1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 108 109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 111 112 #define REXMIT_NONE 0 /* no loss recovery to do */ 113 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 114 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 115 116 #if IS_ENABLED(CONFIG_TLS_DEVICE) 117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 118 119 void clean_acked_data_enable(struct inet_connection_sock *icsk, 120 void (*cad)(struct sock *sk, u32 ack_seq)) 121 { 122 icsk->icsk_clean_acked = cad; 123 static_branch_deferred_inc(&clean_acked_data_enabled); 124 } 125 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 126 127 void clean_acked_data_disable(struct inet_connection_sock *icsk) 128 { 129 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 130 icsk->icsk_clean_acked = NULL; 131 } 132 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 133 134 void clean_acked_data_flush(void) 135 { 136 static_key_deferred_flush(&clean_acked_data_enabled); 137 } 138 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 139 #endif 140 141 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 142 unsigned int len) 143 { 144 static bool __once __read_mostly; 145 146 if (!__once) { 147 struct net_device *dev; 148 149 __once = true; 150 151 rcu_read_lock(); 152 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 153 if (!dev || len >= dev->mtu) 154 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 155 dev ? dev->name : "Unknown driver"); 156 rcu_read_unlock(); 157 } 158 } 159 160 /* Adapt the MSS value used to make delayed ack decision to the 161 * real world. 162 */ 163 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 164 { 165 struct inet_connection_sock *icsk = inet_csk(sk); 166 const unsigned int lss = icsk->icsk_ack.last_seg_size; 167 unsigned int len; 168 169 icsk->icsk_ack.last_seg_size = 0; 170 171 /* skb->len may jitter because of SACKs, even if peer 172 * sends good full-sized frames. 173 */ 174 len = skb_shinfo(skb)->gso_size ? : skb->len; 175 if (len >= icsk->icsk_ack.rcv_mss) { 176 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 177 tcp_sk(sk)->advmss); 178 /* Account for possibly-removed options */ 179 if (unlikely(len > icsk->icsk_ack.rcv_mss + 180 MAX_TCP_OPTION_SPACE)) 181 tcp_gro_dev_warn(sk, skb, len); 182 } else { 183 /* Otherwise, we make more careful check taking into account, 184 * that SACKs block is variable. 185 * 186 * "len" is invariant segment length, including TCP header. 187 */ 188 len += skb->data - skb_transport_header(skb); 189 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 190 /* If PSH is not set, packet should be 191 * full sized, provided peer TCP is not badly broken. 192 * This observation (if it is correct 8)) allows 193 * to handle super-low mtu links fairly. 194 */ 195 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 196 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 197 /* Subtract also invariant (if peer is RFC compliant), 198 * tcp header plus fixed timestamp option length. 199 * Resulting "len" is MSS free of SACK jitter. 200 */ 201 len -= tcp_sk(sk)->tcp_header_len; 202 icsk->icsk_ack.last_seg_size = len; 203 if (len == lss) { 204 icsk->icsk_ack.rcv_mss = len; 205 return; 206 } 207 } 208 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 209 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 210 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 211 } 212 } 213 214 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 215 { 216 struct inet_connection_sock *icsk = inet_csk(sk); 217 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 218 219 if (quickacks == 0) 220 quickacks = 2; 221 quickacks = min(quickacks, max_quickacks); 222 if (quickacks > icsk->icsk_ack.quick) 223 icsk->icsk_ack.quick = quickacks; 224 } 225 226 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 227 { 228 struct inet_connection_sock *icsk = inet_csk(sk); 229 230 tcp_incr_quickack(sk, max_quickacks); 231 inet_csk_exit_pingpong_mode(sk); 232 icsk->icsk_ack.ato = TCP_ATO_MIN; 233 } 234 EXPORT_SYMBOL(tcp_enter_quickack_mode); 235 236 /* Send ACKs quickly, if "quick" count is not exhausted 237 * and the session is not interactive. 238 */ 239 240 static bool tcp_in_quickack_mode(struct sock *sk) 241 { 242 const struct inet_connection_sock *icsk = inet_csk(sk); 243 const struct dst_entry *dst = __sk_dst_get(sk); 244 245 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 246 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 247 } 248 249 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 250 { 251 if (tp->ecn_flags & TCP_ECN_OK) 252 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 253 } 254 255 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 256 { 257 if (tcp_hdr(skb)->cwr) { 258 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 259 260 /* If the sender is telling us it has entered CWR, then its 261 * cwnd may be very low (even just 1 packet), so we should ACK 262 * immediately. 263 */ 264 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 265 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 266 } 267 } 268 269 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 270 { 271 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 272 } 273 274 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 275 { 276 struct tcp_sock *tp = tcp_sk(sk); 277 278 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 279 case INET_ECN_NOT_ECT: 280 /* Funny extension: if ECT is not set on a segment, 281 * and we already seen ECT on a previous segment, 282 * it is probably a retransmit. 283 */ 284 if (tp->ecn_flags & TCP_ECN_SEEN) 285 tcp_enter_quickack_mode(sk, 2); 286 break; 287 case INET_ECN_CE: 288 if (tcp_ca_needs_ecn(sk)) 289 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 290 291 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 292 /* Better not delay acks, sender can have a very low cwnd */ 293 tcp_enter_quickack_mode(sk, 2); 294 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 295 } 296 tp->ecn_flags |= TCP_ECN_SEEN; 297 break; 298 default: 299 if (tcp_ca_needs_ecn(sk)) 300 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 301 tp->ecn_flags |= TCP_ECN_SEEN; 302 break; 303 } 304 } 305 306 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 307 { 308 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 309 __tcp_ecn_check_ce(sk, skb); 310 } 311 312 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 313 { 314 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 315 tp->ecn_flags &= ~TCP_ECN_OK; 316 } 317 318 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 319 { 320 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 321 tp->ecn_flags &= ~TCP_ECN_OK; 322 } 323 324 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 325 { 326 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 327 return true; 328 return false; 329 } 330 331 /* Buffer size and advertised window tuning. 332 * 333 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 334 */ 335 336 static void tcp_sndbuf_expand(struct sock *sk) 337 { 338 const struct tcp_sock *tp = tcp_sk(sk); 339 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 340 int sndmem, per_mss; 341 u32 nr_segs; 342 343 /* Worst case is non GSO/TSO : each frame consumes one skb 344 * and skb->head is kmalloced using power of two area of memory 345 */ 346 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 347 MAX_TCP_HEADER + 348 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 349 350 per_mss = roundup_pow_of_two(per_mss) + 351 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 352 353 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 354 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 355 356 /* Fast Recovery (RFC 5681 3.2) : 357 * Cubic needs 1.7 factor, rounded to 2 to include 358 * extra cushion (application might react slowly to EPOLLOUT) 359 */ 360 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 361 sndmem *= nr_segs * per_mss; 362 363 if (sk->sk_sndbuf < sndmem) 364 WRITE_ONCE(sk->sk_sndbuf, 365 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2])); 366 } 367 368 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 369 * 370 * All tcp_full_space() is split to two parts: "network" buffer, allocated 371 * forward and advertised in receiver window (tp->rcv_wnd) and 372 * "application buffer", required to isolate scheduling/application 373 * latencies from network. 374 * window_clamp is maximal advertised window. It can be less than 375 * tcp_full_space(), in this case tcp_full_space() - window_clamp 376 * is reserved for "application" buffer. The less window_clamp is 377 * the smoother our behaviour from viewpoint of network, but the lower 378 * throughput and the higher sensitivity of the connection to losses. 8) 379 * 380 * rcv_ssthresh is more strict window_clamp used at "slow start" 381 * phase to predict further behaviour of this connection. 382 * It is used for two goals: 383 * - to enforce header prediction at sender, even when application 384 * requires some significant "application buffer". It is check #1. 385 * - to prevent pruning of receive queue because of misprediction 386 * of receiver window. Check #2. 387 * 388 * The scheme does not work when sender sends good segments opening 389 * window and then starts to feed us spaghetti. But it should work 390 * in common situations. Otherwise, we have to rely on queue collapsing. 391 */ 392 393 /* Slow part of check#2. */ 394 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 395 { 396 struct tcp_sock *tp = tcp_sk(sk); 397 /* Optimize this! */ 398 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 399 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 400 401 while (tp->rcv_ssthresh <= window) { 402 if (truesize <= skb->len) 403 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 404 405 truesize >>= 1; 406 window >>= 1; 407 } 408 return 0; 409 } 410 411 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 412 { 413 struct tcp_sock *tp = tcp_sk(sk); 414 int room; 415 416 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 417 418 /* Check #1 */ 419 if (room > 0 && !tcp_under_memory_pressure(sk)) { 420 int incr; 421 422 /* Check #2. Increase window, if skb with such overhead 423 * will fit to rcvbuf in future. 424 */ 425 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 426 incr = 2 * tp->advmss; 427 else 428 incr = __tcp_grow_window(sk, skb); 429 430 if (incr) { 431 incr = max_t(int, incr, 2 * skb->len); 432 tp->rcv_ssthresh += min(room, incr); 433 inet_csk(sk)->icsk_ack.quick |= 1; 434 } 435 } 436 } 437 438 /* 3. Try to fixup all. It is made immediately after connection enters 439 * established state. 440 */ 441 static void tcp_init_buffer_space(struct sock *sk) 442 { 443 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 444 struct tcp_sock *tp = tcp_sk(sk); 445 int maxwin; 446 447 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 448 tcp_sndbuf_expand(sk); 449 450 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); 451 tcp_mstamp_refresh(tp); 452 tp->rcvq_space.time = tp->tcp_mstamp; 453 tp->rcvq_space.seq = tp->copied_seq; 454 455 maxwin = tcp_full_space(sk); 456 457 if (tp->window_clamp >= maxwin) { 458 tp->window_clamp = maxwin; 459 460 if (tcp_app_win && maxwin > 4 * tp->advmss) 461 tp->window_clamp = max(maxwin - 462 (maxwin >> tcp_app_win), 463 4 * tp->advmss); 464 } 465 466 /* Force reservation of one segment. */ 467 if (tcp_app_win && 468 tp->window_clamp > 2 * tp->advmss && 469 tp->window_clamp + tp->advmss > maxwin) 470 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 471 472 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 473 tp->snd_cwnd_stamp = tcp_jiffies32; 474 } 475 476 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 477 static void tcp_clamp_window(struct sock *sk) 478 { 479 struct tcp_sock *tp = tcp_sk(sk); 480 struct inet_connection_sock *icsk = inet_csk(sk); 481 struct net *net = sock_net(sk); 482 483 icsk->icsk_ack.quick = 0; 484 485 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 486 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 487 !tcp_under_memory_pressure(sk) && 488 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 489 WRITE_ONCE(sk->sk_rcvbuf, 490 min(atomic_read(&sk->sk_rmem_alloc), 491 net->ipv4.sysctl_tcp_rmem[2])); 492 } 493 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 494 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 495 } 496 497 /* Initialize RCV_MSS value. 498 * RCV_MSS is an our guess about MSS used by the peer. 499 * We haven't any direct information about the MSS. 500 * It's better to underestimate the RCV_MSS rather than overestimate. 501 * Overestimations make us ACKing less frequently than needed. 502 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 503 */ 504 void tcp_initialize_rcv_mss(struct sock *sk) 505 { 506 const struct tcp_sock *tp = tcp_sk(sk); 507 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 508 509 hint = min(hint, tp->rcv_wnd / 2); 510 hint = min(hint, TCP_MSS_DEFAULT); 511 hint = max(hint, TCP_MIN_MSS); 512 513 inet_csk(sk)->icsk_ack.rcv_mss = hint; 514 } 515 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 516 517 /* Receiver "autotuning" code. 518 * 519 * The algorithm for RTT estimation w/o timestamps is based on 520 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 521 * <https://public.lanl.gov/radiant/pubs.html#DRS> 522 * 523 * More detail on this code can be found at 524 * <http://staff.psc.edu/jheffner/>, 525 * though this reference is out of date. A new paper 526 * is pending. 527 */ 528 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 529 { 530 u32 new_sample = tp->rcv_rtt_est.rtt_us; 531 long m = sample; 532 533 if (new_sample != 0) { 534 /* If we sample in larger samples in the non-timestamp 535 * case, we could grossly overestimate the RTT especially 536 * with chatty applications or bulk transfer apps which 537 * are stalled on filesystem I/O. 538 * 539 * Also, since we are only going for a minimum in the 540 * non-timestamp case, we do not smooth things out 541 * else with timestamps disabled convergence takes too 542 * long. 543 */ 544 if (!win_dep) { 545 m -= (new_sample >> 3); 546 new_sample += m; 547 } else { 548 m <<= 3; 549 if (m < new_sample) 550 new_sample = m; 551 } 552 } else { 553 /* No previous measure. */ 554 new_sample = m << 3; 555 } 556 557 tp->rcv_rtt_est.rtt_us = new_sample; 558 } 559 560 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 561 { 562 u32 delta_us; 563 564 if (tp->rcv_rtt_est.time == 0) 565 goto new_measure; 566 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 567 return; 568 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 569 if (!delta_us) 570 delta_us = 1; 571 tcp_rcv_rtt_update(tp, delta_us, 1); 572 573 new_measure: 574 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 575 tp->rcv_rtt_est.time = tp->tcp_mstamp; 576 } 577 578 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 579 const struct sk_buff *skb) 580 { 581 struct tcp_sock *tp = tcp_sk(sk); 582 583 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 584 return; 585 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 586 587 if (TCP_SKB_CB(skb)->end_seq - 588 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 589 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 590 u32 delta_us; 591 592 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 593 if (!delta) 594 delta = 1; 595 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 596 tcp_rcv_rtt_update(tp, delta_us, 0); 597 } 598 } 599 } 600 601 /* 602 * This function should be called every time data is copied to user space. 603 * It calculates the appropriate TCP receive buffer space. 604 */ 605 void tcp_rcv_space_adjust(struct sock *sk) 606 { 607 struct tcp_sock *tp = tcp_sk(sk); 608 u32 copied; 609 int time; 610 611 trace_tcp_rcv_space_adjust(sk); 612 613 tcp_mstamp_refresh(tp); 614 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 615 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 616 return; 617 618 /* Number of bytes copied to user in last RTT */ 619 copied = tp->copied_seq - tp->rcvq_space.seq; 620 if (copied <= tp->rcvq_space.space) 621 goto new_measure; 622 623 /* A bit of theory : 624 * copied = bytes received in previous RTT, our base window 625 * To cope with packet losses, we need a 2x factor 626 * To cope with slow start, and sender growing its cwin by 100 % 627 * every RTT, we need a 4x factor, because the ACK we are sending 628 * now is for the next RTT, not the current one : 629 * <prev RTT . ><current RTT .. ><next RTT .... > 630 */ 631 632 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 633 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 634 int rcvmem, rcvbuf; 635 u64 rcvwin, grow; 636 637 /* minimal window to cope with packet losses, assuming 638 * steady state. Add some cushion because of small variations. 639 */ 640 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 641 642 /* Accommodate for sender rate increase (eg. slow start) */ 643 grow = rcvwin * (copied - tp->rcvq_space.space); 644 do_div(grow, tp->rcvq_space.space); 645 rcvwin += (grow << 1); 646 647 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 648 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 649 rcvmem += 128; 650 651 do_div(rcvwin, tp->advmss); 652 rcvbuf = min_t(u64, rcvwin * rcvmem, 653 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 654 if (rcvbuf > sk->sk_rcvbuf) { 655 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 656 657 /* Make the window clamp follow along. */ 658 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 659 } 660 } 661 tp->rcvq_space.space = copied; 662 663 new_measure: 664 tp->rcvq_space.seq = tp->copied_seq; 665 tp->rcvq_space.time = tp->tcp_mstamp; 666 } 667 668 /* There is something which you must keep in mind when you analyze the 669 * behavior of the tp->ato delayed ack timeout interval. When a 670 * connection starts up, we want to ack as quickly as possible. The 671 * problem is that "good" TCP's do slow start at the beginning of data 672 * transmission. The means that until we send the first few ACK's the 673 * sender will sit on his end and only queue most of his data, because 674 * he can only send snd_cwnd unacked packets at any given time. For 675 * each ACK we send, he increments snd_cwnd and transmits more of his 676 * queue. -DaveM 677 */ 678 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 679 { 680 struct tcp_sock *tp = tcp_sk(sk); 681 struct inet_connection_sock *icsk = inet_csk(sk); 682 u32 now; 683 684 inet_csk_schedule_ack(sk); 685 686 tcp_measure_rcv_mss(sk, skb); 687 688 tcp_rcv_rtt_measure(tp); 689 690 now = tcp_jiffies32; 691 692 if (!icsk->icsk_ack.ato) { 693 /* The _first_ data packet received, initialize 694 * delayed ACK engine. 695 */ 696 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 697 icsk->icsk_ack.ato = TCP_ATO_MIN; 698 } else { 699 int m = now - icsk->icsk_ack.lrcvtime; 700 701 if (m <= TCP_ATO_MIN / 2) { 702 /* The fastest case is the first. */ 703 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 704 } else if (m < icsk->icsk_ack.ato) { 705 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 706 if (icsk->icsk_ack.ato > icsk->icsk_rto) 707 icsk->icsk_ack.ato = icsk->icsk_rto; 708 } else if (m > icsk->icsk_rto) { 709 /* Too long gap. Apparently sender failed to 710 * restart window, so that we send ACKs quickly. 711 */ 712 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 713 sk_mem_reclaim(sk); 714 } 715 } 716 icsk->icsk_ack.lrcvtime = now; 717 718 tcp_ecn_check_ce(sk, skb); 719 720 if (skb->len >= 128) 721 tcp_grow_window(sk, skb); 722 } 723 724 /* Called to compute a smoothed rtt estimate. The data fed to this 725 * routine either comes from timestamps, or from segments that were 726 * known _not_ to have been retransmitted [see Karn/Partridge 727 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 728 * piece by Van Jacobson. 729 * NOTE: the next three routines used to be one big routine. 730 * To save cycles in the RFC 1323 implementation it was better to break 731 * it up into three procedures. -- erics 732 */ 733 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 734 { 735 struct tcp_sock *tp = tcp_sk(sk); 736 long m = mrtt_us; /* RTT */ 737 u32 srtt = tp->srtt_us; 738 739 /* The following amusing code comes from Jacobson's 740 * article in SIGCOMM '88. Note that rtt and mdev 741 * are scaled versions of rtt and mean deviation. 742 * This is designed to be as fast as possible 743 * m stands for "measurement". 744 * 745 * On a 1990 paper the rto value is changed to: 746 * RTO = rtt + 4 * mdev 747 * 748 * Funny. This algorithm seems to be very broken. 749 * These formulae increase RTO, when it should be decreased, increase 750 * too slowly, when it should be increased quickly, decrease too quickly 751 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 752 * does not matter how to _calculate_ it. Seems, it was trap 753 * that VJ failed to avoid. 8) 754 */ 755 if (srtt != 0) { 756 m -= (srtt >> 3); /* m is now error in rtt est */ 757 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 758 if (m < 0) { 759 m = -m; /* m is now abs(error) */ 760 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 761 /* This is similar to one of Eifel findings. 762 * Eifel blocks mdev updates when rtt decreases. 763 * This solution is a bit different: we use finer gain 764 * for mdev in this case (alpha*beta). 765 * Like Eifel it also prevents growth of rto, 766 * but also it limits too fast rto decreases, 767 * happening in pure Eifel. 768 */ 769 if (m > 0) 770 m >>= 3; 771 } else { 772 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 773 } 774 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 775 if (tp->mdev_us > tp->mdev_max_us) { 776 tp->mdev_max_us = tp->mdev_us; 777 if (tp->mdev_max_us > tp->rttvar_us) 778 tp->rttvar_us = tp->mdev_max_us; 779 } 780 if (after(tp->snd_una, tp->rtt_seq)) { 781 if (tp->mdev_max_us < tp->rttvar_us) 782 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 783 tp->rtt_seq = tp->snd_nxt; 784 tp->mdev_max_us = tcp_rto_min_us(sk); 785 786 tcp_bpf_rtt(sk); 787 } 788 } else { 789 /* no previous measure. */ 790 srtt = m << 3; /* take the measured time to be rtt */ 791 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 792 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 793 tp->mdev_max_us = tp->rttvar_us; 794 tp->rtt_seq = tp->snd_nxt; 795 796 tcp_bpf_rtt(sk); 797 } 798 tp->srtt_us = max(1U, srtt); 799 } 800 801 static void tcp_update_pacing_rate(struct sock *sk) 802 { 803 const struct tcp_sock *tp = tcp_sk(sk); 804 u64 rate; 805 806 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 807 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 808 809 /* current rate is (cwnd * mss) / srtt 810 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 811 * In Congestion Avoidance phase, set it to 120 % the current rate. 812 * 813 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 814 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 815 * end of slow start and should slow down. 816 */ 817 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 818 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 819 else 820 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 821 822 rate *= max(tp->snd_cwnd, tp->packets_out); 823 824 if (likely(tp->srtt_us)) 825 do_div(rate, tp->srtt_us); 826 827 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 828 * without any lock. We want to make sure compiler wont store 829 * intermediate values in this location. 830 */ 831 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 832 sk->sk_max_pacing_rate)); 833 } 834 835 /* Calculate rto without backoff. This is the second half of Van Jacobson's 836 * routine referred to above. 837 */ 838 static void tcp_set_rto(struct sock *sk) 839 { 840 const struct tcp_sock *tp = tcp_sk(sk); 841 /* Old crap is replaced with new one. 8) 842 * 843 * More seriously: 844 * 1. If rtt variance happened to be less 50msec, it is hallucination. 845 * It cannot be less due to utterly erratic ACK generation made 846 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 847 * to do with delayed acks, because at cwnd>2 true delack timeout 848 * is invisible. Actually, Linux-2.4 also generates erratic 849 * ACKs in some circumstances. 850 */ 851 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 852 853 /* 2. Fixups made earlier cannot be right. 854 * If we do not estimate RTO correctly without them, 855 * all the algo is pure shit and should be replaced 856 * with correct one. It is exactly, which we pretend to do. 857 */ 858 859 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 860 * guarantees that rto is higher. 861 */ 862 tcp_bound_rto(sk); 863 } 864 865 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 866 { 867 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 868 869 if (!cwnd) 870 cwnd = TCP_INIT_CWND; 871 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 872 } 873 874 /* Take a notice that peer is sending D-SACKs */ 875 static void tcp_dsack_seen(struct tcp_sock *tp) 876 { 877 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 878 tp->rack.dsack_seen = 1; 879 tp->dsack_dups++; 880 } 881 882 /* It's reordering when higher sequence was delivered (i.e. sacked) before 883 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 884 * distance is approximated in full-mss packet distance ("reordering"). 885 */ 886 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 887 const int ts) 888 { 889 struct tcp_sock *tp = tcp_sk(sk); 890 const u32 mss = tp->mss_cache; 891 u32 fack, metric; 892 893 fack = tcp_highest_sack_seq(tp); 894 if (!before(low_seq, fack)) 895 return; 896 897 metric = fack - low_seq; 898 if ((metric > tp->reordering * mss) && mss) { 899 #if FASTRETRANS_DEBUG > 1 900 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 901 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 902 tp->reordering, 903 0, 904 tp->sacked_out, 905 tp->undo_marker ? tp->undo_retrans : 0); 906 #endif 907 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 908 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 909 } 910 911 /* This exciting event is worth to be remembered. 8) */ 912 tp->reord_seen++; 913 NET_INC_STATS(sock_net(sk), 914 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 915 } 916 917 /* This must be called before lost_out is incremented */ 918 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 919 { 920 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 921 (tp->retransmit_skb_hint && 922 before(TCP_SKB_CB(skb)->seq, 923 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 924 tp->retransmit_skb_hint = skb; 925 } 926 927 /* Sum the number of packets on the wire we have marked as lost. 928 * There are two cases we care about here: 929 * a) Packet hasn't been marked lost (nor retransmitted), 930 * and this is the first loss. 931 * b) Packet has been marked both lost and retransmitted, 932 * and this means we think it was lost again. 933 */ 934 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 935 { 936 __u8 sacked = TCP_SKB_CB(skb)->sacked; 937 938 if (!(sacked & TCPCB_LOST) || 939 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 940 tp->lost += tcp_skb_pcount(skb); 941 } 942 943 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 944 { 945 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 946 tcp_verify_retransmit_hint(tp, skb); 947 948 tp->lost_out += tcp_skb_pcount(skb); 949 tcp_sum_lost(tp, skb); 950 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 951 } 952 } 953 954 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 955 { 956 tcp_verify_retransmit_hint(tp, skb); 957 958 tcp_sum_lost(tp, skb); 959 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 960 tp->lost_out += tcp_skb_pcount(skb); 961 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 962 } 963 } 964 965 /* Updates the delivered and delivered_ce counts */ 966 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 967 bool ece_ack) 968 { 969 tp->delivered += delivered; 970 if (ece_ack) 971 tp->delivered_ce += delivered; 972 } 973 974 /* This procedure tags the retransmission queue when SACKs arrive. 975 * 976 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 977 * Packets in queue with these bits set are counted in variables 978 * sacked_out, retrans_out and lost_out, correspondingly. 979 * 980 * Valid combinations are: 981 * Tag InFlight Description 982 * 0 1 - orig segment is in flight. 983 * S 0 - nothing flies, orig reached receiver. 984 * L 0 - nothing flies, orig lost by net. 985 * R 2 - both orig and retransmit are in flight. 986 * L|R 1 - orig is lost, retransmit is in flight. 987 * S|R 1 - orig reached receiver, retrans is still in flight. 988 * (L|S|R is logically valid, it could occur when L|R is sacked, 989 * but it is equivalent to plain S and code short-curcuits it to S. 990 * L|S is logically invalid, it would mean -1 packet in flight 8)) 991 * 992 * These 6 states form finite state machine, controlled by the following events: 993 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 994 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 995 * 3. Loss detection event of two flavors: 996 * A. Scoreboard estimator decided the packet is lost. 997 * A'. Reno "three dupacks" marks head of queue lost. 998 * B. SACK arrives sacking SND.NXT at the moment, when the 999 * segment was retransmitted. 1000 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1001 * 1002 * It is pleasant to note, that state diagram turns out to be commutative, 1003 * so that we are allowed not to be bothered by order of our actions, 1004 * when multiple events arrive simultaneously. (see the function below). 1005 * 1006 * Reordering detection. 1007 * -------------------- 1008 * Reordering metric is maximal distance, which a packet can be displaced 1009 * in packet stream. With SACKs we can estimate it: 1010 * 1011 * 1. SACK fills old hole and the corresponding segment was not 1012 * ever retransmitted -> reordering. Alas, we cannot use it 1013 * when segment was retransmitted. 1014 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1015 * for retransmitted and already SACKed segment -> reordering.. 1016 * Both of these heuristics are not used in Loss state, when we cannot 1017 * account for retransmits accurately. 1018 * 1019 * SACK block validation. 1020 * ---------------------- 1021 * 1022 * SACK block range validation checks that the received SACK block fits to 1023 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1024 * Note that SND.UNA is not included to the range though being valid because 1025 * it means that the receiver is rather inconsistent with itself reporting 1026 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1027 * perfectly valid, however, in light of RFC2018 which explicitly states 1028 * that "SACK block MUST reflect the newest segment. Even if the newest 1029 * segment is going to be discarded ...", not that it looks very clever 1030 * in case of head skb. Due to potentional receiver driven attacks, we 1031 * choose to avoid immediate execution of a walk in write queue due to 1032 * reneging and defer head skb's loss recovery to standard loss recovery 1033 * procedure that will eventually trigger (nothing forbids us doing this). 1034 * 1035 * Implements also blockage to start_seq wrap-around. Problem lies in the 1036 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1037 * there's no guarantee that it will be before snd_nxt (n). The problem 1038 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1039 * wrap (s_w): 1040 * 1041 * <- outs wnd -> <- wrapzone -> 1042 * u e n u_w e_w s n_w 1043 * | | | | | | | 1044 * |<------------+------+----- TCP seqno space --------------+---------->| 1045 * ...-- <2^31 ->| |<--------... 1046 * ...---- >2^31 ------>| |<--------... 1047 * 1048 * Current code wouldn't be vulnerable but it's better still to discard such 1049 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1050 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1051 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1052 * equal to the ideal case (infinite seqno space without wrap caused issues). 1053 * 1054 * With D-SACK the lower bound is extended to cover sequence space below 1055 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1056 * again, D-SACK block must not to go across snd_una (for the same reason as 1057 * for the normal SACK blocks, explained above). But there all simplicity 1058 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1059 * fully below undo_marker they do not affect behavior in anyway and can 1060 * therefore be safely ignored. In rare cases (which are more or less 1061 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1062 * fragmentation and packet reordering past skb's retransmission. To consider 1063 * them correctly, the acceptable range must be extended even more though 1064 * the exact amount is rather hard to quantify. However, tp->max_window can 1065 * be used as an exaggerated estimate. 1066 */ 1067 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1068 u32 start_seq, u32 end_seq) 1069 { 1070 /* Too far in future, or reversed (interpretation is ambiguous) */ 1071 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1072 return false; 1073 1074 /* Nasty start_seq wrap-around check (see comments above) */ 1075 if (!before(start_seq, tp->snd_nxt)) 1076 return false; 1077 1078 /* In outstanding window? ...This is valid exit for D-SACKs too. 1079 * start_seq == snd_una is non-sensical (see comments above) 1080 */ 1081 if (after(start_seq, tp->snd_una)) 1082 return true; 1083 1084 if (!is_dsack || !tp->undo_marker) 1085 return false; 1086 1087 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1088 if (after(end_seq, tp->snd_una)) 1089 return false; 1090 1091 if (!before(start_seq, tp->undo_marker)) 1092 return true; 1093 1094 /* Too old */ 1095 if (!after(end_seq, tp->undo_marker)) 1096 return false; 1097 1098 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1099 * start_seq < undo_marker and end_seq >= undo_marker. 1100 */ 1101 return !before(start_seq, end_seq - tp->max_window); 1102 } 1103 1104 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1105 struct tcp_sack_block_wire *sp, int num_sacks, 1106 u32 prior_snd_una) 1107 { 1108 struct tcp_sock *tp = tcp_sk(sk); 1109 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1110 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1111 bool dup_sack = false; 1112 1113 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1114 dup_sack = true; 1115 tcp_dsack_seen(tp); 1116 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1117 } else if (num_sacks > 1) { 1118 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1119 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1120 1121 if (!after(end_seq_0, end_seq_1) && 1122 !before(start_seq_0, start_seq_1)) { 1123 dup_sack = true; 1124 tcp_dsack_seen(tp); 1125 NET_INC_STATS(sock_net(sk), 1126 LINUX_MIB_TCPDSACKOFORECV); 1127 } 1128 } 1129 1130 /* D-SACK for already forgotten data... Do dumb counting. */ 1131 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1132 !after(end_seq_0, prior_snd_una) && 1133 after(end_seq_0, tp->undo_marker)) 1134 tp->undo_retrans--; 1135 1136 return dup_sack; 1137 } 1138 1139 struct tcp_sacktag_state { 1140 u32 reord; 1141 /* Timestamps for earliest and latest never-retransmitted segment 1142 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1143 * but congestion control should still get an accurate delay signal. 1144 */ 1145 u64 first_sackt; 1146 u64 last_sackt; 1147 struct rate_sample *rate; 1148 int flag; 1149 unsigned int mss_now; 1150 u32 sack_delivered; 1151 }; 1152 1153 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1154 * the incoming SACK may not exactly match but we can find smaller MSS 1155 * aligned portion of it that matches. Therefore we might need to fragment 1156 * which may fail and creates some hassle (caller must handle error case 1157 * returns). 1158 * 1159 * FIXME: this could be merged to shift decision code 1160 */ 1161 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1162 u32 start_seq, u32 end_seq) 1163 { 1164 int err; 1165 bool in_sack; 1166 unsigned int pkt_len; 1167 unsigned int mss; 1168 1169 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1170 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1171 1172 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1173 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1174 mss = tcp_skb_mss(skb); 1175 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1176 1177 if (!in_sack) { 1178 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1179 if (pkt_len < mss) 1180 pkt_len = mss; 1181 } else { 1182 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1183 if (pkt_len < mss) 1184 return -EINVAL; 1185 } 1186 1187 /* Round if necessary so that SACKs cover only full MSSes 1188 * and/or the remaining small portion (if present) 1189 */ 1190 if (pkt_len > mss) { 1191 unsigned int new_len = (pkt_len / mss) * mss; 1192 if (!in_sack && new_len < pkt_len) 1193 new_len += mss; 1194 pkt_len = new_len; 1195 } 1196 1197 if (pkt_len >= skb->len && !in_sack) 1198 return 0; 1199 1200 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1201 pkt_len, mss, GFP_ATOMIC); 1202 if (err < 0) 1203 return err; 1204 } 1205 1206 return in_sack; 1207 } 1208 1209 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1210 static u8 tcp_sacktag_one(struct sock *sk, 1211 struct tcp_sacktag_state *state, u8 sacked, 1212 u32 start_seq, u32 end_seq, 1213 int dup_sack, int pcount, 1214 u64 xmit_time) 1215 { 1216 struct tcp_sock *tp = tcp_sk(sk); 1217 1218 /* Account D-SACK for retransmitted packet. */ 1219 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1220 if (tp->undo_marker && tp->undo_retrans > 0 && 1221 after(end_seq, tp->undo_marker)) 1222 tp->undo_retrans--; 1223 if ((sacked & TCPCB_SACKED_ACKED) && 1224 before(start_seq, state->reord)) 1225 state->reord = start_seq; 1226 } 1227 1228 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1229 if (!after(end_seq, tp->snd_una)) 1230 return sacked; 1231 1232 if (!(sacked & TCPCB_SACKED_ACKED)) { 1233 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1234 1235 if (sacked & TCPCB_SACKED_RETRANS) { 1236 /* If the segment is not tagged as lost, 1237 * we do not clear RETRANS, believing 1238 * that retransmission is still in flight. 1239 */ 1240 if (sacked & TCPCB_LOST) { 1241 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1242 tp->lost_out -= pcount; 1243 tp->retrans_out -= pcount; 1244 } 1245 } else { 1246 if (!(sacked & TCPCB_RETRANS)) { 1247 /* New sack for not retransmitted frame, 1248 * which was in hole. It is reordering. 1249 */ 1250 if (before(start_seq, 1251 tcp_highest_sack_seq(tp)) && 1252 before(start_seq, state->reord)) 1253 state->reord = start_seq; 1254 1255 if (!after(end_seq, tp->high_seq)) 1256 state->flag |= FLAG_ORIG_SACK_ACKED; 1257 if (state->first_sackt == 0) 1258 state->first_sackt = xmit_time; 1259 state->last_sackt = xmit_time; 1260 } 1261 1262 if (sacked & TCPCB_LOST) { 1263 sacked &= ~TCPCB_LOST; 1264 tp->lost_out -= pcount; 1265 } 1266 } 1267 1268 sacked |= TCPCB_SACKED_ACKED; 1269 state->flag |= FLAG_DATA_SACKED; 1270 tp->sacked_out += pcount; 1271 /* Out-of-order packets delivered */ 1272 state->sack_delivered += pcount; 1273 1274 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1275 if (tp->lost_skb_hint && 1276 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1277 tp->lost_cnt_hint += pcount; 1278 } 1279 1280 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1281 * frames and clear it. undo_retrans is decreased above, L|R frames 1282 * are accounted above as well. 1283 */ 1284 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1285 sacked &= ~TCPCB_SACKED_RETRANS; 1286 tp->retrans_out -= pcount; 1287 } 1288 1289 return sacked; 1290 } 1291 1292 /* Shift newly-SACKed bytes from this skb to the immediately previous 1293 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1294 */ 1295 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1296 struct sk_buff *skb, 1297 struct tcp_sacktag_state *state, 1298 unsigned int pcount, int shifted, int mss, 1299 bool dup_sack) 1300 { 1301 struct tcp_sock *tp = tcp_sk(sk); 1302 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1303 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1304 1305 BUG_ON(!pcount); 1306 1307 /* Adjust counters and hints for the newly sacked sequence 1308 * range but discard the return value since prev is already 1309 * marked. We must tag the range first because the seq 1310 * advancement below implicitly advances 1311 * tcp_highest_sack_seq() when skb is highest_sack. 1312 */ 1313 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1314 start_seq, end_seq, dup_sack, pcount, 1315 tcp_skb_timestamp_us(skb)); 1316 tcp_rate_skb_delivered(sk, skb, state->rate); 1317 1318 if (skb == tp->lost_skb_hint) 1319 tp->lost_cnt_hint += pcount; 1320 1321 TCP_SKB_CB(prev)->end_seq += shifted; 1322 TCP_SKB_CB(skb)->seq += shifted; 1323 1324 tcp_skb_pcount_add(prev, pcount); 1325 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1326 tcp_skb_pcount_add(skb, -pcount); 1327 1328 /* When we're adding to gso_segs == 1, gso_size will be zero, 1329 * in theory this shouldn't be necessary but as long as DSACK 1330 * code can come after this skb later on it's better to keep 1331 * setting gso_size to something. 1332 */ 1333 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1334 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1335 1336 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1337 if (tcp_skb_pcount(skb) <= 1) 1338 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1339 1340 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1341 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1342 1343 if (skb->len > 0) { 1344 BUG_ON(!tcp_skb_pcount(skb)); 1345 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1346 return false; 1347 } 1348 1349 /* Whole SKB was eaten :-) */ 1350 1351 if (skb == tp->retransmit_skb_hint) 1352 tp->retransmit_skb_hint = prev; 1353 if (skb == tp->lost_skb_hint) { 1354 tp->lost_skb_hint = prev; 1355 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1356 } 1357 1358 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1359 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1360 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1361 TCP_SKB_CB(prev)->end_seq++; 1362 1363 if (skb == tcp_highest_sack(sk)) 1364 tcp_advance_highest_sack(sk, skb); 1365 1366 tcp_skb_collapse_tstamp(prev, skb); 1367 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1368 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1369 1370 tcp_rtx_queue_unlink_and_free(skb, sk); 1371 1372 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1373 1374 return true; 1375 } 1376 1377 /* I wish gso_size would have a bit more sane initialization than 1378 * something-or-zero which complicates things 1379 */ 1380 static int tcp_skb_seglen(const struct sk_buff *skb) 1381 { 1382 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1383 } 1384 1385 /* Shifting pages past head area doesn't work */ 1386 static int skb_can_shift(const struct sk_buff *skb) 1387 { 1388 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1389 } 1390 1391 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1392 int pcount, int shiftlen) 1393 { 1394 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1395 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1396 * to make sure not storing more than 65535 * 8 bytes per skb, 1397 * even if current MSS is bigger. 1398 */ 1399 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1400 return 0; 1401 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1402 return 0; 1403 return skb_shift(to, from, shiftlen); 1404 } 1405 1406 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1407 * skb. 1408 */ 1409 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1410 struct tcp_sacktag_state *state, 1411 u32 start_seq, u32 end_seq, 1412 bool dup_sack) 1413 { 1414 struct tcp_sock *tp = tcp_sk(sk); 1415 struct sk_buff *prev; 1416 int mss; 1417 int pcount = 0; 1418 int len; 1419 int in_sack; 1420 1421 /* Normally R but no L won't result in plain S */ 1422 if (!dup_sack && 1423 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1424 goto fallback; 1425 if (!skb_can_shift(skb)) 1426 goto fallback; 1427 /* This frame is about to be dropped (was ACKed). */ 1428 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1429 goto fallback; 1430 1431 /* Can only happen with delayed DSACK + discard craziness */ 1432 prev = skb_rb_prev(skb); 1433 if (!prev) 1434 goto fallback; 1435 1436 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1437 goto fallback; 1438 1439 if (!tcp_skb_can_collapse(prev, skb)) 1440 goto fallback; 1441 1442 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1443 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1444 1445 if (in_sack) { 1446 len = skb->len; 1447 pcount = tcp_skb_pcount(skb); 1448 mss = tcp_skb_seglen(skb); 1449 1450 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1451 * drop this restriction as unnecessary 1452 */ 1453 if (mss != tcp_skb_seglen(prev)) 1454 goto fallback; 1455 } else { 1456 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1457 goto noop; 1458 /* CHECKME: This is non-MSS split case only?, this will 1459 * cause skipped skbs due to advancing loop btw, original 1460 * has that feature too 1461 */ 1462 if (tcp_skb_pcount(skb) <= 1) 1463 goto noop; 1464 1465 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1466 if (!in_sack) { 1467 /* TODO: head merge to next could be attempted here 1468 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1469 * though it might not be worth of the additional hassle 1470 * 1471 * ...we can probably just fallback to what was done 1472 * previously. We could try merging non-SACKed ones 1473 * as well but it probably isn't going to buy off 1474 * because later SACKs might again split them, and 1475 * it would make skb timestamp tracking considerably 1476 * harder problem. 1477 */ 1478 goto fallback; 1479 } 1480 1481 len = end_seq - TCP_SKB_CB(skb)->seq; 1482 BUG_ON(len < 0); 1483 BUG_ON(len > skb->len); 1484 1485 /* MSS boundaries should be honoured or else pcount will 1486 * severely break even though it makes things bit trickier. 1487 * Optimize common case to avoid most of the divides 1488 */ 1489 mss = tcp_skb_mss(skb); 1490 1491 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1492 * drop this restriction as unnecessary 1493 */ 1494 if (mss != tcp_skb_seglen(prev)) 1495 goto fallback; 1496 1497 if (len == mss) { 1498 pcount = 1; 1499 } else if (len < mss) { 1500 goto noop; 1501 } else { 1502 pcount = len / mss; 1503 len = pcount * mss; 1504 } 1505 } 1506 1507 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1508 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1509 goto fallback; 1510 1511 if (!tcp_skb_shift(prev, skb, pcount, len)) 1512 goto fallback; 1513 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1514 goto out; 1515 1516 /* Hole filled allows collapsing with the next as well, this is very 1517 * useful when hole on every nth skb pattern happens 1518 */ 1519 skb = skb_rb_next(prev); 1520 if (!skb) 1521 goto out; 1522 1523 if (!skb_can_shift(skb) || 1524 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1525 (mss != tcp_skb_seglen(skb))) 1526 goto out; 1527 1528 len = skb->len; 1529 pcount = tcp_skb_pcount(skb); 1530 if (tcp_skb_shift(prev, skb, pcount, len)) 1531 tcp_shifted_skb(sk, prev, skb, state, pcount, 1532 len, mss, 0); 1533 1534 out: 1535 return prev; 1536 1537 noop: 1538 return skb; 1539 1540 fallback: 1541 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1542 return NULL; 1543 } 1544 1545 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1546 struct tcp_sack_block *next_dup, 1547 struct tcp_sacktag_state *state, 1548 u32 start_seq, u32 end_seq, 1549 bool dup_sack_in) 1550 { 1551 struct tcp_sock *tp = tcp_sk(sk); 1552 struct sk_buff *tmp; 1553 1554 skb_rbtree_walk_from(skb) { 1555 int in_sack = 0; 1556 bool dup_sack = dup_sack_in; 1557 1558 /* queue is in-order => we can short-circuit the walk early */ 1559 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1560 break; 1561 1562 if (next_dup && 1563 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1564 in_sack = tcp_match_skb_to_sack(sk, skb, 1565 next_dup->start_seq, 1566 next_dup->end_seq); 1567 if (in_sack > 0) 1568 dup_sack = true; 1569 } 1570 1571 /* skb reference here is a bit tricky to get right, since 1572 * shifting can eat and free both this skb and the next, 1573 * so not even _safe variant of the loop is enough. 1574 */ 1575 if (in_sack <= 0) { 1576 tmp = tcp_shift_skb_data(sk, skb, state, 1577 start_seq, end_seq, dup_sack); 1578 if (tmp) { 1579 if (tmp != skb) { 1580 skb = tmp; 1581 continue; 1582 } 1583 1584 in_sack = 0; 1585 } else { 1586 in_sack = tcp_match_skb_to_sack(sk, skb, 1587 start_seq, 1588 end_seq); 1589 } 1590 } 1591 1592 if (unlikely(in_sack < 0)) 1593 break; 1594 1595 if (in_sack) { 1596 TCP_SKB_CB(skb)->sacked = 1597 tcp_sacktag_one(sk, 1598 state, 1599 TCP_SKB_CB(skb)->sacked, 1600 TCP_SKB_CB(skb)->seq, 1601 TCP_SKB_CB(skb)->end_seq, 1602 dup_sack, 1603 tcp_skb_pcount(skb), 1604 tcp_skb_timestamp_us(skb)); 1605 tcp_rate_skb_delivered(sk, skb, state->rate); 1606 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1607 list_del_init(&skb->tcp_tsorted_anchor); 1608 1609 if (!before(TCP_SKB_CB(skb)->seq, 1610 tcp_highest_sack_seq(tp))) 1611 tcp_advance_highest_sack(sk, skb); 1612 } 1613 } 1614 return skb; 1615 } 1616 1617 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1618 { 1619 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1620 struct sk_buff *skb; 1621 1622 while (*p) { 1623 parent = *p; 1624 skb = rb_to_skb(parent); 1625 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1626 p = &parent->rb_left; 1627 continue; 1628 } 1629 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1630 p = &parent->rb_right; 1631 continue; 1632 } 1633 return skb; 1634 } 1635 return NULL; 1636 } 1637 1638 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1639 u32 skip_to_seq) 1640 { 1641 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1642 return skb; 1643 1644 return tcp_sacktag_bsearch(sk, skip_to_seq); 1645 } 1646 1647 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1648 struct sock *sk, 1649 struct tcp_sack_block *next_dup, 1650 struct tcp_sacktag_state *state, 1651 u32 skip_to_seq) 1652 { 1653 if (!next_dup) 1654 return skb; 1655 1656 if (before(next_dup->start_seq, skip_to_seq)) { 1657 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1658 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1659 next_dup->start_seq, next_dup->end_seq, 1660 1); 1661 } 1662 1663 return skb; 1664 } 1665 1666 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1667 { 1668 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1669 } 1670 1671 static int 1672 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1673 u32 prior_snd_una, struct tcp_sacktag_state *state) 1674 { 1675 struct tcp_sock *tp = tcp_sk(sk); 1676 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1677 TCP_SKB_CB(ack_skb)->sacked); 1678 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1679 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1680 struct tcp_sack_block *cache; 1681 struct sk_buff *skb; 1682 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1683 int used_sacks; 1684 bool found_dup_sack = false; 1685 int i, j; 1686 int first_sack_index; 1687 1688 state->flag = 0; 1689 state->reord = tp->snd_nxt; 1690 1691 if (!tp->sacked_out) 1692 tcp_highest_sack_reset(sk); 1693 1694 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1695 num_sacks, prior_snd_una); 1696 if (found_dup_sack) { 1697 state->flag |= FLAG_DSACKING_ACK; 1698 /* A spurious retransmission is delivered */ 1699 state->sack_delivered++; 1700 } 1701 1702 /* Eliminate too old ACKs, but take into 1703 * account more or less fresh ones, they can 1704 * contain valid SACK info. 1705 */ 1706 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1707 return 0; 1708 1709 if (!tp->packets_out) 1710 goto out; 1711 1712 used_sacks = 0; 1713 first_sack_index = 0; 1714 for (i = 0; i < num_sacks; i++) { 1715 bool dup_sack = !i && found_dup_sack; 1716 1717 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1718 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1719 1720 if (!tcp_is_sackblock_valid(tp, dup_sack, 1721 sp[used_sacks].start_seq, 1722 sp[used_sacks].end_seq)) { 1723 int mib_idx; 1724 1725 if (dup_sack) { 1726 if (!tp->undo_marker) 1727 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1728 else 1729 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1730 } else { 1731 /* Don't count olds caused by ACK reordering */ 1732 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1733 !after(sp[used_sacks].end_seq, tp->snd_una)) 1734 continue; 1735 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1736 } 1737 1738 NET_INC_STATS(sock_net(sk), mib_idx); 1739 if (i == 0) 1740 first_sack_index = -1; 1741 continue; 1742 } 1743 1744 /* Ignore very old stuff early */ 1745 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1746 if (i == 0) 1747 first_sack_index = -1; 1748 continue; 1749 } 1750 1751 used_sacks++; 1752 } 1753 1754 /* order SACK blocks to allow in order walk of the retrans queue */ 1755 for (i = used_sacks - 1; i > 0; i--) { 1756 for (j = 0; j < i; j++) { 1757 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1758 swap(sp[j], sp[j + 1]); 1759 1760 /* Track where the first SACK block goes to */ 1761 if (j == first_sack_index) 1762 first_sack_index = j + 1; 1763 } 1764 } 1765 } 1766 1767 state->mss_now = tcp_current_mss(sk); 1768 skb = NULL; 1769 i = 0; 1770 1771 if (!tp->sacked_out) { 1772 /* It's already past, so skip checking against it */ 1773 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1774 } else { 1775 cache = tp->recv_sack_cache; 1776 /* Skip empty blocks in at head of the cache */ 1777 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1778 !cache->end_seq) 1779 cache++; 1780 } 1781 1782 while (i < used_sacks) { 1783 u32 start_seq = sp[i].start_seq; 1784 u32 end_seq = sp[i].end_seq; 1785 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1786 struct tcp_sack_block *next_dup = NULL; 1787 1788 if (found_dup_sack && ((i + 1) == first_sack_index)) 1789 next_dup = &sp[i + 1]; 1790 1791 /* Skip too early cached blocks */ 1792 while (tcp_sack_cache_ok(tp, cache) && 1793 !before(start_seq, cache->end_seq)) 1794 cache++; 1795 1796 /* Can skip some work by looking recv_sack_cache? */ 1797 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1798 after(end_seq, cache->start_seq)) { 1799 1800 /* Head todo? */ 1801 if (before(start_seq, cache->start_seq)) { 1802 skb = tcp_sacktag_skip(skb, sk, start_seq); 1803 skb = tcp_sacktag_walk(skb, sk, next_dup, 1804 state, 1805 start_seq, 1806 cache->start_seq, 1807 dup_sack); 1808 } 1809 1810 /* Rest of the block already fully processed? */ 1811 if (!after(end_seq, cache->end_seq)) 1812 goto advance_sp; 1813 1814 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1815 state, 1816 cache->end_seq); 1817 1818 /* ...tail remains todo... */ 1819 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1820 /* ...but better entrypoint exists! */ 1821 skb = tcp_highest_sack(sk); 1822 if (!skb) 1823 break; 1824 cache++; 1825 goto walk; 1826 } 1827 1828 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1829 /* Check overlap against next cached too (past this one already) */ 1830 cache++; 1831 continue; 1832 } 1833 1834 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1835 skb = tcp_highest_sack(sk); 1836 if (!skb) 1837 break; 1838 } 1839 skb = tcp_sacktag_skip(skb, sk, start_seq); 1840 1841 walk: 1842 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1843 start_seq, end_seq, dup_sack); 1844 1845 advance_sp: 1846 i++; 1847 } 1848 1849 /* Clear the head of the cache sack blocks so we can skip it next time */ 1850 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1851 tp->recv_sack_cache[i].start_seq = 0; 1852 tp->recv_sack_cache[i].end_seq = 0; 1853 } 1854 for (j = 0; j < used_sacks; j++) 1855 tp->recv_sack_cache[i++] = sp[j]; 1856 1857 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1858 tcp_check_sack_reordering(sk, state->reord, 0); 1859 1860 tcp_verify_left_out(tp); 1861 out: 1862 1863 #if FASTRETRANS_DEBUG > 0 1864 WARN_ON((int)tp->sacked_out < 0); 1865 WARN_ON((int)tp->lost_out < 0); 1866 WARN_ON((int)tp->retrans_out < 0); 1867 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1868 #endif 1869 return state->flag; 1870 } 1871 1872 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1873 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1874 */ 1875 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1876 { 1877 u32 holes; 1878 1879 holes = max(tp->lost_out, 1U); 1880 holes = min(holes, tp->packets_out); 1881 1882 if ((tp->sacked_out + holes) > tp->packets_out) { 1883 tp->sacked_out = tp->packets_out - holes; 1884 return true; 1885 } 1886 return false; 1887 } 1888 1889 /* If we receive more dupacks than we expected counting segments 1890 * in assumption of absent reordering, interpret this as reordering. 1891 * The only another reason could be bug in receiver TCP. 1892 */ 1893 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1894 { 1895 struct tcp_sock *tp = tcp_sk(sk); 1896 1897 if (!tcp_limit_reno_sacked(tp)) 1898 return; 1899 1900 tp->reordering = min_t(u32, tp->packets_out + addend, 1901 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1902 tp->reord_seen++; 1903 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1904 } 1905 1906 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1907 1908 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 1909 { 1910 if (num_dupack) { 1911 struct tcp_sock *tp = tcp_sk(sk); 1912 u32 prior_sacked = tp->sacked_out; 1913 s32 delivered; 1914 1915 tp->sacked_out += num_dupack; 1916 tcp_check_reno_reordering(sk, 0); 1917 delivered = tp->sacked_out - prior_sacked; 1918 if (delivered > 0) 1919 tcp_count_delivered(tp, delivered, ece_ack); 1920 tcp_verify_left_out(tp); 1921 } 1922 } 1923 1924 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1925 1926 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 1927 { 1928 struct tcp_sock *tp = tcp_sk(sk); 1929 1930 if (acked > 0) { 1931 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1932 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 1933 ece_ack); 1934 if (acked - 1 >= tp->sacked_out) 1935 tp->sacked_out = 0; 1936 else 1937 tp->sacked_out -= acked - 1; 1938 } 1939 tcp_check_reno_reordering(sk, acked); 1940 tcp_verify_left_out(tp); 1941 } 1942 1943 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1944 { 1945 tp->sacked_out = 0; 1946 } 1947 1948 void tcp_clear_retrans(struct tcp_sock *tp) 1949 { 1950 tp->retrans_out = 0; 1951 tp->lost_out = 0; 1952 tp->undo_marker = 0; 1953 tp->undo_retrans = -1; 1954 tp->sacked_out = 0; 1955 } 1956 1957 static inline void tcp_init_undo(struct tcp_sock *tp) 1958 { 1959 tp->undo_marker = tp->snd_una; 1960 /* Retransmission still in flight may cause DSACKs later. */ 1961 tp->undo_retrans = tp->retrans_out ? : -1; 1962 } 1963 1964 static bool tcp_is_rack(const struct sock *sk) 1965 { 1966 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1967 } 1968 1969 /* If we detect SACK reneging, forget all SACK information 1970 * and reset tags completely, otherwise preserve SACKs. If receiver 1971 * dropped its ofo queue, we will know this due to reneging detection. 1972 */ 1973 static void tcp_timeout_mark_lost(struct sock *sk) 1974 { 1975 struct tcp_sock *tp = tcp_sk(sk); 1976 struct sk_buff *skb, *head; 1977 bool is_reneg; /* is receiver reneging on SACKs? */ 1978 1979 head = tcp_rtx_queue_head(sk); 1980 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1981 if (is_reneg) { 1982 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1983 tp->sacked_out = 0; 1984 /* Mark SACK reneging until we recover from this loss event. */ 1985 tp->is_sack_reneg = 1; 1986 } else if (tcp_is_reno(tp)) { 1987 tcp_reset_reno_sack(tp); 1988 } 1989 1990 skb = head; 1991 skb_rbtree_walk_from(skb) { 1992 if (is_reneg) 1993 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1994 else if (tcp_is_rack(sk) && skb != head && 1995 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1996 continue; /* Don't mark recently sent ones lost yet */ 1997 tcp_mark_skb_lost(sk, skb); 1998 } 1999 tcp_verify_left_out(tp); 2000 tcp_clear_all_retrans_hints(tp); 2001 } 2002 2003 /* Enter Loss state. */ 2004 void tcp_enter_loss(struct sock *sk) 2005 { 2006 const struct inet_connection_sock *icsk = inet_csk(sk); 2007 struct tcp_sock *tp = tcp_sk(sk); 2008 struct net *net = sock_net(sk); 2009 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2010 2011 tcp_timeout_mark_lost(sk); 2012 2013 /* Reduce ssthresh if it has not yet been made inside this window. */ 2014 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2015 !after(tp->high_seq, tp->snd_una) || 2016 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2017 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2018 tp->prior_cwnd = tp->snd_cwnd; 2019 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2020 tcp_ca_event(sk, CA_EVENT_LOSS); 2021 tcp_init_undo(tp); 2022 } 2023 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2024 tp->snd_cwnd_cnt = 0; 2025 tp->snd_cwnd_stamp = tcp_jiffies32; 2026 2027 /* Timeout in disordered state after receiving substantial DUPACKs 2028 * suggests that the degree of reordering is over-estimated. 2029 */ 2030 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2031 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2032 tp->reordering = min_t(unsigned int, tp->reordering, 2033 net->ipv4.sysctl_tcp_reordering); 2034 tcp_set_ca_state(sk, TCP_CA_Loss); 2035 tp->high_seq = tp->snd_nxt; 2036 tcp_ecn_queue_cwr(tp); 2037 2038 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2039 * loss recovery is underway except recurring timeout(s) on 2040 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2041 */ 2042 tp->frto = net->ipv4.sysctl_tcp_frto && 2043 (new_recovery || icsk->icsk_retransmits) && 2044 !inet_csk(sk)->icsk_mtup.probe_size; 2045 } 2046 2047 /* If ACK arrived pointing to a remembered SACK, it means that our 2048 * remembered SACKs do not reflect real state of receiver i.e. 2049 * receiver _host_ is heavily congested (or buggy). 2050 * 2051 * To avoid big spurious retransmission bursts due to transient SACK 2052 * scoreboard oddities that look like reneging, we give the receiver a 2053 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2054 * restore sanity to the SACK scoreboard. If the apparent reneging 2055 * persists until this RTO then we'll clear the SACK scoreboard. 2056 */ 2057 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2058 { 2059 if (flag & FLAG_SACK_RENEGING) { 2060 struct tcp_sock *tp = tcp_sk(sk); 2061 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2062 msecs_to_jiffies(10)); 2063 2064 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2065 delay, TCP_RTO_MAX); 2066 return true; 2067 } 2068 return false; 2069 } 2070 2071 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2072 * counter when SACK is enabled (without SACK, sacked_out is used for 2073 * that purpose). 2074 * 2075 * With reordering, holes may still be in flight, so RFC3517 recovery 2076 * uses pure sacked_out (total number of SACKed segments) even though 2077 * it violates the RFC that uses duplicate ACKs, often these are equal 2078 * but when e.g. out-of-window ACKs or packet duplication occurs, 2079 * they differ. Since neither occurs due to loss, TCP should really 2080 * ignore them. 2081 */ 2082 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2083 { 2084 return tp->sacked_out + 1; 2085 } 2086 2087 /* Linux NewReno/SACK/ECN state machine. 2088 * -------------------------------------- 2089 * 2090 * "Open" Normal state, no dubious events, fast path. 2091 * "Disorder" In all the respects it is "Open", 2092 * but requires a bit more attention. It is entered when 2093 * we see some SACKs or dupacks. It is split of "Open" 2094 * mainly to move some processing from fast path to slow one. 2095 * "CWR" CWND was reduced due to some Congestion Notification event. 2096 * It can be ECN, ICMP source quench, local device congestion. 2097 * "Recovery" CWND was reduced, we are fast-retransmitting. 2098 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2099 * 2100 * tcp_fastretrans_alert() is entered: 2101 * - each incoming ACK, if state is not "Open" 2102 * - when arrived ACK is unusual, namely: 2103 * * SACK 2104 * * Duplicate ACK. 2105 * * ECN ECE. 2106 * 2107 * Counting packets in flight is pretty simple. 2108 * 2109 * in_flight = packets_out - left_out + retrans_out 2110 * 2111 * packets_out is SND.NXT-SND.UNA counted in packets. 2112 * 2113 * retrans_out is number of retransmitted segments. 2114 * 2115 * left_out is number of segments left network, but not ACKed yet. 2116 * 2117 * left_out = sacked_out + lost_out 2118 * 2119 * sacked_out: Packets, which arrived to receiver out of order 2120 * and hence not ACKed. With SACKs this number is simply 2121 * amount of SACKed data. Even without SACKs 2122 * it is easy to give pretty reliable estimate of this number, 2123 * counting duplicate ACKs. 2124 * 2125 * lost_out: Packets lost by network. TCP has no explicit 2126 * "loss notification" feedback from network (for now). 2127 * It means that this number can be only _guessed_. 2128 * Actually, it is the heuristics to predict lossage that 2129 * distinguishes different algorithms. 2130 * 2131 * F.e. after RTO, when all the queue is considered as lost, 2132 * lost_out = packets_out and in_flight = retrans_out. 2133 * 2134 * Essentially, we have now a few algorithms detecting 2135 * lost packets. 2136 * 2137 * If the receiver supports SACK: 2138 * 2139 * RFC6675/3517: It is the conventional algorithm. A packet is 2140 * considered lost if the number of higher sequence packets 2141 * SACKed is greater than or equal the DUPACK thoreshold 2142 * (reordering). This is implemented in tcp_mark_head_lost and 2143 * tcp_update_scoreboard. 2144 * 2145 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2146 * (2017-) that checks timing instead of counting DUPACKs. 2147 * Essentially a packet is considered lost if it's not S/ACKed 2148 * after RTT + reordering_window, where both metrics are 2149 * dynamically measured and adjusted. This is implemented in 2150 * tcp_rack_mark_lost. 2151 * 2152 * If the receiver does not support SACK: 2153 * 2154 * NewReno (RFC6582): in Recovery we assume that one segment 2155 * is lost (classic Reno). While we are in Recovery and 2156 * a partial ACK arrives, we assume that one more packet 2157 * is lost (NewReno). This heuristics are the same in NewReno 2158 * and SACK. 2159 * 2160 * Really tricky (and requiring careful tuning) part of algorithm 2161 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2162 * The first determines the moment _when_ we should reduce CWND and, 2163 * hence, slow down forward transmission. In fact, it determines the moment 2164 * when we decide that hole is caused by loss, rather than by a reorder. 2165 * 2166 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2167 * holes, caused by lost packets. 2168 * 2169 * And the most logically complicated part of algorithm is undo 2170 * heuristics. We detect false retransmits due to both too early 2171 * fast retransmit (reordering) and underestimated RTO, analyzing 2172 * timestamps and D-SACKs. When we detect that some segments were 2173 * retransmitted by mistake and CWND reduction was wrong, we undo 2174 * window reduction and abort recovery phase. This logic is hidden 2175 * inside several functions named tcp_try_undo_<something>. 2176 */ 2177 2178 /* This function decides, when we should leave Disordered state 2179 * and enter Recovery phase, reducing congestion window. 2180 * 2181 * Main question: may we further continue forward transmission 2182 * with the same cwnd? 2183 */ 2184 static bool tcp_time_to_recover(struct sock *sk, int flag) 2185 { 2186 struct tcp_sock *tp = tcp_sk(sk); 2187 2188 /* Trick#1: The loss is proven. */ 2189 if (tp->lost_out) 2190 return true; 2191 2192 /* Not-A-Trick#2 : Classic rule... */ 2193 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2194 return true; 2195 2196 return false; 2197 } 2198 2199 /* Detect loss in event "A" above by marking head of queue up as lost. 2200 * For RFC3517 SACK, a segment is considered lost if it 2201 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2202 * the maximum SACKed segments to pass before reaching this limit. 2203 */ 2204 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2205 { 2206 struct tcp_sock *tp = tcp_sk(sk); 2207 struct sk_buff *skb; 2208 int cnt; 2209 /* Use SACK to deduce losses of new sequences sent during recovery */ 2210 const u32 loss_high = tp->snd_nxt; 2211 2212 WARN_ON(packets > tp->packets_out); 2213 skb = tp->lost_skb_hint; 2214 if (skb) { 2215 /* Head already handled? */ 2216 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2217 return; 2218 cnt = tp->lost_cnt_hint; 2219 } else { 2220 skb = tcp_rtx_queue_head(sk); 2221 cnt = 0; 2222 } 2223 2224 skb_rbtree_walk_from(skb) { 2225 /* TODO: do this better */ 2226 /* this is not the most efficient way to do this... */ 2227 tp->lost_skb_hint = skb; 2228 tp->lost_cnt_hint = cnt; 2229 2230 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2231 break; 2232 2233 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2234 cnt += tcp_skb_pcount(skb); 2235 2236 if (cnt > packets) 2237 break; 2238 2239 tcp_skb_mark_lost(tp, skb); 2240 2241 if (mark_head) 2242 break; 2243 } 2244 tcp_verify_left_out(tp); 2245 } 2246 2247 /* Account newly detected lost packet(s) */ 2248 2249 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2250 { 2251 struct tcp_sock *tp = tcp_sk(sk); 2252 2253 if (tcp_is_sack(tp)) { 2254 int sacked_upto = tp->sacked_out - tp->reordering; 2255 if (sacked_upto >= 0) 2256 tcp_mark_head_lost(sk, sacked_upto, 0); 2257 else if (fast_rexmit) 2258 tcp_mark_head_lost(sk, 1, 1); 2259 } 2260 } 2261 2262 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2263 { 2264 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2265 before(tp->rx_opt.rcv_tsecr, when); 2266 } 2267 2268 /* skb is spurious retransmitted if the returned timestamp echo 2269 * reply is prior to the skb transmission time 2270 */ 2271 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2272 const struct sk_buff *skb) 2273 { 2274 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2275 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2276 } 2277 2278 /* Nothing was retransmitted or returned timestamp is less 2279 * than timestamp of the first retransmission. 2280 */ 2281 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2282 { 2283 return tp->retrans_stamp && 2284 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2285 } 2286 2287 /* Undo procedures. */ 2288 2289 /* We can clear retrans_stamp when there are no retransmissions in the 2290 * window. It would seem that it is trivially available for us in 2291 * tp->retrans_out, however, that kind of assumptions doesn't consider 2292 * what will happen if errors occur when sending retransmission for the 2293 * second time. ...It could the that such segment has only 2294 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2295 * the head skb is enough except for some reneging corner cases that 2296 * are not worth the effort. 2297 * 2298 * Main reason for all this complexity is the fact that connection dying 2299 * time now depends on the validity of the retrans_stamp, in particular, 2300 * that successive retransmissions of a segment must not advance 2301 * retrans_stamp under any conditions. 2302 */ 2303 static bool tcp_any_retrans_done(const struct sock *sk) 2304 { 2305 const struct tcp_sock *tp = tcp_sk(sk); 2306 struct sk_buff *skb; 2307 2308 if (tp->retrans_out) 2309 return true; 2310 2311 skb = tcp_rtx_queue_head(sk); 2312 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2313 return true; 2314 2315 return false; 2316 } 2317 2318 static void DBGUNDO(struct sock *sk, const char *msg) 2319 { 2320 #if FASTRETRANS_DEBUG > 1 2321 struct tcp_sock *tp = tcp_sk(sk); 2322 struct inet_sock *inet = inet_sk(sk); 2323 2324 if (sk->sk_family == AF_INET) { 2325 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2326 msg, 2327 &inet->inet_daddr, ntohs(inet->inet_dport), 2328 tp->snd_cwnd, tcp_left_out(tp), 2329 tp->snd_ssthresh, tp->prior_ssthresh, 2330 tp->packets_out); 2331 } 2332 #if IS_ENABLED(CONFIG_IPV6) 2333 else if (sk->sk_family == AF_INET6) { 2334 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2335 msg, 2336 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2337 tp->snd_cwnd, tcp_left_out(tp), 2338 tp->snd_ssthresh, tp->prior_ssthresh, 2339 tp->packets_out); 2340 } 2341 #endif 2342 #endif 2343 } 2344 2345 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2346 { 2347 struct tcp_sock *tp = tcp_sk(sk); 2348 2349 if (unmark_loss) { 2350 struct sk_buff *skb; 2351 2352 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2353 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2354 } 2355 tp->lost_out = 0; 2356 tcp_clear_all_retrans_hints(tp); 2357 } 2358 2359 if (tp->prior_ssthresh) { 2360 const struct inet_connection_sock *icsk = inet_csk(sk); 2361 2362 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2363 2364 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2365 tp->snd_ssthresh = tp->prior_ssthresh; 2366 tcp_ecn_withdraw_cwr(tp); 2367 } 2368 } 2369 tp->snd_cwnd_stamp = tcp_jiffies32; 2370 tp->undo_marker = 0; 2371 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2372 } 2373 2374 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2375 { 2376 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2377 } 2378 2379 /* People celebrate: "We love our President!" */ 2380 static bool tcp_try_undo_recovery(struct sock *sk) 2381 { 2382 struct tcp_sock *tp = tcp_sk(sk); 2383 2384 if (tcp_may_undo(tp)) { 2385 int mib_idx; 2386 2387 /* Happy end! We did not retransmit anything 2388 * or our original transmission succeeded. 2389 */ 2390 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2391 tcp_undo_cwnd_reduction(sk, false); 2392 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2393 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2394 else 2395 mib_idx = LINUX_MIB_TCPFULLUNDO; 2396 2397 NET_INC_STATS(sock_net(sk), mib_idx); 2398 } else if (tp->rack.reo_wnd_persist) { 2399 tp->rack.reo_wnd_persist--; 2400 } 2401 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2402 /* Hold old state until something *above* high_seq 2403 * is ACKed. For Reno it is MUST to prevent false 2404 * fast retransmits (RFC2582). SACK TCP is safe. */ 2405 if (!tcp_any_retrans_done(sk)) 2406 tp->retrans_stamp = 0; 2407 return true; 2408 } 2409 tcp_set_ca_state(sk, TCP_CA_Open); 2410 tp->is_sack_reneg = 0; 2411 return false; 2412 } 2413 2414 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2415 static bool tcp_try_undo_dsack(struct sock *sk) 2416 { 2417 struct tcp_sock *tp = tcp_sk(sk); 2418 2419 if (tp->undo_marker && !tp->undo_retrans) { 2420 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2421 tp->rack.reo_wnd_persist + 1); 2422 DBGUNDO(sk, "D-SACK"); 2423 tcp_undo_cwnd_reduction(sk, false); 2424 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2425 return true; 2426 } 2427 return false; 2428 } 2429 2430 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2431 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2432 { 2433 struct tcp_sock *tp = tcp_sk(sk); 2434 2435 if (frto_undo || tcp_may_undo(tp)) { 2436 tcp_undo_cwnd_reduction(sk, true); 2437 2438 DBGUNDO(sk, "partial loss"); 2439 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2440 if (frto_undo) 2441 NET_INC_STATS(sock_net(sk), 2442 LINUX_MIB_TCPSPURIOUSRTOS); 2443 inet_csk(sk)->icsk_retransmits = 0; 2444 if (frto_undo || tcp_is_sack(tp)) { 2445 tcp_set_ca_state(sk, TCP_CA_Open); 2446 tp->is_sack_reneg = 0; 2447 } 2448 return true; 2449 } 2450 return false; 2451 } 2452 2453 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2454 * It computes the number of packets to send (sndcnt) based on packets newly 2455 * delivered: 2456 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2457 * cwnd reductions across a full RTT. 2458 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2459 * But when the retransmits are acked without further losses, PRR 2460 * slow starts cwnd up to ssthresh to speed up the recovery. 2461 */ 2462 static void tcp_init_cwnd_reduction(struct sock *sk) 2463 { 2464 struct tcp_sock *tp = tcp_sk(sk); 2465 2466 tp->high_seq = tp->snd_nxt; 2467 tp->tlp_high_seq = 0; 2468 tp->snd_cwnd_cnt = 0; 2469 tp->prior_cwnd = tp->snd_cwnd; 2470 tp->prr_delivered = 0; 2471 tp->prr_out = 0; 2472 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2473 tcp_ecn_queue_cwr(tp); 2474 } 2475 2476 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2477 { 2478 struct tcp_sock *tp = tcp_sk(sk); 2479 int sndcnt = 0; 2480 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2481 2482 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2483 return; 2484 2485 tp->prr_delivered += newly_acked_sacked; 2486 if (delta < 0) { 2487 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2488 tp->prior_cwnd - 1; 2489 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2490 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) == 2491 FLAG_RETRANS_DATA_ACKED) { 2492 sndcnt = min_t(int, delta, 2493 max_t(int, tp->prr_delivered - tp->prr_out, 2494 newly_acked_sacked) + 1); 2495 } else { 2496 sndcnt = min(delta, newly_acked_sacked); 2497 } 2498 /* Force a fast retransmit upon entering fast recovery */ 2499 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2500 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2501 } 2502 2503 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2504 { 2505 struct tcp_sock *tp = tcp_sk(sk); 2506 2507 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2508 return; 2509 2510 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2511 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2512 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2513 tp->snd_cwnd = tp->snd_ssthresh; 2514 tp->snd_cwnd_stamp = tcp_jiffies32; 2515 } 2516 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2517 } 2518 2519 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2520 void tcp_enter_cwr(struct sock *sk) 2521 { 2522 struct tcp_sock *tp = tcp_sk(sk); 2523 2524 tp->prior_ssthresh = 0; 2525 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2526 tp->undo_marker = 0; 2527 tcp_init_cwnd_reduction(sk); 2528 tcp_set_ca_state(sk, TCP_CA_CWR); 2529 } 2530 } 2531 EXPORT_SYMBOL(tcp_enter_cwr); 2532 2533 static void tcp_try_keep_open(struct sock *sk) 2534 { 2535 struct tcp_sock *tp = tcp_sk(sk); 2536 int state = TCP_CA_Open; 2537 2538 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2539 state = TCP_CA_Disorder; 2540 2541 if (inet_csk(sk)->icsk_ca_state != state) { 2542 tcp_set_ca_state(sk, state); 2543 tp->high_seq = tp->snd_nxt; 2544 } 2545 } 2546 2547 static void tcp_try_to_open(struct sock *sk, int flag) 2548 { 2549 struct tcp_sock *tp = tcp_sk(sk); 2550 2551 tcp_verify_left_out(tp); 2552 2553 if (!tcp_any_retrans_done(sk)) 2554 tp->retrans_stamp = 0; 2555 2556 if (flag & FLAG_ECE) 2557 tcp_enter_cwr(sk); 2558 2559 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2560 tcp_try_keep_open(sk); 2561 } 2562 } 2563 2564 static void tcp_mtup_probe_failed(struct sock *sk) 2565 { 2566 struct inet_connection_sock *icsk = inet_csk(sk); 2567 2568 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2569 icsk->icsk_mtup.probe_size = 0; 2570 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2571 } 2572 2573 static void tcp_mtup_probe_success(struct sock *sk) 2574 { 2575 struct tcp_sock *tp = tcp_sk(sk); 2576 struct inet_connection_sock *icsk = inet_csk(sk); 2577 2578 /* FIXME: breaks with very large cwnd */ 2579 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2580 tp->snd_cwnd = tp->snd_cwnd * 2581 tcp_mss_to_mtu(sk, tp->mss_cache) / 2582 icsk->icsk_mtup.probe_size; 2583 tp->snd_cwnd_cnt = 0; 2584 tp->snd_cwnd_stamp = tcp_jiffies32; 2585 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2586 2587 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2588 icsk->icsk_mtup.probe_size = 0; 2589 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2590 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2591 } 2592 2593 /* Do a simple retransmit without using the backoff mechanisms in 2594 * tcp_timer. This is used for path mtu discovery. 2595 * The socket is already locked here. 2596 */ 2597 void tcp_simple_retransmit(struct sock *sk) 2598 { 2599 const struct inet_connection_sock *icsk = inet_csk(sk); 2600 struct tcp_sock *tp = tcp_sk(sk); 2601 struct sk_buff *skb; 2602 unsigned int mss = tcp_current_mss(sk); 2603 2604 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2605 if (tcp_skb_seglen(skb) > mss && 2606 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2607 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2608 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2609 tp->retrans_out -= tcp_skb_pcount(skb); 2610 } 2611 tcp_skb_mark_lost_uncond_verify(tp, skb); 2612 } 2613 } 2614 2615 tcp_clear_retrans_hints_partial(tp); 2616 2617 if (!tp->lost_out) 2618 return; 2619 2620 if (tcp_is_reno(tp)) 2621 tcp_limit_reno_sacked(tp); 2622 2623 tcp_verify_left_out(tp); 2624 2625 /* Don't muck with the congestion window here. 2626 * Reason is that we do not increase amount of _data_ 2627 * in network, but units changed and effective 2628 * cwnd/ssthresh really reduced now. 2629 */ 2630 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2631 tp->high_seq = tp->snd_nxt; 2632 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2633 tp->prior_ssthresh = 0; 2634 tp->undo_marker = 0; 2635 tcp_set_ca_state(sk, TCP_CA_Loss); 2636 } 2637 tcp_xmit_retransmit_queue(sk); 2638 } 2639 EXPORT_SYMBOL(tcp_simple_retransmit); 2640 2641 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2642 { 2643 struct tcp_sock *tp = tcp_sk(sk); 2644 int mib_idx; 2645 2646 if (tcp_is_reno(tp)) 2647 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2648 else 2649 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2650 2651 NET_INC_STATS(sock_net(sk), mib_idx); 2652 2653 tp->prior_ssthresh = 0; 2654 tcp_init_undo(tp); 2655 2656 if (!tcp_in_cwnd_reduction(sk)) { 2657 if (!ece_ack) 2658 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2659 tcp_init_cwnd_reduction(sk); 2660 } 2661 tcp_set_ca_state(sk, TCP_CA_Recovery); 2662 } 2663 2664 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2665 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2666 */ 2667 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2668 int *rexmit) 2669 { 2670 struct tcp_sock *tp = tcp_sk(sk); 2671 bool recovered = !before(tp->snd_una, tp->high_seq); 2672 2673 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2674 tcp_try_undo_loss(sk, false)) 2675 return; 2676 2677 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2678 /* Step 3.b. A timeout is spurious if not all data are 2679 * lost, i.e., never-retransmitted data are (s)acked. 2680 */ 2681 if ((flag & FLAG_ORIG_SACK_ACKED) && 2682 tcp_try_undo_loss(sk, true)) 2683 return; 2684 2685 if (after(tp->snd_nxt, tp->high_seq)) { 2686 if (flag & FLAG_DATA_SACKED || num_dupack) 2687 tp->frto = 0; /* Step 3.a. loss was real */ 2688 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2689 tp->high_seq = tp->snd_nxt; 2690 /* Step 2.b. Try send new data (but deferred until cwnd 2691 * is updated in tcp_ack()). Otherwise fall back to 2692 * the conventional recovery. 2693 */ 2694 if (!tcp_write_queue_empty(sk) && 2695 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2696 *rexmit = REXMIT_NEW; 2697 return; 2698 } 2699 tp->frto = 0; 2700 } 2701 } 2702 2703 if (recovered) { 2704 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2705 tcp_try_undo_recovery(sk); 2706 return; 2707 } 2708 if (tcp_is_reno(tp)) { 2709 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2710 * delivered. Lower inflight to clock out (re)tranmissions. 2711 */ 2712 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2713 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2714 else if (flag & FLAG_SND_UNA_ADVANCED) 2715 tcp_reset_reno_sack(tp); 2716 } 2717 *rexmit = REXMIT_LOST; 2718 } 2719 2720 /* Undo during fast recovery after partial ACK. */ 2721 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2722 { 2723 struct tcp_sock *tp = tcp_sk(sk); 2724 2725 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2726 /* Plain luck! Hole if filled with delayed 2727 * packet, rather than with a retransmit. Check reordering. 2728 */ 2729 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2730 2731 /* We are getting evidence that the reordering degree is higher 2732 * than we realized. If there are no retransmits out then we 2733 * can undo. Otherwise we clock out new packets but do not 2734 * mark more packets lost or retransmit more. 2735 */ 2736 if (tp->retrans_out) 2737 return true; 2738 2739 if (!tcp_any_retrans_done(sk)) 2740 tp->retrans_stamp = 0; 2741 2742 DBGUNDO(sk, "partial recovery"); 2743 tcp_undo_cwnd_reduction(sk, true); 2744 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2745 tcp_try_keep_open(sk); 2746 return true; 2747 } 2748 return false; 2749 } 2750 2751 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2752 { 2753 struct tcp_sock *tp = tcp_sk(sk); 2754 2755 if (tcp_rtx_queue_empty(sk)) 2756 return; 2757 2758 if (unlikely(tcp_is_reno(tp))) { 2759 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2760 } else if (tcp_is_rack(sk)) { 2761 u32 prior_retrans = tp->retrans_out; 2762 2763 tcp_rack_mark_lost(sk); 2764 if (prior_retrans > tp->retrans_out) 2765 *ack_flag |= FLAG_LOST_RETRANS; 2766 } 2767 } 2768 2769 static bool tcp_force_fast_retransmit(struct sock *sk) 2770 { 2771 struct tcp_sock *tp = tcp_sk(sk); 2772 2773 return after(tcp_highest_sack_seq(tp), 2774 tp->snd_una + tp->reordering * tp->mss_cache); 2775 } 2776 2777 /* Process an event, which can update packets-in-flight not trivially. 2778 * Main goal of this function is to calculate new estimate for left_out, 2779 * taking into account both packets sitting in receiver's buffer and 2780 * packets lost by network. 2781 * 2782 * Besides that it updates the congestion state when packet loss or ECN 2783 * is detected. But it does not reduce the cwnd, it is done by the 2784 * congestion control later. 2785 * 2786 * It does _not_ decide what to send, it is made in function 2787 * tcp_xmit_retransmit_queue(). 2788 */ 2789 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2790 int num_dupack, int *ack_flag, int *rexmit) 2791 { 2792 struct inet_connection_sock *icsk = inet_csk(sk); 2793 struct tcp_sock *tp = tcp_sk(sk); 2794 int fast_rexmit = 0, flag = *ack_flag; 2795 bool ece_ack = flag & FLAG_ECE; 2796 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2797 tcp_force_fast_retransmit(sk)); 2798 2799 if (!tp->packets_out && tp->sacked_out) 2800 tp->sacked_out = 0; 2801 2802 /* Now state machine starts. 2803 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2804 if (ece_ack) 2805 tp->prior_ssthresh = 0; 2806 2807 /* B. In all the states check for reneging SACKs. */ 2808 if (tcp_check_sack_reneging(sk, flag)) 2809 return; 2810 2811 /* C. Check consistency of the current state. */ 2812 tcp_verify_left_out(tp); 2813 2814 /* D. Check state exit conditions. State can be terminated 2815 * when high_seq is ACKed. */ 2816 if (icsk->icsk_ca_state == TCP_CA_Open) { 2817 WARN_ON(tp->retrans_out != 0); 2818 tp->retrans_stamp = 0; 2819 } else if (!before(tp->snd_una, tp->high_seq)) { 2820 switch (icsk->icsk_ca_state) { 2821 case TCP_CA_CWR: 2822 /* CWR is to be held something *above* high_seq 2823 * is ACKed for CWR bit to reach receiver. */ 2824 if (tp->snd_una != tp->high_seq) { 2825 tcp_end_cwnd_reduction(sk); 2826 tcp_set_ca_state(sk, TCP_CA_Open); 2827 } 2828 break; 2829 2830 case TCP_CA_Recovery: 2831 if (tcp_is_reno(tp)) 2832 tcp_reset_reno_sack(tp); 2833 if (tcp_try_undo_recovery(sk)) 2834 return; 2835 tcp_end_cwnd_reduction(sk); 2836 break; 2837 } 2838 } 2839 2840 /* E. Process state. */ 2841 switch (icsk->icsk_ca_state) { 2842 case TCP_CA_Recovery: 2843 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2844 if (tcp_is_reno(tp)) 2845 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2846 } else { 2847 if (tcp_try_undo_partial(sk, prior_snd_una)) 2848 return; 2849 /* Partial ACK arrived. Force fast retransmit. */ 2850 do_lost = tcp_force_fast_retransmit(sk); 2851 } 2852 if (tcp_try_undo_dsack(sk)) { 2853 tcp_try_keep_open(sk); 2854 return; 2855 } 2856 tcp_identify_packet_loss(sk, ack_flag); 2857 break; 2858 case TCP_CA_Loss: 2859 tcp_process_loss(sk, flag, num_dupack, rexmit); 2860 tcp_identify_packet_loss(sk, ack_flag); 2861 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2862 (*ack_flag & FLAG_LOST_RETRANS))) 2863 return; 2864 /* Change state if cwnd is undone or retransmits are lost */ 2865 fallthrough; 2866 default: 2867 if (tcp_is_reno(tp)) { 2868 if (flag & FLAG_SND_UNA_ADVANCED) 2869 tcp_reset_reno_sack(tp); 2870 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2871 } 2872 2873 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2874 tcp_try_undo_dsack(sk); 2875 2876 tcp_identify_packet_loss(sk, ack_flag); 2877 if (!tcp_time_to_recover(sk, flag)) { 2878 tcp_try_to_open(sk, flag); 2879 return; 2880 } 2881 2882 /* MTU probe failure: don't reduce cwnd */ 2883 if (icsk->icsk_ca_state < TCP_CA_CWR && 2884 icsk->icsk_mtup.probe_size && 2885 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2886 tcp_mtup_probe_failed(sk); 2887 /* Restores the reduction we did in tcp_mtup_probe() */ 2888 tp->snd_cwnd++; 2889 tcp_simple_retransmit(sk); 2890 return; 2891 } 2892 2893 /* Otherwise enter Recovery state */ 2894 tcp_enter_recovery(sk, ece_ack); 2895 fast_rexmit = 1; 2896 } 2897 2898 if (!tcp_is_rack(sk) && do_lost) 2899 tcp_update_scoreboard(sk, fast_rexmit); 2900 *rexmit = REXMIT_LOST; 2901 } 2902 2903 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2904 { 2905 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2906 struct tcp_sock *tp = tcp_sk(sk); 2907 2908 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2909 /* If the remote keeps returning delayed ACKs, eventually 2910 * the min filter would pick it up and overestimate the 2911 * prop. delay when it expires. Skip suspected delayed ACKs. 2912 */ 2913 return; 2914 } 2915 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2916 rtt_us ? : jiffies_to_usecs(1)); 2917 } 2918 2919 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2920 long seq_rtt_us, long sack_rtt_us, 2921 long ca_rtt_us, struct rate_sample *rs) 2922 { 2923 const struct tcp_sock *tp = tcp_sk(sk); 2924 2925 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2926 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2927 * Karn's algorithm forbids taking RTT if some retransmitted data 2928 * is acked (RFC6298). 2929 */ 2930 if (seq_rtt_us < 0) 2931 seq_rtt_us = sack_rtt_us; 2932 2933 /* RTTM Rule: A TSecr value received in a segment is used to 2934 * update the averaged RTT measurement only if the segment 2935 * acknowledges some new data, i.e., only if it advances the 2936 * left edge of the send window. 2937 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2938 */ 2939 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2940 flag & FLAG_ACKED) { 2941 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2942 2943 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 2944 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2945 ca_rtt_us = seq_rtt_us; 2946 } 2947 } 2948 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2949 if (seq_rtt_us < 0) 2950 return false; 2951 2952 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2953 * always taken together with ACK, SACK, or TS-opts. Any negative 2954 * values will be skipped with the seq_rtt_us < 0 check above. 2955 */ 2956 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2957 tcp_rtt_estimator(sk, seq_rtt_us); 2958 tcp_set_rto(sk); 2959 2960 /* RFC6298: only reset backoff on valid RTT measurement. */ 2961 inet_csk(sk)->icsk_backoff = 0; 2962 return true; 2963 } 2964 2965 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2966 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2967 { 2968 struct rate_sample rs; 2969 long rtt_us = -1L; 2970 2971 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2972 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2973 2974 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2975 } 2976 2977 2978 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2979 { 2980 const struct inet_connection_sock *icsk = inet_csk(sk); 2981 2982 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2983 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2984 } 2985 2986 /* Restart timer after forward progress on connection. 2987 * RFC2988 recommends to restart timer to now+rto. 2988 */ 2989 void tcp_rearm_rto(struct sock *sk) 2990 { 2991 const struct inet_connection_sock *icsk = inet_csk(sk); 2992 struct tcp_sock *tp = tcp_sk(sk); 2993 2994 /* If the retrans timer is currently being used by Fast Open 2995 * for SYN-ACK retrans purpose, stay put. 2996 */ 2997 if (rcu_access_pointer(tp->fastopen_rsk)) 2998 return; 2999 3000 if (!tp->packets_out) { 3001 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3002 } else { 3003 u32 rto = inet_csk(sk)->icsk_rto; 3004 /* Offset the time elapsed after installing regular RTO */ 3005 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3006 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3007 s64 delta_us = tcp_rto_delta_us(sk); 3008 /* delta_us may not be positive if the socket is locked 3009 * when the retrans timer fires and is rescheduled. 3010 */ 3011 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3012 } 3013 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3014 TCP_RTO_MAX); 3015 } 3016 } 3017 3018 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3019 static void tcp_set_xmit_timer(struct sock *sk) 3020 { 3021 if (!tcp_schedule_loss_probe(sk, true)) 3022 tcp_rearm_rto(sk); 3023 } 3024 3025 /* If we get here, the whole TSO packet has not been acked. */ 3026 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3027 { 3028 struct tcp_sock *tp = tcp_sk(sk); 3029 u32 packets_acked; 3030 3031 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3032 3033 packets_acked = tcp_skb_pcount(skb); 3034 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3035 return 0; 3036 packets_acked -= tcp_skb_pcount(skb); 3037 3038 if (packets_acked) { 3039 BUG_ON(tcp_skb_pcount(skb) == 0); 3040 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3041 } 3042 3043 return packets_acked; 3044 } 3045 3046 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3047 u32 prior_snd_una) 3048 { 3049 const struct skb_shared_info *shinfo; 3050 3051 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3052 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3053 return; 3054 3055 shinfo = skb_shinfo(skb); 3056 if (!before(shinfo->tskey, prior_snd_una) && 3057 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3058 tcp_skb_tsorted_save(skb) { 3059 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3060 } tcp_skb_tsorted_restore(skb); 3061 } 3062 } 3063 3064 /* Remove acknowledged frames from the retransmission queue. If our packet 3065 * is before the ack sequence we can discard it as it's confirmed to have 3066 * arrived at the other end. 3067 */ 3068 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3069 u32 prior_snd_una, 3070 struct tcp_sacktag_state *sack, bool ece_ack) 3071 { 3072 const struct inet_connection_sock *icsk = inet_csk(sk); 3073 u64 first_ackt, last_ackt; 3074 struct tcp_sock *tp = tcp_sk(sk); 3075 u32 prior_sacked = tp->sacked_out; 3076 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3077 struct sk_buff *skb, *next; 3078 bool fully_acked = true; 3079 long sack_rtt_us = -1L; 3080 long seq_rtt_us = -1L; 3081 long ca_rtt_us = -1L; 3082 u32 pkts_acked = 0; 3083 u32 last_in_flight = 0; 3084 bool rtt_update; 3085 int flag = 0; 3086 3087 first_ackt = 0; 3088 3089 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3090 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3091 const u32 start_seq = scb->seq; 3092 u8 sacked = scb->sacked; 3093 u32 acked_pcount; 3094 3095 /* Determine how many packets and what bytes were acked, tso and else */ 3096 if (after(scb->end_seq, tp->snd_una)) { 3097 if (tcp_skb_pcount(skb) == 1 || 3098 !after(tp->snd_una, scb->seq)) 3099 break; 3100 3101 acked_pcount = tcp_tso_acked(sk, skb); 3102 if (!acked_pcount) 3103 break; 3104 fully_acked = false; 3105 } else { 3106 acked_pcount = tcp_skb_pcount(skb); 3107 } 3108 3109 if (unlikely(sacked & TCPCB_RETRANS)) { 3110 if (sacked & TCPCB_SACKED_RETRANS) 3111 tp->retrans_out -= acked_pcount; 3112 flag |= FLAG_RETRANS_DATA_ACKED; 3113 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3114 last_ackt = tcp_skb_timestamp_us(skb); 3115 WARN_ON_ONCE(last_ackt == 0); 3116 if (!first_ackt) 3117 first_ackt = last_ackt; 3118 3119 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3120 if (before(start_seq, reord)) 3121 reord = start_seq; 3122 if (!after(scb->end_seq, tp->high_seq)) 3123 flag |= FLAG_ORIG_SACK_ACKED; 3124 } 3125 3126 if (sacked & TCPCB_SACKED_ACKED) { 3127 tp->sacked_out -= acked_pcount; 3128 } else if (tcp_is_sack(tp)) { 3129 tcp_count_delivered(tp, acked_pcount, ece_ack); 3130 if (!tcp_skb_spurious_retrans(tp, skb)) 3131 tcp_rack_advance(tp, sacked, scb->end_seq, 3132 tcp_skb_timestamp_us(skb)); 3133 } 3134 if (sacked & TCPCB_LOST) 3135 tp->lost_out -= acked_pcount; 3136 3137 tp->packets_out -= acked_pcount; 3138 pkts_acked += acked_pcount; 3139 tcp_rate_skb_delivered(sk, skb, sack->rate); 3140 3141 /* Initial outgoing SYN's get put onto the write_queue 3142 * just like anything else we transmit. It is not 3143 * true data, and if we misinform our callers that 3144 * this ACK acks real data, we will erroneously exit 3145 * connection startup slow start one packet too 3146 * quickly. This is severely frowned upon behavior. 3147 */ 3148 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3149 flag |= FLAG_DATA_ACKED; 3150 } else { 3151 flag |= FLAG_SYN_ACKED; 3152 tp->retrans_stamp = 0; 3153 } 3154 3155 if (!fully_acked) 3156 break; 3157 3158 tcp_ack_tstamp(sk, skb, prior_snd_una); 3159 3160 next = skb_rb_next(skb); 3161 if (unlikely(skb == tp->retransmit_skb_hint)) 3162 tp->retransmit_skb_hint = NULL; 3163 if (unlikely(skb == tp->lost_skb_hint)) 3164 tp->lost_skb_hint = NULL; 3165 tcp_highest_sack_replace(sk, skb, next); 3166 tcp_rtx_queue_unlink_and_free(skb, sk); 3167 } 3168 3169 if (!skb) 3170 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3171 3172 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3173 tp->snd_up = tp->snd_una; 3174 3175 if (skb) { 3176 tcp_ack_tstamp(sk, skb, prior_snd_una); 3177 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3178 flag |= FLAG_SACK_RENEGING; 3179 } 3180 3181 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3182 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3183 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3184 3185 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3186 last_in_flight && !prior_sacked && fully_acked && 3187 sack->rate->prior_delivered + 1 == tp->delivered && 3188 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3189 /* Conservatively mark a delayed ACK. It's typically 3190 * from a lone runt packet over the round trip to 3191 * a receiver w/o out-of-order or CE events. 3192 */ 3193 flag |= FLAG_ACK_MAYBE_DELAYED; 3194 } 3195 } 3196 if (sack->first_sackt) { 3197 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3198 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3199 } 3200 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3201 ca_rtt_us, sack->rate); 3202 3203 if (flag & FLAG_ACKED) { 3204 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3205 if (unlikely(icsk->icsk_mtup.probe_size && 3206 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3207 tcp_mtup_probe_success(sk); 3208 } 3209 3210 if (tcp_is_reno(tp)) { 3211 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3212 3213 /* If any of the cumulatively ACKed segments was 3214 * retransmitted, non-SACK case cannot confirm that 3215 * progress was due to original transmission due to 3216 * lack of TCPCB_SACKED_ACKED bits even if some of 3217 * the packets may have been never retransmitted. 3218 */ 3219 if (flag & FLAG_RETRANS_DATA_ACKED) 3220 flag &= ~FLAG_ORIG_SACK_ACKED; 3221 } else { 3222 int delta; 3223 3224 /* Non-retransmitted hole got filled? That's reordering */ 3225 if (before(reord, prior_fack)) 3226 tcp_check_sack_reordering(sk, reord, 0); 3227 3228 delta = prior_sacked - tp->sacked_out; 3229 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3230 } 3231 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3232 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3233 tcp_skb_timestamp_us(skb))) { 3234 /* Do not re-arm RTO if the sack RTT is measured from data sent 3235 * after when the head was last (re)transmitted. Otherwise the 3236 * timeout may continue to extend in loss recovery. 3237 */ 3238 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3239 } 3240 3241 if (icsk->icsk_ca_ops->pkts_acked) { 3242 struct ack_sample sample = { .pkts_acked = pkts_acked, 3243 .rtt_us = sack->rate->rtt_us, 3244 .in_flight = last_in_flight }; 3245 3246 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3247 } 3248 3249 #if FASTRETRANS_DEBUG > 0 3250 WARN_ON((int)tp->sacked_out < 0); 3251 WARN_ON((int)tp->lost_out < 0); 3252 WARN_ON((int)tp->retrans_out < 0); 3253 if (!tp->packets_out && tcp_is_sack(tp)) { 3254 icsk = inet_csk(sk); 3255 if (tp->lost_out) { 3256 pr_debug("Leak l=%u %d\n", 3257 tp->lost_out, icsk->icsk_ca_state); 3258 tp->lost_out = 0; 3259 } 3260 if (tp->sacked_out) { 3261 pr_debug("Leak s=%u %d\n", 3262 tp->sacked_out, icsk->icsk_ca_state); 3263 tp->sacked_out = 0; 3264 } 3265 if (tp->retrans_out) { 3266 pr_debug("Leak r=%u %d\n", 3267 tp->retrans_out, icsk->icsk_ca_state); 3268 tp->retrans_out = 0; 3269 } 3270 } 3271 #endif 3272 return flag; 3273 } 3274 3275 static void tcp_ack_probe(struct sock *sk) 3276 { 3277 struct inet_connection_sock *icsk = inet_csk(sk); 3278 struct sk_buff *head = tcp_send_head(sk); 3279 const struct tcp_sock *tp = tcp_sk(sk); 3280 3281 /* Was it a usable window open? */ 3282 if (!head) 3283 return; 3284 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3285 icsk->icsk_backoff = 0; 3286 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3287 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3288 * This function is not for random using! 3289 */ 3290 } else { 3291 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3292 3293 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3294 when, TCP_RTO_MAX); 3295 } 3296 } 3297 3298 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3299 { 3300 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3301 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3302 } 3303 3304 /* Decide wheather to run the increase function of congestion control. */ 3305 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3306 { 3307 /* If reordering is high then always grow cwnd whenever data is 3308 * delivered regardless of its ordering. Otherwise stay conservative 3309 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3310 * new SACK or ECE mark may first advance cwnd here and later reduce 3311 * cwnd in tcp_fastretrans_alert() based on more states. 3312 */ 3313 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3314 return flag & FLAG_FORWARD_PROGRESS; 3315 3316 return flag & FLAG_DATA_ACKED; 3317 } 3318 3319 /* The "ultimate" congestion control function that aims to replace the rigid 3320 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3321 * It's called toward the end of processing an ACK with precise rate 3322 * information. All transmission or retransmission are delayed afterwards. 3323 */ 3324 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3325 int flag, const struct rate_sample *rs) 3326 { 3327 const struct inet_connection_sock *icsk = inet_csk(sk); 3328 3329 if (icsk->icsk_ca_ops->cong_control) { 3330 icsk->icsk_ca_ops->cong_control(sk, rs); 3331 return; 3332 } 3333 3334 if (tcp_in_cwnd_reduction(sk)) { 3335 /* Reduce cwnd if state mandates */ 3336 tcp_cwnd_reduction(sk, acked_sacked, flag); 3337 } else if (tcp_may_raise_cwnd(sk, flag)) { 3338 /* Advance cwnd if state allows */ 3339 tcp_cong_avoid(sk, ack, acked_sacked); 3340 } 3341 tcp_update_pacing_rate(sk); 3342 } 3343 3344 /* Check that window update is acceptable. 3345 * The function assumes that snd_una<=ack<=snd_next. 3346 */ 3347 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3348 const u32 ack, const u32 ack_seq, 3349 const u32 nwin) 3350 { 3351 return after(ack, tp->snd_una) || 3352 after(ack_seq, tp->snd_wl1) || 3353 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3354 } 3355 3356 /* If we update tp->snd_una, also update tp->bytes_acked */ 3357 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3358 { 3359 u32 delta = ack - tp->snd_una; 3360 3361 sock_owned_by_me((struct sock *)tp); 3362 tp->bytes_acked += delta; 3363 tp->snd_una = ack; 3364 } 3365 3366 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3367 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3368 { 3369 u32 delta = seq - tp->rcv_nxt; 3370 3371 sock_owned_by_me((struct sock *)tp); 3372 tp->bytes_received += delta; 3373 WRITE_ONCE(tp->rcv_nxt, seq); 3374 } 3375 3376 /* Update our send window. 3377 * 3378 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3379 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3380 */ 3381 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3382 u32 ack_seq) 3383 { 3384 struct tcp_sock *tp = tcp_sk(sk); 3385 int flag = 0; 3386 u32 nwin = ntohs(tcp_hdr(skb)->window); 3387 3388 if (likely(!tcp_hdr(skb)->syn)) 3389 nwin <<= tp->rx_opt.snd_wscale; 3390 3391 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3392 flag |= FLAG_WIN_UPDATE; 3393 tcp_update_wl(tp, ack_seq); 3394 3395 if (tp->snd_wnd != nwin) { 3396 tp->snd_wnd = nwin; 3397 3398 /* Note, it is the only place, where 3399 * fast path is recovered for sending TCP. 3400 */ 3401 tp->pred_flags = 0; 3402 tcp_fast_path_check(sk); 3403 3404 if (!tcp_write_queue_empty(sk)) 3405 tcp_slow_start_after_idle_check(sk); 3406 3407 if (nwin > tp->max_window) { 3408 tp->max_window = nwin; 3409 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3410 } 3411 } 3412 } 3413 3414 tcp_snd_una_update(tp, ack); 3415 3416 return flag; 3417 } 3418 3419 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3420 u32 *last_oow_ack_time) 3421 { 3422 if (*last_oow_ack_time) { 3423 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3424 3425 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3426 NET_INC_STATS(net, mib_idx); 3427 return true; /* rate-limited: don't send yet! */ 3428 } 3429 } 3430 3431 *last_oow_ack_time = tcp_jiffies32; 3432 3433 return false; /* not rate-limited: go ahead, send dupack now! */ 3434 } 3435 3436 /* Return true if we're currently rate-limiting out-of-window ACKs and 3437 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3438 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3439 * attacks that send repeated SYNs or ACKs for the same connection. To 3440 * do this, we do not send a duplicate SYNACK or ACK if the remote 3441 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3442 */ 3443 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3444 int mib_idx, u32 *last_oow_ack_time) 3445 { 3446 /* Data packets without SYNs are not likely part of an ACK loop. */ 3447 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3448 !tcp_hdr(skb)->syn) 3449 return false; 3450 3451 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3452 } 3453 3454 /* RFC 5961 7 [ACK Throttling] */ 3455 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3456 { 3457 /* unprotected vars, we dont care of overwrites */ 3458 static u32 challenge_timestamp; 3459 static unsigned int challenge_count; 3460 struct tcp_sock *tp = tcp_sk(sk); 3461 struct net *net = sock_net(sk); 3462 u32 count, now; 3463 3464 /* First check our per-socket dupack rate limit. */ 3465 if (__tcp_oow_rate_limited(net, 3466 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3467 &tp->last_oow_ack_time)) 3468 return; 3469 3470 /* Then check host-wide RFC 5961 rate limit. */ 3471 now = jiffies / HZ; 3472 if (now != challenge_timestamp) { 3473 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3474 u32 half = (ack_limit + 1) >> 1; 3475 3476 challenge_timestamp = now; 3477 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3478 } 3479 count = READ_ONCE(challenge_count); 3480 if (count > 0) { 3481 WRITE_ONCE(challenge_count, count - 1); 3482 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3483 tcp_send_ack(sk); 3484 } 3485 } 3486 3487 static void tcp_store_ts_recent(struct tcp_sock *tp) 3488 { 3489 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3490 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3491 } 3492 3493 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3494 { 3495 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3496 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3497 * extra check below makes sure this can only happen 3498 * for pure ACK frames. -DaveM 3499 * 3500 * Not only, also it occurs for expired timestamps. 3501 */ 3502 3503 if (tcp_paws_check(&tp->rx_opt, 0)) 3504 tcp_store_ts_recent(tp); 3505 } 3506 } 3507 3508 /* This routine deals with acks during a TLP episode. 3509 * We mark the end of a TLP episode on receiving TLP dupack or when 3510 * ack is after tlp_high_seq. 3511 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3512 */ 3513 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3514 { 3515 struct tcp_sock *tp = tcp_sk(sk); 3516 3517 if (before(ack, tp->tlp_high_seq)) 3518 return; 3519 3520 if (flag & FLAG_DSACKING_ACK) { 3521 /* This DSACK means original and TLP probe arrived; no loss */ 3522 tp->tlp_high_seq = 0; 3523 } else if (after(ack, tp->tlp_high_seq)) { 3524 /* ACK advances: there was a loss, so reduce cwnd. Reset 3525 * tlp_high_seq in tcp_init_cwnd_reduction() 3526 */ 3527 tcp_init_cwnd_reduction(sk); 3528 tcp_set_ca_state(sk, TCP_CA_CWR); 3529 tcp_end_cwnd_reduction(sk); 3530 tcp_try_keep_open(sk); 3531 NET_INC_STATS(sock_net(sk), 3532 LINUX_MIB_TCPLOSSPROBERECOVERY); 3533 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3534 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3535 /* Pure dupack: original and TLP probe arrived; no loss */ 3536 tp->tlp_high_seq = 0; 3537 } 3538 } 3539 3540 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3541 { 3542 const struct inet_connection_sock *icsk = inet_csk(sk); 3543 3544 if (icsk->icsk_ca_ops->in_ack_event) 3545 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3546 } 3547 3548 /* Congestion control has updated the cwnd already. So if we're in 3549 * loss recovery then now we do any new sends (for FRTO) or 3550 * retransmits (for CA_Loss or CA_recovery) that make sense. 3551 */ 3552 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3553 { 3554 struct tcp_sock *tp = tcp_sk(sk); 3555 3556 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3557 return; 3558 3559 if (unlikely(rexmit == REXMIT_NEW)) { 3560 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3561 TCP_NAGLE_OFF); 3562 if (after(tp->snd_nxt, tp->high_seq)) 3563 return; 3564 tp->frto = 0; 3565 } 3566 tcp_xmit_retransmit_queue(sk); 3567 } 3568 3569 /* Returns the number of packets newly acked or sacked by the current ACK */ 3570 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3571 { 3572 const struct net *net = sock_net(sk); 3573 struct tcp_sock *tp = tcp_sk(sk); 3574 u32 delivered; 3575 3576 delivered = tp->delivered - prior_delivered; 3577 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3578 if (flag & FLAG_ECE) 3579 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3580 3581 return delivered; 3582 } 3583 3584 /* This routine deals with incoming acks, but not outgoing ones. */ 3585 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3586 { 3587 struct inet_connection_sock *icsk = inet_csk(sk); 3588 struct tcp_sock *tp = tcp_sk(sk); 3589 struct tcp_sacktag_state sack_state; 3590 struct rate_sample rs = { .prior_delivered = 0 }; 3591 u32 prior_snd_una = tp->snd_una; 3592 bool is_sack_reneg = tp->is_sack_reneg; 3593 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3594 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3595 int num_dupack = 0; 3596 int prior_packets = tp->packets_out; 3597 u32 delivered = tp->delivered; 3598 u32 lost = tp->lost; 3599 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3600 u32 prior_fack; 3601 3602 sack_state.first_sackt = 0; 3603 sack_state.rate = &rs; 3604 sack_state.sack_delivered = 0; 3605 3606 /* We very likely will need to access rtx queue. */ 3607 prefetch(sk->tcp_rtx_queue.rb_node); 3608 3609 /* If the ack is older than previous acks 3610 * then we can probably ignore it. 3611 */ 3612 if (before(ack, prior_snd_una)) { 3613 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3614 if (before(ack, prior_snd_una - tp->max_window)) { 3615 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3616 tcp_send_challenge_ack(sk, skb); 3617 return -1; 3618 } 3619 goto old_ack; 3620 } 3621 3622 /* If the ack includes data we haven't sent yet, discard 3623 * this segment (RFC793 Section 3.9). 3624 */ 3625 if (after(ack, tp->snd_nxt)) 3626 return -1; 3627 3628 if (after(ack, prior_snd_una)) { 3629 flag |= FLAG_SND_UNA_ADVANCED; 3630 icsk->icsk_retransmits = 0; 3631 3632 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3633 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3634 if (icsk->icsk_clean_acked) 3635 icsk->icsk_clean_acked(sk, ack); 3636 #endif 3637 } 3638 3639 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3640 rs.prior_in_flight = tcp_packets_in_flight(tp); 3641 3642 /* ts_recent update must be made after we are sure that the packet 3643 * is in window. 3644 */ 3645 if (flag & FLAG_UPDATE_TS_RECENT) 3646 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3647 3648 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3649 FLAG_SND_UNA_ADVANCED) { 3650 /* Window is constant, pure forward advance. 3651 * No more checks are required. 3652 * Note, we use the fact that SND.UNA>=SND.WL2. 3653 */ 3654 tcp_update_wl(tp, ack_seq); 3655 tcp_snd_una_update(tp, ack); 3656 flag |= FLAG_WIN_UPDATE; 3657 3658 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3659 3660 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3661 } else { 3662 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3663 3664 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3665 flag |= FLAG_DATA; 3666 else 3667 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3668 3669 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3670 3671 if (TCP_SKB_CB(skb)->sacked) 3672 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3673 &sack_state); 3674 3675 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3676 flag |= FLAG_ECE; 3677 ack_ev_flags |= CA_ACK_ECE; 3678 } 3679 3680 if (sack_state.sack_delivered) 3681 tcp_count_delivered(tp, sack_state.sack_delivered, 3682 flag & FLAG_ECE); 3683 3684 if (flag & FLAG_WIN_UPDATE) 3685 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3686 3687 tcp_in_ack_event(sk, ack_ev_flags); 3688 } 3689 3690 /* This is a deviation from RFC3168 since it states that: 3691 * "When the TCP data sender is ready to set the CWR bit after reducing 3692 * the congestion window, it SHOULD set the CWR bit only on the first 3693 * new data packet that it transmits." 3694 * We accept CWR on pure ACKs to be more robust 3695 * with widely-deployed TCP implementations that do this. 3696 */ 3697 tcp_ecn_accept_cwr(sk, skb); 3698 3699 /* We passed data and got it acked, remove any soft error 3700 * log. Something worked... 3701 */ 3702 sk->sk_err_soft = 0; 3703 icsk->icsk_probes_out = 0; 3704 tp->rcv_tstamp = tcp_jiffies32; 3705 if (!prior_packets) 3706 goto no_queue; 3707 3708 /* See if we can take anything off of the retransmit queue. */ 3709 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state, 3710 flag & FLAG_ECE); 3711 3712 tcp_rack_update_reo_wnd(sk, &rs); 3713 3714 if (tp->tlp_high_seq) 3715 tcp_process_tlp_ack(sk, ack, flag); 3716 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3717 if (flag & FLAG_SET_XMIT_TIMER) 3718 tcp_set_xmit_timer(sk); 3719 3720 if (tcp_ack_is_dubious(sk, flag)) { 3721 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3722 num_dupack = 1; 3723 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3724 if (!(flag & FLAG_DATA)) 3725 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3726 } 3727 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3728 &rexmit); 3729 } 3730 3731 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3732 sk_dst_confirm(sk); 3733 3734 delivered = tcp_newly_delivered(sk, delivered, flag); 3735 lost = tp->lost - lost; /* freshly marked lost */ 3736 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3737 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3738 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3739 tcp_xmit_recovery(sk, rexmit); 3740 return 1; 3741 3742 no_queue: 3743 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3744 if (flag & FLAG_DSACKING_ACK) { 3745 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3746 &rexmit); 3747 tcp_newly_delivered(sk, delivered, flag); 3748 } 3749 /* If this ack opens up a zero window, clear backoff. It was 3750 * being used to time the probes, and is probably far higher than 3751 * it needs to be for normal retransmission. 3752 */ 3753 tcp_ack_probe(sk); 3754 3755 if (tp->tlp_high_seq) 3756 tcp_process_tlp_ack(sk, ack, flag); 3757 return 1; 3758 3759 old_ack: 3760 /* If data was SACKed, tag it and see if we should send more data. 3761 * If data was DSACKed, see if we can undo a cwnd reduction. 3762 */ 3763 if (TCP_SKB_CB(skb)->sacked) { 3764 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3765 &sack_state); 3766 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3767 &rexmit); 3768 tcp_newly_delivered(sk, delivered, flag); 3769 tcp_xmit_recovery(sk, rexmit); 3770 } 3771 3772 return 0; 3773 } 3774 3775 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3776 bool syn, struct tcp_fastopen_cookie *foc, 3777 bool exp_opt) 3778 { 3779 /* Valid only in SYN or SYN-ACK with an even length. */ 3780 if (!foc || !syn || len < 0 || (len & 1)) 3781 return; 3782 3783 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3784 len <= TCP_FASTOPEN_COOKIE_MAX) 3785 memcpy(foc->val, cookie, len); 3786 else if (len != 0) 3787 len = -1; 3788 foc->len = len; 3789 foc->exp = exp_opt; 3790 } 3791 3792 static void smc_parse_options(const struct tcphdr *th, 3793 struct tcp_options_received *opt_rx, 3794 const unsigned char *ptr, 3795 int opsize) 3796 { 3797 #if IS_ENABLED(CONFIG_SMC) 3798 if (static_branch_unlikely(&tcp_have_smc)) { 3799 if (th->syn && !(opsize & 1) && 3800 opsize >= TCPOLEN_EXP_SMC_BASE && 3801 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3802 opt_rx->smc_ok = 1; 3803 } 3804 #endif 3805 } 3806 3807 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3808 * value on success. 3809 */ 3810 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3811 { 3812 const unsigned char *ptr = (const unsigned char *)(th + 1); 3813 int length = (th->doff * 4) - sizeof(struct tcphdr); 3814 u16 mss = 0; 3815 3816 while (length > 0) { 3817 int opcode = *ptr++; 3818 int opsize; 3819 3820 switch (opcode) { 3821 case TCPOPT_EOL: 3822 return mss; 3823 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3824 length--; 3825 continue; 3826 default: 3827 if (length < 2) 3828 return mss; 3829 opsize = *ptr++; 3830 if (opsize < 2) /* "silly options" */ 3831 return mss; 3832 if (opsize > length) 3833 return mss; /* fail on partial options */ 3834 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 3835 u16 in_mss = get_unaligned_be16(ptr); 3836 3837 if (in_mss) { 3838 if (user_mss && user_mss < in_mss) 3839 in_mss = user_mss; 3840 mss = in_mss; 3841 } 3842 } 3843 ptr += opsize - 2; 3844 length -= opsize; 3845 } 3846 } 3847 return mss; 3848 } 3849 3850 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3851 * But, this can also be called on packets in the established flow when 3852 * the fast version below fails. 3853 */ 3854 void tcp_parse_options(const struct net *net, 3855 const struct sk_buff *skb, 3856 struct tcp_options_received *opt_rx, int estab, 3857 struct tcp_fastopen_cookie *foc) 3858 { 3859 const unsigned char *ptr; 3860 const struct tcphdr *th = tcp_hdr(skb); 3861 int length = (th->doff * 4) - sizeof(struct tcphdr); 3862 3863 ptr = (const unsigned char *)(th + 1); 3864 opt_rx->saw_tstamp = 0; 3865 3866 while (length > 0) { 3867 int opcode = *ptr++; 3868 int opsize; 3869 3870 switch (opcode) { 3871 case TCPOPT_EOL: 3872 return; 3873 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3874 length--; 3875 continue; 3876 default: 3877 if (length < 2) 3878 return; 3879 opsize = *ptr++; 3880 if (opsize < 2) /* "silly options" */ 3881 return; 3882 if (opsize > length) 3883 return; /* don't parse partial options */ 3884 switch (opcode) { 3885 case TCPOPT_MSS: 3886 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3887 u16 in_mss = get_unaligned_be16(ptr); 3888 if (in_mss) { 3889 if (opt_rx->user_mss && 3890 opt_rx->user_mss < in_mss) 3891 in_mss = opt_rx->user_mss; 3892 opt_rx->mss_clamp = in_mss; 3893 } 3894 } 3895 break; 3896 case TCPOPT_WINDOW: 3897 if (opsize == TCPOLEN_WINDOW && th->syn && 3898 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3899 __u8 snd_wscale = *(__u8 *)ptr; 3900 opt_rx->wscale_ok = 1; 3901 if (snd_wscale > TCP_MAX_WSCALE) { 3902 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3903 __func__, 3904 snd_wscale, 3905 TCP_MAX_WSCALE); 3906 snd_wscale = TCP_MAX_WSCALE; 3907 } 3908 opt_rx->snd_wscale = snd_wscale; 3909 } 3910 break; 3911 case TCPOPT_TIMESTAMP: 3912 if ((opsize == TCPOLEN_TIMESTAMP) && 3913 ((estab && opt_rx->tstamp_ok) || 3914 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3915 opt_rx->saw_tstamp = 1; 3916 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3917 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3918 } 3919 break; 3920 case TCPOPT_SACK_PERM: 3921 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3922 !estab && net->ipv4.sysctl_tcp_sack) { 3923 opt_rx->sack_ok = TCP_SACK_SEEN; 3924 tcp_sack_reset(opt_rx); 3925 } 3926 break; 3927 3928 case TCPOPT_SACK: 3929 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3930 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3931 opt_rx->sack_ok) { 3932 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3933 } 3934 break; 3935 #ifdef CONFIG_TCP_MD5SIG 3936 case TCPOPT_MD5SIG: 3937 /* 3938 * The MD5 Hash has already been 3939 * checked (see tcp_v{4,6}_do_rcv()). 3940 */ 3941 break; 3942 #endif 3943 case TCPOPT_FASTOPEN: 3944 tcp_parse_fastopen_option( 3945 opsize - TCPOLEN_FASTOPEN_BASE, 3946 ptr, th->syn, foc, false); 3947 break; 3948 3949 case TCPOPT_EXP: 3950 /* Fast Open option shares code 254 using a 3951 * 16 bits magic number. 3952 */ 3953 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3954 get_unaligned_be16(ptr) == 3955 TCPOPT_FASTOPEN_MAGIC) 3956 tcp_parse_fastopen_option(opsize - 3957 TCPOLEN_EXP_FASTOPEN_BASE, 3958 ptr + 2, th->syn, foc, true); 3959 else 3960 smc_parse_options(th, opt_rx, ptr, 3961 opsize); 3962 break; 3963 3964 } 3965 ptr += opsize-2; 3966 length -= opsize; 3967 } 3968 } 3969 } 3970 EXPORT_SYMBOL(tcp_parse_options); 3971 3972 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3973 { 3974 const __be32 *ptr = (const __be32 *)(th + 1); 3975 3976 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3977 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3978 tp->rx_opt.saw_tstamp = 1; 3979 ++ptr; 3980 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3981 ++ptr; 3982 if (*ptr) 3983 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3984 else 3985 tp->rx_opt.rcv_tsecr = 0; 3986 return true; 3987 } 3988 return false; 3989 } 3990 3991 /* Fast parse options. This hopes to only see timestamps. 3992 * If it is wrong it falls back on tcp_parse_options(). 3993 */ 3994 static bool tcp_fast_parse_options(const struct net *net, 3995 const struct sk_buff *skb, 3996 const struct tcphdr *th, struct tcp_sock *tp) 3997 { 3998 /* In the spirit of fast parsing, compare doff directly to constant 3999 * values. Because equality is used, short doff can be ignored here. 4000 */ 4001 if (th->doff == (sizeof(*th) / 4)) { 4002 tp->rx_opt.saw_tstamp = 0; 4003 return false; 4004 } else if (tp->rx_opt.tstamp_ok && 4005 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4006 if (tcp_parse_aligned_timestamp(tp, th)) 4007 return true; 4008 } 4009 4010 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4011 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4012 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4013 4014 return true; 4015 } 4016 4017 #ifdef CONFIG_TCP_MD5SIG 4018 /* 4019 * Parse MD5 Signature option 4020 */ 4021 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4022 { 4023 int length = (th->doff << 2) - sizeof(*th); 4024 const u8 *ptr = (const u8 *)(th + 1); 4025 4026 /* If not enough data remaining, we can short cut */ 4027 while (length >= TCPOLEN_MD5SIG) { 4028 int opcode = *ptr++; 4029 int opsize; 4030 4031 switch (opcode) { 4032 case TCPOPT_EOL: 4033 return NULL; 4034 case TCPOPT_NOP: 4035 length--; 4036 continue; 4037 default: 4038 opsize = *ptr++; 4039 if (opsize < 2 || opsize > length) 4040 return NULL; 4041 if (opcode == TCPOPT_MD5SIG) 4042 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4043 } 4044 ptr += opsize - 2; 4045 length -= opsize; 4046 } 4047 return NULL; 4048 } 4049 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4050 #endif 4051 4052 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4053 * 4054 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4055 * it can pass through stack. So, the following predicate verifies that 4056 * this segment is not used for anything but congestion avoidance or 4057 * fast retransmit. Moreover, we even are able to eliminate most of such 4058 * second order effects, if we apply some small "replay" window (~RTO) 4059 * to timestamp space. 4060 * 4061 * All these measures still do not guarantee that we reject wrapped ACKs 4062 * on networks with high bandwidth, when sequence space is recycled fastly, 4063 * but it guarantees that such events will be very rare and do not affect 4064 * connection seriously. This doesn't look nice, but alas, PAWS is really 4065 * buggy extension. 4066 * 4067 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4068 * states that events when retransmit arrives after original data are rare. 4069 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4070 * the biggest problem on large power networks even with minor reordering. 4071 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4072 * up to bandwidth of 18Gigabit/sec. 8) ] 4073 */ 4074 4075 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4076 { 4077 const struct tcp_sock *tp = tcp_sk(sk); 4078 const struct tcphdr *th = tcp_hdr(skb); 4079 u32 seq = TCP_SKB_CB(skb)->seq; 4080 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4081 4082 return (/* 1. Pure ACK with correct sequence number. */ 4083 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4084 4085 /* 2. ... and duplicate ACK. */ 4086 ack == tp->snd_una && 4087 4088 /* 3. ... and does not update window. */ 4089 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4090 4091 /* 4. ... and sits in replay window. */ 4092 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4093 } 4094 4095 static inline bool tcp_paws_discard(const struct sock *sk, 4096 const struct sk_buff *skb) 4097 { 4098 const struct tcp_sock *tp = tcp_sk(sk); 4099 4100 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4101 !tcp_disordered_ack(sk, skb); 4102 } 4103 4104 /* Check segment sequence number for validity. 4105 * 4106 * Segment controls are considered valid, if the segment 4107 * fits to the window after truncation to the window. Acceptability 4108 * of data (and SYN, FIN, of course) is checked separately. 4109 * See tcp_data_queue(), for example. 4110 * 4111 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4112 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4113 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4114 * (borrowed from freebsd) 4115 */ 4116 4117 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4118 { 4119 return !before(end_seq, tp->rcv_wup) && 4120 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4121 } 4122 4123 /* When we get a reset we do this. */ 4124 void tcp_reset(struct sock *sk) 4125 { 4126 trace_tcp_receive_reset(sk); 4127 4128 /* We want the right error as BSD sees it (and indeed as we do). */ 4129 switch (sk->sk_state) { 4130 case TCP_SYN_SENT: 4131 sk->sk_err = ECONNREFUSED; 4132 break; 4133 case TCP_CLOSE_WAIT: 4134 sk->sk_err = EPIPE; 4135 break; 4136 case TCP_CLOSE: 4137 return; 4138 default: 4139 sk->sk_err = ECONNRESET; 4140 } 4141 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4142 smp_wmb(); 4143 4144 tcp_write_queue_purge(sk); 4145 tcp_done(sk); 4146 4147 if (!sock_flag(sk, SOCK_DEAD)) 4148 sk->sk_error_report(sk); 4149 } 4150 4151 /* 4152 * Process the FIN bit. This now behaves as it is supposed to work 4153 * and the FIN takes effect when it is validly part of sequence 4154 * space. Not before when we get holes. 4155 * 4156 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4157 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4158 * TIME-WAIT) 4159 * 4160 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4161 * close and we go into CLOSING (and later onto TIME-WAIT) 4162 * 4163 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4164 */ 4165 void tcp_fin(struct sock *sk) 4166 { 4167 struct tcp_sock *tp = tcp_sk(sk); 4168 4169 inet_csk_schedule_ack(sk); 4170 4171 sk->sk_shutdown |= RCV_SHUTDOWN; 4172 sock_set_flag(sk, SOCK_DONE); 4173 4174 switch (sk->sk_state) { 4175 case TCP_SYN_RECV: 4176 case TCP_ESTABLISHED: 4177 /* Move to CLOSE_WAIT */ 4178 tcp_set_state(sk, TCP_CLOSE_WAIT); 4179 inet_csk_enter_pingpong_mode(sk); 4180 break; 4181 4182 case TCP_CLOSE_WAIT: 4183 case TCP_CLOSING: 4184 /* Received a retransmission of the FIN, do 4185 * nothing. 4186 */ 4187 break; 4188 case TCP_LAST_ACK: 4189 /* RFC793: Remain in the LAST-ACK state. */ 4190 break; 4191 4192 case TCP_FIN_WAIT1: 4193 /* This case occurs when a simultaneous close 4194 * happens, we must ack the received FIN and 4195 * enter the CLOSING state. 4196 */ 4197 tcp_send_ack(sk); 4198 tcp_set_state(sk, TCP_CLOSING); 4199 break; 4200 case TCP_FIN_WAIT2: 4201 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4202 tcp_send_ack(sk); 4203 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4204 break; 4205 default: 4206 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4207 * cases we should never reach this piece of code. 4208 */ 4209 pr_err("%s: Impossible, sk->sk_state=%d\n", 4210 __func__, sk->sk_state); 4211 break; 4212 } 4213 4214 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4215 * Probably, we should reset in this case. For now drop them. 4216 */ 4217 skb_rbtree_purge(&tp->out_of_order_queue); 4218 if (tcp_is_sack(tp)) 4219 tcp_sack_reset(&tp->rx_opt); 4220 sk_mem_reclaim(sk); 4221 4222 if (!sock_flag(sk, SOCK_DEAD)) { 4223 sk->sk_state_change(sk); 4224 4225 /* Do not send POLL_HUP for half duplex close. */ 4226 if (sk->sk_shutdown == SHUTDOWN_MASK || 4227 sk->sk_state == TCP_CLOSE) 4228 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4229 else 4230 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4231 } 4232 } 4233 4234 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4235 u32 end_seq) 4236 { 4237 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4238 if (before(seq, sp->start_seq)) 4239 sp->start_seq = seq; 4240 if (after(end_seq, sp->end_seq)) 4241 sp->end_seq = end_seq; 4242 return true; 4243 } 4244 return false; 4245 } 4246 4247 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4248 { 4249 struct tcp_sock *tp = tcp_sk(sk); 4250 4251 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4252 int mib_idx; 4253 4254 if (before(seq, tp->rcv_nxt)) 4255 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4256 else 4257 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4258 4259 NET_INC_STATS(sock_net(sk), mib_idx); 4260 4261 tp->rx_opt.dsack = 1; 4262 tp->duplicate_sack[0].start_seq = seq; 4263 tp->duplicate_sack[0].end_seq = end_seq; 4264 } 4265 } 4266 4267 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4268 { 4269 struct tcp_sock *tp = tcp_sk(sk); 4270 4271 if (!tp->rx_opt.dsack) 4272 tcp_dsack_set(sk, seq, end_seq); 4273 else 4274 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4275 } 4276 4277 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4278 { 4279 /* When the ACK path fails or drops most ACKs, the sender would 4280 * timeout and spuriously retransmit the same segment repeatedly. 4281 * The receiver remembers and reflects via DSACKs. Leverage the 4282 * DSACK state and change the txhash to re-route speculatively. 4283 */ 4284 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) { 4285 sk_rethink_txhash(sk); 4286 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4287 } 4288 } 4289 4290 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4291 { 4292 struct tcp_sock *tp = tcp_sk(sk); 4293 4294 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4295 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4296 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4297 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4298 4299 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4300 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4301 4302 tcp_rcv_spurious_retrans(sk, skb); 4303 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4304 end_seq = tp->rcv_nxt; 4305 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4306 } 4307 } 4308 4309 tcp_send_ack(sk); 4310 } 4311 4312 /* These routines update the SACK block as out-of-order packets arrive or 4313 * in-order packets close up the sequence space. 4314 */ 4315 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4316 { 4317 int this_sack; 4318 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4319 struct tcp_sack_block *swalk = sp + 1; 4320 4321 /* See if the recent change to the first SACK eats into 4322 * or hits the sequence space of other SACK blocks, if so coalesce. 4323 */ 4324 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4325 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4326 int i; 4327 4328 /* Zap SWALK, by moving every further SACK up by one slot. 4329 * Decrease num_sacks. 4330 */ 4331 tp->rx_opt.num_sacks--; 4332 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4333 sp[i] = sp[i + 1]; 4334 continue; 4335 } 4336 this_sack++, swalk++; 4337 } 4338 } 4339 4340 static void tcp_sack_compress_send_ack(struct sock *sk) 4341 { 4342 struct tcp_sock *tp = tcp_sk(sk); 4343 4344 if (!tp->compressed_ack) 4345 return; 4346 4347 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4348 __sock_put(sk); 4349 4350 /* Since we have to send one ack finally, 4351 * substract one from tp->compressed_ack to keep 4352 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4353 */ 4354 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4355 tp->compressed_ack - 1); 4356 4357 tp->compressed_ack = 0; 4358 tcp_send_ack(sk); 4359 } 4360 4361 /* Reasonable amount of sack blocks included in TCP SACK option 4362 * The max is 4, but this becomes 3 if TCP timestamps are there. 4363 * Given that SACK packets might be lost, be conservative and use 2. 4364 */ 4365 #define TCP_SACK_BLOCKS_EXPECTED 2 4366 4367 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4368 { 4369 struct tcp_sock *tp = tcp_sk(sk); 4370 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4371 int cur_sacks = tp->rx_opt.num_sacks; 4372 int this_sack; 4373 4374 if (!cur_sacks) 4375 goto new_sack; 4376 4377 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4378 if (tcp_sack_extend(sp, seq, end_seq)) { 4379 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4380 tcp_sack_compress_send_ack(sk); 4381 /* Rotate this_sack to the first one. */ 4382 for (; this_sack > 0; this_sack--, sp--) 4383 swap(*sp, *(sp - 1)); 4384 if (cur_sacks > 1) 4385 tcp_sack_maybe_coalesce(tp); 4386 return; 4387 } 4388 } 4389 4390 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4391 tcp_sack_compress_send_ack(sk); 4392 4393 /* Could not find an adjacent existing SACK, build a new one, 4394 * put it at the front, and shift everyone else down. We 4395 * always know there is at least one SACK present already here. 4396 * 4397 * If the sack array is full, forget about the last one. 4398 */ 4399 if (this_sack >= TCP_NUM_SACKS) { 4400 this_sack--; 4401 tp->rx_opt.num_sacks--; 4402 sp--; 4403 } 4404 for (; this_sack > 0; this_sack--, sp--) 4405 *sp = *(sp - 1); 4406 4407 new_sack: 4408 /* Build the new head SACK, and we're done. */ 4409 sp->start_seq = seq; 4410 sp->end_seq = end_seq; 4411 tp->rx_opt.num_sacks++; 4412 } 4413 4414 /* RCV.NXT advances, some SACKs should be eaten. */ 4415 4416 static void tcp_sack_remove(struct tcp_sock *tp) 4417 { 4418 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4419 int num_sacks = tp->rx_opt.num_sacks; 4420 int this_sack; 4421 4422 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4423 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4424 tp->rx_opt.num_sacks = 0; 4425 return; 4426 } 4427 4428 for (this_sack = 0; this_sack < num_sacks;) { 4429 /* Check if the start of the sack is covered by RCV.NXT. */ 4430 if (!before(tp->rcv_nxt, sp->start_seq)) { 4431 int i; 4432 4433 /* RCV.NXT must cover all the block! */ 4434 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4435 4436 /* Zap this SACK, by moving forward any other SACKS. */ 4437 for (i = this_sack+1; i < num_sacks; i++) 4438 tp->selective_acks[i-1] = tp->selective_acks[i]; 4439 num_sacks--; 4440 continue; 4441 } 4442 this_sack++; 4443 sp++; 4444 } 4445 tp->rx_opt.num_sacks = num_sacks; 4446 } 4447 4448 /** 4449 * tcp_try_coalesce - try to merge skb to prior one 4450 * @sk: socket 4451 * @to: prior buffer 4452 * @from: buffer to add in queue 4453 * @fragstolen: pointer to boolean 4454 * 4455 * Before queueing skb @from after @to, try to merge them 4456 * to reduce overall memory use and queue lengths, if cost is small. 4457 * Packets in ofo or receive queues can stay a long time. 4458 * Better try to coalesce them right now to avoid future collapses. 4459 * Returns true if caller should free @from instead of queueing it 4460 */ 4461 static bool tcp_try_coalesce(struct sock *sk, 4462 struct sk_buff *to, 4463 struct sk_buff *from, 4464 bool *fragstolen) 4465 { 4466 int delta; 4467 4468 *fragstolen = false; 4469 4470 /* Its possible this segment overlaps with prior segment in queue */ 4471 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4472 return false; 4473 4474 if (!mptcp_skb_can_collapse(to, from)) 4475 return false; 4476 4477 #ifdef CONFIG_TLS_DEVICE 4478 if (from->decrypted != to->decrypted) 4479 return false; 4480 #endif 4481 4482 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4483 return false; 4484 4485 atomic_add(delta, &sk->sk_rmem_alloc); 4486 sk_mem_charge(sk, delta); 4487 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4488 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4489 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4490 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4491 4492 if (TCP_SKB_CB(from)->has_rxtstamp) { 4493 TCP_SKB_CB(to)->has_rxtstamp = true; 4494 to->tstamp = from->tstamp; 4495 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4496 } 4497 4498 return true; 4499 } 4500 4501 static bool tcp_ooo_try_coalesce(struct sock *sk, 4502 struct sk_buff *to, 4503 struct sk_buff *from, 4504 bool *fragstolen) 4505 { 4506 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4507 4508 /* In case tcp_drop() is called later, update to->gso_segs */ 4509 if (res) { 4510 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4511 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4512 4513 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4514 } 4515 return res; 4516 } 4517 4518 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4519 { 4520 sk_drops_add(sk, skb); 4521 __kfree_skb(skb); 4522 } 4523 4524 /* This one checks to see if we can put data from the 4525 * out_of_order queue into the receive_queue. 4526 */ 4527 static void tcp_ofo_queue(struct sock *sk) 4528 { 4529 struct tcp_sock *tp = tcp_sk(sk); 4530 __u32 dsack_high = tp->rcv_nxt; 4531 bool fin, fragstolen, eaten; 4532 struct sk_buff *skb, *tail; 4533 struct rb_node *p; 4534 4535 p = rb_first(&tp->out_of_order_queue); 4536 while (p) { 4537 skb = rb_to_skb(p); 4538 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4539 break; 4540 4541 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4542 __u32 dsack = dsack_high; 4543 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4544 dsack_high = TCP_SKB_CB(skb)->end_seq; 4545 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4546 } 4547 p = rb_next(p); 4548 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4549 4550 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4551 tcp_drop(sk, skb); 4552 continue; 4553 } 4554 4555 tail = skb_peek_tail(&sk->sk_receive_queue); 4556 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4557 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4558 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4559 if (!eaten) 4560 __skb_queue_tail(&sk->sk_receive_queue, skb); 4561 else 4562 kfree_skb_partial(skb, fragstolen); 4563 4564 if (unlikely(fin)) { 4565 tcp_fin(sk); 4566 /* tcp_fin() purges tp->out_of_order_queue, 4567 * so we must end this loop right now. 4568 */ 4569 break; 4570 } 4571 } 4572 } 4573 4574 static bool tcp_prune_ofo_queue(struct sock *sk); 4575 static int tcp_prune_queue(struct sock *sk); 4576 4577 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4578 unsigned int size) 4579 { 4580 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4581 !sk_rmem_schedule(sk, skb, size)) { 4582 4583 if (tcp_prune_queue(sk) < 0) 4584 return -1; 4585 4586 while (!sk_rmem_schedule(sk, skb, size)) { 4587 if (!tcp_prune_ofo_queue(sk)) 4588 return -1; 4589 } 4590 } 4591 return 0; 4592 } 4593 4594 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4595 { 4596 struct tcp_sock *tp = tcp_sk(sk); 4597 struct rb_node **p, *parent; 4598 struct sk_buff *skb1; 4599 u32 seq, end_seq; 4600 bool fragstolen; 4601 4602 tcp_ecn_check_ce(sk, skb); 4603 4604 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4605 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4606 sk->sk_data_ready(sk); 4607 tcp_drop(sk, skb); 4608 return; 4609 } 4610 4611 /* Disable header prediction. */ 4612 tp->pred_flags = 0; 4613 inet_csk_schedule_ack(sk); 4614 4615 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4616 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4617 seq = TCP_SKB_CB(skb)->seq; 4618 end_seq = TCP_SKB_CB(skb)->end_seq; 4619 4620 p = &tp->out_of_order_queue.rb_node; 4621 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4622 /* Initial out of order segment, build 1 SACK. */ 4623 if (tcp_is_sack(tp)) { 4624 tp->rx_opt.num_sacks = 1; 4625 tp->selective_acks[0].start_seq = seq; 4626 tp->selective_acks[0].end_seq = end_seq; 4627 } 4628 rb_link_node(&skb->rbnode, NULL, p); 4629 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4630 tp->ooo_last_skb = skb; 4631 goto end; 4632 } 4633 4634 /* In the typical case, we are adding an skb to the end of the list. 4635 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4636 */ 4637 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4638 skb, &fragstolen)) { 4639 coalesce_done: 4640 /* For non sack flows, do not grow window to force DUPACK 4641 * and trigger fast retransmit. 4642 */ 4643 if (tcp_is_sack(tp)) 4644 tcp_grow_window(sk, skb); 4645 kfree_skb_partial(skb, fragstolen); 4646 skb = NULL; 4647 goto add_sack; 4648 } 4649 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4650 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4651 parent = &tp->ooo_last_skb->rbnode; 4652 p = &parent->rb_right; 4653 goto insert; 4654 } 4655 4656 /* Find place to insert this segment. Handle overlaps on the way. */ 4657 parent = NULL; 4658 while (*p) { 4659 parent = *p; 4660 skb1 = rb_to_skb(parent); 4661 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4662 p = &parent->rb_left; 4663 continue; 4664 } 4665 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4666 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4667 /* All the bits are present. Drop. */ 4668 NET_INC_STATS(sock_net(sk), 4669 LINUX_MIB_TCPOFOMERGE); 4670 tcp_drop(sk, skb); 4671 skb = NULL; 4672 tcp_dsack_set(sk, seq, end_seq); 4673 goto add_sack; 4674 } 4675 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4676 /* Partial overlap. */ 4677 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4678 } else { 4679 /* skb's seq == skb1's seq and skb covers skb1. 4680 * Replace skb1 with skb. 4681 */ 4682 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4683 &tp->out_of_order_queue); 4684 tcp_dsack_extend(sk, 4685 TCP_SKB_CB(skb1)->seq, 4686 TCP_SKB_CB(skb1)->end_seq); 4687 NET_INC_STATS(sock_net(sk), 4688 LINUX_MIB_TCPOFOMERGE); 4689 tcp_drop(sk, skb1); 4690 goto merge_right; 4691 } 4692 } else if (tcp_ooo_try_coalesce(sk, skb1, 4693 skb, &fragstolen)) { 4694 goto coalesce_done; 4695 } 4696 p = &parent->rb_right; 4697 } 4698 insert: 4699 /* Insert segment into RB tree. */ 4700 rb_link_node(&skb->rbnode, parent, p); 4701 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4702 4703 merge_right: 4704 /* Remove other segments covered by skb. */ 4705 while ((skb1 = skb_rb_next(skb)) != NULL) { 4706 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4707 break; 4708 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4709 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4710 end_seq); 4711 break; 4712 } 4713 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4714 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4715 TCP_SKB_CB(skb1)->end_seq); 4716 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4717 tcp_drop(sk, skb1); 4718 } 4719 /* If there is no skb after us, we are the last_skb ! */ 4720 if (!skb1) 4721 tp->ooo_last_skb = skb; 4722 4723 add_sack: 4724 if (tcp_is_sack(tp)) 4725 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4726 end: 4727 if (skb) { 4728 /* For non sack flows, do not grow window to force DUPACK 4729 * and trigger fast retransmit. 4730 */ 4731 if (tcp_is_sack(tp)) 4732 tcp_grow_window(sk, skb); 4733 skb_condense(skb); 4734 skb_set_owner_r(skb, sk); 4735 } 4736 } 4737 4738 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4739 bool *fragstolen) 4740 { 4741 int eaten; 4742 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4743 4744 eaten = (tail && 4745 tcp_try_coalesce(sk, tail, 4746 skb, fragstolen)) ? 1 : 0; 4747 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4748 if (!eaten) { 4749 __skb_queue_tail(&sk->sk_receive_queue, skb); 4750 skb_set_owner_r(skb, sk); 4751 } 4752 return eaten; 4753 } 4754 4755 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4756 { 4757 struct sk_buff *skb; 4758 int err = -ENOMEM; 4759 int data_len = 0; 4760 bool fragstolen; 4761 4762 if (size == 0) 4763 return 0; 4764 4765 if (size > PAGE_SIZE) { 4766 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4767 4768 data_len = npages << PAGE_SHIFT; 4769 size = data_len + (size & ~PAGE_MASK); 4770 } 4771 skb = alloc_skb_with_frags(size - data_len, data_len, 4772 PAGE_ALLOC_COSTLY_ORDER, 4773 &err, sk->sk_allocation); 4774 if (!skb) 4775 goto err; 4776 4777 skb_put(skb, size - data_len); 4778 skb->data_len = data_len; 4779 skb->len = size; 4780 4781 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4782 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4783 goto err_free; 4784 } 4785 4786 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4787 if (err) 4788 goto err_free; 4789 4790 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4791 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4792 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4793 4794 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4795 WARN_ON_ONCE(fragstolen); /* should not happen */ 4796 __kfree_skb(skb); 4797 } 4798 return size; 4799 4800 err_free: 4801 kfree_skb(skb); 4802 err: 4803 return err; 4804 4805 } 4806 4807 void tcp_data_ready(struct sock *sk) 4808 { 4809 const struct tcp_sock *tp = tcp_sk(sk); 4810 int avail = tp->rcv_nxt - tp->copied_seq; 4811 4812 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) && 4813 !sock_flag(sk, SOCK_DONE)) 4814 return; 4815 4816 sk->sk_data_ready(sk); 4817 } 4818 4819 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4820 { 4821 struct tcp_sock *tp = tcp_sk(sk); 4822 bool fragstolen; 4823 int eaten; 4824 4825 if (sk_is_mptcp(sk)) 4826 mptcp_incoming_options(sk, skb, &tp->rx_opt); 4827 4828 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4829 __kfree_skb(skb); 4830 return; 4831 } 4832 skb_dst_drop(skb); 4833 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4834 4835 tp->rx_opt.dsack = 0; 4836 4837 /* Queue data for delivery to the user. 4838 * Packets in sequence go to the receive queue. 4839 * Out of sequence packets to the out_of_order_queue. 4840 */ 4841 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4842 if (tcp_receive_window(tp) == 0) { 4843 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4844 goto out_of_window; 4845 } 4846 4847 /* Ok. In sequence. In window. */ 4848 queue_and_out: 4849 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4850 sk_forced_mem_schedule(sk, skb->truesize); 4851 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4852 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4853 sk->sk_data_ready(sk); 4854 goto drop; 4855 } 4856 4857 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 4858 if (skb->len) 4859 tcp_event_data_recv(sk, skb); 4860 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4861 tcp_fin(sk); 4862 4863 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4864 tcp_ofo_queue(sk); 4865 4866 /* RFC5681. 4.2. SHOULD send immediate ACK, when 4867 * gap in queue is filled. 4868 */ 4869 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4870 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 4871 } 4872 4873 if (tp->rx_opt.num_sacks) 4874 tcp_sack_remove(tp); 4875 4876 tcp_fast_path_check(sk); 4877 4878 if (eaten > 0) 4879 kfree_skb_partial(skb, fragstolen); 4880 if (!sock_flag(sk, SOCK_DEAD)) 4881 tcp_data_ready(sk); 4882 return; 4883 } 4884 4885 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4886 tcp_rcv_spurious_retrans(sk, skb); 4887 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4888 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4889 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4890 4891 out_of_window: 4892 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4893 inet_csk_schedule_ack(sk); 4894 drop: 4895 tcp_drop(sk, skb); 4896 return; 4897 } 4898 4899 /* Out of window. F.e. zero window probe. */ 4900 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4901 goto out_of_window; 4902 4903 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4904 /* Partial packet, seq < rcv_next < end_seq */ 4905 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4906 4907 /* If window is closed, drop tail of packet. But after 4908 * remembering D-SACK for its head made in previous line. 4909 */ 4910 if (!tcp_receive_window(tp)) { 4911 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4912 goto out_of_window; 4913 } 4914 goto queue_and_out; 4915 } 4916 4917 tcp_data_queue_ofo(sk, skb); 4918 } 4919 4920 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4921 { 4922 if (list) 4923 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4924 4925 return skb_rb_next(skb); 4926 } 4927 4928 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4929 struct sk_buff_head *list, 4930 struct rb_root *root) 4931 { 4932 struct sk_buff *next = tcp_skb_next(skb, list); 4933 4934 if (list) 4935 __skb_unlink(skb, list); 4936 else 4937 rb_erase(&skb->rbnode, root); 4938 4939 __kfree_skb(skb); 4940 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4941 4942 return next; 4943 } 4944 4945 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4946 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4947 { 4948 struct rb_node **p = &root->rb_node; 4949 struct rb_node *parent = NULL; 4950 struct sk_buff *skb1; 4951 4952 while (*p) { 4953 parent = *p; 4954 skb1 = rb_to_skb(parent); 4955 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4956 p = &parent->rb_left; 4957 else 4958 p = &parent->rb_right; 4959 } 4960 rb_link_node(&skb->rbnode, parent, p); 4961 rb_insert_color(&skb->rbnode, root); 4962 } 4963 4964 /* Collapse contiguous sequence of skbs head..tail with 4965 * sequence numbers start..end. 4966 * 4967 * If tail is NULL, this means until the end of the queue. 4968 * 4969 * Segments with FIN/SYN are not collapsed (only because this 4970 * simplifies code) 4971 */ 4972 static void 4973 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4974 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4975 { 4976 struct sk_buff *skb = head, *n; 4977 struct sk_buff_head tmp; 4978 bool end_of_skbs; 4979 4980 /* First, check that queue is collapsible and find 4981 * the point where collapsing can be useful. 4982 */ 4983 restart: 4984 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4985 n = tcp_skb_next(skb, list); 4986 4987 /* No new bits? It is possible on ofo queue. */ 4988 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4989 skb = tcp_collapse_one(sk, skb, list, root); 4990 if (!skb) 4991 break; 4992 goto restart; 4993 } 4994 4995 /* The first skb to collapse is: 4996 * - not SYN/FIN and 4997 * - bloated or contains data before "start" or 4998 * overlaps to the next one and mptcp allow collapsing. 4999 */ 5000 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5001 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5002 before(TCP_SKB_CB(skb)->seq, start))) { 5003 end_of_skbs = false; 5004 break; 5005 } 5006 5007 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5008 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5009 end_of_skbs = false; 5010 break; 5011 } 5012 5013 /* Decided to skip this, advance start seq. */ 5014 start = TCP_SKB_CB(skb)->end_seq; 5015 } 5016 if (end_of_skbs || 5017 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5018 return; 5019 5020 __skb_queue_head_init(&tmp); 5021 5022 while (before(start, end)) { 5023 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5024 struct sk_buff *nskb; 5025 5026 nskb = alloc_skb(copy, GFP_ATOMIC); 5027 if (!nskb) 5028 break; 5029 5030 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5031 #ifdef CONFIG_TLS_DEVICE 5032 nskb->decrypted = skb->decrypted; 5033 #endif 5034 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5035 if (list) 5036 __skb_queue_before(list, skb, nskb); 5037 else 5038 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5039 skb_set_owner_r(nskb, sk); 5040 mptcp_skb_ext_move(nskb, skb); 5041 5042 /* Copy data, releasing collapsed skbs. */ 5043 while (copy > 0) { 5044 int offset = start - TCP_SKB_CB(skb)->seq; 5045 int size = TCP_SKB_CB(skb)->end_seq - start; 5046 5047 BUG_ON(offset < 0); 5048 if (size > 0) { 5049 size = min(copy, size); 5050 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5051 BUG(); 5052 TCP_SKB_CB(nskb)->end_seq += size; 5053 copy -= size; 5054 start += size; 5055 } 5056 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5057 skb = tcp_collapse_one(sk, skb, list, root); 5058 if (!skb || 5059 skb == tail || 5060 !mptcp_skb_can_collapse(nskb, skb) || 5061 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5062 goto end; 5063 #ifdef CONFIG_TLS_DEVICE 5064 if (skb->decrypted != nskb->decrypted) 5065 goto end; 5066 #endif 5067 } 5068 } 5069 } 5070 end: 5071 skb_queue_walk_safe(&tmp, skb, n) 5072 tcp_rbtree_insert(root, skb); 5073 } 5074 5075 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5076 * and tcp_collapse() them until all the queue is collapsed. 5077 */ 5078 static void tcp_collapse_ofo_queue(struct sock *sk) 5079 { 5080 struct tcp_sock *tp = tcp_sk(sk); 5081 u32 range_truesize, sum_tiny = 0; 5082 struct sk_buff *skb, *head; 5083 u32 start, end; 5084 5085 skb = skb_rb_first(&tp->out_of_order_queue); 5086 new_range: 5087 if (!skb) { 5088 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5089 return; 5090 } 5091 start = TCP_SKB_CB(skb)->seq; 5092 end = TCP_SKB_CB(skb)->end_seq; 5093 range_truesize = skb->truesize; 5094 5095 for (head = skb;;) { 5096 skb = skb_rb_next(skb); 5097 5098 /* Range is terminated when we see a gap or when 5099 * we are at the queue end. 5100 */ 5101 if (!skb || 5102 after(TCP_SKB_CB(skb)->seq, end) || 5103 before(TCP_SKB_CB(skb)->end_seq, start)) { 5104 /* Do not attempt collapsing tiny skbs */ 5105 if (range_truesize != head->truesize || 5106 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5107 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5108 head, skb, start, end); 5109 } else { 5110 sum_tiny += range_truesize; 5111 if (sum_tiny > sk->sk_rcvbuf >> 3) 5112 return; 5113 } 5114 goto new_range; 5115 } 5116 5117 range_truesize += skb->truesize; 5118 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5119 start = TCP_SKB_CB(skb)->seq; 5120 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5121 end = TCP_SKB_CB(skb)->end_seq; 5122 } 5123 } 5124 5125 /* 5126 * Clean the out-of-order queue to make room. 5127 * We drop high sequences packets to : 5128 * 1) Let a chance for holes to be filled. 5129 * 2) not add too big latencies if thousands of packets sit there. 5130 * (But if application shrinks SO_RCVBUF, we could still end up 5131 * freeing whole queue here) 5132 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5133 * 5134 * Return true if queue has shrunk. 5135 */ 5136 static bool tcp_prune_ofo_queue(struct sock *sk) 5137 { 5138 struct tcp_sock *tp = tcp_sk(sk); 5139 struct rb_node *node, *prev; 5140 int goal; 5141 5142 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5143 return false; 5144 5145 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5146 goal = sk->sk_rcvbuf >> 3; 5147 node = &tp->ooo_last_skb->rbnode; 5148 do { 5149 prev = rb_prev(node); 5150 rb_erase(node, &tp->out_of_order_queue); 5151 goal -= rb_to_skb(node)->truesize; 5152 tcp_drop(sk, rb_to_skb(node)); 5153 if (!prev || goal <= 0) { 5154 sk_mem_reclaim(sk); 5155 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5156 !tcp_under_memory_pressure(sk)) 5157 break; 5158 goal = sk->sk_rcvbuf >> 3; 5159 } 5160 node = prev; 5161 } while (node); 5162 tp->ooo_last_skb = rb_to_skb(prev); 5163 5164 /* Reset SACK state. A conforming SACK implementation will 5165 * do the same at a timeout based retransmit. When a connection 5166 * is in a sad state like this, we care only about integrity 5167 * of the connection not performance. 5168 */ 5169 if (tp->rx_opt.sack_ok) 5170 tcp_sack_reset(&tp->rx_opt); 5171 return true; 5172 } 5173 5174 /* Reduce allocated memory if we can, trying to get 5175 * the socket within its memory limits again. 5176 * 5177 * Return less than zero if we should start dropping frames 5178 * until the socket owning process reads some of the data 5179 * to stabilize the situation. 5180 */ 5181 static int tcp_prune_queue(struct sock *sk) 5182 { 5183 struct tcp_sock *tp = tcp_sk(sk); 5184 5185 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5186 5187 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5188 tcp_clamp_window(sk); 5189 else if (tcp_under_memory_pressure(sk)) 5190 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5191 5192 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5193 return 0; 5194 5195 tcp_collapse_ofo_queue(sk); 5196 if (!skb_queue_empty(&sk->sk_receive_queue)) 5197 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5198 skb_peek(&sk->sk_receive_queue), 5199 NULL, 5200 tp->copied_seq, tp->rcv_nxt); 5201 sk_mem_reclaim(sk); 5202 5203 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5204 return 0; 5205 5206 /* Collapsing did not help, destructive actions follow. 5207 * This must not ever occur. */ 5208 5209 tcp_prune_ofo_queue(sk); 5210 5211 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5212 return 0; 5213 5214 /* If we are really being abused, tell the caller to silently 5215 * drop receive data on the floor. It will get retransmitted 5216 * and hopefully then we'll have sufficient space. 5217 */ 5218 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5219 5220 /* Massive buffer overcommit. */ 5221 tp->pred_flags = 0; 5222 return -1; 5223 } 5224 5225 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5226 { 5227 const struct tcp_sock *tp = tcp_sk(sk); 5228 5229 /* If the user specified a specific send buffer setting, do 5230 * not modify it. 5231 */ 5232 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5233 return false; 5234 5235 /* If we are under global TCP memory pressure, do not expand. */ 5236 if (tcp_under_memory_pressure(sk)) 5237 return false; 5238 5239 /* If we are under soft global TCP memory pressure, do not expand. */ 5240 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5241 return false; 5242 5243 /* If we filled the congestion window, do not expand. */ 5244 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5245 return false; 5246 5247 return true; 5248 } 5249 5250 /* When incoming ACK allowed to free some skb from write_queue, 5251 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5252 * on the exit from tcp input handler. 5253 * 5254 * PROBLEM: sndbuf expansion does not work well with largesend. 5255 */ 5256 static void tcp_new_space(struct sock *sk) 5257 { 5258 struct tcp_sock *tp = tcp_sk(sk); 5259 5260 if (tcp_should_expand_sndbuf(sk)) { 5261 tcp_sndbuf_expand(sk); 5262 tp->snd_cwnd_stamp = tcp_jiffies32; 5263 } 5264 5265 sk->sk_write_space(sk); 5266 } 5267 5268 static void tcp_check_space(struct sock *sk) 5269 { 5270 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5271 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5272 /* pairs with tcp_poll() */ 5273 smp_mb(); 5274 if (sk->sk_socket && 5275 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5276 tcp_new_space(sk); 5277 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5278 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5279 } 5280 } 5281 } 5282 5283 static inline void tcp_data_snd_check(struct sock *sk) 5284 { 5285 tcp_push_pending_frames(sk); 5286 tcp_check_space(sk); 5287 } 5288 5289 /* 5290 * Check if sending an ack is needed. 5291 */ 5292 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5293 { 5294 struct tcp_sock *tp = tcp_sk(sk); 5295 unsigned long rtt, delay; 5296 5297 /* More than one full frame received... */ 5298 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5299 /* ... and right edge of window advances far enough. 5300 * (tcp_recvmsg() will send ACK otherwise). 5301 * If application uses SO_RCVLOWAT, we want send ack now if 5302 * we have not received enough bytes to satisfy the condition. 5303 */ 5304 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5305 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5306 /* We ACK each frame or... */ 5307 tcp_in_quickack_mode(sk) || 5308 /* Protocol state mandates a one-time immediate ACK */ 5309 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5310 send_now: 5311 tcp_send_ack(sk); 5312 return; 5313 } 5314 5315 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5316 tcp_send_delayed_ack(sk); 5317 return; 5318 } 5319 5320 if (!tcp_is_sack(tp) || 5321 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5322 goto send_now; 5323 5324 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5325 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5326 tp->dup_ack_counter = 0; 5327 } 5328 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5329 tp->dup_ack_counter++; 5330 goto send_now; 5331 } 5332 tp->compressed_ack++; 5333 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5334 return; 5335 5336 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5337 5338 rtt = tp->rcv_rtt_est.rtt_us; 5339 if (tp->srtt_us && tp->srtt_us < rtt) 5340 rtt = tp->srtt_us; 5341 5342 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5343 rtt * (NSEC_PER_USEC >> 3)/20); 5344 sock_hold(sk); 5345 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5346 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns, 5347 HRTIMER_MODE_REL_PINNED_SOFT); 5348 } 5349 5350 static inline void tcp_ack_snd_check(struct sock *sk) 5351 { 5352 if (!inet_csk_ack_scheduled(sk)) { 5353 /* We sent a data segment already. */ 5354 return; 5355 } 5356 __tcp_ack_snd_check(sk, 1); 5357 } 5358 5359 /* 5360 * This routine is only called when we have urgent data 5361 * signaled. Its the 'slow' part of tcp_urg. It could be 5362 * moved inline now as tcp_urg is only called from one 5363 * place. We handle URGent data wrong. We have to - as 5364 * BSD still doesn't use the correction from RFC961. 5365 * For 1003.1g we should support a new option TCP_STDURG to permit 5366 * either form (or just set the sysctl tcp_stdurg). 5367 */ 5368 5369 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5370 { 5371 struct tcp_sock *tp = tcp_sk(sk); 5372 u32 ptr = ntohs(th->urg_ptr); 5373 5374 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5375 ptr--; 5376 ptr += ntohl(th->seq); 5377 5378 /* Ignore urgent data that we've already seen and read. */ 5379 if (after(tp->copied_seq, ptr)) 5380 return; 5381 5382 /* Do not replay urg ptr. 5383 * 5384 * NOTE: interesting situation not covered by specs. 5385 * Misbehaving sender may send urg ptr, pointing to segment, 5386 * which we already have in ofo queue. We are not able to fetch 5387 * such data and will stay in TCP_URG_NOTYET until will be eaten 5388 * by recvmsg(). Seems, we are not obliged to handle such wicked 5389 * situations. But it is worth to think about possibility of some 5390 * DoSes using some hypothetical application level deadlock. 5391 */ 5392 if (before(ptr, tp->rcv_nxt)) 5393 return; 5394 5395 /* Do we already have a newer (or duplicate) urgent pointer? */ 5396 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5397 return; 5398 5399 /* Tell the world about our new urgent pointer. */ 5400 sk_send_sigurg(sk); 5401 5402 /* We may be adding urgent data when the last byte read was 5403 * urgent. To do this requires some care. We cannot just ignore 5404 * tp->copied_seq since we would read the last urgent byte again 5405 * as data, nor can we alter copied_seq until this data arrives 5406 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5407 * 5408 * NOTE. Double Dutch. Rendering to plain English: author of comment 5409 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5410 * and expect that both A and B disappear from stream. This is _wrong_. 5411 * Though this happens in BSD with high probability, this is occasional. 5412 * Any application relying on this is buggy. Note also, that fix "works" 5413 * only in this artificial test. Insert some normal data between A and B and we will 5414 * decline of BSD again. Verdict: it is better to remove to trap 5415 * buggy users. 5416 */ 5417 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5418 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5419 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5420 tp->copied_seq++; 5421 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5422 __skb_unlink(skb, &sk->sk_receive_queue); 5423 __kfree_skb(skb); 5424 } 5425 } 5426 5427 tp->urg_data = TCP_URG_NOTYET; 5428 WRITE_ONCE(tp->urg_seq, ptr); 5429 5430 /* Disable header prediction. */ 5431 tp->pred_flags = 0; 5432 } 5433 5434 /* This is the 'fast' part of urgent handling. */ 5435 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5436 { 5437 struct tcp_sock *tp = tcp_sk(sk); 5438 5439 /* Check if we get a new urgent pointer - normally not. */ 5440 if (th->urg) 5441 tcp_check_urg(sk, th); 5442 5443 /* Do we wait for any urgent data? - normally not... */ 5444 if (tp->urg_data == TCP_URG_NOTYET) { 5445 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5446 th->syn; 5447 5448 /* Is the urgent pointer pointing into this packet? */ 5449 if (ptr < skb->len) { 5450 u8 tmp; 5451 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5452 BUG(); 5453 tp->urg_data = TCP_URG_VALID | tmp; 5454 if (!sock_flag(sk, SOCK_DEAD)) 5455 sk->sk_data_ready(sk); 5456 } 5457 } 5458 } 5459 5460 /* Accept RST for rcv_nxt - 1 after a FIN. 5461 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5462 * FIN is sent followed by a RST packet. The RST is sent with the same 5463 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5464 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5465 * ACKs on the closed socket. In addition middleboxes can drop either the 5466 * challenge ACK or a subsequent RST. 5467 */ 5468 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5469 { 5470 struct tcp_sock *tp = tcp_sk(sk); 5471 5472 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5473 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5474 TCPF_CLOSING)); 5475 } 5476 5477 /* Does PAWS and seqno based validation of an incoming segment, flags will 5478 * play significant role here. 5479 */ 5480 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5481 const struct tcphdr *th, int syn_inerr) 5482 { 5483 struct tcp_sock *tp = tcp_sk(sk); 5484 bool rst_seq_match = false; 5485 5486 /* RFC1323: H1. Apply PAWS check first. */ 5487 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5488 tp->rx_opt.saw_tstamp && 5489 tcp_paws_discard(sk, skb)) { 5490 if (!th->rst) { 5491 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5492 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5493 LINUX_MIB_TCPACKSKIPPEDPAWS, 5494 &tp->last_oow_ack_time)) 5495 tcp_send_dupack(sk, skb); 5496 goto discard; 5497 } 5498 /* Reset is accepted even if it did not pass PAWS. */ 5499 } 5500 5501 /* Step 1: check sequence number */ 5502 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5503 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5504 * (RST) segments are validated by checking their SEQ-fields." 5505 * And page 69: "If an incoming segment is not acceptable, 5506 * an acknowledgment should be sent in reply (unless the RST 5507 * bit is set, if so drop the segment and return)". 5508 */ 5509 if (!th->rst) { 5510 if (th->syn) 5511 goto syn_challenge; 5512 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5513 LINUX_MIB_TCPACKSKIPPEDSEQ, 5514 &tp->last_oow_ack_time)) 5515 tcp_send_dupack(sk, skb); 5516 } else if (tcp_reset_check(sk, skb)) { 5517 tcp_reset(sk); 5518 } 5519 goto discard; 5520 } 5521 5522 /* Step 2: check RST bit */ 5523 if (th->rst) { 5524 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5525 * FIN and SACK too if available): 5526 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5527 * the right-most SACK block, 5528 * then 5529 * RESET the connection 5530 * else 5531 * Send a challenge ACK 5532 */ 5533 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5534 tcp_reset_check(sk, skb)) { 5535 rst_seq_match = true; 5536 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5537 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5538 int max_sack = sp[0].end_seq; 5539 int this_sack; 5540 5541 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5542 ++this_sack) { 5543 max_sack = after(sp[this_sack].end_seq, 5544 max_sack) ? 5545 sp[this_sack].end_seq : max_sack; 5546 } 5547 5548 if (TCP_SKB_CB(skb)->seq == max_sack) 5549 rst_seq_match = true; 5550 } 5551 5552 if (rst_seq_match) 5553 tcp_reset(sk); 5554 else { 5555 /* Disable TFO if RST is out-of-order 5556 * and no data has been received 5557 * for current active TFO socket 5558 */ 5559 if (tp->syn_fastopen && !tp->data_segs_in && 5560 sk->sk_state == TCP_ESTABLISHED) 5561 tcp_fastopen_active_disable(sk); 5562 tcp_send_challenge_ack(sk, skb); 5563 } 5564 goto discard; 5565 } 5566 5567 /* step 3: check security and precedence [ignored] */ 5568 5569 /* step 4: Check for a SYN 5570 * RFC 5961 4.2 : Send a challenge ack 5571 */ 5572 if (th->syn) { 5573 syn_challenge: 5574 if (syn_inerr) 5575 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5576 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5577 tcp_send_challenge_ack(sk, skb); 5578 goto discard; 5579 } 5580 5581 return true; 5582 5583 discard: 5584 tcp_drop(sk, skb); 5585 return false; 5586 } 5587 5588 /* 5589 * TCP receive function for the ESTABLISHED state. 5590 * 5591 * It is split into a fast path and a slow path. The fast path is 5592 * disabled when: 5593 * - A zero window was announced from us - zero window probing 5594 * is only handled properly in the slow path. 5595 * - Out of order segments arrived. 5596 * - Urgent data is expected. 5597 * - There is no buffer space left 5598 * - Unexpected TCP flags/window values/header lengths are received 5599 * (detected by checking the TCP header against pred_flags) 5600 * - Data is sent in both directions. Fast path only supports pure senders 5601 * or pure receivers (this means either the sequence number or the ack 5602 * value must stay constant) 5603 * - Unexpected TCP option. 5604 * 5605 * When these conditions are not satisfied it drops into a standard 5606 * receive procedure patterned after RFC793 to handle all cases. 5607 * The first three cases are guaranteed by proper pred_flags setting, 5608 * the rest is checked inline. Fast processing is turned on in 5609 * tcp_data_queue when everything is OK. 5610 */ 5611 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5612 { 5613 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5614 struct tcp_sock *tp = tcp_sk(sk); 5615 unsigned int len = skb->len; 5616 5617 /* TCP congestion window tracking */ 5618 trace_tcp_probe(sk, skb); 5619 5620 tcp_mstamp_refresh(tp); 5621 if (unlikely(!sk->sk_rx_dst)) 5622 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5623 /* 5624 * Header prediction. 5625 * The code loosely follows the one in the famous 5626 * "30 instruction TCP receive" Van Jacobson mail. 5627 * 5628 * Van's trick is to deposit buffers into socket queue 5629 * on a device interrupt, to call tcp_recv function 5630 * on the receive process context and checksum and copy 5631 * the buffer to user space. smart... 5632 * 5633 * Our current scheme is not silly either but we take the 5634 * extra cost of the net_bh soft interrupt processing... 5635 * We do checksum and copy also but from device to kernel. 5636 */ 5637 5638 tp->rx_opt.saw_tstamp = 0; 5639 5640 /* pred_flags is 0xS?10 << 16 + snd_wnd 5641 * if header_prediction is to be made 5642 * 'S' will always be tp->tcp_header_len >> 2 5643 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5644 * turn it off (when there are holes in the receive 5645 * space for instance) 5646 * PSH flag is ignored. 5647 */ 5648 5649 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5650 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5651 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5652 int tcp_header_len = tp->tcp_header_len; 5653 5654 /* Timestamp header prediction: tcp_header_len 5655 * is automatically equal to th->doff*4 due to pred_flags 5656 * match. 5657 */ 5658 5659 /* Check timestamp */ 5660 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5661 /* No? Slow path! */ 5662 if (!tcp_parse_aligned_timestamp(tp, th)) 5663 goto slow_path; 5664 5665 /* If PAWS failed, check it more carefully in slow path */ 5666 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5667 goto slow_path; 5668 5669 /* DO NOT update ts_recent here, if checksum fails 5670 * and timestamp was corrupted part, it will result 5671 * in a hung connection since we will drop all 5672 * future packets due to the PAWS test. 5673 */ 5674 } 5675 5676 if (len <= tcp_header_len) { 5677 /* Bulk data transfer: sender */ 5678 if (len == tcp_header_len) { 5679 /* Predicted packet is in window by definition. 5680 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5681 * Hence, check seq<=rcv_wup reduces to: 5682 */ 5683 if (tcp_header_len == 5684 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5685 tp->rcv_nxt == tp->rcv_wup) 5686 tcp_store_ts_recent(tp); 5687 5688 /* We know that such packets are checksummed 5689 * on entry. 5690 */ 5691 tcp_ack(sk, skb, 0); 5692 __kfree_skb(skb); 5693 tcp_data_snd_check(sk); 5694 /* When receiving pure ack in fast path, update 5695 * last ts ecr directly instead of calling 5696 * tcp_rcv_rtt_measure_ts() 5697 */ 5698 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5699 return; 5700 } else { /* Header too small */ 5701 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5702 goto discard; 5703 } 5704 } else { 5705 int eaten = 0; 5706 bool fragstolen = false; 5707 5708 if (tcp_checksum_complete(skb)) 5709 goto csum_error; 5710 5711 if ((int)skb->truesize > sk->sk_forward_alloc) 5712 goto step5; 5713 5714 /* Predicted packet is in window by definition. 5715 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5716 * Hence, check seq<=rcv_wup reduces to: 5717 */ 5718 if (tcp_header_len == 5719 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5720 tp->rcv_nxt == tp->rcv_wup) 5721 tcp_store_ts_recent(tp); 5722 5723 tcp_rcv_rtt_measure_ts(sk, skb); 5724 5725 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5726 5727 /* Bulk data transfer: receiver */ 5728 __skb_pull(skb, tcp_header_len); 5729 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5730 5731 tcp_event_data_recv(sk, skb); 5732 5733 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5734 /* Well, only one small jumplet in fast path... */ 5735 tcp_ack(sk, skb, FLAG_DATA); 5736 tcp_data_snd_check(sk); 5737 if (!inet_csk_ack_scheduled(sk)) 5738 goto no_ack; 5739 } 5740 5741 __tcp_ack_snd_check(sk, 0); 5742 no_ack: 5743 if (eaten) 5744 kfree_skb_partial(skb, fragstolen); 5745 tcp_data_ready(sk); 5746 return; 5747 } 5748 } 5749 5750 slow_path: 5751 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5752 goto csum_error; 5753 5754 if (!th->ack && !th->rst && !th->syn) 5755 goto discard; 5756 5757 /* 5758 * Standard slow path. 5759 */ 5760 5761 if (!tcp_validate_incoming(sk, skb, th, 1)) 5762 return; 5763 5764 step5: 5765 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5766 goto discard; 5767 5768 tcp_rcv_rtt_measure_ts(sk, skb); 5769 5770 /* Process urgent data. */ 5771 tcp_urg(sk, skb, th); 5772 5773 /* step 7: process the segment text */ 5774 tcp_data_queue(sk, skb); 5775 5776 tcp_data_snd_check(sk); 5777 tcp_ack_snd_check(sk); 5778 return; 5779 5780 csum_error: 5781 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5782 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5783 5784 discard: 5785 tcp_drop(sk, skb); 5786 } 5787 EXPORT_SYMBOL(tcp_rcv_established); 5788 5789 void tcp_init_transfer(struct sock *sk, int bpf_op) 5790 { 5791 struct inet_connection_sock *icsk = inet_csk(sk); 5792 struct tcp_sock *tp = tcp_sk(sk); 5793 5794 tcp_mtup_init(sk); 5795 icsk->icsk_af_ops->rebuild_header(sk); 5796 tcp_init_metrics(sk); 5797 5798 /* Initialize the congestion window to start the transfer. 5799 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5800 * retransmitted. In light of RFC6298 more aggressive 1sec 5801 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5802 * retransmission has occurred. 5803 */ 5804 if (tp->total_retrans > 1 && tp->undo_marker) 5805 tp->snd_cwnd = 1; 5806 else 5807 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5808 tp->snd_cwnd_stamp = tcp_jiffies32; 5809 5810 tcp_call_bpf(sk, bpf_op, 0, NULL); 5811 tcp_init_congestion_control(sk); 5812 tcp_init_buffer_space(sk); 5813 } 5814 5815 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5816 { 5817 struct tcp_sock *tp = tcp_sk(sk); 5818 struct inet_connection_sock *icsk = inet_csk(sk); 5819 5820 tcp_set_state(sk, TCP_ESTABLISHED); 5821 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5822 5823 if (skb) { 5824 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5825 security_inet_conn_established(sk, skb); 5826 sk_mark_napi_id(sk, skb); 5827 } 5828 5829 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5830 5831 /* Prevent spurious tcp_cwnd_restart() on first data 5832 * packet. 5833 */ 5834 tp->lsndtime = tcp_jiffies32; 5835 5836 if (sock_flag(sk, SOCK_KEEPOPEN)) 5837 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5838 5839 if (!tp->rx_opt.snd_wscale) 5840 __tcp_fast_path_on(tp, tp->snd_wnd); 5841 else 5842 tp->pred_flags = 0; 5843 } 5844 5845 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5846 struct tcp_fastopen_cookie *cookie) 5847 { 5848 struct tcp_sock *tp = tcp_sk(sk); 5849 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5850 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5851 bool syn_drop = false; 5852 5853 if (mss == tp->rx_opt.user_mss) { 5854 struct tcp_options_received opt; 5855 5856 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5857 tcp_clear_options(&opt); 5858 opt.user_mss = opt.mss_clamp = 0; 5859 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5860 mss = opt.mss_clamp; 5861 } 5862 5863 if (!tp->syn_fastopen) { 5864 /* Ignore an unsolicited cookie */ 5865 cookie->len = -1; 5866 } else if (tp->total_retrans) { 5867 /* SYN timed out and the SYN-ACK neither has a cookie nor 5868 * acknowledges data. Presumably the remote received only 5869 * the retransmitted (regular) SYNs: either the original 5870 * SYN-data or the corresponding SYN-ACK was dropped. 5871 */ 5872 syn_drop = (cookie->len < 0 && data); 5873 } else if (cookie->len < 0 && !tp->syn_data) { 5874 /* We requested a cookie but didn't get it. If we did not use 5875 * the (old) exp opt format then try so next time (try_exp=1). 5876 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5877 */ 5878 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5879 } 5880 5881 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5882 5883 if (data) { /* Retransmit unacked data in SYN */ 5884 if (tp->total_retrans) 5885 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 5886 else 5887 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 5888 skb_rbtree_walk_from(data) { 5889 if (__tcp_retransmit_skb(sk, data, 1)) 5890 break; 5891 } 5892 tcp_rearm_rto(sk); 5893 NET_INC_STATS(sock_net(sk), 5894 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5895 return true; 5896 } 5897 tp->syn_data_acked = tp->syn_data; 5898 if (tp->syn_data_acked) { 5899 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5900 /* SYN-data is counted as two separate packets in tcp_ack() */ 5901 if (tp->delivered > 1) 5902 --tp->delivered; 5903 } 5904 5905 tcp_fastopen_add_skb(sk, synack); 5906 5907 return false; 5908 } 5909 5910 static void smc_check_reset_syn(struct tcp_sock *tp) 5911 { 5912 #if IS_ENABLED(CONFIG_SMC) 5913 if (static_branch_unlikely(&tcp_have_smc)) { 5914 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5915 tp->syn_smc = 0; 5916 } 5917 #endif 5918 } 5919 5920 static void tcp_try_undo_spurious_syn(struct sock *sk) 5921 { 5922 struct tcp_sock *tp = tcp_sk(sk); 5923 u32 syn_stamp; 5924 5925 /* undo_marker is set when SYN or SYNACK times out. The timeout is 5926 * spurious if the ACK's timestamp option echo value matches the 5927 * original SYN timestamp. 5928 */ 5929 syn_stamp = tp->retrans_stamp; 5930 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 5931 syn_stamp == tp->rx_opt.rcv_tsecr) 5932 tp->undo_marker = 0; 5933 } 5934 5935 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5936 const struct tcphdr *th) 5937 { 5938 struct inet_connection_sock *icsk = inet_csk(sk); 5939 struct tcp_sock *tp = tcp_sk(sk); 5940 struct tcp_fastopen_cookie foc = { .len = -1 }; 5941 int saved_clamp = tp->rx_opt.mss_clamp; 5942 bool fastopen_fail; 5943 5944 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5945 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5946 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5947 5948 if (th->ack) { 5949 /* rfc793: 5950 * "If the state is SYN-SENT then 5951 * first check the ACK bit 5952 * If the ACK bit is set 5953 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5954 * a reset (unless the RST bit is set, if so drop 5955 * the segment and return)" 5956 */ 5957 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5958 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5959 /* Previous FIN/ACK or RST/ACK might be ignored. */ 5960 if (icsk->icsk_retransmits == 0) 5961 inet_csk_reset_xmit_timer(sk, 5962 ICSK_TIME_RETRANS, 5963 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 5964 goto reset_and_undo; 5965 } 5966 5967 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5968 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5969 tcp_time_stamp(tp))) { 5970 NET_INC_STATS(sock_net(sk), 5971 LINUX_MIB_PAWSACTIVEREJECTED); 5972 goto reset_and_undo; 5973 } 5974 5975 /* Now ACK is acceptable. 5976 * 5977 * "If the RST bit is set 5978 * If the ACK was acceptable then signal the user "error: 5979 * connection reset", drop the segment, enter CLOSED state, 5980 * delete TCB, and return." 5981 */ 5982 5983 if (th->rst) { 5984 tcp_reset(sk); 5985 goto discard; 5986 } 5987 5988 /* rfc793: 5989 * "fifth, if neither of the SYN or RST bits is set then 5990 * drop the segment and return." 5991 * 5992 * See note below! 5993 * --ANK(990513) 5994 */ 5995 if (!th->syn) 5996 goto discard_and_undo; 5997 5998 /* rfc793: 5999 * "If the SYN bit is on ... 6000 * are acceptable then ... 6001 * (our SYN has been ACKed), change the connection 6002 * state to ESTABLISHED..." 6003 */ 6004 6005 tcp_ecn_rcv_synack(tp, th); 6006 6007 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6008 tcp_try_undo_spurious_syn(sk); 6009 tcp_ack(sk, skb, FLAG_SLOWPATH); 6010 6011 /* Ok.. it's good. Set up sequence numbers and 6012 * move to established. 6013 */ 6014 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6015 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6016 6017 /* RFC1323: The window in SYN & SYN/ACK segments is 6018 * never scaled. 6019 */ 6020 tp->snd_wnd = ntohs(th->window); 6021 6022 if (!tp->rx_opt.wscale_ok) { 6023 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6024 tp->window_clamp = min(tp->window_clamp, 65535U); 6025 } 6026 6027 if (tp->rx_opt.saw_tstamp) { 6028 tp->rx_opt.tstamp_ok = 1; 6029 tp->tcp_header_len = 6030 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6031 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6032 tcp_store_ts_recent(tp); 6033 } else { 6034 tp->tcp_header_len = sizeof(struct tcphdr); 6035 } 6036 6037 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6038 tcp_initialize_rcv_mss(sk); 6039 6040 /* Remember, tcp_poll() does not lock socket! 6041 * Change state from SYN-SENT only after copied_seq 6042 * is initialized. */ 6043 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6044 6045 smc_check_reset_syn(tp); 6046 6047 smp_mb(); 6048 6049 tcp_finish_connect(sk, skb); 6050 6051 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6052 tcp_rcv_fastopen_synack(sk, skb, &foc); 6053 6054 if (!sock_flag(sk, SOCK_DEAD)) { 6055 sk->sk_state_change(sk); 6056 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6057 } 6058 if (fastopen_fail) 6059 return -1; 6060 if (sk->sk_write_pending || 6061 icsk->icsk_accept_queue.rskq_defer_accept || 6062 inet_csk_in_pingpong_mode(sk)) { 6063 /* Save one ACK. Data will be ready after 6064 * several ticks, if write_pending is set. 6065 * 6066 * It may be deleted, but with this feature tcpdumps 6067 * look so _wonderfully_ clever, that I was not able 6068 * to stand against the temptation 8) --ANK 6069 */ 6070 inet_csk_schedule_ack(sk); 6071 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6072 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6073 TCP_DELACK_MAX, TCP_RTO_MAX); 6074 6075 discard: 6076 tcp_drop(sk, skb); 6077 return 0; 6078 } else { 6079 tcp_send_ack(sk); 6080 } 6081 return -1; 6082 } 6083 6084 /* No ACK in the segment */ 6085 6086 if (th->rst) { 6087 /* rfc793: 6088 * "If the RST bit is set 6089 * 6090 * Otherwise (no ACK) drop the segment and return." 6091 */ 6092 6093 goto discard_and_undo; 6094 } 6095 6096 /* PAWS check. */ 6097 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6098 tcp_paws_reject(&tp->rx_opt, 0)) 6099 goto discard_and_undo; 6100 6101 if (th->syn) { 6102 /* We see SYN without ACK. It is attempt of 6103 * simultaneous connect with crossed SYNs. 6104 * Particularly, it can be connect to self. 6105 */ 6106 tcp_set_state(sk, TCP_SYN_RECV); 6107 6108 if (tp->rx_opt.saw_tstamp) { 6109 tp->rx_opt.tstamp_ok = 1; 6110 tcp_store_ts_recent(tp); 6111 tp->tcp_header_len = 6112 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6113 } else { 6114 tp->tcp_header_len = sizeof(struct tcphdr); 6115 } 6116 6117 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6118 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6119 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6120 6121 /* RFC1323: The window in SYN & SYN/ACK segments is 6122 * never scaled. 6123 */ 6124 tp->snd_wnd = ntohs(th->window); 6125 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6126 tp->max_window = tp->snd_wnd; 6127 6128 tcp_ecn_rcv_syn(tp, th); 6129 6130 tcp_mtup_init(sk); 6131 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6132 tcp_initialize_rcv_mss(sk); 6133 6134 tcp_send_synack(sk); 6135 #if 0 6136 /* Note, we could accept data and URG from this segment. 6137 * There are no obstacles to make this (except that we must 6138 * either change tcp_recvmsg() to prevent it from returning data 6139 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6140 * 6141 * However, if we ignore data in ACKless segments sometimes, 6142 * we have no reasons to accept it sometimes. 6143 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6144 * is not flawless. So, discard packet for sanity. 6145 * Uncomment this return to process the data. 6146 */ 6147 return -1; 6148 #else 6149 goto discard; 6150 #endif 6151 } 6152 /* "fifth, if neither of the SYN or RST bits is set then 6153 * drop the segment and return." 6154 */ 6155 6156 discard_and_undo: 6157 tcp_clear_options(&tp->rx_opt); 6158 tp->rx_opt.mss_clamp = saved_clamp; 6159 goto discard; 6160 6161 reset_and_undo: 6162 tcp_clear_options(&tp->rx_opt); 6163 tp->rx_opt.mss_clamp = saved_clamp; 6164 return 1; 6165 } 6166 6167 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6168 { 6169 struct request_sock *req; 6170 6171 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6172 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6173 */ 6174 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 6175 tcp_try_undo_loss(sk, false); 6176 6177 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6178 tcp_sk(sk)->retrans_stamp = 0; 6179 inet_csk(sk)->icsk_retransmits = 0; 6180 6181 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6182 * we no longer need req so release it. 6183 */ 6184 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6185 lockdep_sock_is_held(sk)); 6186 reqsk_fastopen_remove(sk, req, false); 6187 6188 /* Re-arm the timer because data may have been sent out. 6189 * This is similar to the regular data transmission case 6190 * when new data has just been ack'ed. 6191 * 6192 * (TFO) - we could try to be more aggressive and 6193 * retransmitting any data sooner based on when they 6194 * are sent out. 6195 */ 6196 tcp_rearm_rto(sk); 6197 } 6198 6199 /* 6200 * This function implements the receiving procedure of RFC 793 for 6201 * all states except ESTABLISHED and TIME_WAIT. 6202 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6203 * address independent. 6204 */ 6205 6206 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6207 { 6208 struct tcp_sock *tp = tcp_sk(sk); 6209 struct inet_connection_sock *icsk = inet_csk(sk); 6210 const struct tcphdr *th = tcp_hdr(skb); 6211 struct request_sock *req; 6212 int queued = 0; 6213 bool acceptable; 6214 6215 switch (sk->sk_state) { 6216 case TCP_CLOSE: 6217 goto discard; 6218 6219 case TCP_LISTEN: 6220 if (th->ack) 6221 return 1; 6222 6223 if (th->rst) 6224 goto discard; 6225 6226 if (th->syn) { 6227 if (th->fin) 6228 goto discard; 6229 /* It is possible that we process SYN packets from backlog, 6230 * so we need to make sure to disable BH and RCU right there. 6231 */ 6232 rcu_read_lock(); 6233 local_bh_disable(); 6234 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6235 local_bh_enable(); 6236 rcu_read_unlock(); 6237 6238 if (!acceptable) 6239 return 1; 6240 consume_skb(skb); 6241 return 0; 6242 } 6243 goto discard; 6244 6245 case TCP_SYN_SENT: 6246 tp->rx_opt.saw_tstamp = 0; 6247 tcp_mstamp_refresh(tp); 6248 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6249 if (queued >= 0) 6250 return queued; 6251 6252 /* Do step6 onward by hand. */ 6253 tcp_urg(sk, skb, th); 6254 __kfree_skb(skb); 6255 tcp_data_snd_check(sk); 6256 return 0; 6257 } 6258 6259 tcp_mstamp_refresh(tp); 6260 tp->rx_opt.saw_tstamp = 0; 6261 req = rcu_dereference_protected(tp->fastopen_rsk, 6262 lockdep_sock_is_held(sk)); 6263 if (req) { 6264 bool req_stolen; 6265 6266 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6267 sk->sk_state != TCP_FIN_WAIT1); 6268 6269 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6270 goto discard; 6271 } 6272 6273 if (!th->ack && !th->rst && !th->syn) 6274 goto discard; 6275 6276 if (!tcp_validate_incoming(sk, skb, th, 0)) 6277 return 0; 6278 6279 /* step 5: check the ACK field */ 6280 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6281 FLAG_UPDATE_TS_RECENT | 6282 FLAG_NO_CHALLENGE_ACK) > 0; 6283 6284 if (!acceptable) { 6285 if (sk->sk_state == TCP_SYN_RECV) 6286 return 1; /* send one RST */ 6287 tcp_send_challenge_ack(sk, skb); 6288 goto discard; 6289 } 6290 switch (sk->sk_state) { 6291 case TCP_SYN_RECV: 6292 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6293 if (!tp->srtt_us) 6294 tcp_synack_rtt_meas(sk, req); 6295 6296 if (req) { 6297 tcp_rcv_synrecv_state_fastopen(sk); 6298 } else { 6299 tcp_try_undo_spurious_syn(sk); 6300 tp->retrans_stamp = 0; 6301 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6302 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6303 } 6304 smp_mb(); 6305 tcp_set_state(sk, TCP_ESTABLISHED); 6306 sk->sk_state_change(sk); 6307 6308 /* Note, that this wakeup is only for marginal crossed SYN case. 6309 * Passively open sockets are not waked up, because 6310 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6311 */ 6312 if (sk->sk_socket) 6313 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6314 6315 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6316 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6317 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6318 6319 if (tp->rx_opt.tstamp_ok) 6320 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6321 6322 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6323 tcp_update_pacing_rate(sk); 6324 6325 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6326 tp->lsndtime = tcp_jiffies32; 6327 6328 tcp_initialize_rcv_mss(sk); 6329 tcp_fast_path_on(tp); 6330 break; 6331 6332 case TCP_FIN_WAIT1: { 6333 int tmo; 6334 6335 if (req) 6336 tcp_rcv_synrecv_state_fastopen(sk); 6337 6338 if (tp->snd_una != tp->write_seq) 6339 break; 6340 6341 tcp_set_state(sk, TCP_FIN_WAIT2); 6342 sk->sk_shutdown |= SEND_SHUTDOWN; 6343 6344 sk_dst_confirm(sk); 6345 6346 if (!sock_flag(sk, SOCK_DEAD)) { 6347 /* Wake up lingering close() */ 6348 sk->sk_state_change(sk); 6349 break; 6350 } 6351 6352 if (tp->linger2 < 0) { 6353 tcp_done(sk); 6354 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6355 return 1; 6356 } 6357 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6358 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6359 /* Receive out of order FIN after close() */ 6360 if (tp->syn_fastopen && th->fin) 6361 tcp_fastopen_active_disable(sk); 6362 tcp_done(sk); 6363 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6364 return 1; 6365 } 6366 6367 tmo = tcp_fin_time(sk); 6368 if (tmo > TCP_TIMEWAIT_LEN) { 6369 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6370 } else if (th->fin || sock_owned_by_user(sk)) { 6371 /* Bad case. We could lose such FIN otherwise. 6372 * It is not a big problem, but it looks confusing 6373 * and not so rare event. We still can lose it now, 6374 * if it spins in bh_lock_sock(), but it is really 6375 * marginal case. 6376 */ 6377 inet_csk_reset_keepalive_timer(sk, tmo); 6378 } else { 6379 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6380 goto discard; 6381 } 6382 break; 6383 } 6384 6385 case TCP_CLOSING: 6386 if (tp->snd_una == tp->write_seq) { 6387 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6388 goto discard; 6389 } 6390 break; 6391 6392 case TCP_LAST_ACK: 6393 if (tp->snd_una == tp->write_seq) { 6394 tcp_update_metrics(sk); 6395 tcp_done(sk); 6396 goto discard; 6397 } 6398 break; 6399 } 6400 6401 /* step 6: check the URG bit */ 6402 tcp_urg(sk, skb, th); 6403 6404 /* step 7: process the segment text */ 6405 switch (sk->sk_state) { 6406 case TCP_CLOSE_WAIT: 6407 case TCP_CLOSING: 6408 case TCP_LAST_ACK: 6409 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6410 if (sk_is_mptcp(sk)) 6411 mptcp_incoming_options(sk, skb, &tp->rx_opt); 6412 break; 6413 } 6414 fallthrough; 6415 case TCP_FIN_WAIT1: 6416 case TCP_FIN_WAIT2: 6417 /* RFC 793 says to queue data in these states, 6418 * RFC 1122 says we MUST send a reset. 6419 * BSD 4.4 also does reset. 6420 */ 6421 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6422 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6423 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6424 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6425 tcp_reset(sk); 6426 return 1; 6427 } 6428 } 6429 fallthrough; 6430 case TCP_ESTABLISHED: 6431 tcp_data_queue(sk, skb); 6432 queued = 1; 6433 break; 6434 } 6435 6436 /* tcp_data could move socket to TIME-WAIT */ 6437 if (sk->sk_state != TCP_CLOSE) { 6438 tcp_data_snd_check(sk); 6439 tcp_ack_snd_check(sk); 6440 } 6441 6442 if (!queued) { 6443 discard: 6444 tcp_drop(sk, skb); 6445 } 6446 return 0; 6447 } 6448 EXPORT_SYMBOL(tcp_rcv_state_process); 6449 6450 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6451 { 6452 struct inet_request_sock *ireq = inet_rsk(req); 6453 6454 if (family == AF_INET) 6455 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6456 &ireq->ir_rmt_addr, port); 6457 #if IS_ENABLED(CONFIG_IPV6) 6458 else if (family == AF_INET6) 6459 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6460 &ireq->ir_v6_rmt_addr, port); 6461 #endif 6462 } 6463 6464 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6465 * 6466 * If we receive a SYN packet with these bits set, it means a 6467 * network is playing bad games with TOS bits. In order to 6468 * avoid possible false congestion notifications, we disable 6469 * TCP ECN negotiation. 6470 * 6471 * Exception: tcp_ca wants ECN. This is required for DCTCP 6472 * congestion control: Linux DCTCP asserts ECT on all packets, 6473 * including SYN, which is most optimal solution; however, 6474 * others, such as FreeBSD do not. 6475 * 6476 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6477 * set, indicating the use of a future TCP extension (such as AccECN). See 6478 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6479 * extensions. 6480 */ 6481 static void tcp_ecn_create_request(struct request_sock *req, 6482 const struct sk_buff *skb, 6483 const struct sock *listen_sk, 6484 const struct dst_entry *dst) 6485 { 6486 const struct tcphdr *th = tcp_hdr(skb); 6487 const struct net *net = sock_net(listen_sk); 6488 bool th_ecn = th->ece && th->cwr; 6489 bool ect, ecn_ok; 6490 u32 ecn_ok_dst; 6491 6492 if (!th_ecn) 6493 return; 6494 6495 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6496 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6497 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6498 6499 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6500 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6501 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6502 inet_rsk(req)->ecn_ok = 1; 6503 } 6504 6505 static void tcp_openreq_init(struct request_sock *req, 6506 const struct tcp_options_received *rx_opt, 6507 struct sk_buff *skb, const struct sock *sk) 6508 { 6509 struct inet_request_sock *ireq = inet_rsk(req); 6510 6511 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6512 req->cookie_ts = 0; 6513 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6514 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6515 tcp_rsk(req)->snt_synack = 0; 6516 tcp_rsk(req)->last_oow_ack_time = 0; 6517 req->mss = rx_opt->mss_clamp; 6518 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6519 ireq->tstamp_ok = rx_opt->tstamp_ok; 6520 ireq->sack_ok = rx_opt->sack_ok; 6521 ireq->snd_wscale = rx_opt->snd_wscale; 6522 ireq->wscale_ok = rx_opt->wscale_ok; 6523 ireq->acked = 0; 6524 ireq->ecn_ok = 0; 6525 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6526 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6527 ireq->ir_mark = inet_request_mark(sk, skb); 6528 #if IS_ENABLED(CONFIG_SMC) 6529 ireq->smc_ok = rx_opt->smc_ok; 6530 #endif 6531 } 6532 6533 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6534 struct sock *sk_listener, 6535 bool attach_listener) 6536 { 6537 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6538 attach_listener); 6539 6540 if (req) { 6541 struct inet_request_sock *ireq = inet_rsk(req); 6542 6543 ireq->ireq_opt = NULL; 6544 #if IS_ENABLED(CONFIG_IPV6) 6545 ireq->pktopts = NULL; 6546 #endif 6547 atomic64_set(&ireq->ir_cookie, 0); 6548 ireq->ireq_state = TCP_NEW_SYN_RECV; 6549 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6550 ireq->ireq_family = sk_listener->sk_family; 6551 } 6552 6553 return req; 6554 } 6555 EXPORT_SYMBOL(inet_reqsk_alloc); 6556 6557 /* 6558 * Return true if a syncookie should be sent 6559 */ 6560 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6561 { 6562 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6563 const char *msg = "Dropping request"; 6564 bool want_cookie = false; 6565 struct net *net = sock_net(sk); 6566 6567 #ifdef CONFIG_SYN_COOKIES 6568 if (net->ipv4.sysctl_tcp_syncookies) { 6569 msg = "Sending cookies"; 6570 want_cookie = true; 6571 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6572 } else 6573 #endif 6574 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6575 6576 if (!queue->synflood_warned && 6577 net->ipv4.sysctl_tcp_syncookies != 2 && 6578 xchg(&queue->synflood_warned, 1) == 0) 6579 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6580 proto, sk->sk_num, msg); 6581 6582 return want_cookie; 6583 } 6584 6585 static void tcp_reqsk_record_syn(const struct sock *sk, 6586 struct request_sock *req, 6587 const struct sk_buff *skb) 6588 { 6589 if (tcp_sk(sk)->save_syn) { 6590 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6591 u32 *copy; 6592 6593 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6594 if (copy) { 6595 copy[0] = len; 6596 memcpy(©[1], skb_network_header(skb), len); 6597 req->saved_syn = copy; 6598 } 6599 } 6600 } 6601 6602 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6603 * used for SYN cookie generation. 6604 */ 6605 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6606 const struct tcp_request_sock_ops *af_ops, 6607 struct sock *sk, struct tcphdr *th) 6608 { 6609 struct tcp_sock *tp = tcp_sk(sk); 6610 u16 mss; 6611 6612 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 && 6613 !inet_csk_reqsk_queue_is_full(sk)) 6614 return 0; 6615 6616 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6617 return 0; 6618 6619 if (sk_acceptq_is_full(sk)) { 6620 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6621 return 0; 6622 } 6623 6624 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6625 if (!mss) 6626 mss = af_ops->mss_clamp; 6627 6628 return mss; 6629 } 6630 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6631 6632 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6633 const struct tcp_request_sock_ops *af_ops, 6634 struct sock *sk, struct sk_buff *skb) 6635 { 6636 struct tcp_fastopen_cookie foc = { .len = -1 }; 6637 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6638 struct tcp_options_received tmp_opt; 6639 struct tcp_sock *tp = tcp_sk(sk); 6640 struct net *net = sock_net(sk); 6641 struct sock *fastopen_sk = NULL; 6642 struct request_sock *req; 6643 bool want_cookie = false; 6644 struct dst_entry *dst; 6645 struct flowi fl; 6646 6647 /* TW buckets are converted to open requests without 6648 * limitations, they conserve resources and peer is 6649 * evidently real one. 6650 */ 6651 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6652 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6653 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6654 if (!want_cookie) 6655 goto drop; 6656 } 6657 6658 if (sk_acceptq_is_full(sk)) { 6659 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6660 goto drop; 6661 } 6662 6663 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6664 if (!req) 6665 goto drop; 6666 6667 tcp_rsk(req)->af_specific = af_ops; 6668 tcp_rsk(req)->ts_off = 0; 6669 #if IS_ENABLED(CONFIG_MPTCP) 6670 tcp_rsk(req)->is_mptcp = 0; 6671 #endif 6672 6673 tcp_clear_options(&tmp_opt); 6674 tmp_opt.mss_clamp = af_ops->mss_clamp; 6675 tmp_opt.user_mss = tp->rx_opt.user_mss; 6676 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6677 want_cookie ? NULL : &foc); 6678 6679 if (want_cookie && !tmp_opt.saw_tstamp) 6680 tcp_clear_options(&tmp_opt); 6681 6682 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6683 tmp_opt.smc_ok = 0; 6684 6685 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6686 tcp_openreq_init(req, &tmp_opt, skb, sk); 6687 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6688 6689 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6690 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6691 6692 af_ops->init_req(req, sk, skb); 6693 6694 if (IS_ENABLED(CONFIG_MPTCP) && want_cookie) 6695 tcp_rsk(req)->is_mptcp = 0; 6696 6697 if (security_inet_conn_request(sk, skb, req)) 6698 goto drop_and_free; 6699 6700 if (tmp_opt.tstamp_ok) 6701 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6702 6703 dst = af_ops->route_req(sk, &fl, req); 6704 if (!dst) 6705 goto drop_and_free; 6706 6707 if (!want_cookie && !isn) { 6708 /* Kill the following clause, if you dislike this way. */ 6709 if (!net->ipv4.sysctl_tcp_syncookies && 6710 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6711 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6712 !tcp_peer_is_proven(req, dst)) { 6713 /* Without syncookies last quarter of 6714 * backlog is filled with destinations, 6715 * proven to be alive. 6716 * It means that we continue to communicate 6717 * to destinations, already remembered 6718 * to the moment of synflood. 6719 */ 6720 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6721 rsk_ops->family); 6722 goto drop_and_release; 6723 } 6724 6725 isn = af_ops->init_seq(skb); 6726 } 6727 6728 tcp_ecn_create_request(req, skb, sk, dst); 6729 6730 if (want_cookie) { 6731 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6732 req->cookie_ts = tmp_opt.tstamp_ok; 6733 if (!tmp_opt.tstamp_ok) 6734 inet_rsk(req)->ecn_ok = 0; 6735 } 6736 6737 tcp_rsk(req)->snt_isn = isn; 6738 tcp_rsk(req)->txhash = net_tx_rndhash(); 6739 tcp_openreq_init_rwin(req, sk, dst); 6740 sk_rx_queue_set(req_to_sk(req), skb); 6741 if (!want_cookie) { 6742 tcp_reqsk_record_syn(sk, req, skb); 6743 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6744 } 6745 if (fastopen_sk) { 6746 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6747 &foc, TCP_SYNACK_FASTOPEN); 6748 /* Add the child socket directly into the accept queue */ 6749 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6750 reqsk_fastopen_remove(fastopen_sk, req, false); 6751 bh_unlock_sock(fastopen_sk); 6752 sock_put(fastopen_sk); 6753 goto drop_and_free; 6754 } 6755 sk->sk_data_ready(sk); 6756 bh_unlock_sock(fastopen_sk); 6757 sock_put(fastopen_sk); 6758 } else { 6759 tcp_rsk(req)->tfo_listener = false; 6760 if (!want_cookie) 6761 inet_csk_reqsk_queue_hash_add(sk, req, 6762 tcp_timeout_init((struct sock *)req)); 6763 af_ops->send_synack(sk, dst, &fl, req, &foc, 6764 !want_cookie ? TCP_SYNACK_NORMAL : 6765 TCP_SYNACK_COOKIE); 6766 if (want_cookie) { 6767 reqsk_free(req); 6768 return 0; 6769 } 6770 } 6771 reqsk_put(req); 6772 return 0; 6773 6774 drop_and_release: 6775 dst_release(dst); 6776 drop_and_free: 6777 __reqsk_free(req); 6778 drop: 6779 tcp_listendrop(sk); 6780 return 0; 6781 } 6782 EXPORT_SYMBOL(tcp_conn_request); 6783