB(skb)->sacked, 1565 TCP_SKB_CB(skb)->seq, 1566 TCP_SKB_CB(skb)->end_seq, 1567 dup_sack, 1568 tcp_skb_pcount(skb), 1569 skb->skb_mstamp); 1570 tcp_rate_skb_delivered(sk, skb, state->rate); 1571 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1572 list_del_init(&skb->tcp_tsorted_anchor); 1573 1574 if (!before(TCP_SKB_CB(skb)->seq, 1575 tcp_highest_sack_seq(tp))) 1576 tcp_advance_highest_sack(sk, skb); 1577 } 1578 1579 state->fack_count += tcp_skb_pcount(skb); 1580 } 1581 return skb; 1582 } 1583 1584 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1585 struct tcp_sacktag_state *state, 1586 u32 seq) 1587 { 1588 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1589 struct sk_buff *skb; 1590 int unack_bytes; 1591 1592 while (*p) { 1593 parent = *p; 1594 skb = rb_to_skb(parent); 1595 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1596 p = &parent->rb_left; 1597 continue; 1598 } 1599 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1600 p = &parent->rb_right; 1601 continue; 1602 } 1603 1604 state->fack_count = 0; 1605 unack_bytes = TCP_SKB_CB(skb)->seq - tcp_sk(sk)->snd_una; 1606 if (state->mss_now && unack_bytes > 0) 1607 state->fack_count = unack_bytes / state->mss_now; 1608 1609 return skb; 1610 } 1611 return NULL; 1612 } 1613 1614 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1615 struct tcp_sacktag_state *state, 1616 u32 skip_to_seq) 1617 { 1618 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1619 return skb; 1620 1621 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1622 } 1623 1624 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1625 struct sock *sk, 1626 struct tcp_sack_block *next_dup, 1627 struct tcp_sacktag_state *state, 1628 u32 skip_to_seq) 1629 { 1630 if (!next_dup) 1631 return skb; 1632 1633 if (before(next_dup->start_seq, skip_to_seq)) { 1634 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1635 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1636 next_dup->start_seq, next_dup->end_seq, 1637 1); 1638 } 1639 1640 return skb; 1641 } 1642 1643 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1644 { 1645 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1646 } 1647 1648 static int 1649 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1650 u32 prior_snd_una, struct tcp_sacktag_state *state) 1651 { 1652 struct tcp_sock *tp = tcp_sk(sk); 1653 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1654 TCP_SKB_CB(ack_skb)->sacked); 1655 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1656 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1657 struct tcp_sack_block *cache; 1658 struct sk_buff *skb; 1659 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1660 int used_sacks; 1661 bool found_dup_sack = false; 1662 int i, j; 1663 int first_sack_index; 1664 1665 state->flag = 0; 1666 state->reord = tp->packets_out; 1667 1668 if (!tp->sacked_out) { 1669 if (WARN_ON(tp->fackets_out)) 1670 tp->fackets_out = 0; 1671 tcp_highest_sack_reset(sk); 1672 } 1673 1674 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1675 num_sacks, prior_snd_una); 1676 if (found_dup_sack) { 1677 state->flag |= FLAG_DSACKING_ACK; 1678 tp->delivered++; /* A spurious retransmission is delivered */ 1679 } 1680 1681 /* Eliminate too old ACKs, but take into 1682 * account more or less fresh ones, they can 1683 * contain valid SACK info. 1684 */ 1685 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1686 return 0; 1687 1688 if (!tp->packets_out) 1689 goto out; 1690 1691 used_sacks = 0; 1692 first_sack_index = 0; 1693 for (i = 0; i < num_sacks; i++) { 1694 bool dup_sack = !i && found_dup_sack; 1695 1696 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1697 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1698 1699 if (!tcp_is_sackblock_valid(tp, dup_sack, 1700 sp[used_sacks].start_seq, 1701 sp[used_sacks].end_seq)) { 1702 int mib_idx; 1703 1704 if (dup_sack) { 1705 if (!tp->undo_marker) 1706 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1707 else 1708 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1709 } else { 1710 /* Don't count olds caused by ACK reordering */ 1711 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1712 !after(sp[used_sacks].end_seq, tp->snd_una)) 1713 continue; 1714 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1715 } 1716 1717 NET_INC_STATS(sock_net(sk), mib_idx); 1718 if (i == 0) 1719 first_sack_index = -1; 1720 continue; 1721 } 1722 1723 /* Ignore very old stuff early */ 1724 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1725 continue; 1726 1727 used_sacks++; 1728 } 1729 1730 /* order SACK blocks to allow in order walk of the retrans queue */ 1731 for (i = used_sacks - 1; i > 0; i--) { 1732 for (j = 0; j < i; j++) { 1733 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1734 swap(sp[j], sp[j + 1]); 1735 1736 /* Track where the first SACK block goes to */ 1737 if (j == first_sack_index) 1738 first_sack_index = j + 1; 1739 } 1740 } 1741 } 1742 1743 state->mss_now = tcp_current_mss(sk); 1744 state->fack_count = 0; 1745 skb = NULL; 1746 i = 0; 1747 1748 if (!tp->sacked_out) { 1749 /* It's already past, so skip checking against it */ 1750 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1751 } else { 1752 cache = tp->recv_sack_cache; 1753 /* Skip empty blocks in at head of the cache */ 1754 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1755 !cache->end_seq) 1756 cache++; 1757 } 1758 1759 while (i < used_sacks) { 1760 u32 start_seq = sp[i].start_seq; 1761 u32 end_seq = sp[i].end_seq; 1762 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1763 struct tcp_sack_block *next_dup = NULL; 1764 1765 if (found_dup_sack && ((i + 1) == first_sack_index)) 1766 next_dup = &sp[i + 1]; 1767 1768 /* Skip too early cached blocks */ 1769 while (tcp_sack_cache_ok(tp, cache) && 1770 !before(start_seq, cache->end_seq)) 1771 cache++; 1772 1773 /* Can skip some work by looking recv_sack_cache? */ 1774 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1775 after(end_seq, cache->start_seq)) { 1776 1777 /* Head todo? */ 1778 if (before(start_seq, cache->start_seq)) { 1779 skb = tcp_sacktag_skip(skb, sk, state, 1780 start_seq); 1781 skb = tcp_sacktag_walk(skb, sk, next_dup, 1782 state, 1783 start_seq, 1784 cache->start_seq, 1785 dup_sack); 1786 } 1787 1788 /* Rest of the block already fully processed? */ 1789 if (!after(end_seq, cache->end_seq)) 1790 goto advance_sp; 1791 1792 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1793 state, 1794 cache->end_seq); 1795 1796 /* ...tail remains todo... */ 1797 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1798 /* ...but better entrypoint exists! */ 1799 skb = tcp_highest_sack(sk); 1800 if (!skb) 1801 break; 1802 state->fack_count = tp->fackets_out; 1803 cache++; 1804 goto walk; 1805 } 1806 1807 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1808 /* Check overlap against next cached too (past this one already) */ 1809 cache++; 1810 continue; 1811 } 1812 1813 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1814 skb = tcp_highest_sack(sk); 1815 if (!skb) 1816 break; 1817 state->fack_count = tp->fackets_out; 1818 } 1819 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1820 1821 walk: 1822 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1823 start_seq, end_seq, dup_sack); 1824 1825 advance_sp: 1826 i++; 1827 } 1828 1829 /* Clear the head of the cache sack blocks so we can skip it next time */ 1830 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1831 tp->recv_sack_cache[i].start_seq = 0; 1832 tp->recv_sack_cache[i].end_seq = 0; 1833 } 1834 for (j = 0; j < used_sacks; j++) 1835 tp->recv_sack_cache[i++] = sp[j]; 1836 1837 if ((state->reord < tp->fackets_out) && 1838 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1839 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1840 1841 tcp_verify_left_out(tp); 1842 out: 1843 1844 #if FASTRETRANS_DEBUG > 0 1845 WARN_ON((int)tp->sacked_out < 0); 1846 WARN_ON((int)tp->lost_out < 0); 1847 WARN_ON((int)tp->retrans_out < 0); 1848 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1849 #endif 1850 return state->flag; 1851 } 1852 1853 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1854 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1855 */ 1856 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1857 { 1858 u32 holes; 1859 1860 holes = max(tp->lost_out, 1U); 1861 holes = min(holes, tp->packets_out); 1862 1863 if ((tp->sacked_out + holes) > tp->packets_out) { 1864 tp->sacked_out = tp->packets_out - holes; 1865 return true; 1866 } 1867 return false; 1868 } 1869 1870 /* If we receive more dupacks than we expected counting segments 1871 * in assumption of absent reordering, interpret this as reordering. 1872 * The only another reason could be bug in receiver TCP. 1873 */ 1874 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1875 { 1876 struct tcp_sock *tp = tcp_sk(sk); 1877 if (tcp_limit_reno_sacked(tp)) 1878 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1879 } 1880 1881 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1882 1883 static void tcp_add_reno_sack(struct sock *sk) 1884 { 1885 struct tcp_sock *tp = tcp_sk(sk); 1886 u32 prior_sacked = tp->sacked_out; 1887 1888 tp->sacked_out++; 1889 tcp_check_reno_reordering(sk, 0); 1890 if (tp->sacked_out > prior_sacked) 1891 tp->delivered++; /* Some out-of-order packet is delivered */ 1892 tcp_verify_left_out(tp); 1893 } 1894 1895 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1896 1897 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1898 { 1899 struct tcp_sock *tp = tcp_sk(sk); 1900 1901 if (acked > 0) { 1902 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1903 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1904 if (acked - 1 >= tp->sacked_out) 1905 tp->sacked_out = 0; 1906 else 1907 tp->sacked_out -= acked - 1; 1908 } 1909 tcp_check_reno_reordering(sk, acked); 1910 tcp_verify_left_out(tp); 1911 } 1912 1913 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1914 { 1915 tp->sacked_out = 0; 1916 } 1917 1918 void tcp_clear_retrans(struct tcp_sock *tp) 1919 { 1920 tp->retrans_out = 0; 1921 tp->lost_out = 0; 1922 tp->undo_marker = 0; 1923 tp->undo_retrans = -1; 1924 tp->fackets_out = 0; 1925 tp->sacked_out = 0; 1926 } 1927 1928 static inline void tcp_init_undo(struct tcp_sock *tp) 1929 { 1930 tp->undo_marker = tp->snd_una; 1931 /* Retransmission still in flight may cause DSACKs later. */ 1932 tp->undo_retrans = tp->retrans_out ? : -1; 1933 } 1934 1935 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1936 * and reset tags completely, otherwise preserve SACKs. If receiver 1937 * dropped its ofo queue, we will know this due to reneging detection. 1938 */ 1939 void tcp_enter_loss(struct sock *sk) 1940 { 1941 const struct inet_connection_sock *icsk = inet_csk(sk); 1942 struct tcp_sock *tp = tcp_sk(sk); 1943 struct net *net = sock_net(sk); 1944 struct sk_buff *skb; 1945 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1946 bool is_reneg; /* is receiver reneging on SACKs? */ 1947 bool mark_lost; 1948 1949 /* Reduce ssthresh if it has not yet been made inside this window. */ 1950 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1951 !after(tp->high_seq, tp->snd_una) || 1952 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1953 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1954 tp->prior_cwnd = tp->snd_cwnd; 1955 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1956 tcp_ca_event(sk, CA_EVENT_LOSS); 1957 tcp_init_undo(tp); 1958 } 1959 tp->snd_cwnd = 1; 1960 tp->snd_cwnd_cnt = 0; 1961 tp->snd_cwnd_stamp = tcp_jiffies32; 1962 1963 tp->retrans_out = 0; 1964 tp->lost_out = 0; 1965 1966 if (tcp_is_reno(tp)) 1967 tcp_reset_reno_sack(tp); 1968 1969 skb = tcp_rtx_queue_head(sk); 1970 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1971 if (is_reneg) { 1972 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1973 tp->sacked_out = 0; 1974 tp->fackets_out = 0; 1975 } 1976 tcp_clear_all_retrans_hints(tp); 1977 1978 skb_rbtree_walk_from(skb) { 1979 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1980 is_reneg); 1981 if (mark_lost) 1982 tcp_sum_lost(tp, skb); 1983 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1984 if (mark_lost) { 1985 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1986 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1987 tp->lost_out += tcp_skb_pcount(skb); 1988 } 1989 } 1990 tcp_verify_left_out(tp); 1991 1992 /* Timeout in disordered state after receiving substantial DUPACKs 1993 * suggests that the degree of reordering is over-estimated. 1994 */ 1995 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1996 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1997 tp->reordering = min_t(unsigned int, tp->reordering, 1998 net->ipv4.sysctl_tcp_reordering); 1999 tcp_set_ca_state(sk, TCP_CA_Loss); 2000 tp->high_seq = tp->snd_nxt; 2001 tcp_ecn_queue_cwr(tp); 2002 2003 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2004 * loss recovery is underway except recurring timeout(s) on 2005 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2006 * 2007 * In theory F-RTO can be used repeatedly during loss recovery. 2008 * In practice this interacts badly with broken middle-boxes that 2009 * falsely raise the receive window, which results in repeated 2010 * timeouts and stop-and-go behavior. 2011 */ 2012 tp->frto = net->ipv4.sysctl_tcp_frto && 2013 (new_recovery || icsk->icsk_retransmits) && 2014 !inet_csk(sk)->icsk_mtup.probe_size; 2015 } 2016 2017 /* If ACK arrived pointing to a remembered SACK, it means that our 2018 * remembered SACKs do not reflect real state of receiver i.e. 2019 * receiver _host_ is heavily congested (or buggy). 2020 * 2021 * To avoid big spurious retransmission bursts due to transient SACK 2022 * scoreboard oddities that look like reneging, we give the receiver a 2023 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2024 * restore sanity to the SACK scoreboard. If the apparent reneging 2025 * persists until this RTO then we'll clear the SACK scoreboard. 2026 */ 2027 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2028 { 2029 if (flag & FLAG_SACK_RENEGING) { 2030 struct tcp_sock *tp = tcp_sk(sk); 2031 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2032 msecs_to_jiffies(10)); 2033 2034 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2035 delay, TCP_RTO_MAX); 2036 return true; 2037 } 2038 return false; 2039 } 2040 2041 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2042 { 2043 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2044 } 2045 2046 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2047 * counter when SACK is enabled (without SACK, sacked_out is used for 2048 * that purpose). 2049 * 2050 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2051 * segments up to the highest received SACK block so far and holes in 2052 * between them. 2053 * 2054 * With reordering, holes may still be in flight, so RFC3517 recovery 2055 * uses pure sacked_out (total number of SACKed segments) even though 2056 * it violates the RFC that uses duplicate ACKs, often these are equal 2057 * but when e.g. out-of-window ACKs or packet duplication occurs, 2058 * they differ. Since neither occurs due to loss, TCP should really 2059 * ignore them. 2060 */ 2061 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2062 { 2063 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2064 } 2065 2066 /* Linux NewReno/SACK/FACK/ECN state machine. 2067 * -------------------------------------- 2068 * 2069 * "Open" Normal state, no dubious events, fast path. 2070 * "Disorder" In all the respects it is "Open", 2071 * but requires a bit more attention. It is entered when 2072 * we see some SACKs or dupacks. It is split of "Open" 2073 * mainly to move some processing from fast path to slow one. 2074 * "CWR" CWND was reduced due to some Congestion Notification event. 2075 * It can be ECN, ICMP source quench, local device congestion. 2076 * "Recovery" CWND was reduced, we are fast-retransmitting. 2077 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2078 * 2079 * tcp_fastretrans_alert() is entered: 2080 * - each incoming ACK, if state is not "Open" 2081 * - when arrived ACK is unusual, namely: 2082 * * SACK 2083 * * Duplicate ACK. 2084 * * ECN ECE. 2085 * 2086 * Counting packets in flight is pretty simple. 2087 * 2088 * in_flight = packets_out - left_out + retrans_out 2089 * 2090 * packets_out is SND.NXT-SND.UNA counted in packets. 2091 * 2092 * retrans_out is number of retransmitted segments. 2093 * 2094 * left_out is number of segments left network, but not ACKed yet. 2095 * 2096 * left_out = sacked_out + lost_out 2097 * 2098 * sacked_out: Packets, which arrived to receiver out of order 2099 * and hence not ACKed. With SACKs this number is simply 2100 * amount of SACKed data. Even without SACKs 2101 * it is easy to give pretty reliable estimate of this number, 2102 * counting duplicate ACKs. 2103 * 2104 * lost_out: Packets lost by network. TCP has no explicit 2105 * "loss notification" feedback from network (for now). 2106 * It means that this number can be only _guessed_. 2107 * Actually, it is the heuristics to predict lossage that 2108 * distinguishes different algorithms. 2109 * 2110 * F.e. after RTO, when all the queue is considered as lost, 2111 * lost_out = packets_out and in_flight = retrans_out. 2112 * 2113 * Essentially, we have now a few algorithms detecting 2114 * lost packets. 2115 * 2116 * If the receiver supports SACK: 2117 * 2118 * RFC6675/3517: It is the conventional algorithm. A packet is 2119 * considered lost if the number of higher sequence packets 2120 * SACKed is greater than or equal the DUPACK thoreshold 2121 * (reordering). This is implemented in tcp_mark_head_lost and 2122 * tcp_update_scoreboard. 2123 * 2124 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2125 * (2017-) that checks timing instead of counting DUPACKs. 2126 * Essentially a packet is considered lost if it's not S/ACKed 2127 * after RTT + reordering_window, where both metrics are 2128 * dynamically measured and adjusted. This is implemented in 2129 * tcp_rack_mark_lost. 2130 * 2131 * FACK (Disabled by default. Subsumbed by RACK): 2132 * It is the simplest heuristics. As soon as we decided 2133 * that something is lost, we decide that _all_ not SACKed 2134 * packets until the most forward SACK are lost. I.e. 2135 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2136 * It is absolutely correct estimate, if network does not reorder 2137 * packets. And it loses any connection to reality when reordering 2138 * takes place. We use FACK by default until reordering 2139 * is suspected on the path to this destination. 2140 * 2141 * If the receiver does not support SACK: 2142 * 2143 * NewReno (RFC6582): in Recovery we assume that one segment 2144 * is lost (classic Reno). While we are in Recovery and 2145 * a partial ACK arrives, we assume that one more packet 2146 * is lost (NewReno). This heuristics are the same in NewReno 2147 * and SACK. 2148 * 2149 * Really tricky (and requiring careful tuning) part of algorithm 2150 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2151 * The first determines the moment _when_ we should reduce CWND and, 2152 * hence, slow down forward transmission. In fact, it determines the moment 2153 * when we decide that hole is caused by loss, rather than by a reorder. 2154 * 2155 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2156 * holes, caused by lost packets. 2157 * 2158 * And the most logically complicated part of algorithm is undo 2159 * heuristics. We detect false retransmits due to both too early 2160 * fast retransmit (reordering) and underestimated RTO, analyzing 2161 * timestamps and D-SACKs. When we detect that some segments were 2162 * retransmitted by mistake and CWND reduction was wrong, we undo 2163 * window reduction and abort recovery phase. This logic is hidden 2164 * inside several functions named tcp_try_undo_<something>. 2165 */ 2166 2167 /* This function decides, when we should leave Disordered state 2168 * and enter Recovery phase, reducing congestion window. 2169 * 2170 * Main question: may we further continue forward transmission 2171 * with the same cwnd? 2172 */ 2173 static bool tcp_time_to_recover(struct sock *sk, int flag) 2174 { 2175 struct tcp_sock *tp = tcp_sk(sk); 2176 2177 /* Trick#1: The loss is proven. */ 2178 if (tp->lost_out) 2179 return true; 2180 2181 /* Not-A-Trick#2 : Classic rule... */ 2182 if (tcp_dupack_heuristics(tp) > tp->reordering) 2183 return true; 2184 2185 return false; 2186 } 2187 2188 /* Detect loss in event "A" above by marking head of queue up as lost. 2189 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2190 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2191 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2192 * the maximum SACKed segments to pass before reaching this limit. 2193 */ 2194 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2195 { 2196 struct tcp_sock *tp = tcp_sk(sk); 2197 struct sk_buff *skb; 2198 int cnt, oldcnt, lost; 2199 unsigned int mss; 2200 /* Use SACK to deduce losses of new sequences sent during recovery */ 2201 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2202 2203 WARN_ON(packets > tp->packets_out); 2204 skb = tp->lost_skb_hint; 2205 if (skb) { 2206 /* Head already handled? */ 2207 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2208 return; 2209 cnt = tp->lost_cnt_hint; 2210 } else { 2211 skb = tcp_rtx_queue_head(sk); 2212 cnt = 0; 2213 } 2214 2215 skb_rbtree_walk_from(skb) { 2216 /* TODO: do this better */ 2217 /* this is not the most efficient way to do this... */ 2218 tp->lost_skb_hint = skb; 2219 tp->lost_cnt_hint = cnt; 2220 2221 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2222 break; 2223 2224 oldcnt = cnt; 2225 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2226 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2227 cnt += tcp_skb_pcount(skb); 2228 2229 if (cnt > packets) { 2230 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2231 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2232 (oldcnt >= packets)) 2233 break; 2234 2235 mss = tcp_skb_mss(skb); 2236 /* If needed, chop off the prefix to mark as lost. */ 2237 lost = (packets - oldcnt) * mss; 2238 if (lost < skb->len && 2239 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2240 lost, mss, GFP_ATOMIC) < 0) 2241 break; 2242 cnt = packets; 2243 } 2244 2245 tcp_skb_mark_lost(tp, skb); 2246 2247 if (mark_head) 2248 break; 2249 } 2250 tcp_verify_left_out(tp); 2251 } 2252 2253 /* Account newly detected lost packet(s) */ 2254 2255 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2256 { 2257 struct tcp_sock *tp = tcp_sk(sk); 2258 2259 if (tcp_is_reno(tp)) { 2260 tcp_mark_head_lost(sk, 1, 1); 2261 } else if (tcp_is_fack(tp)) { 2262 int lost = tp->fackets_out - tp->reordering; 2263 if (lost <= 0) 2264 lost = 1; 2265 tcp_mark_head_lost(sk, lost, 0); 2266 } else { 2267 int sacked_upto = tp->sacked_out - tp->reordering; 2268 if (sacked_upto >= 0) 2269 tcp_mark_head_lost(sk, sacked_upto, 0); 2270 else if (fast_rexmit) 2271 tcp_mark_head_lost(sk, 1, 1); 2272 } 2273 } 2274 2275 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2276 { 2277 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2278 before(tp->rx_opt.rcv_tsecr, when); 2279 } 2280 2281 /* skb is spurious retransmitted if the returned timestamp echo 2282 * reply is prior to the skb transmission time 2283 */ 2284 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2285 const struct sk_buff *skb) 2286 { 2287 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2288 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2289 } 2290 2291 /* Nothing was retransmitted or returned timestamp is less 2292 * than timestamp of the first retransmission. 2293 */ 2294 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2295 { 2296 return !tp->retrans_stamp || 2297 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2298 } 2299 2300 /* Undo procedures. */ 2301 2302 /* We can clear retrans_stamp when there are no retransmissions in the 2303 * window. It would seem that it is trivially available for us in 2304 * tp->retrans_out, however, that kind of assumptions doesn't consider 2305 * what will happen if errors occur when sending retransmission for the 2306 * second time. ...It could the that such segment has only 2307 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2308 * the head skb is enough except for some reneging corner cases that 2309 * are not worth the effort. 2310 * 2311 * Main reason for all this complexity is the fact that connection dying 2312 * time now depends on the validity of the retrans_stamp, in particular, 2313 * that successive retransmissions of a segment must not advance 2314 * retrans_stamp under any conditions. 2315 */ 2316 static bool tcp_any_retrans_done(const struct sock *sk) 2317 { 2318 const struct tcp_sock *tp = tcp_sk(sk); 2319 struct sk_buff *skb; 2320 2321 if (tp->retrans_out) 2322 return true; 2323 2324 skb = tcp_rtx_queue_head(sk); 2325 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2326 return true; 2327 2328 return false; 2329 } 2330 2331 static void DBGUNDO(struct sock *sk, const char *msg) 2332 { 2333 #if FASTRETRANS_DEBUG > 1 2334 struct tcp_sock *tp = tcp_sk(sk); 2335 struct inet_sock *inet = inet_sk(sk); 2336 2337 if (sk->sk_family == AF_INET) { 2338 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2339 msg, 2340 &inet->inet_daddr, ntohs(inet->inet_dport), 2341 tp->snd_cwnd, tcp_left_out(tp), 2342 tp->snd_ssthresh, tp->prior_ssthresh, 2343 tp->packets_out); 2344 } 2345 #if IS_ENABLED(CONFIG_IPV6) 2346 else if (sk->sk_family == AF_INET6) { 2347 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2348 msg, 2349 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2350 tp->snd_cwnd, tcp_left_out(tp), 2351 tp->snd_ssthresh, tp->prior_ssthresh, 2352 tp->packets_out); 2353 } 2354 #endif 2355 #endif 2356 } 2357 2358 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2359 { 2360 struct tcp_sock *tp = tcp_sk(sk); 2361 2362 if (unmark_loss) { 2363 struct sk_buff *skb; 2364 2365 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2366 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2367 } 2368 tp->lost_out = 0; 2369 tcp_clear_all_retrans_hints(tp); 2370 } 2371 2372 if (tp->prior_ssthresh) { 2373 const struct inet_connection_sock *icsk = inet_csk(sk); 2374 2375 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2376 2377 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2378 tp->snd_ssthresh = tp->prior_ssthresh; 2379 tcp_ecn_withdraw_cwr(tp); 2380 } 2381 } 2382 tp->snd_cwnd_stamp = tcp_jiffies32; 2383 tp->undo_marker = 0; 2384 } 2385 2386 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2387 { 2388 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2389 } 2390 2391 /* People celebrate: "We love our President!" */ 2392 static bool tcp_try_undo_recovery(struct sock *sk) 2393 { 2394 struct tcp_sock *tp = tcp_sk(sk); 2395 2396 if (tcp_may_undo(tp)) { 2397 int mib_idx; 2398 2399 /* Happy end! We did not retransmit anything 2400 * or our original transmission succeeded. 2401 */ 2402 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2403 tcp_undo_cwnd_reduction(sk, false); 2404 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2405 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2406 else 2407 mib_idx = LINUX_MIB_TCPFULLUNDO; 2408 2409 NET_INC_STATS(sock_net(sk), mib_idx); 2410 } 2411 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2412 /* Hold old state until something *above* high_seq 2413 * is ACKed. For Reno it is MUST to prevent false 2414 * fast retransmits (RFC2582). SACK TCP is safe. */ 2415 if (!tcp_any_retrans_done(sk)) 2416 tp->retrans_stamp = 0; 2417 return true; 2418 } 2419 tcp_set_ca_state(sk, TCP_CA_Open); 2420 return false; 2421 } 2422 2423 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2424 static bool tcp_try_undo_dsack(struct sock *sk) 2425 { 2426 struct tcp_sock *tp = tcp_sk(sk); 2427 2428 if (tp->undo_marker && !tp->undo_retrans) { 2429 DBGUNDO(sk, "D-SACK"); 2430 tcp_undo_cwnd_reduction(sk, false); 2431 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2432 return true; 2433 } 2434 return false; 2435 } 2436 2437 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2438 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2439 { 2440 struct tcp_sock *tp = tcp_sk(sk); 2441 2442 if (frto_undo || tcp_may_undo(tp)) { 2443 tcp_undo_cwnd_reduction(sk, true); 2444 2445 DBGUNDO(sk, "partial loss"); 2446 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2447 if (frto_undo) 2448 NET_INC_STATS(sock_net(sk), 2449 LINUX_MIB_TCPSPURIOUSRTOS); 2450 inet_csk(sk)->icsk_retransmits = 0; 2451 if (frto_undo || tcp_is_sack(tp)) 2452 tcp_set_ca_state(sk, TCP_CA_Open); 2453 return true; 2454 } 2455 return false; 2456 } 2457 2458 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2459 * It computes the number of packets to send (sndcnt) based on packets newly 2460 * delivered: 2461 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2462 * cwnd reductions across a full RTT. 2463 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2464 * But when the retransmits are acked without further losses, PRR 2465 * slow starts cwnd up to ssthresh to speed up the recovery. 2466 */ 2467 static void tcp_init_cwnd_reduction(struct sock *sk) 2468 { 2469 struct tcp_sock *tp = tcp_sk(sk); 2470 2471 tp->high_seq = tp->snd_nxt; 2472 tp->tlp_high_seq = 0; 2473 tp->snd_cwnd_cnt = 0; 2474 tp->prior_cwnd = tp->snd_cwnd; 2475 tp->prr_delivered = 0; 2476 tp->prr_out = 0; 2477 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2478 tcp_ecn_queue_cwr(tp); 2479 } 2480 2481 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2482 { 2483 struct tcp_sock *tp = tcp_sk(sk); 2484 int sndcnt = 0; 2485 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2486 2487 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2488 return; 2489 2490 tp->prr_delivered += newly_acked_sacked; 2491 if (delta < 0) { 2492 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2493 tp->prior_cwnd - 1; 2494 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2495 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2496 !(flag & FLAG_LOST_RETRANS)) { 2497 sndcnt = min_t(int, delta, 2498 max_t(int, tp->prr_delivered - tp->prr_out, 2499 newly_acked_sacked) + 1); 2500 } else { 2501 sndcnt = min(delta, newly_acked_sacked); 2502 } 2503 /* Force a fast retransmit upon entering fast recovery */ 2504 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2505 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2506 } 2507 2508 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2509 { 2510 struct tcp_sock *tp = tcp_sk(sk); 2511 2512 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2513 return; 2514 2515 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2516 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2517 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2518 tp->snd_cwnd = tp->snd_ssthresh; 2519 tp->snd_cwnd_stamp = tcp_jiffies32; 2520 } 2521 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2522 } 2523 2524 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2525 void tcp_enter_cwr(struct sock *sk) 2526 { 2527 struct tcp_sock *tp = tcp_sk(sk); 2528 2529 tp->prior_ssthresh = 0; 2530 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2531 tp->undo_marker = 0; 2532 tcp_init_cwnd_reduction(sk); 2533 tcp_set_ca_state(sk, TCP_CA_CWR); 2534 } 2535 } 2536 EXPORT_SYMBOL(tcp_enter_cwr); 2537 2538 static void tcp_try_keep_open(struct sock *sk) 2539 { 2540 struct tcp_sock *tp = tcp_sk(sk); 2541 int state = TCP_CA_Open; 2542 2543 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2544 state = TCP_CA_Disorder; 2545 2546 if (inet_csk(sk)->icsk_ca_state != state) { 2547 tcp_set_ca_state(sk, state); 2548 tp->high_seq = tp->snd_nxt; 2549 } 2550 } 2551 2552 static void tcp_try_to_open(struct sock *sk, int flag) 2553 { 2554 struct tcp_sock *tp = tcp_sk(sk); 2555 2556 tcp_verify_left_out(tp); 2557 2558 if (!tcp_any_retrans_done(sk)) 2559 tp->retrans_stamp = 0; 2560 2561 if (flag & FLAG_ECE) 2562 tcp_enter_cwr(sk); 2563 2564 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2565 tcp_try_keep_open(sk); 2566 } 2567 } 2568 2569 static void tcp_mtup_probe_failed(struct sock *sk) 2570 { 2571 struct inet_connection_sock *icsk = inet_csk(sk); 2572 2573 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2574 icsk->icsk_mtup.probe_size = 0; 2575 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2576 } 2577 2578 static void tcp_mtup_probe_success(struct sock *sk) 2579 { 2580 struct tcp_sock *tp = tcp_sk(sk); 2581 struct inet_connection_sock *icsk = inet_csk(sk); 2582 2583 /* FIXME: breaks with very large cwnd */ 2584 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2585 tp->snd_cwnd = tp->snd_cwnd * 2586 tcp_mss_to_mtu(sk, tp->mss_cache) / 2587 icsk->icsk_mtup.probe_size; 2588 tp->snd_cwnd_cnt = 0; 2589 tp->snd_cwnd_stamp = tcp_jiffies32; 2590 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2591 2592 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2593 icsk->icsk_mtup.probe_size = 0; 2594 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2595 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2596 } 2597 2598 /* Do a simple retransmit without using the backoff mechanisms in 2599 * tcp_timer. This is used for path mtu discovery. 2600 * The socket is already locked here. 2601 */ 2602 void tcp_simple_retransmit(struct sock *sk) 2603 { 2604 const struct inet_connection_sock *icsk = inet_csk(sk); 2605 struct tcp_sock *tp = tcp_sk(sk); 2606 struct sk_buff *skb; 2607 unsigned int mss = tcp_current_mss(sk); 2608 u32 prior_lost = tp->lost_out; 2609 2610 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2611 if (tcp_skb_seglen(skb) > mss && 2612 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2613 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2614 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2615 tp->retrans_out -= tcp_skb_pcount(skb); 2616 } 2617 tcp_skb_mark_lost_uncond_verify(tp, skb); 2618 } 2619 } 2620 2621 tcp_clear_retrans_hints_partial(tp); 2622 2623 if (prior_lost == tp->lost_out) 2624 return; 2625 2626 if (tcp_is_reno(tp)) 2627 tcp_limit_reno_sacked(tp); 2628 2629 tcp_verify_left_out(tp); 2630 2631 /* Don't muck with the congestion window here. 2632 * Reason is that we do not increase amount of _data_ 2633 * in network, but units changed and effective 2634 * cwnd/ssthresh really reduced now. 2635 */ 2636 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2637 tp->high_seq = tp->snd_nxt; 2638 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2639 tp->prior_ssthresh = 0; 2640 tp->undo_marker = 0; 2641 tcp_set_ca_state(sk, TCP_CA_Loss); 2642 } 2643 tcp_xmit_retransmit_queue(sk); 2644 } 2645 EXPORT_SYMBOL(tcp_simple_retransmit); 2646 2647 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2648 { 2649 struct tcp_sock *tp = tcp_sk(sk); 2650 int mib_idx; 2651 2652 if (tcp_is_reno(tp)) 2653 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2654 else 2655 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2656 2657 NET_INC_STATS(sock_net(sk), mib_idx); 2658 2659 tp->prior_ssthresh = 0; 2660 tcp_init_undo(tp); 2661 2662 if (!tcp_in_cwnd_reduction(sk)) { 2663 if (!ece_ack) 2664 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2665 tcp_init_cwnd_reduction(sk); 2666 } 2667 tcp_set_ca_state(sk, TCP_CA_Recovery); 2668 } 2669 2670 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2671 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2672 */ 2673 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2674 int *rexmit) 2675 { 2676 struct tcp_sock *tp = tcp_sk(sk); 2677 bool recovered = !before(tp->snd_una, tp->high_seq); 2678 2679 if ((flag & FLAG_SND_UNA_ADVANCED) && 2680 tcp_try_undo_loss(sk, false)) 2681 return; 2682 2683 /* The ACK (s)acks some never-retransmitted data meaning not all 2684 * the data packets before the timeout were lost. Therefore we 2685 * undo the congestion window and state. This is essentially 2686 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2687 * a retransmitted skb is permantly marked, we can apply such an 2688 * operation even if F-RTO was not used. 2689 */ 2690 if ((flag & FLAG_ORIG_SACK_ACKED) && 2691 tcp_try_undo_loss(sk, tp->undo_marker)) 2692 return; 2693 2694 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2695 if (after(tp->snd_nxt, tp->high_seq)) { 2696 if (flag & FLAG_DATA_SACKED || is_dupack) 2697 tp->frto = 0; /* Step 3.a. loss was real */ 2698 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2699 tp->high_seq = tp->snd_nxt; 2700 /* Step 2.b. Try send new data (but deferred until cwnd 2701 * is updated in tcp_ack()). Otherwise fall back to 2702 * the conventional recovery. 2703 */ 2704 if (!tcp_write_queue_empty(sk) && 2705 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2706 *rexmit = REXMIT_NEW; 2707 return; 2708 } 2709 tp->frto = 0; 2710 } 2711 } 2712 2713 if (recovered) { 2714 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2715 tcp_try_undo_recovery(sk); 2716 return; 2717 } 2718 if (tcp_is_reno(tp)) { 2719 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2720 * delivered. Lower inflight to clock out (re)tranmissions. 2721 */ 2722 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2723 tcp_add_reno_sack(sk); 2724 else if (flag & FLAG_SND_UNA_ADVANCED) 2725 tcp_reset_reno_sack(tp); 2726 } 2727 *rexmit = REXMIT_LOST; 2728 } 2729 2730 /* Undo during fast recovery after partial ACK. */ 2731 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2732 { 2733 struct tcp_sock *tp = tcp_sk(sk); 2734 2735 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2736 /* Plain luck! Hole if filled with delayed 2737 * packet, rather than with a retransmit. 2738 */ 2739 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2740 2741 /* We are getting evidence that the reordering degree is higher 2742 * than we realized. If there are no retransmits out then we 2743 * can undo. Otherwise we clock out new packets but do not 2744 * mark more packets lost or retransmit more. 2745 */ 2746 if (tp->retrans_out) 2747 return true; 2748 2749 if (!tcp_any_retrans_done(sk)) 2750 tp->retrans_stamp = 0; 2751 2752 DBGUNDO(sk, "partial recovery"); 2753 tcp_undo_cwnd_reduction(sk, true); 2754 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2755 tcp_try_keep_open(sk); 2756 return true; 2757 } 2758 return false; 2759 } 2760 2761 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2762 { 2763 struct tcp_sock *tp = tcp_sk(sk); 2764 2765 /* Use RACK to detect loss */ 2766 if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2767 u32 prior_retrans = tp->retrans_out; 2768 2769 tcp_rack_mark_lost(sk); 2770 if (prior_retrans > tp->retrans_out) 2771 *ack_flag |= FLAG_LOST_RETRANS; 2772 } 2773 } 2774 2775 /* Process an event, which can update packets-in-flight not trivially. 2776 * Main goal of this function is to calculate new estimate for left_out, 2777 * taking into account both packets sitting in receiver's buffer and 2778 * packets lost by network. 2779 * 2780 * Besides that it updates the congestion state when packet loss or ECN 2781 * is detected. But it does not reduce the cwnd, it is done by the 2782 * congestion control later. 2783 * 2784 * It does _not_ decide what to send, it is made in function 2785 * tcp_xmit_retransmit_queue(). 2786 */ 2787 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2788 bool is_dupack, int *ack_flag, int *rexmit) 2789 { 2790 struct inet_connection_sock *icsk = inet_csk(sk); 2791 struct tcp_sock *tp = tcp_sk(sk); 2792 int fast_rexmit = 0, flag = *ack_flag; 2793 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2794 (tcp_fackets_out(tp) > tp->reordering)); 2795 2796 if (!tp->packets_out && tp->sacked_out) 2797 tp->sacked_out = 0; 2798 if (!tp->sacked_out && tp->fackets_out) 2799 tp->fackets_out = 0; 2800 2801 /* Now state machine starts. 2802 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2803 if (flag & FLAG_ECE) 2804 tp->prior_ssthresh = 0; 2805 2806 /* B. In all the states check for reneging SACKs. */ 2807 if (tcp_check_sack_reneging(sk, flag)) 2808 return; 2809 2810 /* C. Check consistency of the current state. */ 2811 tcp_verify_left_out(tp); 2812 2813 /* D. Check state exit conditions. State can be terminated 2814 * when high_seq is ACKed. */ 2815 if (icsk->icsk_ca_state == TCP_CA_Open) { 2816 WARN_ON(tp->retrans_out != 0); 2817 tp->retrans_stamp = 0; 2818 } else if (!before(tp->snd_una, tp->high_seq)) { 2819 switch (icsk->icsk_ca_state) { 2820 case TCP_CA_CWR: 2821 /* CWR is to be held something *above* high_seq 2822 * is ACKed for CWR bit to reach receiver. */ 2823 if (tp->snd_una != tp->high_seq) { 2824 tcp_end_cwnd_reduction(sk); 2825 tcp_set_ca_state(sk, TCP_CA_Open); 2826 } 2827 break; 2828 2829 case TCP_CA_Recovery: 2830 if (tcp_is_reno(tp)) 2831 tcp_reset_reno_sack(tp); 2832 if (tcp_try_undo_recovery(sk)) 2833 return; 2834 tcp_end_cwnd_reduction(sk); 2835 break; 2836 } 2837 } 2838 2839 /* E. Process state. */ 2840 switch (icsk->icsk_ca_state) { 2841 case TCP_CA_Recovery: 2842 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2843 if (tcp_is_reno(tp) && is_dupack) 2844 tcp_add_reno_sack(sk); 2845 } else { 2846 if (tcp_try_undo_partial(sk, acked)) 2847 return; 2848 /* Partial ACK arrived. Force fast retransmit. */ 2849 do_lost = tcp_is_reno(tp) || 2850 tcp_fackets_out(tp) > tp->reordering; 2851 } 2852 if (tcp_try_undo_dsack(sk)) { 2853 tcp_try_keep_open(sk); 2854 return; 2855 } 2856 tcp_rack_identify_loss(sk, ack_flag); 2857 break; 2858 case TCP_CA_Loss: 2859 tcp_process_loss(sk, flag, is_dupack, rexmit); 2860 tcp_rack_identify_loss(sk, ack_flag); 2861 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2862 (*ack_flag & FLAG_LOST_RETRANS))) 2863 return; 2864 /* Change state if cwnd is undone or retransmits are lost */ 2865 /* fall through */ 2866 default: 2867 if (tcp_is_reno(tp)) { 2868 if (flag & FLAG_SND_UNA_ADVANCED) 2869 tcp_reset_reno_sack(tp); 2870 if (is_dupack) 2871 tcp_add_reno_sack(sk); 2872 } 2873 2874 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2875 tcp_try_undo_dsack(sk); 2876 2877 tcp_rack_identify_loss(sk, ack_flag); 2878 if (!tcp_time_to_recover(sk, flag)) { 2879 tcp_try_to_open(sk, flag); 2880 return; 2881 } 2882 2883 /* MTU probe failure: don't reduce cwnd */ 2884 if (icsk->icsk_ca_state < TCP_CA_CWR && 2885 icsk->icsk_mtup.probe_size && 2886 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2887 tcp_mtup_probe_failed(sk); 2888 /* Restores the reduction we did in tcp_mtup_probe() */ 2889 tp->snd_cwnd++; 2890 tcp_simple_retransmit(sk); 2891 return; 2892 } 2893 2894 /* Otherwise enter Recovery state */ 2895 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2896 fast_rexmit = 1; 2897 } 2898 2899 if (do_lost) 2900 tcp_update_scoreboard(sk, fast_rexmit); 2901 *rexmit = REXMIT_LOST; 2902 } 2903 2904 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2905 { 2906 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2907 struct tcp_sock *tp = tcp_sk(sk); 2908 2909 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2910 rtt_us ? : jiffies_to_usecs(1)); 2911 } 2912 2913 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2914 long seq_rtt_us, long sack_rtt_us, 2915 long ca_rtt_us, struct rate_sample *rs) 2916 { 2917 const struct tcp_sock *tp = tcp_sk(sk); 2918 2919 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2920 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2921 * Karn's algorithm forbids taking RTT if some retransmitted data 2922 * is acked (RFC6298). 2923 */ 2924 if (seq_rtt_us < 0) 2925 seq_rtt_us = sack_rtt_us; 2926 2927 /* RTTM Rule: A TSecr value received in a segment is used to 2928 * update the averaged RTT measurement only if the segment 2929 * acknowledges some new data, i.e., only if it advances the 2930 * left edge of the send window. 2931 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2932 */ 2933 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2934 flag & FLAG_ACKED) { 2935 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2936 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2937 2938 seq_rtt_us = ca_rtt_us = delta_us; 2939 } 2940 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2941 if (seq_rtt_us < 0) 2942 return false; 2943 2944 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2945 * always taken together with ACK, SACK, or TS-opts. Any negative 2946 * values will be skipped with the seq_rtt_us < 0 check above. 2947 */ 2948 tcp_update_rtt_min(sk, ca_rtt_us); 2949 tcp_rtt_estimator(sk, seq_rtt_us); 2950 tcp_set_rto(sk); 2951 2952 /* RFC6298: only reset backoff on valid RTT measurement. */ 2953 inet_csk(sk)->icsk_backoff = 0; 2954 return true; 2955 } 2956 2957 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2958 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2959 { 2960 struct rate_sample rs; 2961 long rtt_us = -1L; 2962 2963 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2964 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2965 2966 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2967 } 2968 2969 2970 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2971 { 2972 const struct inet_connection_sock *icsk = inet_csk(sk); 2973 2974 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2975 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2976 } 2977 2978 /* Restart timer after forward progress on connection. 2979 * RFC2988 recommends to restart timer to now+rto. 2980 */ 2981 void tcp_rearm_rto(struct sock *sk) 2982 { 2983 const struct inet_connection_sock *icsk = inet_csk(sk); 2984 struct tcp_sock *tp = tcp_sk(sk); 2985 2986 /* If the retrans timer is currently being used by Fast Open 2987 * for SYN-ACK retrans purpose, stay put. 2988 */ 2989 if (tp->fastopen_rsk) 2990 return; 2991 2992 if (!tp->packets_out) { 2993 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2994 } else { 2995 u32 rto = inet_csk(sk)->icsk_rto; 2996 /* Offset the time elapsed after installing regular RTO */ 2997 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2998 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2999 s64 delta_us = tcp_rto_delta_us(sk); 3000 /* delta_us may not be positive if the socket is locked 3001 * when the retrans timer fires and is rescheduled. 3002 */ 3003 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3004 } 3005 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3006 TCP_RTO_MAX); 3007 } 3008 } 3009 3010 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3011 static void tcp_set_xmit_timer(struct sock *sk) 3012 { 3013 if (!tcp_schedule_loss_probe(sk)) 3014 tcp_rearm_rto(sk); 3015 } 3016 3017 /* If we get here, the whole TSO packet has not been acked. */ 3018 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3019 { 3020 struct tcp_sock *tp = tcp_sk(sk); 3021 u32 packets_acked; 3022 3023 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3024 3025 packets_acked = tcp_skb_pcount(skb); 3026 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3027 return 0; 3028 packets_acked -= tcp_skb_pcount(skb); 3029 3030 if (packets_acked) { 3031 BUG_ON(tcp_skb_pcount(skb) == 0); 3032 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3033 } 3034 3035 return packets_acked; 3036 } 3037 3038 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3039 u32 prior_snd_una) 3040 { 3041 const struct skb_shared_info *shinfo; 3042 3043 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3044 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3045 return; 3046 3047 shinfo = skb_shinfo(skb); 3048 if (!before(shinfo->tskey, prior_snd_una) && 3049 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3050 tcp_skb_tsorted_save(skb) { 3051 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3052 } tcp_skb_tsorted_restore(skb); 3053 } 3054 } 3055 3056 /* Remove acknowledged frames from the retransmission queue. If our packet 3057 * is before the ack sequence we can discard it as it's confirmed to have 3058 * arrived at the other end. 3059 */ 3060 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3061 u32 prior_snd_una, int *acked, 3062 struct tcp_sacktag_state *sack) 3063 { 3064 const struct inet_connection_sock *icsk = inet_csk(sk); 3065 u64 first_ackt, last_ackt; 3066 struct tcp_sock *tp = tcp_sk(sk); 3067 u32 prior_sacked = tp->sacked_out; 3068 u32 reord = tp->packets_out; 3069 struct sk_buff *skb, *next; 3070 bool fully_acked = true; 3071 long sack_rtt_us = -1L; 3072 long seq_rtt_us = -1L; 3073 long ca_rtt_us = -1L; 3074 u32 pkts_acked = 0; 3075 u32 last_in_flight = 0; 3076 bool rtt_update; 3077 int flag = 0; 3078 3079 first_ackt = 0; 3080 3081 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3082 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3083 u8 sacked = scb->sacked; 3084 u32 acked_pcount; 3085 3086 tcp_ack_tstamp(sk, skb, prior_snd_una); 3087 3088 /* Determine how many packets and what bytes were acked, tso and else */ 3089 if (after(scb->end_seq, tp->snd_una)) { 3090 if (tcp_skb_pcount(skb) == 1 || 3091 !after(tp->snd_una, scb->seq)) 3092 break; 3093 3094 acked_pcount = tcp_tso_acked(sk, skb); 3095 if (!acked_pcount) 3096 break; 3097 fully_acked = false; 3098 } else { 3099 acked_pcount = tcp_skb_pcount(skb); 3100 } 3101 3102 if (unlikely(sacked & TCPCB_RETRANS)) { 3103 if (sacked & TCPCB_SACKED_RETRANS) 3104 tp->retrans_out -= acked_pcount; 3105 flag |= FLAG_RETRANS_DATA_ACKED; 3106 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3107 last_ackt = skb->skb_mstamp; 3108 WARN_ON_ONCE(last_ackt == 0); 3109 if (!first_ackt) 3110 first_ackt = last_ackt; 3111 3112 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3113 reord = min(pkts_acked, reord); 3114 if (!after(scb->end_seq, tp->high_seq)) 3115 flag |= FLAG_ORIG_SACK_ACKED; 3116 } 3117 3118 if (sacked & TCPCB_SACKED_ACKED) { 3119 tp->sacked_out -= acked_pcount; 3120 } else if (tcp_is_sack(tp)) { 3121 tp->delivered += acked_pcount; 3122 if (!tcp_skb_spurious_retrans(tp, skb)) 3123 tcp_rack_advance(tp, sacked, scb->end_seq, 3124 skb->skb_mstamp); 3125 } 3126 if (sacked & TCPCB_LOST) 3127 tp->lost_out -= acked_pcount; 3128 3129 tp->packets_out -= acked_pcount; 3130 pkts_acked += acked_pcount; 3131 tcp_rate_skb_delivered(sk, skb, sack->rate); 3132 3133 /* Initial outgoing SYN's get put onto the write_queue 3134 * just like anything else we transmit. It is not 3135 * true data, and if we misinform our callers that 3136 * this ACK acks real data, we will erroneously exit 3137 * connection startup slow start one packet too 3138 * quickly. This is severely frowned upon behavior. 3139 */ 3140 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3141 flag |= FLAG_DATA_ACKED; 3142 } else { 3143 flag |= FLAG_SYN_ACKED; 3144 tp->retrans_stamp = 0; 3145 } 3146 3147 if (!fully_acked) 3148 break; 3149 3150 next = skb_rb_next(skb); 3151 if (unlikely(skb == tp->retransmit_skb_hint)) 3152 tp->retransmit_skb_hint = NULL; 3153 if (unlikely(skb == tp->lost_skb_hint)) 3154 tp->lost_skb_hint = NULL; 3155 tcp_rtx_queue_unlink_and_free(skb, sk); 3156 } 3157 3158 if (!skb) 3159 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3160 3161 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3162 tp->snd_up = tp->snd_una; 3163 3164 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3165 flag |= FLAG_SACK_RENEGING; 3166 3167 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3168 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3169 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3170 } 3171 if (sack->first_sackt) { 3172 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3173 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3174 } 3175 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3176 ca_rtt_us, sack->rate); 3177 3178 if (flag & FLAG_ACKED) { 3179 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3180 if (unlikely(icsk->icsk_mtup.probe_size && 3181 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3182 tcp_mtup_probe_success(sk); 3183 } 3184 3185 if (tcp_is_reno(tp)) { 3186 tcp_remove_reno_sacks(sk, pkts_acked); 3187 } else { 3188 int delta; 3189 3190 /* Non-retransmitted hole got filled? That's reordering */ 3191 if (reord < prior_fackets && reord <= tp->fackets_out) 3192 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3193 3194 delta = tcp_is_fack(tp) ? pkts_acked : 3195 prior_sacked - tp->sacked_out; 3196 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3197 } 3198 3199 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3200 3201 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3202 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3203 /* Do not re-arm RTO if the sack RTT is measured from data sent 3204 * after when the head was last (re)transmitted. Otherwise the 3205 * timeout may continue to extend in loss recovery. 3206 */ 3207 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3208 } 3209 3210 if (icsk->icsk_ca_ops->pkts_acked) { 3211 struct ack_sample sample = { .pkts_acked = pkts_acked, 3212 .rtt_us = sack->rate->rtt_us, 3213 .in_flight = last_in_flight }; 3214 3215 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3216 } 3217 3218 #if FASTRETRANS_DEBUG > 0 3219 WARN_ON((int)tp->sacked_out < 0); 3220 WARN_ON((int)tp->lost_out < 0); 3221 WARN_ON((int)tp->retrans_out < 0); 3222 if (!tp->packets_out && tcp_is_sack(tp)) { 3223 icsk = inet_csk(sk); 3224 if (tp->lost_out) { 3225 pr_debug("Leak l=%u %d\n", 3226 tp->lost_out, icsk->icsk_ca_state); 3227 tp->lost_out = 0; 3228 } 3229 if (tp->sacked_out) { 3230 pr_debug("Leak s=%u %d\n", 3231 tp->sacked_out, icsk->icsk_ca_state); 3232 tp->sacked_out = 0; 3233 } 3234 if (tp->retrans_out) { 3235 pr_debug("Leak r=%u %d\n", 3236 tp->retrans_out, icsk->icsk_ca_state); 3237 tp->retrans_out = 0; 3238 } 3239 } 3240 #endif 3241 *acked = pkts_acked; 3242 return flag; 3243 } 3244 3245 static void tcp_ack_probe(struct sock *sk) 3246 { 3247 struct inet_connection_sock *icsk = inet_csk(sk); 3248 struct sk_buff *head = tcp_send_head(sk); 3249 const struct tcp_sock *tp = tcp_sk(sk); 3250 3251 /* Was it a usable window open? */ 3252 if (!head) 3253 return; 3254 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3255 icsk->icsk_backoff = 0; 3256 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3257 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3258 * This function is not for random using! 3259 */ 3260 } else { 3261 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3262 3263 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3264 when, TCP_RTO_MAX); 3265 } 3266 } 3267 3268 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3269 { 3270 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3271 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3272 } 3273 3274 /* Decide wheather to run the increase function of congestion control. */ 3275 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3276 { 3277 /* If reordering is high then always grow cwnd whenever data is 3278 * delivered regardless of its ordering. Otherwise stay conservative 3279 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3280 * new SACK or ECE mark may first advance cwnd here and later reduce 3281 * cwnd in tcp_fastretrans_alert() based on more states. 3282 */ 3283 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3284 return flag & FLAG_FORWARD_PROGRESS; 3285 3286 return flag & FLAG_DATA_ACKED; 3287 } 3288 3289 /* The "ultimate" congestion control function that aims to replace the rigid 3290 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3291 * It's called toward the end of processing an ACK with precise rate 3292 * information. All transmission or retransmission are delayed afterwards. 3293 */ 3294 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3295 int flag, const struct rate_sample *rs) 3296 { 3297 const struct inet_connection_sock *icsk = inet_csk(sk); 3298 3299 if (icsk->icsk_ca_ops->cong_control) { 3300 icsk->icsk_ca_ops->cong_control(sk, rs); 3301 return; 3302 } 3303 3304 if (tcp_in_cwnd_reduction(sk)) { 3305 /* Reduce cwnd if state mandates */ 3306 tcp_cwnd_reduction(sk, acked_sacked, flag); 3307 } else if (tcp_may_raise_cwnd(sk, flag)) { 3308 /* Advance cwnd if state allows */ 3309 tcp_cong_avoid(sk, ack, acked_sacked); 3310 } 3311 tcp_update_pacing_rate(sk); 3312 } 3313 3314 /* Check that window update is acceptable. 3315 * The function assumes that snd_una<=ack<=snd_next. 3316 */ 3317 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3318 const u32 ack, const u32 ack_seq, 3319 const u32 nwin) 3320 { 3321 return after(ack, tp->snd_una) || 3322 after(ack_seq, tp->snd_wl1) || 3323 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3324 } 3325 3326 /* If we update tp->snd_una, also update tp->bytes_acked */ 3327 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3328 { 3329 u32 delta = ack - tp->snd_una; 3330 3331 sock_owned_by_me((struct sock *)tp); 3332 tp->bytes_acked += delta; 3333 tp->snd_una = ack; 3334 } 3335 3336 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3337 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3338 { 3339 u32 delta = seq - tp->rcv_nxt; 3340 3341 sock_owned_by_me((struct sock *)tp); 3342 tp->bytes_received += delta; 3343 tp->rcv_nxt = seq; 3344 } 3345 3346 /* Update our send window. 3347 * 3348 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3349 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3350 */ 3351 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3352 u32 ack_seq) 3353 { 3354 struct tcp_sock *tp = tcp_sk(sk); 3355 int flag = 0; 3356 u32 nwin = ntohs(tcp_hdr(skb)->window); 3357 3358 if (likely(!tcp_hdr(skb)->syn)) 3359 nwin <<= tp->rx_opt.snd_wscale; 3360 3361 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3362 flag |= FLAG_WIN_UPDATE; 3363 tcp_update_wl(tp, ack_seq); 3364 3365 if (tp->snd_wnd != nwin) { 3366 tp->snd_wnd = nwin; 3367 3368 /* Note, it is the only place, where 3369 * fast path is recovered for sending TCP. 3370 */ 3371 tp->pred_flags = 0; 3372 tcp_fast_path_check(sk); 3373 3374 if (!tcp_write_queue_empty(sk)) 3375 tcp_slow_start_after_idle_check(sk); 3376 3377 if (nwin > tp->max_window) { 3378 tp->max_window = nwin; 3379 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3380 } 3381 } 3382 } 3383 3384 tcp_snd_una_update(tp, ack); 3385 3386 return flag; 3387 } 3388 3389 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3390 u32 *last_oow_ack_time) 3391 { 3392 if (*last_oow_ack_time) { 3393 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3394 3395 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3396 NET_INC_STATS(net, mib_idx); 3397 return true; /* rate-limited: don't send yet! */ 3398 } 3399 } 3400 3401 *last_oow_ack_time = tcp_jiffies32; 3402 3403 return false; /* not rate-limited: go ahead, send dupack now! */ 3404 } 3405 3406 /* Return true if we're currently rate-limiting out-of-window ACKs and 3407 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3408 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3409 * attacks that send repeated SYNs or ACKs for the same connection. To 3410 * do this, we do not send a duplicate SYNACK or ACK if the remote 3411 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3412 */ 3413 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3414 int mib_idx, u32 *last_oow_ack_time) 3415 { 3416 /* Data packets without SYNs are not likely part of an ACK loop. */ 3417 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3418 !tcp_hdr(skb)->syn) 3419 return false; 3420 3421 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3422 } 3423 3424 /* RFC 5961 7 [ACK Throttling] */ 3425 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3426 { 3427 /* unprotected vars, we dont care of overwrites */ 3428 static u32 challenge_timestamp; 3429 static unsigned int challenge_count; 3430 struct tcp_sock *tp = tcp_sk(sk); 3431 struct net *net = sock_net(sk); 3432 u32 count, now; 3433 3434 /* First check our per-socket dupack rate limit. */ 3435 if (__tcp_oow_rate_limited(net, 3436 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3437 &tp->last_oow_ack_time)) 3438 return; 3439 3440 /* Then check host-wide RFC 5961 rate limit. */ 3441 now = jiffies / HZ; 3442 if (now != challenge_timestamp) { 3443 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3444 u32 half = (ack_limit + 1) >> 1; 3445 3446 challenge_timestamp = now; 3447 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3448 } 3449 count = READ_ONCE(challenge_count); 3450 if (count > 0) { 3451 WRITE_ONCE(challenge_count, count - 1); 3452 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3453 tcp_send_ack(sk); 3454 } 3455 } 3456 3457 static void tcp_store_ts_recent(struct tcp_sock *tp) 3458 { 3459 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3460 tp->rx_opt.ts_recent_stamp = get_seconds(); 3461 } 3462 3463 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3464 { 3465 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3466 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3467 * extra check below makes sure this can only happen 3468 * for pure ACK frames. -DaveM 3469 * 3470 * Not only, also it occurs for expired timestamps. 3471 */ 3472 3473 if (tcp_paws_check(&tp->rx_opt, 0)) 3474 tcp_store_ts_recent(tp); 3475 } 3476 } 3477 3478 /* This routine deals with acks during a TLP episode. 3479 * We mark the end of a TLP episode on receiving TLP dupack or when 3480 * ack is after tlp_high_seq. 3481 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3482 */ 3483 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3484 { 3485 struct tcp_sock *tp = tcp_sk(sk); 3486 3487 if (before(ack, tp->tlp_high_seq)) 3488 return; 3489 3490 if (flag & FLAG_DSACKING_ACK) { 3491 /* This DSACK means original and TLP probe arrived; no loss */ 3492 tp->tlp_high_seq = 0; 3493 } else if (after(ack, tp->tlp_high_seq)) { 3494 /* ACK advances: there was a loss, so reduce cwnd. Reset 3495 * tlp_high_seq in tcp_init_cwnd_reduction() 3496 */ 3497 tcp_init_cwnd_reduction(sk); 3498 tcp_set_ca_state(sk, TCP_CA_CWR); 3499 tcp_end_cwnd_reduction(sk); 3500 tcp_try_keep_open(sk); 3501 NET_INC_STATS(sock_net(sk), 3502 LINUX_MIB_TCPLOSSPROBERECOVERY); 3503 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3504 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3505 /* Pure dupack: original and TLP probe arrived; no loss */ 3506 tp->tlp_high_seq = 0; 3507 } 3508 } 3509 3510 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3511 { 3512 const struct inet_connection_sock *icsk = inet_csk(sk); 3513 3514 if (icsk->icsk_ca_ops->in_ack_event) 3515 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3516 } 3517 3518 /* Congestion control has updated the cwnd already. So if we're in 3519 * loss recovery then now we do any new sends (for FRTO) or 3520 * retransmits (for CA_Loss or CA_recovery) that make sense. 3521 */ 3522 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3523 { 3524 struct tcp_sock *tp = tcp_sk(sk); 3525 3526 if (rexmit == REXMIT_NONE) 3527 return; 3528 3529 if (unlikely(rexmit == 2)) { 3530 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3531 TCP_NAGLE_OFF); 3532 if (after(tp->snd_nxt, tp->high_seq)) 3533 return; 3534 tp->frto = 0; 3535 } 3536 tcp_xmit_retransmit_queue(sk); 3537 } 3538 3539 /* This routine deals with incoming acks, but not outgoing ones. */ 3540 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3541 { 3542 struct inet_connection_sock *icsk = inet_csk(sk); 3543 struct tcp_sock *tp = tcp_sk(sk); 3544 struct tcp_sacktag_state sack_state; 3545 struct rate_sample rs = { .prior_delivered = 0 }; 3546 u32 prior_snd_una = tp->snd_una; 3547 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3548 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3549 bool is_dupack = false; 3550 u32 prior_fackets; 3551 int prior_packets = tp->packets_out; 3552 u32 delivered = tp->delivered; 3553 u32 lost = tp->lost; 3554 int acked = 0; /* Number of packets newly acked */ 3555 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3556 3557 sack_state.first_sackt = 0; 3558 sack_state.rate = &rs; 3559 3560 /* We very likely will need to access rtx queue. */ 3561 prefetch(sk->tcp_rtx_queue.rb_node); 3562 3563 /* If the ack is older than previous acks 3564 * then we can probably ignore it. 3565 */ 3566 if (before(ack, prior_snd_una)) { 3567 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3568 if (before(ack, prior_snd_una - tp->max_window)) { 3569 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3570 tcp_send_challenge_ack(sk, skb); 3571 return -1; 3572 } 3573 goto old_ack; 3574 } 3575 3576 /* If the ack includes data we haven't sent yet, discard 3577 * this segment (RFC793 Section 3.9). 3578 */ 3579 if (after(ack, tp->snd_nxt)) 3580 goto invalid_ack; 3581 3582 if (after(ack, prior_snd_una)) { 3583 flag |= FLAG_SND_UNA_ADVANCED; 3584 icsk->icsk_retransmits = 0; 3585 } 3586 3587 prior_fackets = tp->fackets_out; 3588 rs.prior_in_flight = tcp_packets_in_flight(tp); 3589 3590 /* ts_recent update must be made after we are sure that the packet 3591 * is in window. 3592 */ 3593 if (flag & FLAG_UPDATE_TS_RECENT) 3594 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3595 3596 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3597 /* Window is constant, pure forward advance. 3598 * No more checks are required. 3599 * Note, we use the fact that SND.UNA>=SND.WL2. 3600 */ 3601 tcp_update_wl(tp, ack_seq); 3602 tcp_snd_una_update(tp, ack); 3603 flag |= FLAG_WIN_UPDATE; 3604 3605 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3606 3607 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3608 } else { 3609 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3610 3611 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3612 flag |= FLAG_DATA; 3613 else 3614 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3615 3616 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3617 3618 if (TCP_SKB_CB(skb)->sacked) 3619 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3620 &sack_state); 3621 3622 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3623 flag |= FLAG_ECE; 3624 ack_ev_flags |= CA_ACK_ECE; 3625 } 3626 3627 if (flag & FLAG_WIN_UPDATE) 3628 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3629 3630 tcp_in_ack_event(sk, ack_ev_flags); 3631 } 3632 3633 /* We passed data and got it acked, remove any soft error 3634 * log. Something worked... 3635 */ 3636 sk->sk_err_soft = 0; 3637 icsk->icsk_probes_out = 0; 3638 tp->rcv_tstamp = tcp_jiffies32; 3639 if (!prior_packets) 3640 goto no_queue; 3641 3642 /* See if we can take anything off of the retransmit queue. */ 3643 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3644 &sack_state); 3645 3646 if (tp->tlp_high_seq) 3647 tcp_process_tlp_ack(sk, ack, flag); 3648 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3649 if (flag & FLAG_SET_XMIT_TIMER) 3650 tcp_set_xmit_timer(sk); 3651 3652 if (tcp_ack_is_dubious(sk, flag)) { 3653 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3654 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3655 } 3656 3657 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3658 sk_dst_confirm(sk); 3659 3660 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3661 lost = tp->lost - lost; /* freshly marked lost */ 3662 tcp_rate_gen(sk, delivered, lost, sack_state.rate); 3663 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3664 tcp_xmit_recovery(sk, rexmit); 3665 return 1; 3666 3667 no_queue: 3668 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3669 if (flag & FLAG_DSACKING_ACK) 3670 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3671 /* If this ack opens up a zero window, clear backoff. It was 3672 * being used to time the probes, and is probably far higher than 3673 * it needs to be for normal retransmission. 3674 */ 3675 tcp_ack_probe(sk); 3676 3677 if (tp->tlp_high_seq) 3678 tcp_process_tlp_ack(sk, ack, flag); 3679 return 1; 3680 3681 invalid_ack: 3682 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3683 return -1; 3684 3685 old_ack: 3686 /* If data was SACKed, tag it and see if we should send more data. 3687 * If data was DSACKed, see if we can undo a cwnd reduction. 3688 */ 3689 if (TCP_SKB_CB(skb)->sacked) { 3690 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3691 &sack_state); 3692 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3693 tcp_xmit_recovery(sk, rexmit); 3694 } 3695 3696 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3697 return 0; 3698 } 3699 3700 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3701 bool syn, struct tcp_fastopen_cookie *foc, 3702 bool exp_opt) 3703 { 3704 /* Valid only in SYN or SYN-ACK with an even length. */ 3705 if (!foc || !syn || len < 0 || (len & 1)) 3706 return; 3707 3708 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3709 len <= TCP_FASTOPEN_COOKIE_MAX) 3710 memcpy(foc->val, cookie, len); 3711 else if (len != 0) 3712 len = -1; 3713 foc->len = len; 3714 foc->exp = exp_opt; 3715 } 3716 3717 static void smc_parse_options(const struct tcphdr *th, 3718 struct tcp_options_received *opt_rx, 3719 const unsigned char *ptr, 3720 int opsize) 3721 { 3722 #if IS_ENABLED(CONFIG_SMC) 3723 if (static_branch_unlikely(&tcp_have_smc)) { 3724 if (th->syn && !(opsize & 1) && 3725 opsize >= TCPOLEN_EXP_SMC_BASE && 3726 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3727 opt_rx->smc_ok = 1; 3728 } 3729 #endif 3730 } 3731 3732 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3733 * But, this can also be called on packets in the established flow when 3734 * the fast version below fails. 3735 */ 3736 void tcp_parse_options(const struct net *net, 3737 const struct sk_buff *skb, 3738 struct tcp_options_received *opt_rx, int estab, 3739 struct tcp_fastopen_cookie *foc) 3740 { 3741 const unsigned char *ptr; 3742 const struct tcphdr *th = tcp_hdr(skb); 3743 int length = (th->doff * 4) - sizeof(struct tcphdr); 3744 3745 ptr = (const unsigned char *)(th + 1); 3746 opt_rx->saw_tstamp = 0; 3747 3748 while (length > 0) { 3749 int opcode = *ptr++; 3750 int opsize; 3751 3752 switch (opcode) { 3753 case TCPOPT_EOL: 3754 return; 3755 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3756 length--; 3757 continue; 3758 default: 3759 opsize = *ptr++; 3760 if (opsize < 2) /* "silly options" */ 3761 return; 3762 if (opsize > length) 3763 return; /* don't parse partial options */ 3764 switch (opcode) { 3765 case TCPOPT_MSS: 3766 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3767 u16 in_mss = get_unaligned_be16(ptr); 3768 if (in_mss) { 3769 if (opt_rx->user_mss && 3770 opt_rx->user_mss < in_mss) 3771 in_mss = opt_rx->user_mss; 3772 opt_rx->mss_clamp = in_mss; 3773 } 3774 } 3775 break; 3776 case TCPOPT_WINDOW: 3777 if (opsize == TCPOLEN_WINDOW && th->syn && 3778 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3779 __u8 snd_wscale = *(__u8 *)ptr; 3780 opt_rx->wscale_ok = 1; 3781 if (snd_wscale > TCP_MAX_WSCALE) { 3782 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3783 __func__, 3784 snd_wscale, 3785 TCP_MAX_WSCALE); 3786 snd_wscale = TCP_MAX_WSCALE; 3787 } 3788 opt_rx->snd_wscale = snd_wscale; 3789 } 3790 break; 3791 case TCPOPT_TIMESTAMP: 3792 if ((opsize == TCPOLEN_TIMESTAMP) && 3793 ((estab && opt_rx->tstamp_ok) || 3794 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3795 opt_rx->saw_tstamp = 1; 3796 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3797 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3798 } 3799 break; 3800 case TCPOPT_SACK_PERM: 3801 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3802 !estab && net->ipv4.sysctl_tcp_sack) { 3803 opt_rx->sack_ok = TCP_SACK_SEEN; 3804 tcp_sack_reset(opt_rx); 3805 } 3806 break; 3807 3808 case TCPOPT_SACK: 3809 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3810 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3811 opt_rx->sack_ok) { 3812 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3813 } 3814 break; 3815 #ifdef CONFIG_TCP_MD5SIG 3816 case TCPOPT_MD5SIG: 3817 /* 3818 * The MD5 Hash has already been 3819 * checked (see tcp_v{4,6}_do_rcv()). 3820 */ 3821 break; 3822 #endif 3823 case TCPOPT_FASTOPEN: 3824 tcp_parse_fastopen_option( 3825 opsize - TCPOLEN_FASTOPEN_BASE, 3826 ptr, th->syn, foc, false); 3827 break; 3828 3829 case TCPOPT_EXP: 3830 /* Fast Open option shares code 254 using a 3831 * 16 bits magic number. 3832 */ 3833 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3834 get_unaligned_be16(ptr) == 3835 TCPOPT_FASTOPEN_MAGIC) 3836 tcp_parse_fastopen_option(opsize - 3837 TCPOLEN_EXP_FASTOPEN_BASE, 3838 ptr + 2, th->syn, foc, true); 3839 else 3840 smc_parse_options(th, opt_rx, ptr, 3841 opsize); 3842 break; 3843 3844 } 3845 ptr += opsize-2; 3846 length -= opsize; 3847 } 3848 } 3849 } 3850 EXPORT_SYMBOL(tcp_parse_options); 3851 3852 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3853 { 3854 const __be32 *ptr = (const __be32 *)(th + 1); 3855 3856 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3857 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3858 tp->rx_opt.saw_tstamp = 1; 3859 ++ptr; 3860 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3861 ++ptr; 3862 if (*ptr) 3863 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3864 else 3865 tp->rx_opt.rcv_tsecr = 0; 3866 return true; 3867 } 3868 return false; 3869 } 3870 3871 /* Fast parse options. This hopes to only see timestamps. 3872 * If it is wrong it falls back on tcp_parse_options(). 3873 */ 3874 static bool tcp_fast_parse_options(const struct net *net, 3875 const struct sk_buff *skb, 3876 const struct tcphdr *th, struct tcp_sock *tp) 3877 { 3878 /* In the spirit of fast parsing, compare doff directly to constant 3879 * values. Because equality is used, short doff can be ignored here. 3880 */ 3881 if (th->doff == (sizeof(*th) / 4)) { 3882 tp->rx_opt.saw_tstamp = 0; 3883 return false; 3884 } else if (tp->rx_opt.tstamp_ok && 3885 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3886 if (tcp_parse_aligned_timestamp(tp, th)) 3887 return true; 3888 } 3889 3890 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3891 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3892 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3893 3894 return true; 3895 } 3896 3897 #ifdef CONFIG_TCP_MD5SIG 3898 /* 3899 * Parse MD5 Signature option 3900 */ 3901 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3902 { 3903 int length = (th->doff << 2) - sizeof(*th); 3904 const u8 *ptr = (const u8 *)(th + 1); 3905 3906 /* If the TCP option is too short, we can short cut */ 3907 if (length < TCPOLEN_MD5SIG) 3908 return NULL; 3909 3910 while (length > 0) { 3911 int opcode = *ptr++; 3912 int opsize; 3913 3914 switch (opcode) { 3915 case TCPOPT_EOL: 3916 return NULL; 3917 case TCPOPT_NOP: 3918 length--; 3919 continue; 3920 default: 3921 opsize = *ptr++; 3922 if (opsize < 2 || opsize > length) 3923 return NULL; 3924 if (opcode == TCPOPT_MD5SIG) 3925 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3926 } 3927 ptr += opsize - 2; 3928 length -= opsize; 3929 } 3930 return NULL; 3931 } 3932 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3933 #endif 3934 3935 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3936 * 3937 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3938 * it can pass through stack. So, the following predicate verifies that 3939 * this segment is not used for anything but congestion avoidance or 3940 * fast retransmit. Moreover, we even are able to eliminate most of such 3941 * second order effects, if we apply some small "replay" window (~RTO) 3942 * to timestamp space. 3943 * 3944 * All these measures still do not guarantee that we reject wrapped ACKs 3945 * on networks with high bandwidth, when sequence space is recycled fastly, 3946 * but it guarantees that such events will be very rare and do not affect 3947 * connection seriously. This doesn't look nice, but alas, PAWS is really 3948 * buggy extension. 3949 * 3950 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3951 * states that events when retransmit arrives after original data are rare. 3952 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3953 * the biggest problem on large power networks even with minor reordering. 3954 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3955 * up to bandwidth of 18Gigabit/sec. 8) ] 3956 */ 3957 3958 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3959 { 3960 const struct tcp_sock *tp = tcp_sk(sk); 3961 const struct tcphdr *th = tcp_hdr(skb); 3962 u32 seq = TCP_SKB_CB(skb)->seq; 3963 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3964 3965 return (/* 1. Pure ACK with correct sequence number. */ 3966 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3967 3968 /* 2. ... and duplicate ACK. */ 3969 ack == tp->snd_una && 3970 3971 /* 3. ... and does not update window. */ 3972 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3973 3974 /* 4. ... and sits in replay window. */ 3975 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3976 } 3977 3978 static inline bool tcp_paws_discard(const struct sock *sk, 3979 const struct sk_buff *skb) 3980 { 3981 const struct tcp_sock *tp = tcp_sk(sk); 3982 3983 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3984 !tcp_disordered_ack(sk, skb); 3985 } 3986 3987 /* Check segment sequence number for validity. 3988 * 3989 * Segment controls are considered valid, if the segment 3990 * fits to the window after truncation to the window. Acceptability 3991 * of data (and SYN, FIN, of course) is checked separately. 3992 * See tcp_data_queue(), for example. 3993 * 3994 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3995 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3996 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3997 * (borrowed from freebsd) 3998 */ 3999 4000 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4001 { 4002 return !before(end_seq, tp->rcv_wup) && 4003 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4004 } 4005 4006 /* When we get a reset we do this. */ 4007 void tcp_reset(struct sock *sk) 4008 { 4009 trace_tcp_receive_reset(sk); 4010 4011 /* We want the right error as BSD sees it (and indeed as we do). */ 4012 switch (sk->sk_state) { 4013 case TCP_SYN_SENT: 4014 sk->sk_err = ECONNREFUSED; 4015 break; 4016 case TCP_CLOSE_WAIT: 4017 sk->sk_err = EPIPE; 4018 break; 4019 case TCP_CLOSE: 4020 return; 4021 default: 4022 sk->sk_err = ECONNRESET; 4023 } 4024 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4025 smp_wmb(); 4026 4027 tcp_done(sk); 4028 4029 if (!sock_flag(sk, SOCK_DEAD)) 4030 sk->sk_error_report(sk); 4031 } 4032 4033 /* 4034 * Process the FIN bit. This now behaves as it is supposed to work 4035 * and the FIN takes effect when it is validly part of sequence 4036 * space. Not before when we get holes. 4037 * 4038 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4039 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4040 * TIME-WAIT) 4041 * 4042 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4043 * close and we go into CLOSING (and later onto TIME-WAIT) 4044 * 4045 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4046 */ 4047 void tcp_fin(struct sock *sk) 4048 { 4049 struct tcp_sock *tp = tcp_sk(sk); 4050 4051 inet_csk_schedule_ack(sk); 4052 4053 sk->sk_shutdown |= RCV_SHUTDOWN; 4054 sock_set_flag(sk, SOCK_DONE); 4055 4056 switch (sk->sk_state) { 4057 case TCP_SYN_RECV: 4058 case TCP_ESTABLISHED: 4059 /* Move to CLOSE_WAIT */ 4060 tcp_set_state(sk, TCP_CLOSE_WAIT); 4061 inet_csk(sk)->icsk_ack.pingpong = 1; 4062 break; 4063 4064 case TCP_CLOSE_WAIT: 4065 case TCP_CLOSING: 4066 /* Received a retransmission of the FIN, do 4067 * nothing. 4068 */ 4069 break; 4070 case TCP_LAST_ACK: 4071 /* RFC793: Remain in the LAST-ACK state. */ 4072 break; 4073 4074 case TCP_FIN_WAIT1: 4075 /* This case occurs when a simultaneous close 4076 * happens, we must ack the received FIN and 4077 * enter the CLOSING state. 4078 */ 4079 tcp_send_ack(sk); 4080 tcp_set_state(sk, TCP_CLOSING); 4081 break; 4082 case TCP_FIN_WAIT2: 4083 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4084 tcp_send_ack(sk); 4085 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4086 break; 4087 default: 4088 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4089 * cases we should never reach this piece of code. 4090 */ 4091 pr_err("%s: Impossible, sk->sk_state=%d\n", 4092 __func__, sk->sk_state); 4093 break; 4094 } 4095 4096 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4097 * Probably, we should reset in this case. For now drop them. 4098 */ 4099 skb_rbtree_purge(&tp->out_of_order_queue); 4100 if (tcp_is_sack(tp)) 4101 tcp_sack_reset(&tp->rx_opt); 4102 sk_mem_reclaim(sk); 4103 4104 if (!sock_flag(sk, SOCK_DEAD)) { 4105 sk->sk_state_change(sk); 4106 4107 /* Do not send POLL_HUP for half duplex close. */ 4108 if (sk->sk_shutdown == SHUTDOWN_MASK || 4109 sk->sk_state == TCP_CLOSE) 4110 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4111 else 4112 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4113 } 4114 } 4115 4116 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4117 u32 end_seq) 4118 { 4119 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4120 if (before(seq, sp->start_seq)) 4121 sp->start_seq = seq; 4122 if (after(end_seq, sp->end_seq)) 4123 sp->end_seq = end_seq; 4124 return true; 4125 } 4126 return false; 4127 } 4128 4129 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4130 { 4131 struct tcp_sock *tp = tcp_sk(sk); 4132 4133 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4134 int mib_idx; 4135 4136 if (before(seq, tp->rcv_nxt)) 4137 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4138 else 4139 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4140 4141 NET_INC_STATS(sock_net(sk), mib_idx); 4142 4143 tp->rx_opt.dsack = 1; 4144 tp->duplicate_sack[0].start_seq = seq; 4145 tp->duplicate_sack[0].end_seq = end_seq; 4146 } 4147 } 4148 4149 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4150 { 4151 struct tcp_sock *tp = tcp_sk(sk); 4152 4153 if (!tp->rx_opt.dsack) 4154 tcp_dsack_set(sk, seq, end_seq); 4155 else 4156 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4157 } 4158 4159 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4160 { 4161 struct tcp_sock *tp = tcp_sk(sk); 4162 4163 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4164 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4165 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4166 tcp_enter_quickack_mode(sk); 4167 4168 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4169 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4170 4171 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4172 end_seq = tp->rcv_nxt; 4173 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4174 } 4175 } 4176 4177 tcp_send_ack(sk); 4178 } 4179 4180 /* These routines update the SACK block as out-of-order packets arrive or 4181 * in-order packets close up the sequence space. 4182 */ 4183 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4184 { 4185 int this_sack; 4186 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4187 struct tcp_sack_block *swalk = sp + 1; 4188 4189 /* See if the recent change to the first SACK eats into 4190 * or hits the sequence space of other SACK blocks, if so coalesce. 4191 */ 4192 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4193 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4194 int i; 4195 4196 /* Zap SWALK, by moving every further SACK up by one slot. 4197 * Decrease num_sacks. 4198 */ 4199 tp->rx_opt.num_sacks--; 4200 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4201 sp[i] = sp[i + 1]; 4202 continue; 4203 } 4204 this_sack++, swalk++; 4205 } 4206 } 4207 4208 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4209 { 4210 struct tcp_sock *tp = tcp_sk(sk); 4211 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4212 int cur_sacks = tp->rx_opt.num_sacks; 4213 int this_sack; 4214 4215 if (!cur_sacks) 4216 goto new_sack; 4217 4218 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4219 if (tcp_sack_extend(sp, seq, end_seq)) { 4220 /* Rotate this_sack to the first one. */ 4221 for (; this_sack > 0; this_sack--, sp--) 4222 swap(*sp, *(sp - 1)); 4223 if (cur_sacks > 1) 4224 tcp_sack_maybe_coalesce(tp); 4225 return; 4226 } 4227 } 4228 4229 /* Could not find an adjacent existing SACK, build a new one, 4230 * put it at the front, and shift everyone else down. We 4231 * always know there is at least one SACK present already here. 4232 * 4233 * If the sack array is full, forget about the last one. 4234 */ 4235 if (this_sack >= TCP_NUM_SACKS) { 4236 this_sack--; 4237 tp->rx_opt.num_sacks--; 4238 sp--; 4239 } 4240 for (; this_sack > 0; this_sack--, sp--) 4241 *sp = *(sp - 1); 4242 4243 new_sack: 4244 /* Build the new head SACK, and we're done. */ 4245 sp->start_seq = seq; 4246 sp->end_seq = end_seq; 4247 tp->rx_opt.num_sacks++; 4248 } 4249 4250 /* RCV.NXT advances, some SACKs should be eaten. */ 4251 4252 static void tcp_sack_remove(struct tcp_sock *tp) 4253 { 4254 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4255 int num_sacks = tp->rx_opt.num_sacks; 4256 int this_sack; 4257 4258 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4259 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4260 tp->rx_opt.num_sacks = 0; 4261 return; 4262 } 4263 4264 for (this_sack = 0; this_sack < num_sacks;) { 4265 /* Check if the start of the sack is covered by RCV.NXT. */ 4266 if (!before(tp->rcv_nxt, sp->start_seq)) { 4267 int i; 4268 4269 /* RCV.NXT must cover all the block! */ 4270 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4271 4272 /* Zap this SACK, by moving forward any other SACKS. */ 4273 for (i = this_sack+1; i < num_sacks; i++) 4274 tp->selective_acks[i-1] = tp->selective_acks[i]; 4275 num_sacks--; 4276 continue; 4277 } 4278 this_sack++; 4279 sp++; 4280 } 4281 tp->rx_opt.num_sacks = num_sacks; 4282 } 4283 4284 /** 4285 * tcp_try_coalesce - try to merge skb to prior one 4286 * @sk: socket 4287 * @dest: destination queue 4288 * @to: prior buffer 4289 * @from: buffer to add in queue 4290 * @fragstolen: pointer to boolean 4291 * 4292 * Before queueing skb @from after @to, try to merge them 4293 * to reduce overall memory use and queue lengths, if cost is small. 4294 * Packets in ofo or receive queues can stay a long time. 4295 * Better try to coalesce them right now to avoid future collapses. 4296 * Returns true if caller should free @from instead of queueing it 4297 */ 4298 static bool tcp_try_coalesce(struct sock *sk, 4299 struct sk_buff *to, 4300 struct sk_buff *from, 4301 bool *fragstolen) 4302 { 4303 int delta; 4304 4305 *fragstolen = false; 4306 4307 /* Its possible this segment overlaps with prior segment in queue */ 4308 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4309 return false; 4310 4311 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4312 return false; 4313 4314 atomic_add(delta, &sk->sk_rmem_alloc); 4315 sk_mem_charge(sk, delta); 4316 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4317 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4318 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4319 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4320 4321 if (TCP_SKB_CB(from)->has_rxtstamp) { 4322 TCP_SKB_CB(to)->has_rxtstamp = true; 4323 to->tstamp = from->tstamp; 4324 } 4325 4326 return true; 4327 } 4328 4329 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4330 { 4331 sk_drops_add(sk, skb); 4332 __kfree_skb(skb); 4333 } 4334 4335 /* This one checks to see if we can put data from the 4336 * out_of_order queue into the receive_queue. 4337 */ 4338 static void tcp_ofo_queue(struct sock *sk) 4339 { 4340 struct tcp_sock *tp = tcp_sk(sk); 4341 __u32 dsack_high = tp->rcv_nxt; 4342 bool fin, fragstolen, eaten; 4343 struct sk_buff *skb, *tail; 4344 struct rb_node *p; 4345 4346 p = rb_first(&tp->out_of_order_queue); 4347 while (p) { 4348 skb = rb_to_skb(p); 4349 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4350 break; 4351 4352 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4353 __u32 dsack = dsack_high; 4354 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4355 dsack_high = TCP_SKB_CB(skb)->end_seq; 4356 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4357 } 4358 p = rb_next(p); 4359 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4360 4361 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4362 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4363 tcp_drop(sk, skb); 4364 continue; 4365 } 4366 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4367 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4368 TCP_SKB_CB(skb)->end_seq); 4369 4370 tail = skb_peek_tail(&sk->sk_receive_queue); 4371 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4372 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4373 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4374 if (!eaten) 4375 __skb_queue_tail(&sk->sk_receive_queue, skb); 4376 else 4377 kfree_skb_partial(skb, fragstolen); 4378 4379 if (unlikely(fin)) { 4380 tcp_fin(sk); 4381 /* tcp_fin() purges tp->out_of_order_queue, 4382 * so we must end this loop right now. 4383 */ 4384 break; 4385 } 4386 } 4387 } 4388 4389 static bool tcp_prune_ofo_queue(struct sock *sk); 4390 static int tcp_prune_queue(struct sock *sk); 4391 4392 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4393 unsigned int size) 4394 { 4395 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4396 !sk_rmem_schedule(sk, skb, size)) { 4397 4398 if (tcp_prune_queue(sk) < 0) 4399 return -1; 4400 4401 while (!sk_rmem_schedule(sk, skb, size)) { 4402 if (!tcp_prune_ofo_queue(sk)) 4403 return -1; 4404 } 4405 } 4406 return 0; 4407 } 4408 4409 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4410 { 4411 struct tcp_sock *tp = tcp_sk(sk); 4412 struct rb_node **p, *parent; 4413 struct sk_buff *skb1; 4414 u32 seq, end_seq; 4415 bool fragstolen; 4416 4417 tcp_ecn_check_ce(tp, skb); 4418 4419 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4420 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4421 tcp_drop(sk, skb); 4422 return; 4423 } 4424 4425 /* Disable header prediction. */ 4426 tp->pred_flags = 0; 4427 inet_csk_schedule_ack(sk); 4428 4429 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4430 seq = TCP_SKB_CB(skb)->seq; 4431 end_seq = TCP_SKB_CB(skb)->end_seq; 4432 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4433 tp->rcv_nxt, seq, end_seq); 4434 4435 p = &tp->out_of_order_queue.rb_node; 4436 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4437 /* Initial out of order segment, build 1 SACK. */ 4438 if (tcp_is_sack(tp)) { 4439 tp->rx_opt.num_sacks = 1; 4440 tp->selective_acks[0].start_seq = seq; 4441 tp->selective_acks[0].end_seq = end_seq; 4442 } 4443 rb_link_node(&skb->rbnode, NULL, p); 4444 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4445 tp->ooo_last_skb = skb; 4446 goto end; 4447 } 4448 4449 /* In the typical case, we are adding an skb to the end of the list. 4450 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4451 */ 4452 if (tcp_try_coalesce(sk, tp->ooo_last_skb, 4453 skb, &fragstolen)) { 4454 coalesce_done: 4455 tcp_grow_window(sk, skb); 4456 kfree_skb_partial(skb, fragstolen); 4457 skb = NULL; 4458 goto add_sack; 4459 } 4460 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4461 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4462 parent = &tp->ooo_last_skb->rbnode; 4463 p = &parent->rb_right; 4464 goto insert; 4465 } 4466 4467 /* Find place to insert this segment. Handle overlaps on the way. */ 4468 parent = NULL; 4469 while (*p) { 4470 parent = *p; 4471 skb1 = rb_to_skb(parent); 4472 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4473 p = &parent->rb_left; 4474 continue; 4475 } 4476 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4477 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4478 /* All the bits are present. Drop. */ 4479 NET_INC_STATS(sock_net(sk), 4480 LINUX_MIB_TCPOFOMERGE); 4481 __kfree_skb(skb); 4482 skb = NULL; 4483 tcp_dsack_set(sk, seq, end_seq); 4484 goto add_sack; 4485 } 4486 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4487 /* Partial overlap. */ 4488 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4489 } else { 4490 /* skb's seq == skb1's seq and skb covers skb1. 4491 * Replace skb1 with skb. 4492 */ 4493 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4494 &tp->out_of_order_queue); 4495 tcp_dsack_extend(sk, 4496 TCP_SKB_CB(skb1)->seq, 4497 TCP_SKB_CB(skb1)->end_seq); 4498 NET_INC_STATS(sock_net(sk), 4499 LINUX_MIB_TCPOFOMERGE); 4500 __kfree_skb(skb1); 4501 goto merge_right; 4502 } 4503 } else if (tcp_try_coalesce(sk, skb1, 4504 skb, &fragstolen)) { 4505 goto coalesce_done; 4506 } 4507 p = &parent->rb_right; 4508 } 4509 insert: 4510 /* Insert segment into RB tree. */ 4511 rb_link_node(&skb->rbnode, parent, p); 4512 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4513 4514 merge_right: 4515 /* Remove other segments covered by skb. */ 4516 while ((skb1 = skb_rb_next(skb)) != NULL) { 4517 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4518 break; 4519 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4520 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4521 end_seq); 4522 break; 4523 } 4524 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4525 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4526 TCP_SKB_CB(skb1)->end_seq); 4527 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4528 tcp_drop(sk, skb1); 4529 } 4530 /* If there is no skb after us, we are the last_skb ! */ 4531 if (!skb1) 4532 tp->ooo_last_skb = skb; 4533 4534 add_sack: 4535 if (tcp_is_sack(tp)) 4536 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4537 end: 4538 if (skb) { 4539 tcp_grow_window(sk, skb); 4540 skb_condense(skb); 4541 skb_set_owner_r(skb, sk); 4542 } 4543 } 4544 4545 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4546 bool *fragstolen) 4547 { 4548 int eaten; 4549 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4550 4551 __skb_pull(skb, hdrlen); 4552 eaten = (tail && 4553 tcp_try_coalesce(sk, tail, 4554 skb, fragstolen)) ? 1 : 0; 4555 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4556 if (!eaten) { 4557 __skb_queue_tail(&sk->sk_receive_queue, skb); 4558 skb_set_owner_r(skb, sk); 4559 } 4560 return eaten; 4561 } 4562 4563 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4564 { 4565 struct sk_buff *skb; 4566 int err = -ENOMEM; 4567 int data_len = 0; 4568 bool fragstolen; 4569 4570 if (size == 0) 4571 return 0; 4572 4573 if (size > PAGE_SIZE) { 4574 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4575 4576 data_len = npages << PAGE_SHIFT; 4577 size = data_len + (size & ~PAGE_MASK); 4578 } 4579 skb = alloc_skb_with_frags(size - data_len, data_len, 4580 PAGE_ALLOC_COSTLY_ORDER, 4581 &err, sk->sk_allocation); 4582 if (!skb) 4583 goto err; 4584 4585 skb_put(skb, size - data_len); 4586 skb->data_len = data_len; 4587 skb->len = size; 4588 4589 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4590 goto err_free; 4591 4592 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4593 if (err) 4594 goto err_free; 4595 4596 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4597 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4598 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4599 4600 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4601 WARN_ON_ONCE(fragstolen); /* should not happen */ 4602 __kfree_skb(skb); 4603 } 4604 return size; 4605 4606 err_free: 4607 kfree_skb(skb); 4608 err: 4609 return err; 4610 4611 } 4612 4613 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4614 { 4615 struct tcp_sock *tp = tcp_sk(sk); 4616 bool fragstolen; 4617 int eaten; 4618 4619 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4620 __kfree_skb(skb); 4621 return; 4622 } 4623 skb_dst_drop(skb); 4624 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4625 4626 tcp_ecn_accept_cwr(tp, skb); 4627 4628 tp->rx_opt.dsack = 0; 4629 4630 /* Queue data for delivery to the user. 4631 * Packets in sequence go to the receive queue. 4632 * Out of sequence packets to the out_of_order_queue. 4633 */ 4634 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4635 if (tcp_receive_window(tp) == 0) 4636 goto out_of_window; 4637 4638 /* Ok. In sequence. In window. */ 4639 queue_and_out: 4640 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4641 sk_forced_mem_schedule(sk, skb->truesize); 4642 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4643 goto drop; 4644 4645 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4646 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4647 if (skb->len) 4648 tcp_event_data_recv(sk, skb); 4649 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4650 tcp_fin(sk); 4651 4652 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4653 tcp_ofo_queue(sk); 4654 4655 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4656 * gap in queue is filled. 4657 */ 4658 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4659 inet_csk(sk)->icsk_ack.pingpong = 0; 4660 } 4661 4662 if (tp->rx_opt.num_sacks) 4663 tcp_sack_remove(tp); 4664 4665 tcp_fast_path_check(sk); 4666 4667 if (eaten > 0) 4668 kfree_skb_partial(skb, fragstolen); 4669 if (!sock_flag(sk, SOCK_DEAD)) 4670 sk->sk_data_ready(sk); 4671 return; 4672 } 4673 4674 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4675 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4676 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4677 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4678 4679 out_of_window: 4680 tcp_enter_quickack_mode(sk); 4681 inet_csk_schedule_ack(sk); 4682 drop: 4683 tcp_drop(sk, skb); 4684 return; 4685 } 4686 4687 /* Out of window. F.e. zero window probe. */ 4688 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4689 goto out_of_window; 4690 4691 tcp_enter_quickack_mode(sk); 4692 4693 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4694 /* Partial packet, seq < rcv_next < end_seq */ 4695 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4696 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4697 TCP_SKB_CB(skb)->end_seq); 4698 4699 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4700 4701 /* If window is closed, drop tail of packet. But after 4702 * remembering D-SACK for its head made in previous line. 4703 */ 4704 if (!tcp_receive_window(tp)) 4705 goto out_of_window; 4706 goto queue_and_out; 4707 } 4708 4709 tcp_data_queue_ofo(sk, skb); 4710 } 4711 4712 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4713 { 4714 if (list) 4715 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4716 4717 return skb_rb_next(skb); 4718 } 4719 4720 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4721 struct sk_buff_head *list, 4722 struct rb_root *root) 4723 { 4724 struct sk_buff *next = tcp_skb_next(skb, list); 4725 4726 if (list) 4727 __skb_unlink(skb, list); 4728 else 4729 rb_erase(&skb->rbnode, root); 4730 4731 __kfree_skb(skb); 4732 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4733 4734 return next; 4735 } 4736 4737 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4738 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4739 { 4740 struct rb_node **p = &root->rb_node; 4741 struct rb_node *parent = NULL; 4742 struct sk_buff *skb1; 4743 4744 while (*p) { 4745 parent = *p; 4746 skb1 = rb_to_skb(parent); 4747 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4748 p = &parent->rb_left; 4749 else 4750 p = &parent->rb_right; 4751 } 4752 rb_link_node(&skb->rbnode, parent, p); 4753 rb_insert_color(&skb->rbnode, root); 4754 } 4755 4756 /* Collapse contiguous sequence of skbs head..tail with 4757 * sequence numbers start..end. 4758 * 4759 * If tail is NULL, this means until the end of the queue. 4760 * 4761 * Segments with FIN/SYN are not collapsed (only because this 4762 * simplifies code) 4763 */ 4764 static void 4765 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4766 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4767 { 4768 struct sk_buff *skb = head, *n; 4769 struct sk_buff_head tmp; 4770 bool end_of_skbs; 4771 4772 /* First, check that queue is collapsible and find 4773 * the point where collapsing can be useful. 4774 */ 4775 restart: 4776 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4777 n = tcp_skb_next(skb, list); 4778 4779 /* No new bits? It is possible on ofo queue. */ 4780 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4781 skb = tcp_collapse_one(sk, skb, list, root); 4782 if (!skb) 4783 break; 4784 goto restart; 4785 } 4786 4787 /* The first skb to collapse is: 4788 * - not SYN/FIN and 4789 * - bloated or contains data before "start" or 4790 * overlaps to the next one. 4791 */ 4792 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4793 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4794 before(TCP_SKB_CB(skb)->seq, start))) { 4795 end_of_skbs = false; 4796 break; 4797 } 4798 4799 if (n && n != tail && 4800 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4801 end_of_skbs = false; 4802 break; 4803 } 4804 4805 /* Decided to skip this, advance start seq. */ 4806 start = TCP_SKB_CB(skb)->end_seq; 4807 } 4808 if (end_of_skbs || 4809 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4810 return; 4811 4812 __skb_queue_head_init(&tmp); 4813 4814 while (before(start, end)) { 4815 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4816 struct sk_buff *nskb; 4817 4818 nskb = alloc_skb(copy, GFP_ATOMIC); 4819 if (!nskb) 4820 break; 4821 4822 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4823 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4824 if (list) 4825 __skb_queue_before(list, skb, nskb); 4826 else 4827 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4828 skb_set_owner_r(nskb, sk); 4829 4830 /* Copy data, releasing collapsed skbs. */ 4831 while (copy > 0) { 4832 int offset = start - TCP_SKB_CB(skb)->seq; 4833 int size = TCP_SKB_CB(skb)->end_seq - start; 4834 4835 BUG_ON(offset < 0); 4836 if (size > 0) { 4837 size = min(copy, size); 4838 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4839 BUG(); 4840 TCP_SKB_CB(nskb)->end_seq += size; 4841 copy -= size; 4842 start += size; 4843 } 4844 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4845 skb = tcp_collapse_one(sk, skb, list, root); 4846 if (!skb || 4847 skb == tail || 4848 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4849 goto end; 4850 } 4851 } 4852 } 4853 end: 4854 skb_queue_walk_safe(&tmp, skb, n) 4855 tcp_rbtree_insert(root, skb); 4856 } 4857 4858 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4859 * and tcp_collapse() them until all the queue is collapsed. 4860 */ 4861 static void tcp_collapse_ofo_queue(struct sock *sk) 4862 { 4863 struct tcp_sock *tp = tcp_sk(sk); 4864 struct sk_buff *skb, *head; 4865 u32 start, end; 4866 4867 skb = skb_rb_first(&tp->out_of_order_queue); 4868 new_range: 4869 if (!skb) { 4870 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4871 return; 4872 } 4873 start = TCP_SKB_CB(skb)->seq; 4874 end = TCP_SKB_CB(skb)->end_seq; 4875 4876 for (head = skb;;) { 4877 skb = skb_rb_next(skb); 4878 4879 /* Range is terminated when we see a gap or when 4880 * we are at the queue end. 4881 */ 4882 if (!skb || 4883 after(TCP_SKB_CB(skb)->seq, end) || 4884 before(TCP_SKB_CB(skb)->end_seq, start)) { 4885 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4886 head, skb, start, end); 4887 goto new_range; 4888 } 4889 4890 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4891 start = TCP_SKB_CB(skb)->seq; 4892 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4893 end = TCP_SKB_CB(skb)->end_seq; 4894 } 4895 } 4896 4897 /* 4898 * Clean the out-of-order queue to make room. 4899 * We drop high sequences packets to : 4900 * 1) Let a chance for holes to be filled. 4901 * 2) not add too big latencies if thousands of packets sit there. 4902 * (But if application shrinks SO_RCVBUF, we could still end up 4903 * freeing whole queue here) 4904 * 4905 * Return true if queue has shrunk. 4906 */ 4907 static bool tcp_prune_ofo_queue(struct sock *sk) 4908 { 4909 struct tcp_sock *tp = tcp_sk(sk); 4910 struct rb_node *node, *prev; 4911 4912 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4913 return false; 4914 4915 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4916 node = &tp->ooo_last_skb->rbnode; 4917 do { 4918 prev = rb_prev(node); 4919 rb_erase(node, &tp->out_of_order_queue); 4920 tcp_drop(sk, rb_to_skb(node)); 4921 sk_mem_reclaim(sk); 4922 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4923 !tcp_under_memory_pressure(sk)) 4924 break; 4925 node = prev; 4926 } while (node); 4927 tp->ooo_last_skb = rb_to_skb(prev); 4928 4929 /* Reset SACK state. A conforming SACK implementation will 4930 * do the same at a timeout based retransmit. When a connection 4931 * is in a sad state like this, we care only about integrity 4932 * of the connection not performance. 4933 */ 4934 if (tp->rx_opt.sack_ok) 4935 tcp_sack_reset(&tp->rx_opt); 4936 return true; 4937 } 4938 4939 /* Reduce allocated memory if we can, trying to get 4940 * the socket within its memory limits again. 4941 * 4942 * Return less than zero if we should start dropping frames 4943 * until the socket owning process reads some of the data 4944 * to stabilize the situation. 4945 */ 4946 static int tcp_prune_queue(struct sock *sk) 4947 { 4948 struct tcp_sock *tp = tcp_sk(sk); 4949 4950 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4951 4952 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4953 4954 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4955 tcp_clamp_window(sk); 4956 else if (tcp_under_memory_pressure(sk)) 4957 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4958 4959 tcp_collapse_ofo_queue(sk); 4960 if (!skb_queue_empty(&sk->sk_receive_queue)) 4961 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4962 skb_peek(&sk->sk_receive_queue), 4963 NULL, 4964 tp->copied_seq, tp->rcv_nxt); 4965 sk_mem_reclaim(sk); 4966 4967 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4968 return 0; 4969 4970 /* Collapsing did not help, destructive actions follow. 4971 * This must not ever occur. */ 4972 4973 tcp_prune_ofo_queue(sk); 4974 4975 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4976 return 0; 4977 4978 /* If we are really being abused, tell the caller to silently 4979 * drop receive data on the floor. It will get retransmitted 4980 * and hopefully then we'll have sufficient space. 4981 */ 4982 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4983 4984 /* Massive buffer overcommit. */ 4985 tp->pred_flags = 0; 4986 return -1; 4987 } 4988 4989 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4990 { 4991 const struct tcp_sock *tp = tcp_sk(sk); 4992 4993 /* If the user specified a specific send buffer setting, do 4994 * not modify it. 4995 */ 4996 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4997 return false; 4998 4999 /* If we are under global TCP memory pressure, do not expand. */ 5000 if (tcp_under_memory_pressure(sk)) 5001 return false; 5002 5003 /* If we are under soft global TCP memory pressure, do not expand. */ 5004 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5005 return false; 5006 5007 /* If we filled the congestion window, do not expand. */ 5008 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5009 return false; 5010 5011 return true; 5012 } 5013 5014 /* When incoming ACK allowed to free some skb from write_queue, 5015 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5016 * on the exit from tcp input handler. 5017 * 5018 * PROBLEM: sndbuf expansion does not work well with largesend. 5019 */ 5020 static void tcp_new_space(struct sock *sk) 5021 { 5022 struct tcp_sock *tp = tcp_sk(sk); 5023 5024 if (tcp_should_expand_sndbuf(sk)) { 5025 tcp_sndbuf_expand(sk); 5026 tp->snd_cwnd_stamp = tcp_jiffies32; 5027 } 5028 5029 sk->sk_write_space(sk); 5030 } 5031 5032 static void tcp_check_space(struct sock *sk) 5033 { 5034 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5035 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5036 /* pairs with tcp_poll() */ 5037 smp_mb(); 5038 if (sk->sk_socket && 5039 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5040 tcp_new_space(sk); 5041 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5042 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5043 } 5044 } 5045 } 5046 5047 static inline void tcp_data_snd_check(struct sock *sk) 5048 { 5049 tcp_push_pending_frames(sk); 5050 tcp_check_space(sk); 5051 } 5052 5053 /* 5054 * Check if sending an ack is needed. 5055 */ 5056 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5057 { 5058 struct tcp_sock *tp = tcp_sk(sk); 5059 5060 /* More than one full frame received... */ 5061 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5062 /* ... and right edge of window advances far enough. 5063 * (tcp_recvmsg() will send ACK otherwise). Or... 5064 */ 5065 __tcp_select_window(sk) >= tp->rcv_wnd) || 5066 /* We ACK each frame or... */ 5067 tcp_in_quickack_mode(sk) || 5068 /* We have out of order data. */ 5069 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5070 /* Then ack it now */ 5071 tcp_send_ack(sk); 5072 } else { 5073 /* Else, send delayed ack. */ 5074 tcp_send_delayed_ack(sk); 5075 } 5076 } 5077 5078 static inline void tcp_ack_snd_check(struct sock *sk) 5079 { 5080 if (!inet_csk_ack_scheduled(sk)) { 5081 /* We sent a data segment already. */ 5082 return; 5083 } 5084 __tcp_ack_snd_check(sk, 1); 5085 } 5086 5087 /* 5088 * This routine is only called when we have urgent data 5089 * signaled. Its the 'slow' part of tcp_urg. It could be 5090 * moved inline now as tcp_urg is only called from one 5091 * place. We handle URGent data wrong. We have to - as 5092 * BSD still doesn't use the correction from RFC961. 5093 * For 1003.1g we should support a new option TCP_STDURG to permit 5094 * either form (or just set the sysctl tcp_stdurg). 5095 */ 5096 5097 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5098 { 5099 struct tcp_sock *tp = tcp_sk(sk); 5100 u32 ptr = ntohs(th->urg_ptr); 5101 5102 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5103 ptr--; 5104 ptr += ntohl(th->seq); 5105 5106 /* Ignore urgent data that we've already seen and read. */ 5107 if (after(tp->copied_seq, ptr)) 5108 return; 5109 5110 /* Do not replay urg ptr. 5111 * 5112 * NOTE: interesting situation not covered by specs. 5113 * Misbehaving sender may send urg ptr, pointing to segment, 5114 * which we already have in ofo queue. We are not able to fetch 5115 * such data and will stay in TCP_URG_NOTYET until will be eaten 5116 * by recvmsg(). Seems, we are not obliged to handle such wicked 5117 * situations. But it is worth to think about possibility of some 5118 * DoSes using some hypothetical application level deadlock. 5119 */ 5120 if (before(ptr, tp->rcv_nxt)) 5121 return; 5122 5123 /* Do we already have a newer (or duplicate) urgent pointer? */ 5124 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5125 return; 5126 5127 /* Tell the world about our new urgent pointer. */ 5128 sk_send_sigurg(sk); 5129 5130 /* We may be adding urgent data when the last byte read was 5131 * urgent. To do this requires some care. We cannot just ignore 5132 * tp->copied_seq since we would read the last urgent byte again 5133 * as data, nor can we alter copied_seq until this data arrives 5134 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5135 * 5136 * NOTE. Double Dutch. Rendering to plain English: author of comment 5137 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5138 * and expect that both A and B disappear from stream. This is _wrong_. 5139 * Though this happens in BSD with high probability, this is occasional. 5140 * Any application relying on this is buggy. Note also, that fix "works" 5141 * only in this artificial test. Insert some normal data between A and B and we will 5142 * decline of BSD again. Verdict: it is better to remove to trap 5143 * buggy users. 5144 */ 5145 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5146 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5147 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5148 tp->copied_seq++; 5149 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5150 __skb_unlink(skb, &sk->sk_receive_queue); 5151 __kfree_skb(skb); 5152 } 5153 } 5154 5155 tp->urg_data = TCP_URG_NOTYET; 5156 tp->urg_seq = ptr; 5157 5158 /* Disable header prediction. */ 5159 tp->pred_flags = 0; 5160 } 5161 5162 /* This is the 'fast' part of urgent handling. */ 5163 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5164 { 5165 struct tcp_sock *tp = tcp_sk(sk); 5166 5167 /* Check if we get a new urgent pointer - normally not. */ 5168 if (th->urg) 5169 tcp_check_urg(sk, th); 5170 5171 /* Do we wait for any urgent data? - normally not... */ 5172 if (tp->urg_data == TCP_URG_NOTYET) { 5173 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5174 th->syn; 5175 5176 /* Is the urgent pointer pointing into this packet? */ 5177 if (ptr < skb->len) { 5178 u8 tmp; 5179 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5180 BUG(); 5181 tp->urg_data = TCP_URG_VALID | tmp; 5182 if (!sock_flag(sk, SOCK_DEAD)) 5183 sk->sk_data_ready(sk); 5184 } 5185 } 5186 } 5187 5188 /* Accept RST for rcv_nxt - 1 after a FIN. 5189 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5190 * FIN is sent followed by a RST packet. The RST is sent with the same 5191 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5192 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5193 * ACKs on the closed socket. In addition middleboxes can drop either the 5194 * challenge ACK or a subsequent RST. 5195 */ 5196 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5197 { 5198 struct tcp_sock *tp = tcp_sk(sk); 5199 5200 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5201 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5202 TCPF_CLOSING)); 5203 } 5204 5205 /* Does PAWS and seqno based validation of an incoming segment, flags will 5206 * play significant role here. 5207 */ 5208 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5209 const struct tcphdr *th, int syn_inerr) 5210 { 5211 struct tcp_sock *tp = tcp_sk(sk); 5212 bool rst_seq_match = false; 5213 5214 /* RFC1323: H1. Apply PAWS check first. */ 5215 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5216 tp->rx_opt.saw_tstamp && 5217 tcp_paws_discard(sk, skb)) { 5218 if (!th->rst) { 5219 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5220 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5221 LINUX_MIB_TCPACKSKIPPEDPAWS, 5222 &tp->last_oow_ack_time)) 5223 tcp_send_dupack(sk, skb); 5224 goto discard; 5225 } 5226 /* Reset is accepted even if it did not pass PAWS. */ 5227 } 5228 5229 /* Step 1: check sequence number */ 5230 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5231 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5232 * (RST) segments are validated by checking their SEQ-fields." 5233 * And page 69: "If an incoming segment is not acceptable, 5234 * an acknowledgment should be sent in reply (unless the RST 5235 * bit is set, if so drop the segment and return)". 5236 */ 5237 if (!th->rst) { 5238 if (th->syn) 5239 goto syn_challenge; 5240 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5241 LINUX_MIB_TCPACKSKIPPEDSEQ, 5242 &tp->last_oow_ack_time)) 5243 tcp_send_dupack(sk, skb); 5244 } else if (tcp_reset_check(sk, skb)) { 5245 tcp_reset(sk); 5246 } 5247 goto discard; 5248 } 5249 5250 /* Step 2: check RST bit */ 5251 if (th->rst) { 5252 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5253 * FIN and SACK too if available): 5254 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5255 * the right-most SACK block, 5256 * then 5257 * RESET the connection 5258 * else 5259 * Send a challenge ACK 5260 */ 5261 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5262 tcp_reset_check(sk, skb)) { 5263 rst_seq_match = true; 5264 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5265 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5266 int max_sack = sp[0].end_seq; 5267 int this_sack; 5268 5269 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5270 ++this_sack) { 5271 max_sack = after(sp[this_sack].end_seq, 5272 max_sack) ? 5273 sp[this_sack].end_seq : max_sack; 5274 } 5275 5276 if (TCP_SKB_CB(skb)->seq == max_sack) 5277 rst_seq_match = true; 5278 } 5279 5280 if (rst_seq_match) 5281 tcp_reset(sk); 5282 else { 5283 /* Disable TFO if RST is out-of-order 5284 * and no data has been received 5285 * for current active TFO socket 5286 */ 5287 if (tp->syn_fastopen && !tp->data_segs_in && 5288 sk->sk_state == TCP_ESTABLISHED) 5289 tcp_fastopen_active_disable(sk); 5290 tcp_send_challenge_ack(sk, skb); 5291 } 5292 goto discard; 5293 } 5294 5295 /* step 3: check security and precedence [ignored] */ 5296 5297 /* step 4: Check for a SYN 5298 * RFC 5961 4.2 : Send a challenge ack 5299 */ 5300 if (th->syn) { 5301 syn_challenge: 5302 if (syn_inerr) 5303 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5304 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5305 tcp_send_challenge_ack(sk, skb); 5306 goto discard; 5307 } 5308 5309 return true; 5310 5311 discard: 5312 tcp_drop(sk, skb); 5313 return false; 5314 } 5315 5316 /* 5317 * TCP receive function for the ESTABLISHED state. 5318 * 5319 * It is split into a fast path and a slow path. The fast path is 5320 * disabled when: 5321 * - A zero window was announced from us - zero window probing 5322 * is only handled properly in the slow path. 5323 * - Out of order segments arrived. 5324 * - Urgent data is expected. 5325 * - There is no buffer space left 5326 * - Unexpected TCP flags/window values/header lengths are received 5327 * (detected by checking the TCP header against pred_flags) 5328 * - Data is sent in both directions. Fast path only supports pure senders 5329 * or pure receivers (this means either the sequence number or the ack 5330 * value must stay constant) 5331 * - Unexpected TCP option. 5332 * 5333 * When these conditions are not satisfied it drops into a standard 5334 * receive procedure patterned after RFC793 to handle all cases. 5335 * The first three cases are guaranteed by proper pred_flags setting, 5336 * the rest is checked inline. Fast processing is turned on in 5337 * tcp_data_queue when everything is OK. 5338 */ 5339 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5340 const struct tcphdr *th) 5341 { 5342 unsigned int len = skb->len; 5343 struct tcp_sock *tp = tcp_sk(sk); 5344 5345 tcp_mstamp_refresh(tp); 5346 if (unlikely(!sk->sk_rx_dst)) 5347 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5348 /* 5349 * Header prediction. 5350 * The code loosely follows the one in the famous 5351 * "30 instruction TCP receive" Van Jacobson mail. 5352 * 5353 * Van's trick is to deposit buffers into socket queue 5354 * on a device interrupt, to call tcp_recv function 5355 * on the receive process context and checksum and copy 5356 * the buffer to user space. smart... 5357 * 5358 * Our current scheme is not silly either but we take the 5359 * extra cost of the net_bh soft interrupt processing... 5360 * We do checksum and copy also but from device to kernel. 5361 */ 5362 5363 tp->rx_opt.saw_tstamp = 0; 5364 5365 /* pred_flags is 0xS?10 << 16 + snd_wnd 5366 * if header_prediction is to be made 5367 * 'S' will always be tp->tcp_header_len >> 2 5368 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5369 * turn it off (when there are holes in the receive 5370 * space for instance) 5371 * PSH flag is ignored. 5372 */ 5373 5374 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5375 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5376 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5377 int tcp_header_len = tp->tcp_header_len; 5378 5379 /* Timestamp header prediction: tcp_header_len 5380 * is automatically equal to th->doff*4 due to pred_flags 5381 * match. 5382 */ 5383 5384 /* Check timestamp */ 5385 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5386 /* No? Slow path! */ 5387 if (!tcp_parse_aligned_timestamp(tp, th)) 5388 goto slow_path; 5389 5390 /* If PAWS failed, check it more carefully in slow path */ 5391 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5392 goto slow_path; 5393 5394 /* DO NOT update ts_recent here, if checksum fails 5395 * and timestamp was corrupted part, it will result 5396 * in a hung connection since we will drop all 5397 * future packets due to the PAWS test. 5398 */ 5399 } 5400 5401 if (len <= tcp_header_len) { 5402 /* Bulk data transfer: sender */ 5403 if (len == tcp_header_len) { 5404 /* Predicted packet is in window by definition. 5405 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5406 * Hence, check seq<=rcv_wup reduces to: 5407 */ 5408 if (tcp_header_len == 5409 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5410 tp->rcv_nxt == tp->rcv_wup) 5411 tcp_store_ts_recent(tp); 5412 5413 /* We know that such packets are checksummed 5414 * on entry. 5415 */ 5416 tcp_ack(sk, skb, 0); 5417 __kfree_skb(skb); 5418 tcp_data_snd_check(sk); 5419 return; 5420 } else { /* Header too small */ 5421 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5422 goto discard; 5423 } 5424 } else { 5425 int eaten = 0; 5426 bool fragstolen = false; 5427 5428 if (tcp_checksum_complete(skb)) 5429 goto csum_error; 5430 5431 if ((int)skb->truesize > sk->sk_forward_alloc) 5432 goto step5; 5433 5434 /* Predicted packet is in window by definition. 5435 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5436 * Hence, check seq<=rcv_wup reduces to: 5437 */ 5438 if (tcp_header_len == 5439 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5440 tp->rcv_nxt == tp->rcv_wup) 5441 tcp_store_ts_recent(tp); 5442 5443 tcp_rcv_rtt_measure_ts(sk, skb); 5444 5445 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5446 5447 /* Bulk data transfer: receiver */ 5448 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5449 &fragstolen); 5450 5451 tcp_event_data_recv(sk, skb); 5452 5453 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5454 /* Well, only one small jumplet in fast path... */ 5455 tcp_ack(sk, skb, FLAG_DATA); 5456 tcp_data_snd_check(sk); 5457 if (!inet_csk_ack_scheduled(sk)) 5458 goto no_ack; 5459 } 5460 5461 __tcp_ack_snd_check(sk, 0); 5462 no_ack: 5463 if (eaten) 5464 kfree_skb_partial(skb, fragstolen); 5465 sk->sk_data_ready(sk); 5466 return; 5467 } 5468 } 5469 5470 slow_path: 5471 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5472 goto csum_error; 5473 5474 if (!th->ack && !th->rst && !th->syn) 5475 goto discard; 5476 5477 /* 5478 * Standard slow path. 5479 */ 5480 5481 if (!tcp_validate_incoming(sk, skb, th, 1)) 5482 return; 5483 5484 step5: 5485 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5486 goto discard; 5487 5488 tcp_rcv_rtt_measure_ts(sk, skb); 5489 5490 /* Process urgent data. */ 5491 tcp_urg(sk, skb, th); 5492 5493 /* step 7: process the segment text */ 5494 tcp_data_queue(sk, skb); 5495 5496 tcp_data_snd_check(sk); 5497 tcp_ack_snd_check(sk); 5498 return; 5499 5500 csum_error: 5501 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5502 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5503 5504 discard: 5505 tcp_drop(sk, skb); 5506 } 5507 EXPORT_SYMBOL(tcp_rcv_established); 5508 5509 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5510 { 5511 struct tcp_sock *tp = tcp_sk(sk); 5512 struct inet_connection_sock *icsk = inet_csk(sk); 5513 5514 tcp_set_state(sk, TCP_ESTABLISHED); 5515 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5516 5517 if (skb) { 5518 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5519 security_inet_conn_established(sk, skb); 5520 } 5521 5522 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5523 5524 /* Prevent spurious tcp_cwnd_restart() on first data 5525 * packet. 5526 */ 5527 tp->lsndtime = tcp_jiffies32; 5528 5529 if (sock_flag(sk, SOCK_KEEPOPEN)) 5530 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5531 5532 if (!tp->rx_opt.snd_wscale) 5533 __tcp_fast_path_on(tp, tp->snd_wnd); 5534 else 5535 tp->pred_flags = 0; 5536 } 5537 5538 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5539 struct tcp_fastopen_cookie *cookie) 5540 { 5541 struct tcp_sock *tp = tcp_sk(sk); 5542 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5543 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5544 bool syn_drop = false; 5545 5546 if (mss == tp->rx_opt.user_mss) { 5547 struct tcp_options_received opt; 5548 5549 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5550 tcp_clear_options(&opt); 5551 opt.user_mss = opt.mss_clamp = 0; 5552 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5553 mss = opt.mss_clamp; 5554 } 5555 5556 if (!tp->syn_fastopen) { 5557 /* Ignore an unsolicited cookie */ 5558 cookie->len = -1; 5559 } else if (tp->total_retrans) { 5560 /* SYN timed out and the SYN-ACK neither has a cookie nor 5561 * acknowledges data. Presumably the remote received only 5562 * the retransmitted (regular) SYNs: either the original 5563 * SYN-data or the corresponding SYN-ACK was dropped. 5564 */ 5565 syn_drop = (cookie->len < 0 && data); 5566 } else if (cookie->len < 0 && !tp->syn_data) { 5567 /* We requested a cookie but didn't get it. If we did not use 5568 * the (old) exp opt format then try so next time (try_exp=1). 5569 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5570 */ 5571 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5572 } 5573 5574 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5575 5576 if (data) { /* Retransmit unacked data in SYN */ 5577 skb_rbtree_walk_from(data) { 5578 if (__tcp_retransmit_skb(sk, data, 1)) 5579 break; 5580 } 5581 tcp_rearm_rto(sk); 5582 NET_INC_STATS(sock_net(sk), 5583 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5584 return true; 5585 } 5586 tp->syn_data_acked = tp->syn_data; 5587 if (tp->syn_data_acked) 5588 NET_INC_STATS(sock_net(sk), 5589 LINUX_MIB_TCPFASTOPENACTIVE); 5590 5591 tcp_fastopen_add_skb(sk, synack); 5592 5593 return false; 5594 } 5595 5596 static void smc_check_reset_syn(struct tcp_sock *tp) 5597 { 5598 #if IS_ENABLED(CONFIG_SMC) 5599 if (static_branch_unlikely(&tcp_have_smc)) { 5600 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5601 tp->syn_smc = 0; 5602 } 5603 #endif 5604 } 5605 5606 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5607 const struct tcphdr *th) 5608 { 5609 struct inet_connection_sock *icsk = inet_csk(sk); 5610 struct tcp_sock *tp = tcp_sk(sk); 5611 struct tcp_fastopen_cookie foc = { .len = -1 }; 5612 int saved_clamp = tp->rx_opt.mss_clamp; 5613 bool fastopen_fail; 5614 5615 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5616 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5617 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5618 5619 if (th->ack) { 5620 /* rfc793: 5621 * "If the state is SYN-SENT then 5622 * first check the ACK bit 5623 * If the ACK bit is set 5624 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5625 * a reset (unless the RST bit is set, if so drop 5626 * the segment and return)" 5627 */ 5628 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5629 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5630 goto reset_and_undo; 5631 5632 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5633 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5634 tcp_time_stamp(tp))) { 5635 NET_INC_STATS(sock_net(sk), 5636 LINUX_MIB_PAWSACTIVEREJECTED); 5637 goto reset_and_undo; 5638 } 5639 5640 /* Now ACK is acceptable. 5641 * 5642 * "If the RST bit is set 5643 * If the ACK was acceptable then signal the user "error: 5644 * connection reset", drop the segment, enter CLOSED state, 5645 * delete TCB, and return." 5646 */ 5647 5648 if (th->rst) { 5649 tcp_reset(sk); 5650 goto discard; 5651 } 5652 5653 /* rfc793: 5654 * "fifth, if neither of the SYN or RST bits is set then 5655 * drop the segment and return." 5656 * 5657 * See note below! 5658 * --ANK(990513) 5659 */ 5660 if (!th->syn) 5661 goto discard_and_undo; 5662 5663 /* rfc793: 5664 * "If the SYN bit is on ... 5665 * are acceptable then ... 5666 * (our SYN has been ACKed), change the connection 5667 * state to ESTABLISHED..." 5668 */ 5669 5670 tcp_ecn_rcv_synack(tp, th); 5671 5672 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5673 tcp_ack(sk, skb, FLAG_SLOWPATH); 5674 5675 /* Ok.. it's good. Set up sequence numbers and 5676 * move to established. 5677 */ 5678 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5679 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5680 5681 /* RFC1323: The window in SYN & SYN/ACK segments is 5682 * never scaled. 5683 */ 5684 tp->snd_wnd = ntohs(th->window); 5685 5686 if (!tp->rx_opt.wscale_ok) { 5687 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5688 tp->window_clamp = min(tp->window_clamp, 65535U); 5689 } 5690 5691 if (tp->rx_opt.saw_tstamp) { 5692 tp->rx_opt.tstamp_ok = 1; 5693 tp->tcp_header_len = 5694 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5695 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5696 tcp_store_ts_recent(tp); 5697 } else { 5698 tp->tcp_header_len = sizeof(struct tcphdr); 5699 } 5700 5701 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_fack) 5702 tcp_enable_fack(tp); 5703 5704 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5705 tcp_initialize_rcv_mss(sk); 5706 5707 /* Remember, tcp_poll() does not lock socket! 5708 * Change state from SYN-SENT only after copied_seq 5709 * is initialized. */ 5710 tp->copied_seq = tp->rcv_nxt; 5711 5712 smc_check_reset_syn(tp); 5713 5714 smp_mb(); 5715 5716 tcp_finish_connect(sk, skb); 5717 5718 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5719 tcp_rcv_fastopen_synack(sk, skb, &foc); 5720 5721 if (!sock_flag(sk, SOCK_DEAD)) { 5722 sk->sk_state_change(sk); 5723 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5724 } 5725 if (fastopen_fail) 5726 return -1; 5727 if (sk->sk_write_pending || 5728 icsk->icsk_accept_queue.rskq_defer_accept || 5729 icsk->icsk_ack.pingpong) { 5730 /* Save one ACK. Data will be ready after 5731 * several ticks, if write_pending is set. 5732 * 5733 * It may be deleted, but with this feature tcpdumps 5734 * look so _wonderfully_ clever, that I was not able 5735 * to stand against the temptation 8) --ANK 5736 */ 5737 inet_csk_schedule_ack(sk); 5738 tcp_enter_quickack_mode(sk); 5739 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5740 TCP_DELACK_MAX, TCP_RTO_MAX); 5741 5742 discard: 5743 tcp_drop(sk, skb); 5744 return 0; 5745 } else { 5746 tcp_send_ack(sk); 5747 } 5748 return -1; 5749 } 5750 5751 /* No ACK in the segment */ 5752 5753 if (th->rst) { 5754 /* rfc793: 5755 * "If the RST bit is set 5756 * 5757 * Otherwise (no ACK) drop the segment and return." 5758 */ 5759 5760 goto discard_and_undo; 5761 } 5762 5763 /* PAWS check. */ 5764 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5765 tcp_paws_reject(&tp->rx_opt, 0)) 5766 goto discard_and_undo; 5767 5768 if (th->syn) { 5769 /* We see SYN without ACK. It is attempt of 5770 * simultaneous connect with crossed SYNs. 5771 * Particularly, it can be connect to self. 5772 */ 5773 tcp_set_state(sk, TCP_SYN_RECV); 5774 5775 if (tp->rx_opt.saw_tstamp) { 5776 tp->rx_opt.tstamp_ok = 1; 5777 tcp_store_ts_recent(tp); 5778 tp->tcp_header_len = 5779 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5780 } else { 5781 tp->tcp_header_len = sizeof(struct tcphdr); 5782 } 5783 5784 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5785 tp->copied_seq = tp->rcv_nxt; 5786 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5787 5788 /* RFC1323: The window in SYN & SYN/ACK segments is 5789 * never scaled. 5790 */ 5791 tp->snd_wnd = ntohs(th->window); 5792 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5793 tp->max_window = tp->snd_wnd; 5794 5795 tcp_ecn_rcv_syn(tp, th); 5796 5797 tcp_mtup_init(sk); 5798 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5799 tcp_initialize_rcv_mss(sk); 5800 5801 tcp_send_synack(sk); 5802 #if 0 5803 /* Note, we could accept data and URG from this segment. 5804 * There are no obstacles to make this (except that we must 5805 * either change tcp_recvmsg() to prevent it from returning data 5806 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5807 * 5808 * However, if we ignore data in ACKless segments sometimes, 5809 * we have no reasons to accept it sometimes. 5810 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5811 * is not flawless. So, discard packet for sanity. 5812 * Uncomment this return to process the data. 5813 */ 5814 return -1; 5815 #else 5816 goto discard; 5817 #endif 5818 } 5819 /* "fifth, if neither of the SYN or RST bits is set then 5820 * drop the segment and return." 5821 */ 5822 5823 discard_and_undo: 5824 tcp_clear_options(&tp->rx_opt); 5825 tp->rx_opt.mss_clamp = saved_clamp; 5826 goto discard; 5827 5828 reset_and_undo: 5829 tcp_clear_options(&tp->rx_opt); 5830 tp->rx_opt.mss_clamp = saved_clamp; 5831 return 1; 5832 } 5833 5834 /* 5835 * This function implements the receiving procedure of RFC 793 for 5836 * all states except ESTABLISHED and TIME_WAIT. 5837 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5838 * address independent. 5839 */ 5840 5841 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5842 { 5843 struct tcp_sock *tp = tcp_sk(sk); 5844 struct inet_connection_sock *icsk = inet_csk(sk); 5845 const struct tcphdr *th = tcp_hdr(skb); 5846 struct request_sock *req; 5847 int queued = 0; 5848 bool acceptable; 5849 5850 switch (sk->sk_state) { 5851 case TCP_CLOSE: 5852 goto discard; 5853 5854 case TCP_LISTEN: 5855 if (th->ack) 5856 return 1; 5857 5858 if (th->rst) 5859 goto discard; 5860 5861 if (th->syn) { 5862 if (th->fin) 5863 goto discard; 5864 /* It is possible that we process SYN packets from backlog, 5865 * so we need to make sure to disable BH right there. 5866 */ 5867 local_bh_disable(); 5868 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5869 local_bh_enable(); 5870 5871 if (!acceptable) 5872 return 1; 5873 consume_skb(skb); 5874 return 0; 5875 } 5876 goto discard; 5877 5878 case TCP_SYN_SENT: 5879 tp->rx_opt.saw_tstamp = 0; 5880 tcp_mstamp_refresh(tp); 5881 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5882 if (queued >= 0) 5883 return queued; 5884 5885 /* Do step6 onward by hand. */ 5886 tcp_urg(sk, skb, th); 5887 __kfree_skb(skb); 5888 tcp_data_snd_check(sk); 5889 return 0; 5890 } 5891 5892 tcp_mstamp_refresh(tp); 5893 tp->rx_opt.saw_tstamp = 0; 5894 req = tp->fastopen_rsk; 5895 if (req) { 5896 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5897 sk->sk_state != TCP_FIN_WAIT1); 5898 5899 if (!tcp_check_req(sk, skb, req, true)) 5900 goto discard; 5901 } 5902 5903 if (!th->ack && !th->rst && !th->syn) 5904 goto discard; 5905 5906 if (!tcp_validate_incoming(sk, skb, th, 0)) 5907 return 0; 5908 5909 /* step 5: check the ACK field */ 5910 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5911 FLAG_UPDATE_TS_RECENT | 5912 FLAG_NO_CHALLENGE_ACK) > 0; 5913 5914 if (!acceptable) { 5915 if (sk->sk_state == TCP_SYN_RECV) 5916 return 1; /* send one RST */ 5917 tcp_send_challenge_ack(sk, skb); 5918 goto discard; 5919 } 5920 switch (sk->sk_state) { 5921 case TCP_SYN_RECV: 5922 if (!tp->srtt_us) 5923 tcp_synack_rtt_meas(sk, req); 5924 5925 /* Once we leave TCP_SYN_RECV, we no longer need req 5926 * so release it. 5927 */ 5928 if (req) { 5929 inet_csk(sk)->icsk_retransmits = 0; 5930 reqsk_fastopen_remove(sk, req, false); 5931 /* Re-arm the timer because data may have been sent out. 5932 * This is similar to the regular data transmission case 5933 * when new data has just been ack'ed. 5934 * 5935 * (TFO) - we could try to be more aggressive and 5936 * retransmitting any data sooner based on when they 5937 * are sent out. 5938 */ 5939 tcp_rearm_rto(sk); 5940 } else { 5941 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 5942 tp->copied_seq = tp->rcv_nxt; 5943 } 5944 smp_mb(); 5945 tcp_set_state(sk, TCP_ESTABLISHED); 5946 sk->sk_state_change(sk); 5947 5948 /* Note, that this wakeup is only for marginal crossed SYN case. 5949 * Passively open sockets are not waked up, because 5950 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5951 */ 5952 if (sk->sk_socket) 5953 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5954 5955 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5956 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5957 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5958 5959 if (tp->rx_opt.tstamp_ok) 5960 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5961 5962 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5963 tcp_update_pacing_rate(sk); 5964 5965 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5966 tp->lsndtime = tcp_jiffies32; 5967 5968 tcp_initialize_rcv_mss(sk); 5969 tcp_fast_path_on(tp); 5970 break; 5971 5972 case TCP_FIN_WAIT1: { 5973 int tmo; 5974 5975 /* If we enter the TCP_FIN_WAIT1 state and we are a 5976 * Fast Open socket and this is the first acceptable 5977 * ACK we have received, this would have acknowledged 5978 * our SYNACK so stop the SYNACK timer. 5979 */ 5980 if (req) { 5981 /* We no longer need the request sock. */ 5982 reqsk_fastopen_remove(sk, req, false); 5983 tcp_rearm_rto(sk); 5984 } 5985 if (tp->snd_una != tp->write_seq) 5986 break; 5987 5988 tcp_set_state(sk, TCP_FIN_WAIT2); 5989 sk->sk_shutdown |= SEND_SHUTDOWN; 5990 5991 sk_dst_confirm(sk); 5992 5993 if (!sock_flag(sk, SOCK_DEAD)) { 5994 /* Wake up lingering close() */ 5995 sk->sk_state_change(sk); 5996 break; 5997 } 5998 5999 if (tp->linger2 < 0) { 6000 tcp_done(sk); 6001 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6002 return 1; 6003 } 6004 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6005 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6006 /* Receive out of order FIN after close() */ 6007 if (tp->syn_fastopen && th->fin) 6008 tcp_fastopen_active_disable(sk); 6009 tcp_done(sk); 6010 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6011 return 1; 6012 } 6013 6014 tmo = tcp_fin_time(sk); 6015 if (tmo > TCP_TIMEWAIT_LEN) { 6016 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6017 } else if (th->fin || sock_owned_by_user(sk)) { 6018 /* Bad case. We could lose such FIN otherwise. 6019 * It is not a big problem, but it looks confusing 6020 * and not so rare event. We still can lose it now, 6021 * if it spins in bh_lock_sock(), but it is really 6022 * marginal case. 6023 */ 6024 inet_csk_reset_keepalive_timer(sk, tmo); 6025 } else { 6026 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6027 goto discard; 6028 } 6029 break; 6030 } 6031 6032 case TCP_CLOSING: 6033 if (tp->snd_una == tp->write_seq) { 6034 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6035 goto discard; 6036 } 6037 break; 6038 6039 case TCP_LAST_ACK: 6040 if (tp->snd_una == tp->write_seq) { 6041 tcp_update_metrics(sk); 6042 tcp_done(sk); 6043 goto discard; 6044 } 6045 break; 6046 } 6047 6048 /* step 6: check the URG bit */ 6049 tcp_urg(sk, skb, th); 6050 6051 /* step 7: process the segment text */ 6052 switch (sk->sk_state) { 6053 case TCP_CLOSE_WAIT: 6054 case TCP_CLOSING: 6055 case TCP_LAST_ACK: 6056 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6057 break; 6058 /* fall through */ 6059 case TCP_FIN_WAIT1: 6060 case TCP_FIN_WAIT2: 6061 /* RFC 793 says to queue data in these states, 6062 * RFC 1122 says we MUST send a reset. 6063 * BSD 4.4 also does reset. 6064 */ 6065 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6066 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6067 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6068 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6069 tcp_reset(sk); 6070 return 1; 6071 } 6072 } 6073 /* Fall through */ 6074 case TCP_ESTABLISHED: 6075 tcp_data_queue(sk, skb); 6076 queued = 1; 6077 break; 6078 } 6079 6080 /* tcp_data could move socket to TIME-WAIT */ 6081 if (sk->sk_state != TCP_CLOSE) { 6082 tcp_data_snd_check(sk); 6083 tcp_ack_snd_check(sk); 6084 } 6085 6086 if (!queued) { 6087 discard: 6088 tcp_drop(sk, skb); 6089 } 6090 return 0; 6091 } 6092 EXPORT_SYMBOL(tcp_rcv_state_process); 6093 6094 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6095 { 6096 struct inet_request_sock *ireq = inet_rsk(req); 6097 6098 if (family == AF_INET) 6099 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6100 &ireq->ir_rmt_addr, port); 6101 #if IS_ENABLED(CONFIG_IPV6) 6102 else if (family == AF_INET6) 6103 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6104 &ireq->ir_v6_rmt_addr, port); 6105 #endif 6106 } 6107 6108 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6109 * 6110 * If we receive a SYN packet with these bits set, it means a 6111 * network is playing bad games with TOS bits. In order to 6112 * avoid possible false congestion notifications, we disable 6113 * TCP ECN negotiation. 6114 * 6115 * Exception: tcp_ca wants ECN. This is required for DCTCP 6116 * congestion control: Linux DCTCP asserts ECT on all packets, 6117 * including SYN, which is most optimal solution; however, 6118 * others, such as FreeBSD do not. 6119 */ 6120 static void tcp_ecn_create_request(struct request_sock *req, 6121 const struct sk_buff *skb, 6122 const struct sock *listen_sk, 6123 const struct dst_entry *dst) 6124 { 6125 const struct tcphdr *th = tcp_hdr(skb); 6126 const struct net *net = sock_net(listen_sk); 6127 bool th_ecn = th->ece && th->cwr; 6128 bool ect, ecn_ok; 6129 u32 ecn_ok_dst; 6130 6131 if (!th_ecn) 6132 return; 6133 6134 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6135 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6136 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6137 6138 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6139 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6140 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6141 inet_rsk(req)->ecn_ok = 1; 6142 } 6143 6144 static void tcp_openreq_init(struct request_sock *req, 6145 const struct tcp_options_received *rx_opt, 6146 struct sk_buff *skb, const struct sock *sk) 6147 { 6148 struct inet_request_sock *ireq = inet_rsk(req); 6149 6150 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6151 req->cookie_ts = 0; 6152 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6153 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6154 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6155 tcp_rsk(req)->last_oow_ack_time = 0; 6156 req->mss = rx_opt->mss_clamp; 6157 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6158 ireq->tstamp_ok = rx_opt->tstamp_ok; 6159 ireq->sack_ok = rx_opt->sack_ok; 6160 ireq->snd_wscale = rx_opt->snd_wscale; 6161 ireq->wscale_ok = rx_opt->wscale_ok; 6162 ireq->acked = 0; 6163 ireq->ecn_ok = 0; 6164 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6165 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6166 ireq->ir_mark = inet_request_mark(sk, skb); 6167 #if IS_ENABLED(CONFIG_SMC) 6168 ireq->smc_ok = rx_opt->smc_ok; 6169 #endif 6170 } 6171 6172 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6173 struct sock *sk_listener, 6174 bool attach_listener) 6175 { 6176 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6177 attach_listener); 6178 6179 if (req) { 6180 struct inet_request_sock *ireq = inet_rsk(req); 6181 6182 kmemcheck_annotate_bitfield(ireq, flags); 6183 ireq->ireq_opt = NULL; 6184 #if IS_ENABLED(CONFIG_IPV6) 6185 ireq->pktopts = NULL; 6186 #endif 6187 atomic64_set(&ireq->ir_cookie, 0); 6188 ireq->ireq_state = TCP_NEW_SYN_RECV; 6189 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6190 ireq->ireq_family = sk_listener->sk_family; 6191 } 6192 6193 return req; 6194 } 6195 EXPORT_SYMBOL(inet_reqsk_alloc); 6196 6197 /* 6198 * Return true if a syncookie should be sent 6199 */ 6200 static bool tcp_syn_flood_action(const struct sock *sk, 6201 const struct sk_buff *skb, 6202 const char *proto) 6203 { 6204 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6205 const char *msg = "Dropping request"; 6206 bool want_cookie = false; 6207 struct net *net = sock_net(sk); 6208 6209 #ifdef CONFIG_SYN_COOKIES 6210 if (net->ipv4.sysctl_tcp_syncookies) { 6211 msg = "Sending cookies"; 6212 want_cookie = true; 6213 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6214 } else 6215 #endif 6216 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6217 6218 if (!queue->synflood_warned && 6219 net->ipv4.sysctl_tcp_syncookies != 2 && 6220 xchg(&queue->synflood_warned, 1) == 0) 6221 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6222 proto, ntohs(tcp_hdr(skb)->dest), msg); 6223 6224 return want_cookie; 6225 } 6226 6227 static void tcp_reqsk_record_syn(const struct sock *sk, 6228 struct request_sock *req, 6229 const struct sk_buff *skb) 6230 { 6231 if (tcp_sk(sk)->save_syn) { 6232 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6233 u32 *copy; 6234 6235 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6236 if (copy) { 6237 copy[0] = len; 6238 memcpy(©[1], skb_network_header(skb), len); 6239 req->saved_syn = copy; 6240 } 6241 } 6242 } 6243 6244 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6245 const struct tcp_request_sock_ops *af_ops, 6246 struct sock *sk, struct sk_buff *skb) 6247 { 6248 struct tcp_fastopen_cookie foc = { .len = -1 }; 6249 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6250 struct tcp_options_received tmp_opt; 6251 struct tcp_sock *tp = tcp_sk(sk); 6252 struct net *net = sock_net(sk); 6253 struct sock *fastopen_sk = NULL; 6254 struct request_sock *req; 6255 bool want_cookie = false; 6256 struct dst_entry *dst; 6257 struct flowi fl; 6258 6259 /* TW buckets are converted to open requests without 6260 * limitations, they conserve resources and peer is 6261 * evidently real one. 6262 */ 6263 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6264 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6265 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6266 if (!want_cookie) 6267 goto drop; 6268 } 6269 6270 if (sk_acceptq_is_full(sk)) { 6271 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6272 goto drop; 6273 } 6274 6275 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6276 if (!req) 6277 goto drop; 6278 6279 tcp_rsk(req)->af_specific = af_ops; 6280 tcp_rsk(req)->ts_off = 0; 6281 6282 tcp_clear_options(&tmp_opt); 6283 tmp_opt.mss_clamp = af_ops->mss_clamp; 6284 tmp_opt.user_mss = tp->rx_opt.user_mss; 6285 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6286 want_cookie ? NULL : &foc); 6287 6288 if (want_cookie && !tmp_opt.saw_tstamp) 6289 tcp_clear_options(&tmp_opt); 6290 6291 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6292 tcp_openreq_init(req, &tmp_opt, skb, sk); 6293 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6294 6295 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6296 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6297 6298 af_ops->init_req(req, sk, skb); 6299 6300 if (security_inet_conn_request(sk, skb, req)) 6301 goto drop_and_free; 6302 6303 if (tmp_opt.tstamp_ok) 6304 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6305 6306 dst = af_ops->route_req(sk, &fl, req); 6307 if (!dst) 6308 goto drop_and_free; 6309 6310 if (!want_cookie && !isn) { 6311 /* Kill the following clause, if you dislike this way. */ 6312 if (!net->ipv4.sysctl_tcp_syncookies && 6313 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6314 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6315 !tcp_peer_is_proven(req, dst)) { 6316 /* Without syncookies last quarter of 6317 * backlog is filled with destinations, 6318 * proven to be alive. 6319 * It means that we continue to communicate 6320 * to destinations, already remembered 6321 * to the moment of synflood. 6322 */ 6323 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6324 rsk_ops->family); 6325 goto drop_and_release; 6326 } 6327 6328 isn = af_ops->init_seq(skb); 6329 } 6330 6331 tcp_ecn_create_request(req, skb, sk, dst); 6332 6333 if (want_cookie) { 6334 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6335 req->cookie_ts = tmp_opt.tstamp_ok; 6336 if (!tmp_opt.tstamp_ok) 6337 inet_rsk(req)->ecn_ok = 0; 6338 } 6339 6340 tcp_rsk(req)->snt_isn = isn; 6341 tcp_rsk(req)->txhash = net_tx_rndhash(); 6342 tcp_openreq_init_rwin(req, sk, dst); 6343 if (!want_cookie) { 6344 tcp_reqsk_record_syn(sk, req, skb); 6345 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6346 } 6347 if (fastopen_sk) { 6348 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6349 &foc, TCP_SYNACK_FASTOPEN); 6350 /* Add the child socket directly into the accept queue */ 6351 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6352 sk->sk_data_ready(sk); 6353 bh_unlock_sock(fastopen_sk); 6354 sock_put(fastopen_sk); 6355 } else { 6356 tcp_rsk(req)->tfo_listener = false; 6357 if (!want_cookie) 6358 inet_csk_reqsk_queue_hash_add(sk, req, 6359 tcp_timeout_init((struct sock *)req)); 6360 af_ops->send_synack(sk, dst, &fl, req, &foc, 6361 !want_cookie ? TCP_SYNACK_NORMAL : 6362 TCP_SYNACK_COOKIE); 6363 if (want_cookie) { 6364 reqsk_free(req); 6365 return 0; 6366 } 6367 } 6368 reqsk_put(req); 6369 return 0; 6370 6371 drop_and_release: 6372 dst_release(dst); 6373 drop_and_free: 6374 reqsk_free(req); 6375 drop: 6376 tcp_listendrop(sk); 6377 return 0; 6378 } 6379 EXPORT_SYMBOL(tcp_conn_request); 6380