1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: 25 * Pedro Roque : Fast Retransmit/Recovery. 26 * Two receive queues. 27 * Retransmit queue handled by TCP. 28 * Better retransmit timer handling. 29 * New congestion avoidance. 30 * Header prediction. 31 * Variable renaming. 32 * 33 * Eric : Fast Retransmit. 34 * Randy Scott : MSS option defines. 35 * Eric Schenk : Fixes to slow start algorithm. 36 * Eric Schenk : Yet another double ACK bug. 37 * Eric Schenk : Delayed ACK bug fixes. 38 * Eric Schenk : Floyd style fast retrans war avoidance. 39 * David S. Miller : Don't allow zero congestion window. 40 * Eric Schenk : Fix retransmitter so that it sends 41 * next packet on ack of previous packet. 42 * Andi Kleen : Moved open_request checking here 43 * and process RSTs for open_requests. 44 * Andi Kleen : Better prune_queue, and other fixes. 45 * Andrey Savochkin: Fix RTT measurements in the presence of 46 * timestamps. 47 * Andrey Savochkin: Check sequence numbers correctly when 48 * removing SACKs due to in sequence incoming 49 * data segments. 50 * Andi Kleen: Make sure we never ack data there is not 51 * enough room for. Also make this condition 52 * a fatal error if it might still happen. 53 * Andi Kleen: Add tcp_measure_rcv_mss to make 54 * connections with MSS<min(MTU,ann. MSS) 55 * work without delayed acks. 56 * Andi Kleen: Process packets with PSH set in the 57 * fast path. 58 * J Hadi Salim: ECN support 59 * Andrei Gurtov, 60 * Pasi Sarolahti, 61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 62 * engine. Lots of bugs are found. 63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 64 */ 65 66 #include <linux/mm.h> 67 #include <linux/module.h> 68 #include <linux/sysctl.h> 69 #include <net/tcp.h> 70 #include <net/inet_common.h> 71 #include <linux/ipsec.h> 72 #include <asm/unaligned.h> 73 #include <net/netdma.h> 74 75 int sysctl_tcp_timestamps __read_mostly = 1; 76 int sysctl_tcp_window_scaling __read_mostly = 1; 77 int sysctl_tcp_sack __read_mostly = 1; 78 int sysctl_tcp_fack __read_mostly = 1; 79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 80 int sysctl_tcp_ecn __read_mostly; 81 int sysctl_tcp_dsack __read_mostly = 1; 82 int sysctl_tcp_app_win __read_mostly = 31; 83 int sysctl_tcp_adv_win_scale __read_mostly = 2; 84 85 int sysctl_tcp_stdurg __read_mostly; 86 int sysctl_tcp_rfc1337 __read_mostly; 87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 88 int sysctl_tcp_frto __read_mostly; 89 int sysctl_tcp_nometrics_save __read_mostly; 90 91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 92 int sysctl_tcp_abc __read_mostly; 93 94 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 95 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 96 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 97 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 98 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 99 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 100 #define FLAG_ECE 0x40 /* ECE in this ACK */ 101 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */ 102 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 103 104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 108 109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0) 110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2) 111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4) 112 113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 114 115 /* Adapt the MSS value used to make delayed ack decision to the 116 * real world. 117 */ 118 static void tcp_measure_rcv_mss(struct sock *sk, 119 const struct sk_buff *skb) 120 { 121 struct inet_connection_sock *icsk = inet_csk(sk); 122 const unsigned int lss = icsk->icsk_ack.last_seg_size; 123 unsigned int len; 124 125 icsk->icsk_ack.last_seg_size = 0; 126 127 /* skb->len may jitter because of SACKs, even if peer 128 * sends good full-sized frames. 129 */ 130 len = skb_shinfo(skb)->gso_size ?: skb->len; 131 if (len >= icsk->icsk_ack.rcv_mss) { 132 icsk->icsk_ack.rcv_mss = len; 133 } else { 134 /* Otherwise, we make more careful check taking into account, 135 * that SACKs block is variable. 136 * 137 * "len" is invariant segment length, including TCP header. 138 */ 139 len += skb->data - skb->h.raw; 140 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) || 141 /* If PSH is not set, packet should be 142 * full sized, provided peer TCP is not badly broken. 143 * This observation (if it is correct 8)) allows 144 * to handle super-low mtu links fairly. 145 */ 146 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 147 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) { 148 /* Subtract also invariant (if peer is RFC compliant), 149 * tcp header plus fixed timestamp option length. 150 * Resulting "len" is MSS free of SACK jitter. 151 */ 152 len -= tcp_sk(sk)->tcp_header_len; 153 icsk->icsk_ack.last_seg_size = len; 154 if (len == lss) { 155 icsk->icsk_ack.rcv_mss = len; 156 return; 157 } 158 } 159 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 160 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 161 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 162 } 163 } 164 165 static void tcp_incr_quickack(struct sock *sk) 166 { 167 struct inet_connection_sock *icsk = inet_csk(sk); 168 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 169 170 if (quickacks==0) 171 quickacks=2; 172 if (quickacks > icsk->icsk_ack.quick) 173 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 174 } 175 176 void tcp_enter_quickack_mode(struct sock *sk) 177 { 178 struct inet_connection_sock *icsk = inet_csk(sk); 179 tcp_incr_quickack(sk); 180 icsk->icsk_ack.pingpong = 0; 181 icsk->icsk_ack.ato = TCP_ATO_MIN; 182 } 183 184 /* Send ACKs quickly, if "quick" count is not exhausted 185 * and the session is not interactive. 186 */ 187 188 static inline int tcp_in_quickack_mode(const struct sock *sk) 189 { 190 const struct inet_connection_sock *icsk = inet_csk(sk); 191 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 192 } 193 194 /* Buffer size and advertised window tuning. 195 * 196 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 197 */ 198 199 static void tcp_fixup_sndbuf(struct sock *sk) 200 { 201 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 + 202 sizeof(struct sk_buff); 203 204 if (sk->sk_sndbuf < 3 * sndmem) 205 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]); 206 } 207 208 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 209 * 210 * All tcp_full_space() is split to two parts: "network" buffer, allocated 211 * forward and advertised in receiver window (tp->rcv_wnd) and 212 * "application buffer", required to isolate scheduling/application 213 * latencies from network. 214 * window_clamp is maximal advertised window. It can be less than 215 * tcp_full_space(), in this case tcp_full_space() - window_clamp 216 * is reserved for "application" buffer. The less window_clamp is 217 * the smoother our behaviour from viewpoint of network, but the lower 218 * throughput and the higher sensitivity of the connection to losses. 8) 219 * 220 * rcv_ssthresh is more strict window_clamp used at "slow start" 221 * phase to predict further behaviour of this connection. 222 * It is used for two goals: 223 * - to enforce header prediction at sender, even when application 224 * requires some significant "application buffer". It is check #1. 225 * - to prevent pruning of receive queue because of misprediction 226 * of receiver window. Check #2. 227 * 228 * The scheme does not work when sender sends good segments opening 229 * window and then starts to feed us spaghetti. But it should work 230 * in common situations. Otherwise, we have to rely on queue collapsing. 231 */ 232 233 /* Slow part of check#2. */ 234 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp, 235 const struct sk_buff *skb) 236 { 237 /* Optimize this! */ 238 int truesize = tcp_win_from_space(skb->truesize)/2; 239 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2; 240 241 while (tp->rcv_ssthresh <= window) { 242 if (truesize <= skb->len) 243 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 244 245 truesize >>= 1; 246 window >>= 1; 247 } 248 return 0; 249 } 250 251 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp, 252 struct sk_buff *skb) 253 { 254 /* Check #1 */ 255 if (tp->rcv_ssthresh < tp->window_clamp && 256 (int)tp->rcv_ssthresh < tcp_space(sk) && 257 !tcp_memory_pressure) { 258 int incr; 259 260 /* Check #2. Increase window, if skb with such overhead 261 * will fit to rcvbuf in future. 262 */ 263 if (tcp_win_from_space(skb->truesize) <= skb->len) 264 incr = 2*tp->advmss; 265 else 266 incr = __tcp_grow_window(sk, tp, skb); 267 268 if (incr) { 269 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp); 270 inet_csk(sk)->icsk_ack.quick |= 1; 271 } 272 } 273 } 274 275 /* 3. Tuning rcvbuf, when connection enters established state. */ 276 277 static void tcp_fixup_rcvbuf(struct sock *sk) 278 { 279 struct tcp_sock *tp = tcp_sk(sk); 280 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff); 281 282 /* Try to select rcvbuf so that 4 mss-sized segments 283 * will fit to window and corresponding skbs will fit to our rcvbuf. 284 * (was 3; 4 is minimum to allow fast retransmit to work.) 285 */ 286 while (tcp_win_from_space(rcvmem) < tp->advmss) 287 rcvmem += 128; 288 if (sk->sk_rcvbuf < 4 * rcvmem) 289 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]); 290 } 291 292 /* 4. Try to fixup all. It is made immediately after connection enters 293 * established state. 294 */ 295 static void tcp_init_buffer_space(struct sock *sk) 296 { 297 struct tcp_sock *tp = tcp_sk(sk); 298 int maxwin; 299 300 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 301 tcp_fixup_rcvbuf(sk); 302 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 303 tcp_fixup_sndbuf(sk); 304 305 tp->rcvq_space.space = tp->rcv_wnd; 306 307 maxwin = tcp_full_space(sk); 308 309 if (tp->window_clamp >= maxwin) { 310 tp->window_clamp = maxwin; 311 312 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 313 tp->window_clamp = max(maxwin - 314 (maxwin >> sysctl_tcp_app_win), 315 4 * tp->advmss); 316 } 317 318 /* Force reservation of one segment. */ 319 if (sysctl_tcp_app_win && 320 tp->window_clamp > 2 * tp->advmss && 321 tp->window_clamp + tp->advmss > maxwin) 322 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 323 324 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 325 tp->snd_cwnd_stamp = tcp_time_stamp; 326 } 327 328 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 329 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp) 330 { 331 struct inet_connection_sock *icsk = inet_csk(sk); 332 333 icsk->icsk_ack.quick = 0; 334 335 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 336 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 337 !tcp_memory_pressure && 338 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) { 339 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 340 sysctl_tcp_rmem[2]); 341 } 342 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 343 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss); 344 } 345 346 347 /* Initialize RCV_MSS value. 348 * RCV_MSS is an our guess about MSS used by the peer. 349 * We haven't any direct information about the MSS. 350 * It's better to underestimate the RCV_MSS rather than overestimate. 351 * Overestimations make us ACKing less frequently than needed. 352 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 353 */ 354 void tcp_initialize_rcv_mss(struct sock *sk) 355 { 356 struct tcp_sock *tp = tcp_sk(sk); 357 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 358 359 hint = min(hint, tp->rcv_wnd/2); 360 hint = min(hint, TCP_MIN_RCVMSS); 361 hint = max(hint, TCP_MIN_MSS); 362 363 inet_csk(sk)->icsk_ack.rcv_mss = hint; 364 } 365 366 /* Receiver "autotuning" code. 367 * 368 * The algorithm for RTT estimation w/o timestamps is based on 369 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 370 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps> 371 * 372 * More detail on this code can be found at 373 * <http://www.psc.edu/~jheffner/senior_thesis.ps>, 374 * though this reference is out of date. A new paper 375 * is pending. 376 */ 377 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 378 { 379 u32 new_sample = tp->rcv_rtt_est.rtt; 380 long m = sample; 381 382 if (m == 0) 383 m = 1; 384 385 if (new_sample != 0) { 386 /* If we sample in larger samples in the non-timestamp 387 * case, we could grossly overestimate the RTT especially 388 * with chatty applications or bulk transfer apps which 389 * are stalled on filesystem I/O. 390 * 391 * Also, since we are only going for a minimum in the 392 * non-timestamp case, we do not smooth things out 393 * else with timestamps disabled convergence takes too 394 * long. 395 */ 396 if (!win_dep) { 397 m -= (new_sample >> 3); 398 new_sample += m; 399 } else if (m < new_sample) 400 new_sample = m << 3; 401 } else { 402 /* No previous measure. */ 403 new_sample = m << 3; 404 } 405 406 if (tp->rcv_rtt_est.rtt != new_sample) 407 tp->rcv_rtt_est.rtt = new_sample; 408 } 409 410 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 411 { 412 if (tp->rcv_rtt_est.time == 0) 413 goto new_measure; 414 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 415 return; 416 tcp_rcv_rtt_update(tp, 417 jiffies - tp->rcv_rtt_est.time, 418 1); 419 420 new_measure: 421 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 422 tp->rcv_rtt_est.time = tcp_time_stamp; 423 } 424 425 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb) 426 { 427 struct tcp_sock *tp = tcp_sk(sk); 428 if (tp->rx_opt.rcv_tsecr && 429 (TCP_SKB_CB(skb)->end_seq - 430 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 431 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 432 } 433 434 /* 435 * This function should be called every time data is copied to user space. 436 * It calculates the appropriate TCP receive buffer space. 437 */ 438 void tcp_rcv_space_adjust(struct sock *sk) 439 { 440 struct tcp_sock *tp = tcp_sk(sk); 441 int time; 442 int space; 443 444 if (tp->rcvq_space.time == 0) 445 goto new_measure; 446 447 time = tcp_time_stamp - tp->rcvq_space.time; 448 if (time < (tp->rcv_rtt_est.rtt >> 3) || 449 tp->rcv_rtt_est.rtt == 0) 450 return; 451 452 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 453 454 space = max(tp->rcvq_space.space, space); 455 456 if (tp->rcvq_space.space != space) { 457 int rcvmem; 458 459 tp->rcvq_space.space = space; 460 461 if (sysctl_tcp_moderate_rcvbuf && 462 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 463 int new_clamp = space; 464 465 /* Receive space grows, normalize in order to 466 * take into account packet headers and sk_buff 467 * structure overhead. 468 */ 469 space /= tp->advmss; 470 if (!space) 471 space = 1; 472 rcvmem = (tp->advmss + MAX_TCP_HEADER + 473 16 + sizeof(struct sk_buff)); 474 while (tcp_win_from_space(rcvmem) < tp->advmss) 475 rcvmem += 128; 476 space *= rcvmem; 477 space = min(space, sysctl_tcp_rmem[2]); 478 if (space > sk->sk_rcvbuf) { 479 sk->sk_rcvbuf = space; 480 481 /* Make the window clamp follow along. */ 482 tp->window_clamp = new_clamp; 483 } 484 } 485 } 486 487 new_measure: 488 tp->rcvq_space.seq = tp->copied_seq; 489 tp->rcvq_space.time = tcp_time_stamp; 490 } 491 492 /* There is something which you must keep in mind when you analyze the 493 * behavior of the tp->ato delayed ack timeout interval. When a 494 * connection starts up, we want to ack as quickly as possible. The 495 * problem is that "good" TCP's do slow start at the beginning of data 496 * transmission. The means that until we send the first few ACK's the 497 * sender will sit on his end and only queue most of his data, because 498 * he can only send snd_cwnd unacked packets at any given time. For 499 * each ACK we send, he increments snd_cwnd and transmits more of his 500 * queue. -DaveM 501 */ 502 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) 503 { 504 struct inet_connection_sock *icsk = inet_csk(sk); 505 u32 now; 506 507 inet_csk_schedule_ack(sk); 508 509 tcp_measure_rcv_mss(sk, skb); 510 511 tcp_rcv_rtt_measure(tp); 512 513 now = tcp_time_stamp; 514 515 if (!icsk->icsk_ack.ato) { 516 /* The _first_ data packet received, initialize 517 * delayed ACK engine. 518 */ 519 tcp_incr_quickack(sk); 520 icsk->icsk_ack.ato = TCP_ATO_MIN; 521 } else { 522 int m = now - icsk->icsk_ack.lrcvtime; 523 524 if (m <= TCP_ATO_MIN/2) { 525 /* The fastest case is the first. */ 526 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 527 } else if (m < icsk->icsk_ack.ato) { 528 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 529 if (icsk->icsk_ack.ato > icsk->icsk_rto) 530 icsk->icsk_ack.ato = icsk->icsk_rto; 531 } else if (m > icsk->icsk_rto) { 532 /* Too long gap. Apparently sender failed to 533 * restart window, so that we send ACKs quickly. 534 */ 535 tcp_incr_quickack(sk); 536 sk_stream_mem_reclaim(sk); 537 } 538 } 539 icsk->icsk_ack.lrcvtime = now; 540 541 TCP_ECN_check_ce(tp, skb); 542 543 if (skb->len >= 128) 544 tcp_grow_window(sk, tp, skb); 545 } 546 547 /* Called to compute a smoothed rtt estimate. The data fed to this 548 * routine either comes from timestamps, or from segments that were 549 * known _not_ to have been retransmitted [see Karn/Partridge 550 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 551 * piece by Van Jacobson. 552 * NOTE: the next three routines used to be one big routine. 553 * To save cycles in the RFC 1323 implementation it was better to break 554 * it up into three procedures. -- erics 555 */ 556 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 557 { 558 struct tcp_sock *tp = tcp_sk(sk); 559 long m = mrtt; /* RTT */ 560 561 /* The following amusing code comes from Jacobson's 562 * article in SIGCOMM '88. Note that rtt and mdev 563 * are scaled versions of rtt and mean deviation. 564 * This is designed to be as fast as possible 565 * m stands for "measurement". 566 * 567 * On a 1990 paper the rto value is changed to: 568 * RTO = rtt + 4 * mdev 569 * 570 * Funny. This algorithm seems to be very broken. 571 * These formulae increase RTO, when it should be decreased, increase 572 * too slowly, when it should be increased quickly, decrease too quickly 573 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 574 * does not matter how to _calculate_ it. Seems, it was trap 575 * that VJ failed to avoid. 8) 576 */ 577 if(m == 0) 578 m = 1; 579 if (tp->srtt != 0) { 580 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 581 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 582 if (m < 0) { 583 m = -m; /* m is now abs(error) */ 584 m -= (tp->mdev >> 2); /* similar update on mdev */ 585 /* This is similar to one of Eifel findings. 586 * Eifel blocks mdev updates when rtt decreases. 587 * This solution is a bit different: we use finer gain 588 * for mdev in this case (alpha*beta). 589 * Like Eifel it also prevents growth of rto, 590 * but also it limits too fast rto decreases, 591 * happening in pure Eifel. 592 */ 593 if (m > 0) 594 m >>= 3; 595 } else { 596 m -= (tp->mdev >> 2); /* similar update on mdev */ 597 } 598 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 599 if (tp->mdev > tp->mdev_max) { 600 tp->mdev_max = tp->mdev; 601 if (tp->mdev_max > tp->rttvar) 602 tp->rttvar = tp->mdev_max; 603 } 604 if (after(tp->snd_una, tp->rtt_seq)) { 605 if (tp->mdev_max < tp->rttvar) 606 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2; 607 tp->rtt_seq = tp->snd_nxt; 608 tp->mdev_max = TCP_RTO_MIN; 609 } 610 } else { 611 /* no previous measure. */ 612 tp->srtt = m<<3; /* take the measured time to be rtt */ 613 tp->mdev = m<<1; /* make sure rto = 3*rtt */ 614 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 615 tp->rtt_seq = tp->snd_nxt; 616 } 617 } 618 619 /* Calculate rto without backoff. This is the second half of Van Jacobson's 620 * routine referred to above. 621 */ 622 static inline void tcp_set_rto(struct sock *sk) 623 { 624 const struct tcp_sock *tp = tcp_sk(sk); 625 /* Old crap is replaced with new one. 8) 626 * 627 * More seriously: 628 * 1. If rtt variance happened to be less 50msec, it is hallucination. 629 * It cannot be less due to utterly erratic ACK generation made 630 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 631 * to do with delayed acks, because at cwnd>2 true delack timeout 632 * is invisible. Actually, Linux-2.4 also generates erratic 633 * ACKs in some circumstances. 634 */ 635 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar; 636 637 /* 2. Fixups made earlier cannot be right. 638 * If we do not estimate RTO correctly without them, 639 * all the algo is pure shit and should be replaced 640 * with correct one. It is exactly, which we pretend to do. 641 */ 642 } 643 644 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 645 * guarantees that rto is higher. 646 */ 647 static inline void tcp_bound_rto(struct sock *sk) 648 { 649 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX) 650 inet_csk(sk)->icsk_rto = TCP_RTO_MAX; 651 } 652 653 /* Save metrics learned by this TCP session. 654 This function is called only, when TCP finishes successfully 655 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 656 */ 657 void tcp_update_metrics(struct sock *sk) 658 { 659 struct tcp_sock *tp = tcp_sk(sk); 660 struct dst_entry *dst = __sk_dst_get(sk); 661 662 if (sysctl_tcp_nometrics_save) 663 return; 664 665 dst_confirm(dst); 666 667 if (dst && (dst->flags&DST_HOST)) { 668 const struct inet_connection_sock *icsk = inet_csk(sk); 669 int m; 670 671 if (icsk->icsk_backoff || !tp->srtt) { 672 /* This session failed to estimate rtt. Why? 673 * Probably, no packets returned in time. 674 * Reset our results. 675 */ 676 if (!(dst_metric_locked(dst, RTAX_RTT))) 677 dst->metrics[RTAX_RTT-1] = 0; 678 return; 679 } 680 681 m = dst_metric(dst, RTAX_RTT) - tp->srtt; 682 683 /* If newly calculated rtt larger than stored one, 684 * store new one. Otherwise, use EWMA. Remember, 685 * rtt overestimation is always better than underestimation. 686 */ 687 if (!(dst_metric_locked(dst, RTAX_RTT))) { 688 if (m <= 0) 689 dst->metrics[RTAX_RTT-1] = tp->srtt; 690 else 691 dst->metrics[RTAX_RTT-1] -= (m>>3); 692 } 693 694 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 695 if (m < 0) 696 m = -m; 697 698 /* Scale deviation to rttvar fixed point */ 699 m >>= 1; 700 if (m < tp->mdev) 701 m = tp->mdev; 702 703 if (m >= dst_metric(dst, RTAX_RTTVAR)) 704 dst->metrics[RTAX_RTTVAR-1] = m; 705 else 706 dst->metrics[RTAX_RTTVAR-1] -= 707 (dst->metrics[RTAX_RTTVAR-1] - m)>>2; 708 } 709 710 if (tp->snd_ssthresh >= 0xFFFF) { 711 /* Slow start still did not finish. */ 712 if (dst_metric(dst, RTAX_SSTHRESH) && 713 !dst_metric_locked(dst, RTAX_SSTHRESH) && 714 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 715 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1; 716 if (!dst_metric_locked(dst, RTAX_CWND) && 717 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 718 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd; 719 } else if (tp->snd_cwnd > tp->snd_ssthresh && 720 icsk->icsk_ca_state == TCP_CA_Open) { 721 /* Cong. avoidance phase, cwnd is reliable. */ 722 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 723 dst->metrics[RTAX_SSTHRESH-1] = 724 max(tp->snd_cwnd >> 1, tp->snd_ssthresh); 725 if (!dst_metric_locked(dst, RTAX_CWND)) 726 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1; 727 } else { 728 /* Else slow start did not finish, cwnd is non-sense, 729 ssthresh may be also invalid. 730 */ 731 if (!dst_metric_locked(dst, RTAX_CWND)) 732 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1; 733 if (dst->metrics[RTAX_SSTHRESH-1] && 734 !dst_metric_locked(dst, RTAX_SSTHRESH) && 735 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1]) 736 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh; 737 } 738 739 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 740 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering && 741 tp->reordering != sysctl_tcp_reordering) 742 dst->metrics[RTAX_REORDERING-1] = tp->reordering; 743 } 744 } 745 } 746 747 /* Numbers are taken from RFC2414. */ 748 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst) 749 { 750 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 751 752 if (!cwnd) { 753 if (tp->mss_cache > 1460) 754 cwnd = 2; 755 else 756 cwnd = (tp->mss_cache > 1095) ? 3 : 4; 757 } 758 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 759 } 760 761 /* Set slow start threshold and cwnd not falling to slow start */ 762 void tcp_enter_cwr(struct sock *sk) 763 { 764 struct tcp_sock *tp = tcp_sk(sk); 765 766 tp->prior_ssthresh = 0; 767 tp->bytes_acked = 0; 768 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 769 tp->undo_marker = 0; 770 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 771 tp->snd_cwnd = min(tp->snd_cwnd, 772 tcp_packets_in_flight(tp) + 1U); 773 tp->snd_cwnd_cnt = 0; 774 tp->high_seq = tp->snd_nxt; 775 tp->snd_cwnd_stamp = tcp_time_stamp; 776 TCP_ECN_queue_cwr(tp); 777 778 tcp_set_ca_state(sk, TCP_CA_CWR); 779 } 780 } 781 782 /* Initialize metrics on socket. */ 783 784 static void tcp_init_metrics(struct sock *sk) 785 { 786 struct tcp_sock *tp = tcp_sk(sk); 787 struct dst_entry *dst = __sk_dst_get(sk); 788 789 if (dst == NULL) 790 goto reset; 791 792 dst_confirm(dst); 793 794 if (dst_metric_locked(dst, RTAX_CWND)) 795 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 796 if (dst_metric(dst, RTAX_SSTHRESH)) { 797 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 798 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 799 tp->snd_ssthresh = tp->snd_cwnd_clamp; 800 } 801 if (dst_metric(dst, RTAX_REORDERING) && 802 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 803 tp->rx_opt.sack_ok &= ~2; 804 tp->reordering = dst_metric(dst, RTAX_REORDERING); 805 } 806 807 if (dst_metric(dst, RTAX_RTT) == 0) 808 goto reset; 809 810 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3)) 811 goto reset; 812 813 /* Initial rtt is determined from SYN,SYN-ACK. 814 * The segment is small and rtt may appear much 815 * less than real one. Use per-dst memory 816 * to make it more realistic. 817 * 818 * A bit of theory. RTT is time passed after "normal" sized packet 819 * is sent until it is ACKed. In normal circumstances sending small 820 * packets force peer to delay ACKs and calculation is correct too. 821 * The algorithm is adaptive and, provided we follow specs, it 822 * NEVER underestimate RTT. BUT! If peer tries to make some clever 823 * tricks sort of "quick acks" for time long enough to decrease RTT 824 * to low value, and then abruptly stops to do it and starts to delay 825 * ACKs, wait for troubles. 826 */ 827 if (dst_metric(dst, RTAX_RTT) > tp->srtt) { 828 tp->srtt = dst_metric(dst, RTAX_RTT); 829 tp->rtt_seq = tp->snd_nxt; 830 } 831 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) { 832 tp->mdev = dst_metric(dst, RTAX_RTTVAR); 833 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN); 834 } 835 tcp_set_rto(sk); 836 tcp_bound_rto(sk); 837 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) 838 goto reset; 839 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 840 tp->snd_cwnd_stamp = tcp_time_stamp; 841 return; 842 843 reset: 844 /* Play conservative. If timestamps are not 845 * supported, TCP will fail to recalculate correct 846 * rtt, if initial rto is too small. FORGET ALL AND RESET! 847 */ 848 if (!tp->rx_opt.saw_tstamp && tp->srtt) { 849 tp->srtt = 0; 850 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT; 851 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 852 } 853 } 854 855 static void tcp_update_reordering(struct sock *sk, const int metric, 856 const int ts) 857 { 858 struct tcp_sock *tp = tcp_sk(sk); 859 if (metric > tp->reordering) { 860 tp->reordering = min(TCP_MAX_REORDERING, metric); 861 862 /* This exciting event is worth to be remembered. 8) */ 863 if (ts) 864 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER); 865 else if (IsReno(tp)) 866 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER); 867 else if (IsFack(tp)) 868 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER); 869 else 870 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER); 871 #if FASTRETRANS_DEBUG > 1 872 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 873 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 874 tp->reordering, 875 tp->fackets_out, 876 tp->sacked_out, 877 tp->undo_marker ? tp->undo_retrans : 0); 878 #endif 879 /* Disable FACK yet. */ 880 tp->rx_opt.sack_ok &= ~2; 881 } 882 } 883 884 /* This procedure tags the retransmission queue when SACKs arrive. 885 * 886 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 887 * Packets in queue with these bits set are counted in variables 888 * sacked_out, retrans_out and lost_out, correspondingly. 889 * 890 * Valid combinations are: 891 * Tag InFlight Description 892 * 0 1 - orig segment is in flight. 893 * S 0 - nothing flies, orig reached receiver. 894 * L 0 - nothing flies, orig lost by net. 895 * R 2 - both orig and retransmit are in flight. 896 * L|R 1 - orig is lost, retransmit is in flight. 897 * S|R 1 - orig reached receiver, retrans is still in flight. 898 * (L|S|R is logically valid, it could occur when L|R is sacked, 899 * but it is equivalent to plain S and code short-curcuits it to S. 900 * L|S is logically invalid, it would mean -1 packet in flight 8)) 901 * 902 * These 6 states form finite state machine, controlled by the following events: 903 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 904 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 905 * 3. Loss detection event of one of three flavors: 906 * A. Scoreboard estimator decided the packet is lost. 907 * A'. Reno "three dupacks" marks head of queue lost. 908 * A''. Its FACK modfication, head until snd.fack is lost. 909 * B. SACK arrives sacking data transmitted after never retransmitted 910 * hole was sent out. 911 * C. SACK arrives sacking SND.NXT at the moment, when the 912 * segment was retransmitted. 913 * 4. D-SACK added new rule: D-SACK changes any tag to S. 914 * 915 * It is pleasant to note, that state diagram turns out to be commutative, 916 * so that we are allowed not to be bothered by order of our actions, 917 * when multiple events arrive simultaneously. (see the function below). 918 * 919 * Reordering detection. 920 * -------------------- 921 * Reordering metric is maximal distance, which a packet can be displaced 922 * in packet stream. With SACKs we can estimate it: 923 * 924 * 1. SACK fills old hole and the corresponding segment was not 925 * ever retransmitted -> reordering. Alas, we cannot use it 926 * when segment was retransmitted. 927 * 2. The last flaw is solved with D-SACK. D-SACK arrives 928 * for retransmitted and already SACKed segment -> reordering.. 929 * Both of these heuristics are not used in Loss state, when we cannot 930 * account for retransmits accurately. 931 */ 932 static int 933 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una) 934 { 935 const struct inet_connection_sock *icsk = inet_csk(sk); 936 struct tcp_sock *tp = tcp_sk(sk); 937 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked; 938 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2); 939 struct sk_buff *cached_skb; 940 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3; 941 int reord = tp->packets_out; 942 int prior_fackets; 943 u32 lost_retrans = 0; 944 int flag = 0; 945 int dup_sack = 0; 946 int cached_fack_count; 947 int i; 948 int first_sack_index; 949 950 if (!tp->sacked_out) 951 tp->fackets_out = 0; 952 prior_fackets = tp->fackets_out; 953 954 /* Check for D-SACK. */ 955 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) { 956 dup_sack = 1; 957 tp->rx_opt.sack_ok |= 4; 958 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV); 959 } else if (num_sacks > 1 && 960 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) && 961 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) { 962 dup_sack = 1; 963 tp->rx_opt.sack_ok |= 4; 964 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV); 965 } 966 967 /* D-SACK for already forgotten data... 968 * Do dumb counting. */ 969 if (dup_sack && 970 !after(ntohl(sp[0].end_seq), prior_snd_una) && 971 after(ntohl(sp[0].end_seq), tp->undo_marker)) 972 tp->undo_retrans--; 973 974 /* Eliminate too old ACKs, but take into 975 * account more or less fresh ones, they can 976 * contain valid SACK info. 977 */ 978 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 979 return 0; 980 981 /* SACK fastpath: 982 * if the only SACK change is the increase of the end_seq of 983 * the first block then only apply that SACK block 984 * and use retrans queue hinting otherwise slowpath */ 985 flag = 1; 986 for (i = 0; i < num_sacks; i++) { 987 __be32 start_seq = sp[i].start_seq; 988 __be32 end_seq = sp[i].end_seq; 989 990 if (i == 0) { 991 if (tp->recv_sack_cache[i].start_seq != start_seq) 992 flag = 0; 993 } else { 994 if ((tp->recv_sack_cache[i].start_seq != start_seq) || 995 (tp->recv_sack_cache[i].end_seq != end_seq)) 996 flag = 0; 997 } 998 tp->recv_sack_cache[i].start_seq = start_seq; 999 tp->recv_sack_cache[i].end_seq = end_seq; 1000 } 1001 1002 first_sack_index = 0; 1003 if (flag) 1004 num_sacks = 1; 1005 else { 1006 int j; 1007 tp->fastpath_skb_hint = NULL; 1008 1009 /* order SACK blocks to allow in order walk of the retrans queue */ 1010 for (i = num_sacks-1; i > 0; i--) { 1011 for (j = 0; j < i; j++){ 1012 if (after(ntohl(sp[j].start_seq), 1013 ntohl(sp[j+1].start_seq))){ 1014 struct tcp_sack_block_wire tmp; 1015 1016 tmp = sp[j]; 1017 sp[j] = sp[j+1]; 1018 sp[j+1] = tmp; 1019 1020 /* Track where the first SACK block goes to */ 1021 if (j == first_sack_index) 1022 first_sack_index = j+1; 1023 } 1024 1025 } 1026 } 1027 } 1028 1029 /* clear flag as used for different purpose in following code */ 1030 flag = 0; 1031 1032 /* Use SACK fastpath hint if valid */ 1033 cached_skb = tp->fastpath_skb_hint; 1034 cached_fack_count = tp->fastpath_cnt_hint; 1035 if (!cached_skb) { 1036 cached_skb = sk->sk_write_queue.next; 1037 cached_fack_count = 0; 1038 } 1039 1040 for (i=0; i<num_sacks; i++, sp++) { 1041 struct sk_buff *skb; 1042 __u32 start_seq = ntohl(sp->start_seq); 1043 __u32 end_seq = ntohl(sp->end_seq); 1044 int fack_count; 1045 1046 skb = cached_skb; 1047 fack_count = cached_fack_count; 1048 1049 /* Event "B" in the comment above. */ 1050 if (after(end_seq, tp->high_seq)) 1051 flag |= FLAG_DATA_LOST; 1052 1053 sk_stream_for_retrans_queue_from(skb, sk) { 1054 int in_sack, pcount; 1055 u8 sacked; 1056 1057 cached_skb = skb; 1058 cached_fack_count = fack_count; 1059 if (i == first_sack_index) { 1060 tp->fastpath_skb_hint = skb; 1061 tp->fastpath_cnt_hint = fack_count; 1062 } 1063 1064 /* The retransmission queue is always in order, so 1065 * we can short-circuit the walk early. 1066 */ 1067 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1068 break; 1069 1070 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1071 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1072 1073 pcount = tcp_skb_pcount(skb); 1074 1075 if (pcount > 1 && !in_sack && 1076 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1077 unsigned int pkt_len; 1078 1079 in_sack = !after(start_seq, 1080 TCP_SKB_CB(skb)->seq); 1081 1082 if (!in_sack) 1083 pkt_len = (start_seq - 1084 TCP_SKB_CB(skb)->seq); 1085 else 1086 pkt_len = (end_seq - 1087 TCP_SKB_CB(skb)->seq); 1088 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size)) 1089 break; 1090 pcount = tcp_skb_pcount(skb); 1091 } 1092 1093 fack_count += pcount; 1094 1095 sacked = TCP_SKB_CB(skb)->sacked; 1096 1097 /* Account D-SACK for retransmitted packet. */ 1098 if ((dup_sack && in_sack) && 1099 (sacked & TCPCB_RETRANS) && 1100 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker)) 1101 tp->undo_retrans--; 1102 1103 /* The frame is ACKed. */ 1104 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) { 1105 if (sacked&TCPCB_RETRANS) { 1106 if ((dup_sack && in_sack) && 1107 (sacked&TCPCB_SACKED_ACKED)) 1108 reord = min(fack_count, reord); 1109 } else { 1110 /* If it was in a hole, we detected reordering. */ 1111 if (fack_count < prior_fackets && 1112 !(sacked&TCPCB_SACKED_ACKED)) 1113 reord = min(fack_count, reord); 1114 } 1115 1116 /* Nothing to do; acked frame is about to be dropped. */ 1117 continue; 1118 } 1119 1120 if ((sacked&TCPCB_SACKED_RETRANS) && 1121 after(end_seq, TCP_SKB_CB(skb)->ack_seq) && 1122 (!lost_retrans || after(end_seq, lost_retrans))) 1123 lost_retrans = end_seq; 1124 1125 if (!in_sack) 1126 continue; 1127 1128 if (!(sacked&TCPCB_SACKED_ACKED)) { 1129 if (sacked & TCPCB_SACKED_RETRANS) { 1130 /* If the segment is not tagged as lost, 1131 * we do not clear RETRANS, believing 1132 * that retransmission is still in flight. 1133 */ 1134 if (sacked & TCPCB_LOST) { 1135 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1136 tp->lost_out -= tcp_skb_pcount(skb); 1137 tp->retrans_out -= tcp_skb_pcount(skb); 1138 1139 /* clear lost hint */ 1140 tp->retransmit_skb_hint = NULL; 1141 } 1142 } else { 1143 /* New sack for not retransmitted frame, 1144 * which was in hole. It is reordering. 1145 */ 1146 if (!(sacked & TCPCB_RETRANS) && 1147 fack_count < prior_fackets) 1148 reord = min(fack_count, reord); 1149 1150 if (sacked & TCPCB_LOST) { 1151 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1152 tp->lost_out -= tcp_skb_pcount(skb); 1153 1154 /* clear lost hint */ 1155 tp->retransmit_skb_hint = NULL; 1156 } 1157 } 1158 1159 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED; 1160 flag |= FLAG_DATA_SACKED; 1161 tp->sacked_out += tcp_skb_pcount(skb); 1162 1163 if (fack_count > tp->fackets_out) 1164 tp->fackets_out = fack_count; 1165 } else { 1166 if (dup_sack && (sacked&TCPCB_RETRANS)) 1167 reord = min(fack_count, reord); 1168 } 1169 1170 /* D-SACK. We can detect redundant retransmission 1171 * in S|R and plain R frames and clear it. 1172 * undo_retrans is decreased above, L|R frames 1173 * are accounted above as well. 1174 */ 1175 if (dup_sack && 1176 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) { 1177 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1178 tp->retrans_out -= tcp_skb_pcount(skb); 1179 tp->retransmit_skb_hint = NULL; 1180 } 1181 } 1182 } 1183 1184 /* Check for lost retransmit. This superb idea is 1185 * borrowed from "ratehalving". Event "C". 1186 * Later note: FACK people cheated me again 8), 1187 * we have to account for reordering! Ugly, 1188 * but should help. 1189 */ 1190 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) { 1191 struct sk_buff *skb; 1192 1193 sk_stream_for_retrans_queue(skb, sk) { 1194 if (after(TCP_SKB_CB(skb)->seq, lost_retrans)) 1195 break; 1196 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1197 continue; 1198 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) && 1199 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) && 1200 (IsFack(tp) || 1201 !before(lost_retrans, 1202 TCP_SKB_CB(skb)->ack_seq + tp->reordering * 1203 tp->mss_cache))) { 1204 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1205 tp->retrans_out -= tcp_skb_pcount(skb); 1206 1207 /* clear lost hint */ 1208 tp->retransmit_skb_hint = NULL; 1209 1210 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1211 tp->lost_out += tcp_skb_pcount(skb); 1212 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1213 flag |= FLAG_DATA_SACKED; 1214 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT); 1215 } 1216 } 1217 } 1218 } 1219 1220 tp->left_out = tp->sacked_out + tp->lost_out; 1221 1222 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss) 1223 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0); 1224 1225 #if FASTRETRANS_DEBUG > 0 1226 BUG_TRAP((int)tp->sacked_out >= 0); 1227 BUG_TRAP((int)tp->lost_out >= 0); 1228 BUG_TRAP((int)tp->retrans_out >= 0); 1229 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0); 1230 #endif 1231 return flag; 1232 } 1233 1234 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new 1235 * segments to see from the next ACKs whether any data was really missing. 1236 * If the RTO was spurious, new ACKs should arrive. 1237 */ 1238 void tcp_enter_frto(struct sock *sk) 1239 { 1240 const struct inet_connection_sock *icsk = inet_csk(sk); 1241 struct tcp_sock *tp = tcp_sk(sk); 1242 struct sk_buff *skb; 1243 1244 tp->frto_counter = 1; 1245 1246 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1247 tp->snd_una == tp->high_seq || 1248 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1249 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1250 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1251 tcp_ca_event(sk, CA_EVENT_FRTO); 1252 } 1253 1254 /* Have to clear retransmission markers here to keep the bookkeeping 1255 * in shape, even though we are not yet in Loss state. 1256 * If something was really lost, it is eventually caught up 1257 * in tcp_enter_frto_loss. 1258 */ 1259 tp->retrans_out = 0; 1260 tp->undo_marker = tp->snd_una; 1261 tp->undo_retrans = 0; 1262 1263 sk_stream_for_retrans_queue(skb, sk) { 1264 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS; 1265 } 1266 tcp_sync_left_out(tp); 1267 1268 tcp_set_ca_state(sk, TCP_CA_Open); 1269 tp->frto_highmark = tp->snd_nxt; 1270 } 1271 1272 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1273 * which indicates that we should follow the traditional RTO recovery, 1274 * i.e. mark everything lost and do go-back-N retransmission. 1275 */ 1276 static void tcp_enter_frto_loss(struct sock *sk) 1277 { 1278 struct tcp_sock *tp = tcp_sk(sk); 1279 struct sk_buff *skb; 1280 int cnt = 0; 1281 1282 tp->sacked_out = 0; 1283 tp->lost_out = 0; 1284 tp->fackets_out = 0; 1285 1286 sk_stream_for_retrans_queue(skb, sk) { 1287 cnt += tcp_skb_pcount(skb); 1288 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1289 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1290 1291 /* Do not mark those segments lost that were 1292 * forward transmitted after RTO 1293 */ 1294 if (!after(TCP_SKB_CB(skb)->end_seq, 1295 tp->frto_highmark)) { 1296 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1297 tp->lost_out += tcp_skb_pcount(skb); 1298 } 1299 } else { 1300 tp->sacked_out += tcp_skb_pcount(skb); 1301 tp->fackets_out = cnt; 1302 } 1303 } 1304 tcp_sync_left_out(tp); 1305 1306 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1; 1307 tp->snd_cwnd_cnt = 0; 1308 tp->snd_cwnd_stamp = tcp_time_stamp; 1309 tp->undo_marker = 0; 1310 tp->frto_counter = 0; 1311 1312 tp->reordering = min_t(unsigned int, tp->reordering, 1313 sysctl_tcp_reordering); 1314 tcp_set_ca_state(sk, TCP_CA_Loss); 1315 tp->high_seq = tp->frto_highmark; 1316 TCP_ECN_queue_cwr(tp); 1317 1318 clear_all_retrans_hints(tp); 1319 } 1320 1321 void tcp_clear_retrans(struct tcp_sock *tp) 1322 { 1323 tp->left_out = 0; 1324 tp->retrans_out = 0; 1325 1326 tp->fackets_out = 0; 1327 tp->sacked_out = 0; 1328 tp->lost_out = 0; 1329 1330 tp->undo_marker = 0; 1331 tp->undo_retrans = 0; 1332 } 1333 1334 /* Enter Loss state. If "how" is not zero, forget all SACK information 1335 * and reset tags completely, otherwise preserve SACKs. If receiver 1336 * dropped its ofo queue, we will know this due to reneging detection. 1337 */ 1338 void tcp_enter_loss(struct sock *sk, int how) 1339 { 1340 const struct inet_connection_sock *icsk = inet_csk(sk); 1341 struct tcp_sock *tp = tcp_sk(sk); 1342 struct sk_buff *skb; 1343 int cnt = 0; 1344 1345 /* Reduce ssthresh if it has not yet been made inside this window. */ 1346 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 1347 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1348 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1349 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1350 tcp_ca_event(sk, CA_EVENT_LOSS); 1351 } 1352 tp->snd_cwnd = 1; 1353 tp->snd_cwnd_cnt = 0; 1354 tp->snd_cwnd_stamp = tcp_time_stamp; 1355 1356 tp->bytes_acked = 0; 1357 tcp_clear_retrans(tp); 1358 1359 /* Push undo marker, if it was plain RTO and nothing 1360 * was retransmitted. */ 1361 if (!how) 1362 tp->undo_marker = tp->snd_una; 1363 1364 sk_stream_for_retrans_queue(skb, sk) { 1365 cnt += tcp_skb_pcount(skb); 1366 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS) 1367 tp->undo_marker = 0; 1368 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1369 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 1370 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1371 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1372 tp->lost_out += tcp_skb_pcount(skb); 1373 } else { 1374 tp->sacked_out += tcp_skb_pcount(skb); 1375 tp->fackets_out = cnt; 1376 } 1377 } 1378 tcp_sync_left_out(tp); 1379 1380 tp->reordering = min_t(unsigned int, tp->reordering, 1381 sysctl_tcp_reordering); 1382 tcp_set_ca_state(sk, TCP_CA_Loss); 1383 tp->high_seq = tp->snd_nxt; 1384 TCP_ECN_queue_cwr(tp); 1385 1386 clear_all_retrans_hints(tp); 1387 } 1388 1389 static int tcp_check_sack_reneging(struct sock *sk) 1390 { 1391 struct sk_buff *skb; 1392 1393 /* If ACK arrived pointing to a remembered SACK, 1394 * it means that our remembered SACKs do not reflect 1395 * real state of receiver i.e. 1396 * receiver _host_ is heavily congested (or buggy). 1397 * Do processing similar to RTO timeout. 1398 */ 1399 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL && 1400 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 1401 struct inet_connection_sock *icsk = inet_csk(sk); 1402 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING); 1403 1404 tcp_enter_loss(sk, 1); 1405 icsk->icsk_retransmits++; 1406 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue)); 1407 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1408 icsk->icsk_rto, TCP_RTO_MAX); 1409 return 1; 1410 } 1411 return 0; 1412 } 1413 1414 static inline int tcp_fackets_out(struct tcp_sock *tp) 1415 { 1416 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out; 1417 } 1418 1419 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb) 1420 { 1421 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto); 1422 } 1423 1424 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp) 1425 { 1426 return tp->packets_out && 1427 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue)); 1428 } 1429 1430 /* Linux NewReno/SACK/FACK/ECN state machine. 1431 * -------------------------------------- 1432 * 1433 * "Open" Normal state, no dubious events, fast path. 1434 * "Disorder" In all the respects it is "Open", 1435 * but requires a bit more attention. It is entered when 1436 * we see some SACKs or dupacks. It is split of "Open" 1437 * mainly to move some processing from fast path to slow one. 1438 * "CWR" CWND was reduced due to some Congestion Notification event. 1439 * It can be ECN, ICMP source quench, local device congestion. 1440 * "Recovery" CWND was reduced, we are fast-retransmitting. 1441 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 1442 * 1443 * tcp_fastretrans_alert() is entered: 1444 * - each incoming ACK, if state is not "Open" 1445 * - when arrived ACK is unusual, namely: 1446 * * SACK 1447 * * Duplicate ACK. 1448 * * ECN ECE. 1449 * 1450 * Counting packets in flight is pretty simple. 1451 * 1452 * in_flight = packets_out - left_out + retrans_out 1453 * 1454 * packets_out is SND.NXT-SND.UNA counted in packets. 1455 * 1456 * retrans_out is number of retransmitted segments. 1457 * 1458 * left_out is number of segments left network, but not ACKed yet. 1459 * 1460 * left_out = sacked_out + lost_out 1461 * 1462 * sacked_out: Packets, which arrived to receiver out of order 1463 * and hence not ACKed. With SACKs this number is simply 1464 * amount of SACKed data. Even without SACKs 1465 * it is easy to give pretty reliable estimate of this number, 1466 * counting duplicate ACKs. 1467 * 1468 * lost_out: Packets lost by network. TCP has no explicit 1469 * "loss notification" feedback from network (for now). 1470 * It means that this number can be only _guessed_. 1471 * Actually, it is the heuristics to predict lossage that 1472 * distinguishes different algorithms. 1473 * 1474 * F.e. after RTO, when all the queue is considered as lost, 1475 * lost_out = packets_out and in_flight = retrans_out. 1476 * 1477 * Essentially, we have now two algorithms counting 1478 * lost packets. 1479 * 1480 * FACK: It is the simplest heuristics. As soon as we decided 1481 * that something is lost, we decide that _all_ not SACKed 1482 * packets until the most forward SACK are lost. I.e. 1483 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 1484 * It is absolutely correct estimate, if network does not reorder 1485 * packets. And it loses any connection to reality when reordering 1486 * takes place. We use FACK by default until reordering 1487 * is suspected on the path to this destination. 1488 * 1489 * NewReno: when Recovery is entered, we assume that one segment 1490 * is lost (classic Reno). While we are in Recovery and 1491 * a partial ACK arrives, we assume that one more packet 1492 * is lost (NewReno). This heuristics are the same in NewReno 1493 * and SACK. 1494 * 1495 * Imagine, that's all! Forget about all this shamanism about CWND inflation 1496 * deflation etc. CWND is real congestion window, never inflated, changes 1497 * only according to classic VJ rules. 1498 * 1499 * Really tricky (and requiring careful tuning) part of algorithm 1500 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 1501 * The first determines the moment _when_ we should reduce CWND and, 1502 * hence, slow down forward transmission. In fact, it determines the moment 1503 * when we decide that hole is caused by loss, rather than by a reorder. 1504 * 1505 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 1506 * holes, caused by lost packets. 1507 * 1508 * And the most logically complicated part of algorithm is undo 1509 * heuristics. We detect false retransmits due to both too early 1510 * fast retransmit (reordering) and underestimated RTO, analyzing 1511 * timestamps and D-SACKs. When we detect that some segments were 1512 * retransmitted by mistake and CWND reduction was wrong, we undo 1513 * window reduction and abort recovery phase. This logic is hidden 1514 * inside several functions named tcp_try_undo_<something>. 1515 */ 1516 1517 /* This function decides, when we should leave Disordered state 1518 * and enter Recovery phase, reducing congestion window. 1519 * 1520 * Main question: may we further continue forward transmission 1521 * with the same cwnd? 1522 */ 1523 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp) 1524 { 1525 __u32 packets_out; 1526 1527 /* Trick#1: The loss is proven. */ 1528 if (tp->lost_out) 1529 return 1; 1530 1531 /* Not-A-Trick#2 : Classic rule... */ 1532 if (tcp_fackets_out(tp) > tp->reordering) 1533 return 1; 1534 1535 /* Trick#3 : when we use RFC2988 timer restart, fast 1536 * retransmit can be triggered by timeout of queue head. 1537 */ 1538 if (tcp_head_timedout(sk, tp)) 1539 return 1; 1540 1541 /* Trick#4: It is still not OK... But will it be useful to delay 1542 * recovery more? 1543 */ 1544 packets_out = tp->packets_out; 1545 if (packets_out <= tp->reordering && 1546 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 1547 !tcp_may_send_now(sk, tp)) { 1548 /* We have nothing to send. This connection is limited 1549 * either by receiver window or by application. 1550 */ 1551 return 1; 1552 } 1553 1554 return 0; 1555 } 1556 1557 /* If we receive more dupacks than we expected counting segments 1558 * in assumption of absent reordering, interpret this as reordering. 1559 * The only another reason could be bug in receiver TCP. 1560 */ 1561 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1562 { 1563 struct tcp_sock *tp = tcp_sk(sk); 1564 u32 holes; 1565 1566 holes = max(tp->lost_out, 1U); 1567 holes = min(holes, tp->packets_out); 1568 1569 if ((tp->sacked_out + holes) > tp->packets_out) { 1570 tp->sacked_out = tp->packets_out - holes; 1571 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1572 } 1573 } 1574 1575 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1576 1577 static void tcp_add_reno_sack(struct sock *sk) 1578 { 1579 struct tcp_sock *tp = tcp_sk(sk); 1580 tp->sacked_out++; 1581 tcp_check_reno_reordering(sk, 0); 1582 tcp_sync_left_out(tp); 1583 } 1584 1585 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1586 1587 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked) 1588 { 1589 if (acked > 0) { 1590 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1591 if (acked-1 >= tp->sacked_out) 1592 tp->sacked_out = 0; 1593 else 1594 tp->sacked_out -= acked-1; 1595 } 1596 tcp_check_reno_reordering(sk, acked); 1597 tcp_sync_left_out(tp); 1598 } 1599 1600 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1601 { 1602 tp->sacked_out = 0; 1603 tp->left_out = tp->lost_out; 1604 } 1605 1606 /* Mark head of queue up as lost. */ 1607 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp, 1608 int packets, u32 high_seq) 1609 { 1610 struct sk_buff *skb; 1611 int cnt; 1612 1613 BUG_TRAP(packets <= tp->packets_out); 1614 if (tp->lost_skb_hint) { 1615 skb = tp->lost_skb_hint; 1616 cnt = tp->lost_cnt_hint; 1617 } else { 1618 skb = sk->sk_write_queue.next; 1619 cnt = 0; 1620 } 1621 1622 sk_stream_for_retrans_queue_from(skb, sk) { 1623 /* TODO: do this better */ 1624 /* this is not the most efficient way to do this... */ 1625 tp->lost_skb_hint = skb; 1626 tp->lost_cnt_hint = cnt; 1627 cnt += tcp_skb_pcount(skb); 1628 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq)) 1629 break; 1630 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1631 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1632 tp->lost_out += tcp_skb_pcount(skb); 1633 1634 /* clear xmit_retransmit_queue hints 1635 * if this is beyond hint */ 1636 if(tp->retransmit_skb_hint != NULL && 1637 before(TCP_SKB_CB(skb)->seq, 1638 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) { 1639 1640 tp->retransmit_skb_hint = NULL; 1641 } 1642 } 1643 } 1644 tcp_sync_left_out(tp); 1645 } 1646 1647 /* Account newly detected lost packet(s) */ 1648 1649 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp) 1650 { 1651 if (IsFack(tp)) { 1652 int lost = tp->fackets_out - tp->reordering; 1653 if (lost <= 0) 1654 lost = 1; 1655 tcp_mark_head_lost(sk, tp, lost, tp->high_seq); 1656 } else { 1657 tcp_mark_head_lost(sk, tp, 1, tp->high_seq); 1658 } 1659 1660 /* New heuristics: it is possible only after we switched 1661 * to restart timer each time when something is ACKed. 1662 * Hence, we can detect timed out packets during fast 1663 * retransmit without falling to slow start. 1664 */ 1665 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) { 1666 struct sk_buff *skb; 1667 1668 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint 1669 : sk->sk_write_queue.next; 1670 1671 sk_stream_for_retrans_queue_from(skb, sk) { 1672 if (!tcp_skb_timedout(sk, skb)) 1673 break; 1674 1675 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) { 1676 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1677 tp->lost_out += tcp_skb_pcount(skb); 1678 1679 /* clear xmit_retrans hint */ 1680 if (tp->retransmit_skb_hint && 1681 before(TCP_SKB_CB(skb)->seq, 1682 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 1683 1684 tp->retransmit_skb_hint = NULL; 1685 } 1686 } 1687 1688 tp->scoreboard_skb_hint = skb; 1689 1690 tcp_sync_left_out(tp); 1691 } 1692 } 1693 1694 /* CWND moderation, preventing bursts due to too big ACKs 1695 * in dubious situations. 1696 */ 1697 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 1698 { 1699 tp->snd_cwnd = min(tp->snd_cwnd, 1700 tcp_packets_in_flight(tp)+tcp_max_burst(tp)); 1701 tp->snd_cwnd_stamp = tcp_time_stamp; 1702 } 1703 1704 /* Lower bound on congestion window is slow start threshold 1705 * unless congestion avoidance choice decides to overide it. 1706 */ 1707 static inline u32 tcp_cwnd_min(const struct sock *sk) 1708 { 1709 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 1710 1711 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 1712 } 1713 1714 /* Decrease cwnd each second ack. */ 1715 static void tcp_cwnd_down(struct sock *sk) 1716 { 1717 struct tcp_sock *tp = tcp_sk(sk); 1718 int decr = tp->snd_cwnd_cnt + 1; 1719 1720 tp->snd_cwnd_cnt = decr&1; 1721 decr >>= 1; 1722 1723 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 1724 tp->snd_cwnd -= decr; 1725 1726 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1); 1727 tp->snd_cwnd_stamp = tcp_time_stamp; 1728 } 1729 1730 /* Nothing was retransmitted or returned timestamp is less 1731 * than timestamp of the first retransmission. 1732 */ 1733 static inline int tcp_packet_delayed(struct tcp_sock *tp) 1734 { 1735 return !tp->retrans_stamp || 1736 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 1737 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0); 1738 } 1739 1740 /* Undo procedures. */ 1741 1742 #if FASTRETRANS_DEBUG > 1 1743 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg) 1744 { 1745 struct inet_sock *inet = inet_sk(sk); 1746 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n", 1747 msg, 1748 NIPQUAD(inet->daddr), ntohs(inet->dport), 1749 tp->snd_cwnd, tp->left_out, 1750 tp->snd_ssthresh, tp->prior_ssthresh, 1751 tp->packets_out); 1752 } 1753 #else 1754 #define DBGUNDO(x...) do { } while (0) 1755 #endif 1756 1757 static void tcp_undo_cwr(struct sock *sk, const int undo) 1758 { 1759 struct tcp_sock *tp = tcp_sk(sk); 1760 1761 if (tp->prior_ssthresh) { 1762 const struct inet_connection_sock *icsk = inet_csk(sk); 1763 1764 if (icsk->icsk_ca_ops->undo_cwnd) 1765 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 1766 else 1767 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1); 1768 1769 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) { 1770 tp->snd_ssthresh = tp->prior_ssthresh; 1771 TCP_ECN_withdraw_cwr(tp); 1772 } 1773 } else { 1774 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 1775 } 1776 tcp_moderate_cwnd(tp); 1777 tp->snd_cwnd_stamp = tcp_time_stamp; 1778 1779 /* There is something screwy going on with the retrans hints after 1780 an undo */ 1781 clear_all_retrans_hints(tp); 1782 } 1783 1784 static inline int tcp_may_undo(struct tcp_sock *tp) 1785 { 1786 return tp->undo_marker && 1787 (!tp->undo_retrans || tcp_packet_delayed(tp)); 1788 } 1789 1790 /* People celebrate: "We love our President!" */ 1791 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp) 1792 { 1793 if (tcp_may_undo(tp)) { 1794 /* Happy end! We did not retransmit anything 1795 * or our original transmission succeeded. 1796 */ 1797 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 1798 tcp_undo_cwr(sk, 1); 1799 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 1800 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1801 else 1802 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO); 1803 tp->undo_marker = 0; 1804 } 1805 if (tp->snd_una == tp->high_seq && IsReno(tp)) { 1806 /* Hold old state until something *above* high_seq 1807 * is ACKed. For Reno it is MUST to prevent false 1808 * fast retransmits (RFC2582). SACK TCP is safe. */ 1809 tcp_moderate_cwnd(tp); 1810 return 1; 1811 } 1812 tcp_set_ca_state(sk, TCP_CA_Open); 1813 return 0; 1814 } 1815 1816 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 1817 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp) 1818 { 1819 if (tp->undo_marker && !tp->undo_retrans) { 1820 DBGUNDO(sk, tp, "D-SACK"); 1821 tcp_undo_cwr(sk, 1); 1822 tp->undo_marker = 0; 1823 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO); 1824 } 1825 } 1826 1827 /* Undo during fast recovery after partial ACK. */ 1828 1829 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp, 1830 int acked) 1831 { 1832 /* Partial ACK arrived. Force Hoe's retransmit. */ 1833 int failed = IsReno(tp) || tp->fackets_out>tp->reordering; 1834 1835 if (tcp_may_undo(tp)) { 1836 /* Plain luck! Hole if filled with delayed 1837 * packet, rather than with a retransmit. 1838 */ 1839 if (tp->retrans_out == 0) 1840 tp->retrans_stamp = 0; 1841 1842 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 1843 1844 DBGUNDO(sk, tp, "Hoe"); 1845 tcp_undo_cwr(sk, 0); 1846 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO); 1847 1848 /* So... Do not make Hoe's retransmit yet. 1849 * If the first packet was delayed, the rest 1850 * ones are most probably delayed as well. 1851 */ 1852 failed = 0; 1853 } 1854 return failed; 1855 } 1856 1857 /* Undo during loss recovery after partial ACK. */ 1858 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp) 1859 { 1860 if (tcp_may_undo(tp)) { 1861 struct sk_buff *skb; 1862 sk_stream_for_retrans_queue(skb, sk) { 1863 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1864 } 1865 1866 clear_all_retrans_hints(tp); 1867 1868 DBGUNDO(sk, tp, "partial loss"); 1869 tp->lost_out = 0; 1870 tp->left_out = tp->sacked_out; 1871 tcp_undo_cwr(sk, 1); 1872 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO); 1873 inet_csk(sk)->icsk_retransmits = 0; 1874 tp->undo_marker = 0; 1875 if (!IsReno(tp)) 1876 tcp_set_ca_state(sk, TCP_CA_Open); 1877 return 1; 1878 } 1879 return 0; 1880 } 1881 1882 static inline void tcp_complete_cwr(struct sock *sk) 1883 { 1884 struct tcp_sock *tp = tcp_sk(sk); 1885 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 1886 tp->snd_cwnd_stamp = tcp_time_stamp; 1887 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 1888 } 1889 1890 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag) 1891 { 1892 tp->left_out = tp->sacked_out; 1893 1894 if (tp->retrans_out == 0) 1895 tp->retrans_stamp = 0; 1896 1897 if (flag&FLAG_ECE) 1898 tcp_enter_cwr(sk); 1899 1900 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 1901 int state = TCP_CA_Open; 1902 1903 if (tp->left_out || tp->retrans_out || tp->undo_marker) 1904 state = TCP_CA_Disorder; 1905 1906 if (inet_csk(sk)->icsk_ca_state != state) { 1907 tcp_set_ca_state(sk, state); 1908 tp->high_seq = tp->snd_nxt; 1909 } 1910 tcp_moderate_cwnd(tp); 1911 } else { 1912 tcp_cwnd_down(sk); 1913 } 1914 } 1915 1916 static void tcp_mtup_probe_failed(struct sock *sk) 1917 { 1918 struct inet_connection_sock *icsk = inet_csk(sk); 1919 1920 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 1921 icsk->icsk_mtup.probe_size = 0; 1922 } 1923 1924 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb) 1925 { 1926 struct tcp_sock *tp = tcp_sk(sk); 1927 struct inet_connection_sock *icsk = inet_csk(sk); 1928 1929 /* FIXME: breaks with very large cwnd */ 1930 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1931 tp->snd_cwnd = tp->snd_cwnd * 1932 tcp_mss_to_mtu(sk, tp->mss_cache) / 1933 icsk->icsk_mtup.probe_size; 1934 tp->snd_cwnd_cnt = 0; 1935 tp->snd_cwnd_stamp = tcp_time_stamp; 1936 tp->rcv_ssthresh = tcp_current_ssthresh(sk); 1937 1938 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 1939 icsk->icsk_mtup.probe_size = 0; 1940 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 1941 } 1942 1943 1944 /* Process an event, which can update packets-in-flight not trivially. 1945 * Main goal of this function is to calculate new estimate for left_out, 1946 * taking into account both packets sitting in receiver's buffer and 1947 * packets lost by network. 1948 * 1949 * Besides that it does CWND reduction, when packet loss is detected 1950 * and changes state of machine. 1951 * 1952 * It does _not_ decide what to send, it is made in function 1953 * tcp_xmit_retransmit_queue(). 1954 */ 1955 static void 1956 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una, 1957 int prior_packets, int flag) 1958 { 1959 struct inet_connection_sock *icsk = inet_csk(sk); 1960 struct tcp_sock *tp = tcp_sk(sk); 1961 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP)); 1962 1963 /* Some technical things: 1964 * 1. Reno does not count dupacks (sacked_out) automatically. */ 1965 if (!tp->packets_out) 1966 tp->sacked_out = 0; 1967 /* 2. SACK counts snd_fack in packets inaccurately. */ 1968 if (tp->sacked_out == 0) 1969 tp->fackets_out = 0; 1970 1971 /* Now state machine starts. 1972 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 1973 if (flag&FLAG_ECE) 1974 tp->prior_ssthresh = 0; 1975 1976 /* B. In all the states check for reneging SACKs. */ 1977 if (tp->sacked_out && tcp_check_sack_reneging(sk)) 1978 return; 1979 1980 /* C. Process data loss notification, provided it is valid. */ 1981 if ((flag&FLAG_DATA_LOST) && 1982 before(tp->snd_una, tp->high_seq) && 1983 icsk->icsk_ca_state != TCP_CA_Open && 1984 tp->fackets_out > tp->reordering) { 1985 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq); 1986 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS); 1987 } 1988 1989 /* D. Synchronize left_out to current state. */ 1990 tcp_sync_left_out(tp); 1991 1992 /* E. Check state exit conditions. State can be terminated 1993 * when high_seq is ACKed. */ 1994 if (icsk->icsk_ca_state == TCP_CA_Open) { 1995 if (!sysctl_tcp_frto) 1996 BUG_TRAP(tp->retrans_out == 0); 1997 tp->retrans_stamp = 0; 1998 } else if (!before(tp->snd_una, tp->high_seq)) { 1999 switch (icsk->icsk_ca_state) { 2000 case TCP_CA_Loss: 2001 icsk->icsk_retransmits = 0; 2002 if (tcp_try_undo_recovery(sk, tp)) 2003 return; 2004 break; 2005 2006 case TCP_CA_CWR: 2007 /* CWR is to be held something *above* high_seq 2008 * is ACKed for CWR bit to reach receiver. */ 2009 if (tp->snd_una != tp->high_seq) { 2010 tcp_complete_cwr(sk); 2011 tcp_set_ca_state(sk, TCP_CA_Open); 2012 } 2013 break; 2014 2015 case TCP_CA_Disorder: 2016 tcp_try_undo_dsack(sk, tp); 2017 if (!tp->undo_marker || 2018 /* For SACK case do not Open to allow to undo 2019 * catching for all duplicate ACKs. */ 2020 IsReno(tp) || tp->snd_una != tp->high_seq) { 2021 tp->undo_marker = 0; 2022 tcp_set_ca_state(sk, TCP_CA_Open); 2023 } 2024 break; 2025 2026 case TCP_CA_Recovery: 2027 if (IsReno(tp)) 2028 tcp_reset_reno_sack(tp); 2029 if (tcp_try_undo_recovery(sk, tp)) 2030 return; 2031 tcp_complete_cwr(sk); 2032 break; 2033 } 2034 } 2035 2036 /* F. Process state. */ 2037 switch (icsk->icsk_ca_state) { 2038 case TCP_CA_Recovery: 2039 if (prior_snd_una == tp->snd_una) { 2040 if (IsReno(tp) && is_dupack) 2041 tcp_add_reno_sack(sk); 2042 } else { 2043 int acked = prior_packets - tp->packets_out; 2044 if (IsReno(tp)) 2045 tcp_remove_reno_sacks(sk, tp, acked); 2046 is_dupack = tcp_try_undo_partial(sk, tp, acked); 2047 } 2048 break; 2049 case TCP_CA_Loss: 2050 if (flag&FLAG_DATA_ACKED) 2051 icsk->icsk_retransmits = 0; 2052 if (!tcp_try_undo_loss(sk, tp)) { 2053 tcp_moderate_cwnd(tp); 2054 tcp_xmit_retransmit_queue(sk); 2055 return; 2056 } 2057 if (icsk->icsk_ca_state != TCP_CA_Open) 2058 return; 2059 /* Loss is undone; fall through to processing in Open state. */ 2060 default: 2061 if (IsReno(tp)) { 2062 if (tp->snd_una != prior_snd_una) 2063 tcp_reset_reno_sack(tp); 2064 if (is_dupack) 2065 tcp_add_reno_sack(sk); 2066 } 2067 2068 if (icsk->icsk_ca_state == TCP_CA_Disorder) 2069 tcp_try_undo_dsack(sk, tp); 2070 2071 if (!tcp_time_to_recover(sk, tp)) { 2072 tcp_try_to_open(sk, tp, flag); 2073 return; 2074 } 2075 2076 /* MTU probe failure: don't reduce cwnd */ 2077 if (icsk->icsk_ca_state < TCP_CA_CWR && 2078 icsk->icsk_mtup.probe_size && 2079 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2080 tcp_mtup_probe_failed(sk); 2081 /* Restores the reduction we did in tcp_mtup_probe() */ 2082 tp->snd_cwnd++; 2083 tcp_simple_retransmit(sk); 2084 return; 2085 } 2086 2087 /* Otherwise enter Recovery state */ 2088 2089 if (IsReno(tp)) 2090 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY); 2091 else 2092 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY); 2093 2094 tp->high_seq = tp->snd_nxt; 2095 tp->prior_ssthresh = 0; 2096 tp->undo_marker = tp->snd_una; 2097 tp->undo_retrans = tp->retrans_out; 2098 2099 if (icsk->icsk_ca_state < TCP_CA_CWR) { 2100 if (!(flag&FLAG_ECE)) 2101 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2102 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2103 TCP_ECN_queue_cwr(tp); 2104 } 2105 2106 tp->bytes_acked = 0; 2107 tp->snd_cwnd_cnt = 0; 2108 tcp_set_ca_state(sk, TCP_CA_Recovery); 2109 } 2110 2111 if (is_dupack || tcp_head_timedout(sk, tp)) 2112 tcp_update_scoreboard(sk, tp); 2113 tcp_cwnd_down(sk); 2114 tcp_xmit_retransmit_queue(sk); 2115 } 2116 2117 /* Read draft-ietf-tcplw-high-performance before mucking 2118 * with this code. (Supersedes RFC1323) 2119 */ 2120 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 2121 { 2122 /* RTTM Rule: A TSecr value received in a segment is used to 2123 * update the averaged RTT measurement only if the segment 2124 * acknowledges some new data, i.e., only if it advances the 2125 * left edge of the send window. 2126 * 2127 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2128 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 2129 * 2130 * Changed: reset backoff as soon as we see the first valid sample. 2131 * If we do not, we get strongly overestimated rto. With timestamps 2132 * samples are accepted even from very old segments: f.e., when rtt=1 2133 * increases to 8, we retransmit 5 times and after 8 seconds delayed 2134 * answer arrives rto becomes 120 seconds! If at least one of segments 2135 * in window is lost... Voila. --ANK (010210) 2136 */ 2137 struct tcp_sock *tp = tcp_sk(sk); 2138 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr; 2139 tcp_rtt_estimator(sk, seq_rtt); 2140 tcp_set_rto(sk); 2141 inet_csk(sk)->icsk_backoff = 0; 2142 tcp_bound_rto(sk); 2143 } 2144 2145 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 2146 { 2147 /* We don't have a timestamp. Can only use 2148 * packets that are not retransmitted to determine 2149 * rtt estimates. Also, we must not reset the 2150 * backoff for rto until we get a non-retransmitted 2151 * packet. This allows us to deal with a situation 2152 * where the network delay has increased suddenly. 2153 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 2154 */ 2155 2156 if (flag & FLAG_RETRANS_DATA_ACKED) 2157 return; 2158 2159 tcp_rtt_estimator(sk, seq_rtt); 2160 tcp_set_rto(sk); 2161 inet_csk(sk)->icsk_backoff = 0; 2162 tcp_bound_rto(sk); 2163 } 2164 2165 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 2166 const s32 seq_rtt) 2167 { 2168 const struct tcp_sock *tp = tcp_sk(sk); 2169 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 2170 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 2171 tcp_ack_saw_tstamp(sk, flag); 2172 else if (seq_rtt >= 0) 2173 tcp_ack_no_tstamp(sk, seq_rtt, flag); 2174 } 2175 2176 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt, 2177 u32 in_flight, int good) 2178 { 2179 const struct inet_connection_sock *icsk = inet_csk(sk); 2180 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good); 2181 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2182 } 2183 2184 /* Restart timer after forward progress on connection. 2185 * RFC2988 recommends to restart timer to now+rto. 2186 */ 2187 2188 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp) 2189 { 2190 if (!tp->packets_out) { 2191 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2192 } else { 2193 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 2194 } 2195 } 2196 2197 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb, 2198 __u32 now, __s32 *seq_rtt) 2199 { 2200 struct tcp_sock *tp = tcp_sk(sk); 2201 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2202 __u32 seq = tp->snd_una; 2203 __u32 packets_acked; 2204 int acked = 0; 2205 2206 /* If we get here, the whole TSO packet has not been 2207 * acked. 2208 */ 2209 BUG_ON(!after(scb->end_seq, seq)); 2210 2211 packets_acked = tcp_skb_pcount(skb); 2212 if (tcp_trim_head(sk, skb, seq - scb->seq)) 2213 return 0; 2214 packets_acked -= tcp_skb_pcount(skb); 2215 2216 if (packets_acked) { 2217 __u8 sacked = scb->sacked; 2218 2219 acked |= FLAG_DATA_ACKED; 2220 if (sacked) { 2221 if (sacked & TCPCB_RETRANS) { 2222 if (sacked & TCPCB_SACKED_RETRANS) 2223 tp->retrans_out -= packets_acked; 2224 acked |= FLAG_RETRANS_DATA_ACKED; 2225 *seq_rtt = -1; 2226 } else if (*seq_rtt < 0) 2227 *seq_rtt = now - scb->when; 2228 if (sacked & TCPCB_SACKED_ACKED) 2229 tp->sacked_out -= packets_acked; 2230 if (sacked & TCPCB_LOST) 2231 tp->lost_out -= packets_acked; 2232 if (sacked & TCPCB_URG) { 2233 if (tp->urg_mode && 2234 !before(seq, tp->snd_up)) 2235 tp->urg_mode = 0; 2236 } 2237 } else if (*seq_rtt < 0) 2238 *seq_rtt = now - scb->when; 2239 2240 if (tp->fackets_out) { 2241 __u32 dval = min(tp->fackets_out, packets_acked); 2242 tp->fackets_out -= dval; 2243 } 2244 tp->packets_out -= packets_acked; 2245 2246 BUG_ON(tcp_skb_pcount(skb) == 0); 2247 BUG_ON(!before(scb->seq, scb->end_seq)); 2248 } 2249 2250 return acked; 2251 } 2252 2253 static u32 tcp_usrtt(struct timeval *tv) 2254 { 2255 struct timeval now; 2256 2257 do_gettimeofday(&now); 2258 return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec); 2259 } 2260 2261 /* Remove acknowledged frames from the retransmission queue. */ 2262 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p) 2263 { 2264 struct tcp_sock *tp = tcp_sk(sk); 2265 const struct inet_connection_sock *icsk = inet_csk(sk); 2266 struct sk_buff *skb; 2267 __u32 now = tcp_time_stamp; 2268 int acked = 0; 2269 __s32 seq_rtt = -1; 2270 u32 pkts_acked = 0; 2271 void (*rtt_sample)(struct sock *sk, u32 usrtt) 2272 = icsk->icsk_ca_ops->rtt_sample; 2273 struct timeval tv = { .tv_sec = 0, .tv_usec = 0 }; 2274 2275 while ((skb = skb_peek(&sk->sk_write_queue)) && 2276 skb != sk->sk_send_head) { 2277 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 2278 __u8 sacked = scb->sacked; 2279 2280 /* If our packet is before the ack sequence we can 2281 * discard it as it's confirmed to have arrived at 2282 * the other end. 2283 */ 2284 if (after(scb->end_seq, tp->snd_una)) { 2285 if (tcp_skb_pcount(skb) > 1 && 2286 after(tp->snd_una, scb->seq)) 2287 acked |= tcp_tso_acked(sk, skb, 2288 now, &seq_rtt); 2289 break; 2290 } 2291 2292 /* Initial outgoing SYN's get put onto the write_queue 2293 * just like anything else we transmit. It is not 2294 * true data, and if we misinform our callers that 2295 * this ACK acks real data, we will erroneously exit 2296 * connection startup slow start one packet too 2297 * quickly. This is severely frowned upon behavior. 2298 */ 2299 if (!(scb->flags & TCPCB_FLAG_SYN)) { 2300 acked |= FLAG_DATA_ACKED; 2301 ++pkts_acked; 2302 } else { 2303 acked |= FLAG_SYN_ACKED; 2304 tp->retrans_stamp = 0; 2305 } 2306 2307 /* MTU probing checks */ 2308 if (icsk->icsk_mtup.probe_size) { 2309 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) { 2310 tcp_mtup_probe_success(sk, skb); 2311 } 2312 } 2313 2314 if (sacked) { 2315 if (sacked & TCPCB_RETRANS) { 2316 if(sacked & TCPCB_SACKED_RETRANS) 2317 tp->retrans_out -= tcp_skb_pcount(skb); 2318 acked |= FLAG_RETRANS_DATA_ACKED; 2319 seq_rtt = -1; 2320 } else if (seq_rtt < 0) { 2321 seq_rtt = now - scb->when; 2322 skb_get_timestamp(skb, &tv); 2323 } 2324 if (sacked & TCPCB_SACKED_ACKED) 2325 tp->sacked_out -= tcp_skb_pcount(skb); 2326 if (sacked & TCPCB_LOST) 2327 tp->lost_out -= tcp_skb_pcount(skb); 2328 if (sacked & TCPCB_URG) { 2329 if (tp->urg_mode && 2330 !before(scb->end_seq, tp->snd_up)) 2331 tp->urg_mode = 0; 2332 } 2333 } else if (seq_rtt < 0) { 2334 seq_rtt = now - scb->when; 2335 skb_get_timestamp(skb, &tv); 2336 } 2337 tcp_dec_pcount_approx(&tp->fackets_out, skb); 2338 tcp_packets_out_dec(tp, skb); 2339 __skb_unlink(skb, &sk->sk_write_queue); 2340 sk_stream_free_skb(sk, skb); 2341 clear_all_retrans_hints(tp); 2342 } 2343 2344 if (acked&FLAG_ACKED) { 2345 tcp_ack_update_rtt(sk, acked, seq_rtt); 2346 tcp_ack_packets_out(sk, tp); 2347 if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED)) 2348 (*rtt_sample)(sk, tcp_usrtt(&tv)); 2349 2350 if (icsk->icsk_ca_ops->pkts_acked) 2351 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked); 2352 } 2353 2354 #if FASTRETRANS_DEBUG > 0 2355 BUG_TRAP((int)tp->sacked_out >= 0); 2356 BUG_TRAP((int)tp->lost_out >= 0); 2357 BUG_TRAP((int)tp->retrans_out >= 0); 2358 if (!tp->packets_out && tp->rx_opt.sack_ok) { 2359 const struct inet_connection_sock *icsk = inet_csk(sk); 2360 if (tp->lost_out) { 2361 printk(KERN_DEBUG "Leak l=%u %d\n", 2362 tp->lost_out, icsk->icsk_ca_state); 2363 tp->lost_out = 0; 2364 } 2365 if (tp->sacked_out) { 2366 printk(KERN_DEBUG "Leak s=%u %d\n", 2367 tp->sacked_out, icsk->icsk_ca_state); 2368 tp->sacked_out = 0; 2369 } 2370 if (tp->retrans_out) { 2371 printk(KERN_DEBUG "Leak r=%u %d\n", 2372 tp->retrans_out, icsk->icsk_ca_state); 2373 tp->retrans_out = 0; 2374 } 2375 } 2376 #endif 2377 *seq_rtt_p = seq_rtt; 2378 return acked; 2379 } 2380 2381 static void tcp_ack_probe(struct sock *sk) 2382 { 2383 const struct tcp_sock *tp = tcp_sk(sk); 2384 struct inet_connection_sock *icsk = inet_csk(sk); 2385 2386 /* Was it a usable window open? */ 2387 2388 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq, 2389 tp->snd_una + tp->snd_wnd)) { 2390 icsk->icsk_backoff = 0; 2391 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 2392 /* Socket must be waked up by subsequent tcp_data_snd_check(). 2393 * This function is not for random using! 2394 */ 2395 } else { 2396 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2397 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2398 TCP_RTO_MAX); 2399 } 2400 } 2401 2402 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 2403 { 2404 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 2405 inet_csk(sk)->icsk_ca_state != TCP_CA_Open); 2406 } 2407 2408 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 2409 { 2410 const struct tcp_sock *tp = tcp_sk(sk); 2411 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 2412 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 2413 } 2414 2415 /* Check that window update is acceptable. 2416 * The function assumes that snd_una<=ack<=snd_next. 2417 */ 2418 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack, 2419 const u32 ack_seq, const u32 nwin) 2420 { 2421 return (after(ack, tp->snd_una) || 2422 after(ack_seq, tp->snd_wl1) || 2423 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd)); 2424 } 2425 2426 /* Update our send window. 2427 * 2428 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 2429 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 2430 */ 2431 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp, 2432 struct sk_buff *skb, u32 ack, u32 ack_seq) 2433 { 2434 int flag = 0; 2435 u32 nwin = ntohs(skb->h.th->window); 2436 2437 if (likely(!skb->h.th->syn)) 2438 nwin <<= tp->rx_opt.snd_wscale; 2439 2440 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 2441 flag |= FLAG_WIN_UPDATE; 2442 tcp_update_wl(tp, ack, ack_seq); 2443 2444 if (tp->snd_wnd != nwin) { 2445 tp->snd_wnd = nwin; 2446 2447 /* Note, it is the only place, where 2448 * fast path is recovered for sending TCP. 2449 */ 2450 tp->pred_flags = 0; 2451 tcp_fast_path_check(sk, tp); 2452 2453 if (nwin > tp->max_window) { 2454 tp->max_window = nwin; 2455 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 2456 } 2457 } 2458 } 2459 2460 tp->snd_una = ack; 2461 2462 return flag; 2463 } 2464 2465 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una) 2466 { 2467 struct tcp_sock *tp = tcp_sk(sk); 2468 2469 tcp_sync_left_out(tp); 2470 2471 if (tp->snd_una == prior_snd_una || 2472 !before(tp->snd_una, tp->frto_highmark)) { 2473 /* RTO was caused by loss, start retransmitting in 2474 * go-back-N slow start 2475 */ 2476 tcp_enter_frto_loss(sk); 2477 return; 2478 } 2479 2480 if (tp->frto_counter == 1) { 2481 /* First ACK after RTO advances the window: allow two new 2482 * segments out. 2483 */ 2484 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 2485 } else { 2486 /* Also the second ACK after RTO advances the window. 2487 * The RTO was likely spurious. Reduce cwnd and continue 2488 * in congestion avoidance 2489 */ 2490 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2491 tcp_moderate_cwnd(tp); 2492 } 2493 2494 /* F-RTO affects on two new ACKs following RTO. 2495 * At latest on third ACK the TCP behavior is back to normal. 2496 */ 2497 tp->frto_counter = (tp->frto_counter + 1) % 3; 2498 } 2499 2500 /* This routine deals with incoming acks, but not outgoing ones. */ 2501 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag) 2502 { 2503 struct inet_connection_sock *icsk = inet_csk(sk); 2504 struct tcp_sock *tp = tcp_sk(sk); 2505 u32 prior_snd_una = tp->snd_una; 2506 u32 ack_seq = TCP_SKB_CB(skb)->seq; 2507 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2508 u32 prior_in_flight; 2509 s32 seq_rtt; 2510 int prior_packets; 2511 2512 /* If the ack is newer than sent or older than previous acks 2513 * then we can probably ignore it. 2514 */ 2515 if (after(ack, tp->snd_nxt)) 2516 goto uninteresting_ack; 2517 2518 if (before(ack, prior_snd_una)) 2519 goto old_ack; 2520 2521 if (sysctl_tcp_abc) { 2522 if (icsk->icsk_ca_state < TCP_CA_CWR) 2523 tp->bytes_acked += ack - prior_snd_una; 2524 else if (icsk->icsk_ca_state == TCP_CA_Loss) 2525 /* we assume just one segment left network */ 2526 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache); 2527 } 2528 2529 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 2530 /* Window is constant, pure forward advance. 2531 * No more checks are required. 2532 * Note, we use the fact that SND.UNA>=SND.WL2. 2533 */ 2534 tcp_update_wl(tp, ack, ack_seq); 2535 tp->snd_una = ack; 2536 flag |= FLAG_WIN_UPDATE; 2537 2538 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 2539 2540 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS); 2541 } else { 2542 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 2543 flag |= FLAG_DATA; 2544 else 2545 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS); 2546 2547 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq); 2548 2549 if (TCP_SKB_CB(skb)->sacked) 2550 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2551 2552 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th)) 2553 flag |= FLAG_ECE; 2554 2555 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 2556 } 2557 2558 /* We passed data and got it acked, remove any soft error 2559 * log. Something worked... 2560 */ 2561 sk->sk_err_soft = 0; 2562 tp->rcv_tstamp = tcp_time_stamp; 2563 prior_packets = tp->packets_out; 2564 if (!prior_packets) 2565 goto no_queue; 2566 2567 prior_in_flight = tcp_packets_in_flight(tp); 2568 2569 /* See if we can take anything off of the retransmit queue. */ 2570 flag |= tcp_clean_rtx_queue(sk, &seq_rtt); 2571 2572 if (tp->frto_counter) 2573 tcp_process_frto(sk, prior_snd_una); 2574 2575 if (tcp_ack_is_dubious(sk, flag)) { 2576 /* Advance CWND, if state allows this. */ 2577 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag)) 2578 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0); 2579 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag); 2580 } else { 2581 if ((flag & FLAG_DATA_ACKED)) 2582 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1); 2583 } 2584 2585 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP)) 2586 dst_confirm(sk->sk_dst_cache); 2587 2588 return 1; 2589 2590 no_queue: 2591 icsk->icsk_probes_out = 0; 2592 2593 /* If this ack opens up a zero window, clear backoff. It was 2594 * being used to time the probes, and is probably far higher than 2595 * it needs to be for normal retransmission. 2596 */ 2597 if (sk->sk_send_head) 2598 tcp_ack_probe(sk); 2599 return 1; 2600 2601 old_ack: 2602 if (TCP_SKB_CB(skb)->sacked) 2603 tcp_sacktag_write_queue(sk, skb, prior_snd_una); 2604 2605 uninteresting_ack: 2606 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 2607 return 0; 2608 } 2609 2610 2611 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 2612 * But, this can also be called on packets in the established flow when 2613 * the fast version below fails. 2614 */ 2615 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab) 2616 { 2617 unsigned char *ptr; 2618 struct tcphdr *th = skb->h.th; 2619 int length=(th->doff*4)-sizeof(struct tcphdr); 2620 2621 ptr = (unsigned char *)(th + 1); 2622 opt_rx->saw_tstamp = 0; 2623 2624 while(length>0) { 2625 int opcode=*ptr++; 2626 int opsize; 2627 2628 switch (opcode) { 2629 case TCPOPT_EOL: 2630 return; 2631 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 2632 length--; 2633 continue; 2634 default: 2635 opsize=*ptr++; 2636 if (opsize < 2) /* "silly options" */ 2637 return; 2638 if (opsize > length) 2639 return; /* don't parse partial options */ 2640 switch(opcode) { 2641 case TCPOPT_MSS: 2642 if(opsize==TCPOLEN_MSS && th->syn && !estab) { 2643 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr)); 2644 if (in_mss) { 2645 if (opt_rx->user_mss && opt_rx->user_mss < in_mss) 2646 in_mss = opt_rx->user_mss; 2647 opt_rx->mss_clamp = in_mss; 2648 } 2649 } 2650 break; 2651 case TCPOPT_WINDOW: 2652 if(opsize==TCPOLEN_WINDOW && th->syn && !estab) 2653 if (sysctl_tcp_window_scaling) { 2654 __u8 snd_wscale = *(__u8 *) ptr; 2655 opt_rx->wscale_ok = 1; 2656 if (snd_wscale > 14) { 2657 if(net_ratelimit()) 2658 printk(KERN_INFO "tcp_parse_options: Illegal window " 2659 "scaling value %d >14 received.\n", 2660 snd_wscale); 2661 snd_wscale = 14; 2662 } 2663 opt_rx->snd_wscale = snd_wscale; 2664 } 2665 break; 2666 case TCPOPT_TIMESTAMP: 2667 if(opsize==TCPOLEN_TIMESTAMP) { 2668 if ((estab && opt_rx->tstamp_ok) || 2669 (!estab && sysctl_tcp_timestamps)) { 2670 opt_rx->saw_tstamp = 1; 2671 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr)); 2672 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4))); 2673 } 2674 } 2675 break; 2676 case TCPOPT_SACK_PERM: 2677 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) { 2678 if (sysctl_tcp_sack) { 2679 opt_rx->sack_ok = 1; 2680 tcp_sack_reset(opt_rx); 2681 } 2682 } 2683 break; 2684 2685 case TCPOPT_SACK: 2686 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 2687 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 2688 opt_rx->sack_ok) { 2689 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 2690 } 2691 #ifdef CONFIG_TCP_MD5SIG 2692 case TCPOPT_MD5SIG: 2693 /* 2694 * The MD5 Hash has already been 2695 * checked (see tcp_v{4,6}_do_rcv()). 2696 */ 2697 break; 2698 #endif 2699 }; 2700 ptr+=opsize-2; 2701 length-=opsize; 2702 }; 2703 } 2704 } 2705 2706 /* Fast parse options. This hopes to only see timestamps. 2707 * If it is wrong it falls back on tcp_parse_options(). 2708 */ 2709 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th, 2710 struct tcp_sock *tp) 2711 { 2712 if (th->doff == sizeof(struct tcphdr)>>2) { 2713 tp->rx_opt.saw_tstamp = 0; 2714 return 0; 2715 } else if (tp->rx_opt.tstamp_ok && 2716 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) { 2717 __be32 *ptr = (__be32 *)(th + 1); 2718 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 2719 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 2720 tp->rx_opt.saw_tstamp = 1; 2721 ++ptr; 2722 tp->rx_opt.rcv_tsval = ntohl(*ptr); 2723 ++ptr; 2724 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 2725 return 1; 2726 } 2727 } 2728 tcp_parse_options(skb, &tp->rx_opt, 1); 2729 return 1; 2730 } 2731 2732 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 2733 { 2734 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 2735 tp->rx_opt.ts_recent_stamp = xtime.tv_sec; 2736 } 2737 2738 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 2739 { 2740 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 2741 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 2742 * extra check below makes sure this can only happen 2743 * for pure ACK frames. -DaveM 2744 * 2745 * Not only, also it occurs for expired timestamps. 2746 */ 2747 2748 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 || 2749 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS) 2750 tcp_store_ts_recent(tp); 2751 } 2752 } 2753 2754 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 2755 * 2756 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 2757 * it can pass through stack. So, the following predicate verifies that 2758 * this segment is not used for anything but congestion avoidance or 2759 * fast retransmit. Moreover, we even are able to eliminate most of such 2760 * second order effects, if we apply some small "replay" window (~RTO) 2761 * to timestamp space. 2762 * 2763 * All these measures still do not guarantee that we reject wrapped ACKs 2764 * on networks with high bandwidth, when sequence space is recycled fastly, 2765 * but it guarantees that such events will be very rare and do not affect 2766 * connection seriously. This doesn't look nice, but alas, PAWS is really 2767 * buggy extension. 2768 * 2769 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 2770 * states that events when retransmit arrives after original data are rare. 2771 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 2772 * the biggest problem on large power networks even with minor reordering. 2773 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 2774 * up to bandwidth of 18Gigabit/sec. 8) ] 2775 */ 2776 2777 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 2778 { 2779 struct tcp_sock *tp = tcp_sk(sk); 2780 struct tcphdr *th = skb->h.th; 2781 u32 seq = TCP_SKB_CB(skb)->seq; 2782 u32 ack = TCP_SKB_CB(skb)->ack_seq; 2783 2784 return (/* 1. Pure ACK with correct sequence number. */ 2785 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 2786 2787 /* 2. ... and duplicate ACK. */ 2788 ack == tp->snd_una && 2789 2790 /* 3. ... and does not update window. */ 2791 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 2792 2793 /* 4. ... and sits in replay window. */ 2794 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 2795 } 2796 2797 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb) 2798 { 2799 const struct tcp_sock *tp = tcp_sk(sk); 2800 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW && 2801 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS && 2802 !tcp_disordered_ack(sk, skb)); 2803 } 2804 2805 /* Check segment sequence number for validity. 2806 * 2807 * Segment controls are considered valid, if the segment 2808 * fits to the window after truncation to the window. Acceptability 2809 * of data (and SYN, FIN, of course) is checked separately. 2810 * See tcp_data_queue(), for example. 2811 * 2812 * Also, controls (RST is main one) are accepted using RCV.WUP instead 2813 * of RCV.NXT. Peer still did not advance his SND.UNA when we 2814 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 2815 * (borrowed from freebsd) 2816 */ 2817 2818 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq) 2819 { 2820 return !before(end_seq, tp->rcv_wup) && 2821 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 2822 } 2823 2824 /* When we get a reset we do this. */ 2825 static void tcp_reset(struct sock *sk) 2826 { 2827 /* We want the right error as BSD sees it (and indeed as we do). */ 2828 switch (sk->sk_state) { 2829 case TCP_SYN_SENT: 2830 sk->sk_err = ECONNREFUSED; 2831 break; 2832 case TCP_CLOSE_WAIT: 2833 sk->sk_err = EPIPE; 2834 break; 2835 case TCP_CLOSE: 2836 return; 2837 default: 2838 sk->sk_err = ECONNRESET; 2839 } 2840 2841 if (!sock_flag(sk, SOCK_DEAD)) 2842 sk->sk_error_report(sk); 2843 2844 tcp_done(sk); 2845 } 2846 2847 /* 2848 * Process the FIN bit. This now behaves as it is supposed to work 2849 * and the FIN takes effect when it is validly part of sequence 2850 * space. Not before when we get holes. 2851 * 2852 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 2853 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 2854 * TIME-WAIT) 2855 * 2856 * If we are in FINWAIT-1, a received FIN indicates simultaneous 2857 * close and we go into CLOSING (and later onto TIME-WAIT) 2858 * 2859 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 2860 */ 2861 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th) 2862 { 2863 struct tcp_sock *tp = tcp_sk(sk); 2864 2865 inet_csk_schedule_ack(sk); 2866 2867 sk->sk_shutdown |= RCV_SHUTDOWN; 2868 sock_set_flag(sk, SOCK_DONE); 2869 2870 switch (sk->sk_state) { 2871 case TCP_SYN_RECV: 2872 case TCP_ESTABLISHED: 2873 /* Move to CLOSE_WAIT */ 2874 tcp_set_state(sk, TCP_CLOSE_WAIT); 2875 inet_csk(sk)->icsk_ack.pingpong = 1; 2876 break; 2877 2878 case TCP_CLOSE_WAIT: 2879 case TCP_CLOSING: 2880 /* Received a retransmission of the FIN, do 2881 * nothing. 2882 */ 2883 break; 2884 case TCP_LAST_ACK: 2885 /* RFC793: Remain in the LAST-ACK state. */ 2886 break; 2887 2888 case TCP_FIN_WAIT1: 2889 /* This case occurs when a simultaneous close 2890 * happens, we must ack the received FIN and 2891 * enter the CLOSING state. 2892 */ 2893 tcp_send_ack(sk); 2894 tcp_set_state(sk, TCP_CLOSING); 2895 break; 2896 case TCP_FIN_WAIT2: 2897 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 2898 tcp_send_ack(sk); 2899 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 2900 break; 2901 default: 2902 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 2903 * cases we should never reach this piece of code. 2904 */ 2905 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 2906 __FUNCTION__, sk->sk_state); 2907 break; 2908 }; 2909 2910 /* It _is_ possible, that we have something out-of-order _after_ FIN. 2911 * Probably, we should reset in this case. For now drop them. 2912 */ 2913 __skb_queue_purge(&tp->out_of_order_queue); 2914 if (tp->rx_opt.sack_ok) 2915 tcp_sack_reset(&tp->rx_opt); 2916 sk_stream_mem_reclaim(sk); 2917 2918 if (!sock_flag(sk, SOCK_DEAD)) { 2919 sk->sk_state_change(sk); 2920 2921 /* Do not send POLL_HUP for half duplex close. */ 2922 if (sk->sk_shutdown == SHUTDOWN_MASK || 2923 sk->sk_state == TCP_CLOSE) 2924 sk_wake_async(sk, 1, POLL_HUP); 2925 else 2926 sk_wake_async(sk, 1, POLL_IN); 2927 } 2928 } 2929 2930 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq) 2931 { 2932 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 2933 if (before(seq, sp->start_seq)) 2934 sp->start_seq = seq; 2935 if (after(end_seq, sp->end_seq)) 2936 sp->end_seq = end_seq; 2937 return 1; 2938 } 2939 return 0; 2940 } 2941 2942 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq) 2943 { 2944 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 2945 if (before(seq, tp->rcv_nxt)) 2946 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT); 2947 else 2948 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT); 2949 2950 tp->rx_opt.dsack = 1; 2951 tp->duplicate_sack[0].start_seq = seq; 2952 tp->duplicate_sack[0].end_seq = end_seq; 2953 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok); 2954 } 2955 } 2956 2957 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq) 2958 { 2959 if (!tp->rx_opt.dsack) 2960 tcp_dsack_set(tp, seq, end_seq); 2961 else 2962 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 2963 } 2964 2965 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb) 2966 { 2967 struct tcp_sock *tp = tcp_sk(sk); 2968 2969 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 2970 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 2971 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 2972 tcp_enter_quickack_mode(sk); 2973 2974 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) { 2975 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 2976 2977 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 2978 end_seq = tp->rcv_nxt; 2979 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq); 2980 } 2981 } 2982 2983 tcp_send_ack(sk); 2984 } 2985 2986 /* These routines update the SACK block as out-of-order packets arrive or 2987 * in-order packets close up the sequence space. 2988 */ 2989 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 2990 { 2991 int this_sack; 2992 struct tcp_sack_block *sp = &tp->selective_acks[0]; 2993 struct tcp_sack_block *swalk = sp+1; 2994 2995 /* See if the recent change to the first SACK eats into 2996 * or hits the sequence space of other SACK blocks, if so coalesce. 2997 */ 2998 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) { 2999 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 3000 int i; 3001 3002 /* Zap SWALK, by moving every further SACK up by one slot. 3003 * Decrease num_sacks. 3004 */ 3005 tp->rx_opt.num_sacks--; 3006 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3007 for(i=this_sack; i < tp->rx_opt.num_sacks; i++) 3008 sp[i] = sp[i+1]; 3009 continue; 3010 } 3011 this_sack++, swalk++; 3012 } 3013 } 3014 3015 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2) 3016 { 3017 __u32 tmp; 3018 3019 tmp = sack1->start_seq; 3020 sack1->start_seq = sack2->start_seq; 3021 sack2->start_seq = tmp; 3022 3023 tmp = sack1->end_seq; 3024 sack1->end_seq = sack2->end_seq; 3025 sack2->end_seq = tmp; 3026 } 3027 3028 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 3029 { 3030 struct tcp_sock *tp = tcp_sk(sk); 3031 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3032 int cur_sacks = tp->rx_opt.num_sacks; 3033 int this_sack; 3034 3035 if (!cur_sacks) 3036 goto new_sack; 3037 3038 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) { 3039 if (tcp_sack_extend(sp, seq, end_seq)) { 3040 /* Rotate this_sack to the first one. */ 3041 for (; this_sack>0; this_sack--, sp--) 3042 tcp_sack_swap(sp, sp-1); 3043 if (cur_sacks > 1) 3044 tcp_sack_maybe_coalesce(tp); 3045 return; 3046 } 3047 } 3048 3049 /* Could not find an adjacent existing SACK, build a new one, 3050 * put it at the front, and shift everyone else down. We 3051 * always know there is at least one SACK present already here. 3052 * 3053 * If the sack array is full, forget about the last one. 3054 */ 3055 if (this_sack >= 4) { 3056 this_sack--; 3057 tp->rx_opt.num_sacks--; 3058 sp--; 3059 } 3060 for(; this_sack > 0; this_sack--, sp--) 3061 *sp = *(sp-1); 3062 3063 new_sack: 3064 /* Build the new head SACK, and we're done. */ 3065 sp->start_seq = seq; 3066 sp->end_seq = end_seq; 3067 tp->rx_opt.num_sacks++; 3068 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3069 } 3070 3071 /* RCV.NXT advances, some SACKs should be eaten. */ 3072 3073 static void tcp_sack_remove(struct tcp_sock *tp) 3074 { 3075 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3076 int num_sacks = tp->rx_opt.num_sacks; 3077 int this_sack; 3078 3079 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 3080 if (skb_queue_empty(&tp->out_of_order_queue)) { 3081 tp->rx_opt.num_sacks = 0; 3082 tp->rx_opt.eff_sacks = tp->rx_opt.dsack; 3083 return; 3084 } 3085 3086 for(this_sack = 0; this_sack < num_sacks; ) { 3087 /* Check if the start of the sack is covered by RCV.NXT. */ 3088 if (!before(tp->rcv_nxt, sp->start_seq)) { 3089 int i; 3090 3091 /* RCV.NXT must cover all the block! */ 3092 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq)); 3093 3094 /* Zap this SACK, by moving forward any other SACKS. */ 3095 for (i=this_sack+1; i < num_sacks; i++) 3096 tp->selective_acks[i-1] = tp->selective_acks[i]; 3097 num_sacks--; 3098 continue; 3099 } 3100 this_sack++; 3101 sp++; 3102 } 3103 if (num_sacks != tp->rx_opt.num_sacks) { 3104 tp->rx_opt.num_sacks = num_sacks; 3105 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok); 3106 } 3107 } 3108 3109 /* This one checks to see if we can put data from the 3110 * out_of_order queue into the receive_queue. 3111 */ 3112 static void tcp_ofo_queue(struct sock *sk) 3113 { 3114 struct tcp_sock *tp = tcp_sk(sk); 3115 __u32 dsack_high = tp->rcv_nxt; 3116 struct sk_buff *skb; 3117 3118 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 3119 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 3120 break; 3121 3122 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 3123 __u32 dsack = dsack_high; 3124 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 3125 dsack_high = TCP_SKB_CB(skb)->end_seq; 3126 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack); 3127 } 3128 3129 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3130 SOCK_DEBUG(sk, "ofo packet was already received \n"); 3131 __skb_unlink(skb, &tp->out_of_order_queue); 3132 __kfree_skb(skb); 3133 continue; 3134 } 3135 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 3136 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3137 TCP_SKB_CB(skb)->end_seq); 3138 3139 __skb_unlink(skb, &tp->out_of_order_queue); 3140 __skb_queue_tail(&sk->sk_receive_queue, skb); 3141 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3142 if(skb->h.th->fin) 3143 tcp_fin(skb, sk, skb->h.th); 3144 } 3145 } 3146 3147 static int tcp_prune_queue(struct sock *sk); 3148 3149 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 3150 { 3151 struct tcphdr *th = skb->h.th; 3152 struct tcp_sock *tp = tcp_sk(sk); 3153 int eaten = -1; 3154 3155 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 3156 goto drop; 3157 3158 __skb_pull(skb, th->doff*4); 3159 3160 TCP_ECN_accept_cwr(tp, skb); 3161 3162 if (tp->rx_opt.dsack) { 3163 tp->rx_opt.dsack = 0; 3164 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks, 3165 4 - tp->rx_opt.tstamp_ok); 3166 } 3167 3168 /* Queue data for delivery to the user. 3169 * Packets in sequence go to the receive queue. 3170 * Out of sequence packets to the out_of_order_queue. 3171 */ 3172 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3173 if (tcp_receive_window(tp) == 0) 3174 goto out_of_window; 3175 3176 /* Ok. In sequence. In window. */ 3177 if (tp->ucopy.task == current && 3178 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 3179 sock_owned_by_user(sk) && !tp->urg_data) { 3180 int chunk = min_t(unsigned int, skb->len, 3181 tp->ucopy.len); 3182 3183 __set_current_state(TASK_RUNNING); 3184 3185 local_bh_enable(); 3186 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 3187 tp->ucopy.len -= chunk; 3188 tp->copied_seq += chunk; 3189 eaten = (chunk == skb->len && !th->fin); 3190 tcp_rcv_space_adjust(sk); 3191 } 3192 local_bh_disable(); 3193 } 3194 3195 if (eaten <= 0) { 3196 queue_and_out: 3197 if (eaten < 0 && 3198 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3199 !sk_stream_rmem_schedule(sk, skb))) { 3200 if (tcp_prune_queue(sk) < 0 || 3201 !sk_stream_rmem_schedule(sk, skb)) 3202 goto drop; 3203 } 3204 sk_stream_set_owner_r(skb, sk); 3205 __skb_queue_tail(&sk->sk_receive_queue, skb); 3206 } 3207 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 3208 if(skb->len) 3209 tcp_event_data_recv(sk, tp, skb); 3210 if(th->fin) 3211 tcp_fin(skb, sk, th); 3212 3213 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3214 tcp_ofo_queue(sk); 3215 3216 /* RFC2581. 4.2. SHOULD send immediate ACK, when 3217 * gap in queue is filled. 3218 */ 3219 if (skb_queue_empty(&tp->out_of_order_queue)) 3220 inet_csk(sk)->icsk_ack.pingpong = 0; 3221 } 3222 3223 if (tp->rx_opt.num_sacks) 3224 tcp_sack_remove(tp); 3225 3226 tcp_fast_path_check(sk, tp); 3227 3228 if (eaten > 0) 3229 __kfree_skb(skb); 3230 else if (!sock_flag(sk, SOCK_DEAD)) 3231 sk->sk_data_ready(sk, 0); 3232 return; 3233 } 3234 3235 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 3236 /* A retransmit, 2nd most common case. Force an immediate ack. */ 3237 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST); 3238 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3239 3240 out_of_window: 3241 tcp_enter_quickack_mode(sk); 3242 inet_csk_schedule_ack(sk); 3243 drop: 3244 __kfree_skb(skb); 3245 return; 3246 } 3247 3248 /* Out of window. F.e. zero window probe. */ 3249 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 3250 goto out_of_window; 3251 3252 tcp_enter_quickack_mode(sk); 3253 3254 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3255 /* Partial packet, seq < rcv_next < end_seq */ 3256 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 3257 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 3258 TCP_SKB_CB(skb)->end_seq); 3259 3260 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 3261 3262 /* If window is closed, drop tail of packet. But after 3263 * remembering D-SACK for its head made in previous line. 3264 */ 3265 if (!tcp_receive_window(tp)) 3266 goto out_of_window; 3267 goto queue_and_out; 3268 } 3269 3270 TCP_ECN_check_ce(tp, skb); 3271 3272 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 3273 !sk_stream_rmem_schedule(sk, skb)) { 3274 if (tcp_prune_queue(sk) < 0 || 3275 !sk_stream_rmem_schedule(sk, skb)) 3276 goto drop; 3277 } 3278 3279 /* Disable header prediction. */ 3280 tp->pred_flags = 0; 3281 inet_csk_schedule_ack(sk); 3282 3283 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 3284 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 3285 3286 sk_stream_set_owner_r(skb, sk); 3287 3288 if (!skb_peek(&tp->out_of_order_queue)) { 3289 /* Initial out of order segment, build 1 SACK. */ 3290 if (tp->rx_opt.sack_ok) { 3291 tp->rx_opt.num_sacks = 1; 3292 tp->rx_opt.dsack = 0; 3293 tp->rx_opt.eff_sacks = 1; 3294 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 3295 tp->selective_acks[0].end_seq = 3296 TCP_SKB_CB(skb)->end_seq; 3297 } 3298 __skb_queue_head(&tp->out_of_order_queue,skb); 3299 } else { 3300 struct sk_buff *skb1 = tp->out_of_order_queue.prev; 3301 u32 seq = TCP_SKB_CB(skb)->seq; 3302 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3303 3304 if (seq == TCP_SKB_CB(skb1)->end_seq) { 3305 __skb_append(skb1, skb, &tp->out_of_order_queue); 3306 3307 if (!tp->rx_opt.num_sacks || 3308 tp->selective_acks[0].end_seq != seq) 3309 goto add_sack; 3310 3311 /* Common case: data arrive in order after hole. */ 3312 tp->selective_acks[0].end_seq = end_seq; 3313 return; 3314 } 3315 3316 /* Find place to insert this segment. */ 3317 do { 3318 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 3319 break; 3320 } while ((skb1 = skb1->prev) != 3321 (struct sk_buff*)&tp->out_of_order_queue); 3322 3323 /* Do skb overlap to previous one? */ 3324 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue && 3325 before(seq, TCP_SKB_CB(skb1)->end_seq)) { 3326 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3327 /* All the bits are present. Drop. */ 3328 __kfree_skb(skb); 3329 tcp_dsack_set(tp, seq, end_seq); 3330 goto add_sack; 3331 } 3332 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 3333 /* Partial overlap. */ 3334 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq); 3335 } else { 3336 skb1 = skb1->prev; 3337 } 3338 } 3339 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue); 3340 3341 /* And clean segments covered by new one as whole. */ 3342 while ((skb1 = skb->next) != 3343 (struct sk_buff*)&tp->out_of_order_queue && 3344 after(end_seq, TCP_SKB_CB(skb1)->seq)) { 3345 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 3346 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq); 3347 break; 3348 } 3349 __skb_unlink(skb1, &tp->out_of_order_queue); 3350 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq); 3351 __kfree_skb(skb1); 3352 } 3353 3354 add_sack: 3355 if (tp->rx_opt.sack_ok) 3356 tcp_sack_new_ofo_skb(sk, seq, end_seq); 3357 } 3358 } 3359 3360 /* Collapse contiguous sequence of skbs head..tail with 3361 * sequence numbers start..end. 3362 * Segments with FIN/SYN are not collapsed (only because this 3363 * simplifies code) 3364 */ 3365 static void 3366 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 3367 struct sk_buff *head, struct sk_buff *tail, 3368 u32 start, u32 end) 3369 { 3370 struct sk_buff *skb; 3371 3372 /* First, check that queue is collapsible and find 3373 * the point where collapsing can be useful. */ 3374 for (skb = head; skb != tail; ) { 3375 /* No new bits? It is possible on ofo queue. */ 3376 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3377 struct sk_buff *next = skb->next; 3378 __skb_unlink(skb, list); 3379 __kfree_skb(skb); 3380 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3381 skb = next; 3382 continue; 3383 } 3384 3385 /* The first skb to collapse is: 3386 * - not SYN/FIN and 3387 * - bloated or contains data before "start" or 3388 * overlaps to the next one. 3389 */ 3390 if (!skb->h.th->syn && !skb->h.th->fin && 3391 (tcp_win_from_space(skb->truesize) > skb->len || 3392 before(TCP_SKB_CB(skb)->seq, start) || 3393 (skb->next != tail && 3394 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq))) 3395 break; 3396 3397 /* Decided to skip this, advance start seq. */ 3398 start = TCP_SKB_CB(skb)->end_seq; 3399 skb = skb->next; 3400 } 3401 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3402 return; 3403 3404 while (before(start, end)) { 3405 struct sk_buff *nskb; 3406 int header = skb_headroom(skb); 3407 int copy = SKB_MAX_ORDER(header, 0); 3408 3409 /* Too big header? This can happen with IPv6. */ 3410 if (copy < 0) 3411 return; 3412 if (end-start < copy) 3413 copy = end-start; 3414 nskb = alloc_skb(copy+header, GFP_ATOMIC); 3415 if (!nskb) 3416 return; 3417 skb_reserve(nskb, header); 3418 memcpy(nskb->head, skb->head, header); 3419 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head); 3420 nskb->h.raw = nskb->head + (skb->h.raw-skb->head); 3421 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head); 3422 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 3423 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 3424 __skb_insert(nskb, skb->prev, skb, list); 3425 sk_stream_set_owner_r(nskb, sk); 3426 3427 /* Copy data, releasing collapsed skbs. */ 3428 while (copy > 0) { 3429 int offset = start - TCP_SKB_CB(skb)->seq; 3430 int size = TCP_SKB_CB(skb)->end_seq - start; 3431 3432 BUG_ON(offset < 0); 3433 if (size > 0) { 3434 size = min(copy, size); 3435 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 3436 BUG(); 3437 TCP_SKB_CB(nskb)->end_seq += size; 3438 copy -= size; 3439 start += size; 3440 } 3441 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 3442 struct sk_buff *next = skb->next; 3443 __skb_unlink(skb, list); 3444 __kfree_skb(skb); 3445 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED); 3446 skb = next; 3447 if (skb == tail || skb->h.th->syn || skb->h.th->fin) 3448 return; 3449 } 3450 } 3451 } 3452 } 3453 3454 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 3455 * and tcp_collapse() them until all the queue is collapsed. 3456 */ 3457 static void tcp_collapse_ofo_queue(struct sock *sk) 3458 { 3459 struct tcp_sock *tp = tcp_sk(sk); 3460 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 3461 struct sk_buff *head; 3462 u32 start, end; 3463 3464 if (skb == NULL) 3465 return; 3466 3467 start = TCP_SKB_CB(skb)->seq; 3468 end = TCP_SKB_CB(skb)->end_seq; 3469 head = skb; 3470 3471 for (;;) { 3472 skb = skb->next; 3473 3474 /* Segment is terminated when we see gap or when 3475 * we are at the end of all the queue. */ 3476 if (skb == (struct sk_buff *)&tp->out_of_order_queue || 3477 after(TCP_SKB_CB(skb)->seq, end) || 3478 before(TCP_SKB_CB(skb)->end_seq, start)) { 3479 tcp_collapse(sk, &tp->out_of_order_queue, 3480 head, skb, start, end); 3481 head = skb; 3482 if (skb == (struct sk_buff *)&tp->out_of_order_queue) 3483 break; 3484 /* Start new segment */ 3485 start = TCP_SKB_CB(skb)->seq; 3486 end = TCP_SKB_CB(skb)->end_seq; 3487 } else { 3488 if (before(TCP_SKB_CB(skb)->seq, start)) 3489 start = TCP_SKB_CB(skb)->seq; 3490 if (after(TCP_SKB_CB(skb)->end_seq, end)) 3491 end = TCP_SKB_CB(skb)->end_seq; 3492 } 3493 } 3494 } 3495 3496 /* Reduce allocated memory if we can, trying to get 3497 * the socket within its memory limits again. 3498 * 3499 * Return less than zero if we should start dropping frames 3500 * until the socket owning process reads some of the data 3501 * to stabilize the situation. 3502 */ 3503 static int tcp_prune_queue(struct sock *sk) 3504 { 3505 struct tcp_sock *tp = tcp_sk(sk); 3506 3507 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 3508 3509 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED); 3510 3511 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 3512 tcp_clamp_window(sk, tp); 3513 else if (tcp_memory_pressure) 3514 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 3515 3516 tcp_collapse_ofo_queue(sk); 3517 tcp_collapse(sk, &sk->sk_receive_queue, 3518 sk->sk_receive_queue.next, 3519 (struct sk_buff*)&sk->sk_receive_queue, 3520 tp->copied_seq, tp->rcv_nxt); 3521 sk_stream_mem_reclaim(sk); 3522 3523 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3524 return 0; 3525 3526 /* Collapsing did not help, destructive actions follow. 3527 * This must not ever occur. */ 3528 3529 /* First, purge the out_of_order queue. */ 3530 if (!skb_queue_empty(&tp->out_of_order_queue)) { 3531 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED); 3532 __skb_queue_purge(&tp->out_of_order_queue); 3533 3534 /* Reset SACK state. A conforming SACK implementation will 3535 * do the same at a timeout based retransmit. When a connection 3536 * is in a sad state like this, we care only about integrity 3537 * of the connection not performance. 3538 */ 3539 if (tp->rx_opt.sack_ok) 3540 tcp_sack_reset(&tp->rx_opt); 3541 sk_stream_mem_reclaim(sk); 3542 } 3543 3544 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 3545 return 0; 3546 3547 /* If we are really being abused, tell the caller to silently 3548 * drop receive data on the floor. It will get retransmitted 3549 * and hopefully then we'll have sufficient space. 3550 */ 3551 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED); 3552 3553 /* Massive buffer overcommit. */ 3554 tp->pred_flags = 0; 3555 return -1; 3556 } 3557 3558 3559 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 3560 * As additional protections, we do not touch cwnd in retransmission phases, 3561 * and if application hit its sndbuf limit recently. 3562 */ 3563 void tcp_cwnd_application_limited(struct sock *sk) 3564 { 3565 struct tcp_sock *tp = tcp_sk(sk); 3566 3567 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 3568 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 3569 /* Limited by application or receiver window. */ 3570 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 3571 u32 win_used = max(tp->snd_cwnd_used, init_win); 3572 if (win_used < tp->snd_cwnd) { 3573 tp->snd_ssthresh = tcp_current_ssthresh(sk); 3574 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 3575 } 3576 tp->snd_cwnd_used = 0; 3577 } 3578 tp->snd_cwnd_stamp = tcp_time_stamp; 3579 } 3580 3581 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp) 3582 { 3583 /* If the user specified a specific send buffer setting, do 3584 * not modify it. 3585 */ 3586 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 3587 return 0; 3588 3589 /* If we are under global TCP memory pressure, do not expand. */ 3590 if (tcp_memory_pressure) 3591 return 0; 3592 3593 /* If we are under soft global TCP memory pressure, do not expand. */ 3594 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0]) 3595 return 0; 3596 3597 /* If we filled the congestion window, do not expand. */ 3598 if (tp->packets_out >= tp->snd_cwnd) 3599 return 0; 3600 3601 return 1; 3602 } 3603 3604 /* When incoming ACK allowed to free some skb from write_queue, 3605 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 3606 * on the exit from tcp input handler. 3607 * 3608 * PROBLEM: sndbuf expansion does not work well with largesend. 3609 */ 3610 static void tcp_new_space(struct sock *sk) 3611 { 3612 struct tcp_sock *tp = tcp_sk(sk); 3613 3614 if (tcp_should_expand_sndbuf(sk, tp)) { 3615 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 3616 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff), 3617 demanded = max_t(unsigned int, tp->snd_cwnd, 3618 tp->reordering + 1); 3619 sndmem *= 2*demanded; 3620 if (sndmem > sk->sk_sndbuf) 3621 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 3622 tp->snd_cwnd_stamp = tcp_time_stamp; 3623 } 3624 3625 sk->sk_write_space(sk); 3626 } 3627 3628 static void tcp_check_space(struct sock *sk) 3629 { 3630 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 3631 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 3632 if (sk->sk_socket && 3633 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 3634 tcp_new_space(sk); 3635 } 3636 } 3637 3638 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp) 3639 { 3640 tcp_push_pending_frames(sk, tp); 3641 tcp_check_space(sk); 3642 } 3643 3644 /* 3645 * Check if sending an ack is needed. 3646 */ 3647 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 3648 { 3649 struct tcp_sock *tp = tcp_sk(sk); 3650 3651 /* More than one full frame received... */ 3652 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss 3653 /* ... and right edge of window advances far enough. 3654 * (tcp_recvmsg() will send ACK otherwise). Or... 3655 */ 3656 && __tcp_select_window(sk) >= tp->rcv_wnd) || 3657 /* We ACK each frame or... */ 3658 tcp_in_quickack_mode(sk) || 3659 /* We have out of order data. */ 3660 (ofo_possible && 3661 skb_peek(&tp->out_of_order_queue))) { 3662 /* Then ack it now */ 3663 tcp_send_ack(sk); 3664 } else { 3665 /* Else, send delayed ack. */ 3666 tcp_send_delayed_ack(sk); 3667 } 3668 } 3669 3670 static inline void tcp_ack_snd_check(struct sock *sk) 3671 { 3672 if (!inet_csk_ack_scheduled(sk)) { 3673 /* We sent a data segment already. */ 3674 return; 3675 } 3676 __tcp_ack_snd_check(sk, 1); 3677 } 3678 3679 /* 3680 * This routine is only called when we have urgent data 3681 * signaled. Its the 'slow' part of tcp_urg. It could be 3682 * moved inline now as tcp_urg is only called from one 3683 * place. We handle URGent data wrong. We have to - as 3684 * BSD still doesn't use the correction from RFC961. 3685 * For 1003.1g we should support a new option TCP_STDURG to permit 3686 * either form (or just set the sysctl tcp_stdurg). 3687 */ 3688 3689 static void tcp_check_urg(struct sock * sk, struct tcphdr * th) 3690 { 3691 struct tcp_sock *tp = tcp_sk(sk); 3692 u32 ptr = ntohs(th->urg_ptr); 3693 3694 if (ptr && !sysctl_tcp_stdurg) 3695 ptr--; 3696 ptr += ntohl(th->seq); 3697 3698 /* Ignore urgent data that we've already seen and read. */ 3699 if (after(tp->copied_seq, ptr)) 3700 return; 3701 3702 /* Do not replay urg ptr. 3703 * 3704 * NOTE: interesting situation not covered by specs. 3705 * Misbehaving sender may send urg ptr, pointing to segment, 3706 * which we already have in ofo queue. We are not able to fetch 3707 * such data and will stay in TCP_URG_NOTYET until will be eaten 3708 * by recvmsg(). Seems, we are not obliged to handle such wicked 3709 * situations. But it is worth to think about possibility of some 3710 * DoSes using some hypothetical application level deadlock. 3711 */ 3712 if (before(ptr, tp->rcv_nxt)) 3713 return; 3714 3715 /* Do we already have a newer (or duplicate) urgent pointer? */ 3716 if (tp->urg_data && !after(ptr, tp->urg_seq)) 3717 return; 3718 3719 /* Tell the world about our new urgent pointer. */ 3720 sk_send_sigurg(sk); 3721 3722 /* We may be adding urgent data when the last byte read was 3723 * urgent. To do this requires some care. We cannot just ignore 3724 * tp->copied_seq since we would read the last urgent byte again 3725 * as data, nor can we alter copied_seq until this data arrives 3726 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 3727 * 3728 * NOTE. Double Dutch. Rendering to plain English: author of comment 3729 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 3730 * and expect that both A and B disappear from stream. This is _wrong_. 3731 * Though this happens in BSD with high probability, this is occasional. 3732 * Any application relying on this is buggy. Note also, that fix "works" 3733 * only in this artificial test. Insert some normal data between A and B and we will 3734 * decline of BSD again. Verdict: it is better to remove to trap 3735 * buggy users. 3736 */ 3737 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 3738 !sock_flag(sk, SOCK_URGINLINE) && 3739 tp->copied_seq != tp->rcv_nxt) { 3740 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 3741 tp->copied_seq++; 3742 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 3743 __skb_unlink(skb, &sk->sk_receive_queue); 3744 __kfree_skb(skb); 3745 } 3746 } 3747 3748 tp->urg_data = TCP_URG_NOTYET; 3749 tp->urg_seq = ptr; 3750 3751 /* Disable header prediction. */ 3752 tp->pred_flags = 0; 3753 } 3754 3755 /* This is the 'fast' part of urgent handling. */ 3756 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th) 3757 { 3758 struct tcp_sock *tp = tcp_sk(sk); 3759 3760 /* Check if we get a new urgent pointer - normally not. */ 3761 if (th->urg) 3762 tcp_check_urg(sk,th); 3763 3764 /* Do we wait for any urgent data? - normally not... */ 3765 if (tp->urg_data == TCP_URG_NOTYET) { 3766 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 3767 th->syn; 3768 3769 /* Is the urgent pointer pointing into this packet? */ 3770 if (ptr < skb->len) { 3771 u8 tmp; 3772 if (skb_copy_bits(skb, ptr, &tmp, 1)) 3773 BUG(); 3774 tp->urg_data = TCP_URG_VALID | tmp; 3775 if (!sock_flag(sk, SOCK_DEAD)) 3776 sk->sk_data_ready(sk, 0); 3777 } 3778 } 3779 } 3780 3781 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 3782 { 3783 struct tcp_sock *tp = tcp_sk(sk); 3784 int chunk = skb->len - hlen; 3785 int err; 3786 3787 local_bh_enable(); 3788 if (skb->ip_summed==CHECKSUM_UNNECESSARY) 3789 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 3790 else 3791 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 3792 tp->ucopy.iov); 3793 3794 if (!err) { 3795 tp->ucopy.len -= chunk; 3796 tp->copied_seq += chunk; 3797 tcp_rcv_space_adjust(sk); 3798 } 3799 3800 local_bh_disable(); 3801 return err; 3802 } 3803 3804 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 3805 { 3806 __sum16 result; 3807 3808 if (sock_owned_by_user(sk)) { 3809 local_bh_enable(); 3810 result = __tcp_checksum_complete(skb); 3811 local_bh_disable(); 3812 } else { 3813 result = __tcp_checksum_complete(skb); 3814 } 3815 return result; 3816 } 3817 3818 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb) 3819 { 3820 return skb->ip_summed != CHECKSUM_UNNECESSARY && 3821 __tcp_checksum_complete_user(sk, skb); 3822 } 3823 3824 #ifdef CONFIG_NET_DMA 3825 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen) 3826 { 3827 struct tcp_sock *tp = tcp_sk(sk); 3828 int chunk = skb->len - hlen; 3829 int dma_cookie; 3830 int copied_early = 0; 3831 3832 if (tp->ucopy.wakeup) 3833 return 0; 3834 3835 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 3836 tp->ucopy.dma_chan = get_softnet_dma(); 3837 3838 if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) { 3839 3840 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 3841 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list); 3842 3843 if (dma_cookie < 0) 3844 goto out; 3845 3846 tp->ucopy.dma_cookie = dma_cookie; 3847 copied_early = 1; 3848 3849 tp->ucopy.len -= chunk; 3850 tp->copied_seq += chunk; 3851 tcp_rcv_space_adjust(sk); 3852 3853 if ((tp->ucopy.len == 0) || 3854 (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) || 3855 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 3856 tp->ucopy.wakeup = 1; 3857 sk->sk_data_ready(sk, 0); 3858 } 3859 } else if (chunk > 0) { 3860 tp->ucopy.wakeup = 1; 3861 sk->sk_data_ready(sk, 0); 3862 } 3863 out: 3864 return copied_early; 3865 } 3866 #endif /* CONFIG_NET_DMA */ 3867 3868 /* 3869 * TCP receive function for the ESTABLISHED state. 3870 * 3871 * It is split into a fast path and a slow path. The fast path is 3872 * disabled when: 3873 * - A zero window was announced from us - zero window probing 3874 * is only handled properly in the slow path. 3875 * - Out of order segments arrived. 3876 * - Urgent data is expected. 3877 * - There is no buffer space left 3878 * - Unexpected TCP flags/window values/header lengths are received 3879 * (detected by checking the TCP header against pred_flags) 3880 * - Data is sent in both directions. Fast path only supports pure senders 3881 * or pure receivers (this means either the sequence number or the ack 3882 * value must stay constant) 3883 * - Unexpected TCP option. 3884 * 3885 * When these conditions are not satisfied it drops into a standard 3886 * receive procedure patterned after RFC793 to handle all cases. 3887 * The first three cases are guaranteed by proper pred_flags setting, 3888 * the rest is checked inline. Fast processing is turned on in 3889 * tcp_data_queue when everything is OK. 3890 */ 3891 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 3892 struct tcphdr *th, unsigned len) 3893 { 3894 struct tcp_sock *tp = tcp_sk(sk); 3895 3896 /* 3897 * Header prediction. 3898 * The code loosely follows the one in the famous 3899 * "30 instruction TCP receive" Van Jacobson mail. 3900 * 3901 * Van's trick is to deposit buffers into socket queue 3902 * on a device interrupt, to call tcp_recv function 3903 * on the receive process context and checksum and copy 3904 * the buffer to user space. smart... 3905 * 3906 * Our current scheme is not silly either but we take the 3907 * extra cost of the net_bh soft interrupt processing... 3908 * We do checksum and copy also but from device to kernel. 3909 */ 3910 3911 tp->rx_opt.saw_tstamp = 0; 3912 3913 /* pred_flags is 0xS?10 << 16 + snd_wnd 3914 * if header_prediction is to be made 3915 * 'S' will always be tp->tcp_header_len >> 2 3916 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 3917 * turn it off (when there are holes in the receive 3918 * space for instance) 3919 * PSH flag is ignored. 3920 */ 3921 3922 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 3923 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 3924 int tcp_header_len = tp->tcp_header_len; 3925 3926 /* Timestamp header prediction: tcp_header_len 3927 * is automatically equal to th->doff*4 due to pred_flags 3928 * match. 3929 */ 3930 3931 /* Check timestamp */ 3932 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 3933 __be32 *ptr = (__be32 *)(th + 1); 3934 3935 /* No? Slow path! */ 3936 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3937 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) 3938 goto slow_path; 3939 3940 tp->rx_opt.saw_tstamp = 1; 3941 ++ptr; 3942 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3943 ++ptr; 3944 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3945 3946 /* If PAWS failed, check it more carefully in slow path */ 3947 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 3948 goto slow_path; 3949 3950 /* DO NOT update ts_recent here, if checksum fails 3951 * and timestamp was corrupted part, it will result 3952 * in a hung connection since we will drop all 3953 * future packets due to the PAWS test. 3954 */ 3955 } 3956 3957 if (len <= tcp_header_len) { 3958 /* Bulk data transfer: sender */ 3959 if (len == tcp_header_len) { 3960 /* Predicted packet is in window by definition. 3961 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 3962 * Hence, check seq<=rcv_wup reduces to: 3963 */ 3964 if (tcp_header_len == 3965 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 3966 tp->rcv_nxt == tp->rcv_wup) 3967 tcp_store_ts_recent(tp); 3968 3969 /* We know that such packets are checksummed 3970 * on entry. 3971 */ 3972 tcp_ack(sk, skb, 0); 3973 __kfree_skb(skb); 3974 tcp_data_snd_check(sk, tp); 3975 return 0; 3976 } else { /* Header too small */ 3977 TCP_INC_STATS_BH(TCP_MIB_INERRS); 3978 goto discard; 3979 } 3980 } else { 3981 int eaten = 0; 3982 int copied_early = 0; 3983 3984 if (tp->copied_seq == tp->rcv_nxt && 3985 len - tcp_header_len <= tp->ucopy.len) { 3986 #ifdef CONFIG_NET_DMA 3987 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 3988 copied_early = 1; 3989 eaten = 1; 3990 } 3991 #endif 3992 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) { 3993 __set_current_state(TASK_RUNNING); 3994 3995 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 3996 eaten = 1; 3997 } 3998 if (eaten) { 3999 /* Predicted packet is in window by definition. 4000 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4001 * Hence, check seq<=rcv_wup reduces to: 4002 */ 4003 if (tcp_header_len == 4004 (sizeof(struct tcphdr) + 4005 TCPOLEN_TSTAMP_ALIGNED) && 4006 tp->rcv_nxt == tp->rcv_wup) 4007 tcp_store_ts_recent(tp); 4008 4009 tcp_rcv_rtt_measure_ts(sk, skb); 4010 4011 __skb_pull(skb, tcp_header_len); 4012 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4013 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER); 4014 } 4015 if (copied_early) 4016 tcp_cleanup_rbuf(sk, skb->len); 4017 } 4018 if (!eaten) { 4019 if (tcp_checksum_complete_user(sk, skb)) 4020 goto csum_error; 4021 4022 /* Predicted packet is in window by definition. 4023 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 4024 * Hence, check seq<=rcv_wup reduces to: 4025 */ 4026 if (tcp_header_len == 4027 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 4028 tp->rcv_nxt == tp->rcv_wup) 4029 tcp_store_ts_recent(tp); 4030 4031 tcp_rcv_rtt_measure_ts(sk, skb); 4032 4033 if ((int)skb->truesize > sk->sk_forward_alloc) 4034 goto step5; 4035 4036 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS); 4037 4038 /* Bulk data transfer: receiver */ 4039 __skb_pull(skb,tcp_header_len); 4040 __skb_queue_tail(&sk->sk_receive_queue, skb); 4041 sk_stream_set_owner_r(skb, sk); 4042 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4043 } 4044 4045 tcp_event_data_recv(sk, tp, skb); 4046 4047 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 4048 /* Well, only one small jumplet in fast path... */ 4049 tcp_ack(sk, skb, FLAG_DATA); 4050 tcp_data_snd_check(sk, tp); 4051 if (!inet_csk_ack_scheduled(sk)) 4052 goto no_ack; 4053 } 4054 4055 __tcp_ack_snd_check(sk, 0); 4056 no_ack: 4057 #ifdef CONFIG_NET_DMA 4058 if (copied_early) 4059 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 4060 else 4061 #endif 4062 if (eaten) 4063 __kfree_skb(skb); 4064 else 4065 sk->sk_data_ready(sk, 0); 4066 return 0; 4067 } 4068 } 4069 4070 slow_path: 4071 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb)) 4072 goto csum_error; 4073 4074 /* 4075 * RFC1323: H1. Apply PAWS check first. 4076 */ 4077 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4078 tcp_paws_discard(sk, skb)) { 4079 if (!th->rst) { 4080 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4081 tcp_send_dupack(sk, skb); 4082 goto discard; 4083 } 4084 /* Resets are accepted even if PAWS failed. 4085 4086 ts_recent update must be made after we are sure 4087 that the packet is in window. 4088 */ 4089 } 4090 4091 /* 4092 * Standard slow path. 4093 */ 4094 4095 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4096 /* RFC793, page 37: "In all states except SYN-SENT, all reset 4097 * (RST) segments are validated by checking their SEQ-fields." 4098 * And page 69: "If an incoming segment is not acceptable, 4099 * an acknowledgment should be sent in reply (unless the RST bit 4100 * is set, if so drop the segment and return)". 4101 */ 4102 if (!th->rst) 4103 tcp_send_dupack(sk, skb); 4104 goto discard; 4105 } 4106 4107 if(th->rst) { 4108 tcp_reset(sk); 4109 goto discard; 4110 } 4111 4112 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4113 4114 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4115 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4116 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4117 tcp_reset(sk); 4118 return 1; 4119 } 4120 4121 step5: 4122 if(th->ack) 4123 tcp_ack(sk, skb, FLAG_SLOWPATH); 4124 4125 tcp_rcv_rtt_measure_ts(sk, skb); 4126 4127 /* Process urgent data. */ 4128 tcp_urg(sk, skb, th); 4129 4130 /* step 7: process the segment text */ 4131 tcp_data_queue(sk, skb); 4132 4133 tcp_data_snd_check(sk, tp); 4134 tcp_ack_snd_check(sk); 4135 return 0; 4136 4137 csum_error: 4138 TCP_INC_STATS_BH(TCP_MIB_INERRS); 4139 4140 discard: 4141 __kfree_skb(skb); 4142 return 0; 4143 } 4144 4145 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 4146 struct tcphdr *th, unsigned len) 4147 { 4148 struct tcp_sock *tp = tcp_sk(sk); 4149 struct inet_connection_sock *icsk = inet_csk(sk); 4150 int saved_clamp = tp->rx_opt.mss_clamp; 4151 4152 tcp_parse_options(skb, &tp->rx_opt, 0); 4153 4154 if (th->ack) { 4155 /* rfc793: 4156 * "If the state is SYN-SENT then 4157 * first check the ACK bit 4158 * If the ACK bit is set 4159 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 4160 * a reset (unless the RST bit is set, if so drop 4161 * the segment and return)" 4162 * 4163 * We do not send data with SYN, so that RFC-correct 4164 * test reduces to: 4165 */ 4166 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 4167 goto reset_and_undo; 4168 4169 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4170 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 4171 tcp_time_stamp)) { 4172 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED); 4173 goto reset_and_undo; 4174 } 4175 4176 /* Now ACK is acceptable. 4177 * 4178 * "If the RST bit is set 4179 * If the ACK was acceptable then signal the user "error: 4180 * connection reset", drop the segment, enter CLOSED state, 4181 * delete TCB, and return." 4182 */ 4183 4184 if (th->rst) { 4185 tcp_reset(sk); 4186 goto discard; 4187 } 4188 4189 /* rfc793: 4190 * "fifth, if neither of the SYN or RST bits is set then 4191 * drop the segment and return." 4192 * 4193 * See note below! 4194 * --ANK(990513) 4195 */ 4196 if (!th->syn) 4197 goto discard_and_undo; 4198 4199 /* rfc793: 4200 * "If the SYN bit is on ... 4201 * are acceptable then ... 4202 * (our SYN has been ACKed), change the connection 4203 * state to ESTABLISHED..." 4204 */ 4205 4206 TCP_ECN_rcv_synack(tp, th); 4207 4208 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4209 tcp_ack(sk, skb, FLAG_SLOWPATH); 4210 4211 /* Ok.. it's good. Set up sequence numbers and 4212 * move to established. 4213 */ 4214 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4215 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4216 4217 /* RFC1323: The window in SYN & SYN/ACK segments is 4218 * never scaled. 4219 */ 4220 tp->snd_wnd = ntohs(th->window); 4221 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq); 4222 4223 if (!tp->rx_opt.wscale_ok) { 4224 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 4225 tp->window_clamp = min(tp->window_clamp, 65535U); 4226 } 4227 4228 if (tp->rx_opt.saw_tstamp) { 4229 tp->rx_opt.tstamp_ok = 1; 4230 tp->tcp_header_len = 4231 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4232 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4233 tcp_store_ts_recent(tp); 4234 } else { 4235 tp->tcp_header_len = sizeof(struct tcphdr); 4236 } 4237 4238 if (tp->rx_opt.sack_ok && sysctl_tcp_fack) 4239 tp->rx_opt.sack_ok |= 2; 4240 4241 tcp_mtup_init(sk); 4242 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4243 tcp_initialize_rcv_mss(sk); 4244 4245 /* Remember, tcp_poll() does not lock socket! 4246 * Change state from SYN-SENT only after copied_seq 4247 * is initialized. */ 4248 tp->copied_seq = tp->rcv_nxt; 4249 smp_mb(); 4250 tcp_set_state(sk, TCP_ESTABLISHED); 4251 4252 security_inet_conn_established(sk, skb); 4253 4254 /* Make sure socket is routed, for correct metrics. */ 4255 icsk->icsk_af_ops->rebuild_header(sk); 4256 4257 tcp_init_metrics(sk); 4258 4259 tcp_init_congestion_control(sk); 4260 4261 /* Prevent spurious tcp_cwnd_restart() on first data 4262 * packet. 4263 */ 4264 tp->lsndtime = tcp_time_stamp; 4265 4266 tcp_init_buffer_space(sk); 4267 4268 if (sock_flag(sk, SOCK_KEEPOPEN)) 4269 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 4270 4271 if (!tp->rx_opt.snd_wscale) 4272 __tcp_fast_path_on(tp, tp->snd_wnd); 4273 else 4274 tp->pred_flags = 0; 4275 4276 if (!sock_flag(sk, SOCK_DEAD)) { 4277 sk->sk_state_change(sk); 4278 sk_wake_async(sk, 0, POLL_OUT); 4279 } 4280 4281 if (sk->sk_write_pending || 4282 icsk->icsk_accept_queue.rskq_defer_accept || 4283 icsk->icsk_ack.pingpong) { 4284 /* Save one ACK. Data will be ready after 4285 * several ticks, if write_pending is set. 4286 * 4287 * It may be deleted, but with this feature tcpdumps 4288 * look so _wonderfully_ clever, that I was not able 4289 * to stand against the temptation 8) --ANK 4290 */ 4291 inet_csk_schedule_ack(sk); 4292 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 4293 icsk->icsk_ack.ato = TCP_ATO_MIN; 4294 tcp_incr_quickack(sk); 4295 tcp_enter_quickack_mode(sk); 4296 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 4297 TCP_DELACK_MAX, TCP_RTO_MAX); 4298 4299 discard: 4300 __kfree_skb(skb); 4301 return 0; 4302 } else { 4303 tcp_send_ack(sk); 4304 } 4305 return -1; 4306 } 4307 4308 /* No ACK in the segment */ 4309 4310 if (th->rst) { 4311 /* rfc793: 4312 * "If the RST bit is set 4313 * 4314 * Otherwise (no ACK) drop the segment and return." 4315 */ 4316 4317 goto discard_and_undo; 4318 } 4319 4320 /* PAWS check. */ 4321 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0)) 4322 goto discard_and_undo; 4323 4324 if (th->syn) { 4325 /* We see SYN without ACK. It is attempt of 4326 * simultaneous connect with crossed SYNs. 4327 * Particularly, it can be connect to self. 4328 */ 4329 tcp_set_state(sk, TCP_SYN_RECV); 4330 4331 if (tp->rx_opt.saw_tstamp) { 4332 tp->rx_opt.tstamp_ok = 1; 4333 tcp_store_ts_recent(tp); 4334 tp->tcp_header_len = 4335 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 4336 } else { 4337 tp->tcp_header_len = sizeof(struct tcphdr); 4338 } 4339 4340 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 4341 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 4342 4343 /* RFC1323: The window in SYN & SYN/ACK segments is 4344 * never scaled. 4345 */ 4346 tp->snd_wnd = ntohs(th->window); 4347 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 4348 tp->max_window = tp->snd_wnd; 4349 4350 TCP_ECN_rcv_syn(tp, th); 4351 4352 tcp_mtup_init(sk); 4353 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 4354 tcp_initialize_rcv_mss(sk); 4355 4356 4357 tcp_send_synack(sk); 4358 #if 0 4359 /* Note, we could accept data and URG from this segment. 4360 * There are no obstacles to make this. 4361 * 4362 * However, if we ignore data in ACKless segments sometimes, 4363 * we have no reasons to accept it sometimes. 4364 * Also, seems the code doing it in step6 of tcp_rcv_state_process 4365 * is not flawless. So, discard packet for sanity. 4366 * Uncomment this return to process the data. 4367 */ 4368 return -1; 4369 #else 4370 goto discard; 4371 #endif 4372 } 4373 /* "fifth, if neither of the SYN or RST bits is set then 4374 * drop the segment and return." 4375 */ 4376 4377 discard_and_undo: 4378 tcp_clear_options(&tp->rx_opt); 4379 tp->rx_opt.mss_clamp = saved_clamp; 4380 goto discard; 4381 4382 reset_and_undo: 4383 tcp_clear_options(&tp->rx_opt); 4384 tp->rx_opt.mss_clamp = saved_clamp; 4385 return 1; 4386 } 4387 4388 4389 /* 4390 * This function implements the receiving procedure of RFC 793 for 4391 * all states except ESTABLISHED and TIME_WAIT. 4392 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 4393 * address independent. 4394 */ 4395 4396 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 4397 struct tcphdr *th, unsigned len) 4398 { 4399 struct tcp_sock *tp = tcp_sk(sk); 4400 struct inet_connection_sock *icsk = inet_csk(sk); 4401 int queued = 0; 4402 4403 tp->rx_opt.saw_tstamp = 0; 4404 4405 switch (sk->sk_state) { 4406 case TCP_CLOSE: 4407 goto discard; 4408 4409 case TCP_LISTEN: 4410 if(th->ack) 4411 return 1; 4412 4413 if(th->rst) 4414 goto discard; 4415 4416 if(th->syn) { 4417 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 4418 return 1; 4419 4420 /* Now we have several options: In theory there is 4421 * nothing else in the frame. KA9Q has an option to 4422 * send data with the syn, BSD accepts data with the 4423 * syn up to the [to be] advertised window and 4424 * Solaris 2.1 gives you a protocol error. For now 4425 * we just ignore it, that fits the spec precisely 4426 * and avoids incompatibilities. It would be nice in 4427 * future to drop through and process the data. 4428 * 4429 * Now that TTCP is starting to be used we ought to 4430 * queue this data. 4431 * But, this leaves one open to an easy denial of 4432 * service attack, and SYN cookies can't defend 4433 * against this problem. So, we drop the data 4434 * in the interest of security over speed unless 4435 * it's still in use. 4436 */ 4437 kfree_skb(skb); 4438 return 0; 4439 } 4440 goto discard; 4441 4442 case TCP_SYN_SENT: 4443 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 4444 if (queued >= 0) 4445 return queued; 4446 4447 /* Do step6 onward by hand. */ 4448 tcp_urg(sk, skb, th); 4449 __kfree_skb(skb); 4450 tcp_data_snd_check(sk, tp); 4451 return 0; 4452 } 4453 4454 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4455 tcp_paws_discard(sk, skb)) { 4456 if (!th->rst) { 4457 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); 4458 tcp_send_dupack(sk, skb); 4459 goto discard; 4460 } 4461 /* Reset is accepted even if it did not pass PAWS. */ 4462 } 4463 4464 /* step 1: check sequence number */ 4465 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4466 if (!th->rst) 4467 tcp_send_dupack(sk, skb); 4468 goto discard; 4469 } 4470 4471 /* step 2: check RST bit */ 4472 if(th->rst) { 4473 tcp_reset(sk); 4474 goto discard; 4475 } 4476 4477 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 4478 4479 /* step 3: check security and precedence [ignored] */ 4480 4481 /* step 4: 4482 * 4483 * Check for a SYN in window. 4484 */ 4485 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4486 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN); 4487 tcp_reset(sk); 4488 return 1; 4489 } 4490 4491 /* step 5: check the ACK field */ 4492 if (th->ack) { 4493 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH); 4494 4495 switch(sk->sk_state) { 4496 case TCP_SYN_RECV: 4497 if (acceptable) { 4498 tp->copied_seq = tp->rcv_nxt; 4499 smp_mb(); 4500 tcp_set_state(sk, TCP_ESTABLISHED); 4501 sk->sk_state_change(sk); 4502 4503 /* Note, that this wakeup is only for marginal 4504 * crossed SYN case. Passively open sockets 4505 * are not waked up, because sk->sk_sleep == 4506 * NULL and sk->sk_socket == NULL. 4507 */ 4508 if (sk->sk_socket) { 4509 sk_wake_async(sk,0,POLL_OUT); 4510 } 4511 4512 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 4513 tp->snd_wnd = ntohs(th->window) << 4514 tp->rx_opt.snd_wscale; 4515 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, 4516 TCP_SKB_CB(skb)->seq); 4517 4518 /* tcp_ack considers this ACK as duplicate 4519 * and does not calculate rtt. 4520 * Fix it at least with timestamps. 4521 */ 4522 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 4523 !tp->srtt) 4524 tcp_ack_saw_tstamp(sk, 0); 4525 4526 if (tp->rx_opt.tstamp_ok) 4527 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 4528 4529 /* Make sure socket is routed, for 4530 * correct metrics. 4531 */ 4532 icsk->icsk_af_ops->rebuild_header(sk); 4533 4534 tcp_init_metrics(sk); 4535 4536 tcp_init_congestion_control(sk); 4537 4538 /* Prevent spurious tcp_cwnd_restart() on 4539 * first data packet. 4540 */ 4541 tp->lsndtime = tcp_time_stamp; 4542 4543 tcp_mtup_init(sk); 4544 tcp_initialize_rcv_mss(sk); 4545 tcp_init_buffer_space(sk); 4546 tcp_fast_path_on(tp); 4547 } else { 4548 return 1; 4549 } 4550 break; 4551 4552 case TCP_FIN_WAIT1: 4553 if (tp->snd_una == tp->write_seq) { 4554 tcp_set_state(sk, TCP_FIN_WAIT2); 4555 sk->sk_shutdown |= SEND_SHUTDOWN; 4556 dst_confirm(sk->sk_dst_cache); 4557 4558 if (!sock_flag(sk, SOCK_DEAD)) 4559 /* Wake up lingering close() */ 4560 sk->sk_state_change(sk); 4561 else { 4562 int tmo; 4563 4564 if (tp->linger2 < 0 || 4565 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4566 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 4567 tcp_done(sk); 4568 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4569 return 1; 4570 } 4571 4572 tmo = tcp_fin_time(sk); 4573 if (tmo > TCP_TIMEWAIT_LEN) { 4574 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 4575 } else if (th->fin || sock_owned_by_user(sk)) { 4576 /* Bad case. We could lose such FIN otherwise. 4577 * It is not a big problem, but it looks confusing 4578 * and not so rare event. We still can lose it now, 4579 * if it spins in bh_lock_sock(), but it is really 4580 * marginal case. 4581 */ 4582 inet_csk_reset_keepalive_timer(sk, tmo); 4583 } else { 4584 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 4585 goto discard; 4586 } 4587 } 4588 } 4589 break; 4590 4591 case TCP_CLOSING: 4592 if (tp->snd_una == tp->write_seq) { 4593 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4594 goto discard; 4595 } 4596 break; 4597 4598 case TCP_LAST_ACK: 4599 if (tp->snd_una == tp->write_seq) { 4600 tcp_update_metrics(sk); 4601 tcp_done(sk); 4602 goto discard; 4603 } 4604 break; 4605 } 4606 } else 4607 goto discard; 4608 4609 /* step 6: check the URG bit */ 4610 tcp_urg(sk, skb, th); 4611 4612 /* step 7: process the segment text */ 4613 switch (sk->sk_state) { 4614 case TCP_CLOSE_WAIT: 4615 case TCP_CLOSING: 4616 case TCP_LAST_ACK: 4617 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4618 break; 4619 case TCP_FIN_WAIT1: 4620 case TCP_FIN_WAIT2: 4621 /* RFC 793 says to queue data in these states, 4622 * RFC 1122 says we MUST send a reset. 4623 * BSD 4.4 also does reset. 4624 */ 4625 if (sk->sk_shutdown & RCV_SHUTDOWN) { 4626 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4627 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 4628 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA); 4629 tcp_reset(sk); 4630 return 1; 4631 } 4632 } 4633 /* Fall through */ 4634 case TCP_ESTABLISHED: 4635 tcp_data_queue(sk, skb); 4636 queued = 1; 4637 break; 4638 } 4639 4640 /* tcp_data could move socket to TIME-WAIT */ 4641 if (sk->sk_state != TCP_CLOSE) { 4642 tcp_data_snd_check(sk, tp); 4643 tcp_ack_snd_check(sk); 4644 } 4645 4646 if (!queued) { 4647 discard: 4648 __kfree_skb(skb); 4649 } 4650 return 0; 4651 } 4652 4653 EXPORT_SYMBOL(sysctl_tcp_ecn); 4654 EXPORT_SYMBOL(sysctl_tcp_reordering); 4655 EXPORT_SYMBOL(tcp_parse_options); 4656 EXPORT_SYMBOL(tcp_rcv_established); 4657 EXPORT_SYMBOL(tcp_rcv_state_process); 4658 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 4659