1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly; 83 int sysctl_tcp_max_reordering __read_mostly = 300; 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 /* rfc5961 challenge ack rate limiting */ 90 int sysctl_tcp_challenge_ack_limit = 1000; 91 92 int sysctl_tcp_stdurg __read_mostly; 93 int sysctl_tcp_rfc1337 __read_mostly; 94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 95 int sysctl_tcp_frto __read_mostly = 2; 96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 97 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 98 int sysctl_tcp_early_retrans __read_mostly = 3; 99 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 100 101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 107 #define FLAG_ECE 0x40 /* ECE in this ACK */ 108 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 115 116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 120 121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 123 124 #define REXMIT_NONE 0 /* no loss recovery to do */ 125 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 126 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 127 128 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 129 unsigned int len) 130 { 131 static bool __once __read_mostly; 132 133 if (!__once) { 134 struct net_device *dev; 135 136 __once = true; 137 138 rcu_read_lock(); 139 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 140 if (!dev || len >= dev->mtu) 141 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 142 dev ? dev->name : "Unknown driver"); 143 rcu_read_unlock(); 144 } 145 } 146 147 /* Adapt the MSS value used to make delayed ack decision to the 148 * real world. 149 */ 150 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 151 { 152 struct inet_connection_sock *icsk = inet_csk(sk); 153 const unsigned int lss = icsk->icsk_ack.last_seg_size; 154 unsigned int len; 155 156 icsk->icsk_ack.last_seg_size = 0; 157 158 /* skb->len may jitter because of SACKs, even if peer 159 * sends good full-sized frames. 160 */ 161 len = skb_shinfo(skb)->gso_size ? : skb->len; 162 if (len >= icsk->icsk_ack.rcv_mss) { 163 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 164 tcp_sk(sk)->advmss); 165 /* Account for possibly-removed options */ 166 if (unlikely(len > icsk->icsk_ack.rcv_mss + 167 MAX_TCP_OPTION_SPACE)) 168 tcp_gro_dev_warn(sk, skb, len); 169 } else { 170 /* Otherwise, we make more careful check taking into account, 171 * that SACKs block is variable. 172 * 173 * "len" is invariant segment length, including TCP header. 174 */ 175 len += skb->data - skb_transport_header(skb); 176 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 177 /* If PSH is not set, packet should be 178 * full sized, provided peer TCP is not badly broken. 179 * This observation (if it is correct 8)) allows 180 * to handle super-low mtu links fairly. 181 */ 182 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 183 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 184 /* Subtract also invariant (if peer is RFC compliant), 185 * tcp header plus fixed timestamp option length. 186 * Resulting "len" is MSS free of SACK jitter. 187 */ 188 len -= tcp_sk(sk)->tcp_header_len; 189 icsk->icsk_ack.last_seg_size = len; 190 if (len == lss) { 191 icsk->icsk_ack.rcv_mss = len; 192 return; 193 } 194 } 195 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 198 } 199 } 200 201 static void tcp_incr_quickack(struct sock *sk) 202 { 203 struct inet_connection_sock *icsk = inet_csk(sk); 204 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 205 206 if (quickacks == 0) 207 quickacks = 2; 208 if (quickacks > icsk->icsk_ack.quick) 209 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 210 } 211 212 static void tcp_enter_quickack_mode(struct sock *sk) 213 { 214 struct inet_connection_sock *icsk = inet_csk(sk); 215 tcp_incr_quickack(sk); 216 icsk->icsk_ack.pingpong = 0; 217 icsk->icsk_ack.ato = TCP_ATO_MIN; 218 } 219 220 /* Send ACKs quickly, if "quick" count is not exhausted 221 * and the session is not interactive. 222 */ 223 224 static bool tcp_in_quickack_mode(struct sock *sk) 225 { 226 const struct inet_connection_sock *icsk = inet_csk(sk); 227 const struct dst_entry *dst = __sk_dst_get(sk); 228 229 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 230 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 231 } 232 233 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 234 { 235 if (tp->ecn_flags & TCP_ECN_OK) 236 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 237 } 238 239 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 240 { 241 if (tcp_hdr(skb)->cwr) 242 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 243 } 244 245 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 246 { 247 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 248 } 249 250 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 251 { 252 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 253 case INET_ECN_NOT_ECT: 254 /* Funny extension: if ECT is not set on a segment, 255 * and we already seen ECT on a previous segment, 256 * it is probably a retransmit. 257 */ 258 if (tp->ecn_flags & TCP_ECN_SEEN) 259 tcp_enter_quickack_mode((struct sock *)tp); 260 break; 261 case INET_ECN_CE: 262 if (tcp_ca_needs_ecn((struct sock *)tp)) 263 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 264 265 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 266 /* Better not delay acks, sender can have a very low cwnd */ 267 tcp_enter_quickack_mode((struct sock *)tp); 268 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 269 } 270 tp->ecn_flags |= TCP_ECN_SEEN; 271 break; 272 default: 273 if (tcp_ca_needs_ecn((struct sock *)tp)) 274 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 275 tp->ecn_flags |= TCP_ECN_SEEN; 276 break; 277 } 278 } 279 280 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 281 { 282 if (tp->ecn_flags & TCP_ECN_OK) 283 __tcp_ecn_check_ce(tp, skb); 284 } 285 286 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 287 { 288 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 289 tp->ecn_flags &= ~TCP_ECN_OK; 290 } 291 292 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 293 { 294 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 295 tp->ecn_flags &= ~TCP_ECN_OK; 296 } 297 298 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 299 { 300 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 301 return true; 302 return false; 303 } 304 305 /* Buffer size and advertised window tuning. 306 * 307 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 308 */ 309 310 static void tcp_sndbuf_expand(struct sock *sk) 311 { 312 const struct tcp_sock *tp = tcp_sk(sk); 313 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 314 int sndmem, per_mss; 315 u32 nr_segs; 316 317 /* Worst case is non GSO/TSO : each frame consumes one skb 318 * and skb->head is kmalloced using power of two area of memory 319 */ 320 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 321 MAX_TCP_HEADER + 322 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 323 324 per_mss = roundup_pow_of_two(per_mss) + 325 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 326 327 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 328 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 329 330 /* Fast Recovery (RFC 5681 3.2) : 331 * Cubic needs 1.7 factor, rounded to 2 to include 332 * extra cushion (application might react slowly to POLLOUT) 333 */ 334 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 335 sndmem *= nr_segs * per_mss; 336 337 if (sk->sk_sndbuf < sndmem) 338 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 339 } 340 341 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 342 * 343 * All tcp_full_space() is split to two parts: "network" buffer, allocated 344 * forward and advertised in receiver window (tp->rcv_wnd) and 345 * "application buffer", required to isolate scheduling/application 346 * latencies from network. 347 * window_clamp is maximal advertised window. It can be less than 348 * tcp_full_space(), in this case tcp_full_space() - window_clamp 349 * is reserved for "application" buffer. The less window_clamp is 350 * the smoother our behaviour from viewpoint of network, but the lower 351 * throughput and the higher sensitivity of the connection to losses. 8) 352 * 353 * rcv_ssthresh is more strict window_clamp used at "slow start" 354 * phase to predict further behaviour of this connection. 355 * It is used for two goals: 356 * - to enforce header prediction at sender, even when application 357 * requires some significant "application buffer". It is check #1. 358 * - to prevent pruning of receive queue because of misprediction 359 * of receiver window. Check #2. 360 * 361 * The scheme does not work when sender sends good segments opening 362 * window and then starts to feed us spaghetti. But it should work 363 * in common situations. Otherwise, we have to rely on queue collapsing. 364 */ 365 366 /* Slow part of check#2. */ 367 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 368 { 369 struct tcp_sock *tp = tcp_sk(sk); 370 /* Optimize this! */ 371 int truesize = tcp_win_from_space(skb->truesize) >> 1; 372 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 373 374 while (tp->rcv_ssthresh <= window) { 375 if (truesize <= skb->len) 376 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 377 378 truesize >>= 1; 379 window >>= 1; 380 } 381 return 0; 382 } 383 384 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 385 { 386 struct tcp_sock *tp = tcp_sk(sk); 387 388 /* Check #1 */ 389 if (tp->rcv_ssthresh < tp->window_clamp && 390 (int)tp->rcv_ssthresh < tcp_space(sk) && 391 !tcp_under_memory_pressure(sk)) { 392 int incr; 393 394 /* Check #2. Increase window, if skb with such overhead 395 * will fit to rcvbuf in future. 396 */ 397 if (tcp_win_from_space(skb->truesize) <= skb->len) 398 incr = 2 * tp->advmss; 399 else 400 incr = __tcp_grow_window(sk, skb); 401 402 if (incr) { 403 incr = max_t(int, incr, 2 * skb->len); 404 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 405 tp->window_clamp); 406 inet_csk(sk)->icsk_ack.quick |= 1; 407 } 408 } 409 } 410 411 /* 3. Tuning rcvbuf, when connection enters established state. */ 412 static void tcp_fixup_rcvbuf(struct sock *sk) 413 { 414 u32 mss = tcp_sk(sk)->advmss; 415 int rcvmem; 416 417 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 418 tcp_default_init_rwnd(mss); 419 420 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 421 * Allow enough cushion so that sender is not limited by our window 422 */ 423 if (sysctl_tcp_moderate_rcvbuf) 424 rcvmem <<= 2; 425 426 if (sk->sk_rcvbuf < rcvmem) 427 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 428 } 429 430 /* 4. Try to fixup all. It is made immediately after connection enters 431 * established state. 432 */ 433 void tcp_init_buffer_space(struct sock *sk) 434 { 435 struct tcp_sock *tp = tcp_sk(sk); 436 int maxwin; 437 438 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 439 tcp_fixup_rcvbuf(sk); 440 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 441 tcp_sndbuf_expand(sk); 442 443 tp->rcvq_space.space = tp->rcv_wnd; 444 skb_mstamp_get(&tp->tcp_mstamp); 445 tp->rcvq_space.time = tp->tcp_mstamp; 446 tp->rcvq_space.seq = tp->copied_seq; 447 448 maxwin = tcp_full_space(sk); 449 450 if (tp->window_clamp >= maxwin) { 451 tp->window_clamp = maxwin; 452 453 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 454 tp->window_clamp = max(maxwin - 455 (maxwin >> sysctl_tcp_app_win), 456 4 * tp->advmss); 457 } 458 459 /* Force reservation of one segment. */ 460 if (sysctl_tcp_app_win && 461 tp->window_clamp > 2 * tp->advmss && 462 tp->window_clamp + tp->advmss > maxwin) 463 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 464 465 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 466 tp->snd_cwnd_stamp = tcp_time_stamp; 467 } 468 469 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 470 static void tcp_clamp_window(struct sock *sk) 471 { 472 struct tcp_sock *tp = tcp_sk(sk); 473 struct inet_connection_sock *icsk = inet_csk(sk); 474 475 icsk->icsk_ack.quick = 0; 476 477 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 478 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 479 !tcp_under_memory_pressure(sk) && 480 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 481 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 482 sysctl_tcp_rmem[2]); 483 } 484 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 485 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 486 } 487 488 /* Initialize RCV_MSS value. 489 * RCV_MSS is an our guess about MSS used by the peer. 490 * We haven't any direct information about the MSS. 491 * It's better to underestimate the RCV_MSS rather than overestimate. 492 * Overestimations make us ACKing less frequently than needed. 493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 494 */ 495 void tcp_initialize_rcv_mss(struct sock *sk) 496 { 497 const struct tcp_sock *tp = tcp_sk(sk); 498 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 499 500 hint = min(hint, tp->rcv_wnd / 2); 501 hint = min(hint, TCP_MSS_DEFAULT); 502 hint = max(hint, TCP_MIN_MSS); 503 504 inet_csk(sk)->icsk_ack.rcv_mss = hint; 505 } 506 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 507 508 /* Receiver "autotuning" code. 509 * 510 * The algorithm for RTT estimation w/o timestamps is based on 511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 512 * <http://public.lanl.gov/radiant/pubs.html#DRS> 513 * 514 * More detail on this code can be found at 515 * <http://staff.psc.edu/jheffner/>, 516 * though this reference is out of date. A new paper 517 * is pending. 518 */ 519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 520 { 521 u32 new_sample = tp->rcv_rtt_est.rtt_us; 522 long m = sample; 523 524 if (m == 0) 525 m = 1; 526 527 if (new_sample != 0) { 528 /* If we sample in larger samples in the non-timestamp 529 * case, we could grossly overestimate the RTT especially 530 * with chatty applications or bulk transfer apps which 531 * are stalled on filesystem I/O. 532 * 533 * Also, since we are only going for a minimum in the 534 * non-timestamp case, we do not smooth things out 535 * else with timestamps disabled convergence takes too 536 * long. 537 */ 538 if (!win_dep) { 539 m -= (new_sample >> 3); 540 new_sample += m; 541 } else { 542 m <<= 3; 543 if (m < new_sample) 544 new_sample = m; 545 } 546 } else { 547 /* No previous measure. */ 548 new_sample = m << 3; 549 } 550 551 tp->rcv_rtt_est.rtt_us = new_sample; 552 } 553 554 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 555 { 556 u32 delta_us; 557 558 if (tp->rcv_rtt_est.time.v64 == 0) 559 goto new_measure; 560 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 561 return; 562 delta_us = skb_mstamp_us_delta(&tp->tcp_mstamp, &tp->rcv_rtt_est.time); 563 tcp_rcv_rtt_update(tp, delta_us, 1); 564 565 new_measure: 566 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 567 tp->rcv_rtt_est.time = tp->tcp_mstamp; 568 } 569 570 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 571 const struct sk_buff *skb) 572 { 573 struct tcp_sock *tp = tcp_sk(sk); 574 if (tp->rx_opt.rcv_tsecr && 575 (TCP_SKB_CB(skb)->end_seq - 576 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 577 tcp_rcv_rtt_update(tp, 578 jiffies_to_usecs(tcp_time_stamp - 579 tp->rx_opt.rcv_tsecr), 580 0); 581 } 582 583 /* 584 * This function should be called every time data is copied to user space. 585 * It calculates the appropriate TCP receive buffer space. 586 */ 587 void tcp_rcv_space_adjust(struct sock *sk) 588 { 589 struct tcp_sock *tp = tcp_sk(sk); 590 int time; 591 int copied; 592 593 time = skb_mstamp_us_delta(&tp->tcp_mstamp, &tp->rcvq_space.time); 594 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 595 return; 596 597 /* Number of bytes copied to user in last RTT */ 598 copied = tp->copied_seq - tp->rcvq_space.seq; 599 if (copied <= tp->rcvq_space.space) 600 goto new_measure; 601 602 /* A bit of theory : 603 * copied = bytes received in previous RTT, our base window 604 * To cope with packet losses, we need a 2x factor 605 * To cope with slow start, and sender growing its cwin by 100 % 606 * every RTT, we need a 4x factor, because the ACK we are sending 607 * now is for the next RTT, not the current one : 608 * <prev RTT . ><current RTT .. ><next RTT .... > 609 */ 610 611 if (sysctl_tcp_moderate_rcvbuf && 612 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 613 int rcvwin, rcvmem, rcvbuf; 614 615 /* minimal window to cope with packet losses, assuming 616 * steady state. Add some cushion because of small variations. 617 */ 618 rcvwin = (copied << 1) + 16 * tp->advmss; 619 620 /* If rate increased by 25%, 621 * assume slow start, rcvwin = 3 * copied 622 * If rate increased by 50%, 623 * assume sender can use 2x growth, rcvwin = 4 * copied 624 */ 625 if (copied >= 626 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 627 if (copied >= 628 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 629 rcvwin <<= 1; 630 else 631 rcvwin += (rcvwin >> 1); 632 } 633 634 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 635 while (tcp_win_from_space(rcvmem) < tp->advmss) 636 rcvmem += 128; 637 638 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 639 if (rcvbuf > sk->sk_rcvbuf) { 640 sk->sk_rcvbuf = rcvbuf; 641 642 /* Make the window clamp follow along. */ 643 tp->window_clamp = rcvwin; 644 } 645 } 646 tp->rcvq_space.space = copied; 647 648 new_measure: 649 tp->rcvq_space.seq = tp->copied_seq; 650 tp->rcvq_space.time = tp->tcp_mstamp; 651 } 652 653 /* There is something which you must keep in mind when you analyze the 654 * behavior of the tp->ato delayed ack timeout interval. When a 655 * connection starts up, we want to ack as quickly as possible. The 656 * problem is that "good" TCP's do slow start at the beginning of data 657 * transmission. The means that until we send the first few ACK's the 658 * sender will sit on his end and only queue most of his data, because 659 * he can only send snd_cwnd unacked packets at any given time. For 660 * each ACK we send, he increments snd_cwnd and transmits more of his 661 * queue. -DaveM 662 */ 663 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 664 { 665 struct tcp_sock *tp = tcp_sk(sk); 666 struct inet_connection_sock *icsk = inet_csk(sk); 667 u32 now; 668 669 inet_csk_schedule_ack(sk); 670 671 tcp_measure_rcv_mss(sk, skb); 672 673 tcp_rcv_rtt_measure(tp); 674 675 now = tcp_time_stamp; 676 677 if (!icsk->icsk_ack.ato) { 678 /* The _first_ data packet received, initialize 679 * delayed ACK engine. 680 */ 681 tcp_incr_quickack(sk); 682 icsk->icsk_ack.ato = TCP_ATO_MIN; 683 } else { 684 int m = now - icsk->icsk_ack.lrcvtime; 685 686 if (m <= TCP_ATO_MIN / 2) { 687 /* The fastest case is the first. */ 688 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 689 } else if (m < icsk->icsk_ack.ato) { 690 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 691 if (icsk->icsk_ack.ato > icsk->icsk_rto) 692 icsk->icsk_ack.ato = icsk->icsk_rto; 693 } else if (m > icsk->icsk_rto) { 694 /* Too long gap. Apparently sender failed to 695 * restart window, so that we send ACKs quickly. 696 */ 697 tcp_incr_quickack(sk); 698 sk_mem_reclaim(sk); 699 } 700 } 701 icsk->icsk_ack.lrcvtime = now; 702 703 tcp_ecn_check_ce(tp, skb); 704 705 if (skb->len >= 128) 706 tcp_grow_window(sk, skb); 707 } 708 709 /* Called to compute a smoothed rtt estimate. The data fed to this 710 * routine either comes from timestamps, or from segments that were 711 * known _not_ to have been retransmitted [see Karn/Partridge 712 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 713 * piece by Van Jacobson. 714 * NOTE: the next three routines used to be one big routine. 715 * To save cycles in the RFC 1323 implementation it was better to break 716 * it up into three procedures. -- erics 717 */ 718 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 719 { 720 struct tcp_sock *tp = tcp_sk(sk); 721 long m = mrtt_us; /* RTT */ 722 u32 srtt = tp->srtt_us; 723 724 /* The following amusing code comes from Jacobson's 725 * article in SIGCOMM '88. Note that rtt and mdev 726 * are scaled versions of rtt and mean deviation. 727 * This is designed to be as fast as possible 728 * m stands for "measurement". 729 * 730 * On a 1990 paper the rto value is changed to: 731 * RTO = rtt + 4 * mdev 732 * 733 * Funny. This algorithm seems to be very broken. 734 * These formulae increase RTO, when it should be decreased, increase 735 * too slowly, when it should be increased quickly, decrease too quickly 736 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 737 * does not matter how to _calculate_ it. Seems, it was trap 738 * that VJ failed to avoid. 8) 739 */ 740 if (srtt != 0) { 741 m -= (srtt >> 3); /* m is now error in rtt est */ 742 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 743 if (m < 0) { 744 m = -m; /* m is now abs(error) */ 745 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 746 /* This is similar to one of Eifel findings. 747 * Eifel blocks mdev updates when rtt decreases. 748 * This solution is a bit different: we use finer gain 749 * for mdev in this case (alpha*beta). 750 * Like Eifel it also prevents growth of rto, 751 * but also it limits too fast rto decreases, 752 * happening in pure Eifel. 753 */ 754 if (m > 0) 755 m >>= 3; 756 } else { 757 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 758 } 759 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 760 if (tp->mdev_us > tp->mdev_max_us) { 761 tp->mdev_max_us = tp->mdev_us; 762 if (tp->mdev_max_us > tp->rttvar_us) 763 tp->rttvar_us = tp->mdev_max_us; 764 } 765 if (after(tp->snd_una, tp->rtt_seq)) { 766 if (tp->mdev_max_us < tp->rttvar_us) 767 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 768 tp->rtt_seq = tp->snd_nxt; 769 tp->mdev_max_us = tcp_rto_min_us(sk); 770 } 771 } else { 772 /* no previous measure. */ 773 srtt = m << 3; /* take the measured time to be rtt */ 774 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 775 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 776 tp->mdev_max_us = tp->rttvar_us; 777 tp->rtt_seq = tp->snd_nxt; 778 } 779 tp->srtt_us = max(1U, srtt); 780 } 781 782 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 783 * Note: TCP stack does not yet implement pacing. 784 * FQ packet scheduler can be used to implement cheap but effective 785 * TCP pacing, to smooth the burst on large writes when packets 786 * in flight is significantly lower than cwnd (or rwin) 787 */ 788 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 789 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 790 791 static void tcp_update_pacing_rate(struct sock *sk) 792 { 793 const struct tcp_sock *tp = tcp_sk(sk); 794 u64 rate; 795 796 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 797 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 798 799 /* current rate is (cwnd * mss) / srtt 800 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 801 * In Congestion Avoidance phase, set it to 120 % the current rate. 802 * 803 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 804 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 805 * end of slow start and should slow down. 806 */ 807 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 808 rate *= sysctl_tcp_pacing_ss_ratio; 809 else 810 rate *= sysctl_tcp_pacing_ca_ratio; 811 812 rate *= max(tp->snd_cwnd, tp->packets_out); 813 814 if (likely(tp->srtt_us)) 815 do_div(rate, tp->srtt_us); 816 817 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 818 * without any lock. We want to make sure compiler wont store 819 * intermediate values in this location. 820 */ 821 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 822 sk->sk_max_pacing_rate); 823 } 824 825 /* Calculate rto without backoff. This is the second half of Van Jacobson's 826 * routine referred to above. 827 */ 828 static void tcp_set_rto(struct sock *sk) 829 { 830 const struct tcp_sock *tp = tcp_sk(sk); 831 /* Old crap is replaced with new one. 8) 832 * 833 * More seriously: 834 * 1. If rtt variance happened to be less 50msec, it is hallucination. 835 * It cannot be less due to utterly erratic ACK generation made 836 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 837 * to do with delayed acks, because at cwnd>2 true delack timeout 838 * is invisible. Actually, Linux-2.4 also generates erratic 839 * ACKs in some circumstances. 840 */ 841 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 842 843 /* 2. Fixups made earlier cannot be right. 844 * If we do not estimate RTO correctly without them, 845 * all the algo is pure shit and should be replaced 846 * with correct one. It is exactly, which we pretend to do. 847 */ 848 849 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 850 * guarantees that rto is higher. 851 */ 852 tcp_bound_rto(sk); 853 } 854 855 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 856 { 857 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 858 859 if (!cwnd) 860 cwnd = TCP_INIT_CWND; 861 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 862 } 863 864 /* 865 * Packet counting of FACK is based on in-order assumptions, therefore TCP 866 * disables it when reordering is detected 867 */ 868 void tcp_disable_fack(struct tcp_sock *tp) 869 { 870 /* RFC3517 uses different metric in lost marker => reset on change */ 871 if (tcp_is_fack(tp)) 872 tp->lost_skb_hint = NULL; 873 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 874 } 875 876 /* Take a notice that peer is sending D-SACKs */ 877 static void tcp_dsack_seen(struct tcp_sock *tp) 878 { 879 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 880 } 881 882 static void tcp_update_reordering(struct sock *sk, const int metric, 883 const int ts) 884 { 885 struct tcp_sock *tp = tcp_sk(sk); 886 int mib_idx; 887 888 if (metric > tp->reordering) { 889 tp->reordering = min(sysctl_tcp_max_reordering, metric); 890 891 #if FASTRETRANS_DEBUG > 1 892 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 893 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 894 tp->reordering, 895 tp->fackets_out, 896 tp->sacked_out, 897 tp->undo_marker ? tp->undo_retrans : 0); 898 #endif 899 tcp_disable_fack(tp); 900 } 901 902 tp->rack.reord = 1; 903 904 /* This exciting event is worth to be remembered. 8) */ 905 if (ts) 906 mib_idx = LINUX_MIB_TCPTSREORDER; 907 else if (tcp_is_reno(tp)) 908 mib_idx = LINUX_MIB_TCPRENOREORDER; 909 else if (tcp_is_fack(tp)) 910 mib_idx = LINUX_MIB_TCPFACKREORDER; 911 else 912 mib_idx = LINUX_MIB_TCPSACKREORDER; 913 914 NET_INC_STATS(sock_net(sk), mib_idx); 915 } 916 917 /* This must be called before lost_out is incremented */ 918 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 919 { 920 if (!tp->retransmit_skb_hint || 921 before(TCP_SKB_CB(skb)->seq, 922 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 923 tp->retransmit_skb_hint = skb; 924 } 925 926 /* Sum the number of packets on the wire we have marked as lost. 927 * There are two cases we care about here: 928 * a) Packet hasn't been marked lost (nor retransmitted), 929 * and this is the first loss. 930 * b) Packet has been marked both lost and retransmitted, 931 * and this means we think it was lost again. 932 */ 933 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 934 { 935 __u8 sacked = TCP_SKB_CB(skb)->sacked; 936 937 if (!(sacked & TCPCB_LOST) || 938 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 939 tp->lost += tcp_skb_pcount(skb); 940 } 941 942 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 943 { 944 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 945 tcp_verify_retransmit_hint(tp, skb); 946 947 tp->lost_out += tcp_skb_pcount(skb); 948 tcp_sum_lost(tp, skb); 949 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 950 } 951 } 952 953 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 954 { 955 tcp_verify_retransmit_hint(tp, skb); 956 957 tcp_sum_lost(tp, skb); 958 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 959 tp->lost_out += tcp_skb_pcount(skb); 960 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 961 } 962 } 963 964 /* This procedure tags the retransmission queue when SACKs arrive. 965 * 966 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 967 * Packets in queue with these bits set are counted in variables 968 * sacked_out, retrans_out and lost_out, correspondingly. 969 * 970 * Valid combinations are: 971 * Tag InFlight Description 972 * 0 1 - orig segment is in flight. 973 * S 0 - nothing flies, orig reached receiver. 974 * L 0 - nothing flies, orig lost by net. 975 * R 2 - both orig and retransmit are in flight. 976 * L|R 1 - orig is lost, retransmit is in flight. 977 * S|R 1 - orig reached receiver, retrans is still in flight. 978 * (L|S|R is logically valid, it could occur when L|R is sacked, 979 * but it is equivalent to plain S and code short-curcuits it to S. 980 * L|S is logically invalid, it would mean -1 packet in flight 8)) 981 * 982 * These 6 states form finite state machine, controlled by the following events: 983 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 984 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 985 * 3. Loss detection event of two flavors: 986 * A. Scoreboard estimator decided the packet is lost. 987 * A'. Reno "three dupacks" marks head of queue lost. 988 * A''. Its FACK modification, head until snd.fack is lost. 989 * B. SACK arrives sacking SND.NXT at the moment, when the 990 * segment was retransmitted. 991 * 4. D-SACK added new rule: D-SACK changes any tag to S. 992 * 993 * It is pleasant to note, that state diagram turns out to be commutative, 994 * so that we are allowed not to be bothered by order of our actions, 995 * when multiple events arrive simultaneously. (see the function below). 996 * 997 * Reordering detection. 998 * -------------------- 999 * Reordering metric is maximal distance, which a packet can be displaced 1000 * in packet stream. With SACKs we can estimate it: 1001 * 1002 * 1. SACK fills old hole and the corresponding segment was not 1003 * ever retransmitted -> reordering. Alas, we cannot use it 1004 * when segment was retransmitted. 1005 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1006 * for retransmitted and already SACKed segment -> reordering.. 1007 * Both of these heuristics are not used in Loss state, when we cannot 1008 * account for retransmits accurately. 1009 * 1010 * SACK block validation. 1011 * ---------------------- 1012 * 1013 * SACK block range validation checks that the received SACK block fits to 1014 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1015 * Note that SND.UNA is not included to the range though being valid because 1016 * it means that the receiver is rather inconsistent with itself reporting 1017 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1018 * perfectly valid, however, in light of RFC2018 which explicitly states 1019 * that "SACK block MUST reflect the newest segment. Even if the newest 1020 * segment is going to be discarded ...", not that it looks very clever 1021 * in case of head skb. Due to potentional receiver driven attacks, we 1022 * choose to avoid immediate execution of a walk in write queue due to 1023 * reneging and defer head skb's loss recovery to standard loss recovery 1024 * procedure that will eventually trigger (nothing forbids us doing this). 1025 * 1026 * Implements also blockage to start_seq wrap-around. Problem lies in the 1027 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1028 * there's no guarantee that it will be before snd_nxt (n). The problem 1029 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1030 * wrap (s_w): 1031 * 1032 * <- outs wnd -> <- wrapzone -> 1033 * u e n u_w e_w s n_w 1034 * | | | | | | | 1035 * |<------------+------+----- TCP seqno space --------------+---------->| 1036 * ...-- <2^31 ->| |<--------... 1037 * ...---- >2^31 ------>| |<--------... 1038 * 1039 * Current code wouldn't be vulnerable but it's better still to discard such 1040 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1041 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1042 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1043 * equal to the ideal case (infinite seqno space without wrap caused issues). 1044 * 1045 * With D-SACK the lower bound is extended to cover sequence space below 1046 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1047 * again, D-SACK block must not to go across snd_una (for the same reason as 1048 * for the normal SACK blocks, explained above). But there all simplicity 1049 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1050 * fully below undo_marker they do not affect behavior in anyway and can 1051 * therefore be safely ignored. In rare cases (which are more or less 1052 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1053 * fragmentation and packet reordering past skb's retransmission. To consider 1054 * them correctly, the acceptable range must be extended even more though 1055 * the exact amount is rather hard to quantify. However, tp->max_window can 1056 * be used as an exaggerated estimate. 1057 */ 1058 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1059 u32 start_seq, u32 end_seq) 1060 { 1061 /* Too far in future, or reversed (interpretation is ambiguous) */ 1062 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1063 return false; 1064 1065 /* Nasty start_seq wrap-around check (see comments above) */ 1066 if (!before(start_seq, tp->snd_nxt)) 1067 return false; 1068 1069 /* In outstanding window? ...This is valid exit for D-SACKs too. 1070 * start_seq == snd_una is non-sensical (see comments above) 1071 */ 1072 if (after(start_seq, tp->snd_una)) 1073 return true; 1074 1075 if (!is_dsack || !tp->undo_marker) 1076 return false; 1077 1078 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1079 if (after(end_seq, tp->snd_una)) 1080 return false; 1081 1082 if (!before(start_seq, tp->undo_marker)) 1083 return true; 1084 1085 /* Too old */ 1086 if (!after(end_seq, tp->undo_marker)) 1087 return false; 1088 1089 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1090 * start_seq < undo_marker and end_seq >= undo_marker. 1091 */ 1092 return !before(start_seq, end_seq - tp->max_window); 1093 } 1094 1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1096 struct tcp_sack_block_wire *sp, int num_sacks, 1097 u32 prior_snd_una) 1098 { 1099 struct tcp_sock *tp = tcp_sk(sk); 1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1102 bool dup_sack = false; 1103 1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1105 dup_sack = true; 1106 tcp_dsack_seen(tp); 1107 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1108 } else if (num_sacks > 1) { 1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1111 1112 if (!after(end_seq_0, end_seq_1) && 1113 !before(start_seq_0, start_seq_1)) { 1114 dup_sack = true; 1115 tcp_dsack_seen(tp); 1116 NET_INC_STATS(sock_net(sk), 1117 LINUX_MIB_TCPDSACKOFORECV); 1118 } 1119 } 1120 1121 /* D-SACK for already forgotten data... Do dumb counting. */ 1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1123 !after(end_seq_0, prior_snd_una) && 1124 after(end_seq_0, tp->undo_marker)) 1125 tp->undo_retrans--; 1126 1127 return dup_sack; 1128 } 1129 1130 struct tcp_sacktag_state { 1131 int reord; 1132 int fack_count; 1133 /* Timestamps for earliest and latest never-retransmitted segment 1134 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1135 * but congestion control should still get an accurate delay signal. 1136 */ 1137 struct skb_mstamp first_sackt; 1138 struct skb_mstamp last_sackt; 1139 struct rate_sample *rate; 1140 int flag; 1141 }; 1142 1143 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1144 * the incoming SACK may not exactly match but we can find smaller MSS 1145 * aligned portion of it that matches. Therefore we might need to fragment 1146 * which may fail and creates some hassle (caller must handle error case 1147 * returns). 1148 * 1149 * FIXME: this could be merged to shift decision code 1150 */ 1151 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1152 u32 start_seq, u32 end_seq) 1153 { 1154 int err; 1155 bool in_sack; 1156 unsigned int pkt_len; 1157 unsigned int mss; 1158 1159 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1160 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1161 1162 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1163 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1164 mss = tcp_skb_mss(skb); 1165 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1166 1167 if (!in_sack) { 1168 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1169 if (pkt_len < mss) 1170 pkt_len = mss; 1171 } else { 1172 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1173 if (pkt_len < mss) 1174 return -EINVAL; 1175 } 1176 1177 /* Round if necessary so that SACKs cover only full MSSes 1178 * and/or the remaining small portion (if present) 1179 */ 1180 if (pkt_len > mss) { 1181 unsigned int new_len = (pkt_len / mss) * mss; 1182 if (!in_sack && new_len < pkt_len) { 1183 new_len += mss; 1184 if (new_len >= skb->len) 1185 return 0; 1186 } 1187 pkt_len = new_len; 1188 } 1189 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1190 if (err < 0) 1191 return err; 1192 } 1193 1194 return in_sack; 1195 } 1196 1197 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1198 static u8 tcp_sacktag_one(struct sock *sk, 1199 struct tcp_sacktag_state *state, u8 sacked, 1200 u32 start_seq, u32 end_seq, 1201 int dup_sack, int pcount, 1202 const struct skb_mstamp *xmit_time) 1203 { 1204 struct tcp_sock *tp = tcp_sk(sk); 1205 int fack_count = state->fack_count; 1206 1207 /* Account D-SACK for retransmitted packet. */ 1208 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1209 if (tp->undo_marker && tp->undo_retrans > 0 && 1210 after(end_seq, tp->undo_marker)) 1211 tp->undo_retrans--; 1212 if (sacked & TCPCB_SACKED_ACKED) 1213 state->reord = min(fack_count, state->reord); 1214 } 1215 1216 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1217 if (!after(end_seq, tp->snd_una)) 1218 return sacked; 1219 1220 if (!(sacked & TCPCB_SACKED_ACKED)) { 1221 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1222 1223 if (sacked & TCPCB_SACKED_RETRANS) { 1224 /* If the segment is not tagged as lost, 1225 * we do not clear RETRANS, believing 1226 * that retransmission is still in flight. 1227 */ 1228 if (sacked & TCPCB_LOST) { 1229 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1230 tp->lost_out -= pcount; 1231 tp->retrans_out -= pcount; 1232 } 1233 } else { 1234 if (!(sacked & TCPCB_RETRANS)) { 1235 /* New sack for not retransmitted frame, 1236 * which was in hole. It is reordering. 1237 */ 1238 if (before(start_seq, 1239 tcp_highest_sack_seq(tp))) 1240 state->reord = min(fack_count, 1241 state->reord); 1242 if (!after(end_seq, tp->high_seq)) 1243 state->flag |= FLAG_ORIG_SACK_ACKED; 1244 if (state->first_sackt.v64 == 0) 1245 state->first_sackt = *xmit_time; 1246 state->last_sackt = *xmit_time; 1247 } 1248 1249 if (sacked & TCPCB_LOST) { 1250 sacked &= ~TCPCB_LOST; 1251 tp->lost_out -= pcount; 1252 } 1253 } 1254 1255 sacked |= TCPCB_SACKED_ACKED; 1256 state->flag |= FLAG_DATA_SACKED; 1257 tp->sacked_out += pcount; 1258 tp->delivered += pcount; /* Out-of-order packets delivered */ 1259 1260 fack_count += pcount; 1261 1262 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1263 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1264 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1265 tp->lost_cnt_hint += pcount; 1266 1267 if (fack_count > tp->fackets_out) 1268 tp->fackets_out = fack_count; 1269 } 1270 1271 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1272 * frames and clear it. undo_retrans is decreased above, L|R frames 1273 * are accounted above as well. 1274 */ 1275 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1276 sacked &= ~TCPCB_SACKED_RETRANS; 1277 tp->retrans_out -= pcount; 1278 } 1279 1280 return sacked; 1281 } 1282 1283 /* Shift newly-SACKed bytes from this skb to the immediately previous 1284 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1285 */ 1286 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1287 struct tcp_sacktag_state *state, 1288 unsigned int pcount, int shifted, int mss, 1289 bool dup_sack) 1290 { 1291 struct tcp_sock *tp = tcp_sk(sk); 1292 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1293 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1294 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1295 1296 BUG_ON(!pcount); 1297 1298 /* Adjust counters and hints for the newly sacked sequence 1299 * range but discard the return value since prev is already 1300 * marked. We must tag the range first because the seq 1301 * advancement below implicitly advances 1302 * tcp_highest_sack_seq() when skb is highest_sack. 1303 */ 1304 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1305 start_seq, end_seq, dup_sack, pcount, 1306 &skb->skb_mstamp); 1307 tcp_rate_skb_delivered(sk, skb, state->rate); 1308 1309 if (skb == tp->lost_skb_hint) 1310 tp->lost_cnt_hint += pcount; 1311 1312 TCP_SKB_CB(prev)->end_seq += shifted; 1313 TCP_SKB_CB(skb)->seq += shifted; 1314 1315 tcp_skb_pcount_add(prev, pcount); 1316 BUG_ON(tcp_skb_pcount(skb) < pcount); 1317 tcp_skb_pcount_add(skb, -pcount); 1318 1319 /* When we're adding to gso_segs == 1, gso_size will be zero, 1320 * in theory this shouldn't be necessary but as long as DSACK 1321 * code can come after this skb later on it's better to keep 1322 * setting gso_size to something. 1323 */ 1324 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1325 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1326 1327 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1328 if (tcp_skb_pcount(skb) <= 1) 1329 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1330 1331 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1332 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1333 1334 if (skb->len > 0) { 1335 BUG_ON(!tcp_skb_pcount(skb)); 1336 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1337 return false; 1338 } 1339 1340 /* Whole SKB was eaten :-) */ 1341 1342 if (skb == tp->retransmit_skb_hint) 1343 tp->retransmit_skb_hint = prev; 1344 if (skb == tp->lost_skb_hint) { 1345 tp->lost_skb_hint = prev; 1346 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1347 } 1348 1349 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1350 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1351 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1352 TCP_SKB_CB(prev)->end_seq++; 1353 1354 if (skb == tcp_highest_sack(sk)) 1355 tcp_advance_highest_sack(sk, skb); 1356 1357 tcp_skb_collapse_tstamp(prev, skb); 1358 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64)) 1359 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0; 1360 1361 tcp_unlink_write_queue(skb, sk); 1362 sk_wmem_free_skb(sk, skb); 1363 1364 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1365 1366 return true; 1367 } 1368 1369 /* I wish gso_size would have a bit more sane initialization than 1370 * something-or-zero which complicates things 1371 */ 1372 static int tcp_skb_seglen(const struct sk_buff *skb) 1373 { 1374 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1375 } 1376 1377 /* Shifting pages past head area doesn't work */ 1378 static int skb_can_shift(const struct sk_buff *skb) 1379 { 1380 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1381 } 1382 1383 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1384 * skb. 1385 */ 1386 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1387 struct tcp_sacktag_state *state, 1388 u32 start_seq, u32 end_seq, 1389 bool dup_sack) 1390 { 1391 struct tcp_sock *tp = tcp_sk(sk); 1392 struct sk_buff *prev; 1393 int mss; 1394 int pcount = 0; 1395 int len; 1396 int in_sack; 1397 1398 if (!sk_can_gso(sk)) 1399 goto fallback; 1400 1401 /* Normally R but no L won't result in plain S */ 1402 if (!dup_sack && 1403 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1404 goto fallback; 1405 if (!skb_can_shift(skb)) 1406 goto fallback; 1407 /* This frame is about to be dropped (was ACKed). */ 1408 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1409 goto fallback; 1410 1411 /* Can only happen with delayed DSACK + discard craziness */ 1412 if (unlikely(skb == tcp_write_queue_head(sk))) 1413 goto fallback; 1414 prev = tcp_write_queue_prev(sk, skb); 1415 1416 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1417 goto fallback; 1418 1419 if (!tcp_skb_can_collapse_to(prev)) 1420 goto fallback; 1421 1422 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1423 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1424 1425 if (in_sack) { 1426 len = skb->len; 1427 pcount = tcp_skb_pcount(skb); 1428 mss = tcp_skb_seglen(skb); 1429 1430 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1431 * drop this restriction as unnecessary 1432 */ 1433 if (mss != tcp_skb_seglen(prev)) 1434 goto fallback; 1435 } else { 1436 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1437 goto noop; 1438 /* CHECKME: This is non-MSS split case only?, this will 1439 * cause skipped skbs due to advancing loop btw, original 1440 * has that feature too 1441 */ 1442 if (tcp_skb_pcount(skb) <= 1) 1443 goto noop; 1444 1445 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1446 if (!in_sack) { 1447 /* TODO: head merge to next could be attempted here 1448 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1449 * though it might not be worth of the additional hassle 1450 * 1451 * ...we can probably just fallback to what was done 1452 * previously. We could try merging non-SACKed ones 1453 * as well but it probably isn't going to buy off 1454 * because later SACKs might again split them, and 1455 * it would make skb timestamp tracking considerably 1456 * harder problem. 1457 */ 1458 goto fallback; 1459 } 1460 1461 len = end_seq - TCP_SKB_CB(skb)->seq; 1462 BUG_ON(len < 0); 1463 BUG_ON(len > skb->len); 1464 1465 /* MSS boundaries should be honoured or else pcount will 1466 * severely break even though it makes things bit trickier. 1467 * Optimize common case to avoid most of the divides 1468 */ 1469 mss = tcp_skb_mss(skb); 1470 1471 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1472 * drop this restriction as unnecessary 1473 */ 1474 if (mss != tcp_skb_seglen(prev)) 1475 goto fallback; 1476 1477 if (len == mss) { 1478 pcount = 1; 1479 } else if (len < mss) { 1480 goto noop; 1481 } else { 1482 pcount = len / mss; 1483 len = pcount * mss; 1484 } 1485 } 1486 1487 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1488 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1489 goto fallback; 1490 1491 if (!skb_shift(prev, skb, len)) 1492 goto fallback; 1493 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1494 goto out; 1495 1496 /* Hole filled allows collapsing with the next as well, this is very 1497 * useful when hole on every nth skb pattern happens 1498 */ 1499 if (prev == tcp_write_queue_tail(sk)) 1500 goto out; 1501 skb = tcp_write_queue_next(sk, prev); 1502 1503 if (!skb_can_shift(skb) || 1504 (skb == tcp_send_head(sk)) || 1505 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1506 (mss != tcp_skb_seglen(skb))) 1507 goto out; 1508 1509 len = skb->len; 1510 if (skb_shift(prev, skb, len)) { 1511 pcount += tcp_skb_pcount(skb); 1512 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1513 } 1514 1515 out: 1516 state->fack_count += pcount; 1517 return prev; 1518 1519 noop: 1520 return skb; 1521 1522 fallback: 1523 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1524 return NULL; 1525 } 1526 1527 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1528 struct tcp_sack_block *next_dup, 1529 struct tcp_sacktag_state *state, 1530 u32 start_seq, u32 end_seq, 1531 bool dup_sack_in) 1532 { 1533 struct tcp_sock *tp = tcp_sk(sk); 1534 struct sk_buff *tmp; 1535 1536 tcp_for_write_queue_from(skb, sk) { 1537 int in_sack = 0; 1538 bool dup_sack = dup_sack_in; 1539 1540 if (skb == tcp_send_head(sk)) 1541 break; 1542 1543 /* queue is in-order => we can short-circuit the walk early */ 1544 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1545 break; 1546 1547 if (next_dup && 1548 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1549 in_sack = tcp_match_skb_to_sack(sk, skb, 1550 next_dup->start_seq, 1551 next_dup->end_seq); 1552 if (in_sack > 0) 1553 dup_sack = true; 1554 } 1555 1556 /* skb reference here is a bit tricky to get right, since 1557 * shifting can eat and free both this skb and the next, 1558 * so not even _safe variant of the loop is enough. 1559 */ 1560 if (in_sack <= 0) { 1561 tmp = tcp_shift_skb_data(sk, skb, state, 1562 start_seq, end_seq, dup_sack); 1563 if (tmp) { 1564 if (tmp != skb) { 1565 skb = tmp; 1566 continue; 1567 } 1568 1569 in_sack = 0; 1570 } else { 1571 in_sack = tcp_match_skb_to_sack(sk, skb, 1572 start_seq, 1573 end_seq); 1574 } 1575 } 1576 1577 if (unlikely(in_sack < 0)) 1578 break; 1579 1580 if (in_sack) { 1581 TCP_SKB_CB(skb)->sacked = 1582 tcp_sacktag_one(sk, 1583 state, 1584 TCP_SKB_CB(skb)->sacked, 1585 TCP_SKB_CB(skb)->seq, 1586 TCP_SKB_CB(skb)->end_seq, 1587 dup_sack, 1588 tcp_skb_pcount(skb), 1589 &skb->skb_mstamp); 1590 tcp_rate_skb_delivered(sk, skb, state->rate); 1591 1592 if (!before(TCP_SKB_CB(skb)->seq, 1593 tcp_highest_sack_seq(tp))) 1594 tcp_advance_highest_sack(sk, skb); 1595 } 1596 1597 state->fack_count += tcp_skb_pcount(skb); 1598 } 1599 return skb; 1600 } 1601 1602 /* Avoid all extra work that is being done by sacktag while walking in 1603 * a normal way 1604 */ 1605 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1606 struct tcp_sacktag_state *state, 1607 u32 skip_to_seq) 1608 { 1609 tcp_for_write_queue_from(skb, sk) { 1610 if (skb == tcp_send_head(sk)) 1611 break; 1612 1613 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1614 break; 1615 1616 state->fack_count += tcp_skb_pcount(skb); 1617 } 1618 return skb; 1619 } 1620 1621 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1622 struct sock *sk, 1623 struct tcp_sack_block *next_dup, 1624 struct tcp_sacktag_state *state, 1625 u32 skip_to_seq) 1626 { 1627 if (!next_dup) 1628 return skb; 1629 1630 if (before(next_dup->start_seq, skip_to_seq)) { 1631 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1632 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1633 next_dup->start_seq, next_dup->end_seq, 1634 1); 1635 } 1636 1637 return skb; 1638 } 1639 1640 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1641 { 1642 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1643 } 1644 1645 static int 1646 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1647 u32 prior_snd_una, struct tcp_sacktag_state *state) 1648 { 1649 struct tcp_sock *tp = tcp_sk(sk); 1650 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1651 TCP_SKB_CB(ack_skb)->sacked); 1652 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1653 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1654 struct tcp_sack_block *cache; 1655 struct sk_buff *skb; 1656 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1657 int used_sacks; 1658 bool found_dup_sack = false; 1659 int i, j; 1660 int first_sack_index; 1661 1662 state->flag = 0; 1663 state->reord = tp->packets_out; 1664 1665 if (!tp->sacked_out) { 1666 if (WARN_ON(tp->fackets_out)) 1667 tp->fackets_out = 0; 1668 tcp_highest_sack_reset(sk); 1669 } 1670 1671 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1672 num_sacks, prior_snd_una); 1673 if (found_dup_sack) { 1674 state->flag |= FLAG_DSACKING_ACK; 1675 tp->delivered++; /* A spurious retransmission is delivered */ 1676 } 1677 1678 /* Eliminate too old ACKs, but take into 1679 * account more or less fresh ones, they can 1680 * contain valid SACK info. 1681 */ 1682 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1683 return 0; 1684 1685 if (!tp->packets_out) 1686 goto out; 1687 1688 used_sacks = 0; 1689 first_sack_index = 0; 1690 for (i = 0; i < num_sacks; i++) { 1691 bool dup_sack = !i && found_dup_sack; 1692 1693 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1694 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1695 1696 if (!tcp_is_sackblock_valid(tp, dup_sack, 1697 sp[used_sacks].start_seq, 1698 sp[used_sacks].end_seq)) { 1699 int mib_idx; 1700 1701 if (dup_sack) { 1702 if (!tp->undo_marker) 1703 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1704 else 1705 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1706 } else { 1707 /* Don't count olds caused by ACK reordering */ 1708 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1709 !after(sp[used_sacks].end_seq, tp->snd_una)) 1710 continue; 1711 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1712 } 1713 1714 NET_INC_STATS(sock_net(sk), mib_idx); 1715 if (i == 0) 1716 first_sack_index = -1; 1717 continue; 1718 } 1719 1720 /* Ignore very old stuff early */ 1721 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1722 continue; 1723 1724 used_sacks++; 1725 } 1726 1727 /* order SACK blocks to allow in order walk of the retrans queue */ 1728 for (i = used_sacks - 1; i > 0; i--) { 1729 for (j = 0; j < i; j++) { 1730 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1731 swap(sp[j], sp[j + 1]); 1732 1733 /* Track where the first SACK block goes to */ 1734 if (j == first_sack_index) 1735 first_sack_index = j + 1; 1736 } 1737 } 1738 } 1739 1740 skb = tcp_write_queue_head(sk); 1741 state->fack_count = 0; 1742 i = 0; 1743 1744 if (!tp->sacked_out) { 1745 /* It's already past, so skip checking against it */ 1746 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1747 } else { 1748 cache = tp->recv_sack_cache; 1749 /* Skip empty blocks in at head of the cache */ 1750 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1751 !cache->end_seq) 1752 cache++; 1753 } 1754 1755 while (i < used_sacks) { 1756 u32 start_seq = sp[i].start_seq; 1757 u32 end_seq = sp[i].end_seq; 1758 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1759 struct tcp_sack_block *next_dup = NULL; 1760 1761 if (found_dup_sack && ((i + 1) == first_sack_index)) 1762 next_dup = &sp[i + 1]; 1763 1764 /* Skip too early cached blocks */ 1765 while (tcp_sack_cache_ok(tp, cache) && 1766 !before(start_seq, cache->end_seq)) 1767 cache++; 1768 1769 /* Can skip some work by looking recv_sack_cache? */ 1770 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1771 after(end_seq, cache->start_seq)) { 1772 1773 /* Head todo? */ 1774 if (before(start_seq, cache->start_seq)) { 1775 skb = tcp_sacktag_skip(skb, sk, state, 1776 start_seq); 1777 skb = tcp_sacktag_walk(skb, sk, next_dup, 1778 state, 1779 start_seq, 1780 cache->start_seq, 1781 dup_sack); 1782 } 1783 1784 /* Rest of the block already fully processed? */ 1785 if (!after(end_seq, cache->end_seq)) 1786 goto advance_sp; 1787 1788 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1789 state, 1790 cache->end_seq); 1791 1792 /* ...tail remains todo... */ 1793 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1794 /* ...but better entrypoint exists! */ 1795 skb = tcp_highest_sack(sk); 1796 if (!skb) 1797 break; 1798 state->fack_count = tp->fackets_out; 1799 cache++; 1800 goto walk; 1801 } 1802 1803 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1804 /* Check overlap against next cached too (past this one already) */ 1805 cache++; 1806 continue; 1807 } 1808 1809 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1810 skb = tcp_highest_sack(sk); 1811 if (!skb) 1812 break; 1813 state->fack_count = tp->fackets_out; 1814 } 1815 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1816 1817 walk: 1818 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1819 start_seq, end_seq, dup_sack); 1820 1821 advance_sp: 1822 i++; 1823 } 1824 1825 /* Clear the head of the cache sack blocks so we can skip it next time */ 1826 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1827 tp->recv_sack_cache[i].start_seq = 0; 1828 tp->recv_sack_cache[i].end_seq = 0; 1829 } 1830 for (j = 0; j < used_sacks; j++) 1831 tp->recv_sack_cache[i++] = sp[j]; 1832 1833 if ((state->reord < tp->fackets_out) && 1834 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1835 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1836 1837 tcp_verify_left_out(tp); 1838 out: 1839 1840 #if FASTRETRANS_DEBUG > 0 1841 WARN_ON((int)tp->sacked_out < 0); 1842 WARN_ON((int)tp->lost_out < 0); 1843 WARN_ON((int)tp->retrans_out < 0); 1844 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1845 #endif 1846 return state->flag; 1847 } 1848 1849 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1850 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1851 */ 1852 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1853 { 1854 u32 holes; 1855 1856 holes = max(tp->lost_out, 1U); 1857 holes = min(holes, tp->packets_out); 1858 1859 if ((tp->sacked_out + holes) > tp->packets_out) { 1860 tp->sacked_out = tp->packets_out - holes; 1861 return true; 1862 } 1863 return false; 1864 } 1865 1866 /* If we receive more dupacks than we expected counting segments 1867 * in assumption of absent reordering, interpret this as reordering. 1868 * The only another reason could be bug in receiver TCP. 1869 */ 1870 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1871 { 1872 struct tcp_sock *tp = tcp_sk(sk); 1873 if (tcp_limit_reno_sacked(tp)) 1874 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1875 } 1876 1877 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1878 1879 static void tcp_add_reno_sack(struct sock *sk) 1880 { 1881 struct tcp_sock *tp = tcp_sk(sk); 1882 u32 prior_sacked = tp->sacked_out; 1883 1884 tp->sacked_out++; 1885 tcp_check_reno_reordering(sk, 0); 1886 if (tp->sacked_out > prior_sacked) 1887 tp->delivered++; /* Some out-of-order packet is delivered */ 1888 tcp_verify_left_out(tp); 1889 } 1890 1891 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1892 1893 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1894 { 1895 struct tcp_sock *tp = tcp_sk(sk); 1896 1897 if (acked > 0) { 1898 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1899 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1900 if (acked - 1 >= tp->sacked_out) 1901 tp->sacked_out = 0; 1902 else 1903 tp->sacked_out -= acked - 1; 1904 } 1905 tcp_check_reno_reordering(sk, acked); 1906 tcp_verify_left_out(tp); 1907 } 1908 1909 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1910 { 1911 tp->sacked_out = 0; 1912 } 1913 1914 void tcp_clear_retrans(struct tcp_sock *tp) 1915 { 1916 tp->retrans_out = 0; 1917 tp->lost_out = 0; 1918 tp->undo_marker = 0; 1919 tp->undo_retrans = -1; 1920 tp->fackets_out = 0; 1921 tp->sacked_out = 0; 1922 } 1923 1924 static inline void tcp_init_undo(struct tcp_sock *tp) 1925 { 1926 tp->undo_marker = tp->snd_una; 1927 /* Retransmission still in flight may cause DSACKs later. */ 1928 tp->undo_retrans = tp->retrans_out ? : -1; 1929 } 1930 1931 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1932 * and reset tags completely, otherwise preserve SACKs. If receiver 1933 * dropped its ofo queue, we will know this due to reneging detection. 1934 */ 1935 void tcp_enter_loss(struct sock *sk) 1936 { 1937 const struct inet_connection_sock *icsk = inet_csk(sk); 1938 struct tcp_sock *tp = tcp_sk(sk); 1939 struct net *net = sock_net(sk); 1940 struct sk_buff *skb; 1941 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1942 bool is_reneg; /* is receiver reneging on SACKs? */ 1943 bool mark_lost; 1944 1945 /* Reduce ssthresh if it has not yet been made inside this window. */ 1946 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1947 !after(tp->high_seq, tp->snd_una) || 1948 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1949 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1950 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1951 tcp_ca_event(sk, CA_EVENT_LOSS); 1952 tcp_init_undo(tp); 1953 } 1954 tp->snd_cwnd = 1; 1955 tp->snd_cwnd_cnt = 0; 1956 tp->snd_cwnd_stamp = tcp_time_stamp; 1957 1958 tp->retrans_out = 0; 1959 tp->lost_out = 0; 1960 1961 if (tcp_is_reno(tp)) 1962 tcp_reset_reno_sack(tp); 1963 1964 skb = tcp_write_queue_head(sk); 1965 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1966 if (is_reneg) { 1967 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1968 tp->sacked_out = 0; 1969 tp->fackets_out = 0; 1970 } 1971 tcp_clear_all_retrans_hints(tp); 1972 1973 tcp_for_write_queue(skb, sk) { 1974 if (skb == tcp_send_head(sk)) 1975 break; 1976 1977 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1978 is_reneg); 1979 if (mark_lost) 1980 tcp_sum_lost(tp, skb); 1981 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1982 if (mark_lost) { 1983 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1984 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1985 tp->lost_out += tcp_skb_pcount(skb); 1986 } 1987 } 1988 tcp_verify_left_out(tp); 1989 1990 /* Timeout in disordered state after receiving substantial DUPACKs 1991 * suggests that the degree of reordering is over-estimated. 1992 */ 1993 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1994 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1995 tp->reordering = min_t(unsigned int, tp->reordering, 1996 net->ipv4.sysctl_tcp_reordering); 1997 tcp_set_ca_state(sk, TCP_CA_Loss); 1998 tp->high_seq = tp->snd_nxt; 1999 tcp_ecn_queue_cwr(tp); 2000 2001 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2002 * loss recovery is underway except recurring timeout(s) on 2003 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2004 * 2005 * In theory F-RTO can be used repeatedly during loss recovery. 2006 * In practice this interacts badly with broken middle-boxes that 2007 * falsely raise the receive window, which results in repeated 2008 * timeouts and stop-and-go behavior. 2009 */ 2010 tp->frto = sysctl_tcp_frto && 2011 (new_recovery || icsk->icsk_retransmits) && 2012 !inet_csk(sk)->icsk_mtup.probe_size; 2013 } 2014 2015 /* If ACK arrived pointing to a remembered SACK, it means that our 2016 * remembered SACKs do not reflect real state of receiver i.e. 2017 * receiver _host_ is heavily congested (or buggy). 2018 * 2019 * To avoid big spurious retransmission bursts due to transient SACK 2020 * scoreboard oddities that look like reneging, we give the receiver a 2021 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2022 * restore sanity to the SACK scoreboard. If the apparent reneging 2023 * persists until this RTO then we'll clear the SACK scoreboard. 2024 */ 2025 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2026 { 2027 if (flag & FLAG_SACK_RENEGING) { 2028 struct tcp_sock *tp = tcp_sk(sk); 2029 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2030 msecs_to_jiffies(10)); 2031 2032 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2033 delay, TCP_RTO_MAX); 2034 return true; 2035 } 2036 return false; 2037 } 2038 2039 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2040 { 2041 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2042 } 2043 2044 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2045 * counter when SACK is enabled (without SACK, sacked_out is used for 2046 * that purpose). 2047 * 2048 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2049 * segments up to the highest received SACK block so far and holes in 2050 * between them. 2051 * 2052 * With reordering, holes may still be in flight, so RFC3517 recovery 2053 * uses pure sacked_out (total number of SACKed segments) even though 2054 * it violates the RFC that uses duplicate ACKs, often these are equal 2055 * but when e.g. out-of-window ACKs or packet duplication occurs, 2056 * they differ. Since neither occurs due to loss, TCP should really 2057 * ignore them. 2058 */ 2059 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2060 { 2061 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2062 } 2063 2064 /* Linux NewReno/SACK/FACK/ECN state machine. 2065 * -------------------------------------- 2066 * 2067 * "Open" Normal state, no dubious events, fast path. 2068 * "Disorder" In all the respects it is "Open", 2069 * but requires a bit more attention. It is entered when 2070 * we see some SACKs or dupacks. It is split of "Open" 2071 * mainly to move some processing from fast path to slow one. 2072 * "CWR" CWND was reduced due to some Congestion Notification event. 2073 * It can be ECN, ICMP source quench, local device congestion. 2074 * "Recovery" CWND was reduced, we are fast-retransmitting. 2075 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2076 * 2077 * tcp_fastretrans_alert() is entered: 2078 * - each incoming ACK, if state is not "Open" 2079 * - when arrived ACK is unusual, namely: 2080 * * SACK 2081 * * Duplicate ACK. 2082 * * ECN ECE. 2083 * 2084 * Counting packets in flight is pretty simple. 2085 * 2086 * in_flight = packets_out - left_out + retrans_out 2087 * 2088 * packets_out is SND.NXT-SND.UNA counted in packets. 2089 * 2090 * retrans_out is number of retransmitted segments. 2091 * 2092 * left_out is number of segments left network, but not ACKed yet. 2093 * 2094 * left_out = sacked_out + lost_out 2095 * 2096 * sacked_out: Packets, which arrived to receiver out of order 2097 * and hence not ACKed. With SACKs this number is simply 2098 * amount of SACKed data. Even without SACKs 2099 * it is easy to give pretty reliable estimate of this number, 2100 * counting duplicate ACKs. 2101 * 2102 * lost_out: Packets lost by network. TCP has no explicit 2103 * "loss notification" feedback from network (for now). 2104 * It means that this number can be only _guessed_. 2105 * Actually, it is the heuristics to predict lossage that 2106 * distinguishes different algorithms. 2107 * 2108 * F.e. after RTO, when all the queue is considered as lost, 2109 * lost_out = packets_out and in_flight = retrans_out. 2110 * 2111 * Essentially, we have now a few algorithms detecting 2112 * lost packets. 2113 * 2114 * If the receiver supports SACK: 2115 * 2116 * RFC6675/3517: It is the conventional algorithm. A packet is 2117 * considered lost if the number of higher sequence packets 2118 * SACKed is greater than or equal the DUPACK thoreshold 2119 * (reordering). This is implemented in tcp_mark_head_lost and 2120 * tcp_update_scoreboard. 2121 * 2122 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2123 * (2017-) that checks timing instead of counting DUPACKs. 2124 * Essentially a packet is considered lost if it's not S/ACKed 2125 * after RTT + reordering_window, where both metrics are 2126 * dynamically measured and adjusted. This is implemented in 2127 * tcp_rack_mark_lost. 2128 * 2129 * FACK (Disabled by default. Subsumbed by RACK): 2130 * It is the simplest heuristics. As soon as we decided 2131 * that something is lost, we decide that _all_ not SACKed 2132 * packets until the most forward SACK are lost. I.e. 2133 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2134 * It is absolutely correct estimate, if network does not reorder 2135 * packets. And it loses any connection to reality when reordering 2136 * takes place. We use FACK by default until reordering 2137 * is suspected on the path to this destination. 2138 * 2139 * If the receiver does not support SACK: 2140 * 2141 * NewReno (RFC6582): in Recovery we assume that one segment 2142 * is lost (classic Reno). While we are in Recovery and 2143 * a partial ACK arrives, we assume that one more packet 2144 * is lost (NewReno). This heuristics are the same in NewReno 2145 * and SACK. 2146 * 2147 * Really tricky (and requiring careful tuning) part of algorithm 2148 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2149 * The first determines the moment _when_ we should reduce CWND and, 2150 * hence, slow down forward transmission. In fact, it determines the moment 2151 * when we decide that hole is caused by loss, rather than by a reorder. 2152 * 2153 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2154 * holes, caused by lost packets. 2155 * 2156 * And the most logically complicated part of algorithm is undo 2157 * heuristics. We detect false retransmits due to both too early 2158 * fast retransmit (reordering) and underestimated RTO, analyzing 2159 * timestamps and D-SACKs. When we detect that some segments were 2160 * retransmitted by mistake and CWND reduction was wrong, we undo 2161 * window reduction and abort recovery phase. This logic is hidden 2162 * inside several functions named tcp_try_undo_<something>. 2163 */ 2164 2165 /* This function decides, when we should leave Disordered state 2166 * and enter Recovery phase, reducing congestion window. 2167 * 2168 * Main question: may we further continue forward transmission 2169 * with the same cwnd? 2170 */ 2171 static bool tcp_time_to_recover(struct sock *sk, int flag) 2172 { 2173 struct tcp_sock *tp = tcp_sk(sk); 2174 2175 /* Trick#1: The loss is proven. */ 2176 if (tp->lost_out) 2177 return true; 2178 2179 /* Not-A-Trick#2 : Classic rule... */ 2180 if (tcp_dupack_heuristics(tp) > tp->reordering) 2181 return true; 2182 2183 return false; 2184 } 2185 2186 /* Detect loss in event "A" above by marking head of queue up as lost. 2187 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2188 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2189 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2190 * the maximum SACKed segments to pass before reaching this limit. 2191 */ 2192 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2193 { 2194 struct tcp_sock *tp = tcp_sk(sk); 2195 struct sk_buff *skb; 2196 int cnt, oldcnt, lost; 2197 unsigned int mss; 2198 /* Use SACK to deduce losses of new sequences sent during recovery */ 2199 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2200 2201 WARN_ON(packets > tp->packets_out); 2202 if (tp->lost_skb_hint) { 2203 skb = tp->lost_skb_hint; 2204 cnt = tp->lost_cnt_hint; 2205 /* Head already handled? */ 2206 if (mark_head && skb != tcp_write_queue_head(sk)) 2207 return; 2208 } else { 2209 skb = tcp_write_queue_head(sk); 2210 cnt = 0; 2211 } 2212 2213 tcp_for_write_queue_from(skb, sk) { 2214 if (skb == tcp_send_head(sk)) 2215 break; 2216 /* TODO: do this better */ 2217 /* this is not the most efficient way to do this... */ 2218 tp->lost_skb_hint = skb; 2219 tp->lost_cnt_hint = cnt; 2220 2221 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2222 break; 2223 2224 oldcnt = cnt; 2225 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2226 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2227 cnt += tcp_skb_pcount(skb); 2228 2229 if (cnt > packets) { 2230 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2231 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2232 (oldcnt >= packets)) 2233 break; 2234 2235 mss = tcp_skb_mss(skb); 2236 /* If needed, chop off the prefix to mark as lost. */ 2237 lost = (packets - oldcnt) * mss; 2238 if (lost < skb->len && 2239 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2240 break; 2241 cnt = packets; 2242 } 2243 2244 tcp_skb_mark_lost(tp, skb); 2245 2246 if (mark_head) 2247 break; 2248 } 2249 tcp_verify_left_out(tp); 2250 } 2251 2252 /* Account newly detected lost packet(s) */ 2253 2254 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2255 { 2256 struct tcp_sock *tp = tcp_sk(sk); 2257 2258 if (tcp_is_reno(tp)) { 2259 tcp_mark_head_lost(sk, 1, 1); 2260 } else if (tcp_is_fack(tp)) { 2261 int lost = tp->fackets_out - tp->reordering; 2262 if (lost <= 0) 2263 lost = 1; 2264 tcp_mark_head_lost(sk, lost, 0); 2265 } else { 2266 int sacked_upto = tp->sacked_out - tp->reordering; 2267 if (sacked_upto >= 0) 2268 tcp_mark_head_lost(sk, sacked_upto, 0); 2269 else if (fast_rexmit) 2270 tcp_mark_head_lost(sk, 1, 1); 2271 } 2272 } 2273 2274 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2275 { 2276 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2277 before(tp->rx_opt.rcv_tsecr, when); 2278 } 2279 2280 /* skb is spurious retransmitted if the returned timestamp echo 2281 * reply is prior to the skb transmission time 2282 */ 2283 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2284 const struct sk_buff *skb) 2285 { 2286 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2287 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2288 } 2289 2290 /* Nothing was retransmitted or returned timestamp is less 2291 * than timestamp of the first retransmission. 2292 */ 2293 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2294 { 2295 return !tp->retrans_stamp || 2296 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2297 } 2298 2299 /* Undo procedures. */ 2300 2301 /* We can clear retrans_stamp when there are no retransmissions in the 2302 * window. It would seem that it is trivially available for us in 2303 * tp->retrans_out, however, that kind of assumptions doesn't consider 2304 * what will happen if errors occur when sending retransmission for the 2305 * second time. ...It could the that such segment has only 2306 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2307 * the head skb is enough except for some reneging corner cases that 2308 * are not worth the effort. 2309 * 2310 * Main reason for all this complexity is the fact that connection dying 2311 * time now depends on the validity of the retrans_stamp, in particular, 2312 * that successive retransmissions of a segment must not advance 2313 * retrans_stamp under any conditions. 2314 */ 2315 static bool tcp_any_retrans_done(const struct sock *sk) 2316 { 2317 const struct tcp_sock *tp = tcp_sk(sk); 2318 struct sk_buff *skb; 2319 2320 if (tp->retrans_out) 2321 return true; 2322 2323 skb = tcp_write_queue_head(sk); 2324 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2325 return true; 2326 2327 return false; 2328 } 2329 2330 #if FASTRETRANS_DEBUG > 1 2331 static void DBGUNDO(struct sock *sk, const char *msg) 2332 { 2333 struct tcp_sock *tp = tcp_sk(sk); 2334 struct inet_sock *inet = inet_sk(sk); 2335 2336 if (sk->sk_family == AF_INET) { 2337 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2338 msg, 2339 &inet->inet_daddr, ntohs(inet->inet_dport), 2340 tp->snd_cwnd, tcp_left_out(tp), 2341 tp->snd_ssthresh, tp->prior_ssthresh, 2342 tp->packets_out); 2343 } 2344 #if IS_ENABLED(CONFIG_IPV6) 2345 else if (sk->sk_family == AF_INET6) { 2346 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2347 msg, 2348 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2349 tp->snd_cwnd, tcp_left_out(tp), 2350 tp->snd_ssthresh, tp->prior_ssthresh, 2351 tp->packets_out); 2352 } 2353 #endif 2354 } 2355 #else 2356 #define DBGUNDO(x...) do { } while (0) 2357 #endif 2358 2359 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2360 { 2361 struct tcp_sock *tp = tcp_sk(sk); 2362 2363 if (unmark_loss) { 2364 struct sk_buff *skb; 2365 2366 tcp_for_write_queue(skb, sk) { 2367 if (skb == tcp_send_head(sk)) 2368 break; 2369 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2370 } 2371 tp->lost_out = 0; 2372 tcp_clear_all_retrans_hints(tp); 2373 } 2374 2375 if (tp->prior_ssthresh) { 2376 const struct inet_connection_sock *icsk = inet_csk(sk); 2377 2378 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2379 2380 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2381 tp->snd_ssthresh = tp->prior_ssthresh; 2382 tcp_ecn_withdraw_cwr(tp); 2383 } 2384 } 2385 tp->snd_cwnd_stamp = tcp_time_stamp; 2386 tp->undo_marker = 0; 2387 } 2388 2389 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2390 { 2391 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2392 } 2393 2394 /* People celebrate: "We love our President!" */ 2395 static bool tcp_try_undo_recovery(struct sock *sk) 2396 { 2397 struct tcp_sock *tp = tcp_sk(sk); 2398 2399 if (tcp_may_undo(tp)) { 2400 int mib_idx; 2401 2402 /* Happy end! We did not retransmit anything 2403 * or our original transmission succeeded. 2404 */ 2405 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2406 tcp_undo_cwnd_reduction(sk, false); 2407 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2408 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2409 else 2410 mib_idx = LINUX_MIB_TCPFULLUNDO; 2411 2412 NET_INC_STATS(sock_net(sk), mib_idx); 2413 } 2414 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2415 /* Hold old state until something *above* high_seq 2416 * is ACKed. For Reno it is MUST to prevent false 2417 * fast retransmits (RFC2582). SACK TCP is safe. */ 2418 if (!tcp_any_retrans_done(sk)) 2419 tp->retrans_stamp = 0; 2420 return true; 2421 } 2422 tcp_set_ca_state(sk, TCP_CA_Open); 2423 return false; 2424 } 2425 2426 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2427 static bool tcp_try_undo_dsack(struct sock *sk) 2428 { 2429 struct tcp_sock *tp = tcp_sk(sk); 2430 2431 if (tp->undo_marker && !tp->undo_retrans) { 2432 DBGUNDO(sk, "D-SACK"); 2433 tcp_undo_cwnd_reduction(sk, false); 2434 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2435 return true; 2436 } 2437 return false; 2438 } 2439 2440 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2441 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2442 { 2443 struct tcp_sock *tp = tcp_sk(sk); 2444 2445 if (frto_undo || tcp_may_undo(tp)) { 2446 tcp_undo_cwnd_reduction(sk, true); 2447 2448 DBGUNDO(sk, "partial loss"); 2449 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2450 if (frto_undo) 2451 NET_INC_STATS(sock_net(sk), 2452 LINUX_MIB_TCPSPURIOUSRTOS); 2453 inet_csk(sk)->icsk_retransmits = 0; 2454 if (frto_undo || tcp_is_sack(tp)) 2455 tcp_set_ca_state(sk, TCP_CA_Open); 2456 return true; 2457 } 2458 return false; 2459 } 2460 2461 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2462 * It computes the number of packets to send (sndcnt) based on packets newly 2463 * delivered: 2464 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2465 * cwnd reductions across a full RTT. 2466 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2467 * But when the retransmits are acked without further losses, PRR 2468 * slow starts cwnd up to ssthresh to speed up the recovery. 2469 */ 2470 static void tcp_init_cwnd_reduction(struct sock *sk) 2471 { 2472 struct tcp_sock *tp = tcp_sk(sk); 2473 2474 tp->high_seq = tp->snd_nxt; 2475 tp->tlp_high_seq = 0; 2476 tp->snd_cwnd_cnt = 0; 2477 tp->prior_cwnd = tp->snd_cwnd; 2478 tp->prr_delivered = 0; 2479 tp->prr_out = 0; 2480 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2481 tcp_ecn_queue_cwr(tp); 2482 } 2483 2484 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2485 { 2486 struct tcp_sock *tp = tcp_sk(sk); 2487 int sndcnt = 0; 2488 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2489 2490 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2491 return; 2492 2493 tp->prr_delivered += newly_acked_sacked; 2494 if (delta < 0) { 2495 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2496 tp->prior_cwnd - 1; 2497 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2498 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2499 !(flag & FLAG_LOST_RETRANS)) { 2500 sndcnt = min_t(int, delta, 2501 max_t(int, tp->prr_delivered - tp->prr_out, 2502 newly_acked_sacked) + 1); 2503 } else { 2504 sndcnt = min(delta, newly_acked_sacked); 2505 } 2506 /* Force a fast retransmit upon entering fast recovery */ 2507 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2508 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2509 } 2510 2511 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2512 { 2513 struct tcp_sock *tp = tcp_sk(sk); 2514 2515 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2516 return; 2517 2518 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2519 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2520 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2521 tp->snd_cwnd = tp->snd_ssthresh; 2522 tp->snd_cwnd_stamp = tcp_time_stamp; 2523 } 2524 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2525 } 2526 2527 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2528 void tcp_enter_cwr(struct sock *sk) 2529 { 2530 struct tcp_sock *tp = tcp_sk(sk); 2531 2532 tp->prior_ssthresh = 0; 2533 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2534 tp->undo_marker = 0; 2535 tcp_init_cwnd_reduction(sk); 2536 tcp_set_ca_state(sk, TCP_CA_CWR); 2537 } 2538 } 2539 EXPORT_SYMBOL(tcp_enter_cwr); 2540 2541 static void tcp_try_keep_open(struct sock *sk) 2542 { 2543 struct tcp_sock *tp = tcp_sk(sk); 2544 int state = TCP_CA_Open; 2545 2546 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2547 state = TCP_CA_Disorder; 2548 2549 if (inet_csk(sk)->icsk_ca_state != state) { 2550 tcp_set_ca_state(sk, state); 2551 tp->high_seq = tp->snd_nxt; 2552 } 2553 } 2554 2555 static void tcp_try_to_open(struct sock *sk, int flag) 2556 { 2557 struct tcp_sock *tp = tcp_sk(sk); 2558 2559 tcp_verify_left_out(tp); 2560 2561 if (!tcp_any_retrans_done(sk)) 2562 tp->retrans_stamp = 0; 2563 2564 if (flag & FLAG_ECE) 2565 tcp_enter_cwr(sk); 2566 2567 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2568 tcp_try_keep_open(sk); 2569 } 2570 } 2571 2572 static void tcp_mtup_probe_failed(struct sock *sk) 2573 { 2574 struct inet_connection_sock *icsk = inet_csk(sk); 2575 2576 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2577 icsk->icsk_mtup.probe_size = 0; 2578 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2579 } 2580 2581 static void tcp_mtup_probe_success(struct sock *sk) 2582 { 2583 struct tcp_sock *tp = tcp_sk(sk); 2584 struct inet_connection_sock *icsk = inet_csk(sk); 2585 2586 /* FIXME: breaks with very large cwnd */ 2587 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2588 tp->snd_cwnd = tp->snd_cwnd * 2589 tcp_mss_to_mtu(sk, tp->mss_cache) / 2590 icsk->icsk_mtup.probe_size; 2591 tp->snd_cwnd_cnt = 0; 2592 tp->snd_cwnd_stamp = tcp_time_stamp; 2593 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2594 2595 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2596 icsk->icsk_mtup.probe_size = 0; 2597 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2598 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2599 } 2600 2601 /* Do a simple retransmit without using the backoff mechanisms in 2602 * tcp_timer. This is used for path mtu discovery. 2603 * The socket is already locked here. 2604 */ 2605 void tcp_simple_retransmit(struct sock *sk) 2606 { 2607 const struct inet_connection_sock *icsk = inet_csk(sk); 2608 struct tcp_sock *tp = tcp_sk(sk); 2609 struct sk_buff *skb; 2610 unsigned int mss = tcp_current_mss(sk); 2611 u32 prior_lost = tp->lost_out; 2612 2613 tcp_for_write_queue(skb, sk) { 2614 if (skb == tcp_send_head(sk)) 2615 break; 2616 if (tcp_skb_seglen(skb) > mss && 2617 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2618 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2619 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2620 tp->retrans_out -= tcp_skb_pcount(skb); 2621 } 2622 tcp_skb_mark_lost_uncond_verify(tp, skb); 2623 } 2624 } 2625 2626 tcp_clear_retrans_hints_partial(tp); 2627 2628 if (prior_lost == tp->lost_out) 2629 return; 2630 2631 if (tcp_is_reno(tp)) 2632 tcp_limit_reno_sacked(tp); 2633 2634 tcp_verify_left_out(tp); 2635 2636 /* Don't muck with the congestion window here. 2637 * Reason is that we do not increase amount of _data_ 2638 * in network, but units changed and effective 2639 * cwnd/ssthresh really reduced now. 2640 */ 2641 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2642 tp->high_seq = tp->snd_nxt; 2643 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2644 tp->prior_ssthresh = 0; 2645 tp->undo_marker = 0; 2646 tcp_set_ca_state(sk, TCP_CA_Loss); 2647 } 2648 tcp_xmit_retransmit_queue(sk); 2649 } 2650 EXPORT_SYMBOL(tcp_simple_retransmit); 2651 2652 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2653 { 2654 struct tcp_sock *tp = tcp_sk(sk); 2655 int mib_idx; 2656 2657 if (tcp_is_reno(tp)) 2658 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2659 else 2660 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2661 2662 NET_INC_STATS(sock_net(sk), mib_idx); 2663 2664 tp->prior_ssthresh = 0; 2665 tcp_init_undo(tp); 2666 2667 if (!tcp_in_cwnd_reduction(sk)) { 2668 if (!ece_ack) 2669 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2670 tcp_init_cwnd_reduction(sk); 2671 } 2672 tcp_set_ca_state(sk, TCP_CA_Recovery); 2673 } 2674 2675 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2676 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2677 */ 2678 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2679 int *rexmit) 2680 { 2681 struct tcp_sock *tp = tcp_sk(sk); 2682 bool recovered = !before(tp->snd_una, tp->high_seq); 2683 2684 if ((flag & FLAG_SND_UNA_ADVANCED) && 2685 tcp_try_undo_loss(sk, false)) 2686 return; 2687 2688 /* The ACK (s)acks some never-retransmitted data meaning not all 2689 * the data packets before the timeout were lost. Therefore we 2690 * undo the congestion window and state. This is essentially 2691 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2692 * a retransmitted skb is permantly marked, we can apply such an 2693 * operation even if F-RTO was not used. 2694 */ 2695 if ((flag & FLAG_ORIG_SACK_ACKED) && 2696 tcp_try_undo_loss(sk, tp->undo_marker)) 2697 return; 2698 2699 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2700 if (after(tp->snd_nxt, tp->high_seq)) { 2701 if (flag & FLAG_DATA_SACKED || is_dupack) 2702 tp->frto = 0; /* Step 3.a. loss was real */ 2703 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2704 tp->high_seq = tp->snd_nxt; 2705 /* Step 2.b. Try send new data (but deferred until cwnd 2706 * is updated in tcp_ack()). Otherwise fall back to 2707 * the conventional recovery. 2708 */ 2709 if (tcp_send_head(sk) && 2710 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2711 *rexmit = REXMIT_NEW; 2712 return; 2713 } 2714 tp->frto = 0; 2715 } 2716 } 2717 2718 if (recovered) { 2719 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2720 tcp_try_undo_recovery(sk); 2721 return; 2722 } 2723 if (tcp_is_reno(tp)) { 2724 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2725 * delivered. Lower inflight to clock out (re)tranmissions. 2726 */ 2727 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2728 tcp_add_reno_sack(sk); 2729 else if (flag & FLAG_SND_UNA_ADVANCED) 2730 tcp_reset_reno_sack(tp); 2731 } 2732 *rexmit = REXMIT_LOST; 2733 } 2734 2735 /* Undo during fast recovery after partial ACK. */ 2736 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2737 { 2738 struct tcp_sock *tp = tcp_sk(sk); 2739 2740 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2741 /* Plain luck! Hole if filled with delayed 2742 * packet, rather than with a retransmit. 2743 */ 2744 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2745 2746 /* We are getting evidence that the reordering degree is higher 2747 * than we realized. If there are no retransmits out then we 2748 * can undo. Otherwise we clock out new packets but do not 2749 * mark more packets lost or retransmit more. 2750 */ 2751 if (tp->retrans_out) 2752 return true; 2753 2754 if (!tcp_any_retrans_done(sk)) 2755 tp->retrans_stamp = 0; 2756 2757 DBGUNDO(sk, "partial recovery"); 2758 tcp_undo_cwnd_reduction(sk, true); 2759 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2760 tcp_try_keep_open(sk); 2761 return true; 2762 } 2763 return false; 2764 } 2765 2766 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2767 { 2768 struct tcp_sock *tp = tcp_sk(sk); 2769 2770 /* Use RACK to detect loss */ 2771 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2772 u32 prior_retrans = tp->retrans_out; 2773 2774 tcp_rack_mark_lost(sk); 2775 if (prior_retrans > tp->retrans_out) 2776 *ack_flag |= FLAG_LOST_RETRANS; 2777 } 2778 } 2779 2780 /* Process an event, which can update packets-in-flight not trivially. 2781 * Main goal of this function is to calculate new estimate for left_out, 2782 * taking into account both packets sitting in receiver's buffer and 2783 * packets lost by network. 2784 * 2785 * Besides that it updates the congestion state when packet loss or ECN 2786 * is detected. But it does not reduce the cwnd, it is done by the 2787 * congestion control later. 2788 * 2789 * It does _not_ decide what to send, it is made in function 2790 * tcp_xmit_retransmit_queue(). 2791 */ 2792 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2793 bool is_dupack, int *ack_flag, int *rexmit) 2794 { 2795 struct inet_connection_sock *icsk = inet_csk(sk); 2796 struct tcp_sock *tp = tcp_sk(sk); 2797 int fast_rexmit = 0, flag = *ack_flag; 2798 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2799 (tcp_fackets_out(tp) > tp->reordering)); 2800 2801 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2802 tp->sacked_out = 0; 2803 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2804 tp->fackets_out = 0; 2805 2806 /* Now state machine starts. 2807 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2808 if (flag & FLAG_ECE) 2809 tp->prior_ssthresh = 0; 2810 2811 /* B. In all the states check for reneging SACKs. */ 2812 if (tcp_check_sack_reneging(sk, flag)) 2813 return; 2814 2815 /* C. Check consistency of the current state. */ 2816 tcp_verify_left_out(tp); 2817 2818 /* D. Check state exit conditions. State can be terminated 2819 * when high_seq is ACKed. */ 2820 if (icsk->icsk_ca_state == TCP_CA_Open) { 2821 WARN_ON(tp->retrans_out != 0); 2822 tp->retrans_stamp = 0; 2823 } else if (!before(tp->snd_una, tp->high_seq)) { 2824 switch (icsk->icsk_ca_state) { 2825 case TCP_CA_CWR: 2826 /* CWR is to be held something *above* high_seq 2827 * is ACKed for CWR bit to reach receiver. */ 2828 if (tp->snd_una != tp->high_seq) { 2829 tcp_end_cwnd_reduction(sk); 2830 tcp_set_ca_state(sk, TCP_CA_Open); 2831 } 2832 break; 2833 2834 case TCP_CA_Recovery: 2835 if (tcp_is_reno(tp)) 2836 tcp_reset_reno_sack(tp); 2837 if (tcp_try_undo_recovery(sk)) 2838 return; 2839 tcp_end_cwnd_reduction(sk); 2840 break; 2841 } 2842 } 2843 2844 /* E. Process state. */ 2845 switch (icsk->icsk_ca_state) { 2846 case TCP_CA_Recovery: 2847 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2848 if (tcp_is_reno(tp) && is_dupack) 2849 tcp_add_reno_sack(sk); 2850 } else { 2851 if (tcp_try_undo_partial(sk, acked)) 2852 return; 2853 /* Partial ACK arrived. Force fast retransmit. */ 2854 do_lost = tcp_is_reno(tp) || 2855 tcp_fackets_out(tp) > tp->reordering; 2856 } 2857 if (tcp_try_undo_dsack(sk)) { 2858 tcp_try_keep_open(sk); 2859 return; 2860 } 2861 tcp_rack_identify_loss(sk, ack_flag); 2862 break; 2863 case TCP_CA_Loss: 2864 tcp_process_loss(sk, flag, is_dupack, rexmit); 2865 tcp_rack_identify_loss(sk, ack_flag); 2866 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2867 (*ack_flag & FLAG_LOST_RETRANS))) 2868 return; 2869 /* Change state if cwnd is undone or retransmits are lost */ 2870 default: 2871 if (tcp_is_reno(tp)) { 2872 if (flag & FLAG_SND_UNA_ADVANCED) 2873 tcp_reset_reno_sack(tp); 2874 if (is_dupack) 2875 tcp_add_reno_sack(sk); 2876 } 2877 2878 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2879 tcp_try_undo_dsack(sk); 2880 2881 tcp_rack_identify_loss(sk, ack_flag); 2882 if (!tcp_time_to_recover(sk, flag)) { 2883 tcp_try_to_open(sk, flag); 2884 return; 2885 } 2886 2887 /* MTU probe failure: don't reduce cwnd */ 2888 if (icsk->icsk_ca_state < TCP_CA_CWR && 2889 icsk->icsk_mtup.probe_size && 2890 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2891 tcp_mtup_probe_failed(sk); 2892 /* Restores the reduction we did in tcp_mtup_probe() */ 2893 tp->snd_cwnd++; 2894 tcp_simple_retransmit(sk); 2895 return; 2896 } 2897 2898 /* Otherwise enter Recovery state */ 2899 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2900 fast_rexmit = 1; 2901 } 2902 2903 if (do_lost) 2904 tcp_update_scoreboard(sk, fast_rexmit); 2905 *rexmit = REXMIT_LOST; 2906 } 2907 2908 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2909 { 2910 struct tcp_sock *tp = tcp_sk(sk); 2911 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2912 2913 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp, 2914 rtt_us ? : jiffies_to_usecs(1)); 2915 } 2916 2917 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2918 long seq_rtt_us, long sack_rtt_us, 2919 long ca_rtt_us) 2920 { 2921 const struct tcp_sock *tp = tcp_sk(sk); 2922 2923 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2924 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2925 * Karn's algorithm forbids taking RTT if some retransmitted data 2926 * is acked (RFC6298). 2927 */ 2928 if (seq_rtt_us < 0) 2929 seq_rtt_us = sack_rtt_us; 2930 2931 /* RTTM Rule: A TSecr value received in a segment is used to 2932 * update the averaged RTT measurement only if the segment 2933 * acknowledges some new data, i.e., only if it advances the 2934 * left edge of the send window. 2935 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2936 */ 2937 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2938 flag & FLAG_ACKED) 2939 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp - 2940 tp->rx_opt.rcv_tsecr); 2941 if (seq_rtt_us < 0) 2942 return false; 2943 2944 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2945 * always taken together with ACK, SACK, or TS-opts. Any negative 2946 * values will be skipped with the seq_rtt_us < 0 check above. 2947 */ 2948 tcp_update_rtt_min(sk, ca_rtt_us); 2949 tcp_rtt_estimator(sk, seq_rtt_us); 2950 tcp_set_rto(sk); 2951 2952 /* RFC6298: only reset backoff on valid RTT measurement. */ 2953 inet_csk(sk)->icsk_backoff = 0; 2954 return true; 2955 } 2956 2957 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2958 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2959 { 2960 long rtt_us = -1L; 2961 2962 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) { 2963 struct skb_mstamp now; 2964 2965 skb_mstamp_get(&now); 2966 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack); 2967 } 2968 2969 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us); 2970 } 2971 2972 2973 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2974 { 2975 const struct inet_connection_sock *icsk = inet_csk(sk); 2976 2977 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2978 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2979 } 2980 2981 /* Restart timer after forward progress on connection. 2982 * RFC2988 recommends to restart timer to now+rto. 2983 */ 2984 void tcp_rearm_rto(struct sock *sk) 2985 { 2986 const struct inet_connection_sock *icsk = inet_csk(sk); 2987 struct tcp_sock *tp = tcp_sk(sk); 2988 2989 /* If the retrans timer is currently being used by Fast Open 2990 * for SYN-ACK retrans purpose, stay put. 2991 */ 2992 if (tp->fastopen_rsk) 2993 return; 2994 2995 if (!tp->packets_out) { 2996 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2997 } else { 2998 u32 rto = inet_csk(sk)->icsk_rto; 2999 /* Offset the time elapsed after installing regular RTO */ 3000 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3001 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3002 struct sk_buff *skb = tcp_write_queue_head(sk); 3003 const u32 rto_time_stamp = 3004 tcp_skb_timestamp(skb) + rto; 3005 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 3006 /* delta may not be positive if the socket is locked 3007 * when the retrans timer fires and is rescheduled. 3008 */ 3009 if (delta > 0) 3010 rto = delta; 3011 } 3012 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3013 TCP_RTO_MAX); 3014 } 3015 } 3016 3017 /* If we get here, the whole TSO packet has not been acked. */ 3018 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3019 { 3020 struct tcp_sock *tp = tcp_sk(sk); 3021 u32 packets_acked; 3022 3023 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3024 3025 packets_acked = tcp_skb_pcount(skb); 3026 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3027 return 0; 3028 packets_acked -= tcp_skb_pcount(skb); 3029 3030 if (packets_acked) { 3031 BUG_ON(tcp_skb_pcount(skb) == 0); 3032 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3033 } 3034 3035 return packets_acked; 3036 } 3037 3038 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3039 u32 prior_snd_una) 3040 { 3041 const struct skb_shared_info *shinfo; 3042 3043 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3044 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3045 return; 3046 3047 shinfo = skb_shinfo(skb); 3048 if (!before(shinfo->tskey, prior_snd_una) && 3049 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3050 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3051 } 3052 3053 /* Remove acknowledged frames from the retransmission queue. If our packet 3054 * is before the ack sequence we can discard it as it's confirmed to have 3055 * arrived at the other end. 3056 */ 3057 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3058 u32 prior_snd_una, int *acked, 3059 struct tcp_sacktag_state *sack) 3060 { 3061 const struct inet_connection_sock *icsk = inet_csk(sk); 3062 struct skb_mstamp first_ackt, last_ackt; 3063 struct tcp_sock *tp = tcp_sk(sk); 3064 struct skb_mstamp *now = &tp->tcp_mstamp; 3065 u32 prior_sacked = tp->sacked_out; 3066 u32 reord = tp->packets_out; 3067 bool fully_acked = true; 3068 long sack_rtt_us = -1L; 3069 long seq_rtt_us = -1L; 3070 long ca_rtt_us = -1L; 3071 struct sk_buff *skb; 3072 u32 pkts_acked = 0; 3073 u32 last_in_flight = 0; 3074 bool rtt_update; 3075 int flag = 0; 3076 3077 first_ackt.v64 = 0; 3078 3079 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3080 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3081 u8 sacked = scb->sacked; 3082 u32 acked_pcount; 3083 3084 tcp_ack_tstamp(sk, skb, prior_snd_una); 3085 3086 /* Determine how many packets and what bytes were acked, tso and else */ 3087 if (after(scb->end_seq, tp->snd_una)) { 3088 if (tcp_skb_pcount(skb) == 1 || 3089 !after(tp->snd_una, scb->seq)) 3090 break; 3091 3092 acked_pcount = tcp_tso_acked(sk, skb); 3093 if (!acked_pcount) 3094 break; 3095 fully_acked = false; 3096 } else { 3097 /* Speedup tcp_unlink_write_queue() and next loop */ 3098 prefetchw(skb->next); 3099 acked_pcount = tcp_skb_pcount(skb); 3100 } 3101 3102 if (unlikely(sacked & TCPCB_RETRANS)) { 3103 if (sacked & TCPCB_SACKED_RETRANS) 3104 tp->retrans_out -= acked_pcount; 3105 flag |= FLAG_RETRANS_DATA_ACKED; 3106 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3107 last_ackt = skb->skb_mstamp; 3108 WARN_ON_ONCE(last_ackt.v64 == 0); 3109 if (!first_ackt.v64) 3110 first_ackt = last_ackt; 3111 3112 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3113 reord = min(pkts_acked, reord); 3114 if (!after(scb->end_seq, tp->high_seq)) 3115 flag |= FLAG_ORIG_SACK_ACKED; 3116 } 3117 3118 if (sacked & TCPCB_SACKED_ACKED) { 3119 tp->sacked_out -= acked_pcount; 3120 } else if (tcp_is_sack(tp)) { 3121 tp->delivered += acked_pcount; 3122 if (!tcp_skb_spurious_retrans(tp, skb)) 3123 tcp_rack_advance(tp, sacked, scb->end_seq, 3124 &skb->skb_mstamp); 3125 } 3126 if (sacked & TCPCB_LOST) 3127 tp->lost_out -= acked_pcount; 3128 3129 tp->packets_out -= acked_pcount; 3130 pkts_acked += acked_pcount; 3131 tcp_rate_skb_delivered(sk, skb, sack->rate); 3132 3133 /* Initial outgoing SYN's get put onto the write_queue 3134 * just like anything else we transmit. It is not 3135 * true data, and if we misinform our callers that 3136 * this ACK acks real data, we will erroneously exit 3137 * connection startup slow start one packet too 3138 * quickly. This is severely frowned upon behavior. 3139 */ 3140 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3141 flag |= FLAG_DATA_ACKED; 3142 } else { 3143 flag |= FLAG_SYN_ACKED; 3144 tp->retrans_stamp = 0; 3145 } 3146 3147 if (!fully_acked) 3148 break; 3149 3150 tcp_unlink_write_queue(skb, sk); 3151 sk_wmem_free_skb(sk, skb); 3152 if (unlikely(skb == tp->retransmit_skb_hint)) 3153 tp->retransmit_skb_hint = NULL; 3154 if (unlikely(skb == tp->lost_skb_hint)) 3155 tp->lost_skb_hint = NULL; 3156 } 3157 3158 if (!skb) 3159 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3160 3161 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3162 tp->snd_up = tp->snd_una; 3163 3164 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3165 flag |= FLAG_SACK_RENEGING; 3166 3167 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3168 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt); 3169 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt); 3170 } 3171 if (sack->first_sackt.v64) { 3172 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt); 3173 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt); 3174 } 3175 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */ 3176 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3177 ca_rtt_us); 3178 3179 if (flag & FLAG_ACKED) { 3180 tcp_rearm_rto(sk); 3181 if (unlikely(icsk->icsk_mtup.probe_size && 3182 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3183 tcp_mtup_probe_success(sk); 3184 } 3185 3186 if (tcp_is_reno(tp)) { 3187 tcp_remove_reno_sacks(sk, pkts_acked); 3188 } else { 3189 int delta; 3190 3191 /* Non-retransmitted hole got filled? That's reordering */ 3192 if (reord < prior_fackets) 3193 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3194 3195 delta = tcp_is_fack(tp) ? pkts_acked : 3196 prior_sacked - tp->sacked_out; 3197 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3198 } 3199 3200 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3201 3202 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3203 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) { 3204 /* Do not re-arm RTO if the sack RTT is measured from data sent 3205 * after when the head was last (re)transmitted. Otherwise the 3206 * timeout may continue to extend in loss recovery. 3207 */ 3208 tcp_rearm_rto(sk); 3209 } 3210 3211 if (icsk->icsk_ca_ops->pkts_acked) { 3212 struct ack_sample sample = { .pkts_acked = pkts_acked, 3213 .rtt_us = ca_rtt_us, 3214 .in_flight = last_in_flight }; 3215 3216 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3217 } 3218 3219 #if FASTRETRANS_DEBUG > 0 3220 WARN_ON((int)tp->sacked_out < 0); 3221 WARN_ON((int)tp->lost_out < 0); 3222 WARN_ON((int)tp->retrans_out < 0); 3223 if (!tp->packets_out && tcp_is_sack(tp)) { 3224 icsk = inet_csk(sk); 3225 if (tp->lost_out) { 3226 pr_debug("Leak l=%u %d\n", 3227 tp->lost_out, icsk->icsk_ca_state); 3228 tp->lost_out = 0; 3229 } 3230 if (tp->sacked_out) { 3231 pr_debug("Leak s=%u %d\n", 3232 tp->sacked_out, icsk->icsk_ca_state); 3233 tp->sacked_out = 0; 3234 } 3235 if (tp->retrans_out) { 3236 pr_debug("Leak r=%u %d\n", 3237 tp->retrans_out, icsk->icsk_ca_state); 3238 tp->retrans_out = 0; 3239 } 3240 } 3241 #endif 3242 *acked = pkts_acked; 3243 return flag; 3244 } 3245 3246 static void tcp_ack_probe(struct sock *sk) 3247 { 3248 const struct tcp_sock *tp = tcp_sk(sk); 3249 struct inet_connection_sock *icsk = inet_csk(sk); 3250 3251 /* Was it a usable window open? */ 3252 3253 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3254 icsk->icsk_backoff = 0; 3255 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3256 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3257 * This function is not for random using! 3258 */ 3259 } else { 3260 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3261 3262 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3263 when, TCP_RTO_MAX); 3264 } 3265 } 3266 3267 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3268 { 3269 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3270 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3271 } 3272 3273 /* Decide wheather to run the increase function of congestion control. */ 3274 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3275 { 3276 /* If reordering is high then always grow cwnd whenever data is 3277 * delivered regardless of its ordering. Otherwise stay conservative 3278 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3279 * new SACK or ECE mark may first advance cwnd here and later reduce 3280 * cwnd in tcp_fastretrans_alert() based on more states. 3281 */ 3282 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3283 return flag & FLAG_FORWARD_PROGRESS; 3284 3285 return flag & FLAG_DATA_ACKED; 3286 } 3287 3288 /* The "ultimate" congestion control function that aims to replace the rigid 3289 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3290 * It's called toward the end of processing an ACK with precise rate 3291 * information. All transmission or retransmission are delayed afterwards. 3292 */ 3293 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3294 int flag, const struct rate_sample *rs) 3295 { 3296 const struct inet_connection_sock *icsk = inet_csk(sk); 3297 3298 if (icsk->icsk_ca_ops->cong_control) { 3299 icsk->icsk_ca_ops->cong_control(sk, rs); 3300 return; 3301 } 3302 3303 if (tcp_in_cwnd_reduction(sk)) { 3304 /* Reduce cwnd if state mandates */ 3305 tcp_cwnd_reduction(sk, acked_sacked, flag); 3306 } else if (tcp_may_raise_cwnd(sk, flag)) { 3307 /* Advance cwnd if state allows */ 3308 tcp_cong_avoid(sk, ack, acked_sacked); 3309 } 3310 tcp_update_pacing_rate(sk); 3311 } 3312 3313 /* Check that window update is acceptable. 3314 * The function assumes that snd_una<=ack<=snd_next. 3315 */ 3316 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3317 const u32 ack, const u32 ack_seq, 3318 const u32 nwin) 3319 { 3320 return after(ack, tp->snd_una) || 3321 after(ack_seq, tp->snd_wl1) || 3322 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3323 } 3324 3325 /* If we update tp->snd_una, also update tp->bytes_acked */ 3326 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3327 { 3328 u32 delta = ack - tp->snd_una; 3329 3330 sock_owned_by_me((struct sock *)tp); 3331 tp->bytes_acked += delta; 3332 tp->snd_una = ack; 3333 } 3334 3335 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3336 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3337 { 3338 u32 delta = seq - tp->rcv_nxt; 3339 3340 sock_owned_by_me((struct sock *)tp); 3341 tp->bytes_received += delta; 3342 tp->rcv_nxt = seq; 3343 } 3344 3345 /* Update our send window. 3346 * 3347 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3348 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3349 */ 3350 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3351 u32 ack_seq) 3352 { 3353 struct tcp_sock *tp = tcp_sk(sk); 3354 int flag = 0; 3355 u32 nwin = ntohs(tcp_hdr(skb)->window); 3356 3357 if (likely(!tcp_hdr(skb)->syn)) 3358 nwin <<= tp->rx_opt.snd_wscale; 3359 3360 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3361 flag |= FLAG_WIN_UPDATE; 3362 tcp_update_wl(tp, ack_seq); 3363 3364 if (tp->snd_wnd != nwin) { 3365 tp->snd_wnd = nwin; 3366 3367 /* Note, it is the only place, where 3368 * fast path is recovered for sending TCP. 3369 */ 3370 tp->pred_flags = 0; 3371 tcp_fast_path_check(sk); 3372 3373 if (tcp_send_head(sk)) 3374 tcp_slow_start_after_idle_check(sk); 3375 3376 if (nwin > tp->max_window) { 3377 tp->max_window = nwin; 3378 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3379 } 3380 } 3381 } 3382 3383 tcp_snd_una_update(tp, ack); 3384 3385 return flag; 3386 } 3387 3388 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3389 u32 *last_oow_ack_time) 3390 { 3391 if (*last_oow_ack_time) { 3392 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); 3393 3394 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3395 NET_INC_STATS(net, mib_idx); 3396 return true; /* rate-limited: don't send yet! */ 3397 } 3398 } 3399 3400 *last_oow_ack_time = tcp_time_stamp; 3401 3402 return false; /* not rate-limited: go ahead, send dupack now! */ 3403 } 3404 3405 /* Return true if we're currently rate-limiting out-of-window ACKs and 3406 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3407 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3408 * attacks that send repeated SYNs or ACKs for the same connection. To 3409 * do this, we do not send a duplicate SYNACK or ACK if the remote 3410 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3411 */ 3412 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3413 int mib_idx, u32 *last_oow_ack_time) 3414 { 3415 /* Data packets without SYNs are not likely part of an ACK loop. */ 3416 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3417 !tcp_hdr(skb)->syn) 3418 return false; 3419 3420 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3421 } 3422 3423 /* RFC 5961 7 [ACK Throttling] */ 3424 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3425 { 3426 /* unprotected vars, we dont care of overwrites */ 3427 static u32 challenge_timestamp; 3428 static unsigned int challenge_count; 3429 struct tcp_sock *tp = tcp_sk(sk); 3430 u32 count, now; 3431 3432 /* First check our per-socket dupack rate limit. */ 3433 if (__tcp_oow_rate_limited(sock_net(sk), 3434 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3435 &tp->last_oow_ack_time)) 3436 return; 3437 3438 /* Then check host-wide RFC 5961 rate limit. */ 3439 now = jiffies / HZ; 3440 if (now != challenge_timestamp) { 3441 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3442 3443 challenge_timestamp = now; 3444 WRITE_ONCE(challenge_count, half + 3445 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3446 } 3447 count = READ_ONCE(challenge_count); 3448 if (count > 0) { 3449 WRITE_ONCE(challenge_count, count - 1); 3450 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3451 tcp_send_ack(sk); 3452 } 3453 } 3454 3455 static void tcp_store_ts_recent(struct tcp_sock *tp) 3456 { 3457 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3458 tp->rx_opt.ts_recent_stamp = get_seconds(); 3459 } 3460 3461 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3462 { 3463 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3464 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3465 * extra check below makes sure this can only happen 3466 * for pure ACK frames. -DaveM 3467 * 3468 * Not only, also it occurs for expired timestamps. 3469 */ 3470 3471 if (tcp_paws_check(&tp->rx_opt, 0)) 3472 tcp_store_ts_recent(tp); 3473 } 3474 } 3475 3476 /* This routine deals with acks during a TLP episode. 3477 * We mark the end of a TLP episode on receiving TLP dupack or when 3478 * ack is after tlp_high_seq. 3479 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3480 */ 3481 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3482 { 3483 struct tcp_sock *tp = tcp_sk(sk); 3484 3485 if (before(ack, tp->tlp_high_seq)) 3486 return; 3487 3488 if (flag & FLAG_DSACKING_ACK) { 3489 /* This DSACK means original and TLP probe arrived; no loss */ 3490 tp->tlp_high_seq = 0; 3491 } else if (after(ack, tp->tlp_high_seq)) { 3492 /* ACK advances: there was a loss, so reduce cwnd. Reset 3493 * tlp_high_seq in tcp_init_cwnd_reduction() 3494 */ 3495 tcp_init_cwnd_reduction(sk); 3496 tcp_set_ca_state(sk, TCP_CA_CWR); 3497 tcp_end_cwnd_reduction(sk); 3498 tcp_try_keep_open(sk); 3499 NET_INC_STATS(sock_net(sk), 3500 LINUX_MIB_TCPLOSSPROBERECOVERY); 3501 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3502 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3503 /* Pure dupack: original and TLP probe arrived; no loss */ 3504 tp->tlp_high_seq = 0; 3505 } 3506 } 3507 3508 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3509 { 3510 const struct inet_connection_sock *icsk = inet_csk(sk); 3511 3512 if (icsk->icsk_ca_ops->in_ack_event) 3513 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3514 } 3515 3516 /* Congestion control has updated the cwnd already. So if we're in 3517 * loss recovery then now we do any new sends (for FRTO) or 3518 * retransmits (for CA_Loss or CA_recovery) that make sense. 3519 */ 3520 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3521 { 3522 struct tcp_sock *tp = tcp_sk(sk); 3523 3524 if (rexmit == REXMIT_NONE) 3525 return; 3526 3527 if (unlikely(rexmit == 2)) { 3528 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3529 TCP_NAGLE_OFF); 3530 if (after(tp->snd_nxt, tp->high_seq)) 3531 return; 3532 tp->frto = 0; 3533 } 3534 tcp_xmit_retransmit_queue(sk); 3535 } 3536 3537 /* This routine deals with incoming acks, but not outgoing ones. */ 3538 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3539 { 3540 struct inet_connection_sock *icsk = inet_csk(sk); 3541 struct tcp_sock *tp = tcp_sk(sk); 3542 struct tcp_sacktag_state sack_state; 3543 struct rate_sample rs = { .prior_delivered = 0 }; 3544 u32 prior_snd_una = tp->snd_una; 3545 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3546 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3547 bool is_dupack = false; 3548 u32 prior_fackets; 3549 int prior_packets = tp->packets_out; 3550 u32 delivered = tp->delivered; 3551 u32 lost = tp->lost; 3552 int acked = 0; /* Number of packets newly acked */ 3553 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3554 3555 sack_state.first_sackt.v64 = 0; 3556 sack_state.rate = &rs; 3557 3558 /* We very likely will need to access write queue head. */ 3559 prefetchw(sk->sk_write_queue.next); 3560 3561 /* If the ack is older than previous acks 3562 * then we can probably ignore it. 3563 */ 3564 if (before(ack, prior_snd_una)) { 3565 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3566 if (before(ack, prior_snd_una - tp->max_window)) { 3567 tcp_send_challenge_ack(sk, skb); 3568 return -1; 3569 } 3570 goto old_ack; 3571 } 3572 3573 /* If the ack includes data we haven't sent yet, discard 3574 * this segment (RFC793 Section 3.9). 3575 */ 3576 if (after(ack, tp->snd_nxt)) 3577 goto invalid_ack; 3578 3579 if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3580 tcp_rearm_rto(sk); 3581 3582 if (after(ack, prior_snd_una)) { 3583 flag |= FLAG_SND_UNA_ADVANCED; 3584 icsk->icsk_retransmits = 0; 3585 } 3586 3587 prior_fackets = tp->fackets_out; 3588 rs.prior_in_flight = tcp_packets_in_flight(tp); 3589 3590 /* ts_recent update must be made after we are sure that the packet 3591 * is in window. 3592 */ 3593 if (flag & FLAG_UPDATE_TS_RECENT) 3594 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3595 3596 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3597 /* Window is constant, pure forward advance. 3598 * No more checks are required. 3599 * Note, we use the fact that SND.UNA>=SND.WL2. 3600 */ 3601 tcp_update_wl(tp, ack_seq); 3602 tcp_snd_una_update(tp, ack); 3603 flag |= FLAG_WIN_UPDATE; 3604 3605 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3606 3607 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3608 } else { 3609 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3610 3611 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3612 flag |= FLAG_DATA; 3613 else 3614 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3615 3616 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3617 3618 if (TCP_SKB_CB(skb)->sacked) 3619 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3620 &sack_state); 3621 3622 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3623 flag |= FLAG_ECE; 3624 ack_ev_flags |= CA_ACK_ECE; 3625 } 3626 3627 if (flag & FLAG_WIN_UPDATE) 3628 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3629 3630 tcp_in_ack_event(sk, ack_ev_flags); 3631 } 3632 3633 /* We passed data and got it acked, remove any soft error 3634 * log. Something worked... 3635 */ 3636 sk->sk_err_soft = 0; 3637 icsk->icsk_probes_out = 0; 3638 tp->rcv_tstamp = tcp_time_stamp; 3639 if (!prior_packets) 3640 goto no_queue; 3641 3642 /* See if we can take anything off of the retransmit queue. */ 3643 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3644 &sack_state); 3645 3646 if (tcp_ack_is_dubious(sk, flag)) { 3647 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3648 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3649 } 3650 if (tp->tlp_high_seq) 3651 tcp_process_tlp_ack(sk, ack, flag); 3652 3653 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3654 sk_dst_confirm(sk); 3655 3656 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3657 tcp_schedule_loss_probe(sk); 3658 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3659 lost = tp->lost - lost; /* freshly marked lost */ 3660 tcp_rate_gen(sk, delivered, lost, sack_state.rate); 3661 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3662 tcp_xmit_recovery(sk, rexmit); 3663 return 1; 3664 3665 no_queue: 3666 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3667 if (flag & FLAG_DSACKING_ACK) 3668 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3669 /* If this ack opens up a zero window, clear backoff. It was 3670 * being used to time the probes, and is probably far higher than 3671 * it needs to be for normal retransmission. 3672 */ 3673 if (tcp_send_head(sk)) 3674 tcp_ack_probe(sk); 3675 3676 if (tp->tlp_high_seq) 3677 tcp_process_tlp_ack(sk, ack, flag); 3678 return 1; 3679 3680 invalid_ack: 3681 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3682 return -1; 3683 3684 old_ack: 3685 /* If data was SACKed, tag it and see if we should send more data. 3686 * If data was DSACKed, see if we can undo a cwnd reduction. 3687 */ 3688 if (TCP_SKB_CB(skb)->sacked) { 3689 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3690 &sack_state); 3691 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3692 tcp_xmit_recovery(sk, rexmit); 3693 } 3694 3695 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3696 return 0; 3697 } 3698 3699 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3700 bool syn, struct tcp_fastopen_cookie *foc, 3701 bool exp_opt) 3702 { 3703 /* Valid only in SYN or SYN-ACK with an even length. */ 3704 if (!foc || !syn || len < 0 || (len & 1)) 3705 return; 3706 3707 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3708 len <= TCP_FASTOPEN_COOKIE_MAX) 3709 memcpy(foc->val, cookie, len); 3710 else if (len != 0) 3711 len = -1; 3712 foc->len = len; 3713 foc->exp = exp_opt; 3714 } 3715 3716 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3717 * But, this can also be called on packets in the established flow when 3718 * the fast version below fails. 3719 */ 3720 void tcp_parse_options(const struct sk_buff *skb, 3721 struct tcp_options_received *opt_rx, int estab, 3722 struct tcp_fastopen_cookie *foc) 3723 { 3724 const unsigned char *ptr; 3725 const struct tcphdr *th = tcp_hdr(skb); 3726 int length = (th->doff * 4) - sizeof(struct tcphdr); 3727 3728 ptr = (const unsigned char *)(th + 1); 3729 opt_rx->saw_tstamp = 0; 3730 3731 while (length > 0) { 3732 int opcode = *ptr++; 3733 int opsize; 3734 3735 switch (opcode) { 3736 case TCPOPT_EOL: 3737 return; 3738 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3739 length--; 3740 continue; 3741 default: 3742 opsize = *ptr++; 3743 if (opsize < 2) /* "silly options" */ 3744 return; 3745 if (opsize > length) 3746 return; /* don't parse partial options */ 3747 switch (opcode) { 3748 case TCPOPT_MSS: 3749 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3750 u16 in_mss = get_unaligned_be16(ptr); 3751 if (in_mss) { 3752 if (opt_rx->user_mss && 3753 opt_rx->user_mss < in_mss) 3754 in_mss = opt_rx->user_mss; 3755 opt_rx->mss_clamp = in_mss; 3756 } 3757 } 3758 break; 3759 case TCPOPT_WINDOW: 3760 if (opsize == TCPOLEN_WINDOW && th->syn && 3761 !estab && sysctl_tcp_window_scaling) { 3762 __u8 snd_wscale = *(__u8 *)ptr; 3763 opt_rx->wscale_ok = 1; 3764 if (snd_wscale > TCP_MAX_WSCALE) { 3765 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3766 __func__, 3767 snd_wscale, 3768 TCP_MAX_WSCALE); 3769 snd_wscale = TCP_MAX_WSCALE; 3770 } 3771 opt_rx->snd_wscale = snd_wscale; 3772 } 3773 break; 3774 case TCPOPT_TIMESTAMP: 3775 if ((opsize == TCPOLEN_TIMESTAMP) && 3776 ((estab && opt_rx->tstamp_ok) || 3777 (!estab && sysctl_tcp_timestamps))) { 3778 opt_rx->saw_tstamp = 1; 3779 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3780 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3781 } 3782 break; 3783 case TCPOPT_SACK_PERM: 3784 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3785 !estab && sysctl_tcp_sack) { 3786 opt_rx->sack_ok = TCP_SACK_SEEN; 3787 tcp_sack_reset(opt_rx); 3788 } 3789 break; 3790 3791 case TCPOPT_SACK: 3792 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3793 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3794 opt_rx->sack_ok) { 3795 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3796 } 3797 break; 3798 #ifdef CONFIG_TCP_MD5SIG 3799 case TCPOPT_MD5SIG: 3800 /* 3801 * The MD5 Hash has already been 3802 * checked (see tcp_v{4,6}_do_rcv()). 3803 */ 3804 break; 3805 #endif 3806 case TCPOPT_FASTOPEN: 3807 tcp_parse_fastopen_option( 3808 opsize - TCPOLEN_FASTOPEN_BASE, 3809 ptr, th->syn, foc, false); 3810 break; 3811 3812 case TCPOPT_EXP: 3813 /* Fast Open option shares code 254 using a 3814 * 16 bits magic number. 3815 */ 3816 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3817 get_unaligned_be16(ptr) == 3818 TCPOPT_FASTOPEN_MAGIC) 3819 tcp_parse_fastopen_option(opsize - 3820 TCPOLEN_EXP_FASTOPEN_BASE, 3821 ptr + 2, th->syn, foc, true); 3822 break; 3823 3824 } 3825 ptr += opsize-2; 3826 length -= opsize; 3827 } 3828 } 3829 } 3830 EXPORT_SYMBOL(tcp_parse_options); 3831 3832 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3833 { 3834 const __be32 *ptr = (const __be32 *)(th + 1); 3835 3836 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3837 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3838 tp->rx_opt.saw_tstamp = 1; 3839 ++ptr; 3840 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3841 ++ptr; 3842 if (*ptr) 3843 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3844 else 3845 tp->rx_opt.rcv_tsecr = 0; 3846 return true; 3847 } 3848 return false; 3849 } 3850 3851 /* Fast parse options. This hopes to only see timestamps. 3852 * If it is wrong it falls back on tcp_parse_options(). 3853 */ 3854 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3855 const struct tcphdr *th, struct tcp_sock *tp) 3856 { 3857 /* In the spirit of fast parsing, compare doff directly to constant 3858 * values. Because equality is used, short doff can be ignored here. 3859 */ 3860 if (th->doff == (sizeof(*th) / 4)) { 3861 tp->rx_opt.saw_tstamp = 0; 3862 return false; 3863 } else if (tp->rx_opt.tstamp_ok && 3864 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3865 if (tcp_parse_aligned_timestamp(tp, th)) 3866 return true; 3867 } 3868 3869 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3870 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3871 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3872 3873 return true; 3874 } 3875 3876 #ifdef CONFIG_TCP_MD5SIG 3877 /* 3878 * Parse MD5 Signature option 3879 */ 3880 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3881 { 3882 int length = (th->doff << 2) - sizeof(*th); 3883 const u8 *ptr = (const u8 *)(th + 1); 3884 3885 /* If the TCP option is too short, we can short cut */ 3886 if (length < TCPOLEN_MD5SIG) 3887 return NULL; 3888 3889 while (length > 0) { 3890 int opcode = *ptr++; 3891 int opsize; 3892 3893 switch (opcode) { 3894 case TCPOPT_EOL: 3895 return NULL; 3896 case TCPOPT_NOP: 3897 length--; 3898 continue; 3899 default: 3900 opsize = *ptr++; 3901 if (opsize < 2 || opsize > length) 3902 return NULL; 3903 if (opcode == TCPOPT_MD5SIG) 3904 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3905 } 3906 ptr += opsize - 2; 3907 length -= opsize; 3908 } 3909 return NULL; 3910 } 3911 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3912 #endif 3913 3914 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3915 * 3916 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3917 * it can pass through stack. So, the following predicate verifies that 3918 * this segment is not used for anything but congestion avoidance or 3919 * fast retransmit. Moreover, we even are able to eliminate most of such 3920 * second order effects, if we apply some small "replay" window (~RTO) 3921 * to timestamp space. 3922 * 3923 * All these measures still do not guarantee that we reject wrapped ACKs 3924 * on networks with high bandwidth, when sequence space is recycled fastly, 3925 * but it guarantees that such events will be very rare and do not affect 3926 * connection seriously. This doesn't look nice, but alas, PAWS is really 3927 * buggy extension. 3928 * 3929 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3930 * states that events when retransmit arrives after original data are rare. 3931 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3932 * the biggest problem on large power networks even with minor reordering. 3933 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3934 * up to bandwidth of 18Gigabit/sec. 8) ] 3935 */ 3936 3937 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3938 { 3939 const struct tcp_sock *tp = tcp_sk(sk); 3940 const struct tcphdr *th = tcp_hdr(skb); 3941 u32 seq = TCP_SKB_CB(skb)->seq; 3942 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3943 3944 return (/* 1. Pure ACK with correct sequence number. */ 3945 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3946 3947 /* 2. ... and duplicate ACK. */ 3948 ack == tp->snd_una && 3949 3950 /* 3. ... and does not update window. */ 3951 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3952 3953 /* 4. ... and sits in replay window. */ 3954 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3955 } 3956 3957 static inline bool tcp_paws_discard(const struct sock *sk, 3958 const struct sk_buff *skb) 3959 { 3960 const struct tcp_sock *tp = tcp_sk(sk); 3961 3962 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3963 !tcp_disordered_ack(sk, skb); 3964 } 3965 3966 /* Check segment sequence number for validity. 3967 * 3968 * Segment controls are considered valid, if the segment 3969 * fits to the window after truncation to the window. Acceptability 3970 * of data (and SYN, FIN, of course) is checked separately. 3971 * See tcp_data_queue(), for example. 3972 * 3973 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3974 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3975 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3976 * (borrowed from freebsd) 3977 */ 3978 3979 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3980 { 3981 return !before(end_seq, tp->rcv_wup) && 3982 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3983 } 3984 3985 /* When we get a reset we do this. */ 3986 void tcp_reset(struct sock *sk) 3987 { 3988 /* We want the right error as BSD sees it (and indeed as we do). */ 3989 switch (sk->sk_state) { 3990 case TCP_SYN_SENT: 3991 sk->sk_err = ECONNREFUSED; 3992 break; 3993 case TCP_CLOSE_WAIT: 3994 sk->sk_err = EPIPE; 3995 break; 3996 case TCP_CLOSE: 3997 return; 3998 default: 3999 sk->sk_err = ECONNRESET; 4000 } 4001 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4002 smp_wmb(); 4003 4004 tcp_done(sk); 4005 4006 if (!sock_flag(sk, SOCK_DEAD)) 4007 sk->sk_error_report(sk); 4008 } 4009 4010 /* 4011 * Process the FIN bit. This now behaves as it is supposed to work 4012 * and the FIN takes effect when it is validly part of sequence 4013 * space. Not before when we get holes. 4014 * 4015 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4016 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4017 * TIME-WAIT) 4018 * 4019 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4020 * close and we go into CLOSING (and later onto TIME-WAIT) 4021 * 4022 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4023 */ 4024 void tcp_fin(struct sock *sk) 4025 { 4026 struct tcp_sock *tp = tcp_sk(sk); 4027 4028 inet_csk_schedule_ack(sk); 4029 4030 sk->sk_shutdown |= RCV_SHUTDOWN; 4031 sock_set_flag(sk, SOCK_DONE); 4032 4033 switch (sk->sk_state) { 4034 case TCP_SYN_RECV: 4035 case TCP_ESTABLISHED: 4036 /* Move to CLOSE_WAIT */ 4037 tcp_set_state(sk, TCP_CLOSE_WAIT); 4038 inet_csk(sk)->icsk_ack.pingpong = 1; 4039 break; 4040 4041 case TCP_CLOSE_WAIT: 4042 case TCP_CLOSING: 4043 /* Received a retransmission of the FIN, do 4044 * nothing. 4045 */ 4046 break; 4047 case TCP_LAST_ACK: 4048 /* RFC793: Remain in the LAST-ACK state. */ 4049 break; 4050 4051 case TCP_FIN_WAIT1: 4052 /* This case occurs when a simultaneous close 4053 * happens, we must ack the received FIN and 4054 * enter the CLOSING state. 4055 */ 4056 tcp_send_ack(sk); 4057 tcp_set_state(sk, TCP_CLOSING); 4058 break; 4059 case TCP_FIN_WAIT2: 4060 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4061 tcp_send_ack(sk); 4062 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4063 break; 4064 default: 4065 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4066 * cases we should never reach this piece of code. 4067 */ 4068 pr_err("%s: Impossible, sk->sk_state=%d\n", 4069 __func__, sk->sk_state); 4070 break; 4071 } 4072 4073 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4074 * Probably, we should reset in this case. For now drop them. 4075 */ 4076 skb_rbtree_purge(&tp->out_of_order_queue); 4077 if (tcp_is_sack(tp)) 4078 tcp_sack_reset(&tp->rx_opt); 4079 sk_mem_reclaim(sk); 4080 4081 if (!sock_flag(sk, SOCK_DEAD)) { 4082 sk->sk_state_change(sk); 4083 4084 /* Do not send POLL_HUP for half duplex close. */ 4085 if (sk->sk_shutdown == SHUTDOWN_MASK || 4086 sk->sk_state == TCP_CLOSE) 4087 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4088 else 4089 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4090 } 4091 } 4092 4093 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4094 u32 end_seq) 4095 { 4096 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4097 if (before(seq, sp->start_seq)) 4098 sp->start_seq = seq; 4099 if (after(end_seq, sp->end_seq)) 4100 sp->end_seq = end_seq; 4101 return true; 4102 } 4103 return false; 4104 } 4105 4106 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4107 { 4108 struct tcp_sock *tp = tcp_sk(sk); 4109 4110 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4111 int mib_idx; 4112 4113 if (before(seq, tp->rcv_nxt)) 4114 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4115 else 4116 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4117 4118 NET_INC_STATS(sock_net(sk), mib_idx); 4119 4120 tp->rx_opt.dsack = 1; 4121 tp->duplicate_sack[0].start_seq = seq; 4122 tp->duplicate_sack[0].end_seq = end_seq; 4123 } 4124 } 4125 4126 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4127 { 4128 struct tcp_sock *tp = tcp_sk(sk); 4129 4130 if (!tp->rx_opt.dsack) 4131 tcp_dsack_set(sk, seq, end_seq); 4132 else 4133 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4134 } 4135 4136 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4137 { 4138 struct tcp_sock *tp = tcp_sk(sk); 4139 4140 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4141 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4142 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4143 tcp_enter_quickack_mode(sk); 4144 4145 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4146 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4147 4148 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4149 end_seq = tp->rcv_nxt; 4150 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4151 } 4152 } 4153 4154 tcp_send_ack(sk); 4155 } 4156 4157 /* These routines update the SACK block as out-of-order packets arrive or 4158 * in-order packets close up the sequence space. 4159 */ 4160 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4161 { 4162 int this_sack; 4163 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4164 struct tcp_sack_block *swalk = sp + 1; 4165 4166 /* See if the recent change to the first SACK eats into 4167 * or hits the sequence space of other SACK blocks, if so coalesce. 4168 */ 4169 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4170 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4171 int i; 4172 4173 /* Zap SWALK, by moving every further SACK up by one slot. 4174 * Decrease num_sacks. 4175 */ 4176 tp->rx_opt.num_sacks--; 4177 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4178 sp[i] = sp[i + 1]; 4179 continue; 4180 } 4181 this_sack++, swalk++; 4182 } 4183 } 4184 4185 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4186 { 4187 struct tcp_sock *tp = tcp_sk(sk); 4188 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4189 int cur_sacks = tp->rx_opt.num_sacks; 4190 int this_sack; 4191 4192 if (!cur_sacks) 4193 goto new_sack; 4194 4195 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4196 if (tcp_sack_extend(sp, seq, end_seq)) { 4197 /* Rotate this_sack to the first one. */ 4198 for (; this_sack > 0; this_sack--, sp--) 4199 swap(*sp, *(sp - 1)); 4200 if (cur_sacks > 1) 4201 tcp_sack_maybe_coalesce(tp); 4202 return; 4203 } 4204 } 4205 4206 /* Could not find an adjacent existing SACK, build a new one, 4207 * put it at the front, and shift everyone else down. We 4208 * always know there is at least one SACK present already here. 4209 * 4210 * If the sack array is full, forget about the last one. 4211 */ 4212 if (this_sack >= TCP_NUM_SACKS) { 4213 this_sack--; 4214 tp->rx_opt.num_sacks--; 4215 sp--; 4216 } 4217 for (; this_sack > 0; this_sack--, sp--) 4218 *sp = *(sp - 1); 4219 4220 new_sack: 4221 /* Build the new head SACK, and we're done. */ 4222 sp->start_seq = seq; 4223 sp->end_seq = end_seq; 4224 tp->rx_opt.num_sacks++; 4225 } 4226 4227 /* RCV.NXT advances, some SACKs should be eaten. */ 4228 4229 static void tcp_sack_remove(struct tcp_sock *tp) 4230 { 4231 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4232 int num_sacks = tp->rx_opt.num_sacks; 4233 int this_sack; 4234 4235 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4236 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4237 tp->rx_opt.num_sacks = 0; 4238 return; 4239 } 4240 4241 for (this_sack = 0; this_sack < num_sacks;) { 4242 /* Check if the start of the sack is covered by RCV.NXT. */ 4243 if (!before(tp->rcv_nxt, sp->start_seq)) { 4244 int i; 4245 4246 /* RCV.NXT must cover all the block! */ 4247 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4248 4249 /* Zap this SACK, by moving forward any other SACKS. */ 4250 for (i = this_sack+1; i < num_sacks; i++) 4251 tp->selective_acks[i-1] = tp->selective_acks[i]; 4252 num_sacks--; 4253 continue; 4254 } 4255 this_sack++; 4256 sp++; 4257 } 4258 tp->rx_opt.num_sacks = num_sacks; 4259 } 4260 4261 /** 4262 * tcp_try_coalesce - try to merge skb to prior one 4263 * @sk: socket 4264 * @to: prior buffer 4265 * @from: buffer to add in queue 4266 * @fragstolen: pointer to boolean 4267 * 4268 * Before queueing skb @from after @to, try to merge them 4269 * to reduce overall memory use and queue lengths, if cost is small. 4270 * Packets in ofo or receive queues can stay a long time. 4271 * Better try to coalesce them right now to avoid future collapses. 4272 * Returns true if caller should free @from instead of queueing it 4273 */ 4274 static bool tcp_try_coalesce(struct sock *sk, 4275 struct sk_buff *to, 4276 struct sk_buff *from, 4277 bool *fragstolen) 4278 { 4279 int delta; 4280 4281 *fragstolen = false; 4282 4283 /* Its possible this segment overlaps with prior segment in queue */ 4284 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4285 return false; 4286 4287 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4288 return false; 4289 4290 atomic_add(delta, &sk->sk_rmem_alloc); 4291 sk_mem_charge(sk, delta); 4292 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4293 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4294 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4295 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4296 return true; 4297 } 4298 4299 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4300 { 4301 sk_drops_add(sk, skb); 4302 __kfree_skb(skb); 4303 } 4304 4305 /* This one checks to see if we can put data from the 4306 * out_of_order queue into the receive_queue. 4307 */ 4308 static void tcp_ofo_queue(struct sock *sk) 4309 { 4310 struct tcp_sock *tp = tcp_sk(sk); 4311 __u32 dsack_high = tp->rcv_nxt; 4312 bool fin, fragstolen, eaten; 4313 struct sk_buff *skb, *tail; 4314 struct rb_node *p; 4315 4316 p = rb_first(&tp->out_of_order_queue); 4317 while (p) { 4318 skb = rb_entry(p, struct sk_buff, rbnode); 4319 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4320 break; 4321 4322 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4323 __u32 dsack = dsack_high; 4324 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4325 dsack_high = TCP_SKB_CB(skb)->end_seq; 4326 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4327 } 4328 p = rb_next(p); 4329 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4330 4331 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4332 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4333 tcp_drop(sk, skb); 4334 continue; 4335 } 4336 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4337 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4338 TCP_SKB_CB(skb)->end_seq); 4339 4340 tail = skb_peek_tail(&sk->sk_receive_queue); 4341 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4342 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4343 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4344 if (!eaten) 4345 __skb_queue_tail(&sk->sk_receive_queue, skb); 4346 else 4347 kfree_skb_partial(skb, fragstolen); 4348 4349 if (unlikely(fin)) { 4350 tcp_fin(sk); 4351 /* tcp_fin() purges tp->out_of_order_queue, 4352 * so we must end this loop right now. 4353 */ 4354 break; 4355 } 4356 } 4357 } 4358 4359 static bool tcp_prune_ofo_queue(struct sock *sk); 4360 static int tcp_prune_queue(struct sock *sk); 4361 4362 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4363 unsigned int size) 4364 { 4365 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4366 !sk_rmem_schedule(sk, skb, size)) { 4367 4368 if (tcp_prune_queue(sk) < 0) 4369 return -1; 4370 4371 while (!sk_rmem_schedule(sk, skb, size)) { 4372 if (!tcp_prune_ofo_queue(sk)) 4373 return -1; 4374 } 4375 } 4376 return 0; 4377 } 4378 4379 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4380 { 4381 struct tcp_sock *tp = tcp_sk(sk); 4382 struct rb_node **p, *q, *parent; 4383 struct sk_buff *skb1; 4384 u32 seq, end_seq; 4385 bool fragstolen; 4386 4387 tcp_ecn_check_ce(tp, skb); 4388 4389 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4390 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4391 tcp_drop(sk, skb); 4392 return; 4393 } 4394 4395 /* Disable header prediction. */ 4396 tp->pred_flags = 0; 4397 inet_csk_schedule_ack(sk); 4398 4399 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4400 seq = TCP_SKB_CB(skb)->seq; 4401 end_seq = TCP_SKB_CB(skb)->end_seq; 4402 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4403 tp->rcv_nxt, seq, end_seq); 4404 4405 p = &tp->out_of_order_queue.rb_node; 4406 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4407 /* Initial out of order segment, build 1 SACK. */ 4408 if (tcp_is_sack(tp)) { 4409 tp->rx_opt.num_sacks = 1; 4410 tp->selective_acks[0].start_seq = seq; 4411 tp->selective_acks[0].end_seq = end_seq; 4412 } 4413 rb_link_node(&skb->rbnode, NULL, p); 4414 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4415 tp->ooo_last_skb = skb; 4416 goto end; 4417 } 4418 4419 /* In the typical case, we are adding an skb to the end of the list. 4420 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4421 */ 4422 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) { 4423 coalesce_done: 4424 tcp_grow_window(sk, skb); 4425 kfree_skb_partial(skb, fragstolen); 4426 skb = NULL; 4427 goto add_sack; 4428 } 4429 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4430 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4431 parent = &tp->ooo_last_skb->rbnode; 4432 p = &parent->rb_right; 4433 goto insert; 4434 } 4435 4436 /* Find place to insert this segment. Handle overlaps on the way. */ 4437 parent = NULL; 4438 while (*p) { 4439 parent = *p; 4440 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4441 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4442 p = &parent->rb_left; 4443 continue; 4444 } 4445 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4446 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4447 /* All the bits are present. Drop. */ 4448 NET_INC_STATS(sock_net(sk), 4449 LINUX_MIB_TCPOFOMERGE); 4450 __kfree_skb(skb); 4451 skb = NULL; 4452 tcp_dsack_set(sk, seq, end_seq); 4453 goto add_sack; 4454 } 4455 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4456 /* Partial overlap. */ 4457 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4458 } else { 4459 /* skb's seq == skb1's seq and skb covers skb1. 4460 * Replace skb1 with skb. 4461 */ 4462 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4463 &tp->out_of_order_queue); 4464 tcp_dsack_extend(sk, 4465 TCP_SKB_CB(skb1)->seq, 4466 TCP_SKB_CB(skb1)->end_seq); 4467 NET_INC_STATS(sock_net(sk), 4468 LINUX_MIB_TCPOFOMERGE); 4469 __kfree_skb(skb1); 4470 goto merge_right; 4471 } 4472 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4473 goto coalesce_done; 4474 } 4475 p = &parent->rb_right; 4476 } 4477 insert: 4478 /* Insert segment into RB tree. */ 4479 rb_link_node(&skb->rbnode, parent, p); 4480 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4481 4482 merge_right: 4483 /* Remove other segments covered by skb. */ 4484 while ((q = rb_next(&skb->rbnode)) != NULL) { 4485 skb1 = rb_entry(q, struct sk_buff, rbnode); 4486 4487 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4488 break; 4489 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4490 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4491 end_seq); 4492 break; 4493 } 4494 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4495 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4496 TCP_SKB_CB(skb1)->end_seq); 4497 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4498 tcp_drop(sk, skb1); 4499 } 4500 /* If there is no skb after us, we are the last_skb ! */ 4501 if (!q) 4502 tp->ooo_last_skb = skb; 4503 4504 add_sack: 4505 if (tcp_is_sack(tp)) 4506 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4507 end: 4508 if (skb) { 4509 tcp_grow_window(sk, skb); 4510 skb_condense(skb); 4511 skb_set_owner_r(skb, sk); 4512 } 4513 } 4514 4515 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4516 bool *fragstolen) 4517 { 4518 int eaten; 4519 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4520 4521 __skb_pull(skb, hdrlen); 4522 eaten = (tail && 4523 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4524 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4525 if (!eaten) { 4526 __skb_queue_tail(&sk->sk_receive_queue, skb); 4527 skb_set_owner_r(skb, sk); 4528 } 4529 return eaten; 4530 } 4531 4532 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4533 { 4534 struct sk_buff *skb; 4535 int err = -ENOMEM; 4536 int data_len = 0; 4537 bool fragstolen; 4538 4539 if (size == 0) 4540 return 0; 4541 4542 if (size > PAGE_SIZE) { 4543 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4544 4545 data_len = npages << PAGE_SHIFT; 4546 size = data_len + (size & ~PAGE_MASK); 4547 } 4548 skb = alloc_skb_with_frags(size - data_len, data_len, 4549 PAGE_ALLOC_COSTLY_ORDER, 4550 &err, sk->sk_allocation); 4551 if (!skb) 4552 goto err; 4553 4554 skb_put(skb, size - data_len); 4555 skb->data_len = data_len; 4556 skb->len = size; 4557 4558 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4559 goto err_free; 4560 4561 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4562 if (err) 4563 goto err_free; 4564 4565 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4566 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4567 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4568 4569 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4570 WARN_ON_ONCE(fragstolen); /* should not happen */ 4571 __kfree_skb(skb); 4572 } 4573 return size; 4574 4575 err_free: 4576 kfree_skb(skb); 4577 err: 4578 return err; 4579 4580 } 4581 4582 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4583 { 4584 struct tcp_sock *tp = tcp_sk(sk); 4585 bool fragstolen = false; 4586 int eaten = -1; 4587 4588 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4589 __kfree_skb(skb); 4590 return; 4591 } 4592 skb_dst_drop(skb); 4593 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4594 4595 tcp_ecn_accept_cwr(tp, skb); 4596 4597 tp->rx_opt.dsack = 0; 4598 4599 /* Queue data for delivery to the user. 4600 * Packets in sequence go to the receive queue. 4601 * Out of sequence packets to the out_of_order_queue. 4602 */ 4603 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4604 if (tcp_receive_window(tp) == 0) 4605 goto out_of_window; 4606 4607 /* Ok. In sequence. In window. */ 4608 if (tp->ucopy.task == current && 4609 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4610 sock_owned_by_user(sk) && !tp->urg_data) { 4611 int chunk = min_t(unsigned int, skb->len, 4612 tp->ucopy.len); 4613 4614 __set_current_state(TASK_RUNNING); 4615 4616 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4617 tp->ucopy.len -= chunk; 4618 tp->copied_seq += chunk; 4619 eaten = (chunk == skb->len); 4620 tcp_rcv_space_adjust(sk); 4621 } 4622 } 4623 4624 if (eaten <= 0) { 4625 queue_and_out: 4626 if (eaten < 0) { 4627 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4628 sk_forced_mem_schedule(sk, skb->truesize); 4629 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4630 goto drop; 4631 } 4632 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4633 } 4634 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4635 if (skb->len) 4636 tcp_event_data_recv(sk, skb); 4637 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4638 tcp_fin(sk); 4639 4640 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4641 tcp_ofo_queue(sk); 4642 4643 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4644 * gap in queue is filled. 4645 */ 4646 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4647 inet_csk(sk)->icsk_ack.pingpong = 0; 4648 } 4649 4650 if (tp->rx_opt.num_sacks) 4651 tcp_sack_remove(tp); 4652 4653 tcp_fast_path_check(sk); 4654 4655 if (eaten > 0) 4656 kfree_skb_partial(skb, fragstolen); 4657 if (!sock_flag(sk, SOCK_DEAD)) 4658 sk->sk_data_ready(sk); 4659 return; 4660 } 4661 4662 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4663 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4664 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4665 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4666 4667 out_of_window: 4668 tcp_enter_quickack_mode(sk); 4669 inet_csk_schedule_ack(sk); 4670 drop: 4671 tcp_drop(sk, skb); 4672 return; 4673 } 4674 4675 /* Out of window. F.e. zero window probe. */ 4676 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4677 goto out_of_window; 4678 4679 tcp_enter_quickack_mode(sk); 4680 4681 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4682 /* Partial packet, seq < rcv_next < end_seq */ 4683 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4684 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4685 TCP_SKB_CB(skb)->end_seq); 4686 4687 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4688 4689 /* If window is closed, drop tail of packet. But after 4690 * remembering D-SACK for its head made in previous line. 4691 */ 4692 if (!tcp_receive_window(tp)) 4693 goto out_of_window; 4694 goto queue_and_out; 4695 } 4696 4697 tcp_data_queue_ofo(sk, skb); 4698 } 4699 4700 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4701 { 4702 if (list) 4703 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4704 4705 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode); 4706 } 4707 4708 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4709 struct sk_buff_head *list, 4710 struct rb_root *root) 4711 { 4712 struct sk_buff *next = tcp_skb_next(skb, list); 4713 4714 if (list) 4715 __skb_unlink(skb, list); 4716 else 4717 rb_erase(&skb->rbnode, root); 4718 4719 __kfree_skb(skb); 4720 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4721 4722 return next; 4723 } 4724 4725 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4726 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4727 { 4728 struct rb_node **p = &root->rb_node; 4729 struct rb_node *parent = NULL; 4730 struct sk_buff *skb1; 4731 4732 while (*p) { 4733 parent = *p; 4734 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4735 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4736 p = &parent->rb_left; 4737 else 4738 p = &parent->rb_right; 4739 } 4740 rb_link_node(&skb->rbnode, parent, p); 4741 rb_insert_color(&skb->rbnode, root); 4742 } 4743 4744 /* Collapse contiguous sequence of skbs head..tail with 4745 * sequence numbers start..end. 4746 * 4747 * If tail is NULL, this means until the end of the queue. 4748 * 4749 * Segments with FIN/SYN are not collapsed (only because this 4750 * simplifies code) 4751 */ 4752 static void 4753 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4754 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4755 { 4756 struct sk_buff *skb = head, *n; 4757 struct sk_buff_head tmp; 4758 bool end_of_skbs; 4759 4760 /* First, check that queue is collapsible and find 4761 * the point where collapsing can be useful. 4762 */ 4763 restart: 4764 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4765 n = tcp_skb_next(skb, list); 4766 4767 /* No new bits? It is possible on ofo queue. */ 4768 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4769 skb = tcp_collapse_one(sk, skb, list, root); 4770 if (!skb) 4771 break; 4772 goto restart; 4773 } 4774 4775 /* The first skb to collapse is: 4776 * - not SYN/FIN and 4777 * - bloated or contains data before "start" or 4778 * overlaps to the next one. 4779 */ 4780 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4781 (tcp_win_from_space(skb->truesize) > skb->len || 4782 before(TCP_SKB_CB(skb)->seq, start))) { 4783 end_of_skbs = false; 4784 break; 4785 } 4786 4787 if (n && n != tail && 4788 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4789 end_of_skbs = false; 4790 break; 4791 } 4792 4793 /* Decided to skip this, advance start seq. */ 4794 start = TCP_SKB_CB(skb)->end_seq; 4795 } 4796 if (end_of_skbs || 4797 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4798 return; 4799 4800 __skb_queue_head_init(&tmp); 4801 4802 while (before(start, end)) { 4803 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4804 struct sk_buff *nskb; 4805 4806 nskb = alloc_skb(copy, GFP_ATOMIC); 4807 if (!nskb) 4808 break; 4809 4810 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4811 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4812 if (list) 4813 __skb_queue_before(list, skb, nskb); 4814 else 4815 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4816 skb_set_owner_r(nskb, sk); 4817 4818 /* Copy data, releasing collapsed skbs. */ 4819 while (copy > 0) { 4820 int offset = start - TCP_SKB_CB(skb)->seq; 4821 int size = TCP_SKB_CB(skb)->end_seq - start; 4822 4823 BUG_ON(offset < 0); 4824 if (size > 0) { 4825 size = min(copy, size); 4826 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4827 BUG(); 4828 TCP_SKB_CB(nskb)->end_seq += size; 4829 copy -= size; 4830 start += size; 4831 } 4832 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4833 skb = tcp_collapse_one(sk, skb, list, root); 4834 if (!skb || 4835 skb == tail || 4836 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4837 goto end; 4838 } 4839 } 4840 } 4841 end: 4842 skb_queue_walk_safe(&tmp, skb, n) 4843 tcp_rbtree_insert(root, skb); 4844 } 4845 4846 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4847 * and tcp_collapse() them until all the queue is collapsed. 4848 */ 4849 static void tcp_collapse_ofo_queue(struct sock *sk) 4850 { 4851 struct tcp_sock *tp = tcp_sk(sk); 4852 struct sk_buff *skb, *head; 4853 struct rb_node *p; 4854 u32 start, end; 4855 4856 p = rb_first(&tp->out_of_order_queue); 4857 skb = rb_entry_safe(p, struct sk_buff, rbnode); 4858 new_range: 4859 if (!skb) { 4860 p = rb_last(&tp->out_of_order_queue); 4861 /* Note: This is possible p is NULL here. We do not 4862 * use rb_entry_safe(), as ooo_last_skb is valid only 4863 * if rbtree is not empty. 4864 */ 4865 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode); 4866 return; 4867 } 4868 start = TCP_SKB_CB(skb)->seq; 4869 end = TCP_SKB_CB(skb)->end_seq; 4870 4871 for (head = skb;;) { 4872 skb = tcp_skb_next(skb, NULL); 4873 4874 /* Range is terminated when we see a gap or when 4875 * we are at the queue end. 4876 */ 4877 if (!skb || 4878 after(TCP_SKB_CB(skb)->seq, end) || 4879 before(TCP_SKB_CB(skb)->end_seq, start)) { 4880 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4881 head, skb, start, end); 4882 goto new_range; 4883 } 4884 4885 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4886 start = TCP_SKB_CB(skb)->seq; 4887 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4888 end = TCP_SKB_CB(skb)->end_seq; 4889 } 4890 } 4891 4892 /* 4893 * Clean the out-of-order queue to make room. 4894 * We drop high sequences packets to : 4895 * 1) Let a chance for holes to be filled. 4896 * 2) not add too big latencies if thousands of packets sit there. 4897 * (But if application shrinks SO_RCVBUF, we could still end up 4898 * freeing whole queue here) 4899 * 4900 * Return true if queue has shrunk. 4901 */ 4902 static bool tcp_prune_ofo_queue(struct sock *sk) 4903 { 4904 struct tcp_sock *tp = tcp_sk(sk); 4905 struct rb_node *node, *prev; 4906 4907 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4908 return false; 4909 4910 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4911 node = &tp->ooo_last_skb->rbnode; 4912 do { 4913 prev = rb_prev(node); 4914 rb_erase(node, &tp->out_of_order_queue); 4915 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode)); 4916 sk_mem_reclaim(sk); 4917 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4918 !tcp_under_memory_pressure(sk)) 4919 break; 4920 node = prev; 4921 } while (node); 4922 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode); 4923 4924 /* Reset SACK state. A conforming SACK implementation will 4925 * do the same at a timeout based retransmit. When a connection 4926 * is in a sad state like this, we care only about integrity 4927 * of the connection not performance. 4928 */ 4929 if (tp->rx_opt.sack_ok) 4930 tcp_sack_reset(&tp->rx_opt); 4931 return true; 4932 } 4933 4934 /* Reduce allocated memory if we can, trying to get 4935 * the socket within its memory limits again. 4936 * 4937 * Return less than zero if we should start dropping frames 4938 * until the socket owning process reads some of the data 4939 * to stabilize the situation. 4940 */ 4941 static int tcp_prune_queue(struct sock *sk) 4942 { 4943 struct tcp_sock *tp = tcp_sk(sk); 4944 4945 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4946 4947 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4948 4949 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4950 tcp_clamp_window(sk); 4951 else if (tcp_under_memory_pressure(sk)) 4952 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4953 4954 tcp_collapse_ofo_queue(sk); 4955 if (!skb_queue_empty(&sk->sk_receive_queue)) 4956 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4957 skb_peek(&sk->sk_receive_queue), 4958 NULL, 4959 tp->copied_seq, tp->rcv_nxt); 4960 sk_mem_reclaim(sk); 4961 4962 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4963 return 0; 4964 4965 /* Collapsing did not help, destructive actions follow. 4966 * This must not ever occur. */ 4967 4968 tcp_prune_ofo_queue(sk); 4969 4970 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4971 return 0; 4972 4973 /* If we are really being abused, tell the caller to silently 4974 * drop receive data on the floor. It will get retransmitted 4975 * and hopefully then we'll have sufficient space. 4976 */ 4977 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4978 4979 /* Massive buffer overcommit. */ 4980 tp->pred_flags = 0; 4981 return -1; 4982 } 4983 4984 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4985 { 4986 const struct tcp_sock *tp = tcp_sk(sk); 4987 4988 /* If the user specified a specific send buffer setting, do 4989 * not modify it. 4990 */ 4991 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4992 return false; 4993 4994 /* If we are under global TCP memory pressure, do not expand. */ 4995 if (tcp_under_memory_pressure(sk)) 4996 return false; 4997 4998 /* If we are under soft global TCP memory pressure, do not expand. */ 4999 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5000 return false; 5001 5002 /* If we filled the congestion window, do not expand. */ 5003 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5004 return false; 5005 5006 return true; 5007 } 5008 5009 /* When incoming ACK allowed to free some skb from write_queue, 5010 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5011 * on the exit from tcp input handler. 5012 * 5013 * PROBLEM: sndbuf expansion does not work well with largesend. 5014 */ 5015 static void tcp_new_space(struct sock *sk) 5016 { 5017 struct tcp_sock *tp = tcp_sk(sk); 5018 5019 if (tcp_should_expand_sndbuf(sk)) { 5020 tcp_sndbuf_expand(sk); 5021 tp->snd_cwnd_stamp = tcp_time_stamp; 5022 } 5023 5024 sk->sk_write_space(sk); 5025 } 5026 5027 static void tcp_check_space(struct sock *sk) 5028 { 5029 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5030 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5031 /* pairs with tcp_poll() */ 5032 smp_mb(); 5033 if (sk->sk_socket && 5034 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5035 tcp_new_space(sk); 5036 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5037 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5038 } 5039 } 5040 } 5041 5042 static inline void tcp_data_snd_check(struct sock *sk) 5043 { 5044 tcp_push_pending_frames(sk); 5045 tcp_check_space(sk); 5046 } 5047 5048 /* 5049 * Check if sending an ack is needed. 5050 */ 5051 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5052 { 5053 struct tcp_sock *tp = tcp_sk(sk); 5054 5055 /* More than one full frame received... */ 5056 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5057 /* ... and right edge of window advances far enough. 5058 * (tcp_recvmsg() will send ACK otherwise). Or... 5059 */ 5060 __tcp_select_window(sk) >= tp->rcv_wnd) || 5061 /* We ACK each frame or... */ 5062 tcp_in_quickack_mode(sk) || 5063 /* We have out of order data. */ 5064 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5065 /* Then ack it now */ 5066 tcp_send_ack(sk); 5067 } else { 5068 /* Else, send delayed ack. */ 5069 tcp_send_delayed_ack(sk); 5070 } 5071 } 5072 5073 static inline void tcp_ack_snd_check(struct sock *sk) 5074 { 5075 if (!inet_csk_ack_scheduled(sk)) { 5076 /* We sent a data segment already. */ 5077 return; 5078 } 5079 __tcp_ack_snd_check(sk, 1); 5080 } 5081 5082 /* 5083 * This routine is only called when we have urgent data 5084 * signaled. Its the 'slow' part of tcp_urg. It could be 5085 * moved inline now as tcp_urg is only called from one 5086 * place. We handle URGent data wrong. We have to - as 5087 * BSD still doesn't use the correction from RFC961. 5088 * For 1003.1g we should support a new option TCP_STDURG to permit 5089 * either form (or just set the sysctl tcp_stdurg). 5090 */ 5091 5092 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5093 { 5094 struct tcp_sock *tp = tcp_sk(sk); 5095 u32 ptr = ntohs(th->urg_ptr); 5096 5097 if (ptr && !sysctl_tcp_stdurg) 5098 ptr--; 5099 ptr += ntohl(th->seq); 5100 5101 /* Ignore urgent data that we've already seen and read. */ 5102 if (after(tp->copied_seq, ptr)) 5103 return; 5104 5105 /* Do not replay urg ptr. 5106 * 5107 * NOTE: interesting situation not covered by specs. 5108 * Misbehaving sender may send urg ptr, pointing to segment, 5109 * which we already have in ofo queue. We are not able to fetch 5110 * such data and will stay in TCP_URG_NOTYET until will be eaten 5111 * by recvmsg(). Seems, we are not obliged to handle such wicked 5112 * situations. But it is worth to think about possibility of some 5113 * DoSes using some hypothetical application level deadlock. 5114 */ 5115 if (before(ptr, tp->rcv_nxt)) 5116 return; 5117 5118 /* Do we already have a newer (or duplicate) urgent pointer? */ 5119 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5120 return; 5121 5122 /* Tell the world about our new urgent pointer. */ 5123 sk_send_sigurg(sk); 5124 5125 /* We may be adding urgent data when the last byte read was 5126 * urgent. To do this requires some care. We cannot just ignore 5127 * tp->copied_seq since we would read the last urgent byte again 5128 * as data, nor can we alter copied_seq until this data arrives 5129 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5130 * 5131 * NOTE. Double Dutch. Rendering to plain English: author of comment 5132 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5133 * and expect that both A and B disappear from stream. This is _wrong_. 5134 * Though this happens in BSD with high probability, this is occasional. 5135 * Any application relying on this is buggy. Note also, that fix "works" 5136 * only in this artificial test. Insert some normal data between A and B and we will 5137 * decline of BSD again. Verdict: it is better to remove to trap 5138 * buggy users. 5139 */ 5140 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5141 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5142 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5143 tp->copied_seq++; 5144 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5145 __skb_unlink(skb, &sk->sk_receive_queue); 5146 __kfree_skb(skb); 5147 } 5148 } 5149 5150 tp->urg_data = TCP_URG_NOTYET; 5151 tp->urg_seq = ptr; 5152 5153 /* Disable header prediction. */ 5154 tp->pred_flags = 0; 5155 } 5156 5157 /* This is the 'fast' part of urgent handling. */ 5158 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5159 { 5160 struct tcp_sock *tp = tcp_sk(sk); 5161 5162 /* Check if we get a new urgent pointer - normally not. */ 5163 if (th->urg) 5164 tcp_check_urg(sk, th); 5165 5166 /* Do we wait for any urgent data? - normally not... */ 5167 if (tp->urg_data == TCP_URG_NOTYET) { 5168 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5169 th->syn; 5170 5171 /* Is the urgent pointer pointing into this packet? */ 5172 if (ptr < skb->len) { 5173 u8 tmp; 5174 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5175 BUG(); 5176 tp->urg_data = TCP_URG_VALID | tmp; 5177 if (!sock_flag(sk, SOCK_DEAD)) 5178 sk->sk_data_ready(sk); 5179 } 5180 } 5181 } 5182 5183 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5184 { 5185 struct tcp_sock *tp = tcp_sk(sk); 5186 int chunk = skb->len - hlen; 5187 int err; 5188 5189 if (skb_csum_unnecessary(skb)) 5190 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5191 else 5192 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5193 5194 if (!err) { 5195 tp->ucopy.len -= chunk; 5196 tp->copied_seq += chunk; 5197 tcp_rcv_space_adjust(sk); 5198 } 5199 5200 return err; 5201 } 5202 5203 /* Accept RST for rcv_nxt - 1 after a FIN. 5204 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5205 * FIN is sent followed by a RST packet. The RST is sent with the same 5206 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5207 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5208 * ACKs on the closed socket. In addition middleboxes can drop either the 5209 * challenge ACK or a subsequent RST. 5210 */ 5211 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5212 { 5213 struct tcp_sock *tp = tcp_sk(sk); 5214 5215 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5216 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5217 TCPF_CLOSING)); 5218 } 5219 5220 /* Does PAWS and seqno based validation of an incoming segment, flags will 5221 * play significant role here. 5222 */ 5223 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5224 const struct tcphdr *th, int syn_inerr) 5225 { 5226 struct tcp_sock *tp = tcp_sk(sk); 5227 bool rst_seq_match = false; 5228 5229 /* RFC1323: H1. Apply PAWS check first. */ 5230 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5231 tcp_paws_discard(sk, skb)) { 5232 if (!th->rst) { 5233 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5234 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5235 LINUX_MIB_TCPACKSKIPPEDPAWS, 5236 &tp->last_oow_ack_time)) 5237 tcp_send_dupack(sk, skb); 5238 goto discard; 5239 } 5240 /* Reset is accepted even if it did not pass PAWS. */ 5241 } 5242 5243 /* Step 1: check sequence number */ 5244 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5245 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5246 * (RST) segments are validated by checking their SEQ-fields." 5247 * And page 69: "If an incoming segment is not acceptable, 5248 * an acknowledgment should be sent in reply (unless the RST 5249 * bit is set, if so drop the segment and return)". 5250 */ 5251 if (!th->rst) { 5252 if (th->syn) 5253 goto syn_challenge; 5254 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5255 LINUX_MIB_TCPACKSKIPPEDSEQ, 5256 &tp->last_oow_ack_time)) 5257 tcp_send_dupack(sk, skb); 5258 } else if (tcp_reset_check(sk, skb)) { 5259 tcp_reset(sk); 5260 } 5261 goto discard; 5262 } 5263 5264 /* Step 2: check RST bit */ 5265 if (th->rst) { 5266 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5267 * FIN and SACK too if available): 5268 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5269 * the right-most SACK block, 5270 * then 5271 * RESET the connection 5272 * else 5273 * Send a challenge ACK 5274 */ 5275 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5276 tcp_reset_check(sk, skb)) { 5277 rst_seq_match = true; 5278 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5279 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5280 int max_sack = sp[0].end_seq; 5281 int this_sack; 5282 5283 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5284 ++this_sack) { 5285 max_sack = after(sp[this_sack].end_seq, 5286 max_sack) ? 5287 sp[this_sack].end_seq : max_sack; 5288 } 5289 5290 if (TCP_SKB_CB(skb)->seq == max_sack) 5291 rst_seq_match = true; 5292 } 5293 5294 if (rst_seq_match) 5295 tcp_reset(sk); 5296 else { 5297 /* Disable TFO if RST is out-of-order 5298 * and no data has been received 5299 * for current active TFO socket 5300 */ 5301 if (tp->syn_fastopen && !tp->data_segs_in && 5302 sk->sk_state == TCP_ESTABLISHED) 5303 tcp_fastopen_active_disable(sk); 5304 tcp_send_challenge_ack(sk, skb); 5305 } 5306 goto discard; 5307 } 5308 5309 /* step 3: check security and precedence [ignored] */ 5310 5311 /* step 4: Check for a SYN 5312 * RFC 5961 4.2 : Send a challenge ack 5313 */ 5314 if (th->syn) { 5315 syn_challenge: 5316 if (syn_inerr) 5317 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5318 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5319 tcp_send_challenge_ack(sk, skb); 5320 goto discard; 5321 } 5322 5323 return true; 5324 5325 discard: 5326 tcp_drop(sk, skb); 5327 return false; 5328 } 5329 5330 /* 5331 * TCP receive function for the ESTABLISHED state. 5332 * 5333 * It is split into a fast path and a slow path. The fast path is 5334 * disabled when: 5335 * - A zero window was announced from us - zero window probing 5336 * is only handled properly in the slow path. 5337 * - Out of order segments arrived. 5338 * - Urgent data is expected. 5339 * - There is no buffer space left 5340 * - Unexpected TCP flags/window values/header lengths are received 5341 * (detected by checking the TCP header against pred_flags) 5342 * - Data is sent in both directions. Fast path only supports pure senders 5343 * or pure receivers (this means either the sequence number or the ack 5344 * value must stay constant) 5345 * - Unexpected TCP option. 5346 * 5347 * When these conditions are not satisfied it drops into a standard 5348 * receive procedure patterned after RFC793 to handle all cases. 5349 * The first three cases are guaranteed by proper pred_flags setting, 5350 * the rest is checked inline. Fast processing is turned on in 5351 * tcp_data_queue when everything is OK. 5352 */ 5353 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5354 const struct tcphdr *th, unsigned int len) 5355 { 5356 struct tcp_sock *tp = tcp_sk(sk); 5357 5358 skb_mstamp_get(&tp->tcp_mstamp); 5359 if (unlikely(!sk->sk_rx_dst)) 5360 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5361 /* 5362 * Header prediction. 5363 * The code loosely follows the one in the famous 5364 * "30 instruction TCP receive" Van Jacobson mail. 5365 * 5366 * Van's trick is to deposit buffers into socket queue 5367 * on a device interrupt, to call tcp_recv function 5368 * on the receive process context and checksum and copy 5369 * the buffer to user space. smart... 5370 * 5371 * Our current scheme is not silly either but we take the 5372 * extra cost of the net_bh soft interrupt processing... 5373 * We do checksum and copy also but from device to kernel. 5374 */ 5375 5376 tp->rx_opt.saw_tstamp = 0; 5377 5378 /* pred_flags is 0xS?10 << 16 + snd_wnd 5379 * if header_prediction is to be made 5380 * 'S' will always be tp->tcp_header_len >> 2 5381 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5382 * turn it off (when there are holes in the receive 5383 * space for instance) 5384 * PSH flag is ignored. 5385 */ 5386 5387 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5388 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5389 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5390 int tcp_header_len = tp->tcp_header_len; 5391 5392 /* Timestamp header prediction: tcp_header_len 5393 * is automatically equal to th->doff*4 due to pred_flags 5394 * match. 5395 */ 5396 5397 /* Check timestamp */ 5398 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5399 /* No? Slow path! */ 5400 if (!tcp_parse_aligned_timestamp(tp, th)) 5401 goto slow_path; 5402 5403 /* If PAWS failed, check it more carefully in slow path */ 5404 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5405 goto slow_path; 5406 5407 /* DO NOT update ts_recent here, if checksum fails 5408 * and timestamp was corrupted part, it will result 5409 * in a hung connection since we will drop all 5410 * future packets due to the PAWS test. 5411 */ 5412 } 5413 5414 if (len <= tcp_header_len) { 5415 /* Bulk data transfer: sender */ 5416 if (len == tcp_header_len) { 5417 /* Predicted packet is in window by definition. 5418 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5419 * Hence, check seq<=rcv_wup reduces to: 5420 */ 5421 if (tcp_header_len == 5422 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5423 tp->rcv_nxt == tp->rcv_wup) 5424 tcp_store_ts_recent(tp); 5425 5426 /* We know that such packets are checksummed 5427 * on entry. 5428 */ 5429 tcp_ack(sk, skb, 0); 5430 __kfree_skb(skb); 5431 tcp_data_snd_check(sk); 5432 return; 5433 } else { /* Header too small */ 5434 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5435 goto discard; 5436 } 5437 } else { 5438 int eaten = 0; 5439 bool fragstolen = false; 5440 5441 if (tp->ucopy.task == current && 5442 tp->copied_seq == tp->rcv_nxt && 5443 len - tcp_header_len <= tp->ucopy.len && 5444 sock_owned_by_user(sk)) { 5445 __set_current_state(TASK_RUNNING); 5446 5447 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5448 /* Predicted packet is in window by definition. 5449 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5450 * Hence, check seq<=rcv_wup reduces to: 5451 */ 5452 if (tcp_header_len == 5453 (sizeof(struct tcphdr) + 5454 TCPOLEN_TSTAMP_ALIGNED) && 5455 tp->rcv_nxt == tp->rcv_wup) 5456 tcp_store_ts_recent(tp); 5457 5458 tcp_rcv_rtt_measure_ts(sk, skb); 5459 5460 __skb_pull(skb, tcp_header_len); 5461 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5462 NET_INC_STATS(sock_net(sk), 5463 LINUX_MIB_TCPHPHITSTOUSER); 5464 eaten = 1; 5465 } 5466 } 5467 if (!eaten) { 5468 if (tcp_checksum_complete(skb)) 5469 goto csum_error; 5470 5471 if ((int)skb->truesize > sk->sk_forward_alloc) 5472 goto step5; 5473 5474 /* Predicted packet is in window by definition. 5475 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5476 * Hence, check seq<=rcv_wup reduces to: 5477 */ 5478 if (tcp_header_len == 5479 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5480 tp->rcv_nxt == tp->rcv_wup) 5481 tcp_store_ts_recent(tp); 5482 5483 tcp_rcv_rtt_measure_ts(sk, skb); 5484 5485 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5486 5487 /* Bulk data transfer: receiver */ 5488 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5489 &fragstolen); 5490 } 5491 5492 tcp_event_data_recv(sk, skb); 5493 5494 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5495 /* Well, only one small jumplet in fast path... */ 5496 tcp_ack(sk, skb, FLAG_DATA); 5497 tcp_data_snd_check(sk); 5498 if (!inet_csk_ack_scheduled(sk)) 5499 goto no_ack; 5500 } 5501 5502 __tcp_ack_snd_check(sk, 0); 5503 no_ack: 5504 if (eaten) 5505 kfree_skb_partial(skb, fragstolen); 5506 sk->sk_data_ready(sk); 5507 return; 5508 } 5509 } 5510 5511 slow_path: 5512 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5513 goto csum_error; 5514 5515 if (!th->ack && !th->rst && !th->syn) 5516 goto discard; 5517 5518 /* 5519 * Standard slow path. 5520 */ 5521 5522 if (!tcp_validate_incoming(sk, skb, th, 1)) 5523 return; 5524 5525 step5: 5526 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5527 goto discard; 5528 5529 tcp_rcv_rtt_measure_ts(sk, skb); 5530 5531 /* Process urgent data. */ 5532 tcp_urg(sk, skb, th); 5533 5534 /* step 7: process the segment text */ 5535 tcp_data_queue(sk, skb); 5536 5537 tcp_data_snd_check(sk); 5538 tcp_ack_snd_check(sk); 5539 return; 5540 5541 csum_error: 5542 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5543 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5544 5545 discard: 5546 tcp_drop(sk, skb); 5547 } 5548 EXPORT_SYMBOL(tcp_rcv_established); 5549 5550 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5551 { 5552 struct tcp_sock *tp = tcp_sk(sk); 5553 struct inet_connection_sock *icsk = inet_csk(sk); 5554 5555 tcp_set_state(sk, TCP_ESTABLISHED); 5556 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5557 5558 if (skb) { 5559 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5560 security_inet_conn_established(sk, skb); 5561 } 5562 5563 /* Make sure socket is routed, for correct metrics. */ 5564 icsk->icsk_af_ops->rebuild_header(sk); 5565 5566 tcp_init_metrics(sk); 5567 5568 tcp_init_congestion_control(sk); 5569 5570 /* Prevent spurious tcp_cwnd_restart() on first data 5571 * packet. 5572 */ 5573 tp->lsndtime = tcp_time_stamp; 5574 5575 tcp_init_buffer_space(sk); 5576 5577 if (sock_flag(sk, SOCK_KEEPOPEN)) 5578 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5579 5580 if (!tp->rx_opt.snd_wscale) 5581 __tcp_fast_path_on(tp, tp->snd_wnd); 5582 else 5583 tp->pred_flags = 0; 5584 5585 } 5586 5587 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5588 struct tcp_fastopen_cookie *cookie) 5589 { 5590 struct tcp_sock *tp = tcp_sk(sk); 5591 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5592 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5593 bool syn_drop = false; 5594 5595 if (mss == tp->rx_opt.user_mss) { 5596 struct tcp_options_received opt; 5597 5598 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5599 tcp_clear_options(&opt); 5600 opt.user_mss = opt.mss_clamp = 0; 5601 tcp_parse_options(synack, &opt, 0, NULL); 5602 mss = opt.mss_clamp; 5603 } 5604 5605 if (!tp->syn_fastopen) { 5606 /* Ignore an unsolicited cookie */ 5607 cookie->len = -1; 5608 } else if (tp->total_retrans) { 5609 /* SYN timed out and the SYN-ACK neither has a cookie nor 5610 * acknowledges data. Presumably the remote received only 5611 * the retransmitted (regular) SYNs: either the original 5612 * SYN-data or the corresponding SYN-ACK was dropped. 5613 */ 5614 syn_drop = (cookie->len < 0 && data); 5615 } else if (cookie->len < 0 && !tp->syn_data) { 5616 /* We requested a cookie but didn't get it. If we did not use 5617 * the (old) exp opt format then try so next time (try_exp=1). 5618 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5619 */ 5620 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5621 } 5622 5623 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5624 5625 if (data) { /* Retransmit unacked data in SYN */ 5626 tcp_for_write_queue_from(data, sk) { 5627 if (data == tcp_send_head(sk) || 5628 __tcp_retransmit_skb(sk, data, 1)) 5629 break; 5630 } 5631 tcp_rearm_rto(sk); 5632 NET_INC_STATS(sock_net(sk), 5633 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5634 return true; 5635 } 5636 tp->syn_data_acked = tp->syn_data; 5637 if (tp->syn_data_acked) 5638 NET_INC_STATS(sock_net(sk), 5639 LINUX_MIB_TCPFASTOPENACTIVE); 5640 5641 tcp_fastopen_add_skb(sk, synack); 5642 5643 return false; 5644 } 5645 5646 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5647 const struct tcphdr *th) 5648 { 5649 struct inet_connection_sock *icsk = inet_csk(sk); 5650 struct tcp_sock *tp = tcp_sk(sk); 5651 struct tcp_fastopen_cookie foc = { .len = -1 }; 5652 int saved_clamp = tp->rx_opt.mss_clamp; 5653 bool fastopen_fail; 5654 5655 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5656 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5657 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5658 5659 if (th->ack) { 5660 /* rfc793: 5661 * "If the state is SYN-SENT then 5662 * first check the ACK bit 5663 * If the ACK bit is set 5664 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5665 * a reset (unless the RST bit is set, if so drop 5666 * the segment and return)" 5667 */ 5668 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5669 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5670 goto reset_and_undo; 5671 5672 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5673 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5674 tcp_time_stamp)) { 5675 NET_INC_STATS(sock_net(sk), 5676 LINUX_MIB_PAWSACTIVEREJECTED); 5677 goto reset_and_undo; 5678 } 5679 5680 /* Now ACK is acceptable. 5681 * 5682 * "If the RST bit is set 5683 * If the ACK was acceptable then signal the user "error: 5684 * connection reset", drop the segment, enter CLOSED state, 5685 * delete TCB, and return." 5686 */ 5687 5688 if (th->rst) { 5689 tcp_reset(sk); 5690 goto discard; 5691 } 5692 5693 /* rfc793: 5694 * "fifth, if neither of the SYN or RST bits is set then 5695 * drop the segment and return." 5696 * 5697 * See note below! 5698 * --ANK(990513) 5699 */ 5700 if (!th->syn) 5701 goto discard_and_undo; 5702 5703 /* rfc793: 5704 * "If the SYN bit is on ... 5705 * are acceptable then ... 5706 * (our SYN has been ACKed), change the connection 5707 * state to ESTABLISHED..." 5708 */ 5709 5710 tcp_ecn_rcv_synack(tp, th); 5711 5712 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5713 tcp_ack(sk, skb, FLAG_SLOWPATH); 5714 5715 /* Ok.. it's good. Set up sequence numbers and 5716 * move to established. 5717 */ 5718 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5719 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5720 5721 /* RFC1323: The window in SYN & SYN/ACK segments is 5722 * never scaled. 5723 */ 5724 tp->snd_wnd = ntohs(th->window); 5725 5726 if (!tp->rx_opt.wscale_ok) { 5727 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5728 tp->window_clamp = min(tp->window_clamp, 65535U); 5729 } 5730 5731 if (tp->rx_opt.saw_tstamp) { 5732 tp->rx_opt.tstamp_ok = 1; 5733 tp->tcp_header_len = 5734 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5735 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5736 tcp_store_ts_recent(tp); 5737 } else { 5738 tp->tcp_header_len = sizeof(struct tcphdr); 5739 } 5740 5741 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5742 tcp_enable_fack(tp); 5743 5744 tcp_mtup_init(sk); 5745 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5746 tcp_initialize_rcv_mss(sk); 5747 5748 /* Remember, tcp_poll() does not lock socket! 5749 * Change state from SYN-SENT only after copied_seq 5750 * is initialized. */ 5751 tp->copied_seq = tp->rcv_nxt; 5752 5753 smp_mb(); 5754 5755 tcp_finish_connect(sk, skb); 5756 5757 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5758 tcp_rcv_fastopen_synack(sk, skb, &foc); 5759 5760 if (!sock_flag(sk, SOCK_DEAD)) { 5761 sk->sk_state_change(sk); 5762 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5763 } 5764 if (fastopen_fail) 5765 return -1; 5766 if (sk->sk_write_pending || 5767 icsk->icsk_accept_queue.rskq_defer_accept || 5768 icsk->icsk_ack.pingpong) { 5769 /* Save one ACK. Data will be ready after 5770 * several ticks, if write_pending is set. 5771 * 5772 * It may be deleted, but with this feature tcpdumps 5773 * look so _wonderfully_ clever, that I was not able 5774 * to stand against the temptation 8) --ANK 5775 */ 5776 inet_csk_schedule_ack(sk); 5777 tcp_enter_quickack_mode(sk); 5778 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5779 TCP_DELACK_MAX, TCP_RTO_MAX); 5780 5781 discard: 5782 tcp_drop(sk, skb); 5783 return 0; 5784 } else { 5785 tcp_send_ack(sk); 5786 } 5787 return -1; 5788 } 5789 5790 /* No ACK in the segment */ 5791 5792 if (th->rst) { 5793 /* rfc793: 5794 * "If the RST bit is set 5795 * 5796 * Otherwise (no ACK) drop the segment and return." 5797 */ 5798 5799 goto discard_and_undo; 5800 } 5801 5802 /* PAWS check. */ 5803 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5804 tcp_paws_reject(&tp->rx_opt, 0)) 5805 goto discard_and_undo; 5806 5807 if (th->syn) { 5808 /* We see SYN without ACK. It is attempt of 5809 * simultaneous connect with crossed SYNs. 5810 * Particularly, it can be connect to self. 5811 */ 5812 tcp_set_state(sk, TCP_SYN_RECV); 5813 5814 if (tp->rx_opt.saw_tstamp) { 5815 tp->rx_opt.tstamp_ok = 1; 5816 tcp_store_ts_recent(tp); 5817 tp->tcp_header_len = 5818 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5819 } else { 5820 tp->tcp_header_len = sizeof(struct tcphdr); 5821 } 5822 5823 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5824 tp->copied_seq = tp->rcv_nxt; 5825 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5826 5827 /* RFC1323: The window in SYN & SYN/ACK segments is 5828 * never scaled. 5829 */ 5830 tp->snd_wnd = ntohs(th->window); 5831 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5832 tp->max_window = tp->snd_wnd; 5833 5834 tcp_ecn_rcv_syn(tp, th); 5835 5836 tcp_mtup_init(sk); 5837 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5838 tcp_initialize_rcv_mss(sk); 5839 5840 tcp_send_synack(sk); 5841 #if 0 5842 /* Note, we could accept data and URG from this segment. 5843 * There are no obstacles to make this (except that we must 5844 * either change tcp_recvmsg() to prevent it from returning data 5845 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5846 * 5847 * However, if we ignore data in ACKless segments sometimes, 5848 * we have no reasons to accept it sometimes. 5849 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5850 * is not flawless. So, discard packet for sanity. 5851 * Uncomment this return to process the data. 5852 */ 5853 return -1; 5854 #else 5855 goto discard; 5856 #endif 5857 } 5858 /* "fifth, if neither of the SYN or RST bits is set then 5859 * drop the segment and return." 5860 */ 5861 5862 discard_and_undo: 5863 tcp_clear_options(&tp->rx_opt); 5864 tp->rx_opt.mss_clamp = saved_clamp; 5865 goto discard; 5866 5867 reset_and_undo: 5868 tcp_clear_options(&tp->rx_opt); 5869 tp->rx_opt.mss_clamp = saved_clamp; 5870 return 1; 5871 } 5872 5873 /* 5874 * This function implements the receiving procedure of RFC 793 for 5875 * all states except ESTABLISHED and TIME_WAIT. 5876 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5877 * address independent. 5878 */ 5879 5880 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5881 { 5882 struct tcp_sock *tp = tcp_sk(sk); 5883 struct inet_connection_sock *icsk = inet_csk(sk); 5884 const struct tcphdr *th = tcp_hdr(skb); 5885 struct request_sock *req; 5886 int queued = 0; 5887 bool acceptable; 5888 5889 switch (sk->sk_state) { 5890 case TCP_CLOSE: 5891 goto discard; 5892 5893 case TCP_LISTEN: 5894 if (th->ack) 5895 return 1; 5896 5897 if (th->rst) 5898 goto discard; 5899 5900 if (th->syn) { 5901 if (th->fin) 5902 goto discard; 5903 /* It is possible that we process SYN packets from backlog, 5904 * so we need to make sure to disable BH right there. 5905 */ 5906 local_bh_disable(); 5907 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5908 local_bh_enable(); 5909 5910 if (!acceptable) 5911 return 1; 5912 consume_skb(skb); 5913 return 0; 5914 } 5915 goto discard; 5916 5917 case TCP_SYN_SENT: 5918 tp->rx_opt.saw_tstamp = 0; 5919 skb_mstamp_get(&tp->tcp_mstamp); 5920 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5921 if (queued >= 0) 5922 return queued; 5923 5924 /* Do step6 onward by hand. */ 5925 tcp_urg(sk, skb, th); 5926 __kfree_skb(skb); 5927 tcp_data_snd_check(sk); 5928 return 0; 5929 } 5930 5931 skb_mstamp_get(&tp->tcp_mstamp); 5932 tp->rx_opt.saw_tstamp = 0; 5933 req = tp->fastopen_rsk; 5934 if (req) { 5935 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5936 sk->sk_state != TCP_FIN_WAIT1); 5937 5938 if (!tcp_check_req(sk, skb, req, true)) 5939 goto discard; 5940 } 5941 5942 if (!th->ack && !th->rst && !th->syn) 5943 goto discard; 5944 5945 if (!tcp_validate_incoming(sk, skb, th, 0)) 5946 return 0; 5947 5948 /* step 5: check the ACK field */ 5949 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5950 FLAG_UPDATE_TS_RECENT) > 0; 5951 5952 switch (sk->sk_state) { 5953 case TCP_SYN_RECV: 5954 if (!acceptable) 5955 return 1; 5956 5957 if (!tp->srtt_us) 5958 tcp_synack_rtt_meas(sk, req); 5959 5960 /* Once we leave TCP_SYN_RECV, we no longer need req 5961 * so release it. 5962 */ 5963 if (req) { 5964 inet_csk(sk)->icsk_retransmits = 0; 5965 reqsk_fastopen_remove(sk, req, false); 5966 } else { 5967 /* Make sure socket is routed, for correct metrics. */ 5968 icsk->icsk_af_ops->rebuild_header(sk); 5969 tcp_init_congestion_control(sk); 5970 5971 tcp_mtup_init(sk); 5972 tp->copied_seq = tp->rcv_nxt; 5973 tcp_init_buffer_space(sk); 5974 } 5975 smp_mb(); 5976 tcp_set_state(sk, TCP_ESTABLISHED); 5977 sk->sk_state_change(sk); 5978 5979 /* Note, that this wakeup is only for marginal crossed SYN case. 5980 * Passively open sockets are not waked up, because 5981 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5982 */ 5983 if (sk->sk_socket) 5984 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5985 5986 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5987 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5988 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5989 5990 if (tp->rx_opt.tstamp_ok) 5991 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5992 5993 if (req) { 5994 /* Re-arm the timer because data may have been sent out. 5995 * This is similar to the regular data transmission case 5996 * when new data has just been ack'ed. 5997 * 5998 * (TFO) - we could try to be more aggressive and 5999 * retransmitting any data sooner based on when they 6000 * are sent out. 6001 */ 6002 tcp_rearm_rto(sk); 6003 } else 6004 tcp_init_metrics(sk); 6005 6006 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6007 tcp_update_pacing_rate(sk); 6008 6009 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6010 tp->lsndtime = tcp_time_stamp; 6011 6012 tcp_initialize_rcv_mss(sk); 6013 tcp_fast_path_on(tp); 6014 break; 6015 6016 case TCP_FIN_WAIT1: { 6017 int tmo; 6018 6019 /* If we enter the TCP_FIN_WAIT1 state and we are a 6020 * Fast Open socket and this is the first acceptable 6021 * ACK we have received, this would have acknowledged 6022 * our SYNACK so stop the SYNACK timer. 6023 */ 6024 if (req) { 6025 /* Return RST if ack_seq is invalid. 6026 * Note that RFC793 only says to generate a 6027 * DUPACK for it but for TCP Fast Open it seems 6028 * better to treat this case like TCP_SYN_RECV 6029 * above. 6030 */ 6031 if (!acceptable) 6032 return 1; 6033 /* We no longer need the request sock. */ 6034 reqsk_fastopen_remove(sk, req, false); 6035 tcp_rearm_rto(sk); 6036 } 6037 if (tp->snd_una != tp->write_seq) 6038 break; 6039 6040 tcp_set_state(sk, TCP_FIN_WAIT2); 6041 sk->sk_shutdown |= SEND_SHUTDOWN; 6042 6043 sk_dst_confirm(sk); 6044 6045 if (!sock_flag(sk, SOCK_DEAD)) { 6046 /* Wake up lingering close() */ 6047 sk->sk_state_change(sk); 6048 break; 6049 } 6050 6051 if (tp->linger2 < 0) { 6052 tcp_done(sk); 6053 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6054 return 1; 6055 } 6056 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6057 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6058 /* Receive out of order FIN after close() */ 6059 if (tp->syn_fastopen && th->fin) 6060 tcp_fastopen_active_disable(sk); 6061 tcp_done(sk); 6062 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6063 return 1; 6064 } 6065 6066 tmo = tcp_fin_time(sk); 6067 if (tmo > TCP_TIMEWAIT_LEN) { 6068 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6069 } else if (th->fin || sock_owned_by_user(sk)) { 6070 /* Bad case. We could lose such FIN otherwise. 6071 * It is not a big problem, but it looks confusing 6072 * and not so rare event. We still can lose it now, 6073 * if it spins in bh_lock_sock(), but it is really 6074 * marginal case. 6075 */ 6076 inet_csk_reset_keepalive_timer(sk, tmo); 6077 } else { 6078 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6079 goto discard; 6080 } 6081 break; 6082 } 6083 6084 case TCP_CLOSING: 6085 if (tp->snd_una == tp->write_seq) { 6086 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6087 goto discard; 6088 } 6089 break; 6090 6091 case TCP_LAST_ACK: 6092 if (tp->snd_una == tp->write_seq) { 6093 tcp_update_metrics(sk); 6094 tcp_done(sk); 6095 goto discard; 6096 } 6097 break; 6098 } 6099 6100 /* step 6: check the URG bit */ 6101 tcp_urg(sk, skb, th); 6102 6103 /* step 7: process the segment text */ 6104 switch (sk->sk_state) { 6105 case TCP_CLOSE_WAIT: 6106 case TCP_CLOSING: 6107 case TCP_LAST_ACK: 6108 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6109 break; 6110 case TCP_FIN_WAIT1: 6111 case TCP_FIN_WAIT2: 6112 /* RFC 793 says to queue data in these states, 6113 * RFC 1122 says we MUST send a reset. 6114 * BSD 4.4 also does reset. 6115 */ 6116 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6117 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6118 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6119 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6120 tcp_reset(sk); 6121 return 1; 6122 } 6123 } 6124 /* Fall through */ 6125 case TCP_ESTABLISHED: 6126 tcp_data_queue(sk, skb); 6127 queued = 1; 6128 break; 6129 } 6130 6131 /* tcp_data could move socket to TIME-WAIT */ 6132 if (sk->sk_state != TCP_CLOSE) { 6133 tcp_data_snd_check(sk); 6134 tcp_ack_snd_check(sk); 6135 } 6136 6137 if (!queued) { 6138 discard: 6139 tcp_drop(sk, skb); 6140 } 6141 return 0; 6142 } 6143 EXPORT_SYMBOL(tcp_rcv_state_process); 6144 6145 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6146 { 6147 struct inet_request_sock *ireq = inet_rsk(req); 6148 6149 if (family == AF_INET) 6150 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6151 &ireq->ir_rmt_addr, port); 6152 #if IS_ENABLED(CONFIG_IPV6) 6153 else if (family == AF_INET6) 6154 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6155 &ireq->ir_v6_rmt_addr, port); 6156 #endif 6157 } 6158 6159 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6160 * 6161 * If we receive a SYN packet with these bits set, it means a 6162 * network is playing bad games with TOS bits. In order to 6163 * avoid possible false congestion notifications, we disable 6164 * TCP ECN negotiation. 6165 * 6166 * Exception: tcp_ca wants ECN. This is required for DCTCP 6167 * congestion control: Linux DCTCP asserts ECT on all packets, 6168 * including SYN, which is most optimal solution; however, 6169 * others, such as FreeBSD do not. 6170 */ 6171 static void tcp_ecn_create_request(struct request_sock *req, 6172 const struct sk_buff *skb, 6173 const struct sock *listen_sk, 6174 const struct dst_entry *dst) 6175 { 6176 const struct tcphdr *th = tcp_hdr(skb); 6177 const struct net *net = sock_net(listen_sk); 6178 bool th_ecn = th->ece && th->cwr; 6179 bool ect, ecn_ok; 6180 u32 ecn_ok_dst; 6181 6182 if (!th_ecn) 6183 return; 6184 6185 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6186 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6187 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6188 6189 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6190 (ecn_ok_dst & DST_FEATURE_ECN_CA)) 6191 inet_rsk(req)->ecn_ok = 1; 6192 } 6193 6194 static void tcp_openreq_init(struct request_sock *req, 6195 const struct tcp_options_received *rx_opt, 6196 struct sk_buff *skb, const struct sock *sk) 6197 { 6198 struct inet_request_sock *ireq = inet_rsk(req); 6199 6200 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6201 req->cookie_ts = 0; 6202 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6203 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6204 skb_mstamp_get(&tcp_rsk(req)->snt_synack); 6205 tcp_rsk(req)->last_oow_ack_time = 0; 6206 req->mss = rx_opt->mss_clamp; 6207 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6208 ireq->tstamp_ok = rx_opt->tstamp_ok; 6209 ireq->sack_ok = rx_opt->sack_ok; 6210 ireq->snd_wscale = rx_opt->snd_wscale; 6211 ireq->wscale_ok = rx_opt->wscale_ok; 6212 ireq->acked = 0; 6213 ireq->ecn_ok = 0; 6214 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6215 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6216 ireq->ir_mark = inet_request_mark(sk, skb); 6217 } 6218 6219 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6220 struct sock *sk_listener, 6221 bool attach_listener) 6222 { 6223 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6224 attach_listener); 6225 6226 if (req) { 6227 struct inet_request_sock *ireq = inet_rsk(req); 6228 6229 kmemcheck_annotate_bitfield(ireq, flags); 6230 ireq->opt = NULL; 6231 #if IS_ENABLED(CONFIG_IPV6) 6232 ireq->pktopts = NULL; 6233 #endif 6234 atomic64_set(&ireq->ir_cookie, 0); 6235 ireq->ireq_state = TCP_NEW_SYN_RECV; 6236 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6237 ireq->ireq_family = sk_listener->sk_family; 6238 } 6239 6240 return req; 6241 } 6242 EXPORT_SYMBOL(inet_reqsk_alloc); 6243 6244 /* 6245 * Return true if a syncookie should be sent 6246 */ 6247 static bool tcp_syn_flood_action(const struct sock *sk, 6248 const struct sk_buff *skb, 6249 const char *proto) 6250 { 6251 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6252 const char *msg = "Dropping request"; 6253 bool want_cookie = false; 6254 struct net *net = sock_net(sk); 6255 6256 #ifdef CONFIG_SYN_COOKIES 6257 if (net->ipv4.sysctl_tcp_syncookies) { 6258 msg = "Sending cookies"; 6259 want_cookie = true; 6260 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6261 } else 6262 #endif 6263 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6264 6265 if (!queue->synflood_warned && 6266 net->ipv4.sysctl_tcp_syncookies != 2 && 6267 xchg(&queue->synflood_warned, 1) == 0) 6268 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6269 proto, ntohs(tcp_hdr(skb)->dest), msg); 6270 6271 return want_cookie; 6272 } 6273 6274 static void tcp_reqsk_record_syn(const struct sock *sk, 6275 struct request_sock *req, 6276 const struct sk_buff *skb) 6277 { 6278 if (tcp_sk(sk)->save_syn) { 6279 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6280 u32 *copy; 6281 6282 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6283 if (copy) { 6284 copy[0] = len; 6285 memcpy(©[1], skb_network_header(skb), len); 6286 req->saved_syn = copy; 6287 } 6288 } 6289 } 6290 6291 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6292 const struct tcp_request_sock_ops *af_ops, 6293 struct sock *sk, struct sk_buff *skb) 6294 { 6295 struct tcp_fastopen_cookie foc = { .len = -1 }; 6296 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6297 struct tcp_options_received tmp_opt; 6298 struct tcp_sock *tp = tcp_sk(sk); 6299 struct net *net = sock_net(sk); 6300 struct sock *fastopen_sk = NULL; 6301 struct dst_entry *dst = NULL; 6302 struct request_sock *req; 6303 bool want_cookie = false; 6304 struct flowi fl; 6305 6306 /* TW buckets are converted to open requests without 6307 * limitations, they conserve resources and peer is 6308 * evidently real one. 6309 */ 6310 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6311 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6312 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6313 if (!want_cookie) 6314 goto drop; 6315 } 6316 6317 if (sk_acceptq_is_full(sk)) { 6318 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6319 goto drop; 6320 } 6321 6322 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6323 if (!req) 6324 goto drop; 6325 6326 tcp_rsk(req)->af_specific = af_ops; 6327 tcp_rsk(req)->ts_off = 0; 6328 6329 tcp_clear_options(&tmp_opt); 6330 tmp_opt.mss_clamp = af_ops->mss_clamp; 6331 tmp_opt.user_mss = tp->rx_opt.user_mss; 6332 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 6333 6334 if (want_cookie && !tmp_opt.saw_tstamp) 6335 tcp_clear_options(&tmp_opt); 6336 6337 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6338 tcp_openreq_init(req, &tmp_opt, skb, sk); 6339 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6340 6341 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6342 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6343 6344 af_ops->init_req(req, sk, skb); 6345 6346 if (security_inet_conn_request(sk, skb, req)) 6347 goto drop_and_free; 6348 6349 if (tmp_opt.tstamp_ok) 6350 tcp_rsk(req)->ts_off = af_ops->init_ts_off(skb); 6351 6352 if (!want_cookie && !isn) { 6353 /* Kill the following clause, if you dislike this way. */ 6354 if (!net->ipv4.sysctl_tcp_syncookies && 6355 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6356 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6357 !tcp_peer_is_proven(req, dst)) { 6358 /* Without syncookies last quarter of 6359 * backlog is filled with destinations, 6360 * proven to be alive. 6361 * It means that we continue to communicate 6362 * to destinations, already remembered 6363 * to the moment of synflood. 6364 */ 6365 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6366 rsk_ops->family); 6367 goto drop_and_release; 6368 } 6369 6370 isn = af_ops->init_seq(skb); 6371 } 6372 if (!dst) { 6373 dst = af_ops->route_req(sk, &fl, req); 6374 if (!dst) 6375 goto drop_and_free; 6376 } 6377 6378 tcp_ecn_create_request(req, skb, sk, dst); 6379 6380 if (want_cookie) { 6381 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6382 req->cookie_ts = tmp_opt.tstamp_ok; 6383 if (!tmp_opt.tstamp_ok) 6384 inet_rsk(req)->ecn_ok = 0; 6385 } 6386 6387 tcp_rsk(req)->snt_isn = isn; 6388 tcp_rsk(req)->txhash = net_tx_rndhash(); 6389 tcp_openreq_init_rwin(req, sk, dst); 6390 if (!want_cookie) { 6391 tcp_reqsk_record_syn(sk, req, skb); 6392 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6393 } 6394 if (fastopen_sk) { 6395 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6396 &foc, TCP_SYNACK_FASTOPEN); 6397 /* Add the child socket directly into the accept queue */ 6398 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6399 sk->sk_data_ready(sk); 6400 bh_unlock_sock(fastopen_sk); 6401 sock_put(fastopen_sk); 6402 } else { 6403 tcp_rsk(req)->tfo_listener = false; 6404 if (!want_cookie) 6405 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6406 af_ops->send_synack(sk, dst, &fl, req, &foc, 6407 !want_cookie ? TCP_SYNACK_NORMAL : 6408 TCP_SYNACK_COOKIE); 6409 if (want_cookie) { 6410 reqsk_free(req); 6411 return 0; 6412 } 6413 } 6414 reqsk_put(req); 6415 return 0; 6416 6417 drop_and_release: 6418 dst_release(dst); 6419 drop_and_free: 6420 reqsk_free(req); 6421 drop: 6422 tcp_listendrop(sk); 6423 return 0; 6424 } 6425 EXPORT_SYMBOL(tcp_conn_request); 6426