xref: /linux/net/ipv4/tcp_input.c (revision 6f74651ae626ec672028587bc700538076dfbefb)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90 
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93 
94 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
95 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
96 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
97 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
98 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
99 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
100 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
101 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
102 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112 
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114 
115 /* Adapt the MSS value used to make delayed ack decision to the
116  * real world.
117  */
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 				const struct sk_buff *skb)
120 {
121 	struct inet_connection_sock *icsk = inet_csk(sk);
122 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 	unsigned int len;
124 
125 	icsk->icsk_ack.last_seg_size = 0;
126 
127 	/* skb->len may jitter because of SACKs, even if peer
128 	 * sends good full-sized frames.
129 	 */
130 	len = skb_shinfo(skb)->gso_size ?: skb->len;
131 	if (len >= icsk->icsk_ack.rcv_mss) {
132 		icsk->icsk_ack.rcv_mss = len;
133 	} else {
134 		/* Otherwise, we make more careful check taking into account,
135 		 * that SACKs block is variable.
136 		 *
137 		 * "len" is invariant segment length, including TCP header.
138 		 */
139 		len += skb->data - skb->h.raw;
140 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 		    /* If PSH is not set, packet should be
142 		     * full sized, provided peer TCP is not badly broken.
143 		     * This observation (if it is correct 8)) allows
144 		     * to handle super-low mtu links fairly.
145 		     */
146 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 			/* Subtract also invariant (if peer is RFC compliant),
149 			 * tcp header plus fixed timestamp option length.
150 			 * Resulting "len" is MSS free of SACK jitter.
151 			 */
152 			len -= tcp_sk(sk)->tcp_header_len;
153 			icsk->icsk_ack.last_seg_size = len;
154 			if (len == lss) {
155 				icsk->icsk_ack.rcv_mss = len;
156 				return;
157 			}
158 		}
159 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
160 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
161 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
162 	}
163 }
164 
165 static void tcp_incr_quickack(struct sock *sk)
166 {
167 	struct inet_connection_sock *icsk = inet_csk(sk);
168 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
169 
170 	if (quickacks==0)
171 		quickacks=2;
172 	if (quickacks > icsk->icsk_ack.quick)
173 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
174 }
175 
176 void tcp_enter_quickack_mode(struct sock *sk)
177 {
178 	struct inet_connection_sock *icsk = inet_csk(sk);
179 	tcp_incr_quickack(sk);
180 	icsk->icsk_ack.pingpong = 0;
181 	icsk->icsk_ack.ato = TCP_ATO_MIN;
182 }
183 
184 /* Send ACKs quickly, if "quick" count is not exhausted
185  * and the session is not interactive.
186  */
187 
188 static inline int tcp_in_quickack_mode(const struct sock *sk)
189 {
190 	const struct inet_connection_sock *icsk = inet_csk(sk);
191 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
192 }
193 
194 /* Buffer size and advertised window tuning.
195  *
196  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197  */
198 
199 static void tcp_fixup_sndbuf(struct sock *sk)
200 {
201 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
202 		     sizeof(struct sk_buff);
203 
204 	if (sk->sk_sndbuf < 3 * sndmem)
205 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206 }
207 
208 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209  *
210  * All tcp_full_space() is split to two parts: "network" buffer, allocated
211  * forward and advertised in receiver window (tp->rcv_wnd) and
212  * "application buffer", required to isolate scheduling/application
213  * latencies from network.
214  * window_clamp is maximal advertised window. It can be less than
215  * tcp_full_space(), in this case tcp_full_space() - window_clamp
216  * is reserved for "application" buffer. The less window_clamp is
217  * the smoother our behaviour from viewpoint of network, but the lower
218  * throughput and the higher sensitivity of the connection to losses. 8)
219  *
220  * rcv_ssthresh is more strict window_clamp used at "slow start"
221  * phase to predict further behaviour of this connection.
222  * It is used for two goals:
223  * - to enforce header prediction at sender, even when application
224  *   requires some significant "application buffer". It is check #1.
225  * - to prevent pruning of receive queue because of misprediction
226  *   of receiver window. Check #2.
227  *
228  * The scheme does not work when sender sends good segments opening
229  * window and then starts to feed us spaghetti. But it should work
230  * in common situations. Otherwise, we have to rely on queue collapsing.
231  */
232 
233 /* Slow part of check#2. */
234 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
235 			     const struct sk_buff *skb)
236 {
237 	/* Optimize this! */
238 	int truesize = tcp_win_from_space(skb->truesize)/2;
239 	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
240 
241 	while (tp->rcv_ssthresh <= window) {
242 		if (truesize <= skb->len)
243 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
244 
245 		truesize >>= 1;
246 		window >>= 1;
247 	}
248 	return 0;
249 }
250 
251 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
252 			    struct sk_buff *skb)
253 {
254 	/* Check #1 */
255 	if (tp->rcv_ssthresh < tp->window_clamp &&
256 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
257 	    !tcp_memory_pressure) {
258 		int incr;
259 
260 		/* Check #2. Increase window, if skb with such overhead
261 		 * will fit to rcvbuf in future.
262 		 */
263 		if (tcp_win_from_space(skb->truesize) <= skb->len)
264 			incr = 2*tp->advmss;
265 		else
266 			incr = __tcp_grow_window(sk, tp, skb);
267 
268 		if (incr) {
269 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
270 			inet_csk(sk)->icsk_ack.quick |= 1;
271 		}
272 	}
273 }
274 
275 /* 3. Tuning rcvbuf, when connection enters established state. */
276 
277 static void tcp_fixup_rcvbuf(struct sock *sk)
278 {
279 	struct tcp_sock *tp = tcp_sk(sk);
280 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
281 
282 	/* Try to select rcvbuf so that 4 mss-sized segments
283 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
284 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
285 	 */
286 	while (tcp_win_from_space(rcvmem) < tp->advmss)
287 		rcvmem += 128;
288 	if (sk->sk_rcvbuf < 4 * rcvmem)
289 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290 }
291 
292 /* 4. Try to fixup all. It is made immediately after connection enters
293  *    established state.
294  */
295 static void tcp_init_buffer_space(struct sock *sk)
296 {
297 	struct tcp_sock *tp = tcp_sk(sk);
298 	int maxwin;
299 
300 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
301 		tcp_fixup_rcvbuf(sk);
302 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
303 		tcp_fixup_sndbuf(sk);
304 
305 	tp->rcvq_space.space = tp->rcv_wnd;
306 
307 	maxwin = tcp_full_space(sk);
308 
309 	if (tp->window_clamp >= maxwin) {
310 		tp->window_clamp = maxwin;
311 
312 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
313 			tp->window_clamp = max(maxwin -
314 					       (maxwin >> sysctl_tcp_app_win),
315 					       4 * tp->advmss);
316 	}
317 
318 	/* Force reservation of one segment. */
319 	if (sysctl_tcp_app_win &&
320 	    tp->window_clamp > 2 * tp->advmss &&
321 	    tp->window_clamp + tp->advmss > maxwin)
322 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
323 
324 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
325 	tp->snd_cwnd_stamp = tcp_time_stamp;
326 }
327 
328 /* 5. Recalculate window clamp after socket hit its memory bounds. */
329 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
330 {
331 	struct inet_connection_sock *icsk = inet_csk(sk);
332 
333 	icsk->icsk_ack.quick = 0;
334 
335 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
336 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
337 	    !tcp_memory_pressure &&
338 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
339 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
340 				    sysctl_tcp_rmem[2]);
341 	}
342 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
343 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
344 }
345 
346 
347 /* Initialize RCV_MSS value.
348  * RCV_MSS is an our guess about MSS used by the peer.
349  * We haven't any direct information about the MSS.
350  * It's better to underestimate the RCV_MSS rather than overestimate.
351  * Overestimations make us ACKing less frequently than needed.
352  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353  */
354 void tcp_initialize_rcv_mss(struct sock *sk)
355 {
356 	struct tcp_sock *tp = tcp_sk(sk);
357 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
358 
359 	hint = min(hint, tp->rcv_wnd/2);
360 	hint = min(hint, TCP_MIN_RCVMSS);
361 	hint = max(hint, TCP_MIN_MSS);
362 
363 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
364 }
365 
366 /* Receiver "autotuning" code.
367  *
368  * The algorithm for RTT estimation w/o timestamps is based on
369  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
370  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371  *
372  * More detail on this code can be found at
373  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
374  * though this reference is out of date.  A new paper
375  * is pending.
376  */
377 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
378 {
379 	u32 new_sample = tp->rcv_rtt_est.rtt;
380 	long m = sample;
381 
382 	if (m == 0)
383 		m = 1;
384 
385 	if (new_sample != 0) {
386 		/* If we sample in larger samples in the non-timestamp
387 		 * case, we could grossly overestimate the RTT especially
388 		 * with chatty applications or bulk transfer apps which
389 		 * are stalled on filesystem I/O.
390 		 *
391 		 * Also, since we are only going for a minimum in the
392 		 * non-timestamp case, we do not smooth things out
393 		 * else with timestamps disabled convergence takes too
394 		 * long.
395 		 */
396 		if (!win_dep) {
397 			m -= (new_sample >> 3);
398 			new_sample += m;
399 		} else if (m < new_sample)
400 			new_sample = m << 3;
401 	} else {
402 		/* No previous measure. */
403 		new_sample = m << 3;
404 	}
405 
406 	if (tp->rcv_rtt_est.rtt != new_sample)
407 		tp->rcv_rtt_est.rtt = new_sample;
408 }
409 
410 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
411 {
412 	if (tp->rcv_rtt_est.time == 0)
413 		goto new_measure;
414 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
415 		return;
416 	tcp_rcv_rtt_update(tp,
417 			   jiffies - tp->rcv_rtt_est.time,
418 			   1);
419 
420 new_measure:
421 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
422 	tp->rcv_rtt_est.time = tcp_time_stamp;
423 }
424 
425 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
426 {
427 	struct tcp_sock *tp = tcp_sk(sk);
428 	if (tp->rx_opt.rcv_tsecr &&
429 	    (TCP_SKB_CB(skb)->end_seq -
430 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
431 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
432 }
433 
434 /*
435  * This function should be called every time data is copied to user space.
436  * It calculates the appropriate TCP receive buffer space.
437  */
438 void tcp_rcv_space_adjust(struct sock *sk)
439 {
440 	struct tcp_sock *tp = tcp_sk(sk);
441 	int time;
442 	int space;
443 
444 	if (tp->rcvq_space.time == 0)
445 		goto new_measure;
446 
447 	time = tcp_time_stamp - tp->rcvq_space.time;
448 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
449 	    tp->rcv_rtt_est.rtt == 0)
450 		return;
451 
452 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
453 
454 	space = max(tp->rcvq_space.space, space);
455 
456 	if (tp->rcvq_space.space != space) {
457 		int rcvmem;
458 
459 		tp->rcvq_space.space = space;
460 
461 		if (sysctl_tcp_moderate_rcvbuf &&
462 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
463 			int new_clamp = space;
464 
465 			/* Receive space grows, normalize in order to
466 			 * take into account packet headers and sk_buff
467 			 * structure overhead.
468 			 */
469 			space /= tp->advmss;
470 			if (!space)
471 				space = 1;
472 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
473 				  16 + sizeof(struct sk_buff));
474 			while (tcp_win_from_space(rcvmem) < tp->advmss)
475 				rcvmem += 128;
476 			space *= rcvmem;
477 			space = min(space, sysctl_tcp_rmem[2]);
478 			if (space > sk->sk_rcvbuf) {
479 				sk->sk_rcvbuf = space;
480 
481 				/* Make the window clamp follow along.  */
482 				tp->window_clamp = new_clamp;
483 			}
484 		}
485 	}
486 
487 new_measure:
488 	tp->rcvq_space.seq = tp->copied_seq;
489 	tp->rcvq_space.time = tcp_time_stamp;
490 }
491 
492 /* There is something which you must keep in mind when you analyze the
493  * behavior of the tp->ato delayed ack timeout interval.  When a
494  * connection starts up, we want to ack as quickly as possible.  The
495  * problem is that "good" TCP's do slow start at the beginning of data
496  * transmission.  The means that until we send the first few ACK's the
497  * sender will sit on his end and only queue most of his data, because
498  * he can only send snd_cwnd unacked packets at any given time.  For
499  * each ACK we send, he increments snd_cwnd and transmits more of his
500  * queue.  -DaveM
501  */
502 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
503 {
504 	struct inet_connection_sock *icsk = inet_csk(sk);
505 	u32 now;
506 
507 	inet_csk_schedule_ack(sk);
508 
509 	tcp_measure_rcv_mss(sk, skb);
510 
511 	tcp_rcv_rtt_measure(tp);
512 
513 	now = tcp_time_stamp;
514 
515 	if (!icsk->icsk_ack.ato) {
516 		/* The _first_ data packet received, initialize
517 		 * delayed ACK engine.
518 		 */
519 		tcp_incr_quickack(sk);
520 		icsk->icsk_ack.ato = TCP_ATO_MIN;
521 	} else {
522 		int m = now - icsk->icsk_ack.lrcvtime;
523 
524 		if (m <= TCP_ATO_MIN/2) {
525 			/* The fastest case is the first. */
526 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
527 		} else if (m < icsk->icsk_ack.ato) {
528 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
529 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
530 				icsk->icsk_ack.ato = icsk->icsk_rto;
531 		} else if (m > icsk->icsk_rto) {
532 			/* Too long gap. Apparently sender failed to
533 			 * restart window, so that we send ACKs quickly.
534 			 */
535 			tcp_incr_quickack(sk);
536 			sk_stream_mem_reclaim(sk);
537 		}
538 	}
539 	icsk->icsk_ack.lrcvtime = now;
540 
541 	TCP_ECN_check_ce(tp, skb);
542 
543 	if (skb->len >= 128)
544 		tcp_grow_window(sk, tp, skb);
545 }
546 
547 /* Called to compute a smoothed rtt estimate. The data fed to this
548  * routine either comes from timestamps, or from segments that were
549  * known _not_ to have been retransmitted [see Karn/Partridge
550  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
551  * piece by Van Jacobson.
552  * NOTE: the next three routines used to be one big routine.
553  * To save cycles in the RFC 1323 implementation it was better to break
554  * it up into three procedures. -- erics
555  */
556 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
557 {
558 	struct tcp_sock *tp = tcp_sk(sk);
559 	long m = mrtt; /* RTT */
560 
561 	/*	The following amusing code comes from Jacobson's
562 	 *	article in SIGCOMM '88.  Note that rtt and mdev
563 	 *	are scaled versions of rtt and mean deviation.
564 	 *	This is designed to be as fast as possible
565 	 *	m stands for "measurement".
566 	 *
567 	 *	On a 1990 paper the rto value is changed to:
568 	 *	RTO = rtt + 4 * mdev
569 	 *
570 	 * Funny. This algorithm seems to be very broken.
571 	 * These formulae increase RTO, when it should be decreased, increase
572 	 * too slowly, when it should be increased quickly, decrease too quickly
573 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
574 	 * does not matter how to _calculate_ it. Seems, it was trap
575 	 * that VJ failed to avoid. 8)
576 	 */
577 	if(m == 0)
578 		m = 1;
579 	if (tp->srtt != 0) {
580 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
581 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
582 		if (m < 0) {
583 			m = -m;		/* m is now abs(error) */
584 			m -= (tp->mdev >> 2);   /* similar update on mdev */
585 			/* This is similar to one of Eifel findings.
586 			 * Eifel blocks mdev updates when rtt decreases.
587 			 * This solution is a bit different: we use finer gain
588 			 * for mdev in this case (alpha*beta).
589 			 * Like Eifel it also prevents growth of rto,
590 			 * but also it limits too fast rto decreases,
591 			 * happening in pure Eifel.
592 			 */
593 			if (m > 0)
594 				m >>= 3;
595 		} else {
596 			m -= (tp->mdev >> 2);   /* similar update on mdev */
597 		}
598 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
599 		if (tp->mdev > tp->mdev_max) {
600 			tp->mdev_max = tp->mdev;
601 			if (tp->mdev_max > tp->rttvar)
602 				tp->rttvar = tp->mdev_max;
603 		}
604 		if (after(tp->snd_una, tp->rtt_seq)) {
605 			if (tp->mdev_max < tp->rttvar)
606 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
607 			tp->rtt_seq = tp->snd_nxt;
608 			tp->mdev_max = TCP_RTO_MIN;
609 		}
610 	} else {
611 		/* no previous measure. */
612 		tp->srtt = m<<3;	/* take the measured time to be rtt */
613 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
614 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
615 		tp->rtt_seq = tp->snd_nxt;
616 	}
617 }
618 
619 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
620  * routine referred to above.
621  */
622 static inline void tcp_set_rto(struct sock *sk)
623 {
624 	const struct tcp_sock *tp = tcp_sk(sk);
625 	/* Old crap is replaced with new one. 8)
626 	 *
627 	 * More seriously:
628 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
629 	 *    It cannot be less due to utterly erratic ACK generation made
630 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
631 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
632 	 *    is invisible. Actually, Linux-2.4 also generates erratic
633 	 *    ACKs in some circumstances.
634 	 */
635 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
636 
637 	/* 2. Fixups made earlier cannot be right.
638 	 *    If we do not estimate RTO correctly without them,
639 	 *    all the algo is pure shit and should be replaced
640 	 *    with correct one. It is exactly, which we pretend to do.
641 	 */
642 }
643 
644 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
645  * guarantees that rto is higher.
646  */
647 static inline void tcp_bound_rto(struct sock *sk)
648 {
649 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
650 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
651 }
652 
653 /* Save metrics learned by this TCP session.
654    This function is called only, when TCP finishes successfully
655    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656  */
657 void tcp_update_metrics(struct sock *sk)
658 {
659 	struct tcp_sock *tp = tcp_sk(sk);
660 	struct dst_entry *dst = __sk_dst_get(sk);
661 
662 	if (sysctl_tcp_nometrics_save)
663 		return;
664 
665 	dst_confirm(dst);
666 
667 	if (dst && (dst->flags&DST_HOST)) {
668 		const struct inet_connection_sock *icsk = inet_csk(sk);
669 		int m;
670 
671 		if (icsk->icsk_backoff || !tp->srtt) {
672 			/* This session failed to estimate rtt. Why?
673 			 * Probably, no packets returned in time.
674 			 * Reset our results.
675 			 */
676 			if (!(dst_metric_locked(dst, RTAX_RTT)))
677 				dst->metrics[RTAX_RTT-1] = 0;
678 			return;
679 		}
680 
681 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
682 
683 		/* If newly calculated rtt larger than stored one,
684 		 * store new one. Otherwise, use EWMA. Remember,
685 		 * rtt overestimation is always better than underestimation.
686 		 */
687 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
688 			if (m <= 0)
689 				dst->metrics[RTAX_RTT-1] = tp->srtt;
690 			else
691 				dst->metrics[RTAX_RTT-1] -= (m>>3);
692 		}
693 
694 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
695 			if (m < 0)
696 				m = -m;
697 
698 			/* Scale deviation to rttvar fixed point */
699 			m >>= 1;
700 			if (m < tp->mdev)
701 				m = tp->mdev;
702 
703 			if (m >= dst_metric(dst, RTAX_RTTVAR))
704 				dst->metrics[RTAX_RTTVAR-1] = m;
705 			else
706 				dst->metrics[RTAX_RTTVAR-1] -=
707 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708 		}
709 
710 		if (tp->snd_ssthresh >= 0xFFFF) {
711 			/* Slow start still did not finish. */
712 			if (dst_metric(dst, RTAX_SSTHRESH) &&
713 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
714 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
715 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
716 			if (!dst_metric_locked(dst, RTAX_CWND) &&
717 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
718 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
719 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
720 			   icsk->icsk_ca_state == TCP_CA_Open) {
721 			/* Cong. avoidance phase, cwnd is reliable. */
722 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
723 				dst->metrics[RTAX_SSTHRESH-1] =
724 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
725 			if (!dst_metric_locked(dst, RTAX_CWND))
726 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
727 		} else {
728 			/* Else slow start did not finish, cwnd is non-sense,
729 			   ssthresh may be also invalid.
730 			 */
731 			if (!dst_metric_locked(dst, RTAX_CWND))
732 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
733 			if (dst->metrics[RTAX_SSTHRESH-1] &&
734 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
736 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737 		}
738 
739 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
740 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
741 			    tp->reordering != sysctl_tcp_reordering)
742 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
743 		}
744 	}
745 }
746 
747 /* Numbers are taken from RFC2414.  */
748 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
749 {
750 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
751 
752 	if (!cwnd) {
753 		if (tp->mss_cache > 1460)
754 			cwnd = 2;
755 		else
756 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
757 	}
758 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759 }
760 
761 /* Set slow start threshold and cwnd not falling to slow start */
762 void tcp_enter_cwr(struct sock *sk)
763 {
764 	struct tcp_sock *tp = tcp_sk(sk);
765 
766 	tp->prior_ssthresh = 0;
767 	tp->bytes_acked = 0;
768 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
769 		tp->undo_marker = 0;
770 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
771 		tp->snd_cwnd = min(tp->snd_cwnd,
772 				   tcp_packets_in_flight(tp) + 1U);
773 		tp->snd_cwnd_cnt = 0;
774 		tp->high_seq = tp->snd_nxt;
775 		tp->snd_cwnd_stamp = tcp_time_stamp;
776 		TCP_ECN_queue_cwr(tp);
777 
778 		tcp_set_ca_state(sk, TCP_CA_CWR);
779 	}
780 }
781 
782 /* Initialize metrics on socket. */
783 
784 static void tcp_init_metrics(struct sock *sk)
785 {
786 	struct tcp_sock *tp = tcp_sk(sk);
787 	struct dst_entry *dst = __sk_dst_get(sk);
788 
789 	if (dst == NULL)
790 		goto reset;
791 
792 	dst_confirm(dst);
793 
794 	if (dst_metric_locked(dst, RTAX_CWND))
795 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
796 	if (dst_metric(dst, RTAX_SSTHRESH)) {
797 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
798 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
799 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
800 	}
801 	if (dst_metric(dst, RTAX_REORDERING) &&
802 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
803 		tp->rx_opt.sack_ok &= ~2;
804 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
805 	}
806 
807 	if (dst_metric(dst, RTAX_RTT) == 0)
808 		goto reset;
809 
810 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
811 		goto reset;
812 
813 	/* Initial rtt is determined from SYN,SYN-ACK.
814 	 * The segment is small and rtt may appear much
815 	 * less than real one. Use per-dst memory
816 	 * to make it more realistic.
817 	 *
818 	 * A bit of theory. RTT is time passed after "normal" sized packet
819 	 * is sent until it is ACKed. In normal circumstances sending small
820 	 * packets force peer to delay ACKs and calculation is correct too.
821 	 * The algorithm is adaptive and, provided we follow specs, it
822 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
823 	 * tricks sort of "quick acks" for time long enough to decrease RTT
824 	 * to low value, and then abruptly stops to do it and starts to delay
825 	 * ACKs, wait for troubles.
826 	 */
827 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
828 		tp->srtt = dst_metric(dst, RTAX_RTT);
829 		tp->rtt_seq = tp->snd_nxt;
830 	}
831 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
832 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
833 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834 	}
835 	tcp_set_rto(sk);
836 	tcp_bound_rto(sk);
837 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
838 		goto reset;
839 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
840 	tp->snd_cwnd_stamp = tcp_time_stamp;
841 	return;
842 
843 reset:
844 	/* Play conservative. If timestamps are not
845 	 * supported, TCP will fail to recalculate correct
846 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847 	 */
848 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
849 		tp->srtt = 0;
850 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
851 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
852 	}
853 }
854 
855 static void tcp_update_reordering(struct sock *sk, const int metric,
856 				  const int ts)
857 {
858 	struct tcp_sock *tp = tcp_sk(sk);
859 	if (metric > tp->reordering) {
860 		tp->reordering = min(TCP_MAX_REORDERING, metric);
861 
862 		/* This exciting event is worth to be remembered. 8) */
863 		if (ts)
864 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
865 		else if (IsReno(tp))
866 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
867 		else if (IsFack(tp))
868 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
869 		else
870 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
871 #if FASTRETRANS_DEBUG > 1
872 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
873 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874 		       tp->reordering,
875 		       tp->fackets_out,
876 		       tp->sacked_out,
877 		       tp->undo_marker ? tp->undo_retrans : 0);
878 #endif
879 		/* Disable FACK yet. */
880 		tp->rx_opt.sack_ok &= ~2;
881 	}
882 }
883 
884 /* This procedure tags the retransmission queue when SACKs arrive.
885  *
886  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
887  * Packets in queue with these bits set are counted in variables
888  * sacked_out, retrans_out and lost_out, correspondingly.
889  *
890  * Valid combinations are:
891  * Tag  InFlight	Description
892  * 0	1		- orig segment is in flight.
893  * S	0		- nothing flies, orig reached receiver.
894  * L	0		- nothing flies, orig lost by net.
895  * R	2		- both orig and retransmit are in flight.
896  * L|R	1		- orig is lost, retransmit is in flight.
897  * S|R  1		- orig reached receiver, retrans is still in flight.
898  * (L|S|R is logically valid, it could occur when L|R is sacked,
899  *  but it is equivalent to plain S and code short-curcuits it to S.
900  *  L|S is logically invalid, it would mean -1 packet in flight 8))
901  *
902  * These 6 states form finite state machine, controlled by the following events:
903  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
904  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
905  * 3. Loss detection event of one of three flavors:
906  *	A. Scoreboard estimator decided the packet is lost.
907  *	   A'. Reno "three dupacks" marks head of queue lost.
908  *	   A''. Its FACK modfication, head until snd.fack is lost.
909  *	B. SACK arrives sacking data transmitted after never retransmitted
910  *	   hole was sent out.
911  *	C. SACK arrives sacking SND.NXT at the moment, when the
912  *	   segment was retransmitted.
913  * 4. D-SACK added new rule: D-SACK changes any tag to S.
914  *
915  * It is pleasant to note, that state diagram turns out to be commutative,
916  * so that we are allowed not to be bothered by order of our actions,
917  * when multiple events arrive simultaneously. (see the function below).
918  *
919  * Reordering detection.
920  * --------------------
921  * Reordering metric is maximal distance, which a packet can be displaced
922  * in packet stream. With SACKs we can estimate it:
923  *
924  * 1. SACK fills old hole and the corresponding segment was not
925  *    ever retransmitted -> reordering. Alas, we cannot use it
926  *    when segment was retransmitted.
927  * 2. The last flaw is solved with D-SACK. D-SACK arrives
928  *    for retransmitted and already SACKed segment -> reordering..
929  * Both of these heuristics are not used in Loss state, when we cannot
930  * account for retransmits accurately.
931  */
932 static int
933 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
934 {
935 	const struct inet_connection_sock *icsk = inet_csk(sk);
936 	struct tcp_sock *tp = tcp_sk(sk);
937 	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
938 	struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
939 	struct sk_buff *cached_skb;
940 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
941 	int reord = tp->packets_out;
942 	int prior_fackets;
943 	u32 lost_retrans = 0;
944 	int flag = 0;
945 	int dup_sack = 0;
946 	int cached_fack_count;
947 	int i;
948 	int first_sack_index;
949 
950 	if (!tp->sacked_out)
951 		tp->fackets_out = 0;
952 	prior_fackets = tp->fackets_out;
953 
954 	/* Check for D-SACK. */
955 	if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
956 		dup_sack = 1;
957 		tp->rx_opt.sack_ok |= 4;
958 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
959 	} else if (num_sacks > 1 &&
960 			!after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
961 			!before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
962 		dup_sack = 1;
963 		tp->rx_opt.sack_ok |= 4;
964 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
965 	}
966 
967 	/* D-SACK for already forgotten data...
968 	 * Do dumb counting. */
969 	if (dup_sack &&
970 			!after(ntohl(sp[0].end_seq), prior_snd_una) &&
971 			after(ntohl(sp[0].end_seq), tp->undo_marker))
972 		tp->undo_retrans--;
973 
974 	/* Eliminate too old ACKs, but take into
975 	 * account more or less fresh ones, they can
976 	 * contain valid SACK info.
977 	 */
978 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
979 		return 0;
980 
981 	/* SACK fastpath:
982 	 * if the only SACK change is the increase of the end_seq of
983 	 * the first block then only apply that SACK block
984 	 * and use retrans queue hinting otherwise slowpath */
985 	flag = 1;
986 	for (i = 0; i < num_sacks; i++) {
987 		__be32 start_seq = sp[i].start_seq;
988 		__be32 end_seq = sp[i].end_seq;
989 
990 		if (i == 0) {
991 			if (tp->recv_sack_cache[i].start_seq != start_seq)
992 				flag = 0;
993 		} else {
994 			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
995 			    (tp->recv_sack_cache[i].end_seq != end_seq))
996 				flag = 0;
997 		}
998 		tp->recv_sack_cache[i].start_seq = start_seq;
999 		tp->recv_sack_cache[i].end_seq = end_seq;
1000 	}
1001 
1002 	first_sack_index = 0;
1003 	if (flag)
1004 		num_sacks = 1;
1005 	else {
1006 		int j;
1007 		tp->fastpath_skb_hint = NULL;
1008 
1009 		/* order SACK blocks to allow in order walk of the retrans queue */
1010 		for (i = num_sacks-1; i > 0; i--) {
1011 			for (j = 0; j < i; j++){
1012 				if (after(ntohl(sp[j].start_seq),
1013 					  ntohl(sp[j+1].start_seq))){
1014 					struct tcp_sack_block_wire tmp;
1015 
1016 					tmp = sp[j];
1017 					sp[j] = sp[j+1];
1018 					sp[j+1] = tmp;
1019 
1020 					/* Track where the first SACK block goes to */
1021 					if (j == first_sack_index)
1022 						first_sack_index = j+1;
1023 				}
1024 
1025 			}
1026 		}
1027 	}
1028 
1029 	/* clear flag as used for different purpose in following code */
1030 	flag = 0;
1031 
1032 	/* Use SACK fastpath hint if valid */
1033 	cached_skb = tp->fastpath_skb_hint;
1034 	cached_fack_count = tp->fastpath_cnt_hint;
1035 	if (!cached_skb) {
1036 		cached_skb = sk->sk_write_queue.next;
1037 		cached_fack_count = 0;
1038 	}
1039 
1040 	for (i=0; i<num_sacks; i++, sp++) {
1041 		struct sk_buff *skb;
1042 		__u32 start_seq = ntohl(sp->start_seq);
1043 		__u32 end_seq = ntohl(sp->end_seq);
1044 		int fack_count;
1045 
1046 		skb = cached_skb;
1047 		fack_count = cached_fack_count;
1048 
1049 		/* Event "B" in the comment above. */
1050 		if (after(end_seq, tp->high_seq))
1051 			flag |= FLAG_DATA_LOST;
1052 
1053 		sk_stream_for_retrans_queue_from(skb, sk) {
1054 			int in_sack, pcount;
1055 			u8 sacked;
1056 
1057 			cached_skb = skb;
1058 			cached_fack_count = fack_count;
1059 			if (i == first_sack_index) {
1060 				tp->fastpath_skb_hint = skb;
1061 				tp->fastpath_cnt_hint = fack_count;
1062 			}
1063 
1064 			/* The retransmission queue is always in order, so
1065 			 * we can short-circuit the walk early.
1066 			 */
1067 			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1068 				break;
1069 
1070 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1071 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1072 
1073 			pcount = tcp_skb_pcount(skb);
1074 
1075 			if (pcount > 1 && !in_sack &&
1076 			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1077 				unsigned int pkt_len;
1078 
1079 				in_sack = !after(start_seq,
1080 						 TCP_SKB_CB(skb)->seq);
1081 
1082 				if (!in_sack)
1083 					pkt_len = (start_seq -
1084 						   TCP_SKB_CB(skb)->seq);
1085 				else
1086 					pkt_len = (end_seq -
1087 						   TCP_SKB_CB(skb)->seq);
1088 				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1089 					break;
1090 				pcount = tcp_skb_pcount(skb);
1091 			}
1092 
1093 			fack_count += pcount;
1094 
1095 			sacked = TCP_SKB_CB(skb)->sacked;
1096 
1097 			/* Account D-SACK for retransmitted packet. */
1098 			if ((dup_sack && in_sack) &&
1099 			    (sacked & TCPCB_RETRANS) &&
1100 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1101 				tp->undo_retrans--;
1102 
1103 			/* The frame is ACKed. */
1104 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1105 				if (sacked&TCPCB_RETRANS) {
1106 					if ((dup_sack && in_sack) &&
1107 					    (sacked&TCPCB_SACKED_ACKED))
1108 						reord = min(fack_count, reord);
1109 				} else {
1110 					/* If it was in a hole, we detected reordering. */
1111 					if (fack_count < prior_fackets &&
1112 					    !(sacked&TCPCB_SACKED_ACKED))
1113 						reord = min(fack_count, reord);
1114 				}
1115 
1116 				/* Nothing to do; acked frame is about to be dropped. */
1117 				continue;
1118 			}
1119 
1120 			if ((sacked&TCPCB_SACKED_RETRANS) &&
1121 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1122 			    (!lost_retrans || after(end_seq, lost_retrans)))
1123 				lost_retrans = end_seq;
1124 
1125 			if (!in_sack)
1126 				continue;
1127 
1128 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1129 				if (sacked & TCPCB_SACKED_RETRANS) {
1130 					/* If the segment is not tagged as lost,
1131 					 * we do not clear RETRANS, believing
1132 					 * that retransmission is still in flight.
1133 					 */
1134 					if (sacked & TCPCB_LOST) {
1135 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1136 						tp->lost_out -= tcp_skb_pcount(skb);
1137 						tp->retrans_out -= tcp_skb_pcount(skb);
1138 
1139 						/* clear lost hint */
1140 						tp->retransmit_skb_hint = NULL;
1141 					}
1142 				} else {
1143 					/* New sack for not retransmitted frame,
1144 					 * which was in hole. It is reordering.
1145 					 */
1146 					if (!(sacked & TCPCB_RETRANS) &&
1147 					    fack_count < prior_fackets)
1148 						reord = min(fack_count, reord);
1149 
1150 					if (sacked & TCPCB_LOST) {
1151 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1152 						tp->lost_out -= tcp_skb_pcount(skb);
1153 
1154 						/* clear lost hint */
1155 						tp->retransmit_skb_hint = NULL;
1156 					}
1157 				}
1158 
1159 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1160 				flag |= FLAG_DATA_SACKED;
1161 				tp->sacked_out += tcp_skb_pcount(skb);
1162 
1163 				if (fack_count > tp->fackets_out)
1164 					tp->fackets_out = fack_count;
1165 			} else {
1166 				if (dup_sack && (sacked&TCPCB_RETRANS))
1167 					reord = min(fack_count, reord);
1168 			}
1169 
1170 			/* D-SACK. We can detect redundant retransmission
1171 			 * in S|R and plain R frames and clear it.
1172 			 * undo_retrans is decreased above, L|R frames
1173 			 * are accounted above as well.
1174 			 */
1175 			if (dup_sack &&
1176 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1177 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1178 				tp->retrans_out -= tcp_skb_pcount(skb);
1179 				tp->retransmit_skb_hint = NULL;
1180 			}
1181 		}
1182 	}
1183 
1184 	/* Check for lost retransmit. This superb idea is
1185 	 * borrowed from "ratehalving". Event "C".
1186 	 * Later note: FACK people cheated me again 8),
1187 	 * we have to account for reordering! Ugly,
1188 	 * but should help.
1189 	 */
1190 	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1191 		struct sk_buff *skb;
1192 
1193 		sk_stream_for_retrans_queue(skb, sk) {
1194 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1195 				break;
1196 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1197 				continue;
1198 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1199 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1200 			    (IsFack(tp) ||
1201 			     !before(lost_retrans,
1202 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1203 				     tp->mss_cache))) {
1204 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1205 				tp->retrans_out -= tcp_skb_pcount(skb);
1206 
1207 				/* clear lost hint */
1208 				tp->retransmit_skb_hint = NULL;
1209 
1210 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1211 					tp->lost_out += tcp_skb_pcount(skb);
1212 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1213 					flag |= FLAG_DATA_SACKED;
1214 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1215 				}
1216 			}
1217 		}
1218 	}
1219 
1220 	tp->left_out = tp->sacked_out + tp->lost_out;
1221 
1222 	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1223 		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1224 
1225 #if FASTRETRANS_DEBUG > 0
1226 	BUG_TRAP((int)tp->sacked_out >= 0);
1227 	BUG_TRAP((int)tp->lost_out >= 0);
1228 	BUG_TRAP((int)tp->retrans_out >= 0);
1229 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1230 #endif
1231 	return flag;
1232 }
1233 
1234 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1235  * segments to see from the next ACKs whether any data was really missing.
1236  * If the RTO was spurious, new ACKs should arrive.
1237  */
1238 void tcp_enter_frto(struct sock *sk)
1239 {
1240 	const struct inet_connection_sock *icsk = inet_csk(sk);
1241 	struct tcp_sock *tp = tcp_sk(sk);
1242 	struct sk_buff *skb;
1243 
1244 	tp->frto_counter = 1;
1245 
1246 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1247             tp->snd_una == tp->high_seq ||
1248             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1249 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1250 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1251 		tcp_ca_event(sk, CA_EVENT_FRTO);
1252 	}
1253 
1254 	/* Have to clear retransmission markers here to keep the bookkeeping
1255 	 * in shape, even though we are not yet in Loss state.
1256 	 * If something was really lost, it is eventually caught up
1257 	 * in tcp_enter_frto_loss.
1258 	 */
1259 	tp->retrans_out = 0;
1260 	tp->undo_marker = tp->snd_una;
1261 	tp->undo_retrans = 0;
1262 
1263 	sk_stream_for_retrans_queue(skb, sk) {
1264 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1265 	}
1266 	tcp_sync_left_out(tp);
1267 
1268 	tcp_set_ca_state(sk, TCP_CA_Open);
1269 	tp->frto_highmark = tp->snd_nxt;
1270 }
1271 
1272 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1273  * which indicates that we should follow the traditional RTO recovery,
1274  * i.e. mark everything lost and do go-back-N retransmission.
1275  */
1276 static void tcp_enter_frto_loss(struct sock *sk)
1277 {
1278 	struct tcp_sock *tp = tcp_sk(sk);
1279 	struct sk_buff *skb;
1280 	int cnt = 0;
1281 
1282 	tp->sacked_out = 0;
1283 	tp->lost_out = 0;
1284 	tp->fackets_out = 0;
1285 
1286 	sk_stream_for_retrans_queue(skb, sk) {
1287 		cnt += tcp_skb_pcount(skb);
1288 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1289 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1290 
1291 			/* Do not mark those segments lost that were
1292 			 * forward transmitted after RTO
1293 			 */
1294 			if (!after(TCP_SKB_CB(skb)->end_seq,
1295 				   tp->frto_highmark)) {
1296 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1297 				tp->lost_out += tcp_skb_pcount(skb);
1298 			}
1299 		} else {
1300 			tp->sacked_out += tcp_skb_pcount(skb);
1301 			tp->fackets_out = cnt;
1302 		}
1303 	}
1304 	tcp_sync_left_out(tp);
1305 
1306 	tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1307 	tp->snd_cwnd_cnt = 0;
1308 	tp->snd_cwnd_stamp = tcp_time_stamp;
1309 	tp->undo_marker = 0;
1310 	tp->frto_counter = 0;
1311 
1312 	tp->reordering = min_t(unsigned int, tp->reordering,
1313 					     sysctl_tcp_reordering);
1314 	tcp_set_ca_state(sk, TCP_CA_Loss);
1315 	tp->high_seq = tp->frto_highmark;
1316 	TCP_ECN_queue_cwr(tp);
1317 
1318 	clear_all_retrans_hints(tp);
1319 }
1320 
1321 void tcp_clear_retrans(struct tcp_sock *tp)
1322 {
1323 	tp->left_out = 0;
1324 	tp->retrans_out = 0;
1325 
1326 	tp->fackets_out = 0;
1327 	tp->sacked_out = 0;
1328 	tp->lost_out = 0;
1329 
1330 	tp->undo_marker = 0;
1331 	tp->undo_retrans = 0;
1332 }
1333 
1334 /* Enter Loss state. If "how" is not zero, forget all SACK information
1335  * and reset tags completely, otherwise preserve SACKs. If receiver
1336  * dropped its ofo queue, we will know this due to reneging detection.
1337  */
1338 void tcp_enter_loss(struct sock *sk, int how)
1339 {
1340 	const struct inet_connection_sock *icsk = inet_csk(sk);
1341 	struct tcp_sock *tp = tcp_sk(sk);
1342 	struct sk_buff *skb;
1343 	int cnt = 0;
1344 
1345 	/* Reduce ssthresh if it has not yet been made inside this window. */
1346 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1347 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1348 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1349 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1350 		tcp_ca_event(sk, CA_EVENT_LOSS);
1351 	}
1352 	tp->snd_cwnd	   = 1;
1353 	tp->snd_cwnd_cnt   = 0;
1354 	tp->snd_cwnd_stamp = tcp_time_stamp;
1355 
1356 	tp->bytes_acked = 0;
1357 	tcp_clear_retrans(tp);
1358 
1359 	/* Push undo marker, if it was plain RTO and nothing
1360 	 * was retransmitted. */
1361 	if (!how)
1362 		tp->undo_marker = tp->snd_una;
1363 
1364 	sk_stream_for_retrans_queue(skb, sk) {
1365 		cnt += tcp_skb_pcount(skb);
1366 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1367 			tp->undo_marker = 0;
1368 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1369 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1370 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1371 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1372 			tp->lost_out += tcp_skb_pcount(skb);
1373 		} else {
1374 			tp->sacked_out += tcp_skb_pcount(skb);
1375 			tp->fackets_out = cnt;
1376 		}
1377 	}
1378 	tcp_sync_left_out(tp);
1379 
1380 	tp->reordering = min_t(unsigned int, tp->reordering,
1381 					     sysctl_tcp_reordering);
1382 	tcp_set_ca_state(sk, TCP_CA_Loss);
1383 	tp->high_seq = tp->snd_nxt;
1384 	TCP_ECN_queue_cwr(tp);
1385 
1386 	clear_all_retrans_hints(tp);
1387 }
1388 
1389 static int tcp_check_sack_reneging(struct sock *sk)
1390 {
1391 	struct sk_buff *skb;
1392 
1393 	/* If ACK arrived pointing to a remembered SACK,
1394 	 * it means that our remembered SACKs do not reflect
1395 	 * real state of receiver i.e.
1396 	 * receiver _host_ is heavily congested (or buggy).
1397 	 * Do processing similar to RTO timeout.
1398 	 */
1399 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1400 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1401 		struct inet_connection_sock *icsk = inet_csk(sk);
1402 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1403 
1404 		tcp_enter_loss(sk, 1);
1405 		icsk->icsk_retransmits++;
1406 		tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1407 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1408 					  icsk->icsk_rto, TCP_RTO_MAX);
1409 		return 1;
1410 	}
1411 	return 0;
1412 }
1413 
1414 static inline int tcp_fackets_out(struct tcp_sock *tp)
1415 {
1416 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1417 }
1418 
1419 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1420 {
1421 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1422 }
1423 
1424 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1425 {
1426 	return tp->packets_out &&
1427 	       tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1428 }
1429 
1430 /* Linux NewReno/SACK/FACK/ECN state machine.
1431  * --------------------------------------
1432  *
1433  * "Open"	Normal state, no dubious events, fast path.
1434  * "Disorder"   In all the respects it is "Open",
1435  *		but requires a bit more attention. It is entered when
1436  *		we see some SACKs or dupacks. It is split of "Open"
1437  *		mainly to move some processing from fast path to slow one.
1438  * "CWR"	CWND was reduced due to some Congestion Notification event.
1439  *		It can be ECN, ICMP source quench, local device congestion.
1440  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1441  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1442  *
1443  * tcp_fastretrans_alert() is entered:
1444  * - each incoming ACK, if state is not "Open"
1445  * - when arrived ACK is unusual, namely:
1446  *	* SACK
1447  *	* Duplicate ACK.
1448  *	* ECN ECE.
1449  *
1450  * Counting packets in flight is pretty simple.
1451  *
1452  *	in_flight = packets_out - left_out + retrans_out
1453  *
1454  *	packets_out is SND.NXT-SND.UNA counted in packets.
1455  *
1456  *	retrans_out is number of retransmitted segments.
1457  *
1458  *	left_out is number of segments left network, but not ACKed yet.
1459  *
1460  *		left_out = sacked_out + lost_out
1461  *
1462  *     sacked_out: Packets, which arrived to receiver out of order
1463  *		   and hence not ACKed. With SACKs this number is simply
1464  *		   amount of SACKed data. Even without SACKs
1465  *		   it is easy to give pretty reliable estimate of this number,
1466  *		   counting duplicate ACKs.
1467  *
1468  *       lost_out: Packets lost by network. TCP has no explicit
1469  *		   "loss notification" feedback from network (for now).
1470  *		   It means that this number can be only _guessed_.
1471  *		   Actually, it is the heuristics to predict lossage that
1472  *		   distinguishes different algorithms.
1473  *
1474  *	F.e. after RTO, when all the queue is considered as lost,
1475  *	lost_out = packets_out and in_flight = retrans_out.
1476  *
1477  *		Essentially, we have now two algorithms counting
1478  *		lost packets.
1479  *
1480  *		FACK: It is the simplest heuristics. As soon as we decided
1481  *		that something is lost, we decide that _all_ not SACKed
1482  *		packets until the most forward SACK are lost. I.e.
1483  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1484  *		It is absolutely correct estimate, if network does not reorder
1485  *		packets. And it loses any connection to reality when reordering
1486  *		takes place. We use FACK by default until reordering
1487  *		is suspected on the path to this destination.
1488  *
1489  *		NewReno: when Recovery is entered, we assume that one segment
1490  *		is lost (classic Reno). While we are in Recovery and
1491  *		a partial ACK arrives, we assume that one more packet
1492  *		is lost (NewReno). This heuristics are the same in NewReno
1493  *		and SACK.
1494  *
1495  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1496  *  deflation etc. CWND is real congestion window, never inflated, changes
1497  *  only according to classic VJ rules.
1498  *
1499  * Really tricky (and requiring careful tuning) part of algorithm
1500  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1501  * The first determines the moment _when_ we should reduce CWND and,
1502  * hence, slow down forward transmission. In fact, it determines the moment
1503  * when we decide that hole is caused by loss, rather than by a reorder.
1504  *
1505  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1506  * holes, caused by lost packets.
1507  *
1508  * And the most logically complicated part of algorithm is undo
1509  * heuristics. We detect false retransmits due to both too early
1510  * fast retransmit (reordering) and underestimated RTO, analyzing
1511  * timestamps and D-SACKs. When we detect that some segments were
1512  * retransmitted by mistake and CWND reduction was wrong, we undo
1513  * window reduction and abort recovery phase. This logic is hidden
1514  * inside several functions named tcp_try_undo_<something>.
1515  */
1516 
1517 /* This function decides, when we should leave Disordered state
1518  * and enter Recovery phase, reducing congestion window.
1519  *
1520  * Main question: may we further continue forward transmission
1521  * with the same cwnd?
1522  */
1523 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1524 {
1525 	__u32 packets_out;
1526 
1527 	/* Trick#1: The loss is proven. */
1528 	if (tp->lost_out)
1529 		return 1;
1530 
1531 	/* Not-A-Trick#2 : Classic rule... */
1532 	if (tcp_fackets_out(tp) > tp->reordering)
1533 		return 1;
1534 
1535 	/* Trick#3 : when we use RFC2988 timer restart, fast
1536 	 * retransmit can be triggered by timeout of queue head.
1537 	 */
1538 	if (tcp_head_timedout(sk, tp))
1539 		return 1;
1540 
1541 	/* Trick#4: It is still not OK... But will it be useful to delay
1542 	 * recovery more?
1543 	 */
1544 	packets_out = tp->packets_out;
1545 	if (packets_out <= tp->reordering &&
1546 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1547 	    !tcp_may_send_now(sk, tp)) {
1548 		/* We have nothing to send. This connection is limited
1549 		 * either by receiver window or by application.
1550 		 */
1551 		return 1;
1552 	}
1553 
1554 	return 0;
1555 }
1556 
1557 /* If we receive more dupacks than we expected counting segments
1558  * in assumption of absent reordering, interpret this as reordering.
1559  * The only another reason could be bug in receiver TCP.
1560  */
1561 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1562 {
1563 	struct tcp_sock *tp = tcp_sk(sk);
1564 	u32 holes;
1565 
1566 	holes = max(tp->lost_out, 1U);
1567 	holes = min(holes, tp->packets_out);
1568 
1569 	if ((tp->sacked_out + holes) > tp->packets_out) {
1570 		tp->sacked_out = tp->packets_out - holes;
1571 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1572 	}
1573 }
1574 
1575 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1576 
1577 static void tcp_add_reno_sack(struct sock *sk)
1578 {
1579 	struct tcp_sock *tp = tcp_sk(sk);
1580 	tp->sacked_out++;
1581 	tcp_check_reno_reordering(sk, 0);
1582 	tcp_sync_left_out(tp);
1583 }
1584 
1585 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1586 
1587 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1588 {
1589 	if (acked > 0) {
1590 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1591 		if (acked-1 >= tp->sacked_out)
1592 			tp->sacked_out = 0;
1593 		else
1594 			tp->sacked_out -= acked-1;
1595 	}
1596 	tcp_check_reno_reordering(sk, acked);
1597 	tcp_sync_left_out(tp);
1598 }
1599 
1600 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1601 {
1602 	tp->sacked_out = 0;
1603 	tp->left_out = tp->lost_out;
1604 }
1605 
1606 /* Mark head of queue up as lost. */
1607 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1608 			       int packets, u32 high_seq)
1609 {
1610 	struct sk_buff *skb;
1611 	int cnt;
1612 
1613 	BUG_TRAP(packets <= tp->packets_out);
1614 	if (tp->lost_skb_hint) {
1615 		skb = tp->lost_skb_hint;
1616 		cnt = tp->lost_cnt_hint;
1617 	} else {
1618 		skb = sk->sk_write_queue.next;
1619 		cnt = 0;
1620 	}
1621 
1622 	sk_stream_for_retrans_queue_from(skb, sk) {
1623 		/* TODO: do this better */
1624 		/* this is not the most efficient way to do this... */
1625 		tp->lost_skb_hint = skb;
1626 		tp->lost_cnt_hint = cnt;
1627 		cnt += tcp_skb_pcount(skb);
1628 		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1629 			break;
1630 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1631 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1632 			tp->lost_out += tcp_skb_pcount(skb);
1633 
1634 			/* clear xmit_retransmit_queue hints
1635 			 *  if this is beyond hint */
1636 			if(tp->retransmit_skb_hint != NULL &&
1637 			   before(TCP_SKB_CB(skb)->seq,
1638 				  TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1639 
1640 				tp->retransmit_skb_hint = NULL;
1641 			}
1642 		}
1643 	}
1644 	tcp_sync_left_out(tp);
1645 }
1646 
1647 /* Account newly detected lost packet(s) */
1648 
1649 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1650 {
1651 	if (IsFack(tp)) {
1652 		int lost = tp->fackets_out - tp->reordering;
1653 		if (lost <= 0)
1654 			lost = 1;
1655 		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1656 	} else {
1657 		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1658 	}
1659 
1660 	/* New heuristics: it is possible only after we switched
1661 	 * to restart timer each time when something is ACKed.
1662 	 * Hence, we can detect timed out packets during fast
1663 	 * retransmit without falling to slow start.
1664 	 */
1665 	if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1666 		struct sk_buff *skb;
1667 
1668 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1669 			: sk->sk_write_queue.next;
1670 
1671 		sk_stream_for_retrans_queue_from(skb, sk) {
1672 			if (!tcp_skb_timedout(sk, skb))
1673 				break;
1674 
1675 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1676 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1677 				tp->lost_out += tcp_skb_pcount(skb);
1678 
1679 				/* clear xmit_retrans hint */
1680 				if (tp->retransmit_skb_hint &&
1681 				    before(TCP_SKB_CB(skb)->seq,
1682 					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1683 
1684 					tp->retransmit_skb_hint = NULL;
1685 			}
1686 		}
1687 
1688 		tp->scoreboard_skb_hint = skb;
1689 
1690 		tcp_sync_left_out(tp);
1691 	}
1692 }
1693 
1694 /* CWND moderation, preventing bursts due to too big ACKs
1695  * in dubious situations.
1696  */
1697 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1698 {
1699 	tp->snd_cwnd = min(tp->snd_cwnd,
1700 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1701 	tp->snd_cwnd_stamp = tcp_time_stamp;
1702 }
1703 
1704 /* Lower bound on congestion window is slow start threshold
1705  * unless congestion avoidance choice decides to overide it.
1706  */
1707 static inline u32 tcp_cwnd_min(const struct sock *sk)
1708 {
1709 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1710 
1711 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1712 }
1713 
1714 /* Decrease cwnd each second ack. */
1715 static void tcp_cwnd_down(struct sock *sk)
1716 {
1717 	struct tcp_sock *tp = tcp_sk(sk);
1718 	int decr = tp->snd_cwnd_cnt + 1;
1719 
1720 	tp->snd_cwnd_cnt = decr&1;
1721 	decr >>= 1;
1722 
1723 	if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1724 		tp->snd_cwnd -= decr;
1725 
1726 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1727 	tp->snd_cwnd_stamp = tcp_time_stamp;
1728 }
1729 
1730 /* Nothing was retransmitted or returned timestamp is less
1731  * than timestamp of the first retransmission.
1732  */
1733 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1734 {
1735 	return !tp->retrans_stamp ||
1736 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1737 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1738 }
1739 
1740 /* Undo procedures. */
1741 
1742 #if FASTRETRANS_DEBUG > 1
1743 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1744 {
1745 	struct inet_sock *inet = inet_sk(sk);
1746 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1747 	       msg,
1748 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1749 	       tp->snd_cwnd, tp->left_out,
1750 	       tp->snd_ssthresh, tp->prior_ssthresh,
1751 	       tp->packets_out);
1752 }
1753 #else
1754 #define DBGUNDO(x...) do { } while (0)
1755 #endif
1756 
1757 static void tcp_undo_cwr(struct sock *sk, const int undo)
1758 {
1759 	struct tcp_sock *tp = tcp_sk(sk);
1760 
1761 	if (tp->prior_ssthresh) {
1762 		const struct inet_connection_sock *icsk = inet_csk(sk);
1763 
1764 		if (icsk->icsk_ca_ops->undo_cwnd)
1765 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1766 		else
1767 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1768 
1769 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1770 			tp->snd_ssthresh = tp->prior_ssthresh;
1771 			TCP_ECN_withdraw_cwr(tp);
1772 		}
1773 	} else {
1774 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1775 	}
1776 	tcp_moderate_cwnd(tp);
1777 	tp->snd_cwnd_stamp = tcp_time_stamp;
1778 
1779 	/* There is something screwy going on with the retrans hints after
1780 	   an undo */
1781 	clear_all_retrans_hints(tp);
1782 }
1783 
1784 static inline int tcp_may_undo(struct tcp_sock *tp)
1785 {
1786 	return tp->undo_marker &&
1787 		(!tp->undo_retrans || tcp_packet_delayed(tp));
1788 }
1789 
1790 /* People celebrate: "We love our President!" */
1791 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1792 {
1793 	if (tcp_may_undo(tp)) {
1794 		/* Happy end! We did not retransmit anything
1795 		 * or our original transmission succeeded.
1796 		 */
1797 		DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1798 		tcp_undo_cwr(sk, 1);
1799 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1800 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1801 		else
1802 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1803 		tp->undo_marker = 0;
1804 	}
1805 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1806 		/* Hold old state until something *above* high_seq
1807 		 * is ACKed. For Reno it is MUST to prevent false
1808 		 * fast retransmits (RFC2582). SACK TCP is safe. */
1809 		tcp_moderate_cwnd(tp);
1810 		return 1;
1811 	}
1812 	tcp_set_ca_state(sk, TCP_CA_Open);
1813 	return 0;
1814 }
1815 
1816 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1817 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1818 {
1819 	if (tp->undo_marker && !tp->undo_retrans) {
1820 		DBGUNDO(sk, tp, "D-SACK");
1821 		tcp_undo_cwr(sk, 1);
1822 		tp->undo_marker = 0;
1823 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1824 	}
1825 }
1826 
1827 /* Undo during fast recovery after partial ACK. */
1828 
1829 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1830 				int acked)
1831 {
1832 	/* Partial ACK arrived. Force Hoe's retransmit. */
1833 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1834 
1835 	if (tcp_may_undo(tp)) {
1836 		/* Plain luck! Hole if filled with delayed
1837 		 * packet, rather than with a retransmit.
1838 		 */
1839 		if (tp->retrans_out == 0)
1840 			tp->retrans_stamp = 0;
1841 
1842 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1843 
1844 		DBGUNDO(sk, tp, "Hoe");
1845 		tcp_undo_cwr(sk, 0);
1846 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1847 
1848 		/* So... Do not make Hoe's retransmit yet.
1849 		 * If the first packet was delayed, the rest
1850 		 * ones are most probably delayed as well.
1851 		 */
1852 		failed = 0;
1853 	}
1854 	return failed;
1855 }
1856 
1857 /* Undo during loss recovery after partial ACK. */
1858 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1859 {
1860 	if (tcp_may_undo(tp)) {
1861 		struct sk_buff *skb;
1862 		sk_stream_for_retrans_queue(skb, sk) {
1863 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1864 		}
1865 
1866 		clear_all_retrans_hints(tp);
1867 
1868 		DBGUNDO(sk, tp, "partial loss");
1869 		tp->lost_out = 0;
1870 		tp->left_out = tp->sacked_out;
1871 		tcp_undo_cwr(sk, 1);
1872 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1873 		inet_csk(sk)->icsk_retransmits = 0;
1874 		tp->undo_marker = 0;
1875 		if (!IsReno(tp))
1876 			tcp_set_ca_state(sk, TCP_CA_Open);
1877 		return 1;
1878 	}
1879 	return 0;
1880 }
1881 
1882 static inline void tcp_complete_cwr(struct sock *sk)
1883 {
1884 	struct tcp_sock *tp = tcp_sk(sk);
1885 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1886 	tp->snd_cwnd_stamp = tcp_time_stamp;
1887 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1888 }
1889 
1890 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1891 {
1892 	tp->left_out = tp->sacked_out;
1893 
1894 	if (tp->retrans_out == 0)
1895 		tp->retrans_stamp = 0;
1896 
1897 	if (flag&FLAG_ECE)
1898 		tcp_enter_cwr(sk);
1899 
1900 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1901 		int state = TCP_CA_Open;
1902 
1903 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
1904 			state = TCP_CA_Disorder;
1905 
1906 		if (inet_csk(sk)->icsk_ca_state != state) {
1907 			tcp_set_ca_state(sk, state);
1908 			tp->high_seq = tp->snd_nxt;
1909 		}
1910 		tcp_moderate_cwnd(tp);
1911 	} else {
1912 		tcp_cwnd_down(sk);
1913 	}
1914 }
1915 
1916 static void tcp_mtup_probe_failed(struct sock *sk)
1917 {
1918 	struct inet_connection_sock *icsk = inet_csk(sk);
1919 
1920 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1921 	icsk->icsk_mtup.probe_size = 0;
1922 }
1923 
1924 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1925 {
1926 	struct tcp_sock *tp = tcp_sk(sk);
1927 	struct inet_connection_sock *icsk = inet_csk(sk);
1928 
1929 	/* FIXME: breaks with very large cwnd */
1930 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
1931 	tp->snd_cwnd = tp->snd_cwnd *
1932 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
1933 		       icsk->icsk_mtup.probe_size;
1934 	tp->snd_cwnd_cnt = 0;
1935 	tp->snd_cwnd_stamp = tcp_time_stamp;
1936 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1937 
1938 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1939 	icsk->icsk_mtup.probe_size = 0;
1940 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1941 }
1942 
1943 
1944 /* Process an event, which can update packets-in-flight not trivially.
1945  * Main goal of this function is to calculate new estimate for left_out,
1946  * taking into account both packets sitting in receiver's buffer and
1947  * packets lost by network.
1948  *
1949  * Besides that it does CWND reduction, when packet loss is detected
1950  * and changes state of machine.
1951  *
1952  * It does _not_ decide what to send, it is made in function
1953  * tcp_xmit_retransmit_queue().
1954  */
1955 static void
1956 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1957 		      int prior_packets, int flag)
1958 {
1959 	struct inet_connection_sock *icsk = inet_csk(sk);
1960 	struct tcp_sock *tp = tcp_sk(sk);
1961 	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1962 
1963 	/* Some technical things:
1964 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
1965 	if (!tp->packets_out)
1966 		tp->sacked_out = 0;
1967         /* 2. SACK counts snd_fack in packets inaccurately. */
1968 	if (tp->sacked_out == 0)
1969 		tp->fackets_out = 0;
1970 
1971         /* Now state machine starts.
1972 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1973 	if (flag&FLAG_ECE)
1974 		tp->prior_ssthresh = 0;
1975 
1976 	/* B. In all the states check for reneging SACKs. */
1977 	if (tp->sacked_out && tcp_check_sack_reneging(sk))
1978 		return;
1979 
1980 	/* C. Process data loss notification, provided it is valid. */
1981 	if ((flag&FLAG_DATA_LOST) &&
1982 	    before(tp->snd_una, tp->high_seq) &&
1983 	    icsk->icsk_ca_state != TCP_CA_Open &&
1984 	    tp->fackets_out > tp->reordering) {
1985 		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1986 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1987 	}
1988 
1989 	/* D. Synchronize left_out to current state. */
1990 	tcp_sync_left_out(tp);
1991 
1992 	/* E. Check state exit conditions. State can be terminated
1993 	 *    when high_seq is ACKed. */
1994 	if (icsk->icsk_ca_state == TCP_CA_Open) {
1995 		if (!sysctl_tcp_frto)
1996 			BUG_TRAP(tp->retrans_out == 0);
1997 		tp->retrans_stamp = 0;
1998 	} else if (!before(tp->snd_una, tp->high_seq)) {
1999 		switch (icsk->icsk_ca_state) {
2000 		case TCP_CA_Loss:
2001 			icsk->icsk_retransmits = 0;
2002 			if (tcp_try_undo_recovery(sk, tp))
2003 				return;
2004 			break;
2005 
2006 		case TCP_CA_CWR:
2007 			/* CWR is to be held something *above* high_seq
2008 			 * is ACKed for CWR bit to reach receiver. */
2009 			if (tp->snd_una != tp->high_seq) {
2010 				tcp_complete_cwr(sk);
2011 				tcp_set_ca_state(sk, TCP_CA_Open);
2012 			}
2013 			break;
2014 
2015 		case TCP_CA_Disorder:
2016 			tcp_try_undo_dsack(sk, tp);
2017 			if (!tp->undo_marker ||
2018 			    /* For SACK case do not Open to allow to undo
2019 			     * catching for all duplicate ACKs. */
2020 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
2021 				tp->undo_marker = 0;
2022 				tcp_set_ca_state(sk, TCP_CA_Open);
2023 			}
2024 			break;
2025 
2026 		case TCP_CA_Recovery:
2027 			if (IsReno(tp))
2028 				tcp_reset_reno_sack(tp);
2029 			if (tcp_try_undo_recovery(sk, tp))
2030 				return;
2031 			tcp_complete_cwr(sk);
2032 			break;
2033 		}
2034 	}
2035 
2036 	/* F. Process state. */
2037 	switch (icsk->icsk_ca_state) {
2038 	case TCP_CA_Recovery:
2039 		if (prior_snd_una == tp->snd_una) {
2040 			if (IsReno(tp) && is_dupack)
2041 				tcp_add_reno_sack(sk);
2042 		} else {
2043 			int acked = prior_packets - tp->packets_out;
2044 			if (IsReno(tp))
2045 				tcp_remove_reno_sacks(sk, tp, acked);
2046 			is_dupack = tcp_try_undo_partial(sk, tp, acked);
2047 		}
2048 		break;
2049 	case TCP_CA_Loss:
2050 		if (flag&FLAG_DATA_ACKED)
2051 			icsk->icsk_retransmits = 0;
2052 		if (!tcp_try_undo_loss(sk, tp)) {
2053 			tcp_moderate_cwnd(tp);
2054 			tcp_xmit_retransmit_queue(sk);
2055 			return;
2056 		}
2057 		if (icsk->icsk_ca_state != TCP_CA_Open)
2058 			return;
2059 		/* Loss is undone; fall through to processing in Open state. */
2060 	default:
2061 		if (IsReno(tp)) {
2062 			if (tp->snd_una != prior_snd_una)
2063 				tcp_reset_reno_sack(tp);
2064 			if (is_dupack)
2065 				tcp_add_reno_sack(sk);
2066 		}
2067 
2068 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2069 			tcp_try_undo_dsack(sk, tp);
2070 
2071 		if (!tcp_time_to_recover(sk, tp)) {
2072 			tcp_try_to_open(sk, tp, flag);
2073 			return;
2074 		}
2075 
2076 		/* MTU probe failure: don't reduce cwnd */
2077 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2078 		    icsk->icsk_mtup.probe_size &&
2079 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2080 			tcp_mtup_probe_failed(sk);
2081 			/* Restores the reduction we did in tcp_mtup_probe() */
2082 			tp->snd_cwnd++;
2083 			tcp_simple_retransmit(sk);
2084 			return;
2085 		}
2086 
2087 		/* Otherwise enter Recovery state */
2088 
2089 		if (IsReno(tp))
2090 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2091 		else
2092 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2093 
2094 		tp->high_seq = tp->snd_nxt;
2095 		tp->prior_ssthresh = 0;
2096 		tp->undo_marker = tp->snd_una;
2097 		tp->undo_retrans = tp->retrans_out;
2098 
2099 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2100 			if (!(flag&FLAG_ECE))
2101 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2102 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2103 			TCP_ECN_queue_cwr(tp);
2104 		}
2105 
2106 		tp->bytes_acked = 0;
2107 		tp->snd_cwnd_cnt = 0;
2108 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2109 	}
2110 
2111 	if (is_dupack || tcp_head_timedout(sk, tp))
2112 		tcp_update_scoreboard(sk, tp);
2113 	tcp_cwnd_down(sk);
2114 	tcp_xmit_retransmit_queue(sk);
2115 }
2116 
2117 /* Read draft-ietf-tcplw-high-performance before mucking
2118  * with this code. (Supersedes RFC1323)
2119  */
2120 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2121 {
2122 	/* RTTM Rule: A TSecr value received in a segment is used to
2123 	 * update the averaged RTT measurement only if the segment
2124 	 * acknowledges some new data, i.e., only if it advances the
2125 	 * left edge of the send window.
2126 	 *
2127 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2128 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2129 	 *
2130 	 * Changed: reset backoff as soon as we see the first valid sample.
2131 	 * If we do not, we get strongly overestimated rto. With timestamps
2132 	 * samples are accepted even from very old segments: f.e., when rtt=1
2133 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2134 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2135 	 * in window is lost... Voila.	 			--ANK (010210)
2136 	 */
2137 	struct tcp_sock *tp = tcp_sk(sk);
2138 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2139 	tcp_rtt_estimator(sk, seq_rtt);
2140 	tcp_set_rto(sk);
2141 	inet_csk(sk)->icsk_backoff = 0;
2142 	tcp_bound_rto(sk);
2143 }
2144 
2145 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2146 {
2147 	/* We don't have a timestamp. Can only use
2148 	 * packets that are not retransmitted to determine
2149 	 * rtt estimates. Also, we must not reset the
2150 	 * backoff for rto until we get a non-retransmitted
2151 	 * packet. This allows us to deal with a situation
2152 	 * where the network delay has increased suddenly.
2153 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2154 	 */
2155 
2156 	if (flag & FLAG_RETRANS_DATA_ACKED)
2157 		return;
2158 
2159 	tcp_rtt_estimator(sk, seq_rtt);
2160 	tcp_set_rto(sk);
2161 	inet_csk(sk)->icsk_backoff = 0;
2162 	tcp_bound_rto(sk);
2163 }
2164 
2165 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2166 				      const s32 seq_rtt)
2167 {
2168 	const struct tcp_sock *tp = tcp_sk(sk);
2169 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2170 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2171 		tcp_ack_saw_tstamp(sk, flag);
2172 	else if (seq_rtt >= 0)
2173 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2174 }
2175 
2176 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2177 			   u32 in_flight, int good)
2178 {
2179 	const struct inet_connection_sock *icsk = inet_csk(sk);
2180 	icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2181 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2182 }
2183 
2184 /* Restart timer after forward progress on connection.
2185  * RFC2988 recommends to restart timer to now+rto.
2186  */
2187 
2188 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2189 {
2190 	if (!tp->packets_out) {
2191 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2192 	} else {
2193 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2194 	}
2195 }
2196 
2197 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2198 			 __u32 now, __s32 *seq_rtt)
2199 {
2200 	struct tcp_sock *tp = tcp_sk(sk);
2201 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2202 	__u32 seq = tp->snd_una;
2203 	__u32 packets_acked;
2204 	int acked = 0;
2205 
2206 	/* If we get here, the whole TSO packet has not been
2207 	 * acked.
2208 	 */
2209 	BUG_ON(!after(scb->end_seq, seq));
2210 
2211 	packets_acked = tcp_skb_pcount(skb);
2212 	if (tcp_trim_head(sk, skb, seq - scb->seq))
2213 		return 0;
2214 	packets_acked -= tcp_skb_pcount(skb);
2215 
2216 	if (packets_acked) {
2217 		__u8 sacked = scb->sacked;
2218 
2219 		acked |= FLAG_DATA_ACKED;
2220 		if (sacked) {
2221 			if (sacked & TCPCB_RETRANS) {
2222 				if (sacked & TCPCB_SACKED_RETRANS)
2223 					tp->retrans_out -= packets_acked;
2224 				acked |= FLAG_RETRANS_DATA_ACKED;
2225 				*seq_rtt = -1;
2226 			} else if (*seq_rtt < 0)
2227 				*seq_rtt = now - scb->when;
2228 			if (sacked & TCPCB_SACKED_ACKED)
2229 				tp->sacked_out -= packets_acked;
2230 			if (sacked & TCPCB_LOST)
2231 				tp->lost_out -= packets_acked;
2232 			if (sacked & TCPCB_URG) {
2233 				if (tp->urg_mode &&
2234 				    !before(seq, tp->snd_up))
2235 					tp->urg_mode = 0;
2236 			}
2237 		} else if (*seq_rtt < 0)
2238 			*seq_rtt = now - scb->when;
2239 
2240 		if (tp->fackets_out) {
2241 			__u32 dval = min(tp->fackets_out, packets_acked);
2242 			tp->fackets_out -= dval;
2243 		}
2244 		tp->packets_out -= packets_acked;
2245 
2246 		BUG_ON(tcp_skb_pcount(skb) == 0);
2247 		BUG_ON(!before(scb->seq, scb->end_seq));
2248 	}
2249 
2250 	return acked;
2251 }
2252 
2253 static u32 tcp_usrtt(struct timeval *tv)
2254 {
2255 	struct timeval now;
2256 
2257 	do_gettimeofday(&now);
2258 	return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2259 }
2260 
2261 /* Remove acknowledged frames from the retransmission queue. */
2262 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2263 {
2264 	struct tcp_sock *tp = tcp_sk(sk);
2265 	const struct inet_connection_sock *icsk = inet_csk(sk);
2266 	struct sk_buff *skb;
2267 	__u32 now = tcp_time_stamp;
2268 	int acked = 0;
2269 	__s32 seq_rtt = -1;
2270 	u32 pkts_acked = 0;
2271 	void (*rtt_sample)(struct sock *sk, u32 usrtt)
2272 		= icsk->icsk_ca_ops->rtt_sample;
2273 	struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
2274 
2275 	while ((skb = skb_peek(&sk->sk_write_queue)) &&
2276 	       skb != sk->sk_send_head) {
2277 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2278 		__u8 sacked = scb->sacked;
2279 
2280 		/* If our packet is before the ack sequence we can
2281 		 * discard it as it's confirmed to have arrived at
2282 		 * the other end.
2283 		 */
2284 		if (after(scb->end_seq, tp->snd_una)) {
2285 			if (tcp_skb_pcount(skb) > 1 &&
2286 			    after(tp->snd_una, scb->seq))
2287 				acked |= tcp_tso_acked(sk, skb,
2288 						       now, &seq_rtt);
2289 			break;
2290 		}
2291 
2292 		/* Initial outgoing SYN's get put onto the write_queue
2293 		 * just like anything else we transmit.  It is not
2294 		 * true data, and if we misinform our callers that
2295 		 * this ACK acks real data, we will erroneously exit
2296 		 * connection startup slow start one packet too
2297 		 * quickly.  This is severely frowned upon behavior.
2298 		 */
2299 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2300 			acked |= FLAG_DATA_ACKED;
2301 			++pkts_acked;
2302 		} else {
2303 			acked |= FLAG_SYN_ACKED;
2304 			tp->retrans_stamp = 0;
2305 		}
2306 
2307 		/* MTU probing checks */
2308 		if (icsk->icsk_mtup.probe_size) {
2309 			if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2310 				tcp_mtup_probe_success(sk, skb);
2311 			}
2312 		}
2313 
2314 		if (sacked) {
2315 			if (sacked & TCPCB_RETRANS) {
2316 				if(sacked & TCPCB_SACKED_RETRANS)
2317 					tp->retrans_out -= tcp_skb_pcount(skb);
2318 				acked |= FLAG_RETRANS_DATA_ACKED;
2319 				seq_rtt = -1;
2320 			} else if (seq_rtt < 0) {
2321 				seq_rtt = now - scb->when;
2322 				skb_get_timestamp(skb, &tv);
2323 			}
2324 			if (sacked & TCPCB_SACKED_ACKED)
2325 				tp->sacked_out -= tcp_skb_pcount(skb);
2326 			if (sacked & TCPCB_LOST)
2327 				tp->lost_out -= tcp_skb_pcount(skb);
2328 			if (sacked & TCPCB_URG) {
2329 				if (tp->urg_mode &&
2330 				    !before(scb->end_seq, tp->snd_up))
2331 					tp->urg_mode = 0;
2332 			}
2333 		} else if (seq_rtt < 0) {
2334 			seq_rtt = now - scb->when;
2335 			skb_get_timestamp(skb, &tv);
2336 		}
2337 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2338 		tcp_packets_out_dec(tp, skb);
2339 		__skb_unlink(skb, &sk->sk_write_queue);
2340 		sk_stream_free_skb(sk, skb);
2341 		clear_all_retrans_hints(tp);
2342 	}
2343 
2344 	if (acked&FLAG_ACKED) {
2345 		tcp_ack_update_rtt(sk, acked, seq_rtt);
2346 		tcp_ack_packets_out(sk, tp);
2347 		if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2348 			(*rtt_sample)(sk, tcp_usrtt(&tv));
2349 
2350 		if (icsk->icsk_ca_ops->pkts_acked)
2351 			icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2352 	}
2353 
2354 #if FASTRETRANS_DEBUG > 0
2355 	BUG_TRAP((int)tp->sacked_out >= 0);
2356 	BUG_TRAP((int)tp->lost_out >= 0);
2357 	BUG_TRAP((int)tp->retrans_out >= 0);
2358 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2359 		const struct inet_connection_sock *icsk = inet_csk(sk);
2360 		if (tp->lost_out) {
2361 			printk(KERN_DEBUG "Leak l=%u %d\n",
2362 			       tp->lost_out, icsk->icsk_ca_state);
2363 			tp->lost_out = 0;
2364 		}
2365 		if (tp->sacked_out) {
2366 			printk(KERN_DEBUG "Leak s=%u %d\n",
2367 			       tp->sacked_out, icsk->icsk_ca_state);
2368 			tp->sacked_out = 0;
2369 		}
2370 		if (tp->retrans_out) {
2371 			printk(KERN_DEBUG "Leak r=%u %d\n",
2372 			       tp->retrans_out, icsk->icsk_ca_state);
2373 			tp->retrans_out = 0;
2374 		}
2375 	}
2376 #endif
2377 	*seq_rtt_p = seq_rtt;
2378 	return acked;
2379 }
2380 
2381 static void tcp_ack_probe(struct sock *sk)
2382 {
2383 	const struct tcp_sock *tp = tcp_sk(sk);
2384 	struct inet_connection_sock *icsk = inet_csk(sk);
2385 
2386 	/* Was it a usable window open? */
2387 
2388 	if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2389 		   tp->snd_una + tp->snd_wnd)) {
2390 		icsk->icsk_backoff = 0;
2391 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2392 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2393 		 * This function is not for random using!
2394 		 */
2395 	} else {
2396 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2397 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2398 					  TCP_RTO_MAX);
2399 	}
2400 }
2401 
2402 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2403 {
2404 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2405 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2406 }
2407 
2408 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2409 {
2410 	const struct tcp_sock *tp = tcp_sk(sk);
2411 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2412 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2413 }
2414 
2415 /* Check that window update is acceptable.
2416  * The function assumes that snd_una<=ack<=snd_next.
2417  */
2418 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2419 					const u32 ack_seq, const u32 nwin)
2420 {
2421 	return (after(ack, tp->snd_una) ||
2422 		after(ack_seq, tp->snd_wl1) ||
2423 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2424 }
2425 
2426 /* Update our send window.
2427  *
2428  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2429  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2430  */
2431 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2432 				 struct sk_buff *skb, u32 ack, u32 ack_seq)
2433 {
2434 	int flag = 0;
2435 	u32 nwin = ntohs(skb->h.th->window);
2436 
2437 	if (likely(!skb->h.th->syn))
2438 		nwin <<= tp->rx_opt.snd_wscale;
2439 
2440 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2441 		flag |= FLAG_WIN_UPDATE;
2442 		tcp_update_wl(tp, ack, ack_seq);
2443 
2444 		if (tp->snd_wnd != nwin) {
2445 			tp->snd_wnd = nwin;
2446 
2447 			/* Note, it is the only place, where
2448 			 * fast path is recovered for sending TCP.
2449 			 */
2450 			tp->pred_flags = 0;
2451 			tcp_fast_path_check(sk, tp);
2452 
2453 			if (nwin > tp->max_window) {
2454 				tp->max_window = nwin;
2455 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2456 			}
2457 		}
2458 	}
2459 
2460 	tp->snd_una = ack;
2461 
2462 	return flag;
2463 }
2464 
2465 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2466 {
2467 	struct tcp_sock *tp = tcp_sk(sk);
2468 
2469 	tcp_sync_left_out(tp);
2470 
2471 	if (tp->snd_una == prior_snd_una ||
2472 	    !before(tp->snd_una, tp->frto_highmark)) {
2473 		/* RTO was caused by loss, start retransmitting in
2474 		 * go-back-N slow start
2475 		 */
2476 		tcp_enter_frto_loss(sk);
2477 		return;
2478 	}
2479 
2480 	if (tp->frto_counter == 1) {
2481 		/* First ACK after RTO advances the window: allow two new
2482 		 * segments out.
2483 		 */
2484 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2485 	} else {
2486 		/* Also the second ACK after RTO advances the window.
2487 		 * The RTO was likely spurious. Reduce cwnd and continue
2488 		 * in congestion avoidance
2489 		 */
2490 		tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2491 		tcp_moderate_cwnd(tp);
2492 	}
2493 
2494 	/* F-RTO affects on two new ACKs following RTO.
2495 	 * At latest on third ACK the TCP behavior is back to normal.
2496 	 */
2497 	tp->frto_counter = (tp->frto_counter + 1) % 3;
2498 }
2499 
2500 /* This routine deals with incoming acks, but not outgoing ones. */
2501 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2502 {
2503 	struct inet_connection_sock *icsk = inet_csk(sk);
2504 	struct tcp_sock *tp = tcp_sk(sk);
2505 	u32 prior_snd_una = tp->snd_una;
2506 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2507 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2508 	u32 prior_in_flight;
2509 	s32 seq_rtt;
2510 	int prior_packets;
2511 
2512 	/* If the ack is newer than sent or older than previous acks
2513 	 * then we can probably ignore it.
2514 	 */
2515 	if (after(ack, tp->snd_nxt))
2516 		goto uninteresting_ack;
2517 
2518 	if (before(ack, prior_snd_una))
2519 		goto old_ack;
2520 
2521 	if (sysctl_tcp_abc) {
2522 		if (icsk->icsk_ca_state < TCP_CA_CWR)
2523 			tp->bytes_acked += ack - prior_snd_una;
2524 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
2525 			/* we assume just one segment left network */
2526 			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2527 	}
2528 
2529 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2530 		/* Window is constant, pure forward advance.
2531 		 * No more checks are required.
2532 		 * Note, we use the fact that SND.UNA>=SND.WL2.
2533 		 */
2534 		tcp_update_wl(tp, ack, ack_seq);
2535 		tp->snd_una = ack;
2536 		flag |= FLAG_WIN_UPDATE;
2537 
2538 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2539 
2540 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2541 	} else {
2542 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2543 			flag |= FLAG_DATA;
2544 		else
2545 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2546 
2547 		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2548 
2549 		if (TCP_SKB_CB(skb)->sacked)
2550 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2551 
2552 		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2553 			flag |= FLAG_ECE;
2554 
2555 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2556 	}
2557 
2558 	/* We passed data and got it acked, remove any soft error
2559 	 * log. Something worked...
2560 	 */
2561 	sk->sk_err_soft = 0;
2562 	tp->rcv_tstamp = tcp_time_stamp;
2563 	prior_packets = tp->packets_out;
2564 	if (!prior_packets)
2565 		goto no_queue;
2566 
2567 	prior_in_flight = tcp_packets_in_flight(tp);
2568 
2569 	/* See if we can take anything off of the retransmit queue. */
2570 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2571 
2572 	if (tp->frto_counter)
2573 		tcp_process_frto(sk, prior_snd_una);
2574 
2575 	if (tcp_ack_is_dubious(sk, flag)) {
2576 		/* Advance CWND, if state allows this. */
2577 		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2578 			tcp_cong_avoid(sk, ack,  seq_rtt, prior_in_flight, 0);
2579 		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2580 	} else {
2581 		if ((flag & FLAG_DATA_ACKED))
2582 			tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2583 	}
2584 
2585 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2586 		dst_confirm(sk->sk_dst_cache);
2587 
2588 	return 1;
2589 
2590 no_queue:
2591 	icsk->icsk_probes_out = 0;
2592 
2593 	/* If this ack opens up a zero window, clear backoff.  It was
2594 	 * being used to time the probes, and is probably far higher than
2595 	 * it needs to be for normal retransmission.
2596 	 */
2597 	if (sk->sk_send_head)
2598 		tcp_ack_probe(sk);
2599 	return 1;
2600 
2601 old_ack:
2602 	if (TCP_SKB_CB(skb)->sacked)
2603 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2604 
2605 uninteresting_ack:
2606 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2607 	return 0;
2608 }
2609 
2610 
2611 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2612  * But, this can also be called on packets in the established flow when
2613  * the fast version below fails.
2614  */
2615 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2616 {
2617 	unsigned char *ptr;
2618 	struct tcphdr *th = skb->h.th;
2619 	int length=(th->doff*4)-sizeof(struct tcphdr);
2620 
2621 	ptr = (unsigned char *)(th + 1);
2622 	opt_rx->saw_tstamp = 0;
2623 
2624 	while(length>0) {
2625 	  	int opcode=*ptr++;
2626 		int opsize;
2627 
2628 		switch (opcode) {
2629 			case TCPOPT_EOL:
2630 				return;
2631 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2632 				length--;
2633 				continue;
2634 			default:
2635 				opsize=*ptr++;
2636 				if (opsize < 2) /* "silly options" */
2637 					return;
2638 				if (opsize > length)
2639 					return;	/* don't parse partial options */
2640 	  			switch(opcode) {
2641 				case TCPOPT_MSS:
2642 					if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2643 						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2644 						if (in_mss) {
2645 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2646 								in_mss = opt_rx->user_mss;
2647 							opt_rx->mss_clamp = in_mss;
2648 						}
2649 					}
2650 					break;
2651 				case TCPOPT_WINDOW:
2652 					if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2653 						if (sysctl_tcp_window_scaling) {
2654 							__u8 snd_wscale = *(__u8 *) ptr;
2655 							opt_rx->wscale_ok = 1;
2656 							if (snd_wscale > 14) {
2657 								if(net_ratelimit())
2658 									printk(KERN_INFO "tcp_parse_options: Illegal window "
2659 									       "scaling value %d >14 received.\n",
2660 									       snd_wscale);
2661 								snd_wscale = 14;
2662 							}
2663 							opt_rx->snd_wscale = snd_wscale;
2664 						}
2665 					break;
2666 				case TCPOPT_TIMESTAMP:
2667 					if(opsize==TCPOLEN_TIMESTAMP) {
2668 						if ((estab && opt_rx->tstamp_ok) ||
2669 						    (!estab && sysctl_tcp_timestamps)) {
2670 							opt_rx->saw_tstamp = 1;
2671 							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2672 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2673 						}
2674 					}
2675 					break;
2676 				case TCPOPT_SACK_PERM:
2677 					if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2678 						if (sysctl_tcp_sack) {
2679 							opt_rx->sack_ok = 1;
2680 							tcp_sack_reset(opt_rx);
2681 						}
2682 					}
2683 					break;
2684 
2685 				case TCPOPT_SACK:
2686 					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2687 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2688 					   opt_rx->sack_ok) {
2689 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2690 					}
2691 #ifdef CONFIG_TCP_MD5SIG
2692 				case TCPOPT_MD5SIG:
2693 					/*
2694 					 * The MD5 Hash has already been
2695 					 * checked (see tcp_v{4,6}_do_rcv()).
2696 					 */
2697 					break;
2698 #endif
2699 	  			};
2700 	  			ptr+=opsize-2;
2701 	  			length-=opsize;
2702 	  	};
2703 	}
2704 }
2705 
2706 /* Fast parse options. This hopes to only see timestamps.
2707  * If it is wrong it falls back on tcp_parse_options().
2708  */
2709 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2710 				  struct tcp_sock *tp)
2711 {
2712 	if (th->doff == sizeof(struct tcphdr)>>2) {
2713 		tp->rx_opt.saw_tstamp = 0;
2714 		return 0;
2715 	} else if (tp->rx_opt.tstamp_ok &&
2716 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2717 		__be32 *ptr = (__be32 *)(th + 1);
2718 		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2719 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2720 			tp->rx_opt.saw_tstamp = 1;
2721 			++ptr;
2722 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2723 			++ptr;
2724 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2725 			return 1;
2726 		}
2727 	}
2728 	tcp_parse_options(skb, &tp->rx_opt, 1);
2729 	return 1;
2730 }
2731 
2732 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2733 {
2734 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2735 	tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2736 }
2737 
2738 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2739 {
2740 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2741 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2742 		 * extra check below makes sure this can only happen
2743 		 * for pure ACK frames.  -DaveM
2744 		 *
2745 		 * Not only, also it occurs for expired timestamps.
2746 		 */
2747 
2748 		if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2749 		   xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2750 			tcp_store_ts_recent(tp);
2751 	}
2752 }
2753 
2754 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2755  *
2756  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2757  * it can pass through stack. So, the following predicate verifies that
2758  * this segment is not used for anything but congestion avoidance or
2759  * fast retransmit. Moreover, we even are able to eliminate most of such
2760  * second order effects, if we apply some small "replay" window (~RTO)
2761  * to timestamp space.
2762  *
2763  * All these measures still do not guarantee that we reject wrapped ACKs
2764  * on networks with high bandwidth, when sequence space is recycled fastly,
2765  * but it guarantees that such events will be very rare and do not affect
2766  * connection seriously. This doesn't look nice, but alas, PAWS is really
2767  * buggy extension.
2768  *
2769  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2770  * states that events when retransmit arrives after original data are rare.
2771  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2772  * the biggest problem on large power networks even with minor reordering.
2773  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2774  * up to bandwidth of 18Gigabit/sec. 8) ]
2775  */
2776 
2777 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2778 {
2779 	struct tcp_sock *tp = tcp_sk(sk);
2780 	struct tcphdr *th = skb->h.th;
2781 	u32 seq = TCP_SKB_CB(skb)->seq;
2782 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2783 
2784 	return (/* 1. Pure ACK with correct sequence number. */
2785 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2786 
2787 		/* 2. ... and duplicate ACK. */
2788 		ack == tp->snd_una &&
2789 
2790 		/* 3. ... and does not update window. */
2791 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2792 
2793 		/* 4. ... and sits in replay window. */
2794 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2795 }
2796 
2797 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2798 {
2799 	const struct tcp_sock *tp = tcp_sk(sk);
2800 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2801 		xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2802 		!tcp_disordered_ack(sk, skb));
2803 }
2804 
2805 /* Check segment sequence number for validity.
2806  *
2807  * Segment controls are considered valid, if the segment
2808  * fits to the window after truncation to the window. Acceptability
2809  * of data (and SYN, FIN, of course) is checked separately.
2810  * See tcp_data_queue(), for example.
2811  *
2812  * Also, controls (RST is main one) are accepted using RCV.WUP instead
2813  * of RCV.NXT. Peer still did not advance his SND.UNA when we
2814  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2815  * (borrowed from freebsd)
2816  */
2817 
2818 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2819 {
2820 	return	!before(end_seq, tp->rcv_wup) &&
2821 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2822 }
2823 
2824 /* When we get a reset we do this. */
2825 static void tcp_reset(struct sock *sk)
2826 {
2827 	/* We want the right error as BSD sees it (and indeed as we do). */
2828 	switch (sk->sk_state) {
2829 		case TCP_SYN_SENT:
2830 			sk->sk_err = ECONNREFUSED;
2831 			break;
2832 		case TCP_CLOSE_WAIT:
2833 			sk->sk_err = EPIPE;
2834 			break;
2835 		case TCP_CLOSE:
2836 			return;
2837 		default:
2838 			sk->sk_err = ECONNRESET;
2839 	}
2840 
2841 	if (!sock_flag(sk, SOCK_DEAD))
2842 		sk->sk_error_report(sk);
2843 
2844 	tcp_done(sk);
2845 }
2846 
2847 /*
2848  * 	Process the FIN bit. This now behaves as it is supposed to work
2849  *	and the FIN takes effect when it is validly part of sequence
2850  *	space. Not before when we get holes.
2851  *
2852  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2853  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
2854  *	TIME-WAIT)
2855  *
2856  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
2857  *	close and we go into CLOSING (and later onto TIME-WAIT)
2858  *
2859  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2860  */
2861 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2862 {
2863 	struct tcp_sock *tp = tcp_sk(sk);
2864 
2865 	inet_csk_schedule_ack(sk);
2866 
2867 	sk->sk_shutdown |= RCV_SHUTDOWN;
2868 	sock_set_flag(sk, SOCK_DONE);
2869 
2870 	switch (sk->sk_state) {
2871 		case TCP_SYN_RECV:
2872 		case TCP_ESTABLISHED:
2873 			/* Move to CLOSE_WAIT */
2874 			tcp_set_state(sk, TCP_CLOSE_WAIT);
2875 			inet_csk(sk)->icsk_ack.pingpong = 1;
2876 			break;
2877 
2878 		case TCP_CLOSE_WAIT:
2879 		case TCP_CLOSING:
2880 			/* Received a retransmission of the FIN, do
2881 			 * nothing.
2882 			 */
2883 			break;
2884 		case TCP_LAST_ACK:
2885 			/* RFC793: Remain in the LAST-ACK state. */
2886 			break;
2887 
2888 		case TCP_FIN_WAIT1:
2889 			/* This case occurs when a simultaneous close
2890 			 * happens, we must ack the received FIN and
2891 			 * enter the CLOSING state.
2892 			 */
2893 			tcp_send_ack(sk);
2894 			tcp_set_state(sk, TCP_CLOSING);
2895 			break;
2896 		case TCP_FIN_WAIT2:
2897 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
2898 			tcp_send_ack(sk);
2899 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2900 			break;
2901 		default:
2902 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
2903 			 * cases we should never reach this piece of code.
2904 			 */
2905 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2906 			       __FUNCTION__, sk->sk_state);
2907 			break;
2908 	};
2909 
2910 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
2911 	 * Probably, we should reset in this case. For now drop them.
2912 	 */
2913 	__skb_queue_purge(&tp->out_of_order_queue);
2914 	if (tp->rx_opt.sack_ok)
2915 		tcp_sack_reset(&tp->rx_opt);
2916 	sk_stream_mem_reclaim(sk);
2917 
2918 	if (!sock_flag(sk, SOCK_DEAD)) {
2919 		sk->sk_state_change(sk);
2920 
2921 		/* Do not send POLL_HUP for half duplex close. */
2922 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
2923 		    sk->sk_state == TCP_CLOSE)
2924 			sk_wake_async(sk, 1, POLL_HUP);
2925 		else
2926 			sk_wake_async(sk, 1, POLL_IN);
2927 	}
2928 }
2929 
2930 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2931 {
2932 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2933 		if (before(seq, sp->start_seq))
2934 			sp->start_seq = seq;
2935 		if (after(end_seq, sp->end_seq))
2936 			sp->end_seq = end_seq;
2937 		return 1;
2938 	}
2939 	return 0;
2940 }
2941 
2942 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2943 {
2944 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2945 		if (before(seq, tp->rcv_nxt))
2946 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2947 		else
2948 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2949 
2950 		tp->rx_opt.dsack = 1;
2951 		tp->duplicate_sack[0].start_seq = seq;
2952 		tp->duplicate_sack[0].end_seq = end_seq;
2953 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2954 	}
2955 }
2956 
2957 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2958 {
2959 	if (!tp->rx_opt.dsack)
2960 		tcp_dsack_set(tp, seq, end_seq);
2961 	else
2962 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2963 }
2964 
2965 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2966 {
2967 	struct tcp_sock *tp = tcp_sk(sk);
2968 
2969 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2970 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2971 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2972 		tcp_enter_quickack_mode(sk);
2973 
2974 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2975 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2976 
2977 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2978 				end_seq = tp->rcv_nxt;
2979 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2980 		}
2981 	}
2982 
2983 	tcp_send_ack(sk);
2984 }
2985 
2986 /* These routines update the SACK block as out-of-order packets arrive or
2987  * in-order packets close up the sequence space.
2988  */
2989 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2990 {
2991 	int this_sack;
2992 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2993 	struct tcp_sack_block *swalk = sp+1;
2994 
2995 	/* See if the recent change to the first SACK eats into
2996 	 * or hits the sequence space of other SACK blocks, if so coalesce.
2997 	 */
2998 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2999 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3000 			int i;
3001 
3002 			/* Zap SWALK, by moving every further SACK up by one slot.
3003 			 * Decrease num_sacks.
3004 			 */
3005 			tp->rx_opt.num_sacks--;
3006 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3007 			for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
3008 				sp[i] = sp[i+1];
3009 			continue;
3010 		}
3011 		this_sack++, swalk++;
3012 	}
3013 }
3014 
3015 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3016 {
3017 	__u32 tmp;
3018 
3019 	tmp = sack1->start_seq;
3020 	sack1->start_seq = sack2->start_seq;
3021 	sack2->start_seq = tmp;
3022 
3023 	tmp = sack1->end_seq;
3024 	sack1->end_seq = sack2->end_seq;
3025 	sack2->end_seq = tmp;
3026 }
3027 
3028 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3029 {
3030 	struct tcp_sock *tp = tcp_sk(sk);
3031 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3032 	int cur_sacks = tp->rx_opt.num_sacks;
3033 	int this_sack;
3034 
3035 	if (!cur_sacks)
3036 		goto new_sack;
3037 
3038 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3039 		if (tcp_sack_extend(sp, seq, end_seq)) {
3040 			/* Rotate this_sack to the first one. */
3041 			for (; this_sack>0; this_sack--, sp--)
3042 				tcp_sack_swap(sp, sp-1);
3043 			if (cur_sacks > 1)
3044 				tcp_sack_maybe_coalesce(tp);
3045 			return;
3046 		}
3047 	}
3048 
3049 	/* Could not find an adjacent existing SACK, build a new one,
3050 	 * put it at the front, and shift everyone else down.  We
3051 	 * always know there is at least one SACK present already here.
3052 	 *
3053 	 * If the sack array is full, forget about the last one.
3054 	 */
3055 	if (this_sack >= 4) {
3056 		this_sack--;
3057 		tp->rx_opt.num_sacks--;
3058 		sp--;
3059 	}
3060 	for(; this_sack > 0; this_sack--, sp--)
3061 		*sp = *(sp-1);
3062 
3063 new_sack:
3064 	/* Build the new head SACK, and we're done. */
3065 	sp->start_seq = seq;
3066 	sp->end_seq = end_seq;
3067 	tp->rx_opt.num_sacks++;
3068 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3069 }
3070 
3071 /* RCV.NXT advances, some SACKs should be eaten. */
3072 
3073 static void tcp_sack_remove(struct tcp_sock *tp)
3074 {
3075 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3076 	int num_sacks = tp->rx_opt.num_sacks;
3077 	int this_sack;
3078 
3079 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3080 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3081 		tp->rx_opt.num_sacks = 0;
3082 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3083 		return;
3084 	}
3085 
3086 	for(this_sack = 0; this_sack < num_sacks; ) {
3087 		/* Check if the start of the sack is covered by RCV.NXT. */
3088 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3089 			int i;
3090 
3091 			/* RCV.NXT must cover all the block! */
3092 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3093 
3094 			/* Zap this SACK, by moving forward any other SACKS. */
3095 			for (i=this_sack+1; i < num_sacks; i++)
3096 				tp->selective_acks[i-1] = tp->selective_acks[i];
3097 			num_sacks--;
3098 			continue;
3099 		}
3100 		this_sack++;
3101 		sp++;
3102 	}
3103 	if (num_sacks != tp->rx_opt.num_sacks) {
3104 		tp->rx_opt.num_sacks = num_sacks;
3105 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3106 	}
3107 }
3108 
3109 /* This one checks to see if we can put data from the
3110  * out_of_order queue into the receive_queue.
3111  */
3112 static void tcp_ofo_queue(struct sock *sk)
3113 {
3114 	struct tcp_sock *tp = tcp_sk(sk);
3115 	__u32 dsack_high = tp->rcv_nxt;
3116 	struct sk_buff *skb;
3117 
3118 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3119 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3120 			break;
3121 
3122 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3123 			__u32 dsack = dsack_high;
3124 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3125 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3126 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3127 		}
3128 
3129 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3130 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3131 			__skb_unlink(skb, &tp->out_of_order_queue);
3132 			__kfree_skb(skb);
3133 			continue;
3134 		}
3135 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3136 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3137 			   TCP_SKB_CB(skb)->end_seq);
3138 
3139 		__skb_unlink(skb, &tp->out_of_order_queue);
3140 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3141 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3142 		if(skb->h.th->fin)
3143 			tcp_fin(skb, sk, skb->h.th);
3144 	}
3145 }
3146 
3147 static int tcp_prune_queue(struct sock *sk);
3148 
3149 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3150 {
3151 	struct tcphdr *th = skb->h.th;
3152 	struct tcp_sock *tp = tcp_sk(sk);
3153 	int eaten = -1;
3154 
3155 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3156 		goto drop;
3157 
3158 	__skb_pull(skb, th->doff*4);
3159 
3160 	TCP_ECN_accept_cwr(tp, skb);
3161 
3162 	if (tp->rx_opt.dsack) {
3163 		tp->rx_opt.dsack = 0;
3164 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3165 						    4 - tp->rx_opt.tstamp_ok);
3166 	}
3167 
3168 	/*  Queue data for delivery to the user.
3169 	 *  Packets in sequence go to the receive queue.
3170 	 *  Out of sequence packets to the out_of_order_queue.
3171 	 */
3172 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3173 		if (tcp_receive_window(tp) == 0)
3174 			goto out_of_window;
3175 
3176 		/* Ok. In sequence. In window. */
3177 		if (tp->ucopy.task == current &&
3178 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3179 		    sock_owned_by_user(sk) && !tp->urg_data) {
3180 			int chunk = min_t(unsigned int, skb->len,
3181 							tp->ucopy.len);
3182 
3183 			__set_current_state(TASK_RUNNING);
3184 
3185 			local_bh_enable();
3186 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3187 				tp->ucopy.len -= chunk;
3188 				tp->copied_seq += chunk;
3189 				eaten = (chunk == skb->len && !th->fin);
3190 				tcp_rcv_space_adjust(sk);
3191 			}
3192 			local_bh_disable();
3193 		}
3194 
3195 		if (eaten <= 0) {
3196 queue_and_out:
3197 			if (eaten < 0 &&
3198 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3199 			     !sk_stream_rmem_schedule(sk, skb))) {
3200 				if (tcp_prune_queue(sk) < 0 ||
3201 				    !sk_stream_rmem_schedule(sk, skb))
3202 					goto drop;
3203 			}
3204 			sk_stream_set_owner_r(skb, sk);
3205 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3206 		}
3207 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3208 		if(skb->len)
3209 			tcp_event_data_recv(sk, tp, skb);
3210 		if(th->fin)
3211 			tcp_fin(skb, sk, th);
3212 
3213 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3214 			tcp_ofo_queue(sk);
3215 
3216 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3217 			 * gap in queue is filled.
3218 			 */
3219 			if (skb_queue_empty(&tp->out_of_order_queue))
3220 				inet_csk(sk)->icsk_ack.pingpong = 0;
3221 		}
3222 
3223 		if (tp->rx_opt.num_sacks)
3224 			tcp_sack_remove(tp);
3225 
3226 		tcp_fast_path_check(sk, tp);
3227 
3228 		if (eaten > 0)
3229 			__kfree_skb(skb);
3230 		else if (!sock_flag(sk, SOCK_DEAD))
3231 			sk->sk_data_ready(sk, 0);
3232 		return;
3233 	}
3234 
3235 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3236 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3237 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3238 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3239 
3240 out_of_window:
3241 		tcp_enter_quickack_mode(sk);
3242 		inet_csk_schedule_ack(sk);
3243 drop:
3244 		__kfree_skb(skb);
3245 		return;
3246 	}
3247 
3248 	/* Out of window. F.e. zero window probe. */
3249 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3250 		goto out_of_window;
3251 
3252 	tcp_enter_quickack_mode(sk);
3253 
3254 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3255 		/* Partial packet, seq < rcv_next < end_seq */
3256 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3257 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3258 			   TCP_SKB_CB(skb)->end_seq);
3259 
3260 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3261 
3262 		/* If window is closed, drop tail of packet. But after
3263 		 * remembering D-SACK for its head made in previous line.
3264 		 */
3265 		if (!tcp_receive_window(tp))
3266 			goto out_of_window;
3267 		goto queue_and_out;
3268 	}
3269 
3270 	TCP_ECN_check_ce(tp, skb);
3271 
3272 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3273 	    !sk_stream_rmem_schedule(sk, skb)) {
3274 		if (tcp_prune_queue(sk) < 0 ||
3275 		    !sk_stream_rmem_schedule(sk, skb))
3276 			goto drop;
3277 	}
3278 
3279 	/* Disable header prediction. */
3280 	tp->pred_flags = 0;
3281 	inet_csk_schedule_ack(sk);
3282 
3283 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3284 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3285 
3286 	sk_stream_set_owner_r(skb, sk);
3287 
3288 	if (!skb_peek(&tp->out_of_order_queue)) {
3289 		/* Initial out of order segment, build 1 SACK. */
3290 		if (tp->rx_opt.sack_ok) {
3291 			tp->rx_opt.num_sacks = 1;
3292 			tp->rx_opt.dsack     = 0;
3293 			tp->rx_opt.eff_sacks = 1;
3294 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3295 			tp->selective_acks[0].end_seq =
3296 						TCP_SKB_CB(skb)->end_seq;
3297 		}
3298 		__skb_queue_head(&tp->out_of_order_queue,skb);
3299 	} else {
3300 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3301 		u32 seq = TCP_SKB_CB(skb)->seq;
3302 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3303 
3304 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3305 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3306 
3307 			if (!tp->rx_opt.num_sacks ||
3308 			    tp->selective_acks[0].end_seq != seq)
3309 				goto add_sack;
3310 
3311 			/* Common case: data arrive in order after hole. */
3312 			tp->selective_acks[0].end_seq = end_seq;
3313 			return;
3314 		}
3315 
3316 		/* Find place to insert this segment. */
3317 		do {
3318 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3319 				break;
3320 		} while ((skb1 = skb1->prev) !=
3321 			 (struct sk_buff*)&tp->out_of_order_queue);
3322 
3323 		/* Do skb overlap to previous one? */
3324 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3325 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3326 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3327 				/* All the bits are present. Drop. */
3328 				__kfree_skb(skb);
3329 				tcp_dsack_set(tp, seq, end_seq);
3330 				goto add_sack;
3331 			}
3332 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3333 				/* Partial overlap. */
3334 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3335 			} else {
3336 				skb1 = skb1->prev;
3337 			}
3338 		}
3339 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3340 
3341 		/* And clean segments covered by new one as whole. */
3342 		while ((skb1 = skb->next) !=
3343 		       (struct sk_buff*)&tp->out_of_order_queue &&
3344 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3345 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3346 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3347 			       break;
3348 		       }
3349 		       __skb_unlink(skb1, &tp->out_of_order_queue);
3350 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3351 		       __kfree_skb(skb1);
3352 		}
3353 
3354 add_sack:
3355 		if (tp->rx_opt.sack_ok)
3356 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3357 	}
3358 }
3359 
3360 /* Collapse contiguous sequence of skbs head..tail with
3361  * sequence numbers start..end.
3362  * Segments with FIN/SYN are not collapsed (only because this
3363  * simplifies code)
3364  */
3365 static void
3366 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3367 	     struct sk_buff *head, struct sk_buff *tail,
3368 	     u32 start, u32 end)
3369 {
3370 	struct sk_buff *skb;
3371 
3372 	/* First, check that queue is collapsible and find
3373 	 * the point where collapsing can be useful. */
3374 	for (skb = head; skb != tail; ) {
3375 		/* No new bits? It is possible on ofo queue. */
3376 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3377 			struct sk_buff *next = skb->next;
3378 			__skb_unlink(skb, list);
3379 			__kfree_skb(skb);
3380 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3381 			skb = next;
3382 			continue;
3383 		}
3384 
3385 		/* The first skb to collapse is:
3386 		 * - not SYN/FIN and
3387 		 * - bloated or contains data before "start" or
3388 		 *   overlaps to the next one.
3389 		 */
3390 		if (!skb->h.th->syn && !skb->h.th->fin &&
3391 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3392 		     before(TCP_SKB_CB(skb)->seq, start) ||
3393 		     (skb->next != tail &&
3394 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3395 			break;
3396 
3397 		/* Decided to skip this, advance start seq. */
3398 		start = TCP_SKB_CB(skb)->end_seq;
3399 		skb = skb->next;
3400 	}
3401 	if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3402 		return;
3403 
3404 	while (before(start, end)) {
3405 		struct sk_buff *nskb;
3406 		int header = skb_headroom(skb);
3407 		int copy = SKB_MAX_ORDER(header, 0);
3408 
3409 		/* Too big header? This can happen with IPv6. */
3410 		if (copy < 0)
3411 			return;
3412 		if (end-start < copy)
3413 			copy = end-start;
3414 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3415 		if (!nskb)
3416 			return;
3417 		skb_reserve(nskb, header);
3418 		memcpy(nskb->head, skb->head, header);
3419 		nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3420 		nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3421 		nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3422 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3423 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3424 		__skb_insert(nskb, skb->prev, skb, list);
3425 		sk_stream_set_owner_r(nskb, sk);
3426 
3427 		/* Copy data, releasing collapsed skbs. */
3428 		while (copy > 0) {
3429 			int offset = start - TCP_SKB_CB(skb)->seq;
3430 			int size = TCP_SKB_CB(skb)->end_seq - start;
3431 
3432 			BUG_ON(offset < 0);
3433 			if (size > 0) {
3434 				size = min(copy, size);
3435 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3436 					BUG();
3437 				TCP_SKB_CB(nskb)->end_seq += size;
3438 				copy -= size;
3439 				start += size;
3440 			}
3441 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3442 				struct sk_buff *next = skb->next;
3443 				__skb_unlink(skb, list);
3444 				__kfree_skb(skb);
3445 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3446 				skb = next;
3447 				if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3448 					return;
3449 			}
3450 		}
3451 	}
3452 }
3453 
3454 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3455  * and tcp_collapse() them until all the queue is collapsed.
3456  */
3457 static void tcp_collapse_ofo_queue(struct sock *sk)
3458 {
3459 	struct tcp_sock *tp = tcp_sk(sk);
3460 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3461 	struct sk_buff *head;
3462 	u32 start, end;
3463 
3464 	if (skb == NULL)
3465 		return;
3466 
3467 	start = TCP_SKB_CB(skb)->seq;
3468 	end = TCP_SKB_CB(skb)->end_seq;
3469 	head = skb;
3470 
3471 	for (;;) {
3472 		skb = skb->next;
3473 
3474 		/* Segment is terminated when we see gap or when
3475 		 * we are at the end of all the queue. */
3476 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3477 		    after(TCP_SKB_CB(skb)->seq, end) ||
3478 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3479 			tcp_collapse(sk, &tp->out_of_order_queue,
3480 				     head, skb, start, end);
3481 			head = skb;
3482 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3483 				break;
3484 			/* Start new segment */
3485 			start = TCP_SKB_CB(skb)->seq;
3486 			end = TCP_SKB_CB(skb)->end_seq;
3487 		} else {
3488 			if (before(TCP_SKB_CB(skb)->seq, start))
3489 				start = TCP_SKB_CB(skb)->seq;
3490 			if (after(TCP_SKB_CB(skb)->end_seq, end))
3491 				end = TCP_SKB_CB(skb)->end_seq;
3492 		}
3493 	}
3494 }
3495 
3496 /* Reduce allocated memory if we can, trying to get
3497  * the socket within its memory limits again.
3498  *
3499  * Return less than zero if we should start dropping frames
3500  * until the socket owning process reads some of the data
3501  * to stabilize the situation.
3502  */
3503 static int tcp_prune_queue(struct sock *sk)
3504 {
3505 	struct tcp_sock *tp = tcp_sk(sk);
3506 
3507 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3508 
3509 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3510 
3511 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3512 		tcp_clamp_window(sk, tp);
3513 	else if (tcp_memory_pressure)
3514 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3515 
3516 	tcp_collapse_ofo_queue(sk);
3517 	tcp_collapse(sk, &sk->sk_receive_queue,
3518 		     sk->sk_receive_queue.next,
3519 		     (struct sk_buff*)&sk->sk_receive_queue,
3520 		     tp->copied_seq, tp->rcv_nxt);
3521 	sk_stream_mem_reclaim(sk);
3522 
3523 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3524 		return 0;
3525 
3526 	/* Collapsing did not help, destructive actions follow.
3527 	 * This must not ever occur. */
3528 
3529 	/* First, purge the out_of_order queue. */
3530 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3531 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3532 		__skb_queue_purge(&tp->out_of_order_queue);
3533 
3534 		/* Reset SACK state.  A conforming SACK implementation will
3535 		 * do the same at a timeout based retransmit.  When a connection
3536 		 * is in a sad state like this, we care only about integrity
3537 		 * of the connection not performance.
3538 		 */
3539 		if (tp->rx_opt.sack_ok)
3540 			tcp_sack_reset(&tp->rx_opt);
3541 		sk_stream_mem_reclaim(sk);
3542 	}
3543 
3544 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3545 		return 0;
3546 
3547 	/* If we are really being abused, tell the caller to silently
3548 	 * drop receive data on the floor.  It will get retransmitted
3549 	 * and hopefully then we'll have sufficient space.
3550 	 */
3551 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3552 
3553 	/* Massive buffer overcommit. */
3554 	tp->pred_flags = 0;
3555 	return -1;
3556 }
3557 
3558 
3559 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3560  * As additional protections, we do not touch cwnd in retransmission phases,
3561  * and if application hit its sndbuf limit recently.
3562  */
3563 void tcp_cwnd_application_limited(struct sock *sk)
3564 {
3565 	struct tcp_sock *tp = tcp_sk(sk);
3566 
3567 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3568 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3569 		/* Limited by application or receiver window. */
3570 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3571 		u32 win_used = max(tp->snd_cwnd_used, init_win);
3572 		if (win_used < tp->snd_cwnd) {
3573 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3574 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3575 		}
3576 		tp->snd_cwnd_used = 0;
3577 	}
3578 	tp->snd_cwnd_stamp = tcp_time_stamp;
3579 }
3580 
3581 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3582 {
3583 	/* If the user specified a specific send buffer setting, do
3584 	 * not modify it.
3585 	 */
3586 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3587 		return 0;
3588 
3589 	/* If we are under global TCP memory pressure, do not expand.  */
3590 	if (tcp_memory_pressure)
3591 		return 0;
3592 
3593 	/* If we are under soft global TCP memory pressure, do not expand.  */
3594 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3595 		return 0;
3596 
3597 	/* If we filled the congestion window, do not expand.  */
3598 	if (tp->packets_out >= tp->snd_cwnd)
3599 		return 0;
3600 
3601 	return 1;
3602 }
3603 
3604 /* When incoming ACK allowed to free some skb from write_queue,
3605  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3606  * on the exit from tcp input handler.
3607  *
3608  * PROBLEM: sndbuf expansion does not work well with largesend.
3609  */
3610 static void tcp_new_space(struct sock *sk)
3611 {
3612 	struct tcp_sock *tp = tcp_sk(sk);
3613 
3614 	if (tcp_should_expand_sndbuf(sk, tp)) {
3615  		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3616 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3617 		    demanded = max_t(unsigned int, tp->snd_cwnd,
3618 						   tp->reordering + 1);
3619 		sndmem *= 2*demanded;
3620 		if (sndmem > sk->sk_sndbuf)
3621 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3622 		tp->snd_cwnd_stamp = tcp_time_stamp;
3623 	}
3624 
3625 	sk->sk_write_space(sk);
3626 }
3627 
3628 static void tcp_check_space(struct sock *sk)
3629 {
3630 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3631 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3632 		if (sk->sk_socket &&
3633 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3634 			tcp_new_space(sk);
3635 	}
3636 }
3637 
3638 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3639 {
3640 	tcp_push_pending_frames(sk, tp);
3641 	tcp_check_space(sk);
3642 }
3643 
3644 /*
3645  * Check if sending an ack is needed.
3646  */
3647 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3648 {
3649 	struct tcp_sock *tp = tcp_sk(sk);
3650 
3651 	    /* More than one full frame received... */
3652 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3653 	     /* ... and right edge of window advances far enough.
3654 	      * (tcp_recvmsg() will send ACK otherwise). Or...
3655 	      */
3656 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3657 	    /* We ACK each frame or... */
3658 	    tcp_in_quickack_mode(sk) ||
3659 	    /* We have out of order data. */
3660 	    (ofo_possible &&
3661 	     skb_peek(&tp->out_of_order_queue))) {
3662 		/* Then ack it now */
3663 		tcp_send_ack(sk);
3664 	} else {
3665 		/* Else, send delayed ack. */
3666 		tcp_send_delayed_ack(sk);
3667 	}
3668 }
3669 
3670 static inline void tcp_ack_snd_check(struct sock *sk)
3671 {
3672 	if (!inet_csk_ack_scheduled(sk)) {
3673 		/* We sent a data segment already. */
3674 		return;
3675 	}
3676 	__tcp_ack_snd_check(sk, 1);
3677 }
3678 
3679 /*
3680  *	This routine is only called when we have urgent data
3681  *	signaled. Its the 'slow' part of tcp_urg. It could be
3682  *	moved inline now as tcp_urg is only called from one
3683  *	place. We handle URGent data wrong. We have to - as
3684  *	BSD still doesn't use the correction from RFC961.
3685  *	For 1003.1g we should support a new option TCP_STDURG to permit
3686  *	either form (or just set the sysctl tcp_stdurg).
3687  */
3688 
3689 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3690 {
3691 	struct tcp_sock *tp = tcp_sk(sk);
3692 	u32 ptr = ntohs(th->urg_ptr);
3693 
3694 	if (ptr && !sysctl_tcp_stdurg)
3695 		ptr--;
3696 	ptr += ntohl(th->seq);
3697 
3698 	/* Ignore urgent data that we've already seen and read. */
3699 	if (after(tp->copied_seq, ptr))
3700 		return;
3701 
3702 	/* Do not replay urg ptr.
3703 	 *
3704 	 * NOTE: interesting situation not covered by specs.
3705 	 * Misbehaving sender may send urg ptr, pointing to segment,
3706 	 * which we already have in ofo queue. We are not able to fetch
3707 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3708 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3709 	 * situations. But it is worth to think about possibility of some
3710 	 * DoSes using some hypothetical application level deadlock.
3711 	 */
3712 	if (before(ptr, tp->rcv_nxt))
3713 		return;
3714 
3715 	/* Do we already have a newer (or duplicate) urgent pointer? */
3716 	if (tp->urg_data && !after(ptr, tp->urg_seq))
3717 		return;
3718 
3719 	/* Tell the world about our new urgent pointer. */
3720 	sk_send_sigurg(sk);
3721 
3722 	/* We may be adding urgent data when the last byte read was
3723 	 * urgent. To do this requires some care. We cannot just ignore
3724 	 * tp->copied_seq since we would read the last urgent byte again
3725 	 * as data, nor can we alter copied_seq until this data arrives
3726 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3727 	 *
3728 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3729 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3730 	 * and expect that both A and B disappear from stream. This is _wrong_.
3731 	 * Though this happens in BSD with high probability, this is occasional.
3732 	 * Any application relying on this is buggy. Note also, that fix "works"
3733 	 * only in this artificial test. Insert some normal data between A and B and we will
3734 	 * decline of BSD again. Verdict: it is better to remove to trap
3735 	 * buggy users.
3736 	 */
3737 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3738 	    !sock_flag(sk, SOCK_URGINLINE) &&
3739 	    tp->copied_seq != tp->rcv_nxt) {
3740 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3741 		tp->copied_seq++;
3742 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3743 			__skb_unlink(skb, &sk->sk_receive_queue);
3744 			__kfree_skb(skb);
3745 		}
3746 	}
3747 
3748 	tp->urg_data   = TCP_URG_NOTYET;
3749 	tp->urg_seq    = ptr;
3750 
3751 	/* Disable header prediction. */
3752 	tp->pred_flags = 0;
3753 }
3754 
3755 /* This is the 'fast' part of urgent handling. */
3756 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3757 {
3758 	struct tcp_sock *tp = tcp_sk(sk);
3759 
3760 	/* Check if we get a new urgent pointer - normally not. */
3761 	if (th->urg)
3762 		tcp_check_urg(sk,th);
3763 
3764 	/* Do we wait for any urgent data? - normally not... */
3765 	if (tp->urg_data == TCP_URG_NOTYET) {
3766 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3767 			  th->syn;
3768 
3769 		/* Is the urgent pointer pointing into this packet? */
3770 		if (ptr < skb->len) {
3771 			u8 tmp;
3772 			if (skb_copy_bits(skb, ptr, &tmp, 1))
3773 				BUG();
3774 			tp->urg_data = TCP_URG_VALID | tmp;
3775 			if (!sock_flag(sk, SOCK_DEAD))
3776 				sk->sk_data_ready(sk, 0);
3777 		}
3778 	}
3779 }
3780 
3781 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3782 {
3783 	struct tcp_sock *tp = tcp_sk(sk);
3784 	int chunk = skb->len - hlen;
3785 	int err;
3786 
3787 	local_bh_enable();
3788 	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3789 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3790 	else
3791 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3792 						       tp->ucopy.iov);
3793 
3794 	if (!err) {
3795 		tp->ucopy.len -= chunk;
3796 		tp->copied_seq += chunk;
3797 		tcp_rcv_space_adjust(sk);
3798 	}
3799 
3800 	local_bh_disable();
3801 	return err;
3802 }
3803 
3804 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3805 {
3806 	__sum16 result;
3807 
3808 	if (sock_owned_by_user(sk)) {
3809 		local_bh_enable();
3810 		result = __tcp_checksum_complete(skb);
3811 		local_bh_disable();
3812 	} else {
3813 		result = __tcp_checksum_complete(skb);
3814 	}
3815 	return result;
3816 }
3817 
3818 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3819 {
3820 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3821 		__tcp_checksum_complete_user(sk, skb);
3822 }
3823 
3824 #ifdef CONFIG_NET_DMA
3825 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3826 {
3827 	struct tcp_sock *tp = tcp_sk(sk);
3828 	int chunk = skb->len - hlen;
3829 	int dma_cookie;
3830 	int copied_early = 0;
3831 
3832 	if (tp->ucopy.wakeup)
3833           	return 0;
3834 
3835 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3836 		tp->ucopy.dma_chan = get_softnet_dma();
3837 
3838 	if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3839 
3840 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3841 			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3842 
3843 		if (dma_cookie < 0)
3844 			goto out;
3845 
3846 		tp->ucopy.dma_cookie = dma_cookie;
3847 		copied_early = 1;
3848 
3849 		tp->ucopy.len -= chunk;
3850 		tp->copied_seq += chunk;
3851 		tcp_rcv_space_adjust(sk);
3852 
3853 		if ((tp->ucopy.len == 0) ||
3854 		    (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3855 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3856 			tp->ucopy.wakeup = 1;
3857 			sk->sk_data_ready(sk, 0);
3858 		}
3859 	} else if (chunk > 0) {
3860 		tp->ucopy.wakeup = 1;
3861 		sk->sk_data_ready(sk, 0);
3862 	}
3863 out:
3864 	return copied_early;
3865 }
3866 #endif /* CONFIG_NET_DMA */
3867 
3868 /*
3869  *	TCP receive function for the ESTABLISHED state.
3870  *
3871  *	It is split into a fast path and a slow path. The fast path is
3872  * 	disabled when:
3873  *	- A zero window was announced from us - zero window probing
3874  *        is only handled properly in the slow path.
3875  *	- Out of order segments arrived.
3876  *	- Urgent data is expected.
3877  *	- There is no buffer space left
3878  *	- Unexpected TCP flags/window values/header lengths are received
3879  *	  (detected by checking the TCP header against pred_flags)
3880  *	- Data is sent in both directions. Fast path only supports pure senders
3881  *	  or pure receivers (this means either the sequence number or the ack
3882  *	  value must stay constant)
3883  *	- Unexpected TCP option.
3884  *
3885  *	When these conditions are not satisfied it drops into a standard
3886  *	receive procedure patterned after RFC793 to handle all cases.
3887  *	The first three cases are guaranteed by proper pred_flags setting,
3888  *	the rest is checked inline. Fast processing is turned on in
3889  *	tcp_data_queue when everything is OK.
3890  */
3891 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3892 			struct tcphdr *th, unsigned len)
3893 {
3894 	struct tcp_sock *tp = tcp_sk(sk);
3895 
3896 	/*
3897 	 *	Header prediction.
3898 	 *	The code loosely follows the one in the famous
3899 	 *	"30 instruction TCP receive" Van Jacobson mail.
3900 	 *
3901 	 *	Van's trick is to deposit buffers into socket queue
3902 	 *	on a device interrupt, to call tcp_recv function
3903 	 *	on the receive process context and checksum and copy
3904 	 *	the buffer to user space. smart...
3905 	 *
3906 	 *	Our current scheme is not silly either but we take the
3907 	 *	extra cost of the net_bh soft interrupt processing...
3908 	 *	We do checksum and copy also but from device to kernel.
3909 	 */
3910 
3911 	tp->rx_opt.saw_tstamp = 0;
3912 
3913 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
3914 	 *	if header_prediction is to be made
3915 	 *	'S' will always be tp->tcp_header_len >> 2
3916 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
3917 	 *  turn it off	(when there are holes in the receive
3918 	 *	 space for instance)
3919 	 *	PSH flag is ignored.
3920 	 */
3921 
3922 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3923 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3924 		int tcp_header_len = tp->tcp_header_len;
3925 
3926 		/* Timestamp header prediction: tcp_header_len
3927 		 * is automatically equal to th->doff*4 due to pred_flags
3928 		 * match.
3929 		 */
3930 
3931 		/* Check timestamp */
3932 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3933 			__be32 *ptr = (__be32 *)(th + 1);
3934 
3935 			/* No? Slow path! */
3936 			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3937 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3938 				goto slow_path;
3939 
3940 			tp->rx_opt.saw_tstamp = 1;
3941 			++ptr;
3942 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3943 			++ptr;
3944 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3945 
3946 			/* If PAWS failed, check it more carefully in slow path */
3947 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3948 				goto slow_path;
3949 
3950 			/* DO NOT update ts_recent here, if checksum fails
3951 			 * and timestamp was corrupted part, it will result
3952 			 * in a hung connection since we will drop all
3953 			 * future packets due to the PAWS test.
3954 			 */
3955 		}
3956 
3957 		if (len <= tcp_header_len) {
3958 			/* Bulk data transfer: sender */
3959 			if (len == tcp_header_len) {
3960 				/* Predicted packet is in window by definition.
3961 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3962 				 * Hence, check seq<=rcv_wup reduces to:
3963 				 */
3964 				if (tcp_header_len ==
3965 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3966 				    tp->rcv_nxt == tp->rcv_wup)
3967 					tcp_store_ts_recent(tp);
3968 
3969 				/* We know that such packets are checksummed
3970 				 * on entry.
3971 				 */
3972 				tcp_ack(sk, skb, 0);
3973 				__kfree_skb(skb);
3974 				tcp_data_snd_check(sk, tp);
3975 				return 0;
3976 			} else { /* Header too small */
3977 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
3978 				goto discard;
3979 			}
3980 		} else {
3981 			int eaten = 0;
3982 			int copied_early = 0;
3983 
3984 			if (tp->copied_seq == tp->rcv_nxt &&
3985 			    len - tcp_header_len <= tp->ucopy.len) {
3986 #ifdef CONFIG_NET_DMA
3987 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
3988 					copied_early = 1;
3989 					eaten = 1;
3990 				}
3991 #endif
3992 				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
3993 					__set_current_state(TASK_RUNNING);
3994 
3995 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
3996 						eaten = 1;
3997 				}
3998 				if (eaten) {
3999 					/* Predicted packet is in window by definition.
4000 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4001 					 * Hence, check seq<=rcv_wup reduces to:
4002 					 */
4003 					if (tcp_header_len ==
4004 					    (sizeof(struct tcphdr) +
4005 					     TCPOLEN_TSTAMP_ALIGNED) &&
4006 					    tp->rcv_nxt == tp->rcv_wup)
4007 						tcp_store_ts_recent(tp);
4008 
4009 					tcp_rcv_rtt_measure_ts(sk, skb);
4010 
4011 					__skb_pull(skb, tcp_header_len);
4012 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4013 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4014 				}
4015 				if (copied_early)
4016 					tcp_cleanup_rbuf(sk, skb->len);
4017 			}
4018 			if (!eaten) {
4019 				if (tcp_checksum_complete_user(sk, skb))
4020 					goto csum_error;
4021 
4022 				/* Predicted packet is in window by definition.
4023 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4024 				 * Hence, check seq<=rcv_wup reduces to:
4025 				 */
4026 				if (tcp_header_len ==
4027 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4028 				    tp->rcv_nxt == tp->rcv_wup)
4029 					tcp_store_ts_recent(tp);
4030 
4031 				tcp_rcv_rtt_measure_ts(sk, skb);
4032 
4033 				if ((int)skb->truesize > sk->sk_forward_alloc)
4034 					goto step5;
4035 
4036 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4037 
4038 				/* Bulk data transfer: receiver */
4039 				__skb_pull(skb,tcp_header_len);
4040 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4041 				sk_stream_set_owner_r(skb, sk);
4042 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4043 			}
4044 
4045 			tcp_event_data_recv(sk, tp, skb);
4046 
4047 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4048 				/* Well, only one small jumplet in fast path... */
4049 				tcp_ack(sk, skb, FLAG_DATA);
4050 				tcp_data_snd_check(sk, tp);
4051 				if (!inet_csk_ack_scheduled(sk))
4052 					goto no_ack;
4053 			}
4054 
4055 			__tcp_ack_snd_check(sk, 0);
4056 no_ack:
4057 #ifdef CONFIG_NET_DMA
4058 			if (copied_early)
4059 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4060 			else
4061 #endif
4062 			if (eaten)
4063 				__kfree_skb(skb);
4064 			else
4065 				sk->sk_data_ready(sk, 0);
4066 			return 0;
4067 		}
4068 	}
4069 
4070 slow_path:
4071 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4072 		goto csum_error;
4073 
4074 	/*
4075 	 * RFC1323: H1. Apply PAWS check first.
4076 	 */
4077 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4078 	    tcp_paws_discard(sk, skb)) {
4079 		if (!th->rst) {
4080 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4081 			tcp_send_dupack(sk, skb);
4082 			goto discard;
4083 		}
4084 		/* Resets are accepted even if PAWS failed.
4085 
4086 		   ts_recent update must be made after we are sure
4087 		   that the packet is in window.
4088 		 */
4089 	}
4090 
4091 	/*
4092 	 *	Standard slow path.
4093 	 */
4094 
4095 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4096 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4097 		 * (RST) segments are validated by checking their SEQ-fields."
4098 		 * And page 69: "If an incoming segment is not acceptable,
4099 		 * an acknowledgment should be sent in reply (unless the RST bit
4100 		 * is set, if so drop the segment and return)".
4101 		 */
4102 		if (!th->rst)
4103 			tcp_send_dupack(sk, skb);
4104 		goto discard;
4105 	}
4106 
4107 	if(th->rst) {
4108 		tcp_reset(sk);
4109 		goto discard;
4110 	}
4111 
4112 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4113 
4114 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4115 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4116 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4117 		tcp_reset(sk);
4118 		return 1;
4119 	}
4120 
4121 step5:
4122 	if(th->ack)
4123 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4124 
4125 	tcp_rcv_rtt_measure_ts(sk, skb);
4126 
4127 	/* Process urgent data. */
4128 	tcp_urg(sk, skb, th);
4129 
4130 	/* step 7: process the segment text */
4131 	tcp_data_queue(sk, skb);
4132 
4133 	tcp_data_snd_check(sk, tp);
4134 	tcp_ack_snd_check(sk);
4135 	return 0;
4136 
4137 csum_error:
4138 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4139 
4140 discard:
4141 	__kfree_skb(skb);
4142 	return 0;
4143 }
4144 
4145 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4146 					 struct tcphdr *th, unsigned len)
4147 {
4148 	struct tcp_sock *tp = tcp_sk(sk);
4149 	struct inet_connection_sock *icsk = inet_csk(sk);
4150 	int saved_clamp = tp->rx_opt.mss_clamp;
4151 
4152 	tcp_parse_options(skb, &tp->rx_opt, 0);
4153 
4154 	if (th->ack) {
4155 		/* rfc793:
4156 		 * "If the state is SYN-SENT then
4157 		 *    first check the ACK bit
4158 		 *      If the ACK bit is set
4159 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4160 		 *        a reset (unless the RST bit is set, if so drop
4161 		 *        the segment and return)"
4162 		 *
4163 		 *  We do not send data with SYN, so that RFC-correct
4164 		 *  test reduces to:
4165 		 */
4166 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4167 			goto reset_and_undo;
4168 
4169 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4170 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4171 			     tcp_time_stamp)) {
4172 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4173 			goto reset_and_undo;
4174 		}
4175 
4176 		/* Now ACK is acceptable.
4177 		 *
4178 		 * "If the RST bit is set
4179 		 *    If the ACK was acceptable then signal the user "error:
4180 		 *    connection reset", drop the segment, enter CLOSED state,
4181 		 *    delete TCB, and return."
4182 		 */
4183 
4184 		if (th->rst) {
4185 			tcp_reset(sk);
4186 			goto discard;
4187 		}
4188 
4189 		/* rfc793:
4190 		 *   "fifth, if neither of the SYN or RST bits is set then
4191 		 *    drop the segment and return."
4192 		 *
4193 		 *    See note below!
4194 		 *                                        --ANK(990513)
4195 		 */
4196 		if (!th->syn)
4197 			goto discard_and_undo;
4198 
4199 		/* rfc793:
4200 		 *   "If the SYN bit is on ...
4201 		 *    are acceptable then ...
4202 		 *    (our SYN has been ACKed), change the connection
4203 		 *    state to ESTABLISHED..."
4204 		 */
4205 
4206 		TCP_ECN_rcv_synack(tp, th);
4207 
4208 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4209 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4210 
4211 		/* Ok.. it's good. Set up sequence numbers and
4212 		 * move to established.
4213 		 */
4214 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4215 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4216 
4217 		/* RFC1323: The window in SYN & SYN/ACK segments is
4218 		 * never scaled.
4219 		 */
4220 		tp->snd_wnd = ntohs(th->window);
4221 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4222 
4223 		if (!tp->rx_opt.wscale_ok) {
4224 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4225 			tp->window_clamp = min(tp->window_clamp, 65535U);
4226 		}
4227 
4228 		if (tp->rx_opt.saw_tstamp) {
4229 			tp->rx_opt.tstamp_ok	   = 1;
4230 			tp->tcp_header_len =
4231 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4232 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4233 			tcp_store_ts_recent(tp);
4234 		} else {
4235 			tp->tcp_header_len = sizeof(struct tcphdr);
4236 		}
4237 
4238 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4239 			tp->rx_opt.sack_ok |= 2;
4240 
4241 		tcp_mtup_init(sk);
4242 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4243 		tcp_initialize_rcv_mss(sk);
4244 
4245 		/* Remember, tcp_poll() does not lock socket!
4246 		 * Change state from SYN-SENT only after copied_seq
4247 		 * is initialized. */
4248 		tp->copied_seq = tp->rcv_nxt;
4249 		smp_mb();
4250 		tcp_set_state(sk, TCP_ESTABLISHED);
4251 
4252 		security_inet_conn_established(sk, skb);
4253 
4254 		/* Make sure socket is routed, for correct metrics.  */
4255 		icsk->icsk_af_ops->rebuild_header(sk);
4256 
4257 		tcp_init_metrics(sk);
4258 
4259 		tcp_init_congestion_control(sk);
4260 
4261 		/* Prevent spurious tcp_cwnd_restart() on first data
4262 		 * packet.
4263 		 */
4264 		tp->lsndtime = tcp_time_stamp;
4265 
4266 		tcp_init_buffer_space(sk);
4267 
4268 		if (sock_flag(sk, SOCK_KEEPOPEN))
4269 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4270 
4271 		if (!tp->rx_opt.snd_wscale)
4272 			__tcp_fast_path_on(tp, tp->snd_wnd);
4273 		else
4274 			tp->pred_flags = 0;
4275 
4276 		if (!sock_flag(sk, SOCK_DEAD)) {
4277 			sk->sk_state_change(sk);
4278 			sk_wake_async(sk, 0, POLL_OUT);
4279 		}
4280 
4281 		if (sk->sk_write_pending ||
4282 		    icsk->icsk_accept_queue.rskq_defer_accept ||
4283 		    icsk->icsk_ack.pingpong) {
4284 			/* Save one ACK. Data will be ready after
4285 			 * several ticks, if write_pending is set.
4286 			 *
4287 			 * It may be deleted, but with this feature tcpdumps
4288 			 * look so _wonderfully_ clever, that I was not able
4289 			 * to stand against the temptation 8)     --ANK
4290 			 */
4291 			inet_csk_schedule_ack(sk);
4292 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4293 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4294 			tcp_incr_quickack(sk);
4295 			tcp_enter_quickack_mode(sk);
4296 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4297 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4298 
4299 discard:
4300 			__kfree_skb(skb);
4301 			return 0;
4302 		} else {
4303 			tcp_send_ack(sk);
4304 		}
4305 		return -1;
4306 	}
4307 
4308 	/* No ACK in the segment */
4309 
4310 	if (th->rst) {
4311 		/* rfc793:
4312 		 * "If the RST bit is set
4313 		 *
4314 		 *      Otherwise (no ACK) drop the segment and return."
4315 		 */
4316 
4317 		goto discard_and_undo;
4318 	}
4319 
4320 	/* PAWS check. */
4321 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4322 		goto discard_and_undo;
4323 
4324 	if (th->syn) {
4325 		/* We see SYN without ACK. It is attempt of
4326 		 * simultaneous connect with crossed SYNs.
4327 		 * Particularly, it can be connect to self.
4328 		 */
4329 		tcp_set_state(sk, TCP_SYN_RECV);
4330 
4331 		if (tp->rx_opt.saw_tstamp) {
4332 			tp->rx_opt.tstamp_ok = 1;
4333 			tcp_store_ts_recent(tp);
4334 			tp->tcp_header_len =
4335 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4336 		} else {
4337 			tp->tcp_header_len = sizeof(struct tcphdr);
4338 		}
4339 
4340 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4341 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4342 
4343 		/* RFC1323: The window in SYN & SYN/ACK segments is
4344 		 * never scaled.
4345 		 */
4346 		tp->snd_wnd    = ntohs(th->window);
4347 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4348 		tp->max_window = tp->snd_wnd;
4349 
4350 		TCP_ECN_rcv_syn(tp, th);
4351 
4352 		tcp_mtup_init(sk);
4353 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4354 		tcp_initialize_rcv_mss(sk);
4355 
4356 
4357 		tcp_send_synack(sk);
4358 #if 0
4359 		/* Note, we could accept data and URG from this segment.
4360 		 * There are no obstacles to make this.
4361 		 *
4362 		 * However, if we ignore data in ACKless segments sometimes,
4363 		 * we have no reasons to accept it sometimes.
4364 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4365 		 * is not flawless. So, discard packet for sanity.
4366 		 * Uncomment this return to process the data.
4367 		 */
4368 		return -1;
4369 #else
4370 		goto discard;
4371 #endif
4372 	}
4373 	/* "fifth, if neither of the SYN or RST bits is set then
4374 	 * drop the segment and return."
4375 	 */
4376 
4377 discard_and_undo:
4378 	tcp_clear_options(&tp->rx_opt);
4379 	tp->rx_opt.mss_clamp = saved_clamp;
4380 	goto discard;
4381 
4382 reset_and_undo:
4383 	tcp_clear_options(&tp->rx_opt);
4384 	tp->rx_opt.mss_clamp = saved_clamp;
4385 	return 1;
4386 }
4387 
4388 
4389 /*
4390  *	This function implements the receiving procedure of RFC 793 for
4391  *	all states except ESTABLISHED and TIME_WAIT.
4392  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4393  *	address independent.
4394  */
4395 
4396 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4397 			  struct tcphdr *th, unsigned len)
4398 {
4399 	struct tcp_sock *tp = tcp_sk(sk);
4400 	struct inet_connection_sock *icsk = inet_csk(sk);
4401 	int queued = 0;
4402 
4403 	tp->rx_opt.saw_tstamp = 0;
4404 
4405 	switch (sk->sk_state) {
4406 	case TCP_CLOSE:
4407 		goto discard;
4408 
4409 	case TCP_LISTEN:
4410 		if(th->ack)
4411 			return 1;
4412 
4413 		if(th->rst)
4414 			goto discard;
4415 
4416 		if(th->syn) {
4417 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4418 				return 1;
4419 
4420 			/* Now we have several options: In theory there is
4421 			 * nothing else in the frame. KA9Q has an option to
4422 			 * send data with the syn, BSD accepts data with the
4423 			 * syn up to the [to be] advertised window and
4424 			 * Solaris 2.1 gives you a protocol error. For now
4425 			 * we just ignore it, that fits the spec precisely
4426 			 * and avoids incompatibilities. It would be nice in
4427 			 * future to drop through and process the data.
4428 			 *
4429 			 * Now that TTCP is starting to be used we ought to
4430 			 * queue this data.
4431 			 * But, this leaves one open to an easy denial of
4432 		 	 * service attack, and SYN cookies can't defend
4433 			 * against this problem. So, we drop the data
4434 			 * in the interest of security over speed unless
4435 			 * it's still in use.
4436 			 */
4437 			kfree_skb(skb);
4438 			return 0;
4439 		}
4440 		goto discard;
4441 
4442 	case TCP_SYN_SENT:
4443 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4444 		if (queued >= 0)
4445 			return queued;
4446 
4447 		/* Do step6 onward by hand. */
4448 		tcp_urg(sk, skb, th);
4449 		__kfree_skb(skb);
4450 		tcp_data_snd_check(sk, tp);
4451 		return 0;
4452 	}
4453 
4454 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4455 	    tcp_paws_discard(sk, skb)) {
4456 		if (!th->rst) {
4457 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4458 			tcp_send_dupack(sk, skb);
4459 			goto discard;
4460 		}
4461 		/* Reset is accepted even if it did not pass PAWS. */
4462 	}
4463 
4464 	/* step 1: check sequence number */
4465 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4466 		if (!th->rst)
4467 			tcp_send_dupack(sk, skb);
4468 		goto discard;
4469 	}
4470 
4471 	/* step 2: check RST bit */
4472 	if(th->rst) {
4473 		tcp_reset(sk);
4474 		goto discard;
4475 	}
4476 
4477 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4478 
4479 	/* step 3: check security and precedence [ignored] */
4480 
4481 	/*	step 4:
4482 	 *
4483 	 *	Check for a SYN in window.
4484 	 */
4485 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4486 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4487 		tcp_reset(sk);
4488 		return 1;
4489 	}
4490 
4491 	/* step 5: check the ACK field */
4492 	if (th->ack) {
4493 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4494 
4495 		switch(sk->sk_state) {
4496 		case TCP_SYN_RECV:
4497 			if (acceptable) {
4498 				tp->copied_seq = tp->rcv_nxt;
4499 				smp_mb();
4500 				tcp_set_state(sk, TCP_ESTABLISHED);
4501 				sk->sk_state_change(sk);
4502 
4503 				/* Note, that this wakeup is only for marginal
4504 				 * crossed SYN case. Passively open sockets
4505 				 * are not waked up, because sk->sk_sleep ==
4506 				 * NULL and sk->sk_socket == NULL.
4507 				 */
4508 				if (sk->sk_socket) {
4509 					sk_wake_async(sk,0,POLL_OUT);
4510 				}
4511 
4512 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4513 				tp->snd_wnd = ntohs(th->window) <<
4514 					      tp->rx_opt.snd_wscale;
4515 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4516 					    TCP_SKB_CB(skb)->seq);
4517 
4518 				/* tcp_ack considers this ACK as duplicate
4519 				 * and does not calculate rtt.
4520 				 * Fix it at least with timestamps.
4521 				 */
4522 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4523 				    !tp->srtt)
4524 					tcp_ack_saw_tstamp(sk, 0);
4525 
4526 				if (tp->rx_opt.tstamp_ok)
4527 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4528 
4529 				/* Make sure socket is routed, for
4530 				 * correct metrics.
4531 				 */
4532 				icsk->icsk_af_ops->rebuild_header(sk);
4533 
4534 				tcp_init_metrics(sk);
4535 
4536 				tcp_init_congestion_control(sk);
4537 
4538 				/* Prevent spurious tcp_cwnd_restart() on
4539 				 * first data packet.
4540 				 */
4541 				tp->lsndtime = tcp_time_stamp;
4542 
4543 				tcp_mtup_init(sk);
4544 				tcp_initialize_rcv_mss(sk);
4545 				tcp_init_buffer_space(sk);
4546 				tcp_fast_path_on(tp);
4547 			} else {
4548 				return 1;
4549 			}
4550 			break;
4551 
4552 		case TCP_FIN_WAIT1:
4553 			if (tp->snd_una == tp->write_seq) {
4554 				tcp_set_state(sk, TCP_FIN_WAIT2);
4555 				sk->sk_shutdown |= SEND_SHUTDOWN;
4556 				dst_confirm(sk->sk_dst_cache);
4557 
4558 				if (!sock_flag(sk, SOCK_DEAD))
4559 					/* Wake up lingering close() */
4560 					sk->sk_state_change(sk);
4561 				else {
4562 					int tmo;
4563 
4564 					if (tp->linger2 < 0 ||
4565 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4566 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4567 						tcp_done(sk);
4568 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4569 						return 1;
4570 					}
4571 
4572 					tmo = tcp_fin_time(sk);
4573 					if (tmo > TCP_TIMEWAIT_LEN) {
4574 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4575 					} else if (th->fin || sock_owned_by_user(sk)) {
4576 						/* Bad case. We could lose such FIN otherwise.
4577 						 * It is not a big problem, but it looks confusing
4578 						 * and not so rare event. We still can lose it now,
4579 						 * if it spins in bh_lock_sock(), but it is really
4580 						 * marginal case.
4581 						 */
4582 						inet_csk_reset_keepalive_timer(sk, tmo);
4583 					} else {
4584 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4585 						goto discard;
4586 					}
4587 				}
4588 			}
4589 			break;
4590 
4591 		case TCP_CLOSING:
4592 			if (tp->snd_una == tp->write_seq) {
4593 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4594 				goto discard;
4595 			}
4596 			break;
4597 
4598 		case TCP_LAST_ACK:
4599 			if (tp->snd_una == tp->write_seq) {
4600 				tcp_update_metrics(sk);
4601 				tcp_done(sk);
4602 				goto discard;
4603 			}
4604 			break;
4605 		}
4606 	} else
4607 		goto discard;
4608 
4609 	/* step 6: check the URG bit */
4610 	tcp_urg(sk, skb, th);
4611 
4612 	/* step 7: process the segment text */
4613 	switch (sk->sk_state) {
4614 	case TCP_CLOSE_WAIT:
4615 	case TCP_CLOSING:
4616 	case TCP_LAST_ACK:
4617 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4618 			break;
4619 	case TCP_FIN_WAIT1:
4620 	case TCP_FIN_WAIT2:
4621 		/* RFC 793 says to queue data in these states,
4622 		 * RFC 1122 says we MUST send a reset.
4623 		 * BSD 4.4 also does reset.
4624 		 */
4625 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4626 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4627 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4628 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4629 				tcp_reset(sk);
4630 				return 1;
4631 			}
4632 		}
4633 		/* Fall through */
4634 	case TCP_ESTABLISHED:
4635 		tcp_data_queue(sk, skb);
4636 		queued = 1;
4637 		break;
4638 	}
4639 
4640 	/* tcp_data could move socket to TIME-WAIT */
4641 	if (sk->sk_state != TCP_CLOSE) {
4642 		tcp_data_snd_check(sk, tp);
4643 		tcp_ack_snd_check(sk);
4644 	}
4645 
4646 	if (!queued) {
4647 discard:
4648 		__kfree_skb(skb);
4649 	}
4650 	return 0;
4651 }
4652 
4653 EXPORT_SYMBOL(sysctl_tcp_ecn);
4654 EXPORT_SYMBOL(sysctl_tcp_reordering);
4655 EXPORT_SYMBOL(tcp_parse_options);
4656 EXPORT_SYMBOL(tcp_rcv_established);
4657 EXPORT_SYMBOL(tcp_rcv_state_process);
4658 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
4659