1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_fack __read_mostly; 80 int sysctl_tcp_max_reordering __read_mostly = 300; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 1; 84 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 85 86 /* rfc5961 challenge ack rate limiting */ 87 int sysctl_tcp_challenge_ack_limit = 1000; 88 89 int sysctl_tcp_stdurg __read_mostly; 90 int sysctl_tcp_rfc1337 __read_mostly; 91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 92 int sysctl_tcp_frto __read_mostly = 2; 93 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 94 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 95 int sysctl_tcp_early_retrans __read_mostly = 3; 96 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 97 98 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 99 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 100 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 101 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 102 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 103 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 104 #define FLAG_ECE 0x40 /* ECE in this ACK */ 105 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 106 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 107 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 108 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 109 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 110 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 111 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 112 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 113 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 114 115 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 116 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 117 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 118 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 119 120 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 121 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 122 123 #define REXMIT_NONE 0 /* no loss recovery to do */ 124 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 125 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 126 127 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 128 unsigned int len) 129 { 130 static bool __once __read_mostly; 131 132 if (!__once) { 133 struct net_device *dev; 134 135 __once = true; 136 137 rcu_read_lock(); 138 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 139 if (!dev || len >= dev->mtu) 140 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 141 dev ? dev->name : "Unknown driver"); 142 rcu_read_unlock(); 143 } 144 } 145 146 /* Adapt the MSS value used to make delayed ack decision to the 147 * real world. 148 */ 149 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 150 { 151 struct inet_connection_sock *icsk = inet_csk(sk); 152 const unsigned int lss = icsk->icsk_ack.last_seg_size; 153 unsigned int len; 154 155 icsk->icsk_ack.last_seg_size = 0; 156 157 /* skb->len may jitter because of SACKs, even if peer 158 * sends good full-sized frames. 159 */ 160 len = skb_shinfo(skb)->gso_size ? : skb->len; 161 if (len >= icsk->icsk_ack.rcv_mss) { 162 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 163 tcp_sk(sk)->advmss); 164 /* Account for possibly-removed options */ 165 if (unlikely(len > icsk->icsk_ack.rcv_mss + 166 MAX_TCP_OPTION_SPACE)) 167 tcp_gro_dev_warn(sk, skb, len); 168 } else { 169 /* Otherwise, we make more careful check taking into account, 170 * that SACKs block is variable. 171 * 172 * "len" is invariant segment length, including TCP header. 173 */ 174 len += skb->data - skb_transport_header(skb); 175 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 176 /* If PSH is not set, packet should be 177 * full sized, provided peer TCP is not badly broken. 178 * This observation (if it is correct 8)) allows 179 * to handle super-low mtu links fairly. 180 */ 181 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 182 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 183 /* Subtract also invariant (if peer is RFC compliant), 184 * tcp header plus fixed timestamp option length. 185 * Resulting "len" is MSS free of SACK jitter. 186 */ 187 len -= tcp_sk(sk)->tcp_header_len; 188 icsk->icsk_ack.last_seg_size = len; 189 if (len == lss) { 190 icsk->icsk_ack.rcv_mss = len; 191 return; 192 } 193 } 194 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 195 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 196 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 197 } 198 } 199 200 static void tcp_incr_quickack(struct sock *sk) 201 { 202 struct inet_connection_sock *icsk = inet_csk(sk); 203 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 204 205 if (quickacks == 0) 206 quickacks = 2; 207 if (quickacks > icsk->icsk_ack.quick) 208 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 209 } 210 211 static void tcp_enter_quickack_mode(struct sock *sk) 212 { 213 struct inet_connection_sock *icsk = inet_csk(sk); 214 tcp_incr_quickack(sk); 215 icsk->icsk_ack.pingpong = 0; 216 icsk->icsk_ack.ato = TCP_ATO_MIN; 217 } 218 219 /* Send ACKs quickly, if "quick" count is not exhausted 220 * and the session is not interactive. 221 */ 222 223 static bool tcp_in_quickack_mode(struct sock *sk) 224 { 225 const struct inet_connection_sock *icsk = inet_csk(sk); 226 const struct dst_entry *dst = __sk_dst_get(sk); 227 228 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 229 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 230 } 231 232 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 233 { 234 if (tp->ecn_flags & TCP_ECN_OK) 235 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 236 } 237 238 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 239 { 240 if (tcp_hdr(skb)->cwr) 241 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 242 } 243 244 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 245 { 246 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 247 } 248 249 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 250 { 251 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 252 case INET_ECN_NOT_ECT: 253 /* Funny extension: if ECT is not set on a segment, 254 * and we already seen ECT on a previous segment, 255 * it is probably a retransmit. 256 */ 257 if (tp->ecn_flags & TCP_ECN_SEEN) 258 tcp_enter_quickack_mode((struct sock *)tp); 259 break; 260 case INET_ECN_CE: 261 if (tcp_ca_needs_ecn((struct sock *)tp)) 262 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 263 264 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 265 /* Better not delay acks, sender can have a very low cwnd */ 266 tcp_enter_quickack_mode((struct sock *)tp); 267 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 268 } 269 tp->ecn_flags |= TCP_ECN_SEEN; 270 break; 271 default: 272 if (tcp_ca_needs_ecn((struct sock *)tp)) 273 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 274 tp->ecn_flags |= TCP_ECN_SEEN; 275 break; 276 } 277 } 278 279 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 280 { 281 if (tp->ecn_flags & TCP_ECN_OK) 282 __tcp_ecn_check_ce(tp, skb); 283 } 284 285 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 286 { 287 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 288 tp->ecn_flags &= ~TCP_ECN_OK; 289 } 290 291 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 292 { 293 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 294 tp->ecn_flags &= ~TCP_ECN_OK; 295 } 296 297 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 298 { 299 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 300 return true; 301 return false; 302 } 303 304 /* Buffer size and advertised window tuning. 305 * 306 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 307 */ 308 309 static void tcp_sndbuf_expand(struct sock *sk) 310 { 311 const struct tcp_sock *tp = tcp_sk(sk); 312 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 313 int sndmem, per_mss; 314 u32 nr_segs; 315 316 /* Worst case is non GSO/TSO : each frame consumes one skb 317 * and skb->head is kmalloced using power of two area of memory 318 */ 319 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 320 MAX_TCP_HEADER + 321 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 322 323 per_mss = roundup_pow_of_two(per_mss) + 324 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 325 326 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 327 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 328 329 /* Fast Recovery (RFC 5681 3.2) : 330 * Cubic needs 1.7 factor, rounded to 2 to include 331 * extra cushion (application might react slowly to POLLOUT) 332 */ 333 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 334 sndmem *= nr_segs * per_mss; 335 336 if (sk->sk_sndbuf < sndmem) 337 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 338 } 339 340 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 341 * 342 * All tcp_full_space() is split to two parts: "network" buffer, allocated 343 * forward and advertised in receiver window (tp->rcv_wnd) and 344 * "application buffer", required to isolate scheduling/application 345 * latencies from network. 346 * window_clamp is maximal advertised window. It can be less than 347 * tcp_full_space(), in this case tcp_full_space() - window_clamp 348 * is reserved for "application" buffer. The less window_clamp is 349 * the smoother our behaviour from viewpoint of network, but the lower 350 * throughput and the higher sensitivity of the connection to losses. 8) 351 * 352 * rcv_ssthresh is more strict window_clamp used at "slow start" 353 * phase to predict further behaviour of this connection. 354 * It is used for two goals: 355 * - to enforce header prediction at sender, even when application 356 * requires some significant "application buffer". It is check #1. 357 * - to prevent pruning of receive queue because of misprediction 358 * of receiver window. Check #2. 359 * 360 * The scheme does not work when sender sends good segments opening 361 * window and then starts to feed us spaghetti. But it should work 362 * in common situations. Otherwise, we have to rely on queue collapsing. 363 */ 364 365 /* Slow part of check#2. */ 366 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 367 { 368 struct tcp_sock *tp = tcp_sk(sk); 369 /* Optimize this! */ 370 int truesize = tcp_win_from_space(skb->truesize) >> 1; 371 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 372 373 while (tp->rcv_ssthresh <= window) { 374 if (truesize <= skb->len) 375 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 376 377 truesize >>= 1; 378 window >>= 1; 379 } 380 return 0; 381 } 382 383 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 384 { 385 struct tcp_sock *tp = tcp_sk(sk); 386 387 /* Check #1 */ 388 if (tp->rcv_ssthresh < tp->window_clamp && 389 (int)tp->rcv_ssthresh < tcp_space(sk) && 390 !tcp_under_memory_pressure(sk)) { 391 int incr; 392 393 /* Check #2. Increase window, if skb with such overhead 394 * will fit to rcvbuf in future. 395 */ 396 if (tcp_win_from_space(skb->truesize) <= skb->len) 397 incr = 2 * tp->advmss; 398 else 399 incr = __tcp_grow_window(sk, skb); 400 401 if (incr) { 402 incr = max_t(int, incr, 2 * skb->len); 403 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 404 tp->window_clamp); 405 inet_csk(sk)->icsk_ack.quick |= 1; 406 } 407 } 408 } 409 410 /* 3. Tuning rcvbuf, when connection enters established state. */ 411 static void tcp_fixup_rcvbuf(struct sock *sk) 412 { 413 u32 mss = tcp_sk(sk)->advmss; 414 int rcvmem; 415 416 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 417 tcp_default_init_rwnd(mss); 418 419 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 420 * Allow enough cushion so that sender is not limited by our window 421 */ 422 if (sysctl_tcp_moderate_rcvbuf) 423 rcvmem <<= 2; 424 425 if (sk->sk_rcvbuf < rcvmem) 426 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 427 } 428 429 /* 4. Try to fixup all. It is made immediately after connection enters 430 * established state. 431 */ 432 void tcp_init_buffer_space(struct sock *sk) 433 { 434 struct tcp_sock *tp = tcp_sk(sk); 435 int maxwin; 436 437 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 438 tcp_fixup_rcvbuf(sk); 439 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 440 tcp_sndbuf_expand(sk); 441 442 tp->rcvq_space.space = tp->rcv_wnd; 443 tcp_mstamp_refresh(tp); 444 tp->rcvq_space.time = tp->tcp_mstamp; 445 tp->rcvq_space.seq = tp->copied_seq; 446 447 maxwin = tcp_full_space(sk); 448 449 if (tp->window_clamp >= maxwin) { 450 tp->window_clamp = maxwin; 451 452 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 453 tp->window_clamp = max(maxwin - 454 (maxwin >> sysctl_tcp_app_win), 455 4 * tp->advmss); 456 } 457 458 /* Force reservation of one segment. */ 459 if (sysctl_tcp_app_win && 460 tp->window_clamp > 2 * tp->advmss && 461 tp->window_clamp + tp->advmss > maxwin) 462 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 463 464 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 465 tp->snd_cwnd_stamp = tcp_jiffies32; 466 } 467 468 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 469 static void tcp_clamp_window(struct sock *sk) 470 { 471 struct tcp_sock *tp = tcp_sk(sk); 472 struct inet_connection_sock *icsk = inet_csk(sk); 473 474 icsk->icsk_ack.quick = 0; 475 476 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 477 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 478 !tcp_under_memory_pressure(sk) && 479 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 480 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 481 sysctl_tcp_rmem[2]); 482 } 483 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 484 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 485 } 486 487 /* Initialize RCV_MSS value. 488 * RCV_MSS is an our guess about MSS used by the peer. 489 * We haven't any direct information about the MSS. 490 * It's better to underestimate the RCV_MSS rather than overestimate. 491 * Overestimations make us ACKing less frequently than needed. 492 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 493 */ 494 void tcp_initialize_rcv_mss(struct sock *sk) 495 { 496 const struct tcp_sock *tp = tcp_sk(sk); 497 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 498 499 hint = min(hint, tp->rcv_wnd / 2); 500 hint = min(hint, TCP_MSS_DEFAULT); 501 hint = max(hint, TCP_MIN_MSS); 502 503 inet_csk(sk)->icsk_ack.rcv_mss = hint; 504 } 505 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 506 507 /* Receiver "autotuning" code. 508 * 509 * The algorithm for RTT estimation w/o timestamps is based on 510 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 511 * <http://public.lanl.gov/radiant/pubs.html#DRS> 512 * 513 * More detail on this code can be found at 514 * <http://staff.psc.edu/jheffner/>, 515 * though this reference is out of date. A new paper 516 * is pending. 517 */ 518 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 519 { 520 u32 new_sample = tp->rcv_rtt_est.rtt_us; 521 long m = sample; 522 523 if (m == 0) 524 m = 1; 525 526 if (new_sample != 0) { 527 /* If we sample in larger samples in the non-timestamp 528 * case, we could grossly overestimate the RTT especially 529 * with chatty applications or bulk transfer apps which 530 * are stalled on filesystem I/O. 531 * 532 * Also, since we are only going for a minimum in the 533 * non-timestamp case, we do not smooth things out 534 * else with timestamps disabled convergence takes too 535 * long. 536 */ 537 if (!win_dep) { 538 m -= (new_sample >> 3); 539 new_sample += m; 540 } else { 541 m <<= 3; 542 if (m < new_sample) 543 new_sample = m; 544 } 545 } else { 546 /* No previous measure. */ 547 new_sample = m << 3; 548 } 549 550 tp->rcv_rtt_est.rtt_us = new_sample; 551 } 552 553 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 554 { 555 u32 delta_us; 556 557 if (tp->rcv_rtt_est.time == 0) 558 goto new_measure; 559 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 560 return; 561 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 562 tcp_rcv_rtt_update(tp, delta_us, 1); 563 564 new_measure: 565 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 566 tp->rcv_rtt_est.time = tp->tcp_mstamp; 567 } 568 569 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 570 const struct sk_buff *skb) 571 { 572 struct tcp_sock *tp = tcp_sk(sk); 573 574 if (tp->rx_opt.rcv_tsecr && 575 (TCP_SKB_CB(skb)->end_seq - 576 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 577 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 578 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 579 580 tcp_rcv_rtt_update(tp, delta_us, 0); 581 } 582 } 583 584 /* 585 * This function should be called every time data is copied to user space. 586 * It calculates the appropriate TCP receive buffer space. 587 */ 588 void tcp_rcv_space_adjust(struct sock *sk) 589 { 590 struct tcp_sock *tp = tcp_sk(sk); 591 int time; 592 int copied; 593 594 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 595 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 596 return; 597 598 /* Number of bytes copied to user in last RTT */ 599 copied = tp->copied_seq - tp->rcvq_space.seq; 600 if (copied <= tp->rcvq_space.space) 601 goto new_measure; 602 603 /* A bit of theory : 604 * copied = bytes received in previous RTT, our base window 605 * To cope with packet losses, we need a 2x factor 606 * To cope with slow start, and sender growing its cwin by 100 % 607 * every RTT, we need a 4x factor, because the ACK we are sending 608 * now is for the next RTT, not the current one : 609 * <prev RTT . ><current RTT .. ><next RTT .... > 610 */ 611 612 if (sysctl_tcp_moderate_rcvbuf && 613 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 614 int rcvwin, rcvmem, rcvbuf; 615 616 /* minimal window to cope with packet losses, assuming 617 * steady state. Add some cushion because of small variations. 618 */ 619 rcvwin = (copied << 1) + 16 * tp->advmss; 620 621 /* If rate increased by 25%, 622 * assume slow start, rcvwin = 3 * copied 623 * If rate increased by 50%, 624 * assume sender can use 2x growth, rcvwin = 4 * copied 625 */ 626 if (copied >= 627 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 628 if (copied >= 629 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 630 rcvwin <<= 1; 631 else 632 rcvwin += (rcvwin >> 1); 633 } 634 635 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 636 while (tcp_win_from_space(rcvmem) < tp->advmss) 637 rcvmem += 128; 638 639 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 640 if (rcvbuf > sk->sk_rcvbuf) { 641 sk->sk_rcvbuf = rcvbuf; 642 643 /* Make the window clamp follow along. */ 644 tp->window_clamp = rcvwin; 645 } 646 } 647 tp->rcvq_space.space = copied; 648 649 new_measure: 650 tp->rcvq_space.seq = tp->copied_seq; 651 tp->rcvq_space.time = tp->tcp_mstamp; 652 } 653 654 /* There is something which you must keep in mind when you analyze the 655 * behavior of the tp->ato delayed ack timeout interval. When a 656 * connection starts up, we want to ack as quickly as possible. The 657 * problem is that "good" TCP's do slow start at the beginning of data 658 * transmission. The means that until we send the first few ACK's the 659 * sender will sit on his end and only queue most of his data, because 660 * he can only send snd_cwnd unacked packets at any given time. For 661 * each ACK we send, he increments snd_cwnd and transmits more of his 662 * queue. -DaveM 663 */ 664 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 665 { 666 struct tcp_sock *tp = tcp_sk(sk); 667 struct inet_connection_sock *icsk = inet_csk(sk); 668 u32 now; 669 670 inet_csk_schedule_ack(sk); 671 672 tcp_measure_rcv_mss(sk, skb); 673 674 tcp_rcv_rtt_measure(tp); 675 676 now = tcp_jiffies32; 677 678 if (!icsk->icsk_ack.ato) { 679 /* The _first_ data packet received, initialize 680 * delayed ACK engine. 681 */ 682 tcp_incr_quickack(sk); 683 icsk->icsk_ack.ato = TCP_ATO_MIN; 684 } else { 685 int m = now - icsk->icsk_ack.lrcvtime; 686 687 if (m <= TCP_ATO_MIN / 2) { 688 /* The fastest case is the first. */ 689 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 690 } else if (m < icsk->icsk_ack.ato) { 691 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 692 if (icsk->icsk_ack.ato > icsk->icsk_rto) 693 icsk->icsk_ack.ato = icsk->icsk_rto; 694 } else if (m > icsk->icsk_rto) { 695 /* Too long gap. Apparently sender failed to 696 * restart window, so that we send ACKs quickly. 697 */ 698 tcp_incr_quickack(sk); 699 sk_mem_reclaim(sk); 700 } 701 } 702 icsk->icsk_ack.lrcvtime = now; 703 704 tcp_ecn_check_ce(tp, skb); 705 706 if (skb->len >= 128) 707 tcp_grow_window(sk, skb); 708 } 709 710 /* Called to compute a smoothed rtt estimate. The data fed to this 711 * routine either comes from timestamps, or from segments that were 712 * known _not_ to have been retransmitted [see Karn/Partridge 713 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 714 * piece by Van Jacobson. 715 * NOTE: the next three routines used to be one big routine. 716 * To save cycles in the RFC 1323 implementation it was better to break 717 * it up into three procedures. -- erics 718 */ 719 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 720 { 721 struct tcp_sock *tp = tcp_sk(sk); 722 long m = mrtt_us; /* RTT */ 723 u32 srtt = tp->srtt_us; 724 725 /* The following amusing code comes from Jacobson's 726 * article in SIGCOMM '88. Note that rtt and mdev 727 * are scaled versions of rtt and mean deviation. 728 * This is designed to be as fast as possible 729 * m stands for "measurement". 730 * 731 * On a 1990 paper the rto value is changed to: 732 * RTO = rtt + 4 * mdev 733 * 734 * Funny. This algorithm seems to be very broken. 735 * These formulae increase RTO, when it should be decreased, increase 736 * too slowly, when it should be increased quickly, decrease too quickly 737 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 738 * does not matter how to _calculate_ it. Seems, it was trap 739 * that VJ failed to avoid. 8) 740 */ 741 if (srtt != 0) { 742 m -= (srtt >> 3); /* m is now error in rtt est */ 743 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 744 if (m < 0) { 745 m = -m; /* m is now abs(error) */ 746 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 747 /* This is similar to one of Eifel findings. 748 * Eifel blocks mdev updates when rtt decreases. 749 * This solution is a bit different: we use finer gain 750 * for mdev in this case (alpha*beta). 751 * Like Eifel it also prevents growth of rto, 752 * but also it limits too fast rto decreases, 753 * happening in pure Eifel. 754 */ 755 if (m > 0) 756 m >>= 3; 757 } else { 758 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 759 } 760 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 761 if (tp->mdev_us > tp->mdev_max_us) { 762 tp->mdev_max_us = tp->mdev_us; 763 if (tp->mdev_max_us > tp->rttvar_us) 764 tp->rttvar_us = tp->mdev_max_us; 765 } 766 if (after(tp->snd_una, tp->rtt_seq)) { 767 if (tp->mdev_max_us < tp->rttvar_us) 768 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 769 tp->rtt_seq = tp->snd_nxt; 770 tp->mdev_max_us = tcp_rto_min_us(sk); 771 } 772 } else { 773 /* no previous measure. */ 774 srtt = m << 3; /* take the measured time to be rtt */ 775 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 776 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 777 tp->mdev_max_us = tp->rttvar_us; 778 tp->rtt_seq = tp->snd_nxt; 779 } 780 tp->srtt_us = max(1U, srtt); 781 } 782 783 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 784 * Note: TCP stack does not yet implement pacing. 785 * FQ packet scheduler can be used to implement cheap but effective 786 * TCP pacing, to smooth the burst on large writes when packets 787 * in flight is significantly lower than cwnd (or rwin) 788 */ 789 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 790 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 791 792 static void tcp_update_pacing_rate(struct sock *sk) 793 { 794 const struct tcp_sock *tp = tcp_sk(sk); 795 u64 rate; 796 797 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 798 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 799 800 /* current rate is (cwnd * mss) / srtt 801 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 802 * In Congestion Avoidance phase, set it to 120 % the current rate. 803 * 804 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 805 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 806 * end of slow start and should slow down. 807 */ 808 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 809 rate *= sysctl_tcp_pacing_ss_ratio; 810 else 811 rate *= sysctl_tcp_pacing_ca_ratio; 812 813 rate *= max(tp->snd_cwnd, tp->packets_out); 814 815 if (likely(tp->srtt_us)) 816 do_div(rate, tp->srtt_us); 817 818 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 819 * without any lock. We want to make sure compiler wont store 820 * intermediate values in this location. 821 */ 822 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 823 sk->sk_max_pacing_rate); 824 } 825 826 /* Calculate rto without backoff. This is the second half of Van Jacobson's 827 * routine referred to above. 828 */ 829 static void tcp_set_rto(struct sock *sk) 830 { 831 const struct tcp_sock *tp = tcp_sk(sk); 832 /* Old crap is replaced with new one. 8) 833 * 834 * More seriously: 835 * 1. If rtt variance happened to be less 50msec, it is hallucination. 836 * It cannot be less due to utterly erratic ACK generation made 837 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 838 * to do with delayed acks, because at cwnd>2 true delack timeout 839 * is invisible. Actually, Linux-2.4 also generates erratic 840 * ACKs in some circumstances. 841 */ 842 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 843 844 /* 2. Fixups made earlier cannot be right. 845 * If we do not estimate RTO correctly without them, 846 * all the algo is pure shit and should be replaced 847 * with correct one. It is exactly, which we pretend to do. 848 */ 849 850 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 851 * guarantees that rto is higher. 852 */ 853 tcp_bound_rto(sk); 854 } 855 856 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 857 { 858 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 859 860 if (!cwnd) 861 cwnd = TCP_INIT_CWND; 862 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 863 } 864 865 /* 866 * Packet counting of FACK is based on in-order assumptions, therefore TCP 867 * disables it when reordering is detected 868 */ 869 void tcp_disable_fack(struct tcp_sock *tp) 870 { 871 /* RFC3517 uses different metric in lost marker => reset on change */ 872 if (tcp_is_fack(tp)) 873 tp->lost_skb_hint = NULL; 874 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 875 } 876 877 /* Take a notice that peer is sending D-SACKs */ 878 static void tcp_dsack_seen(struct tcp_sock *tp) 879 { 880 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 881 } 882 883 static void tcp_update_reordering(struct sock *sk, const int metric, 884 const int ts) 885 { 886 struct tcp_sock *tp = tcp_sk(sk); 887 int mib_idx; 888 889 if (WARN_ON_ONCE(metric < 0)) 890 return; 891 892 if (metric > tp->reordering) { 893 tp->reordering = min(sysctl_tcp_max_reordering, metric); 894 895 #if FASTRETRANS_DEBUG > 1 896 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 897 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 898 tp->reordering, 899 tp->fackets_out, 900 tp->sacked_out, 901 tp->undo_marker ? tp->undo_retrans : 0); 902 #endif 903 tcp_disable_fack(tp); 904 } 905 906 tp->rack.reord = 1; 907 908 /* This exciting event is worth to be remembered. 8) */ 909 if (ts) 910 mib_idx = LINUX_MIB_TCPTSREORDER; 911 else if (tcp_is_reno(tp)) 912 mib_idx = LINUX_MIB_TCPRENOREORDER; 913 else if (tcp_is_fack(tp)) 914 mib_idx = LINUX_MIB_TCPFACKREORDER; 915 else 916 mib_idx = LINUX_MIB_TCPSACKREORDER; 917 918 NET_INC_STATS(sock_net(sk), mib_idx); 919 } 920 921 /* This must be called before lost_out is incremented */ 922 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 923 { 924 if (!tp->retransmit_skb_hint || 925 before(TCP_SKB_CB(skb)->seq, 926 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 927 tp->retransmit_skb_hint = skb; 928 } 929 930 /* Sum the number of packets on the wire we have marked as lost. 931 * There are two cases we care about here: 932 * a) Packet hasn't been marked lost (nor retransmitted), 933 * and this is the first loss. 934 * b) Packet has been marked both lost and retransmitted, 935 * and this means we think it was lost again. 936 */ 937 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 938 { 939 __u8 sacked = TCP_SKB_CB(skb)->sacked; 940 941 if (!(sacked & TCPCB_LOST) || 942 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 943 tp->lost += tcp_skb_pcount(skb); 944 } 945 946 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 947 { 948 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 949 tcp_verify_retransmit_hint(tp, skb); 950 951 tp->lost_out += tcp_skb_pcount(skb); 952 tcp_sum_lost(tp, skb); 953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 954 } 955 } 956 957 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 958 { 959 tcp_verify_retransmit_hint(tp, skb); 960 961 tcp_sum_lost(tp, skb); 962 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 963 tp->lost_out += tcp_skb_pcount(skb); 964 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 965 } 966 } 967 968 /* This procedure tags the retransmission queue when SACKs arrive. 969 * 970 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 971 * Packets in queue with these bits set are counted in variables 972 * sacked_out, retrans_out and lost_out, correspondingly. 973 * 974 * Valid combinations are: 975 * Tag InFlight Description 976 * 0 1 - orig segment is in flight. 977 * S 0 - nothing flies, orig reached receiver. 978 * L 0 - nothing flies, orig lost by net. 979 * R 2 - both orig and retransmit are in flight. 980 * L|R 1 - orig is lost, retransmit is in flight. 981 * S|R 1 - orig reached receiver, retrans is still in flight. 982 * (L|S|R is logically valid, it could occur when L|R is sacked, 983 * but it is equivalent to plain S and code short-curcuits it to S. 984 * L|S is logically invalid, it would mean -1 packet in flight 8)) 985 * 986 * These 6 states form finite state machine, controlled by the following events: 987 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 988 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 989 * 3. Loss detection event of two flavors: 990 * A. Scoreboard estimator decided the packet is lost. 991 * A'. Reno "three dupacks" marks head of queue lost. 992 * A''. Its FACK modification, head until snd.fack is lost. 993 * B. SACK arrives sacking SND.NXT at the moment, when the 994 * segment was retransmitted. 995 * 4. D-SACK added new rule: D-SACK changes any tag to S. 996 * 997 * It is pleasant to note, that state diagram turns out to be commutative, 998 * so that we are allowed not to be bothered by order of our actions, 999 * when multiple events arrive simultaneously. (see the function below). 1000 * 1001 * Reordering detection. 1002 * -------------------- 1003 * Reordering metric is maximal distance, which a packet can be displaced 1004 * in packet stream. With SACKs we can estimate it: 1005 * 1006 * 1. SACK fills old hole and the corresponding segment was not 1007 * ever retransmitted -> reordering. Alas, we cannot use it 1008 * when segment was retransmitted. 1009 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1010 * for retransmitted and already SACKed segment -> reordering.. 1011 * Both of these heuristics are not used in Loss state, when we cannot 1012 * account for retransmits accurately. 1013 * 1014 * SACK block validation. 1015 * ---------------------- 1016 * 1017 * SACK block range validation checks that the received SACK block fits to 1018 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1019 * Note that SND.UNA is not included to the range though being valid because 1020 * it means that the receiver is rather inconsistent with itself reporting 1021 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1022 * perfectly valid, however, in light of RFC2018 which explicitly states 1023 * that "SACK block MUST reflect the newest segment. Even if the newest 1024 * segment is going to be discarded ...", not that it looks very clever 1025 * in case of head skb. Due to potentional receiver driven attacks, we 1026 * choose to avoid immediate execution of a walk in write queue due to 1027 * reneging and defer head skb's loss recovery to standard loss recovery 1028 * procedure that will eventually trigger (nothing forbids us doing this). 1029 * 1030 * Implements also blockage to start_seq wrap-around. Problem lies in the 1031 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1032 * there's no guarantee that it will be before snd_nxt (n). The problem 1033 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1034 * wrap (s_w): 1035 * 1036 * <- outs wnd -> <- wrapzone -> 1037 * u e n u_w e_w s n_w 1038 * | | | | | | | 1039 * |<------------+------+----- TCP seqno space --------------+---------->| 1040 * ...-- <2^31 ->| |<--------... 1041 * ...---- >2^31 ------>| |<--------... 1042 * 1043 * Current code wouldn't be vulnerable but it's better still to discard such 1044 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1045 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1046 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1047 * equal to the ideal case (infinite seqno space without wrap caused issues). 1048 * 1049 * With D-SACK the lower bound is extended to cover sequence space below 1050 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1051 * again, D-SACK block must not to go across snd_una (for the same reason as 1052 * for the normal SACK blocks, explained above). But there all simplicity 1053 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1054 * fully below undo_marker they do not affect behavior in anyway and can 1055 * therefore be safely ignored. In rare cases (which are more or less 1056 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1057 * fragmentation and packet reordering past skb's retransmission. To consider 1058 * them correctly, the acceptable range must be extended even more though 1059 * the exact amount is rather hard to quantify. However, tp->max_window can 1060 * be used as an exaggerated estimate. 1061 */ 1062 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1063 u32 start_seq, u32 end_seq) 1064 { 1065 /* Too far in future, or reversed (interpretation is ambiguous) */ 1066 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1067 return false; 1068 1069 /* Nasty start_seq wrap-around check (see comments above) */ 1070 if (!before(start_seq, tp->snd_nxt)) 1071 return false; 1072 1073 /* In outstanding window? ...This is valid exit for D-SACKs too. 1074 * start_seq == snd_una is non-sensical (see comments above) 1075 */ 1076 if (after(start_seq, tp->snd_una)) 1077 return true; 1078 1079 if (!is_dsack || !tp->undo_marker) 1080 return false; 1081 1082 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1083 if (after(end_seq, tp->snd_una)) 1084 return false; 1085 1086 if (!before(start_seq, tp->undo_marker)) 1087 return true; 1088 1089 /* Too old */ 1090 if (!after(end_seq, tp->undo_marker)) 1091 return false; 1092 1093 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1094 * start_seq < undo_marker and end_seq >= undo_marker. 1095 */ 1096 return !before(start_seq, end_seq - tp->max_window); 1097 } 1098 1099 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1100 struct tcp_sack_block_wire *sp, int num_sacks, 1101 u32 prior_snd_una) 1102 { 1103 struct tcp_sock *tp = tcp_sk(sk); 1104 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1105 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1106 bool dup_sack = false; 1107 1108 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1109 dup_sack = true; 1110 tcp_dsack_seen(tp); 1111 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1112 } else if (num_sacks > 1) { 1113 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1114 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1115 1116 if (!after(end_seq_0, end_seq_1) && 1117 !before(start_seq_0, start_seq_1)) { 1118 dup_sack = true; 1119 tcp_dsack_seen(tp); 1120 NET_INC_STATS(sock_net(sk), 1121 LINUX_MIB_TCPDSACKOFORECV); 1122 } 1123 } 1124 1125 /* D-SACK for already forgotten data... Do dumb counting. */ 1126 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1127 !after(end_seq_0, prior_snd_una) && 1128 after(end_seq_0, tp->undo_marker)) 1129 tp->undo_retrans--; 1130 1131 return dup_sack; 1132 } 1133 1134 struct tcp_sacktag_state { 1135 int reord; 1136 int fack_count; 1137 /* Timestamps for earliest and latest never-retransmitted segment 1138 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1139 * but congestion control should still get an accurate delay signal. 1140 */ 1141 u64 first_sackt; 1142 u64 last_sackt; 1143 struct rate_sample *rate; 1144 int flag; 1145 unsigned int mss_now; 1146 }; 1147 1148 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1149 * the incoming SACK may not exactly match but we can find smaller MSS 1150 * aligned portion of it that matches. Therefore we might need to fragment 1151 * which may fail and creates some hassle (caller must handle error case 1152 * returns). 1153 * 1154 * FIXME: this could be merged to shift decision code 1155 */ 1156 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1157 u32 start_seq, u32 end_seq) 1158 { 1159 int err; 1160 bool in_sack; 1161 unsigned int pkt_len; 1162 unsigned int mss; 1163 1164 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1165 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1166 1167 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1168 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1169 mss = tcp_skb_mss(skb); 1170 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1171 1172 if (!in_sack) { 1173 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1174 if (pkt_len < mss) 1175 pkt_len = mss; 1176 } else { 1177 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1178 if (pkt_len < mss) 1179 return -EINVAL; 1180 } 1181 1182 /* Round if necessary so that SACKs cover only full MSSes 1183 * and/or the remaining small portion (if present) 1184 */ 1185 if (pkt_len > mss) { 1186 unsigned int new_len = (pkt_len / mss) * mss; 1187 if (!in_sack && new_len < pkt_len) 1188 new_len += mss; 1189 pkt_len = new_len; 1190 } 1191 1192 if (pkt_len >= skb->len && !in_sack) 1193 return 0; 1194 1195 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1196 pkt_len, mss, GFP_ATOMIC); 1197 if (err < 0) 1198 return err; 1199 } 1200 1201 return in_sack; 1202 } 1203 1204 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1205 static u8 tcp_sacktag_one(struct sock *sk, 1206 struct tcp_sacktag_state *state, u8 sacked, 1207 u32 start_seq, u32 end_seq, 1208 int dup_sack, int pcount, 1209 u64 xmit_time) 1210 { 1211 struct tcp_sock *tp = tcp_sk(sk); 1212 int fack_count = state->fack_count; 1213 1214 /* Account D-SACK for retransmitted packet. */ 1215 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1216 if (tp->undo_marker && tp->undo_retrans > 0 && 1217 after(end_seq, tp->undo_marker)) 1218 tp->undo_retrans--; 1219 if (sacked & TCPCB_SACKED_ACKED) 1220 state->reord = min(fack_count, state->reord); 1221 } 1222 1223 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1224 if (!after(end_seq, tp->snd_una)) 1225 return sacked; 1226 1227 if (!(sacked & TCPCB_SACKED_ACKED)) { 1228 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1229 1230 if (sacked & TCPCB_SACKED_RETRANS) { 1231 /* If the segment is not tagged as lost, 1232 * we do not clear RETRANS, believing 1233 * that retransmission is still in flight. 1234 */ 1235 if (sacked & TCPCB_LOST) { 1236 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1237 tp->lost_out -= pcount; 1238 tp->retrans_out -= pcount; 1239 } 1240 } else { 1241 if (!(sacked & TCPCB_RETRANS)) { 1242 /* New sack for not retransmitted frame, 1243 * which was in hole. It is reordering. 1244 */ 1245 if (before(start_seq, 1246 tcp_highest_sack_seq(tp))) 1247 state->reord = min(fack_count, 1248 state->reord); 1249 if (!after(end_seq, tp->high_seq)) 1250 state->flag |= FLAG_ORIG_SACK_ACKED; 1251 if (state->first_sackt == 0) 1252 state->first_sackt = xmit_time; 1253 state->last_sackt = xmit_time; 1254 } 1255 1256 if (sacked & TCPCB_LOST) { 1257 sacked &= ~TCPCB_LOST; 1258 tp->lost_out -= pcount; 1259 } 1260 } 1261 1262 sacked |= TCPCB_SACKED_ACKED; 1263 state->flag |= FLAG_DATA_SACKED; 1264 tp->sacked_out += pcount; 1265 tp->delivered += pcount; /* Out-of-order packets delivered */ 1266 1267 fack_count += pcount; 1268 1269 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1270 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1271 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1272 tp->lost_cnt_hint += pcount; 1273 1274 if (fack_count > tp->fackets_out) 1275 tp->fackets_out = fack_count; 1276 } 1277 1278 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1279 * frames and clear it. undo_retrans is decreased above, L|R frames 1280 * are accounted above as well. 1281 */ 1282 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1283 sacked &= ~TCPCB_SACKED_RETRANS; 1284 tp->retrans_out -= pcount; 1285 } 1286 1287 return sacked; 1288 } 1289 1290 /* Shift newly-SACKed bytes from this skb to the immediately previous 1291 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1292 */ 1293 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1294 struct sk_buff *skb, 1295 struct tcp_sacktag_state *state, 1296 unsigned int pcount, int shifted, int mss, 1297 bool dup_sack) 1298 { 1299 struct tcp_sock *tp = tcp_sk(sk); 1300 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1301 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1302 1303 BUG_ON(!pcount); 1304 1305 /* Adjust counters and hints for the newly sacked sequence 1306 * range but discard the return value since prev is already 1307 * marked. We must tag the range first because the seq 1308 * advancement below implicitly advances 1309 * tcp_highest_sack_seq() when skb is highest_sack. 1310 */ 1311 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1312 start_seq, end_seq, dup_sack, pcount, 1313 skb->skb_mstamp); 1314 tcp_rate_skb_delivered(sk, skb, state->rate); 1315 1316 if (skb == tp->lost_skb_hint) 1317 tp->lost_cnt_hint += pcount; 1318 1319 TCP_SKB_CB(prev)->end_seq += shifted; 1320 TCP_SKB_CB(skb)->seq += shifted; 1321 1322 tcp_skb_pcount_add(prev, pcount); 1323 BUG_ON(tcp_skb_pcount(skb) < pcount); 1324 tcp_skb_pcount_add(skb, -pcount); 1325 1326 /* When we're adding to gso_segs == 1, gso_size will be zero, 1327 * in theory this shouldn't be necessary but as long as DSACK 1328 * code can come after this skb later on it's better to keep 1329 * setting gso_size to something. 1330 */ 1331 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1332 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1333 1334 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1335 if (tcp_skb_pcount(skb) <= 1) 1336 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1337 1338 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1339 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1340 1341 if (skb->len > 0) { 1342 BUG_ON(!tcp_skb_pcount(skb)); 1343 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1344 return false; 1345 } 1346 1347 /* Whole SKB was eaten :-) */ 1348 1349 if (skb == tp->retransmit_skb_hint) 1350 tp->retransmit_skb_hint = prev; 1351 if (skb == tp->lost_skb_hint) { 1352 tp->lost_skb_hint = prev; 1353 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1354 } 1355 1356 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1357 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1358 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1359 TCP_SKB_CB(prev)->end_seq++; 1360 1361 if (skb == tcp_highest_sack(sk)) 1362 tcp_advance_highest_sack(sk, skb); 1363 1364 tcp_skb_collapse_tstamp(prev, skb); 1365 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1366 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1367 1368 tcp_rtx_queue_unlink_and_free(skb, sk); 1369 1370 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1371 1372 return true; 1373 } 1374 1375 /* I wish gso_size would have a bit more sane initialization than 1376 * something-or-zero which complicates things 1377 */ 1378 static int tcp_skb_seglen(const struct sk_buff *skb) 1379 { 1380 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1381 } 1382 1383 /* Shifting pages past head area doesn't work */ 1384 static int skb_can_shift(const struct sk_buff *skb) 1385 { 1386 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1387 } 1388 1389 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1390 * skb. 1391 */ 1392 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1393 struct tcp_sacktag_state *state, 1394 u32 start_seq, u32 end_seq, 1395 bool dup_sack) 1396 { 1397 struct tcp_sock *tp = tcp_sk(sk); 1398 struct sk_buff *prev; 1399 int mss; 1400 int pcount = 0; 1401 int len; 1402 int in_sack; 1403 1404 if (!sk_can_gso(sk)) 1405 goto fallback; 1406 1407 /* Normally R but no L won't result in plain S */ 1408 if (!dup_sack && 1409 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1410 goto fallback; 1411 if (!skb_can_shift(skb)) 1412 goto fallback; 1413 /* This frame is about to be dropped (was ACKed). */ 1414 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1415 goto fallback; 1416 1417 /* Can only happen with delayed DSACK + discard craziness */ 1418 prev = skb_rb_prev(skb); 1419 if (!prev) 1420 goto fallback; 1421 1422 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1423 goto fallback; 1424 1425 if (!tcp_skb_can_collapse_to(prev)) 1426 goto fallback; 1427 1428 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1429 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1430 1431 if (in_sack) { 1432 len = skb->len; 1433 pcount = tcp_skb_pcount(skb); 1434 mss = tcp_skb_seglen(skb); 1435 1436 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1437 * drop this restriction as unnecessary 1438 */ 1439 if (mss != tcp_skb_seglen(prev)) 1440 goto fallback; 1441 } else { 1442 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1443 goto noop; 1444 /* CHECKME: This is non-MSS split case only?, this will 1445 * cause skipped skbs due to advancing loop btw, original 1446 * has that feature too 1447 */ 1448 if (tcp_skb_pcount(skb) <= 1) 1449 goto noop; 1450 1451 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1452 if (!in_sack) { 1453 /* TODO: head merge to next could be attempted here 1454 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1455 * though it might not be worth of the additional hassle 1456 * 1457 * ...we can probably just fallback to what was done 1458 * previously. We could try merging non-SACKed ones 1459 * as well but it probably isn't going to buy off 1460 * because later SACKs might again split them, and 1461 * it would make skb timestamp tracking considerably 1462 * harder problem. 1463 */ 1464 goto fallback; 1465 } 1466 1467 len = end_seq - TCP_SKB_CB(skb)->seq; 1468 BUG_ON(len < 0); 1469 BUG_ON(len > skb->len); 1470 1471 /* MSS boundaries should be honoured or else pcount will 1472 * severely break even though it makes things bit trickier. 1473 * Optimize common case to avoid most of the divides 1474 */ 1475 mss = tcp_skb_mss(skb); 1476 1477 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1478 * drop this restriction as unnecessary 1479 */ 1480 if (mss != tcp_skb_seglen(prev)) 1481 goto fallback; 1482 1483 if (len == mss) { 1484 pcount = 1; 1485 } else if (len < mss) { 1486 goto noop; 1487 } else { 1488 pcount = len / mss; 1489 len = pcount * mss; 1490 } 1491 } 1492 1493 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1494 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1495 goto fallback; 1496 1497 if (!skb_shift(prev, skb, len)) 1498 goto fallback; 1499 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1500 goto out; 1501 1502 /* Hole filled allows collapsing with the next as well, this is very 1503 * useful when hole on every nth skb pattern happens 1504 */ 1505 skb = skb_rb_next(prev); 1506 if (!skb) 1507 goto out; 1508 1509 if (!skb_can_shift(skb) || 1510 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1511 (mss != tcp_skb_seglen(skb))) 1512 goto out; 1513 1514 len = skb->len; 1515 if (skb_shift(prev, skb, len)) { 1516 pcount += tcp_skb_pcount(skb); 1517 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1518 len, mss, 0); 1519 } 1520 1521 out: 1522 state->fack_count += pcount; 1523 return prev; 1524 1525 noop: 1526 return skb; 1527 1528 fallback: 1529 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1530 return NULL; 1531 } 1532 1533 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1534 struct tcp_sack_block *next_dup, 1535 struct tcp_sacktag_state *state, 1536 u32 start_seq, u32 end_seq, 1537 bool dup_sack_in) 1538 { 1539 struct tcp_sock *tp = tcp_sk(sk); 1540 struct sk_buff *tmp; 1541 1542 skb_rbtree_walk_from(skb) { 1543 int in_sack = 0; 1544 bool dup_sack = dup_sack_in; 1545 1546 /* queue is in-order => we can short-circuit the walk early */ 1547 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1548 break; 1549 1550 if (next_dup && 1551 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1552 in_sack = tcp_match_skb_to_sack(sk, skb, 1553 next_dup->start_seq, 1554 next_dup->end_seq); 1555 if (in_sack > 0) 1556 dup_sack = true; 1557 } 1558 1559 /* skb reference here is a bit tricky to get right, since 1560 * shifting can eat and free both this skb and the next, 1561 * so not even _safe variant of the loop is enough. 1562 */ 1563 if (in_sack <= 0) { 1564 tmp = tcp_shift_skb_data(sk, skb, state, 1565 start_seq, end_seq, dup_sack); 1566 if (tmp) { 1567 if (tmp != skb) { 1568 skb = tmp; 1569 continue; 1570 } 1571 1572 in_sack = 0; 1573 } else { 1574 in_sack = tcp_match_skb_to_sack(sk, skb, 1575 start_seq, 1576 end_seq); 1577 } 1578 } 1579 1580 if (unlikely(in_sack < 0)) 1581 break; 1582 1583 if (in_sack) { 1584 TCP_SKB_CB(skb)->sacked = 1585 tcp_sacktag_one(sk, 1586 state, 1587 TCP_SKB_CB(skb)->sacked, 1588 TCP_SKB_CB(skb)->seq, 1589 TCP_SKB_CB(skb)->end_seq, 1590 dup_sack, 1591 tcp_skb_pcount(skb), 1592 skb->skb_mstamp); 1593 tcp_rate_skb_delivered(sk, skb, state->rate); 1594 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1595 list_del_init(&skb->tcp_tsorted_anchor); 1596 1597 if (!before(TCP_SKB_CB(skb)->seq, 1598 tcp_highest_sack_seq(tp))) 1599 tcp_advance_highest_sack(sk, skb); 1600 } 1601 1602 state->fack_count += tcp_skb_pcount(skb); 1603 } 1604 return skb; 1605 } 1606 1607 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1608 struct tcp_sacktag_state *state, 1609 u32 seq) 1610 { 1611 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1612 struct sk_buff *skb; 1613 int unack_bytes; 1614 1615 while (*p) { 1616 parent = *p; 1617 skb = rb_to_skb(parent); 1618 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1619 p = &parent->rb_left; 1620 continue; 1621 } 1622 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1623 p = &parent->rb_right; 1624 continue; 1625 } 1626 1627 state->fack_count = 0; 1628 unack_bytes = TCP_SKB_CB(skb)->seq - tcp_sk(sk)->snd_una; 1629 if (state->mss_now && unack_bytes > 0) 1630 state->fack_count = unack_bytes / state->mss_now; 1631 1632 return skb; 1633 } 1634 return NULL; 1635 } 1636 1637 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1638 struct tcp_sacktag_state *state, 1639 u32 skip_to_seq) 1640 { 1641 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1642 return skb; 1643 1644 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1645 } 1646 1647 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1648 struct sock *sk, 1649 struct tcp_sack_block *next_dup, 1650 struct tcp_sacktag_state *state, 1651 u32 skip_to_seq) 1652 { 1653 if (!next_dup) 1654 return skb; 1655 1656 if (before(next_dup->start_seq, skip_to_seq)) { 1657 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1658 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1659 next_dup->start_seq, next_dup->end_seq, 1660 1); 1661 } 1662 1663 return skb; 1664 } 1665 1666 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1667 { 1668 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1669 } 1670 1671 static int 1672 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1673 u32 prior_snd_una, struct tcp_sacktag_state *state) 1674 { 1675 struct tcp_sock *tp = tcp_sk(sk); 1676 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1677 TCP_SKB_CB(ack_skb)->sacked); 1678 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1679 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1680 struct tcp_sack_block *cache; 1681 struct sk_buff *skb; 1682 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1683 int used_sacks; 1684 bool found_dup_sack = false; 1685 int i, j; 1686 int first_sack_index; 1687 1688 state->flag = 0; 1689 state->reord = tp->packets_out; 1690 1691 if (!tp->sacked_out) { 1692 if (WARN_ON(tp->fackets_out)) 1693 tp->fackets_out = 0; 1694 tcp_highest_sack_reset(sk); 1695 } 1696 1697 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1698 num_sacks, prior_snd_una); 1699 if (found_dup_sack) { 1700 state->flag |= FLAG_DSACKING_ACK; 1701 tp->delivered++; /* A spurious retransmission is delivered */ 1702 } 1703 1704 /* Eliminate too old ACKs, but take into 1705 * account more or less fresh ones, they can 1706 * contain valid SACK info. 1707 */ 1708 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1709 return 0; 1710 1711 if (!tp->packets_out) 1712 goto out; 1713 1714 used_sacks = 0; 1715 first_sack_index = 0; 1716 for (i = 0; i < num_sacks; i++) { 1717 bool dup_sack = !i && found_dup_sack; 1718 1719 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1720 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1721 1722 if (!tcp_is_sackblock_valid(tp, dup_sack, 1723 sp[used_sacks].start_seq, 1724 sp[used_sacks].end_seq)) { 1725 int mib_idx; 1726 1727 if (dup_sack) { 1728 if (!tp->undo_marker) 1729 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1730 else 1731 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1732 } else { 1733 /* Don't count olds caused by ACK reordering */ 1734 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1735 !after(sp[used_sacks].end_seq, tp->snd_una)) 1736 continue; 1737 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1738 } 1739 1740 NET_INC_STATS(sock_net(sk), mib_idx); 1741 if (i == 0) 1742 first_sack_index = -1; 1743 continue; 1744 } 1745 1746 /* Ignore very old stuff early */ 1747 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1748 continue; 1749 1750 used_sacks++; 1751 } 1752 1753 /* order SACK blocks to allow in order walk of the retrans queue */ 1754 for (i = used_sacks - 1; i > 0; i--) { 1755 for (j = 0; j < i; j++) { 1756 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1757 swap(sp[j], sp[j + 1]); 1758 1759 /* Track where the first SACK block goes to */ 1760 if (j == first_sack_index) 1761 first_sack_index = j + 1; 1762 } 1763 } 1764 } 1765 1766 state->mss_now = tcp_current_mss(sk); 1767 state->fack_count = 0; 1768 skb = NULL; 1769 i = 0; 1770 1771 if (!tp->sacked_out) { 1772 /* It's already past, so skip checking against it */ 1773 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1774 } else { 1775 cache = tp->recv_sack_cache; 1776 /* Skip empty blocks in at head of the cache */ 1777 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1778 !cache->end_seq) 1779 cache++; 1780 } 1781 1782 while (i < used_sacks) { 1783 u32 start_seq = sp[i].start_seq; 1784 u32 end_seq = sp[i].end_seq; 1785 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1786 struct tcp_sack_block *next_dup = NULL; 1787 1788 if (found_dup_sack && ((i + 1) == first_sack_index)) 1789 next_dup = &sp[i + 1]; 1790 1791 /* Skip too early cached blocks */ 1792 while (tcp_sack_cache_ok(tp, cache) && 1793 !before(start_seq, cache->end_seq)) 1794 cache++; 1795 1796 /* Can skip some work by looking recv_sack_cache? */ 1797 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1798 after(end_seq, cache->start_seq)) { 1799 1800 /* Head todo? */ 1801 if (before(start_seq, cache->start_seq)) { 1802 skb = tcp_sacktag_skip(skb, sk, state, 1803 start_seq); 1804 skb = tcp_sacktag_walk(skb, sk, next_dup, 1805 state, 1806 start_seq, 1807 cache->start_seq, 1808 dup_sack); 1809 } 1810 1811 /* Rest of the block already fully processed? */ 1812 if (!after(end_seq, cache->end_seq)) 1813 goto advance_sp; 1814 1815 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1816 state, 1817 cache->end_seq); 1818 1819 /* ...tail remains todo... */ 1820 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1821 /* ...but better entrypoint exists! */ 1822 skb = tcp_highest_sack(sk); 1823 if (!skb) 1824 break; 1825 state->fack_count = tp->fackets_out; 1826 cache++; 1827 goto walk; 1828 } 1829 1830 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1831 /* Check overlap against next cached too (past this one already) */ 1832 cache++; 1833 continue; 1834 } 1835 1836 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1837 skb = tcp_highest_sack(sk); 1838 if (!skb) 1839 break; 1840 state->fack_count = tp->fackets_out; 1841 } 1842 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1843 1844 walk: 1845 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1846 start_seq, end_seq, dup_sack); 1847 1848 advance_sp: 1849 i++; 1850 } 1851 1852 /* Clear the head of the cache sack blocks so we can skip it next time */ 1853 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1854 tp->recv_sack_cache[i].start_seq = 0; 1855 tp->recv_sack_cache[i].end_seq = 0; 1856 } 1857 for (j = 0; j < used_sacks; j++) 1858 tp->recv_sack_cache[i++] = sp[j]; 1859 1860 if ((state->reord < tp->fackets_out) && 1861 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1862 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1863 1864 tcp_verify_left_out(tp); 1865 out: 1866 1867 #if FASTRETRANS_DEBUG > 0 1868 WARN_ON((int)tp->sacked_out < 0); 1869 WARN_ON((int)tp->lost_out < 0); 1870 WARN_ON((int)tp->retrans_out < 0); 1871 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1872 #endif 1873 return state->flag; 1874 } 1875 1876 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1877 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1878 */ 1879 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1880 { 1881 u32 holes; 1882 1883 holes = max(tp->lost_out, 1U); 1884 holes = min(holes, tp->packets_out); 1885 1886 if ((tp->sacked_out + holes) > tp->packets_out) { 1887 tp->sacked_out = tp->packets_out - holes; 1888 return true; 1889 } 1890 return false; 1891 } 1892 1893 /* If we receive more dupacks than we expected counting segments 1894 * in assumption of absent reordering, interpret this as reordering. 1895 * The only another reason could be bug in receiver TCP. 1896 */ 1897 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1898 { 1899 struct tcp_sock *tp = tcp_sk(sk); 1900 if (tcp_limit_reno_sacked(tp)) 1901 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1902 } 1903 1904 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1905 1906 static void tcp_add_reno_sack(struct sock *sk) 1907 { 1908 struct tcp_sock *tp = tcp_sk(sk); 1909 u32 prior_sacked = tp->sacked_out; 1910 1911 tp->sacked_out++; 1912 tcp_check_reno_reordering(sk, 0); 1913 if (tp->sacked_out > prior_sacked) 1914 tp->delivered++; /* Some out-of-order packet is delivered */ 1915 tcp_verify_left_out(tp); 1916 } 1917 1918 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1919 1920 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1921 { 1922 struct tcp_sock *tp = tcp_sk(sk); 1923 1924 if (acked > 0) { 1925 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1926 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1927 if (acked - 1 >= tp->sacked_out) 1928 tp->sacked_out = 0; 1929 else 1930 tp->sacked_out -= acked - 1; 1931 } 1932 tcp_check_reno_reordering(sk, acked); 1933 tcp_verify_left_out(tp); 1934 } 1935 1936 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1937 { 1938 tp->sacked_out = 0; 1939 } 1940 1941 void tcp_clear_retrans(struct tcp_sock *tp) 1942 { 1943 tp->retrans_out = 0; 1944 tp->lost_out = 0; 1945 tp->undo_marker = 0; 1946 tp->undo_retrans = -1; 1947 tp->fackets_out = 0; 1948 tp->sacked_out = 0; 1949 } 1950 1951 static inline void tcp_init_undo(struct tcp_sock *tp) 1952 { 1953 tp->undo_marker = tp->snd_una; 1954 /* Retransmission still in flight may cause DSACKs later. */ 1955 tp->undo_retrans = tp->retrans_out ? : -1; 1956 } 1957 1958 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1959 * and reset tags completely, otherwise preserve SACKs. If receiver 1960 * dropped its ofo queue, we will know this due to reneging detection. 1961 */ 1962 void tcp_enter_loss(struct sock *sk) 1963 { 1964 const struct inet_connection_sock *icsk = inet_csk(sk); 1965 struct tcp_sock *tp = tcp_sk(sk); 1966 struct net *net = sock_net(sk); 1967 struct sk_buff *skb; 1968 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1969 bool is_reneg; /* is receiver reneging on SACKs? */ 1970 bool mark_lost; 1971 1972 /* Reduce ssthresh if it has not yet been made inside this window. */ 1973 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1974 !after(tp->high_seq, tp->snd_una) || 1975 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1976 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1977 tp->prior_cwnd = tp->snd_cwnd; 1978 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1979 tcp_ca_event(sk, CA_EVENT_LOSS); 1980 tcp_init_undo(tp); 1981 } 1982 tp->snd_cwnd = 1; 1983 tp->snd_cwnd_cnt = 0; 1984 tp->snd_cwnd_stamp = tcp_jiffies32; 1985 1986 tp->retrans_out = 0; 1987 tp->lost_out = 0; 1988 1989 if (tcp_is_reno(tp)) 1990 tcp_reset_reno_sack(tp); 1991 1992 skb = tcp_rtx_queue_head(sk); 1993 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1994 if (is_reneg) { 1995 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1996 tp->sacked_out = 0; 1997 tp->fackets_out = 0; 1998 } 1999 tcp_clear_all_retrans_hints(tp); 2000 2001 skb_rbtree_walk_from(skb) { 2002 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2003 is_reneg); 2004 if (mark_lost) 2005 tcp_sum_lost(tp, skb); 2006 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2007 if (mark_lost) { 2008 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2009 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2010 tp->lost_out += tcp_skb_pcount(skb); 2011 } 2012 } 2013 tcp_verify_left_out(tp); 2014 2015 /* Timeout in disordered state after receiving substantial DUPACKs 2016 * suggests that the degree of reordering is over-estimated. 2017 */ 2018 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2019 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2020 tp->reordering = min_t(unsigned int, tp->reordering, 2021 net->ipv4.sysctl_tcp_reordering); 2022 tcp_set_ca_state(sk, TCP_CA_Loss); 2023 tp->high_seq = tp->snd_nxt; 2024 tcp_ecn_queue_cwr(tp); 2025 2026 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2027 * loss recovery is underway except recurring timeout(s) on 2028 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2029 * 2030 * In theory F-RTO can be used repeatedly during loss recovery. 2031 * In practice this interacts badly with broken middle-boxes that 2032 * falsely raise the receive window, which results in repeated 2033 * timeouts and stop-and-go behavior. 2034 */ 2035 tp->frto = sysctl_tcp_frto && 2036 (new_recovery || icsk->icsk_retransmits) && 2037 !inet_csk(sk)->icsk_mtup.probe_size; 2038 } 2039 2040 /* If ACK arrived pointing to a remembered SACK, it means that our 2041 * remembered SACKs do not reflect real state of receiver i.e. 2042 * receiver _host_ is heavily congested (or buggy). 2043 * 2044 * To avoid big spurious retransmission bursts due to transient SACK 2045 * scoreboard oddities that look like reneging, we give the receiver a 2046 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2047 * restore sanity to the SACK scoreboard. If the apparent reneging 2048 * persists until this RTO then we'll clear the SACK scoreboard. 2049 */ 2050 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2051 { 2052 if (flag & FLAG_SACK_RENEGING) { 2053 struct tcp_sock *tp = tcp_sk(sk); 2054 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2055 msecs_to_jiffies(10)); 2056 2057 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2058 delay, TCP_RTO_MAX); 2059 return true; 2060 } 2061 return false; 2062 } 2063 2064 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2065 { 2066 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2067 } 2068 2069 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2070 * counter when SACK is enabled (without SACK, sacked_out is used for 2071 * that purpose). 2072 * 2073 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2074 * segments up to the highest received SACK block so far and holes in 2075 * between them. 2076 * 2077 * With reordering, holes may still be in flight, so RFC3517 recovery 2078 * uses pure sacked_out (total number of SACKed segments) even though 2079 * it violates the RFC that uses duplicate ACKs, often these are equal 2080 * but when e.g. out-of-window ACKs or packet duplication occurs, 2081 * they differ. Since neither occurs due to loss, TCP should really 2082 * ignore them. 2083 */ 2084 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2085 { 2086 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2087 } 2088 2089 /* Linux NewReno/SACK/FACK/ECN state machine. 2090 * -------------------------------------- 2091 * 2092 * "Open" Normal state, no dubious events, fast path. 2093 * "Disorder" In all the respects it is "Open", 2094 * but requires a bit more attention. It is entered when 2095 * we see some SACKs or dupacks. It is split of "Open" 2096 * mainly to move some processing from fast path to slow one. 2097 * "CWR" CWND was reduced due to some Congestion Notification event. 2098 * It can be ECN, ICMP source quench, local device congestion. 2099 * "Recovery" CWND was reduced, we are fast-retransmitting. 2100 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2101 * 2102 * tcp_fastretrans_alert() is entered: 2103 * - each incoming ACK, if state is not "Open" 2104 * - when arrived ACK is unusual, namely: 2105 * * SACK 2106 * * Duplicate ACK. 2107 * * ECN ECE. 2108 * 2109 * Counting packets in flight is pretty simple. 2110 * 2111 * in_flight = packets_out - left_out + retrans_out 2112 * 2113 * packets_out is SND.NXT-SND.UNA counted in packets. 2114 * 2115 * retrans_out is number of retransmitted segments. 2116 * 2117 * left_out is number of segments left network, but not ACKed yet. 2118 * 2119 * left_out = sacked_out + lost_out 2120 * 2121 * sacked_out: Packets, which arrived to receiver out of order 2122 * and hence not ACKed. With SACKs this number is simply 2123 * amount of SACKed data. Even without SACKs 2124 * it is easy to give pretty reliable estimate of this number, 2125 * counting duplicate ACKs. 2126 * 2127 * lost_out: Packets lost by network. TCP has no explicit 2128 * "loss notification" feedback from network (for now). 2129 * It means that this number can be only _guessed_. 2130 * Actually, it is the heuristics to predict lossage that 2131 * distinguishes different algorithms. 2132 * 2133 * F.e. after RTO, when all the queue is considered as lost, 2134 * lost_out = packets_out and in_flight = retrans_out. 2135 * 2136 * Essentially, we have now a few algorithms detecting 2137 * lost packets. 2138 * 2139 * If the receiver supports SACK: 2140 * 2141 * RFC6675/3517: It is the conventional algorithm. A packet is 2142 * considered lost if the number of higher sequence packets 2143 * SACKed is greater than or equal the DUPACK thoreshold 2144 * (reordering). This is implemented in tcp_mark_head_lost and 2145 * tcp_update_scoreboard. 2146 * 2147 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2148 * (2017-) that checks timing instead of counting DUPACKs. 2149 * Essentially a packet is considered lost if it's not S/ACKed 2150 * after RTT + reordering_window, where both metrics are 2151 * dynamically measured and adjusted. This is implemented in 2152 * tcp_rack_mark_lost. 2153 * 2154 * FACK (Disabled by default. Subsumbed by RACK): 2155 * It is the simplest heuristics. As soon as we decided 2156 * that something is lost, we decide that _all_ not SACKed 2157 * packets until the most forward SACK are lost. I.e. 2158 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2159 * It is absolutely correct estimate, if network does not reorder 2160 * packets. And it loses any connection to reality when reordering 2161 * takes place. We use FACK by default until reordering 2162 * is suspected on the path to this destination. 2163 * 2164 * If the receiver does not support SACK: 2165 * 2166 * NewReno (RFC6582): in Recovery we assume that one segment 2167 * is lost (classic Reno). While we are in Recovery and 2168 * a partial ACK arrives, we assume that one more packet 2169 * is lost (NewReno). This heuristics are the same in NewReno 2170 * and SACK. 2171 * 2172 * Really tricky (and requiring careful tuning) part of algorithm 2173 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2174 * The first determines the moment _when_ we should reduce CWND and, 2175 * hence, slow down forward transmission. In fact, it determines the moment 2176 * when we decide that hole is caused by loss, rather than by a reorder. 2177 * 2178 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2179 * holes, caused by lost packets. 2180 * 2181 * And the most logically complicated part of algorithm is undo 2182 * heuristics. We detect false retransmits due to both too early 2183 * fast retransmit (reordering) and underestimated RTO, analyzing 2184 * timestamps and D-SACKs. When we detect that some segments were 2185 * retransmitted by mistake and CWND reduction was wrong, we undo 2186 * window reduction and abort recovery phase. This logic is hidden 2187 * inside several functions named tcp_try_undo_<something>. 2188 */ 2189 2190 /* This function decides, when we should leave Disordered state 2191 * and enter Recovery phase, reducing congestion window. 2192 * 2193 * Main question: may we further continue forward transmission 2194 * with the same cwnd? 2195 */ 2196 static bool tcp_time_to_recover(struct sock *sk, int flag) 2197 { 2198 struct tcp_sock *tp = tcp_sk(sk); 2199 2200 /* Trick#1: The loss is proven. */ 2201 if (tp->lost_out) 2202 return true; 2203 2204 /* Not-A-Trick#2 : Classic rule... */ 2205 if (tcp_dupack_heuristics(tp) > tp->reordering) 2206 return true; 2207 2208 return false; 2209 } 2210 2211 /* Detect loss in event "A" above by marking head of queue up as lost. 2212 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2213 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2214 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2215 * the maximum SACKed segments to pass before reaching this limit. 2216 */ 2217 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2218 { 2219 struct tcp_sock *tp = tcp_sk(sk); 2220 struct sk_buff *skb; 2221 int cnt, oldcnt, lost; 2222 unsigned int mss; 2223 /* Use SACK to deduce losses of new sequences sent during recovery */ 2224 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2225 2226 WARN_ON(packets > tp->packets_out); 2227 skb = tp->lost_skb_hint; 2228 if (skb) { 2229 /* Head already handled? */ 2230 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2231 return; 2232 cnt = tp->lost_cnt_hint; 2233 } else { 2234 skb = tcp_rtx_queue_head(sk); 2235 cnt = 0; 2236 } 2237 2238 skb_rbtree_walk_from(skb) { 2239 /* TODO: do this better */ 2240 /* this is not the most efficient way to do this... */ 2241 tp->lost_skb_hint = skb; 2242 tp->lost_cnt_hint = cnt; 2243 2244 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2245 break; 2246 2247 oldcnt = cnt; 2248 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2249 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2250 cnt += tcp_skb_pcount(skb); 2251 2252 if (cnt > packets) { 2253 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2254 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2255 (oldcnt >= packets)) 2256 break; 2257 2258 mss = tcp_skb_mss(skb); 2259 /* If needed, chop off the prefix to mark as lost. */ 2260 lost = (packets - oldcnt) * mss; 2261 if (lost < skb->len && 2262 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2263 lost, mss, GFP_ATOMIC) < 0) 2264 break; 2265 cnt = packets; 2266 } 2267 2268 tcp_skb_mark_lost(tp, skb); 2269 2270 if (mark_head) 2271 break; 2272 } 2273 tcp_verify_left_out(tp); 2274 } 2275 2276 /* Account newly detected lost packet(s) */ 2277 2278 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2279 { 2280 struct tcp_sock *tp = tcp_sk(sk); 2281 2282 if (tcp_is_reno(tp)) { 2283 tcp_mark_head_lost(sk, 1, 1); 2284 } else if (tcp_is_fack(tp)) { 2285 int lost = tp->fackets_out - tp->reordering; 2286 if (lost <= 0) 2287 lost = 1; 2288 tcp_mark_head_lost(sk, lost, 0); 2289 } else { 2290 int sacked_upto = tp->sacked_out - tp->reordering; 2291 if (sacked_upto >= 0) 2292 tcp_mark_head_lost(sk, sacked_upto, 0); 2293 else if (fast_rexmit) 2294 tcp_mark_head_lost(sk, 1, 1); 2295 } 2296 } 2297 2298 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2299 { 2300 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2301 before(tp->rx_opt.rcv_tsecr, when); 2302 } 2303 2304 /* skb is spurious retransmitted if the returned timestamp echo 2305 * reply is prior to the skb transmission time 2306 */ 2307 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2308 const struct sk_buff *skb) 2309 { 2310 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2311 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2312 } 2313 2314 /* Nothing was retransmitted or returned timestamp is less 2315 * than timestamp of the first retransmission. 2316 */ 2317 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2318 { 2319 return !tp->retrans_stamp || 2320 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2321 } 2322 2323 /* Undo procedures. */ 2324 2325 /* We can clear retrans_stamp when there are no retransmissions in the 2326 * window. It would seem that it is trivially available for us in 2327 * tp->retrans_out, however, that kind of assumptions doesn't consider 2328 * what will happen if errors occur when sending retransmission for the 2329 * second time. ...It could the that such segment has only 2330 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2331 * the head skb is enough except for some reneging corner cases that 2332 * are not worth the effort. 2333 * 2334 * Main reason for all this complexity is the fact that connection dying 2335 * time now depends on the validity of the retrans_stamp, in particular, 2336 * that successive retransmissions of a segment must not advance 2337 * retrans_stamp under any conditions. 2338 */ 2339 static bool tcp_any_retrans_done(const struct sock *sk) 2340 { 2341 const struct tcp_sock *tp = tcp_sk(sk); 2342 struct sk_buff *skb; 2343 2344 if (tp->retrans_out) 2345 return true; 2346 2347 skb = tcp_rtx_queue_head(sk); 2348 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2349 return true; 2350 2351 return false; 2352 } 2353 2354 static void DBGUNDO(struct sock *sk, const char *msg) 2355 { 2356 #if FASTRETRANS_DEBUG > 1 2357 struct tcp_sock *tp = tcp_sk(sk); 2358 struct inet_sock *inet = inet_sk(sk); 2359 2360 if (sk->sk_family == AF_INET) { 2361 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2362 msg, 2363 &inet->inet_daddr, ntohs(inet->inet_dport), 2364 tp->snd_cwnd, tcp_left_out(tp), 2365 tp->snd_ssthresh, tp->prior_ssthresh, 2366 tp->packets_out); 2367 } 2368 #if IS_ENABLED(CONFIG_IPV6) 2369 else if (sk->sk_family == AF_INET6) { 2370 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2371 msg, 2372 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2373 tp->snd_cwnd, tcp_left_out(tp), 2374 tp->snd_ssthresh, tp->prior_ssthresh, 2375 tp->packets_out); 2376 } 2377 #endif 2378 #endif 2379 } 2380 2381 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2382 { 2383 struct tcp_sock *tp = tcp_sk(sk); 2384 2385 if (unmark_loss) { 2386 struct sk_buff *skb; 2387 2388 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2389 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2390 } 2391 tp->lost_out = 0; 2392 tcp_clear_all_retrans_hints(tp); 2393 } 2394 2395 if (tp->prior_ssthresh) { 2396 const struct inet_connection_sock *icsk = inet_csk(sk); 2397 2398 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2399 2400 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2401 tp->snd_ssthresh = tp->prior_ssthresh; 2402 tcp_ecn_withdraw_cwr(tp); 2403 } 2404 } 2405 tp->snd_cwnd_stamp = tcp_jiffies32; 2406 tp->undo_marker = 0; 2407 } 2408 2409 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2410 { 2411 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2412 } 2413 2414 /* People celebrate: "We love our President!" */ 2415 static bool tcp_try_undo_recovery(struct sock *sk) 2416 { 2417 struct tcp_sock *tp = tcp_sk(sk); 2418 2419 if (tcp_may_undo(tp)) { 2420 int mib_idx; 2421 2422 /* Happy end! We did not retransmit anything 2423 * or our original transmission succeeded. 2424 */ 2425 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2426 tcp_undo_cwnd_reduction(sk, false); 2427 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2428 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2429 else 2430 mib_idx = LINUX_MIB_TCPFULLUNDO; 2431 2432 NET_INC_STATS(sock_net(sk), mib_idx); 2433 } 2434 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2435 /* Hold old state until something *above* high_seq 2436 * is ACKed. For Reno it is MUST to prevent false 2437 * fast retransmits (RFC2582). SACK TCP is safe. */ 2438 if (!tcp_any_retrans_done(sk)) 2439 tp->retrans_stamp = 0; 2440 return true; 2441 } 2442 tcp_set_ca_state(sk, TCP_CA_Open); 2443 return false; 2444 } 2445 2446 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2447 static bool tcp_try_undo_dsack(struct sock *sk) 2448 { 2449 struct tcp_sock *tp = tcp_sk(sk); 2450 2451 if (tp->undo_marker && !tp->undo_retrans) { 2452 DBGUNDO(sk, "D-SACK"); 2453 tcp_undo_cwnd_reduction(sk, false); 2454 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2455 return true; 2456 } 2457 return false; 2458 } 2459 2460 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2461 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2462 { 2463 struct tcp_sock *tp = tcp_sk(sk); 2464 2465 if (frto_undo || tcp_may_undo(tp)) { 2466 tcp_undo_cwnd_reduction(sk, true); 2467 2468 DBGUNDO(sk, "partial loss"); 2469 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2470 if (frto_undo) 2471 NET_INC_STATS(sock_net(sk), 2472 LINUX_MIB_TCPSPURIOUSRTOS); 2473 inet_csk(sk)->icsk_retransmits = 0; 2474 if (frto_undo || tcp_is_sack(tp)) 2475 tcp_set_ca_state(sk, TCP_CA_Open); 2476 return true; 2477 } 2478 return false; 2479 } 2480 2481 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2482 * It computes the number of packets to send (sndcnt) based on packets newly 2483 * delivered: 2484 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2485 * cwnd reductions across a full RTT. 2486 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2487 * But when the retransmits are acked without further losses, PRR 2488 * slow starts cwnd up to ssthresh to speed up the recovery. 2489 */ 2490 static void tcp_init_cwnd_reduction(struct sock *sk) 2491 { 2492 struct tcp_sock *tp = tcp_sk(sk); 2493 2494 tp->high_seq = tp->snd_nxt; 2495 tp->tlp_high_seq = 0; 2496 tp->snd_cwnd_cnt = 0; 2497 tp->prior_cwnd = tp->snd_cwnd; 2498 tp->prr_delivered = 0; 2499 tp->prr_out = 0; 2500 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2501 tcp_ecn_queue_cwr(tp); 2502 } 2503 2504 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2505 { 2506 struct tcp_sock *tp = tcp_sk(sk); 2507 int sndcnt = 0; 2508 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2509 2510 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2511 return; 2512 2513 tp->prr_delivered += newly_acked_sacked; 2514 if (delta < 0) { 2515 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2516 tp->prior_cwnd - 1; 2517 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2518 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2519 !(flag & FLAG_LOST_RETRANS)) { 2520 sndcnt = min_t(int, delta, 2521 max_t(int, tp->prr_delivered - tp->prr_out, 2522 newly_acked_sacked) + 1); 2523 } else { 2524 sndcnt = min(delta, newly_acked_sacked); 2525 } 2526 /* Force a fast retransmit upon entering fast recovery */ 2527 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2528 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2529 } 2530 2531 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2532 { 2533 struct tcp_sock *tp = tcp_sk(sk); 2534 2535 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2536 return; 2537 2538 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2539 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2540 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2541 tp->snd_cwnd = tp->snd_ssthresh; 2542 tp->snd_cwnd_stamp = tcp_jiffies32; 2543 } 2544 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2545 } 2546 2547 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2548 void tcp_enter_cwr(struct sock *sk) 2549 { 2550 struct tcp_sock *tp = tcp_sk(sk); 2551 2552 tp->prior_ssthresh = 0; 2553 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2554 tp->undo_marker = 0; 2555 tcp_init_cwnd_reduction(sk); 2556 tcp_set_ca_state(sk, TCP_CA_CWR); 2557 } 2558 } 2559 EXPORT_SYMBOL(tcp_enter_cwr); 2560 2561 static void tcp_try_keep_open(struct sock *sk) 2562 { 2563 struct tcp_sock *tp = tcp_sk(sk); 2564 int state = TCP_CA_Open; 2565 2566 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2567 state = TCP_CA_Disorder; 2568 2569 if (inet_csk(sk)->icsk_ca_state != state) { 2570 tcp_set_ca_state(sk, state); 2571 tp->high_seq = tp->snd_nxt; 2572 } 2573 } 2574 2575 static void tcp_try_to_open(struct sock *sk, int flag) 2576 { 2577 struct tcp_sock *tp = tcp_sk(sk); 2578 2579 tcp_verify_left_out(tp); 2580 2581 if (!tcp_any_retrans_done(sk)) 2582 tp->retrans_stamp = 0; 2583 2584 if (flag & FLAG_ECE) 2585 tcp_enter_cwr(sk); 2586 2587 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2588 tcp_try_keep_open(sk); 2589 } 2590 } 2591 2592 static void tcp_mtup_probe_failed(struct sock *sk) 2593 { 2594 struct inet_connection_sock *icsk = inet_csk(sk); 2595 2596 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2597 icsk->icsk_mtup.probe_size = 0; 2598 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2599 } 2600 2601 static void tcp_mtup_probe_success(struct sock *sk) 2602 { 2603 struct tcp_sock *tp = tcp_sk(sk); 2604 struct inet_connection_sock *icsk = inet_csk(sk); 2605 2606 /* FIXME: breaks with very large cwnd */ 2607 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2608 tp->snd_cwnd = tp->snd_cwnd * 2609 tcp_mss_to_mtu(sk, tp->mss_cache) / 2610 icsk->icsk_mtup.probe_size; 2611 tp->snd_cwnd_cnt = 0; 2612 tp->snd_cwnd_stamp = tcp_jiffies32; 2613 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2614 2615 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2616 icsk->icsk_mtup.probe_size = 0; 2617 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2618 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2619 } 2620 2621 /* Do a simple retransmit without using the backoff mechanisms in 2622 * tcp_timer. This is used for path mtu discovery. 2623 * The socket is already locked here. 2624 */ 2625 void tcp_simple_retransmit(struct sock *sk) 2626 { 2627 const struct inet_connection_sock *icsk = inet_csk(sk); 2628 struct tcp_sock *tp = tcp_sk(sk); 2629 struct sk_buff *skb; 2630 unsigned int mss = tcp_current_mss(sk); 2631 u32 prior_lost = tp->lost_out; 2632 2633 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2634 if (tcp_skb_seglen(skb) > mss && 2635 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2636 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2637 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2638 tp->retrans_out -= tcp_skb_pcount(skb); 2639 } 2640 tcp_skb_mark_lost_uncond_verify(tp, skb); 2641 } 2642 } 2643 2644 tcp_clear_retrans_hints_partial(tp); 2645 2646 if (prior_lost == tp->lost_out) 2647 return; 2648 2649 if (tcp_is_reno(tp)) 2650 tcp_limit_reno_sacked(tp); 2651 2652 tcp_verify_left_out(tp); 2653 2654 /* Don't muck with the congestion window here. 2655 * Reason is that we do not increase amount of _data_ 2656 * in network, but units changed and effective 2657 * cwnd/ssthresh really reduced now. 2658 */ 2659 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2660 tp->high_seq = tp->snd_nxt; 2661 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2662 tp->prior_ssthresh = 0; 2663 tp->undo_marker = 0; 2664 tcp_set_ca_state(sk, TCP_CA_Loss); 2665 } 2666 tcp_xmit_retransmit_queue(sk); 2667 } 2668 EXPORT_SYMBOL(tcp_simple_retransmit); 2669 2670 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2671 { 2672 struct tcp_sock *tp = tcp_sk(sk); 2673 int mib_idx; 2674 2675 if (tcp_is_reno(tp)) 2676 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2677 else 2678 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2679 2680 NET_INC_STATS(sock_net(sk), mib_idx); 2681 2682 tp->prior_ssthresh = 0; 2683 tcp_init_undo(tp); 2684 2685 if (!tcp_in_cwnd_reduction(sk)) { 2686 if (!ece_ack) 2687 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2688 tcp_init_cwnd_reduction(sk); 2689 } 2690 tcp_set_ca_state(sk, TCP_CA_Recovery); 2691 } 2692 2693 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2694 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2695 */ 2696 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2697 int *rexmit) 2698 { 2699 struct tcp_sock *tp = tcp_sk(sk); 2700 bool recovered = !before(tp->snd_una, tp->high_seq); 2701 2702 if ((flag & FLAG_SND_UNA_ADVANCED) && 2703 tcp_try_undo_loss(sk, false)) 2704 return; 2705 2706 /* The ACK (s)acks some never-retransmitted data meaning not all 2707 * the data packets before the timeout were lost. Therefore we 2708 * undo the congestion window and state. This is essentially 2709 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2710 * a retransmitted skb is permantly marked, we can apply such an 2711 * operation even if F-RTO was not used. 2712 */ 2713 if ((flag & FLAG_ORIG_SACK_ACKED) && 2714 tcp_try_undo_loss(sk, tp->undo_marker)) 2715 return; 2716 2717 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2718 if (after(tp->snd_nxt, tp->high_seq)) { 2719 if (flag & FLAG_DATA_SACKED || is_dupack) 2720 tp->frto = 0; /* Step 3.a. loss was real */ 2721 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2722 tp->high_seq = tp->snd_nxt; 2723 /* Step 2.b. Try send new data (but deferred until cwnd 2724 * is updated in tcp_ack()). Otherwise fall back to 2725 * the conventional recovery. 2726 */ 2727 if (!tcp_write_queue_empty(sk) && 2728 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2729 *rexmit = REXMIT_NEW; 2730 return; 2731 } 2732 tp->frto = 0; 2733 } 2734 } 2735 2736 if (recovered) { 2737 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2738 tcp_try_undo_recovery(sk); 2739 return; 2740 } 2741 if (tcp_is_reno(tp)) { 2742 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2743 * delivered. Lower inflight to clock out (re)tranmissions. 2744 */ 2745 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2746 tcp_add_reno_sack(sk); 2747 else if (flag & FLAG_SND_UNA_ADVANCED) 2748 tcp_reset_reno_sack(tp); 2749 } 2750 *rexmit = REXMIT_LOST; 2751 } 2752 2753 /* Undo during fast recovery after partial ACK. */ 2754 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2755 { 2756 struct tcp_sock *tp = tcp_sk(sk); 2757 2758 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2759 /* Plain luck! Hole if filled with delayed 2760 * packet, rather than with a retransmit. 2761 */ 2762 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2763 2764 /* We are getting evidence that the reordering degree is higher 2765 * than we realized. If there are no retransmits out then we 2766 * can undo. Otherwise we clock out new packets but do not 2767 * mark more packets lost or retransmit more. 2768 */ 2769 if (tp->retrans_out) 2770 return true; 2771 2772 if (!tcp_any_retrans_done(sk)) 2773 tp->retrans_stamp = 0; 2774 2775 DBGUNDO(sk, "partial recovery"); 2776 tcp_undo_cwnd_reduction(sk, true); 2777 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2778 tcp_try_keep_open(sk); 2779 return true; 2780 } 2781 return false; 2782 } 2783 2784 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag) 2785 { 2786 struct tcp_sock *tp = tcp_sk(sk); 2787 2788 /* Use RACK to detect loss */ 2789 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2790 u32 prior_retrans = tp->retrans_out; 2791 2792 tcp_rack_mark_lost(sk); 2793 if (prior_retrans > tp->retrans_out) 2794 *ack_flag |= FLAG_LOST_RETRANS; 2795 } 2796 } 2797 2798 /* Process an event, which can update packets-in-flight not trivially. 2799 * Main goal of this function is to calculate new estimate for left_out, 2800 * taking into account both packets sitting in receiver's buffer and 2801 * packets lost by network. 2802 * 2803 * Besides that it updates the congestion state when packet loss or ECN 2804 * is detected. But it does not reduce the cwnd, it is done by the 2805 * congestion control later. 2806 * 2807 * It does _not_ decide what to send, it is made in function 2808 * tcp_xmit_retransmit_queue(). 2809 */ 2810 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2811 bool is_dupack, int *ack_flag, int *rexmit) 2812 { 2813 struct inet_connection_sock *icsk = inet_csk(sk); 2814 struct tcp_sock *tp = tcp_sk(sk); 2815 int fast_rexmit = 0, flag = *ack_flag; 2816 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2817 (tcp_fackets_out(tp) > tp->reordering)); 2818 2819 if (!tp->packets_out && tp->sacked_out) 2820 tp->sacked_out = 0; 2821 if (!tp->sacked_out && tp->fackets_out) 2822 tp->fackets_out = 0; 2823 2824 /* Now state machine starts. 2825 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2826 if (flag & FLAG_ECE) 2827 tp->prior_ssthresh = 0; 2828 2829 /* B. In all the states check for reneging SACKs. */ 2830 if (tcp_check_sack_reneging(sk, flag)) 2831 return; 2832 2833 /* C. Check consistency of the current state. */ 2834 tcp_verify_left_out(tp); 2835 2836 /* D. Check state exit conditions. State can be terminated 2837 * when high_seq is ACKed. */ 2838 if (icsk->icsk_ca_state == TCP_CA_Open) { 2839 WARN_ON(tp->retrans_out != 0); 2840 tp->retrans_stamp = 0; 2841 } else if (!before(tp->snd_una, tp->high_seq)) { 2842 switch (icsk->icsk_ca_state) { 2843 case TCP_CA_CWR: 2844 /* CWR is to be held something *above* high_seq 2845 * is ACKed for CWR bit to reach receiver. */ 2846 if (tp->snd_una != tp->high_seq) { 2847 tcp_end_cwnd_reduction(sk); 2848 tcp_set_ca_state(sk, TCP_CA_Open); 2849 } 2850 break; 2851 2852 case TCP_CA_Recovery: 2853 if (tcp_is_reno(tp)) 2854 tcp_reset_reno_sack(tp); 2855 if (tcp_try_undo_recovery(sk)) 2856 return; 2857 tcp_end_cwnd_reduction(sk); 2858 break; 2859 } 2860 } 2861 2862 /* E. Process state. */ 2863 switch (icsk->icsk_ca_state) { 2864 case TCP_CA_Recovery: 2865 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2866 if (tcp_is_reno(tp) && is_dupack) 2867 tcp_add_reno_sack(sk); 2868 } else { 2869 if (tcp_try_undo_partial(sk, acked)) 2870 return; 2871 /* Partial ACK arrived. Force fast retransmit. */ 2872 do_lost = tcp_is_reno(tp) || 2873 tcp_fackets_out(tp) > tp->reordering; 2874 } 2875 if (tcp_try_undo_dsack(sk)) { 2876 tcp_try_keep_open(sk); 2877 return; 2878 } 2879 tcp_rack_identify_loss(sk, ack_flag); 2880 break; 2881 case TCP_CA_Loss: 2882 tcp_process_loss(sk, flag, is_dupack, rexmit); 2883 tcp_rack_identify_loss(sk, ack_flag); 2884 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2885 (*ack_flag & FLAG_LOST_RETRANS))) 2886 return; 2887 /* Change state if cwnd is undone or retransmits are lost */ 2888 default: 2889 if (tcp_is_reno(tp)) { 2890 if (flag & FLAG_SND_UNA_ADVANCED) 2891 tcp_reset_reno_sack(tp); 2892 if (is_dupack) 2893 tcp_add_reno_sack(sk); 2894 } 2895 2896 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2897 tcp_try_undo_dsack(sk); 2898 2899 tcp_rack_identify_loss(sk, ack_flag); 2900 if (!tcp_time_to_recover(sk, flag)) { 2901 tcp_try_to_open(sk, flag); 2902 return; 2903 } 2904 2905 /* MTU probe failure: don't reduce cwnd */ 2906 if (icsk->icsk_ca_state < TCP_CA_CWR && 2907 icsk->icsk_mtup.probe_size && 2908 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2909 tcp_mtup_probe_failed(sk); 2910 /* Restores the reduction we did in tcp_mtup_probe() */ 2911 tp->snd_cwnd++; 2912 tcp_simple_retransmit(sk); 2913 return; 2914 } 2915 2916 /* Otherwise enter Recovery state */ 2917 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2918 fast_rexmit = 1; 2919 } 2920 2921 if (do_lost) 2922 tcp_update_scoreboard(sk, fast_rexmit); 2923 *rexmit = REXMIT_LOST; 2924 } 2925 2926 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2927 { 2928 struct tcp_sock *tp = tcp_sk(sk); 2929 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2930 2931 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2932 rtt_us ? : jiffies_to_usecs(1)); 2933 } 2934 2935 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2936 long seq_rtt_us, long sack_rtt_us, 2937 long ca_rtt_us, struct rate_sample *rs) 2938 { 2939 const struct tcp_sock *tp = tcp_sk(sk); 2940 2941 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2942 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2943 * Karn's algorithm forbids taking RTT if some retransmitted data 2944 * is acked (RFC6298). 2945 */ 2946 if (seq_rtt_us < 0) 2947 seq_rtt_us = sack_rtt_us; 2948 2949 /* RTTM Rule: A TSecr value received in a segment is used to 2950 * update the averaged RTT measurement only if the segment 2951 * acknowledges some new data, i.e., only if it advances the 2952 * left edge of the send window. 2953 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2954 */ 2955 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2956 flag & FLAG_ACKED) { 2957 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2958 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2959 2960 seq_rtt_us = ca_rtt_us = delta_us; 2961 } 2962 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2963 if (seq_rtt_us < 0) 2964 return false; 2965 2966 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2967 * always taken together with ACK, SACK, or TS-opts. Any negative 2968 * values will be skipped with the seq_rtt_us < 0 check above. 2969 */ 2970 tcp_update_rtt_min(sk, ca_rtt_us); 2971 tcp_rtt_estimator(sk, seq_rtt_us); 2972 tcp_set_rto(sk); 2973 2974 /* RFC6298: only reset backoff on valid RTT measurement. */ 2975 inet_csk(sk)->icsk_backoff = 0; 2976 return true; 2977 } 2978 2979 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2980 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2981 { 2982 struct rate_sample rs; 2983 long rtt_us = -1L; 2984 2985 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2986 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2987 2988 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2989 } 2990 2991 2992 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2993 { 2994 const struct inet_connection_sock *icsk = inet_csk(sk); 2995 2996 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2997 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2998 } 2999 3000 /* Restart timer after forward progress on connection. 3001 * RFC2988 recommends to restart timer to now+rto. 3002 */ 3003 void tcp_rearm_rto(struct sock *sk) 3004 { 3005 const struct inet_connection_sock *icsk = inet_csk(sk); 3006 struct tcp_sock *tp = tcp_sk(sk); 3007 3008 /* If the retrans timer is currently being used by Fast Open 3009 * for SYN-ACK retrans purpose, stay put. 3010 */ 3011 if (tp->fastopen_rsk) 3012 return; 3013 3014 if (!tp->packets_out) { 3015 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3016 } else { 3017 u32 rto = inet_csk(sk)->icsk_rto; 3018 /* Offset the time elapsed after installing regular RTO */ 3019 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3020 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3021 s64 delta_us = tcp_rto_delta_us(sk); 3022 /* delta_us may not be positive if the socket is locked 3023 * when the retrans timer fires and is rescheduled. 3024 */ 3025 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3026 } 3027 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3028 TCP_RTO_MAX); 3029 } 3030 } 3031 3032 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3033 static void tcp_set_xmit_timer(struct sock *sk) 3034 { 3035 if (!tcp_schedule_loss_probe(sk)) 3036 tcp_rearm_rto(sk); 3037 } 3038 3039 /* If we get here, the whole TSO packet has not been acked. */ 3040 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3041 { 3042 struct tcp_sock *tp = tcp_sk(sk); 3043 u32 packets_acked; 3044 3045 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3046 3047 packets_acked = tcp_skb_pcount(skb); 3048 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3049 return 0; 3050 packets_acked -= tcp_skb_pcount(skb); 3051 3052 if (packets_acked) { 3053 BUG_ON(tcp_skb_pcount(skb) == 0); 3054 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3055 } 3056 3057 return packets_acked; 3058 } 3059 3060 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3061 u32 prior_snd_una) 3062 { 3063 const struct skb_shared_info *shinfo; 3064 3065 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3066 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3067 return; 3068 3069 shinfo = skb_shinfo(skb); 3070 if (!before(shinfo->tskey, prior_snd_una) && 3071 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3072 tcp_skb_tsorted_save(skb) { 3073 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3074 } tcp_skb_tsorted_restore(skb); 3075 } 3076 } 3077 3078 /* Remove acknowledged frames from the retransmission queue. If our packet 3079 * is before the ack sequence we can discard it as it's confirmed to have 3080 * arrived at the other end. 3081 */ 3082 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3083 u32 prior_snd_una, int *acked, 3084 struct tcp_sacktag_state *sack) 3085 { 3086 const struct inet_connection_sock *icsk = inet_csk(sk); 3087 u64 first_ackt, last_ackt; 3088 struct tcp_sock *tp = tcp_sk(sk); 3089 u32 prior_sacked = tp->sacked_out; 3090 u32 reord = tp->packets_out; 3091 struct sk_buff *skb, *next; 3092 bool fully_acked = true; 3093 long sack_rtt_us = -1L; 3094 long seq_rtt_us = -1L; 3095 long ca_rtt_us = -1L; 3096 u32 pkts_acked = 0; 3097 u32 last_in_flight = 0; 3098 bool rtt_update; 3099 int flag = 0; 3100 3101 first_ackt = 0; 3102 3103 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3104 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3105 u8 sacked = scb->sacked; 3106 u32 acked_pcount; 3107 3108 tcp_ack_tstamp(sk, skb, prior_snd_una); 3109 3110 /* Determine how many packets and what bytes were acked, tso and else */ 3111 if (after(scb->end_seq, tp->snd_una)) { 3112 if (tcp_skb_pcount(skb) == 1 || 3113 !after(tp->snd_una, scb->seq)) 3114 break; 3115 3116 acked_pcount = tcp_tso_acked(sk, skb); 3117 if (!acked_pcount) 3118 break; 3119 fully_acked = false; 3120 } else { 3121 acked_pcount = tcp_skb_pcount(skb); 3122 } 3123 3124 if (unlikely(sacked & TCPCB_RETRANS)) { 3125 if (sacked & TCPCB_SACKED_RETRANS) 3126 tp->retrans_out -= acked_pcount; 3127 flag |= FLAG_RETRANS_DATA_ACKED; 3128 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3129 last_ackt = skb->skb_mstamp; 3130 WARN_ON_ONCE(last_ackt == 0); 3131 if (!first_ackt) 3132 first_ackt = last_ackt; 3133 3134 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3135 reord = min(pkts_acked, reord); 3136 if (!after(scb->end_seq, tp->high_seq)) 3137 flag |= FLAG_ORIG_SACK_ACKED; 3138 } 3139 3140 if (sacked & TCPCB_SACKED_ACKED) { 3141 tp->sacked_out -= acked_pcount; 3142 } else if (tcp_is_sack(tp)) { 3143 tp->delivered += acked_pcount; 3144 if (!tcp_skb_spurious_retrans(tp, skb)) 3145 tcp_rack_advance(tp, sacked, scb->end_seq, 3146 skb->skb_mstamp); 3147 } 3148 if (sacked & TCPCB_LOST) 3149 tp->lost_out -= acked_pcount; 3150 3151 tp->packets_out -= acked_pcount; 3152 pkts_acked += acked_pcount; 3153 tcp_rate_skb_delivered(sk, skb, sack->rate); 3154 3155 /* Initial outgoing SYN's get put onto the write_queue 3156 * just like anything else we transmit. It is not 3157 * true data, and if we misinform our callers that 3158 * this ACK acks real data, we will erroneously exit 3159 * connection startup slow start one packet too 3160 * quickly. This is severely frowned upon behavior. 3161 */ 3162 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3163 flag |= FLAG_DATA_ACKED; 3164 } else { 3165 flag |= FLAG_SYN_ACKED; 3166 tp->retrans_stamp = 0; 3167 } 3168 3169 if (!fully_acked) 3170 break; 3171 3172 next = skb_rb_next(skb); 3173 if (unlikely(skb == tp->retransmit_skb_hint)) 3174 tp->retransmit_skb_hint = NULL; 3175 if (unlikely(skb == tp->lost_skb_hint)) 3176 tp->lost_skb_hint = NULL; 3177 tcp_rtx_queue_unlink_and_free(skb, sk); 3178 } 3179 3180 if (!skb) 3181 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3182 3183 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3184 tp->snd_up = tp->snd_una; 3185 3186 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3187 flag |= FLAG_SACK_RENEGING; 3188 3189 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3190 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3191 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3192 } 3193 if (sack->first_sackt) { 3194 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3195 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3196 } 3197 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3198 ca_rtt_us, sack->rate); 3199 3200 if (flag & FLAG_ACKED) { 3201 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3202 if (unlikely(icsk->icsk_mtup.probe_size && 3203 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3204 tcp_mtup_probe_success(sk); 3205 } 3206 3207 if (tcp_is_reno(tp)) { 3208 tcp_remove_reno_sacks(sk, pkts_acked); 3209 } else { 3210 int delta; 3211 3212 /* Non-retransmitted hole got filled? That's reordering */ 3213 if (reord < prior_fackets && reord <= tp->fackets_out) 3214 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3215 3216 delta = tcp_is_fack(tp) ? pkts_acked : 3217 prior_sacked - tp->sacked_out; 3218 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3219 } 3220 3221 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3222 3223 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3224 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3225 /* Do not re-arm RTO if the sack RTT is measured from data sent 3226 * after when the head was last (re)transmitted. Otherwise the 3227 * timeout may continue to extend in loss recovery. 3228 */ 3229 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3230 } 3231 3232 if (icsk->icsk_ca_ops->pkts_acked) { 3233 struct ack_sample sample = { .pkts_acked = pkts_acked, 3234 .rtt_us = sack->rate->rtt_us, 3235 .in_flight = last_in_flight }; 3236 3237 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3238 } 3239 3240 #if FASTRETRANS_DEBUG > 0 3241 WARN_ON((int)tp->sacked_out < 0); 3242 WARN_ON((int)tp->lost_out < 0); 3243 WARN_ON((int)tp->retrans_out < 0); 3244 if (!tp->packets_out && tcp_is_sack(tp)) { 3245 icsk = inet_csk(sk); 3246 if (tp->lost_out) { 3247 pr_debug("Leak l=%u %d\n", 3248 tp->lost_out, icsk->icsk_ca_state); 3249 tp->lost_out = 0; 3250 } 3251 if (tp->sacked_out) { 3252 pr_debug("Leak s=%u %d\n", 3253 tp->sacked_out, icsk->icsk_ca_state); 3254 tp->sacked_out = 0; 3255 } 3256 if (tp->retrans_out) { 3257 pr_debug("Leak r=%u %d\n", 3258 tp->retrans_out, icsk->icsk_ca_state); 3259 tp->retrans_out = 0; 3260 } 3261 } 3262 #endif 3263 *acked = pkts_acked; 3264 return flag; 3265 } 3266 3267 static void tcp_ack_probe(struct sock *sk) 3268 { 3269 struct inet_connection_sock *icsk = inet_csk(sk); 3270 struct sk_buff *head = tcp_send_head(sk); 3271 const struct tcp_sock *tp = tcp_sk(sk); 3272 3273 /* Was it a usable window open? */ 3274 if (!head) 3275 return; 3276 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3277 icsk->icsk_backoff = 0; 3278 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3279 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3280 * This function is not for random using! 3281 */ 3282 } else { 3283 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3284 3285 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3286 when, TCP_RTO_MAX); 3287 } 3288 } 3289 3290 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3291 { 3292 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3293 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3294 } 3295 3296 /* Decide wheather to run the increase function of congestion control. */ 3297 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3298 { 3299 /* If reordering is high then always grow cwnd whenever data is 3300 * delivered regardless of its ordering. Otherwise stay conservative 3301 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3302 * new SACK or ECE mark may first advance cwnd here and later reduce 3303 * cwnd in tcp_fastretrans_alert() based on more states. 3304 */ 3305 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3306 return flag & FLAG_FORWARD_PROGRESS; 3307 3308 return flag & FLAG_DATA_ACKED; 3309 } 3310 3311 /* The "ultimate" congestion control function that aims to replace the rigid 3312 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3313 * It's called toward the end of processing an ACK with precise rate 3314 * information. All transmission or retransmission are delayed afterwards. 3315 */ 3316 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3317 int flag, const struct rate_sample *rs) 3318 { 3319 const struct inet_connection_sock *icsk = inet_csk(sk); 3320 3321 if (icsk->icsk_ca_ops->cong_control) { 3322 icsk->icsk_ca_ops->cong_control(sk, rs); 3323 return; 3324 } 3325 3326 if (tcp_in_cwnd_reduction(sk)) { 3327 /* Reduce cwnd if state mandates */ 3328 tcp_cwnd_reduction(sk, acked_sacked, flag); 3329 } else if (tcp_may_raise_cwnd(sk, flag)) { 3330 /* Advance cwnd if state allows */ 3331 tcp_cong_avoid(sk, ack, acked_sacked); 3332 } 3333 tcp_update_pacing_rate(sk); 3334 } 3335 3336 /* Check that window update is acceptable. 3337 * The function assumes that snd_una<=ack<=snd_next. 3338 */ 3339 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3340 const u32 ack, const u32 ack_seq, 3341 const u32 nwin) 3342 { 3343 return after(ack, tp->snd_una) || 3344 after(ack_seq, tp->snd_wl1) || 3345 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3346 } 3347 3348 /* If we update tp->snd_una, also update tp->bytes_acked */ 3349 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3350 { 3351 u32 delta = ack - tp->snd_una; 3352 3353 sock_owned_by_me((struct sock *)tp); 3354 tp->bytes_acked += delta; 3355 tp->snd_una = ack; 3356 } 3357 3358 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3359 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3360 { 3361 u32 delta = seq - tp->rcv_nxt; 3362 3363 sock_owned_by_me((struct sock *)tp); 3364 tp->bytes_received += delta; 3365 tp->rcv_nxt = seq; 3366 } 3367 3368 /* Update our send window. 3369 * 3370 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3371 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3372 */ 3373 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3374 u32 ack_seq) 3375 { 3376 struct tcp_sock *tp = tcp_sk(sk); 3377 int flag = 0; 3378 u32 nwin = ntohs(tcp_hdr(skb)->window); 3379 3380 if (likely(!tcp_hdr(skb)->syn)) 3381 nwin <<= tp->rx_opt.snd_wscale; 3382 3383 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3384 flag |= FLAG_WIN_UPDATE; 3385 tcp_update_wl(tp, ack_seq); 3386 3387 if (tp->snd_wnd != nwin) { 3388 tp->snd_wnd = nwin; 3389 3390 /* Note, it is the only place, where 3391 * fast path is recovered for sending TCP. 3392 */ 3393 tp->pred_flags = 0; 3394 tcp_fast_path_check(sk); 3395 3396 if (!tcp_write_queue_empty(sk)) 3397 tcp_slow_start_after_idle_check(sk); 3398 3399 if (nwin > tp->max_window) { 3400 tp->max_window = nwin; 3401 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3402 } 3403 } 3404 } 3405 3406 tcp_snd_una_update(tp, ack); 3407 3408 return flag; 3409 } 3410 3411 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3412 u32 *last_oow_ack_time) 3413 { 3414 if (*last_oow_ack_time) { 3415 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3416 3417 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3418 NET_INC_STATS(net, mib_idx); 3419 return true; /* rate-limited: don't send yet! */ 3420 } 3421 } 3422 3423 *last_oow_ack_time = tcp_jiffies32; 3424 3425 return false; /* not rate-limited: go ahead, send dupack now! */ 3426 } 3427 3428 /* Return true if we're currently rate-limiting out-of-window ACKs and 3429 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3430 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3431 * attacks that send repeated SYNs or ACKs for the same connection. To 3432 * do this, we do not send a duplicate SYNACK or ACK if the remote 3433 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3434 */ 3435 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3436 int mib_idx, u32 *last_oow_ack_time) 3437 { 3438 /* Data packets without SYNs are not likely part of an ACK loop. */ 3439 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3440 !tcp_hdr(skb)->syn) 3441 return false; 3442 3443 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3444 } 3445 3446 /* RFC 5961 7 [ACK Throttling] */ 3447 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3448 { 3449 /* unprotected vars, we dont care of overwrites */ 3450 static u32 challenge_timestamp; 3451 static unsigned int challenge_count; 3452 struct tcp_sock *tp = tcp_sk(sk); 3453 u32 count, now; 3454 3455 /* First check our per-socket dupack rate limit. */ 3456 if (__tcp_oow_rate_limited(sock_net(sk), 3457 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3458 &tp->last_oow_ack_time)) 3459 return; 3460 3461 /* Then check host-wide RFC 5961 rate limit. */ 3462 now = jiffies / HZ; 3463 if (now != challenge_timestamp) { 3464 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3465 3466 challenge_timestamp = now; 3467 WRITE_ONCE(challenge_count, half + 3468 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3469 } 3470 count = READ_ONCE(challenge_count); 3471 if (count > 0) { 3472 WRITE_ONCE(challenge_count, count - 1); 3473 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3474 tcp_send_ack(sk); 3475 } 3476 } 3477 3478 static void tcp_store_ts_recent(struct tcp_sock *tp) 3479 { 3480 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3481 tp->rx_opt.ts_recent_stamp = get_seconds(); 3482 } 3483 3484 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3485 { 3486 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3487 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3488 * extra check below makes sure this can only happen 3489 * for pure ACK frames. -DaveM 3490 * 3491 * Not only, also it occurs for expired timestamps. 3492 */ 3493 3494 if (tcp_paws_check(&tp->rx_opt, 0)) 3495 tcp_store_ts_recent(tp); 3496 } 3497 } 3498 3499 /* This routine deals with acks during a TLP episode. 3500 * We mark the end of a TLP episode on receiving TLP dupack or when 3501 * ack is after tlp_high_seq. 3502 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3503 */ 3504 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3505 { 3506 struct tcp_sock *tp = tcp_sk(sk); 3507 3508 if (before(ack, tp->tlp_high_seq)) 3509 return; 3510 3511 if (flag & FLAG_DSACKING_ACK) { 3512 /* This DSACK means original and TLP probe arrived; no loss */ 3513 tp->tlp_high_seq = 0; 3514 } else if (after(ack, tp->tlp_high_seq)) { 3515 /* ACK advances: there was a loss, so reduce cwnd. Reset 3516 * tlp_high_seq in tcp_init_cwnd_reduction() 3517 */ 3518 tcp_init_cwnd_reduction(sk); 3519 tcp_set_ca_state(sk, TCP_CA_CWR); 3520 tcp_end_cwnd_reduction(sk); 3521 tcp_try_keep_open(sk); 3522 NET_INC_STATS(sock_net(sk), 3523 LINUX_MIB_TCPLOSSPROBERECOVERY); 3524 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3525 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3526 /* Pure dupack: original and TLP probe arrived; no loss */ 3527 tp->tlp_high_seq = 0; 3528 } 3529 } 3530 3531 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3532 { 3533 const struct inet_connection_sock *icsk = inet_csk(sk); 3534 3535 if (icsk->icsk_ca_ops->in_ack_event) 3536 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3537 } 3538 3539 /* Congestion control has updated the cwnd already. So if we're in 3540 * loss recovery then now we do any new sends (for FRTO) or 3541 * retransmits (for CA_Loss or CA_recovery) that make sense. 3542 */ 3543 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3544 { 3545 struct tcp_sock *tp = tcp_sk(sk); 3546 3547 if (rexmit == REXMIT_NONE) 3548 return; 3549 3550 if (unlikely(rexmit == 2)) { 3551 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3552 TCP_NAGLE_OFF); 3553 if (after(tp->snd_nxt, tp->high_seq)) 3554 return; 3555 tp->frto = 0; 3556 } 3557 tcp_xmit_retransmit_queue(sk); 3558 } 3559 3560 /* This routine deals with incoming acks, but not outgoing ones. */ 3561 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3562 { 3563 struct inet_connection_sock *icsk = inet_csk(sk); 3564 struct tcp_sock *tp = tcp_sk(sk); 3565 struct tcp_sacktag_state sack_state; 3566 struct rate_sample rs = { .prior_delivered = 0 }; 3567 u32 prior_snd_una = tp->snd_una; 3568 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3569 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3570 bool is_dupack = false; 3571 u32 prior_fackets; 3572 int prior_packets = tp->packets_out; 3573 u32 delivered = tp->delivered; 3574 u32 lost = tp->lost; 3575 int acked = 0; /* Number of packets newly acked */ 3576 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3577 3578 sack_state.first_sackt = 0; 3579 sack_state.rate = &rs; 3580 3581 /* We very likely will need to access rtx queue. */ 3582 prefetch(sk->tcp_rtx_queue.rb_node); 3583 3584 /* If the ack is older than previous acks 3585 * then we can probably ignore it. 3586 */ 3587 if (before(ack, prior_snd_una)) { 3588 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3589 if (before(ack, prior_snd_una - tp->max_window)) { 3590 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3591 tcp_send_challenge_ack(sk, skb); 3592 return -1; 3593 } 3594 goto old_ack; 3595 } 3596 3597 /* If the ack includes data we haven't sent yet, discard 3598 * this segment (RFC793 Section 3.9). 3599 */ 3600 if (after(ack, tp->snd_nxt)) 3601 goto invalid_ack; 3602 3603 if (after(ack, prior_snd_una)) { 3604 flag |= FLAG_SND_UNA_ADVANCED; 3605 icsk->icsk_retransmits = 0; 3606 } 3607 3608 prior_fackets = tp->fackets_out; 3609 rs.prior_in_flight = tcp_packets_in_flight(tp); 3610 3611 /* ts_recent update must be made after we are sure that the packet 3612 * is in window. 3613 */ 3614 if (flag & FLAG_UPDATE_TS_RECENT) 3615 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3616 3617 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3618 /* Window is constant, pure forward advance. 3619 * No more checks are required. 3620 * Note, we use the fact that SND.UNA>=SND.WL2. 3621 */ 3622 tcp_update_wl(tp, ack_seq); 3623 tcp_snd_una_update(tp, ack); 3624 flag |= FLAG_WIN_UPDATE; 3625 3626 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3627 3628 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3629 } else { 3630 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3631 3632 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3633 flag |= FLAG_DATA; 3634 else 3635 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3636 3637 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3638 3639 if (TCP_SKB_CB(skb)->sacked) 3640 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3641 &sack_state); 3642 3643 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3644 flag |= FLAG_ECE; 3645 ack_ev_flags |= CA_ACK_ECE; 3646 } 3647 3648 if (flag & FLAG_WIN_UPDATE) 3649 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3650 3651 tcp_in_ack_event(sk, ack_ev_flags); 3652 } 3653 3654 /* We passed data and got it acked, remove any soft error 3655 * log. Something worked... 3656 */ 3657 sk->sk_err_soft = 0; 3658 icsk->icsk_probes_out = 0; 3659 tp->rcv_tstamp = tcp_jiffies32; 3660 if (!prior_packets) 3661 goto no_queue; 3662 3663 /* See if we can take anything off of the retransmit queue. */ 3664 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3665 &sack_state); 3666 3667 if (tp->tlp_high_seq) 3668 tcp_process_tlp_ack(sk, ack, flag); 3669 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3670 if (flag & FLAG_SET_XMIT_TIMER) 3671 tcp_set_xmit_timer(sk); 3672 3673 if (tcp_ack_is_dubious(sk, flag)) { 3674 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3675 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3676 } 3677 3678 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3679 sk_dst_confirm(sk); 3680 3681 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3682 lost = tp->lost - lost; /* freshly marked lost */ 3683 tcp_rate_gen(sk, delivered, lost, sack_state.rate); 3684 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3685 tcp_xmit_recovery(sk, rexmit); 3686 return 1; 3687 3688 no_queue: 3689 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3690 if (flag & FLAG_DSACKING_ACK) 3691 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3692 /* If this ack opens up a zero window, clear backoff. It was 3693 * being used to time the probes, and is probably far higher than 3694 * it needs to be for normal retransmission. 3695 */ 3696 tcp_ack_probe(sk); 3697 3698 if (tp->tlp_high_seq) 3699 tcp_process_tlp_ack(sk, ack, flag); 3700 return 1; 3701 3702 invalid_ack: 3703 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3704 return -1; 3705 3706 old_ack: 3707 /* If data was SACKed, tag it and see if we should send more data. 3708 * If data was DSACKed, see if we can undo a cwnd reduction. 3709 */ 3710 if (TCP_SKB_CB(skb)->sacked) { 3711 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3712 &sack_state); 3713 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit); 3714 tcp_xmit_recovery(sk, rexmit); 3715 } 3716 3717 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3718 return 0; 3719 } 3720 3721 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3722 bool syn, struct tcp_fastopen_cookie *foc, 3723 bool exp_opt) 3724 { 3725 /* Valid only in SYN or SYN-ACK with an even length. */ 3726 if (!foc || !syn || len < 0 || (len & 1)) 3727 return; 3728 3729 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3730 len <= TCP_FASTOPEN_COOKIE_MAX) 3731 memcpy(foc->val, cookie, len); 3732 else if (len != 0) 3733 len = -1; 3734 foc->len = len; 3735 foc->exp = exp_opt; 3736 } 3737 3738 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3739 * But, this can also be called on packets in the established flow when 3740 * the fast version below fails. 3741 */ 3742 void tcp_parse_options(const struct net *net, 3743 const struct sk_buff *skb, 3744 struct tcp_options_received *opt_rx, int estab, 3745 struct tcp_fastopen_cookie *foc) 3746 { 3747 const unsigned char *ptr; 3748 const struct tcphdr *th = tcp_hdr(skb); 3749 int length = (th->doff * 4) - sizeof(struct tcphdr); 3750 3751 ptr = (const unsigned char *)(th + 1); 3752 opt_rx->saw_tstamp = 0; 3753 3754 while (length > 0) { 3755 int opcode = *ptr++; 3756 int opsize; 3757 3758 switch (opcode) { 3759 case TCPOPT_EOL: 3760 return; 3761 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3762 length--; 3763 continue; 3764 default: 3765 opsize = *ptr++; 3766 if (opsize < 2) /* "silly options" */ 3767 return; 3768 if (opsize > length) 3769 return; /* don't parse partial options */ 3770 switch (opcode) { 3771 case TCPOPT_MSS: 3772 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3773 u16 in_mss = get_unaligned_be16(ptr); 3774 if (in_mss) { 3775 if (opt_rx->user_mss && 3776 opt_rx->user_mss < in_mss) 3777 in_mss = opt_rx->user_mss; 3778 opt_rx->mss_clamp = in_mss; 3779 } 3780 } 3781 break; 3782 case TCPOPT_WINDOW: 3783 if (opsize == TCPOLEN_WINDOW && th->syn && 3784 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3785 __u8 snd_wscale = *(__u8 *)ptr; 3786 opt_rx->wscale_ok = 1; 3787 if (snd_wscale > TCP_MAX_WSCALE) { 3788 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3789 __func__, 3790 snd_wscale, 3791 TCP_MAX_WSCALE); 3792 snd_wscale = TCP_MAX_WSCALE; 3793 } 3794 opt_rx->snd_wscale = snd_wscale; 3795 } 3796 break; 3797 case TCPOPT_TIMESTAMP: 3798 if ((opsize == TCPOLEN_TIMESTAMP) && 3799 ((estab && opt_rx->tstamp_ok) || 3800 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3801 opt_rx->saw_tstamp = 1; 3802 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3803 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3804 } 3805 break; 3806 case TCPOPT_SACK_PERM: 3807 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3808 !estab && net->ipv4.sysctl_tcp_sack) { 3809 opt_rx->sack_ok = TCP_SACK_SEEN; 3810 tcp_sack_reset(opt_rx); 3811 } 3812 break; 3813 3814 case TCPOPT_SACK: 3815 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3816 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3817 opt_rx->sack_ok) { 3818 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3819 } 3820 break; 3821 #ifdef CONFIG_TCP_MD5SIG 3822 case TCPOPT_MD5SIG: 3823 /* 3824 * The MD5 Hash has already been 3825 * checked (see tcp_v{4,6}_do_rcv()). 3826 */ 3827 break; 3828 #endif 3829 case TCPOPT_FASTOPEN: 3830 tcp_parse_fastopen_option( 3831 opsize - TCPOLEN_FASTOPEN_BASE, 3832 ptr, th->syn, foc, false); 3833 break; 3834 3835 case TCPOPT_EXP: 3836 /* Fast Open option shares code 254 using a 3837 * 16 bits magic number. 3838 */ 3839 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3840 get_unaligned_be16(ptr) == 3841 TCPOPT_FASTOPEN_MAGIC) 3842 tcp_parse_fastopen_option(opsize - 3843 TCPOLEN_EXP_FASTOPEN_BASE, 3844 ptr + 2, th->syn, foc, true); 3845 break; 3846 3847 } 3848 ptr += opsize-2; 3849 length -= opsize; 3850 } 3851 } 3852 } 3853 EXPORT_SYMBOL(tcp_parse_options); 3854 3855 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3856 { 3857 const __be32 *ptr = (const __be32 *)(th + 1); 3858 3859 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3860 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3861 tp->rx_opt.saw_tstamp = 1; 3862 ++ptr; 3863 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3864 ++ptr; 3865 if (*ptr) 3866 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3867 else 3868 tp->rx_opt.rcv_tsecr = 0; 3869 return true; 3870 } 3871 return false; 3872 } 3873 3874 /* Fast parse options. This hopes to only see timestamps. 3875 * If it is wrong it falls back on tcp_parse_options(). 3876 */ 3877 static bool tcp_fast_parse_options(const struct net *net, 3878 const struct sk_buff *skb, 3879 const struct tcphdr *th, struct tcp_sock *tp) 3880 { 3881 /* In the spirit of fast parsing, compare doff directly to constant 3882 * values. Because equality is used, short doff can be ignored here. 3883 */ 3884 if (th->doff == (sizeof(*th) / 4)) { 3885 tp->rx_opt.saw_tstamp = 0; 3886 return false; 3887 } else if (tp->rx_opt.tstamp_ok && 3888 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3889 if (tcp_parse_aligned_timestamp(tp, th)) 3890 return true; 3891 } 3892 3893 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3894 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3895 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3896 3897 return true; 3898 } 3899 3900 #ifdef CONFIG_TCP_MD5SIG 3901 /* 3902 * Parse MD5 Signature option 3903 */ 3904 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3905 { 3906 int length = (th->doff << 2) - sizeof(*th); 3907 const u8 *ptr = (const u8 *)(th + 1); 3908 3909 /* If the TCP option is too short, we can short cut */ 3910 if (length < TCPOLEN_MD5SIG) 3911 return NULL; 3912 3913 while (length > 0) { 3914 int opcode = *ptr++; 3915 int opsize; 3916 3917 switch (opcode) { 3918 case TCPOPT_EOL: 3919 return NULL; 3920 case TCPOPT_NOP: 3921 length--; 3922 continue; 3923 default: 3924 opsize = *ptr++; 3925 if (opsize < 2 || opsize > length) 3926 return NULL; 3927 if (opcode == TCPOPT_MD5SIG) 3928 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3929 } 3930 ptr += opsize - 2; 3931 length -= opsize; 3932 } 3933 return NULL; 3934 } 3935 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3936 #endif 3937 3938 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3939 * 3940 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3941 * it can pass through stack. So, the following predicate verifies that 3942 * this segment is not used for anything but congestion avoidance or 3943 * fast retransmit. Moreover, we even are able to eliminate most of such 3944 * second order effects, if we apply some small "replay" window (~RTO) 3945 * to timestamp space. 3946 * 3947 * All these measures still do not guarantee that we reject wrapped ACKs 3948 * on networks with high bandwidth, when sequence space is recycled fastly, 3949 * but it guarantees that such events will be very rare and do not affect 3950 * connection seriously. This doesn't look nice, but alas, PAWS is really 3951 * buggy extension. 3952 * 3953 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3954 * states that events when retransmit arrives after original data are rare. 3955 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3956 * the biggest problem on large power networks even with minor reordering. 3957 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3958 * up to bandwidth of 18Gigabit/sec. 8) ] 3959 */ 3960 3961 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3962 { 3963 const struct tcp_sock *tp = tcp_sk(sk); 3964 const struct tcphdr *th = tcp_hdr(skb); 3965 u32 seq = TCP_SKB_CB(skb)->seq; 3966 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3967 3968 return (/* 1. Pure ACK with correct sequence number. */ 3969 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3970 3971 /* 2. ... and duplicate ACK. */ 3972 ack == tp->snd_una && 3973 3974 /* 3. ... and does not update window. */ 3975 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3976 3977 /* 4. ... and sits in replay window. */ 3978 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3979 } 3980 3981 static inline bool tcp_paws_discard(const struct sock *sk, 3982 const struct sk_buff *skb) 3983 { 3984 const struct tcp_sock *tp = tcp_sk(sk); 3985 3986 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3987 !tcp_disordered_ack(sk, skb); 3988 } 3989 3990 /* Check segment sequence number for validity. 3991 * 3992 * Segment controls are considered valid, if the segment 3993 * fits to the window after truncation to the window. Acceptability 3994 * of data (and SYN, FIN, of course) is checked separately. 3995 * See tcp_data_queue(), for example. 3996 * 3997 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3998 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3999 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4000 * (borrowed from freebsd) 4001 */ 4002 4003 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4004 { 4005 return !before(end_seq, tp->rcv_wup) && 4006 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4007 } 4008 4009 /* When we get a reset we do this. */ 4010 void tcp_reset(struct sock *sk) 4011 { 4012 /* We want the right error as BSD sees it (and indeed as we do). */ 4013 switch (sk->sk_state) { 4014 case TCP_SYN_SENT: 4015 sk->sk_err = ECONNREFUSED; 4016 break; 4017 case TCP_CLOSE_WAIT: 4018 sk->sk_err = EPIPE; 4019 break; 4020 case TCP_CLOSE: 4021 return; 4022 default: 4023 sk->sk_err = ECONNRESET; 4024 } 4025 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4026 smp_wmb(); 4027 4028 tcp_done(sk); 4029 4030 if (!sock_flag(sk, SOCK_DEAD)) 4031 sk->sk_error_report(sk); 4032 } 4033 4034 /* 4035 * Process the FIN bit. This now behaves as it is supposed to work 4036 * and the FIN takes effect when it is validly part of sequence 4037 * space. Not before when we get holes. 4038 * 4039 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4040 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4041 * TIME-WAIT) 4042 * 4043 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4044 * close and we go into CLOSING (and later onto TIME-WAIT) 4045 * 4046 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4047 */ 4048 void tcp_fin(struct sock *sk) 4049 { 4050 struct tcp_sock *tp = tcp_sk(sk); 4051 4052 inet_csk_schedule_ack(sk); 4053 4054 sk->sk_shutdown |= RCV_SHUTDOWN; 4055 sock_set_flag(sk, SOCK_DONE); 4056 4057 switch (sk->sk_state) { 4058 case TCP_SYN_RECV: 4059 case TCP_ESTABLISHED: 4060 /* Move to CLOSE_WAIT */ 4061 tcp_set_state(sk, TCP_CLOSE_WAIT); 4062 inet_csk(sk)->icsk_ack.pingpong = 1; 4063 break; 4064 4065 case TCP_CLOSE_WAIT: 4066 case TCP_CLOSING: 4067 /* Received a retransmission of the FIN, do 4068 * nothing. 4069 */ 4070 break; 4071 case TCP_LAST_ACK: 4072 /* RFC793: Remain in the LAST-ACK state. */ 4073 break; 4074 4075 case TCP_FIN_WAIT1: 4076 /* This case occurs when a simultaneous close 4077 * happens, we must ack the received FIN and 4078 * enter the CLOSING state. 4079 */ 4080 tcp_send_ack(sk); 4081 tcp_set_state(sk, TCP_CLOSING); 4082 break; 4083 case TCP_FIN_WAIT2: 4084 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4085 tcp_send_ack(sk); 4086 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4087 break; 4088 default: 4089 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4090 * cases we should never reach this piece of code. 4091 */ 4092 pr_err("%s: Impossible, sk->sk_state=%d\n", 4093 __func__, sk->sk_state); 4094 break; 4095 } 4096 4097 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4098 * Probably, we should reset in this case. For now drop them. 4099 */ 4100 skb_rbtree_purge(&tp->out_of_order_queue); 4101 if (tcp_is_sack(tp)) 4102 tcp_sack_reset(&tp->rx_opt); 4103 sk_mem_reclaim(sk); 4104 4105 if (!sock_flag(sk, SOCK_DEAD)) { 4106 sk->sk_state_change(sk); 4107 4108 /* Do not send POLL_HUP for half duplex close. */ 4109 if (sk->sk_shutdown == SHUTDOWN_MASK || 4110 sk->sk_state == TCP_CLOSE) 4111 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4112 else 4113 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4114 } 4115 } 4116 4117 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4118 u32 end_seq) 4119 { 4120 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4121 if (before(seq, sp->start_seq)) 4122 sp->start_seq = seq; 4123 if (after(end_seq, sp->end_seq)) 4124 sp->end_seq = end_seq; 4125 return true; 4126 } 4127 return false; 4128 } 4129 4130 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4131 { 4132 struct tcp_sock *tp = tcp_sk(sk); 4133 4134 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4135 int mib_idx; 4136 4137 if (before(seq, tp->rcv_nxt)) 4138 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4139 else 4140 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4141 4142 NET_INC_STATS(sock_net(sk), mib_idx); 4143 4144 tp->rx_opt.dsack = 1; 4145 tp->duplicate_sack[0].start_seq = seq; 4146 tp->duplicate_sack[0].end_seq = end_seq; 4147 } 4148 } 4149 4150 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4151 { 4152 struct tcp_sock *tp = tcp_sk(sk); 4153 4154 if (!tp->rx_opt.dsack) 4155 tcp_dsack_set(sk, seq, end_seq); 4156 else 4157 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4158 } 4159 4160 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4161 { 4162 struct tcp_sock *tp = tcp_sk(sk); 4163 4164 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4165 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4166 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4167 tcp_enter_quickack_mode(sk); 4168 4169 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4170 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4171 4172 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4173 end_seq = tp->rcv_nxt; 4174 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4175 } 4176 } 4177 4178 tcp_send_ack(sk); 4179 } 4180 4181 /* These routines update the SACK block as out-of-order packets arrive or 4182 * in-order packets close up the sequence space. 4183 */ 4184 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4185 { 4186 int this_sack; 4187 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4188 struct tcp_sack_block *swalk = sp + 1; 4189 4190 /* See if the recent change to the first SACK eats into 4191 * or hits the sequence space of other SACK blocks, if so coalesce. 4192 */ 4193 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4194 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4195 int i; 4196 4197 /* Zap SWALK, by moving every further SACK up by one slot. 4198 * Decrease num_sacks. 4199 */ 4200 tp->rx_opt.num_sacks--; 4201 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4202 sp[i] = sp[i + 1]; 4203 continue; 4204 } 4205 this_sack++, swalk++; 4206 } 4207 } 4208 4209 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4210 { 4211 struct tcp_sock *tp = tcp_sk(sk); 4212 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4213 int cur_sacks = tp->rx_opt.num_sacks; 4214 int this_sack; 4215 4216 if (!cur_sacks) 4217 goto new_sack; 4218 4219 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4220 if (tcp_sack_extend(sp, seq, end_seq)) { 4221 /* Rotate this_sack to the first one. */ 4222 for (; this_sack > 0; this_sack--, sp--) 4223 swap(*sp, *(sp - 1)); 4224 if (cur_sacks > 1) 4225 tcp_sack_maybe_coalesce(tp); 4226 return; 4227 } 4228 } 4229 4230 /* Could not find an adjacent existing SACK, build a new one, 4231 * put it at the front, and shift everyone else down. We 4232 * always know there is at least one SACK present already here. 4233 * 4234 * If the sack array is full, forget about the last one. 4235 */ 4236 if (this_sack >= TCP_NUM_SACKS) { 4237 this_sack--; 4238 tp->rx_opt.num_sacks--; 4239 sp--; 4240 } 4241 for (; this_sack > 0; this_sack--, sp--) 4242 *sp = *(sp - 1); 4243 4244 new_sack: 4245 /* Build the new head SACK, and we're done. */ 4246 sp->start_seq = seq; 4247 sp->end_seq = end_seq; 4248 tp->rx_opt.num_sacks++; 4249 } 4250 4251 /* RCV.NXT advances, some SACKs should be eaten. */ 4252 4253 static void tcp_sack_remove(struct tcp_sock *tp) 4254 { 4255 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4256 int num_sacks = tp->rx_opt.num_sacks; 4257 int this_sack; 4258 4259 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4260 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4261 tp->rx_opt.num_sacks = 0; 4262 return; 4263 } 4264 4265 for (this_sack = 0; this_sack < num_sacks;) { 4266 /* Check if the start of the sack is covered by RCV.NXT. */ 4267 if (!before(tp->rcv_nxt, sp->start_seq)) { 4268 int i; 4269 4270 /* RCV.NXT must cover all the block! */ 4271 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4272 4273 /* Zap this SACK, by moving forward any other SACKS. */ 4274 for (i = this_sack+1; i < num_sacks; i++) 4275 tp->selective_acks[i-1] = tp->selective_acks[i]; 4276 num_sacks--; 4277 continue; 4278 } 4279 this_sack++; 4280 sp++; 4281 } 4282 tp->rx_opt.num_sacks = num_sacks; 4283 } 4284 4285 /** 4286 * tcp_try_coalesce - try to merge skb to prior one 4287 * @sk: socket 4288 * @dest: destination queue 4289 * @to: prior buffer 4290 * @from: buffer to add in queue 4291 * @fragstolen: pointer to boolean 4292 * 4293 * Before queueing skb @from after @to, try to merge them 4294 * to reduce overall memory use and queue lengths, if cost is small. 4295 * Packets in ofo or receive queues can stay a long time. 4296 * Better try to coalesce them right now to avoid future collapses. 4297 * Returns true if caller should free @from instead of queueing it 4298 */ 4299 static bool tcp_try_coalesce(struct sock *sk, 4300 struct sk_buff *to, 4301 struct sk_buff *from, 4302 bool *fragstolen) 4303 { 4304 int delta; 4305 4306 *fragstolen = false; 4307 4308 /* Its possible this segment overlaps with prior segment in queue */ 4309 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4310 return false; 4311 4312 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4313 return false; 4314 4315 atomic_add(delta, &sk->sk_rmem_alloc); 4316 sk_mem_charge(sk, delta); 4317 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4318 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4319 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4320 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4321 4322 if (TCP_SKB_CB(from)->has_rxtstamp) { 4323 TCP_SKB_CB(to)->has_rxtstamp = true; 4324 to->tstamp = from->tstamp; 4325 } 4326 4327 return true; 4328 } 4329 4330 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4331 { 4332 sk_drops_add(sk, skb); 4333 __kfree_skb(skb); 4334 } 4335 4336 /* This one checks to see if we can put data from the 4337 * out_of_order queue into the receive_queue. 4338 */ 4339 static void tcp_ofo_queue(struct sock *sk) 4340 { 4341 struct tcp_sock *tp = tcp_sk(sk); 4342 __u32 dsack_high = tp->rcv_nxt; 4343 bool fin, fragstolen, eaten; 4344 struct sk_buff *skb, *tail; 4345 struct rb_node *p; 4346 4347 p = rb_first(&tp->out_of_order_queue); 4348 while (p) { 4349 skb = rb_to_skb(p); 4350 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4351 break; 4352 4353 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4354 __u32 dsack = dsack_high; 4355 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4356 dsack_high = TCP_SKB_CB(skb)->end_seq; 4357 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4358 } 4359 p = rb_next(p); 4360 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4361 4362 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4363 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4364 tcp_drop(sk, skb); 4365 continue; 4366 } 4367 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4368 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4369 TCP_SKB_CB(skb)->end_seq); 4370 4371 tail = skb_peek_tail(&sk->sk_receive_queue); 4372 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4373 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4374 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4375 if (!eaten) 4376 __skb_queue_tail(&sk->sk_receive_queue, skb); 4377 else 4378 kfree_skb_partial(skb, fragstolen); 4379 4380 if (unlikely(fin)) { 4381 tcp_fin(sk); 4382 /* tcp_fin() purges tp->out_of_order_queue, 4383 * so we must end this loop right now. 4384 */ 4385 break; 4386 } 4387 } 4388 } 4389 4390 static bool tcp_prune_ofo_queue(struct sock *sk); 4391 static int tcp_prune_queue(struct sock *sk); 4392 4393 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4394 unsigned int size) 4395 { 4396 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4397 !sk_rmem_schedule(sk, skb, size)) { 4398 4399 if (tcp_prune_queue(sk) < 0) 4400 return -1; 4401 4402 while (!sk_rmem_schedule(sk, skb, size)) { 4403 if (!tcp_prune_ofo_queue(sk)) 4404 return -1; 4405 } 4406 } 4407 return 0; 4408 } 4409 4410 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4411 { 4412 struct tcp_sock *tp = tcp_sk(sk); 4413 struct rb_node **p, *parent; 4414 struct sk_buff *skb1; 4415 u32 seq, end_seq; 4416 bool fragstolen; 4417 4418 tcp_ecn_check_ce(tp, skb); 4419 4420 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4421 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4422 tcp_drop(sk, skb); 4423 return; 4424 } 4425 4426 /* Disable header prediction. */ 4427 tp->pred_flags = 0; 4428 inet_csk_schedule_ack(sk); 4429 4430 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4431 seq = TCP_SKB_CB(skb)->seq; 4432 end_seq = TCP_SKB_CB(skb)->end_seq; 4433 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4434 tp->rcv_nxt, seq, end_seq); 4435 4436 p = &tp->out_of_order_queue.rb_node; 4437 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4438 /* Initial out of order segment, build 1 SACK. */ 4439 if (tcp_is_sack(tp)) { 4440 tp->rx_opt.num_sacks = 1; 4441 tp->selective_acks[0].start_seq = seq; 4442 tp->selective_acks[0].end_seq = end_seq; 4443 } 4444 rb_link_node(&skb->rbnode, NULL, p); 4445 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4446 tp->ooo_last_skb = skb; 4447 goto end; 4448 } 4449 4450 /* In the typical case, we are adding an skb to the end of the list. 4451 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4452 */ 4453 if (tcp_try_coalesce(sk, tp->ooo_last_skb, 4454 skb, &fragstolen)) { 4455 coalesce_done: 4456 tcp_grow_window(sk, skb); 4457 kfree_skb_partial(skb, fragstolen); 4458 skb = NULL; 4459 goto add_sack; 4460 } 4461 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4462 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4463 parent = &tp->ooo_last_skb->rbnode; 4464 p = &parent->rb_right; 4465 goto insert; 4466 } 4467 4468 /* Find place to insert this segment. Handle overlaps on the way. */ 4469 parent = NULL; 4470 while (*p) { 4471 parent = *p; 4472 skb1 = rb_to_skb(parent); 4473 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4474 p = &parent->rb_left; 4475 continue; 4476 } 4477 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4478 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4479 /* All the bits are present. Drop. */ 4480 NET_INC_STATS(sock_net(sk), 4481 LINUX_MIB_TCPOFOMERGE); 4482 __kfree_skb(skb); 4483 skb = NULL; 4484 tcp_dsack_set(sk, seq, end_seq); 4485 goto add_sack; 4486 } 4487 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4488 /* Partial overlap. */ 4489 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4490 } else { 4491 /* skb's seq == skb1's seq and skb covers skb1. 4492 * Replace skb1 with skb. 4493 */ 4494 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4495 &tp->out_of_order_queue); 4496 tcp_dsack_extend(sk, 4497 TCP_SKB_CB(skb1)->seq, 4498 TCP_SKB_CB(skb1)->end_seq); 4499 NET_INC_STATS(sock_net(sk), 4500 LINUX_MIB_TCPOFOMERGE); 4501 __kfree_skb(skb1); 4502 goto merge_right; 4503 } 4504 } else if (tcp_try_coalesce(sk, skb1, 4505 skb, &fragstolen)) { 4506 goto coalesce_done; 4507 } 4508 p = &parent->rb_right; 4509 } 4510 insert: 4511 /* Insert segment into RB tree. */ 4512 rb_link_node(&skb->rbnode, parent, p); 4513 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4514 4515 merge_right: 4516 /* Remove other segments covered by skb. */ 4517 while ((skb1 = skb_rb_next(skb)) != NULL) { 4518 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4519 break; 4520 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4521 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4522 end_seq); 4523 break; 4524 } 4525 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4526 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4527 TCP_SKB_CB(skb1)->end_seq); 4528 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4529 tcp_drop(sk, skb1); 4530 } 4531 /* If there is no skb after us, we are the last_skb ! */ 4532 if (!skb1) 4533 tp->ooo_last_skb = skb; 4534 4535 add_sack: 4536 if (tcp_is_sack(tp)) 4537 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4538 end: 4539 if (skb) { 4540 tcp_grow_window(sk, skb); 4541 skb_condense(skb); 4542 skb_set_owner_r(skb, sk); 4543 } 4544 } 4545 4546 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4547 bool *fragstolen) 4548 { 4549 int eaten; 4550 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4551 4552 __skb_pull(skb, hdrlen); 4553 eaten = (tail && 4554 tcp_try_coalesce(sk, tail, 4555 skb, fragstolen)) ? 1 : 0; 4556 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4557 if (!eaten) { 4558 __skb_queue_tail(&sk->sk_receive_queue, skb); 4559 skb_set_owner_r(skb, sk); 4560 } 4561 return eaten; 4562 } 4563 4564 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4565 { 4566 struct sk_buff *skb; 4567 int err = -ENOMEM; 4568 int data_len = 0; 4569 bool fragstolen; 4570 4571 if (size == 0) 4572 return 0; 4573 4574 if (size > PAGE_SIZE) { 4575 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4576 4577 data_len = npages << PAGE_SHIFT; 4578 size = data_len + (size & ~PAGE_MASK); 4579 } 4580 skb = alloc_skb_with_frags(size - data_len, data_len, 4581 PAGE_ALLOC_COSTLY_ORDER, 4582 &err, sk->sk_allocation); 4583 if (!skb) 4584 goto err; 4585 4586 skb_put(skb, size - data_len); 4587 skb->data_len = data_len; 4588 skb->len = size; 4589 4590 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4591 goto err_free; 4592 4593 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4594 if (err) 4595 goto err_free; 4596 4597 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4598 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4599 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4600 4601 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4602 WARN_ON_ONCE(fragstolen); /* should not happen */ 4603 __kfree_skb(skb); 4604 } 4605 return size; 4606 4607 err_free: 4608 kfree_skb(skb); 4609 err: 4610 return err; 4611 4612 } 4613 4614 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4615 { 4616 struct tcp_sock *tp = tcp_sk(sk); 4617 bool fragstolen; 4618 int eaten; 4619 4620 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4621 __kfree_skb(skb); 4622 return; 4623 } 4624 skb_dst_drop(skb); 4625 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4626 4627 tcp_ecn_accept_cwr(tp, skb); 4628 4629 tp->rx_opt.dsack = 0; 4630 4631 /* Queue data for delivery to the user. 4632 * Packets in sequence go to the receive queue. 4633 * Out of sequence packets to the out_of_order_queue. 4634 */ 4635 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4636 if (tcp_receive_window(tp) == 0) 4637 goto out_of_window; 4638 4639 /* Ok. In sequence. In window. */ 4640 queue_and_out: 4641 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4642 sk_forced_mem_schedule(sk, skb->truesize); 4643 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4644 goto drop; 4645 4646 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4647 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4648 if (skb->len) 4649 tcp_event_data_recv(sk, skb); 4650 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4651 tcp_fin(sk); 4652 4653 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4654 tcp_ofo_queue(sk); 4655 4656 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4657 * gap in queue is filled. 4658 */ 4659 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4660 inet_csk(sk)->icsk_ack.pingpong = 0; 4661 } 4662 4663 if (tp->rx_opt.num_sacks) 4664 tcp_sack_remove(tp); 4665 4666 tcp_fast_path_check(sk); 4667 4668 if (eaten > 0) 4669 kfree_skb_partial(skb, fragstolen); 4670 if (!sock_flag(sk, SOCK_DEAD)) 4671 sk->sk_data_ready(sk); 4672 return; 4673 } 4674 4675 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4676 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4677 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4678 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4679 4680 out_of_window: 4681 tcp_enter_quickack_mode(sk); 4682 inet_csk_schedule_ack(sk); 4683 drop: 4684 tcp_drop(sk, skb); 4685 return; 4686 } 4687 4688 /* Out of window. F.e. zero window probe. */ 4689 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4690 goto out_of_window; 4691 4692 tcp_enter_quickack_mode(sk); 4693 4694 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4695 /* Partial packet, seq < rcv_next < end_seq */ 4696 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4697 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4698 TCP_SKB_CB(skb)->end_seq); 4699 4700 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4701 4702 /* If window is closed, drop tail of packet. But after 4703 * remembering D-SACK for its head made in previous line. 4704 */ 4705 if (!tcp_receive_window(tp)) 4706 goto out_of_window; 4707 goto queue_and_out; 4708 } 4709 4710 tcp_data_queue_ofo(sk, skb); 4711 } 4712 4713 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4714 { 4715 if (list) 4716 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4717 4718 return skb_rb_next(skb); 4719 } 4720 4721 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4722 struct sk_buff_head *list, 4723 struct rb_root *root) 4724 { 4725 struct sk_buff *next = tcp_skb_next(skb, list); 4726 4727 if (list) 4728 __skb_unlink(skb, list); 4729 else 4730 rb_erase(&skb->rbnode, root); 4731 4732 __kfree_skb(skb); 4733 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4734 4735 return next; 4736 } 4737 4738 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4739 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4740 { 4741 struct rb_node **p = &root->rb_node; 4742 struct rb_node *parent = NULL; 4743 struct sk_buff *skb1; 4744 4745 while (*p) { 4746 parent = *p; 4747 skb1 = rb_to_skb(parent); 4748 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4749 p = &parent->rb_left; 4750 else 4751 p = &parent->rb_right; 4752 } 4753 rb_link_node(&skb->rbnode, parent, p); 4754 rb_insert_color(&skb->rbnode, root); 4755 } 4756 4757 /* Collapse contiguous sequence of skbs head..tail with 4758 * sequence numbers start..end. 4759 * 4760 * If tail is NULL, this means until the end of the queue. 4761 * 4762 * Segments with FIN/SYN are not collapsed (only because this 4763 * simplifies code) 4764 */ 4765 static void 4766 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4767 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4768 { 4769 struct sk_buff *skb = head, *n; 4770 struct sk_buff_head tmp; 4771 bool end_of_skbs; 4772 4773 /* First, check that queue is collapsible and find 4774 * the point where collapsing can be useful. 4775 */ 4776 restart: 4777 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4778 n = tcp_skb_next(skb, list); 4779 4780 /* No new bits? It is possible on ofo queue. */ 4781 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4782 skb = tcp_collapse_one(sk, skb, list, root); 4783 if (!skb) 4784 break; 4785 goto restart; 4786 } 4787 4788 /* The first skb to collapse is: 4789 * - not SYN/FIN and 4790 * - bloated or contains data before "start" or 4791 * overlaps to the next one. 4792 */ 4793 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4794 (tcp_win_from_space(skb->truesize) > skb->len || 4795 before(TCP_SKB_CB(skb)->seq, start))) { 4796 end_of_skbs = false; 4797 break; 4798 } 4799 4800 if (n && n != tail && 4801 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4802 end_of_skbs = false; 4803 break; 4804 } 4805 4806 /* Decided to skip this, advance start seq. */ 4807 start = TCP_SKB_CB(skb)->end_seq; 4808 } 4809 if (end_of_skbs || 4810 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4811 return; 4812 4813 __skb_queue_head_init(&tmp); 4814 4815 while (before(start, end)) { 4816 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4817 struct sk_buff *nskb; 4818 4819 nskb = alloc_skb(copy, GFP_ATOMIC); 4820 if (!nskb) 4821 break; 4822 4823 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4824 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4825 if (list) 4826 __skb_queue_before(list, skb, nskb); 4827 else 4828 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4829 skb_set_owner_r(nskb, sk); 4830 4831 /* Copy data, releasing collapsed skbs. */ 4832 while (copy > 0) { 4833 int offset = start - TCP_SKB_CB(skb)->seq; 4834 int size = TCP_SKB_CB(skb)->end_seq - start; 4835 4836 BUG_ON(offset < 0); 4837 if (size > 0) { 4838 size = min(copy, size); 4839 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4840 BUG(); 4841 TCP_SKB_CB(nskb)->end_seq += size; 4842 copy -= size; 4843 start += size; 4844 } 4845 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4846 skb = tcp_collapse_one(sk, skb, list, root); 4847 if (!skb || 4848 skb == tail || 4849 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4850 goto end; 4851 } 4852 } 4853 } 4854 end: 4855 skb_queue_walk_safe(&tmp, skb, n) 4856 tcp_rbtree_insert(root, skb); 4857 } 4858 4859 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4860 * and tcp_collapse() them until all the queue is collapsed. 4861 */ 4862 static void tcp_collapse_ofo_queue(struct sock *sk) 4863 { 4864 struct tcp_sock *tp = tcp_sk(sk); 4865 struct sk_buff *skb, *head; 4866 u32 start, end; 4867 4868 skb = skb_rb_first(&tp->out_of_order_queue); 4869 new_range: 4870 if (!skb) { 4871 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4872 return; 4873 } 4874 start = TCP_SKB_CB(skb)->seq; 4875 end = TCP_SKB_CB(skb)->end_seq; 4876 4877 for (head = skb;;) { 4878 skb = skb_rb_next(skb); 4879 4880 /* Range is terminated when we see a gap or when 4881 * we are at the queue end. 4882 */ 4883 if (!skb || 4884 after(TCP_SKB_CB(skb)->seq, end) || 4885 before(TCP_SKB_CB(skb)->end_seq, start)) { 4886 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4887 head, skb, start, end); 4888 goto new_range; 4889 } 4890 4891 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4892 start = TCP_SKB_CB(skb)->seq; 4893 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4894 end = TCP_SKB_CB(skb)->end_seq; 4895 } 4896 } 4897 4898 /* 4899 * Clean the out-of-order queue to make room. 4900 * We drop high sequences packets to : 4901 * 1) Let a chance for holes to be filled. 4902 * 2) not add too big latencies if thousands of packets sit there. 4903 * (But if application shrinks SO_RCVBUF, we could still end up 4904 * freeing whole queue here) 4905 * 4906 * Return true if queue has shrunk. 4907 */ 4908 static bool tcp_prune_ofo_queue(struct sock *sk) 4909 { 4910 struct tcp_sock *tp = tcp_sk(sk); 4911 struct rb_node *node, *prev; 4912 4913 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4914 return false; 4915 4916 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4917 node = &tp->ooo_last_skb->rbnode; 4918 do { 4919 prev = rb_prev(node); 4920 rb_erase(node, &tp->out_of_order_queue); 4921 tcp_drop(sk, rb_to_skb(node)); 4922 sk_mem_reclaim(sk); 4923 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4924 !tcp_under_memory_pressure(sk)) 4925 break; 4926 node = prev; 4927 } while (node); 4928 tp->ooo_last_skb = rb_to_skb(prev); 4929 4930 /* Reset SACK state. A conforming SACK implementation will 4931 * do the same at a timeout based retransmit. When a connection 4932 * is in a sad state like this, we care only about integrity 4933 * of the connection not performance. 4934 */ 4935 if (tp->rx_opt.sack_ok) 4936 tcp_sack_reset(&tp->rx_opt); 4937 return true; 4938 } 4939 4940 /* Reduce allocated memory if we can, trying to get 4941 * the socket within its memory limits again. 4942 * 4943 * Return less than zero if we should start dropping frames 4944 * until the socket owning process reads some of the data 4945 * to stabilize the situation. 4946 */ 4947 static int tcp_prune_queue(struct sock *sk) 4948 { 4949 struct tcp_sock *tp = tcp_sk(sk); 4950 4951 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4952 4953 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4954 4955 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4956 tcp_clamp_window(sk); 4957 else if (tcp_under_memory_pressure(sk)) 4958 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4959 4960 tcp_collapse_ofo_queue(sk); 4961 if (!skb_queue_empty(&sk->sk_receive_queue)) 4962 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4963 skb_peek(&sk->sk_receive_queue), 4964 NULL, 4965 tp->copied_seq, tp->rcv_nxt); 4966 sk_mem_reclaim(sk); 4967 4968 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4969 return 0; 4970 4971 /* Collapsing did not help, destructive actions follow. 4972 * This must not ever occur. */ 4973 4974 tcp_prune_ofo_queue(sk); 4975 4976 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4977 return 0; 4978 4979 /* If we are really being abused, tell the caller to silently 4980 * drop receive data on the floor. It will get retransmitted 4981 * and hopefully then we'll have sufficient space. 4982 */ 4983 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4984 4985 /* Massive buffer overcommit. */ 4986 tp->pred_flags = 0; 4987 return -1; 4988 } 4989 4990 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4991 { 4992 const struct tcp_sock *tp = tcp_sk(sk); 4993 4994 /* If the user specified a specific send buffer setting, do 4995 * not modify it. 4996 */ 4997 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4998 return false; 4999 5000 /* If we are under global TCP memory pressure, do not expand. */ 5001 if (tcp_under_memory_pressure(sk)) 5002 return false; 5003 5004 /* If we are under soft global TCP memory pressure, do not expand. */ 5005 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5006 return false; 5007 5008 /* If we filled the congestion window, do not expand. */ 5009 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5010 return false; 5011 5012 return true; 5013 } 5014 5015 /* When incoming ACK allowed to free some skb from write_queue, 5016 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5017 * on the exit from tcp input handler. 5018 * 5019 * PROBLEM: sndbuf expansion does not work well with largesend. 5020 */ 5021 static void tcp_new_space(struct sock *sk) 5022 { 5023 struct tcp_sock *tp = tcp_sk(sk); 5024 5025 if (tcp_should_expand_sndbuf(sk)) { 5026 tcp_sndbuf_expand(sk); 5027 tp->snd_cwnd_stamp = tcp_jiffies32; 5028 } 5029 5030 sk->sk_write_space(sk); 5031 } 5032 5033 static void tcp_check_space(struct sock *sk) 5034 { 5035 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5036 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5037 /* pairs with tcp_poll() */ 5038 smp_mb(); 5039 if (sk->sk_socket && 5040 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5041 tcp_new_space(sk); 5042 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5043 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5044 } 5045 } 5046 } 5047 5048 static inline void tcp_data_snd_check(struct sock *sk) 5049 { 5050 tcp_push_pending_frames(sk); 5051 tcp_check_space(sk); 5052 } 5053 5054 /* 5055 * Check if sending an ack is needed. 5056 */ 5057 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5058 { 5059 struct tcp_sock *tp = tcp_sk(sk); 5060 5061 /* More than one full frame received... */ 5062 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5063 /* ... and right edge of window advances far enough. 5064 * (tcp_recvmsg() will send ACK otherwise). Or... 5065 */ 5066 __tcp_select_window(sk) >= tp->rcv_wnd) || 5067 /* We ACK each frame or... */ 5068 tcp_in_quickack_mode(sk) || 5069 /* We have out of order data. */ 5070 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5071 /* Then ack it now */ 5072 tcp_send_ack(sk); 5073 } else { 5074 /* Else, send delayed ack. */ 5075 tcp_send_delayed_ack(sk); 5076 } 5077 } 5078 5079 static inline void tcp_ack_snd_check(struct sock *sk) 5080 { 5081 if (!inet_csk_ack_scheduled(sk)) { 5082 /* We sent a data segment already. */ 5083 return; 5084 } 5085 __tcp_ack_snd_check(sk, 1); 5086 } 5087 5088 /* 5089 * This routine is only called when we have urgent data 5090 * signaled. Its the 'slow' part of tcp_urg. It could be 5091 * moved inline now as tcp_urg is only called from one 5092 * place. We handle URGent data wrong. We have to - as 5093 * BSD still doesn't use the correction from RFC961. 5094 * For 1003.1g we should support a new option TCP_STDURG to permit 5095 * either form (or just set the sysctl tcp_stdurg). 5096 */ 5097 5098 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5099 { 5100 struct tcp_sock *tp = tcp_sk(sk); 5101 u32 ptr = ntohs(th->urg_ptr); 5102 5103 if (ptr && !sysctl_tcp_stdurg) 5104 ptr--; 5105 ptr += ntohl(th->seq); 5106 5107 /* Ignore urgent data that we've already seen and read. */ 5108 if (after(tp->copied_seq, ptr)) 5109 return; 5110 5111 /* Do not replay urg ptr. 5112 * 5113 * NOTE: interesting situation not covered by specs. 5114 * Misbehaving sender may send urg ptr, pointing to segment, 5115 * which we already have in ofo queue. We are not able to fetch 5116 * such data and will stay in TCP_URG_NOTYET until will be eaten 5117 * by recvmsg(). Seems, we are not obliged to handle such wicked 5118 * situations. But it is worth to think about possibility of some 5119 * DoSes using some hypothetical application level deadlock. 5120 */ 5121 if (before(ptr, tp->rcv_nxt)) 5122 return; 5123 5124 /* Do we already have a newer (or duplicate) urgent pointer? */ 5125 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5126 return; 5127 5128 /* Tell the world about our new urgent pointer. */ 5129 sk_send_sigurg(sk); 5130 5131 /* We may be adding urgent data when the last byte read was 5132 * urgent. To do this requires some care. We cannot just ignore 5133 * tp->copied_seq since we would read the last urgent byte again 5134 * as data, nor can we alter copied_seq until this data arrives 5135 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5136 * 5137 * NOTE. Double Dutch. Rendering to plain English: author of comment 5138 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5139 * and expect that both A and B disappear from stream. This is _wrong_. 5140 * Though this happens in BSD with high probability, this is occasional. 5141 * Any application relying on this is buggy. Note also, that fix "works" 5142 * only in this artificial test. Insert some normal data between A and B and we will 5143 * decline of BSD again. Verdict: it is better to remove to trap 5144 * buggy users. 5145 */ 5146 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5147 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5148 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5149 tp->copied_seq++; 5150 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5151 __skb_unlink(skb, &sk->sk_receive_queue); 5152 __kfree_skb(skb); 5153 } 5154 } 5155 5156 tp->urg_data = TCP_URG_NOTYET; 5157 tp->urg_seq = ptr; 5158 5159 /* Disable header prediction. */ 5160 tp->pred_flags = 0; 5161 } 5162 5163 /* This is the 'fast' part of urgent handling. */ 5164 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5165 { 5166 struct tcp_sock *tp = tcp_sk(sk); 5167 5168 /* Check if we get a new urgent pointer - normally not. */ 5169 if (th->urg) 5170 tcp_check_urg(sk, th); 5171 5172 /* Do we wait for any urgent data? - normally not... */ 5173 if (tp->urg_data == TCP_URG_NOTYET) { 5174 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5175 th->syn; 5176 5177 /* Is the urgent pointer pointing into this packet? */ 5178 if (ptr < skb->len) { 5179 u8 tmp; 5180 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5181 BUG(); 5182 tp->urg_data = TCP_URG_VALID | tmp; 5183 if (!sock_flag(sk, SOCK_DEAD)) 5184 sk->sk_data_ready(sk); 5185 } 5186 } 5187 } 5188 5189 /* Accept RST for rcv_nxt - 1 after a FIN. 5190 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5191 * FIN is sent followed by a RST packet. The RST is sent with the same 5192 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5193 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5194 * ACKs on the closed socket. In addition middleboxes can drop either the 5195 * challenge ACK or a subsequent RST. 5196 */ 5197 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5198 { 5199 struct tcp_sock *tp = tcp_sk(sk); 5200 5201 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5202 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5203 TCPF_CLOSING)); 5204 } 5205 5206 /* Does PAWS and seqno based validation of an incoming segment, flags will 5207 * play significant role here. 5208 */ 5209 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5210 const struct tcphdr *th, int syn_inerr) 5211 { 5212 struct tcp_sock *tp = tcp_sk(sk); 5213 bool rst_seq_match = false; 5214 5215 /* RFC1323: H1. Apply PAWS check first. */ 5216 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5217 tp->rx_opt.saw_tstamp && 5218 tcp_paws_discard(sk, skb)) { 5219 if (!th->rst) { 5220 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5221 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5222 LINUX_MIB_TCPACKSKIPPEDPAWS, 5223 &tp->last_oow_ack_time)) 5224 tcp_send_dupack(sk, skb); 5225 goto discard; 5226 } 5227 /* Reset is accepted even if it did not pass PAWS. */ 5228 } 5229 5230 /* Step 1: check sequence number */ 5231 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5232 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5233 * (RST) segments are validated by checking their SEQ-fields." 5234 * And page 69: "If an incoming segment is not acceptable, 5235 * an acknowledgment should be sent in reply (unless the RST 5236 * bit is set, if so drop the segment and return)". 5237 */ 5238 if (!th->rst) { 5239 if (th->syn) 5240 goto syn_challenge; 5241 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5242 LINUX_MIB_TCPACKSKIPPEDSEQ, 5243 &tp->last_oow_ack_time)) 5244 tcp_send_dupack(sk, skb); 5245 } else if (tcp_reset_check(sk, skb)) { 5246 tcp_reset(sk); 5247 } 5248 goto discard; 5249 } 5250 5251 /* Step 2: check RST bit */ 5252 if (th->rst) { 5253 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5254 * FIN and SACK too if available): 5255 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5256 * the right-most SACK block, 5257 * then 5258 * RESET the connection 5259 * else 5260 * Send a challenge ACK 5261 */ 5262 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5263 tcp_reset_check(sk, skb)) { 5264 rst_seq_match = true; 5265 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5266 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5267 int max_sack = sp[0].end_seq; 5268 int this_sack; 5269 5270 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5271 ++this_sack) { 5272 max_sack = after(sp[this_sack].end_seq, 5273 max_sack) ? 5274 sp[this_sack].end_seq : max_sack; 5275 } 5276 5277 if (TCP_SKB_CB(skb)->seq == max_sack) 5278 rst_seq_match = true; 5279 } 5280 5281 if (rst_seq_match) 5282 tcp_reset(sk); 5283 else { 5284 /* Disable TFO if RST is out-of-order 5285 * and no data has been received 5286 * for current active TFO socket 5287 */ 5288 if (tp->syn_fastopen && !tp->data_segs_in && 5289 sk->sk_state == TCP_ESTABLISHED) 5290 tcp_fastopen_active_disable(sk); 5291 tcp_send_challenge_ack(sk, skb); 5292 } 5293 goto discard; 5294 } 5295 5296 /* step 3: check security and precedence [ignored] */ 5297 5298 /* step 4: Check for a SYN 5299 * RFC 5961 4.2 : Send a challenge ack 5300 */ 5301 if (th->syn) { 5302 syn_challenge: 5303 if (syn_inerr) 5304 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5305 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5306 tcp_send_challenge_ack(sk, skb); 5307 goto discard; 5308 } 5309 5310 return true; 5311 5312 discard: 5313 tcp_drop(sk, skb); 5314 return false; 5315 } 5316 5317 /* 5318 * TCP receive function for the ESTABLISHED state. 5319 * 5320 * It is split into a fast path and a slow path. The fast path is 5321 * disabled when: 5322 * - A zero window was announced from us - zero window probing 5323 * is only handled properly in the slow path. 5324 * - Out of order segments arrived. 5325 * - Urgent data is expected. 5326 * - There is no buffer space left 5327 * - Unexpected TCP flags/window values/header lengths are received 5328 * (detected by checking the TCP header against pred_flags) 5329 * - Data is sent in both directions. Fast path only supports pure senders 5330 * or pure receivers (this means either the sequence number or the ack 5331 * value must stay constant) 5332 * - Unexpected TCP option. 5333 * 5334 * When these conditions are not satisfied it drops into a standard 5335 * receive procedure patterned after RFC793 to handle all cases. 5336 * The first three cases are guaranteed by proper pred_flags setting, 5337 * the rest is checked inline. Fast processing is turned on in 5338 * tcp_data_queue when everything is OK. 5339 */ 5340 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5341 const struct tcphdr *th) 5342 { 5343 unsigned int len = skb->len; 5344 struct tcp_sock *tp = tcp_sk(sk); 5345 5346 tcp_mstamp_refresh(tp); 5347 if (unlikely(!sk->sk_rx_dst)) 5348 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5349 /* 5350 * Header prediction. 5351 * The code loosely follows the one in the famous 5352 * "30 instruction TCP receive" Van Jacobson mail. 5353 * 5354 * Van's trick is to deposit buffers into socket queue 5355 * on a device interrupt, to call tcp_recv function 5356 * on the receive process context and checksum and copy 5357 * the buffer to user space. smart... 5358 * 5359 * Our current scheme is not silly either but we take the 5360 * extra cost of the net_bh soft interrupt processing... 5361 * We do checksum and copy also but from device to kernel. 5362 */ 5363 5364 tp->rx_opt.saw_tstamp = 0; 5365 5366 /* pred_flags is 0xS?10 << 16 + snd_wnd 5367 * if header_prediction is to be made 5368 * 'S' will always be tp->tcp_header_len >> 2 5369 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5370 * turn it off (when there are holes in the receive 5371 * space for instance) 5372 * PSH flag is ignored. 5373 */ 5374 5375 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5376 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5377 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5378 int tcp_header_len = tp->tcp_header_len; 5379 5380 /* Timestamp header prediction: tcp_header_len 5381 * is automatically equal to th->doff*4 due to pred_flags 5382 * match. 5383 */ 5384 5385 /* Check timestamp */ 5386 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5387 /* No? Slow path! */ 5388 if (!tcp_parse_aligned_timestamp(tp, th)) 5389 goto slow_path; 5390 5391 /* If PAWS failed, check it more carefully in slow path */ 5392 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5393 goto slow_path; 5394 5395 /* DO NOT update ts_recent here, if checksum fails 5396 * and timestamp was corrupted part, it will result 5397 * in a hung connection since we will drop all 5398 * future packets due to the PAWS test. 5399 */ 5400 } 5401 5402 if (len <= tcp_header_len) { 5403 /* Bulk data transfer: sender */ 5404 if (len == tcp_header_len) { 5405 /* Predicted packet is in window by definition. 5406 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5407 * Hence, check seq<=rcv_wup reduces to: 5408 */ 5409 if (tcp_header_len == 5410 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5411 tp->rcv_nxt == tp->rcv_wup) 5412 tcp_store_ts_recent(tp); 5413 5414 /* We know that such packets are checksummed 5415 * on entry. 5416 */ 5417 tcp_ack(sk, skb, 0); 5418 __kfree_skb(skb); 5419 tcp_data_snd_check(sk); 5420 return; 5421 } else { /* Header too small */ 5422 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5423 goto discard; 5424 } 5425 } else { 5426 int eaten = 0; 5427 bool fragstolen = false; 5428 5429 if (tcp_checksum_complete(skb)) 5430 goto csum_error; 5431 5432 if ((int)skb->truesize > sk->sk_forward_alloc) 5433 goto step5; 5434 5435 /* Predicted packet is in window by definition. 5436 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5437 * Hence, check seq<=rcv_wup reduces to: 5438 */ 5439 if (tcp_header_len == 5440 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5441 tp->rcv_nxt == tp->rcv_wup) 5442 tcp_store_ts_recent(tp); 5443 5444 tcp_rcv_rtt_measure_ts(sk, skb); 5445 5446 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5447 5448 /* Bulk data transfer: receiver */ 5449 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5450 &fragstolen); 5451 5452 tcp_event_data_recv(sk, skb); 5453 5454 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5455 /* Well, only one small jumplet in fast path... */ 5456 tcp_ack(sk, skb, FLAG_DATA); 5457 tcp_data_snd_check(sk); 5458 if (!inet_csk_ack_scheduled(sk)) 5459 goto no_ack; 5460 } 5461 5462 __tcp_ack_snd_check(sk, 0); 5463 no_ack: 5464 if (eaten) 5465 kfree_skb_partial(skb, fragstolen); 5466 sk->sk_data_ready(sk); 5467 return; 5468 } 5469 } 5470 5471 slow_path: 5472 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5473 goto csum_error; 5474 5475 if (!th->ack && !th->rst && !th->syn) 5476 goto discard; 5477 5478 /* 5479 * Standard slow path. 5480 */ 5481 5482 if (!tcp_validate_incoming(sk, skb, th, 1)) 5483 return; 5484 5485 step5: 5486 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5487 goto discard; 5488 5489 tcp_rcv_rtt_measure_ts(sk, skb); 5490 5491 /* Process urgent data. */ 5492 tcp_urg(sk, skb, th); 5493 5494 /* step 7: process the segment text */ 5495 tcp_data_queue(sk, skb); 5496 5497 tcp_data_snd_check(sk); 5498 tcp_ack_snd_check(sk); 5499 return; 5500 5501 csum_error: 5502 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5503 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5504 5505 discard: 5506 tcp_drop(sk, skb); 5507 } 5508 EXPORT_SYMBOL(tcp_rcv_established); 5509 5510 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5511 { 5512 struct tcp_sock *tp = tcp_sk(sk); 5513 struct inet_connection_sock *icsk = inet_csk(sk); 5514 5515 tcp_set_state(sk, TCP_ESTABLISHED); 5516 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5517 5518 if (skb) { 5519 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5520 security_inet_conn_established(sk, skb); 5521 } 5522 5523 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5524 5525 /* Prevent spurious tcp_cwnd_restart() on first data 5526 * packet. 5527 */ 5528 tp->lsndtime = tcp_jiffies32; 5529 5530 if (sock_flag(sk, SOCK_KEEPOPEN)) 5531 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5532 5533 if (!tp->rx_opt.snd_wscale) 5534 __tcp_fast_path_on(tp, tp->snd_wnd); 5535 else 5536 tp->pred_flags = 0; 5537 } 5538 5539 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5540 struct tcp_fastopen_cookie *cookie) 5541 { 5542 struct tcp_sock *tp = tcp_sk(sk); 5543 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5544 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5545 bool syn_drop = false; 5546 5547 if (mss == tp->rx_opt.user_mss) { 5548 struct tcp_options_received opt; 5549 5550 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5551 tcp_clear_options(&opt); 5552 opt.user_mss = opt.mss_clamp = 0; 5553 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5554 mss = opt.mss_clamp; 5555 } 5556 5557 if (!tp->syn_fastopen) { 5558 /* Ignore an unsolicited cookie */ 5559 cookie->len = -1; 5560 } else if (tp->total_retrans) { 5561 /* SYN timed out and the SYN-ACK neither has a cookie nor 5562 * acknowledges data. Presumably the remote received only 5563 * the retransmitted (regular) SYNs: either the original 5564 * SYN-data or the corresponding SYN-ACK was dropped. 5565 */ 5566 syn_drop = (cookie->len < 0 && data); 5567 } else if (cookie->len < 0 && !tp->syn_data) { 5568 /* We requested a cookie but didn't get it. If we did not use 5569 * the (old) exp opt format then try so next time (try_exp=1). 5570 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5571 */ 5572 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5573 } 5574 5575 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5576 5577 if (data) { /* Retransmit unacked data in SYN */ 5578 skb_rbtree_walk_from(data) { 5579 if (__tcp_retransmit_skb(sk, data, 1)) 5580 break; 5581 } 5582 tcp_rearm_rto(sk); 5583 NET_INC_STATS(sock_net(sk), 5584 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5585 return true; 5586 } 5587 tp->syn_data_acked = tp->syn_data; 5588 if (tp->syn_data_acked) 5589 NET_INC_STATS(sock_net(sk), 5590 LINUX_MIB_TCPFASTOPENACTIVE); 5591 5592 tcp_fastopen_add_skb(sk, synack); 5593 5594 return false; 5595 } 5596 5597 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5598 const struct tcphdr *th) 5599 { 5600 struct inet_connection_sock *icsk = inet_csk(sk); 5601 struct tcp_sock *tp = tcp_sk(sk); 5602 struct tcp_fastopen_cookie foc = { .len = -1 }; 5603 int saved_clamp = tp->rx_opt.mss_clamp; 5604 bool fastopen_fail; 5605 5606 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5607 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5608 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5609 5610 if (th->ack) { 5611 /* rfc793: 5612 * "If the state is SYN-SENT then 5613 * first check the ACK bit 5614 * If the ACK bit is set 5615 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5616 * a reset (unless the RST bit is set, if so drop 5617 * the segment and return)" 5618 */ 5619 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5620 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5621 goto reset_and_undo; 5622 5623 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5624 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5625 tcp_time_stamp(tp))) { 5626 NET_INC_STATS(sock_net(sk), 5627 LINUX_MIB_PAWSACTIVEREJECTED); 5628 goto reset_and_undo; 5629 } 5630 5631 /* Now ACK is acceptable. 5632 * 5633 * "If the RST bit is set 5634 * If the ACK was acceptable then signal the user "error: 5635 * connection reset", drop the segment, enter CLOSED state, 5636 * delete TCB, and return." 5637 */ 5638 5639 if (th->rst) { 5640 tcp_reset(sk); 5641 goto discard; 5642 } 5643 5644 /* rfc793: 5645 * "fifth, if neither of the SYN or RST bits is set then 5646 * drop the segment and return." 5647 * 5648 * See note below! 5649 * --ANK(990513) 5650 */ 5651 if (!th->syn) 5652 goto discard_and_undo; 5653 5654 /* rfc793: 5655 * "If the SYN bit is on ... 5656 * are acceptable then ... 5657 * (our SYN has been ACKed), change the connection 5658 * state to ESTABLISHED..." 5659 */ 5660 5661 tcp_ecn_rcv_synack(tp, th); 5662 5663 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5664 tcp_ack(sk, skb, FLAG_SLOWPATH); 5665 5666 /* Ok.. it's good. Set up sequence numbers and 5667 * move to established. 5668 */ 5669 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5670 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5671 5672 /* RFC1323: The window in SYN & SYN/ACK segments is 5673 * never scaled. 5674 */ 5675 tp->snd_wnd = ntohs(th->window); 5676 5677 if (!tp->rx_opt.wscale_ok) { 5678 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5679 tp->window_clamp = min(tp->window_clamp, 65535U); 5680 } 5681 5682 if (tp->rx_opt.saw_tstamp) { 5683 tp->rx_opt.tstamp_ok = 1; 5684 tp->tcp_header_len = 5685 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5686 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5687 tcp_store_ts_recent(tp); 5688 } else { 5689 tp->tcp_header_len = sizeof(struct tcphdr); 5690 } 5691 5692 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5693 tcp_enable_fack(tp); 5694 5695 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5696 tcp_initialize_rcv_mss(sk); 5697 5698 /* Remember, tcp_poll() does not lock socket! 5699 * Change state from SYN-SENT only after copied_seq 5700 * is initialized. */ 5701 tp->copied_seq = tp->rcv_nxt; 5702 5703 smp_mb(); 5704 5705 tcp_finish_connect(sk, skb); 5706 5707 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5708 tcp_rcv_fastopen_synack(sk, skb, &foc); 5709 5710 if (!sock_flag(sk, SOCK_DEAD)) { 5711 sk->sk_state_change(sk); 5712 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5713 } 5714 if (fastopen_fail) 5715 return -1; 5716 if (sk->sk_write_pending || 5717 icsk->icsk_accept_queue.rskq_defer_accept || 5718 icsk->icsk_ack.pingpong) { 5719 /* Save one ACK. Data will be ready after 5720 * several ticks, if write_pending is set. 5721 * 5722 * It may be deleted, but with this feature tcpdumps 5723 * look so _wonderfully_ clever, that I was not able 5724 * to stand against the temptation 8) --ANK 5725 */ 5726 inet_csk_schedule_ack(sk); 5727 tcp_enter_quickack_mode(sk); 5728 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5729 TCP_DELACK_MAX, TCP_RTO_MAX); 5730 5731 discard: 5732 tcp_drop(sk, skb); 5733 return 0; 5734 } else { 5735 tcp_send_ack(sk); 5736 } 5737 return -1; 5738 } 5739 5740 /* No ACK in the segment */ 5741 5742 if (th->rst) { 5743 /* rfc793: 5744 * "If the RST bit is set 5745 * 5746 * Otherwise (no ACK) drop the segment and return." 5747 */ 5748 5749 goto discard_and_undo; 5750 } 5751 5752 /* PAWS check. */ 5753 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5754 tcp_paws_reject(&tp->rx_opt, 0)) 5755 goto discard_and_undo; 5756 5757 if (th->syn) { 5758 /* We see SYN without ACK. It is attempt of 5759 * simultaneous connect with crossed SYNs. 5760 * Particularly, it can be connect to self. 5761 */ 5762 tcp_set_state(sk, TCP_SYN_RECV); 5763 5764 if (tp->rx_opt.saw_tstamp) { 5765 tp->rx_opt.tstamp_ok = 1; 5766 tcp_store_ts_recent(tp); 5767 tp->tcp_header_len = 5768 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5769 } else { 5770 tp->tcp_header_len = sizeof(struct tcphdr); 5771 } 5772 5773 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5774 tp->copied_seq = tp->rcv_nxt; 5775 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5776 5777 /* RFC1323: The window in SYN & SYN/ACK segments is 5778 * never scaled. 5779 */ 5780 tp->snd_wnd = ntohs(th->window); 5781 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5782 tp->max_window = tp->snd_wnd; 5783 5784 tcp_ecn_rcv_syn(tp, th); 5785 5786 tcp_mtup_init(sk); 5787 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5788 tcp_initialize_rcv_mss(sk); 5789 5790 tcp_send_synack(sk); 5791 #if 0 5792 /* Note, we could accept data and URG from this segment. 5793 * There are no obstacles to make this (except that we must 5794 * either change tcp_recvmsg() to prevent it from returning data 5795 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5796 * 5797 * However, if we ignore data in ACKless segments sometimes, 5798 * we have no reasons to accept it sometimes. 5799 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5800 * is not flawless. So, discard packet for sanity. 5801 * Uncomment this return to process the data. 5802 */ 5803 return -1; 5804 #else 5805 goto discard; 5806 #endif 5807 } 5808 /* "fifth, if neither of the SYN or RST bits is set then 5809 * drop the segment and return." 5810 */ 5811 5812 discard_and_undo: 5813 tcp_clear_options(&tp->rx_opt); 5814 tp->rx_opt.mss_clamp = saved_clamp; 5815 goto discard; 5816 5817 reset_and_undo: 5818 tcp_clear_options(&tp->rx_opt); 5819 tp->rx_opt.mss_clamp = saved_clamp; 5820 return 1; 5821 } 5822 5823 /* 5824 * This function implements the receiving procedure of RFC 793 for 5825 * all states except ESTABLISHED and TIME_WAIT. 5826 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5827 * address independent. 5828 */ 5829 5830 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5831 { 5832 struct tcp_sock *tp = tcp_sk(sk); 5833 struct inet_connection_sock *icsk = inet_csk(sk); 5834 const struct tcphdr *th = tcp_hdr(skb); 5835 struct request_sock *req; 5836 int queued = 0; 5837 bool acceptable; 5838 5839 switch (sk->sk_state) { 5840 case TCP_CLOSE: 5841 goto discard; 5842 5843 case TCP_LISTEN: 5844 if (th->ack) 5845 return 1; 5846 5847 if (th->rst) 5848 goto discard; 5849 5850 if (th->syn) { 5851 if (th->fin) 5852 goto discard; 5853 /* It is possible that we process SYN packets from backlog, 5854 * so we need to make sure to disable BH right there. 5855 */ 5856 local_bh_disable(); 5857 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5858 local_bh_enable(); 5859 5860 if (!acceptable) 5861 return 1; 5862 consume_skb(skb); 5863 return 0; 5864 } 5865 goto discard; 5866 5867 case TCP_SYN_SENT: 5868 tp->rx_opt.saw_tstamp = 0; 5869 tcp_mstamp_refresh(tp); 5870 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5871 if (queued >= 0) 5872 return queued; 5873 5874 /* Do step6 onward by hand. */ 5875 tcp_urg(sk, skb, th); 5876 __kfree_skb(skb); 5877 tcp_data_snd_check(sk); 5878 return 0; 5879 } 5880 5881 tcp_mstamp_refresh(tp); 5882 tp->rx_opt.saw_tstamp = 0; 5883 req = tp->fastopen_rsk; 5884 if (req) { 5885 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5886 sk->sk_state != TCP_FIN_WAIT1); 5887 5888 if (!tcp_check_req(sk, skb, req, true)) 5889 goto discard; 5890 } 5891 5892 if (!th->ack && !th->rst && !th->syn) 5893 goto discard; 5894 5895 if (!tcp_validate_incoming(sk, skb, th, 0)) 5896 return 0; 5897 5898 /* step 5: check the ACK field */ 5899 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5900 FLAG_UPDATE_TS_RECENT | 5901 FLAG_NO_CHALLENGE_ACK) > 0; 5902 5903 if (!acceptable) { 5904 if (sk->sk_state == TCP_SYN_RECV) 5905 return 1; /* send one RST */ 5906 tcp_send_challenge_ack(sk, skb); 5907 goto discard; 5908 } 5909 switch (sk->sk_state) { 5910 case TCP_SYN_RECV: 5911 if (!tp->srtt_us) 5912 tcp_synack_rtt_meas(sk, req); 5913 5914 /* Once we leave TCP_SYN_RECV, we no longer need req 5915 * so release it. 5916 */ 5917 if (req) { 5918 inet_csk(sk)->icsk_retransmits = 0; 5919 reqsk_fastopen_remove(sk, req, false); 5920 /* Re-arm the timer because data may have been sent out. 5921 * This is similar to the regular data transmission case 5922 * when new data has just been ack'ed. 5923 * 5924 * (TFO) - we could try to be more aggressive and 5925 * retransmitting any data sooner based on when they 5926 * are sent out. 5927 */ 5928 tcp_rearm_rto(sk); 5929 } else { 5930 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 5931 tp->copied_seq = tp->rcv_nxt; 5932 } 5933 smp_mb(); 5934 tcp_set_state(sk, TCP_ESTABLISHED); 5935 sk->sk_state_change(sk); 5936 5937 /* Note, that this wakeup is only for marginal crossed SYN case. 5938 * Passively open sockets are not waked up, because 5939 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5940 */ 5941 if (sk->sk_socket) 5942 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5943 5944 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5945 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5946 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5947 5948 if (tp->rx_opt.tstamp_ok) 5949 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5950 5951 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 5952 tcp_update_pacing_rate(sk); 5953 5954 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5955 tp->lsndtime = tcp_jiffies32; 5956 5957 tcp_initialize_rcv_mss(sk); 5958 tcp_fast_path_on(tp); 5959 break; 5960 5961 case TCP_FIN_WAIT1: { 5962 int tmo; 5963 5964 /* If we enter the TCP_FIN_WAIT1 state and we are a 5965 * Fast Open socket and this is the first acceptable 5966 * ACK we have received, this would have acknowledged 5967 * our SYNACK so stop the SYNACK timer. 5968 */ 5969 if (req) { 5970 /* We no longer need the request sock. */ 5971 reqsk_fastopen_remove(sk, req, false); 5972 tcp_rearm_rto(sk); 5973 } 5974 if (tp->snd_una != tp->write_seq) 5975 break; 5976 5977 tcp_set_state(sk, TCP_FIN_WAIT2); 5978 sk->sk_shutdown |= SEND_SHUTDOWN; 5979 5980 sk_dst_confirm(sk); 5981 5982 if (!sock_flag(sk, SOCK_DEAD)) { 5983 /* Wake up lingering close() */ 5984 sk->sk_state_change(sk); 5985 break; 5986 } 5987 5988 if (tp->linger2 < 0) { 5989 tcp_done(sk); 5990 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5991 return 1; 5992 } 5993 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5994 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5995 /* Receive out of order FIN after close() */ 5996 if (tp->syn_fastopen && th->fin) 5997 tcp_fastopen_active_disable(sk); 5998 tcp_done(sk); 5999 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6000 return 1; 6001 } 6002 6003 tmo = tcp_fin_time(sk); 6004 if (tmo > TCP_TIMEWAIT_LEN) { 6005 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6006 } else if (th->fin || sock_owned_by_user(sk)) { 6007 /* Bad case. We could lose such FIN otherwise. 6008 * It is not a big problem, but it looks confusing 6009 * and not so rare event. We still can lose it now, 6010 * if it spins in bh_lock_sock(), but it is really 6011 * marginal case. 6012 */ 6013 inet_csk_reset_keepalive_timer(sk, tmo); 6014 } else { 6015 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6016 goto discard; 6017 } 6018 break; 6019 } 6020 6021 case TCP_CLOSING: 6022 if (tp->snd_una == tp->write_seq) { 6023 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6024 goto discard; 6025 } 6026 break; 6027 6028 case TCP_LAST_ACK: 6029 if (tp->snd_una == tp->write_seq) { 6030 tcp_update_metrics(sk); 6031 tcp_done(sk); 6032 goto discard; 6033 } 6034 break; 6035 } 6036 6037 /* step 6: check the URG bit */ 6038 tcp_urg(sk, skb, th); 6039 6040 /* step 7: process the segment text */ 6041 switch (sk->sk_state) { 6042 case TCP_CLOSE_WAIT: 6043 case TCP_CLOSING: 6044 case TCP_LAST_ACK: 6045 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6046 break; 6047 case TCP_FIN_WAIT1: 6048 case TCP_FIN_WAIT2: 6049 /* RFC 793 says to queue data in these states, 6050 * RFC 1122 says we MUST send a reset. 6051 * BSD 4.4 also does reset. 6052 */ 6053 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6054 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6055 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6056 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6057 tcp_reset(sk); 6058 return 1; 6059 } 6060 } 6061 /* Fall through */ 6062 case TCP_ESTABLISHED: 6063 tcp_data_queue(sk, skb); 6064 queued = 1; 6065 break; 6066 } 6067 6068 /* tcp_data could move socket to TIME-WAIT */ 6069 if (sk->sk_state != TCP_CLOSE) { 6070 tcp_data_snd_check(sk); 6071 tcp_ack_snd_check(sk); 6072 } 6073 6074 if (!queued) { 6075 discard: 6076 tcp_drop(sk, skb); 6077 } 6078 return 0; 6079 } 6080 EXPORT_SYMBOL(tcp_rcv_state_process); 6081 6082 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6083 { 6084 struct inet_request_sock *ireq = inet_rsk(req); 6085 6086 if (family == AF_INET) 6087 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6088 &ireq->ir_rmt_addr, port); 6089 #if IS_ENABLED(CONFIG_IPV6) 6090 else if (family == AF_INET6) 6091 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6092 &ireq->ir_v6_rmt_addr, port); 6093 #endif 6094 } 6095 6096 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6097 * 6098 * If we receive a SYN packet with these bits set, it means a 6099 * network is playing bad games with TOS bits. In order to 6100 * avoid possible false congestion notifications, we disable 6101 * TCP ECN negotiation. 6102 * 6103 * Exception: tcp_ca wants ECN. This is required for DCTCP 6104 * congestion control: Linux DCTCP asserts ECT on all packets, 6105 * including SYN, which is most optimal solution; however, 6106 * others, such as FreeBSD do not. 6107 */ 6108 static void tcp_ecn_create_request(struct request_sock *req, 6109 const struct sk_buff *skb, 6110 const struct sock *listen_sk, 6111 const struct dst_entry *dst) 6112 { 6113 const struct tcphdr *th = tcp_hdr(skb); 6114 const struct net *net = sock_net(listen_sk); 6115 bool th_ecn = th->ece && th->cwr; 6116 bool ect, ecn_ok; 6117 u32 ecn_ok_dst; 6118 6119 if (!th_ecn) 6120 return; 6121 6122 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6123 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6124 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6125 6126 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6127 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6128 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6129 inet_rsk(req)->ecn_ok = 1; 6130 } 6131 6132 static void tcp_openreq_init(struct request_sock *req, 6133 const struct tcp_options_received *rx_opt, 6134 struct sk_buff *skb, const struct sock *sk) 6135 { 6136 struct inet_request_sock *ireq = inet_rsk(req); 6137 6138 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6139 req->cookie_ts = 0; 6140 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6141 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6142 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6143 tcp_rsk(req)->last_oow_ack_time = 0; 6144 req->mss = rx_opt->mss_clamp; 6145 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6146 ireq->tstamp_ok = rx_opt->tstamp_ok; 6147 ireq->sack_ok = rx_opt->sack_ok; 6148 ireq->snd_wscale = rx_opt->snd_wscale; 6149 ireq->wscale_ok = rx_opt->wscale_ok; 6150 ireq->acked = 0; 6151 ireq->ecn_ok = 0; 6152 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6153 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6154 ireq->ir_mark = inet_request_mark(sk, skb); 6155 } 6156 6157 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6158 struct sock *sk_listener, 6159 bool attach_listener) 6160 { 6161 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6162 attach_listener); 6163 6164 if (req) { 6165 struct inet_request_sock *ireq = inet_rsk(req); 6166 6167 kmemcheck_annotate_bitfield(ireq, flags); 6168 ireq->opt = NULL; 6169 #if IS_ENABLED(CONFIG_IPV6) 6170 ireq->pktopts = NULL; 6171 #endif 6172 atomic64_set(&ireq->ir_cookie, 0); 6173 ireq->ireq_state = TCP_NEW_SYN_RECV; 6174 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6175 ireq->ireq_family = sk_listener->sk_family; 6176 } 6177 6178 return req; 6179 } 6180 EXPORT_SYMBOL(inet_reqsk_alloc); 6181 6182 /* 6183 * Return true if a syncookie should be sent 6184 */ 6185 static bool tcp_syn_flood_action(const struct sock *sk, 6186 const struct sk_buff *skb, 6187 const char *proto) 6188 { 6189 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6190 const char *msg = "Dropping request"; 6191 bool want_cookie = false; 6192 struct net *net = sock_net(sk); 6193 6194 #ifdef CONFIG_SYN_COOKIES 6195 if (net->ipv4.sysctl_tcp_syncookies) { 6196 msg = "Sending cookies"; 6197 want_cookie = true; 6198 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6199 } else 6200 #endif 6201 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6202 6203 if (!queue->synflood_warned && 6204 net->ipv4.sysctl_tcp_syncookies != 2 && 6205 xchg(&queue->synflood_warned, 1) == 0) 6206 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6207 proto, ntohs(tcp_hdr(skb)->dest), msg); 6208 6209 return want_cookie; 6210 } 6211 6212 static void tcp_reqsk_record_syn(const struct sock *sk, 6213 struct request_sock *req, 6214 const struct sk_buff *skb) 6215 { 6216 if (tcp_sk(sk)->save_syn) { 6217 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6218 u32 *copy; 6219 6220 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6221 if (copy) { 6222 copy[0] = len; 6223 memcpy(©[1], skb_network_header(skb), len); 6224 req->saved_syn = copy; 6225 } 6226 } 6227 } 6228 6229 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6230 const struct tcp_request_sock_ops *af_ops, 6231 struct sock *sk, struct sk_buff *skb) 6232 { 6233 struct tcp_fastopen_cookie foc = { .len = -1 }; 6234 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6235 struct tcp_options_received tmp_opt; 6236 struct tcp_sock *tp = tcp_sk(sk); 6237 struct net *net = sock_net(sk); 6238 struct sock *fastopen_sk = NULL; 6239 struct request_sock *req; 6240 bool want_cookie = false; 6241 struct dst_entry *dst; 6242 struct flowi fl; 6243 6244 /* TW buckets are converted to open requests without 6245 * limitations, they conserve resources and peer is 6246 * evidently real one. 6247 */ 6248 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6249 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6250 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6251 if (!want_cookie) 6252 goto drop; 6253 } 6254 6255 if (sk_acceptq_is_full(sk)) { 6256 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6257 goto drop; 6258 } 6259 6260 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6261 if (!req) 6262 goto drop; 6263 6264 tcp_rsk(req)->af_specific = af_ops; 6265 tcp_rsk(req)->ts_off = 0; 6266 6267 tcp_clear_options(&tmp_opt); 6268 tmp_opt.mss_clamp = af_ops->mss_clamp; 6269 tmp_opt.user_mss = tp->rx_opt.user_mss; 6270 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6271 want_cookie ? NULL : &foc); 6272 6273 if (want_cookie && !tmp_opt.saw_tstamp) 6274 tcp_clear_options(&tmp_opt); 6275 6276 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6277 tcp_openreq_init(req, &tmp_opt, skb, sk); 6278 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6279 6280 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6281 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6282 6283 af_ops->init_req(req, sk, skb); 6284 6285 if (security_inet_conn_request(sk, skb, req)) 6286 goto drop_and_free; 6287 6288 if (tmp_opt.tstamp_ok) 6289 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6290 6291 dst = af_ops->route_req(sk, &fl, req); 6292 if (!dst) 6293 goto drop_and_free; 6294 6295 if (!want_cookie && !isn) { 6296 /* Kill the following clause, if you dislike this way. */ 6297 if (!net->ipv4.sysctl_tcp_syncookies && 6298 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6299 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6300 !tcp_peer_is_proven(req, dst)) { 6301 /* Without syncookies last quarter of 6302 * backlog is filled with destinations, 6303 * proven to be alive. 6304 * It means that we continue to communicate 6305 * to destinations, already remembered 6306 * to the moment of synflood. 6307 */ 6308 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6309 rsk_ops->family); 6310 goto drop_and_release; 6311 } 6312 6313 isn = af_ops->init_seq(skb); 6314 } 6315 6316 tcp_ecn_create_request(req, skb, sk, dst); 6317 6318 if (want_cookie) { 6319 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6320 req->cookie_ts = tmp_opt.tstamp_ok; 6321 if (!tmp_opt.tstamp_ok) 6322 inet_rsk(req)->ecn_ok = 0; 6323 } 6324 6325 tcp_rsk(req)->snt_isn = isn; 6326 tcp_rsk(req)->txhash = net_tx_rndhash(); 6327 tcp_openreq_init_rwin(req, sk, dst); 6328 if (!want_cookie) { 6329 tcp_reqsk_record_syn(sk, req, skb); 6330 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc); 6331 } 6332 if (fastopen_sk) { 6333 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6334 &foc, TCP_SYNACK_FASTOPEN); 6335 /* Add the child socket directly into the accept queue */ 6336 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6337 sk->sk_data_ready(sk); 6338 bh_unlock_sock(fastopen_sk); 6339 sock_put(fastopen_sk); 6340 } else { 6341 tcp_rsk(req)->tfo_listener = false; 6342 if (!want_cookie) 6343 inet_csk_reqsk_queue_hash_add(sk, req, 6344 tcp_timeout_init((struct sock *)req)); 6345 af_ops->send_synack(sk, dst, &fl, req, &foc, 6346 !want_cookie ? TCP_SYNACK_NORMAL : 6347 TCP_SYNACK_COOKIE); 6348 if (want_cookie) { 6349 reqsk_free(req); 6350 return 0; 6351 } 6352 } 6353 reqsk_put(req); 6354 return 0; 6355 6356 drop_and_release: 6357 dst_release(dst); 6358 drop_and_free: 6359 reqsk_free(req); 6360 drop: 6361 tcp_listendrop(sk); 6362 return 0; 6363 } 6364 EXPORT_SYMBOL(tcp_conn_request); 6365