xref: /linux/net/ipv4/tcp_input.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91 
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94 
95 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
102 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
108 
109 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114 
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116 
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119 
120 /* Adapt the MSS value used to make delayed ack decision to the
121  * real world.
122  */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124 				const struct sk_buff *skb)
125 {
126 	struct inet_connection_sock *icsk = inet_csk(sk);
127 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 	unsigned int len;
129 
130 	icsk->icsk_ack.last_seg_size = 0;
131 
132 	/* skb->len may jitter because of SACKs, even if peer
133 	 * sends good full-sized frames.
134 	 */
135 	len = skb_shinfo(skb)->gso_size ?: skb->len;
136 	if (len >= icsk->icsk_ack.rcv_mss) {
137 		icsk->icsk_ack.rcv_mss = len;
138 	} else {
139 		/* Otherwise, we make more careful check taking into account,
140 		 * that SACKs block is variable.
141 		 *
142 		 * "len" is invariant segment length, including TCP header.
143 		 */
144 		len += skb->data - skb_transport_header(skb);
145 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 		    /* If PSH is not set, packet should be
147 		     * full sized, provided peer TCP is not badly broken.
148 		     * This observation (if it is correct 8)) allows
149 		     * to handle super-low mtu links fairly.
150 		     */
151 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 			/* Subtract also invariant (if peer is RFC compliant),
154 			 * tcp header plus fixed timestamp option length.
155 			 * Resulting "len" is MSS free of SACK jitter.
156 			 */
157 			len -= tcp_sk(sk)->tcp_header_len;
158 			icsk->icsk_ack.last_seg_size = len;
159 			if (len == lss) {
160 				icsk->icsk_ack.rcv_mss = len;
161 				return;
162 			}
163 		}
164 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 	}
168 }
169 
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172 	struct inet_connection_sock *icsk = inet_csk(sk);
173 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174 
175 	if (quickacks==0)
176 		quickacks=2;
177 	if (quickacks > icsk->icsk_ack.quick)
178 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180 
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183 	struct inet_connection_sock *icsk = inet_csk(sk);
184 	tcp_incr_quickack(sk);
185 	icsk->icsk_ack.pingpong = 0;
186 	icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188 
189 /* Send ACKs quickly, if "quick" count is not exhausted
190  * and the session is not interactive.
191  */
192 
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195 	const struct inet_connection_sock *icsk = inet_csk(sk);
196 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198 
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201 	if (tp->ecn_flags&TCP_ECN_OK)
202 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204 
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207 	if (tcp_hdr(skb)->cwr)
208 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210 
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215 
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218 	if (tp->ecn_flags&TCP_ECN_OK) {
219 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 		/* Funny extension: if ECT is not set on a segment,
222 		 * it is surely retransmit. It is not in ECN RFC,
223 		 * but Linux follows this rule. */
224 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 			tcp_enter_quickack_mode((struct sock *)tp);
226 	}
227 }
228 
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231 	if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 		tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234 
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237 	if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 		tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240 
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243 	if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 		return 1;
245 	return 0;
246 }
247 
248 /* Buffer size and advertised window tuning.
249  *
250  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251  */
252 
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 		     sizeof(struct sk_buff);
257 
258 	if (sk->sk_sndbuf < 3 * sndmem)
259 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261 
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263  *
264  * All tcp_full_space() is split to two parts: "network" buffer, allocated
265  * forward and advertised in receiver window (tp->rcv_wnd) and
266  * "application buffer", required to isolate scheduling/application
267  * latencies from network.
268  * window_clamp is maximal advertised window. It can be less than
269  * tcp_full_space(), in this case tcp_full_space() - window_clamp
270  * is reserved for "application" buffer. The less window_clamp is
271  * the smoother our behaviour from viewpoint of network, but the lower
272  * throughput and the higher sensitivity of the connection to losses. 8)
273  *
274  * rcv_ssthresh is more strict window_clamp used at "slow start"
275  * phase to predict further behaviour of this connection.
276  * It is used for two goals:
277  * - to enforce header prediction at sender, even when application
278  *   requires some significant "application buffer". It is check #1.
279  * - to prevent pruning of receive queue because of misprediction
280  *   of receiver window. Check #2.
281  *
282  * The scheme does not work when sender sends good segments opening
283  * window and then starts to feed us spaghetti. But it should work
284  * in common situations. Otherwise, we have to rely on queue collapsing.
285  */
286 
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290 	struct tcp_sock *tp = tcp_sk(sk);
291 	/* Optimize this! */
292 	int truesize = tcp_win_from_space(skb->truesize)/2;
293 	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294 
295 	while (tp->rcv_ssthresh <= window) {
296 		if (truesize <= skb->len)
297 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298 
299 		truesize >>= 1;
300 		window >>= 1;
301 	}
302 	return 0;
303 }
304 
305 static void tcp_grow_window(struct sock *sk,
306 			    struct sk_buff *skb)
307 {
308 	struct tcp_sock *tp = tcp_sk(sk);
309 
310 	/* Check #1 */
311 	if (tp->rcv_ssthresh < tp->window_clamp &&
312 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 	    !tcp_memory_pressure) {
314 		int incr;
315 
316 		/* Check #2. Increase window, if skb with such overhead
317 		 * will fit to rcvbuf in future.
318 		 */
319 		if (tcp_win_from_space(skb->truesize) <= skb->len)
320 			incr = 2*tp->advmss;
321 		else
322 			incr = __tcp_grow_window(sk, skb);
323 
324 		if (incr) {
325 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326 			inet_csk(sk)->icsk_ack.quick |= 1;
327 		}
328 	}
329 }
330 
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332 
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335 	struct tcp_sock *tp = tcp_sk(sk);
336 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337 
338 	/* Try to select rcvbuf so that 4 mss-sized segments
339 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 	 */
342 	while (tcp_win_from_space(rcvmem) < tp->advmss)
343 		rcvmem += 128;
344 	if (sk->sk_rcvbuf < 4 * rcvmem)
345 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347 
348 /* 4. Try to fixup all. It is made immediately after connection enters
349  *    established state.
350  */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353 	struct tcp_sock *tp = tcp_sk(sk);
354 	int maxwin;
355 
356 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 		tcp_fixup_rcvbuf(sk);
358 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 		tcp_fixup_sndbuf(sk);
360 
361 	tp->rcvq_space.space = tp->rcv_wnd;
362 
363 	maxwin = tcp_full_space(sk);
364 
365 	if (tp->window_clamp >= maxwin) {
366 		tp->window_clamp = maxwin;
367 
368 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 			tp->window_clamp = max(maxwin -
370 					       (maxwin >> sysctl_tcp_app_win),
371 					       4 * tp->advmss);
372 	}
373 
374 	/* Force reservation of one segment. */
375 	if (sysctl_tcp_app_win &&
376 	    tp->window_clamp > 2 * tp->advmss &&
377 	    tp->window_clamp + tp->advmss > maxwin)
378 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379 
380 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 	tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383 
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387 	struct tcp_sock *tp = tcp_sk(sk);
388 	struct inet_connection_sock *icsk = inet_csk(sk);
389 
390 	icsk->icsk_ack.quick = 0;
391 
392 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 	    !tcp_memory_pressure &&
395 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 				    sysctl_tcp_rmem[2]);
398 	}
399 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402 
403 
404 /* Initialize RCV_MSS value.
405  * RCV_MSS is an our guess about MSS used by the peer.
406  * We haven't any direct information about the MSS.
407  * It's better to underestimate the RCV_MSS rather than overestimate.
408  * Overestimations make us ACKing less frequently than needed.
409  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410  */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413 	struct tcp_sock *tp = tcp_sk(sk);
414 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415 
416 	hint = min(hint, tp->rcv_wnd/2);
417 	hint = min(hint, TCP_MIN_RCVMSS);
418 	hint = max(hint, TCP_MIN_MSS);
419 
420 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422 
423 /* Receiver "autotuning" code.
424  *
425  * The algorithm for RTT estimation w/o timestamps is based on
426  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428  *
429  * More detail on this code can be found at
430  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431  * though this reference is out of date.  A new paper
432  * is pending.
433  */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436 	u32 new_sample = tp->rcv_rtt_est.rtt;
437 	long m = sample;
438 
439 	if (m == 0)
440 		m = 1;
441 
442 	if (new_sample != 0) {
443 		/* If we sample in larger samples in the non-timestamp
444 		 * case, we could grossly overestimate the RTT especially
445 		 * with chatty applications or bulk transfer apps which
446 		 * are stalled on filesystem I/O.
447 		 *
448 		 * Also, since we are only going for a minimum in the
449 		 * non-timestamp case, we do not smooth things out
450 		 * else with timestamps disabled convergence takes too
451 		 * long.
452 		 */
453 		if (!win_dep) {
454 			m -= (new_sample >> 3);
455 			new_sample += m;
456 		} else if (m < new_sample)
457 			new_sample = m << 3;
458 	} else {
459 		/* No previous measure. */
460 		new_sample = m << 3;
461 	}
462 
463 	if (tp->rcv_rtt_est.rtt != new_sample)
464 		tp->rcv_rtt_est.rtt = new_sample;
465 }
466 
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469 	if (tp->rcv_rtt_est.time == 0)
470 		goto new_measure;
471 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 		return;
473 	tcp_rcv_rtt_update(tp,
474 			   jiffies - tp->rcv_rtt_est.time,
475 			   1);
476 
477 new_measure:
478 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 	tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481 
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484 	struct tcp_sock *tp = tcp_sk(sk);
485 	if (tp->rx_opt.rcv_tsecr &&
486 	    (TCP_SKB_CB(skb)->end_seq -
487 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490 
491 /*
492  * This function should be called every time data is copied to user space.
493  * It calculates the appropriate TCP receive buffer space.
494  */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497 	struct tcp_sock *tp = tcp_sk(sk);
498 	int time;
499 	int space;
500 
501 	if (tp->rcvq_space.time == 0)
502 		goto new_measure;
503 
504 	time = tcp_time_stamp - tp->rcvq_space.time;
505 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 	    tp->rcv_rtt_est.rtt == 0)
507 		return;
508 
509 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510 
511 	space = max(tp->rcvq_space.space, space);
512 
513 	if (tp->rcvq_space.space != space) {
514 		int rcvmem;
515 
516 		tp->rcvq_space.space = space;
517 
518 		if (sysctl_tcp_moderate_rcvbuf &&
519 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520 			int new_clamp = space;
521 
522 			/* Receive space grows, normalize in order to
523 			 * take into account packet headers and sk_buff
524 			 * structure overhead.
525 			 */
526 			space /= tp->advmss;
527 			if (!space)
528 				space = 1;
529 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 				  16 + sizeof(struct sk_buff));
531 			while (tcp_win_from_space(rcvmem) < tp->advmss)
532 				rcvmem += 128;
533 			space *= rcvmem;
534 			space = min(space, sysctl_tcp_rmem[2]);
535 			if (space > sk->sk_rcvbuf) {
536 				sk->sk_rcvbuf = space;
537 
538 				/* Make the window clamp follow along.  */
539 				tp->window_clamp = new_clamp;
540 			}
541 		}
542 	}
543 
544 new_measure:
545 	tp->rcvq_space.seq = tp->copied_seq;
546 	tp->rcvq_space.time = tcp_time_stamp;
547 }
548 
549 /* There is something which you must keep in mind when you analyze the
550  * behavior of the tp->ato delayed ack timeout interval.  When a
551  * connection starts up, we want to ack as quickly as possible.  The
552  * problem is that "good" TCP's do slow start at the beginning of data
553  * transmission.  The means that until we send the first few ACK's the
554  * sender will sit on his end and only queue most of his data, because
555  * he can only send snd_cwnd unacked packets at any given time.  For
556  * each ACK we send, he increments snd_cwnd and transmits more of his
557  * queue.  -DaveM
558  */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561 	struct tcp_sock *tp = tcp_sk(sk);
562 	struct inet_connection_sock *icsk = inet_csk(sk);
563 	u32 now;
564 
565 	inet_csk_schedule_ack(sk);
566 
567 	tcp_measure_rcv_mss(sk, skb);
568 
569 	tcp_rcv_rtt_measure(tp);
570 
571 	now = tcp_time_stamp;
572 
573 	if (!icsk->icsk_ack.ato) {
574 		/* The _first_ data packet received, initialize
575 		 * delayed ACK engine.
576 		 */
577 		tcp_incr_quickack(sk);
578 		icsk->icsk_ack.ato = TCP_ATO_MIN;
579 	} else {
580 		int m = now - icsk->icsk_ack.lrcvtime;
581 
582 		if (m <= TCP_ATO_MIN/2) {
583 			/* The fastest case is the first. */
584 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 		} else if (m < icsk->icsk_ack.ato) {
586 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 				icsk->icsk_ack.ato = icsk->icsk_rto;
589 		} else if (m > icsk->icsk_rto) {
590 			/* Too long gap. Apparently sender failed to
591 			 * restart window, so that we send ACKs quickly.
592 			 */
593 			tcp_incr_quickack(sk);
594 			sk_stream_mem_reclaim(sk);
595 		}
596 	}
597 	icsk->icsk_ack.lrcvtime = now;
598 
599 	TCP_ECN_check_ce(tp, skb);
600 
601 	if (skb->len >= 128)
602 		tcp_grow_window(sk, skb);
603 }
604 
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607 	struct dst_entry *dst = __sk_dst_get(sk);
608 	u32 rto_min = TCP_RTO_MIN;
609 
610 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611 		rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 	return rto_min;
613 }
614 
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616  * routine either comes from timestamps, or from segments that were
617  * known _not_ to have been retransmitted [see Karn/Partridge
618  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619  * piece by Van Jacobson.
620  * NOTE: the next three routines used to be one big routine.
621  * To save cycles in the RFC 1323 implementation it was better to break
622  * it up into three procedures. -- erics
623  */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626 	struct tcp_sock *tp = tcp_sk(sk);
627 	long m = mrtt; /* RTT */
628 
629 	/*	The following amusing code comes from Jacobson's
630 	 *	article in SIGCOMM '88.  Note that rtt and mdev
631 	 *	are scaled versions of rtt and mean deviation.
632 	 *	This is designed to be as fast as possible
633 	 *	m stands for "measurement".
634 	 *
635 	 *	On a 1990 paper the rto value is changed to:
636 	 *	RTO = rtt + 4 * mdev
637 	 *
638 	 * Funny. This algorithm seems to be very broken.
639 	 * These formulae increase RTO, when it should be decreased, increase
640 	 * too slowly, when it should be increased quickly, decrease too quickly
641 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 	 * does not matter how to _calculate_ it. Seems, it was trap
643 	 * that VJ failed to avoid. 8)
644 	 */
645 	if (m == 0)
646 		m = 1;
647 	if (tp->srtt != 0) {
648 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
649 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
650 		if (m < 0) {
651 			m = -m;		/* m is now abs(error) */
652 			m -= (tp->mdev >> 2);   /* similar update on mdev */
653 			/* This is similar to one of Eifel findings.
654 			 * Eifel blocks mdev updates when rtt decreases.
655 			 * This solution is a bit different: we use finer gain
656 			 * for mdev in this case (alpha*beta).
657 			 * Like Eifel it also prevents growth of rto,
658 			 * but also it limits too fast rto decreases,
659 			 * happening in pure Eifel.
660 			 */
661 			if (m > 0)
662 				m >>= 3;
663 		} else {
664 			m -= (tp->mdev >> 2);   /* similar update on mdev */
665 		}
666 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
667 		if (tp->mdev > tp->mdev_max) {
668 			tp->mdev_max = tp->mdev;
669 			if (tp->mdev_max > tp->rttvar)
670 				tp->rttvar = tp->mdev_max;
671 		}
672 		if (after(tp->snd_una, tp->rtt_seq)) {
673 			if (tp->mdev_max < tp->rttvar)
674 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 			tp->rtt_seq = tp->snd_nxt;
676 			tp->mdev_max = tcp_rto_min(sk);
677 		}
678 	} else {
679 		/* no previous measure. */
680 		tp->srtt = m<<3;	/* take the measured time to be rtt */
681 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
682 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683 		tp->rtt_seq = tp->snd_nxt;
684 	}
685 }
686 
687 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
688  * routine referred to above.
689  */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692 	const struct tcp_sock *tp = tcp_sk(sk);
693 	/* Old crap is replaced with new one. 8)
694 	 *
695 	 * More seriously:
696 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 	 *    It cannot be less due to utterly erratic ACK generation made
698 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
700 	 *    is invisible. Actually, Linux-2.4 also generates erratic
701 	 *    ACKs in some circumstances.
702 	 */
703 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704 
705 	/* 2. Fixups made earlier cannot be right.
706 	 *    If we do not estimate RTO correctly without them,
707 	 *    all the algo is pure shit and should be replaced
708 	 *    with correct one. It is exactly, which we pretend to do.
709 	 */
710 }
711 
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713  * guarantees that rto is higher.
714  */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720 
721 /* Save metrics learned by this TCP session.
722    This function is called only, when TCP finishes successfully
723    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724  */
725 void tcp_update_metrics(struct sock *sk)
726 {
727 	struct tcp_sock *tp = tcp_sk(sk);
728 	struct dst_entry *dst = __sk_dst_get(sk);
729 
730 	if (sysctl_tcp_nometrics_save)
731 		return;
732 
733 	dst_confirm(dst);
734 
735 	if (dst && (dst->flags&DST_HOST)) {
736 		const struct inet_connection_sock *icsk = inet_csk(sk);
737 		int m;
738 
739 		if (icsk->icsk_backoff || !tp->srtt) {
740 			/* This session failed to estimate rtt. Why?
741 			 * Probably, no packets returned in time.
742 			 * Reset our results.
743 			 */
744 			if (!(dst_metric_locked(dst, RTAX_RTT)))
745 				dst->metrics[RTAX_RTT-1] = 0;
746 			return;
747 		}
748 
749 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750 
751 		/* If newly calculated rtt larger than stored one,
752 		 * store new one. Otherwise, use EWMA. Remember,
753 		 * rtt overestimation is always better than underestimation.
754 		 */
755 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 			if (m <= 0)
757 				dst->metrics[RTAX_RTT-1] = tp->srtt;
758 			else
759 				dst->metrics[RTAX_RTT-1] -= (m>>3);
760 		}
761 
762 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 			if (m < 0)
764 				m = -m;
765 
766 			/* Scale deviation to rttvar fixed point */
767 			m >>= 1;
768 			if (m < tp->mdev)
769 				m = tp->mdev;
770 
771 			if (m >= dst_metric(dst, RTAX_RTTVAR))
772 				dst->metrics[RTAX_RTTVAR-1] = m;
773 			else
774 				dst->metrics[RTAX_RTTVAR-1] -=
775 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 		}
777 
778 		if (tp->snd_ssthresh >= 0xFFFF) {
779 			/* Slow start still did not finish. */
780 			if (dst_metric(dst, RTAX_SSTHRESH) &&
781 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 			if (!dst_metric_locked(dst, RTAX_CWND) &&
785 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 			   icsk->icsk_ca_state == TCP_CA_Open) {
789 			/* Cong. avoidance phase, cwnd is reliable. */
790 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 				dst->metrics[RTAX_SSTHRESH-1] =
792 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 			if (!dst_metric_locked(dst, RTAX_CWND))
794 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 		} else {
796 			/* Else slow start did not finish, cwnd is non-sense,
797 			   ssthresh may be also invalid.
798 			 */
799 			if (!dst_metric_locked(dst, RTAX_CWND))
800 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 			if (dst->metrics[RTAX_SSTHRESH-1] &&
802 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 		}
806 
807 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 			    tp->reordering != sysctl_tcp_reordering)
810 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 		}
812 	}
813 }
814 
815 /* Numbers are taken from RFC3390.
816  *
817  * John Heffner states:
818  *
819  *	The RFC specifies a window of no more than 4380 bytes
820  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
821  *	is a bit misleading because they use a clamp at 4380 bytes
822  *	rather than use a multiplier in the relevant range.
823  */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827 
828 	if (!cwnd) {
829 		if (tp->mss_cache > 1460)
830 			cwnd = 2;
831 		else
832 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 	}
834 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836 
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840 	struct tcp_sock *tp = tcp_sk(sk);
841 	const struct inet_connection_sock *icsk = inet_csk(sk);
842 
843 	tp->prior_ssthresh = 0;
844 	tp->bytes_acked = 0;
845 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
846 		tp->undo_marker = 0;
847 		if (set_ssthresh)
848 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 		tp->snd_cwnd = min(tp->snd_cwnd,
850 				   tcp_packets_in_flight(tp) + 1U);
851 		tp->snd_cwnd_cnt = 0;
852 		tp->high_seq = tp->snd_nxt;
853 		tp->snd_cwnd_stamp = tcp_time_stamp;
854 		TCP_ECN_queue_cwr(tp);
855 
856 		tcp_set_ca_state(sk, TCP_CA_CWR);
857 	}
858 }
859 
860 /*
861  * Packet counting of FACK is based on in-order assumptions, therefore TCP
862  * disables it when reordering is detected
863  */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866 	tp->rx_opt.sack_ok &= ~2;
867 }
868 
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872 	tp->rx_opt.sack_ok |= 4;
873 }
874 
875 /* Initialize metrics on socket. */
876 
877 static void tcp_init_metrics(struct sock *sk)
878 {
879 	struct tcp_sock *tp = tcp_sk(sk);
880 	struct dst_entry *dst = __sk_dst_get(sk);
881 
882 	if (dst == NULL)
883 		goto reset;
884 
885 	dst_confirm(dst);
886 
887 	if (dst_metric_locked(dst, RTAX_CWND))
888 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 	if (dst_metric(dst, RTAX_SSTHRESH)) {
890 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 	}
894 	if (dst_metric(dst, RTAX_REORDERING) &&
895 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 		tcp_disable_fack(tp);
897 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 	}
899 
900 	if (dst_metric(dst, RTAX_RTT) == 0)
901 		goto reset;
902 
903 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 		goto reset;
905 
906 	/* Initial rtt is determined from SYN,SYN-ACK.
907 	 * The segment is small and rtt may appear much
908 	 * less than real one. Use per-dst memory
909 	 * to make it more realistic.
910 	 *
911 	 * A bit of theory. RTT is time passed after "normal" sized packet
912 	 * is sent until it is ACKed. In normal circumstances sending small
913 	 * packets force peer to delay ACKs and calculation is correct too.
914 	 * The algorithm is adaptive and, provided we follow specs, it
915 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 	 * tricks sort of "quick acks" for time long enough to decrease RTT
917 	 * to low value, and then abruptly stops to do it and starts to delay
918 	 * ACKs, wait for troubles.
919 	 */
920 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 		tp->srtt = dst_metric(dst, RTAX_RTT);
922 		tp->rtt_seq = tp->snd_nxt;
923 	}
924 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927 	}
928 	tcp_set_rto(sk);
929 	tcp_bound_rto(sk);
930 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931 		goto reset;
932 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 	tp->snd_cwnd_stamp = tcp_time_stamp;
934 	return;
935 
936 reset:
937 	/* Play conservative. If timestamps are not
938 	 * supported, TCP will fail to recalculate correct
939 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 	 */
941 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 		tp->srtt = 0;
943 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945 	}
946 }
947 
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949 				  const int ts)
950 {
951 	struct tcp_sock *tp = tcp_sk(sk);
952 	if (metric > tp->reordering) {
953 		tp->reordering = min(TCP_MAX_REORDERING, metric);
954 
955 		/* This exciting event is worth to be remembered. 8) */
956 		if (ts)
957 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958 		else if (tcp_is_reno(tp))
959 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960 		else if (tcp_is_fack(tp))
961 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 		else
963 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967 		       tp->reordering,
968 		       tp->fackets_out,
969 		       tp->sacked_out,
970 		       tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972 		tcp_disable_fack(tp);
973 	}
974 }
975 
976 /* This procedure tags the retransmission queue when SACKs arrive.
977  *
978  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979  * Packets in queue with these bits set are counted in variables
980  * sacked_out, retrans_out and lost_out, correspondingly.
981  *
982  * Valid combinations are:
983  * Tag  InFlight	Description
984  * 0	1		- orig segment is in flight.
985  * S	0		- nothing flies, orig reached receiver.
986  * L	0		- nothing flies, orig lost by net.
987  * R	2		- both orig and retransmit are in flight.
988  * L|R	1		- orig is lost, retransmit is in flight.
989  * S|R  1		- orig reached receiver, retrans is still in flight.
990  * (L|S|R is logically valid, it could occur when L|R is sacked,
991  *  but it is equivalent to plain S and code short-curcuits it to S.
992  *  L|S is logically invalid, it would mean -1 packet in flight 8))
993  *
994  * These 6 states form finite state machine, controlled by the following events:
995  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997  * 3. Loss detection event of one of three flavors:
998  *	A. Scoreboard estimator decided the packet is lost.
999  *	   A'. Reno "three dupacks" marks head of queue lost.
1000  *	   A''. Its FACK modfication, head until snd.fack is lost.
1001  *	B. SACK arrives sacking data transmitted after never retransmitted
1002  *	   hole was sent out.
1003  *	C. SACK arrives sacking SND.NXT at the moment, when the
1004  *	   segment was retransmitted.
1005  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006  *
1007  * It is pleasant to note, that state diagram turns out to be commutative,
1008  * so that we are allowed not to be bothered by order of our actions,
1009  * when multiple events arrive simultaneously. (see the function below).
1010  *
1011  * Reordering detection.
1012  * --------------------
1013  * Reordering metric is maximal distance, which a packet can be displaced
1014  * in packet stream. With SACKs we can estimate it:
1015  *
1016  * 1. SACK fills old hole and the corresponding segment was not
1017  *    ever retransmitted -> reordering. Alas, we cannot use it
1018  *    when segment was retransmitted.
1019  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020  *    for retransmitted and already SACKed segment -> reordering..
1021  * Both of these heuristics are not used in Loss state, when we cannot
1022  * account for retransmits accurately.
1023  *
1024  * SACK block validation.
1025  * ----------------------
1026  *
1027  * SACK block range validation checks that the received SACK block fits to
1028  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029  * Note that SND.UNA is not included to the range though being valid because
1030  * it means that the receiver is rather inconsistent with itself reporting
1031  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032  * perfectly valid, however, in light of RFC2018 which explicitly states
1033  * that "SACK block MUST reflect the newest segment.  Even if the newest
1034  * segment is going to be discarded ...", not that it looks very clever
1035  * in case of head skb. Due to potentional receiver driven attacks, we
1036  * choose to avoid immediate execution of a walk in write queue due to
1037  * reneging and defer head skb's loss recovery to standard loss recovery
1038  * procedure that will eventually trigger (nothing forbids us doing this).
1039  *
1040  * Implements also blockage to start_seq wrap-around. Problem lies in the
1041  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042  * there's no guarantee that it will be before snd_nxt (n). The problem
1043  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044  * wrap (s_w):
1045  *
1046  *         <- outs wnd ->                          <- wrapzone ->
1047  *         u     e      n                         u_w   e_w  s n_w
1048  *         |     |      |                          |     |   |  |
1049  * |<------------+------+----- TCP seqno space --------------+---------->|
1050  * ...-- <2^31 ->|                                           |<--------...
1051  * ...---- >2^31 ------>|                                    |<--------...
1052  *
1053  * Current code wouldn't be vulnerable but it's better still to discard such
1054  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057  * equal to the ideal case (infinite seqno space without wrap caused issues).
1058  *
1059  * With D-SACK the lower bound is extended to cover sequence space below
1060  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061  * again, D-SACK block must not to go across snd_una (for the same reason as
1062  * for the normal SACK blocks, explained above). But there all simplicity
1063  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064  * fully below undo_marker they do not affect behavior in anyway and can
1065  * therefore be safely ignored. In rare cases (which are more or less
1066  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067  * fragmentation and packet reordering past skb's retransmission. To consider
1068  * them correctly, the acceptable range must be extended even more though
1069  * the exact amount is rather hard to quantify. However, tp->max_window can
1070  * be used as an exaggerated estimate.
1071  */
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 				  u32 start_seq, u32 end_seq)
1074 {
1075 	/* Too far in future, or reversed (interpretation is ambiguous) */
1076 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 		return 0;
1078 
1079 	/* Nasty start_seq wrap-around check (see comments above) */
1080 	if (!before(start_seq, tp->snd_nxt))
1081 		return 0;
1082 
1083 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1084 	 * start_seq == snd_una is non-sensical (see comments above)
1085 	 */
1086 	if (after(start_seq, tp->snd_una))
1087 		return 1;
1088 
1089 	if (!is_dsack || !tp->undo_marker)
1090 		return 0;
1091 
1092 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1093 	if (!after(end_seq, tp->snd_una))
1094 		return 0;
1095 
1096 	if (!before(start_seq, tp->undo_marker))
1097 		return 1;
1098 
1099 	/* Too old */
1100 	if (!after(end_seq, tp->undo_marker))
1101 		return 0;
1102 
1103 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1105 	 */
1106 	return !before(start_seq, end_seq - tp->max_window);
1107 }
1108 
1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110  * Event "C". Later note: FACK people cheated me again 8), we have to account
1111  * for reordering! Ugly, but should help.
1112  *
1113  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114  * less than what is now known to be received by the other end (derived from
1115  * SACK blocks by the caller). Also calculate the lowest snd_nxt among the
1116  * remaining retransmitted skbs to avoid some costly processing per ACKs.
1117  */
1118 static int tcp_mark_lost_retrans(struct sock *sk, u32 received_upto)
1119 {
1120 	struct tcp_sock *tp = tcp_sk(sk);
1121 	struct sk_buff *skb;
1122 	int flag = 0;
1123 	int cnt = 0;
1124 	u32 new_low_seq = tp->snd_nxt;
1125 
1126 	tcp_for_write_queue(skb, sk) {
1127 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1128 
1129 		if (skb == tcp_send_head(sk))
1130 			break;
1131 		if (cnt == tp->retrans_out)
1132 			break;
1133 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1134 			continue;
1135 
1136 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1137 			continue;
1138 
1139 		if (after(received_upto, ack_seq) &&
1140 		    (tcp_is_fack(tp) ||
1141 		     !before(received_upto,
1142 			     ack_seq + tp->reordering * tp->mss_cache))) {
1143 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1144 			tp->retrans_out -= tcp_skb_pcount(skb);
1145 
1146 			/* clear lost hint */
1147 			tp->retransmit_skb_hint = NULL;
1148 
1149 			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1150 				tp->lost_out += tcp_skb_pcount(skb);
1151 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1152 				flag |= FLAG_DATA_SACKED;
1153 				NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1154 			}
1155 		} else {
1156 			if (before(ack_seq, new_low_seq))
1157 				new_low_seq = ack_seq;
1158 			cnt += tcp_skb_pcount(skb);
1159 		}
1160 	}
1161 
1162 	if (tp->retrans_out)
1163 		tp->lost_retrans_low = new_low_seq;
1164 
1165 	return flag;
1166 }
1167 
1168 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1169 			   struct tcp_sack_block_wire *sp, int num_sacks,
1170 			   u32 prior_snd_una)
1171 {
1172 	u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1173 	u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1174 	int dup_sack = 0;
1175 
1176 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1177 		dup_sack = 1;
1178 		tcp_dsack_seen(tp);
1179 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1180 	} else if (num_sacks > 1) {
1181 		u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1182 		u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1183 
1184 		if (!after(end_seq_0, end_seq_1) &&
1185 		    !before(start_seq_0, start_seq_1)) {
1186 			dup_sack = 1;
1187 			tcp_dsack_seen(tp);
1188 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1189 		}
1190 	}
1191 
1192 	/* D-SACK for already forgotten data... Do dumb counting. */
1193 	if (dup_sack &&
1194 	    !after(end_seq_0, prior_snd_una) &&
1195 	    after(end_seq_0, tp->undo_marker))
1196 		tp->undo_retrans--;
1197 
1198 	return dup_sack;
1199 }
1200 
1201 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1202  * the incoming SACK may not exactly match but we can find smaller MSS
1203  * aligned portion of it that matches. Therefore we might need to fragment
1204  * which may fail and creates some hassle (caller must handle error case
1205  * returns).
1206  */
1207 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1208 				 u32 start_seq, u32 end_seq)
1209 {
1210 	int in_sack, err;
1211 	unsigned int pkt_len;
1212 
1213 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1214 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1215 
1216 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1217 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1218 
1219 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1220 
1221 		if (!in_sack)
1222 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1223 		else
1224 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1225 		err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1226 		if (err < 0)
1227 			return err;
1228 	}
1229 
1230 	return in_sack;
1231 }
1232 
1233 static int
1234 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1235 {
1236 	const struct inet_connection_sock *icsk = inet_csk(sk);
1237 	struct tcp_sock *tp = tcp_sk(sk);
1238 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1239 			      TCP_SKB_CB(ack_skb)->sacked);
1240 	struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
1241 	struct sk_buff *cached_skb;
1242 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1243 	int reord = tp->packets_out;
1244 	int prior_fackets;
1245 	u32 highest_sack_end_seq = tp->lost_retrans_low;
1246 	int flag = 0;
1247 	int found_dup_sack = 0;
1248 	int cached_fack_count;
1249 	int i;
1250 	int first_sack_index;
1251 	int force_one_sack;
1252 
1253 	if (!tp->sacked_out) {
1254 		if (WARN_ON(tp->fackets_out))
1255 			tp->fackets_out = 0;
1256 		tp->highest_sack = tp->snd_una;
1257 	}
1258 	prior_fackets = tp->fackets_out;
1259 
1260 	found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1261 					 num_sacks, prior_snd_una);
1262 	if (found_dup_sack)
1263 		flag |= FLAG_DSACKING_ACK;
1264 
1265 	/* Eliminate too old ACKs, but take into
1266 	 * account more or less fresh ones, they can
1267 	 * contain valid SACK info.
1268 	 */
1269 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1270 		return 0;
1271 
1272 	/* SACK fastpath:
1273 	 * if the only SACK change is the increase of the end_seq of
1274 	 * the first block then only apply that SACK block
1275 	 * and use retrans queue hinting otherwise slowpath */
1276 	force_one_sack = 1;
1277 	for (i = 0; i < num_sacks; i++) {
1278 		__be32 start_seq = sp[i].start_seq;
1279 		__be32 end_seq = sp[i].end_seq;
1280 
1281 		if (i == 0) {
1282 			if (tp->recv_sack_cache[i].start_seq != start_seq)
1283 				force_one_sack = 0;
1284 		} else {
1285 			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1286 			    (tp->recv_sack_cache[i].end_seq != end_seq))
1287 				force_one_sack = 0;
1288 		}
1289 		tp->recv_sack_cache[i].start_seq = start_seq;
1290 		tp->recv_sack_cache[i].end_seq = end_seq;
1291 	}
1292 	/* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1293 	for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1294 		tp->recv_sack_cache[i].start_seq = 0;
1295 		tp->recv_sack_cache[i].end_seq = 0;
1296 	}
1297 
1298 	first_sack_index = 0;
1299 	if (force_one_sack)
1300 		num_sacks = 1;
1301 	else {
1302 		int j;
1303 		tp->fastpath_skb_hint = NULL;
1304 
1305 		/* order SACK blocks to allow in order walk of the retrans queue */
1306 		for (i = num_sacks-1; i > 0; i--) {
1307 			for (j = 0; j < i; j++){
1308 				if (after(ntohl(sp[j].start_seq),
1309 					  ntohl(sp[j+1].start_seq))){
1310 					struct tcp_sack_block_wire tmp;
1311 
1312 					tmp = sp[j];
1313 					sp[j] = sp[j+1];
1314 					sp[j+1] = tmp;
1315 
1316 					/* Track where the first SACK block goes to */
1317 					if (j == first_sack_index)
1318 						first_sack_index = j+1;
1319 				}
1320 
1321 			}
1322 		}
1323 	}
1324 
1325 	/* Use SACK fastpath hint if valid */
1326 	cached_skb = tp->fastpath_skb_hint;
1327 	cached_fack_count = tp->fastpath_cnt_hint;
1328 	if (!cached_skb) {
1329 		cached_skb = tcp_write_queue_head(sk);
1330 		cached_fack_count = 0;
1331 	}
1332 
1333 	for (i = 0; i < num_sacks; i++) {
1334 		struct sk_buff *skb;
1335 		__u32 start_seq = ntohl(sp->start_seq);
1336 		__u32 end_seq = ntohl(sp->end_seq);
1337 		int fack_count;
1338 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1339 		int next_dup = (found_dup_sack && (i+1 == first_sack_index));
1340 
1341 		sp++;
1342 
1343 		if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1344 			if (dup_sack) {
1345 				if (!tp->undo_marker)
1346 					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1347 				else
1348 					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1349 			} else {
1350 				/* Don't count olds caused by ACK reordering */
1351 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1352 				    !after(end_seq, tp->snd_una))
1353 					continue;
1354 				NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1355 			}
1356 			continue;
1357 		}
1358 
1359 		skb = cached_skb;
1360 		fack_count = cached_fack_count;
1361 
1362 		/* Event "B" in the comment above. */
1363 		if (after(end_seq, tp->high_seq))
1364 			flag |= FLAG_DATA_LOST;
1365 
1366 		tcp_for_write_queue_from(skb, sk) {
1367 			int in_sack = 0;
1368 			u8 sacked;
1369 
1370 			if (skb == tcp_send_head(sk))
1371 				break;
1372 
1373 			cached_skb = skb;
1374 			cached_fack_count = fack_count;
1375 			if (i == first_sack_index) {
1376 				tp->fastpath_skb_hint = skb;
1377 				tp->fastpath_cnt_hint = fack_count;
1378 			}
1379 
1380 			/* The retransmission queue is always in order, so
1381 			 * we can short-circuit the walk early.
1382 			 */
1383 			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1384 				break;
1385 
1386 			dup_sack = (found_dup_sack && (i == first_sack_index));
1387 
1388 			/* Due to sorting DSACK may reside within this SACK block! */
1389 			if (next_dup) {
1390 				u32 dup_start = ntohl(sp->start_seq);
1391 				u32 dup_end = ntohl(sp->end_seq);
1392 
1393 				if (before(TCP_SKB_CB(skb)->seq, dup_end)) {
1394 					in_sack = tcp_match_skb_to_sack(sk, skb, dup_start, dup_end);
1395 					if (in_sack > 0)
1396 						dup_sack = 1;
1397 				}
1398 			}
1399 
1400 			/* DSACK info lost if out-of-mem, try SACK still */
1401 			if (in_sack <= 0)
1402 				in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1403 			if (in_sack < 0)
1404 				break;
1405 
1406 			fack_count += tcp_skb_pcount(skb);
1407 
1408 			sacked = TCP_SKB_CB(skb)->sacked;
1409 
1410 			/* Account D-SACK for retransmitted packet. */
1411 			if ((dup_sack && in_sack) &&
1412 			    (sacked & TCPCB_RETRANS) &&
1413 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1414 				tp->undo_retrans--;
1415 
1416 			/* The frame is ACKed. */
1417 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1418 				if (sacked&TCPCB_RETRANS) {
1419 					if ((dup_sack && in_sack) &&
1420 					    (sacked&TCPCB_SACKED_ACKED))
1421 						reord = min(fack_count, reord);
1422 				} else {
1423 					/* If it was in a hole, we detected reordering. */
1424 					if (fack_count < prior_fackets &&
1425 					    !(sacked&TCPCB_SACKED_ACKED))
1426 						reord = min(fack_count, reord);
1427 				}
1428 
1429 				/* Nothing to do; acked frame is about to be dropped. */
1430 				continue;
1431 			}
1432 
1433 			if (!in_sack)
1434 				continue;
1435 
1436 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1437 				if (sacked & TCPCB_SACKED_RETRANS) {
1438 					/* If the segment is not tagged as lost,
1439 					 * we do not clear RETRANS, believing
1440 					 * that retransmission is still in flight.
1441 					 */
1442 					if (sacked & TCPCB_LOST) {
1443 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1444 						tp->lost_out -= tcp_skb_pcount(skb);
1445 						tp->retrans_out -= tcp_skb_pcount(skb);
1446 
1447 						/* clear lost hint */
1448 						tp->retransmit_skb_hint = NULL;
1449 					}
1450 				} else {
1451 					/* New sack for not retransmitted frame,
1452 					 * which was in hole. It is reordering.
1453 					 */
1454 					if (!(sacked & TCPCB_RETRANS) &&
1455 					    fack_count < prior_fackets)
1456 						reord = min(fack_count, reord);
1457 
1458 					if (sacked & TCPCB_LOST) {
1459 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1460 						tp->lost_out -= tcp_skb_pcount(skb);
1461 
1462 						/* clear lost hint */
1463 						tp->retransmit_skb_hint = NULL;
1464 					}
1465 					/* SACK enhanced F-RTO detection.
1466 					 * Set flag if and only if non-rexmitted
1467 					 * segments below frto_highmark are
1468 					 * SACKed (RFC4138; Appendix B).
1469 					 * Clearing correct due to in-order walk
1470 					 */
1471 					if (after(end_seq, tp->frto_highmark)) {
1472 						flag &= ~FLAG_ONLY_ORIG_SACKED;
1473 					} else {
1474 						if (!(sacked & TCPCB_RETRANS))
1475 							flag |= FLAG_ONLY_ORIG_SACKED;
1476 					}
1477 				}
1478 
1479 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1480 				flag |= FLAG_DATA_SACKED;
1481 				tp->sacked_out += tcp_skb_pcount(skb);
1482 
1483 				if (fack_count > tp->fackets_out)
1484 					tp->fackets_out = fack_count;
1485 
1486 				if (after(TCP_SKB_CB(skb)->seq, tp->highest_sack)) {
1487 					tp->highest_sack = TCP_SKB_CB(skb)->seq;
1488 					highest_sack_end_seq = TCP_SKB_CB(skb)->end_seq;
1489 				}
1490 			} else {
1491 				if (dup_sack && (sacked&TCPCB_RETRANS))
1492 					reord = min(fack_count, reord);
1493 			}
1494 
1495 			/* D-SACK. We can detect redundant retransmission
1496 			 * in S|R and plain R frames and clear it.
1497 			 * undo_retrans is decreased above, L|R frames
1498 			 * are accounted above as well.
1499 			 */
1500 			if (dup_sack &&
1501 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1502 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1503 				tp->retrans_out -= tcp_skb_pcount(skb);
1504 				tp->retransmit_skb_hint = NULL;
1505 			}
1506 		}
1507 	}
1508 
1509 	if (tp->retrans_out &&
1510 	    after(highest_sack_end_seq, tp->lost_retrans_low) &&
1511 	    icsk->icsk_ca_state == TCP_CA_Recovery)
1512 		flag |= tcp_mark_lost_retrans(sk, highest_sack_end_seq);
1513 
1514 	tcp_verify_left_out(tp);
1515 
1516 	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1517 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1518 		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1519 
1520 #if FASTRETRANS_DEBUG > 0
1521 	BUG_TRAP((int)tp->sacked_out >= 0);
1522 	BUG_TRAP((int)tp->lost_out >= 0);
1523 	BUG_TRAP((int)tp->retrans_out >= 0);
1524 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1525 #endif
1526 	return flag;
1527 }
1528 
1529 /* If we receive more dupacks than we expected counting segments
1530  * in assumption of absent reordering, interpret this as reordering.
1531  * The only another reason could be bug in receiver TCP.
1532  */
1533 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1534 {
1535 	struct tcp_sock *tp = tcp_sk(sk);
1536 	u32 holes;
1537 
1538 	holes = max(tp->lost_out, 1U);
1539 	holes = min(holes, tp->packets_out);
1540 
1541 	if ((tp->sacked_out + holes) > tp->packets_out) {
1542 		tp->sacked_out = tp->packets_out - holes;
1543 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1544 	}
1545 }
1546 
1547 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1548 
1549 static void tcp_add_reno_sack(struct sock *sk)
1550 {
1551 	struct tcp_sock *tp = tcp_sk(sk);
1552 	tp->sacked_out++;
1553 	tcp_check_reno_reordering(sk, 0);
1554 	tcp_verify_left_out(tp);
1555 }
1556 
1557 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1558 
1559 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1560 {
1561 	struct tcp_sock *tp = tcp_sk(sk);
1562 
1563 	if (acked > 0) {
1564 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1565 		if (acked-1 >= tp->sacked_out)
1566 			tp->sacked_out = 0;
1567 		else
1568 			tp->sacked_out -= acked-1;
1569 	}
1570 	tcp_check_reno_reordering(sk, acked);
1571 	tcp_verify_left_out(tp);
1572 }
1573 
1574 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1575 {
1576 	tp->sacked_out = 0;
1577 }
1578 
1579 /* F-RTO can only be used if TCP has never retransmitted anything other than
1580  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1581  */
1582 int tcp_use_frto(struct sock *sk)
1583 {
1584 	const struct tcp_sock *tp = tcp_sk(sk);
1585 	struct sk_buff *skb;
1586 
1587 	if (!sysctl_tcp_frto)
1588 		return 0;
1589 
1590 	if (IsSackFrto())
1591 		return 1;
1592 
1593 	/* Avoid expensive walking of rexmit queue if possible */
1594 	if (tp->retrans_out > 1)
1595 		return 0;
1596 
1597 	skb = tcp_write_queue_head(sk);
1598 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1599 	tcp_for_write_queue_from(skb, sk) {
1600 		if (skb == tcp_send_head(sk))
1601 			break;
1602 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1603 			return 0;
1604 		/* Short-circuit when first non-SACKed skb has been checked */
1605 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1606 			break;
1607 	}
1608 	return 1;
1609 }
1610 
1611 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1612  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1613  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1614  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1615  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1616  * bits are handled if the Loss state is really to be entered (in
1617  * tcp_enter_frto_loss).
1618  *
1619  * Do like tcp_enter_loss() would; when RTO expires the second time it
1620  * does:
1621  *  "Reduce ssthresh if it has not yet been made inside this window."
1622  */
1623 void tcp_enter_frto(struct sock *sk)
1624 {
1625 	const struct inet_connection_sock *icsk = inet_csk(sk);
1626 	struct tcp_sock *tp = tcp_sk(sk);
1627 	struct sk_buff *skb;
1628 
1629 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1630 	    tp->snd_una == tp->high_seq ||
1631 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1632 	     !icsk->icsk_retransmits)) {
1633 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1634 		/* Our state is too optimistic in ssthresh() call because cwnd
1635 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1636 		 * recovery has not yet completed. Pattern would be this: RTO,
1637 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1638 		 * up here twice).
1639 		 * RFC4138 should be more specific on what to do, even though
1640 		 * RTO is quite unlikely to occur after the first Cumulative ACK
1641 		 * due to back-off and complexity of triggering events ...
1642 		 */
1643 		if (tp->frto_counter) {
1644 			u32 stored_cwnd;
1645 			stored_cwnd = tp->snd_cwnd;
1646 			tp->snd_cwnd = 2;
1647 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1648 			tp->snd_cwnd = stored_cwnd;
1649 		} else {
1650 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1651 		}
1652 		/* ... in theory, cong.control module could do "any tricks" in
1653 		 * ssthresh(), which means that ca_state, lost bits and lost_out
1654 		 * counter would have to be faked before the call occurs. We
1655 		 * consider that too expensive, unlikely and hacky, so modules
1656 		 * using these in ssthresh() must deal these incompatibility
1657 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1658 		 */
1659 		tcp_ca_event(sk, CA_EVENT_FRTO);
1660 	}
1661 
1662 	tp->undo_marker = tp->snd_una;
1663 	tp->undo_retrans = 0;
1664 
1665 	skb = tcp_write_queue_head(sk);
1666 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1667 		tp->undo_marker = 0;
1668 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1669 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1670 		tp->retrans_out -= tcp_skb_pcount(skb);
1671 	}
1672 	tcp_verify_left_out(tp);
1673 
1674 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1675 	 * The last condition is necessary at least in tp->frto_counter case.
1676 	 */
1677 	if (IsSackFrto() && (tp->frto_counter ||
1678 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1679 	    after(tp->high_seq, tp->snd_una)) {
1680 		tp->frto_highmark = tp->high_seq;
1681 	} else {
1682 		tp->frto_highmark = tp->snd_nxt;
1683 	}
1684 	tcp_set_ca_state(sk, TCP_CA_Disorder);
1685 	tp->high_seq = tp->snd_nxt;
1686 	tp->frto_counter = 1;
1687 }
1688 
1689 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1690  * which indicates that we should follow the traditional RTO recovery,
1691  * i.e. mark everything lost and do go-back-N retransmission.
1692  */
1693 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1694 {
1695 	struct tcp_sock *tp = tcp_sk(sk);
1696 	struct sk_buff *skb;
1697 
1698 	tp->lost_out = 0;
1699 	tp->retrans_out = 0;
1700 	if (tcp_is_reno(tp))
1701 		tcp_reset_reno_sack(tp);
1702 
1703 	tcp_for_write_queue(skb, sk) {
1704 		if (skb == tcp_send_head(sk))
1705 			break;
1706 		/*
1707 		 * Count the retransmission made on RTO correctly (only when
1708 		 * waiting for the first ACK and did not get it)...
1709 		 */
1710 		if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1711 			/* For some reason this R-bit might get cleared? */
1712 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1713 				tp->retrans_out += tcp_skb_pcount(skb);
1714 			/* ...enter this if branch just for the first segment */
1715 			flag |= FLAG_DATA_ACKED;
1716 		} else {
1717 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1718 				tp->undo_marker = 0;
1719 			TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1720 		}
1721 
1722 		/* Don't lost mark skbs that were fwd transmitted after RTO */
1723 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1724 		    !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1725 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1726 			tp->lost_out += tcp_skb_pcount(skb);
1727 		}
1728 	}
1729 	tcp_verify_left_out(tp);
1730 
1731 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1732 	tp->snd_cwnd_cnt = 0;
1733 	tp->snd_cwnd_stamp = tcp_time_stamp;
1734 	tp->frto_counter = 0;
1735 	tp->bytes_acked = 0;
1736 
1737 	tp->reordering = min_t(unsigned int, tp->reordering,
1738 					     sysctl_tcp_reordering);
1739 	tcp_set_ca_state(sk, TCP_CA_Loss);
1740 	tp->high_seq = tp->frto_highmark;
1741 	TCP_ECN_queue_cwr(tp);
1742 
1743 	tcp_clear_retrans_hints_partial(tp);
1744 }
1745 
1746 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1747 {
1748 	tp->retrans_out = 0;
1749 	tp->lost_out = 0;
1750 
1751 	tp->undo_marker = 0;
1752 	tp->undo_retrans = 0;
1753 }
1754 
1755 void tcp_clear_retrans(struct tcp_sock *tp)
1756 {
1757 	tcp_clear_retrans_partial(tp);
1758 
1759 	tp->fackets_out = 0;
1760 	tp->sacked_out = 0;
1761 }
1762 
1763 /* Enter Loss state. If "how" is not zero, forget all SACK information
1764  * and reset tags completely, otherwise preserve SACKs. If receiver
1765  * dropped its ofo queue, we will know this due to reneging detection.
1766  */
1767 void tcp_enter_loss(struct sock *sk, int how)
1768 {
1769 	const struct inet_connection_sock *icsk = inet_csk(sk);
1770 	struct tcp_sock *tp = tcp_sk(sk);
1771 	struct sk_buff *skb;
1772 
1773 	/* Reduce ssthresh if it has not yet been made inside this window. */
1774 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1775 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1776 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1777 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1778 		tcp_ca_event(sk, CA_EVENT_LOSS);
1779 	}
1780 	tp->snd_cwnd	   = 1;
1781 	tp->snd_cwnd_cnt   = 0;
1782 	tp->snd_cwnd_stamp = tcp_time_stamp;
1783 
1784 	tp->bytes_acked = 0;
1785 	tcp_clear_retrans_partial(tp);
1786 
1787 	if (tcp_is_reno(tp))
1788 		tcp_reset_reno_sack(tp);
1789 
1790 	if (!how) {
1791 		/* Push undo marker, if it was plain RTO and nothing
1792 		 * was retransmitted. */
1793 		tp->undo_marker = tp->snd_una;
1794 		tcp_clear_retrans_hints_partial(tp);
1795 	} else {
1796 		tp->sacked_out = 0;
1797 		tp->fackets_out = 0;
1798 		tcp_clear_all_retrans_hints(tp);
1799 	}
1800 
1801 	tcp_for_write_queue(skb, sk) {
1802 		if (skb == tcp_send_head(sk))
1803 			break;
1804 
1805 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1806 			tp->undo_marker = 0;
1807 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1808 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1809 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1810 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1811 			tp->lost_out += tcp_skb_pcount(skb);
1812 		}
1813 	}
1814 	tcp_verify_left_out(tp);
1815 
1816 	tp->reordering = min_t(unsigned int, tp->reordering,
1817 					     sysctl_tcp_reordering);
1818 	tcp_set_ca_state(sk, TCP_CA_Loss);
1819 	tp->high_seq = tp->snd_nxt;
1820 	TCP_ECN_queue_cwr(tp);
1821 	/* Abort F-RTO algorithm if one is in progress */
1822 	tp->frto_counter = 0;
1823 }
1824 
1825 static int tcp_check_sack_reneging(struct sock *sk)
1826 {
1827 	struct sk_buff *skb;
1828 
1829 	/* If ACK arrived pointing to a remembered SACK,
1830 	 * it means that our remembered SACKs do not reflect
1831 	 * real state of receiver i.e.
1832 	 * receiver _host_ is heavily congested (or buggy).
1833 	 * Do processing similar to RTO timeout.
1834 	 */
1835 	if ((skb = tcp_write_queue_head(sk)) != NULL &&
1836 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1837 		struct inet_connection_sock *icsk = inet_csk(sk);
1838 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1839 
1840 		tcp_enter_loss(sk, 1);
1841 		icsk->icsk_retransmits++;
1842 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1843 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1844 					  icsk->icsk_rto, TCP_RTO_MAX);
1845 		return 1;
1846 	}
1847 	return 0;
1848 }
1849 
1850 static inline int tcp_fackets_out(struct tcp_sock *tp)
1851 {
1852 	return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1853 }
1854 
1855 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1856 {
1857 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1858 }
1859 
1860 static inline int tcp_head_timedout(struct sock *sk)
1861 {
1862 	struct tcp_sock *tp = tcp_sk(sk);
1863 
1864 	return tp->packets_out &&
1865 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1866 }
1867 
1868 /* Linux NewReno/SACK/FACK/ECN state machine.
1869  * --------------------------------------
1870  *
1871  * "Open"	Normal state, no dubious events, fast path.
1872  * "Disorder"   In all the respects it is "Open",
1873  *		but requires a bit more attention. It is entered when
1874  *		we see some SACKs or dupacks. It is split of "Open"
1875  *		mainly to move some processing from fast path to slow one.
1876  * "CWR"	CWND was reduced due to some Congestion Notification event.
1877  *		It can be ECN, ICMP source quench, local device congestion.
1878  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1879  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1880  *
1881  * tcp_fastretrans_alert() is entered:
1882  * - each incoming ACK, if state is not "Open"
1883  * - when arrived ACK is unusual, namely:
1884  *	* SACK
1885  *	* Duplicate ACK.
1886  *	* ECN ECE.
1887  *
1888  * Counting packets in flight is pretty simple.
1889  *
1890  *	in_flight = packets_out - left_out + retrans_out
1891  *
1892  *	packets_out is SND.NXT-SND.UNA counted in packets.
1893  *
1894  *	retrans_out is number of retransmitted segments.
1895  *
1896  *	left_out is number of segments left network, but not ACKed yet.
1897  *
1898  *		left_out = sacked_out + lost_out
1899  *
1900  *     sacked_out: Packets, which arrived to receiver out of order
1901  *		   and hence not ACKed. With SACKs this number is simply
1902  *		   amount of SACKed data. Even without SACKs
1903  *		   it is easy to give pretty reliable estimate of this number,
1904  *		   counting duplicate ACKs.
1905  *
1906  *       lost_out: Packets lost by network. TCP has no explicit
1907  *		   "loss notification" feedback from network (for now).
1908  *		   It means that this number can be only _guessed_.
1909  *		   Actually, it is the heuristics to predict lossage that
1910  *		   distinguishes different algorithms.
1911  *
1912  *	F.e. after RTO, when all the queue is considered as lost,
1913  *	lost_out = packets_out and in_flight = retrans_out.
1914  *
1915  *		Essentially, we have now two algorithms counting
1916  *		lost packets.
1917  *
1918  *		FACK: It is the simplest heuristics. As soon as we decided
1919  *		that something is lost, we decide that _all_ not SACKed
1920  *		packets until the most forward SACK are lost. I.e.
1921  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1922  *		It is absolutely correct estimate, if network does not reorder
1923  *		packets. And it loses any connection to reality when reordering
1924  *		takes place. We use FACK by default until reordering
1925  *		is suspected on the path to this destination.
1926  *
1927  *		NewReno: when Recovery is entered, we assume that one segment
1928  *		is lost (classic Reno). While we are in Recovery and
1929  *		a partial ACK arrives, we assume that one more packet
1930  *		is lost (NewReno). This heuristics are the same in NewReno
1931  *		and SACK.
1932  *
1933  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1934  *  deflation etc. CWND is real congestion window, never inflated, changes
1935  *  only according to classic VJ rules.
1936  *
1937  * Really tricky (and requiring careful tuning) part of algorithm
1938  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1939  * The first determines the moment _when_ we should reduce CWND and,
1940  * hence, slow down forward transmission. In fact, it determines the moment
1941  * when we decide that hole is caused by loss, rather than by a reorder.
1942  *
1943  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1944  * holes, caused by lost packets.
1945  *
1946  * And the most logically complicated part of algorithm is undo
1947  * heuristics. We detect false retransmits due to both too early
1948  * fast retransmit (reordering) and underestimated RTO, analyzing
1949  * timestamps and D-SACKs. When we detect that some segments were
1950  * retransmitted by mistake and CWND reduction was wrong, we undo
1951  * window reduction and abort recovery phase. This logic is hidden
1952  * inside several functions named tcp_try_undo_<something>.
1953  */
1954 
1955 /* This function decides, when we should leave Disordered state
1956  * and enter Recovery phase, reducing congestion window.
1957  *
1958  * Main question: may we further continue forward transmission
1959  * with the same cwnd?
1960  */
1961 static int tcp_time_to_recover(struct sock *sk)
1962 {
1963 	struct tcp_sock *tp = tcp_sk(sk);
1964 	__u32 packets_out;
1965 
1966 	/* Do not perform any recovery during F-RTO algorithm */
1967 	if (tp->frto_counter)
1968 		return 0;
1969 
1970 	/* Trick#1: The loss is proven. */
1971 	if (tp->lost_out)
1972 		return 1;
1973 
1974 	/* Not-A-Trick#2 : Classic rule... */
1975 	if (tcp_fackets_out(tp) > tp->reordering)
1976 		return 1;
1977 
1978 	/* Trick#3 : when we use RFC2988 timer restart, fast
1979 	 * retransmit can be triggered by timeout of queue head.
1980 	 */
1981 	if (tcp_head_timedout(sk))
1982 		return 1;
1983 
1984 	/* Trick#4: It is still not OK... But will it be useful to delay
1985 	 * recovery more?
1986 	 */
1987 	packets_out = tp->packets_out;
1988 	if (packets_out <= tp->reordering &&
1989 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1990 	    !tcp_may_send_now(sk)) {
1991 		/* We have nothing to send. This connection is limited
1992 		 * either by receiver window or by application.
1993 		 */
1994 		return 1;
1995 	}
1996 
1997 	return 0;
1998 }
1999 
2000 /* RFC: This is from the original, I doubt that this is necessary at all:
2001  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2002  * retransmitted past LOST markings in the first place? I'm not fully sure
2003  * about undo and end of connection cases, which can cause R without L?
2004  */
2005 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2006 				       struct sk_buff *skb)
2007 {
2008 	if ((tp->retransmit_skb_hint != NULL) &&
2009 	    before(TCP_SKB_CB(skb)->seq,
2010 	    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2011 		tp->retransmit_skb_hint = NULL;
2012 }
2013 
2014 /* Mark head of queue up as lost. */
2015 static void tcp_mark_head_lost(struct sock *sk, int packets)
2016 {
2017 	struct tcp_sock *tp = tcp_sk(sk);
2018 	struct sk_buff *skb;
2019 	int cnt;
2020 
2021 	BUG_TRAP(packets <= tp->packets_out);
2022 	if (tp->lost_skb_hint) {
2023 		skb = tp->lost_skb_hint;
2024 		cnt = tp->lost_cnt_hint;
2025 	} else {
2026 		skb = tcp_write_queue_head(sk);
2027 		cnt = 0;
2028 	}
2029 
2030 	tcp_for_write_queue_from(skb, sk) {
2031 		if (skb == tcp_send_head(sk))
2032 			break;
2033 		/* TODO: do this better */
2034 		/* this is not the most efficient way to do this... */
2035 		tp->lost_skb_hint = skb;
2036 		tp->lost_cnt_hint = cnt;
2037 		cnt += tcp_skb_pcount(skb);
2038 		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2039 			break;
2040 		if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2041 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2042 			tp->lost_out += tcp_skb_pcount(skb);
2043 			tcp_verify_retransmit_hint(tp, skb);
2044 		}
2045 	}
2046 	tcp_verify_left_out(tp);
2047 }
2048 
2049 /* Account newly detected lost packet(s) */
2050 
2051 static void tcp_update_scoreboard(struct sock *sk)
2052 {
2053 	struct tcp_sock *tp = tcp_sk(sk);
2054 
2055 	if (tcp_is_fack(tp)) {
2056 		int lost = tp->fackets_out - tp->reordering;
2057 		if (lost <= 0)
2058 			lost = 1;
2059 		tcp_mark_head_lost(sk, lost);
2060 	} else {
2061 		tcp_mark_head_lost(sk, 1);
2062 	}
2063 
2064 	/* New heuristics: it is possible only after we switched
2065 	 * to restart timer each time when something is ACKed.
2066 	 * Hence, we can detect timed out packets during fast
2067 	 * retransmit without falling to slow start.
2068 	 */
2069 	if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
2070 		struct sk_buff *skb;
2071 
2072 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2073 			: tcp_write_queue_head(sk);
2074 
2075 		tcp_for_write_queue_from(skb, sk) {
2076 			if (skb == tcp_send_head(sk))
2077 				break;
2078 			if (!tcp_skb_timedout(sk, skb))
2079 				break;
2080 
2081 			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2082 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2083 				tp->lost_out += tcp_skb_pcount(skb);
2084 				tcp_verify_retransmit_hint(tp, skb);
2085 			}
2086 		}
2087 
2088 		tp->scoreboard_skb_hint = skb;
2089 
2090 		tcp_verify_left_out(tp);
2091 	}
2092 }
2093 
2094 /* CWND moderation, preventing bursts due to too big ACKs
2095  * in dubious situations.
2096  */
2097 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2098 {
2099 	tp->snd_cwnd = min(tp->snd_cwnd,
2100 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2101 	tp->snd_cwnd_stamp = tcp_time_stamp;
2102 }
2103 
2104 /* Lower bound on congestion window is slow start threshold
2105  * unless congestion avoidance choice decides to overide it.
2106  */
2107 static inline u32 tcp_cwnd_min(const struct sock *sk)
2108 {
2109 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2110 
2111 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2112 }
2113 
2114 /* Decrease cwnd each second ack. */
2115 static void tcp_cwnd_down(struct sock *sk, int flag)
2116 {
2117 	struct tcp_sock *tp = tcp_sk(sk);
2118 	int decr = tp->snd_cwnd_cnt + 1;
2119 
2120 	if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2121 	    (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2122 		tp->snd_cwnd_cnt = decr&1;
2123 		decr >>= 1;
2124 
2125 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2126 			tp->snd_cwnd -= decr;
2127 
2128 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2129 		tp->snd_cwnd_stamp = tcp_time_stamp;
2130 	}
2131 }
2132 
2133 /* Nothing was retransmitted or returned timestamp is less
2134  * than timestamp of the first retransmission.
2135  */
2136 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2137 {
2138 	return !tp->retrans_stamp ||
2139 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2140 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2141 }
2142 
2143 /* Undo procedures. */
2144 
2145 #if FASTRETRANS_DEBUG > 1
2146 static void DBGUNDO(struct sock *sk, const char *msg)
2147 {
2148 	struct tcp_sock *tp = tcp_sk(sk);
2149 	struct inet_sock *inet = inet_sk(sk);
2150 
2151 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2152 	       msg,
2153 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
2154 	       tp->snd_cwnd, tcp_left_out(tp),
2155 	       tp->snd_ssthresh, tp->prior_ssthresh,
2156 	       tp->packets_out);
2157 }
2158 #else
2159 #define DBGUNDO(x...) do { } while (0)
2160 #endif
2161 
2162 static void tcp_undo_cwr(struct sock *sk, const int undo)
2163 {
2164 	struct tcp_sock *tp = tcp_sk(sk);
2165 
2166 	if (tp->prior_ssthresh) {
2167 		const struct inet_connection_sock *icsk = inet_csk(sk);
2168 
2169 		if (icsk->icsk_ca_ops->undo_cwnd)
2170 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2171 		else
2172 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2173 
2174 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2175 			tp->snd_ssthresh = tp->prior_ssthresh;
2176 			TCP_ECN_withdraw_cwr(tp);
2177 		}
2178 	} else {
2179 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2180 	}
2181 	tcp_moderate_cwnd(tp);
2182 	tp->snd_cwnd_stamp = tcp_time_stamp;
2183 
2184 	/* There is something screwy going on with the retrans hints after
2185 	   an undo */
2186 	tcp_clear_all_retrans_hints(tp);
2187 }
2188 
2189 static inline int tcp_may_undo(struct tcp_sock *tp)
2190 {
2191 	return tp->undo_marker &&
2192 		(!tp->undo_retrans || tcp_packet_delayed(tp));
2193 }
2194 
2195 /* People celebrate: "We love our President!" */
2196 static int tcp_try_undo_recovery(struct sock *sk)
2197 {
2198 	struct tcp_sock *tp = tcp_sk(sk);
2199 
2200 	if (tcp_may_undo(tp)) {
2201 		/* Happy end! We did not retransmit anything
2202 		 * or our original transmission succeeded.
2203 		 */
2204 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2205 		tcp_undo_cwr(sk, 1);
2206 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2207 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2208 		else
2209 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2210 		tp->undo_marker = 0;
2211 	}
2212 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2213 		/* Hold old state until something *above* high_seq
2214 		 * is ACKed. For Reno it is MUST to prevent false
2215 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2216 		tcp_moderate_cwnd(tp);
2217 		return 1;
2218 	}
2219 	tcp_set_ca_state(sk, TCP_CA_Open);
2220 	return 0;
2221 }
2222 
2223 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2224 static void tcp_try_undo_dsack(struct sock *sk)
2225 {
2226 	struct tcp_sock *tp = tcp_sk(sk);
2227 
2228 	if (tp->undo_marker && !tp->undo_retrans) {
2229 		DBGUNDO(sk, "D-SACK");
2230 		tcp_undo_cwr(sk, 1);
2231 		tp->undo_marker = 0;
2232 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2233 	}
2234 }
2235 
2236 /* Undo during fast recovery after partial ACK. */
2237 
2238 static int tcp_try_undo_partial(struct sock *sk, int acked)
2239 {
2240 	struct tcp_sock *tp = tcp_sk(sk);
2241 	/* Partial ACK arrived. Force Hoe's retransmit. */
2242 	int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
2243 
2244 	if (tcp_may_undo(tp)) {
2245 		/* Plain luck! Hole if filled with delayed
2246 		 * packet, rather than with a retransmit.
2247 		 */
2248 		if (tp->retrans_out == 0)
2249 			tp->retrans_stamp = 0;
2250 
2251 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2252 
2253 		DBGUNDO(sk, "Hoe");
2254 		tcp_undo_cwr(sk, 0);
2255 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2256 
2257 		/* So... Do not make Hoe's retransmit yet.
2258 		 * If the first packet was delayed, the rest
2259 		 * ones are most probably delayed as well.
2260 		 */
2261 		failed = 0;
2262 	}
2263 	return failed;
2264 }
2265 
2266 /* Undo during loss recovery after partial ACK. */
2267 static int tcp_try_undo_loss(struct sock *sk)
2268 {
2269 	struct tcp_sock *tp = tcp_sk(sk);
2270 
2271 	if (tcp_may_undo(tp)) {
2272 		struct sk_buff *skb;
2273 		tcp_for_write_queue(skb, sk) {
2274 			if (skb == tcp_send_head(sk))
2275 				break;
2276 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2277 		}
2278 
2279 		tcp_clear_all_retrans_hints(tp);
2280 
2281 		DBGUNDO(sk, "partial loss");
2282 		tp->lost_out = 0;
2283 		tcp_undo_cwr(sk, 1);
2284 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2285 		inet_csk(sk)->icsk_retransmits = 0;
2286 		tp->undo_marker = 0;
2287 		if (tcp_is_sack(tp))
2288 			tcp_set_ca_state(sk, TCP_CA_Open);
2289 		return 1;
2290 	}
2291 	return 0;
2292 }
2293 
2294 static inline void tcp_complete_cwr(struct sock *sk)
2295 {
2296 	struct tcp_sock *tp = tcp_sk(sk);
2297 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2298 	tp->snd_cwnd_stamp = tcp_time_stamp;
2299 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2300 }
2301 
2302 static void tcp_try_to_open(struct sock *sk, int flag)
2303 {
2304 	struct tcp_sock *tp = tcp_sk(sk);
2305 
2306 	tcp_verify_left_out(tp);
2307 
2308 	if (tp->retrans_out == 0)
2309 		tp->retrans_stamp = 0;
2310 
2311 	if (flag&FLAG_ECE)
2312 		tcp_enter_cwr(sk, 1);
2313 
2314 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2315 		int state = TCP_CA_Open;
2316 
2317 		if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2318 			state = TCP_CA_Disorder;
2319 
2320 		if (inet_csk(sk)->icsk_ca_state != state) {
2321 			tcp_set_ca_state(sk, state);
2322 			tp->high_seq = tp->snd_nxt;
2323 		}
2324 		tcp_moderate_cwnd(tp);
2325 	} else {
2326 		tcp_cwnd_down(sk, flag);
2327 	}
2328 }
2329 
2330 static void tcp_mtup_probe_failed(struct sock *sk)
2331 {
2332 	struct inet_connection_sock *icsk = inet_csk(sk);
2333 
2334 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2335 	icsk->icsk_mtup.probe_size = 0;
2336 }
2337 
2338 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2339 {
2340 	struct tcp_sock *tp = tcp_sk(sk);
2341 	struct inet_connection_sock *icsk = inet_csk(sk);
2342 
2343 	/* FIXME: breaks with very large cwnd */
2344 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2345 	tp->snd_cwnd = tp->snd_cwnd *
2346 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2347 		       icsk->icsk_mtup.probe_size;
2348 	tp->snd_cwnd_cnt = 0;
2349 	tp->snd_cwnd_stamp = tcp_time_stamp;
2350 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2351 
2352 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2353 	icsk->icsk_mtup.probe_size = 0;
2354 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2355 }
2356 
2357 
2358 /* Process an event, which can update packets-in-flight not trivially.
2359  * Main goal of this function is to calculate new estimate for left_out,
2360  * taking into account both packets sitting in receiver's buffer and
2361  * packets lost by network.
2362  *
2363  * Besides that it does CWND reduction, when packet loss is detected
2364  * and changes state of machine.
2365  *
2366  * It does _not_ decide what to send, it is made in function
2367  * tcp_xmit_retransmit_queue().
2368  */
2369 static void
2370 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2371 {
2372 	struct inet_connection_sock *icsk = inet_csk(sk);
2373 	struct tcp_sock *tp = tcp_sk(sk);
2374 	int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2375 	int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2376 				    (tp->fackets_out > tp->reordering));
2377 
2378 	/* Some technical things:
2379 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
2380 	if (!tp->packets_out)
2381 		tp->sacked_out = 0;
2382 
2383 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2384 		tp->fackets_out = 0;
2385 
2386 	/* Now state machine starts.
2387 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2388 	if (flag&FLAG_ECE)
2389 		tp->prior_ssthresh = 0;
2390 
2391 	/* B. In all the states check for reneging SACKs. */
2392 	if (tp->sacked_out && tcp_check_sack_reneging(sk))
2393 		return;
2394 
2395 	/* C. Process data loss notification, provided it is valid. */
2396 	if ((flag&FLAG_DATA_LOST) &&
2397 	    before(tp->snd_una, tp->high_seq) &&
2398 	    icsk->icsk_ca_state != TCP_CA_Open &&
2399 	    tp->fackets_out > tp->reordering) {
2400 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2401 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2402 	}
2403 
2404 	/* D. Check consistency of the current state. */
2405 	tcp_verify_left_out(tp);
2406 
2407 	/* E. Check state exit conditions. State can be terminated
2408 	 *    when high_seq is ACKed. */
2409 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2410 		BUG_TRAP(tp->retrans_out == 0);
2411 		tp->retrans_stamp = 0;
2412 	} else if (!before(tp->snd_una, tp->high_seq)) {
2413 		switch (icsk->icsk_ca_state) {
2414 		case TCP_CA_Loss:
2415 			icsk->icsk_retransmits = 0;
2416 			if (tcp_try_undo_recovery(sk))
2417 				return;
2418 			break;
2419 
2420 		case TCP_CA_CWR:
2421 			/* CWR is to be held something *above* high_seq
2422 			 * is ACKed for CWR bit to reach receiver. */
2423 			if (tp->snd_una != tp->high_seq) {
2424 				tcp_complete_cwr(sk);
2425 				tcp_set_ca_state(sk, TCP_CA_Open);
2426 			}
2427 			break;
2428 
2429 		case TCP_CA_Disorder:
2430 			tcp_try_undo_dsack(sk);
2431 			if (!tp->undo_marker ||
2432 			    /* For SACK case do not Open to allow to undo
2433 			     * catching for all duplicate ACKs. */
2434 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2435 				tp->undo_marker = 0;
2436 				tcp_set_ca_state(sk, TCP_CA_Open);
2437 			}
2438 			break;
2439 
2440 		case TCP_CA_Recovery:
2441 			if (tcp_is_reno(tp))
2442 				tcp_reset_reno_sack(tp);
2443 			if (tcp_try_undo_recovery(sk))
2444 				return;
2445 			tcp_complete_cwr(sk);
2446 			break;
2447 		}
2448 	}
2449 
2450 	/* F. Process state. */
2451 	switch (icsk->icsk_ca_state) {
2452 	case TCP_CA_Recovery:
2453 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2454 			if (tcp_is_reno(tp) && is_dupack)
2455 				tcp_add_reno_sack(sk);
2456 		} else
2457 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2458 		break;
2459 	case TCP_CA_Loss:
2460 		if (flag&FLAG_DATA_ACKED)
2461 			icsk->icsk_retransmits = 0;
2462 		if (!tcp_try_undo_loss(sk)) {
2463 			tcp_moderate_cwnd(tp);
2464 			tcp_xmit_retransmit_queue(sk);
2465 			return;
2466 		}
2467 		if (icsk->icsk_ca_state != TCP_CA_Open)
2468 			return;
2469 		/* Loss is undone; fall through to processing in Open state. */
2470 	default:
2471 		if (tcp_is_reno(tp)) {
2472 			if (flag & FLAG_SND_UNA_ADVANCED)
2473 				tcp_reset_reno_sack(tp);
2474 			if (is_dupack)
2475 				tcp_add_reno_sack(sk);
2476 		}
2477 
2478 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2479 			tcp_try_undo_dsack(sk);
2480 
2481 		if (!tcp_time_to_recover(sk)) {
2482 			tcp_try_to_open(sk, flag);
2483 			return;
2484 		}
2485 
2486 		/* MTU probe failure: don't reduce cwnd */
2487 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2488 		    icsk->icsk_mtup.probe_size &&
2489 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2490 			tcp_mtup_probe_failed(sk);
2491 			/* Restores the reduction we did in tcp_mtup_probe() */
2492 			tp->snd_cwnd++;
2493 			tcp_simple_retransmit(sk);
2494 			return;
2495 		}
2496 
2497 		/* Otherwise enter Recovery state */
2498 
2499 		if (tcp_is_reno(tp))
2500 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2501 		else
2502 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2503 
2504 		tp->high_seq = tp->snd_nxt;
2505 		tp->prior_ssthresh = 0;
2506 		tp->undo_marker = tp->snd_una;
2507 		tp->undo_retrans = tp->retrans_out;
2508 
2509 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2510 			if (!(flag&FLAG_ECE))
2511 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2512 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2513 			TCP_ECN_queue_cwr(tp);
2514 		}
2515 
2516 		tp->bytes_acked = 0;
2517 		tp->snd_cwnd_cnt = 0;
2518 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2519 	}
2520 
2521 	if (do_lost || tcp_head_timedout(sk))
2522 		tcp_update_scoreboard(sk);
2523 	tcp_cwnd_down(sk, flag);
2524 	tcp_xmit_retransmit_queue(sk);
2525 }
2526 
2527 /* Read draft-ietf-tcplw-high-performance before mucking
2528  * with this code. (Supersedes RFC1323)
2529  */
2530 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2531 {
2532 	/* RTTM Rule: A TSecr value received in a segment is used to
2533 	 * update the averaged RTT measurement only if the segment
2534 	 * acknowledges some new data, i.e., only if it advances the
2535 	 * left edge of the send window.
2536 	 *
2537 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2538 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2539 	 *
2540 	 * Changed: reset backoff as soon as we see the first valid sample.
2541 	 * If we do not, we get strongly overestimated rto. With timestamps
2542 	 * samples are accepted even from very old segments: f.e., when rtt=1
2543 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2544 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2545 	 * in window is lost... Voila.	 			--ANK (010210)
2546 	 */
2547 	struct tcp_sock *tp = tcp_sk(sk);
2548 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2549 	tcp_rtt_estimator(sk, seq_rtt);
2550 	tcp_set_rto(sk);
2551 	inet_csk(sk)->icsk_backoff = 0;
2552 	tcp_bound_rto(sk);
2553 }
2554 
2555 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2556 {
2557 	/* We don't have a timestamp. Can only use
2558 	 * packets that are not retransmitted to determine
2559 	 * rtt estimates. Also, we must not reset the
2560 	 * backoff for rto until we get a non-retransmitted
2561 	 * packet. This allows us to deal with a situation
2562 	 * where the network delay has increased suddenly.
2563 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2564 	 */
2565 
2566 	if (flag & FLAG_RETRANS_DATA_ACKED)
2567 		return;
2568 
2569 	tcp_rtt_estimator(sk, seq_rtt);
2570 	tcp_set_rto(sk);
2571 	inet_csk(sk)->icsk_backoff = 0;
2572 	tcp_bound_rto(sk);
2573 }
2574 
2575 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2576 				      const s32 seq_rtt)
2577 {
2578 	const struct tcp_sock *tp = tcp_sk(sk);
2579 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2580 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2581 		tcp_ack_saw_tstamp(sk, flag);
2582 	else if (seq_rtt >= 0)
2583 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2584 }
2585 
2586 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2587 			   u32 in_flight, int good)
2588 {
2589 	const struct inet_connection_sock *icsk = inet_csk(sk);
2590 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2591 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2592 }
2593 
2594 /* Restart timer after forward progress on connection.
2595  * RFC2988 recommends to restart timer to now+rto.
2596  */
2597 static void tcp_rearm_rto(struct sock *sk)
2598 {
2599 	struct tcp_sock *tp = tcp_sk(sk);
2600 
2601 	if (!tp->packets_out) {
2602 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2603 	} else {
2604 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2605 	}
2606 }
2607 
2608 /* If we get here, the whole TSO packet has not been acked. */
2609 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2610 {
2611 	struct tcp_sock *tp = tcp_sk(sk);
2612 	u32 packets_acked;
2613 
2614 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2615 
2616 	packets_acked = tcp_skb_pcount(skb);
2617 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2618 		return 0;
2619 	packets_acked -= tcp_skb_pcount(skb);
2620 
2621 	if (packets_acked) {
2622 		BUG_ON(tcp_skb_pcount(skb) == 0);
2623 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2624 	}
2625 
2626 	return packets_acked;
2627 }
2628 
2629 /* Remove acknowledged frames from the retransmission queue. If our packet
2630  * is before the ack sequence we can discard it as it's confirmed to have
2631  * arrived at the other end.
2632  */
2633 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p)
2634 {
2635 	struct tcp_sock *tp = tcp_sk(sk);
2636 	const struct inet_connection_sock *icsk = inet_csk(sk);
2637 	struct sk_buff *skb;
2638 	u32 now = tcp_time_stamp;
2639 	int fully_acked = 1;
2640 	int flag = 0;
2641 	int prior_packets = tp->packets_out;
2642 	s32 seq_rtt = -1;
2643 	ktime_t last_ackt = net_invalid_timestamp();
2644 
2645 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2646 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2647 		u32 end_seq;
2648 		u32 packets_acked;
2649 		u8 sacked = scb->sacked;
2650 
2651 		if (after(scb->end_seq, tp->snd_una)) {
2652 			if (tcp_skb_pcount(skb) == 1 ||
2653 			    !after(tp->snd_una, scb->seq))
2654 				break;
2655 
2656 			packets_acked = tcp_tso_acked(sk, skb);
2657 			if (!packets_acked)
2658 				break;
2659 
2660 			fully_acked = 0;
2661 			end_seq = tp->snd_una;
2662 		} else {
2663 			packets_acked = tcp_skb_pcount(skb);
2664 			end_seq = scb->end_seq;
2665 		}
2666 
2667 		/* MTU probing checks */
2668 		if (fully_acked && icsk->icsk_mtup.probe_size &&
2669 		    !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2670 			tcp_mtup_probe_success(sk, skb);
2671 		}
2672 
2673 		if (sacked) {
2674 			if (sacked & TCPCB_RETRANS) {
2675 				if (sacked & TCPCB_SACKED_RETRANS)
2676 					tp->retrans_out -= packets_acked;
2677 				flag |= FLAG_RETRANS_DATA_ACKED;
2678 				seq_rtt = -1;
2679 				if ((flag & FLAG_DATA_ACKED) ||
2680 				    (packets_acked > 1))
2681 					flag |= FLAG_NONHEAD_RETRANS_ACKED;
2682 			} else if (seq_rtt < 0) {
2683 				seq_rtt = now - scb->when;
2684 				if (fully_acked)
2685 					last_ackt = skb->tstamp;
2686 			}
2687 
2688 			if (sacked & TCPCB_SACKED_ACKED)
2689 				tp->sacked_out -= packets_acked;
2690 			if (sacked & TCPCB_LOST)
2691 				tp->lost_out -= packets_acked;
2692 
2693 			if ((sacked & TCPCB_URG) && tp->urg_mode &&
2694 			    !before(end_seq, tp->snd_up))
2695 				tp->urg_mode = 0;
2696 		} else if (seq_rtt < 0) {
2697 			seq_rtt = now - scb->when;
2698 			if (fully_acked)
2699 				last_ackt = skb->tstamp;
2700 		}
2701 		tp->packets_out -= packets_acked;
2702 
2703 		/* Initial outgoing SYN's get put onto the write_queue
2704 		 * just like anything else we transmit.  It is not
2705 		 * true data, and if we misinform our callers that
2706 		 * this ACK acks real data, we will erroneously exit
2707 		 * connection startup slow start one packet too
2708 		 * quickly.  This is severely frowned upon behavior.
2709 		 */
2710 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2711 			flag |= FLAG_DATA_ACKED;
2712 		} else {
2713 			flag |= FLAG_SYN_ACKED;
2714 			tp->retrans_stamp = 0;
2715 		}
2716 
2717 		if (!fully_acked)
2718 			break;
2719 
2720 		tcp_unlink_write_queue(skb, sk);
2721 		sk_stream_free_skb(sk, skb);
2722 		tcp_clear_all_retrans_hints(tp);
2723 	}
2724 
2725 	if (flag & FLAG_ACKED) {
2726 		u32 pkts_acked = prior_packets - tp->packets_out;
2727 		const struct tcp_congestion_ops *ca_ops
2728 			= inet_csk(sk)->icsk_ca_ops;
2729 
2730 		tcp_ack_update_rtt(sk, flag, seq_rtt);
2731 		tcp_rearm_rto(sk);
2732 
2733 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2734 		/* hint's skb might be NULL but we don't need to care */
2735 		tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2736 					       tp->fastpath_cnt_hint);
2737 		if (tcp_is_reno(tp))
2738 			tcp_remove_reno_sacks(sk, pkts_acked);
2739 
2740 		if (ca_ops->pkts_acked) {
2741 			s32 rtt_us = -1;
2742 
2743 			/* Is the ACK triggering packet unambiguous? */
2744 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2745 				/* High resolution needed and available? */
2746 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2747 				    !ktime_equal(last_ackt,
2748 						 net_invalid_timestamp()))
2749 					rtt_us = ktime_us_delta(ktime_get_real(),
2750 								last_ackt);
2751 				else if (seq_rtt > 0)
2752 					rtt_us = jiffies_to_usecs(seq_rtt);
2753 			}
2754 
2755 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2756 		}
2757 	}
2758 
2759 #if FASTRETRANS_DEBUG > 0
2760 	BUG_TRAP((int)tp->sacked_out >= 0);
2761 	BUG_TRAP((int)tp->lost_out >= 0);
2762 	BUG_TRAP((int)tp->retrans_out >= 0);
2763 	if (!tp->packets_out && tcp_is_sack(tp)) {
2764 		icsk = inet_csk(sk);
2765 		if (tp->lost_out) {
2766 			printk(KERN_DEBUG "Leak l=%u %d\n",
2767 			       tp->lost_out, icsk->icsk_ca_state);
2768 			tp->lost_out = 0;
2769 		}
2770 		if (tp->sacked_out) {
2771 			printk(KERN_DEBUG "Leak s=%u %d\n",
2772 			       tp->sacked_out, icsk->icsk_ca_state);
2773 			tp->sacked_out = 0;
2774 		}
2775 		if (tp->retrans_out) {
2776 			printk(KERN_DEBUG "Leak r=%u %d\n",
2777 			       tp->retrans_out, icsk->icsk_ca_state);
2778 			tp->retrans_out = 0;
2779 		}
2780 	}
2781 #endif
2782 	*seq_rtt_p = seq_rtt;
2783 	return flag;
2784 }
2785 
2786 static void tcp_ack_probe(struct sock *sk)
2787 {
2788 	const struct tcp_sock *tp = tcp_sk(sk);
2789 	struct inet_connection_sock *icsk = inet_csk(sk);
2790 
2791 	/* Was it a usable window open? */
2792 
2793 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2794 		   tp->snd_una + tp->snd_wnd)) {
2795 		icsk->icsk_backoff = 0;
2796 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2797 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2798 		 * This function is not for random using!
2799 		 */
2800 	} else {
2801 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2802 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2803 					  TCP_RTO_MAX);
2804 	}
2805 }
2806 
2807 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2808 {
2809 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2810 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2811 }
2812 
2813 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2814 {
2815 	const struct tcp_sock *tp = tcp_sk(sk);
2816 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2817 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2818 }
2819 
2820 /* Check that window update is acceptable.
2821  * The function assumes that snd_una<=ack<=snd_next.
2822  */
2823 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2824 					const u32 ack_seq, const u32 nwin)
2825 {
2826 	return (after(ack, tp->snd_una) ||
2827 		after(ack_seq, tp->snd_wl1) ||
2828 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2829 }
2830 
2831 /* Update our send window.
2832  *
2833  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2834  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2835  */
2836 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2837 				 u32 ack_seq)
2838 {
2839 	struct tcp_sock *tp = tcp_sk(sk);
2840 	int flag = 0;
2841 	u32 nwin = ntohs(tcp_hdr(skb)->window);
2842 
2843 	if (likely(!tcp_hdr(skb)->syn))
2844 		nwin <<= tp->rx_opt.snd_wscale;
2845 
2846 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2847 		flag |= FLAG_WIN_UPDATE;
2848 		tcp_update_wl(tp, ack, ack_seq);
2849 
2850 		if (tp->snd_wnd != nwin) {
2851 			tp->snd_wnd = nwin;
2852 
2853 			/* Note, it is the only place, where
2854 			 * fast path is recovered for sending TCP.
2855 			 */
2856 			tp->pred_flags = 0;
2857 			tcp_fast_path_check(sk);
2858 
2859 			if (nwin > tp->max_window) {
2860 				tp->max_window = nwin;
2861 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2862 			}
2863 		}
2864 	}
2865 
2866 	tp->snd_una = ack;
2867 
2868 	return flag;
2869 }
2870 
2871 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2872  * continue in congestion avoidance.
2873  */
2874 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2875 {
2876 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2877 	tp->snd_cwnd_cnt = 0;
2878 	tp->bytes_acked = 0;
2879 	TCP_ECN_queue_cwr(tp);
2880 	tcp_moderate_cwnd(tp);
2881 }
2882 
2883 /* A conservative spurious RTO response algorithm: reduce cwnd using
2884  * rate halving and continue in congestion avoidance.
2885  */
2886 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2887 {
2888 	tcp_enter_cwr(sk, 0);
2889 }
2890 
2891 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2892 {
2893 	if (flag&FLAG_ECE)
2894 		tcp_ratehalving_spur_to_response(sk);
2895 	else
2896 		tcp_undo_cwr(sk, 1);
2897 }
2898 
2899 /* F-RTO spurious RTO detection algorithm (RFC4138)
2900  *
2901  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2902  * comments). State (ACK number) is kept in frto_counter. When ACK advances
2903  * window (but not to or beyond highest sequence sent before RTO):
2904  *   On First ACK,  send two new segments out.
2905  *   On Second ACK, RTO was likely spurious. Do spurious response (response
2906  *                  algorithm is not part of the F-RTO detection algorithm
2907  *                  given in RFC4138 but can be selected separately).
2908  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2909  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2910  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2911  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2912  *
2913  * Rationale: if the RTO was spurious, new ACKs should arrive from the
2914  * original window even after we transmit two new data segments.
2915  *
2916  * SACK version:
2917  *   on first step, wait until first cumulative ACK arrives, then move to
2918  *   the second step. In second step, the next ACK decides.
2919  *
2920  * F-RTO is implemented (mainly) in four functions:
2921  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
2922  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2923  *     called when tcp_use_frto() showed green light
2924  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2925  *   - tcp_enter_frto_loss() is called if there is not enough evidence
2926  *     to prove that the RTO is indeed spurious. It transfers the control
2927  *     from F-RTO to the conventional RTO recovery
2928  */
2929 static int tcp_process_frto(struct sock *sk, int flag)
2930 {
2931 	struct tcp_sock *tp = tcp_sk(sk);
2932 
2933 	tcp_verify_left_out(tp);
2934 
2935 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
2936 	if (flag&FLAG_DATA_ACKED)
2937 		inet_csk(sk)->icsk_retransmits = 0;
2938 
2939 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2940 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2941 		tp->undo_marker = 0;
2942 
2943 	if (!before(tp->snd_una, tp->frto_highmark)) {
2944 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2945 		return 1;
2946 	}
2947 
2948 	if (!IsSackFrto() || tcp_is_reno(tp)) {
2949 		/* RFC4138 shortcoming in step 2; should also have case c):
2950 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
2951 		 * data, winupdate
2952 		 */
2953 		if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2954 			return 1;
2955 
2956 		if (!(flag&FLAG_DATA_ACKED)) {
2957 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2958 					    flag);
2959 			return 1;
2960 		}
2961 	} else {
2962 		if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2963 			/* Prevent sending of new data. */
2964 			tp->snd_cwnd = min(tp->snd_cwnd,
2965 					   tcp_packets_in_flight(tp));
2966 			return 1;
2967 		}
2968 
2969 		if ((tp->frto_counter >= 2) &&
2970 		    (!(flag&FLAG_FORWARD_PROGRESS) ||
2971 		     ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2972 			/* RFC4138 shortcoming (see comment above) */
2973 			if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2974 				return 1;
2975 
2976 			tcp_enter_frto_loss(sk, 3, flag);
2977 			return 1;
2978 		}
2979 	}
2980 
2981 	if (tp->frto_counter == 1) {
2982 		/* Sending of the next skb must be allowed or no F-RTO */
2983 		if (!tcp_send_head(sk) ||
2984 		    after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2985 				     tp->snd_una + tp->snd_wnd)) {
2986 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2987 					    flag);
2988 			return 1;
2989 		}
2990 
2991 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2992 		tp->frto_counter = 2;
2993 		return 1;
2994 	} else {
2995 		switch (sysctl_tcp_frto_response) {
2996 		case 2:
2997 			tcp_undo_spur_to_response(sk, flag);
2998 			break;
2999 		case 1:
3000 			tcp_conservative_spur_to_response(tp);
3001 			break;
3002 		default:
3003 			tcp_ratehalving_spur_to_response(sk);
3004 			break;
3005 		}
3006 		tp->frto_counter = 0;
3007 		tp->undo_marker = 0;
3008 		NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3009 	}
3010 	return 0;
3011 }
3012 
3013 /* This routine deals with incoming acks, but not outgoing ones. */
3014 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3015 {
3016 	struct inet_connection_sock *icsk = inet_csk(sk);
3017 	struct tcp_sock *tp = tcp_sk(sk);
3018 	u32 prior_snd_una = tp->snd_una;
3019 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3020 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3021 	u32 prior_in_flight;
3022 	s32 seq_rtt;
3023 	int prior_packets;
3024 	int frto_cwnd = 0;
3025 
3026 	/* If the ack is newer than sent or older than previous acks
3027 	 * then we can probably ignore it.
3028 	 */
3029 	if (after(ack, tp->snd_nxt))
3030 		goto uninteresting_ack;
3031 
3032 	if (before(ack, prior_snd_una))
3033 		goto old_ack;
3034 
3035 	if (after(ack, prior_snd_una))
3036 		flag |= FLAG_SND_UNA_ADVANCED;
3037 
3038 	if (sysctl_tcp_abc) {
3039 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3040 			tp->bytes_acked += ack - prior_snd_una;
3041 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3042 			/* we assume just one segment left network */
3043 			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3044 	}
3045 
3046 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3047 		/* Window is constant, pure forward advance.
3048 		 * No more checks are required.
3049 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3050 		 */
3051 		tcp_update_wl(tp, ack, ack_seq);
3052 		tp->snd_una = ack;
3053 		flag |= FLAG_WIN_UPDATE;
3054 
3055 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3056 
3057 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3058 	} else {
3059 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3060 			flag |= FLAG_DATA;
3061 		else
3062 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3063 
3064 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3065 
3066 		if (TCP_SKB_CB(skb)->sacked)
3067 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3068 
3069 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3070 			flag |= FLAG_ECE;
3071 
3072 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3073 	}
3074 
3075 	/* We passed data and got it acked, remove any soft error
3076 	 * log. Something worked...
3077 	 */
3078 	sk->sk_err_soft = 0;
3079 	tp->rcv_tstamp = tcp_time_stamp;
3080 	prior_packets = tp->packets_out;
3081 	if (!prior_packets)
3082 		goto no_queue;
3083 
3084 	prior_in_flight = tcp_packets_in_flight(tp);
3085 
3086 	/* See if we can take anything off of the retransmit queue. */
3087 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
3088 
3089 	/* Guarantee sacktag reordering detection against wrap-arounds */
3090 	if (before(tp->frto_highmark, tp->snd_una))
3091 		tp->frto_highmark = 0;
3092 	if (tp->frto_counter)
3093 		frto_cwnd = tcp_process_frto(sk, flag);
3094 
3095 	if (tcp_ack_is_dubious(sk, flag)) {
3096 		/* Advance CWND, if state allows this. */
3097 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3098 		    tcp_may_raise_cwnd(sk, flag))
3099 			tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3100 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3101 	} else {
3102 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3103 			tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3104 	}
3105 
3106 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3107 		dst_confirm(sk->sk_dst_cache);
3108 
3109 	return 1;
3110 
3111 no_queue:
3112 	icsk->icsk_probes_out = 0;
3113 
3114 	/* If this ack opens up a zero window, clear backoff.  It was
3115 	 * being used to time the probes, and is probably far higher than
3116 	 * it needs to be for normal retransmission.
3117 	 */
3118 	if (tcp_send_head(sk))
3119 		tcp_ack_probe(sk);
3120 	return 1;
3121 
3122 old_ack:
3123 	if (TCP_SKB_CB(skb)->sacked)
3124 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3125 
3126 uninteresting_ack:
3127 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3128 	return 0;
3129 }
3130 
3131 
3132 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3133  * But, this can also be called on packets in the established flow when
3134  * the fast version below fails.
3135  */
3136 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3137 {
3138 	unsigned char *ptr;
3139 	struct tcphdr *th = tcp_hdr(skb);
3140 	int length=(th->doff*4)-sizeof(struct tcphdr);
3141 
3142 	ptr = (unsigned char *)(th + 1);
3143 	opt_rx->saw_tstamp = 0;
3144 
3145 	while (length > 0) {
3146 		int opcode=*ptr++;
3147 		int opsize;
3148 
3149 		switch (opcode) {
3150 			case TCPOPT_EOL:
3151 				return;
3152 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3153 				length--;
3154 				continue;
3155 			default:
3156 				opsize=*ptr++;
3157 				if (opsize < 2) /* "silly options" */
3158 					return;
3159 				if (opsize > length)
3160 					return;	/* don't parse partial options */
3161 				switch (opcode) {
3162 				case TCPOPT_MSS:
3163 					if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3164 						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3165 						if (in_mss) {
3166 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3167 								in_mss = opt_rx->user_mss;
3168 							opt_rx->mss_clamp = in_mss;
3169 						}
3170 					}
3171 					break;
3172 				case TCPOPT_WINDOW:
3173 					if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3174 						if (sysctl_tcp_window_scaling) {
3175 							__u8 snd_wscale = *(__u8 *) ptr;
3176 							opt_rx->wscale_ok = 1;
3177 							if (snd_wscale > 14) {
3178 								if (net_ratelimit())
3179 									printk(KERN_INFO "tcp_parse_options: Illegal window "
3180 									       "scaling value %d >14 received.\n",
3181 									       snd_wscale);
3182 								snd_wscale = 14;
3183 							}
3184 							opt_rx->snd_wscale = snd_wscale;
3185 						}
3186 					break;
3187 				case TCPOPT_TIMESTAMP:
3188 					if (opsize==TCPOLEN_TIMESTAMP) {
3189 						if ((estab && opt_rx->tstamp_ok) ||
3190 						    (!estab && sysctl_tcp_timestamps)) {
3191 							opt_rx->saw_tstamp = 1;
3192 							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3193 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3194 						}
3195 					}
3196 					break;
3197 				case TCPOPT_SACK_PERM:
3198 					if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3199 						if (sysctl_tcp_sack) {
3200 							opt_rx->sack_ok = 1;
3201 							tcp_sack_reset(opt_rx);
3202 						}
3203 					}
3204 					break;
3205 
3206 				case TCPOPT_SACK:
3207 					if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3208 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3209 					   opt_rx->sack_ok) {
3210 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3211 					}
3212 					break;
3213 #ifdef CONFIG_TCP_MD5SIG
3214 				case TCPOPT_MD5SIG:
3215 					/*
3216 					 * The MD5 Hash has already been
3217 					 * checked (see tcp_v{4,6}_do_rcv()).
3218 					 */
3219 					break;
3220 #endif
3221 				}
3222 
3223 				ptr+=opsize-2;
3224 				length-=opsize;
3225 		}
3226 	}
3227 }
3228 
3229 /* Fast parse options. This hopes to only see timestamps.
3230  * If it is wrong it falls back on tcp_parse_options().
3231  */
3232 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3233 				  struct tcp_sock *tp)
3234 {
3235 	if (th->doff == sizeof(struct tcphdr)>>2) {
3236 		tp->rx_opt.saw_tstamp = 0;
3237 		return 0;
3238 	} else if (tp->rx_opt.tstamp_ok &&
3239 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3240 		__be32 *ptr = (__be32 *)(th + 1);
3241 		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3242 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3243 			tp->rx_opt.saw_tstamp = 1;
3244 			++ptr;
3245 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3246 			++ptr;
3247 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3248 			return 1;
3249 		}
3250 	}
3251 	tcp_parse_options(skb, &tp->rx_opt, 1);
3252 	return 1;
3253 }
3254 
3255 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3256 {
3257 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3258 	tp->rx_opt.ts_recent_stamp = get_seconds();
3259 }
3260 
3261 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3262 {
3263 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3264 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3265 		 * extra check below makes sure this can only happen
3266 		 * for pure ACK frames.  -DaveM
3267 		 *
3268 		 * Not only, also it occurs for expired timestamps.
3269 		 */
3270 
3271 		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3272 		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3273 			tcp_store_ts_recent(tp);
3274 	}
3275 }
3276 
3277 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3278  *
3279  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3280  * it can pass through stack. So, the following predicate verifies that
3281  * this segment is not used for anything but congestion avoidance or
3282  * fast retransmit. Moreover, we even are able to eliminate most of such
3283  * second order effects, if we apply some small "replay" window (~RTO)
3284  * to timestamp space.
3285  *
3286  * All these measures still do not guarantee that we reject wrapped ACKs
3287  * on networks with high bandwidth, when sequence space is recycled fastly,
3288  * but it guarantees that such events will be very rare and do not affect
3289  * connection seriously. This doesn't look nice, but alas, PAWS is really
3290  * buggy extension.
3291  *
3292  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3293  * states that events when retransmit arrives after original data are rare.
3294  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3295  * the biggest problem on large power networks even with minor reordering.
3296  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3297  * up to bandwidth of 18Gigabit/sec. 8) ]
3298  */
3299 
3300 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3301 {
3302 	struct tcp_sock *tp = tcp_sk(sk);
3303 	struct tcphdr *th = tcp_hdr(skb);
3304 	u32 seq = TCP_SKB_CB(skb)->seq;
3305 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3306 
3307 	return (/* 1. Pure ACK with correct sequence number. */
3308 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3309 
3310 		/* 2. ... and duplicate ACK. */
3311 		ack == tp->snd_una &&
3312 
3313 		/* 3. ... and does not update window. */
3314 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3315 
3316 		/* 4. ... and sits in replay window. */
3317 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3318 }
3319 
3320 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3321 {
3322 	const struct tcp_sock *tp = tcp_sk(sk);
3323 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3324 		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3325 		!tcp_disordered_ack(sk, skb));
3326 }
3327 
3328 /* Check segment sequence number for validity.
3329  *
3330  * Segment controls are considered valid, if the segment
3331  * fits to the window after truncation to the window. Acceptability
3332  * of data (and SYN, FIN, of course) is checked separately.
3333  * See tcp_data_queue(), for example.
3334  *
3335  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3336  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3337  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3338  * (borrowed from freebsd)
3339  */
3340 
3341 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3342 {
3343 	return	!before(end_seq, tp->rcv_wup) &&
3344 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3345 }
3346 
3347 /* When we get a reset we do this. */
3348 static void tcp_reset(struct sock *sk)
3349 {
3350 	/* We want the right error as BSD sees it (and indeed as we do). */
3351 	switch (sk->sk_state) {
3352 		case TCP_SYN_SENT:
3353 			sk->sk_err = ECONNREFUSED;
3354 			break;
3355 		case TCP_CLOSE_WAIT:
3356 			sk->sk_err = EPIPE;
3357 			break;
3358 		case TCP_CLOSE:
3359 			return;
3360 		default:
3361 			sk->sk_err = ECONNRESET;
3362 	}
3363 
3364 	if (!sock_flag(sk, SOCK_DEAD))
3365 		sk->sk_error_report(sk);
3366 
3367 	tcp_done(sk);
3368 }
3369 
3370 /*
3371  * 	Process the FIN bit. This now behaves as it is supposed to work
3372  *	and the FIN takes effect when it is validly part of sequence
3373  *	space. Not before when we get holes.
3374  *
3375  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3376  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3377  *	TIME-WAIT)
3378  *
3379  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3380  *	close and we go into CLOSING (and later onto TIME-WAIT)
3381  *
3382  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3383  */
3384 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3385 {
3386 	struct tcp_sock *tp = tcp_sk(sk);
3387 
3388 	inet_csk_schedule_ack(sk);
3389 
3390 	sk->sk_shutdown |= RCV_SHUTDOWN;
3391 	sock_set_flag(sk, SOCK_DONE);
3392 
3393 	switch (sk->sk_state) {
3394 		case TCP_SYN_RECV:
3395 		case TCP_ESTABLISHED:
3396 			/* Move to CLOSE_WAIT */
3397 			tcp_set_state(sk, TCP_CLOSE_WAIT);
3398 			inet_csk(sk)->icsk_ack.pingpong = 1;
3399 			break;
3400 
3401 		case TCP_CLOSE_WAIT:
3402 		case TCP_CLOSING:
3403 			/* Received a retransmission of the FIN, do
3404 			 * nothing.
3405 			 */
3406 			break;
3407 		case TCP_LAST_ACK:
3408 			/* RFC793: Remain in the LAST-ACK state. */
3409 			break;
3410 
3411 		case TCP_FIN_WAIT1:
3412 			/* This case occurs when a simultaneous close
3413 			 * happens, we must ack the received FIN and
3414 			 * enter the CLOSING state.
3415 			 */
3416 			tcp_send_ack(sk);
3417 			tcp_set_state(sk, TCP_CLOSING);
3418 			break;
3419 		case TCP_FIN_WAIT2:
3420 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
3421 			tcp_send_ack(sk);
3422 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3423 			break;
3424 		default:
3425 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3426 			 * cases we should never reach this piece of code.
3427 			 */
3428 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3429 			       __FUNCTION__, sk->sk_state);
3430 			break;
3431 	}
3432 
3433 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3434 	 * Probably, we should reset in this case. For now drop them.
3435 	 */
3436 	__skb_queue_purge(&tp->out_of_order_queue);
3437 	if (tcp_is_sack(tp))
3438 		tcp_sack_reset(&tp->rx_opt);
3439 	sk_stream_mem_reclaim(sk);
3440 
3441 	if (!sock_flag(sk, SOCK_DEAD)) {
3442 		sk->sk_state_change(sk);
3443 
3444 		/* Do not send POLL_HUP for half duplex close. */
3445 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3446 		    sk->sk_state == TCP_CLOSE)
3447 			sk_wake_async(sk, 1, POLL_HUP);
3448 		else
3449 			sk_wake_async(sk, 1, POLL_IN);
3450 	}
3451 }
3452 
3453 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3454 {
3455 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3456 		if (before(seq, sp->start_seq))
3457 			sp->start_seq = seq;
3458 		if (after(end_seq, sp->end_seq))
3459 			sp->end_seq = end_seq;
3460 		return 1;
3461 	}
3462 	return 0;
3463 }
3464 
3465 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3466 {
3467 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3468 		if (before(seq, tp->rcv_nxt))
3469 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3470 		else
3471 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3472 
3473 		tp->rx_opt.dsack = 1;
3474 		tp->duplicate_sack[0].start_seq = seq;
3475 		tp->duplicate_sack[0].end_seq = end_seq;
3476 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3477 	}
3478 }
3479 
3480 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3481 {
3482 	if (!tp->rx_opt.dsack)
3483 		tcp_dsack_set(tp, seq, end_seq);
3484 	else
3485 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3486 }
3487 
3488 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3489 {
3490 	struct tcp_sock *tp = tcp_sk(sk);
3491 
3492 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3493 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3494 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3495 		tcp_enter_quickack_mode(sk);
3496 
3497 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3498 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3499 
3500 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3501 				end_seq = tp->rcv_nxt;
3502 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3503 		}
3504 	}
3505 
3506 	tcp_send_ack(sk);
3507 }
3508 
3509 /* These routines update the SACK block as out-of-order packets arrive or
3510  * in-order packets close up the sequence space.
3511  */
3512 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3513 {
3514 	int this_sack;
3515 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3516 	struct tcp_sack_block *swalk = sp+1;
3517 
3518 	/* See if the recent change to the first SACK eats into
3519 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3520 	 */
3521 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3522 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3523 			int i;
3524 
3525 			/* Zap SWALK, by moving every further SACK up by one slot.
3526 			 * Decrease num_sacks.
3527 			 */
3528 			tp->rx_opt.num_sacks--;
3529 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3530 			for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3531 				sp[i] = sp[i+1];
3532 			continue;
3533 		}
3534 		this_sack++, swalk++;
3535 	}
3536 }
3537 
3538 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3539 {
3540 	__u32 tmp;
3541 
3542 	tmp = sack1->start_seq;
3543 	sack1->start_seq = sack2->start_seq;
3544 	sack2->start_seq = tmp;
3545 
3546 	tmp = sack1->end_seq;
3547 	sack1->end_seq = sack2->end_seq;
3548 	sack2->end_seq = tmp;
3549 }
3550 
3551 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3552 {
3553 	struct tcp_sock *tp = tcp_sk(sk);
3554 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3555 	int cur_sacks = tp->rx_opt.num_sacks;
3556 	int this_sack;
3557 
3558 	if (!cur_sacks)
3559 		goto new_sack;
3560 
3561 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3562 		if (tcp_sack_extend(sp, seq, end_seq)) {
3563 			/* Rotate this_sack to the first one. */
3564 			for (; this_sack>0; this_sack--, sp--)
3565 				tcp_sack_swap(sp, sp-1);
3566 			if (cur_sacks > 1)
3567 				tcp_sack_maybe_coalesce(tp);
3568 			return;
3569 		}
3570 	}
3571 
3572 	/* Could not find an adjacent existing SACK, build a new one,
3573 	 * put it at the front, and shift everyone else down.  We
3574 	 * always know there is at least one SACK present already here.
3575 	 *
3576 	 * If the sack array is full, forget about the last one.
3577 	 */
3578 	if (this_sack >= 4) {
3579 		this_sack--;
3580 		tp->rx_opt.num_sacks--;
3581 		sp--;
3582 	}
3583 	for (; this_sack > 0; this_sack--, sp--)
3584 		*sp = *(sp-1);
3585 
3586 new_sack:
3587 	/* Build the new head SACK, and we're done. */
3588 	sp->start_seq = seq;
3589 	sp->end_seq = end_seq;
3590 	tp->rx_opt.num_sacks++;
3591 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3592 }
3593 
3594 /* RCV.NXT advances, some SACKs should be eaten. */
3595 
3596 static void tcp_sack_remove(struct tcp_sock *tp)
3597 {
3598 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3599 	int num_sacks = tp->rx_opt.num_sacks;
3600 	int this_sack;
3601 
3602 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3603 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3604 		tp->rx_opt.num_sacks = 0;
3605 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3606 		return;
3607 	}
3608 
3609 	for (this_sack = 0; this_sack < num_sacks; ) {
3610 		/* Check if the start of the sack is covered by RCV.NXT. */
3611 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3612 			int i;
3613 
3614 			/* RCV.NXT must cover all the block! */
3615 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3616 
3617 			/* Zap this SACK, by moving forward any other SACKS. */
3618 			for (i=this_sack+1; i < num_sacks; i++)
3619 				tp->selective_acks[i-1] = tp->selective_acks[i];
3620 			num_sacks--;
3621 			continue;
3622 		}
3623 		this_sack++;
3624 		sp++;
3625 	}
3626 	if (num_sacks != tp->rx_opt.num_sacks) {
3627 		tp->rx_opt.num_sacks = num_sacks;
3628 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3629 	}
3630 }
3631 
3632 /* This one checks to see if we can put data from the
3633  * out_of_order queue into the receive_queue.
3634  */
3635 static void tcp_ofo_queue(struct sock *sk)
3636 {
3637 	struct tcp_sock *tp = tcp_sk(sk);
3638 	__u32 dsack_high = tp->rcv_nxt;
3639 	struct sk_buff *skb;
3640 
3641 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3642 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3643 			break;
3644 
3645 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3646 			__u32 dsack = dsack_high;
3647 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3648 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3649 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3650 		}
3651 
3652 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3653 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3654 			__skb_unlink(skb, &tp->out_of_order_queue);
3655 			__kfree_skb(skb);
3656 			continue;
3657 		}
3658 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3659 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3660 			   TCP_SKB_CB(skb)->end_seq);
3661 
3662 		__skb_unlink(skb, &tp->out_of_order_queue);
3663 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3664 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3665 		if (tcp_hdr(skb)->fin)
3666 			tcp_fin(skb, sk, tcp_hdr(skb));
3667 	}
3668 }
3669 
3670 static int tcp_prune_queue(struct sock *sk);
3671 
3672 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3673 {
3674 	struct tcphdr *th = tcp_hdr(skb);
3675 	struct tcp_sock *tp = tcp_sk(sk);
3676 	int eaten = -1;
3677 
3678 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3679 		goto drop;
3680 
3681 	__skb_pull(skb, th->doff*4);
3682 
3683 	TCP_ECN_accept_cwr(tp, skb);
3684 
3685 	if (tp->rx_opt.dsack) {
3686 		tp->rx_opt.dsack = 0;
3687 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3688 						    4 - tp->rx_opt.tstamp_ok);
3689 	}
3690 
3691 	/*  Queue data for delivery to the user.
3692 	 *  Packets in sequence go to the receive queue.
3693 	 *  Out of sequence packets to the out_of_order_queue.
3694 	 */
3695 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3696 		if (tcp_receive_window(tp) == 0)
3697 			goto out_of_window;
3698 
3699 		/* Ok. In sequence. In window. */
3700 		if (tp->ucopy.task == current &&
3701 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3702 		    sock_owned_by_user(sk) && !tp->urg_data) {
3703 			int chunk = min_t(unsigned int, skb->len,
3704 							tp->ucopy.len);
3705 
3706 			__set_current_state(TASK_RUNNING);
3707 
3708 			local_bh_enable();
3709 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3710 				tp->ucopy.len -= chunk;
3711 				tp->copied_seq += chunk;
3712 				eaten = (chunk == skb->len && !th->fin);
3713 				tcp_rcv_space_adjust(sk);
3714 			}
3715 			local_bh_disable();
3716 		}
3717 
3718 		if (eaten <= 0) {
3719 queue_and_out:
3720 			if (eaten < 0 &&
3721 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3722 			     !sk_stream_rmem_schedule(sk, skb))) {
3723 				if (tcp_prune_queue(sk) < 0 ||
3724 				    !sk_stream_rmem_schedule(sk, skb))
3725 					goto drop;
3726 			}
3727 			sk_stream_set_owner_r(skb, sk);
3728 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3729 		}
3730 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3731 		if (skb->len)
3732 			tcp_event_data_recv(sk, skb);
3733 		if (th->fin)
3734 			tcp_fin(skb, sk, th);
3735 
3736 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3737 			tcp_ofo_queue(sk);
3738 
3739 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3740 			 * gap in queue is filled.
3741 			 */
3742 			if (skb_queue_empty(&tp->out_of_order_queue))
3743 				inet_csk(sk)->icsk_ack.pingpong = 0;
3744 		}
3745 
3746 		if (tp->rx_opt.num_sacks)
3747 			tcp_sack_remove(tp);
3748 
3749 		tcp_fast_path_check(sk);
3750 
3751 		if (eaten > 0)
3752 			__kfree_skb(skb);
3753 		else if (!sock_flag(sk, SOCK_DEAD))
3754 			sk->sk_data_ready(sk, 0);
3755 		return;
3756 	}
3757 
3758 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3759 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3760 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3761 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3762 
3763 out_of_window:
3764 		tcp_enter_quickack_mode(sk);
3765 		inet_csk_schedule_ack(sk);
3766 drop:
3767 		__kfree_skb(skb);
3768 		return;
3769 	}
3770 
3771 	/* Out of window. F.e. zero window probe. */
3772 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3773 		goto out_of_window;
3774 
3775 	tcp_enter_quickack_mode(sk);
3776 
3777 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3778 		/* Partial packet, seq < rcv_next < end_seq */
3779 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3780 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3781 			   TCP_SKB_CB(skb)->end_seq);
3782 
3783 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3784 
3785 		/* If window is closed, drop tail of packet. But after
3786 		 * remembering D-SACK for its head made in previous line.
3787 		 */
3788 		if (!tcp_receive_window(tp))
3789 			goto out_of_window;
3790 		goto queue_and_out;
3791 	}
3792 
3793 	TCP_ECN_check_ce(tp, skb);
3794 
3795 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3796 	    !sk_stream_rmem_schedule(sk, skb)) {
3797 		if (tcp_prune_queue(sk) < 0 ||
3798 		    !sk_stream_rmem_schedule(sk, skb))
3799 			goto drop;
3800 	}
3801 
3802 	/* Disable header prediction. */
3803 	tp->pred_flags = 0;
3804 	inet_csk_schedule_ack(sk);
3805 
3806 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3807 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3808 
3809 	sk_stream_set_owner_r(skb, sk);
3810 
3811 	if (!skb_peek(&tp->out_of_order_queue)) {
3812 		/* Initial out of order segment, build 1 SACK. */
3813 		if (tcp_is_sack(tp)) {
3814 			tp->rx_opt.num_sacks = 1;
3815 			tp->rx_opt.dsack     = 0;
3816 			tp->rx_opt.eff_sacks = 1;
3817 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3818 			tp->selective_acks[0].end_seq =
3819 						TCP_SKB_CB(skb)->end_seq;
3820 		}
3821 		__skb_queue_head(&tp->out_of_order_queue,skb);
3822 	} else {
3823 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3824 		u32 seq = TCP_SKB_CB(skb)->seq;
3825 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3826 
3827 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3828 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3829 
3830 			if (!tp->rx_opt.num_sacks ||
3831 			    tp->selective_acks[0].end_seq != seq)
3832 				goto add_sack;
3833 
3834 			/* Common case: data arrive in order after hole. */
3835 			tp->selective_acks[0].end_seq = end_seq;
3836 			return;
3837 		}
3838 
3839 		/* Find place to insert this segment. */
3840 		do {
3841 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3842 				break;
3843 		} while ((skb1 = skb1->prev) !=
3844 			 (struct sk_buff*)&tp->out_of_order_queue);
3845 
3846 		/* Do skb overlap to previous one? */
3847 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3848 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3849 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3850 				/* All the bits are present. Drop. */
3851 				__kfree_skb(skb);
3852 				tcp_dsack_set(tp, seq, end_seq);
3853 				goto add_sack;
3854 			}
3855 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3856 				/* Partial overlap. */
3857 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3858 			} else {
3859 				skb1 = skb1->prev;
3860 			}
3861 		}
3862 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3863 
3864 		/* And clean segments covered by new one as whole. */
3865 		while ((skb1 = skb->next) !=
3866 		       (struct sk_buff*)&tp->out_of_order_queue &&
3867 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3868 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3869 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3870 			       break;
3871 		       }
3872 		       __skb_unlink(skb1, &tp->out_of_order_queue);
3873 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3874 		       __kfree_skb(skb1);
3875 		}
3876 
3877 add_sack:
3878 		if (tcp_is_sack(tp))
3879 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3880 	}
3881 }
3882 
3883 /* Collapse contiguous sequence of skbs head..tail with
3884  * sequence numbers start..end.
3885  * Segments with FIN/SYN are not collapsed (only because this
3886  * simplifies code)
3887  */
3888 static void
3889 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3890 	     struct sk_buff *head, struct sk_buff *tail,
3891 	     u32 start, u32 end)
3892 {
3893 	struct sk_buff *skb;
3894 
3895 	/* First, check that queue is collapsible and find
3896 	 * the point where collapsing can be useful. */
3897 	for (skb = head; skb != tail; ) {
3898 		/* No new bits? It is possible on ofo queue. */
3899 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3900 			struct sk_buff *next = skb->next;
3901 			__skb_unlink(skb, list);
3902 			__kfree_skb(skb);
3903 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3904 			skb = next;
3905 			continue;
3906 		}
3907 
3908 		/* The first skb to collapse is:
3909 		 * - not SYN/FIN and
3910 		 * - bloated or contains data before "start" or
3911 		 *   overlaps to the next one.
3912 		 */
3913 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3914 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3915 		     before(TCP_SKB_CB(skb)->seq, start) ||
3916 		     (skb->next != tail &&
3917 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3918 			break;
3919 
3920 		/* Decided to skip this, advance start seq. */
3921 		start = TCP_SKB_CB(skb)->end_seq;
3922 		skb = skb->next;
3923 	}
3924 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3925 		return;
3926 
3927 	while (before(start, end)) {
3928 		struct sk_buff *nskb;
3929 		unsigned int header = skb_headroom(skb);
3930 		int copy = SKB_MAX_ORDER(header, 0);
3931 
3932 		/* Too big header? This can happen with IPv6. */
3933 		if (copy < 0)
3934 			return;
3935 		if (end-start < copy)
3936 			copy = end-start;
3937 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3938 		if (!nskb)
3939 			return;
3940 
3941 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3942 		skb_set_network_header(nskb, (skb_network_header(skb) -
3943 					      skb->head));
3944 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
3945 						skb->head));
3946 		skb_reserve(nskb, header);
3947 		memcpy(nskb->head, skb->head, header);
3948 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3949 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3950 		__skb_insert(nskb, skb->prev, skb, list);
3951 		sk_stream_set_owner_r(nskb, sk);
3952 
3953 		/* Copy data, releasing collapsed skbs. */
3954 		while (copy > 0) {
3955 			int offset = start - TCP_SKB_CB(skb)->seq;
3956 			int size = TCP_SKB_CB(skb)->end_seq - start;
3957 
3958 			BUG_ON(offset < 0);
3959 			if (size > 0) {
3960 				size = min(copy, size);
3961 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3962 					BUG();
3963 				TCP_SKB_CB(nskb)->end_seq += size;
3964 				copy -= size;
3965 				start += size;
3966 			}
3967 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3968 				struct sk_buff *next = skb->next;
3969 				__skb_unlink(skb, list);
3970 				__kfree_skb(skb);
3971 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3972 				skb = next;
3973 				if (skb == tail ||
3974 				    tcp_hdr(skb)->syn ||
3975 				    tcp_hdr(skb)->fin)
3976 					return;
3977 			}
3978 		}
3979 	}
3980 }
3981 
3982 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3983  * and tcp_collapse() them until all the queue is collapsed.
3984  */
3985 static void tcp_collapse_ofo_queue(struct sock *sk)
3986 {
3987 	struct tcp_sock *tp = tcp_sk(sk);
3988 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3989 	struct sk_buff *head;
3990 	u32 start, end;
3991 
3992 	if (skb == NULL)
3993 		return;
3994 
3995 	start = TCP_SKB_CB(skb)->seq;
3996 	end = TCP_SKB_CB(skb)->end_seq;
3997 	head = skb;
3998 
3999 	for (;;) {
4000 		skb = skb->next;
4001 
4002 		/* Segment is terminated when we see gap or when
4003 		 * we are at the end of all the queue. */
4004 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
4005 		    after(TCP_SKB_CB(skb)->seq, end) ||
4006 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4007 			tcp_collapse(sk, &tp->out_of_order_queue,
4008 				     head, skb, start, end);
4009 			head = skb;
4010 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
4011 				break;
4012 			/* Start new segment */
4013 			start = TCP_SKB_CB(skb)->seq;
4014 			end = TCP_SKB_CB(skb)->end_seq;
4015 		} else {
4016 			if (before(TCP_SKB_CB(skb)->seq, start))
4017 				start = TCP_SKB_CB(skb)->seq;
4018 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4019 				end = TCP_SKB_CB(skb)->end_seq;
4020 		}
4021 	}
4022 }
4023 
4024 /* Reduce allocated memory if we can, trying to get
4025  * the socket within its memory limits again.
4026  *
4027  * Return less than zero if we should start dropping frames
4028  * until the socket owning process reads some of the data
4029  * to stabilize the situation.
4030  */
4031 static int tcp_prune_queue(struct sock *sk)
4032 {
4033 	struct tcp_sock *tp = tcp_sk(sk);
4034 
4035 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4036 
4037 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4038 
4039 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4040 		tcp_clamp_window(sk);
4041 	else if (tcp_memory_pressure)
4042 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4043 
4044 	tcp_collapse_ofo_queue(sk);
4045 	tcp_collapse(sk, &sk->sk_receive_queue,
4046 		     sk->sk_receive_queue.next,
4047 		     (struct sk_buff*)&sk->sk_receive_queue,
4048 		     tp->copied_seq, tp->rcv_nxt);
4049 	sk_stream_mem_reclaim(sk);
4050 
4051 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4052 		return 0;
4053 
4054 	/* Collapsing did not help, destructive actions follow.
4055 	 * This must not ever occur. */
4056 
4057 	/* First, purge the out_of_order queue. */
4058 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4059 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4060 		__skb_queue_purge(&tp->out_of_order_queue);
4061 
4062 		/* Reset SACK state.  A conforming SACK implementation will
4063 		 * do the same at a timeout based retransmit.  When a connection
4064 		 * is in a sad state like this, we care only about integrity
4065 		 * of the connection not performance.
4066 		 */
4067 		if (tcp_is_sack(tp))
4068 			tcp_sack_reset(&tp->rx_opt);
4069 		sk_stream_mem_reclaim(sk);
4070 	}
4071 
4072 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4073 		return 0;
4074 
4075 	/* If we are really being abused, tell the caller to silently
4076 	 * drop receive data on the floor.  It will get retransmitted
4077 	 * and hopefully then we'll have sufficient space.
4078 	 */
4079 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4080 
4081 	/* Massive buffer overcommit. */
4082 	tp->pred_flags = 0;
4083 	return -1;
4084 }
4085 
4086 
4087 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4088  * As additional protections, we do not touch cwnd in retransmission phases,
4089  * and if application hit its sndbuf limit recently.
4090  */
4091 void tcp_cwnd_application_limited(struct sock *sk)
4092 {
4093 	struct tcp_sock *tp = tcp_sk(sk);
4094 
4095 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4096 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4097 		/* Limited by application or receiver window. */
4098 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4099 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4100 		if (win_used < tp->snd_cwnd) {
4101 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4102 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4103 		}
4104 		tp->snd_cwnd_used = 0;
4105 	}
4106 	tp->snd_cwnd_stamp = tcp_time_stamp;
4107 }
4108 
4109 static int tcp_should_expand_sndbuf(struct sock *sk)
4110 {
4111 	struct tcp_sock *tp = tcp_sk(sk);
4112 
4113 	/* If the user specified a specific send buffer setting, do
4114 	 * not modify it.
4115 	 */
4116 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4117 		return 0;
4118 
4119 	/* If we are under global TCP memory pressure, do not expand.  */
4120 	if (tcp_memory_pressure)
4121 		return 0;
4122 
4123 	/* If we are under soft global TCP memory pressure, do not expand.  */
4124 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4125 		return 0;
4126 
4127 	/* If we filled the congestion window, do not expand.  */
4128 	if (tp->packets_out >= tp->snd_cwnd)
4129 		return 0;
4130 
4131 	return 1;
4132 }
4133 
4134 /* When incoming ACK allowed to free some skb from write_queue,
4135  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4136  * on the exit from tcp input handler.
4137  *
4138  * PROBLEM: sndbuf expansion does not work well with largesend.
4139  */
4140 static void tcp_new_space(struct sock *sk)
4141 {
4142 	struct tcp_sock *tp = tcp_sk(sk);
4143 
4144 	if (tcp_should_expand_sndbuf(sk)) {
4145 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4146 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4147 		    demanded = max_t(unsigned int, tp->snd_cwnd,
4148 						   tp->reordering + 1);
4149 		sndmem *= 2*demanded;
4150 		if (sndmem > sk->sk_sndbuf)
4151 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4152 		tp->snd_cwnd_stamp = tcp_time_stamp;
4153 	}
4154 
4155 	sk->sk_write_space(sk);
4156 }
4157 
4158 static void tcp_check_space(struct sock *sk)
4159 {
4160 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4161 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4162 		if (sk->sk_socket &&
4163 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4164 			tcp_new_space(sk);
4165 	}
4166 }
4167 
4168 static inline void tcp_data_snd_check(struct sock *sk)
4169 {
4170 	tcp_push_pending_frames(sk);
4171 	tcp_check_space(sk);
4172 }
4173 
4174 /*
4175  * Check if sending an ack is needed.
4176  */
4177 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4178 {
4179 	struct tcp_sock *tp = tcp_sk(sk);
4180 
4181 	    /* More than one full frame received... */
4182 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4183 	     /* ... and right edge of window advances far enough.
4184 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4185 	      */
4186 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4187 	    /* We ACK each frame or... */
4188 	    tcp_in_quickack_mode(sk) ||
4189 	    /* We have out of order data. */
4190 	    (ofo_possible &&
4191 	     skb_peek(&tp->out_of_order_queue))) {
4192 		/* Then ack it now */
4193 		tcp_send_ack(sk);
4194 	} else {
4195 		/* Else, send delayed ack. */
4196 		tcp_send_delayed_ack(sk);
4197 	}
4198 }
4199 
4200 static inline void tcp_ack_snd_check(struct sock *sk)
4201 {
4202 	if (!inet_csk_ack_scheduled(sk)) {
4203 		/* We sent a data segment already. */
4204 		return;
4205 	}
4206 	__tcp_ack_snd_check(sk, 1);
4207 }
4208 
4209 /*
4210  *	This routine is only called when we have urgent data
4211  *	signaled. Its the 'slow' part of tcp_urg. It could be
4212  *	moved inline now as tcp_urg is only called from one
4213  *	place. We handle URGent data wrong. We have to - as
4214  *	BSD still doesn't use the correction from RFC961.
4215  *	For 1003.1g we should support a new option TCP_STDURG to permit
4216  *	either form (or just set the sysctl tcp_stdurg).
4217  */
4218 
4219 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4220 {
4221 	struct tcp_sock *tp = tcp_sk(sk);
4222 	u32 ptr = ntohs(th->urg_ptr);
4223 
4224 	if (ptr && !sysctl_tcp_stdurg)
4225 		ptr--;
4226 	ptr += ntohl(th->seq);
4227 
4228 	/* Ignore urgent data that we've already seen and read. */
4229 	if (after(tp->copied_seq, ptr))
4230 		return;
4231 
4232 	/* Do not replay urg ptr.
4233 	 *
4234 	 * NOTE: interesting situation not covered by specs.
4235 	 * Misbehaving sender may send urg ptr, pointing to segment,
4236 	 * which we already have in ofo queue. We are not able to fetch
4237 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4238 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4239 	 * situations. But it is worth to think about possibility of some
4240 	 * DoSes using some hypothetical application level deadlock.
4241 	 */
4242 	if (before(ptr, tp->rcv_nxt))
4243 		return;
4244 
4245 	/* Do we already have a newer (or duplicate) urgent pointer? */
4246 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4247 		return;
4248 
4249 	/* Tell the world about our new urgent pointer. */
4250 	sk_send_sigurg(sk);
4251 
4252 	/* We may be adding urgent data when the last byte read was
4253 	 * urgent. To do this requires some care. We cannot just ignore
4254 	 * tp->copied_seq since we would read the last urgent byte again
4255 	 * as data, nor can we alter copied_seq until this data arrives
4256 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4257 	 *
4258 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4259 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4260 	 * and expect that both A and B disappear from stream. This is _wrong_.
4261 	 * Though this happens in BSD with high probability, this is occasional.
4262 	 * Any application relying on this is buggy. Note also, that fix "works"
4263 	 * only in this artificial test. Insert some normal data between A and B and we will
4264 	 * decline of BSD again. Verdict: it is better to remove to trap
4265 	 * buggy users.
4266 	 */
4267 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4268 	    !sock_flag(sk, SOCK_URGINLINE) &&
4269 	    tp->copied_seq != tp->rcv_nxt) {
4270 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4271 		tp->copied_seq++;
4272 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4273 			__skb_unlink(skb, &sk->sk_receive_queue);
4274 			__kfree_skb(skb);
4275 		}
4276 	}
4277 
4278 	tp->urg_data   = TCP_URG_NOTYET;
4279 	tp->urg_seq    = ptr;
4280 
4281 	/* Disable header prediction. */
4282 	tp->pred_flags = 0;
4283 }
4284 
4285 /* This is the 'fast' part of urgent handling. */
4286 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4287 {
4288 	struct tcp_sock *tp = tcp_sk(sk);
4289 
4290 	/* Check if we get a new urgent pointer - normally not. */
4291 	if (th->urg)
4292 		tcp_check_urg(sk,th);
4293 
4294 	/* Do we wait for any urgent data? - normally not... */
4295 	if (tp->urg_data == TCP_URG_NOTYET) {
4296 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4297 			  th->syn;
4298 
4299 		/* Is the urgent pointer pointing into this packet? */
4300 		if (ptr < skb->len) {
4301 			u8 tmp;
4302 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4303 				BUG();
4304 			tp->urg_data = TCP_URG_VALID | tmp;
4305 			if (!sock_flag(sk, SOCK_DEAD))
4306 				sk->sk_data_ready(sk, 0);
4307 		}
4308 	}
4309 }
4310 
4311 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4312 {
4313 	struct tcp_sock *tp = tcp_sk(sk);
4314 	int chunk = skb->len - hlen;
4315 	int err;
4316 
4317 	local_bh_enable();
4318 	if (skb_csum_unnecessary(skb))
4319 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4320 	else
4321 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4322 						       tp->ucopy.iov);
4323 
4324 	if (!err) {
4325 		tp->ucopy.len -= chunk;
4326 		tp->copied_seq += chunk;
4327 		tcp_rcv_space_adjust(sk);
4328 	}
4329 
4330 	local_bh_disable();
4331 	return err;
4332 }
4333 
4334 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4335 {
4336 	__sum16 result;
4337 
4338 	if (sock_owned_by_user(sk)) {
4339 		local_bh_enable();
4340 		result = __tcp_checksum_complete(skb);
4341 		local_bh_disable();
4342 	} else {
4343 		result = __tcp_checksum_complete(skb);
4344 	}
4345 	return result;
4346 }
4347 
4348 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4349 {
4350 	return !skb_csum_unnecessary(skb) &&
4351 		__tcp_checksum_complete_user(sk, skb);
4352 }
4353 
4354 #ifdef CONFIG_NET_DMA
4355 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4356 {
4357 	struct tcp_sock *tp = tcp_sk(sk);
4358 	int chunk = skb->len - hlen;
4359 	int dma_cookie;
4360 	int copied_early = 0;
4361 
4362 	if (tp->ucopy.wakeup)
4363 		return 0;
4364 
4365 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4366 		tp->ucopy.dma_chan = get_softnet_dma();
4367 
4368 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4369 
4370 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4371 			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4372 
4373 		if (dma_cookie < 0)
4374 			goto out;
4375 
4376 		tp->ucopy.dma_cookie = dma_cookie;
4377 		copied_early = 1;
4378 
4379 		tp->ucopy.len -= chunk;
4380 		tp->copied_seq += chunk;
4381 		tcp_rcv_space_adjust(sk);
4382 
4383 		if ((tp->ucopy.len == 0) ||
4384 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4385 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4386 			tp->ucopy.wakeup = 1;
4387 			sk->sk_data_ready(sk, 0);
4388 		}
4389 	} else if (chunk > 0) {
4390 		tp->ucopy.wakeup = 1;
4391 		sk->sk_data_ready(sk, 0);
4392 	}
4393 out:
4394 	return copied_early;
4395 }
4396 #endif /* CONFIG_NET_DMA */
4397 
4398 /*
4399  *	TCP receive function for the ESTABLISHED state.
4400  *
4401  *	It is split into a fast path and a slow path. The fast path is
4402  * 	disabled when:
4403  *	- A zero window was announced from us - zero window probing
4404  *        is only handled properly in the slow path.
4405  *	- Out of order segments arrived.
4406  *	- Urgent data is expected.
4407  *	- There is no buffer space left
4408  *	- Unexpected TCP flags/window values/header lengths are received
4409  *	  (detected by checking the TCP header against pred_flags)
4410  *	- Data is sent in both directions. Fast path only supports pure senders
4411  *	  or pure receivers (this means either the sequence number or the ack
4412  *	  value must stay constant)
4413  *	- Unexpected TCP option.
4414  *
4415  *	When these conditions are not satisfied it drops into a standard
4416  *	receive procedure patterned after RFC793 to handle all cases.
4417  *	The first three cases are guaranteed by proper pred_flags setting,
4418  *	the rest is checked inline. Fast processing is turned on in
4419  *	tcp_data_queue when everything is OK.
4420  */
4421 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4422 			struct tcphdr *th, unsigned len)
4423 {
4424 	struct tcp_sock *tp = tcp_sk(sk);
4425 
4426 	/*
4427 	 *	Header prediction.
4428 	 *	The code loosely follows the one in the famous
4429 	 *	"30 instruction TCP receive" Van Jacobson mail.
4430 	 *
4431 	 *	Van's trick is to deposit buffers into socket queue
4432 	 *	on a device interrupt, to call tcp_recv function
4433 	 *	on the receive process context and checksum and copy
4434 	 *	the buffer to user space. smart...
4435 	 *
4436 	 *	Our current scheme is not silly either but we take the
4437 	 *	extra cost of the net_bh soft interrupt processing...
4438 	 *	We do checksum and copy also but from device to kernel.
4439 	 */
4440 
4441 	tp->rx_opt.saw_tstamp = 0;
4442 
4443 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4444 	 *	if header_prediction is to be made
4445 	 *	'S' will always be tp->tcp_header_len >> 2
4446 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4447 	 *  turn it off	(when there are holes in the receive
4448 	 *	 space for instance)
4449 	 *	PSH flag is ignored.
4450 	 */
4451 
4452 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4453 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4454 		int tcp_header_len = tp->tcp_header_len;
4455 
4456 		/* Timestamp header prediction: tcp_header_len
4457 		 * is automatically equal to th->doff*4 due to pred_flags
4458 		 * match.
4459 		 */
4460 
4461 		/* Check timestamp */
4462 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4463 			__be32 *ptr = (__be32 *)(th + 1);
4464 
4465 			/* No? Slow path! */
4466 			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4467 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4468 				goto slow_path;
4469 
4470 			tp->rx_opt.saw_tstamp = 1;
4471 			++ptr;
4472 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4473 			++ptr;
4474 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4475 
4476 			/* If PAWS failed, check it more carefully in slow path */
4477 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4478 				goto slow_path;
4479 
4480 			/* DO NOT update ts_recent here, if checksum fails
4481 			 * and timestamp was corrupted part, it will result
4482 			 * in a hung connection since we will drop all
4483 			 * future packets due to the PAWS test.
4484 			 */
4485 		}
4486 
4487 		if (len <= tcp_header_len) {
4488 			/* Bulk data transfer: sender */
4489 			if (len == tcp_header_len) {
4490 				/* Predicted packet is in window by definition.
4491 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4492 				 * Hence, check seq<=rcv_wup reduces to:
4493 				 */
4494 				if (tcp_header_len ==
4495 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4496 				    tp->rcv_nxt == tp->rcv_wup)
4497 					tcp_store_ts_recent(tp);
4498 
4499 				/* We know that such packets are checksummed
4500 				 * on entry.
4501 				 */
4502 				tcp_ack(sk, skb, 0);
4503 				__kfree_skb(skb);
4504 				tcp_data_snd_check(sk);
4505 				return 0;
4506 			} else { /* Header too small */
4507 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4508 				goto discard;
4509 			}
4510 		} else {
4511 			int eaten = 0;
4512 			int copied_early = 0;
4513 
4514 			if (tp->copied_seq == tp->rcv_nxt &&
4515 			    len - tcp_header_len <= tp->ucopy.len) {
4516 #ifdef CONFIG_NET_DMA
4517 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4518 					copied_early = 1;
4519 					eaten = 1;
4520 				}
4521 #endif
4522 				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4523 					__set_current_state(TASK_RUNNING);
4524 
4525 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4526 						eaten = 1;
4527 				}
4528 				if (eaten) {
4529 					/* Predicted packet is in window by definition.
4530 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4531 					 * Hence, check seq<=rcv_wup reduces to:
4532 					 */
4533 					if (tcp_header_len ==
4534 					    (sizeof(struct tcphdr) +
4535 					     TCPOLEN_TSTAMP_ALIGNED) &&
4536 					    tp->rcv_nxt == tp->rcv_wup)
4537 						tcp_store_ts_recent(tp);
4538 
4539 					tcp_rcv_rtt_measure_ts(sk, skb);
4540 
4541 					__skb_pull(skb, tcp_header_len);
4542 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4543 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4544 				}
4545 				if (copied_early)
4546 					tcp_cleanup_rbuf(sk, skb->len);
4547 			}
4548 			if (!eaten) {
4549 				if (tcp_checksum_complete_user(sk, skb))
4550 					goto csum_error;
4551 
4552 				/* Predicted packet is in window by definition.
4553 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4554 				 * Hence, check seq<=rcv_wup reduces to:
4555 				 */
4556 				if (tcp_header_len ==
4557 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4558 				    tp->rcv_nxt == tp->rcv_wup)
4559 					tcp_store_ts_recent(tp);
4560 
4561 				tcp_rcv_rtt_measure_ts(sk, skb);
4562 
4563 				if ((int)skb->truesize > sk->sk_forward_alloc)
4564 					goto step5;
4565 
4566 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4567 
4568 				/* Bulk data transfer: receiver */
4569 				__skb_pull(skb,tcp_header_len);
4570 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4571 				sk_stream_set_owner_r(skb, sk);
4572 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4573 			}
4574 
4575 			tcp_event_data_recv(sk, skb);
4576 
4577 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4578 				/* Well, only one small jumplet in fast path... */
4579 				tcp_ack(sk, skb, FLAG_DATA);
4580 				tcp_data_snd_check(sk);
4581 				if (!inet_csk_ack_scheduled(sk))
4582 					goto no_ack;
4583 			}
4584 
4585 			__tcp_ack_snd_check(sk, 0);
4586 no_ack:
4587 #ifdef CONFIG_NET_DMA
4588 			if (copied_early)
4589 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4590 			else
4591 #endif
4592 			if (eaten)
4593 				__kfree_skb(skb);
4594 			else
4595 				sk->sk_data_ready(sk, 0);
4596 			return 0;
4597 		}
4598 	}
4599 
4600 slow_path:
4601 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4602 		goto csum_error;
4603 
4604 	/*
4605 	 * RFC1323: H1. Apply PAWS check first.
4606 	 */
4607 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4608 	    tcp_paws_discard(sk, skb)) {
4609 		if (!th->rst) {
4610 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4611 			tcp_send_dupack(sk, skb);
4612 			goto discard;
4613 		}
4614 		/* Resets are accepted even if PAWS failed.
4615 
4616 		   ts_recent update must be made after we are sure
4617 		   that the packet is in window.
4618 		 */
4619 	}
4620 
4621 	/*
4622 	 *	Standard slow path.
4623 	 */
4624 
4625 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4626 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4627 		 * (RST) segments are validated by checking their SEQ-fields."
4628 		 * And page 69: "If an incoming segment is not acceptable,
4629 		 * an acknowledgment should be sent in reply (unless the RST bit
4630 		 * is set, if so drop the segment and return)".
4631 		 */
4632 		if (!th->rst)
4633 			tcp_send_dupack(sk, skb);
4634 		goto discard;
4635 	}
4636 
4637 	if (th->rst) {
4638 		tcp_reset(sk);
4639 		goto discard;
4640 	}
4641 
4642 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4643 
4644 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4645 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4646 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4647 		tcp_reset(sk);
4648 		return 1;
4649 	}
4650 
4651 step5:
4652 	if (th->ack)
4653 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4654 
4655 	tcp_rcv_rtt_measure_ts(sk, skb);
4656 
4657 	/* Process urgent data. */
4658 	tcp_urg(sk, skb, th);
4659 
4660 	/* step 7: process the segment text */
4661 	tcp_data_queue(sk, skb);
4662 
4663 	tcp_data_snd_check(sk);
4664 	tcp_ack_snd_check(sk);
4665 	return 0;
4666 
4667 csum_error:
4668 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4669 
4670 discard:
4671 	__kfree_skb(skb);
4672 	return 0;
4673 }
4674 
4675 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4676 					 struct tcphdr *th, unsigned len)
4677 {
4678 	struct tcp_sock *tp = tcp_sk(sk);
4679 	struct inet_connection_sock *icsk = inet_csk(sk);
4680 	int saved_clamp = tp->rx_opt.mss_clamp;
4681 
4682 	tcp_parse_options(skb, &tp->rx_opt, 0);
4683 
4684 	if (th->ack) {
4685 		/* rfc793:
4686 		 * "If the state is SYN-SENT then
4687 		 *    first check the ACK bit
4688 		 *      If the ACK bit is set
4689 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4690 		 *        a reset (unless the RST bit is set, if so drop
4691 		 *        the segment and return)"
4692 		 *
4693 		 *  We do not send data with SYN, so that RFC-correct
4694 		 *  test reduces to:
4695 		 */
4696 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4697 			goto reset_and_undo;
4698 
4699 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4700 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4701 			     tcp_time_stamp)) {
4702 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4703 			goto reset_and_undo;
4704 		}
4705 
4706 		/* Now ACK is acceptable.
4707 		 *
4708 		 * "If the RST bit is set
4709 		 *    If the ACK was acceptable then signal the user "error:
4710 		 *    connection reset", drop the segment, enter CLOSED state,
4711 		 *    delete TCB, and return."
4712 		 */
4713 
4714 		if (th->rst) {
4715 			tcp_reset(sk);
4716 			goto discard;
4717 		}
4718 
4719 		/* rfc793:
4720 		 *   "fifth, if neither of the SYN or RST bits is set then
4721 		 *    drop the segment and return."
4722 		 *
4723 		 *    See note below!
4724 		 *                                        --ANK(990513)
4725 		 */
4726 		if (!th->syn)
4727 			goto discard_and_undo;
4728 
4729 		/* rfc793:
4730 		 *   "If the SYN bit is on ...
4731 		 *    are acceptable then ...
4732 		 *    (our SYN has been ACKed), change the connection
4733 		 *    state to ESTABLISHED..."
4734 		 */
4735 
4736 		TCP_ECN_rcv_synack(tp, th);
4737 
4738 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4739 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4740 
4741 		/* Ok.. it's good. Set up sequence numbers and
4742 		 * move to established.
4743 		 */
4744 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4745 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4746 
4747 		/* RFC1323: The window in SYN & SYN/ACK segments is
4748 		 * never scaled.
4749 		 */
4750 		tp->snd_wnd = ntohs(th->window);
4751 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4752 
4753 		if (!tp->rx_opt.wscale_ok) {
4754 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4755 			tp->window_clamp = min(tp->window_clamp, 65535U);
4756 		}
4757 
4758 		if (tp->rx_opt.saw_tstamp) {
4759 			tp->rx_opt.tstamp_ok	   = 1;
4760 			tp->tcp_header_len =
4761 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4762 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4763 			tcp_store_ts_recent(tp);
4764 		} else {
4765 			tp->tcp_header_len = sizeof(struct tcphdr);
4766 		}
4767 
4768 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
4769 			tcp_enable_fack(tp);
4770 
4771 		tcp_mtup_init(sk);
4772 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4773 		tcp_initialize_rcv_mss(sk);
4774 
4775 		/* Remember, tcp_poll() does not lock socket!
4776 		 * Change state from SYN-SENT only after copied_seq
4777 		 * is initialized. */
4778 		tp->copied_seq = tp->rcv_nxt;
4779 		smp_mb();
4780 		tcp_set_state(sk, TCP_ESTABLISHED);
4781 
4782 		security_inet_conn_established(sk, skb);
4783 
4784 		/* Make sure socket is routed, for correct metrics.  */
4785 		icsk->icsk_af_ops->rebuild_header(sk);
4786 
4787 		tcp_init_metrics(sk);
4788 
4789 		tcp_init_congestion_control(sk);
4790 
4791 		/* Prevent spurious tcp_cwnd_restart() on first data
4792 		 * packet.
4793 		 */
4794 		tp->lsndtime = tcp_time_stamp;
4795 
4796 		tcp_init_buffer_space(sk);
4797 
4798 		if (sock_flag(sk, SOCK_KEEPOPEN))
4799 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4800 
4801 		if (!tp->rx_opt.snd_wscale)
4802 			__tcp_fast_path_on(tp, tp->snd_wnd);
4803 		else
4804 			tp->pred_flags = 0;
4805 
4806 		if (!sock_flag(sk, SOCK_DEAD)) {
4807 			sk->sk_state_change(sk);
4808 			sk_wake_async(sk, 0, POLL_OUT);
4809 		}
4810 
4811 		if (sk->sk_write_pending ||
4812 		    icsk->icsk_accept_queue.rskq_defer_accept ||
4813 		    icsk->icsk_ack.pingpong) {
4814 			/* Save one ACK. Data will be ready after
4815 			 * several ticks, if write_pending is set.
4816 			 *
4817 			 * It may be deleted, but with this feature tcpdumps
4818 			 * look so _wonderfully_ clever, that I was not able
4819 			 * to stand against the temptation 8)     --ANK
4820 			 */
4821 			inet_csk_schedule_ack(sk);
4822 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4823 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4824 			tcp_incr_quickack(sk);
4825 			tcp_enter_quickack_mode(sk);
4826 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4827 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4828 
4829 discard:
4830 			__kfree_skb(skb);
4831 			return 0;
4832 		} else {
4833 			tcp_send_ack(sk);
4834 		}
4835 		return -1;
4836 	}
4837 
4838 	/* No ACK in the segment */
4839 
4840 	if (th->rst) {
4841 		/* rfc793:
4842 		 * "If the RST bit is set
4843 		 *
4844 		 *      Otherwise (no ACK) drop the segment and return."
4845 		 */
4846 
4847 		goto discard_and_undo;
4848 	}
4849 
4850 	/* PAWS check. */
4851 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4852 		goto discard_and_undo;
4853 
4854 	if (th->syn) {
4855 		/* We see SYN without ACK. It is attempt of
4856 		 * simultaneous connect with crossed SYNs.
4857 		 * Particularly, it can be connect to self.
4858 		 */
4859 		tcp_set_state(sk, TCP_SYN_RECV);
4860 
4861 		if (tp->rx_opt.saw_tstamp) {
4862 			tp->rx_opt.tstamp_ok = 1;
4863 			tcp_store_ts_recent(tp);
4864 			tp->tcp_header_len =
4865 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4866 		} else {
4867 			tp->tcp_header_len = sizeof(struct tcphdr);
4868 		}
4869 
4870 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4871 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4872 
4873 		/* RFC1323: The window in SYN & SYN/ACK segments is
4874 		 * never scaled.
4875 		 */
4876 		tp->snd_wnd    = ntohs(th->window);
4877 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4878 		tp->max_window = tp->snd_wnd;
4879 
4880 		TCP_ECN_rcv_syn(tp, th);
4881 
4882 		tcp_mtup_init(sk);
4883 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4884 		tcp_initialize_rcv_mss(sk);
4885 
4886 
4887 		tcp_send_synack(sk);
4888 #if 0
4889 		/* Note, we could accept data and URG from this segment.
4890 		 * There are no obstacles to make this.
4891 		 *
4892 		 * However, if we ignore data in ACKless segments sometimes,
4893 		 * we have no reasons to accept it sometimes.
4894 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4895 		 * is not flawless. So, discard packet for sanity.
4896 		 * Uncomment this return to process the data.
4897 		 */
4898 		return -1;
4899 #else
4900 		goto discard;
4901 #endif
4902 	}
4903 	/* "fifth, if neither of the SYN or RST bits is set then
4904 	 * drop the segment and return."
4905 	 */
4906 
4907 discard_and_undo:
4908 	tcp_clear_options(&tp->rx_opt);
4909 	tp->rx_opt.mss_clamp = saved_clamp;
4910 	goto discard;
4911 
4912 reset_and_undo:
4913 	tcp_clear_options(&tp->rx_opt);
4914 	tp->rx_opt.mss_clamp = saved_clamp;
4915 	return 1;
4916 }
4917 
4918 
4919 /*
4920  *	This function implements the receiving procedure of RFC 793 for
4921  *	all states except ESTABLISHED and TIME_WAIT.
4922  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4923  *	address independent.
4924  */
4925 
4926 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4927 			  struct tcphdr *th, unsigned len)
4928 {
4929 	struct tcp_sock *tp = tcp_sk(sk);
4930 	struct inet_connection_sock *icsk = inet_csk(sk);
4931 	int queued = 0;
4932 
4933 	tp->rx_opt.saw_tstamp = 0;
4934 
4935 	switch (sk->sk_state) {
4936 	case TCP_CLOSE:
4937 		goto discard;
4938 
4939 	case TCP_LISTEN:
4940 		if (th->ack)
4941 			return 1;
4942 
4943 		if (th->rst)
4944 			goto discard;
4945 
4946 		if (th->syn) {
4947 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4948 				return 1;
4949 
4950 			/* Now we have several options: In theory there is
4951 			 * nothing else in the frame. KA9Q has an option to
4952 			 * send data with the syn, BSD accepts data with the
4953 			 * syn up to the [to be] advertised window and
4954 			 * Solaris 2.1 gives you a protocol error. For now
4955 			 * we just ignore it, that fits the spec precisely
4956 			 * and avoids incompatibilities. It would be nice in
4957 			 * future to drop through and process the data.
4958 			 *
4959 			 * Now that TTCP is starting to be used we ought to
4960 			 * queue this data.
4961 			 * But, this leaves one open to an easy denial of
4962 			 * service attack, and SYN cookies can't defend
4963 			 * against this problem. So, we drop the data
4964 			 * in the interest of security over speed unless
4965 			 * it's still in use.
4966 			 */
4967 			kfree_skb(skb);
4968 			return 0;
4969 		}
4970 		goto discard;
4971 
4972 	case TCP_SYN_SENT:
4973 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4974 		if (queued >= 0)
4975 			return queued;
4976 
4977 		/* Do step6 onward by hand. */
4978 		tcp_urg(sk, skb, th);
4979 		__kfree_skb(skb);
4980 		tcp_data_snd_check(sk);
4981 		return 0;
4982 	}
4983 
4984 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4985 	    tcp_paws_discard(sk, skb)) {
4986 		if (!th->rst) {
4987 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4988 			tcp_send_dupack(sk, skb);
4989 			goto discard;
4990 		}
4991 		/* Reset is accepted even if it did not pass PAWS. */
4992 	}
4993 
4994 	/* step 1: check sequence number */
4995 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4996 		if (!th->rst)
4997 			tcp_send_dupack(sk, skb);
4998 		goto discard;
4999 	}
5000 
5001 	/* step 2: check RST bit */
5002 	if (th->rst) {
5003 		tcp_reset(sk);
5004 		goto discard;
5005 	}
5006 
5007 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5008 
5009 	/* step 3: check security and precedence [ignored] */
5010 
5011 	/*	step 4:
5012 	 *
5013 	 *	Check for a SYN in window.
5014 	 */
5015 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5016 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5017 		tcp_reset(sk);
5018 		return 1;
5019 	}
5020 
5021 	/* step 5: check the ACK field */
5022 	if (th->ack) {
5023 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5024 
5025 		switch (sk->sk_state) {
5026 		case TCP_SYN_RECV:
5027 			if (acceptable) {
5028 				tp->copied_seq = tp->rcv_nxt;
5029 				smp_mb();
5030 				tcp_set_state(sk, TCP_ESTABLISHED);
5031 				sk->sk_state_change(sk);
5032 
5033 				/* Note, that this wakeup is only for marginal
5034 				 * crossed SYN case. Passively open sockets
5035 				 * are not waked up, because sk->sk_sleep ==
5036 				 * NULL and sk->sk_socket == NULL.
5037 				 */
5038 				if (sk->sk_socket) {
5039 					sk_wake_async(sk,0,POLL_OUT);
5040 				}
5041 
5042 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5043 				tp->snd_wnd = ntohs(th->window) <<
5044 					      tp->rx_opt.snd_wscale;
5045 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5046 					    TCP_SKB_CB(skb)->seq);
5047 
5048 				/* tcp_ack considers this ACK as duplicate
5049 				 * and does not calculate rtt.
5050 				 * Fix it at least with timestamps.
5051 				 */
5052 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5053 				    !tp->srtt)
5054 					tcp_ack_saw_tstamp(sk, 0);
5055 
5056 				if (tp->rx_opt.tstamp_ok)
5057 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5058 
5059 				/* Make sure socket is routed, for
5060 				 * correct metrics.
5061 				 */
5062 				icsk->icsk_af_ops->rebuild_header(sk);
5063 
5064 				tcp_init_metrics(sk);
5065 
5066 				tcp_init_congestion_control(sk);
5067 
5068 				/* Prevent spurious tcp_cwnd_restart() on
5069 				 * first data packet.
5070 				 */
5071 				tp->lsndtime = tcp_time_stamp;
5072 
5073 				tcp_mtup_init(sk);
5074 				tcp_initialize_rcv_mss(sk);
5075 				tcp_init_buffer_space(sk);
5076 				tcp_fast_path_on(tp);
5077 			} else {
5078 				return 1;
5079 			}
5080 			break;
5081 
5082 		case TCP_FIN_WAIT1:
5083 			if (tp->snd_una == tp->write_seq) {
5084 				tcp_set_state(sk, TCP_FIN_WAIT2);
5085 				sk->sk_shutdown |= SEND_SHUTDOWN;
5086 				dst_confirm(sk->sk_dst_cache);
5087 
5088 				if (!sock_flag(sk, SOCK_DEAD))
5089 					/* Wake up lingering close() */
5090 					sk->sk_state_change(sk);
5091 				else {
5092 					int tmo;
5093 
5094 					if (tp->linger2 < 0 ||
5095 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5096 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5097 						tcp_done(sk);
5098 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5099 						return 1;
5100 					}
5101 
5102 					tmo = tcp_fin_time(sk);
5103 					if (tmo > TCP_TIMEWAIT_LEN) {
5104 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5105 					} else if (th->fin || sock_owned_by_user(sk)) {
5106 						/* Bad case. We could lose such FIN otherwise.
5107 						 * It is not a big problem, but it looks confusing
5108 						 * and not so rare event. We still can lose it now,
5109 						 * if it spins in bh_lock_sock(), but it is really
5110 						 * marginal case.
5111 						 */
5112 						inet_csk_reset_keepalive_timer(sk, tmo);
5113 					} else {
5114 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5115 						goto discard;
5116 					}
5117 				}
5118 			}
5119 			break;
5120 
5121 		case TCP_CLOSING:
5122 			if (tp->snd_una == tp->write_seq) {
5123 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5124 				goto discard;
5125 			}
5126 			break;
5127 
5128 		case TCP_LAST_ACK:
5129 			if (tp->snd_una == tp->write_seq) {
5130 				tcp_update_metrics(sk);
5131 				tcp_done(sk);
5132 				goto discard;
5133 			}
5134 			break;
5135 		}
5136 	} else
5137 		goto discard;
5138 
5139 	/* step 6: check the URG bit */
5140 	tcp_urg(sk, skb, th);
5141 
5142 	/* step 7: process the segment text */
5143 	switch (sk->sk_state) {
5144 	case TCP_CLOSE_WAIT:
5145 	case TCP_CLOSING:
5146 	case TCP_LAST_ACK:
5147 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5148 			break;
5149 	case TCP_FIN_WAIT1:
5150 	case TCP_FIN_WAIT2:
5151 		/* RFC 793 says to queue data in these states,
5152 		 * RFC 1122 says we MUST send a reset.
5153 		 * BSD 4.4 also does reset.
5154 		 */
5155 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5156 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5157 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5158 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5159 				tcp_reset(sk);
5160 				return 1;
5161 			}
5162 		}
5163 		/* Fall through */
5164 	case TCP_ESTABLISHED:
5165 		tcp_data_queue(sk, skb);
5166 		queued = 1;
5167 		break;
5168 	}
5169 
5170 	/* tcp_data could move socket to TIME-WAIT */
5171 	if (sk->sk_state != TCP_CLOSE) {
5172 		tcp_data_snd_check(sk);
5173 		tcp_ack_snd_check(sk);
5174 	}
5175 
5176 	if (!queued) {
5177 discard:
5178 		__kfree_skb(skb);
5179 	}
5180 	return 0;
5181 }
5182 
5183 EXPORT_SYMBOL(sysctl_tcp_ecn);
5184 EXPORT_SYMBOL(sysctl_tcp_reordering);
5185 EXPORT_SYMBOL(tcp_parse_options);
5186 EXPORT_SYMBOL(tcp_rcv_established);
5187 EXPORT_SYMBOL(tcp_rcv_state_process);
5188 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5189