xref: /linux/net/ipv4/tcp_input.c (revision 905e46acd3272d04566fec49afbd7ad9e2ed9ae3)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78 
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly;
83 int sysctl_tcp_max_reordering __read_mostly = 300;
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 1000;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
97 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
98 int sysctl_tcp_early_retrans __read_mostly = 3;
99 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
100 
101 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
102 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
103 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
104 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
105 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
106 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
107 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
108 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
109 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
111 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123 
124 #define REXMIT_NONE	0 /* no loss recovery to do */
125 #define REXMIT_LOST	1 /* retransmit packets marked lost */
126 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
127 
128 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
129 			     unsigned int len)
130 {
131 	static bool __once __read_mostly;
132 
133 	if (!__once) {
134 		struct net_device *dev;
135 
136 		__once = true;
137 
138 		rcu_read_lock();
139 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
140 		if (!dev || len >= dev->mtu)
141 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
142 				dev ? dev->name : "Unknown driver");
143 		rcu_read_unlock();
144 	}
145 }
146 
147 /* Adapt the MSS value used to make delayed ack decision to the
148  * real world.
149  */
150 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
151 {
152 	struct inet_connection_sock *icsk = inet_csk(sk);
153 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
154 	unsigned int len;
155 
156 	icsk->icsk_ack.last_seg_size = 0;
157 
158 	/* skb->len may jitter because of SACKs, even if peer
159 	 * sends good full-sized frames.
160 	 */
161 	len = skb_shinfo(skb)->gso_size ? : skb->len;
162 	if (len >= icsk->icsk_ack.rcv_mss) {
163 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
164 					       tcp_sk(sk)->advmss);
165 		/* Account for possibly-removed options */
166 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
167 				   MAX_TCP_OPTION_SPACE))
168 			tcp_gro_dev_warn(sk, skb, len);
169 	} else {
170 		/* Otherwise, we make more careful check taking into account,
171 		 * that SACKs block is variable.
172 		 *
173 		 * "len" is invariant segment length, including TCP header.
174 		 */
175 		len += skb->data - skb_transport_header(skb);
176 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
177 		    /* If PSH is not set, packet should be
178 		     * full sized, provided peer TCP is not badly broken.
179 		     * This observation (if it is correct 8)) allows
180 		     * to handle super-low mtu links fairly.
181 		     */
182 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
183 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
184 			/* Subtract also invariant (if peer is RFC compliant),
185 			 * tcp header plus fixed timestamp option length.
186 			 * Resulting "len" is MSS free of SACK jitter.
187 			 */
188 			len -= tcp_sk(sk)->tcp_header_len;
189 			icsk->icsk_ack.last_seg_size = len;
190 			if (len == lss) {
191 				icsk->icsk_ack.rcv_mss = len;
192 				return;
193 			}
194 		}
195 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
196 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
197 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
198 	}
199 }
200 
201 static void tcp_incr_quickack(struct sock *sk)
202 {
203 	struct inet_connection_sock *icsk = inet_csk(sk);
204 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
205 
206 	if (quickacks == 0)
207 		quickacks = 2;
208 	if (quickacks > icsk->icsk_ack.quick)
209 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
210 }
211 
212 static void tcp_enter_quickack_mode(struct sock *sk)
213 {
214 	struct inet_connection_sock *icsk = inet_csk(sk);
215 	tcp_incr_quickack(sk);
216 	icsk->icsk_ack.pingpong = 0;
217 	icsk->icsk_ack.ato = TCP_ATO_MIN;
218 }
219 
220 /* Send ACKs quickly, if "quick" count is not exhausted
221  * and the session is not interactive.
222  */
223 
224 static bool tcp_in_quickack_mode(struct sock *sk)
225 {
226 	const struct inet_connection_sock *icsk = inet_csk(sk);
227 	const struct dst_entry *dst = __sk_dst_get(sk);
228 
229 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
230 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
231 }
232 
233 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
234 {
235 	if (tp->ecn_flags & TCP_ECN_OK)
236 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
237 }
238 
239 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
240 {
241 	if (tcp_hdr(skb)->cwr)
242 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
243 }
244 
245 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
246 {
247 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
248 }
249 
250 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
251 {
252 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
253 	case INET_ECN_NOT_ECT:
254 		/* Funny extension: if ECT is not set on a segment,
255 		 * and we already seen ECT on a previous segment,
256 		 * it is probably a retransmit.
257 		 */
258 		if (tp->ecn_flags & TCP_ECN_SEEN)
259 			tcp_enter_quickack_mode((struct sock *)tp);
260 		break;
261 	case INET_ECN_CE:
262 		if (tcp_ca_needs_ecn((struct sock *)tp))
263 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
264 
265 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
266 			/* Better not delay acks, sender can have a very low cwnd */
267 			tcp_enter_quickack_mode((struct sock *)tp);
268 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
269 		}
270 		tp->ecn_flags |= TCP_ECN_SEEN;
271 		break;
272 	default:
273 		if (tcp_ca_needs_ecn((struct sock *)tp))
274 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
275 		tp->ecn_flags |= TCP_ECN_SEEN;
276 		break;
277 	}
278 }
279 
280 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
281 {
282 	if (tp->ecn_flags & TCP_ECN_OK)
283 		__tcp_ecn_check_ce(tp, skb);
284 }
285 
286 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
287 {
288 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
289 		tp->ecn_flags &= ~TCP_ECN_OK;
290 }
291 
292 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
293 {
294 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
295 		tp->ecn_flags &= ~TCP_ECN_OK;
296 }
297 
298 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
299 {
300 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
301 		return true;
302 	return false;
303 }
304 
305 /* Buffer size and advertised window tuning.
306  *
307  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
308  */
309 
310 static void tcp_sndbuf_expand(struct sock *sk)
311 {
312 	const struct tcp_sock *tp = tcp_sk(sk);
313 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
314 	int sndmem, per_mss;
315 	u32 nr_segs;
316 
317 	/* Worst case is non GSO/TSO : each frame consumes one skb
318 	 * and skb->head is kmalloced using power of two area of memory
319 	 */
320 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
321 		  MAX_TCP_HEADER +
322 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
323 
324 	per_mss = roundup_pow_of_two(per_mss) +
325 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
326 
327 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
328 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
329 
330 	/* Fast Recovery (RFC 5681 3.2) :
331 	 * Cubic needs 1.7 factor, rounded to 2 to include
332 	 * extra cushion (application might react slowly to POLLOUT)
333 	 */
334 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
335 	sndmem *= nr_segs * per_mss;
336 
337 	if (sk->sk_sndbuf < sndmem)
338 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
339 }
340 
341 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
342  *
343  * All tcp_full_space() is split to two parts: "network" buffer, allocated
344  * forward and advertised in receiver window (tp->rcv_wnd) and
345  * "application buffer", required to isolate scheduling/application
346  * latencies from network.
347  * window_clamp is maximal advertised window. It can be less than
348  * tcp_full_space(), in this case tcp_full_space() - window_clamp
349  * is reserved for "application" buffer. The less window_clamp is
350  * the smoother our behaviour from viewpoint of network, but the lower
351  * throughput and the higher sensitivity of the connection to losses. 8)
352  *
353  * rcv_ssthresh is more strict window_clamp used at "slow start"
354  * phase to predict further behaviour of this connection.
355  * It is used for two goals:
356  * - to enforce header prediction at sender, even when application
357  *   requires some significant "application buffer". It is check #1.
358  * - to prevent pruning of receive queue because of misprediction
359  *   of receiver window. Check #2.
360  *
361  * The scheme does not work when sender sends good segments opening
362  * window and then starts to feed us spaghetti. But it should work
363  * in common situations. Otherwise, we have to rely on queue collapsing.
364  */
365 
366 /* Slow part of check#2. */
367 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
368 {
369 	struct tcp_sock *tp = tcp_sk(sk);
370 	/* Optimize this! */
371 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
372 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
373 
374 	while (tp->rcv_ssthresh <= window) {
375 		if (truesize <= skb->len)
376 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
377 
378 		truesize >>= 1;
379 		window >>= 1;
380 	}
381 	return 0;
382 }
383 
384 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
385 {
386 	struct tcp_sock *tp = tcp_sk(sk);
387 
388 	/* Check #1 */
389 	if (tp->rcv_ssthresh < tp->window_clamp &&
390 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
391 	    !tcp_under_memory_pressure(sk)) {
392 		int incr;
393 
394 		/* Check #2. Increase window, if skb with such overhead
395 		 * will fit to rcvbuf in future.
396 		 */
397 		if (tcp_win_from_space(skb->truesize) <= skb->len)
398 			incr = 2 * tp->advmss;
399 		else
400 			incr = __tcp_grow_window(sk, skb);
401 
402 		if (incr) {
403 			incr = max_t(int, incr, 2 * skb->len);
404 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
405 					       tp->window_clamp);
406 			inet_csk(sk)->icsk_ack.quick |= 1;
407 		}
408 	}
409 }
410 
411 /* 3. Tuning rcvbuf, when connection enters established state. */
412 static void tcp_fixup_rcvbuf(struct sock *sk)
413 {
414 	u32 mss = tcp_sk(sk)->advmss;
415 	int rcvmem;
416 
417 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
418 		 tcp_default_init_rwnd(mss);
419 
420 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
421 	 * Allow enough cushion so that sender is not limited by our window
422 	 */
423 	if (sysctl_tcp_moderate_rcvbuf)
424 		rcvmem <<= 2;
425 
426 	if (sk->sk_rcvbuf < rcvmem)
427 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
428 }
429 
430 /* 4. Try to fixup all. It is made immediately after connection enters
431  *    established state.
432  */
433 void tcp_init_buffer_space(struct sock *sk)
434 {
435 	struct tcp_sock *tp = tcp_sk(sk);
436 	int maxwin;
437 
438 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
439 		tcp_fixup_rcvbuf(sk);
440 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
441 		tcp_sndbuf_expand(sk);
442 
443 	tp->rcvq_space.space = tp->rcv_wnd;
444 	skb_mstamp_get(&tp->tcp_mstamp);
445 	tp->rcvq_space.time = tp->tcp_mstamp;
446 	tp->rcvq_space.seq = tp->copied_seq;
447 
448 	maxwin = tcp_full_space(sk);
449 
450 	if (tp->window_clamp >= maxwin) {
451 		tp->window_clamp = maxwin;
452 
453 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
454 			tp->window_clamp = max(maxwin -
455 					       (maxwin >> sysctl_tcp_app_win),
456 					       4 * tp->advmss);
457 	}
458 
459 	/* Force reservation of one segment. */
460 	if (sysctl_tcp_app_win &&
461 	    tp->window_clamp > 2 * tp->advmss &&
462 	    tp->window_clamp + tp->advmss > maxwin)
463 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
464 
465 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
466 	tp->snd_cwnd_stamp = tcp_time_stamp;
467 }
468 
469 /* 5. Recalculate window clamp after socket hit its memory bounds. */
470 static void tcp_clamp_window(struct sock *sk)
471 {
472 	struct tcp_sock *tp = tcp_sk(sk);
473 	struct inet_connection_sock *icsk = inet_csk(sk);
474 
475 	icsk->icsk_ack.quick = 0;
476 
477 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
478 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
479 	    !tcp_under_memory_pressure(sk) &&
480 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
481 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
482 				    sysctl_tcp_rmem[2]);
483 	}
484 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
485 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
486 }
487 
488 /* Initialize RCV_MSS value.
489  * RCV_MSS is an our guess about MSS used by the peer.
490  * We haven't any direct information about the MSS.
491  * It's better to underestimate the RCV_MSS rather than overestimate.
492  * Overestimations make us ACKing less frequently than needed.
493  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
494  */
495 void tcp_initialize_rcv_mss(struct sock *sk)
496 {
497 	const struct tcp_sock *tp = tcp_sk(sk);
498 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
499 
500 	hint = min(hint, tp->rcv_wnd / 2);
501 	hint = min(hint, TCP_MSS_DEFAULT);
502 	hint = max(hint, TCP_MIN_MSS);
503 
504 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
505 }
506 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
507 
508 /* Receiver "autotuning" code.
509  *
510  * The algorithm for RTT estimation w/o timestamps is based on
511  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
512  * <http://public.lanl.gov/radiant/pubs.html#DRS>
513  *
514  * More detail on this code can be found at
515  * <http://staff.psc.edu/jheffner/>,
516  * though this reference is out of date.  A new paper
517  * is pending.
518  */
519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
520 {
521 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
522 	long m = sample;
523 
524 	if (m == 0)
525 		m = 1;
526 
527 	if (new_sample != 0) {
528 		/* If we sample in larger samples in the non-timestamp
529 		 * case, we could grossly overestimate the RTT especially
530 		 * with chatty applications or bulk transfer apps which
531 		 * are stalled on filesystem I/O.
532 		 *
533 		 * Also, since we are only going for a minimum in the
534 		 * non-timestamp case, we do not smooth things out
535 		 * else with timestamps disabled convergence takes too
536 		 * long.
537 		 */
538 		if (!win_dep) {
539 			m -= (new_sample >> 3);
540 			new_sample += m;
541 		} else {
542 			m <<= 3;
543 			if (m < new_sample)
544 				new_sample = m;
545 		}
546 	} else {
547 		/* No previous measure. */
548 		new_sample = m << 3;
549 	}
550 
551 	tp->rcv_rtt_est.rtt_us = new_sample;
552 }
553 
554 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
555 {
556 	u32 delta_us;
557 
558 	if (tp->rcv_rtt_est.time.v64 == 0)
559 		goto new_measure;
560 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
561 		return;
562 	delta_us = skb_mstamp_us_delta(&tp->tcp_mstamp, &tp->rcv_rtt_est.time);
563 	tcp_rcv_rtt_update(tp, delta_us, 1);
564 
565 new_measure:
566 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
567 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
568 }
569 
570 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
571 					  const struct sk_buff *skb)
572 {
573 	struct tcp_sock *tp = tcp_sk(sk);
574 	if (tp->rx_opt.rcv_tsecr &&
575 	    (TCP_SKB_CB(skb)->end_seq -
576 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
577 		tcp_rcv_rtt_update(tp,
578 				   jiffies_to_usecs(tcp_time_stamp -
579 						    tp->rx_opt.rcv_tsecr),
580 				   0);
581 }
582 
583 /*
584  * This function should be called every time data is copied to user space.
585  * It calculates the appropriate TCP receive buffer space.
586  */
587 void tcp_rcv_space_adjust(struct sock *sk)
588 {
589 	struct tcp_sock *tp = tcp_sk(sk);
590 	int time;
591 	int copied;
592 
593 	time = skb_mstamp_us_delta(&tp->tcp_mstamp, &tp->rcvq_space.time);
594 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
595 		return;
596 
597 	/* Number of bytes copied to user in last RTT */
598 	copied = tp->copied_seq - tp->rcvq_space.seq;
599 	if (copied <= tp->rcvq_space.space)
600 		goto new_measure;
601 
602 	/* A bit of theory :
603 	 * copied = bytes received in previous RTT, our base window
604 	 * To cope with packet losses, we need a 2x factor
605 	 * To cope with slow start, and sender growing its cwin by 100 %
606 	 * every RTT, we need a 4x factor, because the ACK we are sending
607 	 * now is for the next RTT, not the current one :
608 	 * <prev RTT . ><current RTT .. ><next RTT .... >
609 	 */
610 
611 	if (sysctl_tcp_moderate_rcvbuf &&
612 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
613 		int rcvwin, rcvmem, rcvbuf;
614 
615 		/* minimal window to cope with packet losses, assuming
616 		 * steady state. Add some cushion because of small variations.
617 		 */
618 		rcvwin = (copied << 1) + 16 * tp->advmss;
619 
620 		/* If rate increased by 25%,
621 		 *	assume slow start, rcvwin = 3 * copied
622 		 * If rate increased by 50%,
623 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
624 		 */
625 		if (copied >=
626 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
627 			if (copied >=
628 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
629 				rcvwin <<= 1;
630 			else
631 				rcvwin += (rcvwin >> 1);
632 		}
633 
634 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
635 		while (tcp_win_from_space(rcvmem) < tp->advmss)
636 			rcvmem += 128;
637 
638 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
639 		if (rcvbuf > sk->sk_rcvbuf) {
640 			sk->sk_rcvbuf = rcvbuf;
641 
642 			/* Make the window clamp follow along.  */
643 			tp->window_clamp = rcvwin;
644 		}
645 	}
646 	tp->rcvq_space.space = copied;
647 
648 new_measure:
649 	tp->rcvq_space.seq = tp->copied_seq;
650 	tp->rcvq_space.time = tp->tcp_mstamp;
651 }
652 
653 /* There is something which you must keep in mind when you analyze the
654  * behavior of the tp->ato delayed ack timeout interval.  When a
655  * connection starts up, we want to ack as quickly as possible.  The
656  * problem is that "good" TCP's do slow start at the beginning of data
657  * transmission.  The means that until we send the first few ACK's the
658  * sender will sit on his end and only queue most of his data, because
659  * he can only send snd_cwnd unacked packets at any given time.  For
660  * each ACK we send, he increments snd_cwnd and transmits more of his
661  * queue.  -DaveM
662  */
663 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
664 {
665 	struct tcp_sock *tp = tcp_sk(sk);
666 	struct inet_connection_sock *icsk = inet_csk(sk);
667 	u32 now;
668 
669 	inet_csk_schedule_ack(sk);
670 
671 	tcp_measure_rcv_mss(sk, skb);
672 
673 	tcp_rcv_rtt_measure(tp);
674 
675 	now = tcp_time_stamp;
676 
677 	if (!icsk->icsk_ack.ato) {
678 		/* The _first_ data packet received, initialize
679 		 * delayed ACK engine.
680 		 */
681 		tcp_incr_quickack(sk);
682 		icsk->icsk_ack.ato = TCP_ATO_MIN;
683 	} else {
684 		int m = now - icsk->icsk_ack.lrcvtime;
685 
686 		if (m <= TCP_ATO_MIN / 2) {
687 			/* The fastest case is the first. */
688 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
689 		} else if (m < icsk->icsk_ack.ato) {
690 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
691 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
692 				icsk->icsk_ack.ato = icsk->icsk_rto;
693 		} else if (m > icsk->icsk_rto) {
694 			/* Too long gap. Apparently sender failed to
695 			 * restart window, so that we send ACKs quickly.
696 			 */
697 			tcp_incr_quickack(sk);
698 			sk_mem_reclaim(sk);
699 		}
700 	}
701 	icsk->icsk_ack.lrcvtime = now;
702 
703 	tcp_ecn_check_ce(tp, skb);
704 
705 	if (skb->len >= 128)
706 		tcp_grow_window(sk, skb);
707 }
708 
709 /* Called to compute a smoothed rtt estimate. The data fed to this
710  * routine either comes from timestamps, or from segments that were
711  * known _not_ to have been retransmitted [see Karn/Partridge
712  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
713  * piece by Van Jacobson.
714  * NOTE: the next three routines used to be one big routine.
715  * To save cycles in the RFC 1323 implementation it was better to break
716  * it up into three procedures. -- erics
717  */
718 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
719 {
720 	struct tcp_sock *tp = tcp_sk(sk);
721 	long m = mrtt_us; /* RTT */
722 	u32 srtt = tp->srtt_us;
723 
724 	/*	The following amusing code comes from Jacobson's
725 	 *	article in SIGCOMM '88.  Note that rtt and mdev
726 	 *	are scaled versions of rtt and mean deviation.
727 	 *	This is designed to be as fast as possible
728 	 *	m stands for "measurement".
729 	 *
730 	 *	On a 1990 paper the rto value is changed to:
731 	 *	RTO = rtt + 4 * mdev
732 	 *
733 	 * Funny. This algorithm seems to be very broken.
734 	 * These formulae increase RTO, when it should be decreased, increase
735 	 * too slowly, when it should be increased quickly, decrease too quickly
736 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
737 	 * does not matter how to _calculate_ it. Seems, it was trap
738 	 * that VJ failed to avoid. 8)
739 	 */
740 	if (srtt != 0) {
741 		m -= (srtt >> 3);	/* m is now error in rtt est */
742 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
743 		if (m < 0) {
744 			m = -m;		/* m is now abs(error) */
745 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
746 			/* This is similar to one of Eifel findings.
747 			 * Eifel blocks mdev updates when rtt decreases.
748 			 * This solution is a bit different: we use finer gain
749 			 * for mdev in this case (alpha*beta).
750 			 * Like Eifel it also prevents growth of rto,
751 			 * but also it limits too fast rto decreases,
752 			 * happening in pure Eifel.
753 			 */
754 			if (m > 0)
755 				m >>= 3;
756 		} else {
757 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
758 		}
759 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
760 		if (tp->mdev_us > tp->mdev_max_us) {
761 			tp->mdev_max_us = tp->mdev_us;
762 			if (tp->mdev_max_us > tp->rttvar_us)
763 				tp->rttvar_us = tp->mdev_max_us;
764 		}
765 		if (after(tp->snd_una, tp->rtt_seq)) {
766 			if (tp->mdev_max_us < tp->rttvar_us)
767 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
768 			tp->rtt_seq = tp->snd_nxt;
769 			tp->mdev_max_us = tcp_rto_min_us(sk);
770 		}
771 	} else {
772 		/* no previous measure. */
773 		srtt = m << 3;		/* take the measured time to be rtt */
774 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
775 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
776 		tp->mdev_max_us = tp->rttvar_us;
777 		tp->rtt_seq = tp->snd_nxt;
778 	}
779 	tp->srtt_us = max(1U, srtt);
780 }
781 
782 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
783  * Note: TCP stack does not yet implement pacing.
784  * FQ packet scheduler can be used to implement cheap but effective
785  * TCP pacing, to smooth the burst on large writes when packets
786  * in flight is significantly lower than cwnd (or rwin)
787  */
788 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
789 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
790 
791 static void tcp_update_pacing_rate(struct sock *sk)
792 {
793 	const struct tcp_sock *tp = tcp_sk(sk);
794 	u64 rate;
795 
796 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
797 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
798 
799 	/* current rate is (cwnd * mss) / srtt
800 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
801 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
802 	 *
803 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
804 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
805 	 *	 end of slow start and should slow down.
806 	 */
807 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
808 		rate *= sysctl_tcp_pacing_ss_ratio;
809 	else
810 		rate *= sysctl_tcp_pacing_ca_ratio;
811 
812 	rate *= max(tp->snd_cwnd, tp->packets_out);
813 
814 	if (likely(tp->srtt_us))
815 		do_div(rate, tp->srtt_us);
816 
817 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
818 	 * without any lock. We want to make sure compiler wont store
819 	 * intermediate values in this location.
820 	 */
821 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
822 						sk->sk_max_pacing_rate);
823 }
824 
825 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
826  * routine referred to above.
827  */
828 static void tcp_set_rto(struct sock *sk)
829 {
830 	const struct tcp_sock *tp = tcp_sk(sk);
831 	/* Old crap is replaced with new one. 8)
832 	 *
833 	 * More seriously:
834 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
835 	 *    It cannot be less due to utterly erratic ACK generation made
836 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
837 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
838 	 *    is invisible. Actually, Linux-2.4 also generates erratic
839 	 *    ACKs in some circumstances.
840 	 */
841 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
842 
843 	/* 2. Fixups made earlier cannot be right.
844 	 *    If we do not estimate RTO correctly without them,
845 	 *    all the algo is pure shit and should be replaced
846 	 *    with correct one. It is exactly, which we pretend to do.
847 	 */
848 
849 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
850 	 * guarantees that rto is higher.
851 	 */
852 	tcp_bound_rto(sk);
853 }
854 
855 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
856 {
857 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
858 
859 	if (!cwnd)
860 		cwnd = TCP_INIT_CWND;
861 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
862 }
863 
864 /*
865  * Packet counting of FACK is based on in-order assumptions, therefore TCP
866  * disables it when reordering is detected
867  */
868 void tcp_disable_fack(struct tcp_sock *tp)
869 {
870 	/* RFC3517 uses different metric in lost marker => reset on change */
871 	if (tcp_is_fack(tp))
872 		tp->lost_skb_hint = NULL;
873 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
874 }
875 
876 /* Take a notice that peer is sending D-SACKs */
877 static void tcp_dsack_seen(struct tcp_sock *tp)
878 {
879 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
880 }
881 
882 static void tcp_update_reordering(struct sock *sk, const int metric,
883 				  const int ts)
884 {
885 	struct tcp_sock *tp = tcp_sk(sk);
886 	int mib_idx;
887 
888 	if (metric > tp->reordering) {
889 		tp->reordering = min(sysctl_tcp_max_reordering, metric);
890 
891 #if FASTRETRANS_DEBUG > 1
892 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
893 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
894 			 tp->reordering,
895 			 tp->fackets_out,
896 			 tp->sacked_out,
897 			 tp->undo_marker ? tp->undo_retrans : 0);
898 #endif
899 		tcp_disable_fack(tp);
900 	}
901 
902 	tp->rack.reord = 1;
903 
904 	/* This exciting event is worth to be remembered. 8) */
905 	if (ts)
906 		mib_idx = LINUX_MIB_TCPTSREORDER;
907 	else if (tcp_is_reno(tp))
908 		mib_idx = LINUX_MIB_TCPRENOREORDER;
909 	else if (tcp_is_fack(tp))
910 		mib_idx = LINUX_MIB_TCPFACKREORDER;
911 	else
912 		mib_idx = LINUX_MIB_TCPSACKREORDER;
913 
914 	NET_INC_STATS(sock_net(sk), mib_idx);
915 }
916 
917 /* This must be called before lost_out is incremented */
918 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
919 {
920 	if (!tp->retransmit_skb_hint ||
921 	    before(TCP_SKB_CB(skb)->seq,
922 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
923 		tp->retransmit_skb_hint = skb;
924 }
925 
926 /* Sum the number of packets on the wire we have marked as lost.
927  * There are two cases we care about here:
928  * a) Packet hasn't been marked lost (nor retransmitted),
929  *    and this is the first loss.
930  * b) Packet has been marked both lost and retransmitted,
931  *    and this means we think it was lost again.
932  */
933 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
934 {
935 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
936 
937 	if (!(sacked & TCPCB_LOST) ||
938 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
939 		tp->lost += tcp_skb_pcount(skb);
940 }
941 
942 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
943 {
944 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
945 		tcp_verify_retransmit_hint(tp, skb);
946 
947 		tp->lost_out += tcp_skb_pcount(skb);
948 		tcp_sum_lost(tp, skb);
949 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
950 	}
951 }
952 
953 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
954 {
955 	tcp_verify_retransmit_hint(tp, skb);
956 
957 	tcp_sum_lost(tp, skb);
958 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
959 		tp->lost_out += tcp_skb_pcount(skb);
960 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
961 	}
962 }
963 
964 /* This procedure tags the retransmission queue when SACKs arrive.
965  *
966  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
967  * Packets in queue with these bits set are counted in variables
968  * sacked_out, retrans_out and lost_out, correspondingly.
969  *
970  * Valid combinations are:
971  * Tag  InFlight	Description
972  * 0	1		- orig segment is in flight.
973  * S	0		- nothing flies, orig reached receiver.
974  * L	0		- nothing flies, orig lost by net.
975  * R	2		- both orig and retransmit are in flight.
976  * L|R	1		- orig is lost, retransmit is in flight.
977  * S|R  1		- orig reached receiver, retrans is still in flight.
978  * (L|S|R is logically valid, it could occur when L|R is sacked,
979  *  but it is equivalent to plain S and code short-curcuits it to S.
980  *  L|S is logically invalid, it would mean -1 packet in flight 8))
981  *
982  * These 6 states form finite state machine, controlled by the following events:
983  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
984  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
985  * 3. Loss detection event of two flavors:
986  *	A. Scoreboard estimator decided the packet is lost.
987  *	   A'. Reno "three dupacks" marks head of queue lost.
988  *	   A''. Its FACK modification, head until snd.fack is lost.
989  *	B. SACK arrives sacking SND.NXT at the moment, when the
990  *	   segment was retransmitted.
991  * 4. D-SACK added new rule: D-SACK changes any tag to S.
992  *
993  * It is pleasant to note, that state diagram turns out to be commutative,
994  * so that we are allowed not to be bothered by order of our actions,
995  * when multiple events arrive simultaneously. (see the function below).
996  *
997  * Reordering detection.
998  * --------------------
999  * Reordering metric is maximal distance, which a packet can be displaced
1000  * in packet stream. With SACKs we can estimate it:
1001  *
1002  * 1. SACK fills old hole and the corresponding segment was not
1003  *    ever retransmitted -> reordering. Alas, we cannot use it
1004  *    when segment was retransmitted.
1005  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1006  *    for retransmitted and already SACKed segment -> reordering..
1007  * Both of these heuristics are not used in Loss state, when we cannot
1008  * account for retransmits accurately.
1009  *
1010  * SACK block validation.
1011  * ----------------------
1012  *
1013  * SACK block range validation checks that the received SACK block fits to
1014  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1015  * Note that SND.UNA is not included to the range though being valid because
1016  * it means that the receiver is rather inconsistent with itself reporting
1017  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1018  * perfectly valid, however, in light of RFC2018 which explicitly states
1019  * that "SACK block MUST reflect the newest segment.  Even if the newest
1020  * segment is going to be discarded ...", not that it looks very clever
1021  * in case of head skb. Due to potentional receiver driven attacks, we
1022  * choose to avoid immediate execution of a walk in write queue due to
1023  * reneging and defer head skb's loss recovery to standard loss recovery
1024  * procedure that will eventually trigger (nothing forbids us doing this).
1025  *
1026  * Implements also blockage to start_seq wrap-around. Problem lies in the
1027  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1028  * there's no guarantee that it will be before snd_nxt (n). The problem
1029  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1030  * wrap (s_w):
1031  *
1032  *         <- outs wnd ->                          <- wrapzone ->
1033  *         u     e      n                         u_w   e_w  s n_w
1034  *         |     |      |                          |     |   |  |
1035  * |<------------+------+----- TCP seqno space --------------+---------->|
1036  * ...-- <2^31 ->|                                           |<--------...
1037  * ...---- >2^31 ------>|                                    |<--------...
1038  *
1039  * Current code wouldn't be vulnerable but it's better still to discard such
1040  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1041  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1042  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1043  * equal to the ideal case (infinite seqno space without wrap caused issues).
1044  *
1045  * With D-SACK the lower bound is extended to cover sequence space below
1046  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1047  * again, D-SACK block must not to go across snd_una (for the same reason as
1048  * for the normal SACK blocks, explained above). But there all simplicity
1049  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1050  * fully below undo_marker they do not affect behavior in anyway and can
1051  * therefore be safely ignored. In rare cases (which are more or less
1052  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1053  * fragmentation and packet reordering past skb's retransmission. To consider
1054  * them correctly, the acceptable range must be extended even more though
1055  * the exact amount is rather hard to quantify. However, tp->max_window can
1056  * be used as an exaggerated estimate.
1057  */
1058 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1059 				   u32 start_seq, u32 end_seq)
1060 {
1061 	/* Too far in future, or reversed (interpretation is ambiguous) */
1062 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1063 		return false;
1064 
1065 	/* Nasty start_seq wrap-around check (see comments above) */
1066 	if (!before(start_seq, tp->snd_nxt))
1067 		return false;
1068 
1069 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1070 	 * start_seq == snd_una is non-sensical (see comments above)
1071 	 */
1072 	if (after(start_seq, tp->snd_una))
1073 		return true;
1074 
1075 	if (!is_dsack || !tp->undo_marker)
1076 		return false;
1077 
1078 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1079 	if (after(end_seq, tp->snd_una))
1080 		return false;
1081 
1082 	if (!before(start_seq, tp->undo_marker))
1083 		return true;
1084 
1085 	/* Too old */
1086 	if (!after(end_seq, tp->undo_marker))
1087 		return false;
1088 
1089 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1090 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1091 	 */
1092 	return !before(start_seq, end_seq - tp->max_window);
1093 }
1094 
1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1096 			    struct tcp_sack_block_wire *sp, int num_sacks,
1097 			    u32 prior_snd_una)
1098 {
1099 	struct tcp_sock *tp = tcp_sk(sk);
1100 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1101 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1102 	bool dup_sack = false;
1103 
1104 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1105 		dup_sack = true;
1106 		tcp_dsack_seen(tp);
1107 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1108 	} else if (num_sacks > 1) {
1109 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1110 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1111 
1112 		if (!after(end_seq_0, end_seq_1) &&
1113 		    !before(start_seq_0, start_seq_1)) {
1114 			dup_sack = true;
1115 			tcp_dsack_seen(tp);
1116 			NET_INC_STATS(sock_net(sk),
1117 					LINUX_MIB_TCPDSACKOFORECV);
1118 		}
1119 	}
1120 
1121 	/* D-SACK for already forgotten data... Do dumb counting. */
1122 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1123 	    !after(end_seq_0, prior_snd_una) &&
1124 	    after(end_seq_0, tp->undo_marker))
1125 		tp->undo_retrans--;
1126 
1127 	return dup_sack;
1128 }
1129 
1130 struct tcp_sacktag_state {
1131 	int	reord;
1132 	int	fack_count;
1133 	/* Timestamps for earliest and latest never-retransmitted segment
1134 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1135 	 * but congestion control should still get an accurate delay signal.
1136 	 */
1137 	struct skb_mstamp first_sackt;
1138 	struct skb_mstamp last_sackt;
1139 	struct rate_sample *rate;
1140 	int	flag;
1141 };
1142 
1143 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1144  * the incoming SACK may not exactly match but we can find smaller MSS
1145  * aligned portion of it that matches. Therefore we might need to fragment
1146  * which may fail and creates some hassle (caller must handle error case
1147  * returns).
1148  *
1149  * FIXME: this could be merged to shift decision code
1150  */
1151 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1152 				  u32 start_seq, u32 end_seq)
1153 {
1154 	int err;
1155 	bool in_sack;
1156 	unsigned int pkt_len;
1157 	unsigned int mss;
1158 
1159 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1160 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1161 
1162 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1163 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1164 		mss = tcp_skb_mss(skb);
1165 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1166 
1167 		if (!in_sack) {
1168 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1169 			if (pkt_len < mss)
1170 				pkt_len = mss;
1171 		} else {
1172 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1173 			if (pkt_len < mss)
1174 				return -EINVAL;
1175 		}
1176 
1177 		/* Round if necessary so that SACKs cover only full MSSes
1178 		 * and/or the remaining small portion (if present)
1179 		 */
1180 		if (pkt_len > mss) {
1181 			unsigned int new_len = (pkt_len / mss) * mss;
1182 			if (!in_sack && new_len < pkt_len) {
1183 				new_len += mss;
1184 				if (new_len >= skb->len)
1185 					return 0;
1186 			}
1187 			pkt_len = new_len;
1188 		}
1189 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1190 		if (err < 0)
1191 			return err;
1192 	}
1193 
1194 	return in_sack;
1195 }
1196 
1197 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1198 static u8 tcp_sacktag_one(struct sock *sk,
1199 			  struct tcp_sacktag_state *state, u8 sacked,
1200 			  u32 start_seq, u32 end_seq,
1201 			  int dup_sack, int pcount,
1202 			  const struct skb_mstamp *xmit_time)
1203 {
1204 	struct tcp_sock *tp = tcp_sk(sk);
1205 	int fack_count = state->fack_count;
1206 
1207 	/* Account D-SACK for retransmitted packet. */
1208 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1209 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1210 		    after(end_seq, tp->undo_marker))
1211 			tp->undo_retrans--;
1212 		if (sacked & TCPCB_SACKED_ACKED)
1213 			state->reord = min(fack_count, state->reord);
1214 	}
1215 
1216 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1217 	if (!after(end_seq, tp->snd_una))
1218 		return sacked;
1219 
1220 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1221 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1222 
1223 		if (sacked & TCPCB_SACKED_RETRANS) {
1224 			/* If the segment is not tagged as lost,
1225 			 * we do not clear RETRANS, believing
1226 			 * that retransmission is still in flight.
1227 			 */
1228 			if (sacked & TCPCB_LOST) {
1229 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1230 				tp->lost_out -= pcount;
1231 				tp->retrans_out -= pcount;
1232 			}
1233 		} else {
1234 			if (!(sacked & TCPCB_RETRANS)) {
1235 				/* New sack for not retransmitted frame,
1236 				 * which was in hole. It is reordering.
1237 				 */
1238 				if (before(start_seq,
1239 					   tcp_highest_sack_seq(tp)))
1240 					state->reord = min(fack_count,
1241 							   state->reord);
1242 				if (!after(end_seq, tp->high_seq))
1243 					state->flag |= FLAG_ORIG_SACK_ACKED;
1244 				if (state->first_sackt.v64 == 0)
1245 					state->first_sackt = *xmit_time;
1246 				state->last_sackt = *xmit_time;
1247 			}
1248 
1249 			if (sacked & TCPCB_LOST) {
1250 				sacked &= ~TCPCB_LOST;
1251 				tp->lost_out -= pcount;
1252 			}
1253 		}
1254 
1255 		sacked |= TCPCB_SACKED_ACKED;
1256 		state->flag |= FLAG_DATA_SACKED;
1257 		tp->sacked_out += pcount;
1258 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1259 
1260 		fack_count += pcount;
1261 
1262 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1263 		if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1264 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1265 			tp->lost_cnt_hint += pcount;
1266 
1267 		if (fack_count > tp->fackets_out)
1268 			tp->fackets_out = fack_count;
1269 	}
1270 
1271 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1272 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1273 	 * are accounted above as well.
1274 	 */
1275 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1276 		sacked &= ~TCPCB_SACKED_RETRANS;
1277 		tp->retrans_out -= pcount;
1278 	}
1279 
1280 	return sacked;
1281 }
1282 
1283 /* Shift newly-SACKed bytes from this skb to the immediately previous
1284  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1285  */
1286 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1287 			    struct tcp_sacktag_state *state,
1288 			    unsigned int pcount, int shifted, int mss,
1289 			    bool dup_sack)
1290 {
1291 	struct tcp_sock *tp = tcp_sk(sk);
1292 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1293 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1294 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1295 
1296 	BUG_ON(!pcount);
1297 
1298 	/* Adjust counters and hints for the newly sacked sequence
1299 	 * range but discard the return value since prev is already
1300 	 * marked. We must tag the range first because the seq
1301 	 * advancement below implicitly advances
1302 	 * tcp_highest_sack_seq() when skb is highest_sack.
1303 	 */
1304 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1305 			start_seq, end_seq, dup_sack, pcount,
1306 			&skb->skb_mstamp);
1307 	tcp_rate_skb_delivered(sk, skb, state->rate);
1308 
1309 	if (skb == tp->lost_skb_hint)
1310 		tp->lost_cnt_hint += pcount;
1311 
1312 	TCP_SKB_CB(prev)->end_seq += shifted;
1313 	TCP_SKB_CB(skb)->seq += shifted;
1314 
1315 	tcp_skb_pcount_add(prev, pcount);
1316 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1317 	tcp_skb_pcount_add(skb, -pcount);
1318 
1319 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1320 	 * in theory this shouldn't be necessary but as long as DSACK
1321 	 * code can come after this skb later on it's better to keep
1322 	 * setting gso_size to something.
1323 	 */
1324 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1325 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1326 
1327 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1328 	if (tcp_skb_pcount(skb) <= 1)
1329 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1330 
1331 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1332 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1333 
1334 	if (skb->len > 0) {
1335 		BUG_ON(!tcp_skb_pcount(skb));
1336 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1337 		return false;
1338 	}
1339 
1340 	/* Whole SKB was eaten :-) */
1341 
1342 	if (skb == tp->retransmit_skb_hint)
1343 		tp->retransmit_skb_hint = prev;
1344 	if (skb == tp->lost_skb_hint) {
1345 		tp->lost_skb_hint = prev;
1346 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1347 	}
1348 
1349 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1350 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1351 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1352 		TCP_SKB_CB(prev)->end_seq++;
1353 
1354 	if (skb == tcp_highest_sack(sk))
1355 		tcp_advance_highest_sack(sk, skb);
1356 
1357 	tcp_skb_collapse_tstamp(prev, skb);
1358 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64))
1359 		TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0;
1360 
1361 	tcp_unlink_write_queue(skb, sk);
1362 	sk_wmem_free_skb(sk, skb);
1363 
1364 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1365 
1366 	return true;
1367 }
1368 
1369 /* I wish gso_size would have a bit more sane initialization than
1370  * something-or-zero which complicates things
1371  */
1372 static int tcp_skb_seglen(const struct sk_buff *skb)
1373 {
1374 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1375 }
1376 
1377 /* Shifting pages past head area doesn't work */
1378 static int skb_can_shift(const struct sk_buff *skb)
1379 {
1380 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1381 }
1382 
1383 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1384  * skb.
1385  */
1386 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1387 					  struct tcp_sacktag_state *state,
1388 					  u32 start_seq, u32 end_seq,
1389 					  bool dup_sack)
1390 {
1391 	struct tcp_sock *tp = tcp_sk(sk);
1392 	struct sk_buff *prev;
1393 	int mss;
1394 	int pcount = 0;
1395 	int len;
1396 	int in_sack;
1397 
1398 	if (!sk_can_gso(sk))
1399 		goto fallback;
1400 
1401 	/* Normally R but no L won't result in plain S */
1402 	if (!dup_sack &&
1403 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1404 		goto fallback;
1405 	if (!skb_can_shift(skb))
1406 		goto fallback;
1407 	/* This frame is about to be dropped (was ACKed). */
1408 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1409 		goto fallback;
1410 
1411 	/* Can only happen with delayed DSACK + discard craziness */
1412 	if (unlikely(skb == tcp_write_queue_head(sk)))
1413 		goto fallback;
1414 	prev = tcp_write_queue_prev(sk, skb);
1415 
1416 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1417 		goto fallback;
1418 
1419 	if (!tcp_skb_can_collapse_to(prev))
1420 		goto fallback;
1421 
1422 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1423 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1424 
1425 	if (in_sack) {
1426 		len = skb->len;
1427 		pcount = tcp_skb_pcount(skb);
1428 		mss = tcp_skb_seglen(skb);
1429 
1430 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1431 		 * drop this restriction as unnecessary
1432 		 */
1433 		if (mss != tcp_skb_seglen(prev))
1434 			goto fallback;
1435 	} else {
1436 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1437 			goto noop;
1438 		/* CHECKME: This is non-MSS split case only?, this will
1439 		 * cause skipped skbs due to advancing loop btw, original
1440 		 * has that feature too
1441 		 */
1442 		if (tcp_skb_pcount(skb) <= 1)
1443 			goto noop;
1444 
1445 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1446 		if (!in_sack) {
1447 			/* TODO: head merge to next could be attempted here
1448 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1449 			 * though it might not be worth of the additional hassle
1450 			 *
1451 			 * ...we can probably just fallback to what was done
1452 			 * previously. We could try merging non-SACKed ones
1453 			 * as well but it probably isn't going to buy off
1454 			 * because later SACKs might again split them, and
1455 			 * it would make skb timestamp tracking considerably
1456 			 * harder problem.
1457 			 */
1458 			goto fallback;
1459 		}
1460 
1461 		len = end_seq - TCP_SKB_CB(skb)->seq;
1462 		BUG_ON(len < 0);
1463 		BUG_ON(len > skb->len);
1464 
1465 		/* MSS boundaries should be honoured or else pcount will
1466 		 * severely break even though it makes things bit trickier.
1467 		 * Optimize common case to avoid most of the divides
1468 		 */
1469 		mss = tcp_skb_mss(skb);
1470 
1471 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1472 		 * drop this restriction as unnecessary
1473 		 */
1474 		if (mss != tcp_skb_seglen(prev))
1475 			goto fallback;
1476 
1477 		if (len == mss) {
1478 			pcount = 1;
1479 		} else if (len < mss) {
1480 			goto noop;
1481 		} else {
1482 			pcount = len / mss;
1483 			len = pcount * mss;
1484 		}
1485 	}
1486 
1487 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1488 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1489 		goto fallback;
1490 
1491 	if (!skb_shift(prev, skb, len))
1492 		goto fallback;
1493 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1494 		goto out;
1495 
1496 	/* Hole filled allows collapsing with the next as well, this is very
1497 	 * useful when hole on every nth skb pattern happens
1498 	 */
1499 	if (prev == tcp_write_queue_tail(sk))
1500 		goto out;
1501 	skb = tcp_write_queue_next(sk, prev);
1502 
1503 	if (!skb_can_shift(skb) ||
1504 	    (skb == tcp_send_head(sk)) ||
1505 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1506 	    (mss != tcp_skb_seglen(skb)))
1507 		goto out;
1508 
1509 	len = skb->len;
1510 	if (skb_shift(prev, skb, len)) {
1511 		pcount += tcp_skb_pcount(skb);
1512 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1513 	}
1514 
1515 out:
1516 	state->fack_count += pcount;
1517 	return prev;
1518 
1519 noop:
1520 	return skb;
1521 
1522 fallback:
1523 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1524 	return NULL;
1525 }
1526 
1527 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1528 					struct tcp_sack_block *next_dup,
1529 					struct tcp_sacktag_state *state,
1530 					u32 start_seq, u32 end_seq,
1531 					bool dup_sack_in)
1532 {
1533 	struct tcp_sock *tp = tcp_sk(sk);
1534 	struct sk_buff *tmp;
1535 
1536 	tcp_for_write_queue_from(skb, sk) {
1537 		int in_sack = 0;
1538 		bool dup_sack = dup_sack_in;
1539 
1540 		if (skb == tcp_send_head(sk))
1541 			break;
1542 
1543 		/* queue is in-order => we can short-circuit the walk early */
1544 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1545 			break;
1546 
1547 		if (next_dup  &&
1548 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1549 			in_sack = tcp_match_skb_to_sack(sk, skb,
1550 							next_dup->start_seq,
1551 							next_dup->end_seq);
1552 			if (in_sack > 0)
1553 				dup_sack = true;
1554 		}
1555 
1556 		/* skb reference here is a bit tricky to get right, since
1557 		 * shifting can eat and free both this skb and the next,
1558 		 * so not even _safe variant of the loop is enough.
1559 		 */
1560 		if (in_sack <= 0) {
1561 			tmp = tcp_shift_skb_data(sk, skb, state,
1562 						 start_seq, end_seq, dup_sack);
1563 			if (tmp) {
1564 				if (tmp != skb) {
1565 					skb = tmp;
1566 					continue;
1567 				}
1568 
1569 				in_sack = 0;
1570 			} else {
1571 				in_sack = tcp_match_skb_to_sack(sk, skb,
1572 								start_seq,
1573 								end_seq);
1574 			}
1575 		}
1576 
1577 		if (unlikely(in_sack < 0))
1578 			break;
1579 
1580 		if (in_sack) {
1581 			TCP_SKB_CB(skb)->sacked =
1582 				tcp_sacktag_one(sk,
1583 						state,
1584 						TCP_SKB_CB(skb)->sacked,
1585 						TCP_SKB_CB(skb)->seq,
1586 						TCP_SKB_CB(skb)->end_seq,
1587 						dup_sack,
1588 						tcp_skb_pcount(skb),
1589 						&skb->skb_mstamp);
1590 			tcp_rate_skb_delivered(sk, skb, state->rate);
1591 
1592 			if (!before(TCP_SKB_CB(skb)->seq,
1593 				    tcp_highest_sack_seq(tp)))
1594 				tcp_advance_highest_sack(sk, skb);
1595 		}
1596 
1597 		state->fack_count += tcp_skb_pcount(skb);
1598 	}
1599 	return skb;
1600 }
1601 
1602 /* Avoid all extra work that is being done by sacktag while walking in
1603  * a normal way
1604  */
1605 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1606 					struct tcp_sacktag_state *state,
1607 					u32 skip_to_seq)
1608 {
1609 	tcp_for_write_queue_from(skb, sk) {
1610 		if (skb == tcp_send_head(sk))
1611 			break;
1612 
1613 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1614 			break;
1615 
1616 		state->fack_count += tcp_skb_pcount(skb);
1617 	}
1618 	return skb;
1619 }
1620 
1621 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1622 						struct sock *sk,
1623 						struct tcp_sack_block *next_dup,
1624 						struct tcp_sacktag_state *state,
1625 						u32 skip_to_seq)
1626 {
1627 	if (!next_dup)
1628 		return skb;
1629 
1630 	if (before(next_dup->start_seq, skip_to_seq)) {
1631 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1632 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1633 				       next_dup->start_seq, next_dup->end_seq,
1634 				       1);
1635 	}
1636 
1637 	return skb;
1638 }
1639 
1640 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1641 {
1642 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1643 }
1644 
1645 static int
1646 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1647 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1648 {
1649 	struct tcp_sock *tp = tcp_sk(sk);
1650 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1651 				    TCP_SKB_CB(ack_skb)->sacked);
1652 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1653 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1654 	struct tcp_sack_block *cache;
1655 	struct sk_buff *skb;
1656 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1657 	int used_sacks;
1658 	bool found_dup_sack = false;
1659 	int i, j;
1660 	int first_sack_index;
1661 
1662 	state->flag = 0;
1663 	state->reord = tp->packets_out;
1664 
1665 	if (!tp->sacked_out) {
1666 		if (WARN_ON(tp->fackets_out))
1667 			tp->fackets_out = 0;
1668 		tcp_highest_sack_reset(sk);
1669 	}
1670 
1671 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1672 					 num_sacks, prior_snd_una);
1673 	if (found_dup_sack) {
1674 		state->flag |= FLAG_DSACKING_ACK;
1675 		tp->delivered++; /* A spurious retransmission is delivered */
1676 	}
1677 
1678 	/* Eliminate too old ACKs, but take into
1679 	 * account more or less fresh ones, they can
1680 	 * contain valid SACK info.
1681 	 */
1682 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1683 		return 0;
1684 
1685 	if (!tp->packets_out)
1686 		goto out;
1687 
1688 	used_sacks = 0;
1689 	first_sack_index = 0;
1690 	for (i = 0; i < num_sacks; i++) {
1691 		bool dup_sack = !i && found_dup_sack;
1692 
1693 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1694 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1695 
1696 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1697 					    sp[used_sacks].start_seq,
1698 					    sp[used_sacks].end_seq)) {
1699 			int mib_idx;
1700 
1701 			if (dup_sack) {
1702 				if (!tp->undo_marker)
1703 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1704 				else
1705 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1706 			} else {
1707 				/* Don't count olds caused by ACK reordering */
1708 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1709 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1710 					continue;
1711 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1712 			}
1713 
1714 			NET_INC_STATS(sock_net(sk), mib_idx);
1715 			if (i == 0)
1716 				first_sack_index = -1;
1717 			continue;
1718 		}
1719 
1720 		/* Ignore very old stuff early */
1721 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1722 			continue;
1723 
1724 		used_sacks++;
1725 	}
1726 
1727 	/* order SACK blocks to allow in order walk of the retrans queue */
1728 	for (i = used_sacks - 1; i > 0; i--) {
1729 		for (j = 0; j < i; j++) {
1730 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1731 				swap(sp[j], sp[j + 1]);
1732 
1733 				/* Track where the first SACK block goes to */
1734 				if (j == first_sack_index)
1735 					first_sack_index = j + 1;
1736 			}
1737 		}
1738 	}
1739 
1740 	skb = tcp_write_queue_head(sk);
1741 	state->fack_count = 0;
1742 	i = 0;
1743 
1744 	if (!tp->sacked_out) {
1745 		/* It's already past, so skip checking against it */
1746 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1747 	} else {
1748 		cache = tp->recv_sack_cache;
1749 		/* Skip empty blocks in at head of the cache */
1750 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1751 		       !cache->end_seq)
1752 			cache++;
1753 	}
1754 
1755 	while (i < used_sacks) {
1756 		u32 start_seq = sp[i].start_seq;
1757 		u32 end_seq = sp[i].end_seq;
1758 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1759 		struct tcp_sack_block *next_dup = NULL;
1760 
1761 		if (found_dup_sack && ((i + 1) == first_sack_index))
1762 			next_dup = &sp[i + 1];
1763 
1764 		/* Skip too early cached blocks */
1765 		while (tcp_sack_cache_ok(tp, cache) &&
1766 		       !before(start_seq, cache->end_seq))
1767 			cache++;
1768 
1769 		/* Can skip some work by looking recv_sack_cache? */
1770 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1771 		    after(end_seq, cache->start_seq)) {
1772 
1773 			/* Head todo? */
1774 			if (before(start_seq, cache->start_seq)) {
1775 				skb = tcp_sacktag_skip(skb, sk, state,
1776 						       start_seq);
1777 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1778 						       state,
1779 						       start_seq,
1780 						       cache->start_seq,
1781 						       dup_sack);
1782 			}
1783 
1784 			/* Rest of the block already fully processed? */
1785 			if (!after(end_seq, cache->end_seq))
1786 				goto advance_sp;
1787 
1788 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1789 						       state,
1790 						       cache->end_seq);
1791 
1792 			/* ...tail remains todo... */
1793 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1794 				/* ...but better entrypoint exists! */
1795 				skb = tcp_highest_sack(sk);
1796 				if (!skb)
1797 					break;
1798 				state->fack_count = tp->fackets_out;
1799 				cache++;
1800 				goto walk;
1801 			}
1802 
1803 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1804 			/* Check overlap against next cached too (past this one already) */
1805 			cache++;
1806 			continue;
1807 		}
1808 
1809 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1810 			skb = tcp_highest_sack(sk);
1811 			if (!skb)
1812 				break;
1813 			state->fack_count = tp->fackets_out;
1814 		}
1815 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1816 
1817 walk:
1818 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1819 				       start_seq, end_seq, dup_sack);
1820 
1821 advance_sp:
1822 		i++;
1823 	}
1824 
1825 	/* Clear the head of the cache sack blocks so we can skip it next time */
1826 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1827 		tp->recv_sack_cache[i].start_seq = 0;
1828 		tp->recv_sack_cache[i].end_seq = 0;
1829 	}
1830 	for (j = 0; j < used_sacks; j++)
1831 		tp->recv_sack_cache[i++] = sp[j];
1832 
1833 	if ((state->reord < tp->fackets_out) &&
1834 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1835 		tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1836 
1837 	tcp_verify_left_out(tp);
1838 out:
1839 
1840 #if FASTRETRANS_DEBUG > 0
1841 	WARN_ON((int)tp->sacked_out < 0);
1842 	WARN_ON((int)tp->lost_out < 0);
1843 	WARN_ON((int)tp->retrans_out < 0);
1844 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1845 #endif
1846 	return state->flag;
1847 }
1848 
1849 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1850  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1851  */
1852 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1853 {
1854 	u32 holes;
1855 
1856 	holes = max(tp->lost_out, 1U);
1857 	holes = min(holes, tp->packets_out);
1858 
1859 	if ((tp->sacked_out + holes) > tp->packets_out) {
1860 		tp->sacked_out = tp->packets_out - holes;
1861 		return true;
1862 	}
1863 	return false;
1864 }
1865 
1866 /* If we receive more dupacks than we expected counting segments
1867  * in assumption of absent reordering, interpret this as reordering.
1868  * The only another reason could be bug in receiver TCP.
1869  */
1870 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1871 {
1872 	struct tcp_sock *tp = tcp_sk(sk);
1873 	if (tcp_limit_reno_sacked(tp))
1874 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1875 }
1876 
1877 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1878 
1879 static void tcp_add_reno_sack(struct sock *sk)
1880 {
1881 	struct tcp_sock *tp = tcp_sk(sk);
1882 	u32 prior_sacked = tp->sacked_out;
1883 
1884 	tp->sacked_out++;
1885 	tcp_check_reno_reordering(sk, 0);
1886 	if (tp->sacked_out > prior_sacked)
1887 		tp->delivered++; /* Some out-of-order packet is delivered */
1888 	tcp_verify_left_out(tp);
1889 }
1890 
1891 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1892 
1893 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1894 {
1895 	struct tcp_sock *tp = tcp_sk(sk);
1896 
1897 	if (acked > 0) {
1898 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1899 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1900 		if (acked - 1 >= tp->sacked_out)
1901 			tp->sacked_out = 0;
1902 		else
1903 			tp->sacked_out -= acked - 1;
1904 	}
1905 	tcp_check_reno_reordering(sk, acked);
1906 	tcp_verify_left_out(tp);
1907 }
1908 
1909 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1910 {
1911 	tp->sacked_out = 0;
1912 }
1913 
1914 void tcp_clear_retrans(struct tcp_sock *tp)
1915 {
1916 	tp->retrans_out = 0;
1917 	tp->lost_out = 0;
1918 	tp->undo_marker = 0;
1919 	tp->undo_retrans = -1;
1920 	tp->fackets_out = 0;
1921 	tp->sacked_out = 0;
1922 }
1923 
1924 static inline void tcp_init_undo(struct tcp_sock *tp)
1925 {
1926 	tp->undo_marker = tp->snd_una;
1927 	/* Retransmission still in flight may cause DSACKs later. */
1928 	tp->undo_retrans = tp->retrans_out ? : -1;
1929 }
1930 
1931 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1932  * and reset tags completely, otherwise preserve SACKs. If receiver
1933  * dropped its ofo queue, we will know this due to reneging detection.
1934  */
1935 void tcp_enter_loss(struct sock *sk)
1936 {
1937 	const struct inet_connection_sock *icsk = inet_csk(sk);
1938 	struct tcp_sock *tp = tcp_sk(sk);
1939 	struct net *net = sock_net(sk);
1940 	struct sk_buff *skb;
1941 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1942 	bool is_reneg;			/* is receiver reneging on SACKs? */
1943 	bool mark_lost;
1944 
1945 	/* Reduce ssthresh if it has not yet been made inside this window. */
1946 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1947 	    !after(tp->high_seq, tp->snd_una) ||
1948 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1949 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1950 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1951 		tcp_ca_event(sk, CA_EVENT_LOSS);
1952 		tcp_init_undo(tp);
1953 	}
1954 	tp->snd_cwnd	   = 1;
1955 	tp->snd_cwnd_cnt   = 0;
1956 	tp->snd_cwnd_stamp = tcp_time_stamp;
1957 
1958 	tp->retrans_out = 0;
1959 	tp->lost_out = 0;
1960 
1961 	if (tcp_is_reno(tp))
1962 		tcp_reset_reno_sack(tp);
1963 
1964 	skb = tcp_write_queue_head(sk);
1965 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1966 	if (is_reneg) {
1967 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1968 		tp->sacked_out = 0;
1969 		tp->fackets_out = 0;
1970 	}
1971 	tcp_clear_all_retrans_hints(tp);
1972 
1973 	tcp_for_write_queue(skb, sk) {
1974 		if (skb == tcp_send_head(sk))
1975 			break;
1976 
1977 		mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
1978 			     is_reneg);
1979 		if (mark_lost)
1980 			tcp_sum_lost(tp, skb);
1981 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1982 		if (mark_lost) {
1983 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1984 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1985 			tp->lost_out += tcp_skb_pcount(skb);
1986 		}
1987 	}
1988 	tcp_verify_left_out(tp);
1989 
1990 	/* Timeout in disordered state after receiving substantial DUPACKs
1991 	 * suggests that the degree of reordering is over-estimated.
1992 	 */
1993 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1994 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1995 		tp->reordering = min_t(unsigned int, tp->reordering,
1996 				       net->ipv4.sysctl_tcp_reordering);
1997 	tcp_set_ca_state(sk, TCP_CA_Loss);
1998 	tp->high_seq = tp->snd_nxt;
1999 	tcp_ecn_queue_cwr(tp);
2000 
2001 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2002 	 * loss recovery is underway except recurring timeout(s) on
2003 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2004 	 *
2005 	 * In theory F-RTO can be used repeatedly during loss recovery.
2006 	 * In practice this interacts badly with broken middle-boxes that
2007 	 * falsely raise the receive window, which results in repeated
2008 	 * timeouts and stop-and-go behavior.
2009 	 */
2010 	tp->frto = sysctl_tcp_frto &&
2011 		   (new_recovery || icsk->icsk_retransmits) &&
2012 		   !inet_csk(sk)->icsk_mtup.probe_size;
2013 }
2014 
2015 /* If ACK arrived pointing to a remembered SACK, it means that our
2016  * remembered SACKs do not reflect real state of receiver i.e.
2017  * receiver _host_ is heavily congested (or buggy).
2018  *
2019  * To avoid big spurious retransmission bursts due to transient SACK
2020  * scoreboard oddities that look like reneging, we give the receiver a
2021  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2022  * restore sanity to the SACK scoreboard. If the apparent reneging
2023  * persists until this RTO then we'll clear the SACK scoreboard.
2024  */
2025 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2026 {
2027 	if (flag & FLAG_SACK_RENEGING) {
2028 		struct tcp_sock *tp = tcp_sk(sk);
2029 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2030 					  msecs_to_jiffies(10));
2031 
2032 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2033 					  delay, TCP_RTO_MAX);
2034 		return true;
2035 	}
2036 	return false;
2037 }
2038 
2039 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2040 {
2041 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2042 }
2043 
2044 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2045  * counter when SACK is enabled (without SACK, sacked_out is used for
2046  * that purpose).
2047  *
2048  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2049  * segments up to the highest received SACK block so far and holes in
2050  * between them.
2051  *
2052  * With reordering, holes may still be in flight, so RFC3517 recovery
2053  * uses pure sacked_out (total number of SACKed segments) even though
2054  * it violates the RFC that uses duplicate ACKs, often these are equal
2055  * but when e.g. out-of-window ACKs or packet duplication occurs,
2056  * they differ. Since neither occurs due to loss, TCP should really
2057  * ignore them.
2058  */
2059 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2060 {
2061 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2062 }
2063 
2064 /* Linux NewReno/SACK/FACK/ECN state machine.
2065  * --------------------------------------
2066  *
2067  * "Open"	Normal state, no dubious events, fast path.
2068  * "Disorder"   In all the respects it is "Open",
2069  *		but requires a bit more attention. It is entered when
2070  *		we see some SACKs or dupacks. It is split of "Open"
2071  *		mainly to move some processing from fast path to slow one.
2072  * "CWR"	CWND was reduced due to some Congestion Notification event.
2073  *		It can be ECN, ICMP source quench, local device congestion.
2074  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2075  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2076  *
2077  * tcp_fastretrans_alert() is entered:
2078  * - each incoming ACK, if state is not "Open"
2079  * - when arrived ACK is unusual, namely:
2080  *	* SACK
2081  *	* Duplicate ACK.
2082  *	* ECN ECE.
2083  *
2084  * Counting packets in flight is pretty simple.
2085  *
2086  *	in_flight = packets_out - left_out + retrans_out
2087  *
2088  *	packets_out is SND.NXT-SND.UNA counted in packets.
2089  *
2090  *	retrans_out is number of retransmitted segments.
2091  *
2092  *	left_out is number of segments left network, but not ACKed yet.
2093  *
2094  *		left_out = sacked_out + lost_out
2095  *
2096  *     sacked_out: Packets, which arrived to receiver out of order
2097  *		   and hence not ACKed. With SACKs this number is simply
2098  *		   amount of SACKed data. Even without SACKs
2099  *		   it is easy to give pretty reliable estimate of this number,
2100  *		   counting duplicate ACKs.
2101  *
2102  *       lost_out: Packets lost by network. TCP has no explicit
2103  *		   "loss notification" feedback from network (for now).
2104  *		   It means that this number can be only _guessed_.
2105  *		   Actually, it is the heuristics to predict lossage that
2106  *		   distinguishes different algorithms.
2107  *
2108  *	F.e. after RTO, when all the queue is considered as lost,
2109  *	lost_out = packets_out and in_flight = retrans_out.
2110  *
2111  *		Essentially, we have now a few algorithms detecting
2112  *		lost packets.
2113  *
2114  *		If the receiver supports SACK:
2115  *
2116  *		RFC6675/3517: It is the conventional algorithm. A packet is
2117  *		considered lost if the number of higher sequence packets
2118  *		SACKed is greater than or equal the DUPACK thoreshold
2119  *		(reordering). This is implemented in tcp_mark_head_lost and
2120  *		tcp_update_scoreboard.
2121  *
2122  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2123  *		(2017-) that checks timing instead of counting DUPACKs.
2124  *		Essentially a packet is considered lost if it's not S/ACKed
2125  *		after RTT + reordering_window, where both metrics are
2126  *		dynamically measured and adjusted. This is implemented in
2127  *		tcp_rack_mark_lost.
2128  *
2129  *		FACK (Disabled by default. Subsumbed by RACK):
2130  *		It is the simplest heuristics. As soon as we decided
2131  *		that something is lost, we decide that _all_ not SACKed
2132  *		packets until the most forward SACK are lost. I.e.
2133  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2134  *		It is absolutely correct estimate, if network does not reorder
2135  *		packets. And it loses any connection to reality when reordering
2136  *		takes place. We use FACK by default until reordering
2137  *		is suspected on the path to this destination.
2138  *
2139  *		If the receiver does not support SACK:
2140  *
2141  *		NewReno (RFC6582): in Recovery we assume that one segment
2142  *		is lost (classic Reno). While we are in Recovery and
2143  *		a partial ACK arrives, we assume that one more packet
2144  *		is lost (NewReno). This heuristics are the same in NewReno
2145  *		and SACK.
2146  *
2147  * Really tricky (and requiring careful tuning) part of algorithm
2148  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2149  * The first determines the moment _when_ we should reduce CWND and,
2150  * hence, slow down forward transmission. In fact, it determines the moment
2151  * when we decide that hole is caused by loss, rather than by a reorder.
2152  *
2153  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2154  * holes, caused by lost packets.
2155  *
2156  * And the most logically complicated part of algorithm is undo
2157  * heuristics. We detect false retransmits due to both too early
2158  * fast retransmit (reordering) and underestimated RTO, analyzing
2159  * timestamps and D-SACKs. When we detect that some segments were
2160  * retransmitted by mistake and CWND reduction was wrong, we undo
2161  * window reduction and abort recovery phase. This logic is hidden
2162  * inside several functions named tcp_try_undo_<something>.
2163  */
2164 
2165 /* This function decides, when we should leave Disordered state
2166  * and enter Recovery phase, reducing congestion window.
2167  *
2168  * Main question: may we further continue forward transmission
2169  * with the same cwnd?
2170  */
2171 static bool tcp_time_to_recover(struct sock *sk, int flag)
2172 {
2173 	struct tcp_sock *tp = tcp_sk(sk);
2174 
2175 	/* Trick#1: The loss is proven. */
2176 	if (tp->lost_out)
2177 		return true;
2178 
2179 	/* Not-A-Trick#2 : Classic rule... */
2180 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2181 		return true;
2182 
2183 	return false;
2184 }
2185 
2186 /* Detect loss in event "A" above by marking head of queue up as lost.
2187  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2188  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2189  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2190  * the maximum SACKed segments to pass before reaching this limit.
2191  */
2192 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2193 {
2194 	struct tcp_sock *tp = tcp_sk(sk);
2195 	struct sk_buff *skb;
2196 	int cnt, oldcnt, lost;
2197 	unsigned int mss;
2198 	/* Use SACK to deduce losses of new sequences sent during recovery */
2199 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2200 
2201 	WARN_ON(packets > tp->packets_out);
2202 	if (tp->lost_skb_hint) {
2203 		skb = tp->lost_skb_hint;
2204 		cnt = tp->lost_cnt_hint;
2205 		/* Head already handled? */
2206 		if (mark_head && skb != tcp_write_queue_head(sk))
2207 			return;
2208 	} else {
2209 		skb = tcp_write_queue_head(sk);
2210 		cnt = 0;
2211 	}
2212 
2213 	tcp_for_write_queue_from(skb, sk) {
2214 		if (skb == tcp_send_head(sk))
2215 			break;
2216 		/* TODO: do this better */
2217 		/* this is not the most efficient way to do this... */
2218 		tp->lost_skb_hint = skb;
2219 		tp->lost_cnt_hint = cnt;
2220 
2221 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2222 			break;
2223 
2224 		oldcnt = cnt;
2225 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2226 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2227 			cnt += tcp_skb_pcount(skb);
2228 
2229 		if (cnt > packets) {
2230 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2231 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2232 			    (oldcnt >= packets))
2233 				break;
2234 
2235 			mss = tcp_skb_mss(skb);
2236 			/* If needed, chop off the prefix to mark as lost. */
2237 			lost = (packets - oldcnt) * mss;
2238 			if (lost < skb->len &&
2239 			    tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2240 				break;
2241 			cnt = packets;
2242 		}
2243 
2244 		tcp_skb_mark_lost(tp, skb);
2245 
2246 		if (mark_head)
2247 			break;
2248 	}
2249 	tcp_verify_left_out(tp);
2250 }
2251 
2252 /* Account newly detected lost packet(s) */
2253 
2254 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2255 {
2256 	struct tcp_sock *tp = tcp_sk(sk);
2257 
2258 	if (tcp_is_reno(tp)) {
2259 		tcp_mark_head_lost(sk, 1, 1);
2260 	} else if (tcp_is_fack(tp)) {
2261 		int lost = tp->fackets_out - tp->reordering;
2262 		if (lost <= 0)
2263 			lost = 1;
2264 		tcp_mark_head_lost(sk, lost, 0);
2265 	} else {
2266 		int sacked_upto = tp->sacked_out - tp->reordering;
2267 		if (sacked_upto >= 0)
2268 			tcp_mark_head_lost(sk, sacked_upto, 0);
2269 		else if (fast_rexmit)
2270 			tcp_mark_head_lost(sk, 1, 1);
2271 	}
2272 }
2273 
2274 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2275 {
2276 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2277 	       before(tp->rx_opt.rcv_tsecr, when);
2278 }
2279 
2280 /* skb is spurious retransmitted if the returned timestamp echo
2281  * reply is prior to the skb transmission time
2282  */
2283 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2284 				     const struct sk_buff *skb)
2285 {
2286 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2287 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2288 }
2289 
2290 /* Nothing was retransmitted or returned timestamp is less
2291  * than timestamp of the first retransmission.
2292  */
2293 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2294 {
2295 	return !tp->retrans_stamp ||
2296 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2297 }
2298 
2299 /* Undo procedures. */
2300 
2301 /* We can clear retrans_stamp when there are no retransmissions in the
2302  * window. It would seem that it is trivially available for us in
2303  * tp->retrans_out, however, that kind of assumptions doesn't consider
2304  * what will happen if errors occur when sending retransmission for the
2305  * second time. ...It could the that such segment has only
2306  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2307  * the head skb is enough except for some reneging corner cases that
2308  * are not worth the effort.
2309  *
2310  * Main reason for all this complexity is the fact that connection dying
2311  * time now depends on the validity of the retrans_stamp, in particular,
2312  * that successive retransmissions of a segment must not advance
2313  * retrans_stamp under any conditions.
2314  */
2315 static bool tcp_any_retrans_done(const struct sock *sk)
2316 {
2317 	const struct tcp_sock *tp = tcp_sk(sk);
2318 	struct sk_buff *skb;
2319 
2320 	if (tp->retrans_out)
2321 		return true;
2322 
2323 	skb = tcp_write_queue_head(sk);
2324 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2325 		return true;
2326 
2327 	return false;
2328 }
2329 
2330 #if FASTRETRANS_DEBUG > 1
2331 static void DBGUNDO(struct sock *sk, const char *msg)
2332 {
2333 	struct tcp_sock *tp = tcp_sk(sk);
2334 	struct inet_sock *inet = inet_sk(sk);
2335 
2336 	if (sk->sk_family == AF_INET) {
2337 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2338 			 msg,
2339 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2340 			 tp->snd_cwnd, tcp_left_out(tp),
2341 			 tp->snd_ssthresh, tp->prior_ssthresh,
2342 			 tp->packets_out);
2343 	}
2344 #if IS_ENABLED(CONFIG_IPV6)
2345 	else if (sk->sk_family == AF_INET6) {
2346 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2347 			 msg,
2348 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2349 			 tp->snd_cwnd, tcp_left_out(tp),
2350 			 tp->snd_ssthresh, tp->prior_ssthresh,
2351 			 tp->packets_out);
2352 	}
2353 #endif
2354 }
2355 #else
2356 #define DBGUNDO(x...) do { } while (0)
2357 #endif
2358 
2359 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2360 {
2361 	struct tcp_sock *tp = tcp_sk(sk);
2362 
2363 	if (unmark_loss) {
2364 		struct sk_buff *skb;
2365 
2366 		tcp_for_write_queue(skb, sk) {
2367 			if (skb == tcp_send_head(sk))
2368 				break;
2369 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2370 		}
2371 		tp->lost_out = 0;
2372 		tcp_clear_all_retrans_hints(tp);
2373 	}
2374 
2375 	if (tp->prior_ssthresh) {
2376 		const struct inet_connection_sock *icsk = inet_csk(sk);
2377 
2378 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2379 
2380 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2381 			tp->snd_ssthresh = tp->prior_ssthresh;
2382 			tcp_ecn_withdraw_cwr(tp);
2383 		}
2384 	}
2385 	tp->snd_cwnd_stamp = tcp_time_stamp;
2386 	tp->undo_marker = 0;
2387 }
2388 
2389 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2390 {
2391 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2392 }
2393 
2394 /* People celebrate: "We love our President!" */
2395 static bool tcp_try_undo_recovery(struct sock *sk)
2396 {
2397 	struct tcp_sock *tp = tcp_sk(sk);
2398 
2399 	if (tcp_may_undo(tp)) {
2400 		int mib_idx;
2401 
2402 		/* Happy end! We did not retransmit anything
2403 		 * or our original transmission succeeded.
2404 		 */
2405 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2406 		tcp_undo_cwnd_reduction(sk, false);
2407 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2408 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2409 		else
2410 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2411 
2412 		NET_INC_STATS(sock_net(sk), mib_idx);
2413 	}
2414 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2415 		/* Hold old state until something *above* high_seq
2416 		 * is ACKed. For Reno it is MUST to prevent false
2417 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2418 		if (!tcp_any_retrans_done(sk))
2419 			tp->retrans_stamp = 0;
2420 		return true;
2421 	}
2422 	tcp_set_ca_state(sk, TCP_CA_Open);
2423 	return false;
2424 }
2425 
2426 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2427 static bool tcp_try_undo_dsack(struct sock *sk)
2428 {
2429 	struct tcp_sock *tp = tcp_sk(sk);
2430 
2431 	if (tp->undo_marker && !tp->undo_retrans) {
2432 		DBGUNDO(sk, "D-SACK");
2433 		tcp_undo_cwnd_reduction(sk, false);
2434 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2435 		return true;
2436 	}
2437 	return false;
2438 }
2439 
2440 /* Undo during loss recovery after partial ACK or using F-RTO. */
2441 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2442 {
2443 	struct tcp_sock *tp = tcp_sk(sk);
2444 
2445 	if (frto_undo || tcp_may_undo(tp)) {
2446 		tcp_undo_cwnd_reduction(sk, true);
2447 
2448 		DBGUNDO(sk, "partial loss");
2449 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2450 		if (frto_undo)
2451 			NET_INC_STATS(sock_net(sk),
2452 					LINUX_MIB_TCPSPURIOUSRTOS);
2453 		inet_csk(sk)->icsk_retransmits = 0;
2454 		if (frto_undo || tcp_is_sack(tp))
2455 			tcp_set_ca_state(sk, TCP_CA_Open);
2456 		return true;
2457 	}
2458 	return false;
2459 }
2460 
2461 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2462  * It computes the number of packets to send (sndcnt) based on packets newly
2463  * delivered:
2464  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2465  *	cwnd reductions across a full RTT.
2466  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2467  *      But when the retransmits are acked without further losses, PRR
2468  *      slow starts cwnd up to ssthresh to speed up the recovery.
2469  */
2470 static void tcp_init_cwnd_reduction(struct sock *sk)
2471 {
2472 	struct tcp_sock *tp = tcp_sk(sk);
2473 
2474 	tp->high_seq = tp->snd_nxt;
2475 	tp->tlp_high_seq = 0;
2476 	tp->snd_cwnd_cnt = 0;
2477 	tp->prior_cwnd = tp->snd_cwnd;
2478 	tp->prr_delivered = 0;
2479 	tp->prr_out = 0;
2480 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2481 	tcp_ecn_queue_cwr(tp);
2482 }
2483 
2484 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2485 {
2486 	struct tcp_sock *tp = tcp_sk(sk);
2487 	int sndcnt = 0;
2488 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2489 
2490 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2491 		return;
2492 
2493 	tp->prr_delivered += newly_acked_sacked;
2494 	if (delta < 0) {
2495 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2496 			       tp->prior_cwnd - 1;
2497 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2498 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2499 		   !(flag & FLAG_LOST_RETRANS)) {
2500 		sndcnt = min_t(int, delta,
2501 			       max_t(int, tp->prr_delivered - tp->prr_out,
2502 				     newly_acked_sacked) + 1);
2503 	} else {
2504 		sndcnt = min(delta, newly_acked_sacked);
2505 	}
2506 	/* Force a fast retransmit upon entering fast recovery */
2507 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2508 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2509 }
2510 
2511 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2512 {
2513 	struct tcp_sock *tp = tcp_sk(sk);
2514 
2515 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2516 		return;
2517 
2518 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2519 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2520 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2521 		tp->snd_cwnd = tp->snd_ssthresh;
2522 		tp->snd_cwnd_stamp = tcp_time_stamp;
2523 	}
2524 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2525 }
2526 
2527 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2528 void tcp_enter_cwr(struct sock *sk)
2529 {
2530 	struct tcp_sock *tp = tcp_sk(sk);
2531 
2532 	tp->prior_ssthresh = 0;
2533 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2534 		tp->undo_marker = 0;
2535 		tcp_init_cwnd_reduction(sk);
2536 		tcp_set_ca_state(sk, TCP_CA_CWR);
2537 	}
2538 }
2539 EXPORT_SYMBOL(tcp_enter_cwr);
2540 
2541 static void tcp_try_keep_open(struct sock *sk)
2542 {
2543 	struct tcp_sock *tp = tcp_sk(sk);
2544 	int state = TCP_CA_Open;
2545 
2546 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2547 		state = TCP_CA_Disorder;
2548 
2549 	if (inet_csk(sk)->icsk_ca_state != state) {
2550 		tcp_set_ca_state(sk, state);
2551 		tp->high_seq = tp->snd_nxt;
2552 	}
2553 }
2554 
2555 static void tcp_try_to_open(struct sock *sk, int flag)
2556 {
2557 	struct tcp_sock *tp = tcp_sk(sk);
2558 
2559 	tcp_verify_left_out(tp);
2560 
2561 	if (!tcp_any_retrans_done(sk))
2562 		tp->retrans_stamp = 0;
2563 
2564 	if (flag & FLAG_ECE)
2565 		tcp_enter_cwr(sk);
2566 
2567 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2568 		tcp_try_keep_open(sk);
2569 	}
2570 }
2571 
2572 static void tcp_mtup_probe_failed(struct sock *sk)
2573 {
2574 	struct inet_connection_sock *icsk = inet_csk(sk);
2575 
2576 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2577 	icsk->icsk_mtup.probe_size = 0;
2578 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2579 }
2580 
2581 static void tcp_mtup_probe_success(struct sock *sk)
2582 {
2583 	struct tcp_sock *tp = tcp_sk(sk);
2584 	struct inet_connection_sock *icsk = inet_csk(sk);
2585 
2586 	/* FIXME: breaks with very large cwnd */
2587 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2588 	tp->snd_cwnd = tp->snd_cwnd *
2589 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2590 		       icsk->icsk_mtup.probe_size;
2591 	tp->snd_cwnd_cnt = 0;
2592 	tp->snd_cwnd_stamp = tcp_time_stamp;
2593 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2594 
2595 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2596 	icsk->icsk_mtup.probe_size = 0;
2597 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2598 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2599 }
2600 
2601 /* Do a simple retransmit without using the backoff mechanisms in
2602  * tcp_timer. This is used for path mtu discovery.
2603  * The socket is already locked here.
2604  */
2605 void tcp_simple_retransmit(struct sock *sk)
2606 {
2607 	const struct inet_connection_sock *icsk = inet_csk(sk);
2608 	struct tcp_sock *tp = tcp_sk(sk);
2609 	struct sk_buff *skb;
2610 	unsigned int mss = tcp_current_mss(sk);
2611 	u32 prior_lost = tp->lost_out;
2612 
2613 	tcp_for_write_queue(skb, sk) {
2614 		if (skb == tcp_send_head(sk))
2615 			break;
2616 		if (tcp_skb_seglen(skb) > mss &&
2617 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2618 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2619 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2620 				tp->retrans_out -= tcp_skb_pcount(skb);
2621 			}
2622 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2623 		}
2624 	}
2625 
2626 	tcp_clear_retrans_hints_partial(tp);
2627 
2628 	if (prior_lost == tp->lost_out)
2629 		return;
2630 
2631 	if (tcp_is_reno(tp))
2632 		tcp_limit_reno_sacked(tp);
2633 
2634 	tcp_verify_left_out(tp);
2635 
2636 	/* Don't muck with the congestion window here.
2637 	 * Reason is that we do not increase amount of _data_
2638 	 * in network, but units changed and effective
2639 	 * cwnd/ssthresh really reduced now.
2640 	 */
2641 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2642 		tp->high_seq = tp->snd_nxt;
2643 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2644 		tp->prior_ssthresh = 0;
2645 		tp->undo_marker = 0;
2646 		tcp_set_ca_state(sk, TCP_CA_Loss);
2647 	}
2648 	tcp_xmit_retransmit_queue(sk);
2649 }
2650 EXPORT_SYMBOL(tcp_simple_retransmit);
2651 
2652 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2653 {
2654 	struct tcp_sock *tp = tcp_sk(sk);
2655 	int mib_idx;
2656 
2657 	if (tcp_is_reno(tp))
2658 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2659 	else
2660 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2661 
2662 	NET_INC_STATS(sock_net(sk), mib_idx);
2663 
2664 	tp->prior_ssthresh = 0;
2665 	tcp_init_undo(tp);
2666 
2667 	if (!tcp_in_cwnd_reduction(sk)) {
2668 		if (!ece_ack)
2669 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2670 		tcp_init_cwnd_reduction(sk);
2671 	}
2672 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2673 }
2674 
2675 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2676  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2677  */
2678 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2679 			     int *rexmit)
2680 {
2681 	struct tcp_sock *tp = tcp_sk(sk);
2682 	bool recovered = !before(tp->snd_una, tp->high_seq);
2683 
2684 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2685 	    tcp_try_undo_loss(sk, false))
2686 		return;
2687 
2688 	/* The ACK (s)acks some never-retransmitted data meaning not all
2689 	 * the data packets before the timeout were lost. Therefore we
2690 	 * undo the congestion window and state. This is essentially
2691 	 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since
2692 	 * a retransmitted skb is permantly marked, we can apply such an
2693 	 * operation even if F-RTO was not used.
2694 	 */
2695 	if ((flag & FLAG_ORIG_SACK_ACKED) &&
2696 	    tcp_try_undo_loss(sk, tp->undo_marker))
2697 		return;
2698 
2699 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2700 		if (after(tp->snd_nxt, tp->high_seq)) {
2701 			if (flag & FLAG_DATA_SACKED || is_dupack)
2702 				tp->frto = 0; /* Step 3.a. loss was real */
2703 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2704 			tp->high_seq = tp->snd_nxt;
2705 			/* Step 2.b. Try send new data (but deferred until cwnd
2706 			 * is updated in tcp_ack()). Otherwise fall back to
2707 			 * the conventional recovery.
2708 			 */
2709 			if (tcp_send_head(sk) &&
2710 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2711 				*rexmit = REXMIT_NEW;
2712 				return;
2713 			}
2714 			tp->frto = 0;
2715 		}
2716 	}
2717 
2718 	if (recovered) {
2719 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2720 		tcp_try_undo_recovery(sk);
2721 		return;
2722 	}
2723 	if (tcp_is_reno(tp)) {
2724 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2725 		 * delivered. Lower inflight to clock out (re)tranmissions.
2726 		 */
2727 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2728 			tcp_add_reno_sack(sk);
2729 		else if (flag & FLAG_SND_UNA_ADVANCED)
2730 			tcp_reset_reno_sack(tp);
2731 	}
2732 	*rexmit = REXMIT_LOST;
2733 }
2734 
2735 /* Undo during fast recovery after partial ACK. */
2736 static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2737 {
2738 	struct tcp_sock *tp = tcp_sk(sk);
2739 
2740 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2741 		/* Plain luck! Hole if filled with delayed
2742 		 * packet, rather than with a retransmit.
2743 		 */
2744 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2745 
2746 		/* We are getting evidence that the reordering degree is higher
2747 		 * than we realized. If there are no retransmits out then we
2748 		 * can undo. Otherwise we clock out new packets but do not
2749 		 * mark more packets lost or retransmit more.
2750 		 */
2751 		if (tp->retrans_out)
2752 			return true;
2753 
2754 		if (!tcp_any_retrans_done(sk))
2755 			tp->retrans_stamp = 0;
2756 
2757 		DBGUNDO(sk, "partial recovery");
2758 		tcp_undo_cwnd_reduction(sk, true);
2759 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2760 		tcp_try_keep_open(sk);
2761 		return true;
2762 	}
2763 	return false;
2764 }
2765 
2766 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag)
2767 {
2768 	struct tcp_sock *tp = tcp_sk(sk);
2769 
2770 	/* Use RACK to detect loss */
2771 	if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) {
2772 		u32 prior_retrans = tp->retrans_out;
2773 
2774 		tcp_rack_mark_lost(sk);
2775 		if (prior_retrans > tp->retrans_out)
2776 			*ack_flag |= FLAG_LOST_RETRANS;
2777 	}
2778 }
2779 
2780 /* Process an event, which can update packets-in-flight not trivially.
2781  * Main goal of this function is to calculate new estimate for left_out,
2782  * taking into account both packets sitting in receiver's buffer and
2783  * packets lost by network.
2784  *
2785  * Besides that it updates the congestion state when packet loss or ECN
2786  * is detected. But it does not reduce the cwnd, it is done by the
2787  * congestion control later.
2788  *
2789  * It does _not_ decide what to send, it is made in function
2790  * tcp_xmit_retransmit_queue().
2791  */
2792 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2793 				  bool is_dupack, int *ack_flag, int *rexmit)
2794 {
2795 	struct inet_connection_sock *icsk = inet_csk(sk);
2796 	struct tcp_sock *tp = tcp_sk(sk);
2797 	int fast_rexmit = 0, flag = *ack_flag;
2798 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2799 				    (tcp_fackets_out(tp) > tp->reordering));
2800 
2801 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2802 		tp->sacked_out = 0;
2803 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2804 		tp->fackets_out = 0;
2805 
2806 	/* Now state machine starts.
2807 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2808 	if (flag & FLAG_ECE)
2809 		tp->prior_ssthresh = 0;
2810 
2811 	/* B. In all the states check for reneging SACKs. */
2812 	if (tcp_check_sack_reneging(sk, flag))
2813 		return;
2814 
2815 	/* C. Check consistency of the current state. */
2816 	tcp_verify_left_out(tp);
2817 
2818 	/* D. Check state exit conditions. State can be terminated
2819 	 *    when high_seq is ACKed. */
2820 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2821 		WARN_ON(tp->retrans_out != 0);
2822 		tp->retrans_stamp = 0;
2823 	} else if (!before(tp->snd_una, tp->high_seq)) {
2824 		switch (icsk->icsk_ca_state) {
2825 		case TCP_CA_CWR:
2826 			/* CWR is to be held something *above* high_seq
2827 			 * is ACKed for CWR bit to reach receiver. */
2828 			if (tp->snd_una != tp->high_seq) {
2829 				tcp_end_cwnd_reduction(sk);
2830 				tcp_set_ca_state(sk, TCP_CA_Open);
2831 			}
2832 			break;
2833 
2834 		case TCP_CA_Recovery:
2835 			if (tcp_is_reno(tp))
2836 				tcp_reset_reno_sack(tp);
2837 			if (tcp_try_undo_recovery(sk))
2838 				return;
2839 			tcp_end_cwnd_reduction(sk);
2840 			break;
2841 		}
2842 	}
2843 
2844 	/* E. Process state. */
2845 	switch (icsk->icsk_ca_state) {
2846 	case TCP_CA_Recovery:
2847 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2848 			if (tcp_is_reno(tp) && is_dupack)
2849 				tcp_add_reno_sack(sk);
2850 		} else {
2851 			if (tcp_try_undo_partial(sk, acked))
2852 				return;
2853 			/* Partial ACK arrived. Force fast retransmit. */
2854 			do_lost = tcp_is_reno(tp) ||
2855 				  tcp_fackets_out(tp) > tp->reordering;
2856 		}
2857 		if (tcp_try_undo_dsack(sk)) {
2858 			tcp_try_keep_open(sk);
2859 			return;
2860 		}
2861 		tcp_rack_identify_loss(sk, ack_flag);
2862 		break;
2863 	case TCP_CA_Loss:
2864 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2865 		tcp_rack_identify_loss(sk, ack_flag);
2866 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2867 		      (*ack_flag & FLAG_LOST_RETRANS)))
2868 			return;
2869 		/* Change state if cwnd is undone or retransmits are lost */
2870 	default:
2871 		if (tcp_is_reno(tp)) {
2872 			if (flag & FLAG_SND_UNA_ADVANCED)
2873 				tcp_reset_reno_sack(tp);
2874 			if (is_dupack)
2875 				tcp_add_reno_sack(sk);
2876 		}
2877 
2878 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2879 			tcp_try_undo_dsack(sk);
2880 
2881 		tcp_rack_identify_loss(sk, ack_flag);
2882 		if (!tcp_time_to_recover(sk, flag)) {
2883 			tcp_try_to_open(sk, flag);
2884 			return;
2885 		}
2886 
2887 		/* MTU probe failure: don't reduce cwnd */
2888 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2889 		    icsk->icsk_mtup.probe_size &&
2890 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2891 			tcp_mtup_probe_failed(sk);
2892 			/* Restores the reduction we did in tcp_mtup_probe() */
2893 			tp->snd_cwnd++;
2894 			tcp_simple_retransmit(sk);
2895 			return;
2896 		}
2897 
2898 		/* Otherwise enter Recovery state */
2899 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2900 		fast_rexmit = 1;
2901 	}
2902 
2903 	if (do_lost)
2904 		tcp_update_scoreboard(sk, fast_rexmit);
2905 	*rexmit = REXMIT_LOST;
2906 }
2907 
2908 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2909 {
2910 	struct tcp_sock *tp = tcp_sk(sk);
2911 	u32 wlen = sysctl_tcp_min_rtt_wlen * HZ;
2912 
2913 	minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp,
2914 			   rtt_us ? : jiffies_to_usecs(1));
2915 }
2916 
2917 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2918 				      long seq_rtt_us, long sack_rtt_us,
2919 				      long ca_rtt_us)
2920 {
2921 	const struct tcp_sock *tp = tcp_sk(sk);
2922 
2923 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2924 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2925 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2926 	 * is acked (RFC6298).
2927 	 */
2928 	if (seq_rtt_us < 0)
2929 		seq_rtt_us = sack_rtt_us;
2930 
2931 	/* RTTM Rule: A TSecr value received in a segment is used to
2932 	 * update the averaged RTT measurement only if the segment
2933 	 * acknowledges some new data, i.e., only if it advances the
2934 	 * left edge of the send window.
2935 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2936 	 */
2937 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2938 	    flag & FLAG_ACKED)
2939 		seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2940 							  tp->rx_opt.rcv_tsecr);
2941 	if (seq_rtt_us < 0)
2942 		return false;
2943 
2944 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2945 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2946 	 * values will be skipped with the seq_rtt_us < 0 check above.
2947 	 */
2948 	tcp_update_rtt_min(sk, ca_rtt_us);
2949 	tcp_rtt_estimator(sk, seq_rtt_us);
2950 	tcp_set_rto(sk);
2951 
2952 	/* RFC6298: only reset backoff on valid RTT measurement. */
2953 	inet_csk(sk)->icsk_backoff = 0;
2954 	return true;
2955 }
2956 
2957 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2958 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2959 {
2960 	long rtt_us = -1L;
2961 
2962 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2963 		struct skb_mstamp now;
2964 
2965 		skb_mstamp_get(&now);
2966 		rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2967 	}
2968 
2969 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2970 }
2971 
2972 
2973 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2974 {
2975 	const struct inet_connection_sock *icsk = inet_csk(sk);
2976 
2977 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2978 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2979 }
2980 
2981 /* Restart timer after forward progress on connection.
2982  * RFC2988 recommends to restart timer to now+rto.
2983  */
2984 void tcp_rearm_rto(struct sock *sk)
2985 {
2986 	const struct inet_connection_sock *icsk = inet_csk(sk);
2987 	struct tcp_sock *tp = tcp_sk(sk);
2988 
2989 	/* If the retrans timer is currently being used by Fast Open
2990 	 * for SYN-ACK retrans purpose, stay put.
2991 	 */
2992 	if (tp->fastopen_rsk)
2993 		return;
2994 
2995 	if (!tp->packets_out) {
2996 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2997 	} else {
2998 		u32 rto = inet_csk(sk)->icsk_rto;
2999 		/* Offset the time elapsed after installing regular RTO */
3000 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3001 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3002 			struct sk_buff *skb = tcp_write_queue_head(sk);
3003 			const u32 rto_time_stamp =
3004 				tcp_skb_timestamp(skb) + rto;
3005 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3006 			/* delta may not be positive if the socket is locked
3007 			 * when the retrans timer fires and is rescheduled.
3008 			 */
3009 			if (delta > 0)
3010 				rto = delta;
3011 		}
3012 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3013 					  TCP_RTO_MAX);
3014 	}
3015 }
3016 
3017 /* If we get here, the whole TSO packet has not been acked. */
3018 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3019 {
3020 	struct tcp_sock *tp = tcp_sk(sk);
3021 	u32 packets_acked;
3022 
3023 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3024 
3025 	packets_acked = tcp_skb_pcount(skb);
3026 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3027 		return 0;
3028 	packets_acked -= tcp_skb_pcount(skb);
3029 
3030 	if (packets_acked) {
3031 		BUG_ON(tcp_skb_pcount(skb) == 0);
3032 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3033 	}
3034 
3035 	return packets_acked;
3036 }
3037 
3038 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3039 			   u32 prior_snd_una)
3040 {
3041 	const struct skb_shared_info *shinfo;
3042 
3043 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3044 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3045 		return;
3046 
3047 	shinfo = skb_shinfo(skb);
3048 	if (!before(shinfo->tskey, prior_snd_una) &&
3049 	    before(shinfo->tskey, tcp_sk(sk)->snd_una))
3050 		__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3051 }
3052 
3053 /* Remove acknowledged frames from the retransmission queue. If our packet
3054  * is before the ack sequence we can discard it as it's confirmed to have
3055  * arrived at the other end.
3056  */
3057 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3058 			       u32 prior_snd_una, int *acked,
3059 			       struct tcp_sacktag_state *sack)
3060 {
3061 	const struct inet_connection_sock *icsk = inet_csk(sk);
3062 	struct skb_mstamp first_ackt, last_ackt;
3063 	struct tcp_sock *tp = tcp_sk(sk);
3064 	struct skb_mstamp *now = &tp->tcp_mstamp;
3065 	u32 prior_sacked = tp->sacked_out;
3066 	u32 reord = tp->packets_out;
3067 	bool fully_acked = true;
3068 	long sack_rtt_us = -1L;
3069 	long seq_rtt_us = -1L;
3070 	long ca_rtt_us = -1L;
3071 	struct sk_buff *skb;
3072 	u32 pkts_acked = 0;
3073 	u32 last_in_flight = 0;
3074 	bool rtt_update;
3075 	int flag = 0;
3076 
3077 	first_ackt.v64 = 0;
3078 
3079 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3080 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3081 		u8 sacked = scb->sacked;
3082 		u32 acked_pcount;
3083 
3084 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3085 
3086 		/* Determine how many packets and what bytes were acked, tso and else */
3087 		if (after(scb->end_seq, tp->snd_una)) {
3088 			if (tcp_skb_pcount(skb) == 1 ||
3089 			    !after(tp->snd_una, scb->seq))
3090 				break;
3091 
3092 			acked_pcount = tcp_tso_acked(sk, skb);
3093 			if (!acked_pcount)
3094 				break;
3095 			fully_acked = false;
3096 		} else {
3097 			/* Speedup tcp_unlink_write_queue() and next loop */
3098 			prefetchw(skb->next);
3099 			acked_pcount = tcp_skb_pcount(skb);
3100 		}
3101 
3102 		if (unlikely(sacked & TCPCB_RETRANS)) {
3103 			if (sacked & TCPCB_SACKED_RETRANS)
3104 				tp->retrans_out -= acked_pcount;
3105 			flag |= FLAG_RETRANS_DATA_ACKED;
3106 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3107 			last_ackt = skb->skb_mstamp;
3108 			WARN_ON_ONCE(last_ackt.v64 == 0);
3109 			if (!first_ackt.v64)
3110 				first_ackt = last_ackt;
3111 
3112 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3113 			reord = min(pkts_acked, reord);
3114 			if (!after(scb->end_seq, tp->high_seq))
3115 				flag |= FLAG_ORIG_SACK_ACKED;
3116 		}
3117 
3118 		if (sacked & TCPCB_SACKED_ACKED) {
3119 			tp->sacked_out -= acked_pcount;
3120 		} else if (tcp_is_sack(tp)) {
3121 			tp->delivered += acked_pcount;
3122 			if (!tcp_skb_spurious_retrans(tp, skb))
3123 				tcp_rack_advance(tp, sacked, scb->end_seq,
3124 						 &skb->skb_mstamp);
3125 		}
3126 		if (sacked & TCPCB_LOST)
3127 			tp->lost_out -= acked_pcount;
3128 
3129 		tp->packets_out -= acked_pcount;
3130 		pkts_acked += acked_pcount;
3131 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3132 
3133 		/* Initial outgoing SYN's get put onto the write_queue
3134 		 * just like anything else we transmit.  It is not
3135 		 * true data, and if we misinform our callers that
3136 		 * this ACK acks real data, we will erroneously exit
3137 		 * connection startup slow start one packet too
3138 		 * quickly.  This is severely frowned upon behavior.
3139 		 */
3140 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3141 			flag |= FLAG_DATA_ACKED;
3142 		} else {
3143 			flag |= FLAG_SYN_ACKED;
3144 			tp->retrans_stamp = 0;
3145 		}
3146 
3147 		if (!fully_acked)
3148 			break;
3149 
3150 		tcp_unlink_write_queue(skb, sk);
3151 		sk_wmem_free_skb(sk, skb);
3152 		if (unlikely(skb == tp->retransmit_skb_hint))
3153 			tp->retransmit_skb_hint = NULL;
3154 		if (unlikely(skb == tp->lost_skb_hint))
3155 			tp->lost_skb_hint = NULL;
3156 	}
3157 
3158 	if (!skb)
3159 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3160 
3161 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3162 		tp->snd_up = tp->snd_una;
3163 
3164 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3165 		flag |= FLAG_SACK_RENEGING;
3166 
3167 	if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3168 		seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt);
3169 		ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt);
3170 	}
3171 	if (sack->first_sackt.v64) {
3172 		sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt);
3173 		ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt);
3174 	}
3175 	sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */
3176 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3177 					ca_rtt_us);
3178 
3179 	if (flag & FLAG_ACKED) {
3180 		tcp_rearm_rto(sk);
3181 		if (unlikely(icsk->icsk_mtup.probe_size &&
3182 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3183 			tcp_mtup_probe_success(sk);
3184 		}
3185 
3186 		if (tcp_is_reno(tp)) {
3187 			tcp_remove_reno_sacks(sk, pkts_acked);
3188 		} else {
3189 			int delta;
3190 
3191 			/* Non-retransmitted hole got filled? That's reordering */
3192 			if (reord < prior_fackets)
3193 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3194 
3195 			delta = tcp_is_fack(tp) ? pkts_acked :
3196 						  prior_sacked - tp->sacked_out;
3197 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3198 		}
3199 
3200 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3201 
3202 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3203 		   sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) {
3204 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3205 		 * after when the head was last (re)transmitted. Otherwise the
3206 		 * timeout may continue to extend in loss recovery.
3207 		 */
3208 		tcp_rearm_rto(sk);
3209 	}
3210 
3211 	if (icsk->icsk_ca_ops->pkts_acked) {
3212 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3213 					     .rtt_us = ca_rtt_us,
3214 					     .in_flight = last_in_flight };
3215 
3216 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3217 	}
3218 
3219 #if FASTRETRANS_DEBUG > 0
3220 	WARN_ON((int)tp->sacked_out < 0);
3221 	WARN_ON((int)tp->lost_out < 0);
3222 	WARN_ON((int)tp->retrans_out < 0);
3223 	if (!tp->packets_out && tcp_is_sack(tp)) {
3224 		icsk = inet_csk(sk);
3225 		if (tp->lost_out) {
3226 			pr_debug("Leak l=%u %d\n",
3227 				 tp->lost_out, icsk->icsk_ca_state);
3228 			tp->lost_out = 0;
3229 		}
3230 		if (tp->sacked_out) {
3231 			pr_debug("Leak s=%u %d\n",
3232 				 tp->sacked_out, icsk->icsk_ca_state);
3233 			tp->sacked_out = 0;
3234 		}
3235 		if (tp->retrans_out) {
3236 			pr_debug("Leak r=%u %d\n",
3237 				 tp->retrans_out, icsk->icsk_ca_state);
3238 			tp->retrans_out = 0;
3239 		}
3240 	}
3241 #endif
3242 	*acked = pkts_acked;
3243 	return flag;
3244 }
3245 
3246 static void tcp_ack_probe(struct sock *sk)
3247 {
3248 	const struct tcp_sock *tp = tcp_sk(sk);
3249 	struct inet_connection_sock *icsk = inet_csk(sk);
3250 
3251 	/* Was it a usable window open? */
3252 
3253 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3254 		icsk->icsk_backoff = 0;
3255 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3256 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3257 		 * This function is not for random using!
3258 		 */
3259 	} else {
3260 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3261 
3262 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3263 					  when, TCP_RTO_MAX);
3264 	}
3265 }
3266 
3267 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3268 {
3269 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3270 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3271 }
3272 
3273 /* Decide wheather to run the increase function of congestion control. */
3274 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3275 {
3276 	/* If reordering is high then always grow cwnd whenever data is
3277 	 * delivered regardless of its ordering. Otherwise stay conservative
3278 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3279 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3280 	 * cwnd in tcp_fastretrans_alert() based on more states.
3281 	 */
3282 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3283 		return flag & FLAG_FORWARD_PROGRESS;
3284 
3285 	return flag & FLAG_DATA_ACKED;
3286 }
3287 
3288 /* The "ultimate" congestion control function that aims to replace the rigid
3289  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3290  * It's called toward the end of processing an ACK with precise rate
3291  * information. All transmission or retransmission are delayed afterwards.
3292  */
3293 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3294 			     int flag, const struct rate_sample *rs)
3295 {
3296 	const struct inet_connection_sock *icsk = inet_csk(sk);
3297 
3298 	if (icsk->icsk_ca_ops->cong_control) {
3299 		icsk->icsk_ca_ops->cong_control(sk, rs);
3300 		return;
3301 	}
3302 
3303 	if (tcp_in_cwnd_reduction(sk)) {
3304 		/* Reduce cwnd if state mandates */
3305 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3306 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3307 		/* Advance cwnd if state allows */
3308 		tcp_cong_avoid(sk, ack, acked_sacked);
3309 	}
3310 	tcp_update_pacing_rate(sk);
3311 }
3312 
3313 /* Check that window update is acceptable.
3314  * The function assumes that snd_una<=ack<=snd_next.
3315  */
3316 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3317 					const u32 ack, const u32 ack_seq,
3318 					const u32 nwin)
3319 {
3320 	return	after(ack, tp->snd_una) ||
3321 		after(ack_seq, tp->snd_wl1) ||
3322 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3323 }
3324 
3325 /* If we update tp->snd_una, also update tp->bytes_acked */
3326 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3327 {
3328 	u32 delta = ack - tp->snd_una;
3329 
3330 	sock_owned_by_me((struct sock *)tp);
3331 	tp->bytes_acked += delta;
3332 	tp->snd_una = ack;
3333 }
3334 
3335 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3336 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3337 {
3338 	u32 delta = seq - tp->rcv_nxt;
3339 
3340 	sock_owned_by_me((struct sock *)tp);
3341 	tp->bytes_received += delta;
3342 	tp->rcv_nxt = seq;
3343 }
3344 
3345 /* Update our send window.
3346  *
3347  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3348  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3349  */
3350 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3351 				 u32 ack_seq)
3352 {
3353 	struct tcp_sock *tp = tcp_sk(sk);
3354 	int flag = 0;
3355 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3356 
3357 	if (likely(!tcp_hdr(skb)->syn))
3358 		nwin <<= tp->rx_opt.snd_wscale;
3359 
3360 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3361 		flag |= FLAG_WIN_UPDATE;
3362 		tcp_update_wl(tp, ack_seq);
3363 
3364 		if (tp->snd_wnd != nwin) {
3365 			tp->snd_wnd = nwin;
3366 
3367 			/* Note, it is the only place, where
3368 			 * fast path is recovered for sending TCP.
3369 			 */
3370 			tp->pred_flags = 0;
3371 			tcp_fast_path_check(sk);
3372 
3373 			if (tcp_send_head(sk))
3374 				tcp_slow_start_after_idle_check(sk);
3375 
3376 			if (nwin > tp->max_window) {
3377 				tp->max_window = nwin;
3378 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3379 			}
3380 		}
3381 	}
3382 
3383 	tcp_snd_una_update(tp, ack);
3384 
3385 	return flag;
3386 }
3387 
3388 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3389 				   u32 *last_oow_ack_time)
3390 {
3391 	if (*last_oow_ack_time) {
3392 		s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3393 
3394 		if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3395 			NET_INC_STATS(net, mib_idx);
3396 			return true;	/* rate-limited: don't send yet! */
3397 		}
3398 	}
3399 
3400 	*last_oow_ack_time = tcp_time_stamp;
3401 
3402 	return false;	/* not rate-limited: go ahead, send dupack now! */
3403 }
3404 
3405 /* Return true if we're currently rate-limiting out-of-window ACKs and
3406  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3407  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3408  * attacks that send repeated SYNs or ACKs for the same connection. To
3409  * do this, we do not send a duplicate SYNACK or ACK if the remote
3410  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3411  */
3412 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3413 			  int mib_idx, u32 *last_oow_ack_time)
3414 {
3415 	/* Data packets without SYNs are not likely part of an ACK loop. */
3416 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3417 	    !tcp_hdr(skb)->syn)
3418 		return false;
3419 
3420 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3421 }
3422 
3423 /* RFC 5961 7 [ACK Throttling] */
3424 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3425 {
3426 	/* unprotected vars, we dont care of overwrites */
3427 	static u32 challenge_timestamp;
3428 	static unsigned int challenge_count;
3429 	struct tcp_sock *tp = tcp_sk(sk);
3430 	u32 count, now;
3431 
3432 	/* First check our per-socket dupack rate limit. */
3433 	if (__tcp_oow_rate_limited(sock_net(sk),
3434 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3435 				   &tp->last_oow_ack_time))
3436 		return;
3437 
3438 	/* Then check host-wide RFC 5961 rate limit. */
3439 	now = jiffies / HZ;
3440 	if (now != challenge_timestamp) {
3441 		u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3442 
3443 		challenge_timestamp = now;
3444 		WRITE_ONCE(challenge_count, half +
3445 			   prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3446 	}
3447 	count = READ_ONCE(challenge_count);
3448 	if (count > 0) {
3449 		WRITE_ONCE(challenge_count, count - 1);
3450 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3451 		tcp_send_ack(sk);
3452 	}
3453 }
3454 
3455 static void tcp_store_ts_recent(struct tcp_sock *tp)
3456 {
3457 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3458 	tp->rx_opt.ts_recent_stamp = get_seconds();
3459 }
3460 
3461 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3462 {
3463 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3464 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3465 		 * extra check below makes sure this can only happen
3466 		 * for pure ACK frames.  -DaveM
3467 		 *
3468 		 * Not only, also it occurs for expired timestamps.
3469 		 */
3470 
3471 		if (tcp_paws_check(&tp->rx_opt, 0))
3472 			tcp_store_ts_recent(tp);
3473 	}
3474 }
3475 
3476 /* This routine deals with acks during a TLP episode.
3477  * We mark the end of a TLP episode on receiving TLP dupack or when
3478  * ack is after tlp_high_seq.
3479  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3480  */
3481 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3482 {
3483 	struct tcp_sock *tp = tcp_sk(sk);
3484 
3485 	if (before(ack, tp->tlp_high_seq))
3486 		return;
3487 
3488 	if (flag & FLAG_DSACKING_ACK) {
3489 		/* This DSACK means original and TLP probe arrived; no loss */
3490 		tp->tlp_high_seq = 0;
3491 	} else if (after(ack, tp->tlp_high_seq)) {
3492 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3493 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3494 		 */
3495 		tcp_init_cwnd_reduction(sk);
3496 		tcp_set_ca_state(sk, TCP_CA_CWR);
3497 		tcp_end_cwnd_reduction(sk);
3498 		tcp_try_keep_open(sk);
3499 		NET_INC_STATS(sock_net(sk),
3500 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3501 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3502 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3503 		/* Pure dupack: original and TLP probe arrived; no loss */
3504 		tp->tlp_high_seq = 0;
3505 	}
3506 }
3507 
3508 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3509 {
3510 	const struct inet_connection_sock *icsk = inet_csk(sk);
3511 
3512 	if (icsk->icsk_ca_ops->in_ack_event)
3513 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3514 }
3515 
3516 /* Congestion control has updated the cwnd already. So if we're in
3517  * loss recovery then now we do any new sends (for FRTO) or
3518  * retransmits (for CA_Loss or CA_recovery) that make sense.
3519  */
3520 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3521 {
3522 	struct tcp_sock *tp = tcp_sk(sk);
3523 
3524 	if (rexmit == REXMIT_NONE)
3525 		return;
3526 
3527 	if (unlikely(rexmit == 2)) {
3528 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3529 					  TCP_NAGLE_OFF);
3530 		if (after(tp->snd_nxt, tp->high_seq))
3531 			return;
3532 		tp->frto = 0;
3533 	}
3534 	tcp_xmit_retransmit_queue(sk);
3535 }
3536 
3537 /* This routine deals with incoming acks, but not outgoing ones. */
3538 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3539 {
3540 	struct inet_connection_sock *icsk = inet_csk(sk);
3541 	struct tcp_sock *tp = tcp_sk(sk);
3542 	struct tcp_sacktag_state sack_state;
3543 	struct rate_sample rs = { .prior_delivered = 0 };
3544 	u32 prior_snd_una = tp->snd_una;
3545 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3546 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3547 	bool is_dupack = false;
3548 	u32 prior_fackets;
3549 	int prior_packets = tp->packets_out;
3550 	u32 delivered = tp->delivered;
3551 	u32 lost = tp->lost;
3552 	int acked = 0; /* Number of packets newly acked */
3553 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3554 
3555 	sack_state.first_sackt.v64 = 0;
3556 	sack_state.rate = &rs;
3557 
3558 	/* We very likely will need to access write queue head. */
3559 	prefetchw(sk->sk_write_queue.next);
3560 
3561 	/* If the ack is older than previous acks
3562 	 * then we can probably ignore it.
3563 	 */
3564 	if (before(ack, prior_snd_una)) {
3565 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3566 		if (before(ack, prior_snd_una - tp->max_window)) {
3567 			tcp_send_challenge_ack(sk, skb);
3568 			return -1;
3569 		}
3570 		goto old_ack;
3571 	}
3572 
3573 	/* If the ack includes data we haven't sent yet, discard
3574 	 * this segment (RFC793 Section 3.9).
3575 	 */
3576 	if (after(ack, tp->snd_nxt))
3577 		goto invalid_ack;
3578 
3579 	if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3580 		tcp_rearm_rto(sk);
3581 
3582 	if (after(ack, prior_snd_una)) {
3583 		flag |= FLAG_SND_UNA_ADVANCED;
3584 		icsk->icsk_retransmits = 0;
3585 	}
3586 
3587 	prior_fackets = tp->fackets_out;
3588 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3589 
3590 	/* ts_recent update must be made after we are sure that the packet
3591 	 * is in window.
3592 	 */
3593 	if (flag & FLAG_UPDATE_TS_RECENT)
3594 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3595 
3596 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3597 		/* Window is constant, pure forward advance.
3598 		 * No more checks are required.
3599 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3600 		 */
3601 		tcp_update_wl(tp, ack_seq);
3602 		tcp_snd_una_update(tp, ack);
3603 		flag |= FLAG_WIN_UPDATE;
3604 
3605 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3606 
3607 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3608 	} else {
3609 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3610 
3611 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3612 			flag |= FLAG_DATA;
3613 		else
3614 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3615 
3616 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3617 
3618 		if (TCP_SKB_CB(skb)->sacked)
3619 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3620 							&sack_state);
3621 
3622 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3623 			flag |= FLAG_ECE;
3624 			ack_ev_flags |= CA_ACK_ECE;
3625 		}
3626 
3627 		if (flag & FLAG_WIN_UPDATE)
3628 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3629 
3630 		tcp_in_ack_event(sk, ack_ev_flags);
3631 	}
3632 
3633 	/* We passed data and got it acked, remove any soft error
3634 	 * log. Something worked...
3635 	 */
3636 	sk->sk_err_soft = 0;
3637 	icsk->icsk_probes_out = 0;
3638 	tp->rcv_tstamp = tcp_time_stamp;
3639 	if (!prior_packets)
3640 		goto no_queue;
3641 
3642 	/* See if we can take anything off of the retransmit queue. */
3643 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3644 				    &sack_state);
3645 
3646 	if (tcp_ack_is_dubious(sk, flag)) {
3647 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3648 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3649 	}
3650 	if (tp->tlp_high_seq)
3651 		tcp_process_tlp_ack(sk, ack, flag);
3652 
3653 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3654 		sk_dst_confirm(sk);
3655 
3656 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3657 		tcp_schedule_loss_probe(sk);
3658 	delivered = tp->delivered - delivered;	/* freshly ACKed or SACKed */
3659 	lost = tp->lost - lost;			/* freshly marked lost */
3660 	tcp_rate_gen(sk, delivered, lost, sack_state.rate);
3661 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3662 	tcp_xmit_recovery(sk, rexmit);
3663 	return 1;
3664 
3665 no_queue:
3666 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3667 	if (flag & FLAG_DSACKING_ACK)
3668 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3669 	/* If this ack opens up a zero window, clear backoff.  It was
3670 	 * being used to time the probes, and is probably far higher than
3671 	 * it needs to be for normal retransmission.
3672 	 */
3673 	if (tcp_send_head(sk))
3674 		tcp_ack_probe(sk);
3675 
3676 	if (tp->tlp_high_seq)
3677 		tcp_process_tlp_ack(sk, ack, flag);
3678 	return 1;
3679 
3680 invalid_ack:
3681 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3682 	return -1;
3683 
3684 old_ack:
3685 	/* If data was SACKed, tag it and see if we should send more data.
3686 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3687 	 */
3688 	if (TCP_SKB_CB(skb)->sacked) {
3689 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3690 						&sack_state);
3691 		tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3692 		tcp_xmit_recovery(sk, rexmit);
3693 	}
3694 
3695 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3696 	return 0;
3697 }
3698 
3699 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3700 				      bool syn, struct tcp_fastopen_cookie *foc,
3701 				      bool exp_opt)
3702 {
3703 	/* Valid only in SYN or SYN-ACK with an even length.  */
3704 	if (!foc || !syn || len < 0 || (len & 1))
3705 		return;
3706 
3707 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3708 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3709 		memcpy(foc->val, cookie, len);
3710 	else if (len != 0)
3711 		len = -1;
3712 	foc->len = len;
3713 	foc->exp = exp_opt;
3714 }
3715 
3716 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3717  * But, this can also be called on packets in the established flow when
3718  * the fast version below fails.
3719  */
3720 void tcp_parse_options(const struct sk_buff *skb,
3721 		       struct tcp_options_received *opt_rx, int estab,
3722 		       struct tcp_fastopen_cookie *foc)
3723 {
3724 	const unsigned char *ptr;
3725 	const struct tcphdr *th = tcp_hdr(skb);
3726 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3727 
3728 	ptr = (const unsigned char *)(th + 1);
3729 	opt_rx->saw_tstamp = 0;
3730 
3731 	while (length > 0) {
3732 		int opcode = *ptr++;
3733 		int opsize;
3734 
3735 		switch (opcode) {
3736 		case TCPOPT_EOL:
3737 			return;
3738 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3739 			length--;
3740 			continue;
3741 		default:
3742 			opsize = *ptr++;
3743 			if (opsize < 2) /* "silly options" */
3744 				return;
3745 			if (opsize > length)
3746 				return;	/* don't parse partial options */
3747 			switch (opcode) {
3748 			case TCPOPT_MSS:
3749 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3750 					u16 in_mss = get_unaligned_be16(ptr);
3751 					if (in_mss) {
3752 						if (opt_rx->user_mss &&
3753 						    opt_rx->user_mss < in_mss)
3754 							in_mss = opt_rx->user_mss;
3755 						opt_rx->mss_clamp = in_mss;
3756 					}
3757 				}
3758 				break;
3759 			case TCPOPT_WINDOW:
3760 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3761 				    !estab && sysctl_tcp_window_scaling) {
3762 					__u8 snd_wscale = *(__u8 *)ptr;
3763 					opt_rx->wscale_ok = 1;
3764 					if (snd_wscale > TCP_MAX_WSCALE) {
3765 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3766 								     __func__,
3767 								     snd_wscale,
3768 								     TCP_MAX_WSCALE);
3769 						snd_wscale = TCP_MAX_WSCALE;
3770 					}
3771 					opt_rx->snd_wscale = snd_wscale;
3772 				}
3773 				break;
3774 			case TCPOPT_TIMESTAMP:
3775 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3776 				    ((estab && opt_rx->tstamp_ok) ||
3777 				     (!estab && sysctl_tcp_timestamps))) {
3778 					opt_rx->saw_tstamp = 1;
3779 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3780 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3781 				}
3782 				break;
3783 			case TCPOPT_SACK_PERM:
3784 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3785 				    !estab && sysctl_tcp_sack) {
3786 					opt_rx->sack_ok = TCP_SACK_SEEN;
3787 					tcp_sack_reset(opt_rx);
3788 				}
3789 				break;
3790 
3791 			case TCPOPT_SACK:
3792 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3793 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3794 				   opt_rx->sack_ok) {
3795 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3796 				}
3797 				break;
3798 #ifdef CONFIG_TCP_MD5SIG
3799 			case TCPOPT_MD5SIG:
3800 				/*
3801 				 * The MD5 Hash has already been
3802 				 * checked (see tcp_v{4,6}_do_rcv()).
3803 				 */
3804 				break;
3805 #endif
3806 			case TCPOPT_FASTOPEN:
3807 				tcp_parse_fastopen_option(
3808 					opsize - TCPOLEN_FASTOPEN_BASE,
3809 					ptr, th->syn, foc, false);
3810 				break;
3811 
3812 			case TCPOPT_EXP:
3813 				/* Fast Open option shares code 254 using a
3814 				 * 16 bits magic number.
3815 				 */
3816 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3817 				    get_unaligned_be16(ptr) ==
3818 				    TCPOPT_FASTOPEN_MAGIC)
3819 					tcp_parse_fastopen_option(opsize -
3820 						TCPOLEN_EXP_FASTOPEN_BASE,
3821 						ptr + 2, th->syn, foc, true);
3822 				break;
3823 
3824 			}
3825 			ptr += opsize-2;
3826 			length -= opsize;
3827 		}
3828 	}
3829 }
3830 EXPORT_SYMBOL(tcp_parse_options);
3831 
3832 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3833 {
3834 	const __be32 *ptr = (const __be32 *)(th + 1);
3835 
3836 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3837 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3838 		tp->rx_opt.saw_tstamp = 1;
3839 		++ptr;
3840 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3841 		++ptr;
3842 		if (*ptr)
3843 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3844 		else
3845 			tp->rx_opt.rcv_tsecr = 0;
3846 		return true;
3847 	}
3848 	return false;
3849 }
3850 
3851 /* Fast parse options. This hopes to only see timestamps.
3852  * If it is wrong it falls back on tcp_parse_options().
3853  */
3854 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3855 				   const struct tcphdr *th, struct tcp_sock *tp)
3856 {
3857 	/* In the spirit of fast parsing, compare doff directly to constant
3858 	 * values.  Because equality is used, short doff can be ignored here.
3859 	 */
3860 	if (th->doff == (sizeof(*th) / 4)) {
3861 		tp->rx_opt.saw_tstamp = 0;
3862 		return false;
3863 	} else if (tp->rx_opt.tstamp_ok &&
3864 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3865 		if (tcp_parse_aligned_timestamp(tp, th))
3866 			return true;
3867 	}
3868 
3869 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3870 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3871 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3872 
3873 	return true;
3874 }
3875 
3876 #ifdef CONFIG_TCP_MD5SIG
3877 /*
3878  * Parse MD5 Signature option
3879  */
3880 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3881 {
3882 	int length = (th->doff << 2) - sizeof(*th);
3883 	const u8 *ptr = (const u8 *)(th + 1);
3884 
3885 	/* If the TCP option is too short, we can short cut */
3886 	if (length < TCPOLEN_MD5SIG)
3887 		return NULL;
3888 
3889 	while (length > 0) {
3890 		int opcode = *ptr++;
3891 		int opsize;
3892 
3893 		switch (opcode) {
3894 		case TCPOPT_EOL:
3895 			return NULL;
3896 		case TCPOPT_NOP:
3897 			length--;
3898 			continue;
3899 		default:
3900 			opsize = *ptr++;
3901 			if (opsize < 2 || opsize > length)
3902 				return NULL;
3903 			if (opcode == TCPOPT_MD5SIG)
3904 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3905 		}
3906 		ptr += opsize - 2;
3907 		length -= opsize;
3908 	}
3909 	return NULL;
3910 }
3911 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3912 #endif
3913 
3914 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3915  *
3916  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3917  * it can pass through stack. So, the following predicate verifies that
3918  * this segment is not used for anything but congestion avoidance or
3919  * fast retransmit. Moreover, we even are able to eliminate most of such
3920  * second order effects, if we apply some small "replay" window (~RTO)
3921  * to timestamp space.
3922  *
3923  * All these measures still do not guarantee that we reject wrapped ACKs
3924  * on networks with high bandwidth, when sequence space is recycled fastly,
3925  * but it guarantees that such events will be very rare and do not affect
3926  * connection seriously. This doesn't look nice, but alas, PAWS is really
3927  * buggy extension.
3928  *
3929  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3930  * states that events when retransmit arrives after original data are rare.
3931  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3932  * the biggest problem on large power networks even with minor reordering.
3933  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3934  * up to bandwidth of 18Gigabit/sec. 8) ]
3935  */
3936 
3937 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3938 {
3939 	const struct tcp_sock *tp = tcp_sk(sk);
3940 	const struct tcphdr *th = tcp_hdr(skb);
3941 	u32 seq = TCP_SKB_CB(skb)->seq;
3942 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3943 
3944 	return (/* 1. Pure ACK with correct sequence number. */
3945 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3946 
3947 		/* 2. ... and duplicate ACK. */
3948 		ack == tp->snd_una &&
3949 
3950 		/* 3. ... and does not update window. */
3951 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3952 
3953 		/* 4. ... and sits in replay window. */
3954 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3955 }
3956 
3957 static inline bool tcp_paws_discard(const struct sock *sk,
3958 				   const struct sk_buff *skb)
3959 {
3960 	const struct tcp_sock *tp = tcp_sk(sk);
3961 
3962 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3963 	       !tcp_disordered_ack(sk, skb);
3964 }
3965 
3966 /* Check segment sequence number for validity.
3967  *
3968  * Segment controls are considered valid, if the segment
3969  * fits to the window after truncation to the window. Acceptability
3970  * of data (and SYN, FIN, of course) is checked separately.
3971  * See tcp_data_queue(), for example.
3972  *
3973  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3974  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3975  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3976  * (borrowed from freebsd)
3977  */
3978 
3979 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3980 {
3981 	return	!before(end_seq, tp->rcv_wup) &&
3982 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3983 }
3984 
3985 /* When we get a reset we do this. */
3986 void tcp_reset(struct sock *sk)
3987 {
3988 	/* We want the right error as BSD sees it (and indeed as we do). */
3989 	switch (sk->sk_state) {
3990 	case TCP_SYN_SENT:
3991 		sk->sk_err = ECONNREFUSED;
3992 		break;
3993 	case TCP_CLOSE_WAIT:
3994 		sk->sk_err = EPIPE;
3995 		break;
3996 	case TCP_CLOSE:
3997 		return;
3998 	default:
3999 		sk->sk_err = ECONNRESET;
4000 	}
4001 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4002 	smp_wmb();
4003 
4004 	tcp_done(sk);
4005 
4006 	if (!sock_flag(sk, SOCK_DEAD))
4007 		sk->sk_error_report(sk);
4008 }
4009 
4010 /*
4011  * 	Process the FIN bit. This now behaves as it is supposed to work
4012  *	and the FIN takes effect when it is validly part of sequence
4013  *	space. Not before when we get holes.
4014  *
4015  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4016  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4017  *	TIME-WAIT)
4018  *
4019  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4020  *	close and we go into CLOSING (and later onto TIME-WAIT)
4021  *
4022  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4023  */
4024 void tcp_fin(struct sock *sk)
4025 {
4026 	struct tcp_sock *tp = tcp_sk(sk);
4027 
4028 	inet_csk_schedule_ack(sk);
4029 
4030 	sk->sk_shutdown |= RCV_SHUTDOWN;
4031 	sock_set_flag(sk, SOCK_DONE);
4032 
4033 	switch (sk->sk_state) {
4034 	case TCP_SYN_RECV:
4035 	case TCP_ESTABLISHED:
4036 		/* Move to CLOSE_WAIT */
4037 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4038 		inet_csk(sk)->icsk_ack.pingpong = 1;
4039 		break;
4040 
4041 	case TCP_CLOSE_WAIT:
4042 	case TCP_CLOSING:
4043 		/* Received a retransmission of the FIN, do
4044 		 * nothing.
4045 		 */
4046 		break;
4047 	case TCP_LAST_ACK:
4048 		/* RFC793: Remain in the LAST-ACK state. */
4049 		break;
4050 
4051 	case TCP_FIN_WAIT1:
4052 		/* This case occurs when a simultaneous close
4053 		 * happens, we must ack the received FIN and
4054 		 * enter the CLOSING state.
4055 		 */
4056 		tcp_send_ack(sk);
4057 		tcp_set_state(sk, TCP_CLOSING);
4058 		break;
4059 	case TCP_FIN_WAIT2:
4060 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4061 		tcp_send_ack(sk);
4062 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4063 		break;
4064 	default:
4065 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4066 		 * cases we should never reach this piece of code.
4067 		 */
4068 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4069 		       __func__, sk->sk_state);
4070 		break;
4071 	}
4072 
4073 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4074 	 * Probably, we should reset in this case. For now drop them.
4075 	 */
4076 	skb_rbtree_purge(&tp->out_of_order_queue);
4077 	if (tcp_is_sack(tp))
4078 		tcp_sack_reset(&tp->rx_opt);
4079 	sk_mem_reclaim(sk);
4080 
4081 	if (!sock_flag(sk, SOCK_DEAD)) {
4082 		sk->sk_state_change(sk);
4083 
4084 		/* Do not send POLL_HUP for half duplex close. */
4085 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4086 		    sk->sk_state == TCP_CLOSE)
4087 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4088 		else
4089 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4090 	}
4091 }
4092 
4093 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4094 				  u32 end_seq)
4095 {
4096 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4097 		if (before(seq, sp->start_seq))
4098 			sp->start_seq = seq;
4099 		if (after(end_seq, sp->end_seq))
4100 			sp->end_seq = end_seq;
4101 		return true;
4102 	}
4103 	return false;
4104 }
4105 
4106 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4107 {
4108 	struct tcp_sock *tp = tcp_sk(sk);
4109 
4110 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4111 		int mib_idx;
4112 
4113 		if (before(seq, tp->rcv_nxt))
4114 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4115 		else
4116 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4117 
4118 		NET_INC_STATS(sock_net(sk), mib_idx);
4119 
4120 		tp->rx_opt.dsack = 1;
4121 		tp->duplicate_sack[0].start_seq = seq;
4122 		tp->duplicate_sack[0].end_seq = end_seq;
4123 	}
4124 }
4125 
4126 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4127 {
4128 	struct tcp_sock *tp = tcp_sk(sk);
4129 
4130 	if (!tp->rx_opt.dsack)
4131 		tcp_dsack_set(sk, seq, end_seq);
4132 	else
4133 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4134 }
4135 
4136 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4137 {
4138 	struct tcp_sock *tp = tcp_sk(sk);
4139 
4140 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4141 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4142 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4143 		tcp_enter_quickack_mode(sk);
4144 
4145 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4146 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4147 
4148 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4149 				end_seq = tp->rcv_nxt;
4150 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4151 		}
4152 	}
4153 
4154 	tcp_send_ack(sk);
4155 }
4156 
4157 /* These routines update the SACK block as out-of-order packets arrive or
4158  * in-order packets close up the sequence space.
4159  */
4160 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4161 {
4162 	int this_sack;
4163 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4164 	struct tcp_sack_block *swalk = sp + 1;
4165 
4166 	/* See if the recent change to the first SACK eats into
4167 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4168 	 */
4169 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4170 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4171 			int i;
4172 
4173 			/* Zap SWALK, by moving every further SACK up by one slot.
4174 			 * Decrease num_sacks.
4175 			 */
4176 			tp->rx_opt.num_sacks--;
4177 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4178 				sp[i] = sp[i + 1];
4179 			continue;
4180 		}
4181 		this_sack++, swalk++;
4182 	}
4183 }
4184 
4185 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4186 {
4187 	struct tcp_sock *tp = tcp_sk(sk);
4188 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4189 	int cur_sacks = tp->rx_opt.num_sacks;
4190 	int this_sack;
4191 
4192 	if (!cur_sacks)
4193 		goto new_sack;
4194 
4195 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4196 		if (tcp_sack_extend(sp, seq, end_seq)) {
4197 			/* Rotate this_sack to the first one. */
4198 			for (; this_sack > 0; this_sack--, sp--)
4199 				swap(*sp, *(sp - 1));
4200 			if (cur_sacks > 1)
4201 				tcp_sack_maybe_coalesce(tp);
4202 			return;
4203 		}
4204 	}
4205 
4206 	/* Could not find an adjacent existing SACK, build a new one,
4207 	 * put it at the front, and shift everyone else down.  We
4208 	 * always know there is at least one SACK present already here.
4209 	 *
4210 	 * If the sack array is full, forget about the last one.
4211 	 */
4212 	if (this_sack >= TCP_NUM_SACKS) {
4213 		this_sack--;
4214 		tp->rx_opt.num_sacks--;
4215 		sp--;
4216 	}
4217 	for (; this_sack > 0; this_sack--, sp--)
4218 		*sp = *(sp - 1);
4219 
4220 new_sack:
4221 	/* Build the new head SACK, and we're done. */
4222 	sp->start_seq = seq;
4223 	sp->end_seq = end_seq;
4224 	tp->rx_opt.num_sacks++;
4225 }
4226 
4227 /* RCV.NXT advances, some SACKs should be eaten. */
4228 
4229 static void tcp_sack_remove(struct tcp_sock *tp)
4230 {
4231 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4232 	int num_sacks = tp->rx_opt.num_sacks;
4233 	int this_sack;
4234 
4235 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4236 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4237 		tp->rx_opt.num_sacks = 0;
4238 		return;
4239 	}
4240 
4241 	for (this_sack = 0; this_sack < num_sacks;) {
4242 		/* Check if the start of the sack is covered by RCV.NXT. */
4243 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4244 			int i;
4245 
4246 			/* RCV.NXT must cover all the block! */
4247 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4248 
4249 			/* Zap this SACK, by moving forward any other SACKS. */
4250 			for (i = this_sack+1; i < num_sacks; i++)
4251 				tp->selective_acks[i-1] = tp->selective_acks[i];
4252 			num_sacks--;
4253 			continue;
4254 		}
4255 		this_sack++;
4256 		sp++;
4257 	}
4258 	tp->rx_opt.num_sacks = num_sacks;
4259 }
4260 
4261 /**
4262  * tcp_try_coalesce - try to merge skb to prior one
4263  * @sk: socket
4264  * @to: prior buffer
4265  * @from: buffer to add in queue
4266  * @fragstolen: pointer to boolean
4267  *
4268  * Before queueing skb @from after @to, try to merge them
4269  * to reduce overall memory use and queue lengths, if cost is small.
4270  * Packets in ofo or receive queues can stay a long time.
4271  * Better try to coalesce them right now to avoid future collapses.
4272  * Returns true if caller should free @from instead of queueing it
4273  */
4274 static bool tcp_try_coalesce(struct sock *sk,
4275 			     struct sk_buff *to,
4276 			     struct sk_buff *from,
4277 			     bool *fragstolen)
4278 {
4279 	int delta;
4280 
4281 	*fragstolen = false;
4282 
4283 	/* Its possible this segment overlaps with prior segment in queue */
4284 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4285 		return false;
4286 
4287 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4288 		return false;
4289 
4290 	atomic_add(delta, &sk->sk_rmem_alloc);
4291 	sk_mem_charge(sk, delta);
4292 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4293 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4294 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4295 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4296 	return true;
4297 }
4298 
4299 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4300 {
4301 	sk_drops_add(sk, skb);
4302 	__kfree_skb(skb);
4303 }
4304 
4305 /* This one checks to see if we can put data from the
4306  * out_of_order queue into the receive_queue.
4307  */
4308 static void tcp_ofo_queue(struct sock *sk)
4309 {
4310 	struct tcp_sock *tp = tcp_sk(sk);
4311 	__u32 dsack_high = tp->rcv_nxt;
4312 	bool fin, fragstolen, eaten;
4313 	struct sk_buff *skb, *tail;
4314 	struct rb_node *p;
4315 
4316 	p = rb_first(&tp->out_of_order_queue);
4317 	while (p) {
4318 		skb = rb_entry(p, struct sk_buff, rbnode);
4319 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4320 			break;
4321 
4322 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4323 			__u32 dsack = dsack_high;
4324 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4325 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4326 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4327 		}
4328 		p = rb_next(p);
4329 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4330 
4331 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4332 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4333 			tcp_drop(sk, skb);
4334 			continue;
4335 		}
4336 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4337 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4338 			   TCP_SKB_CB(skb)->end_seq);
4339 
4340 		tail = skb_peek_tail(&sk->sk_receive_queue);
4341 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4342 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4343 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4344 		if (!eaten)
4345 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4346 		else
4347 			kfree_skb_partial(skb, fragstolen);
4348 
4349 		if (unlikely(fin)) {
4350 			tcp_fin(sk);
4351 			/* tcp_fin() purges tp->out_of_order_queue,
4352 			 * so we must end this loop right now.
4353 			 */
4354 			break;
4355 		}
4356 	}
4357 }
4358 
4359 static bool tcp_prune_ofo_queue(struct sock *sk);
4360 static int tcp_prune_queue(struct sock *sk);
4361 
4362 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4363 				 unsigned int size)
4364 {
4365 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4366 	    !sk_rmem_schedule(sk, skb, size)) {
4367 
4368 		if (tcp_prune_queue(sk) < 0)
4369 			return -1;
4370 
4371 		while (!sk_rmem_schedule(sk, skb, size)) {
4372 			if (!tcp_prune_ofo_queue(sk))
4373 				return -1;
4374 		}
4375 	}
4376 	return 0;
4377 }
4378 
4379 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4380 {
4381 	struct tcp_sock *tp = tcp_sk(sk);
4382 	struct rb_node **p, *q, *parent;
4383 	struct sk_buff *skb1;
4384 	u32 seq, end_seq;
4385 	bool fragstolen;
4386 
4387 	tcp_ecn_check_ce(tp, skb);
4388 
4389 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4390 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4391 		tcp_drop(sk, skb);
4392 		return;
4393 	}
4394 
4395 	/* Disable header prediction. */
4396 	tp->pred_flags = 0;
4397 	inet_csk_schedule_ack(sk);
4398 
4399 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4400 	seq = TCP_SKB_CB(skb)->seq;
4401 	end_seq = TCP_SKB_CB(skb)->end_seq;
4402 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4403 		   tp->rcv_nxt, seq, end_seq);
4404 
4405 	p = &tp->out_of_order_queue.rb_node;
4406 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4407 		/* Initial out of order segment, build 1 SACK. */
4408 		if (tcp_is_sack(tp)) {
4409 			tp->rx_opt.num_sacks = 1;
4410 			tp->selective_acks[0].start_seq = seq;
4411 			tp->selective_acks[0].end_seq = end_seq;
4412 		}
4413 		rb_link_node(&skb->rbnode, NULL, p);
4414 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4415 		tp->ooo_last_skb = skb;
4416 		goto end;
4417 	}
4418 
4419 	/* In the typical case, we are adding an skb to the end of the list.
4420 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4421 	 */
4422 	if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) {
4423 coalesce_done:
4424 		tcp_grow_window(sk, skb);
4425 		kfree_skb_partial(skb, fragstolen);
4426 		skb = NULL;
4427 		goto add_sack;
4428 	}
4429 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4430 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4431 		parent = &tp->ooo_last_skb->rbnode;
4432 		p = &parent->rb_right;
4433 		goto insert;
4434 	}
4435 
4436 	/* Find place to insert this segment. Handle overlaps on the way. */
4437 	parent = NULL;
4438 	while (*p) {
4439 		parent = *p;
4440 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4441 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4442 			p = &parent->rb_left;
4443 			continue;
4444 		}
4445 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4446 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4447 				/* All the bits are present. Drop. */
4448 				NET_INC_STATS(sock_net(sk),
4449 					      LINUX_MIB_TCPOFOMERGE);
4450 				__kfree_skb(skb);
4451 				skb = NULL;
4452 				tcp_dsack_set(sk, seq, end_seq);
4453 				goto add_sack;
4454 			}
4455 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4456 				/* Partial overlap. */
4457 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4458 			} else {
4459 				/* skb's seq == skb1's seq and skb covers skb1.
4460 				 * Replace skb1 with skb.
4461 				 */
4462 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4463 						&tp->out_of_order_queue);
4464 				tcp_dsack_extend(sk,
4465 						 TCP_SKB_CB(skb1)->seq,
4466 						 TCP_SKB_CB(skb1)->end_seq);
4467 				NET_INC_STATS(sock_net(sk),
4468 					      LINUX_MIB_TCPOFOMERGE);
4469 				__kfree_skb(skb1);
4470 				goto merge_right;
4471 			}
4472 		} else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4473 			goto coalesce_done;
4474 		}
4475 		p = &parent->rb_right;
4476 	}
4477 insert:
4478 	/* Insert segment into RB tree. */
4479 	rb_link_node(&skb->rbnode, parent, p);
4480 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4481 
4482 merge_right:
4483 	/* Remove other segments covered by skb. */
4484 	while ((q = rb_next(&skb->rbnode)) != NULL) {
4485 		skb1 = rb_entry(q, struct sk_buff, rbnode);
4486 
4487 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4488 			break;
4489 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4490 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4491 					 end_seq);
4492 			break;
4493 		}
4494 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4495 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4496 				 TCP_SKB_CB(skb1)->end_seq);
4497 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4498 		tcp_drop(sk, skb1);
4499 	}
4500 	/* If there is no skb after us, we are the last_skb ! */
4501 	if (!q)
4502 		tp->ooo_last_skb = skb;
4503 
4504 add_sack:
4505 	if (tcp_is_sack(tp))
4506 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4507 end:
4508 	if (skb) {
4509 		tcp_grow_window(sk, skb);
4510 		skb_condense(skb);
4511 		skb_set_owner_r(skb, sk);
4512 	}
4513 }
4514 
4515 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4516 		  bool *fragstolen)
4517 {
4518 	int eaten;
4519 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4520 
4521 	__skb_pull(skb, hdrlen);
4522 	eaten = (tail &&
4523 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4524 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4525 	if (!eaten) {
4526 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4527 		skb_set_owner_r(skb, sk);
4528 	}
4529 	return eaten;
4530 }
4531 
4532 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4533 {
4534 	struct sk_buff *skb;
4535 	int err = -ENOMEM;
4536 	int data_len = 0;
4537 	bool fragstolen;
4538 
4539 	if (size == 0)
4540 		return 0;
4541 
4542 	if (size > PAGE_SIZE) {
4543 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4544 
4545 		data_len = npages << PAGE_SHIFT;
4546 		size = data_len + (size & ~PAGE_MASK);
4547 	}
4548 	skb = alloc_skb_with_frags(size - data_len, data_len,
4549 				   PAGE_ALLOC_COSTLY_ORDER,
4550 				   &err, sk->sk_allocation);
4551 	if (!skb)
4552 		goto err;
4553 
4554 	skb_put(skb, size - data_len);
4555 	skb->data_len = data_len;
4556 	skb->len = size;
4557 
4558 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4559 		goto err_free;
4560 
4561 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4562 	if (err)
4563 		goto err_free;
4564 
4565 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4566 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4567 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4568 
4569 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4570 		WARN_ON_ONCE(fragstolen); /* should not happen */
4571 		__kfree_skb(skb);
4572 	}
4573 	return size;
4574 
4575 err_free:
4576 	kfree_skb(skb);
4577 err:
4578 	return err;
4579 
4580 }
4581 
4582 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4583 {
4584 	struct tcp_sock *tp = tcp_sk(sk);
4585 	bool fragstolen = false;
4586 	int eaten = -1;
4587 
4588 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4589 		__kfree_skb(skb);
4590 		return;
4591 	}
4592 	skb_dst_drop(skb);
4593 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4594 
4595 	tcp_ecn_accept_cwr(tp, skb);
4596 
4597 	tp->rx_opt.dsack = 0;
4598 
4599 	/*  Queue data for delivery to the user.
4600 	 *  Packets in sequence go to the receive queue.
4601 	 *  Out of sequence packets to the out_of_order_queue.
4602 	 */
4603 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4604 		if (tcp_receive_window(tp) == 0)
4605 			goto out_of_window;
4606 
4607 		/* Ok. In sequence. In window. */
4608 		if (tp->ucopy.task == current &&
4609 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4610 		    sock_owned_by_user(sk) && !tp->urg_data) {
4611 			int chunk = min_t(unsigned int, skb->len,
4612 					  tp->ucopy.len);
4613 
4614 			__set_current_state(TASK_RUNNING);
4615 
4616 			if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4617 				tp->ucopy.len -= chunk;
4618 				tp->copied_seq += chunk;
4619 				eaten = (chunk == skb->len);
4620 				tcp_rcv_space_adjust(sk);
4621 			}
4622 		}
4623 
4624 		if (eaten <= 0) {
4625 queue_and_out:
4626 			if (eaten < 0) {
4627 				if (skb_queue_len(&sk->sk_receive_queue) == 0)
4628 					sk_forced_mem_schedule(sk, skb->truesize);
4629 				else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4630 					goto drop;
4631 			}
4632 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4633 		}
4634 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4635 		if (skb->len)
4636 			tcp_event_data_recv(sk, skb);
4637 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4638 			tcp_fin(sk);
4639 
4640 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4641 			tcp_ofo_queue(sk);
4642 
4643 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4644 			 * gap in queue is filled.
4645 			 */
4646 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4647 				inet_csk(sk)->icsk_ack.pingpong = 0;
4648 		}
4649 
4650 		if (tp->rx_opt.num_sacks)
4651 			tcp_sack_remove(tp);
4652 
4653 		tcp_fast_path_check(sk);
4654 
4655 		if (eaten > 0)
4656 			kfree_skb_partial(skb, fragstolen);
4657 		if (!sock_flag(sk, SOCK_DEAD))
4658 			sk->sk_data_ready(sk);
4659 		return;
4660 	}
4661 
4662 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4663 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4664 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4665 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4666 
4667 out_of_window:
4668 		tcp_enter_quickack_mode(sk);
4669 		inet_csk_schedule_ack(sk);
4670 drop:
4671 		tcp_drop(sk, skb);
4672 		return;
4673 	}
4674 
4675 	/* Out of window. F.e. zero window probe. */
4676 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4677 		goto out_of_window;
4678 
4679 	tcp_enter_quickack_mode(sk);
4680 
4681 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4682 		/* Partial packet, seq < rcv_next < end_seq */
4683 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4684 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4685 			   TCP_SKB_CB(skb)->end_seq);
4686 
4687 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4688 
4689 		/* If window is closed, drop tail of packet. But after
4690 		 * remembering D-SACK for its head made in previous line.
4691 		 */
4692 		if (!tcp_receive_window(tp))
4693 			goto out_of_window;
4694 		goto queue_and_out;
4695 	}
4696 
4697 	tcp_data_queue_ofo(sk, skb);
4698 }
4699 
4700 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4701 {
4702 	if (list)
4703 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4704 
4705 	return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode);
4706 }
4707 
4708 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4709 					struct sk_buff_head *list,
4710 					struct rb_root *root)
4711 {
4712 	struct sk_buff *next = tcp_skb_next(skb, list);
4713 
4714 	if (list)
4715 		__skb_unlink(skb, list);
4716 	else
4717 		rb_erase(&skb->rbnode, root);
4718 
4719 	__kfree_skb(skb);
4720 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4721 
4722 	return next;
4723 }
4724 
4725 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4726 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4727 {
4728 	struct rb_node **p = &root->rb_node;
4729 	struct rb_node *parent = NULL;
4730 	struct sk_buff *skb1;
4731 
4732 	while (*p) {
4733 		parent = *p;
4734 		skb1 = rb_entry(parent, struct sk_buff, rbnode);
4735 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4736 			p = &parent->rb_left;
4737 		else
4738 			p = &parent->rb_right;
4739 	}
4740 	rb_link_node(&skb->rbnode, parent, p);
4741 	rb_insert_color(&skb->rbnode, root);
4742 }
4743 
4744 /* Collapse contiguous sequence of skbs head..tail with
4745  * sequence numbers start..end.
4746  *
4747  * If tail is NULL, this means until the end of the queue.
4748  *
4749  * Segments with FIN/SYN are not collapsed (only because this
4750  * simplifies code)
4751  */
4752 static void
4753 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4754 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4755 {
4756 	struct sk_buff *skb = head, *n;
4757 	struct sk_buff_head tmp;
4758 	bool end_of_skbs;
4759 
4760 	/* First, check that queue is collapsible and find
4761 	 * the point where collapsing can be useful.
4762 	 */
4763 restart:
4764 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4765 		n = tcp_skb_next(skb, list);
4766 
4767 		/* No new bits? It is possible on ofo queue. */
4768 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4769 			skb = tcp_collapse_one(sk, skb, list, root);
4770 			if (!skb)
4771 				break;
4772 			goto restart;
4773 		}
4774 
4775 		/* The first skb to collapse is:
4776 		 * - not SYN/FIN and
4777 		 * - bloated or contains data before "start" or
4778 		 *   overlaps to the next one.
4779 		 */
4780 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4781 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4782 		     before(TCP_SKB_CB(skb)->seq, start))) {
4783 			end_of_skbs = false;
4784 			break;
4785 		}
4786 
4787 		if (n && n != tail &&
4788 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4789 			end_of_skbs = false;
4790 			break;
4791 		}
4792 
4793 		/* Decided to skip this, advance start seq. */
4794 		start = TCP_SKB_CB(skb)->end_seq;
4795 	}
4796 	if (end_of_skbs ||
4797 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4798 		return;
4799 
4800 	__skb_queue_head_init(&tmp);
4801 
4802 	while (before(start, end)) {
4803 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4804 		struct sk_buff *nskb;
4805 
4806 		nskb = alloc_skb(copy, GFP_ATOMIC);
4807 		if (!nskb)
4808 			break;
4809 
4810 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4811 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4812 		if (list)
4813 			__skb_queue_before(list, skb, nskb);
4814 		else
4815 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4816 		skb_set_owner_r(nskb, sk);
4817 
4818 		/* Copy data, releasing collapsed skbs. */
4819 		while (copy > 0) {
4820 			int offset = start - TCP_SKB_CB(skb)->seq;
4821 			int size = TCP_SKB_CB(skb)->end_seq - start;
4822 
4823 			BUG_ON(offset < 0);
4824 			if (size > 0) {
4825 				size = min(copy, size);
4826 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4827 					BUG();
4828 				TCP_SKB_CB(nskb)->end_seq += size;
4829 				copy -= size;
4830 				start += size;
4831 			}
4832 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4833 				skb = tcp_collapse_one(sk, skb, list, root);
4834 				if (!skb ||
4835 				    skb == tail ||
4836 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4837 					goto end;
4838 			}
4839 		}
4840 	}
4841 end:
4842 	skb_queue_walk_safe(&tmp, skb, n)
4843 		tcp_rbtree_insert(root, skb);
4844 }
4845 
4846 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4847  * and tcp_collapse() them until all the queue is collapsed.
4848  */
4849 static void tcp_collapse_ofo_queue(struct sock *sk)
4850 {
4851 	struct tcp_sock *tp = tcp_sk(sk);
4852 	struct sk_buff *skb, *head;
4853 	struct rb_node *p;
4854 	u32 start, end;
4855 
4856 	p = rb_first(&tp->out_of_order_queue);
4857 	skb = rb_entry_safe(p, struct sk_buff, rbnode);
4858 new_range:
4859 	if (!skb) {
4860 		p = rb_last(&tp->out_of_order_queue);
4861 		/* Note: This is possible p is NULL here. We do not
4862 		 * use rb_entry_safe(), as ooo_last_skb is valid only
4863 		 * if rbtree is not empty.
4864 		 */
4865 		tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode);
4866 		return;
4867 	}
4868 	start = TCP_SKB_CB(skb)->seq;
4869 	end = TCP_SKB_CB(skb)->end_seq;
4870 
4871 	for (head = skb;;) {
4872 		skb = tcp_skb_next(skb, NULL);
4873 
4874 		/* Range is terminated when we see a gap or when
4875 		 * we are at the queue end.
4876 		 */
4877 		if (!skb ||
4878 		    after(TCP_SKB_CB(skb)->seq, end) ||
4879 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4880 			tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4881 				     head, skb, start, end);
4882 			goto new_range;
4883 		}
4884 
4885 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4886 			start = TCP_SKB_CB(skb)->seq;
4887 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4888 			end = TCP_SKB_CB(skb)->end_seq;
4889 	}
4890 }
4891 
4892 /*
4893  * Clean the out-of-order queue to make room.
4894  * We drop high sequences packets to :
4895  * 1) Let a chance for holes to be filled.
4896  * 2) not add too big latencies if thousands of packets sit there.
4897  *    (But if application shrinks SO_RCVBUF, we could still end up
4898  *     freeing whole queue here)
4899  *
4900  * Return true if queue has shrunk.
4901  */
4902 static bool tcp_prune_ofo_queue(struct sock *sk)
4903 {
4904 	struct tcp_sock *tp = tcp_sk(sk);
4905 	struct rb_node *node, *prev;
4906 
4907 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4908 		return false;
4909 
4910 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4911 	node = &tp->ooo_last_skb->rbnode;
4912 	do {
4913 		prev = rb_prev(node);
4914 		rb_erase(node, &tp->out_of_order_queue);
4915 		tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode));
4916 		sk_mem_reclaim(sk);
4917 		if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4918 		    !tcp_under_memory_pressure(sk))
4919 			break;
4920 		node = prev;
4921 	} while (node);
4922 	tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode);
4923 
4924 	/* Reset SACK state.  A conforming SACK implementation will
4925 	 * do the same at a timeout based retransmit.  When a connection
4926 	 * is in a sad state like this, we care only about integrity
4927 	 * of the connection not performance.
4928 	 */
4929 	if (tp->rx_opt.sack_ok)
4930 		tcp_sack_reset(&tp->rx_opt);
4931 	return true;
4932 }
4933 
4934 /* Reduce allocated memory if we can, trying to get
4935  * the socket within its memory limits again.
4936  *
4937  * Return less than zero if we should start dropping frames
4938  * until the socket owning process reads some of the data
4939  * to stabilize the situation.
4940  */
4941 static int tcp_prune_queue(struct sock *sk)
4942 {
4943 	struct tcp_sock *tp = tcp_sk(sk);
4944 
4945 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4946 
4947 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4948 
4949 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4950 		tcp_clamp_window(sk);
4951 	else if (tcp_under_memory_pressure(sk))
4952 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4953 
4954 	tcp_collapse_ofo_queue(sk);
4955 	if (!skb_queue_empty(&sk->sk_receive_queue))
4956 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
4957 			     skb_peek(&sk->sk_receive_queue),
4958 			     NULL,
4959 			     tp->copied_seq, tp->rcv_nxt);
4960 	sk_mem_reclaim(sk);
4961 
4962 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4963 		return 0;
4964 
4965 	/* Collapsing did not help, destructive actions follow.
4966 	 * This must not ever occur. */
4967 
4968 	tcp_prune_ofo_queue(sk);
4969 
4970 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4971 		return 0;
4972 
4973 	/* If we are really being abused, tell the caller to silently
4974 	 * drop receive data on the floor.  It will get retransmitted
4975 	 * and hopefully then we'll have sufficient space.
4976 	 */
4977 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4978 
4979 	/* Massive buffer overcommit. */
4980 	tp->pred_flags = 0;
4981 	return -1;
4982 }
4983 
4984 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4985 {
4986 	const struct tcp_sock *tp = tcp_sk(sk);
4987 
4988 	/* If the user specified a specific send buffer setting, do
4989 	 * not modify it.
4990 	 */
4991 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4992 		return false;
4993 
4994 	/* If we are under global TCP memory pressure, do not expand.  */
4995 	if (tcp_under_memory_pressure(sk))
4996 		return false;
4997 
4998 	/* If we are under soft global TCP memory pressure, do not expand.  */
4999 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5000 		return false;
5001 
5002 	/* If we filled the congestion window, do not expand.  */
5003 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5004 		return false;
5005 
5006 	return true;
5007 }
5008 
5009 /* When incoming ACK allowed to free some skb from write_queue,
5010  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5011  * on the exit from tcp input handler.
5012  *
5013  * PROBLEM: sndbuf expansion does not work well with largesend.
5014  */
5015 static void tcp_new_space(struct sock *sk)
5016 {
5017 	struct tcp_sock *tp = tcp_sk(sk);
5018 
5019 	if (tcp_should_expand_sndbuf(sk)) {
5020 		tcp_sndbuf_expand(sk);
5021 		tp->snd_cwnd_stamp = tcp_time_stamp;
5022 	}
5023 
5024 	sk->sk_write_space(sk);
5025 }
5026 
5027 static void tcp_check_space(struct sock *sk)
5028 {
5029 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5030 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5031 		/* pairs with tcp_poll() */
5032 		smp_mb();
5033 		if (sk->sk_socket &&
5034 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5035 			tcp_new_space(sk);
5036 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5037 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5038 		}
5039 	}
5040 }
5041 
5042 static inline void tcp_data_snd_check(struct sock *sk)
5043 {
5044 	tcp_push_pending_frames(sk);
5045 	tcp_check_space(sk);
5046 }
5047 
5048 /*
5049  * Check if sending an ack is needed.
5050  */
5051 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5052 {
5053 	struct tcp_sock *tp = tcp_sk(sk);
5054 
5055 	    /* More than one full frame received... */
5056 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5057 	     /* ... and right edge of window advances far enough.
5058 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5059 	      */
5060 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5061 	    /* We ACK each frame or... */
5062 	    tcp_in_quickack_mode(sk) ||
5063 	    /* We have out of order data. */
5064 	    (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) {
5065 		/* Then ack it now */
5066 		tcp_send_ack(sk);
5067 	} else {
5068 		/* Else, send delayed ack. */
5069 		tcp_send_delayed_ack(sk);
5070 	}
5071 }
5072 
5073 static inline void tcp_ack_snd_check(struct sock *sk)
5074 {
5075 	if (!inet_csk_ack_scheduled(sk)) {
5076 		/* We sent a data segment already. */
5077 		return;
5078 	}
5079 	__tcp_ack_snd_check(sk, 1);
5080 }
5081 
5082 /*
5083  *	This routine is only called when we have urgent data
5084  *	signaled. Its the 'slow' part of tcp_urg. It could be
5085  *	moved inline now as tcp_urg is only called from one
5086  *	place. We handle URGent data wrong. We have to - as
5087  *	BSD still doesn't use the correction from RFC961.
5088  *	For 1003.1g we should support a new option TCP_STDURG to permit
5089  *	either form (or just set the sysctl tcp_stdurg).
5090  */
5091 
5092 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5093 {
5094 	struct tcp_sock *tp = tcp_sk(sk);
5095 	u32 ptr = ntohs(th->urg_ptr);
5096 
5097 	if (ptr && !sysctl_tcp_stdurg)
5098 		ptr--;
5099 	ptr += ntohl(th->seq);
5100 
5101 	/* Ignore urgent data that we've already seen and read. */
5102 	if (after(tp->copied_seq, ptr))
5103 		return;
5104 
5105 	/* Do not replay urg ptr.
5106 	 *
5107 	 * NOTE: interesting situation not covered by specs.
5108 	 * Misbehaving sender may send urg ptr, pointing to segment,
5109 	 * which we already have in ofo queue. We are not able to fetch
5110 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5111 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5112 	 * situations. But it is worth to think about possibility of some
5113 	 * DoSes using some hypothetical application level deadlock.
5114 	 */
5115 	if (before(ptr, tp->rcv_nxt))
5116 		return;
5117 
5118 	/* Do we already have a newer (or duplicate) urgent pointer? */
5119 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5120 		return;
5121 
5122 	/* Tell the world about our new urgent pointer. */
5123 	sk_send_sigurg(sk);
5124 
5125 	/* We may be adding urgent data when the last byte read was
5126 	 * urgent. To do this requires some care. We cannot just ignore
5127 	 * tp->copied_seq since we would read the last urgent byte again
5128 	 * as data, nor can we alter copied_seq until this data arrives
5129 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5130 	 *
5131 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5132 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5133 	 * and expect that both A and B disappear from stream. This is _wrong_.
5134 	 * Though this happens in BSD with high probability, this is occasional.
5135 	 * Any application relying on this is buggy. Note also, that fix "works"
5136 	 * only in this artificial test. Insert some normal data between A and B and we will
5137 	 * decline of BSD again. Verdict: it is better to remove to trap
5138 	 * buggy users.
5139 	 */
5140 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5141 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5142 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5143 		tp->copied_seq++;
5144 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5145 			__skb_unlink(skb, &sk->sk_receive_queue);
5146 			__kfree_skb(skb);
5147 		}
5148 	}
5149 
5150 	tp->urg_data = TCP_URG_NOTYET;
5151 	tp->urg_seq = ptr;
5152 
5153 	/* Disable header prediction. */
5154 	tp->pred_flags = 0;
5155 }
5156 
5157 /* This is the 'fast' part of urgent handling. */
5158 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5159 {
5160 	struct tcp_sock *tp = tcp_sk(sk);
5161 
5162 	/* Check if we get a new urgent pointer - normally not. */
5163 	if (th->urg)
5164 		tcp_check_urg(sk, th);
5165 
5166 	/* Do we wait for any urgent data? - normally not... */
5167 	if (tp->urg_data == TCP_URG_NOTYET) {
5168 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5169 			  th->syn;
5170 
5171 		/* Is the urgent pointer pointing into this packet? */
5172 		if (ptr < skb->len) {
5173 			u8 tmp;
5174 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5175 				BUG();
5176 			tp->urg_data = TCP_URG_VALID | tmp;
5177 			if (!sock_flag(sk, SOCK_DEAD))
5178 				sk->sk_data_ready(sk);
5179 		}
5180 	}
5181 }
5182 
5183 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5184 {
5185 	struct tcp_sock *tp = tcp_sk(sk);
5186 	int chunk = skb->len - hlen;
5187 	int err;
5188 
5189 	if (skb_csum_unnecessary(skb))
5190 		err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5191 	else
5192 		err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5193 
5194 	if (!err) {
5195 		tp->ucopy.len -= chunk;
5196 		tp->copied_seq += chunk;
5197 		tcp_rcv_space_adjust(sk);
5198 	}
5199 
5200 	return err;
5201 }
5202 
5203 /* Accept RST for rcv_nxt - 1 after a FIN.
5204  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5205  * FIN is sent followed by a RST packet. The RST is sent with the same
5206  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5207  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5208  * ACKs on the closed socket. In addition middleboxes can drop either the
5209  * challenge ACK or a subsequent RST.
5210  */
5211 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5212 {
5213 	struct tcp_sock *tp = tcp_sk(sk);
5214 
5215 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5216 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5217 					       TCPF_CLOSING));
5218 }
5219 
5220 /* Does PAWS and seqno based validation of an incoming segment, flags will
5221  * play significant role here.
5222  */
5223 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5224 				  const struct tcphdr *th, int syn_inerr)
5225 {
5226 	struct tcp_sock *tp = tcp_sk(sk);
5227 	bool rst_seq_match = false;
5228 
5229 	/* RFC1323: H1. Apply PAWS check first. */
5230 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5231 	    tcp_paws_discard(sk, skb)) {
5232 		if (!th->rst) {
5233 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5234 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5235 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5236 						  &tp->last_oow_ack_time))
5237 				tcp_send_dupack(sk, skb);
5238 			goto discard;
5239 		}
5240 		/* Reset is accepted even if it did not pass PAWS. */
5241 	}
5242 
5243 	/* Step 1: check sequence number */
5244 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5245 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5246 		 * (RST) segments are validated by checking their SEQ-fields."
5247 		 * And page 69: "If an incoming segment is not acceptable,
5248 		 * an acknowledgment should be sent in reply (unless the RST
5249 		 * bit is set, if so drop the segment and return)".
5250 		 */
5251 		if (!th->rst) {
5252 			if (th->syn)
5253 				goto syn_challenge;
5254 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5255 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5256 						  &tp->last_oow_ack_time))
5257 				tcp_send_dupack(sk, skb);
5258 		} else if (tcp_reset_check(sk, skb)) {
5259 			tcp_reset(sk);
5260 		}
5261 		goto discard;
5262 	}
5263 
5264 	/* Step 2: check RST bit */
5265 	if (th->rst) {
5266 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5267 		 * FIN and SACK too if available):
5268 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5269 		 * the right-most SACK block,
5270 		 * then
5271 		 *     RESET the connection
5272 		 * else
5273 		 *     Send a challenge ACK
5274 		 */
5275 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5276 		    tcp_reset_check(sk, skb)) {
5277 			rst_seq_match = true;
5278 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5279 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5280 			int max_sack = sp[0].end_seq;
5281 			int this_sack;
5282 
5283 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5284 			     ++this_sack) {
5285 				max_sack = after(sp[this_sack].end_seq,
5286 						 max_sack) ?
5287 					sp[this_sack].end_seq : max_sack;
5288 			}
5289 
5290 			if (TCP_SKB_CB(skb)->seq == max_sack)
5291 				rst_seq_match = true;
5292 		}
5293 
5294 		if (rst_seq_match)
5295 			tcp_reset(sk);
5296 		else {
5297 			/* Disable TFO if RST is out-of-order
5298 			 * and no data has been received
5299 			 * for current active TFO socket
5300 			 */
5301 			if (tp->syn_fastopen && !tp->data_segs_in &&
5302 			    sk->sk_state == TCP_ESTABLISHED)
5303 				tcp_fastopen_active_disable(sk);
5304 			tcp_send_challenge_ack(sk, skb);
5305 		}
5306 		goto discard;
5307 	}
5308 
5309 	/* step 3: check security and precedence [ignored] */
5310 
5311 	/* step 4: Check for a SYN
5312 	 * RFC 5961 4.2 : Send a challenge ack
5313 	 */
5314 	if (th->syn) {
5315 syn_challenge:
5316 		if (syn_inerr)
5317 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5318 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5319 		tcp_send_challenge_ack(sk, skb);
5320 		goto discard;
5321 	}
5322 
5323 	return true;
5324 
5325 discard:
5326 	tcp_drop(sk, skb);
5327 	return false;
5328 }
5329 
5330 /*
5331  *	TCP receive function for the ESTABLISHED state.
5332  *
5333  *	It is split into a fast path and a slow path. The fast path is
5334  * 	disabled when:
5335  *	- A zero window was announced from us - zero window probing
5336  *        is only handled properly in the slow path.
5337  *	- Out of order segments arrived.
5338  *	- Urgent data is expected.
5339  *	- There is no buffer space left
5340  *	- Unexpected TCP flags/window values/header lengths are received
5341  *	  (detected by checking the TCP header against pred_flags)
5342  *	- Data is sent in both directions. Fast path only supports pure senders
5343  *	  or pure receivers (this means either the sequence number or the ack
5344  *	  value must stay constant)
5345  *	- Unexpected TCP option.
5346  *
5347  *	When these conditions are not satisfied it drops into a standard
5348  *	receive procedure patterned after RFC793 to handle all cases.
5349  *	The first three cases are guaranteed by proper pred_flags setting,
5350  *	the rest is checked inline. Fast processing is turned on in
5351  *	tcp_data_queue when everything is OK.
5352  */
5353 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5354 			 const struct tcphdr *th, unsigned int len)
5355 {
5356 	struct tcp_sock *tp = tcp_sk(sk);
5357 
5358 	skb_mstamp_get(&tp->tcp_mstamp);
5359 	if (unlikely(!sk->sk_rx_dst))
5360 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5361 	/*
5362 	 *	Header prediction.
5363 	 *	The code loosely follows the one in the famous
5364 	 *	"30 instruction TCP receive" Van Jacobson mail.
5365 	 *
5366 	 *	Van's trick is to deposit buffers into socket queue
5367 	 *	on a device interrupt, to call tcp_recv function
5368 	 *	on the receive process context and checksum and copy
5369 	 *	the buffer to user space. smart...
5370 	 *
5371 	 *	Our current scheme is not silly either but we take the
5372 	 *	extra cost of the net_bh soft interrupt processing...
5373 	 *	We do checksum and copy also but from device to kernel.
5374 	 */
5375 
5376 	tp->rx_opt.saw_tstamp = 0;
5377 
5378 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5379 	 *	if header_prediction is to be made
5380 	 *	'S' will always be tp->tcp_header_len >> 2
5381 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5382 	 *  turn it off	(when there are holes in the receive
5383 	 *	 space for instance)
5384 	 *	PSH flag is ignored.
5385 	 */
5386 
5387 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5388 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5389 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5390 		int tcp_header_len = tp->tcp_header_len;
5391 
5392 		/* Timestamp header prediction: tcp_header_len
5393 		 * is automatically equal to th->doff*4 due to pred_flags
5394 		 * match.
5395 		 */
5396 
5397 		/* Check timestamp */
5398 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5399 			/* No? Slow path! */
5400 			if (!tcp_parse_aligned_timestamp(tp, th))
5401 				goto slow_path;
5402 
5403 			/* If PAWS failed, check it more carefully in slow path */
5404 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5405 				goto slow_path;
5406 
5407 			/* DO NOT update ts_recent here, if checksum fails
5408 			 * and timestamp was corrupted part, it will result
5409 			 * in a hung connection since we will drop all
5410 			 * future packets due to the PAWS test.
5411 			 */
5412 		}
5413 
5414 		if (len <= tcp_header_len) {
5415 			/* Bulk data transfer: sender */
5416 			if (len == tcp_header_len) {
5417 				/* Predicted packet is in window by definition.
5418 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5419 				 * Hence, check seq<=rcv_wup reduces to:
5420 				 */
5421 				if (tcp_header_len ==
5422 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5423 				    tp->rcv_nxt == tp->rcv_wup)
5424 					tcp_store_ts_recent(tp);
5425 
5426 				/* We know that such packets are checksummed
5427 				 * on entry.
5428 				 */
5429 				tcp_ack(sk, skb, 0);
5430 				__kfree_skb(skb);
5431 				tcp_data_snd_check(sk);
5432 				return;
5433 			} else { /* Header too small */
5434 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5435 				goto discard;
5436 			}
5437 		} else {
5438 			int eaten = 0;
5439 			bool fragstolen = false;
5440 
5441 			if (tp->ucopy.task == current &&
5442 			    tp->copied_seq == tp->rcv_nxt &&
5443 			    len - tcp_header_len <= tp->ucopy.len &&
5444 			    sock_owned_by_user(sk)) {
5445 				__set_current_state(TASK_RUNNING);
5446 
5447 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5448 					/* Predicted packet is in window by definition.
5449 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5450 					 * Hence, check seq<=rcv_wup reduces to:
5451 					 */
5452 					if (tcp_header_len ==
5453 					    (sizeof(struct tcphdr) +
5454 					     TCPOLEN_TSTAMP_ALIGNED) &&
5455 					    tp->rcv_nxt == tp->rcv_wup)
5456 						tcp_store_ts_recent(tp);
5457 
5458 					tcp_rcv_rtt_measure_ts(sk, skb);
5459 
5460 					__skb_pull(skb, tcp_header_len);
5461 					tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5462 					NET_INC_STATS(sock_net(sk),
5463 							LINUX_MIB_TCPHPHITSTOUSER);
5464 					eaten = 1;
5465 				}
5466 			}
5467 			if (!eaten) {
5468 				if (tcp_checksum_complete(skb))
5469 					goto csum_error;
5470 
5471 				if ((int)skb->truesize > sk->sk_forward_alloc)
5472 					goto step5;
5473 
5474 				/* Predicted packet is in window by definition.
5475 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5476 				 * Hence, check seq<=rcv_wup reduces to:
5477 				 */
5478 				if (tcp_header_len ==
5479 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5480 				    tp->rcv_nxt == tp->rcv_wup)
5481 					tcp_store_ts_recent(tp);
5482 
5483 				tcp_rcv_rtt_measure_ts(sk, skb);
5484 
5485 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5486 
5487 				/* Bulk data transfer: receiver */
5488 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5489 						      &fragstolen);
5490 			}
5491 
5492 			tcp_event_data_recv(sk, skb);
5493 
5494 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5495 				/* Well, only one small jumplet in fast path... */
5496 				tcp_ack(sk, skb, FLAG_DATA);
5497 				tcp_data_snd_check(sk);
5498 				if (!inet_csk_ack_scheduled(sk))
5499 					goto no_ack;
5500 			}
5501 
5502 			__tcp_ack_snd_check(sk, 0);
5503 no_ack:
5504 			if (eaten)
5505 				kfree_skb_partial(skb, fragstolen);
5506 			sk->sk_data_ready(sk);
5507 			return;
5508 		}
5509 	}
5510 
5511 slow_path:
5512 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5513 		goto csum_error;
5514 
5515 	if (!th->ack && !th->rst && !th->syn)
5516 		goto discard;
5517 
5518 	/*
5519 	 *	Standard slow path.
5520 	 */
5521 
5522 	if (!tcp_validate_incoming(sk, skb, th, 1))
5523 		return;
5524 
5525 step5:
5526 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5527 		goto discard;
5528 
5529 	tcp_rcv_rtt_measure_ts(sk, skb);
5530 
5531 	/* Process urgent data. */
5532 	tcp_urg(sk, skb, th);
5533 
5534 	/* step 7: process the segment text */
5535 	tcp_data_queue(sk, skb);
5536 
5537 	tcp_data_snd_check(sk);
5538 	tcp_ack_snd_check(sk);
5539 	return;
5540 
5541 csum_error:
5542 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5543 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5544 
5545 discard:
5546 	tcp_drop(sk, skb);
5547 }
5548 EXPORT_SYMBOL(tcp_rcv_established);
5549 
5550 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5551 {
5552 	struct tcp_sock *tp = tcp_sk(sk);
5553 	struct inet_connection_sock *icsk = inet_csk(sk);
5554 
5555 	tcp_set_state(sk, TCP_ESTABLISHED);
5556 	icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5557 
5558 	if (skb) {
5559 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5560 		security_inet_conn_established(sk, skb);
5561 	}
5562 
5563 	/* Make sure socket is routed, for correct metrics.  */
5564 	icsk->icsk_af_ops->rebuild_header(sk);
5565 
5566 	tcp_init_metrics(sk);
5567 
5568 	tcp_init_congestion_control(sk);
5569 
5570 	/* Prevent spurious tcp_cwnd_restart() on first data
5571 	 * packet.
5572 	 */
5573 	tp->lsndtime = tcp_time_stamp;
5574 
5575 	tcp_init_buffer_space(sk);
5576 
5577 	if (sock_flag(sk, SOCK_KEEPOPEN))
5578 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5579 
5580 	if (!tp->rx_opt.snd_wscale)
5581 		__tcp_fast_path_on(tp, tp->snd_wnd);
5582 	else
5583 		tp->pred_flags = 0;
5584 
5585 }
5586 
5587 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5588 				    struct tcp_fastopen_cookie *cookie)
5589 {
5590 	struct tcp_sock *tp = tcp_sk(sk);
5591 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5592 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5593 	bool syn_drop = false;
5594 
5595 	if (mss == tp->rx_opt.user_mss) {
5596 		struct tcp_options_received opt;
5597 
5598 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5599 		tcp_clear_options(&opt);
5600 		opt.user_mss = opt.mss_clamp = 0;
5601 		tcp_parse_options(synack, &opt, 0, NULL);
5602 		mss = opt.mss_clamp;
5603 	}
5604 
5605 	if (!tp->syn_fastopen) {
5606 		/* Ignore an unsolicited cookie */
5607 		cookie->len = -1;
5608 	} else if (tp->total_retrans) {
5609 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5610 		 * acknowledges data. Presumably the remote received only
5611 		 * the retransmitted (regular) SYNs: either the original
5612 		 * SYN-data or the corresponding SYN-ACK was dropped.
5613 		 */
5614 		syn_drop = (cookie->len < 0 && data);
5615 	} else if (cookie->len < 0 && !tp->syn_data) {
5616 		/* We requested a cookie but didn't get it. If we did not use
5617 		 * the (old) exp opt format then try so next time (try_exp=1).
5618 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5619 		 */
5620 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5621 	}
5622 
5623 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5624 
5625 	if (data) { /* Retransmit unacked data in SYN */
5626 		tcp_for_write_queue_from(data, sk) {
5627 			if (data == tcp_send_head(sk) ||
5628 			    __tcp_retransmit_skb(sk, data, 1))
5629 				break;
5630 		}
5631 		tcp_rearm_rto(sk);
5632 		NET_INC_STATS(sock_net(sk),
5633 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5634 		return true;
5635 	}
5636 	tp->syn_data_acked = tp->syn_data;
5637 	if (tp->syn_data_acked)
5638 		NET_INC_STATS(sock_net(sk),
5639 				LINUX_MIB_TCPFASTOPENACTIVE);
5640 
5641 	tcp_fastopen_add_skb(sk, synack);
5642 
5643 	return false;
5644 }
5645 
5646 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5647 					 const struct tcphdr *th)
5648 {
5649 	struct inet_connection_sock *icsk = inet_csk(sk);
5650 	struct tcp_sock *tp = tcp_sk(sk);
5651 	struct tcp_fastopen_cookie foc = { .len = -1 };
5652 	int saved_clamp = tp->rx_opt.mss_clamp;
5653 	bool fastopen_fail;
5654 
5655 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5656 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5657 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5658 
5659 	if (th->ack) {
5660 		/* rfc793:
5661 		 * "If the state is SYN-SENT then
5662 		 *    first check the ACK bit
5663 		 *      If the ACK bit is set
5664 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5665 		 *        a reset (unless the RST bit is set, if so drop
5666 		 *        the segment and return)"
5667 		 */
5668 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5669 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5670 			goto reset_and_undo;
5671 
5672 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5673 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5674 			     tcp_time_stamp)) {
5675 			NET_INC_STATS(sock_net(sk),
5676 					LINUX_MIB_PAWSACTIVEREJECTED);
5677 			goto reset_and_undo;
5678 		}
5679 
5680 		/* Now ACK is acceptable.
5681 		 *
5682 		 * "If the RST bit is set
5683 		 *    If the ACK was acceptable then signal the user "error:
5684 		 *    connection reset", drop the segment, enter CLOSED state,
5685 		 *    delete TCB, and return."
5686 		 */
5687 
5688 		if (th->rst) {
5689 			tcp_reset(sk);
5690 			goto discard;
5691 		}
5692 
5693 		/* rfc793:
5694 		 *   "fifth, if neither of the SYN or RST bits is set then
5695 		 *    drop the segment and return."
5696 		 *
5697 		 *    See note below!
5698 		 *                                        --ANK(990513)
5699 		 */
5700 		if (!th->syn)
5701 			goto discard_and_undo;
5702 
5703 		/* rfc793:
5704 		 *   "If the SYN bit is on ...
5705 		 *    are acceptable then ...
5706 		 *    (our SYN has been ACKed), change the connection
5707 		 *    state to ESTABLISHED..."
5708 		 */
5709 
5710 		tcp_ecn_rcv_synack(tp, th);
5711 
5712 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5713 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5714 
5715 		/* Ok.. it's good. Set up sequence numbers and
5716 		 * move to established.
5717 		 */
5718 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5719 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5720 
5721 		/* RFC1323: The window in SYN & SYN/ACK segments is
5722 		 * never scaled.
5723 		 */
5724 		tp->snd_wnd = ntohs(th->window);
5725 
5726 		if (!tp->rx_opt.wscale_ok) {
5727 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5728 			tp->window_clamp = min(tp->window_clamp, 65535U);
5729 		}
5730 
5731 		if (tp->rx_opt.saw_tstamp) {
5732 			tp->rx_opt.tstamp_ok	   = 1;
5733 			tp->tcp_header_len =
5734 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5735 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5736 			tcp_store_ts_recent(tp);
5737 		} else {
5738 			tp->tcp_header_len = sizeof(struct tcphdr);
5739 		}
5740 
5741 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5742 			tcp_enable_fack(tp);
5743 
5744 		tcp_mtup_init(sk);
5745 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5746 		tcp_initialize_rcv_mss(sk);
5747 
5748 		/* Remember, tcp_poll() does not lock socket!
5749 		 * Change state from SYN-SENT only after copied_seq
5750 		 * is initialized. */
5751 		tp->copied_seq = tp->rcv_nxt;
5752 
5753 		smp_mb();
5754 
5755 		tcp_finish_connect(sk, skb);
5756 
5757 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5758 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5759 
5760 		if (!sock_flag(sk, SOCK_DEAD)) {
5761 			sk->sk_state_change(sk);
5762 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5763 		}
5764 		if (fastopen_fail)
5765 			return -1;
5766 		if (sk->sk_write_pending ||
5767 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5768 		    icsk->icsk_ack.pingpong) {
5769 			/* Save one ACK. Data will be ready after
5770 			 * several ticks, if write_pending is set.
5771 			 *
5772 			 * It may be deleted, but with this feature tcpdumps
5773 			 * look so _wonderfully_ clever, that I was not able
5774 			 * to stand against the temptation 8)     --ANK
5775 			 */
5776 			inet_csk_schedule_ack(sk);
5777 			tcp_enter_quickack_mode(sk);
5778 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5779 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5780 
5781 discard:
5782 			tcp_drop(sk, skb);
5783 			return 0;
5784 		} else {
5785 			tcp_send_ack(sk);
5786 		}
5787 		return -1;
5788 	}
5789 
5790 	/* No ACK in the segment */
5791 
5792 	if (th->rst) {
5793 		/* rfc793:
5794 		 * "If the RST bit is set
5795 		 *
5796 		 *      Otherwise (no ACK) drop the segment and return."
5797 		 */
5798 
5799 		goto discard_and_undo;
5800 	}
5801 
5802 	/* PAWS check. */
5803 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5804 	    tcp_paws_reject(&tp->rx_opt, 0))
5805 		goto discard_and_undo;
5806 
5807 	if (th->syn) {
5808 		/* We see SYN without ACK. It is attempt of
5809 		 * simultaneous connect with crossed SYNs.
5810 		 * Particularly, it can be connect to self.
5811 		 */
5812 		tcp_set_state(sk, TCP_SYN_RECV);
5813 
5814 		if (tp->rx_opt.saw_tstamp) {
5815 			tp->rx_opt.tstamp_ok = 1;
5816 			tcp_store_ts_recent(tp);
5817 			tp->tcp_header_len =
5818 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5819 		} else {
5820 			tp->tcp_header_len = sizeof(struct tcphdr);
5821 		}
5822 
5823 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5824 		tp->copied_seq = tp->rcv_nxt;
5825 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5826 
5827 		/* RFC1323: The window in SYN & SYN/ACK segments is
5828 		 * never scaled.
5829 		 */
5830 		tp->snd_wnd    = ntohs(th->window);
5831 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5832 		tp->max_window = tp->snd_wnd;
5833 
5834 		tcp_ecn_rcv_syn(tp, th);
5835 
5836 		tcp_mtup_init(sk);
5837 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5838 		tcp_initialize_rcv_mss(sk);
5839 
5840 		tcp_send_synack(sk);
5841 #if 0
5842 		/* Note, we could accept data and URG from this segment.
5843 		 * There are no obstacles to make this (except that we must
5844 		 * either change tcp_recvmsg() to prevent it from returning data
5845 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5846 		 *
5847 		 * However, if we ignore data in ACKless segments sometimes,
5848 		 * we have no reasons to accept it sometimes.
5849 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5850 		 * is not flawless. So, discard packet for sanity.
5851 		 * Uncomment this return to process the data.
5852 		 */
5853 		return -1;
5854 #else
5855 		goto discard;
5856 #endif
5857 	}
5858 	/* "fifth, if neither of the SYN or RST bits is set then
5859 	 * drop the segment and return."
5860 	 */
5861 
5862 discard_and_undo:
5863 	tcp_clear_options(&tp->rx_opt);
5864 	tp->rx_opt.mss_clamp = saved_clamp;
5865 	goto discard;
5866 
5867 reset_and_undo:
5868 	tcp_clear_options(&tp->rx_opt);
5869 	tp->rx_opt.mss_clamp = saved_clamp;
5870 	return 1;
5871 }
5872 
5873 /*
5874  *	This function implements the receiving procedure of RFC 793 for
5875  *	all states except ESTABLISHED and TIME_WAIT.
5876  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5877  *	address independent.
5878  */
5879 
5880 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5881 {
5882 	struct tcp_sock *tp = tcp_sk(sk);
5883 	struct inet_connection_sock *icsk = inet_csk(sk);
5884 	const struct tcphdr *th = tcp_hdr(skb);
5885 	struct request_sock *req;
5886 	int queued = 0;
5887 	bool acceptable;
5888 
5889 	switch (sk->sk_state) {
5890 	case TCP_CLOSE:
5891 		goto discard;
5892 
5893 	case TCP_LISTEN:
5894 		if (th->ack)
5895 			return 1;
5896 
5897 		if (th->rst)
5898 			goto discard;
5899 
5900 		if (th->syn) {
5901 			if (th->fin)
5902 				goto discard;
5903 			/* It is possible that we process SYN packets from backlog,
5904 			 * so we need to make sure to disable BH right there.
5905 			 */
5906 			local_bh_disable();
5907 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5908 			local_bh_enable();
5909 
5910 			if (!acceptable)
5911 				return 1;
5912 			consume_skb(skb);
5913 			return 0;
5914 		}
5915 		goto discard;
5916 
5917 	case TCP_SYN_SENT:
5918 		tp->rx_opt.saw_tstamp = 0;
5919 		skb_mstamp_get(&tp->tcp_mstamp);
5920 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5921 		if (queued >= 0)
5922 			return queued;
5923 
5924 		/* Do step6 onward by hand. */
5925 		tcp_urg(sk, skb, th);
5926 		__kfree_skb(skb);
5927 		tcp_data_snd_check(sk);
5928 		return 0;
5929 	}
5930 
5931 	skb_mstamp_get(&tp->tcp_mstamp);
5932 	tp->rx_opt.saw_tstamp = 0;
5933 	req = tp->fastopen_rsk;
5934 	if (req) {
5935 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5936 		    sk->sk_state != TCP_FIN_WAIT1);
5937 
5938 		if (!tcp_check_req(sk, skb, req, true))
5939 			goto discard;
5940 	}
5941 
5942 	if (!th->ack && !th->rst && !th->syn)
5943 		goto discard;
5944 
5945 	if (!tcp_validate_incoming(sk, skb, th, 0))
5946 		return 0;
5947 
5948 	/* step 5: check the ACK field */
5949 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5950 				      FLAG_UPDATE_TS_RECENT) > 0;
5951 
5952 	switch (sk->sk_state) {
5953 	case TCP_SYN_RECV:
5954 		if (!acceptable)
5955 			return 1;
5956 
5957 		if (!tp->srtt_us)
5958 			tcp_synack_rtt_meas(sk, req);
5959 
5960 		/* Once we leave TCP_SYN_RECV, we no longer need req
5961 		 * so release it.
5962 		 */
5963 		if (req) {
5964 			inet_csk(sk)->icsk_retransmits = 0;
5965 			reqsk_fastopen_remove(sk, req, false);
5966 		} else {
5967 			/* Make sure socket is routed, for correct metrics. */
5968 			icsk->icsk_af_ops->rebuild_header(sk);
5969 			tcp_init_congestion_control(sk);
5970 
5971 			tcp_mtup_init(sk);
5972 			tp->copied_seq = tp->rcv_nxt;
5973 			tcp_init_buffer_space(sk);
5974 		}
5975 		smp_mb();
5976 		tcp_set_state(sk, TCP_ESTABLISHED);
5977 		sk->sk_state_change(sk);
5978 
5979 		/* Note, that this wakeup is only for marginal crossed SYN case.
5980 		 * Passively open sockets are not waked up, because
5981 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5982 		 */
5983 		if (sk->sk_socket)
5984 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5985 
5986 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5987 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5988 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5989 
5990 		if (tp->rx_opt.tstamp_ok)
5991 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5992 
5993 		if (req) {
5994 			/* Re-arm the timer because data may have been sent out.
5995 			 * This is similar to the regular data transmission case
5996 			 * when new data has just been ack'ed.
5997 			 *
5998 			 * (TFO) - we could try to be more aggressive and
5999 			 * retransmitting any data sooner based on when they
6000 			 * are sent out.
6001 			 */
6002 			tcp_rearm_rto(sk);
6003 		} else
6004 			tcp_init_metrics(sk);
6005 
6006 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6007 			tcp_update_pacing_rate(sk);
6008 
6009 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6010 		tp->lsndtime = tcp_time_stamp;
6011 
6012 		tcp_initialize_rcv_mss(sk);
6013 		tcp_fast_path_on(tp);
6014 		break;
6015 
6016 	case TCP_FIN_WAIT1: {
6017 		int tmo;
6018 
6019 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6020 		 * Fast Open socket and this is the first acceptable
6021 		 * ACK we have received, this would have acknowledged
6022 		 * our SYNACK so stop the SYNACK timer.
6023 		 */
6024 		if (req) {
6025 			/* Return RST if ack_seq is invalid.
6026 			 * Note that RFC793 only says to generate a
6027 			 * DUPACK for it but for TCP Fast Open it seems
6028 			 * better to treat this case like TCP_SYN_RECV
6029 			 * above.
6030 			 */
6031 			if (!acceptable)
6032 				return 1;
6033 			/* We no longer need the request sock. */
6034 			reqsk_fastopen_remove(sk, req, false);
6035 			tcp_rearm_rto(sk);
6036 		}
6037 		if (tp->snd_una != tp->write_seq)
6038 			break;
6039 
6040 		tcp_set_state(sk, TCP_FIN_WAIT2);
6041 		sk->sk_shutdown |= SEND_SHUTDOWN;
6042 
6043 		sk_dst_confirm(sk);
6044 
6045 		if (!sock_flag(sk, SOCK_DEAD)) {
6046 			/* Wake up lingering close() */
6047 			sk->sk_state_change(sk);
6048 			break;
6049 		}
6050 
6051 		if (tp->linger2 < 0) {
6052 			tcp_done(sk);
6053 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6054 			return 1;
6055 		}
6056 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6057 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6058 			/* Receive out of order FIN after close() */
6059 			if (tp->syn_fastopen && th->fin)
6060 				tcp_fastopen_active_disable(sk);
6061 			tcp_done(sk);
6062 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6063 			return 1;
6064 		}
6065 
6066 		tmo = tcp_fin_time(sk);
6067 		if (tmo > TCP_TIMEWAIT_LEN) {
6068 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6069 		} else if (th->fin || sock_owned_by_user(sk)) {
6070 			/* Bad case. We could lose such FIN otherwise.
6071 			 * It is not a big problem, but it looks confusing
6072 			 * and not so rare event. We still can lose it now,
6073 			 * if it spins in bh_lock_sock(), but it is really
6074 			 * marginal case.
6075 			 */
6076 			inet_csk_reset_keepalive_timer(sk, tmo);
6077 		} else {
6078 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6079 			goto discard;
6080 		}
6081 		break;
6082 	}
6083 
6084 	case TCP_CLOSING:
6085 		if (tp->snd_una == tp->write_seq) {
6086 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6087 			goto discard;
6088 		}
6089 		break;
6090 
6091 	case TCP_LAST_ACK:
6092 		if (tp->snd_una == tp->write_seq) {
6093 			tcp_update_metrics(sk);
6094 			tcp_done(sk);
6095 			goto discard;
6096 		}
6097 		break;
6098 	}
6099 
6100 	/* step 6: check the URG bit */
6101 	tcp_urg(sk, skb, th);
6102 
6103 	/* step 7: process the segment text */
6104 	switch (sk->sk_state) {
6105 	case TCP_CLOSE_WAIT:
6106 	case TCP_CLOSING:
6107 	case TCP_LAST_ACK:
6108 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6109 			break;
6110 	case TCP_FIN_WAIT1:
6111 	case TCP_FIN_WAIT2:
6112 		/* RFC 793 says to queue data in these states,
6113 		 * RFC 1122 says we MUST send a reset.
6114 		 * BSD 4.4 also does reset.
6115 		 */
6116 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6117 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6118 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6119 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6120 				tcp_reset(sk);
6121 				return 1;
6122 			}
6123 		}
6124 		/* Fall through */
6125 	case TCP_ESTABLISHED:
6126 		tcp_data_queue(sk, skb);
6127 		queued = 1;
6128 		break;
6129 	}
6130 
6131 	/* tcp_data could move socket to TIME-WAIT */
6132 	if (sk->sk_state != TCP_CLOSE) {
6133 		tcp_data_snd_check(sk);
6134 		tcp_ack_snd_check(sk);
6135 	}
6136 
6137 	if (!queued) {
6138 discard:
6139 		tcp_drop(sk, skb);
6140 	}
6141 	return 0;
6142 }
6143 EXPORT_SYMBOL(tcp_rcv_state_process);
6144 
6145 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6146 {
6147 	struct inet_request_sock *ireq = inet_rsk(req);
6148 
6149 	if (family == AF_INET)
6150 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6151 				    &ireq->ir_rmt_addr, port);
6152 #if IS_ENABLED(CONFIG_IPV6)
6153 	else if (family == AF_INET6)
6154 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6155 				    &ireq->ir_v6_rmt_addr, port);
6156 #endif
6157 }
6158 
6159 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6160  *
6161  * If we receive a SYN packet with these bits set, it means a
6162  * network is playing bad games with TOS bits. In order to
6163  * avoid possible false congestion notifications, we disable
6164  * TCP ECN negotiation.
6165  *
6166  * Exception: tcp_ca wants ECN. This is required for DCTCP
6167  * congestion control: Linux DCTCP asserts ECT on all packets,
6168  * including SYN, which is most optimal solution; however,
6169  * others, such as FreeBSD do not.
6170  */
6171 static void tcp_ecn_create_request(struct request_sock *req,
6172 				   const struct sk_buff *skb,
6173 				   const struct sock *listen_sk,
6174 				   const struct dst_entry *dst)
6175 {
6176 	const struct tcphdr *th = tcp_hdr(skb);
6177 	const struct net *net = sock_net(listen_sk);
6178 	bool th_ecn = th->ece && th->cwr;
6179 	bool ect, ecn_ok;
6180 	u32 ecn_ok_dst;
6181 
6182 	if (!th_ecn)
6183 		return;
6184 
6185 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6186 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6187 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6188 
6189 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6190 	    (ecn_ok_dst & DST_FEATURE_ECN_CA))
6191 		inet_rsk(req)->ecn_ok = 1;
6192 }
6193 
6194 static void tcp_openreq_init(struct request_sock *req,
6195 			     const struct tcp_options_received *rx_opt,
6196 			     struct sk_buff *skb, const struct sock *sk)
6197 {
6198 	struct inet_request_sock *ireq = inet_rsk(req);
6199 
6200 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6201 	req->cookie_ts = 0;
6202 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6203 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6204 	skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6205 	tcp_rsk(req)->last_oow_ack_time = 0;
6206 	req->mss = rx_opt->mss_clamp;
6207 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6208 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6209 	ireq->sack_ok = rx_opt->sack_ok;
6210 	ireq->snd_wscale = rx_opt->snd_wscale;
6211 	ireq->wscale_ok = rx_opt->wscale_ok;
6212 	ireq->acked = 0;
6213 	ireq->ecn_ok = 0;
6214 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6215 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6216 	ireq->ir_mark = inet_request_mark(sk, skb);
6217 }
6218 
6219 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6220 				      struct sock *sk_listener,
6221 				      bool attach_listener)
6222 {
6223 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6224 					       attach_listener);
6225 
6226 	if (req) {
6227 		struct inet_request_sock *ireq = inet_rsk(req);
6228 
6229 		kmemcheck_annotate_bitfield(ireq, flags);
6230 		ireq->opt = NULL;
6231 #if IS_ENABLED(CONFIG_IPV6)
6232 		ireq->pktopts = NULL;
6233 #endif
6234 		atomic64_set(&ireq->ir_cookie, 0);
6235 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6236 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6237 		ireq->ireq_family = sk_listener->sk_family;
6238 	}
6239 
6240 	return req;
6241 }
6242 EXPORT_SYMBOL(inet_reqsk_alloc);
6243 
6244 /*
6245  * Return true if a syncookie should be sent
6246  */
6247 static bool tcp_syn_flood_action(const struct sock *sk,
6248 				 const struct sk_buff *skb,
6249 				 const char *proto)
6250 {
6251 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6252 	const char *msg = "Dropping request";
6253 	bool want_cookie = false;
6254 	struct net *net = sock_net(sk);
6255 
6256 #ifdef CONFIG_SYN_COOKIES
6257 	if (net->ipv4.sysctl_tcp_syncookies) {
6258 		msg = "Sending cookies";
6259 		want_cookie = true;
6260 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6261 	} else
6262 #endif
6263 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6264 
6265 	if (!queue->synflood_warned &&
6266 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6267 	    xchg(&queue->synflood_warned, 1) == 0)
6268 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6269 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6270 
6271 	return want_cookie;
6272 }
6273 
6274 static void tcp_reqsk_record_syn(const struct sock *sk,
6275 				 struct request_sock *req,
6276 				 const struct sk_buff *skb)
6277 {
6278 	if (tcp_sk(sk)->save_syn) {
6279 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6280 		u32 *copy;
6281 
6282 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6283 		if (copy) {
6284 			copy[0] = len;
6285 			memcpy(&copy[1], skb_network_header(skb), len);
6286 			req->saved_syn = copy;
6287 		}
6288 	}
6289 }
6290 
6291 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6292 		     const struct tcp_request_sock_ops *af_ops,
6293 		     struct sock *sk, struct sk_buff *skb)
6294 {
6295 	struct tcp_fastopen_cookie foc = { .len = -1 };
6296 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6297 	struct tcp_options_received tmp_opt;
6298 	struct tcp_sock *tp = tcp_sk(sk);
6299 	struct net *net = sock_net(sk);
6300 	struct sock *fastopen_sk = NULL;
6301 	struct dst_entry *dst = NULL;
6302 	struct request_sock *req;
6303 	bool want_cookie = false;
6304 	struct flowi fl;
6305 
6306 	/* TW buckets are converted to open requests without
6307 	 * limitations, they conserve resources and peer is
6308 	 * evidently real one.
6309 	 */
6310 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6311 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6312 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6313 		if (!want_cookie)
6314 			goto drop;
6315 	}
6316 
6317 	if (sk_acceptq_is_full(sk)) {
6318 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6319 		goto drop;
6320 	}
6321 
6322 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6323 	if (!req)
6324 		goto drop;
6325 
6326 	tcp_rsk(req)->af_specific = af_ops;
6327 	tcp_rsk(req)->ts_off = 0;
6328 
6329 	tcp_clear_options(&tmp_opt);
6330 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6331 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6332 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6333 
6334 	if (want_cookie && !tmp_opt.saw_tstamp)
6335 		tcp_clear_options(&tmp_opt);
6336 
6337 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6338 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6339 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6340 
6341 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6342 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6343 
6344 	af_ops->init_req(req, sk, skb);
6345 
6346 	if (security_inet_conn_request(sk, skb, req))
6347 		goto drop_and_free;
6348 
6349 	if (tmp_opt.tstamp_ok)
6350 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(skb);
6351 
6352 	if (!want_cookie && !isn) {
6353 		/* Kill the following clause, if you dislike this way. */
6354 		if (!net->ipv4.sysctl_tcp_syncookies &&
6355 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6356 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6357 		    !tcp_peer_is_proven(req, dst)) {
6358 			/* Without syncookies last quarter of
6359 			 * backlog is filled with destinations,
6360 			 * proven to be alive.
6361 			 * It means that we continue to communicate
6362 			 * to destinations, already remembered
6363 			 * to the moment of synflood.
6364 			 */
6365 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6366 				    rsk_ops->family);
6367 			goto drop_and_release;
6368 		}
6369 
6370 		isn = af_ops->init_seq(skb);
6371 	}
6372 	if (!dst) {
6373 		dst = af_ops->route_req(sk, &fl, req);
6374 		if (!dst)
6375 			goto drop_and_free;
6376 	}
6377 
6378 	tcp_ecn_create_request(req, skb, sk, dst);
6379 
6380 	if (want_cookie) {
6381 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6382 		req->cookie_ts = tmp_opt.tstamp_ok;
6383 		if (!tmp_opt.tstamp_ok)
6384 			inet_rsk(req)->ecn_ok = 0;
6385 	}
6386 
6387 	tcp_rsk(req)->snt_isn = isn;
6388 	tcp_rsk(req)->txhash = net_tx_rndhash();
6389 	tcp_openreq_init_rwin(req, sk, dst);
6390 	if (!want_cookie) {
6391 		tcp_reqsk_record_syn(sk, req, skb);
6392 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6393 	}
6394 	if (fastopen_sk) {
6395 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6396 				    &foc, TCP_SYNACK_FASTOPEN);
6397 		/* Add the child socket directly into the accept queue */
6398 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6399 		sk->sk_data_ready(sk);
6400 		bh_unlock_sock(fastopen_sk);
6401 		sock_put(fastopen_sk);
6402 	} else {
6403 		tcp_rsk(req)->tfo_listener = false;
6404 		if (!want_cookie)
6405 			inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6406 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6407 				    !want_cookie ? TCP_SYNACK_NORMAL :
6408 						   TCP_SYNACK_COOKIE);
6409 		if (want_cookie) {
6410 			reqsk_free(req);
6411 			return 0;
6412 		}
6413 	}
6414 	reqsk_put(req);
6415 	return 0;
6416 
6417 drop_and_release:
6418 	dst_release(dst);
6419 drop_and_free:
6420 	reqsk_free(req);
6421 drop:
6422 	tcp_listendrop(sk);
6423 	return 0;
6424 }
6425 EXPORT_SYMBOL(tcp_conn_request);
6426