xref: /linux/net/ipv4/tcp_input.c (revision 995231c820e3bd3633cb38bf4ea6f2541e1da331)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 #include <trace/events/tcp.h>
79 #include <linux/static_key.h>
80 
81 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
82 
83 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
84 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
85 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
86 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
87 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
88 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
89 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
90 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
91 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
92 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
93 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
94 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
95 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
96 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
97 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
98 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
99 
100 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
101 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
102 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
103 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
104 
105 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
106 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
107 
108 #define REXMIT_NONE	0 /* no loss recovery to do */
109 #define REXMIT_LOST	1 /* retransmit packets marked lost */
110 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
111 
112 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
113 			     unsigned int len)
114 {
115 	static bool __once __read_mostly;
116 
117 	if (!__once) {
118 		struct net_device *dev;
119 
120 		__once = true;
121 
122 		rcu_read_lock();
123 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
124 		if (!dev || len >= dev->mtu)
125 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
126 				dev ? dev->name : "Unknown driver");
127 		rcu_read_unlock();
128 	}
129 }
130 
131 /* Adapt the MSS value used to make delayed ack decision to the
132  * real world.
133  */
134 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
135 {
136 	struct inet_connection_sock *icsk = inet_csk(sk);
137 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
138 	unsigned int len;
139 
140 	icsk->icsk_ack.last_seg_size = 0;
141 
142 	/* skb->len may jitter because of SACKs, even if peer
143 	 * sends good full-sized frames.
144 	 */
145 	len = skb_shinfo(skb)->gso_size ? : skb->len;
146 	if (len >= icsk->icsk_ack.rcv_mss) {
147 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
148 					       tcp_sk(sk)->advmss);
149 		/* Account for possibly-removed options */
150 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
151 				   MAX_TCP_OPTION_SPACE))
152 			tcp_gro_dev_warn(sk, skb, len);
153 	} else {
154 		/* Otherwise, we make more careful check taking into account,
155 		 * that SACKs block is variable.
156 		 *
157 		 * "len" is invariant segment length, including TCP header.
158 		 */
159 		len += skb->data - skb_transport_header(skb);
160 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
161 		    /* If PSH is not set, packet should be
162 		     * full sized, provided peer TCP is not badly broken.
163 		     * This observation (if it is correct 8)) allows
164 		     * to handle super-low mtu links fairly.
165 		     */
166 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
167 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
168 			/* Subtract also invariant (if peer is RFC compliant),
169 			 * tcp header plus fixed timestamp option length.
170 			 * Resulting "len" is MSS free of SACK jitter.
171 			 */
172 			len -= tcp_sk(sk)->tcp_header_len;
173 			icsk->icsk_ack.last_seg_size = len;
174 			if (len == lss) {
175 				icsk->icsk_ack.rcv_mss = len;
176 				return;
177 			}
178 		}
179 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
180 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
181 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
182 	}
183 }
184 
185 static void tcp_incr_quickack(struct sock *sk)
186 {
187 	struct inet_connection_sock *icsk = inet_csk(sk);
188 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
189 
190 	if (quickacks == 0)
191 		quickacks = 2;
192 	if (quickacks > icsk->icsk_ack.quick)
193 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
194 }
195 
196 static void tcp_enter_quickack_mode(struct sock *sk)
197 {
198 	struct inet_connection_sock *icsk = inet_csk(sk);
199 	tcp_incr_quickack(sk);
200 	icsk->icsk_ack.pingpong = 0;
201 	icsk->icsk_ack.ato = TCP_ATO_MIN;
202 }
203 
204 /* Send ACKs quickly, if "quick" count is not exhausted
205  * and the session is not interactive.
206  */
207 
208 static bool tcp_in_quickack_mode(struct sock *sk)
209 {
210 	const struct inet_connection_sock *icsk = inet_csk(sk);
211 	const struct dst_entry *dst = __sk_dst_get(sk);
212 
213 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
214 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
215 }
216 
217 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
218 {
219 	if (tp->ecn_flags & TCP_ECN_OK)
220 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
221 }
222 
223 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
224 {
225 	if (tcp_hdr(skb)->cwr)
226 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
227 }
228 
229 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
230 {
231 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
232 }
233 
234 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
235 {
236 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
237 	case INET_ECN_NOT_ECT:
238 		/* Funny extension: if ECT is not set on a segment,
239 		 * and we already seen ECT on a previous segment,
240 		 * it is probably a retransmit.
241 		 */
242 		if (tp->ecn_flags & TCP_ECN_SEEN)
243 			tcp_enter_quickack_mode((struct sock *)tp);
244 		break;
245 	case INET_ECN_CE:
246 		if (tcp_ca_needs_ecn((struct sock *)tp))
247 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
248 
249 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
250 			/* Better not delay acks, sender can have a very low cwnd */
251 			tcp_enter_quickack_mode((struct sock *)tp);
252 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
253 		}
254 		tp->ecn_flags |= TCP_ECN_SEEN;
255 		break;
256 	default:
257 		if (tcp_ca_needs_ecn((struct sock *)tp))
258 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
259 		tp->ecn_flags |= TCP_ECN_SEEN;
260 		break;
261 	}
262 }
263 
264 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
265 {
266 	if (tp->ecn_flags & TCP_ECN_OK)
267 		__tcp_ecn_check_ce(tp, skb);
268 }
269 
270 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
271 {
272 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
273 		tp->ecn_flags &= ~TCP_ECN_OK;
274 }
275 
276 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
277 {
278 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
279 		tp->ecn_flags &= ~TCP_ECN_OK;
280 }
281 
282 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
283 {
284 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
285 		return true;
286 	return false;
287 }
288 
289 /* Buffer size and advertised window tuning.
290  *
291  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
292  */
293 
294 static void tcp_sndbuf_expand(struct sock *sk)
295 {
296 	const struct tcp_sock *tp = tcp_sk(sk);
297 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
298 	int sndmem, per_mss;
299 	u32 nr_segs;
300 
301 	/* Worst case is non GSO/TSO : each frame consumes one skb
302 	 * and skb->head is kmalloced using power of two area of memory
303 	 */
304 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
305 		  MAX_TCP_HEADER +
306 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
307 
308 	per_mss = roundup_pow_of_two(per_mss) +
309 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
310 
311 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
312 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
313 
314 	/* Fast Recovery (RFC 5681 3.2) :
315 	 * Cubic needs 1.7 factor, rounded to 2 to include
316 	 * extra cushion (application might react slowly to POLLOUT)
317 	 */
318 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
319 	sndmem *= nr_segs * per_mss;
320 
321 	if (sk->sk_sndbuf < sndmem)
322 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
323 }
324 
325 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
326  *
327  * All tcp_full_space() is split to two parts: "network" buffer, allocated
328  * forward and advertised in receiver window (tp->rcv_wnd) and
329  * "application buffer", required to isolate scheduling/application
330  * latencies from network.
331  * window_clamp is maximal advertised window. It can be less than
332  * tcp_full_space(), in this case tcp_full_space() - window_clamp
333  * is reserved for "application" buffer. The less window_clamp is
334  * the smoother our behaviour from viewpoint of network, but the lower
335  * throughput and the higher sensitivity of the connection to losses. 8)
336  *
337  * rcv_ssthresh is more strict window_clamp used at "slow start"
338  * phase to predict further behaviour of this connection.
339  * It is used for two goals:
340  * - to enforce header prediction at sender, even when application
341  *   requires some significant "application buffer". It is check #1.
342  * - to prevent pruning of receive queue because of misprediction
343  *   of receiver window. Check #2.
344  *
345  * The scheme does not work when sender sends good segments opening
346  * window and then starts to feed us spaghetti. But it should work
347  * in common situations. Otherwise, we have to rely on queue collapsing.
348  */
349 
350 /* Slow part of check#2. */
351 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
352 {
353 	struct tcp_sock *tp = tcp_sk(sk);
354 	/* Optimize this! */
355 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
356 	int window = tcp_win_from_space(sk, sysctl_tcp_rmem[2]) >> 1;
357 
358 	while (tp->rcv_ssthresh <= window) {
359 		if (truesize <= skb->len)
360 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
361 
362 		truesize >>= 1;
363 		window >>= 1;
364 	}
365 	return 0;
366 }
367 
368 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
369 {
370 	struct tcp_sock *tp = tcp_sk(sk);
371 
372 	/* Check #1 */
373 	if (tp->rcv_ssthresh < tp->window_clamp &&
374 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
375 	    !tcp_under_memory_pressure(sk)) {
376 		int incr;
377 
378 		/* Check #2. Increase window, if skb with such overhead
379 		 * will fit to rcvbuf in future.
380 		 */
381 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
382 			incr = 2 * tp->advmss;
383 		else
384 			incr = __tcp_grow_window(sk, skb);
385 
386 		if (incr) {
387 			incr = max_t(int, incr, 2 * skb->len);
388 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
389 					       tp->window_clamp);
390 			inet_csk(sk)->icsk_ack.quick |= 1;
391 		}
392 	}
393 }
394 
395 /* 3. Tuning rcvbuf, when connection enters established state. */
396 static void tcp_fixup_rcvbuf(struct sock *sk)
397 {
398 	u32 mss = tcp_sk(sk)->advmss;
399 	int rcvmem;
400 
401 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
402 		 tcp_default_init_rwnd(mss);
403 
404 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
405 	 * Allow enough cushion so that sender is not limited by our window
406 	 */
407 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
408 		rcvmem <<= 2;
409 
410 	if (sk->sk_rcvbuf < rcvmem)
411 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
412 }
413 
414 /* 4. Try to fixup all. It is made immediately after connection enters
415  *    established state.
416  */
417 void tcp_init_buffer_space(struct sock *sk)
418 {
419 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
420 	struct tcp_sock *tp = tcp_sk(sk);
421 	int maxwin;
422 
423 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
424 		tcp_fixup_rcvbuf(sk);
425 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
426 		tcp_sndbuf_expand(sk);
427 
428 	tp->rcvq_space.space = tp->rcv_wnd;
429 	tcp_mstamp_refresh(tp);
430 	tp->rcvq_space.time = tp->tcp_mstamp;
431 	tp->rcvq_space.seq = tp->copied_seq;
432 
433 	maxwin = tcp_full_space(sk);
434 
435 	if (tp->window_clamp >= maxwin) {
436 		tp->window_clamp = maxwin;
437 
438 		if (tcp_app_win && maxwin > 4 * tp->advmss)
439 			tp->window_clamp = max(maxwin -
440 					       (maxwin >> tcp_app_win),
441 					       4 * tp->advmss);
442 	}
443 
444 	/* Force reservation of one segment. */
445 	if (tcp_app_win &&
446 	    tp->window_clamp > 2 * tp->advmss &&
447 	    tp->window_clamp + tp->advmss > maxwin)
448 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
449 
450 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
451 	tp->snd_cwnd_stamp = tcp_jiffies32;
452 }
453 
454 /* 5. Recalculate window clamp after socket hit its memory bounds. */
455 static void tcp_clamp_window(struct sock *sk)
456 {
457 	struct tcp_sock *tp = tcp_sk(sk);
458 	struct inet_connection_sock *icsk = inet_csk(sk);
459 
460 	icsk->icsk_ack.quick = 0;
461 
462 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
463 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
464 	    !tcp_under_memory_pressure(sk) &&
465 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
466 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
467 				    sysctl_tcp_rmem[2]);
468 	}
469 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
470 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
471 }
472 
473 /* Initialize RCV_MSS value.
474  * RCV_MSS is an our guess about MSS used by the peer.
475  * We haven't any direct information about the MSS.
476  * It's better to underestimate the RCV_MSS rather than overestimate.
477  * Overestimations make us ACKing less frequently than needed.
478  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
479  */
480 void tcp_initialize_rcv_mss(struct sock *sk)
481 {
482 	const struct tcp_sock *tp = tcp_sk(sk);
483 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
484 
485 	hint = min(hint, tp->rcv_wnd / 2);
486 	hint = min(hint, TCP_MSS_DEFAULT);
487 	hint = max(hint, TCP_MIN_MSS);
488 
489 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
490 }
491 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
492 
493 /* Receiver "autotuning" code.
494  *
495  * The algorithm for RTT estimation w/o timestamps is based on
496  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
497  * <http://public.lanl.gov/radiant/pubs.html#DRS>
498  *
499  * More detail on this code can be found at
500  * <http://staff.psc.edu/jheffner/>,
501  * though this reference is out of date.  A new paper
502  * is pending.
503  */
504 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
505 {
506 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
507 	long m = sample;
508 
509 	if (m == 0)
510 		m = 1;
511 
512 	if (new_sample != 0) {
513 		/* If we sample in larger samples in the non-timestamp
514 		 * case, we could grossly overestimate the RTT especially
515 		 * with chatty applications or bulk transfer apps which
516 		 * are stalled on filesystem I/O.
517 		 *
518 		 * Also, since we are only going for a minimum in the
519 		 * non-timestamp case, we do not smooth things out
520 		 * else with timestamps disabled convergence takes too
521 		 * long.
522 		 */
523 		if (!win_dep) {
524 			m -= (new_sample >> 3);
525 			new_sample += m;
526 		} else {
527 			m <<= 3;
528 			if (m < new_sample)
529 				new_sample = m;
530 		}
531 	} else {
532 		/* No previous measure. */
533 		new_sample = m << 3;
534 	}
535 
536 	tp->rcv_rtt_est.rtt_us = new_sample;
537 }
538 
539 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
540 {
541 	u32 delta_us;
542 
543 	if (tp->rcv_rtt_est.time == 0)
544 		goto new_measure;
545 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
546 		return;
547 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
548 	tcp_rcv_rtt_update(tp, delta_us, 1);
549 
550 new_measure:
551 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
552 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
553 }
554 
555 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
556 					  const struct sk_buff *skb)
557 {
558 	struct tcp_sock *tp = tcp_sk(sk);
559 
560 	if (tp->rx_opt.rcv_tsecr &&
561 	    (TCP_SKB_CB(skb)->end_seq -
562 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
563 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
564 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
565 
566 		tcp_rcv_rtt_update(tp, delta_us, 0);
567 	}
568 }
569 
570 /*
571  * This function should be called every time data is copied to user space.
572  * It calculates the appropriate TCP receive buffer space.
573  */
574 void tcp_rcv_space_adjust(struct sock *sk)
575 {
576 	struct tcp_sock *tp = tcp_sk(sk);
577 	int time;
578 	int copied;
579 
580 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
581 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
582 		return;
583 
584 	/* Number of bytes copied to user in last RTT */
585 	copied = tp->copied_seq - tp->rcvq_space.seq;
586 	if (copied <= tp->rcvq_space.space)
587 		goto new_measure;
588 
589 	/* A bit of theory :
590 	 * copied = bytes received in previous RTT, our base window
591 	 * To cope with packet losses, we need a 2x factor
592 	 * To cope with slow start, and sender growing its cwin by 100 %
593 	 * every RTT, we need a 4x factor, because the ACK we are sending
594 	 * now is for the next RTT, not the current one :
595 	 * <prev RTT . ><current RTT .. ><next RTT .... >
596 	 */
597 
598 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
599 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
600 		int rcvwin, rcvmem, rcvbuf;
601 
602 		/* minimal window to cope with packet losses, assuming
603 		 * steady state. Add some cushion because of small variations.
604 		 */
605 		rcvwin = (copied << 1) + 16 * tp->advmss;
606 
607 		/* If rate increased by 25%,
608 		 *	assume slow start, rcvwin = 3 * copied
609 		 * If rate increased by 50%,
610 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
611 		 */
612 		if (copied >=
613 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
614 			if (copied >=
615 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
616 				rcvwin <<= 1;
617 			else
618 				rcvwin += (rcvwin >> 1);
619 		}
620 
621 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
622 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
623 			rcvmem += 128;
624 
625 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
626 		if (rcvbuf > sk->sk_rcvbuf) {
627 			sk->sk_rcvbuf = rcvbuf;
628 
629 			/* Make the window clamp follow along.  */
630 			tp->window_clamp = rcvwin;
631 		}
632 	}
633 	tp->rcvq_space.space = copied;
634 
635 new_measure:
636 	tp->rcvq_space.seq = tp->copied_seq;
637 	tp->rcvq_space.time = tp->tcp_mstamp;
638 }
639 
640 /* There is something which you must keep in mind when you analyze the
641  * behavior of the tp->ato delayed ack timeout interval.  When a
642  * connection starts up, we want to ack as quickly as possible.  The
643  * problem is that "good" TCP's do slow start at the beginning of data
644  * transmission.  The means that until we send the first few ACK's the
645  * sender will sit on his end and only queue most of his data, because
646  * he can only send snd_cwnd unacked packets at any given time.  For
647  * each ACK we send, he increments snd_cwnd and transmits more of his
648  * queue.  -DaveM
649  */
650 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
651 {
652 	struct tcp_sock *tp = tcp_sk(sk);
653 	struct inet_connection_sock *icsk = inet_csk(sk);
654 	u32 now;
655 
656 	inet_csk_schedule_ack(sk);
657 
658 	tcp_measure_rcv_mss(sk, skb);
659 
660 	tcp_rcv_rtt_measure(tp);
661 
662 	now = tcp_jiffies32;
663 
664 	if (!icsk->icsk_ack.ato) {
665 		/* The _first_ data packet received, initialize
666 		 * delayed ACK engine.
667 		 */
668 		tcp_incr_quickack(sk);
669 		icsk->icsk_ack.ato = TCP_ATO_MIN;
670 	} else {
671 		int m = now - icsk->icsk_ack.lrcvtime;
672 
673 		if (m <= TCP_ATO_MIN / 2) {
674 			/* The fastest case is the first. */
675 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
676 		} else if (m < icsk->icsk_ack.ato) {
677 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
678 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
679 				icsk->icsk_ack.ato = icsk->icsk_rto;
680 		} else if (m > icsk->icsk_rto) {
681 			/* Too long gap. Apparently sender failed to
682 			 * restart window, so that we send ACKs quickly.
683 			 */
684 			tcp_incr_quickack(sk);
685 			sk_mem_reclaim(sk);
686 		}
687 	}
688 	icsk->icsk_ack.lrcvtime = now;
689 
690 	tcp_ecn_check_ce(tp, skb);
691 
692 	if (skb->len >= 128)
693 		tcp_grow_window(sk, skb);
694 }
695 
696 /* Called to compute a smoothed rtt estimate. The data fed to this
697  * routine either comes from timestamps, or from segments that were
698  * known _not_ to have been retransmitted [see Karn/Partridge
699  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
700  * piece by Van Jacobson.
701  * NOTE: the next three routines used to be one big routine.
702  * To save cycles in the RFC 1323 implementation it was better to break
703  * it up into three procedures. -- erics
704  */
705 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
706 {
707 	struct tcp_sock *tp = tcp_sk(sk);
708 	long m = mrtt_us; /* RTT */
709 	u32 srtt = tp->srtt_us;
710 
711 	/*	The following amusing code comes from Jacobson's
712 	 *	article in SIGCOMM '88.  Note that rtt and mdev
713 	 *	are scaled versions of rtt and mean deviation.
714 	 *	This is designed to be as fast as possible
715 	 *	m stands for "measurement".
716 	 *
717 	 *	On a 1990 paper the rto value is changed to:
718 	 *	RTO = rtt + 4 * mdev
719 	 *
720 	 * Funny. This algorithm seems to be very broken.
721 	 * These formulae increase RTO, when it should be decreased, increase
722 	 * too slowly, when it should be increased quickly, decrease too quickly
723 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
724 	 * does not matter how to _calculate_ it. Seems, it was trap
725 	 * that VJ failed to avoid. 8)
726 	 */
727 	if (srtt != 0) {
728 		m -= (srtt >> 3);	/* m is now error in rtt est */
729 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
730 		if (m < 0) {
731 			m = -m;		/* m is now abs(error) */
732 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
733 			/* This is similar to one of Eifel findings.
734 			 * Eifel blocks mdev updates when rtt decreases.
735 			 * This solution is a bit different: we use finer gain
736 			 * for mdev in this case (alpha*beta).
737 			 * Like Eifel it also prevents growth of rto,
738 			 * but also it limits too fast rto decreases,
739 			 * happening in pure Eifel.
740 			 */
741 			if (m > 0)
742 				m >>= 3;
743 		} else {
744 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
745 		}
746 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
747 		if (tp->mdev_us > tp->mdev_max_us) {
748 			tp->mdev_max_us = tp->mdev_us;
749 			if (tp->mdev_max_us > tp->rttvar_us)
750 				tp->rttvar_us = tp->mdev_max_us;
751 		}
752 		if (after(tp->snd_una, tp->rtt_seq)) {
753 			if (tp->mdev_max_us < tp->rttvar_us)
754 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
755 			tp->rtt_seq = tp->snd_nxt;
756 			tp->mdev_max_us = tcp_rto_min_us(sk);
757 		}
758 	} else {
759 		/* no previous measure. */
760 		srtt = m << 3;		/* take the measured time to be rtt */
761 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
762 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
763 		tp->mdev_max_us = tp->rttvar_us;
764 		tp->rtt_seq = tp->snd_nxt;
765 	}
766 	tp->srtt_us = max(1U, srtt);
767 }
768 
769 static void tcp_update_pacing_rate(struct sock *sk)
770 {
771 	const struct tcp_sock *tp = tcp_sk(sk);
772 	u64 rate;
773 
774 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
775 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
776 
777 	/* current rate is (cwnd * mss) / srtt
778 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
779 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
780 	 *
781 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
782 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
783 	 *	 end of slow start and should slow down.
784 	 */
785 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
786 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
787 	else
788 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
789 
790 	rate *= max(tp->snd_cwnd, tp->packets_out);
791 
792 	if (likely(tp->srtt_us))
793 		do_div(rate, tp->srtt_us);
794 
795 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
796 	 * without any lock. We want to make sure compiler wont store
797 	 * intermediate values in this location.
798 	 */
799 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
800 						sk->sk_max_pacing_rate);
801 }
802 
803 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
804  * routine referred to above.
805  */
806 static void tcp_set_rto(struct sock *sk)
807 {
808 	const struct tcp_sock *tp = tcp_sk(sk);
809 	/* Old crap is replaced with new one. 8)
810 	 *
811 	 * More seriously:
812 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
813 	 *    It cannot be less due to utterly erratic ACK generation made
814 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
815 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
816 	 *    is invisible. Actually, Linux-2.4 also generates erratic
817 	 *    ACKs in some circumstances.
818 	 */
819 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
820 
821 	/* 2. Fixups made earlier cannot be right.
822 	 *    If we do not estimate RTO correctly without them,
823 	 *    all the algo is pure shit and should be replaced
824 	 *    with correct one. It is exactly, which we pretend to do.
825 	 */
826 
827 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
828 	 * guarantees that rto is higher.
829 	 */
830 	tcp_bound_rto(sk);
831 }
832 
833 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
834 {
835 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
836 
837 	if (!cwnd)
838 		cwnd = TCP_INIT_CWND;
839 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
840 }
841 
842 /*
843  * Packet counting of FACK is based on in-order assumptions, therefore TCP
844  * disables it when reordering is detected
845  */
846 void tcp_disable_fack(struct tcp_sock *tp)
847 {
848 	/* RFC3517 uses different metric in lost marker => reset on change */
849 	if (tcp_is_fack(tp))
850 		tp->lost_skb_hint = NULL;
851 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
852 }
853 
854 /* Take a notice that peer is sending D-SACKs */
855 static void tcp_dsack_seen(struct tcp_sock *tp)
856 {
857 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
858 }
859 
860 static void tcp_update_reordering(struct sock *sk, const int metric,
861 				  const int ts)
862 {
863 	struct tcp_sock *tp = tcp_sk(sk);
864 	int mib_idx;
865 
866 	if (WARN_ON_ONCE(metric < 0))
867 		return;
868 
869 	if (metric > tp->reordering) {
870 		tp->reordering = min(sock_net(sk)->ipv4.sysctl_tcp_max_reordering, metric);
871 
872 #if FASTRETRANS_DEBUG > 1
873 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
874 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
875 			 tp->reordering,
876 			 tp->fackets_out,
877 			 tp->sacked_out,
878 			 tp->undo_marker ? tp->undo_retrans : 0);
879 #endif
880 		tcp_disable_fack(tp);
881 	}
882 
883 	tp->rack.reord = 1;
884 
885 	/* This exciting event is worth to be remembered. 8) */
886 	if (ts)
887 		mib_idx = LINUX_MIB_TCPTSREORDER;
888 	else if (tcp_is_reno(tp))
889 		mib_idx = LINUX_MIB_TCPRENOREORDER;
890 	else if (tcp_is_fack(tp))
891 		mib_idx = LINUX_MIB_TCPFACKREORDER;
892 	else
893 		mib_idx = LINUX_MIB_TCPSACKREORDER;
894 
895 	NET_INC_STATS(sock_net(sk), mib_idx);
896 }
897 
898 /* This must be called before lost_out is incremented */
899 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
900 {
901 	if (!tp->retransmit_skb_hint ||
902 	    before(TCP_SKB_CB(skb)->seq,
903 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
904 		tp->retransmit_skb_hint = skb;
905 }
906 
907 /* Sum the number of packets on the wire we have marked as lost.
908  * There are two cases we care about here:
909  * a) Packet hasn't been marked lost (nor retransmitted),
910  *    and this is the first loss.
911  * b) Packet has been marked both lost and retransmitted,
912  *    and this means we think it was lost again.
913  */
914 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
915 {
916 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
917 
918 	if (!(sacked & TCPCB_LOST) ||
919 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
920 		tp->lost += tcp_skb_pcount(skb);
921 }
922 
923 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
924 {
925 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
926 		tcp_verify_retransmit_hint(tp, skb);
927 
928 		tp->lost_out += tcp_skb_pcount(skb);
929 		tcp_sum_lost(tp, skb);
930 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
931 	}
932 }
933 
934 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
935 {
936 	tcp_verify_retransmit_hint(tp, skb);
937 
938 	tcp_sum_lost(tp, skb);
939 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
940 		tp->lost_out += tcp_skb_pcount(skb);
941 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
942 	}
943 }
944 
945 /* This procedure tags the retransmission queue when SACKs arrive.
946  *
947  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
948  * Packets in queue with these bits set are counted in variables
949  * sacked_out, retrans_out and lost_out, correspondingly.
950  *
951  * Valid combinations are:
952  * Tag  InFlight	Description
953  * 0	1		- orig segment is in flight.
954  * S	0		- nothing flies, orig reached receiver.
955  * L	0		- nothing flies, orig lost by net.
956  * R	2		- both orig and retransmit are in flight.
957  * L|R	1		- orig is lost, retransmit is in flight.
958  * S|R  1		- orig reached receiver, retrans is still in flight.
959  * (L|S|R is logically valid, it could occur when L|R is sacked,
960  *  but it is equivalent to plain S and code short-curcuits it to S.
961  *  L|S is logically invalid, it would mean -1 packet in flight 8))
962  *
963  * These 6 states form finite state machine, controlled by the following events:
964  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
965  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
966  * 3. Loss detection event of two flavors:
967  *	A. Scoreboard estimator decided the packet is lost.
968  *	   A'. Reno "three dupacks" marks head of queue lost.
969  *	   A''. Its FACK modification, head until snd.fack is lost.
970  *	B. SACK arrives sacking SND.NXT at the moment, when the
971  *	   segment was retransmitted.
972  * 4. D-SACK added new rule: D-SACK changes any tag to S.
973  *
974  * It is pleasant to note, that state diagram turns out to be commutative,
975  * so that we are allowed not to be bothered by order of our actions,
976  * when multiple events arrive simultaneously. (see the function below).
977  *
978  * Reordering detection.
979  * --------------------
980  * Reordering metric is maximal distance, which a packet can be displaced
981  * in packet stream. With SACKs we can estimate it:
982  *
983  * 1. SACK fills old hole and the corresponding segment was not
984  *    ever retransmitted -> reordering. Alas, we cannot use it
985  *    when segment was retransmitted.
986  * 2. The last flaw is solved with D-SACK. D-SACK arrives
987  *    for retransmitted and already SACKed segment -> reordering..
988  * Both of these heuristics are not used in Loss state, when we cannot
989  * account for retransmits accurately.
990  *
991  * SACK block validation.
992  * ----------------------
993  *
994  * SACK block range validation checks that the received SACK block fits to
995  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
996  * Note that SND.UNA is not included to the range though being valid because
997  * it means that the receiver is rather inconsistent with itself reporting
998  * SACK reneging when it should advance SND.UNA. Such SACK block this is
999  * perfectly valid, however, in light of RFC2018 which explicitly states
1000  * that "SACK block MUST reflect the newest segment.  Even if the newest
1001  * segment is going to be discarded ...", not that it looks very clever
1002  * in case of head skb. Due to potentional receiver driven attacks, we
1003  * choose to avoid immediate execution of a walk in write queue due to
1004  * reneging and defer head skb's loss recovery to standard loss recovery
1005  * procedure that will eventually trigger (nothing forbids us doing this).
1006  *
1007  * Implements also blockage to start_seq wrap-around. Problem lies in the
1008  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1009  * there's no guarantee that it will be before snd_nxt (n). The problem
1010  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1011  * wrap (s_w):
1012  *
1013  *         <- outs wnd ->                          <- wrapzone ->
1014  *         u     e      n                         u_w   e_w  s n_w
1015  *         |     |      |                          |     |   |  |
1016  * |<------------+------+----- TCP seqno space --------------+---------->|
1017  * ...-- <2^31 ->|                                           |<--------...
1018  * ...---- >2^31 ------>|                                    |<--------...
1019  *
1020  * Current code wouldn't be vulnerable but it's better still to discard such
1021  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1022  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1023  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1024  * equal to the ideal case (infinite seqno space without wrap caused issues).
1025  *
1026  * With D-SACK the lower bound is extended to cover sequence space below
1027  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1028  * again, D-SACK block must not to go across snd_una (for the same reason as
1029  * for the normal SACK blocks, explained above). But there all simplicity
1030  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1031  * fully below undo_marker they do not affect behavior in anyway and can
1032  * therefore be safely ignored. In rare cases (which are more or less
1033  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1034  * fragmentation and packet reordering past skb's retransmission. To consider
1035  * them correctly, the acceptable range must be extended even more though
1036  * the exact amount is rather hard to quantify. However, tp->max_window can
1037  * be used as an exaggerated estimate.
1038  */
1039 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1040 				   u32 start_seq, u32 end_seq)
1041 {
1042 	/* Too far in future, or reversed (interpretation is ambiguous) */
1043 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1044 		return false;
1045 
1046 	/* Nasty start_seq wrap-around check (see comments above) */
1047 	if (!before(start_seq, tp->snd_nxt))
1048 		return false;
1049 
1050 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1051 	 * start_seq == snd_una is non-sensical (see comments above)
1052 	 */
1053 	if (after(start_seq, tp->snd_una))
1054 		return true;
1055 
1056 	if (!is_dsack || !tp->undo_marker)
1057 		return false;
1058 
1059 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1060 	if (after(end_seq, tp->snd_una))
1061 		return false;
1062 
1063 	if (!before(start_seq, tp->undo_marker))
1064 		return true;
1065 
1066 	/* Too old */
1067 	if (!after(end_seq, tp->undo_marker))
1068 		return false;
1069 
1070 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1071 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1072 	 */
1073 	return !before(start_seq, end_seq - tp->max_window);
1074 }
1075 
1076 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1077 			    struct tcp_sack_block_wire *sp, int num_sacks,
1078 			    u32 prior_snd_una)
1079 {
1080 	struct tcp_sock *tp = tcp_sk(sk);
1081 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1082 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1083 	bool dup_sack = false;
1084 
1085 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1086 		dup_sack = true;
1087 		tcp_dsack_seen(tp);
1088 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1089 	} else if (num_sacks > 1) {
1090 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1091 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1092 
1093 		if (!after(end_seq_0, end_seq_1) &&
1094 		    !before(start_seq_0, start_seq_1)) {
1095 			dup_sack = true;
1096 			tcp_dsack_seen(tp);
1097 			NET_INC_STATS(sock_net(sk),
1098 					LINUX_MIB_TCPDSACKOFORECV);
1099 		}
1100 	}
1101 
1102 	/* D-SACK for already forgotten data... Do dumb counting. */
1103 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1104 	    !after(end_seq_0, prior_snd_una) &&
1105 	    after(end_seq_0, tp->undo_marker))
1106 		tp->undo_retrans--;
1107 
1108 	return dup_sack;
1109 }
1110 
1111 struct tcp_sacktag_state {
1112 	int	reord;
1113 	int	fack_count;
1114 	/* Timestamps for earliest and latest never-retransmitted segment
1115 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1116 	 * but congestion control should still get an accurate delay signal.
1117 	 */
1118 	u64	first_sackt;
1119 	u64	last_sackt;
1120 	struct rate_sample *rate;
1121 	int	flag;
1122 	unsigned int mss_now;
1123 };
1124 
1125 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1126  * the incoming SACK may not exactly match but we can find smaller MSS
1127  * aligned portion of it that matches. Therefore we might need to fragment
1128  * which may fail and creates some hassle (caller must handle error case
1129  * returns).
1130  *
1131  * FIXME: this could be merged to shift decision code
1132  */
1133 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1134 				  u32 start_seq, u32 end_seq)
1135 {
1136 	int err;
1137 	bool in_sack;
1138 	unsigned int pkt_len;
1139 	unsigned int mss;
1140 
1141 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1142 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1143 
1144 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1145 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1146 		mss = tcp_skb_mss(skb);
1147 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1148 
1149 		if (!in_sack) {
1150 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1151 			if (pkt_len < mss)
1152 				pkt_len = mss;
1153 		} else {
1154 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1155 			if (pkt_len < mss)
1156 				return -EINVAL;
1157 		}
1158 
1159 		/* Round if necessary so that SACKs cover only full MSSes
1160 		 * and/or the remaining small portion (if present)
1161 		 */
1162 		if (pkt_len > mss) {
1163 			unsigned int new_len = (pkt_len / mss) * mss;
1164 			if (!in_sack && new_len < pkt_len)
1165 				new_len += mss;
1166 			pkt_len = new_len;
1167 		}
1168 
1169 		if (pkt_len >= skb->len && !in_sack)
1170 			return 0;
1171 
1172 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1173 				   pkt_len, mss, GFP_ATOMIC);
1174 		if (err < 0)
1175 			return err;
1176 	}
1177 
1178 	return in_sack;
1179 }
1180 
1181 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1182 static u8 tcp_sacktag_one(struct sock *sk,
1183 			  struct tcp_sacktag_state *state, u8 sacked,
1184 			  u32 start_seq, u32 end_seq,
1185 			  int dup_sack, int pcount,
1186 			  u64 xmit_time)
1187 {
1188 	struct tcp_sock *tp = tcp_sk(sk);
1189 	int fack_count = state->fack_count;
1190 
1191 	/* Account D-SACK for retransmitted packet. */
1192 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1193 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1194 		    after(end_seq, tp->undo_marker))
1195 			tp->undo_retrans--;
1196 		if (sacked & TCPCB_SACKED_ACKED)
1197 			state->reord = min(fack_count, state->reord);
1198 	}
1199 
1200 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1201 	if (!after(end_seq, tp->snd_una))
1202 		return sacked;
1203 
1204 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1205 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1206 
1207 		if (sacked & TCPCB_SACKED_RETRANS) {
1208 			/* If the segment is not tagged as lost,
1209 			 * we do not clear RETRANS, believing
1210 			 * that retransmission is still in flight.
1211 			 */
1212 			if (sacked & TCPCB_LOST) {
1213 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1214 				tp->lost_out -= pcount;
1215 				tp->retrans_out -= pcount;
1216 			}
1217 		} else {
1218 			if (!(sacked & TCPCB_RETRANS)) {
1219 				/* New sack for not retransmitted frame,
1220 				 * which was in hole. It is reordering.
1221 				 */
1222 				if (before(start_seq,
1223 					   tcp_highest_sack_seq(tp)))
1224 					state->reord = min(fack_count,
1225 							   state->reord);
1226 				if (!after(end_seq, tp->high_seq))
1227 					state->flag |= FLAG_ORIG_SACK_ACKED;
1228 				if (state->first_sackt == 0)
1229 					state->first_sackt = xmit_time;
1230 				state->last_sackt = xmit_time;
1231 			}
1232 
1233 			if (sacked & TCPCB_LOST) {
1234 				sacked &= ~TCPCB_LOST;
1235 				tp->lost_out -= pcount;
1236 			}
1237 		}
1238 
1239 		sacked |= TCPCB_SACKED_ACKED;
1240 		state->flag |= FLAG_DATA_SACKED;
1241 		tp->sacked_out += pcount;
1242 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1243 
1244 		fack_count += pcount;
1245 
1246 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1247 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1248 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1249 			tp->lost_cnt_hint += pcount;
1250 
1251 		if (fack_count > tp->fackets_out)
1252 			tp->fackets_out = fack_count;
1253 	}
1254 
1255 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1256 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1257 	 * are accounted above as well.
1258 	 */
1259 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1260 		sacked &= ~TCPCB_SACKED_RETRANS;
1261 		tp->retrans_out -= pcount;
1262 	}
1263 
1264 	return sacked;
1265 }
1266 
1267 /* Shift newly-SACKed bytes from this skb to the immediately previous
1268  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1269  */
1270 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1271 			    struct sk_buff *skb,
1272 			    struct tcp_sacktag_state *state,
1273 			    unsigned int pcount, int shifted, int mss,
1274 			    bool dup_sack)
1275 {
1276 	struct tcp_sock *tp = tcp_sk(sk);
1277 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1278 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1279 
1280 	BUG_ON(!pcount);
1281 
1282 	/* Adjust counters and hints for the newly sacked sequence
1283 	 * range but discard the return value since prev is already
1284 	 * marked. We must tag the range first because the seq
1285 	 * advancement below implicitly advances
1286 	 * tcp_highest_sack_seq() when skb is highest_sack.
1287 	 */
1288 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1289 			start_seq, end_seq, dup_sack, pcount,
1290 			skb->skb_mstamp);
1291 	tcp_rate_skb_delivered(sk, skb, state->rate);
1292 
1293 	if (skb == tp->lost_skb_hint)
1294 		tp->lost_cnt_hint += pcount;
1295 
1296 	TCP_SKB_CB(prev)->end_seq += shifted;
1297 	TCP_SKB_CB(skb)->seq += shifted;
1298 
1299 	tcp_skb_pcount_add(prev, pcount);
1300 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1301 	tcp_skb_pcount_add(skb, -pcount);
1302 
1303 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1304 	 * in theory this shouldn't be necessary but as long as DSACK
1305 	 * code can come after this skb later on it's better to keep
1306 	 * setting gso_size to something.
1307 	 */
1308 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1309 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1310 
1311 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1312 	if (tcp_skb_pcount(skb) <= 1)
1313 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1314 
1315 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1316 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1317 
1318 	if (skb->len > 0) {
1319 		BUG_ON(!tcp_skb_pcount(skb));
1320 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1321 		return false;
1322 	}
1323 
1324 	/* Whole SKB was eaten :-) */
1325 
1326 	if (skb == tp->retransmit_skb_hint)
1327 		tp->retransmit_skb_hint = prev;
1328 	if (skb == tp->lost_skb_hint) {
1329 		tp->lost_skb_hint = prev;
1330 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1331 	}
1332 
1333 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1334 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1335 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1336 		TCP_SKB_CB(prev)->end_seq++;
1337 
1338 	if (skb == tcp_highest_sack(sk))
1339 		tcp_advance_highest_sack(sk, skb);
1340 
1341 	tcp_skb_collapse_tstamp(prev, skb);
1342 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1343 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1344 
1345 	tcp_rtx_queue_unlink_and_free(skb, sk);
1346 
1347 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1348 
1349 	return true;
1350 }
1351 
1352 /* I wish gso_size would have a bit more sane initialization than
1353  * something-or-zero which complicates things
1354  */
1355 static int tcp_skb_seglen(const struct sk_buff *skb)
1356 {
1357 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1358 }
1359 
1360 /* Shifting pages past head area doesn't work */
1361 static int skb_can_shift(const struct sk_buff *skb)
1362 {
1363 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1364 }
1365 
1366 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1367  * skb.
1368  */
1369 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1370 					  struct tcp_sacktag_state *state,
1371 					  u32 start_seq, u32 end_seq,
1372 					  bool dup_sack)
1373 {
1374 	struct tcp_sock *tp = tcp_sk(sk);
1375 	struct sk_buff *prev;
1376 	int mss;
1377 	int pcount = 0;
1378 	int len;
1379 	int in_sack;
1380 
1381 	if (!sk_can_gso(sk))
1382 		goto fallback;
1383 
1384 	/* Normally R but no L won't result in plain S */
1385 	if (!dup_sack &&
1386 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1387 		goto fallback;
1388 	if (!skb_can_shift(skb))
1389 		goto fallback;
1390 	/* This frame is about to be dropped (was ACKed). */
1391 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1392 		goto fallback;
1393 
1394 	/* Can only happen with delayed DSACK + discard craziness */
1395 	prev = skb_rb_prev(skb);
1396 	if (!prev)
1397 		goto fallback;
1398 
1399 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1400 		goto fallback;
1401 
1402 	if (!tcp_skb_can_collapse_to(prev))
1403 		goto fallback;
1404 
1405 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1406 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1407 
1408 	if (in_sack) {
1409 		len = skb->len;
1410 		pcount = tcp_skb_pcount(skb);
1411 		mss = tcp_skb_seglen(skb);
1412 
1413 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1414 		 * drop this restriction as unnecessary
1415 		 */
1416 		if (mss != tcp_skb_seglen(prev))
1417 			goto fallback;
1418 	} else {
1419 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1420 			goto noop;
1421 		/* CHECKME: This is non-MSS split case only?, this will
1422 		 * cause skipped skbs due to advancing loop btw, original
1423 		 * has that feature too
1424 		 */
1425 		if (tcp_skb_pcount(skb) <= 1)
1426 			goto noop;
1427 
1428 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1429 		if (!in_sack) {
1430 			/* TODO: head merge to next could be attempted here
1431 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1432 			 * though it might not be worth of the additional hassle
1433 			 *
1434 			 * ...we can probably just fallback to what was done
1435 			 * previously. We could try merging non-SACKed ones
1436 			 * as well but it probably isn't going to buy off
1437 			 * because later SACKs might again split them, and
1438 			 * it would make skb timestamp tracking considerably
1439 			 * harder problem.
1440 			 */
1441 			goto fallback;
1442 		}
1443 
1444 		len = end_seq - TCP_SKB_CB(skb)->seq;
1445 		BUG_ON(len < 0);
1446 		BUG_ON(len > skb->len);
1447 
1448 		/* MSS boundaries should be honoured or else pcount will
1449 		 * severely break even though it makes things bit trickier.
1450 		 * Optimize common case to avoid most of the divides
1451 		 */
1452 		mss = tcp_skb_mss(skb);
1453 
1454 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1455 		 * drop this restriction as unnecessary
1456 		 */
1457 		if (mss != tcp_skb_seglen(prev))
1458 			goto fallback;
1459 
1460 		if (len == mss) {
1461 			pcount = 1;
1462 		} else if (len < mss) {
1463 			goto noop;
1464 		} else {
1465 			pcount = len / mss;
1466 			len = pcount * mss;
1467 		}
1468 	}
1469 
1470 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1471 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1472 		goto fallback;
1473 
1474 	if (!skb_shift(prev, skb, len))
1475 		goto fallback;
1476 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1477 		goto out;
1478 
1479 	/* Hole filled allows collapsing with the next as well, this is very
1480 	 * useful when hole on every nth skb pattern happens
1481 	 */
1482 	skb = skb_rb_next(prev);
1483 	if (!skb)
1484 		goto out;
1485 
1486 	if (!skb_can_shift(skb) ||
1487 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1488 	    (mss != tcp_skb_seglen(skb)))
1489 		goto out;
1490 
1491 	len = skb->len;
1492 	if (skb_shift(prev, skb, len)) {
1493 		pcount += tcp_skb_pcount(skb);
1494 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1495 				len, mss, 0);
1496 	}
1497 
1498 out:
1499 	state->fack_count += pcount;
1500 	return prev;
1501 
1502 noop:
1503 	return skb;
1504 
1505 fallback:
1506 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1507 	return NULL;
1508 }
1509 
1510 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1511 					struct tcp_sack_block *next_dup,
1512 					struct tcp_sacktag_state *state,
1513 					u32 start_seq, u32 end_seq,
1514 					bool dup_sack_in)
1515 {
1516 	struct tcp_sock *tp = tcp_sk(sk);
1517 	struct sk_buff *tmp;
1518 
1519 	skb_rbtree_walk_from(skb) {
1520 		int in_sack = 0;
1521 		bool dup_sack = dup_sack_in;
1522 
1523 		/* queue is in-order => we can short-circuit the walk early */
1524 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1525 			break;
1526 
1527 		if (next_dup  &&
1528 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1529 			in_sack = tcp_match_skb_to_sack(sk, skb,
1530 							next_dup->start_seq,
1531 							next_dup->end_seq);
1532 			if (in_sack > 0)
1533 				dup_sack = true;
1534 		}
1535 
1536 		/* skb reference here is a bit tricky to get right, since
1537 		 * shifting can eat and free both this skb and the next,
1538 		 * so not even _safe variant of the loop is enough.
1539 		 */
1540 		if (in_sack <= 0) {
1541 			tmp = tcp_shift_skb_data(sk, skb, state,
1542 						 start_seq, end_seq, dup_sack);
1543 			if (tmp) {
1544 				if (tmp != skb) {
1545 					skb = tmp;
1546 					continue;
1547 				}
1548 
1549 				in_sack = 0;
1550 			} else {
1551 				in_sack = tcp_match_skb_to_sack(sk, skb,
1552 								start_seq,
1553 								end_seq);
1554 			}
1555 		}
1556 
1557 		if (unlikely(in_sack < 0))
1558 			break;
1559 
1560 		if (in_sack) {
1561 			TCP_SKB_CB(skb)->sacked =
1562 				tcp_sacktag_one(sk,
1563 						state,
1564 						TCP_SKB_CB(skb)->sacked,
1565 						TCP_SKB_CB(skb)->seq,
1566 						TCP_SKB_CB(skb)->end_seq,
1567 						dup_sack,
1568 						tcp_skb_pcount(skb),
1569 						skb->skb_mstamp);
1570 			tcp_rate_skb_delivered(sk, skb, state->rate);
1571 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1572 				list_del_init(&skb->tcp_tsorted_anchor);
1573 
1574 			if (!before(TCP_SKB_CB(skb)->seq,
1575 				    tcp_highest_sack_seq(tp)))
1576 				tcp_advance_highest_sack(sk, skb);
1577 		}
1578 
1579 		state->fack_count += tcp_skb_pcount(skb);
1580 	}
1581 	return skb;
1582 }
1583 
1584 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1585 					   struct tcp_sacktag_state *state,
1586 					   u32 seq)
1587 {
1588 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1589 	struct sk_buff *skb;
1590 	int unack_bytes;
1591 
1592 	while (*p) {
1593 		parent = *p;
1594 		skb = rb_to_skb(parent);
1595 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1596 			p = &parent->rb_left;
1597 			continue;
1598 		}
1599 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1600 			p = &parent->rb_right;
1601 			continue;
1602 		}
1603 
1604 		state->fack_count = 0;
1605 		unack_bytes = TCP_SKB_CB(skb)->seq - tcp_sk(sk)->snd_una;
1606 		if (state->mss_now && unack_bytes > 0)
1607 			state->fack_count = unack_bytes / state->mss_now;
1608 
1609 		return skb;
1610 	}
1611 	return NULL;
1612 }
1613 
1614 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1615 					struct tcp_sacktag_state *state,
1616 					u32 skip_to_seq)
1617 {
1618 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1619 		return skb;
1620 
1621 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1622 }
1623 
1624 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1625 						struct sock *sk,
1626 						struct tcp_sack_block *next_dup,
1627 						struct tcp_sacktag_state *state,
1628 						u32 skip_to_seq)
1629 {
1630 	if (!next_dup)
1631 		return skb;
1632 
1633 	if (before(next_dup->start_seq, skip_to_seq)) {
1634 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1635 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1636 				       next_dup->start_seq, next_dup->end_seq,
1637 				       1);
1638 	}
1639 
1640 	return skb;
1641 }
1642 
1643 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1644 {
1645 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1646 }
1647 
1648 static int
1649 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1650 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1651 {
1652 	struct tcp_sock *tp = tcp_sk(sk);
1653 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1654 				    TCP_SKB_CB(ack_skb)->sacked);
1655 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1656 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1657 	struct tcp_sack_block *cache;
1658 	struct sk_buff *skb;
1659 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1660 	int used_sacks;
1661 	bool found_dup_sack = false;
1662 	int i, j;
1663 	int first_sack_index;
1664 
1665 	state->flag = 0;
1666 	state->reord = tp->packets_out;
1667 
1668 	if (!tp->sacked_out) {
1669 		if (WARN_ON(tp->fackets_out))
1670 			tp->fackets_out = 0;
1671 		tcp_highest_sack_reset(sk);
1672 	}
1673 
1674 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1675 					 num_sacks, prior_snd_una);
1676 	if (found_dup_sack) {
1677 		state->flag |= FLAG_DSACKING_ACK;
1678 		tp->delivered++; /* A spurious retransmission is delivered */
1679 	}
1680 
1681 	/* Eliminate too old ACKs, but take into
1682 	 * account more or less fresh ones, they can
1683 	 * contain valid SACK info.
1684 	 */
1685 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1686 		return 0;
1687 
1688 	if (!tp->packets_out)
1689 		goto out;
1690 
1691 	used_sacks = 0;
1692 	first_sack_index = 0;
1693 	for (i = 0; i < num_sacks; i++) {
1694 		bool dup_sack = !i && found_dup_sack;
1695 
1696 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1697 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1698 
1699 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1700 					    sp[used_sacks].start_seq,
1701 					    sp[used_sacks].end_seq)) {
1702 			int mib_idx;
1703 
1704 			if (dup_sack) {
1705 				if (!tp->undo_marker)
1706 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1707 				else
1708 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1709 			} else {
1710 				/* Don't count olds caused by ACK reordering */
1711 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1712 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1713 					continue;
1714 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1715 			}
1716 
1717 			NET_INC_STATS(sock_net(sk), mib_idx);
1718 			if (i == 0)
1719 				first_sack_index = -1;
1720 			continue;
1721 		}
1722 
1723 		/* Ignore very old stuff early */
1724 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1725 			continue;
1726 
1727 		used_sacks++;
1728 	}
1729 
1730 	/* order SACK blocks to allow in order walk of the retrans queue */
1731 	for (i = used_sacks - 1; i > 0; i--) {
1732 		for (j = 0; j < i; j++) {
1733 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1734 				swap(sp[j], sp[j + 1]);
1735 
1736 				/* Track where the first SACK block goes to */
1737 				if (j == first_sack_index)
1738 					first_sack_index = j + 1;
1739 			}
1740 		}
1741 	}
1742 
1743 	state->mss_now = tcp_current_mss(sk);
1744 	state->fack_count = 0;
1745 	skb = NULL;
1746 	i = 0;
1747 
1748 	if (!tp->sacked_out) {
1749 		/* It's already past, so skip checking against it */
1750 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1751 	} else {
1752 		cache = tp->recv_sack_cache;
1753 		/* Skip empty blocks in at head of the cache */
1754 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1755 		       !cache->end_seq)
1756 			cache++;
1757 	}
1758 
1759 	while (i < used_sacks) {
1760 		u32 start_seq = sp[i].start_seq;
1761 		u32 end_seq = sp[i].end_seq;
1762 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1763 		struct tcp_sack_block *next_dup = NULL;
1764 
1765 		if (found_dup_sack && ((i + 1) == first_sack_index))
1766 			next_dup = &sp[i + 1];
1767 
1768 		/* Skip too early cached blocks */
1769 		while (tcp_sack_cache_ok(tp, cache) &&
1770 		       !before(start_seq, cache->end_seq))
1771 			cache++;
1772 
1773 		/* Can skip some work by looking recv_sack_cache? */
1774 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1775 		    after(end_seq, cache->start_seq)) {
1776 
1777 			/* Head todo? */
1778 			if (before(start_seq, cache->start_seq)) {
1779 				skb = tcp_sacktag_skip(skb, sk, state,
1780 						       start_seq);
1781 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1782 						       state,
1783 						       start_seq,
1784 						       cache->start_seq,
1785 						       dup_sack);
1786 			}
1787 
1788 			/* Rest of the block already fully processed? */
1789 			if (!after(end_seq, cache->end_seq))
1790 				goto advance_sp;
1791 
1792 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1793 						       state,
1794 						       cache->end_seq);
1795 
1796 			/* ...tail remains todo... */
1797 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1798 				/* ...but better entrypoint exists! */
1799 				skb = tcp_highest_sack(sk);
1800 				if (!skb)
1801 					break;
1802 				state->fack_count = tp->fackets_out;
1803 				cache++;
1804 				goto walk;
1805 			}
1806 
1807 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1808 			/* Check overlap against next cached too (past this one already) */
1809 			cache++;
1810 			continue;
1811 		}
1812 
1813 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1814 			skb = tcp_highest_sack(sk);
1815 			if (!skb)
1816 				break;
1817 			state->fack_count = tp->fackets_out;
1818 		}
1819 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1820 
1821 walk:
1822 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1823 				       start_seq, end_seq, dup_sack);
1824 
1825 advance_sp:
1826 		i++;
1827 	}
1828 
1829 	/* Clear the head of the cache sack blocks so we can skip it next time */
1830 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1831 		tp->recv_sack_cache[i].start_seq = 0;
1832 		tp->recv_sack_cache[i].end_seq = 0;
1833 	}
1834 	for (j = 0; j < used_sacks; j++)
1835 		tp->recv_sack_cache[i++] = sp[j];
1836 
1837 	if ((state->reord < tp->fackets_out) &&
1838 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1839 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1840 
1841 	tcp_verify_left_out(tp);
1842 out:
1843 
1844 #if FASTRETRANS_DEBUG > 0
1845 	WARN_ON((int)tp->sacked_out < 0);
1846 	WARN_ON((int)tp->lost_out < 0);
1847 	WARN_ON((int)tp->retrans_out < 0);
1848 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1849 #endif
1850 	return state->flag;
1851 }
1852 
1853 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1854  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1855  */
1856 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1857 {
1858 	u32 holes;
1859 
1860 	holes = max(tp->lost_out, 1U);
1861 	holes = min(holes, tp->packets_out);
1862 
1863 	if ((tp->sacked_out + holes) > tp->packets_out) {
1864 		tp->sacked_out = tp->packets_out - holes;
1865 		return true;
1866 	}
1867 	return false;
1868 }
1869 
1870 /* If we receive more dupacks than we expected counting segments
1871  * in assumption of absent reordering, interpret this as reordering.
1872  * The only another reason could be bug in receiver TCP.
1873  */
1874 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1875 {
1876 	struct tcp_sock *tp = tcp_sk(sk);
1877 	if (tcp_limit_reno_sacked(tp))
1878 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1879 }
1880 
1881 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1882 
1883 static void tcp_add_reno_sack(struct sock *sk)
1884 {
1885 	struct tcp_sock *tp = tcp_sk(sk);
1886 	u32 prior_sacked = tp->sacked_out;
1887 
1888 	tp->sacked_out++;
1889 	tcp_check_reno_reordering(sk, 0);
1890 	if (tp->sacked_out > prior_sacked)
1891 		tp->delivered++; /* Some out-of-order packet is delivered */
1892 	tcp_verify_left_out(tp);
1893 }
1894 
1895 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1896 
1897 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1898 {
1899 	struct tcp_sock *tp = tcp_sk(sk);
1900 
1901 	if (acked > 0) {
1902 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1903 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1904 		if (acked - 1 >= tp->sacked_out)
1905 			tp->sacked_out = 0;
1906 		else
1907 			tp->sacked_out -= acked - 1;
1908 	}
1909 	tcp_check_reno_reordering(sk, acked);
1910 	tcp_verify_left_out(tp);
1911 }
1912 
1913 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1914 {
1915 	tp->sacked_out = 0;
1916 }
1917 
1918 void tcp_clear_retrans(struct tcp_sock *tp)
1919 {
1920 	tp->retrans_out = 0;
1921 	tp->lost_out = 0;
1922 	tp->undo_marker = 0;
1923 	tp->undo_retrans = -1;
1924 	tp->fackets_out = 0;
1925 	tp->sacked_out = 0;
1926 }
1927 
1928 static inline void tcp_init_undo(struct tcp_sock *tp)
1929 {
1930 	tp->undo_marker = tp->snd_una;
1931 	/* Retransmission still in flight may cause DSACKs later. */
1932 	tp->undo_retrans = tp->retrans_out ? : -1;
1933 }
1934 
1935 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1936  * and reset tags completely, otherwise preserve SACKs. If receiver
1937  * dropped its ofo queue, we will know this due to reneging detection.
1938  */
1939 void tcp_enter_loss(struct sock *sk)
1940 {
1941 	const struct inet_connection_sock *icsk = inet_csk(sk);
1942 	struct tcp_sock *tp = tcp_sk(sk);
1943 	struct net *net = sock_net(sk);
1944 	struct sk_buff *skb;
1945 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1946 	bool is_reneg;			/* is receiver reneging on SACKs? */
1947 	bool mark_lost;
1948 
1949 	/* Reduce ssthresh if it has not yet been made inside this window. */
1950 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1951 	    !after(tp->high_seq, tp->snd_una) ||
1952 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1953 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1954 		tp->prior_cwnd = tp->snd_cwnd;
1955 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1956 		tcp_ca_event(sk, CA_EVENT_LOSS);
1957 		tcp_init_undo(tp);
1958 	}
1959 	tp->snd_cwnd	   = 1;
1960 	tp->snd_cwnd_cnt   = 0;
1961 	tp->snd_cwnd_stamp = tcp_jiffies32;
1962 
1963 	tp->retrans_out = 0;
1964 	tp->lost_out = 0;
1965 
1966 	if (tcp_is_reno(tp))
1967 		tcp_reset_reno_sack(tp);
1968 
1969 	skb = tcp_rtx_queue_head(sk);
1970 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1971 	if (is_reneg) {
1972 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1973 		tp->sacked_out = 0;
1974 		tp->fackets_out = 0;
1975 	}
1976 	tcp_clear_all_retrans_hints(tp);
1977 
1978 	skb_rbtree_walk_from(skb) {
1979 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1980 			     is_reneg);
1981 		if (mark_lost)
1982 			tcp_sum_lost(tp, skb);
1983 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1984 		if (mark_lost) {
1985 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1986 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1987 			tp->lost_out += tcp_skb_pcount(skb);
1988 		}
1989 	}
1990 	tcp_verify_left_out(tp);
1991 
1992 	/* Timeout in disordered state after receiving substantial DUPACKs
1993 	 * suggests that the degree of reordering is over-estimated.
1994 	 */
1995 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1996 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1997 		tp->reordering = min_t(unsigned int, tp->reordering,
1998 				       net->ipv4.sysctl_tcp_reordering);
1999 	tcp_set_ca_state(sk, TCP_CA_Loss);
2000 	tp->high_seq = tp->snd_nxt;
2001 	tcp_ecn_queue_cwr(tp);
2002 
2003 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2004 	 * loss recovery is underway except recurring timeout(s) on
2005 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2006 	 *
2007 	 * In theory F-RTO can be used repeatedly during loss recovery.
2008 	 * In practice this interacts badly with broken middle-boxes that
2009 	 * falsely raise the receive window, which results in repeated
2010 	 * timeouts and stop-and-go behavior.
2011 	 */
2012 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2013 		   (new_recovery || icsk->icsk_retransmits) &&
2014 		   !inet_csk(sk)->icsk_mtup.probe_size;
2015 }
2016 
2017 /* If ACK arrived pointing to a remembered SACK, it means that our
2018  * remembered SACKs do not reflect real state of receiver i.e.
2019  * receiver _host_ is heavily congested (or buggy).
2020  *
2021  * To avoid big spurious retransmission bursts due to transient SACK
2022  * scoreboard oddities that look like reneging, we give the receiver a
2023  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2024  * restore sanity to the SACK scoreboard. If the apparent reneging
2025  * persists until this RTO then we'll clear the SACK scoreboard.
2026  */
2027 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2028 {
2029 	if (flag & FLAG_SACK_RENEGING) {
2030 		struct tcp_sock *tp = tcp_sk(sk);
2031 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2032 					  msecs_to_jiffies(10));
2033 
2034 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2035 					  delay, TCP_RTO_MAX);
2036 		return true;
2037 	}
2038 	return false;
2039 }
2040 
2041 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2042 {
2043 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2044 }
2045 
2046 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2047  * counter when SACK is enabled (without SACK, sacked_out is used for
2048  * that purpose).
2049  *
2050  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2051  * segments up to the highest received SACK block so far and holes in
2052  * between them.
2053  *
2054  * With reordering, holes may still be in flight, so RFC3517 recovery
2055  * uses pure sacked_out (total number of SACKed segments) even though
2056  * it violates the RFC that uses duplicate ACKs, often these are equal
2057  * but when e.g. out-of-window ACKs or packet duplication occurs,
2058  * they differ. Since neither occurs due to loss, TCP should really
2059  * ignore them.
2060  */
2061 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2062 {
2063 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2064 }
2065 
2066 /* Linux NewReno/SACK/FACK/ECN state machine.
2067  * --------------------------------------
2068  *
2069  * "Open"	Normal state, no dubious events, fast path.
2070  * "Disorder"   In all the respects it is "Open",
2071  *		but requires a bit more attention. It is entered when
2072  *		we see some SACKs or dupacks. It is split of "Open"
2073  *		mainly to move some processing from fast path to slow one.
2074  * "CWR"	CWND was reduced due to some Congestion Notification event.
2075  *		It can be ECN, ICMP source quench, local device congestion.
2076  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2077  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2078  *
2079  * tcp_fastretrans_alert() is entered:
2080  * - each incoming ACK, if state is not "Open"
2081  * - when arrived ACK is unusual, namely:
2082  *	* SACK
2083  *	* Duplicate ACK.
2084  *	* ECN ECE.
2085  *
2086  * Counting packets in flight is pretty simple.
2087  *
2088  *	in_flight = packets_out - left_out + retrans_out
2089  *
2090  *	packets_out is SND.NXT-SND.UNA counted in packets.
2091  *
2092  *	retrans_out is number of retransmitted segments.
2093  *
2094  *	left_out is number of segments left network, but not ACKed yet.
2095  *
2096  *		left_out = sacked_out + lost_out
2097  *
2098  *     sacked_out: Packets, which arrived to receiver out of order
2099  *		   and hence not ACKed. With SACKs this number is simply
2100  *		   amount of SACKed data. Even without SACKs
2101  *		   it is easy to give pretty reliable estimate of this number,
2102  *		   counting duplicate ACKs.
2103  *
2104  *       lost_out: Packets lost by network. TCP has no explicit
2105  *		   "loss notification" feedback from network (for now).
2106  *		   It means that this number can be only _guessed_.
2107  *		   Actually, it is the heuristics to predict lossage that
2108  *		   distinguishes different algorithms.
2109  *
2110  *	F.e. after RTO, when all the queue is considered as lost,
2111  *	lost_out = packets_out and in_flight = retrans_out.
2112  *
2113  *		Essentially, we have now a few algorithms detecting
2114  *		lost packets.
2115  *
2116  *		If the receiver supports SACK:
2117  *
2118  *		RFC6675/3517: It is the conventional algorithm. A packet is
2119  *		considered lost if the number of higher sequence packets
2120  *		SACKed is greater than or equal the DUPACK thoreshold
2121  *		(reordering). This is implemented in tcp_mark_head_lost and
2122  *		tcp_update_scoreboard.
2123  *
2124  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2125  *		(2017-) that checks timing instead of counting DUPACKs.
2126  *		Essentially a packet is considered lost if it's not S/ACKed
2127  *		after RTT + reordering_window, where both metrics are
2128  *		dynamically measured and adjusted. This is implemented in
2129  *		tcp_rack_mark_lost.
2130  *
2131  *		FACK (Disabled by default. Subsumbed by RACK):
2132  *		It is the simplest heuristics. As soon as we decided
2133  *		that something is lost, we decide that _all_ not SACKed
2134  *		packets until the most forward SACK are lost. I.e.
2135  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2136  *		It is absolutely correct estimate, if network does not reorder
2137  *		packets. And it loses any connection to reality when reordering
2138  *		takes place. We use FACK by default until reordering
2139  *		is suspected on the path to this destination.
2140  *
2141  *		If the receiver does not support SACK:
2142  *
2143  *		NewReno (RFC6582): in Recovery we assume that one segment
2144  *		is lost (classic Reno). While we are in Recovery and
2145  *		a partial ACK arrives, we assume that one more packet
2146  *		is lost (NewReno). This heuristics are the same in NewReno
2147  *		and SACK.
2148  *
2149  * Really tricky (and requiring careful tuning) part of algorithm
2150  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2151  * The first determines the moment _when_ we should reduce CWND and,
2152  * hence, slow down forward transmission. In fact, it determines the moment
2153  * when we decide that hole is caused by loss, rather than by a reorder.
2154  *
2155  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2156  * holes, caused by lost packets.
2157  *
2158  * And the most logically complicated part of algorithm is undo
2159  * heuristics. We detect false retransmits due to both too early
2160  * fast retransmit (reordering) and underestimated RTO, analyzing
2161  * timestamps and D-SACKs. When we detect that some segments were
2162  * retransmitted by mistake and CWND reduction was wrong, we undo
2163  * window reduction and abort recovery phase. This logic is hidden
2164  * inside several functions named tcp_try_undo_<something>.
2165  */
2166 
2167 /* This function decides, when we should leave Disordered state
2168  * and enter Recovery phase, reducing congestion window.
2169  *
2170  * Main question: may we further continue forward transmission
2171  * with the same cwnd?
2172  */
2173 static bool tcp_time_to_recover(struct sock *sk, int flag)
2174 {
2175 	struct tcp_sock *tp = tcp_sk(sk);
2176 
2177 	/* Trick#1: The loss is proven. */
2178 	if (tp->lost_out)
2179 		return true;
2180 
2181 	/* Not-A-Trick#2 : Classic rule... */
2182 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2183 		return true;
2184 
2185 	return false;
2186 }
2187 
2188 /* Detect loss in event "A" above by marking head of queue up as lost.
2189  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2190  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2191  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2192  * the maximum SACKed segments to pass before reaching this limit.
2193  */
2194 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2195 {
2196 	struct tcp_sock *tp = tcp_sk(sk);
2197 	struct sk_buff *skb;
2198 	int cnt, oldcnt, lost;
2199 	unsigned int mss;
2200 	/* Use SACK to deduce losses of new sequences sent during recovery */
2201 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2202 
2203 	WARN_ON(packets > tp->packets_out);
2204 	skb = tp->lost_skb_hint;
2205 	if (skb) {
2206 		/* Head already handled? */
2207 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2208 			return;
2209 		cnt = tp->lost_cnt_hint;
2210 	} else {
2211 		skb = tcp_rtx_queue_head(sk);
2212 		cnt = 0;
2213 	}
2214 
2215 	skb_rbtree_walk_from(skb) {
2216 		/* TODO: do this better */
2217 		/* this is not the most efficient way to do this... */
2218 		tp->lost_skb_hint = skb;
2219 		tp->lost_cnt_hint = cnt;
2220 
2221 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2222 			break;
2223 
2224 		oldcnt = cnt;
2225 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2226 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2227 			cnt += tcp_skb_pcount(skb);
2228 
2229 		if (cnt > packets) {
2230 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2231 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2232 			    (oldcnt >= packets))
2233 				break;
2234 
2235 			mss = tcp_skb_mss(skb);
2236 			/* If needed, chop off the prefix to mark as lost. */
2237 			lost = (packets - oldcnt) * mss;
2238 			if (lost < skb->len &&
2239 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2240 					 lost, mss, GFP_ATOMIC) < 0)
2241 				break;
2242 			cnt = packets;
2243 		}
2244 
2245 		tcp_skb_mark_lost(tp, skb);
2246 
2247 		if (mark_head)
2248 			break;
2249 	}
2250 	tcp_verify_left_out(tp);
2251 }
2252 
2253 /* Account newly detected lost packet(s) */
2254 
2255 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2256 {
2257 	struct tcp_sock *tp = tcp_sk(sk);
2258 
2259 	if (tcp_is_reno(tp)) {
2260 		tcp_mark_head_lost(sk, 1, 1);
2261 	} else if (tcp_is_fack(tp)) {
2262 		int lost = tp->fackets_out - tp->reordering;
2263 		if (lost <= 0)
2264 			lost = 1;
2265 		tcp_mark_head_lost(sk, lost, 0);
2266 	} else {
2267 		int sacked_upto = tp->sacked_out - tp->reordering;
2268 		if (sacked_upto >= 0)
2269 			tcp_mark_head_lost(sk, sacked_upto, 0);
2270 		else if (fast_rexmit)
2271 			tcp_mark_head_lost(sk, 1, 1);
2272 	}
2273 }
2274 
2275 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2276 {
2277 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2278 	       before(tp->rx_opt.rcv_tsecr, when);
2279 }
2280 
2281 /* skb is spurious retransmitted if the returned timestamp echo
2282  * reply is prior to the skb transmission time
2283  */
2284 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2285 				     const struct sk_buff *skb)
2286 {
2287 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2288 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2289 }
2290 
2291 /* Nothing was retransmitted or returned timestamp is less
2292  * than timestamp of the first retransmission.
2293  */
2294 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2295 {
2296 	return !tp->retrans_stamp ||
2297 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2298 }
2299 
2300 /* Undo procedures. */
2301 
2302 /* We can clear retrans_stamp when there are no retransmissions in the
2303  * window. It would seem that it is trivially available for us in
2304  * tp->retrans_out, however, that kind of assumptions doesn't consider
2305  * what will happen if errors occur when sending retransmission for the
2306  * second time. ...It could the that such segment has only
2307  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2308  * the head skb is enough except for some reneging corner cases that
2309  * are not worth the effort.
2310  *
2311  * Main reason for all this complexity is the fact that connection dying
2312  * time now depends on the validity of the retrans_stamp, in particular,
2313  * that successive retransmissions of a segment must not advance
2314  * retrans_stamp under any conditions.
2315  */
2316 static bool tcp_any_retrans_done(const struct sock *sk)
2317 {
2318 	const struct tcp_sock *tp = tcp_sk(sk);
2319 	struct sk_buff *skb;
2320 
2321 	if (tp->retrans_out)
2322 		return true;
2323 
2324 	skb = tcp_rtx_queue_head(sk);
2325 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2326 		return true;
2327 
2328 	return false;
2329 }
2330 
2331 static void DBGUNDO(struct sock *sk, const char *msg)
2332 {
2333 #if FASTRETRANS_DEBUG > 1
2334 	struct tcp_sock *tp = tcp_sk(sk);
2335 	struct inet_sock *inet = inet_sk(sk);
2336 
2337 	if (sk->sk_family == AF_INET) {
2338 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2339 			 msg,
2340 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2341 			 tp->snd_cwnd, tcp_left_out(tp),
2342 			 tp->snd_ssthresh, tp->prior_ssthresh,
2343 			 tp->packets_out);
2344 	}
2345 #if IS_ENABLED(CONFIG_IPV6)
2346 	else if (sk->sk_family == AF_INET6) {
2347 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2348 			 msg,
2349 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2350 			 tp->snd_cwnd, tcp_left_out(tp),
2351 			 tp->snd_ssthresh, tp->prior_ssthresh,
2352 			 tp->packets_out);
2353 	}
2354 #endif
2355 #endif
2356 }
2357 
2358 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2359 {
2360 	struct tcp_sock *tp = tcp_sk(sk);
2361 
2362 	if (unmark_loss) {
2363 		struct sk_buff *skb;
2364 
2365 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2366 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2367 		}
2368 		tp->lost_out = 0;
2369 		tcp_clear_all_retrans_hints(tp);
2370 	}
2371 
2372 	if (tp->prior_ssthresh) {
2373 		const struct inet_connection_sock *icsk = inet_csk(sk);
2374 
2375 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2376 
2377 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2378 			tp->snd_ssthresh = tp->prior_ssthresh;
2379 			tcp_ecn_withdraw_cwr(tp);
2380 		}
2381 	}
2382 	tp->snd_cwnd_stamp = tcp_jiffies32;
2383 	tp->undo_marker = 0;
2384 }
2385 
2386 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2387 {
2388 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2389 }
2390 
2391 /* People celebrate: "We love our President!" */
2392 static bool tcp_try_undo_recovery(struct sock *sk)
2393 {
2394 	struct tcp_sock *tp = tcp_sk(sk);
2395 
2396 	if (tcp_may_undo(tp)) {
2397 		int mib_idx;
2398 
2399 		/* Happy end! We did not retransmit anything
2400 		 * or our original transmission succeeded.
2401 		 */
2402 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2403 		tcp_undo_cwnd_reduction(sk, false);
2404 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2405 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2406 		else
2407 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2408 
2409 		NET_INC_STATS(sock_net(sk), mib_idx);
2410 	}
2411 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2412 		/* Hold old state until something *above* high_seq
2413 		 * is ACKed. For Reno it is MUST to prevent false
2414 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2415 		if (!tcp_any_retrans_done(sk))
2416 			tp->retrans_stamp = 0;
2417 		return true;
2418 	}
2419 	tcp_set_ca_state(sk, TCP_CA_Open);
2420 	return false;
2421 }
2422 
2423 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2424 static bool tcp_try_undo_dsack(struct sock *sk)
2425 {
2426 	struct tcp_sock *tp = tcp_sk(sk);
2427 
2428 	if (tp->undo_marker && !tp->undo_retrans) {
2429 		DBGUNDO(sk, "D-SACK");
2430 		tcp_undo_cwnd_reduction(sk, false);
2431 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2432 		return true;
2433 	}
2434 	return false;
2435 }
2436 
2437 /* Undo during loss recovery after partial ACK or using F-RTO. */
2438 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2439 {
2440 	struct tcp_sock *tp = tcp_sk(sk);
2441 
2442 	if (frto_undo || tcp_may_undo(tp)) {
2443 		tcp_undo_cwnd_reduction(sk, true);
2444 
2445 		DBGUNDO(sk, "partial loss");
2446 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2447 		if (frto_undo)
2448 			NET_INC_STATS(sock_net(sk),
2449 					LINUX_MIB_TCPSPURIOUSRTOS);
2450 		inet_csk(sk)->icsk_retransmits = 0;
2451 		if (frto_undo || tcp_is_sack(tp))
2452 			tcp_set_ca_state(sk, TCP_CA_Open);
2453 		return true;
2454 	}
2455 	return false;
2456 }
2457 
2458 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2459  * It computes the number of packets to send (sndcnt) based on packets newly
2460  * delivered:
2461  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2462  *	cwnd reductions across a full RTT.
2463  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2464  *      But when the retransmits are acked without further losses, PRR
2465  *      slow starts cwnd up to ssthresh to speed up the recovery.
2466  */
2467 static void tcp_init_cwnd_reduction(struct sock *sk)
2468 {
2469 	struct tcp_sock *tp = tcp_sk(sk);
2470 
2471 	tp->high_seq = tp->snd_nxt;
2472 	tp->tlp_high_seq = 0;
2473 	tp->snd_cwnd_cnt = 0;
2474 	tp->prior_cwnd = tp->snd_cwnd;
2475 	tp->prr_delivered = 0;
2476 	tp->prr_out = 0;
2477 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2478 	tcp_ecn_queue_cwr(tp);
2479 }
2480 
2481 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2482 {
2483 	struct tcp_sock *tp = tcp_sk(sk);
2484 	int sndcnt = 0;
2485 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2486 
2487 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2488 		return;
2489 
2490 	tp->prr_delivered += newly_acked_sacked;
2491 	if (delta < 0) {
2492 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2493 			       tp->prior_cwnd - 1;
2494 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2495 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2496 		   !(flag & FLAG_LOST_RETRANS)) {
2497 		sndcnt = min_t(int, delta,
2498 			       max_t(int, tp->prr_delivered - tp->prr_out,
2499 				     newly_acked_sacked) + 1);
2500 	} else {
2501 		sndcnt = min(delta, newly_acked_sacked);
2502 	}
2503 	/* Force a fast retransmit upon entering fast recovery */
2504 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2505 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2506 }
2507 
2508 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2509 {
2510 	struct tcp_sock *tp = tcp_sk(sk);
2511 
2512 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2513 		return;
2514 
2515 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2516 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2517 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2518 		tp->snd_cwnd = tp->snd_ssthresh;
2519 		tp->snd_cwnd_stamp = tcp_jiffies32;
2520 	}
2521 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2522 }
2523 
2524 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2525 void tcp_enter_cwr(struct sock *sk)
2526 {
2527 	struct tcp_sock *tp = tcp_sk(sk);
2528 
2529 	tp->prior_ssthresh = 0;
2530 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2531 		tp->undo_marker = 0;
2532 		tcp_init_cwnd_reduction(sk);
2533 		tcp_set_ca_state(sk, TCP_CA_CWR);
2534 	}
2535 }
2536 EXPORT_SYMBOL(tcp_enter_cwr);
2537 
2538 static void tcp_try_keep_open(struct sock *sk)
2539 {
2540 	struct tcp_sock *tp = tcp_sk(sk);
2541 	int state = TCP_CA_Open;
2542 
2543 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2544 		state = TCP_CA_Disorder;
2545 
2546 	if (inet_csk(sk)->icsk_ca_state != state) {
2547 		tcp_set_ca_state(sk, state);
2548 		tp->high_seq = tp->snd_nxt;
2549 	}
2550 }
2551 
2552 static void tcp_try_to_open(struct sock *sk, int flag)
2553 {
2554 	struct tcp_sock *tp = tcp_sk(sk);
2555 
2556 	tcp_verify_left_out(tp);
2557 
2558 	if (!tcp_any_retrans_done(sk))
2559 		tp->retrans_stamp = 0;
2560 
2561 	if (flag & FLAG_ECE)
2562 		tcp_enter_cwr(sk);
2563 
2564 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2565 		tcp_try_keep_open(sk);
2566 	}
2567 }
2568 
2569 static void tcp_mtup_probe_failed(struct sock *sk)
2570 {
2571 	struct inet_connection_sock *icsk = inet_csk(sk);
2572 
2573 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2574 	icsk->icsk_mtup.probe_size = 0;
2575 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2576 }
2577 
2578 static void tcp_mtup_probe_success(struct sock *sk)
2579 {
2580 	struct tcp_sock *tp = tcp_sk(sk);
2581 	struct inet_connection_sock *icsk = inet_csk(sk);
2582 
2583 	/* FIXME: breaks with very large cwnd */
2584 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2585 	tp->snd_cwnd = tp->snd_cwnd *
2586 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2587 		       icsk->icsk_mtup.probe_size;
2588 	tp->snd_cwnd_cnt = 0;
2589 	tp->snd_cwnd_stamp = tcp_jiffies32;
2590 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2591 
2592 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2593 	icsk->icsk_mtup.probe_size = 0;
2594 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2595 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2596 }
2597 
2598 /* Do a simple retransmit without using the backoff mechanisms in
2599  * tcp_timer. This is used for path mtu discovery.
2600  * The socket is already locked here.
2601  */
2602 void tcp_simple_retransmit(struct sock *sk)
2603 {
2604 	const struct inet_connection_sock *icsk = inet_csk(sk);
2605 	struct tcp_sock *tp = tcp_sk(sk);
2606 	struct sk_buff *skb;
2607 	unsigned int mss = tcp_current_mss(sk);
2608 	u32 prior_lost = tp->lost_out;
2609 
2610 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2611 		if (tcp_skb_seglen(skb) > mss &&
2612 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2613 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2614 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2615 				tp->retrans_out -= tcp_skb_pcount(skb);
2616 			}
2617 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2618 		}
2619 	}
2620 
2621 	tcp_clear_retrans_hints_partial(tp);
2622 
2623 	if (prior_lost == tp->lost_out)
2624 		return;
2625 
2626 	if (tcp_is_reno(tp))
2627 		tcp_limit_reno_sacked(tp);
2628 
2629 	tcp_verify_left_out(tp);
2630 
2631 	/* Don't muck with the congestion window here.
2632 	 * Reason is that we do not increase amount of _data_
2633 	 * in network, but units changed and effective
2634 	 * cwnd/ssthresh really reduced now.
2635 	 */
2636 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2637 		tp->high_seq = tp->snd_nxt;
2638 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2639 		tp->prior_ssthresh = 0;
2640 		tp->undo_marker = 0;
2641 		tcp_set_ca_state(sk, TCP_CA_Loss);
2642 	}
2643 	tcp_xmit_retransmit_queue(sk);
2644 }
2645 EXPORT_SYMBOL(tcp_simple_retransmit);
2646 
2647 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2648 {
2649 	struct tcp_sock *tp = tcp_sk(sk);
2650 	int mib_idx;
2651 
2652 	if (tcp_is_reno(tp))
2653 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2654 	else
2655 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2656 
2657 	NET_INC_STATS(sock_net(sk), mib_idx);
2658 
2659 	tp->prior_ssthresh = 0;
2660 	tcp_init_undo(tp);
2661 
2662 	if (!tcp_in_cwnd_reduction(sk)) {
2663 		if (!ece_ack)
2664 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2665 		tcp_init_cwnd_reduction(sk);
2666 	}
2667 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2668 }
2669 
2670 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2671  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2672  */
2673 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2674 			     int *rexmit)
2675 {
2676 	struct tcp_sock *tp = tcp_sk(sk);
2677 	bool recovered = !before(tp->snd_una, tp->high_seq);
2678 
2679 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2680 	    tcp_try_undo_loss(sk, false))
2681 		return;
2682 
2683 	/* The ACK (s)acks some never-retransmitted data meaning not all
2684 	 * the data packets before the timeout were lost. Therefore we
2685 	 * undo the congestion window and state. This is essentially
2686 	 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2687 	 * a retransmitted skb is permantly marked, we can apply such an
2688 	 * operation even if F-RTO was not used.
2689 	 */
2690 	if ((flag & FLAG_ORIG_SACK_ACKED) &&
2691 	    tcp_try_undo_loss(sk, tp->undo_marker))
2692 		return;
2693 
2694 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2695 		if (after(tp->snd_nxt, tp->high_seq)) {
2696 			if (flag & FLAG_DATA_SACKED || is_dupack)
2697 				tp->frto = 0; /* Step 3.a. loss was real */
2698 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2699 			tp->high_seq = tp->snd_nxt;
2700 			/* Step 2.b. Try send new data (but deferred until cwnd
2701 			 * is updated in tcp_ack()). Otherwise fall back to
2702 			 * the conventional recovery.
2703 			 */
2704 			if (!tcp_write_queue_empty(sk) &&
2705 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2706 				*rexmit = REXMIT_NEW;
2707 				return;
2708 			}
2709 			tp->frto = 0;
2710 		}
2711 	}
2712 
2713 	if (recovered) {
2714 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2715 		tcp_try_undo_recovery(sk);
2716 		return;
2717 	}
2718 	if (tcp_is_reno(tp)) {
2719 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2720 		 * delivered. Lower inflight to clock out (re)tranmissions.
2721 		 */
2722 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2723 			tcp_add_reno_sack(sk);
2724 		else if (flag & FLAG_SND_UNA_ADVANCED)
2725 			tcp_reset_reno_sack(tp);
2726 	}
2727 	*rexmit = REXMIT_LOST;
2728 }
2729 
2730 /* Undo during fast recovery after partial ACK. */
2731 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2732 {
2733 	struct tcp_sock *tp = tcp_sk(sk);
2734 
2735 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2736 		/* Plain luck! Hole if filled with delayed
2737 		 * packet, rather than with a retransmit.
2738 		 */
2739 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2740 
2741 		/* We are getting evidence that the reordering degree is higher
2742 		 * than we realized. If there are no retransmits out then we
2743 		 * can undo. Otherwise we clock out new packets but do not
2744 		 * mark more packets lost or retransmit more.
2745 		 */
2746 		if (tp->retrans_out)
2747 			return true;
2748 
2749 		if (!tcp_any_retrans_done(sk))
2750 			tp->retrans_stamp = 0;
2751 
2752 		DBGUNDO(sk, "partial recovery");
2753 		tcp_undo_cwnd_reduction(sk, true);
2754 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2755 		tcp_try_keep_open(sk);
2756 		return true;
2757 	}
2758 	return false;
2759 }
2760 
2761 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2762 {
2763 	struct tcp_sock *tp = tcp_sk(sk);
2764 
2765 	/* Use RACK to detect loss */
2766 	if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2767 		u32 prior_retrans = tp->retrans_out;
2768 
2769 		tcp_rack_mark_lost(sk);
2770 		if (prior_retrans > tp->retrans_out)
2771 			*ack_flag |= FLAG_LOST_RETRANS;
2772 	}
2773 }
2774 
2775 /* Process an event, which can update packets-in-flight not trivially.
2776  * Main goal of this function is to calculate new estimate for left_out,
2777  * taking into account both packets sitting in receiver's buffer and
2778  * packets lost by network.
2779  *
2780  * Besides that it updates the congestion state when packet loss or ECN
2781  * is detected. But it does not reduce the cwnd, it is done by the
2782  * congestion control later.
2783  *
2784  * It does _not_ decide what to send, it is made in function
2785  * tcp_xmit_retransmit_queue().
2786  */
2787 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2788 				  bool is_dupack, int *ack_flag, int *rexmit)
2789 {
2790 	struct inet_connection_sock *icsk = inet_csk(sk);
2791 	struct tcp_sock *tp = tcp_sk(sk);
2792 	int fast_rexmit = 0, flag = *ack_flag;
2793 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2794 				    (tcp_fackets_out(tp) > tp->reordering));
2795 
2796 	if (!tp->packets_out && tp->sacked_out)
2797 		tp->sacked_out = 0;
2798 	if (!tp->sacked_out && tp->fackets_out)
2799 		tp->fackets_out = 0;
2800 
2801 	/* Now state machine starts.
2802 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2803 	if (flag & FLAG_ECE)
2804 		tp->prior_ssthresh = 0;
2805 
2806 	/* B. In all the states check for reneging SACKs. */
2807 	if (tcp_check_sack_reneging(sk, flag))
2808 		return;
2809 
2810 	/* C. Check consistency of the current state. */
2811 	tcp_verify_left_out(tp);
2812 
2813 	/* D. Check state exit conditions. State can be terminated
2814 	 *    when high_seq is ACKed. */
2815 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2816 		WARN_ON(tp->retrans_out != 0);
2817 		tp->retrans_stamp = 0;
2818 	} else if (!before(tp->snd_una, tp->high_seq)) {
2819 		switch (icsk->icsk_ca_state) {
2820 		case TCP_CA_CWR:
2821 			/* CWR is to be held something *above* high_seq
2822 			 * is ACKed for CWR bit to reach receiver. */
2823 			if (tp->snd_una != tp->high_seq) {
2824 				tcp_end_cwnd_reduction(sk);
2825 				tcp_set_ca_state(sk, TCP_CA_Open);
2826 			}
2827 			break;
2828 
2829 		case TCP_CA_Recovery:
2830 			if (tcp_is_reno(tp))
2831 				tcp_reset_reno_sack(tp);
2832 			if (tcp_try_undo_recovery(sk))
2833 				return;
2834 			tcp_end_cwnd_reduction(sk);
2835 			break;
2836 		}
2837 	}
2838 
2839 	/* E. Process state. */
2840 	switch (icsk->icsk_ca_state) {
2841 	case TCP_CA_Recovery:
2842 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2843 			if (tcp_is_reno(tp) && is_dupack)
2844 				tcp_add_reno_sack(sk);
2845 		} else {
2846 			if (tcp_try_undo_partial(sk, acked))
2847 				return;
2848 			/* Partial ACK arrived. Force fast retransmit. */
2849 			do_lost = tcp_is_reno(tp) ||
2850 				  tcp_fackets_out(tp) > tp->reordering;
2851 		}
2852 		if (tcp_try_undo_dsack(sk)) {
2853 			tcp_try_keep_open(sk);
2854 			return;
2855 		}
2856 		tcp_rack_identify_loss(sk, ack_flag);
2857 		break;
2858 	case TCP_CA_Loss:
2859 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2860 		tcp_rack_identify_loss(sk, ack_flag);
2861 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2862 		      (*ack_flag & FLAG_LOST_RETRANS)))
2863 			return;
2864 		/* Change state if cwnd is undone or retransmits are lost */
2865 		/* fall through */
2866 	default:
2867 		if (tcp_is_reno(tp)) {
2868 			if (flag & FLAG_SND_UNA_ADVANCED)
2869 				tcp_reset_reno_sack(tp);
2870 			if (is_dupack)
2871 				tcp_add_reno_sack(sk);
2872 		}
2873 
2874 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2875 			tcp_try_undo_dsack(sk);
2876 
2877 		tcp_rack_identify_loss(sk, ack_flag);
2878 		if (!tcp_time_to_recover(sk, flag)) {
2879 			tcp_try_to_open(sk, flag);
2880 			return;
2881 		}
2882 
2883 		/* MTU probe failure: don't reduce cwnd */
2884 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2885 		    icsk->icsk_mtup.probe_size &&
2886 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2887 			tcp_mtup_probe_failed(sk);
2888 			/* Restores the reduction we did in tcp_mtup_probe() */
2889 			tp->snd_cwnd++;
2890 			tcp_simple_retransmit(sk);
2891 			return;
2892 		}
2893 
2894 		/* Otherwise enter Recovery state */
2895 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2896 		fast_rexmit = 1;
2897 	}
2898 
2899 	if (do_lost)
2900 		tcp_update_scoreboard(sk, fast_rexmit);
2901 	*rexmit = REXMIT_LOST;
2902 }
2903 
2904 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2905 {
2906 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2907 	struct tcp_sock *tp = tcp_sk(sk);
2908 
2909 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2910 			   rtt_us ? : jiffies_to_usecs(1));
2911 }
2912 
2913 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2914 			       long seq_rtt_us, long sack_rtt_us,
2915 			       long ca_rtt_us, struct rate_sample *rs)
2916 {
2917 	const struct tcp_sock *tp = tcp_sk(sk);
2918 
2919 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2920 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2921 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2922 	 * is acked (RFC6298).
2923 	 */
2924 	if (seq_rtt_us < 0)
2925 		seq_rtt_us = sack_rtt_us;
2926 
2927 	/* RTTM Rule: A TSecr value received in a segment is used to
2928 	 * update the averaged RTT measurement only if the segment
2929 	 * acknowledges some new data, i.e., only if it advances the
2930 	 * left edge of the send window.
2931 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2932 	 */
2933 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2934 	    flag & FLAG_ACKED) {
2935 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2936 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2937 
2938 		seq_rtt_us = ca_rtt_us = delta_us;
2939 	}
2940 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2941 	if (seq_rtt_us < 0)
2942 		return false;
2943 
2944 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2945 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2946 	 * values will be skipped with the seq_rtt_us < 0 check above.
2947 	 */
2948 	tcp_update_rtt_min(sk, ca_rtt_us);
2949 	tcp_rtt_estimator(sk, seq_rtt_us);
2950 	tcp_set_rto(sk);
2951 
2952 	/* RFC6298: only reset backoff on valid RTT measurement. */
2953 	inet_csk(sk)->icsk_backoff = 0;
2954 	return true;
2955 }
2956 
2957 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2958 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2959 {
2960 	struct rate_sample rs;
2961 	long rtt_us = -1L;
2962 
2963 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2964 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2965 
2966 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2967 }
2968 
2969 
2970 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2971 {
2972 	const struct inet_connection_sock *icsk = inet_csk(sk);
2973 
2974 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2975 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2976 }
2977 
2978 /* Restart timer after forward progress on connection.
2979  * RFC2988 recommends to restart timer to now+rto.
2980  */
2981 void tcp_rearm_rto(struct sock *sk)
2982 {
2983 	const struct inet_connection_sock *icsk = inet_csk(sk);
2984 	struct tcp_sock *tp = tcp_sk(sk);
2985 
2986 	/* If the retrans timer is currently being used by Fast Open
2987 	 * for SYN-ACK retrans purpose, stay put.
2988 	 */
2989 	if (tp->fastopen_rsk)
2990 		return;
2991 
2992 	if (!tp->packets_out) {
2993 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2994 	} else {
2995 		u32 rto = inet_csk(sk)->icsk_rto;
2996 		/* Offset the time elapsed after installing regular RTO */
2997 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2998 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2999 			s64 delta_us = tcp_rto_delta_us(sk);
3000 			/* delta_us may not be positive if the socket is locked
3001 			 * when the retrans timer fires and is rescheduled.
3002 			 */
3003 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3004 		}
3005 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3006 					  TCP_RTO_MAX);
3007 	}
3008 }
3009 
3010 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3011 static void tcp_set_xmit_timer(struct sock *sk)
3012 {
3013 	if (!tcp_schedule_loss_probe(sk))
3014 		tcp_rearm_rto(sk);
3015 }
3016 
3017 /* If we get here, the whole TSO packet has not been acked. */
3018 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3019 {
3020 	struct tcp_sock *tp = tcp_sk(sk);
3021 	u32 packets_acked;
3022 
3023 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3024 
3025 	packets_acked = tcp_skb_pcount(skb);
3026 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3027 		return 0;
3028 	packets_acked -= tcp_skb_pcount(skb);
3029 
3030 	if (packets_acked) {
3031 		BUG_ON(tcp_skb_pcount(skb) == 0);
3032 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3033 	}
3034 
3035 	return packets_acked;
3036 }
3037 
3038 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3039 			   u32 prior_snd_una)
3040 {
3041 	const struct skb_shared_info *shinfo;
3042 
3043 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3044 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3045 		return;
3046 
3047 	shinfo = skb_shinfo(skb);
3048 	if (!before(shinfo->tskey, prior_snd_una) &&
3049 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3050 		tcp_skb_tsorted_save(skb) {
3051 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3052 		} tcp_skb_tsorted_restore(skb);
3053 	}
3054 }
3055 
3056 /* Remove acknowledged frames from the retransmission queue. If our packet
3057  * is before the ack sequence we can discard it as it's confirmed to have
3058  * arrived at the other end.
3059  */
3060 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3061 			       u32 prior_snd_una, int *acked,
3062 			       struct tcp_sacktag_state *sack)
3063 {
3064 	const struct inet_connection_sock *icsk = inet_csk(sk);
3065 	u64 first_ackt, last_ackt;
3066 	struct tcp_sock *tp = tcp_sk(sk);
3067 	u32 prior_sacked = tp->sacked_out;
3068 	u32 reord = tp->packets_out;
3069 	struct sk_buff *skb, *next;
3070 	bool fully_acked = true;
3071 	long sack_rtt_us = -1L;
3072 	long seq_rtt_us = -1L;
3073 	long ca_rtt_us = -1L;
3074 	u32 pkts_acked = 0;
3075 	u32 last_in_flight = 0;
3076 	bool rtt_update;
3077 	int flag = 0;
3078 
3079 	first_ackt = 0;
3080 
3081 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3082 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3083 		u8 sacked = scb->sacked;
3084 		u32 acked_pcount;
3085 
3086 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3087 
3088 		/* Determine how many packets and what bytes were acked, tso and else */
3089 		if (after(scb->end_seq, tp->snd_una)) {
3090 			if (tcp_skb_pcount(skb) == 1 ||
3091 			    !after(tp->snd_una, scb->seq))
3092 				break;
3093 
3094 			acked_pcount = tcp_tso_acked(sk, skb);
3095 			if (!acked_pcount)
3096 				break;
3097 			fully_acked = false;
3098 		} else {
3099 			acked_pcount = tcp_skb_pcount(skb);
3100 		}
3101 
3102 		if (unlikely(sacked & TCPCB_RETRANS)) {
3103 			if (sacked & TCPCB_SACKED_RETRANS)
3104 				tp->retrans_out -= acked_pcount;
3105 			flag |= FLAG_RETRANS_DATA_ACKED;
3106 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3107 			last_ackt = skb->skb_mstamp;
3108 			WARN_ON_ONCE(last_ackt == 0);
3109 			if (!first_ackt)
3110 				first_ackt = last_ackt;
3111 
3112 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3113 			reord = min(pkts_acked, reord);
3114 			if (!after(scb->end_seq, tp->high_seq))
3115 				flag |= FLAG_ORIG_SACK_ACKED;
3116 		}
3117 
3118 		if (sacked & TCPCB_SACKED_ACKED) {
3119 			tp->sacked_out -= acked_pcount;
3120 		} else if (tcp_is_sack(tp)) {
3121 			tp->delivered += acked_pcount;
3122 			if (!tcp_skb_spurious_retrans(tp, skb))
3123 				tcp_rack_advance(tp, sacked, scb->end_seq,
3124 						 skb->skb_mstamp);
3125 		}
3126 		if (sacked & TCPCB_LOST)
3127 			tp->lost_out -= acked_pcount;
3128 
3129 		tp->packets_out -= acked_pcount;
3130 		pkts_acked += acked_pcount;
3131 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3132 
3133 		/* Initial outgoing SYN's get put onto the write_queue
3134 		 * just like anything else we transmit.  It is not
3135 		 * true data, and if we misinform our callers that
3136 		 * this ACK acks real data, we will erroneously exit
3137 		 * connection startup slow start one packet too
3138 		 * quickly.  This is severely frowned upon behavior.
3139 		 */
3140 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3141 			flag |= FLAG_DATA_ACKED;
3142 		} else {
3143 			flag |= FLAG_SYN_ACKED;
3144 			tp->retrans_stamp = 0;
3145 		}
3146 
3147 		if (!fully_acked)
3148 			break;
3149 
3150 		next = skb_rb_next(skb);
3151 		if (unlikely(skb == tp->retransmit_skb_hint))
3152 			tp->retransmit_skb_hint = NULL;
3153 		if (unlikely(skb == tp->lost_skb_hint))
3154 			tp->lost_skb_hint = NULL;
3155 		tcp_rtx_queue_unlink_and_free(skb, sk);
3156 	}
3157 
3158 	if (!skb)
3159 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3160 
3161 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3162 		tp->snd_up = tp->snd_una;
3163 
3164 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3165 		flag |= FLAG_SACK_RENEGING;
3166 
3167 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3168 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3169 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3170 	}
3171 	if (sack->first_sackt) {
3172 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3173 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3174 	}
3175 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3176 					ca_rtt_us, sack->rate);
3177 
3178 	if (flag & FLAG_ACKED) {
3179 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3180 		if (unlikely(icsk->icsk_mtup.probe_size &&
3181 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3182 			tcp_mtup_probe_success(sk);
3183 		}
3184 
3185 		if (tcp_is_reno(tp)) {
3186 			tcp_remove_reno_sacks(sk, pkts_acked);
3187 		} else {
3188 			int delta;
3189 
3190 			/* Non-retransmitted hole got filled? That's reordering */
3191 			if (reord < prior_fackets && reord <= tp->fackets_out)
3192 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3193 
3194 			delta = tcp_is_fack(tp) ? pkts_acked :
3195 						  prior_sacked - tp->sacked_out;
3196 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3197 		}
3198 
3199 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3200 
3201 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3202 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3203 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3204 		 * after when the head was last (re)transmitted. Otherwise the
3205 		 * timeout may continue to extend in loss recovery.
3206 		 */
3207 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3208 	}
3209 
3210 	if (icsk->icsk_ca_ops->pkts_acked) {
3211 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3212 					     .rtt_us = sack->rate->rtt_us,
3213 					     .in_flight = last_in_flight };
3214 
3215 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3216 	}
3217 
3218 #if FASTRETRANS_DEBUG > 0
3219 	WARN_ON((int)tp->sacked_out < 0);
3220 	WARN_ON((int)tp->lost_out < 0);
3221 	WARN_ON((int)tp->retrans_out < 0);
3222 	if (!tp->packets_out && tcp_is_sack(tp)) {
3223 		icsk = inet_csk(sk);
3224 		if (tp->lost_out) {
3225 			pr_debug("Leak l=%u %d\n",
3226 				 tp->lost_out, icsk->icsk_ca_state);
3227 			tp->lost_out = 0;
3228 		}
3229 		if (tp->sacked_out) {
3230 			pr_debug("Leak s=%u %d\n",
3231 				 tp->sacked_out, icsk->icsk_ca_state);
3232 			tp->sacked_out = 0;
3233 		}
3234 		if (tp->retrans_out) {
3235 			pr_debug("Leak r=%u %d\n",
3236 				 tp->retrans_out, icsk->icsk_ca_state);
3237 			tp->retrans_out = 0;
3238 		}
3239 	}
3240 #endif
3241 	*acked = pkts_acked;
3242 	return flag;
3243 }
3244 
3245 static void tcp_ack_probe(struct sock *sk)
3246 {
3247 	struct inet_connection_sock *icsk = inet_csk(sk);
3248 	struct sk_buff *head = tcp_send_head(sk);
3249 	const struct tcp_sock *tp = tcp_sk(sk);
3250 
3251 	/* Was it a usable window open? */
3252 	if (!head)
3253 		return;
3254 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3255 		icsk->icsk_backoff = 0;
3256 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3257 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3258 		 * This function is not for random using!
3259 		 */
3260 	} else {
3261 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3262 
3263 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3264 					  when, TCP_RTO_MAX);
3265 	}
3266 }
3267 
3268 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3269 {
3270 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3271 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3272 }
3273 
3274 /* Decide wheather to run the increase function of congestion control. */
3275 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3276 {
3277 	/* If reordering is high then always grow cwnd whenever data is
3278 	 * delivered regardless of its ordering. Otherwise stay conservative
3279 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3280 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3281 	 * cwnd in tcp_fastretrans_alert() based on more states.
3282 	 */
3283 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3284 		return flag & FLAG_FORWARD_PROGRESS;
3285 
3286 	return flag & FLAG_DATA_ACKED;
3287 }
3288 
3289 /* The "ultimate" congestion control function that aims to replace the rigid
3290  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3291  * It's called toward the end of processing an ACK with precise rate
3292  * information. All transmission or retransmission are delayed afterwards.
3293  */
3294 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3295 			     int flag, const struct rate_sample *rs)
3296 {
3297 	const struct inet_connection_sock *icsk = inet_csk(sk);
3298 
3299 	if (icsk->icsk_ca_ops->cong_control) {
3300 		icsk->icsk_ca_ops->cong_control(sk, rs);
3301 		return;
3302 	}
3303 
3304 	if (tcp_in_cwnd_reduction(sk)) {
3305 		/* Reduce cwnd if state mandates */
3306 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3307 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3308 		/* Advance cwnd if state allows */
3309 		tcp_cong_avoid(sk, ack, acked_sacked);
3310 	}
3311 	tcp_update_pacing_rate(sk);
3312 }
3313 
3314 /* Check that window update is acceptable.
3315  * The function assumes that snd_una<=ack<=snd_next.
3316  */
3317 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3318 					const u32 ack, const u32 ack_seq,
3319 					const u32 nwin)
3320 {
3321 	return	after(ack, tp->snd_una) ||
3322 		after(ack_seq, tp->snd_wl1) ||
3323 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3324 }
3325 
3326 /* If we update tp->snd_una, also update tp->bytes_acked */
3327 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3328 {
3329 	u32 delta = ack - tp->snd_una;
3330 
3331 	sock_owned_by_me((struct sock *)tp);
3332 	tp->bytes_acked += delta;
3333 	tp->snd_una = ack;
3334 }
3335 
3336 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3337 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3338 {
3339 	u32 delta = seq - tp->rcv_nxt;
3340 
3341 	sock_owned_by_me((struct sock *)tp);
3342 	tp->bytes_received += delta;
3343 	tp->rcv_nxt = seq;
3344 }
3345 
3346 /* Update our send window.
3347  *
3348  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3349  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3350  */
3351 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3352 				 u32 ack_seq)
3353 {
3354 	struct tcp_sock *tp = tcp_sk(sk);
3355 	int flag = 0;
3356 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3357 
3358 	if (likely(!tcp_hdr(skb)->syn))
3359 		nwin <<= tp->rx_opt.snd_wscale;
3360 
3361 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3362 		flag |= FLAG_WIN_UPDATE;
3363 		tcp_update_wl(tp, ack_seq);
3364 
3365 		if (tp->snd_wnd != nwin) {
3366 			tp->snd_wnd = nwin;
3367 
3368 			/* Note, it is the only place, where
3369 			 * fast path is recovered for sending TCP.
3370 			 */
3371 			tp->pred_flags = 0;
3372 			tcp_fast_path_check(sk);
3373 
3374 			if (!tcp_write_queue_empty(sk))
3375 				tcp_slow_start_after_idle_check(sk);
3376 
3377 			if (nwin > tp->max_window) {
3378 				tp->max_window = nwin;
3379 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3380 			}
3381 		}
3382 	}
3383 
3384 	tcp_snd_una_update(tp, ack);
3385 
3386 	return flag;
3387 }
3388 
3389 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3390 				   u32 *last_oow_ack_time)
3391 {
3392 	if (*last_oow_ack_time) {
3393 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3394 
3395 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3396 			NET_INC_STATS(net, mib_idx);
3397 			return true;	/* rate-limited: don't send yet! */
3398 		}
3399 	}
3400 
3401 	*last_oow_ack_time = tcp_jiffies32;
3402 
3403 	return false;	/* not rate-limited: go ahead, send dupack now! */
3404 }
3405 
3406 /* Return true if we're currently rate-limiting out-of-window ACKs and
3407  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3408  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3409  * attacks that send repeated SYNs or ACKs for the same connection. To
3410  * do this, we do not send a duplicate SYNACK or ACK if the remote
3411  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3412  */
3413 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3414 			  int mib_idx, u32 *last_oow_ack_time)
3415 {
3416 	/* Data packets without SYNs are not likely part of an ACK loop. */
3417 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3418 	    !tcp_hdr(skb)->syn)
3419 		return false;
3420 
3421 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3422 }
3423 
3424 /* RFC 5961 7 [ACK Throttling] */
3425 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3426 {
3427 	/* unprotected vars, we dont care of overwrites */
3428 	static u32 challenge_timestamp;
3429 	static unsigned int challenge_count;
3430 	struct tcp_sock *tp = tcp_sk(sk);
3431 	struct net *net = sock_net(sk);
3432 	u32 count, now;
3433 
3434 	/* First check our per-socket dupack rate limit. */
3435 	if (__tcp_oow_rate_limited(net,
3436 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3437 				   &tp->last_oow_ack_time))
3438 		return;
3439 
3440 	/* Then check host-wide RFC 5961 rate limit. */
3441 	now = jiffies / HZ;
3442 	if (now != challenge_timestamp) {
3443 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3444 		u32 half = (ack_limit + 1) >> 1;
3445 
3446 		challenge_timestamp = now;
3447 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3448 	}
3449 	count = READ_ONCE(challenge_count);
3450 	if (count > 0) {
3451 		WRITE_ONCE(challenge_count, count - 1);
3452 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3453 		tcp_send_ack(sk);
3454 	}
3455 }
3456 
3457 static void tcp_store_ts_recent(struct tcp_sock *tp)
3458 {
3459 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3460 	tp->rx_opt.ts_recent_stamp = get_seconds();
3461 }
3462 
3463 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3464 {
3465 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3466 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3467 		 * extra check below makes sure this can only happen
3468 		 * for pure ACK frames.  -DaveM
3469 		 *
3470 		 * Not only, also it occurs for expired timestamps.
3471 		 */
3472 
3473 		if (tcp_paws_check(&tp->rx_opt, 0))
3474 			tcp_store_ts_recent(tp);
3475 	}
3476 }
3477 
3478 /* This routine deals with acks during a TLP episode.
3479  * We mark the end of a TLP episode on receiving TLP dupack or when
3480  * ack is after tlp_high_seq.
3481  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3482  */
3483 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3484 {
3485 	struct tcp_sock *tp = tcp_sk(sk);
3486 
3487 	if (before(ack, tp->tlp_high_seq))
3488 		return;
3489 
3490 	if (flag & FLAG_DSACKING_ACK) {
3491 		/* This DSACK means original and TLP probe arrived; no loss */
3492 		tp->tlp_high_seq = 0;
3493 	} else if (after(ack, tp->tlp_high_seq)) {
3494 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3495 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3496 		 */
3497 		tcp_init_cwnd_reduction(sk);
3498 		tcp_set_ca_state(sk, TCP_CA_CWR);
3499 		tcp_end_cwnd_reduction(sk);
3500 		tcp_try_keep_open(sk);
3501 		NET_INC_STATS(sock_net(sk),
3502 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3503 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3504 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3505 		/* Pure dupack: original and TLP probe arrived; no loss */
3506 		tp->tlp_high_seq = 0;
3507 	}
3508 }
3509 
3510 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3511 {
3512 	const struct inet_connection_sock *icsk = inet_csk(sk);
3513 
3514 	if (icsk->icsk_ca_ops->in_ack_event)
3515 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3516 }
3517 
3518 /* Congestion control has updated the cwnd already. So if we're in
3519  * loss recovery then now we do any new sends (for FRTO) or
3520  * retransmits (for CA_Loss or CA_recovery) that make sense.
3521  */
3522 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3523 {
3524 	struct tcp_sock *tp = tcp_sk(sk);
3525 
3526 	if (rexmit == REXMIT_NONE)
3527 		return;
3528 
3529 	if (unlikely(rexmit == 2)) {
3530 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3531 					  TCP_NAGLE_OFF);
3532 		if (after(tp->snd_nxt, tp->high_seq))
3533 			return;
3534 		tp->frto = 0;
3535 	}
3536 	tcp_xmit_retransmit_queue(sk);
3537 }
3538 
3539 /* This routine deals with incoming acks, but not outgoing ones. */
3540 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3541 {
3542 	struct inet_connection_sock *icsk = inet_csk(sk);
3543 	struct tcp_sock *tp = tcp_sk(sk);
3544 	struct tcp_sacktag_state sack_state;
3545 	struct rate_sample rs = { .prior_delivered = 0 };
3546 	u32 prior_snd_una = tp->snd_una;
3547 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3548 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3549 	bool is_dupack = false;
3550 	u32 prior_fackets;
3551 	int prior_packets = tp->packets_out;
3552 	u32 delivered = tp->delivered;
3553 	u32 lost = tp->lost;
3554 	int acked = 0; /* Number of packets newly acked */
3555 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3556 
3557 	sack_state.first_sackt = 0;
3558 	sack_state.rate = &rs;
3559 
3560 	/* We very likely will need to access rtx queue. */
3561 	prefetch(sk->tcp_rtx_queue.rb_node);
3562 
3563 	/* If the ack is older than previous acks
3564 	 * then we can probably ignore it.
3565 	 */
3566 	if (before(ack, prior_snd_una)) {
3567 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3568 		if (before(ack, prior_snd_una - tp->max_window)) {
3569 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3570 				tcp_send_challenge_ack(sk, skb);
3571 			return -1;
3572 		}
3573 		goto old_ack;
3574 	}
3575 
3576 	/* If the ack includes data we haven't sent yet, discard
3577 	 * this segment (RFC793 Section 3.9).
3578 	 */
3579 	if (after(ack, tp->snd_nxt))
3580 		goto invalid_ack;
3581 
3582 	if (after(ack, prior_snd_una)) {
3583 		flag |= FLAG_SND_UNA_ADVANCED;
3584 		icsk->icsk_retransmits = 0;
3585 	}
3586 
3587 	prior_fackets = tp->fackets_out;
3588 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3589 
3590 	/* ts_recent update must be made after we are sure that the packet
3591 	 * is in window.
3592 	 */
3593 	if (flag & FLAG_UPDATE_TS_RECENT)
3594 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3595 
3596 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3597 		/* Window is constant, pure forward advance.
3598 		 * No more checks are required.
3599 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3600 		 */
3601 		tcp_update_wl(tp, ack_seq);
3602 		tcp_snd_una_update(tp, ack);
3603 		flag |= FLAG_WIN_UPDATE;
3604 
3605 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3606 
3607 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3608 	} else {
3609 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3610 
3611 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3612 			flag |= FLAG_DATA;
3613 		else
3614 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3615 
3616 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3617 
3618 		if (TCP_SKB_CB(skb)->sacked)
3619 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3620 							&sack_state);
3621 
3622 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3623 			flag |= FLAG_ECE;
3624 			ack_ev_flags |= CA_ACK_ECE;
3625 		}
3626 
3627 		if (flag & FLAG_WIN_UPDATE)
3628 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3629 
3630 		tcp_in_ack_event(sk, ack_ev_flags);
3631 	}
3632 
3633 	/* We passed data and got it acked, remove any soft error
3634 	 * log. Something worked...
3635 	 */
3636 	sk->sk_err_soft = 0;
3637 	icsk->icsk_probes_out = 0;
3638 	tp->rcv_tstamp = tcp_jiffies32;
3639 	if (!prior_packets)
3640 		goto no_queue;
3641 
3642 	/* See if we can take anything off of the retransmit queue. */
3643 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3644 				    &sack_state);
3645 
3646 	if (tp->tlp_high_seq)
3647 		tcp_process_tlp_ack(sk, ack, flag);
3648 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3649 	if (flag & FLAG_SET_XMIT_TIMER)
3650 		tcp_set_xmit_timer(sk);
3651 
3652 	if (tcp_ack_is_dubious(sk, flag)) {
3653 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3654 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3655 	}
3656 
3657 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3658 		sk_dst_confirm(sk);
3659 
3660 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3661 	lost = tp->lost - lost;			/* freshly marked lost */
3662 	tcp_rate_gen(sk, delivered, lost, sack_state.rate);
3663 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3664 	tcp_xmit_recovery(sk, rexmit);
3665 	return 1;
3666 
3667 no_queue:
3668 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3669 	if (flag & FLAG_DSACKING_ACK)
3670 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3671 	/* If this ack opens up a zero window, clear backoff.  It was
3672 	 * being used to time the probes, and is probably far higher than
3673 	 * it needs to be for normal retransmission.
3674 	 */
3675 	tcp_ack_probe(sk);
3676 
3677 	if (tp->tlp_high_seq)
3678 		tcp_process_tlp_ack(sk, ack, flag);
3679 	return 1;
3680 
3681 invalid_ack:
3682 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3683 	return -1;
3684 
3685 old_ack:
3686 	/* If data was SACKed, tag it and see if we should send more data.
3687 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3688 	 */
3689 	if (TCP_SKB_CB(skb)->sacked) {
3690 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3691 						&sack_state);
3692 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3693 		tcp_xmit_recovery(sk, rexmit);
3694 	}
3695 
3696 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3697 	return 0;
3698 }
3699 
3700 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3701 				      bool syn, struct tcp_fastopen_cookie *foc,
3702 				      bool exp_opt)
3703 {
3704 	/* Valid only in SYN or SYN-ACK with an even length.  */
3705 	if (!foc || !syn || len < 0 || (len & 1))
3706 		return;
3707 
3708 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3709 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3710 		memcpy(foc->val, cookie, len);
3711 	else if (len != 0)
3712 		len = -1;
3713 	foc->len = len;
3714 	foc->exp = exp_opt;
3715 }
3716 
3717 static void smc_parse_options(const struct tcphdr *th,
3718 			      struct tcp_options_received *opt_rx,
3719 			      const unsigned char *ptr,
3720 			      int opsize)
3721 {
3722 #if IS_ENABLED(CONFIG_SMC)
3723 	if (static_branch_unlikely(&tcp_have_smc)) {
3724 		if (th->syn && !(opsize & 1) &&
3725 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3726 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3727 			opt_rx->smc_ok = 1;
3728 	}
3729 #endif
3730 }
3731 
3732 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3733  * But, this can also be called on packets in the established flow when
3734  * the fast version below fails.
3735  */
3736 void tcp_parse_options(const struct net *net,
3737 		       const struct sk_buff *skb,
3738 		       struct tcp_options_received *opt_rx, int estab,
3739 		       struct tcp_fastopen_cookie *foc)
3740 {
3741 	const unsigned char *ptr;
3742 	const struct tcphdr *th = tcp_hdr(skb);
3743 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3744 
3745 	ptr = (const unsigned char *)(th + 1);
3746 	opt_rx->saw_tstamp = 0;
3747 
3748 	while (length > 0) {
3749 		int opcode = *ptr++;
3750 		int opsize;
3751 
3752 		switch (opcode) {
3753 		case TCPOPT_EOL:
3754 			return;
3755 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3756 			length--;
3757 			continue;
3758 		default:
3759 			opsize = *ptr++;
3760 			if (opsize < 2) /* "silly options" */
3761 				return;
3762 			if (opsize > length)
3763 				return;	/* don't parse partial options */
3764 			switch (opcode) {
3765 			case TCPOPT_MSS:
3766 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3767 					u16 in_mss = get_unaligned_be16(ptr);
3768 					if (in_mss) {
3769 						if (opt_rx->user_mss &&
3770 						    opt_rx->user_mss < in_mss)
3771 							in_mss = opt_rx->user_mss;
3772 						opt_rx->mss_clamp = in_mss;
3773 					}
3774 				}
3775 				break;
3776 			case TCPOPT_WINDOW:
3777 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3778 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3779 					__u8 snd_wscale = *(__u8 *)ptr;
3780 					opt_rx->wscale_ok = 1;
3781 					if (snd_wscale > TCP_MAX_WSCALE) {
3782 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3783 								     __func__,
3784 								     snd_wscale,
3785 								     TCP_MAX_WSCALE);
3786 						snd_wscale = TCP_MAX_WSCALE;
3787 					}
3788 					opt_rx->snd_wscale = snd_wscale;
3789 				}
3790 				break;
3791 			case TCPOPT_TIMESTAMP:
3792 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3793 				    ((estab && opt_rx->tstamp_ok) ||
3794 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3795 					opt_rx->saw_tstamp = 1;
3796 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3797 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3798 				}
3799 				break;
3800 			case TCPOPT_SACK_PERM:
3801 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3802 				    !estab && net->ipv4.sysctl_tcp_sack) {
3803 					opt_rx->sack_ok = TCP_SACK_SEEN;
3804 					tcp_sack_reset(opt_rx);
3805 				}
3806 				break;
3807 
3808 			case TCPOPT_SACK:
3809 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3810 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3811 				   opt_rx->sack_ok) {
3812 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3813 				}
3814 				break;
3815 #ifdef CONFIG_TCP_MD5SIG
3816 			case TCPOPT_MD5SIG:
3817 				/*
3818 				 * The MD5 Hash has already been
3819 				 * checked (see tcp_v{4,6}_do_rcv()).
3820 				 */
3821 				break;
3822 #endif
3823 			case TCPOPT_FASTOPEN:
3824 				tcp_parse_fastopen_option(
3825 					opsize - TCPOLEN_FASTOPEN_BASE,
3826 					ptr, th->syn, foc, false);
3827 				break;
3828 
3829 			case TCPOPT_EXP:
3830 				/* Fast Open option shares code 254 using a
3831 				 * 16 bits magic number.
3832 				 */
3833 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3834 				    get_unaligned_be16(ptr) ==
3835 				    TCPOPT_FASTOPEN_MAGIC)
3836 					tcp_parse_fastopen_option(opsize -
3837 						TCPOLEN_EXP_FASTOPEN_BASE,
3838 						ptr + 2, th->syn, foc, true);
3839 				else
3840 					smc_parse_options(th, opt_rx, ptr,
3841 							  opsize);
3842 				break;
3843 
3844 			}
3845 			ptr += opsize-2;
3846 			length -= opsize;
3847 		}
3848 	}
3849 }
3850 EXPORT_SYMBOL(tcp_parse_options);
3851 
3852 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3853 {
3854 	const __be32 *ptr = (const __be32 *)(th + 1);
3855 
3856 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3857 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3858 		tp->rx_opt.saw_tstamp = 1;
3859 		++ptr;
3860 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3861 		++ptr;
3862 		if (*ptr)
3863 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3864 		else
3865 			tp->rx_opt.rcv_tsecr = 0;
3866 		return true;
3867 	}
3868 	return false;
3869 }
3870 
3871 /* Fast parse options. This hopes to only see timestamps.
3872  * If it is wrong it falls back on tcp_parse_options().
3873  */
3874 static bool tcp_fast_parse_options(const struct net *net,
3875 				   const struct sk_buff *skb,
3876 				   const struct tcphdr *th, struct tcp_sock *tp)
3877 {
3878 	/* In the spirit of fast parsing, compare doff directly to constant
3879 	 * values.  Because equality is used, short doff can be ignored here.
3880 	 */
3881 	if (th->doff == (sizeof(*th) / 4)) {
3882 		tp->rx_opt.saw_tstamp = 0;
3883 		return false;
3884 	} else if (tp->rx_opt.tstamp_ok &&
3885 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3886 		if (tcp_parse_aligned_timestamp(tp, th))
3887 			return true;
3888 	}
3889 
3890 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3891 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3892 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3893 
3894 	return true;
3895 }
3896 
3897 #ifdef CONFIG_TCP_MD5SIG
3898 /*
3899  * Parse MD5 Signature option
3900  */
3901 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3902 {
3903 	int length = (th->doff << 2) - sizeof(*th);
3904 	const u8 *ptr = (const u8 *)(th + 1);
3905 
3906 	/* If the TCP option is too short, we can short cut */
3907 	if (length < TCPOLEN_MD5SIG)
3908 		return NULL;
3909 
3910 	while (length > 0) {
3911 		int opcode = *ptr++;
3912 		int opsize;
3913 
3914 		switch (opcode) {
3915 		case TCPOPT_EOL:
3916 			return NULL;
3917 		case TCPOPT_NOP:
3918 			length--;
3919 			continue;
3920 		default:
3921 			opsize = *ptr++;
3922 			if (opsize < 2 || opsize > length)
3923 				return NULL;
3924 			if (opcode == TCPOPT_MD5SIG)
3925 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3926 		}
3927 		ptr += opsize - 2;
3928 		length -= opsize;
3929 	}
3930 	return NULL;
3931 }
3932 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3933 #endif
3934 
3935 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3936  *
3937  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3938  * it can pass through stack. So, the following predicate verifies that
3939  * this segment is not used for anything but congestion avoidance or
3940  * fast retransmit. Moreover, we even are able to eliminate most of such
3941  * second order effects, if we apply some small "replay" window (~RTO)
3942  * to timestamp space.
3943  *
3944  * All these measures still do not guarantee that we reject wrapped ACKs
3945  * on networks with high bandwidth, when sequence space is recycled fastly,
3946  * but it guarantees that such events will be very rare and do not affect
3947  * connection seriously. This doesn't look nice, but alas, PAWS is really
3948  * buggy extension.
3949  *
3950  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3951  * states that events when retransmit arrives after original data are rare.
3952  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3953  * the biggest problem on large power networks even with minor reordering.
3954  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3955  * up to bandwidth of 18Gigabit/sec. 8) ]
3956  */
3957 
3958 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3959 {
3960 	const struct tcp_sock *tp = tcp_sk(sk);
3961 	const struct tcphdr *th = tcp_hdr(skb);
3962 	u32 seq = TCP_SKB_CB(skb)->seq;
3963 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3964 
3965 	return (/* 1. Pure ACK with correct sequence number. */
3966 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3967 
3968 		/* 2. ... and duplicate ACK. */
3969 		ack == tp->snd_una &&
3970 
3971 		/* 3. ... and does not update window. */
3972 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3973 
3974 		/* 4. ... and sits in replay window. */
3975 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3976 }
3977 
3978 static inline bool tcp_paws_discard(const struct sock *sk,
3979 				   const struct sk_buff *skb)
3980 {
3981 	const struct tcp_sock *tp = tcp_sk(sk);
3982 
3983 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3984 	       !tcp_disordered_ack(sk, skb);
3985 }
3986 
3987 /* Check segment sequence number for validity.
3988  *
3989  * Segment controls are considered valid, if the segment
3990  * fits to the window after truncation to the window. Acceptability
3991  * of data (and SYN, FIN, of course) is checked separately.
3992  * See tcp_data_queue(), for example.
3993  *
3994  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3995  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3996  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3997  * (borrowed from freebsd)
3998  */
3999 
4000 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4001 {
4002 	return	!before(end_seq, tp->rcv_wup) &&
4003 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4004 }
4005 
4006 /* When we get a reset we do this. */
4007 void tcp_reset(struct sock *sk)
4008 {
4009 	trace_tcp_receive_reset(sk);
4010 
4011 	/* We want the right error as BSD sees it (and indeed as we do). */
4012 	switch (sk->sk_state) {
4013 	case TCP_SYN_SENT:
4014 		sk->sk_err = ECONNREFUSED;
4015 		break;
4016 	case TCP_CLOSE_WAIT:
4017 		sk->sk_err = EPIPE;
4018 		break;
4019 	case TCP_CLOSE:
4020 		return;
4021 	default:
4022 		sk->sk_err = ECONNRESET;
4023 	}
4024 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4025 	smp_wmb();
4026 
4027 	tcp_done(sk);
4028 
4029 	if (!sock_flag(sk, SOCK_DEAD))
4030 		sk->sk_error_report(sk);
4031 }
4032 
4033 /*
4034  * 	Process the FIN bit. This now behaves as it is supposed to work
4035  *	and the FIN takes effect when it is validly part of sequence
4036  *	space. Not before when we get holes.
4037  *
4038  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4039  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4040  *	TIME-WAIT)
4041  *
4042  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4043  *	close and we go into CLOSING (and later onto TIME-WAIT)
4044  *
4045  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4046  */
4047 void tcp_fin(struct sock *sk)
4048 {
4049 	struct tcp_sock *tp = tcp_sk(sk);
4050 
4051 	inet_csk_schedule_ack(sk);
4052 
4053 	sk->sk_shutdown |= RCV_SHUTDOWN;
4054 	sock_set_flag(sk, SOCK_DONE);
4055 
4056 	switch (sk->sk_state) {
4057 	case TCP_SYN_RECV:
4058 	case TCP_ESTABLISHED:
4059 		/* Move to CLOSE_WAIT */
4060 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4061 		inet_csk(sk)->icsk_ack.pingpong = 1;
4062 		break;
4063 
4064 	case TCP_CLOSE_WAIT:
4065 	case TCP_CLOSING:
4066 		/* Received a retransmission of the FIN, do
4067 		 * nothing.
4068 		 */
4069 		break;
4070 	case TCP_LAST_ACK:
4071 		/* RFC793: Remain in the LAST-ACK state. */
4072 		break;
4073 
4074 	case TCP_FIN_WAIT1:
4075 		/* This case occurs when a simultaneous close
4076 		 * happens, we must ack the received FIN and
4077 		 * enter the CLOSING state.
4078 		 */
4079 		tcp_send_ack(sk);
4080 		tcp_set_state(sk, TCP_CLOSING);
4081 		break;
4082 	case TCP_FIN_WAIT2:
4083 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4084 		tcp_send_ack(sk);
4085 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4086 		break;
4087 	default:
4088 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4089 		 * cases we should never reach this piece of code.
4090 		 */
4091 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4092 		       __func__, sk->sk_state);
4093 		break;
4094 	}
4095 
4096 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4097 	 * Probably, we should reset in this case. For now drop them.
4098 	 */
4099 	skb_rbtree_purge(&tp->out_of_order_queue);
4100 	if (tcp_is_sack(tp))
4101 		tcp_sack_reset(&tp->rx_opt);
4102 	sk_mem_reclaim(sk);
4103 
4104 	if (!sock_flag(sk, SOCK_DEAD)) {
4105 		sk->sk_state_change(sk);
4106 
4107 		/* Do not send POLL_HUP for half duplex close. */
4108 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4109 		    sk->sk_state == TCP_CLOSE)
4110 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4111 		else
4112 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4113 	}
4114 }
4115 
4116 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4117 				  u32 end_seq)
4118 {
4119 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4120 		if (before(seq, sp->start_seq))
4121 			sp->start_seq = seq;
4122 		if (after(end_seq, sp->end_seq))
4123 			sp->end_seq = end_seq;
4124 		return true;
4125 	}
4126 	return false;
4127 }
4128 
4129 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4130 {
4131 	struct tcp_sock *tp = tcp_sk(sk);
4132 
4133 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4134 		int mib_idx;
4135 
4136 		if (before(seq, tp->rcv_nxt))
4137 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4138 		else
4139 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4140 
4141 		NET_INC_STATS(sock_net(sk), mib_idx);
4142 
4143 		tp->rx_opt.dsack = 1;
4144 		tp->duplicate_sack[0].start_seq = seq;
4145 		tp->duplicate_sack[0].end_seq = end_seq;
4146 	}
4147 }
4148 
4149 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4150 {
4151 	struct tcp_sock *tp = tcp_sk(sk);
4152 
4153 	if (!tp->rx_opt.dsack)
4154 		tcp_dsack_set(sk, seq, end_seq);
4155 	else
4156 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4157 }
4158 
4159 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4160 {
4161 	struct tcp_sock *tp = tcp_sk(sk);
4162 
4163 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4164 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4165 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4166 		tcp_enter_quickack_mode(sk);
4167 
4168 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4169 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4170 
4171 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4172 				end_seq = tp->rcv_nxt;
4173 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4174 		}
4175 	}
4176 
4177 	tcp_send_ack(sk);
4178 }
4179 
4180 /* These routines update the SACK block as out-of-order packets arrive or
4181  * in-order packets close up the sequence space.
4182  */
4183 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4184 {
4185 	int this_sack;
4186 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4187 	struct tcp_sack_block *swalk = sp + 1;
4188 
4189 	/* See if the recent change to the first SACK eats into
4190 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4191 	 */
4192 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4193 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4194 			int i;
4195 
4196 			/* Zap SWALK, by moving every further SACK up by one slot.
4197 			 * Decrease num_sacks.
4198 			 */
4199 			tp->rx_opt.num_sacks--;
4200 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4201 				sp[i] = sp[i + 1];
4202 			continue;
4203 		}
4204 		this_sack++, swalk++;
4205 	}
4206 }
4207 
4208 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4209 {
4210 	struct tcp_sock *tp = tcp_sk(sk);
4211 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4212 	int cur_sacks = tp->rx_opt.num_sacks;
4213 	int this_sack;
4214 
4215 	if (!cur_sacks)
4216 		goto new_sack;
4217 
4218 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4219 		if (tcp_sack_extend(sp, seq, end_seq)) {
4220 			/* Rotate this_sack to the first one. */
4221 			for (; this_sack > 0; this_sack--, sp--)
4222 				swap(*sp, *(sp - 1));
4223 			if (cur_sacks > 1)
4224 				tcp_sack_maybe_coalesce(tp);
4225 			return;
4226 		}
4227 	}
4228 
4229 	/* Could not find an adjacent existing SACK, build a new one,
4230 	 * put it at the front, and shift everyone else down.  We
4231 	 * always know there is at least one SACK present already here.
4232 	 *
4233 	 * If the sack array is full, forget about the last one.
4234 	 */
4235 	if (this_sack >= TCP_NUM_SACKS) {
4236 		this_sack--;
4237 		tp->rx_opt.num_sacks--;
4238 		sp--;
4239 	}
4240 	for (; this_sack > 0; this_sack--, sp--)
4241 		*sp = *(sp - 1);
4242 
4243 new_sack:
4244 	/* Build the new head SACK, and we're done. */
4245 	sp->start_seq = seq;
4246 	sp->end_seq = end_seq;
4247 	tp->rx_opt.num_sacks++;
4248 }
4249 
4250 /* RCV.NXT advances, some SACKs should be eaten. */
4251 
4252 static void tcp_sack_remove(struct tcp_sock *tp)
4253 {
4254 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4255 	int num_sacks = tp->rx_opt.num_sacks;
4256 	int this_sack;
4257 
4258 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4259 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4260 		tp->rx_opt.num_sacks = 0;
4261 		return;
4262 	}
4263 
4264 	for (this_sack = 0; this_sack < num_sacks;) {
4265 		/* Check if the start of the sack is covered by RCV.NXT. */
4266 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4267 			int i;
4268 
4269 			/* RCV.NXT must cover all the block! */
4270 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4271 
4272 			/* Zap this SACK, by moving forward any other SACKS. */
4273 			for (i = this_sack+1; i < num_sacks; i++)
4274 				tp->selective_acks[i-1] = tp->selective_acks[i];
4275 			num_sacks--;
4276 			continue;
4277 		}
4278 		this_sack++;
4279 		sp++;
4280 	}
4281 	tp->rx_opt.num_sacks = num_sacks;
4282 }
4283 
4284 /**
4285  * tcp_try_coalesce - try to merge skb to prior one
4286  * @sk: socket
4287  * @dest: destination queue
4288  * @to: prior buffer
4289  * @from: buffer to add in queue
4290  * @fragstolen: pointer to boolean
4291  *
4292  * Before queueing skb @from after @to, try to merge them
4293  * to reduce overall memory use and queue lengths, if cost is small.
4294  * Packets in ofo or receive queues can stay a long time.
4295  * Better try to coalesce them right now to avoid future collapses.
4296  * Returns true if caller should free @from instead of queueing it
4297  */
4298 static bool tcp_try_coalesce(struct sock *sk,
4299 			     struct sk_buff *to,
4300 			     struct sk_buff *from,
4301 			     bool *fragstolen)
4302 {
4303 	int delta;
4304 
4305 	*fragstolen = false;
4306 
4307 	/* Its possible this segment overlaps with prior segment in queue */
4308 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4309 		return false;
4310 
4311 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4312 		return false;
4313 
4314 	atomic_add(delta, &sk->sk_rmem_alloc);
4315 	sk_mem_charge(sk, delta);
4316 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4317 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4318 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4319 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4320 
4321 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4322 		TCP_SKB_CB(to)->has_rxtstamp = true;
4323 		to->tstamp = from->tstamp;
4324 	}
4325 
4326 	return true;
4327 }
4328 
4329 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4330 {
4331 	sk_drops_add(sk, skb);
4332 	__kfree_skb(skb);
4333 }
4334 
4335 /* This one checks to see if we can put data from the
4336  * out_of_order queue into the receive_queue.
4337  */
4338 static void tcp_ofo_queue(struct sock *sk)
4339 {
4340 	struct tcp_sock *tp = tcp_sk(sk);
4341 	__u32 dsack_high = tp->rcv_nxt;
4342 	bool fin, fragstolen, eaten;
4343 	struct sk_buff *skb, *tail;
4344 	struct rb_node *p;
4345 
4346 	p = rb_first(&tp->out_of_order_queue);
4347 	while (p) {
4348 		skb = rb_to_skb(p);
4349 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4350 			break;
4351 
4352 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4353 			__u32 dsack = dsack_high;
4354 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4355 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4356 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4357 		}
4358 		p = rb_next(p);
4359 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4360 
4361 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4362 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4363 			tcp_drop(sk, skb);
4364 			continue;
4365 		}
4366 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4367 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4368 			   TCP_SKB_CB(skb)->end_seq);
4369 
4370 		tail = skb_peek_tail(&sk->sk_receive_queue);
4371 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4372 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4373 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4374 		if (!eaten)
4375 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4376 		else
4377 			kfree_skb_partial(skb, fragstolen);
4378 
4379 		if (unlikely(fin)) {
4380 			tcp_fin(sk);
4381 			/* tcp_fin() purges tp->out_of_order_queue,
4382 			 * so we must end this loop right now.
4383 			 */
4384 			break;
4385 		}
4386 	}
4387 }
4388 
4389 static bool tcp_prune_ofo_queue(struct sock *sk);
4390 static int tcp_prune_queue(struct sock *sk);
4391 
4392 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4393 				 unsigned int size)
4394 {
4395 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4396 	    !sk_rmem_schedule(sk, skb, size)) {
4397 
4398 		if (tcp_prune_queue(sk) < 0)
4399 			return -1;
4400 
4401 		while (!sk_rmem_schedule(sk, skb, size)) {
4402 			if (!tcp_prune_ofo_queue(sk))
4403 				return -1;
4404 		}
4405 	}
4406 	return 0;
4407 }
4408 
4409 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4410 {
4411 	struct tcp_sock *tp = tcp_sk(sk);
4412 	struct rb_node **p, *parent;
4413 	struct sk_buff *skb1;
4414 	u32 seq, end_seq;
4415 	bool fragstolen;
4416 
4417 	tcp_ecn_check_ce(tp, skb);
4418 
4419 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4420 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4421 		tcp_drop(sk, skb);
4422 		return;
4423 	}
4424 
4425 	/* Disable header prediction. */
4426 	tp->pred_flags = 0;
4427 	inet_csk_schedule_ack(sk);
4428 
4429 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4430 	seq = TCP_SKB_CB(skb)->seq;
4431 	end_seq = TCP_SKB_CB(skb)->end_seq;
4432 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4433 		   tp->rcv_nxt, seq, end_seq);
4434 
4435 	p = &tp->out_of_order_queue.rb_node;
4436 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4437 		/* Initial out of order segment, build 1 SACK. */
4438 		if (tcp_is_sack(tp)) {
4439 			tp->rx_opt.num_sacks = 1;
4440 			tp->selective_acks[0].start_seq = seq;
4441 			tp->selective_acks[0].end_seq = end_seq;
4442 		}
4443 		rb_link_node(&skb->rbnode, NULL, p);
4444 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4445 		tp->ooo_last_skb = skb;
4446 		goto end;
4447 	}
4448 
4449 	/* In the typical case, we are adding an skb to the end of the list.
4450 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4451 	 */
4452 	if (tcp_try_coalesce(sk, tp->ooo_last_skb,
4453 			     skb, &fragstolen)) {
4454 coalesce_done:
4455 		tcp_grow_window(sk, skb);
4456 		kfree_skb_partial(skb, fragstolen);
4457 		skb = NULL;
4458 		goto add_sack;
4459 	}
4460 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4461 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4462 		parent = &tp->ooo_last_skb->rbnode;
4463 		p = &parent->rb_right;
4464 		goto insert;
4465 	}
4466 
4467 	/* Find place to insert this segment. Handle overlaps on the way. */
4468 	parent = NULL;
4469 	while (*p) {
4470 		parent = *p;
4471 		skb1 = rb_to_skb(parent);
4472 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4473 			p = &parent->rb_left;
4474 			continue;
4475 		}
4476 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4477 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4478 				/* All the bits are present. Drop. */
4479 				NET_INC_STATS(sock_net(sk),
4480 					      LINUX_MIB_TCPOFOMERGE);
4481 				__kfree_skb(skb);
4482 				skb = NULL;
4483 				tcp_dsack_set(sk, seq, end_seq);
4484 				goto add_sack;
4485 			}
4486 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4487 				/* Partial overlap. */
4488 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4489 			} else {
4490 				/* skb's seq == skb1's seq and skb covers skb1.
4491 				 * Replace skb1 with skb.
4492 				 */
4493 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4494 						&tp->out_of_order_queue);
4495 				tcp_dsack_extend(sk,
4496 						 TCP_SKB_CB(skb1)->seq,
4497 						 TCP_SKB_CB(skb1)->end_seq);
4498 				NET_INC_STATS(sock_net(sk),
4499 					      LINUX_MIB_TCPOFOMERGE);
4500 				__kfree_skb(skb1);
4501 				goto merge_right;
4502 			}
4503 		} else if (tcp_try_coalesce(sk, skb1,
4504 					    skb, &fragstolen)) {
4505 			goto coalesce_done;
4506 		}
4507 		p = &parent->rb_right;
4508 	}
4509 insert:
4510 	/* Insert segment into RB tree. */
4511 	rb_link_node(&skb->rbnode, parent, p);
4512 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4513 
4514 merge_right:
4515 	/* Remove other segments covered by skb. */
4516 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4517 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4518 			break;
4519 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4520 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4521 					 end_seq);
4522 			break;
4523 		}
4524 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4525 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4526 				 TCP_SKB_CB(skb1)->end_seq);
4527 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4528 		tcp_drop(sk, skb1);
4529 	}
4530 	/* If there is no skb after us, we are the last_skb ! */
4531 	if (!skb1)
4532 		tp->ooo_last_skb = skb;
4533 
4534 add_sack:
4535 	if (tcp_is_sack(tp))
4536 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4537 end:
4538 	if (skb) {
4539 		tcp_grow_window(sk, skb);
4540 		skb_condense(skb);
4541 		skb_set_owner_r(skb, sk);
4542 	}
4543 }
4544 
4545 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4546 		  bool *fragstolen)
4547 {
4548 	int eaten;
4549 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4550 
4551 	__skb_pull(skb, hdrlen);
4552 	eaten = (tail &&
4553 		 tcp_try_coalesce(sk, tail,
4554 				  skb, fragstolen)) ? 1 : 0;
4555 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4556 	if (!eaten) {
4557 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4558 		skb_set_owner_r(skb, sk);
4559 	}
4560 	return eaten;
4561 }
4562 
4563 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4564 {
4565 	struct sk_buff *skb;
4566 	int err = -ENOMEM;
4567 	int data_len = 0;
4568 	bool fragstolen;
4569 
4570 	if (size == 0)
4571 		return 0;
4572 
4573 	if (size > PAGE_SIZE) {
4574 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4575 
4576 		data_len = npages << PAGE_SHIFT;
4577 		size = data_len + (size & ~PAGE_MASK);
4578 	}
4579 	skb = alloc_skb_with_frags(size - data_len, data_len,
4580 				   PAGE_ALLOC_COSTLY_ORDER,
4581 				   &err, sk->sk_allocation);
4582 	if (!skb)
4583 		goto err;
4584 
4585 	skb_put(skb, size - data_len);
4586 	skb->data_len = data_len;
4587 	skb->len = size;
4588 
4589 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4590 		goto err_free;
4591 
4592 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4593 	if (err)
4594 		goto err_free;
4595 
4596 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4597 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4598 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4599 
4600 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4601 		WARN_ON_ONCE(fragstolen); /* should not happen */
4602 		__kfree_skb(skb);
4603 	}
4604 	return size;
4605 
4606 err_free:
4607 	kfree_skb(skb);
4608 err:
4609 	return err;
4610 
4611 }
4612 
4613 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4614 {
4615 	struct tcp_sock *tp = tcp_sk(sk);
4616 	bool fragstolen;
4617 	int eaten;
4618 
4619 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4620 		__kfree_skb(skb);
4621 		return;
4622 	}
4623 	skb_dst_drop(skb);
4624 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4625 
4626 	tcp_ecn_accept_cwr(tp, skb);
4627 
4628 	tp->rx_opt.dsack = 0;
4629 
4630 	/*  Queue data for delivery to the user.
4631 	 *  Packets in sequence go to the receive queue.
4632 	 *  Out of sequence packets to the out_of_order_queue.
4633 	 */
4634 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4635 		if (tcp_receive_window(tp) == 0)
4636 			goto out_of_window;
4637 
4638 		/* Ok. In sequence. In window. */
4639 queue_and_out:
4640 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4641 			sk_forced_mem_schedule(sk, skb->truesize);
4642 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4643 			goto drop;
4644 
4645 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4646 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4647 		if (skb->len)
4648 			tcp_event_data_recv(sk, skb);
4649 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4650 			tcp_fin(sk);
4651 
4652 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4653 			tcp_ofo_queue(sk);
4654 
4655 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4656 			 * gap in queue is filled.
4657 			 */
4658 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4659 				inet_csk(sk)->icsk_ack.pingpong = 0;
4660 		}
4661 
4662 		if (tp->rx_opt.num_sacks)
4663 			tcp_sack_remove(tp);
4664 
4665 		tcp_fast_path_check(sk);
4666 
4667 		if (eaten > 0)
4668 			kfree_skb_partial(skb, fragstolen);
4669 		if (!sock_flag(sk, SOCK_DEAD))
4670 			sk->sk_data_ready(sk);
4671 		return;
4672 	}
4673 
4674 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4675 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4676 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4677 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4678 
4679 out_of_window:
4680 		tcp_enter_quickack_mode(sk);
4681 		inet_csk_schedule_ack(sk);
4682 drop:
4683 		tcp_drop(sk, skb);
4684 		return;
4685 	}
4686 
4687 	/* Out of window. F.e. zero window probe. */
4688 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4689 		goto out_of_window;
4690 
4691 	tcp_enter_quickack_mode(sk);
4692 
4693 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4694 		/* Partial packet, seq < rcv_next < end_seq */
4695 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4696 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4697 			   TCP_SKB_CB(skb)->end_seq);
4698 
4699 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4700 
4701 		/* If window is closed, drop tail of packet. But after
4702 		 * remembering D-SACK for its head made in previous line.
4703 		 */
4704 		if (!tcp_receive_window(tp))
4705 			goto out_of_window;
4706 		goto queue_and_out;
4707 	}
4708 
4709 	tcp_data_queue_ofo(sk, skb);
4710 }
4711 
4712 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4713 {
4714 	if (list)
4715 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4716 
4717 	return skb_rb_next(skb);
4718 }
4719 
4720 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4721 					struct sk_buff_head *list,
4722 					struct rb_root *root)
4723 {
4724 	struct sk_buff *next = tcp_skb_next(skb, list);
4725 
4726 	if (list)
4727 		__skb_unlink(skb, list);
4728 	else
4729 		rb_erase(&skb->rbnode, root);
4730 
4731 	__kfree_skb(skb);
4732 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4733 
4734 	return next;
4735 }
4736 
4737 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4738 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4739 {
4740 	struct rb_node **p = &root->rb_node;
4741 	struct rb_node *parent = NULL;
4742 	struct sk_buff *skb1;
4743 
4744 	while (*p) {
4745 		parent = *p;
4746 		skb1 = rb_to_skb(parent);
4747 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4748 			p = &parent->rb_left;
4749 		else
4750 			p = &parent->rb_right;
4751 	}
4752 	rb_link_node(&skb->rbnode, parent, p);
4753 	rb_insert_color(&skb->rbnode, root);
4754 }
4755 
4756 /* Collapse contiguous sequence of skbs head..tail with
4757  * sequence numbers start..end.
4758  *
4759  * If tail is NULL, this means until the end of the queue.
4760  *
4761  * Segments with FIN/SYN are not collapsed (only because this
4762  * simplifies code)
4763  */
4764 static void
4765 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4766 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4767 {
4768 	struct sk_buff *skb = head, *n;
4769 	struct sk_buff_head tmp;
4770 	bool end_of_skbs;
4771 
4772 	/* First, check that queue is collapsible and find
4773 	 * the point where collapsing can be useful.
4774 	 */
4775 restart:
4776 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4777 		n = tcp_skb_next(skb, list);
4778 
4779 		/* No new bits? It is possible on ofo queue. */
4780 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4781 			skb = tcp_collapse_one(sk, skb, list, root);
4782 			if (!skb)
4783 				break;
4784 			goto restart;
4785 		}
4786 
4787 		/* The first skb to collapse is:
4788 		 * - not SYN/FIN and
4789 		 * - bloated or contains data before "start" or
4790 		 *   overlaps to the next one.
4791 		 */
4792 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4793 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4794 		     before(TCP_SKB_CB(skb)->seq, start))) {
4795 			end_of_skbs = false;
4796 			break;
4797 		}
4798 
4799 		if (n && n != tail &&
4800 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4801 			end_of_skbs = false;
4802 			break;
4803 		}
4804 
4805 		/* Decided to skip this, advance start seq. */
4806 		start = TCP_SKB_CB(skb)->end_seq;
4807 	}
4808 	if (end_of_skbs ||
4809 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4810 		return;
4811 
4812 	__skb_queue_head_init(&tmp);
4813 
4814 	while (before(start, end)) {
4815 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4816 		struct sk_buff *nskb;
4817 
4818 		nskb = alloc_skb(copy, GFP_ATOMIC);
4819 		if (!nskb)
4820 			break;
4821 
4822 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4823 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4824 		if (list)
4825 			__skb_queue_before(list, skb, nskb);
4826 		else
4827 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4828 		skb_set_owner_r(nskb, sk);
4829 
4830 		/* Copy data, releasing collapsed skbs. */
4831 		while (copy > 0) {
4832 			int offset = start - TCP_SKB_CB(skb)->seq;
4833 			int size = TCP_SKB_CB(skb)->end_seq - start;
4834 
4835 			BUG_ON(offset < 0);
4836 			if (size > 0) {
4837 				size = min(copy, size);
4838 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4839 					BUG();
4840 				TCP_SKB_CB(nskb)->end_seq += size;
4841 				copy -= size;
4842 				start += size;
4843 			}
4844 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4845 				skb = tcp_collapse_one(sk, skb, list, root);
4846 				if (!skb ||
4847 				    skb == tail ||
4848 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4849 					goto end;
4850 			}
4851 		}
4852 	}
4853 end:
4854 	skb_queue_walk_safe(&tmp, skb, n)
4855 		tcp_rbtree_insert(root, skb);
4856 }
4857 
4858 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4859  * and tcp_collapse() them until all the queue is collapsed.
4860  */
4861 static void tcp_collapse_ofo_queue(struct sock *sk)
4862 {
4863 	struct tcp_sock *tp = tcp_sk(sk);
4864 	struct sk_buff *skb, *head;
4865 	u32 start, end;
4866 
4867 	skb = skb_rb_first(&tp->out_of_order_queue);
4868 new_range:
4869 	if (!skb) {
4870 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4871 		return;
4872 	}
4873 	start = TCP_SKB_CB(skb)->seq;
4874 	end = TCP_SKB_CB(skb)->end_seq;
4875 
4876 	for (head = skb;;) {
4877 		skb = skb_rb_next(skb);
4878 
4879 		/* Range is terminated when we see a gap or when
4880 		 * we are at the queue end.
4881 		 */
4882 		if (!skb ||
4883 		    after(TCP_SKB_CB(skb)->seq, end) ||
4884 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4885 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4886 				     head, skb, start, end);
4887 			goto new_range;
4888 		}
4889 
4890 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4891 			start = TCP_SKB_CB(skb)->seq;
4892 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4893 			end = TCP_SKB_CB(skb)->end_seq;
4894 	}
4895 }
4896 
4897 /*
4898  * Clean the out-of-order queue to make room.
4899  * We drop high sequences packets to :
4900  * 1) Let a chance for holes to be filled.
4901  * 2) not add too big latencies if thousands of packets sit there.
4902  *    (But if application shrinks SO_RCVBUF, we could still end up
4903  *     freeing whole queue here)
4904  *
4905  * Return true if queue has shrunk.
4906  */
4907 static bool tcp_prune_ofo_queue(struct sock *sk)
4908 {
4909 	struct tcp_sock *tp = tcp_sk(sk);
4910 	struct rb_node *node, *prev;
4911 
4912 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4913 		return false;
4914 
4915 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4916 	node = &tp->ooo_last_skb->rbnode;
4917 	do {
4918 		prev = rb_prev(node);
4919 		rb_erase(node, &tp->out_of_order_queue);
4920 		tcp_drop(sk, rb_to_skb(node));
4921 		sk_mem_reclaim(sk);
4922 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4923 		    !tcp_under_memory_pressure(sk))
4924 			break;
4925 		node = prev;
4926 	} while (node);
4927 	tp->ooo_last_skb = rb_to_skb(prev);
4928 
4929 	/* Reset SACK state.  A conforming SACK implementation will
4930 	 * do the same at a timeout based retransmit.  When a connection
4931 	 * is in a sad state like this, we care only about integrity
4932 	 * of the connection not performance.
4933 	 */
4934 	if (tp->rx_opt.sack_ok)
4935 		tcp_sack_reset(&tp->rx_opt);
4936 	return true;
4937 }
4938 
4939 /* Reduce allocated memory if we can, trying to get
4940  * the socket within its memory limits again.
4941  *
4942  * Return less than zero if we should start dropping frames
4943  * until the socket owning process reads some of the data
4944  * to stabilize the situation.
4945  */
4946 static int tcp_prune_queue(struct sock *sk)
4947 {
4948 	struct tcp_sock *tp = tcp_sk(sk);
4949 
4950 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4951 
4952 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4953 
4954 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4955 		tcp_clamp_window(sk);
4956 	else if (tcp_under_memory_pressure(sk))
4957 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4958 
4959 	tcp_collapse_ofo_queue(sk);
4960 	if (!skb_queue_empty(&sk->sk_receive_queue))
4961 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4962 			     skb_peek(&sk->sk_receive_queue),
4963 			     NULL,
4964 			     tp->copied_seq, tp->rcv_nxt);
4965 	sk_mem_reclaim(sk);
4966 
4967 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4968 		return 0;
4969 
4970 	/* Collapsing did not help, destructive actions follow.
4971 	 * This must not ever occur. */
4972 
4973 	tcp_prune_ofo_queue(sk);
4974 
4975 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4976 		return 0;
4977 
4978 	/* If we are really being abused, tell the caller to silently
4979 	 * drop receive data on the floor.  It will get retransmitted
4980 	 * and hopefully then we'll have sufficient space.
4981 	 */
4982 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4983 
4984 	/* Massive buffer overcommit. */
4985 	tp->pred_flags = 0;
4986 	return -1;
4987 }
4988 
4989 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4990 {
4991 	const struct tcp_sock *tp = tcp_sk(sk);
4992 
4993 	/* If the user specified a specific send buffer setting, do
4994 	 * not modify it.
4995 	 */
4996 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4997 		return false;
4998 
4999 	/* If we are under global TCP memory pressure, do not expand.  */
5000 	if (tcp_under_memory_pressure(sk))
5001 		return false;
5002 
5003 	/* If we are under soft global TCP memory pressure, do not expand.  */
5004 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5005 		return false;
5006 
5007 	/* If we filled the congestion window, do not expand.  */
5008 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5009 		return false;
5010 
5011 	return true;
5012 }
5013 
5014 /* When incoming ACK allowed to free some skb from write_queue,
5015  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5016  * on the exit from tcp input handler.
5017  *
5018  * PROBLEM: sndbuf expansion does not work well with largesend.
5019  */
5020 static void tcp_new_space(struct sock *sk)
5021 {
5022 	struct tcp_sock *tp = tcp_sk(sk);
5023 
5024 	if (tcp_should_expand_sndbuf(sk)) {
5025 		tcp_sndbuf_expand(sk);
5026 		tp->snd_cwnd_stamp = tcp_jiffies32;
5027 	}
5028 
5029 	sk->sk_write_space(sk);
5030 }
5031 
5032 static void tcp_check_space(struct sock *sk)
5033 {
5034 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5035 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5036 		/* pairs with tcp_poll() */
5037 		smp_mb();
5038 		if (sk->sk_socket &&
5039 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5040 			tcp_new_space(sk);
5041 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5042 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5043 		}
5044 	}
5045 }
5046 
5047 static inline void tcp_data_snd_check(struct sock *sk)
5048 {
5049 	tcp_push_pending_frames(sk);
5050 	tcp_check_space(sk);
5051 }
5052 
5053 /*
5054  * Check if sending an ack is needed.
5055  */
5056 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5057 {
5058 	struct tcp_sock *tp = tcp_sk(sk);
5059 
5060 	    /* More than one full frame received... */
5061 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5062 	     /* ... and right edge of window advances far enough.
5063 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5064 	      */
5065 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5066 	    /* We ACK each frame or... */
5067 	    tcp_in_quickack_mode(sk) ||
5068 	    /* We have out of order data. */
5069 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5070 		/* Then ack it now */
5071 		tcp_send_ack(sk);
5072 	} else {
5073 		/* Else, send delayed ack. */
5074 		tcp_send_delayed_ack(sk);
5075 	}
5076 }
5077 
5078 static inline void tcp_ack_snd_check(struct sock *sk)
5079 {
5080 	if (!inet_csk_ack_scheduled(sk)) {
5081 		/* We sent a data segment already. */
5082 		return;
5083 	}
5084 	__tcp_ack_snd_check(sk, 1);
5085 }
5086 
5087 /*
5088  *	This routine is only called when we have urgent data
5089  *	signaled. Its the 'slow' part of tcp_urg. It could be
5090  *	moved inline now as tcp_urg is only called from one
5091  *	place. We handle URGent data wrong. We have to - as
5092  *	BSD still doesn't use the correction from RFC961.
5093  *	For 1003.1g we should support a new option TCP_STDURG to permit
5094  *	either form (or just set the sysctl tcp_stdurg).
5095  */
5096 
5097 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5098 {
5099 	struct tcp_sock *tp = tcp_sk(sk);
5100 	u32 ptr = ntohs(th->urg_ptr);
5101 
5102 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5103 		ptr--;
5104 	ptr += ntohl(th->seq);
5105 
5106 	/* Ignore urgent data that we've already seen and read. */
5107 	if (after(tp->copied_seq, ptr))
5108 		return;
5109 
5110 	/* Do not replay urg ptr.
5111 	 *
5112 	 * NOTE: interesting situation not covered by specs.
5113 	 * Misbehaving sender may send urg ptr, pointing to segment,
5114 	 * which we already have in ofo queue. We are not able to fetch
5115 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5116 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5117 	 * situations. But it is worth to think about possibility of some
5118 	 * DoSes using some hypothetical application level deadlock.
5119 	 */
5120 	if (before(ptr, tp->rcv_nxt))
5121 		return;
5122 
5123 	/* Do we already have a newer (or duplicate) urgent pointer? */
5124 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5125 		return;
5126 
5127 	/* Tell the world about our new urgent pointer. */
5128 	sk_send_sigurg(sk);
5129 
5130 	/* We may be adding urgent data when the last byte read was
5131 	 * urgent. To do this requires some care. We cannot just ignore
5132 	 * tp->copied_seq since we would read the last urgent byte again
5133 	 * as data, nor can we alter copied_seq until this data arrives
5134 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5135 	 *
5136 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5137 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5138 	 * and expect that both A and B disappear from stream. This is _wrong_.
5139 	 * Though this happens in BSD with high probability, this is occasional.
5140 	 * Any application relying on this is buggy. Note also, that fix "works"
5141 	 * only in this artificial test. Insert some normal data between A and B and we will
5142 	 * decline of BSD again. Verdict: it is better to remove to trap
5143 	 * buggy users.
5144 	 */
5145 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5146 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5147 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5148 		tp->copied_seq++;
5149 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5150 			__skb_unlink(skb, &sk->sk_receive_queue);
5151 			__kfree_skb(skb);
5152 		}
5153 	}
5154 
5155 	tp->urg_data = TCP_URG_NOTYET;
5156 	tp->urg_seq = ptr;
5157 
5158 	/* Disable header prediction. */
5159 	tp->pred_flags = 0;
5160 }
5161 
5162 /* This is the 'fast' part of urgent handling. */
5163 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5164 {
5165 	struct tcp_sock *tp = tcp_sk(sk);
5166 
5167 	/* Check if we get a new urgent pointer - normally not. */
5168 	if (th->urg)
5169 		tcp_check_urg(sk, th);
5170 
5171 	/* Do we wait for any urgent data? - normally not... */
5172 	if (tp->urg_data == TCP_URG_NOTYET) {
5173 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5174 			  th->syn;
5175 
5176 		/* Is the urgent pointer pointing into this packet? */
5177 		if (ptr < skb->len) {
5178 			u8 tmp;
5179 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5180 				BUG();
5181 			tp->urg_data = TCP_URG_VALID | tmp;
5182 			if (!sock_flag(sk, SOCK_DEAD))
5183 				sk->sk_data_ready(sk);
5184 		}
5185 	}
5186 }
5187 
5188 /* Accept RST for rcv_nxt - 1 after a FIN.
5189  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5190  * FIN is sent followed by a RST packet. The RST is sent with the same
5191  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5192  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5193  * ACKs on the closed socket. In addition middleboxes can drop either the
5194  * challenge ACK or a subsequent RST.
5195  */
5196 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5197 {
5198 	struct tcp_sock *tp = tcp_sk(sk);
5199 
5200 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5201 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5202 					       TCPF_CLOSING));
5203 }
5204 
5205 /* Does PAWS and seqno based validation of an incoming segment, flags will
5206  * play significant role here.
5207  */
5208 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5209 				  const struct tcphdr *th, int syn_inerr)
5210 {
5211 	struct tcp_sock *tp = tcp_sk(sk);
5212 	bool rst_seq_match = false;
5213 
5214 	/* RFC1323: H1. Apply PAWS check first. */
5215 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5216 	    tp->rx_opt.saw_tstamp &&
5217 	    tcp_paws_discard(sk, skb)) {
5218 		if (!th->rst) {
5219 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5220 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5221 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5222 						  &tp->last_oow_ack_time))
5223 				tcp_send_dupack(sk, skb);
5224 			goto discard;
5225 		}
5226 		/* Reset is accepted even if it did not pass PAWS. */
5227 	}
5228 
5229 	/* Step 1: check sequence number */
5230 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5231 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5232 		 * (RST) segments are validated by checking their SEQ-fields."
5233 		 * And page 69: "If an incoming segment is not acceptable,
5234 		 * an acknowledgment should be sent in reply (unless the RST
5235 		 * bit is set, if so drop the segment and return)".
5236 		 */
5237 		if (!th->rst) {
5238 			if (th->syn)
5239 				goto syn_challenge;
5240 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5241 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5242 						  &tp->last_oow_ack_time))
5243 				tcp_send_dupack(sk, skb);
5244 		} else if (tcp_reset_check(sk, skb)) {
5245 			tcp_reset(sk);
5246 		}
5247 		goto discard;
5248 	}
5249 
5250 	/* Step 2: check RST bit */
5251 	if (th->rst) {
5252 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5253 		 * FIN and SACK too if available):
5254 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5255 		 * the right-most SACK block,
5256 		 * then
5257 		 *     RESET the connection
5258 		 * else
5259 		 *     Send a challenge ACK
5260 		 */
5261 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5262 		    tcp_reset_check(sk, skb)) {
5263 			rst_seq_match = true;
5264 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5265 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5266 			int max_sack = sp[0].end_seq;
5267 			int this_sack;
5268 
5269 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5270 			     ++this_sack) {
5271 				max_sack = after(sp[this_sack].end_seq,
5272 						 max_sack) ?
5273 					sp[this_sack].end_seq : max_sack;
5274 			}
5275 
5276 			if (TCP_SKB_CB(skb)->seq == max_sack)
5277 				rst_seq_match = true;
5278 		}
5279 
5280 		if (rst_seq_match)
5281 			tcp_reset(sk);
5282 		else {
5283 			/* Disable TFO if RST is out-of-order
5284 			 * and no data has been received
5285 			 * for current active TFO socket
5286 			 */
5287 			if (tp->syn_fastopen && !tp->data_segs_in &&
5288 			    sk->sk_state == TCP_ESTABLISHED)
5289 				tcp_fastopen_active_disable(sk);
5290 			tcp_send_challenge_ack(sk, skb);
5291 		}
5292 		goto discard;
5293 	}
5294 
5295 	/* step 3: check security and precedence [ignored] */
5296 
5297 	/* step 4: Check for a SYN
5298 	 * RFC 5961 4.2 : Send a challenge ack
5299 	 */
5300 	if (th->syn) {
5301 syn_challenge:
5302 		if (syn_inerr)
5303 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5304 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5305 		tcp_send_challenge_ack(sk, skb);
5306 		goto discard;
5307 	}
5308 
5309 	return true;
5310 
5311 discard:
5312 	tcp_drop(sk, skb);
5313 	return false;
5314 }
5315 
5316 /*
5317  *	TCP receive function for the ESTABLISHED state.
5318  *
5319  *	It is split into a fast path and a slow path. The fast path is
5320  * 	disabled when:
5321  *	- A zero window was announced from us - zero window probing
5322  *        is only handled properly in the slow path.
5323  *	- Out of order segments arrived.
5324  *	- Urgent data is expected.
5325  *	- There is no buffer space left
5326  *	- Unexpected TCP flags/window values/header lengths are received
5327  *	  (detected by checking the TCP header against pred_flags)
5328  *	- Data is sent in both directions. Fast path only supports pure senders
5329  *	  or pure receivers (this means either the sequence number or the ack
5330  *	  value must stay constant)
5331  *	- Unexpected TCP option.
5332  *
5333  *	When these conditions are not satisfied it drops into a standard
5334  *	receive procedure patterned after RFC793 to handle all cases.
5335  *	The first three cases are guaranteed by proper pred_flags setting,
5336  *	the rest is checked inline. Fast processing is turned on in
5337  *	tcp_data_queue when everything is OK.
5338  */
5339 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5340 			 const struct tcphdr *th)
5341 {
5342 	unsigned int len = skb->len;
5343 	struct tcp_sock *tp = tcp_sk(sk);
5344 
5345 	tcp_mstamp_refresh(tp);
5346 	if (unlikely(!sk->sk_rx_dst))
5347 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5348 	/*
5349 	 *	Header prediction.
5350 	 *	The code loosely follows the one in the famous
5351 	 *	"30 instruction TCP receive" Van Jacobson mail.
5352 	 *
5353 	 *	Van's trick is to deposit buffers into socket queue
5354 	 *	on a device interrupt, to call tcp_recv function
5355 	 *	on the receive process context and checksum and copy
5356 	 *	the buffer to user space. smart...
5357 	 *
5358 	 *	Our current scheme is not silly either but we take the
5359 	 *	extra cost of the net_bh soft interrupt processing...
5360 	 *	We do checksum and copy also but from device to kernel.
5361 	 */
5362 
5363 	tp->rx_opt.saw_tstamp = 0;
5364 
5365 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5366 	 *	if header_prediction is to be made
5367 	 *	'S' will always be tp->tcp_header_len >> 2
5368 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5369 	 *  turn it off	(when there are holes in the receive
5370 	 *	 space for instance)
5371 	 *	PSH flag is ignored.
5372 	 */
5373 
5374 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5375 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5376 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5377 		int tcp_header_len = tp->tcp_header_len;
5378 
5379 		/* Timestamp header prediction: tcp_header_len
5380 		 * is automatically equal to th->doff*4 due to pred_flags
5381 		 * match.
5382 		 */
5383 
5384 		/* Check timestamp */
5385 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5386 			/* No? Slow path! */
5387 			if (!tcp_parse_aligned_timestamp(tp, th))
5388 				goto slow_path;
5389 
5390 			/* If PAWS failed, check it more carefully in slow path */
5391 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5392 				goto slow_path;
5393 
5394 			/* DO NOT update ts_recent here, if checksum fails
5395 			 * and timestamp was corrupted part, it will result
5396 			 * in a hung connection since we will drop all
5397 			 * future packets due to the PAWS test.
5398 			 */
5399 		}
5400 
5401 		if (len <= tcp_header_len) {
5402 			/* Bulk data transfer: sender */
5403 			if (len == tcp_header_len) {
5404 				/* Predicted packet is in window by definition.
5405 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5406 				 * Hence, check seq<=rcv_wup reduces to:
5407 				 */
5408 				if (tcp_header_len ==
5409 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5410 				    tp->rcv_nxt == tp->rcv_wup)
5411 					tcp_store_ts_recent(tp);
5412 
5413 				/* We know that such packets are checksummed
5414 				 * on entry.
5415 				 */
5416 				tcp_ack(sk, skb, 0);
5417 				__kfree_skb(skb);
5418 				tcp_data_snd_check(sk);
5419 				return;
5420 			} else { /* Header too small */
5421 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5422 				goto discard;
5423 			}
5424 		} else {
5425 			int eaten = 0;
5426 			bool fragstolen = false;
5427 
5428 			if (tcp_checksum_complete(skb))
5429 				goto csum_error;
5430 
5431 			if ((int)skb->truesize > sk->sk_forward_alloc)
5432 				goto step5;
5433 
5434 			/* Predicted packet is in window by definition.
5435 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5436 			 * Hence, check seq<=rcv_wup reduces to:
5437 			 */
5438 			if (tcp_header_len ==
5439 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5440 			    tp->rcv_nxt == tp->rcv_wup)
5441 				tcp_store_ts_recent(tp);
5442 
5443 			tcp_rcv_rtt_measure_ts(sk, skb);
5444 
5445 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5446 
5447 			/* Bulk data transfer: receiver */
5448 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5449 					      &fragstolen);
5450 
5451 			tcp_event_data_recv(sk, skb);
5452 
5453 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5454 				/* Well, only one small jumplet in fast path... */
5455 				tcp_ack(sk, skb, FLAG_DATA);
5456 				tcp_data_snd_check(sk);
5457 				if (!inet_csk_ack_scheduled(sk))
5458 					goto no_ack;
5459 			}
5460 
5461 			__tcp_ack_snd_check(sk, 0);
5462 no_ack:
5463 			if (eaten)
5464 				kfree_skb_partial(skb, fragstolen);
5465 			sk->sk_data_ready(sk);
5466 			return;
5467 		}
5468 	}
5469 
5470 slow_path:
5471 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5472 		goto csum_error;
5473 
5474 	if (!th->ack && !th->rst && !th->syn)
5475 		goto discard;
5476 
5477 	/*
5478 	 *	Standard slow path.
5479 	 */
5480 
5481 	if (!tcp_validate_incoming(sk, skb, th, 1))
5482 		return;
5483 
5484 step5:
5485 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5486 		goto discard;
5487 
5488 	tcp_rcv_rtt_measure_ts(sk, skb);
5489 
5490 	/* Process urgent data. */
5491 	tcp_urg(sk, skb, th);
5492 
5493 	/* step 7: process the segment text */
5494 	tcp_data_queue(sk, skb);
5495 
5496 	tcp_data_snd_check(sk);
5497 	tcp_ack_snd_check(sk);
5498 	return;
5499 
5500 csum_error:
5501 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5502 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5503 
5504 discard:
5505 	tcp_drop(sk, skb);
5506 }
5507 EXPORT_SYMBOL(tcp_rcv_established);
5508 
5509 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5510 {
5511 	struct tcp_sock *tp = tcp_sk(sk);
5512 	struct inet_connection_sock *icsk = inet_csk(sk);
5513 
5514 	tcp_set_state(sk, TCP_ESTABLISHED);
5515 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5516 
5517 	if (skb) {
5518 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5519 		security_inet_conn_established(sk, skb);
5520 	}
5521 
5522 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5523 
5524 	/* Prevent spurious tcp_cwnd_restart() on first data
5525 	 * packet.
5526 	 */
5527 	tp->lsndtime = tcp_jiffies32;
5528 
5529 	if (sock_flag(sk, SOCK_KEEPOPEN))
5530 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5531 
5532 	if (!tp->rx_opt.snd_wscale)
5533 		__tcp_fast_path_on(tp, tp->snd_wnd);
5534 	else
5535 		tp->pred_flags = 0;
5536 }
5537 
5538 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5539 				    struct tcp_fastopen_cookie *cookie)
5540 {
5541 	struct tcp_sock *tp = tcp_sk(sk);
5542 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5543 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5544 	bool syn_drop = false;
5545 
5546 	if (mss == tp->rx_opt.user_mss) {
5547 		struct tcp_options_received opt;
5548 
5549 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5550 		tcp_clear_options(&opt);
5551 		opt.user_mss = opt.mss_clamp = 0;
5552 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5553 		mss = opt.mss_clamp;
5554 	}
5555 
5556 	if (!tp->syn_fastopen) {
5557 		/* Ignore an unsolicited cookie */
5558 		cookie->len = -1;
5559 	} else if (tp->total_retrans) {
5560 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5561 		 * acknowledges data. Presumably the remote received only
5562 		 * the retransmitted (regular) SYNs: either the original
5563 		 * SYN-data or the corresponding SYN-ACK was dropped.
5564 		 */
5565 		syn_drop = (cookie->len < 0 && data);
5566 	} else if (cookie->len < 0 && !tp->syn_data) {
5567 		/* We requested a cookie but didn't get it. If we did not use
5568 		 * the (old) exp opt format then try so next time (try_exp=1).
5569 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5570 		 */
5571 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5572 	}
5573 
5574 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5575 
5576 	if (data) { /* Retransmit unacked data in SYN */
5577 		skb_rbtree_walk_from(data) {
5578 			if (__tcp_retransmit_skb(sk, data, 1))
5579 				break;
5580 		}
5581 		tcp_rearm_rto(sk);
5582 		NET_INC_STATS(sock_net(sk),
5583 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5584 		return true;
5585 	}
5586 	tp->syn_data_acked = tp->syn_data;
5587 	if (tp->syn_data_acked)
5588 		NET_INC_STATS(sock_net(sk),
5589 				LINUX_MIB_TCPFASTOPENACTIVE);
5590 
5591 	tcp_fastopen_add_skb(sk, synack);
5592 
5593 	return false;
5594 }
5595 
5596 static void smc_check_reset_syn(struct tcp_sock *tp)
5597 {
5598 #if IS_ENABLED(CONFIG_SMC)
5599 	if (static_branch_unlikely(&tcp_have_smc)) {
5600 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5601 			tp->syn_smc = 0;
5602 	}
5603 #endif
5604 }
5605 
5606 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5607 					 const struct tcphdr *th)
5608 {
5609 	struct inet_connection_sock *icsk = inet_csk(sk);
5610 	struct tcp_sock *tp = tcp_sk(sk);
5611 	struct tcp_fastopen_cookie foc = { .len = -1 };
5612 	int saved_clamp = tp->rx_opt.mss_clamp;
5613 	bool fastopen_fail;
5614 
5615 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5616 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5617 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5618 
5619 	if (th->ack) {
5620 		/* rfc793:
5621 		 * "If the state is SYN-SENT then
5622 		 *    first check the ACK bit
5623 		 *      If the ACK bit is set
5624 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5625 		 *        a reset (unless the RST bit is set, if so drop
5626 		 *        the segment and return)"
5627 		 */
5628 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5629 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5630 			goto reset_and_undo;
5631 
5632 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5633 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5634 			     tcp_time_stamp(tp))) {
5635 			NET_INC_STATS(sock_net(sk),
5636 					LINUX_MIB_PAWSACTIVEREJECTED);
5637 			goto reset_and_undo;
5638 		}
5639 
5640 		/* Now ACK is acceptable.
5641 		 *
5642 		 * "If the RST bit is set
5643 		 *    If the ACK was acceptable then signal the user "error:
5644 		 *    connection reset", drop the segment, enter CLOSED state,
5645 		 *    delete TCB, and return."
5646 		 */
5647 
5648 		if (th->rst) {
5649 			tcp_reset(sk);
5650 			goto discard;
5651 		}
5652 
5653 		/* rfc793:
5654 		 *   "fifth, if neither of the SYN or RST bits is set then
5655 		 *    drop the segment and return."
5656 		 *
5657 		 *    See note below!
5658 		 *                                        --ANK(990513)
5659 		 */
5660 		if (!th->syn)
5661 			goto discard_and_undo;
5662 
5663 		/* rfc793:
5664 		 *   "If the SYN bit is on ...
5665 		 *    are acceptable then ...
5666 		 *    (our SYN has been ACKed), change the connection
5667 		 *    state to ESTABLISHED..."
5668 		 */
5669 
5670 		tcp_ecn_rcv_synack(tp, th);
5671 
5672 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5673 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5674 
5675 		/* Ok.. it's good. Set up sequence numbers and
5676 		 * move to established.
5677 		 */
5678 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5679 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5680 
5681 		/* RFC1323: The window in SYN & SYN/ACK segments is
5682 		 * never scaled.
5683 		 */
5684 		tp->snd_wnd = ntohs(th->window);
5685 
5686 		if (!tp->rx_opt.wscale_ok) {
5687 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5688 			tp->window_clamp = min(tp->window_clamp, 65535U);
5689 		}
5690 
5691 		if (tp->rx_opt.saw_tstamp) {
5692 			tp->rx_opt.tstamp_ok	   = 1;
5693 			tp->tcp_header_len =
5694 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5695 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5696 			tcp_store_ts_recent(tp);
5697 		} else {
5698 			tp->tcp_header_len = sizeof(struct tcphdr);
5699 		}
5700 
5701 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_fack)
5702 			tcp_enable_fack(tp);
5703 
5704 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5705 		tcp_initialize_rcv_mss(sk);
5706 
5707 		/* Remember, tcp_poll() does not lock socket!
5708 		 * Change state from SYN-SENT only after copied_seq
5709 		 * is initialized. */
5710 		tp->copied_seq = tp->rcv_nxt;
5711 
5712 		smc_check_reset_syn(tp);
5713 
5714 		smp_mb();
5715 
5716 		tcp_finish_connect(sk, skb);
5717 
5718 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5719 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5720 
5721 		if (!sock_flag(sk, SOCK_DEAD)) {
5722 			sk->sk_state_change(sk);
5723 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5724 		}
5725 		if (fastopen_fail)
5726 			return -1;
5727 		if (sk->sk_write_pending ||
5728 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5729 		    icsk->icsk_ack.pingpong) {
5730 			/* Save one ACK. Data will be ready after
5731 			 * several ticks, if write_pending is set.
5732 			 *
5733 			 * It may be deleted, but with this feature tcpdumps
5734 			 * look so _wonderfully_ clever, that I was not able
5735 			 * to stand against the temptation 8)     --ANK
5736 			 */
5737 			inet_csk_schedule_ack(sk);
5738 			tcp_enter_quickack_mode(sk);
5739 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5740 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5741 
5742 discard:
5743 			tcp_drop(sk, skb);
5744 			return 0;
5745 		} else {
5746 			tcp_send_ack(sk);
5747 		}
5748 		return -1;
5749 	}
5750 
5751 	/* No ACK in the segment */
5752 
5753 	if (th->rst) {
5754 		/* rfc793:
5755 		 * "If the RST bit is set
5756 		 *
5757 		 *      Otherwise (no ACK) drop the segment and return."
5758 		 */
5759 
5760 		goto discard_and_undo;
5761 	}
5762 
5763 	/* PAWS check. */
5764 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5765 	    tcp_paws_reject(&tp->rx_opt, 0))
5766 		goto discard_and_undo;
5767 
5768 	if (th->syn) {
5769 		/* We see SYN without ACK. It is attempt of
5770 		 * simultaneous connect with crossed SYNs.
5771 		 * Particularly, it can be connect to self.
5772 		 */
5773 		tcp_set_state(sk, TCP_SYN_RECV);
5774 
5775 		if (tp->rx_opt.saw_tstamp) {
5776 			tp->rx_opt.tstamp_ok = 1;
5777 			tcp_store_ts_recent(tp);
5778 			tp->tcp_header_len =
5779 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5780 		} else {
5781 			tp->tcp_header_len = sizeof(struct tcphdr);
5782 		}
5783 
5784 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5785 		tp->copied_seq = tp->rcv_nxt;
5786 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5787 
5788 		/* RFC1323: The window in SYN & SYN/ACK segments is
5789 		 * never scaled.
5790 		 */
5791 		tp->snd_wnd    = ntohs(th->window);
5792 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5793 		tp->max_window = tp->snd_wnd;
5794 
5795 		tcp_ecn_rcv_syn(tp, th);
5796 
5797 		tcp_mtup_init(sk);
5798 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5799 		tcp_initialize_rcv_mss(sk);
5800 
5801 		tcp_send_synack(sk);
5802 #if 0
5803 		/* Note, we could accept data and URG from this segment.
5804 		 * There are no obstacles to make this (except that we must
5805 		 * either change tcp_recvmsg() to prevent it from returning data
5806 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5807 		 *
5808 		 * However, if we ignore data in ACKless segments sometimes,
5809 		 * we have no reasons to accept it sometimes.
5810 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5811 		 * is not flawless. So, discard packet for sanity.
5812 		 * Uncomment this return to process the data.
5813 		 */
5814 		return -1;
5815 #else
5816 		goto discard;
5817 #endif
5818 	}
5819 	/* "fifth, if neither of the SYN or RST bits is set then
5820 	 * drop the segment and return."
5821 	 */
5822 
5823 discard_and_undo:
5824 	tcp_clear_options(&tp->rx_opt);
5825 	tp->rx_opt.mss_clamp = saved_clamp;
5826 	goto discard;
5827 
5828 reset_and_undo:
5829 	tcp_clear_options(&tp->rx_opt);
5830 	tp->rx_opt.mss_clamp = saved_clamp;
5831 	return 1;
5832 }
5833 
5834 /*
5835  *	This function implements the receiving procedure of RFC 793 for
5836  *	all states except ESTABLISHED and TIME_WAIT.
5837  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5838  *	address independent.
5839  */
5840 
5841 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5842 {
5843 	struct tcp_sock *tp = tcp_sk(sk);
5844 	struct inet_connection_sock *icsk = inet_csk(sk);
5845 	const struct tcphdr *th = tcp_hdr(skb);
5846 	struct request_sock *req;
5847 	int queued = 0;
5848 	bool acceptable;
5849 
5850 	switch (sk->sk_state) {
5851 	case TCP_CLOSE:
5852 		goto discard;
5853 
5854 	case TCP_LISTEN:
5855 		if (th->ack)
5856 			return 1;
5857 
5858 		if (th->rst)
5859 			goto discard;
5860 
5861 		if (th->syn) {
5862 			if (th->fin)
5863 				goto discard;
5864 			/* It is possible that we process SYN packets from backlog,
5865 			 * so we need to make sure to disable BH right there.
5866 			 */
5867 			local_bh_disable();
5868 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5869 			local_bh_enable();
5870 
5871 			if (!acceptable)
5872 				return 1;
5873 			consume_skb(skb);
5874 			return 0;
5875 		}
5876 		goto discard;
5877 
5878 	case TCP_SYN_SENT:
5879 		tp->rx_opt.saw_tstamp = 0;
5880 		tcp_mstamp_refresh(tp);
5881 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5882 		if (queued >= 0)
5883 			return queued;
5884 
5885 		/* Do step6 onward by hand. */
5886 		tcp_urg(sk, skb, th);
5887 		__kfree_skb(skb);
5888 		tcp_data_snd_check(sk);
5889 		return 0;
5890 	}
5891 
5892 	tcp_mstamp_refresh(tp);
5893 	tp->rx_opt.saw_tstamp = 0;
5894 	req = tp->fastopen_rsk;
5895 	if (req) {
5896 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5897 		    sk->sk_state != TCP_FIN_WAIT1);
5898 
5899 		if (!tcp_check_req(sk, skb, req, true))
5900 			goto discard;
5901 	}
5902 
5903 	if (!th->ack && !th->rst && !th->syn)
5904 		goto discard;
5905 
5906 	if (!tcp_validate_incoming(sk, skb, th, 0))
5907 		return 0;
5908 
5909 	/* step 5: check the ACK field */
5910 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5911 				      FLAG_UPDATE_TS_RECENT |
5912 				      FLAG_NO_CHALLENGE_ACK) > 0;
5913 
5914 	if (!acceptable) {
5915 		if (sk->sk_state == TCP_SYN_RECV)
5916 			return 1;	/* send one RST */
5917 		tcp_send_challenge_ack(sk, skb);
5918 		goto discard;
5919 	}
5920 	switch (sk->sk_state) {
5921 	case TCP_SYN_RECV:
5922 		if (!tp->srtt_us)
5923 			tcp_synack_rtt_meas(sk, req);
5924 
5925 		/* Once we leave TCP_SYN_RECV, we no longer need req
5926 		 * so release it.
5927 		 */
5928 		if (req) {
5929 			inet_csk(sk)->icsk_retransmits = 0;
5930 			reqsk_fastopen_remove(sk, req, false);
5931 			/* Re-arm the timer because data may have been sent out.
5932 			 * This is similar to the regular data transmission case
5933 			 * when new data has just been ack'ed.
5934 			 *
5935 			 * (TFO) - we could try to be more aggressive and
5936 			 * retransmitting any data sooner based on when they
5937 			 * are sent out.
5938 			 */
5939 			tcp_rearm_rto(sk);
5940 		} else {
5941 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
5942 			tp->copied_seq = tp->rcv_nxt;
5943 		}
5944 		smp_mb();
5945 		tcp_set_state(sk, TCP_ESTABLISHED);
5946 		sk->sk_state_change(sk);
5947 
5948 		/* Note, that this wakeup is only for marginal crossed SYN case.
5949 		 * Passively open sockets are not waked up, because
5950 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5951 		 */
5952 		if (sk->sk_socket)
5953 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5954 
5955 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5956 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5957 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5958 
5959 		if (tp->rx_opt.tstamp_ok)
5960 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5961 
5962 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
5963 			tcp_update_pacing_rate(sk);
5964 
5965 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5966 		tp->lsndtime = tcp_jiffies32;
5967 
5968 		tcp_initialize_rcv_mss(sk);
5969 		tcp_fast_path_on(tp);
5970 		break;
5971 
5972 	case TCP_FIN_WAIT1: {
5973 		int tmo;
5974 
5975 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5976 		 * Fast Open socket and this is the first acceptable
5977 		 * ACK we have received, this would have acknowledged
5978 		 * our SYNACK so stop the SYNACK timer.
5979 		 */
5980 		if (req) {
5981 			/* We no longer need the request sock. */
5982 			reqsk_fastopen_remove(sk, req, false);
5983 			tcp_rearm_rto(sk);
5984 		}
5985 		if (tp->snd_una != tp->write_seq)
5986 			break;
5987 
5988 		tcp_set_state(sk, TCP_FIN_WAIT2);
5989 		sk->sk_shutdown |= SEND_SHUTDOWN;
5990 
5991 		sk_dst_confirm(sk);
5992 
5993 		if (!sock_flag(sk, SOCK_DEAD)) {
5994 			/* Wake up lingering close() */
5995 			sk->sk_state_change(sk);
5996 			break;
5997 		}
5998 
5999 		if (tp->linger2 < 0) {
6000 			tcp_done(sk);
6001 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6002 			return 1;
6003 		}
6004 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6005 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6006 			/* Receive out of order FIN after close() */
6007 			if (tp->syn_fastopen && th->fin)
6008 				tcp_fastopen_active_disable(sk);
6009 			tcp_done(sk);
6010 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6011 			return 1;
6012 		}
6013 
6014 		tmo = tcp_fin_time(sk);
6015 		if (tmo > TCP_TIMEWAIT_LEN) {
6016 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6017 		} else if (th->fin || sock_owned_by_user(sk)) {
6018 			/* Bad case. We could lose such FIN otherwise.
6019 			 * It is not a big problem, but it looks confusing
6020 			 * and not so rare event. We still can lose it now,
6021 			 * if it spins in bh_lock_sock(), but it is really
6022 			 * marginal case.
6023 			 */
6024 			inet_csk_reset_keepalive_timer(sk, tmo);
6025 		} else {
6026 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6027 			goto discard;
6028 		}
6029 		break;
6030 	}
6031 
6032 	case TCP_CLOSING:
6033 		if (tp->snd_una == tp->write_seq) {
6034 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6035 			goto discard;
6036 		}
6037 		break;
6038 
6039 	case TCP_LAST_ACK:
6040 		if (tp->snd_una == tp->write_seq) {
6041 			tcp_update_metrics(sk);
6042 			tcp_done(sk);
6043 			goto discard;
6044 		}
6045 		break;
6046 	}
6047 
6048 	/* step 6: check the URG bit */
6049 	tcp_urg(sk, skb, th);
6050 
6051 	/* step 7: process the segment text */
6052 	switch (sk->sk_state) {
6053 	case TCP_CLOSE_WAIT:
6054 	case TCP_CLOSING:
6055 	case TCP_LAST_ACK:
6056 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6057 			break;
6058 		/* fall through */
6059 	case TCP_FIN_WAIT1:
6060 	case TCP_FIN_WAIT2:
6061 		/* RFC 793 says to queue data in these states,
6062 		 * RFC 1122 says we MUST send a reset.
6063 		 * BSD 4.4 also does reset.
6064 		 */
6065 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6066 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6067 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6068 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6069 				tcp_reset(sk);
6070 				return 1;
6071 			}
6072 		}
6073 		/* Fall through */
6074 	case TCP_ESTABLISHED:
6075 		tcp_data_queue(sk, skb);
6076 		queued = 1;
6077 		break;
6078 	}
6079 
6080 	/* tcp_data could move socket to TIME-WAIT */
6081 	if (sk->sk_state != TCP_CLOSE) {
6082 		tcp_data_snd_check(sk);
6083 		tcp_ack_snd_check(sk);
6084 	}
6085 
6086 	if (!queued) {
6087 discard:
6088 		tcp_drop(sk, skb);
6089 	}
6090 	return 0;
6091 }
6092 EXPORT_SYMBOL(tcp_rcv_state_process);
6093 
6094 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6095 {
6096 	struct inet_request_sock *ireq = inet_rsk(req);
6097 
6098 	if (family == AF_INET)
6099 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6100 				    &ireq->ir_rmt_addr, port);
6101 #if IS_ENABLED(CONFIG_IPV6)
6102 	else if (family == AF_INET6)
6103 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6104 				    &ireq->ir_v6_rmt_addr, port);
6105 #endif
6106 }
6107 
6108 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6109  *
6110  * If we receive a SYN packet with these bits set, it means a
6111  * network is playing bad games with TOS bits. In order to
6112  * avoid possible false congestion notifications, we disable
6113  * TCP ECN negotiation.
6114  *
6115  * Exception: tcp_ca wants ECN. This is required for DCTCP
6116  * congestion control: Linux DCTCP asserts ECT on all packets,
6117  * including SYN, which is most optimal solution; however,
6118  * others, such as FreeBSD do not.
6119  */
6120 static void tcp_ecn_create_request(struct request_sock *req,
6121 				   const struct sk_buff *skb,
6122 				   const struct sock *listen_sk,
6123 				   const struct dst_entry *dst)
6124 {
6125 	const struct tcphdr *th = tcp_hdr(skb);
6126 	const struct net *net = sock_net(listen_sk);
6127 	bool th_ecn = th->ece && th->cwr;
6128 	bool ect, ecn_ok;
6129 	u32 ecn_ok_dst;
6130 
6131 	if (!th_ecn)
6132 		return;
6133 
6134 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6135 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6136 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6137 
6138 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6139 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6140 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6141 		inet_rsk(req)->ecn_ok = 1;
6142 }
6143 
6144 static void tcp_openreq_init(struct request_sock *req,
6145 			     const struct tcp_options_received *rx_opt,
6146 			     struct sk_buff *skb, const struct sock *sk)
6147 {
6148 	struct inet_request_sock *ireq = inet_rsk(req);
6149 
6150 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6151 	req->cookie_ts = 0;
6152 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6153 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6154 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6155 	tcp_rsk(req)->last_oow_ack_time = 0;
6156 	req->mss = rx_opt->mss_clamp;
6157 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6158 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6159 	ireq->sack_ok = rx_opt->sack_ok;
6160 	ireq->snd_wscale = rx_opt->snd_wscale;
6161 	ireq->wscale_ok = rx_opt->wscale_ok;
6162 	ireq->acked = 0;
6163 	ireq->ecn_ok = 0;
6164 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6165 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6166 	ireq->ir_mark = inet_request_mark(sk, skb);
6167 #if IS_ENABLED(CONFIG_SMC)
6168 	ireq->smc_ok = rx_opt->smc_ok;
6169 #endif
6170 }
6171 
6172 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6173 				      struct sock *sk_listener,
6174 				      bool attach_listener)
6175 {
6176 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6177 					       attach_listener);
6178 
6179 	if (req) {
6180 		struct inet_request_sock *ireq = inet_rsk(req);
6181 
6182 		kmemcheck_annotate_bitfield(ireq, flags);
6183 		ireq->ireq_opt = NULL;
6184 #if IS_ENABLED(CONFIG_IPV6)
6185 		ireq->pktopts = NULL;
6186 #endif
6187 		atomic64_set(&ireq->ir_cookie, 0);
6188 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6189 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6190 		ireq->ireq_family = sk_listener->sk_family;
6191 	}
6192 
6193 	return req;
6194 }
6195 EXPORT_SYMBOL(inet_reqsk_alloc);
6196 
6197 /*
6198  * Return true if a syncookie should be sent
6199  */
6200 static bool tcp_syn_flood_action(const struct sock *sk,
6201 				 const struct sk_buff *skb,
6202 				 const char *proto)
6203 {
6204 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6205 	const char *msg = "Dropping request";
6206 	bool want_cookie = false;
6207 	struct net *net = sock_net(sk);
6208 
6209 #ifdef CONFIG_SYN_COOKIES
6210 	if (net->ipv4.sysctl_tcp_syncookies) {
6211 		msg = "Sending cookies";
6212 		want_cookie = true;
6213 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6214 	} else
6215 #endif
6216 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6217 
6218 	if (!queue->synflood_warned &&
6219 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6220 	    xchg(&queue->synflood_warned, 1) == 0)
6221 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6222 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6223 
6224 	return want_cookie;
6225 }
6226 
6227 static void tcp_reqsk_record_syn(const struct sock *sk,
6228 				 struct request_sock *req,
6229 				 const struct sk_buff *skb)
6230 {
6231 	if (tcp_sk(sk)->save_syn) {
6232 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6233 		u32 *copy;
6234 
6235 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6236 		if (copy) {
6237 			copy[0] = len;
6238 			memcpy(&copy[1], skb_network_header(skb), len);
6239 			req->saved_syn = copy;
6240 		}
6241 	}
6242 }
6243 
6244 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6245 		     const struct tcp_request_sock_ops *af_ops,
6246 		     struct sock *sk, struct sk_buff *skb)
6247 {
6248 	struct tcp_fastopen_cookie foc = { .len = -1 };
6249 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6250 	struct tcp_options_received tmp_opt;
6251 	struct tcp_sock *tp = tcp_sk(sk);
6252 	struct net *net = sock_net(sk);
6253 	struct sock *fastopen_sk = NULL;
6254 	struct request_sock *req;
6255 	bool want_cookie = false;
6256 	struct dst_entry *dst;
6257 	struct flowi fl;
6258 
6259 	/* TW buckets are converted to open requests without
6260 	 * limitations, they conserve resources and peer is
6261 	 * evidently real one.
6262 	 */
6263 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6264 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6265 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6266 		if (!want_cookie)
6267 			goto drop;
6268 	}
6269 
6270 	if (sk_acceptq_is_full(sk)) {
6271 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6272 		goto drop;
6273 	}
6274 
6275 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6276 	if (!req)
6277 		goto drop;
6278 
6279 	tcp_rsk(req)->af_specific = af_ops;
6280 	tcp_rsk(req)->ts_off = 0;
6281 
6282 	tcp_clear_options(&tmp_opt);
6283 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6284 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6285 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6286 			  want_cookie ? NULL : &foc);
6287 
6288 	if (want_cookie && !tmp_opt.saw_tstamp)
6289 		tcp_clear_options(&tmp_opt);
6290 
6291 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6292 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6293 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6294 
6295 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6296 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6297 
6298 	af_ops->init_req(req, sk, skb);
6299 
6300 	if (security_inet_conn_request(sk, skb, req))
6301 		goto drop_and_free;
6302 
6303 	if (tmp_opt.tstamp_ok)
6304 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6305 
6306 	dst = af_ops->route_req(sk, &fl, req);
6307 	if (!dst)
6308 		goto drop_and_free;
6309 
6310 	if (!want_cookie && !isn) {
6311 		/* Kill the following clause, if you dislike this way. */
6312 		if (!net->ipv4.sysctl_tcp_syncookies &&
6313 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6314 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6315 		    !tcp_peer_is_proven(req, dst)) {
6316 			/* Without syncookies last quarter of
6317 			 * backlog is filled with destinations,
6318 			 * proven to be alive.
6319 			 * It means that we continue to communicate
6320 			 * to destinations, already remembered
6321 			 * to the moment of synflood.
6322 			 */
6323 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6324 				    rsk_ops->family);
6325 			goto drop_and_release;
6326 		}
6327 
6328 		isn = af_ops->init_seq(skb);
6329 	}
6330 
6331 	tcp_ecn_create_request(req, skb, sk, dst);
6332 
6333 	if (want_cookie) {
6334 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6335 		req->cookie_ts = tmp_opt.tstamp_ok;
6336 		if (!tmp_opt.tstamp_ok)
6337 			inet_rsk(req)->ecn_ok = 0;
6338 	}
6339 
6340 	tcp_rsk(req)->snt_isn = isn;
6341 	tcp_rsk(req)->txhash = net_tx_rndhash();
6342 	tcp_openreq_init_rwin(req, sk, dst);
6343 	if (!want_cookie) {
6344 		tcp_reqsk_record_syn(sk, req, skb);
6345 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6346 	}
6347 	if (fastopen_sk) {
6348 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6349 				    &foc, TCP_SYNACK_FASTOPEN);
6350 		/* Add the child socket directly into the accept queue */
6351 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6352 		sk->sk_data_ready(sk);
6353 		bh_unlock_sock(fastopen_sk);
6354 		sock_put(fastopen_sk);
6355 	} else {
6356 		tcp_rsk(req)->tfo_listener = false;
6357 		if (!want_cookie)
6358 			inet_csk_reqsk_queue_hash_add(sk, req,
6359 				tcp_timeout_init((struct sock *)req));
6360 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6361 				    !want_cookie ? TCP_SYNACK_NORMAL :
6362 						   TCP_SYNACK_COOKIE);
6363 		if (want_cookie) {
6364 			reqsk_free(req);
6365 			return 0;
6366 		}
6367 	}
6368 	reqsk_put(req);
6369 	return 0;
6370 
6371 drop_and_release:
6372 	dst_release(dst);
6373 drop_and_free:
6374 	reqsk_free(req);
6375 drop:
6376 	tcp_listendrop(sk);
6377 	return 0;
6378 }
6379 EXPORT_SYMBOL(tcp_conn_request);
6380