xref: /linux/net/ipv4/tcp_input.c (revision 93a3545d812ae7cfe4426374e00a7d8f64ac02e0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 
112 #define REXMIT_NONE	0 /* no loss recovery to do */
113 #define REXMIT_LOST	1 /* retransmit packets marked lost */
114 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
115 
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118 
119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 			     void (*cad)(struct sock *sk, u32 ack_seq))
121 {
122 	icsk->icsk_clean_acked = cad;
123 	static_branch_deferred_inc(&clean_acked_data_enabled);
124 }
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 
127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 {
129 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 	icsk->icsk_clean_acked = NULL;
131 }
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133 
134 void clean_acked_data_flush(void)
135 {
136 	static_key_deferred_flush(&clean_acked_data_enabled);
137 }
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 #endif
140 
141 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
142 			     unsigned int len)
143 {
144 	static bool __once __read_mostly;
145 
146 	if (!__once) {
147 		struct net_device *dev;
148 
149 		__once = true;
150 
151 		rcu_read_lock();
152 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
153 		if (!dev || len >= dev->mtu)
154 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
155 				dev ? dev->name : "Unknown driver");
156 		rcu_read_unlock();
157 	}
158 }
159 
160 /* Adapt the MSS value used to make delayed ack decision to the
161  * real world.
162  */
163 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
164 {
165 	struct inet_connection_sock *icsk = inet_csk(sk);
166 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
167 	unsigned int len;
168 
169 	icsk->icsk_ack.last_seg_size = 0;
170 
171 	/* skb->len may jitter because of SACKs, even if peer
172 	 * sends good full-sized frames.
173 	 */
174 	len = skb_shinfo(skb)->gso_size ? : skb->len;
175 	if (len >= icsk->icsk_ack.rcv_mss) {
176 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
177 					       tcp_sk(sk)->advmss);
178 		/* Account for possibly-removed options */
179 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
180 				   MAX_TCP_OPTION_SPACE))
181 			tcp_gro_dev_warn(sk, skb, len);
182 	} else {
183 		/* Otherwise, we make more careful check taking into account,
184 		 * that SACKs block is variable.
185 		 *
186 		 * "len" is invariant segment length, including TCP header.
187 		 */
188 		len += skb->data - skb_transport_header(skb);
189 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
190 		    /* If PSH is not set, packet should be
191 		     * full sized, provided peer TCP is not badly broken.
192 		     * This observation (if it is correct 8)) allows
193 		     * to handle super-low mtu links fairly.
194 		     */
195 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
196 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
197 			/* Subtract also invariant (if peer is RFC compliant),
198 			 * tcp header plus fixed timestamp option length.
199 			 * Resulting "len" is MSS free of SACK jitter.
200 			 */
201 			len -= tcp_sk(sk)->tcp_header_len;
202 			icsk->icsk_ack.last_seg_size = len;
203 			if (len == lss) {
204 				icsk->icsk_ack.rcv_mss = len;
205 				return;
206 			}
207 		}
208 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
209 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
210 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
211 	}
212 }
213 
214 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
215 {
216 	struct inet_connection_sock *icsk = inet_csk(sk);
217 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
218 
219 	if (quickacks == 0)
220 		quickacks = 2;
221 	quickacks = min(quickacks, max_quickacks);
222 	if (quickacks > icsk->icsk_ack.quick)
223 		icsk->icsk_ack.quick = quickacks;
224 }
225 
226 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
227 {
228 	struct inet_connection_sock *icsk = inet_csk(sk);
229 
230 	tcp_incr_quickack(sk, max_quickacks);
231 	inet_csk_exit_pingpong_mode(sk);
232 	icsk->icsk_ack.ato = TCP_ATO_MIN;
233 }
234 EXPORT_SYMBOL(tcp_enter_quickack_mode);
235 
236 /* Send ACKs quickly, if "quick" count is not exhausted
237  * and the session is not interactive.
238  */
239 
240 static bool tcp_in_quickack_mode(struct sock *sk)
241 {
242 	const struct inet_connection_sock *icsk = inet_csk(sk);
243 	const struct dst_entry *dst = __sk_dst_get(sk);
244 
245 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
246 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
247 }
248 
249 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
250 {
251 	if (tp->ecn_flags & TCP_ECN_OK)
252 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
253 }
254 
255 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
256 {
257 	if (tcp_hdr(skb)->cwr) {
258 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
259 
260 		/* If the sender is telling us it has entered CWR, then its
261 		 * cwnd may be very low (even just 1 packet), so we should ACK
262 		 * immediately.
263 		 */
264 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
265 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
266 	}
267 }
268 
269 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
270 {
271 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
272 }
273 
274 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
275 {
276 	struct tcp_sock *tp = tcp_sk(sk);
277 
278 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
279 	case INET_ECN_NOT_ECT:
280 		/* Funny extension: if ECT is not set on a segment,
281 		 * and we already seen ECT on a previous segment,
282 		 * it is probably a retransmit.
283 		 */
284 		if (tp->ecn_flags & TCP_ECN_SEEN)
285 			tcp_enter_quickack_mode(sk, 2);
286 		break;
287 	case INET_ECN_CE:
288 		if (tcp_ca_needs_ecn(sk))
289 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
290 
291 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
292 			/* Better not delay acks, sender can have a very low cwnd */
293 			tcp_enter_quickack_mode(sk, 2);
294 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
295 		}
296 		tp->ecn_flags |= TCP_ECN_SEEN;
297 		break;
298 	default:
299 		if (tcp_ca_needs_ecn(sk))
300 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
301 		tp->ecn_flags |= TCP_ECN_SEEN;
302 		break;
303 	}
304 }
305 
306 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
307 {
308 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
309 		__tcp_ecn_check_ce(sk, skb);
310 }
311 
312 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
313 {
314 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
315 		tp->ecn_flags &= ~TCP_ECN_OK;
316 }
317 
318 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
319 {
320 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
321 		tp->ecn_flags &= ~TCP_ECN_OK;
322 }
323 
324 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
325 {
326 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
327 		return true;
328 	return false;
329 }
330 
331 /* Buffer size and advertised window tuning.
332  *
333  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
334  */
335 
336 static void tcp_sndbuf_expand(struct sock *sk)
337 {
338 	const struct tcp_sock *tp = tcp_sk(sk);
339 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
340 	int sndmem, per_mss;
341 	u32 nr_segs;
342 
343 	/* Worst case is non GSO/TSO : each frame consumes one skb
344 	 * and skb->head is kmalloced using power of two area of memory
345 	 */
346 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
347 		  MAX_TCP_HEADER +
348 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
349 
350 	per_mss = roundup_pow_of_two(per_mss) +
351 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
352 
353 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
354 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
355 
356 	/* Fast Recovery (RFC 5681 3.2) :
357 	 * Cubic needs 1.7 factor, rounded to 2 to include
358 	 * extra cushion (application might react slowly to EPOLLOUT)
359 	 */
360 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
361 	sndmem *= nr_segs * per_mss;
362 
363 	if (sk->sk_sndbuf < sndmem)
364 		WRITE_ONCE(sk->sk_sndbuf,
365 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
366 }
367 
368 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
369  *
370  * All tcp_full_space() is split to two parts: "network" buffer, allocated
371  * forward and advertised in receiver window (tp->rcv_wnd) and
372  * "application buffer", required to isolate scheduling/application
373  * latencies from network.
374  * window_clamp is maximal advertised window. It can be less than
375  * tcp_full_space(), in this case tcp_full_space() - window_clamp
376  * is reserved for "application" buffer. The less window_clamp is
377  * the smoother our behaviour from viewpoint of network, but the lower
378  * throughput and the higher sensitivity of the connection to losses. 8)
379  *
380  * rcv_ssthresh is more strict window_clamp used at "slow start"
381  * phase to predict further behaviour of this connection.
382  * It is used for two goals:
383  * - to enforce header prediction at sender, even when application
384  *   requires some significant "application buffer". It is check #1.
385  * - to prevent pruning of receive queue because of misprediction
386  *   of receiver window. Check #2.
387  *
388  * The scheme does not work when sender sends good segments opening
389  * window and then starts to feed us spaghetti. But it should work
390  * in common situations. Otherwise, we have to rely on queue collapsing.
391  */
392 
393 /* Slow part of check#2. */
394 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
395 {
396 	struct tcp_sock *tp = tcp_sk(sk);
397 	/* Optimize this! */
398 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
399 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
400 
401 	while (tp->rcv_ssthresh <= window) {
402 		if (truesize <= skb->len)
403 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
404 
405 		truesize >>= 1;
406 		window >>= 1;
407 	}
408 	return 0;
409 }
410 
411 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
412 {
413 	struct tcp_sock *tp = tcp_sk(sk);
414 	int room;
415 
416 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
417 
418 	/* Check #1 */
419 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
420 		int incr;
421 
422 		/* Check #2. Increase window, if skb with such overhead
423 		 * will fit to rcvbuf in future.
424 		 */
425 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
426 			incr = 2 * tp->advmss;
427 		else
428 			incr = __tcp_grow_window(sk, skb);
429 
430 		if (incr) {
431 			incr = max_t(int, incr, 2 * skb->len);
432 			tp->rcv_ssthresh += min(room, incr);
433 			inet_csk(sk)->icsk_ack.quick |= 1;
434 		}
435 	}
436 }
437 
438 /* 3. Try to fixup all. It is made immediately after connection enters
439  *    established state.
440  */
441 static void tcp_init_buffer_space(struct sock *sk)
442 {
443 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
444 	struct tcp_sock *tp = tcp_sk(sk);
445 	int maxwin;
446 
447 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
448 		tcp_sndbuf_expand(sk);
449 
450 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
451 	tcp_mstamp_refresh(tp);
452 	tp->rcvq_space.time = tp->tcp_mstamp;
453 	tp->rcvq_space.seq = tp->copied_seq;
454 
455 	maxwin = tcp_full_space(sk);
456 
457 	if (tp->window_clamp >= maxwin) {
458 		tp->window_clamp = maxwin;
459 
460 		if (tcp_app_win && maxwin > 4 * tp->advmss)
461 			tp->window_clamp = max(maxwin -
462 					       (maxwin >> tcp_app_win),
463 					       4 * tp->advmss);
464 	}
465 
466 	/* Force reservation of one segment. */
467 	if (tcp_app_win &&
468 	    tp->window_clamp > 2 * tp->advmss &&
469 	    tp->window_clamp + tp->advmss > maxwin)
470 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
471 
472 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
473 	tp->snd_cwnd_stamp = tcp_jiffies32;
474 }
475 
476 /* 4. Recalculate window clamp after socket hit its memory bounds. */
477 static void tcp_clamp_window(struct sock *sk)
478 {
479 	struct tcp_sock *tp = tcp_sk(sk);
480 	struct inet_connection_sock *icsk = inet_csk(sk);
481 	struct net *net = sock_net(sk);
482 
483 	icsk->icsk_ack.quick = 0;
484 
485 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
486 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
487 	    !tcp_under_memory_pressure(sk) &&
488 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
489 		WRITE_ONCE(sk->sk_rcvbuf,
490 			   min(atomic_read(&sk->sk_rmem_alloc),
491 			       net->ipv4.sysctl_tcp_rmem[2]));
492 	}
493 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
494 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
495 }
496 
497 /* Initialize RCV_MSS value.
498  * RCV_MSS is an our guess about MSS used by the peer.
499  * We haven't any direct information about the MSS.
500  * It's better to underestimate the RCV_MSS rather than overestimate.
501  * Overestimations make us ACKing less frequently than needed.
502  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
503  */
504 void tcp_initialize_rcv_mss(struct sock *sk)
505 {
506 	const struct tcp_sock *tp = tcp_sk(sk);
507 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
508 
509 	hint = min(hint, tp->rcv_wnd / 2);
510 	hint = min(hint, TCP_MSS_DEFAULT);
511 	hint = max(hint, TCP_MIN_MSS);
512 
513 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
514 }
515 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
516 
517 /* Receiver "autotuning" code.
518  *
519  * The algorithm for RTT estimation w/o timestamps is based on
520  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
521  * <https://public.lanl.gov/radiant/pubs.html#DRS>
522  *
523  * More detail on this code can be found at
524  * <http://staff.psc.edu/jheffner/>,
525  * though this reference is out of date.  A new paper
526  * is pending.
527  */
528 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
529 {
530 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
531 	long m = sample;
532 
533 	if (new_sample != 0) {
534 		/* If we sample in larger samples in the non-timestamp
535 		 * case, we could grossly overestimate the RTT especially
536 		 * with chatty applications or bulk transfer apps which
537 		 * are stalled on filesystem I/O.
538 		 *
539 		 * Also, since we are only going for a minimum in the
540 		 * non-timestamp case, we do not smooth things out
541 		 * else with timestamps disabled convergence takes too
542 		 * long.
543 		 */
544 		if (!win_dep) {
545 			m -= (new_sample >> 3);
546 			new_sample += m;
547 		} else {
548 			m <<= 3;
549 			if (m < new_sample)
550 				new_sample = m;
551 		}
552 	} else {
553 		/* No previous measure. */
554 		new_sample = m << 3;
555 	}
556 
557 	tp->rcv_rtt_est.rtt_us = new_sample;
558 }
559 
560 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
561 {
562 	u32 delta_us;
563 
564 	if (tp->rcv_rtt_est.time == 0)
565 		goto new_measure;
566 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
567 		return;
568 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
569 	if (!delta_us)
570 		delta_us = 1;
571 	tcp_rcv_rtt_update(tp, delta_us, 1);
572 
573 new_measure:
574 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
575 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
576 }
577 
578 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
579 					  const struct sk_buff *skb)
580 {
581 	struct tcp_sock *tp = tcp_sk(sk);
582 
583 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
584 		return;
585 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
586 
587 	if (TCP_SKB_CB(skb)->end_seq -
588 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
589 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
590 		u32 delta_us;
591 
592 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
593 			if (!delta)
594 				delta = 1;
595 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
596 			tcp_rcv_rtt_update(tp, delta_us, 0);
597 		}
598 	}
599 }
600 
601 /*
602  * This function should be called every time data is copied to user space.
603  * It calculates the appropriate TCP receive buffer space.
604  */
605 void tcp_rcv_space_adjust(struct sock *sk)
606 {
607 	struct tcp_sock *tp = tcp_sk(sk);
608 	u32 copied;
609 	int time;
610 
611 	trace_tcp_rcv_space_adjust(sk);
612 
613 	tcp_mstamp_refresh(tp);
614 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
615 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
616 		return;
617 
618 	/* Number of bytes copied to user in last RTT */
619 	copied = tp->copied_seq - tp->rcvq_space.seq;
620 	if (copied <= tp->rcvq_space.space)
621 		goto new_measure;
622 
623 	/* A bit of theory :
624 	 * copied = bytes received in previous RTT, our base window
625 	 * To cope with packet losses, we need a 2x factor
626 	 * To cope with slow start, and sender growing its cwin by 100 %
627 	 * every RTT, we need a 4x factor, because the ACK we are sending
628 	 * now is for the next RTT, not the current one :
629 	 * <prev RTT . ><current RTT .. ><next RTT .... >
630 	 */
631 
632 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
633 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
634 		int rcvmem, rcvbuf;
635 		u64 rcvwin, grow;
636 
637 		/* minimal window to cope with packet losses, assuming
638 		 * steady state. Add some cushion because of small variations.
639 		 */
640 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
641 
642 		/* Accommodate for sender rate increase (eg. slow start) */
643 		grow = rcvwin * (copied - tp->rcvq_space.space);
644 		do_div(grow, tp->rcvq_space.space);
645 		rcvwin += (grow << 1);
646 
647 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
648 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
649 			rcvmem += 128;
650 
651 		do_div(rcvwin, tp->advmss);
652 		rcvbuf = min_t(u64, rcvwin * rcvmem,
653 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
654 		if (rcvbuf > sk->sk_rcvbuf) {
655 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
656 
657 			/* Make the window clamp follow along.  */
658 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
659 		}
660 	}
661 	tp->rcvq_space.space = copied;
662 
663 new_measure:
664 	tp->rcvq_space.seq = tp->copied_seq;
665 	tp->rcvq_space.time = tp->tcp_mstamp;
666 }
667 
668 /* There is something which you must keep in mind when you analyze the
669  * behavior of the tp->ato delayed ack timeout interval.  When a
670  * connection starts up, we want to ack as quickly as possible.  The
671  * problem is that "good" TCP's do slow start at the beginning of data
672  * transmission.  The means that until we send the first few ACK's the
673  * sender will sit on his end and only queue most of his data, because
674  * he can only send snd_cwnd unacked packets at any given time.  For
675  * each ACK we send, he increments snd_cwnd and transmits more of his
676  * queue.  -DaveM
677  */
678 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
679 {
680 	struct tcp_sock *tp = tcp_sk(sk);
681 	struct inet_connection_sock *icsk = inet_csk(sk);
682 	u32 now;
683 
684 	inet_csk_schedule_ack(sk);
685 
686 	tcp_measure_rcv_mss(sk, skb);
687 
688 	tcp_rcv_rtt_measure(tp);
689 
690 	now = tcp_jiffies32;
691 
692 	if (!icsk->icsk_ack.ato) {
693 		/* The _first_ data packet received, initialize
694 		 * delayed ACK engine.
695 		 */
696 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
697 		icsk->icsk_ack.ato = TCP_ATO_MIN;
698 	} else {
699 		int m = now - icsk->icsk_ack.lrcvtime;
700 
701 		if (m <= TCP_ATO_MIN / 2) {
702 			/* The fastest case is the first. */
703 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
704 		} else if (m < icsk->icsk_ack.ato) {
705 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
706 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
707 				icsk->icsk_ack.ato = icsk->icsk_rto;
708 		} else if (m > icsk->icsk_rto) {
709 			/* Too long gap. Apparently sender failed to
710 			 * restart window, so that we send ACKs quickly.
711 			 */
712 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
713 			sk_mem_reclaim(sk);
714 		}
715 	}
716 	icsk->icsk_ack.lrcvtime = now;
717 
718 	tcp_ecn_check_ce(sk, skb);
719 
720 	if (skb->len >= 128)
721 		tcp_grow_window(sk, skb);
722 }
723 
724 /* Called to compute a smoothed rtt estimate. The data fed to this
725  * routine either comes from timestamps, or from segments that were
726  * known _not_ to have been retransmitted [see Karn/Partridge
727  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
728  * piece by Van Jacobson.
729  * NOTE: the next three routines used to be one big routine.
730  * To save cycles in the RFC 1323 implementation it was better to break
731  * it up into three procedures. -- erics
732  */
733 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
734 {
735 	struct tcp_sock *tp = tcp_sk(sk);
736 	long m = mrtt_us; /* RTT */
737 	u32 srtt = tp->srtt_us;
738 
739 	/*	The following amusing code comes from Jacobson's
740 	 *	article in SIGCOMM '88.  Note that rtt and mdev
741 	 *	are scaled versions of rtt and mean deviation.
742 	 *	This is designed to be as fast as possible
743 	 *	m stands for "measurement".
744 	 *
745 	 *	On a 1990 paper the rto value is changed to:
746 	 *	RTO = rtt + 4 * mdev
747 	 *
748 	 * Funny. This algorithm seems to be very broken.
749 	 * These formulae increase RTO, when it should be decreased, increase
750 	 * too slowly, when it should be increased quickly, decrease too quickly
751 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
752 	 * does not matter how to _calculate_ it. Seems, it was trap
753 	 * that VJ failed to avoid. 8)
754 	 */
755 	if (srtt != 0) {
756 		m -= (srtt >> 3);	/* m is now error in rtt est */
757 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
758 		if (m < 0) {
759 			m = -m;		/* m is now abs(error) */
760 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
761 			/* This is similar to one of Eifel findings.
762 			 * Eifel blocks mdev updates when rtt decreases.
763 			 * This solution is a bit different: we use finer gain
764 			 * for mdev in this case (alpha*beta).
765 			 * Like Eifel it also prevents growth of rto,
766 			 * but also it limits too fast rto decreases,
767 			 * happening in pure Eifel.
768 			 */
769 			if (m > 0)
770 				m >>= 3;
771 		} else {
772 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
773 		}
774 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
775 		if (tp->mdev_us > tp->mdev_max_us) {
776 			tp->mdev_max_us = tp->mdev_us;
777 			if (tp->mdev_max_us > tp->rttvar_us)
778 				tp->rttvar_us = tp->mdev_max_us;
779 		}
780 		if (after(tp->snd_una, tp->rtt_seq)) {
781 			if (tp->mdev_max_us < tp->rttvar_us)
782 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
783 			tp->rtt_seq = tp->snd_nxt;
784 			tp->mdev_max_us = tcp_rto_min_us(sk);
785 
786 			tcp_bpf_rtt(sk);
787 		}
788 	} else {
789 		/* no previous measure. */
790 		srtt = m << 3;		/* take the measured time to be rtt */
791 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
792 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
793 		tp->mdev_max_us = tp->rttvar_us;
794 		tp->rtt_seq = tp->snd_nxt;
795 
796 		tcp_bpf_rtt(sk);
797 	}
798 	tp->srtt_us = max(1U, srtt);
799 }
800 
801 static void tcp_update_pacing_rate(struct sock *sk)
802 {
803 	const struct tcp_sock *tp = tcp_sk(sk);
804 	u64 rate;
805 
806 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
807 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
808 
809 	/* current rate is (cwnd * mss) / srtt
810 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
811 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
812 	 *
813 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
814 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
815 	 *	 end of slow start and should slow down.
816 	 */
817 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
818 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
819 	else
820 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
821 
822 	rate *= max(tp->snd_cwnd, tp->packets_out);
823 
824 	if (likely(tp->srtt_us))
825 		do_div(rate, tp->srtt_us);
826 
827 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
828 	 * without any lock. We want to make sure compiler wont store
829 	 * intermediate values in this location.
830 	 */
831 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
832 					     sk->sk_max_pacing_rate));
833 }
834 
835 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
836  * routine referred to above.
837  */
838 static void tcp_set_rto(struct sock *sk)
839 {
840 	const struct tcp_sock *tp = tcp_sk(sk);
841 	/* Old crap is replaced with new one. 8)
842 	 *
843 	 * More seriously:
844 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
845 	 *    It cannot be less due to utterly erratic ACK generation made
846 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
847 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
848 	 *    is invisible. Actually, Linux-2.4 also generates erratic
849 	 *    ACKs in some circumstances.
850 	 */
851 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
852 
853 	/* 2. Fixups made earlier cannot be right.
854 	 *    If we do not estimate RTO correctly without them,
855 	 *    all the algo is pure shit and should be replaced
856 	 *    with correct one. It is exactly, which we pretend to do.
857 	 */
858 
859 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
860 	 * guarantees that rto is higher.
861 	 */
862 	tcp_bound_rto(sk);
863 }
864 
865 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
866 {
867 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
868 
869 	if (!cwnd)
870 		cwnd = TCP_INIT_CWND;
871 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
872 }
873 
874 /* Take a notice that peer is sending D-SACKs */
875 static void tcp_dsack_seen(struct tcp_sock *tp)
876 {
877 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
878 	tp->rack.dsack_seen = 1;
879 	tp->dsack_dups++;
880 }
881 
882 /* It's reordering when higher sequence was delivered (i.e. sacked) before
883  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
884  * distance is approximated in full-mss packet distance ("reordering").
885  */
886 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
887 				      const int ts)
888 {
889 	struct tcp_sock *tp = tcp_sk(sk);
890 	const u32 mss = tp->mss_cache;
891 	u32 fack, metric;
892 
893 	fack = tcp_highest_sack_seq(tp);
894 	if (!before(low_seq, fack))
895 		return;
896 
897 	metric = fack - low_seq;
898 	if ((metric > tp->reordering * mss) && mss) {
899 #if FASTRETRANS_DEBUG > 1
900 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
901 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
902 			 tp->reordering,
903 			 0,
904 			 tp->sacked_out,
905 			 tp->undo_marker ? tp->undo_retrans : 0);
906 #endif
907 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
908 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
909 	}
910 
911 	/* This exciting event is worth to be remembered. 8) */
912 	tp->reord_seen++;
913 	NET_INC_STATS(sock_net(sk),
914 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
915 }
916 
917 /* This must be called before lost_out is incremented */
918 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
919 {
920 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
921 	    (tp->retransmit_skb_hint &&
922 	     before(TCP_SKB_CB(skb)->seq,
923 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
924 		tp->retransmit_skb_hint = skb;
925 }
926 
927 /* Sum the number of packets on the wire we have marked as lost.
928  * There are two cases we care about here:
929  * a) Packet hasn't been marked lost (nor retransmitted),
930  *    and this is the first loss.
931  * b) Packet has been marked both lost and retransmitted,
932  *    and this means we think it was lost again.
933  */
934 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
935 {
936 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
937 
938 	if (!(sacked & TCPCB_LOST) ||
939 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
940 		tp->lost += tcp_skb_pcount(skb);
941 }
942 
943 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
944 {
945 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
946 		tcp_verify_retransmit_hint(tp, skb);
947 
948 		tp->lost_out += tcp_skb_pcount(skb);
949 		tcp_sum_lost(tp, skb);
950 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
951 	}
952 }
953 
954 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
955 {
956 	tcp_verify_retransmit_hint(tp, skb);
957 
958 	tcp_sum_lost(tp, skb);
959 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
960 		tp->lost_out += tcp_skb_pcount(skb);
961 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
962 	}
963 }
964 
965 /* Updates the delivered and delivered_ce counts */
966 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
967 				bool ece_ack)
968 {
969 	tp->delivered += delivered;
970 	if (ece_ack)
971 		tp->delivered_ce += delivered;
972 }
973 
974 /* This procedure tags the retransmission queue when SACKs arrive.
975  *
976  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
977  * Packets in queue with these bits set are counted in variables
978  * sacked_out, retrans_out and lost_out, correspondingly.
979  *
980  * Valid combinations are:
981  * Tag  InFlight	Description
982  * 0	1		- orig segment is in flight.
983  * S	0		- nothing flies, orig reached receiver.
984  * L	0		- nothing flies, orig lost by net.
985  * R	2		- both orig and retransmit are in flight.
986  * L|R	1		- orig is lost, retransmit is in flight.
987  * S|R  1		- orig reached receiver, retrans is still in flight.
988  * (L|S|R is logically valid, it could occur when L|R is sacked,
989  *  but it is equivalent to plain S and code short-curcuits it to S.
990  *  L|S is logically invalid, it would mean -1 packet in flight 8))
991  *
992  * These 6 states form finite state machine, controlled by the following events:
993  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
994  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
995  * 3. Loss detection event of two flavors:
996  *	A. Scoreboard estimator decided the packet is lost.
997  *	   A'. Reno "three dupacks" marks head of queue lost.
998  *	B. SACK arrives sacking SND.NXT at the moment, when the
999  *	   segment was retransmitted.
1000  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1001  *
1002  * It is pleasant to note, that state diagram turns out to be commutative,
1003  * so that we are allowed not to be bothered by order of our actions,
1004  * when multiple events arrive simultaneously. (see the function below).
1005  *
1006  * Reordering detection.
1007  * --------------------
1008  * Reordering metric is maximal distance, which a packet can be displaced
1009  * in packet stream. With SACKs we can estimate it:
1010  *
1011  * 1. SACK fills old hole and the corresponding segment was not
1012  *    ever retransmitted -> reordering. Alas, we cannot use it
1013  *    when segment was retransmitted.
1014  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1015  *    for retransmitted and already SACKed segment -> reordering..
1016  * Both of these heuristics are not used in Loss state, when we cannot
1017  * account for retransmits accurately.
1018  *
1019  * SACK block validation.
1020  * ----------------------
1021  *
1022  * SACK block range validation checks that the received SACK block fits to
1023  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1024  * Note that SND.UNA is not included to the range though being valid because
1025  * it means that the receiver is rather inconsistent with itself reporting
1026  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1027  * perfectly valid, however, in light of RFC2018 which explicitly states
1028  * that "SACK block MUST reflect the newest segment.  Even if the newest
1029  * segment is going to be discarded ...", not that it looks very clever
1030  * in case of head skb. Due to potentional receiver driven attacks, we
1031  * choose to avoid immediate execution of a walk in write queue due to
1032  * reneging and defer head skb's loss recovery to standard loss recovery
1033  * procedure that will eventually trigger (nothing forbids us doing this).
1034  *
1035  * Implements also blockage to start_seq wrap-around. Problem lies in the
1036  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1037  * there's no guarantee that it will be before snd_nxt (n). The problem
1038  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1039  * wrap (s_w):
1040  *
1041  *         <- outs wnd ->                          <- wrapzone ->
1042  *         u     e      n                         u_w   e_w  s n_w
1043  *         |     |      |                          |     |   |  |
1044  * |<------------+------+----- TCP seqno space --------------+---------->|
1045  * ...-- <2^31 ->|                                           |<--------...
1046  * ...---- >2^31 ------>|                                    |<--------...
1047  *
1048  * Current code wouldn't be vulnerable but it's better still to discard such
1049  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1050  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1051  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1052  * equal to the ideal case (infinite seqno space without wrap caused issues).
1053  *
1054  * With D-SACK the lower bound is extended to cover sequence space below
1055  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1056  * again, D-SACK block must not to go across snd_una (for the same reason as
1057  * for the normal SACK blocks, explained above). But there all simplicity
1058  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1059  * fully below undo_marker they do not affect behavior in anyway and can
1060  * therefore be safely ignored. In rare cases (which are more or less
1061  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1062  * fragmentation and packet reordering past skb's retransmission. To consider
1063  * them correctly, the acceptable range must be extended even more though
1064  * the exact amount is rather hard to quantify. However, tp->max_window can
1065  * be used as an exaggerated estimate.
1066  */
1067 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1068 				   u32 start_seq, u32 end_seq)
1069 {
1070 	/* Too far in future, or reversed (interpretation is ambiguous) */
1071 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1072 		return false;
1073 
1074 	/* Nasty start_seq wrap-around check (see comments above) */
1075 	if (!before(start_seq, tp->snd_nxt))
1076 		return false;
1077 
1078 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1079 	 * start_seq == snd_una is non-sensical (see comments above)
1080 	 */
1081 	if (after(start_seq, tp->snd_una))
1082 		return true;
1083 
1084 	if (!is_dsack || !tp->undo_marker)
1085 		return false;
1086 
1087 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1088 	if (after(end_seq, tp->snd_una))
1089 		return false;
1090 
1091 	if (!before(start_seq, tp->undo_marker))
1092 		return true;
1093 
1094 	/* Too old */
1095 	if (!after(end_seq, tp->undo_marker))
1096 		return false;
1097 
1098 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1099 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1100 	 */
1101 	return !before(start_seq, end_seq - tp->max_window);
1102 }
1103 
1104 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1105 			    struct tcp_sack_block_wire *sp, int num_sacks,
1106 			    u32 prior_snd_una)
1107 {
1108 	struct tcp_sock *tp = tcp_sk(sk);
1109 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1110 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1111 	bool dup_sack = false;
1112 
1113 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1114 		dup_sack = true;
1115 		tcp_dsack_seen(tp);
1116 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1117 	} else if (num_sacks > 1) {
1118 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1119 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1120 
1121 		if (!after(end_seq_0, end_seq_1) &&
1122 		    !before(start_seq_0, start_seq_1)) {
1123 			dup_sack = true;
1124 			tcp_dsack_seen(tp);
1125 			NET_INC_STATS(sock_net(sk),
1126 					LINUX_MIB_TCPDSACKOFORECV);
1127 		}
1128 	}
1129 
1130 	/* D-SACK for already forgotten data... Do dumb counting. */
1131 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1132 	    !after(end_seq_0, prior_snd_una) &&
1133 	    after(end_seq_0, tp->undo_marker))
1134 		tp->undo_retrans--;
1135 
1136 	return dup_sack;
1137 }
1138 
1139 struct tcp_sacktag_state {
1140 	u32	reord;
1141 	/* Timestamps for earliest and latest never-retransmitted segment
1142 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1143 	 * but congestion control should still get an accurate delay signal.
1144 	 */
1145 	u64	first_sackt;
1146 	u64	last_sackt;
1147 	struct rate_sample *rate;
1148 	int	flag;
1149 	unsigned int mss_now;
1150 	u32	sack_delivered;
1151 };
1152 
1153 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1154  * the incoming SACK may not exactly match but we can find smaller MSS
1155  * aligned portion of it that matches. Therefore we might need to fragment
1156  * which may fail and creates some hassle (caller must handle error case
1157  * returns).
1158  *
1159  * FIXME: this could be merged to shift decision code
1160  */
1161 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1162 				  u32 start_seq, u32 end_seq)
1163 {
1164 	int err;
1165 	bool in_sack;
1166 	unsigned int pkt_len;
1167 	unsigned int mss;
1168 
1169 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1170 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1171 
1172 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1173 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1174 		mss = tcp_skb_mss(skb);
1175 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1176 
1177 		if (!in_sack) {
1178 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1179 			if (pkt_len < mss)
1180 				pkt_len = mss;
1181 		} else {
1182 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1183 			if (pkt_len < mss)
1184 				return -EINVAL;
1185 		}
1186 
1187 		/* Round if necessary so that SACKs cover only full MSSes
1188 		 * and/or the remaining small portion (if present)
1189 		 */
1190 		if (pkt_len > mss) {
1191 			unsigned int new_len = (pkt_len / mss) * mss;
1192 			if (!in_sack && new_len < pkt_len)
1193 				new_len += mss;
1194 			pkt_len = new_len;
1195 		}
1196 
1197 		if (pkt_len >= skb->len && !in_sack)
1198 			return 0;
1199 
1200 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1201 				   pkt_len, mss, GFP_ATOMIC);
1202 		if (err < 0)
1203 			return err;
1204 	}
1205 
1206 	return in_sack;
1207 }
1208 
1209 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1210 static u8 tcp_sacktag_one(struct sock *sk,
1211 			  struct tcp_sacktag_state *state, u8 sacked,
1212 			  u32 start_seq, u32 end_seq,
1213 			  int dup_sack, int pcount,
1214 			  u64 xmit_time)
1215 {
1216 	struct tcp_sock *tp = tcp_sk(sk);
1217 
1218 	/* Account D-SACK for retransmitted packet. */
1219 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1220 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1221 		    after(end_seq, tp->undo_marker))
1222 			tp->undo_retrans--;
1223 		if ((sacked & TCPCB_SACKED_ACKED) &&
1224 		    before(start_seq, state->reord))
1225 				state->reord = start_seq;
1226 	}
1227 
1228 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1229 	if (!after(end_seq, tp->snd_una))
1230 		return sacked;
1231 
1232 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1233 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1234 
1235 		if (sacked & TCPCB_SACKED_RETRANS) {
1236 			/* If the segment is not tagged as lost,
1237 			 * we do not clear RETRANS, believing
1238 			 * that retransmission is still in flight.
1239 			 */
1240 			if (sacked & TCPCB_LOST) {
1241 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1242 				tp->lost_out -= pcount;
1243 				tp->retrans_out -= pcount;
1244 			}
1245 		} else {
1246 			if (!(sacked & TCPCB_RETRANS)) {
1247 				/* New sack for not retransmitted frame,
1248 				 * which was in hole. It is reordering.
1249 				 */
1250 				if (before(start_seq,
1251 					   tcp_highest_sack_seq(tp)) &&
1252 				    before(start_seq, state->reord))
1253 					state->reord = start_seq;
1254 
1255 				if (!after(end_seq, tp->high_seq))
1256 					state->flag |= FLAG_ORIG_SACK_ACKED;
1257 				if (state->first_sackt == 0)
1258 					state->first_sackt = xmit_time;
1259 				state->last_sackt = xmit_time;
1260 			}
1261 
1262 			if (sacked & TCPCB_LOST) {
1263 				sacked &= ~TCPCB_LOST;
1264 				tp->lost_out -= pcount;
1265 			}
1266 		}
1267 
1268 		sacked |= TCPCB_SACKED_ACKED;
1269 		state->flag |= FLAG_DATA_SACKED;
1270 		tp->sacked_out += pcount;
1271 		/* Out-of-order packets delivered */
1272 		state->sack_delivered += pcount;
1273 
1274 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1275 		if (tp->lost_skb_hint &&
1276 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1277 			tp->lost_cnt_hint += pcount;
1278 	}
1279 
1280 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1281 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1282 	 * are accounted above as well.
1283 	 */
1284 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1285 		sacked &= ~TCPCB_SACKED_RETRANS;
1286 		tp->retrans_out -= pcount;
1287 	}
1288 
1289 	return sacked;
1290 }
1291 
1292 /* Shift newly-SACKed bytes from this skb to the immediately previous
1293  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1294  */
1295 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1296 			    struct sk_buff *skb,
1297 			    struct tcp_sacktag_state *state,
1298 			    unsigned int pcount, int shifted, int mss,
1299 			    bool dup_sack)
1300 {
1301 	struct tcp_sock *tp = tcp_sk(sk);
1302 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1303 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1304 
1305 	BUG_ON(!pcount);
1306 
1307 	/* Adjust counters and hints for the newly sacked sequence
1308 	 * range but discard the return value since prev is already
1309 	 * marked. We must tag the range first because the seq
1310 	 * advancement below implicitly advances
1311 	 * tcp_highest_sack_seq() when skb is highest_sack.
1312 	 */
1313 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1314 			start_seq, end_seq, dup_sack, pcount,
1315 			tcp_skb_timestamp_us(skb));
1316 	tcp_rate_skb_delivered(sk, skb, state->rate);
1317 
1318 	if (skb == tp->lost_skb_hint)
1319 		tp->lost_cnt_hint += pcount;
1320 
1321 	TCP_SKB_CB(prev)->end_seq += shifted;
1322 	TCP_SKB_CB(skb)->seq += shifted;
1323 
1324 	tcp_skb_pcount_add(prev, pcount);
1325 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1326 	tcp_skb_pcount_add(skb, -pcount);
1327 
1328 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1329 	 * in theory this shouldn't be necessary but as long as DSACK
1330 	 * code can come after this skb later on it's better to keep
1331 	 * setting gso_size to something.
1332 	 */
1333 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1334 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1335 
1336 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1337 	if (tcp_skb_pcount(skb) <= 1)
1338 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1339 
1340 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1341 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1342 
1343 	if (skb->len > 0) {
1344 		BUG_ON(!tcp_skb_pcount(skb));
1345 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1346 		return false;
1347 	}
1348 
1349 	/* Whole SKB was eaten :-) */
1350 
1351 	if (skb == tp->retransmit_skb_hint)
1352 		tp->retransmit_skb_hint = prev;
1353 	if (skb == tp->lost_skb_hint) {
1354 		tp->lost_skb_hint = prev;
1355 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1356 	}
1357 
1358 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1359 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1360 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1361 		TCP_SKB_CB(prev)->end_seq++;
1362 
1363 	if (skb == tcp_highest_sack(sk))
1364 		tcp_advance_highest_sack(sk, skb);
1365 
1366 	tcp_skb_collapse_tstamp(prev, skb);
1367 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1368 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1369 
1370 	tcp_rtx_queue_unlink_and_free(skb, sk);
1371 
1372 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1373 
1374 	return true;
1375 }
1376 
1377 /* I wish gso_size would have a bit more sane initialization than
1378  * something-or-zero which complicates things
1379  */
1380 static int tcp_skb_seglen(const struct sk_buff *skb)
1381 {
1382 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1383 }
1384 
1385 /* Shifting pages past head area doesn't work */
1386 static int skb_can_shift(const struct sk_buff *skb)
1387 {
1388 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1389 }
1390 
1391 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1392 		  int pcount, int shiftlen)
1393 {
1394 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1395 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1396 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1397 	 * even if current MSS is bigger.
1398 	 */
1399 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1400 		return 0;
1401 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1402 		return 0;
1403 	return skb_shift(to, from, shiftlen);
1404 }
1405 
1406 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1407  * skb.
1408  */
1409 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1410 					  struct tcp_sacktag_state *state,
1411 					  u32 start_seq, u32 end_seq,
1412 					  bool dup_sack)
1413 {
1414 	struct tcp_sock *tp = tcp_sk(sk);
1415 	struct sk_buff *prev;
1416 	int mss;
1417 	int pcount = 0;
1418 	int len;
1419 	int in_sack;
1420 
1421 	/* Normally R but no L won't result in plain S */
1422 	if (!dup_sack &&
1423 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1424 		goto fallback;
1425 	if (!skb_can_shift(skb))
1426 		goto fallback;
1427 	/* This frame is about to be dropped (was ACKed). */
1428 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1429 		goto fallback;
1430 
1431 	/* Can only happen with delayed DSACK + discard craziness */
1432 	prev = skb_rb_prev(skb);
1433 	if (!prev)
1434 		goto fallback;
1435 
1436 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1437 		goto fallback;
1438 
1439 	if (!tcp_skb_can_collapse(prev, skb))
1440 		goto fallback;
1441 
1442 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1443 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1444 
1445 	if (in_sack) {
1446 		len = skb->len;
1447 		pcount = tcp_skb_pcount(skb);
1448 		mss = tcp_skb_seglen(skb);
1449 
1450 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1451 		 * drop this restriction as unnecessary
1452 		 */
1453 		if (mss != tcp_skb_seglen(prev))
1454 			goto fallback;
1455 	} else {
1456 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1457 			goto noop;
1458 		/* CHECKME: This is non-MSS split case only?, this will
1459 		 * cause skipped skbs due to advancing loop btw, original
1460 		 * has that feature too
1461 		 */
1462 		if (tcp_skb_pcount(skb) <= 1)
1463 			goto noop;
1464 
1465 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1466 		if (!in_sack) {
1467 			/* TODO: head merge to next could be attempted here
1468 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1469 			 * though it might not be worth of the additional hassle
1470 			 *
1471 			 * ...we can probably just fallback to what was done
1472 			 * previously. We could try merging non-SACKed ones
1473 			 * as well but it probably isn't going to buy off
1474 			 * because later SACKs might again split them, and
1475 			 * it would make skb timestamp tracking considerably
1476 			 * harder problem.
1477 			 */
1478 			goto fallback;
1479 		}
1480 
1481 		len = end_seq - TCP_SKB_CB(skb)->seq;
1482 		BUG_ON(len < 0);
1483 		BUG_ON(len > skb->len);
1484 
1485 		/* MSS boundaries should be honoured or else pcount will
1486 		 * severely break even though it makes things bit trickier.
1487 		 * Optimize common case to avoid most of the divides
1488 		 */
1489 		mss = tcp_skb_mss(skb);
1490 
1491 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1492 		 * drop this restriction as unnecessary
1493 		 */
1494 		if (mss != tcp_skb_seglen(prev))
1495 			goto fallback;
1496 
1497 		if (len == mss) {
1498 			pcount = 1;
1499 		} else if (len < mss) {
1500 			goto noop;
1501 		} else {
1502 			pcount = len / mss;
1503 			len = pcount * mss;
1504 		}
1505 	}
1506 
1507 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1508 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1509 		goto fallback;
1510 
1511 	if (!tcp_skb_shift(prev, skb, pcount, len))
1512 		goto fallback;
1513 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1514 		goto out;
1515 
1516 	/* Hole filled allows collapsing with the next as well, this is very
1517 	 * useful when hole on every nth skb pattern happens
1518 	 */
1519 	skb = skb_rb_next(prev);
1520 	if (!skb)
1521 		goto out;
1522 
1523 	if (!skb_can_shift(skb) ||
1524 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1525 	    (mss != tcp_skb_seglen(skb)))
1526 		goto out;
1527 
1528 	len = skb->len;
1529 	pcount = tcp_skb_pcount(skb);
1530 	if (tcp_skb_shift(prev, skb, pcount, len))
1531 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1532 				len, mss, 0);
1533 
1534 out:
1535 	return prev;
1536 
1537 noop:
1538 	return skb;
1539 
1540 fallback:
1541 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1542 	return NULL;
1543 }
1544 
1545 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1546 					struct tcp_sack_block *next_dup,
1547 					struct tcp_sacktag_state *state,
1548 					u32 start_seq, u32 end_seq,
1549 					bool dup_sack_in)
1550 {
1551 	struct tcp_sock *tp = tcp_sk(sk);
1552 	struct sk_buff *tmp;
1553 
1554 	skb_rbtree_walk_from(skb) {
1555 		int in_sack = 0;
1556 		bool dup_sack = dup_sack_in;
1557 
1558 		/* queue is in-order => we can short-circuit the walk early */
1559 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1560 			break;
1561 
1562 		if (next_dup  &&
1563 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1564 			in_sack = tcp_match_skb_to_sack(sk, skb,
1565 							next_dup->start_seq,
1566 							next_dup->end_seq);
1567 			if (in_sack > 0)
1568 				dup_sack = true;
1569 		}
1570 
1571 		/* skb reference here is a bit tricky to get right, since
1572 		 * shifting can eat and free both this skb and the next,
1573 		 * so not even _safe variant of the loop is enough.
1574 		 */
1575 		if (in_sack <= 0) {
1576 			tmp = tcp_shift_skb_data(sk, skb, state,
1577 						 start_seq, end_seq, dup_sack);
1578 			if (tmp) {
1579 				if (tmp != skb) {
1580 					skb = tmp;
1581 					continue;
1582 				}
1583 
1584 				in_sack = 0;
1585 			} else {
1586 				in_sack = tcp_match_skb_to_sack(sk, skb,
1587 								start_seq,
1588 								end_seq);
1589 			}
1590 		}
1591 
1592 		if (unlikely(in_sack < 0))
1593 			break;
1594 
1595 		if (in_sack) {
1596 			TCP_SKB_CB(skb)->sacked =
1597 				tcp_sacktag_one(sk,
1598 						state,
1599 						TCP_SKB_CB(skb)->sacked,
1600 						TCP_SKB_CB(skb)->seq,
1601 						TCP_SKB_CB(skb)->end_seq,
1602 						dup_sack,
1603 						tcp_skb_pcount(skb),
1604 						tcp_skb_timestamp_us(skb));
1605 			tcp_rate_skb_delivered(sk, skb, state->rate);
1606 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1607 				list_del_init(&skb->tcp_tsorted_anchor);
1608 
1609 			if (!before(TCP_SKB_CB(skb)->seq,
1610 				    tcp_highest_sack_seq(tp)))
1611 				tcp_advance_highest_sack(sk, skb);
1612 		}
1613 	}
1614 	return skb;
1615 }
1616 
1617 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1618 {
1619 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1620 	struct sk_buff *skb;
1621 
1622 	while (*p) {
1623 		parent = *p;
1624 		skb = rb_to_skb(parent);
1625 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1626 			p = &parent->rb_left;
1627 			continue;
1628 		}
1629 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1630 			p = &parent->rb_right;
1631 			continue;
1632 		}
1633 		return skb;
1634 	}
1635 	return NULL;
1636 }
1637 
1638 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1639 					u32 skip_to_seq)
1640 {
1641 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1642 		return skb;
1643 
1644 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1645 }
1646 
1647 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1648 						struct sock *sk,
1649 						struct tcp_sack_block *next_dup,
1650 						struct tcp_sacktag_state *state,
1651 						u32 skip_to_seq)
1652 {
1653 	if (!next_dup)
1654 		return skb;
1655 
1656 	if (before(next_dup->start_seq, skip_to_seq)) {
1657 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1658 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1659 				       next_dup->start_seq, next_dup->end_seq,
1660 				       1);
1661 	}
1662 
1663 	return skb;
1664 }
1665 
1666 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1667 {
1668 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1669 }
1670 
1671 static int
1672 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1673 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1674 {
1675 	struct tcp_sock *tp = tcp_sk(sk);
1676 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1677 				    TCP_SKB_CB(ack_skb)->sacked);
1678 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1679 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1680 	struct tcp_sack_block *cache;
1681 	struct sk_buff *skb;
1682 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1683 	int used_sacks;
1684 	bool found_dup_sack = false;
1685 	int i, j;
1686 	int first_sack_index;
1687 
1688 	state->flag = 0;
1689 	state->reord = tp->snd_nxt;
1690 
1691 	if (!tp->sacked_out)
1692 		tcp_highest_sack_reset(sk);
1693 
1694 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1695 					 num_sacks, prior_snd_una);
1696 	if (found_dup_sack) {
1697 		state->flag |= FLAG_DSACKING_ACK;
1698 		/* A spurious retransmission is delivered */
1699 		state->sack_delivered++;
1700 	}
1701 
1702 	/* Eliminate too old ACKs, but take into
1703 	 * account more or less fresh ones, they can
1704 	 * contain valid SACK info.
1705 	 */
1706 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1707 		return 0;
1708 
1709 	if (!tp->packets_out)
1710 		goto out;
1711 
1712 	used_sacks = 0;
1713 	first_sack_index = 0;
1714 	for (i = 0; i < num_sacks; i++) {
1715 		bool dup_sack = !i && found_dup_sack;
1716 
1717 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1718 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1719 
1720 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1721 					    sp[used_sacks].start_seq,
1722 					    sp[used_sacks].end_seq)) {
1723 			int mib_idx;
1724 
1725 			if (dup_sack) {
1726 				if (!tp->undo_marker)
1727 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1728 				else
1729 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1730 			} else {
1731 				/* Don't count olds caused by ACK reordering */
1732 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1733 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1734 					continue;
1735 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1736 			}
1737 
1738 			NET_INC_STATS(sock_net(sk), mib_idx);
1739 			if (i == 0)
1740 				first_sack_index = -1;
1741 			continue;
1742 		}
1743 
1744 		/* Ignore very old stuff early */
1745 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1746 			if (i == 0)
1747 				first_sack_index = -1;
1748 			continue;
1749 		}
1750 
1751 		used_sacks++;
1752 	}
1753 
1754 	/* order SACK blocks to allow in order walk of the retrans queue */
1755 	for (i = used_sacks - 1; i > 0; i--) {
1756 		for (j = 0; j < i; j++) {
1757 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1758 				swap(sp[j], sp[j + 1]);
1759 
1760 				/* Track where the first SACK block goes to */
1761 				if (j == first_sack_index)
1762 					first_sack_index = j + 1;
1763 			}
1764 		}
1765 	}
1766 
1767 	state->mss_now = tcp_current_mss(sk);
1768 	skb = NULL;
1769 	i = 0;
1770 
1771 	if (!tp->sacked_out) {
1772 		/* It's already past, so skip checking against it */
1773 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1774 	} else {
1775 		cache = tp->recv_sack_cache;
1776 		/* Skip empty blocks in at head of the cache */
1777 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1778 		       !cache->end_seq)
1779 			cache++;
1780 	}
1781 
1782 	while (i < used_sacks) {
1783 		u32 start_seq = sp[i].start_seq;
1784 		u32 end_seq = sp[i].end_seq;
1785 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1786 		struct tcp_sack_block *next_dup = NULL;
1787 
1788 		if (found_dup_sack && ((i + 1) == first_sack_index))
1789 			next_dup = &sp[i + 1];
1790 
1791 		/* Skip too early cached blocks */
1792 		while (tcp_sack_cache_ok(tp, cache) &&
1793 		       !before(start_seq, cache->end_seq))
1794 			cache++;
1795 
1796 		/* Can skip some work by looking recv_sack_cache? */
1797 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1798 		    after(end_seq, cache->start_seq)) {
1799 
1800 			/* Head todo? */
1801 			if (before(start_seq, cache->start_seq)) {
1802 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1803 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1804 						       state,
1805 						       start_seq,
1806 						       cache->start_seq,
1807 						       dup_sack);
1808 			}
1809 
1810 			/* Rest of the block already fully processed? */
1811 			if (!after(end_seq, cache->end_seq))
1812 				goto advance_sp;
1813 
1814 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1815 						       state,
1816 						       cache->end_seq);
1817 
1818 			/* ...tail remains todo... */
1819 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1820 				/* ...but better entrypoint exists! */
1821 				skb = tcp_highest_sack(sk);
1822 				if (!skb)
1823 					break;
1824 				cache++;
1825 				goto walk;
1826 			}
1827 
1828 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1829 			/* Check overlap against next cached too (past this one already) */
1830 			cache++;
1831 			continue;
1832 		}
1833 
1834 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1835 			skb = tcp_highest_sack(sk);
1836 			if (!skb)
1837 				break;
1838 		}
1839 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1840 
1841 walk:
1842 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1843 				       start_seq, end_seq, dup_sack);
1844 
1845 advance_sp:
1846 		i++;
1847 	}
1848 
1849 	/* Clear the head of the cache sack blocks so we can skip it next time */
1850 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1851 		tp->recv_sack_cache[i].start_seq = 0;
1852 		tp->recv_sack_cache[i].end_seq = 0;
1853 	}
1854 	for (j = 0; j < used_sacks; j++)
1855 		tp->recv_sack_cache[i++] = sp[j];
1856 
1857 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1858 		tcp_check_sack_reordering(sk, state->reord, 0);
1859 
1860 	tcp_verify_left_out(tp);
1861 out:
1862 
1863 #if FASTRETRANS_DEBUG > 0
1864 	WARN_ON((int)tp->sacked_out < 0);
1865 	WARN_ON((int)tp->lost_out < 0);
1866 	WARN_ON((int)tp->retrans_out < 0);
1867 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1868 #endif
1869 	return state->flag;
1870 }
1871 
1872 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1873  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1874  */
1875 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1876 {
1877 	u32 holes;
1878 
1879 	holes = max(tp->lost_out, 1U);
1880 	holes = min(holes, tp->packets_out);
1881 
1882 	if ((tp->sacked_out + holes) > tp->packets_out) {
1883 		tp->sacked_out = tp->packets_out - holes;
1884 		return true;
1885 	}
1886 	return false;
1887 }
1888 
1889 /* If we receive more dupacks than we expected counting segments
1890  * in assumption of absent reordering, interpret this as reordering.
1891  * The only another reason could be bug in receiver TCP.
1892  */
1893 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1894 {
1895 	struct tcp_sock *tp = tcp_sk(sk);
1896 
1897 	if (!tcp_limit_reno_sacked(tp))
1898 		return;
1899 
1900 	tp->reordering = min_t(u32, tp->packets_out + addend,
1901 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1902 	tp->reord_seen++;
1903 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1904 }
1905 
1906 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1907 
1908 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
1909 {
1910 	if (num_dupack) {
1911 		struct tcp_sock *tp = tcp_sk(sk);
1912 		u32 prior_sacked = tp->sacked_out;
1913 		s32 delivered;
1914 
1915 		tp->sacked_out += num_dupack;
1916 		tcp_check_reno_reordering(sk, 0);
1917 		delivered = tp->sacked_out - prior_sacked;
1918 		if (delivered > 0)
1919 			tcp_count_delivered(tp, delivered, ece_ack);
1920 		tcp_verify_left_out(tp);
1921 	}
1922 }
1923 
1924 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1925 
1926 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
1927 {
1928 	struct tcp_sock *tp = tcp_sk(sk);
1929 
1930 	if (acked > 0) {
1931 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1932 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
1933 				    ece_ack);
1934 		if (acked - 1 >= tp->sacked_out)
1935 			tp->sacked_out = 0;
1936 		else
1937 			tp->sacked_out -= acked - 1;
1938 	}
1939 	tcp_check_reno_reordering(sk, acked);
1940 	tcp_verify_left_out(tp);
1941 }
1942 
1943 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1944 {
1945 	tp->sacked_out = 0;
1946 }
1947 
1948 void tcp_clear_retrans(struct tcp_sock *tp)
1949 {
1950 	tp->retrans_out = 0;
1951 	tp->lost_out = 0;
1952 	tp->undo_marker = 0;
1953 	tp->undo_retrans = -1;
1954 	tp->sacked_out = 0;
1955 }
1956 
1957 static inline void tcp_init_undo(struct tcp_sock *tp)
1958 {
1959 	tp->undo_marker = tp->snd_una;
1960 	/* Retransmission still in flight may cause DSACKs later. */
1961 	tp->undo_retrans = tp->retrans_out ? : -1;
1962 }
1963 
1964 static bool tcp_is_rack(const struct sock *sk)
1965 {
1966 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1967 }
1968 
1969 /* If we detect SACK reneging, forget all SACK information
1970  * and reset tags completely, otherwise preserve SACKs. If receiver
1971  * dropped its ofo queue, we will know this due to reneging detection.
1972  */
1973 static void tcp_timeout_mark_lost(struct sock *sk)
1974 {
1975 	struct tcp_sock *tp = tcp_sk(sk);
1976 	struct sk_buff *skb, *head;
1977 	bool is_reneg;			/* is receiver reneging on SACKs? */
1978 
1979 	head = tcp_rtx_queue_head(sk);
1980 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1981 	if (is_reneg) {
1982 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1983 		tp->sacked_out = 0;
1984 		/* Mark SACK reneging until we recover from this loss event. */
1985 		tp->is_sack_reneg = 1;
1986 	} else if (tcp_is_reno(tp)) {
1987 		tcp_reset_reno_sack(tp);
1988 	}
1989 
1990 	skb = head;
1991 	skb_rbtree_walk_from(skb) {
1992 		if (is_reneg)
1993 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1994 		else if (tcp_is_rack(sk) && skb != head &&
1995 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1996 			continue; /* Don't mark recently sent ones lost yet */
1997 		tcp_mark_skb_lost(sk, skb);
1998 	}
1999 	tcp_verify_left_out(tp);
2000 	tcp_clear_all_retrans_hints(tp);
2001 }
2002 
2003 /* Enter Loss state. */
2004 void tcp_enter_loss(struct sock *sk)
2005 {
2006 	const struct inet_connection_sock *icsk = inet_csk(sk);
2007 	struct tcp_sock *tp = tcp_sk(sk);
2008 	struct net *net = sock_net(sk);
2009 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2010 
2011 	tcp_timeout_mark_lost(sk);
2012 
2013 	/* Reduce ssthresh if it has not yet been made inside this window. */
2014 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2015 	    !after(tp->high_seq, tp->snd_una) ||
2016 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2017 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2018 		tp->prior_cwnd = tp->snd_cwnd;
2019 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2020 		tcp_ca_event(sk, CA_EVENT_LOSS);
2021 		tcp_init_undo(tp);
2022 	}
2023 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2024 	tp->snd_cwnd_cnt   = 0;
2025 	tp->snd_cwnd_stamp = tcp_jiffies32;
2026 
2027 	/* Timeout in disordered state after receiving substantial DUPACKs
2028 	 * suggests that the degree of reordering is over-estimated.
2029 	 */
2030 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2031 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2032 		tp->reordering = min_t(unsigned int, tp->reordering,
2033 				       net->ipv4.sysctl_tcp_reordering);
2034 	tcp_set_ca_state(sk, TCP_CA_Loss);
2035 	tp->high_seq = tp->snd_nxt;
2036 	tcp_ecn_queue_cwr(tp);
2037 
2038 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2039 	 * loss recovery is underway except recurring timeout(s) on
2040 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2041 	 */
2042 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2043 		   (new_recovery || icsk->icsk_retransmits) &&
2044 		   !inet_csk(sk)->icsk_mtup.probe_size;
2045 }
2046 
2047 /* If ACK arrived pointing to a remembered SACK, it means that our
2048  * remembered SACKs do not reflect real state of receiver i.e.
2049  * receiver _host_ is heavily congested (or buggy).
2050  *
2051  * To avoid big spurious retransmission bursts due to transient SACK
2052  * scoreboard oddities that look like reneging, we give the receiver a
2053  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2054  * restore sanity to the SACK scoreboard. If the apparent reneging
2055  * persists until this RTO then we'll clear the SACK scoreboard.
2056  */
2057 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2058 {
2059 	if (flag & FLAG_SACK_RENEGING) {
2060 		struct tcp_sock *tp = tcp_sk(sk);
2061 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2062 					  msecs_to_jiffies(10));
2063 
2064 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2065 					  delay, TCP_RTO_MAX);
2066 		return true;
2067 	}
2068 	return false;
2069 }
2070 
2071 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2072  * counter when SACK is enabled (without SACK, sacked_out is used for
2073  * that purpose).
2074  *
2075  * With reordering, holes may still be in flight, so RFC3517 recovery
2076  * uses pure sacked_out (total number of SACKed segments) even though
2077  * it violates the RFC that uses duplicate ACKs, often these are equal
2078  * but when e.g. out-of-window ACKs or packet duplication occurs,
2079  * they differ. Since neither occurs due to loss, TCP should really
2080  * ignore them.
2081  */
2082 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2083 {
2084 	return tp->sacked_out + 1;
2085 }
2086 
2087 /* Linux NewReno/SACK/ECN state machine.
2088  * --------------------------------------
2089  *
2090  * "Open"	Normal state, no dubious events, fast path.
2091  * "Disorder"   In all the respects it is "Open",
2092  *		but requires a bit more attention. It is entered when
2093  *		we see some SACKs or dupacks. It is split of "Open"
2094  *		mainly to move some processing from fast path to slow one.
2095  * "CWR"	CWND was reduced due to some Congestion Notification event.
2096  *		It can be ECN, ICMP source quench, local device congestion.
2097  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2098  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2099  *
2100  * tcp_fastretrans_alert() is entered:
2101  * - each incoming ACK, if state is not "Open"
2102  * - when arrived ACK is unusual, namely:
2103  *	* SACK
2104  *	* Duplicate ACK.
2105  *	* ECN ECE.
2106  *
2107  * Counting packets in flight is pretty simple.
2108  *
2109  *	in_flight = packets_out - left_out + retrans_out
2110  *
2111  *	packets_out is SND.NXT-SND.UNA counted in packets.
2112  *
2113  *	retrans_out is number of retransmitted segments.
2114  *
2115  *	left_out is number of segments left network, but not ACKed yet.
2116  *
2117  *		left_out = sacked_out + lost_out
2118  *
2119  *     sacked_out: Packets, which arrived to receiver out of order
2120  *		   and hence not ACKed. With SACKs this number is simply
2121  *		   amount of SACKed data. Even without SACKs
2122  *		   it is easy to give pretty reliable estimate of this number,
2123  *		   counting duplicate ACKs.
2124  *
2125  *       lost_out: Packets lost by network. TCP has no explicit
2126  *		   "loss notification" feedback from network (for now).
2127  *		   It means that this number can be only _guessed_.
2128  *		   Actually, it is the heuristics to predict lossage that
2129  *		   distinguishes different algorithms.
2130  *
2131  *	F.e. after RTO, when all the queue is considered as lost,
2132  *	lost_out = packets_out and in_flight = retrans_out.
2133  *
2134  *		Essentially, we have now a few algorithms detecting
2135  *		lost packets.
2136  *
2137  *		If the receiver supports SACK:
2138  *
2139  *		RFC6675/3517: It is the conventional algorithm. A packet is
2140  *		considered lost if the number of higher sequence packets
2141  *		SACKed is greater than or equal the DUPACK thoreshold
2142  *		(reordering). This is implemented in tcp_mark_head_lost and
2143  *		tcp_update_scoreboard.
2144  *
2145  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2146  *		(2017-) that checks timing instead of counting DUPACKs.
2147  *		Essentially a packet is considered lost if it's not S/ACKed
2148  *		after RTT + reordering_window, where both metrics are
2149  *		dynamically measured and adjusted. This is implemented in
2150  *		tcp_rack_mark_lost.
2151  *
2152  *		If the receiver does not support SACK:
2153  *
2154  *		NewReno (RFC6582): in Recovery we assume that one segment
2155  *		is lost (classic Reno). While we are in Recovery and
2156  *		a partial ACK arrives, we assume that one more packet
2157  *		is lost (NewReno). This heuristics are the same in NewReno
2158  *		and SACK.
2159  *
2160  * Really tricky (and requiring careful tuning) part of algorithm
2161  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2162  * The first determines the moment _when_ we should reduce CWND and,
2163  * hence, slow down forward transmission. In fact, it determines the moment
2164  * when we decide that hole is caused by loss, rather than by a reorder.
2165  *
2166  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2167  * holes, caused by lost packets.
2168  *
2169  * And the most logically complicated part of algorithm is undo
2170  * heuristics. We detect false retransmits due to both too early
2171  * fast retransmit (reordering) and underestimated RTO, analyzing
2172  * timestamps and D-SACKs. When we detect that some segments were
2173  * retransmitted by mistake and CWND reduction was wrong, we undo
2174  * window reduction and abort recovery phase. This logic is hidden
2175  * inside several functions named tcp_try_undo_<something>.
2176  */
2177 
2178 /* This function decides, when we should leave Disordered state
2179  * and enter Recovery phase, reducing congestion window.
2180  *
2181  * Main question: may we further continue forward transmission
2182  * with the same cwnd?
2183  */
2184 static bool tcp_time_to_recover(struct sock *sk, int flag)
2185 {
2186 	struct tcp_sock *tp = tcp_sk(sk);
2187 
2188 	/* Trick#1: The loss is proven. */
2189 	if (tp->lost_out)
2190 		return true;
2191 
2192 	/* Not-A-Trick#2 : Classic rule... */
2193 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2194 		return true;
2195 
2196 	return false;
2197 }
2198 
2199 /* Detect loss in event "A" above by marking head of queue up as lost.
2200  * For RFC3517 SACK, a segment is considered lost if it
2201  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2202  * the maximum SACKed segments to pass before reaching this limit.
2203  */
2204 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2205 {
2206 	struct tcp_sock *tp = tcp_sk(sk);
2207 	struct sk_buff *skb;
2208 	int cnt;
2209 	/* Use SACK to deduce losses of new sequences sent during recovery */
2210 	const u32 loss_high = tp->snd_nxt;
2211 
2212 	WARN_ON(packets > tp->packets_out);
2213 	skb = tp->lost_skb_hint;
2214 	if (skb) {
2215 		/* Head already handled? */
2216 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2217 			return;
2218 		cnt = tp->lost_cnt_hint;
2219 	} else {
2220 		skb = tcp_rtx_queue_head(sk);
2221 		cnt = 0;
2222 	}
2223 
2224 	skb_rbtree_walk_from(skb) {
2225 		/* TODO: do this better */
2226 		/* this is not the most efficient way to do this... */
2227 		tp->lost_skb_hint = skb;
2228 		tp->lost_cnt_hint = cnt;
2229 
2230 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2231 			break;
2232 
2233 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2234 			cnt += tcp_skb_pcount(skb);
2235 
2236 		if (cnt > packets)
2237 			break;
2238 
2239 		tcp_skb_mark_lost(tp, skb);
2240 
2241 		if (mark_head)
2242 			break;
2243 	}
2244 	tcp_verify_left_out(tp);
2245 }
2246 
2247 /* Account newly detected lost packet(s) */
2248 
2249 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2250 {
2251 	struct tcp_sock *tp = tcp_sk(sk);
2252 
2253 	if (tcp_is_sack(tp)) {
2254 		int sacked_upto = tp->sacked_out - tp->reordering;
2255 		if (sacked_upto >= 0)
2256 			tcp_mark_head_lost(sk, sacked_upto, 0);
2257 		else if (fast_rexmit)
2258 			tcp_mark_head_lost(sk, 1, 1);
2259 	}
2260 }
2261 
2262 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2263 {
2264 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2265 	       before(tp->rx_opt.rcv_tsecr, when);
2266 }
2267 
2268 /* skb is spurious retransmitted if the returned timestamp echo
2269  * reply is prior to the skb transmission time
2270  */
2271 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2272 				     const struct sk_buff *skb)
2273 {
2274 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2275 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2276 }
2277 
2278 /* Nothing was retransmitted or returned timestamp is less
2279  * than timestamp of the first retransmission.
2280  */
2281 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2282 {
2283 	return tp->retrans_stamp &&
2284 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2285 }
2286 
2287 /* Undo procedures. */
2288 
2289 /* We can clear retrans_stamp when there are no retransmissions in the
2290  * window. It would seem that it is trivially available for us in
2291  * tp->retrans_out, however, that kind of assumptions doesn't consider
2292  * what will happen if errors occur when sending retransmission for the
2293  * second time. ...It could the that such segment has only
2294  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2295  * the head skb is enough except for some reneging corner cases that
2296  * are not worth the effort.
2297  *
2298  * Main reason for all this complexity is the fact that connection dying
2299  * time now depends on the validity of the retrans_stamp, in particular,
2300  * that successive retransmissions of a segment must not advance
2301  * retrans_stamp under any conditions.
2302  */
2303 static bool tcp_any_retrans_done(const struct sock *sk)
2304 {
2305 	const struct tcp_sock *tp = tcp_sk(sk);
2306 	struct sk_buff *skb;
2307 
2308 	if (tp->retrans_out)
2309 		return true;
2310 
2311 	skb = tcp_rtx_queue_head(sk);
2312 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2313 		return true;
2314 
2315 	return false;
2316 }
2317 
2318 static void DBGUNDO(struct sock *sk, const char *msg)
2319 {
2320 #if FASTRETRANS_DEBUG > 1
2321 	struct tcp_sock *tp = tcp_sk(sk);
2322 	struct inet_sock *inet = inet_sk(sk);
2323 
2324 	if (sk->sk_family == AF_INET) {
2325 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2326 			 msg,
2327 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2328 			 tp->snd_cwnd, tcp_left_out(tp),
2329 			 tp->snd_ssthresh, tp->prior_ssthresh,
2330 			 tp->packets_out);
2331 	}
2332 #if IS_ENABLED(CONFIG_IPV6)
2333 	else if (sk->sk_family == AF_INET6) {
2334 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2335 			 msg,
2336 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2337 			 tp->snd_cwnd, tcp_left_out(tp),
2338 			 tp->snd_ssthresh, tp->prior_ssthresh,
2339 			 tp->packets_out);
2340 	}
2341 #endif
2342 #endif
2343 }
2344 
2345 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2346 {
2347 	struct tcp_sock *tp = tcp_sk(sk);
2348 
2349 	if (unmark_loss) {
2350 		struct sk_buff *skb;
2351 
2352 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2353 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2354 		}
2355 		tp->lost_out = 0;
2356 		tcp_clear_all_retrans_hints(tp);
2357 	}
2358 
2359 	if (tp->prior_ssthresh) {
2360 		const struct inet_connection_sock *icsk = inet_csk(sk);
2361 
2362 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2363 
2364 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2365 			tp->snd_ssthresh = tp->prior_ssthresh;
2366 			tcp_ecn_withdraw_cwr(tp);
2367 		}
2368 	}
2369 	tp->snd_cwnd_stamp = tcp_jiffies32;
2370 	tp->undo_marker = 0;
2371 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2372 }
2373 
2374 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2375 {
2376 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2377 }
2378 
2379 /* People celebrate: "We love our President!" */
2380 static bool tcp_try_undo_recovery(struct sock *sk)
2381 {
2382 	struct tcp_sock *tp = tcp_sk(sk);
2383 
2384 	if (tcp_may_undo(tp)) {
2385 		int mib_idx;
2386 
2387 		/* Happy end! We did not retransmit anything
2388 		 * or our original transmission succeeded.
2389 		 */
2390 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2391 		tcp_undo_cwnd_reduction(sk, false);
2392 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2393 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2394 		else
2395 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2396 
2397 		NET_INC_STATS(sock_net(sk), mib_idx);
2398 	} else if (tp->rack.reo_wnd_persist) {
2399 		tp->rack.reo_wnd_persist--;
2400 	}
2401 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2402 		/* Hold old state until something *above* high_seq
2403 		 * is ACKed. For Reno it is MUST to prevent false
2404 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2405 		if (!tcp_any_retrans_done(sk))
2406 			tp->retrans_stamp = 0;
2407 		return true;
2408 	}
2409 	tcp_set_ca_state(sk, TCP_CA_Open);
2410 	tp->is_sack_reneg = 0;
2411 	return false;
2412 }
2413 
2414 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2415 static bool tcp_try_undo_dsack(struct sock *sk)
2416 {
2417 	struct tcp_sock *tp = tcp_sk(sk);
2418 
2419 	if (tp->undo_marker && !tp->undo_retrans) {
2420 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2421 					       tp->rack.reo_wnd_persist + 1);
2422 		DBGUNDO(sk, "D-SACK");
2423 		tcp_undo_cwnd_reduction(sk, false);
2424 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2425 		return true;
2426 	}
2427 	return false;
2428 }
2429 
2430 /* Undo during loss recovery after partial ACK or using F-RTO. */
2431 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2432 {
2433 	struct tcp_sock *tp = tcp_sk(sk);
2434 
2435 	if (frto_undo || tcp_may_undo(tp)) {
2436 		tcp_undo_cwnd_reduction(sk, true);
2437 
2438 		DBGUNDO(sk, "partial loss");
2439 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2440 		if (frto_undo)
2441 			NET_INC_STATS(sock_net(sk),
2442 					LINUX_MIB_TCPSPURIOUSRTOS);
2443 		inet_csk(sk)->icsk_retransmits = 0;
2444 		if (frto_undo || tcp_is_sack(tp)) {
2445 			tcp_set_ca_state(sk, TCP_CA_Open);
2446 			tp->is_sack_reneg = 0;
2447 		}
2448 		return true;
2449 	}
2450 	return false;
2451 }
2452 
2453 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2454  * It computes the number of packets to send (sndcnt) based on packets newly
2455  * delivered:
2456  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2457  *	cwnd reductions across a full RTT.
2458  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2459  *      But when the retransmits are acked without further losses, PRR
2460  *      slow starts cwnd up to ssthresh to speed up the recovery.
2461  */
2462 static void tcp_init_cwnd_reduction(struct sock *sk)
2463 {
2464 	struct tcp_sock *tp = tcp_sk(sk);
2465 
2466 	tp->high_seq = tp->snd_nxt;
2467 	tp->tlp_high_seq = 0;
2468 	tp->snd_cwnd_cnt = 0;
2469 	tp->prior_cwnd = tp->snd_cwnd;
2470 	tp->prr_delivered = 0;
2471 	tp->prr_out = 0;
2472 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2473 	tcp_ecn_queue_cwr(tp);
2474 }
2475 
2476 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2477 {
2478 	struct tcp_sock *tp = tcp_sk(sk);
2479 	int sndcnt = 0;
2480 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2481 
2482 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2483 		return;
2484 
2485 	tp->prr_delivered += newly_acked_sacked;
2486 	if (delta < 0) {
2487 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2488 			       tp->prior_cwnd - 1;
2489 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2490 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2491 		   FLAG_RETRANS_DATA_ACKED) {
2492 		sndcnt = min_t(int, delta,
2493 			       max_t(int, tp->prr_delivered - tp->prr_out,
2494 				     newly_acked_sacked) + 1);
2495 	} else {
2496 		sndcnt = min(delta, newly_acked_sacked);
2497 	}
2498 	/* Force a fast retransmit upon entering fast recovery */
2499 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2500 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2501 }
2502 
2503 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2504 {
2505 	struct tcp_sock *tp = tcp_sk(sk);
2506 
2507 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2508 		return;
2509 
2510 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2511 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2512 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2513 		tp->snd_cwnd = tp->snd_ssthresh;
2514 		tp->snd_cwnd_stamp = tcp_jiffies32;
2515 	}
2516 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2517 }
2518 
2519 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2520 void tcp_enter_cwr(struct sock *sk)
2521 {
2522 	struct tcp_sock *tp = tcp_sk(sk);
2523 
2524 	tp->prior_ssthresh = 0;
2525 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2526 		tp->undo_marker = 0;
2527 		tcp_init_cwnd_reduction(sk);
2528 		tcp_set_ca_state(sk, TCP_CA_CWR);
2529 	}
2530 }
2531 EXPORT_SYMBOL(tcp_enter_cwr);
2532 
2533 static void tcp_try_keep_open(struct sock *sk)
2534 {
2535 	struct tcp_sock *tp = tcp_sk(sk);
2536 	int state = TCP_CA_Open;
2537 
2538 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2539 		state = TCP_CA_Disorder;
2540 
2541 	if (inet_csk(sk)->icsk_ca_state != state) {
2542 		tcp_set_ca_state(sk, state);
2543 		tp->high_seq = tp->snd_nxt;
2544 	}
2545 }
2546 
2547 static void tcp_try_to_open(struct sock *sk, int flag)
2548 {
2549 	struct tcp_sock *tp = tcp_sk(sk);
2550 
2551 	tcp_verify_left_out(tp);
2552 
2553 	if (!tcp_any_retrans_done(sk))
2554 		tp->retrans_stamp = 0;
2555 
2556 	if (flag & FLAG_ECE)
2557 		tcp_enter_cwr(sk);
2558 
2559 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2560 		tcp_try_keep_open(sk);
2561 	}
2562 }
2563 
2564 static void tcp_mtup_probe_failed(struct sock *sk)
2565 {
2566 	struct inet_connection_sock *icsk = inet_csk(sk);
2567 
2568 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2569 	icsk->icsk_mtup.probe_size = 0;
2570 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2571 }
2572 
2573 static void tcp_mtup_probe_success(struct sock *sk)
2574 {
2575 	struct tcp_sock *tp = tcp_sk(sk);
2576 	struct inet_connection_sock *icsk = inet_csk(sk);
2577 
2578 	/* FIXME: breaks with very large cwnd */
2579 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2580 	tp->snd_cwnd = tp->snd_cwnd *
2581 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2582 		       icsk->icsk_mtup.probe_size;
2583 	tp->snd_cwnd_cnt = 0;
2584 	tp->snd_cwnd_stamp = tcp_jiffies32;
2585 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2586 
2587 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2588 	icsk->icsk_mtup.probe_size = 0;
2589 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2590 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2591 }
2592 
2593 /* Do a simple retransmit without using the backoff mechanisms in
2594  * tcp_timer. This is used for path mtu discovery.
2595  * The socket is already locked here.
2596  */
2597 void tcp_simple_retransmit(struct sock *sk)
2598 {
2599 	const struct inet_connection_sock *icsk = inet_csk(sk);
2600 	struct tcp_sock *tp = tcp_sk(sk);
2601 	struct sk_buff *skb;
2602 	unsigned int mss = tcp_current_mss(sk);
2603 
2604 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2605 		if (tcp_skb_seglen(skb) > mss &&
2606 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2607 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2608 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2609 				tp->retrans_out -= tcp_skb_pcount(skb);
2610 			}
2611 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2612 		}
2613 	}
2614 
2615 	tcp_clear_retrans_hints_partial(tp);
2616 
2617 	if (!tp->lost_out)
2618 		return;
2619 
2620 	if (tcp_is_reno(tp))
2621 		tcp_limit_reno_sacked(tp);
2622 
2623 	tcp_verify_left_out(tp);
2624 
2625 	/* Don't muck with the congestion window here.
2626 	 * Reason is that we do not increase amount of _data_
2627 	 * in network, but units changed and effective
2628 	 * cwnd/ssthresh really reduced now.
2629 	 */
2630 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2631 		tp->high_seq = tp->snd_nxt;
2632 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2633 		tp->prior_ssthresh = 0;
2634 		tp->undo_marker = 0;
2635 		tcp_set_ca_state(sk, TCP_CA_Loss);
2636 	}
2637 	tcp_xmit_retransmit_queue(sk);
2638 }
2639 EXPORT_SYMBOL(tcp_simple_retransmit);
2640 
2641 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2642 {
2643 	struct tcp_sock *tp = tcp_sk(sk);
2644 	int mib_idx;
2645 
2646 	if (tcp_is_reno(tp))
2647 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2648 	else
2649 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2650 
2651 	NET_INC_STATS(sock_net(sk), mib_idx);
2652 
2653 	tp->prior_ssthresh = 0;
2654 	tcp_init_undo(tp);
2655 
2656 	if (!tcp_in_cwnd_reduction(sk)) {
2657 		if (!ece_ack)
2658 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2659 		tcp_init_cwnd_reduction(sk);
2660 	}
2661 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2662 }
2663 
2664 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2665  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2666  */
2667 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2668 			     int *rexmit)
2669 {
2670 	struct tcp_sock *tp = tcp_sk(sk);
2671 	bool recovered = !before(tp->snd_una, tp->high_seq);
2672 
2673 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2674 	    tcp_try_undo_loss(sk, false))
2675 		return;
2676 
2677 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2678 		/* Step 3.b. A timeout is spurious if not all data are
2679 		 * lost, i.e., never-retransmitted data are (s)acked.
2680 		 */
2681 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2682 		    tcp_try_undo_loss(sk, true))
2683 			return;
2684 
2685 		if (after(tp->snd_nxt, tp->high_seq)) {
2686 			if (flag & FLAG_DATA_SACKED || num_dupack)
2687 				tp->frto = 0; /* Step 3.a. loss was real */
2688 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2689 			tp->high_seq = tp->snd_nxt;
2690 			/* Step 2.b. Try send new data (but deferred until cwnd
2691 			 * is updated in tcp_ack()). Otherwise fall back to
2692 			 * the conventional recovery.
2693 			 */
2694 			if (!tcp_write_queue_empty(sk) &&
2695 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2696 				*rexmit = REXMIT_NEW;
2697 				return;
2698 			}
2699 			tp->frto = 0;
2700 		}
2701 	}
2702 
2703 	if (recovered) {
2704 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2705 		tcp_try_undo_recovery(sk);
2706 		return;
2707 	}
2708 	if (tcp_is_reno(tp)) {
2709 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2710 		 * delivered. Lower inflight to clock out (re)tranmissions.
2711 		 */
2712 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2713 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2714 		else if (flag & FLAG_SND_UNA_ADVANCED)
2715 			tcp_reset_reno_sack(tp);
2716 	}
2717 	*rexmit = REXMIT_LOST;
2718 }
2719 
2720 /* Undo during fast recovery after partial ACK. */
2721 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2722 {
2723 	struct tcp_sock *tp = tcp_sk(sk);
2724 
2725 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2726 		/* Plain luck! Hole if filled with delayed
2727 		 * packet, rather than with a retransmit. Check reordering.
2728 		 */
2729 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2730 
2731 		/* We are getting evidence that the reordering degree is higher
2732 		 * than we realized. If there are no retransmits out then we
2733 		 * can undo. Otherwise we clock out new packets but do not
2734 		 * mark more packets lost or retransmit more.
2735 		 */
2736 		if (tp->retrans_out)
2737 			return true;
2738 
2739 		if (!tcp_any_retrans_done(sk))
2740 			tp->retrans_stamp = 0;
2741 
2742 		DBGUNDO(sk, "partial recovery");
2743 		tcp_undo_cwnd_reduction(sk, true);
2744 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2745 		tcp_try_keep_open(sk);
2746 		return true;
2747 	}
2748 	return false;
2749 }
2750 
2751 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2752 {
2753 	struct tcp_sock *tp = tcp_sk(sk);
2754 
2755 	if (tcp_rtx_queue_empty(sk))
2756 		return;
2757 
2758 	if (unlikely(tcp_is_reno(tp))) {
2759 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2760 	} else if (tcp_is_rack(sk)) {
2761 		u32 prior_retrans = tp->retrans_out;
2762 
2763 		tcp_rack_mark_lost(sk);
2764 		if (prior_retrans > tp->retrans_out)
2765 			*ack_flag |= FLAG_LOST_RETRANS;
2766 	}
2767 }
2768 
2769 static bool tcp_force_fast_retransmit(struct sock *sk)
2770 {
2771 	struct tcp_sock *tp = tcp_sk(sk);
2772 
2773 	return after(tcp_highest_sack_seq(tp),
2774 		     tp->snd_una + tp->reordering * tp->mss_cache);
2775 }
2776 
2777 /* Process an event, which can update packets-in-flight not trivially.
2778  * Main goal of this function is to calculate new estimate for left_out,
2779  * taking into account both packets sitting in receiver's buffer and
2780  * packets lost by network.
2781  *
2782  * Besides that it updates the congestion state when packet loss or ECN
2783  * is detected. But it does not reduce the cwnd, it is done by the
2784  * congestion control later.
2785  *
2786  * It does _not_ decide what to send, it is made in function
2787  * tcp_xmit_retransmit_queue().
2788  */
2789 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2790 				  int num_dupack, int *ack_flag, int *rexmit)
2791 {
2792 	struct inet_connection_sock *icsk = inet_csk(sk);
2793 	struct tcp_sock *tp = tcp_sk(sk);
2794 	int fast_rexmit = 0, flag = *ack_flag;
2795 	bool ece_ack = flag & FLAG_ECE;
2796 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2797 				      tcp_force_fast_retransmit(sk));
2798 
2799 	if (!tp->packets_out && tp->sacked_out)
2800 		tp->sacked_out = 0;
2801 
2802 	/* Now state machine starts.
2803 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2804 	if (ece_ack)
2805 		tp->prior_ssthresh = 0;
2806 
2807 	/* B. In all the states check for reneging SACKs. */
2808 	if (tcp_check_sack_reneging(sk, flag))
2809 		return;
2810 
2811 	/* C. Check consistency of the current state. */
2812 	tcp_verify_left_out(tp);
2813 
2814 	/* D. Check state exit conditions. State can be terminated
2815 	 *    when high_seq is ACKed. */
2816 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2817 		WARN_ON(tp->retrans_out != 0);
2818 		tp->retrans_stamp = 0;
2819 	} else if (!before(tp->snd_una, tp->high_seq)) {
2820 		switch (icsk->icsk_ca_state) {
2821 		case TCP_CA_CWR:
2822 			/* CWR is to be held something *above* high_seq
2823 			 * is ACKed for CWR bit to reach receiver. */
2824 			if (tp->snd_una != tp->high_seq) {
2825 				tcp_end_cwnd_reduction(sk);
2826 				tcp_set_ca_state(sk, TCP_CA_Open);
2827 			}
2828 			break;
2829 
2830 		case TCP_CA_Recovery:
2831 			if (tcp_is_reno(tp))
2832 				tcp_reset_reno_sack(tp);
2833 			if (tcp_try_undo_recovery(sk))
2834 				return;
2835 			tcp_end_cwnd_reduction(sk);
2836 			break;
2837 		}
2838 	}
2839 
2840 	/* E. Process state. */
2841 	switch (icsk->icsk_ca_state) {
2842 	case TCP_CA_Recovery:
2843 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2844 			if (tcp_is_reno(tp))
2845 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2846 		} else {
2847 			if (tcp_try_undo_partial(sk, prior_snd_una))
2848 				return;
2849 			/* Partial ACK arrived. Force fast retransmit. */
2850 			do_lost = tcp_force_fast_retransmit(sk);
2851 		}
2852 		if (tcp_try_undo_dsack(sk)) {
2853 			tcp_try_keep_open(sk);
2854 			return;
2855 		}
2856 		tcp_identify_packet_loss(sk, ack_flag);
2857 		break;
2858 	case TCP_CA_Loss:
2859 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2860 		tcp_identify_packet_loss(sk, ack_flag);
2861 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2862 		      (*ack_flag & FLAG_LOST_RETRANS)))
2863 			return;
2864 		/* Change state if cwnd is undone or retransmits are lost */
2865 		fallthrough;
2866 	default:
2867 		if (tcp_is_reno(tp)) {
2868 			if (flag & FLAG_SND_UNA_ADVANCED)
2869 				tcp_reset_reno_sack(tp);
2870 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
2871 		}
2872 
2873 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2874 			tcp_try_undo_dsack(sk);
2875 
2876 		tcp_identify_packet_loss(sk, ack_flag);
2877 		if (!tcp_time_to_recover(sk, flag)) {
2878 			tcp_try_to_open(sk, flag);
2879 			return;
2880 		}
2881 
2882 		/* MTU probe failure: don't reduce cwnd */
2883 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2884 		    icsk->icsk_mtup.probe_size &&
2885 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2886 			tcp_mtup_probe_failed(sk);
2887 			/* Restores the reduction we did in tcp_mtup_probe() */
2888 			tp->snd_cwnd++;
2889 			tcp_simple_retransmit(sk);
2890 			return;
2891 		}
2892 
2893 		/* Otherwise enter Recovery state */
2894 		tcp_enter_recovery(sk, ece_ack);
2895 		fast_rexmit = 1;
2896 	}
2897 
2898 	if (!tcp_is_rack(sk) && do_lost)
2899 		tcp_update_scoreboard(sk, fast_rexmit);
2900 	*rexmit = REXMIT_LOST;
2901 }
2902 
2903 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2904 {
2905 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2906 	struct tcp_sock *tp = tcp_sk(sk);
2907 
2908 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2909 		/* If the remote keeps returning delayed ACKs, eventually
2910 		 * the min filter would pick it up and overestimate the
2911 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2912 		 */
2913 		return;
2914 	}
2915 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2916 			   rtt_us ? : jiffies_to_usecs(1));
2917 }
2918 
2919 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2920 			       long seq_rtt_us, long sack_rtt_us,
2921 			       long ca_rtt_us, struct rate_sample *rs)
2922 {
2923 	const struct tcp_sock *tp = tcp_sk(sk);
2924 
2925 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2926 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2927 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2928 	 * is acked (RFC6298).
2929 	 */
2930 	if (seq_rtt_us < 0)
2931 		seq_rtt_us = sack_rtt_us;
2932 
2933 	/* RTTM Rule: A TSecr value received in a segment is used to
2934 	 * update the averaged RTT measurement only if the segment
2935 	 * acknowledges some new data, i.e., only if it advances the
2936 	 * left edge of the send window.
2937 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2938 	 */
2939 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2940 	    flag & FLAG_ACKED) {
2941 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2942 
2943 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2944 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2945 			ca_rtt_us = seq_rtt_us;
2946 		}
2947 	}
2948 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2949 	if (seq_rtt_us < 0)
2950 		return false;
2951 
2952 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2953 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2954 	 * values will be skipped with the seq_rtt_us < 0 check above.
2955 	 */
2956 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2957 	tcp_rtt_estimator(sk, seq_rtt_us);
2958 	tcp_set_rto(sk);
2959 
2960 	/* RFC6298: only reset backoff on valid RTT measurement. */
2961 	inet_csk(sk)->icsk_backoff = 0;
2962 	return true;
2963 }
2964 
2965 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2966 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2967 {
2968 	struct rate_sample rs;
2969 	long rtt_us = -1L;
2970 
2971 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2972 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2973 
2974 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2975 }
2976 
2977 
2978 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2979 {
2980 	const struct inet_connection_sock *icsk = inet_csk(sk);
2981 
2982 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2983 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2984 }
2985 
2986 /* Restart timer after forward progress on connection.
2987  * RFC2988 recommends to restart timer to now+rto.
2988  */
2989 void tcp_rearm_rto(struct sock *sk)
2990 {
2991 	const struct inet_connection_sock *icsk = inet_csk(sk);
2992 	struct tcp_sock *tp = tcp_sk(sk);
2993 
2994 	/* If the retrans timer is currently being used by Fast Open
2995 	 * for SYN-ACK retrans purpose, stay put.
2996 	 */
2997 	if (rcu_access_pointer(tp->fastopen_rsk))
2998 		return;
2999 
3000 	if (!tp->packets_out) {
3001 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3002 	} else {
3003 		u32 rto = inet_csk(sk)->icsk_rto;
3004 		/* Offset the time elapsed after installing regular RTO */
3005 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3006 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3007 			s64 delta_us = tcp_rto_delta_us(sk);
3008 			/* delta_us may not be positive if the socket is locked
3009 			 * when the retrans timer fires and is rescheduled.
3010 			 */
3011 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3012 		}
3013 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3014 				     TCP_RTO_MAX);
3015 	}
3016 }
3017 
3018 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3019 static void tcp_set_xmit_timer(struct sock *sk)
3020 {
3021 	if (!tcp_schedule_loss_probe(sk, true))
3022 		tcp_rearm_rto(sk);
3023 }
3024 
3025 /* If we get here, the whole TSO packet has not been acked. */
3026 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3027 {
3028 	struct tcp_sock *tp = tcp_sk(sk);
3029 	u32 packets_acked;
3030 
3031 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3032 
3033 	packets_acked = tcp_skb_pcount(skb);
3034 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3035 		return 0;
3036 	packets_acked -= tcp_skb_pcount(skb);
3037 
3038 	if (packets_acked) {
3039 		BUG_ON(tcp_skb_pcount(skb) == 0);
3040 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3041 	}
3042 
3043 	return packets_acked;
3044 }
3045 
3046 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3047 			   u32 prior_snd_una)
3048 {
3049 	const struct skb_shared_info *shinfo;
3050 
3051 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3052 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3053 		return;
3054 
3055 	shinfo = skb_shinfo(skb);
3056 	if (!before(shinfo->tskey, prior_snd_una) &&
3057 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3058 		tcp_skb_tsorted_save(skb) {
3059 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3060 		} tcp_skb_tsorted_restore(skb);
3061 	}
3062 }
3063 
3064 /* Remove acknowledged frames from the retransmission queue. If our packet
3065  * is before the ack sequence we can discard it as it's confirmed to have
3066  * arrived at the other end.
3067  */
3068 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3069 			       u32 prior_snd_una,
3070 			       struct tcp_sacktag_state *sack, bool ece_ack)
3071 {
3072 	const struct inet_connection_sock *icsk = inet_csk(sk);
3073 	u64 first_ackt, last_ackt;
3074 	struct tcp_sock *tp = tcp_sk(sk);
3075 	u32 prior_sacked = tp->sacked_out;
3076 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3077 	struct sk_buff *skb, *next;
3078 	bool fully_acked = true;
3079 	long sack_rtt_us = -1L;
3080 	long seq_rtt_us = -1L;
3081 	long ca_rtt_us = -1L;
3082 	u32 pkts_acked = 0;
3083 	u32 last_in_flight = 0;
3084 	bool rtt_update;
3085 	int flag = 0;
3086 
3087 	first_ackt = 0;
3088 
3089 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3090 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3091 		const u32 start_seq = scb->seq;
3092 		u8 sacked = scb->sacked;
3093 		u32 acked_pcount;
3094 
3095 		/* Determine how many packets and what bytes were acked, tso and else */
3096 		if (after(scb->end_seq, tp->snd_una)) {
3097 			if (tcp_skb_pcount(skb) == 1 ||
3098 			    !after(tp->snd_una, scb->seq))
3099 				break;
3100 
3101 			acked_pcount = tcp_tso_acked(sk, skb);
3102 			if (!acked_pcount)
3103 				break;
3104 			fully_acked = false;
3105 		} else {
3106 			acked_pcount = tcp_skb_pcount(skb);
3107 		}
3108 
3109 		if (unlikely(sacked & TCPCB_RETRANS)) {
3110 			if (sacked & TCPCB_SACKED_RETRANS)
3111 				tp->retrans_out -= acked_pcount;
3112 			flag |= FLAG_RETRANS_DATA_ACKED;
3113 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3114 			last_ackt = tcp_skb_timestamp_us(skb);
3115 			WARN_ON_ONCE(last_ackt == 0);
3116 			if (!first_ackt)
3117 				first_ackt = last_ackt;
3118 
3119 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3120 			if (before(start_seq, reord))
3121 				reord = start_seq;
3122 			if (!after(scb->end_seq, tp->high_seq))
3123 				flag |= FLAG_ORIG_SACK_ACKED;
3124 		}
3125 
3126 		if (sacked & TCPCB_SACKED_ACKED) {
3127 			tp->sacked_out -= acked_pcount;
3128 		} else if (tcp_is_sack(tp)) {
3129 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3130 			if (!tcp_skb_spurious_retrans(tp, skb))
3131 				tcp_rack_advance(tp, sacked, scb->end_seq,
3132 						 tcp_skb_timestamp_us(skb));
3133 		}
3134 		if (sacked & TCPCB_LOST)
3135 			tp->lost_out -= acked_pcount;
3136 
3137 		tp->packets_out -= acked_pcount;
3138 		pkts_acked += acked_pcount;
3139 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3140 
3141 		/* Initial outgoing SYN's get put onto the write_queue
3142 		 * just like anything else we transmit.  It is not
3143 		 * true data, and if we misinform our callers that
3144 		 * this ACK acks real data, we will erroneously exit
3145 		 * connection startup slow start one packet too
3146 		 * quickly.  This is severely frowned upon behavior.
3147 		 */
3148 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3149 			flag |= FLAG_DATA_ACKED;
3150 		} else {
3151 			flag |= FLAG_SYN_ACKED;
3152 			tp->retrans_stamp = 0;
3153 		}
3154 
3155 		if (!fully_acked)
3156 			break;
3157 
3158 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3159 
3160 		next = skb_rb_next(skb);
3161 		if (unlikely(skb == tp->retransmit_skb_hint))
3162 			tp->retransmit_skb_hint = NULL;
3163 		if (unlikely(skb == tp->lost_skb_hint))
3164 			tp->lost_skb_hint = NULL;
3165 		tcp_highest_sack_replace(sk, skb, next);
3166 		tcp_rtx_queue_unlink_and_free(skb, sk);
3167 	}
3168 
3169 	if (!skb)
3170 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3171 
3172 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3173 		tp->snd_up = tp->snd_una;
3174 
3175 	if (skb) {
3176 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3177 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3178 			flag |= FLAG_SACK_RENEGING;
3179 	}
3180 
3181 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3182 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3183 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3184 
3185 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3186 		    last_in_flight && !prior_sacked && fully_acked &&
3187 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3188 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3189 			/* Conservatively mark a delayed ACK. It's typically
3190 			 * from a lone runt packet over the round trip to
3191 			 * a receiver w/o out-of-order or CE events.
3192 			 */
3193 			flag |= FLAG_ACK_MAYBE_DELAYED;
3194 		}
3195 	}
3196 	if (sack->first_sackt) {
3197 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3198 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3199 	}
3200 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3201 					ca_rtt_us, sack->rate);
3202 
3203 	if (flag & FLAG_ACKED) {
3204 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3205 		if (unlikely(icsk->icsk_mtup.probe_size &&
3206 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3207 			tcp_mtup_probe_success(sk);
3208 		}
3209 
3210 		if (tcp_is_reno(tp)) {
3211 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3212 
3213 			/* If any of the cumulatively ACKed segments was
3214 			 * retransmitted, non-SACK case cannot confirm that
3215 			 * progress was due to original transmission due to
3216 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3217 			 * the packets may have been never retransmitted.
3218 			 */
3219 			if (flag & FLAG_RETRANS_DATA_ACKED)
3220 				flag &= ~FLAG_ORIG_SACK_ACKED;
3221 		} else {
3222 			int delta;
3223 
3224 			/* Non-retransmitted hole got filled? That's reordering */
3225 			if (before(reord, prior_fack))
3226 				tcp_check_sack_reordering(sk, reord, 0);
3227 
3228 			delta = prior_sacked - tp->sacked_out;
3229 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3230 		}
3231 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3232 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3233 						    tcp_skb_timestamp_us(skb))) {
3234 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3235 		 * after when the head was last (re)transmitted. Otherwise the
3236 		 * timeout may continue to extend in loss recovery.
3237 		 */
3238 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3239 	}
3240 
3241 	if (icsk->icsk_ca_ops->pkts_acked) {
3242 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3243 					     .rtt_us = sack->rate->rtt_us,
3244 					     .in_flight = last_in_flight };
3245 
3246 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3247 	}
3248 
3249 #if FASTRETRANS_DEBUG > 0
3250 	WARN_ON((int)tp->sacked_out < 0);
3251 	WARN_ON((int)tp->lost_out < 0);
3252 	WARN_ON((int)tp->retrans_out < 0);
3253 	if (!tp->packets_out && tcp_is_sack(tp)) {
3254 		icsk = inet_csk(sk);
3255 		if (tp->lost_out) {
3256 			pr_debug("Leak l=%u %d\n",
3257 				 tp->lost_out, icsk->icsk_ca_state);
3258 			tp->lost_out = 0;
3259 		}
3260 		if (tp->sacked_out) {
3261 			pr_debug("Leak s=%u %d\n",
3262 				 tp->sacked_out, icsk->icsk_ca_state);
3263 			tp->sacked_out = 0;
3264 		}
3265 		if (tp->retrans_out) {
3266 			pr_debug("Leak r=%u %d\n",
3267 				 tp->retrans_out, icsk->icsk_ca_state);
3268 			tp->retrans_out = 0;
3269 		}
3270 	}
3271 #endif
3272 	return flag;
3273 }
3274 
3275 static void tcp_ack_probe(struct sock *sk)
3276 {
3277 	struct inet_connection_sock *icsk = inet_csk(sk);
3278 	struct sk_buff *head = tcp_send_head(sk);
3279 	const struct tcp_sock *tp = tcp_sk(sk);
3280 
3281 	/* Was it a usable window open? */
3282 	if (!head)
3283 		return;
3284 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3285 		icsk->icsk_backoff = 0;
3286 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3287 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3288 		 * This function is not for random using!
3289 		 */
3290 	} else {
3291 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3292 
3293 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3294 				     when, TCP_RTO_MAX);
3295 	}
3296 }
3297 
3298 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3299 {
3300 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3301 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3302 }
3303 
3304 /* Decide wheather to run the increase function of congestion control. */
3305 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3306 {
3307 	/* If reordering is high then always grow cwnd whenever data is
3308 	 * delivered regardless of its ordering. Otherwise stay conservative
3309 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3310 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3311 	 * cwnd in tcp_fastretrans_alert() based on more states.
3312 	 */
3313 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3314 		return flag & FLAG_FORWARD_PROGRESS;
3315 
3316 	return flag & FLAG_DATA_ACKED;
3317 }
3318 
3319 /* The "ultimate" congestion control function that aims to replace the rigid
3320  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3321  * It's called toward the end of processing an ACK with precise rate
3322  * information. All transmission or retransmission are delayed afterwards.
3323  */
3324 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3325 			     int flag, const struct rate_sample *rs)
3326 {
3327 	const struct inet_connection_sock *icsk = inet_csk(sk);
3328 
3329 	if (icsk->icsk_ca_ops->cong_control) {
3330 		icsk->icsk_ca_ops->cong_control(sk, rs);
3331 		return;
3332 	}
3333 
3334 	if (tcp_in_cwnd_reduction(sk)) {
3335 		/* Reduce cwnd if state mandates */
3336 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3337 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3338 		/* Advance cwnd if state allows */
3339 		tcp_cong_avoid(sk, ack, acked_sacked);
3340 	}
3341 	tcp_update_pacing_rate(sk);
3342 }
3343 
3344 /* Check that window update is acceptable.
3345  * The function assumes that snd_una<=ack<=snd_next.
3346  */
3347 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3348 					const u32 ack, const u32 ack_seq,
3349 					const u32 nwin)
3350 {
3351 	return	after(ack, tp->snd_una) ||
3352 		after(ack_seq, tp->snd_wl1) ||
3353 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3354 }
3355 
3356 /* If we update tp->snd_una, also update tp->bytes_acked */
3357 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3358 {
3359 	u32 delta = ack - tp->snd_una;
3360 
3361 	sock_owned_by_me((struct sock *)tp);
3362 	tp->bytes_acked += delta;
3363 	tp->snd_una = ack;
3364 }
3365 
3366 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3367 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3368 {
3369 	u32 delta = seq - tp->rcv_nxt;
3370 
3371 	sock_owned_by_me((struct sock *)tp);
3372 	tp->bytes_received += delta;
3373 	WRITE_ONCE(tp->rcv_nxt, seq);
3374 }
3375 
3376 /* Update our send window.
3377  *
3378  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3379  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3380  */
3381 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3382 				 u32 ack_seq)
3383 {
3384 	struct tcp_sock *tp = tcp_sk(sk);
3385 	int flag = 0;
3386 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3387 
3388 	if (likely(!tcp_hdr(skb)->syn))
3389 		nwin <<= tp->rx_opt.snd_wscale;
3390 
3391 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3392 		flag |= FLAG_WIN_UPDATE;
3393 		tcp_update_wl(tp, ack_seq);
3394 
3395 		if (tp->snd_wnd != nwin) {
3396 			tp->snd_wnd = nwin;
3397 
3398 			/* Note, it is the only place, where
3399 			 * fast path is recovered for sending TCP.
3400 			 */
3401 			tp->pred_flags = 0;
3402 			tcp_fast_path_check(sk);
3403 
3404 			if (!tcp_write_queue_empty(sk))
3405 				tcp_slow_start_after_idle_check(sk);
3406 
3407 			if (nwin > tp->max_window) {
3408 				tp->max_window = nwin;
3409 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3410 			}
3411 		}
3412 	}
3413 
3414 	tcp_snd_una_update(tp, ack);
3415 
3416 	return flag;
3417 }
3418 
3419 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3420 				   u32 *last_oow_ack_time)
3421 {
3422 	if (*last_oow_ack_time) {
3423 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3424 
3425 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3426 			NET_INC_STATS(net, mib_idx);
3427 			return true;	/* rate-limited: don't send yet! */
3428 		}
3429 	}
3430 
3431 	*last_oow_ack_time = tcp_jiffies32;
3432 
3433 	return false;	/* not rate-limited: go ahead, send dupack now! */
3434 }
3435 
3436 /* Return true if we're currently rate-limiting out-of-window ACKs and
3437  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3438  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3439  * attacks that send repeated SYNs or ACKs for the same connection. To
3440  * do this, we do not send a duplicate SYNACK or ACK if the remote
3441  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3442  */
3443 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3444 			  int mib_idx, u32 *last_oow_ack_time)
3445 {
3446 	/* Data packets without SYNs are not likely part of an ACK loop. */
3447 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3448 	    !tcp_hdr(skb)->syn)
3449 		return false;
3450 
3451 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3452 }
3453 
3454 /* RFC 5961 7 [ACK Throttling] */
3455 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3456 {
3457 	/* unprotected vars, we dont care of overwrites */
3458 	static u32 challenge_timestamp;
3459 	static unsigned int challenge_count;
3460 	struct tcp_sock *tp = tcp_sk(sk);
3461 	struct net *net = sock_net(sk);
3462 	u32 count, now;
3463 
3464 	/* First check our per-socket dupack rate limit. */
3465 	if (__tcp_oow_rate_limited(net,
3466 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3467 				   &tp->last_oow_ack_time))
3468 		return;
3469 
3470 	/* Then check host-wide RFC 5961 rate limit. */
3471 	now = jiffies / HZ;
3472 	if (now != challenge_timestamp) {
3473 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3474 		u32 half = (ack_limit + 1) >> 1;
3475 
3476 		challenge_timestamp = now;
3477 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3478 	}
3479 	count = READ_ONCE(challenge_count);
3480 	if (count > 0) {
3481 		WRITE_ONCE(challenge_count, count - 1);
3482 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3483 		tcp_send_ack(sk);
3484 	}
3485 }
3486 
3487 static void tcp_store_ts_recent(struct tcp_sock *tp)
3488 {
3489 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3490 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3491 }
3492 
3493 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3494 {
3495 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3496 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3497 		 * extra check below makes sure this can only happen
3498 		 * for pure ACK frames.  -DaveM
3499 		 *
3500 		 * Not only, also it occurs for expired timestamps.
3501 		 */
3502 
3503 		if (tcp_paws_check(&tp->rx_opt, 0))
3504 			tcp_store_ts_recent(tp);
3505 	}
3506 }
3507 
3508 /* This routine deals with acks during a TLP episode.
3509  * We mark the end of a TLP episode on receiving TLP dupack or when
3510  * ack is after tlp_high_seq.
3511  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3512  */
3513 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3514 {
3515 	struct tcp_sock *tp = tcp_sk(sk);
3516 
3517 	if (before(ack, tp->tlp_high_seq))
3518 		return;
3519 
3520 	if (flag & FLAG_DSACKING_ACK) {
3521 		/* This DSACK means original and TLP probe arrived; no loss */
3522 		tp->tlp_high_seq = 0;
3523 	} else if (after(ack, tp->tlp_high_seq)) {
3524 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3525 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3526 		 */
3527 		tcp_init_cwnd_reduction(sk);
3528 		tcp_set_ca_state(sk, TCP_CA_CWR);
3529 		tcp_end_cwnd_reduction(sk);
3530 		tcp_try_keep_open(sk);
3531 		NET_INC_STATS(sock_net(sk),
3532 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3533 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3534 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3535 		/* Pure dupack: original and TLP probe arrived; no loss */
3536 		tp->tlp_high_seq = 0;
3537 	}
3538 }
3539 
3540 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3541 {
3542 	const struct inet_connection_sock *icsk = inet_csk(sk);
3543 
3544 	if (icsk->icsk_ca_ops->in_ack_event)
3545 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3546 }
3547 
3548 /* Congestion control has updated the cwnd already. So if we're in
3549  * loss recovery then now we do any new sends (for FRTO) or
3550  * retransmits (for CA_Loss or CA_recovery) that make sense.
3551  */
3552 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3553 {
3554 	struct tcp_sock *tp = tcp_sk(sk);
3555 
3556 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3557 		return;
3558 
3559 	if (unlikely(rexmit == REXMIT_NEW)) {
3560 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3561 					  TCP_NAGLE_OFF);
3562 		if (after(tp->snd_nxt, tp->high_seq))
3563 			return;
3564 		tp->frto = 0;
3565 	}
3566 	tcp_xmit_retransmit_queue(sk);
3567 }
3568 
3569 /* Returns the number of packets newly acked or sacked by the current ACK */
3570 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3571 {
3572 	const struct net *net = sock_net(sk);
3573 	struct tcp_sock *tp = tcp_sk(sk);
3574 	u32 delivered;
3575 
3576 	delivered = tp->delivered - prior_delivered;
3577 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3578 	if (flag & FLAG_ECE)
3579 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3580 
3581 	return delivered;
3582 }
3583 
3584 /* This routine deals with incoming acks, but not outgoing ones. */
3585 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3586 {
3587 	struct inet_connection_sock *icsk = inet_csk(sk);
3588 	struct tcp_sock *tp = tcp_sk(sk);
3589 	struct tcp_sacktag_state sack_state;
3590 	struct rate_sample rs = { .prior_delivered = 0 };
3591 	u32 prior_snd_una = tp->snd_una;
3592 	bool is_sack_reneg = tp->is_sack_reneg;
3593 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3594 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3595 	int num_dupack = 0;
3596 	int prior_packets = tp->packets_out;
3597 	u32 delivered = tp->delivered;
3598 	u32 lost = tp->lost;
3599 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3600 	u32 prior_fack;
3601 
3602 	sack_state.first_sackt = 0;
3603 	sack_state.rate = &rs;
3604 	sack_state.sack_delivered = 0;
3605 
3606 	/* We very likely will need to access rtx queue. */
3607 	prefetch(sk->tcp_rtx_queue.rb_node);
3608 
3609 	/* If the ack is older than previous acks
3610 	 * then we can probably ignore it.
3611 	 */
3612 	if (before(ack, prior_snd_una)) {
3613 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3614 		if (before(ack, prior_snd_una - tp->max_window)) {
3615 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3616 				tcp_send_challenge_ack(sk, skb);
3617 			return -1;
3618 		}
3619 		goto old_ack;
3620 	}
3621 
3622 	/* If the ack includes data we haven't sent yet, discard
3623 	 * this segment (RFC793 Section 3.9).
3624 	 */
3625 	if (after(ack, tp->snd_nxt))
3626 		return -1;
3627 
3628 	if (after(ack, prior_snd_una)) {
3629 		flag |= FLAG_SND_UNA_ADVANCED;
3630 		icsk->icsk_retransmits = 0;
3631 
3632 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3633 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3634 			if (icsk->icsk_clean_acked)
3635 				icsk->icsk_clean_acked(sk, ack);
3636 #endif
3637 	}
3638 
3639 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3640 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3641 
3642 	/* ts_recent update must be made after we are sure that the packet
3643 	 * is in window.
3644 	 */
3645 	if (flag & FLAG_UPDATE_TS_RECENT)
3646 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3647 
3648 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3649 	    FLAG_SND_UNA_ADVANCED) {
3650 		/* Window is constant, pure forward advance.
3651 		 * No more checks are required.
3652 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3653 		 */
3654 		tcp_update_wl(tp, ack_seq);
3655 		tcp_snd_una_update(tp, ack);
3656 		flag |= FLAG_WIN_UPDATE;
3657 
3658 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3659 
3660 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3661 	} else {
3662 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3663 
3664 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3665 			flag |= FLAG_DATA;
3666 		else
3667 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3668 
3669 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3670 
3671 		if (TCP_SKB_CB(skb)->sacked)
3672 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3673 							&sack_state);
3674 
3675 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3676 			flag |= FLAG_ECE;
3677 			ack_ev_flags |= CA_ACK_ECE;
3678 		}
3679 
3680 		if (sack_state.sack_delivered)
3681 			tcp_count_delivered(tp, sack_state.sack_delivered,
3682 					    flag & FLAG_ECE);
3683 
3684 		if (flag & FLAG_WIN_UPDATE)
3685 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3686 
3687 		tcp_in_ack_event(sk, ack_ev_flags);
3688 	}
3689 
3690 	/* This is a deviation from RFC3168 since it states that:
3691 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3692 	 * the congestion window, it SHOULD set the CWR bit only on the first
3693 	 * new data packet that it transmits."
3694 	 * We accept CWR on pure ACKs to be more robust
3695 	 * with widely-deployed TCP implementations that do this.
3696 	 */
3697 	tcp_ecn_accept_cwr(sk, skb);
3698 
3699 	/* We passed data and got it acked, remove any soft error
3700 	 * log. Something worked...
3701 	 */
3702 	sk->sk_err_soft = 0;
3703 	icsk->icsk_probes_out = 0;
3704 	tp->rcv_tstamp = tcp_jiffies32;
3705 	if (!prior_packets)
3706 		goto no_queue;
3707 
3708 	/* See if we can take anything off of the retransmit queue. */
3709 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3710 				    flag & FLAG_ECE);
3711 
3712 	tcp_rack_update_reo_wnd(sk, &rs);
3713 
3714 	if (tp->tlp_high_seq)
3715 		tcp_process_tlp_ack(sk, ack, flag);
3716 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3717 	if (flag & FLAG_SET_XMIT_TIMER)
3718 		tcp_set_xmit_timer(sk);
3719 
3720 	if (tcp_ack_is_dubious(sk, flag)) {
3721 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3722 			num_dupack = 1;
3723 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3724 			if (!(flag & FLAG_DATA))
3725 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3726 		}
3727 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3728 				      &rexmit);
3729 	}
3730 
3731 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3732 		sk_dst_confirm(sk);
3733 
3734 	delivered = tcp_newly_delivered(sk, delivered, flag);
3735 	lost = tp->lost - lost;			/* freshly marked lost */
3736 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3737 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3738 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3739 	tcp_xmit_recovery(sk, rexmit);
3740 	return 1;
3741 
3742 no_queue:
3743 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3744 	if (flag & FLAG_DSACKING_ACK) {
3745 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3746 				      &rexmit);
3747 		tcp_newly_delivered(sk, delivered, flag);
3748 	}
3749 	/* If this ack opens up a zero window, clear backoff.  It was
3750 	 * being used to time the probes, and is probably far higher than
3751 	 * it needs to be for normal retransmission.
3752 	 */
3753 	tcp_ack_probe(sk);
3754 
3755 	if (tp->tlp_high_seq)
3756 		tcp_process_tlp_ack(sk, ack, flag);
3757 	return 1;
3758 
3759 old_ack:
3760 	/* If data was SACKed, tag it and see if we should send more data.
3761 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3762 	 */
3763 	if (TCP_SKB_CB(skb)->sacked) {
3764 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3765 						&sack_state);
3766 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3767 				      &rexmit);
3768 		tcp_newly_delivered(sk, delivered, flag);
3769 		tcp_xmit_recovery(sk, rexmit);
3770 	}
3771 
3772 	return 0;
3773 }
3774 
3775 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3776 				      bool syn, struct tcp_fastopen_cookie *foc,
3777 				      bool exp_opt)
3778 {
3779 	/* Valid only in SYN or SYN-ACK with an even length.  */
3780 	if (!foc || !syn || len < 0 || (len & 1))
3781 		return;
3782 
3783 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3784 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3785 		memcpy(foc->val, cookie, len);
3786 	else if (len != 0)
3787 		len = -1;
3788 	foc->len = len;
3789 	foc->exp = exp_opt;
3790 }
3791 
3792 static void smc_parse_options(const struct tcphdr *th,
3793 			      struct tcp_options_received *opt_rx,
3794 			      const unsigned char *ptr,
3795 			      int opsize)
3796 {
3797 #if IS_ENABLED(CONFIG_SMC)
3798 	if (static_branch_unlikely(&tcp_have_smc)) {
3799 		if (th->syn && !(opsize & 1) &&
3800 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3801 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3802 			opt_rx->smc_ok = 1;
3803 	}
3804 #endif
3805 }
3806 
3807 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3808  * value on success.
3809  */
3810 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3811 {
3812 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3813 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3814 	u16 mss = 0;
3815 
3816 	while (length > 0) {
3817 		int opcode = *ptr++;
3818 		int opsize;
3819 
3820 		switch (opcode) {
3821 		case TCPOPT_EOL:
3822 			return mss;
3823 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3824 			length--;
3825 			continue;
3826 		default:
3827 			if (length < 2)
3828 				return mss;
3829 			opsize = *ptr++;
3830 			if (opsize < 2) /* "silly options" */
3831 				return mss;
3832 			if (opsize > length)
3833 				return mss;	/* fail on partial options */
3834 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3835 				u16 in_mss = get_unaligned_be16(ptr);
3836 
3837 				if (in_mss) {
3838 					if (user_mss && user_mss < in_mss)
3839 						in_mss = user_mss;
3840 					mss = in_mss;
3841 				}
3842 			}
3843 			ptr += opsize - 2;
3844 			length -= opsize;
3845 		}
3846 	}
3847 	return mss;
3848 }
3849 
3850 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3851  * But, this can also be called on packets in the established flow when
3852  * the fast version below fails.
3853  */
3854 void tcp_parse_options(const struct net *net,
3855 		       const struct sk_buff *skb,
3856 		       struct tcp_options_received *opt_rx, int estab,
3857 		       struct tcp_fastopen_cookie *foc)
3858 {
3859 	const unsigned char *ptr;
3860 	const struct tcphdr *th = tcp_hdr(skb);
3861 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3862 
3863 	ptr = (const unsigned char *)(th + 1);
3864 	opt_rx->saw_tstamp = 0;
3865 
3866 	while (length > 0) {
3867 		int opcode = *ptr++;
3868 		int opsize;
3869 
3870 		switch (opcode) {
3871 		case TCPOPT_EOL:
3872 			return;
3873 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3874 			length--;
3875 			continue;
3876 		default:
3877 			if (length < 2)
3878 				return;
3879 			opsize = *ptr++;
3880 			if (opsize < 2) /* "silly options" */
3881 				return;
3882 			if (opsize > length)
3883 				return;	/* don't parse partial options */
3884 			switch (opcode) {
3885 			case TCPOPT_MSS:
3886 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3887 					u16 in_mss = get_unaligned_be16(ptr);
3888 					if (in_mss) {
3889 						if (opt_rx->user_mss &&
3890 						    opt_rx->user_mss < in_mss)
3891 							in_mss = opt_rx->user_mss;
3892 						opt_rx->mss_clamp = in_mss;
3893 					}
3894 				}
3895 				break;
3896 			case TCPOPT_WINDOW:
3897 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3898 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3899 					__u8 snd_wscale = *(__u8 *)ptr;
3900 					opt_rx->wscale_ok = 1;
3901 					if (snd_wscale > TCP_MAX_WSCALE) {
3902 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3903 								     __func__,
3904 								     snd_wscale,
3905 								     TCP_MAX_WSCALE);
3906 						snd_wscale = TCP_MAX_WSCALE;
3907 					}
3908 					opt_rx->snd_wscale = snd_wscale;
3909 				}
3910 				break;
3911 			case TCPOPT_TIMESTAMP:
3912 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3913 				    ((estab && opt_rx->tstamp_ok) ||
3914 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3915 					opt_rx->saw_tstamp = 1;
3916 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3917 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3918 				}
3919 				break;
3920 			case TCPOPT_SACK_PERM:
3921 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3922 				    !estab && net->ipv4.sysctl_tcp_sack) {
3923 					opt_rx->sack_ok = TCP_SACK_SEEN;
3924 					tcp_sack_reset(opt_rx);
3925 				}
3926 				break;
3927 
3928 			case TCPOPT_SACK:
3929 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3930 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3931 				   opt_rx->sack_ok) {
3932 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3933 				}
3934 				break;
3935 #ifdef CONFIG_TCP_MD5SIG
3936 			case TCPOPT_MD5SIG:
3937 				/*
3938 				 * The MD5 Hash has already been
3939 				 * checked (see tcp_v{4,6}_do_rcv()).
3940 				 */
3941 				break;
3942 #endif
3943 			case TCPOPT_FASTOPEN:
3944 				tcp_parse_fastopen_option(
3945 					opsize - TCPOLEN_FASTOPEN_BASE,
3946 					ptr, th->syn, foc, false);
3947 				break;
3948 
3949 			case TCPOPT_EXP:
3950 				/* Fast Open option shares code 254 using a
3951 				 * 16 bits magic number.
3952 				 */
3953 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3954 				    get_unaligned_be16(ptr) ==
3955 				    TCPOPT_FASTOPEN_MAGIC)
3956 					tcp_parse_fastopen_option(opsize -
3957 						TCPOLEN_EXP_FASTOPEN_BASE,
3958 						ptr + 2, th->syn, foc, true);
3959 				else
3960 					smc_parse_options(th, opt_rx, ptr,
3961 							  opsize);
3962 				break;
3963 
3964 			}
3965 			ptr += opsize-2;
3966 			length -= opsize;
3967 		}
3968 	}
3969 }
3970 EXPORT_SYMBOL(tcp_parse_options);
3971 
3972 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3973 {
3974 	const __be32 *ptr = (const __be32 *)(th + 1);
3975 
3976 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3977 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3978 		tp->rx_opt.saw_tstamp = 1;
3979 		++ptr;
3980 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3981 		++ptr;
3982 		if (*ptr)
3983 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3984 		else
3985 			tp->rx_opt.rcv_tsecr = 0;
3986 		return true;
3987 	}
3988 	return false;
3989 }
3990 
3991 /* Fast parse options. This hopes to only see timestamps.
3992  * If it is wrong it falls back on tcp_parse_options().
3993  */
3994 static bool tcp_fast_parse_options(const struct net *net,
3995 				   const struct sk_buff *skb,
3996 				   const struct tcphdr *th, struct tcp_sock *tp)
3997 {
3998 	/* In the spirit of fast parsing, compare doff directly to constant
3999 	 * values.  Because equality is used, short doff can be ignored here.
4000 	 */
4001 	if (th->doff == (sizeof(*th) / 4)) {
4002 		tp->rx_opt.saw_tstamp = 0;
4003 		return false;
4004 	} else if (tp->rx_opt.tstamp_ok &&
4005 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4006 		if (tcp_parse_aligned_timestamp(tp, th))
4007 			return true;
4008 	}
4009 
4010 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4011 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4012 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4013 
4014 	return true;
4015 }
4016 
4017 #ifdef CONFIG_TCP_MD5SIG
4018 /*
4019  * Parse MD5 Signature option
4020  */
4021 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4022 {
4023 	int length = (th->doff << 2) - sizeof(*th);
4024 	const u8 *ptr = (const u8 *)(th + 1);
4025 
4026 	/* If not enough data remaining, we can short cut */
4027 	while (length >= TCPOLEN_MD5SIG) {
4028 		int opcode = *ptr++;
4029 		int opsize;
4030 
4031 		switch (opcode) {
4032 		case TCPOPT_EOL:
4033 			return NULL;
4034 		case TCPOPT_NOP:
4035 			length--;
4036 			continue;
4037 		default:
4038 			opsize = *ptr++;
4039 			if (opsize < 2 || opsize > length)
4040 				return NULL;
4041 			if (opcode == TCPOPT_MD5SIG)
4042 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4043 		}
4044 		ptr += opsize - 2;
4045 		length -= opsize;
4046 	}
4047 	return NULL;
4048 }
4049 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4050 #endif
4051 
4052 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4053  *
4054  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4055  * it can pass through stack. So, the following predicate verifies that
4056  * this segment is not used for anything but congestion avoidance or
4057  * fast retransmit. Moreover, we even are able to eliminate most of such
4058  * second order effects, if we apply some small "replay" window (~RTO)
4059  * to timestamp space.
4060  *
4061  * All these measures still do not guarantee that we reject wrapped ACKs
4062  * on networks with high bandwidth, when sequence space is recycled fastly,
4063  * but it guarantees that such events will be very rare and do not affect
4064  * connection seriously. This doesn't look nice, but alas, PAWS is really
4065  * buggy extension.
4066  *
4067  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4068  * states that events when retransmit arrives after original data are rare.
4069  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4070  * the biggest problem on large power networks even with minor reordering.
4071  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4072  * up to bandwidth of 18Gigabit/sec. 8) ]
4073  */
4074 
4075 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4076 {
4077 	const struct tcp_sock *tp = tcp_sk(sk);
4078 	const struct tcphdr *th = tcp_hdr(skb);
4079 	u32 seq = TCP_SKB_CB(skb)->seq;
4080 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4081 
4082 	return (/* 1. Pure ACK with correct sequence number. */
4083 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4084 
4085 		/* 2. ... and duplicate ACK. */
4086 		ack == tp->snd_una &&
4087 
4088 		/* 3. ... and does not update window. */
4089 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4090 
4091 		/* 4. ... and sits in replay window. */
4092 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4093 }
4094 
4095 static inline bool tcp_paws_discard(const struct sock *sk,
4096 				   const struct sk_buff *skb)
4097 {
4098 	const struct tcp_sock *tp = tcp_sk(sk);
4099 
4100 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4101 	       !tcp_disordered_ack(sk, skb);
4102 }
4103 
4104 /* Check segment sequence number for validity.
4105  *
4106  * Segment controls are considered valid, if the segment
4107  * fits to the window after truncation to the window. Acceptability
4108  * of data (and SYN, FIN, of course) is checked separately.
4109  * See tcp_data_queue(), for example.
4110  *
4111  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4112  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4113  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4114  * (borrowed from freebsd)
4115  */
4116 
4117 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4118 {
4119 	return	!before(end_seq, tp->rcv_wup) &&
4120 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4121 }
4122 
4123 /* When we get a reset we do this. */
4124 void tcp_reset(struct sock *sk)
4125 {
4126 	trace_tcp_receive_reset(sk);
4127 
4128 	/* We want the right error as BSD sees it (and indeed as we do). */
4129 	switch (sk->sk_state) {
4130 	case TCP_SYN_SENT:
4131 		sk->sk_err = ECONNREFUSED;
4132 		break;
4133 	case TCP_CLOSE_WAIT:
4134 		sk->sk_err = EPIPE;
4135 		break;
4136 	case TCP_CLOSE:
4137 		return;
4138 	default:
4139 		sk->sk_err = ECONNRESET;
4140 	}
4141 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4142 	smp_wmb();
4143 
4144 	tcp_write_queue_purge(sk);
4145 	tcp_done(sk);
4146 
4147 	if (!sock_flag(sk, SOCK_DEAD))
4148 		sk->sk_error_report(sk);
4149 }
4150 
4151 /*
4152  * 	Process the FIN bit. This now behaves as it is supposed to work
4153  *	and the FIN takes effect when it is validly part of sequence
4154  *	space. Not before when we get holes.
4155  *
4156  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4157  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4158  *	TIME-WAIT)
4159  *
4160  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4161  *	close and we go into CLOSING (and later onto TIME-WAIT)
4162  *
4163  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4164  */
4165 void tcp_fin(struct sock *sk)
4166 {
4167 	struct tcp_sock *tp = tcp_sk(sk);
4168 
4169 	inet_csk_schedule_ack(sk);
4170 
4171 	sk->sk_shutdown |= RCV_SHUTDOWN;
4172 	sock_set_flag(sk, SOCK_DONE);
4173 
4174 	switch (sk->sk_state) {
4175 	case TCP_SYN_RECV:
4176 	case TCP_ESTABLISHED:
4177 		/* Move to CLOSE_WAIT */
4178 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4179 		inet_csk_enter_pingpong_mode(sk);
4180 		break;
4181 
4182 	case TCP_CLOSE_WAIT:
4183 	case TCP_CLOSING:
4184 		/* Received a retransmission of the FIN, do
4185 		 * nothing.
4186 		 */
4187 		break;
4188 	case TCP_LAST_ACK:
4189 		/* RFC793: Remain in the LAST-ACK state. */
4190 		break;
4191 
4192 	case TCP_FIN_WAIT1:
4193 		/* This case occurs when a simultaneous close
4194 		 * happens, we must ack the received FIN and
4195 		 * enter the CLOSING state.
4196 		 */
4197 		tcp_send_ack(sk);
4198 		tcp_set_state(sk, TCP_CLOSING);
4199 		break;
4200 	case TCP_FIN_WAIT2:
4201 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4202 		tcp_send_ack(sk);
4203 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4204 		break;
4205 	default:
4206 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4207 		 * cases we should never reach this piece of code.
4208 		 */
4209 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4210 		       __func__, sk->sk_state);
4211 		break;
4212 	}
4213 
4214 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4215 	 * Probably, we should reset in this case. For now drop them.
4216 	 */
4217 	skb_rbtree_purge(&tp->out_of_order_queue);
4218 	if (tcp_is_sack(tp))
4219 		tcp_sack_reset(&tp->rx_opt);
4220 	sk_mem_reclaim(sk);
4221 
4222 	if (!sock_flag(sk, SOCK_DEAD)) {
4223 		sk->sk_state_change(sk);
4224 
4225 		/* Do not send POLL_HUP for half duplex close. */
4226 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4227 		    sk->sk_state == TCP_CLOSE)
4228 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4229 		else
4230 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4231 	}
4232 }
4233 
4234 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4235 				  u32 end_seq)
4236 {
4237 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4238 		if (before(seq, sp->start_seq))
4239 			sp->start_seq = seq;
4240 		if (after(end_seq, sp->end_seq))
4241 			sp->end_seq = end_seq;
4242 		return true;
4243 	}
4244 	return false;
4245 }
4246 
4247 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4248 {
4249 	struct tcp_sock *tp = tcp_sk(sk);
4250 
4251 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4252 		int mib_idx;
4253 
4254 		if (before(seq, tp->rcv_nxt))
4255 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4256 		else
4257 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4258 
4259 		NET_INC_STATS(sock_net(sk), mib_idx);
4260 
4261 		tp->rx_opt.dsack = 1;
4262 		tp->duplicate_sack[0].start_seq = seq;
4263 		tp->duplicate_sack[0].end_seq = end_seq;
4264 	}
4265 }
4266 
4267 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4268 {
4269 	struct tcp_sock *tp = tcp_sk(sk);
4270 
4271 	if (!tp->rx_opt.dsack)
4272 		tcp_dsack_set(sk, seq, end_seq);
4273 	else
4274 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4275 }
4276 
4277 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4278 {
4279 	/* When the ACK path fails or drops most ACKs, the sender would
4280 	 * timeout and spuriously retransmit the same segment repeatedly.
4281 	 * The receiver remembers and reflects via DSACKs. Leverage the
4282 	 * DSACK state and change the txhash to re-route speculatively.
4283 	 */
4284 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) {
4285 		sk_rethink_txhash(sk);
4286 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4287 	}
4288 }
4289 
4290 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4291 {
4292 	struct tcp_sock *tp = tcp_sk(sk);
4293 
4294 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4295 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4296 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4297 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4298 
4299 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4300 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4301 
4302 			tcp_rcv_spurious_retrans(sk, skb);
4303 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4304 				end_seq = tp->rcv_nxt;
4305 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4306 		}
4307 	}
4308 
4309 	tcp_send_ack(sk);
4310 }
4311 
4312 /* These routines update the SACK block as out-of-order packets arrive or
4313  * in-order packets close up the sequence space.
4314  */
4315 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4316 {
4317 	int this_sack;
4318 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4319 	struct tcp_sack_block *swalk = sp + 1;
4320 
4321 	/* See if the recent change to the first SACK eats into
4322 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4323 	 */
4324 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4325 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4326 			int i;
4327 
4328 			/* Zap SWALK, by moving every further SACK up by one slot.
4329 			 * Decrease num_sacks.
4330 			 */
4331 			tp->rx_opt.num_sacks--;
4332 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4333 				sp[i] = sp[i + 1];
4334 			continue;
4335 		}
4336 		this_sack++, swalk++;
4337 	}
4338 }
4339 
4340 static void tcp_sack_compress_send_ack(struct sock *sk)
4341 {
4342 	struct tcp_sock *tp = tcp_sk(sk);
4343 
4344 	if (!tp->compressed_ack)
4345 		return;
4346 
4347 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4348 		__sock_put(sk);
4349 
4350 	/* Since we have to send one ack finally,
4351 	 * substract one from tp->compressed_ack to keep
4352 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4353 	 */
4354 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4355 		      tp->compressed_ack - 1);
4356 
4357 	tp->compressed_ack = 0;
4358 	tcp_send_ack(sk);
4359 }
4360 
4361 /* Reasonable amount of sack blocks included in TCP SACK option
4362  * The max is 4, but this becomes 3 if TCP timestamps are there.
4363  * Given that SACK packets might be lost, be conservative and use 2.
4364  */
4365 #define TCP_SACK_BLOCKS_EXPECTED 2
4366 
4367 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4368 {
4369 	struct tcp_sock *tp = tcp_sk(sk);
4370 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4371 	int cur_sacks = tp->rx_opt.num_sacks;
4372 	int this_sack;
4373 
4374 	if (!cur_sacks)
4375 		goto new_sack;
4376 
4377 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4378 		if (tcp_sack_extend(sp, seq, end_seq)) {
4379 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4380 				tcp_sack_compress_send_ack(sk);
4381 			/* Rotate this_sack to the first one. */
4382 			for (; this_sack > 0; this_sack--, sp--)
4383 				swap(*sp, *(sp - 1));
4384 			if (cur_sacks > 1)
4385 				tcp_sack_maybe_coalesce(tp);
4386 			return;
4387 		}
4388 	}
4389 
4390 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4391 		tcp_sack_compress_send_ack(sk);
4392 
4393 	/* Could not find an adjacent existing SACK, build a new one,
4394 	 * put it at the front, and shift everyone else down.  We
4395 	 * always know there is at least one SACK present already here.
4396 	 *
4397 	 * If the sack array is full, forget about the last one.
4398 	 */
4399 	if (this_sack >= TCP_NUM_SACKS) {
4400 		this_sack--;
4401 		tp->rx_opt.num_sacks--;
4402 		sp--;
4403 	}
4404 	for (; this_sack > 0; this_sack--, sp--)
4405 		*sp = *(sp - 1);
4406 
4407 new_sack:
4408 	/* Build the new head SACK, and we're done. */
4409 	sp->start_seq = seq;
4410 	sp->end_seq = end_seq;
4411 	tp->rx_opt.num_sacks++;
4412 }
4413 
4414 /* RCV.NXT advances, some SACKs should be eaten. */
4415 
4416 static void tcp_sack_remove(struct tcp_sock *tp)
4417 {
4418 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4419 	int num_sacks = tp->rx_opt.num_sacks;
4420 	int this_sack;
4421 
4422 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4423 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4424 		tp->rx_opt.num_sacks = 0;
4425 		return;
4426 	}
4427 
4428 	for (this_sack = 0; this_sack < num_sacks;) {
4429 		/* Check if the start of the sack is covered by RCV.NXT. */
4430 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4431 			int i;
4432 
4433 			/* RCV.NXT must cover all the block! */
4434 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4435 
4436 			/* Zap this SACK, by moving forward any other SACKS. */
4437 			for (i = this_sack+1; i < num_sacks; i++)
4438 				tp->selective_acks[i-1] = tp->selective_acks[i];
4439 			num_sacks--;
4440 			continue;
4441 		}
4442 		this_sack++;
4443 		sp++;
4444 	}
4445 	tp->rx_opt.num_sacks = num_sacks;
4446 }
4447 
4448 /**
4449  * tcp_try_coalesce - try to merge skb to prior one
4450  * @sk: socket
4451  * @to: prior buffer
4452  * @from: buffer to add in queue
4453  * @fragstolen: pointer to boolean
4454  *
4455  * Before queueing skb @from after @to, try to merge them
4456  * to reduce overall memory use and queue lengths, if cost is small.
4457  * Packets in ofo or receive queues can stay a long time.
4458  * Better try to coalesce them right now to avoid future collapses.
4459  * Returns true if caller should free @from instead of queueing it
4460  */
4461 static bool tcp_try_coalesce(struct sock *sk,
4462 			     struct sk_buff *to,
4463 			     struct sk_buff *from,
4464 			     bool *fragstolen)
4465 {
4466 	int delta;
4467 
4468 	*fragstolen = false;
4469 
4470 	/* Its possible this segment overlaps with prior segment in queue */
4471 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4472 		return false;
4473 
4474 	if (!mptcp_skb_can_collapse(to, from))
4475 		return false;
4476 
4477 #ifdef CONFIG_TLS_DEVICE
4478 	if (from->decrypted != to->decrypted)
4479 		return false;
4480 #endif
4481 
4482 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4483 		return false;
4484 
4485 	atomic_add(delta, &sk->sk_rmem_alloc);
4486 	sk_mem_charge(sk, delta);
4487 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4488 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4489 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4490 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4491 
4492 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4493 		TCP_SKB_CB(to)->has_rxtstamp = true;
4494 		to->tstamp = from->tstamp;
4495 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4496 	}
4497 
4498 	return true;
4499 }
4500 
4501 static bool tcp_ooo_try_coalesce(struct sock *sk,
4502 			     struct sk_buff *to,
4503 			     struct sk_buff *from,
4504 			     bool *fragstolen)
4505 {
4506 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4507 
4508 	/* In case tcp_drop() is called later, update to->gso_segs */
4509 	if (res) {
4510 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4511 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4512 
4513 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4514 	}
4515 	return res;
4516 }
4517 
4518 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4519 {
4520 	sk_drops_add(sk, skb);
4521 	__kfree_skb(skb);
4522 }
4523 
4524 /* This one checks to see if we can put data from the
4525  * out_of_order queue into the receive_queue.
4526  */
4527 static void tcp_ofo_queue(struct sock *sk)
4528 {
4529 	struct tcp_sock *tp = tcp_sk(sk);
4530 	__u32 dsack_high = tp->rcv_nxt;
4531 	bool fin, fragstolen, eaten;
4532 	struct sk_buff *skb, *tail;
4533 	struct rb_node *p;
4534 
4535 	p = rb_first(&tp->out_of_order_queue);
4536 	while (p) {
4537 		skb = rb_to_skb(p);
4538 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4539 			break;
4540 
4541 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4542 			__u32 dsack = dsack_high;
4543 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4544 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4545 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4546 		}
4547 		p = rb_next(p);
4548 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4549 
4550 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4551 			tcp_drop(sk, skb);
4552 			continue;
4553 		}
4554 
4555 		tail = skb_peek_tail(&sk->sk_receive_queue);
4556 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4557 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4558 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4559 		if (!eaten)
4560 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4561 		else
4562 			kfree_skb_partial(skb, fragstolen);
4563 
4564 		if (unlikely(fin)) {
4565 			tcp_fin(sk);
4566 			/* tcp_fin() purges tp->out_of_order_queue,
4567 			 * so we must end this loop right now.
4568 			 */
4569 			break;
4570 		}
4571 	}
4572 }
4573 
4574 static bool tcp_prune_ofo_queue(struct sock *sk);
4575 static int tcp_prune_queue(struct sock *sk);
4576 
4577 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4578 				 unsigned int size)
4579 {
4580 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4581 	    !sk_rmem_schedule(sk, skb, size)) {
4582 
4583 		if (tcp_prune_queue(sk) < 0)
4584 			return -1;
4585 
4586 		while (!sk_rmem_schedule(sk, skb, size)) {
4587 			if (!tcp_prune_ofo_queue(sk))
4588 				return -1;
4589 		}
4590 	}
4591 	return 0;
4592 }
4593 
4594 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4595 {
4596 	struct tcp_sock *tp = tcp_sk(sk);
4597 	struct rb_node **p, *parent;
4598 	struct sk_buff *skb1;
4599 	u32 seq, end_seq;
4600 	bool fragstolen;
4601 
4602 	tcp_ecn_check_ce(sk, skb);
4603 
4604 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4605 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4606 		sk->sk_data_ready(sk);
4607 		tcp_drop(sk, skb);
4608 		return;
4609 	}
4610 
4611 	/* Disable header prediction. */
4612 	tp->pred_flags = 0;
4613 	inet_csk_schedule_ack(sk);
4614 
4615 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4616 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4617 	seq = TCP_SKB_CB(skb)->seq;
4618 	end_seq = TCP_SKB_CB(skb)->end_seq;
4619 
4620 	p = &tp->out_of_order_queue.rb_node;
4621 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4622 		/* Initial out of order segment, build 1 SACK. */
4623 		if (tcp_is_sack(tp)) {
4624 			tp->rx_opt.num_sacks = 1;
4625 			tp->selective_acks[0].start_seq = seq;
4626 			tp->selective_acks[0].end_seq = end_seq;
4627 		}
4628 		rb_link_node(&skb->rbnode, NULL, p);
4629 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4630 		tp->ooo_last_skb = skb;
4631 		goto end;
4632 	}
4633 
4634 	/* In the typical case, we are adding an skb to the end of the list.
4635 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4636 	 */
4637 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4638 				 skb, &fragstolen)) {
4639 coalesce_done:
4640 		/* For non sack flows, do not grow window to force DUPACK
4641 		 * and trigger fast retransmit.
4642 		 */
4643 		if (tcp_is_sack(tp))
4644 			tcp_grow_window(sk, skb);
4645 		kfree_skb_partial(skb, fragstolen);
4646 		skb = NULL;
4647 		goto add_sack;
4648 	}
4649 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4650 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4651 		parent = &tp->ooo_last_skb->rbnode;
4652 		p = &parent->rb_right;
4653 		goto insert;
4654 	}
4655 
4656 	/* Find place to insert this segment. Handle overlaps on the way. */
4657 	parent = NULL;
4658 	while (*p) {
4659 		parent = *p;
4660 		skb1 = rb_to_skb(parent);
4661 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4662 			p = &parent->rb_left;
4663 			continue;
4664 		}
4665 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4666 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4667 				/* All the bits are present. Drop. */
4668 				NET_INC_STATS(sock_net(sk),
4669 					      LINUX_MIB_TCPOFOMERGE);
4670 				tcp_drop(sk, skb);
4671 				skb = NULL;
4672 				tcp_dsack_set(sk, seq, end_seq);
4673 				goto add_sack;
4674 			}
4675 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4676 				/* Partial overlap. */
4677 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4678 			} else {
4679 				/* skb's seq == skb1's seq and skb covers skb1.
4680 				 * Replace skb1 with skb.
4681 				 */
4682 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4683 						&tp->out_of_order_queue);
4684 				tcp_dsack_extend(sk,
4685 						 TCP_SKB_CB(skb1)->seq,
4686 						 TCP_SKB_CB(skb1)->end_seq);
4687 				NET_INC_STATS(sock_net(sk),
4688 					      LINUX_MIB_TCPOFOMERGE);
4689 				tcp_drop(sk, skb1);
4690 				goto merge_right;
4691 			}
4692 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4693 						skb, &fragstolen)) {
4694 			goto coalesce_done;
4695 		}
4696 		p = &parent->rb_right;
4697 	}
4698 insert:
4699 	/* Insert segment into RB tree. */
4700 	rb_link_node(&skb->rbnode, parent, p);
4701 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4702 
4703 merge_right:
4704 	/* Remove other segments covered by skb. */
4705 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4706 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4707 			break;
4708 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4709 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4710 					 end_seq);
4711 			break;
4712 		}
4713 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4714 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4715 				 TCP_SKB_CB(skb1)->end_seq);
4716 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4717 		tcp_drop(sk, skb1);
4718 	}
4719 	/* If there is no skb after us, we are the last_skb ! */
4720 	if (!skb1)
4721 		tp->ooo_last_skb = skb;
4722 
4723 add_sack:
4724 	if (tcp_is_sack(tp))
4725 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4726 end:
4727 	if (skb) {
4728 		/* For non sack flows, do not grow window to force DUPACK
4729 		 * and trigger fast retransmit.
4730 		 */
4731 		if (tcp_is_sack(tp))
4732 			tcp_grow_window(sk, skb);
4733 		skb_condense(skb);
4734 		skb_set_owner_r(skb, sk);
4735 	}
4736 }
4737 
4738 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4739 				      bool *fragstolen)
4740 {
4741 	int eaten;
4742 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4743 
4744 	eaten = (tail &&
4745 		 tcp_try_coalesce(sk, tail,
4746 				  skb, fragstolen)) ? 1 : 0;
4747 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4748 	if (!eaten) {
4749 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4750 		skb_set_owner_r(skb, sk);
4751 	}
4752 	return eaten;
4753 }
4754 
4755 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4756 {
4757 	struct sk_buff *skb;
4758 	int err = -ENOMEM;
4759 	int data_len = 0;
4760 	bool fragstolen;
4761 
4762 	if (size == 0)
4763 		return 0;
4764 
4765 	if (size > PAGE_SIZE) {
4766 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4767 
4768 		data_len = npages << PAGE_SHIFT;
4769 		size = data_len + (size & ~PAGE_MASK);
4770 	}
4771 	skb = alloc_skb_with_frags(size - data_len, data_len,
4772 				   PAGE_ALLOC_COSTLY_ORDER,
4773 				   &err, sk->sk_allocation);
4774 	if (!skb)
4775 		goto err;
4776 
4777 	skb_put(skb, size - data_len);
4778 	skb->data_len = data_len;
4779 	skb->len = size;
4780 
4781 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4782 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4783 		goto err_free;
4784 	}
4785 
4786 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4787 	if (err)
4788 		goto err_free;
4789 
4790 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4791 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4792 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4793 
4794 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4795 		WARN_ON_ONCE(fragstolen); /* should not happen */
4796 		__kfree_skb(skb);
4797 	}
4798 	return size;
4799 
4800 err_free:
4801 	kfree_skb(skb);
4802 err:
4803 	return err;
4804 
4805 }
4806 
4807 void tcp_data_ready(struct sock *sk)
4808 {
4809 	const struct tcp_sock *tp = tcp_sk(sk);
4810 	int avail = tp->rcv_nxt - tp->copied_seq;
4811 
4812 	if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4813 	    !sock_flag(sk, SOCK_DONE))
4814 		return;
4815 
4816 	sk->sk_data_ready(sk);
4817 }
4818 
4819 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4820 {
4821 	struct tcp_sock *tp = tcp_sk(sk);
4822 	bool fragstolen;
4823 	int eaten;
4824 
4825 	if (sk_is_mptcp(sk))
4826 		mptcp_incoming_options(sk, skb, &tp->rx_opt);
4827 
4828 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4829 		__kfree_skb(skb);
4830 		return;
4831 	}
4832 	skb_dst_drop(skb);
4833 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4834 
4835 	tp->rx_opt.dsack = 0;
4836 
4837 	/*  Queue data for delivery to the user.
4838 	 *  Packets in sequence go to the receive queue.
4839 	 *  Out of sequence packets to the out_of_order_queue.
4840 	 */
4841 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4842 		if (tcp_receive_window(tp) == 0) {
4843 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4844 			goto out_of_window;
4845 		}
4846 
4847 		/* Ok. In sequence. In window. */
4848 queue_and_out:
4849 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4850 			sk_forced_mem_schedule(sk, skb->truesize);
4851 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4852 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4853 			sk->sk_data_ready(sk);
4854 			goto drop;
4855 		}
4856 
4857 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4858 		if (skb->len)
4859 			tcp_event_data_recv(sk, skb);
4860 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4861 			tcp_fin(sk);
4862 
4863 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4864 			tcp_ofo_queue(sk);
4865 
4866 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4867 			 * gap in queue is filled.
4868 			 */
4869 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4870 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4871 		}
4872 
4873 		if (tp->rx_opt.num_sacks)
4874 			tcp_sack_remove(tp);
4875 
4876 		tcp_fast_path_check(sk);
4877 
4878 		if (eaten > 0)
4879 			kfree_skb_partial(skb, fragstolen);
4880 		if (!sock_flag(sk, SOCK_DEAD))
4881 			tcp_data_ready(sk);
4882 		return;
4883 	}
4884 
4885 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4886 		tcp_rcv_spurious_retrans(sk, skb);
4887 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4888 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4889 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4890 
4891 out_of_window:
4892 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4893 		inet_csk_schedule_ack(sk);
4894 drop:
4895 		tcp_drop(sk, skb);
4896 		return;
4897 	}
4898 
4899 	/* Out of window. F.e. zero window probe. */
4900 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4901 		goto out_of_window;
4902 
4903 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4904 		/* Partial packet, seq < rcv_next < end_seq */
4905 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4906 
4907 		/* If window is closed, drop tail of packet. But after
4908 		 * remembering D-SACK for its head made in previous line.
4909 		 */
4910 		if (!tcp_receive_window(tp)) {
4911 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4912 			goto out_of_window;
4913 		}
4914 		goto queue_and_out;
4915 	}
4916 
4917 	tcp_data_queue_ofo(sk, skb);
4918 }
4919 
4920 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4921 {
4922 	if (list)
4923 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4924 
4925 	return skb_rb_next(skb);
4926 }
4927 
4928 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4929 					struct sk_buff_head *list,
4930 					struct rb_root *root)
4931 {
4932 	struct sk_buff *next = tcp_skb_next(skb, list);
4933 
4934 	if (list)
4935 		__skb_unlink(skb, list);
4936 	else
4937 		rb_erase(&skb->rbnode, root);
4938 
4939 	__kfree_skb(skb);
4940 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4941 
4942 	return next;
4943 }
4944 
4945 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4946 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4947 {
4948 	struct rb_node **p = &root->rb_node;
4949 	struct rb_node *parent = NULL;
4950 	struct sk_buff *skb1;
4951 
4952 	while (*p) {
4953 		parent = *p;
4954 		skb1 = rb_to_skb(parent);
4955 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4956 			p = &parent->rb_left;
4957 		else
4958 			p = &parent->rb_right;
4959 	}
4960 	rb_link_node(&skb->rbnode, parent, p);
4961 	rb_insert_color(&skb->rbnode, root);
4962 }
4963 
4964 /* Collapse contiguous sequence of skbs head..tail with
4965  * sequence numbers start..end.
4966  *
4967  * If tail is NULL, this means until the end of the queue.
4968  *
4969  * Segments with FIN/SYN are not collapsed (only because this
4970  * simplifies code)
4971  */
4972 static void
4973 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4974 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4975 {
4976 	struct sk_buff *skb = head, *n;
4977 	struct sk_buff_head tmp;
4978 	bool end_of_skbs;
4979 
4980 	/* First, check that queue is collapsible and find
4981 	 * the point where collapsing can be useful.
4982 	 */
4983 restart:
4984 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4985 		n = tcp_skb_next(skb, list);
4986 
4987 		/* No new bits? It is possible on ofo queue. */
4988 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4989 			skb = tcp_collapse_one(sk, skb, list, root);
4990 			if (!skb)
4991 				break;
4992 			goto restart;
4993 		}
4994 
4995 		/* The first skb to collapse is:
4996 		 * - not SYN/FIN and
4997 		 * - bloated or contains data before "start" or
4998 		 *   overlaps to the next one and mptcp allow collapsing.
4999 		 */
5000 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5001 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5002 		     before(TCP_SKB_CB(skb)->seq, start))) {
5003 			end_of_skbs = false;
5004 			break;
5005 		}
5006 
5007 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5008 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5009 			end_of_skbs = false;
5010 			break;
5011 		}
5012 
5013 		/* Decided to skip this, advance start seq. */
5014 		start = TCP_SKB_CB(skb)->end_seq;
5015 	}
5016 	if (end_of_skbs ||
5017 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5018 		return;
5019 
5020 	__skb_queue_head_init(&tmp);
5021 
5022 	while (before(start, end)) {
5023 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5024 		struct sk_buff *nskb;
5025 
5026 		nskb = alloc_skb(copy, GFP_ATOMIC);
5027 		if (!nskb)
5028 			break;
5029 
5030 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5031 #ifdef CONFIG_TLS_DEVICE
5032 		nskb->decrypted = skb->decrypted;
5033 #endif
5034 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5035 		if (list)
5036 			__skb_queue_before(list, skb, nskb);
5037 		else
5038 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5039 		skb_set_owner_r(nskb, sk);
5040 		mptcp_skb_ext_move(nskb, skb);
5041 
5042 		/* Copy data, releasing collapsed skbs. */
5043 		while (copy > 0) {
5044 			int offset = start - TCP_SKB_CB(skb)->seq;
5045 			int size = TCP_SKB_CB(skb)->end_seq - start;
5046 
5047 			BUG_ON(offset < 0);
5048 			if (size > 0) {
5049 				size = min(copy, size);
5050 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5051 					BUG();
5052 				TCP_SKB_CB(nskb)->end_seq += size;
5053 				copy -= size;
5054 				start += size;
5055 			}
5056 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5057 				skb = tcp_collapse_one(sk, skb, list, root);
5058 				if (!skb ||
5059 				    skb == tail ||
5060 				    !mptcp_skb_can_collapse(nskb, skb) ||
5061 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5062 					goto end;
5063 #ifdef CONFIG_TLS_DEVICE
5064 				if (skb->decrypted != nskb->decrypted)
5065 					goto end;
5066 #endif
5067 			}
5068 		}
5069 	}
5070 end:
5071 	skb_queue_walk_safe(&tmp, skb, n)
5072 		tcp_rbtree_insert(root, skb);
5073 }
5074 
5075 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5076  * and tcp_collapse() them until all the queue is collapsed.
5077  */
5078 static void tcp_collapse_ofo_queue(struct sock *sk)
5079 {
5080 	struct tcp_sock *tp = tcp_sk(sk);
5081 	u32 range_truesize, sum_tiny = 0;
5082 	struct sk_buff *skb, *head;
5083 	u32 start, end;
5084 
5085 	skb = skb_rb_first(&tp->out_of_order_queue);
5086 new_range:
5087 	if (!skb) {
5088 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5089 		return;
5090 	}
5091 	start = TCP_SKB_CB(skb)->seq;
5092 	end = TCP_SKB_CB(skb)->end_seq;
5093 	range_truesize = skb->truesize;
5094 
5095 	for (head = skb;;) {
5096 		skb = skb_rb_next(skb);
5097 
5098 		/* Range is terminated when we see a gap or when
5099 		 * we are at the queue end.
5100 		 */
5101 		if (!skb ||
5102 		    after(TCP_SKB_CB(skb)->seq, end) ||
5103 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5104 			/* Do not attempt collapsing tiny skbs */
5105 			if (range_truesize != head->truesize ||
5106 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5107 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5108 					     head, skb, start, end);
5109 			} else {
5110 				sum_tiny += range_truesize;
5111 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5112 					return;
5113 			}
5114 			goto new_range;
5115 		}
5116 
5117 		range_truesize += skb->truesize;
5118 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5119 			start = TCP_SKB_CB(skb)->seq;
5120 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5121 			end = TCP_SKB_CB(skb)->end_seq;
5122 	}
5123 }
5124 
5125 /*
5126  * Clean the out-of-order queue to make room.
5127  * We drop high sequences packets to :
5128  * 1) Let a chance for holes to be filled.
5129  * 2) not add too big latencies if thousands of packets sit there.
5130  *    (But if application shrinks SO_RCVBUF, we could still end up
5131  *     freeing whole queue here)
5132  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5133  *
5134  * Return true if queue has shrunk.
5135  */
5136 static bool tcp_prune_ofo_queue(struct sock *sk)
5137 {
5138 	struct tcp_sock *tp = tcp_sk(sk);
5139 	struct rb_node *node, *prev;
5140 	int goal;
5141 
5142 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5143 		return false;
5144 
5145 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5146 	goal = sk->sk_rcvbuf >> 3;
5147 	node = &tp->ooo_last_skb->rbnode;
5148 	do {
5149 		prev = rb_prev(node);
5150 		rb_erase(node, &tp->out_of_order_queue);
5151 		goal -= rb_to_skb(node)->truesize;
5152 		tcp_drop(sk, rb_to_skb(node));
5153 		if (!prev || goal <= 0) {
5154 			sk_mem_reclaim(sk);
5155 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5156 			    !tcp_under_memory_pressure(sk))
5157 				break;
5158 			goal = sk->sk_rcvbuf >> 3;
5159 		}
5160 		node = prev;
5161 	} while (node);
5162 	tp->ooo_last_skb = rb_to_skb(prev);
5163 
5164 	/* Reset SACK state.  A conforming SACK implementation will
5165 	 * do the same at a timeout based retransmit.  When a connection
5166 	 * is in a sad state like this, we care only about integrity
5167 	 * of the connection not performance.
5168 	 */
5169 	if (tp->rx_opt.sack_ok)
5170 		tcp_sack_reset(&tp->rx_opt);
5171 	return true;
5172 }
5173 
5174 /* Reduce allocated memory if we can, trying to get
5175  * the socket within its memory limits again.
5176  *
5177  * Return less than zero if we should start dropping frames
5178  * until the socket owning process reads some of the data
5179  * to stabilize the situation.
5180  */
5181 static int tcp_prune_queue(struct sock *sk)
5182 {
5183 	struct tcp_sock *tp = tcp_sk(sk);
5184 
5185 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5186 
5187 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5188 		tcp_clamp_window(sk);
5189 	else if (tcp_under_memory_pressure(sk))
5190 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5191 
5192 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5193 		return 0;
5194 
5195 	tcp_collapse_ofo_queue(sk);
5196 	if (!skb_queue_empty(&sk->sk_receive_queue))
5197 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5198 			     skb_peek(&sk->sk_receive_queue),
5199 			     NULL,
5200 			     tp->copied_seq, tp->rcv_nxt);
5201 	sk_mem_reclaim(sk);
5202 
5203 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5204 		return 0;
5205 
5206 	/* Collapsing did not help, destructive actions follow.
5207 	 * This must not ever occur. */
5208 
5209 	tcp_prune_ofo_queue(sk);
5210 
5211 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5212 		return 0;
5213 
5214 	/* If we are really being abused, tell the caller to silently
5215 	 * drop receive data on the floor.  It will get retransmitted
5216 	 * and hopefully then we'll have sufficient space.
5217 	 */
5218 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5219 
5220 	/* Massive buffer overcommit. */
5221 	tp->pred_flags = 0;
5222 	return -1;
5223 }
5224 
5225 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5226 {
5227 	const struct tcp_sock *tp = tcp_sk(sk);
5228 
5229 	/* If the user specified a specific send buffer setting, do
5230 	 * not modify it.
5231 	 */
5232 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5233 		return false;
5234 
5235 	/* If we are under global TCP memory pressure, do not expand.  */
5236 	if (tcp_under_memory_pressure(sk))
5237 		return false;
5238 
5239 	/* If we are under soft global TCP memory pressure, do not expand.  */
5240 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5241 		return false;
5242 
5243 	/* If we filled the congestion window, do not expand.  */
5244 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5245 		return false;
5246 
5247 	return true;
5248 }
5249 
5250 /* When incoming ACK allowed to free some skb from write_queue,
5251  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5252  * on the exit from tcp input handler.
5253  *
5254  * PROBLEM: sndbuf expansion does not work well with largesend.
5255  */
5256 static void tcp_new_space(struct sock *sk)
5257 {
5258 	struct tcp_sock *tp = tcp_sk(sk);
5259 
5260 	if (tcp_should_expand_sndbuf(sk)) {
5261 		tcp_sndbuf_expand(sk);
5262 		tp->snd_cwnd_stamp = tcp_jiffies32;
5263 	}
5264 
5265 	sk->sk_write_space(sk);
5266 }
5267 
5268 static void tcp_check_space(struct sock *sk)
5269 {
5270 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5271 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5272 		/* pairs with tcp_poll() */
5273 		smp_mb();
5274 		if (sk->sk_socket &&
5275 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5276 			tcp_new_space(sk);
5277 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5278 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5279 		}
5280 	}
5281 }
5282 
5283 static inline void tcp_data_snd_check(struct sock *sk)
5284 {
5285 	tcp_push_pending_frames(sk);
5286 	tcp_check_space(sk);
5287 }
5288 
5289 /*
5290  * Check if sending an ack is needed.
5291  */
5292 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5293 {
5294 	struct tcp_sock *tp = tcp_sk(sk);
5295 	unsigned long rtt, delay;
5296 
5297 	    /* More than one full frame received... */
5298 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5299 	     /* ... and right edge of window advances far enough.
5300 	      * (tcp_recvmsg() will send ACK otherwise).
5301 	      * If application uses SO_RCVLOWAT, we want send ack now if
5302 	      * we have not received enough bytes to satisfy the condition.
5303 	      */
5304 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5305 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5306 	    /* We ACK each frame or... */
5307 	    tcp_in_quickack_mode(sk) ||
5308 	    /* Protocol state mandates a one-time immediate ACK */
5309 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5310 send_now:
5311 		tcp_send_ack(sk);
5312 		return;
5313 	}
5314 
5315 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5316 		tcp_send_delayed_ack(sk);
5317 		return;
5318 	}
5319 
5320 	if (!tcp_is_sack(tp) ||
5321 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5322 		goto send_now;
5323 
5324 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5325 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5326 		tp->dup_ack_counter = 0;
5327 	}
5328 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5329 		tp->dup_ack_counter++;
5330 		goto send_now;
5331 	}
5332 	tp->compressed_ack++;
5333 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5334 		return;
5335 
5336 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5337 
5338 	rtt = tp->rcv_rtt_est.rtt_us;
5339 	if (tp->srtt_us && tp->srtt_us < rtt)
5340 		rtt = tp->srtt_us;
5341 
5342 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5343 		      rtt * (NSEC_PER_USEC >> 3)/20);
5344 	sock_hold(sk);
5345 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5346 			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5347 			       HRTIMER_MODE_REL_PINNED_SOFT);
5348 }
5349 
5350 static inline void tcp_ack_snd_check(struct sock *sk)
5351 {
5352 	if (!inet_csk_ack_scheduled(sk)) {
5353 		/* We sent a data segment already. */
5354 		return;
5355 	}
5356 	__tcp_ack_snd_check(sk, 1);
5357 }
5358 
5359 /*
5360  *	This routine is only called when we have urgent data
5361  *	signaled. Its the 'slow' part of tcp_urg. It could be
5362  *	moved inline now as tcp_urg is only called from one
5363  *	place. We handle URGent data wrong. We have to - as
5364  *	BSD still doesn't use the correction from RFC961.
5365  *	For 1003.1g we should support a new option TCP_STDURG to permit
5366  *	either form (or just set the sysctl tcp_stdurg).
5367  */
5368 
5369 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5370 {
5371 	struct tcp_sock *tp = tcp_sk(sk);
5372 	u32 ptr = ntohs(th->urg_ptr);
5373 
5374 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5375 		ptr--;
5376 	ptr += ntohl(th->seq);
5377 
5378 	/* Ignore urgent data that we've already seen and read. */
5379 	if (after(tp->copied_seq, ptr))
5380 		return;
5381 
5382 	/* Do not replay urg ptr.
5383 	 *
5384 	 * NOTE: interesting situation not covered by specs.
5385 	 * Misbehaving sender may send urg ptr, pointing to segment,
5386 	 * which we already have in ofo queue. We are not able to fetch
5387 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5388 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5389 	 * situations. But it is worth to think about possibility of some
5390 	 * DoSes using some hypothetical application level deadlock.
5391 	 */
5392 	if (before(ptr, tp->rcv_nxt))
5393 		return;
5394 
5395 	/* Do we already have a newer (or duplicate) urgent pointer? */
5396 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5397 		return;
5398 
5399 	/* Tell the world about our new urgent pointer. */
5400 	sk_send_sigurg(sk);
5401 
5402 	/* We may be adding urgent data when the last byte read was
5403 	 * urgent. To do this requires some care. We cannot just ignore
5404 	 * tp->copied_seq since we would read the last urgent byte again
5405 	 * as data, nor can we alter copied_seq until this data arrives
5406 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5407 	 *
5408 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5409 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5410 	 * and expect that both A and B disappear from stream. This is _wrong_.
5411 	 * Though this happens in BSD with high probability, this is occasional.
5412 	 * Any application relying on this is buggy. Note also, that fix "works"
5413 	 * only in this artificial test. Insert some normal data between A and B and we will
5414 	 * decline of BSD again. Verdict: it is better to remove to trap
5415 	 * buggy users.
5416 	 */
5417 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5418 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5419 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5420 		tp->copied_seq++;
5421 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5422 			__skb_unlink(skb, &sk->sk_receive_queue);
5423 			__kfree_skb(skb);
5424 		}
5425 	}
5426 
5427 	tp->urg_data = TCP_URG_NOTYET;
5428 	WRITE_ONCE(tp->urg_seq, ptr);
5429 
5430 	/* Disable header prediction. */
5431 	tp->pred_flags = 0;
5432 }
5433 
5434 /* This is the 'fast' part of urgent handling. */
5435 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5436 {
5437 	struct tcp_sock *tp = tcp_sk(sk);
5438 
5439 	/* Check if we get a new urgent pointer - normally not. */
5440 	if (th->urg)
5441 		tcp_check_urg(sk, th);
5442 
5443 	/* Do we wait for any urgent data? - normally not... */
5444 	if (tp->urg_data == TCP_URG_NOTYET) {
5445 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5446 			  th->syn;
5447 
5448 		/* Is the urgent pointer pointing into this packet? */
5449 		if (ptr < skb->len) {
5450 			u8 tmp;
5451 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5452 				BUG();
5453 			tp->urg_data = TCP_URG_VALID | tmp;
5454 			if (!sock_flag(sk, SOCK_DEAD))
5455 				sk->sk_data_ready(sk);
5456 		}
5457 	}
5458 }
5459 
5460 /* Accept RST for rcv_nxt - 1 after a FIN.
5461  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5462  * FIN is sent followed by a RST packet. The RST is sent with the same
5463  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5464  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5465  * ACKs on the closed socket. In addition middleboxes can drop either the
5466  * challenge ACK or a subsequent RST.
5467  */
5468 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5469 {
5470 	struct tcp_sock *tp = tcp_sk(sk);
5471 
5472 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5473 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5474 					       TCPF_CLOSING));
5475 }
5476 
5477 /* Does PAWS and seqno based validation of an incoming segment, flags will
5478  * play significant role here.
5479  */
5480 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5481 				  const struct tcphdr *th, int syn_inerr)
5482 {
5483 	struct tcp_sock *tp = tcp_sk(sk);
5484 	bool rst_seq_match = false;
5485 
5486 	/* RFC1323: H1. Apply PAWS check first. */
5487 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5488 	    tp->rx_opt.saw_tstamp &&
5489 	    tcp_paws_discard(sk, skb)) {
5490 		if (!th->rst) {
5491 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5492 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5493 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5494 						  &tp->last_oow_ack_time))
5495 				tcp_send_dupack(sk, skb);
5496 			goto discard;
5497 		}
5498 		/* Reset is accepted even if it did not pass PAWS. */
5499 	}
5500 
5501 	/* Step 1: check sequence number */
5502 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5503 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5504 		 * (RST) segments are validated by checking their SEQ-fields."
5505 		 * And page 69: "If an incoming segment is not acceptable,
5506 		 * an acknowledgment should be sent in reply (unless the RST
5507 		 * bit is set, if so drop the segment and return)".
5508 		 */
5509 		if (!th->rst) {
5510 			if (th->syn)
5511 				goto syn_challenge;
5512 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5513 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5514 						  &tp->last_oow_ack_time))
5515 				tcp_send_dupack(sk, skb);
5516 		} else if (tcp_reset_check(sk, skb)) {
5517 			tcp_reset(sk);
5518 		}
5519 		goto discard;
5520 	}
5521 
5522 	/* Step 2: check RST bit */
5523 	if (th->rst) {
5524 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5525 		 * FIN and SACK too if available):
5526 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5527 		 * the right-most SACK block,
5528 		 * then
5529 		 *     RESET the connection
5530 		 * else
5531 		 *     Send a challenge ACK
5532 		 */
5533 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5534 		    tcp_reset_check(sk, skb)) {
5535 			rst_seq_match = true;
5536 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5537 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5538 			int max_sack = sp[0].end_seq;
5539 			int this_sack;
5540 
5541 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5542 			     ++this_sack) {
5543 				max_sack = after(sp[this_sack].end_seq,
5544 						 max_sack) ?
5545 					sp[this_sack].end_seq : max_sack;
5546 			}
5547 
5548 			if (TCP_SKB_CB(skb)->seq == max_sack)
5549 				rst_seq_match = true;
5550 		}
5551 
5552 		if (rst_seq_match)
5553 			tcp_reset(sk);
5554 		else {
5555 			/* Disable TFO if RST is out-of-order
5556 			 * and no data has been received
5557 			 * for current active TFO socket
5558 			 */
5559 			if (tp->syn_fastopen && !tp->data_segs_in &&
5560 			    sk->sk_state == TCP_ESTABLISHED)
5561 				tcp_fastopen_active_disable(sk);
5562 			tcp_send_challenge_ack(sk, skb);
5563 		}
5564 		goto discard;
5565 	}
5566 
5567 	/* step 3: check security and precedence [ignored] */
5568 
5569 	/* step 4: Check for a SYN
5570 	 * RFC 5961 4.2 : Send a challenge ack
5571 	 */
5572 	if (th->syn) {
5573 syn_challenge:
5574 		if (syn_inerr)
5575 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5576 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5577 		tcp_send_challenge_ack(sk, skb);
5578 		goto discard;
5579 	}
5580 
5581 	return true;
5582 
5583 discard:
5584 	tcp_drop(sk, skb);
5585 	return false;
5586 }
5587 
5588 /*
5589  *	TCP receive function for the ESTABLISHED state.
5590  *
5591  *	It is split into a fast path and a slow path. The fast path is
5592  * 	disabled when:
5593  *	- A zero window was announced from us - zero window probing
5594  *        is only handled properly in the slow path.
5595  *	- Out of order segments arrived.
5596  *	- Urgent data is expected.
5597  *	- There is no buffer space left
5598  *	- Unexpected TCP flags/window values/header lengths are received
5599  *	  (detected by checking the TCP header against pred_flags)
5600  *	- Data is sent in both directions. Fast path only supports pure senders
5601  *	  or pure receivers (this means either the sequence number or the ack
5602  *	  value must stay constant)
5603  *	- Unexpected TCP option.
5604  *
5605  *	When these conditions are not satisfied it drops into a standard
5606  *	receive procedure patterned after RFC793 to handle all cases.
5607  *	The first three cases are guaranteed by proper pred_flags setting,
5608  *	the rest is checked inline. Fast processing is turned on in
5609  *	tcp_data_queue when everything is OK.
5610  */
5611 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5612 {
5613 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5614 	struct tcp_sock *tp = tcp_sk(sk);
5615 	unsigned int len = skb->len;
5616 
5617 	/* TCP congestion window tracking */
5618 	trace_tcp_probe(sk, skb);
5619 
5620 	tcp_mstamp_refresh(tp);
5621 	if (unlikely(!sk->sk_rx_dst))
5622 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5623 	/*
5624 	 *	Header prediction.
5625 	 *	The code loosely follows the one in the famous
5626 	 *	"30 instruction TCP receive" Van Jacobson mail.
5627 	 *
5628 	 *	Van's trick is to deposit buffers into socket queue
5629 	 *	on a device interrupt, to call tcp_recv function
5630 	 *	on the receive process context and checksum and copy
5631 	 *	the buffer to user space. smart...
5632 	 *
5633 	 *	Our current scheme is not silly either but we take the
5634 	 *	extra cost of the net_bh soft interrupt processing...
5635 	 *	We do checksum and copy also but from device to kernel.
5636 	 */
5637 
5638 	tp->rx_opt.saw_tstamp = 0;
5639 
5640 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5641 	 *	if header_prediction is to be made
5642 	 *	'S' will always be tp->tcp_header_len >> 2
5643 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5644 	 *  turn it off	(when there are holes in the receive
5645 	 *	 space for instance)
5646 	 *	PSH flag is ignored.
5647 	 */
5648 
5649 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5650 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5651 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5652 		int tcp_header_len = tp->tcp_header_len;
5653 
5654 		/* Timestamp header prediction: tcp_header_len
5655 		 * is automatically equal to th->doff*4 due to pred_flags
5656 		 * match.
5657 		 */
5658 
5659 		/* Check timestamp */
5660 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5661 			/* No? Slow path! */
5662 			if (!tcp_parse_aligned_timestamp(tp, th))
5663 				goto slow_path;
5664 
5665 			/* If PAWS failed, check it more carefully in slow path */
5666 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5667 				goto slow_path;
5668 
5669 			/* DO NOT update ts_recent here, if checksum fails
5670 			 * and timestamp was corrupted part, it will result
5671 			 * in a hung connection since we will drop all
5672 			 * future packets due to the PAWS test.
5673 			 */
5674 		}
5675 
5676 		if (len <= tcp_header_len) {
5677 			/* Bulk data transfer: sender */
5678 			if (len == tcp_header_len) {
5679 				/* Predicted packet is in window by definition.
5680 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5681 				 * Hence, check seq<=rcv_wup reduces to:
5682 				 */
5683 				if (tcp_header_len ==
5684 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5685 				    tp->rcv_nxt == tp->rcv_wup)
5686 					tcp_store_ts_recent(tp);
5687 
5688 				/* We know that such packets are checksummed
5689 				 * on entry.
5690 				 */
5691 				tcp_ack(sk, skb, 0);
5692 				__kfree_skb(skb);
5693 				tcp_data_snd_check(sk);
5694 				/* When receiving pure ack in fast path, update
5695 				 * last ts ecr directly instead of calling
5696 				 * tcp_rcv_rtt_measure_ts()
5697 				 */
5698 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5699 				return;
5700 			} else { /* Header too small */
5701 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5702 				goto discard;
5703 			}
5704 		} else {
5705 			int eaten = 0;
5706 			bool fragstolen = false;
5707 
5708 			if (tcp_checksum_complete(skb))
5709 				goto csum_error;
5710 
5711 			if ((int)skb->truesize > sk->sk_forward_alloc)
5712 				goto step5;
5713 
5714 			/* Predicted packet is in window by definition.
5715 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5716 			 * Hence, check seq<=rcv_wup reduces to:
5717 			 */
5718 			if (tcp_header_len ==
5719 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5720 			    tp->rcv_nxt == tp->rcv_wup)
5721 				tcp_store_ts_recent(tp);
5722 
5723 			tcp_rcv_rtt_measure_ts(sk, skb);
5724 
5725 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5726 
5727 			/* Bulk data transfer: receiver */
5728 			__skb_pull(skb, tcp_header_len);
5729 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5730 
5731 			tcp_event_data_recv(sk, skb);
5732 
5733 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5734 				/* Well, only one small jumplet in fast path... */
5735 				tcp_ack(sk, skb, FLAG_DATA);
5736 				tcp_data_snd_check(sk);
5737 				if (!inet_csk_ack_scheduled(sk))
5738 					goto no_ack;
5739 			}
5740 
5741 			__tcp_ack_snd_check(sk, 0);
5742 no_ack:
5743 			if (eaten)
5744 				kfree_skb_partial(skb, fragstolen);
5745 			tcp_data_ready(sk);
5746 			return;
5747 		}
5748 	}
5749 
5750 slow_path:
5751 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5752 		goto csum_error;
5753 
5754 	if (!th->ack && !th->rst && !th->syn)
5755 		goto discard;
5756 
5757 	/*
5758 	 *	Standard slow path.
5759 	 */
5760 
5761 	if (!tcp_validate_incoming(sk, skb, th, 1))
5762 		return;
5763 
5764 step5:
5765 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5766 		goto discard;
5767 
5768 	tcp_rcv_rtt_measure_ts(sk, skb);
5769 
5770 	/* Process urgent data. */
5771 	tcp_urg(sk, skb, th);
5772 
5773 	/* step 7: process the segment text */
5774 	tcp_data_queue(sk, skb);
5775 
5776 	tcp_data_snd_check(sk);
5777 	tcp_ack_snd_check(sk);
5778 	return;
5779 
5780 csum_error:
5781 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5782 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5783 
5784 discard:
5785 	tcp_drop(sk, skb);
5786 }
5787 EXPORT_SYMBOL(tcp_rcv_established);
5788 
5789 void tcp_init_transfer(struct sock *sk, int bpf_op)
5790 {
5791 	struct inet_connection_sock *icsk = inet_csk(sk);
5792 	struct tcp_sock *tp = tcp_sk(sk);
5793 
5794 	tcp_mtup_init(sk);
5795 	icsk->icsk_af_ops->rebuild_header(sk);
5796 	tcp_init_metrics(sk);
5797 
5798 	/* Initialize the congestion window to start the transfer.
5799 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5800 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5801 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5802 	 * retransmission has occurred.
5803 	 */
5804 	if (tp->total_retrans > 1 && tp->undo_marker)
5805 		tp->snd_cwnd = 1;
5806 	else
5807 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5808 	tp->snd_cwnd_stamp = tcp_jiffies32;
5809 
5810 	tcp_call_bpf(sk, bpf_op, 0, NULL);
5811 	tcp_init_congestion_control(sk);
5812 	tcp_init_buffer_space(sk);
5813 }
5814 
5815 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5816 {
5817 	struct tcp_sock *tp = tcp_sk(sk);
5818 	struct inet_connection_sock *icsk = inet_csk(sk);
5819 
5820 	tcp_set_state(sk, TCP_ESTABLISHED);
5821 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5822 
5823 	if (skb) {
5824 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5825 		security_inet_conn_established(sk, skb);
5826 		sk_mark_napi_id(sk, skb);
5827 	}
5828 
5829 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5830 
5831 	/* Prevent spurious tcp_cwnd_restart() on first data
5832 	 * packet.
5833 	 */
5834 	tp->lsndtime = tcp_jiffies32;
5835 
5836 	if (sock_flag(sk, SOCK_KEEPOPEN))
5837 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5838 
5839 	if (!tp->rx_opt.snd_wscale)
5840 		__tcp_fast_path_on(tp, tp->snd_wnd);
5841 	else
5842 		tp->pred_flags = 0;
5843 }
5844 
5845 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5846 				    struct tcp_fastopen_cookie *cookie)
5847 {
5848 	struct tcp_sock *tp = tcp_sk(sk);
5849 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5850 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5851 	bool syn_drop = false;
5852 
5853 	if (mss == tp->rx_opt.user_mss) {
5854 		struct tcp_options_received opt;
5855 
5856 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5857 		tcp_clear_options(&opt);
5858 		opt.user_mss = opt.mss_clamp = 0;
5859 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5860 		mss = opt.mss_clamp;
5861 	}
5862 
5863 	if (!tp->syn_fastopen) {
5864 		/* Ignore an unsolicited cookie */
5865 		cookie->len = -1;
5866 	} else if (tp->total_retrans) {
5867 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5868 		 * acknowledges data. Presumably the remote received only
5869 		 * the retransmitted (regular) SYNs: either the original
5870 		 * SYN-data or the corresponding SYN-ACK was dropped.
5871 		 */
5872 		syn_drop = (cookie->len < 0 && data);
5873 	} else if (cookie->len < 0 && !tp->syn_data) {
5874 		/* We requested a cookie but didn't get it. If we did not use
5875 		 * the (old) exp opt format then try so next time (try_exp=1).
5876 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5877 		 */
5878 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5879 	}
5880 
5881 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5882 
5883 	if (data) { /* Retransmit unacked data in SYN */
5884 		if (tp->total_retrans)
5885 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5886 		else
5887 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5888 		skb_rbtree_walk_from(data) {
5889 			if (__tcp_retransmit_skb(sk, data, 1))
5890 				break;
5891 		}
5892 		tcp_rearm_rto(sk);
5893 		NET_INC_STATS(sock_net(sk),
5894 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5895 		return true;
5896 	}
5897 	tp->syn_data_acked = tp->syn_data;
5898 	if (tp->syn_data_acked) {
5899 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5900 		/* SYN-data is counted as two separate packets in tcp_ack() */
5901 		if (tp->delivered > 1)
5902 			--tp->delivered;
5903 	}
5904 
5905 	tcp_fastopen_add_skb(sk, synack);
5906 
5907 	return false;
5908 }
5909 
5910 static void smc_check_reset_syn(struct tcp_sock *tp)
5911 {
5912 #if IS_ENABLED(CONFIG_SMC)
5913 	if (static_branch_unlikely(&tcp_have_smc)) {
5914 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5915 			tp->syn_smc = 0;
5916 	}
5917 #endif
5918 }
5919 
5920 static void tcp_try_undo_spurious_syn(struct sock *sk)
5921 {
5922 	struct tcp_sock *tp = tcp_sk(sk);
5923 	u32 syn_stamp;
5924 
5925 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
5926 	 * spurious if the ACK's timestamp option echo value matches the
5927 	 * original SYN timestamp.
5928 	 */
5929 	syn_stamp = tp->retrans_stamp;
5930 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5931 	    syn_stamp == tp->rx_opt.rcv_tsecr)
5932 		tp->undo_marker = 0;
5933 }
5934 
5935 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5936 					 const struct tcphdr *th)
5937 {
5938 	struct inet_connection_sock *icsk = inet_csk(sk);
5939 	struct tcp_sock *tp = tcp_sk(sk);
5940 	struct tcp_fastopen_cookie foc = { .len = -1 };
5941 	int saved_clamp = tp->rx_opt.mss_clamp;
5942 	bool fastopen_fail;
5943 
5944 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5945 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5946 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5947 
5948 	if (th->ack) {
5949 		/* rfc793:
5950 		 * "If the state is SYN-SENT then
5951 		 *    first check the ACK bit
5952 		 *      If the ACK bit is set
5953 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5954 		 *        a reset (unless the RST bit is set, if so drop
5955 		 *        the segment and return)"
5956 		 */
5957 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5958 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5959 			/* Previous FIN/ACK or RST/ACK might be ignored. */
5960 			if (icsk->icsk_retransmits == 0)
5961 				inet_csk_reset_xmit_timer(sk,
5962 						ICSK_TIME_RETRANS,
5963 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
5964 			goto reset_and_undo;
5965 		}
5966 
5967 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5968 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5969 			     tcp_time_stamp(tp))) {
5970 			NET_INC_STATS(sock_net(sk),
5971 					LINUX_MIB_PAWSACTIVEREJECTED);
5972 			goto reset_and_undo;
5973 		}
5974 
5975 		/* Now ACK is acceptable.
5976 		 *
5977 		 * "If the RST bit is set
5978 		 *    If the ACK was acceptable then signal the user "error:
5979 		 *    connection reset", drop the segment, enter CLOSED state,
5980 		 *    delete TCB, and return."
5981 		 */
5982 
5983 		if (th->rst) {
5984 			tcp_reset(sk);
5985 			goto discard;
5986 		}
5987 
5988 		/* rfc793:
5989 		 *   "fifth, if neither of the SYN or RST bits is set then
5990 		 *    drop the segment and return."
5991 		 *
5992 		 *    See note below!
5993 		 *                                        --ANK(990513)
5994 		 */
5995 		if (!th->syn)
5996 			goto discard_and_undo;
5997 
5998 		/* rfc793:
5999 		 *   "If the SYN bit is on ...
6000 		 *    are acceptable then ...
6001 		 *    (our SYN has been ACKed), change the connection
6002 		 *    state to ESTABLISHED..."
6003 		 */
6004 
6005 		tcp_ecn_rcv_synack(tp, th);
6006 
6007 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6008 		tcp_try_undo_spurious_syn(sk);
6009 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6010 
6011 		/* Ok.. it's good. Set up sequence numbers and
6012 		 * move to established.
6013 		 */
6014 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6015 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6016 
6017 		/* RFC1323: The window in SYN & SYN/ACK segments is
6018 		 * never scaled.
6019 		 */
6020 		tp->snd_wnd = ntohs(th->window);
6021 
6022 		if (!tp->rx_opt.wscale_ok) {
6023 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6024 			tp->window_clamp = min(tp->window_clamp, 65535U);
6025 		}
6026 
6027 		if (tp->rx_opt.saw_tstamp) {
6028 			tp->rx_opt.tstamp_ok	   = 1;
6029 			tp->tcp_header_len =
6030 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6031 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6032 			tcp_store_ts_recent(tp);
6033 		} else {
6034 			tp->tcp_header_len = sizeof(struct tcphdr);
6035 		}
6036 
6037 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6038 		tcp_initialize_rcv_mss(sk);
6039 
6040 		/* Remember, tcp_poll() does not lock socket!
6041 		 * Change state from SYN-SENT only after copied_seq
6042 		 * is initialized. */
6043 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6044 
6045 		smc_check_reset_syn(tp);
6046 
6047 		smp_mb();
6048 
6049 		tcp_finish_connect(sk, skb);
6050 
6051 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6052 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6053 
6054 		if (!sock_flag(sk, SOCK_DEAD)) {
6055 			sk->sk_state_change(sk);
6056 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6057 		}
6058 		if (fastopen_fail)
6059 			return -1;
6060 		if (sk->sk_write_pending ||
6061 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6062 		    inet_csk_in_pingpong_mode(sk)) {
6063 			/* Save one ACK. Data will be ready after
6064 			 * several ticks, if write_pending is set.
6065 			 *
6066 			 * It may be deleted, but with this feature tcpdumps
6067 			 * look so _wonderfully_ clever, that I was not able
6068 			 * to stand against the temptation 8)     --ANK
6069 			 */
6070 			inet_csk_schedule_ack(sk);
6071 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6072 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6073 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6074 
6075 discard:
6076 			tcp_drop(sk, skb);
6077 			return 0;
6078 		} else {
6079 			tcp_send_ack(sk);
6080 		}
6081 		return -1;
6082 	}
6083 
6084 	/* No ACK in the segment */
6085 
6086 	if (th->rst) {
6087 		/* rfc793:
6088 		 * "If the RST bit is set
6089 		 *
6090 		 *      Otherwise (no ACK) drop the segment and return."
6091 		 */
6092 
6093 		goto discard_and_undo;
6094 	}
6095 
6096 	/* PAWS check. */
6097 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6098 	    tcp_paws_reject(&tp->rx_opt, 0))
6099 		goto discard_and_undo;
6100 
6101 	if (th->syn) {
6102 		/* We see SYN without ACK. It is attempt of
6103 		 * simultaneous connect with crossed SYNs.
6104 		 * Particularly, it can be connect to self.
6105 		 */
6106 		tcp_set_state(sk, TCP_SYN_RECV);
6107 
6108 		if (tp->rx_opt.saw_tstamp) {
6109 			tp->rx_opt.tstamp_ok = 1;
6110 			tcp_store_ts_recent(tp);
6111 			tp->tcp_header_len =
6112 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6113 		} else {
6114 			tp->tcp_header_len = sizeof(struct tcphdr);
6115 		}
6116 
6117 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6118 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6119 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6120 
6121 		/* RFC1323: The window in SYN & SYN/ACK segments is
6122 		 * never scaled.
6123 		 */
6124 		tp->snd_wnd    = ntohs(th->window);
6125 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6126 		tp->max_window = tp->snd_wnd;
6127 
6128 		tcp_ecn_rcv_syn(tp, th);
6129 
6130 		tcp_mtup_init(sk);
6131 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6132 		tcp_initialize_rcv_mss(sk);
6133 
6134 		tcp_send_synack(sk);
6135 #if 0
6136 		/* Note, we could accept data and URG from this segment.
6137 		 * There are no obstacles to make this (except that we must
6138 		 * either change tcp_recvmsg() to prevent it from returning data
6139 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6140 		 *
6141 		 * However, if we ignore data in ACKless segments sometimes,
6142 		 * we have no reasons to accept it sometimes.
6143 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6144 		 * is not flawless. So, discard packet for sanity.
6145 		 * Uncomment this return to process the data.
6146 		 */
6147 		return -1;
6148 #else
6149 		goto discard;
6150 #endif
6151 	}
6152 	/* "fifth, if neither of the SYN or RST bits is set then
6153 	 * drop the segment and return."
6154 	 */
6155 
6156 discard_and_undo:
6157 	tcp_clear_options(&tp->rx_opt);
6158 	tp->rx_opt.mss_clamp = saved_clamp;
6159 	goto discard;
6160 
6161 reset_and_undo:
6162 	tcp_clear_options(&tp->rx_opt);
6163 	tp->rx_opt.mss_clamp = saved_clamp;
6164 	return 1;
6165 }
6166 
6167 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6168 {
6169 	struct request_sock *req;
6170 
6171 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6172 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6173 	 */
6174 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6175 		tcp_try_undo_loss(sk, false);
6176 
6177 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6178 	tcp_sk(sk)->retrans_stamp = 0;
6179 	inet_csk(sk)->icsk_retransmits = 0;
6180 
6181 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6182 	 * we no longer need req so release it.
6183 	 */
6184 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6185 					lockdep_sock_is_held(sk));
6186 	reqsk_fastopen_remove(sk, req, false);
6187 
6188 	/* Re-arm the timer because data may have been sent out.
6189 	 * This is similar to the regular data transmission case
6190 	 * when new data has just been ack'ed.
6191 	 *
6192 	 * (TFO) - we could try to be more aggressive and
6193 	 * retransmitting any data sooner based on when they
6194 	 * are sent out.
6195 	 */
6196 	tcp_rearm_rto(sk);
6197 }
6198 
6199 /*
6200  *	This function implements the receiving procedure of RFC 793 for
6201  *	all states except ESTABLISHED and TIME_WAIT.
6202  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6203  *	address independent.
6204  */
6205 
6206 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6207 {
6208 	struct tcp_sock *tp = tcp_sk(sk);
6209 	struct inet_connection_sock *icsk = inet_csk(sk);
6210 	const struct tcphdr *th = tcp_hdr(skb);
6211 	struct request_sock *req;
6212 	int queued = 0;
6213 	bool acceptable;
6214 
6215 	switch (sk->sk_state) {
6216 	case TCP_CLOSE:
6217 		goto discard;
6218 
6219 	case TCP_LISTEN:
6220 		if (th->ack)
6221 			return 1;
6222 
6223 		if (th->rst)
6224 			goto discard;
6225 
6226 		if (th->syn) {
6227 			if (th->fin)
6228 				goto discard;
6229 			/* It is possible that we process SYN packets from backlog,
6230 			 * so we need to make sure to disable BH and RCU right there.
6231 			 */
6232 			rcu_read_lock();
6233 			local_bh_disable();
6234 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6235 			local_bh_enable();
6236 			rcu_read_unlock();
6237 
6238 			if (!acceptable)
6239 				return 1;
6240 			consume_skb(skb);
6241 			return 0;
6242 		}
6243 		goto discard;
6244 
6245 	case TCP_SYN_SENT:
6246 		tp->rx_opt.saw_tstamp = 0;
6247 		tcp_mstamp_refresh(tp);
6248 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6249 		if (queued >= 0)
6250 			return queued;
6251 
6252 		/* Do step6 onward by hand. */
6253 		tcp_urg(sk, skb, th);
6254 		__kfree_skb(skb);
6255 		tcp_data_snd_check(sk);
6256 		return 0;
6257 	}
6258 
6259 	tcp_mstamp_refresh(tp);
6260 	tp->rx_opt.saw_tstamp = 0;
6261 	req = rcu_dereference_protected(tp->fastopen_rsk,
6262 					lockdep_sock_is_held(sk));
6263 	if (req) {
6264 		bool req_stolen;
6265 
6266 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6267 		    sk->sk_state != TCP_FIN_WAIT1);
6268 
6269 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6270 			goto discard;
6271 	}
6272 
6273 	if (!th->ack && !th->rst && !th->syn)
6274 		goto discard;
6275 
6276 	if (!tcp_validate_incoming(sk, skb, th, 0))
6277 		return 0;
6278 
6279 	/* step 5: check the ACK field */
6280 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6281 				      FLAG_UPDATE_TS_RECENT |
6282 				      FLAG_NO_CHALLENGE_ACK) > 0;
6283 
6284 	if (!acceptable) {
6285 		if (sk->sk_state == TCP_SYN_RECV)
6286 			return 1;	/* send one RST */
6287 		tcp_send_challenge_ack(sk, skb);
6288 		goto discard;
6289 	}
6290 	switch (sk->sk_state) {
6291 	case TCP_SYN_RECV:
6292 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6293 		if (!tp->srtt_us)
6294 			tcp_synack_rtt_meas(sk, req);
6295 
6296 		if (req) {
6297 			tcp_rcv_synrecv_state_fastopen(sk);
6298 		} else {
6299 			tcp_try_undo_spurious_syn(sk);
6300 			tp->retrans_stamp = 0;
6301 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6302 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6303 		}
6304 		smp_mb();
6305 		tcp_set_state(sk, TCP_ESTABLISHED);
6306 		sk->sk_state_change(sk);
6307 
6308 		/* Note, that this wakeup is only for marginal crossed SYN case.
6309 		 * Passively open sockets are not waked up, because
6310 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6311 		 */
6312 		if (sk->sk_socket)
6313 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6314 
6315 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6316 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6317 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6318 
6319 		if (tp->rx_opt.tstamp_ok)
6320 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6321 
6322 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6323 			tcp_update_pacing_rate(sk);
6324 
6325 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6326 		tp->lsndtime = tcp_jiffies32;
6327 
6328 		tcp_initialize_rcv_mss(sk);
6329 		tcp_fast_path_on(tp);
6330 		break;
6331 
6332 	case TCP_FIN_WAIT1: {
6333 		int tmo;
6334 
6335 		if (req)
6336 			tcp_rcv_synrecv_state_fastopen(sk);
6337 
6338 		if (tp->snd_una != tp->write_seq)
6339 			break;
6340 
6341 		tcp_set_state(sk, TCP_FIN_WAIT2);
6342 		sk->sk_shutdown |= SEND_SHUTDOWN;
6343 
6344 		sk_dst_confirm(sk);
6345 
6346 		if (!sock_flag(sk, SOCK_DEAD)) {
6347 			/* Wake up lingering close() */
6348 			sk->sk_state_change(sk);
6349 			break;
6350 		}
6351 
6352 		if (tp->linger2 < 0) {
6353 			tcp_done(sk);
6354 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6355 			return 1;
6356 		}
6357 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6358 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6359 			/* Receive out of order FIN after close() */
6360 			if (tp->syn_fastopen && th->fin)
6361 				tcp_fastopen_active_disable(sk);
6362 			tcp_done(sk);
6363 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6364 			return 1;
6365 		}
6366 
6367 		tmo = tcp_fin_time(sk);
6368 		if (tmo > TCP_TIMEWAIT_LEN) {
6369 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6370 		} else if (th->fin || sock_owned_by_user(sk)) {
6371 			/* Bad case. We could lose such FIN otherwise.
6372 			 * It is not a big problem, but it looks confusing
6373 			 * and not so rare event. We still can lose it now,
6374 			 * if it spins in bh_lock_sock(), but it is really
6375 			 * marginal case.
6376 			 */
6377 			inet_csk_reset_keepalive_timer(sk, tmo);
6378 		} else {
6379 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6380 			goto discard;
6381 		}
6382 		break;
6383 	}
6384 
6385 	case TCP_CLOSING:
6386 		if (tp->snd_una == tp->write_seq) {
6387 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6388 			goto discard;
6389 		}
6390 		break;
6391 
6392 	case TCP_LAST_ACK:
6393 		if (tp->snd_una == tp->write_seq) {
6394 			tcp_update_metrics(sk);
6395 			tcp_done(sk);
6396 			goto discard;
6397 		}
6398 		break;
6399 	}
6400 
6401 	/* step 6: check the URG bit */
6402 	tcp_urg(sk, skb, th);
6403 
6404 	/* step 7: process the segment text */
6405 	switch (sk->sk_state) {
6406 	case TCP_CLOSE_WAIT:
6407 	case TCP_CLOSING:
6408 	case TCP_LAST_ACK:
6409 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6410 			if (sk_is_mptcp(sk))
6411 				mptcp_incoming_options(sk, skb, &tp->rx_opt);
6412 			break;
6413 		}
6414 		fallthrough;
6415 	case TCP_FIN_WAIT1:
6416 	case TCP_FIN_WAIT2:
6417 		/* RFC 793 says to queue data in these states,
6418 		 * RFC 1122 says we MUST send a reset.
6419 		 * BSD 4.4 also does reset.
6420 		 */
6421 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6422 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6423 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6424 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6425 				tcp_reset(sk);
6426 				return 1;
6427 			}
6428 		}
6429 		fallthrough;
6430 	case TCP_ESTABLISHED:
6431 		tcp_data_queue(sk, skb);
6432 		queued = 1;
6433 		break;
6434 	}
6435 
6436 	/* tcp_data could move socket to TIME-WAIT */
6437 	if (sk->sk_state != TCP_CLOSE) {
6438 		tcp_data_snd_check(sk);
6439 		tcp_ack_snd_check(sk);
6440 	}
6441 
6442 	if (!queued) {
6443 discard:
6444 		tcp_drop(sk, skb);
6445 	}
6446 	return 0;
6447 }
6448 EXPORT_SYMBOL(tcp_rcv_state_process);
6449 
6450 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6451 {
6452 	struct inet_request_sock *ireq = inet_rsk(req);
6453 
6454 	if (family == AF_INET)
6455 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6456 				    &ireq->ir_rmt_addr, port);
6457 #if IS_ENABLED(CONFIG_IPV6)
6458 	else if (family == AF_INET6)
6459 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6460 				    &ireq->ir_v6_rmt_addr, port);
6461 #endif
6462 }
6463 
6464 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6465  *
6466  * If we receive a SYN packet with these bits set, it means a
6467  * network is playing bad games with TOS bits. In order to
6468  * avoid possible false congestion notifications, we disable
6469  * TCP ECN negotiation.
6470  *
6471  * Exception: tcp_ca wants ECN. This is required for DCTCP
6472  * congestion control: Linux DCTCP asserts ECT on all packets,
6473  * including SYN, which is most optimal solution; however,
6474  * others, such as FreeBSD do not.
6475  *
6476  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6477  * set, indicating the use of a future TCP extension (such as AccECN). See
6478  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6479  * extensions.
6480  */
6481 static void tcp_ecn_create_request(struct request_sock *req,
6482 				   const struct sk_buff *skb,
6483 				   const struct sock *listen_sk,
6484 				   const struct dst_entry *dst)
6485 {
6486 	const struct tcphdr *th = tcp_hdr(skb);
6487 	const struct net *net = sock_net(listen_sk);
6488 	bool th_ecn = th->ece && th->cwr;
6489 	bool ect, ecn_ok;
6490 	u32 ecn_ok_dst;
6491 
6492 	if (!th_ecn)
6493 		return;
6494 
6495 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6496 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6497 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6498 
6499 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6500 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6501 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6502 		inet_rsk(req)->ecn_ok = 1;
6503 }
6504 
6505 static void tcp_openreq_init(struct request_sock *req,
6506 			     const struct tcp_options_received *rx_opt,
6507 			     struct sk_buff *skb, const struct sock *sk)
6508 {
6509 	struct inet_request_sock *ireq = inet_rsk(req);
6510 
6511 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6512 	req->cookie_ts = 0;
6513 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6514 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6515 	tcp_rsk(req)->snt_synack = 0;
6516 	tcp_rsk(req)->last_oow_ack_time = 0;
6517 	req->mss = rx_opt->mss_clamp;
6518 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6519 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6520 	ireq->sack_ok = rx_opt->sack_ok;
6521 	ireq->snd_wscale = rx_opt->snd_wscale;
6522 	ireq->wscale_ok = rx_opt->wscale_ok;
6523 	ireq->acked = 0;
6524 	ireq->ecn_ok = 0;
6525 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6526 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6527 	ireq->ir_mark = inet_request_mark(sk, skb);
6528 #if IS_ENABLED(CONFIG_SMC)
6529 	ireq->smc_ok = rx_opt->smc_ok;
6530 #endif
6531 }
6532 
6533 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6534 				      struct sock *sk_listener,
6535 				      bool attach_listener)
6536 {
6537 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6538 					       attach_listener);
6539 
6540 	if (req) {
6541 		struct inet_request_sock *ireq = inet_rsk(req);
6542 
6543 		ireq->ireq_opt = NULL;
6544 #if IS_ENABLED(CONFIG_IPV6)
6545 		ireq->pktopts = NULL;
6546 #endif
6547 		atomic64_set(&ireq->ir_cookie, 0);
6548 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6549 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6550 		ireq->ireq_family = sk_listener->sk_family;
6551 	}
6552 
6553 	return req;
6554 }
6555 EXPORT_SYMBOL(inet_reqsk_alloc);
6556 
6557 /*
6558  * Return true if a syncookie should be sent
6559  */
6560 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6561 {
6562 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6563 	const char *msg = "Dropping request";
6564 	bool want_cookie = false;
6565 	struct net *net = sock_net(sk);
6566 
6567 #ifdef CONFIG_SYN_COOKIES
6568 	if (net->ipv4.sysctl_tcp_syncookies) {
6569 		msg = "Sending cookies";
6570 		want_cookie = true;
6571 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6572 	} else
6573 #endif
6574 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6575 
6576 	if (!queue->synflood_warned &&
6577 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6578 	    xchg(&queue->synflood_warned, 1) == 0)
6579 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6580 				     proto, sk->sk_num, msg);
6581 
6582 	return want_cookie;
6583 }
6584 
6585 static void tcp_reqsk_record_syn(const struct sock *sk,
6586 				 struct request_sock *req,
6587 				 const struct sk_buff *skb)
6588 {
6589 	if (tcp_sk(sk)->save_syn) {
6590 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6591 		u32 *copy;
6592 
6593 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6594 		if (copy) {
6595 			copy[0] = len;
6596 			memcpy(&copy[1], skb_network_header(skb), len);
6597 			req->saved_syn = copy;
6598 		}
6599 	}
6600 }
6601 
6602 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6603  * used for SYN cookie generation.
6604  */
6605 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6606 			  const struct tcp_request_sock_ops *af_ops,
6607 			  struct sock *sk, struct tcphdr *th)
6608 {
6609 	struct tcp_sock *tp = tcp_sk(sk);
6610 	u16 mss;
6611 
6612 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6613 	    !inet_csk_reqsk_queue_is_full(sk))
6614 		return 0;
6615 
6616 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6617 		return 0;
6618 
6619 	if (sk_acceptq_is_full(sk)) {
6620 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6621 		return 0;
6622 	}
6623 
6624 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6625 	if (!mss)
6626 		mss = af_ops->mss_clamp;
6627 
6628 	return mss;
6629 }
6630 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6631 
6632 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6633 		     const struct tcp_request_sock_ops *af_ops,
6634 		     struct sock *sk, struct sk_buff *skb)
6635 {
6636 	struct tcp_fastopen_cookie foc = { .len = -1 };
6637 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6638 	struct tcp_options_received tmp_opt;
6639 	struct tcp_sock *tp = tcp_sk(sk);
6640 	struct net *net = sock_net(sk);
6641 	struct sock *fastopen_sk = NULL;
6642 	struct request_sock *req;
6643 	bool want_cookie = false;
6644 	struct dst_entry *dst;
6645 	struct flowi fl;
6646 
6647 	/* TW buckets are converted to open requests without
6648 	 * limitations, they conserve resources and peer is
6649 	 * evidently real one.
6650 	 */
6651 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6652 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6653 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6654 		if (!want_cookie)
6655 			goto drop;
6656 	}
6657 
6658 	if (sk_acceptq_is_full(sk)) {
6659 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6660 		goto drop;
6661 	}
6662 
6663 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6664 	if (!req)
6665 		goto drop;
6666 
6667 	tcp_rsk(req)->af_specific = af_ops;
6668 	tcp_rsk(req)->ts_off = 0;
6669 #if IS_ENABLED(CONFIG_MPTCP)
6670 	tcp_rsk(req)->is_mptcp = 0;
6671 #endif
6672 
6673 	tcp_clear_options(&tmp_opt);
6674 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6675 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6676 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6677 			  want_cookie ? NULL : &foc);
6678 
6679 	if (want_cookie && !tmp_opt.saw_tstamp)
6680 		tcp_clear_options(&tmp_opt);
6681 
6682 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6683 		tmp_opt.smc_ok = 0;
6684 
6685 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6686 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6687 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6688 
6689 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6690 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6691 
6692 	af_ops->init_req(req, sk, skb);
6693 
6694 	if (IS_ENABLED(CONFIG_MPTCP) && want_cookie)
6695 		tcp_rsk(req)->is_mptcp = 0;
6696 
6697 	if (security_inet_conn_request(sk, skb, req))
6698 		goto drop_and_free;
6699 
6700 	if (tmp_opt.tstamp_ok)
6701 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6702 
6703 	dst = af_ops->route_req(sk, &fl, req);
6704 	if (!dst)
6705 		goto drop_and_free;
6706 
6707 	if (!want_cookie && !isn) {
6708 		/* Kill the following clause, if you dislike this way. */
6709 		if (!net->ipv4.sysctl_tcp_syncookies &&
6710 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6711 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6712 		    !tcp_peer_is_proven(req, dst)) {
6713 			/* Without syncookies last quarter of
6714 			 * backlog is filled with destinations,
6715 			 * proven to be alive.
6716 			 * It means that we continue to communicate
6717 			 * to destinations, already remembered
6718 			 * to the moment of synflood.
6719 			 */
6720 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6721 				    rsk_ops->family);
6722 			goto drop_and_release;
6723 		}
6724 
6725 		isn = af_ops->init_seq(skb);
6726 	}
6727 
6728 	tcp_ecn_create_request(req, skb, sk, dst);
6729 
6730 	if (want_cookie) {
6731 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6732 		req->cookie_ts = tmp_opt.tstamp_ok;
6733 		if (!tmp_opt.tstamp_ok)
6734 			inet_rsk(req)->ecn_ok = 0;
6735 	}
6736 
6737 	tcp_rsk(req)->snt_isn = isn;
6738 	tcp_rsk(req)->txhash = net_tx_rndhash();
6739 	tcp_openreq_init_rwin(req, sk, dst);
6740 	sk_rx_queue_set(req_to_sk(req), skb);
6741 	if (!want_cookie) {
6742 		tcp_reqsk_record_syn(sk, req, skb);
6743 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6744 	}
6745 	if (fastopen_sk) {
6746 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6747 				    &foc, TCP_SYNACK_FASTOPEN);
6748 		/* Add the child socket directly into the accept queue */
6749 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6750 			reqsk_fastopen_remove(fastopen_sk, req, false);
6751 			bh_unlock_sock(fastopen_sk);
6752 			sock_put(fastopen_sk);
6753 			goto drop_and_free;
6754 		}
6755 		sk->sk_data_ready(sk);
6756 		bh_unlock_sock(fastopen_sk);
6757 		sock_put(fastopen_sk);
6758 	} else {
6759 		tcp_rsk(req)->tfo_listener = false;
6760 		if (!want_cookie)
6761 			inet_csk_reqsk_queue_hash_add(sk, req,
6762 				tcp_timeout_init((struct sock *)req));
6763 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6764 				    !want_cookie ? TCP_SYNACK_NORMAL :
6765 						   TCP_SYNACK_COOKIE);
6766 		if (want_cookie) {
6767 			reqsk_free(req);
6768 			return 0;
6769 		}
6770 	}
6771 	reqsk_put(req);
6772 	return 0;
6773 
6774 drop_and_release:
6775 	dst_release(dst);
6776 drop_and_free:
6777 	__reqsk_free(req);
6778 drop:
6779 	tcp_listendrop(sk);
6780 	return 0;
6781 }
6782 EXPORT_SYMBOL(tcp_conn_request);
6783