1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 struct net_device *dev; 209 210 rcu_read_lock(); 211 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 212 if (!dev || len >= READ_ONCE(dev->mtu)) 213 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 214 dev ? dev->name : "Unknown driver"); 215 rcu_read_unlock(); 216 } 217 218 /* Adapt the MSS value used to make delayed ack decision to the 219 * real world. 220 */ 221 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 222 { 223 struct inet_connection_sock *icsk = inet_csk(sk); 224 const unsigned int lss = icsk->icsk_ack.last_seg_size; 225 unsigned int len; 226 227 icsk->icsk_ack.last_seg_size = 0; 228 229 /* skb->len may jitter because of SACKs, even if peer 230 * sends good full-sized frames. 231 */ 232 len = skb_shinfo(skb)->gso_size ? : skb->len; 233 if (len >= icsk->icsk_ack.rcv_mss) { 234 /* Note: divides are still a bit expensive. 235 * For the moment, only adjust scaling_ratio 236 * when we update icsk_ack.rcv_mss. 237 */ 238 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 239 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 240 241 do_div(val, skb->truesize); 242 tcp_sk(sk)->scaling_ratio = val ? val : 1; 243 } 244 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 245 tcp_sk(sk)->advmss); 246 /* Account for possibly-removed options */ 247 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE, 248 tcp_gro_dev_warn, sk, skb, len); 249 /* If the skb has a len of exactly 1*MSS and has the PSH bit 250 * set then it is likely the end of an application write. So 251 * more data may not be arriving soon, and yet the data sender 252 * may be waiting for an ACK if cwnd-bound or using TX zero 253 * copy. So we set ICSK_ACK_PUSHED here so that 254 * tcp_cleanup_rbuf() will send an ACK immediately if the app 255 * reads all of the data and is not ping-pong. If len > MSS 256 * then this logic does not matter (and does not hurt) because 257 * tcp_cleanup_rbuf() will always ACK immediately if the app 258 * reads data and there is more than an MSS of unACKed data. 259 */ 260 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 261 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 262 } else { 263 /* Otherwise, we make more careful check taking into account, 264 * that SACKs block is variable. 265 * 266 * "len" is invariant segment length, including TCP header. 267 */ 268 len += skb->data - skb_transport_header(skb); 269 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 270 /* If PSH is not set, packet should be 271 * full sized, provided peer TCP is not badly broken. 272 * This observation (if it is correct 8)) allows 273 * to handle super-low mtu links fairly. 274 */ 275 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 276 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 277 /* Subtract also invariant (if peer is RFC compliant), 278 * tcp header plus fixed timestamp option length. 279 * Resulting "len" is MSS free of SACK jitter. 280 */ 281 len -= tcp_sk(sk)->tcp_header_len; 282 icsk->icsk_ack.last_seg_size = len; 283 if (len == lss) { 284 icsk->icsk_ack.rcv_mss = len; 285 return; 286 } 287 } 288 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 289 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 290 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 291 } 292 } 293 294 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 295 { 296 struct inet_connection_sock *icsk = inet_csk(sk); 297 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 298 299 if (quickacks == 0) 300 quickacks = 2; 301 quickacks = min(quickacks, max_quickacks); 302 if (quickacks > icsk->icsk_ack.quick) 303 icsk->icsk_ack.quick = quickacks; 304 } 305 306 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 307 { 308 struct inet_connection_sock *icsk = inet_csk(sk); 309 310 tcp_incr_quickack(sk, max_quickacks); 311 inet_csk_exit_pingpong_mode(sk); 312 icsk->icsk_ack.ato = TCP_ATO_MIN; 313 } 314 315 /* Send ACKs quickly, if "quick" count is not exhausted 316 * and the session is not interactive. 317 */ 318 319 static bool tcp_in_quickack_mode(struct sock *sk) 320 { 321 const struct inet_connection_sock *icsk = inet_csk(sk); 322 const struct dst_entry *dst = __sk_dst_get(sk); 323 324 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 325 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 326 } 327 328 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 329 { 330 if (tp->ecn_flags & TCP_ECN_OK) 331 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 332 } 333 334 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 335 { 336 if (tcp_hdr(skb)->cwr) { 337 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 338 339 /* If the sender is telling us it has entered CWR, then its 340 * cwnd may be very low (even just 1 packet), so we should ACK 341 * immediately. 342 */ 343 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 344 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 345 } 346 } 347 348 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 349 { 350 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 351 } 352 353 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 354 { 355 struct tcp_sock *tp = tcp_sk(sk); 356 357 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 358 case INET_ECN_NOT_ECT: 359 /* Funny extension: if ECT is not set on a segment, 360 * and we already seen ECT on a previous segment, 361 * it is probably a retransmit. 362 */ 363 if (tp->ecn_flags & TCP_ECN_SEEN) 364 tcp_enter_quickack_mode(sk, 2); 365 break; 366 case INET_ECN_CE: 367 if (tcp_ca_needs_ecn(sk)) 368 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 369 370 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 371 /* Better not delay acks, sender can have a very low cwnd */ 372 tcp_enter_quickack_mode(sk, 2); 373 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 374 } 375 tp->ecn_flags |= TCP_ECN_SEEN; 376 break; 377 default: 378 if (tcp_ca_needs_ecn(sk)) 379 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 380 tp->ecn_flags |= TCP_ECN_SEEN; 381 break; 382 } 383 } 384 385 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 386 { 387 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 388 __tcp_ecn_check_ce(sk, skb); 389 } 390 391 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 392 { 393 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 394 tp->ecn_flags &= ~TCP_ECN_OK; 395 } 396 397 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 398 { 399 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 400 tp->ecn_flags &= ~TCP_ECN_OK; 401 } 402 403 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 404 { 405 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 406 return true; 407 return false; 408 } 409 410 /* Buffer size and advertised window tuning. 411 * 412 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 413 */ 414 415 static void tcp_sndbuf_expand(struct sock *sk) 416 { 417 const struct tcp_sock *tp = tcp_sk(sk); 418 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 419 int sndmem, per_mss; 420 u32 nr_segs; 421 422 /* Worst case is non GSO/TSO : each frame consumes one skb 423 * and skb->head is kmalloced using power of two area of memory 424 */ 425 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 426 MAX_TCP_HEADER + 427 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 428 429 per_mss = roundup_pow_of_two(per_mss) + 430 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 431 432 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 433 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 434 435 /* Fast Recovery (RFC 5681 3.2) : 436 * Cubic needs 1.7 factor, rounded to 2 to include 437 * extra cushion (application might react slowly to EPOLLOUT) 438 */ 439 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 440 sndmem *= nr_segs * per_mss; 441 442 if (sk->sk_sndbuf < sndmem) 443 WRITE_ONCE(sk->sk_sndbuf, 444 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 445 } 446 447 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 448 * 449 * All tcp_full_space() is split to two parts: "network" buffer, allocated 450 * forward and advertised in receiver window (tp->rcv_wnd) and 451 * "application buffer", required to isolate scheduling/application 452 * latencies from network. 453 * window_clamp is maximal advertised window. It can be less than 454 * tcp_full_space(), in this case tcp_full_space() - window_clamp 455 * is reserved for "application" buffer. The less window_clamp is 456 * the smoother our behaviour from viewpoint of network, but the lower 457 * throughput and the higher sensitivity of the connection to losses. 8) 458 * 459 * rcv_ssthresh is more strict window_clamp used at "slow start" 460 * phase to predict further behaviour of this connection. 461 * It is used for two goals: 462 * - to enforce header prediction at sender, even when application 463 * requires some significant "application buffer". It is check #1. 464 * - to prevent pruning of receive queue because of misprediction 465 * of receiver window. Check #2. 466 * 467 * The scheme does not work when sender sends good segments opening 468 * window and then starts to feed us spaghetti. But it should work 469 * in common situations. Otherwise, we have to rely on queue collapsing. 470 */ 471 472 /* Slow part of check#2. */ 473 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 474 unsigned int skbtruesize) 475 { 476 const struct tcp_sock *tp = tcp_sk(sk); 477 /* Optimize this! */ 478 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 479 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 480 481 while (tp->rcv_ssthresh <= window) { 482 if (truesize <= skb->len) 483 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 484 485 truesize >>= 1; 486 window >>= 1; 487 } 488 return 0; 489 } 490 491 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 492 * can play nice with us, as sk_buff and skb->head might be either 493 * freed or shared with up to MAX_SKB_FRAGS segments. 494 * Only give a boost to drivers using page frag(s) to hold the frame(s), 495 * and if no payload was pulled in skb->head before reaching us. 496 */ 497 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 498 { 499 u32 truesize = skb->truesize; 500 501 if (adjust && !skb_headlen(skb)) { 502 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 503 /* paranoid check, some drivers might be buggy */ 504 if (unlikely((int)truesize < (int)skb->len)) 505 truesize = skb->truesize; 506 } 507 return truesize; 508 } 509 510 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 511 bool adjust) 512 { 513 struct tcp_sock *tp = tcp_sk(sk); 514 int room; 515 516 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 517 518 if (room <= 0) 519 return; 520 521 /* Check #1 */ 522 if (!tcp_under_memory_pressure(sk)) { 523 unsigned int truesize = truesize_adjust(adjust, skb); 524 int incr; 525 526 /* Check #2. Increase window, if skb with such overhead 527 * will fit to rcvbuf in future. 528 */ 529 if (tcp_win_from_space(sk, truesize) <= skb->len) 530 incr = 2 * tp->advmss; 531 else 532 incr = __tcp_grow_window(sk, skb, truesize); 533 534 if (incr) { 535 incr = max_t(int, incr, 2 * skb->len); 536 tp->rcv_ssthresh += min(room, incr); 537 inet_csk(sk)->icsk_ack.quick |= 1; 538 } 539 } else { 540 /* Under pressure: 541 * Adjust rcv_ssthresh according to reserved mem 542 */ 543 tcp_adjust_rcv_ssthresh(sk); 544 } 545 } 546 547 /* 3. Try to fixup all. It is made immediately after connection enters 548 * established state. 549 */ 550 static void tcp_init_buffer_space(struct sock *sk) 551 { 552 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 553 struct tcp_sock *tp = tcp_sk(sk); 554 int maxwin; 555 556 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 557 tcp_sndbuf_expand(sk); 558 559 tcp_mstamp_refresh(tp); 560 tp->rcvq_space.time = tp->tcp_mstamp; 561 tp->rcvq_space.seq = tp->copied_seq; 562 563 maxwin = tcp_full_space(sk); 564 565 if (tp->window_clamp >= maxwin) { 566 WRITE_ONCE(tp->window_clamp, maxwin); 567 568 if (tcp_app_win && maxwin > 4 * tp->advmss) 569 WRITE_ONCE(tp->window_clamp, 570 max(maxwin - (maxwin >> tcp_app_win), 571 4 * tp->advmss)); 572 } 573 574 /* Force reservation of one segment. */ 575 if (tcp_app_win && 576 tp->window_clamp > 2 * tp->advmss && 577 tp->window_clamp + tp->advmss > maxwin) 578 WRITE_ONCE(tp->window_clamp, 579 max(2 * tp->advmss, maxwin - tp->advmss)); 580 581 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 582 tp->snd_cwnd_stamp = tcp_jiffies32; 583 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 584 (u32)TCP_INIT_CWND * tp->advmss); 585 } 586 587 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 588 static void tcp_clamp_window(struct sock *sk) 589 { 590 struct tcp_sock *tp = tcp_sk(sk); 591 struct inet_connection_sock *icsk = inet_csk(sk); 592 struct net *net = sock_net(sk); 593 int rmem2; 594 595 icsk->icsk_ack.quick = 0; 596 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 597 598 if (sk->sk_rcvbuf < rmem2 && 599 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 600 !tcp_under_memory_pressure(sk) && 601 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 602 WRITE_ONCE(sk->sk_rcvbuf, 603 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 604 } 605 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 606 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 607 } 608 609 /* Initialize RCV_MSS value. 610 * RCV_MSS is an our guess about MSS used by the peer. 611 * We haven't any direct information about the MSS. 612 * It's better to underestimate the RCV_MSS rather than overestimate. 613 * Overestimations make us ACKing less frequently than needed. 614 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 615 */ 616 void tcp_initialize_rcv_mss(struct sock *sk) 617 { 618 const struct tcp_sock *tp = tcp_sk(sk); 619 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 620 621 hint = min(hint, tp->rcv_wnd / 2); 622 hint = min(hint, TCP_MSS_DEFAULT); 623 hint = max(hint, TCP_MIN_MSS); 624 625 inet_csk(sk)->icsk_ack.rcv_mss = hint; 626 } 627 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 628 629 /* Receiver "autotuning" code. 630 * 631 * The algorithm for RTT estimation w/o timestamps is based on 632 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 633 * <https://public.lanl.gov/radiant/pubs.html#DRS> 634 * 635 * More detail on this code can be found at 636 * <http://staff.psc.edu/jheffner/>, 637 * though this reference is out of date. A new paper 638 * is pending. 639 */ 640 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 641 { 642 u32 new_sample = tp->rcv_rtt_est.rtt_us; 643 long m = sample; 644 645 if (new_sample != 0) { 646 /* If we sample in larger samples in the non-timestamp 647 * case, we could grossly overestimate the RTT especially 648 * with chatty applications or bulk transfer apps which 649 * are stalled on filesystem I/O. 650 * 651 * Also, since we are only going for a minimum in the 652 * non-timestamp case, we do not smooth things out 653 * else with timestamps disabled convergence takes too 654 * long. 655 */ 656 if (!win_dep) { 657 m -= (new_sample >> 3); 658 new_sample += m; 659 } else { 660 m <<= 3; 661 if (m < new_sample) 662 new_sample = m; 663 } 664 } else { 665 /* No previous measure. */ 666 new_sample = m << 3; 667 } 668 669 tp->rcv_rtt_est.rtt_us = new_sample; 670 } 671 672 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 673 { 674 u32 delta_us; 675 676 if (tp->rcv_rtt_est.time == 0) 677 goto new_measure; 678 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 679 return; 680 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 681 if (!delta_us) 682 delta_us = 1; 683 tcp_rcv_rtt_update(tp, delta_us, 1); 684 685 new_measure: 686 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 687 tp->rcv_rtt_est.time = tp->tcp_mstamp; 688 } 689 690 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp) 691 { 692 u32 delta, delta_us; 693 694 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; 695 if (tp->tcp_usec_ts) 696 return delta; 697 698 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 699 if (!delta) 700 delta = 1; 701 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 702 return delta_us; 703 } 704 return -1; 705 } 706 707 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 708 const struct sk_buff *skb) 709 { 710 struct tcp_sock *tp = tcp_sk(sk); 711 712 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 713 return; 714 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 715 716 if (TCP_SKB_CB(skb)->end_seq - 717 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 718 s32 delta = tcp_rtt_tsopt_us(tp); 719 720 if (delta >= 0) 721 tcp_rcv_rtt_update(tp, delta, 0); 722 } 723 } 724 725 /* 726 * This function should be called every time data is copied to user space. 727 * It calculates the appropriate TCP receive buffer space. 728 */ 729 void tcp_rcv_space_adjust(struct sock *sk) 730 { 731 struct tcp_sock *tp = tcp_sk(sk); 732 u32 copied; 733 int time; 734 735 trace_tcp_rcv_space_adjust(sk); 736 737 tcp_mstamp_refresh(tp); 738 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 739 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 740 return; 741 742 /* Number of bytes copied to user in last RTT */ 743 copied = tp->copied_seq - tp->rcvq_space.seq; 744 if (copied <= tp->rcvq_space.space) 745 goto new_measure; 746 747 /* A bit of theory : 748 * copied = bytes received in previous RTT, our base window 749 * To cope with packet losses, we need a 2x factor 750 * To cope with slow start, and sender growing its cwin by 100 % 751 * every RTT, we need a 4x factor, because the ACK we are sending 752 * now is for the next RTT, not the current one : 753 * <prev RTT . ><current RTT .. ><next RTT .... > 754 */ 755 756 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 757 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 758 u64 rcvwin, grow; 759 int rcvbuf; 760 761 /* minimal window to cope with packet losses, assuming 762 * steady state. Add some cushion because of small variations. 763 */ 764 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 765 766 /* Accommodate for sender rate increase (eg. slow start) */ 767 grow = rcvwin * (copied - tp->rcvq_space.space); 768 do_div(grow, tp->rcvq_space.space); 769 rcvwin += (grow << 1); 770 771 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 772 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 773 if (rcvbuf > sk->sk_rcvbuf) { 774 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 775 776 /* Make the window clamp follow along. */ 777 WRITE_ONCE(tp->window_clamp, 778 tcp_win_from_space(sk, rcvbuf)); 779 } 780 } 781 tp->rcvq_space.space = copied; 782 783 new_measure: 784 tp->rcvq_space.seq = tp->copied_seq; 785 tp->rcvq_space.time = tp->tcp_mstamp; 786 } 787 788 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 789 { 790 #if IS_ENABLED(CONFIG_IPV6) 791 struct inet_connection_sock *icsk = inet_csk(sk); 792 793 if (skb->protocol == htons(ETH_P_IPV6)) 794 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 795 #endif 796 } 797 798 /* There is something which you must keep in mind when you analyze the 799 * behavior of the tp->ato delayed ack timeout interval. When a 800 * connection starts up, we want to ack as quickly as possible. The 801 * problem is that "good" TCP's do slow start at the beginning of data 802 * transmission. The means that until we send the first few ACK's the 803 * sender will sit on his end and only queue most of his data, because 804 * he can only send snd_cwnd unacked packets at any given time. For 805 * each ACK we send, he increments snd_cwnd and transmits more of his 806 * queue. -DaveM 807 */ 808 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 809 { 810 struct tcp_sock *tp = tcp_sk(sk); 811 struct inet_connection_sock *icsk = inet_csk(sk); 812 u32 now; 813 814 inet_csk_schedule_ack(sk); 815 816 tcp_measure_rcv_mss(sk, skb); 817 818 tcp_rcv_rtt_measure(tp); 819 820 now = tcp_jiffies32; 821 822 if (!icsk->icsk_ack.ato) { 823 /* The _first_ data packet received, initialize 824 * delayed ACK engine. 825 */ 826 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 827 icsk->icsk_ack.ato = TCP_ATO_MIN; 828 } else { 829 int m = now - icsk->icsk_ack.lrcvtime; 830 831 if (m <= TCP_ATO_MIN / 2) { 832 /* The fastest case is the first. */ 833 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 834 } else if (m < icsk->icsk_ack.ato) { 835 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 836 if (icsk->icsk_ack.ato > icsk->icsk_rto) 837 icsk->icsk_ack.ato = icsk->icsk_rto; 838 } else if (m > icsk->icsk_rto) { 839 /* Too long gap. Apparently sender failed to 840 * restart window, so that we send ACKs quickly. 841 */ 842 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 843 } 844 } 845 icsk->icsk_ack.lrcvtime = now; 846 tcp_save_lrcv_flowlabel(sk, skb); 847 848 tcp_ecn_check_ce(sk, skb); 849 850 if (skb->len >= 128) 851 tcp_grow_window(sk, skb, true); 852 } 853 854 /* Called to compute a smoothed rtt estimate. The data fed to this 855 * routine either comes from timestamps, or from segments that were 856 * known _not_ to have been retransmitted [see Karn/Partridge 857 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 858 * piece by Van Jacobson. 859 * NOTE: the next three routines used to be one big routine. 860 * To save cycles in the RFC 1323 implementation it was better to break 861 * it up into three procedures. -- erics 862 */ 863 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 864 { 865 struct tcp_sock *tp = tcp_sk(sk); 866 long m = mrtt_us; /* RTT */ 867 u32 srtt = tp->srtt_us; 868 869 /* The following amusing code comes from Jacobson's 870 * article in SIGCOMM '88. Note that rtt and mdev 871 * are scaled versions of rtt and mean deviation. 872 * This is designed to be as fast as possible 873 * m stands for "measurement". 874 * 875 * On a 1990 paper the rto value is changed to: 876 * RTO = rtt + 4 * mdev 877 * 878 * Funny. This algorithm seems to be very broken. 879 * These formulae increase RTO, when it should be decreased, increase 880 * too slowly, when it should be increased quickly, decrease too quickly 881 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 882 * does not matter how to _calculate_ it. Seems, it was trap 883 * that VJ failed to avoid. 8) 884 */ 885 if (srtt != 0) { 886 m -= (srtt >> 3); /* m is now error in rtt est */ 887 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 888 if (m < 0) { 889 m = -m; /* m is now abs(error) */ 890 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 891 /* This is similar to one of Eifel findings. 892 * Eifel blocks mdev updates when rtt decreases. 893 * This solution is a bit different: we use finer gain 894 * for mdev in this case (alpha*beta). 895 * Like Eifel it also prevents growth of rto, 896 * but also it limits too fast rto decreases, 897 * happening in pure Eifel. 898 */ 899 if (m > 0) 900 m >>= 3; 901 } else { 902 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 903 } 904 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 905 if (tp->mdev_us > tp->mdev_max_us) { 906 tp->mdev_max_us = tp->mdev_us; 907 if (tp->mdev_max_us > tp->rttvar_us) 908 tp->rttvar_us = tp->mdev_max_us; 909 } 910 if (after(tp->snd_una, tp->rtt_seq)) { 911 if (tp->mdev_max_us < tp->rttvar_us) 912 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 913 tp->rtt_seq = tp->snd_nxt; 914 tp->mdev_max_us = tcp_rto_min_us(sk); 915 916 tcp_bpf_rtt(sk); 917 } 918 } else { 919 /* no previous measure. */ 920 srtt = m << 3; /* take the measured time to be rtt */ 921 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 922 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 923 tp->mdev_max_us = tp->rttvar_us; 924 tp->rtt_seq = tp->snd_nxt; 925 926 tcp_bpf_rtt(sk); 927 } 928 tp->srtt_us = max(1U, srtt); 929 } 930 931 static void tcp_update_pacing_rate(struct sock *sk) 932 { 933 const struct tcp_sock *tp = tcp_sk(sk); 934 u64 rate; 935 936 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 937 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 938 939 /* current rate is (cwnd * mss) / srtt 940 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 941 * In Congestion Avoidance phase, set it to 120 % the current rate. 942 * 943 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 944 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 945 * end of slow start and should slow down. 946 */ 947 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 948 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 949 else 950 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 951 952 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 953 954 if (likely(tp->srtt_us)) 955 do_div(rate, tp->srtt_us); 956 957 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 958 * without any lock. We want to make sure compiler wont store 959 * intermediate values in this location. 960 */ 961 WRITE_ONCE(sk->sk_pacing_rate, 962 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 963 } 964 965 /* Calculate rto without backoff. This is the second half of Van Jacobson's 966 * routine referred to above. 967 */ 968 static void tcp_set_rto(struct sock *sk) 969 { 970 const struct tcp_sock *tp = tcp_sk(sk); 971 /* Old crap is replaced with new one. 8) 972 * 973 * More seriously: 974 * 1. If rtt variance happened to be less 50msec, it is hallucination. 975 * It cannot be less due to utterly erratic ACK generation made 976 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 977 * to do with delayed acks, because at cwnd>2 true delack timeout 978 * is invisible. Actually, Linux-2.4 also generates erratic 979 * ACKs in some circumstances. 980 */ 981 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 982 983 /* 2. Fixups made earlier cannot be right. 984 * If we do not estimate RTO correctly without them, 985 * all the algo is pure shit and should be replaced 986 * with correct one. It is exactly, which we pretend to do. 987 */ 988 989 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 990 * guarantees that rto is higher. 991 */ 992 tcp_bound_rto(sk); 993 } 994 995 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 996 { 997 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 998 999 if (!cwnd) 1000 cwnd = TCP_INIT_CWND; 1001 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 1002 } 1003 1004 struct tcp_sacktag_state { 1005 /* Timestamps for earliest and latest never-retransmitted segment 1006 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1007 * but congestion control should still get an accurate delay signal. 1008 */ 1009 u64 first_sackt; 1010 u64 last_sackt; 1011 u32 reord; 1012 u32 sack_delivered; 1013 int flag; 1014 unsigned int mss_now; 1015 struct rate_sample *rate; 1016 }; 1017 1018 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1019 * and spurious retransmission information if this DSACK is unlikely caused by 1020 * sender's action: 1021 * - DSACKed sequence range is larger than maximum receiver's window. 1022 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1023 */ 1024 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1025 u32 end_seq, struct tcp_sacktag_state *state) 1026 { 1027 u32 seq_len, dup_segs = 1; 1028 1029 if (!before(start_seq, end_seq)) 1030 return 0; 1031 1032 seq_len = end_seq - start_seq; 1033 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1034 if (seq_len > tp->max_window) 1035 return 0; 1036 if (seq_len > tp->mss_cache) 1037 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1038 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1039 state->flag |= FLAG_DSACK_TLP; 1040 1041 tp->dsack_dups += dup_segs; 1042 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1043 if (tp->dsack_dups > tp->total_retrans) 1044 return 0; 1045 1046 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1047 /* We increase the RACK ordering window in rounds where we receive 1048 * DSACKs that may have been due to reordering causing RACK to trigger 1049 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1050 * without having seen reordering, or that match TLP probes (TLP 1051 * is timer-driven, not triggered by RACK). 1052 */ 1053 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1054 tp->rack.dsack_seen = 1; 1055 1056 state->flag |= FLAG_DSACKING_ACK; 1057 /* A spurious retransmission is delivered */ 1058 state->sack_delivered += dup_segs; 1059 1060 return dup_segs; 1061 } 1062 1063 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1064 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1065 * distance is approximated in full-mss packet distance ("reordering"). 1066 */ 1067 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1068 const int ts) 1069 { 1070 struct tcp_sock *tp = tcp_sk(sk); 1071 const u32 mss = tp->mss_cache; 1072 u32 fack, metric; 1073 1074 fack = tcp_highest_sack_seq(tp); 1075 if (!before(low_seq, fack)) 1076 return; 1077 1078 metric = fack - low_seq; 1079 if ((metric > tp->reordering * mss) && mss) { 1080 #if FASTRETRANS_DEBUG > 1 1081 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1082 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1083 tp->reordering, 1084 0, 1085 tp->sacked_out, 1086 tp->undo_marker ? tp->undo_retrans : 0); 1087 #endif 1088 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1089 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1090 } 1091 1092 /* This exciting event is worth to be remembered. 8) */ 1093 tp->reord_seen++; 1094 NET_INC_STATS(sock_net(sk), 1095 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1096 } 1097 1098 /* This must be called before lost_out or retrans_out are updated 1099 * on a new loss, because we want to know if all skbs previously 1100 * known to be lost have already been retransmitted, indicating 1101 * that this newly lost skb is our next skb to retransmit. 1102 */ 1103 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1104 { 1105 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1106 (tp->retransmit_skb_hint && 1107 before(TCP_SKB_CB(skb)->seq, 1108 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1109 tp->retransmit_skb_hint = skb; 1110 } 1111 1112 /* Sum the number of packets on the wire we have marked as lost, and 1113 * notify the congestion control module that the given skb was marked lost. 1114 */ 1115 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1116 { 1117 tp->lost += tcp_skb_pcount(skb); 1118 } 1119 1120 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1121 { 1122 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1123 struct tcp_sock *tp = tcp_sk(sk); 1124 1125 if (sacked & TCPCB_SACKED_ACKED) 1126 return; 1127 1128 tcp_verify_retransmit_hint(tp, skb); 1129 if (sacked & TCPCB_LOST) { 1130 if (sacked & TCPCB_SACKED_RETRANS) { 1131 /* Account for retransmits that are lost again */ 1132 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1133 tp->retrans_out -= tcp_skb_pcount(skb); 1134 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1135 tcp_skb_pcount(skb)); 1136 tcp_notify_skb_loss_event(tp, skb); 1137 } 1138 } else { 1139 tp->lost_out += tcp_skb_pcount(skb); 1140 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1141 tcp_notify_skb_loss_event(tp, skb); 1142 } 1143 } 1144 1145 /* Updates the delivered and delivered_ce counts */ 1146 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1147 bool ece_ack) 1148 { 1149 tp->delivered += delivered; 1150 if (ece_ack) 1151 tp->delivered_ce += delivered; 1152 } 1153 1154 /* This procedure tags the retransmission queue when SACKs arrive. 1155 * 1156 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1157 * Packets in queue with these bits set are counted in variables 1158 * sacked_out, retrans_out and lost_out, correspondingly. 1159 * 1160 * Valid combinations are: 1161 * Tag InFlight Description 1162 * 0 1 - orig segment is in flight. 1163 * S 0 - nothing flies, orig reached receiver. 1164 * L 0 - nothing flies, orig lost by net. 1165 * R 2 - both orig and retransmit are in flight. 1166 * L|R 1 - orig is lost, retransmit is in flight. 1167 * S|R 1 - orig reached receiver, retrans is still in flight. 1168 * (L|S|R is logically valid, it could occur when L|R is sacked, 1169 * but it is equivalent to plain S and code short-circuits it to S. 1170 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1171 * 1172 * These 6 states form finite state machine, controlled by the following events: 1173 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1174 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1175 * 3. Loss detection event of two flavors: 1176 * A. Scoreboard estimator decided the packet is lost. 1177 * A'. Reno "three dupacks" marks head of queue lost. 1178 * B. SACK arrives sacking SND.NXT at the moment, when the 1179 * segment was retransmitted. 1180 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1181 * 1182 * It is pleasant to note, that state diagram turns out to be commutative, 1183 * so that we are allowed not to be bothered by order of our actions, 1184 * when multiple events arrive simultaneously. (see the function below). 1185 * 1186 * Reordering detection. 1187 * -------------------- 1188 * Reordering metric is maximal distance, which a packet can be displaced 1189 * in packet stream. With SACKs we can estimate it: 1190 * 1191 * 1. SACK fills old hole and the corresponding segment was not 1192 * ever retransmitted -> reordering. Alas, we cannot use it 1193 * when segment was retransmitted. 1194 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1195 * for retransmitted and already SACKed segment -> reordering.. 1196 * Both of these heuristics are not used in Loss state, when we cannot 1197 * account for retransmits accurately. 1198 * 1199 * SACK block validation. 1200 * ---------------------- 1201 * 1202 * SACK block range validation checks that the received SACK block fits to 1203 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1204 * Note that SND.UNA is not included to the range though being valid because 1205 * it means that the receiver is rather inconsistent with itself reporting 1206 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1207 * perfectly valid, however, in light of RFC2018 which explicitly states 1208 * that "SACK block MUST reflect the newest segment. Even if the newest 1209 * segment is going to be discarded ...", not that it looks very clever 1210 * in case of head skb. Due to potentional receiver driven attacks, we 1211 * choose to avoid immediate execution of a walk in write queue due to 1212 * reneging and defer head skb's loss recovery to standard loss recovery 1213 * procedure that will eventually trigger (nothing forbids us doing this). 1214 * 1215 * Implements also blockage to start_seq wrap-around. Problem lies in the 1216 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1217 * there's no guarantee that it will be before snd_nxt (n). The problem 1218 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1219 * wrap (s_w): 1220 * 1221 * <- outs wnd -> <- wrapzone -> 1222 * u e n u_w e_w s n_w 1223 * | | | | | | | 1224 * |<------------+------+----- TCP seqno space --------------+---------->| 1225 * ...-- <2^31 ->| |<--------... 1226 * ...---- >2^31 ------>| |<--------... 1227 * 1228 * Current code wouldn't be vulnerable but it's better still to discard such 1229 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1230 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1231 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1232 * equal to the ideal case (infinite seqno space without wrap caused issues). 1233 * 1234 * With D-SACK the lower bound is extended to cover sequence space below 1235 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1236 * again, D-SACK block must not to go across snd_una (for the same reason as 1237 * for the normal SACK blocks, explained above). But there all simplicity 1238 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1239 * fully below undo_marker they do not affect behavior in anyway and can 1240 * therefore be safely ignored. In rare cases (which are more or less 1241 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1242 * fragmentation and packet reordering past skb's retransmission. To consider 1243 * them correctly, the acceptable range must be extended even more though 1244 * the exact amount is rather hard to quantify. However, tp->max_window can 1245 * be used as an exaggerated estimate. 1246 */ 1247 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1248 u32 start_seq, u32 end_seq) 1249 { 1250 /* Too far in future, or reversed (interpretation is ambiguous) */ 1251 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1252 return false; 1253 1254 /* Nasty start_seq wrap-around check (see comments above) */ 1255 if (!before(start_seq, tp->snd_nxt)) 1256 return false; 1257 1258 /* In outstanding window? ...This is valid exit for D-SACKs too. 1259 * start_seq == snd_una is non-sensical (see comments above) 1260 */ 1261 if (after(start_seq, tp->snd_una)) 1262 return true; 1263 1264 if (!is_dsack || !tp->undo_marker) 1265 return false; 1266 1267 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1268 if (after(end_seq, tp->snd_una)) 1269 return false; 1270 1271 if (!before(start_seq, tp->undo_marker)) 1272 return true; 1273 1274 /* Too old */ 1275 if (!after(end_seq, tp->undo_marker)) 1276 return false; 1277 1278 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1279 * start_seq < undo_marker and end_seq >= undo_marker. 1280 */ 1281 return !before(start_seq, end_seq - tp->max_window); 1282 } 1283 1284 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1285 struct tcp_sack_block_wire *sp, int num_sacks, 1286 u32 prior_snd_una, struct tcp_sacktag_state *state) 1287 { 1288 struct tcp_sock *tp = tcp_sk(sk); 1289 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1290 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1291 u32 dup_segs; 1292 1293 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1294 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1295 } else if (num_sacks > 1) { 1296 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1297 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1298 1299 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1300 return false; 1301 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1302 } else { 1303 return false; 1304 } 1305 1306 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1307 if (!dup_segs) { /* Skip dubious DSACK */ 1308 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1309 return false; 1310 } 1311 1312 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1313 1314 /* D-SACK for already forgotten data... Do dumb counting. */ 1315 if (tp->undo_marker && tp->undo_retrans > 0 && 1316 !after(end_seq_0, prior_snd_una) && 1317 after(end_seq_0, tp->undo_marker)) 1318 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1319 1320 return true; 1321 } 1322 1323 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1324 * the incoming SACK may not exactly match but we can find smaller MSS 1325 * aligned portion of it that matches. Therefore we might need to fragment 1326 * which may fail and creates some hassle (caller must handle error case 1327 * returns). 1328 * 1329 * FIXME: this could be merged to shift decision code 1330 */ 1331 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1332 u32 start_seq, u32 end_seq) 1333 { 1334 int err; 1335 bool in_sack; 1336 unsigned int pkt_len; 1337 unsigned int mss; 1338 1339 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1340 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1341 1342 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1343 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1344 mss = tcp_skb_mss(skb); 1345 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1346 1347 if (!in_sack) { 1348 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1349 if (pkt_len < mss) 1350 pkt_len = mss; 1351 } else { 1352 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1353 if (pkt_len < mss) 1354 return -EINVAL; 1355 } 1356 1357 /* Round if necessary so that SACKs cover only full MSSes 1358 * and/or the remaining small portion (if present) 1359 */ 1360 if (pkt_len > mss) { 1361 unsigned int new_len = (pkt_len / mss) * mss; 1362 if (!in_sack && new_len < pkt_len) 1363 new_len += mss; 1364 pkt_len = new_len; 1365 } 1366 1367 if (pkt_len >= skb->len && !in_sack) 1368 return 0; 1369 1370 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1371 pkt_len, mss, GFP_ATOMIC); 1372 if (err < 0) 1373 return err; 1374 } 1375 1376 return in_sack; 1377 } 1378 1379 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1380 static u8 tcp_sacktag_one(struct sock *sk, 1381 struct tcp_sacktag_state *state, u8 sacked, 1382 u32 start_seq, u32 end_seq, 1383 int dup_sack, int pcount, 1384 u64 xmit_time) 1385 { 1386 struct tcp_sock *tp = tcp_sk(sk); 1387 1388 /* Account D-SACK for retransmitted packet. */ 1389 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1390 if (tp->undo_marker && tp->undo_retrans > 0 && 1391 after(end_seq, tp->undo_marker)) 1392 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1393 if ((sacked & TCPCB_SACKED_ACKED) && 1394 before(start_seq, state->reord)) 1395 state->reord = start_seq; 1396 } 1397 1398 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1399 if (!after(end_seq, tp->snd_una)) 1400 return sacked; 1401 1402 if (!(sacked & TCPCB_SACKED_ACKED)) { 1403 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1404 1405 if (sacked & TCPCB_SACKED_RETRANS) { 1406 /* If the segment is not tagged as lost, 1407 * we do not clear RETRANS, believing 1408 * that retransmission is still in flight. 1409 */ 1410 if (sacked & TCPCB_LOST) { 1411 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1412 tp->lost_out -= pcount; 1413 tp->retrans_out -= pcount; 1414 } 1415 } else { 1416 if (!(sacked & TCPCB_RETRANS)) { 1417 /* New sack for not retransmitted frame, 1418 * which was in hole. It is reordering. 1419 */ 1420 if (before(start_seq, 1421 tcp_highest_sack_seq(tp)) && 1422 before(start_seq, state->reord)) 1423 state->reord = start_seq; 1424 1425 if (!after(end_seq, tp->high_seq)) 1426 state->flag |= FLAG_ORIG_SACK_ACKED; 1427 if (state->first_sackt == 0) 1428 state->first_sackt = xmit_time; 1429 state->last_sackt = xmit_time; 1430 } 1431 1432 if (sacked & TCPCB_LOST) { 1433 sacked &= ~TCPCB_LOST; 1434 tp->lost_out -= pcount; 1435 } 1436 } 1437 1438 sacked |= TCPCB_SACKED_ACKED; 1439 state->flag |= FLAG_DATA_SACKED; 1440 tp->sacked_out += pcount; 1441 /* Out-of-order packets delivered */ 1442 state->sack_delivered += pcount; 1443 1444 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1445 if (tp->lost_skb_hint && 1446 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1447 tp->lost_cnt_hint += pcount; 1448 } 1449 1450 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1451 * frames and clear it. undo_retrans is decreased above, L|R frames 1452 * are accounted above as well. 1453 */ 1454 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1455 sacked &= ~TCPCB_SACKED_RETRANS; 1456 tp->retrans_out -= pcount; 1457 } 1458 1459 return sacked; 1460 } 1461 1462 /* Shift newly-SACKed bytes from this skb to the immediately previous 1463 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1464 */ 1465 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1466 struct sk_buff *skb, 1467 struct tcp_sacktag_state *state, 1468 unsigned int pcount, int shifted, int mss, 1469 bool dup_sack) 1470 { 1471 struct tcp_sock *tp = tcp_sk(sk); 1472 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1473 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1474 1475 BUG_ON(!pcount); 1476 1477 /* Adjust counters and hints for the newly sacked sequence 1478 * range but discard the return value since prev is already 1479 * marked. We must tag the range first because the seq 1480 * advancement below implicitly advances 1481 * tcp_highest_sack_seq() when skb is highest_sack. 1482 */ 1483 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1484 start_seq, end_seq, dup_sack, pcount, 1485 tcp_skb_timestamp_us(skb)); 1486 tcp_rate_skb_delivered(sk, skb, state->rate); 1487 1488 if (skb == tp->lost_skb_hint) 1489 tp->lost_cnt_hint += pcount; 1490 1491 TCP_SKB_CB(prev)->end_seq += shifted; 1492 TCP_SKB_CB(skb)->seq += shifted; 1493 1494 tcp_skb_pcount_add(prev, pcount); 1495 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1496 tcp_skb_pcount_add(skb, -pcount); 1497 1498 /* When we're adding to gso_segs == 1, gso_size will be zero, 1499 * in theory this shouldn't be necessary but as long as DSACK 1500 * code can come after this skb later on it's better to keep 1501 * setting gso_size to something. 1502 */ 1503 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1504 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1505 1506 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1507 if (tcp_skb_pcount(skb) <= 1) 1508 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1509 1510 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1511 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1512 1513 if (skb->len > 0) { 1514 BUG_ON(!tcp_skb_pcount(skb)); 1515 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1516 return false; 1517 } 1518 1519 /* Whole SKB was eaten :-) */ 1520 1521 if (skb == tp->retransmit_skb_hint) 1522 tp->retransmit_skb_hint = prev; 1523 if (skb == tp->lost_skb_hint) { 1524 tp->lost_skb_hint = prev; 1525 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1526 } 1527 1528 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1529 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1530 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1531 TCP_SKB_CB(prev)->end_seq++; 1532 1533 if (skb == tcp_highest_sack(sk)) 1534 tcp_advance_highest_sack(sk, skb); 1535 1536 tcp_skb_collapse_tstamp(prev, skb); 1537 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1538 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1539 1540 tcp_rtx_queue_unlink_and_free(skb, sk); 1541 1542 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1543 1544 return true; 1545 } 1546 1547 /* I wish gso_size would have a bit more sane initialization than 1548 * something-or-zero which complicates things 1549 */ 1550 static int tcp_skb_seglen(const struct sk_buff *skb) 1551 { 1552 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1553 } 1554 1555 /* Shifting pages past head area doesn't work */ 1556 static int skb_can_shift(const struct sk_buff *skb) 1557 { 1558 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1559 } 1560 1561 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1562 int pcount, int shiftlen) 1563 { 1564 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1565 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1566 * to make sure not storing more than 65535 * 8 bytes per skb, 1567 * even if current MSS is bigger. 1568 */ 1569 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1570 return 0; 1571 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1572 return 0; 1573 return skb_shift(to, from, shiftlen); 1574 } 1575 1576 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1577 * skb. 1578 */ 1579 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1580 struct tcp_sacktag_state *state, 1581 u32 start_seq, u32 end_seq, 1582 bool dup_sack) 1583 { 1584 struct tcp_sock *tp = tcp_sk(sk); 1585 struct sk_buff *prev; 1586 int mss; 1587 int pcount = 0; 1588 int len; 1589 int in_sack; 1590 1591 /* Normally R but no L won't result in plain S */ 1592 if (!dup_sack && 1593 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1594 goto fallback; 1595 if (!skb_can_shift(skb)) 1596 goto fallback; 1597 /* This frame is about to be dropped (was ACKed). */ 1598 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1599 goto fallback; 1600 1601 /* Can only happen with delayed DSACK + discard craziness */ 1602 prev = skb_rb_prev(skb); 1603 if (!prev) 1604 goto fallback; 1605 1606 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1607 goto fallback; 1608 1609 if (!tcp_skb_can_collapse(prev, skb)) 1610 goto fallback; 1611 1612 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1613 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1614 1615 if (in_sack) { 1616 len = skb->len; 1617 pcount = tcp_skb_pcount(skb); 1618 mss = tcp_skb_seglen(skb); 1619 1620 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1621 * drop this restriction as unnecessary 1622 */ 1623 if (mss != tcp_skb_seglen(prev)) 1624 goto fallback; 1625 } else { 1626 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1627 goto noop; 1628 /* CHECKME: This is non-MSS split case only?, this will 1629 * cause skipped skbs due to advancing loop btw, original 1630 * has that feature too 1631 */ 1632 if (tcp_skb_pcount(skb) <= 1) 1633 goto noop; 1634 1635 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1636 if (!in_sack) { 1637 /* TODO: head merge to next could be attempted here 1638 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1639 * though it might not be worth of the additional hassle 1640 * 1641 * ...we can probably just fallback to what was done 1642 * previously. We could try merging non-SACKed ones 1643 * as well but it probably isn't going to buy off 1644 * because later SACKs might again split them, and 1645 * it would make skb timestamp tracking considerably 1646 * harder problem. 1647 */ 1648 goto fallback; 1649 } 1650 1651 len = end_seq - TCP_SKB_CB(skb)->seq; 1652 BUG_ON(len < 0); 1653 BUG_ON(len > skb->len); 1654 1655 /* MSS boundaries should be honoured or else pcount will 1656 * severely break even though it makes things bit trickier. 1657 * Optimize common case to avoid most of the divides 1658 */ 1659 mss = tcp_skb_mss(skb); 1660 1661 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1662 * drop this restriction as unnecessary 1663 */ 1664 if (mss != tcp_skb_seglen(prev)) 1665 goto fallback; 1666 1667 if (len == mss) { 1668 pcount = 1; 1669 } else if (len < mss) { 1670 goto noop; 1671 } else { 1672 pcount = len / mss; 1673 len = pcount * mss; 1674 } 1675 } 1676 1677 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1678 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1679 goto fallback; 1680 1681 if (!tcp_skb_shift(prev, skb, pcount, len)) 1682 goto fallback; 1683 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1684 goto out; 1685 1686 /* Hole filled allows collapsing with the next as well, this is very 1687 * useful when hole on every nth skb pattern happens 1688 */ 1689 skb = skb_rb_next(prev); 1690 if (!skb) 1691 goto out; 1692 1693 if (!skb_can_shift(skb) || 1694 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1695 (mss != tcp_skb_seglen(skb))) 1696 goto out; 1697 1698 if (!tcp_skb_can_collapse(prev, skb)) 1699 goto out; 1700 len = skb->len; 1701 pcount = tcp_skb_pcount(skb); 1702 if (tcp_skb_shift(prev, skb, pcount, len)) 1703 tcp_shifted_skb(sk, prev, skb, state, pcount, 1704 len, mss, 0); 1705 1706 out: 1707 return prev; 1708 1709 noop: 1710 return skb; 1711 1712 fallback: 1713 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1714 return NULL; 1715 } 1716 1717 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1718 struct tcp_sack_block *next_dup, 1719 struct tcp_sacktag_state *state, 1720 u32 start_seq, u32 end_seq, 1721 bool dup_sack_in) 1722 { 1723 struct tcp_sock *tp = tcp_sk(sk); 1724 struct sk_buff *tmp; 1725 1726 skb_rbtree_walk_from(skb) { 1727 int in_sack = 0; 1728 bool dup_sack = dup_sack_in; 1729 1730 /* queue is in-order => we can short-circuit the walk early */ 1731 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1732 break; 1733 1734 if (next_dup && 1735 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1736 in_sack = tcp_match_skb_to_sack(sk, skb, 1737 next_dup->start_seq, 1738 next_dup->end_seq); 1739 if (in_sack > 0) 1740 dup_sack = true; 1741 } 1742 1743 /* skb reference here is a bit tricky to get right, since 1744 * shifting can eat and free both this skb and the next, 1745 * so not even _safe variant of the loop is enough. 1746 */ 1747 if (in_sack <= 0) { 1748 tmp = tcp_shift_skb_data(sk, skb, state, 1749 start_seq, end_seq, dup_sack); 1750 if (tmp) { 1751 if (tmp != skb) { 1752 skb = tmp; 1753 continue; 1754 } 1755 1756 in_sack = 0; 1757 } else { 1758 in_sack = tcp_match_skb_to_sack(sk, skb, 1759 start_seq, 1760 end_seq); 1761 } 1762 } 1763 1764 if (unlikely(in_sack < 0)) 1765 break; 1766 1767 if (in_sack) { 1768 TCP_SKB_CB(skb)->sacked = 1769 tcp_sacktag_one(sk, 1770 state, 1771 TCP_SKB_CB(skb)->sacked, 1772 TCP_SKB_CB(skb)->seq, 1773 TCP_SKB_CB(skb)->end_seq, 1774 dup_sack, 1775 tcp_skb_pcount(skb), 1776 tcp_skb_timestamp_us(skb)); 1777 tcp_rate_skb_delivered(sk, skb, state->rate); 1778 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1779 list_del_init(&skb->tcp_tsorted_anchor); 1780 1781 if (!before(TCP_SKB_CB(skb)->seq, 1782 tcp_highest_sack_seq(tp))) 1783 tcp_advance_highest_sack(sk, skb); 1784 } 1785 } 1786 return skb; 1787 } 1788 1789 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1790 { 1791 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1792 struct sk_buff *skb; 1793 1794 while (*p) { 1795 parent = *p; 1796 skb = rb_to_skb(parent); 1797 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1798 p = &parent->rb_left; 1799 continue; 1800 } 1801 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1802 p = &parent->rb_right; 1803 continue; 1804 } 1805 return skb; 1806 } 1807 return NULL; 1808 } 1809 1810 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1811 u32 skip_to_seq) 1812 { 1813 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1814 return skb; 1815 1816 return tcp_sacktag_bsearch(sk, skip_to_seq); 1817 } 1818 1819 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1820 struct sock *sk, 1821 struct tcp_sack_block *next_dup, 1822 struct tcp_sacktag_state *state, 1823 u32 skip_to_seq) 1824 { 1825 if (!next_dup) 1826 return skb; 1827 1828 if (before(next_dup->start_seq, skip_to_seq)) { 1829 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1830 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1831 next_dup->start_seq, next_dup->end_seq, 1832 1); 1833 } 1834 1835 return skb; 1836 } 1837 1838 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1839 { 1840 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1841 } 1842 1843 static int 1844 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1845 u32 prior_snd_una, struct tcp_sacktag_state *state) 1846 { 1847 struct tcp_sock *tp = tcp_sk(sk); 1848 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1849 TCP_SKB_CB(ack_skb)->sacked); 1850 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1851 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1852 struct tcp_sack_block *cache; 1853 struct sk_buff *skb; 1854 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1855 int used_sacks; 1856 bool found_dup_sack = false; 1857 int i, j; 1858 int first_sack_index; 1859 1860 state->flag = 0; 1861 state->reord = tp->snd_nxt; 1862 1863 if (!tp->sacked_out) 1864 tcp_highest_sack_reset(sk); 1865 1866 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1867 num_sacks, prior_snd_una, state); 1868 1869 /* Eliminate too old ACKs, but take into 1870 * account more or less fresh ones, they can 1871 * contain valid SACK info. 1872 */ 1873 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1874 return 0; 1875 1876 if (!tp->packets_out) 1877 goto out; 1878 1879 used_sacks = 0; 1880 first_sack_index = 0; 1881 for (i = 0; i < num_sacks; i++) { 1882 bool dup_sack = !i && found_dup_sack; 1883 1884 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1885 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1886 1887 if (!tcp_is_sackblock_valid(tp, dup_sack, 1888 sp[used_sacks].start_seq, 1889 sp[used_sacks].end_seq)) { 1890 int mib_idx; 1891 1892 if (dup_sack) { 1893 if (!tp->undo_marker) 1894 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1895 else 1896 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1897 } else { 1898 /* Don't count olds caused by ACK reordering */ 1899 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1900 !after(sp[used_sacks].end_seq, tp->snd_una)) 1901 continue; 1902 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1903 } 1904 1905 NET_INC_STATS(sock_net(sk), mib_idx); 1906 if (i == 0) 1907 first_sack_index = -1; 1908 continue; 1909 } 1910 1911 /* Ignore very old stuff early */ 1912 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1913 if (i == 0) 1914 first_sack_index = -1; 1915 continue; 1916 } 1917 1918 used_sacks++; 1919 } 1920 1921 /* order SACK blocks to allow in order walk of the retrans queue */ 1922 for (i = used_sacks - 1; i > 0; i--) { 1923 for (j = 0; j < i; j++) { 1924 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1925 swap(sp[j], sp[j + 1]); 1926 1927 /* Track where the first SACK block goes to */ 1928 if (j == first_sack_index) 1929 first_sack_index = j + 1; 1930 } 1931 } 1932 } 1933 1934 state->mss_now = tcp_current_mss(sk); 1935 skb = NULL; 1936 i = 0; 1937 1938 if (!tp->sacked_out) { 1939 /* It's already past, so skip checking against it */ 1940 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1941 } else { 1942 cache = tp->recv_sack_cache; 1943 /* Skip empty blocks in at head of the cache */ 1944 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1945 !cache->end_seq) 1946 cache++; 1947 } 1948 1949 while (i < used_sacks) { 1950 u32 start_seq = sp[i].start_seq; 1951 u32 end_seq = sp[i].end_seq; 1952 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1953 struct tcp_sack_block *next_dup = NULL; 1954 1955 if (found_dup_sack && ((i + 1) == first_sack_index)) 1956 next_dup = &sp[i + 1]; 1957 1958 /* Skip too early cached blocks */ 1959 while (tcp_sack_cache_ok(tp, cache) && 1960 !before(start_seq, cache->end_seq)) 1961 cache++; 1962 1963 /* Can skip some work by looking recv_sack_cache? */ 1964 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1965 after(end_seq, cache->start_seq)) { 1966 1967 /* Head todo? */ 1968 if (before(start_seq, cache->start_seq)) { 1969 skb = tcp_sacktag_skip(skb, sk, start_seq); 1970 skb = tcp_sacktag_walk(skb, sk, next_dup, 1971 state, 1972 start_seq, 1973 cache->start_seq, 1974 dup_sack); 1975 } 1976 1977 /* Rest of the block already fully processed? */ 1978 if (!after(end_seq, cache->end_seq)) 1979 goto advance_sp; 1980 1981 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1982 state, 1983 cache->end_seq); 1984 1985 /* ...tail remains todo... */ 1986 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1987 /* ...but better entrypoint exists! */ 1988 skb = tcp_highest_sack(sk); 1989 if (!skb) 1990 break; 1991 cache++; 1992 goto walk; 1993 } 1994 1995 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1996 /* Check overlap against next cached too (past this one already) */ 1997 cache++; 1998 continue; 1999 } 2000 2001 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 2002 skb = tcp_highest_sack(sk); 2003 if (!skb) 2004 break; 2005 } 2006 skb = tcp_sacktag_skip(skb, sk, start_seq); 2007 2008 walk: 2009 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2010 start_seq, end_seq, dup_sack); 2011 2012 advance_sp: 2013 i++; 2014 } 2015 2016 /* Clear the head of the cache sack blocks so we can skip it next time */ 2017 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2018 tp->recv_sack_cache[i].start_seq = 0; 2019 tp->recv_sack_cache[i].end_seq = 0; 2020 } 2021 for (j = 0; j < used_sacks; j++) 2022 tp->recv_sack_cache[i++] = sp[j]; 2023 2024 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2025 tcp_check_sack_reordering(sk, state->reord, 0); 2026 2027 tcp_verify_left_out(tp); 2028 out: 2029 2030 #if FASTRETRANS_DEBUG > 0 2031 WARN_ON((int)tp->sacked_out < 0); 2032 WARN_ON((int)tp->lost_out < 0); 2033 WARN_ON((int)tp->retrans_out < 0); 2034 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2035 #endif 2036 return state->flag; 2037 } 2038 2039 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2040 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2041 */ 2042 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2043 { 2044 u32 holes; 2045 2046 holes = max(tp->lost_out, 1U); 2047 holes = min(holes, tp->packets_out); 2048 2049 if ((tp->sacked_out + holes) > tp->packets_out) { 2050 tp->sacked_out = tp->packets_out - holes; 2051 return true; 2052 } 2053 return false; 2054 } 2055 2056 /* If we receive more dupacks than we expected counting segments 2057 * in assumption of absent reordering, interpret this as reordering. 2058 * The only another reason could be bug in receiver TCP. 2059 */ 2060 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2061 { 2062 struct tcp_sock *tp = tcp_sk(sk); 2063 2064 if (!tcp_limit_reno_sacked(tp)) 2065 return; 2066 2067 tp->reordering = min_t(u32, tp->packets_out + addend, 2068 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2069 tp->reord_seen++; 2070 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2071 } 2072 2073 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2074 2075 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2076 { 2077 if (num_dupack) { 2078 struct tcp_sock *tp = tcp_sk(sk); 2079 u32 prior_sacked = tp->sacked_out; 2080 s32 delivered; 2081 2082 tp->sacked_out += num_dupack; 2083 tcp_check_reno_reordering(sk, 0); 2084 delivered = tp->sacked_out - prior_sacked; 2085 if (delivered > 0) 2086 tcp_count_delivered(tp, delivered, ece_ack); 2087 tcp_verify_left_out(tp); 2088 } 2089 } 2090 2091 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2092 2093 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2094 { 2095 struct tcp_sock *tp = tcp_sk(sk); 2096 2097 if (acked > 0) { 2098 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2099 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2100 ece_ack); 2101 if (acked - 1 >= tp->sacked_out) 2102 tp->sacked_out = 0; 2103 else 2104 tp->sacked_out -= acked - 1; 2105 } 2106 tcp_check_reno_reordering(sk, acked); 2107 tcp_verify_left_out(tp); 2108 } 2109 2110 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2111 { 2112 tp->sacked_out = 0; 2113 } 2114 2115 void tcp_clear_retrans(struct tcp_sock *tp) 2116 { 2117 tp->retrans_out = 0; 2118 tp->lost_out = 0; 2119 tp->undo_marker = 0; 2120 tp->undo_retrans = -1; 2121 tp->sacked_out = 0; 2122 tp->rto_stamp = 0; 2123 tp->total_rto = 0; 2124 tp->total_rto_recoveries = 0; 2125 tp->total_rto_time = 0; 2126 } 2127 2128 static inline void tcp_init_undo(struct tcp_sock *tp) 2129 { 2130 tp->undo_marker = tp->snd_una; 2131 /* Retransmission still in flight may cause DSACKs later. */ 2132 tp->undo_retrans = tp->retrans_out ? : -1; 2133 } 2134 2135 static bool tcp_is_rack(const struct sock *sk) 2136 { 2137 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2138 TCP_RACK_LOSS_DETECTION; 2139 } 2140 2141 /* If we detect SACK reneging, forget all SACK information 2142 * and reset tags completely, otherwise preserve SACKs. If receiver 2143 * dropped its ofo queue, we will know this due to reneging detection. 2144 */ 2145 static void tcp_timeout_mark_lost(struct sock *sk) 2146 { 2147 struct tcp_sock *tp = tcp_sk(sk); 2148 struct sk_buff *skb, *head; 2149 bool is_reneg; /* is receiver reneging on SACKs? */ 2150 2151 head = tcp_rtx_queue_head(sk); 2152 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2153 if (is_reneg) { 2154 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2155 tp->sacked_out = 0; 2156 /* Mark SACK reneging until we recover from this loss event. */ 2157 tp->is_sack_reneg = 1; 2158 } else if (tcp_is_reno(tp)) { 2159 tcp_reset_reno_sack(tp); 2160 } 2161 2162 skb = head; 2163 skb_rbtree_walk_from(skb) { 2164 if (is_reneg) 2165 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2166 else if (tcp_is_rack(sk) && skb != head && 2167 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2168 continue; /* Don't mark recently sent ones lost yet */ 2169 tcp_mark_skb_lost(sk, skb); 2170 } 2171 tcp_verify_left_out(tp); 2172 tcp_clear_all_retrans_hints(tp); 2173 } 2174 2175 /* Enter Loss state. */ 2176 void tcp_enter_loss(struct sock *sk) 2177 { 2178 const struct inet_connection_sock *icsk = inet_csk(sk); 2179 struct tcp_sock *tp = tcp_sk(sk); 2180 struct net *net = sock_net(sk); 2181 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2182 u8 reordering; 2183 2184 tcp_timeout_mark_lost(sk); 2185 2186 /* Reduce ssthresh if it has not yet been made inside this window. */ 2187 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2188 !after(tp->high_seq, tp->snd_una) || 2189 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2190 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2191 tp->prior_cwnd = tcp_snd_cwnd(tp); 2192 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2193 tcp_ca_event(sk, CA_EVENT_LOSS); 2194 tcp_init_undo(tp); 2195 } 2196 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2197 tp->snd_cwnd_cnt = 0; 2198 tp->snd_cwnd_stamp = tcp_jiffies32; 2199 2200 /* Timeout in disordered state after receiving substantial DUPACKs 2201 * suggests that the degree of reordering is over-estimated. 2202 */ 2203 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2204 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2205 tp->sacked_out >= reordering) 2206 tp->reordering = min_t(unsigned int, tp->reordering, 2207 reordering); 2208 2209 tcp_set_ca_state(sk, TCP_CA_Loss); 2210 tp->high_seq = tp->snd_nxt; 2211 tcp_ecn_queue_cwr(tp); 2212 2213 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2214 * loss recovery is underway except recurring timeout(s) on 2215 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2216 */ 2217 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2218 (new_recovery || icsk->icsk_retransmits) && 2219 !inet_csk(sk)->icsk_mtup.probe_size; 2220 } 2221 2222 /* If ACK arrived pointing to a remembered SACK, it means that our 2223 * remembered SACKs do not reflect real state of receiver i.e. 2224 * receiver _host_ is heavily congested (or buggy). 2225 * 2226 * To avoid big spurious retransmission bursts due to transient SACK 2227 * scoreboard oddities that look like reneging, we give the receiver a 2228 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2229 * restore sanity to the SACK scoreboard. If the apparent reneging 2230 * persists until this RTO then we'll clear the SACK scoreboard. 2231 */ 2232 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2233 { 2234 if (*ack_flag & FLAG_SACK_RENEGING && 2235 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2236 struct tcp_sock *tp = tcp_sk(sk); 2237 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2238 msecs_to_jiffies(10)); 2239 2240 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2241 delay, TCP_RTO_MAX); 2242 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2243 return true; 2244 } 2245 return false; 2246 } 2247 2248 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2249 * counter when SACK is enabled (without SACK, sacked_out is used for 2250 * that purpose). 2251 * 2252 * With reordering, holes may still be in flight, so RFC3517 recovery 2253 * uses pure sacked_out (total number of SACKed segments) even though 2254 * it violates the RFC that uses duplicate ACKs, often these are equal 2255 * but when e.g. out-of-window ACKs or packet duplication occurs, 2256 * they differ. Since neither occurs due to loss, TCP should really 2257 * ignore them. 2258 */ 2259 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2260 { 2261 return tp->sacked_out + 1; 2262 } 2263 2264 /* Linux NewReno/SACK/ECN state machine. 2265 * -------------------------------------- 2266 * 2267 * "Open" Normal state, no dubious events, fast path. 2268 * "Disorder" In all the respects it is "Open", 2269 * but requires a bit more attention. It is entered when 2270 * we see some SACKs or dupacks. It is split of "Open" 2271 * mainly to move some processing from fast path to slow one. 2272 * "CWR" CWND was reduced due to some Congestion Notification event. 2273 * It can be ECN, ICMP source quench, local device congestion. 2274 * "Recovery" CWND was reduced, we are fast-retransmitting. 2275 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2276 * 2277 * tcp_fastretrans_alert() is entered: 2278 * - each incoming ACK, if state is not "Open" 2279 * - when arrived ACK is unusual, namely: 2280 * * SACK 2281 * * Duplicate ACK. 2282 * * ECN ECE. 2283 * 2284 * Counting packets in flight is pretty simple. 2285 * 2286 * in_flight = packets_out - left_out + retrans_out 2287 * 2288 * packets_out is SND.NXT-SND.UNA counted in packets. 2289 * 2290 * retrans_out is number of retransmitted segments. 2291 * 2292 * left_out is number of segments left network, but not ACKed yet. 2293 * 2294 * left_out = sacked_out + lost_out 2295 * 2296 * sacked_out: Packets, which arrived to receiver out of order 2297 * and hence not ACKed. With SACKs this number is simply 2298 * amount of SACKed data. Even without SACKs 2299 * it is easy to give pretty reliable estimate of this number, 2300 * counting duplicate ACKs. 2301 * 2302 * lost_out: Packets lost by network. TCP has no explicit 2303 * "loss notification" feedback from network (for now). 2304 * It means that this number can be only _guessed_. 2305 * Actually, it is the heuristics to predict lossage that 2306 * distinguishes different algorithms. 2307 * 2308 * F.e. after RTO, when all the queue is considered as lost, 2309 * lost_out = packets_out and in_flight = retrans_out. 2310 * 2311 * Essentially, we have now a few algorithms detecting 2312 * lost packets. 2313 * 2314 * If the receiver supports SACK: 2315 * 2316 * RFC6675/3517: It is the conventional algorithm. A packet is 2317 * considered lost if the number of higher sequence packets 2318 * SACKed is greater than or equal the DUPACK thoreshold 2319 * (reordering). This is implemented in tcp_mark_head_lost and 2320 * tcp_update_scoreboard. 2321 * 2322 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2323 * (2017-) that checks timing instead of counting DUPACKs. 2324 * Essentially a packet is considered lost if it's not S/ACKed 2325 * after RTT + reordering_window, where both metrics are 2326 * dynamically measured and adjusted. This is implemented in 2327 * tcp_rack_mark_lost. 2328 * 2329 * If the receiver does not support SACK: 2330 * 2331 * NewReno (RFC6582): in Recovery we assume that one segment 2332 * is lost (classic Reno). While we are in Recovery and 2333 * a partial ACK arrives, we assume that one more packet 2334 * is lost (NewReno). This heuristics are the same in NewReno 2335 * and SACK. 2336 * 2337 * Really tricky (and requiring careful tuning) part of algorithm 2338 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2339 * The first determines the moment _when_ we should reduce CWND and, 2340 * hence, slow down forward transmission. In fact, it determines the moment 2341 * when we decide that hole is caused by loss, rather than by a reorder. 2342 * 2343 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2344 * holes, caused by lost packets. 2345 * 2346 * And the most logically complicated part of algorithm is undo 2347 * heuristics. We detect false retransmits due to both too early 2348 * fast retransmit (reordering) and underestimated RTO, analyzing 2349 * timestamps and D-SACKs. When we detect that some segments were 2350 * retransmitted by mistake and CWND reduction was wrong, we undo 2351 * window reduction and abort recovery phase. This logic is hidden 2352 * inside several functions named tcp_try_undo_<something>. 2353 */ 2354 2355 /* This function decides, when we should leave Disordered state 2356 * and enter Recovery phase, reducing congestion window. 2357 * 2358 * Main question: may we further continue forward transmission 2359 * with the same cwnd? 2360 */ 2361 static bool tcp_time_to_recover(struct sock *sk, int flag) 2362 { 2363 struct tcp_sock *tp = tcp_sk(sk); 2364 2365 /* Trick#1: The loss is proven. */ 2366 if (tp->lost_out) 2367 return true; 2368 2369 /* Not-A-Trick#2 : Classic rule... */ 2370 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2371 return true; 2372 2373 return false; 2374 } 2375 2376 /* Detect loss in event "A" above by marking head of queue up as lost. 2377 * For RFC3517 SACK, a segment is considered lost if it 2378 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2379 * the maximum SACKed segments to pass before reaching this limit. 2380 */ 2381 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2382 { 2383 struct tcp_sock *tp = tcp_sk(sk); 2384 struct sk_buff *skb; 2385 int cnt; 2386 /* Use SACK to deduce losses of new sequences sent during recovery */ 2387 const u32 loss_high = tp->snd_nxt; 2388 2389 WARN_ON(packets > tp->packets_out); 2390 skb = tp->lost_skb_hint; 2391 if (skb) { 2392 /* Head already handled? */ 2393 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2394 return; 2395 cnt = tp->lost_cnt_hint; 2396 } else { 2397 skb = tcp_rtx_queue_head(sk); 2398 cnt = 0; 2399 } 2400 2401 skb_rbtree_walk_from(skb) { 2402 /* TODO: do this better */ 2403 /* this is not the most efficient way to do this... */ 2404 tp->lost_skb_hint = skb; 2405 tp->lost_cnt_hint = cnt; 2406 2407 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2408 break; 2409 2410 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2411 cnt += tcp_skb_pcount(skb); 2412 2413 if (cnt > packets) 2414 break; 2415 2416 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2417 tcp_mark_skb_lost(sk, skb); 2418 2419 if (mark_head) 2420 break; 2421 } 2422 tcp_verify_left_out(tp); 2423 } 2424 2425 /* Account newly detected lost packet(s) */ 2426 2427 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2428 { 2429 struct tcp_sock *tp = tcp_sk(sk); 2430 2431 if (tcp_is_sack(tp)) { 2432 int sacked_upto = tp->sacked_out - tp->reordering; 2433 if (sacked_upto >= 0) 2434 tcp_mark_head_lost(sk, sacked_upto, 0); 2435 else if (fast_rexmit) 2436 tcp_mark_head_lost(sk, 1, 1); 2437 } 2438 } 2439 2440 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2441 { 2442 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2443 before(tp->rx_opt.rcv_tsecr, when); 2444 } 2445 2446 /* skb is spurious retransmitted if the returned timestamp echo 2447 * reply is prior to the skb transmission time 2448 */ 2449 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2450 const struct sk_buff *skb) 2451 { 2452 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2453 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); 2454 } 2455 2456 /* Nothing was retransmitted or returned timestamp is less 2457 * than timestamp of the first retransmission. 2458 */ 2459 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2460 { 2461 return tp->retrans_stamp && 2462 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2463 } 2464 2465 /* Undo procedures. */ 2466 2467 /* We can clear retrans_stamp when there are no retransmissions in the 2468 * window. It would seem that it is trivially available for us in 2469 * tp->retrans_out, however, that kind of assumptions doesn't consider 2470 * what will happen if errors occur when sending retransmission for the 2471 * second time. ...It could the that such segment has only 2472 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2473 * the head skb is enough except for some reneging corner cases that 2474 * are not worth the effort. 2475 * 2476 * Main reason for all this complexity is the fact that connection dying 2477 * time now depends on the validity of the retrans_stamp, in particular, 2478 * that successive retransmissions of a segment must not advance 2479 * retrans_stamp under any conditions. 2480 */ 2481 static bool tcp_any_retrans_done(const struct sock *sk) 2482 { 2483 const struct tcp_sock *tp = tcp_sk(sk); 2484 struct sk_buff *skb; 2485 2486 if (tp->retrans_out) 2487 return true; 2488 2489 skb = tcp_rtx_queue_head(sk); 2490 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2491 return true; 2492 2493 return false; 2494 } 2495 2496 static void DBGUNDO(struct sock *sk, const char *msg) 2497 { 2498 #if FASTRETRANS_DEBUG > 1 2499 struct tcp_sock *tp = tcp_sk(sk); 2500 struct inet_sock *inet = inet_sk(sk); 2501 2502 if (sk->sk_family == AF_INET) { 2503 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2504 msg, 2505 &inet->inet_daddr, ntohs(inet->inet_dport), 2506 tcp_snd_cwnd(tp), tcp_left_out(tp), 2507 tp->snd_ssthresh, tp->prior_ssthresh, 2508 tp->packets_out); 2509 } 2510 #if IS_ENABLED(CONFIG_IPV6) 2511 else if (sk->sk_family == AF_INET6) { 2512 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2513 msg, 2514 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2515 tcp_snd_cwnd(tp), tcp_left_out(tp), 2516 tp->snd_ssthresh, tp->prior_ssthresh, 2517 tp->packets_out); 2518 } 2519 #endif 2520 #endif 2521 } 2522 2523 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2524 { 2525 struct tcp_sock *tp = tcp_sk(sk); 2526 2527 if (unmark_loss) { 2528 struct sk_buff *skb; 2529 2530 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2531 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2532 } 2533 tp->lost_out = 0; 2534 tcp_clear_all_retrans_hints(tp); 2535 } 2536 2537 if (tp->prior_ssthresh) { 2538 const struct inet_connection_sock *icsk = inet_csk(sk); 2539 2540 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2541 2542 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2543 tp->snd_ssthresh = tp->prior_ssthresh; 2544 tcp_ecn_withdraw_cwr(tp); 2545 } 2546 } 2547 tp->snd_cwnd_stamp = tcp_jiffies32; 2548 tp->undo_marker = 0; 2549 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2550 } 2551 2552 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2553 { 2554 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2555 } 2556 2557 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2558 { 2559 struct tcp_sock *tp = tcp_sk(sk); 2560 2561 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2562 /* Hold old state until something *above* high_seq 2563 * is ACKed. For Reno it is MUST to prevent false 2564 * fast retransmits (RFC2582). SACK TCP is safe. */ 2565 if (!tcp_any_retrans_done(sk)) 2566 tp->retrans_stamp = 0; 2567 return true; 2568 } 2569 return false; 2570 } 2571 2572 /* People celebrate: "We love our President!" */ 2573 static bool tcp_try_undo_recovery(struct sock *sk) 2574 { 2575 struct tcp_sock *tp = tcp_sk(sk); 2576 2577 if (tcp_may_undo(tp)) { 2578 int mib_idx; 2579 2580 /* Happy end! We did not retransmit anything 2581 * or our original transmission succeeded. 2582 */ 2583 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2584 tcp_undo_cwnd_reduction(sk, false); 2585 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2586 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2587 else 2588 mib_idx = LINUX_MIB_TCPFULLUNDO; 2589 2590 NET_INC_STATS(sock_net(sk), mib_idx); 2591 } else if (tp->rack.reo_wnd_persist) { 2592 tp->rack.reo_wnd_persist--; 2593 } 2594 if (tcp_is_non_sack_preventing_reopen(sk)) 2595 return true; 2596 tcp_set_ca_state(sk, TCP_CA_Open); 2597 tp->is_sack_reneg = 0; 2598 return false; 2599 } 2600 2601 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2602 static bool tcp_try_undo_dsack(struct sock *sk) 2603 { 2604 struct tcp_sock *tp = tcp_sk(sk); 2605 2606 if (tp->undo_marker && !tp->undo_retrans) { 2607 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2608 tp->rack.reo_wnd_persist + 1); 2609 DBGUNDO(sk, "D-SACK"); 2610 tcp_undo_cwnd_reduction(sk, false); 2611 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2612 return true; 2613 } 2614 return false; 2615 } 2616 2617 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2618 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2619 { 2620 struct tcp_sock *tp = tcp_sk(sk); 2621 2622 if (frto_undo || tcp_may_undo(tp)) { 2623 tcp_undo_cwnd_reduction(sk, true); 2624 2625 DBGUNDO(sk, "partial loss"); 2626 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2627 if (frto_undo) 2628 NET_INC_STATS(sock_net(sk), 2629 LINUX_MIB_TCPSPURIOUSRTOS); 2630 inet_csk(sk)->icsk_retransmits = 0; 2631 if (tcp_is_non_sack_preventing_reopen(sk)) 2632 return true; 2633 if (frto_undo || tcp_is_sack(tp)) { 2634 tcp_set_ca_state(sk, TCP_CA_Open); 2635 tp->is_sack_reneg = 0; 2636 } 2637 return true; 2638 } 2639 return false; 2640 } 2641 2642 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2643 * It computes the number of packets to send (sndcnt) based on packets newly 2644 * delivered: 2645 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2646 * cwnd reductions across a full RTT. 2647 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2648 * But when SND_UNA is acked without further losses, 2649 * slow starts cwnd up to ssthresh to speed up the recovery. 2650 */ 2651 static void tcp_init_cwnd_reduction(struct sock *sk) 2652 { 2653 struct tcp_sock *tp = tcp_sk(sk); 2654 2655 tp->high_seq = tp->snd_nxt; 2656 tp->tlp_high_seq = 0; 2657 tp->snd_cwnd_cnt = 0; 2658 tp->prior_cwnd = tcp_snd_cwnd(tp); 2659 tp->prr_delivered = 0; 2660 tp->prr_out = 0; 2661 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2662 tcp_ecn_queue_cwr(tp); 2663 } 2664 2665 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2666 { 2667 struct tcp_sock *tp = tcp_sk(sk); 2668 int sndcnt = 0; 2669 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2670 2671 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2672 return; 2673 2674 tp->prr_delivered += newly_acked_sacked; 2675 if (delta < 0) { 2676 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2677 tp->prior_cwnd - 1; 2678 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2679 } else { 2680 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2681 newly_acked_sacked); 2682 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2683 sndcnt++; 2684 sndcnt = min(delta, sndcnt); 2685 } 2686 /* Force a fast retransmit upon entering fast recovery */ 2687 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2688 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2689 } 2690 2691 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2692 { 2693 struct tcp_sock *tp = tcp_sk(sk); 2694 2695 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2696 return; 2697 2698 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2699 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2700 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2701 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2702 tp->snd_cwnd_stamp = tcp_jiffies32; 2703 } 2704 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2705 } 2706 2707 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2708 void tcp_enter_cwr(struct sock *sk) 2709 { 2710 struct tcp_sock *tp = tcp_sk(sk); 2711 2712 tp->prior_ssthresh = 0; 2713 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2714 tp->undo_marker = 0; 2715 tcp_init_cwnd_reduction(sk); 2716 tcp_set_ca_state(sk, TCP_CA_CWR); 2717 } 2718 } 2719 EXPORT_SYMBOL(tcp_enter_cwr); 2720 2721 static void tcp_try_keep_open(struct sock *sk) 2722 { 2723 struct tcp_sock *tp = tcp_sk(sk); 2724 int state = TCP_CA_Open; 2725 2726 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2727 state = TCP_CA_Disorder; 2728 2729 if (inet_csk(sk)->icsk_ca_state != state) { 2730 tcp_set_ca_state(sk, state); 2731 tp->high_seq = tp->snd_nxt; 2732 } 2733 } 2734 2735 static void tcp_try_to_open(struct sock *sk, int flag) 2736 { 2737 struct tcp_sock *tp = tcp_sk(sk); 2738 2739 tcp_verify_left_out(tp); 2740 2741 if (!tcp_any_retrans_done(sk)) 2742 tp->retrans_stamp = 0; 2743 2744 if (flag & FLAG_ECE) 2745 tcp_enter_cwr(sk); 2746 2747 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2748 tcp_try_keep_open(sk); 2749 } 2750 } 2751 2752 static void tcp_mtup_probe_failed(struct sock *sk) 2753 { 2754 struct inet_connection_sock *icsk = inet_csk(sk); 2755 2756 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2757 icsk->icsk_mtup.probe_size = 0; 2758 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2759 } 2760 2761 static void tcp_mtup_probe_success(struct sock *sk) 2762 { 2763 struct tcp_sock *tp = tcp_sk(sk); 2764 struct inet_connection_sock *icsk = inet_csk(sk); 2765 u64 val; 2766 2767 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2768 2769 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2770 do_div(val, icsk->icsk_mtup.probe_size); 2771 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2772 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2773 2774 tp->snd_cwnd_cnt = 0; 2775 tp->snd_cwnd_stamp = tcp_jiffies32; 2776 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2777 2778 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2779 icsk->icsk_mtup.probe_size = 0; 2780 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2781 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2782 } 2783 2784 /* Do a simple retransmit without using the backoff mechanisms in 2785 * tcp_timer. This is used for path mtu discovery. 2786 * The socket is already locked here. 2787 */ 2788 void tcp_simple_retransmit(struct sock *sk) 2789 { 2790 const struct inet_connection_sock *icsk = inet_csk(sk); 2791 struct tcp_sock *tp = tcp_sk(sk); 2792 struct sk_buff *skb; 2793 int mss; 2794 2795 /* A fastopen SYN request is stored as two separate packets within 2796 * the retransmit queue, this is done by tcp_send_syn_data(). 2797 * As a result simply checking the MSS of the frames in the queue 2798 * will not work for the SYN packet. 2799 * 2800 * Us being here is an indication of a path MTU issue so we can 2801 * assume that the fastopen SYN was lost and just mark all the 2802 * frames in the retransmit queue as lost. We will use an MSS of 2803 * -1 to mark all frames as lost, otherwise compute the current MSS. 2804 */ 2805 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2806 mss = -1; 2807 else 2808 mss = tcp_current_mss(sk); 2809 2810 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2811 if (tcp_skb_seglen(skb) > mss) 2812 tcp_mark_skb_lost(sk, skb); 2813 } 2814 2815 tcp_clear_retrans_hints_partial(tp); 2816 2817 if (!tp->lost_out) 2818 return; 2819 2820 if (tcp_is_reno(tp)) 2821 tcp_limit_reno_sacked(tp); 2822 2823 tcp_verify_left_out(tp); 2824 2825 /* Don't muck with the congestion window here. 2826 * Reason is that we do not increase amount of _data_ 2827 * in network, but units changed and effective 2828 * cwnd/ssthresh really reduced now. 2829 */ 2830 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2831 tp->high_seq = tp->snd_nxt; 2832 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2833 tp->prior_ssthresh = 0; 2834 tp->undo_marker = 0; 2835 tcp_set_ca_state(sk, TCP_CA_Loss); 2836 } 2837 tcp_xmit_retransmit_queue(sk); 2838 } 2839 EXPORT_SYMBOL(tcp_simple_retransmit); 2840 2841 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2842 { 2843 struct tcp_sock *tp = tcp_sk(sk); 2844 int mib_idx; 2845 2846 if (tcp_is_reno(tp)) 2847 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2848 else 2849 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2850 2851 NET_INC_STATS(sock_net(sk), mib_idx); 2852 2853 tp->prior_ssthresh = 0; 2854 tcp_init_undo(tp); 2855 2856 if (!tcp_in_cwnd_reduction(sk)) { 2857 if (!ece_ack) 2858 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2859 tcp_init_cwnd_reduction(sk); 2860 } 2861 tcp_set_ca_state(sk, TCP_CA_Recovery); 2862 } 2863 2864 static void tcp_update_rto_time(struct tcp_sock *tp) 2865 { 2866 if (tp->rto_stamp) { 2867 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; 2868 tp->rto_stamp = 0; 2869 } 2870 } 2871 2872 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2873 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2874 */ 2875 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2876 int *rexmit) 2877 { 2878 struct tcp_sock *tp = tcp_sk(sk); 2879 bool recovered = !before(tp->snd_una, tp->high_seq); 2880 2881 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2882 tcp_try_undo_loss(sk, false)) 2883 return; 2884 2885 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2886 /* Step 3.b. A timeout is spurious if not all data are 2887 * lost, i.e., never-retransmitted data are (s)acked. 2888 */ 2889 if ((flag & FLAG_ORIG_SACK_ACKED) && 2890 tcp_try_undo_loss(sk, true)) 2891 return; 2892 2893 if (after(tp->snd_nxt, tp->high_seq)) { 2894 if (flag & FLAG_DATA_SACKED || num_dupack) 2895 tp->frto = 0; /* Step 3.a. loss was real */ 2896 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2897 tp->high_seq = tp->snd_nxt; 2898 /* Step 2.b. Try send new data (but deferred until cwnd 2899 * is updated in tcp_ack()). Otherwise fall back to 2900 * the conventional recovery. 2901 */ 2902 if (!tcp_write_queue_empty(sk) && 2903 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2904 *rexmit = REXMIT_NEW; 2905 return; 2906 } 2907 tp->frto = 0; 2908 } 2909 } 2910 2911 if (recovered) { 2912 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2913 tcp_try_undo_recovery(sk); 2914 return; 2915 } 2916 if (tcp_is_reno(tp)) { 2917 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2918 * delivered. Lower inflight to clock out (re)transmissions. 2919 */ 2920 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2921 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2922 else if (flag & FLAG_SND_UNA_ADVANCED) 2923 tcp_reset_reno_sack(tp); 2924 } 2925 *rexmit = REXMIT_LOST; 2926 } 2927 2928 static bool tcp_force_fast_retransmit(struct sock *sk) 2929 { 2930 struct tcp_sock *tp = tcp_sk(sk); 2931 2932 return after(tcp_highest_sack_seq(tp), 2933 tp->snd_una + tp->reordering * tp->mss_cache); 2934 } 2935 2936 /* Undo during fast recovery after partial ACK. */ 2937 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2938 bool *do_lost) 2939 { 2940 struct tcp_sock *tp = tcp_sk(sk); 2941 2942 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2943 /* Plain luck! Hole if filled with delayed 2944 * packet, rather than with a retransmit. Check reordering. 2945 */ 2946 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2947 2948 /* We are getting evidence that the reordering degree is higher 2949 * than we realized. If there are no retransmits out then we 2950 * can undo. Otherwise we clock out new packets but do not 2951 * mark more packets lost or retransmit more. 2952 */ 2953 if (tp->retrans_out) 2954 return true; 2955 2956 if (!tcp_any_retrans_done(sk)) 2957 tp->retrans_stamp = 0; 2958 2959 DBGUNDO(sk, "partial recovery"); 2960 tcp_undo_cwnd_reduction(sk, true); 2961 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2962 tcp_try_keep_open(sk); 2963 } else { 2964 /* Partial ACK arrived. Force fast retransmit. */ 2965 *do_lost = tcp_force_fast_retransmit(sk); 2966 } 2967 return false; 2968 } 2969 2970 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2971 { 2972 struct tcp_sock *tp = tcp_sk(sk); 2973 2974 if (tcp_rtx_queue_empty(sk)) 2975 return; 2976 2977 if (unlikely(tcp_is_reno(tp))) { 2978 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2979 } else if (tcp_is_rack(sk)) { 2980 u32 prior_retrans = tp->retrans_out; 2981 2982 if (tcp_rack_mark_lost(sk)) 2983 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2984 if (prior_retrans > tp->retrans_out) 2985 *ack_flag |= FLAG_LOST_RETRANS; 2986 } 2987 } 2988 2989 /* Process an event, which can update packets-in-flight not trivially. 2990 * Main goal of this function is to calculate new estimate for left_out, 2991 * taking into account both packets sitting in receiver's buffer and 2992 * packets lost by network. 2993 * 2994 * Besides that it updates the congestion state when packet loss or ECN 2995 * is detected. But it does not reduce the cwnd, it is done by the 2996 * congestion control later. 2997 * 2998 * It does _not_ decide what to send, it is made in function 2999 * tcp_xmit_retransmit_queue(). 3000 */ 3001 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3002 int num_dupack, int *ack_flag, int *rexmit) 3003 { 3004 struct inet_connection_sock *icsk = inet_csk(sk); 3005 struct tcp_sock *tp = tcp_sk(sk); 3006 int fast_rexmit = 0, flag = *ack_flag; 3007 bool ece_ack = flag & FLAG_ECE; 3008 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3009 tcp_force_fast_retransmit(sk)); 3010 3011 if (!tp->packets_out && tp->sacked_out) 3012 tp->sacked_out = 0; 3013 3014 /* Now state machine starts. 3015 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3016 if (ece_ack) 3017 tp->prior_ssthresh = 0; 3018 3019 /* B. In all the states check for reneging SACKs. */ 3020 if (tcp_check_sack_reneging(sk, ack_flag)) 3021 return; 3022 3023 /* C. Check consistency of the current state. */ 3024 tcp_verify_left_out(tp); 3025 3026 /* D. Check state exit conditions. State can be terminated 3027 * when high_seq is ACKed. */ 3028 if (icsk->icsk_ca_state == TCP_CA_Open) { 3029 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3030 tp->retrans_stamp = 0; 3031 } else if (!before(tp->snd_una, tp->high_seq)) { 3032 switch (icsk->icsk_ca_state) { 3033 case TCP_CA_CWR: 3034 /* CWR is to be held something *above* high_seq 3035 * is ACKed for CWR bit to reach receiver. */ 3036 if (tp->snd_una != tp->high_seq) { 3037 tcp_end_cwnd_reduction(sk); 3038 tcp_set_ca_state(sk, TCP_CA_Open); 3039 } 3040 break; 3041 3042 case TCP_CA_Recovery: 3043 if (tcp_is_reno(tp)) 3044 tcp_reset_reno_sack(tp); 3045 if (tcp_try_undo_recovery(sk)) 3046 return; 3047 tcp_end_cwnd_reduction(sk); 3048 break; 3049 } 3050 } 3051 3052 /* E. Process state. */ 3053 switch (icsk->icsk_ca_state) { 3054 case TCP_CA_Recovery: 3055 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3056 if (tcp_is_reno(tp)) 3057 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3058 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3059 return; 3060 3061 if (tcp_try_undo_dsack(sk)) 3062 tcp_try_keep_open(sk); 3063 3064 tcp_identify_packet_loss(sk, ack_flag); 3065 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3066 if (!tcp_time_to_recover(sk, flag)) 3067 return; 3068 /* Undo reverts the recovery state. If loss is evident, 3069 * starts a new recovery (e.g. reordering then loss); 3070 */ 3071 tcp_enter_recovery(sk, ece_ack); 3072 } 3073 break; 3074 case TCP_CA_Loss: 3075 tcp_process_loss(sk, flag, num_dupack, rexmit); 3076 if (icsk->icsk_ca_state != TCP_CA_Loss) 3077 tcp_update_rto_time(tp); 3078 tcp_identify_packet_loss(sk, ack_flag); 3079 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3080 (*ack_flag & FLAG_LOST_RETRANS))) 3081 return; 3082 /* Change state if cwnd is undone or retransmits are lost */ 3083 fallthrough; 3084 default: 3085 if (tcp_is_reno(tp)) { 3086 if (flag & FLAG_SND_UNA_ADVANCED) 3087 tcp_reset_reno_sack(tp); 3088 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3089 } 3090 3091 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3092 tcp_try_undo_dsack(sk); 3093 3094 tcp_identify_packet_loss(sk, ack_flag); 3095 if (!tcp_time_to_recover(sk, flag)) { 3096 tcp_try_to_open(sk, flag); 3097 return; 3098 } 3099 3100 /* MTU probe failure: don't reduce cwnd */ 3101 if (icsk->icsk_ca_state < TCP_CA_CWR && 3102 icsk->icsk_mtup.probe_size && 3103 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3104 tcp_mtup_probe_failed(sk); 3105 /* Restores the reduction we did in tcp_mtup_probe() */ 3106 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3107 tcp_simple_retransmit(sk); 3108 return; 3109 } 3110 3111 /* Otherwise enter Recovery state */ 3112 tcp_enter_recovery(sk, ece_ack); 3113 fast_rexmit = 1; 3114 } 3115 3116 if (!tcp_is_rack(sk) && do_lost) 3117 tcp_update_scoreboard(sk, fast_rexmit); 3118 *rexmit = REXMIT_LOST; 3119 } 3120 3121 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3122 { 3123 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3124 struct tcp_sock *tp = tcp_sk(sk); 3125 3126 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3127 /* If the remote keeps returning delayed ACKs, eventually 3128 * the min filter would pick it up and overestimate the 3129 * prop. delay when it expires. Skip suspected delayed ACKs. 3130 */ 3131 return; 3132 } 3133 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3134 rtt_us ? : jiffies_to_usecs(1)); 3135 } 3136 3137 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3138 long seq_rtt_us, long sack_rtt_us, 3139 long ca_rtt_us, struct rate_sample *rs) 3140 { 3141 const struct tcp_sock *tp = tcp_sk(sk); 3142 3143 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3144 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3145 * Karn's algorithm forbids taking RTT if some retransmitted data 3146 * is acked (RFC6298). 3147 */ 3148 if (seq_rtt_us < 0) 3149 seq_rtt_us = sack_rtt_us; 3150 3151 /* RTTM Rule: A TSecr value received in a segment is used to 3152 * update the averaged RTT measurement only if the segment 3153 * acknowledges some new data, i.e., only if it advances the 3154 * left edge of the send window. 3155 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3156 */ 3157 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && 3158 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) 3159 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp); 3160 3161 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3162 if (seq_rtt_us < 0) 3163 return false; 3164 3165 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3166 * always taken together with ACK, SACK, or TS-opts. Any negative 3167 * values will be skipped with the seq_rtt_us < 0 check above. 3168 */ 3169 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3170 tcp_rtt_estimator(sk, seq_rtt_us); 3171 tcp_set_rto(sk); 3172 3173 /* RFC6298: only reset backoff on valid RTT measurement. */ 3174 inet_csk(sk)->icsk_backoff = 0; 3175 return true; 3176 } 3177 3178 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3179 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3180 { 3181 struct rate_sample rs; 3182 long rtt_us = -1L; 3183 3184 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3185 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3186 3187 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3188 } 3189 3190 3191 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3192 { 3193 const struct inet_connection_sock *icsk = inet_csk(sk); 3194 3195 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3196 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3197 } 3198 3199 /* Restart timer after forward progress on connection. 3200 * RFC2988 recommends to restart timer to now+rto. 3201 */ 3202 void tcp_rearm_rto(struct sock *sk) 3203 { 3204 const struct inet_connection_sock *icsk = inet_csk(sk); 3205 struct tcp_sock *tp = tcp_sk(sk); 3206 3207 /* If the retrans timer is currently being used by Fast Open 3208 * for SYN-ACK retrans purpose, stay put. 3209 */ 3210 if (rcu_access_pointer(tp->fastopen_rsk)) 3211 return; 3212 3213 if (!tp->packets_out) { 3214 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3215 } else { 3216 u32 rto = inet_csk(sk)->icsk_rto; 3217 /* Offset the time elapsed after installing regular RTO */ 3218 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3219 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3220 s64 delta_us = tcp_rto_delta_us(sk); 3221 /* delta_us may not be positive if the socket is locked 3222 * when the retrans timer fires and is rescheduled. 3223 */ 3224 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3225 } 3226 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3227 TCP_RTO_MAX); 3228 } 3229 } 3230 3231 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3232 static void tcp_set_xmit_timer(struct sock *sk) 3233 { 3234 if (!tcp_schedule_loss_probe(sk, true)) 3235 tcp_rearm_rto(sk); 3236 } 3237 3238 /* If we get here, the whole TSO packet has not been acked. */ 3239 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3240 { 3241 struct tcp_sock *tp = tcp_sk(sk); 3242 u32 packets_acked; 3243 3244 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3245 3246 packets_acked = tcp_skb_pcount(skb); 3247 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3248 return 0; 3249 packets_acked -= tcp_skb_pcount(skb); 3250 3251 if (packets_acked) { 3252 BUG_ON(tcp_skb_pcount(skb) == 0); 3253 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3254 } 3255 3256 return packets_acked; 3257 } 3258 3259 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3260 const struct sk_buff *ack_skb, u32 prior_snd_una) 3261 { 3262 const struct skb_shared_info *shinfo; 3263 3264 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3265 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3266 return; 3267 3268 shinfo = skb_shinfo(skb); 3269 if (!before(shinfo->tskey, prior_snd_una) && 3270 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3271 tcp_skb_tsorted_save(skb) { 3272 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3273 } tcp_skb_tsorted_restore(skb); 3274 } 3275 } 3276 3277 /* Remove acknowledged frames from the retransmission queue. If our packet 3278 * is before the ack sequence we can discard it as it's confirmed to have 3279 * arrived at the other end. 3280 */ 3281 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3282 u32 prior_fack, u32 prior_snd_una, 3283 struct tcp_sacktag_state *sack, bool ece_ack) 3284 { 3285 const struct inet_connection_sock *icsk = inet_csk(sk); 3286 u64 first_ackt, last_ackt; 3287 struct tcp_sock *tp = tcp_sk(sk); 3288 u32 prior_sacked = tp->sacked_out; 3289 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3290 struct sk_buff *skb, *next; 3291 bool fully_acked = true; 3292 long sack_rtt_us = -1L; 3293 long seq_rtt_us = -1L; 3294 long ca_rtt_us = -1L; 3295 u32 pkts_acked = 0; 3296 bool rtt_update; 3297 int flag = 0; 3298 3299 first_ackt = 0; 3300 3301 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3302 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3303 const u32 start_seq = scb->seq; 3304 u8 sacked = scb->sacked; 3305 u32 acked_pcount; 3306 3307 /* Determine how many packets and what bytes were acked, tso and else */ 3308 if (after(scb->end_seq, tp->snd_una)) { 3309 if (tcp_skb_pcount(skb) == 1 || 3310 !after(tp->snd_una, scb->seq)) 3311 break; 3312 3313 acked_pcount = tcp_tso_acked(sk, skb); 3314 if (!acked_pcount) 3315 break; 3316 fully_acked = false; 3317 } else { 3318 acked_pcount = tcp_skb_pcount(skb); 3319 } 3320 3321 if (unlikely(sacked & TCPCB_RETRANS)) { 3322 if (sacked & TCPCB_SACKED_RETRANS) 3323 tp->retrans_out -= acked_pcount; 3324 flag |= FLAG_RETRANS_DATA_ACKED; 3325 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3326 last_ackt = tcp_skb_timestamp_us(skb); 3327 WARN_ON_ONCE(last_ackt == 0); 3328 if (!first_ackt) 3329 first_ackt = last_ackt; 3330 3331 if (before(start_seq, reord)) 3332 reord = start_seq; 3333 if (!after(scb->end_seq, tp->high_seq)) 3334 flag |= FLAG_ORIG_SACK_ACKED; 3335 } 3336 3337 if (sacked & TCPCB_SACKED_ACKED) { 3338 tp->sacked_out -= acked_pcount; 3339 } else if (tcp_is_sack(tp)) { 3340 tcp_count_delivered(tp, acked_pcount, ece_ack); 3341 if (!tcp_skb_spurious_retrans(tp, skb)) 3342 tcp_rack_advance(tp, sacked, scb->end_seq, 3343 tcp_skb_timestamp_us(skb)); 3344 } 3345 if (sacked & TCPCB_LOST) 3346 tp->lost_out -= acked_pcount; 3347 3348 tp->packets_out -= acked_pcount; 3349 pkts_acked += acked_pcount; 3350 tcp_rate_skb_delivered(sk, skb, sack->rate); 3351 3352 /* Initial outgoing SYN's get put onto the write_queue 3353 * just like anything else we transmit. It is not 3354 * true data, and if we misinform our callers that 3355 * this ACK acks real data, we will erroneously exit 3356 * connection startup slow start one packet too 3357 * quickly. This is severely frowned upon behavior. 3358 */ 3359 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3360 flag |= FLAG_DATA_ACKED; 3361 } else { 3362 flag |= FLAG_SYN_ACKED; 3363 tp->retrans_stamp = 0; 3364 } 3365 3366 if (!fully_acked) 3367 break; 3368 3369 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3370 3371 next = skb_rb_next(skb); 3372 if (unlikely(skb == tp->retransmit_skb_hint)) 3373 tp->retransmit_skb_hint = NULL; 3374 if (unlikely(skb == tp->lost_skb_hint)) 3375 tp->lost_skb_hint = NULL; 3376 tcp_highest_sack_replace(sk, skb, next); 3377 tcp_rtx_queue_unlink_and_free(skb, sk); 3378 } 3379 3380 if (!skb) 3381 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3382 3383 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3384 tp->snd_up = tp->snd_una; 3385 3386 if (skb) { 3387 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3388 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3389 flag |= FLAG_SACK_RENEGING; 3390 } 3391 3392 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3393 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3394 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3395 3396 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3397 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3398 sack->rate->prior_delivered + 1 == tp->delivered && 3399 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3400 /* Conservatively mark a delayed ACK. It's typically 3401 * from a lone runt packet over the round trip to 3402 * a receiver w/o out-of-order or CE events. 3403 */ 3404 flag |= FLAG_ACK_MAYBE_DELAYED; 3405 } 3406 } 3407 if (sack->first_sackt) { 3408 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3409 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3410 } 3411 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3412 ca_rtt_us, sack->rate); 3413 3414 if (flag & FLAG_ACKED) { 3415 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3416 if (unlikely(icsk->icsk_mtup.probe_size && 3417 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3418 tcp_mtup_probe_success(sk); 3419 } 3420 3421 if (tcp_is_reno(tp)) { 3422 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3423 3424 /* If any of the cumulatively ACKed segments was 3425 * retransmitted, non-SACK case cannot confirm that 3426 * progress was due to original transmission due to 3427 * lack of TCPCB_SACKED_ACKED bits even if some of 3428 * the packets may have been never retransmitted. 3429 */ 3430 if (flag & FLAG_RETRANS_DATA_ACKED) 3431 flag &= ~FLAG_ORIG_SACK_ACKED; 3432 } else { 3433 int delta; 3434 3435 /* Non-retransmitted hole got filled? That's reordering */ 3436 if (before(reord, prior_fack)) 3437 tcp_check_sack_reordering(sk, reord, 0); 3438 3439 delta = prior_sacked - tp->sacked_out; 3440 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3441 } 3442 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3443 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3444 tcp_skb_timestamp_us(skb))) { 3445 /* Do not re-arm RTO if the sack RTT is measured from data sent 3446 * after when the head was last (re)transmitted. Otherwise the 3447 * timeout may continue to extend in loss recovery. 3448 */ 3449 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3450 } 3451 3452 if (icsk->icsk_ca_ops->pkts_acked) { 3453 struct ack_sample sample = { .pkts_acked = pkts_acked, 3454 .rtt_us = sack->rate->rtt_us }; 3455 3456 sample.in_flight = tp->mss_cache * 3457 (tp->delivered - sack->rate->prior_delivered); 3458 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3459 } 3460 3461 #if FASTRETRANS_DEBUG > 0 3462 WARN_ON((int)tp->sacked_out < 0); 3463 WARN_ON((int)tp->lost_out < 0); 3464 WARN_ON((int)tp->retrans_out < 0); 3465 if (!tp->packets_out && tcp_is_sack(tp)) { 3466 icsk = inet_csk(sk); 3467 if (tp->lost_out) { 3468 pr_debug("Leak l=%u %d\n", 3469 tp->lost_out, icsk->icsk_ca_state); 3470 tp->lost_out = 0; 3471 } 3472 if (tp->sacked_out) { 3473 pr_debug("Leak s=%u %d\n", 3474 tp->sacked_out, icsk->icsk_ca_state); 3475 tp->sacked_out = 0; 3476 } 3477 if (tp->retrans_out) { 3478 pr_debug("Leak r=%u %d\n", 3479 tp->retrans_out, icsk->icsk_ca_state); 3480 tp->retrans_out = 0; 3481 } 3482 } 3483 #endif 3484 return flag; 3485 } 3486 3487 static void tcp_ack_probe(struct sock *sk) 3488 { 3489 struct inet_connection_sock *icsk = inet_csk(sk); 3490 struct sk_buff *head = tcp_send_head(sk); 3491 const struct tcp_sock *tp = tcp_sk(sk); 3492 3493 /* Was it a usable window open? */ 3494 if (!head) 3495 return; 3496 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3497 icsk->icsk_backoff = 0; 3498 icsk->icsk_probes_tstamp = 0; 3499 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3500 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3501 * This function is not for random using! 3502 */ 3503 } else { 3504 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3505 3506 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3507 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3508 } 3509 } 3510 3511 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3512 { 3513 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3514 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3515 } 3516 3517 /* Decide wheather to run the increase function of congestion control. */ 3518 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3519 { 3520 /* If reordering is high then always grow cwnd whenever data is 3521 * delivered regardless of its ordering. Otherwise stay conservative 3522 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3523 * new SACK or ECE mark may first advance cwnd here and later reduce 3524 * cwnd in tcp_fastretrans_alert() based on more states. 3525 */ 3526 if (tcp_sk(sk)->reordering > 3527 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3528 return flag & FLAG_FORWARD_PROGRESS; 3529 3530 return flag & FLAG_DATA_ACKED; 3531 } 3532 3533 /* The "ultimate" congestion control function that aims to replace the rigid 3534 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3535 * It's called toward the end of processing an ACK with precise rate 3536 * information. All transmission or retransmission are delayed afterwards. 3537 */ 3538 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3539 int flag, const struct rate_sample *rs) 3540 { 3541 const struct inet_connection_sock *icsk = inet_csk(sk); 3542 3543 if (icsk->icsk_ca_ops->cong_control) { 3544 icsk->icsk_ca_ops->cong_control(sk, rs); 3545 return; 3546 } 3547 3548 if (tcp_in_cwnd_reduction(sk)) { 3549 /* Reduce cwnd if state mandates */ 3550 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3551 } else if (tcp_may_raise_cwnd(sk, flag)) { 3552 /* Advance cwnd if state allows */ 3553 tcp_cong_avoid(sk, ack, acked_sacked); 3554 } 3555 tcp_update_pacing_rate(sk); 3556 } 3557 3558 /* Check that window update is acceptable. 3559 * The function assumes that snd_una<=ack<=snd_next. 3560 */ 3561 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3562 const u32 ack, const u32 ack_seq, 3563 const u32 nwin) 3564 { 3565 return after(ack, tp->snd_una) || 3566 after(ack_seq, tp->snd_wl1) || 3567 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3568 } 3569 3570 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack) 3571 { 3572 #ifdef CONFIG_TCP_AO 3573 struct tcp_ao_info *ao; 3574 3575 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3576 return; 3577 3578 ao = rcu_dereference_protected(tp->ao_info, 3579 lockdep_sock_is_held((struct sock *)tp)); 3580 if (ao && ack < tp->snd_una) 3581 ao->snd_sne++; 3582 #endif 3583 } 3584 3585 /* If we update tp->snd_una, also update tp->bytes_acked */ 3586 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3587 { 3588 u32 delta = ack - tp->snd_una; 3589 3590 sock_owned_by_me((struct sock *)tp); 3591 tp->bytes_acked += delta; 3592 tcp_snd_sne_update(tp, ack); 3593 tp->snd_una = ack; 3594 } 3595 3596 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq) 3597 { 3598 #ifdef CONFIG_TCP_AO 3599 struct tcp_ao_info *ao; 3600 3601 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3602 return; 3603 3604 ao = rcu_dereference_protected(tp->ao_info, 3605 lockdep_sock_is_held((struct sock *)tp)); 3606 if (ao && seq < tp->rcv_nxt) 3607 ao->rcv_sne++; 3608 #endif 3609 } 3610 3611 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3612 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3613 { 3614 u32 delta = seq - tp->rcv_nxt; 3615 3616 sock_owned_by_me((struct sock *)tp); 3617 tp->bytes_received += delta; 3618 tcp_rcv_sne_update(tp, seq); 3619 WRITE_ONCE(tp->rcv_nxt, seq); 3620 } 3621 3622 /* Update our send window. 3623 * 3624 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3625 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3626 */ 3627 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3628 u32 ack_seq) 3629 { 3630 struct tcp_sock *tp = tcp_sk(sk); 3631 int flag = 0; 3632 u32 nwin = ntohs(tcp_hdr(skb)->window); 3633 3634 if (likely(!tcp_hdr(skb)->syn)) 3635 nwin <<= tp->rx_opt.snd_wscale; 3636 3637 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3638 flag |= FLAG_WIN_UPDATE; 3639 tcp_update_wl(tp, ack_seq); 3640 3641 if (tp->snd_wnd != nwin) { 3642 tp->snd_wnd = nwin; 3643 3644 /* Note, it is the only place, where 3645 * fast path is recovered for sending TCP. 3646 */ 3647 tp->pred_flags = 0; 3648 tcp_fast_path_check(sk); 3649 3650 if (!tcp_write_queue_empty(sk)) 3651 tcp_slow_start_after_idle_check(sk); 3652 3653 if (nwin > tp->max_window) { 3654 tp->max_window = nwin; 3655 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3656 } 3657 } 3658 } 3659 3660 tcp_snd_una_update(tp, ack); 3661 3662 return flag; 3663 } 3664 3665 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3666 u32 *last_oow_ack_time) 3667 { 3668 /* Paired with the WRITE_ONCE() in this function. */ 3669 u32 val = READ_ONCE(*last_oow_ack_time); 3670 3671 if (val) { 3672 s32 elapsed = (s32)(tcp_jiffies32 - val); 3673 3674 if (0 <= elapsed && 3675 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3676 NET_INC_STATS(net, mib_idx); 3677 return true; /* rate-limited: don't send yet! */ 3678 } 3679 } 3680 3681 /* Paired with the prior READ_ONCE() and with itself, 3682 * as we might be lockless. 3683 */ 3684 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3685 3686 return false; /* not rate-limited: go ahead, send dupack now! */ 3687 } 3688 3689 /* Return true if we're currently rate-limiting out-of-window ACKs and 3690 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3691 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3692 * attacks that send repeated SYNs or ACKs for the same connection. To 3693 * do this, we do not send a duplicate SYNACK or ACK if the remote 3694 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3695 */ 3696 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3697 int mib_idx, u32 *last_oow_ack_time) 3698 { 3699 /* Data packets without SYNs are not likely part of an ACK loop. */ 3700 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3701 !tcp_hdr(skb)->syn) 3702 return false; 3703 3704 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3705 } 3706 3707 /* RFC 5961 7 [ACK Throttling] */ 3708 static void tcp_send_challenge_ack(struct sock *sk) 3709 { 3710 struct tcp_sock *tp = tcp_sk(sk); 3711 struct net *net = sock_net(sk); 3712 u32 count, now, ack_limit; 3713 3714 /* First check our per-socket dupack rate limit. */ 3715 if (__tcp_oow_rate_limited(net, 3716 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3717 &tp->last_oow_ack_time)) 3718 return; 3719 3720 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3721 if (ack_limit == INT_MAX) 3722 goto send_ack; 3723 3724 /* Then check host-wide RFC 5961 rate limit. */ 3725 now = jiffies / HZ; 3726 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3727 u32 half = (ack_limit + 1) >> 1; 3728 3729 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3730 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3731 get_random_u32_inclusive(half, ack_limit + half - 1)); 3732 } 3733 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3734 if (count > 0) { 3735 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3736 send_ack: 3737 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3738 tcp_send_ack(sk); 3739 } 3740 } 3741 3742 static void tcp_store_ts_recent(struct tcp_sock *tp) 3743 { 3744 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3745 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3746 } 3747 3748 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3749 { 3750 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3751 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3752 * extra check below makes sure this can only happen 3753 * for pure ACK frames. -DaveM 3754 * 3755 * Not only, also it occurs for expired timestamps. 3756 */ 3757 3758 if (tcp_paws_check(&tp->rx_opt, 0)) 3759 tcp_store_ts_recent(tp); 3760 } 3761 } 3762 3763 /* This routine deals with acks during a TLP episode and ends an episode by 3764 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3765 */ 3766 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3767 { 3768 struct tcp_sock *tp = tcp_sk(sk); 3769 3770 if (before(ack, tp->tlp_high_seq)) 3771 return; 3772 3773 if (!tp->tlp_retrans) { 3774 /* TLP of new data has been acknowledged */ 3775 tp->tlp_high_seq = 0; 3776 } else if (flag & FLAG_DSACK_TLP) { 3777 /* This DSACK means original and TLP probe arrived; no loss */ 3778 tp->tlp_high_seq = 0; 3779 } else if (after(ack, tp->tlp_high_seq)) { 3780 /* ACK advances: there was a loss, so reduce cwnd. Reset 3781 * tlp_high_seq in tcp_init_cwnd_reduction() 3782 */ 3783 tcp_init_cwnd_reduction(sk); 3784 tcp_set_ca_state(sk, TCP_CA_CWR); 3785 tcp_end_cwnd_reduction(sk); 3786 tcp_try_keep_open(sk); 3787 NET_INC_STATS(sock_net(sk), 3788 LINUX_MIB_TCPLOSSPROBERECOVERY); 3789 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3790 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3791 /* Pure dupack: original and TLP probe arrived; no loss */ 3792 tp->tlp_high_seq = 0; 3793 } 3794 } 3795 3796 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3797 { 3798 const struct inet_connection_sock *icsk = inet_csk(sk); 3799 3800 if (icsk->icsk_ca_ops->in_ack_event) 3801 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3802 } 3803 3804 /* Congestion control has updated the cwnd already. So if we're in 3805 * loss recovery then now we do any new sends (for FRTO) or 3806 * retransmits (for CA_Loss or CA_recovery) that make sense. 3807 */ 3808 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3809 { 3810 struct tcp_sock *tp = tcp_sk(sk); 3811 3812 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3813 return; 3814 3815 if (unlikely(rexmit == REXMIT_NEW)) { 3816 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3817 TCP_NAGLE_OFF); 3818 if (after(tp->snd_nxt, tp->high_seq)) 3819 return; 3820 tp->frto = 0; 3821 } 3822 tcp_xmit_retransmit_queue(sk); 3823 } 3824 3825 /* Returns the number of packets newly acked or sacked by the current ACK */ 3826 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3827 { 3828 const struct net *net = sock_net(sk); 3829 struct tcp_sock *tp = tcp_sk(sk); 3830 u32 delivered; 3831 3832 delivered = tp->delivered - prior_delivered; 3833 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3834 if (flag & FLAG_ECE) 3835 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3836 3837 return delivered; 3838 } 3839 3840 /* This routine deals with incoming acks, but not outgoing ones. */ 3841 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3842 { 3843 struct inet_connection_sock *icsk = inet_csk(sk); 3844 struct tcp_sock *tp = tcp_sk(sk); 3845 struct tcp_sacktag_state sack_state; 3846 struct rate_sample rs = { .prior_delivered = 0 }; 3847 u32 prior_snd_una = tp->snd_una; 3848 bool is_sack_reneg = tp->is_sack_reneg; 3849 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3850 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3851 int num_dupack = 0; 3852 int prior_packets = tp->packets_out; 3853 u32 delivered = tp->delivered; 3854 u32 lost = tp->lost; 3855 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3856 u32 prior_fack; 3857 3858 sack_state.first_sackt = 0; 3859 sack_state.rate = &rs; 3860 sack_state.sack_delivered = 0; 3861 3862 /* We very likely will need to access rtx queue. */ 3863 prefetch(sk->tcp_rtx_queue.rb_node); 3864 3865 /* If the ack is older than previous acks 3866 * then we can probably ignore it. 3867 */ 3868 if (before(ack, prior_snd_una)) { 3869 u32 max_window; 3870 3871 /* do not accept ACK for bytes we never sent. */ 3872 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3873 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3874 if (before(ack, prior_snd_una - max_window)) { 3875 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3876 tcp_send_challenge_ack(sk); 3877 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3878 } 3879 goto old_ack; 3880 } 3881 3882 /* If the ack includes data we haven't sent yet, discard 3883 * this segment (RFC793 Section 3.9). 3884 */ 3885 if (after(ack, tp->snd_nxt)) 3886 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3887 3888 if (after(ack, prior_snd_una)) { 3889 flag |= FLAG_SND_UNA_ADVANCED; 3890 icsk->icsk_retransmits = 0; 3891 3892 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3893 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3894 if (icsk->icsk_clean_acked) 3895 icsk->icsk_clean_acked(sk, ack); 3896 #endif 3897 } 3898 3899 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3900 rs.prior_in_flight = tcp_packets_in_flight(tp); 3901 3902 /* ts_recent update must be made after we are sure that the packet 3903 * is in window. 3904 */ 3905 if (flag & FLAG_UPDATE_TS_RECENT) 3906 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3907 3908 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3909 FLAG_SND_UNA_ADVANCED) { 3910 /* Window is constant, pure forward advance. 3911 * No more checks are required. 3912 * Note, we use the fact that SND.UNA>=SND.WL2. 3913 */ 3914 tcp_update_wl(tp, ack_seq); 3915 tcp_snd_una_update(tp, ack); 3916 flag |= FLAG_WIN_UPDATE; 3917 3918 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3919 3920 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3921 } else { 3922 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3923 3924 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3925 flag |= FLAG_DATA; 3926 else 3927 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3928 3929 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3930 3931 if (TCP_SKB_CB(skb)->sacked) 3932 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3933 &sack_state); 3934 3935 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3936 flag |= FLAG_ECE; 3937 ack_ev_flags |= CA_ACK_ECE; 3938 } 3939 3940 if (sack_state.sack_delivered) 3941 tcp_count_delivered(tp, sack_state.sack_delivered, 3942 flag & FLAG_ECE); 3943 3944 if (flag & FLAG_WIN_UPDATE) 3945 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3946 3947 tcp_in_ack_event(sk, ack_ev_flags); 3948 } 3949 3950 /* This is a deviation from RFC3168 since it states that: 3951 * "When the TCP data sender is ready to set the CWR bit after reducing 3952 * the congestion window, it SHOULD set the CWR bit only on the first 3953 * new data packet that it transmits." 3954 * We accept CWR on pure ACKs to be more robust 3955 * with widely-deployed TCP implementations that do this. 3956 */ 3957 tcp_ecn_accept_cwr(sk, skb); 3958 3959 /* We passed data and got it acked, remove any soft error 3960 * log. Something worked... 3961 */ 3962 WRITE_ONCE(sk->sk_err_soft, 0); 3963 icsk->icsk_probes_out = 0; 3964 tp->rcv_tstamp = tcp_jiffies32; 3965 if (!prior_packets) 3966 goto no_queue; 3967 3968 /* See if we can take anything off of the retransmit queue. */ 3969 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3970 &sack_state, flag & FLAG_ECE); 3971 3972 tcp_rack_update_reo_wnd(sk, &rs); 3973 3974 if (tp->tlp_high_seq) 3975 tcp_process_tlp_ack(sk, ack, flag); 3976 3977 if (tcp_ack_is_dubious(sk, flag)) { 3978 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3979 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3980 num_dupack = 1; 3981 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3982 if (!(flag & FLAG_DATA)) 3983 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3984 } 3985 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3986 &rexmit); 3987 } 3988 3989 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3990 if (flag & FLAG_SET_XMIT_TIMER) 3991 tcp_set_xmit_timer(sk); 3992 3993 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3994 sk_dst_confirm(sk); 3995 3996 delivered = tcp_newly_delivered(sk, delivered, flag); 3997 lost = tp->lost - lost; /* freshly marked lost */ 3998 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3999 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 4000 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 4001 tcp_xmit_recovery(sk, rexmit); 4002 return 1; 4003 4004 no_queue: 4005 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 4006 if (flag & FLAG_DSACKING_ACK) { 4007 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4008 &rexmit); 4009 tcp_newly_delivered(sk, delivered, flag); 4010 } 4011 /* If this ack opens up a zero window, clear backoff. It was 4012 * being used to time the probes, and is probably far higher than 4013 * it needs to be for normal retransmission. 4014 */ 4015 tcp_ack_probe(sk); 4016 4017 if (tp->tlp_high_seq) 4018 tcp_process_tlp_ack(sk, ack, flag); 4019 return 1; 4020 4021 old_ack: 4022 /* If data was SACKed, tag it and see if we should send more data. 4023 * If data was DSACKed, see if we can undo a cwnd reduction. 4024 */ 4025 if (TCP_SKB_CB(skb)->sacked) { 4026 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 4027 &sack_state); 4028 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 4029 &rexmit); 4030 tcp_newly_delivered(sk, delivered, flag); 4031 tcp_xmit_recovery(sk, rexmit); 4032 } 4033 4034 return 0; 4035 } 4036 4037 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4038 bool syn, struct tcp_fastopen_cookie *foc, 4039 bool exp_opt) 4040 { 4041 /* Valid only in SYN or SYN-ACK with an even length. */ 4042 if (!foc || !syn || len < 0 || (len & 1)) 4043 return; 4044 4045 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4046 len <= TCP_FASTOPEN_COOKIE_MAX) 4047 memcpy(foc->val, cookie, len); 4048 else if (len != 0) 4049 len = -1; 4050 foc->len = len; 4051 foc->exp = exp_opt; 4052 } 4053 4054 static bool smc_parse_options(const struct tcphdr *th, 4055 struct tcp_options_received *opt_rx, 4056 const unsigned char *ptr, 4057 int opsize) 4058 { 4059 #if IS_ENABLED(CONFIG_SMC) 4060 if (static_branch_unlikely(&tcp_have_smc)) { 4061 if (th->syn && !(opsize & 1) && 4062 opsize >= TCPOLEN_EXP_SMC_BASE && 4063 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4064 opt_rx->smc_ok = 1; 4065 return true; 4066 } 4067 } 4068 #endif 4069 return false; 4070 } 4071 4072 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4073 * value on success. 4074 */ 4075 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4076 { 4077 const unsigned char *ptr = (const unsigned char *)(th + 1); 4078 int length = (th->doff * 4) - sizeof(struct tcphdr); 4079 u16 mss = 0; 4080 4081 while (length > 0) { 4082 int opcode = *ptr++; 4083 int opsize; 4084 4085 switch (opcode) { 4086 case TCPOPT_EOL: 4087 return mss; 4088 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4089 length--; 4090 continue; 4091 default: 4092 if (length < 2) 4093 return mss; 4094 opsize = *ptr++; 4095 if (opsize < 2) /* "silly options" */ 4096 return mss; 4097 if (opsize > length) 4098 return mss; /* fail on partial options */ 4099 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4100 u16 in_mss = get_unaligned_be16(ptr); 4101 4102 if (in_mss) { 4103 if (user_mss && user_mss < in_mss) 4104 in_mss = user_mss; 4105 mss = in_mss; 4106 } 4107 } 4108 ptr += opsize - 2; 4109 length -= opsize; 4110 } 4111 } 4112 return mss; 4113 } 4114 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4115 4116 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4117 * But, this can also be called on packets in the established flow when 4118 * the fast version below fails. 4119 */ 4120 void tcp_parse_options(const struct net *net, 4121 const struct sk_buff *skb, 4122 struct tcp_options_received *opt_rx, int estab, 4123 struct tcp_fastopen_cookie *foc) 4124 { 4125 const unsigned char *ptr; 4126 const struct tcphdr *th = tcp_hdr(skb); 4127 int length = (th->doff * 4) - sizeof(struct tcphdr); 4128 4129 ptr = (const unsigned char *)(th + 1); 4130 opt_rx->saw_tstamp = 0; 4131 opt_rx->saw_unknown = 0; 4132 4133 while (length > 0) { 4134 int opcode = *ptr++; 4135 int opsize; 4136 4137 switch (opcode) { 4138 case TCPOPT_EOL: 4139 return; 4140 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4141 length--; 4142 continue; 4143 default: 4144 if (length < 2) 4145 return; 4146 opsize = *ptr++; 4147 if (opsize < 2) /* "silly options" */ 4148 return; 4149 if (opsize > length) 4150 return; /* don't parse partial options */ 4151 switch (opcode) { 4152 case TCPOPT_MSS: 4153 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4154 u16 in_mss = get_unaligned_be16(ptr); 4155 if (in_mss) { 4156 if (opt_rx->user_mss && 4157 opt_rx->user_mss < in_mss) 4158 in_mss = opt_rx->user_mss; 4159 opt_rx->mss_clamp = in_mss; 4160 } 4161 } 4162 break; 4163 case TCPOPT_WINDOW: 4164 if (opsize == TCPOLEN_WINDOW && th->syn && 4165 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4166 __u8 snd_wscale = *(__u8 *)ptr; 4167 opt_rx->wscale_ok = 1; 4168 if (snd_wscale > TCP_MAX_WSCALE) { 4169 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4170 __func__, 4171 snd_wscale, 4172 TCP_MAX_WSCALE); 4173 snd_wscale = TCP_MAX_WSCALE; 4174 } 4175 opt_rx->snd_wscale = snd_wscale; 4176 } 4177 break; 4178 case TCPOPT_TIMESTAMP: 4179 if ((opsize == TCPOLEN_TIMESTAMP) && 4180 ((estab && opt_rx->tstamp_ok) || 4181 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4182 opt_rx->saw_tstamp = 1; 4183 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4184 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4185 } 4186 break; 4187 case TCPOPT_SACK_PERM: 4188 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4189 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4190 opt_rx->sack_ok = TCP_SACK_SEEN; 4191 tcp_sack_reset(opt_rx); 4192 } 4193 break; 4194 4195 case TCPOPT_SACK: 4196 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4197 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4198 opt_rx->sack_ok) { 4199 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4200 } 4201 break; 4202 #ifdef CONFIG_TCP_MD5SIG 4203 case TCPOPT_MD5SIG: 4204 /* The MD5 Hash has already been 4205 * checked (see tcp_v{4,6}_rcv()). 4206 */ 4207 break; 4208 #endif 4209 case TCPOPT_FASTOPEN: 4210 tcp_parse_fastopen_option( 4211 opsize - TCPOLEN_FASTOPEN_BASE, 4212 ptr, th->syn, foc, false); 4213 break; 4214 4215 case TCPOPT_EXP: 4216 /* Fast Open option shares code 254 using a 4217 * 16 bits magic number. 4218 */ 4219 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4220 get_unaligned_be16(ptr) == 4221 TCPOPT_FASTOPEN_MAGIC) { 4222 tcp_parse_fastopen_option(opsize - 4223 TCPOLEN_EXP_FASTOPEN_BASE, 4224 ptr + 2, th->syn, foc, true); 4225 break; 4226 } 4227 4228 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4229 break; 4230 4231 opt_rx->saw_unknown = 1; 4232 break; 4233 4234 default: 4235 opt_rx->saw_unknown = 1; 4236 } 4237 ptr += opsize-2; 4238 length -= opsize; 4239 } 4240 } 4241 } 4242 EXPORT_SYMBOL(tcp_parse_options); 4243 4244 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4245 { 4246 const __be32 *ptr = (const __be32 *)(th + 1); 4247 4248 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4249 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4250 tp->rx_opt.saw_tstamp = 1; 4251 ++ptr; 4252 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4253 ++ptr; 4254 if (*ptr) 4255 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4256 else 4257 tp->rx_opt.rcv_tsecr = 0; 4258 return true; 4259 } 4260 return false; 4261 } 4262 4263 /* Fast parse options. This hopes to only see timestamps. 4264 * If it is wrong it falls back on tcp_parse_options(). 4265 */ 4266 static bool tcp_fast_parse_options(const struct net *net, 4267 const struct sk_buff *skb, 4268 const struct tcphdr *th, struct tcp_sock *tp) 4269 { 4270 /* In the spirit of fast parsing, compare doff directly to constant 4271 * values. Because equality is used, short doff can be ignored here. 4272 */ 4273 if (th->doff == (sizeof(*th) / 4)) { 4274 tp->rx_opt.saw_tstamp = 0; 4275 return false; 4276 } else if (tp->rx_opt.tstamp_ok && 4277 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4278 if (tcp_parse_aligned_timestamp(tp, th)) 4279 return true; 4280 } 4281 4282 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4283 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4284 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4285 4286 return true; 4287 } 4288 4289 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4290 /* 4291 * Parse Signature options 4292 */ 4293 int tcp_do_parse_auth_options(const struct tcphdr *th, 4294 const u8 **md5_hash, const u8 **ao_hash) 4295 { 4296 int length = (th->doff << 2) - sizeof(*th); 4297 const u8 *ptr = (const u8 *)(th + 1); 4298 unsigned int minlen = TCPOLEN_MD5SIG; 4299 4300 if (IS_ENABLED(CONFIG_TCP_AO)) 4301 minlen = sizeof(struct tcp_ao_hdr) + 1; 4302 4303 *md5_hash = NULL; 4304 *ao_hash = NULL; 4305 4306 /* If not enough data remaining, we can short cut */ 4307 while (length >= minlen) { 4308 int opcode = *ptr++; 4309 int opsize; 4310 4311 switch (opcode) { 4312 case TCPOPT_EOL: 4313 return 0; 4314 case TCPOPT_NOP: 4315 length--; 4316 continue; 4317 default: 4318 opsize = *ptr++; 4319 if (opsize < 2 || opsize > length) 4320 return -EINVAL; 4321 if (opcode == TCPOPT_MD5SIG) { 4322 if (opsize != TCPOLEN_MD5SIG) 4323 return -EINVAL; 4324 if (unlikely(*md5_hash || *ao_hash)) 4325 return -EEXIST; 4326 *md5_hash = ptr; 4327 } else if (opcode == TCPOPT_AO) { 4328 if (opsize <= sizeof(struct tcp_ao_hdr)) 4329 return -EINVAL; 4330 if (unlikely(*md5_hash || *ao_hash)) 4331 return -EEXIST; 4332 *ao_hash = ptr; 4333 } 4334 } 4335 ptr += opsize - 2; 4336 length -= opsize; 4337 } 4338 return 0; 4339 } 4340 EXPORT_SYMBOL(tcp_do_parse_auth_options); 4341 #endif 4342 4343 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4344 * 4345 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4346 * it can pass through stack. So, the following predicate verifies that 4347 * this segment is not used for anything but congestion avoidance or 4348 * fast retransmit. Moreover, we even are able to eliminate most of such 4349 * second order effects, if we apply some small "replay" window (~RTO) 4350 * to timestamp space. 4351 * 4352 * All these measures still do not guarantee that we reject wrapped ACKs 4353 * on networks with high bandwidth, when sequence space is recycled fastly, 4354 * but it guarantees that such events will be very rare and do not affect 4355 * connection seriously. This doesn't look nice, but alas, PAWS is really 4356 * buggy extension. 4357 * 4358 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4359 * states that events when retransmit arrives after original data are rare. 4360 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4361 * the biggest problem on large power networks even with minor reordering. 4362 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4363 * up to bandwidth of 18Gigabit/sec. 8) ] 4364 */ 4365 4366 /* Estimates max number of increments of remote peer TSval in 4367 * a replay window (based on our current RTO estimation). 4368 */ 4369 static u32 tcp_tsval_replay(const struct sock *sk) 4370 { 4371 /* If we use usec TS resolution, 4372 * then expect the remote peer to use the same resolution. 4373 */ 4374 if (tcp_sk(sk)->tcp_usec_ts) 4375 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ); 4376 4377 /* RFC 7323 recommends a TSval clock between 1ms and 1sec. 4378 * We know that some OS (including old linux) can use 1200 Hz. 4379 */ 4380 return inet_csk(sk)->icsk_rto * 1200 / HZ; 4381 } 4382 4383 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4384 { 4385 const struct tcp_sock *tp = tcp_sk(sk); 4386 const struct tcphdr *th = tcp_hdr(skb); 4387 u32 seq = TCP_SKB_CB(skb)->seq; 4388 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4389 4390 return /* 1. Pure ACK with correct sequence number. */ 4391 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4392 4393 /* 2. ... and duplicate ACK. */ 4394 ack == tp->snd_una && 4395 4396 /* 3. ... and does not update window. */ 4397 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4398 4399 /* 4. ... and sits in replay window. */ 4400 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= 4401 tcp_tsval_replay(sk); 4402 } 4403 4404 static inline bool tcp_paws_discard(const struct sock *sk, 4405 const struct sk_buff *skb) 4406 { 4407 const struct tcp_sock *tp = tcp_sk(sk); 4408 4409 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4410 !tcp_disordered_ack(sk, skb); 4411 } 4412 4413 /* Check segment sequence number for validity. 4414 * 4415 * Segment controls are considered valid, if the segment 4416 * fits to the window after truncation to the window. Acceptability 4417 * of data (and SYN, FIN, of course) is checked separately. 4418 * See tcp_data_queue(), for example. 4419 * 4420 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4421 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4422 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4423 * (borrowed from freebsd) 4424 */ 4425 4426 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4427 u32 seq, u32 end_seq) 4428 { 4429 if (before(end_seq, tp->rcv_wup)) 4430 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4431 4432 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4433 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4434 4435 return SKB_NOT_DROPPED_YET; 4436 } 4437 4438 /* When we get a reset we do this. */ 4439 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4440 { 4441 trace_tcp_receive_reset(sk); 4442 4443 /* mptcp can't tell us to ignore reset pkts, 4444 * so just ignore the return value of mptcp_incoming_options(). 4445 */ 4446 if (sk_is_mptcp(sk)) 4447 mptcp_incoming_options(sk, skb); 4448 4449 /* We want the right error as BSD sees it (and indeed as we do). */ 4450 switch (sk->sk_state) { 4451 case TCP_SYN_SENT: 4452 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 4453 break; 4454 case TCP_CLOSE_WAIT: 4455 WRITE_ONCE(sk->sk_err, EPIPE); 4456 break; 4457 case TCP_CLOSE: 4458 return; 4459 default: 4460 WRITE_ONCE(sk->sk_err, ECONNRESET); 4461 } 4462 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4463 smp_wmb(); 4464 4465 tcp_write_queue_purge(sk); 4466 tcp_done(sk); 4467 4468 if (!sock_flag(sk, SOCK_DEAD)) 4469 sk_error_report(sk); 4470 } 4471 4472 /* 4473 * Process the FIN bit. This now behaves as it is supposed to work 4474 * and the FIN takes effect when it is validly part of sequence 4475 * space. Not before when we get holes. 4476 * 4477 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4478 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4479 * TIME-WAIT) 4480 * 4481 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4482 * close and we go into CLOSING (and later onto TIME-WAIT) 4483 * 4484 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4485 */ 4486 void tcp_fin(struct sock *sk) 4487 { 4488 struct tcp_sock *tp = tcp_sk(sk); 4489 4490 inet_csk_schedule_ack(sk); 4491 4492 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4493 sock_set_flag(sk, SOCK_DONE); 4494 4495 switch (sk->sk_state) { 4496 case TCP_SYN_RECV: 4497 case TCP_ESTABLISHED: 4498 /* Move to CLOSE_WAIT */ 4499 tcp_set_state(sk, TCP_CLOSE_WAIT); 4500 inet_csk_enter_pingpong_mode(sk); 4501 break; 4502 4503 case TCP_CLOSE_WAIT: 4504 case TCP_CLOSING: 4505 /* Received a retransmission of the FIN, do 4506 * nothing. 4507 */ 4508 break; 4509 case TCP_LAST_ACK: 4510 /* RFC793: Remain in the LAST-ACK state. */ 4511 break; 4512 4513 case TCP_FIN_WAIT1: 4514 /* This case occurs when a simultaneous close 4515 * happens, we must ack the received FIN and 4516 * enter the CLOSING state. 4517 */ 4518 tcp_send_ack(sk); 4519 tcp_set_state(sk, TCP_CLOSING); 4520 break; 4521 case TCP_FIN_WAIT2: 4522 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4523 tcp_send_ack(sk); 4524 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4525 break; 4526 default: 4527 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4528 * cases we should never reach this piece of code. 4529 */ 4530 pr_err("%s: Impossible, sk->sk_state=%d\n", 4531 __func__, sk->sk_state); 4532 break; 4533 } 4534 4535 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4536 * Probably, we should reset in this case. For now drop them. 4537 */ 4538 skb_rbtree_purge(&tp->out_of_order_queue); 4539 if (tcp_is_sack(tp)) 4540 tcp_sack_reset(&tp->rx_opt); 4541 4542 if (!sock_flag(sk, SOCK_DEAD)) { 4543 sk->sk_state_change(sk); 4544 4545 /* Do not send POLL_HUP for half duplex close. */ 4546 if (sk->sk_shutdown == SHUTDOWN_MASK || 4547 sk->sk_state == TCP_CLOSE) 4548 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4549 else 4550 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4551 } 4552 } 4553 4554 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4555 u32 end_seq) 4556 { 4557 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4558 if (before(seq, sp->start_seq)) 4559 sp->start_seq = seq; 4560 if (after(end_seq, sp->end_seq)) 4561 sp->end_seq = end_seq; 4562 return true; 4563 } 4564 return false; 4565 } 4566 4567 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4568 { 4569 struct tcp_sock *tp = tcp_sk(sk); 4570 4571 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4572 int mib_idx; 4573 4574 if (before(seq, tp->rcv_nxt)) 4575 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4576 else 4577 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4578 4579 NET_INC_STATS(sock_net(sk), mib_idx); 4580 4581 tp->rx_opt.dsack = 1; 4582 tp->duplicate_sack[0].start_seq = seq; 4583 tp->duplicate_sack[0].end_seq = end_seq; 4584 } 4585 } 4586 4587 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4588 { 4589 struct tcp_sock *tp = tcp_sk(sk); 4590 4591 if (!tp->rx_opt.dsack) 4592 tcp_dsack_set(sk, seq, end_seq); 4593 else 4594 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4595 } 4596 4597 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4598 { 4599 /* When the ACK path fails or drops most ACKs, the sender would 4600 * timeout and spuriously retransmit the same segment repeatedly. 4601 * If it seems our ACKs are not reaching the other side, 4602 * based on receiving a duplicate data segment with new flowlabel 4603 * (suggesting the sender suffered an RTO), and we are not already 4604 * repathing due to our own RTO, then rehash the socket to repath our 4605 * packets. 4606 */ 4607 #if IS_ENABLED(CONFIG_IPV6) 4608 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 4609 skb->protocol == htons(ETH_P_IPV6) && 4610 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 4611 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 4612 sk_rethink_txhash(sk)) 4613 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4614 4615 /* Save last flowlabel after a spurious retrans. */ 4616 tcp_save_lrcv_flowlabel(sk, skb); 4617 #endif 4618 } 4619 4620 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4621 { 4622 struct tcp_sock *tp = tcp_sk(sk); 4623 4624 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4625 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4626 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4627 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4628 4629 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4630 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4631 4632 tcp_rcv_spurious_retrans(sk, skb); 4633 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4634 end_seq = tp->rcv_nxt; 4635 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4636 } 4637 } 4638 4639 tcp_send_ack(sk); 4640 } 4641 4642 /* These routines update the SACK block as out-of-order packets arrive or 4643 * in-order packets close up the sequence space. 4644 */ 4645 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4646 { 4647 int this_sack; 4648 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4649 struct tcp_sack_block *swalk = sp + 1; 4650 4651 /* See if the recent change to the first SACK eats into 4652 * or hits the sequence space of other SACK blocks, if so coalesce. 4653 */ 4654 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4655 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4656 int i; 4657 4658 /* Zap SWALK, by moving every further SACK up by one slot. 4659 * Decrease num_sacks. 4660 */ 4661 tp->rx_opt.num_sacks--; 4662 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4663 sp[i] = sp[i + 1]; 4664 continue; 4665 } 4666 this_sack++; 4667 swalk++; 4668 } 4669 } 4670 4671 void tcp_sack_compress_send_ack(struct sock *sk) 4672 { 4673 struct tcp_sock *tp = tcp_sk(sk); 4674 4675 if (!tp->compressed_ack) 4676 return; 4677 4678 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4679 __sock_put(sk); 4680 4681 /* Since we have to send one ack finally, 4682 * substract one from tp->compressed_ack to keep 4683 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4684 */ 4685 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4686 tp->compressed_ack - 1); 4687 4688 tp->compressed_ack = 0; 4689 tcp_send_ack(sk); 4690 } 4691 4692 /* Reasonable amount of sack blocks included in TCP SACK option 4693 * The max is 4, but this becomes 3 if TCP timestamps are there. 4694 * Given that SACK packets might be lost, be conservative and use 2. 4695 */ 4696 #define TCP_SACK_BLOCKS_EXPECTED 2 4697 4698 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4699 { 4700 struct tcp_sock *tp = tcp_sk(sk); 4701 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4702 int cur_sacks = tp->rx_opt.num_sacks; 4703 int this_sack; 4704 4705 if (!cur_sacks) 4706 goto new_sack; 4707 4708 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4709 if (tcp_sack_extend(sp, seq, end_seq)) { 4710 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4711 tcp_sack_compress_send_ack(sk); 4712 /* Rotate this_sack to the first one. */ 4713 for (; this_sack > 0; this_sack--, sp--) 4714 swap(*sp, *(sp - 1)); 4715 if (cur_sacks > 1) 4716 tcp_sack_maybe_coalesce(tp); 4717 return; 4718 } 4719 } 4720 4721 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4722 tcp_sack_compress_send_ack(sk); 4723 4724 /* Could not find an adjacent existing SACK, build a new one, 4725 * put it at the front, and shift everyone else down. We 4726 * always know there is at least one SACK present already here. 4727 * 4728 * If the sack array is full, forget about the last one. 4729 */ 4730 if (this_sack >= TCP_NUM_SACKS) { 4731 this_sack--; 4732 tp->rx_opt.num_sacks--; 4733 sp--; 4734 } 4735 for (; this_sack > 0; this_sack--, sp--) 4736 *sp = *(sp - 1); 4737 4738 new_sack: 4739 /* Build the new head SACK, and we're done. */ 4740 sp->start_seq = seq; 4741 sp->end_seq = end_seq; 4742 tp->rx_opt.num_sacks++; 4743 } 4744 4745 /* RCV.NXT advances, some SACKs should be eaten. */ 4746 4747 static void tcp_sack_remove(struct tcp_sock *tp) 4748 { 4749 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4750 int num_sacks = tp->rx_opt.num_sacks; 4751 int this_sack; 4752 4753 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4754 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4755 tp->rx_opt.num_sacks = 0; 4756 return; 4757 } 4758 4759 for (this_sack = 0; this_sack < num_sacks;) { 4760 /* Check if the start of the sack is covered by RCV.NXT. */ 4761 if (!before(tp->rcv_nxt, sp->start_seq)) { 4762 int i; 4763 4764 /* RCV.NXT must cover all the block! */ 4765 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4766 4767 /* Zap this SACK, by moving forward any other SACKS. */ 4768 for (i = this_sack+1; i < num_sacks; i++) 4769 tp->selective_acks[i-1] = tp->selective_acks[i]; 4770 num_sacks--; 4771 continue; 4772 } 4773 this_sack++; 4774 sp++; 4775 } 4776 tp->rx_opt.num_sacks = num_sacks; 4777 } 4778 4779 /** 4780 * tcp_try_coalesce - try to merge skb to prior one 4781 * @sk: socket 4782 * @to: prior buffer 4783 * @from: buffer to add in queue 4784 * @fragstolen: pointer to boolean 4785 * 4786 * Before queueing skb @from after @to, try to merge them 4787 * to reduce overall memory use and queue lengths, if cost is small. 4788 * Packets in ofo or receive queues can stay a long time. 4789 * Better try to coalesce them right now to avoid future collapses. 4790 * Returns true if caller should free @from instead of queueing it 4791 */ 4792 static bool tcp_try_coalesce(struct sock *sk, 4793 struct sk_buff *to, 4794 struct sk_buff *from, 4795 bool *fragstolen) 4796 { 4797 int delta; 4798 4799 *fragstolen = false; 4800 4801 /* Its possible this segment overlaps with prior segment in queue */ 4802 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4803 return false; 4804 4805 if (!mptcp_skb_can_collapse(to, from)) 4806 return false; 4807 4808 if (skb_cmp_decrypted(from, to)) 4809 return false; 4810 4811 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4812 return false; 4813 4814 atomic_add(delta, &sk->sk_rmem_alloc); 4815 sk_mem_charge(sk, delta); 4816 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4817 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4818 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4819 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4820 4821 if (TCP_SKB_CB(from)->has_rxtstamp) { 4822 TCP_SKB_CB(to)->has_rxtstamp = true; 4823 to->tstamp = from->tstamp; 4824 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4825 } 4826 4827 return true; 4828 } 4829 4830 static bool tcp_ooo_try_coalesce(struct sock *sk, 4831 struct sk_buff *to, 4832 struct sk_buff *from, 4833 bool *fragstolen) 4834 { 4835 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4836 4837 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4838 if (res) { 4839 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4840 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4841 4842 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4843 } 4844 return res; 4845 } 4846 4847 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4848 enum skb_drop_reason reason) 4849 { 4850 sk_drops_add(sk, skb); 4851 kfree_skb_reason(skb, reason); 4852 } 4853 4854 /* This one checks to see if we can put data from the 4855 * out_of_order queue into the receive_queue. 4856 */ 4857 static void tcp_ofo_queue(struct sock *sk) 4858 { 4859 struct tcp_sock *tp = tcp_sk(sk); 4860 __u32 dsack_high = tp->rcv_nxt; 4861 bool fin, fragstolen, eaten; 4862 struct sk_buff *skb, *tail; 4863 struct rb_node *p; 4864 4865 p = rb_first(&tp->out_of_order_queue); 4866 while (p) { 4867 skb = rb_to_skb(p); 4868 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4869 break; 4870 4871 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4872 __u32 dsack = dsack_high; 4873 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4874 dsack_high = TCP_SKB_CB(skb)->end_seq; 4875 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4876 } 4877 p = rb_next(p); 4878 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4879 4880 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4881 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4882 continue; 4883 } 4884 4885 tail = skb_peek_tail(&sk->sk_receive_queue); 4886 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4887 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4888 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4889 if (!eaten) 4890 __skb_queue_tail(&sk->sk_receive_queue, skb); 4891 else 4892 kfree_skb_partial(skb, fragstolen); 4893 4894 if (unlikely(fin)) { 4895 tcp_fin(sk); 4896 /* tcp_fin() purges tp->out_of_order_queue, 4897 * so we must end this loop right now. 4898 */ 4899 break; 4900 } 4901 } 4902 } 4903 4904 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4905 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4906 4907 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4908 unsigned int size) 4909 { 4910 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4911 !sk_rmem_schedule(sk, skb, size)) { 4912 4913 if (tcp_prune_queue(sk, skb) < 0) 4914 return -1; 4915 4916 while (!sk_rmem_schedule(sk, skb, size)) { 4917 if (!tcp_prune_ofo_queue(sk, skb)) 4918 return -1; 4919 } 4920 } 4921 return 0; 4922 } 4923 4924 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4925 { 4926 struct tcp_sock *tp = tcp_sk(sk); 4927 struct rb_node **p, *parent; 4928 struct sk_buff *skb1; 4929 u32 seq, end_seq; 4930 bool fragstolen; 4931 4932 tcp_save_lrcv_flowlabel(sk, skb); 4933 tcp_ecn_check_ce(sk, skb); 4934 4935 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4936 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4937 sk->sk_data_ready(sk); 4938 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4939 return; 4940 } 4941 4942 /* Disable header prediction. */ 4943 tp->pred_flags = 0; 4944 inet_csk_schedule_ack(sk); 4945 4946 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4947 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4948 seq = TCP_SKB_CB(skb)->seq; 4949 end_seq = TCP_SKB_CB(skb)->end_seq; 4950 4951 p = &tp->out_of_order_queue.rb_node; 4952 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4953 /* Initial out of order segment, build 1 SACK. */ 4954 if (tcp_is_sack(tp)) { 4955 tp->rx_opt.num_sacks = 1; 4956 tp->selective_acks[0].start_seq = seq; 4957 tp->selective_acks[0].end_seq = end_seq; 4958 } 4959 rb_link_node(&skb->rbnode, NULL, p); 4960 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4961 tp->ooo_last_skb = skb; 4962 goto end; 4963 } 4964 4965 /* In the typical case, we are adding an skb to the end of the list. 4966 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4967 */ 4968 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4969 skb, &fragstolen)) { 4970 coalesce_done: 4971 /* For non sack flows, do not grow window to force DUPACK 4972 * and trigger fast retransmit. 4973 */ 4974 if (tcp_is_sack(tp)) 4975 tcp_grow_window(sk, skb, true); 4976 kfree_skb_partial(skb, fragstolen); 4977 skb = NULL; 4978 goto add_sack; 4979 } 4980 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4981 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4982 parent = &tp->ooo_last_skb->rbnode; 4983 p = &parent->rb_right; 4984 goto insert; 4985 } 4986 4987 /* Find place to insert this segment. Handle overlaps on the way. */ 4988 parent = NULL; 4989 while (*p) { 4990 parent = *p; 4991 skb1 = rb_to_skb(parent); 4992 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4993 p = &parent->rb_left; 4994 continue; 4995 } 4996 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4997 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4998 /* All the bits are present. Drop. */ 4999 NET_INC_STATS(sock_net(sk), 5000 LINUX_MIB_TCPOFOMERGE); 5001 tcp_drop_reason(sk, skb, 5002 SKB_DROP_REASON_TCP_OFOMERGE); 5003 skb = NULL; 5004 tcp_dsack_set(sk, seq, end_seq); 5005 goto add_sack; 5006 } 5007 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 5008 /* Partial overlap. */ 5009 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 5010 } else { 5011 /* skb's seq == skb1's seq and skb covers skb1. 5012 * Replace skb1 with skb. 5013 */ 5014 rb_replace_node(&skb1->rbnode, &skb->rbnode, 5015 &tp->out_of_order_queue); 5016 tcp_dsack_extend(sk, 5017 TCP_SKB_CB(skb1)->seq, 5018 TCP_SKB_CB(skb1)->end_seq); 5019 NET_INC_STATS(sock_net(sk), 5020 LINUX_MIB_TCPOFOMERGE); 5021 tcp_drop_reason(sk, skb1, 5022 SKB_DROP_REASON_TCP_OFOMERGE); 5023 goto merge_right; 5024 } 5025 } else if (tcp_ooo_try_coalesce(sk, skb1, 5026 skb, &fragstolen)) { 5027 goto coalesce_done; 5028 } 5029 p = &parent->rb_right; 5030 } 5031 insert: 5032 /* Insert segment into RB tree. */ 5033 rb_link_node(&skb->rbnode, parent, p); 5034 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 5035 5036 merge_right: 5037 /* Remove other segments covered by skb. */ 5038 while ((skb1 = skb_rb_next(skb)) != NULL) { 5039 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 5040 break; 5041 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 5042 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5043 end_seq); 5044 break; 5045 } 5046 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 5047 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5048 TCP_SKB_CB(skb1)->end_seq); 5049 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5050 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5051 } 5052 /* If there is no skb after us, we are the last_skb ! */ 5053 if (!skb1) 5054 tp->ooo_last_skb = skb; 5055 5056 add_sack: 5057 if (tcp_is_sack(tp)) 5058 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5059 end: 5060 if (skb) { 5061 /* For non sack flows, do not grow window to force DUPACK 5062 * and trigger fast retransmit. 5063 */ 5064 if (tcp_is_sack(tp)) 5065 tcp_grow_window(sk, skb, false); 5066 skb_condense(skb); 5067 skb_set_owner_r(skb, sk); 5068 } 5069 } 5070 5071 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5072 bool *fragstolen) 5073 { 5074 int eaten; 5075 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5076 5077 eaten = (tail && 5078 tcp_try_coalesce(sk, tail, 5079 skb, fragstolen)) ? 1 : 0; 5080 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5081 if (!eaten) { 5082 __skb_queue_tail(&sk->sk_receive_queue, skb); 5083 skb_set_owner_r(skb, sk); 5084 } 5085 return eaten; 5086 } 5087 5088 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5089 { 5090 struct sk_buff *skb; 5091 int err = -ENOMEM; 5092 int data_len = 0; 5093 bool fragstolen; 5094 5095 if (size == 0) 5096 return 0; 5097 5098 if (size > PAGE_SIZE) { 5099 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5100 5101 data_len = npages << PAGE_SHIFT; 5102 size = data_len + (size & ~PAGE_MASK); 5103 } 5104 skb = alloc_skb_with_frags(size - data_len, data_len, 5105 PAGE_ALLOC_COSTLY_ORDER, 5106 &err, sk->sk_allocation); 5107 if (!skb) 5108 goto err; 5109 5110 skb_put(skb, size - data_len); 5111 skb->data_len = data_len; 5112 skb->len = size; 5113 5114 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5115 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5116 goto err_free; 5117 } 5118 5119 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5120 if (err) 5121 goto err_free; 5122 5123 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5124 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5125 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5126 5127 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5128 WARN_ON_ONCE(fragstolen); /* should not happen */ 5129 __kfree_skb(skb); 5130 } 5131 return size; 5132 5133 err_free: 5134 kfree_skb(skb); 5135 err: 5136 return err; 5137 5138 } 5139 5140 void tcp_data_ready(struct sock *sk) 5141 { 5142 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5143 sk->sk_data_ready(sk); 5144 } 5145 5146 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5147 { 5148 struct tcp_sock *tp = tcp_sk(sk); 5149 enum skb_drop_reason reason; 5150 bool fragstolen; 5151 int eaten; 5152 5153 /* If a subflow has been reset, the packet should not continue 5154 * to be processed, drop the packet. 5155 */ 5156 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5157 __kfree_skb(skb); 5158 return; 5159 } 5160 5161 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5162 __kfree_skb(skb); 5163 return; 5164 } 5165 skb_dst_drop(skb); 5166 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5167 5168 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5169 tp->rx_opt.dsack = 0; 5170 5171 /* Queue data for delivery to the user. 5172 * Packets in sequence go to the receive queue. 5173 * Out of sequence packets to the out_of_order_queue. 5174 */ 5175 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5176 if (tcp_receive_window(tp) == 0) { 5177 /* Some stacks are known to send bare FIN packets 5178 * in a loop even if we send RWIN 0 in our ACK. 5179 * Accepting this FIN does not hurt memory pressure 5180 * because the FIN flag will simply be merged to the 5181 * receive queue tail skb in most cases. 5182 */ 5183 if (!skb->len && 5184 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 5185 goto queue_and_out; 5186 5187 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5188 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5189 goto out_of_window; 5190 } 5191 5192 /* Ok. In sequence. In window. */ 5193 queue_and_out: 5194 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5195 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5196 inet_csk(sk)->icsk_ack.pending |= 5197 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5198 inet_csk_schedule_ack(sk); 5199 sk->sk_data_ready(sk); 5200 5201 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) { 5202 reason = SKB_DROP_REASON_PROTO_MEM; 5203 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5204 goto drop; 5205 } 5206 sk_forced_mem_schedule(sk, skb->truesize); 5207 } 5208 5209 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5210 if (skb->len) 5211 tcp_event_data_recv(sk, skb); 5212 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5213 tcp_fin(sk); 5214 5215 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5216 tcp_ofo_queue(sk); 5217 5218 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5219 * gap in queue is filled. 5220 */ 5221 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5222 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5223 } 5224 5225 if (tp->rx_opt.num_sacks) 5226 tcp_sack_remove(tp); 5227 5228 tcp_fast_path_check(sk); 5229 5230 if (eaten > 0) 5231 kfree_skb_partial(skb, fragstolen); 5232 if (!sock_flag(sk, SOCK_DEAD)) 5233 tcp_data_ready(sk); 5234 return; 5235 } 5236 5237 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5238 tcp_rcv_spurious_retrans(sk, skb); 5239 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5240 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5241 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5242 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5243 5244 out_of_window: 5245 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5246 inet_csk_schedule_ack(sk); 5247 drop: 5248 tcp_drop_reason(sk, skb, reason); 5249 return; 5250 } 5251 5252 /* Out of window. F.e. zero window probe. */ 5253 if (!before(TCP_SKB_CB(skb)->seq, 5254 tp->rcv_nxt + tcp_receive_window(tp))) { 5255 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5256 goto out_of_window; 5257 } 5258 5259 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5260 /* Partial packet, seq < rcv_next < end_seq */ 5261 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5262 5263 /* If window is closed, drop tail of packet. But after 5264 * remembering D-SACK for its head made in previous line. 5265 */ 5266 if (!tcp_receive_window(tp)) { 5267 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5268 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5269 goto out_of_window; 5270 } 5271 goto queue_and_out; 5272 } 5273 5274 tcp_data_queue_ofo(sk, skb); 5275 } 5276 5277 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5278 { 5279 if (list) 5280 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5281 5282 return skb_rb_next(skb); 5283 } 5284 5285 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5286 struct sk_buff_head *list, 5287 struct rb_root *root) 5288 { 5289 struct sk_buff *next = tcp_skb_next(skb, list); 5290 5291 if (list) 5292 __skb_unlink(skb, list); 5293 else 5294 rb_erase(&skb->rbnode, root); 5295 5296 __kfree_skb(skb); 5297 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5298 5299 return next; 5300 } 5301 5302 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5303 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5304 { 5305 struct rb_node **p = &root->rb_node; 5306 struct rb_node *parent = NULL; 5307 struct sk_buff *skb1; 5308 5309 while (*p) { 5310 parent = *p; 5311 skb1 = rb_to_skb(parent); 5312 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5313 p = &parent->rb_left; 5314 else 5315 p = &parent->rb_right; 5316 } 5317 rb_link_node(&skb->rbnode, parent, p); 5318 rb_insert_color(&skb->rbnode, root); 5319 } 5320 5321 /* Collapse contiguous sequence of skbs head..tail with 5322 * sequence numbers start..end. 5323 * 5324 * If tail is NULL, this means until the end of the queue. 5325 * 5326 * Segments with FIN/SYN are not collapsed (only because this 5327 * simplifies code) 5328 */ 5329 static void 5330 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5331 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5332 { 5333 struct sk_buff *skb = head, *n; 5334 struct sk_buff_head tmp; 5335 bool end_of_skbs; 5336 5337 /* First, check that queue is collapsible and find 5338 * the point where collapsing can be useful. 5339 */ 5340 restart: 5341 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5342 n = tcp_skb_next(skb, list); 5343 5344 /* No new bits? It is possible on ofo queue. */ 5345 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5346 skb = tcp_collapse_one(sk, skb, list, root); 5347 if (!skb) 5348 break; 5349 goto restart; 5350 } 5351 5352 /* The first skb to collapse is: 5353 * - not SYN/FIN and 5354 * - bloated or contains data before "start" or 5355 * overlaps to the next one and mptcp allow collapsing. 5356 */ 5357 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5358 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5359 before(TCP_SKB_CB(skb)->seq, start))) { 5360 end_of_skbs = false; 5361 break; 5362 } 5363 5364 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5365 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5366 end_of_skbs = false; 5367 break; 5368 } 5369 5370 /* Decided to skip this, advance start seq. */ 5371 start = TCP_SKB_CB(skb)->end_seq; 5372 } 5373 if (end_of_skbs || 5374 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5375 return; 5376 5377 __skb_queue_head_init(&tmp); 5378 5379 while (before(start, end)) { 5380 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5381 struct sk_buff *nskb; 5382 5383 nskb = alloc_skb(copy, GFP_ATOMIC); 5384 if (!nskb) 5385 break; 5386 5387 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5388 skb_copy_decrypted(nskb, skb); 5389 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5390 if (list) 5391 __skb_queue_before(list, skb, nskb); 5392 else 5393 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5394 skb_set_owner_r(nskb, sk); 5395 mptcp_skb_ext_move(nskb, skb); 5396 5397 /* Copy data, releasing collapsed skbs. */ 5398 while (copy > 0) { 5399 int offset = start - TCP_SKB_CB(skb)->seq; 5400 int size = TCP_SKB_CB(skb)->end_seq - start; 5401 5402 BUG_ON(offset < 0); 5403 if (size > 0) { 5404 size = min(copy, size); 5405 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5406 BUG(); 5407 TCP_SKB_CB(nskb)->end_seq += size; 5408 copy -= size; 5409 start += size; 5410 } 5411 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5412 skb = tcp_collapse_one(sk, skb, list, root); 5413 if (!skb || 5414 skb == tail || 5415 !mptcp_skb_can_collapse(nskb, skb) || 5416 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5417 goto end; 5418 if (skb_cmp_decrypted(skb, nskb)) 5419 goto end; 5420 } 5421 } 5422 } 5423 end: 5424 skb_queue_walk_safe(&tmp, skb, n) 5425 tcp_rbtree_insert(root, skb); 5426 } 5427 5428 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5429 * and tcp_collapse() them until all the queue is collapsed. 5430 */ 5431 static void tcp_collapse_ofo_queue(struct sock *sk) 5432 { 5433 struct tcp_sock *tp = tcp_sk(sk); 5434 u32 range_truesize, sum_tiny = 0; 5435 struct sk_buff *skb, *head; 5436 u32 start, end; 5437 5438 skb = skb_rb_first(&tp->out_of_order_queue); 5439 new_range: 5440 if (!skb) { 5441 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5442 return; 5443 } 5444 start = TCP_SKB_CB(skb)->seq; 5445 end = TCP_SKB_CB(skb)->end_seq; 5446 range_truesize = skb->truesize; 5447 5448 for (head = skb;;) { 5449 skb = skb_rb_next(skb); 5450 5451 /* Range is terminated when we see a gap or when 5452 * we are at the queue end. 5453 */ 5454 if (!skb || 5455 after(TCP_SKB_CB(skb)->seq, end) || 5456 before(TCP_SKB_CB(skb)->end_seq, start)) { 5457 /* Do not attempt collapsing tiny skbs */ 5458 if (range_truesize != head->truesize || 5459 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5460 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5461 head, skb, start, end); 5462 } else { 5463 sum_tiny += range_truesize; 5464 if (sum_tiny > sk->sk_rcvbuf >> 3) 5465 return; 5466 } 5467 goto new_range; 5468 } 5469 5470 range_truesize += skb->truesize; 5471 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5472 start = TCP_SKB_CB(skb)->seq; 5473 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5474 end = TCP_SKB_CB(skb)->end_seq; 5475 } 5476 } 5477 5478 /* 5479 * Clean the out-of-order queue to make room. 5480 * We drop high sequences packets to : 5481 * 1) Let a chance for holes to be filled. 5482 * This means we do not drop packets from ooo queue if their sequence 5483 * is before incoming packet sequence. 5484 * 2) not add too big latencies if thousands of packets sit there. 5485 * (But if application shrinks SO_RCVBUF, we could still end up 5486 * freeing whole queue here) 5487 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5488 * 5489 * Return true if queue has shrunk. 5490 */ 5491 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5492 { 5493 struct tcp_sock *tp = tcp_sk(sk); 5494 struct rb_node *node, *prev; 5495 bool pruned = false; 5496 int goal; 5497 5498 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5499 return false; 5500 5501 goal = sk->sk_rcvbuf >> 3; 5502 node = &tp->ooo_last_skb->rbnode; 5503 5504 do { 5505 struct sk_buff *skb = rb_to_skb(node); 5506 5507 /* If incoming skb would land last in ofo queue, stop pruning. */ 5508 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5509 break; 5510 pruned = true; 5511 prev = rb_prev(node); 5512 rb_erase(node, &tp->out_of_order_queue); 5513 goal -= skb->truesize; 5514 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5515 tp->ooo_last_skb = rb_to_skb(prev); 5516 if (!prev || goal <= 0) { 5517 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5518 !tcp_under_memory_pressure(sk)) 5519 break; 5520 goal = sk->sk_rcvbuf >> 3; 5521 } 5522 node = prev; 5523 } while (node); 5524 5525 if (pruned) { 5526 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5527 /* Reset SACK state. A conforming SACK implementation will 5528 * do the same at a timeout based retransmit. When a connection 5529 * is in a sad state like this, we care only about integrity 5530 * of the connection not performance. 5531 */ 5532 if (tp->rx_opt.sack_ok) 5533 tcp_sack_reset(&tp->rx_opt); 5534 } 5535 return pruned; 5536 } 5537 5538 /* Reduce allocated memory if we can, trying to get 5539 * the socket within its memory limits again. 5540 * 5541 * Return less than zero if we should start dropping frames 5542 * until the socket owning process reads some of the data 5543 * to stabilize the situation. 5544 */ 5545 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5546 { 5547 struct tcp_sock *tp = tcp_sk(sk); 5548 5549 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5550 5551 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5552 tcp_clamp_window(sk); 5553 else if (tcp_under_memory_pressure(sk)) 5554 tcp_adjust_rcv_ssthresh(sk); 5555 5556 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5557 return 0; 5558 5559 tcp_collapse_ofo_queue(sk); 5560 if (!skb_queue_empty(&sk->sk_receive_queue)) 5561 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5562 skb_peek(&sk->sk_receive_queue), 5563 NULL, 5564 tp->copied_seq, tp->rcv_nxt); 5565 5566 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5567 return 0; 5568 5569 /* Collapsing did not help, destructive actions follow. 5570 * This must not ever occur. */ 5571 5572 tcp_prune_ofo_queue(sk, in_skb); 5573 5574 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5575 return 0; 5576 5577 /* If we are really being abused, tell the caller to silently 5578 * drop receive data on the floor. It will get retransmitted 5579 * and hopefully then we'll have sufficient space. 5580 */ 5581 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5582 5583 /* Massive buffer overcommit. */ 5584 tp->pred_flags = 0; 5585 return -1; 5586 } 5587 5588 static bool tcp_should_expand_sndbuf(struct sock *sk) 5589 { 5590 const struct tcp_sock *tp = tcp_sk(sk); 5591 5592 /* If the user specified a specific send buffer setting, do 5593 * not modify it. 5594 */ 5595 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5596 return false; 5597 5598 /* If we are under global TCP memory pressure, do not expand. */ 5599 if (tcp_under_memory_pressure(sk)) { 5600 int unused_mem = sk_unused_reserved_mem(sk); 5601 5602 /* Adjust sndbuf according to reserved mem. But make sure 5603 * it never goes below SOCK_MIN_SNDBUF. 5604 * See sk_stream_moderate_sndbuf() for more details. 5605 */ 5606 if (unused_mem > SOCK_MIN_SNDBUF) 5607 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5608 5609 return false; 5610 } 5611 5612 /* If we are under soft global TCP memory pressure, do not expand. */ 5613 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5614 return false; 5615 5616 /* If we filled the congestion window, do not expand. */ 5617 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5618 return false; 5619 5620 return true; 5621 } 5622 5623 static void tcp_new_space(struct sock *sk) 5624 { 5625 struct tcp_sock *tp = tcp_sk(sk); 5626 5627 if (tcp_should_expand_sndbuf(sk)) { 5628 tcp_sndbuf_expand(sk); 5629 tp->snd_cwnd_stamp = tcp_jiffies32; 5630 } 5631 5632 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5633 } 5634 5635 /* Caller made space either from: 5636 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5637 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5638 * 5639 * We might be able to generate EPOLLOUT to the application if: 5640 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5641 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5642 * small enough that tcp_stream_memory_free() decides it 5643 * is time to generate EPOLLOUT. 5644 */ 5645 void tcp_check_space(struct sock *sk) 5646 { 5647 /* pairs with tcp_poll() */ 5648 smp_mb(); 5649 if (sk->sk_socket && 5650 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5651 tcp_new_space(sk); 5652 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5653 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5654 } 5655 } 5656 5657 static inline void tcp_data_snd_check(struct sock *sk) 5658 { 5659 tcp_push_pending_frames(sk); 5660 tcp_check_space(sk); 5661 } 5662 5663 /* 5664 * Check if sending an ack is needed. 5665 */ 5666 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5667 { 5668 struct tcp_sock *tp = tcp_sk(sk); 5669 unsigned long rtt, delay; 5670 5671 /* More than one full frame received... */ 5672 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5673 /* ... and right edge of window advances far enough. 5674 * (tcp_recvmsg() will send ACK otherwise). 5675 * If application uses SO_RCVLOWAT, we want send ack now if 5676 * we have not received enough bytes to satisfy the condition. 5677 */ 5678 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5679 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5680 /* We ACK each frame or... */ 5681 tcp_in_quickack_mode(sk) || 5682 /* Protocol state mandates a one-time immediate ACK */ 5683 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5684 /* If we are running from __release_sock() in user context, 5685 * Defer the ack until tcp_release_cb(). 5686 */ 5687 if (sock_owned_by_user_nocheck(sk) && 5688 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { 5689 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5690 return; 5691 } 5692 send_now: 5693 tcp_send_ack(sk); 5694 return; 5695 } 5696 5697 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5698 tcp_send_delayed_ack(sk); 5699 return; 5700 } 5701 5702 if (!tcp_is_sack(tp) || 5703 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5704 goto send_now; 5705 5706 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5707 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5708 tp->dup_ack_counter = 0; 5709 } 5710 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5711 tp->dup_ack_counter++; 5712 goto send_now; 5713 } 5714 tp->compressed_ack++; 5715 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5716 return; 5717 5718 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5719 5720 rtt = tp->rcv_rtt_est.rtt_us; 5721 if (tp->srtt_us && tp->srtt_us < rtt) 5722 rtt = tp->srtt_us; 5723 5724 delay = min_t(unsigned long, 5725 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5726 rtt * (NSEC_PER_USEC >> 3)/20); 5727 sock_hold(sk); 5728 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5729 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5730 HRTIMER_MODE_REL_PINNED_SOFT); 5731 } 5732 5733 static inline void tcp_ack_snd_check(struct sock *sk) 5734 { 5735 if (!inet_csk_ack_scheduled(sk)) { 5736 /* We sent a data segment already. */ 5737 return; 5738 } 5739 __tcp_ack_snd_check(sk, 1); 5740 } 5741 5742 /* 5743 * This routine is only called when we have urgent data 5744 * signaled. Its the 'slow' part of tcp_urg. It could be 5745 * moved inline now as tcp_urg is only called from one 5746 * place. We handle URGent data wrong. We have to - as 5747 * BSD still doesn't use the correction from RFC961. 5748 * For 1003.1g we should support a new option TCP_STDURG to permit 5749 * either form (or just set the sysctl tcp_stdurg). 5750 */ 5751 5752 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5753 { 5754 struct tcp_sock *tp = tcp_sk(sk); 5755 u32 ptr = ntohs(th->urg_ptr); 5756 5757 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5758 ptr--; 5759 ptr += ntohl(th->seq); 5760 5761 /* Ignore urgent data that we've already seen and read. */ 5762 if (after(tp->copied_seq, ptr)) 5763 return; 5764 5765 /* Do not replay urg ptr. 5766 * 5767 * NOTE: interesting situation not covered by specs. 5768 * Misbehaving sender may send urg ptr, pointing to segment, 5769 * which we already have in ofo queue. We are not able to fetch 5770 * such data and will stay in TCP_URG_NOTYET until will be eaten 5771 * by recvmsg(). Seems, we are not obliged to handle such wicked 5772 * situations. But it is worth to think about possibility of some 5773 * DoSes using some hypothetical application level deadlock. 5774 */ 5775 if (before(ptr, tp->rcv_nxt)) 5776 return; 5777 5778 /* Do we already have a newer (or duplicate) urgent pointer? */ 5779 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5780 return; 5781 5782 /* Tell the world about our new urgent pointer. */ 5783 sk_send_sigurg(sk); 5784 5785 /* We may be adding urgent data when the last byte read was 5786 * urgent. To do this requires some care. We cannot just ignore 5787 * tp->copied_seq since we would read the last urgent byte again 5788 * as data, nor can we alter copied_seq until this data arrives 5789 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5790 * 5791 * NOTE. Double Dutch. Rendering to plain English: author of comment 5792 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5793 * and expect that both A and B disappear from stream. This is _wrong_. 5794 * Though this happens in BSD with high probability, this is occasional. 5795 * Any application relying on this is buggy. Note also, that fix "works" 5796 * only in this artificial test. Insert some normal data between A and B and we will 5797 * decline of BSD again. Verdict: it is better to remove to trap 5798 * buggy users. 5799 */ 5800 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5801 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5802 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5803 tp->copied_seq++; 5804 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5805 __skb_unlink(skb, &sk->sk_receive_queue); 5806 __kfree_skb(skb); 5807 } 5808 } 5809 5810 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5811 WRITE_ONCE(tp->urg_seq, ptr); 5812 5813 /* Disable header prediction. */ 5814 tp->pred_flags = 0; 5815 } 5816 5817 /* This is the 'fast' part of urgent handling. */ 5818 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5819 { 5820 struct tcp_sock *tp = tcp_sk(sk); 5821 5822 /* Check if we get a new urgent pointer - normally not. */ 5823 if (unlikely(th->urg)) 5824 tcp_check_urg(sk, th); 5825 5826 /* Do we wait for any urgent data? - normally not... */ 5827 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5828 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5829 th->syn; 5830 5831 /* Is the urgent pointer pointing into this packet? */ 5832 if (ptr < skb->len) { 5833 u8 tmp; 5834 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5835 BUG(); 5836 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5837 if (!sock_flag(sk, SOCK_DEAD)) 5838 sk->sk_data_ready(sk); 5839 } 5840 } 5841 } 5842 5843 /* Accept RST for rcv_nxt - 1 after a FIN. 5844 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5845 * FIN is sent followed by a RST packet. The RST is sent with the same 5846 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5847 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5848 * ACKs on the closed socket. In addition middleboxes can drop either the 5849 * challenge ACK or a subsequent RST. 5850 */ 5851 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5852 { 5853 const struct tcp_sock *tp = tcp_sk(sk); 5854 5855 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5856 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5857 TCPF_CLOSING)); 5858 } 5859 5860 /* Does PAWS and seqno based validation of an incoming segment, flags will 5861 * play significant role here. 5862 */ 5863 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5864 const struct tcphdr *th, int syn_inerr) 5865 { 5866 struct tcp_sock *tp = tcp_sk(sk); 5867 SKB_DR(reason); 5868 5869 /* RFC1323: H1. Apply PAWS check first. */ 5870 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5871 tp->rx_opt.saw_tstamp && 5872 tcp_paws_discard(sk, skb)) { 5873 if (!th->rst) { 5874 if (unlikely(th->syn)) 5875 goto syn_challenge; 5876 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5877 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5878 LINUX_MIB_TCPACKSKIPPEDPAWS, 5879 &tp->last_oow_ack_time)) 5880 tcp_send_dupack(sk, skb); 5881 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5882 goto discard; 5883 } 5884 /* Reset is accepted even if it did not pass PAWS. */ 5885 } 5886 5887 /* Step 1: check sequence number */ 5888 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5889 if (reason) { 5890 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5891 * (RST) segments are validated by checking their SEQ-fields." 5892 * And page 69: "If an incoming segment is not acceptable, 5893 * an acknowledgment should be sent in reply (unless the RST 5894 * bit is set, if so drop the segment and return)". 5895 */ 5896 if (!th->rst) { 5897 if (th->syn) 5898 goto syn_challenge; 5899 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5900 LINUX_MIB_TCPACKSKIPPEDSEQ, 5901 &tp->last_oow_ack_time)) 5902 tcp_send_dupack(sk, skb); 5903 } else if (tcp_reset_check(sk, skb)) { 5904 goto reset; 5905 } 5906 goto discard; 5907 } 5908 5909 /* Step 2: check RST bit */ 5910 if (th->rst) { 5911 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5912 * FIN and SACK too if available): 5913 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5914 * the right-most SACK block, 5915 * then 5916 * RESET the connection 5917 * else 5918 * Send a challenge ACK 5919 */ 5920 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5921 tcp_reset_check(sk, skb)) 5922 goto reset; 5923 5924 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5925 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5926 int max_sack = sp[0].end_seq; 5927 int this_sack; 5928 5929 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5930 ++this_sack) { 5931 max_sack = after(sp[this_sack].end_seq, 5932 max_sack) ? 5933 sp[this_sack].end_seq : max_sack; 5934 } 5935 5936 if (TCP_SKB_CB(skb)->seq == max_sack) 5937 goto reset; 5938 } 5939 5940 /* Disable TFO if RST is out-of-order 5941 * and no data has been received 5942 * for current active TFO socket 5943 */ 5944 if (tp->syn_fastopen && !tp->data_segs_in && 5945 sk->sk_state == TCP_ESTABLISHED) 5946 tcp_fastopen_active_disable(sk); 5947 tcp_send_challenge_ack(sk); 5948 SKB_DR_SET(reason, TCP_RESET); 5949 goto discard; 5950 } 5951 5952 /* step 3: check security and precedence [ignored] */ 5953 5954 /* step 4: Check for a SYN 5955 * RFC 5961 4.2 : Send a challenge ack 5956 */ 5957 if (th->syn) { 5958 syn_challenge: 5959 if (syn_inerr) 5960 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5961 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5962 tcp_send_challenge_ack(sk); 5963 SKB_DR_SET(reason, TCP_INVALID_SYN); 5964 goto discard; 5965 } 5966 5967 bpf_skops_parse_hdr(sk, skb); 5968 5969 return true; 5970 5971 discard: 5972 tcp_drop_reason(sk, skb, reason); 5973 return false; 5974 5975 reset: 5976 tcp_reset(sk, skb); 5977 __kfree_skb(skb); 5978 return false; 5979 } 5980 5981 /* 5982 * TCP receive function for the ESTABLISHED state. 5983 * 5984 * It is split into a fast path and a slow path. The fast path is 5985 * disabled when: 5986 * - A zero window was announced from us - zero window probing 5987 * is only handled properly in the slow path. 5988 * - Out of order segments arrived. 5989 * - Urgent data is expected. 5990 * - There is no buffer space left 5991 * - Unexpected TCP flags/window values/header lengths are received 5992 * (detected by checking the TCP header against pred_flags) 5993 * - Data is sent in both directions. Fast path only supports pure senders 5994 * or pure receivers (this means either the sequence number or the ack 5995 * value must stay constant) 5996 * - Unexpected TCP option. 5997 * 5998 * When these conditions are not satisfied it drops into a standard 5999 * receive procedure patterned after RFC793 to handle all cases. 6000 * The first three cases are guaranteed by proper pred_flags setting, 6001 * the rest is checked inline. Fast processing is turned on in 6002 * tcp_data_queue when everything is OK. 6003 */ 6004 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 6005 { 6006 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 6007 const struct tcphdr *th = (const struct tcphdr *)skb->data; 6008 struct tcp_sock *tp = tcp_sk(sk); 6009 unsigned int len = skb->len; 6010 6011 /* TCP congestion window tracking */ 6012 trace_tcp_probe(sk, skb); 6013 6014 tcp_mstamp_refresh(tp); 6015 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 6016 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 6017 /* 6018 * Header prediction. 6019 * The code loosely follows the one in the famous 6020 * "30 instruction TCP receive" Van Jacobson mail. 6021 * 6022 * Van's trick is to deposit buffers into socket queue 6023 * on a device interrupt, to call tcp_recv function 6024 * on the receive process context and checksum and copy 6025 * the buffer to user space. smart... 6026 * 6027 * Our current scheme is not silly either but we take the 6028 * extra cost of the net_bh soft interrupt processing... 6029 * We do checksum and copy also but from device to kernel. 6030 */ 6031 6032 tp->rx_opt.saw_tstamp = 0; 6033 6034 /* pred_flags is 0xS?10 << 16 + snd_wnd 6035 * if header_prediction is to be made 6036 * 'S' will always be tp->tcp_header_len >> 2 6037 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6038 * turn it off (when there are holes in the receive 6039 * space for instance) 6040 * PSH flag is ignored. 6041 */ 6042 6043 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6044 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6045 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6046 int tcp_header_len = tp->tcp_header_len; 6047 6048 /* Timestamp header prediction: tcp_header_len 6049 * is automatically equal to th->doff*4 due to pred_flags 6050 * match. 6051 */ 6052 6053 /* Check timestamp */ 6054 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6055 /* No? Slow path! */ 6056 if (!tcp_parse_aligned_timestamp(tp, th)) 6057 goto slow_path; 6058 6059 /* If PAWS failed, check it more carefully in slow path */ 6060 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 6061 goto slow_path; 6062 6063 /* DO NOT update ts_recent here, if checksum fails 6064 * and timestamp was corrupted part, it will result 6065 * in a hung connection since we will drop all 6066 * future packets due to the PAWS test. 6067 */ 6068 } 6069 6070 if (len <= tcp_header_len) { 6071 /* Bulk data transfer: sender */ 6072 if (len == tcp_header_len) { 6073 /* Predicted packet is in window by definition. 6074 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6075 * Hence, check seq<=rcv_wup reduces to: 6076 */ 6077 if (tcp_header_len == 6078 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6079 tp->rcv_nxt == tp->rcv_wup) 6080 tcp_store_ts_recent(tp); 6081 6082 /* We know that such packets are checksummed 6083 * on entry. 6084 */ 6085 tcp_ack(sk, skb, 0); 6086 __kfree_skb(skb); 6087 tcp_data_snd_check(sk); 6088 /* When receiving pure ack in fast path, update 6089 * last ts ecr directly instead of calling 6090 * tcp_rcv_rtt_measure_ts() 6091 */ 6092 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6093 return; 6094 } else { /* Header too small */ 6095 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6096 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6097 goto discard; 6098 } 6099 } else { 6100 int eaten = 0; 6101 bool fragstolen = false; 6102 6103 if (tcp_checksum_complete(skb)) 6104 goto csum_error; 6105 6106 if ((int)skb->truesize > sk->sk_forward_alloc) 6107 goto step5; 6108 6109 /* Predicted packet is in window by definition. 6110 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6111 * Hence, check seq<=rcv_wup reduces to: 6112 */ 6113 if (tcp_header_len == 6114 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6115 tp->rcv_nxt == tp->rcv_wup) 6116 tcp_store_ts_recent(tp); 6117 6118 tcp_rcv_rtt_measure_ts(sk, skb); 6119 6120 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6121 6122 /* Bulk data transfer: receiver */ 6123 skb_dst_drop(skb); 6124 __skb_pull(skb, tcp_header_len); 6125 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6126 6127 tcp_event_data_recv(sk, skb); 6128 6129 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6130 /* Well, only one small jumplet in fast path... */ 6131 tcp_ack(sk, skb, FLAG_DATA); 6132 tcp_data_snd_check(sk); 6133 if (!inet_csk_ack_scheduled(sk)) 6134 goto no_ack; 6135 } else { 6136 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6137 } 6138 6139 __tcp_ack_snd_check(sk, 0); 6140 no_ack: 6141 if (eaten) 6142 kfree_skb_partial(skb, fragstolen); 6143 tcp_data_ready(sk); 6144 return; 6145 } 6146 } 6147 6148 slow_path: 6149 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6150 goto csum_error; 6151 6152 if (!th->ack && !th->rst && !th->syn) { 6153 reason = SKB_DROP_REASON_TCP_FLAGS; 6154 goto discard; 6155 } 6156 6157 /* 6158 * Standard slow path. 6159 */ 6160 6161 if (!tcp_validate_incoming(sk, skb, th, 1)) 6162 return; 6163 6164 step5: 6165 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6166 if ((int)reason < 0) { 6167 reason = -reason; 6168 goto discard; 6169 } 6170 tcp_rcv_rtt_measure_ts(sk, skb); 6171 6172 /* Process urgent data. */ 6173 tcp_urg(sk, skb, th); 6174 6175 /* step 7: process the segment text */ 6176 tcp_data_queue(sk, skb); 6177 6178 tcp_data_snd_check(sk); 6179 tcp_ack_snd_check(sk); 6180 return; 6181 6182 csum_error: 6183 reason = SKB_DROP_REASON_TCP_CSUM; 6184 trace_tcp_bad_csum(skb); 6185 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6186 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6187 6188 discard: 6189 tcp_drop_reason(sk, skb, reason); 6190 } 6191 EXPORT_SYMBOL(tcp_rcv_established); 6192 6193 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6194 { 6195 struct inet_connection_sock *icsk = inet_csk(sk); 6196 struct tcp_sock *tp = tcp_sk(sk); 6197 6198 tcp_mtup_init(sk); 6199 icsk->icsk_af_ops->rebuild_header(sk); 6200 tcp_init_metrics(sk); 6201 6202 /* Initialize the congestion window to start the transfer. 6203 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6204 * retransmitted. In light of RFC6298 more aggressive 1sec 6205 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6206 * retransmission has occurred. 6207 */ 6208 if (tp->total_retrans > 1 && tp->undo_marker) 6209 tcp_snd_cwnd_set(tp, 1); 6210 else 6211 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6212 tp->snd_cwnd_stamp = tcp_jiffies32; 6213 6214 bpf_skops_established(sk, bpf_op, skb); 6215 /* Initialize congestion control unless BPF initialized it already: */ 6216 if (!icsk->icsk_ca_initialized) 6217 tcp_init_congestion_control(sk); 6218 tcp_init_buffer_space(sk); 6219 } 6220 6221 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6222 { 6223 struct tcp_sock *tp = tcp_sk(sk); 6224 struct inet_connection_sock *icsk = inet_csk(sk); 6225 6226 tcp_ao_finish_connect(sk, skb); 6227 tcp_set_state(sk, TCP_ESTABLISHED); 6228 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6229 6230 if (skb) { 6231 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6232 security_inet_conn_established(sk, skb); 6233 sk_mark_napi_id(sk, skb); 6234 } 6235 6236 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6237 6238 /* Prevent spurious tcp_cwnd_restart() on first data 6239 * packet. 6240 */ 6241 tp->lsndtime = tcp_jiffies32; 6242 6243 if (sock_flag(sk, SOCK_KEEPOPEN)) 6244 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6245 6246 if (!tp->rx_opt.snd_wscale) 6247 __tcp_fast_path_on(tp, tp->snd_wnd); 6248 else 6249 tp->pred_flags = 0; 6250 } 6251 6252 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6253 struct tcp_fastopen_cookie *cookie) 6254 { 6255 struct tcp_sock *tp = tcp_sk(sk); 6256 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6257 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6258 bool syn_drop = false; 6259 6260 if (mss == tp->rx_opt.user_mss) { 6261 struct tcp_options_received opt; 6262 6263 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6264 tcp_clear_options(&opt); 6265 opt.user_mss = opt.mss_clamp = 0; 6266 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6267 mss = opt.mss_clamp; 6268 } 6269 6270 if (!tp->syn_fastopen) { 6271 /* Ignore an unsolicited cookie */ 6272 cookie->len = -1; 6273 } else if (tp->total_retrans) { 6274 /* SYN timed out and the SYN-ACK neither has a cookie nor 6275 * acknowledges data. Presumably the remote received only 6276 * the retransmitted (regular) SYNs: either the original 6277 * SYN-data or the corresponding SYN-ACK was dropped. 6278 */ 6279 syn_drop = (cookie->len < 0 && data); 6280 } else if (cookie->len < 0 && !tp->syn_data) { 6281 /* We requested a cookie but didn't get it. If we did not use 6282 * the (old) exp opt format then try so next time (try_exp=1). 6283 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6284 */ 6285 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6286 } 6287 6288 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6289 6290 if (data) { /* Retransmit unacked data in SYN */ 6291 if (tp->total_retrans) 6292 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6293 else 6294 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6295 skb_rbtree_walk_from(data) 6296 tcp_mark_skb_lost(sk, data); 6297 tcp_xmit_retransmit_queue(sk); 6298 NET_INC_STATS(sock_net(sk), 6299 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6300 return true; 6301 } 6302 tp->syn_data_acked = tp->syn_data; 6303 if (tp->syn_data_acked) { 6304 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6305 /* SYN-data is counted as two separate packets in tcp_ack() */ 6306 if (tp->delivered > 1) 6307 --tp->delivered; 6308 } 6309 6310 tcp_fastopen_add_skb(sk, synack); 6311 6312 return false; 6313 } 6314 6315 static void smc_check_reset_syn(struct tcp_sock *tp) 6316 { 6317 #if IS_ENABLED(CONFIG_SMC) 6318 if (static_branch_unlikely(&tcp_have_smc)) { 6319 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6320 tp->syn_smc = 0; 6321 } 6322 #endif 6323 } 6324 6325 static void tcp_try_undo_spurious_syn(struct sock *sk) 6326 { 6327 struct tcp_sock *tp = tcp_sk(sk); 6328 u32 syn_stamp; 6329 6330 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6331 * spurious if the ACK's timestamp option echo value matches the 6332 * original SYN timestamp. 6333 */ 6334 syn_stamp = tp->retrans_stamp; 6335 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6336 syn_stamp == tp->rx_opt.rcv_tsecr) 6337 tp->undo_marker = 0; 6338 } 6339 6340 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6341 const struct tcphdr *th) 6342 { 6343 struct inet_connection_sock *icsk = inet_csk(sk); 6344 struct tcp_sock *tp = tcp_sk(sk); 6345 struct tcp_fastopen_cookie foc = { .len = -1 }; 6346 int saved_clamp = tp->rx_opt.mss_clamp; 6347 bool fastopen_fail; 6348 SKB_DR(reason); 6349 6350 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6351 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6352 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6353 6354 if (th->ack) { 6355 /* rfc793: 6356 * "If the state is SYN-SENT then 6357 * first check the ACK bit 6358 * If the ACK bit is set 6359 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6360 * a reset (unless the RST bit is set, if so drop 6361 * the segment and return)" 6362 */ 6363 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6364 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6365 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6366 if (icsk->icsk_retransmits == 0) 6367 inet_csk_reset_xmit_timer(sk, 6368 ICSK_TIME_RETRANS, 6369 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6370 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE); 6371 goto reset_and_undo; 6372 } 6373 6374 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6375 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6376 tcp_time_stamp_ts(tp))) { 6377 NET_INC_STATS(sock_net(sk), 6378 LINUX_MIB_PAWSACTIVEREJECTED); 6379 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6380 goto reset_and_undo; 6381 } 6382 6383 /* Now ACK is acceptable. 6384 * 6385 * "If the RST bit is set 6386 * If the ACK was acceptable then signal the user "error: 6387 * connection reset", drop the segment, enter CLOSED state, 6388 * delete TCB, and return." 6389 */ 6390 6391 if (th->rst) { 6392 tcp_reset(sk, skb); 6393 consume: 6394 __kfree_skb(skb); 6395 return 0; 6396 } 6397 6398 /* rfc793: 6399 * "fifth, if neither of the SYN or RST bits is set then 6400 * drop the segment and return." 6401 * 6402 * See note below! 6403 * --ANK(990513) 6404 */ 6405 if (!th->syn) { 6406 SKB_DR_SET(reason, TCP_FLAGS); 6407 goto discard_and_undo; 6408 } 6409 /* rfc793: 6410 * "If the SYN bit is on ... 6411 * are acceptable then ... 6412 * (our SYN has been ACKed), change the connection 6413 * state to ESTABLISHED..." 6414 */ 6415 6416 tcp_ecn_rcv_synack(tp, th); 6417 6418 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6419 tcp_try_undo_spurious_syn(sk); 6420 tcp_ack(sk, skb, FLAG_SLOWPATH); 6421 6422 /* Ok.. it's good. Set up sequence numbers and 6423 * move to established. 6424 */ 6425 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6426 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6427 6428 /* RFC1323: The window in SYN & SYN/ACK segments is 6429 * never scaled. 6430 */ 6431 tp->snd_wnd = ntohs(th->window); 6432 6433 if (!tp->rx_opt.wscale_ok) { 6434 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6435 WRITE_ONCE(tp->window_clamp, 6436 min(tp->window_clamp, 65535U)); 6437 } 6438 6439 if (tp->rx_opt.saw_tstamp) { 6440 tp->rx_opt.tstamp_ok = 1; 6441 tp->tcp_header_len = 6442 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6443 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6444 tcp_store_ts_recent(tp); 6445 } else { 6446 tp->tcp_header_len = sizeof(struct tcphdr); 6447 } 6448 6449 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6450 tcp_initialize_rcv_mss(sk); 6451 6452 /* Remember, tcp_poll() does not lock socket! 6453 * Change state from SYN-SENT only after copied_seq 6454 * is initialized. */ 6455 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6456 6457 smc_check_reset_syn(tp); 6458 6459 smp_mb(); 6460 6461 tcp_finish_connect(sk, skb); 6462 6463 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6464 tcp_rcv_fastopen_synack(sk, skb, &foc); 6465 6466 if (!sock_flag(sk, SOCK_DEAD)) { 6467 sk->sk_state_change(sk); 6468 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6469 } 6470 if (fastopen_fail) 6471 return -1; 6472 if (sk->sk_write_pending || 6473 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6474 inet_csk_in_pingpong_mode(sk)) { 6475 /* Save one ACK. Data will be ready after 6476 * several ticks, if write_pending is set. 6477 * 6478 * It may be deleted, but with this feature tcpdumps 6479 * look so _wonderfully_ clever, that I was not able 6480 * to stand against the temptation 8) --ANK 6481 */ 6482 inet_csk_schedule_ack(sk); 6483 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6484 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6485 TCP_DELACK_MAX, TCP_RTO_MAX); 6486 goto consume; 6487 } 6488 tcp_send_ack(sk); 6489 return -1; 6490 } 6491 6492 /* No ACK in the segment */ 6493 6494 if (th->rst) { 6495 /* rfc793: 6496 * "If the RST bit is set 6497 * 6498 * Otherwise (no ACK) drop the segment and return." 6499 */ 6500 SKB_DR_SET(reason, TCP_RESET); 6501 goto discard_and_undo; 6502 } 6503 6504 /* PAWS check. */ 6505 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6506 tcp_paws_reject(&tp->rx_opt, 0)) { 6507 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6508 goto discard_and_undo; 6509 } 6510 if (th->syn) { 6511 /* We see SYN without ACK. It is attempt of 6512 * simultaneous connect with crossed SYNs. 6513 * Particularly, it can be connect to self. 6514 */ 6515 #ifdef CONFIG_TCP_AO 6516 struct tcp_ao_info *ao; 6517 6518 ao = rcu_dereference_protected(tp->ao_info, 6519 lockdep_sock_is_held(sk)); 6520 if (ao) { 6521 WRITE_ONCE(ao->risn, th->seq); 6522 ao->rcv_sne = 0; 6523 } 6524 #endif 6525 tcp_set_state(sk, TCP_SYN_RECV); 6526 6527 if (tp->rx_opt.saw_tstamp) { 6528 tp->rx_opt.tstamp_ok = 1; 6529 tcp_store_ts_recent(tp); 6530 tp->tcp_header_len = 6531 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6532 } else { 6533 tp->tcp_header_len = sizeof(struct tcphdr); 6534 } 6535 6536 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6537 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6538 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6539 6540 /* RFC1323: The window in SYN & SYN/ACK segments is 6541 * never scaled. 6542 */ 6543 tp->snd_wnd = ntohs(th->window); 6544 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6545 tp->max_window = tp->snd_wnd; 6546 6547 tcp_ecn_rcv_syn(tp, th); 6548 6549 tcp_mtup_init(sk); 6550 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6551 tcp_initialize_rcv_mss(sk); 6552 6553 tcp_send_synack(sk); 6554 #if 0 6555 /* Note, we could accept data and URG from this segment. 6556 * There are no obstacles to make this (except that we must 6557 * either change tcp_recvmsg() to prevent it from returning data 6558 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6559 * 6560 * However, if we ignore data in ACKless segments sometimes, 6561 * we have no reasons to accept it sometimes. 6562 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6563 * is not flawless. So, discard packet for sanity. 6564 * Uncomment this return to process the data. 6565 */ 6566 return -1; 6567 #else 6568 goto consume; 6569 #endif 6570 } 6571 /* "fifth, if neither of the SYN or RST bits is set then 6572 * drop the segment and return." 6573 */ 6574 6575 discard_and_undo: 6576 tcp_clear_options(&tp->rx_opt); 6577 tp->rx_opt.mss_clamp = saved_clamp; 6578 tcp_drop_reason(sk, skb, reason); 6579 return 0; 6580 6581 reset_and_undo: 6582 tcp_clear_options(&tp->rx_opt); 6583 tp->rx_opt.mss_clamp = saved_clamp; 6584 /* we can reuse/return @reason to its caller to handle the exception */ 6585 return reason; 6586 } 6587 6588 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6589 { 6590 struct tcp_sock *tp = tcp_sk(sk); 6591 struct request_sock *req; 6592 6593 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6594 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6595 */ 6596 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6597 tcp_try_undo_recovery(sk); 6598 6599 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6600 tcp_update_rto_time(tp); 6601 tp->retrans_stamp = 0; 6602 inet_csk(sk)->icsk_retransmits = 0; 6603 6604 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6605 * we no longer need req so release it. 6606 */ 6607 req = rcu_dereference_protected(tp->fastopen_rsk, 6608 lockdep_sock_is_held(sk)); 6609 reqsk_fastopen_remove(sk, req, false); 6610 6611 /* Re-arm the timer because data may have been sent out. 6612 * This is similar to the regular data transmission case 6613 * when new data has just been ack'ed. 6614 * 6615 * (TFO) - we could try to be more aggressive and 6616 * retransmitting any data sooner based on when they 6617 * are sent out. 6618 */ 6619 tcp_rearm_rto(sk); 6620 } 6621 6622 /* 6623 * This function implements the receiving procedure of RFC 793 for 6624 * all states except ESTABLISHED and TIME_WAIT. 6625 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6626 * address independent. 6627 */ 6628 6629 enum skb_drop_reason 6630 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6631 { 6632 struct tcp_sock *tp = tcp_sk(sk); 6633 struct inet_connection_sock *icsk = inet_csk(sk); 6634 const struct tcphdr *th = tcp_hdr(skb); 6635 struct request_sock *req; 6636 int queued = 0; 6637 SKB_DR(reason); 6638 6639 switch (sk->sk_state) { 6640 case TCP_CLOSE: 6641 SKB_DR_SET(reason, TCP_CLOSE); 6642 goto discard; 6643 6644 case TCP_LISTEN: 6645 if (th->ack) 6646 return SKB_DROP_REASON_TCP_FLAGS; 6647 6648 if (th->rst) { 6649 SKB_DR_SET(reason, TCP_RESET); 6650 goto discard; 6651 } 6652 if (th->syn) { 6653 if (th->fin) { 6654 SKB_DR_SET(reason, TCP_FLAGS); 6655 goto discard; 6656 } 6657 /* It is possible that we process SYN packets from backlog, 6658 * so we need to make sure to disable BH and RCU right there. 6659 */ 6660 rcu_read_lock(); 6661 local_bh_disable(); 6662 icsk->icsk_af_ops->conn_request(sk, skb); 6663 local_bh_enable(); 6664 rcu_read_unlock(); 6665 6666 consume_skb(skb); 6667 return 0; 6668 } 6669 SKB_DR_SET(reason, TCP_FLAGS); 6670 goto discard; 6671 6672 case TCP_SYN_SENT: 6673 tp->rx_opt.saw_tstamp = 0; 6674 tcp_mstamp_refresh(tp); 6675 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6676 if (queued >= 0) 6677 return queued; 6678 6679 /* Do step6 onward by hand. */ 6680 tcp_urg(sk, skb, th); 6681 __kfree_skb(skb); 6682 tcp_data_snd_check(sk); 6683 return 0; 6684 } 6685 6686 tcp_mstamp_refresh(tp); 6687 tp->rx_opt.saw_tstamp = 0; 6688 req = rcu_dereference_protected(tp->fastopen_rsk, 6689 lockdep_sock_is_held(sk)); 6690 if (req) { 6691 bool req_stolen; 6692 6693 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6694 sk->sk_state != TCP_FIN_WAIT1); 6695 6696 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6697 SKB_DR_SET(reason, TCP_FASTOPEN); 6698 goto discard; 6699 } 6700 } 6701 6702 if (!th->ack && !th->rst && !th->syn) { 6703 SKB_DR_SET(reason, TCP_FLAGS); 6704 goto discard; 6705 } 6706 if (!tcp_validate_incoming(sk, skb, th, 0)) 6707 return 0; 6708 6709 /* step 5: check the ACK field */ 6710 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | 6711 FLAG_UPDATE_TS_RECENT | 6712 FLAG_NO_CHALLENGE_ACK); 6713 6714 if ((int)reason <= 0) { 6715 if (sk->sk_state == TCP_SYN_RECV) { 6716 /* send one RST */ 6717 if (!reason) 6718 return SKB_DROP_REASON_TCP_OLD_ACK; 6719 return -reason; 6720 } 6721 /* accept old ack during closing */ 6722 if ((int)reason < 0) { 6723 tcp_send_challenge_ack(sk); 6724 reason = -reason; 6725 goto discard; 6726 } 6727 } 6728 SKB_DR_SET(reason, NOT_SPECIFIED); 6729 switch (sk->sk_state) { 6730 case TCP_SYN_RECV: 6731 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6732 if (!tp->srtt_us) 6733 tcp_synack_rtt_meas(sk, req); 6734 6735 if (req) { 6736 tcp_rcv_synrecv_state_fastopen(sk); 6737 } else { 6738 tcp_try_undo_spurious_syn(sk); 6739 tp->retrans_stamp = 0; 6740 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6741 skb); 6742 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6743 } 6744 tcp_ao_established(sk); 6745 smp_mb(); 6746 tcp_set_state(sk, TCP_ESTABLISHED); 6747 sk->sk_state_change(sk); 6748 6749 /* Note, that this wakeup is only for marginal crossed SYN case. 6750 * Passively open sockets are not waked up, because 6751 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6752 */ 6753 if (sk->sk_socket) 6754 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6755 6756 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6757 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6758 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6759 6760 if (tp->rx_opt.tstamp_ok) 6761 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6762 6763 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6764 tcp_update_pacing_rate(sk); 6765 6766 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6767 tp->lsndtime = tcp_jiffies32; 6768 6769 tcp_initialize_rcv_mss(sk); 6770 tcp_fast_path_on(tp); 6771 break; 6772 6773 case TCP_FIN_WAIT1: { 6774 int tmo; 6775 6776 if (req) 6777 tcp_rcv_synrecv_state_fastopen(sk); 6778 6779 if (tp->snd_una != tp->write_seq) 6780 break; 6781 6782 tcp_set_state(sk, TCP_FIN_WAIT2); 6783 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6784 6785 sk_dst_confirm(sk); 6786 6787 if (!sock_flag(sk, SOCK_DEAD)) { 6788 /* Wake up lingering close() */ 6789 sk->sk_state_change(sk); 6790 break; 6791 } 6792 6793 if (READ_ONCE(tp->linger2) < 0) { 6794 tcp_done(sk); 6795 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6796 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6797 } 6798 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6799 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6800 /* Receive out of order FIN after close() */ 6801 if (tp->syn_fastopen && th->fin) 6802 tcp_fastopen_active_disable(sk); 6803 tcp_done(sk); 6804 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6805 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6806 } 6807 6808 tmo = tcp_fin_time(sk); 6809 if (tmo > TCP_TIMEWAIT_LEN) { 6810 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6811 } else if (th->fin || sock_owned_by_user(sk)) { 6812 /* Bad case. We could lose such FIN otherwise. 6813 * It is not a big problem, but it looks confusing 6814 * and not so rare event. We still can lose it now, 6815 * if it spins in bh_lock_sock(), but it is really 6816 * marginal case. 6817 */ 6818 inet_csk_reset_keepalive_timer(sk, tmo); 6819 } else { 6820 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6821 goto consume; 6822 } 6823 break; 6824 } 6825 6826 case TCP_CLOSING: 6827 if (tp->snd_una == tp->write_seq) { 6828 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6829 goto consume; 6830 } 6831 break; 6832 6833 case TCP_LAST_ACK: 6834 if (tp->snd_una == tp->write_seq) { 6835 tcp_update_metrics(sk); 6836 tcp_done(sk); 6837 goto consume; 6838 } 6839 break; 6840 } 6841 6842 /* step 6: check the URG bit */ 6843 tcp_urg(sk, skb, th); 6844 6845 /* step 7: process the segment text */ 6846 switch (sk->sk_state) { 6847 case TCP_CLOSE_WAIT: 6848 case TCP_CLOSING: 6849 case TCP_LAST_ACK: 6850 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6851 /* If a subflow has been reset, the packet should not 6852 * continue to be processed, drop the packet. 6853 */ 6854 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6855 goto discard; 6856 break; 6857 } 6858 fallthrough; 6859 case TCP_FIN_WAIT1: 6860 case TCP_FIN_WAIT2: 6861 /* RFC 793 says to queue data in these states, 6862 * RFC 1122 says we MUST send a reset. 6863 * BSD 4.4 also does reset. 6864 */ 6865 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6866 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6867 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6868 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6869 tcp_reset(sk, skb); 6870 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6871 } 6872 } 6873 fallthrough; 6874 case TCP_ESTABLISHED: 6875 tcp_data_queue(sk, skb); 6876 queued = 1; 6877 break; 6878 } 6879 6880 /* tcp_data could move socket to TIME-WAIT */ 6881 if (sk->sk_state != TCP_CLOSE) { 6882 tcp_data_snd_check(sk); 6883 tcp_ack_snd_check(sk); 6884 } 6885 6886 if (!queued) { 6887 discard: 6888 tcp_drop_reason(sk, skb, reason); 6889 } 6890 return 0; 6891 6892 consume: 6893 __kfree_skb(skb); 6894 return 0; 6895 } 6896 EXPORT_SYMBOL(tcp_rcv_state_process); 6897 6898 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6899 { 6900 struct inet_request_sock *ireq = inet_rsk(req); 6901 6902 if (family == AF_INET) 6903 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6904 &ireq->ir_rmt_addr, port); 6905 #if IS_ENABLED(CONFIG_IPV6) 6906 else if (family == AF_INET6) 6907 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6908 &ireq->ir_v6_rmt_addr, port); 6909 #endif 6910 } 6911 6912 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6913 * 6914 * If we receive a SYN packet with these bits set, it means a 6915 * network is playing bad games with TOS bits. In order to 6916 * avoid possible false congestion notifications, we disable 6917 * TCP ECN negotiation. 6918 * 6919 * Exception: tcp_ca wants ECN. This is required for DCTCP 6920 * congestion control: Linux DCTCP asserts ECT on all packets, 6921 * including SYN, which is most optimal solution; however, 6922 * others, such as FreeBSD do not. 6923 * 6924 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6925 * set, indicating the use of a future TCP extension (such as AccECN). See 6926 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6927 * extensions. 6928 */ 6929 static void tcp_ecn_create_request(struct request_sock *req, 6930 const struct sk_buff *skb, 6931 const struct sock *listen_sk, 6932 const struct dst_entry *dst) 6933 { 6934 const struct tcphdr *th = tcp_hdr(skb); 6935 const struct net *net = sock_net(listen_sk); 6936 bool th_ecn = th->ece && th->cwr; 6937 bool ect, ecn_ok; 6938 u32 ecn_ok_dst; 6939 6940 if (!th_ecn) 6941 return; 6942 6943 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6944 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6945 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6946 6947 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6948 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6949 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6950 inet_rsk(req)->ecn_ok = 1; 6951 } 6952 6953 static void tcp_openreq_init(struct request_sock *req, 6954 const struct tcp_options_received *rx_opt, 6955 struct sk_buff *skb, const struct sock *sk) 6956 { 6957 struct inet_request_sock *ireq = inet_rsk(req); 6958 6959 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6960 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6961 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6962 tcp_rsk(req)->snt_synack = 0; 6963 tcp_rsk(req)->last_oow_ack_time = 0; 6964 req->mss = rx_opt->mss_clamp; 6965 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6966 ireq->tstamp_ok = rx_opt->tstamp_ok; 6967 ireq->sack_ok = rx_opt->sack_ok; 6968 ireq->snd_wscale = rx_opt->snd_wscale; 6969 ireq->wscale_ok = rx_opt->wscale_ok; 6970 ireq->acked = 0; 6971 ireq->ecn_ok = 0; 6972 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6973 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6974 ireq->ir_mark = inet_request_mark(sk, skb); 6975 #if IS_ENABLED(CONFIG_SMC) 6976 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6977 tcp_sk(sk)->smc_hs_congested(sk)); 6978 #endif 6979 } 6980 6981 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6982 struct sock *sk_listener, 6983 bool attach_listener) 6984 { 6985 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6986 attach_listener); 6987 6988 if (req) { 6989 struct inet_request_sock *ireq = inet_rsk(req); 6990 6991 ireq->ireq_opt = NULL; 6992 #if IS_ENABLED(CONFIG_IPV6) 6993 ireq->pktopts = NULL; 6994 #endif 6995 atomic64_set(&ireq->ir_cookie, 0); 6996 ireq->ireq_state = TCP_NEW_SYN_RECV; 6997 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6998 ireq->ireq_family = sk_listener->sk_family; 6999 req->timeout = TCP_TIMEOUT_INIT; 7000 } 7001 7002 return req; 7003 } 7004 EXPORT_SYMBOL(inet_reqsk_alloc); 7005 7006 /* 7007 * Return true if a syncookie should be sent 7008 */ 7009 static bool tcp_syn_flood_action(struct sock *sk, const char *proto) 7010 { 7011 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 7012 const char *msg = "Dropping request"; 7013 struct net *net = sock_net(sk); 7014 bool want_cookie = false; 7015 u8 syncookies; 7016 7017 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7018 7019 #ifdef CONFIG_SYN_COOKIES 7020 if (syncookies) { 7021 msg = "Sending cookies"; 7022 want_cookie = true; 7023 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 7024 } else 7025 #endif 7026 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 7027 7028 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 7029 xchg(&queue->synflood_warned, 1) == 0) { 7030 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 7031 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 7032 proto, inet6_rcv_saddr(sk), 7033 sk->sk_num, msg); 7034 } else { 7035 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7036 proto, &sk->sk_rcv_saddr, 7037 sk->sk_num, msg); 7038 } 7039 } 7040 7041 return want_cookie; 7042 } 7043 7044 static void tcp_reqsk_record_syn(const struct sock *sk, 7045 struct request_sock *req, 7046 const struct sk_buff *skb) 7047 { 7048 if (tcp_sk(sk)->save_syn) { 7049 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7050 struct saved_syn *saved_syn; 7051 u32 mac_hdrlen; 7052 void *base; 7053 7054 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7055 base = skb_mac_header(skb); 7056 mac_hdrlen = skb_mac_header_len(skb); 7057 len += mac_hdrlen; 7058 } else { 7059 base = skb_network_header(skb); 7060 mac_hdrlen = 0; 7061 } 7062 7063 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7064 GFP_ATOMIC); 7065 if (saved_syn) { 7066 saved_syn->mac_hdrlen = mac_hdrlen; 7067 saved_syn->network_hdrlen = skb_network_header_len(skb); 7068 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7069 memcpy(saved_syn->data, base, len); 7070 req->saved_syn = saved_syn; 7071 } 7072 } 7073 } 7074 7075 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7076 * used for SYN cookie generation. 7077 */ 7078 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7079 const struct tcp_request_sock_ops *af_ops, 7080 struct sock *sk, struct tcphdr *th) 7081 { 7082 struct tcp_sock *tp = tcp_sk(sk); 7083 u16 mss; 7084 7085 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7086 !inet_csk_reqsk_queue_is_full(sk)) 7087 return 0; 7088 7089 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7090 return 0; 7091 7092 if (sk_acceptq_is_full(sk)) { 7093 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7094 return 0; 7095 } 7096 7097 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7098 if (!mss) 7099 mss = af_ops->mss_clamp; 7100 7101 return mss; 7102 } 7103 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 7104 7105 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7106 const struct tcp_request_sock_ops *af_ops, 7107 struct sock *sk, struct sk_buff *skb) 7108 { 7109 struct tcp_fastopen_cookie foc = { .len = -1 }; 7110 struct tcp_options_received tmp_opt; 7111 struct tcp_sock *tp = tcp_sk(sk); 7112 struct net *net = sock_net(sk); 7113 struct sock *fastopen_sk = NULL; 7114 struct request_sock *req; 7115 bool want_cookie = false; 7116 struct dst_entry *dst; 7117 struct flowi fl; 7118 u8 syncookies; 7119 u32 isn; 7120 7121 #ifdef CONFIG_TCP_AO 7122 const struct tcp_ao_hdr *aoh; 7123 #endif 7124 7125 isn = __this_cpu_read(tcp_tw_isn); 7126 if (isn) { 7127 /* TW buckets are converted to open requests without 7128 * limitations, they conserve resources and peer is 7129 * evidently real one. 7130 */ 7131 __this_cpu_write(tcp_tw_isn, 0); 7132 } else { 7133 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7134 7135 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) { 7136 want_cookie = tcp_syn_flood_action(sk, 7137 rsk_ops->slab_name); 7138 if (!want_cookie) 7139 goto drop; 7140 } 7141 } 7142 7143 if (sk_acceptq_is_full(sk)) { 7144 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7145 goto drop; 7146 } 7147 7148 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7149 if (!req) 7150 goto drop; 7151 7152 req->syncookie = want_cookie; 7153 tcp_rsk(req)->af_specific = af_ops; 7154 tcp_rsk(req)->ts_off = 0; 7155 tcp_rsk(req)->req_usec_ts = false; 7156 #if IS_ENABLED(CONFIG_MPTCP) 7157 tcp_rsk(req)->is_mptcp = 0; 7158 #endif 7159 7160 tcp_clear_options(&tmp_opt); 7161 tmp_opt.mss_clamp = af_ops->mss_clamp; 7162 tmp_opt.user_mss = tp->rx_opt.user_mss; 7163 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7164 want_cookie ? NULL : &foc); 7165 7166 if (want_cookie && !tmp_opt.saw_tstamp) 7167 tcp_clear_options(&tmp_opt); 7168 7169 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7170 tmp_opt.smc_ok = 0; 7171 7172 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7173 tcp_openreq_init(req, &tmp_opt, skb, sk); 7174 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7175 7176 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7177 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7178 7179 dst = af_ops->route_req(sk, skb, &fl, req, isn); 7180 if (!dst) 7181 goto drop_and_free; 7182 7183 if (tmp_opt.tstamp_ok) { 7184 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 7185 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7186 } 7187 if (!want_cookie && !isn) { 7188 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7189 7190 /* Kill the following clause, if you dislike this way. */ 7191 if (!syncookies && 7192 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7193 (max_syn_backlog >> 2)) && 7194 !tcp_peer_is_proven(req, dst)) { 7195 /* Without syncookies last quarter of 7196 * backlog is filled with destinations, 7197 * proven to be alive. 7198 * It means that we continue to communicate 7199 * to destinations, already remembered 7200 * to the moment of synflood. 7201 */ 7202 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7203 rsk_ops->family); 7204 goto drop_and_release; 7205 } 7206 7207 isn = af_ops->init_seq(skb); 7208 } 7209 7210 tcp_ecn_create_request(req, skb, sk, dst); 7211 7212 if (want_cookie) { 7213 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7214 if (!tmp_opt.tstamp_ok) 7215 inet_rsk(req)->ecn_ok = 0; 7216 } 7217 7218 #ifdef CONFIG_TCP_AO 7219 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 7220 goto drop_and_release; /* Invalid TCP options */ 7221 if (aoh) { 7222 tcp_rsk(req)->used_tcp_ao = true; 7223 tcp_rsk(req)->ao_rcv_next = aoh->keyid; 7224 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid; 7225 7226 } else { 7227 tcp_rsk(req)->used_tcp_ao = false; 7228 } 7229 #endif 7230 tcp_rsk(req)->snt_isn = isn; 7231 tcp_rsk(req)->txhash = net_tx_rndhash(); 7232 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7233 tcp_openreq_init_rwin(req, sk, dst); 7234 sk_rx_queue_set(req_to_sk(req), skb); 7235 if (!want_cookie) { 7236 tcp_reqsk_record_syn(sk, req, skb); 7237 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7238 } 7239 if (fastopen_sk) { 7240 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7241 &foc, TCP_SYNACK_FASTOPEN, skb); 7242 /* Add the child socket directly into the accept queue */ 7243 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7244 reqsk_fastopen_remove(fastopen_sk, req, false); 7245 bh_unlock_sock(fastopen_sk); 7246 sock_put(fastopen_sk); 7247 goto drop_and_free; 7248 } 7249 sk->sk_data_ready(sk); 7250 bh_unlock_sock(fastopen_sk); 7251 sock_put(fastopen_sk); 7252 } else { 7253 tcp_rsk(req)->tfo_listener = false; 7254 if (!want_cookie) { 7255 req->timeout = tcp_timeout_init((struct sock *)req); 7256 inet_csk_reqsk_queue_hash_add(sk, req, req->timeout); 7257 } 7258 af_ops->send_synack(sk, dst, &fl, req, &foc, 7259 !want_cookie ? TCP_SYNACK_NORMAL : 7260 TCP_SYNACK_COOKIE, 7261 skb); 7262 if (want_cookie) { 7263 reqsk_free(req); 7264 return 0; 7265 } 7266 } 7267 reqsk_put(req); 7268 return 0; 7269 7270 drop_and_release: 7271 dst_release(dst); 7272 drop_and_free: 7273 __reqsk_free(req); 7274 drop: 7275 tcp_listendrop(sk); 7276 return 0; 7277 } 7278 EXPORT_SYMBOL(tcp_conn_request); 7279