1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: 25 * Pedro Roque : Fast Retransmit/Recovery. 26 * Two receive queues. 27 * Retransmit queue handled by TCP. 28 * Better retransmit timer handling. 29 * New congestion avoidance. 30 * Header prediction. 31 * Variable renaming. 32 * 33 * Eric : Fast Retransmit. 34 * Randy Scott : MSS option defines. 35 * Eric Schenk : Fixes to slow start algorithm. 36 * Eric Schenk : Yet another double ACK bug. 37 * Eric Schenk : Delayed ACK bug fixes. 38 * Eric Schenk : Floyd style fast retrans war avoidance. 39 * David S. Miller : Don't allow zero congestion window. 40 * Eric Schenk : Fix retransmitter so that it sends 41 * next packet on ack of previous packet. 42 * Andi Kleen : Moved open_request checking here 43 * and process RSTs for open_requests. 44 * Andi Kleen : Better prune_queue, and other fixes. 45 * Andrey Savochkin: Fix RTT measurements in the presence of 46 * timestamps. 47 * Andrey Savochkin: Check sequence numbers correctly when 48 * removing SACKs due to in sequence incoming 49 * data segments. 50 * Andi Kleen: Make sure we never ack data there is not 51 * enough room for. Also make this condition 52 * a fatal error if it might still happen. 53 * Andi Kleen: Add tcp_measure_rcv_mss to make 54 * connections with MSS<min(MTU,ann. MSS) 55 * work without delayed acks. 56 * Andi Kleen: Process packets with PSH set in the 57 * fast path. 58 * J Hadi Salim: ECN support 59 * Andrei Gurtov, 60 * Pasi Sarolahti, 61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 62 * engine. Lots of bugs are found. 63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 64 */ 65 66 #include <linux/mm.h> 67 #include <linux/module.h> 68 #include <linux/sysctl.h> 69 #include <net/tcp.h> 70 #include <net/inet_common.h> 71 #include <linux/ipsec.h> 72 #include <asm/unaligned.h> 73 #include <net/netdma.h> 74 75 int sysctl_tcp_timestamps __read_mostly = 1; 76 int sysctl_tcp_window_scaling __read_mostly = 1; 77 int sysctl_tcp_sack __read_mostly = 1; 78 int sysctl_tcp_fack __read_mostly = 1; 79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn __read_mostly; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 2; 84 85 int sysctl_tcp_stdurg __read_mostly; 86 int sysctl_tcp_rfc1337 __read_mostly; 87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 88 int sysctl_tcp_frto __read_mostly = 2; 89 int sysctl_tcp_frto_response __read_mostly; 90 int sysctl_tcp_nometrics_save __read_mostly; 91 92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 93 int sysctl_tcp_abc __read_mostly; 94 95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 101 #define FLAG_ECE 0x40 /* ECE in this ACK */ 102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 108 109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 114 115 #define IsSackFrto() (sysctl_tcp_frto == 0x2) 116 117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 119 120 /* Adapt the MSS value used to make delayed ack decision to the 121 * real world. 122 */ 123 static void tcp_measure_rcv_mss(struct sock *sk, 124 const struct sk_buff *skb) 125 { 126 struct inet_connection_sock *icsk = inet_csk(sk); 127 const unsigned int lss = icsk->icsk_ack.last_seg_size; 128 unsigned int len; 129 130 icsk->icsk_ack.last_seg_size = 0; 131 132 /* skb->len may jitter because of SACKs, even if peer 133 * sends good full-sized frames. 134 */ 135 len = skb_shinfo(skb)->gso_size ?: skb->len; 136 if (len >= icsk->icsk_ack.rcv_mss) { 137 icsk->icsk_ack.rcv_mss = len; 138 } else { 139 /* Otherwise, we make more careful check taking into account, 140 * that SACKs block is variable. 141 * 142 * "len" is invariant segment length, including TCP header. 143 */ 144 len += skb->data - skb_transport_header(skb); 145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 146 /* If PSH is not set, packet should be 147 * full sized, provided peer TCP is not badly broken. 148 * This observation (if it is correct 8)) allows 149 * to handle super-low mtu links fairly. 150 */ 151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 153 /* Subtract also invariant (if peer is RFC compliant), 154 * tcp header plus fixed timestamp option length. 155 * Resulting "len" is MSS free of SACK jitter. 156 */ 157 len -= tcp_sk(sk)->tcp_header_len; 158 icsk->icsk_ack.last_seg_size = len; 159 if (len == lss) { 160 icsk->icsk_ack.rcv_mss = len; 161 return; 162 } 163 } 164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 167 } 168 } 169 170 static void tcp_incr_quickack(struct sock *sk) 171 { 172 struct inet_connection_sock *icsk = inet_csk(sk); 173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 174 175 if (quickacks==0) 176 quickacks=2; 177 if (quickacks > icsk->icsk_ack.quick) 178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 179 } 180 181 void tcp_enter_quickack_mode(struct sock *sk) 182 { 183 struct inet_connection_sock *icsk = inet_csk(sk); 184 tcp_incr_quickack(sk); 185 icsk->icsk_ack.pingpong = 0; 186 icsk->icsk_ack.ato = TCP_ATO_MIN; 187 } 188 189 /* Send ACKs quickly, if "quick" count is not exhausted 190 * and the session is not interactive. 191 */ 192 193 static inline int tcp_in_quickack_mode(const struct sock *sk) 194 { 195 const struct inet_connection_sock *icsk = inet_csk(sk); 196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 197 } 198 199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 200 { 201 if (tp->ecn_flags&TCP_ECN_OK) 202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 203 } 204 205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb) 206 { 207 if (tcp_hdr(skb)->cwr) 208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 209 } 210 211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 212 { 213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 214 } 215 216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb) 217 { 218 if (tp->ecn_flags&TCP_ECN_OK) { 219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags)) 220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 221 /* Funny extension: if ECT is not set on a segment, 222 * it is surely retransmit. It is not in ECN RFC, 223 * but Linux follows this rule. */ 224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags))) 225 tcp_enter_quickack_mode((struct sock *)tp); 226 } 227 } 228 229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th) 230 { 231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr)) 232 tp->ecn_flags &= ~TCP_ECN_OK; 233 } 234 235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th) 236 { 237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr)) 238 tp->ecn_flags &= ~TCP_ECN_OK; 239 } 240 241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th) 242 { 243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK)) 244 return 1; 245 return 0; 246 } 247 248 /* Buffer size and advertised window tuning. 249 * 250 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 251 */ 252 253 static void tcp_fixup_sndbuf(struct sock *sk) 254 { 255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 256 sizeof(struct sk_buff); 257 258 if (sk->sk_sndbuf < 3 * sndmem) 259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 260 } 261 262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 263 * 264 * All tcp_full_space() is split to two parts: "network" buffer, allocated 265 * forward and advertised in receiver window (tp->rcv_wnd) and 266 * "application buffer", required to isolate scheduling/application 267 * latencies from network. 268 * window_clamp is maximal advertised window. It can be less than 269 * tcp_full_space(), in this case tcp_full_space() - window_clamp 270 * is reserved for "application" buffer. The less window_clamp is 271 * the smoother our behaviour from viewpoint of network, but the lower 272 * throughput and the higher sensitivity of the connection to losses. 8) 273 * 274 * rcv_ssthresh is more strict window_clamp used at "slow start" 275 * phase to predict further behaviour of this connection. 276 * It is used for two goals: 277 * - to enforce header prediction at sender, even when application 278 * requires some significant "application buffer". It is check #1. 279 * - to prevent pruning of receive queue because of misprediction 280 * of receiver window. Check #2. 281 * 282 * The scheme does not work when sender sends good segments opening 283 * window and then starts to feed us spaghetti. But it should work 284 * in common situations. Otherwise, we have to rely on queue collapsing. 285 */ 286 287 /* Slow part of check#2. */ 288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 289 { 290 struct tcp_sock *tp = tcp_sk(sk); 291 /* Optimize this! */ 292 int truesize = tcp_win_from_space(skb->truesize)/2; 293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2; 294 295 while (tp->rcv_ssthresh <= window) { 296 if (truesize <= skb->len) 297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 298 299 truesize >>= 1; 300 window >>= 1; 301 } 302 return 0; 303 } 304 305 static void tcp_grow_window(struct sock *sk, 306 struct sk_buff *skb) 307 { 308 struct tcp_sock *tp = tcp_sk(sk); 309 310 /* Check #1 */ 311 if (tp->rcv_ssthresh < tp->window_clamp && 312 (int)tp->rcv_ssthresh < tcp_space(sk) && 313 !tcp_memory_pressure) { 314 int incr; 315 316 /* Check #2. Increase window, if skb with such overhead 317 * will fit to rcvbuf in future. 318 */ 319 if (tcp_win_from_space(skb->truesize) <= skb->len) 320 incr = 2*tp->advmss; 321 else 322 incr = __tcp_grow_window(sk, skb); 323 324 if (incr) { 325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp); 326 inet_csk(sk)->icsk_ack.quick |= 1; 327 } 328 } 329 } 330 331 /* 3. Tuning rcvbuf, when connection enters established state. */ 332 333 static void tcp_fixup_rcvbuf(struct sock *sk) 334 { 335 struct tcp_sock *tp = tcp_sk(sk); 336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 337 338 /* Try to select rcvbuf so that 4 mss-sized segments 339 * will fit to window and corresponding skbs will fit to our rcvbuf. 340 * (was 3; 4 is minimum to allow fast retransmit to work.) 341 */ 342 while (tcp_win_from_space(rcvmem) < tp->advmss) 343 rcvmem += 128; 344 if (sk->sk_rcvbuf < 4 * rcvmem) 345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 346 } 347 348 /* 4. Try to fixup all. It is made immediately after connection enters 349 * established state. 350 */ 351 static void tcp_init_buffer_space(struct sock *sk) 352 { 353 struct tcp_sock *tp = tcp_sk(sk); 354 int maxwin; 355 356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 357 tcp_fixup_rcvbuf(sk); 358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 359 tcp_fixup_sndbuf(sk); 360 361 tp->rcvq_space.space = tp->rcv_wnd; 362 363 maxwin = tcp_full_space(sk); 364 365 if (tp->window_clamp >= maxwin) { 366 tp->window_clamp = maxwin; 367 368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 369 tp->window_clamp = max(maxwin - 370 (maxwin >> sysctl_tcp_app_win), 371 4 * tp->advmss); 372 } 373 374 /* Force reservation of one segment. */ 375 if (sysctl_tcp_app_win && 376 tp->window_clamp > 2 * tp->advmss && 377 tp->window_clamp + tp->advmss > maxwin) 378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 379 380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 381 tp->snd_cwnd_stamp = tcp_time_stamp; 382 } 383 384 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 385 static void tcp_clamp_window(struct sock *sk) 386 { 387 struct tcp_sock *tp = tcp_sk(sk); 388 struct inet_connection_sock *icsk = inet_csk(sk); 389 390 icsk->icsk_ack.quick = 0; 391 392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 394 !tcp_memory_pressure && 395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 397 sysctl_tcp_rmem[2]); 398 } 399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss); 401 } 402 403 404 /* Initialize RCV_MSS value. 405 * RCV_MSS is an our guess about MSS used by the peer. 406 * We haven't any direct information about the MSS. 407 * It's better to underestimate the RCV_MSS rather than overestimate. 408 * Overestimations make us ACKing less frequently than needed. 409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 410 */ 411 void tcp_initialize_rcv_mss(struct sock *sk) 412 { 413 struct tcp_sock *tp = tcp_sk(sk); 414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 415 416 hint = min(hint, tp->rcv_wnd/2); 417 hint = min(hint, TCP_MIN_RCVMSS); 418 hint = max(hint, TCP_MIN_MSS); 419 420 inet_csk(sk)->icsk_ack.rcv_mss = hint; 421 } 422 423 /* Receiver "autotuning" code. 424 * 425 * The algorithm for RTT estimation w/o timestamps is based on 426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 428 * 429 * More detail on this code can be found at 430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 431 * though this reference is out of date. A new paper 432 * is pending. 433 */ 434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 435 { 436 u32 new_sample = tp->rcv_rtt_est.rtt; 437 long m = sample; 438 439 if (m == 0) 440 m = 1; 441 442 if (new_sample != 0) { 443 /* If we sample in larger samples in the non-timestamp 444 * case, we could grossly overestimate the RTT especially 445 * with chatty applications or bulk transfer apps which 446 * are stalled on filesystem I/O. 447 * 448 * Also, since we are only going for a minimum in the 449 * non-timestamp case, we do not smooth things out 450 * else with timestamps disabled convergence takes too 451 * long. 452 */ 453 if (!win_dep) { 454 m -= (new_sample >> 3); 455 new_sample += m; 456 } else if (m < new_sample) 457 new_sample = m << 3; 458 } else { 459 /* No previous measure. */ 460 new_sample = m << 3; 461 } 462 463 if (tp->rcv_rtt_est.rtt != new_sample) 464 tp->rcv_rtt_est.rtt = new_sample; 465 } 466 467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 468 { 469 if (tp->rcv_rtt_est.time == 0) 470 goto new_measure; 471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 472 return; 473 tcp_rcv_rtt_update(tp, 474 jiffies - tp->rcv_rtt_est.time, 475 1); 476 477 new_measure: 478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 479 tp->rcv_rtt_est.time = tcp_time_stamp; 480 } 481 482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb) 483 { 484 struct tcp_sock *tp = tcp_sk(sk); 485 if (tp->rx_opt.rcv_tsecr && 486 (TCP_SKB_CB(skb)->end_seq - 487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 489 } 490 491 /* 492 * This function should be called every time data is copied to user space. 493 * It calculates the appropriate TCP receive buffer space. 494 */ 495 void tcp_rcv_space_adjust(struct sock *sk) 496 { 497 struct tcp_sock *tp = tcp_sk(sk); 498 int time; 499 int space; 500 501 if (tp->rcvq_space.time == 0) 502 goto new_measure; 503 504 time = tcp_time_stamp - tp->rcvq_space.time; 505 if (time < (tp->rcv_rtt_est.rtt >> 3) || 506 tp->rcv_rtt_est.rtt == 0) 507 return; 508 509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 510 511 space = max(tp->rcvq_space.space, space); 512 513 if (tp->rcvq_space.space != space) { 514 int rcvmem; 515 516 tp->rcvq_space.space = space; 517 518 if (sysctl_tcp_moderate_rcvbuf && 519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 520 int new_clamp = space; 521 522 /* Receive space grows, normalize in order to 523 * take into account packet headers and sk_buff 524 * structure overhead. 525 */ 526 space /= tp->advmss; 527 if (!space) 528 space = 1; 529 rcvmem = (tp->advmss + MAX_TCP_HEADER + 530 16 + sizeof(struct sk_buff)); 531 while (tcp_win_from_space(rcvmem) < tp->advmss) 532 rcvmem += 128; 533 space *= rcvmem; 534 space = min(space, sysctl_tcp_rmem[2]); 535 if (space > sk->sk_rcvbuf) { 536 sk->sk_rcvbuf = space; 537 538 /* Make the window clamp follow along. */ 539 tp->window_clamp = new_clamp; 540 } 541 } 542 } 543 544 new_measure: 545 tp->rcvq_space.seq = tp->copied_seq; 546 tp->rcvq_space.time = tcp_time_stamp; 547 } 548 549 /* There is something which you must keep in mind when you analyze the 550 * behavior of the tp->ato delayed ack timeout interval. When a 551 * connection starts up, we want to ack as quickly as possible. The 552 * problem is that "good" TCP's do slow start at the beginning of data 553 * transmission. The means that until we send the first few ACK's the 554 * sender will sit on his end and only queue most of his data, because 555 * he can only send snd_cwnd unacked packets at any given time. For 556 * each ACK we send, he increments snd_cwnd and transmits more of his 557 * queue. -DaveM 558 */ 559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 560 { 561 struct tcp_sock *tp = tcp_sk(sk); 562 struct inet_connection_sock *icsk = inet_csk(sk); 563 u32 now; 564 565 inet_csk_schedule_ack(sk); 566 567 tcp_measure_rcv_mss(sk, skb); 568 569 tcp_rcv_rtt_measure(tp); 570 571 now = tcp_time_stamp; 572 573 if (!icsk->icsk_ack.ato) { 574 /* The _first_ data packet received, initialize 575 * delayed ACK engine. 576 */ 577 tcp_incr_quickack(sk); 578 icsk->icsk_ack.ato = TCP_ATO_MIN; 579 } else { 580 int m = now - icsk->icsk_ack.lrcvtime; 581 582 if (m <= TCP_ATO_MIN/2) { 583 /* The fastest case is the first. */ 584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 585 } else if (m < icsk->icsk_ack.ato) { 586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 587 if (icsk->icsk_ack.ato > icsk->icsk_rto) 588 icsk->icsk_ack.ato = icsk->icsk_rto; 589 } else if (m > icsk->icsk_rto) { 590 /* Too long gap. Apparently sender failed to 591 * restart window, so that we send ACKs quickly. 592 */ 593 tcp_incr_quickack(sk); 594 sk_stream_mem_reclaim(sk); 595 } 596 } 597 icsk->icsk_ack.lrcvtime = now; 598 599 TCP_ECN_check_ce(tp, skb); 600 601 if (skb->len >= 128) 602 tcp_grow_window(sk, skb); 603 } 604 605 static u32 tcp_rto_min(struct sock *sk) 606 { 607 struct dst_entry *dst = __sk_dst_get(sk); 608 u32 rto_min = TCP_RTO_MIN; 609 610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) 611 rto_min = dst->metrics[RTAX_RTO_MIN-1]; 612 return rto_min; 613 } 614 615 /* Called to compute a smoothed rtt estimate. The data fed to this 616 * routine either comes from timestamps, or from segments that were 617 * known _not_ to have been retransmitted [see Karn/Partridge 618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 619 * piece by Van Jacobson. 620 * NOTE: the next three routines used to be one big routine. 621 * To save cycles in the RFC 1323 implementation it was better to break 622 * it up into three procedures. -- erics 623 */ 624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 625 { 626 struct tcp_sock *tp = tcp_sk(sk); 627 long m = mrtt; /* RTT */ 628 629 /* The following amusing code comes from Jacobson's 630 * article in SIGCOMM '88. Note that rtt and mdev 631 * are scaled versions of rtt and mean deviation. 632 * This is designed to be as fast as possible 633 * m stands for "measurement". 634 * 635 * On a 1990 paper the rto value is changed to: 636 * RTO = rtt + 4 * mdev 637 * 638 * Funny. This algorithm seems to be very broken. 639 * These formulae increase RTO, when it should be decreased, increase 640 * too slowly, when it should be increased quickly, decrease too quickly 641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 642 * does not matter how to _calculate_ it. Seems, it was trap 643 * that VJ failed to avoid. 8) 644 */ 645 if (m == 0) 646 m = 1; 647 if (tp->srtt != 0) { 648 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 650 if (m < 0) { 651 m = -m; /* m is now abs(error) */ 652 m -= (tp->mdev >> 2); /* similar update on mdev */ 653 /* This is similar to one of Eifel findings. 654 * Eifel blocks mdev updates when rtt decreases. 655 * This solution is a bit different: we use finer gain 656 * for mdev in this case (alpha*beta). 657 * Like Eifel it also prevents growth of rto, 658 * but also it limits too fast rto decreases, 659 * happening in pure Eifel. 660 */ 661 if (m > 0) 662 m >>= 3; 663 } else { 664 m -= (tp->mdev >> 2); /* similar update on mdev */ 665 } 666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 667 if (tp->mdev > tp->mdev_max) { 668 tp->mdev_max = tp->mdev; 669 if (tp->mdev_max > tp->rttvar) 670 tp->rttvar = tp->mdev_max; 671 } 672 if (after(tp->snd_una, tp->rtt_seq)) { 673 if (tp->mdev_max < tp->rttvar) 674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2; 675 tp->rtt_seq = tp->snd_nxt; 676 tp->mdev_max = tcp_rto_min(sk); 677 } 678 } else { 679 /* no previous measure. */ 680 tp->srtt = m<<3; /* take the measured time to be rtt */ 681 tp->mdev = m<<1; /* make sure rto = 3*rtt */ 682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 683 tp->rtt_seq = tp->snd_nxt; 684 } 685 } 686 687 /* Calculate rto without backoff. This is the second half of Van Jacobson's 688 * routine referred to above. 689 */ 690 static inline void tcp_set_rto(struct sock *sk) 691 { 692 const struct tcp_sock *tp = tcp_sk(sk); 693 /* Old crap is replaced with new one. 8) 694 * 695 * More seriously: 696 * 1. If rtt variance happened to be less 50msec, it is hallucination. 697 * It cannot be less due to utterly erratic ACK generation made 698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 699 * to do with delayed acks, because at cwnd>2 true delack timeout 700 * is invisible. Actually, Linux-2.4 also generates erratic 701 * ACKs in some circumstances. 702 */ 703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 704 705 /* 2. Fixups made earlier cannot be right. 706 * If we do not estimate RTO correctly without them, 707 * all the algo is pure shit and should be replaced 708 * with correct one. It is exactly, which we pretend to do. 709 */ 710 } 711 712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 713 * guarantees that rto is higher. 714 */ 715 static inline void tcp_bound_rto(struct sock *sk) 716 { 717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 719 } 720 721 /* Save metrics learned by this TCP session. 722 This function is called only, when TCP finishes successfully 723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 724 */ 725 void tcp_update_metrics(struct sock *sk) 726 { 727 struct tcp_sock *tp = tcp_sk(sk); 728 struct dst_entry *dst = __sk_dst_get(sk); 729 730 if (sysctl_tcp_nometrics_save) 731 return; 732 733 dst_confirm(dst); 734 735 if (dst && (dst->flags&DST_HOST)) { 736 const struct inet_connection_sock *icsk = inet_csk(sk); 737 int m; 738 739 if (icsk->icsk_backoff || !tp->srtt) { 740 /* This session failed to estimate rtt. Why? 741 * Probably, no packets returned in time. 742 * Reset our results. 743 */ 744 if (!(dst_metric_locked(dst, RTAX_RTT))) 745 dst->metrics[RTAX_RTT-1] = 0; 746 return; 747 } 748 749 m = dst_metric(dst, RTAX_RTT) - tp->srtt; 750 751 /* If newly calculated rtt larger than stored one, 752 * store new one. Otherwise, use EWMA. Remember, 753 * rtt overestimation is always better than underestimation. 754 */ 755 if (!(dst_metric_locked(dst, RTAX_RTT))) { 756 if (m <= 0) 757 dst->metrics[RTAX_RTT-1] = tp->srtt; 758 else 759 dst->metrics[RTAX_RTT-1] -= (m>>3); 760 } 761 762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 763 if (m < 0) 764 m = -m; 765 766 /* Scale deviation to rttvar fixed point */ 767 m >>= 1; 768 if (m < tp->mdev) 769 m = tp->mdev; 770 771 if (m >= dst_metric(dst, RTAX_RTTVAR)) 772 dst->metrics[RTAX_RTTVAR-1] = m; 773 else 774 dst->metrics[RTAX_RTTVAR-1] -= 775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2; 776 } 777 778 if (tp->snd_ssthresh >= 0xFFFF) { 779 /* Slow start still did not finish. */ 780 if (dst_metric(dst, RTAX_SSTHRESH) && 781 !dst_metric_locked(dst, RTAX_SSTHRESH) && 782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 784 if (!dst_metric_locked(dst, RTAX_CWND) && 785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd; 787 } else if (tp->snd_cwnd > tp->snd_ssthresh && 788 icsk->icsk_ca_state == TCP_CA_Open) { 789 /* Cong. avoidance phase, cwnd is reliable. */ 790 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 791 dst->metrics[RTAX_SSTHRESH-1] = 792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 793 if (!dst_metric_locked(dst, RTAX_CWND)) 794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; 795 } else { 796 /* Else slow start did not finish, cwnd is non-sense, 797 ssthresh may be also invalid. 798 */ 799 if (!dst_metric_locked(dst, RTAX_CWND)) 800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; 801 if (dst->metrics[RTAX_SSTHRESH-1] && 802 !dst_metric_locked(dst, RTAX_SSTHRESH) && 803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) 804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 805 } 806 807 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && 809 tp->reordering != sysctl_tcp_reordering) 810 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 811 } 812 } 813 } 814 815 /* Numbers are taken from RFC3390. 816 * 817 * John Heffner states: 818 * 819 * The RFC specifies a window of no more than 4380 bytes 820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC 821 * is a bit misleading because they use a clamp at 4380 bytes 822 * rather than use a multiplier in the relevant range. 823 */ 824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 825 { 826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 827 828 if (!cwnd) { 829 if (tp->mss_cache > 1460) 830 cwnd = 2; 831 else 832 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 833 } 834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 835 } 836 837 /* Set slow start threshold and cwnd not falling to slow start */ 838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 839 { 840 struct tcp_sock *tp = tcp_sk(sk); 841 const struct inet_connection_sock *icsk = inet_csk(sk); 842 843 tp->prior_ssthresh = 0; 844 tp->bytes_acked = 0; 845 if (icsk->icsk_ca_state < TCP_CA_CWR) { 846 tp->undo_marker = 0; 847 if (set_ssthresh) 848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 849 tp->snd_cwnd = min(tp->snd_cwnd, 850 tcp_packets_in_flight(tp) + 1U); 851 tp->snd_cwnd_cnt = 0; 852 tp->high_seq = tp->snd_nxt; 853 tp->snd_cwnd_stamp = tcp_time_stamp; 854 TCP_ECN_queue_cwr(tp); 855 856 tcp_set_ca_state(sk, TCP_CA_CWR); 857 } 858 } 859 860 /* 861 * Packet counting of FACK is based on in-order assumptions, therefore TCP 862 * disables it when reordering is detected 863 */ 864 static void tcp_disable_fack(struct tcp_sock *tp) 865 { 866 tp->rx_opt.sack_ok &= ~2; 867 } 868 869 /* Take a notice that peer is sending D-SACKs */ 870 static void tcp_dsack_seen(struct tcp_sock *tp) 871 { 872 tp->rx_opt.sack_ok |= 4; 873 } 874 875 /* Initialize metrics on socket. */ 876 877 static void tcp_init_metrics(struct sock *sk) 878 { 879 struct tcp_sock *tp = tcp_sk(sk); 880 struct dst_entry *dst = __sk_dst_get(sk); 881 882 if (dst == NULL) 883 goto reset; 884 885 dst_confirm(dst); 886 887 if (dst_metric_locked(dst, RTAX_CWND)) 888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 889 if (dst_metric(dst, RTAX_SSTHRESH)) { 890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 892 tp->snd_ssthresh = tp->snd_cwnd_clamp; 893 } 894 if (dst_metric(dst, RTAX_REORDERING) && 895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 896 tcp_disable_fack(tp); 897 tp->reordering = dst_metric(dst, RTAX_REORDERING); 898 } 899 900 if (dst_metric(dst, RTAX_RTT) == 0) 901 goto reset; 902 903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 904 goto reset; 905 906 /* Initial rtt is determined from SYN,SYN-ACK. 907 * The segment is small and rtt may appear much 908 * less than real one. Use per-dst memory 909 * to make it more realistic. 910 * 911 * A bit of theory. RTT is time passed after "normal" sized packet 912 * is sent until it is ACKed. In normal circumstances sending small 913 * packets force peer to delay ACKs and calculation is correct too. 914 * The algorithm is adaptive and, provided we follow specs, it 915 * NEVER underestimate RTT. BUT! If peer tries to make some clever 916 * tricks sort of "quick acks" for time long enough to decrease RTT 917 * to low value, and then abruptly stops to do it and starts to delay 918 * ACKs, wait for troubles. 919 */ 920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) { 921 tp->srtt = dst_metric(dst, RTAX_RTT); 922 tp->rtt_seq = tp->snd_nxt; 923 } 924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { 925 tp->mdev = dst_metric(dst, RTAX_RTTVAR); 926 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 927 } 928 tcp_set_rto(sk); 929 tcp_bound_rto(sk); 930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 931 goto reset; 932 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 933 tp->snd_cwnd_stamp = tcp_time_stamp; 934 return; 935 936 reset: 937 /* Play conservative. If timestamps are not 938 * supported, TCP will fail to recalculate correct 939 * rtt, if initial rto is too small. FORGET ALL AND RESET! 940 */ 941 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 942 tp->srtt = 0; 943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 945 } 946 } 947 948 static void tcp_update_reordering(struct sock *sk, const int metric, 949 const int ts) 950 { 951 struct tcp_sock *tp = tcp_sk(sk); 952 if (metric > tp->reordering) { 953 tp->reordering = min(TCP_MAX_REORDERING, metric); 954 955 /* This exciting event is worth to be remembered. 8) */ 956 if (ts) 957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); 958 else if (tcp_is_reno(tp)) 959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); 960 else if (tcp_is_fack(tp)) 961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); 962 else 963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); 964 #if FASTRETRANS_DEBUG > 1 965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 967 tp->reordering, 968 tp->fackets_out, 969 tp->sacked_out, 970 tp->undo_marker ? tp->undo_retrans : 0); 971 #endif 972 tcp_disable_fack(tp); 973 } 974 } 975 976 /* This procedure tags the retransmission queue when SACKs arrive. 977 * 978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 979 * Packets in queue with these bits set are counted in variables 980 * sacked_out, retrans_out and lost_out, correspondingly. 981 * 982 * Valid combinations are: 983 * Tag InFlight Description 984 * 0 1 - orig segment is in flight. 985 * S 0 - nothing flies, orig reached receiver. 986 * L 0 - nothing flies, orig lost by net. 987 * R 2 - both orig and retransmit are in flight. 988 * L|R 1 - orig is lost, retransmit is in flight. 989 * S|R 1 - orig reached receiver, retrans is still in flight. 990 * (L|S|R is logically valid, it could occur when L|R is sacked, 991 * but it is equivalent to plain S and code short-curcuits it to S. 992 * L|S is logically invalid, it would mean -1 packet in flight 8)) 993 * 994 * These 6 states form finite state machine, controlled by the following events: 995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 997 * 3. Loss detection event of one of three flavors: 998 * A. Scoreboard estimator decided the packet is lost. 999 * A'. Reno "three dupacks" marks head of queue lost. 1000 * A''. Its FACK modfication, head until snd.fack is lost. 1001 * B. SACK arrives sacking data transmitted after never retransmitted 1002 * hole was sent out. 1003 * C. SACK arrives sacking SND.NXT at the moment, when the 1004 * segment was retransmitted. 1005 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1006 * 1007 * It is pleasant to note, that state diagram turns out to be commutative, 1008 * so that we are allowed not to be bothered by order of our actions, 1009 * when multiple events arrive simultaneously. (see the function below). 1010 * 1011 * Reordering detection. 1012 * -------------------- 1013 * Reordering metric is maximal distance, which a packet can be displaced 1014 * in packet stream. With SACKs we can estimate it: 1015 * 1016 * 1. SACK fills old hole and the corresponding segment was not 1017 * ever retransmitted -> reordering. Alas, we cannot use it 1018 * when segment was retransmitted. 1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1020 * for retransmitted and already SACKed segment -> reordering.. 1021 * Both of these heuristics are not used in Loss state, when we cannot 1022 * account for retransmits accurately. 1023 * 1024 * SACK block validation. 1025 * ---------------------- 1026 * 1027 * SACK block range validation checks that the received SACK block fits to 1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1029 * Note that SND.UNA is not included to the range though being valid because 1030 * it means that the receiver is rather inconsistent with itself reporting 1031 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1032 * perfectly valid, however, in light of RFC2018 which explicitly states 1033 * that "SACK block MUST reflect the newest segment. Even if the newest 1034 * segment is going to be discarded ...", not that it looks very clever 1035 * in case of head skb. Due to potentional receiver driven attacks, we 1036 * choose to avoid immediate execution of a walk in write queue due to 1037 * reneging and defer head skb's loss recovery to standard loss recovery 1038 * procedure that will eventually trigger (nothing forbids us doing this). 1039 * 1040 * Implements also blockage to start_seq wrap-around. Problem lies in the 1041 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1042 * there's no guarantee that it will be before snd_nxt (n). The problem 1043 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1044 * wrap (s_w): 1045 * 1046 * <- outs wnd -> <- wrapzone -> 1047 * u e n u_w e_w s n_w 1048 * | | | | | | | 1049 * |<------------+------+----- TCP seqno space --------------+---------->| 1050 * ...-- <2^31 ->| |<--------... 1051 * ...---- >2^31 ------>| |<--------... 1052 * 1053 * Current code wouldn't be vulnerable but it's better still to discard such 1054 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1055 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1056 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1057 * equal to the ideal case (infinite seqno space without wrap caused issues). 1058 * 1059 * With D-SACK the lower bound is extended to cover sequence space below 1060 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1061 * again, D-SACK block must not to go across snd_una (for the same reason as 1062 * for the normal SACK blocks, explained above). But there all simplicity 1063 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1064 * fully below undo_marker they do not affect behavior in anyway and can 1065 * therefore be safely ignored. In rare cases (which are more or less 1066 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1067 * fragmentation and packet reordering past skb's retransmission. To consider 1068 * them correctly, the acceptable range must be extended even more though 1069 * the exact amount is rather hard to quantify. However, tp->max_window can 1070 * be used as an exaggerated estimate. 1071 */ 1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1073 u32 start_seq, u32 end_seq) 1074 { 1075 /* Too far in future, or reversed (interpretation is ambiguous) */ 1076 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1077 return 0; 1078 1079 /* Nasty start_seq wrap-around check (see comments above) */ 1080 if (!before(start_seq, tp->snd_nxt)) 1081 return 0; 1082 1083 /* In outstanding window? ...This is valid exit for D-SACKs too. 1084 * start_seq == snd_una is non-sensical (see comments above) 1085 */ 1086 if (after(start_seq, tp->snd_una)) 1087 return 1; 1088 1089 if (!is_dsack || !tp->undo_marker) 1090 return 0; 1091 1092 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1093 if (!after(end_seq, tp->snd_una)) 1094 return 0; 1095 1096 if (!before(start_seq, tp->undo_marker)) 1097 return 1; 1098 1099 /* Too old */ 1100 if (!after(end_seq, tp->undo_marker)) 1101 return 0; 1102 1103 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1104 * start_seq < undo_marker and end_seq >= undo_marker. 1105 */ 1106 return !before(start_seq, end_seq - tp->max_window); 1107 } 1108 1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1110 * Event "C". Later note: FACK people cheated me again 8), we have to account 1111 * for reordering! Ugly, but should help. 1112 * 1113 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1114 * less than what is now known to be received by the other end (derived from 1115 * SACK blocks by the caller). Also calculate the lowest snd_nxt among the 1116 * remaining retransmitted skbs to avoid some costly processing per ACKs. 1117 */ 1118 static int tcp_mark_lost_retrans(struct sock *sk, u32 received_upto) 1119 { 1120 struct tcp_sock *tp = tcp_sk(sk); 1121 struct sk_buff *skb; 1122 int flag = 0; 1123 int cnt = 0; 1124 u32 new_low_seq = tp->snd_nxt; 1125 1126 tcp_for_write_queue(skb, sk) { 1127 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1128 1129 if (skb == tcp_send_head(sk)) 1130 break; 1131 if (cnt == tp->retrans_out) 1132 break; 1133 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1134 continue; 1135 1136 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1137 continue; 1138 1139 if (after(received_upto, ack_seq) && 1140 (tcp_is_fack(tp) || 1141 !before(received_upto, 1142 ack_seq + tp->reordering * tp->mss_cache))) { 1143 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1144 tp->retrans_out -= tcp_skb_pcount(skb); 1145 1146 /* clear lost hint */ 1147 tp->retransmit_skb_hint = NULL; 1148 1149 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1150 tp->lost_out += tcp_skb_pcount(skb); 1151 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1152 flag |= FLAG_DATA_SACKED; 1153 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); 1154 } 1155 } else { 1156 if (before(ack_seq, new_low_seq)) 1157 new_low_seq = ack_seq; 1158 cnt += tcp_skb_pcount(skb); 1159 } 1160 } 1161 1162 if (tp->retrans_out) 1163 tp->lost_retrans_low = new_low_seq; 1164 1165 return flag; 1166 } 1167 1168 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb, 1169 struct tcp_sack_block_wire *sp, int num_sacks, 1170 u32 prior_snd_una) 1171 { 1172 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq)); 1173 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq)); 1174 int dup_sack = 0; 1175 1176 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1177 dup_sack = 1; 1178 tcp_dsack_seen(tp); 1179 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); 1180 } else if (num_sacks > 1) { 1181 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq)); 1182 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq)); 1183 1184 if (!after(end_seq_0, end_seq_1) && 1185 !before(start_seq_0, start_seq_1)) { 1186 dup_sack = 1; 1187 tcp_dsack_seen(tp); 1188 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); 1189 } 1190 } 1191 1192 /* D-SACK for already forgotten data... Do dumb counting. */ 1193 if (dup_sack && 1194 !after(end_seq_0, prior_snd_una) && 1195 after(end_seq_0, tp->undo_marker)) 1196 tp->undo_retrans--; 1197 1198 return dup_sack; 1199 } 1200 1201 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1202 * the incoming SACK may not exactly match but we can find smaller MSS 1203 * aligned portion of it that matches. Therefore we might need to fragment 1204 * which may fail and creates some hassle (caller must handle error case 1205 * returns). 1206 */ 1207 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1208 u32 start_seq, u32 end_seq) 1209 { 1210 int in_sack, err; 1211 unsigned int pkt_len; 1212 1213 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1214 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1215 1216 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1217 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1218 1219 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1220 1221 if (!in_sack) 1222 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1223 else 1224 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1225 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size); 1226 if (err < 0) 1227 return err; 1228 } 1229 1230 return in_sack; 1231 } 1232 1233 static int 1234 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una) 1235 { 1236 const struct inet_connection_sock *icsk = inet_csk(sk); 1237 struct tcp_sock *tp = tcp_sk(sk); 1238 unsigned char *ptr = (skb_transport_header(ack_skb) + 1239 TCP_SKB_CB(ack_skb)->sacked); 1240 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2); 1241 struct sk_buff *cached_skb; 1242 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3; 1243 int reord = tp->packets_out; 1244 int prior_fackets; 1245 u32 highest_sack_end_seq = tp->lost_retrans_low; 1246 int flag = 0; 1247 int found_dup_sack = 0; 1248 int cached_fack_count; 1249 int i; 1250 int first_sack_index; 1251 int force_one_sack; 1252 1253 if (!tp->sacked_out) { 1254 if (WARN_ON(tp->fackets_out)) 1255 tp->fackets_out = 0; 1256 tp->highest_sack = tp->snd_una; 1257 } 1258 prior_fackets = tp->fackets_out; 1259 1260 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp, 1261 num_sacks, prior_snd_una); 1262 if (found_dup_sack) 1263 flag |= FLAG_DSACKING_ACK; 1264 1265 /* Eliminate too old ACKs, but take into 1266 * account more or less fresh ones, they can 1267 * contain valid SACK info. 1268 */ 1269 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1270 return 0; 1271 1272 if (!tp->packets_out) 1273 goto out; 1274 1275 /* SACK fastpath: 1276 * if the only SACK change is the increase of the end_seq of 1277 * the first block then only apply that SACK block 1278 * and use retrans queue hinting otherwise slowpath */ 1279 force_one_sack = 1; 1280 for (i = 0; i < num_sacks; i++) { 1281 __be32 start_seq = sp[i].start_seq; 1282 __be32 end_seq = sp[i].end_seq; 1283 1284 if (i == 0) { 1285 if (tp->recv_sack_cache[i].start_seq != start_seq) 1286 force_one_sack = 0; 1287 } else { 1288 if ((tp->recv_sack_cache[i].start_seq != start_seq) || 1289 (tp->recv_sack_cache[i].end_seq != end_seq)) 1290 force_one_sack = 0; 1291 } 1292 tp->recv_sack_cache[i].start_seq = start_seq; 1293 tp->recv_sack_cache[i].end_seq = end_seq; 1294 } 1295 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */ 1296 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) { 1297 tp->recv_sack_cache[i].start_seq = 0; 1298 tp->recv_sack_cache[i].end_seq = 0; 1299 } 1300 1301 first_sack_index = 0; 1302 if (force_one_sack) 1303 num_sacks = 1; 1304 else { 1305 int j; 1306 tp->fastpath_skb_hint = NULL; 1307 1308 /* order SACK blocks to allow in order walk of the retrans queue */ 1309 for (i = num_sacks-1; i > 0; i--) { 1310 for (j = 0; j < i; j++){ 1311 if (after(ntohl(sp[j].start_seq), 1312 ntohl(sp[j+1].start_seq))){ 1313 struct tcp_sack_block_wire tmp; 1314 1315 tmp = sp[j]; 1316 sp[j] = sp[j+1]; 1317 sp[j+1] = tmp; 1318 1319 /* Track where the first SACK block goes to */ 1320 if (j == first_sack_index) 1321 first_sack_index = j+1; 1322 } 1323 1324 } 1325 } 1326 } 1327 1328 /* Use SACK fastpath hint if valid */ 1329 cached_skb = tp->fastpath_skb_hint; 1330 cached_fack_count = tp->fastpath_cnt_hint; 1331 if (!cached_skb) { 1332 cached_skb = tcp_write_queue_head(sk); 1333 cached_fack_count = 0; 1334 } 1335 1336 for (i = 0; i < num_sacks; i++) { 1337 struct sk_buff *skb; 1338 __u32 start_seq = ntohl(sp->start_seq); 1339 __u32 end_seq = ntohl(sp->end_seq); 1340 int fack_count; 1341 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1342 int next_dup = (found_dup_sack && (i+1 == first_sack_index)); 1343 1344 sp++; 1345 1346 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) { 1347 if (dup_sack) { 1348 if (!tp->undo_marker) 1349 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO); 1350 else 1351 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD); 1352 } else { 1353 /* Don't count olds caused by ACK reordering */ 1354 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1355 !after(end_seq, tp->snd_una)) 1356 continue; 1357 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD); 1358 } 1359 continue; 1360 } 1361 1362 skb = cached_skb; 1363 fack_count = cached_fack_count; 1364 1365 /* Event "B" in the comment above. */ 1366 if (after(end_seq, tp->high_seq)) 1367 flag |= FLAG_DATA_LOST; 1368 1369 tcp_for_write_queue_from(skb, sk) { 1370 int in_sack = 0; 1371 u8 sacked; 1372 1373 if (skb == tcp_send_head(sk)) 1374 break; 1375 1376 cached_skb = skb; 1377 cached_fack_count = fack_count; 1378 if (i == first_sack_index) { 1379 tp->fastpath_skb_hint = skb; 1380 tp->fastpath_cnt_hint = fack_count; 1381 } 1382 1383 /* The retransmission queue is always in order, so 1384 * we can short-circuit the walk early. 1385 */ 1386 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1387 break; 1388 1389 dup_sack = (found_dup_sack && (i == first_sack_index)); 1390 1391 /* Due to sorting DSACK may reside within this SACK block! */ 1392 if (next_dup) { 1393 u32 dup_start = ntohl(sp->start_seq); 1394 u32 dup_end = ntohl(sp->end_seq); 1395 1396 if (before(TCP_SKB_CB(skb)->seq, dup_end)) { 1397 in_sack = tcp_match_skb_to_sack(sk, skb, dup_start, dup_end); 1398 if (in_sack > 0) 1399 dup_sack = 1; 1400 } 1401 } 1402 1403 /* DSACK info lost if out-of-mem, try SACK still */ 1404 if (in_sack <= 0) 1405 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq); 1406 if (unlikely(in_sack < 0)) 1407 break; 1408 1409 sacked = TCP_SKB_CB(skb)->sacked; 1410 1411 /* Account D-SACK for retransmitted packet. */ 1412 if ((dup_sack && in_sack) && 1413 (sacked & TCPCB_RETRANS) && 1414 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1415 tp->undo_retrans--; 1416 1417 /* The frame is ACKed. */ 1418 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) { 1419 if (sacked&TCPCB_RETRANS) { 1420 if ((dup_sack && in_sack) && 1421 (sacked&TCPCB_SACKED_ACKED)) 1422 reord = min(fack_count, reord); 1423 } 1424 1425 /* Nothing to do; acked frame is about to be dropped. */ 1426 fack_count += tcp_skb_pcount(skb); 1427 continue; 1428 } 1429 1430 if (!in_sack) { 1431 fack_count += tcp_skb_pcount(skb); 1432 continue; 1433 } 1434 1435 if (!(sacked&TCPCB_SACKED_ACKED)) { 1436 if (sacked & TCPCB_SACKED_RETRANS) { 1437 /* If the segment is not tagged as lost, 1438 * we do not clear RETRANS, believing 1439 * that retransmission is still in flight. 1440 */ 1441 if (sacked & TCPCB_LOST) { 1442 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1443 tp->lost_out -= tcp_skb_pcount(skb); 1444 tp->retrans_out -= tcp_skb_pcount(skb); 1445 1446 /* clear lost hint */ 1447 tp->retransmit_skb_hint = NULL; 1448 } 1449 } else { 1450 if (!(sacked & TCPCB_RETRANS)) { 1451 /* New sack for not retransmitted frame, 1452 * which was in hole. It is reordering. 1453 */ 1454 if (fack_count < prior_fackets) 1455 reord = min(fack_count, reord); 1456 1457 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1458 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) 1459 flag |= FLAG_ONLY_ORIG_SACKED; 1460 } 1461 1462 if (sacked & TCPCB_LOST) { 1463 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1464 tp->lost_out -= tcp_skb_pcount(skb); 1465 1466 /* clear lost hint */ 1467 tp->retransmit_skb_hint = NULL; 1468 } 1469 } 1470 1471 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; 1472 flag |= FLAG_DATA_SACKED; 1473 tp->sacked_out += tcp_skb_pcount(skb); 1474 1475 fack_count += tcp_skb_pcount(skb); 1476 if (fack_count > tp->fackets_out) 1477 tp->fackets_out = fack_count; 1478 1479 if (after(TCP_SKB_CB(skb)->seq, tp->highest_sack)) { 1480 tp->highest_sack = TCP_SKB_CB(skb)->seq; 1481 highest_sack_end_seq = TCP_SKB_CB(skb)->end_seq; 1482 } 1483 } else { 1484 if (dup_sack && (sacked&TCPCB_RETRANS)) 1485 reord = min(fack_count, reord); 1486 1487 fack_count += tcp_skb_pcount(skb); 1488 } 1489 1490 /* D-SACK. We can detect redundant retransmission 1491 * in S|R and plain R frames and clear it. 1492 * undo_retrans is decreased above, L|R frames 1493 * are accounted above as well. 1494 */ 1495 if (dup_sack && 1496 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) { 1497 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1498 tp->retrans_out -= tcp_skb_pcount(skb); 1499 tp->retransmit_skb_hint = NULL; 1500 } 1501 } 1502 1503 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1504 * due to in-order walk 1505 */ 1506 if (after(end_seq, tp->frto_highmark)) 1507 flag &= ~FLAG_ONLY_ORIG_SACKED; 1508 } 1509 1510 if (tp->retrans_out && 1511 after(highest_sack_end_seq, tp->lost_retrans_low) && 1512 icsk->icsk_ca_state == TCP_CA_Recovery) 1513 flag |= tcp_mark_lost_retrans(sk, highest_sack_end_seq); 1514 1515 tcp_verify_left_out(tp); 1516 1517 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss && 1518 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1519 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 1520 1521 out: 1522 1523 #if FASTRETRANS_DEBUG > 0 1524 BUG_TRAP((int)tp->sacked_out >= 0); 1525 BUG_TRAP((int)tp->lost_out >= 0); 1526 BUG_TRAP((int)tp->retrans_out >= 0); 1527 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); 1528 #endif 1529 return flag; 1530 } 1531 1532 /* If we receive more dupacks than we expected counting segments 1533 * in assumption of absent reordering, interpret this as reordering. 1534 * The only another reason could be bug in receiver TCP. 1535 */ 1536 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1537 { 1538 struct tcp_sock *tp = tcp_sk(sk); 1539 u32 holes; 1540 1541 holes = max(tp->lost_out, 1U); 1542 holes = min(holes, tp->packets_out); 1543 1544 if ((tp->sacked_out + holes) > tp->packets_out) { 1545 tp->sacked_out = tp->packets_out - holes; 1546 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1547 } 1548 } 1549 1550 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1551 1552 static void tcp_add_reno_sack(struct sock *sk) 1553 { 1554 struct tcp_sock *tp = tcp_sk(sk); 1555 tp->sacked_out++; 1556 tcp_check_reno_reordering(sk, 0); 1557 tcp_verify_left_out(tp); 1558 } 1559 1560 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1561 1562 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1563 { 1564 struct tcp_sock *tp = tcp_sk(sk); 1565 1566 if (acked > 0) { 1567 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1568 if (acked-1 >= tp->sacked_out) 1569 tp->sacked_out = 0; 1570 else 1571 tp->sacked_out -= acked-1; 1572 } 1573 tcp_check_reno_reordering(sk, acked); 1574 tcp_verify_left_out(tp); 1575 } 1576 1577 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1578 { 1579 tp->sacked_out = 0; 1580 } 1581 1582 /* F-RTO can only be used if TCP has never retransmitted anything other than 1583 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 1584 */ 1585 int tcp_use_frto(struct sock *sk) 1586 { 1587 const struct tcp_sock *tp = tcp_sk(sk); 1588 struct sk_buff *skb; 1589 1590 if (!sysctl_tcp_frto) 1591 return 0; 1592 1593 if (IsSackFrto()) 1594 return 1; 1595 1596 /* Avoid expensive walking of rexmit queue if possible */ 1597 if (tp->retrans_out > 1) 1598 return 0; 1599 1600 skb = tcp_write_queue_head(sk); 1601 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 1602 tcp_for_write_queue_from(skb, sk) { 1603 if (skb == tcp_send_head(sk)) 1604 break; 1605 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1606 return 0; 1607 /* Short-circuit when first non-SACKed skb has been checked */ 1608 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) 1609 break; 1610 } 1611 return 1; 1612 } 1613 1614 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 1615 * recovery a bit and use heuristics in tcp_process_frto() to detect if 1616 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 1617 * keep retrans_out counting accurate (with SACK F-RTO, other than head 1618 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 1619 * bits are handled if the Loss state is really to be entered (in 1620 * tcp_enter_frto_loss). 1621 * 1622 * Do like tcp_enter_loss() would; when RTO expires the second time it 1623 * does: 1624 * "Reduce ssthresh if it has not yet been made inside this window." 1625 */ 1626 void tcp_enter_frto(struct sock *sk) 1627 { 1628 const struct inet_connection_sock *icsk = inet_csk(sk); 1629 struct tcp_sock *tp = tcp_sk(sk); 1630 struct sk_buff *skb; 1631 1632 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 1633 tp->snd_una == tp->high_seq || 1634 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 1635 !icsk->icsk_retransmits)) { 1636 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1637 /* Our state is too optimistic in ssthresh() call because cwnd 1638 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 1639 * recovery has not yet completed. Pattern would be this: RTO, 1640 * Cumulative ACK, RTO (2xRTO for the same segment does not end 1641 * up here twice). 1642 * RFC4138 should be more specific on what to do, even though 1643 * RTO is quite unlikely to occur after the first Cumulative ACK 1644 * due to back-off and complexity of triggering events ... 1645 */ 1646 if (tp->frto_counter) { 1647 u32 stored_cwnd; 1648 stored_cwnd = tp->snd_cwnd; 1649 tp->snd_cwnd = 2; 1650 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1651 tp->snd_cwnd = stored_cwnd; 1652 } else { 1653 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1654 } 1655 /* ... in theory, cong.control module could do "any tricks" in 1656 * ssthresh(), which means that ca_state, lost bits and lost_out 1657 * counter would have to be faked before the call occurs. We 1658 * consider that too expensive, unlikely and hacky, so modules 1659 * using these in ssthresh() must deal these incompatibility 1660 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 1661 */ 1662 tcp_ca_event(sk, CA_EVENT_FRTO); 1663 } 1664 1665 tp->undo_marker = tp->snd_una; 1666 tp->undo_retrans = 0; 1667 1668 skb = tcp_write_queue_head(sk); 1669 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1670 tp->undo_marker = 0; 1671 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 1672 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1673 tp->retrans_out -= tcp_skb_pcount(skb); 1674 } 1675 tcp_verify_left_out(tp); 1676 1677 /* Too bad if TCP was application limited */ 1678 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 1679 1680 /* Earlier loss recovery underway (see RFC4138; Appendix B). 1681 * The last condition is necessary at least in tp->frto_counter case. 1682 */ 1683 if (IsSackFrto() && (tp->frto_counter || 1684 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 1685 after(tp->high_seq, tp->snd_una)) { 1686 tp->frto_highmark = tp->high_seq; 1687 } else { 1688 tp->frto_highmark = tp->snd_nxt; 1689 } 1690 tcp_set_ca_state(sk, TCP_CA_Disorder); 1691 tp->high_seq = tp->snd_nxt; 1692 tp->frto_counter = 1; 1693 } 1694 1695 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1696 * which indicates that we should follow the traditional RTO recovery, 1697 * i.e. mark everything lost and do go-back-N retransmission. 1698 */ 1699 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 1700 { 1701 struct tcp_sock *tp = tcp_sk(sk); 1702 struct sk_buff *skb; 1703 1704 tp->lost_out = 0; 1705 tp->retrans_out = 0; 1706 if (tcp_is_reno(tp)) 1707 tcp_reset_reno_sack(tp); 1708 1709 tcp_for_write_queue(skb, sk) { 1710 if (skb == tcp_send_head(sk)) 1711 break; 1712 1713 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1714 /* 1715 * Count the retransmission made on RTO correctly (only when 1716 * waiting for the first ACK and did not get it)... 1717 */ 1718 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) { 1719 /* For some reason this R-bit might get cleared? */ 1720 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1721 tp->retrans_out += tcp_skb_pcount(skb); 1722 /* ...enter this if branch just for the first segment */ 1723 flag |= FLAG_DATA_ACKED; 1724 } else { 1725 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1726 tp->undo_marker = 0; 1727 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1728 } 1729 1730 /* Don't lost mark skbs that were fwd transmitted after RTO */ 1731 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) && 1732 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) { 1733 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1734 tp->lost_out += tcp_skb_pcount(skb); 1735 } 1736 } 1737 tcp_verify_left_out(tp); 1738 1739 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 1740 tp->snd_cwnd_cnt = 0; 1741 tp->snd_cwnd_stamp = tcp_time_stamp; 1742 tp->frto_counter = 0; 1743 tp->bytes_acked = 0; 1744 1745 tp->reordering = min_t(unsigned int, tp->reordering, 1746 sysctl_tcp_reordering); 1747 tcp_set_ca_state(sk, TCP_CA_Loss); 1748 tp->high_seq = tp->frto_highmark; 1749 TCP_ECN_queue_cwr(tp); 1750 1751 tcp_clear_retrans_hints_partial(tp); 1752 } 1753 1754 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 1755 { 1756 tp->retrans_out = 0; 1757 tp->lost_out = 0; 1758 1759 tp->undo_marker = 0; 1760 tp->undo_retrans = 0; 1761 } 1762 1763 void tcp_clear_retrans(struct tcp_sock *tp) 1764 { 1765 tcp_clear_retrans_partial(tp); 1766 1767 tp->fackets_out = 0; 1768 tp->sacked_out = 0; 1769 } 1770 1771 /* Enter Loss state. If "how" is not zero, forget all SACK information 1772 * and reset tags completely, otherwise preserve SACKs. If receiver 1773 * dropped its ofo queue, we will know this due to reneging detection. 1774 */ 1775 void tcp_enter_loss(struct sock *sk, int how) 1776 { 1777 const struct inet_connection_sock *icsk = inet_csk(sk); 1778 struct tcp_sock *tp = tcp_sk(sk); 1779 struct sk_buff *skb; 1780 1781 /* Reduce ssthresh if it has not yet been made inside this window. */ 1782 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 1783 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1784 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1785 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1786 tcp_ca_event(sk, CA_EVENT_LOSS); 1787 } 1788 tp->snd_cwnd = 1; 1789 tp->snd_cwnd_cnt = 0; 1790 tp->snd_cwnd_stamp = tcp_time_stamp; 1791 1792 tp->bytes_acked = 0; 1793 tcp_clear_retrans_partial(tp); 1794 1795 if (tcp_is_reno(tp)) 1796 tcp_reset_reno_sack(tp); 1797 1798 if (!how) { 1799 /* Push undo marker, if it was plain RTO and nothing 1800 * was retransmitted. */ 1801 tp->undo_marker = tp->snd_una; 1802 tcp_clear_retrans_hints_partial(tp); 1803 } else { 1804 tp->sacked_out = 0; 1805 tp->fackets_out = 0; 1806 tcp_clear_all_retrans_hints(tp); 1807 } 1808 1809 tcp_for_write_queue(skb, sk) { 1810 if (skb == tcp_send_head(sk)) 1811 break; 1812 1813 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1814 tp->undo_marker = 0; 1815 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1816 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1817 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1818 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1819 tp->lost_out += tcp_skb_pcount(skb); 1820 } 1821 } 1822 tcp_verify_left_out(tp); 1823 1824 tp->reordering = min_t(unsigned int, tp->reordering, 1825 sysctl_tcp_reordering); 1826 tcp_set_ca_state(sk, TCP_CA_Loss); 1827 tp->high_seq = tp->snd_nxt; 1828 TCP_ECN_queue_cwr(tp); 1829 /* Abort F-RTO algorithm if one is in progress */ 1830 tp->frto_counter = 0; 1831 } 1832 1833 static int tcp_check_sack_reneging(struct sock *sk) 1834 { 1835 struct sk_buff *skb; 1836 1837 /* If ACK arrived pointing to a remembered SACK, 1838 * it means that our remembered SACKs do not reflect 1839 * real state of receiver i.e. 1840 * receiver _host_ is heavily congested (or buggy). 1841 * Do processing similar to RTO timeout. 1842 */ 1843 if ((skb = tcp_write_queue_head(sk)) != NULL && 1844 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 1845 struct inet_connection_sock *icsk = inet_csk(sk); 1846 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); 1847 1848 tcp_enter_loss(sk, 1); 1849 icsk->icsk_retransmits++; 1850 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 1851 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1852 icsk->icsk_rto, TCP_RTO_MAX); 1853 return 1; 1854 } 1855 return 0; 1856 } 1857 1858 static inline int tcp_fackets_out(struct tcp_sock *tp) 1859 { 1860 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out; 1861 } 1862 1863 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 1864 { 1865 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 1866 } 1867 1868 static inline int tcp_head_timedout(struct sock *sk) 1869 { 1870 struct tcp_sock *tp = tcp_sk(sk); 1871 1872 return tp->packets_out && 1873 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 1874 } 1875 1876 /* Linux NewReno/SACK/FACK/ECN state machine. 1877 * -------------------------------------- 1878 * 1879 * "Open" Normal state, no dubious events, fast path. 1880 * "Disorder" In all the respects it is "Open", 1881 * but requires a bit more attention. It is entered when 1882 * we see some SACKs or dupacks. It is split of "Open" 1883 * mainly to move some processing from fast path to slow one. 1884 * "CWR" CWND was reduced due to some Congestion Notification event. 1885 * It can be ECN, ICMP source quench, local device congestion. 1886 * "Recovery" CWND was reduced, we are fast-retransmitting. 1887 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 1888 * 1889 * tcp_fastretrans_alert() is entered: 1890 * - each incoming ACK, if state is not "Open" 1891 * - when arrived ACK is unusual, namely: 1892 * * SACK 1893 * * Duplicate ACK. 1894 * * ECN ECE. 1895 * 1896 * Counting packets in flight is pretty simple. 1897 * 1898 * in_flight = packets_out - left_out + retrans_out 1899 * 1900 * packets_out is SND.NXT-SND.UNA counted in packets. 1901 * 1902 * retrans_out is number of retransmitted segments. 1903 * 1904 * left_out is number of segments left network, but not ACKed yet. 1905 * 1906 * left_out = sacked_out + lost_out 1907 * 1908 * sacked_out: Packets, which arrived to receiver out of order 1909 * and hence not ACKed. With SACKs this number is simply 1910 * amount of SACKed data. Even without SACKs 1911 * it is easy to give pretty reliable estimate of this number, 1912 * counting duplicate ACKs. 1913 * 1914 * lost_out: Packets lost by network. TCP has no explicit 1915 * "loss notification" feedback from network (for now). 1916 * It means that this number can be only _guessed_. 1917 * Actually, it is the heuristics to predict lossage that 1918 * distinguishes different algorithms. 1919 * 1920 * F.e. after RTO, when all the queue is considered as lost, 1921 * lost_out = packets_out and in_flight = retrans_out. 1922 * 1923 * Essentially, we have now two algorithms counting 1924 * lost packets. 1925 * 1926 * FACK: It is the simplest heuristics. As soon as we decided 1927 * that something is lost, we decide that _all_ not SACKed 1928 * packets until the most forward SACK are lost. I.e. 1929 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 1930 * It is absolutely correct estimate, if network does not reorder 1931 * packets. And it loses any connection to reality when reordering 1932 * takes place. We use FACK by default until reordering 1933 * is suspected on the path to this destination. 1934 * 1935 * NewReno: when Recovery is entered, we assume that one segment 1936 * is lost (classic Reno). While we are in Recovery and 1937 * a partial ACK arrives, we assume that one more packet 1938 * is lost (NewReno). This heuristics are the same in NewReno 1939 * and SACK. 1940 * 1941 * Imagine, that's all! Forget about all this shamanism about CWND inflation 1942 * deflation etc. CWND is real congestion window, never inflated, changes 1943 * only according to classic VJ rules. 1944 * 1945 * Really tricky (and requiring careful tuning) part of algorithm 1946 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 1947 * The first determines the moment _when_ we should reduce CWND and, 1948 * hence, slow down forward transmission. In fact, it determines the moment 1949 * when we decide that hole is caused by loss, rather than by a reorder. 1950 * 1951 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 1952 * holes, caused by lost packets. 1953 * 1954 * And the most logically complicated part of algorithm is undo 1955 * heuristics. We detect false retransmits due to both too early 1956 * fast retransmit (reordering) and underestimated RTO, analyzing 1957 * timestamps and D-SACKs. When we detect that some segments were 1958 * retransmitted by mistake and CWND reduction was wrong, we undo 1959 * window reduction and abort recovery phase. This logic is hidden 1960 * inside several functions named tcp_try_undo_<something>. 1961 */ 1962 1963 /* This function decides, when we should leave Disordered state 1964 * and enter Recovery phase, reducing congestion window. 1965 * 1966 * Main question: may we further continue forward transmission 1967 * with the same cwnd? 1968 */ 1969 static int tcp_time_to_recover(struct sock *sk) 1970 { 1971 struct tcp_sock *tp = tcp_sk(sk); 1972 __u32 packets_out; 1973 1974 /* Do not perform any recovery during F-RTO algorithm */ 1975 if (tp->frto_counter) 1976 return 0; 1977 1978 /* Trick#1: The loss is proven. */ 1979 if (tp->lost_out) 1980 return 1; 1981 1982 /* Not-A-Trick#2 : Classic rule... */ 1983 if (tcp_fackets_out(tp) > tp->reordering) 1984 return 1; 1985 1986 /* Trick#3 : when we use RFC2988 timer restart, fast 1987 * retransmit can be triggered by timeout of queue head. 1988 */ 1989 if (tcp_head_timedout(sk)) 1990 return 1; 1991 1992 /* Trick#4: It is still not OK... But will it be useful to delay 1993 * recovery more? 1994 */ 1995 packets_out = tp->packets_out; 1996 if (packets_out <= tp->reordering && 1997 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 1998 !tcp_may_send_now(sk)) { 1999 /* We have nothing to send. This connection is limited 2000 * either by receiver window or by application. 2001 */ 2002 return 1; 2003 } 2004 2005 return 0; 2006 } 2007 2008 /* RFC: This is from the original, I doubt that this is necessary at all: 2009 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we 2010 * retransmitted past LOST markings in the first place? I'm not fully sure 2011 * about undo and end of connection cases, which can cause R without L? 2012 */ 2013 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, 2014 struct sk_buff *skb) 2015 { 2016 if ((tp->retransmit_skb_hint != NULL) && 2017 before(TCP_SKB_CB(skb)->seq, 2018 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 2019 tp->retransmit_skb_hint = NULL; 2020 } 2021 2022 /* Mark head of queue up as lost. */ 2023 static void tcp_mark_head_lost(struct sock *sk, int packets) 2024 { 2025 struct tcp_sock *tp = tcp_sk(sk); 2026 struct sk_buff *skb; 2027 int cnt; 2028 2029 BUG_TRAP(packets <= tp->packets_out); 2030 if (tp->lost_skb_hint) { 2031 skb = tp->lost_skb_hint; 2032 cnt = tp->lost_cnt_hint; 2033 } else { 2034 skb = tcp_write_queue_head(sk); 2035 cnt = 0; 2036 } 2037 2038 tcp_for_write_queue_from(skb, sk) { 2039 if (skb == tcp_send_head(sk)) 2040 break; 2041 /* TODO: do this better */ 2042 /* this is not the most efficient way to do this... */ 2043 tp->lost_skb_hint = skb; 2044 tp->lost_cnt_hint = cnt; 2045 cnt += tcp_skb_pcount(skb); 2046 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, tp->high_seq)) 2047 break; 2048 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) { 2049 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2050 tp->lost_out += tcp_skb_pcount(skb); 2051 tcp_verify_retransmit_hint(tp, skb); 2052 } 2053 } 2054 tcp_verify_left_out(tp); 2055 } 2056 2057 /* Account newly detected lost packet(s) */ 2058 2059 static void tcp_update_scoreboard(struct sock *sk) 2060 { 2061 struct tcp_sock *tp = tcp_sk(sk); 2062 2063 if (tcp_is_fack(tp)) { 2064 int lost = tp->fackets_out - tp->reordering; 2065 if (lost <= 0) 2066 lost = 1; 2067 tcp_mark_head_lost(sk, lost); 2068 } else { 2069 tcp_mark_head_lost(sk, 1); 2070 } 2071 2072 /* New heuristics: it is possible only after we switched 2073 * to restart timer each time when something is ACKed. 2074 * Hence, we can detect timed out packets during fast 2075 * retransmit without falling to slow start. 2076 */ 2077 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) { 2078 struct sk_buff *skb; 2079 2080 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint 2081 : tcp_write_queue_head(sk); 2082 2083 tcp_for_write_queue_from(skb, sk) { 2084 if (skb == tcp_send_head(sk)) 2085 break; 2086 if (!tcp_skb_timedout(sk, skb)) 2087 break; 2088 2089 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) { 2090 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2091 tp->lost_out += tcp_skb_pcount(skb); 2092 tcp_verify_retransmit_hint(tp, skb); 2093 } 2094 } 2095 2096 tp->scoreboard_skb_hint = skb; 2097 2098 tcp_verify_left_out(tp); 2099 } 2100 } 2101 2102 /* CWND moderation, preventing bursts due to too big ACKs 2103 * in dubious situations. 2104 */ 2105 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2106 { 2107 tp->snd_cwnd = min(tp->snd_cwnd, 2108 tcp_packets_in_flight(tp)+tcp_max_burst(tp)); 2109 tp->snd_cwnd_stamp = tcp_time_stamp; 2110 } 2111 2112 /* Lower bound on congestion window is slow start threshold 2113 * unless congestion avoidance choice decides to overide it. 2114 */ 2115 static inline u32 tcp_cwnd_min(const struct sock *sk) 2116 { 2117 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2118 2119 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2120 } 2121 2122 /* Decrease cwnd each second ack. */ 2123 static void tcp_cwnd_down(struct sock *sk, int flag) 2124 { 2125 struct tcp_sock *tp = tcp_sk(sk); 2126 int decr = tp->snd_cwnd_cnt + 1; 2127 2128 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) || 2129 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) { 2130 tp->snd_cwnd_cnt = decr&1; 2131 decr >>= 1; 2132 2133 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2134 tp->snd_cwnd -= decr; 2135 2136 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1); 2137 tp->snd_cwnd_stamp = tcp_time_stamp; 2138 } 2139 } 2140 2141 /* Nothing was retransmitted or returned timestamp is less 2142 * than timestamp of the first retransmission. 2143 */ 2144 static inline int tcp_packet_delayed(struct tcp_sock *tp) 2145 { 2146 return !tp->retrans_stamp || 2147 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2148 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0); 2149 } 2150 2151 /* Undo procedures. */ 2152 2153 #if FASTRETRANS_DEBUG > 1 2154 static void DBGUNDO(struct sock *sk, const char *msg) 2155 { 2156 struct tcp_sock *tp = tcp_sk(sk); 2157 struct inet_sock *inet = inet_sk(sk); 2158 2159 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n", 2160 msg, 2161 NIPQUAD(inet->daddr), ntohs(inet->dport), 2162 tp->snd_cwnd, tcp_left_out(tp), 2163 tp->snd_ssthresh, tp->prior_ssthresh, 2164 tp->packets_out); 2165 } 2166 #else 2167 #define DBGUNDO(x...) do { } while (0) 2168 #endif 2169 2170 static void tcp_undo_cwr(struct sock *sk, const int undo) 2171 { 2172 struct tcp_sock *tp = tcp_sk(sk); 2173 2174 if (tp->prior_ssthresh) { 2175 const struct inet_connection_sock *icsk = inet_csk(sk); 2176 2177 if (icsk->icsk_ca_ops->undo_cwnd) 2178 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2179 else 2180 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1); 2181 2182 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 2183 tp->snd_ssthresh = tp->prior_ssthresh; 2184 TCP_ECN_withdraw_cwr(tp); 2185 } 2186 } else { 2187 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2188 } 2189 tcp_moderate_cwnd(tp); 2190 tp->snd_cwnd_stamp = tcp_time_stamp; 2191 2192 /* There is something screwy going on with the retrans hints after 2193 an undo */ 2194 tcp_clear_all_retrans_hints(tp); 2195 } 2196 2197 static inline int tcp_may_undo(struct tcp_sock *tp) 2198 { 2199 return tp->undo_marker && 2200 (!tp->undo_retrans || tcp_packet_delayed(tp)); 2201 } 2202 2203 /* People celebrate: "We love our President!" */ 2204 static int tcp_try_undo_recovery(struct sock *sk) 2205 { 2206 struct tcp_sock *tp = tcp_sk(sk); 2207 2208 if (tcp_may_undo(tp)) { 2209 /* Happy end! We did not retransmit anything 2210 * or our original transmission succeeded. 2211 */ 2212 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2213 tcp_undo_cwr(sk, 1); 2214 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2215 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 2216 else 2217 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); 2218 tp->undo_marker = 0; 2219 } 2220 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2221 /* Hold old state until something *above* high_seq 2222 * is ACKed. For Reno it is MUST to prevent false 2223 * fast retransmits (RFC2582). SACK TCP is safe. */ 2224 tcp_moderate_cwnd(tp); 2225 return 1; 2226 } 2227 tcp_set_ca_state(sk, TCP_CA_Open); 2228 return 0; 2229 } 2230 2231 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2232 static void tcp_try_undo_dsack(struct sock *sk) 2233 { 2234 struct tcp_sock *tp = tcp_sk(sk); 2235 2236 if (tp->undo_marker && !tp->undo_retrans) { 2237 DBGUNDO(sk, "D-SACK"); 2238 tcp_undo_cwr(sk, 1); 2239 tp->undo_marker = 0; 2240 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); 2241 } 2242 } 2243 2244 /* Undo during fast recovery after partial ACK. */ 2245 2246 static int tcp_try_undo_partial(struct sock *sk, int acked) 2247 { 2248 struct tcp_sock *tp = tcp_sk(sk); 2249 /* Partial ACK arrived. Force Hoe's retransmit. */ 2250 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering; 2251 2252 if (tcp_may_undo(tp)) { 2253 /* Plain luck! Hole if filled with delayed 2254 * packet, rather than with a retransmit. 2255 */ 2256 if (tp->retrans_out == 0) 2257 tp->retrans_stamp = 0; 2258 2259 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2260 2261 DBGUNDO(sk, "Hoe"); 2262 tcp_undo_cwr(sk, 0); 2263 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); 2264 2265 /* So... Do not make Hoe's retransmit yet. 2266 * If the first packet was delayed, the rest 2267 * ones are most probably delayed as well. 2268 */ 2269 failed = 0; 2270 } 2271 return failed; 2272 } 2273 2274 /* Undo during loss recovery after partial ACK. */ 2275 static int tcp_try_undo_loss(struct sock *sk) 2276 { 2277 struct tcp_sock *tp = tcp_sk(sk); 2278 2279 if (tcp_may_undo(tp)) { 2280 struct sk_buff *skb; 2281 tcp_for_write_queue(skb, sk) { 2282 if (skb == tcp_send_head(sk)) 2283 break; 2284 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2285 } 2286 2287 tcp_clear_all_retrans_hints(tp); 2288 2289 DBGUNDO(sk, "partial loss"); 2290 tp->lost_out = 0; 2291 tcp_undo_cwr(sk, 1); 2292 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 2293 inet_csk(sk)->icsk_retransmits = 0; 2294 tp->undo_marker = 0; 2295 if (tcp_is_sack(tp)) 2296 tcp_set_ca_state(sk, TCP_CA_Open); 2297 return 1; 2298 } 2299 return 0; 2300 } 2301 2302 static inline void tcp_complete_cwr(struct sock *sk) 2303 { 2304 struct tcp_sock *tp = tcp_sk(sk); 2305 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2306 tp->snd_cwnd_stamp = tcp_time_stamp; 2307 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2308 } 2309 2310 static void tcp_try_to_open(struct sock *sk, int flag) 2311 { 2312 struct tcp_sock *tp = tcp_sk(sk); 2313 2314 tcp_verify_left_out(tp); 2315 2316 if (tp->retrans_out == 0) 2317 tp->retrans_stamp = 0; 2318 2319 if (flag&FLAG_ECE) 2320 tcp_enter_cwr(sk, 1); 2321 2322 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2323 int state = TCP_CA_Open; 2324 2325 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker) 2326 state = TCP_CA_Disorder; 2327 2328 if (inet_csk(sk)->icsk_ca_state != state) { 2329 tcp_set_ca_state(sk, state); 2330 tp->high_seq = tp->snd_nxt; 2331 } 2332 tcp_moderate_cwnd(tp); 2333 } else { 2334 tcp_cwnd_down(sk, flag); 2335 } 2336 } 2337 2338 static void tcp_mtup_probe_failed(struct sock *sk) 2339 { 2340 struct inet_connection_sock *icsk = inet_csk(sk); 2341 2342 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2343 icsk->icsk_mtup.probe_size = 0; 2344 } 2345 2346 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb) 2347 { 2348 struct tcp_sock *tp = tcp_sk(sk); 2349 struct inet_connection_sock *icsk = inet_csk(sk); 2350 2351 /* FIXME: breaks with very large cwnd */ 2352 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2353 tp->snd_cwnd = tp->snd_cwnd * 2354 tcp_mss_to_mtu(sk, tp->mss_cache) / 2355 icsk->icsk_mtup.probe_size; 2356 tp->snd_cwnd_cnt = 0; 2357 tp->snd_cwnd_stamp = tcp_time_stamp; 2358 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 2359 2360 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2361 icsk->icsk_mtup.probe_size = 0; 2362 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2363 } 2364 2365 2366 /* Process an event, which can update packets-in-flight not trivially. 2367 * Main goal of this function is to calculate new estimate for left_out, 2368 * taking into account both packets sitting in receiver's buffer and 2369 * packets lost by network. 2370 * 2371 * Besides that it does CWND reduction, when packet loss is detected 2372 * and changes state of machine. 2373 * 2374 * It does _not_ decide what to send, it is made in function 2375 * tcp_xmit_retransmit_queue(). 2376 */ 2377 static void 2378 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag) 2379 { 2380 struct inet_connection_sock *icsk = inet_csk(sk); 2381 struct tcp_sock *tp = tcp_sk(sk); 2382 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP)); 2383 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) && 2384 (tp->fackets_out > tp->reordering)); 2385 2386 /* Some technical things: 2387 * 1. Reno does not count dupacks (sacked_out) automatically. */ 2388 if (!tp->packets_out) 2389 tp->sacked_out = 0; 2390 2391 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2392 tp->fackets_out = 0; 2393 2394 /* Now state machine starts. 2395 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2396 if (flag&FLAG_ECE) 2397 tp->prior_ssthresh = 0; 2398 2399 /* B. In all the states check for reneging SACKs. */ 2400 if (tp->sacked_out && tcp_check_sack_reneging(sk)) 2401 return; 2402 2403 /* C. Process data loss notification, provided it is valid. */ 2404 if ((flag&FLAG_DATA_LOST) && 2405 before(tp->snd_una, tp->high_seq) && 2406 icsk->icsk_ca_state != TCP_CA_Open && 2407 tp->fackets_out > tp->reordering) { 2408 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering); 2409 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); 2410 } 2411 2412 /* D. Check consistency of the current state. */ 2413 tcp_verify_left_out(tp); 2414 2415 /* E. Check state exit conditions. State can be terminated 2416 * when high_seq is ACKed. */ 2417 if (icsk->icsk_ca_state == TCP_CA_Open) { 2418 BUG_TRAP(tp->retrans_out == 0); 2419 tp->retrans_stamp = 0; 2420 } else if (!before(tp->snd_una, tp->high_seq)) { 2421 switch (icsk->icsk_ca_state) { 2422 case TCP_CA_Loss: 2423 icsk->icsk_retransmits = 0; 2424 if (tcp_try_undo_recovery(sk)) 2425 return; 2426 break; 2427 2428 case TCP_CA_CWR: 2429 /* CWR is to be held something *above* high_seq 2430 * is ACKed for CWR bit to reach receiver. */ 2431 if (tp->snd_una != tp->high_seq) { 2432 tcp_complete_cwr(sk); 2433 tcp_set_ca_state(sk, TCP_CA_Open); 2434 } 2435 break; 2436 2437 case TCP_CA_Disorder: 2438 tcp_try_undo_dsack(sk); 2439 if (!tp->undo_marker || 2440 /* For SACK case do not Open to allow to undo 2441 * catching for all duplicate ACKs. */ 2442 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) { 2443 tp->undo_marker = 0; 2444 tcp_set_ca_state(sk, TCP_CA_Open); 2445 } 2446 break; 2447 2448 case TCP_CA_Recovery: 2449 if (tcp_is_reno(tp)) 2450 tcp_reset_reno_sack(tp); 2451 if (tcp_try_undo_recovery(sk)) 2452 return; 2453 tcp_complete_cwr(sk); 2454 break; 2455 } 2456 } 2457 2458 /* F. Process state. */ 2459 switch (icsk->icsk_ca_state) { 2460 case TCP_CA_Recovery: 2461 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2462 if (tcp_is_reno(tp) && is_dupack) 2463 tcp_add_reno_sack(sk); 2464 } else 2465 do_lost = tcp_try_undo_partial(sk, pkts_acked); 2466 break; 2467 case TCP_CA_Loss: 2468 if (flag&FLAG_DATA_ACKED) 2469 icsk->icsk_retransmits = 0; 2470 if (!tcp_try_undo_loss(sk)) { 2471 tcp_moderate_cwnd(tp); 2472 tcp_xmit_retransmit_queue(sk); 2473 return; 2474 } 2475 if (icsk->icsk_ca_state != TCP_CA_Open) 2476 return; 2477 /* Loss is undone; fall through to processing in Open state. */ 2478 default: 2479 if (tcp_is_reno(tp)) { 2480 if (flag & FLAG_SND_UNA_ADVANCED) 2481 tcp_reset_reno_sack(tp); 2482 if (is_dupack) 2483 tcp_add_reno_sack(sk); 2484 } 2485 2486 if (icsk->icsk_ca_state == TCP_CA_Disorder) 2487 tcp_try_undo_dsack(sk); 2488 2489 if (!tcp_time_to_recover(sk)) { 2490 tcp_try_to_open(sk, flag); 2491 return; 2492 } 2493 2494 /* MTU probe failure: don't reduce cwnd */ 2495 if (icsk->icsk_ca_state < TCP_CA_CWR && 2496 icsk->icsk_mtup.probe_size && 2497 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2498 tcp_mtup_probe_failed(sk); 2499 /* Restores the reduction we did in tcp_mtup_probe() */ 2500 tp->snd_cwnd++; 2501 tcp_simple_retransmit(sk); 2502 return; 2503 } 2504 2505 /* Otherwise enter Recovery state */ 2506 2507 if (tcp_is_reno(tp)) 2508 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); 2509 else 2510 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); 2511 2512 tp->high_seq = tp->snd_nxt; 2513 tp->prior_ssthresh = 0; 2514 tp->undo_marker = tp->snd_una; 2515 tp->undo_retrans = tp->retrans_out; 2516 2517 if (icsk->icsk_ca_state < TCP_CA_CWR) { 2518 if (!(flag&FLAG_ECE)) 2519 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2520 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2521 TCP_ECN_queue_cwr(tp); 2522 } 2523 2524 tp->bytes_acked = 0; 2525 tp->snd_cwnd_cnt = 0; 2526 tcp_set_ca_state(sk, TCP_CA_Recovery); 2527 } 2528 2529 if (do_lost || tcp_head_timedout(sk)) 2530 tcp_update_scoreboard(sk); 2531 tcp_cwnd_down(sk, flag); 2532 tcp_xmit_retransmit_queue(sk); 2533 } 2534 2535 /* Read draft-ietf-tcplw-high-performance before mucking 2536 * with this code. (Supersedes RFC1323) 2537 */ 2538 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 2539 { 2540 /* RTTM Rule: A TSecr value received in a segment is used to 2541 * update the averaged RTT measurement only if the segment 2542 * acknowledges some new data, i.e., only if it advances the 2543 * left edge of the send window. 2544 * 2545 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2546 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 2547 * 2548 * Changed: reset backoff as soon as we see the first valid sample. 2549 * If we do not, we get strongly overestimated rto. With timestamps 2550 * samples are accepted even from very old segments: f.e., when rtt=1 2551 * increases to 8, we retransmit 5 times and after 8 seconds delayed 2552 * answer arrives rto becomes 120 seconds! If at least one of segments 2553 * in window is lost... Voila. --ANK (010210) 2554 */ 2555 struct tcp_sock *tp = tcp_sk(sk); 2556 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2557 tcp_rtt_estimator(sk, seq_rtt); 2558 tcp_set_rto(sk); 2559 inet_csk(sk)->icsk_backoff = 0; 2560 tcp_bound_rto(sk); 2561 } 2562 2563 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 2564 { 2565 /* We don't have a timestamp. Can only use 2566 * packets that are not retransmitted to determine 2567 * rtt estimates. Also, we must not reset the 2568 * backoff for rto until we get a non-retransmitted 2569 * packet. This allows us to deal with a situation 2570 * where the network delay has increased suddenly. 2571 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 2572 */ 2573 2574 if (flag & FLAG_RETRANS_DATA_ACKED) 2575 return; 2576 2577 tcp_rtt_estimator(sk, seq_rtt); 2578 tcp_set_rto(sk); 2579 inet_csk(sk)->icsk_backoff = 0; 2580 tcp_bound_rto(sk); 2581 } 2582 2583 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 2584 const s32 seq_rtt) 2585 { 2586 const struct tcp_sock *tp = tcp_sk(sk); 2587 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 2588 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2589 tcp_ack_saw_tstamp(sk, flag); 2590 else if (seq_rtt >= 0) 2591 tcp_ack_no_tstamp(sk, seq_rtt, flag); 2592 } 2593 2594 static void tcp_cong_avoid(struct sock *sk, u32 ack, 2595 u32 in_flight, int good) 2596 { 2597 const struct inet_connection_sock *icsk = inet_csk(sk); 2598 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good); 2599 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2600 } 2601 2602 /* Restart timer after forward progress on connection. 2603 * RFC2988 recommends to restart timer to now+rto. 2604 */ 2605 static void tcp_rearm_rto(struct sock *sk) 2606 { 2607 struct tcp_sock *tp = tcp_sk(sk); 2608 2609 if (!tp->packets_out) { 2610 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2611 } else { 2612 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2613 } 2614 } 2615 2616 /* If we get here, the whole TSO packet has not been acked. */ 2617 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 2618 { 2619 struct tcp_sock *tp = tcp_sk(sk); 2620 u32 packets_acked; 2621 2622 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 2623 2624 packets_acked = tcp_skb_pcount(skb); 2625 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 2626 return 0; 2627 packets_acked -= tcp_skb_pcount(skb); 2628 2629 if (packets_acked) { 2630 BUG_ON(tcp_skb_pcount(skb) == 0); 2631 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 2632 } 2633 2634 return packets_acked; 2635 } 2636 2637 /* Remove acknowledged frames from the retransmission queue. If our packet 2638 * is before the ack sequence we can discard it as it's confirmed to have 2639 * arrived at the other end. 2640 */ 2641 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p, 2642 int prior_fackets) 2643 { 2644 struct tcp_sock *tp = tcp_sk(sk); 2645 const struct inet_connection_sock *icsk = inet_csk(sk); 2646 struct sk_buff *skb; 2647 u32 now = tcp_time_stamp; 2648 int fully_acked = 1; 2649 int flag = 0; 2650 int prior_packets = tp->packets_out; 2651 u32 cnt = 0; 2652 u32 reord = tp->packets_out; 2653 s32 seq_rtt = -1; 2654 s32 ca_seq_rtt = -1; 2655 ktime_t last_ackt = net_invalid_timestamp(); 2656 2657 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 2658 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2659 u32 end_seq; 2660 u32 packets_acked; 2661 u8 sacked = scb->sacked; 2662 2663 /* Determine how many packets and what bytes were acked, tso and else */ 2664 if (after(scb->end_seq, tp->snd_una)) { 2665 if (tcp_skb_pcount(skb) == 1 || 2666 !after(tp->snd_una, scb->seq)) 2667 break; 2668 2669 packets_acked = tcp_tso_acked(sk, skb); 2670 if (!packets_acked) 2671 break; 2672 2673 fully_acked = 0; 2674 end_seq = tp->snd_una; 2675 } else { 2676 packets_acked = tcp_skb_pcount(skb); 2677 end_seq = scb->end_seq; 2678 } 2679 2680 /* MTU probing checks */ 2681 if (fully_acked && icsk->icsk_mtup.probe_size && 2682 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) { 2683 tcp_mtup_probe_success(sk, skb); 2684 } 2685 2686 if (sacked) { 2687 if (sacked & TCPCB_RETRANS) { 2688 if (sacked & TCPCB_SACKED_RETRANS) 2689 tp->retrans_out -= packets_acked; 2690 flag |= FLAG_RETRANS_DATA_ACKED; 2691 ca_seq_rtt = -1; 2692 seq_rtt = -1; 2693 if ((flag & FLAG_DATA_ACKED) || 2694 (packets_acked > 1)) 2695 flag |= FLAG_NONHEAD_RETRANS_ACKED; 2696 } else { 2697 ca_seq_rtt = now - scb->when; 2698 last_ackt = skb->tstamp; 2699 if (seq_rtt < 0) { 2700 seq_rtt = ca_seq_rtt; 2701 } 2702 if (!(sacked & TCPCB_SACKED_ACKED)) 2703 reord = min(cnt, reord); 2704 } 2705 2706 if (sacked & TCPCB_SACKED_ACKED) 2707 tp->sacked_out -= packets_acked; 2708 if (sacked & TCPCB_LOST) 2709 tp->lost_out -= packets_acked; 2710 2711 if ((sacked & TCPCB_URG) && tp->urg_mode && 2712 !before(end_seq, tp->snd_up)) 2713 tp->urg_mode = 0; 2714 } else { 2715 ca_seq_rtt = now - scb->when; 2716 last_ackt = skb->tstamp; 2717 if (seq_rtt < 0) { 2718 seq_rtt = ca_seq_rtt; 2719 } 2720 reord = min(cnt, reord); 2721 } 2722 tp->packets_out -= packets_acked; 2723 cnt += packets_acked; 2724 2725 /* Initial outgoing SYN's get put onto the write_queue 2726 * just like anything else we transmit. It is not 2727 * true data, and if we misinform our callers that 2728 * this ACK acks real data, we will erroneously exit 2729 * connection startup slow start one packet too 2730 * quickly. This is severely frowned upon behavior. 2731 */ 2732 if (!(scb->flags & TCPCB_FLAG_SYN)) { 2733 flag |= FLAG_DATA_ACKED; 2734 } else { 2735 flag |= FLAG_SYN_ACKED; 2736 tp->retrans_stamp = 0; 2737 } 2738 2739 if (!fully_acked) 2740 break; 2741 2742 tcp_unlink_write_queue(skb, sk); 2743 sk_stream_free_skb(sk, skb); 2744 tcp_clear_all_retrans_hints(tp); 2745 } 2746 2747 if (flag & FLAG_ACKED) { 2748 u32 pkts_acked = prior_packets - tp->packets_out; 2749 const struct tcp_congestion_ops *ca_ops 2750 = inet_csk(sk)->icsk_ca_ops; 2751 2752 tcp_ack_update_rtt(sk, flag, seq_rtt); 2753 tcp_rearm_rto(sk); 2754 2755 if (tcp_is_reno(tp)) { 2756 tcp_remove_reno_sacks(sk, pkts_acked); 2757 } else { 2758 /* Non-retransmitted hole got filled? That's reordering */ 2759 if (reord < prior_fackets) 2760 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 2761 } 2762 2763 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 2764 /* hint's skb might be NULL but we don't need to care */ 2765 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked, 2766 tp->fastpath_cnt_hint); 2767 if (ca_ops->pkts_acked) { 2768 s32 rtt_us = -1; 2769 2770 /* Is the ACK triggering packet unambiguous? */ 2771 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 2772 /* High resolution needed and available? */ 2773 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 2774 !ktime_equal(last_ackt, 2775 net_invalid_timestamp())) 2776 rtt_us = ktime_us_delta(ktime_get_real(), 2777 last_ackt); 2778 else if (ca_seq_rtt > 0) 2779 rtt_us = jiffies_to_usecs(ca_seq_rtt); 2780 } 2781 2782 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 2783 } 2784 } 2785 2786 #if FASTRETRANS_DEBUG > 0 2787 BUG_TRAP((int)tp->sacked_out >= 0); 2788 BUG_TRAP((int)tp->lost_out >= 0); 2789 BUG_TRAP((int)tp->retrans_out >= 0); 2790 if (!tp->packets_out && tcp_is_sack(tp)) { 2791 icsk = inet_csk(sk); 2792 if (tp->lost_out) { 2793 printk(KERN_DEBUG "Leak l=%u %d\n", 2794 tp->lost_out, icsk->icsk_ca_state); 2795 tp->lost_out = 0; 2796 } 2797 if (tp->sacked_out) { 2798 printk(KERN_DEBUG "Leak s=%u %d\n", 2799 tp->sacked_out, icsk->icsk_ca_state); 2800 tp->sacked_out = 0; 2801 } 2802 if (tp->retrans_out) { 2803 printk(KERN_DEBUG "Leak r=%u %d\n", 2804 tp->retrans_out, icsk->icsk_ca_state); 2805 tp->retrans_out = 0; 2806 } 2807 } 2808 #endif 2809 *seq_rtt_p = seq_rtt; 2810 return flag; 2811 } 2812 2813 static void tcp_ack_probe(struct sock *sk) 2814 { 2815 const struct tcp_sock *tp = tcp_sk(sk); 2816 struct inet_connection_sock *icsk = inet_csk(sk); 2817 2818 /* Was it a usable window open? */ 2819 2820 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, 2821 tp->snd_una + tp->snd_wnd)) { 2822 icsk->icsk_backoff = 0; 2823 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 2824 /* Socket must be waked up by subsequent tcp_data_snd_check(). 2825 * This function is not for random using! 2826 */ 2827 } else { 2828 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2829 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2830 TCP_RTO_MAX); 2831 } 2832 } 2833 2834 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 2835 { 2836 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 2837 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 2838 } 2839 2840 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 2841 { 2842 const struct tcp_sock *tp = tcp_sk(sk); 2843 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 2844 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 2845 } 2846 2847 /* Check that window update is acceptable. 2848 * The function assumes that snd_una<=ack<=snd_next. 2849 */ 2850 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack, 2851 const u32 ack_seq, const u32 nwin) 2852 { 2853 return (after(ack, tp->snd_una) || 2854 after(ack_seq, tp->snd_wl1) || 2855 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 2856 } 2857 2858 /* Update our send window. 2859 * 2860 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 2861 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 2862 */ 2863 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack, 2864 u32 ack_seq) 2865 { 2866 struct tcp_sock *tp = tcp_sk(sk); 2867 int flag = 0; 2868 u32 nwin = ntohs(tcp_hdr(skb)->window); 2869 2870 if (likely(!tcp_hdr(skb)->syn)) 2871 nwin <<= tp->rx_opt.snd_wscale; 2872 2873 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 2874 flag |= FLAG_WIN_UPDATE; 2875 tcp_update_wl(tp, ack, ack_seq); 2876 2877 if (tp->snd_wnd != nwin) { 2878 tp->snd_wnd = nwin; 2879 2880 /* Note, it is the only place, where 2881 * fast path is recovered for sending TCP. 2882 */ 2883 tp->pred_flags = 0; 2884 tcp_fast_path_check(sk); 2885 2886 if (nwin > tp->max_window) { 2887 tp->max_window = nwin; 2888 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 2889 } 2890 } 2891 } 2892 2893 tp->snd_una = ack; 2894 2895 return flag; 2896 } 2897 2898 /* A very conservative spurious RTO response algorithm: reduce cwnd and 2899 * continue in congestion avoidance. 2900 */ 2901 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 2902 { 2903 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2904 tp->snd_cwnd_cnt = 0; 2905 tp->bytes_acked = 0; 2906 TCP_ECN_queue_cwr(tp); 2907 tcp_moderate_cwnd(tp); 2908 } 2909 2910 /* A conservative spurious RTO response algorithm: reduce cwnd using 2911 * rate halving and continue in congestion avoidance. 2912 */ 2913 static void tcp_ratehalving_spur_to_response(struct sock *sk) 2914 { 2915 tcp_enter_cwr(sk, 0); 2916 } 2917 2918 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 2919 { 2920 if (flag&FLAG_ECE) 2921 tcp_ratehalving_spur_to_response(sk); 2922 else 2923 tcp_undo_cwr(sk, 1); 2924 } 2925 2926 /* F-RTO spurious RTO detection algorithm (RFC4138) 2927 * 2928 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 2929 * comments). State (ACK number) is kept in frto_counter. When ACK advances 2930 * window (but not to or beyond highest sequence sent before RTO): 2931 * On First ACK, send two new segments out. 2932 * On Second ACK, RTO was likely spurious. Do spurious response (response 2933 * algorithm is not part of the F-RTO detection algorithm 2934 * given in RFC4138 but can be selected separately). 2935 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 2936 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 2937 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 2938 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 2939 * 2940 * Rationale: if the RTO was spurious, new ACKs should arrive from the 2941 * original window even after we transmit two new data segments. 2942 * 2943 * SACK version: 2944 * on first step, wait until first cumulative ACK arrives, then move to 2945 * the second step. In second step, the next ACK decides. 2946 * 2947 * F-RTO is implemented (mainly) in four functions: 2948 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 2949 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 2950 * called when tcp_use_frto() showed green light 2951 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 2952 * - tcp_enter_frto_loss() is called if there is not enough evidence 2953 * to prove that the RTO is indeed spurious. It transfers the control 2954 * from F-RTO to the conventional RTO recovery 2955 */ 2956 static int tcp_process_frto(struct sock *sk, int flag) 2957 { 2958 struct tcp_sock *tp = tcp_sk(sk); 2959 2960 tcp_verify_left_out(tp); 2961 2962 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 2963 if (flag&FLAG_DATA_ACKED) 2964 inet_csk(sk)->icsk_retransmits = 0; 2965 2966 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 2967 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 2968 tp->undo_marker = 0; 2969 2970 if (!before(tp->snd_una, tp->frto_highmark)) { 2971 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 2972 return 1; 2973 } 2974 2975 if (!IsSackFrto() || tcp_is_reno(tp)) { 2976 /* RFC4138 shortcoming in step 2; should also have case c): 2977 * ACK isn't duplicate nor advances window, e.g., opposite dir 2978 * data, winupdate 2979 */ 2980 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP)) 2981 return 1; 2982 2983 if (!(flag&FLAG_DATA_ACKED)) { 2984 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 2985 flag); 2986 return 1; 2987 } 2988 } else { 2989 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 2990 /* Prevent sending of new data. */ 2991 tp->snd_cwnd = min(tp->snd_cwnd, 2992 tcp_packets_in_flight(tp)); 2993 return 1; 2994 } 2995 2996 if ((tp->frto_counter >= 2) && 2997 (!(flag&FLAG_FORWARD_PROGRESS) || 2998 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) { 2999 /* RFC4138 shortcoming (see comment above) */ 3000 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP)) 3001 return 1; 3002 3003 tcp_enter_frto_loss(sk, 3, flag); 3004 return 1; 3005 } 3006 } 3007 3008 if (tp->frto_counter == 1) { 3009 /* tcp_may_send_now needs to see updated state */ 3010 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3011 tp->frto_counter = 2; 3012 3013 if (!tcp_may_send_now(sk)) 3014 tcp_enter_frto_loss(sk, 2, flag); 3015 3016 return 1; 3017 } else { 3018 switch (sysctl_tcp_frto_response) { 3019 case 2: 3020 tcp_undo_spur_to_response(sk, flag); 3021 break; 3022 case 1: 3023 tcp_conservative_spur_to_response(tp); 3024 break; 3025 default: 3026 tcp_ratehalving_spur_to_response(sk); 3027 break; 3028 } 3029 tp->frto_counter = 0; 3030 tp->undo_marker = 0; 3031 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS); 3032 } 3033 return 0; 3034 } 3035 3036 /* This routine deals with incoming acks, but not outgoing ones. */ 3037 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 3038 { 3039 struct inet_connection_sock *icsk = inet_csk(sk); 3040 struct tcp_sock *tp = tcp_sk(sk); 3041 u32 prior_snd_una = tp->snd_una; 3042 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3043 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3044 u32 prior_in_flight; 3045 u32 prior_fackets; 3046 s32 seq_rtt; 3047 int prior_packets; 3048 int frto_cwnd = 0; 3049 3050 /* If the ack is newer than sent or older than previous acks 3051 * then we can probably ignore it. 3052 */ 3053 if (after(ack, tp->snd_nxt)) 3054 goto uninteresting_ack; 3055 3056 if (before(ack, prior_snd_una)) 3057 goto old_ack; 3058 3059 if (after(ack, prior_snd_una)) 3060 flag |= FLAG_SND_UNA_ADVANCED; 3061 3062 if (sysctl_tcp_abc) { 3063 if (icsk->icsk_ca_state < TCP_CA_CWR) 3064 tp->bytes_acked += ack - prior_snd_una; 3065 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3066 /* we assume just one segment left network */ 3067 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache); 3068 } 3069 3070 prior_fackets = tp->fackets_out; 3071 prior_in_flight = tcp_packets_in_flight(tp); 3072 3073 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3074 /* Window is constant, pure forward advance. 3075 * No more checks are required. 3076 * Note, we use the fact that SND.UNA>=SND.WL2. 3077 */ 3078 tcp_update_wl(tp, ack, ack_seq); 3079 tp->snd_una = ack; 3080 flag |= FLAG_WIN_UPDATE; 3081 3082 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3083 3084 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); 3085 } else { 3086 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3087 flag |= FLAG_DATA; 3088 else 3089 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); 3090 3091 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3092 3093 if (TCP_SKB_CB(skb)->sacked) 3094 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3095 3096 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3097 flag |= FLAG_ECE; 3098 3099 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3100 } 3101 3102 /* We passed data and got it acked, remove any soft error 3103 * log. Something worked... 3104 */ 3105 sk->sk_err_soft = 0; 3106 tp->rcv_tstamp = tcp_time_stamp; 3107 prior_packets = tp->packets_out; 3108 if (!prior_packets) 3109 goto no_queue; 3110 3111 /* See if we can take anything off of the retransmit queue. */ 3112 flag |= tcp_clean_rtx_queue(sk, &seq_rtt, prior_fackets); 3113 3114 if (tp->frto_counter) 3115 frto_cwnd = tcp_process_frto(sk, flag); 3116 /* Guarantee sacktag reordering detection against wrap-arounds */ 3117 if (before(tp->frto_highmark, tp->snd_una)) 3118 tp->frto_highmark = 0; 3119 3120 if (tcp_ack_is_dubious(sk, flag)) { 3121 /* Advance CWND, if state allows this. */ 3122 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3123 tcp_may_raise_cwnd(sk, flag)) 3124 tcp_cong_avoid(sk, ack, prior_in_flight, 0); 3125 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag); 3126 } else { 3127 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3128 tcp_cong_avoid(sk, ack, prior_in_flight, 1); 3129 } 3130 3131 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP)) 3132 dst_confirm(sk->sk_dst_cache); 3133 3134 return 1; 3135 3136 no_queue: 3137 icsk->icsk_probes_out = 0; 3138 3139 /* If this ack opens up a zero window, clear backoff. It was 3140 * being used to time the probes, and is probably far higher than 3141 * it needs to be for normal retransmission. 3142 */ 3143 if (tcp_send_head(sk)) 3144 tcp_ack_probe(sk); 3145 return 1; 3146 3147 old_ack: 3148 if (TCP_SKB_CB(skb)->sacked) 3149 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3150 3151 uninteresting_ack: 3152 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3153 return 0; 3154 } 3155 3156 3157 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3158 * But, this can also be called on packets in the established flow when 3159 * the fast version below fails. 3160 */ 3161 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab) 3162 { 3163 unsigned char *ptr; 3164 struct tcphdr *th = tcp_hdr(skb); 3165 int length=(th->doff*4)-sizeof(struct tcphdr); 3166 3167 ptr = (unsigned char *)(th + 1); 3168 opt_rx->saw_tstamp = 0; 3169 3170 while (length > 0) { 3171 int opcode=*ptr++; 3172 int opsize; 3173 3174 switch (opcode) { 3175 case TCPOPT_EOL: 3176 return; 3177 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3178 length--; 3179 continue; 3180 default: 3181 opsize=*ptr++; 3182 if (opsize < 2) /* "silly options" */ 3183 return; 3184 if (opsize > length) 3185 return; /* don't parse partial options */ 3186 switch (opcode) { 3187 case TCPOPT_MSS: 3188 if (opsize==TCPOLEN_MSS && th->syn && !estab) { 3189 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr)); 3190 if (in_mss) { 3191 if (opt_rx->user_mss && opt_rx->user_mss < in_mss) 3192 in_mss = opt_rx->user_mss; 3193 opt_rx->mss_clamp = in_mss; 3194 } 3195 } 3196 break; 3197 case TCPOPT_WINDOW: 3198 if (opsize==TCPOLEN_WINDOW && th->syn && !estab) 3199 if (sysctl_tcp_window_scaling) { 3200 __u8 snd_wscale = *(__u8 *) ptr; 3201 opt_rx->wscale_ok = 1; 3202 if (snd_wscale > 14) { 3203 if (net_ratelimit()) 3204 printk(KERN_INFO "tcp_parse_options: Illegal window " 3205 "scaling value %d >14 received.\n", 3206 snd_wscale); 3207 snd_wscale = 14; 3208 } 3209 opt_rx->snd_wscale = snd_wscale; 3210 } 3211 break; 3212 case TCPOPT_TIMESTAMP: 3213 if (opsize==TCPOLEN_TIMESTAMP) { 3214 if ((estab && opt_rx->tstamp_ok) || 3215 (!estab && sysctl_tcp_timestamps)) { 3216 opt_rx->saw_tstamp = 1; 3217 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr)); 3218 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4))); 3219 } 3220 } 3221 break; 3222 case TCPOPT_SACK_PERM: 3223 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) { 3224 if (sysctl_tcp_sack) { 3225 opt_rx->sack_ok = 1; 3226 tcp_sack_reset(opt_rx); 3227 } 3228 } 3229 break; 3230 3231 case TCPOPT_SACK: 3232 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3233 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3234 opt_rx->sack_ok) { 3235 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3236 } 3237 break; 3238 #ifdef CONFIG_TCP_MD5SIG 3239 case TCPOPT_MD5SIG: 3240 /* 3241 * The MD5 Hash has already been 3242 * checked (see tcp_v{4,6}_do_rcv()). 3243 */ 3244 break; 3245 #endif 3246 } 3247 3248 ptr+=opsize-2; 3249 length-=opsize; 3250 } 3251 } 3252 } 3253 3254 /* Fast parse options. This hopes to only see timestamps. 3255 * If it is wrong it falls back on tcp_parse_options(). 3256 */ 3257 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 3258 struct tcp_sock *tp) 3259 { 3260 if (th->doff == sizeof(struct tcphdr)>>2) { 3261 tp->rx_opt.saw_tstamp = 0; 3262 return 0; 3263 } else if (tp->rx_opt.tstamp_ok && 3264 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 3265 __be32 *ptr = (__be32 *)(th + 1); 3266 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3267 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3268 tp->rx_opt.saw_tstamp = 1; 3269 ++ptr; 3270 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3271 ++ptr; 3272 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3273 return 1; 3274 } 3275 } 3276 tcp_parse_options(skb, &tp->rx_opt, 1); 3277 return 1; 3278 } 3279 3280 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3281 { 3282 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3283 tp->rx_opt.ts_recent_stamp = get_seconds(); 3284 } 3285 3286 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3287 { 3288 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3289 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3290 * extra check below makes sure this can only happen 3291 * for pure ACK frames. -DaveM 3292 * 3293 * Not only, also it occurs for expired timestamps. 3294 */ 3295 3296 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 3297 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 3298 tcp_store_ts_recent(tp); 3299 } 3300 } 3301 3302 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3303 * 3304 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3305 * it can pass through stack. So, the following predicate verifies that 3306 * this segment is not used for anything but congestion avoidance or 3307 * fast retransmit. Moreover, we even are able to eliminate most of such 3308 * second order effects, if we apply some small "replay" window (~RTO) 3309 * to timestamp space. 3310 * 3311 * All these measures still do not guarantee that we reject wrapped ACKs 3312 * on networks with high bandwidth, when sequence space is recycled fastly, 3313 * but it guarantees that such events will be very rare and do not affect 3314 * connection seriously. This doesn't look nice, but alas, PAWS is really 3315 * buggy extension. 3316 * 3317 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3318 * states that events when retransmit arrives after original data are rare. 3319 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3320 * the biggest problem on large power networks even with minor reordering. 3321 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3322 * up to bandwidth of 18Gigabit/sec. 8) ] 3323 */ 3324 3325 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3326 { 3327 struct tcp_sock *tp = tcp_sk(sk); 3328 struct tcphdr *th = tcp_hdr(skb); 3329 u32 seq = TCP_SKB_CB(skb)->seq; 3330 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3331 3332 return (/* 1. Pure ACK with correct sequence number. */ 3333 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3334 3335 /* 2. ... and duplicate ACK. */ 3336 ack == tp->snd_una && 3337 3338 /* 3. ... and does not update window. */ 3339 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3340 3341 /* 4. ... and sits in replay window. */ 3342 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3343 } 3344 3345 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb) 3346 { 3347 const struct tcp_sock *tp = tcp_sk(sk); 3348 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 3349 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 3350 !tcp_disordered_ack(sk, skb)); 3351 } 3352 3353 /* Check segment sequence number for validity. 3354 * 3355 * Segment controls are considered valid, if the segment 3356 * fits to the window after truncation to the window. Acceptability 3357 * of data (and SYN, FIN, of course) is checked separately. 3358 * See tcp_data_queue(), for example. 3359 * 3360 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3361 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3362 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3363 * (borrowed from freebsd) 3364 */ 3365 3366 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 3367 { 3368 return !before(end_seq, tp->rcv_wup) && 3369 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3370 } 3371 3372 /* When we get a reset we do this. */ 3373 static void tcp_reset(struct sock *sk) 3374 { 3375 /* We want the right error as BSD sees it (and indeed as we do). */ 3376 switch (sk->sk_state) { 3377 case TCP_SYN_SENT: 3378 sk->sk_err = ECONNREFUSED; 3379 break; 3380 case TCP_CLOSE_WAIT: 3381 sk->sk_err = EPIPE; 3382 break; 3383 case TCP_CLOSE: 3384 return; 3385 default: 3386 sk->sk_err = ECONNRESET; 3387 } 3388 3389 if (!sock_flag(sk, SOCK_DEAD)) 3390 sk->sk_error_report(sk); 3391 3392 tcp_done(sk); 3393 } 3394 3395 /* 3396 * Process the FIN bit. This now behaves as it is supposed to work 3397 * and the FIN takes effect when it is validly part of sequence 3398 * space. Not before when we get holes. 3399 * 3400 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3401 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3402 * TIME-WAIT) 3403 * 3404 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3405 * close and we go into CLOSING (and later onto TIME-WAIT) 3406 * 3407 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3408 */ 3409 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 3410 { 3411 struct tcp_sock *tp = tcp_sk(sk); 3412 3413 inet_csk_schedule_ack(sk); 3414 3415 sk->sk_shutdown |= RCV_SHUTDOWN; 3416 sock_set_flag(sk, SOCK_DONE); 3417 3418 switch (sk->sk_state) { 3419 case TCP_SYN_RECV: 3420 case TCP_ESTABLISHED: 3421 /* Move to CLOSE_WAIT */ 3422 tcp_set_state(sk, TCP_CLOSE_WAIT); 3423 inet_csk(sk)->icsk_ack.pingpong = 1; 3424 break; 3425 3426 case TCP_CLOSE_WAIT: 3427 case TCP_CLOSING: 3428 /* Received a retransmission of the FIN, do 3429 * nothing. 3430 */ 3431 break; 3432 case TCP_LAST_ACK: 3433 /* RFC793: Remain in the LAST-ACK state. */ 3434 break; 3435 3436 case TCP_FIN_WAIT1: 3437 /* This case occurs when a simultaneous close 3438 * happens, we must ack the received FIN and 3439 * enter the CLOSING state. 3440 */ 3441 tcp_send_ack(sk); 3442 tcp_set_state(sk, TCP_CLOSING); 3443 break; 3444 case TCP_FIN_WAIT2: 3445 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3446 tcp_send_ack(sk); 3447 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3448 break; 3449 default: 3450 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3451 * cases we should never reach this piece of code. 3452 */ 3453 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 3454 __FUNCTION__, sk->sk_state); 3455 break; 3456 } 3457 3458 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3459 * Probably, we should reset in this case. For now drop them. 3460 */ 3461 __skb_queue_purge(&tp->out_of_order_queue); 3462 if (tcp_is_sack(tp)) 3463 tcp_sack_reset(&tp->rx_opt); 3464 sk_stream_mem_reclaim(sk); 3465 3466 if (!sock_flag(sk, SOCK_DEAD)) { 3467 sk->sk_state_change(sk); 3468 3469 /* Do not send POLL_HUP for half duplex close. */ 3470 if (sk->sk_shutdown == SHUTDOWN_MASK || 3471 sk->sk_state == TCP_CLOSE) 3472 sk_wake_async(sk, 1, POLL_HUP); 3473 else 3474 sk_wake_async(sk, 1, POLL_IN); 3475 } 3476 } 3477 3478 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq) 3479 { 3480 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3481 if (before(seq, sp->start_seq)) 3482 sp->start_seq = seq; 3483 if (after(end_seq, sp->end_seq)) 3484 sp->end_seq = end_seq; 3485 return 1; 3486 } 3487 return 0; 3488 } 3489 3490 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) 3491 { 3492 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3493 if (before(seq, tp->rcv_nxt)) 3494 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); 3495 else 3496 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); 3497 3498 tp->rx_opt.dsack = 1; 3499 tp->duplicate_sack[0].start_seq = seq; 3500 tp->duplicate_sack[0].end_seq = end_seq; 3501 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok); 3502 } 3503 } 3504 3505 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) 3506 { 3507 if (!tp->rx_opt.dsack) 3508 tcp_dsack_set(tp, seq, end_seq); 3509 else 3510 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3511 } 3512 3513 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 3514 { 3515 struct tcp_sock *tp = tcp_sk(sk); 3516 3517 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3518 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3519 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3520 tcp_enter_quickack_mode(sk); 3521 3522 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3523 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3524 3525 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3526 end_seq = tp->rcv_nxt; 3527 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); 3528 } 3529 } 3530 3531 tcp_send_ack(sk); 3532 } 3533 3534 /* These routines update the SACK block as out-of-order packets arrive or 3535 * in-order packets close up the sequence space. 3536 */ 3537 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 3538 { 3539 int this_sack; 3540 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3541 struct tcp_sack_block *swalk = sp+1; 3542 3543 /* See if the recent change to the first SACK eats into 3544 * or hits the sequence space of other SACK blocks, if so coalesce. 3545 */ 3546 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) { 3547 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 3548 int i; 3549 3550 /* Zap SWALK, by moving every further SACK up by one slot. 3551 * Decrease num_sacks. 3552 */ 3553 tp->rx_opt.num_sacks--; 3554 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3555 for (i=this_sack; i < tp->rx_opt.num_sacks; i++) 3556 sp[i] = sp[i+1]; 3557 continue; 3558 } 3559 this_sack++, swalk++; 3560 } 3561 } 3562 3563 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2) 3564 { 3565 __u32 tmp; 3566 3567 tmp = sack1->start_seq; 3568 sack1->start_seq = sack2->start_seq; 3569 sack2->start_seq = tmp; 3570 3571 tmp = sack1->end_seq; 3572 sack1->end_seq = sack2->end_seq; 3573 sack2->end_seq = tmp; 3574 } 3575 3576 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3577 { 3578 struct tcp_sock *tp = tcp_sk(sk); 3579 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3580 int cur_sacks = tp->rx_opt.num_sacks; 3581 int this_sack; 3582 3583 if (!cur_sacks) 3584 goto new_sack; 3585 3586 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) { 3587 if (tcp_sack_extend(sp, seq, end_seq)) { 3588 /* Rotate this_sack to the first one. */ 3589 for (; this_sack>0; this_sack--, sp--) 3590 tcp_sack_swap(sp, sp-1); 3591 if (cur_sacks > 1) 3592 tcp_sack_maybe_coalesce(tp); 3593 return; 3594 } 3595 } 3596 3597 /* Could not find an adjacent existing SACK, build a new one, 3598 * put it at the front, and shift everyone else down. We 3599 * always know there is at least one SACK present already here. 3600 * 3601 * If the sack array is full, forget about the last one. 3602 */ 3603 if (this_sack >= 4) { 3604 this_sack--; 3605 tp->rx_opt.num_sacks--; 3606 sp--; 3607 } 3608 for (; this_sack > 0; this_sack--, sp--) 3609 *sp = *(sp-1); 3610 3611 new_sack: 3612 /* Build the new head SACK, and we're done. */ 3613 sp->start_seq = seq; 3614 sp->end_seq = end_seq; 3615 tp->rx_opt.num_sacks++; 3616 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3617 } 3618 3619 /* RCV.NXT advances, some SACKs should be eaten. */ 3620 3621 static void tcp_sack_remove(struct tcp_sock *tp) 3622 { 3623 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3624 int num_sacks = tp->rx_opt.num_sacks; 3625 int this_sack; 3626 3627 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 3628 if (skb_queue_empty(&tp->out_of_order_queue)) { 3629 tp->rx_opt.num_sacks = 0; 3630 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 3631 return; 3632 } 3633 3634 for (this_sack = 0; this_sack < num_sacks; ) { 3635 /* Check if the start of the sack is covered by RCV.NXT. */ 3636 if (!before(tp->rcv_nxt, sp->start_seq)) { 3637 int i; 3638 3639 /* RCV.NXT must cover all the block! */ 3640 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); 3641 3642 /* Zap this SACK, by moving forward any other SACKS. */ 3643 for (i=this_sack+1; i < num_sacks; i++) 3644 tp->selective_acks[i-1] = tp->selective_acks[i]; 3645 num_sacks--; 3646 continue; 3647 } 3648 this_sack++; 3649 sp++; 3650 } 3651 if (num_sacks != tp->rx_opt.num_sacks) { 3652 tp->rx_opt.num_sacks = num_sacks; 3653 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3654 } 3655 } 3656 3657 /* This one checks to see if we can put data from the 3658 * out_of_order queue into the receive_queue. 3659 */ 3660 static void tcp_ofo_queue(struct sock *sk) 3661 { 3662 struct tcp_sock *tp = tcp_sk(sk); 3663 __u32 dsack_high = tp->rcv_nxt; 3664 struct sk_buff *skb; 3665 3666 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 3667 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 3668 break; 3669 3670 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 3671 __u32 dsack = dsack_high; 3672 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 3673 dsack_high = TCP_SKB_CB(skb)->end_seq; 3674 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); 3675 } 3676 3677 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3678 SOCK_DEBUG(sk, "ofo packet was already received \n"); 3679 __skb_unlink(skb, &tp->out_of_order_queue); 3680 __kfree_skb(skb); 3681 continue; 3682 } 3683 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 3684 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3685 TCP_SKB_CB(skb)->end_seq); 3686 3687 __skb_unlink(skb, &tp->out_of_order_queue); 3688 __skb_queue_tail(&sk->sk_receive_queue, skb); 3689 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3690 if (tcp_hdr(skb)->fin) 3691 tcp_fin(skb, sk, tcp_hdr(skb)); 3692 } 3693 } 3694 3695 static int tcp_prune_queue(struct sock *sk); 3696 3697 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 3698 { 3699 struct tcphdr *th = tcp_hdr(skb); 3700 struct tcp_sock *tp = tcp_sk(sk); 3701 int eaten = -1; 3702 3703 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 3704 goto drop; 3705 3706 __skb_pull(skb, th->doff*4); 3707 3708 TCP_ECN_accept_cwr(tp, skb); 3709 3710 if (tp->rx_opt.dsack) { 3711 tp->rx_opt.dsack = 0; 3712 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, 3713 4 - tp->rx_opt.tstamp_ok); 3714 } 3715 3716 /* Queue data for delivery to the user. 3717 * Packets in sequence go to the receive queue. 3718 * Out of sequence packets to the out_of_order_queue. 3719 */ 3720 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3721 if (tcp_receive_window(tp) == 0) 3722 goto out_of_window; 3723 3724 /* Ok. In sequence. In window. */ 3725 if (tp->ucopy.task == current && 3726 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 3727 sock_owned_by_user(sk) && !tp->urg_data) { 3728 int chunk = min_t(unsigned int, skb->len, 3729 tp->ucopy.len); 3730 3731 __set_current_state(TASK_RUNNING); 3732 3733 local_bh_enable(); 3734 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 3735 tp->ucopy.len -= chunk; 3736 tp->copied_seq += chunk; 3737 eaten = (chunk == skb->len && !th->fin); 3738 tcp_rcv_space_adjust(sk); 3739 } 3740 local_bh_disable(); 3741 } 3742 3743 if (eaten <= 0) { 3744 queue_and_out: 3745 if (eaten < 0 && 3746 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3747 !sk_stream_rmem_schedule(sk, skb))) { 3748 if (tcp_prune_queue(sk) < 0 || 3749 !sk_stream_rmem_schedule(sk, skb)) 3750 goto drop; 3751 } 3752 sk_stream_set_owner_r(skb, sk); 3753 __skb_queue_tail(&sk->sk_receive_queue, skb); 3754 } 3755 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3756 if (skb->len) 3757 tcp_event_data_recv(sk, skb); 3758 if (th->fin) 3759 tcp_fin(skb, sk, th); 3760 3761 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3762 tcp_ofo_queue(sk); 3763 3764 /* RFC2581. 4.2. SHOULD send immediate ACK, when 3765 * gap in queue is filled. 3766 */ 3767 if (skb_queue_empty(&tp->out_of_order_queue)) 3768 inet_csk(sk)->icsk_ack.pingpong = 0; 3769 } 3770 3771 if (tp->rx_opt.num_sacks) 3772 tcp_sack_remove(tp); 3773 3774 tcp_fast_path_check(sk); 3775 3776 if (eaten > 0) 3777 __kfree_skb(skb); 3778 else if (!sock_flag(sk, SOCK_DEAD)) 3779 sk->sk_data_ready(sk, 0); 3780 return; 3781 } 3782 3783 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3784 /* A retransmit, 2nd most common case. Force an immediate ack. */ 3785 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3786 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3787 3788 out_of_window: 3789 tcp_enter_quickack_mode(sk); 3790 inet_csk_schedule_ack(sk); 3791 drop: 3792 __kfree_skb(skb); 3793 return; 3794 } 3795 3796 /* Out of window. F.e. zero window probe. */ 3797 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 3798 goto out_of_window; 3799 3800 tcp_enter_quickack_mode(sk); 3801 3802 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3803 /* Partial packet, seq < rcv_next < end_seq */ 3804 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 3805 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3806 TCP_SKB_CB(skb)->end_seq); 3807 3808 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 3809 3810 /* If window is closed, drop tail of packet. But after 3811 * remembering D-SACK for its head made in previous line. 3812 */ 3813 if (!tcp_receive_window(tp)) 3814 goto out_of_window; 3815 goto queue_and_out; 3816 } 3817 3818 TCP_ECN_check_ce(tp, skb); 3819 3820 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3821 !sk_stream_rmem_schedule(sk, skb)) { 3822 if (tcp_prune_queue(sk) < 0 || 3823 !sk_stream_rmem_schedule(sk, skb)) 3824 goto drop; 3825 } 3826 3827 /* Disable header prediction. */ 3828 tp->pred_flags = 0; 3829 inet_csk_schedule_ack(sk); 3830 3831 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 3832 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3833 3834 sk_stream_set_owner_r(skb, sk); 3835 3836 if (!skb_peek(&tp->out_of_order_queue)) { 3837 /* Initial out of order segment, build 1 SACK. */ 3838 if (tcp_is_sack(tp)) { 3839 tp->rx_opt.num_sacks = 1; 3840 tp->rx_opt.dsack = 0; 3841 tp->rx_opt.eff_sacks = 1; 3842 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 3843 tp->selective_acks[0].end_seq = 3844 TCP_SKB_CB(skb)->end_seq; 3845 } 3846 __skb_queue_head(&tp->out_of_order_queue,skb); 3847 } else { 3848 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 3849 u32 seq = TCP_SKB_CB(skb)->seq; 3850 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3851 3852 if (seq == TCP_SKB_CB(skb1)->end_seq) { 3853 __skb_append(skb1, skb, &tp->out_of_order_queue); 3854 3855 if (!tp->rx_opt.num_sacks || 3856 tp->selective_acks[0].end_seq != seq) 3857 goto add_sack; 3858 3859 /* Common case: data arrive in order after hole. */ 3860 tp->selective_acks[0].end_seq = end_seq; 3861 return; 3862 } 3863 3864 /* Find place to insert this segment. */ 3865 do { 3866 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 3867 break; 3868 } while ((skb1 = skb1->prev) != 3869 (struct sk_buff*)&tp->out_of_order_queue); 3870 3871 /* Do skb overlap to previous one? */ 3872 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue && 3873 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 3874 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3875 /* All the bits are present. Drop. */ 3876 __kfree_skb(skb); 3877 tcp_dsack_set(tp, seq, end_seq); 3878 goto add_sack; 3879 } 3880 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 3881 /* Partial overlap. */ 3882 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq); 3883 } else { 3884 skb1 = skb1->prev; 3885 } 3886 } 3887 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); 3888 3889 /* And clean segments covered by new one as whole. */ 3890 while ((skb1 = skb->next) != 3891 (struct sk_buff*)&tp->out_of_order_queue && 3892 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 3893 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3894 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq); 3895 break; 3896 } 3897 __skb_unlink(skb1, &tp->out_of_order_queue); 3898 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq); 3899 __kfree_skb(skb1); 3900 } 3901 3902 add_sack: 3903 if (tcp_is_sack(tp)) 3904 tcp_sack_new_ofo_skb(sk, seq, end_seq); 3905 } 3906 } 3907 3908 /* Collapse contiguous sequence of skbs head..tail with 3909 * sequence numbers start..end. 3910 * Segments with FIN/SYN are not collapsed (only because this 3911 * simplifies code) 3912 */ 3913 static void 3914 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 3915 struct sk_buff *head, struct sk_buff *tail, 3916 u32 start, u32 end) 3917 { 3918 struct sk_buff *skb; 3919 3920 /* First, check that queue is collapsible and find 3921 * the point where collapsing can be useful. */ 3922 for (skb = head; skb != tail; ) { 3923 /* No new bits? It is possible on ofo queue. */ 3924 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3925 struct sk_buff *next = skb->next; 3926 __skb_unlink(skb, list); 3927 __kfree_skb(skb); 3928 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3929 skb = next; 3930 continue; 3931 } 3932 3933 /* The first skb to collapse is: 3934 * - not SYN/FIN and 3935 * - bloated or contains data before "start" or 3936 * overlaps to the next one. 3937 */ 3938 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 3939 (tcp_win_from_space(skb->truesize) > skb->len || 3940 before(TCP_SKB_CB(skb)->seq, start) || 3941 (skb->next != tail && 3942 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 3943 break; 3944 3945 /* Decided to skip this, advance start seq. */ 3946 start = TCP_SKB_CB(skb)->end_seq; 3947 skb = skb->next; 3948 } 3949 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 3950 return; 3951 3952 while (before(start, end)) { 3953 struct sk_buff *nskb; 3954 unsigned int header = skb_headroom(skb); 3955 int copy = SKB_MAX_ORDER(header, 0); 3956 3957 /* Too big header? This can happen with IPv6. */ 3958 if (copy < 0) 3959 return; 3960 if (end-start < copy) 3961 copy = end-start; 3962 nskb = alloc_skb(copy+header, GFP_ATOMIC); 3963 if (!nskb) 3964 return; 3965 3966 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 3967 skb_set_network_header(nskb, (skb_network_header(skb) - 3968 skb->head)); 3969 skb_set_transport_header(nskb, (skb_transport_header(skb) - 3970 skb->head)); 3971 skb_reserve(nskb, header); 3972 memcpy(nskb->head, skb->head, header); 3973 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 3974 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 3975 __skb_insert(nskb, skb->prev, skb, list); 3976 sk_stream_set_owner_r(nskb, sk); 3977 3978 /* Copy data, releasing collapsed skbs. */ 3979 while (copy > 0) { 3980 int offset = start - TCP_SKB_CB(skb)->seq; 3981 int size = TCP_SKB_CB(skb)->end_seq - start; 3982 3983 BUG_ON(offset < 0); 3984 if (size > 0) { 3985 size = min(copy, size); 3986 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 3987 BUG(); 3988 TCP_SKB_CB(nskb)->end_seq += size; 3989 copy -= size; 3990 start += size; 3991 } 3992 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3993 struct sk_buff *next = skb->next; 3994 __skb_unlink(skb, list); 3995 __kfree_skb(skb); 3996 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3997 skb = next; 3998 if (skb == tail || 3999 tcp_hdr(skb)->syn || 4000 tcp_hdr(skb)->fin) 4001 return; 4002 } 4003 } 4004 } 4005 } 4006 4007 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4008 * and tcp_collapse() them until all the queue is collapsed. 4009 */ 4010 static void tcp_collapse_ofo_queue(struct sock *sk) 4011 { 4012 struct tcp_sock *tp = tcp_sk(sk); 4013 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4014 struct sk_buff *head; 4015 u32 start, end; 4016 4017 if (skb == NULL) 4018 return; 4019 4020 start = TCP_SKB_CB(skb)->seq; 4021 end = TCP_SKB_CB(skb)->end_seq; 4022 head = skb; 4023 4024 for (;;) { 4025 skb = skb->next; 4026 4027 /* Segment is terminated when we see gap or when 4028 * we are at the end of all the queue. */ 4029 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 4030 after(TCP_SKB_CB(skb)->seq, end) || 4031 before(TCP_SKB_CB(skb)->end_seq, start)) { 4032 tcp_collapse(sk, &tp->out_of_order_queue, 4033 head, skb, start, end); 4034 head = skb; 4035 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 4036 break; 4037 /* Start new segment */ 4038 start = TCP_SKB_CB(skb)->seq; 4039 end = TCP_SKB_CB(skb)->end_seq; 4040 } else { 4041 if (before(TCP_SKB_CB(skb)->seq, start)) 4042 start = TCP_SKB_CB(skb)->seq; 4043 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4044 end = TCP_SKB_CB(skb)->end_seq; 4045 } 4046 } 4047 } 4048 4049 /* Reduce allocated memory if we can, trying to get 4050 * the socket within its memory limits again. 4051 * 4052 * Return less than zero if we should start dropping frames 4053 * until the socket owning process reads some of the data 4054 * to stabilize the situation. 4055 */ 4056 static int tcp_prune_queue(struct sock *sk) 4057 { 4058 struct tcp_sock *tp = tcp_sk(sk); 4059 4060 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4061 4062 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); 4063 4064 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4065 tcp_clamp_window(sk); 4066 else if (tcp_memory_pressure) 4067 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4068 4069 tcp_collapse_ofo_queue(sk); 4070 tcp_collapse(sk, &sk->sk_receive_queue, 4071 sk->sk_receive_queue.next, 4072 (struct sk_buff*)&sk->sk_receive_queue, 4073 tp->copied_seq, tp->rcv_nxt); 4074 sk_stream_mem_reclaim(sk); 4075 4076 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4077 return 0; 4078 4079 /* Collapsing did not help, destructive actions follow. 4080 * This must not ever occur. */ 4081 4082 /* First, purge the out_of_order queue. */ 4083 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4084 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED); 4085 __skb_queue_purge(&tp->out_of_order_queue); 4086 4087 /* Reset SACK state. A conforming SACK implementation will 4088 * do the same at a timeout based retransmit. When a connection 4089 * is in a sad state like this, we care only about integrity 4090 * of the connection not performance. 4091 */ 4092 if (tcp_is_sack(tp)) 4093 tcp_sack_reset(&tp->rx_opt); 4094 sk_stream_mem_reclaim(sk); 4095 } 4096 4097 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4098 return 0; 4099 4100 /* If we are really being abused, tell the caller to silently 4101 * drop receive data on the floor. It will get retransmitted 4102 * and hopefully then we'll have sufficient space. 4103 */ 4104 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); 4105 4106 /* Massive buffer overcommit. */ 4107 tp->pred_flags = 0; 4108 return -1; 4109 } 4110 4111 4112 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4113 * As additional protections, we do not touch cwnd in retransmission phases, 4114 * and if application hit its sndbuf limit recently. 4115 */ 4116 void tcp_cwnd_application_limited(struct sock *sk) 4117 { 4118 struct tcp_sock *tp = tcp_sk(sk); 4119 4120 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4121 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4122 /* Limited by application or receiver window. */ 4123 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4124 u32 win_used = max(tp->snd_cwnd_used, init_win); 4125 if (win_used < tp->snd_cwnd) { 4126 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4127 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4128 } 4129 tp->snd_cwnd_used = 0; 4130 } 4131 tp->snd_cwnd_stamp = tcp_time_stamp; 4132 } 4133 4134 static int tcp_should_expand_sndbuf(struct sock *sk) 4135 { 4136 struct tcp_sock *tp = tcp_sk(sk); 4137 4138 /* If the user specified a specific send buffer setting, do 4139 * not modify it. 4140 */ 4141 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4142 return 0; 4143 4144 /* If we are under global TCP memory pressure, do not expand. */ 4145 if (tcp_memory_pressure) 4146 return 0; 4147 4148 /* If we are under soft global TCP memory pressure, do not expand. */ 4149 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 4150 return 0; 4151 4152 /* If we filled the congestion window, do not expand. */ 4153 if (tp->packets_out >= tp->snd_cwnd) 4154 return 0; 4155 4156 return 1; 4157 } 4158 4159 /* When incoming ACK allowed to free some skb from write_queue, 4160 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4161 * on the exit from tcp input handler. 4162 * 4163 * PROBLEM: sndbuf expansion does not work well with largesend. 4164 */ 4165 static void tcp_new_space(struct sock *sk) 4166 { 4167 struct tcp_sock *tp = tcp_sk(sk); 4168 4169 if (tcp_should_expand_sndbuf(sk)) { 4170 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 4171 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), 4172 demanded = max_t(unsigned int, tp->snd_cwnd, 4173 tp->reordering + 1); 4174 sndmem *= 2*demanded; 4175 if (sndmem > sk->sk_sndbuf) 4176 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4177 tp->snd_cwnd_stamp = tcp_time_stamp; 4178 } 4179 4180 sk->sk_write_space(sk); 4181 } 4182 4183 static void tcp_check_space(struct sock *sk) 4184 { 4185 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4186 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4187 if (sk->sk_socket && 4188 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4189 tcp_new_space(sk); 4190 } 4191 } 4192 4193 static inline void tcp_data_snd_check(struct sock *sk) 4194 { 4195 tcp_push_pending_frames(sk); 4196 tcp_check_space(sk); 4197 } 4198 4199 /* 4200 * Check if sending an ack is needed. 4201 */ 4202 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4203 { 4204 struct tcp_sock *tp = tcp_sk(sk); 4205 4206 /* More than one full frame received... */ 4207 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 4208 /* ... and right edge of window advances far enough. 4209 * (tcp_recvmsg() will send ACK otherwise). Or... 4210 */ 4211 && __tcp_select_window(sk) >= tp->rcv_wnd) || 4212 /* We ACK each frame or... */ 4213 tcp_in_quickack_mode(sk) || 4214 /* We have out of order data. */ 4215 (ofo_possible && 4216 skb_peek(&tp->out_of_order_queue))) { 4217 /* Then ack it now */ 4218 tcp_send_ack(sk); 4219 } else { 4220 /* Else, send delayed ack. */ 4221 tcp_send_delayed_ack(sk); 4222 } 4223 } 4224 4225 static inline void tcp_ack_snd_check(struct sock *sk) 4226 { 4227 if (!inet_csk_ack_scheduled(sk)) { 4228 /* We sent a data segment already. */ 4229 return; 4230 } 4231 __tcp_ack_snd_check(sk, 1); 4232 } 4233 4234 /* 4235 * This routine is only called when we have urgent data 4236 * signaled. Its the 'slow' part of tcp_urg. It could be 4237 * moved inline now as tcp_urg is only called from one 4238 * place. We handle URGent data wrong. We have to - as 4239 * BSD still doesn't use the correction from RFC961. 4240 * For 1003.1g we should support a new option TCP_STDURG to permit 4241 * either form (or just set the sysctl tcp_stdurg). 4242 */ 4243 4244 static void tcp_check_urg(struct sock * sk, struct tcphdr * th) 4245 { 4246 struct tcp_sock *tp = tcp_sk(sk); 4247 u32 ptr = ntohs(th->urg_ptr); 4248 4249 if (ptr && !sysctl_tcp_stdurg) 4250 ptr--; 4251 ptr += ntohl(th->seq); 4252 4253 /* Ignore urgent data that we've already seen and read. */ 4254 if (after(tp->copied_seq, ptr)) 4255 return; 4256 4257 /* Do not replay urg ptr. 4258 * 4259 * NOTE: interesting situation not covered by specs. 4260 * Misbehaving sender may send urg ptr, pointing to segment, 4261 * which we already have in ofo queue. We are not able to fetch 4262 * such data and will stay in TCP_URG_NOTYET until will be eaten 4263 * by recvmsg(). Seems, we are not obliged to handle such wicked 4264 * situations. But it is worth to think about possibility of some 4265 * DoSes using some hypothetical application level deadlock. 4266 */ 4267 if (before(ptr, tp->rcv_nxt)) 4268 return; 4269 4270 /* Do we already have a newer (or duplicate) urgent pointer? */ 4271 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4272 return; 4273 4274 /* Tell the world about our new urgent pointer. */ 4275 sk_send_sigurg(sk); 4276 4277 /* We may be adding urgent data when the last byte read was 4278 * urgent. To do this requires some care. We cannot just ignore 4279 * tp->copied_seq since we would read the last urgent byte again 4280 * as data, nor can we alter copied_seq until this data arrives 4281 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4282 * 4283 * NOTE. Double Dutch. Rendering to plain English: author of comment 4284 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4285 * and expect that both A and B disappear from stream. This is _wrong_. 4286 * Though this happens in BSD with high probability, this is occasional. 4287 * Any application relying on this is buggy. Note also, that fix "works" 4288 * only in this artificial test. Insert some normal data between A and B and we will 4289 * decline of BSD again. Verdict: it is better to remove to trap 4290 * buggy users. 4291 */ 4292 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4293 !sock_flag(sk, SOCK_URGINLINE) && 4294 tp->copied_seq != tp->rcv_nxt) { 4295 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4296 tp->copied_seq++; 4297 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4298 __skb_unlink(skb, &sk->sk_receive_queue); 4299 __kfree_skb(skb); 4300 } 4301 } 4302 4303 tp->urg_data = TCP_URG_NOTYET; 4304 tp->urg_seq = ptr; 4305 4306 /* Disable header prediction. */ 4307 tp->pred_flags = 0; 4308 } 4309 4310 /* This is the 'fast' part of urgent handling. */ 4311 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 4312 { 4313 struct tcp_sock *tp = tcp_sk(sk); 4314 4315 /* Check if we get a new urgent pointer - normally not. */ 4316 if (th->urg) 4317 tcp_check_urg(sk,th); 4318 4319 /* Do we wait for any urgent data? - normally not... */ 4320 if (tp->urg_data == TCP_URG_NOTYET) { 4321 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4322 th->syn; 4323 4324 /* Is the urgent pointer pointing into this packet? */ 4325 if (ptr < skb->len) { 4326 u8 tmp; 4327 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4328 BUG(); 4329 tp->urg_data = TCP_URG_VALID | tmp; 4330 if (!sock_flag(sk, SOCK_DEAD)) 4331 sk->sk_data_ready(sk, 0); 4332 } 4333 } 4334 } 4335 4336 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4337 { 4338 struct tcp_sock *tp = tcp_sk(sk); 4339 int chunk = skb->len - hlen; 4340 int err; 4341 4342 local_bh_enable(); 4343 if (skb_csum_unnecessary(skb)) 4344 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4345 else 4346 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4347 tp->ucopy.iov); 4348 4349 if (!err) { 4350 tp->ucopy.len -= chunk; 4351 tp->copied_seq += chunk; 4352 tcp_rcv_space_adjust(sk); 4353 } 4354 4355 local_bh_disable(); 4356 return err; 4357 } 4358 4359 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 4360 { 4361 __sum16 result; 4362 4363 if (sock_owned_by_user(sk)) { 4364 local_bh_enable(); 4365 result = __tcp_checksum_complete(skb); 4366 local_bh_disable(); 4367 } else { 4368 result = __tcp_checksum_complete(skb); 4369 } 4370 return result; 4371 } 4372 4373 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 4374 { 4375 return !skb_csum_unnecessary(skb) && 4376 __tcp_checksum_complete_user(sk, skb); 4377 } 4378 4379 #ifdef CONFIG_NET_DMA 4380 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen) 4381 { 4382 struct tcp_sock *tp = tcp_sk(sk); 4383 int chunk = skb->len - hlen; 4384 int dma_cookie; 4385 int copied_early = 0; 4386 4387 if (tp->ucopy.wakeup) 4388 return 0; 4389 4390 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 4391 tp->ucopy.dma_chan = get_softnet_dma(); 4392 4393 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 4394 4395 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 4396 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list); 4397 4398 if (dma_cookie < 0) 4399 goto out; 4400 4401 tp->ucopy.dma_cookie = dma_cookie; 4402 copied_early = 1; 4403 4404 tp->ucopy.len -= chunk; 4405 tp->copied_seq += chunk; 4406 tcp_rcv_space_adjust(sk); 4407 4408 if ((tp->ucopy.len == 0) || 4409 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 4410 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 4411 tp->ucopy.wakeup = 1; 4412 sk->sk_data_ready(sk, 0); 4413 } 4414 } else if (chunk > 0) { 4415 tp->ucopy.wakeup = 1; 4416 sk->sk_data_ready(sk, 0); 4417 } 4418 out: 4419 return copied_early; 4420 } 4421 #endif /* CONFIG_NET_DMA */ 4422 4423 /* 4424 * TCP receive function for the ESTABLISHED state. 4425 * 4426 * It is split into a fast path and a slow path. The fast path is 4427 * disabled when: 4428 * - A zero window was announced from us - zero window probing 4429 * is only handled properly in the slow path. 4430 * - Out of order segments arrived. 4431 * - Urgent data is expected. 4432 * - There is no buffer space left 4433 * - Unexpected TCP flags/window values/header lengths are received 4434 * (detected by checking the TCP header against pred_flags) 4435 * - Data is sent in both directions. Fast path only supports pure senders 4436 * or pure receivers (this means either the sequence number or the ack 4437 * value must stay constant) 4438 * - Unexpected TCP option. 4439 * 4440 * When these conditions are not satisfied it drops into a standard 4441 * receive procedure patterned after RFC793 to handle all cases. 4442 * The first three cases are guaranteed by proper pred_flags setting, 4443 * the rest is checked inline. Fast processing is turned on in 4444 * tcp_data_queue when everything is OK. 4445 */ 4446 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 4447 struct tcphdr *th, unsigned len) 4448 { 4449 struct tcp_sock *tp = tcp_sk(sk); 4450 4451 /* 4452 * Header prediction. 4453 * The code loosely follows the one in the famous 4454 * "30 instruction TCP receive" Van Jacobson mail. 4455 * 4456 * Van's trick is to deposit buffers into socket queue 4457 * on a device interrupt, to call tcp_recv function 4458 * on the receive process context and checksum and copy 4459 * the buffer to user space. smart... 4460 * 4461 * Our current scheme is not silly either but we take the 4462 * extra cost of the net_bh soft interrupt processing... 4463 * We do checksum and copy also but from device to kernel. 4464 */ 4465 4466 tp->rx_opt.saw_tstamp = 0; 4467 4468 /* pred_flags is 0xS?10 << 16 + snd_wnd 4469 * if header_prediction is to be made 4470 * 'S' will always be tp->tcp_header_len >> 2 4471 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 4472 * turn it off (when there are holes in the receive 4473 * space for instance) 4474 * PSH flag is ignored. 4475 */ 4476 4477 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 4478 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4479 int tcp_header_len = tp->tcp_header_len; 4480 4481 /* Timestamp header prediction: tcp_header_len 4482 * is automatically equal to th->doff*4 due to pred_flags 4483 * match. 4484 */ 4485 4486 /* Check timestamp */ 4487 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 4488 __be32 *ptr = (__be32 *)(th + 1); 4489 4490 /* No? Slow path! */ 4491 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4492 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) 4493 goto slow_path; 4494 4495 tp->rx_opt.saw_tstamp = 1; 4496 ++ptr; 4497 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4498 ++ptr; 4499 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 4500 4501 /* If PAWS failed, check it more carefully in slow path */ 4502 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 4503 goto slow_path; 4504 4505 /* DO NOT update ts_recent here, if checksum fails 4506 * and timestamp was corrupted part, it will result 4507 * in a hung connection since we will drop all 4508 * future packets due to the PAWS test. 4509 */ 4510 } 4511 4512 if (len <= tcp_header_len) { 4513 /* Bulk data transfer: sender */ 4514 if (len == tcp_header_len) { 4515 /* Predicted packet is in window by definition. 4516 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4517 * Hence, check seq<=rcv_wup reduces to: 4518 */ 4519 if (tcp_header_len == 4520 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4521 tp->rcv_nxt == tp->rcv_wup) 4522 tcp_store_ts_recent(tp); 4523 4524 /* We know that such packets are checksummed 4525 * on entry. 4526 */ 4527 tcp_ack(sk, skb, 0); 4528 __kfree_skb(skb); 4529 tcp_data_snd_check(sk); 4530 return 0; 4531 } else { /* Header too small */ 4532 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4533 goto discard; 4534 } 4535 } else { 4536 int eaten = 0; 4537 int copied_early = 0; 4538 4539 if (tp->copied_seq == tp->rcv_nxt && 4540 len - tcp_header_len <= tp->ucopy.len) { 4541 #ifdef CONFIG_NET_DMA 4542 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 4543 copied_early = 1; 4544 eaten = 1; 4545 } 4546 #endif 4547 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) { 4548 __set_current_state(TASK_RUNNING); 4549 4550 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 4551 eaten = 1; 4552 } 4553 if (eaten) { 4554 /* Predicted packet is in window by definition. 4555 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4556 * Hence, check seq<=rcv_wup reduces to: 4557 */ 4558 if (tcp_header_len == 4559 (sizeof(struct tcphdr) + 4560 TCPOLEN_TSTAMP_ALIGNED) && 4561 tp->rcv_nxt == tp->rcv_wup) 4562 tcp_store_ts_recent(tp); 4563 4564 tcp_rcv_rtt_measure_ts(sk, skb); 4565 4566 __skb_pull(skb, tcp_header_len); 4567 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4568 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); 4569 } 4570 if (copied_early) 4571 tcp_cleanup_rbuf(sk, skb->len); 4572 } 4573 if (!eaten) { 4574 if (tcp_checksum_complete_user(sk, skb)) 4575 goto csum_error; 4576 4577 /* Predicted packet is in window by definition. 4578 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4579 * Hence, check seq<=rcv_wup reduces to: 4580 */ 4581 if (tcp_header_len == 4582 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4583 tp->rcv_nxt == tp->rcv_wup) 4584 tcp_store_ts_recent(tp); 4585 4586 tcp_rcv_rtt_measure_ts(sk, skb); 4587 4588 if ((int)skb->truesize > sk->sk_forward_alloc) 4589 goto step5; 4590 4591 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); 4592 4593 /* Bulk data transfer: receiver */ 4594 __skb_pull(skb,tcp_header_len); 4595 __skb_queue_tail(&sk->sk_receive_queue, skb); 4596 sk_stream_set_owner_r(skb, sk); 4597 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4598 } 4599 4600 tcp_event_data_recv(sk, skb); 4601 4602 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 4603 /* Well, only one small jumplet in fast path... */ 4604 tcp_ack(sk, skb, FLAG_DATA); 4605 tcp_data_snd_check(sk); 4606 if (!inet_csk_ack_scheduled(sk)) 4607 goto no_ack; 4608 } 4609 4610 __tcp_ack_snd_check(sk, 0); 4611 no_ack: 4612 #ifdef CONFIG_NET_DMA 4613 if (copied_early) 4614 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 4615 else 4616 #endif 4617 if (eaten) 4618 __kfree_skb(skb); 4619 else 4620 sk->sk_data_ready(sk, 0); 4621 return 0; 4622 } 4623 } 4624 4625 slow_path: 4626 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb)) 4627 goto csum_error; 4628 4629 /* 4630 * RFC1323: H1. Apply PAWS check first. 4631 */ 4632 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4633 tcp_paws_discard(sk, skb)) { 4634 if (!th->rst) { 4635 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4636 tcp_send_dupack(sk, skb); 4637 goto discard; 4638 } 4639 /* Resets are accepted even if PAWS failed. 4640 4641 ts_recent update must be made after we are sure 4642 that the packet is in window. 4643 */ 4644 } 4645 4646 /* 4647 * Standard slow path. 4648 */ 4649 4650 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4651 /* RFC793, page 37: "In all states except SYN-SENT, all reset 4652 * (RST) segments are validated by checking their SEQ-fields." 4653 * And page 69: "If an incoming segment is not acceptable, 4654 * an acknowledgment should be sent in reply (unless the RST bit 4655 * is set, if so drop the segment and return)". 4656 */ 4657 if (!th->rst) 4658 tcp_send_dupack(sk, skb); 4659 goto discard; 4660 } 4661 4662 if (th->rst) { 4663 tcp_reset(sk); 4664 goto discard; 4665 } 4666 4667 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4668 4669 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4670 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4671 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4672 tcp_reset(sk); 4673 return 1; 4674 } 4675 4676 step5: 4677 if (th->ack) 4678 tcp_ack(sk, skb, FLAG_SLOWPATH); 4679 4680 tcp_rcv_rtt_measure_ts(sk, skb); 4681 4682 /* Process urgent data. */ 4683 tcp_urg(sk, skb, th); 4684 4685 /* step 7: process the segment text */ 4686 tcp_data_queue(sk, skb); 4687 4688 tcp_data_snd_check(sk); 4689 tcp_ack_snd_check(sk); 4690 return 0; 4691 4692 csum_error: 4693 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4694 4695 discard: 4696 __kfree_skb(skb); 4697 return 0; 4698 } 4699 4700 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 4701 struct tcphdr *th, unsigned len) 4702 { 4703 struct tcp_sock *tp = tcp_sk(sk); 4704 struct inet_connection_sock *icsk = inet_csk(sk); 4705 int saved_clamp = tp->rx_opt.mss_clamp; 4706 4707 tcp_parse_options(skb, &tp->rx_opt, 0); 4708 4709 if (th->ack) { 4710 /* rfc793: 4711 * "If the state is SYN-SENT then 4712 * first check the ACK bit 4713 * If the ACK bit is set 4714 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 4715 * a reset (unless the RST bit is set, if so drop 4716 * the segment and return)" 4717 * 4718 * We do not send data with SYN, so that RFC-correct 4719 * test reduces to: 4720 */ 4721 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 4722 goto reset_and_undo; 4723 4724 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4725 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 4726 tcp_time_stamp)) { 4727 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); 4728 goto reset_and_undo; 4729 } 4730 4731 /* Now ACK is acceptable. 4732 * 4733 * "If the RST bit is set 4734 * If the ACK was acceptable then signal the user "error: 4735 * connection reset", drop the segment, enter CLOSED state, 4736 * delete TCB, and return." 4737 */ 4738 4739 if (th->rst) { 4740 tcp_reset(sk); 4741 goto discard; 4742 } 4743 4744 /* rfc793: 4745 * "fifth, if neither of the SYN or RST bits is set then 4746 * drop the segment and return." 4747 * 4748 * See note below! 4749 * --ANK(990513) 4750 */ 4751 if (!th->syn) 4752 goto discard_and_undo; 4753 4754 /* rfc793: 4755 * "If the SYN bit is on ... 4756 * are acceptable then ... 4757 * (our SYN has been ACKed), change the connection 4758 * state to ESTABLISHED..." 4759 */ 4760 4761 TCP_ECN_rcv_synack(tp, th); 4762 4763 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4764 tcp_ack(sk, skb, FLAG_SLOWPATH); 4765 4766 /* Ok.. it's good. Set up sequence numbers and 4767 * move to established. 4768 */ 4769 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4770 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4771 4772 /* RFC1323: The window in SYN & SYN/ACK segments is 4773 * never scaled. 4774 */ 4775 tp->snd_wnd = ntohs(th->window); 4776 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 4777 4778 if (!tp->rx_opt.wscale_ok) { 4779 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 4780 tp->window_clamp = min(tp->window_clamp, 65535U); 4781 } 4782 4783 if (tp->rx_opt.saw_tstamp) { 4784 tp->rx_opt.tstamp_ok = 1; 4785 tp->tcp_header_len = 4786 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4787 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4788 tcp_store_ts_recent(tp); 4789 } else { 4790 tp->tcp_header_len = sizeof(struct tcphdr); 4791 } 4792 4793 if (tcp_is_sack(tp) && sysctl_tcp_fack) 4794 tcp_enable_fack(tp); 4795 4796 tcp_mtup_init(sk); 4797 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4798 tcp_initialize_rcv_mss(sk); 4799 4800 /* Remember, tcp_poll() does not lock socket! 4801 * Change state from SYN-SENT only after copied_seq 4802 * is initialized. */ 4803 tp->copied_seq = tp->rcv_nxt; 4804 smp_mb(); 4805 tcp_set_state(sk, TCP_ESTABLISHED); 4806 4807 security_inet_conn_established(sk, skb); 4808 4809 /* Make sure socket is routed, for correct metrics. */ 4810 icsk->icsk_af_ops->rebuild_header(sk); 4811 4812 tcp_init_metrics(sk); 4813 4814 tcp_init_congestion_control(sk); 4815 4816 /* Prevent spurious tcp_cwnd_restart() on first data 4817 * packet. 4818 */ 4819 tp->lsndtime = tcp_time_stamp; 4820 4821 tcp_init_buffer_space(sk); 4822 4823 if (sock_flag(sk, SOCK_KEEPOPEN)) 4824 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 4825 4826 if (!tp->rx_opt.snd_wscale) 4827 __tcp_fast_path_on(tp, tp->snd_wnd); 4828 else 4829 tp->pred_flags = 0; 4830 4831 if (!sock_flag(sk, SOCK_DEAD)) { 4832 sk->sk_state_change(sk); 4833 sk_wake_async(sk, 0, POLL_OUT); 4834 } 4835 4836 if (sk->sk_write_pending || 4837 icsk->icsk_accept_queue.rskq_defer_accept || 4838 icsk->icsk_ack.pingpong) { 4839 /* Save one ACK. Data will be ready after 4840 * several ticks, if write_pending is set. 4841 * 4842 * It may be deleted, but with this feature tcpdumps 4843 * look so _wonderfully_ clever, that I was not able 4844 * to stand against the temptation 8) --ANK 4845 */ 4846 inet_csk_schedule_ack(sk); 4847 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 4848 icsk->icsk_ack.ato = TCP_ATO_MIN; 4849 tcp_incr_quickack(sk); 4850 tcp_enter_quickack_mode(sk); 4851 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 4852 TCP_DELACK_MAX, TCP_RTO_MAX); 4853 4854 discard: 4855 __kfree_skb(skb); 4856 return 0; 4857 } else { 4858 tcp_send_ack(sk); 4859 } 4860 return -1; 4861 } 4862 4863 /* No ACK in the segment */ 4864 4865 if (th->rst) { 4866 /* rfc793: 4867 * "If the RST bit is set 4868 * 4869 * Otherwise (no ACK) drop the segment and return." 4870 */ 4871 4872 goto discard_and_undo; 4873 } 4874 4875 /* PAWS check. */ 4876 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0)) 4877 goto discard_and_undo; 4878 4879 if (th->syn) { 4880 /* We see SYN without ACK. It is attempt of 4881 * simultaneous connect with crossed SYNs. 4882 * Particularly, it can be connect to self. 4883 */ 4884 tcp_set_state(sk, TCP_SYN_RECV); 4885 4886 if (tp->rx_opt.saw_tstamp) { 4887 tp->rx_opt.tstamp_ok = 1; 4888 tcp_store_ts_recent(tp); 4889 tp->tcp_header_len = 4890 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4891 } else { 4892 tp->tcp_header_len = sizeof(struct tcphdr); 4893 } 4894 4895 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4896 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4897 4898 /* RFC1323: The window in SYN & SYN/ACK segments is 4899 * never scaled. 4900 */ 4901 tp->snd_wnd = ntohs(th->window); 4902 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4903 tp->max_window = tp->snd_wnd; 4904 4905 TCP_ECN_rcv_syn(tp, th); 4906 4907 tcp_mtup_init(sk); 4908 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4909 tcp_initialize_rcv_mss(sk); 4910 4911 4912 tcp_send_synack(sk); 4913 #if 0 4914 /* Note, we could accept data and URG from this segment. 4915 * There are no obstacles to make this. 4916 * 4917 * However, if we ignore data in ACKless segments sometimes, 4918 * we have no reasons to accept it sometimes. 4919 * Also, seems the code doing it in step6 of tcp_rcv_state_process 4920 * is not flawless. So, discard packet for sanity. 4921 * Uncomment this return to process the data. 4922 */ 4923 return -1; 4924 #else 4925 goto discard; 4926 #endif 4927 } 4928 /* "fifth, if neither of the SYN or RST bits is set then 4929 * drop the segment and return." 4930 */ 4931 4932 discard_and_undo: 4933 tcp_clear_options(&tp->rx_opt); 4934 tp->rx_opt.mss_clamp = saved_clamp; 4935 goto discard; 4936 4937 reset_and_undo: 4938 tcp_clear_options(&tp->rx_opt); 4939 tp->rx_opt.mss_clamp = saved_clamp; 4940 return 1; 4941 } 4942 4943 4944 /* 4945 * This function implements the receiving procedure of RFC 793 for 4946 * all states except ESTABLISHED and TIME_WAIT. 4947 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 4948 * address independent. 4949 */ 4950 4951 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 4952 struct tcphdr *th, unsigned len) 4953 { 4954 struct tcp_sock *tp = tcp_sk(sk); 4955 struct inet_connection_sock *icsk = inet_csk(sk); 4956 int queued = 0; 4957 4958 tp->rx_opt.saw_tstamp = 0; 4959 4960 switch (sk->sk_state) { 4961 case TCP_CLOSE: 4962 goto discard; 4963 4964 case TCP_LISTEN: 4965 if (th->ack) 4966 return 1; 4967 4968 if (th->rst) 4969 goto discard; 4970 4971 if (th->syn) { 4972 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 4973 return 1; 4974 4975 /* Now we have several options: In theory there is 4976 * nothing else in the frame. KA9Q has an option to 4977 * send data with the syn, BSD accepts data with the 4978 * syn up to the [to be] advertised window and 4979 * Solaris 2.1 gives you a protocol error. For now 4980 * we just ignore it, that fits the spec precisely 4981 * and avoids incompatibilities. It would be nice in 4982 * future to drop through and process the data. 4983 * 4984 * Now that TTCP is starting to be used we ought to 4985 * queue this data. 4986 * But, this leaves one open to an easy denial of 4987 * service attack, and SYN cookies can't defend 4988 * against this problem. So, we drop the data 4989 * in the interest of security over speed unless 4990 * it's still in use. 4991 */ 4992 kfree_skb(skb); 4993 return 0; 4994 } 4995 goto discard; 4996 4997 case TCP_SYN_SENT: 4998 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 4999 if (queued >= 0) 5000 return queued; 5001 5002 /* Do step6 onward by hand. */ 5003 tcp_urg(sk, skb, th); 5004 __kfree_skb(skb); 5005 tcp_data_snd_check(sk); 5006 return 0; 5007 } 5008 5009 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5010 tcp_paws_discard(sk, skb)) { 5011 if (!th->rst) { 5012 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 5013 tcp_send_dupack(sk, skb); 5014 goto discard; 5015 } 5016 /* Reset is accepted even if it did not pass PAWS. */ 5017 } 5018 5019 /* step 1: check sequence number */ 5020 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5021 if (!th->rst) 5022 tcp_send_dupack(sk, skb); 5023 goto discard; 5024 } 5025 5026 /* step 2: check RST bit */ 5027 if (th->rst) { 5028 tcp_reset(sk); 5029 goto discard; 5030 } 5031 5032 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5033 5034 /* step 3: check security and precedence [ignored] */ 5035 5036 /* step 4: 5037 * 5038 * Check for a SYN in window. 5039 */ 5040 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5041 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 5042 tcp_reset(sk); 5043 return 1; 5044 } 5045 5046 /* step 5: check the ACK field */ 5047 if (th->ack) { 5048 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 5049 5050 switch (sk->sk_state) { 5051 case TCP_SYN_RECV: 5052 if (acceptable) { 5053 tp->copied_seq = tp->rcv_nxt; 5054 smp_mb(); 5055 tcp_set_state(sk, TCP_ESTABLISHED); 5056 sk->sk_state_change(sk); 5057 5058 /* Note, that this wakeup is only for marginal 5059 * crossed SYN case. Passively open sockets 5060 * are not waked up, because sk->sk_sleep == 5061 * NULL and sk->sk_socket == NULL. 5062 */ 5063 if (sk->sk_socket) { 5064 sk_wake_async(sk,0,POLL_OUT); 5065 } 5066 5067 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5068 tp->snd_wnd = ntohs(th->window) << 5069 tp->rx_opt.snd_wscale; 5070 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 5071 TCP_SKB_CB(skb)->seq); 5072 5073 /* tcp_ack considers this ACK as duplicate 5074 * and does not calculate rtt. 5075 * Fix it at least with timestamps. 5076 */ 5077 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5078 !tp->srtt) 5079 tcp_ack_saw_tstamp(sk, 0); 5080 5081 if (tp->rx_opt.tstamp_ok) 5082 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5083 5084 /* Make sure socket is routed, for 5085 * correct metrics. 5086 */ 5087 icsk->icsk_af_ops->rebuild_header(sk); 5088 5089 tcp_init_metrics(sk); 5090 5091 tcp_init_congestion_control(sk); 5092 5093 /* Prevent spurious tcp_cwnd_restart() on 5094 * first data packet. 5095 */ 5096 tp->lsndtime = tcp_time_stamp; 5097 5098 tcp_mtup_init(sk); 5099 tcp_initialize_rcv_mss(sk); 5100 tcp_init_buffer_space(sk); 5101 tcp_fast_path_on(tp); 5102 } else { 5103 return 1; 5104 } 5105 break; 5106 5107 case TCP_FIN_WAIT1: 5108 if (tp->snd_una == tp->write_seq) { 5109 tcp_set_state(sk, TCP_FIN_WAIT2); 5110 sk->sk_shutdown |= SEND_SHUTDOWN; 5111 dst_confirm(sk->sk_dst_cache); 5112 5113 if (!sock_flag(sk, SOCK_DEAD)) 5114 /* Wake up lingering close() */ 5115 sk->sk_state_change(sk); 5116 else { 5117 int tmo; 5118 5119 if (tp->linger2 < 0 || 5120 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5121 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5122 tcp_done(sk); 5123 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 5124 return 1; 5125 } 5126 5127 tmo = tcp_fin_time(sk); 5128 if (tmo > TCP_TIMEWAIT_LEN) { 5129 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5130 } else if (th->fin || sock_owned_by_user(sk)) { 5131 /* Bad case. We could lose such FIN otherwise. 5132 * It is not a big problem, but it looks confusing 5133 * and not so rare event. We still can lose it now, 5134 * if it spins in bh_lock_sock(), but it is really 5135 * marginal case. 5136 */ 5137 inet_csk_reset_keepalive_timer(sk, tmo); 5138 } else { 5139 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5140 goto discard; 5141 } 5142 } 5143 } 5144 break; 5145 5146 case TCP_CLOSING: 5147 if (tp->snd_una == tp->write_seq) { 5148 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5149 goto discard; 5150 } 5151 break; 5152 5153 case TCP_LAST_ACK: 5154 if (tp->snd_una == tp->write_seq) { 5155 tcp_update_metrics(sk); 5156 tcp_done(sk); 5157 goto discard; 5158 } 5159 break; 5160 } 5161 } else 5162 goto discard; 5163 5164 /* step 6: check the URG bit */ 5165 tcp_urg(sk, skb, th); 5166 5167 /* step 7: process the segment text */ 5168 switch (sk->sk_state) { 5169 case TCP_CLOSE_WAIT: 5170 case TCP_CLOSING: 5171 case TCP_LAST_ACK: 5172 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5173 break; 5174 case TCP_FIN_WAIT1: 5175 case TCP_FIN_WAIT2: 5176 /* RFC 793 says to queue data in these states, 5177 * RFC 1122 says we MUST send a reset. 5178 * BSD 4.4 also does reset. 5179 */ 5180 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5181 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5182 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5183 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 5184 tcp_reset(sk); 5185 return 1; 5186 } 5187 } 5188 /* Fall through */ 5189 case TCP_ESTABLISHED: 5190 tcp_data_queue(sk, skb); 5191 queued = 1; 5192 break; 5193 } 5194 5195 /* tcp_data could move socket to TIME-WAIT */ 5196 if (sk->sk_state != TCP_CLOSE) { 5197 tcp_data_snd_check(sk); 5198 tcp_ack_snd_check(sk); 5199 } 5200 5201 if (!queued) { 5202 discard: 5203 __kfree_skb(skb); 5204 } 5205 return 0; 5206 } 5207 5208 EXPORT_SYMBOL(sysctl_tcp_ecn); 5209 EXPORT_SYMBOL(sysctl_tcp_reordering); 5210 EXPORT_SYMBOL(tcp_parse_options); 5211 EXPORT_SYMBOL(tcp_rcv_established); 5212 EXPORT_SYMBOL(tcp_rcv_state_process); 5213 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 5214