xref: /linux/net/ipv4/tcp_input.c (revision 8f8d74ee110c02137f5b78ca0a2bd6c10331f267)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
205 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
206 				    unsigned int len)
207 {
208 	struct net_device *dev;
209 
210 	rcu_read_lock();
211 	dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
212 	if (!dev || len >= READ_ONCE(dev->mtu))
213 		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
214 			dev ? dev->name : "Unknown driver");
215 	rcu_read_unlock();
216 }
217 
218 /* Adapt the MSS value used to make delayed ack decision to the
219  * real world.
220  */
221 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
222 {
223 	struct inet_connection_sock *icsk = inet_csk(sk);
224 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
225 	unsigned int len;
226 
227 	icsk->icsk_ack.last_seg_size = 0;
228 
229 	/* skb->len may jitter because of SACKs, even if peer
230 	 * sends good full-sized frames.
231 	 */
232 	len = skb_shinfo(skb)->gso_size ? : skb->len;
233 	if (len >= icsk->icsk_ack.rcv_mss) {
234 		/* Note: divides are still a bit expensive.
235 		 * For the moment, only adjust scaling_ratio
236 		 * when we update icsk_ack.rcv_mss.
237 		 */
238 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
239 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
240 
241 			do_div(val, skb->truesize);
242 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
243 		}
244 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
245 					       tcp_sk(sk)->advmss);
246 		/* Account for possibly-removed options */
247 		DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
248 				tcp_gro_dev_warn, sk, skb, len);
249 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
250 		 * set then it is likely the end of an application write. So
251 		 * more data may not be arriving soon, and yet the data sender
252 		 * may be waiting for an ACK if cwnd-bound or using TX zero
253 		 * copy. So we set ICSK_ACK_PUSHED here so that
254 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
255 		 * reads all of the data and is not ping-pong. If len > MSS
256 		 * then this logic does not matter (and does not hurt) because
257 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
258 		 * reads data and there is more than an MSS of unACKed data.
259 		 */
260 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
261 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
262 	} else {
263 		/* Otherwise, we make more careful check taking into account,
264 		 * that SACKs block is variable.
265 		 *
266 		 * "len" is invariant segment length, including TCP header.
267 		 */
268 		len += skb->data - skb_transport_header(skb);
269 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
270 		    /* If PSH is not set, packet should be
271 		     * full sized, provided peer TCP is not badly broken.
272 		     * This observation (if it is correct 8)) allows
273 		     * to handle super-low mtu links fairly.
274 		     */
275 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
276 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
277 			/* Subtract also invariant (if peer is RFC compliant),
278 			 * tcp header plus fixed timestamp option length.
279 			 * Resulting "len" is MSS free of SACK jitter.
280 			 */
281 			len -= tcp_sk(sk)->tcp_header_len;
282 			icsk->icsk_ack.last_seg_size = len;
283 			if (len == lss) {
284 				icsk->icsk_ack.rcv_mss = len;
285 				return;
286 			}
287 		}
288 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
289 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
290 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
291 	}
292 }
293 
294 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
295 {
296 	struct inet_connection_sock *icsk = inet_csk(sk);
297 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
298 
299 	if (quickacks == 0)
300 		quickacks = 2;
301 	quickacks = min(quickacks, max_quickacks);
302 	if (quickacks > icsk->icsk_ack.quick)
303 		icsk->icsk_ack.quick = quickacks;
304 }
305 
306 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
307 {
308 	struct inet_connection_sock *icsk = inet_csk(sk);
309 
310 	tcp_incr_quickack(sk, max_quickacks);
311 	inet_csk_exit_pingpong_mode(sk);
312 	icsk->icsk_ack.ato = TCP_ATO_MIN;
313 }
314 
315 /* Send ACKs quickly, if "quick" count is not exhausted
316  * and the session is not interactive.
317  */
318 
319 static bool tcp_in_quickack_mode(struct sock *sk)
320 {
321 	const struct inet_connection_sock *icsk = inet_csk(sk);
322 	const struct dst_entry *dst = __sk_dst_get(sk);
323 
324 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
325 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
326 }
327 
328 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
329 {
330 	if (tp->ecn_flags & TCP_ECN_OK)
331 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
332 }
333 
334 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
335 {
336 	if (tcp_hdr(skb)->cwr) {
337 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
338 
339 		/* If the sender is telling us it has entered CWR, then its
340 		 * cwnd may be very low (even just 1 packet), so we should ACK
341 		 * immediately.
342 		 */
343 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
344 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
345 	}
346 }
347 
348 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
349 {
350 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
351 }
352 
353 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
354 {
355 	struct tcp_sock *tp = tcp_sk(sk);
356 
357 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
358 	case INET_ECN_NOT_ECT:
359 		/* Funny extension: if ECT is not set on a segment,
360 		 * and we already seen ECT on a previous segment,
361 		 * it is probably a retransmit.
362 		 */
363 		if (tp->ecn_flags & TCP_ECN_SEEN)
364 			tcp_enter_quickack_mode(sk, 2);
365 		break;
366 	case INET_ECN_CE:
367 		if (tcp_ca_needs_ecn(sk))
368 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
369 
370 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
371 			/* Better not delay acks, sender can have a very low cwnd */
372 			tcp_enter_quickack_mode(sk, 2);
373 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
374 		}
375 		tp->ecn_flags |= TCP_ECN_SEEN;
376 		break;
377 	default:
378 		if (tcp_ca_needs_ecn(sk))
379 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
380 		tp->ecn_flags |= TCP_ECN_SEEN;
381 		break;
382 	}
383 }
384 
385 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
386 {
387 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
388 		__tcp_ecn_check_ce(sk, skb);
389 }
390 
391 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
392 {
393 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
394 		tp->ecn_flags &= ~TCP_ECN_OK;
395 }
396 
397 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
398 {
399 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
400 		tp->ecn_flags &= ~TCP_ECN_OK;
401 }
402 
403 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
404 {
405 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
406 		return true;
407 	return false;
408 }
409 
410 /* Buffer size and advertised window tuning.
411  *
412  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
413  */
414 
415 static void tcp_sndbuf_expand(struct sock *sk)
416 {
417 	const struct tcp_sock *tp = tcp_sk(sk);
418 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
419 	int sndmem, per_mss;
420 	u32 nr_segs;
421 
422 	/* Worst case is non GSO/TSO : each frame consumes one skb
423 	 * and skb->head is kmalloced using power of two area of memory
424 	 */
425 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
426 		  MAX_TCP_HEADER +
427 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
428 
429 	per_mss = roundup_pow_of_two(per_mss) +
430 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
431 
432 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
433 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
434 
435 	/* Fast Recovery (RFC 5681 3.2) :
436 	 * Cubic needs 1.7 factor, rounded to 2 to include
437 	 * extra cushion (application might react slowly to EPOLLOUT)
438 	 */
439 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
440 	sndmem *= nr_segs * per_mss;
441 
442 	if (sk->sk_sndbuf < sndmem)
443 		WRITE_ONCE(sk->sk_sndbuf,
444 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
445 }
446 
447 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
448  *
449  * All tcp_full_space() is split to two parts: "network" buffer, allocated
450  * forward and advertised in receiver window (tp->rcv_wnd) and
451  * "application buffer", required to isolate scheduling/application
452  * latencies from network.
453  * window_clamp is maximal advertised window. It can be less than
454  * tcp_full_space(), in this case tcp_full_space() - window_clamp
455  * is reserved for "application" buffer. The less window_clamp is
456  * the smoother our behaviour from viewpoint of network, but the lower
457  * throughput and the higher sensitivity of the connection to losses. 8)
458  *
459  * rcv_ssthresh is more strict window_clamp used at "slow start"
460  * phase to predict further behaviour of this connection.
461  * It is used for two goals:
462  * - to enforce header prediction at sender, even when application
463  *   requires some significant "application buffer". It is check #1.
464  * - to prevent pruning of receive queue because of misprediction
465  *   of receiver window. Check #2.
466  *
467  * The scheme does not work when sender sends good segments opening
468  * window and then starts to feed us spaghetti. But it should work
469  * in common situations. Otherwise, we have to rely on queue collapsing.
470  */
471 
472 /* Slow part of check#2. */
473 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
474 			     unsigned int skbtruesize)
475 {
476 	const struct tcp_sock *tp = tcp_sk(sk);
477 	/* Optimize this! */
478 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
479 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
480 
481 	while (tp->rcv_ssthresh <= window) {
482 		if (truesize <= skb->len)
483 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
484 
485 		truesize >>= 1;
486 		window >>= 1;
487 	}
488 	return 0;
489 }
490 
491 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
492  * can play nice with us, as sk_buff and skb->head might be either
493  * freed or shared with up to MAX_SKB_FRAGS segments.
494  * Only give a boost to drivers using page frag(s) to hold the frame(s),
495  * and if no payload was pulled in skb->head before reaching us.
496  */
497 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
498 {
499 	u32 truesize = skb->truesize;
500 
501 	if (adjust && !skb_headlen(skb)) {
502 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
503 		/* paranoid check, some drivers might be buggy */
504 		if (unlikely((int)truesize < (int)skb->len))
505 			truesize = skb->truesize;
506 	}
507 	return truesize;
508 }
509 
510 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
511 			    bool adjust)
512 {
513 	struct tcp_sock *tp = tcp_sk(sk);
514 	int room;
515 
516 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
517 
518 	if (room <= 0)
519 		return;
520 
521 	/* Check #1 */
522 	if (!tcp_under_memory_pressure(sk)) {
523 		unsigned int truesize = truesize_adjust(adjust, skb);
524 		int incr;
525 
526 		/* Check #2. Increase window, if skb with such overhead
527 		 * will fit to rcvbuf in future.
528 		 */
529 		if (tcp_win_from_space(sk, truesize) <= skb->len)
530 			incr = 2 * tp->advmss;
531 		else
532 			incr = __tcp_grow_window(sk, skb, truesize);
533 
534 		if (incr) {
535 			incr = max_t(int, incr, 2 * skb->len);
536 			tp->rcv_ssthresh += min(room, incr);
537 			inet_csk(sk)->icsk_ack.quick |= 1;
538 		}
539 	} else {
540 		/* Under pressure:
541 		 * Adjust rcv_ssthresh according to reserved mem
542 		 */
543 		tcp_adjust_rcv_ssthresh(sk);
544 	}
545 }
546 
547 /* 3. Try to fixup all. It is made immediately after connection enters
548  *    established state.
549  */
550 static void tcp_init_buffer_space(struct sock *sk)
551 {
552 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
553 	struct tcp_sock *tp = tcp_sk(sk);
554 	int maxwin;
555 
556 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
557 		tcp_sndbuf_expand(sk);
558 
559 	tcp_mstamp_refresh(tp);
560 	tp->rcvq_space.time = tp->tcp_mstamp;
561 	tp->rcvq_space.seq = tp->copied_seq;
562 
563 	maxwin = tcp_full_space(sk);
564 
565 	if (tp->window_clamp >= maxwin) {
566 		tp->window_clamp = maxwin;
567 
568 		if (tcp_app_win && maxwin > 4 * tp->advmss)
569 			tp->window_clamp = max(maxwin -
570 					       (maxwin >> tcp_app_win),
571 					       4 * tp->advmss);
572 	}
573 
574 	/* Force reservation of one segment. */
575 	if (tcp_app_win &&
576 	    tp->window_clamp > 2 * tp->advmss &&
577 	    tp->window_clamp + tp->advmss > maxwin)
578 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
579 
580 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
581 	tp->snd_cwnd_stamp = tcp_jiffies32;
582 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
583 				    (u32)TCP_INIT_CWND * tp->advmss);
584 }
585 
586 /* 4. Recalculate window clamp after socket hit its memory bounds. */
587 static void tcp_clamp_window(struct sock *sk)
588 {
589 	struct tcp_sock *tp = tcp_sk(sk);
590 	struct inet_connection_sock *icsk = inet_csk(sk);
591 	struct net *net = sock_net(sk);
592 	int rmem2;
593 
594 	icsk->icsk_ack.quick = 0;
595 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
596 
597 	if (sk->sk_rcvbuf < rmem2 &&
598 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
599 	    !tcp_under_memory_pressure(sk) &&
600 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
601 		WRITE_ONCE(sk->sk_rcvbuf,
602 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
603 	}
604 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
605 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
606 }
607 
608 /* Initialize RCV_MSS value.
609  * RCV_MSS is an our guess about MSS used by the peer.
610  * We haven't any direct information about the MSS.
611  * It's better to underestimate the RCV_MSS rather than overestimate.
612  * Overestimations make us ACKing less frequently than needed.
613  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
614  */
615 void tcp_initialize_rcv_mss(struct sock *sk)
616 {
617 	const struct tcp_sock *tp = tcp_sk(sk);
618 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
619 
620 	hint = min(hint, tp->rcv_wnd / 2);
621 	hint = min(hint, TCP_MSS_DEFAULT);
622 	hint = max(hint, TCP_MIN_MSS);
623 
624 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
625 }
626 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
627 
628 /* Receiver "autotuning" code.
629  *
630  * The algorithm for RTT estimation w/o timestamps is based on
631  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
632  * <https://public.lanl.gov/radiant/pubs.html#DRS>
633  *
634  * More detail on this code can be found at
635  * <http://staff.psc.edu/jheffner/>,
636  * though this reference is out of date.  A new paper
637  * is pending.
638  */
639 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
640 {
641 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
642 	long m = sample;
643 
644 	if (new_sample != 0) {
645 		/* If we sample in larger samples in the non-timestamp
646 		 * case, we could grossly overestimate the RTT especially
647 		 * with chatty applications or bulk transfer apps which
648 		 * are stalled on filesystem I/O.
649 		 *
650 		 * Also, since we are only going for a minimum in the
651 		 * non-timestamp case, we do not smooth things out
652 		 * else with timestamps disabled convergence takes too
653 		 * long.
654 		 */
655 		if (!win_dep) {
656 			m -= (new_sample >> 3);
657 			new_sample += m;
658 		} else {
659 			m <<= 3;
660 			if (m < new_sample)
661 				new_sample = m;
662 		}
663 	} else {
664 		/* No previous measure. */
665 		new_sample = m << 3;
666 	}
667 
668 	tp->rcv_rtt_est.rtt_us = new_sample;
669 }
670 
671 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
672 {
673 	u32 delta_us;
674 
675 	if (tp->rcv_rtt_est.time == 0)
676 		goto new_measure;
677 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
678 		return;
679 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
680 	if (!delta_us)
681 		delta_us = 1;
682 	tcp_rcv_rtt_update(tp, delta_us, 1);
683 
684 new_measure:
685 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
686 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
687 }
688 
689 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp)
690 {
691 	u32 delta, delta_us;
692 
693 	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
694 	if (tp->tcp_usec_ts)
695 		return delta;
696 
697 	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
698 		if (!delta)
699 			delta = 1;
700 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
701 		return delta_us;
702 	}
703 	return -1;
704 }
705 
706 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
707 					  const struct sk_buff *skb)
708 {
709 	struct tcp_sock *tp = tcp_sk(sk);
710 
711 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
712 		return;
713 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
714 
715 	if (TCP_SKB_CB(skb)->end_seq -
716 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
717 		s32 delta = tcp_rtt_tsopt_us(tp);
718 
719 		if (delta >= 0)
720 			tcp_rcv_rtt_update(tp, delta, 0);
721 	}
722 }
723 
724 /*
725  * This function should be called every time data is copied to user space.
726  * It calculates the appropriate TCP receive buffer space.
727  */
728 void tcp_rcv_space_adjust(struct sock *sk)
729 {
730 	struct tcp_sock *tp = tcp_sk(sk);
731 	u32 copied;
732 	int time;
733 
734 	trace_tcp_rcv_space_adjust(sk);
735 
736 	tcp_mstamp_refresh(tp);
737 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
738 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
739 		return;
740 
741 	/* Number of bytes copied to user in last RTT */
742 	copied = tp->copied_seq - tp->rcvq_space.seq;
743 	if (copied <= tp->rcvq_space.space)
744 		goto new_measure;
745 
746 	/* A bit of theory :
747 	 * copied = bytes received in previous RTT, our base window
748 	 * To cope with packet losses, we need a 2x factor
749 	 * To cope with slow start, and sender growing its cwin by 100 %
750 	 * every RTT, we need a 4x factor, because the ACK we are sending
751 	 * now is for the next RTT, not the current one :
752 	 * <prev RTT . ><current RTT .. ><next RTT .... >
753 	 */
754 
755 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
756 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
757 		u64 rcvwin, grow;
758 		int rcvbuf;
759 
760 		/* minimal window to cope with packet losses, assuming
761 		 * steady state. Add some cushion because of small variations.
762 		 */
763 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
764 
765 		/* Accommodate for sender rate increase (eg. slow start) */
766 		grow = rcvwin * (copied - tp->rcvq_space.space);
767 		do_div(grow, tp->rcvq_space.space);
768 		rcvwin += (grow << 1);
769 
770 		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
771 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
772 		if (rcvbuf > sk->sk_rcvbuf) {
773 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
774 
775 			/* Make the window clamp follow along.  */
776 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
777 		}
778 	}
779 	tp->rcvq_space.space = copied;
780 
781 new_measure:
782 	tp->rcvq_space.seq = tp->copied_seq;
783 	tp->rcvq_space.time = tp->tcp_mstamp;
784 }
785 
786 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
787 {
788 #if IS_ENABLED(CONFIG_IPV6)
789 	struct inet_connection_sock *icsk = inet_csk(sk);
790 
791 	if (skb->protocol == htons(ETH_P_IPV6))
792 		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
793 #endif
794 }
795 
796 /* There is something which you must keep in mind when you analyze the
797  * behavior of the tp->ato delayed ack timeout interval.  When a
798  * connection starts up, we want to ack as quickly as possible.  The
799  * problem is that "good" TCP's do slow start at the beginning of data
800  * transmission.  The means that until we send the first few ACK's the
801  * sender will sit on his end and only queue most of his data, because
802  * he can only send snd_cwnd unacked packets at any given time.  For
803  * each ACK we send, he increments snd_cwnd and transmits more of his
804  * queue.  -DaveM
805  */
806 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
807 {
808 	struct tcp_sock *tp = tcp_sk(sk);
809 	struct inet_connection_sock *icsk = inet_csk(sk);
810 	u32 now;
811 
812 	inet_csk_schedule_ack(sk);
813 
814 	tcp_measure_rcv_mss(sk, skb);
815 
816 	tcp_rcv_rtt_measure(tp);
817 
818 	now = tcp_jiffies32;
819 
820 	if (!icsk->icsk_ack.ato) {
821 		/* The _first_ data packet received, initialize
822 		 * delayed ACK engine.
823 		 */
824 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
825 		icsk->icsk_ack.ato = TCP_ATO_MIN;
826 	} else {
827 		int m = now - icsk->icsk_ack.lrcvtime;
828 
829 		if (m <= TCP_ATO_MIN / 2) {
830 			/* The fastest case is the first. */
831 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
832 		} else if (m < icsk->icsk_ack.ato) {
833 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
834 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
835 				icsk->icsk_ack.ato = icsk->icsk_rto;
836 		} else if (m > icsk->icsk_rto) {
837 			/* Too long gap. Apparently sender failed to
838 			 * restart window, so that we send ACKs quickly.
839 			 */
840 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
841 		}
842 	}
843 	icsk->icsk_ack.lrcvtime = now;
844 	tcp_save_lrcv_flowlabel(sk, skb);
845 
846 	tcp_ecn_check_ce(sk, skb);
847 
848 	if (skb->len >= 128)
849 		tcp_grow_window(sk, skb, true);
850 }
851 
852 /* Called to compute a smoothed rtt estimate. The data fed to this
853  * routine either comes from timestamps, or from segments that were
854  * known _not_ to have been retransmitted [see Karn/Partridge
855  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
856  * piece by Van Jacobson.
857  * NOTE: the next three routines used to be one big routine.
858  * To save cycles in the RFC 1323 implementation it was better to break
859  * it up into three procedures. -- erics
860  */
861 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
862 {
863 	struct tcp_sock *tp = tcp_sk(sk);
864 	long m = mrtt_us; /* RTT */
865 	u32 srtt = tp->srtt_us;
866 
867 	/*	The following amusing code comes from Jacobson's
868 	 *	article in SIGCOMM '88.  Note that rtt and mdev
869 	 *	are scaled versions of rtt and mean deviation.
870 	 *	This is designed to be as fast as possible
871 	 *	m stands for "measurement".
872 	 *
873 	 *	On a 1990 paper the rto value is changed to:
874 	 *	RTO = rtt + 4 * mdev
875 	 *
876 	 * Funny. This algorithm seems to be very broken.
877 	 * These formulae increase RTO, when it should be decreased, increase
878 	 * too slowly, when it should be increased quickly, decrease too quickly
879 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
880 	 * does not matter how to _calculate_ it. Seems, it was trap
881 	 * that VJ failed to avoid. 8)
882 	 */
883 	if (srtt != 0) {
884 		m -= (srtt >> 3);	/* m is now error in rtt est */
885 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
886 		if (m < 0) {
887 			m = -m;		/* m is now abs(error) */
888 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
889 			/* This is similar to one of Eifel findings.
890 			 * Eifel blocks mdev updates when rtt decreases.
891 			 * This solution is a bit different: we use finer gain
892 			 * for mdev in this case (alpha*beta).
893 			 * Like Eifel it also prevents growth of rto,
894 			 * but also it limits too fast rto decreases,
895 			 * happening in pure Eifel.
896 			 */
897 			if (m > 0)
898 				m >>= 3;
899 		} else {
900 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
901 		}
902 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
903 		if (tp->mdev_us > tp->mdev_max_us) {
904 			tp->mdev_max_us = tp->mdev_us;
905 			if (tp->mdev_max_us > tp->rttvar_us)
906 				tp->rttvar_us = tp->mdev_max_us;
907 		}
908 		if (after(tp->snd_una, tp->rtt_seq)) {
909 			if (tp->mdev_max_us < tp->rttvar_us)
910 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
911 			tp->rtt_seq = tp->snd_nxt;
912 			tp->mdev_max_us = tcp_rto_min_us(sk);
913 
914 			tcp_bpf_rtt(sk);
915 		}
916 	} else {
917 		/* no previous measure. */
918 		srtt = m << 3;		/* take the measured time to be rtt */
919 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
920 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
921 		tp->mdev_max_us = tp->rttvar_us;
922 		tp->rtt_seq = tp->snd_nxt;
923 
924 		tcp_bpf_rtt(sk);
925 	}
926 	tp->srtt_us = max(1U, srtt);
927 }
928 
929 static void tcp_update_pacing_rate(struct sock *sk)
930 {
931 	const struct tcp_sock *tp = tcp_sk(sk);
932 	u64 rate;
933 
934 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
935 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
936 
937 	/* current rate is (cwnd * mss) / srtt
938 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
939 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
940 	 *
941 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
942 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
943 	 *	 end of slow start and should slow down.
944 	 */
945 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
946 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
947 	else
948 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
949 
950 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
951 
952 	if (likely(tp->srtt_us))
953 		do_div(rate, tp->srtt_us);
954 
955 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
956 	 * without any lock. We want to make sure compiler wont store
957 	 * intermediate values in this location.
958 	 */
959 	WRITE_ONCE(sk->sk_pacing_rate,
960 		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
961 }
962 
963 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
964  * routine referred to above.
965  */
966 static void tcp_set_rto(struct sock *sk)
967 {
968 	const struct tcp_sock *tp = tcp_sk(sk);
969 	/* Old crap is replaced with new one. 8)
970 	 *
971 	 * More seriously:
972 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
973 	 *    It cannot be less due to utterly erratic ACK generation made
974 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
975 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
976 	 *    is invisible. Actually, Linux-2.4 also generates erratic
977 	 *    ACKs in some circumstances.
978 	 */
979 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
980 
981 	/* 2. Fixups made earlier cannot be right.
982 	 *    If we do not estimate RTO correctly without them,
983 	 *    all the algo is pure shit and should be replaced
984 	 *    with correct one. It is exactly, which we pretend to do.
985 	 */
986 
987 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
988 	 * guarantees that rto is higher.
989 	 */
990 	tcp_bound_rto(sk);
991 }
992 
993 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
994 {
995 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
996 
997 	if (!cwnd)
998 		cwnd = TCP_INIT_CWND;
999 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1000 }
1001 
1002 struct tcp_sacktag_state {
1003 	/* Timestamps for earliest and latest never-retransmitted segment
1004 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1005 	 * but congestion control should still get an accurate delay signal.
1006 	 */
1007 	u64	first_sackt;
1008 	u64	last_sackt;
1009 	u32	reord;
1010 	u32	sack_delivered;
1011 	int	flag;
1012 	unsigned int mss_now;
1013 	struct rate_sample *rate;
1014 };
1015 
1016 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1017  * and spurious retransmission information if this DSACK is unlikely caused by
1018  * sender's action:
1019  * - DSACKed sequence range is larger than maximum receiver's window.
1020  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1021  */
1022 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1023 			  u32 end_seq, struct tcp_sacktag_state *state)
1024 {
1025 	u32 seq_len, dup_segs = 1;
1026 
1027 	if (!before(start_seq, end_seq))
1028 		return 0;
1029 
1030 	seq_len = end_seq - start_seq;
1031 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1032 	if (seq_len > tp->max_window)
1033 		return 0;
1034 	if (seq_len > tp->mss_cache)
1035 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1036 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1037 		state->flag |= FLAG_DSACK_TLP;
1038 
1039 	tp->dsack_dups += dup_segs;
1040 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1041 	if (tp->dsack_dups > tp->total_retrans)
1042 		return 0;
1043 
1044 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1045 	/* We increase the RACK ordering window in rounds where we receive
1046 	 * DSACKs that may have been due to reordering causing RACK to trigger
1047 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1048 	 * without having seen reordering, or that match TLP probes (TLP
1049 	 * is timer-driven, not triggered by RACK).
1050 	 */
1051 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1052 		tp->rack.dsack_seen = 1;
1053 
1054 	state->flag |= FLAG_DSACKING_ACK;
1055 	/* A spurious retransmission is delivered */
1056 	state->sack_delivered += dup_segs;
1057 
1058 	return dup_segs;
1059 }
1060 
1061 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1062  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1063  * distance is approximated in full-mss packet distance ("reordering").
1064  */
1065 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1066 				      const int ts)
1067 {
1068 	struct tcp_sock *tp = tcp_sk(sk);
1069 	const u32 mss = tp->mss_cache;
1070 	u32 fack, metric;
1071 
1072 	fack = tcp_highest_sack_seq(tp);
1073 	if (!before(low_seq, fack))
1074 		return;
1075 
1076 	metric = fack - low_seq;
1077 	if ((metric > tp->reordering * mss) && mss) {
1078 #if FASTRETRANS_DEBUG > 1
1079 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1080 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1081 			 tp->reordering,
1082 			 0,
1083 			 tp->sacked_out,
1084 			 tp->undo_marker ? tp->undo_retrans : 0);
1085 #endif
1086 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1087 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1088 	}
1089 
1090 	/* This exciting event is worth to be remembered. 8) */
1091 	tp->reord_seen++;
1092 	NET_INC_STATS(sock_net(sk),
1093 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1094 }
1095 
1096  /* This must be called before lost_out or retrans_out are updated
1097   * on a new loss, because we want to know if all skbs previously
1098   * known to be lost have already been retransmitted, indicating
1099   * that this newly lost skb is our next skb to retransmit.
1100   */
1101 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1102 {
1103 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1104 	    (tp->retransmit_skb_hint &&
1105 	     before(TCP_SKB_CB(skb)->seq,
1106 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1107 		tp->retransmit_skb_hint = skb;
1108 }
1109 
1110 /* Sum the number of packets on the wire we have marked as lost, and
1111  * notify the congestion control module that the given skb was marked lost.
1112  */
1113 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1114 {
1115 	tp->lost += tcp_skb_pcount(skb);
1116 }
1117 
1118 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1119 {
1120 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1121 	struct tcp_sock *tp = tcp_sk(sk);
1122 
1123 	if (sacked & TCPCB_SACKED_ACKED)
1124 		return;
1125 
1126 	tcp_verify_retransmit_hint(tp, skb);
1127 	if (sacked & TCPCB_LOST) {
1128 		if (sacked & TCPCB_SACKED_RETRANS) {
1129 			/* Account for retransmits that are lost again */
1130 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1131 			tp->retrans_out -= tcp_skb_pcount(skb);
1132 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1133 				      tcp_skb_pcount(skb));
1134 			tcp_notify_skb_loss_event(tp, skb);
1135 		}
1136 	} else {
1137 		tp->lost_out += tcp_skb_pcount(skb);
1138 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1139 		tcp_notify_skb_loss_event(tp, skb);
1140 	}
1141 }
1142 
1143 /* Updates the delivered and delivered_ce counts */
1144 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1145 				bool ece_ack)
1146 {
1147 	tp->delivered += delivered;
1148 	if (ece_ack)
1149 		tp->delivered_ce += delivered;
1150 }
1151 
1152 /* This procedure tags the retransmission queue when SACKs arrive.
1153  *
1154  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1155  * Packets in queue with these bits set are counted in variables
1156  * sacked_out, retrans_out and lost_out, correspondingly.
1157  *
1158  * Valid combinations are:
1159  * Tag  InFlight	Description
1160  * 0	1		- orig segment is in flight.
1161  * S	0		- nothing flies, orig reached receiver.
1162  * L	0		- nothing flies, orig lost by net.
1163  * R	2		- both orig and retransmit are in flight.
1164  * L|R	1		- orig is lost, retransmit is in flight.
1165  * S|R  1		- orig reached receiver, retrans is still in flight.
1166  * (L|S|R is logically valid, it could occur when L|R is sacked,
1167  *  but it is equivalent to plain S and code short-circuits it to S.
1168  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1169  *
1170  * These 6 states form finite state machine, controlled by the following events:
1171  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1172  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1173  * 3. Loss detection event of two flavors:
1174  *	A. Scoreboard estimator decided the packet is lost.
1175  *	   A'. Reno "three dupacks" marks head of queue lost.
1176  *	B. SACK arrives sacking SND.NXT at the moment, when the
1177  *	   segment was retransmitted.
1178  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1179  *
1180  * It is pleasant to note, that state diagram turns out to be commutative,
1181  * so that we are allowed not to be bothered by order of our actions,
1182  * when multiple events arrive simultaneously. (see the function below).
1183  *
1184  * Reordering detection.
1185  * --------------------
1186  * Reordering metric is maximal distance, which a packet can be displaced
1187  * in packet stream. With SACKs we can estimate it:
1188  *
1189  * 1. SACK fills old hole and the corresponding segment was not
1190  *    ever retransmitted -> reordering. Alas, we cannot use it
1191  *    when segment was retransmitted.
1192  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1193  *    for retransmitted and already SACKed segment -> reordering..
1194  * Both of these heuristics are not used in Loss state, when we cannot
1195  * account for retransmits accurately.
1196  *
1197  * SACK block validation.
1198  * ----------------------
1199  *
1200  * SACK block range validation checks that the received SACK block fits to
1201  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1202  * Note that SND.UNA is not included to the range though being valid because
1203  * it means that the receiver is rather inconsistent with itself reporting
1204  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1205  * perfectly valid, however, in light of RFC2018 which explicitly states
1206  * that "SACK block MUST reflect the newest segment.  Even if the newest
1207  * segment is going to be discarded ...", not that it looks very clever
1208  * in case of head skb. Due to potentional receiver driven attacks, we
1209  * choose to avoid immediate execution of a walk in write queue due to
1210  * reneging and defer head skb's loss recovery to standard loss recovery
1211  * procedure that will eventually trigger (nothing forbids us doing this).
1212  *
1213  * Implements also blockage to start_seq wrap-around. Problem lies in the
1214  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1215  * there's no guarantee that it will be before snd_nxt (n). The problem
1216  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1217  * wrap (s_w):
1218  *
1219  *         <- outs wnd ->                          <- wrapzone ->
1220  *         u     e      n                         u_w   e_w  s n_w
1221  *         |     |      |                          |     |   |  |
1222  * |<------------+------+----- TCP seqno space --------------+---------->|
1223  * ...-- <2^31 ->|                                           |<--------...
1224  * ...---- >2^31 ------>|                                    |<--------...
1225  *
1226  * Current code wouldn't be vulnerable but it's better still to discard such
1227  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1228  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1229  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1230  * equal to the ideal case (infinite seqno space without wrap caused issues).
1231  *
1232  * With D-SACK the lower bound is extended to cover sequence space below
1233  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1234  * again, D-SACK block must not to go across snd_una (for the same reason as
1235  * for the normal SACK blocks, explained above). But there all simplicity
1236  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1237  * fully below undo_marker they do not affect behavior in anyway and can
1238  * therefore be safely ignored. In rare cases (which are more or less
1239  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1240  * fragmentation and packet reordering past skb's retransmission. To consider
1241  * them correctly, the acceptable range must be extended even more though
1242  * the exact amount is rather hard to quantify. However, tp->max_window can
1243  * be used as an exaggerated estimate.
1244  */
1245 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1246 				   u32 start_seq, u32 end_seq)
1247 {
1248 	/* Too far in future, or reversed (interpretation is ambiguous) */
1249 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1250 		return false;
1251 
1252 	/* Nasty start_seq wrap-around check (see comments above) */
1253 	if (!before(start_seq, tp->snd_nxt))
1254 		return false;
1255 
1256 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1257 	 * start_seq == snd_una is non-sensical (see comments above)
1258 	 */
1259 	if (after(start_seq, tp->snd_una))
1260 		return true;
1261 
1262 	if (!is_dsack || !tp->undo_marker)
1263 		return false;
1264 
1265 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1266 	if (after(end_seq, tp->snd_una))
1267 		return false;
1268 
1269 	if (!before(start_seq, tp->undo_marker))
1270 		return true;
1271 
1272 	/* Too old */
1273 	if (!after(end_seq, tp->undo_marker))
1274 		return false;
1275 
1276 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1277 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1278 	 */
1279 	return !before(start_seq, end_seq - tp->max_window);
1280 }
1281 
1282 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1283 			    struct tcp_sack_block_wire *sp, int num_sacks,
1284 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1285 {
1286 	struct tcp_sock *tp = tcp_sk(sk);
1287 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1288 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1289 	u32 dup_segs;
1290 
1291 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1292 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1293 	} else if (num_sacks > 1) {
1294 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1295 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1296 
1297 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1298 			return false;
1299 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1300 	} else {
1301 		return false;
1302 	}
1303 
1304 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1305 	if (!dup_segs) {	/* Skip dubious DSACK */
1306 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1307 		return false;
1308 	}
1309 
1310 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1311 
1312 	/* D-SACK for already forgotten data... Do dumb counting. */
1313 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1314 	    !after(end_seq_0, prior_snd_una) &&
1315 	    after(end_seq_0, tp->undo_marker))
1316 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1317 
1318 	return true;
1319 }
1320 
1321 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1322  * the incoming SACK may not exactly match but we can find smaller MSS
1323  * aligned portion of it that matches. Therefore we might need to fragment
1324  * which may fail and creates some hassle (caller must handle error case
1325  * returns).
1326  *
1327  * FIXME: this could be merged to shift decision code
1328  */
1329 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1330 				  u32 start_seq, u32 end_seq)
1331 {
1332 	int err;
1333 	bool in_sack;
1334 	unsigned int pkt_len;
1335 	unsigned int mss;
1336 
1337 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1338 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1339 
1340 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1341 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1342 		mss = tcp_skb_mss(skb);
1343 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1344 
1345 		if (!in_sack) {
1346 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1347 			if (pkt_len < mss)
1348 				pkt_len = mss;
1349 		} else {
1350 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1351 			if (pkt_len < mss)
1352 				return -EINVAL;
1353 		}
1354 
1355 		/* Round if necessary so that SACKs cover only full MSSes
1356 		 * and/or the remaining small portion (if present)
1357 		 */
1358 		if (pkt_len > mss) {
1359 			unsigned int new_len = (pkt_len / mss) * mss;
1360 			if (!in_sack && new_len < pkt_len)
1361 				new_len += mss;
1362 			pkt_len = new_len;
1363 		}
1364 
1365 		if (pkt_len >= skb->len && !in_sack)
1366 			return 0;
1367 
1368 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1369 				   pkt_len, mss, GFP_ATOMIC);
1370 		if (err < 0)
1371 			return err;
1372 	}
1373 
1374 	return in_sack;
1375 }
1376 
1377 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1378 static u8 tcp_sacktag_one(struct sock *sk,
1379 			  struct tcp_sacktag_state *state, u8 sacked,
1380 			  u32 start_seq, u32 end_seq,
1381 			  int dup_sack, int pcount,
1382 			  u64 xmit_time)
1383 {
1384 	struct tcp_sock *tp = tcp_sk(sk);
1385 
1386 	/* Account D-SACK for retransmitted packet. */
1387 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1388 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1389 		    after(end_seq, tp->undo_marker))
1390 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1391 		if ((sacked & TCPCB_SACKED_ACKED) &&
1392 		    before(start_seq, state->reord))
1393 				state->reord = start_seq;
1394 	}
1395 
1396 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1397 	if (!after(end_seq, tp->snd_una))
1398 		return sacked;
1399 
1400 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1401 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1402 
1403 		if (sacked & TCPCB_SACKED_RETRANS) {
1404 			/* If the segment is not tagged as lost,
1405 			 * we do not clear RETRANS, believing
1406 			 * that retransmission is still in flight.
1407 			 */
1408 			if (sacked & TCPCB_LOST) {
1409 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1410 				tp->lost_out -= pcount;
1411 				tp->retrans_out -= pcount;
1412 			}
1413 		} else {
1414 			if (!(sacked & TCPCB_RETRANS)) {
1415 				/* New sack for not retransmitted frame,
1416 				 * which was in hole. It is reordering.
1417 				 */
1418 				if (before(start_seq,
1419 					   tcp_highest_sack_seq(tp)) &&
1420 				    before(start_seq, state->reord))
1421 					state->reord = start_seq;
1422 
1423 				if (!after(end_seq, tp->high_seq))
1424 					state->flag |= FLAG_ORIG_SACK_ACKED;
1425 				if (state->first_sackt == 0)
1426 					state->first_sackt = xmit_time;
1427 				state->last_sackt = xmit_time;
1428 			}
1429 
1430 			if (sacked & TCPCB_LOST) {
1431 				sacked &= ~TCPCB_LOST;
1432 				tp->lost_out -= pcount;
1433 			}
1434 		}
1435 
1436 		sacked |= TCPCB_SACKED_ACKED;
1437 		state->flag |= FLAG_DATA_SACKED;
1438 		tp->sacked_out += pcount;
1439 		/* Out-of-order packets delivered */
1440 		state->sack_delivered += pcount;
1441 
1442 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1443 		if (tp->lost_skb_hint &&
1444 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1445 			tp->lost_cnt_hint += pcount;
1446 	}
1447 
1448 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1449 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1450 	 * are accounted above as well.
1451 	 */
1452 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1453 		sacked &= ~TCPCB_SACKED_RETRANS;
1454 		tp->retrans_out -= pcount;
1455 	}
1456 
1457 	return sacked;
1458 }
1459 
1460 /* Shift newly-SACKed bytes from this skb to the immediately previous
1461  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1462  */
1463 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1464 			    struct sk_buff *skb,
1465 			    struct tcp_sacktag_state *state,
1466 			    unsigned int pcount, int shifted, int mss,
1467 			    bool dup_sack)
1468 {
1469 	struct tcp_sock *tp = tcp_sk(sk);
1470 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1471 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1472 
1473 	BUG_ON(!pcount);
1474 
1475 	/* Adjust counters and hints for the newly sacked sequence
1476 	 * range but discard the return value since prev is already
1477 	 * marked. We must tag the range first because the seq
1478 	 * advancement below implicitly advances
1479 	 * tcp_highest_sack_seq() when skb is highest_sack.
1480 	 */
1481 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1482 			start_seq, end_seq, dup_sack, pcount,
1483 			tcp_skb_timestamp_us(skb));
1484 	tcp_rate_skb_delivered(sk, skb, state->rate);
1485 
1486 	if (skb == tp->lost_skb_hint)
1487 		tp->lost_cnt_hint += pcount;
1488 
1489 	TCP_SKB_CB(prev)->end_seq += shifted;
1490 	TCP_SKB_CB(skb)->seq += shifted;
1491 
1492 	tcp_skb_pcount_add(prev, pcount);
1493 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1494 	tcp_skb_pcount_add(skb, -pcount);
1495 
1496 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1497 	 * in theory this shouldn't be necessary but as long as DSACK
1498 	 * code can come after this skb later on it's better to keep
1499 	 * setting gso_size to something.
1500 	 */
1501 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1502 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1503 
1504 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1505 	if (tcp_skb_pcount(skb) <= 1)
1506 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1507 
1508 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1509 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1510 
1511 	if (skb->len > 0) {
1512 		BUG_ON(!tcp_skb_pcount(skb));
1513 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1514 		return false;
1515 	}
1516 
1517 	/* Whole SKB was eaten :-) */
1518 
1519 	if (skb == tp->retransmit_skb_hint)
1520 		tp->retransmit_skb_hint = prev;
1521 	if (skb == tp->lost_skb_hint) {
1522 		tp->lost_skb_hint = prev;
1523 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1524 	}
1525 
1526 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1527 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1528 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1529 		TCP_SKB_CB(prev)->end_seq++;
1530 
1531 	if (skb == tcp_highest_sack(sk))
1532 		tcp_advance_highest_sack(sk, skb);
1533 
1534 	tcp_skb_collapse_tstamp(prev, skb);
1535 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1536 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1537 
1538 	tcp_rtx_queue_unlink_and_free(skb, sk);
1539 
1540 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1541 
1542 	return true;
1543 }
1544 
1545 /* I wish gso_size would have a bit more sane initialization than
1546  * something-or-zero which complicates things
1547  */
1548 static int tcp_skb_seglen(const struct sk_buff *skb)
1549 {
1550 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1551 }
1552 
1553 /* Shifting pages past head area doesn't work */
1554 static int skb_can_shift(const struct sk_buff *skb)
1555 {
1556 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1557 }
1558 
1559 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1560 		  int pcount, int shiftlen)
1561 {
1562 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1563 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1564 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1565 	 * even if current MSS is bigger.
1566 	 */
1567 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1568 		return 0;
1569 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1570 		return 0;
1571 	return skb_shift(to, from, shiftlen);
1572 }
1573 
1574 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1575  * skb.
1576  */
1577 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1578 					  struct tcp_sacktag_state *state,
1579 					  u32 start_seq, u32 end_seq,
1580 					  bool dup_sack)
1581 {
1582 	struct tcp_sock *tp = tcp_sk(sk);
1583 	struct sk_buff *prev;
1584 	int mss;
1585 	int pcount = 0;
1586 	int len;
1587 	int in_sack;
1588 
1589 	/* Normally R but no L won't result in plain S */
1590 	if (!dup_sack &&
1591 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1592 		goto fallback;
1593 	if (!skb_can_shift(skb))
1594 		goto fallback;
1595 	/* This frame is about to be dropped (was ACKed). */
1596 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1597 		goto fallback;
1598 
1599 	/* Can only happen with delayed DSACK + discard craziness */
1600 	prev = skb_rb_prev(skb);
1601 	if (!prev)
1602 		goto fallback;
1603 
1604 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1605 		goto fallback;
1606 
1607 	if (!tcp_skb_can_collapse(prev, skb))
1608 		goto fallback;
1609 
1610 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1611 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1612 
1613 	if (in_sack) {
1614 		len = skb->len;
1615 		pcount = tcp_skb_pcount(skb);
1616 		mss = tcp_skb_seglen(skb);
1617 
1618 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1619 		 * drop this restriction as unnecessary
1620 		 */
1621 		if (mss != tcp_skb_seglen(prev))
1622 			goto fallback;
1623 	} else {
1624 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1625 			goto noop;
1626 		/* CHECKME: This is non-MSS split case only?, this will
1627 		 * cause skipped skbs due to advancing loop btw, original
1628 		 * has that feature too
1629 		 */
1630 		if (tcp_skb_pcount(skb) <= 1)
1631 			goto noop;
1632 
1633 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1634 		if (!in_sack) {
1635 			/* TODO: head merge to next could be attempted here
1636 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1637 			 * though it might not be worth of the additional hassle
1638 			 *
1639 			 * ...we can probably just fallback to what was done
1640 			 * previously. We could try merging non-SACKed ones
1641 			 * as well but it probably isn't going to buy off
1642 			 * because later SACKs might again split them, and
1643 			 * it would make skb timestamp tracking considerably
1644 			 * harder problem.
1645 			 */
1646 			goto fallback;
1647 		}
1648 
1649 		len = end_seq - TCP_SKB_CB(skb)->seq;
1650 		BUG_ON(len < 0);
1651 		BUG_ON(len > skb->len);
1652 
1653 		/* MSS boundaries should be honoured or else pcount will
1654 		 * severely break even though it makes things bit trickier.
1655 		 * Optimize common case to avoid most of the divides
1656 		 */
1657 		mss = tcp_skb_mss(skb);
1658 
1659 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1660 		 * drop this restriction as unnecessary
1661 		 */
1662 		if (mss != tcp_skb_seglen(prev))
1663 			goto fallback;
1664 
1665 		if (len == mss) {
1666 			pcount = 1;
1667 		} else if (len < mss) {
1668 			goto noop;
1669 		} else {
1670 			pcount = len / mss;
1671 			len = pcount * mss;
1672 		}
1673 	}
1674 
1675 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1676 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1677 		goto fallback;
1678 
1679 	if (!tcp_skb_shift(prev, skb, pcount, len))
1680 		goto fallback;
1681 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1682 		goto out;
1683 
1684 	/* Hole filled allows collapsing with the next as well, this is very
1685 	 * useful when hole on every nth skb pattern happens
1686 	 */
1687 	skb = skb_rb_next(prev);
1688 	if (!skb)
1689 		goto out;
1690 
1691 	if (!skb_can_shift(skb) ||
1692 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1693 	    (mss != tcp_skb_seglen(skb)))
1694 		goto out;
1695 
1696 	if (!tcp_skb_can_collapse(prev, skb))
1697 		goto out;
1698 	len = skb->len;
1699 	pcount = tcp_skb_pcount(skb);
1700 	if (tcp_skb_shift(prev, skb, pcount, len))
1701 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1702 				len, mss, 0);
1703 
1704 out:
1705 	return prev;
1706 
1707 noop:
1708 	return skb;
1709 
1710 fallback:
1711 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1712 	return NULL;
1713 }
1714 
1715 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1716 					struct tcp_sack_block *next_dup,
1717 					struct tcp_sacktag_state *state,
1718 					u32 start_seq, u32 end_seq,
1719 					bool dup_sack_in)
1720 {
1721 	struct tcp_sock *tp = tcp_sk(sk);
1722 	struct sk_buff *tmp;
1723 
1724 	skb_rbtree_walk_from(skb) {
1725 		int in_sack = 0;
1726 		bool dup_sack = dup_sack_in;
1727 
1728 		/* queue is in-order => we can short-circuit the walk early */
1729 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1730 			break;
1731 
1732 		if (next_dup  &&
1733 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1734 			in_sack = tcp_match_skb_to_sack(sk, skb,
1735 							next_dup->start_seq,
1736 							next_dup->end_seq);
1737 			if (in_sack > 0)
1738 				dup_sack = true;
1739 		}
1740 
1741 		/* skb reference here is a bit tricky to get right, since
1742 		 * shifting can eat and free both this skb and the next,
1743 		 * so not even _safe variant of the loop is enough.
1744 		 */
1745 		if (in_sack <= 0) {
1746 			tmp = tcp_shift_skb_data(sk, skb, state,
1747 						 start_seq, end_seq, dup_sack);
1748 			if (tmp) {
1749 				if (tmp != skb) {
1750 					skb = tmp;
1751 					continue;
1752 				}
1753 
1754 				in_sack = 0;
1755 			} else {
1756 				in_sack = tcp_match_skb_to_sack(sk, skb,
1757 								start_seq,
1758 								end_seq);
1759 			}
1760 		}
1761 
1762 		if (unlikely(in_sack < 0))
1763 			break;
1764 
1765 		if (in_sack) {
1766 			TCP_SKB_CB(skb)->sacked =
1767 				tcp_sacktag_one(sk,
1768 						state,
1769 						TCP_SKB_CB(skb)->sacked,
1770 						TCP_SKB_CB(skb)->seq,
1771 						TCP_SKB_CB(skb)->end_seq,
1772 						dup_sack,
1773 						tcp_skb_pcount(skb),
1774 						tcp_skb_timestamp_us(skb));
1775 			tcp_rate_skb_delivered(sk, skb, state->rate);
1776 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1777 				list_del_init(&skb->tcp_tsorted_anchor);
1778 
1779 			if (!before(TCP_SKB_CB(skb)->seq,
1780 				    tcp_highest_sack_seq(tp)))
1781 				tcp_advance_highest_sack(sk, skb);
1782 		}
1783 	}
1784 	return skb;
1785 }
1786 
1787 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1788 {
1789 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1790 	struct sk_buff *skb;
1791 
1792 	while (*p) {
1793 		parent = *p;
1794 		skb = rb_to_skb(parent);
1795 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1796 			p = &parent->rb_left;
1797 			continue;
1798 		}
1799 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1800 			p = &parent->rb_right;
1801 			continue;
1802 		}
1803 		return skb;
1804 	}
1805 	return NULL;
1806 }
1807 
1808 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1809 					u32 skip_to_seq)
1810 {
1811 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1812 		return skb;
1813 
1814 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1815 }
1816 
1817 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1818 						struct sock *sk,
1819 						struct tcp_sack_block *next_dup,
1820 						struct tcp_sacktag_state *state,
1821 						u32 skip_to_seq)
1822 {
1823 	if (!next_dup)
1824 		return skb;
1825 
1826 	if (before(next_dup->start_seq, skip_to_seq)) {
1827 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1828 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1829 				       next_dup->start_seq, next_dup->end_seq,
1830 				       1);
1831 	}
1832 
1833 	return skb;
1834 }
1835 
1836 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1837 {
1838 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1839 }
1840 
1841 static int
1842 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1843 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1844 {
1845 	struct tcp_sock *tp = tcp_sk(sk);
1846 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1847 				    TCP_SKB_CB(ack_skb)->sacked);
1848 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1849 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1850 	struct tcp_sack_block *cache;
1851 	struct sk_buff *skb;
1852 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1853 	int used_sacks;
1854 	bool found_dup_sack = false;
1855 	int i, j;
1856 	int first_sack_index;
1857 
1858 	state->flag = 0;
1859 	state->reord = tp->snd_nxt;
1860 
1861 	if (!tp->sacked_out)
1862 		tcp_highest_sack_reset(sk);
1863 
1864 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1865 					 num_sacks, prior_snd_una, state);
1866 
1867 	/* Eliminate too old ACKs, but take into
1868 	 * account more or less fresh ones, they can
1869 	 * contain valid SACK info.
1870 	 */
1871 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1872 		return 0;
1873 
1874 	if (!tp->packets_out)
1875 		goto out;
1876 
1877 	used_sacks = 0;
1878 	first_sack_index = 0;
1879 	for (i = 0; i < num_sacks; i++) {
1880 		bool dup_sack = !i && found_dup_sack;
1881 
1882 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1883 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1884 
1885 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1886 					    sp[used_sacks].start_seq,
1887 					    sp[used_sacks].end_seq)) {
1888 			int mib_idx;
1889 
1890 			if (dup_sack) {
1891 				if (!tp->undo_marker)
1892 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1893 				else
1894 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1895 			} else {
1896 				/* Don't count olds caused by ACK reordering */
1897 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1898 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1899 					continue;
1900 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1901 			}
1902 
1903 			NET_INC_STATS(sock_net(sk), mib_idx);
1904 			if (i == 0)
1905 				first_sack_index = -1;
1906 			continue;
1907 		}
1908 
1909 		/* Ignore very old stuff early */
1910 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1911 			if (i == 0)
1912 				first_sack_index = -1;
1913 			continue;
1914 		}
1915 
1916 		used_sacks++;
1917 	}
1918 
1919 	/* order SACK blocks to allow in order walk of the retrans queue */
1920 	for (i = used_sacks - 1; i > 0; i--) {
1921 		for (j = 0; j < i; j++) {
1922 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1923 				swap(sp[j], sp[j + 1]);
1924 
1925 				/* Track where the first SACK block goes to */
1926 				if (j == first_sack_index)
1927 					first_sack_index = j + 1;
1928 			}
1929 		}
1930 	}
1931 
1932 	state->mss_now = tcp_current_mss(sk);
1933 	skb = NULL;
1934 	i = 0;
1935 
1936 	if (!tp->sacked_out) {
1937 		/* It's already past, so skip checking against it */
1938 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1939 	} else {
1940 		cache = tp->recv_sack_cache;
1941 		/* Skip empty blocks in at head of the cache */
1942 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1943 		       !cache->end_seq)
1944 			cache++;
1945 	}
1946 
1947 	while (i < used_sacks) {
1948 		u32 start_seq = sp[i].start_seq;
1949 		u32 end_seq = sp[i].end_seq;
1950 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1951 		struct tcp_sack_block *next_dup = NULL;
1952 
1953 		if (found_dup_sack && ((i + 1) == first_sack_index))
1954 			next_dup = &sp[i + 1];
1955 
1956 		/* Skip too early cached blocks */
1957 		while (tcp_sack_cache_ok(tp, cache) &&
1958 		       !before(start_seq, cache->end_seq))
1959 			cache++;
1960 
1961 		/* Can skip some work by looking recv_sack_cache? */
1962 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1963 		    after(end_seq, cache->start_seq)) {
1964 
1965 			/* Head todo? */
1966 			if (before(start_seq, cache->start_seq)) {
1967 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1968 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1969 						       state,
1970 						       start_seq,
1971 						       cache->start_seq,
1972 						       dup_sack);
1973 			}
1974 
1975 			/* Rest of the block already fully processed? */
1976 			if (!after(end_seq, cache->end_seq))
1977 				goto advance_sp;
1978 
1979 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1980 						       state,
1981 						       cache->end_seq);
1982 
1983 			/* ...tail remains todo... */
1984 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1985 				/* ...but better entrypoint exists! */
1986 				skb = tcp_highest_sack(sk);
1987 				if (!skb)
1988 					break;
1989 				cache++;
1990 				goto walk;
1991 			}
1992 
1993 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1994 			/* Check overlap against next cached too (past this one already) */
1995 			cache++;
1996 			continue;
1997 		}
1998 
1999 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2000 			skb = tcp_highest_sack(sk);
2001 			if (!skb)
2002 				break;
2003 		}
2004 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2005 
2006 walk:
2007 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2008 				       start_seq, end_seq, dup_sack);
2009 
2010 advance_sp:
2011 		i++;
2012 	}
2013 
2014 	/* Clear the head of the cache sack blocks so we can skip it next time */
2015 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2016 		tp->recv_sack_cache[i].start_seq = 0;
2017 		tp->recv_sack_cache[i].end_seq = 0;
2018 	}
2019 	for (j = 0; j < used_sacks; j++)
2020 		tp->recv_sack_cache[i++] = sp[j];
2021 
2022 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2023 		tcp_check_sack_reordering(sk, state->reord, 0);
2024 
2025 	tcp_verify_left_out(tp);
2026 out:
2027 
2028 #if FASTRETRANS_DEBUG > 0
2029 	WARN_ON((int)tp->sacked_out < 0);
2030 	WARN_ON((int)tp->lost_out < 0);
2031 	WARN_ON((int)tp->retrans_out < 0);
2032 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2033 #endif
2034 	return state->flag;
2035 }
2036 
2037 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2038  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2039  */
2040 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2041 {
2042 	u32 holes;
2043 
2044 	holes = max(tp->lost_out, 1U);
2045 	holes = min(holes, tp->packets_out);
2046 
2047 	if ((tp->sacked_out + holes) > tp->packets_out) {
2048 		tp->sacked_out = tp->packets_out - holes;
2049 		return true;
2050 	}
2051 	return false;
2052 }
2053 
2054 /* If we receive more dupacks than we expected counting segments
2055  * in assumption of absent reordering, interpret this as reordering.
2056  * The only another reason could be bug in receiver TCP.
2057  */
2058 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2059 {
2060 	struct tcp_sock *tp = tcp_sk(sk);
2061 
2062 	if (!tcp_limit_reno_sacked(tp))
2063 		return;
2064 
2065 	tp->reordering = min_t(u32, tp->packets_out + addend,
2066 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2067 	tp->reord_seen++;
2068 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2069 }
2070 
2071 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2072 
2073 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2074 {
2075 	if (num_dupack) {
2076 		struct tcp_sock *tp = tcp_sk(sk);
2077 		u32 prior_sacked = tp->sacked_out;
2078 		s32 delivered;
2079 
2080 		tp->sacked_out += num_dupack;
2081 		tcp_check_reno_reordering(sk, 0);
2082 		delivered = tp->sacked_out - prior_sacked;
2083 		if (delivered > 0)
2084 			tcp_count_delivered(tp, delivered, ece_ack);
2085 		tcp_verify_left_out(tp);
2086 	}
2087 }
2088 
2089 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2090 
2091 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2092 {
2093 	struct tcp_sock *tp = tcp_sk(sk);
2094 
2095 	if (acked > 0) {
2096 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2097 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2098 				    ece_ack);
2099 		if (acked - 1 >= tp->sacked_out)
2100 			tp->sacked_out = 0;
2101 		else
2102 			tp->sacked_out -= acked - 1;
2103 	}
2104 	tcp_check_reno_reordering(sk, acked);
2105 	tcp_verify_left_out(tp);
2106 }
2107 
2108 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2109 {
2110 	tp->sacked_out = 0;
2111 }
2112 
2113 void tcp_clear_retrans(struct tcp_sock *tp)
2114 {
2115 	tp->retrans_out = 0;
2116 	tp->lost_out = 0;
2117 	tp->undo_marker = 0;
2118 	tp->undo_retrans = -1;
2119 	tp->sacked_out = 0;
2120 	tp->rto_stamp = 0;
2121 	tp->total_rto = 0;
2122 	tp->total_rto_recoveries = 0;
2123 	tp->total_rto_time = 0;
2124 }
2125 
2126 static inline void tcp_init_undo(struct tcp_sock *tp)
2127 {
2128 	tp->undo_marker = tp->snd_una;
2129 	/* Retransmission still in flight may cause DSACKs later. */
2130 	tp->undo_retrans = tp->retrans_out ? : -1;
2131 }
2132 
2133 static bool tcp_is_rack(const struct sock *sk)
2134 {
2135 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2136 		TCP_RACK_LOSS_DETECTION;
2137 }
2138 
2139 /* If we detect SACK reneging, forget all SACK information
2140  * and reset tags completely, otherwise preserve SACKs. If receiver
2141  * dropped its ofo queue, we will know this due to reneging detection.
2142  */
2143 static void tcp_timeout_mark_lost(struct sock *sk)
2144 {
2145 	struct tcp_sock *tp = tcp_sk(sk);
2146 	struct sk_buff *skb, *head;
2147 	bool is_reneg;			/* is receiver reneging on SACKs? */
2148 
2149 	head = tcp_rtx_queue_head(sk);
2150 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2151 	if (is_reneg) {
2152 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2153 		tp->sacked_out = 0;
2154 		/* Mark SACK reneging until we recover from this loss event. */
2155 		tp->is_sack_reneg = 1;
2156 	} else if (tcp_is_reno(tp)) {
2157 		tcp_reset_reno_sack(tp);
2158 	}
2159 
2160 	skb = head;
2161 	skb_rbtree_walk_from(skb) {
2162 		if (is_reneg)
2163 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2164 		else if (tcp_is_rack(sk) && skb != head &&
2165 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2166 			continue; /* Don't mark recently sent ones lost yet */
2167 		tcp_mark_skb_lost(sk, skb);
2168 	}
2169 	tcp_verify_left_out(tp);
2170 	tcp_clear_all_retrans_hints(tp);
2171 }
2172 
2173 /* Enter Loss state. */
2174 void tcp_enter_loss(struct sock *sk)
2175 {
2176 	const struct inet_connection_sock *icsk = inet_csk(sk);
2177 	struct tcp_sock *tp = tcp_sk(sk);
2178 	struct net *net = sock_net(sk);
2179 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2180 	u8 reordering;
2181 
2182 	tcp_timeout_mark_lost(sk);
2183 
2184 	/* Reduce ssthresh if it has not yet been made inside this window. */
2185 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2186 	    !after(tp->high_seq, tp->snd_una) ||
2187 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2188 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2189 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2190 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2191 		tcp_ca_event(sk, CA_EVENT_LOSS);
2192 		tcp_init_undo(tp);
2193 	}
2194 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2195 	tp->snd_cwnd_cnt   = 0;
2196 	tp->snd_cwnd_stamp = tcp_jiffies32;
2197 
2198 	/* Timeout in disordered state after receiving substantial DUPACKs
2199 	 * suggests that the degree of reordering is over-estimated.
2200 	 */
2201 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2202 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2203 	    tp->sacked_out >= reordering)
2204 		tp->reordering = min_t(unsigned int, tp->reordering,
2205 				       reordering);
2206 
2207 	tcp_set_ca_state(sk, TCP_CA_Loss);
2208 	tp->high_seq = tp->snd_nxt;
2209 	tcp_ecn_queue_cwr(tp);
2210 
2211 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2212 	 * loss recovery is underway except recurring timeout(s) on
2213 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2214 	 */
2215 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2216 		   (new_recovery || icsk->icsk_retransmits) &&
2217 		   !inet_csk(sk)->icsk_mtup.probe_size;
2218 }
2219 
2220 /* If ACK arrived pointing to a remembered SACK, it means that our
2221  * remembered SACKs do not reflect real state of receiver i.e.
2222  * receiver _host_ is heavily congested (or buggy).
2223  *
2224  * To avoid big spurious retransmission bursts due to transient SACK
2225  * scoreboard oddities that look like reneging, we give the receiver a
2226  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2227  * restore sanity to the SACK scoreboard. If the apparent reneging
2228  * persists until this RTO then we'll clear the SACK scoreboard.
2229  */
2230 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2231 {
2232 	if (*ack_flag & FLAG_SACK_RENEGING &&
2233 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2234 		struct tcp_sock *tp = tcp_sk(sk);
2235 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2236 					  msecs_to_jiffies(10));
2237 
2238 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2239 					  delay, TCP_RTO_MAX);
2240 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2241 		return true;
2242 	}
2243 	return false;
2244 }
2245 
2246 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2247  * counter when SACK is enabled (without SACK, sacked_out is used for
2248  * that purpose).
2249  *
2250  * With reordering, holes may still be in flight, so RFC3517 recovery
2251  * uses pure sacked_out (total number of SACKed segments) even though
2252  * it violates the RFC that uses duplicate ACKs, often these are equal
2253  * but when e.g. out-of-window ACKs or packet duplication occurs,
2254  * they differ. Since neither occurs due to loss, TCP should really
2255  * ignore them.
2256  */
2257 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2258 {
2259 	return tp->sacked_out + 1;
2260 }
2261 
2262 /* Linux NewReno/SACK/ECN state machine.
2263  * --------------------------------------
2264  *
2265  * "Open"	Normal state, no dubious events, fast path.
2266  * "Disorder"   In all the respects it is "Open",
2267  *		but requires a bit more attention. It is entered when
2268  *		we see some SACKs or dupacks. It is split of "Open"
2269  *		mainly to move some processing from fast path to slow one.
2270  * "CWR"	CWND was reduced due to some Congestion Notification event.
2271  *		It can be ECN, ICMP source quench, local device congestion.
2272  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2273  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2274  *
2275  * tcp_fastretrans_alert() is entered:
2276  * - each incoming ACK, if state is not "Open"
2277  * - when arrived ACK is unusual, namely:
2278  *	* SACK
2279  *	* Duplicate ACK.
2280  *	* ECN ECE.
2281  *
2282  * Counting packets in flight is pretty simple.
2283  *
2284  *	in_flight = packets_out - left_out + retrans_out
2285  *
2286  *	packets_out is SND.NXT-SND.UNA counted in packets.
2287  *
2288  *	retrans_out is number of retransmitted segments.
2289  *
2290  *	left_out is number of segments left network, but not ACKed yet.
2291  *
2292  *		left_out = sacked_out + lost_out
2293  *
2294  *     sacked_out: Packets, which arrived to receiver out of order
2295  *		   and hence not ACKed. With SACKs this number is simply
2296  *		   amount of SACKed data. Even without SACKs
2297  *		   it is easy to give pretty reliable estimate of this number,
2298  *		   counting duplicate ACKs.
2299  *
2300  *       lost_out: Packets lost by network. TCP has no explicit
2301  *		   "loss notification" feedback from network (for now).
2302  *		   It means that this number can be only _guessed_.
2303  *		   Actually, it is the heuristics to predict lossage that
2304  *		   distinguishes different algorithms.
2305  *
2306  *	F.e. after RTO, when all the queue is considered as lost,
2307  *	lost_out = packets_out and in_flight = retrans_out.
2308  *
2309  *		Essentially, we have now a few algorithms detecting
2310  *		lost packets.
2311  *
2312  *		If the receiver supports SACK:
2313  *
2314  *		RFC6675/3517: It is the conventional algorithm. A packet is
2315  *		considered lost if the number of higher sequence packets
2316  *		SACKed is greater than or equal the DUPACK thoreshold
2317  *		(reordering). This is implemented in tcp_mark_head_lost and
2318  *		tcp_update_scoreboard.
2319  *
2320  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2321  *		(2017-) that checks timing instead of counting DUPACKs.
2322  *		Essentially a packet is considered lost if it's not S/ACKed
2323  *		after RTT + reordering_window, where both metrics are
2324  *		dynamically measured and adjusted. This is implemented in
2325  *		tcp_rack_mark_lost.
2326  *
2327  *		If the receiver does not support SACK:
2328  *
2329  *		NewReno (RFC6582): in Recovery we assume that one segment
2330  *		is lost (classic Reno). While we are in Recovery and
2331  *		a partial ACK arrives, we assume that one more packet
2332  *		is lost (NewReno). This heuristics are the same in NewReno
2333  *		and SACK.
2334  *
2335  * Really tricky (and requiring careful tuning) part of algorithm
2336  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2337  * The first determines the moment _when_ we should reduce CWND and,
2338  * hence, slow down forward transmission. In fact, it determines the moment
2339  * when we decide that hole is caused by loss, rather than by a reorder.
2340  *
2341  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2342  * holes, caused by lost packets.
2343  *
2344  * And the most logically complicated part of algorithm is undo
2345  * heuristics. We detect false retransmits due to both too early
2346  * fast retransmit (reordering) and underestimated RTO, analyzing
2347  * timestamps and D-SACKs. When we detect that some segments were
2348  * retransmitted by mistake and CWND reduction was wrong, we undo
2349  * window reduction and abort recovery phase. This logic is hidden
2350  * inside several functions named tcp_try_undo_<something>.
2351  */
2352 
2353 /* This function decides, when we should leave Disordered state
2354  * and enter Recovery phase, reducing congestion window.
2355  *
2356  * Main question: may we further continue forward transmission
2357  * with the same cwnd?
2358  */
2359 static bool tcp_time_to_recover(struct sock *sk, int flag)
2360 {
2361 	struct tcp_sock *tp = tcp_sk(sk);
2362 
2363 	/* Trick#1: The loss is proven. */
2364 	if (tp->lost_out)
2365 		return true;
2366 
2367 	/* Not-A-Trick#2 : Classic rule... */
2368 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2369 		return true;
2370 
2371 	return false;
2372 }
2373 
2374 /* Detect loss in event "A" above by marking head of queue up as lost.
2375  * For RFC3517 SACK, a segment is considered lost if it
2376  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2377  * the maximum SACKed segments to pass before reaching this limit.
2378  */
2379 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2380 {
2381 	struct tcp_sock *tp = tcp_sk(sk);
2382 	struct sk_buff *skb;
2383 	int cnt;
2384 	/* Use SACK to deduce losses of new sequences sent during recovery */
2385 	const u32 loss_high = tp->snd_nxt;
2386 
2387 	WARN_ON(packets > tp->packets_out);
2388 	skb = tp->lost_skb_hint;
2389 	if (skb) {
2390 		/* Head already handled? */
2391 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2392 			return;
2393 		cnt = tp->lost_cnt_hint;
2394 	} else {
2395 		skb = tcp_rtx_queue_head(sk);
2396 		cnt = 0;
2397 	}
2398 
2399 	skb_rbtree_walk_from(skb) {
2400 		/* TODO: do this better */
2401 		/* this is not the most efficient way to do this... */
2402 		tp->lost_skb_hint = skb;
2403 		tp->lost_cnt_hint = cnt;
2404 
2405 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2406 			break;
2407 
2408 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2409 			cnt += tcp_skb_pcount(skb);
2410 
2411 		if (cnt > packets)
2412 			break;
2413 
2414 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2415 			tcp_mark_skb_lost(sk, skb);
2416 
2417 		if (mark_head)
2418 			break;
2419 	}
2420 	tcp_verify_left_out(tp);
2421 }
2422 
2423 /* Account newly detected lost packet(s) */
2424 
2425 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2426 {
2427 	struct tcp_sock *tp = tcp_sk(sk);
2428 
2429 	if (tcp_is_sack(tp)) {
2430 		int sacked_upto = tp->sacked_out - tp->reordering;
2431 		if (sacked_upto >= 0)
2432 			tcp_mark_head_lost(sk, sacked_upto, 0);
2433 		else if (fast_rexmit)
2434 			tcp_mark_head_lost(sk, 1, 1);
2435 	}
2436 }
2437 
2438 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2439 {
2440 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2441 	       before(tp->rx_opt.rcv_tsecr, when);
2442 }
2443 
2444 /* skb is spurious retransmitted if the returned timestamp echo
2445  * reply is prior to the skb transmission time
2446  */
2447 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2448 				     const struct sk_buff *skb)
2449 {
2450 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2451 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2452 }
2453 
2454 /* Nothing was retransmitted or returned timestamp is less
2455  * than timestamp of the first retransmission.
2456  */
2457 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2458 {
2459 	return tp->retrans_stamp &&
2460 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2461 }
2462 
2463 /* Undo procedures. */
2464 
2465 /* We can clear retrans_stamp when there are no retransmissions in the
2466  * window. It would seem that it is trivially available for us in
2467  * tp->retrans_out, however, that kind of assumptions doesn't consider
2468  * what will happen if errors occur when sending retransmission for the
2469  * second time. ...It could the that such segment has only
2470  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2471  * the head skb is enough except for some reneging corner cases that
2472  * are not worth the effort.
2473  *
2474  * Main reason for all this complexity is the fact that connection dying
2475  * time now depends on the validity of the retrans_stamp, in particular,
2476  * that successive retransmissions of a segment must not advance
2477  * retrans_stamp under any conditions.
2478  */
2479 static bool tcp_any_retrans_done(const struct sock *sk)
2480 {
2481 	const struct tcp_sock *tp = tcp_sk(sk);
2482 	struct sk_buff *skb;
2483 
2484 	if (tp->retrans_out)
2485 		return true;
2486 
2487 	skb = tcp_rtx_queue_head(sk);
2488 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2489 		return true;
2490 
2491 	return false;
2492 }
2493 
2494 static void DBGUNDO(struct sock *sk, const char *msg)
2495 {
2496 #if FASTRETRANS_DEBUG > 1
2497 	struct tcp_sock *tp = tcp_sk(sk);
2498 	struct inet_sock *inet = inet_sk(sk);
2499 
2500 	if (sk->sk_family == AF_INET) {
2501 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2502 			 msg,
2503 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2504 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2505 			 tp->snd_ssthresh, tp->prior_ssthresh,
2506 			 tp->packets_out);
2507 	}
2508 #if IS_ENABLED(CONFIG_IPV6)
2509 	else if (sk->sk_family == AF_INET6) {
2510 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2511 			 msg,
2512 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2513 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2514 			 tp->snd_ssthresh, tp->prior_ssthresh,
2515 			 tp->packets_out);
2516 	}
2517 #endif
2518 #endif
2519 }
2520 
2521 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2522 {
2523 	struct tcp_sock *tp = tcp_sk(sk);
2524 
2525 	if (unmark_loss) {
2526 		struct sk_buff *skb;
2527 
2528 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2529 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2530 		}
2531 		tp->lost_out = 0;
2532 		tcp_clear_all_retrans_hints(tp);
2533 	}
2534 
2535 	if (tp->prior_ssthresh) {
2536 		const struct inet_connection_sock *icsk = inet_csk(sk);
2537 
2538 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2539 
2540 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2541 			tp->snd_ssthresh = tp->prior_ssthresh;
2542 			tcp_ecn_withdraw_cwr(tp);
2543 		}
2544 	}
2545 	tp->snd_cwnd_stamp = tcp_jiffies32;
2546 	tp->undo_marker = 0;
2547 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2548 }
2549 
2550 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2551 {
2552 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2553 }
2554 
2555 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2556 {
2557 	struct tcp_sock *tp = tcp_sk(sk);
2558 
2559 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2560 		/* Hold old state until something *above* high_seq
2561 		 * is ACKed. For Reno it is MUST to prevent false
2562 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2563 		if (!tcp_any_retrans_done(sk))
2564 			tp->retrans_stamp = 0;
2565 		return true;
2566 	}
2567 	return false;
2568 }
2569 
2570 /* People celebrate: "We love our President!" */
2571 static bool tcp_try_undo_recovery(struct sock *sk)
2572 {
2573 	struct tcp_sock *tp = tcp_sk(sk);
2574 
2575 	if (tcp_may_undo(tp)) {
2576 		int mib_idx;
2577 
2578 		/* Happy end! We did not retransmit anything
2579 		 * or our original transmission succeeded.
2580 		 */
2581 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2582 		tcp_undo_cwnd_reduction(sk, false);
2583 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2584 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2585 		else
2586 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2587 
2588 		NET_INC_STATS(sock_net(sk), mib_idx);
2589 	} else if (tp->rack.reo_wnd_persist) {
2590 		tp->rack.reo_wnd_persist--;
2591 	}
2592 	if (tcp_is_non_sack_preventing_reopen(sk))
2593 		return true;
2594 	tcp_set_ca_state(sk, TCP_CA_Open);
2595 	tp->is_sack_reneg = 0;
2596 	return false;
2597 }
2598 
2599 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2600 static bool tcp_try_undo_dsack(struct sock *sk)
2601 {
2602 	struct tcp_sock *tp = tcp_sk(sk);
2603 
2604 	if (tp->undo_marker && !tp->undo_retrans) {
2605 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2606 					       tp->rack.reo_wnd_persist + 1);
2607 		DBGUNDO(sk, "D-SACK");
2608 		tcp_undo_cwnd_reduction(sk, false);
2609 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2610 		return true;
2611 	}
2612 	return false;
2613 }
2614 
2615 /* Undo during loss recovery after partial ACK or using F-RTO. */
2616 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2617 {
2618 	struct tcp_sock *tp = tcp_sk(sk);
2619 
2620 	if (frto_undo || tcp_may_undo(tp)) {
2621 		tcp_undo_cwnd_reduction(sk, true);
2622 
2623 		DBGUNDO(sk, "partial loss");
2624 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2625 		if (frto_undo)
2626 			NET_INC_STATS(sock_net(sk),
2627 					LINUX_MIB_TCPSPURIOUSRTOS);
2628 		inet_csk(sk)->icsk_retransmits = 0;
2629 		if (tcp_is_non_sack_preventing_reopen(sk))
2630 			return true;
2631 		if (frto_undo || tcp_is_sack(tp)) {
2632 			tcp_set_ca_state(sk, TCP_CA_Open);
2633 			tp->is_sack_reneg = 0;
2634 		}
2635 		return true;
2636 	}
2637 	return false;
2638 }
2639 
2640 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2641  * It computes the number of packets to send (sndcnt) based on packets newly
2642  * delivered:
2643  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2644  *	cwnd reductions across a full RTT.
2645  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2646  *      But when SND_UNA is acked without further losses,
2647  *      slow starts cwnd up to ssthresh to speed up the recovery.
2648  */
2649 static void tcp_init_cwnd_reduction(struct sock *sk)
2650 {
2651 	struct tcp_sock *tp = tcp_sk(sk);
2652 
2653 	tp->high_seq = tp->snd_nxt;
2654 	tp->tlp_high_seq = 0;
2655 	tp->snd_cwnd_cnt = 0;
2656 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2657 	tp->prr_delivered = 0;
2658 	tp->prr_out = 0;
2659 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2660 	tcp_ecn_queue_cwr(tp);
2661 }
2662 
2663 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2664 {
2665 	struct tcp_sock *tp = tcp_sk(sk);
2666 	int sndcnt = 0;
2667 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2668 
2669 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2670 		return;
2671 
2672 	tp->prr_delivered += newly_acked_sacked;
2673 	if (delta < 0) {
2674 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2675 			       tp->prior_cwnd - 1;
2676 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2677 	} else {
2678 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2679 			       newly_acked_sacked);
2680 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2681 			sndcnt++;
2682 		sndcnt = min(delta, sndcnt);
2683 	}
2684 	/* Force a fast retransmit upon entering fast recovery */
2685 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2686 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2687 }
2688 
2689 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2690 {
2691 	struct tcp_sock *tp = tcp_sk(sk);
2692 
2693 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2694 		return;
2695 
2696 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2697 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2698 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2699 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2700 		tp->snd_cwnd_stamp = tcp_jiffies32;
2701 	}
2702 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2703 }
2704 
2705 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2706 void tcp_enter_cwr(struct sock *sk)
2707 {
2708 	struct tcp_sock *tp = tcp_sk(sk);
2709 
2710 	tp->prior_ssthresh = 0;
2711 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2712 		tp->undo_marker = 0;
2713 		tcp_init_cwnd_reduction(sk);
2714 		tcp_set_ca_state(sk, TCP_CA_CWR);
2715 	}
2716 }
2717 EXPORT_SYMBOL(tcp_enter_cwr);
2718 
2719 static void tcp_try_keep_open(struct sock *sk)
2720 {
2721 	struct tcp_sock *tp = tcp_sk(sk);
2722 	int state = TCP_CA_Open;
2723 
2724 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2725 		state = TCP_CA_Disorder;
2726 
2727 	if (inet_csk(sk)->icsk_ca_state != state) {
2728 		tcp_set_ca_state(sk, state);
2729 		tp->high_seq = tp->snd_nxt;
2730 	}
2731 }
2732 
2733 static void tcp_try_to_open(struct sock *sk, int flag)
2734 {
2735 	struct tcp_sock *tp = tcp_sk(sk);
2736 
2737 	tcp_verify_left_out(tp);
2738 
2739 	if (!tcp_any_retrans_done(sk))
2740 		tp->retrans_stamp = 0;
2741 
2742 	if (flag & FLAG_ECE)
2743 		tcp_enter_cwr(sk);
2744 
2745 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2746 		tcp_try_keep_open(sk);
2747 	}
2748 }
2749 
2750 static void tcp_mtup_probe_failed(struct sock *sk)
2751 {
2752 	struct inet_connection_sock *icsk = inet_csk(sk);
2753 
2754 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2755 	icsk->icsk_mtup.probe_size = 0;
2756 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2757 }
2758 
2759 static void tcp_mtup_probe_success(struct sock *sk)
2760 {
2761 	struct tcp_sock *tp = tcp_sk(sk);
2762 	struct inet_connection_sock *icsk = inet_csk(sk);
2763 	u64 val;
2764 
2765 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2766 
2767 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2768 	do_div(val, icsk->icsk_mtup.probe_size);
2769 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2770 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2771 
2772 	tp->snd_cwnd_cnt = 0;
2773 	tp->snd_cwnd_stamp = tcp_jiffies32;
2774 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2775 
2776 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2777 	icsk->icsk_mtup.probe_size = 0;
2778 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2779 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2780 }
2781 
2782 /* Do a simple retransmit without using the backoff mechanisms in
2783  * tcp_timer. This is used for path mtu discovery.
2784  * The socket is already locked here.
2785  */
2786 void tcp_simple_retransmit(struct sock *sk)
2787 {
2788 	const struct inet_connection_sock *icsk = inet_csk(sk);
2789 	struct tcp_sock *tp = tcp_sk(sk);
2790 	struct sk_buff *skb;
2791 	int mss;
2792 
2793 	/* A fastopen SYN request is stored as two separate packets within
2794 	 * the retransmit queue, this is done by tcp_send_syn_data().
2795 	 * As a result simply checking the MSS of the frames in the queue
2796 	 * will not work for the SYN packet.
2797 	 *
2798 	 * Us being here is an indication of a path MTU issue so we can
2799 	 * assume that the fastopen SYN was lost and just mark all the
2800 	 * frames in the retransmit queue as lost. We will use an MSS of
2801 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2802 	 */
2803 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2804 		mss = -1;
2805 	else
2806 		mss = tcp_current_mss(sk);
2807 
2808 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2809 		if (tcp_skb_seglen(skb) > mss)
2810 			tcp_mark_skb_lost(sk, skb);
2811 	}
2812 
2813 	tcp_clear_retrans_hints_partial(tp);
2814 
2815 	if (!tp->lost_out)
2816 		return;
2817 
2818 	if (tcp_is_reno(tp))
2819 		tcp_limit_reno_sacked(tp);
2820 
2821 	tcp_verify_left_out(tp);
2822 
2823 	/* Don't muck with the congestion window here.
2824 	 * Reason is that we do not increase amount of _data_
2825 	 * in network, but units changed and effective
2826 	 * cwnd/ssthresh really reduced now.
2827 	 */
2828 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2829 		tp->high_seq = tp->snd_nxt;
2830 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2831 		tp->prior_ssthresh = 0;
2832 		tp->undo_marker = 0;
2833 		tcp_set_ca_state(sk, TCP_CA_Loss);
2834 	}
2835 	tcp_xmit_retransmit_queue(sk);
2836 }
2837 EXPORT_SYMBOL(tcp_simple_retransmit);
2838 
2839 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2840 {
2841 	struct tcp_sock *tp = tcp_sk(sk);
2842 	int mib_idx;
2843 
2844 	if (tcp_is_reno(tp))
2845 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2846 	else
2847 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2848 
2849 	NET_INC_STATS(sock_net(sk), mib_idx);
2850 
2851 	tp->prior_ssthresh = 0;
2852 	tcp_init_undo(tp);
2853 
2854 	if (!tcp_in_cwnd_reduction(sk)) {
2855 		if (!ece_ack)
2856 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2857 		tcp_init_cwnd_reduction(sk);
2858 	}
2859 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2860 }
2861 
2862 static void tcp_update_rto_time(struct tcp_sock *tp)
2863 {
2864 	if (tp->rto_stamp) {
2865 		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2866 		tp->rto_stamp = 0;
2867 	}
2868 }
2869 
2870 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2871  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2872  */
2873 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2874 			     int *rexmit)
2875 {
2876 	struct tcp_sock *tp = tcp_sk(sk);
2877 	bool recovered = !before(tp->snd_una, tp->high_seq);
2878 
2879 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2880 	    tcp_try_undo_loss(sk, false))
2881 		return;
2882 
2883 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2884 		/* Step 3.b. A timeout is spurious if not all data are
2885 		 * lost, i.e., never-retransmitted data are (s)acked.
2886 		 */
2887 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2888 		    tcp_try_undo_loss(sk, true))
2889 			return;
2890 
2891 		if (after(tp->snd_nxt, tp->high_seq)) {
2892 			if (flag & FLAG_DATA_SACKED || num_dupack)
2893 				tp->frto = 0; /* Step 3.a. loss was real */
2894 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2895 			tp->high_seq = tp->snd_nxt;
2896 			/* Step 2.b. Try send new data (but deferred until cwnd
2897 			 * is updated in tcp_ack()). Otherwise fall back to
2898 			 * the conventional recovery.
2899 			 */
2900 			if (!tcp_write_queue_empty(sk) &&
2901 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2902 				*rexmit = REXMIT_NEW;
2903 				return;
2904 			}
2905 			tp->frto = 0;
2906 		}
2907 	}
2908 
2909 	if (recovered) {
2910 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2911 		tcp_try_undo_recovery(sk);
2912 		return;
2913 	}
2914 	if (tcp_is_reno(tp)) {
2915 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2916 		 * delivered. Lower inflight to clock out (re)transmissions.
2917 		 */
2918 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2919 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2920 		else if (flag & FLAG_SND_UNA_ADVANCED)
2921 			tcp_reset_reno_sack(tp);
2922 	}
2923 	*rexmit = REXMIT_LOST;
2924 }
2925 
2926 static bool tcp_force_fast_retransmit(struct sock *sk)
2927 {
2928 	struct tcp_sock *tp = tcp_sk(sk);
2929 
2930 	return after(tcp_highest_sack_seq(tp),
2931 		     tp->snd_una + tp->reordering * tp->mss_cache);
2932 }
2933 
2934 /* Undo during fast recovery after partial ACK. */
2935 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2936 				 bool *do_lost)
2937 {
2938 	struct tcp_sock *tp = tcp_sk(sk);
2939 
2940 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2941 		/* Plain luck! Hole if filled with delayed
2942 		 * packet, rather than with a retransmit. Check reordering.
2943 		 */
2944 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2945 
2946 		/* We are getting evidence that the reordering degree is higher
2947 		 * than we realized. If there are no retransmits out then we
2948 		 * can undo. Otherwise we clock out new packets but do not
2949 		 * mark more packets lost or retransmit more.
2950 		 */
2951 		if (tp->retrans_out)
2952 			return true;
2953 
2954 		if (!tcp_any_retrans_done(sk))
2955 			tp->retrans_stamp = 0;
2956 
2957 		DBGUNDO(sk, "partial recovery");
2958 		tcp_undo_cwnd_reduction(sk, true);
2959 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2960 		tcp_try_keep_open(sk);
2961 	} else {
2962 		/* Partial ACK arrived. Force fast retransmit. */
2963 		*do_lost = tcp_force_fast_retransmit(sk);
2964 	}
2965 	return false;
2966 }
2967 
2968 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2969 {
2970 	struct tcp_sock *tp = tcp_sk(sk);
2971 
2972 	if (tcp_rtx_queue_empty(sk))
2973 		return;
2974 
2975 	if (unlikely(tcp_is_reno(tp))) {
2976 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2977 	} else if (tcp_is_rack(sk)) {
2978 		u32 prior_retrans = tp->retrans_out;
2979 
2980 		if (tcp_rack_mark_lost(sk))
2981 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2982 		if (prior_retrans > tp->retrans_out)
2983 			*ack_flag |= FLAG_LOST_RETRANS;
2984 	}
2985 }
2986 
2987 /* Process an event, which can update packets-in-flight not trivially.
2988  * Main goal of this function is to calculate new estimate for left_out,
2989  * taking into account both packets sitting in receiver's buffer and
2990  * packets lost by network.
2991  *
2992  * Besides that it updates the congestion state when packet loss or ECN
2993  * is detected. But it does not reduce the cwnd, it is done by the
2994  * congestion control later.
2995  *
2996  * It does _not_ decide what to send, it is made in function
2997  * tcp_xmit_retransmit_queue().
2998  */
2999 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3000 				  int num_dupack, int *ack_flag, int *rexmit)
3001 {
3002 	struct inet_connection_sock *icsk = inet_csk(sk);
3003 	struct tcp_sock *tp = tcp_sk(sk);
3004 	int fast_rexmit = 0, flag = *ack_flag;
3005 	bool ece_ack = flag & FLAG_ECE;
3006 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3007 				      tcp_force_fast_retransmit(sk));
3008 
3009 	if (!tp->packets_out && tp->sacked_out)
3010 		tp->sacked_out = 0;
3011 
3012 	/* Now state machine starts.
3013 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3014 	if (ece_ack)
3015 		tp->prior_ssthresh = 0;
3016 
3017 	/* B. In all the states check for reneging SACKs. */
3018 	if (tcp_check_sack_reneging(sk, ack_flag))
3019 		return;
3020 
3021 	/* C. Check consistency of the current state. */
3022 	tcp_verify_left_out(tp);
3023 
3024 	/* D. Check state exit conditions. State can be terminated
3025 	 *    when high_seq is ACKed. */
3026 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3027 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3028 		tp->retrans_stamp = 0;
3029 	} else if (!before(tp->snd_una, tp->high_seq)) {
3030 		switch (icsk->icsk_ca_state) {
3031 		case TCP_CA_CWR:
3032 			/* CWR is to be held something *above* high_seq
3033 			 * is ACKed for CWR bit to reach receiver. */
3034 			if (tp->snd_una != tp->high_seq) {
3035 				tcp_end_cwnd_reduction(sk);
3036 				tcp_set_ca_state(sk, TCP_CA_Open);
3037 			}
3038 			break;
3039 
3040 		case TCP_CA_Recovery:
3041 			if (tcp_is_reno(tp))
3042 				tcp_reset_reno_sack(tp);
3043 			if (tcp_try_undo_recovery(sk))
3044 				return;
3045 			tcp_end_cwnd_reduction(sk);
3046 			break;
3047 		}
3048 	}
3049 
3050 	/* E. Process state. */
3051 	switch (icsk->icsk_ca_state) {
3052 	case TCP_CA_Recovery:
3053 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3054 			if (tcp_is_reno(tp))
3055 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3056 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3057 			return;
3058 
3059 		if (tcp_try_undo_dsack(sk))
3060 			tcp_try_keep_open(sk);
3061 
3062 		tcp_identify_packet_loss(sk, ack_flag);
3063 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3064 			if (!tcp_time_to_recover(sk, flag))
3065 				return;
3066 			/* Undo reverts the recovery state. If loss is evident,
3067 			 * starts a new recovery (e.g. reordering then loss);
3068 			 */
3069 			tcp_enter_recovery(sk, ece_ack);
3070 		}
3071 		break;
3072 	case TCP_CA_Loss:
3073 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3074 		if (icsk->icsk_ca_state != TCP_CA_Loss)
3075 			tcp_update_rto_time(tp);
3076 		tcp_identify_packet_loss(sk, ack_flag);
3077 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3078 		      (*ack_flag & FLAG_LOST_RETRANS)))
3079 			return;
3080 		/* Change state if cwnd is undone or retransmits are lost */
3081 		fallthrough;
3082 	default:
3083 		if (tcp_is_reno(tp)) {
3084 			if (flag & FLAG_SND_UNA_ADVANCED)
3085 				tcp_reset_reno_sack(tp);
3086 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3087 		}
3088 
3089 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3090 			tcp_try_undo_dsack(sk);
3091 
3092 		tcp_identify_packet_loss(sk, ack_flag);
3093 		if (!tcp_time_to_recover(sk, flag)) {
3094 			tcp_try_to_open(sk, flag);
3095 			return;
3096 		}
3097 
3098 		/* MTU probe failure: don't reduce cwnd */
3099 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3100 		    icsk->icsk_mtup.probe_size &&
3101 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3102 			tcp_mtup_probe_failed(sk);
3103 			/* Restores the reduction we did in tcp_mtup_probe() */
3104 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3105 			tcp_simple_retransmit(sk);
3106 			return;
3107 		}
3108 
3109 		/* Otherwise enter Recovery state */
3110 		tcp_enter_recovery(sk, ece_ack);
3111 		fast_rexmit = 1;
3112 	}
3113 
3114 	if (!tcp_is_rack(sk) && do_lost)
3115 		tcp_update_scoreboard(sk, fast_rexmit);
3116 	*rexmit = REXMIT_LOST;
3117 }
3118 
3119 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3120 {
3121 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3122 	struct tcp_sock *tp = tcp_sk(sk);
3123 
3124 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3125 		/* If the remote keeps returning delayed ACKs, eventually
3126 		 * the min filter would pick it up and overestimate the
3127 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3128 		 */
3129 		return;
3130 	}
3131 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3132 			   rtt_us ? : jiffies_to_usecs(1));
3133 }
3134 
3135 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3136 			       long seq_rtt_us, long sack_rtt_us,
3137 			       long ca_rtt_us, struct rate_sample *rs)
3138 {
3139 	const struct tcp_sock *tp = tcp_sk(sk);
3140 
3141 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3142 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3143 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3144 	 * is acked (RFC6298).
3145 	 */
3146 	if (seq_rtt_us < 0)
3147 		seq_rtt_us = sack_rtt_us;
3148 
3149 	/* RTTM Rule: A TSecr value received in a segment is used to
3150 	 * update the averaged RTT measurement only if the segment
3151 	 * acknowledges some new data, i.e., only if it advances the
3152 	 * left edge of the send window.
3153 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3154 	 */
3155 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3156 	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3157 		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp);
3158 
3159 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3160 	if (seq_rtt_us < 0)
3161 		return false;
3162 
3163 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3164 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3165 	 * values will be skipped with the seq_rtt_us < 0 check above.
3166 	 */
3167 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3168 	tcp_rtt_estimator(sk, seq_rtt_us);
3169 	tcp_set_rto(sk);
3170 
3171 	/* RFC6298: only reset backoff on valid RTT measurement. */
3172 	inet_csk(sk)->icsk_backoff = 0;
3173 	return true;
3174 }
3175 
3176 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3177 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3178 {
3179 	struct rate_sample rs;
3180 	long rtt_us = -1L;
3181 
3182 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3183 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3184 
3185 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3186 }
3187 
3188 
3189 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3190 {
3191 	const struct inet_connection_sock *icsk = inet_csk(sk);
3192 
3193 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3194 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3195 }
3196 
3197 /* Restart timer after forward progress on connection.
3198  * RFC2988 recommends to restart timer to now+rto.
3199  */
3200 void tcp_rearm_rto(struct sock *sk)
3201 {
3202 	const struct inet_connection_sock *icsk = inet_csk(sk);
3203 	struct tcp_sock *tp = tcp_sk(sk);
3204 
3205 	/* If the retrans timer is currently being used by Fast Open
3206 	 * for SYN-ACK retrans purpose, stay put.
3207 	 */
3208 	if (rcu_access_pointer(tp->fastopen_rsk))
3209 		return;
3210 
3211 	if (!tp->packets_out) {
3212 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3213 	} else {
3214 		u32 rto = inet_csk(sk)->icsk_rto;
3215 		/* Offset the time elapsed after installing regular RTO */
3216 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3217 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3218 			s64 delta_us = tcp_rto_delta_us(sk);
3219 			/* delta_us may not be positive if the socket is locked
3220 			 * when the retrans timer fires and is rescheduled.
3221 			 */
3222 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3223 		}
3224 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3225 				     TCP_RTO_MAX);
3226 	}
3227 }
3228 
3229 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3230 static void tcp_set_xmit_timer(struct sock *sk)
3231 {
3232 	if (!tcp_schedule_loss_probe(sk, true))
3233 		tcp_rearm_rto(sk);
3234 }
3235 
3236 /* If we get here, the whole TSO packet has not been acked. */
3237 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3238 {
3239 	struct tcp_sock *tp = tcp_sk(sk);
3240 	u32 packets_acked;
3241 
3242 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3243 
3244 	packets_acked = tcp_skb_pcount(skb);
3245 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3246 		return 0;
3247 	packets_acked -= tcp_skb_pcount(skb);
3248 
3249 	if (packets_acked) {
3250 		BUG_ON(tcp_skb_pcount(skb) == 0);
3251 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3252 	}
3253 
3254 	return packets_acked;
3255 }
3256 
3257 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3258 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3259 {
3260 	const struct skb_shared_info *shinfo;
3261 
3262 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3263 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3264 		return;
3265 
3266 	shinfo = skb_shinfo(skb);
3267 	if (!before(shinfo->tskey, prior_snd_una) &&
3268 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3269 		tcp_skb_tsorted_save(skb) {
3270 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3271 		} tcp_skb_tsorted_restore(skb);
3272 	}
3273 }
3274 
3275 /* Remove acknowledged frames from the retransmission queue. If our packet
3276  * is before the ack sequence we can discard it as it's confirmed to have
3277  * arrived at the other end.
3278  */
3279 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3280 			       u32 prior_fack, u32 prior_snd_una,
3281 			       struct tcp_sacktag_state *sack, bool ece_ack)
3282 {
3283 	const struct inet_connection_sock *icsk = inet_csk(sk);
3284 	u64 first_ackt, last_ackt;
3285 	struct tcp_sock *tp = tcp_sk(sk);
3286 	u32 prior_sacked = tp->sacked_out;
3287 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3288 	struct sk_buff *skb, *next;
3289 	bool fully_acked = true;
3290 	long sack_rtt_us = -1L;
3291 	long seq_rtt_us = -1L;
3292 	long ca_rtt_us = -1L;
3293 	u32 pkts_acked = 0;
3294 	bool rtt_update;
3295 	int flag = 0;
3296 
3297 	first_ackt = 0;
3298 
3299 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3300 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3301 		const u32 start_seq = scb->seq;
3302 		u8 sacked = scb->sacked;
3303 		u32 acked_pcount;
3304 
3305 		/* Determine how many packets and what bytes were acked, tso and else */
3306 		if (after(scb->end_seq, tp->snd_una)) {
3307 			if (tcp_skb_pcount(skb) == 1 ||
3308 			    !after(tp->snd_una, scb->seq))
3309 				break;
3310 
3311 			acked_pcount = tcp_tso_acked(sk, skb);
3312 			if (!acked_pcount)
3313 				break;
3314 			fully_acked = false;
3315 		} else {
3316 			acked_pcount = tcp_skb_pcount(skb);
3317 		}
3318 
3319 		if (unlikely(sacked & TCPCB_RETRANS)) {
3320 			if (sacked & TCPCB_SACKED_RETRANS)
3321 				tp->retrans_out -= acked_pcount;
3322 			flag |= FLAG_RETRANS_DATA_ACKED;
3323 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3324 			last_ackt = tcp_skb_timestamp_us(skb);
3325 			WARN_ON_ONCE(last_ackt == 0);
3326 			if (!first_ackt)
3327 				first_ackt = last_ackt;
3328 
3329 			if (before(start_seq, reord))
3330 				reord = start_seq;
3331 			if (!after(scb->end_seq, tp->high_seq))
3332 				flag |= FLAG_ORIG_SACK_ACKED;
3333 		}
3334 
3335 		if (sacked & TCPCB_SACKED_ACKED) {
3336 			tp->sacked_out -= acked_pcount;
3337 		} else if (tcp_is_sack(tp)) {
3338 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3339 			if (!tcp_skb_spurious_retrans(tp, skb))
3340 				tcp_rack_advance(tp, sacked, scb->end_seq,
3341 						 tcp_skb_timestamp_us(skb));
3342 		}
3343 		if (sacked & TCPCB_LOST)
3344 			tp->lost_out -= acked_pcount;
3345 
3346 		tp->packets_out -= acked_pcount;
3347 		pkts_acked += acked_pcount;
3348 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3349 
3350 		/* Initial outgoing SYN's get put onto the write_queue
3351 		 * just like anything else we transmit.  It is not
3352 		 * true data, and if we misinform our callers that
3353 		 * this ACK acks real data, we will erroneously exit
3354 		 * connection startup slow start one packet too
3355 		 * quickly.  This is severely frowned upon behavior.
3356 		 */
3357 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3358 			flag |= FLAG_DATA_ACKED;
3359 		} else {
3360 			flag |= FLAG_SYN_ACKED;
3361 			tp->retrans_stamp = 0;
3362 		}
3363 
3364 		if (!fully_acked)
3365 			break;
3366 
3367 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3368 
3369 		next = skb_rb_next(skb);
3370 		if (unlikely(skb == tp->retransmit_skb_hint))
3371 			tp->retransmit_skb_hint = NULL;
3372 		if (unlikely(skb == tp->lost_skb_hint))
3373 			tp->lost_skb_hint = NULL;
3374 		tcp_highest_sack_replace(sk, skb, next);
3375 		tcp_rtx_queue_unlink_and_free(skb, sk);
3376 	}
3377 
3378 	if (!skb)
3379 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3380 
3381 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3382 		tp->snd_up = tp->snd_una;
3383 
3384 	if (skb) {
3385 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3386 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3387 			flag |= FLAG_SACK_RENEGING;
3388 	}
3389 
3390 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3391 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3392 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3393 
3394 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3395 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3396 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3397 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3398 			/* Conservatively mark a delayed ACK. It's typically
3399 			 * from a lone runt packet over the round trip to
3400 			 * a receiver w/o out-of-order or CE events.
3401 			 */
3402 			flag |= FLAG_ACK_MAYBE_DELAYED;
3403 		}
3404 	}
3405 	if (sack->first_sackt) {
3406 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3407 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3408 	}
3409 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3410 					ca_rtt_us, sack->rate);
3411 
3412 	if (flag & FLAG_ACKED) {
3413 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3414 		if (unlikely(icsk->icsk_mtup.probe_size &&
3415 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3416 			tcp_mtup_probe_success(sk);
3417 		}
3418 
3419 		if (tcp_is_reno(tp)) {
3420 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3421 
3422 			/* If any of the cumulatively ACKed segments was
3423 			 * retransmitted, non-SACK case cannot confirm that
3424 			 * progress was due to original transmission due to
3425 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3426 			 * the packets may have been never retransmitted.
3427 			 */
3428 			if (flag & FLAG_RETRANS_DATA_ACKED)
3429 				flag &= ~FLAG_ORIG_SACK_ACKED;
3430 		} else {
3431 			int delta;
3432 
3433 			/* Non-retransmitted hole got filled? That's reordering */
3434 			if (before(reord, prior_fack))
3435 				tcp_check_sack_reordering(sk, reord, 0);
3436 
3437 			delta = prior_sacked - tp->sacked_out;
3438 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3439 		}
3440 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3441 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3442 						    tcp_skb_timestamp_us(skb))) {
3443 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3444 		 * after when the head was last (re)transmitted. Otherwise the
3445 		 * timeout may continue to extend in loss recovery.
3446 		 */
3447 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3448 	}
3449 
3450 	if (icsk->icsk_ca_ops->pkts_acked) {
3451 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3452 					     .rtt_us = sack->rate->rtt_us };
3453 
3454 		sample.in_flight = tp->mss_cache *
3455 			(tp->delivered - sack->rate->prior_delivered);
3456 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3457 	}
3458 
3459 #if FASTRETRANS_DEBUG > 0
3460 	WARN_ON((int)tp->sacked_out < 0);
3461 	WARN_ON((int)tp->lost_out < 0);
3462 	WARN_ON((int)tp->retrans_out < 0);
3463 	if (!tp->packets_out && tcp_is_sack(tp)) {
3464 		icsk = inet_csk(sk);
3465 		if (tp->lost_out) {
3466 			pr_debug("Leak l=%u %d\n",
3467 				 tp->lost_out, icsk->icsk_ca_state);
3468 			tp->lost_out = 0;
3469 		}
3470 		if (tp->sacked_out) {
3471 			pr_debug("Leak s=%u %d\n",
3472 				 tp->sacked_out, icsk->icsk_ca_state);
3473 			tp->sacked_out = 0;
3474 		}
3475 		if (tp->retrans_out) {
3476 			pr_debug("Leak r=%u %d\n",
3477 				 tp->retrans_out, icsk->icsk_ca_state);
3478 			tp->retrans_out = 0;
3479 		}
3480 	}
3481 #endif
3482 	return flag;
3483 }
3484 
3485 static void tcp_ack_probe(struct sock *sk)
3486 {
3487 	struct inet_connection_sock *icsk = inet_csk(sk);
3488 	struct sk_buff *head = tcp_send_head(sk);
3489 	const struct tcp_sock *tp = tcp_sk(sk);
3490 
3491 	/* Was it a usable window open? */
3492 	if (!head)
3493 		return;
3494 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3495 		icsk->icsk_backoff = 0;
3496 		icsk->icsk_probes_tstamp = 0;
3497 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3498 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3499 		 * This function is not for random using!
3500 		 */
3501 	} else {
3502 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3503 
3504 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3505 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3506 	}
3507 }
3508 
3509 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3510 {
3511 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3512 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3513 }
3514 
3515 /* Decide wheather to run the increase function of congestion control. */
3516 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3517 {
3518 	/* If reordering is high then always grow cwnd whenever data is
3519 	 * delivered regardless of its ordering. Otherwise stay conservative
3520 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3521 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3522 	 * cwnd in tcp_fastretrans_alert() based on more states.
3523 	 */
3524 	if (tcp_sk(sk)->reordering >
3525 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3526 		return flag & FLAG_FORWARD_PROGRESS;
3527 
3528 	return flag & FLAG_DATA_ACKED;
3529 }
3530 
3531 /* The "ultimate" congestion control function that aims to replace the rigid
3532  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3533  * It's called toward the end of processing an ACK with precise rate
3534  * information. All transmission or retransmission are delayed afterwards.
3535  */
3536 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3537 			     int flag, const struct rate_sample *rs)
3538 {
3539 	const struct inet_connection_sock *icsk = inet_csk(sk);
3540 
3541 	if (icsk->icsk_ca_ops->cong_control) {
3542 		icsk->icsk_ca_ops->cong_control(sk, rs);
3543 		return;
3544 	}
3545 
3546 	if (tcp_in_cwnd_reduction(sk)) {
3547 		/* Reduce cwnd if state mandates */
3548 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3549 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3550 		/* Advance cwnd if state allows */
3551 		tcp_cong_avoid(sk, ack, acked_sacked);
3552 	}
3553 	tcp_update_pacing_rate(sk);
3554 }
3555 
3556 /* Check that window update is acceptable.
3557  * The function assumes that snd_una<=ack<=snd_next.
3558  */
3559 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3560 					const u32 ack, const u32 ack_seq,
3561 					const u32 nwin)
3562 {
3563 	return	after(ack, tp->snd_una) ||
3564 		after(ack_seq, tp->snd_wl1) ||
3565 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3566 }
3567 
3568 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3569 {
3570 #ifdef CONFIG_TCP_AO
3571 	struct tcp_ao_info *ao;
3572 
3573 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3574 		return;
3575 
3576 	ao = rcu_dereference_protected(tp->ao_info,
3577 				       lockdep_sock_is_held((struct sock *)tp));
3578 	if (ao && ack < tp->snd_una)
3579 		ao->snd_sne++;
3580 #endif
3581 }
3582 
3583 /* If we update tp->snd_una, also update tp->bytes_acked */
3584 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3585 {
3586 	u32 delta = ack - tp->snd_una;
3587 
3588 	sock_owned_by_me((struct sock *)tp);
3589 	tp->bytes_acked += delta;
3590 	tcp_snd_sne_update(tp, ack);
3591 	tp->snd_una = ack;
3592 }
3593 
3594 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3595 {
3596 #ifdef CONFIG_TCP_AO
3597 	struct tcp_ao_info *ao;
3598 
3599 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3600 		return;
3601 
3602 	ao = rcu_dereference_protected(tp->ao_info,
3603 				       lockdep_sock_is_held((struct sock *)tp));
3604 	if (ao && seq < tp->rcv_nxt)
3605 		ao->rcv_sne++;
3606 #endif
3607 }
3608 
3609 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3610 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3611 {
3612 	u32 delta = seq - tp->rcv_nxt;
3613 
3614 	sock_owned_by_me((struct sock *)tp);
3615 	tp->bytes_received += delta;
3616 	tcp_rcv_sne_update(tp, seq);
3617 	WRITE_ONCE(tp->rcv_nxt, seq);
3618 }
3619 
3620 /* Update our send window.
3621  *
3622  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3623  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3624  */
3625 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3626 				 u32 ack_seq)
3627 {
3628 	struct tcp_sock *tp = tcp_sk(sk);
3629 	int flag = 0;
3630 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3631 
3632 	if (likely(!tcp_hdr(skb)->syn))
3633 		nwin <<= tp->rx_opt.snd_wscale;
3634 
3635 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3636 		flag |= FLAG_WIN_UPDATE;
3637 		tcp_update_wl(tp, ack_seq);
3638 
3639 		if (tp->snd_wnd != nwin) {
3640 			tp->snd_wnd = nwin;
3641 
3642 			/* Note, it is the only place, where
3643 			 * fast path is recovered for sending TCP.
3644 			 */
3645 			tp->pred_flags = 0;
3646 			tcp_fast_path_check(sk);
3647 
3648 			if (!tcp_write_queue_empty(sk))
3649 				tcp_slow_start_after_idle_check(sk);
3650 
3651 			if (nwin > tp->max_window) {
3652 				tp->max_window = nwin;
3653 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3654 			}
3655 		}
3656 	}
3657 
3658 	tcp_snd_una_update(tp, ack);
3659 
3660 	return flag;
3661 }
3662 
3663 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3664 				   u32 *last_oow_ack_time)
3665 {
3666 	/* Paired with the WRITE_ONCE() in this function. */
3667 	u32 val = READ_ONCE(*last_oow_ack_time);
3668 
3669 	if (val) {
3670 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3671 
3672 		if (0 <= elapsed &&
3673 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3674 			NET_INC_STATS(net, mib_idx);
3675 			return true;	/* rate-limited: don't send yet! */
3676 		}
3677 	}
3678 
3679 	/* Paired with the prior READ_ONCE() and with itself,
3680 	 * as we might be lockless.
3681 	 */
3682 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3683 
3684 	return false;	/* not rate-limited: go ahead, send dupack now! */
3685 }
3686 
3687 /* Return true if we're currently rate-limiting out-of-window ACKs and
3688  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3689  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3690  * attacks that send repeated SYNs or ACKs for the same connection. To
3691  * do this, we do not send a duplicate SYNACK or ACK if the remote
3692  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3693  */
3694 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3695 			  int mib_idx, u32 *last_oow_ack_time)
3696 {
3697 	/* Data packets without SYNs are not likely part of an ACK loop. */
3698 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3699 	    !tcp_hdr(skb)->syn)
3700 		return false;
3701 
3702 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3703 }
3704 
3705 /* RFC 5961 7 [ACK Throttling] */
3706 static void tcp_send_challenge_ack(struct sock *sk)
3707 {
3708 	struct tcp_sock *tp = tcp_sk(sk);
3709 	struct net *net = sock_net(sk);
3710 	u32 count, now, ack_limit;
3711 
3712 	/* First check our per-socket dupack rate limit. */
3713 	if (__tcp_oow_rate_limited(net,
3714 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3715 				   &tp->last_oow_ack_time))
3716 		return;
3717 
3718 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3719 	if (ack_limit == INT_MAX)
3720 		goto send_ack;
3721 
3722 	/* Then check host-wide RFC 5961 rate limit. */
3723 	now = jiffies / HZ;
3724 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3725 		u32 half = (ack_limit + 1) >> 1;
3726 
3727 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3728 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3729 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3730 	}
3731 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3732 	if (count > 0) {
3733 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3734 send_ack:
3735 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3736 		tcp_send_ack(sk);
3737 	}
3738 }
3739 
3740 static void tcp_store_ts_recent(struct tcp_sock *tp)
3741 {
3742 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3743 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3744 }
3745 
3746 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3747 {
3748 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3749 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3750 		 * extra check below makes sure this can only happen
3751 		 * for pure ACK frames.  -DaveM
3752 		 *
3753 		 * Not only, also it occurs for expired timestamps.
3754 		 */
3755 
3756 		if (tcp_paws_check(&tp->rx_opt, 0))
3757 			tcp_store_ts_recent(tp);
3758 	}
3759 }
3760 
3761 /* This routine deals with acks during a TLP episode and ends an episode by
3762  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3763  */
3764 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3765 {
3766 	struct tcp_sock *tp = tcp_sk(sk);
3767 
3768 	if (before(ack, tp->tlp_high_seq))
3769 		return;
3770 
3771 	if (!tp->tlp_retrans) {
3772 		/* TLP of new data has been acknowledged */
3773 		tp->tlp_high_seq = 0;
3774 	} else if (flag & FLAG_DSACK_TLP) {
3775 		/* This DSACK means original and TLP probe arrived; no loss */
3776 		tp->tlp_high_seq = 0;
3777 	} else if (after(ack, tp->tlp_high_seq)) {
3778 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3779 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3780 		 */
3781 		tcp_init_cwnd_reduction(sk);
3782 		tcp_set_ca_state(sk, TCP_CA_CWR);
3783 		tcp_end_cwnd_reduction(sk);
3784 		tcp_try_keep_open(sk);
3785 		NET_INC_STATS(sock_net(sk),
3786 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3787 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3788 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3789 		/* Pure dupack: original and TLP probe arrived; no loss */
3790 		tp->tlp_high_seq = 0;
3791 	}
3792 }
3793 
3794 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3795 {
3796 	const struct inet_connection_sock *icsk = inet_csk(sk);
3797 
3798 	if (icsk->icsk_ca_ops->in_ack_event)
3799 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3800 }
3801 
3802 /* Congestion control has updated the cwnd already. So if we're in
3803  * loss recovery then now we do any new sends (for FRTO) or
3804  * retransmits (for CA_Loss or CA_recovery) that make sense.
3805  */
3806 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3807 {
3808 	struct tcp_sock *tp = tcp_sk(sk);
3809 
3810 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3811 		return;
3812 
3813 	if (unlikely(rexmit == REXMIT_NEW)) {
3814 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3815 					  TCP_NAGLE_OFF);
3816 		if (after(tp->snd_nxt, tp->high_seq))
3817 			return;
3818 		tp->frto = 0;
3819 	}
3820 	tcp_xmit_retransmit_queue(sk);
3821 }
3822 
3823 /* Returns the number of packets newly acked or sacked by the current ACK */
3824 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3825 {
3826 	const struct net *net = sock_net(sk);
3827 	struct tcp_sock *tp = tcp_sk(sk);
3828 	u32 delivered;
3829 
3830 	delivered = tp->delivered - prior_delivered;
3831 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3832 	if (flag & FLAG_ECE)
3833 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3834 
3835 	return delivered;
3836 }
3837 
3838 /* This routine deals with incoming acks, but not outgoing ones. */
3839 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3840 {
3841 	struct inet_connection_sock *icsk = inet_csk(sk);
3842 	struct tcp_sock *tp = tcp_sk(sk);
3843 	struct tcp_sacktag_state sack_state;
3844 	struct rate_sample rs = { .prior_delivered = 0 };
3845 	u32 prior_snd_una = tp->snd_una;
3846 	bool is_sack_reneg = tp->is_sack_reneg;
3847 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3848 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3849 	int num_dupack = 0;
3850 	int prior_packets = tp->packets_out;
3851 	u32 delivered = tp->delivered;
3852 	u32 lost = tp->lost;
3853 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3854 	u32 prior_fack;
3855 
3856 	sack_state.first_sackt = 0;
3857 	sack_state.rate = &rs;
3858 	sack_state.sack_delivered = 0;
3859 
3860 	/* We very likely will need to access rtx queue. */
3861 	prefetch(sk->tcp_rtx_queue.rb_node);
3862 
3863 	/* If the ack is older than previous acks
3864 	 * then we can probably ignore it.
3865 	 */
3866 	if (before(ack, prior_snd_una)) {
3867 		u32 max_window;
3868 
3869 		/* do not accept ACK for bytes we never sent. */
3870 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3871 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3872 		if (before(ack, prior_snd_una - max_window)) {
3873 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3874 				tcp_send_challenge_ack(sk);
3875 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3876 		}
3877 		goto old_ack;
3878 	}
3879 
3880 	/* If the ack includes data we haven't sent yet, discard
3881 	 * this segment (RFC793 Section 3.9).
3882 	 */
3883 	if (after(ack, tp->snd_nxt))
3884 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3885 
3886 	if (after(ack, prior_snd_una)) {
3887 		flag |= FLAG_SND_UNA_ADVANCED;
3888 		icsk->icsk_retransmits = 0;
3889 
3890 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3891 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3892 			if (icsk->icsk_clean_acked)
3893 				icsk->icsk_clean_acked(sk, ack);
3894 #endif
3895 	}
3896 
3897 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3898 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3899 
3900 	/* ts_recent update must be made after we are sure that the packet
3901 	 * is in window.
3902 	 */
3903 	if (flag & FLAG_UPDATE_TS_RECENT)
3904 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3905 
3906 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3907 	    FLAG_SND_UNA_ADVANCED) {
3908 		/* Window is constant, pure forward advance.
3909 		 * No more checks are required.
3910 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3911 		 */
3912 		tcp_update_wl(tp, ack_seq);
3913 		tcp_snd_una_update(tp, ack);
3914 		flag |= FLAG_WIN_UPDATE;
3915 
3916 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3917 
3918 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3919 	} else {
3920 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3921 
3922 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3923 			flag |= FLAG_DATA;
3924 		else
3925 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3926 
3927 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3928 
3929 		if (TCP_SKB_CB(skb)->sacked)
3930 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3931 							&sack_state);
3932 
3933 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3934 			flag |= FLAG_ECE;
3935 			ack_ev_flags |= CA_ACK_ECE;
3936 		}
3937 
3938 		if (sack_state.sack_delivered)
3939 			tcp_count_delivered(tp, sack_state.sack_delivered,
3940 					    flag & FLAG_ECE);
3941 
3942 		if (flag & FLAG_WIN_UPDATE)
3943 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3944 
3945 		tcp_in_ack_event(sk, ack_ev_flags);
3946 	}
3947 
3948 	/* This is a deviation from RFC3168 since it states that:
3949 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3950 	 * the congestion window, it SHOULD set the CWR bit only on the first
3951 	 * new data packet that it transmits."
3952 	 * We accept CWR on pure ACKs to be more robust
3953 	 * with widely-deployed TCP implementations that do this.
3954 	 */
3955 	tcp_ecn_accept_cwr(sk, skb);
3956 
3957 	/* We passed data and got it acked, remove any soft error
3958 	 * log. Something worked...
3959 	 */
3960 	WRITE_ONCE(sk->sk_err_soft, 0);
3961 	icsk->icsk_probes_out = 0;
3962 	tp->rcv_tstamp = tcp_jiffies32;
3963 	if (!prior_packets)
3964 		goto no_queue;
3965 
3966 	/* See if we can take anything off of the retransmit queue. */
3967 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3968 				    &sack_state, flag & FLAG_ECE);
3969 
3970 	tcp_rack_update_reo_wnd(sk, &rs);
3971 
3972 	if (tp->tlp_high_seq)
3973 		tcp_process_tlp_ack(sk, ack, flag);
3974 
3975 	if (tcp_ack_is_dubious(sk, flag)) {
3976 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3977 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3978 			num_dupack = 1;
3979 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3980 			if (!(flag & FLAG_DATA))
3981 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3982 		}
3983 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3984 				      &rexmit);
3985 	}
3986 
3987 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3988 	if (flag & FLAG_SET_XMIT_TIMER)
3989 		tcp_set_xmit_timer(sk);
3990 
3991 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3992 		sk_dst_confirm(sk);
3993 
3994 	delivered = tcp_newly_delivered(sk, delivered, flag);
3995 	lost = tp->lost - lost;			/* freshly marked lost */
3996 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3997 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3998 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3999 	tcp_xmit_recovery(sk, rexmit);
4000 	return 1;
4001 
4002 no_queue:
4003 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4004 	if (flag & FLAG_DSACKING_ACK) {
4005 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4006 				      &rexmit);
4007 		tcp_newly_delivered(sk, delivered, flag);
4008 	}
4009 	/* If this ack opens up a zero window, clear backoff.  It was
4010 	 * being used to time the probes, and is probably far higher than
4011 	 * it needs to be for normal retransmission.
4012 	 */
4013 	tcp_ack_probe(sk);
4014 
4015 	if (tp->tlp_high_seq)
4016 		tcp_process_tlp_ack(sk, ack, flag);
4017 	return 1;
4018 
4019 old_ack:
4020 	/* If data was SACKed, tag it and see if we should send more data.
4021 	 * If data was DSACKed, see if we can undo a cwnd reduction.
4022 	 */
4023 	if (TCP_SKB_CB(skb)->sacked) {
4024 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4025 						&sack_state);
4026 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4027 				      &rexmit);
4028 		tcp_newly_delivered(sk, delivered, flag);
4029 		tcp_xmit_recovery(sk, rexmit);
4030 	}
4031 
4032 	return 0;
4033 }
4034 
4035 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4036 				      bool syn, struct tcp_fastopen_cookie *foc,
4037 				      bool exp_opt)
4038 {
4039 	/* Valid only in SYN or SYN-ACK with an even length.  */
4040 	if (!foc || !syn || len < 0 || (len & 1))
4041 		return;
4042 
4043 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4044 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4045 		memcpy(foc->val, cookie, len);
4046 	else if (len != 0)
4047 		len = -1;
4048 	foc->len = len;
4049 	foc->exp = exp_opt;
4050 }
4051 
4052 static bool smc_parse_options(const struct tcphdr *th,
4053 			      struct tcp_options_received *opt_rx,
4054 			      const unsigned char *ptr,
4055 			      int opsize)
4056 {
4057 #if IS_ENABLED(CONFIG_SMC)
4058 	if (static_branch_unlikely(&tcp_have_smc)) {
4059 		if (th->syn && !(opsize & 1) &&
4060 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4061 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4062 			opt_rx->smc_ok = 1;
4063 			return true;
4064 		}
4065 	}
4066 #endif
4067 	return false;
4068 }
4069 
4070 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4071  * value on success.
4072  */
4073 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4074 {
4075 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4076 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4077 	u16 mss = 0;
4078 
4079 	while (length > 0) {
4080 		int opcode = *ptr++;
4081 		int opsize;
4082 
4083 		switch (opcode) {
4084 		case TCPOPT_EOL:
4085 			return mss;
4086 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4087 			length--;
4088 			continue;
4089 		default:
4090 			if (length < 2)
4091 				return mss;
4092 			opsize = *ptr++;
4093 			if (opsize < 2) /* "silly options" */
4094 				return mss;
4095 			if (opsize > length)
4096 				return mss;	/* fail on partial options */
4097 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4098 				u16 in_mss = get_unaligned_be16(ptr);
4099 
4100 				if (in_mss) {
4101 					if (user_mss && user_mss < in_mss)
4102 						in_mss = user_mss;
4103 					mss = in_mss;
4104 				}
4105 			}
4106 			ptr += opsize - 2;
4107 			length -= opsize;
4108 		}
4109 	}
4110 	return mss;
4111 }
4112 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4113 
4114 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4115  * But, this can also be called on packets in the established flow when
4116  * the fast version below fails.
4117  */
4118 void tcp_parse_options(const struct net *net,
4119 		       const struct sk_buff *skb,
4120 		       struct tcp_options_received *opt_rx, int estab,
4121 		       struct tcp_fastopen_cookie *foc)
4122 {
4123 	const unsigned char *ptr;
4124 	const struct tcphdr *th = tcp_hdr(skb);
4125 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4126 
4127 	ptr = (const unsigned char *)(th + 1);
4128 	opt_rx->saw_tstamp = 0;
4129 	opt_rx->saw_unknown = 0;
4130 
4131 	while (length > 0) {
4132 		int opcode = *ptr++;
4133 		int opsize;
4134 
4135 		switch (opcode) {
4136 		case TCPOPT_EOL:
4137 			return;
4138 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4139 			length--;
4140 			continue;
4141 		default:
4142 			if (length < 2)
4143 				return;
4144 			opsize = *ptr++;
4145 			if (opsize < 2) /* "silly options" */
4146 				return;
4147 			if (opsize > length)
4148 				return;	/* don't parse partial options */
4149 			switch (opcode) {
4150 			case TCPOPT_MSS:
4151 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4152 					u16 in_mss = get_unaligned_be16(ptr);
4153 					if (in_mss) {
4154 						if (opt_rx->user_mss &&
4155 						    opt_rx->user_mss < in_mss)
4156 							in_mss = opt_rx->user_mss;
4157 						opt_rx->mss_clamp = in_mss;
4158 					}
4159 				}
4160 				break;
4161 			case TCPOPT_WINDOW:
4162 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4163 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4164 					__u8 snd_wscale = *(__u8 *)ptr;
4165 					opt_rx->wscale_ok = 1;
4166 					if (snd_wscale > TCP_MAX_WSCALE) {
4167 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4168 								     __func__,
4169 								     snd_wscale,
4170 								     TCP_MAX_WSCALE);
4171 						snd_wscale = TCP_MAX_WSCALE;
4172 					}
4173 					opt_rx->snd_wscale = snd_wscale;
4174 				}
4175 				break;
4176 			case TCPOPT_TIMESTAMP:
4177 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4178 				    ((estab && opt_rx->tstamp_ok) ||
4179 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4180 					opt_rx->saw_tstamp = 1;
4181 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4182 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4183 				}
4184 				break;
4185 			case TCPOPT_SACK_PERM:
4186 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4187 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4188 					opt_rx->sack_ok = TCP_SACK_SEEN;
4189 					tcp_sack_reset(opt_rx);
4190 				}
4191 				break;
4192 
4193 			case TCPOPT_SACK:
4194 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4195 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4196 				   opt_rx->sack_ok) {
4197 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4198 				}
4199 				break;
4200 #ifdef CONFIG_TCP_MD5SIG
4201 			case TCPOPT_MD5SIG:
4202 				/* The MD5 Hash has already been
4203 				 * checked (see tcp_v{4,6}_rcv()).
4204 				 */
4205 				break;
4206 #endif
4207 			case TCPOPT_FASTOPEN:
4208 				tcp_parse_fastopen_option(
4209 					opsize - TCPOLEN_FASTOPEN_BASE,
4210 					ptr, th->syn, foc, false);
4211 				break;
4212 
4213 			case TCPOPT_EXP:
4214 				/* Fast Open option shares code 254 using a
4215 				 * 16 bits magic number.
4216 				 */
4217 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4218 				    get_unaligned_be16(ptr) ==
4219 				    TCPOPT_FASTOPEN_MAGIC) {
4220 					tcp_parse_fastopen_option(opsize -
4221 						TCPOLEN_EXP_FASTOPEN_BASE,
4222 						ptr + 2, th->syn, foc, true);
4223 					break;
4224 				}
4225 
4226 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4227 					break;
4228 
4229 				opt_rx->saw_unknown = 1;
4230 				break;
4231 
4232 			default:
4233 				opt_rx->saw_unknown = 1;
4234 			}
4235 			ptr += opsize-2;
4236 			length -= opsize;
4237 		}
4238 	}
4239 }
4240 EXPORT_SYMBOL(tcp_parse_options);
4241 
4242 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4243 {
4244 	const __be32 *ptr = (const __be32 *)(th + 1);
4245 
4246 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4247 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4248 		tp->rx_opt.saw_tstamp = 1;
4249 		++ptr;
4250 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4251 		++ptr;
4252 		if (*ptr)
4253 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4254 		else
4255 			tp->rx_opt.rcv_tsecr = 0;
4256 		return true;
4257 	}
4258 	return false;
4259 }
4260 
4261 /* Fast parse options. This hopes to only see timestamps.
4262  * If it is wrong it falls back on tcp_parse_options().
4263  */
4264 static bool tcp_fast_parse_options(const struct net *net,
4265 				   const struct sk_buff *skb,
4266 				   const struct tcphdr *th, struct tcp_sock *tp)
4267 {
4268 	/* In the spirit of fast parsing, compare doff directly to constant
4269 	 * values.  Because equality is used, short doff can be ignored here.
4270 	 */
4271 	if (th->doff == (sizeof(*th) / 4)) {
4272 		tp->rx_opt.saw_tstamp = 0;
4273 		return false;
4274 	} else if (tp->rx_opt.tstamp_ok &&
4275 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4276 		if (tcp_parse_aligned_timestamp(tp, th))
4277 			return true;
4278 	}
4279 
4280 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4281 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4282 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4283 
4284 	return true;
4285 }
4286 
4287 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4288 /*
4289  * Parse Signature options
4290  */
4291 int tcp_do_parse_auth_options(const struct tcphdr *th,
4292 			      const u8 **md5_hash, const u8 **ao_hash)
4293 {
4294 	int length = (th->doff << 2) - sizeof(*th);
4295 	const u8 *ptr = (const u8 *)(th + 1);
4296 	unsigned int minlen = TCPOLEN_MD5SIG;
4297 
4298 	if (IS_ENABLED(CONFIG_TCP_AO))
4299 		minlen = sizeof(struct tcp_ao_hdr) + 1;
4300 
4301 	*md5_hash = NULL;
4302 	*ao_hash = NULL;
4303 
4304 	/* If not enough data remaining, we can short cut */
4305 	while (length >= minlen) {
4306 		int opcode = *ptr++;
4307 		int opsize;
4308 
4309 		switch (opcode) {
4310 		case TCPOPT_EOL:
4311 			return 0;
4312 		case TCPOPT_NOP:
4313 			length--;
4314 			continue;
4315 		default:
4316 			opsize = *ptr++;
4317 			if (opsize < 2 || opsize > length)
4318 				return -EINVAL;
4319 			if (opcode == TCPOPT_MD5SIG) {
4320 				if (opsize != TCPOLEN_MD5SIG)
4321 					return -EINVAL;
4322 				if (unlikely(*md5_hash || *ao_hash))
4323 					return -EEXIST;
4324 				*md5_hash = ptr;
4325 			} else if (opcode == TCPOPT_AO) {
4326 				if (opsize <= sizeof(struct tcp_ao_hdr))
4327 					return -EINVAL;
4328 				if (unlikely(*md5_hash || *ao_hash))
4329 					return -EEXIST;
4330 				*ao_hash = ptr;
4331 			}
4332 		}
4333 		ptr += opsize - 2;
4334 		length -= opsize;
4335 	}
4336 	return 0;
4337 }
4338 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4339 #endif
4340 
4341 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4342  *
4343  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4344  * it can pass through stack. So, the following predicate verifies that
4345  * this segment is not used for anything but congestion avoidance or
4346  * fast retransmit. Moreover, we even are able to eliminate most of such
4347  * second order effects, if we apply some small "replay" window (~RTO)
4348  * to timestamp space.
4349  *
4350  * All these measures still do not guarantee that we reject wrapped ACKs
4351  * on networks with high bandwidth, when sequence space is recycled fastly,
4352  * but it guarantees that such events will be very rare and do not affect
4353  * connection seriously. This doesn't look nice, but alas, PAWS is really
4354  * buggy extension.
4355  *
4356  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4357  * states that events when retransmit arrives after original data are rare.
4358  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4359  * the biggest problem on large power networks even with minor reordering.
4360  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4361  * up to bandwidth of 18Gigabit/sec. 8) ]
4362  */
4363 
4364 /* Estimates max number of increments of remote peer TSval in
4365  * a replay window (based on our current RTO estimation).
4366  */
4367 static u32 tcp_tsval_replay(const struct sock *sk)
4368 {
4369 	/* If we use usec TS resolution,
4370 	 * then expect the remote peer to use the same resolution.
4371 	 */
4372 	if (tcp_sk(sk)->tcp_usec_ts)
4373 		return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4374 
4375 	/* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4376 	 * We know that some OS (including old linux) can use 1200 Hz.
4377 	 */
4378 	return inet_csk(sk)->icsk_rto * 1200 / HZ;
4379 }
4380 
4381 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4382 {
4383 	const struct tcp_sock *tp = tcp_sk(sk);
4384 	const struct tcphdr *th = tcp_hdr(skb);
4385 	u32 seq = TCP_SKB_CB(skb)->seq;
4386 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4387 
4388 	return	/* 1. Pure ACK with correct sequence number. */
4389 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4390 
4391 		/* 2. ... and duplicate ACK. */
4392 		ack == tp->snd_una &&
4393 
4394 		/* 3. ... and does not update window. */
4395 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4396 
4397 		/* 4. ... and sits in replay window. */
4398 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <=
4399 		tcp_tsval_replay(sk);
4400 }
4401 
4402 static inline bool tcp_paws_discard(const struct sock *sk,
4403 				   const struct sk_buff *skb)
4404 {
4405 	const struct tcp_sock *tp = tcp_sk(sk);
4406 
4407 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4408 	       !tcp_disordered_ack(sk, skb);
4409 }
4410 
4411 /* Check segment sequence number for validity.
4412  *
4413  * Segment controls are considered valid, if the segment
4414  * fits to the window after truncation to the window. Acceptability
4415  * of data (and SYN, FIN, of course) is checked separately.
4416  * See tcp_data_queue(), for example.
4417  *
4418  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4419  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4420  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4421  * (borrowed from freebsd)
4422  */
4423 
4424 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4425 					 u32 seq, u32 end_seq)
4426 {
4427 	if (before(end_seq, tp->rcv_wup))
4428 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4429 
4430 	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4431 		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4432 
4433 	return SKB_NOT_DROPPED_YET;
4434 }
4435 
4436 /* When we get a reset we do this. */
4437 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4438 {
4439 	trace_tcp_receive_reset(sk);
4440 
4441 	/* mptcp can't tell us to ignore reset pkts,
4442 	 * so just ignore the return value of mptcp_incoming_options().
4443 	 */
4444 	if (sk_is_mptcp(sk))
4445 		mptcp_incoming_options(sk, skb);
4446 
4447 	/* We want the right error as BSD sees it (and indeed as we do). */
4448 	switch (sk->sk_state) {
4449 	case TCP_SYN_SENT:
4450 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
4451 		break;
4452 	case TCP_CLOSE_WAIT:
4453 		WRITE_ONCE(sk->sk_err, EPIPE);
4454 		break;
4455 	case TCP_CLOSE:
4456 		return;
4457 	default:
4458 		WRITE_ONCE(sk->sk_err, ECONNRESET);
4459 	}
4460 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4461 	smp_wmb();
4462 
4463 	tcp_write_queue_purge(sk);
4464 	tcp_done(sk);
4465 
4466 	if (!sock_flag(sk, SOCK_DEAD))
4467 		sk_error_report(sk);
4468 }
4469 
4470 /*
4471  * 	Process the FIN bit. This now behaves as it is supposed to work
4472  *	and the FIN takes effect when it is validly part of sequence
4473  *	space. Not before when we get holes.
4474  *
4475  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4476  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4477  *	TIME-WAIT)
4478  *
4479  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4480  *	close and we go into CLOSING (and later onto TIME-WAIT)
4481  *
4482  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4483  */
4484 void tcp_fin(struct sock *sk)
4485 {
4486 	struct tcp_sock *tp = tcp_sk(sk);
4487 
4488 	inet_csk_schedule_ack(sk);
4489 
4490 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4491 	sock_set_flag(sk, SOCK_DONE);
4492 
4493 	switch (sk->sk_state) {
4494 	case TCP_SYN_RECV:
4495 	case TCP_ESTABLISHED:
4496 		/* Move to CLOSE_WAIT */
4497 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4498 		inet_csk_enter_pingpong_mode(sk);
4499 		break;
4500 
4501 	case TCP_CLOSE_WAIT:
4502 	case TCP_CLOSING:
4503 		/* Received a retransmission of the FIN, do
4504 		 * nothing.
4505 		 */
4506 		break;
4507 	case TCP_LAST_ACK:
4508 		/* RFC793: Remain in the LAST-ACK state. */
4509 		break;
4510 
4511 	case TCP_FIN_WAIT1:
4512 		/* This case occurs when a simultaneous close
4513 		 * happens, we must ack the received FIN and
4514 		 * enter the CLOSING state.
4515 		 */
4516 		tcp_send_ack(sk);
4517 		tcp_set_state(sk, TCP_CLOSING);
4518 		break;
4519 	case TCP_FIN_WAIT2:
4520 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4521 		tcp_send_ack(sk);
4522 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4523 		break;
4524 	default:
4525 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4526 		 * cases we should never reach this piece of code.
4527 		 */
4528 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4529 		       __func__, sk->sk_state);
4530 		break;
4531 	}
4532 
4533 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4534 	 * Probably, we should reset in this case. For now drop them.
4535 	 */
4536 	skb_rbtree_purge(&tp->out_of_order_queue);
4537 	if (tcp_is_sack(tp))
4538 		tcp_sack_reset(&tp->rx_opt);
4539 
4540 	if (!sock_flag(sk, SOCK_DEAD)) {
4541 		sk->sk_state_change(sk);
4542 
4543 		/* Do not send POLL_HUP for half duplex close. */
4544 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4545 		    sk->sk_state == TCP_CLOSE)
4546 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4547 		else
4548 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4549 	}
4550 }
4551 
4552 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4553 				  u32 end_seq)
4554 {
4555 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4556 		if (before(seq, sp->start_seq))
4557 			sp->start_seq = seq;
4558 		if (after(end_seq, sp->end_seq))
4559 			sp->end_seq = end_seq;
4560 		return true;
4561 	}
4562 	return false;
4563 }
4564 
4565 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4566 {
4567 	struct tcp_sock *tp = tcp_sk(sk);
4568 
4569 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4570 		int mib_idx;
4571 
4572 		if (before(seq, tp->rcv_nxt))
4573 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4574 		else
4575 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4576 
4577 		NET_INC_STATS(sock_net(sk), mib_idx);
4578 
4579 		tp->rx_opt.dsack = 1;
4580 		tp->duplicate_sack[0].start_seq = seq;
4581 		tp->duplicate_sack[0].end_seq = end_seq;
4582 	}
4583 }
4584 
4585 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4586 {
4587 	struct tcp_sock *tp = tcp_sk(sk);
4588 
4589 	if (!tp->rx_opt.dsack)
4590 		tcp_dsack_set(sk, seq, end_seq);
4591 	else
4592 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4593 }
4594 
4595 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4596 {
4597 	/* When the ACK path fails or drops most ACKs, the sender would
4598 	 * timeout and spuriously retransmit the same segment repeatedly.
4599 	 * If it seems our ACKs are not reaching the other side,
4600 	 * based on receiving a duplicate data segment with new flowlabel
4601 	 * (suggesting the sender suffered an RTO), and we are not already
4602 	 * repathing due to our own RTO, then rehash the socket to repath our
4603 	 * packets.
4604 	 */
4605 #if IS_ENABLED(CONFIG_IPV6)
4606 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4607 	    skb->protocol == htons(ETH_P_IPV6) &&
4608 	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4609 	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4610 	    sk_rethink_txhash(sk))
4611 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4612 
4613 	/* Save last flowlabel after a spurious retrans. */
4614 	tcp_save_lrcv_flowlabel(sk, skb);
4615 #endif
4616 }
4617 
4618 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4619 {
4620 	struct tcp_sock *tp = tcp_sk(sk);
4621 
4622 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4623 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4624 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4625 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4626 
4627 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4628 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4629 
4630 			tcp_rcv_spurious_retrans(sk, skb);
4631 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4632 				end_seq = tp->rcv_nxt;
4633 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4634 		}
4635 	}
4636 
4637 	tcp_send_ack(sk);
4638 }
4639 
4640 /* These routines update the SACK block as out-of-order packets arrive or
4641  * in-order packets close up the sequence space.
4642  */
4643 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4644 {
4645 	int this_sack;
4646 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4647 	struct tcp_sack_block *swalk = sp + 1;
4648 
4649 	/* See if the recent change to the first SACK eats into
4650 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4651 	 */
4652 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4653 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4654 			int i;
4655 
4656 			/* Zap SWALK, by moving every further SACK up by one slot.
4657 			 * Decrease num_sacks.
4658 			 */
4659 			tp->rx_opt.num_sacks--;
4660 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4661 				sp[i] = sp[i + 1];
4662 			continue;
4663 		}
4664 		this_sack++;
4665 		swalk++;
4666 	}
4667 }
4668 
4669 void tcp_sack_compress_send_ack(struct sock *sk)
4670 {
4671 	struct tcp_sock *tp = tcp_sk(sk);
4672 
4673 	if (!tp->compressed_ack)
4674 		return;
4675 
4676 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4677 		__sock_put(sk);
4678 
4679 	/* Since we have to send one ack finally,
4680 	 * substract one from tp->compressed_ack to keep
4681 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4682 	 */
4683 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4684 		      tp->compressed_ack - 1);
4685 
4686 	tp->compressed_ack = 0;
4687 	tcp_send_ack(sk);
4688 }
4689 
4690 /* Reasonable amount of sack blocks included in TCP SACK option
4691  * The max is 4, but this becomes 3 if TCP timestamps are there.
4692  * Given that SACK packets might be lost, be conservative and use 2.
4693  */
4694 #define TCP_SACK_BLOCKS_EXPECTED 2
4695 
4696 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4697 {
4698 	struct tcp_sock *tp = tcp_sk(sk);
4699 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4700 	int cur_sacks = tp->rx_opt.num_sacks;
4701 	int this_sack;
4702 
4703 	if (!cur_sacks)
4704 		goto new_sack;
4705 
4706 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4707 		if (tcp_sack_extend(sp, seq, end_seq)) {
4708 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4709 				tcp_sack_compress_send_ack(sk);
4710 			/* Rotate this_sack to the first one. */
4711 			for (; this_sack > 0; this_sack--, sp--)
4712 				swap(*sp, *(sp - 1));
4713 			if (cur_sacks > 1)
4714 				tcp_sack_maybe_coalesce(tp);
4715 			return;
4716 		}
4717 	}
4718 
4719 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4720 		tcp_sack_compress_send_ack(sk);
4721 
4722 	/* Could not find an adjacent existing SACK, build a new one,
4723 	 * put it at the front, and shift everyone else down.  We
4724 	 * always know there is at least one SACK present already here.
4725 	 *
4726 	 * If the sack array is full, forget about the last one.
4727 	 */
4728 	if (this_sack >= TCP_NUM_SACKS) {
4729 		this_sack--;
4730 		tp->rx_opt.num_sacks--;
4731 		sp--;
4732 	}
4733 	for (; this_sack > 0; this_sack--, sp--)
4734 		*sp = *(sp - 1);
4735 
4736 new_sack:
4737 	/* Build the new head SACK, and we're done. */
4738 	sp->start_seq = seq;
4739 	sp->end_seq = end_seq;
4740 	tp->rx_opt.num_sacks++;
4741 }
4742 
4743 /* RCV.NXT advances, some SACKs should be eaten. */
4744 
4745 static void tcp_sack_remove(struct tcp_sock *tp)
4746 {
4747 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4748 	int num_sacks = tp->rx_opt.num_sacks;
4749 	int this_sack;
4750 
4751 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4752 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4753 		tp->rx_opt.num_sacks = 0;
4754 		return;
4755 	}
4756 
4757 	for (this_sack = 0; this_sack < num_sacks;) {
4758 		/* Check if the start of the sack is covered by RCV.NXT. */
4759 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4760 			int i;
4761 
4762 			/* RCV.NXT must cover all the block! */
4763 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4764 
4765 			/* Zap this SACK, by moving forward any other SACKS. */
4766 			for (i = this_sack+1; i < num_sacks; i++)
4767 				tp->selective_acks[i-1] = tp->selective_acks[i];
4768 			num_sacks--;
4769 			continue;
4770 		}
4771 		this_sack++;
4772 		sp++;
4773 	}
4774 	tp->rx_opt.num_sacks = num_sacks;
4775 }
4776 
4777 /**
4778  * tcp_try_coalesce - try to merge skb to prior one
4779  * @sk: socket
4780  * @to: prior buffer
4781  * @from: buffer to add in queue
4782  * @fragstolen: pointer to boolean
4783  *
4784  * Before queueing skb @from after @to, try to merge them
4785  * to reduce overall memory use and queue lengths, if cost is small.
4786  * Packets in ofo or receive queues can stay a long time.
4787  * Better try to coalesce them right now to avoid future collapses.
4788  * Returns true if caller should free @from instead of queueing it
4789  */
4790 static bool tcp_try_coalesce(struct sock *sk,
4791 			     struct sk_buff *to,
4792 			     struct sk_buff *from,
4793 			     bool *fragstolen)
4794 {
4795 	int delta;
4796 
4797 	*fragstolen = false;
4798 
4799 	/* Its possible this segment overlaps with prior segment in queue */
4800 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4801 		return false;
4802 
4803 	if (!mptcp_skb_can_collapse(to, from))
4804 		return false;
4805 
4806 #ifdef CONFIG_TLS_DEVICE
4807 	if (from->decrypted != to->decrypted)
4808 		return false;
4809 #endif
4810 
4811 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4812 		return false;
4813 
4814 	atomic_add(delta, &sk->sk_rmem_alloc);
4815 	sk_mem_charge(sk, delta);
4816 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4817 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4818 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4819 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4820 
4821 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4822 		TCP_SKB_CB(to)->has_rxtstamp = true;
4823 		to->tstamp = from->tstamp;
4824 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4825 	}
4826 
4827 	return true;
4828 }
4829 
4830 static bool tcp_ooo_try_coalesce(struct sock *sk,
4831 			     struct sk_buff *to,
4832 			     struct sk_buff *from,
4833 			     bool *fragstolen)
4834 {
4835 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4836 
4837 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4838 	if (res) {
4839 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4840 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4841 
4842 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4843 	}
4844 	return res;
4845 }
4846 
4847 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4848 			    enum skb_drop_reason reason)
4849 {
4850 	sk_drops_add(sk, skb);
4851 	kfree_skb_reason(skb, reason);
4852 }
4853 
4854 /* This one checks to see if we can put data from the
4855  * out_of_order queue into the receive_queue.
4856  */
4857 static void tcp_ofo_queue(struct sock *sk)
4858 {
4859 	struct tcp_sock *tp = tcp_sk(sk);
4860 	__u32 dsack_high = tp->rcv_nxt;
4861 	bool fin, fragstolen, eaten;
4862 	struct sk_buff *skb, *tail;
4863 	struct rb_node *p;
4864 
4865 	p = rb_first(&tp->out_of_order_queue);
4866 	while (p) {
4867 		skb = rb_to_skb(p);
4868 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4869 			break;
4870 
4871 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4872 			__u32 dsack = dsack_high;
4873 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4874 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4875 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4876 		}
4877 		p = rb_next(p);
4878 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4879 
4880 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4881 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4882 			continue;
4883 		}
4884 
4885 		tail = skb_peek_tail(&sk->sk_receive_queue);
4886 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4887 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4888 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4889 		if (!eaten)
4890 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4891 		else
4892 			kfree_skb_partial(skb, fragstolen);
4893 
4894 		if (unlikely(fin)) {
4895 			tcp_fin(sk);
4896 			/* tcp_fin() purges tp->out_of_order_queue,
4897 			 * so we must end this loop right now.
4898 			 */
4899 			break;
4900 		}
4901 	}
4902 }
4903 
4904 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4905 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4906 
4907 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4908 				 unsigned int size)
4909 {
4910 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4911 	    !sk_rmem_schedule(sk, skb, size)) {
4912 
4913 		if (tcp_prune_queue(sk, skb) < 0)
4914 			return -1;
4915 
4916 		while (!sk_rmem_schedule(sk, skb, size)) {
4917 			if (!tcp_prune_ofo_queue(sk, skb))
4918 				return -1;
4919 		}
4920 	}
4921 	return 0;
4922 }
4923 
4924 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4925 {
4926 	struct tcp_sock *tp = tcp_sk(sk);
4927 	struct rb_node **p, *parent;
4928 	struct sk_buff *skb1;
4929 	u32 seq, end_seq;
4930 	bool fragstolen;
4931 
4932 	tcp_save_lrcv_flowlabel(sk, skb);
4933 	tcp_ecn_check_ce(sk, skb);
4934 
4935 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4936 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4937 		sk->sk_data_ready(sk);
4938 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4939 		return;
4940 	}
4941 
4942 	/* Disable header prediction. */
4943 	tp->pred_flags = 0;
4944 	inet_csk_schedule_ack(sk);
4945 
4946 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4947 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4948 	seq = TCP_SKB_CB(skb)->seq;
4949 	end_seq = TCP_SKB_CB(skb)->end_seq;
4950 
4951 	p = &tp->out_of_order_queue.rb_node;
4952 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4953 		/* Initial out of order segment, build 1 SACK. */
4954 		if (tcp_is_sack(tp)) {
4955 			tp->rx_opt.num_sacks = 1;
4956 			tp->selective_acks[0].start_seq = seq;
4957 			tp->selective_acks[0].end_seq = end_seq;
4958 		}
4959 		rb_link_node(&skb->rbnode, NULL, p);
4960 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4961 		tp->ooo_last_skb = skb;
4962 		goto end;
4963 	}
4964 
4965 	/* In the typical case, we are adding an skb to the end of the list.
4966 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4967 	 */
4968 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4969 				 skb, &fragstolen)) {
4970 coalesce_done:
4971 		/* For non sack flows, do not grow window to force DUPACK
4972 		 * and trigger fast retransmit.
4973 		 */
4974 		if (tcp_is_sack(tp))
4975 			tcp_grow_window(sk, skb, true);
4976 		kfree_skb_partial(skb, fragstolen);
4977 		skb = NULL;
4978 		goto add_sack;
4979 	}
4980 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4981 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4982 		parent = &tp->ooo_last_skb->rbnode;
4983 		p = &parent->rb_right;
4984 		goto insert;
4985 	}
4986 
4987 	/* Find place to insert this segment. Handle overlaps on the way. */
4988 	parent = NULL;
4989 	while (*p) {
4990 		parent = *p;
4991 		skb1 = rb_to_skb(parent);
4992 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4993 			p = &parent->rb_left;
4994 			continue;
4995 		}
4996 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4997 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4998 				/* All the bits are present. Drop. */
4999 				NET_INC_STATS(sock_net(sk),
5000 					      LINUX_MIB_TCPOFOMERGE);
5001 				tcp_drop_reason(sk, skb,
5002 						SKB_DROP_REASON_TCP_OFOMERGE);
5003 				skb = NULL;
5004 				tcp_dsack_set(sk, seq, end_seq);
5005 				goto add_sack;
5006 			}
5007 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5008 				/* Partial overlap. */
5009 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5010 			} else {
5011 				/* skb's seq == skb1's seq and skb covers skb1.
5012 				 * Replace skb1 with skb.
5013 				 */
5014 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5015 						&tp->out_of_order_queue);
5016 				tcp_dsack_extend(sk,
5017 						 TCP_SKB_CB(skb1)->seq,
5018 						 TCP_SKB_CB(skb1)->end_seq);
5019 				NET_INC_STATS(sock_net(sk),
5020 					      LINUX_MIB_TCPOFOMERGE);
5021 				tcp_drop_reason(sk, skb1,
5022 						SKB_DROP_REASON_TCP_OFOMERGE);
5023 				goto merge_right;
5024 			}
5025 		} else if (tcp_ooo_try_coalesce(sk, skb1,
5026 						skb, &fragstolen)) {
5027 			goto coalesce_done;
5028 		}
5029 		p = &parent->rb_right;
5030 	}
5031 insert:
5032 	/* Insert segment into RB tree. */
5033 	rb_link_node(&skb->rbnode, parent, p);
5034 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5035 
5036 merge_right:
5037 	/* Remove other segments covered by skb. */
5038 	while ((skb1 = skb_rb_next(skb)) != NULL) {
5039 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5040 			break;
5041 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5042 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5043 					 end_seq);
5044 			break;
5045 		}
5046 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5047 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5048 				 TCP_SKB_CB(skb1)->end_seq);
5049 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5050 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5051 	}
5052 	/* If there is no skb after us, we are the last_skb ! */
5053 	if (!skb1)
5054 		tp->ooo_last_skb = skb;
5055 
5056 add_sack:
5057 	if (tcp_is_sack(tp))
5058 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5059 end:
5060 	if (skb) {
5061 		/* For non sack flows, do not grow window to force DUPACK
5062 		 * and trigger fast retransmit.
5063 		 */
5064 		if (tcp_is_sack(tp))
5065 			tcp_grow_window(sk, skb, false);
5066 		skb_condense(skb);
5067 		skb_set_owner_r(skb, sk);
5068 	}
5069 }
5070 
5071 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5072 				      bool *fragstolen)
5073 {
5074 	int eaten;
5075 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5076 
5077 	eaten = (tail &&
5078 		 tcp_try_coalesce(sk, tail,
5079 				  skb, fragstolen)) ? 1 : 0;
5080 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5081 	if (!eaten) {
5082 		__skb_queue_tail(&sk->sk_receive_queue, skb);
5083 		skb_set_owner_r(skb, sk);
5084 	}
5085 	return eaten;
5086 }
5087 
5088 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5089 {
5090 	struct sk_buff *skb;
5091 	int err = -ENOMEM;
5092 	int data_len = 0;
5093 	bool fragstolen;
5094 
5095 	if (size == 0)
5096 		return 0;
5097 
5098 	if (size > PAGE_SIZE) {
5099 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5100 
5101 		data_len = npages << PAGE_SHIFT;
5102 		size = data_len + (size & ~PAGE_MASK);
5103 	}
5104 	skb = alloc_skb_with_frags(size - data_len, data_len,
5105 				   PAGE_ALLOC_COSTLY_ORDER,
5106 				   &err, sk->sk_allocation);
5107 	if (!skb)
5108 		goto err;
5109 
5110 	skb_put(skb, size - data_len);
5111 	skb->data_len = data_len;
5112 	skb->len = size;
5113 
5114 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5115 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5116 		goto err_free;
5117 	}
5118 
5119 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5120 	if (err)
5121 		goto err_free;
5122 
5123 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5124 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5125 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5126 
5127 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5128 		WARN_ON_ONCE(fragstolen); /* should not happen */
5129 		__kfree_skb(skb);
5130 	}
5131 	return size;
5132 
5133 err_free:
5134 	kfree_skb(skb);
5135 err:
5136 	return err;
5137 
5138 }
5139 
5140 void tcp_data_ready(struct sock *sk)
5141 {
5142 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5143 		sk->sk_data_ready(sk);
5144 }
5145 
5146 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5147 {
5148 	struct tcp_sock *tp = tcp_sk(sk);
5149 	enum skb_drop_reason reason;
5150 	bool fragstolen;
5151 	int eaten;
5152 
5153 	/* If a subflow has been reset, the packet should not continue
5154 	 * to be processed, drop the packet.
5155 	 */
5156 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5157 		__kfree_skb(skb);
5158 		return;
5159 	}
5160 
5161 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5162 		__kfree_skb(skb);
5163 		return;
5164 	}
5165 	skb_dst_drop(skb);
5166 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5167 
5168 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5169 	tp->rx_opt.dsack = 0;
5170 
5171 	/*  Queue data for delivery to the user.
5172 	 *  Packets in sequence go to the receive queue.
5173 	 *  Out of sequence packets to the out_of_order_queue.
5174 	 */
5175 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5176 		if (tcp_receive_window(tp) == 0) {
5177 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5178 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5179 			goto out_of_window;
5180 		}
5181 
5182 		/* Ok. In sequence. In window. */
5183 queue_and_out:
5184 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5185 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5186 			inet_csk(sk)->icsk_ack.pending |=
5187 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5188 			inet_csk_schedule_ack(sk);
5189 			sk->sk_data_ready(sk);
5190 
5191 			if (skb_queue_len(&sk->sk_receive_queue)) {
5192 				reason = SKB_DROP_REASON_PROTO_MEM;
5193 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5194 				goto drop;
5195 			}
5196 			sk_forced_mem_schedule(sk, skb->truesize);
5197 		}
5198 
5199 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5200 		if (skb->len)
5201 			tcp_event_data_recv(sk, skb);
5202 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5203 			tcp_fin(sk);
5204 
5205 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5206 			tcp_ofo_queue(sk);
5207 
5208 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5209 			 * gap in queue is filled.
5210 			 */
5211 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5212 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5213 		}
5214 
5215 		if (tp->rx_opt.num_sacks)
5216 			tcp_sack_remove(tp);
5217 
5218 		tcp_fast_path_check(sk);
5219 
5220 		if (eaten > 0)
5221 			kfree_skb_partial(skb, fragstolen);
5222 		if (!sock_flag(sk, SOCK_DEAD))
5223 			tcp_data_ready(sk);
5224 		return;
5225 	}
5226 
5227 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5228 		tcp_rcv_spurious_retrans(sk, skb);
5229 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5230 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5231 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5232 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5233 
5234 out_of_window:
5235 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5236 		inet_csk_schedule_ack(sk);
5237 drop:
5238 		tcp_drop_reason(sk, skb, reason);
5239 		return;
5240 	}
5241 
5242 	/* Out of window. F.e. zero window probe. */
5243 	if (!before(TCP_SKB_CB(skb)->seq,
5244 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5245 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5246 		goto out_of_window;
5247 	}
5248 
5249 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5250 		/* Partial packet, seq < rcv_next < end_seq */
5251 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5252 
5253 		/* If window is closed, drop tail of packet. But after
5254 		 * remembering D-SACK for its head made in previous line.
5255 		 */
5256 		if (!tcp_receive_window(tp)) {
5257 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5258 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5259 			goto out_of_window;
5260 		}
5261 		goto queue_and_out;
5262 	}
5263 
5264 	tcp_data_queue_ofo(sk, skb);
5265 }
5266 
5267 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5268 {
5269 	if (list)
5270 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5271 
5272 	return skb_rb_next(skb);
5273 }
5274 
5275 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5276 					struct sk_buff_head *list,
5277 					struct rb_root *root)
5278 {
5279 	struct sk_buff *next = tcp_skb_next(skb, list);
5280 
5281 	if (list)
5282 		__skb_unlink(skb, list);
5283 	else
5284 		rb_erase(&skb->rbnode, root);
5285 
5286 	__kfree_skb(skb);
5287 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5288 
5289 	return next;
5290 }
5291 
5292 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5293 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5294 {
5295 	struct rb_node **p = &root->rb_node;
5296 	struct rb_node *parent = NULL;
5297 	struct sk_buff *skb1;
5298 
5299 	while (*p) {
5300 		parent = *p;
5301 		skb1 = rb_to_skb(parent);
5302 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5303 			p = &parent->rb_left;
5304 		else
5305 			p = &parent->rb_right;
5306 	}
5307 	rb_link_node(&skb->rbnode, parent, p);
5308 	rb_insert_color(&skb->rbnode, root);
5309 }
5310 
5311 /* Collapse contiguous sequence of skbs head..tail with
5312  * sequence numbers start..end.
5313  *
5314  * If tail is NULL, this means until the end of the queue.
5315  *
5316  * Segments with FIN/SYN are not collapsed (only because this
5317  * simplifies code)
5318  */
5319 static void
5320 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5321 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5322 {
5323 	struct sk_buff *skb = head, *n;
5324 	struct sk_buff_head tmp;
5325 	bool end_of_skbs;
5326 
5327 	/* First, check that queue is collapsible and find
5328 	 * the point where collapsing can be useful.
5329 	 */
5330 restart:
5331 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5332 		n = tcp_skb_next(skb, list);
5333 
5334 		/* No new bits? It is possible on ofo queue. */
5335 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5336 			skb = tcp_collapse_one(sk, skb, list, root);
5337 			if (!skb)
5338 				break;
5339 			goto restart;
5340 		}
5341 
5342 		/* The first skb to collapse is:
5343 		 * - not SYN/FIN and
5344 		 * - bloated or contains data before "start" or
5345 		 *   overlaps to the next one and mptcp allow collapsing.
5346 		 */
5347 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5348 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5349 		     before(TCP_SKB_CB(skb)->seq, start))) {
5350 			end_of_skbs = false;
5351 			break;
5352 		}
5353 
5354 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5355 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5356 			end_of_skbs = false;
5357 			break;
5358 		}
5359 
5360 		/* Decided to skip this, advance start seq. */
5361 		start = TCP_SKB_CB(skb)->end_seq;
5362 	}
5363 	if (end_of_skbs ||
5364 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5365 		return;
5366 
5367 	__skb_queue_head_init(&tmp);
5368 
5369 	while (before(start, end)) {
5370 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5371 		struct sk_buff *nskb;
5372 
5373 		nskb = alloc_skb(copy, GFP_ATOMIC);
5374 		if (!nskb)
5375 			break;
5376 
5377 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5378 #ifdef CONFIG_TLS_DEVICE
5379 		nskb->decrypted = skb->decrypted;
5380 #endif
5381 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5382 		if (list)
5383 			__skb_queue_before(list, skb, nskb);
5384 		else
5385 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5386 		skb_set_owner_r(nskb, sk);
5387 		mptcp_skb_ext_move(nskb, skb);
5388 
5389 		/* Copy data, releasing collapsed skbs. */
5390 		while (copy > 0) {
5391 			int offset = start - TCP_SKB_CB(skb)->seq;
5392 			int size = TCP_SKB_CB(skb)->end_seq - start;
5393 
5394 			BUG_ON(offset < 0);
5395 			if (size > 0) {
5396 				size = min(copy, size);
5397 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5398 					BUG();
5399 				TCP_SKB_CB(nskb)->end_seq += size;
5400 				copy -= size;
5401 				start += size;
5402 			}
5403 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5404 				skb = tcp_collapse_one(sk, skb, list, root);
5405 				if (!skb ||
5406 				    skb == tail ||
5407 				    !mptcp_skb_can_collapse(nskb, skb) ||
5408 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5409 					goto end;
5410 #ifdef CONFIG_TLS_DEVICE
5411 				if (skb->decrypted != nskb->decrypted)
5412 					goto end;
5413 #endif
5414 			}
5415 		}
5416 	}
5417 end:
5418 	skb_queue_walk_safe(&tmp, skb, n)
5419 		tcp_rbtree_insert(root, skb);
5420 }
5421 
5422 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5423  * and tcp_collapse() them until all the queue is collapsed.
5424  */
5425 static void tcp_collapse_ofo_queue(struct sock *sk)
5426 {
5427 	struct tcp_sock *tp = tcp_sk(sk);
5428 	u32 range_truesize, sum_tiny = 0;
5429 	struct sk_buff *skb, *head;
5430 	u32 start, end;
5431 
5432 	skb = skb_rb_first(&tp->out_of_order_queue);
5433 new_range:
5434 	if (!skb) {
5435 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5436 		return;
5437 	}
5438 	start = TCP_SKB_CB(skb)->seq;
5439 	end = TCP_SKB_CB(skb)->end_seq;
5440 	range_truesize = skb->truesize;
5441 
5442 	for (head = skb;;) {
5443 		skb = skb_rb_next(skb);
5444 
5445 		/* Range is terminated when we see a gap or when
5446 		 * we are at the queue end.
5447 		 */
5448 		if (!skb ||
5449 		    after(TCP_SKB_CB(skb)->seq, end) ||
5450 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5451 			/* Do not attempt collapsing tiny skbs */
5452 			if (range_truesize != head->truesize ||
5453 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5454 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5455 					     head, skb, start, end);
5456 			} else {
5457 				sum_tiny += range_truesize;
5458 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5459 					return;
5460 			}
5461 			goto new_range;
5462 		}
5463 
5464 		range_truesize += skb->truesize;
5465 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5466 			start = TCP_SKB_CB(skb)->seq;
5467 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5468 			end = TCP_SKB_CB(skb)->end_seq;
5469 	}
5470 }
5471 
5472 /*
5473  * Clean the out-of-order queue to make room.
5474  * We drop high sequences packets to :
5475  * 1) Let a chance for holes to be filled.
5476  *    This means we do not drop packets from ooo queue if their sequence
5477  *    is before incoming packet sequence.
5478  * 2) not add too big latencies if thousands of packets sit there.
5479  *    (But if application shrinks SO_RCVBUF, we could still end up
5480  *     freeing whole queue here)
5481  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5482  *
5483  * Return true if queue has shrunk.
5484  */
5485 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5486 {
5487 	struct tcp_sock *tp = tcp_sk(sk);
5488 	struct rb_node *node, *prev;
5489 	bool pruned = false;
5490 	int goal;
5491 
5492 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5493 		return false;
5494 
5495 	goal = sk->sk_rcvbuf >> 3;
5496 	node = &tp->ooo_last_skb->rbnode;
5497 
5498 	do {
5499 		struct sk_buff *skb = rb_to_skb(node);
5500 
5501 		/* If incoming skb would land last in ofo queue, stop pruning. */
5502 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5503 			break;
5504 		pruned = true;
5505 		prev = rb_prev(node);
5506 		rb_erase(node, &tp->out_of_order_queue);
5507 		goal -= skb->truesize;
5508 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5509 		tp->ooo_last_skb = rb_to_skb(prev);
5510 		if (!prev || goal <= 0) {
5511 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5512 			    !tcp_under_memory_pressure(sk))
5513 				break;
5514 			goal = sk->sk_rcvbuf >> 3;
5515 		}
5516 		node = prev;
5517 	} while (node);
5518 
5519 	if (pruned) {
5520 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5521 		/* Reset SACK state.  A conforming SACK implementation will
5522 		 * do the same at a timeout based retransmit.  When a connection
5523 		 * is in a sad state like this, we care only about integrity
5524 		 * of the connection not performance.
5525 		 */
5526 		if (tp->rx_opt.sack_ok)
5527 			tcp_sack_reset(&tp->rx_opt);
5528 	}
5529 	return pruned;
5530 }
5531 
5532 /* Reduce allocated memory if we can, trying to get
5533  * the socket within its memory limits again.
5534  *
5535  * Return less than zero if we should start dropping frames
5536  * until the socket owning process reads some of the data
5537  * to stabilize the situation.
5538  */
5539 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5540 {
5541 	struct tcp_sock *tp = tcp_sk(sk);
5542 
5543 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5544 
5545 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5546 		tcp_clamp_window(sk);
5547 	else if (tcp_under_memory_pressure(sk))
5548 		tcp_adjust_rcv_ssthresh(sk);
5549 
5550 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5551 		return 0;
5552 
5553 	tcp_collapse_ofo_queue(sk);
5554 	if (!skb_queue_empty(&sk->sk_receive_queue))
5555 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5556 			     skb_peek(&sk->sk_receive_queue),
5557 			     NULL,
5558 			     tp->copied_seq, tp->rcv_nxt);
5559 
5560 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5561 		return 0;
5562 
5563 	/* Collapsing did not help, destructive actions follow.
5564 	 * This must not ever occur. */
5565 
5566 	tcp_prune_ofo_queue(sk, in_skb);
5567 
5568 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5569 		return 0;
5570 
5571 	/* If we are really being abused, tell the caller to silently
5572 	 * drop receive data on the floor.  It will get retransmitted
5573 	 * and hopefully then we'll have sufficient space.
5574 	 */
5575 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5576 
5577 	/* Massive buffer overcommit. */
5578 	tp->pred_flags = 0;
5579 	return -1;
5580 }
5581 
5582 static bool tcp_should_expand_sndbuf(struct sock *sk)
5583 {
5584 	const struct tcp_sock *tp = tcp_sk(sk);
5585 
5586 	/* If the user specified a specific send buffer setting, do
5587 	 * not modify it.
5588 	 */
5589 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5590 		return false;
5591 
5592 	/* If we are under global TCP memory pressure, do not expand.  */
5593 	if (tcp_under_memory_pressure(sk)) {
5594 		int unused_mem = sk_unused_reserved_mem(sk);
5595 
5596 		/* Adjust sndbuf according to reserved mem. But make sure
5597 		 * it never goes below SOCK_MIN_SNDBUF.
5598 		 * See sk_stream_moderate_sndbuf() for more details.
5599 		 */
5600 		if (unused_mem > SOCK_MIN_SNDBUF)
5601 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5602 
5603 		return false;
5604 	}
5605 
5606 	/* If we are under soft global TCP memory pressure, do not expand.  */
5607 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5608 		return false;
5609 
5610 	/* If we filled the congestion window, do not expand.  */
5611 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5612 		return false;
5613 
5614 	return true;
5615 }
5616 
5617 static void tcp_new_space(struct sock *sk)
5618 {
5619 	struct tcp_sock *tp = tcp_sk(sk);
5620 
5621 	if (tcp_should_expand_sndbuf(sk)) {
5622 		tcp_sndbuf_expand(sk);
5623 		tp->snd_cwnd_stamp = tcp_jiffies32;
5624 	}
5625 
5626 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5627 }
5628 
5629 /* Caller made space either from:
5630  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5631  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5632  *
5633  * We might be able to generate EPOLLOUT to the application if:
5634  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5635  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5636  *    small enough that tcp_stream_memory_free() decides it
5637  *    is time to generate EPOLLOUT.
5638  */
5639 void tcp_check_space(struct sock *sk)
5640 {
5641 	/* pairs with tcp_poll() */
5642 	smp_mb();
5643 	if (sk->sk_socket &&
5644 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5645 		tcp_new_space(sk);
5646 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5647 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5648 	}
5649 }
5650 
5651 static inline void tcp_data_snd_check(struct sock *sk)
5652 {
5653 	tcp_push_pending_frames(sk);
5654 	tcp_check_space(sk);
5655 }
5656 
5657 /*
5658  * Check if sending an ack is needed.
5659  */
5660 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5661 {
5662 	struct tcp_sock *tp = tcp_sk(sk);
5663 	unsigned long rtt, delay;
5664 
5665 	    /* More than one full frame received... */
5666 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5667 	     /* ... and right edge of window advances far enough.
5668 	      * (tcp_recvmsg() will send ACK otherwise).
5669 	      * If application uses SO_RCVLOWAT, we want send ack now if
5670 	      * we have not received enough bytes to satisfy the condition.
5671 	      */
5672 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5673 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5674 	    /* We ACK each frame or... */
5675 	    tcp_in_quickack_mode(sk) ||
5676 	    /* Protocol state mandates a one-time immediate ACK */
5677 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5678 		/* If we are running from __release_sock() in user context,
5679 		 * Defer the ack until tcp_release_cb().
5680 		 */
5681 		if (sock_owned_by_user_nocheck(sk) &&
5682 		    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5683 			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5684 			return;
5685 		}
5686 send_now:
5687 		tcp_send_ack(sk);
5688 		return;
5689 	}
5690 
5691 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5692 		tcp_send_delayed_ack(sk);
5693 		return;
5694 	}
5695 
5696 	if (!tcp_is_sack(tp) ||
5697 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5698 		goto send_now;
5699 
5700 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5701 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5702 		tp->dup_ack_counter = 0;
5703 	}
5704 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5705 		tp->dup_ack_counter++;
5706 		goto send_now;
5707 	}
5708 	tp->compressed_ack++;
5709 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5710 		return;
5711 
5712 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5713 
5714 	rtt = tp->rcv_rtt_est.rtt_us;
5715 	if (tp->srtt_us && tp->srtt_us < rtt)
5716 		rtt = tp->srtt_us;
5717 
5718 	delay = min_t(unsigned long,
5719 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5720 		      rtt * (NSEC_PER_USEC >> 3)/20);
5721 	sock_hold(sk);
5722 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5723 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5724 			       HRTIMER_MODE_REL_PINNED_SOFT);
5725 }
5726 
5727 static inline void tcp_ack_snd_check(struct sock *sk)
5728 {
5729 	if (!inet_csk_ack_scheduled(sk)) {
5730 		/* We sent a data segment already. */
5731 		return;
5732 	}
5733 	__tcp_ack_snd_check(sk, 1);
5734 }
5735 
5736 /*
5737  *	This routine is only called when we have urgent data
5738  *	signaled. Its the 'slow' part of tcp_urg. It could be
5739  *	moved inline now as tcp_urg is only called from one
5740  *	place. We handle URGent data wrong. We have to - as
5741  *	BSD still doesn't use the correction from RFC961.
5742  *	For 1003.1g we should support a new option TCP_STDURG to permit
5743  *	either form (or just set the sysctl tcp_stdurg).
5744  */
5745 
5746 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5747 {
5748 	struct tcp_sock *tp = tcp_sk(sk);
5749 	u32 ptr = ntohs(th->urg_ptr);
5750 
5751 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5752 		ptr--;
5753 	ptr += ntohl(th->seq);
5754 
5755 	/* Ignore urgent data that we've already seen and read. */
5756 	if (after(tp->copied_seq, ptr))
5757 		return;
5758 
5759 	/* Do not replay urg ptr.
5760 	 *
5761 	 * NOTE: interesting situation not covered by specs.
5762 	 * Misbehaving sender may send urg ptr, pointing to segment,
5763 	 * which we already have in ofo queue. We are not able to fetch
5764 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5765 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5766 	 * situations. But it is worth to think about possibility of some
5767 	 * DoSes using some hypothetical application level deadlock.
5768 	 */
5769 	if (before(ptr, tp->rcv_nxt))
5770 		return;
5771 
5772 	/* Do we already have a newer (or duplicate) urgent pointer? */
5773 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5774 		return;
5775 
5776 	/* Tell the world about our new urgent pointer. */
5777 	sk_send_sigurg(sk);
5778 
5779 	/* We may be adding urgent data when the last byte read was
5780 	 * urgent. To do this requires some care. We cannot just ignore
5781 	 * tp->copied_seq since we would read the last urgent byte again
5782 	 * as data, nor can we alter copied_seq until this data arrives
5783 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5784 	 *
5785 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5786 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5787 	 * and expect that both A and B disappear from stream. This is _wrong_.
5788 	 * Though this happens in BSD with high probability, this is occasional.
5789 	 * Any application relying on this is buggy. Note also, that fix "works"
5790 	 * only in this artificial test. Insert some normal data between A and B and we will
5791 	 * decline of BSD again. Verdict: it is better to remove to trap
5792 	 * buggy users.
5793 	 */
5794 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5795 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5796 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5797 		tp->copied_seq++;
5798 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5799 			__skb_unlink(skb, &sk->sk_receive_queue);
5800 			__kfree_skb(skb);
5801 		}
5802 	}
5803 
5804 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5805 	WRITE_ONCE(tp->urg_seq, ptr);
5806 
5807 	/* Disable header prediction. */
5808 	tp->pred_flags = 0;
5809 }
5810 
5811 /* This is the 'fast' part of urgent handling. */
5812 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5813 {
5814 	struct tcp_sock *tp = tcp_sk(sk);
5815 
5816 	/* Check if we get a new urgent pointer - normally not. */
5817 	if (unlikely(th->urg))
5818 		tcp_check_urg(sk, th);
5819 
5820 	/* Do we wait for any urgent data? - normally not... */
5821 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5822 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5823 			  th->syn;
5824 
5825 		/* Is the urgent pointer pointing into this packet? */
5826 		if (ptr < skb->len) {
5827 			u8 tmp;
5828 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5829 				BUG();
5830 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5831 			if (!sock_flag(sk, SOCK_DEAD))
5832 				sk->sk_data_ready(sk);
5833 		}
5834 	}
5835 }
5836 
5837 /* Accept RST for rcv_nxt - 1 after a FIN.
5838  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5839  * FIN is sent followed by a RST packet. The RST is sent with the same
5840  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5841  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5842  * ACKs on the closed socket. In addition middleboxes can drop either the
5843  * challenge ACK or a subsequent RST.
5844  */
5845 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5846 {
5847 	const struct tcp_sock *tp = tcp_sk(sk);
5848 
5849 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5850 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5851 					       TCPF_CLOSING));
5852 }
5853 
5854 /* Does PAWS and seqno based validation of an incoming segment, flags will
5855  * play significant role here.
5856  */
5857 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5858 				  const struct tcphdr *th, int syn_inerr)
5859 {
5860 	struct tcp_sock *tp = tcp_sk(sk);
5861 	SKB_DR(reason);
5862 
5863 	/* RFC1323: H1. Apply PAWS check first. */
5864 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5865 	    tp->rx_opt.saw_tstamp &&
5866 	    tcp_paws_discard(sk, skb)) {
5867 		if (!th->rst) {
5868 			if (unlikely(th->syn))
5869 				goto syn_challenge;
5870 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5871 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5872 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5873 						  &tp->last_oow_ack_time))
5874 				tcp_send_dupack(sk, skb);
5875 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5876 			goto discard;
5877 		}
5878 		/* Reset is accepted even if it did not pass PAWS. */
5879 	}
5880 
5881 	/* Step 1: check sequence number */
5882 	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5883 	if (reason) {
5884 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5885 		 * (RST) segments are validated by checking their SEQ-fields."
5886 		 * And page 69: "If an incoming segment is not acceptable,
5887 		 * an acknowledgment should be sent in reply (unless the RST
5888 		 * bit is set, if so drop the segment and return)".
5889 		 */
5890 		if (!th->rst) {
5891 			if (th->syn)
5892 				goto syn_challenge;
5893 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5894 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5895 						  &tp->last_oow_ack_time))
5896 				tcp_send_dupack(sk, skb);
5897 		} else if (tcp_reset_check(sk, skb)) {
5898 			goto reset;
5899 		}
5900 		goto discard;
5901 	}
5902 
5903 	/* Step 2: check RST bit */
5904 	if (th->rst) {
5905 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5906 		 * FIN and SACK too if available):
5907 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5908 		 * the right-most SACK block,
5909 		 * then
5910 		 *     RESET the connection
5911 		 * else
5912 		 *     Send a challenge ACK
5913 		 */
5914 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5915 		    tcp_reset_check(sk, skb))
5916 			goto reset;
5917 
5918 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5919 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5920 			int max_sack = sp[0].end_seq;
5921 			int this_sack;
5922 
5923 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5924 			     ++this_sack) {
5925 				max_sack = after(sp[this_sack].end_seq,
5926 						 max_sack) ?
5927 					sp[this_sack].end_seq : max_sack;
5928 			}
5929 
5930 			if (TCP_SKB_CB(skb)->seq == max_sack)
5931 				goto reset;
5932 		}
5933 
5934 		/* Disable TFO if RST is out-of-order
5935 		 * and no data has been received
5936 		 * for current active TFO socket
5937 		 */
5938 		if (tp->syn_fastopen && !tp->data_segs_in &&
5939 		    sk->sk_state == TCP_ESTABLISHED)
5940 			tcp_fastopen_active_disable(sk);
5941 		tcp_send_challenge_ack(sk);
5942 		SKB_DR_SET(reason, TCP_RESET);
5943 		goto discard;
5944 	}
5945 
5946 	/* step 3: check security and precedence [ignored] */
5947 
5948 	/* step 4: Check for a SYN
5949 	 * RFC 5961 4.2 : Send a challenge ack
5950 	 */
5951 	if (th->syn) {
5952 syn_challenge:
5953 		if (syn_inerr)
5954 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5955 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5956 		tcp_send_challenge_ack(sk);
5957 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5958 		goto discard;
5959 	}
5960 
5961 	bpf_skops_parse_hdr(sk, skb);
5962 
5963 	return true;
5964 
5965 discard:
5966 	tcp_drop_reason(sk, skb, reason);
5967 	return false;
5968 
5969 reset:
5970 	tcp_reset(sk, skb);
5971 	__kfree_skb(skb);
5972 	return false;
5973 }
5974 
5975 /*
5976  *	TCP receive function for the ESTABLISHED state.
5977  *
5978  *	It is split into a fast path and a slow path. The fast path is
5979  * 	disabled when:
5980  *	- A zero window was announced from us - zero window probing
5981  *        is only handled properly in the slow path.
5982  *	- Out of order segments arrived.
5983  *	- Urgent data is expected.
5984  *	- There is no buffer space left
5985  *	- Unexpected TCP flags/window values/header lengths are received
5986  *	  (detected by checking the TCP header against pred_flags)
5987  *	- Data is sent in both directions. Fast path only supports pure senders
5988  *	  or pure receivers (this means either the sequence number or the ack
5989  *	  value must stay constant)
5990  *	- Unexpected TCP option.
5991  *
5992  *	When these conditions are not satisfied it drops into a standard
5993  *	receive procedure patterned after RFC793 to handle all cases.
5994  *	The first three cases are guaranteed by proper pred_flags setting,
5995  *	the rest is checked inline. Fast processing is turned on in
5996  *	tcp_data_queue when everything is OK.
5997  */
5998 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5999 {
6000 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6001 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
6002 	struct tcp_sock *tp = tcp_sk(sk);
6003 	unsigned int len = skb->len;
6004 
6005 	/* TCP congestion window tracking */
6006 	trace_tcp_probe(sk, skb);
6007 
6008 	tcp_mstamp_refresh(tp);
6009 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6010 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6011 	/*
6012 	 *	Header prediction.
6013 	 *	The code loosely follows the one in the famous
6014 	 *	"30 instruction TCP receive" Van Jacobson mail.
6015 	 *
6016 	 *	Van's trick is to deposit buffers into socket queue
6017 	 *	on a device interrupt, to call tcp_recv function
6018 	 *	on the receive process context and checksum and copy
6019 	 *	the buffer to user space. smart...
6020 	 *
6021 	 *	Our current scheme is not silly either but we take the
6022 	 *	extra cost of the net_bh soft interrupt processing...
6023 	 *	We do checksum and copy also but from device to kernel.
6024 	 */
6025 
6026 	tp->rx_opt.saw_tstamp = 0;
6027 
6028 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6029 	 *	if header_prediction is to be made
6030 	 *	'S' will always be tp->tcp_header_len >> 2
6031 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6032 	 *  turn it off	(when there are holes in the receive
6033 	 *	 space for instance)
6034 	 *	PSH flag is ignored.
6035 	 */
6036 
6037 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6038 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6039 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6040 		int tcp_header_len = tp->tcp_header_len;
6041 
6042 		/* Timestamp header prediction: tcp_header_len
6043 		 * is automatically equal to th->doff*4 due to pred_flags
6044 		 * match.
6045 		 */
6046 
6047 		/* Check timestamp */
6048 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6049 			/* No? Slow path! */
6050 			if (!tcp_parse_aligned_timestamp(tp, th))
6051 				goto slow_path;
6052 
6053 			/* If PAWS failed, check it more carefully in slow path */
6054 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6055 				goto slow_path;
6056 
6057 			/* DO NOT update ts_recent here, if checksum fails
6058 			 * and timestamp was corrupted part, it will result
6059 			 * in a hung connection since we will drop all
6060 			 * future packets due to the PAWS test.
6061 			 */
6062 		}
6063 
6064 		if (len <= tcp_header_len) {
6065 			/* Bulk data transfer: sender */
6066 			if (len == tcp_header_len) {
6067 				/* Predicted packet is in window by definition.
6068 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6069 				 * Hence, check seq<=rcv_wup reduces to:
6070 				 */
6071 				if (tcp_header_len ==
6072 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6073 				    tp->rcv_nxt == tp->rcv_wup)
6074 					tcp_store_ts_recent(tp);
6075 
6076 				/* We know that such packets are checksummed
6077 				 * on entry.
6078 				 */
6079 				tcp_ack(sk, skb, 0);
6080 				__kfree_skb(skb);
6081 				tcp_data_snd_check(sk);
6082 				/* When receiving pure ack in fast path, update
6083 				 * last ts ecr directly instead of calling
6084 				 * tcp_rcv_rtt_measure_ts()
6085 				 */
6086 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6087 				return;
6088 			} else { /* Header too small */
6089 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6090 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6091 				goto discard;
6092 			}
6093 		} else {
6094 			int eaten = 0;
6095 			bool fragstolen = false;
6096 
6097 			if (tcp_checksum_complete(skb))
6098 				goto csum_error;
6099 
6100 			if ((int)skb->truesize > sk->sk_forward_alloc)
6101 				goto step5;
6102 
6103 			/* Predicted packet is in window by definition.
6104 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6105 			 * Hence, check seq<=rcv_wup reduces to:
6106 			 */
6107 			if (tcp_header_len ==
6108 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6109 			    tp->rcv_nxt == tp->rcv_wup)
6110 				tcp_store_ts_recent(tp);
6111 
6112 			tcp_rcv_rtt_measure_ts(sk, skb);
6113 
6114 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6115 
6116 			/* Bulk data transfer: receiver */
6117 			skb_dst_drop(skb);
6118 			__skb_pull(skb, tcp_header_len);
6119 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6120 
6121 			tcp_event_data_recv(sk, skb);
6122 
6123 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6124 				/* Well, only one small jumplet in fast path... */
6125 				tcp_ack(sk, skb, FLAG_DATA);
6126 				tcp_data_snd_check(sk);
6127 				if (!inet_csk_ack_scheduled(sk))
6128 					goto no_ack;
6129 			} else {
6130 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6131 			}
6132 
6133 			__tcp_ack_snd_check(sk, 0);
6134 no_ack:
6135 			if (eaten)
6136 				kfree_skb_partial(skb, fragstolen);
6137 			tcp_data_ready(sk);
6138 			return;
6139 		}
6140 	}
6141 
6142 slow_path:
6143 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6144 		goto csum_error;
6145 
6146 	if (!th->ack && !th->rst && !th->syn) {
6147 		reason = SKB_DROP_REASON_TCP_FLAGS;
6148 		goto discard;
6149 	}
6150 
6151 	/*
6152 	 *	Standard slow path.
6153 	 */
6154 
6155 	if (!tcp_validate_incoming(sk, skb, th, 1))
6156 		return;
6157 
6158 step5:
6159 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6160 	if ((int)reason < 0) {
6161 		reason = -reason;
6162 		goto discard;
6163 	}
6164 	tcp_rcv_rtt_measure_ts(sk, skb);
6165 
6166 	/* Process urgent data. */
6167 	tcp_urg(sk, skb, th);
6168 
6169 	/* step 7: process the segment text */
6170 	tcp_data_queue(sk, skb);
6171 
6172 	tcp_data_snd_check(sk);
6173 	tcp_ack_snd_check(sk);
6174 	return;
6175 
6176 csum_error:
6177 	reason = SKB_DROP_REASON_TCP_CSUM;
6178 	trace_tcp_bad_csum(skb);
6179 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6180 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6181 
6182 discard:
6183 	tcp_drop_reason(sk, skb, reason);
6184 }
6185 EXPORT_SYMBOL(tcp_rcv_established);
6186 
6187 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6188 {
6189 	struct inet_connection_sock *icsk = inet_csk(sk);
6190 	struct tcp_sock *tp = tcp_sk(sk);
6191 
6192 	tcp_mtup_init(sk);
6193 	icsk->icsk_af_ops->rebuild_header(sk);
6194 	tcp_init_metrics(sk);
6195 
6196 	/* Initialize the congestion window to start the transfer.
6197 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6198 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6199 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6200 	 * retransmission has occurred.
6201 	 */
6202 	if (tp->total_retrans > 1 && tp->undo_marker)
6203 		tcp_snd_cwnd_set(tp, 1);
6204 	else
6205 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6206 	tp->snd_cwnd_stamp = tcp_jiffies32;
6207 
6208 	bpf_skops_established(sk, bpf_op, skb);
6209 	/* Initialize congestion control unless BPF initialized it already: */
6210 	if (!icsk->icsk_ca_initialized)
6211 		tcp_init_congestion_control(sk);
6212 	tcp_init_buffer_space(sk);
6213 }
6214 
6215 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6216 {
6217 	struct tcp_sock *tp = tcp_sk(sk);
6218 	struct inet_connection_sock *icsk = inet_csk(sk);
6219 
6220 	tcp_ao_finish_connect(sk, skb);
6221 	tcp_set_state(sk, TCP_ESTABLISHED);
6222 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6223 
6224 	if (skb) {
6225 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6226 		security_inet_conn_established(sk, skb);
6227 		sk_mark_napi_id(sk, skb);
6228 	}
6229 
6230 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6231 
6232 	/* Prevent spurious tcp_cwnd_restart() on first data
6233 	 * packet.
6234 	 */
6235 	tp->lsndtime = tcp_jiffies32;
6236 
6237 	if (sock_flag(sk, SOCK_KEEPOPEN))
6238 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6239 
6240 	if (!tp->rx_opt.snd_wscale)
6241 		__tcp_fast_path_on(tp, tp->snd_wnd);
6242 	else
6243 		tp->pred_flags = 0;
6244 }
6245 
6246 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6247 				    struct tcp_fastopen_cookie *cookie)
6248 {
6249 	struct tcp_sock *tp = tcp_sk(sk);
6250 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6251 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6252 	bool syn_drop = false;
6253 
6254 	if (mss == tp->rx_opt.user_mss) {
6255 		struct tcp_options_received opt;
6256 
6257 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6258 		tcp_clear_options(&opt);
6259 		opt.user_mss = opt.mss_clamp = 0;
6260 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6261 		mss = opt.mss_clamp;
6262 	}
6263 
6264 	if (!tp->syn_fastopen) {
6265 		/* Ignore an unsolicited cookie */
6266 		cookie->len = -1;
6267 	} else if (tp->total_retrans) {
6268 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6269 		 * acknowledges data. Presumably the remote received only
6270 		 * the retransmitted (regular) SYNs: either the original
6271 		 * SYN-data or the corresponding SYN-ACK was dropped.
6272 		 */
6273 		syn_drop = (cookie->len < 0 && data);
6274 	} else if (cookie->len < 0 && !tp->syn_data) {
6275 		/* We requested a cookie but didn't get it. If we did not use
6276 		 * the (old) exp opt format then try so next time (try_exp=1).
6277 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6278 		 */
6279 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6280 	}
6281 
6282 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6283 
6284 	if (data) { /* Retransmit unacked data in SYN */
6285 		if (tp->total_retrans)
6286 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6287 		else
6288 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6289 		skb_rbtree_walk_from(data)
6290 			 tcp_mark_skb_lost(sk, data);
6291 		tcp_xmit_retransmit_queue(sk);
6292 		NET_INC_STATS(sock_net(sk),
6293 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6294 		return true;
6295 	}
6296 	tp->syn_data_acked = tp->syn_data;
6297 	if (tp->syn_data_acked) {
6298 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6299 		/* SYN-data is counted as two separate packets in tcp_ack() */
6300 		if (tp->delivered > 1)
6301 			--tp->delivered;
6302 	}
6303 
6304 	tcp_fastopen_add_skb(sk, synack);
6305 
6306 	return false;
6307 }
6308 
6309 static void smc_check_reset_syn(struct tcp_sock *tp)
6310 {
6311 #if IS_ENABLED(CONFIG_SMC)
6312 	if (static_branch_unlikely(&tcp_have_smc)) {
6313 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6314 			tp->syn_smc = 0;
6315 	}
6316 #endif
6317 }
6318 
6319 static void tcp_try_undo_spurious_syn(struct sock *sk)
6320 {
6321 	struct tcp_sock *tp = tcp_sk(sk);
6322 	u32 syn_stamp;
6323 
6324 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6325 	 * spurious if the ACK's timestamp option echo value matches the
6326 	 * original SYN timestamp.
6327 	 */
6328 	syn_stamp = tp->retrans_stamp;
6329 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6330 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6331 		tp->undo_marker = 0;
6332 }
6333 
6334 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6335 					 const struct tcphdr *th)
6336 {
6337 	struct inet_connection_sock *icsk = inet_csk(sk);
6338 	struct tcp_sock *tp = tcp_sk(sk);
6339 	struct tcp_fastopen_cookie foc = { .len = -1 };
6340 	int saved_clamp = tp->rx_opt.mss_clamp;
6341 	bool fastopen_fail;
6342 	SKB_DR(reason);
6343 
6344 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6345 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6346 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6347 
6348 	if (th->ack) {
6349 		/* rfc793:
6350 		 * "If the state is SYN-SENT then
6351 		 *    first check the ACK bit
6352 		 *      If the ACK bit is set
6353 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6354 		 *        a reset (unless the RST bit is set, if so drop
6355 		 *        the segment and return)"
6356 		 */
6357 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6358 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6359 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6360 			if (icsk->icsk_retransmits == 0)
6361 				inet_csk_reset_xmit_timer(sk,
6362 						ICSK_TIME_RETRANS,
6363 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6364 			SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6365 			goto reset_and_undo;
6366 		}
6367 
6368 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6369 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6370 			     tcp_time_stamp_ts(tp))) {
6371 			NET_INC_STATS(sock_net(sk),
6372 					LINUX_MIB_PAWSACTIVEREJECTED);
6373 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6374 			goto reset_and_undo;
6375 		}
6376 
6377 		/* Now ACK is acceptable.
6378 		 *
6379 		 * "If the RST bit is set
6380 		 *    If the ACK was acceptable then signal the user "error:
6381 		 *    connection reset", drop the segment, enter CLOSED state,
6382 		 *    delete TCB, and return."
6383 		 */
6384 
6385 		if (th->rst) {
6386 			tcp_reset(sk, skb);
6387 consume:
6388 			__kfree_skb(skb);
6389 			return 0;
6390 		}
6391 
6392 		/* rfc793:
6393 		 *   "fifth, if neither of the SYN or RST bits is set then
6394 		 *    drop the segment and return."
6395 		 *
6396 		 *    See note below!
6397 		 *                                        --ANK(990513)
6398 		 */
6399 		if (!th->syn) {
6400 			SKB_DR_SET(reason, TCP_FLAGS);
6401 			goto discard_and_undo;
6402 		}
6403 		/* rfc793:
6404 		 *   "If the SYN bit is on ...
6405 		 *    are acceptable then ...
6406 		 *    (our SYN has been ACKed), change the connection
6407 		 *    state to ESTABLISHED..."
6408 		 */
6409 
6410 		tcp_ecn_rcv_synack(tp, th);
6411 
6412 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6413 		tcp_try_undo_spurious_syn(sk);
6414 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6415 
6416 		/* Ok.. it's good. Set up sequence numbers and
6417 		 * move to established.
6418 		 */
6419 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6420 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6421 
6422 		/* RFC1323: The window in SYN & SYN/ACK segments is
6423 		 * never scaled.
6424 		 */
6425 		tp->snd_wnd = ntohs(th->window);
6426 
6427 		if (!tp->rx_opt.wscale_ok) {
6428 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6429 			tp->window_clamp = min(tp->window_clamp, 65535U);
6430 		}
6431 
6432 		if (tp->rx_opt.saw_tstamp) {
6433 			tp->rx_opt.tstamp_ok	   = 1;
6434 			tp->tcp_header_len =
6435 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6436 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6437 			tcp_store_ts_recent(tp);
6438 		} else {
6439 			tp->tcp_header_len = sizeof(struct tcphdr);
6440 		}
6441 
6442 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6443 		tcp_initialize_rcv_mss(sk);
6444 
6445 		/* Remember, tcp_poll() does not lock socket!
6446 		 * Change state from SYN-SENT only after copied_seq
6447 		 * is initialized. */
6448 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6449 
6450 		smc_check_reset_syn(tp);
6451 
6452 		smp_mb();
6453 
6454 		tcp_finish_connect(sk, skb);
6455 
6456 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6457 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6458 
6459 		if (!sock_flag(sk, SOCK_DEAD)) {
6460 			sk->sk_state_change(sk);
6461 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6462 		}
6463 		if (fastopen_fail)
6464 			return -1;
6465 		if (sk->sk_write_pending ||
6466 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6467 		    inet_csk_in_pingpong_mode(sk)) {
6468 			/* Save one ACK. Data will be ready after
6469 			 * several ticks, if write_pending is set.
6470 			 *
6471 			 * It may be deleted, but with this feature tcpdumps
6472 			 * look so _wonderfully_ clever, that I was not able
6473 			 * to stand against the temptation 8)     --ANK
6474 			 */
6475 			inet_csk_schedule_ack(sk);
6476 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6477 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6478 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6479 			goto consume;
6480 		}
6481 		tcp_send_ack(sk);
6482 		return -1;
6483 	}
6484 
6485 	/* No ACK in the segment */
6486 
6487 	if (th->rst) {
6488 		/* rfc793:
6489 		 * "If the RST bit is set
6490 		 *
6491 		 *      Otherwise (no ACK) drop the segment and return."
6492 		 */
6493 		SKB_DR_SET(reason, TCP_RESET);
6494 		goto discard_and_undo;
6495 	}
6496 
6497 	/* PAWS check. */
6498 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6499 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6500 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6501 		goto discard_and_undo;
6502 	}
6503 	if (th->syn) {
6504 		/* We see SYN without ACK. It is attempt of
6505 		 * simultaneous connect with crossed SYNs.
6506 		 * Particularly, it can be connect to self.
6507 		 */
6508 #ifdef CONFIG_TCP_AO
6509 		struct tcp_ao_info *ao;
6510 
6511 		ao = rcu_dereference_protected(tp->ao_info,
6512 					       lockdep_sock_is_held(sk));
6513 		if (ao) {
6514 			WRITE_ONCE(ao->risn, th->seq);
6515 			ao->rcv_sne = 0;
6516 		}
6517 #endif
6518 		tcp_set_state(sk, TCP_SYN_RECV);
6519 
6520 		if (tp->rx_opt.saw_tstamp) {
6521 			tp->rx_opt.tstamp_ok = 1;
6522 			tcp_store_ts_recent(tp);
6523 			tp->tcp_header_len =
6524 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6525 		} else {
6526 			tp->tcp_header_len = sizeof(struct tcphdr);
6527 		}
6528 
6529 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6530 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6531 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6532 
6533 		/* RFC1323: The window in SYN & SYN/ACK segments is
6534 		 * never scaled.
6535 		 */
6536 		tp->snd_wnd    = ntohs(th->window);
6537 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6538 		tp->max_window = tp->snd_wnd;
6539 
6540 		tcp_ecn_rcv_syn(tp, th);
6541 
6542 		tcp_mtup_init(sk);
6543 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6544 		tcp_initialize_rcv_mss(sk);
6545 
6546 		tcp_send_synack(sk);
6547 #if 0
6548 		/* Note, we could accept data and URG from this segment.
6549 		 * There are no obstacles to make this (except that we must
6550 		 * either change tcp_recvmsg() to prevent it from returning data
6551 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6552 		 *
6553 		 * However, if we ignore data in ACKless segments sometimes,
6554 		 * we have no reasons to accept it sometimes.
6555 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6556 		 * is not flawless. So, discard packet for sanity.
6557 		 * Uncomment this return to process the data.
6558 		 */
6559 		return -1;
6560 #else
6561 		goto consume;
6562 #endif
6563 	}
6564 	/* "fifth, if neither of the SYN or RST bits is set then
6565 	 * drop the segment and return."
6566 	 */
6567 
6568 discard_and_undo:
6569 	tcp_clear_options(&tp->rx_opt);
6570 	tp->rx_opt.mss_clamp = saved_clamp;
6571 	tcp_drop_reason(sk, skb, reason);
6572 	return 0;
6573 
6574 reset_and_undo:
6575 	tcp_clear_options(&tp->rx_opt);
6576 	tp->rx_opt.mss_clamp = saved_clamp;
6577 	/* we can reuse/return @reason to its caller to handle the exception */
6578 	return reason;
6579 }
6580 
6581 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6582 {
6583 	struct tcp_sock *tp = tcp_sk(sk);
6584 	struct request_sock *req;
6585 
6586 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6587 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6588 	 */
6589 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6590 		tcp_try_undo_recovery(sk);
6591 
6592 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6593 	tcp_update_rto_time(tp);
6594 	tp->retrans_stamp = 0;
6595 	inet_csk(sk)->icsk_retransmits = 0;
6596 
6597 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6598 	 * we no longer need req so release it.
6599 	 */
6600 	req = rcu_dereference_protected(tp->fastopen_rsk,
6601 					lockdep_sock_is_held(sk));
6602 	reqsk_fastopen_remove(sk, req, false);
6603 
6604 	/* Re-arm the timer because data may have been sent out.
6605 	 * This is similar to the regular data transmission case
6606 	 * when new data has just been ack'ed.
6607 	 *
6608 	 * (TFO) - we could try to be more aggressive and
6609 	 * retransmitting any data sooner based on when they
6610 	 * are sent out.
6611 	 */
6612 	tcp_rearm_rto(sk);
6613 }
6614 
6615 /*
6616  *	This function implements the receiving procedure of RFC 793 for
6617  *	all states except ESTABLISHED and TIME_WAIT.
6618  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6619  *	address independent.
6620  */
6621 
6622 enum skb_drop_reason
6623 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6624 {
6625 	struct tcp_sock *tp = tcp_sk(sk);
6626 	struct inet_connection_sock *icsk = inet_csk(sk);
6627 	const struct tcphdr *th = tcp_hdr(skb);
6628 	struct request_sock *req;
6629 	int queued = 0;
6630 	SKB_DR(reason);
6631 
6632 	switch (sk->sk_state) {
6633 	case TCP_CLOSE:
6634 		SKB_DR_SET(reason, TCP_CLOSE);
6635 		goto discard;
6636 
6637 	case TCP_LISTEN:
6638 		if (th->ack)
6639 			return SKB_DROP_REASON_TCP_FLAGS;
6640 
6641 		if (th->rst) {
6642 			SKB_DR_SET(reason, TCP_RESET);
6643 			goto discard;
6644 		}
6645 		if (th->syn) {
6646 			if (th->fin) {
6647 				SKB_DR_SET(reason, TCP_FLAGS);
6648 				goto discard;
6649 			}
6650 			/* It is possible that we process SYN packets from backlog,
6651 			 * so we need to make sure to disable BH and RCU right there.
6652 			 */
6653 			rcu_read_lock();
6654 			local_bh_disable();
6655 			icsk->icsk_af_ops->conn_request(sk, skb);
6656 			local_bh_enable();
6657 			rcu_read_unlock();
6658 
6659 			consume_skb(skb);
6660 			return 0;
6661 		}
6662 		SKB_DR_SET(reason, TCP_FLAGS);
6663 		goto discard;
6664 
6665 	case TCP_SYN_SENT:
6666 		tp->rx_opt.saw_tstamp = 0;
6667 		tcp_mstamp_refresh(tp);
6668 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6669 		if (queued >= 0)
6670 			return queued;
6671 
6672 		/* Do step6 onward by hand. */
6673 		tcp_urg(sk, skb, th);
6674 		__kfree_skb(skb);
6675 		tcp_data_snd_check(sk);
6676 		return 0;
6677 	}
6678 
6679 	tcp_mstamp_refresh(tp);
6680 	tp->rx_opt.saw_tstamp = 0;
6681 	req = rcu_dereference_protected(tp->fastopen_rsk,
6682 					lockdep_sock_is_held(sk));
6683 	if (req) {
6684 		bool req_stolen;
6685 
6686 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6687 		    sk->sk_state != TCP_FIN_WAIT1);
6688 
6689 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6690 			SKB_DR_SET(reason, TCP_FASTOPEN);
6691 			goto discard;
6692 		}
6693 	}
6694 
6695 	if (!th->ack && !th->rst && !th->syn) {
6696 		SKB_DR_SET(reason, TCP_FLAGS);
6697 		goto discard;
6698 	}
6699 	if (!tcp_validate_incoming(sk, skb, th, 0))
6700 		return 0;
6701 
6702 	/* step 5: check the ACK field */
6703 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6704 				  FLAG_UPDATE_TS_RECENT |
6705 				  FLAG_NO_CHALLENGE_ACK);
6706 
6707 	if ((int)reason <= 0) {
6708 		if (sk->sk_state == TCP_SYN_RECV) {
6709 			/* send one RST */
6710 			if (!reason)
6711 				return SKB_DROP_REASON_TCP_OLD_ACK;
6712 			return -reason;
6713 		}
6714 		/* accept old ack during closing */
6715 		if ((int)reason < 0) {
6716 			tcp_send_challenge_ack(sk);
6717 			reason = -reason;
6718 			goto discard;
6719 		}
6720 	}
6721 	SKB_DR_SET(reason, NOT_SPECIFIED);
6722 	switch (sk->sk_state) {
6723 	case TCP_SYN_RECV:
6724 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6725 		if (!tp->srtt_us)
6726 			tcp_synack_rtt_meas(sk, req);
6727 
6728 		if (req) {
6729 			tcp_rcv_synrecv_state_fastopen(sk);
6730 		} else {
6731 			tcp_try_undo_spurious_syn(sk);
6732 			tp->retrans_stamp = 0;
6733 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6734 					  skb);
6735 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6736 		}
6737 		tcp_ao_established(sk);
6738 		smp_mb();
6739 		tcp_set_state(sk, TCP_ESTABLISHED);
6740 		sk->sk_state_change(sk);
6741 
6742 		/* Note, that this wakeup is only for marginal crossed SYN case.
6743 		 * Passively open sockets are not waked up, because
6744 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6745 		 */
6746 		if (sk->sk_socket)
6747 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6748 
6749 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6750 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6751 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6752 
6753 		if (tp->rx_opt.tstamp_ok)
6754 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6755 
6756 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6757 			tcp_update_pacing_rate(sk);
6758 
6759 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6760 		tp->lsndtime = tcp_jiffies32;
6761 
6762 		tcp_initialize_rcv_mss(sk);
6763 		tcp_fast_path_on(tp);
6764 		if (sk->sk_shutdown & SEND_SHUTDOWN)
6765 			tcp_shutdown(sk, SEND_SHUTDOWN);
6766 		break;
6767 
6768 	case TCP_FIN_WAIT1: {
6769 		int tmo;
6770 
6771 		if (req)
6772 			tcp_rcv_synrecv_state_fastopen(sk);
6773 
6774 		if (tp->snd_una != tp->write_seq)
6775 			break;
6776 
6777 		tcp_set_state(sk, TCP_FIN_WAIT2);
6778 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6779 
6780 		sk_dst_confirm(sk);
6781 
6782 		if (!sock_flag(sk, SOCK_DEAD)) {
6783 			/* Wake up lingering close() */
6784 			sk->sk_state_change(sk);
6785 			break;
6786 		}
6787 
6788 		if (READ_ONCE(tp->linger2) < 0) {
6789 			tcp_done(sk);
6790 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6791 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6792 		}
6793 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6794 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6795 			/* Receive out of order FIN after close() */
6796 			if (tp->syn_fastopen && th->fin)
6797 				tcp_fastopen_active_disable(sk);
6798 			tcp_done(sk);
6799 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6800 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6801 		}
6802 
6803 		tmo = tcp_fin_time(sk);
6804 		if (tmo > TCP_TIMEWAIT_LEN) {
6805 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6806 		} else if (th->fin || sock_owned_by_user(sk)) {
6807 			/* Bad case. We could lose such FIN otherwise.
6808 			 * It is not a big problem, but it looks confusing
6809 			 * and not so rare event. We still can lose it now,
6810 			 * if it spins in bh_lock_sock(), but it is really
6811 			 * marginal case.
6812 			 */
6813 			inet_csk_reset_keepalive_timer(sk, tmo);
6814 		} else {
6815 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6816 			goto consume;
6817 		}
6818 		break;
6819 	}
6820 
6821 	case TCP_CLOSING:
6822 		if (tp->snd_una == tp->write_seq) {
6823 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6824 			goto consume;
6825 		}
6826 		break;
6827 
6828 	case TCP_LAST_ACK:
6829 		if (tp->snd_una == tp->write_seq) {
6830 			tcp_update_metrics(sk);
6831 			tcp_done(sk);
6832 			goto consume;
6833 		}
6834 		break;
6835 	}
6836 
6837 	/* step 6: check the URG bit */
6838 	tcp_urg(sk, skb, th);
6839 
6840 	/* step 7: process the segment text */
6841 	switch (sk->sk_state) {
6842 	case TCP_CLOSE_WAIT:
6843 	case TCP_CLOSING:
6844 	case TCP_LAST_ACK:
6845 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6846 			/* If a subflow has been reset, the packet should not
6847 			 * continue to be processed, drop the packet.
6848 			 */
6849 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6850 				goto discard;
6851 			break;
6852 		}
6853 		fallthrough;
6854 	case TCP_FIN_WAIT1:
6855 	case TCP_FIN_WAIT2:
6856 		/* RFC 793 says to queue data in these states,
6857 		 * RFC 1122 says we MUST send a reset.
6858 		 * BSD 4.4 also does reset.
6859 		 */
6860 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6861 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6862 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6863 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6864 				tcp_reset(sk, skb);
6865 				return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6866 			}
6867 		}
6868 		fallthrough;
6869 	case TCP_ESTABLISHED:
6870 		tcp_data_queue(sk, skb);
6871 		queued = 1;
6872 		break;
6873 	}
6874 
6875 	/* tcp_data could move socket to TIME-WAIT */
6876 	if (sk->sk_state != TCP_CLOSE) {
6877 		tcp_data_snd_check(sk);
6878 		tcp_ack_snd_check(sk);
6879 	}
6880 
6881 	if (!queued) {
6882 discard:
6883 		tcp_drop_reason(sk, skb, reason);
6884 	}
6885 	return 0;
6886 
6887 consume:
6888 	__kfree_skb(skb);
6889 	return 0;
6890 }
6891 EXPORT_SYMBOL(tcp_rcv_state_process);
6892 
6893 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6894 {
6895 	struct inet_request_sock *ireq = inet_rsk(req);
6896 
6897 	if (family == AF_INET)
6898 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6899 				    &ireq->ir_rmt_addr, port);
6900 #if IS_ENABLED(CONFIG_IPV6)
6901 	else if (family == AF_INET6)
6902 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6903 				    &ireq->ir_v6_rmt_addr, port);
6904 #endif
6905 }
6906 
6907 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6908  *
6909  * If we receive a SYN packet with these bits set, it means a
6910  * network is playing bad games with TOS bits. In order to
6911  * avoid possible false congestion notifications, we disable
6912  * TCP ECN negotiation.
6913  *
6914  * Exception: tcp_ca wants ECN. This is required for DCTCP
6915  * congestion control: Linux DCTCP asserts ECT on all packets,
6916  * including SYN, which is most optimal solution; however,
6917  * others, such as FreeBSD do not.
6918  *
6919  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6920  * set, indicating the use of a future TCP extension (such as AccECN). See
6921  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6922  * extensions.
6923  */
6924 static void tcp_ecn_create_request(struct request_sock *req,
6925 				   const struct sk_buff *skb,
6926 				   const struct sock *listen_sk,
6927 				   const struct dst_entry *dst)
6928 {
6929 	const struct tcphdr *th = tcp_hdr(skb);
6930 	const struct net *net = sock_net(listen_sk);
6931 	bool th_ecn = th->ece && th->cwr;
6932 	bool ect, ecn_ok;
6933 	u32 ecn_ok_dst;
6934 
6935 	if (!th_ecn)
6936 		return;
6937 
6938 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6939 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6940 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6941 
6942 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6943 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6944 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6945 		inet_rsk(req)->ecn_ok = 1;
6946 }
6947 
6948 static void tcp_openreq_init(struct request_sock *req,
6949 			     const struct tcp_options_received *rx_opt,
6950 			     struct sk_buff *skb, const struct sock *sk)
6951 {
6952 	struct inet_request_sock *ireq = inet_rsk(req);
6953 
6954 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6955 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6956 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6957 	tcp_rsk(req)->snt_synack = 0;
6958 	tcp_rsk(req)->last_oow_ack_time = 0;
6959 	req->mss = rx_opt->mss_clamp;
6960 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6961 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6962 	ireq->sack_ok = rx_opt->sack_ok;
6963 	ireq->snd_wscale = rx_opt->snd_wscale;
6964 	ireq->wscale_ok = rx_opt->wscale_ok;
6965 	ireq->acked = 0;
6966 	ireq->ecn_ok = 0;
6967 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6968 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6969 	ireq->ir_mark = inet_request_mark(sk, skb);
6970 #if IS_ENABLED(CONFIG_SMC)
6971 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6972 			tcp_sk(sk)->smc_hs_congested(sk));
6973 #endif
6974 }
6975 
6976 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6977 				      struct sock *sk_listener,
6978 				      bool attach_listener)
6979 {
6980 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6981 					       attach_listener);
6982 
6983 	if (req) {
6984 		struct inet_request_sock *ireq = inet_rsk(req);
6985 
6986 		ireq->ireq_opt = NULL;
6987 #if IS_ENABLED(CONFIG_IPV6)
6988 		ireq->pktopts = NULL;
6989 #endif
6990 		atomic64_set(&ireq->ir_cookie, 0);
6991 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6992 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6993 		ireq->ireq_family = sk_listener->sk_family;
6994 		req->timeout = TCP_TIMEOUT_INIT;
6995 	}
6996 
6997 	return req;
6998 }
6999 EXPORT_SYMBOL(inet_reqsk_alloc);
7000 
7001 /*
7002  * Return true if a syncookie should be sent
7003  */
7004 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
7005 {
7006 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7007 	const char *msg = "Dropping request";
7008 	struct net *net = sock_net(sk);
7009 	bool want_cookie = false;
7010 	u8 syncookies;
7011 
7012 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7013 
7014 #ifdef CONFIG_SYN_COOKIES
7015 	if (syncookies) {
7016 		msg = "Sending cookies";
7017 		want_cookie = true;
7018 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7019 	} else
7020 #endif
7021 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7022 
7023 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7024 	    xchg(&queue->synflood_warned, 1) == 0) {
7025 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7026 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7027 					proto, inet6_rcv_saddr(sk),
7028 					sk->sk_num, msg);
7029 		} else {
7030 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7031 					proto, &sk->sk_rcv_saddr,
7032 					sk->sk_num, msg);
7033 		}
7034 	}
7035 
7036 	return want_cookie;
7037 }
7038 
7039 static void tcp_reqsk_record_syn(const struct sock *sk,
7040 				 struct request_sock *req,
7041 				 const struct sk_buff *skb)
7042 {
7043 	if (tcp_sk(sk)->save_syn) {
7044 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7045 		struct saved_syn *saved_syn;
7046 		u32 mac_hdrlen;
7047 		void *base;
7048 
7049 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7050 			base = skb_mac_header(skb);
7051 			mac_hdrlen = skb_mac_header_len(skb);
7052 			len += mac_hdrlen;
7053 		} else {
7054 			base = skb_network_header(skb);
7055 			mac_hdrlen = 0;
7056 		}
7057 
7058 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7059 				    GFP_ATOMIC);
7060 		if (saved_syn) {
7061 			saved_syn->mac_hdrlen = mac_hdrlen;
7062 			saved_syn->network_hdrlen = skb_network_header_len(skb);
7063 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7064 			memcpy(saved_syn->data, base, len);
7065 			req->saved_syn = saved_syn;
7066 		}
7067 	}
7068 }
7069 
7070 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7071  * used for SYN cookie generation.
7072  */
7073 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7074 			  const struct tcp_request_sock_ops *af_ops,
7075 			  struct sock *sk, struct tcphdr *th)
7076 {
7077 	struct tcp_sock *tp = tcp_sk(sk);
7078 	u16 mss;
7079 
7080 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7081 	    !inet_csk_reqsk_queue_is_full(sk))
7082 		return 0;
7083 
7084 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7085 		return 0;
7086 
7087 	if (sk_acceptq_is_full(sk)) {
7088 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7089 		return 0;
7090 	}
7091 
7092 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7093 	if (!mss)
7094 		mss = af_ops->mss_clamp;
7095 
7096 	return mss;
7097 }
7098 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7099 
7100 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7101 		     const struct tcp_request_sock_ops *af_ops,
7102 		     struct sock *sk, struct sk_buff *skb)
7103 {
7104 	struct tcp_fastopen_cookie foc = { .len = -1 };
7105 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
7106 	struct tcp_options_received tmp_opt;
7107 	struct tcp_sock *tp = tcp_sk(sk);
7108 	struct net *net = sock_net(sk);
7109 	struct sock *fastopen_sk = NULL;
7110 	struct request_sock *req;
7111 	bool want_cookie = false;
7112 	struct dst_entry *dst;
7113 	struct flowi fl;
7114 	u8 syncookies;
7115 
7116 #ifdef CONFIG_TCP_AO
7117 	const struct tcp_ao_hdr *aoh;
7118 #endif
7119 
7120 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7121 
7122 	/* TW buckets are converted to open requests without
7123 	 * limitations, they conserve resources and peer is
7124 	 * evidently real one.
7125 	 */
7126 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
7127 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
7128 		if (!want_cookie)
7129 			goto drop;
7130 	}
7131 
7132 	if (sk_acceptq_is_full(sk)) {
7133 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7134 		goto drop;
7135 	}
7136 
7137 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7138 	if (!req)
7139 		goto drop;
7140 
7141 	req->syncookie = want_cookie;
7142 	tcp_rsk(req)->af_specific = af_ops;
7143 	tcp_rsk(req)->ts_off = 0;
7144 	tcp_rsk(req)->req_usec_ts = false;
7145 #if IS_ENABLED(CONFIG_MPTCP)
7146 	tcp_rsk(req)->is_mptcp = 0;
7147 #endif
7148 
7149 	tcp_clear_options(&tmp_opt);
7150 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7151 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7152 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7153 			  want_cookie ? NULL : &foc);
7154 
7155 	if (want_cookie && !tmp_opt.saw_tstamp)
7156 		tcp_clear_options(&tmp_opt);
7157 
7158 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7159 		tmp_opt.smc_ok = 0;
7160 
7161 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7162 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7163 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7164 
7165 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7166 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7167 
7168 	dst = af_ops->route_req(sk, skb, &fl, req);
7169 	if (!dst)
7170 		goto drop_and_free;
7171 
7172 	if (tmp_opt.tstamp_ok) {
7173 		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7174 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7175 	}
7176 	if (!want_cookie && !isn) {
7177 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7178 
7179 		/* Kill the following clause, if you dislike this way. */
7180 		if (!syncookies &&
7181 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7182 		     (max_syn_backlog >> 2)) &&
7183 		    !tcp_peer_is_proven(req, dst)) {
7184 			/* Without syncookies last quarter of
7185 			 * backlog is filled with destinations,
7186 			 * proven to be alive.
7187 			 * It means that we continue to communicate
7188 			 * to destinations, already remembered
7189 			 * to the moment of synflood.
7190 			 */
7191 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7192 				    rsk_ops->family);
7193 			goto drop_and_release;
7194 		}
7195 
7196 		isn = af_ops->init_seq(skb);
7197 	}
7198 
7199 	tcp_ecn_create_request(req, skb, sk, dst);
7200 
7201 	if (want_cookie) {
7202 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7203 		if (!tmp_opt.tstamp_ok)
7204 			inet_rsk(req)->ecn_ok = 0;
7205 	}
7206 
7207 #ifdef CONFIG_TCP_AO
7208 	if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7209 		goto drop_and_release; /* Invalid TCP options */
7210 	if (aoh) {
7211 		tcp_rsk(req)->used_tcp_ao = true;
7212 		tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7213 		tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7214 
7215 	} else {
7216 		tcp_rsk(req)->used_tcp_ao = false;
7217 	}
7218 #endif
7219 	tcp_rsk(req)->snt_isn = isn;
7220 	tcp_rsk(req)->txhash = net_tx_rndhash();
7221 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7222 	tcp_openreq_init_rwin(req, sk, dst);
7223 	sk_rx_queue_set(req_to_sk(req), skb);
7224 	if (!want_cookie) {
7225 		tcp_reqsk_record_syn(sk, req, skb);
7226 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7227 	}
7228 	if (fastopen_sk) {
7229 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7230 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7231 		/* Add the child socket directly into the accept queue */
7232 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7233 			reqsk_fastopen_remove(fastopen_sk, req, false);
7234 			bh_unlock_sock(fastopen_sk);
7235 			sock_put(fastopen_sk);
7236 			goto drop_and_free;
7237 		}
7238 		sk->sk_data_ready(sk);
7239 		bh_unlock_sock(fastopen_sk);
7240 		sock_put(fastopen_sk);
7241 	} else {
7242 		tcp_rsk(req)->tfo_listener = false;
7243 		if (!want_cookie) {
7244 			req->timeout = tcp_timeout_init((struct sock *)req);
7245 			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7246 		}
7247 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7248 				    !want_cookie ? TCP_SYNACK_NORMAL :
7249 						   TCP_SYNACK_COOKIE,
7250 				    skb);
7251 		if (want_cookie) {
7252 			reqsk_free(req);
7253 			return 0;
7254 		}
7255 	}
7256 	reqsk_put(req);
7257 	return 0;
7258 
7259 drop_and_release:
7260 	dst_release(dst);
7261 drop_and_free:
7262 	__reqsk_free(req);
7263 drop:
7264 	tcp_listendrop(sk);
7265 	return 0;
7266 }
7267 EXPORT_SYMBOL(tcp_conn_request);
7268