xref: /linux/net/ipv4/tcp_input.c (revision 6eb2fb3170549737207974c2c6ad34bcc2f3025e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 
97 int sysctl_tcp_thin_dupack __read_mostly;
98 
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101 
102 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
103 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
104 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
105 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
106 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
107 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
108 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
109 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
111 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123 
124 /* Adapt the MSS value used to make delayed ack decision to the
125  * real world.
126  */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 	struct inet_connection_sock *icsk = inet_csk(sk);
130 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 	unsigned int len;
132 
133 	icsk->icsk_ack.last_seg_size = 0;
134 
135 	/* skb->len may jitter because of SACKs, even if peer
136 	 * sends good full-sized frames.
137 	 */
138 	len = skb_shinfo(skb)->gso_size ? : skb->len;
139 	if (len >= icsk->icsk_ack.rcv_mss) {
140 		icsk->icsk_ack.rcv_mss = len;
141 	} else {
142 		/* Otherwise, we make more careful check taking into account,
143 		 * that SACKs block is variable.
144 		 *
145 		 * "len" is invariant segment length, including TCP header.
146 		 */
147 		len += skb->data - skb_transport_header(skb);
148 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 		    /* If PSH is not set, packet should be
150 		     * full sized, provided peer TCP is not badly broken.
151 		     * This observation (if it is correct 8)) allows
152 		     * to handle super-low mtu links fairly.
153 		     */
154 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 			/* Subtract also invariant (if peer is RFC compliant),
157 			 * tcp header plus fixed timestamp option length.
158 			 * Resulting "len" is MSS free of SACK jitter.
159 			 */
160 			len -= tcp_sk(sk)->tcp_header_len;
161 			icsk->icsk_ack.last_seg_size = len;
162 			if (len == lss) {
163 				icsk->icsk_ack.rcv_mss = len;
164 				return;
165 			}
166 		}
167 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 	}
171 }
172 
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 	struct inet_connection_sock *icsk = inet_csk(sk);
176 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177 
178 	if (quickacks == 0)
179 		quickacks = 2;
180 	if (quickacks > icsk->icsk_ack.quick)
181 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183 
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 	struct inet_connection_sock *icsk = inet_csk(sk);
187 	tcp_incr_quickack(sk);
188 	icsk->icsk_ack.pingpong = 0;
189 	icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191 
192 /* Send ACKs quickly, if "quick" count is not exhausted
193  * and the session is not interactive.
194  */
195 
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 	const struct inet_connection_sock *icsk = inet_csk(sk);
199 
200 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202 
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 	if (tp->ecn_flags & TCP_ECN_OK)
206 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208 
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 	if (tcp_hdr(skb)->cwr)
212 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214 
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219 
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 	if (!(tp->ecn_flags & TCP_ECN_OK))
223 		return;
224 
225 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 	case INET_ECN_NOT_ECT:
227 		/* Funny extension: if ECT is not set on a segment,
228 		 * and we already seen ECT on a previous segment,
229 		 * it is probably a retransmit.
230 		 */
231 		if (tp->ecn_flags & TCP_ECN_SEEN)
232 			tcp_enter_quickack_mode((struct sock *)tp);
233 		break;
234 	case INET_ECN_CE:
235 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 			/* Better not delay acks, sender can have a very low cwnd */
237 			tcp_enter_quickack_mode((struct sock *)tp);
238 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 		}
240 		/* fallinto */
241 	default:
242 		tp->ecn_flags |= TCP_ECN_SEEN;
243 	}
244 }
245 
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 		tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251 
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 		tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257 
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 		return true;
262 	return false;
263 }
264 
265 /* Buffer size and advertised window tuning.
266  *
267  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268  */
269 
270 static void tcp_fixup_sndbuf(struct sock *sk)
271 {
272 	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
273 
274 	sndmem *= TCP_INIT_CWND;
275 	if (sk->sk_sndbuf < sndmem)
276 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
277 }
278 
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280  *
281  * All tcp_full_space() is split to two parts: "network" buffer, allocated
282  * forward and advertised in receiver window (tp->rcv_wnd) and
283  * "application buffer", required to isolate scheduling/application
284  * latencies from network.
285  * window_clamp is maximal advertised window. It can be less than
286  * tcp_full_space(), in this case tcp_full_space() - window_clamp
287  * is reserved for "application" buffer. The less window_clamp is
288  * the smoother our behaviour from viewpoint of network, but the lower
289  * throughput and the higher sensitivity of the connection to losses. 8)
290  *
291  * rcv_ssthresh is more strict window_clamp used at "slow start"
292  * phase to predict further behaviour of this connection.
293  * It is used for two goals:
294  * - to enforce header prediction at sender, even when application
295  *   requires some significant "application buffer". It is check #1.
296  * - to prevent pruning of receive queue because of misprediction
297  *   of receiver window. Check #2.
298  *
299  * The scheme does not work when sender sends good segments opening
300  * window and then starts to feed us spaghetti. But it should work
301  * in common situations. Otherwise, we have to rely on queue collapsing.
302  */
303 
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
306 {
307 	struct tcp_sock *tp = tcp_sk(sk);
308 	/* Optimize this! */
309 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
310 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
311 
312 	while (tp->rcv_ssthresh <= window) {
313 		if (truesize <= skb->len)
314 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
315 
316 		truesize >>= 1;
317 		window >>= 1;
318 	}
319 	return 0;
320 }
321 
322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
323 {
324 	struct tcp_sock *tp = tcp_sk(sk);
325 
326 	/* Check #1 */
327 	if (tp->rcv_ssthresh < tp->window_clamp &&
328 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
329 	    !sk_under_memory_pressure(sk)) {
330 		int incr;
331 
332 		/* Check #2. Increase window, if skb with such overhead
333 		 * will fit to rcvbuf in future.
334 		 */
335 		if (tcp_win_from_space(skb->truesize) <= skb->len)
336 			incr = 2 * tp->advmss;
337 		else
338 			incr = __tcp_grow_window(sk, skb);
339 
340 		if (incr) {
341 			incr = max_t(int, incr, 2 * skb->len);
342 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343 					       tp->window_clamp);
344 			inet_csk(sk)->icsk_ack.quick |= 1;
345 		}
346 	}
347 }
348 
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350 
351 static void tcp_fixup_rcvbuf(struct sock *sk)
352 {
353 	u32 mss = tcp_sk(sk)->advmss;
354 	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
355 	int rcvmem;
356 
357 	/* Limit to 10 segments if mss <= 1460,
358 	 * or 14600/mss segments, with a minimum of two segments.
359 	 */
360 	if (mss > 1460)
361 		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
362 
363 	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
364 	while (tcp_win_from_space(rcvmem) < mss)
365 		rcvmem += 128;
366 
367 	rcvmem *= icwnd;
368 
369 	if (sk->sk_rcvbuf < rcvmem)
370 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
371 }
372 
373 /* 4. Try to fixup all. It is made immediately after connection enters
374  *    established state.
375  */
376 void tcp_init_buffer_space(struct sock *sk)
377 {
378 	struct tcp_sock *tp = tcp_sk(sk);
379 	int maxwin;
380 
381 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
382 		tcp_fixup_rcvbuf(sk);
383 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
384 		tcp_fixup_sndbuf(sk);
385 
386 	tp->rcvq_space.space = tp->rcv_wnd;
387 
388 	maxwin = tcp_full_space(sk);
389 
390 	if (tp->window_clamp >= maxwin) {
391 		tp->window_clamp = maxwin;
392 
393 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
394 			tp->window_clamp = max(maxwin -
395 					       (maxwin >> sysctl_tcp_app_win),
396 					       4 * tp->advmss);
397 	}
398 
399 	/* Force reservation of one segment. */
400 	if (sysctl_tcp_app_win &&
401 	    tp->window_clamp > 2 * tp->advmss &&
402 	    tp->window_clamp + tp->advmss > maxwin)
403 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
404 
405 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
406 	tp->snd_cwnd_stamp = tcp_time_stamp;
407 }
408 
409 /* 5. Recalculate window clamp after socket hit its memory bounds. */
410 static void tcp_clamp_window(struct sock *sk)
411 {
412 	struct tcp_sock *tp = tcp_sk(sk);
413 	struct inet_connection_sock *icsk = inet_csk(sk);
414 
415 	icsk->icsk_ack.quick = 0;
416 
417 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
418 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
419 	    !sk_under_memory_pressure(sk) &&
420 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
421 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
422 				    sysctl_tcp_rmem[2]);
423 	}
424 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
425 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
426 }
427 
428 /* Initialize RCV_MSS value.
429  * RCV_MSS is an our guess about MSS used by the peer.
430  * We haven't any direct information about the MSS.
431  * It's better to underestimate the RCV_MSS rather than overestimate.
432  * Overestimations make us ACKing less frequently than needed.
433  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
434  */
435 void tcp_initialize_rcv_mss(struct sock *sk)
436 {
437 	const struct tcp_sock *tp = tcp_sk(sk);
438 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
439 
440 	hint = min(hint, tp->rcv_wnd / 2);
441 	hint = min(hint, TCP_MSS_DEFAULT);
442 	hint = max(hint, TCP_MIN_MSS);
443 
444 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
445 }
446 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
447 
448 /* Receiver "autotuning" code.
449  *
450  * The algorithm for RTT estimation w/o timestamps is based on
451  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
452  * <http://public.lanl.gov/radiant/pubs.html#DRS>
453  *
454  * More detail on this code can be found at
455  * <http://staff.psc.edu/jheffner/>,
456  * though this reference is out of date.  A new paper
457  * is pending.
458  */
459 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
460 {
461 	u32 new_sample = tp->rcv_rtt_est.rtt;
462 	long m = sample;
463 
464 	if (m == 0)
465 		m = 1;
466 
467 	if (new_sample != 0) {
468 		/* If we sample in larger samples in the non-timestamp
469 		 * case, we could grossly overestimate the RTT especially
470 		 * with chatty applications or bulk transfer apps which
471 		 * are stalled on filesystem I/O.
472 		 *
473 		 * Also, since we are only going for a minimum in the
474 		 * non-timestamp case, we do not smooth things out
475 		 * else with timestamps disabled convergence takes too
476 		 * long.
477 		 */
478 		if (!win_dep) {
479 			m -= (new_sample >> 3);
480 			new_sample += m;
481 		} else {
482 			m <<= 3;
483 			if (m < new_sample)
484 				new_sample = m;
485 		}
486 	} else {
487 		/* No previous measure. */
488 		new_sample = m << 3;
489 	}
490 
491 	if (tp->rcv_rtt_est.rtt != new_sample)
492 		tp->rcv_rtt_est.rtt = new_sample;
493 }
494 
495 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
496 {
497 	if (tp->rcv_rtt_est.time == 0)
498 		goto new_measure;
499 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
500 		return;
501 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
502 
503 new_measure:
504 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
505 	tp->rcv_rtt_est.time = tcp_time_stamp;
506 }
507 
508 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
509 					  const struct sk_buff *skb)
510 {
511 	struct tcp_sock *tp = tcp_sk(sk);
512 	if (tp->rx_opt.rcv_tsecr &&
513 	    (TCP_SKB_CB(skb)->end_seq -
514 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
515 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
516 }
517 
518 /*
519  * This function should be called every time data is copied to user space.
520  * It calculates the appropriate TCP receive buffer space.
521  */
522 void tcp_rcv_space_adjust(struct sock *sk)
523 {
524 	struct tcp_sock *tp = tcp_sk(sk);
525 	int time;
526 	int space;
527 
528 	if (tp->rcvq_space.time == 0)
529 		goto new_measure;
530 
531 	time = tcp_time_stamp - tp->rcvq_space.time;
532 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
533 		return;
534 
535 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
536 
537 	space = max(tp->rcvq_space.space, space);
538 
539 	if (tp->rcvq_space.space != space) {
540 		int rcvmem;
541 
542 		tp->rcvq_space.space = space;
543 
544 		if (sysctl_tcp_moderate_rcvbuf &&
545 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
546 			int new_clamp = space;
547 
548 			/* Receive space grows, normalize in order to
549 			 * take into account packet headers and sk_buff
550 			 * structure overhead.
551 			 */
552 			space /= tp->advmss;
553 			if (!space)
554 				space = 1;
555 			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
556 			while (tcp_win_from_space(rcvmem) < tp->advmss)
557 				rcvmem += 128;
558 			space *= rcvmem;
559 			space = min(space, sysctl_tcp_rmem[2]);
560 			if (space > sk->sk_rcvbuf) {
561 				sk->sk_rcvbuf = space;
562 
563 				/* Make the window clamp follow along.  */
564 				tp->window_clamp = new_clamp;
565 			}
566 		}
567 	}
568 
569 new_measure:
570 	tp->rcvq_space.seq = tp->copied_seq;
571 	tp->rcvq_space.time = tcp_time_stamp;
572 }
573 
574 /* There is something which you must keep in mind when you analyze the
575  * behavior of the tp->ato delayed ack timeout interval.  When a
576  * connection starts up, we want to ack as quickly as possible.  The
577  * problem is that "good" TCP's do slow start at the beginning of data
578  * transmission.  The means that until we send the first few ACK's the
579  * sender will sit on his end and only queue most of his data, because
580  * he can only send snd_cwnd unacked packets at any given time.  For
581  * each ACK we send, he increments snd_cwnd and transmits more of his
582  * queue.  -DaveM
583  */
584 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
585 {
586 	struct tcp_sock *tp = tcp_sk(sk);
587 	struct inet_connection_sock *icsk = inet_csk(sk);
588 	u32 now;
589 
590 	inet_csk_schedule_ack(sk);
591 
592 	tcp_measure_rcv_mss(sk, skb);
593 
594 	tcp_rcv_rtt_measure(tp);
595 
596 	now = tcp_time_stamp;
597 
598 	if (!icsk->icsk_ack.ato) {
599 		/* The _first_ data packet received, initialize
600 		 * delayed ACK engine.
601 		 */
602 		tcp_incr_quickack(sk);
603 		icsk->icsk_ack.ato = TCP_ATO_MIN;
604 	} else {
605 		int m = now - icsk->icsk_ack.lrcvtime;
606 
607 		if (m <= TCP_ATO_MIN / 2) {
608 			/* The fastest case is the first. */
609 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
610 		} else if (m < icsk->icsk_ack.ato) {
611 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
612 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
613 				icsk->icsk_ack.ato = icsk->icsk_rto;
614 		} else if (m > icsk->icsk_rto) {
615 			/* Too long gap. Apparently sender failed to
616 			 * restart window, so that we send ACKs quickly.
617 			 */
618 			tcp_incr_quickack(sk);
619 			sk_mem_reclaim(sk);
620 		}
621 	}
622 	icsk->icsk_ack.lrcvtime = now;
623 
624 	TCP_ECN_check_ce(tp, skb);
625 
626 	if (skb->len >= 128)
627 		tcp_grow_window(sk, skb);
628 }
629 
630 /* Called to compute a smoothed rtt estimate. The data fed to this
631  * routine either comes from timestamps, or from segments that were
632  * known _not_ to have been retransmitted [see Karn/Partridge
633  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
634  * piece by Van Jacobson.
635  * NOTE: the next three routines used to be one big routine.
636  * To save cycles in the RFC 1323 implementation it was better to break
637  * it up into three procedures. -- erics
638  */
639 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
640 {
641 	struct tcp_sock *tp = tcp_sk(sk);
642 	long m = mrtt; /* RTT */
643 
644 	/*	The following amusing code comes from Jacobson's
645 	 *	article in SIGCOMM '88.  Note that rtt and mdev
646 	 *	are scaled versions of rtt and mean deviation.
647 	 *	This is designed to be as fast as possible
648 	 *	m stands for "measurement".
649 	 *
650 	 *	On a 1990 paper the rto value is changed to:
651 	 *	RTO = rtt + 4 * mdev
652 	 *
653 	 * Funny. This algorithm seems to be very broken.
654 	 * These formulae increase RTO, when it should be decreased, increase
655 	 * too slowly, when it should be increased quickly, decrease too quickly
656 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
657 	 * does not matter how to _calculate_ it. Seems, it was trap
658 	 * that VJ failed to avoid. 8)
659 	 */
660 	if (m == 0)
661 		m = 1;
662 	if (tp->srtt != 0) {
663 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
664 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
665 		if (m < 0) {
666 			m = -m;		/* m is now abs(error) */
667 			m -= (tp->mdev >> 2);   /* similar update on mdev */
668 			/* This is similar to one of Eifel findings.
669 			 * Eifel blocks mdev updates when rtt decreases.
670 			 * This solution is a bit different: we use finer gain
671 			 * for mdev in this case (alpha*beta).
672 			 * Like Eifel it also prevents growth of rto,
673 			 * but also it limits too fast rto decreases,
674 			 * happening in pure Eifel.
675 			 */
676 			if (m > 0)
677 				m >>= 3;
678 		} else {
679 			m -= (tp->mdev >> 2);   /* similar update on mdev */
680 		}
681 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
682 		if (tp->mdev > tp->mdev_max) {
683 			tp->mdev_max = tp->mdev;
684 			if (tp->mdev_max > tp->rttvar)
685 				tp->rttvar = tp->mdev_max;
686 		}
687 		if (after(tp->snd_una, tp->rtt_seq)) {
688 			if (tp->mdev_max < tp->rttvar)
689 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
690 			tp->rtt_seq = tp->snd_nxt;
691 			tp->mdev_max = tcp_rto_min(sk);
692 		}
693 	} else {
694 		/* no previous measure. */
695 		tp->srtt = m << 3;	/* take the measured time to be rtt */
696 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
697 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
698 		tp->rtt_seq = tp->snd_nxt;
699 	}
700 }
701 
702 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
703  * routine referred to above.
704  */
705 void tcp_set_rto(struct sock *sk)
706 {
707 	const struct tcp_sock *tp = tcp_sk(sk);
708 	/* Old crap is replaced with new one. 8)
709 	 *
710 	 * More seriously:
711 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
712 	 *    It cannot be less due to utterly erratic ACK generation made
713 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
714 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
715 	 *    is invisible. Actually, Linux-2.4 also generates erratic
716 	 *    ACKs in some circumstances.
717 	 */
718 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
719 
720 	/* 2. Fixups made earlier cannot be right.
721 	 *    If we do not estimate RTO correctly without them,
722 	 *    all the algo is pure shit and should be replaced
723 	 *    with correct one. It is exactly, which we pretend to do.
724 	 */
725 
726 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
727 	 * guarantees that rto is higher.
728 	 */
729 	tcp_bound_rto(sk);
730 }
731 
732 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
733 {
734 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
735 
736 	if (!cwnd)
737 		cwnd = TCP_INIT_CWND;
738 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
739 }
740 
741 /*
742  * Packet counting of FACK is based on in-order assumptions, therefore TCP
743  * disables it when reordering is detected
744  */
745 void tcp_disable_fack(struct tcp_sock *tp)
746 {
747 	/* RFC3517 uses different metric in lost marker => reset on change */
748 	if (tcp_is_fack(tp))
749 		tp->lost_skb_hint = NULL;
750 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
751 }
752 
753 /* Take a notice that peer is sending D-SACKs */
754 static void tcp_dsack_seen(struct tcp_sock *tp)
755 {
756 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
757 }
758 
759 static void tcp_update_reordering(struct sock *sk, const int metric,
760 				  const int ts)
761 {
762 	struct tcp_sock *tp = tcp_sk(sk);
763 	if (metric > tp->reordering) {
764 		int mib_idx;
765 
766 		tp->reordering = min(TCP_MAX_REORDERING, metric);
767 
768 		/* This exciting event is worth to be remembered. 8) */
769 		if (ts)
770 			mib_idx = LINUX_MIB_TCPTSREORDER;
771 		else if (tcp_is_reno(tp))
772 			mib_idx = LINUX_MIB_TCPRENOREORDER;
773 		else if (tcp_is_fack(tp))
774 			mib_idx = LINUX_MIB_TCPFACKREORDER;
775 		else
776 			mib_idx = LINUX_MIB_TCPSACKREORDER;
777 
778 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
779 #if FASTRETRANS_DEBUG > 1
780 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
781 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
782 			 tp->reordering,
783 			 tp->fackets_out,
784 			 tp->sacked_out,
785 			 tp->undo_marker ? tp->undo_retrans : 0);
786 #endif
787 		tcp_disable_fack(tp);
788 	}
789 
790 	if (metric > 0)
791 		tcp_disable_early_retrans(tp);
792 }
793 
794 /* This must be called before lost_out is incremented */
795 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
796 {
797 	if ((tp->retransmit_skb_hint == NULL) ||
798 	    before(TCP_SKB_CB(skb)->seq,
799 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
800 		tp->retransmit_skb_hint = skb;
801 
802 	if (!tp->lost_out ||
803 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
804 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
805 }
806 
807 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
808 {
809 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
810 		tcp_verify_retransmit_hint(tp, skb);
811 
812 		tp->lost_out += tcp_skb_pcount(skb);
813 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
814 	}
815 }
816 
817 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
818 					    struct sk_buff *skb)
819 {
820 	tcp_verify_retransmit_hint(tp, skb);
821 
822 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
823 		tp->lost_out += tcp_skb_pcount(skb);
824 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
825 	}
826 }
827 
828 /* This procedure tags the retransmission queue when SACKs arrive.
829  *
830  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
831  * Packets in queue with these bits set are counted in variables
832  * sacked_out, retrans_out and lost_out, correspondingly.
833  *
834  * Valid combinations are:
835  * Tag  InFlight	Description
836  * 0	1		- orig segment is in flight.
837  * S	0		- nothing flies, orig reached receiver.
838  * L	0		- nothing flies, orig lost by net.
839  * R	2		- both orig and retransmit are in flight.
840  * L|R	1		- orig is lost, retransmit is in flight.
841  * S|R  1		- orig reached receiver, retrans is still in flight.
842  * (L|S|R is logically valid, it could occur when L|R is sacked,
843  *  but it is equivalent to plain S and code short-curcuits it to S.
844  *  L|S is logically invalid, it would mean -1 packet in flight 8))
845  *
846  * These 6 states form finite state machine, controlled by the following events:
847  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
848  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
849  * 3. Loss detection event of two flavors:
850  *	A. Scoreboard estimator decided the packet is lost.
851  *	   A'. Reno "three dupacks" marks head of queue lost.
852  *	   A''. Its FACK modification, head until snd.fack is lost.
853  *	B. SACK arrives sacking SND.NXT at the moment, when the
854  *	   segment was retransmitted.
855  * 4. D-SACK added new rule: D-SACK changes any tag to S.
856  *
857  * It is pleasant to note, that state diagram turns out to be commutative,
858  * so that we are allowed not to be bothered by order of our actions,
859  * when multiple events arrive simultaneously. (see the function below).
860  *
861  * Reordering detection.
862  * --------------------
863  * Reordering metric is maximal distance, which a packet can be displaced
864  * in packet stream. With SACKs we can estimate it:
865  *
866  * 1. SACK fills old hole and the corresponding segment was not
867  *    ever retransmitted -> reordering. Alas, we cannot use it
868  *    when segment was retransmitted.
869  * 2. The last flaw is solved with D-SACK. D-SACK arrives
870  *    for retransmitted and already SACKed segment -> reordering..
871  * Both of these heuristics are not used in Loss state, when we cannot
872  * account for retransmits accurately.
873  *
874  * SACK block validation.
875  * ----------------------
876  *
877  * SACK block range validation checks that the received SACK block fits to
878  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
879  * Note that SND.UNA is not included to the range though being valid because
880  * it means that the receiver is rather inconsistent with itself reporting
881  * SACK reneging when it should advance SND.UNA. Such SACK block this is
882  * perfectly valid, however, in light of RFC2018 which explicitly states
883  * that "SACK block MUST reflect the newest segment.  Even if the newest
884  * segment is going to be discarded ...", not that it looks very clever
885  * in case of head skb. Due to potentional receiver driven attacks, we
886  * choose to avoid immediate execution of a walk in write queue due to
887  * reneging and defer head skb's loss recovery to standard loss recovery
888  * procedure that will eventually trigger (nothing forbids us doing this).
889  *
890  * Implements also blockage to start_seq wrap-around. Problem lies in the
891  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
892  * there's no guarantee that it will be before snd_nxt (n). The problem
893  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
894  * wrap (s_w):
895  *
896  *         <- outs wnd ->                          <- wrapzone ->
897  *         u     e      n                         u_w   e_w  s n_w
898  *         |     |      |                          |     |   |  |
899  * |<------------+------+----- TCP seqno space --------------+---------->|
900  * ...-- <2^31 ->|                                           |<--------...
901  * ...---- >2^31 ------>|                                    |<--------...
902  *
903  * Current code wouldn't be vulnerable but it's better still to discard such
904  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
905  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
906  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
907  * equal to the ideal case (infinite seqno space without wrap caused issues).
908  *
909  * With D-SACK the lower bound is extended to cover sequence space below
910  * SND.UNA down to undo_marker, which is the last point of interest. Yet
911  * again, D-SACK block must not to go across snd_una (for the same reason as
912  * for the normal SACK blocks, explained above). But there all simplicity
913  * ends, TCP might receive valid D-SACKs below that. As long as they reside
914  * fully below undo_marker they do not affect behavior in anyway and can
915  * therefore be safely ignored. In rare cases (which are more or less
916  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
917  * fragmentation and packet reordering past skb's retransmission. To consider
918  * them correctly, the acceptable range must be extended even more though
919  * the exact amount is rather hard to quantify. However, tp->max_window can
920  * be used as an exaggerated estimate.
921  */
922 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
923 				   u32 start_seq, u32 end_seq)
924 {
925 	/* Too far in future, or reversed (interpretation is ambiguous) */
926 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
927 		return false;
928 
929 	/* Nasty start_seq wrap-around check (see comments above) */
930 	if (!before(start_seq, tp->snd_nxt))
931 		return false;
932 
933 	/* In outstanding window? ...This is valid exit for D-SACKs too.
934 	 * start_seq == snd_una is non-sensical (see comments above)
935 	 */
936 	if (after(start_seq, tp->snd_una))
937 		return true;
938 
939 	if (!is_dsack || !tp->undo_marker)
940 		return false;
941 
942 	/* ...Then it's D-SACK, and must reside below snd_una completely */
943 	if (after(end_seq, tp->snd_una))
944 		return false;
945 
946 	if (!before(start_seq, tp->undo_marker))
947 		return true;
948 
949 	/* Too old */
950 	if (!after(end_seq, tp->undo_marker))
951 		return false;
952 
953 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
954 	 *   start_seq < undo_marker and end_seq >= undo_marker.
955 	 */
956 	return !before(start_seq, end_seq - tp->max_window);
957 }
958 
959 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
960  * Event "B". Later note: FACK people cheated me again 8), we have to account
961  * for reordering! Ugly, but should help.
962  *
963  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
964  * less than what is now known to be received by the other end (derived from
965  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
966  * retransmitted skbs to avoid some costly processing per ACKs.
967  */
968 static void tcp_mark_lost_retrans(struct sock *sk)
969 {
970 	const struct inet_connection_sock *icsk = inet_csk(sk);
971 	struct tcp_sock *tp = tcp_sk(sk);
972 	struct sk_buff *skb;
973 	int cnt = 0;
974 	u32 new_low_seq = tp->snd_nxt;
975 	u32 received_upto = tcp_highest_sack_seq(tp);
976 
977 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
978 	    !after(received_upto, tp->lost_retrans_low) ||
979 	    icsk->icsk_ca_state != TCP_CA_Recovery)
980 		return;
981 
982 	tcp_for_write_queue(skb, sk) {
983 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
984 
985 		if (skb == tcp_send_head(sk))
986 			break;
987 		if (cnt == tp->retrans_out)
988 			break;
989 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
990 			continue;
991 
992 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
993 			continue;
994 
995 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
996 		 * constraint here (see above) but figuring out that at
997 		 * least tp->reordering SACK blocks reside between ack_seq
998 		 * and received_upto is not easy task to do cheaply with
999 		 * the available datastructures.
1000 		 *
1001 		 * Whether FACK should check here for tp->reordering segs
1002 		 * in-between one could argue for either way (it would be
1003 		 * rather simple to implement as we could count fack_count
1004 		 * during the walk and do tp->fackets_out - fack_count).
1005 		 */
1006 		if (after(received_upto, ack_seq)) {
1007 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1008 			tp->retrans_out -= tcp_skb_pcount(skb);
1009 
1010 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1011 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1012 		} else {
1013 			if (before(ack_seq, new_low_seq))
1014 				new_low_seq = ack_seq;
1015 			cnt += tcp_skb_pcount(skb);
1016 		}
1017 	}
1018 
1019 	if (tp->retrans_out)
1020 		tp->lost_retrans_low = new_low_seq;
1021 }
1022 
1023 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1024 			    struct tcp_sack_block_wire *sp, int num_sacks,
1025 			    u32 prior_snd_una)
1026 {
1027 	struct tcp_sock *tp = tcp_sk(sk);
1028 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1029 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1030 	bool dup_sack = false;
1031 
1032 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1033 		dup_sack = true;
1034 		tcp_dsack_seen(tp);
1035 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1036 	} else if (num_sacks > 1) {
1037 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1038 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1039 
1040 		if (!after(end_seq_0, end_seq_1) &&
1041 		    !before(start_seq_0, start_seq_1)) {
1042 			dup_sack = true;
1043 			tcp_dsack_seen(tp);
1044 			NET_INC_STATS_BH(sock_net(sk),
1045 					LINUX_MIB_TCPDSACKOFORECV);
1046 		}
1047 	}
1048 
1049 	/* D-SACK for already forgotten data... Do dumb counting. */
1050 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1051 	    !after(end_seq_0, prior_snd_una) &&
1052 	    after(end_seq_0, tp->undo_marker))
1053 		tp->undo_retrans--;
1054 
1055 	return dup_sack;
1056 }
1057 
1058 struct tcp_sacktag_state {
1059 	int reord;
1060 	int fack_count;
1061 	int flag;
1062 };
1063 
1064 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1065  * the incoming SACK may not exactly match but we can find smaller MSS
1066  * aligned portion of it that matches. Therefore we might need to fragment
1067  * which may fail and creates some hassle (caller must handle error case
1068  * returns).
1069  *
1070  * FIXME: this could be merged to shift decision code
1071  */
1072 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1073 				  u32 start_seq, u32 end_seq)
1074 {
1075 	int err;
1076 	bool in_sack;
1077 	unsigned int pkt_len;
1078 	unsigned int mss;
1079 
1080 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1081 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1082 
1083 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1084 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1085 		mss = tcp_skb_mss(skb);
1086 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1087 
1088 		if (!in_sack) {
1089 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1090 			if (pkt_len < mss)
1091 				pkt_len = mss;
1092 		} else {
1093 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1094 			if (pkt_len < mss)
1095 				return -EINVAL;
1096 		}
1097 
1098 		/* Round if necessary so that SACKs cover only full MSSes
1099 		 * and/or the remaining small portion (if present)
1100 		 */
1101 		if (pkt_len > mss) {
1102 			unsigned int new_len = (pkt_len / mss) * mss;
1103 			if (!in_sack && new_len < pkt_len) {
1104 				new_len += mss;
1105 				if (new_len > skb->len)
1106 					return 0;
1107 			}
1108 			pkt_len = new_len;
1109 		}
1110 		err = tcp_fragment(sk, skb, pkt_len, mss);
1111 		if (err < 0)
1112 			return err;
1113 	}
1114 
1115 	return in_sack;
1116 }
1117 
1118 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1119 static u8 tcp_sacktag_one(struct sock *sk,
1120 			  struct tcp_sacktag_state *state, u8 sacked,
1121 			  u32 start_seq, u32 end_seq,
1122 			  bool dup_sack, int pcount)
1123 {
1124 	struct tcp_sock *tp = tcp_sk(sk);
1125 	int fack_count = state->fack_count;
1126 
1127 	/* Account D-SACK for retransmitted packet. */
1128 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1129 		if (tp->undo_marker && tp->undo_retrans &&
1130 		    after(end_seq, tp->undo_marker))
1131 			tp->undo_retrans--;
1132 		if (sacked & TCPCB_SACKED_ACKED)
1133 			state->reord = min(fack_count, state->reord);
1134 	}
1135 
1136 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1137 	if (!after(end_seq, tp->snd_una))
1138 		return sacked;
1139 
1140 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1141 		if (sacked & TCPCB_SACKED_RETRANS) {
1142 			/* If the segment is not tagged as lost,
1143 			 * we do not clear RETRANS, believing
1144 			 * that retransmission is still in flight.
1145 			 */
1146 			if (sacked & TCPCB_LOST) {
1147 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1148 				tp->lost_out -= pcount;
1149 				tp->retrans_out -= pcount;
1150 			}
1151 		} else {
1152 			if (!(sacked & TCPCB_RETRANS)) {
1153 				/* New sack for not retransmitted frame,
1154 				 * which was in hole. It is reordering.
1155 				 */
1156 				if (before(start_seq,
1157 					   tcp_highest_sack_seq(tp)))
1158 					state->reord = min(fack_count,
1159 							   state->reord);
1160 				if (!after(end_seq, tp->high_seq))
1161 					state->flag |= FLAG_ORIG_SACK_ACKED;
1162 			}
1163 
1164 			if (sacked & TCPCB_LOST) {
1165 				sacked &= ~TCPCB_LOST;
1166 				tp->lost_out -= pcount;
1167 			}
1168 		}
1169 
1170 		sacked |= TCPCB_SACKED_ACKED;
1171 		state->flag |= FLAG_DATA_SACKED;
1172 		tp->sacked_out += pcount;
1173 
1174 		fack_count += pcount;
1175 
1176 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1177 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1178 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1179 			tp->lost_cnt_hint += pcount;
1180 
1181 		if (fack_count > tp->fackets_out)
1182 			tp->fackets_out = fack_count;
1183 	}
1184 
1185 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1186 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1187 	 * are accounted above as well.
1188 	 */
1189 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1190 		sacked &= ~TCPCB_SACKED_RETRANS;
1191 		tp->retrans_out -= pcount;
1192 	}
1193 
1194 	return sacked;
1195 }
1196 
1197 /* Shift newly-SACKed bytes from this skb to the immediately previous
1198  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1199  */
1200 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1201 			    struct tcp_sacktag_state *state,
1202 			    unsigned int pcount, int shifted, int mss,
1203 			    bool dup_sack)
1204 {
1205 	struct tcp_sock *tp = tcp_sk(sk);
1206 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1207 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1208 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1209 
1210 	BUG_ON(!pcount);
1211 
1212 	/* Adjust counters and hints for the newly sacked sequence
1213 	 * range but discard the return value since prev is already
1214 	 * marked. We must tag the range first because the seq
1215 	 * advancement below implicitly advances
1216 	 * tcp_highest_sack_seq() when skb is highest_sack.
1217 	 */
1218 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1219 			start_seq, end_seq, dup_sack, pcount);
1220 
1221 	if (skb == tp->lost_skb_hint)
1222 		tp->lost_cnt_hint += pcount;
1223 
1224 	TCP_SKB_CB(prev)->end_seq += shifted;
1225 	TCP_SKB_CB(skb)->seq += shifted;
1226 
1227 	skb_shinfo(prev)->gso_segs += pcount;
1228 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1229 	skb_shinfo(skb)->gso_segs -= pcount;
1230 
1231 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1232 	 * in theory this shouldn't be necessary but as long as DSACK
1233 	 * code can come after this skb later on it's better to keep
1234 	 * setting gso_size to something.
1235 	 */
1236 	if (!skb_shinfo(prev)->gso_size) {
1237 		skb_shinfo(prev)->gso_size = mss;
1238 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1239 	}
1240 
1241 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1242 	if (skb_shinfo(skb)->gso_segs <= 1) {
1243 		skb_shinfo(skb)->gso_size = 0;
1244 		skb_shinfo(skb)->gso_type = 0;
1245 	}
1246 
1247 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1248 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1249 
1250 	if (skb->len > 0) {
1251 		BUG_ON(!tcp_skb_pcount(skb));
1252 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1253 		return false;
1254 	}
1255 
1256 	/* Whole SKB was eaten :-) */
1257 
1258 	if (skb == tp->retransmit_skb_hint)
1259 		tp->retransmit_skb_hint = prev;
1260 	if (skb == tp->scoreboard_skb_hint)
1261 		tp->scoreboard_skb_hint = prev;
1262 	if (skb == tp->lost_skb_hint) {
1263 		tp->lost_skb_hint = prev;
1264 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1265 	}
1266 
1267 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1268 	if (skb == tcp_highest_sack(sk))
1269 		tcp_advance_highest_sack(sk, skb);
1270 
1271 	tcp_unlink_write_queue(skb, sk);
1272 	sk_wmem_free_skb(sk, skb);
1273 
1274 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1275 
1276 	return true;
1277 }
1278 
1279 /* I wish gso_size would have a bit more sane initialization than
1280  * something-or-zero which complicates things
1281  */
1282 static int tcp_skb_seglen(const struct sk_buff *skb)
1283 {
1284 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1285 }
1286 
1287 /* Shifting pages past head area doesn't work */
1288 static int skb_can_shift(const struct sk_buff *skb)
1289 {
1290 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1291 }
1292 
1293 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1294  * skb.
1295  */
1296 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1297 					  struct tcp_sacktag_state *state,
1298 					  u32 start_seq, u32 end_seq,
1299 					  bool dup_sack)
1300 {
1301 	struct tcp_sock *tp = tcp_sk(sk);
1302 	struct sk_buff *prev;
1303 	int mss;
1304 	int pcount = 0;
1305 	int len;
1306 	int in_sack;
1307 
1308 	if (!sk_can_gso(sk))
1309 		goto fallback;
1310 
1311 	/* Normally R but no L won't result in plain S */
1312 	if (!dup_sack &&
1313 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1314 		goto fallback;
1315 	if (!skb_can_shift(skb))
1316 		goto fallback;
1317 	/* This frame is about to be dropped (was ACKed). */
1318 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1319 		goto fallback;
1320 
1321 	/* Can only happen with delayed DSACK + discard craziness */
1322 	if (unlikely(skb == tcp_write_queue_head(sk)))
1323 		goto fallback;
1324 	prev = tcp_write_queue_prev(sk, skb);
1325 
1326 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1327 		goto fallback;
1328 
1329 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1330 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1331 
1332 	if (in_sack) {
1333 		len = skb->len;
1334 		pcount = tcp_skb_pcount(skb);
1335 		mss = tcp_skb_seglen(skb);
1336 
1337 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1338 		 * drop this restriction as unnecessary
1339 		 */
1340 		if (mss != tcp_skb_seglen(prev))
1341 			goto fallback;
1342 	} else {
1343 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1344 			goto noop;
1345 		/* CHECKME: This is non-MSS split case only?, this will
1346 		 * cause skipped skbs due to advancing loop btw, original
1347 		 * has that feature too
1348 		 */
1349 		if (tcp_skb_pcount(skb) <= 1)
1350 			goto noop;
1351 
1352 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1353 		if (!in_sack) {
1354 			/* TODO: head merge to next could be attempted here
1355 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1356 			 * though it might not be worth of the additional hassle
1357 			 *
1358 			 * ...we can probably just fallback to what was done
1359 			 * previously. We could try merging non-SACKed ones
1360 			 * as well but it probably isn't going to buy off
1361 			 * because later SACKs might again split them, and
1362 			 * it would make skb timestamp tracking considerably
1363 			 * harder problem.
1364 			 */
1365 			goto fallback;
1366 		}
1367 
1368 		len = end_seq - TCP_SKB_CB(skb)->seq;
1369 		BUG_ON(len < 0);
1370 		BUG_ON(len > skb->len);
1371 
1372 		/* MSS boundaries should be honoured or else pcount will
1373 		 * severely break even though it makes things bit trickier.
1374 		 * Optimize common case to avoid most of the divides
1375 		 */
1376 		mss = tcp_skb_mss(skb);
1377 
1378 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1379 		 * drop this restriction as unnecessary
1380 		 */
1381 		if (mss != tcp_skb_seglen(prev))
1382 			goto fallback;
1383 
1384 		if (len == mss) {
1385 			pcount = 1;
1386 		} else if (len < mss) {
1387 			goto noop;
1388 		} else {
1389 			pcount = len / mss;
1390 			len = pcount * mss;
1391 		}
1392 	}
1393 
1394 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1395 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1396 		goto fallback;
1397 
1398 	if (!skb_shift(prev, skb, len))
1399 		goto fallback;
1400 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1401 		goto out;
1402 
1403 	/* Hole filled allows collapsing with the next as well, this is very
1404 	 * useful when hole on every nth skb pattern happens
1405 	 */
1406 	if (prev == tcp_write_queue_tail(sk))
1407 		goto out;
1408 	skb = tcp_write_queue_next(sk, prev);
1409 
1410 	if (!skb_can_shift(skb) ||
1411 	    (skb == tcp_send_head(sk)) ||
1412 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1413 	    (mss != tcp_skb_seglen(skb)))
1414 		goto out;
1415 
1416 	len = skb->len;
1417 	if (skb_shift(prev, skb, len)) {
1418 		pcount += tcp_skb_pcount(skb);
1419 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1420 	}
1421 
1422 out:
1423 	state->fack_count += pcount;
1424 	return prev;
1425 
1426 noop:
1427 	return skb;
1428 
1429 fallback:
1430 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1431 	return NULL;
1432 }
1433 
1434 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1435 					struct tcp_sack_block *next_dup,
1436 					struct tcp_sacktag_state *state,
1437 					u32 start_seq, u32 end_seq,
1438 					bool dup_sack_in)
1439 {
1440 	struct tcp_sock *tp = tcp_sk(sk);
1441 	struct sk_buff *tmp;
1442 
1443 	tcp_for_write_queue_from(skb, sk) {
1444 		int in_sack = 0;
1445 		bool dup_sack = dup_sack_in;
1446 
1447 		if (skb == tcp_send_head(sk))
1448 			break;
1449 
1450 		/* queue is in-order => we can short-circuit the walk early */
1451 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1452 			break;
1453 
1454 		if ((next_dup != NULL) &&
1455 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1456 			in_sack = tcp_match_skb_to_sack(sk, skb,
1457 							next_dup->start_seq,
1458 							next_dup->end_seq);
1459 			if (in_sack > 0)
1460 				dup_sack = true;
1461 		}
1462 
1463 		/* skb reference here is a bit tricky to get right, since
1464 		 * shifting can eat and free both this skb and the next,
1465 		 * so not even _safe variant of the loop is enough.
1466 		 */
1467 		if (in_sack <= 0) {
1468 			tmp = tcp_shift_skb_data(sk, skb, state,
1469 						 start_seq, end_seq, dup_sack);
1470 			if (tmp != NULL) {
1471 				if (tmp != skb) {
1472 					skb = tmp;
1473 					continue;
1474 				}
1475 
1476 				in_sack = 0;
1477 			} else {
1478 				in_sack = tcp_match_skb_to_sack(sk, skb,
1479 								start_seq,
1480 								end_seq);
1481 			}
1482 		}
1483 
1484 		if (unlikely(in_sack < 0))
1485 			break;
1486 
1487 		if (in_sack) {
1488 			TCP_SKB_CB(skb)->sacked =
1489 				tcp_sacktag_one(sk,
1490 						state,
1491 						TCP_SKB_CB(skb)->sacked,
1492 						TCP_SKB_CB(skb)->seq,
1493 						TCP_SKB_CB(skb)->end_seq,
1494 						dup_sack,
1495 						tcp_skb_pcount(skb));
1496 
1497 			if (!before(TCP_SKB_CB(skb)->seq,
1498 				    tcp_highest_sack_seq(tp)))
1499 				tcp_advance_highest_sack(sk, skb);
1500 		}
1501 
1502 		state->fack_count += tcp_skb_pcount(skb);
1503 	}
1504 	return skb;
1505 }
1506 
1507 /* Avoid all extra work that is being done by sacktag while walking in
1508  * a normal way
1509  */
1510 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1511 					struct tcp_sacktag_state *state,
1512 					u32 skip_to_seq)
1513 {
1514 	tcp_for_write_queue_from(skb, sk) {
1515 		if (skb == tcp_send_head(sk))
1516 			break;
1517 
1518 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1519 			break;
1520 
1521 		state->fack_count += tcp_skb_pcount(skb);
1522 	}
1523 	return skb;
1524 }
1525 
1526 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1527 						struct sock *sk,
1528 						struct tcp_sack_block *next_dup,
1529 						struct tcp_sacktag_state *state,
1530 						u32 skip_to_seq)
1531 {
1532 	if (next_dup == NULL)
1533 		return skb;
1534 
1535 	if (before(next_dup->start_seq, skip_to_seq)) {
1536 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1537 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1538 				       next_dup->start_seq, next_dup->end_seq,
1539 				       1);
1540 	}
1541 
1542 	return skb;
1543 }
1544 
1545 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1546 {
1547 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1548 }
1549 
1550 static int
1551 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1552 			u32 prior_snd_una)
1553 {
1554 	struct tcp_sock *tp = tcp_sk(sk);
1555 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1556 				    TCP_SKB_CB(ack_skb)->sacked);
1557 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1558 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1559 	struct tcp_sack_block *cache;
1560 	struct tcp_sacktag_state state;
1561 	struct sk_buff *skb;
1562 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1563 	int used_sacks;
1564 	bool found_dup_sack = false;
1565 	int i, j;
1566 	int first_sack_index;
1567 
1568 	state.flag = 0;
1569 	state.reord = tp->packets_out;
1570 
1571 	if (!tp->sacked_out) {
1572 		if (WARN_ON(tp->fackets_out))
1573 			tp->fackets_out = 0;
1574 		tcp_highest_sack_reset(sk);
1575 	}
1576 
1577 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1578 					 num_sacks, prior_snd_una);
1579 	if (found_dup_sack)
1580 		state.flag |= FLAG_DSACKING_ACK;
1581 
1582 	/* Eliminate too old ACKs, but take into
1583 	 * account more or less fresh ones, they can
1584 	 * contain valid SACK info.
1585 	 */
1586 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1587 		return 0;
1588 
1589 	if (!tp->packets_out)
1590 		goto out;
1591 
1592 	used_sacks = 0;
1593 	first_sack_index = 0;
1594 	for (i = 0; i < num_sacks; i++) {
1595 		bool dup_sack = !i && found_dup_sack;
1596 
1597 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1598 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1599 
1600 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1601 					    sp[used_sacks].start_seq,
1602 					    sp[used_sacks].end_seq)) {
1603 			int mib_idx;
1604 
1605 			if (dup_sack) {
1606 				if (!tp->undo_marker)
1607 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1608 				else
1609 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1610 			} else {
1611 				/* Don't count olds caused by ACK reordering */
1612 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1613 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1614 					continue;
1615 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1616 			}
1617 
1618 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1619 			if (i == 0)
1620 				first_sack_index = -1;
1621 			continue;
1622 		}
1623 
1624 		/* Ignore very old stuff early */
1625 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1626 			continue;
1627 
1628 		used_sacks++;
1629 	}
1630 
1631 	/* order SACK blocks to allow in order walk of the retrans queue */
1632 	for (i = used_sacks - 1; i > 0; i--) {
1633 		for (j = 0; j < i; j++) {
1634 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1635 				swap(sp[j], sp[j + 1]);
1636 
1637 				/* Track where the first SACK block goes to */
1638 				if (j == first_sack_index)
1639 					first_sack_index = j + 1;
1640 			}
1641 		}
1642 	}
1643 
1644 	skb = tcp_write_queue_head(sk);
1645 	state.fack_count = 0;
1646 	i = 0;
1647 
1648 	if (!tp->sacked_out) {
1649 		/* It's already past, so skip checking against it */
1650 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1651 	} else {
1652 		cache = tp->recv_sack_cache;
1653 		/* Skip empty blocks in at head of the cache */
1654 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1655 		       !cache->end_seq)
1656 			cache++;
1657 	}
1658 
1659 	while (i < used_sacks) {
1660 		u32 start_seq = sp[i].start_seq;
1661 		u32 end_seq = sp[i].end_seq;
1662 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1663 		struct tcp_sack_block *next_dup = NULL;
1664 
1665 		if (found_dup_sack && ((i + 1) == first_sack_index))
1666 			next_dup = &sp[i + 1];
1667 
1668 		/* Skip too early cached blocks */
1669 		while (tcp_sack_cache_ok(tp, cache) &&
1670 		       !before(start_seq, cache->end_seq))
1671 			cache++;
1672 
1673 		/* Can skip some work by looking recv_sack_cache? */
1674 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1675 		    after(end_seq, cache->start_seq)) {
1676 
1677 			/* Head todo? */
1678 			if (before(start_seq, cache->start_seq)) {
1679 				skb = tcp_sacktag_skip(skb, sk, &state,
1680 						       start_seq);
1681 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1682 						       &state,
1683 						       start_seq,
1684 						       cache->start_seq,
1685 						       dup_sack);
1686 			}
1687 
1688 			/* Rest of the block already fully processed? */
1689 			if (!after(end_seq, cache->end_seq))
1690 				goto advance_sp;
1691 
1692 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1693 						       &state,
1694 						       cache->end_seq);
1695 
1696 			/* ...tail remains todo... */
1697 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1698 				/* ...but better entrypoint exists! */
1699 				skb = tcp_highest_sack(sk);
1700 				if (skb == NULL)
1701 					break;
1702 				state.fack_count = tp->fackets_out;
1703 				cache++;
1704 				goto walk;
1705 			}
1706 
1707 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1708 			/* Check overlap against next cached too (past this one already) */
1709 			cache++;
1710 			continue;
1711 		}
1712 
1713 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1714 			skb = tcp_highest_sack(sk);
1715 			if (skb == NULL)
1716 				break;
1717 			state.fack_count = tp->fackets_out;
1718 		}
1719 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1720 
1721 walk:
1722 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1723 				       start_seq, end_seq, dup_sack);
1724 
1725 advance_sp:
1726 		i++;
1727 	}
1728 
1729 	/* Clear the head of the cache sack blocks so we can skip it next time */
1730 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1731 		tp->recv_sack_cache[i].start_seq = 0;
1732 		tp->recv_sack_cache[i].end_seq = 0;
1733 	}
1734 	for (j = 0; j < used_sacks; j++)
1735 		tp->recv_sack_cache[i++] = sp[j];
1736 
1737 	tcp_mark_lost_retrans(sk);
1738 
1739 	tcp_verify_left_out(tp);
1740 
1741 	if ((state.reord < tp->fackets_out) &&
1742 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1743 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1744 
1745 out:
1746 
1747 #if FASTRETRANS_DEBUG > 0
1748 	WARN_ON((int)tp->sacked_out < 0);
1749 	WARN_ON((int)tp->lost_out < 0);
1750 	WARN_ON((int)tp->retrans_out < 0);
1751 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1752 #endif
1753 	return state.flag;
1754 }
1755 
1756 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1757  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1758  */
1759 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1760 {
1761 	u32 holes;
1762 
1763 	holes = max(tp->lost_out, 1U);
1764 	holes = min(holes, tp->packets_out);
1765 
1766 	if ((tp->sacked_out + holes) > tp->packets_out) {
1767 		tp->sacked_out = tp->packets_out - holes;
1768 		return true;
1769 	}
1770 	return false;
1771 }
1772 
1773 /* If we receive more dupacks than we expected counting segments
1774  * in assumption of absent reordering, interpret this as reordering.
1775  * The only another reason could be bug in receiver TCP.
1776  */
1777 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1778 {
1779 	struct tcp_sock *tp = tcp_sk(sk);
1780 	if (tcp_limit_reno_sacked(tp))
1781 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1782 }
1783 
1784 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1785 
1786 static void tcp_add_reno_sack(struct sock *sk)
1787 {
1788 	struct tcp_sock *tp = tcp_sk(sk);
1789 	tp->sacked_out++;
1790 	tcp_check_reno_reordering(sk, 0);
1791 	tcp_verify_left_out(tp);
1792 }
1793 
1794 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1795 
1796 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1797 {
1798 	struct tcp_sock *tp = tcp_sk(sk);
1799 
1800 	if (acked > 0) {
1801 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1802 		if (acked - 1 >= tp->sacked_out)
1803 			tp->sacked_out = 0;
1804 		else
1805 			tp->sacked_out -= acked - 1;
1806 	}
1807 	tcp_check_reno_reordering(sk, acked);
1808 	tcp_verify_left_out(tp);
1809 }
1810 
1811 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1812 {
1813 	tp->sacked_out = 0;
1814 }
1815 
1816 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1817 {
1818 	tp->retrans_out = 0;
1819 	tp->lost_out = 0;
1820 
1821 	tp->undo_marker = 0;
1822 	tp->undo_retrans = 0;
1823 }
1824 
1825 void tcp_clear_retrans(struct tcp_sock *tp)
1826 {
1827 	tcp_clear_retrans_partial(tp);
1828 
1829 	tp->fackets_out = 0;
1830 	tp->sacked_out = 0;
1831 }
1832 
1833 /* Enter Loss state. If "how" is not zero, forget all SACK information
1834  * and reset tags completely, otherwise preserve SACKs. If receiver
1835  * dropped its ofo queue, we will know this due to reneging detection.
1836  */
1837 void tcp_enter_loss(struct sock *sk, int how)
1838 {
1839 	const struct inet_connection_sock *icsk = inet_csk(sk);
1840 	struct tcp_sock *tp = tcp_sk(sk);
1841 	struct sk_buff *skb;
1842 	bool new_recovery = false;
1843 
1844 	/* Reduce ssthresh if it has not yet been made inside this window. */
1845 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1846 	    !after(tp->high_seq, tp->snd_una) ||
1847 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1848 		new_recovery = true;
1849 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1850 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1851 		tcp_ca_event(sk, CA_EVENT_LOSS);
1852 	}
1853 	tp->snd_cwnd	   = 1;
1854 	tp->snd_cwnd_cnt   = 0;
1855 	tp->snd_cwnd_stamp = tcp_time_stamp;
1856 
1857 	tcp_clear_retrans_partial(tp);
1858 
1859 	if (tcp_is_reno(tp))
1860 		tcp_reset_reno_sack(tp);
1861 
1862 	tp->undo_marker = tp->snd_una;
1863 	if (how) {
1864 		tp->sacked_out = 0;
1865 		tp->fackets_out = 0;
1866 	}
1867 	tcp_clear_all_retrans_hints(tp);
1868 
1869 	tcp_for_write_queue(skb, sk) {
1870 		if (skb == tcp_send_head(sk))
1871 			break;
1872 
1873 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1874 			tp->undo_marker = 0;
1875 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1876 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1877 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1878 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1879 			tp->lost_out += tcp_skb_pcount(skb);
1880 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1881 		}
1882 	}
1883 	tcp_verify_left_out(tp);
1884 
1885 	tp->reordering = min_t(unsigned int, tp->reordering,
1886 			       sysctl_tcp_reordering);
1887 	tcp_set_ca_state(sk, TCP_CA_Loss);
1888 	tp->high_seq = tp->snd_nxt;
1889 	TCP_ECN_queue_cwr(tp);
1890 
1891 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1892 	 * loss recovery is underway except recurring timeout(s) on
1893 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1894 	 */
1895 	tp->frto = sysctl_tcp_frto &&
1896 		   (new_recovery || icsk->icsk_retransmits) &&
1897 		   !inet_csk(sk)->icsk_mtup.probe_size;
1898 }
1899 
1900 /* If ACK arrived pointing to a remembered SACK, it means that our
1901  * remembered SACKs do not reflect real state of receiver i.e.
1902  * receiver _host_ is heavily congested (or buggy).
1903  *
1904  * Do processing similar to RTO timeout.
1905  */
1906 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1907 {
1908 	if (flag & FLAG_SACK_RENEGING) {
1909 		struct inet_connection_sock *icsk = inet_csk(sk);
1910 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1911 
1912 		tcp_enter_loss(sk, 1);
1913 		icsk->icsk_retransmits++;
1914 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1915 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1916 					  icsk->icsk_rto, TCP_RTO_MAX);
1917 		return true;
1918 	}
1919 	return false;
1920 }
1921 
1922 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1923 {
1924 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1925 }
1926 
1927 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1928  * counter when SACK is enabled (without SACK, sacked_out is used for
1929  * that purpose).
1930  *
1931  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1932  * segments up to the highest received SACK block so far and holes in
1933  * between them.
1934  *
1935  * With reordering, holes may still be in flight, so RFC3517 recovery
1936  * uses pure sacked_out (total number of SACKed segments) even though
1937  * it violates the RFC that uses duplicate ACKs, often these are equal
1938  * but when e.g. out-of-window ACKs or packet duplication occurs,
1939  * they differ. Since neither occurs due to loss, TCP should really
1940  * ignore them.
1941  */
1942 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1943 {
1944 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1945 }
1946 
1947 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1948 {
1949 	struct tcp_sock *tp = tcp_sk(sk);
1950 	unsigned long delay;
1951 
1952 	/* Delay early retransmit and entering fast recovery for
1953 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1954 	 * available, or RTO is scheduled to fire first.
1955 	 */
1956 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
1957 	    (flag & FLAG_ECE) || !tp->srtt)
1958 		return false;
1959 
1960 	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
1961 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
1962 		return false;
1963 
1964 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
1965 				  TCP_RTO_MAX);
1966 	return true;
1967 }
1968 
1969 static inline int tcp_skb_timedout(const struct sock *sk,
1970 				   const struct sk_buff *skb)
1971 {
1972 	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
1973 }
1974 
1975 static inline int tcp_head_timedout(const struct sock *sk)
1976 {
1977 	const struct tcp_sock *tp = tcp_sk(sk);
1978 
1979 	return tp->packets_out &&
1980 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1981 }
1982 
1983 /* Linux NewReno/SACK/FACK/ECN state machine.
1984  * --------------------------------------
1985  *
1986  * "Open"	Normal state, no dubious events, fast path.
1987  * "Disorder"   In all the respects it is "Open",
1988  *		but requires a bit more attention. It is entered when
1989  *		we see some SACKs or dupacks. It is split of "Open"
1990  *		mainly to move some processing from fast path to slow one.
1991  * "CWR"	CWND was reduced due to some Congestion Notification event.
1992  *		It can be ECN, ICMP source quench, local device congestion.
1993  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1994  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1995  *
1996  * tcp_fastretrans_alert() is entered:
1997  * - each incoming ACK, if state is not "Open"
1998  * - when arrived ACK is unusual, namely:
1999  *	* SACK
2000  *	* Duplicate ACK.
2001  *	* ECN ECE.
2002  *
2003  * Counting packets in flight is pretty simple.
2004  *
2005  *	in_flight = packets_out - left_out + retrans_out
2006  *
2007  *	packets_out is SND.NXT-SND.UNA counted in packets.
2008  *
2009  *	retrans_out is number of retransmitted segments.
2010  *
2011  *	left_out is number of segments left network, but not ACKed yet.
2012  *
2013  *		left_out = sacked_out + lost_out
2014  *
2015  *     sacked_out: Packets, which arrived to receiver out of order
2016  *		   and hence not ACKed. With SACKs this number is simply
2017  *		   amount of SACKed data. Even without SACKs
2018  *		   it is easy to give pretty reliable estimate of this number,
2019  *		   counting duplicate ACKs.
2020  *
2021  *       lost_out: Packets lost by network. TCP has no explicit
2022  *		   "loss notification" feedback from network (for now).
2023  *		   It means that this number can be only _guessed_.
2024  *		   Actually, it is the heuristics to predict lossage that
2025  *		   distinguishes different algorithms.
2026  *
2027  *	F.e. after RTO, when all the queue is considered as lost,
2028  *	lost_out = packets_out and in_flight = retrans_out.
2029  *
2030  *		Essentially, we have now two algorithms counting
2031  *		lost packets.
2032  *
2033  *		FACK: It is the simplest heuristics. As soon as we decided
2034  *		that something is lost, we decide that _all_ not SACKed
2035  *		packets until the most forward SACK are lost. I.e.
2036  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2037  *		It is absolutely correct estimate, if network does not reorder
2038  *		packets. And it loses any connection to reality when reordering
2039  *		takes place. We use FACK by default until reordering
2040  *		is suspected on the path to this destination.
2041  *
2042  *		NewReno: when Recovery is entered, we assume that one segment
2043  *		is lost (classic Reno). While we are in Recovery and
2044  *		a partial ACK arrives, we assume that one more packet
2045  *		is lost (NewReno). This heuristics are the same in NewReno
2046  *		and SACK.
2047  *
2048  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2049  *  deflation etc. CWND is real congestion window, never inflated, changes
2050  *  only according to classic VJ rules.
2051  *
2052  * Really tricky (and requiring careful tuning) part of algorithm
2053  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2054  * The first determines the moment _when_ we should reduce CWND and,
2055  * hence, slow down forward transmission. In fact, it determines the moment
2056  * when we decide that hole is caused by loss, rather than by a reorder.
2057  *
2058  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2059  * holes, caused by lost packets.
2060  *
2061  * And the most logically complicated part of algorithm is undo
2062  * heuristics. We detect false retransmits due to both too early
2063  * fast retransmit (reordering) and underestimated RTO, analyzing
2064  * timestamps and D-SACKs. When we detect that some segments were
2065  * retransmitted by mistake and CWND reduction was wrong, we undo
2066  * window reduction and abort recovery phase. This logic is hidden
2067  * inside several functions named tcp_try_undo_<something>.
2068  */
2069 
2070 /* This function decides, when we should leave Disordered state
2071  * and enter Recovery phase, reducing congestion window.
2072  *
2073  * Main question: may we further continue forward transmission
2074  * with the same cwnd?
2075  */
2076 static bool tcp_time_to_recover(struct sock *sk, int flag)
2077 {
2078 	struct tcp_sock *tp = tcp_sk(sk);
2079 	__u32 packets_out;
2080 
2081 	/* Trick#1: The loss is proven. */
2082 	if (tp->lost_out)
2083 		return true;
2084 
2085 	/* Not-A-Trick#2 : Classic rule... */
2086 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2087 		return true;
2088 
2089 	/* Trick#3 : when we use RFC2988 timer restart, fast
2090 	 * retransmit can be triggered by timeout of queue head.
2091 	 */
2092 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2093 		return true;
2094 
2095 	/* Trick#4: It is still not OK... But will it be useful to delay
2096 	 * recovery more?
2097 	 */
2098 	packets_out = tp->packets_out;
2099 	if (packets_out <= tp->reordering &&
2100 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2101 	    !tcp_may_send_now(sk)) {
2102 		/* We have nothing to send. This connection is limited
2103 		 * either by receiver window or by application.
2104 		 */
2105 		return true;
2106 	}
2107 
2108 	/* If a thin stream is detected, retransmit after first
2109 	 * received dupack. Employ only if SACK is supported in order
2110 	 * to avoid possible corner-case series of spurious retransmissions
2111 	 * Use only if there are no unsent data.
2112 	 */
2113 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2114 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2115 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2116 		return true;
2117 
2118 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2119 	 * retransmissions due to small network reorderings, we implement
2120 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2121 	 * interval if appropriate.
2122 	 */
2123 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2124 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2125 	    !tcp_may_send_now(sk))
2126 		return !tcp_pause_early_retransmit(sk, flag);
2127 
2128 	return false;
2129 }
2130 
2131 /* New heuristics: it is possible only after we switched to restart timer
2132  * each time when something is ACKed. Hence, we can detect timed out packets
2133  * during fast retransmit without falling to slow start.
2134  *
2135  * Usefulness of this as is very questionable, since we should know which of
2136  * the segments is the next to timeout which is relatively expensive to find
2137  * in general case unless we add some data structure just for that. The
2138  * current approach certainly won't find the right one too often and when it
2139  * finally does find _something_ it usually marks large part of the window
2140  * right away (because a retransmission with a larger timestamp blocks the
2141  * loop from advancing). -ij
2142  */
2143 static void tcp_timeout_skbs(struct sock *sk)
2144 {
2145 	struct tcp_sock *tp = tcp_sk(sk);
2146 	struct sk_buff *skb;
2147 
2148 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2149 		return;
2150 
2151 	skb = tp->scoreboard_skb_hint;
2152 	if (tp->scoreboard_skb_hint == NULL)
2153 		skb = tcp_write_queue_head(sk);
2154 
2155 	tcp_for_write_queue_from(skb, sk) {
2156 		if (skb == tcp_send_head(sk))
2157 			break;
2158 		if (!tcp_skb_timedout(sk, skb))
2159 			break;
2160 
2161 		tcp_skb_mark_lost(tp, skb);
2162 	}
2163 
2164 	tp->scoreboard_skb_hint = skb;
2165 
2166 	tcp_verify_left_out(tp);
2167 }
2168 
2169 /* Detect loss in event "A" above by marking head of queue up as lost.
2170  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2171  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2172  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2173  * the maximum SACKed segments to pass before reaching this limit.
2174  */
2175 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2176 {
2177 	struct tcp_sock *tp = tcp_sk(sk);
2178 	struct sk_buff *skb;
2179 	int cnt, oldcnt;
2180 	int err;
2181 	unsigned int mss;
2182 	/* Use SACK to deduce losses of new sequences sent during recovery */
2183 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2184 
2185 	WARN_ON(packets > tp->packets_out);
2186 	if (tp->lost_skb_hint) {
2187 		skb = tp->lost_skb_hint;
2188 		cnt = tp->lost_cnt_hint;
2189 		/* Head already handled? */
2190 		if (mark_head && skb != tcp_write_queue_head(sk))
2191 			return;
2192 	} else {
2193 		skb = tcp_write_queue_head(sk);
2194 		cnt = 0;
2195 	}
2196 
2197 	tcp_for_write_queue_from(skb, sk) {
2198 		if (skb == tcp_send_head(sk))
2199 			break;
2200 		/* TODO: do this better */
2201 		/* this is not the most efficient way to do this... */
2202 		tp->lost_skb_hint = skb;
2203 		tp->lost_cnt_hint = cnt;
2204 
2205 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2206 			break;
2207 
2208 		oldcnt = cnt;
2209 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2210 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2211 			cnt += tcp_skb_pcount(skb);
2212 
2213 		if (cnt > packets) {
2214 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2215 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2216 			    (oldcnt >= packets))
2217 				break;
2218 
2219 			mss = skb_shinfo(skb)->gso_size;
2220 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2221 			if (err < 0)
2222 				break;
2223 			cnt = packets;
2224 		}
2225 
2226 		tcp_skb_mark_lost(tp, skb);
2227 
2228 		if (mark_head)
2229 			break;
2230 	}
2231 	tcp_verify_left_out(tp);
2232 }
2233 
2234 /* Account newly detected lost packet(s) */
2235 
2236 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2237 {
2238 	struct tcp_sock *tp = tcp_sk(sk);
2239 
2240 	if (tcp_is_reno(tp)) {
2241 		tcp_mark_head_lost(sk, 1, 1);
2242 	} else if (tcp_is_fack(tp)) {
2243 		int lost = tp->fackets_out - tp->reordering;
2244 		if (lost <= 0)
2245 			lost = 1;
2246 		tcp_mark_head_lost(sk, lost, 0);
2247 	} else {
2248 		int sacked_upto = tp->sacked_out - tp->reordering;
2249 		if (sacked_upto >= 0)
2250 			tcp_mark_head_lost(sk, sacked_upto, 0);
2251 		else if (fast_rexmit)
2252 			tcp_mark_head_lost(sk, 1, 1);
2253 	}
2254 
2255 	tcp_timeout_skbs(sk);
2256 }
2257 
2258 /* CWND moderation, preventing bursts due to too big ACKs
2259  * in dubious situations.
2260  */
2261 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2262 {
2263 	tp->snd_cwnd = min(tp->snd_cwnd,
2264 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2265 	tp->snd_cwnd_stamp = tcp_time_stamp;
2266 }
2267 
2268 /* Nothing was retransmitted or returned timestamp is less
2269  * than timestamp of the first retransmission.
2270  */
2271 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2272 {
2273 	return !tp->retrans_stamp ||
2274 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2275 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2276 }
2277 
2278 /* Undo procedures. */
2279 
2280 #if FASTRETRANS_DEBUG > 1
2281 static void DBGUNDO(struct sock *sk, const char *msg)
2282 {
2283 	struct tcp_sock *tp = tcp_sk(sk);
2284 	struct inet_sock *inet = inet_sk(sk);
2285 
2286 	if (sk->sk_family == AF_INET) {
2287 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2288 			 msg,
2289 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2290 			 tp->snd_cwnd, tcp_left_out(tp),
2291 			 tp->snd_ssthresh, tp->prior_ssthresh,
2292 			 tp->packets_out);
2293 	}
2294 #if IS_ENABLED(CONFIG_IPV6)
2295 	else if (sk->sk_family == AF_INET6) {
2296 		struct ipv6_pinfo *np = inet6_sk(sk);
2297 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2298 			 msg,
2299 			 &np->daddr, ntohs(inet->inet_dport),
2300 			 tp->snd_cwnd, tcp_left_out(tp),
2301 			 tp->snd_ssthresh, tp->prior_ssthresh,
2302 			 tp->packets_out);
2303 	}
2304 #endif
2305 }
2306 #else
2307 #define DBGUNDO(x...) do { } while (0)
2308 #endif
2309 
2310 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2311 {
2312 	struct tcp_sock *tp = tcp_sk(sk);
2313 
2314 	if (tp->prior_ssthresh) {
2315 		const struct inet_connection_sock *icsk = inet_csk(sk);
2316 
2317 		if (icsk->icsk_ca_ops->undo_cwnd)
2318 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2319 		else
2320 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2321 
2322 		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2323 			tp->snd_ssthresh = tp->prior_ssthresh;
2324 			TCP_ECN_withdraw_cwr(tp);
2325 		}
2326 	} else {
2327 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2328 	}
2329 	tp->snd_cwnd_stamp = tcp_time_stamp;
2330 }
2331 
2332 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2333 {
2334 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2335 }
2336 
2337 /* People celebrate: "We love our President!" */
2338 static bool tcp_try_undo_recovery(struct sock *sk)
2339 {
2340 	struct tcp_sock *tp = tcp_sk(sk);
2341 
2342 	if (tcp_may_undo(tp)) {
2343 		int mib_idx;
2344 
2345 		/* Happy end! We did not retransmit anything
2346 		 * or our original transmission succeeded.
2347 		 */
2348 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2349 		tcp_undo_cwr(sk, true);
2350 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2351 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2352 		else
2353 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2354 
2355 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2356 		tp->undo_marker = 0;
2357 	}
2358 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2359 		/* Hold old state until something *above* high_seq
2360 		 * is ACKed. For Reno it is MUST to prevent false
2361 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2362 		tcp_moderate_cwnd(tp);
2363 		return true;
2364 	}
2365 	tcp_set_ca_state(sk, TCP_CA_Open);
2366 	return false;
2367 }
2368 
2369 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2370 static void tcp_try_undo_dsack(struct sock *sk)
2371 {
2372 	struct tcp_sock *tp = tcp_sk(sk);
2373 
2374 	if (tp->undo_marker && !tp->undo_retrans) {
2375 		DBGUNDO(sk, "D-SACK");
2376 		tcp_undo_cwr(sk, true);
2377 		tp->undo_marker = 0;
2378 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2379 	}
2380 }
2381 
2382 /* We can clear retrans_stamp when there are no retransmissions in the
2383  * window. It would seem that it is trivially available for us in
2384  * tp->retrans_out, however, that kind of assumptions doesn't consider
2385  * what will happen if errors occur when sending retransmission for the
2386  * second time. ...It could the that such segment has only
2387  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2388  * the head skb is enough except for some reneging corner cases that
2389  * are not worth the effort.
2390  *
2391  * Main reason for all this complexity is the fact that connection dying
2392  * time now depends on the validity of the retrans_stamp, in particular,
2393  * that successive retransmissions of a segment must not advance
2394  * retrans_stamp under any conditions.
2395  */
2396 static bool tcp_any_retrans_done(const struct sock *sk)
2397 {
2398 	const struct tcp_sock *tp = tcp_sk(sk);
2399 	struct sk_buff *skb;
2400 
2401 	if (tp->retrans_out)
2402 		return true;
2403 
2404 	skb = tcp_write_queue_head(sk);
2405 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2406 		return true;
2407 
2408 	return false;
2409 }
2410 
2411 /* Undo during fast recovery after partial ACK. */
2412 
2413 static int tcp_try_undo_partial(struct sock *sk, int acked)
2414 {
2415 	struct tcp_sock *tp = tcp_sk(sk);
2416 	/* Partial ACK arrived. Force Hoe's retransmit. */
2417 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2418 
2419 	if (tcp_may_undo(tp)) {
2420 		/* Plain luck! Hole if filled with delayed
2421 		 * packet, rather than with a retransmit.
2422 		 */
2423 		if (!tcp_any_retrans_done(sk))
2424 			tp->retrans_stamp = 0;
2425 
2426 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2427 
2428 		DBGUNDO(sk, "Hoe");
2429 		tcp_undo_cwr(sk, false);
2430 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2431 
2432 		/* So... Do not make Hoe's retransmit yet.
2433 		 * If the first packet was delayed, the rest
2434 		 * ones are most probably delayed as well.
2435 		 */
2436 		failed = 0;
2437 	}
2438 	return failed;
2439 }
2440 
2441 /* Undo during loss recovery after partial ACK or using F-RTO. */
2442 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2443 {
2444 	struct tcp_sock *tp = tcp_sk(sk);
2445 
2446 	if (frto_undo || tcp_may_undo(tp)) {
2447 		struct sk_buff *skb;
2448 		tcp_for_write_queue(skb, sk) {
2449 			if (skb == tcp_send_head(sk))
2450 				break;
2451 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2452 		}
2453 
2454 		tcp_clear_all_retrans_hints(tp);
2455 
2456 		DBGUNDO(sk, "partial loss");
2457 		tp->lost_out = 0;
2458 		tcp_undo_cwr(sk, true);
2459 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2460 		if (frto_undo)
2461 			NET_INC_STATS_BH(sock_net(sk),
2462 					 LINUX_MIB_TCPSPURIOUSRTOS);
2463 		inet_csk(sk)->icsk_retransmits = 0;
2464 		tp->undo_marker = 0;
2465 		if (frto_undo || tcp_is_sack(tp))
2466 			tcp_set_ca_state(sk, TCP_CA_Open);
2467 		return true;
2468 	}
2469 	return false;
2470 }
2471 
2472 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2473  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2474  * It computes the number of packets to send (sndcnt) based on packets newly
2475  * delivered:
2476  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2477  *	cwnd reductions across a full RTT.
2478  *   2) If packets in flight is lower than ssthresh (such as due to excess
2479  *	losses and/or application stalls), do not perform any further cwnd
2480  *	reductions, but instead slow start up to ssthresh.
2481  */
2482 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2483 {
2484 	struct tcp_sock *tp = tcp_sk(sk);
2485 
2486 	tp->high_seq = tp->snd_nxt;
2487 	tp->tlp_high_seq = 0;
2488 	tp->snd_cwnd_cnt = 0;
2489 	tp->prior_cwnd = tp->snd_cwnd;
2490 	tp->prr_delivered = 0;
2491 	tp->prr_out = 0;
2492 	if (set_ssthresh)
2493 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2494 	TCP_ECN_queue_cwr(tp);
2495 }
2496 
2497 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2498 			       int fast_rexmit)
2499 {
2500 	struct tcp_sock *tp = tcp_sk(sk);
2501 	int sndcnt = 0;
2502 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2503 
2504 	tp->prr_delivered += newly_acked_sacked;
2505 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2506 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2507 			       tp->prior_cwnd - 1;
2508 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2509 	} else {
2510 		sndcnt = min_t(int, delta,
2511 			       max_t(int, tp->prr_delivered - tp->prr_out,
2512 				     newly_acked_sacked) + 1);
2513 	}
2514 
2515 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2516 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2517 }
2518 
2519 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2520 {
2521 	struct tcp_sock *tp = tcp_sk(sk);
2522 
2523 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2524 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2525 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2526 		tp->snd_cwnd = tp->snd_ssthresh;
2527 		tp->snd_cwnd_stamp = tcp_time_stamp;
2528 	}
2529 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2530 }
2531 
2532 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2533 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2534 {
2535 	struct tcp_sock *tp = tcp_sk(sk);
2536 
2537 	tp->prior_ssthresh = 0;
2538 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2539 		tp->undo_marker = 0;
2540 		tcp_init_cwnd_reduction(sk, set_ssthresh);
2541 		tcp_set_ca_state(sk, TCP_CA_CWR);
2542 	}
2543 }
2544 
2545 static void tcp_try_keep_open(struct sock *sk)
2546 {
2547 	struct tcp_sock *tp = tcp_sk(sk);
2548 	int state = TCP_CA_Open;
2549 
2550 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2551 		state = TCP_CA_Disorder;
2552 
2553 	if (inet_csk(sk)->icsk_ca_state != state) {
2554 		tcp_set_ca_state(sk, state);
2555 		tp->high_seq = tp->snd_nxt;
2556 	}
2557 }
2558 
2559 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked)
2560 {
2561 	struct tcp_sock *tp = tcp_sk(sk);
2562 
2563 	tcp_verify_left_out(tp);
2564 
2565 	if (!tcp_any_retrans_done(sk))
2566 		tp->retrans_stamp = 0;
2567 
2568 	if (flag & FLAG_ECE)
2569 		tcp_enter_cwr(sk, 1);
2570 
2571 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2572 		tcp_try_keep_open(sk);
2573 		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2574 			tcp_moderate_cwnd(tp);
2575 	} else {
2576 		tcp_cwnd_reduction(sk, newly_acked_sacked, 0);
2577 	}
2578 }
2579 
2580 static void tcp_mtup_probe_failed(struct sock *sk)
2581 {
2582 	struct inet_connection_sock *icsk = inet_csk(sk);
2583 
2584 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2585 	icsk->icsk_mtup.probe_size = 0;
2586 }
2587 
2588 static void tcp_mtup_probe_success(struct sock *sk)
2589 {
2590 	struct tcp_sock *tp = tcp_sk(sk);
2591 	struct inet_connection_sock *icsk = inet_csk(sk);
2592 
2593 	/* FIXME: breaks with very large cwnd */
2594 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2595 	tp->snd_cwnd = tp->snd_cwnd *
2596 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2597 		       icsk->icsk_mtup.probe_size;
2598 	tp->snd_cwnd_cnt = 0;
2599 	tp->snd_cwnd_stamp = tcp_time_stamp;
2600 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2601 
2602 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2603 	icsk->icsk_mtup.probe_size = 0;
2604 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2605 }
2606 
2607 /* Do a simple retransmit without using the backoff mechanisms in
2608  * tcp_timer. This is used for path mtu discovery.
2609  * The socket is already locked here.
2610  */
2611 void tcp_simple_retransmit(struct sock *sk)
2612 {
2613 	const struct inet_connection_sock *icsk = inet_csk(sk);
2614 	struct tcp_sock *tp = tcp_sk(sk);
2615 	struct sk_buff *skb;
2616 	unsigned int mss = tcp_current_mss(sk);
2617 	u32 prior_lost = tp->lost_out;
2618 
2619 	tcp_for_write_queue(skb, sk) {
2620 		if (skb == tcp_send_head(sk))
2621 			break;
2622 		if (tcp_skb_seglen(skb) > mss &&
2623 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2624 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2625 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2626 				tp->retrans_out -= tcp_skb_pcount(skb);
2627 			}
2628 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2629 		}
2630 	}
2631 
2632 	tcp_clear_retrans_hints_partial(tp);
2633 
2634 	if (prior_lost == tp->lost_out)
2635 		return;
2636 
2637 	if (tcp_is_reno(tp))
2638 		tcp_limit_reno_sacked(tp);
2639 
2640 	tcp_verify_left_out(tp);
2641 
2642 	/* Don't muck with the congestion window here.
2643 	 * Reason is that we do not increase amount of _data_
2644 	 * in network, but units changed and effective
2645 	 * cwnd/ssthresh really reduced now.
2646 	 */
2647 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2648 		tp->high_seq = tp->snd_nxt;
2649 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2650 		tp->prior_ssthresh = 0;
2651 		tp->undo_marker = 0;
2652 		tcp_set_ca_state(sk, TCP_CA_Loss);
2653 	}
2654 	tcp_xmit_retransmit_queue(sk);
2655 }
2656 EXPORT_SYMBOL(tcp_simple_retransmit);
2657 
2658 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2659 {
2660 	struct tcp_sock *tp = tcp_sk(sk);
2661 	int mib_idx;
2662 
2663 	if (tcp_is_reno(tp))
2664 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2665 	else
2666 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2667 
2668 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2669 
2670 	tp->prior_ssthresh = 0;
2671 	tp->undo_marker = tp->snd_una;
2672 	tp->undo_retrans = tp->retrans_out;
2673 
2674 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2675 		if (!ece_ack)
2676 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2677 		tcp_init_cwnd_reduction(sk, true);
2678 	}
2679 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2680 }
2681 
2682 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2683  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2684  */
2685 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2686 {
2687 	struct inet_connection_sock *icsk = inet_csk(sk);
2688 	struct tcp_sock *tp = tcp_sk(sk);
2689 	bool recovered = !before(tp->snd_una, tp->high_seq);
2690 
2691 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2692 		if (flag & FLAG_ORIG_SACK_ACKED) {
2693 			/* Step 3.b. A timeout is spurious if not all data are
2694 			 * lost, i.e., never-retransmitted data are (s)acked.
2695 			 */
2696 			tcp_try_undo_loss(sk, true);
2697 			return;
2698 		}
2699 		if (after(tp->snd_nxt, tp->high_seq) &&
2700 		    (flag & FLAG_DATA_SACKED || is_dupack)) {
2701 			tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2702 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2703 			tp->high_seq = tp->snd_nxt;
2704 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2705 						  TCP_NAGLE_OFF);
2706 			if (after(tp->snd_nxt, tp->high_seq))
2707 				return; /* Step 2.b */
2708 			tp->frto = 0;
2709 		}
2710 	}
2711 
2712 	if (recovered) {
2713 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2714 		icsk->icsk_retransmits = 0;
2715 		tcp_try_undo_recovery(sk);
2716 		return;
2717 	}
2718 	if (flag & FLAG_DATA_ACKED)
2719 		icsk->icsk_retransmits = 0;
2720 	if (tcp_is_reno(tp)) {
2721 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2722 		 * delivered. Lower inflight to clock out (re)tranmissions.
2723 		 */
2724 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2725 			tcp_add_reno_sack(sk);
2726 		else if (flag & FLAG_SND_UNA_ADVANCED)
2727 			tcp_reset_reno_sack(tp);
2728 	}
2729 	if (tcp_try_undo_loss(sk, false))
2730 		return;
2731 	tcp_xmit_retransmit_queue(sk);
2732 }
2733 
2734 /* Process an event, which can update packets-in-flight not trivially.
2735  * Main goal of this function is to calculate new estimate for left_out,
2736  * taking into account both packets sitting in receiver's buffer and
2737  * packets lost by network.
2738  *
2739  * Besides that it does CWND reduction, when packet loss is detected
2740  * and changes state of machine.
2741  *
2742  * It does _not_ decide what to send, it is made in function
2743  * tcp_xmit_retransmit_queue().
2744  */
2745 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2746 				  int prior_sacked, bool is_dupack,
2747 				  int flag)
2748 {
2749 	struct inet_connection_sock *icsk = inet_csk(sk);
2750 	struct tcp_sock *tp = tcp_sk(sk);
2751 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2752 				    (tcp_fackets_out(tp) > tp->reordering));
2753 	int newly_acked_sacked = 0;
2754 	int fast_rexmit = 0;
2755 
2756 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2757 		tp->sacked_out = 0;
2758 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2759 		tp->fackets_out = 0;
2760 
2761 	/* Now state machine starts.
2762 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2763 	if (flag & FLAG_ECE)
2764 		tp->prior_ssthresh = 0;
2765 
2766 	/* B. In all the states check for reneging SACKs. */
2767 	if (tcp_check_sack_reneging(sk, flag))
2768 		return;
2769 
2770 	/* C. Check consistency of the current state. */
2771 	tcp_verify_left_out(tp);
2772 
2773 	/* D. Check state exit conditions. State can be terminated
2774 	 *    when high_seq is ACKed. */
2775 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2776 		WARN_ON(tp->retrans_out != 0);
2777 		tp->retrans_stamp = 0;
2778 	} else if (!before(tp->snd_una, tp->high_seq)) {
2779 		switch (icsk->icsk_ca_state) {
2780 		case TCP_CA_CWR:
2781 			/* CWR is to be held something *above* high_seq
2782 			 * is ACKed for CWR bit to reach receiver. */
2783 			if (tp->snd_una != tp->high_seq) {
2784 				tcp_end_cwnd_reduction(sk);
2785 				tcp_set_ca_state(sk, TCP_CA_Open);
2786 			}
2787 			break;
2788 
2789 		case TCP_CA_Recovery:
2790 			if (tcp_is_reno(tp))
2791 				tcp_reset_reno_sack(tp);
2792 			if (tcp_try_undo_recovery(sk))
2793 				return;
2794 			tcp_end_cwnd_reduction(sk);
2795 			break;
2796 		}
2797 	}
2798 
2799 	/* E. Process state. */
2800 	switch (icsk->icsk_ca_state) {
2801 	case TCP_CA_Recovery:
2802 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2803 			if (tcp_is_reno(tp) && is_dupack)
2804 				tcp_add_reno_sack(sk);
2805 		} else
2806 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2807 		newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2808 		break;
2809 	case TCP_CA_Loss:
2810 		tcp_process_loss(sk, flag, is_dupack);
2811 		if (icsk->icsk_ca_state != TCP_CA_Open)
2812 			return;
2813 		/* Fall through to processing in Open state. */
2814 	default:
2815 		if (tcp_is_reno(tp)) {
2816 			if (flag & FLAG_SND_UNA_ADVANCED)
2817 				tcp_reset_reno_sack(tp);
2818 			if (is_dupack)
2819 				tcp_add_reno_sack(sk);
2820 		}
2821 		newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked;
2822 
2823 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2824 			tcp_try_undo_dsack(sk);
2825 
2826 		if (!tcp_time_to_recover(sk, flag)) {
2827 			tcp_try_to_open(sk, flag, newly_acked_sacked);
2828 			return;
2829 		}
2830 
2831 		/* MTU probe failure: don't reduce cwnd */
2832 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2833 		    icsk->icsk_mtup.probe_size &&
2834 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2835 			tcp_mtup_probe_failed(sk);
2836 			/* Restores the reduction we did in tcp_mtup_probe() */
2837 			tp->snd_cwnd++;
2838 			tcp_simple_retransmit(sk);
2839 			return;
2840 		}
2841 
2842 		/* Otherwise enter Recovery state */
2843 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2844 		fast_rexmit = 1;
2845 	}
2846 
2847 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2848 		tcp_update_scoreboard(sk, fast_rexmit);
2849 	tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit);
2850 	tcp_xmit_retransmit_queue(sk);
2851 }
2852 
2853 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
2854 {
2855 	tcp_rtt_estimator(sk, seq_rtt);
2856 	tcp_set_rto(sk);
2857 	inet_csk(sk)->icsk_backoff = 0;
2858 }
2859 EXPORT_SYMBOL(tcp_valid_rtt_meas);
2860 
2861 /* Read draft-ietf-tcplw-high-performance before mucking
2862  * with this code. (Supersedes RFC1323)
2863  */
2864 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2865 {
2866 	/* RTTM Rule: A TSecr value received in a segment is used to
2867 	 * update the averaged RTT measurement only if the segment
2868 	 * acknowledges some new data, i.e., only if it advances the
2869 	 * left edge of the send window.
2870 	 *
2871 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2872 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2873 	 *
2874 	 * Changed: reset backoff as soon as we see the first valid sample.
2875 	 * If we do not, we get strongly overestimated rto. With timestamps
2876 	 * samples are accepted even from very old segments: f.e., when rtt=1
2877 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2878 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2879 	 * in window is lost... Voila.	 			--ANK (010210)
2880 	 */
2881 	struct tcp_sock *tp = tcp_sk(sk);
2882 
2883 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2884 }
2885 
2886 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2887 {
2888 	/* We don't have a timestamp. Can only use
2889 	 * packets that are not retransmitted to determine
2890 	 * rtt estimates. Also, we must not reset the
2891 	 * backoff for rto until we get a non-retransmitted
2892 	 * packet. This allows us to deal with a situation
2893 	 * where the network delay has increased suddenly.
2894 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2895 	 */
2896 
2897 	if (flag & FLAG_RETRANS_DATA_ACKED)
2898 		return;
2899 
2900 	tcp_valid_rtt_meas(sk, seq_rtt);
2901 }
2902 
2903 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2904 				      const s32 seq_rtt)
2905 {
2906 	const struct tcp_sock *tp = tcp_sk(sk);
2907 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2908 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2909 		tcp_ack_saw_tstamp(sk, flag);
2910 	else if (seq_rtt >= 0)
2911 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2912 }
2913 
2914 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2915 {
2916 	const struct inet_connection_sock *icsk = inet_csk(sk);
2917 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2918 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2919 }
2920 
2921 /* Restart timer after forward progress on connection.
2922  * RFC2988 recommends to restart timer to now+rto.
2923  */
2924 void tcp_rearm_rto(struct sock *sk)
2925 {
2926 	const struct inet_connection_sock *icsk = inet_csk(sk);
2927 	struct tcp_sock *tp = tcp_sk(sk);
2928 
2929 	/* If the retrans timer is currently being used by Fast Open
2930 	 * for SYN-ACK retrans purpose, stay put.
2931 	 */
2932 	if (tp->fastopen_rsk)
2933 		return;
2934 
2935 	if (!tp->packets_out) {
2936 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2937 	} else {
2938 		u32 rto = inet_csk(sk)->icsk_rto;
2939 		/* Offset the time elapsed after installing regular RTO */
2940 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2941 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2942 			struct sk_buff *skb = tcp_write_queue_head(sk);
2943 			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2944 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2945 			/* delta may not be positive if the socket is locked
2946 			 * when the retrans timer fires and is rescheduled.
2947 			 */
2948 			if (delta > 0)
2949 				rto = delta;
2950 		}
2951 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2952 					  TCP_RTO_MAX);
2953 	}
2954 }
2955 
2956 /* This function is called when the delayed ER timer fires. TCP enters
2957  * fast recovery and performs fast-retransmit.
2958  */
2959 void tcp_resume_early_retransmit(struct sock *sk)
2960 {
2961 	struct tcp_sock *tp = tcp_sk(sk);
2962 
2963 	tcp_rearm_rto(sk);
2964 
2965 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
2966 	if (!tp->do_early_retrans)
2967 		return;
2968 
2969 	tcp_enter_recovery(sk, false);
2970 	tcp_update_scoreboard(sk, 1);
2971 	tcp_xmit_retransmit_queue(sk);
2972 }
2973 
2974 /* If we get here, the whole TSO packet has not been acked. */
2975 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2976 {
2977 	struct tcp_sock *tp = tcp_sk(sk);
2978 	u32 packets_acked;
2979 
2980 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2981 
2982 	packets_acked = tcp_skb_pcount(skb);
2983 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2984 		return 0;
2985 	packets_acked -= tcp_skb_pcount(skb);
2986 
2987 	if (packets_acked) {
2988 		BUG_ON(tcp_skb_pcount(skb) == 0);
2989 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2990 	}
2991 
2992 	return packets_acked;
2993 }
2994 
2995 /* Remove acknowledged frames from the retransmission queue. If our packet
2996  * is before the ack sequence we can discard it as it's confirmed to have
2997  * arrived at the other end.
2998  */
2999 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3000 			       u32 prior_snd_una)
3001 {
3002 	struct tcp_sock *tp = tcp_sk(sk);
3003 	const struct inet_connection_sock *icsk = inet_csk(sk);
3004 	struct sk_buff *skb;
3005 	u32 now = tcp_time_stamp;
3006 	int fully_acked = true;
3007 	int flag = 0;
3008 	u32 pkts_acked = 0;
3009 	u32 reord = tp->packets_out;
3010 	u32 prior_sacked = tp->sacked_out;
3011 	s32 seq_rtt = -1;
3012 	s32 ca_seq_rtt = -1;
3013 	ktime_t last_ackt = net_invalid_timestamp();
3014 
3015 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3016 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3017 		u32 acked_pcount;
3018 		u8 sacked = scb->sacked;
3019 
3020 		/* Determine how many packets and what bytes were acked, tso and else */
3021 		if (after(scb->end_seq, tp->snd_una)) {
3022 			if (tcp_skb_pcount(skb) == 1 ||
3023 			    !after(tp->snd_una, scb->seq))
3024 				break;
3025 
3026 			acked_pcount = tcp_tso_acked(sk, skb);
3027 			if (!acked_pcount)
3028 				break;
3029 
3030 			fully_acked = false;
3031 		} else {
3032 			acked_pcount = tcp_skb_pcount(skb);
3033 		}
3034 
3035 		if (sacked & TCPCB_RETRANS) {
3036 			if (sacked & TCPCB_SACKED_RETRANS)
3037 				tp->retrans_out -= acked_pcount;
3038 			flag |= FLAG_RETRANS_DATA_ACKED;
3039 			ca_seq_rtt = -1;
3040 			seq_rtt = -1;
3041 		} else {
3042 			ca_seq_rtt = now - scb->when;
3043 			last_ackt = skb->tstamp;
3044 			if (seq_rtt < 0) {
3045 				seq_rtt = ca_seq_rtt;
3046 			}
3047 			if (!(sacked & TCPCB_SACKED_ACKED))
3048 				reord = min(pkts_acked, reord);
3049 			if (!after(scb->end_seq, tp->high_seq))
3050 				flag |= FLAG_ORIG_SACK_ACKED;
3051 		}
3052 
3053 		if (sacked & TCPCB_SACKED_ACKED)
3054 			tp->sacked_out -= acked_pcount;
3055 		if (sacked & TCPCB_LOST)
3056 			tp->lost_out -= acked_pcount;
3057 
3058 		tp->packets_out -= acked_pcount;
3059 		pkts_acked += acked_pcount;
3060 
3061 		/* Initial outgoing SYN's get put onto the write_queue
3062 		 * just like anything else we transmit.  It is not
3063 		 * true data, and if we misinform our callers that
3064 		 * this ACK acks real data, we will erroneously exit
3065 		 * connection startup slow start one packet too
3066 		 * quickly.  This is severely frowned upon behavior.
3067 		 */
3068 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3069 			flag |= FLAG_DATA_ACKED;
3070 		} else {
3071 			flag |= FLAG_SYN_ACKED;
3072 			tp->retrans_stamp = 0;
3073 		}
3074 
3075 		if (!fully_acked)
3076 			break;
3077 
3078 		tcp_unlink_write_queue(skb, sk);
3079 		sk_wmem_free_skb(sk, skb);
3080 		tp->scoreboard_skb_hint = NULL;
3081 		if (skb == tp->retransmit_skb_hint)
3082 			tp->retransmit_skb_hint = NULL;
3083 		if (skb == tp->lost_skb_hint)
3084 			tp->lost_skb_hint = NULL;
3085 	}
3086 
3087 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3088 		tp->snd_up = tp->snd_una;
3089 
3090 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3091 		flag |= FLAG_SACK_RENEGING;
3092 
3093 	if (flag & FLAG_ACKED) {
3094 		const struct tcp_congestion_ops *ca_ops
3095 			= inet_csk(sk)->icsk_ca_ops;
3096 
3097 		if (unlikely(icsk->icsk_mtup.probe_size &&
3098 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3099 			tcp_mtup_probe_success(sk);
3100 		}
3101 
3102 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3103 		tcp_rearm_rto(sk);
3104 
3105 		if (tcp_is_reno(tp)) {
3106 			tcp_remove_reno_sacks(sk, pkts_acked);
3107 		} else {
3108 			int delta;
3109 
3110 			/* Non-retransmitted hole got filled? That's reordering */
3111 			if (reord < prior_fackets)
3112 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3113 
3114 			delta = tcp_is_fack(tp) ? pkts_acked :
3115 						  prior_sacked - tp->sacked_out;
3116 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3117 		}
3118 
3119 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3120 
3121 		if (ca_ops->pkts_acked) {
3122 			s32 rtt_us = -1;
3123 
3124 			/* Is the ACK triggering packet unambiguous? */
3125 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3126 				/* High resolution needed and available? */
3127 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3128 				    !ktime_equal(last_ackt,
3129 						 net_invalid_timestamp()))
3130 					rtt_us = ktime_us_delta(ktime_get_real(),
3131 								last_ackt);
3132 				else if (ca_seq_rtt >= 0)
3133 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3134 			}
3135 
3136 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3137 		}
3138 	}
3139 
3140 #if FASTRETRANS_DEBUG > 0
3141 	WARN_ON((int)tp->sacked_out < 0);
3142 	WARN_ON((int)tp->lost_out < 0);
3143 	WARN_ON((int)tp->retrans_out < 0);
3144 	if (!tp->packets_out && tcp_is_sack(tp)) {
3145 		icsk = inet_csk(sk);
3146 		if (tp->lost_out) {
3147 			pr_debug("Leak l=%u %d\n",
3148 				 tp->lost_out, icsk->icsk_ca_state);
3149 			tp->lost_out = 0;
3150 		}
3151 		if (tp->sacked_out) {
3152 			pr_debug("Leak s=%u %d\n",
3153 				 tp->sacked_out, icsk->icsk_ca_state);
3154 			tp->sacked_out = 0;
3155 		}
3156 		if (tp->retrans_out) {
3157 			pr_debug("Leak r=%u %d\n",
3158 				 tp->retrans_out, icsk->icsk_ca_state);
3159 			tp->retrans_out = 0;
3160 		}
3161 	}
3162 #endif
3163 	return flag;
3164 }
3165 
3166 static void tcp_ack_probe(struct sock *sk)
3167 {
3168 	const struct tcp_sock *tp = tcp_sk(sk);
3169 	struct inet_connection_sock *icsk = inet_csk(sk);
3170 
3171 	/* Was it a usable window open? */
3172 
3173 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3174 		icsk->icsk_backoff = 0;
3175 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3176 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3177 		 * This function is not for random using!
3178 		 */
3179 	} else {
3180 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3181 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3182 					  TCP_RTO_MAX);
3183 	}
3184 }
3185 
3186 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3187 {
3188 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3189 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3190 }
3191 
3192 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3193 {
3194 	const struct tcp_sock *tp = tcp_sk(sk);
3195 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3196 		!tcp_in_cwnd_reduction(sk);
3197 }
3198 
3199 /* Check that window update is acceptable.
3200  * The function assumes that snd_una<=ack<=snd_next.
3201  */
3202 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3203 					const u32 ack, const u32 ack_seq,
3204 					const u32 nwin)
3205 {
3206 	return	after(ack, tp->snd_una) ||
3207 		after(ack_seq, tp->snd_wl1) ||
3208 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3209 }
3210 
3211 /* Update our send window.
3212  *
3213  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3214  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3215  */
3216 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3217 				 u32 ack_seq)
3218 {
3219 	struct tcp_sock *tp = tcp_sk(sk);
3220 	int flag = 0;
3221 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3222 
3223 	if (likely(!tcp_hdr(skb)->syn))
3224 		nwin <<= tp->rx_opt.snd_wscale;
3225 
3226 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3227 		flag |= FLAG_WIN_UPDATE;
3228 		tcp_update_wl(tp, ack_seq);
3229 
3230 		if (tp->snd_wnd != nwin) {
3231 			tp->snd_wnd = nwin;
3232 
3233 			/* Note, it is the only place, where
3234 			 * fast path is recovered for sending TCP.
3235 			 */
3236 			tp->pred_flags = 0;
3237 			tcp_fast_path_check(sk);
3238 
3239 			if (nwin > tp->max_window) {
3240 				tp->max_window = nwin;
3241 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3242 			}
3243 		}
3244 	}
3245 
3246 	tp->snd_una = ack;
3247 
3248 	return flag;
3249 }
3250 
3251 /* RFC 5961 7 [ACK Throttling] */
3252 static void tcp_send_challenge_ack(struct sock *sk)
3253 {
3254 	/* unprotected vars, we dont care of overwrites */
3255 	static u32 challenge_timestamp;
3256 	static unsigned int challenge_count;
3257 	u32 now = jiffies / HZ;
3258 
3259 	if (now != challenge_timestamp) {
3260 		challenge_timestamp = now;
3261 		challenge_count = 0;
3262 	}
3263 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3264 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3265 		tcp_send_ack(sk);
3266 	}
3267 }
3268 
3269 static void tcp_store_ts_recent(struct tcp_sock *tp)
3270 {
3271 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3272 	tp->rx_opt.ts_recent_stamp = get_seconds();
3273 }
3274 
3275 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3276 {
3277 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3278 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3279 		 * extra check below makes sure this can only happen
3280 		 * for pure ACK frames.  -DaveM
3281 		 *
3282 		 * Not only, also it occurs for expired timestamps.
3283 		 */
3284 
3285 		if (tcp_paws_check(&tp->rx_opt, 0))
3286 			tcp_store_ts_recent(tp);
3287 	}
3288 }
3289 
3290 /* This routine deals with acks during a TLP episode.
3291  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3292  */
3293 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3294 {
3295 	struct tcp_sock *tp = tcp_sk(sk);
3296 	bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3297 			     !(flag & (FLAG_SND_UNA_ADVANCED |
3298 				       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3299 
3300 	/* Mark the end of TLP episode on receiving TLP dupack or when
3301 	 * ack is after tlp_high_seq.
3302 	 */
3303 	if (is_tlp_dupack) {
3304 		tp->tlp_high_seq = 0;
3305 		return;
3306 	}
3307 
3308 	if (after(ack, tp->tlp_high_seq)) {
3309 		tp->tlp_high_seq = 0;
3310 		/* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3311 		if (!(flag & FLAG_DSACKING_ACK)) {
3312 			tcp_init_cwnd_reduction(sk, true);
3313 			tcp_set_ca_state(sk, TCP_CA_CWR);
3314 			tcp_end_cwnd_reduction(sk);
3315 			tcp_set_ca_state(sk, TCP_CA_Open);
3316 			NET_INC_STATS_BH(sock_net(sk),
3317 					 LINUX_MIB_TCPLOSSPROBERECOVERY);
3318 		}
3319 	}
3320 }
3321 
3322 /* This routine deals with incoming acks, but not outgoing ones. */
3323 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3324 {
3325 	struct inet_connection_sock *icsk = inet_csk(sk);
3326 	struct tcp_sock *tp = tcp_sk(sk);
3327 	u32 prior_snd_una = tp->snd_una;
3328 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3329 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3330 	bool is_dupack = false;
3331 	u32 prior_in_flight;
3332 	u32 prior_fackets;
3333 	int prior_packets;
3334 	int prior_sacked = tp->sacked_out;
3335 	int pkts_acked = 0;
3336 
3337 	/* If the ack is older than previous acks
3338 	 * then we can probably ignore it.
3339 	 */
3340 	if (before(ack, prior_snd_una)) {
3341 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3342 		if (before(ack, prior_snd_una - tp->max_window)) {
3343 			tcp_send_challenge_ack(sk);
3344 			return -1;
3345 		}
3346 		goto old_ack;
3347 	}
3348 
3349 	/* If the ack includes data we haven't sent yet, discard
3350 	 * this segment (RFC793 Section 3.9).
3351 	 */
3352 	if (after(ack, tp->snd_nxt))
3353 		goto invalid_ack;
3354 
3355 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3356 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3357 		tcp_rearm_rto(sk);
3358 
3359 	if (after(ack, prior_snd_una))
3360 		flag |= FLAG_SND_UNA_ADVANCED;
3361 
3362 	prior_fackets = tp->fackets_out;
3363 	prior_in_flight = tcp_packets_in_flight(tp);
3364 
3365 	/* ts_recent update must be made after we are sure that the packet
3366 	 * is in window.
3367 	 */
3368 	if (flag & FLAG_UPDATE_TS_RECENT)
3369 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3370 
3371 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3372 		/* Window is constant, pure forward advance.
3373 		 * No more checks are required.
3374 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3375 		 */
3376 		tcp_update_wl(tp, ack_seq);
3377 		tp->snd_una = ack;
3378 		flag |= FLAG_WIN_UPDATE;
3379 
3380 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3381 
3382 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3383 	} else {
3384 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3385 			flag |= FLAG_DATA;
3386 		else
3387 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3388 
3389 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3390 
3391 		if (TCP_SKB_CB(skb)->sacked)
3392 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3393 
3394 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3395 			flag |= FLAG_ECE;
3396 
3397 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3398 	}
3399 
3400 	/* We passed data and got it acked, remove any soft error
3401 	 * log. Something worked...
3402 	 */
3403 	sk->sk_err_soft = 0;
3404 	icsk->icsk_probes_out = 0;
3405 	tp->rcv_tstamp = tcp_time_stamp;
3406 	prior_packets = tp->packets_out;
3407 	if (!prior_packets)
3408 		goto no_queue;
3409 
3410 	/* See if we can take anything off of the retransmit queue. */
3411 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3412 
3413 	pkts_acked = prior_packets - tp->packets_out;
3414 
3415 	if (tcp_ack_is_dubious(sk, flag)) {
3416 		/* Advance CWND, if state allows this. */
3417 		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
3418 			tcp_cong_avoid(sk, ack, prior_in_flight);
3419 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3420 		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3421 				      is_dupack, flag);
3422 	} else {
3423 		if (flag & FLAG_DATA_ACKED)
3424 			tcp_cong_avoid(sk, ack, prior_in_flight);
3425 	}
3426 
3427 	if (tp->tlp_high_seq)
3428 		tcp_process_tlp_ack(sk, ack, flag);
3429 
3430 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3431 		struct dst_entry *dst = __sk_dst_get(sk);
3432 		if (dst)
3433 			dst_confirm(dst);
3434 	}
3435 
3436 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3437 		tcp_schedule_loss_probe(sk);
3438 	return 1;
3439 
3440 no_queue:
3441 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3442 	if (flag & FLAG_DSACKING_ACK)
3443 		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3444 				      is_dupack, flag);
3445 	/* If this ack opens up a zero window, clear backoff.  It was
3446 	 * being used to time the probes, and is probably far higher than
3447 	 * it needs to be for normal retransmission.
3448 	 */
3449 	if (tcp_send_head(sk))
3450 		tcp_ack_probe(sk);
3451 
3452 	if (tp->tlp_high_seq)
3453 		tcp_process_tlp_ack(sk, ack, flag);
3454 	return 1;
3455 
3456 invalid_ack:
3457 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3458 	return -1;
3459 
3460 old_ack:
3461 	/* If data was SACKed, tag it and see if we should send more data.
3462 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3463 	 */
3464 	if (TCP_SKB_CB(skb)->sacked) {
3465 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3466 		tcp_fastretrans_alert(sk, pkts_acked, prior_sacked,
3467 				      is_dupack, flag);
3468 	}
3469 
3470 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3471 	return 0;
3472 }
3473 
3474 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3475  * But, this can also be called on packets in the established flow when
3476  * the fast version below fails.
3477  */
3478 void tcp_parse_options(const struct sk_buff *skb,
3479 		       struct tcp_options_received *opt_rx, int estab,
3480 		       struct tcp_fastopen_cookie *foc)
3481 {
3482 	const unsigned char *ptr;
3483 	const struct tcphdr *th = tcp_hdr(skb);
3484 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3485 
3486 	ptr = (const unsigned char *)(th + 1);
3487 	opt_rx->saw_tstamp = 0;
3488 
3489 	while (length > 0) {
3490 		int opcode = *ptr++;
3491 		int opsize;
3492 
3493 		switch (opcode) {
3494 		case TCPOPT_EOL:
3495 			return;
3496 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3497 			length--;
3498 			continue;
3499 		default:
3500 			opsize = *ptr++;
3501 			if (opsize < 2) /* "silly options" */
3502 				return;
3503 			if (opsize > length)
3504 				return;	/* don't parse partial options */
3505 			switch (opcode) {
3506 			case TCPOPT_MSS:
3507 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3508 					u16 in_mss = get_unaligned_be16(ptr);
3509 					if (in_mss) {
3510 						if (opt_rx->user_mss &&
3511 						    opt_rx->user_mss < in_mss)
3512 							in_mss = opt_rx->user_mss;
3513 						opt_rx->mss_clamp = in_mss;
3514 					}
3515 				}
3516 				break;
3517 			case TCPOPT_WINDOW:
3518 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3519 				    !estab && sysctl_tcp_window_scaling) {
3520 					__u8 snd_wscale = *(__u8 *)ptr;
3521 					opt_rx->wscale_ok = 1;
3522 					if (snd_wscale > 14) {
3523 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3524 								     __func__,
3525 								     snd_wscale);
3526 						snd_wscale = 14;
3527 					}
3528 					opt_rx->snd_wscale = snd_wscale;
3529 				}
3530 				break;
3531 			case TCPOPT_TIMESTAMP:
3532 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3533 				    ((estab && opt_rx->tstamp_ok) ||
3534 				     (!estab && sysctl_tcp_timestamps))) {
3535 					opt_rx->saw_tstamp = 1;
3536 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3537 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3538 				}
3539 				break;
3540 			case TCPOPT_SACK_PERM:
3541 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3542 				    !estab && sysctl_tcp_sack) {
3543 					opt_rx->sack_ok = TCP_SACK_SEEN;
3544 					tcp_sack_reset(opt_rx);
3545 				}
3546 				break;
3547 
3548 			case TCPOPT_SACK:
3549 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3550 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3551 				   opt_rx->sack_ok) {
3552 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3553 				}
3554 				break;
3555 #ifdef CONFIG_TCP_MD5SIG
3556 			case TCPOPT_MD5SIG:
3557 				/*
3558 				 * The MD5 Hash has already been
3559 				 * checked (see tcp_v{4,6}_do_rcv()).
3560 				 */
3561 				break;
3562 #endif
3563 			case TCPOPT_EXP:
3564 				/* Fast Open option shares code 254 using a
3565 				 * 16 bits magic number. It's valid only in
3566 				 * SYN or SYN-ACK with an even size.
3567 				 */
3568 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3569 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3570 				    foc == NULL || !th->syn || (opsize & 1))
3571 					break;
3572 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3573 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3574 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3575 					memcpy(foc->val, ptr + 2, foc->len);
3576 				else if (foc->len != 0)
3577 					foc->len = -1;
3578 				break;
3579 
3580 			}
3581 			ptr += opsize-2;
3582 			length -= opsize;
3583 		}
3584 	}
3585 }
3586 EXPORT_SYMBOL(tcp_parse_options);
3587 
3588 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3589 {
3590 	const __be32 *ptr = (const __be32 *)(th + 1);
3591 
3592 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3593 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3594 		tp->rx_opt.saw_tstamp = 1;
3595 		++ptr;
3596 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3597 		++ptr;
3598 		tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3599 		return true;
3600 	}
3601 	return false;
3602 }
3603 
3604 /* Fast parse options. This hopes to only see timestamps.
3605  * If it is wrong it falls back on tcp_parse_options().
3606  */
3607 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3608 				   const struct tcphdr *th, struct tcp_sock *tp)
3609 {
3610 	/* In the spirit of fast parsing, compare doff directly to constant
3611 	 * values.  Because equality is used, short doff can be ignored here.
3612 	 */
3613 	if (th->doff == (sizeof(*th) / 4)) {
3614 		tp->rx_opt.saw_tstamp = 0;
3615 		return false;
3616 	} else if (tp->rx_opt.tstamp_ok &&
3617 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3618 		if (tcp_parse_aligned_timestamp(tp, th))
3619 			return true;
3620 	}
3621 
3622 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3623 	if (tp->rx_opt.saw_tstamp)
3624 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3625 
3626 	return true;
3627 }
3628 
3629 #ifdef CONFIG_TCP_MD5SIG
3630 /*
3631  * Parse MD5 Signature option
3632  */
3633 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3634 {
3635 	int length = (th->doff << 2) - sizeof(*th);
3636 	const u8 *ptr = (const u8 *)(th + 1);
3637 
3638 	/* If the TCP option is too short, we can short cut */
3639 	if (length < TCPOLEN_MD5SIG)
3640 		return NULL;
3641 
3642 	while (length > 0) {
3643 		int opcode = *ptr++;
3644 		int opsize;
3645 
3646 		switch(opcode) {
3647 		case TCPOPT_EOL:
3648 			return NULL;
3649 		case TCPOPT_NOP:
3650 			length--;
3651 			continue;
3652 		default:
3653 			opsize = *ptr++;
3654 			if (opsize < 2 || opsize > length)
3655 				return NULL;
3656 			if (opcode == TCPOPT_MD5SIG)
3657 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3658 		}
3659 		ptr += opsize - 2;
3660 		length -= opsize;
3661 	}
3662 	return NULL;
3663 }
3664 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3665 #endif
3666 
3667 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3668  *
3669  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3670  * it can pass through stack. So, the following predicate verifies that
3671  * this segment is not used for anything but congestion avoidance or
3672  * fast retransmit. Moreover, we even are able to eliminate most of such
3673  * second order effects, if we apply some small "replay" window (~RTO)
3674  * to timestamp space.
3675  *
3676  * All these measures still do not guarantee that we reject wrapped ACKs
3677  * on networks with high bandwidth, when sequence space is recycled fastly,
3678  * but it guarantees that such events will be very rare and do not affect
3679  * connection seriously. This doesn't look nice, but alas, PAWS is really
3680  * buggy extension.
3681  *
3682  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3683  * states that events when retransmit arrives after original data are rare.
3684  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3685  * the biggest problem on large power networks even with minor reordering.
3686  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3687  * up to bandwidth of 18Gigabit/sec. 8) ]
3688  */
3689 
3690 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3691 {
3692 	const struct tcp_sock *tp = tcp_sk(sk);
3693 	const struct tcphdr *th = tcp_hdr(skb);
3694 	u32 seq = TCP_SKB_CB(skb)->seq;
3695 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3696 
3697 	return (/* 1. Pure ACK with correct sequence number. */
3698 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3699 
3700 		/* 2. ... and duplicate ACK. */
3701 		ack == tp->snd_una &&
3702 
3703 		/* 3. ... and does not update window. */
3704 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3705 
3706 		/* 4. ... and sits in replay window. */
3707 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3708 }
3709 
3710 static inline bool tcp_paws_discard(const struct sock *sk,
3711 				   const struct sk_buff *skb)
3712 {
3713 	const struct tcp_sock *tp = tcp_sk(sk);
3714 
3715 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3716 	       !tcp_disordered_ack(sk, skb);
3717 }
3718 
3719 /* Check segment sequence number for validity.
3720  *
3721  * Segment controls are considered valid, if the segment
3722  * fits to the window after truncation to the window. Acceptability
3723  * of data (and SYN, FIN, of course) is checked separately.
3724  * See tcp_data_queue(), for example.
3725  *
3726  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3727  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3728  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3729  * (borrowed from freebsd)
3730  */
3731 
3732 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3733 {
3734 	return	!before(end_seq, tp->rcv_wup) &&
3735 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3736 }
3737 
3738 /* When we get a reset we do this. */
3739 void tcp_reset(struct sock *sk)
3740 {
3741 	/* We want the right error as BSD sees it (and indeed as we do). */
3742 	switch (sk->sk_state) {
3743 	case TCP_SYN_SENT:
3744 		sk->sk_err = ECONNREFUSED;
3745 		break;
3746 	case TCP_CLOSE_WAIT:
3747 		sk->sk_err = EPIPE;
3748 		break;
3749 	case TCP_CLOSE:
3750 		return;
3751 	default:
3752 		sk->sk_err = ECONNRESET;
3753 	}
3754 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3755 	smp_wmb();
3756 
3757 	if (!sock_flag(sk, SOCK_DEAD))
3758 		sk->sk_error_report(sk);
3759 
3760 	tcp_done(sk);
3761 }
3762 
3763 /*
3764  * 	Process the FIN bit. This now behaves as it is supposed to work
3765  *	and the FIN takes effect when it is validly part of sequence
3766  *	space. Not before when we get holes.
3767  *
3768  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3769  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3770  *	TIME-WAIT)
3771  *
3772  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3773  *	close and we go into CLOSING (and later onto TIME-WAIT)
3774  *
3775  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3776  */
3777 static void tcp_fin(struct sock *sk)
3778 {
3779 	struct tcp_sock *tp = tcp_sk(sk);
3780 
3781 	inet_csk_schedule_ack(sk);
3782 
3783 	sk->sk_shutdown |= RCV_SHUTDOWN;
3784 	sock_set_flag(sk, SOCK_DONE);
3785 
3786 	switch (sk->sk_state) {
3787 	case TCP_SYN_RECV:
3788 	case TCP_ESTABLISHED:
3789 		/* Move to CLOSE_WAIT */
3790 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3791 		inet_csk(sk)->icsk_ack.pingpong = 1;
3792 		break;
3793 
3794 	case TCP_CLOSE_WAIT:
3795 	case TCP_CLOSING:
3796 		/* Received a retransmission of the FIN, do
3797 		 * nothing.
3798 		 */
3799 		break;
3800 	case TCP_LAST_ACK:
3801 		/* RFC793: Remain in the LAST-ACK state. */
3802 		break;
3803 
3804 	case TCP_FIN_WAIT1:
3805 		/* This case occurs when a simultaneous close
3806 		 * happens, we must ack the received FIN and
3807 		 * enter the CLOSING state.
3808 		 */
3809 		tcp_send_ack(sk);
3810 		tcp_set_state(sk, TCP_CLOSING);
3811 		break;
3812 	case TCP_FIN_WAIT2:
3813 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3814 		tcp_send_ack(sk);
3815 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3816 		break;
3817 	default:
3818 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3819 		 * cases we should never reach this piece of code.
3820 		 */
3821 		pr_err("%s: Impossible, sk->sk_state=%d\n",
3822 		       __func__, sk->sk_state);
3823 		break;
3824 	}
3825 
3826 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3827 	 * Probably, we should reset in this case. For now drop them.
3828 	 */
3829 	__skb_queue_purge(&tp->out_of_order_queue);
3830 	if (tcp_is_sack(tp))
3831 		tcp_sack_reset(&tp->rx_opt);
3832 	sk_mem_reclaim(sk);
3833 
3834 	if (!sock_flag(sk, SOCK_DEAD)) {
3835 		sk->sk_state_change(sk);
3836 
3837 		/* Do not send POLL_HUP for half duplex close. */
3838 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3839 		    sk->sk_state == TCP_CLOSE)
3840 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3841 		else
3842 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3843 	}
3844 }
3845 
3846 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3847 				  u32 end_seq)
3848 {
3849 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3850 		if (before(seq, sp->start_seq))
3851 			sp->start_seq = seq;
3852 		if (after(end_seq, sp->end_seq))
3853 			sp->end_seq = end_seq;
3854 		return true;
3855 	}
3856 	return false;
3857 }
3858 
3859 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3860 {
3861 	struct tcp_sock *tp = tcp_sk(sk);
3862 
3863 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3864 		int mib_idx;
3865 
3866 		if (before(seq, tp->rcv_nxt))
3867 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3868 		else
3869 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3870 
3871 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3872 
3873 		tp->rx_opt.dsack = 1;
3874 		tp->duplicate_sack[0].start_seq = seq;
3875 		tp->duplicate_sack[0].end_seq = end_seq;
3876 	}
3877 }
3878 
3879 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3880 {
3881 	struct tcp_sock *tp = tcp_sk(sk);
3882 
3883 	if (!tp->rx_opt.dsack)
3884 		tcp_dsack_set(sk, seq, end_seq);
3885 	else
3886 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3887 }
3888 
3889 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3890 {
3891 	struct tcp_sock *tp = tcp_sk(sk);
3892 
3893 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3894 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3895 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3896 		tcp_enter_quickack_mode(sk);
3897 
3898 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3899 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3900 
3901 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3902 				end_seq = tp->rcv_nxt;
3903 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3904 		}
3905 	}
3906 
3907 	tcp_send_ack(sk);
3908 }
3909 
3910 /* These routines update the SACK block as out-of-order packets arrive or
3911  * in-order packets close up the sequence space.
3912  */
3913 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3914 {
3915 	int this_sack;
3916 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3917 	struct tcp_sack_block *swalk = sp + 1;
3918 
3919 	/* See if the recent change to the first SACK eats into
3920 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3921 	 */
3922 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3923 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3924 			int i;
3925 
3926 			/* Zap SWALK, by moving every further SACK up by one slot.
3927 			 * Decrease num_sacks.
3928 			 */
3929 			tp->rx_opt.num_sacks--;
3930 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3931 				sp[i] = sp[i + 1];
3932 			continue;
3933 		}
3934 		this_sack++, swalk++;
3935 	}
3936 }
3937 
3938 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3939 {
3940 	struct tcp_sock *tp = tcp_sk(sk);
3941 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3942 	int cur_sacks = tp->rx_opt.num_sacks;
3943 	int this_sack;
3944 
3945 	if (!cur_sacks)
3946 		goto new_sack;
3947 
3948 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3949 		if (tcp_sack_extend(sp, seq, end_seq)) {
3950 			/* Rotate this_sack to the first one. */
3951 			for (; this_sack > 0; this_sack--, sp--)
3952 				swap(*sp, *(sp - 1));
3953 			if (cur_sacks > 1)
3954 				tcp_sack_maybe_coalesce(tp);
3955 			return;
3956 		}
3957 	}
3958 
3959 	/* Could not find an adjacent existing SACK, build a new one,
3960 	 * put it at the front, and shift everyone else down.  We
3961 	 * always know there is at least one SACK present already here.
3962 	 *
3963 	 * If the sack array is full, forget about the last one.
3964 	 */
3965 	if (this_sack >= TCP_NUM_SACKS) {
3966 		this_sack--;
3967 		tp->rx_opt.num_sacks--;
3968 		sp--;
3969 	}
3970 	for (; this_sack > 0; this_sack--, sp--)
3971 		*sp = *(sp - 1);
3972 
3973 new_sack:
3974 	/* Build the new head SACK, and we're done. */
3975 	sp->start_seq = seq;
3976 	sp->end_seq = end_seq;
3977 	tp->rx_opt.num_sacks++;
3978 }
3979 
3980 /* RCV.NXT advances, some SACKs should be eaten. */
3981 
3982 static void tcp_sack_remove(struct tcp_sock *tp)
3983 {
3984 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3985 	int num_sacks = tp->rx_opt.num_sacks;
3986 	int this_sack;
3987 
3988 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3989 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3990 		tp->rx_opt.num_sacks = 0;
3991 		return;
3992 	}
3993 
3994 	for (this_sack = 0; this_sack < num_sacks;) {
3995 		/* Check if the start of the sack is covered by RCV.NXT. */
3996 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3997 			int i;
3998 
3999 			/* RCV.NXT must cover all the block! */
4000 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4001 
4002 			/* Zap this SACK, by moving forward any other SACKS. */
4003 			for (i=this_sack+1; i < num_sacks; i++)
4004 				tp->selective_acks[i-1] = tp->selective_acks[i];
4005 			num_sacks--;
4006 			continue;
4007 		}
4008 		this_sack++;
4009 		sp++;
4010 	}
4011 	tp->rx_opt.num_sacks = num_sacks;
4012 }
4013 
4014 /* This one checks to see if we can put data from the
4015  * out_of_order queue into the receive_queue.
4016  */
4017 static void tcp_ofo_queue(struct sock *sk)
4018 {
4019 	struct tcp_sock *tp = tcp_sk(sk);
4020 	__u32 dsack_high = tp->rcv_nxt;
4021 	struct sk_buff *skb;
4022 
4023 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4024 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4025 			break;
4026 
4027 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4028 			__u32 dsack = dsack_high;
4029 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4030 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4031 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4032 		}
4033 
4034 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4035 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4036 			__skb_unlink(skb, &tp->out_of_order_queue);
4037 			__kfree_skb(skb);
4038 			continue;
4039 		}
4040 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4041 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4042 			   TCP_SKB_CB(skb)->end_seq);
4043 
4044 		__skb_unlink(skb, &tp->out_of_order_queue);
4045 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4046 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4047 		if (tcp_hdr(skb)->fin)
4048 			tcp_fin(sk);
4049 	}
4050 }
4051 
4052 static bool tcp_prune_ofo_queue(struct sock *sk);
4053 static int tcp_prune_queue(struct sock *sk);
4054 
4055 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4056 				 unsigned int size)
4057 {
4058 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4059 	    !sk_rmem_schedule(sk, skb, size)) {
4060 
4061 		if (tcp_prune_queue(sk) < 0)
4062 			return -1;
4063 
4064 		if (!sk_rmem_schedule(sk, skb, size)) {
4065 			if (!tcp_prune_ofo_queue(sk))
4066 				return -1;
4067 
4068 			if (!sk_rmem_schedule(sk, skb, size))
4069 				return -1;
4070 		}
4071 	}
4072 	return 0;
4073 }
4074 
4075 /**
4076  * tcp_try_coalesce - try to merge skb to prior one
4077  * @sk: socket
4078  * @to: prior buffer
4079  * @from: buffer to add in queue
4080  * @fragstolen: pointer to boolean
4081  *
4082  * Before queueing skb @from after @to, try to merge them
4083  * to reduce overall memory use and queue lengths, if cost is small.
4084  * Packets in ofo or receive queues can stay a long time.
4085  * Better try to coalesce them right now to avoid future collapses.
4086  * Returns true if caller should free @from instead of queueing it
4087  */
4088 static bool tcp_try_coalesce(struct sock *sk,
4089 			     struct sk_buff *to,
4090 			     struct sk_buff *from,
4091 			     bool *fragstolen)
4092 {
4093 	int delta;
4094 
4095 	*fragstolen = false;
4096 
4097 	if (tcp_hdr(from)->fin)
4098 		return false;
4099 
4100 	/* Its possible this segment overlaps with prior segment in queue */
4101 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4102 		return false;
4103 
4104 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4105 		return false;
4106 
4107 	atomic_add(delta, &sk->sk_rmem_alloc);
4108 	sk_mem_charge(sk, delta);
4109 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4110 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4111 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4112 	return true;
4113 }
4114 
4115 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4116 {
4117 	struct tcp_sock *tp = tcp_sk(sk);
4118 	struct sk_buff *skb1;
4119 	u32 seq, end_seq;
4120 
4121 	TCP_ECN_check_ce(tp, skb);
4122 
4123 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4124 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4125 		__kfree_skb(skb);
4126 		return;
4127 	}
4128 
4129 	/* Disable header prediction. */
4130 	tp->pred_flags = 0;
4131 	inet_csk_schedule_ack(sk);
4132 
4133 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4134 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4135 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4136 
4137 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4138 	if (!skb1) {
4139 		/* Initial out of order segment, build 1 SACK. */
4140 		if (tcp_is_sack(tp)) {
4141 			tp->rx_opt.num_sacks = 1;
4142 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4143 			tp->selective_acks[0].end_seq =
4144 						TCP_SKB_CB(skb)->end_seq;
4145 		}
4146 		__skb_queue_head(&tp->out_of_order_queue, skb);
4147 		goto end;
4148 	}
4149 
4150 	seq = TCP_SKB_CB(skb)->seq;
4151 	end_seq = TCP_SKB_CB(skb)->end_seq;
4152 
4153 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4154 		bool fragstolen;
4155 
4156 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4157 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4158 		} else {
4159 			kfree_skb_partial(skb, fragstolen);
4160 			skb = NULL;
4161 		}
4162 
4163 		if (!tp->rx_opt.num_sacks ||
4164 		    tp->selective_acks[0].end_seq != seq)
4165 			goto add_sack;
4166 
4167 		/* Common case: data arrive in order after hole. */
4168 		tp->selective_acks[0].end_seq = end_seq;
4169 		goto end;
4170 	}
4171 
4172 	/* Find place to insert this segment. */
4173 	while (1) {
4174 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4175 			break;
4176 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4177 			skb1 = NULL;
4178 			break;
4179 		}
4180 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4181 	}
4182 
4183 	/* Do skb overlap to previous one? */
4184 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4185 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4186 			/* All the bits are present. Drop. */
4187 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4188 			__kfree_skb(skb);
4189 			skb = NULL;
4190 			tcp_dsack_set(sk, seq, end_seq);
4191 			goto add_sack;
4192 		}
4193 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4194 			/* Partial overlap. */
4195 			tcp_dsack_set(sk, seq,
4196 				      TCP_SKB_CB(skb1)->end_seq);
4197 		} else {
4198 			if (skb_queue_is_first(&tp->out_of_order_queue,
4199 					       skb1))
4200 				skb1 = NULL;
4201 			else
4202 				skb1 = skb_queue_prev(
4203 					&tp->out_of_order_queue,
4204 					skb1);
4205 		}
4206 	}
4207 	if (!skb1)
4208 		__skb_queue_head(&tp->out_of_order_queue, skb);
4209 	else
4210 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4211 
4212 	/* And clean segments covered by new one as whole. */
4213 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4214 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4215 
4216 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4217 			break;
4218 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4219 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4220 					 end_seq);
4221 			break;
4222 		}
4223 		__skb_unlink(skb1, &tp->out_of_order_queue);
4224 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4225 				 TCP_SKB_CB(skb1)->end_seq);
4226 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4227 		__kfree_skb(skb1);
4228 	}
4229 
4230 add_sack:
4231 	if (tcp_is_sack(tp))
4232 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4233 end:
4234 	if (skb)
4235 		skb_set_owner_r(skb, sk);
4236 }
4237 
4238 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4239 		  bool *fragstolen)
4240 {
4241 	int eaten;
4242 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4243 
4244 	__skb_pull(skb, hdrlen);
4245 	eaten = (tail &&
4246 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4247 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4248 	if (!eaten) {
4249 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4250 		skb_set_owner_r(skb, sk);
4251 	}
4252 	return eaten;
4253 }
4254 
4255 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4256 {
4257 	struct sk_buff *skb = NULL;
4258 	struct tcphdr *th;
4259 	bool fragstolen;
4260 
4261 	if (size == 0)
4262 		return 0;
4263 
4264 	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4265 	if (!skb)
4266 		goto err;
4267 
4268 	if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4269 		goto err_free;
4270 
4271 	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4272 	skb_reset_transport_header(skb);
4273 	memset(th, 0, sizeof(*th));
4274 
4275 	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4276 		goto err_free;
4277 
4278 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4279 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4280 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4281 
4282 	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4283 		WARN_ON_ONCE(fragstolen); /* should not happen */
4284 		__kfree_skb(skb);
4285 	}
4286 	return size;
4287 
4288 err_free:
4289 	kfree_skb(skb);
4290 err:
4291 	return -ENOMEM;
4292 }
4293 
4294 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4295 {
4296 	const struct tcphdr *th = tcp_hdr(skb);
4297 	struct tcp_sock *tp = tcp_sk(sk);
4298 	int eaten = -1;
4299 	bool fragstolen = false;
4300 
4301 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4302 		goto drop;
4303 
4304 	skb_dst_drop(skb);
4305 	__skb_pull(skb, th->doff * 4);
4306 
4307 	TCP_ECN_accept_cwr(tp, skb);
4308 
4309 	tp->rx_opt.dsack = 0;
4310 
4311 	/*  Queue data for delivery to the user.
4312 	 *  Packets in sequence go to the receive queue.
4313 	 *  Out of sequence packets to the out_of_order_queue.
4314 	 */
4315 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4316 		if (tcp_receive_window(tp) == 0)
4317 			goto out_of_window;
4318 
4319 		/* Ok. In sequence. In window. */
4320 		if (tp->ucopy.task == current &&
4321 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4322 		    sock_owned_by_user(sk) && !tp->urg_data) {
4323 			int chunk = min_t(unsigned int, skb->len,
4324 					  tp->ucopy.len);
4325 
4326 			__set_current_state(TASK_RUNNING);
4327 
4328 			local_bh_enable();
4329 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4330 				tp->ucopy.len -= chunk;
4331 				tp->copied_seq += chunk;
4332 				eaten = (chunk == skb->len);
4333 				tcp_rcv_space_adjust(sk);
4334 			}
4335 			local_bh_disable();
4336 		}
4337 
4338 		if (eaten <= 0) {
4339 queue_and_out:
4340 			if (eaten < 0 &&
4341 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4342 				goto drop;
4343 
4344 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4345 		}
4346 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4347 		if (skb->len)
4348 			tcp_event_data_recv(sk, skb);
4349 		if (th->fin)
4350 			tcp_fin(sk);
4351 
4352 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4353 			tcp_ofo_queue(sk);
4354 
4355 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4356 			 * gap in queue is filled.
4357 			 */
4358 			if (skb_queue_empty(&tp->out_of_order_queue))
4359 				inet_csk(sk)->icsk_ack.pingpong = 0;
4360 		}
4361 
4362 		if (tp->rx_opt.num_sacks)
4363 			tcp_sack_remove(tp);
4364 
4365 		tcp_fast_path_check(sk);
4366 
4367 		if (eaten > 0)
4368 			kfree_skb_partial(skb, fragstolen);
4369 		if (!sock_flag(sk, SOCK_DEAD))
4370 			sk->sk_data_ready(sk, 0);
4371 		return;
4372 	}
4373 
4374 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4375 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4376 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4377 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4378 
4379 out_of_window:
4380 		tcp_enter_quickack_mode(sk);
4381 		inet_csk_schedule_ack(sk);
4382 drop:
4383 		__kfree_skb(skb);
4384 		return;
4385 	}
4386 
4387 	/* Out of window. F.e. zero window probe. */
4388 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4389 		goto out_of_window;
4390 
4391 	tcp_enter_quickack_mode(sk);
4392 
4393 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4394 		/* Partial packet, seq < rcv_next < end_seq */
4395 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4396 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4397 			   TCP_SKB_CB(skb)->end_seq);
4398 
4399 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4400 
4401 		/* If window is closed, drop tail of packet. But after
4402 		 * remembering D-SACK for its head made in previous line.
4403 		 */
4404 		if (!tcp_receive_window(tp))
4405 			goto out_of_window;
4406 		goto queue_and_out;
4407 	}
4408 
4409 	tcp_data_queue_ofo(sk, skb);
4410 }
4411 
4412 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4413 					struct sk_buff_head *list)
4414 {
4415 	struct sk_buff *next = NULL;
4416 
4417 	if (!skb_queue_is_last(list, skb))
4418 		next = skb_queue_next(list, skb);
4419 
4420 	__skb_unlink(skb, list);
4421 	__kfree_skb(skb);
4422 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4423 
4424 	return next;
4425 }
4426 
4427 /* Collapse contiguous sequence of skbs head..tail with
4428  * sequence numbers start..end.
4429  *
4430  * If tail is NULL, this means until the end of the list.
4431  *
4432  * Segments with FIN/SYN are not collapsed (only because this
4433  * simplifies code)
4434  */
4435 static void
4436 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4437 	     struct sk_buff *head, struct sk_buff *tail,
4438 	     u32 start, u32 end)
4439 {
4440 	struct sk_buff *skb, *n;
4441 	bool end_of_skbs;
4442 
4443 	/* First, check that queue is collapsible and find
4444 	 * the point where collapsing can be useful. */
4445 	skb = head;
4446 restart:
4447 	end_of_skbs = true;
4448 	skb_queue_walk_from_safe(list, skb, n) {
4449 		if (skb == tail)
4450 			break;
4451 		/* No new bits? It is possible on ofo queue. */
4452 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4453 			skb = tcp_collapse_one(sk, skb, list);
4454 			if (!skb)
4455 				break;
4456 			goto restart;
4457 		}
4458 
4459 		/* The first skb to collapse is:
4460 		 * - not SYN/FIN and
4461 		 * - bloated or contains data before "start" or
4462 		 *   overlaps to the next one.
4463 		 */
4464 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4465 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4466 		     before(TCP_SKB_CB(skb)->seq, start))) {
4467 			end_of_skbs = false;
4468 			break;
4469 		}
4470 
4471 		if (!skb_queue_is_last(list, skb)) {
4472 			struct sk_buff *next = skb_queue_next(list, skb);
4473 			if (next != tail &&
4474 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4475 				end_of_skbs = false;
4476 				break;
4477 			}
4478 		}
4479 
4480 		/* Decided to skip this, advance start seq. */
4481 		start = TCP_SKB_CB(skb)->end_seq;
4482 	}
4483 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4484 		return;
4485 
4486 	while (before(start, end)) {
4487 		struct sk_buff *nskb;
4488 		unsigned int header = skb_headroom(skb);
4489 		int copy = SKB_MAX_ORDER(header, 0);
4490 
4491 		/* Too big header? This can happen with IPv6. */
4492 		if (copy < 0)
4493 			return;
4494 		if (end - start < copy)
4495 			copy = end - start;
4496 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4497 		if (!nskb)
4498 			return;
4499 
4500 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4501 		skb_set_network_header(nskb, (skb_network_header(skb) -
4502 					      skb->head));
4503 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4504 						skb->head));
4505 		skb_reserve(nskb, header);
4506 		memcpy(nskb->head, skb->head, header);
4507 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4508 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4509 		__skb_queue_before(list, skb, nskb);
4510 		skb_set_owner_r(nskb, sk);
4511 
4512 		/* Copy data, releasing collapsed skbs. */
4513 		while (copy > 0) {
4514 			int offset = start - TCP_SKB_CB(skb)->seq;
4515 			int size = TCP_SKB_CB(skb)->end_seq - start;
4516 
4517 			BUG_ON(offset < 0);
4518 			if (size > 0) {
4519 				size = min(copy, size);
4520 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4521 					BUG();
4522 				TCP_SKB_CB(nskb)->end_seq += size;
4523 				copy -= size;
4524 				start += size;
4525 			}
4526 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4527 				skb = tcp_collapse_one(sk, skb, list);
4528 				if (!skb ||
4529 				    skb == tail ||
4530 				    tcp_hdr(skb)->syn ||
4531 				    tcp_hdr(skb)->fin)
4532 					return;
4533 			}
4534 		}
4535 	}
4536 }
4537 
4538 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4539  * and tcp_collapse() them until all the queue is collapsed.
4540  */
4541 static void tcp_collapse_ofo_queue(struct sock *sk)
4542 {
4543 	struct tcp_sock *tp = tcp_sk(sk);
4544 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4545 	struct sk_buff *head;
4546 	u32 start, end;
4547 
4548 	if (skb == NULL)
4549 		return;
4550 
4551 	start = TCP_SKB_CB(skb)->seq;
4552 	end = TCP_SKB_CB(skb)->end_seq;
4553 	head = skb;
4554 
4555 	for (;;) {
4556 		struct sk_buff *next = NULL;
4557 
4558 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4559 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4560 		skb = next;
4561 
4562 		/* Segment is terminated when we see gap or when
4563 		 * we are at the end of all the queue. */
4564 		if (!skb ||
4565 		    after(TCP_SKB_CB(skb)->seq, end) ||
4566 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4567 			tcp_collapse(sk, &tp->out_of_order_queue,
4568 				     head, skb, start, end);
4569 			head = skb;
4570 			if (!skb)
4571 				break;
4572 			/* Start new segment */
4573 			start = TCP_SKB_CB(skb)->seq;
4574 			end = TCP_SKB_CB(skb)->end_seq;
4575 		} else {
4576 			if (before(TCP_SKB_CB(skb)->seq, start))
4577 				start = TCP_SKB_CB(skb)->seq;
4578 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4579 				end = TCP_SKB_CB(skb)->end_seq;
4580 		}
4581 	}
4582 }
4583 
4584 /*
4585  * Purge the out-of-order queue.
4586  * Return true if queue was pruned.
4587  */
4588 static bool tcp_prune_ofo_queue(struct sock *sk)
4589 {
4590 	struct tcp_sock *tp = tcp_sk(sk);
4591 	bool res = false;
4592 
4593 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4594 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4595 		__skb_queue_purge(&tp->out_of_order_queue);
4596 
4597 		/* Reset SACK state.  A conforming SACK implementation will
4598 		 * do the same at a timeout based retransmit.  When a connection
4599 		 * is in a sad state like this, we care only about integrity
4600 		 * of the connection not performance.
4601 		 */
4602 		if (tp->rx_opt.sack_ok)
4603 			tcp_sack_reset(&tp->rx_opt);
4604 		sk_mem_reclaim(sk);
4605 		res = true;
4606 	}
4607 	return res;
4608 }
4609 
4610 /* Reduce allocated memory if we can, trying to get
4611  * the socket within its memory limits again.
4612  *
4613  * Return less than zero if we should start dropping frames
4614  * until the socket owning process reads some of the data
4615  * to stabilize the situation.
4616  */
4617 static int tcp_prune_queue(struct sock *sk)
4618 {
4619 	struct tcp_sock *tp = tcp_sk(sk);
4620 
4621 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4622 
4623 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4624 
4625 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4626 		tcp_clamp_window(sk);
4627 	else if (sk_under_memory_pressure(sk))
4628 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4629 
4630 	tcp_collapse_ofo_queue(sk);
4631 	if (!skb_queue_empty(&sk->sk_receive_queue))
4632 		tcp_collapse(sk, &sk->sk_receive_queue,
4633 			     skb_peek(&sk->sk_receive_queue),
4634 			     NULL,
4635 			     tp->copied_seq, tp->rcv_nxt);
4636 	sk_mem_reclaim(sk);
4637 
4638 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4639 		return 0;
4640 
4641 	/* Collapsing did not help, destructive actions follow.
4642 	 * This must not ever occur. */
4643 
4644 	tcp_prune_ofo_queue(sk);
4645 
4646 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4647 		return 0;
4648 
4649 	/* If we are really being abused, tell the caller to silently
4650 	 * drop receive data on the floor.  It will get retransmitted
4651 	 * and hopefully then we'll have sufficient space.
4652 	 */
4653 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4654 
4655 	/* Massive buffer overcommit. */
4656 	tp->pred_flags = 0;
4657 	return -1;
4658 }
4659 
4660 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4661  * As additional protections, we do not touch cwnd in retransmission phases,
4662  * and if application hit its sndbuf limit recently.
4663  */
4664 void tcp_cwnd_application_limited(struct sock *sk)
4665 {
4666 	struct tcp_sock *tp = tcp_sk(sk);
4667 
4668 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4669 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4670 		/* Limited by application or receiver window. */
4671 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4672 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4673 		if (win_used < tp->snd_cwnd) {
4674 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4675 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4676 		}
4677 		tp->snd_cwnd_used = 0;
4678 	}
4679 	tp->snd_cwnd_stamp = tcp_time_stamp;
4680 }
4681 
4682 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4683 {
4684 	const struct tcp_sock *tp = tcp_sk(sk);
4685 
4686 	/* If the user specified a specific send buffer setting, do
4687 	 * not modify it.
4688 	 */
4689 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4690 		return false;
4691 
4692 	/* If we are under global TCP memory pressure, do not expand.  */
4693 	if (sk_under_memory_pressure(sk))
4694 		return false;
4695 
4696 	/* If we are under soft global TCP memory pressure, do not expand.  */
4697 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4698 		return false;
4699 
4700 	/* If we filled the congestion window, do not expand.  */
4701 	if (tp->packets_out >= tp->snd_cwnd)
4702 		return false;
4703 
4704 	return true;
4705 }
4706 
4707 /* When incoming ACK allowed to free some skb from write_queue,
4708  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4709  * on the exit from tcp input handler.
4710  *
4711  * PROBLEM: sndbuf expansion does not work well with largesend.
4712  */
4713 static void tcp_new_space(struct sock *sk)
4714 {
4715 	struct tcp_sock *tp = tcp_sk(sk);
4716 
4717 	if (tcp_should_expand_sndbuf(sk)) {
4718 		int sndmem = SKB_TRUESIZE(max_t(u32,
4719 						tp->rx_opt.mss_clamp,
4720 						tp->mss_cache) +
4721 					  MAX_TCP_HEADER);
4722 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4723 				     tp->reordering + 1);
4724 		sndmem *= 2 * demanded;
4725 		if (sndmem > sk->sk_sndbuf)
4726 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4727 		tp->snd_cwnd_stamp = tcp_time_stamp;
4728 	}
4729 
4730 	sk->sk_write_space(sk);
4731 }
4732 
4733 static void tcp_check_space(struct sock *sk)
4734 {
4735 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4736 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4737 		if (sk->sk_socket &&
4738 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4739 			tcp_new_space(sk);
4740 	}
4741 }
4742 
4743 static inline void tcp_data_snd_check(struct sock *sk)
4744 {
4745 	tcp_push_pending_frames(sk);
4746 	tcp_check_space(sk);
4747 }
4748 
4749 /*
4750  * Check if sending an ack is needed.
4751  */
4752 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4753 {
4754 	struct tcp_sock *tp = tcp_sk(sk);
4755 
4756 	    /* More than one full frame received... */
4757 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4758 	     /* ... and right edge of window advances far enough.
4759 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4760 	      */
4761 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4762 	    /* We ACK each frame or... */
4763 	    tcp_in_quickack_mode(sk) ||
4764 	    /* We have out of order data. */
4765 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4766 		/* Then ack it now */
4767 		tcp_send_ack(sk);
4768 	} else {
4769 		/* Else, send delayed ack. */
4770 		tcp_send_delayed_ack(sk);
4771 	}
4772 }
4773 
4774 static inline void tcp_ack_snd_check(struct sock *sk)
4775 {
4776 	if (!inet_csk_ack_scheduled(sk)) {
4777 		/* We sent a data segment already. */
4778 		return;
4779 	}
4780 	__tcp_ack_snd_check(sk, 1);
4781 }
4782 
4783 /*
4784  *	This routine is only called when we have urgent data
4785  *	signaled. Its the 'slow' part of tcp_urg. It could be
4786  *	moved inline now as tcp_urg is only called from one
4787  *	place. We handle URGent data wrong. We have to - as
4788  *	BSD still doesn't use the correction from RFC961.
4789  *	For 1003.1g we should support a new option TCP_STDURG to permit
4790  *	either form (or just set the sysctl tcp_stdurg).
4791  */
4792 
4793 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4794 {
4795 	struct tcp_sock *tp = tcp_sk(sk);
4796 	u32 ptr = ntohs(th->urg_ptr);
4797 
4798 	if (ptr && !sysctl_tcp_stdurg)
4799 		ptr--;
4800 	ptr += ntohl(th->seq);
4801 
4802 	/* Ignore urgent data that we've already seen and read. */
4803 	if (after(tp->copied_seq, ptr))
4804 		return;
4805 
4806 	/* Do not replay urg ptr.
4807 	 *
4808 	 * NOTE: interesting situation not covered by specs.
4809 	 * Misbehaving sender may send urg ptr, pointing to segment,
4810 	 * which we already have in ofo queue. We are not able to fetch
4811 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4812 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4813 	 * situations. But it is worth to think about possibility of some
4814 	 * DoSes using some hypothetical application level deadlock.
4815 	 */
4816 	if (before(ptr, tp->rcv_nxt))
4817 		return;
4818 
4819 	/* Do we already have a newer (or duplicate) urgent pointer? */
4820 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4821 		return;
4822 
4823 	/* Tell the world about our new urgent pointer. */
4824 	sk_send_sigurg(sk);
4825 
4826 	/* We may be adding urgent data when the last byte read was
4827 	 * urgent. To do this requires some care. We cannot just ignore
4828 	 * tp->copied_seq since we would read the last urgent byte again
4829 	 * as data, nor can we alter copied_seq until this data arrives
4830 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4831 	 *
4832 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4833 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4834 	 * and expect that both A and B disappear from stream. This is _wrong_.
4835 	 * Though this happens in BSD with high probability, this is occasional.
4836 	 * Any application relying on this is buggy. Note also, that fix "works"
4837 	 * only in this artificial test. Insert some normal data between A and B and we will
4838 	 * decline of BSD again. Verdict: it is better to remove to trap
4839 	 * buggy users.
4840 	 */
4841 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4842 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4843 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4844 		tp->copied_seq++;
4845 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4846 			__skb_unlink(skb, &sk->sk_receive_queue);
4847 			__kfree_skb(skb);
4848 		}
4849 	}
4850 
4851 	tp->urg_data = TCP_URG_NOTYET;
4852 	tp->urg_seq = ptr;
4853 
4854 	/* Disable header prediction. */
4855 	tp->pred_flags = 0;
4856 }
4857 
4858 /* This is the 'fast' part of urgent handling. */
4859 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4860 {
4861 	struct tcp_sock *tp = tcp_sk(sk);
4862 
4863 	/* Check if we get a new urgent pointer - normally not. */
4864 	if (th->urg)
4865 		tcp_check_urg(sk, th);
4866 
4867 	/* Do we wait for any urgent data? - normally not... */
4868 	if (tp->urg_data == TCP_URG_NOTYET) {
4869 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4870 			  th->syn;
4871 
4872 		/* Is the urgent pointer pointing into this packet? */
4873 		if (ptr < skb->len) {
4874 			u8 tmp;
4875 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4876 				BUG();
4877 			tp->urg_data = TCP_URG_VALID | tmp;
4878 			if (!sock_flag(sk, SOCK_DEAD))
4879 				sk->sk_data_ready(sk, 0);
4880 		}
4881 	}
4882 }
4883 
4884 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4885 {
4886 	struct tcp_sock *tp = tcp_sk(sk);
4887 	int chunk = skb->len - hlen;
4888 	int err;
4889 
4890 	local_bh_enable();
4891 	if (skb_csum_unnecessary(skb))
4892 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4893 	else
4894 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4895 						       tp->ucopy.iov);
4896 
4897 	if (!err) {
4898 		tp->ucopy.len -= chunk;
4899 		tp->copied_seq += chunk;
4900 		tcp_rcv_space_adjust(sk);
4901 	}
4902 
4903 	local_bh_disable();
4904 	return err;
4905 }
4906 
4907 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4908 					    struct sk_buff *skb)
4909 {
4910 	__sum16 result;
4911 
4912 	if (sock_owned_by_user(sk)) {
4913 		local_bh_enable();
4914 		result = __tcp_checksum_complete(skb);
4915 		local_bh_disable();
4916 	} else {
4917 		result = __tcp_checksum_complete(skb);
4918 	}
4919 	return result;
4920 }
4921 
4922 static inline bool tcp_checksum_complete_user(struct sock *sk,
4923 					     struct sk_buff *skb)
4924 {
4925 	return !skb_csum_unnecessary(skb) &&
4926 	       __tcp_checksum_complete_user(sk, skb);
4927 }
4928 
4929 #ifdef CONFIG_NET_DMA
4930 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4931 				  int hlen)
4932 {
4933 	struct tcp_sock *tp = tcp_sk(sk);
4934 	int chunk = skb->len - hlen;
4935 	int dma_cookie;
4936 	bool copied_early = false;
4937 
4938 	if (tp->ucopy.wakeup)
4939 		return false;
4940 
4941 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4942 		tp->ucopy.dma_chan = net_dma_find_channel();
4943 
4944 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4945 
4946 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4947 							 skb, hlen,
4948 							 tp->ucopy.iov, chunk,
4949 							 tp->ucopy.pinned_list);
4950 
4951 		if (dma_cookie < 0)
4952 			goto out;
4953 
4954 		tp->ucopy.dma_cookie = dma_cookie;
4955 		copied_early = true;
4956 
4957 		tp->ucopy.len -= chunk;
4958 		tp->copied_seq += chunk;
4959 		tcp_rcv_space_adjust(sk);
4960 
4961 		if ((tp->ucopy.len == 0) ||
4962 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4963 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4964 			tp->ucopy.wakeup = 1;
4965 			sk->sk_data_ready(sk, 0);
4966 		}
4967 	} else if (chunk > 0) {
4968 		tp->ucopy.wakeup = 1;
4969 		sk->sk_data_ready(sk, 0);
4970 	}
4971 out:
4972 	return copied_early;
4973 }
4974 #endif /* CONFIG_NET_DMA */
4975 
4976 /* Does PAWS and seqno based validation of an incoming segment, flags will
4977  * play significant role here.
4978  */
4979 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4980 				  const struct tcphdr *th, int syn_inerr)
4981 {
4982 	struct tcp_sock *tp = tcp_sk(sk);
4983 
4984 	/* RFC1323: H1. Apply PAWS check first. */
4985 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4986 	    tcp_paws_discard(sk, skb)) {
4987 		if (!th->rst) {
4988 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4989 			tcp_send_dupack(sk, skb);
4990 			goto discard;
4991 		}
4992 		/* Reset is accepted even if it did not pass PAWS. */
4993 	}
4994 
4995 	/* Step 1: check sequence number */
4996 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4997 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4998 		 * (RST) segments are validated by checking their SEQ-fields."
4999 		 * And page 69: "If an incoming segment is not acceptable,
5000 		 * an acknowledgment should be sent in reply (unless the RST
5001 		 * bit is set, if so drop the segment and return)".
5002 		 */
5003 		if (!th->rst) {
5004 			if (th->syn)
5005 				goto syn_challenge;
5006 			tcp_send_dupack(sk, skb);
5007 		}
5008 		goto discard;
5009 	}
5010 
5011 	/* Step 2: check RST bit */
5012 	if (th->rst) {
5013 		/* RFC 5961 3.2 :
5014 		 * If sequence number exactly matches RCV.NXT, then
5015 		 *     RESET the connection
5016 		 * else
5017 		 *     Send a challenge ACK
5018 		 */
5019 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5020 			tcp_reset(sk);
5021 		else
5022 			tcp_send_challenge_ack(sk);
5023 		goto discard;
5024 	}
5025 
5026 	/* step 3: check security and precedence [ignored] */
5027 
5028 	/* step 4: Check for a SYN
5029 	 * RFC 5691 4.2 : Send a challenge ack
5030 	 */
5031 	if (th->syn) {
5032 syn_challenge:
5033 		if (syn_inerr)
5034 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5035 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5036 		tcp_send_challenge_ack(sk);
5037 		goto discard;
5038 	}
5039 
5040 	return true;
5041 
5042 discard:
5043 	__kfree_skb(skb);
5044 	return false;
5045 }
5046 
5047 /*
5048  *	TCP receive function for the ESTABLISHED state.
5049  *
5050  *	It is split into a fast path and a slow path. The fast path is
5051  * 	disabled when:
5052  *	- A zero window was announced from us - zero window probing
5053  *        is only handled properly in the slow path.
5054  *	- Out of order segments arrived.
5055  *	- Urgent data is expected.
5056  *	- There is no buffer space left
5057  *	- Unexpected TCP flags/window values/header lengths are received
5058  *	  (detected by checking the TCP header against pred_flags)
5059  *	- Data is sent in both directions. Fast path only supports pure senders
5060  *	  or pure receivers (this means either the sequence number or the ack
5061  *	  value must stay constant)
5062  *	- Unexpected TCP option.
5063  *
5064  *	When these conditions are not satisfied it drops into a standard
5065  *	receive procedure patterned after RFC793 to handle all cases.
5066  *	The first three cases are guaranteed by proper pred_flags setting,
5067  *	the rest is checked inline. Fast processing is turned on in
5068  *	tcp_data_queue when everything is OK.
5069  */
5070 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5071 			const struct tcphdr *th, unsigned int len)
5072 {
5073 	struct tcp_sock *tp = tcp_sk(sk);
5074 
5075 	if (unlikely(sk->sk_rx_dst == NULL))
5076 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5077 	/*
5078 	 *	Header prediction.
5079 	 *	The code loosely follows the one in the famous
5080 	 *	"30 instruction TCP receive" Van Jacobson mail.
5081 	 *
5082 	 *	Van's trick is to deposit buffers into socket queue
5083 	 *	on a device interrupt, to call tcp_recv function
5084 	 *	on the receive process context and checksum and copy
5085 	 *	the buffer to user space. smart...
5086 	 *
5087 	 *	Our current scheme is not silly either but we take the
5088 	 *	extra cost of the net_bh soft interrupt processing...
5089 	 *	We do checksum and copy also but from device to kernel.
5090 	 */
5091 
5092 	tp->rx_opt.saw_tstamp = 0;
5093 
5094 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5095 	 *	if header_prediction is to be made
5096 	 *	'S' will always be tp->tcp_header_len >> 2
5097 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5098 	 *  turn it off	(when there are holes in the receive
5099 	 *	 space for instance)
5100 	 *	PSH flag is ignored.
5101 	 */
5102 
5103 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5104 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5105 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5106 		int tcp_header_len = tp->tcp_header_len;
5107 
5108 		/* Timestamp header prediction: tcp_header_len
5109 		 * is automatically equal to th->doff*4 due to pred_flags
5110 		 * match.
5111 		 */
5112 
5113 		/* Check timestamp */
5114 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5115 			/* No? Slow path! */
5116 			if (!tcp_parse_aligned_timestamp(tp, th))
5117 				goto slow_path;
5118 
5119 			/* If PAWS failed, check it more carefully in slow path */
5120 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5121 				goto slow_path;
5122 
5123 			/* DO NOT update ts_recent here, if checksum fails
5124 			 * and timestamp was corrupted part, it will result
5125 			 * in a hung connection since we will drop all
5126 			 * future packets due to the PAWS test.
5127 			 */
5128 		}
5129 
5130 		if (len <= tcp_header_len) {
5131 			/* Bulk data transfer: sender */
5132 			if (len == tcp_header_len) {
5133 				/* Predicted packet is in window by definition.
5134 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5135 				 * Hence, check seq<=rcv_wup reduces to:
5136 				 */
5137 				if (tcp_header_len ==
5138 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5139 				    tp->rcv_nxt == tp->rcv_wup)
5140 					tcp_store_ts_recent(tp);
5141 
5142 				/* We know that such packets are checksummed
5143 				 * on entry.
5144 				 */
5145 				tcp_ack(sk, skb, 0);
5146 				__kfree_skb(skb);
5147 				tcp_data_snd_check(sk);
5148 				return 0;
5149 			} else { /* Header too small */
5150 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5151 				goto discard;
5152 			}
5153 		} else {
5154 			int eaten = 0;
5155 			int copied_early = 0;
5156 			bool fragstolen = false;
5157 
5158 			if (tp->copied_seq == tp->rcv_nxt &&
5159 			    len - tcp_header_len <= tp->ucopy.len) {
5160 #ifdef CONFIG_NET_DMA
5161 				if (tp->ucopy.task == current &&
5162 				    sock_owned_by_user(sk) &&
5163 				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5164 					copied_early = 1;
5165 					eaten = 1;
5166 				}
5167 #endif
5168 				if (tp->ucopy.task == current &&
5169 				    sock_owned_by_user(sk) && !copied_early) {
5170 					__set_current_state(TASK_RUNNING);
5171 
5172 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5173 						eaten = 1;
5174 				}
5175 				if (eaten) {
5176 					/* Predicted packet is in window by definition.
5177 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5178 					 * Hence, check seq<=rcv_wup reduces to:
5179 					 */
5180 					if (tcp_header_len ==
5181 					    (sizeof(struct tcphdr) +
5182 					     TCPOLEN_TSTAMP_ALIGNED) &&
5183 					    tp->rcv_nxt == tp->rcv_wup)
5184 						tcp_store_ts_recent(tp);
5185 
5186 					tcp_rcv_rtt_measure_ts(sk, skb);
5187 
5188 					__skb_pull(skb, tcp_header_len);
5189 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5190 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5191 				}
5192 				if (copied_early)
5193 					tcp_cleanup_rbuf(sk, skb->len);
5194 			}
5195 			if (!eaten) {
5196 				if (tcp_checksum_complete_user(sk, skb))
5197 					goto csum_error;
5198 
5199 				if ((int)skb->truesize > sk->sk_forward_alloc)
5200 					goto step5;
5201 
5202 				/* Predicted packet is in window by definition.
5203 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5204 				 * Hence, check seq<=rcv_wup reduces to:
5205 				 */
5206 				if (tcp_header_len ==
5207 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5208 				    tp->rcv_nxt == tp->rcv_wup)
5209 					tcp_store_ts_recent(tp);
5210 
5211 				tcp_rcv_rtt_measure_ts(sk, skb);
5212 
5213 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5214 
5215 				/* Bulk data transfer: receiver */
5216 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5217 						      &fragstolen);
5218 			}
5219 
5220 			tcp_event_data_recv(sk, skb);
5221 
5222 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5223 				/* Well, only one small jumplet in fast path... */
5224 				tcp_ack(sk, skb, FLAG_DATA);
5225 				tcp_data_snd_check(sk);
5226 				if (!inet_csk_ack_scheduled(sk))
5227 					goto no_ack;
5228 			}
5229 
5230 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5231 				__tcp_ack_snd_check(sk, 0);
5232 no_ack:
5233 #ifdef CONFIG_NET_DMA
5234 			if (copied_early)
5235 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5236 			else
5237 #endif
5238 			if (eaten)
5239 				kfree_skb_partial(skb, fragstolen);
5240 			sk->sk_data_ready(sk, 0);
5241 			return 0;
5242 		}
5243 	}
5244 
5245 slow_path:
5246 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5247 		goto csum_error;
5248 
5249 	if (!th->ack && !th->rst)
5250 		goto discard;
5251 
5252 	/*
5253 	 *	Standard slow path.
5254 	 */
5255 
5256 	if (!tcp_validate_incoming(sk, skb, th, 1))
5257 		return 0;
5258 
5259 step5:
5260 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5261 		goto discard;
5262 
5263 	tcp_rcv_rtt_measure_ts(sk, skb);
5264 
5265 	/* Process urgent data. */
5266 	tcp_urg(sk, skb, th);
5267 
5268 	/* step 7: process the segment text */
5269 	tcp_data_queue(sk, skb);
5270 
5271 	tcp_data_snd_check(sk);
5272 	tcp_ack_snd_check(sk);
5273 	return 0;
5274 
5275 csum_error:
5276 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5277 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5278 
5279 discard:
5280 	__kfree_skb(skb);
5281 	return 0;
5282 }
5283 EXPORT_SYMBOL(tcp_rcv_established);
5284 
5285 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5286 {
5287 	struct tcp_sock *tp = tcp_sk(sk);
5288 	struct inet_connection_sock *icsk = inet_csk(sk);
5289 
5290 	tcp_set_state(sk, TCP_ESTABLISHED);
5291 
5292 	if (skb != NULL) {
5293 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5294 		security_inet_conn_established(sk, skb);
5295 	}
5296 
5297 	/* Make sure socket is routed, for correct metrics.  */
5298 	icsk->icsk_af_ops->rebuild_header(sk);
5299 
5300 	tcp_init_metrics(sk);
5301 
5302 	tcp_init_congestion_control(sk);
5303 
5304 	/* Prevent spurious tcp_cwnd_restart() on first data
5305 	 * packet.
5306 	 */
5307 	tp->lsndtime = tcp_time_stamp;
5308 
5309 	tcp_init_buffer_space(sk);
5310 
5311 	if (sock_flag(sk, SOCK_KEEPOPEN))
5312 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5313 
5314 	if (!tp->rx_opt.snd_wscale)
5315 		__tcp_fast_path_on(tp, tp->snd_wnd);
5316 	else
5317 		tp->pred_flags = 0;
5318 
5319 	if (!sock_flag(sk, SOCK_DEAD)) {
5320 		sk->sk_state_change(sk);
5321 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5322 	}
5323 }
5324 
5325 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5326 				    struct tcp_fastopen_cookie *cookie)
5327 {
5328 	struct tcp_sock *tp = tcp_sk(sk);
5329 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5330 	u16 mss = tp->rx_opt.mss_clamp;
5331 	bool syn_drop;
5332 
5333 	if (mss == tp->rx_opt.user_mss) {
5334 		struct tcp_options_received opt;
5335 
5336 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5337 		tcp_clear_options(&opt);
5338 		opt.user_mss = opt.mss_clamp = 0;
5339 		tcp_parse_options(synack, &opt, 0, NULL);
5340 		mss = opt.mss_clamp;
5341 	}
5342 
5343 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5344 		cookie->len = -1;
5345 
5346 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5347 	 * the remote receives only the retransmitted (regular) SYNs: either
5348 	 * the original SYN-data or the corresponding SYN-ACK is lost.
5349 	 */
5350 	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5351 
5352 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5353 
5354 	if (data) { /* Retransmit unacked data in SYN */
5355 		tcp_for_write_queue_from(data, sk) {
5356 			if (data == tcp_send_head(sk) ||
5357 			    __tcp_retransmit_skb(sk, data))
5358 				break;
5359 		}
5360 		tcp_rearm_rto(sk);
5361 		return true;
5362 	}
5363 	tp->syn_data_acked = tp->syn_data;
5364 	return false;
5365 }
5366 
5367 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5368 					 const struct tcphdr *th, unsigned int len)
5369 {
5370 	struct inet_connection_sock *icsk = inet_csk(sk);
5371 	struct tcp_sock *tp = tcp_sk(sk);
5372 	struct tcp_fastopen_cookie foc = { .len = -1 };
5373 	int saved_clamp = tp->rx_opt.mss_clamp;
5374 
5375 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5376 	if (tp->rx_opt.saw_tstamp)
5377 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5378 
5379 	if (th->ack) {
5380 		/* rfc793:
5381 		 * "If the state is SYN-SENT then
5382 		 *    first check the ACK bit
5383 		 *      If the ACK bit is set
5384 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5385 		 *        a reset (unless the RST bit is set, if so drop
5386 		 *        the segment and return)"
5387 		 */
5388 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5389 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5390 			goto reset_and_undo;
5391 
5392 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5393 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5394 			     tcp_time_stamp)) {
5395 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5396 			goto reset_and_undo;
5397 		}
5398 
5399 		/* Now ACK is acceptable.
5400 		 *
5401 		 * "If the RST bit is set
5402 		 *    If the ACK was acceptable then signal the user "error:
5403 		 *    connection reset", drop the segment, enter CLOSED state,
5404 		 *    delete TCB, and return."
5405 		 */
5406 
5407 		if (th->rst) {
5408 			tcp_reset(sk);
5409 			goto discard;
5410 		}
5411 
5412 		/* rfc793:
5413 		 *   "fifth, if neither of the SYN or RST bits is set then
5414 		 *    drop the segment and return."
5415 		 *
5416 		 *    See note below!
5417 		 *                                        --ANK(990513)
5418 		 */
5419 		if (!th->syn)
5420 			goto discard_and_undo;
5421 
5422 		/* rfc793:
5423 		 *   "If the SYN bit is on ...
5424 		 *    are acceptable then ...
5425 		 *    (our SYN has been ACKed), change the connection
5426 		 *    state to ESTABLISHED..."
5427 		 */
5428 
5429 		TCP_ECN_rcv_synack(tp, th);
5430 
5431 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5432 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5433 
5434 		/* Ok.. it's good. Set up sequence numbers and
5435 		 * move to established.
5436 		 */
5437 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5438 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5439 
5440 		/* RFC1323: The window in SYN & SYN/ACK segments is
5441 		 * never scaled.
5442 		 */
5443 		tp->snd_wnd = ntohs(th->window);
5444 
5445 		if (!tp->rx_opt.wscale_ok) {
5446 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5447 			tp->window_clamp = min(tp->window_clamp, 65535U);
5448 		}
5449 
5450 		if (tp->rx_opt.saw_tstamp) {
5451 			tp->rx_opt.tstamp_ok	   = 1;
5452 			tp->tcp_header_len =
5453 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5454 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5455 			tcp_store_ts_recent(tp);
5456 		} else {
5457 			tp->tcp_header_len = sizeof(struct tcphdr);
5458 		}
5459 
5460 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5461 			tcp_enable_fack(tp);
5462 
5463 		tcp_mtup_init(sk);
5464 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5465 		tcp_initialize_rcv_mss(sk);
5466 
5467 		/* Remember, tcp_poll() does not lock socket!
5468 		 * Change state from SYN-SENT only after copied_seq
5469 		 * is initialized. */
5470 		tp->copied_seq = tp->rcv_nxt;
5471 
5472 		smp_mb();
5473 
5474 		tcp_finish_connect(sk, skb);
5475 
5476 		if ((tp->syn_fastopen || tp->syn_data) &&
5477 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5478 			return -1;
5479 
5480 		if (sk->sk_write_pending ||
5481 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5482 		    icsk->icsk_ack.pingpong) {
5483 			/* Save one ACK. Data will be ready after
5484 			 * several ticks, if write_pending is set.
5485 			 *
5486 			 * It may be deleted, but with this feature tcpdumps
5487 			 * look so _wonderfully_ clever, that I was not able
5488 			 * to stand against the temptation 8)     --ANK
5489 			 */
5490 			inet_csk_schedule_ack(sk);
5491 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5492 			tcp_enter_quickack_mode(sk);
5493 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5494 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5495 
5496 discard:
5497 			__kfree_skb(skb);
5498 			return 0;
5499 		} else {
5500 			tcp_send_ack(sk);
5501 		}
5502 		return -1;
5503 	}
5504 
5505 	/* No ACK in the segment */
5506 
5507 	if (th->rst) {
5508 		/* rfc793:
5509 		 * "If the RST bit is set
5510 		 *
5511 		 *      Otherwise (no ACK) drop the segment and return."
5512 		 */
5513 
5514 		goto discard_and_undo;
5515 	}
5516 
5517 	/* PAWS check. */
5518 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5519 	    tcp_paws_reject(&tp->rx_opt, 0))
5520 		goto discard_and_undo;
5521 
5522 	if (th->syn) {
5523 		/* We see SYN without ACK. It is attempt of
5524 		 * simultaneous connect with crossed SYNs.
5525 		 * Particularly, it can be connect to self.
5526 		 */
5527 		tcp_set_state(sk, TCP_SYN_RECV);
5528 
5529 		if (tp->rx_opt.saw_tstamp) {
5530 			tp->rx_opt.tstamp_ok = 1;
5531 			tcp_store_ts_recent(tp);
5532 			tp->tcp_header_len =
5533 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5534 		} else {
5535 			tp->tcp_header_len = sizeof(struct tcphdr);
5536 		}
5537 
5538 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5539 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5540 
5541 		/* RFC1323: The window in SYN & SYN/ACK segments is
5542 		 * never scaled.
5543 		 */
5544 		tp->snd_wnd    = ntohs(th->window);
5545 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5546 		tp->max_window = tp->snd_wnd;
5547 
5548 		TCP_ECN_rcv_syn(tp, th);
5549 
5550 		tcp_mtup_init(sk);
5551 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5552 		tcp_initialize_rcv_mss(sk);
5553 
5554 		tcp_send_synack(sk);
5555 #if 0
5556 		/* Note, we could accept data and URG from this segment.
5557 		 * There are no obstacles to make this (except that we must
5558 		 * either change tcp_recvmsg() to prevent it from returning data
5559 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5560 		 *
5561 		 * However, if we ignore data in ACKless segments sometimes,
5562 		 * we have no reasons to accept it sometimes.
5563 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5564 		 * is not flawless. So, discard packet for sanity.
5565 		 * Uncomment this return to process the data.
5566 		 */
5567 		return -1;
5568 #else
5569 		goto discard;
5570 #endif
5571 	}
5572 	/* "fifth, if neither of the SYN or RST bits is set then
5573 	 * drop the segment and return."
5574 	 */
5575 
5576 discard_and_undo:
5577 	tcp_clear_options(&tp->rx_opt);
5578 	tp->rx_opt.mss_clamp = saved_clamp;
5579 	goto discard;
5580 
5581 reset_and_undo:
5582 	tcp_clear_options(&tp->rx_opt);
5583 	tp->rx_opt.mss_clamp = saved_clamp;
5584 	return 1;
5585 }
5586 
5587 /*
5588  *	This function implements the receiving procedure of RFC 793 for
5589  *	all states except ESTABLISHED and TIME_WAIT.
5590  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5591  *	address independent.
5592  */
5593 
5594 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5595 			  const struct tcphdr *th, unsigned int len)
5596 {
5597 	struct tcp_sock *tp = tcp_sk(sk);
5598 	struct inet_connection_sock *icsk = inet_csk(sk);
5599 	struct request_sock *req;
5600 	int queued = 0;
5601 
5602 	tp->rx_opt.saw_tstamp = 0;
5603 
5604 	switch (sk->sk_state) {
5605 	case TCP_CLOSE:
5606 		goto discard;
5607 
5608 	case TCP_LISTEN:
5609 		if (th->ack)
5610 			return 1;
5611 
5612 		if (th->rst)
5613 			goto discard;
5614 
5615 		if (th->syn) {
5616 			if (th->fin)
5617 				goto discard;
5618 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5619 				return 1;
5620 
5621 			/* Now we have several options: In theory there is
5622 			 * nothing else in the frame. KA9Q has an option to
5623 			 * send data with the syn, BSD accepts data with the
5624 			 * syn up to the [to be] advertised window and
5625 			 * Solaris 2.1 gives you a protocol error. For now
5626 			 * we just ignore it, that fits the spec precisely
5627 			 * and avoids incompatibilities. It would be nice in
5628 			 * future to drop through and process the data.
5629 			 *
5630 			 * Now that TTCP is starting to be used we ought to
5631 			 * queue this data.
5632 			 * But, this leaves one open to an easy denial of
5633 			 * service attack, and SYN cookies can't defend
5634 			 * against this problem. So, we drop the data
5635 			 * in the interest of security over speed unless
5636 			 * it's still in use.
5637 			 */
5638 			kfree_skb(skb);
5639 			return 0;
5640 		}
5641 		goto discard;
5642 
5643 	case TCP_SYN_SENT:
5644 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5645 		if (queued >= 0)
5646 			return queued;
5647 
5648 		/* Do step6 onward by hand. */
5649 		tcp_urg(sk, skb, th);
5650 		__kfree_skb(skb);
5651 		tcp_data_snd_check(sk);
5652 		return 0;
5653 	}
5654 
5655 	req = tp->fastopen_rsk;
5656 	if (req != NULL) {
5657 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5658 		    sk->sk_state != TCP_FIN_WAIT1);
5659 
5660 		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5661 			goto discard;
5662 	}
5663 
5664 	if (!th->ack && !th->rst)
5665 		goto discard;
5666 
5667 	if (!tcp_validate_incoming(sk, skb, th, 0))
5668 		return 0;
5669 
5670 	/* step 5: check the ACK field */
5671 	if (true) {
5672 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5673 						  FLAG_UPDATE_TS_RECENT) > 0;
5674 
5675 		switch (sk->sk_state) {
5676 		case TCP_SYN_RECV:
5677 			if (acceptable) {
5678 				/* Once we leave TCP_SYN_RECV, we no longer
5679 				 * need req so release it.
5680 				 */
5681 				if (req) {
5682 					tcp_synack_rtt_meas(sk, req);
5683 					tp->total_retrans = req->num_retrans;
5684 
5685 					reqsk_fastopen_remove(sk, req, false);
5686 				} else {
5687 					/* Make sure socket is routed, for
5688 					 * correct metrics.
5689 					 */
5690 					icsk->icsk_af_ops->rebuild_header(sk);
5691 					tcp_init_congestion_control(sk);
5692 
5693 					tcp_mtup_init(sk);
5694 					tcp_init_buffer_space(sk);
5695 					tp->copied_seq = tp->rcv_nxt;
5696 				}
5697 				smp_mb();
5698 				tcp_set_state(sk, TCP_ESTABLISHED);
5699 				sk->sk_state_change(sk);
5700 
5701 				/* Note, that this wakeup is only for marginal
5702 				 * crossed SYN case. Passively open sockets
5703 				 * are not waked up, because sk->sk_sleep ==
5704 				 * NULL and sk->sk_socket == NULL.
5705 				 */
5706 				if (sk->sk_socket)
5707 					sk_wake_async(sk,
5708 						      SOCK_WAKE_IO, POLL_OUT);
5709 
5710 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5711 				tp->snd_wnd = ntohs(th->window) <<
5712 					      tp->rx_opt.snd_wscale;
5713 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5714 
5715 				if (tp->rx_opt.tstamp_ok)
5716 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5717 
5718 				if (req) {
5719 					/* Re-arm the timer because data may
5720 					 * have been sent out. This is similar
5721 					 * to the regular data transmission case
5722 					 * when new data has just been ack'ed.
5723 					 *
5724 					 * (TFO) - we could try to be more
5725 					 * aggressive and retranmitting any data
5726 					 * sooner based on when they were sent
5727 					 * out.
5728 					 */
5729 					tcp_rearm_rto(sk);
5730 				} else
5731 					tcp_init_metrics(sk);
5732 
5733 				/* Prevent spurious tcp_cwnd_restart() on
5734 				 * first data packet.
5735 				 */
5736 				tp->lsndtime = tcp_time_stamp;
5737 
5738 				tcp_initialize_rcv_mss(sk);
5739 				tcp_fast_path_on(tp);
5740 			} else {
5741 				return 1;
5742 			}
5743 			break;
5744 
5745 		case TCP_FIN_WAIT1:
5746 			/* If we enter the TCP_FIN_WAIT1 state and we are a
5747 			 * Fast Open socket and this is the first acceptable
5748 			 * ACK we have received, this would have acknowledged
5749 			 * our SYNACK so stop the SYNACK timer.
5750 			 */
5751 			if (req != NULL) {
5752 				/* Return RST if ack_seq is invalid.
5753 				 * Note that RFC793 only says to generate a
5754 				 * DUPACK for it but for TCP Fast Open it seems
5755 				 * better to treat this case like TCP_SYN_RECV
5756 				 * above.
5757 				 */
5758 				if (!acceptable)
5759 					return 1;
5760 				/* We no longer need the request sock. */
5761 				reqsk_fastopen_remove(sk, req, false);
5762 				tcp_rearm_rto(sk);
5763 			}
5764 			if (tp->snd_una == tp->write_seq) {
5765 				struct dst_entry *dst;
5766 
5767 				tcp_set_state(sk, TCP_FIN_WAIT2);
5768 				sk->sk_shutdown |= SEND_SHUTDOWN;
5769 
5770 				dst = __sk_dst_get(sk);
5771 				if (dst)
5772 					dst_confirm(dst);
5773 
5774 				if (!sock_flag(sk, SOCK_DEAD))
5775 					/* Wake up lingering close() */
5776 					sk->sk_state_change(sk);
5777 				else {
5778 					int tmo;
5779 
5780 					if (tp->linger2 < 0 ||
5781 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5782 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5783 						tcp_done(sk);
5784 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5785 						return 1;
5786 					}
5787 
5788 					tmo = tcp_fin_time(sk);
5789 					if (tmo > TCP_TIMEWAIT_LEN) {
5790 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5791 					} else if (th->fin || sock_owned_by_user(sk)) {
5792 						/* Bad case. We could lose such FIN otherwise.
5793 						 * It is not a big problem, but it looks confusing
5794 						 * and not so rare event. We still can lose it now,
5795 						 * if it spins in bh_lock_sock(), but it is really
5796 						 * marginal case.
5797 						 */
5798 						inet_csk_reset_keepalive_timer(sk, tmo);
5799 					} else {
5800 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5801 						goto discard;
5802 					}
5803 				}
5804 			}
5805 			break;
5806 
5807 		case TCP_CLOSING:
5808 			if (tp->snd_una == tp->write_seq) {
5809 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5810 				goto discard;
5811 			}
5812 			break;
5813 
5814 		case TCP_LAST_ACK:
5815 			if (tp->snd_una == tp->write_seq) {
5816 				tcp_update_metrics(sk);
5817 				tcp_done(sk);
5818 				goto discard;
5819 			}
5820 			break;
5821 		}
5822 	}
5823 
5824 	/* step 6: check the URG bit */
5825 	tcp_urg(sk, skb, th);
5826 
5827 	/* step 7: process the segment text */
5828 	switch (sk->sk_state) {
5829 	case TCP_CLOSE_WAIT:
5830 	case TCP_CLOSING:
5831 	case TCP_LAST_ACK:
5832 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5833 			break;
5834 	case TCP_FIN_WAIT1:
5835 	case TCP_FIN_WAIT2:
5836 		/* RFC 793 says to queue data in these states,
5837 		 * RFC 1122 says we MUST send a reset.
5838 		 * BSD 4.4 also does reset.
5839 		 */
5840 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5841 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5842 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5843 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5844 				tcp_reset(sk);
5845 				return 1;
5846 			}
5847 		}
5848 		/* Fall through */
5849 	case TCP_ESTABLISHED:
5850 		tcp_data_queue(sk, skb);
5851 		queued = 1;
5852 		break;
5853 	}
5854 
5855 	/* tcp_data could move socket to TIME-WAIT */
5856 	if (sk->sk_state != TCP_CLOSE) {
5857 		tcp_data_snd_check(sk);
5858 		tcp_ack_snd_check(sk);
5859 	}
5860 
5861 	if (!queued) {
5862 discard:
5863 		__kfree_skb(skb);
5864 	}
5865 	return 0;
5866 }
5867 EXPORT_SYMBOL(tcp_rcv_state_process);
5868