xref: /linux/net/ipv4/tcp_input.c (revision 8a3c3a972741dec77220a19642bd3331551ad2d9)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90 
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93 
94 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
95 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
96 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
97 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
98 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
99 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
100 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
101 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
102 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112 
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114 
115 /* Adapt the MSS value used to make delayed ack decision to the
116  * real world.
117  */
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 				const struct sk_buff *skb)
120 {
121 	struct inet_connection_sock *icsk = inet_csk(sk);
122 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 	unsigned int len;
124 
125 	icsk->icsk_ack.last_seg_size = 0;
126 
127 	/* skb->len may jitter because of SACKs, even if peer
128 	 * sends good full-sized frames.
129 	 */
130 	len = skb_shinfo(skb)->gso_size ?: skb->len;
131 	if (len >= icsk->icsk_ack.rcv_mss) {
132 		icsk->icsk_ack.rcv_mss = len;
133 	} else {
134 		/* Otherwise, we make more careful check taking into account,
135 		 * that SACKs block is variable.
136 		 *
137 		 * "len" is invariant segment length, including TCP header.
138 		 */
139 		len += skb->data - skb->h.raw;
140 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 		    /* If PSH is not set, packet should be
142 		     * full sized, provided peer TCP is not badly broken.
143 		     * This observation (if it is correct 8)) allows
144 		     * to handle super-low mtu links fairly.
145 		     */
146 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 			/* Subtract also invariant (if peer is RFC compliant),
149 			 * tcp header plus fixed timestamp option length.
150 			 * Resulting "len" is MSS free of SACK jitter.
151 			 */
152 			len -= tcp_sk(sk)->tcp_header_len;
153 			icsk->icsk_ack.last_seg_size = len;
154 			if (len == lss) {
155 				icsk->icsk_ack.rcv_mss = len;
156 				return;
157 			}
158 		}
159 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
160 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
161 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
162 	}
163 }
164 
165 static void tcp_incr_quickack(struct sock *sk)
166 {
167 	struct inet_connection_sock *icsk = inet_csk(sk);
168 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
169 
170 	if (quickacks==0)
171 		quickacks=2;
172 	if (quickacks > icsk->icsk_ack.quick)
173 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
174 }
175 
176 void tcp_enter_quickack_mode(struct sock *sk)
177 {
178 	struct inet_connection_sock *icsk = inet_csk(sk);
179 	tcp_incr_quickack(sk);
180 	icsk->icsk_ack.pingpong = 0;
181 	icsk->icsk_ack.ato = TCP_ATO_MIN;
182 }
183 
184 /* Send ACKs quickly, if "quick" count is not exhausted
185  * and the session is not interactive.
186  */
187 
188 static inline int tcp_in_quickack_mode(const struct sock *sk)
189 {
190 	const struct inet_connection_sock *icsk = inet_csk(sk);
191 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
192 }
193 
194 /* Buffer size and advertised window tuning.
195  *
196  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197  */
198 
199 static void tcp_fixup_sndbuf(struct sock *sk)
200 {
201 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
202 		     sizeof(struct sk_buff);
203 
204 	if (sk->sk_sndbuf < 3 * sndmem)
205 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206 }
207 
208 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209  *
210  * All tcp_full_space() is split to two parts: "network" buffer, allocated
211  * forward and advertised in receiver window (tp->rcv_wnd) and
212  * "application buffer", required to isolate scheduling/application
213  * latencies from network.
214  * window_clamp is maximal advertised window. It can be less than
215  * tcp_full_space(), in this case tcp_full_space() - window_clamp
216  * is reserved for "application" buffer. The less window_clamp is
217  * the smoother our behaviour from viewpoint of network, but the lower
218  * throughput and the higher sensitivity of the connection to losses. 8)
219  *
220  * rcv_ssthresh is more strict window_clamp used at "slow start"
221  * phase to predict further behaviour of this connection.
222  * It is used for two goals:
223  * - to enforce header prediction at sender, even when application
224  *   requires some significant "application buffer". It is check #1.
225  * - to prevent pruning of receive queue because of misprediction
226  *   of receiver window. Check #2.
227  *
228  * The scheme does not work when sender sends good segments opening
229  * window and then starts to feed us spaghetti. But it should work
230  * in common situations. Otherwise, we have to rely on queue collapsing.
231  */
232 
233 /* Slow part of check#2. */
234 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
235 			     const struct sk_buff *skb)
236 {
237 	/* Optimize this! */
238 	int truesize = tcp_win_from_space(skb->truesize)/2;
239 	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
240 
241 	while (tp->rcv_ssthresh <= window) {
242 		if (truesize <= skb->len)
243 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
244 
245 		truesize >>= 1;
246 		window >>= 1;
247 	}
248 	return 0;
249 }
250 
251 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
252 			    struct sk_buff *skb)
253 {
254 	/* Check #1 */
255 	if (tp->rcv_ssthresh < tp->window_clamp &&
256 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
257 	    !tcp_memory_pressure) {
258 		int incr;
259 
260 		/* Check #2. Increase window, if skb with such overhead
261 		 * will fit to rcvbuf in future.
262 		 */
263 		if (tcp_win_from_space(skb->truesize) <= skb->len)
264 			incr = 2*tp->advmss;
265 		else
266 			incr = __tcp_grow_window(sk, tp, skb);
267 
268 		if (incr) {
269 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
270 			inet_csk(sk)->icsk_ack.quick |= 1;
271 		}
272 	}
273 }
274 
275 /* 3. Tuning rcvbuf, when connection enters established state. */
276 
277 static void tcp_fixup_rcvbuf(struct sock *sk)
278 {
279 	struct tcp_sock *tp = tcp_sk(sk);
280 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
281 
282 	/* Try to select rcvbuf so that 4 mss-sized segments
283 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
284 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
285 	 */
286 	while (tcp_win_from_space(rcvmem) < tp->advmss)
287 		rcvmem += 128;
288 	if (sk->sk_rcvbuf < 4 * rcvmem)
289 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290 }
291 
292 /* 4. Try to fixup all. It is made immediately after connection enters
293  *    established state.
294  */
295 static void tcp_init_buffer_space(struct sock *sk)
296 {
297 	struct tcp_sock *tp = tcp_sk(sk);
298 	int maxwin;
299 
300 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
301 		tcp_fixup_rcvbuf(sk);
302 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
303 		tcp_fixup_sndbuf(sk);
304 
305 	tp->rcvq_space.space = tp->rcv_wnd;
306 
307 	maxwin = tcp_full_space(sk);
308 
309 	if (tp->window_clamp >= maxwin) {
310 		tp->window_clamp = maxwin;
311 
312 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
313 			tp->window_clamp = max(maxwin -
314 					       (maxwin >> sysctl_tcp_app_win),
315 					       4 * tp->advmss);
316 	}
317 
318 	/* Force reservation of one segment. */
319 	if (sysctl_tcp_app_win &&
320 	    tp->window_clamp > 2 * tp->advmss &&
321 	    tp->window_clamp + tp->advmss > maxwin)
322 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
323 
324 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
325 	tp->snd_cwnd_stamp = tcp_time_stamp;
326 }
327 
328 /* 5. Recalculate window clamp after socket hit its memory bounds. */
329 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
330 {
331 	struct inet_connection_sock *icsk = inet_csk(sk);
332 
333 	icsk->icsk_ack.quick = 0;
334 
335 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
336 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
337 	    !tcp_memory_pressure &&
338 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
339 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
340 				    sysctl_tcp_rmem[2]);
341 	}
342 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
343 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
344 }
345 
346 
347 /* Initialize RCV_MSS value.
348  * RCV_MSS is an our guess about MSS used by the peer.
349  * We haven't any direct information about the MSS.
350  * It's better to underestimate the RCV_MSS rather than overestimate.
351  * Overestimations make us ACKing less frequently than needed.
352  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353  */
354 void tcp_initialize_rcv_mss(struct sock *sk)
355 {
356 	struct tcp_sock *tp = tcp_sk(sk);
357 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
358 
359 	hint = min(hint, tp->rcv_wnd/2);
360 	hint = min(hint, TCP_MIN_RCVMSS);
361 	hint = max(hint, TCP_MIN_MSS);
362 
363 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
364 }
365 
366 /* Receiver "autotuning" code.
367  *
368  * The algorithm for RTT estimation w/o timestamps is based on
369  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
370  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371  *
372  * More detail on this code can be found at
373  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
374  * though this reference is out of date.  A new paper
375  * is pending.
376  */
377 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
378 {
379 	u32 new_sample = tp->rcv_rtt_est.rtt;
380 	long m = sample;
381 
382 	if (m == 0)
383 		m = 1;
384 
385 	if (new_sample != 0) {
386 		/* If we sample in larger samples in the non-timestamp
387 		 * case, we could grossly overestimate the RTT especially
388 		 * with chatty applications or bulk transfer apps which
389 		 * are stalled on filesystem I/O.
390 		 *
391 		 * Also, since we are only going for a minimum in the
392 		 * non-timestamp case, we do not smooth things out
393 		 * else with timestamps disabled convergence takes too
394 		 * long.
395 		 */
396 		if (!win_dep) {
397 			m -= (new_sample >> 3);
398 			new_sample += m;
399 		} else if (m < new_sample)
400 			new_sample = m << 3;
401 	} else {
402 		/* No previous measure. */
403 		new_sample = m << 3;
404 	}
405 
406 	if (tp->rcv_rtt_est.rtt != new_sample)
407 		tp->rcv_rtt_est.rtt = new_sample;
408 }
409 
410 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
411 {
412 	if (tp->rcv_rtt_est.time == 0)
413 		goto new_measure;
414 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
415 		return;
416 	tcp_rcv_rtt_update(tp,
417 			   jiffies - tp->rcv_rtt_est.time,
418 			   1);
419 
420 new_measure:
421 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
422 	tp->rcv_rtt_est.time = tcp_time_stamp;
423 }
424 
425 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
426 {
427 	struct tcp_sock *tp = tcp_sk(sk);
428 	if (tp->rx_opt.rcv_tsecr &&
429 	    (TCP_SKB_CB(skb)->end_seq -
430 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
431 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
432 }
433 
434 /*
435  * This function should be called every time data is copied to user space.
436  * It calculates the appropriate TCP receive buffer space.
437  */
438 void tcp_rcv_space_adjust(struct sock *sk)
439 {
440 	struct tcp_sock *tp = tcp_sk(sk);
441 	int time;
442 	int space;
443 
444 	if (tp->rcvq_space.time == 0)
445 		goto new_measure;
446 
447 	time = tcp_time_stamp - tp->rcvq_space.time;
448 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
449 	    tp->rcv_rtt_est.rtt == 0)
450 		return;
451 
452 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
453 
454 	space = max(tp->rcvq_space.space, space);
455 
456 	if (tp->rcvq_space.space != space) {
457 		int rcvmem;
458 
459 		tp->rcvq_space.space = space;
460 
461 		if (sysctl_tcp_moderate_rcvbuf &&
462 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
463 			int new_clamp = space;
464 
465 			/* Receive space grows, normalize in order to
466 			 * take into account packet headers and sk_buff
467 			 * structure overhead.
468 			 */
469 			space /= tp->advmss;
470 			if (!space)
471 				space = 1;
472 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
473 				  16 + sizeof(struct sk_buff));
474 			while (tcp_win_from_space(rcvmem) < tp->advmss)
475 				rcvmem += 128;
476 			space *= rcvmem;
477 			space = min(space, sysctl_tcp_rmem[2]);
478 			if (space > sk->sk_rcvbuf) {
479 				sk->sk_rcvbuf = space;
480 
481 				/* Make the window clamp follow along.  */
482 				tp->window_clamp = new_clamp;
483 			}
484 		}
485 	}
486 
487 new_measure:
488 	tp->rcvq_space.seq = tp->copied_seq;
489 	tp->rcvq_space.time = tcp_time_stamp;
490 }
491 
492 /* There is something which you must keep in mind when you analyze the
493  * behavior of the tp->ato delayed ack timeout interval.  When a
494  * connection starts up, we want to ack as quickly as possible.  The
495  * problem is that "good" TCP's do slow start at the beginning of data
496  * transmission.  The means that until we send the first few ACK's the
497  * sender will sit on his end and only queue most of his data, because
498  * he can only send snd_cwnd unacked packets at any given time.  For
499  * each ACK we send, he increments snd_cwnd and transmits more of his
500  * queue.  -DaveM
501  */
502 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
503 {
504 	struct inet_connection_sock *icsk = inet_csk(sk);
505 	u32 now;
506 
507 	inet_csk_schedule_ack(sk);
508 
509 	tcp_measure_rcv_mss(sk, skb);
510 
511 	tcp_rcv_rtt_measure(tp);
512 
513 	now = tcp_time_stamp;
514 
515 	if (!icsk->icsk_ack.ato) {
516 		/* The _first_ data packet received, initialize
517 		 * delayed ACK engine.
518 		 */
519 		tcp_incr_quickack(sk);
520 		icsk->icsk_ack.ato = TCP_ATO_MIN;
521 	} else {
522 		int m = now - icsk->icsk_ack.lrcvtime;
523 
524 		if (m <= TCP_ATO_MIN/2) {
525 			/* The fastest case is the first. */
526 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
527 		} else if (m < icsk->icsk_ack.ato) {
528 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
529 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
530 				icsk->icsk_ack.ato = icsk->icsk_rto;
531 		} else if (m > icsk->icsk_rto) {
532 			/* Too long gap. Apparently sender failed to
533 			 * restart window, so that we send ACKs quickly.
534 			 */
535 			tcp_incr_quickack(sk);
536 			sk_stream_mem_reclaim(sk);
537 		}
538 	}
539 	icsk->icsk_ack.lrcvtime = now;
540 
541 	TCP_ECN_check_ce(tp, skb);
542 
543 	if (skb->len >= 128)
544 		tcp_grow_window(sk, tp, skb);
545 }
546 
547 /* Called to compute a smoothed rtt estimate. The data fed to this
548  * routine either comes from timestamps, or from segments that were
549  * known _not_ to have been retransmitted [see Karn/Partridge
550  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
551  * piece by Van Jacobson.
552  * NOTE: the next three routines used to be one big routine.
553  * To save cycles in the RFC 1323 implementation it was better to break
554  * it up into three procedures. -- erics
555  */
556 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
557 {
558 	struct tcp_sock *tp = tcp_sk(sk);
559 	long m = mrtt; /* RTT */
560 
561 	/*	The following amusing code comes from Jacobson's
562 	 *	article in SIGCOMM '88.  Note that rtt and mdev
563 	 *	are scaled versions of rtt and mean deviation.
564 	 *	This is designed to be as fast as possible
565 	 *	m stands for "measurement".
566 	 *
567 	 *	On a 1990 paper the rto value is changed to:
568 	 *	RTO = rtt + 4 * mdev
569 	 *
570 	 * Funny. This algorithm seems to be very broken.
571 	 * These formulae increase RTO, when it should be decreased, increase
572 	 * too slowly, when it should be increased quickly, decrease too quickly
573 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
574 	 * does not matter how to _calculate_ it. Seems, it was trap
575 	 * that VJ failed to avoid. 8)
576 	 */
577 	if(m == 0)
578 		m = 1;
579 	if (tp->srtt != 0) {
580 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
581 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
582 		if (m < 0) {
583 			m = -m;		/* m is now abs(error) */
584 			m -= (tp->mdev >> 2);   /* similar update on mdev */
585 			/* This is similar to one of Eifel findings.
586 			 * Eifel blocks mdev updates when rtt decreases.
587 			 * This solution is a bit different: we use finer gain
588 			 * for mdev in this case (alpha*beta).
589 			 * Like Eifel it also prevents growth of rto,
590 			 * but also it limits too fast rto decreases,
591 			 * happening in pure Eifel.
592 			 */
593 			if (m > 0)
594 				m >>= 3;
595 		} else {
596 			m -= (tp->mdev >> 2);   /* similar update on mdev */
597 		}
598 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
599 		if (tp->mdev > tp->mdev_max) {
600 			tp->mdev_max = tp->mdev;
601 			if (tp->mdev_max > tp->rttvar)
602 				tp->rttvar = tp->mdev_max;
603 		}
604 		if (after(tp->snd_una, tp->rtt_seq)) {
605 			if (tp->mdev_max < tp->rttvar)
606 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
607 			tp->rtt_seq = tp->snd_nxt;
608 			tp->mdev_max = TCP_RTO_MIN;
609 		}
610 	} else {
611 		/* no previous measure. */
612 		tp->srtt = m<<3;	/* take the measured time to be rtt */
613 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
614 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
615 		tp->rtt_seq = tp->snd_nxt;
616 	}
617 }
618 
619 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
620  * routine referred to above.
621  */
622 static inline void tcp_set_rto(struct sock *sk)
623 {
624 	const struct tcp_sock *tp = tcp_sk(sk);
625 	/* Old crap is replaced with new one. 8)
626 	 *
627 	 * More seriously:
628 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
629 	 *    It cannot be less due to utterly erratic ACK generation made
630 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
631 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
632 	 *    is invisible. Actually, Linux-2.4 also generates erratic
633 	 *    ACKs in some circumstances.
634 	 */
635 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
636 
637 	/* 2. Fixups made earlier cannot be right.
638 	 *    If we do not estimate RTO correctly without them,
639 	 *    all the algo is pure shit and should be replaced
640 	 *    with correct one. It is exactly, which we pretend to do.
641 	 */
642 }
643 
644 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
645  * guarantees that rto is higher.
646  */
647 static inline void tcp_bound_rto(struct sock *sk)
648 {
649 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
650 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
651 }
652 
653 /* Save metrics learned by this TCP session.
654    This function is called only, when TCP finishes successfully
655    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656  */
657 void tcp_update_metrics(struct sock *sk)
658 {
659 	struct tcp_sock *tp = tcp_sk(sk);
660 	struct dst_entry *dst = __sk_dst_get(sk);
661 
662 	if (sysctl_tcp_nometrics_save)
663 		return;
664 
665 	dst_confirm(dst);
666 
667 	if (dst && (dst->flags&DST_HOST)) {
668 		const struct inet_connection_sock *icsk = inet_csk(sk);
669 		int m;
670 
671 		if (icsk->icsk_backoff || !tp->srtt) {
672 			/* This session failed to estimate rtt. Why?
673 			 * Probably, no packets returned in time.
674 			 * Reset our results.
675 			 */
676 			if (!(dst_metric_locked(dst, RTAX_RTT)))
677 				dst->metrics[RTAX_RTT-1] = 0;
678 			return;
679 		}
680 
681 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
682 
683 		/* If newly calculated rtt larger than stored one,
684 		 * store new one. Otherwise, use EWMA. Remember,
685 		 * rtt overestimation is always better than underestimation.
686 		 */
687 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
688 			if (m <= 0)
689 				dst->metrics[RTAX_RTT-1] = tp->srtt;
690 			else
691 				dst->metrics[RTAX_RTT-1] -= (m>>3);
692 		}
693 
694 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
695 			if (m < 0)
696 				m = -m;
697 
698 			/* Scale deviation to rttvar fixed point */
699 			m >>= 1;
700 			if (m < tp->mdev)
701 				m = tp->mdev;
702 
703 			if (m >= dst_metric(dst, RTAX_RTTVAR))
704 				dst->metrics[RTAX_RTTVAR-1] = m;
705 			else
706 				dst->metrics[RTAX_RTTVAR-1] -=
707 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708 		}
709 
710 		if (tp->snd_ssthresh >= 0xFFFF) {
711 			/* Slow start still did not finish. */
712 			if (dst_metric(dst, RTAX_SSTHRESH) &&
713 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
714 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
715 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
716 			if (!dst_metric_locked(dst, RTAX_CWND) &&
717 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
718 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
719 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
720 			   icsk->icsk_ca_state == TCP_CA_Open) {
721 			/* Cong. avoidance phase, cwnd is reliable. */
722 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
723 				dst->metrics[RTAX_SSTHRESH-1] =
724 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
725 			if (!dst_metric_locked(dst, RTAX_CWND))
726 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
727 		} else {
728 			/* Else slow start did not finish, cwnd is non-sense,
729 			   ssthresh may be also invalid.
730 			 */
731 			if (!dst_metric_locked(dst, RTAX_CWND))
732 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
733 			if (dst->metrics[RTAX_SSTHRESH-1] &&
734 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
736 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737 		}
738 
739 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
740 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
741 			    tp->reordering != sysctl_tcp_reordering)
742 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
743 		}
744 	}
745 }
746 
747 /* Numbers are taken from RFC2414.  */
748 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
749 {
750 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
751 
752 	if (!cwnd) {
753 		if (tp->mss_cache > 1460)
754 			cwnd = 2;
755 		else
756 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
757 	}
758 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759 }
760 
761 /* Set slow start threshold and cwnd not falling to slow start */
762 void tcp_enter_cwr(struct sock *sk)
763 {
764 	struct tcp_sock *tp = tcp_sk(sk);
765 
766 	tp->prior_ssthresh = 0;
767 	tp->bytes_acked = 0;
768 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
769 		tp->undo_marker = 0;
770 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
771 		tp->snd_cwnd = min(tp->snd_cwnd,
772 				   tcp_packets_in_flight(tp) + 1U);
773 		tp->snd_cwnd_cnt = 0;
774 		tp->high_seq = tp->snd_nxt;
775 		tp->snd_cwnd_stamp = tcp_time_stamp;
776 		TCP_ECN_queue_cwr(tp);
777 
778 		tcp_set_ca_state(sk, TCP_CA_CWR);
779 	}
780 }
781 
782 /* Initialize metrics on socket. */
783 
784 static void tcp_init_metrics(struct sock *sk)
785 {
786 	struct tcp_sock *tp = tcp_sk(sk);
787 	struct dst_entry *dst = __sk_dst_get(sk);
788 
789 	if (dst == NULL)
790 		goto reset;
791 
792 	dst_confirm(dst);
793 
794 	if (dst_metric_locked(dst, RTAX_CWND))
795 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
796 	if (dst_metric(dst, RTAX_SSTHRESH)) {
797 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
798 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
799 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
800 	}
801 	if (dst_metric(dst, RTAX_REORDERING) &&
802 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
803 		tp->rx_opt.sack_ok &= ~2;
804 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
805 	}
806 
807 	if (dst_metric(dst, RTAX_RTT) == 0)
808 		goto reset;
809 
810 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
811 		goto reset;
812 
813 	/* Initial rtt is determined from SYN,SYN-ACK.
814 	 * The segment is small and rtt may appear much
815 	 * less than real one. Use per-dst memory
816 	 * to make it more realistic.
817 	 *
818 	 * A bit of theory. RTT is time passed after "normal" sized packet
819 	 * is sent until it is ACKed. In normal circumstances sending small
820 	 * packets force peer to delay ACKs and calculation is correct too.
821 	 * The algorithm is adaptive and, provided we follow specs, it
822 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
823 	 * tricks sort of "quick acks" for time long enough to decrease RTT
824 	 * to low value, and then abruptly stops to do it and starts to delay
825 	 * ACKs, wait for troubles.
826 	 */
827 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
828 		tp->srtt = dst_metric(dst, RTAX_RTT);
829 		tp->rtt_seq = tp->snd_nxt;
830 	}
831 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
832 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
833 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834 	}
835 	tcp_set_rto(sk);
836 	tcp_bound_rto(sk);
837 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
838 		goto reset;
839 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
840 	tp->snd_cwnd_stamp = tcp_time_stamp;
841 	return;
842 
843 reset:
844 	/* Play conservative. If timestamps are not
845 	 * supported, TCP will fail to recalculate correct
846 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847 	 */
848 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
849 		tp->srtt = 0;
850 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
851 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
852 	}
853 }
854 
855 static void tcp_update_reordering(struct sock *sk, const int metric,
856 				  const int ts)
857 {
858 	struct tcp_sock *tp = tcp_sk(sk);
859 	if (metric > tp->reordering) {
860 		tp->reordering = min(TCP_MAX_REORDERING, metric);
861 
862 		/* This exciting event is worth to be remembered. 8) */
863 		if (ts)
864 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
865 		else if (IsReno(tp))
866 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
867 		else if (IsFack(tp))
868 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
869 		else
870 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
871 #if FASTRETRANS_DEBUG > 1
872 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
873 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874 		       tp->reordering,
875 		       tp->fackets_out,
876 		       tp->sacked_out,
877 		       tp->undo_marker ? tp->undo_retrans : 0);
878 #endif
879 		/* Disable FACK yet. */
880 		tp->rx_opt.sack_ok &= ~2;
881 	}
882 }
883 
884 /* This procedure tags the retransmission queue when SACKs arrive.
885  *
886  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
887  * Packets in queue with these bits set are counted in variables
888  * sacked_out, retrans_out and lost_out, correspondingly.
889  *
890  * Valid combinations are:
891  * Tag  InFlight	Description
892  * 0	1		- orig segment is in flight.
893  * S	0		- nothing flies, orig reached receiver.
894  * L	0		- nothing flies, orig lost by net.
895  * R	2		- both orig and retransmit are in flight.
896  * L|R	1		- orig is lost, retransmit is in flight.
897  * S|R  1		- orig reached receiver, retrans is still in flight.
898  * (L|S|R is logically valid, it could occur when L|R is sacked,
899  *  but it is equivalent to plain S and code short-curcuits it to S.
900  *  L|S is logically invalid, it would mean -1 packet in flight 8))
901  *
902  * These 6 states form finite state machine, controlled by the following events:
903  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
904  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
905  * 3. Loss detection event of one of three flavors:
906  *	A. Scoreboard estimator decided the packet is lost.
907  *	   A'. Reno "three dupacks" marks head of queue lost.
908  *	   A''. Its FACK modfication, head until snd.fack is lost.
909  *	B. SACK arrives sacking data transmitted after never retransmitted
910  *	   hole was sent out.
911  *	C. SACK arrives sacking SND.NXT at the moment, when the
912  *	   segment was retransmitted.
913  * 4. D-SACK added new rule: D-SACK changes any tag to S.
914  *
915  * It is pleasant to note, that state diagram turns out to be commutative,
916  * so that we are allowed not to be bothered by order of our actions,
917  * when multiple events arrive simultaneously. (see the function below).
918  *
919  * Reordering detection.
920  * --------------------
921  * Reordering metric is maximal distance, which a packet can be displaced
922  * in packet stream. With SACKs we can estimate it:
923  *
924  * 1. SACK fills old hole and the corresponding segment was not
925  *    ever retransmitted -> reordering. Alas, we cannot use it
926  *    when segment was retransmitted.
927  * 2. The last flaw is solved with D-SACK. D-SACK arrives
928  *    for retransmitted and already SACKed segment -> reordering..
929  * Both of these heuristics are not used in Loss state, when we cannot
930  * account for retransmits accurately.
931  */
932 static int
933 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
934 {
935 	const struct inet_connection_sock *icsk = inet_csk(sk);
936 	struct tcp_sock *tp = tcp_sk(sk);
937 	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
938 	struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
939 	struct sk_buff *cached_skb;
940 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
941 	int reord = tp->packets_out;
942 	int prior_fackets;
943 	u32 lost_retrans = 0;
944 	int flag = 0;
945 	int dup_sack = 0;
946 	int cached_fack_count;
947 	int i;
948 	int first_sack_index;
949 
950 	if (!tp->sacked_out)
951 		tp->fackets_out = 0;
952 	prior_fackets = tp->fackets_out;
953 
954 	/* Check for D-SACK. */
955 	if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
956 		dup_sack = 1;
957 		tp->rx_opt.sack_ok |= 4;
958 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
959 	} else if (num_sacks > 1 &&
960 			!after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
961 			!before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
962 		dup_sack = 1;
963 		tp->rx_opt.sack_ok |= 4;
964 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
965 	}
966 
967 	/* D-SACK for already forgotten data...
968 	 * Do dumb counting. */
969 	if (dup_sack &&
970 			!after(ntohl(sp[0].end_seq), prior_snd_una) &&
971 			after(ntohl(sp[0].end_seq), tp->undo_marker))
972 		tp->undo_retrans--;
973 
974 	/* Eliminate too old ACKs, but take into
975 	 * account more or less fresh ones, they can
976 	 * contain valid SACK info.
977 	 */
978 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
979 		return 0;
980 
981 	/* SACK fastpath:
982 	 * if the only SACK change is the increase of the end_seq of
983 	 * the first block then only apply that SACK block
984 	 * and use retrans queue hinting otherwise slowpath */
985 	flag = 1;
986 	for (i = 0; i < num_sacks; i++) {
987 		__be32 start_seq = sp[i].start_seq;
988 		__be32 end_seq = sp[i].end_seq;
989 
990 		if (i == 0) {
991 			if (tp->recv_sack_cache[i].start_seq != start_seq)
992 				flag = 0;
993 		} else {
994 			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
995 			    (tp->recv_sack_cache[i].end_seq != end_seq))
996 				flag = 0;
997 		}
998 		tp->recv_sack_cache[i].start_seq = start_seq;
999 		tp->recv_sack_cache[i].end_seq = end_seq;
1000 	}
1001 	/* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1002 	for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1003 		tp->recv_sack_cache[i].start_seq = 0;
1004 		tp->recv_sack_cache[i].end_seq = 0;
1005 	}
1006 
1007 	first_sack_index = 0;
1008 	if (flag)
1009 		num_sacks = 1;
1010 	else {
1011 		int j;
1012 		tp->fastpath_skb_hint = NULL;
1013 
1014 		/* order SACK blocks to allow in order walk of the retrans queue */
1015 		for (i = num_sacks-1; i > 0; i--) {
1016 			for (j = 0; j < i; j++){
1017 				if (after(ntohl(sp[j].start_seq),
1018 					  ntohl(sp[j+1].start_seq))){
1019 					struct tcp_sack_block_wire tmp;
1020 
1021 					tmp = sp[j];
1022 					sp[j] = sp[j+1];
1023 					sp[j+1] = tmp;
1024 
1025 					/* Track where the first SACK block goes to */
1026 					if (j == first_sack_index)
1027 						first_sack_index = j+1;
1028 				}
1029 
1030 			}
1031 		}
1032 	}
1033 
1034 	/* clear flag as used for different purpose in following code */
1035 	flag = 0;
1036 
1037 	/* Use SACK fastpath hint if valid */
1038 	cached_skb = tp->fastpath_skb_hint;
1039 	cached_fack_count = tp->fastpath_cnt_hint;
1040 	if (!cached_skb) {
1041 		cached_skb = sk->sk_write_queue.next;
1042 		cached_fack_count = 0;
1043 	}
1044 
1045 	for (i=0; i<num_sacks; i++, sp++) {
1046 		struct sk_buff *skb;
1047 		__u32 start_seq = ntohl(sp->start_seq);
1048 		__u32 end_seq = ntohl(sp->end_seq);
1049 		int fack_count;
1050 
1051 		skb = cached_skb;
1052 		fack_count = cached_fack_count;
1053 
1054 		/* Event "B" in the comment above. */
1055 		if (after(end_seq, tp->high_seq))
1056 			flag |= FLAG_DATA_LOST;
1057 
1058 		sk_stream_for_retrans_queue_from(skb, sk) {
1059 			int in_sack, pcount;
1060 			u8 sacked;
1061 
1062 			cached_skb = skb;
1063 			cached_fack_count = fack_count;
1064 			if (i == first_sack_index) {
1065 				tp->fastpath_skb_hint = skb;
1066 				tp->fastpath_cnt_hint = fack_count;
1067 			}
1068 
1069 			/* The retransmission queue is always in order, so
1070 			 * we can short-circuit the walk early.
1071 			 */
1072 			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1073 				break;
1074 
1075 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1076 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1077 
1078 			pcount = tcp_skb_pcount(skb);
1079 
1080 			if (pcount > 1 && !in_sack &&
1081 			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1082 				unsigned int pkt_len;
1083 
1084 				in_sack = !after(start_seq,
1085 						 TCP_SKB_CB(skb)->seq);
1086 
1087 				if (!in_sack)
1088 					pkt_len = (start_seq -
1089 						   TCP_SKB_CB(skb)->seq);
1090 				else
1091 					pkt_len = (end_seq -
1092 						   TCP_SKB_CB(skb)->seq);
1093 				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1094 					break;
1095 				pcount = tcp_skb_pcount(skb);
1096 			}
1097 
1098 			fack_count += pcount;
1099 
1100 			sacked = TCP_SKB_CB(skb)->sacked;
1101 
1102 			/* Account D-SACK for retransmitted packet. */
1103 			if ((dup_sack && in_sack) &&
1104 			    (sacked & TCPCB_RETRANS) &&
1105 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1106 				tp->undo_retrans--;
1107 
1108 			/* The frame is ACKed. */
1109 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1110 				if (sacked&TCPCB_RETRANS) {
1111 					if ((dup_sack && in_sack) &&
1112 					    (sacked&TCPCB_SACKED_ACKED))
1113 						reord = min(fack_count, reord);
1114 				} else {
1115 					/* If it was in a hole, we detected reordering. */
1116 					if (fack_count < prior_fackets &&
1117 					    !(sacked&TCPCB_SACKED_ACKED))
1118 						reord = min(fack_count, reord);
1119 				}
1120 
1121 				/* Nothing to do; acked frame is about to be dropped. */
1122 				continue;
1123 			}
1124 
1125 			if ((sacked&TCPCB_SACKED_RETRANS) &&
1126 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1127 			    (!lost_retrans || after(end_seq, lost_retrans)))
1128 				lost_retrans = end_seq;
1129 
1130 			if (!in_sack)
1131 				continue;
1132 
1133 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1134 				if (sacked & TCPCB_SACKED_RETRANS) {
1135 					/* If the segment is not tagged as lost,
1136 					 * we do not clear RETRANS, believing
1137 					 * that retransmission is still in flight.
1138 					 */
1139 					if (sacked & TCPCB_LOST) {
1140 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1141 						tp->lost_out -= tcp_skb_pcount(skb);
1142 						tp->retrans_out -= tcp_skb_pcount(skb);
1143 
1144 						/* clear lost hint */
1145 						tp->retransmit_skb_hint = NULL;
1146 					}
1147 				} else {
1148 					/* New sack for not retransmitted frame,
1149 					 * which was in hole. It is reordering.
1150 					 */
1151 					if (!(sacked & TCPCB_RETRANS) &&
1152 					    fack_count < prior_fackets)
1153 						reord = min(fack_count, reord);
1154 
1155 					if (sacked & TCPCB_LOST) {
1156 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1157 						tp->lost_out -= tcp_skb_pcount(skb);
1158 
1159 						/* clear lost hint */
1160 						tp->retransmit_skb_hint = NULL;
1161 					}
1162 				}
1163 
1164 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1165 				flag |= FLAG_DATA_SACKED;
1166 				tp->sacked_out += tcp_skb_pcount(skb);
1167 
1168 				if (fack_count > tp->fackets_out)
1169 					tp->fackets_out = fack_count;
1170 			} else {
1171 				if (dup_sack && (sacked&TCPCB_RETRANS))
1172 					reord = min(fack_count, reord);
1173 			}
1174 
1175 			/* D-SACK. We can detect redundant retransmission
1176 			 * in S|R and plain R frames and clear it.
1177 			 * undo_retrans is decreased above, L|R frames
1178 			 * are accounted above as well.
1179 			 */
1180 			if (dup_sack &&
1181 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1182 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1183 				tp->retrans_out -= tcp_skb_pcount(skb);
1184 				tp->retransmit_skb_hint = NULL;
1185 			}
1186 		}
1187 	}
1188 
1189 	/* Check for lost retransmit. This superb idea is
1190 	 * borrowed from "ratehalving". Event "C".
1191 	 * Later note: FACK people cheated me again 8),
1192 	 * we have to account for reordering! Ugly,
1193 	 * but should help.
1194 	 */
1195 	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1196 		struct sk_buff *skb;
1197 
1198 		sk_stream_for_retrans_queue(skb, sk) {
1199 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1200 				break;
1201 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1202 				continue;
1203 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1204 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1205 			    (IsFack(tp) ||
1206 			     !before(lost_retrans,
1207 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1208 				     tp->mss_cache))) {
1209 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1210 				tp->retrans_out -= tcp_skb_pcount(skb);
1211 
1212 				/* clear lost hint */
1213 				tp->retransmit_skb_hint = NULL;
1214 
1215 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1216 					tp->lost_out += tcp_skb_pcount(skb);
1217 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1218 					flag |= FLAG_DATA_SACKED;
1219 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1220 				}
1221 			}
1222 		}
1223 	}
1224 
1225 	tp->left_out = tp->sacked_out + tp->lost_out;
1226 
1227 	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1228 		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1229 
1230 #if FASTRETRANS_DEBUG > 0
1231 	BUG_TRAP((int)tp->sacked_out >= 0);
1232 	BUG_TRAP((int)tp->lost_out >= 0);
1233 	BUG_TRAP((int)tp->retrans_out >= 0);
1234 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1235 #endif
1236 	return flag;
1237 }
1238 
1239 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1240  * segments to see from the next ACKs whether any data was really missing.
1241  * If the RTO was spurious, new ACKs should arrive.
1242  */
1243 void tcp_enter_frto(struct sock *sk)
1244 {
1245 	const struct inet_connection_sock *icsk = inet_csk(sk);
1246 	struct tcp_sock *tp = tcp_sk(sk);
1247 	struct sk_buff *skb;
1248 
1249 	tp->frto_counter = 1;
1250 
1251 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1252             tp->snd_una == tp->high_seq ||
1253             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1254 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1255 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1256 		tcp_ca_event(sk, CA_EVENT_FRTO);
1257 	}
1258 
1259 	/* Have to clear retransmission markers here to keep the bookkeeping
1260 	 * in shape, even though we are not yet in Loss state.
1261 	 * If something was really lost, it is eventually caught up
1262 	 * in tcp_enter_frto_loss.
1263 	 */
1264 	tp->retrans_out = 0;
1265 	tp->undo_marker = tp->snd_una;
1266 	tp->undo_retrans = 0;
1267 
1268 	sk_stream_for_retrans_queue(skb, sk) {
1269 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1270 	}
1271 	tcp_sync_left_out(tp);
1272 
1273 	tcp_set_ca_state(sk, TCP_CA_Open);
1274 	tp->frto_highmark = tp->snd_nxt;
1275 }
1276 
1277 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1278  * which indicates that we should follow the traditional RTO recovery,
1279  * i.e. mark everything lost and do go-back-N retransmission.
1280  */
1281 static void tcp_enter_frto_loss(struct sock *sk)
1282 {
1283 	struct tcp_sock *tp = tcp_sk(sk);
1284 	struct sk_buff *skb;
1285 	int cnt = 0;
1286 
1287 	tp->sacked_out = 0;
1288 	tp->lost_out = 0;
1289 	tp->fackets_out = 0;
1290 
1291 	sk_stream_for_retrans_queue(skb, sk) {
1292 		cnt += tcp_skb_pcount(skb);
1293 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1294 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1295 
1296 			/* Do not mark those segments lost that were
1297 			 * forward transmitted after RTO
1298 			 */
1299 			if (!after(TCP_SKB_CB(skb)->end_seq,
1300 				   tp->frto_highmark)) {
1301 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1302 				tp->lost_out += tcp_skb_pcount(skb);
1303 			}
1304 		} else {
1305 			tp->sacked_out += tcp_skb_pcount(skb);
1306 			tp->fackets_out = cnt;
1307 		}
1308 	}
1309 	tcp_sync_left_out(tp);
1310 
1311 	tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1312 	tp->snd_cwnd_cnt = 0;
1313 	tp->snd_cwnd_stamp = tcp_time_stamp;
1314 	tp->undo_marker = 0;
1315 	tp->frto_counter = 0;
1316 
1317 	tp->reordering = min_t(unsigned int, tp->reordering,
1318 					     sysctl_tcp_reordering);
1319 	tcp_set_ca_state(sk, TCP_CA_Loss);
1320 	tp->high_seq = tp->frto_highmark;
1321 	TCP_ECN_queue_cwr(tp);
1322 
1323 	clear_all_retrans_hints(tp);
1324 }
1325 
1326 void tcp_clear_retrans(struct tcp_sock *tp)
1327 {
1328 	tp->left_out = 0;
1329 	tp->retrans_out = 0;
1330 
1331 	tp->fackets_out = 0;
1332 	tp->sacked_out = 0;
1333 	tp->lost_out = 0;
1334 
1335 	tp->undo_marker = 0;
1336 	tp->undo_retrans = 0;
1337 }
1338 
1339 /* Enter Loss state. If "how" is not zero, forget all SACK information
1340  * and reset tags completely, otherwise preserve SACKs. If receiver
1341  * dropped its ofo queue, we will know this due to reneging detection.
1342  */
1343 void tcp_enter_loss(struct sock *sk, int how)
1344 {
1345 	const struct inet_connection_sock *icsk = inet_csk(sk);
1346 	struct tcp_sock *tp = tcp_sk(sk);
1347 	struct sk_buff *skb;
1348 	int cnt = 0;
1349 
1350 	/* Reduce ssthresh if it has not yet been made inside this window. */
1351 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1352 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1353 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1354 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1355 		tcp_ca_event(sk, CA_EVENT_LOSS);
1356 	}
1357 	tp->snd_cwnd	   = 1;
1358 	tp->snd_cwnd_cnt   = 0;
1359 	tp->snd_cwnd_stamp = tcp_time_stamp;
1360 
1361 	tp->bytes_acked = 0;
1362 	tcp_clear_retrans(tp);
1363 
1364 	/* Push undo marker, if it was plain RTO and nothing
1365 	 * was retransmitted. */
1366 	if (!how)
1367 		tp->undo_marker = tp->snd_una;
1368 
1369 	sk_stream_for_retrans_queue(skb, sk) {
1370 		cnt += tcp_skb_pcount(skb);
1371 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1372 			tp->undo_marker = 0;
1373 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1374 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1375 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1376 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1377 			tp->lost_out += tcp_skb_pcount(skb);
1378 		} else {
1379 			tp->sacked_out += tcp_skb_pcount(skb);
1380 			tp->fackets_out = cnt;
1381 		}
1382 	}
1383 	tcp_sync_left_out(tp);
1384 
1385 	tp->reordering = min_t(unsigned int, tp->reordering,
1386 					     sysctl_tcp_reordering);
1387 	tcp_set_ca_state(sk, TCP_CA_Loss);
1388 	tp->high_seq = tp->snd_nxt;
1389 	TCP_ECN_queue_cwr(tp);
1390 
1391 	clear_all_retrans_hints(tp);
1392 }
1393 
1394 static int tcp_check_sack_reneging(struct sock *sk)
1395 {
1396 	struct sk_buff *skb;
1397 
1398 	/* If ACK arrived pointing to a remembered SACK,
1399 	 * it means that our remembered SACKs do not reflect
1400 	 * real state of receiver i.e.
1401 	 * receiver _host_ is heavily congested (or buggy).
1402 	 * Do processing similar to RTO timeout.
1403 	 */
1404 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1405 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1406 		struct inet_connection_sock *icsk = inet_csk(sk);
1407 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1408 
1409 		tcp_enter_loss(sk, 1);
1410 		icsk->icsk_retransmits++;
1411 		tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1412 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1413 					  icsk->icsk_rto, TCP_RTO_MAX);
1414 		return 1;
1415 	}
1416 	return 0;
1417 }
1418 
1419 static inline int tcp_fackets_out(struct tcp_sock *tp)
1420 {
1421 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1422 }
1423 
1424 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1425 {
1426 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1427 }
1428 
1429 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1430 {
1431 	return tp->packets_out &&
1432 	       tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1433 }
1434 
1435 /* Linux NewReno/SACK/FACK/ECN state machine.
1436  * --------------------------------------
1437  *
1438  * "Open"	Normal state, no dubious events, fast path.
1439  * "Disorder"   In all the respects it is "Open",
1440  *		but requires a bit more attention. It is entered when
1441  *		we see some SACKs or dupacks. It is split of "Open"
1442  *		mainly to move some processing from fast path to slow one.
1443  * "CWR"	CWND was reduced due to some Congestion Notification event.
1444  *		It can be ECN, ICMP source quench, local device congestion.
1445  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1446  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1447  *
1448  * tcp_fastretrans_alert() is entered:
1449  * - each incoming ACK, if state is not "Open"
1450  * - when arrived ACK is unusual, namely:
1451  *	* SACK
1452  *	* Duplicate ACK.
1453  *	* ECN ECE.
1454  *
1455  * Counting packets in flight is pretty simple.
1456  *
1457  *	in_flight = packets_out - left_out + retrans_out
1458  *
1459  *	packets_out is SND.NXT-SND.UNA counted in packets.
1460  *
1461  *	retrans_out is number of retransmitted segments.
1462  *
1463  *	left_out is number of segments left network, but not ACKed yet.
1464  *
1465  *		left_out = sacked_out + lost_out
1466  *
1467  *     sacked_out: Packets, which arrived to receiver out of order
1468  *		   and hence not ACKed. With SACKs this number is simply
1469  *		   amount of SACKed data. Even without SACKs
1470  *		   it is easy to give pretty reliable estimate of this number,
1471  *		   counting duplicate ACKs.
1472  *
1473  *       lost_out: Packets lost by network. TCP has no explicit
1474  *		   "loss notification" feedback from network (for now).
1475  *		   It means that this number can be only _guessed_.
1476  *		   Actually, it is the heuristics to predict lossage that
1477  *		   distinguishes different algorithms.
1478  *
1479  *	F.e. after RTO, when all the queue is considered as lost,
1480  *	lost_out = packets_out and in_flight = retrans_out.
1481  *
1482  *		Essentially, we have now two algorithms counting
1483  *		lost packets.
1484  *
1485  *		FACK: It is the simplest heuristics. As soon as we decided
1486  *		that something is lost, we decide that _all_ not SACKed
1487  *		packets until the most forward SACK are lost. I.e.
1488  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1489  *		It is absolutely correct estimate, if network does not reorder
1490  *		packets. And it loses any connection to reality when reordering
1491  *		takes place. We use FACK by default until reordering
1492  *		is suspected on the path to this destination.
1493  *
1494  *		NewReno: when Recovery is entered, we assume that one segment
1495  *		is lost (classic Reno). While we are in Recovery and
1496  *		a partial ACK arrives, we assume that one more packet
1497  *		is lost (NewReno). This heuristics are the same in NewReno
1498  *		and SACK.
1499  *
1500  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1501  *  deflation etc. CWND is real congestion window, never inflated, changes
1502  *  only according to classic VJ rules.
1503  *
1504  * Really tricky (and requiring careful tuning) part of algorithm
1505  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1506  * The first determines the moment _when_ we should reduce CWND and,
1507  * hence, slow down forward transmission. In fact, it determines the moment
1508  * when we decide that hole is caused by loss, rather than by a reorder.
1509  *
1510  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1511  * holes, caused by lost packets.
1512  *
1513  * And the most logically complicated part of algorithm is undo
1514  * heuristics. We detect false retransmits due to both too early
1515  * fast retransmit (reordering) and underestimated RTO, analyzing
1516  * timestamps and D-SACKs. When we detect that some segments were
1517  * retransmitted by mistake and CWND reduction was wrong, we undo
1518  * window reduction and abort recovery phase. This logic is hidden
1519  * inside several functions named tcp_try_undo_<something>.
1520  */
1521 
1522 /* This function decides, when we should leave Disordered state
1523  * and enter Recovery phase, reducing congestion window.
1524  *
1525  * Main question: may we further continue forward transmission
1526  * with the same cwnd?
1527  */
1528 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1529 {
1530 	__u32 packets_out;
1531 
1532 	/* Trick#1: The loss is proven. */
1533 	if (tp->lost_out)
1534 		return 1;
1535 
1536 	/* Not-A-Trick#2 : Classic rule... */
1537 	if (tcp_fackets_out(tp) > tp->reordering)
1538 		return 1;
1539 
1540 	/* Trick#3 : when we use RFC2988 timer restart, fast
1541 	 * retransmit can be triggered by timeout of queue head.
1542 	 */
1543 	if (tcp_head_timedout(sk, tp))
1544 		return 1;
1545 
1546 	/* Trick#4: It is still not OK... But will it be useful to delay
1547 	 * recovery more?
1548 	 */
1549 	packets_out = tp->packets_out;
1550 	if (packets_out <= tp->reordering &&
1551 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1552 	    !tcp_may_send_now(sk, tp)) {
1553 		/* We have nothing to send. This connection is limited
1554 		 * either by receiver window or by application.
1555 		 */
1556 		return 1;
1557 	}
1558 
1559 	return 0;
1560 }
1561 
1562 /* If we receive more dupacks than we expected counting segments
1563  * in assumption of absent reordering, interpret this as reordering.
1564  * The only another reason could be bug in receiver TCP.
1565  */
1566 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1567 {
1568 	struct tcp_sock *tp = tcp_sk(sk);
1569 	u32 holes;
1570 
1571 	holes = max(tp->lost_out, 1U);
1572 	holes = min(holes, tp->packets_out);
1573 
1574 	if ((tp->sacked_out + holes) > tp->packets_out) {
1575 		tp->sacked_out = tp->packets_out - holes;
1576 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1577 	}
1578 }
1579 
1580 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1581 
1582 static void tcp_add_reno_sack(struct sock *sk)
1583 {
1584 	struct tcp_sock *tp = tcp_sk(sk);
1585 	tp->sacked_out++;
1586 	tcp_check_reno_reordering(sk, 0);
1587 	tcp_sync_left_out(tp);
1588 }
1589 
1590 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1591 
1592 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1593 {
1594 	if (acked > 0) {
1595 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1596 		if (acked-1 >= tp->sacked_out)
1597 			tp->sacked_out = 0;
1598 		else
1599 			tp->sacked_out -= acked-1;
1600 	}
1601 	tcp_check_reno_reordering(sk, acked);
1602 	tcp_sync_left_out(tp);
1603 }
1604 
1605 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1606 {
1607 	tp->sacked_out = 0;
1608 	tp->left_out = tp->lost_out;
1609 }
1610 
1611 /* Mark head of queue up as lost. */
1612 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1613 			       int packets, u32 high_seq)
1614 {
1615 	struct sk_buff *skb;
1616 	int cnt;
1617 
1618 	BUG_TRAP(packets <= tp->packets_out);
1619 	if (tp->lost_skb_hint) {
1620 		skb = tp->lost_skb_hint;
1621 		cnt = tp->lost_cnt_hint;
1622 	} else {
1623 		skb = sk->sk_write_queue.next;
1624 		cnt = 0;
1625 	}
1626 
1627 	sk_stream_for_retrans_queue_from(skb, sk) {
1628 		/* TODO: do this better */
1629 		/* this is not the most efficient way to do this... */
1630 		tp->lost_skb_hint = skb;
1631 		tp->lost_cnt_hint = cnt;
1632 		cnt += tcp_skb_pcount(skb);
1633 		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1634 			break;
1635 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1636 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1637 			tp->lost_out += tcp_skb_pcount(skb);
1638 
1639 			/* clear xmit_retransmit_queue hints
1640 			 *  if this is beyond hint */
1641 			if(tp->retransmit_skb_hint != NULL &&
1642 			   before(TCP_SKB_CB(skb)->seq,
1643 				  TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1644 
1645 				tp->retransmit_skb_hint = NULL;
1646 			}
1647 		}
1648 	}
1649 	tcp_sync_left_out(tp);
1650 }
1651 
1652 /* Account newly detected lost packet(s) */
1653 
1654 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1655 {
1656 	if (IsFack(tp)) {
1657 		int lost = tp->fackets_out - tp->reordering;
1658 		if (lost <= 0)
1659 			lost = 1;
1660 		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1661 	} else {
1662 		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1663 	}
1664 
1665 	/* New heuristics: it is possible only after we switched
1666 	 * to restart timer each time when something is ACKed.
1667 	 * Hence, we can detect timed out packets during fast
1668 	 * retransmit without falling to slow start.
1669 	 */
1670 	if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1671 		struct sk_buff *skb;
1672 
1673 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1674 			: sk->sk_write_queue.next;
1675 
1676 		sk_stream_for_retrans_queue_from(skb, sk) {
1677 			if (!tcp_skb_timedout(sk, skb))
1678 				break;
1679 
1680 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1681 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1682 				tp->lost_out += tcp_skb_pcount(skb);
1683 
1684 				/* clear xmit_retrans hint */
1685 				if (tp->retransmit_skb_hint &&
1686 				    before(TCP_SKB_CB(skb)->seq,
1687 					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1688 
1689 					tp->retransmit_skb_hint = NULL;
1690 			}
1691 		}
1692 
1693 		tp->scoreboard_skb_hint = skb;
1694 
1695 		tcp_sync_left_out(tp);
1696 	}
1697 }
1698 
1699 /* CWND moderation, preventing bursts due to too big ACKs
1700  * in dubious situations.
1701  */
1702 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1703 {
1704 	tp->snd_cwnd = min(tp->snd_cwnd,
1705 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1706 	tp->snd_cwnd_stamp = tcp_time_stamp;
1707 }
1708 
1709 /* Lower bound on congestion window is slow start threshold
1710  * unless congestion avoidance choice decides to overide it.
1711  */
1712 static inline u32 tcp_cwnd_min(const struct sock *sk)
1713 {
1714 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1715 
1716 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1717 }
1718 
1719 /* Decrease cwnd each second ack. */
1720 static void tcp_cwnd_down(struct sock *sk)
1721 {
1722 	struct tcp_sock *tp = tcp_sk(sk);
1723 	int decr = tp->snd_cwnd_cnt + 1;
1724 
1725 	tp->snd_cwnd_cnt = decr&1;
1726 	decr >>= 1;
1727 
1728 	if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1729 		tp->snd_cwnd -= decr;
1730 
1731 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1732 	tp->snd_cwnd_stamp = tcp_time_stamp;
1733 }
1734 
1735 /* Nothing was retransmitted or returned timestamp is less
1736  * than timestamp of the first retransmission.
1737  */
1738 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1739 {
1740 	return !tp->retrans_stamp ||
1741 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1742 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1743 }
1744 
1745 /* Undo procedures. */
1746 
1747 #if FASTRETRANS_DEBUG > 1
1748 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1749 {
1750 	struct inet_sock *inet = inet_sk(sk);
1751 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1752 	       msg,
1753 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1754 	       tp->snd_cwnd, tp->left_out,
1755 	       tp->snd_ssthresh, tp->prior_ssthresh,
1756 	       tp->packets_out);
1757 }
1758 #else
1759 #define DBGUNDO(x...) do { } while (0)
1760 #endif
1761 
1762 static void tcp_undo_cwr(struct sock *sk, const int undo)
1763 {
1764 	struct tcp_sock *tp = tcp_sk(sk);
1765 
1766 	if (tp->prior_ssthresh) {
1767 		const struct inet_connection_sock *icsk = inet_csk(sk);
1768 
1769 		if (icsk->icsk_ca_ops->undo_cwnd)
1770 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1771 		else
1772 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1773 
1774 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1775 			tp->snd_ssthresh = tp->prior_ssthresh;
1776 			TCP_ECN_withdraw_cwr(tp);
1777 		}
1778 	} else {
1779 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1780 	}
1781 	tcp_moderate_cwnd(tp);
1782 	tp->snd_cwnd_stamp = tcp_time_stamp;
1783 
1784 	/* There is something screwy going on with the retrans hints after
1785 	   an undo */
1786 	clear_all_retrans_hints(tp);
1787 }
1788 
1789 static inline int tcp_may_undo(struct tcp_sock *tp)
1790 {
1791 	return tp->undo_marker &&
1792 		(!tp->undo_retrans || tcp_packet_delayed(tp));
1793 }
1794 
1795 /* People celebrate: "We love our President!" */
1796 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1797 {
1798 	if (tcp_may_undo(tp)) {
1799 		/* Happy end! We did not retransmit anything
1800 		 * or our original transmission succeeded.
1801 		 */
1802 		DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1803 		tcp_undo_cwr(sk, 1);
1804 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1805 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1806 		else
1807 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1808 		tp->undo_marker = 0;
1809 	}
1810 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1811 		/* Hold old state until something *above* high_seq
1812 		 * is ACKed. For Reno it is MUST to prevent false
1813 		 * fast retransmits (RFC2582). SACK TCP is safe. */
1814 		tcp_moderate_cwnd(tp);
1815 		return 1;
1816 	}
1817 	tcp_set_ca_state(sk, TCP_CA_Open);
1818 	return 0;
1819 }
1820 
1821 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1822 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1823 {
1824 	if (tp->undo_marker && !tp->undo_retrans) {
1825 		DBGUNDO(sk, tp, "D-SACK");
1826 		tcp_undo_cwr(sk, 1);
1827 		tp->undo_marker = 0;
1828 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1829 	}
1830 }
1831 
1832 /* Undo during fast recovery after partial ACK. */
1833 
1834 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1835 				int acked)
1836 {
1837 	/* Partial ACK arrived. Force Hoe's retransmit. */
1838 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1839 
1840 	if (tcp_may_undo(tp)) {
1841 		/* Plain luck! Hole if filled with delayed
1842 		 * packet, rather than with a retransmit.
1843 		 */
1844 		if (tp->retrans_out == 0)
1845 			tp->retrans_stamp = 0;
1846 
1847 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1848 
1849 		DBGUNDO(sk, tp, "Hoe");
1850 		tcp_undo_cwr(sk, 0);
1851 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1852 
1853 		/* So... Do not make Hoe's retransmit yet.
1854 		 * If the first packet was delayed, the rest
1855 		 * ones are most probably delayed as well.
1856 		 */
1857 		failed = 0;
1858 	}
1859 	return failed;
1860 }
1861 
1862 /* Undo during loss recovery after partial ACK. */
1863 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1864 {
1865 	if (tcp_may_undo(tp)) {
1866 		struct sk_buff *skb;
1867 		sk_stream_for_retrans_queue(skb, sk) {
1868 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1869 		}
1870 
1871 		clear_all_retrans_hints(tp);
1872 
1873 		DBGUNDO(sk, tp, "partial loss");
1874 		tp->lost_out = 0;
1875 		tp->left_out = tp->sacked_out;
1876 		tcp_undo_cwr(sk, 1);
1877 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1878 		inet_csk(sk)->icsk_retransmits = 0;
1879 		tp->undo_marker = 0;
1880 		if (!IsReno(tp))
1881 			tcp_set_ca_state(sk, TCP_CA_Open);
1882 		return 1;
1883 	}
1884 	return 0;
1885 }
1886 
1887 static inline void tcp_complete_cwr(struct sock *sk)
1888 {
1889 	struct tcp_sock *tp = tcp_sk(sk);
1890 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1891 	tp->snd_cwnd_stamp = tcp_time_stamp;
1892 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1893 }
1894 
1895 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1896 {
1897 	tp->left_out = tp->sacked_out;
1898 
1899 	if (tp->retrans_out == 0)
1900 		tp->retrans_stamp = 0;
1901 
1902 	if (flag&FLAG_ECE)
1903 		tcp_enter_cwr(sk);
1904 
1905 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1906 		int state = TCP_CA_Open;
1907 
1908 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
1909 			state = TCP_CA_Disorder;
1910 
1911 		if (inet_csk(sk)->icsk_ca_state != state) {
1912 			tcp_set_ca_state(sk, state);
1913 			tp->high_seq = tp->snd_nxt;
1914 		}
1915 		tcp_moderate_cwnd(tp);
1916 	} else {
1917 		tcp_cwnd_down(sk);
1918 	}
1919 }
1920 
1921 static void tcp_mtup_probe_failed(struct sock *sk)
1922 {
1923 	struct inet_connection_sock *icsk = inet_csk(sk);
1924 
1925 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1926 	icsk->icsk_mtup.probe_size = 0;
1927 }
1928 
1929 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1930 {
1931 	struct tcp_sock *tp = tcp_sk(sk);
1932 	struct inet_connection_sock *icsk = inet_csk(sk);
1933 
1934 	/* FIXME: breaks with very large cwnd */
1935 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
1936 	tp->snd_cwnd = tp->snd_cwnd *
1937 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
1938 		       icsk->icsk_mtup.probe_size;
1939 	tp->snd_cwnd_cnt = 0;
1940 	tp->snd_cwnd_stamp = tcp_time_stamp;
1941 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1942 
1943 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1944 	icsk->icsk_mtup.probe_size = 0;
1945 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1946 }
1947 
1948 
1949 /* Process an event, which can update packets-in-flight not trivially.
1950  * Main goal of this function is to calculate new estimate for left_out,
1951  * taking into account both packets sitting in receiver's buffer and
1952  * packets lost by network.
1953  *
1954  * Besides that it does CWND reduction, when packet loss is detected
1955  * and changes state of machine.
1956  *
1957  * It does _not_ decide what to send, it is made in function
1958  * tcp_xmit_retransmit_queue().
1959  */
1960 static void
1961 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1962 		      int prior_packets, int flag)
1963 {
1964 	struct inet_connection_sock *icsk = inet_csk(sk);
1965 	struct tcp_sock *tp = tcp_sk(sk);
1966 	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1967 
1968 	/* Some technical things:
1969 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
1970 	if (!tp->packets_out)
1971 		tp->sacked_out = 0;
1972         /* 2. SACK counts snd_fack in packets inaccurately. */
1973 	if (tp->sacked_out == 0)
1974 		tp->fackets_out = 0;
1975 
1976         /* Now state machine starts.
1977 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1978 	if (flag&FLAG_ECE)
1979 		tp->prior_ssthresh = 0;
1980 
1981 	/* B. In all the states check for reneging SACKs. */
1982 	if (tp->sacked_out && tcp_check_sack_reneging(sk))
1983 		return;
1984 
1985 	/* C. Process data loss notification, provided it is valid. */
1986 	if ((flag&FLAG_DATA_LOST) &&
1987 	    before(tp->snd_una, tp->high_seq) &&
1988 	    icsk->icsk_ca_state != TCP_CA_Open &&
1989 	    tp->fackets_out > tp->reordering) {
1990 		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1991 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1992 	}
1993 
1994 	/* D. Synchronize left_out to current state. */
1995 	tcp_sync_left_out(tp);
1996 
1997 	/* E. Check state exit conditions. State can be terminated
1998 	 *    when high_seq is ACKed. */
1999 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2000 		if (!sysctl_tcp_frto)
2001 			BUG_TRAP(tp->retrans_out == 0);
2002 		tp->retrans_stamp = 0;
2003 	} else if (!before(tp->snd_una, tp->high_seq)) {
2004 		switch (icsk->icsk_ca_state) {
2005 		case TCP_CA_Loss:
2006 			icsk->icsk_retransmits = 0;
2007 			if (tcp_try_undo_recovery(sk, tp))
2008 				return;
2009 			break;
2010 
2011 		case TCP_CA_CWR:
2012 			/* CWR is to be held something *above* high_seq
2013 			 * is ACKed for CWR bit to reach receiver. */
2014 			if (tp->snd_una != tp->high_seq) {
2015 				tcp_complete_cwr(sk);
2016 				tcp_set_ca_state(sk, TCP_CA_Open);
2017 			}
2018 			break;
2019 
2020 		case TCP_CA_Disorder:
2021 			tcp_try_undo_dsack(sk, tp);
2022 			if (!tp->undo_marker ||
2023 			    /* For SACK case do not Open to allow to undo
2024 			     * catching for all duplicate ACKs. */
2025 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
2026 				tp->undo_marker = 0;
2027 				tcp_set_ca_state(sk, TCP_CA_Open);
2028 			}
2029 			break;
2030 
2031 		case TCP_CA_Recovery:
2032 			if (IsReno(tp))
2033 				tcp_reset_reno_sack(tp);
2034 			if (tcp_try_undo_recovery(sk, tp))
2035 				return;
2036 			tcp_complete_cwr(sk);
2037 			break;
2038 		}
2039 	}
2040 
2041 	/* F. Process state. */
2042 	switch (icsk->icsk_ca_state) {
2043 	case TCP_CA_Recovery:
2044 		if (prior_snd_una == tp->snd_una) {
2045 			if (IsReno(tp) && is_dupack)
2046 				tcp_add_reno_sack(sk);
2047 		} else {
2048 			int acked = prior_packets - tp->packets_out;
2049 			if (IsReno(tp))
2050 				tcp_remove_reno_sacks(sk, tp, acked);
2051 			is_dupack = tcp_try_undo_partial(sk, tp, acked);
2052 		}
2053 		break;
2054 	case TCP_CA_Loss:
2055 		if (flag&FLAG_DATA_ACKED)
2056 			icsk->icsk_retransmits = 0;
2057 		if (!tcp_try_undo_loss(sk, tp)) {
2058 			tcp_moderate_cwnd(tp);
2059 			tcp_xmit_retransmit_queue(sk);
2060 			return;
2061 		}
2062 		if (icsk->icsk_ca_state != TCP_CA_Open)
2063 			return;
2064 		/* Loss is undone; fall through to processing in Open state. */
2065 	default:
2066 		if (IsReno(tp)) {
2067 			if (tp->snd_una != prior_snd_una)
2068 				tcp_reset_reno_sack(tp);
2069 			if (is_dupack)
2070 				tcp_add_reno_sack(sk);
2071 		}
2072 
2073 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2074 			tcp_try_undo_dsack(sk, tp);
2075 
2076 		if (!tcp_time_to_recover(sk, tp)) {
2077 			tcp_try_to_open(sk, tp, flag);
2078 			return;
2079 		}
2080 
2081 		/* MTU probe failure: don't reduce cwnd */
2082 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2083 		    icsk->icsk_mtup.probe_size &&
2084 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2085 			tcp_mtup_probe_failed(sk);
2086 			/* Restores the reduction we did in tcp_mtup_probe() */
2087 			tp->snd_cwnd++;
2088 			tcp_simple_retransmit(sk);
2089 			return;
2090 		}
2091 
2092 		/* Otherwise enter Recovery state */
2093 
2094 		if (IsReno(tp))
2095 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2096 		else
2097 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2098 
2099 		tp->high_seq = tp->snd_nxt;
2100 		tp->prior_ssthresh = 0;
2101 		tp->undo_marker = tp->snd_una;
2102 		tp->undo_retrans = tp->retrans_out;
2103 
2104 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2105 			if (!(flag&FLAG_ECE))
2106 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2107 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2108 			TCP_ECN_queue_cwr(tp);
2109 		}
2110 
2111 		tp->bytes_acked = 0;
2112 		tp->snd_cwnd_cnt = 0;
2113 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2114 	}
2115 
2116 	if (is_dupack || tcp_head_timedout(sk, tp))
2117 		tcp_update_scoreboard(sk, tp);
2118 	tcp_cwnd_down(sk);
2119 	tcp_xmit_retransmit_queue(sk);
2120 }
2121 
2122 /* Read draft-ietf-tcplw-high-performance before mucking
2123  * with this code. (Supersedes RFC1323)
2124  */
2125 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2126 {
2127 	/* RTTM Rule: A TSecr value received in a segment is used to
2128 	 * update the averaged RTT measurement only if the segment
2129 	 * acknowledges some new data, i.e., only if it advances the
2130 	 * left edge of the send window.
2131 	 *
2132 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2133 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2134 	 *
2135 	 * Changed: reset backoff as soon as we see the first valid sample.
2136 	 * If we do not, we get strongly overestimated rto. With timestamps
2137 	 * samples are accepted even from very old segments: f.e., when rtt=1
2138 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2139 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2140 	 * in window is lost... Voila.	 			--ANK (010210)
2141 	 */
2142 	struct tcp_sock *tp = tcp_sk(sk);
2143 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2144 	tcp_rtt_estimator(sk, seq_rtt);
2145 	tcp_set_rto(sk);
2146 	inet_csk(sk)->icsk_backoff = 0;
2147 	tcp_bound_rto(sk);
2148 }
2149 
2150 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2151 {
2152 	/* We don't have a timestamp. Can only use
2153 	 * packets that are not retransmitted to determine
2154 	 * rtt estimates. Also, we must not reset the
2155 	 * backoff for rto until we get a non-retransmitted
2156 	 * packet. This allows us to deal with a situation
2157 	 * where the network delay has increased suddenly.
2158 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2159 	 */
2160 
2161 	if (flag & FLAG_RETRANS_DATA_ACKED)
2162 		return;
2163 
2164 	tcp_rtt_estimator(sk, seq_rtt);
2165 	tcp_set_rto(sk);
2166 	inet_csk(sk)->icsk_backoff = 0;
2167 	tcp_bound_rto(sk);
2168 }
2169 
2170 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2171 				      const s32 seq_rtt)
2172 {
2173 	const struct tcp_sock *tp = tcp_sk(sk);
2174 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2175 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2176 		tcp_ack_saw_tstamp(sk, flag);
2177 	else if (seq_rtt >= 0)
2178 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2179 }
2180 
2181 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2182 			   u32 in_flight, int good)
2183 {
2184 	const struct inet_connection_sock *icsk = inet_csk(sk);
2185 	icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2186 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2187 }
2188 
2189 /* Restart timer after forward progress on connection.
2190  * RFC2988 recommends to restart timer to now+rto.
2191  */
2192 
2193 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2194 {
2195 	if (!tp->packets_out) {
2196 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2197 	} else {
2198 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2199 	}
2200 }
2201 
2202 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2203 			 __u32 now, __s32 *seq_rtt)
2204 {
2205 	struct tcp_sock *tp = tcp_sk(sk);
2206 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2207 	__u32 seq = tp->snd_una;
2208 	__u32 packets_acked;
2209 	int acked = 0;
2210 
2211 	/* If we get here, the whole TSO packet has not been
2212 	 * acked.
2213 	 */
2214 	BUG_ON(!after(scb->end_seq, seq));
2215 
2216 	packets_acked = tcp_skb_pcount(skb);
2217 	if (tcp_trim_head(sk, skb, seq - scb->seq))
2218 		return 0;
2219 	packets_acked -= tcp_skb_pcount(skb);
2220 
2221 	if (packets_acked) {
2222 		__u8 sacked = scb->sacked;
2223 
2224 		acked |= FLAG_DATA_ACKED;
2225 		if (sacked) {
2226 			if (sacked & TCPCB_RETRANS) {
2227 				if (sacked & TCPCB_SACKED_RETRANS)
2228 					tp->retrans_out -= packets_acked;
2229 				acked |= FLAG_RETRANS_DATA_ACKED;
2230 				*seq_rtt = -1;
2231 			} else if (*seq_rtt < 0)
2232 				*seq_rtt = now - scb->when;
2233 			if (sacked & TCPCB_SACKED_ACKED)
2234 				tp->sacked_out -= packets_acked;
2235 			if (sacked & TCPCB_LOST)
2236 				tp->lost_out -= packets_acked;
2237 			if (sacked & TCPCB_URG) {
2238 				if (tp->urg_mode &&
2239 				    !before(seq, tp->snd_up))
2240 					tp->urg_mode = 0;
2241 			}
2242 		} else if (*seq_rtt < 0)
2243 			*seq_rtt = now - scb->when;
2244 
2245 		if (tp->fackets_out) {
2246 			__u32 dval = min(tp->fackets_out, packets_acked);
2247 			tp->fackets_out -= dval;
2248 		}
2249 		tp->packets_out -= packets_acked;
2250 
2251 		BUG_ON(tcp_skb_pcount(skb) == 0);
2252 		BUG_ON(!before(scb->seq, scb->end_seq));
2253 	}
2254 
2255 	return acked;
2256 }
2257 
2258 static u32 tcp_usrtt(struct timeval *tv)
2259 {
2260 	struct timeval now;
2261 
2262 	do_gettimeofday(&now);
2263 	return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2264 }
2265 
2266 /* Remove acknowledged frames from the retransmission queue. */
2267 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2268 {
2269 	struct tcp_sock *tp = tcp_sk(sk);
2270 	const struct inet_connection_sock *icsk = inet_csk(sk);
2271 	struct sk_buff *skb;
2272 	__u32 now = tcp_time_stamp;
2273 	int acked = 0;
2274 	__s32 seq_rtt = -1;
2275 	u32 pkts_acked = 0;
2276 	void (*rtt_sample)(struct sock *sk, u32 usrtt)
2277 		= icsk->icsk_ca_ops->rtt_sample;
2278 	struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
2279 
2280 	while ((skb = skb_peek(&sk->sk_write_queue)) &&
2281 	       skb != sk->sk_send_head) {
2282 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2283 		__u8 sacked = scb->sacked;
2284 
2285 		/* If our packet is before the ack sequence we can
2286 		 * discard it as it's confirmed to have arrived at
2287 		 * the other end.
2288 		 */
2289 		if (after(scb->end_seq, tp->snd_una)) {
2290 			if (tcp_skb_pcount(skb) > 1 &&
2291 			    after(tp->snd_una, scb->seq))
2292 				acked |= tcp_tso_acked(sk, skb,
2293 						       now, &seq_rtt);
2294 			break;
2295 		}
2296 
2297 		/* Initial outgoing SYN's get put onto the write_queue
2298 		 * just like anything else we transmit.  It is not
2299 		 * true data, and if we misinform our callers that
2300 		 * this ACK acks real data, we will erroneously exit
2301 		 * connection startup slow start one packet too
2302 		 * quickly.  This is severely frowned upon behavior.
2303 		 */
2304 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2305 			acked |= FLAG_DATA_ACKED;
2306 			++pkts_acked;
2307 		} else {
2308 			acked |= FLAG_SYN_ACKED;
2309 			tp->retrans_stamp = 0;
2310 		}
2311 
2312 		/* MTU probing checks */
2313 		if (icsk->icsk_mtup.probe_size) {
2314 			if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2315 				tcp_mtup_probe_success(sk, skb);
2316 			}
2317 		}
2318 
2319 		if (sacked) {
2320 			if (sacked & TCPCB_RETRANS) {
2321 				if(sacked & TCPCB_SACKED_RETRANS)
2322 					tp->retrans_out -= tcp_skb_pcount(skb);
2323 				acked |= FLAG_RETRANS_DATA_ACKED;
2324 				seq_rtt = -1;
2325 			} else if (seq_rtt < 0) {
2326 				seq_rtt = now - scb->when;
2327 				skb_get_timestamp(skb, &tv);
2328 			}
2329 			if (sacked & TCPCB_SACKED_ACKED)
2330 				tp->sacked_out -= tcp_skb_pcount(skb);
2331 			if (sacked & TCPCB_LOST)
2332 				tp->lost_out -= tcp_skb_pcount(skb);
2333 			if (sacked & TCPCB_URG) {
2334 				if (tp->urg_mode &&
2335 				    !before(scb->end_seq, tp->snd_up))
2336 					tp->urg_mode = 0;
2337 			}
2338 		} else if (seq_rtt < 0) {
2339 			seq_rtt = now - scb->when;
2340 			skb_get_timestamp(skb, &tv);
2341 		}
2342 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2343 		tcp_packets_out_dec(tp, skb);
2344 		__skb_unlink(skb, &sk->sk_write_queue);
2345 		sk_stream_free_skb(sk, skb);
2346 		clear_all_retrans_hints(tp);
2347 	}
2348 
2349 	if (acked&FLAG_ACKED) {
2350 		tcp_ack_update_rtt(sk, acked, seq_rtt);
2351 		tcp_ack_packets_out(sk, tp);
2352 		if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2353 			(*rtt_sample)(sk, tcp_usrtt(&tv));
2354 
2355 		if (icsk->icsk_ca_ops->pkts_acked)
2356 			icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2357 	}
2358 
2359 #if FASTRETRANS_DEBUG > 0
2360 	BUG_TRAP((int)tp->sacked_out >= 0);
2361 	BUG_TRAP((int)tp->lost_out >= 0);
2362 	BUG_TRAP((int)tp->retrans_out >= 0);
2363 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2364 		const struct inet_connection_sock *icsk = inet_csk(sk);
2365 		if (tp->lost_out) {
2366 			printk(KERN_DEBUG "Leak l=%u %d\n",
2367 			       tp->lost_out, icsk->icsk_ca_state);
2368 			tp->lost_out = 0;
2369 		}
2370 		if (tp->sacked_out) {
2371 			printk(KERN_DEBUG "Leak s=%u %d\n",
2372 			       tp->sacked_out, icsk->icsk_ca_state);
2373 			tp->sacked_out = 0;
2374 		}
2375 		if (tp->retrans_out) {
2376 			printk(KERN_DEBUG "Leak r=%u %d\n",
2377 			       tp->retrans_out, icsk->icsk_ca_state);
2378 			tp->retrans_out = 0;
2379 		}
2380 	}
2381 #endif
2382 	*seq_rtt_p = seq_rtt;
2383 	return acked;
2384 }
2385 
2386 static void tcp_ack_probe(struct sock *sk)
2387 {
2388 	const struct tcp_sock *tp = tcp_sk(sk);
2389 	struct inet_connection_sock *icsk = inet_csk(sk);
2390 
2391 	/* Was it a usable window open? */
2392 
2393 	if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2394 		   tp->snd_una + tp->snd_wnd)) {
2395 		icsk->icsk_backoff = 0;
2396 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2397 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2398 		 * This function is not for random using!
2399 		 */
2400 	} else {
2401 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2402 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2403 					  TCP_RTO_MAX);
2404 	}
2405 }
2406 
2407 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2408 {
2409 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2410 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2411 }
2412 
2413 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2414 {
2415 	const struct tcp_sock *tp = tcp_sk(sk);
2416 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2417 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2418 }
2419 
2420 /* Check that window update is acceptable.
2421  * The function assumes that snd_una<=ack<=snd_next.
2422  */
2423 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2424 					const u32 ack_seq, const u32 nwin)
2425 {
2426 	return (after(ack, tp->snd_una) ||
2427 		after(ack_seq, tp->snd_wl1) ||
2428 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2429 }
2430 
2431 /* Update our send window.
2432  *
2433  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2434  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2435  */
2436 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2437 				 struct sk_buff *skb, u32 ack, u32 ack_seq)
2438 {
2439 	int flag = 0;
2440 	u32 nwin = ntohs(skb->h.th->window);
2441 
2442 	if (likely(!skb->h.th->syn))
2443 		nwin <<= tp->rx_opt.snd_wscale;
2444 
2445 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2446 		flag |= FLAG_WIN_UPDATE;
2447 		tcp_update_wl(tp, ack, ack_seq);
2448 
2449 		if (tp->snd_wnd != nwin) {
2450 			tp->snd_wnd = nwin;
2451 
2452 			/* Note, it is the only place, where
2453 			 * fast path is recovered for sending TCP.
2454 			 */
2455 			tp->pred_flags = 0;
2456 			tcp_fast_path_check(sk, tp);
2457 
2458 			if (nwin > tp->max_window) {
2459 				tp->max_window = nwin;
2460 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2461 			}
2462 		}
2463 	}
2464 
2465 	tp->snd_una = ack;
2466 
2467 	return flag;
2468 }
2469 
2470 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2471 {
2472 	struct tcp_sock *tp = tcp_sk(sk);
2473 
2474 	tcp_sync_left_out(tp);
2475 
2476 	if (tp->snd_una == prior_snd_una ||
2477 	    !before(tp->snd_una, tp->frto_highmark)) {
2478 		/* RTO was caused by loss, start retransmitting in
2479 		 * go-back-N slow start
2480 		 */
2481 		tcp_enter_frto_loss(sk);
2482 		return;
2483 	}
2484 
2485 	if (tp->frto_counter == 1) {
2486 		/* First ACK after RTO advances the window: allow two new
2487 		 * segments out.
2488 		 */
2489 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2490 	} else {
2491 		/* Also the second ACK after RTO advances the window.
2492 		 * The RTO was likely spurious. Reduce cwnd and continue
2493 		 * in congestion avoidance
2494 		 */
2495 		tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2496 		tcp_moderate_cwnd(tp);
2497 	}
2498 
2499 	/* F-RTO affects on two new ACKs following RTO.
2500 	 * At latest on third ACK the TCP behavior is back to normal.
2501 	 */
2502 	tp->frto_counter = (tp->frto_counter + 1) % 3;
2503 }
2504 
2505 /* This routine deals with incoming acks, but not outgoing ones. */
2506 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2507 {
2508 	struct inet_connection_sock *icsk = inet_csk(sk);
2509 	struct tcp_sock *tp = tcp_sk(sk);
2510 	u32 prior_snd_una = tp->snd_una;
2511 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2512 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2513 	u32 prior_in_flight;
2514 	s32 seq_rtt;
2515 	int prior_packets;
2516 
2517 	/* If the ack is newer than sent or older than previous acks
2518 	 * then we can probably ignore it.
2519 	 */
2520 	if (after(ack, tp->snd_nxt))
2521 		goto uninteresting_ack;
2522 
2523 	if (before(ack, prior_snd_una))
2524 		goto old_ack;
2525 
2526 	if (sysctl_tcp_abc) {
2527 		if (icsk->icsk_ca_state < TCP_CA_CWR)
2528 			tp->bytes_acked += ack - prior_snd_una;
2529 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
2530 			/* we assume just one segment left network */
2531 			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2532 	}
2533 
2534 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2535 		/* Window is constant, pure forward advance.
2536 		 * No more checks are required.
2537 		 * Note, we use the fact that SND.UNA>=SND.WL2.
2538 		 */
2539 		tcp_update_wl(tp, ack, ack_seq);
2540 		tp->snd_una = ack;
2541 		flag |= FLAG_WIN_UPDATE;
2542 
2543 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2544 
2545 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2546 	} else {
2547 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2548 			flag |= FLAG_DATA;
2549 		else
2550 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2551 
2552 		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2553 
2554 		if (TCP_SKB_CB(skb)->sacked)
2555 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2556 
2557 		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2558 			flag |= FLAG_ECE;
2559 
2560 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2561 	}
2562 
2563 	/* We passed data and got it acked, remove any soft error
2564 	 * log. Something worked...
2565 	 */
2566 	sk->sk_err_soft = 0;
2567 	tp->rcv_tstamp = tcp_time_stamp;
2568 	prior_packets = tp->packets_out;
2569 	if (!prior_packets)
2570 		goto no_queue;
2571 
2572 	prior_in_flight = tcp_packets_in_flight(tp);
2573 
2574 	/* See if we can take anything off of the retransmit queue. */
2575 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2576 
2577 	if (tp->frto_counter)
2578 		tcp_process_frto(sk, prior_snd_una);
2579 
2580 	if (tcp_ack_is_dubious(sk, flag)) {
2581 		/* Advance CWND, if state allows this. */
2582 		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2583 			tcp_cong_avoid(sk, ack,  seq_rtt, prior_in_flight, 0);
2584 		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2585 	} else {
2586 		if ((flag & FLAG_DATA_ACKED))
2587 			tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2588 	}
2589 
2590 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2591 		dst_confirm(sk->sk_dst_cache);
2592 
2593 	return 1;
2594 
2595 no_queue:
2596 	icsk->icsk_probes_out = 0;
2597 
2598 	/* If this ack opens up a zero window, clear backoff.  It was
2599 	 * being used to time the probes, and is probably far higher than
2600 	 * it needs to be for normal retransmission.
2601 	 */
2602 	if (sk->sk_send_head)
2603 		tcp_ack_probe(sk);
2604 	return 1;
2605 
2606 old_ack:
2607 	if (TCP_SKB_CB(skb)->sacked)
2608 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2609 
2610 uninteresting_ack:
2611 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2612 	return 0;
2613 }
2614 
2615 
2616 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2617  * But, this can also be called on packets in the established flow when
2618  * the fast version below fails.
2619  */
2620 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2621 {
2622 	unsigned char *ptr;
2623 	struct tcphdr *th = skb->h.th;
2624 	int length=(th->doff*4)-sizeof(struct tcphdr);
2625 
2626 	ptr = (unsigned char *)(th + 1);
2627 	opt_rx->saw_tstamp = 0;
2628 
2629 	while(length>0) {
2630 	  	int opcode=*ptr++;
2631 		int opsize;
2632 
2633 		switch (opcode) {
2634 			case TCPOPT_EOL:
2635 				return;
2636 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2637 				length--;
2638 				continue;
2639 			default:
2640 				opsize=*ptr++;
2641 				if (opsize < 2) /* "silly options" */
2642 					return;
2643 				if (opsize > length)
2644 					return;	/* don't parse partial options */
2645 	  			switch(opcode) {
2646 				case TCPOPT_MSS:
2647 					if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2648 						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2649 						if (in_mss) {
2650 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2651 								in_mss = opt_rx->user_mss;
2652 							opt_rx->mss_clamp = in_mss;
2653 						}
2654 					}
2655 					break;
2656 				case TCPOPT_WINDOW:
2657 					if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2658 						if (sysctl_tcp_window_scaling) {
2659 							__u8 snd_wscale = *(__u8 *) ptr;
2660 							opt_rx->wscale_ok = 1;
2661 							if (snd_wscale > 14) {
2662 								if(net_ratelimit())
2663 									printk(KERN_INFO "tcp_parse_options: Illegal window "
2664 									       "scaling value %d >14 received.\n",
2665 									       snd_wscale);
2666 								snd_wscale = 14;
2667 							}
2668 							opt_rx->snd_wscale = snd_wscale;
2669 						}
2670 					break;
2671 				case TCPOPT_TIMESTAMP:
2672 					if(opsize==TCPOLEN_TIMESTAMP) {
2673 						if ((estab && opt_rx->tstamp_ok) ||
2674 						    (!estab && sysctl_tcp_timestamps)) {
2675 							opt_rx->saw_tstamp = 1;
2676 							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2677 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2678 						}
2679 					}
2680 					break;
2681 				case TCPOPT_SACK_PERM:
2682 					if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2683 						if (sysctl_tcp_sack) {
2684 							opt_rx->sack_ok = 1;
2685 							tcp_sack_reset(opt_rx);
2686 						}
2687 					}
2688 					break;
2689 
2690 				case TCPOPT_SACK:
2691 					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2692 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2693 					   opt_rx->sack_ok) {
2694 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2695 					}
2696 #ifdef CONFIG_TCP_MD5SIG
2697 				case TCPOPT_MD5SIG:
2698 					/*
2699 					 * The MD5 Hash has already been
2700 					 * checked (see tcp_v{4,6}_do_rcv()).
2701 					 */
2702 					break;
2703 #endif
2704 	  			};
2705 	  			ptr+=opsize-2;
2706 	  			length-=opsize;
2707 	  	};
2708 	}
2709 }
2710 
2711 /* Fast parse options. This hopes to only see timestamps.
2712  * If it is wrong it falls back on tcp_parse_options().
2713  */
2714 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2715 				  struct tcp_sock *tp)
2716 {
2717 	if (th->doff == sizeof(struct tcphdr)>>2) {
2718 		tp->rx_opt.saw_tstamp = 0;
2719 		return 0;
2720 	} else if (tp->rx_opt.tstamp_ok &&
2721 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2722 		__be32 *ptr = (__be32 *)(th + 1);
2723 		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2724 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2725 			tp->rx_opt.saw_tstamp = 1;
2726 			++ptr;
2727 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2728 			++ptr;
2729 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2730 			return 1;
2731 		}
2732 	}
2733 	tcp_parse_options(skb, &tp->rx_opt, 1);
2734 	return 1;
2735 }
2736 
2737 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2738 {
2739 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2740 	tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2741 }
2742 
2743 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2744 {
2745 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2746 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2747 		 * extra check below makes sure this can only happen
2748 		 * for pure ACK frames.  -DaveM
2749 		 *
2750 		 * Not only, also it occurs for expired timestamps.
2751 		 */
2752 
2753 		if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2754 		   xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2755 			tcp_store_ts_recent(tp);
2756 	}
2757 }
2758 
2759 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2760  *
2761  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2762  * it can pass through stack. So, the following predicate verifies that
2763  * this segment is not used for anything but congestion avoidance or
2764  * fast retransmit. Moreover, we even are able to eliminate most of such
2765  * second order effects, if we apply some small "replay" window (~RTO)
2766  * to timestamp space.
2767  *
2768  * All these measures still do not guarantee that we reject wrapped ACKs
2769  * on networks with high bandwidth, when sequence space is recycled fastly,
2770  * but it guarantees that such events will be very rare and do not affect
2771  * connection seriously. This doesn't look nice, but alas, PAWS is really
2772  * buggy extension.
2773  *
2774  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2775  * states that events when retransmit arrives after original data are rare.
2776  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2777  * the biggest problem on large power networks even with minor reordering.
2778  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2779  * up to bandwidth of 18Gigabit/sec. 8) ]
2780  */
2781 
2782 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2783 {
2784 	struct tcp_sock *tp = tcp_sk(sk);
2785 	struct tcphdr *th = skb->h.th;
2786 	u32 seq = TCP_SKB_CB(skb)->seq;
2787 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2788 
2789 	return (/* 1. Pure ACK with correct sequence number. */
2790 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2791 
2792 		/* 2. ... and duplicate ACK. */
2793 		ack == tp->snd_una &&
2794 
2795 		/* 3. ... and does not update window. */
2796 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2797 
2798 		/* 4. ... and sits in replay window. */
2799 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2800 }
2801 
2802 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2803 {
2804 	const struct tcp_sock *tp = tcp_sk(sk);
2805 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2806 		xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2807 		!tcp_disordered_ack(sk, skb));
2808 }
2809 
2810 /* Check segment sequence number for validity.
2811  *
2812  * Segment controls are considered valid, if the segment
2813  * fits to the window after truncation to the window. Acceptability
2814  * of data (and SYN, FIN, of course) is checked separately.
2815  * See tcp_data_queue(), for example.
2816  *
2817  * Also, controls (RST is main one) are accepted using RCV.WUP instead
2818  * of RCV.NXT. Peer still did not advance his SND.UNA when we
2819  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2820  * (borrowed from freebsd)
2821  */
2822 
2823 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2824 {
2825 	return	!before(end_seq, tp->rcv_wup) &&
2826 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2827 }
2828 
2829 /* When we get a reset we do this. */
2830 static void tcp_reset(struct sock *sk)
2831 {
2832 	/* We want the right error as BSD sees it (and indeed as we do). */
2833 	switch (sk->sk_state) {
2834 		case TCP_SYN_SENT:
2835 			sk->sk_err = ECONNREFUSED;
2836 			break;
2837 		case TCP_CLOSE_WAIT:
2838 			sk->sk_err = EPIPE;
2839 			break;
2840 		case TCP_CLOSE:
2841 			return;
2842 		default:
2843 			sk->sk_err = ECONNRESET;
2844 	}
2845 
2846 	if (!sock_flag(sk, SOCK_DEAD))
2847 		sk->sk_error_report(sk);
2848 
2849 	tcp_done(sk);
2850 }
2851 
2852 /*
2853  * 	Process the FIN bit. This now behaves as it is supposed to work
2854  *	and the FIN takes effect when it is validly part of sequence
2855  *	space. Not before when we get holes.
2856  *
2857  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2858  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
2859  *	TIME-WAIT)
2860  *
2861  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
2862  *	close and we go into CLOSING (and later onto TIME-WAIT)
2863  *
2864  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2865  */
2866 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2867 {
2868 	struct tcp_sock *tp = tcp_sk(sk);
2869 
2870 	inet_csk_schedule_ack(sk);
2871 
2872 	sk->sk_shutdown |= RCV_SHUTDOWN;
2873 	sock_set_flag(sk, SOCK_DONE);
2874 
2875 	switch (sk->sk_state) {
2876 		case TCP_SYN_RECV:
2877 		case TCP_ESTABLISHED:
2878 			/* Move to CLOSE_WAIT */
2879 			tcp_set_state(sk, TCP_CLOSE_WAIT);
2880 			inet_csk(sk)->icsk_ack.pingpong = 1;
2881 			break;
2882 
2883 		case TCP_CLOSE_WAIT:
2884 		case TCP_CLOSING:
2885 			/* Received a retransmission of the FIN, do
2886 			 * nothing.
2887 			 */
2888 			break;
2889 		case TCP_LAST_ACK:
2890 			/* RFC793: Remain in the LAST-ACK state. */
2891 			break;
2892 
2893 		case TCP_FIN_WAIT1:
2894 			/* This case occurs when a simultaneous close
2895 			 * happens, we must ack the received FIN and
2896 			 * enter the CLOSING state.
2897 			 */
2898 			tcp_send_ack(sk);
2899 			tcp_set_state(sk, TCP_CLOSING);
2900 			break;
2901 		case TCP_FIN_WAIT2:
2902 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
2903 			tcp_send_ack(sk);
2904 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2905 			break;
2906 		default:
2907 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
2908 			 * cases we should never reach this piece of code.
2909 			 */
2910 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2911 			       __FUNCTION__, sk->sk_state);
2912 			break;
2913 	};
2914 
2915 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
2916 	 * Probably, we should reset in this case. For now drop them.
2917 	 */
2918 	__skb_queue_purge(&tp->out_of_order_queue);
2919 	if (tp->rx_opt.sack_ok)
2920 		tcp_sack_reset(&tp->rx_opt);
2921 	sk_stream_mem_reclaim(sk);
2922 
2923 	if (!sock_flag(sk, SOCK_DEAD)) {
2924 		sk->sk_state_change(sk);
2925 
2926 		/* Do not send POLL_HUP for half duplex close. */
2927 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
2928 		    sk->sk_state == TCP_CLOSE)
2929 			sk_wake_async(sk, 1, POLL_HUP);
2930 		else
2931 			sk_wake_async(sk, 1, POLL_IN);
2932 	}
2933 }
2934 
2935 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2936 {
2937 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2938 		if (before(seq, sp->start_seq))
2939 			sp->start_seq = seq;
2940 		if (after(end_seq, sp->end_seq))
2941 			sp->end_seq = end_seq;
2942 		return 1;
2943 	}
2944 	return 0;
2945 }
2946 
2947 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2948 {
2949 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2950 		if (before(seq, tp->rcv_nxt))
2951 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2952 		else
2953 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2954 
2955 		tp->rx_opt.dsack = 1;
2956 		tp->duplicate_sack[0].start_seq = seq;
2957 		tp->duplicate_sack[0].end_seq = end_seq;
2958 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2959 	}
2960 }
2961 
2962 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2963 {
2964 	if (!tp->rx_opt.dsack)
2965 		tcp_dsack_set(tp, seq, end_seq);
2966 	else
2967 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2968 }
2969 
2970 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2971 {
2972 	struct tcp_sock *tp = tcp_sk(sk);
2973 
2974 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2975 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2976 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2977 		tcp_enter_quickack_mode(sk);
2978 
2979 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2980 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2981 
2982 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2983 				end_seq = tp->rcv_nxt;
2984 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2985 		}
2986 	}
2987 
2988 	tcp_send_ack(sk);
2989 }
2990 
2991 /* These routines update the SACK block as out-of-order packets arrive or
2992  * in-order packets close up the sequence space.
2993  */
2994 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2995 {
2996 	int this_sack;
2997 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2998 	struct tcp_sack_block *swalk = sp+1;
2999 
3000 	/* See if the recent change to the first SACK eats into
3001 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3002 	 */
3003 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3004 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3005 			int i;
3006 
3007 			/* Zap SWALK, by moving every further SACK up by one slot.
3008 			 * Decrease num_sacks.
3009 			 */
3010 			tp->rx_opt.num_sacks--;
3011 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3012 			for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
3013 				sp[i] = sp[i+1];
3014 			continue;
3015 		}
3016 		this_sack++, swalk++;
3017 	}
3018 }
3019 
3020 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3021 {
3022 	__u32 tmp;
3023 
3024 	tmp = sack1->start_seq;
3025 	sack1->start_seq = sack2->start_seq;
3026 	sack2->start_seq = tmp;
3027 
3028 	tmp = sack1->end_seq;
3029 	sack1->end_seq = sack2->end_seq;
3030 	sack2->end_seq = tmp;
3031 }
3032 
3033 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3034 {
3035 	struct tcp_sock *tp = tcp_sk(sk);
3036 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3037 	int cur_sacks = tp->rx_opt.num_sacks;
3038 	int this_sack;
3039 
3040 	if (!cur_sacks)
3041 		goto new_sack;
3042 
3043 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3044 		if (tcp_sack_extend(sp, seq, end_seq)) {
3045 			/* Rotate this_sack to the first one. */
3046 			for (; this_sack>0; this_sack--, sp--)
3047 				tcp_sack_swap(sp, sp-1);
3048 			if (cur_sacks > 1)
3049 				tcp_sack_maybe_coalesce(tp);
3050 			return;
3051 		}
3052 	}
3053 
3054 	/* Could not find an adjacent existing SACK, build a new one,
3055 	 * put it at the front, and shift everyone else down.  We
3056 	 * always know there is at least one SACK present already here.
3057 	 *
3058 	 * If the sack array is full, forget about the last one.
3059 	 */
3060 	if (this_sack >= 4) {
3061 		this_sack--;
3062 		tp->rx_opt.num_sacks--;
3063 		sp--;
3064 	}
3065 	for(; this_sack > 0; this_sack--, sp--)
3066 		*sp = *(sp-1);
3067 
3068 new_sack:
3069 	/* Build the new head SACK, and we're done. */
3070 	sp->start_seq = seq;
3071 	sp->end_seq = end_seq;
3072 	tp->rx_opt.num_sacks++;
3073 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3074 }
3075 
3076 /* RCV.NXT advances, some SACKs should be eaten. */
3077 
3078 static void tcp_sack_remove(struct tcp_sock *tp)
3079 {
3080 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3081 	int num_sacks = tp->rx_opt.num_sacks;
3082 	int this_sack;
3083 
3084 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3085 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3086 		tp->rx_opt.num_sacks = 0;
3087 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3088 		return;
3089 	}
3090 
3091 	for(this_sack = 0; this_sack < num_sacks; ) {
3092 		/* Check if the start of the sack is covered by RCV.NXT. */
3093 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3094 			int i;
3095 
3096 			/* RCV.NXT must cover all the block! */
3097 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3098 
3099 			/* Zap this SACK, by moving forward any other SACKS. */
3100 			for (i=this_sack+1; i < num_sacks; i++)
3101 				tp->selective_acks[i-1] = tp->selective_acks[i];
3102 			num_sacks--;
3103 			continue;
3104 		}
3105 		this_sack++;
3106 		sp++;
3107 	}
3108 	if (num_sacks != tp->rx_opt.num_sacks) {
3109 		tp->rx_opt.num_sacks = num_sacks;
3110 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3111 	}
3112 }
3113 
3114 /* This one checks to see if we can put data from the
3115  * out_of_order queue into the receive_queue.
3116  */
3117 static void tcp_ofo_queue(struct sock *sk)
3118 {
3119 	struct tcp_sock *tp = tcp_sk(sk);
3120 	__u32 dsack_high = tp->rcv_nxt;
3121 	struct sk_buff *skb;
3122 
3123 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3124 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3125 			break;
3126 
3127 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3128 			__u32 dsack = dsack_high;
3129 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3130 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3131 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3132 		}
3133 
3134 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3135 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3136 			__skb_unlink(skb, &tp->out_of_order_queue);
3137 			__kfree_skb(skb);
3138 			continue;
3139 		}
3140 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3141 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3142 			   TCP_SKB_CB(skb)->end_seq);
3143 
3144 		__skb_unlink(skb, &tp->out_of_order_queue);
3145 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3146 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3147 		if(skb->h.th->fin)
3148 			tcp_fin(skb, sk, skb->h.th);
3149 	}
3150 }
3151 
3152 static int tcp_prune_queue(struct sock *sk);
3153 
3154 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3155 {
3156 	struct tcphdr *th = skb->h.th;
3157 	struct tcp_sock *tp = tcp_sk(sk);
3158 	int eaten = -1;
3159 
3160 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3161 		goto drop;
3162 
3163 	__skb_pull(skb, th->doff*4);
3164 
3165 	TCP_ECN_accept_cwr(tp, skb);
3166 
3167 	if (tp->rx_opt.dsack) {
3168 		tp->rx_opt.dsack = 0;
3169 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3170 						    4 - tp->rx_opt.tstamp_ok);
3171 	}
3172 
3173 	/*  Queue data for delivery to the user.
3174 	 *  Packets in sequence go to the receive queue.
3175 	 *  Out of sequence packets to the out_of_order_queue.
3176 	 */
3177 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3178 		if (tcp_receive_window(tp) == 0)
3179 			goto out_of_window;
3180 
3181 		/* Ok. In sequence. In window. */
3182 		if (tp->ucopy.task == current &&
3183 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3184 		    sock_owned_by_user(sk) && !tp->urg_data) {
3185 			int chunk = min_t(unsigned int, skb->len,
3186 							tp->ucopy.len);
3187 
3188 			__set_current_state(TASK_RUNNING);
3189 
3190 			local_bh_enable();
3191 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3192 				tp->ucopy.len -= chunk;
3193 				tp->copied_seq += chunk;
3194 				eaten = (chunk == skb->len && !th->fin);
3195 				tcp_rcv_space_adjust(sk);
3196 			}
3197 			local_bh_disable();
3198 		}
3199 
3200 		if (eaten <= 0) {
3201 queue_and_out:
3202 			if (eaten < 0 &&
3203 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3204 			     !sk_stream_rmem_schedule(sk, skb))) {
3205 				if (tcp_prune_queue(sk) < 0 ||
3206 				    !sk_stream_rmem_schedule(sk, skb))
3207 					goto drop;
3208 			}
3209 			sk_stream_set_owner_r(skb, sk);
3210 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3211 		}
3212 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3213 		if(skb->len)
3214 			tcp_event_data_recv(sk, tp, skb);
3215 		if(th->fin)
3216 			tcp_fin(skb, sk, th);
3217 
3218 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3219 			tcp_ofo_queue(sk);
3220 
3221 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3222 			 * gap in queue is filled.
3223 			 */
3224 			if (skb_queue_empty(&tp->out_of_order_queue))
3225 				inet_csk(sk)->icsk_ack.pingpong = 0;
3226 		}
3227 
3228 		if (tp->rx_opt.num_sacks)
3229 			tcp_sack_remove(tp);
3230 
3231 		tcp_fast_path_check(sk, tp);
3232 
3233 		if (eaten > 0)
3234 			__kfree_skb(skb);
3235 		else if (!sock_flag(sk, SOCK_DEAD))
3236 			sk->sk_data_ready(sk, 0);
3237 		return;
3238 	}
3239 
3240 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3241 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3242 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3243 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3244 
3245 out_of_window:
3246 		tcp_enter_quickack_mode(sk);
3247 		inet_csk_schedule_ack(sk);
3248 drop:
3249 		__kfree_skb(skb);
3250 		return;
3251 	}
3252 
3253 	/* Out of window. F.e. zero window probe. */
3254 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3255 		goto out_of_window;
3256 
3257 	tcp_enter_quickack_mode(sk);
3258 
3259 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3260 		/* Partial packet, seq < rcv_next < end_seq */
3261 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3262 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3263 			   TCP_SKB_CB(skb)->end_seq);
3264 
3265 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3266 
3267 		/* If window is closed, drop tail of packet. But after
3268 		 * remembering D-SACK for its head made in previous line.
3269 		 */
3270 		if (!tcp_receive_window(tp))
3271 			goto out_of_window;
3272 		goto queue_and_out;
3273 	}
3274 
3275 	TCP_ECN_check_ce(tp, skb);
3276 
3277 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3278 	    !sk_stream_rmem_schedule(sk, skb)) {
3279 		if (tcp_prune_queue(sk) < 0 ||
3280 		    !sk_stream_rmem_schedule(sk, skb))
3281 			goto drop;
3282 	}
3283 
3284 	/* Disable header prediction. */
3285 	tp->pred_flags = 0;
3286 	inet_csk_schedule_ack(sk);
3287 
3288 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3289 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3290 
3291 	sk_stream_set_owner_r(skb, sk);
3292 
3293 	if (!skb_peek(&tp->out_of_order_queue)) {
3294 		/* Initial out of order segment, build 1 SACK. */
3295 		if (tp->rx_opt.sack_ok) {
3296 			tp->rx_opt.num_sacks = 1;
3297 			tp->rx_opt.dsack     = 0;
3298 			tp->rx_opt.eff_sacks = 1;
3299 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3300 			tp->selective_acks[0].end_seq =
3301 						TCP_SKB_CB(skb)->end_seq;
3302 		}
3303 		__skb_queue_head(&tp->out_of_order_queue,skb);
3304 	} else {
3305 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3306 		u32 seq = TCP_SKB_CB(skb)->seq;
3307 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3308 
3309 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3310 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3311 
3312 			if (!tp->rx_opt.num_sacks ||
3313 			    tp->selective_acks[0].end_seq != seq)
3314 				goto add_sack;
3315 
3316 			/* Common case: data arrive in order after hole. */
3317 			tp->selective_acks[0].end_seq = end_seq;
3318 			return;
3319 		}
3320 
3321 		/* Find place to insert this segment. */
3322 		do {
3323 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3324 				break;
3325 		} while ((skb1 = skb1->prev) !=
3326 			 (struct sk_buff*)&tp->out_of_order_queue);
3327 
3328 		/* Do skb overlap to previous one? */
3329 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3330 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3331 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3332 				/* All the bits are present. Drop. */
3333 				__kfree_skb(skb);
3334 				tcp_dsack_set(tp, seq, end_seq);
3335 				goto add_sack;
3336 			}
3337 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3338 				/* Partial overlap. */
3339 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3340 			} else {
3341 				skb1 = skb1->prev;
3342 			}
3343 		}
3344 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3345 
3346 		/* And clean segments covered by new one as whole. */
3347 		while ((skb1 = skb->next) !=
3348 		       (struct sk_buff*)&tp->out_of_order_queue &&
3349 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3350 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3351 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3352 			       break;
3353 		       }
3354 		       __skb_unlink(skb1, &tp->out_of_order_queue);
3355 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3356 		       __kfree_skb(skb1);
3357 		}
3358 
3359 add_sack:
3360 		if (tp->rx_opt.sack_ok)
3361 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3362 	}
3363 }
3364 
3365 /* Collapse contiguous sequence of skbs head..tail with
3366  * sequence numbers start..end.
3367  * Segments with FIN/SYN are not collapsed (only because this
3368  * simplifies code)
3369  */
3370 static void
3371 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3372 	     struct sk_buff *head, struct sk_buff *tail,
3373 	     u32 start, u32 end)
3374 {
3375 	struct sk_buff *skb;
3376 
3377 	/* First, check that queue is collapsible and find
3378 	 * the point where collapsing can be useful. */
3379 	for (skb = head; skb != tail; ) {
3380 		/* No new bits? It is possible on ofo queue. */
3381 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3382 			struct sk_buff *next = skb->next;
3383 			__skb_unlink(skb, list);
3384 			__kfree_skb(skb);
3385 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3386 			skb = next;
3387 			continue;
3388 		}
3389 
3390 		/* The first skb to collapse is:
3391 		 * - not SYN/FIN and
3392 		 * - bloated or contains data before "start" or
3393 		 *   overlaps to the next one.
3394 		 */
3395 		if (!skb->h.th->syn && !skb->h.th->fin &&
3396 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3397 		     before(TCP_SKB_CB(skb)->seq, start) ||
3398 		     (skb->next != tail &&
3399 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3400 			break;
3401 
3402 		/* Decided to skip this, advance start seq. */
3403 		start = TCP_SKB_CB(skb)->end_seq;
3404 		skb = skb->next;
3405 	}
3406 	if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3407 		return;
3408 
3409 	while (before(start, end)) {
3410 		struct sk_buff *nskb;
3411 		int header = skb_headroom(skb);
3412 		int copy = SKB_MAX_ORDER(header, 0);
3413 
3414 		/* Too big header? This can happen with IPv6. */
3415 		if (copy < 0)
3416 			return;
3417 		if (end-start < copy)
3418 			copy = end-start;
3419 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3420 		if (!nskb)
3421 			return;
3422 		skb_reserve(nskb, header);
3423 		memcpy(nskb->head, skb->head, header);
3424 		nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3425 		nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3426 		nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3427 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3428 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3429 		__skb_insert(nskb, skb->prev, skb, list);
3430 		sk_stream_set_owner_r(nskb, sk);
3431 
3432 		/* Copy data, releasing collapsed skbs. */
3433 		while (copy > 0) {
3434 			int offset = start - TCP_SKB_CB(skb)->seq;
3435 			int size = TCP_SKB_CB(skb)->end_seq - start;
3436 
3437 			BUG_ON(offset < 0);
3438 			if (size > 0) {
3439 				size = min(copy, size);
3440 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3441 					BUG();
3442 				TCP_SKB_CB(nskb)->end_seq += size;
3443 				copy -= size;
3444 				start += size;
3445 			}
3446 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3447 				struct sk_buff *next = skb->next;
3448 				__skb_unlink(skb, list);
3449 				__kfree_skb(skb);
3450 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3451 				skb = next;
3452 				if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3453 					return;
3454 			}
3455 		}
3456 	}
3457 }
3458 
3459 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3460  * and tcp_collapse() them until all the queue is collapsed.
3461  */
3462 static void tcp_collapse_ofo_queue(struct sock *sk)
3463 {
3464 	struct tcp_sock *tp = tcp_sk(sk);
3465 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3466 	struct sk_buff *head;
3467 	u32 start, end;
3468 
3469 	if (skb == NULL)
3470 		return;
3471 
3472 	start = TCP_SKB_CB(skb)->seq;
3473 	end = TCP_SKB_CB(skb)->end_seq;
3474 	head = skb;
3475 
3476 	for (;;) {
3477 		skb = skb->next;
3478 
3479 		/* Segment is terminated when we see gap or when
3480 		 * we are at the end of all the queue. */
3481 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3482 		    after(TCP_SKB_CB(skb)->seq, end) ||
3483 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3484 			tcp_collapse(sk, &tp->out_of_order_queue,
3485 				     head, skb, start, end);
3486 			head = skb;
3487 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3488 				break;
3489 			/* Start new segment */
3490 			start = TCP_SKB_CB(skb)->seq;
3491 			end = TCP_SKB_CB(skb)->end_seq;
3492 		} else {
3493 			if (before(TCP_SKB_CB(skb)->seq, start))
3494 				start = TCP_SKB_CB(skb)->seq;
3495 			if (after(TCP_SKB_CB(skb)->end_seq, end))
3496 				end = TCP_SKB_CB(skb)->end_seq;
3497 		}
3498 	}
3499 }
3500 
3501 /* Reduce allocated memory if we can, trying to get
3502  * the socket within its memory limits again.
3503  *
3504  * Return less than zero if we should start dropping frames
3505  * until the socket owning process reads some of the data
3506  * to stabilize the situation.
3507  */
3508 static int tcp_prune_queue(struct sock *sk)
3509 {
3510 	struct tcp_sock *tp = tcp_sk(sk);
3511 
3512 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3513 
3514 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3515 
3516 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3517 		tcp_clamp_window(sk, tp);
3518 	else if (tcp_memory_pressure)
3519 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3520 
3521 	tcp_collapse_ofo_queue(sk);
3522 	tcp_collapse(sk, &sk->sk_receive_queue,
3523 		     sk->sk_receive_queue.next,
3524 		     (struct sk_buff*)&sk->sk_receive_queue,
3525 		     tp->copied_seq, tp->rcv_nxt);
3526 	sk_stream_mem_reclaim(sk);
3527 
3528 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3529 		return 0;
3530 
3531 	/* Collapsing did not help, destructive actions follow.
3532 	 * This must not ever occur. */
3533 
3534 	/* First, purge the out_of_order queue. */
3535 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3536 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3537 		__skb_queue_purge(&tp->out_of_order_queue);
3538 
3539 		/* Reset SACK state.  A conforming SACK implementation will
3540 		 * do the same at a timeout based retransmit.  When a connection
3541 		 * is in a sad state like this, we care only about integrity
3542 		 * of the connection not performance.
3543 		 */
3544 		if (tp->rx_opt.sack_ok)
3545 			tcp_sack_reset(&tp->rx_opt);
3546 		sk_stream_mem_reclaim(sk);
3547 	}
3548 
3549 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3550 		return 0;
3551 
3552 	/* If we are really being abused, tell the caller to silently
3553 	 * drop receive data on the floor.  It will get retransmitted
3554 	 * and hopefully then we'll have sufficient space.
3555 	 */
3556 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3557 
3558 	/* Massive buffer overcommit. */
3559 	tp->pred_flags = 0;
3560 	return -1;
3561 }
3562 
3563 
3564 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3565  * As additional protections, we do not touch cwnd in retransmission phases,
3566  * and if application hit its sndbuf limit recently.
3567  */
3568 void tcp_cwnd_application_limited(struct sock *sk)
3569 {
3570 	struct tcp_sock *tp = tcp_sk(sk);
3571 
3572 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3573 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3574 		/* Limited by application or receiver window. */
3575 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3576 		u32 win_used = max(tp->snd_cwnd_used, init_win);
3577 		if (win_used < tp->snd_cwnd) {
3578 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3579 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3580 		}
3581 		tp->snd_cwnd_used = 0;
3582 	}
3583 	tp->snd_cwnd_stamp = tcp_time_stamp;
3584 }
3585 
3586 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3587 {
3588 	/* If the user specified a specific send buffer setting, do
3589 	 * not modify it.
3590 	 */
3591 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3592 		return 0;
3593 
3594 	/* If we are under global TCP memory pressure, do not expand.  */
3595 	if (tcp_memory_pressure)
3596 		return 0;
3597 
3598 	/* If we are under soft global TCP memory pressure, do not expand.  */
3599 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3600 		return 0;
3601 
3602 	/* If we filled the congestion window, do not expand.  */
3603 	if (tp->packets_out >= tp->snd_cwnd)
3604 		return 0;
3605 
3606 	return 1;
3607 }
3608 
3609 /* When incoming ACK allowed to free some skb from write_queue,
3610  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3611  * on the exit from tcp input handler.
3612  *
3613  * PROBLEM: sndbuf expansion does not work well with largesend.
3614  */
3615 static void tcp_new_space(struct sock *sk)
3616 {
3617 	struct tcp_sock *tp = tcp_sk(sk);
3618 
3619 	if (tcp_should_expand_sndbuf(sk, tp)) {
3620  		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3621 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3622 		    demanded = max_t(unsigned int, tp->snd_cwnd,
3623 						   tp->reordering + 1);
3624 		sndmem *= 2*demanded;
3625 		if (sndmem > sk->sk_sndbuf)
3626 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3627 		tp->snd_cwnd_stamp = tcp_time_stamp;
3628 	}
3629 
3630 	sk->sk_write_space(sk);
3631 }
3632 
3633 static void tcp_check_space(struct sock *sk)
3634 {
3635 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3636 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3637 		if (sk->sk_socket &&
3638 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3639 			tcp_new_space(sk);
3640 	}
3641 }
3642 
3643 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3644 {
3645 	tcp_push_pending_frames(sk, tp);
3646 	tcp_check_space(sk);
3647 }
3648 
3649 /*
3650  * Check if sending an ack is needed.
3651  */
3652 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3653 {
3654 	struct tcp_sock *tp = tcp_sk(sk);
3655 
3656 	    /* More than one full frame received... */
3657 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3658 	     /* ... and right edge of window advances far enough.
3659 	      * (tcp_recvmsg() will send ACK otherwise). Or...
3660 	      */
3661 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3662 	    /* We ACK each frame or... */
3663 	    tcp_in_quickack_mode(sk) ||
3664 	    /* We have out of order data. */
3665 	    (ofo_possible &&
3666 	     skb_peek(&tp->out_of_order_queue))) {
3667 		/* Then ack it now */
3668 		tcp_send_ack(sk);
3669 	} else {
3670 		/* Else, send delayed ack. */
3671 		tcp_send_delayed_ack(sk);
3672 	}
3673 }
3674 
3675 static inline void tcp_ack_snd_check(struct sock *sk)
3676 {
3677 	if (!inet_csk_ack_scheduled(sk)) {
3678 		/* We sent a data segment already. */
3679 		return;
3680 	}
3681 	__tcp_ack_snd_check(sk, 1);
3682 }
3683 
3684 /*
3685  *	This routine is only called when we have urgent data
3686  *	signaled. Its the 'slow' part of tcp_urg. It could be
3687  *	moved inline now as tcp_urg is only called from one
3688  *	place. We handle URGent data wrong. We have to - as
3689  *	BSD still doesn't use the correction from RFC961.
3690  *	For 1003.1g we should support a new option TCP_STDURG to permit
3691  *	either form (or just set the sysctl tcp_stdurg).
3692  */
3693 
3694 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3695 {
3696 	struct tcp_sock *tp = tcp_sk(sk);
3697 	u32 ptr = ntohs(th->urg_ptr);
3698 
3699 	if (ptr && !sysctl_tcp_stdurg)
3700 		ptr--;
3701 	ptr += ntohl(th->seq);
3702 
3703 	/* Ignore urgent data that we've already seen and read. */
3704 	if (after(tp->copied_seq, ptr))
3705 		return;
3706 
3707 	/* Do not replay urg ptr.
3708 	 *
3709 	 * NOTE: interesting situation not covered by specs.
3710 	 * Misbehaving sender may send urg ptr, pointing to segment,
3711 	 * which we already have in ofo queue. We are not able to fetch
3712 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3713 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3714 	 * situations. But it is worth to think about possibility of some
3715 	 * DoSes using some hypothetical application level deadlock.
3716 	 */
3717 	if (before(ptr, tp->rcv_nxt))
3718 		return;
3719 
3720 	/* Do we already have a newer (or duplicate) urgent pointer? */
3721 	if (tp->urg_data && !after(ptr, tp->urg_seq))
3722 		return;
3723 
3724 	/* Tell the world about our new urgent pointer. */
3725 	sk_send_sigurg(sk);
3726 
3727 	/* We may be adding urgent data when the last byte read was
3728 	 * urgent. To do this requires some care. We cannot just ignore
3729 	 * tp->copied_seq since we would read the last urgent byte again
3730 	 * as data, nor can we alter copied_seq until this data arrives
3731 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3732 	 *
3733 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3734 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3735 	 * and expect that both A and B disappear from stream. This is _wrong_.
3736 	 * Though this happens in BSD with high probability, this is occasional.
3737 	 * Any application relying on this is buggy. Note also, that fix "works"
3738 	 * only in this artificial test. Insert some normal data between A and B and we will
3739 	 * decline of BSD again. Verdict: it is better to remove to trap
3740 	 * buggy users.
3741 	 */
3742 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3743 	    !sock_flag(sk, SOCK_URGINLINE) &&
3744 	    tp->copied_seq != tp->rcv_nxt) {
3745 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3746 		tp->copied_seq++;
3747 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3748 			__skb_unlink(skb, &sk->sk_receive_queue);
3749 			__kfree_skb(skb);
3750 		}
3751 	}
3752 
3753 	tp->urg_data   = TCP_URG_NOTYET;
3754 	tp->urg_seq    = ptr;
3755 
3756 	/* Disable header prediction. */
3757 	tp->pred_flags = 0;
3758 }
3759 
3760 /* This is the 'fast' part of urgent handling. */
3761 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3762 {
3763 	struct tcp_sock *tp = tcp_sk(sk);
3764 
3765 	/* Check if we get a new urgent pointer - normally not. */
3766 	if (th->urg)
3767 		tcp_check_urg(sk,th);
3768 
3769 	/* Do we wait for any urgent data? - normally not... */
3770 	if (tp->urg_data == TCP_URG_NOTYET) {
3771 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3772 			  th->syn;
3773 
3774 		/* Is the urgent pointer pointing into this packet? */
3775 		if (ptr < skb->len) {
3776 			u8 tmp;
3777 			if (skb_copy_bits(skb, ptr, &tmp, 1))
3778 				BUG();
3779 			tp->urg_data = TCP_URG_VALID | tmp;
3780 			if (!sock_flag(sk, SOCK_DEAD))
3781 				sk->sk_data_ready(sk, 0);
3782 		}
3783 	}
3784 }
3785 
3786 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3787 {
3788 	struct tcp_sock *tp = tcp_sk(sk);
3789 	int chunk = skb->len - hlen;
3790 	int err;
3791 
3792 	local_bh_enable();
3793 	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3794 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3795 	else
3796 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3797 						       tp->ucopy.iov);
3798 
3799 	if (!err) {
3800 		tp->ucopy.len -= chunk;
3801 		tp->copied_seq += chunk;
3802 		tcp_rcv_space_adjust(sk);
3803 	}
3804 
3805 	local_bh_disable();
3806 	return err;
3807 }
3808 
3809 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3810 {
3811 	__sum16 result;
3812 
3813 	if (sock_owned_by_user(sk)) {
3814 		local_bh_enable();
3815 		result = __tcp_checksum_complete(skb);
3816 		local_bh_disable();
3817 	} else {
3818 		result = __tcp_checksum_complete(skb);
3819 	}
3820 	return result;
3821 }
3822 
3823 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3824 {
3825 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3826 		__tcp_checksum_complete_user(sk, skb);
3827 }
3828 
3829 #ifdef CONFIG_NET_DMA
3830 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3831 {
3832 	struct tcp_sock *tp = tcp_sk(sk);
3833 	int chunk = skb->len - hlen;
3834 	int dma_cookie;
3835 	int copied_early = 0;
3836 
3837 	if (tp->ucopy.wakeup)
3838           	return 0;
3839 
3840 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3841 		tp->ucopy.dma_chan = get_softnet_dma();
3842 
3843 	if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3844 
3845 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3846 			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3847 
3848 		if (dma_cookie < 0)
3849 			goto out;
3850 
3851 		tp->ucopy.dma_cookie = dma_cookie;
3852 		copied_early = 1;
3853 
3854 		tp->ucopy.len -= chunk;
3855 		tp->copied_seq += chunk;
3856 		tcp_rcv_space_adjust(sk);
3857 
3858 		if ((tp->ucopy.len == 0) ||
3859 		    (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3860 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3861 			tp->ucopy.wakeup = 1;
3862 			sk->sk_data_ready(sk, 0);
3863 		}
3864 	} else if (chunk > 0) {
3865 		tp->ucopy.wakeup = 1;
3866 		sk->sk_data_ready(sk, 0);
3867 	}
3868 out:
3869 	return copied_early;
3870 }
3871 #endif /* CONFIG_NET_DMA */
3872 
3873 /*
3874  *	TCP receive function for the ESTABLISHED state.
3875  *
3876  *	It is split into a fast path and a slow path. The fast path is
3877  * 	disabled when:
3878  *	- A zero window was announced from us - zero window probing
3879  *        is only handled properly in the slow path.
3880  *	- Out of order segments arrived.
3881  *	- Urgent data is expected.
3882  *	- There is no buffer space left
3883  *	- Unexpected TCP flags/window values/header lengths are received
3884  *	  (detected by checking the TCP header against pred_flags)
3885  *	- Data is sent in both directions. Fast path only supports pure senders
3886  *	  or pure receivers (this means either the sequence number or the ack
3887  *	  value must stay constant)
3888  *	- Unexpected TCP option.
3889  *
3890  *	When these conditions are not satisfied it drops into a standard
3891  *	receive procedure patterned after RFC793 to handle all cases.
3892  *	The first three cases are guaranteed by proper pred_flags setting,
3893  *	the rest is checked inline. Fast processing is turned on in
3894  *	tcp_data_queue when everything is OK.
3895  */
3896 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3897 			struct tcphdr *th, unsigned len)
3898 {
3899 	struct tcp_sock *tp = tcp_sk(sk);
3900 
3901 	/*
3902 	 *	Header prediction.
3903 	 *	The code loosely follows the one in the famous
3904 	 *	"30 instruction TCP receive" Van Jacobson mail.
3905 	 *
3906 	 *	Van's trick is to deposit buffers into socket queue
3907 	 *	on a device interrupt, to call tcp_recv function
3908 	 *	on the receive process context and checksum and copy
3909 	 *	the buffer to user space. smart...
3910 	 *
3911 	 *	Our current scheme is not silly either but we take the
3912 	 *	extra cost of the net_bh soft interrupt processing...
3913 	 *	We do checksum and copy also but from device to kernel.
3914 	 */
3915 
3916 	tp->rx_opt.saw_tstamp = 0;
3917 
3918 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
3919 	 *	if header_prediction is to be made
3920 	 *	'S' will always be tp->tcp_header_len >> 2
3921 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
3922 	 *  turn it off	(when there are holes in the receive
3923 	 *	 space for instance)
3924 	 *	PSH flag is ignored.
3925 	 */
3926 
3927 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3928 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3929 		int tcp_header_len = tp->tcp_header_len;
3930 
3931 		/* Timestamp header prediction: tcp_header_len
3932 		 * is automatically equal to th->doff*4 due to pred_flags
3933 		 * match.
3934 		 */
3935 
3936 		/* Check timestamp */
3937 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3938 			__be32 *ptr = (__be32 *)(th + 1);
3939 
3940 			/* No? Slow path! */
3941 			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3942 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3943 				goto slow_path;
3944 
3945 			tp->rx_opt.saw_tstamp = 1;
3946 			++ptr;
3947 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3948 			++ptr;
3949 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3950 
3951 			/* If PAWS failed, check it more carefully in slow path */
3952 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3953 				goto slow_path;
3954 
3955 			/* DO NOT update ts_recent here, if checksum fails
3956 			 * and timestamp was corrupted part, it will result
3957 			 * in a hung connection since we will drop all
3958 			 * future packets due to the PAWS test.
3959 			 */
3960 		}
3961 
3962 		if (len <= tcp_header_len) {
3963 			/* Bulk data transfer: sender */
3964 			if (len == tcp_header_len) {
3965 				/* Predicted packet is in window by definition.
3966 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3967 				 * Hence, check seq<=rcv_wup reduces to:
3968 				 */
3969 				if (tcp_header_len ==
3970 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3971 				    tp->rcv_nxt == tp->rcv_wup)
3972 					tcp_store_ts_recent(tp);
3973 
3974 				/* We know that such packets are checksummed
3975 				 * on entry.
3976 				 */
3977 				tcp_ack(sk, skb, 0);
3978 				__kfree_skb(skb);
3979 				tcp_data_snd_check(sk, tp);
3980 				return 0;
3981 			} else { /* Header too small */
3982 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
3983 				goto discard;
3984 			}
3985 		} else {
3986 			int eaten = 0;
3987 			int copied_early = 0;
3988 
3989 			if (tp->copied_seq == tp->rcv_nxt &&
3990 			    len - tcp_header_len <= tp->ucopy.len) {
3991 #ifdef CONFIG_NET_DMA
3992 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
3993 					copied_early = 1;
3994 					eaten = 1;
3995 				}
3996 #endif
3997 				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
3998 					__set_current_state(TASK_RUNNING);
3999 
4000 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4001 						eaten = 1;
4002 				}
4003 				if (eaten) {
4004 					/* Predicted packet is in window by definition.
4005 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4006 					 * Hence, check seq<=rcv_wup reduces to:
4007 					 */
4008 					if (tcp_header_len ==
4009 					    (sizeof(struct tcphdr) +
4010 					     TCPOLEN_TSTAMP_ALIGNED) &&
4011 					    tp->rcv_nxt == tp->rcv_wup)
4012 						tcp_store_ts_recent(tp);
4013 
4014 					tcp_rcv_rtt_measure_ts(sk, skb);
4015 
4016 					__skb_pull(skb, tcp_header_len);
4017 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4018 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4019 				}
4020 				if (copied_early)
4021 					tcp_cleanup_rbuf(sk, skb->len);
4022 			}
4023 			if (!eaten) {
4024 				if (tcp_checksum_complete_user(sk, skb))
4025 					goto csum_error;
4026 
4027 				/* Predicted packet is in window by definition.
4028 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4029 				 * Hence, check seq<=rcv_wup reduces to:
4030 				 */
4031 				if (tcp_header_len ==
4032 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4033 				    tp->rcv_nxt == tp->rcv_wup)
4034 					tcp_store_ts_recent(tp);
4035 
4036 				tcp_rcv_rtt_measure_ts(sk, skb);
4037 
4038 				if ((int)skb->truesize > sk->sk_forward_alloc)
4039 					goto step5;
4040 
4041 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4042 
4043 				/* Bulk data transfer: receiver */
4044 				__skb_pull(skb,tcp_header_len);
4045 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4046 				sk_stream_set_owner_r(skb, sk);
4047 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4048 			}
4049 
4050 			tcp_event_data_recv(sk, tp, skb);
4051 
4052 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4053 				/* Well, only one small jumplet in fast path... */
4054 				tcp_ack(sk, skb, FLAG_DATA);
4055 				tcp_data_snd_check(sk, tp);
4056 				if (!inet_csk_ack_scheduled(sk))
4057 					goto no_ack;
4058 			}
4059 
4060 			__tcp_ack_snd_check(sk, 0);
4061 no_ack:
4062 #ifdef CONFIG_NET_DMA
4063 			if (copied_early)
4064 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4065 			else
4066 #endif
4067 			if (eaten)
4068 				__kfree_skb(skb);
4069 			else
4070 				sk->sk_data_ready(sk, 0);
4071 			return 0;
4072 		}
4073 	}
4074 
4075 slow_path:
4076 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4077 		goto csum_error;
4078 
4079 	/*
4080 	 * RFC1323: H1. Apply PAWS check first.
4081 	 */
4082 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4083 	    tcp_paws_discard(sk, skb)) {
4084 		if (!th->rst) {
4085 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4086 			tcp_send_dupack(sk, skb);
4087 			goto discard;
4088 		}
4089 		/* Resets are accepted even if PAWS failed.
4090 
4091 		   ts_recent update must be made after we are sure
4092 		   that the packet is in window.
4093 		 */
4094 	}
4095 
4096 	/*
4097 	 *	Standard slow path.
4098 	 */
4099 
4100 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4101 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4102 		 * (RST) segments are validated by checking their SEQ-fields."
4103 		 * And page 69: "If an incoming segment is not acceptable,
4104 		 * an acknowledgment should be sent in reply (unless the RST bit
4105 		 * is set, if so drop the segment and return)".
4106 		 */
4107 		if (!th->rst)
4108 			tcp_send_dupack(sk, skb);
4109 		goto discard;
4110 	}
4111 
4112 	if(th->rst) {
4113 		tcp_reset(sk);
4114 		goto discard;
4115 	}
4116 
4117 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4118 
4119 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4120 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4121 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4122 		tcp_reset(sk);
4123 		return 1;
4124 	}
4125 
4126 step5:
4127 	if(th->ack)
4128 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4129 
4130 	tcp_rcv_rtt_measure_ts(sk, skb);
4131 
4132 	/* Process urgent data. */
4133 	tcp_urg(sk, skb, th);
4134 
4135 	/* step 7: process the segment text */
4136 	tcp_data_queue(sk, skb);
4137 
4138 	tcp_data_snd_check(sk, tp);
4139 	tcp_ack_snd_check(sk);
4140 	return 0;
4141 
4142 csum_error:
4143 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4144 
4145 discard:
4146 	__kfree_skb(skb);
4147 	return 0;
4148 }
4149 
4150 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4151 					 struct tcphdr *th, unsigned len)
4152 {
4153 	struct tcp_sock *tp = tcp_sk(sk);
4154 	struct inet_connection_sock *icsk = inet_csk(sk);
4155 	int saved_clamp = tp->rx_opt.mss_clamp;
4156 
4157 	tcp_parse_options(skb, &tp->rx_opt, 0);
4158 
4159 	if (th->ack) {
4160 		/* rfc793:
4161 		 * "If the state is SYN-SENT then
4162 		 *    first check the ACK bit
4163 		 *      If the ACK bit is set
4164 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4165 		 *        a reset (unless the RST bit is set, if so drop
4166 		 *        the segment and return)"
4167 		 *
4168 		 *  We do not send data with SYN, so that RFC-correct
4169 		 *  test reduces to:
4170 		 */
4171 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4172 			goto reset_and_undo;
4173 
4174 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4175 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4176 			     tcp_time_stamp)) {
4177 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4178 			goto reset_and_undo;
4179 		}
4180 
4181 		/* Now ACK is acceptable.
4182 		 *
4183 		 * "If the RST bit is set
4184 		 *    If the ACK was acceptable then signal the user "error:
4185 		 *    connection reset", drop the segment, enter CLOSED state,
4186 		 *    delete TCB, and return."
4187 		 */
4188 
4189 		if (th->rst) {
4190 			tcp_reset(sk);
4191 			goto discard;
4192 		}
4193 
4194 		/* rfc793:
4195 		 *   "fifth, if neither of the SYN or RST bits is set then
4196 		 *    drop the segment and return."
4197 		 *
4198 		 *    See note below!
4199 		 *                                        --ANK(990513)
4200 		 */
4201 		if (!th->syn)
4202 			goto discard_and_undo;
4203 
4204 		/* rfc793:
4205 		 *   "If the SYN bit is on ...
4206 		 *    are acceptable then ...
4207 		 *    (our SYN has been ACKed), change the connection
4208 		 *    state to ESTABLISHED..."
4209 		 */
4210 
4211 		TCP_ECN_rcv_synack(tp, th);
4212 
4213 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4214 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4215 
4216 		/* Ok.. it's good. Set up sequence numbers and
4217 		 * move to established.
4218 		 */
4219 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4220 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4221 
4222 		/* RFC1323: The window in SYN & SYN/ACK segments is
4223 		 * never scaled.
4224 		 */
4225 		tp->snd_wnd = ntohs(th->window);
4226 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4227 
4228 		if (!tp->rx_opt.wscale_ok) {
4229 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4230 			tp->window_clamp = min(tp->window_clamp, 65535U);
4231 		}
4232 
4233 		if (tp->rx_opt.saw_tstamp) {
4234 			tp->rx_opt.tstamp_ok	   = 1;
4235 			tp->tcp_header_len =
4236 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4237 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4238 			tcp_store_ts_recent(tp);
4239 		} else {
4240 			tp->tcp_header_len = sizeof(struct tcphdr);
4241 		}
4242 
4243 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4244 			tp->rx_opt.sack_ok |= 2;
4245 
4246 		tcp_mtup_init(sk);
4247 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4248 		tcp_initialize_rcv_mss(sk);
4249 
4250 		/* Remember, tcp_poll() does not lock socket!
4251 		 * Change state from SYN-SENT only after copied_seq
4252 		 * is initialized. */
4253 		tp->copied_seq = tp->rcv_nxt;
4254 		smp_mb();
4255 		tcp_set_state(sk, TCP_ESTABLISHED);
4256 
4257 		security_inet_conn_established(sk, skb);
4258 
4259 		/* Make sure socket is routed, for correct metrics.  */
4260 		icsk->icsk_af_ops->rebuild_header(sk);
4261 
4262 		tcp_init_metrics(sk);
4263 
4264 		tcp_init_congestion_control(sk);
4265 
4266 		/* Prevent spurious tcp_cwnd_restart() on first data
4267 		 * packet.
4268 		 */
4269 		tp->lsndtime = tcp_time_stamp;
4270 
4271 		tcp_init_buffer_space(sk);
4272 
4273 		if (sock_flag(sk, SOCK_KEEPOPEN))
4274 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4275 
4276 		if (!tp->rx_opt.snd_wscale)
4277 			__tcp_fast_path_on(tp, tp->snd_wnd);
4278 		else
4279 			tp->pred_flags = 0;
4280 
4281 		if (!sock_flag(sk, SOCK_DEAD)) {
4282 			sk->sk_state_change(sk);
4283 			sk_wake_async(sk, 0, POLL_OUT);
4284 		}
4285 
4286 		if (sk->sk_write_pending ||
4287 		    icsk->icsk_accept_queue.rskq_defer_accept ||
4288 		    icsk->icsk_ack.pingpong) {
4289 			/* Save one ACK. Data will be ready after
4290 			 * several ticks, if write_pending is set.
4291 			 *
4292 			 * It may be deleted, but with this feature tcpdumps
4293 			 * look so _wonderfully_ clever, that I was not able
4294 			 * to stand against the temptation 8)     --ANK
4295 			 */
4296 			inet_csk_schedule_ack(sk);
4297 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4298 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4299 			tcp_incr_quickack(sk);
4300 			tcp_enter_quickack_mode(sk);
4301 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4302 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4303 
4304 discard:
4305 			__kfree_skb(skb);
4306 			return 0;
4307 		} else {
4308 			tcp_send_ack(sk);
4309 		}
4310 		return -1;
4311 	}
4312 
4313 	/* No ACK in the segment */
4314 
4315 	if (th->rst) {
4316 		/* rfc793:
4317 		 * "If the RST bit is set
4318 		 *
4319 		 *      Otherwise (no ACK) drop the segment and return."
4320 		 */
4321 
4322 		goto discard_and_undo;
4323 	}
4324 
4325 	/* PAWS check. */
4326 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4327 		goto discard_and_undo;
4328 
4329 	if (th->syn) {
4330 		/* We see SYN without ACK. It is attempt of
4331 		 * simultaneous connect with crossed SYNs.
4332 		 * Particularly, it can be connect to self.
4333 		 */
4334 		tcp_set_state(sk, TCP_SYN_RECV);
4335 
4336 		if (tp->rx_opt.saw_tstamp) {
4337 			tp->rx_opt.tstamp_ok = 1;
4338 			tcp_store_ts_recent(tp);
4339 			tp->tcp_header_len =
4340 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4341 		} else {
4342 			tp->tcp_header_len = sizeof(struct tcphdr);
4343 		}
4344 
4345 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4346 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4347 
4348 		/* RFC1323: The window in SYN & SYN/ACK segments is
4349 		 * never scaled.
4350 		 */
4351 		tp->snd_wnd    = ntohs(th->window);
4352 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4353 		tp->max_window = tp->snd_wnd;
4354 
4355 		TCP_ECN_rcv_syn(tp, th);
4356 
4357 		tcp_mtup_init(sk);
4358 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4359 		tcp_initialize_rcv_mss(sk);
4360 
4361 
4362 		tcp_send_synack(sk);
4363 #if 0
4364 		/* Note, we could accept data and URG from this segment.
4365 		 * There are no obstacles to make this.
4366 		 *
4367 		 * However, if we ignore data in ACKless segments sometimes,
4368 		 * we have no reasons to accept it sometimes.
4369 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4370 		 * is not flawless. So, discard packet for sanity.
4371 		 * Uncomment this return to process the data.
4372 		 */
4373 		return -1;
4374 #else
4375 		goto discard;
4376 #endif
4377 	}
4378 	/* "fifth, if neither of the SYN or RST bits is set then
4379 	 * drop the segment and return."
4380 	 */
4381 
4382 discard_and_undo:
4383 	tcp_clear_options(&tp->rx_opt);
4384 	tp->rx_opt.mss_clamp = saved_clamp;
4385 	goto discard;
4386 
4387 reset_and_undo:
4388 	tcp_clear_options(&tp->rx_opt);
4389 	tp->rx_opt.mss_clamp = saved_clamp;
4390 	return 1;
4391 }
4392 
4393 
4394 /*
4395  *	This function implements the receiving procedure of RFC 793 for
4396  *	all states except ESTABLISHED and TIME_WAIT.
4397  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4398  *	address independent.
4399  */
4400 
4401 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4402 			  struct tcphdr *th, unsigned len)
4403 {
4404 	struct tcp_sock *tp = tcp_sk(sk);
4405 	struct inet_connection_sock *icsk = inet_csk(sk);
4406 	int queued = 0;
4407 
4408 	tp->rx_opt.saw_tstamp = 0;
4409 
4410 	switch (sk->sk_state) {
4411 	case TCP_CLOSE:
4412 		goto discard;
4413 
4414 	case TCP_LISTEN:
4415 		if(th->ack)
4416 			return 1;
4417 
4418 		if(th->rst)
4419 			goto discard;
4420 
4421 		if(th->syn) {
4422 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4423 				return 1;
4424 
4425 			/* Now we have several options: In theory there is
4426 			 * nothing else in the frame. KA9Q has an option to
4427 			 * send data with the syn, BSD accepts data with the
4428 			 * syn up to the [to be] advertised window and
4429 			 * Solaris 2.1 gives you a protocol error. For now
4430 			 * we just ignore it, that fits the spec precisely
4431 			 * and avoids incompatibilities. It would be nice in
4432 			 * future to drop through and process the data.
4433 			 *
4434 			 * Now that TTCP is starting to be used we ought to
4435 			 * queue this data.
4436 			 * But, this leaves one open to an easy denial of
4437 		 	 * service attack, and SYN cookies can't defend
4438 			 * against this problem. So, we drop the data
4439 			 * in the interest of security over speed unless
4440 			 * it's still in use.
4441 			 */
4442 			kfree_skb(skb);
4443 			return 0;
4444 		}
4445 		goto discard;
4446 
4447 	case TCP_SYN_SENT:
4448 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4449 		if (queued >= 0)
4450 			return queued;
4451 
4452 		/* Do step6 onward by hand. */
4453 		tcp_urg(sk, skb, th);
4454 		__kfree_skb(skb);
4455 		tcp_data_snd_check(sk, tp);
4456 		return 0;
4457 	}
4458 
4459 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4460 	    tcp_paws_discard(sk, skb)) {
4461 		if (!th->rst) {
4462 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4463 			tcp_send_dupack(sk, skb);
4464 			goto discard;
4465 		}
4466 		/* Reset is accepted even if it did not pass PAWS. */
4467 	}
4468 
4469 	/* step 1: check sequence number */
4470 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4471 		if (!th->rst)
4472 			tcp_send_dupack(sk, skb);
4473 		goto discard;
4474 	}
4475 
4476 	/* step 2: check RST bit */
4477 	if(th->rst) {
4478 		tcp_reset(sk);
4479 		goto discard;
4480 	}
4481 
4482 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4483 
4484 	/* step 3: check security and precedence [ignored] */
4485 
4486 	/*	step 4:
4487 	 *
4488 	 *	Check for a SYN in window.
4489 	 */
4490 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4491 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4492 		tcp_reset(sk);
4493 		return 1;
4494 	}
4495 
4496 	/* step 5: check the ACK field */
4497 	if (th->ack) {
4498 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4499 
4500 		switch(sk->sk_state) {
4501 		case TCP_SYN_RECV:
4502 			if (acceptable) {
4503 				tp->copied_seq = tp->rcv_nxt;
4504 				smp_mb();
4505 				tcp_set_state(sk, TCP_ESTABLISHED);
4506 				sk->sk_state_change(sk);
4507 
4508 				/* Note, that this wakeup is only for marginal
4509 				 * crossed SYN case. Passively open sockets
4510 				 * are not waked up, because sk->sk_sleep ==
4511 				 * NULL and sk->sk_socket == NULL.
4512 				 */
4513 				if (sk->sk_socket) {
4514 					sk_wake_async(sk,0,POLL_OUT);
4515 				}
4516 
4517 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4518 				tp->snd_wnd = ntohs(th->window) <<
4519 					      tp->rx_opt.snd_wscale;
4520 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4521 					    TCP_SKB_CB(skb)->seq);
4522 
4523 				/* tcp_ack considers this ACK as duplicate
4524 				 * and does not calculate rtt.
4525 				 * Fix it at least with timestamps.
4526 				 */
4527 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4528 				    !tp->srtt)
4529 					tcp_ack_saw_tstamp(sk, 0);
4530 
4531 				if (tp->rx_opt.tstamp_ok)
4532 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4533 
4534 				/* Make sure socket is routed, for
4535 				 * correct metrics.
4536 				 */
4537 				icsk->icsk_af_ops->rebuild_header(sk);
4538 
4539 				tcp_init_metrics(sk);
4540 
4541 				tcp_init_congestion_control(sk);
4542 
4543 				/* Prevent spurious tcp_cwnd_restart() on
4544 				 * first data packet.
4545 				 */
4546 				tp->lsndtime = tcp_time_stamp;
4547 
4548 				tcp_mtup_init(sk);
4549 				tcp_initialize_rcv_mss(sk);
4550 				tcp_init_buffer_space(sk);
4551 				tcp_fast_path_on(tp);
4552 			} else {
4553 				return 1;
4554 			}
4555 			break;
4556 
4557 		case TCP_FIN_WAIT1:
4558 			if (tp->snd_una == tp->write_seq) {
4559 				tcp_set_state(sk, TCP_FIN_WAIT2);
4560 				sk->sk_shutdown |= SEND_SHUTDOWN;
4561 				dst_confirm(sk->sk_dst_cache);
4562 
4563 				if (!sock_flag(sk, SOCK_DEAD))
4564 					/* Wake up lingering close() */
4565 					sk->sk_state_change(sk);
4566 				else {
4567 					int tmo;
4568 
4569 					if (tp->linger2 < 0 ||
4570 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4571 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4572 						tcp_done(sk);
4573 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4574 						return 1;
4575 					}
4576 
4577 					tmo = tcp_fin_time(sk);
4578 					if (tmo > TCP_TIMEWAIT_LEN) {
4579 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4580 					} else if (th->fin || sock_owned_by_user(sk)) {
4581 						/* Bad case. We could lose such FIN otherwise.
4582 						 * It is not a big problem, but it looks confusing
4583 						 * and not so rare event. We still can lose it now,
4584 						 * if it spins in bh_lock_sock(), but it is really
4585 						 * marginal case.
4586 						 */
4587 						inet_csk_reset_keepalive_timer(sk, tmo);
4588 					} else {
4589 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4590 						goto discard;
4591 					}
4592 				}
4593 			}
4594 			break;
4595 
4596 		case TCP_CLOSING:
4597 			if (tp->snd_una == tp->write_seq) {
4598 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4599 				goto discard;
4600 			}
4601 			break;
4602 
4603 		case TCP_LAST_ACK:
4604 			if (tp->snd_una == tp->write_seq) {
4605 				tcp_update_metrics(sk);
4606 				tcp_done(sk);
4607 				goto discard;
4608 			}
4609 			break;
4610 		}
4611 	} else
4612 		goto discard;
4613 
4614 	/* step 6: check the URG bit */
4615 	tcp_urg(sk, skb, th);
4616 
4617 	/* step 7: process the segment text */
4618 	switch (sk->sk_state) {
4619 	case TCP_CLOSE_WAIT:
4620 	case TCP_CLOSING:
4621 	case TCP_LAST_ACK:
4622 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4623 			break;
4624 	case TCP_FIN_WAIT1:
4625 	case TCP_FIN_WAIT2:
4626 		/* RFC 793 says to queue data in these states,
4627 		 * RFC 1122 says we MUST send a reset.
4628 		 * BSD 4.4 also does reset.
4629 		 */
4630 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4631 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4632 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4633 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4634 				tcp_reset(sk);
4635 				return 1;
4636 			}
4637 		}
4638 		/* Fall through */
4639 	case TCP_ESTABLISHED:
4640 		tcp_data_queue(sk, skb);
4641 		queued = 1;
4642 		break;
4643 	}
4644 
4645 	/* tcp_data could move socket to TIME-WAIT */
4646 	if (sk->sk_state != TCP_CLOSE) {
4647 		tcp_data_snd_check(sk, tp);
4648 		tcp_ack_snd_check(sk);
4649 	}
4650 
4651 	if (!queued) {
4652 discard:
4653 		__kfree_skb(skb);
4654 	}
4655 	return 0;
4656 }
4657 
4658 EXPORT_SYMBOL(sysctl_tcp_ecn);
4659 EXPORT_SYMBOL(sysctl_tcp_reordering);
4660 EXPORT_SYMBOL(tcp_parse_options);
4661 EXPORT_SYMBOL(tcp_rcv_established);
4662 EXPORT_SYMBOL(tcp_rcv_state_process);
4663 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
4664