1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 104 105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 109 110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 112 113 #define REXMIT_NONE 0 /* no loss recovery to do */ 114 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 116 117 #if IS_ENABLED(CONFIG_TLS_DEVICE) 118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 119 120 void clean_acked_data_enable(struct inet_connection_sock *icsk, 121 void (*cad)(struct sock *sk, u32 ack_seq)) 122 { 123 icsk->icsk_clean_acked = cad; 124 static_branch_deferred_inc(&clean_acked_data_enabled); 125 } 126 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 127 128 void clean_acked_data_disable(struct inet_connection_sock *icsk) 129 { 130 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 131 icsk->icsk_clean_acked = NULL; 132 } 133 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 134 135 void clean_acked_data_flush(void) 136 { 137 static_key_deferred_flush(&clean_acked_data_enabled); 138 } 139 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 140 #endif 141 142 #ifdef CONFIG_CGROUP_BPF 143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 144 { 145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 150 struct bpf_sock_ops_kern sock_ops; 151 152 if (likely(!unknown_opt && !parse_all_opt)) 153 return; 154 155 /* The skb will be handled in the 156 * bpf_skops_established() or 157 * bpf_skops_write_hdr_opt(). 158 */ 159 switch (sk->sk_state) { 160 case TCP_SYN_RECV: 161 case TCP_SYN_SENT: 162 case TCP_LISTEN: 163 return; 164 } 165 166 sock_owned_by_me(sk); 167 168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 170 sock_ops.is_fullsock = 1; 171 sock_ops.sk = sk; 172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 173 174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 175 } 176 177 static void bpf_skops_established(struct sock *sk, int bpf_op, 178 struct sk_buff *skb) 179 { 180 struct bpf_sock_ops_kern sock_ops; 181 182 sock_owned_by_me(sk); 183 184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 185 sock_ops.op = bpf_op; 186 sock_ops.is_fullsock = 1; 187 sock_ops.sk = sk; 188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 189 if (skb) 190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 191 192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 193 } 194 #else 195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 196 { 197 } 198 199 static void bpf_skops_established(struct sock *sk, int bpf_op, 200 struct sk_buff *skb) 201 { 202 } 203 #endif 204 205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 206 unsigned int len) 207 { 208 static bool __once __read_mostly; 209 210 if (!__once) { 211 struct net_device *dev; 212 213 __once = true; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= dev->mtu) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 } 223 224 /* Adapt the MSS value used to make delayed ack decision to the 225 * real world. 226 */ 227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 228 { 229 struct inet_connection_sock *icsk = inet_csk(sk); 230 const unsigned int lss = icsk->icsk_ack.last_seg_size; 231 unsigned int len; 232 233 icsk->icsk_ack.last_seg_size = 0; 234 235 /* skb->len may jitter because of SACKs, even if peer 236 * sends good full-sized frames. 237 */ 238 len = skb_shinfo(skb)->gso_size ? : skb->len; 239 if (len >= icsk->icsk_ack.rcv_mss) { 240 /* Note: divides are still a bit expensive. 241 * For the moment, only adjust scaling_ratio 242 * when we update icsk_ack.rcv_mss. 243 */ 244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 246 247 do_div(val, skb->truesize); 248 tcp_sk(sk)->scaling_ratio = val ? val : 1; 249 } 250 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 251 tcp_sk(sk)->advmss); 252 /* Account for possibly-removed options */ 253 if (unlikely(len > icsk->icsk_ack.rcv_mss + 254 MAX_TCP_OPTION_SPACE)) 255 tcp_gro_dev_warn(sk, skb, len); 256 /* If the skb has a len of exactly 1*MSS and has the PSH bit 257 * set then it is likely the end of an application write. So 258 * more data may not be arriving soon, and yet the data sender 259 * may be waiting for an ACK if cwnd-bound or using TX zero 260 * copy. So we set ICSK_ACK_PUSHED here so that 261 * tcp_cleanup_rbuf() will send an ACK immediately if the app 262 * reads all of the data and is not ping-pong. If len > MSS 263 * then this logic does not matter (and does not hurt) because 264 * tcp_cleanup_rbuf() will always ACK immediately if the app 265 * reads data and there is more than an MSS of unACKed data. 266 */ 267 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 268 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 269 } else { 270 /* Otherwise, we make more careful check taking into account, 271 * that SACKs block is variable. 272 * 273 * "len" is invariant segment length, including TCP header. 274 */ 275 len += skb->data - skb_transport_header(skb); 276 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 277 /* If PSH is not set, packet should be 278 * full sized, provided peer TCP is not badly broken. 279 * This observation (if it is correct 8)) allows 280 * to handle super-low mtu links fairly. 281 */ 282 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 283 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 284 /* Subtract also invariant (if peer is RFC compliant), 285 * tcp header plus fixed timestamp option length. 286 * Resulting "len" is MSS free of SACK jitter. 287 */ 288 len -= tcp_sk(sk)->tcp_header_len; 289 icsk->icsk_ack.last_seg_size = len; 290 if (len == lss) { 291 icsk->icsk_ack.rcv_mss = len; 292 return; 293 } 294 } 295 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 296 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 297 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 298 } 299 } 300 301 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 302 { 303 struct inet_connection_sock *icsk = inet_csk(sk); 304 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 305 306 if (quickacks == 0) 307 quickacks = 2; 308 quickacks = min(quickacks, max_quickacks); 309 if (quickacks > icsk->icsk_ack.quick) 310 icsk->icsk_ack.quick = quickacks; 311 } 312 313 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 314 { 315 struct inet_connection_sock *icsk = inet_csk(sk); 316 317 tcp_incr_quickack(sk, max_quickacks); 318 inet_csk_exit_pingpong_mode(sk); 319 icsk->icsk_ack.ato = TCP_ATO_MIN; 320 } 321 322 /* Send ACKs quickly, if "quick" count is not exhausted 323 * and the session is not interactive. 324 */ 325 326 static bool tcp_in_quickack_mode(struct sock *sk) 327 { 328 const struct inet_connection_sock *icsk = inet_csk(sk); 329 const struct dst_entry *dst = __sk_dst_get(sk); 330 331 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 332 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 333 } 334 335 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 336 { 337 if (tp->ecn_flags & TCP_ECN_OK) 338 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 339 } 340 341 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 342 { 343 if (tcp_hdr(skb)->cwr) { 344 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 345 346 /* If the sender is telling us it has entered CWR, then its 347 * cwnd may be very low (even just 1 packet), so we should ACK 348 * immediately. 349 */ 350 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 351 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 352 } 353 } 354 355 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 356 { 357 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 358 } 359 360 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 361 { 362 struct tcp_sock *tp = tcp_sk(sk); 363 364 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 365 case INET_ECN_NOT_ECT: 366 /* Funny extension: if ECT is not set on a segment, 367 * and we already seen ECT on a previous segment, 368 * it is probably a retransmit. 369 */ 370 if (tp->ecn_flags & TCP_ECN_SEEN) 371 tcp_enter_quickack_mode(sk, 2); 372 break; 373 case INET_ECN_CE: 374 if (tcp_ca_needs_ecn(sk)) 375 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 376 377 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 378 /* Better not delay acks, sender can have a very low cwnd */ 379 tcp_enter_quickack_mode(sk, 2); 380 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 381 } 382 tp->ecn_flags |= TCP_ECN_SEEN; 383 break; 384 default: 385 if (tcp_ca_needs_ecn(sk)) 386 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 387 tp->ecn_flags |= TCP_ECN_SEEN; 388 break; 389 } 390 } 391 392 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 393 { 394 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 395 __tcp_ecn_check_ce(sk, skb); 396 } 397 398 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 399 { 400 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 401 tp->ecn_flags &= ~TCP_ECN_OK; 402 } 403 404 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 405 { 406 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 407 tp->ecn_flags &= ~TCP_ECN_OK; 408 } 409 410 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 411 { 412 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 413 return true; 414 return false; 415 } 416 417 /* Buffer size and advertised window tuning. 418 * 419 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 420 */ 421 422 static void tcp_sndbuf_expand(struct sock *sk) 423 { 424 const struct tcp_sock *tp = tcp_sk(sk); 425 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 426 int sndmem, per_mss; 427 u32 nr_segs; 428 429 /* Worst case is non GSO/TSO : each frame consumes one skb 430 * and skb->head is kmalloced using power of two area of memory 431 */ 432 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 433 MAX_TCP_HEADER + 434 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 435 436 per_mss = roundup_pow_of_two(per_mss) + 437 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 438 439 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 440 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 441 442 /* Fast Recovery (RFC 5681 3.2) : 443 * Cubic needs 1.7 factor, rounded to 2 to include 444 * extra cushion (application might react slowly to EPOLLOUT) 445 */ 446 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 447 sndmem *= nr_segs * per_mss; 448 449 if (sk->sk_sndbuf < sndmem) 450 WRITE_ONCE(sk->sk_sndbuf, 451 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 452 } 453 454 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 455 * 456 * All tcp_full_space() is split to two parts: "network" buffer, allocated 457 * forward and advertised in receiver window (tp->rcv_wnd) and 458 * "application buffer", required to isolate scheduling/application 459 * latencies from network. 460 * window_clamp is maximal advertised window. It can be less than 461 * tcp_full_space(), in this case tcp_full_space() - window_clamp 462 * is reserved for "application" buffer. The less window_clamp is 463 * the smoother our behaviour from viewpoint of network, but the lower 464 * throughput and the higher sensitivity of the connection to losses. 8) 465 * 466 * rcv_ssthresh is more strict window_clamp used at "slow start" 467 * phase to predict further behaviour of this connection. 468 * It is used for two goals: 469 * - to enforce header prediction at sender, even when application 470 * requires some significant "application buffer". It is check #1. 471 * - to prevent pruning of receive queue because of misprediction 472 * of receiver window. Check #2. 473 * 474 * The scheme does not work when sender sends good segments opening 475 * window and then starts to feed us spaghetti. But it should work 476 * in common situations. Otherwise, we have to rely on queue collapsing. 477 */ 478 479 /* Slow part of check#2. */ 480 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 481 unsigned int skbtruesize) 482 { 483 const struct tcp_sock *tp = tcp_sk(sk); 484 /* Optimize this! */ 485 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 486 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 487 488 while (tp->rcv_ssthresh <= window) { 489 if (truesize <= skb->len) 490 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 491 492 truesize >>= 1; 493 window >>= 1; 494 } 495 return 0; 496 } 497 498 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 499 * can play nice with us, as sk_buff and skb->head might be either 500 * freed or shared with up to MAX_SKB_FRAGS segments. 501 * Only give a boost to drivers using page frag(s) to hold the frame(s), 502 * and if no payload was pulled in skb->head before reaching us. 503 */ 504 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 505 { 506 u32 truesize = skb->truesize; 507 508 if (adjust && !skb_headlen(skb)) { 509 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 510 /* paranoid check, some drivers might be buggy */ 511 if (unlikely((int)truesize < (int)skb->len)) 512 truesize = skb->truesize; 513 } 514 return truesize; 515 } 516 517 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 518 bool adjust) 519 { 520 struct tcp_sock *tp = tcp_sk(sk); 521 int room; 522 523 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 524 525 if (room <= 0) 526 return; 527 528 /* Check #1 */ 529 if (!tcp_under_memory_pressure(sk)) { 530 unsigned int truesize = truesize_adjust(adjust, skb); 531 int incr; 532 533 /* Check #2. Increase window, if skb with such overhead 534 * will fit to rcvbuf in future. 535 */ 536 if (tcp_win_from_space(sk, truesize) <= skb->len) 537 incr = 2 * tp->advmss; 538 else 539 incr = __tcp_grow_window(sk, skb, truesize); 540 541 if (incr) { 542 incr = max_t(int, incr, 2 * skb->len); 543 tp->rcv_ssthresh += min(room, incr); 544 inet_csk(sk)->icsk_ack.quick |= 1; 545 } 546 } else { 547 /* Under pressure: 548 * Adjust rcv_ssthresh according to reserved mem 549 */ 550 tcp_adjust_rcv_ssthresh(sk); 551 } 552 } 553 554 /* 3. Try to fixup all. It is made immediately after connection enters 555 * established state. 556 */ 557 static void tcp_init_buffer_space(struct sock *sk) 558 { 559 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 560 struct tcp_sock *tp = tcp_sk(sk); 561 int maxwin; 562 563 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 564 tcp_sndbuf_expand(sk); 565 566 tcp_mstamp_refresh(tp); 567 tp->rcvq_space.time = tp->tcp_mstamp; 568 tp->rcvq_space.seq = tp->copied_seq; 569 570 maxwin = tcp_full_space(sk); 571 572 if (tp->window_clamp >= maxwin) { 573 tp->window_clamp = maxwin; 574 575 if (tcp_app_win && maxwin > 4 * tp->advmss) 576 tp->window_clamp = max(maxwin - 577 (maxwin >> tcp_app_win), 578 4 * tp->advmss); 579 } 580 581 /* Force reservation of one segment. */ 582 if (tcp_app_win && 583 tp->window_clamp > 2 * tp->advmss && 584 tp->window_clamp + tp->advmss > maxwin) 585 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 586 587 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 588 tp->snd_cwnd_stamp = tcp_jiffies32; 589 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 590 (u32)TCP_INIT_CWND * tp->advmss); 591 } 592 593 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 594 static void tcp_clamp_window(struct sock *sk) 595 { 596 struct tcp_sock *tp = tcp_sk(sk); 597 struct inet_connection_sock *icsk = inet_csk(sk); 598 struct net *net = sock_net(sk); 599 int rmem2; 600 601 icsk->icsk_ack.quick = 0; 602 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 603 604 if (sk->sk_rcvbuf < rmem2 && 605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 606 !tcp_under_memory_pressure(sk) && 607 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 608 WRITE_ONCE(sk->sk_rcvbuf, 609 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 610 } 611 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 612 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 613 } 614 615 /* Initialize RCV_MSS value. 616 * RCV_MSS is an our guess about MSS used by the peer. 617 * We haven't any direct information about the MSS. 618 * It's better to underestimate the RCV_MSS rather than overestimate. 619 * Overestimations make us ACKing less frequently than needed. 620 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 621 */ 622 void tcp_initialize_rcv_mss(struct sock *sk) 623 { 624 const struct tcp_sock *tp = tcp_sk(sk); 625 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 626 627 hint = min(hint, tp->rcv_wnd / 2); 628 hint = min(hint, TCP_MSS_DEFAULT); 629 hint = max(hint, TCP_MIN_MSS); 630 631 inet_csk(sk)->icsk_ack.rcv_mss = hint; 632 } 633 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 634 635 /* Receiver "autotuning" code. 636 * 637 * The algorithm for RTT estimation w/o timestamps is based on 638 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 639 * <https://public.lanl.gov/radiant/pubs.html#DRS> 640 * 641 * More detail on this code can be found at 642 * <http://staff.psc.edu/jheffner/>, 643 * though this reference is out of date. A new paper 644 * is pending. 645 */ 646 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 647 { 648 u32 new_sample = tp->rcv_rtt_est.rtt_us; 649 long m = sample; 650 651 if (new_sample != 0) { 652 /* If we sample in larger samples in the non-timestamp 653 * case, we could grossly overestimate the RTT especially 654 * with chatty applications or bulk transfer apps which 655 * are stalled on filesystem I/O. 656 * 657 * Also, since we are only going for a minimum in the 658 * non-timestamp case, we do not smooth things out 659 * else with timestamps disabled convergence takes too 660 * long. 661 */ 662 if (!win_dep) { 663 m -= (new_sample >> 3); 664 new_sample += m; 665 } else { 666 m <<= 3; 667 if (m < new_sample) 668 new_sample = m; 669 } 670 } else { 671 /* No previous measure. */ 672 new_sample = m << 3; 673 } 674 675 tp->rcv_rtt_est.rtt_us = new_sample; 676 } 677 678 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 679 { 680 u32 delta_us; 681 682 if (tp->rcv_rtt_est.time == 0) 683 goto new_measure; 684 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 685 return; 686 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 687 if (!delta_us) 688 delta_us = 1; 689 tcp_rcv_rtt_update(tp, delta_us, 1); 690 691 new_measure: 692 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 693 tp->rcv_rtt_est.time = tp->tcp_mstamp; 694 } 695 696 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp) 697 { 698 u32 delta, delta_us; 699 700 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; 701 if (tp->tcp_usec_ts) 702 return delta; 703 704 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 705 if (!delta) 706 delta = 1; 707 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 708 return delta_us; 709 } 710 return -1; 711 } 712 713 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 714 const struct sk_buff *skb) 715 { 716 struct tcp_sock *tp = tcp_sk(sk); 717 718 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 719 return; 720 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 721 722 if (TCP_SKB_CB(skb)->end_seq - 723 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 724 s32 delta = tcp_rtt_tsopt_us(tp); 725 726 if (delta >= 0) 727 tcp_rcv_rtt_update(tp, delta, 0); 728 } 729 } 730 731 /* 732 * This function should be called every time data is copied to user space. 733 * It calculates the appropriate TCP receive buffer space. 734 */ 735 void tcp_rcv_space_adjust(struct sock *sk) 736 { 737 struct tcp_sock *tp = tcp_sk(sk); 738 u32 copied; 739 int time; 740 741 trace_tcp_rcv_space_adjust(sk); 742 743 tcp_mstamp_refresh(tp); 744 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 745 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 746 return; 747 748 /* Number of bytes copied to user in last RTT */ 749 copied = tp->copied_seq - tp->rcvq_space.seq; 750 if (copied <= tp->rcvq_space.space) 751 goto new_measure; 752 753 /* A bit of theory : 754 * copied = bytes received in previous RTT, our base window 755 * To cope with packet losses, we need a 2x factor 756 * To cope with slow start, and sender growing its cwin by 100 % 757 * every RTT, we need a 4x factor, because the ACK we are sending 758 * now is for the next RTT, not the current one : 759 * <prev RTT . ><current RTT .. ><next RTT .... > 760 */ 761 762 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 763 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 764 u64 rcvwin, grow; 765 int rcvbuf; 766 767 /* minimal window to cope with packet losses, assuming 768 * steady state. Add some cushion because of small variations. 769 */ 770 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 771 772 /* Accommodate for sender rate increase (eg. slow start) */ 773 grow = rcvwin * (copied - tp->rcvq_space.space); 774 do_div(grow, tp->rcvq_space.space); 775 rcvwin += (grow << 1); 776 777 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin), 778 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 779 if (rcvbuf > sk->sk_rcvbuf) { 780 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 781 782 /* Make the window clamp follow along. */ 783 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 784 } 785 } 786 tp->rcvq_space.space = copied; 787 788 new_measure: 789 tp->rcvq_space.seq = tp->copied_seq; 790 tp->rcvq_space.time = tp->tcp_mstamp; 791 } 792 793 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 794 { 795 #if IS_ENABLED(CONFIG_IPV6) 796 struct inet_connection_sock *icsk = inet_csk(sk); 797 798 if (skb->protocol == htons(ETH_P_IPV6)) 799 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 800 #endif 801 } 802 803 /* There is something which you must keep in mind when you analyze the 804 * behavior of the tp->ato delayed ack timeout interval. When a 805 * connection starts up, we want to ack as quickly as possible. The 806 * problem is that "good" TCP's do slow start at the beginning of data 807 * transmission. The means that until we send the first few ACK's the 808 * sender will sit on his end and only queue most of his data, because 809 * he can only send snd_cwnd unacked packets at any given time. For 810 * each ACK we send, he increments snd_cwnd and transmits more of his 811 * queue. -DaveM 812 */ 813 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 814 { 815 struct tcp_sock *tp = tcp_sk(sk); 816 struct inet_connection_sock *icsk = inet_csk(sk); 817 u32 now; 818 819 inet_csk_schedule_ack(sk); 820 821 tcp_measure_rcv_mss(sk, skb); 822 823 tcp_rcv_rtt_measure(tp); 824 825 now = tcp_jiffies32; 826 827 if (!icsk->icsk_ack.ato) { 828 /* The _first_ data packet received, initialize 829 * delayed ACK engine. 830 */ 831 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 832 icsk->icsk_ack.ato = TCP_ATO_MIN; 833 } else { 834 int m = now - icsk->icsk_ack.lrcvtime; 835 836 if (m <= TCP_ATO_MIN / 2) { 837 /* The fastest case is the first. */ 838 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 839 } else if (m < icsk->icsk_ack.ato) { 840 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 841 if (icsk->icsk_ack.ato > icsk->icsk_rto) 842 icsk->icsk_ack.ato = icsk->icsk_rto; 843 } else if (m > icsk->icsk_rto) { 844 /* Too long gap. Apparently sender failed to 845 * restart window, so that we send ACKs quickly. 846 */ 847 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 848 } 849 } 850 icsk->icsk_ack.lrcvtime = now; 851 tcp_save_lrcv_flowlabel(sk, skb); 852 853 tcp_ecn_check_ce(sk, skb); 854 855 if (skb->len >= 128) 856 tcp_grow_window(sk, skb, true); 857 } 858 859 /* Called to compute a smoothed rtt estimate. The data fed to this 860 * routine either comes from timestamps, or from segments that were 861 * known _not_ to have been retransmitted [see Karn/Partridge 862 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 863 * piece by Van Jacobson. 864 * NOTE: the next three routines used to be one big routine. 865 * To save cycles in the RFC 1323 implementation it was better to break 866 * it up into three procedures. -- erics 867 */ 868 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 869 { 870 struct tcp_sock *tp = tcp_sk(sk); 871 long m = mrtt_us; /* RTT */ 872 u32 srtt = tp->srtt_us; 873 874 /* The following amusing code comes from Jacobson's 875 * article in SIGCOMM '88. Note that rtt and mdev 876 * are scaled versions of rtt and mean deviation. 877 * This is designed to be as fast as possible 878 * m stands for "measurement". 879 * 880 * On a 1990 paper the rto value is changed to: 881 * RTO = rtt + 4 * mdev 882 * 883 * Funny. This algorithm seems to be very broken. 884 * These formulae increase RTO, when it should be decreased, increase 885 * too slowly, when it should be increased quickly, decrease too quickly 886 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 887 * does not matter how to _calculate_ it. Seems, it was trap 888 * that VJ failed to avoid. 8) 889 */ 890 if (srtt != 0) { 891 m -= (srtt >> 3); /* m is now error in rtt est */ 892 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 893 if (m < 0) { 894 m = -m; /* m is now abs(error) */ 895 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 896 /* This is similar to one of Eifel findings. 897 * Eifel blocks mdev updates when rtt decreases. 898 * This solution is a bit different: we use finer gain 899 * for mdev in this case (alpha*beta). 900 * Like Eifel it also prevents growth of rto, 901 * but also it limits too fast rto decreases, 902 * happening in pure Eifel. 903 */ 904 if (m > 0) 905 m >>= 3; 906 } else { 907 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 908 } 909 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 910 if (tp->mdev_us > tp->mdev_max_us) { 911 tp->mdev_max_us = tp->mdev_us; 912 if (tp->mdev_max_us > tp->rttvar_us) 913 tp->rttvar_us = tp->mdev_max_us; 914 } 915 if (after(tp->snd_una, tp->rtt_seq)) { 916 if (tp->mdev_max_us < tp->rttvar_us) 917 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 918 tp->rtt_seq = tp->snd_nxt; 919 tp->mdev_max_us = tcp_rto_min_us(sk); 920 921 tcp_bpf_rtt(sk); 922 } 923 } else { 924 /* no previous measure. */ 925 srtt = m << 3; /* take the measured time to be rtt */ 926 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 927 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 928 tp->mdev_max_us = tp->rttvar_us; 929 tp->rtt_seq = tp->snd_nxt; 930 931 tcp_bpf_rtt(sk); 932 } 933 tp->srtt_us = max(1U, srtt); 934 } 935 936 static void tcp_update_pacing_rate(struct sock *sk) 937 { 938 const struct tcp_sock *tp = tcp_sk(sk); 939 u64 rate; 940 941 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 942 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 943 944 /* current rate is (cwnd * mss) / srtt 945 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 946 * In Congestion Avoidance phase, set it to 120 % the current rate. 947 * 948 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 949 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 950 * end of slow start and should slow down. 951 */ 952 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 953 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 954 else 955 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 956 957 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 958 959 if (likely(tp->srtt_us)) 960 do_div(rate, tp->srtt_us); 961 962 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 963 * without any lock. We want to make sure compiler wont store 964 * intermediate values in this location. 965 */ 966 WRITE_ONCE(sk->sk_pacing_rate, 967 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 968 } 969 970 /* Calculate rto without backoff. This is the second half of Van Jacobson's 971 * routine referred to above. 972 */ 973 static void tcp_set_rto(struct sock *sk) 974 { 975 const struct tcp_sock *tp = tcp_sk(sk); 976 /* Old crap is replaced with new one. 8) 977 * 978 * More seriously: 979 * 1. If rtt variance happened to be less 50msec, it is hallucination. 980 * It cannot be less due to utterly erratic ACK generation made 981 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 982 * to do with delayed acks, because at cwnd>2 true delack timeout 983 * is invisible. Actually, Linux-2.4 also generates erratic 984 * ACKs in some circumstances. 985 */ 986 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 987 988 /* 2. Fixups made earlier cannot be right. 989 * If we do not estimate RTO correctly without them, 990 * all the algo is pure shit and should be replaced 991 * with correct one. It is exactly, which we pretend to do. 992 */ 993 994 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 995 * guarantees that rto is higher. 996 */ 997 tcp_bound_rto(sk); 998 } 999 1000 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 1001 { 1002 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 1003 1004 if (!cwnd) 1005 cwnd = TCP_INIT_CWND; 1006 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 1007 } 1008 1009 struct tcp_sacktag_state { 1010 /* Timestamps for earliest and latest never-retransmitted segment 1011 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1012 * but congestion control should still get an accurate delay signal. 1013 */ 1014 u64 first_sackt; 1015 u64 last_sackt; 1016 u32 reord; 1017 u32 sack_delivered; 1018 int flag; 1019 unsigned int mss_now; 1020 struct rate_sample *rate; 1021 }; 1022 1023 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 1024 * and spurious retransmission information if this DSACK is unlikely caused by 1025 * sender's action: 1026 * - DSACKed sequence range is larger than maximum receiver's window. 1027 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1028 */ 1029 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1030 u32 end_seq, struct tcp_sacktag_state *state) 1031 { 1032 u32 seq_len, dup_segs = 1; 1033 1034 if (!before(start_seq, end_seq)) 1035 return 0; 1036 1037 seq_len = end_seq - start_seq; 1038 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1039 if (seq_len > tp->max_window) 1040 return 0; 1041 if (seq_len > tp->mss_cache) 1042 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1043 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1044 state->flag |= FLAG_DSACK_TLP; 1045 1046 tp->dsack_dups += dup_segs; 1047 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1048 if (tp->dsack_dups > tp->total_retrans) 1049 return 0; 1050 1051 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1052 /* We increase the RACK ordering window in rounds where we receive 1053 * DSACKs that may have been due to reordering causing RACK to trigger 1054 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1055 * without having seen reordering, or that match TLP probes (TLP 1056 * is timer-driven, not triggered by RACK). 1057 */ 1058 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1059 tp->rack.dsack_seen = 1; 1060 1061 state->flag |= FLAG_DSACKING_ACK; 1062 /* A spurious retransmission is delivered */ 1063 state->sack_delivered += dup_segs; 1064 1065 return dup_segs; 1066 } 1067 1068 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1069 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1070 * distance is approximated in full-mss packet distance ("reordering"). 1071 */ 1072 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1073 const int ts) 1074 { 1075 struct tcp_sock *tp = tcp_sk(sk); 1076 const u32 mss = tp->mss_cache; 1077 u32 fack, metric; 1078 1079 fack = tcp_highest_sack_seq(tp); 1080 if (!before(low_seq, fack)) 1081 return; 1082 1083 metric = fack - low_seq; 1084 if ((metric > tp->reordering * mss) && mss) { 1085 #if FASTRETRANS_DEBUG > 1 1086 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1087 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1088 tp->reordering, 1089 0, 1090 tp->sacked_out, 1091 tp->undo_marker ? tp->undo_retrans : 0); 1092 #endif 1093 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1094 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1095 } 1096 1097 /* This exciting event is worth to be remembered. 8) */ 1098 tp->reord_seen++; 1099 NET_INC_STATS(sock_net(sk), 1100 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1101 } 1102 1103 /* This must be called before lost_out or retrans_out are updated 1104 * on a new loss, because we want to know if all skbs previously 1105 * known to be lost have already been retransmitted, indicating 1106 * that this newly lost skb is our next skb to retransmit. 1107 */ 1108 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1109 { 1110 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1111 (tp->retransmit_skb_hint && 1112 before(TCP_SKB_CB(skb)->seq, 1113 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1114 tp->retransmit_skb_hint = skb; 1115 } 1116 1117 /* Sum the number of packets on the wire we have marked as lost, and 1118 * notify the congestion control module that the given skb was marked lost. 1119 */ 1120 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1121 { 1122 tp->lost += tcp_skb_pcount(skb); 1123 } 1124 1125 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1126 { 1127 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1128 struct tcp_sock *tp = tcp_sk(sk); 1129 1130 if (sacked & TCPCB_SACKED_ACKED) 1131 return; 1132 1133 tcp_verify_retransmit_hint(tp, skb); 1134 if (sacked & TCPCB_LOST) { 1135 if (sacked & TCPCB_SACKED_RETRANS) { 1136 /* Account for retransmits that are lost again */ 1137 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1138 tp->retrans_out -= tcp_skb_pcount(skb); 1139 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1140 tcp_skb_pcount(skb)); 1141 tcp_notify_skb_loss_event(tp, skb); 1142 } 1143 } else { 1144 tp->lost_out += tcp_skb_pcount(skb); 1145 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1146 tcp_notify_skb_loss_event(tp, skb); 1147 } 1148 } 1149 1150 /* Updates the delivered and delivered_ce counts */ 1151 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1152 bool ece_ack) 1153 { 1154 tp->delivered += delivered; 1155 if (ece_ack) 1156 tp->delivered_ce += delivered; 1157 } 1158 1159 /* This procedure tags the retransmission queue when SACKs arrive. 1160 * 1161 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1162 * Packets in queue with these bits set are counted in variables 1163 * sacked_out, retrans_out and lost_out, correspondingly. 1164 * 1165 * Valid combinations are: 1166 * Tag InFlight Description 1167 * 0 1 - orig segment is in flight. 1168 * S 0 - nothing flies, orig reached receiver. 1169 * L 0 - nothing flies, orig lost by net. 1170 * R 2 - both orig and retransmit are in flight. 1171 * L|R 1 - orig is lost, retransmit is in flight. 1172 * S|R 1 - orig reached receiver, retrans is still in flight. 1173 * (L|S|R is logically valid, it could occur when L|R is sacked, 1174 * but it is equivalent to plain S and code short-curcuits it to S. 1175 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1176 * 1177 * These 6 states form finite state machine, controlled by the following events: 1178 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1179 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1180 * 3. Loss detection event of two flavors: 1181 * A. Scoreboard estimator decided the packet is lost. 1182 * A'. Reno "three dupacks" marks head of queue lost. 1183 * B. SACK arrives sacking SND.NXT at the moment, when the 1184 * segment was retransmitted. 1185 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1186 * 1187 * It is pleasant to note, that state diagram turns out to be commutative, 1188 * so that we are allowed not to be bothered by order of our actions, 1189 * when multiple events arrive simultaneously. (see the function below). 1190 * 1191 * Reordering detection. 1192 * -------------------- 1193 * Reordering metric is maximal distance, which a packet can be displaced 1194 * in packet stream. With SACKs we can estimate it: 1195 * 1196 * 1. SACK fills old hole and the corresponding segment was not 1197 * ever retransmitted -> reordering. Alas, we cannot use it 1198 * when segment was retransmitted. 1199 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1200 * for retransmitted and already SACKed segment -> reordering.. 1201 * Both of these heuristics are not used in Loss state, when we cannot 1202 * account for retransmits accurately. 1203 * 1204 * SACK block validation. 1205 * ---------------------- 1206 * 1207 * SACK block range validation checks that the received SACK block fits to 1208 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1209 * Note that SND.UNA is not included to the range though being valid because 1210 * it means that the receiver is rather inconsistent with itself reporting 1211 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1212 * perfectly valid, however, in light of RFC2018 which explicitly states 1213 * that "SACK block MUST reflect the newest segment. Even if the newest 1214 * segment is going to be discarded ...", not that it looks very clever 1215 * in case of head skb. Due to potentional receiver driven attacks, we 1216 * choose to avoid immediate execution of a walk in write queue due to 1217 * reneging and defer head skb's loss recovery to standard loss recovery 1218 * procedure that will eventually trigger (nothing forbids us doing this). 1219 * 1220 * Implements also blockage to start_seq wrap-around. Problem lies in the 1221 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1222 * there's no guarantee that it will be before snd_nxt (n). The problem 1223 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1224 * wrap (s_w): 1225 * 1226 * <- outs wnd -> <- wrapzone -> 1227 * u e n u_w e_w s n_w 1228 * | | | | | | | 1229 * |<------------+------+----- TCP seqno space --------------+---------->| 1230 * ...-- <2^31 ->| |<--------... 1231 * ...---- >2^31 ------>| |<--------... 1232 * 1233 * Current code wouldn't be vulnerable but it's better still to discard such 1234 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1235 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1236 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1237 * equal to the ideal case (infinite seqno space without wrap caused issues). 1238 * 1239 * With D-SACK the lower bound is extended to cover sequence space below 1240 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1241 * again, D-SACK block must not to go across snd_una (for the same reason as 1242 * for the normal SACK blocks, explained above). But there all simplicity 1243 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1244 * fully below undo_marker they do not affect behavior in anyway and can 1245 * therefore be safely ignored. In rare cases (which are more or less 1246 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1247 * fragmentation and packet reordering past skb's retransmission. To consider 1248 * them correctly, the acceptable range must be extended even more though 1249 * the exact amount is rather hard to quantify. However, tp->max_window can 1250 * be used as an exaggerated estimate. 1251 */ 1252 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1253 u32 start_seq, u32 end_seq) 1254 { 1255 /* Too far in future, or reversed (interpretation is ambiguous) */ 1256 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1257 return false; 1258 1259 /* Nasty start_seq wrap-around check (see comments above) */ 1260 if (!before(start_seq, tp->snd_nxt)) 1261 return false; 1262 1263 /* In outstanding window? ...This is valid exit for D-SACKs too. 1264 * start_seq == snd_una is non-sensical (see comments above) 1265 */ 1266 if (after(start_seq, tp->snd_una)) 1267 return true; 1268 1269 if (!is_dsack || !tp->undo_marker) 1270 return false; 1271 1272 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1273 if (after(end_seq, tp->snd_una)) 1274 return false; 1275 1276 if (!before(start_seq, tp->undo_marker)) 1277 return true; 1278 1279 /* Too old */ 1280 if (!after(end_seq, tp->undo_marker)) 1281 return false; 1282 1283 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1284 * start_seq < undo_marker and end_seq >= undo_marker. 1285 */ 1286 return !before(start_seq, end_seq - tp->max_window); 1287 } 1288 1289 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1290 struct tcp_sack_block_wire *sp, int num_sacks, 1291 u32 prior_snd_una, struct tcp_sacktag_state *state) 1292 { 1293 struct tcp_sock *tp = tcp_sk(sk); 1294 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1295 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1296 u32 dup_segs; 1297 1298 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1299 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1300 } else if (num_sacks > 1) { 1301 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1302 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1303 1304 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1305 return false; 1306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1307 } else { 1308 return false; 1309 } 1310 1311 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1312 if (!dup_segs) { /* Skip dubious DSACK */ 1313 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1314 return false; 1315 } 1316 1317 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1318 1319 /* D-SACK for already forgotten data... Do dumb counting. */ 1320 if (tp->undo_marker && tp->undo_retrans > 0 && 1321 !after(end_seq_0, prior_snd_una) && 1322 after(end_seq_0, tp->undo_marker)) 1323 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1324 1325 return true; 1326 } 1327 1328 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1329 * the incoming SACK may not exactly match but we can find smaller MSS 1330 * aligned portion of it that matches. Therefore we might need to fragment 1331 * which may fail and creates some hassle (caller must handle error case 1332 * returns). 1333 * 1334 * FIXME: this could be merged to shift decision code 1335 */ 1336 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1337 u32 start_seq, u32 end_seq) 1338 { 1339 int err; 1340 bool in_sack; 1341 unsigned int pkt_len; 1342 unsigned int mss; 1343 1344 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1345 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1346 1347 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1348 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1349 mss = tcp_skb_mss(skb); 1350 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1351 1352 if (!in_sack) { 1353 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1354 if (pkt_len < mss) 1355 pkt_len = mss; 1356 } else { 1357 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1358 if (pkt_len < mss) 1359 return -EINVAL; 1360 } 1361 1362 /* Round if necessary so that SACKs cover only full MSSes 1363 * and/or the remaining small portion (if present) 1364 */ 1365 if (pkt_len > mss) { 1366 unsigned int new_len = (pkt_len / mss) * mss; 1367 if (!in_sack && new_len < pkt_len) 1368 new_len += mss; 1369 pkt_len = new_len; 1370 } 1371 1372 if (pkt_len >= skb->len && !in_sack) 1373 return 0; 1374 1375 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1376 pkt_len, mss, GFP_ATOMIC); 1377 if (err < 0) 1378 return err; 1379 } 1380 1381 return in_sack; 1382 } 1383 1384 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1385 static u8 tcp_sacktag_one(struct sock *sk, 1386 struct tcp_sacktag_state *state, u8 sacked, 1387 u32 start_seq, u32 end_seq, 1388 int dup_sack, int pcount, 1389 u64 xmit_time) 1390 { 1391 struct tcp_sock *tp = tcp_sk(sk); 1392 1393 /* Account D-SACK for retransmitted packet. */ 1394 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1395 if (tp->undo_marker && tp->undo_retrans > 0 && 1396 after(end_seq, tp->undo_marker)) 1397 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1398 if ((sacked & TCPCB_SACKED_ACKED) && 1399 before(start_seq, state->reord)) 1400 state->reord = start_seq; 1401 } 1402 1403 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1404 if (!after(end_seq, tp->snd_una)) 1405 return sacked; 1406 1407 if (!(sacked & TCPCB_SACKED_ACKED)) { 1408 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1409 1410 if (sacked & TCPCB_SACKED_RETRANS) { 1411 /* If the segment is not tagged as lost, 1412 * we do not clear RETRANS, believing 1413 * that retransmission is still in flight. 1414 */ 1415 if (sacked & TCPCB_LOST) { 1416 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1417 tp->lost_out -= pcount; 1418 tp->retrans_out -= pcount; 1419 } 1420 } else { 1421 if (!(sacked & TCPCB_RETRANS)) { 1422 /* New sack for not retransmitted frame, 1423 * which was in hole. It is reordering. 1424 */ 1425 if (before(start_seq, 1426 tcp_highest_sack_seq(tp)) && 1427 before(start_seq, state->reord)) 1428 state->reord = start_seq; 1429 1430 if (!after(end_seq, tp->high_seq)) 1431 state->flag |= FLAG_ORIG_SACK_ACKED; 1432 if (state->first_sackt == 0) 1433 state->first_sackt = xmit_time; 1434 state->last_sackt = xmit_time; 1435 } 1436 1437 if (sacked & TCPCB_LOST) { 1438 sacked &= ~TCPCB_LOST; 1439 tp->lost_out -= pcount; 1440 } 1441 } 1442 1443 sacked |= TCPCB_SACKED_ACKED; 1444 state->flag |= FLAG_DATA_SACKED; 1445 tp->sacked_out += pcount; 1446 /* Out-of-order packets delivered */ 1447 state->sack_delivered += pcount; 1448 1449 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1450 if (tp->lost_skb_hint && 1451 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1452 tp->lost_cnt_hint += pcount; 1453 } 1454 1455 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1456 * frames and clear it. undo_retrans is decreased above, L|R frames 1457 * are accounted above as well. 1458 */ 1459 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1460 sacked &= ~TCPCB_SACKED_RETRANS; 1461 tp->retrans_out -= pcount; 1462 } 1463 1464 return sacked; 1465 } 1466 1467 /* Shift newly-SACKed bytes from this skb to the immediately previous 1468 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1469 */ 1470 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1471 struct sk_buff *skb, 1472 struct tcp_sacktag_state *state, 1473 unsigned int pcount, int shifted, int mss, 1474 bool dup_sack) 1475 { 1476 struct tcp_sock *tp = tcp_sk(sk); 1477 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1478 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1479 1480 BUG_ON(!pcount); 1481 1482 /* Adjust counters and hints for the newly sacked sequence 1483 * range but discard the return value since prev is already 1484 * marked. We must tag the range first because the seq 1485 * advancement below implicitly advances 1486 * tcp_highest_sack_seq() when skb is highest_sack. 1487 */ 1488 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1489 start_seq, end_seq, dup_sack, pcount, 1490 tcp_skb_timestamp_us(skb)); 1491 tcp_rate_skb_delivered(sk, skb, state->rate); 1492 1493 if (skb == tp->lost_skb_hint) 1494 tp->lost_cnt_hint += pcount; 1495 1496 TCP_SKB_CB(prev)->end_seq += shifted; 1497 TCP_SKB_CB(skb)->seq += shifted; 1498 1499 tcp_skb_pcount_add(prev, pcount); 1500 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1501 tcp_skb_pcount_add(skb, -pcount); 1502 1503 /* When we're adding to gso_segs == 1, gso_size will be zero, 1504 * in theory this shouldn't be necessary but as long as DSACK 1505 * code can come after this skb later on it's better to keep 1506 * setting gso_size to something. 1507 */ 1508 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1509 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1510 1511 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1512 if (tcp_skb_pcount(skb) <= 1) 1513 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1514 1515 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1516 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1517 1518 if (skb->len > 0) { 1519 BUG_ON(!tcp_skb_pcount(skb)); 1520 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1521 return false; 1522 } 1523 1524 /* Whole SKB was eaten :-) */ 1525 1526 if (skb == tp->retransmit_skb_hint) 1527 tp->retransmit_skb_hint = prev; 1528 if (skb == tp->lost_skb_hint) { 1529 tp->lost_skb_hint = prev; 1530 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1531 } 1532 1533 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1534 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1535 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1536 TCP_SKB_CB(prev)->end_seq++; 1537 1538 if (skb == tcp_highest_sack(sk)) 1539 tcp_advance_highest_sack(sk, skb); 1540 1541 tcp_skb_collapse_tstamp(prev, skb); 1542 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1543 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1544 1545 tcp_rtx_queue_unlink_and_free(skb, sk); 1546 1547 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1548 1549 return true; 1550 } 1551 1552 /* I wish gso_size would have a bit more sane initialization than 1553 * something-or-zero which complicates things 1554 */ 1555 static int tcp_skb_seglen(const struct sk_buff *skb) 1556 { 1557 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1558 } 1559 1560 /* Shifting pages past head area doesn't work */ 1561 static int skb_can_shift(const struct sk_buff *skb) 1562 { 1563 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1564 } 1565 1566 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1567 int pcount, int shiftlen) 1568 { 1569 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1570 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1571 * to make sure not storing more than 65535 * 8 bytes per skb, 1572 * even if current MSS is bigger. 1573 */ 1574 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1575 return 0; 1576 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1577 return 0; 1578 return skb_shift(to, from, shiftlen); 1579 } 1580 1581 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1582 * skb. 1583 */ 1584 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1585 struct tcp_sacktag_state *state, 1586 u32 start_seq, u32 end_seq, 1587 bool dup_sack) 1588 { 1589 struct tcp_sock *tp = tcp_sk(sk); 1590 struct sk_buff *prev; 1591 int mss; 1592 int pcount = 0; 1593 int len; 1594 int in_sack; 1595 1596 /* Normally R but no L won't result in plain S */ 1597 if (!dup_sack && 1598 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1599 goto fallback; 1600 if (!skb_can_shift(skb)) 1601 goto fallback; 1602 /* This frame is about to be dropped (was ACKed). */ 1603 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1604 goto fallback; 1605 1606 /* Can only happen with delayed DSACK + discard craziness */ 1607 prev = skb_rb_prev(skb); 1608 if (!prev) 1609 goto fallback; 1610 1611 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1612 goto fallback; 1613 1614 if (!tcp_skb_can_collapse(prev, skb)) 1615 goto fallback; 1616 1617 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1618 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1619 1620 if (in_sack) { 1621 len = skb->len; 1622 pcount = tcp_skb_pcount(skb); 1623 mss = tcp_skb_seglen(skb); 1624 1625 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1626 * drop this restriction as unnecessary 1627 */ 1628 if (mss != tcp_skb_seglen(prev)) 1629 goto fallback; 1630 } else { 1631 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1632 goto noop; 1633 /* CHECKME: This is non-MSS split case only?, this will 1634 * cause skipped skbs due to advancing loop btw, original 1635 * has that feature too 1636 */ 1637 if (tcp_skb_pcount(skb) <= 1) 1638 goto noop; 1639 1640 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1641 if (!in_sack) { 1642 /* TODO: head merge to next could be attempted here 1643 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1644 * though it might not be worth of the additional hassle 1645 * 1646 * ...we can probably just fallback to what was done 1647 * previously. We could try merging non-SACKed ones 1648 * as well but it probably isn't going to buy off 1649 * because later SACKs might again split them, and 1650 * it would make skb timestamp tracking considerably 1651 * harder problem. 1652 */ 1653 goto fallback; 1654 } 1655 1656 len = end_seq - TCP_SKB_CB(skb)->seq; 1657 BUG_ON(len < 0); 1658 BUG_ON(len > skb->len); 1659 1660 /* MSS boundaries should be honoured or else pcount will 1661 * severely break even though it makes things bit trickier. 1662 * Optimize common case to avoid most of the divides 1663 */ 1664 mss = tcp_skb_mss(skb); 1665 1666 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1667 * drop this restriction as unnecessary 1668 */ 1669 if (mss != tcp_skb_seglen(prev)) 1670 goto fallback; 1671 1672 if (len == mss) { 1673 pcount = 1; 1674 } else if (len < mss) { 1675 goto noop; 1676 } else { 1677 pcount = len / mss; 1678 len = pcount * mss; 1679 } 1680 } 1681 1682 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1683 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1684 goto fallback; 1685 1686 if (!tcp_skb_shift(prev, skb, pcount, len)) 1687 goto fallback; 1688 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1689 goto out; 1690 1691 /* Hole filled allows collapsing with the next as well, this is very 1692 * useful when hole on every nth skb pattern happens 1693 */ 1694 skb = skb_rb_next(prev); 1695 if (!skb) 1696 goto out; 1697 1698 if (!skb_can_shift(skb) || 1699 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1700 (mss != tcp_skb_seglen(skb))) 1701 goto out; 1702 1703 if (!tcp_skb_can_collapse(prev, skb)) 1704 goto out; 1705 len = skb->len; 1706 pcount = tcp_skb_pcount(skb); 1707 if (tcp_skb_shift(prev, skb, pcount, len)) 1708 tcp_shifted_skb(sk, prev, skb, state, pcount, 1709 len, mss, 0); 1710 1711 out: 1712 return prev; 1713 1714 noop: 1715 return skb; 1716 1717 fallback: 1718 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1719 return NULL; 1720 } 1721 1722 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1723 struct tcp_sack_block *next_dup, 1724 struct tcp_sacktag_state *state, 1725 u32 start_seq, u32 end_seq, 1726 bool dup_sack_in) 1727 { 1728 struct tcp_sock *tp = tcp_sk(sk); 1729 struct sk_buff *tmp; 1730 1731 skb_rbtree_walk_from(skb) { 1732 int in_sack = 0; 1733 bool dup_sack = dup_sack_in; 1734 1735 /* queue is in-order => we can short-circuit the walk early */ 1736 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1737 break; 1738 1739 if (next_dup && 1740 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1741 in_sack = tcp_match_skb_to_sack(sk, skb, 1742 next_dup->start_seq, 1743 next_dup->end_seq); 1744 if (in_sack > 0) 1745 dup_sack = true; 1746 } 1747 1748 /* skb reference here is a bit tricky to get right, since 1749 * shifting can eat and free both this skb and the next, 1750 * so not even _safe variant of the loop is enough. 1751 */ 1752 if (in_sack <= 0) { 1753 tmp = tcp_shift_skb_data(sk, skb, state, 1754 start_seq, end_seq, dup_sack); 1755 if (tmp) { 1756 if (tmp != skb) { 1757 skb = tmp; 1758 continue; 1759 } 1760 1761 in_sack = 0; 1762 } else { 1763 in_sack = tcp_match_skb_to_sack(sk, skb, 1764 start_seq, 1765 end_seq); 1766 } 1767 } 1768 1769 if (unlikely(in_sack < 0)) 1770 break; 1771 1772 if (in_sack) { 1773 TCP_SKB_CB(skb)->sacked = 1774 tcp_sacktag_one(sk, 1775 state, 1776 TCP_SKB_CB(skb)->sacked, 1777 TCP_SKB_CB(skb)->seq, 1778 TCP_SKB_CB(skb)->end_seq, 1779 dup_sack, 1780 tcp_skb_pcount(skb), 1781 tcp_skb_timestamp_us(skb)); 1782 tcp_rate_skb_delivered(sk, skb, state->rate); 1783 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1784 list_del_init(&skb->tcp_tsorted_anchor); 1785 1786 if (!before(TCP_SKB_CB(skb)->seq, 1787 tcp_highest_sack_seq(tp))) 1788 tcp_advance_highest_sack(sk, skb); 1789 } 1790 } 1791 return skb; 1792 } 1793 1794 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1795 { 1796 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1797 struct sk_buff *skb; 1798 1799 while (*p) { 1800 parent = *p; 1801 skb = rb_to_skb(parent); 1802 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1803 p = &parent->rb_left; 1804 continue; 1805 } 1806 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1807 p = &parent->rb_right; 1808 continue; 1809 } 1810 return skb; 1811 } 1812 return NULL; 1813 } 1814 1815 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1816 u32 skip_to_seq) 1817 { 1818 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1819 return skb; 1820 1821 return tcp_sacktag_bsearch(sk, skip_to_seq); 1822 } 1823 1824 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1825 struct sock *sk, 1826 struct tcp_sack_block *next_dup, 1827 struct tcp_sacktag_state *state, 1828 u32 skip_to_seq) 1829 { 1830 if (!next_dup) 1831 return skb; 1832 1833 if (before(next_dup->start_seq, skip_to_seq)) { 1834 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1835 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1836 next_dup->start_seq, next_dup->end_seq, 1837 1); 1838 } 1839 1840 return skb; 1841 } 1842 1843 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1844 { 1845 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1846 } 1847 1848 static int 1849 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1850 u32 prior_snd_una, struct tcp_sacktag_state *state) 1851 { 1852 struct tcp_sock *tp = tcp_sk(sk); 1853 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1854 TCP_SKB_CB(ack_skb)->sacked); 1855 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1856 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1857 struct tcp_sack_block *cache; 1858 struct sk_buff *skb; 1859 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1860 int used_sacks; 1861 bool found_dup_sack = false; 1862 int i, j; 1863 int first_sack_index; 1864 1865 state->flag = 0; 1866 state->reord = tp->snd_nxt; 1867 1868 if (!tp->sacked_out) 1869 tcp_highest_sack_reset(sk); 1870 1871 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1872 num_sacks, prior_snd_una, state); 1873 1874 /* Eliminate too old ACKs, but take into 1875 * account more or less fresh ones, they can 1876 * contain valid SACK info. 1877 */ 1878 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1879 return 0; 1880 1881 if (!tp->packets_out) 1882 goto out; 1883 1884 used_sacks = 0; 1885 first_sack_index = 0; 1886 for (i = 0; i < num_sacks; i++) { 1887 bool dup_sack = !i && found_dup_sack; 1888 1889 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1890 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1891 1892 if (!tcp_is_sackblock_valid(tp, dup_sack, 1893 sp[used_sacks].start_seq, 1894 sp[used_sacks].end_seq)) { 1895 int mib_idx; 1896 1897 if (dup_sack) { 1898 if (!tp->undo_marker) 1899 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1900 else 1901 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1902 } else { 1903 /* Don't count olds caused by ACK reordering */ 1904 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1905 !after(sp[used_sacks].end_seq, tp->snd_una)) 1906 continue; 1907 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1908 } 1909 1910 NET_INC_STATS(sock_net(sk), mib_idx); 1911 if (i == 0) 1912 first_sack_index = -1; 1913 continue; 1914 } 1915 1916 /* Ignore very old stuff early */ 1917 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1918 if (i == 0) 1919 first_sack_index = -1; 1920 continue; 1921 } 1922 1923 used_sacks++; 1924 } 1925 1926 /* order SACK blocks to allow in order walk of the retrans queue */ 1927 for (i = used_sacks - 1; i > 0; i--) { 1928 for (j = 0; j < i; j++) { 1929 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1930 swap(sp[j], sp[j + 1]); 1931 1932 /* Track where the first SACK block goes to */ 1933 if (j == first_sack_index) 1934 first_sack_index = j + 1; 1935 } 1936 } 1937 } 1938 1939 state->mss_now = tcp_current_mss(sk); 1940 skb = NULL; 1941 i = 0; 1942 1943 if (!tp->sacked_out) { 1944 /* It's already past, so skip checking against it */ 1945 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1946 } else { 1947 cache = tp->recv_sack_cache; 1948 /* Skip empty blocks in at head of the cache */ 1949 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1950 !cache->end_seq) 1951 cache++; 1952 } 1953 1954 while (i < used_sacks) { 1955 u32 start_seq = sp[i].start_seq; 1956 u32 end_seq = sp[i].end_seq; 1957 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1958 struct tcp_sack_block *next_dup = NULL; 1959 1960 if (found_dup_sack && ((i + 1) == first_sack_index)) 1961 next_dup = &sp[i + 1]; 1962 1963 /* Skip too early cached blocks */ 1964 while (tcp_sack_cache_ok(tp, cache) && 1965 !before(start_seq, cache->end_seq)) 1966 cache++; 1967 1968 /* Can skip some work by looking recv_sack_cache? */ 1969 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1970 after(end_seq, cache->start_seq)) { 1971 1972 /* Head todo? */ 1973 if (before(start_seq, cache->start_seq)) { 1974 skb = tcp_sacktag_skip(skb, sk, start_seq); 1975 skb = tcp_sacktag_walk(skb, sk, next_dup, 1976 state, 1977 start_seq, 1978 cache->start_seq, 1979 dup_sack); 1980 } 1981 1982 /* Rest of the block already fully processed? */ 1983 if (!after(end_seq, cache->end_seq)) 1984 goto advance_sp; 1985 1986 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1987 state, 1988 cache->end_seq); 1989 1990 /* ...tail remains todo... */ 1991 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1992 /* ...but better entrypoint exists! */ 1993 skb = tcp_highest_sack(sk); 1994 if (!skb) 1995 break; 1996 cache++; 1997 goto walk; 1998 } 1999 2000 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 2001 /* Check overlap against next cached too (past this one already) */ 2002 cache++; 2003 continue; 2004 } 2005 2006 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 2007 skb = tcp_highest_sack(sk); 2008 if (!skb) 2009 break; 2010 } 2011 skb = tcp_sacktag_skip(skb, sk, start_seq); 2012 2013 walk: 2014 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 2015 start_seq, end_seq, dup_sack); 2016 2017 advance_sp: 2018 i++; 2019 } 2020 2021 /* Clear the head of the cache sack blocks so we can skip it next time */ 2022 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 2023 tp->recv_sack_cache[i].start_seq = 0; 2024 tp->recv_sack_cache[i].end_seq = 0; 2025 } 2026 for (j = 0; j < used_sacks; j++) 2027 tp->recv_sack_cache[i++] = sp[j]; 2028 2029 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 2030 tcp_check_sack_reordering(sk, state->reord, 0); 2031 2032 tcp_verify_left_out(tp); 2033 out: 2034 2035 #if FASTRETRANS_DEBUG > 0 2036 WARN_ON((int)tp->sacked_out < 0); 2037 WARN_ON((int)tp->lost_out < 0); 2038 WARN_ON((int)tp->retrans_out < 0); 2039 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 2040 #endif 2041 return state->flag; 2042 } 2043 2044 /* Limits sacked_out so that sum with lost_out isn't ever larger than 2045 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 2046 */ 2047 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 2048 { 2049 u32 holes; 2050 2051 holes = max(tp->lost_out, 1U); 2052 holes = min(holes, tp->packets_out); 2053 2054 if ((tp->sacked_out + holes) > tp->packets_out) { 2055 tp->sacked_out = tp->packets_out - holes; 2056 return true; 2057 } 2058 return false; 2059 } 2060 2061 /* If we receive more dupacks than we expected counting segments 2062 * in assumption of absent reordering, interpret this as reordering. 2063 * The only another reason could be bug in receiver TCP. 2064 */ 2065 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2066 { 2067 struct tcp_sock *tp = tcp_sk(sk); 2068 2069 if (!tcp_limit_reno_sacked(tp)) 2070 return; 2071 2072 tp->reordering = min_t(u32, tp->packets_out + addend, 2073 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2074 tp->reord_seen++; 2075 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2076 } 2077 2078 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2079 2080 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2081 { 2082 if (num_dupack) { 2083 struct tcp_sock *tp = tcp_sk(sk); 2084 u32 prior_sacked = tp->sacked_out; 2085 s32 delivered; 2086 2087 tp->sacked_out += num_dupack; 2088 tcp_check_reno_reordering(sk, 0); 2089 delivered = tp->sacked_out - prior_sacked; 2090 if (delivered > 0) 2091 tcp_count_delivered(tp, delivered, ece_ack); 2092 tcp_verify_left_out(tp); 2093 } 2094 } 2095 2096 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2097 2098 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2099 { 2100 struct tcp_sock *tp = tcp_sk(sk); 2101 2102 if (acked > 0) { 2103 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2104 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2105 ece_ack); 2106 if (acked - 1 >= tp->sacked_out) 2107 tp->sacked_out = 0; 2108 else 2109 tp->sacked_out -= acked - 1; 2110 } 2111 tcp_check_reno_reordering(sk, acked); 2112 tcp_verify_left_out(tp); 2113 } 2114 2115 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2116 { 2117 tp->sacked_out = 0; 2118 } 2119 2120 void tcp_clear_retrans(struct tcp_sock *tp) 2121 { 2122 tp->retrans_out = 0; 2123 tp->lost_out = 0; 2124 tp->undo_marker = 0; 2125 tp->undo_retrans = -1; 2126 tp->sacked_out = 0; 2127 tp->rto_stamp = 0; 2128 tp->total_rto = 0; 2129 tp->total_rto_recoveries = 0; 2130 tp->total_rto_time = 0; 2131 } 2132 2133 static inline void tcp_init_undo(struct tcp_sock *tp) 2134 { 2135 tp->undo_marker = tp->snd_una; 2136 /* Retransmission still in flight may cause DSACKs later. */ 2137 tp->undo_retrans = tp->retrans_out ? : -1; 2138 } 2139 2140 static bool tcp_is_rack(const struct sock *sk) 2141 { 2142 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) & 2143 TCP_RACK_LOSS_DETECTION; 2144 } 2145 2146 /* If we detect SACK reneging, forget all SACK information 2147 * and reset tags completely, otherwise preserve SACKs. If receiver 2148 * dropped its ofo queue, we will know this due to reneging detection. 2149 */ 2150 static void tcp_timeout_mark_lost(struct sock *sk) 2151 { 2152 struct tcp_sock *tp = tcp_sk(sk); 2153 struct sk_buff *skb, *head; 2154 bool is_reneg; /* is receiver reneging on SACKs? */ 2155 2156 head = tcp_rtx_queue_head(sk); 2157 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2158 if (is_reneg) { 2159 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2160 tp->sacked_out = 0; 2161 /* Mark SACK reneging until we recover from this loss event. */ 2162 tp->is_sack_reneg = 1; 2163 } else if (tcp_is_reno(tp)) { 2164 tcp_reset_reno_sack(tp); 2165 } 2166 2167 skb = head; 2168 skb_rbtree_walk_from(skb) { 2169 if (is_reneg) 2170 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2171 else if (tcp_is_rack(sk) && skb != head && 2172 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2173 continue; /* Don't mark recently sent ones lost yet */ 2174 tcp_mark_skb_lost(sk, skb); 2175 } 2176 tcp_verify_left_out(tp); 2177 tcp_clear_all_retrans_hints(tp); 2178 } 2179 2180 /* Enter Loss state. */ 2181 void tcp_enter_loss(struct sock *sk) 2182 { 2183 const struct inet_connection_sock *icsk = inet_csk(sk); 2184 struct tcp_sock *tp = tcp_sk(sk); 2185 struct net *net = sock_net(sk); 2186 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2187 u8 reordering; 2188 2189 tcp_timeout_mark_lost(sk); 2190 2191 /* Reduce ssthresh if it has not yet been made inside this window. */ 2192 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2193 !after(tp->high_seq, tp->snd_una) || 2194 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2195 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2196 tp->prior_cwnd = tcp_snd_cwnd(tp); 2197 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2198 tcp_ca_event(sk, CA_EVENT_LOSS); 2199 tcp_init_undo(tp); 2200 } 2201 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2202 tp->snd_cwnd_cnt = 0; 2203 tp->snd_cwnd_stamp = tcp_jiffies32; 2204 2205 /* Timeout in disordered state after receiving substantial DUPACKs 2206 * suggests that the degree of reordering is over-estimated. 2207 */ 2208 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2209 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2210 tp->sacked_out >= reordering) 2211 tp->reordering = min_t(unsigned int, tp->reordering, 2212 reordering); 2213 2214 tcp_set_ca_state(sk, TCP_CA_Loss); 2215 tp->high_seq = tp->snd_nxt; 2216 tcp_ecn_queue_cwr(tp); 2217 2218 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2219 * loss recovery is underway except recurring timeout(s) on 2220 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2221 */ 2222 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2223 (new_recovery || icsk->icsk_retransmits) && 2224 !inet_csk(sk)->icsk_mtup.probe_size; 2225 } 2226 2227 /* If ACK arrived pointing to a remembered SACK, it means that our 2228 * remembered SACKs do not reflect real state of receiver i.e. 2229 * receiver _host_ is heavily congested (or buggy). 2230 * 2231 * To avoid big spurious retransmission bursts due to transient SACK 2232 * scoreboard oddities that look like reneging, we give the receiver a 2233 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2234 * restore sanity to the SACK scoreboard. If the apparent reneging 2235 * persists until this RTO then we'll clear the SACK scoreboard. 2236 */ 2237 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2238 { 2239 if (flag & FLAG_SACK_RENEGING && 2240 flag & FLAG_SND_UNA_ADVANCED) { 2241 struct tcp_sock *tp = tcp_sk(sk); 2242 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2243 msecs_to_jiffies(10)); 2244 2245 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2246 delay, TCP_RTO_MAX); 2247 return true; 2248 } 2249 return false; 2250 } 2251 2252 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2253 * counter when SACK is enabled (without SACK, sacked_out is used for 2254 * that purpose). 2255 * 2256 * With reordering, holes may still be in flight, so RFC3517 recovery 2257 * uses pure sacked_out (total number of SACKed segments) even though 2258 * it violates the RFC that uses duplicate ACKs, often these are equal 2259 * but when e.g. out-of-window ACKs or packet duplication occurs, 2260 * they differ. Since neither occurs due to loss, TCP should really 2261 * ignore them. 2262 */ 2263 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2264 { 2265 return tp->sacked_out + 1; 2266 } 2267 2268 /* Linux NewReno/SACK/ECN state machine. 2269 * -------------------------------------- 2270 * 2271 * "Open" Normal state, no dubious events, fast path. 2272 * "Disorder" In all the respects it is "Open", 2273 * but requires a bit more attention. It is entered when 2274 * we see some SACKs or dupacks. It is split of "Open" 2275 * mainly to move some processing from fast path to slow one. 2276 * "CWR" CWND was reduced due to some Congestion Notification event. 2277 * It can be ECN, ICMP source quench, local device congestion. 2278 * "Recovery" CWND was reduced, we are fast-retransmitting. 2279 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2280 * 2281 * tcp_fastretrans_alert() is entered: 2282 * - each incoming ACK, if state is not "Open" 2283 * - when arrived ACK is unusual, namely: 2284 * * SACK 2285 * * Duplicate ACK. 2286 * * ECN ECE. 2287 * 2288 * Counting packets in flight is pretty simple. 2289 * 2290 * in_flight = packets_out - left_out + retrans_out 2291 * 2292 * packets_out is SND.NXT-SND.UNA counted in packets. 2293 * 2294 * retrans_out is number of retransmitted segments. 2295 * 2296 * left_out is number of segments left network, but not ACKed yet. 2297 * 2298 * left_out = sacked_out + lost_out 2299 * 2300 * sacked_out: Packets, which arrived to receiver out of order 2301 * and hence not ACKed. With SACKs this number is simply 2302 * amount of SACKed data. Even without SACKs 2303 * it is easy to give pretty reliable estimate of this number, 2304 * counting duplicate ACKs. 2305 * 2306 * lost_out: Packets lost by network. TCP has no explicit 2307 * "loss notification" feedback from network (for now). 2308 * It means that this number can be only _guessed_. 2309 * Actually, it is the heuristics to predict lossage that 2310 * distinguishes different algorithms. 2311 * 2312 * F.e. after RTO, when all the queue is considered as lost, 2313 * lost_out = packets_out and in_flight = retrans_out. 2314 * 2315 * Essentially, we have now a few algorithms detecting 2316 * lost packets. 2317 * 2318 * If the receiver supports SACK: 2319 * 2320 * RFC6675/3517: It is the conventional algorithm. A packet is 2321 * considered lost if the number of higher sequence packets 2322 * SACKed is greater than or equal the DUPACK thoreshold 2323 * (reordering). This is implemented in tcp_mark_head_lost and 2324 * tcp_update_scoreboard. 2325 * 2326 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2327 * (2017-) that checks timing instead of counting DUPACKs. 2328 * Essentially a packet is considered lost if it's not S/ACKed 2329 * after RTT + reordering_window, where both metrics are 2330 * dynamically measured and adjusted. This is implemented in 2331 * tcp_rack_mark_lost. 2332 * 2333 * If the receiver does not support SACK: 2334 * 2335 * NewReno (RFC6582): in Recovery we assume that one segment 2336 * is lost (classic Reno). While we are in Recovery and 2337 * a partial ACK arrives, we assume that one more packet 2338 * is lost (NewReno). This heuristics are the same in NewReno 2339 * and SACK. 2340 * 2341 * Really tricky (and requiring careful tuning) part of algorithm 2342 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2343 * The first determines the moment _when_ we should reduce CWND and, 2344 * hence, slow down forward transmission. In fact, it determines the moment 2345 * when we decide that hole is caused by loss, rather than by a reorder. 2346 * 2347 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2348 * holes, caused by lost packets. 2349 * 2350 * And the most logically complicated part of algorithm is undo 2351 * heuristics. We detect false retransmits due to both too early 2352 * fast retransmit (reordering) and underestimated RTO, analyzing 2353 * timestamps and D-SACKs. When we detect that some segments were 2354 * retransmitted by mistake and CWND reduction was wrong, we undo 2355 * window reduction and abort recovery phase. This logic is hidden 2356 * inside several functions named tcp_try_undo_<something>. 2357 */ 2358 2359 /* This function decides, when we should leave Disordered state 2360 * and enter Recovery phase, reducing congestion window. 2361 * 2362 * Main question: may we further continue forward transmission 2363 * with the same cwnd? 2364 */ 2365 static bool tcp_time_to_recover(struct sock *sk, int flag) 2366 { 2367 struct tcp_sock *tp = tcp_sk(sk); 2368 2369 /* Trick#1: The loss is proven. */ 2370 if (tp->lost_out) 2371 return true; 2372 2373 /* Not-A-Trick#2 : Classic rule... */ 2374 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2375 return true; 2376 2377 return false; 2378 } 2379 2380 /* Detect loss in event "A" above by marking head of queue up as lost. 2381 * For RFC3517 SACK, a segment is considered lost if it 2382 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2383 * the maximum SACKed segments to pass before reaching this limit. 2384 */ 2385 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2386 { 2387 struct tcp_sock *tp = tcp_sk(sk); 2388 struct sk_buff *skb; 2389 int cnt; 2390 /* Use SACK to deduce losses of new sequences sent during recovery */ 2391 const u32 loss_high = tp->snd_nxt; 2392 2393 WARN_ON(packets > tp->packets_out); 2394 skb = tp->lost_skb_hint; 2395 if (skb) { 2396 /* Head already handled? */ 2397 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2398 return; 2399 cnt = tp->lost_cnt_hint; 2400 } else { 2401 skb = tcp_rtx_queue_head(sk); 2402 cnt = 0; 2403 } 2404 2405 skb_rbtree_walk_from(skb) { 2406 /* TODO: do this better */ 2407 /* this is not the most efficient way to do this... */ 2408 tp->lost_skb_hint = skb; 2409 tp->lost_cnt_hint = cnt; 2410 2411 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2412 break; 2413 2414 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2415 cnt += tcp_skb_pcount(skb); 2416 2417 if (cnt > packets) 2418 break; 2419 2420 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2421 tcp_mark_skb_lost(sk, skb); 2422 2423 if (mark_head) 2424 break; 2425 } 2426 tcp_verify_left_out(tp); 2427 } 2428 2429 /* Account newly detected lost packet(s) */ 2430 2431 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2432 { 2433 struct tcp_sock *tp = tcp_sk(sk); 2434 2435 if (tcp_is_sack(tp)) { 2436 int sacked_upto = tp->sacked_out - tp->reordering; 2437 if (sacked_upto >= 0) 2438 tcp_mark_head_lost(sk, sacked_upto, 0); 2439 else if (fast_rexmit) 2440 tcp_mark_head_lost(sk, 1, 1); 2441 } 2442 } 2443 2444 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2445 { 2446 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2447 before(tp->rx_opt.rcv_tsecr, when); 2448 } 2449 2450 /* skb is spurious retransmitted if the returned timestamp echo 2451 * reply is prior to the skb transmission time 2452 */ 2453 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2454 const struct sk_buff *skb) 2455 { 2456 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2457 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); 2458 } 2459 2460 /* Nothing was retransmitted or returned timestamp is less 2461 * than timestamp of the first retransmission. 2462 */ 2463 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2464 { 2465 return tp->retrans_stamp && 2466 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2467 } 2468 2469 /* Undo procedures. */ 2470 2471 /* We can clear retrans_stamp when there are no retransmissions in the 2472 * window. It would seem that it is trivially available for us in 2473 * tp->retrans_out, however, that kind of assumptions doesn't consider 2474 * what will happen if errors occur when sending retransmission for the 2475 * second time. ...It could the that such segment has only 2476 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2477 * the head skb is enough except for some reneging corner cases that 2478 * are not worth the effort. 2479 * 2480 * Main reason for all this complexity is the fact that connection dying 2481 * time now depends on the validity of the retrans_stamp, in particular, 2482 * that successive retransmissions of a segment must not advance 2483 * retrans_stamp under any conditions. 2484 */ 2485 static bool tcp_any_retrans_done(const struct sock *sk) 2486 { 2487 const struct tcp_sock *tp = tcp_sk(sk); 2488 struct sk_buff *skb; 2489 2490 if (tp->retrans_out) 2491 return true; 2492 2493 skb = tcp_rtx_queue_head(sk); 2494 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2495 return true; 2496 2497 return false; 2498 } 2499 2500 static void DBGUNDO(struct sock *sk, const char *msg) 2501 { 2502 #if FASTRETRANS_DEBUG > 1 2503 struct tcp_sock *tp = tcp_sk(sk); 2504 struct inet_sock *inet = inet_sk(sk); 2505 2506 if (sk->sk_family == AF_INET) { 2507 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2508 msg, 2509 &inet->inet_daddr, ntohs(inet->inet_dport), 2510 tcp_snd_cwnd(tp), tcp_left_out(tp), 2511 tp->snd_ssthresh, tp->prior_ssthresh, 2512 tp->packets_out); 2513 } 2514 #if IS_ENABLED(CONFIG_IPV6) 2515 else if (sk->sk_family == AF_INET6) { 2516 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2517 msg, 2518 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2519 tcp_snd_cwnd(tp), tcp_left_out(tp), 2520 tp->snd_ssthresh, tp->prior_ssthresh, 2521 tp->packets_out); 2522 } 2523 #endif 2524 #endif 2525 } 2526 2527 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2528 { 2529 struct tcp_sock *tp = tcp_sk(sk); 2530 2531 if (unmark_loss) { 2532 struct sk_buff *skb; 2533 2534 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2535 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2536 } 2537 tp->lost_out = 0; 2538 tcp_clear_all_retrans_hints(tp); 2539 } 2540 2541 if (tp->prior_ssthresh) { 2542 const struct inet_connection_sock *icsk = inet_csk(sk); 2543 2544 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2545 2546 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2547 tp->snd_ssthresh = tp->prior_ssthresh; 2548 tcp_ecn_withdraw_cwr(tp); 2549 } 2550 } 2551 tp->snd_cwnd_stamp = tcp_jiffies32; 2552 tp->undo_marker = 0; 2553 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2554 } 2555 2556 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2557 { 2558 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2559 } 2560 2561 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2562 { 2563 struct tcp_sock *tp = tcp_sk(sk); 2564 2565 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2566 /* Hold old state until something *above* high_seq 2567 * is ACKed. For Reno it is MUST to prevent false 2568 * fast retransmits (RFC2582). SACK TCP is safe. */ 2569 if (!tcp_any_retrans_done(sk)) 2570 tp->retrans_stamp = 0; 2571 return true; 2572 } 2573 return false; 2574 } 2575 2576 /* People celebrate: "We love our President!" */ 2577 static bool tcp_try_undo_recovery(struct sock *sk) 2578 { 2579 struct tcp_sock *tp = tcp_sk(sk); 2580 2581 if (tcp_may_undo(tp)) { 2582 int mib_idx; 2583 2584 /* Happy end! We did not retransmit anything 2585 * or our original transmission succeeded. 2586 */ 2587 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2588 tcp_undo_cwnd_reduction(sk, false); 2589 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2590 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2591 else 2592 mib_idx = LINUX_MIB_TCPFULLUNDO; 2593 2594 NET_INC_STATS(sock_net(sk), mib_idx); 2595 } else if (tp->rack.reo_wnd_persist) { 2596 tp->rack.reo_wnd_persist--; 2597 } 2598 if (tcp_is_non_sack_preventing_reopen(sk)) 2599 return true; 2600 tcp_set_ca_state(sk, TCP_CA_Open); 2601 tp->is_sack_reneg = 0; 2602 return false; 2603 } 2604 2605 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2606 static bool tcp_try_undo_dsack(struct sock *sk) 2607 { 2608 struct tcp_sock *tp = tcp_sk(sk); 2609 2610 if (tp->undo_marker && !tp->undo_retrans) { 2611 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2612 tp->rack.reo_wnd_persist + 1); 2613 DBGUNDO(sk, "D-SACK"); 2614 tcp_undo_cwnd_reduction(sk, false); 2615 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2616 return true; 2617 } 2618 return false; 2619 } 2620 2621 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2622 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2623 { 2624 struct tcp_sock *tp = tcp_sk(sk); 2625 2626 if (frto_undo || tcp_may_undo(tp)) { 2627 tcp_undo_cwnd_reduction(sk, true); 2628 2629 DBGUNDO(sk, "partial loss"); 2630 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2631 if (frto_undo) 2632 NET_INC_STATS(sock_net(sk), 2633 LINUX_MIB_TCPSPURIOUSRTOS); 2634 inet_csk(sk)->icsk_retransmits = 0; 2635 if (tcp_is_non_sack_preventing_reopen(sk)) 2636 return true; 2637 if (frto_undo || tcp_is_sack(tp)) { 2638 tcp_set_ca_state(sk, TCP_CA_Open); 2639 tp->is_sack_reneg = 0; 2640 } 2641 return true; 2642 } 2643 return false; 2644 } 2645 2646 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2647 * It computes the number of packets to send (sndcnt) based on packets newly 2648 * delivered: 2649 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2650 * cwnd reductions across a full RTT. 2651 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2652 * But when SND_UNA is acked without further losses, 2653 * slow starts cwnd up to ssthresh to speed up the recovery. 2654 */ 2655 static void tcp_init_cwnd_reduction(struct sock *sk) 2656 { 2657 struct tcp_sock *tp = tcp_sk(sk); 2658 2659 tp->high_seq = tp->snd_nxt; 2660 tp->tlp_high_seq = 0; 2661 tp->snd_cwnd_cnt = 0; 2662 tp->prior_cwnd = tcp_snd_cwnd(tp); 2663 tp->prr_delivered = 0; 2664 tp->prr_out = 0; 2665 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2666 tcp_ecn_queue_cwr(tp); 2667 } 2668 2669 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2670 { 2671 struct tcp_sock *tp = tcp_sk(sk); 2672 int sndcnt = 0; 2673 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2674 2675 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2676 return; 2677 2678 tp->prr_delivered += newly_acked_sacked; 2679 if (delta < 0) { 2680 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2681 tp->prior_cwnd - 1; 2682 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2683 } else { 2684 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2685 newly_acked_sacked); 2686 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2687 sndcnt++; 2688 sndcnt = min(delta, sndcnt); 2689 } 2690 /* Force a fast retransmit upon entering fast recovery */ 2691 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2692 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2693 } 2694 2695 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2696 { 2697 struct tcp_sock *tp = tcp_sk(sk); 2698 2699 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2700 return; 2701 2702 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2703 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2704 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2705 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2706 tp->snd_cwnd_stamp = tcp_jiffies32; 2707 } 2708 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2709 } 2710 2711 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2712 void tcp_enter_cwr(struct sock *sk) 2713 { 2714 struct tcp_sock *tp = tcp_sk(sk); 2715 2716 tp->prior_ssthresh = 0; 2717 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2718 tp->undo_marker = 0; 2719 tcp_init_cwnd_reduction(sk); 2720 tcp_set_ca_state(sk, TCP_CA_CWR); 2721 } 2722 } 2723 EXPORT_SYMBOL(tcp_enter_cwr); 2724 2725 static void tcp_try_keep_open(struct sock *sk) 2726 { 2727 struct tcp_sock *tp = tcp_sk(sk); 2728 int state = TCP_CA_Open; 2729 2730 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2731 state = TCP_CA_Disorder; 2732 2733 if (inet_csk(sk)->icsk_ca_state != state) { 2734 tcp_set_ca_state(sk, state); 2735 tp->high_seq = tp->snd_nxt; 2736 } 2737 } 2738 2739 static void tcp_try_to_open(struct sock *sk, int flag) 2740 { 2741 struct tcp_sock *tp = tcp_sk(sk); 2742 2743 tcp_verify_left_out(tp); 2744 2745 if (!tcp_any_retrans_done(sk)) 2746 tp->retrans_stamp = 0; 2747 2748 if (flag & FLAG_ECE) 2749 tcp_enter_cwr(sk); 2750 2751 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2752 tcp_try_keep_open(sk); 2753 } 2754 } 2755 2756 static void tcp_mtup_probe_failed(struct sock *sk) 2757 { 2758 struct inet_connection_sock *icsk = inet_csk(sk); 2759 2760 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2761 icsk->icsk_mtup.probe_size = 0; 2762 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2763 } 2764 2765 static void tcp_mtup_probe_success(struct sock *sk) 2766 { 2767 struct tcp_sock *tp = tcp_sk(sk); 2768 struct inet_connection_sock *icsk = inet_csk(sk); 2769 u64 val; 2770 2771 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2772 2773 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2774 do_div(val, icsk->icsk_mtup.probe_size); 2775 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2776 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2777 2778 tp->snd_cwnd_cnt = 0; 2779 tp->snd_cwnd_stamp = tcp_jiffies32; 2780 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2781 2782 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2783 icsk->icsk_mtup.probe_size = 0; 2784 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2785 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2786 } 2787 2788 /* Do a simple retransmit without using the backoff mechanisms in 2789 * tcp_timer. This is used for path mtu discovery. 2790 * The socket is already locked here. 2791 */ 2792 void tcp_simple_retransmit(struct sock *sk) 2793 { 2794 const struct inet_connection_sock *icsk = inet_csk(sk); 2795 struct tcp_sock *tp = tcp_sk(sk); 2796 struct sk_buff *skb; 2797 int mss; 2798 2799 /* A fastopen SYN request is stored as two separate packets within 2800 * the retransmit queue, this is done by tcp_send_syn_data(). 2801 * As a result simply checking the MSS of the frames in the queue 2802 * will not work for the SYN packet. 2803 * 2804 * Us being here is an indication of a path MTU issue so we can 2805 * assume that the fastopen SYN was lost and just mark all the 2806 * frames in the retransmit queue as lost. We will use an MSS of 2807 * -1 to mark all frames as lost, otherwise compute the current MSS. 2808 */ 2809 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2810 mss = -1; 2811 else 2812 mss = tcp_current_mss(sk); 2813 2814 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2815 if (tcp_skb_seglen(skb) > mss) 2816 tcp_mark_skb_lost(sk, skb); 2817 } 2818 2819 tcp_clear_retrans_hints_partial(tp); 2820 2821 if (!tp->lost_out) 2822 return; 2823 2824 if (tcp_is_reno(tp)) 2825 tcp_limit_reno_sacked(tp); 2826 2827 tcp_verify_left_out(tp); 2828 2829 /* Don't muck with the congestion window here. 2830 * Reason is that we do not increase amount of _data_ 2831 * in network, but units changed and effective 2832 * cwnd/ssthresh really reduced now. 2833 */ 2834 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2835 tp->high_seq = tp->snd_nxt; 2836 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2837 tp->prior_ssthresh = 0; 2838 tp->undo_marker = 0; 2839 tcp_set_ca_state(sk, TCP_CA_Loss); 2840 } 2841 tcp_xmit_retransmit_queue(sk); 2842 } 2843 EXPORT_SYMBOL(tcp_simple_retransmit); 2844 2845 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2846 { 2847 struct tcp_sock *tp = tcp_sk(sk); 2848 int mib_idx; 2849 2850 if (tcp_is_reno(tp)) 2851 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2852 else 2853 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2854 2855 NET_INC_STATS(sock_net(sk), mib_idx); 2856 2857 tp->prior_ssthresh = 0; 2858 tcp_init_undo(tp); 2859 2860 if (!tcp_in_cwnd_reduction(sk)) { 2861 if (!ece_ack) 2862 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2863 tcp_init_cwnd_reduction(sk); 2864 } 2865 tcp_set_ca_state(sk, TCP_CA_Recovery); 2866 } 2867 2868 static void tcp_update_rto_time(struct tcp_sock *tp) 2869 { 2870 if (tp->rto_stamp) { 2871 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; 2872 tp->rto_stamp = 0; 2873 } 2874 } 2875 2876 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2877 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2878 */ 2879 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2880 int *rexmit) 2881 { 2882 struct tcp_sock *tp = tcp_sk(sk); 2883 bool recovered = !before(tp->snd_una, tp->high_seq); 2884 2885 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2886 tcp_try_undo_loss(sk, false)) 2887 return; 2888 2889 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2890 /* Step 3.b. A timeout is spurious if not all data are 2891 * lost, i.e., never-retransmitted data are (s)acked. 2892 */ 2893 if ((flag & FLAG_ORIG_SACK_ACKED) && 2894 tcp_try_undo_loss(sk, true)) 2895 return; 2896 2897 if (after(tp->snd_nxt, tp->high_seq)) { 2898 if (flag & FLAG_DATA_SACKED || num_dupack) 2899 tp->frto = 0; /* Step 3.a. loss was real */ 2900 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2901 tp->high_seq = tp->snd_nxt; 2902 /* Step 2.b. Try send new data (but deferred until cwnd 2903 * is updated in tcp_ack()). Otherwise fall back to 2904 * the conventional recovery. 2905 */ 2906 if (!tcp_write_queue_empty(sk) && 2907 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2908 *rexmit = REXMIT_NEW; 2909 return; 2910 } 2911 tp->frto = 0; 2912 } 2913 } 2914 2915 if (recovered) { 2916 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2917 tcp_try_undo_recovery(sk); 2918 return; 2919 } 2920 if (tcp_is_reno(tp)) { 2921 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2922 * delivered. Lower inflight to clock out (re)transmissions. 2923 */ 2924 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2925 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2926 else if (flag & FLAG_SND_UNA_ADVANCED) 2927 tcp_reset_reno_sack(tp); 2928 } 2929 *rexmit = REXMIT_LOST; 2930 } 2931 2932 static bool tcp_force_fast_retransmit(struct sock *sk) 2933 { 2934 struct tcp_sock *tp = tcp_sk(sk); 2935 2936 return after(tcp_highest_sack_seq(tp), 2937 tp->snd_una + tp->reordering * tp->mss_cache); 2938 } 2939 2940 /* Undo during fast recovery after partial ACK. */ 2941 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2942 bool *do_lost) 2943 { 2944 struct tcp_sock *tp = tcp_sk(sk); 2945 2946 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2947 /* Plain luck! Hole if filled with delayed 2948 * packet, rather than with a retransmit. Check reordering. 2949 */ 2950 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2951 2952 /* We are getting evidence that the reordering degree is higher 2953 * than we realized. If there are no retransmits out then we 2954 * can undo. Otherwise we clock out new packets but do not 2955 * mark more packets lost or retransmit more. 2956 */ 2957 if (tp->retrans_out) 2958 return true; 2959 2960 if (!tcp_any_retrans_done(sk)) 2961 tp->retrans_stamp = 0; 2962 2963 DBGUNDO(sk, "partial recovery"); 2964 tcp_undo_cwnd_reduction(sk, true); 2965 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2966 tcp_try_keep_open(sk); 2967 } else { 2968 /* Partial ACK arrived. Force fast retransmit. */ 2969 *do_lost = tcp_force_fast_retransmit(sk); 2970 } 2971 return false; 2972 } 2973 2974 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2975 { 2976 struct tcp_sock *tp = tcp_sk(sk); 2977 2978 if (tcp_rtx_queue_empty(sk)) 2979 return; 2980 2981 if (unlikely(tcp_is_reno(tp))) { 2982 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2983 } else if (tcp_is_rack(sk)) { 2984 u32 prior_retrans = tp->retrans_out; 2985 2986 if (tcp_rack_mark_lost(sk)) 2987 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2988 if (prior_retrans > tp->retrans_out) 2989 *ack_flag |= FLAG_LOST_RETRANS; 2990 } 2991 } 2992 2993 /* Process an event, which can update packets-in-flight not trivially. 2994 * Main goal of this function is to calculate new estimate for left_out, 2995 * taking into account both packets sitting in receiver's buffer and 2996 * packets lost by network. 2997 * 2998 * Besides that it updates the congestion state when packet loss or ECN 2999 * is detected. But it does not reduce the cwnd, it is done by the 3000 * congestion control later. 3001 * 3002 * It does _not_ decide what to send, it is made in function 3003 * tcp_xmit_retransmit_queue(). 3004 */ 3005 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 3006 int num_dupack, int *ack_flag, int *rexmit) 3007 { 3008 struct inet_connection_sock *icsk = inet_csk(sk); 3009 struct tcp_sock *tp = tcp_sk(sk); 3010 int fast_rexmit = 0, flag = *ack_flag; 3011 bool ece_ack = flag & FLAG_ECE; 3012 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 3013 tcp_force_fast_retransmit(sk)); 3014 3015 if (!tp->packets_out && tp->sacked_out) 3016 tp->sacked_out = 0; 3017 3018 /* Now state machine starts. 3019 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3020 if (ece_ack) 3021 tp->prior_ssthresh = 0; 3022 3023 /* B. In all the states check for reneging SACKs. */ 3024 if (tcp_check_sack_reneging(sk, flag)) 3025 return; 3026 3027 /* C. Check consistency of the current state. */ 3028 tcp_verify_left_out(tp); 3029 3030 /* D. Check state exit conditions. State can be terminated 3031 * when high_seq is ACKed. */ 3032 if (icsk->icsk_ca_state == TCP_CA_Open) { 3033 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 3034 tp->retrans_stamp = 0; 3035 } else if (!before(tp->snd_una, tp->high_seq)) { 3036 switch (icsk->icsk_ca_state) { 3037 case TCP_CA_CWR: 3038 /* CWR is to be held something *above* high_seq 3039 * is ACKed for CWR bit to reach receiver. */ 3040 if (tp->snd_una != tp->high_seq) { 3041 tcp_end_cwnd_reduction(sk); 3042 tcp_set_ca_state(sk, TCP_CA_Open); 3043 } 3044 break; 3045 3046 case TCP_CA_Recovery: 3047 if (tcp_is_reno(tp)) 3048 tcp_reset_reno_sack(tp); 3049 if (tcp_try_undo_recovery(sk)) 3050 return; 3051 tcp_end_cwnd_reduction(sk); 3052 break; 3053 } 3054 } 3055 3056 /* E. Process state. */ 3057 switch (icsk->icsk_ca_state) { 3058 case TCP_CA_Recovery: 3059 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3060 if (tcp_is_reno(tp)) 3061 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3062 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 3063 return; 3064 3065 if (tcp_try_undo_dsack(sk)) 3066 tcp_try_keep_open(sk); 3067 3068 tcp_identify_packet_loss(sk, ack_flag); 3069 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 3070 if (!tcp_time_to_recover(sk, flag)) 3071 return; 3072 /* Undo reverts the recovery state. If loss is evident, 3073 * starts a new recovery (e.g. reordering then loss); 3074 */ 3075 tcp_enter_recovery(sk, ece_ack); 3076 } 3077 break; 3078 case TCP_CA_Loss: 3079 tcp_process_loss(sk, flag, num_dupack, rexmit); 3080 if (icsk->icsk_ca_state != TCP_CA_Loss) 3081 tcp_update_rto_time(tp); 3082 tcp_identify_packet_loss(sk, ack_flag); 3083 if (!(icsk->icsk_ca_state == TCP_CA_Open || 3084 (*ack_flag & FLAG_LOST_RETRANS))) 3085 return; 3086 /* Change state if cwnd is undone or retransmits are lost */ 3087 fallthrough; 3088 default: 3089 if (tcp_is_reno(tp)) { 3090 if (flag & FLAG_SND_UNA_ADVANCED) 3091 tcp_reset_reno_sack(tp); 3092 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3093 } 3094 3095 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3096 tcp_try_undo_dsack(sk); 3097 3098 tcp_identify_packet_loss(sk, ack_flag); 3099 if (!tcp_time_to_recover(sk, flag)) { 3100 tcp_try_to_open(sk, flag); 3101 return; 3102 } 3103 3104 /* MTU probe failure: don't reduce cwnd */ 3105 if (icsk->icsk_ca_state < TCP_CA_CWR && 3106 icsk->icsk_mtup.probe_size && 3107 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3108 tcp_mtup_probe_failed(sk); 3109 /* Restores the reduction we did in tcp_mtup_probe() */ 3110 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3111 tcp_simple_retransmit(sk); 3112 return; 3113 } 3114 3115 /* Otherwise enter Recovery state */ 3116 tcp_enter_recovery(sk, ece_ack); 3117 fast_rexmit = 1; 3118 } 3119 3120 if (!tcp_is_rack(sk) && do_lost) 3121 tcp_update_scoreboard(sk, fast_rexmit); 3122 *rexmit = REXMIT_LOST; 3123 } 3124 3125 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3126 { 3127 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3128 struct tcp_sock *tp = tcp_sk(sk); 3129 3130 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3131 /* If the remote keeps returning delayed ACKs, eventually 3132 * the min filter would pick it up and overestimate the 3133 * prop. delay when it expires. Skip suspected delayed ACKs. 3134 */ 3135 return; 3136 } 3137 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3138 rtt_us ? : jiffies_to_usecs(1)); 3139 } 3140 3141 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3142 long seq_rtt_us, long sack_rtt_us, 3143 long ca_rtt_us, struct rate_sample *rs) 3144 { 3145 const struct tcp_sock *tp = tcp_sk(sk); 3146 3147 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3148 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3149 * Karn's algorithm forbids taking RTT if some retransmitted data 3150 * is acked (RFC6298). 3151 */ 3152 if (seq_rtt_us < 0) 3153 seq_rtt_us = sack_rtt_us; 3154 3155 /* RTTM Rule: A TSecr value received in a segment is used to 3156 * update the averaged RTT measurement only if the segment 3157 * acknowledges some new data, i.e., only if it advances the 3158 * left edge of the send window. 3159 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3160 */ 3161 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && 3162 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) 3163 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp); 3164 3165 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3166 if (seq_rtt_us < 0) 3167 return false; 3168 3169 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3170 * always taken together with ACK, SACK, or TS-opts. Any negative 3171 * values will be skipped with the seq_rtt_us < 0 check above. 3172 */ 3173 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3174 tcp_rtt_estimator(sk, seq_rtt_us); 3175 tcp_set_rto(sk); 3176 3177 /* RFC6298: only reset backoff on valid RTT measurement. */ 3178 inet_csk(sk)->icsk_backoff = 0; 3179 return true; 3180 } 3181 3182 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3183 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3184 { 3185 struct rate_sample rs; 3186 long rtt_us = -1L; 3187 3188 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3189 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3190 3191 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3192 } 3193 3194 3195 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3196 { 3197 const struct inet_connection_sock *icsk = inet_csk(sk); 3198 3199 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3200 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3201 } 3202 3203 /* Restart timer after forward progress on connection. 3204 * RFC2988 recommends to restart timer to now+rto. 3205 */ 3206 void tcp_rearm_rto(struct sock *sk) 3207 { 3208 const struct inet_connection_sock *icsk = inet_csk(sk); 3209 struct tcp_sock *tp = tcp_sk(sk); 3210 3211 /* If the retrans timer is currently being used by Fast Open 3212 * for SYN-ACK retrans purpose, stay put. 3213 */ 3214 if (rcu_access_pointer(tp->fastopen_rsk)) 3215 return; 3216 3217 if (!tp->packets_out) { 3218 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3219 } else { 3220 u32 rto = inet_csk(sk)->icsk_rto; 3221 /* Offset the time elapsed after installing regular RTO */ 3222 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3223 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3224 s64 delta_us = tcp_rto_delta_us(sk); 3225 /* delta_us may not be positive if the socket is locked 3226 * when the retrans timer fires and is rescheduled. 3227 */ 3228 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3229 } 3230 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3231 TCP_RTO_MAX); 3232 } 3233 } 3234 3235 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3236 static void tcp_set_xmit_timer(struct sock *sk) 3237 { 3238 if (!tcp_schedule_loss_probe(sk, true)) 3239 tcp_rearm_rto(sk); 3240 } 3241 3242 /* If we get here, the whole TSO packet has not been acked. */ 3243 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3244 { 3245 struct tcp_sock *tp = tcp_sk(sk); 3246 u32 packets_acked; 3247 3248 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3249 3250 packets_acked = tcp_skb_pcount(skb); 3251 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3252 return 0; 3253 packets_acked -= tcp_skb_pcount(skb); 3254 3255 if (packets_acked) { 3256 BUG_ON(tcp_skb_pcount(skb) == 0); 3257 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3258 } 3259 3260 return packets_acked; 3261 } 3262 3263 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3264 const struct sk_buff *ack_skb, u32 prior_snd_una) 3265 { 3266 const struct skb_shared_info *shinfo; 3267 3268 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3269 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3270 return; 3271 3272 shinfo = skb_shinfo(skb); 3273 if (!before(shinfo->tskey, prior_snd_una) && 3274 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3275 tcp_skb_tsorted_save(skb) { 3276 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3277 } tcp_skb_tsorted_restore(skb); 3278 } 3279 } 3280 3281 /* Remove acknowledged frames from the retransmission queue. If our packet 3282 * is before the ack sequence we can discard it as it's confirmed to have 3283 * arrived at the other end. 3284 */ 3285 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3286 u32 prior_fack, u32 prior_snd_una, 3287 struct tcp_sacktag_state *sack, bool ece_ack) 3288 { 3289 const struct inet_connection_sock *icsk = inet_csk(sk); 3290 u64 first_ackt, last_ackt; 3291 struct tcp_sock *tp = tcp_sk(sk); 3292 u32 prior_sacked = tp->sacked_out; 3293 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3294 struct sk_buff *skb, *next; 3295 bool fully_acked = true; 3296 long sack_rtt_us = -1L; 3297 long seq_rtt_us = -1L; 3298 long ca_rtt_us = -1L; 3299 u32 pkts_acked = 0; 3300 bool rtt_update; 3301 int flag = 0; 3302 3303 first_ackt = 0; 3304 3305 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3306 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3307 const u32 start_seq = scb->seq; 3308 u8 sacked = scb->sacked; 3309 u32 acked_pcount; 3310 3311 /* Determine how many packets and what bytes were acked, tso and else */ 3312 if (after(scb->end_seq, tp->snd_una)) { 3313 if (tcp_skb_pcount(skb) == 1 || 3314 !after(tp->snd_una, scb->seq)) 3315 break; 3316 3317 acked_pcount = tcp_tso_acked(sk, skb); 3318 if (!acked_pcount) 3319 break; 3320 fully_acked = false; 3321 } else { 3322 acked_pcount = tcp_skb_pcount(skb); 3323 } 3324 3325 if (unlikely(sacked & TCPCB_RETRANS)) { 3326 if (sacked & TCPCB_SACKED_RETRANS) 3327 tp->retrans_out -= acked_pcount; 3328 flag |= FLAG_RETRANS_DATA_ACKED; 3329 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3330 last_ackt = tcp_skb_timestamp_us(skb); 3331 WARN_ON_ONCE(last_ackt == 0); 3332 if (!first_ackt) 3333 first_ackt = last_ackt; 3334 3335 if (before(start_seq, reord)) 3336 reord = start_seq; 3337 if (!after(scb->end_seq, tp->high_seq)) 3338 flag |= FLAG_ORIG_SACK_ACKED; 3339 } 3340 3341 if (sacked & TCPCB_SACKED_ACKED) { 3342 tp->sacked_out -= acked_pcount; 3343 } else if (tcp_is_sack(tp)) { 3344 tcp_count_delivered(tp, acked_pcount, ece_ack); 3345 if (!tcp_skb_spurious_retrans(tp, skb)) 3346 tcp_rack_advance(tp, sacked, scb->end_seq, 3347 tcp_skb_timestamp_us(skb)); 3348 } 3349 if (sacked & TCPCB_LOST) 3350 tp->lost_out -= acked_pcount; 3351 3352 tp->packets_out -= acked_pcount; 3353 pkts_acked += acked_pcount; 3354 tcp_rate_skb_delivered(sk, skb, sack->rate); 3355 3356 /* Initial outgoing SYN's get put onto the write_queue 3357 * just like anything else we transmit. It is not 3358 * true data, and if we misinform our callers that 3359 * this ACK acks real data, we will erroneously exit 3360 * connection startup slow start one packet too 3361 * quickly. This is severely frowned upon behavior. 3362 */ 3363 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3364 flag |= FLAG_DATA_ACKED; 3365 } else { 3366 flag |= FLAG_SYN_ACKED; 3367 tp->retrans_stamp = 0; 3368 } 3369 3370 if (!fully_acked) 3371 break; 3372 3373 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3374 3375 next = skb_rb_next(skb); 3376 if (unlikely(skb == tp->retransmit_skb_hint)) 3377 tp->retransmit_skb_hint = NULL; 3378 if (unlikely(skb == tp->lost_skb_hint)) 3379 tp->lost_skb_hint = NULL; 3380 tcp_highest_sack_replace(sk, skb, next); 3381 tcp_rtx_queue_unlink_and_free(skb, sk); 3382 } 3383 3384 if (!skb) 3385 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3386 3387 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3388 tp->snd_up = tp->snd_una; 3389 3390 if (skb) { 3391 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3392 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3393 flag |= FLAG_SACK_RENEGING; 3394 } 3395 3396 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3397 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3398 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3399 3400 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3401 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3402 sack->rate->prior_delivered + 1 == tp->delivered && 3403 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3404 /* Conservatively mark a delayed ACK. It's typically 3405 * from a lone runt packet over the round trip to 3406 * a receiver w/o out-of-order or CE events. 3407 */ 3408 flag |= FLAG_ACK_MAYBE_DELAYED; 3409 } 3410 } 3411 if (sack->first_sackt) { 3412 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3413 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3414 } 3415 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3416 ca_rtt_us, sack->rate); 3417 3418 if (flag & FLAG_ACKED) { 3419 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3420 if (unlikely(icsk->icsk_mtup.probe_size && 3421 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3422 tcp_mtup_probe_success(sk); 3423 } 3424 3425 if (tcp_is_reno(tp)) { 3426 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3427 3428 /* If any of the cumulatively ACKed segments was 3429 * retransmitted, non-SACK case cannot confirm that 3430 * progress was due to original transmission due to 3431 * lack of TCPCB_SACKED_ACKED bits even if some of 3432 * the packets may have been never retransmitted. 3433 */ 3434 if (flag & FLAG_RETRANS_DATA_ACKED) 3435 flag &= ~FLAG_ORIG_SACK_ACKED; 3436 } else { 3437 int delta; 3438 3439 /* Non-retransmitted hole got filled? That's reordering */ 3440 if (before(reord, prior_fack)) 3441 tcp_check_sack_reordering(sk, reord, 0); 3442 3443 delta = prior_sacked - tp->sacked_out; 3444 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3445 } 3446 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3447 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3448 tcp_skb_timestamp_us(skb))) { 3449 /* Do not re-arm RTO if the sack RTT is measured from data sent 3450 * after when the head was last (re)transmitted. Otherwise the 3451 * timeout may continue to extend in loss recovery. 3452 */ 3453 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3454 } 3455 3456 if (icsk->icsk_ca_ops->pkts_acked) { 3457 struct ack_sample sample = { .pkts_acked = pkts_acked, 3458 .rtt_us = sack->rate->rtt_us }; 3459 3460 sample.in_flight = tp->mss_cache * 3461 (tp->delivered - sack->rate->prior_delivered); 3462 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3463 } 3464 3465 #if FASTRETRANS_DEBUG > 0 3466 WARN_ON((int)tp->sacked_out < 0); 3467 WARN_ON((int)tp->lost_out < 0); 3468 WARN_ON((int)tp->retrans_out < 0); 3469 if (!tp->packets_out && tcp_is_sack(tp)) { 3470 icsk = inet_csk(sk); 3471 if (tp->lost_out) { 3472 pr_debug("Leak l=%u %d\n", 3473 tp->lost_out, icsk->icsk_ca_state); 3474 tp->lost_out = 0; 3475 } 3476 if (tp->sacked_out) { 3477 pr_debug("Leak s=%u %d\n", 3478 tp->sacked_out, icsk->icsk_ca_state); 3479 tp->sacked_out = 0; 3480 } 3481 if (tp->retrans_out) { 3482 pr_debug("Leak r=%u %d\n", 3483 tp->retrans_out, icsk->icsk_ca_state); 3484 tp->retrans_out = 0; 3485 } 3486 } 3487 #endif 3488 return flag; 3489 } 3490 3491 static void tcp_ack_probe(struct sock *sk) 3492 { 3493 struct inet_connection_sock *icsk = inet_csk(sk); 3494 struct sk_buff *head = tcp_send_head(sk); 3495 const struct tcp_sock *tp = tcp_sk(sk); 3496 3497 /* Was it a usable window open? */ 3498 if (!head) 3499 return; 3500 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3501 icsk->icsk_backoff = 0; 3502 icsk->icsk_probes_tstamp = 0; 3503 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3504 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3505 * This function is not for random using! 3506 */ 3507 } else { 3508 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3509 3510 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3511 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3512 } 3513 } 3514 3515 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3516 { 3517 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3518 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3519 } 3520 3521 /* Decide wheather to run the increase function of congestion control. */ 3522 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3523 { 3524 /* If reordering is high then always grow cwnd whenever data is 3525 * delivered regardless of its ordering. Otherwise stay conservative 3526 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3527 * new SACK or ECE mark may first advance cwnd here and later reduce 3528 * cwnd in tcp_fastretrans_alert() based on more states. 3529 */ 3530 if (tcp_sk(sk)->reordering > 3531 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3532 return flag & FLAG_FORWARD_PROGRESS; 3533 3534 return flag & FLAG_DATA_ACKED; 3535 } 3536 3537 /* The "ultimate" congestion control function that aims to replace the rigid 3538 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3539 * It's called toward the end of processing an ACK with precise rate 3540 * information. All transmission or retransmission are delayed afterwards. 3541 */ 3542 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3543 int flag, const struct rate_sample *rs) 3544 { 3545 const struct inet_connection_sock *icsk = inet_csk(sk); 3546 3547 if (icsk->icsk_ca_ops->cong_control) { 3548 icsk->icsk_ca_ops->cong_control(sk, rs); 3549 return; 3550 } 3551 3552 if (tcp_in_cwnd_reduction(sk)) { 3553 /* Reduce cwnd if state mandates */ 3554 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3555 } else if (tcp_may_raise_cwnd(sk, flag)) { 3556 /* Advance cwnd if state allows */ 3557 tcp_cong_avoid(sk, ack, acked_sacked); 3558 } 3559 tcp_update_pacing_rate(sk); 3560 } 3561 3562 /* Check that window update is acceptable. 3563 * The function assumes that snd_una<=ack<=snd_next. 3564 */ 3565 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3566 const u32 ack, const u32 ack_seq, 3567 const u32 nwin) 3568 { 3569 return after(ack, tp->snd_una) || 3570 after(ack_seq, tp->snd_wl1) || 3571 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3572 } 3573 3574 /* If we update tp->snd_una, also update tp->bytes_acked */ 3575 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3576 { 3577 u32 delta = ack - tp->snd_una; 3578 3579 sock_owned_by_me((struct sock *)tp); 3580 tp->bytes_acked += delta; 3581 tp->snd_una = ack; 3582 } 3583 3584 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3585 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3586 { 3587 u32 delta = seq - tp->rcv_nxt; 3588 3589 sock_owned_by_me((struct sock *)tp); 3590 tp->bytes_received += delta; 3591 WRITE_ONCE(tp->rcv_nxt, seq); 3592 } 3593 3594 /* Update our send window. 3595 * 3596 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3597 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3598 */ 3599 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3600 u32 ack_seq) 3601 { 3602 struct tcp_sock *tp = tcp_sk(sk); 3603 int flag = 0; 3604 u32 nwin = ntohs(tcp_hdr(skb)->window); 3605 3606 if (likely(!tcp_hdr(skb)->syn)) 3607 nwin <<= tp->rx_opt.snd_wscale; 3608 3609 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3610 flag |= FLAG_WIN_UPDATE; 3611 tcp_update_wl(tp, ack_seq); 3612 3613 if (tp->snd_wnd != nwin) { 3614 tp->snd_wnd = nwin; 3615 3616 /* Note, it is the only place, where 3617 * fast path is recovered for sending TCP. 3618 */ 3619 tp->pred_flags = 0; 3620 tcp_fast_path_check(sk); 3621 3622 if (!tcp_write_queue_empty(sk)) 3623 tcp_slow_start_after_idle_check(sk); 3624 3625 if (nwin > tp->max_window) { 3626 tp->max_window = nwin; 3627 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3628 } 3629 } 3630 } 3631 3632 tcp_snd_una_update(tp, ack); 3633 3634 return flag; 3635 } 3636 3637 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3638 u32 *last_oow_ack_time) 3639 { 3640 /* Paired with the WRITE_ONCE() in this function. */ 3641 u32 val = READ_ONCE(*last_oow_ack_time); 3642 3643 if (val) { 3644 s32 elapsed = (s32)(tcp_jiffies32 - val); 3645 3646 if (0 <= elapsed && 3647 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3648 NET_INC_STATS(net, mib_idx); 3649 return true; /* rate-limited: don't send yet! */ 3650 } 3651 } 3652 3653 /* Paired with the prior READ_ONCE() and with itself, 3654 * as we might be lockless. 3655 */ 3656 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3657 3658 return false; /* not rate-limited: go ahead, send dupack now! */ 3659 } 3660 3661 /* Return true if we're currently rate-limiting out-of-window ACKs and 3662 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3663 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3664 * attacks that send repeated SYNs or ACKs for the same connection. To 3665 * do this, we do not send a duplicate SYNACK or ACK if the remote 3666 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3667 */ 3668 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3669 int mib_idx, u32 *last_oow_ack_time) 3670 { 3671 /* Data packets without SYNs are not likely part of an ACK loop. */ 3672 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3673 !tcp_hdr(skb)->syn) 3674 return false; 3675 3676 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3677 } 3678 3679 /* RFC 5961 7 [ACK Throttling] */ 3680 static void tcp_send_challenge_ack(struct sock *sk) 3681 { 3682 struct tcp_sock *tp = tcp_sk(sk); 3683 struct net *net = sock_net(sk); 3684 u32 count, now, ack_limit; 3685 3686 /* First check our per-socket dupack rate limit. */ 3687 if (__tcp_oow_rate_limited(net, 3688 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3689 &tp->last_oow_ack_time)) 3690 return; 3691 3692 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3693 if (ack_limit == INT_MAX) 3694 goto send_ack; 3695 3696 /* Then check host-wide RFC 5961 rate limit. */ 3697 now = jiffies / HZ; 3698 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3699 u32 half = (ack_limit + 1) >> 1; 3700 3701 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3702 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3703 get_random_u32_inclusive(half, ack_limit + half - 1)); 3704 } 3705 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3706 if (count > 0) { 3707 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3708 send_ack: 3709 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3710 tcp_send_ack(sk); 3711 } 3712 } 3713 3714 static void tcp_store_ts_recent(struct tcp_sock *tp) 3715 { 3716 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3717 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3718 } 3719 3720 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3721 { 3722 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3723 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3724 * extra check below makes sure this can only happen 3725 * for pure ACK frames. -DaveM 3726 * 3727 * Not only, also it occurs for expired timestamps. 3728 */ 3729 3730 if (tcp_paws_check(&tp->rx_opt, 0)) 3731 tcp_store_ts_recent(tp); 3732 } 3733 } 3734 3735 /* This routine deals with acks during a TLP episode and ends an episode by 3736 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3737 */ 3738 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3739 { 3740 struct tcp_sock *tp = tcp_sk(sk); 3741 3742 if (before(ack, tp->tlp_high_seq)) 3743 return; 3744 3745 if (!tp->tlp_retrans) { 3746 /* TLP of new data has been acknowledged */ 3747 tp->tlp_high_seq = 0; 3748 } else if (flag & FLAG_DSACK_TLP) { 3749 /* This DSACK means original and TLP probe arrived; no loss */ 3750 tp->tlp_high_seq = 0; 3751 } else if (after(ack, tp->tlp_high_seq)) { 3752 /* ACK advances: there was a loss, so reduce cwnd. Reset 3753 * tlp_high_seq in tcp_init_cwnd_reduction() 3754 */ 3755 tcp_init_cwnd_reduction(sk); 3756 tcp_set_ca_state(sk, TCP_CA_CWR); 3757 tcp_end_cwnd_reduction(sk); 3758 tcp_try_keep_open(sk); 3759 NET_INC_STATS(sock_net(sk), 3760 LINUX_MIB_TCPLOSSPROBERECOVERY); 3761 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3762 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3763 /* Pure dupack: original and TLP probe arrived; no loss */ 3764 tp->tlp_high_seq = 0; 3765 } 3766 } 3767 3768 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3769 { 3770 const struct inet_connection_sock *icsk = inet_csk(sk); 3771 3772 if (icsk->icsk_ca_ops->in_ack_event) 3773 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3774 } 3775 3776 /* Congestion control has updated the cwnd already. So if we're in 3777 * loss recovery then now we do any new sends (for FRTO) or 3778 * retransmits (for CA_Loss or CA_recovery) that make sense. 3779 */ 3780 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3781 { 3782 struct tcp_sock *tp = tcp_sk(sk); 3783 3784 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3785 return; 3786 3787 if (unlikely(rexmit == REXMIT_NEW)) { 3788 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3789 TCP_NAGLE_OFF); 3790 if (after(tp->snd_nxt, tp->high_seq)) 3791 return; 3792 tp->frto = 0; 3793 } 3794 tcp_xmit_retransmit_queue(sk); 3795 } 3796 3797 /* Returns the number of packets newly acked or sacked by the current ACK */ 3798 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3799 { 3800 const struct net *net = sock_net(sk); 3801 struct tcp_sock *tp = tcp_sk(sk); 3802 u32 delivered; 3803 3804 delivered = tp->delivered - prior_delivered; 3805 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3806 if (flag & FLAG_ECE) 3807 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3808 3809 return delivered; 3810 } 3811 3812 /* This routine deals with incoming acks, but not outgoing ones. */ 3813 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3814 { 3815 struct inet_connection_sock *icsk = inet_csk(sk); 3816 struct tcp_sock *tp = tcp_sk(sk); 3817 struct tcp_sacktag_state sack_state; 3818 struct rate_sample rs = { .prior_delivered = 0 }; 3819 u32 prior_snd_una = tp->snd_una; 3820 bool is_sack_reneg = tp->is_sack_reneg; 3821 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3822 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3823 int num_dupack = 0; 3824 int prior_packets = tp->packets_out; 3825 u32 delivered = tp->delivered; 3826 u32 lost = tp->lost; 3827 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3828 u32 prior_fack; 3829 3830 sack_state.first_sackt = 0; 3831 sack_state.rate = &rs; 3832 sack_state.sack_delivered = 0; 3833 3834 /* We very likely will need to access rtx queue. */ 3835 prefetch(sk->tcp_rtx_queue.rb_node); 3836 3837 /* If the ack is older than previous acks 3838 * then we can probably ignore it. 3839 */ 3840 if (before(ack, prior_snd_una)) { 3841 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3842 if (before(ack, prior_snd_una - tp->max_window)) { 3843 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3844 tcp_send_challenge_ack(sk); 3845 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3846 } 3847 goto old_ack; 3848 } 3849 3850 /* If the ack includes data we haven't sent yet, discard 3851 * this segment (RFC793 Section 3.9). 3852 */ 3853 if (after(ack, tp->snd_nxt)) 3854 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3855 3856 if (after(ack, prior_snd_una)) { 3857 flag |= FLAG_SND_UNA_ADVANCED; 3858 icsk->icsk_retransmits = 0; 3859 3860 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3861 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3862 if (icsk->icsk_clean_acked) 3863 icsk->icsk_clean_acked(sk, ack); 3864 #endif 3865 } 3866 3867 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3868 rs.prior_in_flight = tcp_packets_in_flight(tp); 3869 3870 /* ts_recent update must be made after we are sure that the packet 3871 * is in window. 3872 */ 3873 if (flag & FLAG_UPDATE_TS_RECENT) 3874 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3875 3876 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3877 FLAG_SND_UNA_ADVANCED) { 3878 /* Window is constant, pure forward advance. 3879 * No more checks are required. 3880 * Note, we use the fact that SND.UNA>=SND.WL2. 3881 */ 3882 tcp_update_wl(tp, ack_seq); 3883 tcp_snd_una_update(tp, ack); 3884 flag |= FLAG_WIN_UPDATE; 3885 3886 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3887 3888 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3889 } else { 3890 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3891 3892 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3893 flag |= FLAG_DATA; 3894 else 3895 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3896 3897 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3898 3899 if (TCP_SKB_CB(skb)->sacked) 3900 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3901 &sack_state); 3902 3903 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3904 flag |= FLAG_ECE; 3905 ack_ev_flags |= CA_ACK_ECE; 3906 } 3907 3908 if (sack_state.sack_delivered) 3909 tcp_count_delivered(tp, sack_state.sack_delivered, 3910 flag & FLAG_ECE); 3911 3912 if (flag & FLAG_WIN_UPDATE) 3913 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3914 3915 tcp_in_ack_event(sk, ack_ev_flags); 3916 } 3917 3918 /* This is a deviation from RFC3168 since it states that: 3919 * "When the TCP data sender is ready to set the CWR bit after reducing 3920 * the congestion window, it SHOULD set the CWR bit only on the first 3921 * new data packet that it transmits." 3922 * We accept CWR on pure ACKs to be more robust 3923 * with widely-deployed TCP implementations that do this. 3924 */ 3925 tcp_ecn_accept_cwr(sk, skb); 3926 3927 /* We passed data and got it acked, remove any soft error 3928 * log. Something worked... 3929 */ 3930 WRITE_ONCE(sk->sk_err_soft, 0); 3931 icsk->icsk_probes_out = 0; 3932 tp->rcv_tstamp = tcp_jiffies32; 3933 if (!prior_packets) 3934 goto no_queue; 3935 3936 /* See if we can take anything off of the retransmit queue. */ 3937 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3938 &sack_state, flag & FLAG_ECE); 3939 3940 tcp_rack_update_reo_wnd(sk, &rs); 3941 3942 if (tp->tlp_high_seq) 3943 tcp_process_tlp_ack(sk, ack, flag); 3944 3945 if (tcp_ack_is_dubious(sk, flag)) { 3946 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3947 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3948 num_dupack = 1; 3949 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3950 if (!(flag & FLAG_DATA)) 3951 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3952 } 3953 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3954 &rexmit); 3955 } 3956 3957 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3958 if (flag & FLAG_SET_XMIT_TIMER) 3959 tcp_set_xmit_timer(sk); 3960 3961 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3962 sk_dst_confirm(sk); 3963 3964 delivered = tcp_newly_delivered(sk, delivered, flag); 3965 lost = tp->lost - lost; /* freshly marked lost */ 3966 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3967 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3968 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3969 tcp_xmit_recovery(sk, rexmit); 3970 return 1; 3971 3972 no_queue: 3973 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3974 if (flag & FLAG_DSACKING_ACK) { 3975 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3976 &rexmit); 3977 tcp_newly_delivered(sk, delivered, flag); 3978 } 3979 /* If this ack opens up a zero window, clear backoff. It was 3980 * being used to time the probes, and is probably far higher than 3981 * it needs to be for normal retransmission. 3982 */ 3983 tcp_ack_probe(sk); 3984 3985 if (tp->tlp_high_seq) 3986 tcp_process_tlp_ack(sk, ack, flag); 3987 return 1; 3988 3989 old_ack: 3990 /* If data was SACKed, tag it and see if we should send more data. 3991 * If data was DSACKed, see if we can undo a cwnd reduction. 3992 */ 3993 if (TCP_SKB_CB(skb)->sacked) { 3994 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3995 &sack_state); 3996 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3997 &rexmit); 3998 tcp_newly_delivered(sk, delivered, flag); 3999 tcp_xmit_recovery(sk, rexmit); 4000 } 4001 4002 return 0; 4003 } 4004 4005 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 4006 bool syn, struct tcp_fastopen_cookie *foc, 4007 bool exp_opt) 4008 { 4009 /* Valid only in SYN or SYN-ACK with an even length. */ 4010 if (!foc || !syn || len < 0 || (len & 1)) 4011 return; 4012 4013 if (len >= TCP_FASTOPEN_COOKIE_MIN && 4014 len <= TCP_FASTOPEN_COOKIE_MAX) 4015 memcpy(foc->val, cookie, len); 4016 else if (len != 0) 4017 len = -1; 4018 foc->len = len; 4019 foc->exp = exp_opt; 4020 } 4021 4022 static bool smc_parse_options(const struct tcphdr *th, 4023 struct tcp_options_received *opt_rx, 4024 const unsigned char *ptr, 4025 int opsize) 4026 { 4027 #if IS_ENABLED(CONFIG_SMC) 4028 if (static_branch_unlikely(&tcp_have_smc)) { 4029 if (th->syn && !(opsize & 1) && 4030 opsize >= TCPOLEN_EXP_SMC_BASE && 4031 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 4032 opt_rx->smc_ok = 1; 4033 return true; 4034 } 4035 } 4036 #endif 4037 return false; 4038 } 4039 4040 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 4041 * value on success. 4042 */ 4043 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 4044 { 4045 const unsigned char *ptr = (const unsigned char *)(th + 1); 4046 int length = (th->doff * 4) - sizeof(struct tcphdr); 4047 u16 mss = 0; 4048 4049 while (length > 0) { 4050 int opcode = *ptr++; 4051 int opsize; 4052 4053 switch (opcode) { 4054 case TCPOPT_EOL: 4055 return mss; 4056 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4057 length--; 4058 continue; 4059 default: 4060 if (length < 2) 4061 return mss; 4062 opsize = *ptr++; 4063 if (opsize < 2) /* "silly options" */ 4064 return mss; 4065 if (opsize > length) 4066 return mss; /* fail on partial options */ 4067 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4068 u16 in_mss = get_unaligned_be16(ptr); 4069 4070 if (in_mss) { 4071 if (user_mss && user_mss < in_mss) 4072 in_mss = user_mss; 4073 mss = in_mss; 4074 } 4075 } 4076 ptr += opsize - 2; 4077 length -= opsize; 4078 } 4079 } 4080 return mss; 4081 } 4082 EXPORT_SYMBOL_GPL(tcp_parse_mss_option); 4083 4084 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4085 * But, this can also be called on packets in the established flow when 4086 * the fast version below fails. 4087 */ 4088 void tcp_parse_options(const struct net *net, 4089 const struct sk_buff *skb, 4090 struct tcp_options_received *opt_rx, int estab, 4091 struct tcp_fastopen_cookie *foc) 4092 { 4093 const unsigned char *ptr; 4094 const struct tcphdr *th = tcp_hdr(skb); 4095 int length = (th->doff * 4) - sizeof(struct tcphdr); 4096 4097 ptr = (const unsigned char *)(th + 1); 4098 opt_rx->saw_tstamp = 0; 4099 opt_rx->saw_unknown = 0; 4100 4101 while (length > 0) { 4102 int opcode = *ptr++; 4103 int opsize; 4104 4105 switch (opcode) { 4106 case TCPOPT_EOL: 4107 return; 4108 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4109 length--; 4110 continue; 4111 default: 4112 if (length < 2) 4113 return; 4114 opsize = *ptr++; 4115 if (opsize < 2) /* "silly options" */ 4116 return; 4117 if (opsize > length) 4118 return; /* don't parse partial options */ 4119 switch (opcode) { 4120 case TCPOPT_MSS: 4121 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4122 u16 in_mss = get_unaligned_be16(ptr); 4123 if (in_mss) { 4124 if (opt_rx->user_mss && 4125 opt_rx->user_mss < in_mss) 4126 in_mss = opt_rx->user_mss; 4127 opt_rx->mss_clamp = in_mss; 4128 } 4129 } 4130 break; 4131 case TCPOPT_WINDOW: 4132 if (opsize == TCPOLEN_WINDOW && th->syn && 4133 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4134 __u8 snd_wscale = *(__u8 *)ptr; 4135 opt_rx->wscale_ok = 1; 4136 if (snd_wscale > TCP_MAX_WSCALE) { 4137 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4138 __func__, 4139 snd_wscale, 4140 TCP_MAX_WSCALE); 4141 snd_wscale = TCP_MAX_WSCALE; 4142 } 4143 opt_rx->snd_wscale = snd_wscale; 4144 } 4145 break; 4146 case TCPOPT_TIMESTAMP: 4147 if ((opsize == TCPOLEN_TIMESTAMP) && 4148 ((estab && opt_rx->tstamp_ok) || 4149 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4150 opt_rx->saw_tstamp = 1; 4151 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4152 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4153 } 4154 break; 4155 case TCPOPT_SACK_PERM: 4156 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4157 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4158 opt_rx->sack_ok = TCP_SACK_SEEN; 4159 tcp_sack_reset(opt_rx); 4160 } 4161 break; 4162 4163 case TCPOPT_SACK: 4164 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4165 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4166 opt_rx->sack_ok) { 4167 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4168 } 4169 break; 4170 #ifdef CONFIG_TCP_MD5SIG 4171 case TCPOPT_MD5SIG: 4172 /* The MD5 Hash has already been 4173 * checked (see tcp_v{4,6}_rcv()). 4174 */ 4175 break; 4176 #endif 4177 case TCPOPT_FASTOPEN: 4178 tcp_parse_fastopen_option( 4179 opsize - TCPOLEN_FASTOPEN_BASE, 4180 ptr, th->syn, foc, false); 4181 break; 4182 4183 case TCPOPT_EXP: 4184 /* Fast Open option shares code 254 using a 4185 * 16 bits magic number. 4186 */ 4187 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4188 get_unaligned_be16(ptr) == 4189 TCPOPT_FASTOPEN_MAGIC) { 4190 tcp_parse_fastopen_option(opsize - 4191 TCPOLEN_EXP_FASTOPEN_BASE, 4192 ptr + 2, th->syn, foc, true); 4193 break; 4194 } 4195 4196 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4197 break; 4198 4199 opt_rx->saw_unknown = 1; 4200 break; 4201 4202 default: 4203 opt_rx->saw_unknown = 1; 4204 } 4205 ptr += opsize-2; 4206 length -= opsize; 4207 } 4208 } 4209 } 4210 EXPORT_SYMBOL(tcp_parse_options); 4211 4212 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4213 { 4214 const __be32 *ptr = (const __be32 *)(th + 1); 4215 4216 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4217 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4218 tp->rx_opt.saw_tstamp = 1; 4219 ++ptr; 4220 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4221 ++ptr; 4222 if (*ptr) 4223 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4224 else 4225 tp->rx_opt.rcv_tsecr = 0; 4226 return true; 4227 } 4228 return false; 4229 } 4230 4231 /* Fast parse options. This hopes to only see timestamps. 4232 * If it is wrong it falls back on tcp_parse_options(). 4233 */ 4234 static bool tcp_fast_parse_options(const struct net *net, 4235 const struct sk_buff *skb, 4236 const struct tcphdr *th, struct tcp_sock *tp) 4237 { 4238 /* In the spirit of fast parsing, compare doff directly to constant 4239 * values. Because equality is used, short doff can be ignored here. 4240 */ 4241 if (th->doff == (sizeof(*th) / 4)) { 4242 tp->rx_opt.saw_tstamp = 0; 4243 return false; 4244 } else if (tp->rx_opt.tstamp_ok && 4245 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4246 if (tcp_parse_aligned_timestamp(tp, th)) 4247 return true; 4248 } 4249 4250 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4251 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4252 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4253 4254 return true; 4255 } 4256 4257 #ifdef CONFIG_TCP_MD5SIG 4258 /* 4259 * Parse MD5 Signature option 4260 */ 4261 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4262 { 4263 int length = (th->doff << 2) - sizeof(*th); 4264 const u8 *ptr = (const u8 *)(th + 1); 4265 4266 /* If not enough data remaining, we can short cut */ 4267 while (length >= TCPOLEN_MD5SIG) { 4268 int opcode = *ptr++; 4269 int opsize; 4270 4271 switch (opcode) { 4272 case TCPOPT_EOL: 4273 return NULL; 4274 case TCPOPT_NOP: 4275 length--; 4276 continue; 4277 default: 4278 opsize = *ptr++; 4279 if (opsize < 2 || opsize > length) 4280 return NULL; 4281 if (opcode == TCPOPT_MD5SIG) 4282 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4283 } 4284 ptr += opsize - 2; 4285 length -= opsize; 4286 } 4287 return NULL; 4288 } 4289 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4290 #endif 4291 4292 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4293 * 4294 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4295 * it can pass through stack. So, the following predicate verifies that 4296 * this segment is not used for anything but congestion avoidance or 4297 * fast retransmit. Moreover, we even are able to eliminate most of such 4298 * second order effects, if we apply some small "replay" window (~RTO) 4299 * to timestamp space. 4300 * 4301 * All these measures still do not guarantee that we reject wrapped ACKs 4302 * on networks with high bandwidth, when sequence space is recycled fastly, 4303 * but it guarantees that such events will be very rare and do not affect 4304 * connection seriously. This doesn't look nice, but alas, PAWS is really 4305 * buggy extension. 4306 * 4307 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4308 * states that events when retransmit arrives after original data are rare. 4309 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4310 * the biggest problem on large power networks even with minor reordering. 4311 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4312 * up to bandwidth of 18Gigabit/sec. 8) ] 4313 */ 4314 4315 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4316 { 4317 const struct tcp_sock *tp = tcp_sk(sk); 4318 const struct tcphdr *th = tcp_hdr(skb); 4319 u32 seq = TCP_SKB_CB(skb)->seq; 4320 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4321 4322 return (/* 1. Pure ACK with correct sequence number. */ 4323 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4324 4325 /* 2. ... and duplicate ACK. */ 4326 ack == tp->snd_una && 4327 4328 /* 3. ... and does not update window. */ 4329 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4330 4331 /* 4. ... and sits in replay window. */ 4332 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4333 } 4334 4335 static inline bool tcp_paws_discard(const struct sock *sk, 4336 const struct sk_buff *skb) 4337 { 4338 const struct tcp_sock *tp = tcp_sk(sk); 4339 4340 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4341 !tcp_disordered_ack(sk, skb); 4342 } 4343 4344 /* Check segment sequence number for validity. 4345 * 4346 * Segment controls are considered valid, if the segment 4347 * fits to the window after truncation to the window. Acceptability 4348 * of data (and SYN, FIN, of course) is checked separately. 4349 * See tcp_data_queue(), for example. 4350 * 4351 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4352 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4353 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4354 * (borrowed from freebsd) 4355 */ 4356 4357 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp, 4358 u32 seq, u32 end_seq) 4359 { 4360 if (before(end_seq, tp->rcv_wup)) 4361 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4362 4363 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4364 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4365 4366 return SKB_NOT_DROPPED_YET; 4367 } 4368 4369 /* When we get a reset we do this. */ 4370 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4371 { 4372 trace_tcp_receive_reset(sk); 4373 4374 /* mptcp can't tell us to ignore reset pkts, 4375 * so just ignore the return value of mptcp_incoming_options(). 4376 */ 4377 if (sk_is_mptcp(sk)) 4378 mptcp_incoming_options(sk, skb); 4379 4380 /* We want the right error as BSD sees it (and indeed as we do). */ 4381 switch (sk->sk_state) { 4382 case TCP_SYN_SENT: 4383 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 4384 break; 4385 case TCP_CLOSE_WAIT: 4386 WRITE_ONCE(sk->sk_err, EPIPE); 4387 break; 4388 case TCP_CLOSE: 4389 return; 4390 default: 4391 WRITE_ONCE(sk->sk_err, ECONNRESET); 4392 } 4393 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4394 smp_wmb(); 4395 4396 tcp_write_queue_purge(sk); 4397 tcp_done(sk); 4398 4399 if (!sock_flag(sk, SOCK_DEAD)) 4400 sk_error_report(sk); 4401 } 4402 4403 /* 4404 * Process the FIN bit. This now behaves as it is supposed to work 4405 * and the FIN takes effect when it is validly part of sequence 4406 * space. Not before when we get holes. 4407 * 4408 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4409 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4410 * TIME-WAIT) 4411 * 4412 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4413 * close and we go into CLOSING (and later onto TIME-WAIT) 4414 * 4415 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4416 */ 4417 void tcp_fin(struct sock *sk) 4418 { 4419 struct tcp_sock *tp = tcp_sk(sk); 4420 4421 inet_csk_schedule_ack(sk); 4422 4423 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4424 sock_set_flag(sk, SOCK_DONE); 4425 4426 switch (sk->sk_state) { 4427 case TCP_SYN_RECV: 4428 case TCP_ESTABLISHED: 4429 /* Move to CLOSE_WAIT */ 4430 tcp_set_state(sk, TCP_CLOSE_WAIT); 4431 inet_csk_enter_pingpong_mode(sk); 4432 break; 4433 4434 case TCP_CLOSE_WAIT: 4435 case TCP_CLOSING: 4436 /* Received a retransmission of the FIN, do 4437 * nothing. 4438 */ 4439 break; 4440 case TCP_LAST_ACK: 4441 /* RFC793: Remain in the LAST-ACK state. */ 4442 break; 4443 4444 case TCP_FIN_WAIT1: 4445 /* This case occurs when a simultaneous close 4446 * happens, we must ack the received FIN and 4447 * enter the CLOSING state. 4448 */ 4449 tcp_send_ack(sk); 4450 tcp_set_state(sk, TCP_CLOSING); 4451 break; 4452 case TCP_FIN_WAIT2: 4453 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4454 tcp_send_ack(sk); 4455 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4456 break; 4457 default: 4458 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4459 * cases we should never reach this piece of code. 4460 */ 4461 pr_err("%s: Impossible, sk->sk_state=%d\n", 4462 __func__, sk->sk_state); 4463 break; 4464 } 4465 4466 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4467 * Probably, we should reset in this case. For now drop them. 4468 */ 4469 skb_rbtree_purge(&tp->out_of_order_queue); 4470 if (tcp_is_sack(tp)) 4471 tcp_sack_reset(&tp->rx_opt); 4472 4473 if (!sock_flag(sk, SOCK_DEAD)) { 4474 sk->sk_state_change(sk); 4475 4476 /* Do not send POLL_HUP for half duplex close. */ 4477 if (sk->sk_shutdown == SHUTDOWN_MASK || 4478 sk->sk_state == TCP_CLOSE) 4479 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4480 else 4481 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4482 } 4483 } 4484 4485 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4486 u32 end_seq) 4487 { 4488 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4489 if (before(seq, sp->start_seq)) 4490 sp->start_seq = seq; 4491 if (after(end_seq, sp->end_seq)) 4492 sp->end_seq = end_seq; 4493 return true; 4494 } 4495 return false; 4496 } 4497 4498 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4499 { 4500 struct tcp_sock *tp = tcp_sk(sk); 4501 4502 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4503 int mib_idx; 4504 4505 if (before(seq, tp->rcv_nxt)) 4506 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4507 else 4508 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4509 4510 NET_INC_STATS(sock_net(sk), mib_idx); 4511 4512 tp->rx_opt.dsack = 1; 4513 tp->duplicate_sack[0].start_seq = seq; 4514 tp->duplicate_sack[0].end_seq = end_seq; 4515 } 4516 } 4517 4518 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4519 { 4520 struct tcp_sock *tp = tcp_sk(sk); 4521 4522 if (!tp->rx_opt.dsack) 4523 tcp_dsack_set(sk, seq, end_seq); 4524 else 4525 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4526 } 4527 4528 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4529 { 4530 /* When the ACK path fails or drops most ACKs, the sender would 4531 * timeout and spuriously retransmit the same segment repeatedly. 4532 * If it seems our ACKs are not reaching the other side, 4533 * based on receiving a duplicate data segment with new flowlabel 4534 * (suggesting the sender suffered an RTO), and we are not already 4535 * repathing due to our own RTO, then rehash the socket to repath our 4536 * packets. 4537 */ 4538 #if IS_ENABLED(CONFIG_IPV6) 4539 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 4540 skb->protocol == htons(ETH_P_IPV6) && 4541 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 4542 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 4543 sk_rethink_txhash(sk)) 4544 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4545 4546 /* Save last flowlabel after a spurious retrans. */ 4547 tcp_save_lrcv_flowlabel(sk, skb); 4548 #endif 4549 } 4550 4551 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4552 { 4553 struct tcp_sock *tp = tcp_sk(sk); 4554 4555 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4556 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4557 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4558 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4559 4560 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4561 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4562 4563 tcp_rcv_spurious_retrans(sk, skb); 4564 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4565 end_seq = tp->rcv_nxt; 4566 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4567 } 4568 } 4569 4570 tcp_send_ack(sk); 4571 } 4572 4573 /* These routines update the SACK block as out-of-order packets arrive or 4574 * in-order packets close up the sequence space. 4575 */ 4576 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4577 { 4578 int this_sack; 4579 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4580 struct tcp_sack_block *swalk = sp + 1; 4581 4582 /* See if the recent change to the first SACK eats into 4583 * or hits the sequence space of other SACK blocks, if so coalesce. 4584 */ 4585 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4586 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4587 int i; 4588 4589 /* Zap SWALK, by moving every further SACK up by one slot. 4590 * Decrease num_sacks. 4591 */ 4592 tp->rx_opt.num_sacks--; 4593 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4594 sp[i] = sp[i + 1]; 4595 continue; 4596 } 4597 this_sack++; 4598 swalk++; 4599 } 4600 } 4601 4602 void tcp_sack_compress_send_ack(struct sock *sk) 4603 { 4604 struct tcp_sock *tp = tcp_sk(sk); 4605 4606 if (!tp->compressed_ack) 4607 return; 4608 4609 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4610 __sock_put(sk); 4611 4612 /* Since we have to send one ack finally, 4613 * substract one from tp->compressed_ack to keep 4614 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4615 */ 4616 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4617 tp->compressed_ack - 1); 4618 4619 tp->compressed_ack = 0; 4620 tcp_send_ack(sk); 4621 } 4622 4623 /* Reasonable amount of sack blocks included in TCP SACK option 4624 * The max is 4, but this becomes 3 if TCP timestamps are there. 4625 * Given that SACK packets might be lost, be conservative and use 2. 4626 */ 4627 #define TCP_SACK_BLOCKS_EXPECTED 2 4628 4629 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4630 { 4631 struct tcp_sock *tp = tcp_sk(sk); 4632 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4633 int cur_sacks = tp->rx_opt.num_sacks; 4634 int this_sack; 4635 4636 if (!cur_sacks) 4637 goto new_sack; 4638 4639 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4640 if (tcp_sack_extend(sp, seq, end_seq)) { 4641 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4642 tcp_sack_compress_send_ack(sk); 4643 /* Rotate this_sack to the first one. */ 4644 for (; this_sack > 0; this_sack--, sp--) 4645 swap(*sp, *(sp - 1)); 4646 if (cur_sacks > 1) 4647 tcp_sack_maybe_coalesce(tp); 4648 return; 4649 } 4650 } 4651 4652 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4653 tcp_sack_compress_send_ack(sk); 4654 4655 /* Could not find an adjacent existing SACK, build a new one, 4656 * put it at the front, and shift everyone else down. We 4657 * always know there is at least one SACK present already here. 4658 * 4659 * If the sack array is full, forget about the last one. 4660 */ 4661 if (this_sack >= TCP_NUM_SACKS) { 4662 this_sack--; 4663 tp->rx_opt.num_sacks--; 4664 sp--; 4665 } 4666 for (; this_sack > 0; this_sack--, sp--) 4667 *sp = *(sp - 1); 4668 4669 new_sack: 4670 /* Build the new head SACK, and we're done. */ 4671 sp->start_seq = seq; 4672 sp->end_seq = end_seq; 4673 tp->rx_opt.num_sacks++; 4674 } 4675 4676 /* RCV.NXT advances, some SACKs should be eaten. */ 4677 4678 static void tcp_sack_remove(struct tcp_sock *tp) 4679 { 4680 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4681 int num_sacks = tp->rx_opt.num_sacks; 4682 int this_sack; 4683 4684 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4685 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4686 tp->rx_opt.num_sacks = 0; 4687 return; 4688 } 4689 4690 for (this_sack = 0; this_sack < num_sacks;) { 4691 /* Check if the start of the sack is covered by RCV.NXT. */ 4692 if (!before(tp->rcv_nxt, sp->start_seq)) { 4693 int i; 4694 4695 /* RCV.NXT must cover all the block! */ 4696 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4697 4698 /* Zap this SACK, by moving forward any other SACKS. */ 4699 for (i = this_sack+1; i < num_sacks; i++) 4700 tp->selective_acks[i-1] = tp->selective_acks[i]; 4701 num_sacks--; 4702 continue; 4703 } 4704 this_sack++; 4705 sp++; 4706 } 4707 tp->rx_opt.num_sacks = num_sacks; 4708 } 4709 4710 /** 4711 * tcp_try_coalesce - try to merge skb to prior one 4712 * @sk: socket 4713 * @to: prior buffer 4714 * @from: buffer to add in queue 4715 * @fragstolen: pointer to boolean 4716 * 4717 * Before queueing skb @from after @to, try to merge them 4718 * to reduce overall memory use and queue lengths, if cost is small. 4719 * Packets in ofo or receive queues can stay a long time. 4720 * Better try to coalesce them right now to avoid future collapses. 4721 * Returns true if caller should free @from instead of queueing it 4722 */ 4723 static bool tcp_try_coalesce(struct sock *sk, 4724 struct sk_buff *to, 4725 struct sk_buff *from, 4726 bool *fragstolen) 4727 { 4728 int delta; 4729 4730 *fragstolen = false; 4731 4732 /* Its possible this segment overlaps with prior segment in queue */ 4733 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4734 return false; 4735 4736 if (!mptcp_skb_can_collapse(to, from)) 4737 return false; 4738 4739 #ifdef CONFIG_TLS_DEVICE 4740 if (from->decrypted != to->decrypted) 4741 return false; 4742 #endif 4743 4744 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4745 return false; 4746 4747 atomic_add(delta, &sk->sk_rmem_alloc); 4748 sk_mem_charge(sk, delta); 4749 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4750 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4751 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4752 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4753 4754 if (TCP_SKB_CB(from)->has_rxtstamp) { 4755 TCP_SKB_CB(to)->has_rxtstamp = true; 4756 to->tstamp = from->tstamp; 4757 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4758 } 4759 4760 return true; 4761 } 4762 4763 static bool tcp_ooo_try_coalesce(struct sock *sk, 4764 struct sk_buff *to, 4765 struct sk_buff *from, 4766 bool *fragstolen) 4767 { 4768 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4769 4770 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4771 if (res) { 4772 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4773 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4774 4775 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4776 } 4777 return res; 4778 } 4779 4780 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb, 4781 enum skb_drop_reason reason) 4782 { 4783 sk_drops_add(sk, skb); 4784 kfree_skb_reason(skb, reason); 4785 } 4786 4787 /* This one checks to see if we can put data from the 4788 * out_of_order queue into the receive_queue. 4789 */ 4790 static void tcp_ofo_queue(struct sock *sk) 4791 { 4792 struct tcp_sock *tp = tcp_sk(sk); 4793 __u32 dsack_high = tp->rcv_nxt; 4794 bool fin, fragstolen, eaten; 4795 struct sk_buff *skb, *tail; 4796 struct rb_node *p; 4797 4798 p = rb_first(&tp->out_of_order_queue); 4799 while (p) { 4800 skb = rb_to_skb(p); 4801 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4802 break; 4803 4804 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4805 __u32 dsack = dsack_high; 4806 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4807 dsack_high = TCP_SKB_CB(skb)->end_seq; 4808 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4809 } 4810 p = rb_next(p); 4811 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4812 4813 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4814 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4815 continue; 4816 } 4817 4818 tail = skb_peek_tail(&sk->sk_receive_queue); 4819 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4820 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4821 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4822 if (!eaten) 4823 __skb_queue_tail(&sk->sk_receive_queue, skb); 4824 else 4825 kfree_skb_partial(skb, fragstolen); 4826 4827 if (unlikely(fin)) { 4828 tcp_fin(sk); 4829 /* tcp_fin() purges tp->out_of_order_queue, 4830 * so we must end this loop right now. 4831 */ 4832 break; 4833 } 4834 } 4835 } 4836 4837 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4838 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4839 4840 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4841 unsigned int size) 4842 { 4843 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4844 !sk_rmem_schedule(sk, skb, size)) { 4845 4846 if (tcp_prune_queue(sk, skb) < 0) 4847 return -1; 4848 4849 while (!sk_rmem_schedule(sk, skb, size)) { 4850 if (!tcp_prune_ofo_queue(sk, skb)) 4851 return -1; 4852 } 4853 } 4854 return 0; 4855 } 4856 4857 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4858 { 4859 struct tcp_sock *tp = tcp_sk(sk); 4860 struct rb_node **p, *parent; 4861 struct sk_buff *skb1; 4862 u32 seq, end_seq; 4863 bool fragstolen; 4864 4865 tcp_save_lrcv_flowlabel(sk, skb); 4866 tcp_ecn_check_ce(sk, skb); 4867 4868 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4869 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4870 sk->sk_data_ready(sk); 4871 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4872 return; 4873 } 4874 4875 /* Disable header prediction. */ 4876 tp->pred_flags = 0; 4877 inet_csk_schedule_ack(sk); 4878 4879 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4880 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4881 seq = TCP_SKB_CB(skb)->seq; 4882 end_seq = TCP_SKB_CB(skb)->end_seq; 4883 4884 p = &tp->out_of_order_queue.rb_node; 4885 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4886 /* Initial out of order segment, build 1 SACK. */ 4887 if (tcp_is_sack(tp)) { 4888 tp->rx_opt.num_sacks = 1; 4889 tp->selective_acks[0].start_seq = seq; 4890 tp->selective_acks[0].end_seq = end_seq; 4891 } 4892 rb_link_node(&skb->rbnode, NULL, p); 4893 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4894 tp->ooo_last_skb = skb; 4895 goto end; 4896 } 4897 4898 /* In the typical case, we are adding an skb to the end of the list. 4899 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4900 */ 4901 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4902 skb, &fragstolen)) { 4903 coalesce_done: 4904 /* For non sack flows, do not grow window to force DUPACK 4905 * and trigger fast retransmit. 4906 */ 4907 if (tcp_is_sack(tp)) 4908 tcp_grow_window(sk, skb, true); 4909 kfree_skb_partial(skb, fragstolen); 4910 skb = NULL; 4911 goto add_sack; 4912 } 4913 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4914 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4915 parent = &tp->ooo_last_skb->rbnode; 4916 p = &parent->rb_right; 4917 goto insert; 4918 } 4919 4920 /* Find place to insert this segment. Handle overlaps on the way. */ 4921 parent = NULL; 4922 while (*p) { 4923 parent = *p; 4924 skb1 = rb_to_skb(parent); 4925 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4926 p = &parent->rb_left; 4927 continue; 4928 } 4929 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4930 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4931 /* All the bits are present. Drop. */ 4932 NET_INC_STATS(sock_net(sk), 4933 LINUX_MIB_TCPOFOMERGE); 4934 tcp_drop_reason(sk, skb, 4935 SKB_DROP_REASON_TCP_OFOMERGE); 4936 skb = NULL; 4937 tcp_dsack_set(sk, seq, end_seq); 4938 goto add_sack; 4939 } 4940 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4941 /* Partial overlap. */ 4942 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4943 } else { 4944 /* skb's seq == skb1's seq and skb covers skb1. 4945 * Replace skb1 with skb. 4946 */ 4947 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4948 &tp->out_of_order_queue); 4949 tcp_dsack_extend(sk, 4950 TCP_SKB_CB(skb1)->seq, 4951 TCP_SKB_CB(skb1)->end_seq); 4952 NET_INC_STATS(sock_net(sk), 4953 LINUX_MIB_TCPOFOMERGE); 4954 tcp_drop_reason(sk, skb1, 4955 SKB_DROP_REASON_TCP_OFOMERGE); 4956 goto merge_right; 4957 } 4958 } else if (tcp_ooo_try_coalesce(sk, skb1, 4959 skb, &fragstolen)) { 4960 goto coalesce_done; 4961 } 4962 p = &parent->rb_right; 4963 } 4964 insert: 4965 /* Insert segment into RB tree. */ 4966 rb_link_node(&skb->rbnode, parent, p); 4967 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4968 4969 merge_right: 4970 /* Remove other segments covered by skb. */ 4971 while ((skb1 = skb_rb_next(skb)) != NULL) { 4972 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4973 break; 4974 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4975 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4976 end_seq); 4977 break; 4978 } 4979 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4980 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4981 TCP_SKB_CB(skb1)->end_seq); 4982 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4983 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 4984 } 4985 /* If there is no skb after us, we are the last_skb ! */ 4986 if (!skb1) 4987 tp->ooo_last_skb = skb; 4988 4989 add_sack: 4990 if (tcp_is_sack(tp)) 4991 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4992 end: 4993 if (skb) { 4994 /* For non sack flows, do not grow window to force DUPACK 4995 * and trigger fast retransmit. 4996 */ 4997 if (tcp_is_sack(tp)) 4998 tcp_grow_window(sk, skb, false); 4999 skb_condense(skb); 5000 skb_set_owner_r(skb, sk); 5001 } 5002 } 5003 5004 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5005 bool *fragstolen) 5006 { 5007 int eaten; 5008 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5009 5010 eaten = (tail && 5011 tcp_try_coalesce(sk, tail, 5012 skb, fragstolen)) ? 1 : 0; 5013 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5014 if (!eaten) { 5015 __skb_queue_tail(&sk->sk_receive_queue, skb); 5016 skb_set_owner_r(skb, sk); 5017 } 5018 return eaten; 5019 } 5020 5021 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5022 { 5023 struct sk_buff *skb; 5024 int err = -ENOMEM; 5025 int data_len = 0; 5026 bool fragstolen; 5027 5028 if (size == 0) 5029 return 0; 5030 5031 if (size > PAGE_SIZE) { 5032 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5033 5034 data_len = npages << PAGE_SHIFT; 5035 size = data_len + (size & ~PAGE_MASK); 5036 } 5037 skb = alloc_skb_with_frags(size - data_len, data_len, 5038 PAGE_ALLOC_COSTLY_ORDER, 5039 &err, sk->sk_allocation); 5040 if (!skb) 5041 goto err; 5042 5043 skb_put(skb, size - data_len); 5044 skb->data_len = data_len; 5045 skb->len = size; 5046 5047 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5048 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5049 goto err_free; 5050 } 5051 5052 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5053 if (err) 5054 goto err_free; 5055 5056 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5057 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5058 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5059 5060 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5061 WARN_ON_ONCE(fragstolen); /* should not happen */ 5062 __kfree_skb(skb); 5063 } 5064 return size; 5065 5066 err_free: 5067 kfree_skb(skb); 5068 err: 5069 return err; 5070 5071 } 5072 5073 void tcp_data_ready(struct sock *sk) 5074 { 5075 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5076 sk->sk_data_ready(sk); 5077 } 5078 5079 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5080 { 5081 struct tcp_sock *tp = tcp_sk(sk); 5082 enum skb_drop_reason reason; 5083 bool fragstolen; 5084 int eaten; 5085 5086 /* If a subflow has been reset, the packet should not continue 5087 * to be processed, drop the packet. 5088 */ 5089 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5090 __kfree_skb(skb); 5091 return; 5092 } 5093 5094 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5095 __kfree_skb(skb); 5096 return; 5097 } 5098 skb_dst_drop(skb); 5099 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5100 5101 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5102 tp->rx_opt.dsack = 0; 5103 5104 /* Queue data for delivery to the user. 5105 * Packets in sequence go to the receive queue. 5106 * Out of sequence packets to the out_of_order_queue. 5107 */ 5108 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5109 if (tcp_receive_window(tp) == 0) { 5110 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5111 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5112 goto out_of_window; 5113 } 5114 5115 /* Ok. In sequence. In window. */ 5116 queue_and_out: 5117 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5118 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5119 inet_csk(sk)->icsk_ack.pending |= 5120 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5121 inet_csk_schedule_ack(sk); 5122 sk->sk_data_ready(sk); 5123 5124 if (skb_queue_len(&sk->sk_receive_queue)) { 5125 reason = SKB_DROP_REASON_PROTO_MEM; 5126 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5127 goto drop; 5128 } 5129 sk_forced_mem_schedule(sk, skb->truesize); 5130 } 5131 5132 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5133 if (skb->len) 5134 tcp_event_data_recv(sk, skb); 5135 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5136 tcp_fin(sk); 5137 5138 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5139 tcp_ofo_queue(sk); 5140 5141 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5142 * gap in queue is filled. 5143 */ 5144 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5145 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5146 } 5147 5148 if (tp->rx_opt.num_sacks) 5149 tcp_sack_remove(tp); 5150 5151 tcp_fast_path_check(sk); 5152 5153 if (eaten > 0) 5154 kfree_skb_partial(skb, fragstolen); 5155 if (!sock_flag(sk, SOCK_DEAD)) 5156 tcp_data_ready(sk); 5157 return; 5158 } 5159 5160 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5161 tcp_rcv_spurious_retrans(sk, skb); 5162 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5163 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5164 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5165 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5166 5167 out_of_window: 5168 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5169 inet_csk_schedule_ack(sk); 5170 drop: 5171 tcp_drop_reason(sk, skb, reason); 5172 return; 5173 } 5174 5175 /* Out of window. F.e. zero window probe. */ 5176 if (!before(TCP_SKB_CB(skb)->seq, 5177 tp->rcv_nxt + tcp_receive_window(tp))) { 5178 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5179 goto out_of_window; 5180 } 5181 5182 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5183 /* Partial packet, seq < rcv_next < end_seq */ 5184 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5185 5186 /* If window is closed, drop tail of packet. But after 5187 * remembering D-SACK for its head made in previous line. 5188 */ 5189 if (!tcp_receive_window(tp)) { 5190 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5191 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5192 goto out_of_window; 5193 } 5194 goto queue_and_out; 5195 } 5196 5197 tcp_data_queue_ofo(sk, skb); 5198 } 5199 5200 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5201 { 5202 if (list) 5203 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5204 5205 return skb_rb_next(skb); 5206 } 5207 5208 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5209 struct sk_buff_head *list, 5210 struct rb_root *root) 5211 { 5212 struct sk_buff *next = tcp_skb_next(skb, list); 5213 5214 if (list) 5215 __skb_unlink(skb, list); 5216 else 5217 rb_erase(&skb->rbnode, root); 5218 5219 __kfree_skb(skb); 5220 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5221 5222 return next; 5223 } 5224 5225 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5226 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5227 { 5228 struct rb_node **p = &root->rb_node; 5229 struct rb_node *parent = NULL; 5230 struct sk_buff *skb1; 5231 5232 while (*p) { 5233 parent = *p; 5234 skb1 = rb_to_skb(parent); 5235 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5236 p = &parent->rb_left; 5237 else 5238 p = &parent->rb_right; 5239 } 5240 rb_link_node(&skb->rbnode, parent, p); 5241 rb_insert_color(&skb->rbnode, root); 5242 } 5243 5244 /* Collapse contiguous sequence of skbs head..tail with 5245 * sequence numbers start..end. 5246 * 5247 * If tail is NULL, this means until the end of the queue. 5248 * 5249 * Segments with FIN/SYN are not collapsed (only because this 5250 * simplifies code) 5251 */ 5252 static void 5253 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5254 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5255 { 5256 struct sk_buff *skb = head, *n; 5257 struct sk_buff_head tmp; 5258 bool end_of_skbs; 5259 5260 /* First, check that queue is collapsible and find 5261 * the point where collapsing can be useful. 5262 */ 5263 restart: 5264 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5265 n = tcp_skb_next(skb, list); 5266 5267 /* No new bits? It is possible on ofo queue. */ 5268 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5269 skb = tcp_collapse_one(sk, skb, list, root); 5270 if (!skb) 5271 break; 5272 goto restart; 5273 } 5274 5275 /* The first skb to collapse is: 5276 * - not SYN/FIN and 5277 * - bloated or contains data before "start" or 5278 * overlaps to the next one and mptcp allow collapsing. 5279 */ 5280 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5281 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5282 before(TCP_SKB_CB(skb)->seq, start))) { 5283 end_of_skbs = false; 5284 break; 5285 } 5286 5287 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5288 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5289 end_of_skbs = false; 5290 break; 5291 } 5292 5293 /* Decided to skip this, advance start seq. */ 5294 start = TCP_SKB_CB(skb)->end_seq; 5295 } 5296 if (end_of_skbs || 5297 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5298 return; 5299 5300 __skb_queue_head_init(&tmp); 5301 5302 while (before(start, end)) { 5303 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5304 struct sk_buff *nskb; 5305 5306 nskb = alloc_skb(copy, GFP_ATOMIC); 5307 if (!nskb) 5308 break; 5309 5310 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5311 #ifdef CONFIG_TLS_DEVICE 5312 nskb->decrypted = skb->decrypted; 5313 #endif 5314 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5315 if (list) 5316 __skb_queue_before(list, skb, nskb); 5317 else 5318 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5319 skb_set_owner_r(nskb, sk); 5320 mptcp_skb_ext_move(nskb, skb); 5321 5322 /* Copy data, releasing collapsed skbs. */ 5323 while (copy > 0) { 5324 int offset = start - TCP_SKB_CB(skb)->seq; 5325 int size = TCP_SKB_CB(skb)->end_seq - start; 5326 5327 BUG_ON(offset < 0); 5328 if (size > 0) { 5329 size = min(copy, size); 5330 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5331 BUG(); 5332 TCP_SKB_CB(nskb)->end_seq += size; 5333 copy -= size; 5334 start += size; 5335 } 5336 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5337 skb = tcp_collapse_one(sk, skb, list, root); 5338 if (!skb || 5339 skb == tail || 5340 !mptcp_skb_can_collapse(nskb, skb) || 5341 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5342 goto end; 5343 #ifdef CONFIG_TLS_DEVICE 5344 if (skb->decrypted != nskb->decrypted) 5345 goto end; 5346 #endif 5347 } 5348 } 5349 } 5350 end: 5351 skb_queue_walk_safe(&tmp, skb, n) 5352 tcp_rbtree_insert(root, skb); 5353 } 5354 5355 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5356 * and tcp_collapse() them until all the queue is collapsed. 5357 */ 5358 static void tcp_collapse_ofo_queue(struct sock *sk) 5359 { 5360 struct tcp_sock *tp = tcp_sk(sk); 5361 u32 range_truesize, sum_tiny = 0; 5362 struct sk_buff *skb, *head; 5363 u32 start, end; 5364 5365 skb = skb_rb_first(&tp->out_of_order_queue); 5366 new_range: 5367 if (!skb) { 5368 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5369 return; 5370 } 5371 start = TCP_SKB_CB(skb)->seq; 5372 end = TCP_SKB_CB(skb)->end_seq; 5373 range_truesize = skb->truesize; 5374 5375 for (head = skb;;) { 5376 skb = skb_rb_next(skb); 5377 5378 /* Range is terminated when we see a gap or when 5379 * we are at the queue end. 5380 */ 5381 if (!skb || 5382 after(TCP_SKB_CB(skb)->seq, end) || 5383 before(TCP_SKB_CB(skb)->end_seq, start)) { 5384 /* Do not attempt collapsing tiny skbs */ 5385 if (range_truesize != head->truesize || 5386 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5387 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5388 head, skb, start, end); 5389 } else { 5390 sum_tiny += range_truesize; 5391 if (sum_tiny > sk->sk_rcvbuf >> 3) 5392 return; 5393 } 5394 goto new_range; 5395 } 5396 5397 range_truesize += skb->truesize; 5398 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5399 start = TCP_SKB_CB(skb)->seq; 5400 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5401 end = TCP_SKB_CB(skb)->end_seq; 5402 } 5403 } 5404 5405 /* 5406 * Clean the out-of-order queue to make room. 5407 * We drop high sequences packets to : 5408 * 1) Let a chance for holes to be filled. 5409 * This means we do not drop packets from ooo queue if their sequence 5410 * is before incoming packet sequence. 5411 * 2) not add too big latencies if thousands of packets sit there. 5412 * (But if application shrinks SO_RCVBUF, we could still end up 5413 * freeing whole queue here) 5414 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5415 * 5416 * Return true if queue has shrunk. 5417 */ 5418 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5419 { 5420 struct tcp_sock *tp = tcp_sk(sk); 5421 struct rb_node *node, *prev; 5422 bool pruned = false; 5423 int goal; 5424 5425 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5426 return false; 5427 5428 goal = sk->sk_rcvbuf >> 3; 5429 node = &tp->ooo_last_skb->rbnode; 5430 5431 do { 5432 struct sk_buff *skb = rb_to_skb(node); 5433 5434 /* If incoming skb would land last in ofo queue, stop pruning. */ 5435 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5436 break; 5437 pruned = true; 5438 prev = rb_prev(node); 5439 rb_erase(node, &tp->out_of_order_queue); 5440 goal -= skb->truesize; 5441 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5442 tp->ooo_last_skb = rb_to_skb(prev); 5443 if (!prev || goal <= 0) { 5444 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5445 !tcp_under_memory_pressure(sk)) 5446 break; 5447 goal = sk->sk_rcvbuf >> 3; 5448 } 5449 node = prev; 5450 } while (node); 5451 5452 if (pruned) { 5453 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5454 /* Reset SACK state. A conforming SACK implementation will 5455 * do the same at a timeout based retransmit. When a connection 5456 * is in a sad state like this, we care only about integrity 5457 * of the connection not performance. 5458 */ 5459 if (tp->rx_opt.sack_ok) 5460 tcp_sack_reset(&tp->rx_opt); 5461 } 5462 return pruned; 5463 } 5464 5465 /* Reduce allocated memory if we can, trying to get 5466 * the socket within its memory limits again. 5467 * 5468 * Return less than zero if we should start dropping frames 5469 * until the socket owning process reads some of the data 5470 * to stabilize the situation. 5471 */ 5472 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5473 { 5474 struct tcp_sock *tp = tcp_sk(sk); 5475 5476 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5477 5478 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5479 tcp_clamp_window(sk); 5480 else if (tcp_under_memory_pressure(sk)) 5481 tcp_adjust_rcv_ssthresh(sk); 5482 5483 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5484 return 0; 5485 5486 tcp_collapse_ofo_queue(sk); 5487 if (!skb_queue_empty(&sk->sk_receive_queue)) 5488 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5489 skb_peek(&sk->sk_receive_queue), 5490 NULL, 5491 tp->copied_seq, tp->rcv_nxt); 5492 5493 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5494 return 0; 5495 5496 /* Collapsing did not help, destructive actions follow. 5497 * This must not ever occur. */ 5498 5499 tcp_prune_ofo_queue(sk, in_skb); 5500 5501 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5502 return 0; 5503 5504 /* If we are really being abused, tell the caller to silently 5505 * drop receive data on the floor. It will get retransmitted 5506 * and hopefully then we'll have sufficient space. 5507 */ 5508 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5509 5510 /* Massive buffer overcommit. */ 5511 tp->pred_flags = 0; 5512 return -1; 5513 } 5514 5515 static bool tcp_should_expand_sndbuf(struct sock *sk) 5516 { 5517 const struct tcp_sock *tp = tcp_sk(sk); 5518 5519 /* If the user specified a specific send buffer setting, do 5520 * not modify it. 5521 */ 5522 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5523 return false; 5524 5525 /* If we are under global TCP memory pressure, do not expand. */ 5526 if (tcp_under_memory_pressure(sk)) { 5527 int unused_mem = sk_unused_reserved_mem(sk); 5528 5529 /* Adjust sndbuf according to reserved mem. But make sure 5530 * it never goes below SOCK_MIN_SNDBUF. 5531 * See sk_stream_moderate_sndbuf() for more details. 5532 */ 5533 if (unused_mem > SOCK_MIN_SNDBUF) 5534 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5535 5536 return false; 5537 } 5538 5539 /* If we are under soft global TCP memory pressure, do not expand. */ 5540 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5541 return false; 5542 5543 /* If we filled the congestion window, do not expand. */ 5544 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5545 return false; 5546 5547 return true; 5548 } 5549 5550 static void tcp_new_space(struct sock *sk) 5551 { 5552 struct tcp_sock *tp = tcp_sk(sk); 5553 5554 if (tcp_should_expand_sndbuf(sk)) { 5555 tcp_sndbuf_expand(sk); 5556 tp->snd_cwnd_stamp = tcp_jiffies32; 5557 } 5558 5559 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5560 } 5561 5562 /* Caller made space either from: 5563 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5564 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5565 * 5566 * We might be able to generate EPOLLOUT to the application if: 5567 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5568 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5569 * small enough that tcp_stream_memory_free() decides it 5570 * is time to generate EPOLLOUT. 5571 */ 5572 void tcp_check_space(struct sock *sk) 5573 { 5574 /* pairs with tcp_poll() */ 5575 smp_mb(); 5576 if (sk->sk_socket && 5577 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5578 tcp_new_space(sk); 5579 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5580 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5581 } 5582 } 5583 5584 static inline void tcp_data_snd_check(struct sock *sk) 5585 { 5586 tcp_push_pending_frames(sk); 5587 tcp_check_space(sk); 5588 } 5589 5590 /* 5591 * Check if sending an ack is needed. 5592 */ 5593 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5594 { 5595 struct tcp_sock *tp = tcp_sk(sk); 5596 unsigned long rtt, delay; 5597 5598 /* More than one full frame received... */ 5599 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5600 /* ... and right edge of window advances far enough. 5601 * (tcp_recvmsg() will send ACK otherwise). 5602 * If application uses SO_RCVLOWAT, we want send ack now if 5603 * we have not received enough bytes to satisfy the condition. 5604 */ 5605 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5606 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5607 /* We ACK each frame or... */ 5608 tcp_in_quickack_mode(sk) || 5609 /* Protocol state mandates a one-time immediate ACK */ 5610 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5611 /* If we are running from __release_sock() in user context, 5612 * Defer the ack until tcp_release_cb(). 5613 */ 5614 if (sock_owned_by_user_nocheck(sk) && 5615 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { 5616 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5617 return; 5618 } 5619 send_now: 5620 tcp_send_ack(sk); 5621 return; 5622 } 5623 5624 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5625 tcp_send_delayed_ack(sk); 5626 return; 5627 } 5628 5629 if (!tcp_is_sack(tp) || 5630 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5631 goto send_now; 5632 5633 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5634 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5635 tp->dup_ack_counter = 0; 5636 } 5637 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5638 tp->dup_ack_counter++; 5639 goto send_now; 5640 } 5641 tp->compressed_ack++; 5642 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5643 return; 5644 5645 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5646 5647 rtt = tp->rcv_rtt_est.rtt_us; 5648 if (tp->srtt_us && tp->srtt_us < rtt) 5649 rtt = tp->srtt_us; 5650 5651 delay = min_t(unsigned long, 5652 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5653 rtt * (NSEC_PER_USEC >> 3)/20); 5654 sock_hold(sk); 5655 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5656 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5657 HRTIMER_MODE_REL_PINNED_SOFT); 5658 } 5659 5660 static inline void tcp_ack_snd_check(struct sock *sk) 5661 { 5662 if (!inet_csk_ack_scheduled(sk)) { 5663 /* We sent a data segment already. */ 5664 return; 5665 } 5666 __tcp_ack_snd_check(sk, 1); 5667 } 5668 5669 /* 5670 * This routine is only called when we have urgent data 5671 * signaled. Its the 'slow' part of tcp_urg. It could be 5672 * moved inline now as tcp_urg is only called from one 5673 * place. We handle URGent data wrong. We have to - as 5674 * BSD still doesn't use the correction from RFC961. 5675 * For 1003.1g we should support a new option TCP_STDURG to permit 5676 * either form (or just set the sysctl tcp_stdurg). 5677 */ 5678 5679 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5680 { 5681 struct tcp_sock *tp = tcp_sk(sk); 5682 u32 ptr = ntohs(th->urg_ptr); 5683 5684 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5685 ptr--; 5686 ptr += ntohl(th->seq); 5687 5688 /* Ignore urgent data that we've already seen and read. */ 5689 if (after(tp->copied_seq, ptr)) 5690 return; 5691 5692 /* Do not replay urg ptr. 5693 * 5694 * NOTE: interesting situation not covered by specs. 5695 * Misbehaving sender may send urg ptr, pointing to segment, 5696 * which we already have in ofo queue. We are not able to fetch 5697 * such data and will stay in TCP_URG_NOTYET until will be eaten 5698 * by recvmsg(). Seems, we are not obliged to handle such wicked 5699 * situations. But it is worth to think about possibility of some 5700 * DoSes using some hypothetical application level deadlock. 5701 */ 5702 if (before(ptr, tp->rcv_nxt)) 5703 return; 5704 5705 /* Do we already have a newer (or duplicate) urgent pointer? */ 5706 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5707 return; 5708 5709 /* Tell the world about our new urgent pointer. */ 5710 sk_send_sigurg(sk); 5711 5712 /* We may be adding urgent data when the last byte read was 5713 * urgent. To do this requires some care. We cannot just ignore 5714 * tp->copied_seq since we would read the last urgent byte again 5715 * as data, nor can we alter copied_seq until this data arrives 5716 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5717 * 5718 * NOTE. Double Dutch. Rendering to plain English: author of comment 5719 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5720 * and expect that both A and B disappear from stream. This is _wrong_. 5721 * Though this happens in BSD with high probability, this is occasional. 5722 * Any application relying on this is buggy. Note also, that fix "works" 5723 * only in this artificial test. Insert some normal data between A and B and we will 5724 * decline of BSD again. Verdict: it is better to remove to trap 5725 * buggy users. 5726 */ 5727 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5728 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5729 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5730 tp->copied_seq++; 5731 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5732 __skb_unlink(skb, &sk->sk_receive_queue); 5733 __kfree_skb(skb); 5734 } 5735 } 5736 5737 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5738 WRITE_ONCE(tp->urg_seq, ptr); 5739 5740 /* Disable header prediction. */ 5741 tp->pred_flags = 0; 5742 } 5743 5744 /* This is the 'fast' part of urgent handling. */ 5745 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5746 { 5747 struct tcp_sock *tp = tcp_sk(sk); 5748 5749 /* Check if we get a new urgent pointer - normally not. */ 5750 if (unlikely(th->urg)) 5751 tcp_check_urg(sk, th); 5752 5753 /* Do we wait for any urgent data? - normally not... */ 5754 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5755 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5756 th->syn; 5757 5758 /* Is the urgent pointer pointing into this packet? */ 5759 if (ptr < skb->len) { 5760 u8 tmp; 5761 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5762 BUG(); 5763 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5764 if (!sock_flag(sk, SOCK_DEAD)) 5765 sk->sk_data_ready(sk); 5766 } 5767 } 5768 } 5769 5770 /* Accept RST for rcv_nxt - 1 after a FIN. 5771 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5772 * FIN is sent followed by a RST packet. The RST is sent with the same 5773 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5774 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5775 * ACKs on the closed socket. In addition middleboxes can drop either the 5776 * challenge ACK or a subsequent RST. 5777 */ 5778 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5779 { 5780 const struct tcp_sock *tp = tcp_sk(sk); 5781 5782 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5783 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5784 TCPF_CLOSING)); 5785 } 5786 5787 /* Does PAWS and seqno based validation of an incoming segment, flags will 5788 * play significant role here. 5789 */ 5790 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5791 const struct tcphdr *th, int syn_inerr) 5792 { 5793 struct tcp_sock *tp = tcp_sk(sk); 5794 SKB_DR(reason); 5795 5796 /* RFC1323: H1. Apply PAWS check first. */ 5797 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5798 tp->rx_opt.saw_tstamp && 5799 tcp_paws_discard(sk, skb)) { 5800 if (!th->rst) { 5801 if (unlikely(th->syn)) 5802 goto syn_challenge; 5803 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5804 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5805 LINUX_MIB_TCPACKSKIPPEDPAWS, 5806 &tp->last_oow_ack_time)) 5807 tcp_send_dupack(sk, skb); 5808 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 5809 goto discard; 5810 } 5811 /* Reset is accepted even if it did not pass PAWS. */ 5812 } 5813 5814 /* Step 1: check sequence number */ 5815 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5816 if (reason) { 5817 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5818 * (RST) segments are validated by checking their SEQ-fields." 5819 * And page 69: "If an incoming segment is not acceptable, 5820 * an acknowledgment should be sent in reply (unless the RST 5821 * bit is set, if so drop the segment and return)". 5822 */ 5823 if (!th->rst) { 5824 if (th->syn) 5825 goto syn_challenge; 5826 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5827 LINUX_MIB_TCPACKSKIPPEDSEQ, 5828 &tp->last_oow_ack_time)) 5829 tcp_send_dupack(sk, skb); 5830 } else if (tcp_reset_check(sk, skb)) { 5831 goto reset; 5832 } 5833 goto discard; 5834 } 5835 5836 /* Step 2: check RST bit */ 5837 if (th->rst) { 5838 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5839 * FIN and SACK too if available): 5840 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5841 * the right-most SACK block, 5842 * then 5843 * RESET the connection 5844 * else 5845 * Send a challenge ACK 5846 */ 5847 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5848 tcp_reset_check(sk, skb)) 5849 goto reset; 5850 5851 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5852 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5853 int max_sack = sp[0].end_seq; 5854 int this_sack; 5855 5856 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5857 ++this_sack) { 5858 max_sack = after(sp[this_sack].end_seq, 5859 max_sack) ? 5860 sp[this_sack].end_seq : max_sack; 5861 } 5862 5863 if (TCP_SKB_CB(skb)->seq == max_sack) 5864 goto reset; 5865 } 5866 5867 /* Disable TFO if RST is out-of-order 5868 * and no data has been received 5869 * for current active TFO socket 5870 */ 5871 if (tp->syn_fastopen && !tp->data_segs_in && 5872 sk->sk_state == TCP_ESTABLISHED) 5873 tcp_fastopen_active_disable(sk); 5874 tcp_send_challenge_ack(sk); 5875 SKB_DR_SET(reason, TCP_RESET); 5876 goto discard; 5877 } 5878 5879 /* step 3: check security and precedence [ignored] */ 5880 5881 /* step 4: Check for a SYN 5882 * RFC 5961 4.2 : Send a challenge ack 5883 */ 5884 if (th->syn) { 5885 syn_challenge: 5886 if (syn_inerr) 5887 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5888 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5889 tcp_send_challenge_ack(sk); 5890 SKB_DR_SET(reason, TCP_INVALID_SYN); 5891 goto discard; 5892 } 5893 5894 bpf_skops_parse_hdr(sk, skb); 5895 5896 return true; 5897 5898 discard: 5899 tcp_drop_reason(sk, skb, reason); 5900 return false; 5901 5902 reset: 5903 tcp_reset(sk, skb); 5904 __kfree_skb(skb); 5905 return false; 5906 } 5907 5908 /* 5909 * TCP receive function for the ESTABLISHED state. 5910 * 5911 * It is split into a fast path and a slow path. The fast path is 5912 * disabled when: 5913 * - A zero window was announced from us - zero window probing 5914 * is only handled properly in the slow path. 5915 * - Out of order segments arrived. 5916 * - Urgent data is expected. 5917 * - There is no buffer space left 5918 * - Unexpected TCP flags/window values/header lengths are received 5919 * (detected by checking the TCP header against pred_flags) 5920 * - Data is sent in both directions. Fast path only supports pure senders 5921 * or pure receivers (this means either the sequence number or the ack 5922 * value must stay constant) 5923 * - Unexpected TCP option. 5924 * 5925 * When these conditions are not satisfied it drops into a standard 5926 * receive procedure patterned after RFC793 to handle all cases. 5927 * The first three cases are guaranteed by proper pred_flags setting, 5928 * the rest is checked inline. Fast processing is turned on in 5929 * tcp_data_queue when everything is OK. 5930 */ 5931 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5932 { 5933 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 5934 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5935 struct tcp_sock *tp = tcp_sk(sk); 5936 unsigned int len = skb->len; 5937 5938 /* TCP congestion window tracking */ 5939 trace_tcp_probe(sk, skb); 5940 5941 tcp_mstamp_refresh(tp); 5942 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 5943 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5944 /* 5945 * Header prediction. 5946 * The code loosely follows the one in the famous 5947 * "30 instruction TCP receive" Van Jacobson mail. 5948 * 5949 * Van's trick is to deposit buffers into socket queue 5950 * on a device interrupt, to call tcp_recv function 5951 * on the receive process context and checksum and copy 5952 * the buffer to user space. smart... 5953 * 5954 * Our current scheme is not silly either but we take the 5955 * extra cost of the net_bh soft interrupt processing... 5956 * We do checksum and copy also but from device to kernel. 5957 */ 5958 5959 tp->rx_opt.saw_tstamp = 0; 5960 5961 /* pred_flags is 0xS?10 << 16 + snd_wnd 5962 * if header_prediction is to be made 5963 * 'S' will always be tp->tcp_header_len >> 2 5964 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5965 * turn it off (when there are holes in the receive 5966 * space for instance) 5967 * PSH flag is ignored. 5968 */ 5969 5970 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5971 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5972 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5973 int tcp_header_len = tp->tcp_header_len; 5974 5975 /* Timestamp header prediction: tcp_header_len 5976 * is automatically equal to th->doff*4 due to pred_flags 5977 * match. 5978 */ 5979 5980 /* Check timestamp */ 5981 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5982 /* No? Slow path! */ 5983 if (!tcp_parse_aligned_timestamp(tp, th)) 5984 goto slow_path; 5985 5986 /* If PAWS failed, check it more carefully in slow path */ 5987 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5988 goto slow_path; 5989 5990 /* DO NOT update ts_recent here, if checksum fails 5991 * and timestamp was corrupted part, it will result 5992 * in a hung connection since we will drop all 5993 * future packets due to the PAWS test. 5994 */ 5995 } 5996 5997 if (len <= tcp_header_len) { 5998 /* Bulk data transfer: sender */ 5999 if (len == tcp_header_len) { 6000 /* Predicted packet is in window by definition. 6001 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6002 * Hence, check seq<=rcv_wup reduces to: 6003 */ 6004 if (tcp_header_len == 6005 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6006 tp->rcv_nxt == tp->rcv_wup) 6007 tcp_store_ts_recent(tp); 6008 6009 /* We know that such packets are checksummed 6010 * on entry. 6011 */ 6012 tcp_ack(sk, skb, 0); 6013 __kfree_skb(skb); 6014 tcp_data_snd_check(sk); 6015 /* When receiving pure ack in fast path, update 6016 * last ts ecr directly instead of calling 6017 * tcp_rcv_rtt_measure_ts() 6018 */ 6019 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6020 return; 6021 } else { /* Header too small */ 6022 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6023 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6024 goto discard; 6025 } 6026 } else { 6027 int eaten = 0; 6028 bool fragstolen = false; 6029 6030 if (tcp_checksum_complete(skb)) 6031 goto csum_error; 6032 6033 if ((int)skb->truesize > sk->sk_forward_alloc) 6034 goto step5; 6035 6036 /* Predicted packet is in window by definition. 6037 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6038 * Hence, check seq<=rcv_wup reduces to: 6039 */ 6040 if (tcp_header_len == 6041 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6042 tp->rcv_nxt == tp->rcv_wup) 6043 tcp_store_ts_recent(tp); 6044 6045 tcp_rcv_rtt_measure_ts(sk, skb); 6046 6047 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6048 6049 /* Bulk data transfer: receiver */ 6050 skb_dst_drop(skb); 6051 __skb_pull(skb, tcp_header_len); 6052 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6053 6054 tcp_event_data_recv(sk, skb); 6055 6056 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6057 /* Well, only one small jumplet in fast path... */ 6058 tcp_ack(sk, skb, FLAG_DATA); 6059 tcp_data_snd_check(sk); 6060 if (!inet_csk_ack_scheduled(sk)) 6061 goto no_ack; 6062 } else { 6063 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6064 } 6065 6066 __tcp_ack_snd_check(sk, 0); 6067 no_ack: 6068 if (eaten) 6069 kfree_skb_partial(skb, fragstolen); 6070 tcp_data_ready(sk); 6071 return; 6072 } 6073 } 6074 6075 slow_path: 6076 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6077 goto csum_error; 6078 6079 if (!th->ack && !th->rst && !th->syn) { 6080 reason = SKB_DROP_REASON_TCP_FLAGS; 6081 goto discard; 6082 } 6083 6084 /* 6085 * Standard slow path. 6086 */ 6087 6088 if (!tcp_validate_incoming(sk, skb, th, 1)) 6089 return; 6090 6091 step5: 6092 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6093 if ((int)reason < 0) { 6094 reason = -reason; 6095 goto discard; 6096 } 6097 tcp_rcv_rtt_measure_ts(sk, skb); 6098 6099 /* Process urgent data. */ 6100 tcp_urg(sk, skb, th); 6101 6102 /* step 7: process the segment text */ 6103 tcp_data_queue(sk, skb); 6104 6105 tcp_data_snd_check(sk); 6106 tcp_ack_snd_check(sk); 6107 return; 6108 6109 csum_error: 6110 reason = SKB_DROP_REASON_TCP_CSUM; 6111 trace_tcp_bad_csum(skb); 6112 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6113 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6114 6115 discard: 6116 tcp_drop_reason(sk, skb, reason); 6117 } 6118 EXPORT_SYMBOL(tcp_rcv_established); 6119 6120 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6121 { 6122 struct inet_connection_sock *icsk = inet_csk(sk); 6123 struct tcp_sock *tp = tcp_sk(sk); 6124 6125 tcp_mtup_init(sk); 6126 icsk->icsk_af_ops->rebuild_header(sk); 6127 tcp_init_metrics(sk); 6128 6129 /* Initialize the congestion window to start the transfer. 6130 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6131 * retransmitted. In light of RFC6298 more aggressive 1sec 6132 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6133 * retransmission has occurred. 6134 */ 6135 if (tp->total_retrans > 1 && tp->undo_marker) 6136 tcp_snd_cwnd_set(tp, 1); 6137 else 6138 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6139 tp->snd_cwnd_stamp = tcp_jiffies32; 6140 6141 bpf_skops_established(sk, bpf_op, skb); 6142 /* Initialize congestion control unless BPF initialized it already: */ 6143 if (!icsk->icsk_ca_initialized) 6144 tcp_init_congestion_control(sk); 6145 tcp_init_buffer_space(sk); 6146 } 6147 6148 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6149 { 6150 struct tcp_sock *tp = tcp_sk(sk); 6151 struct inet_connection_sock *icsk = inet_csk(sk); 6152 6153 tcp_set_state(sk, TCP_ESTABLISHED); 6154 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6155 6156 if (skb) { 6157 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6158 security_inet_conn_established(sk, skb); 6159 sk_mark_napi_id(sk, skb); 6160 } 6161 6162 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6163 6164 /* Prevent spurious tcp_cwnd_restart() on first data 6165 * packet. 6166 */ 6167 tp->lsndtime = tcp_jiffies32; 6168 6169 if (sock_flag(sk, SOCK_KEEPOPEN)) 6170 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6171 6172 if (!tp->rx_opt.snd_wscale) 6173 __tcp_fast_path_on(tp, tp->snd_wnd); 6174 else 6175 tp->pred_flags = 0; 6176 } 6177 6178 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6179 struct tcp_fastopen_cookie *cookie) 6180 { 6181 struct tcp_sock *tp = tcp_sk(sk); 6182 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6183 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6184 bool syn_drop = false; 6185 6186 if (mss == tp->rx_opt.user_mss) { 6187 struct tcp_options_received opt; 6188 6189 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6190 tcp_clear_options(&opt); 6191 opt.user_mss = opt.mss_clamp = 0; 6192 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6193 mss = opt.mss_clamp; 6194 } 6195 6196 if (!tp->syn_fastopen) { 6197 /* Ignore an unsolicited cookie */ 6198 cookie->len = -1; 6199 } else if (tp->total_retrans) { 6200 /* SYN timed out and the SYN-ACK neither has a cookie nor 6201 * acknowledges data. Presumably the remote received only 6202 * the retransmitted (regular) SYNs: either the original 6203 * SYN-data or the corresponding SYN-ACK was dropped. 6204 */ 6205 syn_drop = (cookie->len < 0 && data); 6206 } else if (cookie->len < 0 && !tp->syn_data) { 6207 /* We requested a cookie but didn't get it. If we did not use 6208 * the (old) exp opt format then try so next time (try_exp=1). 6209 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6210 */ 6211 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6212 } 6213 6214 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6215 6216 if (data) { /* Retransmit unacked data in SYN */ 6217 if (tp->total_retrans) 6218 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6219 else 6220 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6221 skb_rbtree_walk_from(data) 6222 tcp_mark_skb_lost(sk, data); 6223 tcp_xmit_retransmit_queue(sk); 6224 NET_INC_STATS(sock_net(sk), 6225 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6226 return true; 6227 } 6228 tp->syn_data_acked = tp->syn_data; 6229 if (tp->syn_data_acked) { 6230 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6231 /* SYN-data is counted as two separate packets in tcp_ack() */ 6232 if (tp->delivered > 1) 6233 --tp->delivered; 6234 } 6235 6236 tcp_fastopen_add_skb(sk, synack); 6237 6238 return false; 6239 } 6240 6241 static void smc_check_reset_syn(struct tcp_sock *tp) 6242 { 6243 #if IS_ENABLED(CONFIG_SMC) 6244 if (static_branch_unlikely(&tcp_have_smc)) { 6245 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6246 tp->syn_smc = 0; 6247 } 6248 #endif 6249 } 6250 6251 static void tcp_try_undo_spurious_syn(struct sock *sk) 6252 { 6253 struct tcp_sock *tp = tcp_sk(sk); 6254 u32 syn_stamp; 6255 6256 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6257 * spurious if the ACK's timestamp option echo value matches the 6258 * original SYN timestamp. 6259 */ 6260 syn_stamp = tp->retrans_stamp; 6261 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6262 syn_stamp == tp->rx_opt.rcv_tsecr) 6263 tp->undo_marker = 0; 6264 } 6265 6266 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6267 const struct tcphdr *th) 6268 { 6269 struct inet_connection_sock *icsk = inet_csk(sk); 6270 struct tcp_sock *tp = tcp_sk(sk); 6271 struct tcp_fastopen_cookie foc = { .len = -1 }; 6272 int saved_clamp = tp->rx_opt.mss_clamp; 6273 bool fastopen_fail; 6274 SKB_DR(reason); 6275 6276 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6277 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6278 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6279 6280 if (th->ack) { 6281 /* rfc793: 6282 * "If the state is SYN-SENT then 6283 * first check the ACK bit 6284 * If the ACK bit is set 6285 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6286 * a reset (unless the RST bit is set, if so drop 6287 * the segment and return)" 6288 */ 6289 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6290 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6291 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6292 if (icsk->icsk_retransmits == 0) 6293 inet_csk_reset_xmit_timer(sk, 6294 ICSK_TIME_RETRANS, 6295 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6296 goto reset_and_undo; 6297 } 6298 6299 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6300 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6301 tcp_time_stamp_ts(tp))) { 6302 NET_INC_STATS(sock_net(sk), 6303 LINUX_MIB_PAWSACTIVEREJECTED); 6304 goto reset_and_undo; 6305 } 6306 6307 /* Now ACK is acceptable. 6308 * 6309 * "If the RST bit is set 6310 * If the ACK was acceptable then signal the user "error: 6311 * connection reset", drop the segment, enter CLOSED state, 6312 * delete TCB, and return." 6313 */ 6314 6315 if (th->rst) { 6316 tcp_reset(sk, skb); 6317 consume: 6318 __kfree_skb(skb); 6319 return 0; 6320 } 6321 6322 /* rfc793: 6323 * "fifth, if neither of the SYN or RST bits is set then 6324 * drop the segment and return." 6325 * 6326 * See note below! 6327 * --ANK(990513) 6328 */ 6329 if (!th->syn) { 6330 SKB_DR_SET(reason, TCP_FLAGS); 6331 goto discard_and_undo; 6332 } 6333 /* rfc793: 6334 * "If the SYN bit is on ... 6335 * are acceptable then ... 6336 * (our SYN has been ACKed), change the connection 6337 * state to ESTABLISHED..." 6338 */ 6339 6340 tcp_ecn_rcv_synack(tp, th); 6341 6342 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6343 tcp_try_undo_spurious_syn(sk); 6344 tcp_ack(sk, skb, FLAG_SLOWPATH); 6345 6346 /* Ok.. it's good. Set up sequence numbers and 6347 * move to established. 6348 */ 6349 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6350 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6351 6352 /* RFC1323: The window in SYN & SYN/ACK segments is 6353 * never scaled. 6354 */ 6355 tp->snd_wnd = ntohs(th->window); 6356 6357 if (!tp->rx_opt.wscale_ok) { 6358 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6359 tp->window_clamp = min(tp->window_clamp, 65535U); 6360 } 6361 6362 if (tp->rx_opt.saw_tstamp) { 6363 tp->rx_opt.tstamp_ok = 1; 6364 tp->tcp_header_len = 6365 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6366 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6367 tcp_store_ts_recent(tp); 6368 } else { 6369 tp->tcp_header_len = sizeof(struct tcphdr); 6370 } 6371 6372 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6373 tcp_initialize_rcv_mss(sk); 6374 6375 /* Remember, tcp_poll() does not lock socket! 6376 * Change state from SYN-SENT only after copied_seq 6377 * is initialized. */ 6378 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6379 6380 smc_check_reset_syn(tp); 6381 6382 smp_mb(); 6383 6384 tcp_finish_connect(sk, skb); 6385 6386 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6387 tcp_rcv_fastopen_synack(sk, skb, &foc); 6388 6389 if (!sock_flag(sk, SOCK_DEAD)) { 6390 sk->sk_state_change(sk); 6391 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6392 } 6393 if (fastopen_fail) 6394 return -1; 6395 if (sk->sk_write_pending || 6396 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6397 inet_csk_in_pingpong_mode(sk)) { 6398 /* Save one ACK. Data will be ready after 6399 * several ticks, if write_pending is set. 6400 * 6401 * It may be deleted, but with this feature tcpdumps 6402 * look so _wonderfully_ clever, that I was not able 6403 * to stand against the temptation 8) --ANK 6404 */ 6405 inet_csk_schedule_ack(sk); 6406 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6407 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6408 TCP_DELACK_MAX, TCP_RTO_MAX); 6409 goto consume; 6410 } 6411 tcp_send_ack(sk); 6412 return -1; 6413 } 6414 6415 /* No ACK in the segment */ 6416 6417 if (th->rst) { 6418 /* rfc793: 6419 * "If the RST bit is set 6420 * 6421 * Otherwise (no ACK) drop the segment and return." 6422 */ 6423 SKB_DR_SET(reason, TCP_RESET); 6424 goto discard_and_undo; 6425 } 6426 6427 /* PAWS check. */ 6428 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6429 tcp_paws_reject(&tp->rx_opt, 0)) { 6430 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6431 goto discard_and_undo; 6432 } 6433 if (th->syn) { 6434 /* We see SYN without ACK. It is attempt of 6435 * simultaneous connect with crossed SYNs. 6436 * Particularly, it can be connect to self. 6437 */ 6438 tcp_set_state(sk, TCP_SYN_RECV); 6439 6440 if (tp->rx_opt.saw_tstamp) { 6441 tp->rx_opt.tstamp_ok = 1; 6442 tcp_store_ts_recent(tp); 6443 tp->tcp_header_len = 6444 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6445 } else { 6446 tp->tcp_header_len = sizeof(struct tcphdr); 6447 } 6448 6449 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6450 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6451 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6452 6453 /* RFC1323: The window in SYN & SYN/ACK segments is 6454 * never scaled. 6455 */ 6456 tp->snd_wnd = ntohs(th->window); 6457 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6458 tp->max_window = tp->snd_wnd; 6459 6460 tcp_ecn_rcv_syn(tp, th); 6461 6462 tcp_mtup_init(sk); 6463 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6464 tcp_initialize_rcv_mss(sk); 6465 6466 tcp_send_synack(sk); 6467 #if 0 6468 /* Note, we could accept data and URG from this segment. 6469 * There are no obstacles to make this (except that we must 6470 * either change tcp_recvmsg() to prevent it from returning data 6471 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6472 * 6473 * However, if we ignore data in ACKless segments sometimes, 6474 * we have no reasons to accept it sometimes. 6475 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6476 * is not flawless. So, discard packet for sanity. 6477 * Uncomment this return to process the data. 6478 */ 6479 return -1; 6480 #else 6481 goto consume; 6482 #endif 6483 } 6484 /* "fifth, if neither of the SYN or RST bits is set then 6485 * drop the segment and return." 6486 */ 6487 6488 discard_and_undo: 6489 tcp_clear_options(&tp->rx_opt); 6490 tp->rx_opt.mss_clamp = saved_clamp; 6491 tcp_drop_reason(sk, skb, reason); 6492 return 0; 6493 6494 reset_and_undo: 6495 tcp_clear_options(&tp->rx_opt); 6496 tp->rx_opt.mss_clamp = saved_clamp; 6497 return 1; 6498 } 6499 6500 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6501 { 6502 struct tcp_sock *tp = tcp_sk(sk); 6503 struct request_sock *req; 6504 6505 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6506 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6507 */ 6508 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6509 tcp_try_undo_recovery(sk); 6510 6511 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6512 tcp_update_rto_time(tp); 6513 tp->retrans_stamp = 0; 6514 inet_csk(sk)->icsk_retransmits = 0; 6515 6516 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6517 * we no longer need req so release it. 6518 */ 6519 req = rcu_dereference_protected(tp->fastopen_rsk, 6520 lockdep_sock_is_held(sk)); 6521 reqsk_fastopen_remove(sk, req, false); 6522 6523 /* Re-arm the timer because data may have been sent out. 6524 * This is similar to the regular data transmission case 6525 * when new data has just been ack'ed. 6526 * 6527 * (TFO) - we could try to be more aggressive and 6528 * retransmitting any data sooner based on when they 6529 * are sent out. 6530 */ 6531 tcp_rearm_rto(sk); 6532 } 6533 6534 /* 6535 * This function implements the receiving procedure of RFC 793 for 6536 * all states except ESTABLISHED and TIME_WAIT. 6537 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6538 * address independent. 6539 */ 6540 6541 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6542 { 6543 struct tcp_sock *tp = tcp_sk(sk); 6544 struct inet_connection_sock *icsk = inet_csk(sk); 6545 const struct tcphdr *th = tcp_hdr(skb); 6546 struct request_sock *req; 6547 int queued = 0; 6548 bool acceptable; 6549 SKB_DR(reason); 6550 6551 switch (sk->sk_state) { 6552 case TCP_CLOSE: 6553 SKB_DR_SET(reason, TCP_CLOSE); 6554 goto discard; 6555 6556 case TCP_LISTEN: 6557 if (th->ack) 6558 return 1; 6559 6560 if (th->rst) { 6561 SKB_DR_SET(reason, TCP_RESET); 6562 goto discard; 6563 } 6564 if (th->syn) { 6565 if (th->fin) { 6566 SKB_DR_SET(reason, TCP_FLAGS); 6567 goto discard; 6568 } 6569 /* It is possible that we process SYN packets from backlog, 6570 * so we need to make sure to disable BH and RCU right there. 6571 */ 6572 rcu_read_lock(); 6573 local_bh_disable(); 6574 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6575 local_bh_enable(); 6576 rcu_read_unlock(); 6577 6578 if (!acceptable) 6579 return 1; 6580 consume_skb(skb); 6581 return 0; 6582 } 6583 SKB_DR_SET(reason, TCP_FLAGS); 6584 goto discard; 6585 6586 case TCP_SYN_SENT: 6587 tp->rx_opt.saw_tstamp = 0; 6588 tcp_mstamp_refresh(tp); 6589 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6590 if (queued >= 0) 6591 return queued; 6592 6593 /* Do step6 onward by hand. */ 6594 tcp_urg(sk, skb, th); 6595 __kfree_skb(skb); 6596 tcp_data_snd_check(sk); 6597 return 0; 6598 } 6599 6600 tcp_mstamp_refresh(tp); 6601 tp->rx_opt.saw_tstamp = 0; 6602 req = rcu_dereference_protected(tp->fastopen_rsk, 6603 lockdep_sock_is_held(sk)); 6604 if (req) { 6605 bool req_stolen; 6606 6607 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6608 sk->sk_state != TCP_FIN_WAIT1); 6609 6610 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) { 6611 SKB_DR_SET(reason, TCP_FASTOPEN); 6612 goto discard; 6613 } 6614 } 6615 6616 if (!th->ack && !th->rst && !th->syn) { 6617 SKB_DR_SET(reason, TCP_FLAGS); 6618 goto discard; 6619 } 6620 if (!tcp_validate_incoming(sk, skb, th, 0)) 6621 return 0; 6622 6623 /* step 5: check the ACK field */ 6624 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6625 FLAG_UPDATE_TS_RECENT | 6626 FLAG_NO_CHALLENGE_ACK) > 0; 6627 6628 if (!acceptable) { 6629 if (sk->sk_state == TCP_SYN_RECV) 6630 return 1; /* send one RST */ 6631 tcp_send_challenge_ack(sk); 6632 SKB_DR_SET(reason, TCP_OLD_ACK); 6633 goto discard; 6634 } 6635 switch (sk->sk_state) { 6636 case TCP_SYN_RECV: 6637 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6638 if (!tp->srtt_us) 6639 tcp_synack_rtt_meas(sk, req); 6640 6641 if (req) { 6642 tcp_rcv_synrecv_state_fastopen(sk); 6643 } else { 6644 tcp_try_undo_spurious_syn(sk); 6645 tp->retrans_stamp = 0; 6646 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6647 skb); 6648 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6649 } 6650 smp_mb(); 6651 tcp_set_state(sk, TCP_ESTABLISHED); 6652 sk->sk_state_change(sk); 6653 6654 /* Note, that this wakeup is only for marginal crossed SYN case. 6655 * Passively open sockets are not waked up, because 6656 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6657 */ 6658 if (sk->sk_socket) 6659 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6660 6661 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6662 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6663 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6664 6665 if (tp->rx_opt.tstamp_ok) 6666 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6667 6668 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6669 tcp_update_pacing_rate(sk); 6670 6671 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6672 tp->lsndtime = tcp_jiffies32; 6673 6674 tcp_initialize_rcv_mss(sk); 6675 tcp_fast_path_on(tp); 6676 break; 6677 6678 case TCP_FIN_WAIT1: { 6679 int tmo; 6680 6681 if (req) 6682 tcp_rcv_synrecv_state_fastopen(sk); 6683 6684 if (tp->snd_una != tp->write_seq) 6685 break; 6686 6687 tcp_set_state(sk, TCP_FIN_WAIT2); 6688 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6689 6690 sk_dst_confirm(sk); 6691 6692 if (!sock_flag(sk, SOCK_DEAD)) { 6693 /* Wake up lingering close() */ 6694 sk->sk_state_change(sk); 6695 break; 6696 } 6697 6698 if (READ_ONCE(tp->linger2) < 0) { 6699 tcp_done(sk); 6700 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6701 return 1; 6702 } 6703 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6704 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6705 /* Receive out of order FIN after close() */ 6706 if (tp->syn_fastopen && th->fin) 6707 tcp_fastopen_active_disable(sk); 6708 tcp_done(sk); 6709 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6710 return 1; 6711 } 6712 6713 tmo = tcp_fin_time(sk); 6714 if (tmo > TCP_TIMEWAIT_LEN) { 6715 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6716 } else if (th->fin || sock_owned_by_user(sk)) { 6717 /* Bad case. We could lose such FIN otherwise. 6718 * It is not a big problem, but it looks confusing 6719 * and not so rare event. We still can lose it now, 6720 * if it spins in bh_lock_sock(), but it is really 6721 * marginal case. 6722 */ 6723 inet_csk_reset_keepalive_timer(sk, tmo); 6724 } else { 6725 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6726 goto consume; 6727 } 6728 break; 6729 } 6730 6731 case TCP_CLOSING: 6732 if (tp->snd_una == tp->write_seq) { 6733 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6734 goto consume; 6735 } 6736 break; 6737 6738 case TCP_LAST_ACK: 6739 if (tp->snd_una == tp->write_seq) { 6740 tcp_update_metrics(sk); 6741 tcp_done(sk); 6742 goto consume; 6743 } 6744 break; 6745 } 6746 6747 /* step 6: check the URG bit */ 6748 tcp_urg(sk, skb, th); 6749 6750 /* step 7: process the segment text */ 6751 switch (sk->sk_state) { 6752 case TCP_CLOSE_WAIT: 6753 case TCP_CLOSING: 6754 case TCP_LAST_ACK: 6755 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6756 /* If a subflow has been reset, the packet should not 6757 * continue to be processed, drop the packet. 6758 */ 6759 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6760 goto discard; 6761 break; 6762 } 6763 fallthrough; 6764 case TCP_FIN_WAIT1: 6765 case TCP_FIN_WAIT2: 6766 /* RFC 793 says to queue data in these states, 6767 * RFC 1122 says we MUST send a reset. 6768 * BSD 4.4 also does reset. 6769 */ 6770 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6771 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6772 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6773 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6774 tcp_reset(sk, skb); 6775 return 1; 6776 } 6777 } 6778 fallthrough; 6779 case TCP_ESTABLISHED: 6780 tcp_data_queue(sk, skb); 6781 queued = 1; 6782 break; 6783 } 6784 6785 /* tcp_data could move socket to TIME-WAIT */ 6786 if (sk->sk_state != TCP_CLOSE) { 6787 tcp_data_snd_check(sk); 6788 tcp_ack_snd_check(sk); 6789 } 6790 6791 if (!queued) { 6792 discard: 6793 tcp_drop_reason(sk, skb, reason); 6794 } 6795 return 0; 6796 6797 consume: 6798 __kfree_skb(skb); 6799 return 0; 6800 } 6801 EXPORT_SYMBOL(tcp_rcv_state_process); 6802 6803 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6804 { 6805 struct inet_request_sock *ireq = inet_rsk(req); 6806 6807 if (family == AF_INET) 6808 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6809 &ireq->ir_rmt_addr, port); 6810 #if IS_ENABLED(CONFIG_IPV6) 6811 else if (family == AF_INET6) 6812 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6813 &ireq->ir_v6_rmt_addr, port); 6814 #endif 6815 } 6816 6817 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6818 * 6819 * If we receive a SYN packet with these bits set, it means a 6820 * network is playing bad games with TOS bits. In order to 6821 * avoid possible false congestion notifications, we disable 6822 * TCP ECN negotiation. 6823 * 6824 * Exception: tcp_ca wants ECN. This is required for DCTCP 6825 * congestion control: Linux DCTCP asserts ECT on all packets, 6826 * including SYN, which is most optimal solution; however, 6827 * others, such as FreeBSD do not. 6828 * 6829 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6830 * set, indicating the use of a future TCP extension (such as AccECN). See 6831 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6832 * extensions. 6833 */ 6834 static void tcp_ecn_create_request(struct request_sock *req, 6835 const struct sk_buff *skb, 6836 const struct sock *listen_sk, 6837 const struct dst_entry *dst) 6838 { 6839 const struct tcphdr *th = tcp_hdr(skb); 6840 const struct net *net = sock_net(listen_sk); 6841 bool th_ecn = th->ece && th->cwr; 6842 bool ect, ecn_ok; 6843 u32 ecn_ok_dst; 6844 6845 if (!th_ecn) 6846 return; 6847 6848 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6849 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6850 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6851 6852 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6853 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6854 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6855 inet_rsk(req)->ecn_ok = 1; 6856 } 6857 6858 static void tcp_openreq_init(struct request_sock *req, 6859 const struct tcp_options_received *rx_opt, 6860 struct sk_buff *skb, const struct sock *sk) 6861 { 6862 struct inet_request_sock *ireq = inet_rsk(req); 6863 6864 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6865 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6866 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6867 tcp_rsk(req)->snt_synack = 0; 6868 tcp_rsk(req)->last_oow_ack_time = 0; 6869 req->mss = rx_opt->mss_clamp; 6870 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6871 ireq->tstamp_ok = rx_opt->tstamp_ok; 6872 ireq->sack_ok = rx_opt->sack_ok; 6873 ireq->snd_wscale = rx_opt->snd_wscale; 6874 ireq->wscale_ok = rx_opt->wscale_ok; 6875 ireq->acked = 0; 6876 ireq->ecn_ok = 0; 6877 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6878 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6879 ireq->ir_mark = inet_request_mark(sk, skb); 6880 #if IS_ENABLED(CONFIG_SMC) 6881 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6882 tcp_sk(sk)->smc_hs_congested(sk)); 6883 #endif 6884 } 6885 6886 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6887 struct sock *sk_listener, 6888 bool attach_listener) 6889 { 6890 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6891 attach_listener); 6892 6893 if (req) { 6894 struct inet_request_sock *ireq = inet_rsk(req); 6895 6896 ireq->ireq_opt = NULL; 6897 #if IS_ENABLED(CONFIG_IPV6) 6898 ireq->pktopts = NULL; 6899 #endif 6900 atomic64_set(&ireq->ir_cookie, 0); 6901 ireq->ireq_state = TCP_NEW_SYN_RECV; 6902 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6903 ireq->ireq_family = sk_listener->sk_family; 6904 req->timeout = TCP_TIMEOUT_INIT; 6905 } 6906 6907 return req; 6908 } 6909 EXPORT_SYMBOL(inet_reqsk_alloc); 6910 6911 /* 6912 * Return true if a syncookie should be sent 6913 */ 6914 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6915 { 6916 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6917 const char *msg = "Dropping request"; 6918 struct net *net = sock_net(sk); 6919 bool want_cookie = false; 6920 u8 syncookies; 6921 6922 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6923 6924 #ifdef CONFIG_SYN_COOKIES 6925 if (syncookies) { 6926 msg = "Sending cookies"; 6927 want_cookie = true; 6928 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6929 } else 6930 #endif 6931 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6932 6933 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 6934 xchg(&queue->synflood_warned, 1) == 0) { 6935 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 6936 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 6937 proto, inet6_rcv_saddr(sk), 6938 sk->sk_num, msg); 6939 } else { 6940 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 6941 proto, &sk->sk_rcv_saddr, 6942 sk->sk_num, msg); 6943 } 6944 } 6945 6946 return want_cookie; 6947 } 6948 6949 static void tcp_reqsk_record_syn(const struct sock *sk, 6950 struct request_sock *req, 6951 const struct sk_buff *skb) 6952 { 6953 if (tcp_sk(sk)->save_syn) { 6954 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6955 struct saved_syn *saved_syn; 6956 u32 mac_hdrlen; 6957 void *base; 6958 6959 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6960 base = skb_mac_header(skb); 6961 mac_hdrlen = skb_mac_header_len(skb); 6962 len += mac_hdrlen; 6963 } else { 6964 base = skb_network_header(skb); 6965 mac_hdrlen = 0; 6966 } 6967 6968 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6969 GFP_ATOMIC); 6970 if (saved_syn) { 6971 saved_syn->mac_hdrlen = mac_hdrlen; 6972 saved_syn->network_hdrlen = skb_network_header_len(skb); 6973 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6974 memcpy(saved_syn->data, base, len); 6975 req->saved_syn = saved_syn; 6976 } 6977 } 6978 } 6979 6980 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6981 * used for SYN cookie generation. 6982 */ 6983 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6984 const struct tcp_request_sock_ops *af_ops, 6985 struct sock *sk, struct tcphdr *th) 6986 { 6987 struct tcp_sock *tp = tcp_sk(sk); 6988 u16 mss; 6989 6990 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 6991 !inet_csk_reqsk_queue_is_full(sk)) 6992 return 0; 6993 6994 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6995 return 0; 6996 6997 if (sk_acceptq_is_full(sk)) { 6998 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6999 return 0; 7000 } 7001 7002 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 7003 if (!mss) 7004 mss = af_ops->mss_clamp; 7005 7006 return mss; 7007 } 7008 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 7009 7010 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7011 const struct tcp_request_sock_ops *af_ops, 7012 struct sock *sk, struct sk_buff *skb) 7013 { 7014 struct tcp_fastopen_cookie foc = { .len = -1 }; 7015 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 7016 struct tcp_options_received tmp_opt; 7017 struct tcp_sock *tp = tcp_sk(sk); 7018 struct net *net = sock_net(sk); 7019 struct sock *fastopen_sk = NULL; 7020 struct request_sock *req; 7021 bool want_cookie = false; 7022 struct dst_entry *dst; 7023 struct flowi fl; 7024 u8 syncookies; 7025 7026 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7027 7028 /* TW buckets are converted to open requests without 7029 * limitations, they conserve resources and peer is 7030 * evidently real one. 7031 */ 7032 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) { 7033 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 7034 if (!want_cookie) 7035 goto drop; 7036 } 7037 7038 if (sk_acceptq_is_full(sk)) { 7039 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7040 goto drop; 7041 } 7042 7043 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7044 if (!req) 7045 goto drop; 7046 7047 req->syncookie = want_cookie; 7048 tcp_rsk(req)->af_specific = af_ops; 7049 tcp_rsk(req)->ts_off = 0; 7050 tcp_rsk(req)->req_usec_ts = -1; 7051 #if IS_ENABLED(CONFIG_MPTCP) 7052 tcp_rsk(req)->is_mptcp = 0; 7053 #endif 7054 7055 tcp_clear_options(&tmp_opt); 7056 tmp_opt.mss_clamp = af_ops->mss_clamp; 7057 tmp_opt.user_mss = tp->rx_opt.user_mss; 7058 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7059 want_cookie ? NULL : &foc); 7060 7061 if (want_cookie && !tmp_opt.saw_tstamp) 7062 tcp_clear_options(&tmp_opt); 7063 7064 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7065 tmp_opt.smc_ok = 0; 7066 7067 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7068 tcp_openreq_init(req, &tmp_opt, skb, sk); 7069 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7070 7071 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7072 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7073 7074 dst = af_ops->route_req(sk, skb, &fl, req); 7075 if (!dst) 7076 goto drop_and_free; 7077 7078 if (tmp_opt.tstamp_ok) 7079 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7080 7081 if (!want_cookie && !isn) { 7082 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7083 7084 /* Kill the following clause, if you dislike this way. */ 7085 if (!syncookies && 7086 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7087 (max_syn_backlog >> 2)) && 7088 !tcp_peer_is_proven(req, dst)) { 7089 /* Without syncookies last quarter of 7090 * backlog is filled with destinations, 7091 * proven to be alive. 7092 * It means that we continue to communicate 7093 * to destinations, already remembered 7094 * to the moment of synflood. 7095 */ 7096 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7097 rsk_ops->family); 7098 goto drop_and_release; 7099 } 7100 7101 isn = af_ops->init_seq(skb); 7102 } 7103 7104 tcp_ecn_create_request(req, skb, sk, dst); 7105 7106 if (want_cookie) { 7107 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7108 if (!tmp_opt.tstamp_ok) 7109 inet_rsk(req)->ecn_ok = 0; 7110 } 7111 7112 tcp_rsk(req)->snt_isn = isn; 7113 tcp_rsk(req)->txhash = net_tx_rndhash(); 7114 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7115 tcp_openreq_init_rwin(req, sk, dst); 7116 sk_rx_queue_set(req_to_sk(req), skb); 7117 if (!want_cookie) { 7118 tcp_reqsk_record_syn(sk, req, skb); 7119 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7120 } 7121 if (fastopen_sk) { 7122 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7123 &foc, TCP_SYNACK_FASTOPEN, skb); 7124 /* Add the child socket directly into the accept queue */ 7125 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7126 reqsk_fastopen_remove(fastopen_sk, req, false); 7127 bh_unlock_sock(fastopen_sk); 7128 sock_put(fastopen_sk); 7129 goto drop_and_free; 7130 } 7131 sk->sk_data_ready(sk); 7132 bh_unlock_sock(fastopen_sk); 7133 sock_put(fastopen_sk); 7134 } else { 7135 tcp_rsk(req)->tfo_listener = false; 7136 if (!want_cookie) { 7137 req->timeout = tcp_timeout_init((struct sock *)req); 7138 inet_csk_reqsk_queue_hash_add(sk, req, req->timeout); 7139 } 7140 af_ops->send_synack(sk, dst, &fl, req, &foc, 7141 !want_cookie ? TCP_SYNACK_NORMAL : 7142 TCP_SYNACK_COOKIE, 7143 skb); 7144 if (want_cookie) { 7145 reqsk_free(req); 7146 return 0; 7147 } 7148 } 7149 reqsk_put(req); 7150 return 0; 7151 7152 drop_and_release: 7153 dst_release(dst); 7154 drop_and_free: 7155 __reqsk_free(req); 7156 drop: 7157 tcp_listendrop(sk); 7158 return 0; 7159 } 7160 EXPORT_SYMBOL(tcp_conn_request); 7161