xref: /linux/net/ipv4/tcp_input.c (revision 860a9bed265146b10311bcadbbcef59c3af4454d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
205 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
206 				    unsigned int len)
207 {
208 	struct net_device *dev;
209 
210 	rcu_read_lock();
211 	dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
212 	if (!dev || len >= READ_ONCE(dev->mtu))
213 		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
214 			dev ? dev->name : "Unknown driver");
215 	rcu_read_unlock();
216 }
217 
218 /* Adapt the MSS value used to make delayed ack decision to the
219  * real world.
220  */
221 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
222 {
223 	struct inet_connection_sock *icsk = inet_csk(sk);
224 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
225 	unsigned int len;
226 
227 	icsk->icsk_ack.last_seg_size = 0;
228 
229 	/* skb->len may jitter because of SACKs, even if peer
230 	 * sends good full-sized frames.
231 	 */
232 	len = skb_shinfo(skb)->gso_size ? : skb->len;
233 	if (len >= icsk->icsk_ack.rcv_mss) {
234 		/* Note: divides are still a bit expensive.
235 		 * For the moment, only adjust scaling_ratio
236 		 * when we update icsk_ack.rcv_mss.
237 		 */
238 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
239 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
240 
241 			do_div(val, skb->truesize);
242 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
243 		}
244 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
245 					       tcp_sk(sk)->advmss);
246 		/* Account for possibly-removed options */
247 		DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
248 				tcp_gro_dev_warn, sk, skb, len);
249 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
250 		 * set then it is likely the end of an application write. So
251 		 * more data may not be arriving soon, and yet the data sender
252 		 * may be waiting for an ACK if cwnd-bound or using TX zero
253 		 * copy. So we set ICSK_ACK_PUSHED here so that
254 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
255 		 * reads all of the data and is not ping-pong. If len > MSS
256 		 * then this logic does not matter (and does not hurt) because
257 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
258 		 * reads data and there is more than an MSS of unACKed data.
259 		 */
260 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
261 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
262 	} else {
263 		/* Otherwise, we make more careful check taking into account,
264 		 * that SACKs block is variable.
265 		 *
266 		 * "len" is invariant segment length, including TCP header.
267 		 */
268 		len += skb->data - skb_transport_header(skb);
269 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
270 		    /* If PSH is not set, packet should be
271 		     * full sized, provided peer TCP is not badly broken.
272 		     * This observation (if it is correct 8)) allows
273 		     * to handle super-low mtu links fairly.
274 		     */
275 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
276 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
277 			/* Subtract also invariant (if peer is RFC compliant),
278 			 * tcp header plus fixed timestamp option length.
279 			 * Resulting "len" is MSS free of SACK jitter.
280 			 */
281 			len -= tcp_sk(sk)->tcp_header_len;
282 			icsk->icsk_ack.last_seg_size = len;
283 			if (len == lss) {
284 				icsk->icsk_ack.rcv_mss = len;
285 				return;
286 			}
287 		}
288 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
289 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
290 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
291 	}
292 }
293 
294 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
295 {
296 	struct inet_connection_sock *icsk = inet_csk(sk);
297 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
298 
299 	if (quickacks == 0)
300 		quickacks = 2;
301 	quickacks = min(quickacks, max_quickacks);
302 	if (quickacks > icsk->icsk_ack.quick)
303 		icsk->icsk_ack.quick = quickacks;
304 }
305 
306 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
307 {
308 	struct inet_connection_sock *icsk = inet_csk(sk);
309 
310 	tcp_incr_quickack(sk, max_quickacks);
311 	inet_csk_exit_pingpong_mode(sk);
312 	icsk->icsk_ack.ato = TCP_ATO_MIN;
313 }
314 
315 /* Send ACKs quickly, if "quick" count is not exhausted
316  * and the session is not interactive.
317  */
318 
319 static bool tcp_in_quickack_mode(struct sock *sk)
320 {
321 	const struct inet_connection_sock *icsk = inet_csk(sk);
322 	const struct dst_entry *dst = __sk_dst_get(sk);
323 
324 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
325 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
326 }
327 
328 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
329 {
330 	if (tp->ecn_flags & TCP_ECN_OK)
331 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
332 }
333 
334 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
335 {
336 	if (tcp_hdr(skb)->cwr) {
337 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
338 
339 		/* If the sender is telling us it has entered CWR, then its
340 		 * cwnd may be very low (even just 1 packet), so we should ACK
341 		 * immediately.
342 		 */
343 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
344 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
345 	}
346 }
347 
348 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
349 {
350 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
351 }
352 
353 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
354 {
355 	struct tcp_sock *tp = tcp_sk(sk);
356 
357 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
358 	case INET_ECN_NOT_ECT:
359 		/* Funny extension: if ECT is not set on a segment,
360 		 * and we already seen ECT on a previous segment,
361 		 * it is probably a retransmit.
362 		 */
363 		if (tp->ecn_flags & TCP_ECN_SEEN)
364 			tcp_enter_quickack_mode(sk, 2);
365 		break;
366 	case INET_ECN_CE:
367 		if (tcp_ca_needs_ecn(sk))
368 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
369 
370 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
371 			/* Better not delay acks, sender can have a very low cwnd */
372 			tcp_enter_quickack_mode(sk, 2);
373 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
374 		}
375 		tp->ecn_flags |= TCP_ECN_SEEN;
376 		break;
377 	default:
378 		if (tcp_ca_needs_ecn(sk))
379 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
380 		tp->ecn_flags |= TCP_ECN_SEEN;
381 		break;
382 	}
383 }
384 
385 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
386 {
387 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
388 		__tcp_ecn_check_ce(sk, skb);
389 }
390 
391 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
392 {
393 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
394 		tp->ecn_flags &= ~TCP_ECN_OK;
395 }
396 
397 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
398 {
399 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
400 		tp->ecn_flags &= ~TCP_ECN_OK;
401 }
402 
403 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
404 {
405 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
406 		return true;
407 	return false;
408 }
409 
410 /* Buffer size and advertised window tuning.
411  *
412  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
413  */
414 
415 static void tcp_sndbuf_expand(struct sock *sk)
416 {
417 	const struct tcp_sock *tp = tcp_sk(sk);
418 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
419 	int sndmem, per_mss;
420 	u32 nr_segs;
421 
422 	/* Worst case is non GSO/TSO : each frame consumes one skb
423 	 * and skb->head is kmalloced using power of two area of memory
424 	 */
425 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
426 		  MAX_TCP_HEADER +
427 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
428 
429 	per_mss = roundup_pow_of_two(per_mss) +
430 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
431 
432 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
433 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
434 
435 	/* Fast Recovery (RFC 5681 3.2) :
436 	 * Cubic needs 1.7 factor, rounded to 2 to include
437 	 * extra cushion (application might react slowly to EPOLLOUT)
438 	 */
439 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
440 	sndmem *= nr_segs * per_mss;
441 
442 	if (sk->sk_sndbuf < sndmem)
443 		WRITE_ONCE(sk->sk_sndbuf,
444 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
445 }
446 
447 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
448  *
449  * All tcp_full_space() is split to two parts: "network" buffer, allocated
450  * forward and advertised in receiver window (tp->rcv_wnd) and
451  * "application buffer", required to isolate scheduling/application
452  * latencies from network.
453  * window_clamp is maximal advertised window. It can be less than
454  * tcp_full_space(), in this case tcp_full_space() - window_clamp
455  * is reserved for "application" buffer. The less window_clamp is
456  * the smoother our behaviour from viewpoint of network, but the lower
457  * throughput and the higher sensitivity of the connection to losses. 8)
458  *
459  * rcv_ssthresh is more strict window_clamp used at "slow start"
460  * phase to predict further behaviour of this connection.
461  * It is used for two goals:
462  * - to enforce header prediction at sender, even when application
463  *   requires some significant "application buffer". It is check #1.
464  * - to prevent pruning of receive queue because of misprediction
465  *   of receiver window. Check #2.
466  *
467  * The scheme does not work when sender sends good segments opening
468  * window and then starts to feed us spaghetti. But it should work
469  * in common situations. Otherwise, we have to rely on queue collapsing.
470  */
471 
472 /* Slow part of check#2. */
473 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
474 			     unsigned int skbtruesize)
475 {
476 	const struct tcp_sock *tp = tcp_sk(sk);
477 	/* Optimize this! */
478 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
479 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
480 
481 	while (tp->rcv_ssthresh <= window) {
482 		if (truesize <= skb->len)
483 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
484 
485 		truesize >>= 1;
486 		window >>= 1;
487 	}
488 	return 0;
489 }
490 
491 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
492  * can play nice with us, as sk_buff and skb->head might be either
493  * freed or shared with up to MAX_SKB_FRAGS segments.
494  * Only give a boost to drivers using page frag(s) to hold the frame(s),
495  * and if no payload was pulled in skb->head before reaching us.
496  */
497 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
498 {
499 	u32 truesize = skb->truesize;
500 
501 	if (adjust && !skb_headlen(skb)) {
502 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
503 		/* paranoid check, some drivers might be buggy */
504 		if (unlikely((int)truesize < (int)skb->len))
505 			truesize = skb->truesize;
506 	}
507 	return truesize;
508 }
509 
510 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
511 			    bool adjust)
512 {
513 	struct tcp_sock *tp = tcp_sk(sk);
514 	int room;
515 
516 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
517 
518 	if (room <= 0)
519 		return;
520 
521 	/* Check #1 */
522 	if (!tcp_under_memory_pressure(sk)) {
523 		unsigned int truesize = truesize_adjust(adjust, skb);
524 		int incr;
525 
526 		/* Check #2. Increase window, if skb with such overhead
527 		 * will fit to rcvbuf in future.
528 		 */
529 		if (tcp_win_from_space(sk, truesize) <= skb->len)
530 			incr = 2 * tp->advmss;
531 		else
532 			incr = __tcp_grow_window(sk, skb, truesize);
533 
534 		if (incr) {
535 			incr = max_t(int, incr, 2 * skb->len);
536 			tp->rcv_ssthresh += min(room, incr);
537 			inet_csk(sk)->icsk_ack.quick |= 1;
538 		}
539 	} else {
540 		/* Under pressure:
541 		 * Adjust rcv_ssthresh according to reserved mem
542 		 */
543 		tcp_adjust_rcv_ssthresh(sk);
544 	}
545 }
546 
547 /* 3. Try to fixup all. It is made immediately after connection enters
548  *    established state.
549  */
550 static void tcp_init_buffer_space(struct sock *sk)
551 {
552 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
553 	struct tcp_sock *tp = tcp_sk(sk);
554 	int maxwin;
555 
556 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
557 		tcp_sndbuf_expand(sk);
558 
559 	tcp_mstamp_refresh(tp);
560 	tp->rcvq_space.time = tp->tcp_mstamp;
561 	tp->rcvq_space.seq = tp->copied_seq;
562 
563 	maxwin = tcp_full_space(sk);
564 
565 	if (tp->window_clamp >= maxwin) {
566 		WRITE_ONCE(tp->window_clamp, maxwin);
567 
568 		if (tcp_app_win && maxwin > 4 * tp->advmss)
569 			WRITE_ONCE(tp->window_clamp,
570 				   max(maxwin - (maxwin >> tcp_app_win),
571 				       4 * tp->advmss));
572 	}
573 
574 	/* Force reservation of one segment. */
575 	if (tcp_app_win &&
576 	    tp->window_clamp > 2 * tp->advmss &&
577 	    tp->window_clamp + tp->advmss > maxwin)
578 		WRITE_ONCE(tp->window_clamp,
579 			   max(2 * tp->advmss, maxwin - tp->advmss));
580 
581 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
582 	tp->snd_cwnd_stamp = tcp_jiffies32;
583 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
584 				    (u32)TCP_INIT_CWND * tp->advmss);
585 }
586 
587 /* 4. Recalculate window clamp after socket hit its memory bounds. */
588 static void tcp_clamp_window(struct sock *sk)
589 {
590 	struct tcp_sock *tp = tcp_sk(sk);
591 	struct inet_connection_sock *icsk = inet_csk(sk);
592 	struct net *net = sock_net(sk);
593 	int rmem2;
594 
595 	icsk->icsk_ack.quick = 0;
596 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
597 
598 	if (sk->sk_rcvbuf < rmem2 &&
599 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
600 	    !tcp_under_memory_pressure(sk) &&
601 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
602 		WRITE_ONCE(sk->sk_rcvbuf,
603 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
604 	}
605 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
606 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
607 }
608 
609 /* Initialize RCV_MSS value.
610  * RCV_MSS is an our guess about MSS used by the peer.
611  * We haven't any direct information about the MSS.
612  * It's better to underestimate the RCV_MSS rather than overestimate.
613  * Overestimations make us ACKing less frequently than needed.
614  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
615  */
616 void tcp_initialize_rcv_mss(struct sock *sk)
617 {
618 	const struct tcp_sock *tp = tcp_sk(sk);
619 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
620 
621 	hint = min(hint, tp->rcv_wnd / 2);
622 	hint = min(hint, TCP_MSS_DEFAULT);
623 	hint = max(hint, TCP_MIN_MSS);
624 
625 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
626 }
627 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
628 
629 /* Receiver "autotuning" code.
630  *
631  * The algorithm for RTT estimation w/o timestamps is based on
632  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
633  * <https://public.lanl.gov/radiant/pubs.html#DRS>
634  *
635  * More detail on this code can be found at
636  * <http://staff.psc.edu/jheffner/>,
637  * though this reference is out of date.  A new paper
638  * is pending.
639  */
640 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
641 {
642 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
643 	long m = sample;
644 
645 	if (new_sample != 0) {
646 		/* If we sample in larger samples in the non-timestamp
647 		 * case, we could grossly overestimate the RTT especially
648 		 * with chatty applications or bulk transfer apps which
649 		 * are stalled on filesystem I/O.
650 		 *
651 		 * Also, since we are only going for a minimum in the
652 		 * non-timestamp case, we do not smooth things out
653 		 * else with timestamps disabled convergence takes too
654 		 * long.
655 		 */
656 		if (!win_dep) {
657 			m -= (new_sample >> 3);
658 			new_sample += m;
659 		} else {
660 			m <<= 3;
661 			if (m < new_sample)
662 				new_sample = m;
663 		}
664 	} else {
665 		/* No previous measure. */
666 		new_sample = m << 3;
667 	}
668 
669 	tp->rcv_rtt_est.rtt_us = new_sample;
670 }
671 
672 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
673 {
674 	u32 delta_us;
675 
676 	if (tp->rcv_rtt_est.time == 0)
677 		goto new_measure;
678 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
679 		return;
680 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
681 	if (!delta_us)
682 		delta_us = 1;
683 	tcp_rcv_rtt_update(tp, delta_us, 1);
684 
685 new_measure:
686 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
687 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
688 }
689 
690 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp)
691 {
692 	u32 delta, delta_us;
693 
694 	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
695 	if (tp->tcp_usec_ts)
696 		return delta;
697 
698 	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
699 		if (!delta)
700 			delta = 1;
701 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
702 		return delta_us;
703 	}
704 	return -1;
705 }
706 
707 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
708 					  const struct sk_buff *skb)
709 {
710 	struct tcp_sock *tp = tcp_sk(sk);
711 
712 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
713 		return;
714 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
715 
716 	if (TCP_SKB_CB(skb)->end_seq -
717 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
718 		s32 delta = tcp_rtt_tsopt_us(tp);
719 
720 		if (delta >= 0)
721 			tcp_rcv_rtt_update(tp, delta, 0);
722 	}
723 }
724 
725 /*
726  * This function should be called every time data is copied to user space.
727  * It calculates the appropriate TCP receive buffer space.
728  */
729 void tcp_rcv_space_adjust(struct sock *sk)
730 {
731 	struct tcp_sock *tp = tcp_sk(sk);
732 	u32 copied;
733 	int time;
734 
735 	trace_tcp_rcv_space_adjust(sk);
736 
737 	tcp_mstamp_refresh(tp);
738 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
739 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
740 		return;
741 
742 	/* Number of bytes copied to user in last RTT */
743 	copied = tp->copied_seq - tp->rcvq_space.seq;
744 	if (copied <= tp->rcvq_space.space)
745 		goto new_measure;
746 
747 	/* A bit of theory :
748 	 * copied = bytes received in previous RTT, our base window
749 	 * To cope with packet losses, we need a 2x factor
750 	 * To cope with slow start, and sender growing its cwin by 100 %
751 	 * every RTT, we need a 4x factor, because the ACK we are sending
752 	 * now is for the next RTT, not the current one :
753 	 * <prev RTT . ><current RTT .. ><next RTT .... >
754 	 */
755 
756 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
757 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
758 		u64 rcvwin, grow;
759 		int rcvbuf;
760 
761 		/* minimal window to cope with packet losses, assuming
762 		 * steady state. Add some cushion because of small variations.
763 		 */
764 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
765 
766 		/* Accommodate for sender rate increase (eg. slow start) */
767 		grow = rcvwin * (copied - tp->rcvq_space.space);
768 		do_div(grow, tp->rcvq_space.space);
769 		rcvwin += (grow << 1);
770 
771 		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
772 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
773 		if (rcvbuf > sk->sk_rcvbuf) {
774 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
775 
776 			/* Make the window clamp follow along.  */
777 			WRITE_ONCE(tp->window_clamp,
778 				   tcp_win_from_space(sk, rcvbuf));
779 		}
780 	}
781 	tp->rcvq_space.space = copied;
782 
783 new_measure:
784 	tp->rcvq_space.seq = tp->copied_seq;
785 	tp->rcvq_space.time = tp->tcp_mstamp;
786 }
787 
788 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
789 {
790 #if IS_ENABLED(CONFIG_IPV6)
791 	struct inet_connection_sock *icsk = inet_csk(sk);
792 
793 	if (skb->protocol == htons(ETH_P_IPV6))
794 		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
795 #endif
796 }
797 
798 /* There is something which you must keep in mind when you analyze the
799  * behavior of the tp->ato delayed ack timeout interval.  When a
800  * connection starts up, we want to ack as quickly as possible.  The
801  * problem is that "good" TCP's do slow start at the beginning of data
802  * transmission.  The means that until we send the first few ACK's the
803  * sender will sit on his end and only queue most of his data, because
804  * he can only send snd_cwnd unacked packets at any given time.  For
805  * each ACK we send, he increments snd_cwnd and transmits more of his
806  * queue.  -DaveM
807  */
808 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
809 {
810 	struct tcp_sock *tp = tcp_sk(sk);
811 	struct inet_connection_sock *icsk = inet_csk(sk);
812 	u32 now;
813 
814 	inet_csk_schedule_ack(sk);
815 
816 	tcp_measure_rcv_mss(sk, skb);
817 
818 	tcp_rcv_rtt_measure(tp);
819 
820 	now = tcp_jiffies32;
821 
822 	if (!icsk->icsk_ack.ato) {
823 		/* The _first_ data packet received, initialize
824 		 * delayed ACK engine.
825 		 */
826 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
827 		icsk->icsk_ack.ato = TCP_ATO_MIN;
828 	} else {
829 		int m = now - icsk->icsk_ack.lrcvtime;
830 
831 		if (m <= TCP_ATO_MIN / 2) {
832 			/* The fastest case is the first. */
833 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
834 		} else if (m < icsk->icsk_ack.ato) {
835 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
836 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
837 				icsk->icsk_ack.ato = icsk->icsk_rto;
838 		} else if (m > icsk->icsk_rto) {
839 			/* Too long gap. Apparently sender failed to
840 			 * restart window, so that we send ACKs quickly.
841 			 */
842 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
843 		}
844 	}
845 	icsk->icsk_ack.lrcvtime = now;
846 	tcp_save_lrcv_flowlabel(sk, skb);
847 
848 	tcp_ecn_check_ce(sk, skb);
849 
850 	if (skb->len >= 128)
851 		tcp_grow_window(sk, skb, true);
852 }
853 
854 /* Called to compute a smoothed rtt estimate. The data fed to this
855  * routine either comes from timestamps, or from segments that were
856  * known _not_ to have been retransmitted [see Karn/Partridge
857  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
858  * piece by Van Jacobson.
859  * NOTE: the next three routines used to be one big routine.
860  * To save cycles in the RFC 1323 implementation it was better to break
861  * it up into three procedures. -- erics
862  */
863 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
864 {
865 	struct tcp_sock *tp = tcp_sk(sk);
866 	long m = mrtt_us; /* RTT */
867 	u32 srtt = tp->srtt_us;
868 
869 	/*	The following amusing code comes from Jacobson's
870 	 *	article in SIGCOMM '88.  Note that rtt and mdev
871 	 *	are scaled versions of rtt and mean deviation.
872 	 *	This is designed to be as fast as possible
873 	 *	m stands for "measurement".
874 	 *
875 	 *	On a 1990 paper the rto value is changed to:
876 	 *	RTO = rtt + 4 * mdev
877 	 *
878 	 * Funny. This algorithm seems to be very broken.
879 	 * These formulae increase RTO, when it should be decreased, increase
880 	 * too slowly, when it should be increased quickly, decrease too quickly
881 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
882 	 * does not matter how to _calculate_ it. Seems, it was trap
883 	 * that VJ failed to avoid. 8)
884 	 */
885 	if (srtt != 0) {
886 		m -= (srtt >> 3);	/* m is now error in rtt est */
887 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
888 		if (m < 0) {
889 			m = -m;		/* m is now abs(error) */
890 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
891 			/* This is similar to one of Eifel findings.
892 			 * Eifel blocks mdev updates when rtt decreases.
893 			 * This solution is a bit different: we use finer gain
894 			 * for mdev in this case (alpha*beta).
895 			 * Like Eifel it also prevents growth of rto,
896 			 * but also it limits too fast rto decreases,
897 			 * happening in pure Eifel.
898 			 */
899 			if (m > 0)
900 				m >>= 3;
901 		} else {
902 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
903 		}
904 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
905 		if (tp->mdev_us > tp->mdev_max_us) {
906 			tp->mdev_max_us = tp->mdev_us;
907 			if (tp->mdev_max_us > tp->rttvar_us)
908 				tp->rttvar_us = tp->mdev_max_us;
909 		}
910 		if (after(tp->snd_una, tp->rtt_seq)) {
911 			if (tp->mdev_max_us < tp->rttvar_us)
912 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
913 			tp->rtt_seq = tp->snd_nxt;
914 			tp->mdev_max_us = tcp_rto_min_us(sk);
915 
916 			tcp_bpf_rtt(sk);
917 		}
918 	} else {
919 		/* no previous measure. */
920 		srtt = m << 3;		/* take the measured time to be rtt */
921 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
922 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
923 		tp->mdev_max_us = tp->rttvar_us;
924 		tp->rtt_seq = tp->snd_nxt;
925 
926 		tcp_bpf_rtt(sk);
927 	}
928 	tp->srtt_us = max(1U, srtt);
929 }
930 
931 static void tcp_update_pacing_rate(struct sock *sk)
932 {
933 	const struct tcp_sock *tp = tcp_sk(sk);
934 	u64 rate;
935 
936 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
937 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
938 
939 	/* current rate is (cwnd * mss) / srtt
940 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
941 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
942 	 *
943 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
944 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
945 	 *	 end of slow start and should slow down.
946 	 */
947 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
948 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
949 	else
950 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
951 
952 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
953 
954 	if (likely(tp->srtt_us))
955 		do_div(rate, tp->srtt_us);
956 
957 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
958 	 * without any lock. We want to make sure compiler wont store
959 	 * intermediate values in this location.
960 	 */
961 	WRITE_ONCE(sk->sk_pacing_rate,
962 		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
963 }
964 
965 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
966  * routine referred to above.
967  */
968 static void tcp_set_rto(struct sock *sk)
969 {
970 	const struct tcp_sock *tp = tcp_sk(sk);
971 	/* Old crap is replaced with new one. 8)
972 	 *
973 	 * More seriously:
974 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
975 	 *    It cannot be less due to utterly erratic ACK generation made
976 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
977 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
978 	 *    is invisible. Actually, Linux-2.4 also generates erratic
979 	 *    ACKs in some circumstances.
980 	 */
981 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
982 
983 	/* 2. Fixups made earlier cannot be right.
984 	 *    If we do not estimate RTO correctly without them,
985 	 *    all the algo is pure shit and should be replaced
986 	 *    with correct one. It is exactly, which we pretend to do.
987 	 */
988 
989 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
990 	 * guarantees that rto is higher.
991 	 */
992 	tcp_bound_rto(sk);
993 }
994 
995 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
996 {
997 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
998 
999 	if (!cwnd)
1000 		cwnd = TCP_INIT_CWND;
1001 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1002 }
1003 
1004 struct tcp_sacktag_state {
1005 	/* Timestamps for earliest and latest never-retransmitted segment
1006 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1007 	 * but congestion control should still get an accurate delay signal.
1008 	 */
1009 	u64	first_sackt;
1010 	u64	last_sackt;
1011 	u32	reord;
1012 	u32	sack_delivered;
1013 	int	flag;
1014 	unsigned int mss_now;
1015 	struct rate_sample *rate;
1016 };
1017 
1018 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1019  * and spurious retransmission information if this DSACK is unlikely caused by
1020  * sender's action:
1021  * - DSACKed sequence range is larger than maximum receiver's window.
1022  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1023  */
1024 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1025 			  u32 end_seq, struct tcp_sacktag_state *state)
1026 {
1027 	u32 seq_len, dup_segs = 1;
1028 
1029 	if (!before(start_seq, end_seq))
1030 		return 0;
1031 
1032 	seq_len = end_seq - start_seq;
1033 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1034 	if (seq_len > tp->max_window)
1035 		return 0;
1036 	if (seq_len > tp->mss_cache)
1037 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1038 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1039 		state->flag |= FLAG_DSACK_TLP;
1040 
1041 	tp->dsack_dups += dup_segs;
1042 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1043 	if (tp->dsack_dups > tp->total_retrans)
1044 		return 0;
1045 
1046 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1047 	/* We increase the RACK ordering window in rounds where we receive
1048 	 * DSACKs that may have been due to reordering causing RACK to trigger
1049 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1050 	 * without having seen reordering, or that match TLP probes (TLP
1051 	 * is timer-driven, not triggered by RACK).
1052 	 */
1053 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1054 		tp->rack.dsack_seen = 1;
1055 
1056 	state->flag |= FLAG_DSACKING_ACK;
1057 	/* A spurious retransmission is delivered */
1058 	state->sack_delivered += dup_segs;
1059 
1060 	return dup_segs;
1061 }
1062 
1063 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1064  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1065  * distance is approximated in full-mss packet distance ("reordering").
1066  */
1067 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1068 				      const int ts)
1069 {
1070 	struct tcp_sock *tp = tcp_sk(sk);
1071 	const u32 mss = tp->mss_cache;
1072 	u32 fack, metric;
1073 
1074 	fack = tcp_highest_sack_seq(tp);
1075 	if (!before(low_seq, fack))
1076 		return;
1077 
1078 	metric = fack - low_seq;
1079 	if ((metric > tp->reordering * mss) && mss) {
1080 #if FASTRETRANS_DEBUG > 1
1081 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1082 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1083 			 tp->reordering,
1084 			 0,
1085 			 tp->sacked_out,
1086 			 tp->undo_marker ? tp->undo_retrans : 0);
1087 #endif
1088 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1089 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1090 	}
1091 
1092 	/* This exciting event is worth to be remembered. 8) */
1093 	tp->reord_seen++;
1094 	NET_INC_STATS(sock_net(sk),
1095 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1096 }
1097 
1098  /* This must be called before lost_out or retrans_out are updated
1099   * on a new loss, because we want to know if all skbs previously
1100   * known to be lost have already been retransmitted, indicating
1101   * that this newly lost skb is our next skb to retransmit.
1102   */
1103 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1104 {
1105 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1106 	    (tp->retransmit_skb_hint &&
1107 	     before(TCP_SKB_CB(skb)->seq,
1108 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1109 		tp->retransmit_skb_hint = skb;
1110 }
1111 
1112 /* Sum the number of packets on the wire we have marked as lost, and
1113  * notify the congestion control module that the given skb was marked lost.
1114  */
1115 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1116 {
1117 	tp->lost += tcp_skb_pcount(skb);
1118 }
1119 
1120 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1121 {
1122 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1123 	struct tcp_sock *tp = tcp_sk(sk);
1124 
1125 	if (sacked & TCPCB_SACKED_ACKED)
1126 		return;
1127 
1128 	tcp_verify_retransmit_hint(tp, skb);
1129 	if (sacked & TCPCB_LOST) {
1130 		if (sacked & TCPCB_SACKED_RETRANS) {
1131 			/* Account for retransmits that are lost again */
1132 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1133 			tp->retrans_out -= tcp_skb_pcount(skb);
1134 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1135 				      tcp_skb_pcount(skb));
1136 			tcp_notify_skb_loss_event(tp, skb);
1137 		}
1138 	} else {
1139 		tp->lost_out += tcp_skb_pcount(skb);
1140 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1141 		tcp_notify_skb_loss_event(tp, skb);
1142 	}
1143 }
1144 
1145 /* Updates the delivered and delivered_ce counts */
1146 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1147 				bool ece_ack)
1148 {
1149 	tp->delivered += delivered;
1150 	if (ece_ack)
1151 		tp->delivered_ce += delivered;
1152 }
1153 
1154 /* This procedure tags the retransmission queue when SACKs arrive.
1155  *
1156  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1157  * Packets in queue with these bits set are counted in variables
1158  * sacked_out, retrans_out and lost_out, correspondingly.
1159  *
1160  * Valid combinations are:
1161  * Tag  InFlight	Description
1162  * 0	1		- orig segment is in flight.
1163  * S	0		- nothing flies, orig reached receiver.
1164  * L	0		- nothing flies, orig lost by net.
1165  * R	2		- both orig and retransmit are in flight.
1166  * L|R	1		- orig is lost, retransmit is in flight.
1167  * S|R  1		- orig reached receiver, retrans is still in flight.
1168  * (L|S|R is logically valid, it could occur when L|R is sacked,
1169  *  but it is equivalent to plain S and code short-circuits it to S.
1170  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1171  *
1172  * These 6 states form finite state machine, controlled by the following events:
1173  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1174  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1175  * 3. Loss detection event of two flavors:
1176  *	A. Scoreboard estimator decided the packet is lost.
1177  *	   A'. Reno "three dupacks" marks head of queue lost.
1178  *	B. SACK arrives sacking SND.NXT at the moment, when the
1179  *	   segment was retransmitted.
1180  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1181  *
1182  * It is pleasant to note, that state diagram turns out to be commutative,
1183  * so that we are allowed not to be bothered by order of our actions,
1184  * when multiple events arrive simultaneously. (see the function below).
1185  *
1186  * Reordering detection.
1187  * --------------------
1188  * Reordering metric is maximal distance, which a packet can be displaced
1189  * in packet stream. With SACKs we can estimate it:
1190  *
1191  * 1. SACK fills old hole and the corresponding segment was not
1192  *    ever retransmitted -> reordering. Alas, we cannot use it
1193  *    when segment was retransmitted.
1194  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1195  *    for retransmitted and already SACKed segment -> reordering..
1196  * Both of these heuristics are not used in Loss state, when we cannot
1197  * account for retransmits accurately.
1198  *
1199  * SACK block validation.
1200  * ----------------------
1201  *
1202  * SACK block range validation checks that the received SACK block fits to
1203  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1204  * Note that SND.UNA is not included to the range though being valid because
1205  * it means that the receiver is rather inconsistent with itself reporting
1206  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1207  * perfectly valid, however, in light of RFC2018 which explicitly states
1208  * that "SACK block MUST reflect the newest segment.  Even if the newest
1209  * segment is going to be discarded ...", not that it looks very clever
1210  * in case of head skb. Due to potentional receiver driven attacks, we
1211  * choose to avoid immediate execution of a walk in write queue due to
1212  * reneging and defer head skb's loss recovery to standard loss recovery
1213  * procedure that will eventually trigger (nothing forbids us doing this).
1214  *
1215  * Implements also blockage to start_seq wrap-around. Problem lies in the
1216  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1217  * there's no guarantee that it will be before snd_nxt (n). The problem
1218  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1219  * wrap (s_w):
1220  *
1221  *         <- outs wnd ->                          <- wrapzone ->
1222  *         u     e      n                         u_w   e_w  s n_w
1223  *         |     |      |                          |     |   |  |
1224  * |<------------+------+----- TCP seqno space --------------+---------->|
1225  * ...-- <2^31 ->|                                           |<--------...
1226  * ...---- >2^31 ------>|                                    |<--------...
1227  *
1228  * Current code wouldn't be vulnerable but it's better still to discard such
1229  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1230  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1231  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1232  * equal to the ideal case (infinite seqno space without wrap caused issues).
1233  *
1234  * With D-SACK the lower bound is extended to cover sequence space below
1235  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1236  * again, D-SACK block must not to go across snd_una (for the same reason as
1237  * for the normal SACK blocks, explained above). But there all simplicity
1238  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1239  * fully below undo_marker they do not affect behavior in anyway and can
1240  * therefore be safely ignored. In rare cases (which are more or less
1241  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1242  * fragmentation and packet reordering past skb's retransmission. To consider
1243  * them correctly, the acceptable range must be extended even more though
1244  * the exact amount is rather hard to quantify. However, tp->max_window can
1245  * be used as an exaggerated estimate.
1246  */
1247 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1248 				   u32 start_seq, u32 end_seq)
1249 {
1250 	/* Too far in future, or reversed (interpretation is ambiguous) */
1251 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1252 		return false;
1253 
1254 	/* Nasty start_seq wrap-around check (see comments above) */
1255 	if (!before(start_seq, tp->snd_nxt))
1256 		return false;
1257 
1258 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1259 	 * start_seq == snd_una is non-sensical (see comments above)
1260 	 */
1261 	if (after(start_seq, tp->snd_una))
1262 		return true;
1263 
1264 	if (!is_dsack || !tp->undo_marker)
1265 		return false;
1266 
1267 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1268 	if (after(end_seq, tp->snd_una))
1269 		return false;
1270 
1271 	if (!before(start_seq, tp->undo_marker))
1272 		return true;
1273 
1274 	/* Too old */
1275 	if (!after(end_seq, tp->undo_marker))
1276 		return false;
1277 
1278 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1279 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1280 	 */
1281 	return !before(start_seq, end_seq - tp->max_window);
1282 }
1283 
1284 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1285 			    struct tcp_sack_block_wire *sp, int num_sacks,
1286 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1287 {
1288 	struct tcp_sock *tp = tcp_sk(sk);
1289 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1290 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1291 	u32 dup_segs;
1292 
1293 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1294 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1295 	} else if (num_sacks > 1) {
1296 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1297 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1298 
1299 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1300 			return false;
1301 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1302 	} else {
1303 		return false;
1304 	}
1305 
1306 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1307 	if (!dup_segs) {	/* Skip dubious DSACK */
1308 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1309 		return false;
1310 	}
1311 
1312 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1313 
1314 	/* D-SACK for already forgotten data... Do dumb counting. */
1315 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1316 	    !after(end_seq_0, prior_snd_una) &&
1317 	    after(end_seq_0, tp->undo_marker))
1318 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1319 
1320 	return true;
1321 }
1322 
1323 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1324  * the incoming SACK may not exactly match but we can find smaller MSS
1325  * aligned portion of it that matches. Therefore we might need to fragment
1326  * which may fail and creates some hassle (caller must handle error case
1327  * returns).
1328  *
1329  * FIXME: this could be merged to shift decision code
1330  */
1331 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1332 				  u32 start_seq, u32 end_seq)
1333 {
1334 	int err;
1335 	bool in_sack;
1336 	unsigned int pkt_len;
1337 	unsigned int mss;
1338 
1339 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1340 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1341 
1342 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1343 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1344 		mss = tcp_skb_mss(skb);
1345 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1346 
1347 		if (!in_sack) {
1348 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1349 			if (pkt_len < mss)
1350 				pkt_len = mss;
1351 		} else {
1352 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1353 			if (pkt_len < mss)
1354 				return -EINVAL;
1355 		}
1356 
1357 		/* Round if necessary so that SACKs cover only full MSSes
1358 		 * and/or the remaining small portion (if present)
1359 		 */
1360 		if (pkt_len > mss) {
1361 			unsigned int new_len = (pkt_len / mss) * mss;
1362 			if (!in_sack && new_len < pkt_len)
1363 				new_len += mss;
1364 			pkt_len = new_len;
1365 		}
1366 
1367 		if (pkt_len >= skb->len && !in_sack)
1368 			return 0;
1369 
1370 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1371 				   pkt_len, mss, GFP_ATOMIC);
1372 		if (err < 0)
1373 			return err;
1374 	}
1375 
1376 	return in_sack;
1377 }
1378 
1379 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1380 static u8 tcp_sacktag_one(struct sock *sk,
1381 			  struct tcp_sacktag_state *state, u8 sacked,
1382 			  u32 start_seq, u32 end_seq,
1383 			  int dup_sack, int pcount,
1384 			  u64 xmit_time)
1385 {
1386 	struct tcp_sock *tp = tcp_sk(sk);
1387 
1388 	/* Account D-SACK for retransmitted packet. */
1389 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1390 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1391 		    after(end_seq, tp->undo_marker))
1392 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1393 		if ((sacked & TCPCB_SACKED_ACKED) &&
1394 		    before(start_seq, state->reord))
1395 				state->reord = start_seq;
1396 	}
1397 
1398 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1399 	if (!after(end_seq, tp->snd_una))
1400 		return sacked;
1401 
1402 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1403 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1404 
1405 		if (sacked & TCPCB_SACKED_RETRANS) {
1406 			/* If the segment is not tagged as lost,
1407 			 * we do not clear RETRANS, believing
1408 			 * that retransmission is still in flight.
1409 			 */
1410 			if (sacked & TCPCB_LOST) {
1411 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1412 				tp->lost_out -= pcount;
1413 				tp->retrans_out -= pcount;
1414 			}
1415 		} else {
1416 			if (!(sacked & TCPCB_RETRANS)) {
1417 				/* New sack for not retransmitted frame,
1418 				 * which was in hole. It is reordering.
1419 				 */
1420 				if (before(start_seq,
1421 					   tcp_highest_sack_seq(tp)) &&
1422 				    before(start_seq, state->reord))
1423 					state->reord = start_seq;
1424 
1425 				if (!after(end_seq, tp->high_seq))
1426 					state->flag |= FLAG_ORIG_SACK_ACKED;
1427 				if (state->first_sackt == 0)
1428 					state->first_sackt = xmit_time;
1429 				state->last_sackt = xmit_time;
1430 			}
1431 
1432 			if (sacked & TCPCB_LOST) {
1433 				sacked &= ~TCPCB_LOST;
1434 				tp->lost_out -= pcount;
1435 			}
1436 		}
1437 
1438 		sacked |= TCPCB_SACKED_ACKED;
1439 		state->flag |= FLAG_DATA_SACKED;
1440 		tp->sacked_out += pcount;
1441 		/* Out-of-order packets delivered */
1442 		state->sack_delivered += pcount;
1443 
1444 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1445 		if (tp->lost_skb_hint &&
1446 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1447 			tp->lost_cnt_hint += pcount;
1448 	}
1449 
1450 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1451 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1452 	 * are accounted above as well.
1453 	 */
1454 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1455 		sacked &= ~TCPCB_SACKED_RETRANS;
1456 		tp->retrans_out -= pcount;
1457 	}
1458 
1459 	return sacked;
1460 }
1461 
1462 /* Shift newly-SACKed bytes from this skb to the immediately previous
1463  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1464  */
1465 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1466 			    struct sk_buff *skb,
1467 			    struct tcp_sacktag_state *state,
1468 			    unsigned int pcount, int shifted, int mss,
1469 			    bool dup_sack)
1470 {
1471 	struct tcp_sock *tp = tcp_sk(sk);
1472 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1473 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1474 
1475 	BUG_ON(!pcount);
1476 
1477 	/* Adjust counters and hints for the newly sacked sequence
1478 	 * range but discard the return value since prev is already
1479 	 * marked. We must tag the range first because the seq
1480 	 * advancement below implicitly advances
1481 	 * tcp_highest_sack_seq() when skb is highest_sack.
1482 	 */
1483 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1484 			start_seq, end_seq, dup_sack, pcount,
1485 			tcp_skb_timestamp_us(skb));
1486 	tcp_rate_skb_delivered(sk, skb, state->rate);
1487 
1488 	if (skb == tp->lost_skb_hint)
1489 		tp->lost_cnt_hint += pcount;
1490 
1491 	TCP_SKB_CB(prev)->end_seq += shifted;
1492 	TCP_SKB_CB(skb)->seq += shifted;
1493 
1494 	tcp_skb_pcount_add(prev, pcount);
1495 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1496 	tcp_skb_pcount_add(skb, -pcount);
1497 
1498 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1499 	 * in theory this shouldn't be necessary but as long as DSACK
1500 	 * code can come after this skb later on it's better to keep
1501 	 * setting gso_size to something.
1502 	 */
1503 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1504 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1505 
1506 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1507 	if (tcp_skb_pcount(skb) <= 1)
1508 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1509 
1510 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1511 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1512 
1513 	if (skb->len > 0) {
1514 		BUG_ON(!tcp_skb_pcount(skb));
1515 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1516 		return false;
1517 	}
1518 
1519 	/* Whole SKB was eaten :-) */
1520 
1521 	if (skb == tp->retransmit_skb_hint)
1522 		tp->retransmit_skb_hint = prev;
1523 	if (skb == tp->lost_skb_hint) {
1524 		tp->lost_skb_hint = prev;
1525 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1526 	}
1527 
1528 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1529 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1530 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1531 		TCP_SKB_CB(prev)->end_seq++;
1532 
1533 	if (skb == tcp_highest_sack(sk))
1534 		tcp_advance_highest_sack(sk, skb);
1535 
1536 	tcp_skb_collapse_tstamp(prev, skb);
1537 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1538 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1539 
1540 	tcp_rtx_queue_unlink_and_free(skb, sk);
1541 
1542 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1543 
1544 	return true;
1545 }
1546 
1547 /* I wish gso_size would have a bit more sane initialization than
1548  * something-or-zero which complicates things
1549  */
1550 static int tcp_skb_seglen(const struct sk_buff *skb)
1551 {
1552 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1553 }
1554 
1555 /* Shifting pages past head area doesn't work */
1556 static int skb_can_shift(const struct sk_buff *skb)
1557 {
1558 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1559 }
1560 
1561 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1562 		  int pcount, int shiftlen)
1563 {
1564 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1565 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1566 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1567 	 * even if current MSS is bigger.
1568 	 */
1569 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1570 		return 0;
1571 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1572 		return 0;
1573 	return skb_shift(to, from, shiftlen);
1574 }
1575 
1576 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1577  * skb.
1578  */
1579 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1580 					  struct tcp_sacktag_state *state,
1581 					  u32 start_seq, u32 end_seq,
1582 					  bool dup_sack)
1583 {
1584 	struct tcp_sock *tp = tcp_sk(sk);
1585 	struct sk_buff *prev;
1586 	int mss;
1587 	int pcount = 0;
1588 	int len;
1589 	int in_sack;
1590 
1591 	/* Normally R but no L won't result in plain S */
1592 	if (!dup_sack &&
1593 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1594 		goto fallback;
1595 	if (!skb_can_shift(skb))
1596 		goto fallback;
1597 	/* This frame is about to be dropped (was ACKed). */
1598 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1599 		goto fallback;
1600 
1601 	/* Can only happen with delayed DSACK + discard craziness */
1602 	prev = skb_rb_prev(skb);
1603 	if (!prev)
1604 		goto fallback;
1605 
1606 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1607 		goto fallback;
1608 
1609 	if (!tcp_skb_can_collapse(prev, skb))
1610 		goto fallback;
1611 
1612 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1613 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1614 
1615 	if (in_sack) {
1616 		len = skb->len;
1617 		pcount = tcp_skb_pcount(skb);
1618 		mss = tcp_skb_seglen(skb);
1619 
1620 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1621 		 * drop this restriction as unnecessary
1622 		 */
1623 		if (mss != tcp_skb_seglen(prev))
1624 			goto fallback;
1625 	} else {
1626 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1627 			goto noop;
1628 		/* CHECKME: This is non-MSS split case only?, this will
1629 		 * cause skipped skbs due to advancing loop btw, original
1630 		 * has that feature too
1631 		 */
1632 		if (tcp_skb_pcount(skb) <= 1)
1633 			goto noop;
1634 
1635 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1636 		if (!in_sack) {
1637 			/* TODO: head merge to next could be attempted here
1638 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1639 			 * though it might not be worth of the additional hassle
1640 			 *
1641 			 * ...we can probably just fallback to what was done
1642 			 * previously. We could try merging non-SACKed ones
1643 			 * as well but it probably isn't going to buy off
1644 			 * because later SACKs might again split them, and
1645 			 * it would make skb timestamp tracking considerably
1646 			 * harder problem.
1647 			 */
1648 			goto fallback;
1649 		}
1650 
1651 		len = end_seq - TCP_SKB_CB(skb)->seq;
1652 		BUG_ON(len < 0);
1653 		BUG_ON(len > skb->len);
1654 
1655 		/* MSS boundaries should be honoured or else pcount will
1656 		 * severely break even though it makes things bit trickier.
1657 		 * Optimize common case to avoid most of the divides
1658 		 */
1659 		mss = tcp_skb_mss(skb);
1660 
1661 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1662 		 * drop this restriction as unnecessary
1663 		 */
1664 		if (mss != tcp_skb_seglen(prev))
1665 			goto fallback;
1666 
1667 		if (len == mss) {
1668 			pcount = 1;
1669 		} else if (len < mss) {
1670 			goto noop;
1671 		} else {
1672 			pcount = len / mss;
1673 			len = pcount * mss;
1674 		}
1675 	}
1676 
1677 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1678 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1679 		goto fallback;
1680 
1681 	if (!tcp_skb_shift(prev, skb, pcount, len))
1682 		goto fallback;
1683 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1684 		goto out;
1685 
1686 	/* Hole filled allows collapsing with the next as well, this is very
1687 	 * useful when hole on every nth skb pattern happens
1688 	 */
1689 	skb = skb_rb_next(prev);
1690 	if (!skb)
1691 		goto out;
1692 
1693 	if (!skb_can_shift(skb) ||
1694 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1695 	    (mss != tcp_skb_seglen(skb)))
1696 		goto out;
1697 
1698 	if (!tcp_skb_can_collapse(prev, skb))
1699 		goto out;
1700 	len = skb->len;
1701 	pcount = tcp_skb_pcount(skb);
1702 	if (tcp_skb_shift(prev, skb, pcount, len))
1703 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1704 				len, mss, 0);
1705 
1706 out:
1707 	return prev;
1708 
1709 noop:
1710 	return skb;
1711 
1712 fallback:
1713 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1714 	return NULL;
1715 }
1716 
1717 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1718 					struct tcp_sack_block *next_dup,
1719 					struct tcp_sacktag_state *state,
1720 					u32 start_seq, u32 end_seq,
1721 					bool dup_sack_in)
1722 {
1723 	struct tcp_sock *tp = tcp_sk(sk);
1724 	struct sk_buff *tmp;
1725 
1726 	skb_rbtree_walk_from(skb) {
1727 		int in_sack = 0;
1728 		bool dup_sack = dup_sack_in;
1729 
1730 		/* queue is in-order => we can short-circuit the walk early */
1731 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1732 			break;
1733 
1734 		if (next_dup  &&
1735 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1736 			in_sack = tcp_match_skb_to_sack(sk, skb,
1737 							next_dup->start_seq,
1738 							next_dup->end_seq);
1739 			if (in_sack > 0)
1740 				dup_sack = true;
1741 		}
1742 
1743 		/* skb reference here is a bit tricky to get right, since
1744 		 * shifting can eat and free both this skb and the next,
1745 		 * so not even _safe variant of the loop is enough.
1746 		 */
1747 		if (in_sack <= 0) {
1748 			tmp = tcp_shift_skb_data(sk, skb, state,
1749 						 start_seq, end_seq, dup_sack);
1750 			if (tmp) {
1751 				if (tmp != skb) {
1752 					skb = tmp;
1753 					continue;
1754 				}
1755 
1756 				in_sack = 0;
1757 			} else {
1758 				in_sack = tcp_match_skb_to_sack(sk, skb,
1759 								start_seq,
1760 								end_seq);
1761 			}
1762 		}
1763 
1764 		if (unlikely(in_sack < 0))
1765 			break;
1766 
1767 		if (in_sack) {
1768 			TCP_SKB_CB(skb)->sacked =
1769 				tcp_sacktag_one(sk,
1770 						state,
1771 						TCP_SKB_CB(skb)->sacked,
1772 						TCP_SKB_CB(skb)->seq,
1773 						TCP_SKB_CB(skb)->end_seq,
1774 						dup_sack,
1775 						tcp_skb_pcount(skb),
1776 						tcp_skb_timestamp_us(skb));
1777 			tcp_rate_skb_delivered(sk, skb, state->rate);
1778 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1779 				list_del_init(&skb->tcp_tsorted_anchor);
1780 
1781 			if (!before(TCP_SKB_CB(skb)->seq,
1782 				    tcp_highest_sack_seq(tp)))
1783 				tcp_advance_highest_sack(sk, skb);
1784 		}
1785 	}
1786 	return skb;
1787 }
1788 
1789 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1790 {
1791 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1792 	struct sk_buff *skb;
1793 
1794 	while (*p) {
1795 		parent = *p;
1796 		skb = rb_to_skb(parent);
1797 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1798 			p = &parent->rb_left;
1799 			continue;
1800 		}
1801 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1802 			p = &parent->rb_right;
1803 			continue;
1804 		}
1805 		return skb;
1806 	}
1807 	return NULL;
1808 }
1809 
1810 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1811 					u32 skip_to_seq)
1812 {
1813 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1814 		return skb;
1815 
1816 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1817 }
1818 
1819 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1820 						struct sock *sk,
1821 						struct tcp_sack_block *next_dup,
1822 						struct tcp_sacktag_state *state,
1823 						u32 skip_to_seq)
1824 {
1825 	if (!next_dup)
1826 		return skb;
1827 
1828 	if (before(next_dup->start_seq, skip_to_seq)) {
1829 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1830 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1831 				       next_dup->start_seq, next_dup->end_seq,
1832 				       1);
1833 	}
1834 
1835 	return skb;
1836 }
1837 
1838 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1839 {
1840 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1841 }
1842 
1843 static int
1844 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1845 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1846 {
1847 	struct tcp_sock *tp = tcp_sk(sk);
1848 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1849 				    TCP_SKB_CB(ack_skb)->sacked);
1850 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1851 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1852 	struct tcp_sack_block *cache;
1853 	struct sk_buff *skb;
1854 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1855 	int used_sacks;
1856 	bool found_dup_sack = false;
1857 	int i, j;
1858 	int first_sack_index;
1859 
1860 	state->flag = 0;
1861 	state->reord = tp->snd_nxt;
1862 
1863 	if (!tp->sacked_out)
1864 		tcp_highest_sack_reset(sk);
1865 
1866 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1867 					 num_sacks, prior_snd_una, state);
1868 
1869 	/* Eliminate too old ACKs, but take into
1870 	 * account more or less fresh ones, they can
1871 	 * contain valid SACK info.
1872 	 */
1873 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1874 		return 0;
1875 
1876 	if (!tp->packets_out)
1877 		goto out;
1878 
1879 	used_sacks = 0;
1880 	first_sack_index = 0;
1881 	for (i = 0; i < num_sacks; i++) {
1882 		bool dup_sack = !i && found_dup_sack;
1883 
1884 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1885 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1886 
1887 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1888 					    sp[used_sacks].start_seq,
1889 					    sp[used_sacks].end_seq)) {
1890 			int mib_idx;
1891 
1892 			if (dup_sack) {
1893 				if (!tp->undo_marker)
1894 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1895 				else
1896 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1897 			} else {
1898 				/* Don't count olds caused by ACK reordering */
1899 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1900 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1901 					continue;
1902 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1903 			}
1904 
1905 			NET_INC_STATS(sock_net(sk), mib_idx);
1906 			if (i == 0)
1907 				first_sack_index = -1;
1908 			continue;
1909 		}
1910 
1911 		/* Ignore very old stuff early */
1912 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1913 			if (i == 0)
1914 				first_sack_index = -1;
1915 			continue;
1916 		}
1917 
1918 		used_sacks++;
1919 	}
1920 
1921 	/* order SACK blocks to allow in order walk of the retrans queue */
1922 	for (i = used_sacks - 1; i > 0; i--) {
1923 		for (j = 0; j < i; j++) {
1924 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1925 				swap(sp[j], sp[j + 1]);
1926 
1927 				/* Track where the first SACK block goes to */
1928 				if (j == first_sack_index)
1929 					first_sack_index = j + 1;
1930 			}
1931 		}
1932 	}
1933 
1934 	state->mss_now = tcp_current_mss(sk);
1935 	skb = NULL;
1936 	i = 0;
1937 
1938 	if (!tp->sacked_out) {
1939 		/* It's already past, so skip checking against it */
1940 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1941 	} else {
1942 		cache = tp->recv_sack_cache;
1943 		/* Skip empty blocks in at head of the cache */
1944 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1945 		       !cache->end_seq)
1946 			cache++;
1947 	}
1948 
1949 	while (i < used_sacks) {
1950 		u32 start_seq = sp[i].start_seq;
1951 		u32 end_seq = sp[i].end_seq;
1952 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1953 		struct tcp_sack_block *next_dup = NULL;
1954 
1955 		if (found_dup_sack && ((i + 1) == first_sack_index))
1956 			next_dup = &sp[i + 1];
1957 
1958 		/* Skip too early cached blocks */
1959 		while (tcp_sack_cache_ok(tp, cache) &&
1960 		       !before(start_seq, cache->end_seq))
1961 			cache++;
1962 
1963 		/* Can skip some work by looking recv_sack_cache? */
1964 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1965 		    after(end_seq, cache->start_seq)) {
1966 
1967 			/* Head todo? */
1968 			if (before(start_seq, cache->start_seq)) {
1969 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1970 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1971 						       state,
1972 						       start_seq,
1973 						       cache->start_seq,
1974 						       dup_sack);
1975 			}
1976 
1977 			/* Rest of the block already fully processed? */
1978 			if (!after(end_seq, cache->end_seq))
1979 				goto advance_sp;
1980 
1981 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1982 						       state,
1983 						       cache->end_seq);
1984 
1985 			/* ...tail remains todo... */
1986 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1987 				/* ...but better entrypoint exists! */
1988 				skb = tcp_highest_sack(sk);
1989 				if (!skb)
1990 					break;
1991 				cache++;
1992 				goto walk;
1993 			}
1994 
1995 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1996 			/* Check overlap against next cached too (past this one already) */
1997 			cache++;
1998 			continue;
1999 		}
2000 
2001 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2002 			skb = tcp_highest_sack(sk);
2003 			if (!skb)
2004 				break;
2005 		}
2006 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2007 
2008 walk:
2009 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2010 				       start_seq, end_seq, dup_sack);
2011 
2012 advance_sp:
2013 		i++;
2014 	}
2015 
2016 	/* Clear the head of the cache sack blocks so we can skip it next time */
2017 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2018 		tp->recv_sack_cache[i].start_seq = 0;
2019 		tp->recv_sack_cache[i].end_seq = 0;
2020 	}
2021 	for (j = 0; j < used_sacks; j++)
2022 		tp->recv_sack_cache[i++] = sp[j];
2023 
2024 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2025 		tcp_check_sack_reordering(sk, state->reord, 0);
2026 
2027 	tcp_verify_left_out(tp);
2028 out:
2029 
2030 #if FASTRETRANS_DEBUG > 0
2031 	WARN_ON((int)tp->sacked_out < 0);
2032 	WARN_ON((int)tp->lost_out < 0);
2033 	WARN_ON((int)tp->retrans_out < 0);
2034 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2035 #endif
2036 	return state->flag;
2037 }
2038 
2039 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2040  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2041  */
2042 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2043 {
2044 	u32 holes;
2045 
2046 	holes = max(tp->lost_out, 1U);
2047 	holes = min(holes, tp->packets_out);
2048 
2049 	if ((tp->sacked_out + holes) > tp->packets_out) {
2050 		tp->sacked_out = tp->packets_out - holes;
2051 		return true;
2052 	}
2053 	return false;
2054 }
2055 
2056 /* If we receive more dupacks than we expected counting segments
2057  * in assumption of absent reordering, interpret this as reordering.
2058  * The only another reason could be bug in receiver TCP.
2059  */
2060 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2061 {
2062 	struct tcp_sock *tp = tcp_sk(sk);
2063 
2064 	if (!tcp_limit_reno_sacked(tp))
2065 		return;
2066 
2067 	tp->reordering = min_t(u32, tp->packets_out + addend,
2068 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2069 	tp->reord_seen++;
2070 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2071 }
2072 
2073 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2074 
2075 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2076 {
2077 	if (num_dupack) {
2078 		struct tcp_sock *tp = tcp_sk(sk);
2079 		u32 prior_sacked = tp->sacked_out;
2080 		s32 delivered;
2081 
2082 		tp->sacked_out += num_dupack;
2083 		tcp_check_reno_reordering(sk, 0);
2084 		delivered = tp->sacked_out - prior_sacked;
2085 		if (delivered > 0)
2086 			tcp_count_delivered(tp, delivered, ece_ack);
2087 		tcp_verify_left_out(tp);
2088 	}
2089 }
2090 
2091 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2092 
2093 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2094 {
2095 	struct tcp_sock *tp = tcp_sk(sk);
2096 
2097 	if (acked > 0) {
2098 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2099 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2100 				    ece_ack);
2101 		if (acked - 1 >= tp->sacked_out)
2102 			tp->sacked_out = 0;
2103 		else
2104 			tp->sacked_out -= acked - 1;
2105 	}
2106 	tcp_check_reno_reordering(sk, acked);
2107 	tcp_verify_left_out(tp);
2108 }
2109 
2110 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2111 {
2112 	tp->sacked_out = 0;
2113 }
2114 
2115 void tcp_clear_retrans(struct tcp_sock *tp)
2116 {
2117 	tp->retrans_out = 0;
2118 	tp->lost_out = 0;
2119 	tp->undo_marker = 0;
2120 	tp->undo_retrans = -1;
2121 	tp->sacked_out = 0;
2122 	tp->rto_stamp = 0;
2123 	tp->total_rto = 0;
2124 	tp->total_rto_recoveries = 0;
2125 	tp->total_rto_time = 0;
2126 }
2127 
2128 static inline void tcp_init_undo(struct tcp_sock *tp)
2129 {
2130 	tp->undo_marker = tp->snd_una;
2131 	/* Retransmission still in flight may cause DSACKs later. */
2132 	tp->undo_retrans = tp->retrans_out ? : -1;
2133 }
2134 
2135 static bool tcp_is_rack(const struct sock *sk)
2136 {
2137 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2138 		TCP_RACK_LOSS_DETECTION;
2139 }
2140 
2141 /* If we detect SACK reneging, forget all SACK information
2142  * and reset tags completely, otherwise preserve SACKs. If receiver
2143  * dropped its ofo queue, we will know this due to reneging detection.
2144  */
2145 static void tcp_timeout_mark_lost(struct sock *sk)
2146 {
2147 	struct tcp_sock *tp = tcp_sk(sk);
2148 	struct sk_buff *skb, *head;
2149 	bool is_reneg;			/* is receiver reneging on SACKs? */
2150 
2151 	head = tcp_rtx_queue_head(sk);
2152 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2153 	if (is_reneg) {
2154 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2155 		tp->sacked_out = 0;
2156 		/* Mark SACK reneging until we recover from this loss event. */
2157 		tp->is_sack_reneg = 1;
2158 	} else if (tcp_is_reno(tp)) {
2159 		tcp_reset_reno_sack(tp);
2160 	}
2161 
2162 	skb = head;
2163 	skb_rbtree_walk_from(skb) {
2164 		if (is_reneg)
2165 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2166 		else if (tcp_is_rack(sk) && skb != head &&
2167 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2168 			continue; /* Don't mark recently sent ones lost yet */
2169 		tcp_mark_skb_lost(sk, skb);
2170 	}
2171 	tcp_verify_left_out(tp);
2172 	tcp_clear_all_retrans_hints(tp);
2173 }
2174 
2175 /* Enter Loss state. */
2176 void tcp_enter_loss(struct sock *sk)
2177 {
2178 	const struct inet_connection_sock *icsk = inet_csk(sk);
2179 	struct tcp_sock *tp = tcp_sk(sk);
2180 	struct net *net = sock_net(sk);
2181 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2182 	u8 reordering;
2183 
2184 	tcp_timeout_mark_lost(sk);
2185 
2186 	/* Reduce ssthresh if it has not yet been made inside this window. */
2187 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2188 	    !after(tp->high_seq, tp->snd_una) ||
2189 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2190 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2191 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2192 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2193 		tcp_ca_event(sk, CA_EVENT_LOSS);
2194 		tcp_init_undo(tp);
2195 	}
2196 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2197 	tp->snd_cwnd_cnt   = 0;
2198 	tp->snd_cwnd_stamp = tcp_jiffies32;
2199 
2200 	/* Timeout in disordered state after receiving substantial DUPACKs
2201 	 * suggests that the degree of reordering is over-estimated.
2202 	 */
2203 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2204 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2205 	    tp->sacked_out >= reordering)
2206 		tp->reordering = min_t(unsigned int, tp->reordering,
2207 				       reordering);
2208 
2209 	tcp_set_ca_state(sk, TCP_CA_Loss);
2210 	tp->high_seq = tp->snd_nxt;
2211 	tcp_ecn_queue_cwr(tp);
2212 
2213 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2214 	 * loss recovery is underway except recurring timeout(s) on
2215 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2216 	 */
2217 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2218 		   (new_recovery || icsk->icsk_retransmits) &&
2219 		   !inet_csk(sk)->icsk_mtup.probe_size;
2220 }
2221 
2222 /* If ACK arrived pointing to a remembered SACK, it means that our
2223  * remembered SACKs do not reflect real state of receiver i.e.
2224  * receiver _host_ is heavily congested (or buggy).
2225  *
2226  * To avoid big spurious retransmission bursts due to transient SACK
2227  * scoreboard oddities that look like reneging, we give the receiver a
2228  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2229  * restore sanity to the SACK scoreboard. If the apparent reneging
2230  * persists until this RTO then we'll clear the SACK scoreboard.
2231  */
2232 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2233 {
2234 	if (*ack_flag & FLAG_SACK_RENEGING &&
2235 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2236 		struct tcp_sock *tp = tcp_sk(sk);
2237 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2238 					  msecs_to_jiffies(10));
2239 
2240 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2241 					  delay, TCP_RTO_MAX);
2242 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2243 		return true;
2244 	}
2245 	return false;
2246 }
2247 
2248 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2249  * counter when SACK is enabled (without SACK, sacked_out is used for
2250  * that purpose).
2251  *
2252  * With reordering, holes may still be in flight, so RFC3517 recovery
2253  * uses pure sacked_out (total number of SACKed segments) even though
2254  * it violates the RFC that uses duplicate ACKs, often these are equal
2255  * but when e.g. out-of-window ACKs or packet duplication occurs,
2256  * they differ. Since neither occurs due to loss, TCP should really
2257  * ignore them.
2258  */
2259 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2260 {
2261 	return tp->sacked_out + 1;
2262 }
2263 
2264 /* Linux NewReno/SACK/ECN state machine.
2265  * --------------------------------------
2266  *
2267  * "Open"	Normal state, no dubious events, fast path.
2268  * "Disorder"   In all the respects it is "Open",
2269  *		but requires a bit more attention. It is entered when
2270  *		we see some SACKs or dupacks. It is split of "Open"
2271  *		mainly to move some processing from fast path to slow one.
2272  * "CWR"	CWND was reduced due to some Congestion Notification event.
2273  *		It can be ECN, ICMP source quench, local device congestion.
2274  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2275  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2276  *
2277  * tcp_fastretrans_alert() is entered:
2278  * - each incoming ACK, if state is not "Open"
2279  * - when arrived ACK is unusual, namely:
2280  *	* SACK
2281  *	* Duplicate ACK.
2282  *	* ECN ECE.
2283  *
2284  * Counting packets in flight is pretty simple.
2285  *
2286  *	in_flight = packets_out - left_out + retrans_out
2287  *
2288  *	packets_out is SND.NXT-SND.UNA counted in packets.
2289  *
2290  *	retrans_out is number of retransmitted segments.
2291  *
2292  *	left_out is number of segments left network, but not ACKed yet.
2293  *
2294  *		left_out = sacked_out + lost_out
2295  *
2296  *     sacked_out: Packets, which arrived to receiver out of order
2297  *		   and hence not ACKed. With SACKs this number is simply
2298  *		   amount of SACKed data. Even without SACKs
2299  *		   it is easy to give pretty reliable estimate of this number,
2300  *		   counting duplicate ACKs.
2301  *
2302  *       lost_out: Packets lost by network. TCP has no explicit
2303  *		   "loss notification" feedback from network (for now).
2304  *		   It means that this number can be only _guessed_.
2305  *		   Actually, it is the heuristics to predict lossage that
2306  *		   distinguishes different algorithms.
2307  *
2308  *	F.e. after RTO, when all the queue is considered as lost,
2309  *	lost_out = packets_out and in_flight = retrans_out.
2310  *
2311  *		Essentially, we have now a few algorithms detecting
2312  *		lost packets.
2313  *
2314  *		If the receiver supports SACK:
2315  *
2316  *		RFC6675/3517: It is the conventional algorithm. A packet is
2317  *		considered lost if the number of higher sequence packets
2318  *		SACKed is greater than or equal the DUPACK thoreshold
2319  *		(reordering). This is implemented in tcp_mark_head_lost and
2320  *		tcp_update_scoreboard.
2321  *
2322  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2323  *		(2017-) that checks timing instead of counting DUPACKs.
2324  *		Essentially a packet is considered lost if it's not S/ACKed
2325  *		after RTT + reordering_window, where both metrics are
2326  *		dynamically measured and adjusted. This is implemented in
2327  *		tcp_rack_mark_lost.
2328  *
2329  *		If the receiver does not support SACK:
2330  *
2331  *		NewReno (RFC6582): in Recovery we assume that one segment
2332  *		is lost (classic Reno). While we are in Recovery and
2333  *		a partial ACK arrives, we assume that one more packet
2334  *		is lost (NewReno). This heuristics are the same in NewReno
2335  *		and SACK.
2336  *
2337  * Really tricky (and requiring careful tuning) part of algorithm
2338  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2339  * The first determines the moment _when_ we should reduce CWND and,
2340  * hence, slow down forward transmission. In fact, it determines the moment
2341  * when we decide that hole is caused by loss, rather than by a reorder.
2342  *
2343  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2344  * holes, caused by lost packets.
2345  *
2346  * And the most logically complicated part of algorithm is undo
2347  * heuristics. We detect false retransmits due to both too early
2348  * fast retransmit (reordering) and underestimated RTO, analyzing
2349  * timestamps and D-SACKs. When we detect that some segments were
2350  * retransmitted by mistake and CWND reduction was wrong, we undo
2351  * window reduction and abort recovery phase. This logic is hidden
2352  * inside several functions named tcp_try_undo_<something>.
2353  */
2354 
2355 /* This function decides, when we should leave Disordered state
2356  * and enter Recovery phase, reducing congestion window.
2357  *
2358  * Main question: may we further continue forward transmission
2359  * with the same cwnd?
2360  */
2361 static bool tcp_time_to_recover(struct sock *sk, int flag)
2362 {
2363 	struct tcp_sock *tp = tcp_sk(sk);
2364 
2365 	/* Trick#1: The loss is proven. */
2366 	if (tp->lost_out)
2367 		return true;
2368 
2369 	/* Not-A-Trick#2 : Classic rule... */
2370 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2371 		return true;
2372 
2373 	return false;
2374 }
2375 
2376 /* Detect loss in event "A" above by marking head of queue up as lost.
2377  * For RFC3517 SACK, a segment is considered lost if it
2378  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2379  * the maximum SACKed segments to pass before reaching this limit.
2380  */
2381 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2382 {
2383 	struct tcp_sock *tp = tcp_sk(sk);
2384 	struct sk_buff *skb;
2385 	int cnt;
2386 	/* Use SACK to deduce losses of new sequences sent during recovery */
2387 	const u32 loss_high = tp->snd_nxt;
2388 
2389 	WARN_ON(packets > tp->packets_out);
2390 	skb = tp->lost_skb_hint;
2391 	if (skb) {
2392 		/* Head already handled? */
2393 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2394 			return;
2395 		cnt = tp->lost_cnt_hint;
2396 	} else {
2397 		skb = tcp_rtx_queue_head(sk);
2398 		cnt = 0;
2399 	}
2400 
2401 	skb_rbtree_walk_from(skb) {
2402 		/* TODO: do this better */
2403 		/* this is not the most efficient way to do this... */
2404 		tp->lost_skb_hint = skb;
2405 		tp->lost_cnt_hint = cnt;
2406 
2407 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2408 			break;
2409 
2410 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2411 			cnt += tcp_skb_pcount(skb);
2412 
2413 		if (cnt > packets)
2414 			break;
2415 
2416 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2417 			tcp_mark_skb_lost(sk, skb);
2418 
2419 		if (mark_head)
2420 			break;
2421 	}
2422 	tcp_verify_left_out(tp);
2423 }
2424 
2425 /* Account newly detected lost packet(s) */
2426 
2427 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2428 {
2429 	struct tcp_sock *tp = tcp_sk(sk);
2430 
2431 	if (tcp_is_sack(tp)) {
2432 		int sacked_upto = tp->sacked_out - tp->reordering;
2433 		if (sacked_upto >= 0)
2434 			tcp_mark_head_lost(sk, sacked_upto, 0);
2435 		else if (fast_rexmit)
2436 			tcp_mark_head_lost(sk, 1, 1);
2437 	}
2438 }
2439 
2440 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2441 {
2442 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2443 	       before(tp->rx_opt.rcv_tsecr, when);
2444 }
2445 
2446 /* skb is spurious retransmitted if the returned timestamp echo
2447  * reply is prior to the skb transmission time
2448  */
2449 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2450 				     const struct sk_buff *skb)
2451 {
2452 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2453 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2454 }
2455 
2456 /* Nothing was retransmitted or returned timestamp is less
2457  * than timestamp of the first retransmission.
2458  */
2459 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2460 {
2461 	return tp->retrans_stamp &&
2462 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2463 }
2464 
2465 /* Undo procedures. */
2466 
2467 /* We can clear retrans_stamp when there are no retransmissions in the
2468  * window. It would seem that it is trivially available for us in
2469  * tp->retrans_out, however, that kind of assumptions doesn't consider
2470  * what will happen if errors occur when sending retransmission for the
2471  * second time. ...It could the that such segment has only
2472  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2473  * the head skb is enough except for some reneging corner cases that
2474  * are not worth the effort.
2475  *
2476  * Main reason for all this complexity is the fact that connection dying
2477  * time now depends on the validity of the retrans_stamp, in particular,
2478  * that successive retransmissions of a segment must not advance
2479  * retrans_stamp under any conditions.
2480  */
2481 static bool tcp_any_retrans_done(const struct sock *sk)
2482 {
2483 	const struct tcp_sock *tp = tcp_sk(sk);
2484 	struct sk_buff *skb;
2485 
2486 	if (tp->retrans_out)
2487 		return true;
2488 
2489 	skb = tcp_rtx_queue_head(sk);
2490 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2491 		return true;
2492 
2493 	return false;
2494 }
2495 
2496 static void DBGUNDO(struct sock *sk, const char *msg)
2497 {
2498 #if FASTRETRANS_DEBUG > 1
2499 	struct tcp_sock *tp = tcp_sk(sk);
2500 	struct inet_sock *inet = inet_sk(sk);
2501 
2502 	if (sk->sk_family == AF_INET) {
2503 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2504 			 msg,
2505 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2506 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2507 			 tp->snd_ssthresh, tp->prior_ssthresh,
2508 			 tp->packets_out);
2509 	}
2510 #if IS_ENABLED(CONFIG_IPV6)
2511 	else if (sk->sk_family == AF_INET6) {
2512 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2513 			 msg,
2514 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2515 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2516 			 tp->snd_ssthresh, tp->prior_ssthresh,
2517 			 tp->packets_out);
2518 	}
2519 #endif
2520 #endif
2521 }
2522 
2523 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2524 {
2525 	struct tcp_sock *tp = tcp_sk(sk);
2526 
2527 	if (unmark_loss) {
2528 		struct sk_buff *skb;
2529 
2530 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2531 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2532 		}
2533 		tp->lost_out = 0;
2534 		tcp_clear_all_retrans_hints(tp);
2535 	}
2536 
2537 	if (tp->prior_ssthresh) {
2538 		const struct inet_connection_sock *icsk = inet_csk(sk);
2539 
2540 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2541 
2542 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2543 			tp->snd_ssthresh = tp->prior_ssthresh;
2544 			tcp_ecn_withdraw_cwr(tp);
2545 		}
2546 	}
2547 	tp->snd_cwnd_stamp = tcp_jiffies32;
2548 	tp->undo_marker = 0;
2549 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2550 }
2551 
2552 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2553 {
2554 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2555 }
2556 
2557 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2558 {
2559 	struct tcp_sock *tp = tcp_sk(sk);
2560 
2561 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2562 		/* Hold old state until something *above* high_seq
2563 		 * is ACKed. For Reno it is MUST to prevent false
2564 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2565 		if (!tcp_any_retrans_done(sk))
2566 			tp->retrans_stamp = 0;
2567 		return true;
2568 	}
2569 	return false;
2570 }
2571 
2572 /* People celebrate: "We love our President!" */
2573 static bool tcp_try_undo_recovery(struct sock *sk)
2574 {
2575 	struct tcp_sock *tp = tcp_sk(sk);
2576 
2577 	if (tcp_may_undo(tp)) {
2578 		int mib_idx;
2579 
2580 		/* Happy end! We did not retransmit anything
2581 		 * or our original transmission succeeded.
2582 		 */
2583 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2584 		tcp_undo_cwnd_reduction(sk, false);
2585 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2586 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2587 		else
2588 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2589 
2590 		NET_INC_STATS(sock_net(sk), mib_idx);
2591 	} else if (tp->rack.reo_wnd_persist) {
2592 		tp->rack.reo_wnd_persist--;
2593 	}
2594 	if (tcp_is_non_sack_preventing_reopen(sk))
2595 		return true;
2596 	tcp_set_ca_state(sk, TCP_CA_Open);
2597 	tp->is_sack_reneg = 0;
2598 	return false;
2599 }
2600 
2601 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2602 static bool tcp_try_undo_dsack(struct sock *sk)
2603 {
2604 	struct tcp_sock *tp = tcp_sk(sk);
2605 
2606 	if (tp->undo_marker && !tp->undo_retrans) {
2607 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2608 					       tp->rack.reo_wnd_persist + 1);
2609 		DBGUNDO(sk, "D-SACK");
2610 		tcp_undo_cwnd_reduction(sk, false);
2611 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2612 		return true;
2613 	}
2614 	return false;
2615 }
2616 
2617 /* Undo during loss recovery after partial ACK or using F-RTO. */
2618 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2619 {
2620 	struct tcp_sock *tp = tcp_sk(sk);
2621 
2622 	if (frto_undo || tcp_may_undo(tp)) {
2623 		tcp_undo_cwnd_reduction(sk, true);
2624 
2625 		DBGUNDO(sk, "partial loss");
2626 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2627 		if (frto_undo)
2628 			NET_INC_STATS(sock_net(sk),
2629 					LINUX_MIB_TCPSPURIOUSRTOS);
2630 		inet_csk(sk)->icsk_retransmits = 0;
2631 		if (tcp_is_non_sack_preventing_reopen(sk))
2632 			return true;
2633 		if (frto_undo || tcp_is_sack(tp)) {
2634 			tcp_set_ca_state(sk, TCP_CA_Open);
2635 			tp->is_sack_reneg = 0;
2636 		}
2637 		return true;
2638 	}
2639 	return false;
2640 }
2641 
2642 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2643  * It computes the number of packets to send (sndcnt) based on packets newly
2644  * delivered:
2645  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2646  *	cwnd reductions across a full RTT.
2647  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2648  *      But when SND_UNA is acked without further losses,
2649  *      slow starts cwnd up to ssthresh to speed up the recovery.
2650  */
2651 static void tcp_init_cwnd_reduction(struct sock *sk)
2652 {
2653 	struct tcp_sock *tp = tcp_sk(sk);
2654 
2655 	tp->high_seq = tp->snd_nxt;
2656 	tp->tlp_high_seq = 0;
2657 	tp->snd_cwnd_cnt = 0;
2658 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2659 	tp->prr_delivered = 0;
2660 	tp->prr_out = 0;
2661 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2662 	tcp_ecn_queue_cwr(tp);
2663 }
2664 
2665 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2666 {
2667 	struct tcp_sock *tp = tcp_sk(sk);
2668 	int sndcnt = 0;
2669 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2670 
2671 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2672 		return;
2673 
2674 	tp->prr_delivered += newly_acked_sacked;
2675 	if (delta < 0) {
2676 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2677 			       tp->prior_cwnd - 1;
2678 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2679 	} else {
2680 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2681 			       newly_acked_sacked);
2682 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2683 			sndcnt++;
2684 		sndcnt = min(delta, sndcnt);
2685 	}
2686 	/* Force a fast retransmit upon entering fast recovery */
2687 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2688 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2689 }
2690 
2691 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2692 {
2693 	struct tcp_sock *tp = tcp_sk(sk);
2694 
2695 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2696 		return;
2697 
2698 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2699 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2700 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2701 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2702 		tp->snd_cwnd_stamp = tcp_jiffies32;
2703 	}
2704 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2705 }
2706 
2707 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2708 void tcp_enter_cwr(struct sock *sk)
2709 {
2710 	struct tcp_sock *tp = tcp_sk(sk);
2711 
2712 	tp->prior_ssthresh = 0;
2713 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2714 		tp->undo_marker = 0;
2715 		tcp_init_cwnd_reduction(sk);
2716 		tcp_set_ca_state(sk, TCP_CA_CWR);
2717 	}
2718 }
2719 EXPORT_SYMBOL(tcp_enter_cwr);
2720 
2721 static void tcp_try_keep_open(struct sock *sk)
2722 {
2723 	struct tcp_sock *tp = tcp_sk(sk);
2724 	int state = TCP_CA_Open;
2725 
2726 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2727 		state = TCP_CA_Disorder;
2728 
2729 	if (inet_csk(sk)->icsk_ca_state != state) {
2730 		tcp_set_ca_state(sk, state);
2731 		tp->high_seq = tp->snd_nxt;
2732 	}
2733 }
2734 
2735 static void tcp_try_to_open(struct sock *sk, int flag)
2736 {
2737 	struct tcp_sock *tp = tcp_sk(sk);
2738 
2739 	tcp_verify_left_out(tp);
2740 
2741 	if (!tcp_any_retrans_done(sk))
2742 		tp->retrans_stamp = 0;
2743 
2744 	if (flag & FLAG_ECE)
2745 		tcp_enter_cwr(sk);
2746 
2747 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2748 		tcp_try_keep_open(sk);
2749 	}
2750 }
2751 
2752 static void tcp_mtup_probe_failed(struct sock *sk)
2753 {
2754 	struct inet_connection_sock *icsk = inet_csk(sk);
2755 
2756 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2757 	icsk->icsk_mtup.probe_size = 0;
2758 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2759 }
2760 
2761 static void tcp_mtup_probe_success(struct sock *sk)
2762 {
2763 	struct tcp_sock *tp = tcp_sk(sk);
2764 	struct inet_connection_sock *icsk = inet_csk(sk);
2765 	u64 val;
2766 
2767 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2768 
2769 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2770 	do_div(val, icsk->icsk_mtup.probe_size);
2771 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2772 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2773 
2774 	tp->snd_cwnd_cnt = 0;
2775 	tp->snd_cwnd_stamp = tcp_jiffies32;
2776 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2777 
2778 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2779 	icsk->icsk_mtup.probe_size = 0;
2780 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2781 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2782 }
2783 
2784 /* Do a simple retransmit without using the backoff mechanisms in
2785  * tcp_timer. This is used for path mtu discovery.
2786  * The socket is already locked here.
2787  */
2788 void tcp_simple_retransmit(struct sock *sk)
2789 {
2790 	const struct inet_connection_sock *icsk = inet_csk(sk);
2791 	struct tcp_sock *tp = tcp_sk(sk);
2792 	struct sk_buff *skb;
2793 	int mss;
2794 
2795 	/* A fastopen SYN request is stored as two separate packets within
2796 	 * the retransmit queue, this is done by tcp_send_syn_data().
2797 	 * As a result simply checking the MSS of the frames in the queue
2798 	 * will not work for the SYN packet.
2799 	 *
2800 	 * Us being here is an indication of a path MTU issue so we can
2801 	 * assume that the fastopen SYN was lost and just mark all the
2802 	 * frames in the retransmit queue as lost. We will use an MSS of
2803 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2804 	 */
2805 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2806 		mss = -1;
2807 	else
2808 		mss = tcp_current_mss(sk);
2809 
2810 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2811 		if (tcp_skb_seglen(skb) > mss)
2812 			tcp_mark_skb_lost(sk, skb);
2813 	}
2814 
2815 	tcp_clear_retrans_hints_partial(tp);
2816 
2817 	if (!tp->lost_out)
2818 		return;
2819 
2820 	if (tcp_is_reno(tp))
2821 		tcp_limit_reno_sacked(tp);
2822 
2823 	tcp_verify_left_out(tp);
2824 
2825 	/* Don't muck with the congestion window here.
2826 	 * Reason is that we do not increase amount of _data_
2827 	 * in network, but units changed and effective
2828 	 * cwnd/ssthresh really reduced now.
2829 	 */
2830 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2831 		tp->high_seq = tp->snd_nxt;
2832 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2833 		tp->prior_ssthresh = 0;
2834 		tp->undo_marker = 0;
2835 		tcp_set_ca_state(sk, TCP_CA_Loss);
2836 	}
2837 	tcp_xmit_retransmit_queue(sk);
2838 }
2839 EXPORT_SYMBOL(tcp_simple_retransmit);
2840 
2841 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2842 {
2843 	struct tcp_sock *tp = tcp_sk(sk);
2844 	int mib_idx;
2845 
2846 	if (tcp_is_reno(tp))
2847 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2848 	else
2849 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2850 
2851 	NET_INC_STATS(sock_net(sk), mib_idx);
2852 
2853 	tp->prior_ssthresh = 0;
2854 	tcp_init_undo(tp);
2855 
2856 	if (!tcp_in_cwnd_reduction(sk)) {
2857 		if (!ece_ack)
2858 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2859 		tcp_init_cwnd_reduction(sk);
2860 	}
2861 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2862 }
2863 
2864 static void tcp_update_rto_time(struct tcp_sock *tp)
2865 {
2866 	if (tp->rto_stamp) {
2867 		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2868 		tp->rto_stamp = 0;
2869 	}
2870 }
2871 
2872 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2873  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2874  */
2875 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2876 			     int *rexmit)
2877 {
2878 	struct tcp_sock *tp = tcp_sk(sk);
2879 	bool recovered = !before(tp->snd_una, tp->high_seq);
2880 
2881 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2882 	    tcp_try_undo_loss(sk, false))
2883 		return;
2884 
2885 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2886 		/* Step 3.b. A timeout is spurious if not all data are
2887 		 * lost, i.e., never-retransmitted data are (s)acked.
2888 		 */
2889 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2890 		    tcp_try_undo_loss(sk, true))
2891 			return;
2892 
2893 		if (after(tp->snd_nxt, tp->high_seq)) {
2894 			if (flag & FLAG_DATA_SACKED || num_dupack)
2895 				tp->frto = 0; /* Step 3.a. loss was real */
2896 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2897 			tp->high_seq = tp->snd_nxt;
2898 			/* Step 2.b. Try send new data (but deferred until cwnd
2899 			 * is updated in tcp_ack()). Otherwise fall back to
2900 			 * the conventional recovery.
2901 			 */
2902 			if (!tcp_write_queue_empty(sk) &&
2903 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2904 				*rexmit = REXMIT_NEW;
2905 				return;
2906 			}
2907 			tp->frto = 0;
2908 		}
2909 	}
2910 
2911 	if (recovered) {
2912 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2913 		tcp_try_undo_recovery(sk);
2914 		return;
2915 	}
2916 	if (tcp_is_reno(tp)) {
2917 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2918 		 * delivered. Lower inflight to clock out (re)transmissions.
2919 		 */
2920 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2921 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2922 		else if (flag & FLAG_SND_UNA_ADVANCED)
2923 			tcp_reset_reno_sack(tp);
2924 	}
2925 	*rexmit = REXMIT_LOST;
2926 }
2927 
2928 static bool tcp_force_fast_retransmit(struct sock *sk)
2929 {
2930 	struct tcp_sock *tp = tcp_sk(sk);
2931 
2932 	return after(tcp_highest_sack_seq(tp),
2933 		     tp->snd_una + tp->reordering * tp->mss_cache);
2934 }
2935 
2936 /* Undo during fast recovery after partial ACK. */
2937 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2938 				 bool *do_lost)
2939 {
2940 	struct tcp_sock *tp = tcp_sk(sk);
2941 
2942 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2943 		/* Plain luck! Hole if filled with delayed
2944 		 * packet, rather than with a retransmit. Check reordering.
2945 		 */
2946 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2947 
2948 		/* We are getting evidence that the reordering degree is higher
2949 		 * than we realized. If there are no retransmits out then we
2950 		 * can undo. Otherwise we clock out new packets but do not
2951 		 * mark more packets lost or retransmit more.
2952 		 */
2953 		if (tp->retrans_out)
2954 			return true;
2955 
2956 		if (!tcp_any_retrans_done(sk))
2957 			tp->retrans_stamp = 0;
2958 
2959 		DBGUNDO(sk, "partial recovery");
2960 		tcp_undo_cwnd_reduction(sk, true);
2961 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2962 		tcp_try_keep_open(sk);
2963 	} else {
2964 		/* Partial ACK arrived. Force fast retransmit. */
2965 		*do_lost = tcp_force_fast_retransmit(sk);
2966 	}
2967 	return false;
2968 }
2969 
2970 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2971 {
2972 	struct tcp_sock *tp = tcp_sk(sk);
2973 
2974 	if (tcp_rtx_queue_empty(sk))
2975 		return;
2976 
2977 	if (unlikely(tcp_is_reno(tp))) {
2978 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2979 	} else if (tcp_is_rack(sk)) {
2980 		u32 prior_retrans = tp->retrans_out;
2981 
2982 		if (tcp_rack_mark_lost(sk))
2983 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2984 		if (prior_retrans > tp->retrans_out)
2985 			*ack_flag |= FLAG_LOST_RETRANS;
2986 	}
2987 }
2988 
2989 /* Process an event, which can update packets-in-flight not trivially.
2990  * Main goal of this function is to calculate new estimate for left_out,
2991  * taking into account both packets sitting in receiver's buffer and
2992  * packets lost by network.
2993  *
2994  * Besides that it updates the congestion state when packet loss or ECN
2995  * is detected. But it does not reduce the cwnd, it is done by the
2996  * congestion control later.
2997  *
2998  * It does _not_ decide what to send, it is made in function
2999  * tcp_xmit_retransmit_queue().
3000  */
3001 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3002 				  int num_dupack, int *ack_flag, int *rexmit)
3003 {
3004 	struct inet_connection_sock *icsk = inet_csk(sk);
3005 	struct tcp_sock *tp = tcp_sk(sk);
3006 	int fast_rexmit = 0, flag = *ack_flag;
3007 	bool ece_ack = flag & FLAG_ECE;
3008 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3009 				      tcp_force_fast_retransmit(sk));
3010 
3011 	if (!tp->packets_out && tp->sacked_out)
3012 		tp->sacked_out = 0;
3013 
3014 	/* Now state machine starts.
3015 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3016 	if (ece_ack)
3017 		tp->prior_ssthresh = 0;
3018 
3019 	/* B. In all the states check for reneging SACKs. */
3020 	if (tcp_check_sack_reneging(sk, ack_flag))
3021 		return;
3022 
3023 	/* C. Check consistency of the current state. */
3024 	tcp_verify_left_out(tp);
3025 
3026 	/* D. Check state exit conditions. State can be terminated
3027 	 *    when high_seq is ACKed. */
3028 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3029 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3030 		tp->retrans_stamp = 0;
3031 	} else if (!before(tp->snd_una, tp->high_seq)) {
3032 		switch (icsk->icsk_ca_state) {
3033 		case TCP_CA_CWR:
3034 			/* CWR is to be held something *above* high_seq
3035 			 * is ACKed for CWR bit to reach receiver. */
3036 			if (tp->snd_una != tp->high_seq) {
3037 				tcp_end_cwnd_reduction(sk);
3038 				tcp_set_ca_state(sk, TCP_CA_Open);
3039 			}
3040 			break;
3041 
3042 		case TCP_CA_Recovery:
3043 			if (tcp_is_reno(tp))
3044 				tcp_reset_reno_sack(tp);
3045 			if (tcp_try_undo_recovery(sk))
3046 				return;
3047 			tcp_end_cwnd_reduction(sk);
3048 			break;
3049 		}
3050 	}
3051 
3052 	/* E. Process state. */
3053 	switch (icsk->icsk_ca_state) {
3054 	case TCP_CA_Recovery:
3055 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3056 			if (tcp_is_reno(tp))
3057 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3058 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3059 			return;
3060 
3061 		if (tcp_try_undo_dsack(sk))
3062 			tcp_try_keep_open(sk);
3063 
3064 		tcp_identify_packet_loss(sk, ack_flag);
3065 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3066 			if (!tcp_time_to_recover(sk, flag))
3067 				return;
3068 			/* Undo reverts the recovery state. If loss is evident,
3069 			 * starts a new recovery (e.g. reordering then loss);
3070 			 */
3071 			tcp_enter_recovery(sk, ece_ack);
3072 		}
3073 		break;
3074 	case TCP_CA_Loss:
3075 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3076 		if (icsk->icsk_ca_state != TCP_CA_Loss)
3077 			tcp_update_rto_time(tp);
3078 		tcp_identify_packet_loss(sk, ack_flag);
3079 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3080 		      (*ack_flag & FLAG_LOST_RETRANS)))
3081 			return;
3082 		/* Change state if cwnd is undone or retransmits are lost */
3083 		fallthrough;
3084 	default:
3085 		if (tcp_is_reno(tp)) {
3086 			if (flag & FLAG_SND_UNA_ADVANCED)
3087 				tcp_reset_reno_sack(tp);
3088 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3089 		}
3090 
3091 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3092 			tcp_try_undo_dsack(sk);
3093 
3094 		tcp_identify_packet_loss(sk, ack_flag);
3095 		if (!tcp_time_to_recover(sk, flag)) {
3096 			tcp_try_to_open(sk, flag);
3097 			return;
3098 		}
3099 
3100 		/* MTU probe failure: don't reduce cwnd */
3101 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3102 		    icsk->icsk_mtup.probe_size &&
3103 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3104 			tcp_mtup_probe_failed(sk);
3105 			/* Restores the reduction we did in tcp_mtup_probe() */
3106 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3107 			tcp_simple_retransmit(sk);
3108 			return;
3109 		}
3110 
3111 		/* Otherwise enter Recovery state */
3112 		tcp_enter_recovery(sk, ece_ack);
3113 		fast_rexmit = 1;
3114 	}
3115 
3116 	if (!tcp_is_rack(sk) && do_lost)
3117 		tcp_update_scoreboard(sk, fast_rexmit);
3118 	*rexmit = REXMIT_LOST;
3119 }
3120 
3121 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3122 {
3123 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3124 	struct tcp_sock *tp = tcp_sk(sk);
3125 
3126 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3127 		/* If the remote keeps returning delayed ACKs, eventually
3128 		 * the min filter would pick it up and overestimate the
3129 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3130 		 */
3131 		return;
3132 	}
3133 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3134 			   rtt_us ? : jiffies_to_usecs(1));
3135 }
3136 
3137 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3138 			       long seq_rtt_us, long sack_rtt_us,
3139 			       long ca_rtt_us, struct rate_sample *rs)
3140 {
3141 	const struct tcp_sock *tp = tcp_sk(sk);
3142 
3143 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3144 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3145 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3146 	 * is acked (RFC6298).
3147 	 */
3148 	if (seq_rtt_us < 0)
3149 		seq_rtt_us = sack_rtt_us;
3150 
3151 	/* RTTM Rule: A TSecr value received in a segment is used to
3152 	 * update the averaged RTT measurement only if the segment
3153 	 * acknowledges some new data, i.e., only if it advances the
3154 	 * left edge of the send window.
3155 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3156 	 */
3157 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3158 	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3159 		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp);
3160 
3161 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3162 	if (seq_rtt_us < 0)
3163 		return false;
3164 
3165 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3166 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3167 	 * values will be skipped with the seq_rtt_us < 0 check above.
3168 	 */
3169 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3170 	tcp_rtt_estimator(sk, seq_rtt_us);
3171 	tcp_set_rto(sk);
3172 
3173 	/* RFC6298: only reset backoff on valid RTT measurement. */
3174 	inet_csk(sk)->icsk_backoff = 0;
3175 	return true;
3176 }
3177 
3178 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3179 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3180 {
3181 	struct rate_sample rs;
3182 	long rtt_us = -1L;
3183 
3184 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3185 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3186 
3187 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3188 }
3189 
3190 
3191 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3192 {
3193 	const struct inet_connection_sock *icsk = inet_csk(sk);
3194 
3195 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3196 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3197 }
3198 
3199 /* Restart timer after forward progress on connection.
3200  * RFC2988 recommends to restart timer to now+rto.
3201  */
3202 void tcp_rearm_rto(struct sock *sk)
3203 {
3204 	const struct inet_connection_sock *icsk = inet_csk(sk);
3205 	struct tcp_sock *tp = tcp_sk(sk);
3206 
3207 	/* If the retrans timer is currently being used by Fast Open
3208 	 * for SYN-ACK retrans purpose, stay put.
3209 	 */
3210 	if (rcu_access_pointer(tp->fastopen_rsk))
3211 		return;
3212 
3213 	if (!tp->packets_out) {
3214 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3215 	} else {
3216 		u32 rto = inet_csk(sk)->icsk_rto;
3217 		/* Offset the time elapsed after installing regular RTO */
3218 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3219 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3220 			s64 delta_us = tcp_rto_delta_us(sk);
3221 			/* delta_us may not be positive if the socket is locked
3222 			 * when the retrans timer fires and is rescheduled.
3223 			 */
3224 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3225 		}
3226 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3227 				     TCP_RTO_MAX);
3228 	}
3229 }
3230 
3231 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3232 static void tcp_set_xmit_timer(struct sock *sk)
3233 {
3234 	if (!tcp_schedule_loss_probe(sk, true))
3235 		tcp_rearm_rto(sk);
3236 }
3237 
3238 /* If we get here, the whole TSO packet has not been acked. */
3239 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3240 {
3241 	struct tcp_sock *tp = tcp_sk(sk);
3242 	u32 packets_acked;
3243 
3244 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3245 
3246 	packets_acked = tcp_skb_pcount(skb);
3247 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3248 		return 0;
3249 	packets_acked -= tcp_skb_pcount(skb);
3250 
3251 	if (packets_acked) {
3252 		BUG_ON(tcp_skb_pcount(skb) == 0);
3253 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3254 	}
3255 
3256 	return packets_acked;
3257 }
3258 
3259 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3260 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3261 {
3262 	const struct skb_shared_info *shinfo;
3263 
3264 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3265 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3266 		return;
3267 
3268 	shinfo = skb_shinfo(skb);
3269 	if (!before(shinfo->tskey, prior_snd_una) &&
3270 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3271 		tcp_skb_tsorted_save(skb) {
3272 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3273 		} tcp_skb_tsorted_restore(skb);
3274 	}
3275 }
3276 
3277 /* Remove acknowledged frames from the retransmission queue. If our packet
3278  * is before the ack sequence we can discard it as it's confirmed to have
3279  * arrived at the other end.
3280  */
3281 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3282 			       u32 prior_fack, u32 prior_snd_una,
3283 			       struct tcp_sacktag_state *sack, bool ece_ack)
3284 {
3285 	const struct inet_connection_sock *icsk = inet_csk(sk);
3286 	u64 first_ackt, last_ackt;
3287 	struct tcp_sock *tp = tcp_sk(sk);
3288 	u32 prior_sacked = tp->sacked_out;
3289 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3290 	struct sk_buff *skb, *next;
3291 	bool fully_acked = true;
3292 	long sack_rtt_us = -1L;
3293 	long seq_rtt_us = -1L;
3294 	long ca_rtt_us = -1L;
3295 	u32 pkts_acked = 0;
3296 	bool rtt_update;
3297 	int flag = 0;
3298 
3299 	first_ackt = 0;
3300 
3301 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3302 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3303 		const u32 start_seq = scb->seq;
3304 		u8 sacked = scb->sacked;
3305 		u32 acked_pcount;
3306 
3307 		/* Determine how many packets and what bytes were acked, tso and else */
3308 		if (after(scb->end_seq, tp->snd_una)) {
3309 			if (tcp_skb_pcount(skb) == 1 ||
3310 			    !after(tp->snd_una, scb->seq))
3311 				break;
3312 
3313 			acked_pcount = tcp_tso_acked(sk, skb);
3314 			if (!acked_pcount)
3315 				break;
3316 			fully_acked = false;
3317 		} else {
3318 			acked_pcount = tcp_skb_pcount(skb);
3319 		}
3320 
3321 		if (unlikely(sacked & TCPCB_RETRANS)) {
3322 			if (sacked & TCPCB_SACKED_RETRANS)
3323 				tp->retrans_out -= acked_pcount;
3324 			flag |= FLAG_RETRANS_DATA_ACKED;
3325 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3326 			last_ackt = tcp_skb_timestamp_us(skb);
3327 			WARN_ON_ONCE(last_ackt == 0);
3328 			if (!first_ackt)
3329 				first_ackt = last_ackt;
3330 
3331 			if (before(start_seq, reord))
3332 				reord = start_seq;
3333 			if (!after(scb->end_seq, tp->high_seq))
3334 				flag |= FLAG_ORIG_SACK_ACKED;
3335 		}
3336 
3337 		if (sacked & TCPCB_SACKED_ACKED) {
3338 			tp->sacked_out -= acked_pcount;
3339 		} else if (tcp_is_sack(tp)) {
3340 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3341 			if (!tcp_skb_spurious_retrans(tp, skb))
3342 				tcp_rack_advance(tp, sacked, scb->end_seq,
3343 						 tcp_skb_timestamp_us(skb));
3344 		}
3345 		if (sacked & TCPCB_LOST)
3346 			tp->lost_out -= acked_pcount;
3347 
3348 		tp->packets_out -= acked_pcount;
3349 		pkts_acked += acked_pcount;
3350 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3351 
3352 		/* Initial outgoing SYN's get put onto the write_queue
3353 		 * just like anything else we transmit.  It is not
3354 		 * true data, and if we misinform our callers that
3355 		 * this ACK acks real data, we will erroneously exit
3356 		 * connection startup slow start one packet too
3357 		 * quickly.  This is severely frowned upon behavior.
3358 		 */
3359 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3360 			flag |= FLAG_DATA_ACKED;
3361 		} else {
3362 			flag |= FLAG_SYN_ACKED;
3363 			tp->retrans_stamp = 0;
3364 		}
3365 
3366 		if (!fully_acked)
3367 			break;
3368 
3369 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3370 
3371 		next = skb_rb_next(skb);
3372 		if (unlikely(skb == tp->retransmit_skb_hint))
3373 			tp->retransmit_skb_hint = NULL;
3374 		if (unlikely(skb == tp->lost_skb_hint))
3375 			tp->lost_skb_hint = NULL;
3376 		tcp_highest_sack_replace(sk, skb, next);
3377 		tcp_rtx_queue_unlink_and_free(skb, sk);
3378 	}
3379 
3380 	if (!skb)
3381 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3382 
3383 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3384 		tp->snd_up = tp->snd_una;
3385 
3386 	if (skb) {
3387 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3388 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3389 			flag |= FLAG_SACK_RENEGING;
3390 	}
3391 
3392 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3393 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3394 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3395 
3396 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3397 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3398 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3399 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3400 			/* Conservatively mark a delayed ACK. It's typically
3401 			 * from a lone runt packet over the round trip to
3402 			 * a receiver w/o out-of-order or CE events.
3403 			 */
3404 			flag |= FLAG_ACK_MAYBE_DELAYED;
3405 		}
3406 	}
3407 	if (sack->first_sackt) {
3408 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3409 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3410 	}
3411 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3412 					ca_rtt_us, sack->rate);
3413 
3414 	if (flag & FLAG_ACKED) {
3415 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3416 		if (unlikely(icsk->icsk_mtup.probe_size &&
3417 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3418 			tcp_mtup_probe_success(sk);
3419 		}
3420 
3421 		if (tcp_is_reno(tp)) {
3422 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3423 
3424 			/* If any of the cumulatively ACKed segments was
3425 			 * retransmitted, non-SACK case cannot confirm that
3426 			 * progress was due to original transmission due to
3427 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3428 			 * the packets may have been never retransmitted.
3429 			 */
3430 			if (flag & FLAG_RETRANS_DATA_ACKED)
3431 				flag &= ~FLAG_ORIG_SACK_ACKED;
3432 		} else {
3433 			int delta;
3434 
3435 			/* Non-retransmitted hole got filled? That's reordering */
3436 			if (before(reord, prior_fack))
3437 				tcp_check_sack_reordering(sk, reord, 0);
3438 
3439 			delta = prior_sacked - tp->sacked_out;
3440 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3441 		}
3442 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3443 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3444 						    tcp_skb_timestamp_us(skb))) {
3445 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3446 		 * after when the head was last (re)transmitted. Otherwise the
3447 		 * timeout may continue to extend in loss recovery.
3448 		 */
3449 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3450 	}
3451 
3452 	if (icsk->icsk_ca_ops->pkts_acked) {
3453 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3454 					     .rtt_us = sack->rate->rtt_us };
3455 
3456 		sample.in_flight = tp->mss_cache *
3457 			(tp->delivered - sack->rate->prior_delivered);
3458 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3459 	}
3460 
3461 #if FASTRETRANS_DEBUG > 0
3462 	WARN_ON((int)tp->sacked_out < 0);
3463 	WARN_ON((int)tp->lost_out < 0);
3464 	WARN_ON((int)tp->retrans_out < 0);
3465 	if (!tp->packets_out && tcp_is_sack(tp)) {
3466 		icsk = inet_csk(sk);
3467 		if (tp->lost_out) {
3468 			pr_debug("Leak l=%u %d\n",
3469 				 tp->lost_out, icsk->icsk_ca_state);
3470 			tp->lost_out = 0;
3471 		}
3472 		if (tp->sacked_out) {
3473 			pr_debug("Leak s=%u %d\n",
3474 				 tp->sacked_out, icsk->icsk_ca_state);
3475 			tp->sacked_out = 0;
3476 		}
3477 		if (tp->retrans_out) {
3478 			pr_debug("Leak r=%u %d\n",
3479 				 tp->retrans_out, icsk->icsk_ca_state);
3480 			tp->retrans_out = 0;
3481 		}
3482 	}
3483 #endif
3484 	return flag;
3485 }
3486 
3487 static void tcp_ack_probe(struct sock *sk)
3488 {
3489 	struct inet_connection_sock *icsk = inet_csk(sk);
3490 	struct sk_buff *head = tcp_send_head(sk);
3491 	const struct tcp_sock *tp = tcp_sk(sk);
3492 
3493 	/* Was it a usable window open? */
3494 	if (!head)
3495 		return;
3496 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3497 		icsk->icsk_backoff = 0;
3498 		icsk->icsk_probes_tstamp = 0;
3499 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3500 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3501 		 * This function is not for random using!
3502 		 */
3503 	} else {
3504 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3505 
3506 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3507 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3508 	}
3509 }
3510 
3511 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3512 {
3513 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3514 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3515 }
3516 
3517 /* Decide wheather to run the increase function of congestion control. */
3518 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3519 {
3520 	/* If reordering is high then always grow cwnd whenever data is
3521 	 * delivered regardless of its ordering. Otherwise stay conservative
3522 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3523 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3524 	 * cwnd in tcp_fastretrans_alert() based on more states.
3525 	 */
3526 	if (tcp_sk(sk)->reordering >
3527 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3528 		return flag & FLAG_FORWARD_PROGRESS;
3529 
3530 	return flag & FLAG_DATA_ACKED;
3531 }
3532 
3533 /* The "ultimate" congestion control function that aims to replace the rigid
3534  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3535  * It's called toward the end of processing an ACK with precise rate
3536  * information. All transmission or retransmission are delayed afterwards.
3537  */
3538 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3539 			     int flag, const struct rate_sample *rs)
3540 {
3541 	const struct inet_connection_sock *icsk = inet_csk(sk);
3542 
3543 	if (icsk->icsk_ca_ops->cong_control) {
3544 		icsk->icsk_ca_ops->cong_control(sk, rs);
3545 		return;
3546 	}
3547 
3548 	if (tcp_in_cwnd_reduction(sk)) {
3549 		/* Reduce cwnd if state mandates */
3550 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3551 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3552 		/* Advance cwnd if state allows */
3553 		tcp_cong_avoid(sk, ack, acked_sacked);
3554 	}
3555 	tcp_update_pacing_rate(sk);
3556 }
3557 
3558 /* Check that window update is acceptable.
3559  * The function assumes that snd_una<=ack<=snd_next.
3560  */
3561 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3562 					const u32 ack, const u32 ack_seq,
3563 					const u32 nwin)
3564 {
3565 	return	after(ack, tp->snd_una) ||
3566 		after(ack_seq, tp->snd_wl1) ||
3567 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3568 }
3569 
3570 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3571 {
3572 #ifdef CONFIG_TCP_AO
3573 	struct tcp_ao_info *ao;
3574 
3575 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3576 		return;
3577 
3578 	ao = rcu_dereference_protected(tp->ao_info,
3579 				       lockdep_sock_is_held((struct sock *)tp));
3580 	if (ao && ack < tp->snd_una)
3581 		ao->snd_sne++;
3582 #endif
3583 }
3584 
3585 /* If we update tp->snd_una, also update tp->bytes_acked */
3586 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3587 {
3588 	u32 delta = ack - tp->snd_una;
3589 
3590 	sock_owned_by_me((struct sock *)tp);
3591 	tp->bytes_acked += delta;
3592 	tcp_snd_sne_update(tp, ack);
3593 	tp->snd_una = ack;
3594 }
3595 
3596 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3597 {
3598 #ifdef CONFIG_TCP_AO
3599 	struct tcp_ao_info *ao;
3600 
3601 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3602 		return;
3603 
3604 	ao = rcu_dereference_protected(tp->ao_info,
3605 				       lockdep_sock_is_held((struct sock *)tp));
3606 	if (ao && seq < tp->rcv_nxt)
3607 		ao->rcv_sne++;
3608 #endif
3609 }
3610 
3611 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3612 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3613 {
3614 	u32 delta = seq - tp->rcv_nxt;
3615 
3616 	sock_owned_by_me((struct sock *)tp);
3617 	tp->bytes_received += delta;
3618 	tcp_rcv_sne_update(tp, seq);
3619 	WRITE_ONCE(tp->rcv_nxt, seq);
3620 }
3621 
3622 /* Update our send window.
3623  *
3624  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3625  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3626  */
3627 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3628 				 u32 ack_seq)
3629 {
3630 	struct tcp_sock *tp = tcp_sk(sk);
3631 	int flag = 0;
3632 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3633 
3634 	if (likely(!tcp_hdr(skb)->syn))
3635 		nwin <<= tp->rx_opt.snd_wscale;
3636 
3637 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3638 		flag |= FLAG_WIN_UPDATE;
3639 		tcp_update_wl(tp, ack_seq);
3640 
3641 		if (tp->snd_wnd != nwin) {
3642 			tp->snd_wnd = nwin;
3643 
3644 			/* Note, it is the only place, where
3645 			 * fast path is recovered for sending TCP.
3646 			 */
3647 			tp->pred_flags = 0;
3648 			tcp_fast_path_check(sk);
3649 
3650 			if (!tcp_write_queue_empty(sk))
3651 				tcp_slow_start_after_idle_check(sk);
3652 
3653 			if (nwin > tp->max_window) {
3654 				tp->max_window = nwin;
3655 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3656 			}
3657 		}
3658 	}
3659 
3660 	tcp_snd_una_update(tp, ack);
3661 
3662 	return flag;
3663 }
3664 
3665 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3666 				   u32 *last_oow_ack_time)
3667 {
3668 	/* Paired with the WRITE_ONCE() in this function. */
3669 	u32 val = READ_ONCE(*last_oow_ack_time);
3670 
3671 	if (val) {
3672 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3673 
3674 		if (0 <= elapsed &&
3675 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3676 			NET_INC_STATS(net, mib_idx);
3677 			return true;	/* rate-limited: don't send yet! */
3678 		}
3679 	}
3680 
3681 	/* Paired with the prior READ_ONCE() and with itself,
3682 	 * as we might be lockless.
3683 	 */
3684 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3685 
3686 	return false;	/* not rate-limited: go ahead, send dupack now! */
3687 }
3688 
3689 /* Return true if we're currently rate-limiting out-of-window ACKs and
3690  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3691  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3692  * attacks that send repeated SYNs or ACKs for the same connection. To
3693  * do this, we do not send a duplicate SYNACK or ACK if the remote
3694  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3695  */
3696 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3697 			  int mib_idx, u32 *last_oow_ack_time)
3698 {
3699 	/* Data packets without SYNs are not likely part of an ACK loop. */
3700 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3701 	    !tcp_hdr(skb)->syn)
3702 		return false;
3703 
3704 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3705 }
3706 
3707 /* RFC 5961 7 [ACK Throttling] */
3708 static void tcp_send_challenge_ack(struct sock *sk)
3709 {
3710 	struct tcp_sock *tp = tcp_sk(sk);
3711 	struct net *net = sock_net(sk);
3712 	u32 count, now, ack_limit;
3713 
3714 	/* First check our per-socket dupack rate limit. */
3715 	if (__tcp_oow_rate_limited(net,
3716 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3717 				   &tp->last_oow_ack_time))
3718 		return;
3719 
3720 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3721 	if (ack_limit == INT_MAX)
3722 		goto send_ack;
3723 
3724 	/* Then check host-wide RFC 5961 rate limit. */
3725 	now = jiffies / HZ;
3726 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3727 		u32 half = (ack_limit + 1) >> 1;
3728 
3729 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3730 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3731 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3732 	}
3733 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3734 	if (count > 0) {
3735 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3736 send_ack:
3737 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3738 		tcp_send_ack(sk);
3739 	}
3740 }
3741 
3742 static void tcp_store_ts_recent(struct tcp_sock *tp)
3743 {
3744 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3745 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3746 }
3747 
3748 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3749 {
3750 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3751 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3752 		 * extra check below makes sure this can only happen
3753 		 * for pure ACK frames.  -DaveM
3754 		 *
3755 		 * Not only, also it occurs for expired timestamps.
3756 		 */
3757 
3758 		if (tcp_paws_check(&tp->rx_opt, 0))
3759 			tcp_store_ts_recent(tp);
3760 	}
3761 }
3762 
3763 /* This routine deals with acks during a TLP episode and ends an episode by
3764  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3765  */
3766 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3767 {
3768 	struct tcp_sock *tp = tcp_sk(sk);
3769 
3770 	if (before(ack, tp->tlp_high_seq))
3771 		return;
3772 
3773 	if (!tp->tlp_retrans) {
3774 		/* TLP of new data has been acknowledged */
3775 		tp->tlp_high_seq = 0;
3776 	} else if (flag & FLAG_DSACK_TLP) {
3777 		/* This DSACK means original and TLP probe arrived; no loss */
3778 		tp->tlp_high_seq = 0;
3779 	} else if (after(ack, tp->tlp_high_seq)) {
3780 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3781 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3782 		 */
3783 		tcp_init_cwnd_reduction(sk);
3784 		tcp_set_ca_state(sk, TCP_CA_CWR);
3785 		tcp_end_cwnd_reduction(sk);
3786 		tcp_try_keep_open(sk);
3787 		NET_INC_STATS(sock_net(sk),
3788 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3789 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3790 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3791 		/* Pure dupack: original and TLP probe arrived; no loss */
3792 		tp->tlp_high_seq = 0;
3793 	}
3794 }
3795 
3796 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3797 {
3798 	const struct inet_connection_sock *icsk = inet_csk(sk);
3799 
3800 	if (icsk->icsk_ca_ops->in_ack_event)
3801 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3802 }
3803 
3804 /* Congestion control has updated the cwnd already. So if we're in
3805  * loss recovery then now we do any new sends (for FRTO) or
3806  * retransmits (for CA_Loss or CA_recovery) that make sense.
3807  */
3808 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3809 {
3810 	struct tcp_sock *tp = tcp_sk(sk);
3811 
3812 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3813 		return;
3814 
3815 	if (unlikely(rexmit == REXMIT_NEW)) {
3816 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3817 					  TCP_NAGLE_OFF);
3818 		if (after(tp->snd_nxt, tp->high_seq))
3819 			return;
3820 		tp->frto = 0;
3821 	}
3822 	tcp_xmit_retransmit_queue(sk);
3823 }
3824 
3825 /* Returns the number of packets newly acked or sacked by the current ACK */
3826 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3827 {
3828 	const struct net *net = sock_net(sk);
3829 	struct tcp_sock *tp = tcp_sk(sk);
3830 	u32 delivered;
3831 
3832 	delivered = tp->delivered - prior_delivered;
3833 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3834 	if (flag & FLAG_ECE)
3835 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3836 
3837 	return delivered;
3838 }
3839 
3840 /* This routine deals with incoming acks, but not outgoing ones. */
3841 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3842 {
3843 	struct inet_connection_sock *icsk = inet_csk(sk);
3844 	struct tcp_sock *tp = tcp_sk(sk);
3845 	struct tcp_sacktag_state sack_state;
3846 	struct rate_sample rs = { .prior_delivered = 0 };
3847 	u32 prior_snd_una = tp->snd_una;
3848 	bool is_sack_reneg = tp->is_sack_reneg;
3849 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3850 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3851 	int num_dupack = 0;
3852 	int prior_packets = tp->packets_out;
3853 	u32 delivered = tp->delivered;
3854 	u32 lost = tp->lost;
3855 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3856 	u32 prior_fack;
3857 
3858 	sack_state.first_sackt = 0;
3859 	sack_state.rate = &rs;
3860 	sack_state.sack_delivered = 0;
3861 
3862 	/* We very likely will need to access rtx queue. */
3863 	prefetch(sk->tcp_rtx_queue.rb_node);
3864 
3865 	/* If the ack is older than previous acks
3866 	 * then we can probably ignore it.
3867 	 */
3868 	if (before(ack, prior_snd_una)) {
3869 		u32 max_window;
3870 
3871 		/* do not accept ACK for bytes we never sent. */
3872 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3873 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3874 		if (before(ack, prior_snd_una - max_window)) {
3875 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3876 				tcp_send_challenge_ack(sk);
3877 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3878 		}
3879 		goto old_ack;
3880 	}
3881 
3882 	/* If the ack includes data we haven't sent yet, discard
3883 	 * this segment (RFC793 Section 3.9).
3884 	 */
3885 	if (after(ack, tp->snd_nxt))
3886 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3887 
3888 	if (after(ack, prior_snd_una)) {
3889 		flag |= FLAG_SND_UNA_ADVANCED;
3890 		icsk->icsk_retransmits = 0;
3891 
3892 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3893 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3894 			if (icsk->icsk_clean_acked)
3895 				icsk->icsk_clean_acked(sk, ack);
3896 #endif
3897 	}
3898 
3899 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3900 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3901 
3902 	/* ts_recent update must be made after we are sure that the packet
3903 	 * is in window.
3904 	 */
3905 	if (flag & FLAG_UPDATE_TS_RECENT)
3906 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3907 
3908 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3909 	    FLAG_SND_UNA_ADVANCED) {
3910 		/* Window is constant, pure forward advance.
3911 		 * No more checks are required.
3912 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3913 		 */
3914 		tcp_update_wl(tp, ack_seq);
3915 		tcp_snd_una_update(tp, ack);
3916 		flag |= FLAG_WIN_UPDATE;
3917 
3918 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3919 
3920 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3921 	} else {
3922 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3923 
3924 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3925 			flag |= FLAG_DATA;
3926 		else
3927 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3928 
3929 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3930 
3931 		if (TCP_SKB_CB(skb)->sacked)
3932 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3933 							&sack_state);
3934 
3935 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3936 			flag |= FLAG_ECE;
3937 			ack_ev_flags |= CA_ACK_ECE;
3938 		}
3939 
3940 		if (sack_state.sack_delivered)
3941 			tcp_count_delivered(tp, sack_state.sack_delivered,
3942 					    flag & FLAG_ECE);
3943 
3944 		if (flag & FLAG_WIN_UPDATE)
3945 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3946 
3947 		tcp_in_ack_event(sk, ack_ev_flags);
3948 	}
3949 
3950 	/* This is a deviation from RFC3168 since it states that:
3951 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3952 	 * the congestion window, it SHOULD set the CWR bit only on the first
3953 	 * new data packet that it transmits."
3954 	 * We accept CWR on pure ACKs to be more robust
3955 	 * with widely-deployed TCP implementations that do this.
3956 	 */
3957 	tcp_ecn_accept_cwr(sk, skb);
3958 
3959 	/* We passed data and got it acked, remove any soft error
3960 	 * log. Something worked...
3961 	 */
3962 	WRITE_ONCE(sk->sk_err_soft, 0);
3963 	icsk->icsk_probes_out = 0;
3964 	tp->rcv_tstamp = tcp_jiffies32;
3965 	if (!prior_packets)
3966 		goto no_queue;
3967 
3968 	/* See if we can take anything off of the retransmit queue. */
3969 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3970 				    &sack_state, flag & FLAG_ECE);
3971 
3972 	tcp_rack_update_reo_wnd(sk, &rs);
3973 
3974 	if (tp->tlp_high_seq)
3975 		tcp_process_tlp_ack(sk, ack, flag);
3976 
3977 	if (tcp_ack_is_dubious(sk, flag)) {
3978 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3979 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3980 			num_dupack = 1;
3981 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3982 			if (!(flag & FLAG_DATA))
3983 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3984 		}
3985 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3986 				      &rexmit);
3987 	}
3988 
3989 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3990 	if (flag & FLAG_SET_XMIT_TIMER)
3991 		tcp_set_xmit_timer(sk);
3992 
3993 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3994 		sk_dst_confirm(sk);
3995 
3996 	delivered = tcp_newly_delivered(sk, delivered, flag);
3997 	lost = tp->lost - lost;			/* freshly marked lost */
3998 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3999 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4000 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4001 	tcp_xmit_recovery(sk, rexmit);
4002 	return 1;
4003 
4004 no_queue:
4005 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
4006 	if (flag & FLAG_DSACKING_ACK) {
4007 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4008 				      &rexmit);
4009 		tcp_newly_delivered(sk, delivered, flag);
4010 	}
4011 	/* If this ack opens up a zero window, clear backoff.  It was
4012 	 * being used to time the probes, and is probably far higher than
4013 	 * it needs to be for normal retransmission.
4014 	 */
4015 	tcp_ack_probe(sk);
4016 
4017 	if (tp->tlp_high_seq)
4018 		tcp_process_tlp_ack(sk, ack, flag);
4019 	return 1;
4020 
4021 old_ack:
4022 	/* If data was SACKed, tag it and see if we should send more data.
4023 	 * If data was DSACKed, see if we can undo a cwnd reduction.
4024 	 */
4025 	if (TCP_SKB_CB(skb)->sacked) {
4026 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4027 						&sack_state);
4028 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4029 				      &rexmit);
4030 		tcp_newly_delivered(sk, delivered, flag);
4031 		tcp_xmit_recovery(sk, rexmit);
4032 	}
4033 
4034 	return 0;
4035 }
4036 
4037 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4038 				      bool syn, struct tcp_fastopen_cookie *foc,
4039 				      bool exp_opt)
4040 {
4041 	/* Valid only in SYN or SYN-ACK with an even length.  */
4042 	if (!foc || !syn || len < 0 || (len & 1))
4043 		return;
4044 
4045 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4046 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4047 		memcpy(foc->val, cookie, len);
4048 	else if (len != 0)
4049 		len = -1;
4050 	foc->len = len;
4051 	foc->exp = exp_opt;
4052 }
4053 
4054 static bool smc_parse_options(const struct tcphdr *th,
4055 			      struct tcp_options_received *opt_rx,
4056 			      const unsigned char *ptr,
4057 			      int opsize)
4058 {
4059 #if IS_ENABLED(CONFIG_SMC)
4060 	if (static_branch_unlikely(&tcp_have_smc)) {
4061 		if (th->syn && !(opsize & 1) &&
4062 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4063 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4064 			opt_rx->smc_ok = 1;
4065 			return true;
4066 		}
4067 	}
4068 #endif
4069 	return false;
4070 }
4071 
4072 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4073  * value on success.
4074  */
4075 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4076 {
4077 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4078 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4079 	u16 mss = 0;
4080 
4081 	while (length > 0) {
4082 		int opcode = *ptr++;
4083 		int opsize;
4084 
4085 		switch (opcode) {
4086 		case TCPOPT_EOL:
4087 			return mss;
4088 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4089 			length--;
4090 			continue;
4091 		default:
4092 			if (length < 2)
4093 				return mss;
4094 			opsize = *ptr++;
4095 			if (opsize < 2) /* "silly options" */
4096 				return mss;
4097 			if (opsize > length)
4098 				return mss;	/* fail on partial options */
4099 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4100 				u16 in_mss = get_unaligned_be16(ptr);
4101 
4102 				if (in_mss) {
4103 					if (user_mss && user_mss < in_mss)
4104 						in_mss = user_mss;
4105 					mss = in_mss;
4106 				}
4107 			}
4108 			ptr += opsize - 2;
4109 			length -= opsize;
4110 		}
4111 	}
4112 	return mss;
4113 }
4114 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4115 
4116 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4117  * But, this can also be called on packets in the established flow when
4118  * the fast version below fails.
4119  */
4120 void tcp_parse_options(const struct net *net,
4121 		       const struct sk_buff *skb,
4122 		       struct tcp_options_received *opt_rx, int estab,
4123 		       struct tcp_fastopen_cookie *foc)
4124 {
4125 	const unsigned char *ptr;
4126 	const struct tcphdr *th = tcp_hdr(skb);
4127 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4128 
4129 	ptr = (const unsigned char *)(th + 1);
4130 	opt_rx->saw_tstamp = 0;
4131 	opt_rx->saw_unknown = 0;
4132 
4133 	while (length > 0) {
4134 		int opcode = *ptr++;
4135 		int opsize;
4136 
4137 		switch (opcode) {
4138 		case TCPOPT_EOL:
4139 			return;
4140 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4141 			length--;
4142 			continue;
4143 		default:
4144 			if (length < 2)
4145 				return;
4146 			opsize = *ptr++;
4147 			if (opsize < 2) /* "silly options" */
4148 				return;
4149 			if (opsize > length)
4150 				return;	/* don't parse partial options */
4151 			switch (opcode) {
4152 			case TCPOPT_MSS:
4153 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4154 					u16 in_mss = get_unaligned_be16(ptr);
4155 					if (in_mss) {
4156 						if (opt_rx->user_mss &&
4157 						    opt_rx->user_mss < in_mss)
4158 							in_mss = opt_rx->user_mss;
4159 						opt_rx->mss_clamp = in_mss;
4160 					}
4161 				}
4162 				break;
4163 			case TCPOPT_WINDOW:
4164 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4165 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4166 					__u8 snd_wscale = *(__u8 *)ptr;
4167 					opt_rx->wscale_ok = 1;
4168 					if (snd_wscale > TCP_MAX_WSCALE) {
4169 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4170 								     __func__,
4171 								     snd_wscale,
4172 								     TCP_MAX_WSCALE);
4173 						snd_wscale = TCP_MAX_WSCALE;
4174 					}
4175 					opt_rx->snd_wscale = snd_wscale;
4176 				}
4177 				break;
4178 			case TCPOPT_TIMESTAMP:
4179 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4180 				    ((estab && opt_rx->tstamp_ok) ||
4181 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4182 					opt_rx->saw_tstamp = 1;
4183 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4184 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4185 				}
4186 				break;
4187 			case TCPOPT_SACK_PERM:
4188 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4189 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4190 					opt_rx->sack_ok = TCP_SACK_SEEN;
4191 					tcp_sack_reset(opt_rx);
4192 				}
4193 				break;
4194 
4195 			case TCPOPT_SACK:
4196 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4197 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4198 				   opt_rx->sack_ok) {
4199 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4200 				}
4201 				break;
4202 #ifdef CONFIG_TCP_MD5SIG
4203 			case TCPOPT_MD5SIG:
4204 				/* The MD5 Hash has already been
4205 				 * checked (see tcp_v{4,6}_rcv()).
4206 				 */
4207 				break;
4208 #endif
4209 			case TCPOPT_FASTOPEN:
4210 				tcp_parse_fastopen_option(
4211 					opsize - TCPOLEN_FASTOPEN_BASE,
4212 					ptr, th->syn, foc, false);
4213 				break;
4214 
4215 			case TCPOPT_EXP:
4216 				/* Fast Open option shares code 254 using a
4217 				 * 16 bits magic number.
4218 				 */
4219 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4220 				    get_unaligned_be16(ptr) ==
4221 				    TCPOPT_FASTOPEN_MAGIC) {
4222 					tcp_parse_fastopen_option(opsize -
4223 						TCPOLEN_EXP_FASTOPEN_BASE,
4224 						ptr + 2, th->syn, foc, true);
4225 					break;
4226 				}
4227 
4228 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4229 					break;
4230 
4231 				opt_rx->saw_unknown = 1;
4232 				break;
4233 
4234 			default:
4235 				opt_rx->saw_unknown = 1;
4236 			}
4237 			ptr += opsize-2;
4238 			length -= opsize;
4239 		}
4240 	}
4241 }
4242 EXPORT_SYMBOL(tcp_parse_options);
4243 
4244 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4245 {
4246 	const __be32 *ptr = (const __be32 *)(th + 1);
4247 
4248 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4249 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4250 		tp->rx_opt.saw_tstamp = 1;
4251 		++ptr;
4252 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4253 		++ptr;
4254 		if (*ptr)
4255 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4256 		else
4257 			tp->rx_opt.rcv_tsecr = 0;
4258 		return true;
4259 	}
4260 	return false;
4261 }
4262 
4263 /* Fast parse options. This hopes to only see timestamps.
4264  * If it is wrong it falls back on tcp_parse_options().
4265  */
4266 static bool tcp_fast_parse_options(const struct net *net,
4267 				   const struct sk_buff *skb,
4268 				   const struct tcphdr *th, struct tcp_sock *tp)
4269 {
4270 	/* In the spirit of fast parsing, compare doff directly to constant
4271 	 * values.  Because equality is used, short doff can be ignored here.
4272 	 */
4273 	if (th->doff == (sizeof(*th) / 4)) {
4274 		tp->rx_opt.saw_tstamp = 0;
4275 		return false;
4276 	} else if (tp->rx_opt.tstamp_ok &&
4277 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4278 		if (tcp_parse_aligned_timestamp(tp, th))
4279 			return true;
4280 	}
4281 
4282 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4283 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4284 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4285 
4286 	return true;
4287 }
4288 
4289 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4290 /*
4291  * Parse Signature options
4292  */
4293 int tcp_do_parse_auth_options(const struct tcphdr *th,
4294 			      const u8 **md5_hash, const u8 **ao_hash)
4295 {
4296 	int length = (th->doff << 2) - sizeof(*th);
4297 	const u8 *ptr = (const u8 *)(th + 1);
4298 	unsigned int minlen = TCPOLEN_MD5SIG;
4299 
4300 	if (IS_ENABLED(CONFIG_TCP_AO))
4301 		minlen = sizeof(struct tcp_ao_hdr) + 1;
4302 
4303 	*md5_hash = NULL;
4304 	*ao_hash = NULL;
4305 
4306 	/* If not enough data remaining, we can short cut */
4307 	while (length >= minlen) {
4308 		int opcode = *ptr++;
4309 		int opsize;
4310 
4311 		switch (opcode) {
4312 		case TCPOPT_EOL:
4313 			return 0;
4314 		case TCPOPT_NOP:
4315 			length--;
4316 			continue;
4317 		default:
4318 			opsize = *ptr++;
4319 			if (opsize < 2 || opsize > length)
4320 				return -EINVAL;
4321 			if (opcode == TCPOPT_MD5SIG) {
4322 				if (opsize != TCPOLEN_MD5SIG)
4323 					return -EINVAL;
4324 				if (unlikely(*md5_hash || *ao_hash))
4325 					return -EEXIST;
4326 				*md5_hash = ptr;
4327 			} else if (opcode == TCPOPT_AO) {
4328 				if (opsize <= sizeof(struct tcp_ao_hdr))
4329 					return -EINVAL;
4330 				if (unlikely(*md5_hash || *ao_hash))
4331 					return -EEXIST;
4332 				*ao_hash = ptr;
4333 			}
4334 		}
4335 		ptr += opsize - 2;
4336 		length -= opsize;
4337 	}
4338 	return 0;
4339 }
4340 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4341 #endif
4342 
4343 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4344  *
4345  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4346  * it can pass through stack. So, the following predicate verifies that
4347  * this segment is not used for anything but congestion avoidance or
4348  * fast retransmit. Moreover, we even are able to eliminate most of such
4349  * second order effects, if we apply some small "replay" window (~RTO)
4350  * to timestamp space.
4351  *
4352  * All these measures still do not guarantee that we reject wrapped ACKs
4353  * on networks with high bandwidth, when sequence space is recycled fastly,
4354  * but it guarantees that such events will be very rare and do not affect
4355  * connection seriously. This doesn't look nice, but alas, PAWS is really
4356  * buggy extension.
4357  *
4358  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4359  * states that events when retransmit arrives after original data are rare.
4360  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4361  * the biggest problem on large power networks even with minor reordering.
4362  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4363  * up to bandwidth of 18Gigabit/sec. 8) ]
4364  */
4365 
4366 /* Estimates max number of increments of remote peer TSval in
4367  * a replay window (based on our current RTO estimation).
4368  */
4369 static u32 tcp_tsval_replay(const struct sock *sk)
4370 {
4371 	/* If we use usec TS resolution,
4372 	 * then expect the remote peer to use the same resolution.
4373 	 */
4374 	if (tcp_sk(sk)->tcp_usec_ts)
4375 		return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4376 
4377 	/* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4378 	 * We know that some OS (including old linux) can use 1200 Hz.
4379 	 */
4380 	return inet_csk(sk)->icsk_rto * 1200 / HZ;
4381 }
4382 
4383 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4384 {
4385 	const struct tcp_sock *tp = tcp_sk(sk);
4386 	const struct tcphdr *th = tcp_hdr(skb);
4387 	u32 seq = TCP_SKB_CB(skb)->seq;
4388 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4389 
4390 	return	/* 1. Pure ACK with correct sequence number. */
4391 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4392 
4393 		/* 2. ... and duplicate ACK. */
4394 		ack == tp->snd_una &&
4395 
4396 		/* 3. ... and does not update window. */
4397 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4398 
4399 		/* 4. ... and sits in replay window. */
4400 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <=
4401 		tcp_tsval_replay(sk);
4402 }
4403 
4404 static inline bool tcp_paws_discard(const struct sock *sk,
4405 				   const struct sk_buff *skb)
4406 {
4407 	const struct tcp_sock *tp = tcp_sk(sk);
4408 
4409 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4410 	       !tcp_disordered_ack(sk, skb);
4411 }
4412 
4413 /* Check segment sequence number for validity.
4414  *
4415  * Segment controls are considered valid, if the segment
4416  * fits to the window after truncation to the window. Acceptability
4417  * of data (and SYN, FIN, of course) is checked separately.
4418  * See tcp_data_queue(), for example.
4419  *
4420  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4421  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4422  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4423  * (borrowed from freebsd)
4424  */
4425 
4426 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4427 					 u32 seq, u32 end_seq)
4428 {
4429 	if (before(end_seq, tp->rcv_wup))
4430 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4431 
4432 	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4433 		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4434 
4435 	return SKB_NOT_DROPPED_YET;
4436 }
4437 
4438 /* When we get a reset we do this. */
4439 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4440 {
4441 	trace_tcp_receive_reset(sk);
4442 
4443 	/* mptcp can't tell us to ignore reset pkts,
4444 	 * so just ignore the return value of mptcp_incoming_options().
4445 	 */
4446 	if (sk_is_mptcp(sk))
4447 		mptcp_incoming_options(sk, skb);
4448 
4449 	/* We want the right error as BSD sees it (and indeed as we do). */
4450 	switch (sk->sk_state) {
4451 	case TCP_SYN_SENT:
4452 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
4453 		break;
4454 	case TCP_CLOSE_WAIT:
4455 		WRITE_ONCE(sk->sk_err, EPIPE);
4456 		break;
4457 	case TCP_CLOSE:
4458 		return;
4459 	default:
4460 		WRITE_ONCE(sk->sk_err, ECONNRESET);
4461 	}
4462 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4463 	smp_wmb();
4464 
4465 	tcp_write_queue_purge(sk);
4466 	tcp_done(sk);
4467 
4468 	if (!sock_flag(sk, SOCK_DEAD))
4469 		sk_error_report(sk);
4470 }
4471 
4472 /*
4473  * 	Process the FIN bit. This now behaves as it is supposed to work
4474  *	and the FIN takes effect when it is validly part of sequence
4475  *	space. Not before when we get holes.
4476  *
4477  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4478  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4479  *	TIME-WAIT)
4480  *
4481  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4482  *	close and we go into CLOSING (and later onto TIME-WAIT)
4483  *
4484  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4485  */
4486 void tcp_fin(struct sock *sk)
4487 {
4488 	struct tcp_sock *tp = tcp_sk(sk);
4489 
4490 	inet_csk_schedule_ack(sk);
4491 
4492 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4493 	sock_set_flag(sk, SOCK_DONE);
4494 
4495 	switch (sk->sk_state) {
4496 	case TCP_SYN_RECV:
4497 	case TCP_ESTABLISHED:
4498 		/* Move to CLOSE_WAIT */
4499 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4500 		inet_csk_enter_pingpong_mode(sk);
4501 		break;
4502 
4503 	case TCP_CLOSE_WAIT:
4504 	case TCP_CLOSING:
4505 		/* Received a retransmission of the FIN, do
4506 		 * nothing.
4507 		 */
4508 		break;
4509 	case TCP_LAST_ACK:
4510 		/* RFC793: Remain in the LAST-ACK state. */
4511 		break;
4512 
4513 	case TCP_FIN_WAIT1:
4514 		/* This case occurs when a simultaneous close
4515 		 * happens, we must ack the received FIN and
4516 		 * enter the CLOSING state.
4517 		 */
4518 		tcp_send_ack(sk);
4519 		tcp_set_state(sk, TCP_CLOSING);
4520 		break;
4521 	case TCP_FIN_WAIT2:
4522 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4523 		tcp_send_ack(sk);
4524 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4525 		break;
4526 	default:
4527 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4528 		 * cases we should never reach this piece of code.
4529 		 */
4530 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4531 		       __func__, sk->sk_state);
4532 		break;
4533 	}
4534 
4535 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4536 	 * Probably, we should reset in this case. For now drop them.
4537 	 */
4538 	skb_rbtree_purge(&tp->out_of_order_queue);
4539 	if (tcp_is_sack(tp))
4540 		tcp_sack_reset(&tp->rx_opt);
4541 
4542 	if (!sock_flag(sk, SOCK_DEAD)) {
4543 		sk->sk_state_change(sk);
4544 
4545 		/* Do not send POLL_HUP for half duplex close. */
4546 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4547 		    sk->sk_state == TCP_CLOSE)
4548 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4549 		else
4550 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4551 	}
4552 }
4553 
4554 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4555 				  u32 end_seq)
4556 {
4557 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4558 		if (before(seq, sp->start_seq))
4559 			sp->start_seq = seq;
4560 		if (after(end_seq, sp->end_seq))
4561 			sp->end_seq = end_seq;
4562 		return true;
4563 	}
4564 	return false;
4565 }
4566 
4567 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4568 {
4569 	struct tcp_sock *tp = tcp_sk(sk);
4570 
4571 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4572 		int mib_idx;
4573 
4574 		if (before(seq, tp->rcv_nxt))
4575 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4576 		else
4577 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4578 
4579 		NET_INC_STATS(sock_net(sk), mib_idx);
4580 
4581 		tp->rx_opt.dsack = 1;
4582 		tp->duplicate_sack[0].start_seq = seq;
4583 		tp->duplicate_sack[0].end_seq = end_seq;
4584 	}
4585 }
4586 
4587 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4588 {
4589 	struct tcp_sock *tp = tcp_sk(sk);
4590 
4591 	if (!tp->rx_opt.dsack)
4592 		tcp_dsack_set(sk, seq, end_seq);
4593 	else
4594 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4595 }
4596 
4597 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4598 {
4599 	/* When the ACK path fails or drops most ACKs, the sender would
4600 	 * timeout and spuriously retransmit the same segment repeatedly.
4601 	 * If it seems our ACKs are not reaching the other side,
4602 	 * based on receiving a duplicate data segment with new flowlabel
4603 	 * (suggesting the sender suffered an RTO), and we are not already
4604 	 * repathing due to our own RTO, then rehash the socket to repath our
4605 	 * packets.
4606 	 */
4607 #if IS_ENABLED(CONFIG_IPV6)
4608 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4609 	    skb->protocol == htons(ETH_P_IPV6) &&
4610 	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4611 	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4612 	    sk_rethink_txhash(sk))
4613 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4614 
4615 	/* Save last flowlabel after a spurious retrans. */
4616 	tcp_save_lrcv_flowlabel(sk, skb);
4617 #endif
4618 }
4619 
4620 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4621 {
4622 	struct tcp_sock *tp = tcp_sk(sk);
4623 
4624 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4625 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4626 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4627 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4628 
4629 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4630 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4631 
4632 			tcp_rcv_spurious_retrans(sk, skb);
4633 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4634 				end_seq = tp->rcv_nxt;
4635 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4636 		}
4637 	}
4638 
4639 	tcp_send_ack(sk);
4640 }
4641 
4642 /* These routines update the SACK block as out-of-order packets arrive or
4643  * in-order packets close up the sequence space.
4644  */
4645 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4646 {
4647 	int this_sack;
4648 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4649 	struct tcp_sack_block *swalk = sp + 1;
4650 
4651 	/* See if the recent change to the first SACK eats into
4652 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4653 	 */
4654 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4655 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4656 			int i;
4657 
4658 			/* Zap SWALK, by moving every further SACK up by one slot.
4659 			 * Decrease num_sacks.
4660 			 */
4661 			tp->rx_opt.num_sacks--;
4662 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4663 				sp[i] = sp[i + 1];
4664 			continue;
4665 		}
4666 		this_sack++;
4667 		swalk++;
4668 	}
4669 }
4670 
4671 void tcp_sack_compress_send_ack(struct sock *sk)
4672 {
4673 	struct tcp_sock *tp = tcp_sk(sk);
4674 
4675 	if (!tp->compressed_ack)
4676 		return;
4677 
4678 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4679 		__sock_put(sk);
4680 
4681 	/* Since we have to send one ack finally,
4682 	 * substract one from tp->compressed_ack to keep
4683 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4684 	 */
4685 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4686 		      tp->compressed_ack - 1);
4687 
4688 	tp->compressed_ack = 0;
4689 	tcp_send_ack(sk);
4690 }
4691 
4692 /* Reasonable amount of sack blocks included in TCP SACK option
4693  * The max is 4, but this becomes 3 if TCP timestamps are there.
4694  * Given that SACK packets might be lost, be conservative and use 2.
4695  */
4696 #define TCP_SACK_BLOCKS_EXPECTED 2
4697 
4698 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4699 {
4700 	struct tcp_sock *tp = tcp_sk(sk);
4701 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4702 	int cur_sacks = tp->rx_opt.num_sacks;
4703 	int this_sack;
4704 
4705 	if (!cur_sacks)
4706 		goto new_sack;
4707 
4708 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4709 		if (tcp_sack_extend(sp, seq, end_seq)) {
4710 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4711 				tcp_sack_compress_send_ack(sk);
4712 			/* Rotate this_sack to the first one. */
4713 			for (; this_sack > 0; this_sack--, sp--)
4714 				swap(*sp, *(sp - 1));
4715 			if (cur_sacks > 1)
4716 				tcp_sack_maybe_coalesce(tp);
4717 			return;
4718 		}
4719 	}
4720 
4721 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4722 		tcp_sack_compress_send_ack(sk);
4723 
4724 	/* Could not find an adjacent existing SACK, build a new one,
4725 	 * put it at the front, and shift everyone else down.  We
4726 	 * always know there is at least one SACK present already here.
4727 	 *
4728 	 * If the sack array is full, forget about the last one.
4729 	 */
4730 	if (this_sack >= TCP_NUM_SACKS) {
4731 		this_sack--;
4732 		tp->rx_opt.num_sacks--;
4733 		sp--;
4734 	}
4735 	for (; this_sack > 0; this_sack--, sp--)
4736 		*sp = *(sp - 1);
4737 
4738 new_sack:
4739 	/* Build the new head SACK, and we're done. */
4740 	sp->start_seq = seq;
4741 	sp->end_seq = end_seq;
4742 	tp->rx_opt.num_sacks++;
4743 }
4744 
4745 /* RCV.NXT advances, some SACKs should be eaten. */
4746 
4747 static void tcp_sack_remove(struct tcp_sock *tp)
4748 {
4749 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4750 	int num_sacks = tp->rx_opt.num_sacks;
4751 	int this_sack;
4752 
4753 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4754 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4755 		tp->rx_opt.num_sacks = 0;
4756 		return;
4757 	}
4758 
4759 	for (this_sack = 0; this_sack < num_sacks;) {
4760 		/* Check if the start of the sack is covered by RCV.NXT. */
4761 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4762 			int i;
4763 
4764 			/* RCV.NXT must cover all the block! */
4765 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4766 
4767 			/* Zap this SACK, by moving forward any other SACKS. */
4768 			for (i = this_sack+1; i < num_sacks; i++)
4769 				tp->selective_acks[i-1] = tp->selective_acks[i];
4770 			num_sacks--;
4771 			continue;
4772 		}
4773 		this_sack++;
4774 		sp++;
4775 	}
4776 	tp->rx_opt.num_sacks = num_sacks;
4777 }
4778 
4779 /**
4780  * tcp_try_coalesce - try to merge skb to prior one
4781  * @sk: socket
4782  * @to: prior buffer
4783  * @from: buffer to add in queue
4784  * @fragstolen: pointer to boolean
4785  *
4786  * Before queueing skb @from after @to, try to merge them
4787  * to reduce overall memory use and queue lengths, if cost is small.
4788  * Packets in ofo or receive queues can stay a long time.
4789  * Better try to coalesce them right now to avoid future collapses.
4790  * Returns true if caller should free @from instead of queueing it
4791  */
4792 static bool tcp_try_coalesce(struct sock *sk,
4793 			     struct sk_buff *to,
4794 			     struct sk_buff *from,
4795 			     bool *fragstolen)
4796 {
4797 	int delta;
4798 
4799 	*fragstolen = false;
4800 
4801 	/* Its possible this segment overlaps with prior segment in queue */
4802 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4803 		return false;
4804 
4805 	if (!mptcp_skb_can_collapse(to, from))
4806 		return false;
4807 
4808 	if (skb_cmp_decrypted(from, to))
4809 		return false;
4810 
4811 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4812 		return false;
4813 
4814 	atomic_add(delta, &sk->sk_rmem_alloc);
4815 	sk_mem_charge(sk, delta);
4816 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4817 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4818 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4819 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4820 
4821 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4822 		TCP_SKB_CB(to)->has_rxtstamp = true;
4823 		to->tstamp = from->tstamp;
4824 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4825 	}
4826 
4827 	return true;
4828 }
4829 
4830 static bool tcp_ooo_try_coalesce(struct sock *sk,
4831 			     struct sk_buff *to,
4832 			     struct sk_buff *from,
4833 			     bool *fragstolen)
4834 {
4835 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4836 
4837 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4838 	if (res) {
4839 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4840 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4841 
4842 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4843 	}
4844 	return res;
4845 }
4846 
4847 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4848 			    enum skb_drop_reason reason)
4849 {
4850 	sk_drops_add(sk, skb);
4851 	kfree_skb_reason(skb, reason);
4852 }
4853 
4854 /* This one checks to see if we can put data from the
4855  * out_of_order queue into the receive_queue.
4856  */
4857 static void tcp_ofo_queue(struct sock *sk)
4858 {
4859 	struct tcp_sock *tp = tcp_sk(sk);
4860 	__u32 dsack_high = tp->rcv_nxt;
4861 	bool fin, fragstolen, eaten;
4862 	struct sk_buff *skb, *tail;
4863 	struct rb_node *p;
4864 
4865 	p = rb_first(&tp->out_of_order_queue);
4866 	while (p) {
4867 		skb = rb_to_skb(p);
4868 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4869 			break;
4870 
4871 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4872 			__u32 dsack = dsack_high;
4873 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4874 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4875 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4876 		}
4877 		p = rb_next(p);
4878 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4879 
4880 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4881 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4882 			continue;
4883 		}
4884 
4885 		tail = skb_peek_tail(&sk->sk_receive_queue);
4886 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4887 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4888 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4889 		if (!eaten)
4890 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4891 		else
4892 			kfree_skb_partial(skb, fragstolen);
4893 
4894 		if (unlikely(fin)) {
4895 			tcp_fin(sk);
4896 			/* tcp_fin() purges tp->out_of_order_queue,
4897 			 * so we must end this loop right now.
4898 			 */
4899 			break;
4900 		}
4901 	}
4902 }
4903 
4904 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4905 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4906 
4907 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4908 				 unsigned int size)
4909 {
4910 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4911 	    !sk_rmem_schedule(sk, skb, size)) {
4912 
4913 		if (tcp_prune_queue(sk, skb) < 0)
4914 			return -1;
4915 
4916 		while (!sk_rmem_schedule(sk, skb, size)) {
4917 			if (!tcp_prune_ofo_queue(sk, skb))
4918 				return -1;
4919 		}
4920 	}
4921 	return 0;
4922 }
4923 
4924 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4925 {
4926 	struct tcp_sock *tp = tcp_sk(sk);
4927 	struct rb_node **p, *parent;
4928 	struct sk_buff *skb1;
4929 	u32 seq, end_seq;
4930 	bool fragstolen;
4931 
4932 	tcp_save_lrcv_flowlabel(sk, skb);
4933 	tcp_ecn_check_ce(sk, skb);
4934 
4935 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4936 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4937 		sk->sk_data_ready(sk);
4938 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4939 		return;
4940 	}
4941 
4942 	/* Disable header prediction. */
4943 	tp->pred_flags = 0;
4944 	inet_csk_schedule_ack(sk);
4945 
4946 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4947 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4948 	seq = TCP_SKB_CB(skb)->seq;
4949 	end_seq = TCP_SKB_CB(skb)->end_seq;
4950 
4951 	p = &tp->out_of_order_queue.rb_node;
4952 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4953 		/* Initial out of order segment, build 1 SACK. */
4954 		if (tcp_is_sack(tp)) {
4955 			tp->rx_opt.num_sacks = 1;
4956 			tp->selective_acks[0].start_seq = seq;
4957 			tp->selective_acks[0].end_seq = end_seq;
4958 		}
4959 		rb_link_node(&skb->rbnode, NULL, p);
4960 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4961 		tp->ooo_last_skb = skb;
4962 		goto end;
4963 	}
4964 
4965 	/* In the typical case, we are adding an skb to the end of the list.
4966 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4967 	 */
4968 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4969 				 skb, &fragstolen)) {
4970 coalesce_done:
4971 		/* For non sack flows, do not grow window to force DUPACK
4972 		 * and trigger fast retransmit.
4973 		 */
4974 		if (tcp_is_sack(tp))
4975 			tcp_grow_window(sk, skb, true);
4976 		kfree_skb_partial(skb, fragstolen);
4977 		skb = NULL;
4978 		goto add_sack;
4979 	}
4980 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4981 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4982 		parent = &tp->ooo_last_skb->rbnode;
4983 		p = &parent->rb_right;
4984 		goto insert;
4985 	}
4986 
4987 	/* Find place to insert this segment. Handle overlaps on the way. */
4988 	parent = NULL;
4989 	while (*p) {
4990 		parent = *p;
4991 		skb1 = rb_to_skb(parent);
4992 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4993 			p = &parent->rb_left;
4994 			continue;
4995 		}
4996 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4997 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4998 				/* All the bits are present. Drop. */
4999 				NET_INC_STATS(sock_net(sk),
5000 					      LINUX_MIB_TCPOFOMERGE);
5001 				tcp_drop_reason(sk, skb,
5002 						SKB_DROP_REASON_TCP_OFOMERGE);
5003 				skb = NULL;
5004 				tcp_dsack_set(sk, seq, end_seq);
5005 				goto add_sack;
5006 			}
5007 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5008 				/* Partial overlap. */
5009 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5010 			} else {
5011 				/* skb's seq == skb1's seq and skb covers skb1.
5012 				 * Replace skb1 with skb.
5013 				 */
5014 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
5015 						&tp->out_of_order_queue);
5016 				tcp_dsack_extend(sk,
5017 						 TCP_SKB_CB(skb1)->seq,
5018 						 TCP_SKB_CB(skb1)->end_seq);
5019 				NET_INC_STATS(sock_net(sk),
5020 					      LINUX_MIB_TCPOFOMERGE);
5021 				tcp_drop_reason(sk, skb1,
5022 						SKB_DROP_REASON_TCP_OFOMERGE);
5023 				goto merge_right;
5024 			}
5025 		} else if (tcp_ooo_try_coalesce(sk, skb1,
5026 						skb, &fragstolen)) {
5027 			goto coalesce_done;
5028 		}
5029 		p = &parent->rb_right;
5030 	}
5031 insert:
5032 	/* Insert segment into RB tree. */
5033 	rb_link_node(&skb->rbnode, parent, p);
5034 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5035 
5036 merge_right:
5037 	/* Remove other segments covered by skb. */
5038 	while ((skb1 = skb_rb_next(skb)) != NULL) {
5039 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5040 			break;
5041 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5042 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5043 					 end_seq);
5044 			break;
5045 		}
5046 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5047 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5048 				 TCP_SKB_CB(skb1)->end_seq);
5049 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5050 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5051 	}
5052 	/* If there is no skb after us, we are the last_skb ! */
5053 	if (!skb1)
5054 		tp->ooo_last_skb = skb;
5055 
5056 add_sack:
5057 	if (tcp_is_sack(tp))
5058 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5059 end:
5060 	if (skb) {
5061 		/* For non sack flows, do not grow window to force DUPACK
5062 		 * and trigger fast retransmit.
5063 		 */
5064 		if (tcp_is_sack(tp))
5065 			tcp_grow_window(sk, skb, false);
5066 		skb_condense(skb);
5067 		skb_set_owner_r(skb, sk);
5068 	}
5069 }
5070 
5071 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5072 				      bool *fragstolen)
5073 {
5074 	int eaten;
5075 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5076 
5077 	eaten = (tail &&
5078 		 tcp_try_coalesce(sk, tail,
5079 				  skb, fragstolen)) ? 1 : 0;
5080 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5081 	if (!eaten) {
5082 		__skb_queue_tail(&sk->sk_receive_queue, skb);
5083 		skb_set_owner_r(skb, sk);
5084 	}
5085 	return eaten;
5086 }
5087 
5088 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5089 {
5090 	struct sk_buff *skb;
5091 	int err = -ENOMEM;
5092 	int data_len = 0;
5093 	bool fragstolen;
5094 
5095 	if (size == 0)
5096 		return 0;
5097 
5098 	if (size > PAGE_SIZE) {
5099 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5100 
5101 		data_len = npages << PAGE_SHIFT;
5102 		size = data_len + (size & ~PAGE_MASK);
5103 	}
5104 	skb = alloc_skb_with_frags(size - data_len, data_len,
5105 				   PAGE_ALLOC_COSTLY_ORDER,
5106 				   &err, sk->sk_allocation);
5107 	if (!skb)
5108 		goto err;
5109 
5110 	skb_put(skb, size - data_len);
5111 	skb->data_len = data_len;
5112 	skb->len = size;
5113 
5114 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5115 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5116 		goto err_free;
5117 	}
5118 
5119 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5120 	if (err)
5121 		goto err_free;
5122 
5123 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5124 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5125 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5126 
5127 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5128 		WARN_ON_ONCE(fragstolen); /* should not happen */
5129 		__kfree_skb(skb);
5130 	}
5131 	return size;
5132 
5133 err_free:
5134 	kfree_skb(skb);
5135 err:
5136 	return err;
5137 
5138 }
5139 
5140 void tcp_data_ready(struct sock *sk)
5141 {
5142 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5143 		sk->sk_data_ready(sk);
5144 }
5145 
5146 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5147 {
5148 	struct tcp_sock *tp = tcp_sk(sk);
5149 	enum skb_drop_reason reason;
5150 	bool fragstolen;
5151 	int eaten;
5152 
5153 	/* If a subflow has been reset, the packet should not continue
5154 	 * to be processed, drop the packet.
5155 	 */
5156 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5157 		__kfree_skb(skb);
5158 		return;
5159 	}
5160 
5161 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5162 		__kfree_skb(skb);
5163 		return;
5164 	}
5165 	skb_dst_drop(skb);
5166 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5167 
5168 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5169 	tp->rx_opt.dsack = 0;
5170 
5171 	/*  Queue data for delivery to the user.
5172 	 *  Packets in sequence go to the receive queue.
5173 	 *  Out of sequence packets to the out_of_order_queue.
5174 	 */
5175 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5176 		if (tcp_receive_window(tp) == 0) {
5177 			/* Some stacks are known to send bare FIN packets
5178 			 * in a loop even if we send RWIN 0 in our ACK.
5179 			 * Accepting this FIN does not hurt memory pressure
5180 			 * because the FIN flag will simply be merged to the
5181 			 * receive queue tail skb in most cases.
5182 			 */
5183 			if (!skb->len &&
5184 			    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5185 				goto queue_and_out;
5186 
5187 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5188 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5189 			goto out_of_window;
5190 		}
5191 
5192 		/* Ok. In sequence. In window. */
5193 queue_and_out:
5194 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5195 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5196 			inet_csk(sk)->icsk_ack.pending |=
5197 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5198 			inet_csk_schedule_ack(sk);
5199 			sk->sk_data_ready(sk);
5200 
5201 			if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5202 				reason = SKB_DROP_REASON_PROTO_MEM;
5203 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5204 				goto drop;
5205 			}
5206 			sk_forced_mem_schedule(sk, skb->truesize);
5207 		}
5208 
5209 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5210 		if (skb->len)
5211 			tcp_event_data_recv(sk, skb);
5212 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5213 			tcp_fin(sk);
5214 
5215 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5216 			tcp_ofo_queue(sk);
5217 
5218 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5219 			 * gap in queue is filled.
5220 			 */
5221 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5222 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5223 		}
5224 
5225 		if (tp->rx_opt.num_sacks)
5226 			tcp_sack_remove(tp);
5227 
5228 		tcp_fast_path_check(sk);
5229 
5230 		if (eaten > 0)
5231 			kfree_skb_partial(skb, fragstolen);
5232 		if (!sock_flag(sk, SOCK_DEAD))
5233 			tcp_data_ready(sk);
5234 		return;
5235 	}
5236 
5237 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5238 		tcp_rcv_spurious_retrans(sk, skb);
5239 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5240 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5241 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5242 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5243 
5244 out_of_window:
5245 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5246 		inet_csk_schedule_ack(sk);
5247 drop:
5248 		tcp_drop_reason(sk, skb, reason);
5249 		return;
5250 	}
5251 
5252 	/* Out of window. F.e. zero window probe. */
5253 	if (!before(TCP_SKB_CB(skb)->seq,
5254 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5255 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5256 		goto out_of_window;
5257 	}
5258 
5259 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5260 		/* Partial packet, seq < rcv_next < end_seq */
5261 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5262 
5263 		/* If window is closed, drop tail of packet. But after
5264 		 * remembering D-SACK for its head made in previous line.
5265 		 */
5266 		if (!tcp_receive_window(tp)) {
5267 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5268 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5269 			goto out_of_window;
5270 		}
5271 		goto queue_and_out;
5272 	}
5273 
5274 	tcp_data_queue_ofo(sk, skb);
5275 }
5276 
5277 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5278 {
5279 	if (list)
5280 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5281 
5282 	return skb_rb_next(skb);
5283 }
5284 
5285 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5286 					struct sk_buff_head *list,
5287 					struct rb_root *root)
5288 {
5289 	struct sk_buff *next = tcp_skb_next(skb, list);
5290 
5291 	if (list)
5292 		__skb_unlink(skb, list);
5293 	else
5294 		rb_erase(&skb->rbnode, root);
5295 
5296 	__kfree_skb(skb);
5297 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5298 
5299 	return next;
5300 }
5301 
5302 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5303 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5304 {
5305 	struct rb_node **p = &root->rb_node;
5306 	struct rb_node *parent = NULL;
5307 	struct sk_buff *skb1;
5308 
5309 	while (*p) {
5310 		parent = *p;
5311 		skb1 = rb_to_skb(parent);
5312 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5313 			p = &parent->rb_left;
5314 		else
5315 			p = &parent->rb_right;
5316 	}
5317 	rb_link_node(&skb->rbnode, parent, p);
5318 	rb_insert_color(&skb->rbnode, root);
5319 }
5320 
5321 /* Collapse contiguous sequence of skbs head..tail with
5322  * sequence numbers start..end.
5323  *
5324  * If tail is NULL, this means until the end of the queue.
5325  *
5326  * Segments with FIN/SYN are not collapsed (only because this
5327  * simplifies code)
5328  */
5329 static void
5330 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5331 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5332 {
5333 	struct sk_buff *skb = head, *n;
5334 	struct sk_buff_head tmp;
5335 	bool end_of_skbs;
5336 
5337 	/* First, check that queue is collapsible and find
5338 	 * the point where collapsing can be useful.
5339 	 */
5340 restart:
5341 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5342 		n = tcp_skb_next(skb, list);
5343 
5344 		/* No new bits? It is possible on ofo queue. */
5345 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5346 			skb = tcp_collapse_one(sk, skb, list, root);
5347 			if (!skb)
5348 				break;
5349 			goto restart;
5350 		}
5351 
5352 		/* The first skb to collapse is:
5353 		 * - not SYN/FIN and
5354 		 * - bloated or contains data before "start" or
5355 		 *   overlaps to the next one and mptcp allow collapsing.
5356 		 */
5357 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5358 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5359 		     before(TCP_SKB_CB(skb)->seq, start))) {
5360 			end_of_skbs = false;
5361 			break;
5362 		}
5363 
5364 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5365 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5366 			end_of_skbs = false;
5367 			break;
5368 		}
5369 
5370 		/* Decided to skip this, advance start seq. */
5371 		start = TCP_SKB_CB(skb)->end_seq;
5372 	}
5373 	if (end_of_skbs ||
5374 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5375 		return;
5376 
5377 	__skb_queue_head_init(&tmp);
5378 
5379 	while (before(start, end)) {
5380 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5381 		struct sk_buff *nskb;
5382 
5383 		nskb = alloc_skb(copy, GFP_ATOMIC);
5384 		if (!nskb)
5385 			break;
5386 
5387 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5388 		skb_copy_decrypted(nskb, skb);
5389 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5390 		if (list)
5391 			__skb_queue_before(list, skb, nskb);
5392 		else
5393 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5394 		skb_set_owner_r(nskb, sk);
5395 		mptcp_skb_ext_move(nskb, skb);
5396 
5397 		/* Copy data, releasing collapsed skbs. */
5398 		while (copy > 0) {
5399 			int offset = start - TCP_SKB_CB(skb)->seq;
5400 			int size = TCP_SKB_CB(skb)->end_seq - start;
5401 
5402 			BUG_ON(offset < 0);
5403 			if (size > 0) {
5404 				size = min(copy, size);
5405 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5406 					BUG();
5407 				TCP_SKB_CB(nskb)->end_seq += size;
5408 				copy -= size;
5409 				start += size;
5410 			}
5411 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5412 				skb = tcp_collapse_one(sk, skb, list, root);
5413 				if (!skb ||
5414 				    skb == tail ||
5415 				    !mptcp_skb_can_collapse(nskb, skb) ||
5416 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5417 					goto end;
5418 				if (skb_cmp_decrypted(skb, nskb))
5419 					goto end;
5420 			}
5421 		}
5422 	}
5423 end:
5424 	skb_queue_walk_safe(&tmp, skb, n)
5425 		tcp_rbtree_insert(root, skb);
5426 }
5427 
5428 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5429  * and tcp_collapse() them until all the queue is collapsed.
5430  */
5431 static void tcp_collapse_ofo_queue(struct sock *sk)
5432 {
5433 	struct tcp_sock *tp = tcp_sk(sk);
5434 	u32 range_truesize, sum_tiny = 0;
5435 	struct sk_buff *skb, *head;
5436 	u32 start, end;
5437 
5438 	skb = skb_rb_first(&tp->out_of_order_queue);
5439 new_range:
5440 	if (!skb) {
5441 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5442 		return;
5443 	}
5444 	start = TCP_SKB_CB(skb)->seq;
5445 	end = TCP_SKB_CB(skb)->end_seq;
5446 	range_truesize = skb->truesize;
5447 
5448 	for (head = skb;;) {
5449 		skb = skb_rb_next(skb);
5450 
5451 		/* Range is terminated when we see a gap or when
5452 		 * we are at the queue end.
5453 		 */
5454 		if (!skb ||
5455 		    after(TCP_SKB_CB(skb)->seq, end) ||
5456 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5457 			/* Do not attempt collapsing tiny skbs */
5458 			if (range_truesize != head->truesize ||
5459 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5460 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5461 					     head, skb, start, end);
5462 			} else {
5463 				sum_tiny += range_truesize;
5464 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5465 					return;
5466 			}
5467 			goto new_range;
5468 		}
5469 
5470 		range_truesize += skb->truesize;
5471 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5472 			start = TCP_SKB_CB(skb)->seq;
5473 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5474 			end = TCP_SKB_CB(skb)->end_seq;
5475 	}
5476 }
5477 
5478 /*
5479  * Clean the out-of-order queue to make room.
5480  * We drop high sequences packets to :
5481  * 1) Let a chance for holes to be filled.
5482  *    This means we do not drop packets from ooo queue if their sequence
5483  *    is before incoming packet sequence.
5484  * 2) not add too big latencies if thousands of packets sit there.
5485  *    (But if application shrinks SO_RCVBUF, we could still end up
5486  *     freeing whole queue here)
5487  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5488  *
5489  * Return true if queue has shrunk.
5490  */
5491 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5492 {
5493 	struct tcp_sock *tp = tcp_sk(sk);
5494 	struct rb_node *node, *prev;
5495 	bool pruned = false;
5496 	int goal;
5497 
5498 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5499 		return false;
5500 
5501 	goal = sk->sk_rcvbuf >> 3;
5502 	node = &tp->ooo_last_skb->rbnode;
5503 
5504 	do {
5505 		struct sk_buff *skb = rb_to_skb(node);
5506 
5507 		/* If incoming skb would land last in ofo queue, stop pruning. */
5508 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5509 			break;
5510 		pruned = true;
5511 		prev = rb_prev(node);
5512 		rb_erase(node, &tp->out_of_order_queue);
5513 		goal -= skb->truesize;
5514 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5515 		tp->ooo_last_skb = rb_to_skb(prev);
5516 		if (!prev || goal <= 0) {
5517 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5518 			    !tcp_under_memory_pressure(sk))
5519 				break;
5520 			goal = sk->sk_rcvbuf >> 3;
5521 		}
5522 		node = prev;
5523 	} while (node);
5524 
5525 	if (pruned) {
5526 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5527 		/* Reset SACK state.  A conforming SACK implementation will
5528 		 * do the same at a timeout based retransmit.  When a connection
5529 		 * is in a sad state like this, we care only about integrity
5530 		 * of the connection not performance.
5531 		 */
5532 		if (tp->rx_opt.sack_ok)
5533 			tcp_sack_reset(&tp->rx_opt);
5534 	}
5535 	return pruned;
5536 }
5537 
5538 /* Reduce allocated memory if we can, trying to get
5539  * the socket within its memory limits again.
5540  *
5541  * Return less than zero if we should start dropping frames
5542  * until the socket owning process reads some of the data
5543  * to stabilize the situation.
5544  */
5545 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5546 {
5547 	struct tcp_sock *tp = tcp_sk(sk);
5548 
5549 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5550 
5551 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5552 		tcp_clamp_window(sk);
5553 	else if (tcp_under_memory_pressure(sk))
5554 		tcp_adjust_rcv_ssthresh(sk);
5555 
5556 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5557 		return 0;
5558 
5559 	tcp_collapse_ofo_queue(sk);
5560 	if (!skb_queue_empty(&sk->sk_receive_queue))
5561 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5562 			     skb_peek(&sk->sk_receive_queue),
5563 			     NULL,
5564 			     tp->copied_seq, tp->rcv_nxt);
5565 
5566 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5567 		return 0;
5568 
5569 	/* Collapsing did not help, destructive actions follow.
5570 	 * This must not ever occur. */
5571 
5572 	tcp_prune_ofo_queue(sk, in_skb);
5573 
5574 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5575 		return 0;
5576 
5577 	/* If we are really being abused, tell the caller to silently
5578 	 * drop receive data on the floor.  It will get retransmitted
5579 	 * and hopefully then we'll have sufficient space.
5580 	 */
5581 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5582 
5583 	/* Massive buffer overcommit. */
5584 	tp->pred_flags = 0;
5585 	return -1;
5586 }
5587 
5588 static bool tcp_should_expand_sndbuf(struct sock *sk)
5589 {
5590 	const struct tcp_sock *tp = tcp_sk(sk);
5591 
5592 	/* If the user specified a specific send buffer setting, do
5593 	 * not modify it.
5594 	 */
5595 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5596 		return false;
5597 
5598 	/* If we are under global TCP memory pressure, do not expand.  */
5599 	if (tcp_under_memory_pressure(sk)) {
5600 		int unused_mem = sk_unused_reserved_mem(sk);
5601 
5602 		/* Adjust sndbuf according to reserved mem. But make sure
5603 		 * it never goes below SOCK_MIN_SNDBUF.
5604 		 * See sk_stream_moderate_sndbuf() for more details.
5605 		 */
5606 		if (unused_mem > SOCK_MIN_SNDBUF)
5607 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5608 
5609 		return false;
5610 	}
5611 
5612 	/* If we are under soft global TCP memory pressure, do not expand.  */
5613 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5614 		return false;
5615 
5616 	/* If we filled the congestion window, do not expand.  */
5617 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5618 		return false;
5619 
5620 	return true;
5621 }
5622 
5623 static void tcp_new_space(struct sock *sk)
5624 {
5625 	struct tcp_sock *tp = tcp_sk(sk);
5626 
5627 	if (tcp_should_expand_sndbuf(sk)) {
5628 		tcp_sndbuf_expand(sk);
5629 		tp->snd_cwnd_stamp = tcp_jiffies32;
5630 	}
5631 
5632 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5633 }
5634 
5635 /* Caller made space either from:
5636  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5637  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5638  *
5639  * We might be able to generate EPOLLOUT to the application if:
5640  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5641  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5642  *    small enough that tcp_stream_memory_free() decides it
5643  *    is time to generate EPOLLOUT.
5644  */
5645 void tcp_check_space(struct sock *sk)
5646 {
5647 	/* pairs with tcp_poll() */
5648 	smp_mb();
5649 	if (sk->sk_socket &&
5650 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5651 		tcp_new_space(sk);
5652 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5653 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5654 	}
5655 }
5656 
5657 static inline void tcp_data_snd_check(struct sock *sk)
5658 {
5659 	tcp_push_pending_frames(sk);
5660 	tcp_check_space(sk);
5661 }
5662 
5663 /*
5664  * Check if sending an ack is needed.
5665  */
5666 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5667 {
5668 	struct tcp_sock *tp = tcp_sk(sk);
5669 	unsigned long rtt, delay;
5670 
5671 	    /* More than one full frame received... */
5672 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5673 	     /* ... and right edge of window advances far enough.
5674 	      * (tcp_recvmsg() will send ACK otherwise).
5675 	      * If application uses SO_RCVLOWAT, we want send ack now if
5676 	      * we have not received enough bytes to satisfy the condition.
5677 	      */
5678 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5679 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5680 	    /* We ACK each frame or... */
5681 	    tcp_in_quickack_mode(sk) ||
5682 	    /* Protocol state mandates a one-time immediate ACK */
5683 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5684 		/* If we are running from __release_sock() in user context,
5685 		 * Defer the ack until tcp_release_cb().
5686 		 */
5687 		if (sock_owned_by_user_nocheck(sk) &&
5688 		    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5689 			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5690 			return;
5691 		}
5692 send_now:
5693 		tcp_send_ack(sk);
5694 		return;
5695 	}
5696 
5697 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5698 		tcp_send_delayed_ack(sk);
5699 		return;
5700 	}
5701 
5702 	if (!tcp_is_sack(tp) ||
5703 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5704 		goto send_now;
5705 
5706 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5707 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5708 		tp->dup_ack_counter = 0;
5709 	}
5710 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5711 		tp->dup_ack_counter++;
5712 		goto send_now;
5713 	}
5714 	tp->compressed_ack++;
5715 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5716 		return;
5717 
5718 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5719 
5720 	rtt = tp->rcv_rtt_est.rtt_us;
5721 	if (tp->srtt_us && tp->srtt_us < rtt)
5722 		rtt = tp->srtt_us;
5723 
5724 	delay = min_t(unsigned long,
5725 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5726 		      rtt * (NSEC_PER_USEC >> 3)/20);
5727 	sock_hold(sk);
5728 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5729 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5730 			       HRTIMER_MODE_REL_PINNED_SOFT);
5731 }
5732 
5733 static inline void tcp_ack_snd_check(struct sock *sk)
5734 {
5735 	if (!inet_csk_ack_scheduled(sk)) {
5736 		/* We sent a data segment already. */
5737 		return;
5738 	}
5739 	__tcp_ack_snd_check(sk, 1);
5740 }
5741 
5742 /*
5743  *	This routine is only called when we have urgent data
5744  *	signaled. Its the 'slow' part of tcp_urg. It could be
5745  *	moved inline now as tcp_urg is only called from one
5746  *	place. We handle URGent data wrong. We have to - as
5747  *	BSD still doesn't use the correction from RFC961.
5748  *	For 1003.1g we should support a new option TCP_STDURG to permit
5749  *	either form (or just set the sysctl tcp_stdurg).
5750  */
5751 
5752 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5753 {
5754 	struct tcp_sock *tp = tcp_sk(sk);
5755 	u32 ptr = ntohs(th->urg_ptr);
5756 
5757 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5758 		ptr--;
5759 	ptr += ntohl(th->seq);
5760 
5761 	/* Ignore urgent data that we've already seen and read. */
5762 	if (after(tp->copied_seq, ptr))
5763 		return;
5764 
5765 	/* Do not replay urg ptr.
5766 	 *
5767 	 * NOTE: interesting situation not covered by specs.
5768 	 * Misbehaving sender may send urg ptr, pointing to segment,
5769 	 * which we already have in ofo queue. We are not able to fetch
5770 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5771 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5772 	 * situations. But it is worth to think about possibility of some
5773 	 * DoSes using some hypothetical application level deadlock.
5774 	 */
5775 	if (before(ptr, tp->rcv_nxt))
5776 		return;
5777 
5778 	/* Do we already have a newer (or duplicate) urgent pointer? */
5779 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5780 		return;
5781 
5782 	/* Tell the world about our new urgent pointer. */
5783 	sk_send_sigurg(sk);
5784 
5785 	/* We may be adding urgent data when the last byte read was
5786 	 * urgent. To do this requires some care. We cannot just ignore
5787 	 * tp->copied_seq since we would read the last urgent byte again
5788 	 * as data, nor can we alter copied_seq until this data arrives
5789 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5790 	 *
5791 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5792 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5793 	 * and expect that both A and B disappear from stream. This is _wrong_.
5794 	 * Though this happens in BSD with high probability, this is occasional.
5795 	 * Any application relying on this is buggy. Note also, that fix "works"
5796 	 * only in this artificial test. Insert some normal data between A and B and we will
5797 	 * decline of BSD again. Verdict: it is better to remove to trap
5798 	 * buggy users.
5799 	 */
5800 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5801 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5802 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5803 		tp->copied_seq++;
5804 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5805 			__skb_unlink(skb, &sk->sk_receive_queue);
5806 			__kfree_skb(skb);
5807 		}
5808 	}
5809 
5810 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5811 	WRITE_ONCE(tp->urg_seq, ptr);
5812 
5813 	/* Disable header prediction. */
5814 	tp->pred_flags = 0;
5815 }
5816 
5817 /* This is the 'fast' part of urgent handling. */
5818 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5819 {
5820 	struct tcp_sock *tp = tcp_sk(sk);
5821 
5822 	/* Check if we get a new urgent pointer - normally not. */
5823 	if (unlikely(th->urg))
5824 		tcp_check_urg(sk, th);
5825 
5826 	/* Do we wait for any urgent data? - normally not... */
5827 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5828 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5829 			  th->syn;
5830 
5831 		/* Is the urgent pointer pointing into this packet? */
5832 		if (ptr < skb->len) {
5833 			u8 tmp;
5834 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5835 				BUG();
5836 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5837 			if (!sock_flag(sk, SOCK_DEAD))
5838 				sk->sk_data_ready(sk);
5839 		}
5840 	}
5841 }
5842 
5843 /* Accept RST for rcv_nxt - 1 after a FIN.
5844  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5845  * FIN is sent followed by a RST packet. The RST is sent with the same
5846  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5847  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5848  * ACKs on the closed socket. In addition middleboxes can drop either the
5849  * challenge ACK or a subsequent RST.
5850  */
5851 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5852 {
5853 	const struct tcp_sock *tp = tcp_sk(sk);
5854 
5855 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5856 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5857 					       TCPF_CLOSING));
5858 }
5859 
5860 /* Does PAWS and seqno based validation of an incoming segment, flags will
5861  * play significant role here.
5862  */
5863 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5864 				  const struct tcphdr *th, int syn_inerr)
5865 {
5866 	struct tcp_sock *tp = tcp_sk(sk);
5867 	SKB_DR(reason);
5868 
5869 	/* RFC1323: H1. Apply PAWS check first. */
5870 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5871 	    tp->rx_opt.saw_tstamp &&
5872 	    tcp_paws_discard(sk, skb)) {
5873 		if (!th->rst) {
5874 			if (unlikely(th->syn))
5875 				goto syn_challenge;
5876 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5877 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5878 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5879 						  &tp->last_oow_ack_time))
5880 				tcp_send_dupack(sk, skb);
5881 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5882 			goto discard;
5883 		}
5884 		/* Reset is accepted even if it did not pass PAWS. */
5885 	}
5886 
5887 	/* Step 1: check sequence number */
5888 	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5889 	if (reason) {
5890 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5891 		 * (RST) segments are validated by checking their SEQ-fields."
5892 		 * And page 69: "If an incoming segment is not acceptable,
5893 		 * an acknowledgment should be sent in reply (unless the RST
5894 		 * bit is set, if so drop the segment and return)".
5895 		 */
5896 		if (!th->rst) {
5897 			if (th->syn)
5898 				goto syn_challenge;
5899 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5900 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5901 						  &tp->last_oow_ack_time))
5902 				tcp_send_dupack(sk, skb);
5903 		} else if (tcp_reset_check(sk, skb)) {
5904 			goto reset;
5905 		}
5906 		goto discard;
5907 	}
5908 
5909 	/* Step 2: check RST bit */
5910 	if (th->rst) {
5911 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5912 		 * FIN and SACK too if available):
5913 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5914 		 * the right-most SACK block,
5915 		 * then
5916 		 *     RESET the connection
5917 		 * else
5918 		 *     Send a challenge ACK
5919 		 */
5920 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5921 		    tcp_reset_check(sk, skb))
5922 			goto reset;
5923 
5924 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5925 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5926 			int max_sack = sp[0].end_seq;
5927 			int this_sack;
5928 
5929 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5930 			     ++this_sack) {
5931 				max_sack = after(sp[this_sack].end_seq,
5932 						 max_sack) ?
5933 					sp[this_sack].end_seq : max_sack;
5934 			}
5935 
5936 			if (TCP_SKB_CB(skb)->seq == max_sack)
5937 				goto reset;
5938 		}
5939 
5940 		/* Disable TFO if RST is out-of-order
5941 		 * and no data has been received
5942 		 * for current active TFO socket
5943 		 */
5944 		if (tp->syn_fastopen && !tp->data_segs_in &&
5945 		    sk->sk_state == TCP_ESTABLISHED)
5946 			tcp_fastopen_active_disable(sk);
5947 		tcp_send_challenge_ack(sk);
5948 		SKB_DR_SET(reason, TCP_RESET);
5949 		goto discard;
5950 	}
5951 
5952 	/* step 3: check security and precedence [ignored] */
5953 
5954 	/* step 4: Check for a SYN
5955 	 * RFC 5961 4.2 : Send a challenge ack
5956 	 */
5957 	if (th->syn) {
5958 syn_challenge:
5959 		if (syn_inerr)
5960 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5961 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5962 		tcp_send_challenge_ack(sk);
5963 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5964 		goto discard;
5965 	}
5966 
5967 	bpf_skops_parse_hdr(sk, skb);
5968 
5969 	return true;
5970 
5971 discard:
5972 	tcp_drop_reason(sk, skb, reason);
5973 	return false;
5974 
5975 reset:
5976 	tcp_reset(sk, skb);
5977 	__kfree_skb(skb);
5978 	return false;
5979 }
5980 
5981 /*
5982  *	TCP receive function for the ESTABLISHED state.
5983  *
5984  *	It is split into a fast path and a slow path. The fast path is
5985  * 	disabled when:
5986  *	- A zero window was announced from us - zero window probing
5987  *        is only handled properly in the slow path.
5988  *	- Out of order segments arrived.
5989  *	- Urgent data is expected.
5990  *	- There is no buffer space left
5991  *	- Unexpected TCP flags/window values/header lengths are received
5992  *	  (detected by checking the TCP header against pred_flags)
5993  *	- Data is sent in both directions. Fast path only supports pure senders
5994  *	  or pure receivers (this means either the sequence number or the ack
5995  *	  value must stay constant)
5996  *	- Unexpected TCP option.
5997  *
5998  *	When these conditions are not satisfied it drops into a standard
5999  *	receive procedure patterned after RFC793 to handle all cases.
6000  *	The first three cases are guaranteed by proper pred_flags setting,
6001  *	the rest is checked inline. Fast processing is turned on in
6002  *	tcp_data_queue when everything is OK.
6003  */
6004 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6005 {
6006 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6007 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
6008 	struct tcp_sock *tp = tcp_sk(sk);
6009 	unsigned int len = skb->len;
6010 
6011 	/* TCP congestion window tracking */
6012 	trace_tcp_probe(sk, skb);
6013 
6014 	tcp_mstamp_refresh(tp);
6015 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6016 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6017 	/*
6018 	 *	Header prediction.
6019 	 *	The code loosely follows the one in the famous
6020 	 *	"30 instruction TCP receive" Van Jacobson mail.
6021 	 *
6022 	 *	Van's trick is to deposit buffers into socket queue
6023 	 *	on a device interrupt, to call tcp_recv function
6024 	 *	on the receive process context and checksum and copy
6025 	 *	the buffer to user space. smart...
6026 	 *
6027 	 *	Our current scheme is not silly either but we take the
6028 	 *	extra cost of the net_bh soft interrupt processing...
6029 	 *	We do checksum and copy also but from device to kernel.
6030 	 */
6031 
6032 	tp->rx_opt.saw_tstamp = 0;
6033 
6034 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6035 	 *	if header_prediction is to be made
6036 	 *	'S' will always be tp->tcp_header_len >> 2
6037 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6038 	 *  turn it off	(when there are holes in the receive
6039 	 *	 space for instance)
6040 	 *	PSH flag is ignored.
6041 	 */
6042 
6043 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6044 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6045 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6046 		int tcp_header_len = tp->tcp_header_len;
6047 
6048 		/* Timestamp header prediction: tcp_header_len
6049 		 * is automatically equal to th->doff*4 due to pred_flags
6050 		 * match.
6051 		 */
6052 
6053 		/* Check timestamp */
6054 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6055 			/* No? Slow path! */
6056 			if (!tcp_parse_aligned_timestamp(tp, th))
6057 				goto slow_path;
6058 
6059 			/* If PAWS failed, check it more carefully in slow path */
6060 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6061 				goto slow_path;
6062 
6063 			/* DO NOT update ts_recent here, if checksum fails
6064 			 * and timestamp was corrupted part, it will result
6065 			 * in a hung connection since we will drop all
6066 			 * future packets due to the PAWS test.
6067 			 */
6068 		}
6069 
6070 		if (len <= tcp_header_len) {
6071 			/* Bulk data transfer: sender */
6072 			if (len == tcp_header_len) {
6073 				/* Predicted packet is in window by definition.
6074 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6075 				 * Hence, check seq<=rcv_wup reduces to:
6076 				 */
6077 				if (tcp_header_len ==
6078 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6079 				    tp->rcv_nxt == tp->rcv_wup)
6080 					tcp_store_ts_recent(tp);
6081 
6082 				/* We know that such packets are checksummed
6083 				 * on entry.
6084 				 */
6085 				tcp_ack(sk, skb, 0);
6086 				__kfree_skb(skb);
6087 				tcp_data_snd_check(sk);
6088 				/* When receiving pure ack in fast path, update
6089 				 * last ts ecr directly instead of calling
6090 				 * tcp_rcv_rtt_measure_ts()
6091 				 */
6092 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6093 				return;
6094 			} else { /* Header too small */
6095 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6096 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6097 				goto discard;
6098 			}
6099 		} else {
6100 			int eaten = 0;
6101 			bool fragstolen = false;
6102 
6103 			if (tcp_checksum_complete(skb))
6104 				goto csum_error;
6105 
6106 			if ((int)skb->truesize > sk->sk_forward_alloc)
6107 				goto step5;
6108 
6109 			/* Predicted packet is in window by definition.
6110 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6111 			 * Hence, check seq<=rcv_wup reduces to:
6112 			 */
6113 			if (tcp_header_len ==
6114 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6115 			    tp->rcv_nxt == tp->rcv_wup)
6116 				tcp_store_ts_recent(tp);
6117 
6118 			tcp_rcv_rtt_measure_ts(sk, skb);
6119 
6120 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6121 
6122 			/* Bulk data transfer: receiver */
6123 			skb_dst_drop(skb);
6124 			__skb_pull(skb, tcp_header_len);
6125 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6126 
6127 			tcp_event_data_recv(sk, skb);
6128 
6129 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6130 				/* Well, only one small jumplet in fast path... */
6131 				tcp_ack(sk, skb, FLAG_DATA);
6132 				tcp_data_snd_check(sk);
6133 				if (!inet_csk_ack_scheduled(sk))
6134 					goto no_ack;
6135 			} else {
6136 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6137 			}
6138 
6139 			__tcp_ack_snd_check(sk, 0);
6140 no_ack:
6141 			if (eaten)
6142 				kfree_skb_partial(skb, fragstolen);
6143 			tcp_data_ready(sk);
6144 			return;
6145 		}
6146 	}
6147 
6148 slow_path:
6149 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6150 		goto csum_error;
6151 
6152 	if (!th->ack && !th->rst && !th->syn) {
6153 		reason = SKB_DROP_REASON_TCP_FLAGS;
6154 		goto discard;
6155 	}
6156 
6157 	/*
6158 	 *	Standard slow path.
6159 	 */
6160 
6161 	if (!tcp_validate_incoming(sk, skb, th, 1))
6162 		return;
6163 
6164 step5:
6165 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6166 	if ((int)reason < 0) {
6167 		reason = -reason;
6168 		goto discard;
6169 	}
6170 	tcp_rcv_rtt_measure_ts(sk, skb);
6171 
6172 	/* Process urgent data. */
6173 	tcp_urg(sk, skb, th);
6174 
6175 	/* step 7: process the segment text */
6176 	tcp_data_queue(sk, skb);
6177 
6178 	tcp_data_snd_check(sk);
6179 	tcp_ack_snd_check(sk);
6180 	return;
6181 
6182 csum_error:
6183 	reason = SKB_DROP_REASON_TCP_CSUM;
6184 	trace_tcp_bad_csum(skb);
6185 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6186 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6187 
6188 discard:
6189 	tcp_drop_reason(sk, skb, reason);
6190 }
6191 EXPORT_SYMBOL(tcp_rcv_established);
6192 
6193 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6194 {
6195 	struct inet_connection_sock *icsk = inet_csk(sk);
6196 	struct tcp_sock *tp = tcp_sk(sk);
6197 
6198 	tcp_mtup_init(sk);
6199 	icsk->icsk_af_ops->rebuild_header(sk);
6200 	tcp_init_metrics(sk);
6201 
6202 	/* Initialize the congestion window to start the transfer.
6203 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6204 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6205 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6206 	 * retransmission has occurred.
6207 	 */
6208 	if (tp->total_retrans > 1 && tp->undo_marker)
6209 		tcp_snd_cwnd_set(tp, 1);
6210 	else
6211 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6212 	tp->snd_cwnd_stamp = tcp_jiffies32;
6213 
6214 	bpf_skops_established(sk, bpf_op, skb);
6215 	/* Initialize congestion control unless BPF initialized it already: */
6216 	if (!icsk->icsk_ca_initialized)
6217 		tcp_init_congestion_control(sk);
6218 	tcp_init_buffer_space(sk);
6219 }
6220 
6221 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6222 {
6223 	struct tcp_sock *tp = tcp_sk(sk);
6224 	struct inet_connection_sock *icsk = inet_csk(sk);
6225 
6226 	tcp_ao_finish_connect(sk, skb);
6227 	tcp_set_state(sk, TCP_ESTABLISHED);
6228 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6229 
6230 	if (skb) {
6231 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6232 		security_inet_conn_established(sk, skb);
6233 		sk_mark_napi_id(sk, skb);
6234 	}
6235 
6236 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6237 
6238 	/* Prevent spurious tcp_cwnd_restart() on first data
6239 	 * packet.
6240 	 */
6241 	tp->lsndtime = tcp_jiffies32;
6242 
6243 	if (sock_flag(sk, SOCK_KEEPOPEN))
6244 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6245 
6246 	if (!tp->rx_opt.snd_wscale)
6247 		__tcp_fast_path_on(tp, tp->snd_wnd);
6248 	else
6249 		tp->pred_flags = 0;
6250 }
6251 
6252 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6253 				    struct tcp_fastopen_cookie *cookie)
6254 {
6255 	struct tcp_sock *tp = tcp_sk(sk);
6256 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6257 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6258 	bool syn_drop = false;
6259 
6260 	if (mss == tp->rx_opt.user_mss) {
6261 		struct tcp_options_received opt;
6262 
6263 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6264 		tcp_clear_options(&opt);
6265 		opt.user_mss = opt.mss_clamp = 0;
6266 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6267 		mss = opt.mss_clamp;
6268 	}
6269 
6270 	if (!tp->syn_fastopen) {
6271 		/* Ignore an unsolicited cookie */
6272 		cookie->len = -1;
6273 	} else if (tp->total_retrans) {
6274 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6275 		 * acknowledges data. Presumably the remote received only
6276 		 * the retransmitted (regular) SYNs: either the original
6277 		 * SYN-data or the corresponding SYN-ACK was dropped.
6278 		 */
6279 		syn_drop = (cookie->len < 0 && data);
6280 	} else if (cookie->len < 0 && !tp->syn_data) {
6281 		/* We requested a cookie but didn't get it. If we did not use
6282 		 * the (old) exp opt format then try so next time (try_exp=1).
6283 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6284 		 */
6285 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6286 	}
6287 
6288 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6289 
6290 	if (data) { /* Retransmit unacked data in SYN */
6291 		if (tp->total_retrans)
6292 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6293 		else
6294 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6295 		skb_rbtree_walk_from(data)
6296 			 tcp_mark_skb_lost(sk, data);
6297 		tcp_xmit_retransmit_queue(sk);
6298 		NET_INC_STATS(sock_net(sk),
6299 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6300 		return true;
6301 	}
6302 	tp->syn_data_acked = tp->syn_data;
6303 	if (tp->syn_data_acked) {
6304 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6305 		/* SYN-data is counted as two separate packets in tcp_ack() */
6306 		if (tp->delivered > 1)
6307 			--tp->delivered;
6308 	}
6309 
6310 	tcp_fastopen_add_skb(sk, synack);
6311 
6312 	return false;
6313 }
6314 
6315 static void smc_check_reset_syn(struct tcp_sock *tp)
6316 {
6317 #if IS_ENABLED(CONFIG_SMC)
6318 	if (static_branch_unlikely(&tcp_have_smc)) {
6319 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6320 			tp->syn_smc = 0;
6321 	}
6322 #endif
6323 }
6324 
6325 static void tcp_try_undo_spurious_syn(struct sock *sk)
6326 {
6327 	struct tcp_sock *tp = tcp_sk(sk);
6328 	u32 syn_stamp;
6329 
6330 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6331 	 * spurious if the ACK's timestamp option echo value matches the
6332 	 * original SYN timestamp.
6333 	 */
6334 	syn_stamp = tp->retrans_stamp;
6335 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6336 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6337 		tp->undo_marker = 0;
6338 }
6339 
6340 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6341 					 const struct tcphdr *th)
6342 {
6343 	struct inet_connection_sock *icsk = inet_csk(sk);
6344 	struct tcp_sock *tp = tcp_sk(sk);
6345 	struct tcp_fastopen_cookie foc = { .len = -1 };
6346 	int saved_clamp = tp->rx_opt.mss_clamp;
6347 	bool fastopen_fail;
6348 	SKB_DR(reason);
6349 
6350 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6351 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6352 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6353 
6354 	if (th->ack) {
6355 		/* rfc793:
6356 		 * "If the state is SYN-SENT then
6357 		 *    first check the ACK bit
6358 		 *      If the ACK bit is set
6359 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6360 		 *        a reset (unless the RST bit is set, if so drop
6361 		 *        the segment and return)"
6362 		 */
6363 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6364 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6365 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6366 			if (icsk->icsk_retransmits == 0)
6367 				inet_csk_reset_xmit_timer(sk,
6368 						ICSK_TIME_RETRANS,
6369 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6370 			SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6371 			goto reset_and_undo;
6372 		}
6373 
6374 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6375 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6376 			     tcp_time_stamp_ts(tp))) {
6377 			NET_INC_STATS(sock_net(sk),
6378 					LINUX_MIB_PAWSACTIVEREJECTED);
6379 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6380 			goto reset_and_undo;
6381 		}
6382 
6383 		/* Now ACK is acceptable.
6384 		 *
6385 		 * "If the RST bit is set
6386 		 *    If the ACK was acceptable then signal the user "error:
6387 		 *    connection reset", drop the segment, enter CLOSED state,
6388 		 *    delete TCB, and return."
6389 		 */
6390 
6391 		if (th->rst) {
6392 			tcp_reset(sk, skb);
6393 consume:
6394 			__kfree_skb(skb);
6395 			return 0;
6396 		}
6397 
6398 		/* rfc793:
6399 		 *   "fifth, if neither of the SYN or RST bits is set then
6400 		 *    drop the segment and return."
6401 		 *
6402 		 *    See note below!
6403 		 *                                        --ANK(990513)
6404 		 */
6405 		if (!th->syn) {
6406 			SKB_DR_SET(reason, TCP_FLAGS);
6407 			goto discard_and_undo;
6408 		}
6409 		/* rfc793:
6410 		 *   "If the SYN bit is on ...
6411 		 *    are acceptable then ...
6412 		 *    (our SYN has been ACKed), change the connection
6413 		 *    state to ESTABLISHED..."
6414 		 */
6415 
6416 		tcp_ecn_rcv_synack(tp, th);
6417 
6418 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6419 		tcp_try_undo_spurious_syn(sk);
6420 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6421 
6422 		/* Ok.. it's good. Set up sequence numbers and
6423 		 * move to established.
6424 		 */
6425 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6426 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6427 
6428 		/* RFC1323: The window in SYN & SYN/ACK segments is
6429 		 * never scaled.
6430 		 */
6431 		tp->snd_wnd = ntohs(th->window);
6432 
6433 		if (!tp->rx_opt.wscale_ok) {
6434 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6435 			WRITE_ONCE(tp->window_clamp,
6436 				   min(tp->window_clamp, 65535U));
6437 		}
6438 
6439 		if (tp->rx_opt.saw_tstamp) {
6440 			tp->rx_opt.tstamp_ok	   = 1;
6441 			tp->tcp_header_len =
6442 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6443 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6444 			tcp_store_ts_recent(tp);
6445 		} else {
6446 			tp->tcp_header_len = sizeof(struct tcphdr);
6447 		}
6448 
6449 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6450 		tcp_initialize_rcv_mss(sk);
6451 
6452 		/* Remember, tcp_poll() does not lock socket!
6453 		 * Change state from SYN-SENT only after copied_seq
6454 		 * is initialized. */
6455 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6456 
6457 		smc_check_reset_syn(tp);
6458 
6459 		smp_mb();
6460 
6461 		tcp_finish_connect(sk, skb);
6462 
6463 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6464 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6465 
6466 		if (!sock_flag(sk, SOCK_DEAD)) {
6467 			sk->sk_state_change(sk);
6468 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6469 		}
6470 		if (fastopen_fail)
6471 			return -1;
6472 		if (sk->sk_write_pending ||
6473 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6474 		    inet_csk_in_pingpong_mode(sk)) {
6475 			/* Save one ACK. Data will be ready after
6476 			 * several ticks, if write_pending is set.
6477 			 *
6478 			 * It may be deleted, but with this feature tcpdumps
6479 			 * look so _wonderfully_ clever, that I was not able
6480 			 * to stand against the temptation 8)     --ANK
6481 			 */
6482 			inet_csk_schedule_ack(sk);
6483 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6484 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6485 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6486 			goto consume;
6487 		}
6488 		tcp_send_ack(sk);
6489 		return -1;
6490 	}
6491 
6492 	/* No ACK in the segment */
6493 
6494 	if (th->rst) {
6495 		/* rfc793:
6496 		 * "If the RST bit is set
6497 		 *
6498 		 *      Otherwise (no ACK) drop the segment and return."
6499 		 */
6500 		SKB_DR_SET(reason, TCP_RESET);
6501 		goto discard_and_undo;
6502 	}
6503 
6504 	/* PAWS check. */
6505 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6506 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6507 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6508 		goto discard_and_undo;
6509 	}
6510 	if (th->syn) {
6511 		/* We see SYN without ACK. It is attempt of
6512 		 * simultaneous connect with crossed SYNs.
6513 		 * Particularly, it can be connect to self.
6514 		 */
6515 #ifdef CONFIG_TCP_AO
6516 		struct tcp_ao_info *ao;
6517 
6518 		ao = rcu_dereference_protected(tp->ao_info,
6519 					       lockdep_sock_is_held(sk));
6520 		if (ao) {
6521 			WRITE_ONCE(ao->risn, th->seq);
6522 			ao->rcv_sne = 0;
6523 		}
6524 #endif
6525 		tcp_set_state(sk, TCP_SYN_RECV);
6526 
6527 		if (tp->rx_opt.saw_tstamp) {
6528 			tp->rx_opt.tstamp_ok = 1;
6529 			tcp_store_ts_recent(tp);
6530 			tp->tcp_header_len =
6531 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6532 		} else {
6533 			tp->tcp_header_len = sizeof(struct tcphdr);
6534 		}
6535 
6536 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6537 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6538 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6539 
6540 		/* RFC1323: The window in SYN & SYN/ACK segments is
6541 		 * never scaled.
6542 		 */
6543 		tp->snd_wnd    = ntohs(th->window);
6544 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6545 		tp->max_window = tp->snd_wnd;
6546 
6547 		tcp_ecn_rcv_syn(tp, th);
6548 
6549 		tcp_mtup_init(sk);
6550 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6551 		tcp_initialize_rcv_mss(sk);
6552 
6553 		tcp_send_synack(sk);
6554 #if 0
6555 		/* Note, we could accept data and URG from this segment.
6556 		 * There are no obstacles to make this (except that we must
6557 		 * either change tcp_recvmsg() to prevent it from returning data
6558 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6559 		 *
6560 		 * However, if we ignore data in ACKless segments sometimes,
6561 		 * we have no reasons to accept it sometimes.
6562 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6563 		 * is not flawless. So, discard packet for sanity.
6564 		 * Uncomment this return to process the data.
6565 		 */
6566 		return -1;
6567 #else
6568 		goto consume;
6569 #endif
6570 	}
6571 	/* "fifth, if neither of the SYN or RST bits is set then
6572 	 * drop the segment and return."
6573 	 */
6574 
6575 discard_and_undo:
6576 	tcp_clear_options(&tp->rx_opt);
6577 	tp->rx_opt.mss_clamp = saved_clamp;
6578 	tcp_drop_reason(sk, skb, reason);
6579 	return 0;
6580 
6581 reset_and_undo:
6582 	tcp_clear_options(&tp->rx_opt);
6583 	tp->rx_opt.mss_clamp = saved_clamp;
6584 	/* we can reuse/return @reason to its caller to handle the exception */
6585 	return reason;
6586 }
6587 
6588 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6589 {
6590 	struct tcp_sock *tp = tcp_sk(sk);
6591 	struct request_sock *req;
6592 
6593 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6594 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6595 	 */
6596 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6597 		tcp_try_undo_recovery(sk);
6598 
6599 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6600 	tcp_update_rto_time(tp);
6601 	tp->retrans_stamp = 0;
6602 	inet_csk(sk)->icsk_retransmits = 0;
6603 
6604 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6605 	 * we no longer need req so release it.
6606 	 */
6607 	req = rcu_dereference_protected(tp->fastopen_rsk,
6608 					lockdep_sock_is_held(sk));
6609 	reqsk_fastopen_remove(sk, req, false);
6610 
6611 	/* Re-arm the timer because data may have been sent out.
6612 	 * This is similar to the regular data transmission case
6613 	 * when new data has just been ack'ed.
6614 	 *
6615 	 * (TFO) - we could try to be more aggressive and
6616 	 * retransmitting any data sooner based on when they
6617 	 * are sent out.
6618 	 */
6619 	tcp_rearm_rto(sk);
6620 }
6621 
6622 /*
6623  *	This function implements the receiving procedure of RFC 793 for
6624  *	all states except ESTABLISHED and TIME_WAIT.
6625  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6626  *	address independent.
6627  */
6628 
6629 enum skb_drop_reason
6630 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6631 {
6632 	struct tcp_sock *tp = tcp_sk(sk);
6633 	struct inet_connection_sock *icsk = inet_csk(sk);
6634 	const struct tcphdr *th = tcp_hdr(skb);
6635 	struct request_sock *req;
6636 	int queued = 0;
6637 	SKB_DR(reason);
6638 
6639 	switch (sk->sk_state) {
6640 	case TCP_CLOSE:
6641 		SKB_DR_SET(reason, TCP_CLOSE);
6642 		goto discard;
6643 
6644 	case TCP_LISTEN:
6645 		if (th->ack)
6646 			return SKB_DROP_REASON_TCP_FLAGS;
6647 
6648 		if (th->rst) {
6649 			SKB_DR_SET(reason, TCP_RESET);
6650 			goto discard;
6651 		}
6652 		if (th->syn) {
6653 			if (th->fin) {
6654 				SKB_DR_SET(reason, TCP_FLAGS);
6655 				goto discard;
6656 			}
6657 			/* It is possible that we process SYN packets from backlog,
6658 			 * so we need to make sure to disable BH and RCU right there.
6659 			 */
6660 			rcu_read_lock();
6661 			local_bh_disable();
6662 			icsk->icsk_af_ops->conn_request(sk, skb);
6663 			local_bh_enable();
6664 			rcu_read_unlock();
6665 
6666 			consume_skb(skb);
6667 			return 0;
6668 		}
6669 		SKB_DR_SET(reason, TCP_FLAGS);
6670 		goto discard;
6671 
6672 	case TCP_SYN_SENT:
6673 		tp->rx_opt.saw_tstamp = 0;
6674 		tcp_mstamp_refresh(tp);
6675 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6676 		if (queued >= 0)
6677 			return queued;
6678 
6679 		/* Do step6 onward by hand. */
6680 		tcp_urg(sk, skb, th);
6681 		__kfree_skb(skb);
6682 		tcp_data_snd_check(sk);
6683 		return 0;
6684 	}
6685 
6686 	tcp_mstamp_refresh(tp);
6687 	tp->rx_opt.saw_tstamp = 0;
6688 	req = rcu_dereference_protected(tp->fastopen_rsk,
6689 					lockdep_sock_is_held(sk));
6690 	if (req) {
6691 		bool req_stolen;
6692 
6693 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6694 		    sk->sk_state != TCP_FIN_WAIT1);
6695 
6696 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6697 			SKB_DR_SET(reason, TCP_FASTOPEN);
6698 			goto discard;
6699 		}
6700 	}
6701 
6702 	if (!th->ack && !th->rst && !th->syn) {
6703 		SKB_DR_SET(reason, TCP_FLAGS);
6704 		goto discard;
6705 	}
6706 	if (!tcp_validate_incoming(sk, skb, th, 0))
6707 		return 0;
6708 
6709 	/* step 5: check the ACK field */
6710 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6711 				  FLAG_UPDATE_TS_RECENT |
6712 				  FLAG_NO_CHALLENGE_ACK);
6713 
6714 	if ((int)reason <= 0) {
6715 		if (sk->sk_state == TCP_SYN_RECV) {
6716 			/* send one RST */
6717 			if (!reason)
6718 				return SKB_DROP_REASON_TCP_OLD_ACK;
6719 			return -reason;
6720 		}
6721 		/* accept old ack during closing */
6722 		if ((int)reason < 0) {
6723 			tcp_send_challenge_ack(sk);
6724 			reason = -reason;
6725 			goto discard;
6726 		}
6727 	}
6728 	SKB_DR_SET(reason, NOT_SPECIFIED);
6729 	switch (sk->sk_state) {
6730 	case TCP_SYN_RECV:
6731 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6732 		if (!tp->srtt_us)
6733 			tcp_synack_rtt_meas(sk, req);
6734 
6735 		if (req) {
6736 			tcp_rcv_synrecv_state_fastopen(sk);
6737 		} else {
6738 			tcp_try_undo_spurious_syn(sk);
6739 			tp->retrans_stamp = 0;
6740 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6741 					  skb);
6742 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6743 		}
6744 		tcp_ao_established(sk);
6745 		smp_mb();
6746 		tcp_set_state(sk, TCP_ESTABLISHED);
6747 		sk->sk_state_change(sk);
6748 
6749 		/* Note, that this wakeup is only for marginal crossed SYN case.
6750 		 * Passively open sockets are not waked up, because
6751 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6752 		 */
6753 		if (sk->sk_socket)
6754 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6755 
6756 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6757 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6758 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6759 
6760 		if (tp->rx_opt.tstamp_ok)
6761 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6762 
6763 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6764 			tcp_update_pacing_rate(sk);
6765 
6766 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6767 		tp->lsndtime = tcp_jiffies32;
6768 
6769 		tcp_initialize_rcv_mss(sk);
6770 		tcp_fast_path_on(tp);
6771 		break;
6772 
6773 	case TCP_FIN_WAIT1: {
6774 		int tmo;
6775 
6776 		if (req)
6777 			tcp_rcv_synrecv_state_fastopen(sk);
6778 
6779 		if (tp->snd_una != tp->write_seq)
6780 			break;
6781 
6782 		tcp_set_state(sk, TCP_FIN_WAIT2);
6783 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6784 
6785 		sk_dst_confirm(sk);
6786 
6787 		if (!sock_flag(sk, SOCK_DEAD)) {
6788 			/* Wake up lingering close() */
6789 			sk->sk_state_change(sk);
6790 			break;
6791 		}
6792 
6793 		if (READ_ONCE(tp->linger2) < 0) {
6794 			tcp_done(sk);
6795 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6796 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6797 		}
6798 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6799 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6800 			/* Receive out of order FIN after close() */
6801 			if (tp->syn_fastopen && th->fin)
6802 				tcp_fastopen_active_disable(sk);
6803 			tcp_done(sk);
6804 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6805 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6806 		}
6807 
6808 		tmo = tcp_fin_time(sk);
6809 		if (tmo > TCP_TIMEWAIT_LEN) {
6810 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6811 		} else if (th->fin || sock_owned_by_user(sk)) {
6812 			/* Bad case. We could lose such FIN otherwise.
6813 			 * It is not a big problem, but it looks confusing
6814 			 * and not so rare event. We still can lose it now,
6815 			 * if it spins in bh_lock_sock(), but it is really
6816 			 * marginal case.
6817 			 */
6818 			inet_csk_reset_keepalive_timer(sk, tmo);
6819 		} else {
6820 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6821 			goto consume;
6822 		}
6823 		break;
6824 	}
6825 
6826 	case TCP_CLOSING:
6827 		if (tp->snd_una == tp->write_seq) {
6828 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6829 			goto consume;
6830 		}
6831 		break;
6832 
6833 	case TCP_LAST_ACK:
6834 		if (tp->snd_una == tp->write_seq) {
6835 			tcp_update_metrics(sk);
6836 			tcp_done(sk);
6837 			goto consume;
6838 		}
6839 		break;
6840 	}
6841 
6842 	/* step 6: check the URG bit */
6843 	tcp_urg(sk, skb, th);
6844 
6845 	/* step 7: process the segment text */
6846 	switch (sk->sk_state) {
6847 	case TCP_CLOSE_WAIT:
6848 	case TCP_CLOSING:
6849 	case TCP_LAST_ACK:
6850 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6851 			/* If a subflow has been reset, the packet should not
6852 			 * continue to be processed, drop the packet.
6853 			 */
6854 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6855 				goto discard;
6856 			break;
6857 		}
6858 		fallthrough;
6859 	case TCP_FIN_WAIT1:
6860 	case TCP_FIN_WAIT2:
6861 		/* RFC 793 says to queue data in these states,
6862 		 * RFC 1122 says we MUST send a reset.
6863 		 * BSD 4.4 also does reset.
6864 		 */
6865 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6866 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6867 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6868 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6869 				tcp_reset(sk, skb);
6870 				return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6871 			}
6872 		}
6873 		fallthrough;
6874 	case TCP_ESTABLISHED:
6875 		tcp_data_queue(sk, skb);
6876 		queued = 1;
6877 		break;
6878 	}
6879 
6880 	/* tcp_data could move socket to TIME-WAIT */
6881 	if (sk->sk_state != TCP_CLOSE) {
6882 		tcp_data_snd_check(sk);
6883 		tcp_ack_snd_check(sk);
6884 	}
6885 
6886 	if (!queued) {
6887 discard:
6888 		tcp_drop_reason(sk, skb, reason);
6889 	}
6890 	return 0;
6891 
6892 consume:
6893 	__kfree_skb(skb);
6894 	return 0;
6895 }
6896 EXPORT_SYMBOL(tcp_rcv_state_process);
6897 
6898 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6899 {
6900 	struct inet_request_sock *ireq = inet_rsk(req);
6901 
6902 	if (family == AF_INET)
6903 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6904 				    &ireq->ir_rmt_addr, port);
6905 #if IS_ENABLED(CONFIG_IPV6)
6906 	else if (family == AF_INET6)
6907 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6908 				    &ireq->ir_v6_rmt_addr, port);
6909 #endif
6910 }
6911 
6912 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6913  *
6914  * If we receive a SYN packet with these bits set, it means a
6915  * network is playing bad games with TOS bits. In order to
6916  * avoid possible false congestion notifications, we disable
6917  * TCP ECN negotiation.
6918  *
6919  * Exception: tcp_ca wants ECN. This is required for DCTCP
6920  * congestion control: Linux DCTCP asserts ECT on all packets,
6921  * including SYN, which is most optimal solution; however,
6922  * others, such as FreeBSD do not.
6923  *
6924  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6925  * set, indicating the use of a future TCP extension (such as AccECN). See
6926  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6927  * extensions.
6928  */
6929 static void tcp_ecn_create_request(struct request_sock *req,
6930 				   const struct sk_buff *skb,
6931 				   const struct sock *listen_sk,
6932 				   const struct dst_entry *dst)
6933 {
6934 	const struct tcphdr *th = tcp_hdr(skb);
6935 	const struct net *net = sock_net(listen_sk);
6936 	bool th_ecn = th->ece && th->cwr;
6937 	bool ect, ecn_ok;
6938 	u32 ecn_ok_dst;
6939 
6940 	if (!th_ecn)
6941 		return;
6942 
6943 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6944 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6945 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6946 
6947 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6948 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6949 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6950 		inet_rsk(req)->ecn_ok = 1;
6951 }
6952 
6953 static void tcp_openreq_init(struct request_sock *req,
6954 			     const struct tcp_options_received *rx_opt,
6955 			     struct sk_buff *skb, const struct sock *sk)
6956 {
6957 	struct inet_request_sock *ireq = inet_rsk(req);
6958 
6959 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6960 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6961 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6962 	tcp_rsk(req)->snt_synack = 0;
6963 	tcp_rsk(req)->last_oow_ack_time = 0;
6964 	req->mss = rx_opt->mss_clamp;
6965 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6966 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6967 	ireq->sack_ok = rx_opt->sack_ok;
6968 	ireq->snd_wscale = rx_opt->snd_wscale;
6969 	ireq->wscale_ok = rx_opt->wscale_ok;
6970 	ireq->acked = 0;
6971 	ireq->ecn_ok = 0;
6972 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6973 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6974 	ireq->ir_mark = inet_request_mark(sk, skb);
6975 #if IS_ENABLED(CONFIG_SMC)
6976 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6977 			tcp_sk(sk)->smc_hs_congested(sk));
6978 #endif
6979 }
6980 
6981 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6982 				      struct sock *sk_listener,
6983 				      bool attach_listener)
6984 {
6985 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6986 					       attach_listener);
6987 
6988 	if (req) {
6989 		struct inet_request_sock *ireq = inet_rsk(req);
6990 
6991 		ireq->ireq_opt = NULL;
6992 #if IS_ENABLED(CONFIG_IPV6)
6993 		ireq->pktopts = NULL;
6994 #endif
6995 		atomic64_set(&ireq->ir_cookie, 0);
6996 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6997 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6998 		ireq->ireq_family = sk_listener->sk_family;
6999 		req->timeout = TCP_TIMEOUT_INIT;
7000 	}
7001 
7002 	return req;
7003 }
7004 EXPORT_SYMBOL(inet_reqsk_alloc);
7005 
7006 /*
7007  * Return true if a syncookie should be sent
7008  */
7009 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7010 {
7011 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7012 	const char *msg = "Dropping request";
7013 	struct net *net = sock_net(sk);
7014 	bool want_cookie = false;
7015 	u8 syncookies;
7016 
7017 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7018 
7019 #ifdef CONFIG_SYN_COOKIES
7020 	if (syncookies) {
7021 		msg = "Sending cookies";
7022 		want_cookie = true;
7023 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7024 	} else
7025 #endif
7026 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7027 
7028 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7029 	    xchg(&queue->synflood_warned, 1) == 0) {
7030 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7031 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7032 					proto, inet6_rcv_saddr(sk),
7033 					sk->sk_num, msg);
7034 		} else {
7035 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7036 					proto, &sk->sk_rcv_saddr,
7037 					sk->sk_num, msg);
7038 		}
7039 	}
7040 
7041 	return want_cookie;
7042 }
7043 
7044 static void tcp_reqsk_record_syn(const struct sock *sk,
7045 				 struct request_sock *req,
7046 				 const struct sk_buff *skb)
7047 {
7048 	if (tcp_sk(sk)->save_syn) {
7049 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7050 		struct saved_syn *saved_syn;
7051 		u32 mac_hdrlen;
7052 		void *base;
7053 
7054 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7055 			base = skb_mac_header(skb);
7056 			mac_hdrlen = skb_mac_header_len(skb);
7057 			len += mac_hdrlen;
7058 		} else {
7059 			base = skb_network_header(skb);
7060 			mac_hdrlen = 0;
7061 		}
7062 
7063 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7064 				    GFP_ATOMIC);
7065 		if (saved_syn) {
7066 			saved_syn->mac_hdrlen = mac_hdrlen;
7067 			saved_syn->network_hdrlen = skb_network_header_len(skb);
7068 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7069 			memcpy(saved_syn->data, base, len);
7070 			req->saved_syn = saved_syn;
7071 		}
7072 	}
7073 }
7074 
7075 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7076  * used for SYN cookie generation.
7077  */
7078 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7079 			  const struct tcp_request_sock_ops *af_ops,
7080 			  struct sock *sk, struct tcphdr *th)
7081 {
7082 	struct tcp_sock *tp = tcp_sk(sk);
7083 	u16 mss;
7084 
7085 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7086 	    !inet_csk_reqsk_queue_is_full(sk))
7087 		return 0;
7088 
7089 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7090 		return 0;
7091 
7092 	if (sk_acceptq_is_full(sk)) {
7093 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7094 		return 0;
7095 	}
7096 
7097 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7098 	if (!mss)
7099 		mss = af_ops->mss_clamp;
7100 
7101 	return mss;
7102 }
7103 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7104 
7105 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7106 		     const struct tcp_request_sock_ops *af_ops,
7107 		     struct sock *sk, struct sk_buff *skb)
7108 {
7109 	struct tcp_fastopen_cookie foc = { .len = -1 };
7110 	struct tcp_options_received tmp_opt;
7111 	struct tcp_sock *tp = tcp_sk(sk);
7112 	struct net *net = sock_net(sk);
7113 	struct sock *fastopen_sk = NULL;
7114 	struct request_sock *req;
7115 	bool want_cookie = false;
7116 	struct dst_entry *dst;
7117 	struct flowi fl;
7118 	u8 syncookies;
7119 	u32 isn;
7120 
7121 #ifdef CONFIG_TCP_AO
7122 	const struct tcp_ao_hdr *aoh;
7123 #endif
7124 
7125 	isn = __this_cpu_read(tcp_tw_isn);
7126 	if (isn) {
7127 		/* TW buckets are converted to open requests without
7128 		 * limitations, they conserve resources and peer is
7129 		 * evidently real one.
7130 		 */
7131 		__this_cpu_write(tcp_tw_isn, 0);
7132 	} else {
7133 		syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7134 
7135 		if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7136 			want_cookie = tcp_syn_flood_action(sk,
7137 							   rsk_ops->slab_name);
7138 			if (!want_cookie)
7139 				goto drop;
7140 		}
7141 	}
7142 
7143 	if (sk_acceptq_is_full(sk)) {
7144 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7145 		goto drop;
7146 	}
7147 
7148 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7149 	if (!req)
7150 		goto drop;
7151 
7152 	req->syncookie = want_cookie;
7153 	tcp_rsk(req)->af_specific = af_ops;
7154 	tcp_rsk(req)->ts_off = 0;
7155 	tcp_rsk(req)->req_usec_ts = false;
7156 #if IS_ENABLED(CONFIG_MPTCP)
7157 	tcp_rsk(req)->is_mptcp = 0;
7158 #endif
7159 
7160 	tcp_clear_options(&tmp_opt);
7161 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7162 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7163 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7164 			  want_cookie ? NULL : &foc);
7165 
7166 	if (want_cookie && !tmp_opt.saw_tstamp)
7167 		tcp_clear_options(&tmp_opt);
7168 
7169 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7170 		tmp_opt.smc_ok = 0;
7171 
7172 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7173 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7174 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7175 
7176 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7177 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7178 
7179 	dst = af_ops->route_req(sk, skb, &fl, req, isn);
7180 	if (!dst)
7181 		goto drop_and_free;
7182 
7183 	if (tmp_opt.tstamp_ok) {
7184 		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7185 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7186 	}
7187 	if (!want_cookie && !isn) {
7188 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7189 
7190 		/* Kill the following clause, if you dislike this way. */
7191 		if (!syncookies &&
7192 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7193 		     (max_syn_backlog >> 2)) &&
7194 		    !tcp_peer_is_proven(req, dst)) {
7195 			/* Without syncookies last quarter of
7196 			 * backlog is filled with destinations,
7197 			 * proven to be alive.
7198 			 * It means that we continue to communicate
7199 			 * to destinations, already remembered
7200 			 * to the moment of synflood.
7201 			 */
7202 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7203 				    rsk_ops->family);
7204 			goto drop_and_release;
7205 		}
7206 
7207 		isn = af_ops->init_seq(skb);
7208 	}
7209 
7210 	tcp_ecn_create_request(req, skb, sk, dst);
7211 
7212 	if (want_cookie) {
7213 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7214 		if (!tmp_opt.tstamp_ok)
7215 			inet_rsk(req)->ecn_ok = 0;
7216 	}
7217 
7218 #ifdef CONFIG_TCP_AO
7219 	if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7220 		goto drop_and_release; /* Invalid TCP options */
7221 	if (aoh) {
7222 		tcp_rsk(req)->used_tcp_ao = true;
7223 		tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7224 		tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7225 
7226 	} else {
7227 		tcp_rsk(req)->used_tcp_ao = false;
7228 	}
7229 #endif
7230 	tcp_rsk(req)->snt_isn = isn;
7231 	tcp_rsk(req)->txhash = net_tx_rndhash();
7232 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7233 	tcp_openreq_init_rwin(req, sk, dst);
7234 	sk_rx_queue_set(req_to_sk(req), skb);
7235 	if (!want_cookie) {
7236 		tcp_reqsk_record_syn(sk, req, skb);
7237 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7238 	}
7239 	if (fastopen_sk) {
7240 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7241 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7242 		/* Add the child socket directly into the accept queue */
7243 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7244 			reqsk_fastopen_remove(fastopen_sk, req, false);
7245 			bh_unlock_sock(fastopen_sk);
7246 			sock_put(fastopen_sk);
7247 			goto drop_and_free;
7248 		}
7249 		sk->sk_data_ready(sk);
7250 		bh_unlock_sock(fastopen_sk);
7251 		sock_put(fastopen_sk);
7252 	} else {
7253 		tcp_rsk(req)->tfo_listener = false;
7254 		if (!want_cookie) {
7255 			req->timeout = tcp_timeout_init((struct sock *)req);
7256 			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7257 		}
7258 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7259 				    !want_cookie ? TCP_SYNACK_NORMAL :
7260 						   TCP_SYNACK_COOKIE,
7261 				    skb);
7262 		if (want_cookie) {
7263 			reqsk_free(req);
7264 			return 0;
7265 		}
7266 	}
7267 	reqsk_put(req);
7268 	return 0;
7269 
7270 drop_and_release:
7271 	dst_release(dst);
7272 drop_and_free:
7273 	__reqsk_free(req);
7274 drop:
7275 	tcp_listendrop(sk);
7276 	return 0;
7277 }
7278 EXPORT_SYMBOL(tcp_conn_request);
7279