xref: /linux/net/ipv4/tcp_input.c (revision 7b12b9137930eb821b68e1bfa11e9de692208620)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
84 
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
90 
91 int sysctl_tcp_moderate_rcvbuf = 1;
92 int sysctl_tcp_abc = 1;
93 
94 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
95 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
96 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
97 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
98 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
99 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
100 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
101 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
102 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112 
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114 
115 /* Adapt the MSS value used to make delayed ack decision to the
116  * real world.
117  */
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 				const struct sk_buff *skb)
120 {
121 	struct inet_connection_sock *icsk = inet_csk(sk);
122 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 	unsigned int len;
124 
125 	icsk->icsk_ack.last_seg_size = 0;
126 
127 	/* skb->len may jitter because of SACKs, even if peer
128 	 * sends good full-sized frames.
129 	 */
130 	len = skb->len;
131 	if (len >= icsk->icsk_ack.rcv_mss) {
132 		icsk->icsk_ack.rcv_mss = len;
133 	} else {
134 		/* Otherwise, we make more careful check taking into account,
135 		 * that SACKs block is variable.
136 		 *
137 		 * "len" is invariant segment length, including TCP header.
138 		 */
139 		len += skb->data - skb->h.raw;
140 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 		    /* If PSH is not set, packet should be
142 		     * full sized, provided peer TCP is not badly broken.
143 		     * This observation (if it is correct 8)) allows
144 		     * to handle super-low mtu links fairly.
145 		     */
146 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 			/* Subtract also invariant (if peer is RFC compliant),
149 			 * tcp header plus fixed timestamp option length.
150 			 * Resulting "len" is MSS free of SACK jitter.
151 			 */
152 			len -= tcp_sk(sk)->tcp_header_len;
153 			icsk->icsk_ack.last_seg_size = len;
154 			if (len == lss) {
155 				icsk->icsk_ack.rcv_mss = len;
156 				return;
157 			}
158 		}
159 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
160 	}
161 }
162 
163 static void tcp_incr_quickack(struct sock *sk)
164 {
165 	struct inet_connection_sock *icsk = inet_csk(sk);
166 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
167 
168 	if (quickacks==0)
169 		quickacks=2;
170 	if (quickacks > icsk->icsk_ack.quick)
171 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
172 }
173 
174 void tcp_enter_quickack_mode(struct sock *sk)
175 {
176 	struct inet_connection_sock *icsk = inet_csk(sk);
177 	tcp_incr_quickack(sk);
178 	icsk->icsk_ack.pingpong = 0;
179 	icsk->icsk_ack.ato = TCP_ATO_MIN;
180 }
181 
182 /* Send ACKs quickly, if "quick" count is not exhausted
183  * and the session is not interactive.
184  */
185 
186 static inline int tcp_in_quickack_mode(const struct sock *sk)
187 {
188 	const struct inet_connection_sock *icsk = inet_csk(sk);
189 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
190 }
191 
192 /* Buffer size and advertised window tuning.
193  *
194  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
195  */
196 
197 static void tcp_fixup_sndbuf(struct sock *sk)
198 {
199 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
200 		     sizeof(struct sk_buff);
201 
202 	if (sk->sk_sndbuf < 3 * sndmem)
203 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
204 }
205 
206 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
207  *
208  * All tcp_full_space() is split to two parts: "network" buffer, allocated
209  * forward and advertised in receiver window (tp->rcv_wnd) and
210  * "application buffer", required to isolate scheduling/application
211  * latencies from network.
212  * window_clamp is maximal advertised window. It can be less than
213  * tcp_full_space(), in this case tcp_full_space() - window_clamp
214  * is reserved for "application" buffer. The less window_clamp is
215  * the smoother our behaviour from viewpoint of network, but the lower
216  * throughput and the higher sensitivity of the connection to losses. 8)
217  *
218  * rcv_ssthresh is more strict window_clamp used at "slow start"
219  * phase to predict further behaviour of this connection.
220  * It is used for two goals:
221  * - to enforce header prediction at sender, even when application
222  *   requires some significant "application buffer". It is check #1.
223  * - to prevent pruning of receive queue because of misprediction
224  *   of receiver window. Check #2.
225  *
226  * The scheme does not work when sender sends good segments opening
227  * window and then starts to feed us spaghetti. But it should work
228  * in common situations. Otherwise, we have to rely on queue collapsing.
229  */
230 
231 /* Slow part of check#2. */
232 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
233 			     const struct sk_buff *skb)
234 {
235 	/* Optimize this! */
236 	int truesize = tcp_win_from_space(skb->truesize)/2;
237 	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
238 
239 	while (tp->rcv_ssthresh <= window) {
240 		if (truesize <= skb->len)
241 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
242 
243 		truesize >>= 1;
244 		window >>= 1;
245 	}
246 	return 0;
247 }
248 
249 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
250 			    struct sk_buff *skb)
251 {
252 	/* Check #1 */
253 	if (tp->rcv_ssthresh < tp->window_clamp &&
254 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
255 	    !tcp_memory_pressure) {
256 		int incr;
257 
258 		/* Check #2. Increase window, if skb with such overhead
259 		 * will fit to rcvbuf in future.
260 		 */
261 		if (tcp_win_from_space(skb->truesize) <= skb->len)
262 			incr = 2*tp->advmss;
263 		else
264 			incr = __tcp_grow_window(sk, tp, skb);
265 
266 		if (incr) {
267 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
268 			inet_csk(sk)->icsk_ack.quick |= 1;
269 		}
270 	}
271 }
272 
273 /* 3. Tuning rcvbuf, when connection enters established state. */
274 
275 static void tcp_fixup_rcvbuf(struct sock *sk)
276 {
277 	struct tcp_sock *tp = tcp_sk(sk);
278 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
279 
280 	/* Try to select rcvbuf so that 4 mss-sized segments
281 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
282 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
283 	 */
284 	while (tcp_win_from_space(rcvmem) < tp->advmss)
285 		rcvmem += 128;
286 	if (sk->sk_rcvbuf < 4 * rcvmem)
287 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
288 }
289 
290 /* 4. Try to fixup all. It is made immediately after connection enters
291  *    established state.
292  */
293 static void tcp_init_buffer_space(struct sock *sk)
294 {
295 	struct tcp_sock *tp = tcp_sk(sk);
296 	int maxwin;
297 
298 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
299 		tcp_fixup_rcvbuf(sk);
300 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
301 		tcp_fixup_sndbuf(sk);
302 
303 	tp->rcvq_space.space = tp->rcv_wnd;
304 
305 	maxwin = tcp_full_space(sk);
306 
307 	if (tp->window_clamp >= maxwin) {
308 		tp->window_clamp = maxwin;
309 
310 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
311 			tp->window_clamp = max(maxwin -
312 					       (maxwin >> sysctl_tcp_app_win),
313 					       4 * tp->advmss);
314 	}
315 
316 	/* Force reservation of one segment. */
317 	if (sysctl_tcp_app_win &&
318 	    tp->window_clamp > 2 * tp->advmss &&
319 	    tp->window_clamp + tp->advmss > maxwin)
320 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
321 
322 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
323 	tp->snd_cwnd_stamp = tcp_time_stamp;
324 }
325 
326 /* 5. Recalculate window clamp after socket hit its memory bounds. */
327 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
328 {
329 	struct inet_connection_sock *icsk = inet_csk(sk);
330 
331 	icsk->icsk_ack.quick = 0;
332 
333 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
334 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
335 	    !tcp_memory_pressure &&
336 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
337 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
338 				    sysctl_tcp_rmem[2]);
339 	}
340 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
341 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
342 }
343 
344 
345 /* Initialize RCV_MSS value.
346  * RCV_MSS is an our guess about MSS used by the peer.
347  * We haven't any direct information about the MSS.
348  * It's better to underestimate the RCV_MSS rather than overestimate.
349  * Overestimations make us ACKing less frequently than needed.
350  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
351  */
352 void tcp_initialize_rcv_mss(struct sock *sk)
353 {
354 	struct tcp_sock *tp = tcp_sk(sk);
355 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
356 
357 	hint = min(hint, tp->rcv_wnd/2);
358 	hint = min(hint, TCP_MIN_RCVMSS);
359 	hint = max(hint, TCP_MIN_MSS);
360 
361 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
362 }
363 
364 /* Receiver "autotuning" code.
365  *
366  * The algorithm for RTT estimation w/o timestamps is based on
367  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
368  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
369  *
370  * More detail on this code can be found at
371  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
372  * though this reference is out of date.  A new paper
373  * is pending.
374  */
375 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
376 {
377 	u32 new_sample = tp->rcv_rtt_est.rtt;
378 	long m = sample;
379 
380 	if (m == 0)
381 		m = 1;
382 
383 	if (new_sample != 0) {
384 		/* If we sample in larger samples in the non-timestamp
385 		 * case, we could grossly overestimate the RTT especially
386 		 * with chatty applications or bulk transfer apps which
387 		 * are stalled on filesystem I/O.
388 		 *
389 		 * Also, since we are only going for a minimum in the
390 		 * non-timestamp case, we do not smooth things out
391 		 * else with timestamps disabled convergence takes too
392 		 * long.
393 		 */
394 		if (!win_dep) {
395 			m -= (new_sample >> 3);
396 			new_sample += m;
397 		} else if (m < new_sample)
398 			new_sample = m << 3;
399 	} else {
400 		/* No previous measure. */
401 		new_sample = m << 3;
402 	}
403 
404 	if (tp->rcv_rtt_est.rtt != new_sample)
405 		tp->rcv_rtt_est.rtt = new_sample;
406 }
407 
408 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
409 {
410 	if (tp->rcv_rtt_est.time == 0)
411 		goto new_measure;
412 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
413 		return;
414 	tcp_rcv_rtt_update(tp,
415 			   jiffies - tp->rcv_rtt_est.time,
416 			   1);
417 
418 new_measure:
419 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
420 	tp->rcv_rtt_est.time = tcp_time_stamp;
421 }
422 
423 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
424 {
425 	struct tcp_sock *tp = tcp_sk(sk);
426 	if (tp->rx_opt.rcv_tsecr &&
427 	    (TCP_SKB_CB(skb)->end_seq -
428 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
429 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
430 }
431 
432 /*
433  * This function should be called every time data is copied to user space.
434  * It calculates the appropriate TCP receive buffer space.
435  */
436 void tcp_rcv_space_adjust(struct sock *sk)
437 {
438 	struct tcp_sock *tp = tcp_sk(sk);
439 	int time;
440 	int space;
441 
442 	if (tp->rcvq_space.time == 0)
443 		goto new_measure;
444 
445 	time = tcp_time_stamp - tp->rcvq_space.time;
446 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
447 	    tp->rcv_rtt_est.rtt == 0)
448 		return;
449 
450 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
451 
452 	space = max(tp->rcvq_space.space, space);
453 
454 	if (tp->rcvq_space.space != space) {
455 		int rcvmem;
456 
457 		tp->rcvq_space.space = space;
458 
459 		if (sysctl_tcp_moderate_rcvbuf &&
460 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
461 			int new_clamp = space;
462 
463 			/* Receive space grows, normalize in order to
464 			 * take into account packet headers and sk_buff
465 			 * structure overhead.
466 			 */
467 			space /= tp->advmss;
468 			if (!space)
469 				space = 1;
470 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
471 				  16 + sizeof(struct sk_buff));
472 			while (tcp_win_from_space(rcvmem) < tp->advmss)
473 				rcvmem += 128;
474 			space *= rcvmem;
475 			space = min(space, sysctl_tcp_rmem[2]);
476 			if (space > sk->sk_rcvbuf) {
477 				sk->sk_rcvbuf = space;
478 
479 				/* Make the window clamp follow along.  */
480 				tp->window_clamp = new_clamp;
481 			}
482 		}
483 	}
484 
485 new_measure:
486 	tp->rcvq_space.seq = tp->copied_seq;
487 	tp->rcvq_space.time = tcp_time_stamp;
488 }
489 
490 /* There is something which you must keep in mind when you analyze the
491  * behavior of the tp->ato delayed ack timeout interval.  When a
492  * connection starts up, we want to ack as quickly as possible.  The
493  * problem is that "good" TCP's do slow start at the beginning of data
494  * transmission.  The means that until we send the first few ACK's the
495  * sender will sit on his end and only queue most of his data, because
496  * he can only send snd_cwnd unacked packets at any given time.  For
497  * each ACK we send, he increments snd_cwnd and transmits more of his
498  * queue.  -DaveM
499  */
500 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
501 {
502 	struct inet_connection_sock *icsk = inet_csk(sk);
503 	u32 now;
504 
505 	inet_csk_schedule_ack(sk);
506 
507 	tcp_measure_rcv_mss(sk, skb);
508 
509 	tcp_rcv_rtt_measure(tp);
510 
511 	now = tcp_time_stamp;
512 
513 	if (!icsk->icsk_ack.ato) {
514 		/* The _first_ data packet received, initialize
515 		 * delayed ACK engine.
516 		 */
517 		tcp_incr_quickack(sk);
518 		icsk->icsk_ack.ato = TCP_ATO_MIN;
519 	} else {
520 		int m = now - icsk->icsk_ack.lrcvtime;
521 
522 		if (m <= TCP_ATO_MIN/2) {
523 			/* The fastest case is the first. */
524 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
525 		} else if (m < icsk->icsk_ack.ato) {
526 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
527 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
528 				icsk->icsk_ack.ato = icsk->icsk_rto;
529 		} else if (m > icsk->icsk_rto) {
530 			/* Too long gap. Apparently sender failed to
531 			 * restart window, so that we send ACKs quickly.
532 			 */
533 			tcp_incr_quickack(sk);
534 			sk_stream_mem_reclaim(sk);
535 		}
536 	}
537 	icsk->icsk_ack.lrcvtime = now;
538 
539 	TCP_ECN_check_ce(tp, skb);
540 
541 	if (skb->len >= 128)
542 		tcp_grow_window(sk, tp, skb);
543 }
544 
545 /* Called to compute a smoothed rtt estimate. The data fed to this
546  * routine either comes from timestamps, or from segments that were
547  * known _not_ to have been retransmitted [see Karn/Partridge
548  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
549  * piece by Van Jacobson.
550  * NOTE: the next three routines used to be one big routine.
551  * To save cycles in the RFC 1323 implementation it was better to break
552  * it up into three procedures. -- erics
553  */
554 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
555 {
556 	struct tcp_sock *tp = tcp_sk(sk);
557 	long m = mrtt; /* RTT */
558 
559 	/*	The following amusing code comes from Jacobson's
560 	 *	article in SIGCOMM '88.  Note that rtt and mdev
561 	 *	are scaled versions of rtt and mean deviation.
562 	 *	This is designed to be as fast as possible
563 	 *	m stands for "measurement".
564 	 *
565 	 *	On a 1990 paper the rto value is changed to:
566 	 *	RTO = rtt + 4 * mdev
567 	 *
568 	 * Funny. This algorithm seems to be very broken.
569 	 * These formulae increase RTO, when it should be decreased, increase
570 	 * too slowly, when it should be increased quickly, decrease too quickly
571 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
572 	 * does not matter how to _calculate_ it. Seems, it was trap
573 	 * that VJ failed to avoid. 8)
574 	 */
575 	if(m == 0)
576 		m = 1;
577 	if (tp->srtt != 0) {
578 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
579 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
580 		if (m < 0) {
581 			m = -m;		/* m is now abs(error) */
582 			m -= (tp->mdev >> 2);   /* similar update on mdev */
583 			/* This is similar to one of Eifel findings.
584 			 * Eifel blocks mdev updates when rtt decreases.
585 			 * This solution is a bit different: we use finer gain
586 			 * for mdev in this case (alpha*beta).
587 			 * Like Eifel it also prevents growth of rto,
588 			 * but also it limits too fast rto decreases,
589 			 * happening in pure Eifel.
590 			 */
591 			if (m > 0)
592 				m >>= 3;
593 		} else {
594 			m -= (tp->mdev >> 2);   /* similar update on mdev */
595 		}
596 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
597 		if (tp->mdev > tp->mdev_max) {
598 			tp->mdev_max = tp->mdev;
599 			if (tp->mdev_max > tp->rttvar)
600 				tp->rttvar = tp->mdev_max;
601 		}
602 		if (after(tp->snd_una, tp->rtt_seq)) {
603 			if (tp->mdev_max < tp->rttvar)
604 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
605 			tp->rtt_seq = tp->snd_nxt;
606 			tp->mdev_max = TCP_RTO_MIN;
607 		}
608 	} else {
609 		/* no previous measure. */
610 		tp->srtt = m<<3;	/* take the measured time to be rtt */
611 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
612 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
613 		tp->rtt_seq = tp->snd_nxt;
614 	}
615 }
616 
617 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
618  * routine referred to above.
619  */
620 static inline void tcp_set_rto(struct sock *sk)
621 {
622 	const struct tcp_sock *tp = tcp_sk(sk);
623 	/* Old crap is replaced with new one. 8)
624 	 *
625 	 * More seriously:
626 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
627 	 *    It cannot be less due to utterly erratic ACK generation made
628 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
629 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
630 	 *    is invisible. Actually, Linux-2.4 also generates erratic
631 	 *    ACKs in some circumstances.
632 	 */
633 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
634 
635 	/* 2. Fixups made earlier cannot be right.
636 	 *    If we do not estimate RTO correctly without them,
637 	 *    all the algo is pure shit and should be replaced
638 	 *    with correct one. It is exactly, which we pretend to do.
639 	 */
640 }
641 
642 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
643  * guarantees that rto is higher.
644  */
645 static inline void tcp_bound_rto(struct sock *sk)
646 {
647 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
648 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
649 }
650 
651 /* Save metrics learned by this TCP session.
652    This function is called only, when TCP finishes successfully
653    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
654  */
655 void tcp_update_metrics(struct sock *sk)
656 {
657 	struct tcp_sock *tp = tcp_sk(sk);
658 	struct dst_entry *dst = __sk_dst_get(sk);
659 
660 	if (sysctl_tcp_nometrics_save)
661 		return;
662 
663 	dst_confirm(dst);
664 
665 	if (dst && (dst->flags&DST_HOST)) {
666 		const struct inet_connection_sock *icsk = inet_csk(sk);
667 		int m;
668 
669 		if (icsk->icsk_backoff || !tp->srtt) {
670 			/* This session failed to estimate rtt. Why?
671 			 * Probably, no packets returned in time.
672 			 * Reset our results.
673 			 */
674 			if (!(dst_metric_locked(dst, RTAX_RTT)))
675 				dst->metrics[RTAX_RTT-1] = 0;
676 			return;
677 		}
678 
679 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
680 
681 		/* If newly calculated rtt larger than stored one,
682 		 * store new one. Otherwise, use EWMA. Remember,
683 		 * rtt overestimation is always better than underestimation.
684 		 */
685 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
686 			if (m <= 0)
687 				dst->metrics[RTAX_RTT-1] = tp->srtt;
688 			else
689 				dst->metrics[RTAX_RTT-1] -= (m>>3);
690 		}
691 
692 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
693 			if (m < 0)
694 				m = -m;
695 
696 			/* Scale deviation to rttvar fixed point */
697 			m >>= 1;
698 			if (m < tp->mdev)
699 				m = tp->mdev;
700 
701 			if (m >= dst_metric(dst, RTAX_RTTVAR))
702 				dst->metrics[RTAX_RTTVAR-1] = m;
703 			else
704 				dst->metrics[RTAX_RTTVAR-1] -=
705 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
706 		}
707 
708 		if (tp->snd_ssthresh >= 0xFFFF) {
709 			/* Slow start still did not finish. */
710 			if (dst_metric(dst, RTAX_SSTHRESH) &&
711 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
712 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
713 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
714 			if (!dst_metric_locked(dst, RTAX_CWND) &&
715 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
716 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
717 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
718 			   icsk->icsk_ca_state == TCP_CA_Open) {
719 			/* Cong. avoidance phase, cwnd is reliable. */
720 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
721 				dst->metrics[RTAX_SSTHRESH-1] =
722 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
723 			if (!dst_metric_locked(dst, RTAX_CWND))
724 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
725 		} else {
726 			/* Else slow start did not finish, cwnd is non-sense,
727 			   ssthresh may be also invalid.
728 			 */
729 			if (!dst_metric_locked(dst, RTAX_CWND))
730 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
731 			if (dst->metrics[RTAX_SSTHRESH-1] &&
732 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
733 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
734 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
735 		}
736 
737 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
738 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
739 			    tp->reordering != sysctl_tcp_reordering)
740 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
741 		}
742 	}
743 }
744 
745 /* Numbers are taken from RFC2414.  */
746 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
747 {
748 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
749 
750 	if (!cwnd) {
751 		if (tp->mss_cache > 1460)
752 			cwnd = 2;
753 		else
754 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
755 	}
756 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
757 }
758 
759 /* Set slow start threshold and cwnd not falling to slow start */
760 void tcp_enter_cwr(struct sock *sk)
761 {
762 	struct tcp_sock *tp = tcp_sk(sk);
763 
764 	tp->prior_ssthresh = 0;
765 	tp->bytes_acked = 0;
766 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
767 		tp->undo_marker = 0;
768 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
769 		tp->snd_cwnd = min(tp->snd_cwnd,
770 				   tcp_packets_in_flight(tp) + 1U);
771 		tp->snd_cwnd_cnt = 0;
772 		tp->high_seq = tp->snd_nxt;
773 		tp->snd_cwnd_stamp = tcp_time_stamp;
774 		TCP_ECN_queue_cwr(tp);
775 
776 		tcp_set_ca_state(sk, TCP_CA_CWR);
777 	}
778 }
779 
780 /* Initialize metrics on socket. */
781 
782 static void tcp_init_metrics(struct sock *sk)
783 {
784 	struct tcp_sock *tp = tcp_sk(sk);
785 	struct dst_entry *dst = __sk_dst_get(sk);
786 
787 	if (dst == NULL)
788 		goto reset;
789 
790 	dst_confirm(dst);
791 
792 	if (dst_metric_locked(dst, RTAX_CWND))
793 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
794 	if (dst_metric(dst, RTAX_SSTHRESH)) {
795 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
796 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
797 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
798 	}
799 	if (dst_metric(dst, RTAX_REORDERING) &&
800 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
801 		tp->rx_opt.sack_ok &= ~2;
802 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
803 	}
804 
805 	if (dst_metric(dst, RTAX_RTT) == 0)
806 		goto reset;
807 
808 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
809 		goto reset;
810 
811 	/* Initial rtt is determined from SYN,SYN-ACK.
812 	 * The segment is small and rtt may appear much
813 	 * less than real one. Use per-dst memory
814 	 * to make it more realistic.
815 	 *
816 	 * A bit of theory. RTT is time passed after "normal" sized packet
817 	 * is sent until it is ACKed. In normal circumstances sending small
818 	 * packets force peer to delay ACKs and calculation is correct too.
819 	 * The algorithm is adaptive and, provided we follow specs, it
820 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
821 	 * tricks sort of "quick acks" for time long enough to decrease RTT
822 	 * to low value, and then abruptly stops to do it and starts to delay
823 	 * ACKs, wait for troubles.
824 	 */
825 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
826 		tp->srtt = dst_metric(dst, RTAX_RTT);
827 		tp->rtt_seq = tp->snd_nxt;
828 	}
829 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
830 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
831 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
832 	}
833 	tcp_set_rto(sk);
834 	tcp_bound_rto(sk);
835 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
836 		goto reset;
837 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
838 	tp->snd_cwnd_stamp = tcp_time_stamp;
839 	return;
840 
841 reset:
842 	/* Play conservative. If timestamps are not
843 	 * supported, TCP will fail to recalculate correct
844 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
845 	 */
846 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
847 		tp->srtt = 0;
848 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
849 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
850 	}
851 }
852 
853 static void tcp_update_reordering(struct sock *sk, const int metric,
854 				  const int ts)
855 {
856 	struct tcp_sock *tp = tcp_sk(sk);
857 	if (metric > tp->reordering) {
858 		tp->reordering = min(TCP_MAX_REORDERING, metric);
859 
860 		/* This exciting event is worth to be remembered. 8) */
861 		if (ts)
862 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
863 		else if (IsReno(tp))
864 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
865 		else if (IsFack(tp))
866 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
867 		else
868 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
869 #if FASTRETRANS_DEBUG > 1
870 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
871 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
872 		       tp->reordering,
873 		       tp->fackets_out,
874 		       tp->sacked_out,
875 		       tp->undo_marker ? tp->undo_retrans : 0);
876 #endif
877 		/* Disable FACK yet. */
878 		tp->rx_opt.sack_ok &= ~2;
879 	}
880 }
881 
882 /* This procedure tags the retransmission queue when SACKs arrive.
883  *
884  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
885  * Packets in queue with these bits set are counted in variables
886  * sacked_out, retrans_out and lost_out, correspondingly.
887  *
888  * Valid combinations are:
889  * Tag  InFlight	Description
890  * 0	1		- orig segment is in flight.
891  * S	0		- nothing flies, orig reached receiver.
892  * L	0		- nothing flies, orig lost by net.
893  * R	2		- both orig and retransmit are in flight.
894  * L|R	1		- orig is lost, retransmit is in flight.
895  * S|R  1		- orig reached receiver, retrans is still in flight.
896  * (L|S|R is logically valid, it could occur when L|R is sacked,
897  *  but it is equivalent to plain S and code short-curcuits it to S.
898  *  L|S is logically invalid, it would mean -1 packet in flight 8))
899  *
900  * These 6 states form finite state machine, controlled by the following events:
901  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
902  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
903  * 3. Loss detection event of one of three flavors:
904  *	A. Scoreboard estimator decided the packet is lost.
905  *	   A'. Reno "three dupacks" marks head of queue lost.
906  *	   A''. Its FACK modfication, head until snd.fack is lost.
907  *	B. SACK arrives sacking data transmitted after never retransmitted
908  *	   hole was sent out.
909  *	C. SACK arrives sacking SND.NXT at the moment, when the
910  *	   segment was retransmitted.
911  * 4. D-SACK added new rule: D-SACK changes any tag to S.
912  *
913  * It is pleasant to note, that state diagram turns out to be commutative,
914  * so that we are allowed not to be bothered by order of our actions,
915  * when multiple events arrive simultaneously. (see the function below).
916  *
917  * Reordering detection.
918  * --------------------
919  * Reordering metric is maximal distance, which a packet can be displaced
920  * in packet stream. With SACKs we can estimate it:
921  *
922  * 1. SACK fills old hole and the corresponding segment was not
923  *    ever retransmitted -> reordering. Alas, we cannot use it
924  *    when segment was retransmitted.
925  * 2. The last flaw is solved with D-SACK. D-SACK arrives
926  *    for retransmitted and already SACKed segment -> reordering..
927  * Both of these heuristics are not used in Loss state, when we cannot
928  * account for retransmits accurately.
929  */
930 static int
931 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
932 {
933 	const struct inet_connection_sock *icsk = inet_csk(sk);
934 	struct tcp_sock *tp = tcp_sk(sk);
935 	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
936 	struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
937 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
938 	int reord = tp->packets_out;
939 	int prior_fackets;
940 	u32 lost_retrans = 0;
941 	int flag = 0;
942 	int dup_sack = 0;
943 	int i;
944 
945 	if (!tp->sacked_out)
946 		tp->fackets_out = 0;
947 	prior_fackets = tp->fackets_out;
948 
949 	/* SACK fastpath:
950 	 * if the only SACK change is the increase of the end_seq of
951 	 * the first block then only apply that SACK block
952 	 * and use retrans queue hinting otherwise slowpath */
953 	flag = 1;
954 	for (i = 0; i< num_sacks; i++) {
955 		__u32 start_seq = ntohl(sp[i].start_seq);
956 		__u32 end_seq =	 ntohl(sp[i].end_seq);
957 
958 		if (i == 0){
959 			if (tp->recv_sack_cache[i].start_seq != start_seq)
960 				flag = 0;
961 		} else {
962 			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
963 			    (tp->recv_sack_cache[i].end_seq != end_seq))
964 				flag = 0;
965 		}
966 		tp->recv_sack_cache[i].start_seq = start_seq;
967 		tp->recv_sack_cache[i].end_seq = end_seq;
968 
969 		/* Check for D-SACK. */
970 		if (i == 0) {
971 			u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
972 
973 			if (before(start_seq, ack)) {
974 				dup_sack = 1;
975 				tp->rx_opt.sack_ok |= 4;
976 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
977 			} else if (num_sacks > 1 &&
978 				   !after(end_seq, ntohl(sp[1].end_seq)) &&
979 				   !before(start_seq, ntohl(sp[1].start_seq))) {
980 				dup_sack = 1;
981 				tp->rx_opt.sack_ok |= 4;
982 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
983 			}
984 
985 			/* D-SACK for already forgotten data...
986 			 * Do dumb counting. */
987 			if (dup_sack &&
988 			    !after(end_seq, prior_snd_una) &&
989 			    after(end_seq, tp->undo_marker))
990 				tp->undo_retrans--;
991 
992 			/* Eliminate too old ACKs, but take into
993 			 * account more or less fresh ones, they can
994 			 * contain valid SACK info.
995 			 */
996 			if (before(ack, prior_snd_una - tp->max_window))
997 				return 0;
998 		}
999 	}
1000 
1001 	if (flag)
1002 		num_sacks = 1;
1003 	else {
1004 		int j;
1005 		tp->fastpath_skb_hint = NULL;
1006 
1007 		/* order SACK blocks to allow in order walk of the retrans queue */
1008 		for (i = num_sacks-1; i > 0; i--) {
1009 			for (j = 0; j < i; j++){
1010 				if (after(ntohl(sp[j].start_seq),
1011 					  ntohl(sp[j+1].start_seq))){
1012 					sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq);
1013 					sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq);
1014 					sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq);
1015 					sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq);
1016 				}
1017 
1018 			}
1019 		}
1020 	}
1021 
1022 	/* clear flag as used for different purpose in following code */
1023 	flag = 0;
1024 
1025 	for (i=0; i<num_sacks; i++, sp++) {
1026 		struct sk_buff *skb;
1027 		__u32 start_seq = ntohl(sp->start_seq);
1028 		__u32 end_seq = ntohl(sp->end_seq);
1029 		int fack_count;
1030 
1031 		/* Use SACK fastpath hint if valid */
1032 		if (tp->fastpath_skb_hint) {
1033 			skb = tp->fastpath_skb_hint;
1034 			fack_count = tp->fastpath_cnt_hint;
1035 		} else {
1036 			skb = sk->sk_write_queue.next;
1037 			fack_count = 0;
1038 		}
1039 
1040 		/* Event "B" in the comment above. */
1041 		if (after(end_seq, tp->high_seq))
1042 			flag |= FLAG_DATA_LOST;
1043 
1044 		sk_stream_for_retrans_queue_from(skb, sk) {
1045 			int in_sack, pcount;
1046 			u8 sacked;
1047 
1048 			tp->fastpath_skb_hint = skb;
1049 			tp->fastpath_cnt_hint = fack_count;
1050 
1051 			/* The retransmission queue is always in order, so
1052 			 * we can short-circuit the walk early.
1053 			 */
1054 			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1055 				break;
1056 
1057 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1058 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1059 
1060 			pcount = tcp_skb_pcount(skb);
1061 
1062 			if (pcount > 1 && !in_sack &&
1063 			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1064 				unsigned int pkt_len;
1065 
1066 				in_sack = !after(start_seq,
1067 						 TCP_SKB_CB(skb)->seq);
1068 
1069 				if (!in_sack)
1070 					pkt_len = (start_seq -
1071 						   TCP_SKB_CB(skb)->seq);
1072 				else
1073 					pkt_len = (end_seq -
1074 						   TCP_SKB_CB(skb)->seq);
1075 				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size))
1076 					break;
1077 				pcount = tcp_skb_pcount(skb);
1078 			}
1079 
1080 			fack_count += pcount;
1081 
1082 			sacked = TCP_SKB_CB(skb)->sacked;
1083 
1084 			/* Account D-SACK for retransmitted packet. */
1085 			if ((dup_sack && in_sack) &&
1086 			    (sacked & TCPCB_RETRANS) &&
1087 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1088 				tp->undo_retrans--;
1089 
1090 			/* The frame is ACKed. */
1091 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1092 				if (sacked&TCPCB_RETRANS) {
1093 					if ((dup_sack && in_sack) &&
1094 					    (sacked&TCPCB_SACKED_ACKED))
1095 						reord = min(fack_count, reord);
1096 				} else {
1097 					/* If it was in a hole, we detected reordering. */
1098 					if (fack_count < prior_fackets &&
1099 					    !(sacked&TCPCB_SACKED_ACKED))
1100 						reord = min(fack_count, reord);
1101 				}
1102 
1103 				/* Nothing to do; acked frame is about to be dropped. */
1104 				continue;
1105 			}
1106 
1107 			if ((sacked&TCPCB_SACKED_RETRANS) &&
1108 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1109 			    (!lost_retrans || after(end_seq, lost_retrans)))
1110 				lost_retrans = end_seq;
1111 
1112 			if (!in_sack)
1113 				continue;
1114 
1115 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1116 				if (sacked & TCPCB_SACKED_RETRANS) {
1117 					/* If the segment is not tagged as lost,
1118 					 * we do not clear RETRANS, believing
1119 					 * that retransmission is still in flight.
1120 					 */
1121 					if (sacked & TCPCB_LOST) {
1122 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1123 						tp->lost_out -= tcp_skb_pcount(skb);
1124 						tp->retrans_out -= tcp_skb_pcount(skb);
1125 
1126 						/* clear lost hint */
1127 						tp->retransmit_skb_hint = NULL;
1128 					}
1129 				} else {
1130 					/* New sack for not retransmitted frame,
1131 					 * which was in hole. It is reordering.
1132 					 */
1133 					if (!(sacked & TCPCB_RETRANS) &&
1134 					    fack_count < prior_fackets)
1135 						reord = min(fack_count, reord);
1136 
1137 					if (sacked & TCPCB_LOST) {
1138 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1139 						tp->lost_out -= tcp_skb_pcount(skb);
1140 
1141 						/* clear lost hint */
1142 						tp->retransmit_skb_hint = NULL;
1143 					}
1144 				}
1145 
1146 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1147 				flag |= FLAG_DATA_SACKED;
1148 				tp->sacked_out += tcp_skb_pcount(skb);
1149 
1150 				if (fack_count > tp->fackets_out)
1151 					tp->fackets_out = fack_count;
1152 			} else {
1153 				if (dup_sack && (sacked&TCPCB_RETRANS))
1154 					reord = min(fack_count, reord);
1155 			}
1156 
1157 			/* D-SACK. We can detect redundant retransmission
1158 			 * in S|R and plain R frames and clear it.
1159 			 * undo_retrans is decreased above, L|R frames
1160 			 * are accounted above as well.
1161 			 */
1162 			if (dup_sack &&
1163 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1164 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1165 				tp->retrans_out -= tcp_skb_pcount(skb);
1166 				tp->retransmit_skb_hint = NULL;
1167 			}
1168 		}
1169 	}
1170 
1171 	/* Check for lost retransmit. This superb idea is
1172 	 * borrowed from "ratehalving". Event "C".
1173 	 * Later note: FACK people cheated me again 8),
1174 	 * we have to account for reordering! Ugly,
1175 	 * but should help.
1176 	 */
1177 	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1178 		struct sk_buff *skb;
1179 
1180 		sk_stream_for_retrans_queue(skb, sk) {
1181 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1182 				break;
1183 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1184 				continue;
1185 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1186 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1187 			    (IsFack(tp) ||
1188 			     !before(lost_retrans,
1189 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1190 				     tp->mss_cache))) {
1191 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1192 				tp->retrans_out -= tcp_skb_pcount(skb);
1193 
1194 				/* clear lost hint */
1195 				tp->retransmit_skb_hint = NULL;
1196 
1197 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1198 					tp->lost_out += tcp_skb_pcount(skb);
1199 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1200 					flag |= FLAG_DATA_SACKED;
1201 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1202 				}
1203 			}
1204 		}
1205 	}
1206 
1207 	tp->left_out = tp->sacked_out + tp->lost_out;
1208 
1209 	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1210 		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1211 
1212 #if FASTRETRANS_DEBUG > 0
1213 	BUG_TRAP((int)tp->sacked_out >= 0);
1214 	BUG_TRAP((int)tp->lost_out >= 0);
1215 	BUG_TRAP((int)tp->retrans_out >= 0);
1216 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1217 #endif
1218 	return flag;
1219 }
1220 
1221 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1222  * segments to see from the next ACKs whether any data was really missing.
1223  * If the RTO was spurious, new ACKs should arrive.
1224  */
1225 void tcp_enter_frto(struct sock *sk)
1226 {
1227 	const struct inet_connection_sock *icsk = inet_csk(sk);
1228 	struct tcp_sock *tp = tcp_sk(sk);
1229 	struct sk_buff *skb;
1230 
1231 	tp->frto_counter = 1;
1232 
1233 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1234             tp->snd_una == tp->high_seq ||
1235             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1236 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1237 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1238 		tcp_ca_event(sk, CA_EVENT_FRTO);
1239 	}
1240 
1241 	/* Have to clear retransmission markers here to keep the bookkeeping
1242 	 * in shape, even though we are not yet in Loss state.
1243 	 * If something was really lost, it is eventually caught up
1244 	 * in tcp_enter_frto_loss.
1245 	 */
1246 	tp->retrans_out = 0;
1247 	tp->undo_marker = tp->snd_una;
1248 	tp->undo_retrans = 0;
1249 
1250 	sk_stream_for_retrans_queue(skb, sk) {
1251 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1252 	}
1253 	tcp_sync_left_out(tp);
1254 
1255 	tcp_set_ca_state(sk, TCP_CA_Open);
1256 	tp->frto_highmark = tp->snd_nxt;
1257 }
1258 
1259 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1260  * which indicates that we should follow the traditional RTO recovery,
1261  * i.e. mark everything lost and do go-back-N retransmission.
1262  */
1263 static void tcp_enter_frto_loss(struct sock *sk)
1264 {
1265 	struct tcp_sock *tp = tcp_sk(sk);
1266 	struct sk_buff *skb;
1267 	int cnt = 0;
1268 
1269 	tp->sacked_out = 0;
1270 	tp->lost_out = 0;
1271 	tp->fackets_out = 0;
1272 
1273 	sk_stream_for_retrans_queue(skb, sk) {
1274 		cnt += tcp_skb_pcount(skb);
1275 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1276 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1277 
1278 			/* Do not mark those segments lost that were
1279 			 * forward transmitted after RTO
1280 			 */
1281 			if (!after(TCP_SKB_CB(skb)->end_seq,
1282 				   tp->frto_highmark)) {
1283 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1284 				tp->lost_out += tcp_skb_pcount(skb);
1285 			}
1286 		} else {
1287 			tp->sacked_out += tcp_skb_pcount(skb);
1288 			tp->fackets_out = cnt;
1289 		}
1290 	}
1291 	tcp_sync_left_out(tp);
1292 
1293 	tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1294 	tp->snd_cwnd_cnt = 0;
1295 	tp->snd_cwnd_stamp = tcp_time_stamp;
1296 	tp->undo_marker = 0;
1297 	tp->frto_counter = 0;
1298 
1299 	tp->reordering = min_t(unsigned int, tp->reordering,
1300 					     sysctl_tcp_reordering);
1301 	tcp_set_ca_state(sk, TCP_CA_Loss);
1302 	tp->high_seq = tp->frto_highmark;
1303 	TCP_ECN_queue_cwr(tp);
1304 
1305 	clear_all_retrans_hints(tp);
1306 }
1307 
1308 void tcp_clear_retrans(struct tcp_sock *tp)
1309 {
1310 	tp->left_out = 0;
1311 	tp->retrans_out = 0;
1312 
1313 	tp->fackets_out = 0;
1314 	tp->sacked_out = 0;
1315 	tp->lost_out = 0;
1316 
1317 	tp->undo_marker = 0;
1318 	tp->undo_retrans = 0;
1319 }
1320 
1321 /* Enter Loss state. If "how" is not zero, forget all SACK information
1322  * and reset tags completely, otherwise preserve SACKs. If receiver
1323  * dropped its ofo queue, we will know this due to reneging detection.
1324  */
1325 void tcp_enter_loss(struct sock *sk, int how)
1326 {
1327 	const struct inet_connection_sock *icsk = inet_csk(sk);
1328 	struct tcp_sock *tp = tcp_sk(sk);
1329 	struct sk_buff *skb;
1330 	int cnt = 0;
1331 
1332 	/* Reduce ssthresh if it has not yet been made inside this window. */
1333 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1334 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1335 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1336 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1337 		tcp_ca_event(sk, CA_EVENT_LOSS);
1338 	}
1339 	tp->snd_cwnd	   = 1;
1340 	tp->snd_cwnd_cnt   = 0;
1341 	tp->snd_cwnd_stamp = tcp_time_stamp;
1342 
1343 	tp->bytes_acked = 0;
1344 	tcp_clear_retrans(tp);
1345 
1346 	/* Push undo marker, if it was plain RTO and nothing
1347 	 * was retransmitted. */
1348 	if (!how)
1349 		tp->undo_marker = tp->snd_una;
1350 
1351 	sk_stream_for_retrans_queue(skb, sk) {
1352 		cnt += tcp_skb_pcount(skb);
1353 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1354 			tp->undo_marker = 0;
1355 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1356 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1357 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1358 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1359 			tp->lost_out += tcp_skb_pcount(skb);
1360 		} else {
1361 			tp->sacked_out += tcp_skb_pcount(skb);
1362 			tp->fackets_out = cnt;
1363 		}
1364 	}
1365 	tcp_sync_left_out(tp);
1366 
1367 	tp->reordering = min_t(unsigned int, tp->reordering,
1368 					     sysctl_tcp_reordering);
1369 	tcp_set_ca_state(sk, TCP_CA_Loss);
1370 	tp->high_seq = tp->snd_nxt;
1371 	TCP_ECN_queue_cwr(tp);
1372 
1373 	clear_all_retrans_hints(tp);
1374 }
1375 
1376 static int tcp_check_sack_reneging(struct sock *sk)
1377 {
1378 	struct sk_buff *skb;
1379 
1380 	/* If ACK arrived pointing to a remembered SACK,
1381 	 * it means that our remembered SACKs do not reflect
1382 	 * real state of receiver i.e.
1383 	 * receiver _host_ is heavily congested (or buggy).
1384 	 * Do processing similar to RTO timeout.
1385 	 */
1386 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1387 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1388 		struct inet_connection_sock *icsk = inet_csk(sk);
1389 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1390 
1391 		tcp_enter_loss(sk, 1);
1392 		icsk->icsk_retransmits++;
1393 		tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1394 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1395 					  icsk->icsk_rto, TCP_RTO_MAX);
1396 		return 1;
1397 	}
1398 	return 0;
1399 }
1400 
1401 static inline int tcp_fackets_out(struct tcp_sock *tp)
1402 {
1403 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1404 }
1405 
1406 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1407 {
1408 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1409 }
1410 
1411 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1412 {
1413 	return tp->packets_out &&
1414 	       tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1415 }
1416 
1417 /* Linux NewReno/SACK/FACK/ECN state machine.
1418  * --------------------------------------
1419  *
1420  * "Open"	Normal state, no dubious events, fast path.
1421  * "Disorder"   In all the respects it is "Open",
1422  *		but requires a bit more attention. It is entered when
1423  *		we see some SACKs or dupacks. It is split of "Open"
1424  *		mainly to move some processing from fast path to slow one.
1425  * "CWR"	CWND was reduced due to some Congestion Notification event.
1426  *		It can be ECN, ICMP source quench, local device congestion.
1427  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1428  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1429  *
1430  * tcp_fastretrans_alert() is entered:
1431  * - each incoming ACK, if state is not "Open"
1432  * - when arrived ACK is unusual, namely:
1433  *	* SACK
1434  *	* Duplicate ACK.
1435  *	* ECN ECE.
1436  *
1437  * Counting packets in flight is pretty simple.
1438  *
1439  *	in_flight = packets_out - left_out + retrans_out
1440  *
1441  *	packets_out is SND.NXT-SND.UNA counted in packets.
1442  *
1443  *	retrans_out is number of retransmitted segments.
1444  *
1445  *	left_out is number of segments left network, but not ACKed yet.
1446  *
1447  *		left_out = sacked_out + lost_out
1448  *
1449  *     sacked_out: Packets, which arrived to receiver out of order
1450  *		   and hence not ACKed. With SACKs this number is simply
1451  *		   amount of SACKed data. Even without SACKs
1452  *		   it is easy to give pretty reliable estimate of this number,
1453  *		   counting duplicate ACKs.
1454  *
1455  *       lost_out: Packets lost by network. TCP has no explicit
1456  *		   "loss notification" feedback from network (for now).
1457  *		   It means that this number can be only _guessed_.
1458  *		   Actually, it is the heuristics to predict lossage that
1459  *		   distinguishes different algorithms.
1460  *
1461  *	F.e. after RTO, when all the queue is considered as lost,
1462  *	lost_out = packets_out and in_flight = retrans_out.
1463  *
1464  *		Essentially, we have now two algorithms counting
1465  *		lost packets.
1466  *
1467  *		FACK: It is the simplest heuristics. As soon as we decided
1468  *		that something is lost, we decide that _all_ not SACKed
1469  *		packets until the most forward SACK are lost. I.e.
1470  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1471  *		It is absolutely correct estimate, if network does not reorder
1472  *		packets. And it loses any connection to reality when reordering
1473  *		takes place. We use FACK by default until reordering
1474  *		is suspected on the path to this destination.
1475  *
1476  *		NewReno: when Recovery is entered, we assume that one segment
1477  *		is lost (classic Reno). While we are in Recovery and
1478  *		a partial ACK arrives, we assume that one more packet
1479  *		is lost (NewReno). This heuristics are the same in NewReno
1480  *		and SACK.
1481  *
1482  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1483  *  deflation etc. CWND is real congestion window, never inflated, changes
1484  *  only according to classic VJ rules.
1485  *
1486  * Really tricky (and requiring careful tuning) part of algorithm
1487  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1488  * The first determines the moment _when_ we should reduce CWND and,
1489  * hence, slow down forward transmission. In fact, it determines the moment
1490  * when we decide that hole is caused by loss, rather than by a reorder.
1491  *
1492  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1493  * holes, caused by lost packets.
1494  *
1495  * And the most logically complicated part of algorithm is undo
1496  * heuristics. We detect false retransmits due to both too early
1497  * fast retransmit (reordering) and underestimated RTO, analyzing
1498  * timestamps and D-SACKs. When we detect that some segments were
1499  * retransmitted by mistake and CWND reduction was wrong, we undo
1500  * window reduction and abort recovery phase. This logic is hidden
1501  * inside several functions named tcp_try_undo_<something>.
1502  */
1503 
1504 /* This function decides, when we should leave Disordered state
1505  * and enter Recovery phase, reducing congestion window.
1506  *
1507  * Main question: may we further continue forward transmission
1508  * with the same cwnd?
1509  */
1510 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1511 {
1512 	__u32 packets_out;
1513 
1514 	/* Trick#1: The loss is proven. */
1515 	if (tp->lost_out)
1516 		return 1;
1517 
1518 	/* Not-A-Trick#2 : Classic rule... */
1519 	if (tcp_fackets_out(tp) > tp->reordering)
1520 		return 1;
1521 
1522 	/* Trick#3 : when we use RFC2988 timer restart, fast
1523 	 * retransmit can be triggered by timeout of queue head.
1524 	 */
1525 	if (tcp_head_timedout(sk, tp))
1526 		return 1;
1527 
1528 	/* Trick#4: It is still not OK... But will it be useful to delay
1529 	 * recovery more?
1530 	 */
1531 	packets_out = tp->packets_out;
1532 	if (packets_out <= tp->reordering &&
1533 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1534 	    !tcp_may_send_now(sk, tp)) {
1535 		/* We have nothing to send. This connection is limited
1536 		 * either by receiver window or by application.
1537 		 */
1538 		return 1;
1539 	}
1540 
1541 	return 0;
1542 }
1543 
1544 /* If we receive more dupacks than we expected counting segments
1545  * in assumption of absent reordering, interpret this as reordering.
1546  * The only another reason could be bug in receiver TCP.
1547  */
1548 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1549 {
1550 	struct tcp_sock *tp = tcp_sk(sk);
1551 	u32 holes;
1552 
1553 	holes = max(tp->lost_out, 1U);
1554 	holes = min(holes, tp->packets_out);
1555 
1556 	if ((tp->sacked_out + holes) > tp->packets_out) {
1557 		tp->sacked_out = tp->packets_out - holes;
1558 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1559 	}
1560 }
1561 
1562 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1563 
1564 static void tcp_add_reno_sack(struct sock *sk)
1565 {
1566 	struct tcp_sock *tp = tcp_sk(sk);
1567 	tp->sacked_out++;
1568 	tcp_check_reno_reordering(sk, 0);
1569 	tcp_sync_left_out(tp);
1570 }
1571 
1572 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1573 
1574 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1575 {
1576 	if (acked > 0) {
1577 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1578 		if (acked-1 >= tp->sacked_out)
1579 			tp->sacked_out = 0;
1580 		else
1581 			tp->sacked_out -= acked-1;
1582 	}
1583 	tcp_check_reno_reordering(sk, acked);
1584 	tcp_sync_left_out(tp);
1585 }
1586 
1587 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1588 {
1589 	tp->sacked_out = 0;
1590 	tp->left_out = tp->lost_out;
1591 }
1592 
1593 /* Mark head of queue up as lost. */
1594 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1595 			       int packets, u32 high_seq)
1596 {
1597 	struct sk_buff *skb;
1598 	int cnt;
1599 
1600 	BUG_TRAP(packets <= tp->packets_out);
1601 	if (tp->lost_skb_hint) {
1602 		skb = tp->lost_skb_hint;
1603 		cnt = tp->lost_cnt_hint;
1604 	} else {
1605 		skb = sk->sk_write_queue.next;
1606 		cnt = 0;
1607 	}
1608 
1609 	sk_stream_for_retrans_queue_from(skb, sk) {
1610 		/* TODO: do this better */
1611 		/* this is not the most efficient way to do this... */
1612 		tp->lost_skb_hint = skb;
1613 		tp->lost_cnt_hint = cnt;
1614 		cnt += tcp_skb_pcount(skb);
1615 		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1616 			break;
1617 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1618 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1619 			tp->lost_out += tcp_skb_pcount(skb);
1620 
1621 			/* clear xmit_retransmit_queue hints
1622 			 *  if this is beyond hint */
1623 			if(tp->retransmit_skb_hint != NULL &&
1624 			   before(TCP_SKB_CB(skb)->seq,
1625 				  TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1626 
1627 				tp->retransmit_skb_hint = NULL;
1628 			}
1629 		}
1630 	}
1631 	tcp_sync_left_out(tp);
1632 }
1633 
1634 /* Account newly detected lost packet(s) */
1635 
1636 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1637 {
1638 	if (IsFack(tp)) {
1639 		int lost = tp->fackets_out - tp->reordering;
1640 		if (lost <= 0)
1641 			lost = 1;
1642 		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1643 	} else {
1644 		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1645 	}
1646 
1647 	/* New heuristics: it is possible only after we switched
1648 	 * to restart timer each time when something is ACKed.
1649 	 * Hence, we can detect timed out packets during fast
1650 	 * retransmit without falling to slow start.
1651 	 */
1652 	if (tcp_head_timedout(sk, tp)) {
1653 		struct sk_buff *skb;
1654 
1655 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1656 			: sk->sk_write_queue.next;
1657 
1658 		sk_stream_for_retrans_queue_from(skb, sk) {
1659 			if (!tcp_skb_timedout(sk, skb))
1660 				break;
1661 
1662 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1663 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1664 				tp->lost_out += tcp_skb_pcount(skb);
1665 
1666 				/* clear xmit_retrans hint */
1667 				if (tp->retransmit_skb_hint &&
1668 				    before(TCP_SKB_CB(skb)->seq,
1669 					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1670 
1671 					tp->retransmit_skb_hint = NULL;
1672 			}
1673 		}
1674 
1675 		tp->scoreboard_skb_hint = skb;
1676 
1677 		tcp_sync_left_out(tp);
1678 	}
1679 }
1680 
1681 /* CWND moderation, preventing bursts due to too big ACKs
1682  * in dubious situations.
1683  */
1684 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1685 {
1686 	tp->snd_cwnd = min(tp->snd_cwnd,
1687 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1688 	tp->snd_cwnd_stamp = tcp_time_stamp;
1689 }
1690 
1691 /* Decrease cwnd each second ack. */
1692 static void tcp_cwnd_down(struct sock *sk)
1693 {
1694 	const struct inet_connection_sock *icsk = inet_csk(sk);
1695 	struct tcp_sock *tp = tcp_sk(sk);
1696 	int decr = tp->snd_cwnd_cnt + 1;
1697 
1698 	tp->snd_cwnd_cnt = decr&1;
1699 	decr >>= 1;
1700 
1701 	if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk))
1702 		tp->snd_cwnd -= decr;
1703 
1704 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1705 	tp->snd_cwnd_stamp = tcp_time_stamp;
1706 }
1707 
1708 /* Nothing was retransmitted or returned timestamp is less
1709  * than timestamp of the first retransmission.
1710  */
1711 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1712 {
1713 	return !tp->retrans_stamp ||
1714 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1715 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1716 }
1717 
1718 /* Undo procedures. */
1719 
1720 #if FASTRETRANS_DEBUG > 1
1721 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1722 {
1723 	struct inet_sock *inet = inet_sk(sk);
1724 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1725 	       msg,
1726 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1727 	       tp->snd_cwnd, tp->left_out,
1728 	       tp->snd_ssthresh, tp->prior_ssthresh,
1729 	       tp->packets_out);
1730 }
1731 #else
1732 #define DBGUNDO(x...) do { } while (0)
1733 #endif
1734 
1735 static void tcp_undo_cwr(struct sock *sk, const int undo)
1736 {
1737 	struct tcp_sock *tp = tcp_sk(sk);
1738 
1739 	if (tp->prior_ssthresh) {
1740 		const struct inet_connection_sock *icsk = inet_csk(sk);
1741 
1742 		if (icsk->icsk_ca_ops->undo_cwnd)
1743 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1744 		else
1745 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1746 
1747 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1748 			tp->snd_ssthresh = tp->prior_ssthresh;
1749 			TCP_ECN_withdraw_cwr(tp);
1750 		}
1751 	} else {
1752 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1753 	}
1754 	tcp_moderate_cwnd(tp);
1755 	tp->snd_cwnd_stamp = tcp_time_stamp;
1756 
1757 	/* There is something screwy going on with the retrans hints after
1758 	   an undo */
1759 	clear_all_retrans_hints(tp);
1760 }
1761 
1762 static inline int tcp_may_undo(struct tcp_sock *tp)
1763 {
1764 	return tp->undo_marker &&
1765 		(!tp->undo_retrans || tcp_packet_delayed(tp));
1766 }
1767 
1768 /* People celebrate: "We love our President!" */
1769 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1770 {
1771 	if (tcp_may_undo(tp)) {
1772 		/* Happy end! We did not retransmit anything
1773 		 * or our original transmission succeeded.
1774 		 */
1775 		DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1776 		tcp_undo_cwr(sk, 1);
1777 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1778 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1779 		else
1780 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1781 		tp->undo_marker = 0;
1782 	}
1783 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1784 		/* Hold old state until something *above* high_seq
1785 		 * is ACKed. For Reno it is MUST to prevent false
1786 		 * fast retransmits (RFC2582). SACK TCP is safe. */
1787 		tcp_moderate_cwnd(tp);
1788 		return 1;
1789 	}
1790 	tcp_set_ca_state(sk, TCP_CA_Open);
1791 	return 0;
1792 }
1793 
1794 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1795 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1796 {
1797 	if (tp->undo_marker && !tp->undo_retrans) {
1798 		DBGUNDO(sk, tp, "D-SACK");
1799 		tcp_undo_cwr(sk, 1);
1800 		tp->undo_marker = 0;
1801 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1802 	}
1803 }
1804 
1805 /* Undo during fast recovery after partial ACK. */
1806 
1807 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1808 				int acked)
1809 {
1810 	/* Partial ACK arrived. Force Hoe's retransmit. */
1811 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1812 
1813 	if (tcp_may_undo(tp)) {
1814 		/* Plain luck! Hole if filled with delayed
1815 		 * packet, rather than with a retransmit.
1816 		 */
1817 		if (tp->retrans_out == 0)
1818 			tp->retrans_stamp = 0;
1819 
1820 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1821 
1822 		DBGUNDO(sk, tp, "Hoe");
1823 		tcp_undo_cwr(sk, 0);
1824 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1825 
1826 		/* So... Do not make Hoe's retransmit yet.
1827 		 * If the first packet was delayed, the rest
1828 		 * ones are most probably delayed as well.
1829 		 */
1830 		failed = 0;
1831 	}
1832 	return failed;
1833 }
1834 
1835 /* Undo during loss recovery after partial ACK. */
1836 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1837 {
1838 	if (tcp_may_undo(tp)) {
1839 		struct sk_buff *skb;
1840 		sk_stream_for_retrans_queue(skb, sk) {
1841 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1842 		}
1843 
1844 		clear_all_retrans_hints(tp);
1845 
1846 		DBGUNDO(sk, tp, "partial loss");
1847 		tp->lost_out = 0;
1848 		tp->left_out = tp->sacked_out;
1849 		tcp_undo_cwr(sk, 1);
1850 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1851 		inet_csk(sk)->icsk_retransmits = 0;
1852 		tp->undo_marker = 0;
1853 		if (!IsReno(tp))
1854 			tcp_set_ca_state(sk, TCP_CA_Open);
1855 		return 1;
1856 	}
1857 	return 0;
1858 }
1859 
1860 static inline void tcp_complete_cwr(struct sock *sk)
1861 {
1862 	struct tcp_sock *tp = tcp_sk(sk);
1863 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1864 	tp->snd_cwnd_stamp = tcp_time_stamp;
1865 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1866 }
1867 
1868 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1869 {
1870 	tp->left_out = tp->sacked_out;
1871 
1872 	if (tp->retrans_out == 0)
1873 		tp->retrans_stamp = 0;
1874 
1875 	if (flag&FLAG_ECE)
1876 		tcp_enter_cwr(sk);
1877 
1878 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1879 		int state = TCP_CA_Open;
1880 
1881 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
1882 			state = TCP_CA_Disorder;
1883 
1884 		if (inet_csk(sk)->icsk_ca_state != state) {
1885 			tcp_set_ca_state(sk, state);
1886 			tp->high_seq = tp->snd_nxt;
1887 		}
1888 		tcp_moderate_cwnd(tp);
1889 	} else {
1890 		tcp_cwnd_down(sk);
1891 	}
1892 }
1893 
1894 static void tcp_mtup_probe_failed(struct sock *sk)
1895 {
1896 	struct inet_connection_sock *icsk = inet_csk(sk);
1897 
1898 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1899 	icsk->icsk_mtup.probe_size = 0;
1900 }
1901 
1902 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1903 {
1904 	struct tcp_sock *tp = tcp_sk(sk);
1905 	struct inet_connection_sock *icsk = inet_csk(sk);
1906 
1907 	/* FIXME: breaks with very large cwnd */
1908 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
1909 	tp->snd_cwnd = tp->snd_cwnd *
1910 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
1911 		       icsk->icsk_mtup.probe_size;
1912 	tp->snd_cwnd_cnt = 0;
1913 	tp->snd_cwnd_stamp = tcp_time_stamp;
1914 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1915 
1916 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1917 	icsk->icsk_mtup.probe_size = 0;
1918 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1919 }
1920 
1921 
1922 /* Process an event, which can update packets-in-flight not trivially.
1923  * Main goal of this function is to calculate new estimate for left_out,
1924  * taking into account both packets sitting in receiver's buffer and
1925  * packets lost by network.
1926  *
1927  * Besides that it does CWND reduction, when packet loss is detected
1928  * and changes state of machine.
1929  *
1930  * It does _not_ decide what to send, it is made in function
1931  * tcp_xmit_retransmit_queue().
1932  */
1933 static void
1934 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1935 		      int prior_packets, int flag)
1936 {
1937 	struct inet_connection_sock *icsk = inet_csk(sk);
1938 	struct tcp_sock *tp = tcp_sk(sk);
1939 	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1940 
1941 	/* Some technical things:
1942 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
1943 	if (!tp->packets_out)
1944 		tp->sacked_out = 0;
1945         /* 2. SACK counts snd_fack in packets inaccurately. */
1946 	if (tp->sacked_out == 0)
1947 		tp->fackets_out = 0;
1948 
1949         /* Now state machine starts.
1950 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1951 	if (flag&FLAG_ECE)
1952 		tp->prior_ssthresh = 0;
1953 
1954 	/* B. In all the states check for reneging SACKs. */
1955 	if (tp->sacked_out && tcp_check_sack_reneging(sk))
1956 		return;
1957 
1958 	/* C. Process data loss notification, provided it is valid. */
1959 	if ((flag&FLAG_DATA_LOST) &&
1960 	    before(tp->snd_una, tp->high_seq) &&
1961 	    icsk->icsk_ca_state != TCP_CA_Open &&
1962 	    tp->fackets_out > tp->reordering) {
1963 		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1964 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1965 	}
1966 
1967 	/* D. Synchronize left_out to current state. */
1968 	tcp_sync_left_out(tp);
1969 
1970 	/* E. Check state exit conditions. State can be terminated
1971 	 *    when high_seq is ACKed. */
1972 	if (icsk->icsk_ca_state == TCP_CA_Open) {
1973 		if (!sysctl_tcp_frto)
1974 			BUG_TRAP(tp->retrans_out == 0);
1975 		tp->retrans_stamp = 0;
1976 	} else if (!before(tp->snd_una, tp->high_seq)) {
1977 		switch (icsk->icsk_ca_state) {
1978 		case TCP_CA_Loss:
1979 			icsk->icsk_retransmits = 0;
1980 			if (tcp_try_undo_recovery(sk, tp))
1981 				return;
1982 			break;
1983 
1984 		case TCP_CA_CWR:
1985 			/* CWR is to be held something *above* high_seq
1986 			 * is ACKed for CWR bit to reach receiver. */
1987 			if (tp->snd_una != tp->high_seq) {
1988 				tcp_complete_cwr(sk);
1989 				tcp_set_ca_state(sk, TCP_CA_Open);
1990 			}
1991 			break;
1992 
1993 		case TCP_CA_Disorder:
1994 			tcp_try_undo_dsack(sk, tp);
1995 			if (!tp->undo_marker ||
1996 			    /* For SACK case do not Open to allow to undo
1997 			     * catching for all duplicate ACKs. */
1998 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
1999 				tp->undo_marker = 0;
2000 				tcp_set_ca_state(sk, TCP_CA_Open);
2001 			}
2002 			break;
2003 
2004 		case TCP_CA_Recovery:
2005 			if (IsReno(tp))
2006 				tcp_reset_reno_sack(tp);
2007 			if (tcp_try_undo_recovery(sk, tp))
2008 				return;
2009 			tcp_complete_cwr(sk);
2010 			break;
2011 		}
2012 	}
2013 
2014 	/* F. Process state. */
2015 	switch (icsk->icsk_ca_state) {
2016 	case TCP_CA_Recovery:
2017 		if (prior_snd_una == tp->snd_una) {
2018 			if (IsReno(tp) && is_dupack)
2019 				tcp_add_reno_sack(sk);
2020 		} else {
2021 			int acked = prior_packets - tp->packets_out;
2022 			if (IsReno(tp))
2023 				tcp_remove_reno_sacks(sk, tp, acked);
2024 			is_dupack = tcp_try_undo_partial(sk, tp, acked);
2025 		}
2026 		break;
2027 	case TCP_CA_Loss:
2028 		if (flag&FLAG_DATA_ACKED)
2029 			icsk->icsk_retransmits = 0;
2030 		if (!tcp_try_undo_loss(sk, tp)) {
2031 			tcp_moderate_cwnd(tp);
2032 			tcp_xmit_retransmit_queue(sk);
2033 			return;
2034 		}
2035 		if (icsk->icsk_ca_state != TCP_CA_Open)
2036 			return;
2037 		/* Loss is undone; fall through to processing in Open state. */
2038 	default:
2039 		if (IsReno(tp)) {
2040 			if (tp->snd_una != prior_snd_una)
2041 				tcp_reset_reno_sack(tp);
2042 			if (is_dupack)
2043 				tcp_add_reno_sack(sk);
2044 		}
2045 
2046 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2047 			tcp_try_undo_dsack(sk, tp);
2048 
2049 		if (!tcp_time_to_recover(sk, tp)) {
2050 			tcp_try_to_open(sk, tp, flag);
2051 			return;
2052 		}
2053 
2054 		/* MTU probe failure: don't reduce cwnd */
2055 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2056 		    icsk->icsk_mtup.probe_size &&
2057 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2058 			tcp_mtup_probe_failed(sk);
2059 			/* Restores the reduction we did in tcp_mtup_probe() */
2060 			tp->snd_cwnd++;
2061 			tcp_simple_retransmit(sk);
2062 			return;
2063 		}
2064 
2065 		/* Otherwise enter Recovery state */
2066 
2067 		if (IsReno(tp))
2068 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2069 		else
2070 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2071 
2072 		tp->high_seq = tp->snd_nxt;
2073 		tp->prior_ssthresh = 0;
2074 		tp->undo_marker = tp->snd_una;
2075 		tp->undo_retrans = tp->retrans_out;
2076 
2077 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2078 			if (!(flag&FLAG_ECE))
2079 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2080 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2081 			TCP_ECN_queue_cwr(tp);
2082 		}
2083 
2084 		tp->bytes_acked = 0;
2085 		tp->snd_cwnd_cnt = 0;
2086 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2087 	}
2088 
2089 	if (is_dupack || tcp_head_timedout(sk, tp))
2090 		tcp_update_scoreboard(sk, tp);
2091 	tcp_cwnd_down(sk);
2092 	tcp_xmit_retransmit_queue(sk);
2093 }
2094 
2095 /* Read draft-ietf-tcplw-high-performance before mucking
2096  * with this code. (Supersedes RFC1323)
2097  */
2098 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2099 {
2100 	/* RTTM Rule: A TSecr value received in a segment is used to
2101 	 * update the averaged RTT measurement only if the segment
2102 	 * acknowledges some new data, i.e., only if it advances the
2103 	 * left edge of the send window.
2104 	 *
2105 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2106 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2107 	 *
2108 	 * Changed: reset backoff as soon as we see the first valid sample.
2109 	 * If we do not, we get strongly overestimated rto. With timestamps
2110 	 * samples are accepted even from very old segments: f.e., when rtt=1
2111 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2112 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2113 	 * in window is lost... Voila.	 			--ANK (010210)
2114 	 */
2115 	struct tcp_sock *tp = tcp_sk(sk);
2116 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2117 	tcp_rtt_estimator(sk, seq_rtt);
2118 	tcp_set_rto(sk);
2119 	inet_csk(sk)->icsk_backoff = 0;
2120 	tcp_bound_rto(sk);
2121 }
2122 
2123 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2124 {
2125 	/* We don't have a timestamp. Can only use
2126 	 * packets that are not retransmitted to determine
2127 	 * rtt estimates. Also, we must not reset the
2128 	 * backoff for rto until we get a non-retransmitted
2129 	 * packet. This allows us to deal with a situation
2130 	 * where the network delay has increased suddenly.
2131 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2132 	 */
2133 
2134 	if (flag & FLAG_RETRANS_DATA_ACKED)
2135 		return;
2136 
2137 	tcp_rtt_estimator(sk, seq_rtt);
2138 	tcp_set_rto(sk);
2139 	inet_csk(sk)->icsk_backoff = 0;
2140 	tcp_bound_rto(sk);
2141 }
2142 
2143 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2144 				      const s32 seq_rtt)
2145 {
2146 	const struct tcp_sock *tp = tcp_sk(sk);
2147 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2148 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2149 		tcp_ack_saw_tstamp(sk, flag);
2150 	else if (seq_rtt >= 0)
2151 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2152 }
2153 
2154 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2155 			   u32 in_flight, int good)
2156 {
2157 	const struct inet_connection_sock *icsk = inet_csk(sk);
2158 	icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2159 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2160 }
2161 
2162 /* Restart timer after forward progress on connection.
2163  * RFC2988 recommends to restart timer to now+rto.
2164  */
2165 
2166 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2167 {
2168 	if (!tp->packets_out) {
2169 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2170 	} else {
2171 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2172 	}
2173 }
2174 
2175 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2176 			 __u32 now, __s32 *seq_rtt)
2177 {
2178 	struct tcp_sock *tp = tcp_sk(sk);
2179 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2180 	__u32 seq = tp->snd_una;
2181 	__u32 packets_acked;
2182 	int acked = 0;
2183 
2184 	/* If we get here, the whole TSO packet has not been
2185 	 * acked.
2186 	 */
2187 	BUG_ON(!after(scb->end_seq, seq));
2188 
2189 	packets_acked = tcp_skb_pcount(skb);
2190 	if (tcp_trim_head(sk, skb, seq - scb->seq))
2191 		return 0;
2192 	packets_acked -= tcp_skb_pcount(skb);
2193 
2194 	if (packets_acked) {
2195 		__u8 sacked = scb->sacked;
2196 
2197 		acked |= FLAG_DATA_ACKED;
2198 		if (sacked) {
2199 			if (sacked & TCPCB_RETRANS) {
2200 				if (sacked & TCPCB_SACKED_RETRANS)
2201 					tp->retrans_out -= packets_acked;
2202 				acked |= FLAG_RETRANS_DATA_ACKED;
2203 				*seq_rtt = -1;
2204 			} else if (*seq_rtt < 0)
2205 				*seq_rtt = now - scb->when;
2206 			if (sacked & TCPCB_SACKED_ACKED)
2207 				tp->sacked_out -= packets_acked;
2208 			if (sacked & TCPCB_LOST)
2209 				tp->lost_out -= packets_acked;
2210 			if (sacked & TCPCB_URG) {
2211 				if (tp->urg_mode &&
2212 				    !before(seq, tp->snd_up))
2213 					tp->urg_mode = 0;
2214 			}
2215 		} else if (*seq_rtt < 0)
2216 			*seq_rtt = now - scb->when;
2217 
2218 		if (tp->fackets_out) {
2219 			__u32 dval = min(tp->fackets_out, packets_acked);
2220 			tp->fackets_out -= dval;
2221 		}
2222 		tp->packets_out -= packets_acked;
2223 
2224 		BUG_ON(tcp_skb_pcount(skb) == 0);
2225 		BUG_ON(!before(scb->seq, scb->end_seq));
2226 	}
2227 
2228 	return acked;
2229 }
2230 
2231 static u32 tcp_usrtt(const struct sk_buff *skb)
2232 {
2233 	struct timeval tv, now;
2234 
2235 	do_gettimeofday(&now);
2236 	skb_get_timestamp(skb, &tv);
2237 	return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec);
2238 }
2239 
2240 /* Remove acknowledged frames from the retransmission queue. */
2241 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2242 {
2243 	struct tcp_sock *tp = tcp_sk(sk);
2244 	const struct inet_connection_sock *icsk = inet_csk(sk);
2245 	struct sk_buff *skb;
2246 	__u32 now = tcp_time_stamp;
2247 	int acked = 0;
2248 	__s32 seq_rtt = -1;
2249 	u32 pkts_acked = 0;
2250 	void (*rtt_sample)(struct sock *sk, u32 usrtt)
2251 		= icsk->icsk_ca_ops->rtt_sample;
2252 
2253 	while ((skb = skb_peek(&sk->sk_write_queue)) &&
2254 	       skb != sk->sk_send_head) {
2255 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2256 		__u8 sacked = scb->sacked;
2257 
2258 		/* If our packet is before the ack sequence we can
2259 		 * discard it as it's confirmed to have arrived at
2260 		 * the other end.
2261 		 */
2262 		if (after(scb->end_seq, tp->snd_una)) {
2263 			if (tcp_skb_pcount(skb) > 1 &&
2264 			    after(tp->snd_una, scb->seq))
2265 				acked |= tcp_tso_acked(sk, skb,
2266 						       now, &seq_rtt);
2267 			break;
2268 		}
2269 
2270 		/* Initial outgoing SYN's get put onto the write_queue
2271 		 * just like anything else we transmit.  It is not
2272 		 * true data, and if we misinform our callers that
2273 		 * this ACK acks real data, we will erroneously exit
2274 		 * connection startup slow start one packet too
2275 		 * quickly.  This is severely frowned upon behavior.
2276 		 */
2277 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2278 			acked |= FLAG_DATA_ACKED;
2279 			++pkts_acked;
2280 		} else {
2281 			acked |= FLAG_SYN_ACKED;
2282 			tp->retrans_stamp = 0;
2283 		}
2284 
2285 		/* MTU probing checks */
2286 		if (icsk->icsk_mtup.probe_size) {
2287 			if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2288 				tcp_mtup_probe_success(sk, skb);
2289 			}
2290 		}
2291 
2292 		if (sacked) {
2293 			if (sacked & TCPCB_RETRANS) {
2294 				if(sacked & TCPCB_SACKED_RETRANS)
2295 					tp->retrans_out -= tcp_skb_pcount(skb);
2296 				acked |= FLAG_RETRANS_DATA_ACKED;
2297 				seq_rtt = -1;
2298 			} else if (seq_rtt < 0) {
2299 				seq_rtt = now - scb->when;
2300 				if (rtt_sample)
2301 					(*rtt_sample)(sk, tcp_usrtt(skb));
2302 			}
2303 			if (sacked & TCPCB_SACKED_ACKED)
2304 				tp->sacked_out -= tcp_skb_pcount(skb);
2305 			if (sacked & TCPCB_LOST)
2306 				tp->lost_out -= tcp_skb_pcount(skb);
2307 			if (sacked & TCPCB_URG) {
2308 				if (tp->urg_mode &&
2309 				    !before(scb->end_seq, tp->snd_up))
2310 					tp->urg_mode = 0;
2311 			}
2312 		} else if (seq_rtt < 0) {
2313 			seq_rtt = now - scb->when;
2314 			if (rtt_sample)
2315 				(*rtt_sample)(sk, tcp_usrtt(skb));
2316 		}
2317 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2318 		tcp_packets_out_dec(tp, skb);
2319 		__skb_unlink(skb, &sk->sk_write_queue);
2320 		sk_stream_free_skb(sk, skb);
2321 		clear_all_retrans_hints(tp);
2322 	}
2323 
2324 	if (acked&FLAG_ACKED) {
2325 		tcp_ack_update_rtt(sk, acked, seq_rtt);
2326 		tcp_ack_packets_out(sk, tp);
2327 
2328 		if (icsk->icsk_ca_ops->pkts_acked)
2329 			icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2330 	}
2331 
2332 #if FASTRETRANS_DEBUG > 0
2333 	BUG_TRAP((int)tp->sacked_out >= 0);
2334 	BUG_TRAP((int)tp->lost_out >= 0);
2335 	BUG_TRAP((int)tp->retrans_out >= 0);
2336 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2337 		const struct inet_connection_sock *icsk = inet_csk(sk);
2338 		if (tp->lost_out) {
2339 			printk(KERN_DEBUG "Leak l=%u %d\n",
2340 			       tp->lost_out, icsk->icsk_ca_state);
2341 			tp->lost_out = 0;
2342 		}
2343 		if (tp->sacked_out) {
2344 			printk(KERN_DEBUG "Leak s=%u %d\n",
2345 			       tp->sacked_out, icsk->icsk_ca_state);
2346 			tp->sacked_out = 0;
2347 		}
2348 		if (tp->retrans_out) {
2349 			printk(KERN_DEBUG "Leak r=%u %d\n",
2350 			       tp->retrans_out, icsk->icsk_ca_state);
2351 			tp->retrans_out = 0;
2352 		}
2353 	}
2354 #endif
2355 	*seq_rtt_p = seq_rtt;
2356 	return acked;
2357 }
2358 
2359 static void tcp_ack_probe(struct sock *sk)
2360 {
2361 	const struct tcp_sock *tp = tcp_sk(sk);
2362 	struct inet_connection_sock *icsk = inet_csk(sk);
2363 
2364 	/* Was it a usable window open? */
2365 
2366 	if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2367 		   tp->snd_una + tp->snd_wnd)) {
2368 		icsk->icsk_backoff = 0;
2369 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2370 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2371 		 * This function is not for random using!
2372 		 */
2373 	} else {
2374 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2375 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2376 					  TCP_RTO_MAX);
2377 	}
2378 }
2379 
2380 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2381 {
2382 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2383 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2384 }
2385 
2386 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2387 {
2388 	const struct tcp_sock *tp = tcp_sk(sk);
2389 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2390 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2391 }
2392 
2393 /* Check that window update is acceptable.
2394  * The function assumes that snd_una<=ack<=snd_next.
2395  */
2396 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2397 					const u32 ack_seq, const u32 nwin)
2398 {
2399 	return (after(ack, tp->snd_una) ||
2400 		after(ack_seq, tp->snd_wl1) ||
2401 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2402 }
2403 
2404 /* Update our send window.
2405  *
2406  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2407  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2408  */
2409 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2410 				 struct sk_buff *skb, u32 ack, u32 ack_seq)
2411 {
2412 	int flag = 0;
2413 	u32 nwin = ntohs(skb->h.th->window);
2414 
2415 	if (likely(!skb->h.th->syn))
2416 		nwin <<= tp->rx_opt.snd_wscale;
2417 
2418 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2419 		flag |= FLAG_WIN_UPDATE;
2420 		tcp_update_wl(tp, ack, ack_seq);
2421 
2422 		if (tp->snd_wnd != nwin) {
2423 			tp->snd_wnd = nwin;
2424 
2425 			/* Note, it is the only place, where
2426 			 * fast path is recovered for sending TCP.
2427 			 */
2428 			tp->pred_flags = 0;
2429 			tcp_fast_path_check(sk, tp);
2430 
2431 			if (nwin > tp->max_window) {
2432 				tp->max_window = nwin;
2433 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2434 			}
2435 		}
2436 	}
2437 
2438 	tp->snd_una = ack;
2439 
2440 	return flag;
2441 }
2442 
2443 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2444 {
2445 	struct tcp_sock *tp = tcp_sk(sk);
2446 
2447 	tcp_sync_left_out(tp);
2448 
2449 	if (tp->snd_una == prior_snd_una ||
2450 	    !before(tp->snd_una, tp->frto_highmark)) {
2451 		/* RTO was caused by loss, start retransmitting in
2452 		 * go-back-N slow start
2453 		 */
2454 		tcp_enter_frto_loss(sk);
2455 		return;
2456 	}
2457 
2458 	if (tp->frto_counter == 1) {
2459 		/* First ACK after RTO advances the window: allow two new
2460 		 * segments out.
2461 		 */
2462 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2463 	} else {
2464 		/* Also the second ACK after RTO advances the window.
2465 		 * The RTO was likely spurious. Reduce cwnd and continue
2466 		 * in congestion avoidance
2467 		 */
2468 		tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2469 		tcp_moderate_cwnd(tp);
2470 	}
2471 
2472 	/* F-RTO affects on two new ACKs following RTO.
2473 	 * At latest on third ACK the TCP behavior is back to normal.
2474 	 */
2475 	tp->frto_counter = (tp->frto_counter + 1) % 3;
2476 }
2477 
2478 /* This routine deals with incoming acks, but not outgoing ones. */
2479 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2480 {
2481 	struct inet_connection_sock *icsk = inet_csk(sk);
2482 	struct tcp_sock *tp = tcp_sk(sk);
2483 	u32 prior_snd_una = tp->snd_una;
2484 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2485 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2486 	u32 prior_in_flight;
2487 	s32 seq_rtt;
2488 	int prior_packets;
2489 
2490 	/* If the ack is newer than sent or older than previous acks
2491 	 * then we can probably ignore it.
2492 	 */
2493 	if (after(ack, tp->snd_nxt))
2494 		goto uninteresting_ack;
2495 
2496 	if (before(ack, prior_snd_una))
2497 		goto old_ack;
2498 
2499 	if (sysctl_tcp_abc && icsk->icsk_ca_state < TCP_CA_CWR)
2500 		tp->bytes_acked += ack - prior_snd_una;
2501 
2502 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2503 		/* Window is constant, pure forward advance.
2504 		 * No more checks are required.
2505 		 * Note, we use the fact that SND.UNA>=SND.WL2.
2506 		 */
2507 		tcp_update_wl(tp, ack, ack_seq);
2508 		tp->snd_una = ack;
2509 		flag |= FLAG_WIN_UPDATE;
2510 
2511 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2512 
2513 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2514 	} else {
2515 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2516 			flag |= FLAG_DATA;
2517 		else
2518 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2519 
2520 		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2521 
2522 		if (TCP_SKB_CB(skb)->sacked)
2523 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2524 
2525 		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2526 			flag |= FLAG_ECE;
2527 
2528 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2529 	}
2530 
2531 	/* We passed data and got it acked, remove any soft error
2532 	 * log. Something worked...
2533 	 */
2534 	sk->sk_err_soft = 0;
2535 	tp->rcv_tstamp = tcp_time_stamp;
2536 	prior_packets = tp->packets_out;
2537 	if (!prior_packets)
2538 		goto no_queue;
2539 
2540 	prior_in_flight = tcp_packets_in_flight(tp);
2541 
2542 	/* See if we can take anything off of the retransmit queue. */
2543 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2544 
2545 	if (tp->frto_counter)
2546 		tcp_process_frto(sk, prior_snd_una);
2547 
2548 	if (tcp_ack_is_dubious(sk, flag)) {
2549 		/* Advance CWND, if state allows this. */
2550 		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2551 			tcp_cong_avoid(sk, ack,  seq_rtt, prior_in_flight, 0);
2552 		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2553 	} else {
2554 		if ((flag & FLAG_DATA_ACKED))
2555 			tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2556 	}
2557 
2558 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2559 		dst_confirm(sk->sk_dst_cache);
2560 
2561 	return 1;
2562 
2563 no_queue:
2564 	icsk->icsk_probes_out = 0;
2565 
2566 	/* If this ack opens up a zero window, clear backoff.  It was
2567 	 * being used to time the probes, and is probably far higher than
2568 	 * it needs to be for normal retransmission.
2569 	 */
2570 	if (sk->sk_send_head)
2571 		tcp_ack_probe(sk);
2572 	return 1;
2573 
2574 old_ack:
2575 	if (TCP_SKB_CB(skb)->sacked)
2576 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2577 
2578 uninteresting_ack:
2579 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2580 	return 0;
2581 }
2582 
2583 
2584 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2585  * But, this can also be called on packets in the established flow when
2586  * the fast version below fails.
2587  */
2588 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2589 {
2590 	unsigned char *ptr;
2591 	struct tcphdr *th = skb->h.th;
2592 	int length=(th->doff*4)-sizeof(struct tcphdr);
2593 
2594 	ptr = (unsigned char *)(th + 1);
2595 	opt_rx->saw_tstamp = 0;
2596 
2597 	while(length>0) {
2598 	  	int opcode=*ptr++;
2599 		int opsize;
2600 
2601 		switch (opcode) {
2602 			case TCPOPT_EOL:
2603 				return;
2604 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2605 				length--;
2606 				continue;
2607 			default:
2608 				opsize=*ptr++;
2609 				if (opsize < 2) /* "silly options" */
2610 					return;
2611 				if (opsize > length)
2612 					return;	/* don't parse partial options */
2613 	  			switch(opcode) {
2614 				case TCPOPT_MSS:
2615 					if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2616 						u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2617 						if (in_mss) {
2618 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2619 								in_mss = opt_rx->user_mss;
2620 							opt_rx->mss_clamp = in_mss;
2621 						}
2622 					}
2623 					break;
2624 				case TCPOPT_WINDOW:
2625 					if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2626 						if (sysctl_tcp_window_scaling) {
2627 							__u8 snd_wscale = *(__u8 *) ptr;
2628 							opt_rx->wscale_ok = 1;
2629 							if (snd_wscale > 14) {
2630 								if(net_ratelimit())
2631 									printk(KERN_INFO "tcp_parse_options: Illegal window "
2632 									       "scaling value %d >14 received.\n",
2633 									       snd_wscale);
2634 								snd_wscale = 14;
2635 							}
2636 							opt_rx->snd_wscale = snd_wscale;
2637 						}
2638 					break;
2639 				case TCPOPT_TIMESTAMP:
2640 					if(opsize==TCPOLEN_TIMESTAMP) {
2641 						if ((estab && opt_rx->tstamp_ok) ||
2642 						    (!estab && sysctl_tcp_timestamps)) {
2643 							opt_rx->saw_tstamp = 1;
2644 							opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2645 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2646 						}
2647 					}
2648 					break;
2649 				case TCPOPT_SACK_PERM:
2650 					if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2651 						if (sysctl_tcp_sack) {
2652 							opt_rx->sack_ok = 1;
2653 							tcp_sack_reset(opt_rx);
2654 						}
2655 					}
2656 					break;
2657 
2658 				case TCPOPT_SACK:
2659 					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2660 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2661 					   opt_rx->sack_ok) {
2662 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2663 					}
2664 	  			};
2665 	  			ptr+=opsize-2;
2666 	  			length-=opsize;
2667 	  	};
2668 	}
2669 }
2670 
2671 /* Fast parse options. This hopes to only see timestamps.
2672  * If it is wrong it falls back on tcp_parse_options().
2673  */
2674 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2675 				  struct tcp_sock *tp)
2676 {
2677 	if (th->doff == sizeof(struct tcphdr)>>2) {
2678 		tp->rx_opt.saw_tstamp = 0;
2679 		return 0;
2680 	} else if (tp->rx_opt.tstamp_ok &&
2681 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2682 		__u32 *ptr = (__u32 *)(th + 1);
2683 		if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2684 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2685 			tp->rx_opt.saw_tstamp = 1;
2686 			++ptr;
2687 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2688 			++ptr;
2689 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2690 			return 1;
2691 		}
2692 	}
2693 	tcp_parse_options(skb, &tp->rx_opt, 1);
2694 	return 1;
2695 }
2696 
2697 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2698 {
2699 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2700 	tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2701 }
2702 
2703 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2704 {
2705 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2706 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2707 		 * extra check below makes sure this can only happen
2708 		 * for pure ACK frames.  -DaveM
2709 		 *
2710 		 * Not only, also it occurs for expired timestamps.
2711 		 */
2712 
2713 		if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2714 		   xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2715 			tcp_store_ts_recent(tp);
2716 	}
2717 }
2718 
2719 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2720  *
2721  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2722  * it can pass through stack. So, the following predicate verifies that
2723  * this segment is not used for anything but congestion avoidance or
2724  * fast retransmit. Moreover, we even are able to eliminate most of such
2725  * second order effects, if we apply some small "replay" window (~RTO)
2726  * to timestamp space.
2727  *
2728  * All these measures still do not guarantee that we reject wrapped ACKs
2729  * on networks with high bandwidth, when sequence space is recycled fastly,
2730  * but it guarantees that such events will be very rare and do not affect
2731  * connection seriously. This doesn't look nice, but alas, PAWS is really
2732  * buggy extension.
2733  *
2734  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2735  * states that events when retransmit arrives after original data are rare.
2736  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2737  * the biggest problem on large power networks even with minor reordering.
2738  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2739  * up to bandwidth of 18Gigabit/sec. 8) ]
2740  */
2741 
2742 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2743 {
2744 	struct tcp_sock *tp = tcp_sk(sk);
2745 	struct tcphdr *th = skb->h.th;
2746 	u32 seq = TCP_SKB_CB(skb)->seq;
2747 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2748 
2749 	return (/* 1. Pure ACK with correct sequence number. */
2750 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2751 
2752 		/* 2. ... and duplicate ACK. */
2753 		ack == tp->snd_una &&
2754 
2755 		/* 3. ... and does not update window. */
2756 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2757 
2758 		/* 4. ... and sits in replay window. */
2759 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2760 }
2761 
2762 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2763 {
2764 	const struct tcp_sock *tp = tcp_sk(sk);
2765 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2766 		xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2767 		!tcp_disordered_ack(sk, skb));
2768 }
2769 
2770 /* Check segment sequence number for validity.
2771  *
2772  * Segment controls are considered valid, if the segment
2773  * fits to the window after truncation to the window. Acceptability
2774  * of data (and SYN, FIN, of course) is checked separately.
2775  * See tcp_data_queue(), for example.
2776  *
2777  * Also, controls (RST is main one) are accepted using RCV.WUP instead
2778  * of RCV.NXT. Peer still did not advance his SND.UNA when we
2779  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2780  * (borrowed from freebsd)
2781  */
2782 
2783 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2784 {
2785 	return	!before(end_seq, tp->rcv_wup) &&
2786 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2787 }
2788 
2789 /* When we get a reset we do this. */
2790 static void tcp_reset(struct sock *sk)
2791 {
2792 	/* We want the right error as BSD sees it (and indeed as we do). */
2793 	switch (sk->sk_state) {
2794 		case TCP_SYN_SENT:
2795 			sk->sk_err = ECONNREFUSED;
2796 			break;
2797 		case TCP_CLOSE_WAIT:
2798 			sk->sk_err = EPIPE;
2799 			break;
2800 		case TCP_CLOSE:
2801 			return;
2802 		default:
2803 			sk->sk_err = ECONNRESET;
2804 	}
2805 
2806 	if (!sock_flag(sk, SOCK_DEAD))
2807 		sk->sk_error_report(sk);
2808 
2809 	tcp_done(sk);
2810 }
2811 
2812 /*
2813  * 	Process the FIN bit. This now behaves as it is supposed to work
2814  *	and the FIN takes effect when it is validly part of sequence
2815  *	space. Not before when we get holes.
2816  *
2817  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2818  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
2819  *	TIME-WAIT)
2820  *
2821  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
2822  *	close and we go into CLOSING (and later onto TIME-WAIT)
2823  *
2824  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2825  */
2826 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2827 {
2828 	struct tcp_sock *tp = tcp_sk(sk);
2829 
2830 	inet_csk_schedule_ack(sk);
2831 
2832 	sk->sk_shutdown |= RCV_SHUTDOWN;
2833 	sock_set_flag(sk, SOCK_DONE);
2834 
2835 	switch (sk->sk_state) {
2836 		case TCP_SYN_RECV:
2837 		case TCP_ESTABLISHED:
2838 			/* Move to CLOSE_WAIT */
2839 			tcp_set_state(sk, TCP_CLOSE_WAIT);
2840 			inet_csk(sk)->icsk_ack.pingpong = 1;
2841 			break;
2842 
2843 		case TCP_CLOSE_WAIT:
2844 		case TCP_CLOSING:
2845 			/* Received a retransmission of the FIN, do
2846 			 * nothing.
2847 			 */
2848 			break;
2849 		case TCP_LAST_ACK:
2850 			/* RFC793: Remain in the LAST-ACK state. */
2851 			break;
2852 
2853 		case TCP_FIN_WAIT1:
2854 			/* This case occurs when a simultaneous close
2855 			 * happens, we must ack the received FIN and
2856 			 * enter the CLOSING state.
2857 			 */
2858 			tcp_send_ack(sk);
2859 			tcp_set_state(sk, TCP_CLOSING);
2860 			break;
2861 		case TCP_FIN_WAIT2:
2862 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
2863 			tcp_send_ack(sk);
2864 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2865 			break;
2866 		default:
2867 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
2868 			 * cases we should never reach this piece of code.
2869 			 */
2870 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2871 			       __FUNCTION__, sk->sk_state);
2872 			break;
2873 	};
2874 
2875 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
2876 	 * Probably, we should reset in this case. For now drop them.
2877 	 */
2878 	__skb_queue_purge(&tp->out_of_order_queue);
2879 	if (tp->rx_opt.sack_ok)
2880 		tcp_sack_reset(&tp->rx_opt);
2881 	sk_stream_mem_reclaim(sk);
2882 
2883 	if (!sock_flag(sk, SOCK_DEAD)) {
2884 		sk->sk_state_change(sk);
2885 
2886 		/* Do not send POLL_HUP for half duplex close. */
2887 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
2888 		    sk->sk_state == TCP_CLOSE)
2889 			sk_wake_async(sk, 1, POLL_HUP);
2890 		else
2891 			sk_wake_async(sk, 1, POLL_IN);
2892 	}
2893 }
2894 
2895 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2896 {
2897 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2898 		if (before(seq, sp->start_seq))
2899 			sp->start_seq = seq;
2900 		if (after(end_seq, sp->end_seq))
2901 			sp->end_seq = end_seq;
2902 		return 1;
2903 	}
2904 	return 0;
2905 }
2906 
2907 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2908 {
2909 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2910 		if (before(seq, tp->rcv_nxt))
2911 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2912 		else
2913 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2914 
2915 		tp->rx_opt.dsack = 1;
2916 		tp->duplicate_sack[0].start_seq = seq;
2917 		tp->duplicate_sack[0].end_seq = end_seq;
2918 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2919 	}
2920 }
2921 
2922 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2923 {
2924 	if (!tp->rx_opt.dsack)
2925 		tcp_dsack_set(tp, seq, end_seq);
2926 	else
2927 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2928 }
2929 
2930 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2931 {
2932 	struct tcp_sock *tp = tcp_sk(sk);
2933 
2934 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2935 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2936 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2937 		tcp_enter_quickack_mode(sk);
2938 
2939 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2940 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2941 
2942 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2943 				end_seq = tp->rcv_nxt;
2944 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2945 		}
2946 	}
2947 
2948 	tcp_send_ack(sk);
2949 }
2950 
2951 /* These routines update the SACK block as out-of-order packets arrive or
2952  * in-order packets close up the sequence space.
2953  */
2954 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2955 {
2956 	int this_sack;
2957 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2958 	struct tcp_sack_block *swalk = sp+1;
2959 
2960 	/* See if the recent change to the first SACK eats into
2961 	 * or hits the sequence space of other SACK blocks, if so coalesce.
2962 	 */
2963 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2964 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2965 			int i;
2966 
2967 			/* Zap SWALK, by moving every further SACK up by one slot.
2968 			 * Decrease num_sacks.
2969 			 */
2970 			tp->rx_opt.num_sacks--;
2971 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2972 			for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2973 				sp[i] = sp[i+1];
2974 			continue;
2975 		}
2976 		this_sack++, swalk++;
2977 	}
2978 }
2979 
2980 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2981 {
2982 	__u32 tmp;
2983 
2984 	tmp = sack1->start_seq;
2985 	sack1->start_seq = sack2->start_seq;
2986 	sack2->start_seq = tmp;
2987 
2988 	tmp = sack1->end_seq;
2989 	sack1->end_seq = sack2->end_seq;
2990 	sack2->end_seq = tmp;
2991 }
2992 
2993 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2994 {
2995 	struct tcp_sock *tp = tcp_sk(sk);
2996 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2997 	int cur_sacks = tp->rx_opt.num_sacks;
2998 	int this_sack;
2999 
3000 	if (!cur_sacks)
3001 		goto new_sack;
3002 
3003 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3004 		if (tcp_sack_extend(sp, seq, end_seq)) {
3005 			/* Rotate this_sack to the first one. */
3006 			for (; this_sack>0; this_sack--, sp--)
3007 				tcp_sack_swap(sp, sp-1);
3008 			if (cur_sacks > 1)
3009 				tcp_sack_maybe_coalesce(tp);
3010 			return;
3011 		}
3012 	}
3013 
3014 	/* Could not find an adjacent existing SACK, build a new one,
3015 	 * put it at the front, and shift everyone else down.  We
3016 	 * always know there is at least one SACK present already here.
3017 	 *
3018 	 * If the sack array is full, forget about the last one.
3019 	 */
3020 	if (this_sack >= 4) {
3021 		this_sack--;
3022 		tp->rx_opt.num_sacks--;
3023 		sp--;
3024 	}
3025 	for(; this_sack > 0; this_sack--, sp--)
3026 		*sp = *(sp-1);
3027 
3028 new_sack:
3029 	/* Build the new head SACK, and we're done. */
3030 	sp->start_seq = seq;
3031 	sp->end_seq = end_seq;
3032 	tp->rx_opt.num_sacks++;
3033 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3034 }
3035 
3036 /* RCV.NXT advances, some SACKs should be eaten. */
3037 
3038 static void tcp_sack_remove(struct tcp_sock *tp)
3039 {
3040 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3041 	int num_sacks = tp->rx_opt.num_sacks;
3042 	int this_sack;
3043 
3044 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3045 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3046 		tp->rx_opt.num_sacks = 0;
3047 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3048 		return;
3049 	}
3050 
3051 	for(this_sack = 0; this_sack < num_sacks; ) {
3052 		/* Check if the start of the sack is covered by RCV.NXT. */
3053 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3054 			int i;
3055 
3056 			/* RCV.NXT must cover all the block! */
3057 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3058 
3059 			/* Zap this SACK, by moving forward any other SACKS. */
3060 			for (i=this_sack+1; i < num_sacks; i++)
3061 				tp->selective_acks[i-1] = tp->selective_acks[i];
3062 			num_sacks--;
3063 			continue;
3064 		}
3065 		this_sack++;
3066 		sp++;
3067 	}
3068 	if (num_sacks != tp->rx_opt.num_sacks) {
3069 		tp->rx_opt.num_sacks = num_sacks;
3070 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3071 	}
3072 }
3073 
3074 /* This one checks to see if we can put data from the
3075  * out_of_order queue into the receive_queue.
3076  */
3077 static void tcp_ofo_queue(struct sock *sk)
3078 {
3079 	struct tcp_sock *tp = tcp_sk(sk);
3080 	__u32 dsack_high = tp->rcv_nxt;
3081 	struct sk_buff *skb;
3082 
3083 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3084 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3085 			break;
3086 
3087 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3088 			__u32 dsack = dsack_high;
3089 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3090 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3091 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3092 		}
3093 
3094 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3095 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3096 			__skb_unlink(skb, &tp->out_of_order_queue);
3097 			__kfree_skb(skb);
3098 			continue;
3099 		}
3100 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3101 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3102 			   TCP_SKB_CB(skb)->end_seq);
3103 
3104 		__skb_unlink(skb, &tp->out_of_order_queue);
3105 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3106 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3107 		if(skb->h.th->fin)
3108 			tcp_fin(skb, sk, skb->h.th);
3109 	}
3110 }
3111 
3112 static int tcp_prune_queue(struct sock *sk);
3113 
3114 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3115 {
3116 	struct tcphdr *th = skb->h.th;
3117 	struct tcp_sock *tp = tcp_sk(sk);
3118 	int eaten = -1;
3119 
3120 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3121 		goto drop;
3122 
3123 	__skb_pull(skb, th->doff*4);
3124 
3125 	TCP_ECN_accept_cwr(tp, skb);
3126 
3127 	if (tp->rx_opt.dsack) {
3128 		tp->rx_opt.dsack = 0;
3129 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3130 						    4 - tp->rx_opt.tstamp_ok);
3131 	}
3132 
3133 	/*  Queue data for delivery to the user.
3134 	 *  Packets in sequence go to the receive queue.
3135 	 *  Out of sequence packets to the out_of_order_queue.
3136 	 */
3137 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3138 		if (tcp_receive_window(tp) == 0)
3139 			goto out_of_window;
3140 
3141 		/* Ok. In sequence. In window. */
3142 		if (tp->ucopy.task == current &&
3143 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3144 		    sock_owned_by_user(sk) && !tp->urg_data) {
3145 			int chunk = min_t(unsigned int, skb->len,
3146 							tp->ucopy.len);
3147 
3148 			__set_current_state(TASK_RUNNING);
3149 
3150 			local_bh_enable();
3151 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3152 				tp->ucopy.len -= chunk;
3153 				tp->copied_seq += chunk;
3154 				eaten = (chunk == skb->len && !th->fin);
3155 				tcp_rcv_space_adjust(sk);
3156 			}
3157 			local_bh_disable();
3158 		}
3159 
3160 		if (eaten <= 0) {
3161 queue_and_out:
3162 			if (eaten < 0 &&
3163 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3164 			     !sk_stream_rmem_schedule(sk, skb))) {
3165 				if (tcp_prune_queue(sk) < 0 ||
3166 				    !sk_stream_rmem_schedule(sk, skb))
3167 					goto drop;
3168 			}
3169 			sk_stream_set_owner_r(skb, sk);
3170 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3171 		}
3172 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3173 		if(skb->len)
3174 			tcp_event_data_recv(sk, tp, skb);
3175 		if(th->fin)
3176 			tcp_fin(skb, sk, th);
3177 
3178 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3179 			tcp_ofo_queue(sk);
3180 
3181 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3182 			 * gap in queue is filled.
3183 			 */
3184 			if (skb_queue_empty(&tp->out_of_order_queue))
3185 				inet_csk(sk)->icsk_ack.pingpong = 0;
3186 		}
3187 
3188 		if (tp->rx_opt.num_sacks)
3189 			tcp_sack_remove(tp);
3190 
3191 		tcp_fast_path_check(sk, tp);
3192 
3193 		if (eaten > 0)
3194 			__kfree_skb(skb);
3195 		else if (!sock_flag(sk, SOCK_DEAD))
3196 			sk->sk_data_ready(sk, 0);
3197 		return;
3198 	}
3199 
3200 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3201 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3202 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3203 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3204 
3205 out_of_window:
3206 		tcp_enter_quickack_mode(sk);
3207 		inet_csk_schedule_ack(sk);
3208 drop:
3209 		__kfree_skb(skb);
3210 		return;
3211 	}
3212 
3213 	/* Out of window. F.e. zero window probe. */
3214 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3215 		goto out_of_window;
3216 
3217 	tcp_enter_quickack_mode(sk);
3218 
3219 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3220 		/* Partial packet, seq < rcv_next < end_seq */
3221 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3222 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3223 			   TCP_SKB_CB(skb)->end_seq);
3224 
3225 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3226 
3227 		/* If window is closed, drop tail of packet. But after
3228 		 * remembering D-SACK for its head made in previous line.
3229 		 */
3230 		if (!tcp_receive_window(tp))
3231 			goto out_of_window;
3232 		goto queue_and_out;
3233 	}
3234 
3235 	TCP_ECN_check_ce(tp, skb);
3236 
3237 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3238 	    !sk_stream_rmem_schedule(sk, skb)) {
3239 		if (tcp_prune_queue(sk) < 0 ||
3240 		    !sk_stream_rmem_schedule(sk, skb))
3241 			goto drop;
3242 	}
3243 
3244 	/* Disable header prediction. */
3245 	tp->pred_flags = 0;
3246 	inet_csk_schedule_ack(sk);
3247 
3248 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3249 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3250 
3251 	sk_stream_set_owner_r(skb, sk);
3252 
3253 	if (!skb_peek(&tp->out_of_order_queue)) {
3254 		/* Initial out of order segment, build 1 SACK. */
3255 		if (tp->rx_opt.sack_ok) {
3256 			tp->rx_opt.num_sacks = 1;
3257 			tp->rx_opt.dsack     = 0;
3258 			tp->rx_opt.eff_sacks = 1;
3259 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3260 			tp->selective_acks[0].end_seq =
3261 						TCP_SKB_CB(skb)->end_seq;
3262 		}
3263 		__skb_queue_head(&tp->out_of_order_queue,skb);
3264 	} else {
3265 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3266 		u32 seq = TCP_SKB_CB(skb)->seq;
3267 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3268 
3269 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3270 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3271 
3272 			if (!tp->rx_opt.num_sacks ||
3273 			    tp->selective_acks[0].end_seq != seq)
3274 				goto add_sack;
3275 
3276 			/* Common case: data arrive in order after hole. */
3277 			tp->selective_acks[0].end_seq = end_seq;
3278 			return;
3279 		}
3280 
3281 		/* Find place to insert this segment. */
3282 		do {
3283 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3284 				break;
3285 		} while ((skb1 = skb1->prev) !=
3286 			 (struct sk_buff*)&tp->out_of_order_queue);
3287 
3288 		/* Do skb overlap to previous one? */
3289 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3290 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3291 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3292 				/* All the bits are present. Drop. */
3293 				__kfree_skb(skb);
3294 				tcp_dsack_set(tp, seq, end_seq);
3295 				goto add_sack;
3296 			}
3297 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3298 				/* Partial overlap. */
3299 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3300 			} else {
3301 				skb1 = skb1->prev;
3302 			}
3303 		}
3304 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3305 
3306 		/* And clean segments covered by new one as whole. */
3307 		while ((skb1 = skb->next) !=
3308 		       (struct sk_buff*)&tp->out_of_order_queue &&
3309 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3310 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3311 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3312 			       break;
3313 		       }
3314 		       __skb_unlink(skb1, &tp->out_of_order_queue);
3315 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3316 		       __kfree_skb(skb1);
3317 		}
3318 
3319 add_sack:
3320 		if (tp->rx_opt.sack_ok)
3321 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3322 	}
3323 }
3324 
3325 /* Collapse contiguous sequence of skbs head..tail with
3326  * sequence numbers start..end.
3327  * Segments with FIN/SYN are not collapsed (only because this
3328  * simplifies code)
3329  */
3330 static void
3331 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3332 	     struct sk_buff *head, struct sk_buff *tail,
3333 	     u32 start, u32 end)
3334 {
3335 	struct sk_buff *skb;
3336 
3337 	/* First, check that queue is collapsible and find
3338 	 * the point where collapsing can be useful. */
3339 	for (skb = head; skb != tail; ) {
3340 		/* No new bits? It is possible on ofo queue. */
3341 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3342 			struct sk_buff *next = skb->next;
3343 			__skb_unlink(skb, list);
3344 			__kfree_skb(skb);
3345 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3346 			skb = next;
3347 			continue;
3348 		}
3349 
3350 		/* The first skb to collapse is:
3351 		 * - not SYN/FIN and
3352 		 * - bloated or contains data before "start" or
3353 		 *   overlaps to the next one.
3354 		 */
3355 		if (!skb->h.th->syn && !skb->h.th->fin &&
3356 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3357 		     before(TCP_SKB_CB(skb)->seq, start) ||
3358 		     (skb->next != tail &&
3359 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3360 			break;
3361 
3362 		/* Decided to skip this, advance start seq. */
3363 		start = TCP_SKB_CB(skb)->end_seq;
3364 		skb = skb->next;
3365 	}
3366 	if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3367 		return;
3368 
3369 	while (before(start, end)) {
3370 		struct sk_buff *nskb;
3371 		int header = skb_headroom(skb);
3372 		int copy = SKB_MAX_ORDER(header, 0);
3373 
3374 		/* Too big header? This can happen with IPv6. */
3375 		if (copy < 0)
3376 			return;
3377 		if (end-start < copy)
3378 			copy = end-start;
3379 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3380 		if (!nskb)
3381 			return;
3382 		skb_reserve(nskb, header);
3383 		memcpy(nskb->head, skb->head, header);
3384 		nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3385 		nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3386 		nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3387 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3388 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3389 		__skb_insert(nskb, skb->prev, skb, list);
3390 		sk_stream_set_owner_r(nskb, sk);
3391 
3392 		/* Copy data, releasing collapsed skbs. */
3393 		while (copy > 0) {
3394 			int offset = start - TCP_SKB_CB(skb)->seq;
3395 			int size = TCP_SKB_CB(skb)->end_seq - start;
3396 
3397 			BUG_ON(offset < 0);
3398 			if (size > 0) {
3399 				size = min(copy, size);
3400 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3401 					BUG();
3402 				TCP_SKB_CB(nskb)->end_seq += size;
3403 				copy -= size;
3404 				start += size;
3405 			}
3406 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3407 				struct sk_buff *next = skb->next;
3408 				__skb_unlink(skb, list);
3409 				__kfree_skb(skb);
3410 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3411 				skb = next;
3412 				if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3413 					return;
3414 			}
3415 		}
3416 	}
3417 }
3418 
3419 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3420  * and tcp_collapse() them until all the queue is collapsed.
3421  */
3422 static void tcp_collapse_ofo_queue(struct sock *sk)
3423 {
3424 	struct tcp_sock *tp = tcp_sk(sk);
3425 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3426 	struct sk_buff *head;
3427 	u32 start, end;
3428 
3429 	if (skb == NULL)
3430 		return;
3431 
3432 	start = TCP_SKB_CB(skb)->seq;
3433 	end = TCP_SKB_CB(skb)->end_seq;
3434 	head = skb;
3435 
3436 	for (;;) {
3437 		skb = skb->next;
3438 
3439 		/* Segment is terminated when we see gap or when
3440 		 * we are at the end of all the queue. */
3441 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3442 		    after(TCP_SKB_CB(skb)->seq, end) ||
3443 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3444 			tcp_collapse(sk, &tp->out_of_order_queue,
3445 				     head, skb, start, end);
3446 			head = skb;
3447 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3448 				break;
3449 			/* Start new segment */
3450 			start = TCP_SKB_CB(skb)->seq;
3451 			end = TCP_SKB_CB(skb)->end_seq;
3452 		} else {
3453 			if (before(TCP_SKB_CB(skb)->seq, start))
3454 				start = TCP_SKB_CB(skb)->seq;
3455 			if (after(TCP_SKB_CB(skb)->end_seq, end))
3456 				end = TCP_SKB_CB(skb)->end_seq;
3457 		}
3458 	}
3459 }
3460 
3461 /* Reduce allocated memory if we can, trying to get
3462  * the socket within its memory limits again.
3463  *
3464  * Return less than zero if we should start dropping frames
3465  * until the socket owning process reads some of the data
3466  * to stabilize the situation.
3467  */
3468 static int tcp_prune_queue(struct sock *sk)
3469 {
3470 	struct tcp_sock *tp = tcp_sk(sk);
3471 
3472 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3473 
3474 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3475 
3476 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3477 		tcp_clamp_window(sk, tp);
3478 	else if (tcp_memory_pressure)
3479 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3480 
3481 	tcp_collapse_ofo_queue(sk);
3482 	tcp_collapse(sk, &sk->sk_receive_queue,
3483 		     sk->sk_receive_queue.next,
3484 		     (struct sk_buff*)&sk->sk_receive_queue,
3485 		     tp->copied_seq, tp->rcv_nxt);
3486 	sk_stream_mem_reclaim(sk);
3487 
3488 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3489 		return 0;
3490 
3491 	/* Collapsing did not help, destructive actions follow.
3492 	 * This must not ever occur. */
3493 
3494 	/* First, purge the out_of_order queue. */
3495 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3496 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3497 		__skb_queue_purge(&tp->out_of_order_queue);
3498 
3499 		/* Reset SACK state.  A conforming SACK implementation will
3500 		 * do the same at a timeout based retransmit.  When a connection
3501 		 * is in a sad state like this, we care only about integrity
3502 		 * of the connection not performance.
3503 		 */
3504 		if (tp->rx_opt.sack_ok)
3505 			tcp_sack_reset(&tp->rx_opt);
3506 		sk_stream_mem_reclaim(sk);
3507 	}
3508 
3509 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3510 		return 0;
3511 
3512 	/* If we are really being abused, tell the caller to silently
3513 	 * drop receive data on the floor.  It will get retransmitted
3514 	 * and hopefully then we'll have sufficient space.
3515 	 */
3516 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3517 
3518 	/* Massive buffer overcommit. */
3519 	tp->pred_flags = 0;
3520 	return -1;
3521 }
3522 
3523 
3524 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3525  * As additional protections, we do not touch cwnd in retransmission phases,
3526  * and if application hit its sndbuf limit recently.
3527  */
3528 void tcp_cwnd_application_limited(struct sock *sk)
3529 {
3530 	struct tcp_sock *tp = tcp_sk(sk);
3531 
3532 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3533 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3534 		/* Limited by application or receiver window. */
3535 		u32 win_used = max(tp->snd_cwnd_used, 2U);
3536 		if (win_used < tp->snd_cwnd) {
3537 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3538 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3539 		}
3540 		tp->snd_cwnd_used = 0;
3541 	}
3542 	tp->snd_cwnd_stamp = tcp_time_stamp;
3543 }
3544 
3545 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3546 {
3547 	/* If the user specified a specific send buffer setting, do
3548 	 * not modify it.
3549 	 */
3550 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3551 		return 0;
3552 
3553 	/* If we are under global TCP memory pressure, do not expand.  */
3554 	if (tcp_memory_pressure)
3555 		return 0;
3556 
3557 	/* If we are under soft global TCP memory pressure, do not expand.  */
3558 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3559 		return 0;
3560 
3561 	/* If we filled the congestion window, do not expand.  */
3562 	if (tp->packets_out >= tp->snd_cwnd)
3563 		return 0;
3564 
3565 	return 1;
3566 }
3567 
3568 /* When incoming ACK allowed to free some skb from write_queue,
3569  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3570  * on the exit from tcp input handler.
3571  *
3572  * PROBLEM: sndbuf expansion does not work well with largesend.
3573  */
3574 static void tcp_new_space(struct sock *sk)
3575 {
3576 	struct tcp_sock *tp = tcp_sk(sk);
3577 
3578 	if (tcp_should_expand_sndbuf(sk, tp)) {
3579  		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3580 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3581 		    demanded = max_t(unsigned int, tp->snd_cwnd,
3582 						   tp->reordering + 1);
3583 		sndmem *= 2*demanded;
3584 		if (sndmem > sk->sk_sndbuf)
3585 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3586 		tp->snd_cwnd_stamp = tcp_time_stamp;
3587 	}
3588 
3589 	sk->sk_write_space(sk);
3590 }
3591 
3592 static void tcp_check_space(struct sock *sk)
3593 {
3594 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3595 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3596 		if (sk->sk_socket &&
3597 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3598 			tcp_new_space(sk);
3599 	}
3600 }
3601 
3602 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3603 {
3604 	tcp_push_pending_frames(sk, tp);
3605 	tcp_check_space(sk);
3606 }
3607 
3608 /*
3609  * Check if sending an ack is needed.
3610  */
3611 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3612 {
3613 	struct tcp_sock *tp = tcp_sk(sk);
3614 
3615 	    /* More than one full frame received... */
3616 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3617 	     /* ... and right edge of window advances far enough.
3618 	      * (tcp_recvmsg() will send ACK otherwise). Or...
3619 	      */
3620 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3621 	    /* We ACK each frame or... */
3622 	    tcp_in_quickack_mode(sk) ||
3623 	    /* We have out of order data. */
3624 	    (ofo_possible &&
3625 	     skb_peek(&tp->out_of_order_queue))) {
3626 		/* Then ack it now */
3627 		tcp_send_ack(sk);
3628 	} else {
3629 		/* Else, send delayed ack. */
3630 		tcp_send_delayed_ack(sk);
3631 	}
3632 }
3633 
3634 static inline void tcp_ack_snd_check(struct sock *sk)
3635 {
3636 	if (!inet_csk_ack_scheduled(sk)) {
3637 		/* We sent a data segment already. */
3638 		return;
3639 	}
3640 	__tcp_ack_snd_check(sk, 1);
3641 }
3642 
3643 /*
3644  *	This routine is only called when we have urgent data
3645  *	signaled. Its the 'slow' part of tcp_urg. It could be
3646  *	moved inline now as tcp_urg is only called from one
3647  *	place. We handle URGent data wrong. We have to - as
3648  *	BSD still doesn't use the correction from RFC961.
3649  *	For 1003.1g we should support a new option TCP_STDURG to permit
3650  *	either form (or just set the sysctl tcp_stdurg).
3651  */
3652 
3653 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3654 {
3655 	struct tcp_sock *tp = tcp_sk(sk);
3656 	u32 ptr = ntohs(th->urg_ptr);
3657 
3658 	if (ptr && !sysctl_tcp_stdurg)
3659 		ptr--;
3660 	ptr += ntohl(th->seq);
3661 
3662 	/* Ignore urgent data that we've already seen and read. */
3663 	if (after(tp->copied_seq, ptr))
3664 		return;
3665 
3666 	/* Do not replay urg ptr.
3667 	 *
3668 	 * NOTE: interesting situation not covered by specs.
3669 	 * Misbehaving sender may send urg ptr, pointing to segment,
3670 	 * which we already have in ofo queue. We are not able to fetch
3671 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3672 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3673 	 * situations. But it is worth to think about possibility of some
3674 	 * DoSes using some hypothetical application level deadlock.
3675 	 */
3676 	if (before(ptr, tp->rcv_nxt))
3677 		return;
3678 
3679 	/* Do we already have a newer (or duplicate) urgent pointer? */
3680 	if (tp->urg_data && !after(ptr, tp->urg_seq))
3681 		return;
3682 
3683 	/* Tell the world about our new urgent pointer. */
3684 	sk_send_sigurg(sk);
3685 
3686 	/* We may be adding urgent data when the last byte read was
3687 	 * urgent. To do this requires some care. We cannot just ignore
3688 	 * tp->copied_seq since we would read the last urgent byte again
3689 	 * as data, nor can we alter copied_seq until this data arrives
3690 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3691 	 *
3692 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3693 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3694 	 * and expect that both A and B disappear from stream. This is _wrong_.
3695 	 * Though this happens in BSD with high probability, this is occasional.
3696 	 * Any application relying on this is buggy. Note also, that fix "works"
3697 	 * only in this artificial test. Insert some normal data between A and B and we will
3698 	 * decline of BSD again. Verdict: it is better to remove to trap
3699 	 * buggy users.
3700 	 */
3701 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3702 	    !sock_flag(sk, SOCK_URGINLINE) &&
3703 	    tp->copied_seq != tp->rcv_nxt) {
3704 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3705 		tp->copied_seq++;
3706 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3707 			__skb_unlink(skb, &sk->sk_receive_queue);
3708 			__kfree_skb(skb);
3709 		}
3710 	}
3711 
3712 	tp->urg_data   = TCP_URG_NOTYET;
3713 	tp->urg_seq    = ptr;
3714 
3715 	/* Disable header prediction. */
3716 	tp->pred_flags = 0;
3717 }
3718 
3719 /* This is the 'fast' part of urgent handling. */
3720 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3721 {
3722 	struct tcp_sock *tp = tcp_sk(sk);
3723 
3724 	/* Check if we get a new urgent pointer - normally not. */
3725 	if (th->urg)
3726 		tcp_check_urg(sk,th);
3727 
3728 	/* Do we wait for any urgent data? - normally not... */
3729 	if (tp->urg_data == TCP_URG_NOTYET) {
3730 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3731 			  th->syn;
3732 
3733 		/* Is the urgent pointer pointing into this packet? */
3734 		if (ptr < skb->len) {
3735 			u8 tmp;
3736 			if (skb_copy_bits(skb, ptr, &tmp, 1))
3737 				BUG();
3738 			tp->urg_data = TCP_URG_VALID | tmp;
3739 			if (!sock_flag(sk, SOCK_DEAD))
3740 				sk->sk_data_ready(sk, 0);
3741 		}
3742 	}
3743 }
3744 
3745 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3746 {
3747 	struct tcp_sock *tp = tcp_sk(sk);
3748 	int chunk = skb->len - hlen;
3749 	int err;
3750 
3751 	local_bh_enable();
3752 	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3753 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3754 	else
3755 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3756 						       tp->ucopy.iov);
3757 
3758 	if (!err) {
3759 		tp->ucopy.len -= chunk;
3760 		tp->copied_seq += chunk;
3761 		tcp_rcv_space_adjust(sk);
3762 	}
3763 
3764 	local_bh_disable();
3765 	return err;
3766 }
3767 
3768 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3769 {
3770 	int result;
3771 
3772 	if (sock_owned_by_user(sk)) {
3773 		local_bh_enable();
3774 		result = __tcp_checksum_complete(skb);
3775 		local_bh_disable();
3776 	} else {
3777 		result = __tcp_checksum_complete(skb);
3778 	}
3779 	return result;
3780 }
3781 
3782 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3783 {
3784 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3785 		__tcp_checksum_complete_user(sk, skb);
3786 }
3787 
3788 /*
3789  *	TCP receive function for the ESTABLISHED state.
3790  *
3791  *	It is split into a fast path and a slow path. The fast path is
3792  * 	disabled when:
3793  *	- A zero window was announced from us - zero window probing
3794  *        is only handled properly in the slow path.
3795  *	- Out of order segments arrived.
3796  *	- Urgent data is expected.
3797  *	- There is no buffer space left
3798  *	- Unexpected TCP flags/window values/header lengths are received
3799  *	  (detected by checking the TCP header against pred_flags)
3800  *	- Data is sent in both directions. Fast path only supports pure senders
3801  *	  or pure receivers (this means either the sequence number or the ack
3802  *	  value must stay constant)
3803  *	- Unexpected TCP option.
3804  *
3805  *	When these conditions are not satisfied it drops into a standard
3806  *	receive procedure patterned after RFC793 to handle all cases.
3807  *	The first three cases are guaranteed by proper pred_flags setting,
3808  *	the rest is checked inline. Fast processing is turned on in
3809  *	tcp_data_queue when everything is OK.
3810  */
3811 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3812 			struct tcphdr *th, unsigned len)
3813 {
3814 	struct tcp_sock *tp = tcp_sk(sk);
3815 
3816 	/*
3817 	 *	Header prediction.
3818 	 *	The code loosely follows the one in the famous
3819 	 *	"30 instruction TCP receive" Van Jacobson mail.
3820 	 *
3821 	 *	Van's trick is to deposit buffers into socket queue
3822 	 *	on a device interrupt, to call tcp_recv function
3823 	 *	on the receive process context and checksum and copy
3824 	 *	the buffer to user space. smart...
3825 	 *
3826 	 *	Our current scheme is not silly either but we take the
3827 	 *	extra cost of the net_bh soft interrupt processing...
3828 	 *	We do checksum and copy also but from device to kernel.
3829 	 */
3830 
3831 	tp->rx_opt.saw_tstamp = 0;
3832 
3833 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
3834 	 *	if header_prediction is to be made
3835 	 *	'S' will always be tp->tcp_header_len >> 2
3836 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
3837 	 *  turn it off	(when there are holes in the receive
3838 	 *	 space for instance)
3839 	 *	PSH flag is ignored.
3840 	 */
3841 
3842 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3843 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3844 		int tcp_header_len = tp->tcp_header_len;
3845 
3846 		/* Timestamp header prediction: tcp_header_len
3847 		 * is automatically equal to th->doff*4 due to pred_flags
3848 		 * match.
3849 		 */
3850 
3851 		/* Check timestamp */
3852 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3853 			__u32 *ptr = (__u32 *)(th + 1);
3854 
3855 			/* No? Slow path! */
3856 			if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3857 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3858 				goto slow_path;
3859 
3860 			tp->rx_opt.saw_tstamp = 1;
3861 			++ptr;
3862 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3863 			++ptr;
3864 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3865 
3866 			/* If PAWS failed, check it more carefully in slow path */
3867 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3868 				goto slow_path;
3869 
3870 			/* DO NOT update ts_recent here, if checksum fails
3871 			 * and timestamp was corrupted part, it will result
3872 			 * in a hung connection since we will drop all
3873 			 * future packets due to the PAWS test.
3874 			 */
3875 		}
3876 
3877 		if (len <= tcp_header_len) {
3878 			/* Bulk data transfer: sender */
3879 			if (len == tcp_header_len) {
3880 				/* Predicted packet is in window by definition.
3881 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3882 				 * Hence, check seq<=rcv_wup reduces to:
3883 				 */
3884 				if (tcp_header_len ==
3885 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3886 				    tp->rcv_nxt == tp->rcv_wup)
3887 					tcp_store_ts_recent(tp);
3888 
3889 				tcp_rcv_rtt_measure_ts(sk, skb);
3890 
3891 				/* We know that such packets are checksummed
3892 				 * on entry.
3893 				 */
3894 				tcp_ack(sk, skb, 0);
3895 				__kfree_skb(skb);
3896 				tcp_data_snd_check(sk, tp);
3897 				return 0;
3898 			} else { /* Header too small */
3899 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
3900 				goto discard;
3901 			}
3902 		} else {
3903 			int eaten = 0;
3904 
3905 			if (tp->ucopy.task == current &&
3906 			    tp->copied_seq == tp->rcv_nxt &&
3907 			    len - tcp_header_len <= tp->ucopy.len &&
3908 			    sock_owned_by_user(sk)) {
3909 				__set_current_state(TASK_RUNNING);
3910 
3911 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3912 					/* Predicted packet is in window by definition.
3913 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3914 					 * Hence, check seq<=rcv_wup reduces to:
3915 					 */
3916 					if (tcp_header_len ==
3917 					    (sizeof(struct tcphdr) +
3918 					     TCPOLEN_TSTAMP_ALIGNED) &&
3919 					    tp->rcv_nxt == tp->rcv_wup)
3920 						tcp_store_ts_recent(tp);
3921 
3922 					tcp_rcv_rtt_measure_ts(sk, skb);
3923 
3924 					__skb_pull(skb, tcp_header_len);
3925 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3926 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3927 					eaten = 1;
3928 				}
3929 			}
3930 			if (!eaten) {
3931 				if (tcp_checksum_complete_user(sk, skb))
3932 					goto csum_error;
3933 
3934 				/* Predicted packet is in window by definition.
3935 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3936 				 * Hence, check seq<=rcv_wup reduces to:
3937 				 */
3938 				if (tcp_header_len ==
3939 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3940 				    tp->rcv_nxt == tp->rcv_wup)
3941 					tcp_store_ts_recent(tp);
3942 
3943 				tcp_rcv_rtt_measure_ts(sk, skb);
3944 
3945 				if ((int)skb->truesize > sk->sk_forward_alloc)
3946 					goto step5;
3947 
3948 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3949 
3950 				/* Bulk data transfer: receiver */
3951 				__skb_pull(skb,tcp_header_len);
3952 				__skb_queue_tail(&sk->sk_receive_queue, skb);
3953 				sk_stream_set_owner_r(skb, sk);
3954 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3955 			}
3956 
3957 			tcp_event_data_recv(sk, tp, skb);
3958 
3959 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3960 				/* Well, only one small jumplet in fast path... */
3961 				tcp_ack(sk, skb, FLAG_DATA);
3962 				tcp_data_snd_check(sk, tp);
3963 				if (!inet_csk_ack_scheduled(sk))
3964 					goto no_ack;
3965 			}
3966 
3967 			__tcp_ack_snd_check(sk, 0);
3968 no_ack:
3969 			if (eaten)
3970 				__kfree_skb(skb);
3971 			else
3972 				sk->sk_data_ready(sk, 0);
3973 			return 0;
3974 		}
3975 	}
3976 
3977 slow_path:
3978 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3979 		goto csum_error;
3980 
3981 	/*
3982 	 * RFC1323: H1. Apply PAWS check first.
3983 	 */
3984 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3985 	    tcp_paws_discard(sk, skb)) {
3986 		if (!th->rst) {
3987 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3988 			tcp_send_dupack(sk, skb);
3989 			goto discard;
3990 		}
3991 		/* Resets are accepted even if PAWS failed.
3992 
3993 		   ts_recent update must be made after we are sure
3994 		   that the packet is in window.
3995 		 */
3996 	}
3997 
3998 	/*
3999 	 *	Standard slow path.
4000 	 */
4001 
4002 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4003 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4004 		 * (RST) segments are validated by checking their SEQ-fields."
4005 		 * And page 69: "If an incoming segment is not acceptable,
4006 		 * an acknowledgment should be sent in reply (unless the RST bit
4007 		 * is set, if so drop the segment and return)".
4008 		 */
4009 		if (!th->rst)
4010 			tcp_send_dupack(sk, skb);
4011 		goto discard;
4012 	}
4013 
4014 	if(th->rst) {
4015 		tcp_reset(sk);
4016 		goto discard;
4017 	}
4018 
4019 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4020 
4021 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4022 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4023 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4024 		tcp_reset(sk);
4025 		return 1;
4026 	}
4027 
4028 step5:
4029 	if(th->ack)
4030 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4031 
4032 	tcp_rcv_rtt_measure_ts(sk, skb);
4033 
4034 	/* Process urgent data. */
4035 	tcp_urg(sk, skb, th);
4036 
4037 	/* step 7: process the segment text */
4038 	tcp_data_queue(sk, skb);
4039 
4040 	tcp_data_snd_check(sk, tp);
4041 	tcp_ack_snd_check(sk);
4042 	return 0;
4043 
4044 csum_error:
4045 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4046 
4047 discard:
4048 	__kfree_skb(skb);
4049 	return 0;
4050 }
4051 
4052 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4053 					 struct tcphdr *th, unsigned len)
4054 {
4055 	struct tcp_sock *tp = tcp_sk(sk);
4056 	struct inet_connection_sock *icsk = inet_csk(sk);
4057 	int saved_clamp = tp->rx_opt.mss_clamp;
4058 
4059 	tcp_parse_options(skb, &tp->rx_opt, 0);
4060 
4061 	if (th->ack) {
4062 		/* rfc793:
4063 		 * "If the state is SYN-SENT then
4064 		 *    first check the ACK bit
4065 		 *      If the ACK bit is set
4066 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4067 		 *        a reset (unless the RST bit is set, if so drop
4068 		 *        the segment and return)"
4069 		 *
4070 		 *  We do not send data with SYN, so that RFC-correct
4071 		 *  test reduces to:
4072 		 */
4073 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4074 			goto reset_and_undo;
4075 
4076 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4077 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4078 			     tcp_time_stamp)) {
4079 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4080 			goto reset_and_undo;
4081 		}
4082 
4083 		/* Now ACK is acceptable.
4084 		 *
4085 		 * "If the RST bit is set
4086 		 *    If the ACK was acceptable then signal the user "error:
4087 		 *    connection reset", drop the segment, enter CLOSED state,
4088 		 *    delete TCB, and return."
4089 		 */
4090 
4091 		if (th->rst) {
4092 			tcp_reset(sk);
4093 			goto discard;
4094 		}
4095 
4096 		/* rfc793:
4097 		 *   "fifth, if neither of the SYN or RST bits is set then
4098 		 *    drop the segment and return."
4099 		 *
4100 		 *    See note below!
4101 		 *                                        --ANK(990513)
4102 		 */
4103 		if (!th->syn)
4104 			goto discard_and_undo;
4105 
4106 		/* rfc793:
4107 		 *   "If the SYN bit is on ...
4108 		 *    are acceptable then ...
4109 		 *    (our SYN has been ACKed), change the connection
4110 		 *    state to ESTABLISHED..."
4111 		 */
4112 
4113 		TCP_ECN_rcv_synack(tp, th);
4114 		if (tp->ecn_flags&TCP_ECN_OK)
4115 			sock_set_flag(sk, SOCK_NO_LARGESEND);
4116 
4117 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4118 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4119 
4120 		/* Ok.. it's good. Set up sequence numbers and
4121 		 * move to established.
4122 		 */
4123 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4124 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4125 
4126 		/* RFC1323: The window in SYN & SYN/ACK segments is
4127 		 * never scaled.
4128 		 */
4129 		tp->snd_wnd = ntohs(th->window);
4130 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4131 
4132 		if (!tp->rx_opt.wscale_ok) {
4133 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4134 			tp->window_clamp = min(tp->window_clamp, 65535U);
4135 		}
4136 
4137 		if (tp->rx_opt.saw_tstamp) {
4138 			tp->rx_opt.tstamp_ok	   = 1;
4139 			tp->tcp_header_len =
4140 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4141 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4142 			tcp_store_ts_recent(tp);
4143 		} else {
4144 			tp->tcp_header_len = sizeof(struct tcphdr);
4145 		}
4146 
4147 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4148 			tp->rx_opt.sack_ok |= 2;
4149 
4150 		tcp_mtup_init(sk);
4151 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4152 		tcp_initialize_rcv_mss(sk);
4153 
4154 		/* Remember, tcp_poll() does not lock socket!
4155 		 * Change state from SYN-SENT only after copied_seq
4156 		 * is initialized. */
4157 		tp->copied_seq = tp->rcv_nxt;
4158 		mb();
4159 		tcp_set_state(sk, TCP_ESTABLISHED);
4160 
4161 		/* Make sure socket is routed, for correct metrics.  */
4162 		icsk->icsk_af_ops->rebuild_header(sk);
4163 
4164 		tcp_init_metrics(sk);
4165 
4166 		tcp_init_congestion_control(sk);
4167 
4168 		/* Prevent spurious tcp_cwnd_restart() on first data
4169 		 * packet.
4170 		 */
4171 		tp->lsndtime = tcp_time_stamp;
4172 
4173 		tcp_init_buffer_space(sk);
4174 
4175 		if (sock_flag(sk, SOCK_KEEPOPEN))
4176 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4177 
4178 		if (!tp->rx_opt.snd_wscale)
4179 			__tcp_fast_path_on(tp, tp->snd_wnd);
4180 		else
4181 			tp->pred_flags = 0;
4182 
4183 		if (!sock_flag(sk, SOCK_DEAD)) {
4184 			sk->sk_state_change(sk);
4185 			sk_wake_async(sk, 0, POLL_OUT);
4186 		}
4187 
4188 		if (sk->sk_write_pending ||
4189 		    icsk->icsk_accept_queue.rskq_defer_accept ||
4190 		    icsk->icsk_ack.pingpong) {
4191 			/* Save one ACK. Data will be ready after
4192 			 * several ticks, if write_pending is set.
4193 			 *
4194 			 * It may be deleted, but with this feature tcpdumps
4195 			 * look so _wonderfully_ clever, that I was not able
4196 			 * to stand against the temptation 8)     --ANK
4197 			 */
4198 			inet_csk_schedule_ack(sk);
4199 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4200 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4201 			tcp_incr_quickack(sk);
4202 			tcp_enter_quickack_mode(sk);
4203 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4204 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4205 
4206 discard:
4207 			__kfree_skb(skb);
4208 			return 0;
4209 		} else {
4210 			tcp_send_ack(sk);
4211 		}
4212 		return -1;
4213 	}
4214 
4215 	/* No ACK in the segment */
4216 
4217 	if (th->rst) {
4218 		/* rfc793:
4219 		 * "If the RST bit is set
4220 		 *
4221 		 *      Otherwise (no ACK) drop the segment and return."
4222 		 */
4223 
4224 		goto discard_and_undo;
4225 	}
4226 
4227 	/* PAWS check. */
4228 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4229 		goto discard_and_undo;
4230 
4231 	if (th->syn) {
4232 		/* We see SYN without ACK. It is attempt of
4233 		 * simultaneous connect with crossed SYNs.
4234 		 * Particularly, it can be connect to self.
4235 		 */
4236 		tcp_set_state(sk, TCP_SYN_RECV);
4237 
4238 		if (tp->rx_opt.saw_tstamp) {
4239 			tp->rx_opt.tstamp_ok = 1;
4240 			tcp_store_ts_recent(tp);
4241 			tp->tcp_header_len =
4242 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4243 		} else {
4244 			tp->tcp_header_len = sizeof(struct tcphdr);
4245 		}
4246 
4247 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4248 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4249 
4250 		/* RFC1323: The window in SYN & SYN/ACK segments is
4251 		 * never scaled.
4252 		 */
4253 		tp->snd_wnd    = ntohs(th->window);
4254 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4255 		tp->max_window = tp->snd_wnd;
4256 
4257 		TCP_ECN_rcv_syn(tp, th);
4258 		if (tp->ecn_flags&TCP_ECN_OK)
4259 			sock_set_flag(sk, SOCK_NO_LARGESEND);
4260 
4261 		tcp_mtup_init(sk);
4262 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4263 		tcp_initialize_rcv_mss(sk);
4264 
4265 
4266 		tcp_send_synack(sk);
4267 #if 0
4268 		/* Note, we could accept data and URG from this segment.
4269 		 * There are no obstacles to make this.
4270 		 *
4271 		 * However, if we ignore data in ACKless segments sometimes,
4272 		 * we have no reasons to accept it sometimes.
4273 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4274 		 * is not flawless. So, discard packet for sanity.
4275 		 * Uncomment this return to process the data.
4276 		 */
4277 		return -1;
4278 #else
4279 		goto discard;
4280 #endif
4281 	}
4282 	/* "fifth, if neither of the SYN or RST bits is set then
4283 	 * drop the segment and return."
4284 	 */
4285 
4286 discard_and_undo:
4287 	tcp_clear_options(&tp->rx_opt);
4288 	tp->rx_opt.mss_clamp = saved_clamp;
4289 	goto discard;
4290 
4291 reset_and_undo:
4292 	tcp_clear_options(&tp->rx_opt);
4293 	tp->rx_opt.mss_clamp = saved_clamp;
4294 	return 1;
4295 }
4296 
4297 
4298 /*
4299  *	This function implements the receiving procedure of RFC 793 for
4300  *	all states except ESTABLISHED and TIME_WAIT.
4301  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4302  *	address independent.
4303  */
4304 
4305 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4306 			  struct tcphdr *th, unsigned len)
4307 {
4308 	struct tcp_sock *tp = tcp_sk(sk);
4309 	struct inet_connection_sock *icsk = inet_csk(sk);
4310 	int queued = 0;
4311 
4312 	tp->rx_opt.saw_tstamp = 0;
4313 
4314 	switch (sk->sk_state) {
4315 	case TCP_CLOSE:
4316 		goto discard;
4317 
4318 	case TCP_LISTEN:
4319 		if(th->ack)
4320 			return 1;
4321 
4322 		if(th->rst)
4323 			goto discard;
4324 
4325 		if(th->syn) {
4326 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4327 				return 1;
4328 
4329 			/* Now we have several options: In theory there is
4330 			 * nothing else in the frame. KA9Q has an option to
4331 			 * send data with the syn, BSD accepts data with the
4332 			 * syn up to the [to be] advertised window and
4333 			 * Solaris 2.1 gives you a protocol error. For now
4334 			 * we just ignore it, that fits the spec precisely
4335 			 * and avoids incompatibilities. It would be nice in
4336 			 * future to drop through and process the data.
4337 			 *
4338 			 * Now that TTCP is starting to be used we ought to
4339 			 * queue this data.
4340 			 * But, this leaves one open to an easy denial of
4341 		 	 * service attack, and SYN cookies can't defend
4342 			 * against this problem. So, we drop the data
4343 			 * in the interest of security over speed.
4344 			 */
4345 			goto discard;
4346 		}
4347 		goto discard;
4348 
4349 	case TCP_SYN_SENT:
4350 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4351 		if (queued >= 0)
4352 			return queued;
4353 
4354 		/* Do step6 onward by hand. */
4355 		tcp_urg(sk, skb, th);
4356 		__kfree_skb(skb);
4357 		tcp_data_snd_check(sk, tp);
4358 		return 0;
4359 	}
4360 
4361 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4362 	    tcp_paws_discard(sk, skb)) {
4363 		if (!th->rst) {
4364 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4365 			tcp_send_dupack(sk, skb);
4366 			goto discard;
4367 		}
4368 		/* Reset is accepted even if it did not pass PAWS. */
4369 	}
4370 
4371 	/* step 1: check sequence number */
4372 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4373 		if (!th->rst)
4374 			tcp_send_dupack(sk, skb);
4375 		goto discard;
4376 	}
4377 
4378 	/* step 2: check RST bit */
4379 	if(th->rst) {
4380 		tcp_reset(sk);
4381 		goto discard;
4382 	}
4383 
4384 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4385 
4386 	/* step 3: check security and precedence [ignored] */
4387 
4388 	/*	step 4:
4389 	 *
4390 	 *	Check for a SYN in window.
4391 	 */
4392 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4393 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4394 		tcp_reset(sk);
4395 		return 1;
4396 	}
4397 
4398 	/* step 5: check the ACK field */
4399 	if (th->ack) {
4400 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4401 
4402 		switch(sk->sk_state) {
4403 		case TCP_SYN_RECV:
4404 			if (acceptable) {
4405 				tp->copied_seq = tp->rcv_nxt;
4406 				mb();
4407 				tcp_set_state(sk, TCP_ESTABLISHED);
4408 				sk->sk_state_change(sk);
4409 
4410 				/* Note, that this wakeup is only for marginal
4411 				 * crossed SYN case. Passively open sockets
4412 				 * are not waked up, because sk->sk_sleep ==
4413 				 * NULL and sk->sk_socket == NULL.
4414 				 */
4415 				if (sk->sk_socket) {
4416 					sk_wake_async(sk,0,POLL_OUT);
4417 				}
4418 
4419 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4420 				tp->snd_wnd = ntohs(th->window) <<
4421 					      tp->rx_opt.snd_wscale;
4422 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4423 					    TCP_SKB_CB(skb)->seq);
4424 
4425 				/* tcp_ack considers this ACK as duplicate
4426 				 * and does not calculate rtt.
4427 				 * Fix it at least with timestamps.
4428 				 */
4429 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4430 				    !tp->srtt)
4431 					tcp_ack_saw_tstamp(sk, 0);
4432 
4433 				if (tp->rx_opt.tstamp_ok)
4434 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4435 
4436 				/* Make sure socket is routed, for
4437 				 * correct metrics.
4438 				 */
4439 				icsk->icsk_af_ops->rebuild_header(sk);
4440 
4441 				tcp_init_metrics(sk);
4442 
4443 				tcp_init_congestion_control(sk);
4444 
4445 				/* Prevent spurious tcp_cwnd_restart() on
4446 				 * first data packet.
4447 				 */
4448 				tp->lsndtime = tcp_time_stamp;
4449 
4450 				tcp_mtup_init(sk);
4451 				tcp_initialize_rcv_mss(sk);
4452 				tcp_init_buffer_space(sk);
4453 				tcp_fast_path_on(tp);
4454 			} else {
4455 				return 1;
4456 			}
4457 			break;
4458 
4459 		case TCP_FIN_WAIT1:
4460 			if (tp->snd_una == tp->write_seq) {
4461 				tcp_set_state(sk, TCP_FIN_WAIT2);
4462 				sk->sk_shutdown |= SEND_SHUTDOWN;
4463 				dst_confirm(sk->sk_dst_cache);
4464 
4465 				if (!sock_flag(sk, SOCK_DEAD))
4466 					/* Wake up lingering close() */
4467 					sk->sk_state_change(sk);
4468 				else {
4469 					int tmo;
4470 
4471 					if (tp->linger2 < 0 ||
4472 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4473 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4474 						tcp_done(sk);
4475 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4476 						return 1;
4477 					}
4478 
4479 					tmo = tcp_fin_time(sk);
4480 					if (tmo > TCP_TIMEWAIT_LEN) {
4481 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4482 					} else if (th->fin || sock_owned_by_user(sk)) {
4483 						/* Bad case. We could lose such FIN otherwise.
4484 						 * It is not a big problem, but it looks confusing
4485 						 * and not so rare event. We still can lose it now,
4486 						 * if it spins in bh_lock_sock(), but it is really
4487 						 * marginal case.
4488 						 */
4489 						inet_csk_reset_keepalive_timer(sk, tmo);
4490 					} else {
4491 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4492 						goto discard;
4493 					}
4494 				}
4495 			}
4496 			break;
4497 
4498 		case TCP_CLOSING:
4499 			if (tp->snd_una == tp->write_seq) {
4500 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4501 				goto discard;
4502 			}
4503 			break;
4504 
4505 		case TCP_LAST_ACK:
4506 			if (tp->snd_una == tp->write_seq) {
4507 				tcp_update_metrics(sk);
4508 				tcp_done(sk);
4509 				goto discard;
4510 			}
4511 			break;
4512 		}
4513 	} else
4514 		goto discard;
4515 
4516 	/* step 6: check the URG bit */
4517 	tcp_urg(sk, skb, th);
4518 
4519 	/* step 7: process the segment text */
4520 	switch (sk->sk_state) {
4521 	case TCP_CLOSE_WAIT:
4522 	case TCP_CLOSING:
4523 	case TCP_LAST_ACK:
4524 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4525 			break;
4526 	case TCP_FIN_WAIT1:
4527 	case TCP_FIN_WAIT2:
4528 		/* RFC 793 says to queue data in these states,
4529 		 * RFC 1122 says we MUST send a reset.
4530 		 * BSD 4.4 also does reset.
4531 		 */
4532 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4533 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4534 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4535 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4536 				tcp_reset(sk);
4537 				return 1;
4538 			}
4539 		}
4540 		/* Fall through */
4541 	case TCP_ESTABLISHED:
4542 		tcp_data_queue(sk, skb);
4543 		queued = 1;
4544 		break;
4545 	}
4546 
4547 	/* tcp_data could move socket to TIME-WAIT */
4548 	if (sk->sk_state != TCP_CLOSE) {
4549 		tcp_data_snd_check(sk, tp);
4550 		tcp_ack_snd_check(sk);
4551 	}
4552 
4553 	if (!queued) {
4554 discard:
4555 		__kfree_skb(skb);
4556 	}
4557 	return 0;
4558 }
4559 
4560 EXPORT_SYMBOL(sysctl_tcp_ecn);
4561 EXPORT_SYMBOL(sysctl_tcp_reordering);
4562 EXPORT_SYMBOL(tcp_parse_options);
4563 EXPORT_SYMBOL(tcp_rcv_established);
4564 EXPORT_SYMBOL(tcp_rcv_state_process);
4565 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
4566