xref: /linux/net/ipv4/tcp_input.c (revision 6ca80638b90cec66547011ee1ef79e534589989a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		/* Note: divides are still a bit expensive.
241 		 * For the moment, only adjust scaling_ratio
242 		 * when we update icsk_ack.rcv_mss.
243 		 */
244 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246 
247 			do_div(val, skb->truesize);
248 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
249 		}
250 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
251 					       tcp_sk(sk)->advmss);
252 		/* Account for possibly-removed options */
253 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
254 				   MAX_TCP_OPTION_SPACE))
255 			tcp_gro_dev_warn(sk, skb, len);
256 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
257 		 * set then it is likely the end of an application write. So
258 		 * more data may not be arriving soon, and yet the data sender
259 		 * may be waiting for an ACK if cwnd-bound or using TX zero
260 		 * copy. So we set ICSK_ACK_PUSHED here so that
261 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
262 		 * reads all of the data and is not ping-pong. If len > MSS
263 		 * then this logic does not matter (and does not hurt) because
264 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
265 		 * reads data and there is more than an MSS of unACKed data.
266 		 */
267 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
268 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
269 	} else {
270 		/* Otherwise, we make more careful check taking into account,
271 		 * that SACKs block is variable.
272 		 *
273 		 * "len" is invariant segment length, including TCP header.
274 		 */
275 		len += skb->data - skb_transport_header(skb);
276 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
277 		    /* If PSH is not set, packet should be
278 		     * full sized, provided peer TCP is not badly broken.
279 		     * This observation (if it is correct 8)) allows
280 		     * to handle super-low mtu links fairly.
281 		     */
282 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
283 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
284 			/* Subtract also invariant (if peer is RFC compliant),
285 			 * tcp header plus fixed timestamp option length.
286 			 * Resulting "len" is MSS free of SACK jitter.
287 			 */
288 			len -= tcp_sk(sk)->tcp_header_len;
289 			icsk->icsk_ack.last_seg_size = len;
290 			if (len == lss) {
291 				icsk->icsk_ack.rcv_mss = len;
292 				return;
293 			}
294 		}
295 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
296 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
297 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
298 	}
299 }
300 
301 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
302 {
303 	struct inet_connection_sock *icsk = inet_csk(sk);
304 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
305 
306 	if (quickacks == 0)
307 		quickacks = 2;
308 	quickacks = min(quickacks, max_quickacks);
309 	if (quickacks > icsk->icsk_ack.quick)
310 		icsk->icsk_ack.quick = quickacks;
311 }
312 
313 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
314 {
315 	struct inet_connection_sock *icsk = inet_csk(sk);
316 
317 	tcp_incr_quickack(sk, max_quickacks);
318 	inet_csk_exit_pingpong_mode(sk);
319 	icsk->icsk_ack.ato = TCP_ATO_MIN;
320 }
321 
322 /* Send ACKs quickly, if "quick" count is not exhausted
323  * and the session is not interactive.
324  */
325 
326 static bool tcp_in_quickack_mode(struct sock *sk)
327 {
328 	const struct inet_connection_sock *icsk = inet_csk(sk);
329 	const struct dst_entry *dst = __sk_dst_get(sk);
330 
331 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
332 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
333 }
334 
335 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
336 {
337 	if (tp->ecn_flags & TCP_ECN_OK)
338 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
339 }
340 
341 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
342 {
343 	if (tcp_hdr(skb)->cwr) {
344 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
345 
346 		/* If the sender is telling us it has entered CWR, then its
347 		 * cwnd may be very low (even just 1 packet), so we should ACK
348 		 * immediately.
349 		 */
350 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
351 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
352 	}
353 }
354 
355 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
356 {
357 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
358 }
359 
360 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
361 {
362 	struct tcp_sock *tp = tcp_sk(sk);
363 
364 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
365 	case INET_ECN_NOT_ECT:
366 		/* Funny extension: if ECT is not set on a segment,
367 		 * and we already seen ECT on a previous segment,
368 		 * it is probably a retransmit.
369 		 */
370 		if (tp->ecn_flags & TCP_ECN_SEEN)
371 			tcp_enter_quickack_mode(sk, 2);
372 		break;
373 	case INET_ECN_CE:
374 		if (tcp_ca_needs_ecn(sk))
375 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
376 
377 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
378 			/* Better not delay acks, sender can have a very low cwnd */
379 			tcp_enter_quickack_mode(sk, 2);
380 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
381 		}
382 		tp->ecn_flags |= TCP_ECN_SEEN;
383 		break;
384 	default:
385 		if (tcp_ca_needs_ecn(sk))
386 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
387 		tp->ecn_flags |= TCP_ECN_SEEN;
388 		break;
389 	}
390 }
391 
392 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
393 {
394 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
395 		__tcp_ecn_check_ce(sk, skb);
396 }
397 
398 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
399 {
400 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
401 		tp->ecn_flags &= ~TCP_ECN_OK;
402 }
403 
404 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
405 {
406 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
407 		tp->ecn_flags &= ~TCP_ECN_OK;
408 }
409 
410 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
411 {
412 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
413 		return true;
414 	return false;
415 }
416 
417 /* Buffer size and advertised window tuning.
418  *
419  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
420  */
421 
422 static void tcp_sndbuf_expand(struct sock *sk)
423 {
424 	const struct tcp_sock *tp = tcp_sk(sk);
425 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
426 	int sndmem, per_mss;
427 	u32 nr_segs;
428 
429 	/* Worst case is non GSO/TSO : each frame consumes one skb
430 	 * and skb->head is kmalloced using power of two area of memory
431 	 */
432 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
433 		  MAX_TCP_HEADER +
434 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
435 
436 	per_mss = roundup_pow_of_two(per_mss) +
437 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
438 
439 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
440 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
441 
442 	/* Fast Recovery (RFC 5681 3.2) :
443 	 * Cubic needs 1.7 factor, rounded to 2 to include
444 	 * extra cushion (application might react slowly to EPOLLOUT)
445 	 */
446 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
447 	sndmem *= nr_segs * per_mss;
448 
449 	if (sk->sk_sndbuf < sndmem)
450 		WRITE_ONCE(sk->sk_sndbuf,
451 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
452 }
453 
454 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
455  *
456  * All tcp_full_space() is split to two parts: "network" buffer, allocated
457  * forward and advertised in receiver window (tp->rcv_wnd) and
458  * "application buffer", required to isolate scheduling/application
459  * latencies from network.
460  * window_clamp is maximal advertised window. It can be less than
461  * tcp_full_space(), in this case tcp_full_space() - window_clamp
462  * is reserved for "application" buffer. The less window_clamp is
463  * the smoother our behaviour from viewpoint of network, but the lower
464  * throughput and the higher sensitivity of the connection to losses. 8)
465  *
466  * rcv_ssthresh is more strict window_clamp used at "slow start"
467  * phase to predict further behaviour of this connection.
468  * It is used for two goals:
469  * - to enforce header prediction at sender, even when application
470  *   requires some significant "application buffer". It is check #1.
471  * - to prevent pruning of receive queue because of misprediction
472  *   of receiver window. Check #2.
473  *
474  * The scheme does not work when sender sends good segments opening
475  * window and then starts to feed us spaghetti. But it should work
476  * in common situations. Otherwise, we have to rely on queue collapsing.
477  */
478 
479 /* Slow part of check#2. */
480 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
481 			     unsigned int skbtruesize)
482 {
483 	const struct tcp_sock *tp = tcp_sk(sk);
484 	/* Optimize this! */
485 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
486 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
487 
488 	while (tp->rcv_ssthresh <= window) {
489 		if (truesize <= skb->len)
490 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
491 
492 		truesize >>= 1;
493 		window >>= 1;
494 	}
495 	return 0;
496 }
497 
498 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
499  * can play nice with us, as sk_buff and skb->head might be either
500  * freed or shared with up to MAX_SKB_FRAGS segments.
501  * Only give a boost to drivers using page frag(s) to hold the frame(s),
502  * and if no payload was pulled in skb->head before reaching us.
503  */
504 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
505 {
506 	u32 truesize = skb->truesize;
507 
508 	if (adjust && !skb_headlen(skb)) {
509 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
510 		/* paranoid check, some drivers might be buggy */
511 		if (unlikely((int)truesize < (int)skb->len))
512 			truesize = skb->truesize;
513 	}
514 	return truesize;
515 }
516 
517 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
518 			    bool adjust)
519 {
520 	struct tcp_sock *tp = tcp_sk(sk);
521 	int room;
522 
523 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
524 
525 	if (room <= 0)
526 		return;
527 
528 	/* Check #1 */
529 	if (!tcp_under_memory_pressure(sk)) {
530 		unsigned int truesize = truesize_adjust(adjust, skb);
531 		int incr;
532 
533 		/* Check #2. Increase window, if skb with such overhead
534 		 * will fit to rcvbuf in future.
535 		 */
536 		if (tcp_win_from_space(sk, truesize) <= skb->len)
537 			incr = 2 * tp->advmss;
538 		else
539 			incr = __tcp_grow_window(sk, skb, truesize);
540 
541 		if (incr) {
542 			incr = max_t(int, incr, 2 * skb->len);
543 			tp->rcv_ssthresh += min(room, incr);
544 			inet_csk(sk)->icsk_ack.quick |= 1;
545 		}
546 	} else {
547 		/* Under pressure:
548 		 * Adjust rcv_ssthresh according to reserved mem
549 		 */
550 		tcp_adjust_rcv_ssthresh(sk);
551 	}
552 }
553 
554 /* 3. Try to fixup all. It is made immediately after connection enters
555  *    established state.
556  */
557 static void tcp_init_buffer_space(struct sock *sk)
558 {
559 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
560 	struct tcp_sock *tp = tcp_sk(sk);
561 	int maxwin;
562 
563 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
564 		tcp_sndbuf_expand(sk);
565 
566 	tcp_mstamp_refresh(tp);
567 	tp->rcvq_space.time = tp->tcp_mstamp;
568 	tp->rcvq_space.seq = tp->copied_seq;
569 
570 	maxwin = tcp_full_space(sk);
571 
572 	if (tp->window_clamp >= maxwin) {
573 		tp->window_clamp = maxwin;
574 
575 		if (tcp_app_win && maxwin > 4 * tp->advmss)
576 			tp->window_clamp = max(maxwin -
577 					       (maxwin >> tcp_app_win),
578 					       4 * tp->advmss);
579 	}
580 
581 	/* Force reservation of one segment. */
582 	if (tcp_app_win &&
583 	    tp->window_clamp > 2 * tp->advmss &&
584 	    tp->window_clamp + tp->advmss > maxwin)
585 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
586 
587 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
588 	tp->snd_cwnd_stamp = tcp_jiffies32;
589 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
590 				    (u32)TCP_INIT_CWND * tp->advmss);
591 }
592 
593 /* 4. Recalculate window clamp after socket hit its memory bounds. */
594 static void tcp_clamp_window(struct sock *sk)
595 {
596 	struct tcp_sock *tp = tcp_sk(sk);
597 	struct inet_connection_sock *icsk = inet_csk(sk);
598 	struct net *net = sock_net(sk);
599 	int rmem2;
600 
601 	icsk->icsk_ack.quick = 0;
602 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
603 
604 	if (sk->sk_rcvbuf < rmem2 &&
605 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
606 	    !tcp_under_memory_pressure(sk) &&
607 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
608 		WRITE_ONCE(sk->sk_rcvbuf,
609 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
610 	}
611 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
612 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
613 }
614 
615 /* Initialize RCV_MSS value.
616  * RCV_MSS is an our guess about MSS used by the peer.
617  * We haven't any direct information about the MSS.
618  * It's better to underestimate the RCV_MSS rather than overestimate.
619  * Overestimations make us ACKing less frequently than needed.
620  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
621  */
622 void tcp_initialize_rcv_mss(struct sock *sk)
623 {
624 	const struct tcp_sock *tp = tcp_sk(sk);
625 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
626 
627 	hint = min(hint, tp->rcv_wnd / 2);
628 	hint = min(hint, TCP_MSS_DEFAULT);
629 	hint = max(hint, TCP_MIN_MSS);
630 
631 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
632 }
633 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
634 
635 /* Receiver "autotuning" code.
636  *
637  * The algorithm for RTT estimation w/o timestamps is based on
638  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
639  * <https://public.lanl.gov/radiant/pubs.html#DRS>
640  *
641  * More detail on this code can be found at
642  * <http://staff.psc.edu/jheffner/>,
643  * though this reference is out of date.  A new paper
644  * is pending.
645  */
646 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
647 {
648 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
649 	long m = sample;
650 
651 	if (new_sample != 0) {
652 		/* If we sample in larger samples in the non-timestamp
653 		 * case, we could grossly overestimate the RTT especially
654 		 * with chatty applications or bulk transfer apps which
655 		 * are stalled on filesystem I/O.
656 		 *
657 		 * Also, since we are only going for a minimum in the
658 		 * non-timestamp case, we do not smooth things out
659 		 * else with timestamps disabled convergence takes too
660 		 * long.
661 		 */
662 		if (!win_dep) {
663 			m -= (new_sample >> 3);
664 			new_sample += m;
665 		} else {
666 			m <<= 3;
667 			if (m < new_sample)
668 				new_sample = m;
669 		}
670 	} else {
671 		/* No previous measure. */
672 		new_sample = m << 3;
673 	}
674 
675 	tp->rcv_rtt_est.rtt_us = new_sample;
676 }
677 
678 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
679 {
680 	u32 delta_us;
681 
682 	if (tp->rcv_rtt_est.time == 0)
683 		goto new_measure;
684 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
685 		return;
686 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
687 	if (!delta_us)
688 		delta_us = 1;
689 	tcp_rcv_rtt_update(tp, delta_us, 1);
690 
691 new_measure:
692 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
693 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
694 }
695 
696 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp)
697 {
698 	u32 delta, delta_us;
699 
700 	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
701 	if (tp->tcp_usec_ts)
702 		return delta;
703 
704 	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
705 		if (!delta)
706 			delta = 1;
707 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
708 		return delta_us;
709 	}
710 	return -1;
711 }
712 
713 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
714 					  const struct sk_buff *skb)
715 {
716 	struct tcp_sock *tp = tcp_sk(sk);
717 
718 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
719 		return;
720 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
721 
722 	if (TCP_SKB_CB(skb)->end_seq -
723 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
724 		s32 delta = tcp_rtt_tsopt_us(tp);
725 
726 		if (delta >= 0)
727 			tcp_rcv_rtt_update(tp, delta, 0);
728 	}
729 }
730 
731 /*
732  * This function should be called every time data is copied to user space.
733  * It calculates the appropriate TCP receive buffer space.
734  */
735 void tcp_rcv_space_adjust(struct sock *sk)
736 {
737 	struct tcp_sock *tp = tcp_sk(sk);
738 	u32 copied;
739 	int time;
740 
741 	trace_tcp_rcv_space_adjust(sk);
742 
743 	tcp_mstamp_refresh(tp);
744 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
745 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
746 		return;
747 
748 	/* Number of bytes copied to user in last RTT */
749 	copied = tp->copied_seq - tp->rcvq_space.seq;
750 	if (copied <= tp->rcvq_space.space)
751 		goto new_measure;
752 
753 	/* A bit of theory :
754 	 * copied = bytes received in previous RTT, our base window
755 	 * To cope with packet losses, we need a 2x factor
756 	 * To cope with slow start, and sender growing its cwin by 100 %
757 	 * every RTT, we need a 4x factor, because the ACK we are sending
758 	 * now is for the next RTT, not the current one :
759 	 * <prev RTT . ><current RTT .. ><next RTT .... >
760 	 */
761 
762 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
763 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
764 		u64 rcvwin, grow;
765 		int rcvbuf;
766 
767 		/* minimal window to cope with packet losses, assuming
768 		 * steady state. Add some cushion because of small variations.
769 		 */
770 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
771 
772 		/* Accommodate for sender rate increase (eg. slow start) */
773 		grow = rcvwin * (copied - tp->rcvq_space.space);
774 		do_div(grow, tp->rcvq_space.space);
775 		rcvwin += (grow << 1);
776 
777 		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
778 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
779 		if (rcvbuf > sk->sk_rcvbuf) {
780 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
781 
782 			/* Make the window clamp follow along.  */
783 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
784 		}
785 	}
786 	tp->rcvq_space.space = copied;
787 
788 new_measure:
789 	tp->rcvq_space.seq = tp->copied_seq;
790 	tp->rcvq_space.time = tp->tcp_mstamp;
791 }
792 
793 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
794 {
795 #if IS_ENABLED(CONFIG_IPV6)
796 	struct inet_connection_sock *icsk = inet_csk(sk);
797 
798 	if (skb->protocol == htons(ETH_P_IPV6))
799 		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
800 #endif
801 }
802 
803 /* There is something which you must keep in mind when you analyze the
804  * behavior of the tp->ato delayed ack timeout interval.  When a
805  * connection starts up, we want to ack as quickly as possible.  The
806  * problem is that "good" TCP's do slow start at the beginning of data
807  * transmission.  The means that until we send the first few ACK's the
808  * sender will sit on his end and only queue most of his data, because
809  * he can only send snd_cwnd unacked packets at any given time.  For
810  * each ACK we send, he increments snd_cwnd and transmits more of his
811  * queue.  -DaveM
812  */
813 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
814 {
815 	struct tcp_sock *tp = tcp_sk(sk);
816 	struct inet_connection_sock *icsk = inet_csk(sk);
817 	u32 now;
818 
819 	inet_csk_schedule_ack(sk);
820 
821 	tcp_measure_rcv_mss(sk, skb);
822 
823 	tcp_rcv_rtt_measure(tp);
824 
825 	now = tcp_jiffies32;
826 
827 	if (!icsk->icsk_ack.ato) {
828 		/* The _first_ data packet received, initialize
829 		 * delayed ACK engine.
830 		 */
831 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
832 		icsk->icsk_ack.ato = TCP_ATO_MIN;
833 	} else {
834 		int m = now - icsk->icsk_ack.lrcvtime;
835 
836 		if (m <= TCP_ATO_MIN / 2) {
837 			/* The fastest case is the first. */
838 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
839 		} else if (m < icsk->icsk_ack.ato) {
840 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
841 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
842 				icsk->icsk_ack.ato = icsk->icsk_rto;
843 		} else if (m > icsk->icsk_rto) {
844 			/* Too long gap. Apparently sender failed to
845 			 * restart window, so that we send ACKs quickly.
846 			 */
847 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
848 		}
849 	}
850 	icsk->icsk_ack.lrcvtime = now;
851 	tcp_save_lrcv_flowlabel(sk, skb);
852 
853 	tcp_ecn_check_ce(sk, skb);
854 
855 	if (skb->len >= 128)
856 		tcp_grow_window(sk, skb, true);
857 }
858 
859 /* Called to compute a smoothed rtt estimate. The data fed to this
860  * routine either comes from timestamps, or from segments that were
861  * known _not_ to have been retransmitted [see Karn/Partridge
862  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
863  * piece by Van Jacobson.
864  * NOTE: the next three routines used to be one big routine.
865  * To save cycles in the RFC 1323 implementation it was better to break
866  * it up into three procedures. -- erics
867  */
868 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
869 {
870 	struct tcp_sock *tp = tcp_sk(sk);
871 	long m = mrtt_us; /* RTT */
872 	u32 srtt = tp->srtt_us;
873 
874 	/*	The following amusing code comes from Jacobson's
875 	 *	article in SIGCOMM '88.  Note that rtt and mdev
876 	 *	are scaled versions of rtt and mean deviation.
877 	 *	This is designed to be as fast as possible
878 	 *	m stands for "measurement".
879 	 *
880 	 *	On a 1990 paper the rto value is changed to:
881 	 *	RTO = rtt + 4 * mdev
882 	 *
883 	 * Funny. This algorithm seems to be very broken.
884 	 * These formulae increase RTO, when it should be decreased, increase
885 	 * too slowly, when it should be increased quickly, decrease too quickly
886 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
887 	 * does not matter how to _calculate_ it. Seems, it was trap
888 	 * that VJ failed to avoid. 8)
889 	 */
890 	if (srtt != 0) {
891 		m -= (srtt >> 3);	/* m is now error in rtt est */
892 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
893 		if (m < 0) {
894 			m = -m;		/* m is now abs(error) */
895 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
896 			/* This is similar to one of Eifel findings.
897 			 * Eifel blocks mdev updates when rtt decreases.
898 			 * This solution is a bit different: we use finer gain
899 			 * for mdev in this case (alpha*beta).
900 			 * Like Eifel it also prevents growth of rto,
901 			 * but also it limits too fast rto decreases,
902 			 * happening in pure Eifel.
903 			 */
904 			if (m > 0)
905 				m >>= 3;
906 		} else {
907 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
908 		}
909 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
910 		if (tp->mdev_us > tp->mdev_max_us) {
911 			tp->mdev_max_us = tp->mdev_us;
912 			if (tp->mdev_max_us > tp->rttvar_us)
913 				tp->rttvar_us = tp->mdev_max_us;
914 		}
915 		if (after(tp->snd_una, tp->rtt_seq)) {
916 			if (tp->mdev_max_us < tp->rttvar_us)
917 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
918 			tp->rtt_seq = tp->snd_nxt;
919 			tp->mdev_max_us = tcp_rto_min_us(sk);
920 
921 			tcp_bpf_rtt(sk);
922 		}
923 	} else {
924 		/* no previous measure. */
925 		srtt = m << 3;		/* take the measured time to be rtt */
926 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
927 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
928 		tp->mdev_max_us = tp->rttvar_us;
929 		tp->rtt_seq = tp->snd_nxt;
930 
931 		tcp_bpf_rtt(sk);
932 	}
933 	tp->srtt_us = max(1U, srtt);
934 }
935 
936 static void tcp_update_pacing_rate(struct sock *sk)
937 {
938 	const struct tcp_sock *tp = tcp_sk(sk);
939 	u64 rate;
940 
941 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
942 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
943 
944 	/* current rate is (cwnd * mss) / srtt
945 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
946 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
947 	 *
948 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
949 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
950 	 *	 end of slow start and should slow down.
951 	 */
952 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
953 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
954 	else
955 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
956 
957 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
958 
959 	if (likely(tp->srtt_us))
960 		do_div(rate, tp->srtt_us);
961 
962 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
963 	 * without any lock. We want to make sure compiler wont store
964 	 * intermediate values in this location.
965 	 */
966 	WRITE_ONCE(sk->sk_pacing_rate,
967 		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
968 }
969 
970 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
971  * routine referred to above.
972  */
973 static void tcp_set_rto(struct sock *sk)
974 {
975 	const struct tcp_sock *tp = tcp_sk(sk);
976 	/* Old crap is replaced with new one. 8)
977 	 *
978 	 * More seriously:
979 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
980 	 *    It cannot be less due to utterly erratic ACK generation made
981 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
982 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
983 	 *    is invisible. Actually, Linux-2.4 also generates erratic
984 	 *    ACKs in some circumstances.
985 	 */
986 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
987 
988 	/* 2. Fixups made earlier cannot be right.
989 	 *    If we do not estimate RTO correctly without them,
990 	 *    all the algo is pure shit and should be replaced
991 	 *    with correct one. It is exactly, which we pretend to do.
992 	 */
993 
994 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
995 	 * guarantees that rto is higher.
996 	 */
997 	tcp_bound_rto(sk);
998 }
999 
1000 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1001 {
1002 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1003 
1004 	if (!cwnd)
1005 		cwnd = TCP_INIT_CWND;
1006 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1007 }
1008 
1009 struct tcp_sacktag_state {
1010 	/* Timestamps for earliest and latest never-retransmitted segment
1011 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1012 	 * but congestion control should still get an accurate delay signal.
1013 	 */
1014 	u64	first_sackt;
1015 	u64	last_sackt;
1016 	u32	reord;
1017 	u32	sack_delivered;
1018 	int	flag;
1019 	unsigned int mss_now;
1020 	struct rate_sample *rate;
1021 };
1022 
1023 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1024  * and spurious retransmission information if this DSACK is unlikely caused by
1025  * sender's action:
1026  * - DSACKed sequence range is larger than maximum receiver's window.
1027  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1028  */
1029 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1030 			  u32 end_seq, struct tcp_sacktag_state *state)
1031 {
1032 	u32 seq_len, dup_segs = 1;
1033 
1034 	if (!before(start_seq, end_seq))
1035 		return 0;
1036 
1037 	seq_len = end_seq - start_seq;
1038 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1039 	if (seq_len > tp->max_window)
1040 		return 0;
1041 	if (seq_len > tp->mss_cache)
1042 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1043 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1044 		state->flag |= FLAG_DSACK_TLP;
1045 
1046 	tp->dsack_dups += dup_segs;
1047 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1048 	if (tp->dsack_dups > tp->total_retrans)
1049 		return 0;
1050 
1051 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1052 	/* We increase the RACK ordering window in rounds where we receive
1053 	 * DSACKs that may have been due to reordering causing RACK to trigger
1054 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1055 	 * without having seen reordering, or that match TLP probes (TLP
1056 	 * is timer-driven, not triggered by RACK).
1057 	 */
1058 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1059 		tp->rack.dsack_seen = 1;
1060 
1061 	state->flag |= FLAG_DSACKING_ACK;
1062 	/* A spurious retransmission is delivered */
1063 	state->sack_delivered += dup_segs;
1064 
1065 	return dup_segs;
1066 }
1067 
1068 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1069  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1070  * distance is approximated in full-mss packet distance ("reordering").
1071  */
1072 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1073 				      const int ts)
1074 {
1075 	struct tcp_sock *tp = tcp_sk(sk);
1076 	const u32 mss = tp->mss_cache;
1077 	u32 fack, metric;
1078 
1079 	fack = tcp_highest_sack_seq(tp);
1080 	if (!before(low_seq, fack))
1081 		return;
1082 
1083 	metric = fack - low_seq;
1084 	if ((metric > tp->reordering * mss) && mss) {
1085 #if FASTRETRANS_DEBUG > 1
1086 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1087 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1088 			 tp->reordering,
1089 			 0,
1090 			 tp->sacked_out,
1091 			 tp->undo_marker ? tp->undo_retrans : 0);
1092 #endif
1093 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1094 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1095 	}
1096 
1097 	/* This exciting event is worth to be remembered. 8) */
1098 	tp->reord_seen++;
1099 	NET_INC_STATS(sock_net(sk),
1100 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1101 }
1102 
1103  /* This must be called before lost_out or retrans_out are updated
1104   * on a new loss, because we want to know if all skbs previously
1105   * known to be lost have already been retransmitted, indicating
1106   * that this newly lost skb is our next skb to retransmit.
1107   */
1108 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1109 {
1110 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1111 	    (tp->retransmit_skb_hint &&
1112 	     before(TCP_SKB_CB(skb)->seq,
1113 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1114 		tp->retransmit_skb_hint = skb;
1115 }
1116 
1117 /* Sum the number of packets on the wire we have marked as lost, and
1118  * notify the congestion control module that the given skb was marked lost.
1119  */
1120 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1121 {
1122 	tp->lost += tcp_skb_pcount(skb);
1123 }
1124 
1125 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1126 {
1127 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1128 	struct tcp_sock *tp = tcp_sk(sk);
1129 
1130 	if (sacked & TCPCB_SACKED_ACKED)
1131 		return;
1132 
1133 	tcp_verify_retransmit_hint(tp, skb);
1134 	if (sacked & TCPCB_LOST) {
1135 		if (sacked & TCPCB_SACKED_RETRANS) {
1136 			/* Account for retransmits that are lost again */
1137 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1138 			tp->retrans_out -= tcp_skb_pcount(skb);
1139 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1140 				      tcp_skb_pcount(skb));
1141 			tcp_notify_skb_loss_event(tp, skb);
1142 		}
1143 	} else {
1144 		tp->lost_out += tcp_skb_pcount(skb);
1145 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1146 		tcp_notify_skb_loss_event(tp, skb);
1147 	}
1148 }
1149 
1150 /* Updates the delivered and delivered_ce counts */
1151 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1152 				bool ece_ack)
1153 {
1154 	tp->delivered += delivered;
1155 	if (ece_ack)
1156 		tp->delivered_ce += delivered;
1157 }
1158 
1159 /* This procedure tags the retransmission queue when SACKs arrive.
1160  *
1161  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1162  * Packets in queue with these bits set are counted in variables
1163  * sacked_out, retrans_out and lost_out, correspondingly.
1164  *
1165  * Valid combinations are:
1166  * Tag  InFlight	Description
1167  * 0	1		- orig segment is in flight.
1168  * S	0		- nothing flies, orig reached receiver.
1169  * L	0		- nothing flies, orig lost by net.
1170  * R	2		- both orig and retransmit are in flight.
1171  * L|R	1		- orig is lost, retransmit is in flight.
1172  * S|R  1		- orig reached receiver, retrans is still in flight.
1173  * (L|S|R is logically valid, it could occur when L|R is sacked,
1174  *  but it is equivalent to plain S and code short-curcuits it to S.
1175  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1176  *
1177  * These 6 states form finite state machine, controlled by the following events:
1178  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1179  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1180  * 3. Loss detection event of two flavors:
1181  *	A. Scoreboard estimator decided the packet is lost.
1182  *	   A'. Reno "three dupacks" marks head of queue lost.
1183  *	B. SACK arrives sacking SND.NXT at the moment, when the
1184  *	   segment was retransmitted.
1185  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1186  *
1187  * It is pleasant to note, that state diagram turns out to be commutative,
1188  * so that we are allowed not to be bothered by order of our actions,
1189  * when multiple events arrive simultaneously. (see the function below).
1190  *
1191  * Reordering detection.
1192  * --------------------
1193  * Reordering metric is maximal distance, which a packet can be displaced
1194  * in packet stream. With SACKs we can estimate it:
1195  *
1196  * 1. SACK fills old hole and the corresponding segment was not
1197  *    ever retransmitted -> reordering. Alas, we cannot use it
1198  *    when segment was retransmitted.
1199  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1200  *    for retransmitted and already SACKed segment -> reordering..
1201  * Both of these heuristics are not used in Loss state, when we cannot
1202  * account for retransmits accurately.
1203  *
1204  * SACK block validation.
1205  * ----------------------
1206  *
1207  * SACK block range validation checks that the received SACK block fits to
1208  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1209  * Note that SND.UNA is not included to the range though being valid because
1210  * it means that the receiver is rather inconsistent with itself reporting
1211  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1212  * perfectly valid, however, in light of RFC2018 which explicitly states
1213  * that "SACK block MUST reflect the newest segment.  Even if the newest
1214  * segment is going to be discarded ...", not that it looks very clever
1215  * in case of head skb. Due to potentional receiver driven attacks, we
1216  * choose to avoid immediate execution of a walk in write queue due to
1217  * reneging and defer head skb's loss recovery to standard loss recovery
1218  * procedure that will eventually trigger (nothing forbids us doing this).
1219  *
1220  * Implements also blockage to start_seq wrap-around. Problem lies in the
1221  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1222  * there's no guarantee that it will be before snd_nxt (n). The problem
1223  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1224  * wrap (s_w):
1225  *
1226  *         <- outs wnd ->                          <- wrapzone ->
1227  *         u     e      n                         u_w   e_w  s n_w
1228  *         |     |      |                          |     |   |  |
1229  * |<------------+------+----- TCP seqno space --------------+---------->|
1230  * ...-- <2^31 ->|                                           |<--------...
1231  * ...---- >2^31 ------>|                                    |<--------...
1232  *
1233  * Current code wouldn't be vulnerable but it's better still to discard such
1234  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1235  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1236  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1237  * equal to the ideal case (infinite seqno space without wrap caused issues).
1238  *
1239  * With D-SACK the lower bound is extended to cover sequence space below
1240  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1241  * again, D-SACK block must not to go across snd_una (for the same reason as
1242  * for the normal SACK blocks, explained above). But there all simplicity
1243  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1244  * fully below undo_marker they do not affect behavior in anyway and can
1245  * therefore be safely ignored. In rare cases (which are more or less
1246  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1247  * fragmentation and packet reordering past skb's retransmission. To consider
1248  * them correctly, the acceptable range must be extended even more though
1249  * the exact amount is rather hard to quantify. However, tp->max_window can
1250  * be used as an exaggerated estimate.
1251  */
1252 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1253 				   u32 start_seq, u32 end_seq)
1254 {
1255 	/* Too far in future, or reversed (interpretation is ambiguous) */
1256 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1257 		return false;
1258 
1259 	/* Nasty start_seq wrap-around check (see comments above) */
1260 	if (!before(start_seq, tp->snd_nxt))
1261 		return false;
1262 
1263 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1264 	 * start_seq == snd_una is non-sensical (see comments above)
1265 	 */
1266 	if (after(start_seq, tp->snd_una))
1267 		return true;
1268 
1269 	if (!is_dsack || !tp->undo_marker)
1270 		return false;
1271 
1272 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1273 	if (after(end_seq, tp->snd_una))
1274 		return false;
1275 
1276 	if (!before(start_seq, tp->undo_marker))
1277 		return true;
1278 
1279 	/* Too old */
1280 	if (!after(end_seq, tp->undo_marker))
1281 		return false;
1282 
1283 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1284 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1285 	 */
1286 	return !before(start_seq, end_seq - tp->max_window);
1287 }
1288 
1289 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1290 			    struct tcp_sack_block_wire *sp, int num_sacks,
1291 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1292 {
1293 	struct tcp_sock *tp = tcp_sk(sk);
1294 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1295 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1296 	u32 dup_segs;
1297 
1298 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1299 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1300 	} else if (num_sacks > 1) {
1301 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1302 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1303 
1304 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1305 			return false;
1306 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1307 	} else {
1308 		return false;
1309 	}
1310 
1311 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1312 	if (!dup_segs) {	/* Skip dubious DSACK */
1313 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1314 		return false;
1315 	}
1316 
1317 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1318 
1319 	/* D-SACK for already forgotten data... Do dumb counting. */
1320 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1321 	    !after(end_seq_0, prior_snd_una) &&
1322 	    after(end_seq_0, tp->undo_marker))
1323 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1324 
1325 	return true;
1326 }
1327 
1328 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1329  * the incoming SACK may not exactly match but we can find smaller MSS
1330  * aligned portion of it that matches. Therefore we might need to fragment
1331  * which may fail and creates some hassle (caller must handle error case
1332  * returns).
1333  *
1334  * FIXME: this could be merged to shift decision code
1335  */
1336 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1337 				  u32 start_seq, u32 end_seq)
1338 {
1339 	int err;
1340 	bool in_sack;
1341 	unsigned int pkt_len;
1342 	unsigned int mss;
1343 
1344 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1345 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1346 
1347 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1348 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1349 		mss = tcp_skb_mss(skb);
1350 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1351 
1352 		if (!in_sack) {
1353 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1354 			if (pkt_len < mss)
1355 				pkt_len = mss;
1356 		} else {
1357 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1358 			if (pkt_len < mss)
1359 				return -EINVAL;
1360 		}
1361 
1362 		/* Round if necessary so that SACKs cover only full MSSes
1363 		 * and/or the remaining small portion (if present)
1364 		 */
1365 		if (pkt_len > mss) {
1366 			unsigned int new_len = (pkt_len / mss) * mss;
1367 			if (!in_sack && new_len < pkt_len)
1368 				new_len += mss;
1369 			pkt_len = new_len;
1370 		}
1371 
1372 		if (pkt_len >= skb->len && !in_sack)
1373 			return 0;
1374 
1375 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1376 				   pkt_len, mss, GFP_ATOMIC);
1377 		if (err < 0)
1378 			return err;
1379 	}
1380 
1381 	return in_sack;
1382 }
1383 
1384 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1385 static u8 tcp_sacktag_one(struct sock *sk,
1386 			  struct tcp_sacktag_state *state, u8 sacked,
1387 			  u32 start_seq, u32 end_seq,
1388 			  int dup_sack, int pcount,
1389 			  u64 xmit_time)
1390 {
1391 	struct tcp_sock *tp = tcp_sk(sk);
1392 
1393 	/* Account D-SACK for retransmitted packet. */
1394 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1395 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1396 		    after(end_seq, tp->undo_marker))
1397 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1398 		if ((sacked & TCPCB_SACKED_ACKED) &&
1399 		    before(start_seq, state->reord))
1400 				state->reord = start_seq;
1401 	}
1402 
1403 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1404 	if (!after(end_seq, tp->snd_una))
1405 		return sacked;
1406 
1407 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1408 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1409 
1410 		if (sacked & TCPCB_SACKED_RETRANS) {
1411 			/* If the segment is not tagged as lost,
1412 			 * we do not clear RETRANS, believing
1413 			 * that retransmission is still in flight.
1414 			 */
1415 			if (sacked & TCPCB_LOST) {
1416 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1417 				tp->lost_out -= pcount;
1418 				tp->retrans_out -= pcount;
1419 			}
1420 		} else {
1421 			if (!(sacked & TCPCB_RETRANS)) {
1422 				/* New sack for not retransmitted frame,
1423 				 * which was in hole. It is reordering.
1424 				 */
1425 				if (before(start_seq,
1426 					   tcp_highest_sack_seq(tp)) &&
1427 				    before(start_seq, state->reord))
1428 					state->reord = start_seq;
1429 
1430 				if (!after(end_seq, tp->high_seq))
1431 					state->flag |= FLAG_ORIG_SACK_ACKED;
1432 				if (state->first_sackt == 0)
1433 					state->first_sackt = xmit_time;
1434 				state->last_sackt = xmit_time;
1435 			}
1436 
1437 			if (sacked & TCPCB_LOST) {
1438 				sacked &= ~TCPCB_LOST;
1439 				tp->lost_out -= pcount;
1440 			}
1441 		}
1442 
1443 		sacked |= TCPCB_SACKED_ACKED;
1444 		state->flag |= FLAG_DATA_SACKED;
1445 		tp->sacked_out += pcount;
1446 		/* Out-of-order packets delivered */
1447 		state->sack_delivered += pcount;
1448 
1449 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1450 		if (tp->lost_skb_hint &&
1451 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1452 			tp->lost_cnt_hint += pcount;
1453 	}
1454 
1455 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1456 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1457 	 * are accounted above as well.
1458 	 */
1459 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1460 		sacked &= ~TCPCB_SACKED_RETRANS;
1461 		tp->retrans_out -= pcount;
1462 	}
1463 
1464 	return sacked;
1465 }
1466 
1467 /* Shift newly-SACKed bytes from this skb to the immediately previous
1468  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1469  */
1470 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1471 			    struct sk_buff *skb,
1472 			    struct tcp_sacktag_state *state,
1473 			    unsigned int pcount, int shifted, int mss,
1474 			    bool dup_sack)
1475 {
1476 	struct tcp_sock *tp = tcp_sk(sk);
1477 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1478 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1479 
1480 	BUG_ON(!pcount);
1481 
1482 	/* Adjust counters and hints for the newly sacked sequence
1483 	 * range but discard the return value since prev is already
1484 	 * marked. We must tag the range first because the seq
1485 	 * advancement below implicitly advances
1486 	 * tcp_highest_sack_seq() when skb is highest_sack.
1487 	 */
1488 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1489 			start_seq, end_seq, dup_sack, pcount,
1490 			tcp_skb_timestamp_us(skb));
1491 	tcp_rate_skb_delivered(sk, skb, state->rate);
1492 
1493 	if (skb == tp->lost_skb_hint)
1494 		tp->lost_cnt_hint += pcount;
1495 
1496 	TCP_SKB_CB(prev)->end_seq += shifted;
1497 	TCP_SKB_CB(skb)->seq += shifted;
1498 
1499 	tcp_skb_pcount_add(prev, pcount);
1500 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1501 	tcp_skb_pcount_add(skb, -pcount);
1502 
1503 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1504 	 * in theory this shouldn't be necessary but as long as DSACK
1505 	 * code can come after this skb later on it's better to keep
1506 	 * setting gso_size to something.
1507 	 */
1508 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1509 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1510 
1511 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1512 	if (tcp_skb_pcount(skb) <= 1)
1513 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1514 
1515 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1516 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1517 
1518 	if (skb->len > 0) {
1519 		BUG_ON(!tcp_skb_pcount(skb));
1520 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1521 		return false;
1522 	}
1523 
1524 	/* Whole SKB was eaten :-) */
1525 
1526 	if (skb == tp->retransmit_skb_hint)
1527 		tp->retransmit_skb_hint = prev;
1528 	if (skb == tp->lost_skb_hint) {
1529 		tp->lost_skb_hint = prev;
1530 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1531 	}
1532 
1533 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1534 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1535 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1536 		TCP_SKB_CB(prev)->end_seq++;
1537 
1538 	if (skb == tcp_highest_sack(sk))
1539 		tcp_advance_highest_sack(sk, skb);
1540 
1541 	tcp_skb_collapse_tstamp(prev, skb);
1542 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1543 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1544 
1545 	tcp_rtx_queue_unlink_and_free(skb, sk);
1546 
1547 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1548 
1549 	return true;
1550 }
1551 
1552 /* I wish gso_size would have a bit more sane initialization than
1553  * something-or-zero which complicates things
1554  */
1555 static int tcp_skb_seglen(const struct sk_buff *skb)
1556 {
1557 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1558 }
1559 
1560 /* Shifting pages past head area doesn't work */
1561 static int skb_can_shift(const struct sk_buff *skb)
1562 {
1563 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1564 }
1565 
1566 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1567 		  int pcount, int shiftlen)
1568 {
1569 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1570 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1571 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1572 	 * even if current MSS is bigger.
1573 	 */
1574 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1575 		return 0;
1576 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1577 		return 0;
1578 	return skb_shift(to, from, shiftlen);
1579 }
1580 
1581 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1582  * skb.
1583  */
1584 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1585 					  struct tcp_sacktag_state *state,
1586 					  u32 start_seq, u32 end_seq,
1587 					  bool dup_sack)
1588 {
1589 	struct tcp_sock *tp = tcp_sk(sk);
1590 	struct sk_buff *prev;
1591 	int mss;
1592 	int pcount = 0;
1593 	int len;
1594 	int in_sack;
1595 
1596 	/* Normally R but no L won't result in plain S */
1597 	if (!dup_sack &&
1598 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1599 		goto fallback;
1600 	if (!skb_can_shift(skb))
1601 		goto fallback;
1602 	/* This frame is about to be dropped (was ACKed). */
1603 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1604 		goto fallback;
1605 
1606 	/* Can only happen with delayed DSACK + discard craziness */
1607 	prev = skb_rb_prev(skb);
1608 	if (!prev)
1609 		goto fallback;
1610 
1611 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1612 		goto fallback;
1613 
1614 	if (!tcp_skb_can_collapse(prev, skb))
1615 		goto fallback;
1616 
1617 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1618 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1619 
1620 	if (in_sack) {
1621 		len = skb->len;
1622 		pcount = tcp_skb_pcount(skb);
1623 		mss = tcp_skb_seglen(skb);
1624 
1625 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1626 		 * drop this restriction as unnecessary
1627 		 */
1628 		if (mss != tcp_skb_seglen(prev))
1629 			goto fallback;
1630 	} else {
1631 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1632 			goto noop;
1633 		/* CHECKME: This is non-MSS split case only?, this will
1634 		 * cause skipped skbs due to advancing loop btw, original
1635 		 * has that feature too
1636 		 */
1637 		if (tcp_skb_pcount(skb) <= 1)
1638 			goto noop;
1639 
1640 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1641 		if (!in_sack) {
1642 			/* TODO: head merge to next could be attempted here
1643 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1644 			 * though it might not be worth of the additional hassle
1645 			 *
1646 			 * ...we can probably just fallback to what was done
1647 			 * previously. We could try merging non-SACKed ones
1648 			 * as well but it probably isn't going to buy off
1649 			 * because later SACKs might again split them, and
1650 			 * it would make skb timestamp tracking considerably
1651 			 * harder problem.
1652 			 */
1653 			goto fallback;
1654 		}
1655 
1656 		len = end_seq - TCP_SKB_CB(skb)->seq;
1657 		BUG_ON(len < 0);
1658 		BUG_ON(len > skb->len);
1659 
1660 		/* MSS boundaries should be honoured or else pcount will
1661 		 * severely break even though it makes things bit trickier.
1662 		 * Optimize common case to avoid most of the divides
1663 		 */
1664 		mss = tcp_skb_mss(skb);
1665 
1666 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1667 		 * drop this restriction as unnecessary
1668 		 */
1669 		if (mss != tcp_skb_seglen(prev))
1670 			goto fallback;
1671 
1672 		if (len == mss) {
1673 			pcount = 1;
1674 		} else if (len < mss) {
1675 			goto noop;
1676 		} else {
1677 			pcount = len / mss;
1678 			len = pcount * mss;
1679 		}
1680 	}
1681 
1682 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1683 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1684 		goto fallback;
1685 
1686 	if (!tcp_skb_shift(prev, skb, pcount, len))
1687 		goto fallback;
1688 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1689 		goto out;
1690 
1691 	/* Hole filled allows collapsing with the next as well, this is very
1692 	 * useful when hole on every nth skb pattern happens
1693 	 */
1694 	skb = skb_rb_next(prev);
1695 	if (!skb)
1696 		goto out;
1697 
1698 	if (!skb_can_shift(skb) ||
1699 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1700 	    (mss != tcp_skb_seglen(skb)))
1701 		goto out;
1702 
1703 	if (!tcp_skb_can_collapse(prev, skb))
1704 		goto out;
1705 	len = skb->len;
1706 	pcount = tcp_skb_pcount(skb);
1707 	if (tcp_skb_shift(prev, skb, pcount, len))
1708 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1709 				len, mss, 0);
1710 
1711 out:
1712 	return prev;
1713 
1714 noop:
1715 	return skb;
1716 
1717 fallback:
1718 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1719 	return NULL;
1720 }
1721 
1722 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1723 					struct tcp_sack_block *next_dup,
1724 					struct tcp_sacktag_state *state,
1725 					u32 start_seq, u32 end_seq,
1726 					bool dup_sack_in)
1727 {
1728 	struct tcp_sock *tp = tcp_sk(sk);
1729 	struct sk_buff *tmp;
1730 
1731 	skb_rbtree_walk_from(skb) {
1732 		int in_sack = 0;
1733 		bool dup_sack = dup_sack_in;
1734 
1735 		/* queue is in-order => we can short-circuit the walk early */
1736 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1737 			break;
1738 
1739 		if (next_dup  &&
1740 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1741 			in_sack = tcp_match_skb_to_sack(sk, skb,
1742 							next_dup->start_seq,
1743 							next_dup->end_seq);
1744 			if (in_sack > 0)
1745 				dup_sack = true;
1746 		}
1747 
1748 		/* skb reference here is a bit tricky to get right, since
1749 		 * shifting can eat and free both this skb and the next,
1750 		 * so not even _safe variant of the loop is enough.
1751 		 */
1752 		if (in_sack <= 0) {
1753 			tmp = tcp_shift_skb_data(sk, skb, state,
1754 						 start_seq, end_seq, dup_sack);
1755 			if (tmp) {
1756 				if (tmp != skb) {
1757 					skb = tmp;
1758 					continue;
1759 				}
1760 
1761 				in_sack = 0;
1762 			} else {
1763 				in_sack = tcp_match_skb_to_sack(sk, skb,
1764 								start_seq,
1765 								end_seq);
1766 			}
1767 		}
1768 
1769 		if (unlikely(in_sack < 0))
1770 			break;
1771 
1772 		if (in_sack) {
1773 			TCP_SKB_CB(skb)->sacked =
1774 				tcp_sacktag_one(sk,
1775 						state,
1776 						TCP_SKB_CB(skb)->sacked,
1777 						TCP_SKB_CB(skb)->seq,
1778 						TCP_SKB_CB(skb)->end_seq,
1779 						dup_sack,
1780 						tcp_skb_pcount(skb),
1781 						tcp_skb_timestamp_us(skb));
1782 			tcp_rate_skb_delivered(sk, skb, state->rate);
1783 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1784 				list_del_init(&skb->tcp_tsorted_anchor);
1785 
1786 			if (!before(TCP_SKB_CB(skb)->seq,
1787 				    tcp_highest_sack_seq(tp)))
1788 				tcp_advance_highest_sack(sk, skb);
1789 		}
1790 	}
1791 	return skb;
1792 }
1793 
1794 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1795 {
1796 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1797 	struct sk_buff *skb;
1798 
1799 	while (*p) {
1800 		parent = *p;
1801 		skb = rb_to_skb(parent);
1802 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1803 			p = &parent->rb_left;
1804 			continue;
1805 		}
1806 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1807 			p = &parent->rb_right;
1808 			continue;
1809 		}
1810 		return skb;
1811 	}
1812 	return NULL;
1813 }
1814 
1815 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1816 					u32 skip_to_seq)
1817 {
1818 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1819 		return skb;
1820 
1821 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1822 }
1823 
1824 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1825 						struct sock *sk,
1826 						struct tcp_sack_block *next_dup,
1827 						struct tcp_sacktag_state *state,
1828 						u32 skip_to_seq)
1829 {
1830 	if (!next_dup)
1831 		return skb;
1832 
1833 	if (before(next_dup->start_seq, skip_to_seq)) {
1834 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1835 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1836 				       next_dup->start_seq, next_dup->end_seq,
1837 				       1);
1838 	}
1839 
1840 	return skb;
1841 }
1842 
1843 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1844 {
1845 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1846 }
1847 
1848 static int
1849 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1850 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1851 {
1852 	struct tcp_sock *tp = tcp_sk(sk);
1853 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1854 				    TCP_SKB_CB(ack_skb)->sacked);
1855 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1856 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1857 	struct tcp_sack_block *cache;
1858 	struct sk_buff *skb;
1859 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1860 	int used_sacks;
1861 	bool found_dup_sack = false;
1862 	int i, j;
1863 	int first_sack_index;
1864 
1865 	state->flag = 0;
1866 	state->reord = tp->snd_nxt;
1867 
1868 	if (!tp->sacked_out)
1869 		tcp_highest_sack_reset(sk);
1870 
1871 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1872 					 num_sacks, prior_snd_una, state);
1873 
1874 	/* Eliminate too old ACKs, but take into
1875 	 * account more or less fresh ones, they can
1876 	 * contain valid SACK info.
1877 	 */
1878 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1879 		return 0;
1880 
1881 	if (!tp->packets_out)
1882 		goto out;
1883 
1884 	used_sacks = 0;
1885 	first_sack_index = 0;
1886 	for (i = 0; i < num_sacks; i++) {
1887 		bool dup_sack = !i && found_dup_sack;
1888 
1889 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1890 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1891 
1892 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1893 					    sp[used_sacks].start_seq,
1894 					    sp[used_sacks].end_seq)) {
1895 			int mib_idx;
1896 
1897 			if (dup_sack) {
1898 				if (!tp->undo_marker)
1899 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1900 				else
1901 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1902 			} else {
1903 				/* Don't count olds caused by ACK reordering */
1904 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1905 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1906 					continue;
1907 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1908 			}
1909 
1910 			NET_INC_STATS(sock_net(sk), mib_idx);
1911 			if (i == 0)
1912 				first_sack_index = -1;
1913 			continue;
1914 		}
1915 
1916 		/* Ignore very old stuff early */
1917 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1918 			if (i == 0)
1919 				first_sack_index = -1;
1920 			continue;
1921 		}
1922 
1923 		used_sacks++;
1924 	}
1925 
1926 	/* order SACK blocks to allow in order walk of the retrans queue */
1927 	for (i = used_sacks - 1; i > 0; i--) {
1928 		for (j = 0; j < i; j++) {
1929 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1930 				swap(sp[j], sp[j + 1]);
1931 
1932 				/* Track where the first SACK block goes to */
1933 				if (j == first_sack_index)
1934 					first_sack_index = j + 1;
1935 			}
1936 		}
1937 	}
1938 
1939 	state->mss_now = tcp_current_mss(sk);
1940 	skb = NULL;
1941 	i = 0;
1942 
1943 	if (!tp->sacked_out) {
1944 		/* It's already past, so skip checking against it */
1945 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1946 	} else {
1947 		cache = tp->recv_sack_cache;
1948 		/* Skip empty blocks in at head of the cache */
1949 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1950 		       !cache->end_seq)
1951 			cache++;
1952 	}
1953 
1954 	while (i < used_sacks) {
1955 		u32 start_seq = sp[i].start_seq;
1956 		u32 end_seq = sp[i].end_seq;
1957 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1958 		struct tcp_sack_block *next_dup = NULL;
1959 
1960 		if (found_dup_sack && ((i + 1) == first_sack_index))
1961 			next_dup = &sp[i + 1];
1962 
1963 		/* Skip too early cached blocks */
1964 		while (tcp_sack_cache_ok(tp, cache) &&
1965 		       !before(start_seq, cache->end_seq))
1966 			cache++;
1967 
1968 		/* Can skip some work by looking recv_sack_cache? */
1969 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1970 		    after(end_seq, cache->start_seq)) {
1971 
1972 			/* Head todo? */
1973 			if (before(start_seq, cache->start_seq)) {
1974 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1975 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1976 						       state,
1977 						       start_seq,
1978 						       cache->start_seq,
1979 						       dup_sack);
1980 			}
1981 
1982 			/* Rest of the block already fully processed? */
1983 			if (!after(end_seq, cache->end_seq))
1984 				goto advance_sp;
1985 
1986 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1987 						       state,
1988 						       cache->end_seq);
1989 
1990 			/* ...tail remains todo... */
1991 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1992 				/* ...but better entrypoint exists! */
1993 				skb = tcp_highest_sack(sk);
1994 				if (!skb)
1995 					break;
1996 				cache++;
1997 				goto walk;
1998 			}
1999 
2000 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
2001 			/* Check overlap against next cached too (past this one already) */
2002 			cache++;
2003 			continue;
2004 		}
2005 
2006 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2007 			skb = tcp_highest_sack(sk);
2008 			if (!skb)
2009 				break;
2010 		}
2011 		skb = tcp_sacktag_skip(skb, sk, start_seq);
2012 
2013 walk:
2014 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2015 				       start_seq, end_seq, dup_sack);
2016 
2017 advance_sp:
2018 		i++;
2019 	}
2020 
2021 	/* Clear the head of the cache sack blocks so we can skip it next time */
2022 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2023 		tp->recv_sack_cache[i].start_seq = 0;
2024 		tp->recv_sack_cache[i].end_seq = 0;
2025 	}
2026 	for (j = 0; j < used_sacks; j++)
2027 		tp->recv_sack_cache[i++] = sp[j];
2028 
2029 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2030 		tcp_check_sack_reordering(sk, state->reord, 0);
2031 
2032 	tcp_verify_left_out(tp);
2033 out:
2034 
2035 #if FASTRETRANS_DEBUG > 0
2036 	WARN_ON((int)tp->sacked_out < 0);
2037 	WARN_ON((int)tp->lost_out < 0);
2038 	WARN_ON((int)tp->retrans_out < 0);
2039 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2040 #endif
2041 	return state->flag;
2042 }
2043 
2044 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2045  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2046  */
2047 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2048 {
2049 	u32 holes;
2050 
2051 	holes = max(tp->lost_out, 1U);
2052 	holes = min(holes, tp->packets_out);
2053 
2054 	if ((tp->sacked_out + holes) > tp->packets_out) {
2055 		tp->sacked_out = tp->packets_out - holes;
2056 		return true;
2057 	}
2058 	return false;
2059 }
2060 
2061 /* If we receive more dupacks than we expected counting segments
2062  * in assumption of absent reordering, interpret this as reordering.
2063  * The only another reason could be bug in receiver TCP.
2064  */
2065 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2066 {
2067 	struct tcp_sock *tp = tcp_sk(sk);
2068 
2069 	if (!tcp_limit_reno_sacked(tp))
2070 		return;
2071 
2072 	tp->reordering = min_t(u32, tp->packets_out + addend,
2073 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2074 	tp->reord_seen++;
2075 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2076 }
2077 
2078 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2079 
2080 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2081 {
2082 	if (num_dupack) {
2083 		struct tcp_sock *tp = tcp_sk(sk);
2084 		u32 prior_sacked = tp->sacked_out;
2085 		s32 delivered;
2086 
2087 		tp->sacked_out += num_dupack;
2088 		tcp_check_reno_reordering(sk, 0);
2089 		delivered = tp->sacked_out - prior_sacked;
2090 		if (delivered > 0)
2091 			tcp_count_delivered(tp, delivered, ece_ack);
2092 		tcp_verify_left_out(tp);
2093 	}
2094 }
2095 
2096 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2097 
2098 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2099 {
2100 	struct tcp_sock *tp = tcp_sk(sk);
2101 
2102 	if (acked > 0) {
2103 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2104 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2105 				    ece_ack);
2106 		if (acked - 1 >= tp->sacked_out)
2107 			tp->sacked_out = 0;
2108 		else
2109 			tp->sacked_out -= acked - 1;
2110 	}
2111 	tcp_check_reno_reordering(sk, acked);
2112 	tcp_verify_left_out(tp);
2113 }
2114 
2115 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2116 {
2117 	tp->sacked_out = 0;
2118 }
2119 
2120 void tcp_clear_retrans(struct tcp_sock *tp)
2121 {
2122 	tp->retrans_out = 0;
2123 	tp->lost_out = 0;
2124 	tp->undo_marker = 0;
2125 	tp->undo_retrans = -1;
2126 	tp->sacked_out = 0;
2127 	tp->rto_stamp = 0;
2128 	tp->total_rto = 0;
2129 	tp->total_rto_recoveries = 0;
2130 	tp->total_rto_time = 0;
2131 }
2132 
2133 static inline void tcp_init_undo(struct tcp_sock *tp)
2134 {
2135 	tp->undo_marker = tp->snd_una;
2136 	/* Retransmission still in flight may cause DSACKs later. */
2137 	tp->undo_retrans = tp->retrans_out ? : -1;
2138 }
2139 
2140 static bool tcp_is_rack(const struct sock *sk)
2141 {
2142 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2143 		TCP_RACK_LOSS_DETECTION;
2144 }
2145 
2146 /* If we detect SACK reneging, forget all SACK information
2147  * and reset tags completely, otherwise preserve SACKs. If receiver
2148  * dropped its ofo queue, we will know this due to reneging detection.
2149  */
2150 static void tcp_timeout_mark_lost(struct sock *sk)
2151 {
2152 	struct tcp_sock *tp = tcp_sk(sk);
2153 	struct sk_buff *skb, *head;
2154 	bool is_reneg;			/* is receiver reneging on SACKs? */
2155 
2156 	head = tcp_rtx_queue_head(sk);
2157 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2158 	if (is_reneg) {
2159 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2160 		tp->sacked_out = 0;
2161 		/* Mark SACK reneging until we recover from this loss event. */
2162 		tp->is_sack_reneg = 1;
2163 	} else if (tcp_is_reno(tp)) {
2164 		tcp_reset_reno_sack(tp);
2165 	}
2166 
2167 	skb = head;
2168 	skb_rbtree_walk_from(skb) {
2169 		if (is_reneg)
2170 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2171 		else if (tcp_is_rack(sk) && skb != head &&
2172 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2173 			continue; /* Don't mark recently sent ones lost yet */
2174 		tcp_mark_skb_lost(sk, skb);
2175 	}
2176 	tcp_verify_left_out(tp);
2177 	tcp_clear_all_retrans_hints(tp);
2178 }
2179 
2180 /* Enter Loss state. */
2181 void tcp_enter_loss(struct sock *sk)
2182 {
2183 	const struct inet_connection_sock *icsk = inet_csk(sk);
2184 	struct tcp_sock *tp = tcp_sk(sk);
2185 	struct net *net = sock_net(sk);
2186 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2187 	u8 reordering;
2188 
2189 	tcp_timeout_mark_lost(sk);
2190 
2191 	/* Reduce ssthresh if it has not yet been made inside this window. */
2192 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2193 	    !after(tp->high_seq, tp->snd_una) ||
2194 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2195 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2196 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2197 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2198 		tcp_ca_event(sk, CA_EVENT_LOSS);
2199 		tcp_init_undo(tp);
2200 	}
2201 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2202 	tp->snd_cwnd_cnt   = 0;
2203 	tp->snd_cwnd_stamp = tcp_jiffies32;
2204 
2205 	/* Timeout in disordered state after receiving substantial DUPACKs
2206 	 * suggests that the degree of reordering is over-estimated.
2207 	 */
2208 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2209 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2210 	    tp->sacked_out >= reordering)
2211 		tp->reordering = min_t(unsigned int, tp->reordering,
2212 				       reordering);
2213 
2214 	tcp_set_ca_state(sk, TCP_CA_Loss);
2215 	tp->high_seq = tp->snd_nxt;
2216 	tcp_ecn_queue_cwr(tp);
2217 
2218 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2219 	 * loss recovery is underway except recurring timeout(s) on
2220 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2221 	 */
2222 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2223 		   (new_recovery || icsk->icsk_retransmits) &&
2224 		   !inet_csk(sk)->icsk_mtup.probe_size;
2225 }
2226 
2227 /* If ACK arrived pointing to a remembered SACK, it means that our
2228  * remembered SACKs do not reflect real state of receiver i.e.
2229  * receiver _host_ is heavily congested (or buggy).
2230  *
2231  * To avoid big spurious retransmission bursts due to transient SACK
2232  * scoreboard oddities that look like reneging, we give the receiver a
2233  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2234  * restore sanity to the SACK scoreboard. If the apparent reneging
2235  * persists until this RTO then we'll clear the SACK scoreboard.
2236  */
2237 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2238 {
2239 	if (flag & FLAG_SACK_RENEGING &&
2240 	    flag & FLAG_SND_UNA_ADVANCED) {
2241 		struct tcp_sock *tp = tcp_sk(sk);
2242 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2243 					  msecs_to_jiffies(10));
2244 
2245 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2246 					  delay, TCP_RTO_MAX);
2247 		return true;
2248 	}
2249 	return false;
2250 }
2251 
2252 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2253  * counter when SACK is enabled (without SACK, sacked_out is used for
2254  * that purpose).
2255  *
2256  * With reordering, holes may still be in flight, so RFC3517 recovery
2257  * uses pure sacked_out (total number of SACKed segments) even though
2258  * it violates the RFC that uses duplicate ACKs, often these are equal
2259  * but when e.g. out-of-window ACKs or packet duplication occurs,
2260  * they differ. Since neither occurs due to loss, TCP should really
2261  * ignore them.
2262  */
2263 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2264 {
2265 	return tp->sacked_out + 1;
2266 }
2267 
2268 /* Linux NewReno/SACK/ECN state machine.
2269  * --------------------------------------
2270  *
2271  * "Open"	Normal state, no dubious events, fast path.
2272  * "Disorder"   In all the respects it is "Open",
2273  *		but requires a bit more attention. It is entered when
2274  *		we see some SACKs or dupacks. It is split of "Open"
2275  *		mainly to move some processing from fast path to slow one.
2276  * "CWR"	CWND was reduced due to some Congestion Notification event.
2277  *		It can be ECN, ICMP source quench, local device congestion.
2278  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2279  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2280  *
2281  * tcp_fastretrans_alert() is entered:
2282  * - each incoming ACK, if state is not "Open"
2283  * - when arrived ACK is unusual, namely:
2284  *	* SACK
2285  *	* Duplicate ACK.
2286  *	* ECN ECE.
2287  *
2288  * Counting packets in flight is pretty simple.
2289  *
2290  *	in_flight = packets_out - left_out + retrans_out
2291  *
2292  *	packets_out is SND.NXT-SND.UNA counted in packets.
2293  *
2294  *	retrans_out is number of retransmitted segments.
2295  *
2296  *	left_out is number of segments left network, but not ACKed yet.
2297  *
2298  *		left_out = sacked_out + lost_out
2299  *
2300  *     sacked_out: Packets, which arrived to receiver out of order
2301  *		   and hence not ACKed. With SACKs this number is simply
2302  *		   amount of SACKed data. Even without SACKs
2303  *		   it is easy to give pretty reliable estimate of this number,
2304  *		   counting duplicate ACKs.
2305  *
2306  *       lost_out: Packets lost by network. TCP has no explicit
2307  *		   "loss notification" feedback from network (for now).
2308  *		   It means that this number can be only _guessed_.
2309  *		   Actually, it is the heuristics to predict lossage that
2310  *		   distinguishes different algorithms.
2311  *
2312  *	F.e. after RTO, when all the queue is considered as lost,
2313  *	lost_out = packets_out and in_flight = retrans_out.
2314  *
2315  *		Essentially, we have now a few algorithms detecting
2316  *		lost packets.
2317  *
2318  *		If the receiver supports SACK:
2319  *
2320  *		RFC6675/3517: It is the conventional algorithm. A packet is
2321  *		considered lost if the number of higher sequence packets
2322  *		SACKed is greater than or equal the DUPACK thoreshold
2323  *		(reordering). This is implemented in tcp_mark_head_lost and
2324  *		tcp_update_scoreboard.
2325  *
2326  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2327  *		(2017-) that checks timing instead of counting DUPACKs.
2328  *		Essentially a packet is considered lost if it's not S/ACKed
2329  *		after RTT + reordering_window, where both metrics are
2330  *		dynamically measured and adjusted. This is implemented in
2331  *		tcp_rack_mark_lost.
2332  *
2333  *		If the receiver does not support SACK:
2334  *
2335  *		NewReno (RFC6582): in Recovery we assume that one segment
2336  *		is lost (classic Reno). While we are in Recovery and
2337  *		a partial ACK arrives, we assume that one more packet
2338  *		is lost (NewReno). This heuristics are the same in NewReno
2339  *		and SACK.
2340  *
2341  * Really tricky (and requiring careful tuning) part of algorithm
2342  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2343  * The first determines the moment _when_ we should reduce CWND and,
2344  * hence, slow down forward transmission. In fact, it determines the moment
2345  * when we decide that hole is caused by loss, rather than by a reorder.
2346  *
2347  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2348  * holes, caused by lost packets.
2349  *
2350  * And the most logically complicated part of algorithm is undo
2351  * heuristics. We detect false retransmits due to both too early
2352  * fast retransmit (reordering) and underestimated RTO, analyzing
2353  * timestamps and D-SACKs. When we detect that some segments were
2354  * retransmitted by mistake and CWND reduction was wrong, we undo
2355  * window reduction and abort recovery phase. This logic is hidden
2356  * inside several functions named tcp_try_undo_<something>.
2357  */
2358 
2359 /* This function decides, when we should leave Disordered state
2360  * and enter Recovery phase, reducing congestion window.
2361  *
2362  * Main question: may we further continue forward transmission
2363  * with the same cwnd?
2364  */
2365 static bool tcp_time_to_recover(struct sock *sk, int flag)
2366 {
2367 	struct tcp_sock *tp = tcp_sk(sk);
2368 
2369 	/* Trick#1: The loss is proven. */
2370 	if (tp->lost_out)
2371 		return true;
2372 
2373 	/* Not-A-Trick#2 : Classic rule... */
2374 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2375 		return true;
2376 
2377 	return false;
2378 }
2379 
2380 /* Detect loss in event "A" above by marking head of queue up as lost.
2381  * For RFC3517 SACK, a segment is considered lost if it
2382  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2383  * the maximum SACKed segments to pass before reaching this limit.
2384  */
2385 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2386 {
2387 	struct tcp_sock *tp = tcp_sk(sk);
2388 	struct sk_buff *skb;
2389 	int cnt;
2390 	/* Use SACK to deduce losses of new sequences sent during recovery */
2391 	const u32 loss_high = tp->snd_nxt;
2392 
2393 	WARN_ON(packets > tp->packets_out);
2394 	skb = tp->lost_skb_hint;
2395 	if (skb) {
2396 		/* Head already handled? */
2397 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2398 			return;
2399 		cnt = tp->lost_cnt_hint;
2400 	} else {
2401 		skb = tcp_rtx_queue_head(sk);
2402 		cnt = 0;
2403 	}
2404 
2405 	skb_rbtree_walk_from(skb) {
2406 		/* TODO: do this better */
2407 		/* this is not the most efficient way to do this... */
2408 		tp->lost_skb_hint = skb;
2409 		tp->lost_cnt_hint = cnt;
2410 
2411 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2412 			break;
2413 
2414 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2415 			cnt += tcp_skb_pcount(skb);
2416 
2417 		if (cnt > packets)
2418 			break;
2419 
2420 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2421 			tcp_mark_skb_lost(sk, skb);
2422 
2423 		if (mark_head)
2424 			break;
2425 	}
2426 	tcp_verify_left_out(tp);
2427 }
2428 
2429 /* Account newly detected lost packet(s) */
2430 
2431 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2432 {
2433 	struct tcp_sock *tp = tcp_sk(sk);
2434 
2435 	if (tcp_is_sack(tp)) {
2436 		int sacked_upto = tp->sacked_out - tp->reordering;
2437 		if (sacked_upto >= 0)
2438 			tcp_mark_head_lost(sk, sacked_upto, 0);
2439 		else if (fast_rexmit)
2440 			tcp_mark_head_lost(sk, 1, 1);
2441 	}
2442 }
2443 
2444 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2445 {
2446 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2447 	       before(tp->rx_opt.rcv_tsecr, when);
2448 }
2449 
2450 /* skb is spurious retransmitted if the returned timestamp echo
2451  * reply is prior to the skb transmission time
2452  */
2453 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2454 				     const struct sk_buff *skb)
2455 {
2456 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2457 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2458 }
2459 
2460 /* Nothing was retransmitted or returned timestamp is less
2461  * than timestamp of the first retransmission.
2462  */
2463 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2464 {
2465 	return tp->retrans_stamp &&
2466 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2467 }
2468 
2469 /* Undo procedures. */
2470 
2471 /* We can clear retrans_stamp when there are no retransmissions in the
2472  * window. It would seem that it is trivially available for us in
2473  * tp->retrans_out, however, that kind of assumptions doesn't consider
2474  * what will happen if errors occur when sending retransmission for the
2475  * second time. ...It could the that such segment has only
2476  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2477  * the head skb is enough except for some reneging corner cases that
2478  * are not worth the effort.
2479  *
2480  * Main reason for all this complexity is the fact that connection dying
2481  * time now depends on the validity of the retrans_stamp, in particular,
2482  * that successive retransmissions of a segment must not advance
2483  * retrans_stamp under any conditions.
2484  */
2485 static bool tcp_any_retrans_done(const struct sock *sk)
2486 {
2487 	const struct tcp_sock *tp = tcp_sk(sk);
2488 	struct sk_buff *skb;
2489 
2490 	if (tp->retrans_out)
2491 		return true;
2492 
2493 	skb = tcp_rtx_queue_head(sk);
2494 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2495 		return true;
2496 
2497 	return false;
2498 }
2499 
2500 static void DBGUNDO(struct sock *sk, const char *msg)
2501 {
2502 #if FASTRETRANS_DEBUG > 1
2503 	struct tcp_sock *tp = tcp_sk(sk);
2504 	struct inet_sock *inet = inet_sk(sk);
2505 
2506 	if (sk->sk_family == AF_INET) {
2507 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2508 			 msg,
2509 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2510 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2511 			 tp->snd_ssthresh, tp->prior_ssthresh,
2512 			 tp->packets_out);
2513 	}
2514 #if IS_ENABLED(CONFIG_IPV6)
2515 	else if (sk->sk_family == AF_INET6) {
2516 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2517 			 msg,
2518 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2519 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2520 			 tp->snd_ssthresh, tp->prior_ssthresh,
2521 			 tp->packets_out);
2522 	}
2523 #endif
2524 #endif
2525 }
2526 
2527 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2528 {
2529 	struct tcp_sock *tp = tcp_sk(sk);
2530 
2531 	if (unmark_loss) {
2532 		struct sk_buff *skb;
2533 
2534 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2535 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2536 		}
2537 		tp->lost_out = 0;
2538 		tcp_clear_all_retrans_hints(tp);
2539 	}
2540 
2541 	if (tp->prior_ssthresh) {
2542 		const struct inet_connection_sock *icsk = inet_csk(sk);
2543 
2544 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2545 
2546 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2547 			tp->snd_ssthresh = tp->prior_ssthresh;
2548 			tcp_ecn_withdraw_cwr(tp);
2549 		}
2550 	}
2551 	tp->snd_cwnd_stamp = tcp_jiffies32;
2552 	tp->undo_marker = 0;
2553 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2554 }
2555 
2556 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2557 {
2558 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2559 }
2560 
2561 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2562 {
2563 	struct tcp_sock *tp = tcp_sk(sk);
2564 
2565 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2566 		/* Hold old state until something *above* high_seq
2567 		 * is ACKed. For Reno it is MUST to prevent false
2568 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2569 		if (!tcp_any_retrans_done(sk))
2570 			tp->retrans_stamp = 0;
2571 		return true;
2572 	}
2573 	return false;
2574 }
2575 
2576 /* People celebrate: "We love our President!" */
2577 static bool tcp_try_undo_recovery(struct sock *sk)
2578 {
2579 	struct tcp_sock *tp = tcp_sk(sk);
2580 
2581 	if (tcp_may_undo(tp)) {
2582 		int mib_idx;
2583 
2584 		/* Happy end! We did not retransmit anything
2585 		 * or our original transmission succeeded.
2586 		 */
2587 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2588 		tcp_undo_cwnd_reduction(sk, false);
2589 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2590 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2591 		else
2592 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2593 
2594 		NET_INC_STATS(sock_net(sk), mib_idx);
2595 	} else if (tp->rack.reo_wnd_persist) {
2596 		tp->rack.reo_wnd_persist--;
2597 	}
2598 	if (tcp_is_non_sack_preventing_reopen(sk))
2599 		return true;
2600 	tcp_set_ca_state(sk, TCP_CA_Open);
2601 	tp->is_sack_reneg = 0;
2602 	return false;
2603 }
2604 
2605 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2606 static bool tcp_try_undo_dsack(struct sock *sk)
2607 {
2608 	struct tcp_sock *tp = tcp_sk(sk);
2609 
2610 	if (tp->undo_marker && !tp->undo_retrans) {
2611 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2612 					       tp->rack.reo_wnd_persist + 1);
2613 		DBGUNDO(sk, "D-SACK");
2614 		tcp_undo_cwnd_reduction(sk, false);
2615 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2616 		return true;
2617 	}
2618 	return false;
2619 }
2620 
2621 /* Undo during loss recovery after partial ACK or using F-RTO. */
2622 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2623 {
2624 	struct tcp_sock *tp = tcp_sk(sk);
2625 
2626 	if (frto_undo || tcp_may_undo(tp)) {
2627 		tcp_undo_cwnd_reduction(sk, true);
2628 
2629 		DBGUNDO(sk, "partial loss");
2630 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2631 		if (frto_undo)
2632 			NET_INC_STATS(sock_net(sk),
2633 					LINUX_MIB_TCPSPURIOUSRTOS);
2634 		inet_csk(sk)->icsk_retransmits = 0;
2635 		if (tcp_is_non_sack_preventing_reopen(sk))
2636 			return true;
2637 		if (frto_undo || tcp_is_sack(tp)) {
2638 			tcp_set_ca_state(sk, TCP_CA_Open);
2639 			tp->is_sack_reneg = 0;
2640 		}
2641 		return true;
2642 	}
2643 	return false;
2644 }
2645 
2646 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2647  * It computes the number of packets to send (sndcnt) based on packets newly
2648  * delivered:
2649  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2650  *	cwnd reductions across a full RTT.
2651  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2652  *      But when SND_UNA is acked without further losses,
2653  *      slow starts cwnd up to ssthresh to speed up the recovery.
2654  */
2655 static void tcp_init_cwnd_reduction(struct sock *sk)
2656 {
2657 	struct tcp_sock *tp = tcp_sk(sk);
2658 
2659 	tp->high_seq = tp->snd_nxt;
2660 	tp->tlp_high_seq = 0;
2661 	tp->snd_cwnd_cnt = 0;
2662 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2663 	tp->prr_delivered = 0;
2664 	tp->prr_out = 0;
2665 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2666 	tcp_ecn_queue_cwr(tp);
2667 }
2668 
2669 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2670 {
2671 	struct tcp_sock *tp = tcp_sk(sk);
2672 	int sndcnt = 0;
2673 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2674 
2675 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2676 		return;
2677 
2678 	tp->prr_delivered += newly_acked_sacked;
2679 	if (delta < 0) {
2680 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2681 			       tp->prior_cwnd - 1;
2682 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2683 	} else {
2684 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2685 			       newly_acked_sacked);
2686 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2687 			sndcnt++;
2688 		sndcnt = min(delta, sndcnt);
2689 	}
2690 	/* Force a fast retransmit upon entering fast recovery */
2691 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2692 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2693 }
2694 
2695 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2696 {
2697 	struct tcp_sock *tp = tcp_sk(sk);
2698 
2699 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2700 		return;
2701 
2702 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2703 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2704 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2705 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2706 		tp->snd_cwnd_stamp = tcp_jiffies32;
2707 	}
2708 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2709 }
2710 
2711 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2712 void tcp_enter_cwr(struct sock *sk)
2713 {
2714 	struct tcp_sock *tp = tcp_sk(sk);
2715 
2716 	tp->prior_ssthresh = 0;
2717 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2718 		tp->undo_marker = 0;
2719 		tcp_init_cwnd_reduction(sk);
2720 		tcp_set_ca_state(sk, TCP_CA_CWR);
2721 	}
2722 }
2723 EXPORT_SYMBOL(tcp_enter_cwr);
2724 
2725 static void tcp_try_keep_open(struct sock *sk)
2726 {
2727 	struct tcp_sock *tp = tcp_sk(sk);
2728 	int state = TCP_CA_Open;
2729 
2730 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2731 		state = TCP_CA_Disorder;
2732 
2733 	if (inet_csk(sk)->icsk_ca_state != state) {
2734 		tcp_set_ca_state(sk, state);
2735 		tp->high_seq = tp->snd_nxt;
2736 	}
2737 }
2738 
2739 static void tcp_try_to_open(struct sock *sk, int flag)
2740 {
2741 	struct tcp_sock *tp = tcp_sk(sk);
2742 
2743 	tcp_verify_left_out(tp);
2744 
2745 	if (!tcp_any_retrans_done(sk))
2746 		tp->retrans_stamp = 0;
2747 
2748 	if (flag & FLAG_ECE)
2749 		tcp_enter_cwr(sk);
2750 
2751 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2752 		tcp_try_keep_open(sk);
2753 	}
2754 }
2755 
2756 static void tcp_mtup_probe_failed(struct sock *sk)
2757 {
2758 	struct inet_connection_sock *icsk = inet_csk(sk);
2759 
2760 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2761 	icsk->icsk_mtup.probe_size = 0;
2762 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2763 }
2764 
2765 static void tcp_mtup_probe_success(struct sock *sk)
2766 {
2767 	struct tcp_sock *tp = tcp_sk(sk);
2768 	struct inet_connection_sock *icsk = inet_csk(sk);
2769 	u64 val;
2770 
2771 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2772 
2773 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2774 	do_div(val, icsk->icsk_mtup.probe_size);
2775 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2776 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2777 
2778 	tp->snd_cwnd_cnt = 0;
2779 	tp->snd_cwnd_stamp = tcp_jiffies32;
2780 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2781 
2782 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2783 	icsk->icsk_mtup.probe_size = 0;
2784 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2785 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2786 }
2787 
2788 /* Do a simple retransmit without using the backoff mechanisms in
2789  * tcp_timer. This is used for path mtu discovery.
2790  * The socket is already locked here.
2791  */
2792 void tcp_simple_retransmit(struct sock *sk)
2793 {
2794 	const struct inet_connection_sock *icsk = inet_csk(sk);
2795 	struct tcp_sock *tp = tcp_sk(sk);
2796 	struct sk_buff *skb;
2797 	int mss;
2798 
2799 	/* A fastopen SYN request is stored as two separate packets within
2800 	 * the retransmit queue, this is done by tcp_send_syn_data().
2801 	 * As a result simply checking the MSS of the frames in the queue
2802 	 * will not work for the SYN packet.
2803 	 *
2804 	 * Us being here is an indication of a path MTU issue so we can
2805 	 * assume that the fastopen SYN was lost and just mark all the
2806 	 * frames in the retransmit queue as lost. We will use an MSS of
2807 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2808 	 */
2809 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2810 		mss = -1;
2811 	else
2812 		mss = tcp_current_mss(sk);
2813 
2814 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2815 		if (tcp_skb_seglen(skb) > mss)
2816 			tcp_mark_skb_lost(sk, skb);
2817 	}
2818 
2819 	tcp_clear_retrans_hints_partial(tp);
2820 
2821 	if (!tp->lost_out)
2822 		return;
2823 
2824 	if (tcp_is_reno(tp))
2825 		tcp_limit_reno_sacked(tp);
2826 
2827 	tcp_verify_left_out(tp);
2828 
2829 	/* Don't muck with the congestion window here.
2830 	 * Reason is that we do not increase amount of _data_
2831 	 * in network, but units changed and effective
2832 	 * cwnd/ssthresh really reduced now.
2833 	 */
2834 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2835 		tp->high_seq = tp->snd_nxt;
2836 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2837 		tp->prior_ssthresh = 0;
2838 		tp->undo_marker = 0;
2839 		tcp_set_ca_state(sk, TCP_CA_Loss);
2840 	}
2841 	tcp_xmit_retransmit_queue(sk);
2842 }
2843 EXPORT_SYMBOL(tcp_simple_retransmit);
2844 
2845 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2846 {
2847 	struct tcp_sock *tp = tcp_sk(sk);
2848 	int mib_idx;
2849 
2850 	if (tcp_is_reno(tp))
2851 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2852 	else
2853 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2854 
2855 	NET_INC_STATS(sock_net(sk), mib_idx);
2856 
2857 	tp->prior_ssthresh = 0;
2858 	tcp_init_undo(tp);
2859 
2860 	if (!tcp_in_cwnd_reduction(sk)) {
2861 		if (!ece_ack)
2862 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2863 		tcp_init_cwnd_reduction(sk);
2864 	}
2865 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2866 }
2867 
2868 static void tcp_update_rto_time(struct tcp_sock *tp)
2869 {
2870 	if (tp->rto_stamp) {
2871 		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2872 		tp->rto_stamp = 0;
2873 	}
2874 }
2875 
2876 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2877  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2878  */
2879 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2880 			     int *rexmit)
2881 {
2882 	struct tcp_sock *tp = tcp_sk(sk);
2883 	bool recovered = !before(tp->snd_una, tp->high_seq);
2884 
2885 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2886 	    tcp_try_undo_loss(sk, false))
2887 		return;
2888 
2889 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2890 		/* Step 3.b. A timeout is spurious if not all data are
2891 		 * lost, i.e., never-retransmitted data are (s)acked.
2892 		 */
2893 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2894 		    tcp_try_undo_loss(sk, true))
2895 			return;
2896 
2897 		if (after(tp->snd_nxt, tp->high_seq)) {
2898 			if (flag & FLAG_DATA_SACKED || num_dupack)
2899 				tp->frto = 0; /* Step 3.a. loss was real */
2900 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2901 			tp->high_seq = tp->snd_nxt;
2902 			/* Step 2.b. Try send new data (but deferred until cwnd
2903 			 * is updated in tcp_ack()). Otherwise fall back to
2904 			 * the conventional recovery.
2905 			 */
2906 			if (!tcp_write_queue_empty(sk) &&
2907 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2908 				*rexmit = REXMIT_NEW;
2909 				return;
2910 			}
2911 			tp->frto = 0;
2912 		}
2913 	}
2914 
2915 	if (recovered) {
2916 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2917 		tcp_try_undo_recovery(sk);
2918 		return;
2919 	}
2920 	if (tcp_is_reno(tp)) {
2921 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2922 		 * delivered. Lower inflight to clock out (re)transmissions.
2923 		 */
2924 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2925 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2926 		else if (flag & FLAG_SND_UNA_ADVANCED)
2927 			tcp_reset_reno_sack(tp);
2928 	}
2929 	*rexmit = REXMIT_LOST;
2930 }
2931 
2932 static bool tcp_force_fast_retransmit(struct sock *sk)
2933 {
2934 	struct tcp_sock *tp = tcp_sk(sk);
2935 
2936 	return after(tcp_highest_sack_seq(tp),
2937 		     tp->snd_una + tp->reordering * tp->mss_cache);
2938 }
2939 
2940 /* Undo during fast recovery after partial ACK. */
2941 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2942 				 bool *do_lost)
2943 {
2944 	struct tcp_sock *tp = tcp_sk(sk);
2945 
2946 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2947 		/* Plain luck! Hole if filled with delayed
2948 		 * packet, rather than with a retransmit. Check reordering.
2949 		 */
2950 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2951 
2952 		/* We are getting evidence that the reordering degree is higher
2953 		 * than we realized. If there are no retransmits out then we
2954 		 * can undo. Otherwise we clock out new packets but do not
2955 		 * mark more packets lost or retransmit more.
2956 		 */
2957 		if (tp->retrans_out)
2958 			return true;
2959 
2960 		if (!tcp_any_retrans_done(sk))
2961 			tp->retrans_stamp = 0;
2962 
2963 		DBGUNDO(sk, "partial recovery");
2964 		tcp_undo_cwnd_reduction(sk, true);
2965 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2966 		tcp_try_keep_open(sk);
2967 	} else {
2968 		/* Partial ACK arrived. Force fast retransmit. */
2969 		*do_lost = tcp_force_fast_retransmit(sk);
2970 	}
2971 	return false;
2972 }
2973 
2974 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2975 {
2976 	struct tcp_sock *tp = tcp_sk(sk);
2977 
2978 	if (tcp_rtx_queue_empty(sk))
2979 		return;
2980 
2981 	if (unlikely(tcp_is_reno(tp))) {
2982 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2983 	} else if (tcp_is_rack(sk)) {
2984 		u32 prior_retrans = tp->retrans_out;
2985 
2986 		if (tcp_rack_mark_lost(sk))
2987 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2988 		if (prior_retrans > tp->retrans_out)
2989 			*ack_flag |= FLAG_LOST_RETRANS;
2990 	}
2991 }
2992 
2993 /* Process an event, which can update packets-in-flight not trivially.
2994  * Main goal of this function is to calculate new estimate for left_out,
2995  * taking into account both packets sitting in receiver's buffer and
2996  * packets lost by network.
2997  *
2998  * Besides that it updates the congestion state when packet loss or ECN
2999  * is detected. But it does not reduce the cwnd, it is done by the
3000  * congestion control later.
3001  *
3002  * It does _not_ decide what to send, it is made in function
3003  * tcp_xmit_retransmit_queue().
3004  */
3005 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3006 				  int num_dupack, int *ack_flag, int *rexmit)
3007 {
3008 	struct inet_connection_sock *icsk = inet_csk(sk);
3009 	struct tcp_sock *tp = tcp_sk(sk);
3010 	int fast_rexmit = 0, flag = *ack_flag;
3011 	bool ece_ack = flag & FLAG_ECE;
3012 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3013 				      tcp_force_fast_retransmit(sk));
3014 
3015 	if (!tp->packets_out && tp->sacked_out)
3016 		tp->sacked_out = 0;
3017 
3018 	/* Now state machine starts.
3019 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3020 	if (ece_ack)
3021 		tp->prior_ssthresh = 0;
3022 
3023 	/* B. In all the states check for reneging SACKs. */
3024 	if (tcp_check_sack_reneging(sk, flag))
3025 		return;
3026 
3027 	/* C. Check consistency of the current state. */
3028 	tcp_verify_left_out(tp);
3029 
3030 	/* D. Check state exit conditions. State can be terminated
3031 	 *    when high_seq is ACKed. */
3032 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3033 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3034 		tp->retrans_stamp = 0;
3035 	} else if (!before(tp->snd_una, tp->high_seq)) {
3036 		switch (icsk->icsk_ca_state) {
3037 		case TCP_CA_CWR:
3038 			/* CWR is to be held something *above* high_seq
3039 			 * is ACKed for CWR bit to reach receiver. */
3040 			if (tp->snd_una != tp->high_seq) {
3041 				tcp_end_cwnd_reduction(sk);
3042 				tcp_set_ca_state(sk, TCP_CA_Open);
3043 			}
3044 			break;
3045 
3046 		case TCP_CA_Recovery:
3047 			if (tcp_is_reno(tp))
3048 				tcp_reset_reno_sack(tp);
3049 			if (tcp_try_undo_recovery(sk))
3050 				return;
3051 			tcp_end_cwnd_reduction(sk);
3052 			break;
3053 		}
3054 	}
3055 
3056 	/* E. Process state. */
3057 	switch (icsk->icsk_ca_state) {
3058 	case TCP_CA_Recovery:
3059 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3060 			if (tcp_is_reno(tp))
3061 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3062 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3063 			return;
3064 
3065 		if (tcp_try_undo_dsack(sk))
3066 			tcp_try_keep_open(sk);
3067 
3068 		tcp_identify_packet_loss(sk, ack_flag);
3069 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3070 			if (!tcp_time_to_recover(sk, flag))
3071 				return;
3072 			/* Undo reverts the recovery state. If loss is evident,
3073 			 * starts a new recovery (e.g. reordering then loss);
3074 			 */
3075 			tcp_enter_recovery(sk, ece_ack);
3076 		}
3077 		break;
3078 	case TCP_CA_Loss:
3079 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3080 		if (icsk->icsk_ca_state != TCP_CA_Loss)
3081 			tcp_update_rto_time(tp);
3082 		tcp_identify_packet_loss(sk, ack_flag);
3083 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3084 		      (*ack_flag & FLAG_LOST_RETRANS)))
3085 			return;
3086 		/* Change state if cwnd is undone or retransmits are lost */
3087 		fallthrough;
3088 	default:
3089 		if (tcp_is_reno(tp)) {
3090 			if (flag & FLAG_SND_UNA_ADVANCED)
3091 				tcp_reset_reno_sack(tp);
3092 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3093 		}
3094 
3095 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3096 			tcp_try_undo_dsack(sk);
3097 
3098 		tcp_identify_packet_loss(sk, ack_flag);
3099 		if (!tcp_time_to_recover(sk, flag)) {
3100 			tcp_try_to_open(sk, flag);
3101 			return;
3102 		}
3103 
3104 		/* MTU probe failure: don't reduce cwnd */
3105 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3106 		    icsk->icsk_mtup.probe_size &&
3107 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3108 			tcp_mtup_probe_failed(sk);
3109 			/* Restores the reduction we did in tcp_mtup_probe() */
3110 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3111 			tcp_simple_retransmit(sk);
3112 			return;
3113 		}
3114 
3115 		/* Otherwise enter Recovery state */
3116 		tcp_enter_recovery(sk, ece_ack);
3117 		fast_rexmit = 1;
3118 	}
3119 
3120 	if (!tcp_is_rack(sk) && do_lost)
3121 		tcp_update_scoreboard(sk, fast_rexmit);
3122 	*rexmit = REXMIT_LOST;
3123 }
3124 
3125 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3126 {
3127 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3128 	struct tcp_sock *tp = tcp_sk(sk);
3129 
3130 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3131 		/* If the remote keeps returning delayed ACKs, eventually
3132 		 * the min filter would pick it up and overestimate the
3133 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3134 		 */
3135 		return;
3136 	}
3137 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3138 			   rtt_us ? : jiffies_to_usecs(1));
3139 }
3140 
3141 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3142 			       long seq_rtt_us, long sack_rtt_us,
3143 			       long ca_rtt_us, struct rate_sample *rs)
3144 {
3145 	const struct tcp_sock *tp = tcp_sk(sk);
3146 
3147 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3148 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3149 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3150 	 * is acked (RFC6298).
3151 	 */
3152 	if (seq_rtt_us < 0)
3153 		seq_rtt_us = sack_rtt_us;
3154 
3155 	/* RTTM Rule: A TSecr value received in a segment is used to
3156 	 * update the averaged RTT measurement only if the segment
3157 	 * acknowledges some new data, i.e., only if it advances the
3158 	 * left edge of the send window.
3159 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3160 	 */
3161 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3162 	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3163 		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp);
3164 
3165 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3166 	if (seq_rtt_us < 0)
3167 		return false;
3168 
3169 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3170 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3171 	 * values will be skipped with the seq_rtt_us < 0 check above.
3172 	 */
3173 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3174 	tcp_rtt_estimator(sk, seq_rtt_us);
3175 	tcp_set_rto(sk);
3176 
3177 	/* RFC6298: only reset backoff on valid RTT measurement. */
3178 	inet_csk(sk)->icsk_backoff = 0;
3179 	return true;
3180 }
3181 
3182 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3183 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3184 {
3185 	struct rate_sample rs;
3186 	long rtt_us = -1L;
3187 
3188 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3189 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3190 
3191 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3192 }
3193 
3194 
3195 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3196 {
3197 	const struct inet_connection_sock *icsk = inet_csk(sk);
3198 
3199 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3200 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3201 }
3202 
3203 /* Restart timer after forward progress on connection.
3204  * RFC2988 recommends to restart timer to now+rto.
3205  */
3206 void tcp_rearm_rto(struct sock *sk)
3207 {
3208 	const struct inet_connection_sock *icsk = inet_csk(sk);
3209 	struct tcp_sock *tp = tcp_sk(sk);
3210 
3211 	/* If the retrans timer is currently being used by Fast Open
3212 	 * for SYN-ACK retrans purpose, stay put.
3213 	 */
3214 	if (rcu_access_pointer(tp->fastopen_rsk))
3215 		return;
3216 
3217 	if (!tp->packets_out) {
3218 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3219 	} else {
3220 		u32 rto = inet_csk(sk)->icsk_rto;
3221 		/* Offset the time elapsed after installing regular RTO */
3222 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3223 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3224 			s64 delta_us = tcp_rto_delta_us(sk);
3225 			/* delta_us may not be positive if the socket is locked
3226 			 * when the retrans timer fires and is rescheduled.
3227 			 */
3228 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3229 		}
3230 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3231 				     TCP_RTO_MAX);
3232 	}
3233 }
3234 
3235 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3236 static void tcp_set_xmit_timer(struct sock *sk)
3237 {
3238 	if (!tcp_schedule_loss_probe(sk, true))
3239 		tcp_rearm_rto(sk);
3240 }
3241 
3242 /* If we get here, the whole TSO packet has not been acked. */
3243 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3244 {
3245 	struct tcp_sock *tp = tcp_sk(sk);
3246 	u32 packets_acked;
3247 
3248 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3249 
3250 	packets_acked = tcp_skb_pcount(skb);
3251 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3252 		return 0;
3253 	packets_acked -= tcp_skb_pcount(skb);
3254 
3255 	if (packets_acked) {
3256 		BUG_ON(tcp_skb_pcount(skb) == 0);
3257 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3258 	}
3259 
3260 	return packets_acked;
3261 }
3262 
3263 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3264 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3265 {
3266 	const struct skb_shared_info *shinfo;
3267 
3268 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3269 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3270 		return;
3271 
3272 	shinfo = skb_shinfo(skb);
3273 	if (!before(shinfo->tskey, prior_snd_una) &&
3274 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3275 		tcp_skb_tsorted_save(skb) {
3276 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3277 		} tcp_skb_tsorted_restore(skb);
3278 	}
3279 }
3280 
3281 /* Remove acknowledged frames from the retransmission queue. If our packet
3282  * is before the ack sequence we can discard it as it's confirmed to have
3283  * arrived at the other end.
3284  */
3285 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3286 			       u32 prior_fack, u32 prior_snd_una,
3287 			       struct tcp_sacktag_state *sack, bool ece_ack)
3288 {
3289 	const struct inet_connection_sock *icsk = inet_csk(sk);
3290 	u64 first_ackt, last_ackt;
3291 	struct tcp_sock *tp = tcp_sk(sk);
3292 	u32 prior_sacked = tp->sacked_out;
3293 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3294 	struct sk_buff *skb, *next;
3295 	bool fully_acked = true;
3296 	long sack_rtt_us = -1L;
3297 	long seq_rtt_us = -1L;
3298 	long ca_rtt_us = -1L;
3299 	u32 pkts_acked = 0;
3300 	bool rtt_update;
3301 	int flag = 0;
3302 
3303 	first_ackt = 0;
3304 
3305 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3306 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3307 		const u32 start_seq = scb->seq;
3308 		u8 sacked = scb->sacked;
3309 		u32 acked_pcount;
3310 
3311 		/* Determine how many packets and what bytes were acked, tso and else */
3312 		if (after(scb->end_seq, tp->snd_una)) {
3313 			if (tcp_skb_pcount(skb) == 1 ||
3314 			    !after(tp->snd_una, scb->seq))
3315 				break;
3316 
3317 			acked_pcount = tcp_tso_acked(sk, skb);
3318 			if (!acked_pcount)
3319 				break;
3320 			fully_acked = false;
3321 		} else {
3322 			acked_pcount = tcp_skb_pcount(skb);
3323 		}
3324 
3325 		if (unlikely(sacked & TCPCB_RETRANS)) {
3326 			if (sacked & TCPCB_SACKED_RETRANS)
3327 				tp->retrans_out -= acked_pcount;
3328 			flag |= FLAG_RETRANS_DATA_ACKED;
3329 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3330 			last_ackt = tcp_skb_timestamp_us(skb);
3331 			WARN_ON_ONCE(last_ackt == 0);
3332 			if (!first_ackt)
3333 				first_ackt = last_ackt;
3334 
3335 			if (before(start_seq, reord))
3336 				reord = start_seq;
3337 			if (!after(scb->end_seq, tp->high_seq))
3338 				flag |= FLAG_ORIG_SACK_ACKED;
3339 		}
3340 
3341 		if (sacked & TCPCB_SACKED_ACKED) {
3342 			tp->sacked_out -= acked_pcount;
3343 		} else if (tcp_is_sack(tp)) {
3344 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3345 			if (!tcp_skb_spurious_retrans(tp, skb))
3346 				tcp_rack_advance(tp, sacked, scb->end_seq,
3347 						 tcp_skb_timestamp_us(skb));
3348 		}
3349 		if (sacked & TCPCB_LOST)
3350 			tp->lost_out -= acked_pcount;
3351 
3352 		tp->packets_out -= acked_pcount;
3353 		pkts_acked += acked_pcount;
3354 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3355 
3356 		/* Initial outgoing SYN's get put onto the write_queue
3357 		 * just like anything else we transmit.  It is not
3358 		 * true data, and if we misinform our callers that
3359 		 * this ACK acks real data, we will erroneously exit
3360 		 * connection startup slow start one packet too
3361 		 * quickly.  This is severely frowned upon behavior.
3362 		 */
3363 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3364 			flag |= FLAG_DATA_ACKED;
3365 		} else {
3366 			flag |= FLAG_SYN_ACKED;
3367 			tp->retrans_stamp = 0;
3368 		}
3369 
3370 		if (!fully_acked)
3371 			break;
3372 
3373 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3374 
3375 		next = skb_rb_next(skb);
3376 		if (unlikely(skb == tp->retransmit_skb_hint))
3377 			tp->retransmit_skb_hint = NULL;
3378 		if (unlikely(skb == tp->lost_skb_hint))
3379 			tp->lost_skb_hint = NULL;
3380 		tcp_highest_sack_replace(sk, skb, next);
3381 		tcp_rtx_queue_unlink_and_free(skb, sk);
3382 	}
3383 
3384 	if (!skb)
3385 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3386 
3387 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3388 		tp->snd_up = tp->snd_una;
3389 
3390 	if (skb) {
3391 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3392 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3393 			flag |= FLAG_SACK_RENEGING;
3394 	}
3395 
3396 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3397 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3398 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3399 
3400 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3401 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3402 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3403 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3404 			/* Conservatively mark a delayed ACK. It's typically
3405 			 * from a lone runt packet over the round trip to
3406 			 * a receiver w/o out-of-order or CE events.
3407 			 */
3408 			flag |= FLAG_ACK_MAYBE_DELAYED;
3409 		}
3410 	}
3411 	if (sack->first_sackt) {
3412 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3413 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3414 	}
3415 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3416 					ca_rtt_us, sack->rate);
3417 
3418 	if (flag & FLAG_ACKED) {
3419 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3420 		if (unlikely(icsk->icsk_mtup.probe_size &&
3421 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3422 			tcp_mtup_probe_success(sk);
3423 		}
3424 
3425 		if (tcp_is_reno(tp)) {
3426 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3427 
3428 			/* If any of the cumulatively ACKed segments was
3429 			 * retransmitted, non-SACK case cannot confirm that
3430 			 * progress was due to original transmission due to
3431 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3432 			 * the packets may have been never retransmitted.
3433 			 */
3434 			if (flag & FLAG_RETRANS_DATA_ACKED)
3435 				flag &= ~FLAG_ORIG_SACK_ACKED;
3436 		} else {
3437 			int delta;
3438 
3439 			/* Non-retransmitted hole got filled? That's reordering */
3440 			if (before(reord, prior_fack))
3441 				tcp_check_sack_reordering(sk, reord, 0);
3442 
3443 			delta = prior_sacked - tp->sacked_out;
3444 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3445 		}
3446 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3447 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3448 						    tcp_skb_timestamp_us(skb))) {
3449 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3450 		 * after when the head was last (re)transmitted. Otherwise the
3451 		 * timeout may continue to extend in loss recovery.
3452 		 */
3453 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3454 	}
3455 
3456 	if (icsk->icsk_ca_ops->pkts_acked) {
3457 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3458 					     .rtt_us = sack->rate->rtt_us };
3459 
3460 		sample.in_flight = tp->mss_cache *
3461 			(tp->delivered - sack->rate->prior_delivered);
3462 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3463 	}
3464 
3465 #if FASTRETRANS_DEBUG > 0
3466 	WARN_ON((int)tp->sacked_out < 0);
3467 	WARN_ON((int)tp->lost_out < 0);
3468 	WARN_ON((int)tp->retrans_out < 0);
3469 	if (!tp->packets_out && tcp_is_sack(tp)) {
3470 		icsk = inet_csk(sk);
3471 		if (tp->lost_out) {
3472 			pr_debug("Leak l=%u %d\n",
3473 				 tp->lost_out, icsk->icsk_ca_state);
3474 			tp->lost_out = 0;
3475 		}
3476 		if (tp->sacked_out) {
3477 			pr_debug("Leak s=%u %d\n",
3478 				 tp->sacked_out, icsk->icsk_ca_state);
3479 			tp->sacked_out = 0;
3480 		}
3481 		if (tp->retrans_out) {
3482 			pr_debug("Leak r=%u %d\n",
3483 				 tp->retrans_out, icsk->icsk_ca_state);
3484 			tp->retrans_out = 0;
3485 		}
3486 	}
3487 #endif
3488 	return flag;
3489 }
3490 
3491 static void tcp_ack_probe(struct sock *sk)
3492 {
3493 	struct inet_connection_sock *icsk = inet_csk(sk);
3494 	struct sk_buff *head = tcp_send_head(sk);
3495 	const struct tcp_sock *tp = tcp_sk(sk);
3496 
3497 	/* Was it a usable window open? */
3498 	if (!head)
3499 		return;
3500 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3501 		icsk->icsk_backoff = 0;
3502 		icsk->icsk_probes_tstamp = 0;
3503 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3504 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3505 		 * This function is not for random using!
3506 		 */
3507 	} else {
3508 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3509 
3510 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3511 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3512 	}
3513 }
3514 
3515 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3516 {
3517 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3518 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3519 }
3520 
3521 /* Decide wheather to run the increase function of congestion control. */
3522 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3523 {
3524 	/* If reordering is high then always grow cwnd whenever data is
3525 	 * delivered regardless of its ordering. Otherwise stay conservative
3526 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3527 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3528 	 * cwnd in tcp_fastretrans_alert() based on more states.
3529 	 */
3530 	if (tcp_sk(sk)->reordering >
3531 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3532 		return flag & FLAG_FORWARD_PROGRESS;
3533 
3534 	return flag & FLAG_DATA_ACKED;
3535 }
3536 
3537 /* The "ultimate" congestion control function that aims to replace the rigid
3538  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3539  * It's called toward the end of processing an ACK with precise rate
3540  * information. All transmission or retransmission are delayed afterwards.
3541  */
3542 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3543 			     int flag, const struct rate_sample *rs)
3544 {
3545 	const struct inet_connection_sock *icsk = inet_csk(sk);
3546 
3547 	if (icsk->icsk_ca_ops->cong_control) {
3548 		icsk->icsk_ca_ops->cong_control(sk, rs);
3549 		return;
3550 	}
3551 
3552 	if (tcp_in_cwnd_reduction(sk)) {
3553 		/* Reduce cwnd if state mandates */
3554 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3555 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3556 		/* Advance cwnd if state allows */
3557 		tcp_cong_avoid(sk, ack, acked_sacked);
3558 	}
3559 	tcp_update_pacing_rate(sk);
3560 }
3561 
3562 /* Check that window update is acceptable.
3563  * The function assumes that snd_una<=ack<=snd_next.
3564  */
3565 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3566 					const u32 ack, const u32 ack_seq,
3567 					const u32 nwin)
3568 {
3569 	return	after(ack, tp->snd_una) ||
3570 		after(ack_seq, tp->snd_wl1) ||
3571 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3572 }
3573 
3574 /* If we update tp->snd_una, also update tp->bytes_acked */
3575 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3576 {
3577 	u32 delta = ack - tp->snd_una;
3578 
3579 	sock_owned_by_me((struct sock *)tp);
3580 	tp->bytes_acked += delta;
3581 	tp->snd_una = ack;
3582 }
3583 
3584 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3585 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3586 {
3587 	u32 delta = seq - tp->rcv_nxt;
3588 
3589 	sock_owned_by_me((struct sock *)tp);
3590 	tp->bytes_received += delta;
3591 	WRITE_ONCE(tp->rcv_nxt, seq);
3592 }
3593 
3594 /* Update our send window.
3595  *
3596  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3597  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3598  */
3599 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3600 				 u32 ack_seq)
3601 {
3602 	struct tcp_sock *tp = tcp_sk(sk);
3603 	int flag = 0;
3604 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3605 
3606 	if (likely(!tcp_hdr(skb)->syn))
3607 		nwin <<= tp->rx_opt.snd_wscale;
3608 
3609 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3610 		flag |= FLAG_WIN_UPDATE;
3611 		tcp_update_wl(tp, ack_seq);
3612 
3613 		if (tp->snd_wnd != nwin) {
3614 			tp->snd_wnd = nwin;
3615 
3616 			/* Note, it is the only place, where
3617 			 * fast path is recovered for sending TCP.
3618 			 */
3619 			tp->pred_flags = 0;
3620 			tcp_fast_path_check(sk);
3621 
3622 			if (!tcp_write_queue_empty(sk))
3623 				tcp_slow_start_after_idle_check(sk);
3624 
3625 			if (nwin > tp->max_window) {
3626 				tp->max_window = nwin;
3627 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3628 			}
3629 		}
3630 	}
3631 
3632 	tcp_snd_una_update(tp, ack);
3633 
3634 	return flag;
3635 }
3636 
3637 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3638 				   u32 *last_oow_ack_time)
3639 {
3640 	/* Paired with the WRITE_ONCE() in this function. */
3641 	u32 val = READ_ONCE(*last_oow_ack_time);
3642 
3643 	if (val) {
3644 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3645 
3646 		if (0 <= elapsed &&
3647 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3648 			NET_INC_STATS(net, mib_idx);
3649 			return true;	/* rate-limited: don't send yet! */
3650 		}
3651 	}
3652 
3653 	/* Paired with the prior READ_ONCE() and with itself,
3654 	 * as we might be lockless.
3655 	 */
3656 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3657 
3658 	return false;	/* not rate-limited: go ahead, send dupack now! */
3659 }
3660 
3661 /* Return true if we're currently rate-limiting out-of-window ACKs and
3662  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3663  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3664  * attacks that send repeated SYNs or ACKs for the same connection. To
3665  * do this, we do not send a duplicate SYNACK or ACK if the remote
3666  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3667  */
3668 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3669 			  int mib_idx, u32 *last_oow_ack_time)
3670 {
3671 	/* Data packets without SYNs are not likely part of an ACK loop. */
3672 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3673 	    !tcp_hdr(skb)->syn)
3674 		return false;
3675 
3676 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3677 }
3678 
3679 /* RFC 5961 7 [ACK Throttling] */
3680 static void tcp_send_challenge_ack(struct sock *sk)
3681 {
3682 	struct tcp_sock *tp = tcp_sk(sk);
3683 	struct net *net = sock_net(sk);
3684 	u32 count, now, ack_limit;
3685 
3686 	/* First check our per-socket dupack rate limit. */
3687 	if (__tcp_oow_rate_limited(net,
3688 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3689 				   &tp->last_oow_ack_time))
3690 		return;
3691 
3692 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3693 	if (ack_limit == INT_MAX)
3694 		goto send_ack;
3695 
3696 	/* Then check host-wide RFC 5961 rate limit. */
3697 	now = jiffies / HZ;
3698 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3699 		u32 half = (ack_limit + 1) >> 1;
3700 
3701 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3702 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3703 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3704 	}
3705 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3706 	if (count > 0) {
3707 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3708 send_ack:
3709 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3710 		tcp_send_ack(sk);
3711 	}
3712 }
3713 
3714 static void tcp_store_ts_recent(struct tcp_sock *tp)
3715 {
3716 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3717 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3718 }
3719 
3720 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3721 {
3722 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3723 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3724 		 * extra check below makes sure this can only happen
3725 		 * for pure ACK frames.  -DaveM
3726 		 *
3727 		 * Not only, also it occurs for expired timestamps.
3728 		 */
3729 
3730 		if (tcp_paws_check(&tp->rx_opt, 0))
3731 			tcp_store_ts_recent(tp);
3732 	}
3733 }
3734 
3735 /* This routine deals with acks during a TLP episode and ends an episode by
3736  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3737  */
3738 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3739 {
3740 	struct tcp_sock *tp = tcp_sk(sk);
3741 
3742 	if (before(ack, tp->tlp_high_seq))
3743 		return;
3744 
3745 	if (!tp->tlp_retrans) {
3746 		/* TLP of new data has been acknowledged */
3747 		tp->tlp_high_seq = 0;
3748 	} else if (flag & FLAG_DSACK_TLP) {
3749 		/* This DSACK means original and TLP probe arrived; no loss */
3750 		tp->tlp_high_seq = 0;
3751 	} else if (after(ack, tp->tlp_high_seq)) {
3752 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3753 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3754 		 */
3755 		tcp_init_cwnd_reduction(sk);
3756 		tcp_set_ca_state(sk, TCP_CA_CWR);
3757 		tcp_end_cwnd_reduction(sk);
3758 		tcp_try_keep_open(sk);
3759 		NET_INC_STATS(sock_net(sk),
3760 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3761 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3762 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3763 		/* Pure dupack: original and TLP probe arrived; no loss */
3764 		tp->tlp_high_seq = 0;
3765 	}
3766 }
3767 
3768 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3769 {
3770 	const struct inet_connection_sock *icsk = inet_csk(sk);
3771 
3772 	if (icsk->icsk_ca_ops->in_ack_event)
3773 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3774 }
3775 
3776 /* Congestion control has updated the cwnd already. So if we're in
3777  * loss recovery then now we do any new sends (for FRTO) or
3778  * retransmits (for CA_Loss or CA_recovery) that make sense.
3779  */
3780 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3781 {
3782 	struct tcp_sock *tp = tcp_sk(sk);
3783 
3784 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3785 		return;
3786 
3787 	if (unlikely(rexmit == REXMIT_NEW)) {
3788 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3789 					  TCP_NAGLE_OFF);
3790 		if (after(tp->snd_nxt, tp->high_seq))
3791 			return;
3792 		tp->frto = 0;
3793 	}
3794 	tcp_xmit_retransmit_queue(sk);
3795 }
3796 
3797 /* Returns the number of packets newly acked or sacked by the current ACK */
3798 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3799 {
3800 	const struct net *net = sock_net(sk);
3801 	struct tcp_sock *tp = tcp_sk(sk);
3802 	u32 delivered;
3803 
3804 	delivered = tp->delivered - prior_delivered;
3805 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3806 	if (flag & FLAG_ECE)
3807 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3808 
3809 	return delivered;
3810 }
3811 
3812 /* This routine deals with incoming acks, but not outgoing ones. */
3813 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3814 {
3815 	struct inet_connection_sock *icsk = inet_csk(sk);
3816 	struct tcp_sock *tp = tcp_sk(sk);
3817 	struct tcp_sacktag_state sack_state;
3818 	struct rate_sample rs = { .prior_delivered = 0 };
3819 	u32 prior_snd_una = tp->snd_una;
3820 	bool is_sack_reneg = tp->is_sack_reneg;
3821 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3822 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3823 	int num_dupack = 0;
3824 	int prior_packets = tp->packets_out;
3825 	u32 delivered = tp->delivered;
3826 	u32 lost = tp->lost;
3827 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3828 	u32 prior_fack;
3829 
3830 	sack_state.first_sackt = 0;
3831 	sack_state.rate = &rs;
3832 	sack_state.sack_delivered = 0;
3833 
3834 	/* We very likely will need to access rtx queue. */
3835 	prefetch(sk->tcp_rtx_queue.rb_node);
3836 
3837 	/* If the ack is older than previous acks
3838 	 * then we can probably ignore it.
3839 	 */
3840 	if (before(ack, prior_snd_una)) {
3841 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3842 		if (before(ack, prior_snd_una - tp->max_window)) {
3843 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3844 				tcp_send_challenge_ack(sk);
3845 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3846 		}
3847 		goto old_ack;
3848 	}
3849 
3850 	/* If the ack includes data we haven't sent yet, discard
3851 	 * this segment (RFC793 Section 3.9).
3852 	 */
3853 	if (after(ack, tp->snd_nxt))
3854 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3855 
3856 	if (after(ack, prior_snd_una)) {
3857 		flag |= FLAG_SND_UNA_ADVANCED;
3858 		icsk->icsk_retransmits = 0;
3859 
3860 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3861 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3862 			if (icsk->icsk_clean_acked)
3863 				icsk->icsk_clean_acked(sk, ack);
3864 #endif
3865 	}
3866 
3867 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3868 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3869 
3870 	/* ts_recent update must be made after we are sure that the packet
3871 	 * is in window.
3872 	 */
3873 	if (flag & FLAG_UPDATE_TS_RECENT)
3874 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3875 
3876 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3877 	    FLAG_SND_UNA_ADVANCED) {
3878 		/* Window is constant, pure forward advance.
3879 		 * No more checks are required.
3880 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3881 		 */
3882 		tcp_update_wl(tp, ack_seq);
3883 		tcp_snd_una_update(tp, ack);
3884 		flag |= FLAG_WIN_UPDATE;
3885 
3886 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3887 
3888 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3889 	} else {
3890 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3891 
3892 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3893 			flag |= FLAG_DATA;
3894 		else
3895 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3896 
3897 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3898 
3899 		if (TCP_SKB_CB(skb)->sacked)
3900 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3901 							&sack_state);
3902 
3903 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3904 			flag |= FLAG_ECE;
3905 			ack_ev_flags |= CA_ACK_ECE;
3906 		}
3907 
3908 		if (sack_state.sack_delivered)
3909 			tcp_count_delivered(tp, sack_state.sack_delivered,
3910 					    flag & FLAG_ECE);
3911 
3912 		if (flag & FLAG_WIN_UPDATE)
3913 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3914 
3915 		tcp_in_ack_event(sk, ack_ev_flags);
3916 	}
3917 
3918 	/* This is a deviation from RFC3168 since it states that:
3919 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3920 	 * the congestion window, it SHOULD set the CWR bit only on the first
3921 	 * new data packet that it transmits."
3922 	 * We accept CWR on pure ACKs to be more robust
3923 	 * with widely-deployed TCP implementations that do this.
3924 	 */
3925 	tcp_ecn_accept_cwr(sk, skb);
3926 
3927 	/* We passed data and got it acked, remove any soft error
3928 	 * log. Something worked...
3929 	 */
3930 	WRITE_ONCE(sk->sk_err_soft, 0);
3931 	icsk->icsk_probes_out = 0;
3932 	tp->rcv_tstamp = tcp_jiffies32;
3933 	if (!prior_packets)
3934 		goto no_queue;
3935 
3936 	/* See if we can take anything off of the retransmit queue. */
3937 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3938 				    &sack_state, flag & FLAG_ECE);
3939 
3940 	tcp_rack_update_reo_wnd(sk, &rs);
3941 
3942 	if (tp->tlp_high_seq)
3943 		tcp_process_tlp_ack(sk, ack, flag);
3944 
3945 	if (tcp_ack_is_dubious(sk, flag)) {
3946 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3947 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3948 			num_dupack = 1;
3949 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3950 			if (!(flag & FLAG_DATA))
3951 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3952 		}
3953 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3954 				      &rexmit);
3955 	}
3956 
3957 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3958 	if (flag & FLAG_SET_XMIT_TIMER)
3959 		tcp_set_xmit_timer(sk);
3960 
3961 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3962 		sk_dst_confirm(sk);
3963 
3964 	delivered = tcp_newly_delivered(sk, delivered, flag);
3965 	lost = tp->lost - lost;			/* freshly marked lost */
3966 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3967 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3968 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3969 	tcp_xmit_recovery(sk, rexmit);
3970 	return 1;
3971 
3972 no_queue:
3973 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3974 	if (flag & FLAG_DSACKING_ACK) {
3975 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3976 				      &rexmit);
3977 		tcp_newly_delivered(sk, delivered, flag);
3978 	}
3979 	/* If this ack opens up a zero window, clear backoff.  It was
3980 	 * being used to time the probes, and is probably far higher than
3981 	 * it needs to be for normal retransmission.
3982 	 */
3983 	tcp_ack_probe(sk);
3984 
3985 	if (tp->tlp_high_seq)
3986 		tcp_process_tlp_ack(sk, ack, flag);
3987 	return 1;
3988 
3989 old_ack:
3990 	/* If data was SACKed, tag it and see if we should send more data.
3991 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3992 	 */
3993 	if (TCP_SKB_CB(skb)->sacked) {
3994 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3995 						&sack_state);
3996 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3997 				      &rexmit);
3998 		tcp_newly_delivered(sk, delivered, flag);
3999 		tcp_xmit_recovery(sk, rexmit);
4000 	}
4001 
4002 	return 0;
4003 }
4004 
4005 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4006 				      bool syn, struct tcp_fastopen_cookie *foc,
4007 				      bool exp_opt)
4008 {
4009 	/* Valid only in SYN or SYN-ACK with an even length.  */
4010 	if (!foc || !syn || len < 0 || (len & 1))
4011 		return;
4012 
4013 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4014 	    len <= TCP_FASTOPEN_COOKIE_MAX)
4015 		memcpy(foc->val, cookie, len);
4016 	else if (len != 0)
4017 		len = -1;
4018 	foc->len = len;
4019 	foc->exp = exp_opt;
4020 }
4021 
4022 static bool smc_parse_options(const struct tcphdr *th,
4023 			      struct tcp_options_received *opt_rx,
4024 			      const unsigned char *ptr,
4025 			      int opsize)
4026 {
4027 #if IS_ENABLED(CONFIG_SMC)
4028 	if (static_branch_unlikely(&tcp_have_smc)) {
4029 		if (th->syn && !(opsize & 1) &&
4030 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4031 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4032 			opt_rx->smc_ok = 1;
4033 			return true;
4034 		}
4035 	}
4036 #endif
4037 	return false;
4038 }
4039 
4040 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4041  * value on success.
4042  */
4043 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4044 {
4045 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4046 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4047 	u16 mss = 0;
4048 
4049 	while (length > 0) {
4050 		int opcode = *ptr++;
4051 		int opsize;
4052 
4053 		switch (opcode) {
4054 		case TCPOPT_EOL:
4055 			return mss;
4056 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4057 			length--;
4058 			continue;
4059 		default:
4060 			if (length < 2)
4061 				return mss;
4062 			opsize = *ptr++;
4063 			if (opsize < 2) /* "silly options" */
4064 				return mss;
4065 			if (opsize > length)
4066 				return mss;	/* fail on partial options */
4067 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4068 				u16 in_mss = get_unaligned_be16(ptr);
4069 
4070 				if (in_mss) {
4071 					if (user_mss && user_mss < in_mss)
4072 						in_mss = user_mss;
4073 					mss = in_mss;
4074 				}
4075 			}
4076 			ptr += opsize - 2;
4077 			length -= opsize;
4078 		}
4079 	}
4080 	return mss;
4081 }
4082 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4083 
4084 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4085  * But, this can also be called on packets in the established flow when
4086  * the fast version below fails.
4087  */
4088 void tcp_parse_options(const struct net *net,
4089 		       const struct sk_buff *skb,
4090 		       struct tcp_options_received *opt_rx, int estab,
4091 		       struct tcp_fastopen_cookie *foc)
4092 {
4093 	const unsigned char *ptr;
4094 	const struct tcphdr *th = tcp_hdr(skb);
4095 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4096 
4097 	ptr = (const unsigned char *)(th + 1);
4098 	opt_rx->saw_tstamp = 0;
4099 	opt_rx->saw_unknown = 0;
4100 
4101 	while (length > 0) {
4102 		int opcode = *ptr++;
4103 		int opsize;
4104 
4105 		switch (opcode) {
4106 		case TCPOPT_EOL:
4107 			return;
4108 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4109 			length--;
4110 			continue;
4111 		default:
4112 			if (length < 2)
4113 				return;
4114 			opsize = *ptr++;
4115 			if (opsize < 2) /* "silly options" */
4116 				return;
4117 			if (opsize > length)
4118 				return;	/* don't parse partial options */
4119 			switch (opcode) {
4120 			case TCPOPT_MSS:
4121 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4122 					u16 in_mss = get_unaligned_be16(ptr);
4123 					if (in_mss) {
4124 						if (opt_rx->user_mss &&
4125 						    opt_rx->user_mss < in_mss)
4126 							in_mss = opt_rx->user_mss;
4127 						opt_rx->mss_clamp = in_mss;
4128 					}
4129 				}
4130 				break;
4131 			case TCPOPT_WINDOW:
4132 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4133 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4134 					__u8 snd_wscale = *(__u8 *)ptr;
4135 					opt_rx->wscale_ok = 1;
4136 					if (snd_wscale > TCP_MAX_WSCALE) {
4137 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4138 								     __func__,
4139 								     snd_wscale,
4140 								     TCP_MAX_WSCALE);
4141 						snd_wscale = TCP_MAX_WSCALE;
4142 					}
4143 					opt_rx->snd_wscale = snd_wscale;
4144 				}
4145 				break;
4146 			case TCPOPT_TIMESTAMP:
4147 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4148 				    ((estab && opt_rx->tstamp_ok) ||
4149 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4150 					opt_rx->saw_tstamp = 1;
4151 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4152 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4153 				}
4154 				break;
4155 			case TCPOPT_SACK_PERM:
4156 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4157 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4158 					opt_rx->sack_ok = TCP_SACK_SEEN;
4159 					tcp_sack_reset(opt_rx);
4160 				}
4161 				break;
4162 
4163 			case TCPOPT_SACK:
4164 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4165 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4166 				   opt_rx->sack_ok) {
4167 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4168 				}
4169 				break;
4170 #ifdef CONFIG_TCP_MD5SIG
4171 			case TCPOPT_MD5SIG:
4172 				/* The MD5 Hash has already been
4173 				 * checked (see tcp_v{4,6}_rcv()).
4174 				 */
4175 				break;
4176 #endif
4177 			case TCPOPT_FASTOPEN:
4178 				tcp_parse_fastopen_option(
4179 					opsize - TCPOLEN_FASTOPEN_BASE,
4180 					ptr, th->syn, foc, false);
4181 				break;
4182 
4183 			case TCPOPT_EXP:
4184 				/* Fast Open option shares code 254 using a
4185 				 * 16 bits magic number.
4186 				 */
4187 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4188 				    get_unaligned_be16(ptr) ==
4189 				    TCPOPT_FASTOPEN_MAGIC) {
4190 					tcp_parse_fastopen_option(opsize -
4191 						TCPOLEN_EXP_FASTOPEN_BASE,
4192 						ptr + 2, th->syn, foc, true);
4193 					break;
4194 				}
4195 
4196 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4197 					break;
4198 
4199 				opt_rx->saw_unknown = 1;
4200 				break;
4201 
4202 			default:
4203 				opt_rx->saw_unknown = 1;
4204 			}
4205 			ptr += opsize-2;
4206 			length -= opsize;
4207 		}
4208 	}
4209 }
4210 EXPORT_SYMBOL(tcp_parse_options);
4211 
4212 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4213 {
4214 	const __be32 *ptr = (const __be32 *)(th + 1);
4215 
4216 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4217 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4218 		tp->rx_opt.saw_tstamp = 1;
4219 		++ptr;
4220 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4221 		++ptr;
4222 		if (*ptr)
4223 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4224 		else
4225 			tp->rx_opt.rcv_tsecr = 0;
4226 		return true;
4227 	}
4228 	return false;
4229 }
4230 
4231 /* Fast parse options. This hopes to only see timestamps.
4232  * If it is wrong it falls back on tcp_parse_options().
4233  */
4234 static bool tcp_fast_parse_options(const struct net *net,
4235 				   const struct sk_buff *skb,
4236 				   const struct tcphdr *th, struct tcp_sock *tp)
4237 {
4238 	/* In the spirit of fast parsing, compare doff directly to constant
4239 	 * values.  Because equality is used, short doff can be ignored here.
4240 	 */
4241 	if (th->doff == (sizeof(*th) / 4)) {
4242 		tp->rx_opt.saw_tstamp = 0;
4243 		return false;
4244 	} else if (tp->rx_opt.tstamp_ok &&
4245 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4246 		if (tcp_parse_aligned_timestamp(tp, th))
4247 			return true;
4248 	}
4249 
4250 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4251 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4252 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4253 
4254 	return true;
4255 }
4256 
4257 #ifdef CONFIG_TCP_MD5SIG
4258 /*
4259  * Parse MD5 Signature option
4260  */
4261 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4262 {
4263 	int length = (th->doff << 2) - sizeof(*th);
4264 	const u8 *ptr = (const u8 *)(th + 1);
4265 
4266 	/* If not enough data remaining, we can short cut */
4267 	while (length >= TCPOLEN_MD5SIG) {
4268 		int opcode = *ptr++;
4269 		int opsize;
4270 
4271 		switch (opcode) {
4272 		case TCPOPT_EOL:
4273 			return NULL;
4274 		case TCPOPT_NOP:
4275 			length--;
4276 			continue;
4277 		default:
4278 			opsize = *ptr++;
4279 			if (opsize < 2 || opsize > length)
4280 				return NULL;
4281 			if (opcode == TCPOPT_MD5SIG)
4282 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4283 		}
4284 		ptr += opsize - 2;
4285 		length -= opsize;
4286 	}
4287 	return NULL;
4288 }
4289 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4290 #endif
4291 
4292 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4293  *
4294  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4295  * it can pass through stack. So, the following predicate verifies that
4296  * this segment is not used for anything but congestion avoidance or
4297  * fast retransmit. Moreover, we even are able to eliminate most of such
4298  * second order effects, if we apply some small "replay" window (~RTO)
4299  * to timestamp space.
4300  *
4301  * All these measures still do not guarantee that we reject wrapped ACKs
4302  * on networks with high bandwidth, when sequence space is recycled fastly,
4303  * but it guarantees that such events will be very rare and do not affect
4304  * connection seriously. This doesn't look nice, but alas, PAWS is really
4305  * buggy extension.
4306  *
4307  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4308  * states that events when retransmit arrives after original data are rare.
4309  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4310  * the biggest problem on large power networks even with minor reordering.
4311  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4312  * up to bandwidth of 18Gigabit/sec. 8) ]
4313  */
4314 
4315 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4316 {
4317 	const struct tcp_sock *tp = tcp_sk(sk);
4318 	const struct tcphdr *th = tcp_hdr(skb);
4319 	u32 seq = TCP_SKB_CB(skb)->seq;
4320 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4321 
4322 	return (/* 1. Pure ACK with correct sequence number. */
4323 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4324 
4325 		/* 2. ... and duplicate ACK. */
4326 		ack == tp->snd_una &&
4327 
4328 		/* 3. ... and does not update window. */
4329 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4330 
4331 		/* 4. ... and sits in replay window. */
4332 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4333 }
4334 
4335 static inline bool tcp_paws_discard(const struct sock *sk,
4336 				   const struct sk_buff *skb)
4337 {
4338 	const struct tcp_sock *tp = tcp_sk(sk);
4339 
4340 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4341 	       !tcp_disordered_ack(sk, skb);
4342 }
4343 
4344 /* Check segment sequence number for validity.
4345  *
4346  * Segment controls are considered valid, if the segment
4347  * fits to the window after truncation to the window. Acceptability
4348  * of data (and SYN, FIN, of course) is checked separately.
4349  * See tcp_data_queue(), for example.
4350  *
4351  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4352  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4353  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4354  * (borrowed from freebsd)
4355  */
4356 
4357 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4358 					 u32 seq, u32 end_seq)
4359 {
4360 	if (before(end_seq, tp->rcv_wup))
4361 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4362 
4363 	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4364 		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4365 
4366 	return SKB_NOT_DROPPED_YET;
4367 }
4368 
4369 /* When we get a reset we do this. */
4370 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4371 {
4372 	trace_tcp_receive_reset(sk);
4373 
4374 	/* mptcp can't tell us to ignore reset pkts,
4375 	 * so just ignore the return value of mptcp_incoming_options().
4376 	 */
4377 	if (sk_is_mptcp(sk))
4378 		mptcp_incoming_options(sk, skb);
4379 
4380 	/* We want the right error as BSD sees it (and indeed as we do). */
4381 	switch (sk->sk_state) {
4382 	case TCP_SYN_SENT:
4383 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
4384 		break;
4385 	case TCP_CLOSE_WAIT:
4386 		WRITE_ONCE(sk->sk_err, EPIPE);
4387 		break;
4388 	case TCP_CLOSE:
4389 		return;
4390 	default:
4391 		WRITE_ONCE(sk->sk_err, ECONNRESET);
4392 	}
4393 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4394 	smp_wmb();
4395 
4396 	tcp_write_queue_purge(sk);
4397 	tcp_done(sk);
4398 
4399 	if (!sock_flag(sk, SOCK_DEAD))
4400 		sk_error_report(sk);
4401 }
4402 
4403 /*
4404  * 	Process the FIN bit. This now behaves as it is supposed to work
4405  *	and the FIN takes effect when it is validly part of sequence
4406  *	space. Not before when we get holes.
4407  *
4408  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4409  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4410  *	TIME-WAIT)
4411  *
4412  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4413  *	close and we go into CLOSING (and later onto TIME-WAIT)
4414  *
4415  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4416  */
4417 void tcp_fin(struct sock *sk)
4418 {
4419 	struct tcp_sock *tp = tcp_sk(sk);
4420 
4421 	inet_csk_schedule_ack(sk);
4422 
4423 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4424 	sock_set_flag(sk, SOCK_DONE);
4425 
4426 	switch (sk->sk_state) {
4427 	case TCP_SYN_RECV:
4428 	case TCP_ESTABLISHED:
4429 		/* Move to CLOSE_WAIT */
4430 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4431 		inet_csk_enter_pingpong_mode(sk);
4432 		break;
4433 
4434 	case TCP_CLOSE_WAIT:
4435 	case TCP_CLOSING:
4436 		/* Received a retransmission of the FIN, do
4437 		 * nothing.
4438 		 */
4439 		break;
4440 	case TCP_LAST_ACK:
4441 		/* RFC793: Remain in the LAST-ACK state. */
4442 		break;
4443 
4444 	case TCP_FIN_WAIT1:
4445 		/* This case occurs when a simultaneous close
4446 		 * happens, we must ack the received FIN and
4447 		 * enter the CLOSING state.
4448 		 */
4449 		tcp_send_ack(sk);
4450 		tcp_set_state(sk, TCP_CLOSING);
4451 		break;
4452 	case TCP_FIN_WAIT2:
4453 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4454 		tcp_send_ack(sk);
4455 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4456 		break;
4457 	default:
4458 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4459 		 * cases we should never reach this piece of code.
4460 		 */
4461 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4462 		       __func__, sk->sk_state);
4463 		break;
4464 	}
4465 
4466 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4467 	 * Probably, we should reset in this case. For now drop them.
4468 	 */
4469 	skb_rbtree_purge(&tp->out_of_order_queue);
4470 	if (tcp_is_sack(tp))
4471 		tcp_sack_reset(&tp->rx_opt);
4472 
4473 	if (!sock_flag(sk, SOCK_DEAD)) {
4474 		sk->sk_state_change(sk);
4475 
4476 		/* Do not send POLL_HUP for half duplex close. */
4477 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4478 		    sk->sk_state == TCP_CLOSE)
4479 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4480 		else
4481 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4482 	}
4483 }
4484 
4485 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4486 				  u32 end_seq)
4487 {
4488 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4489 		if (before(seq, sp->start_seq))
4490 			sp->start_seq = seq;
4491 		if (after(end_seq, sp->end_seq))
4492 			sp->end_seq = end_seq;
4493 		return true;
4494 	}
4495 	return false;
4496 }
4497 
4498 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4499 {
4500 	struct tcp_sock *tp = tcp_sk(sk);
4501 
4502 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4503 		int mib_idx;
4504 
4505 		if (before(seq, tp->rcv_nxt))
4506 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4507 		else
4508 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4509 
4510 		NET_INC_STATS(sock_net(sk), mib_idx);
4511 
4512 		tp->rx_opt.dsack = 1;
4513 		tp->duplicate_sack[0].start_seq = seq;
4514 		tp->duplicate_sack[0].end_seq = end_seq;
4515 	}
4516 }
4517 
4518 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4519 {
4520 	struct tcp_sock *tp = tcp_sk(sk);
4521 
4522 	if (!tp->rx_opt.dsack)
4523 		tcp_dsack_set(sk, seq, end_seq);
4524 	else
4525 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4526 }
4527 
4528 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4529 {
4530 	/* When the ACK path fails or drops most ACKs, the sender would
4531 	 * timeout and spuriously retransmit the same segment repeatedly.
4532 	 * If it seems our ACKs are not reaching the other side,
4533 	 * based on receiving a duplicate data segment with new flowlabel
4534 	 * (suggesting the sender suffered an RTO), and we are not already
4535 	 * repathing due to our own RTO, then rehash the socket to repath our
4536 	 * packets.
4537 	 */
4538 #if IS_ENABLED(CONFIG_IPV6)
4539 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4540 	    skb->protocol == htons(ETH_P_IPV6) &&
4541 	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4542 	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4543 	    sk_rethink_txhash(sk))
4544 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4545 
4546 	/* Save last flowlabel after a spurious retrans. */
4547 	tcp_save_lrcv_flowlabel(sk, skb);
4548 #endif
4549 }
4550 
4551 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4552 {
4553 	struct tcp_sock *tp = tcp_sk(sk);
4554 
4555 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4556 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4557 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4558 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4559 
4560 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4561 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4562 
4563 			tcp_rcv_spurious_retrans(sk, skb);
4564 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4565 				end_seq = tp->rcv_nxt;
4566 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4567 		}
4568 	}
4569 
4570 	tcp_send_ack(sk);
4571 }
4572 
4573 /* These routines update the SACK block as out-of-order packets arrive or
4574  * in-order packets close up the sequence space.
4575  */
4576 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4577 {
4578 	int this_sack;
4579 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4580 	struct tcp_sack_block *swalk = sp + 1;
4581 
4582 	/* See if the recent change to the first SACK eats into
4583 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4584 	 */
4585 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4586 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4587 			int i;
4588 
4589 			/* Zap SWALK, by moving every further SACK up by one slot.
4590 			 * Decrease num_sacks.
4591 			 */
4592 			tp->rx_opt.num_sacks--;
4593 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4594 				sp[i] = sp[i + 1];
4595 			continue;
4596 		}
4597 		this_sack++;
4598 		swalk++;
4599 	}
4600 }
4601 
4602 void tcp_sack_compress_send_ack(struct sock *sk)
4603 {
4604 	struct tcp_sock *tp = tcp_sk(sk);
4605 
4606 	if (!tp->compressed_ack)
4607 		return;
4608 
4609 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4610 		__sock_put(sk);
4611 
4612 	/* Since we have to send one ack finally,
4613 	 * substract one from tp->compressed_ack to keep
4614 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4615 	 */
4616 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4617 		      tp->compressed_ack - 1);
4618 
4619 	tp->compressed_ack = 0;
4620 	tcp_send_ack(sk);
4621 }
4622 
4623 /* Reasonable amount of sack blocks included in TCP SACK option
4624  * The max is 4, but this becomes 3 if TCP timestamps are there.
4625  * Given that SACK packets might be lost, be conservative and use 2.
4626  */
4627 #define TCP_SACK_BLOCKS_EXPECTED 2
4628 
4629 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4630 {
4631 	struct tcp_sock *tp = tcp_sk(sk);
4632 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4633 	int cur_sacks = tp->rx_opt.num_sacks;
4634 	int this_sack;
4635 
4636 	if (!cur_sacks)
4637 		goto new_sack;
4638 
4639 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4640 		if (tcp_sack_extend(sp, seq, end_seq)) {
4641 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4642 				tcp_sack_compress_send_ack(sk);
4643 			/* Rotate this_sack to the first one. */
4644 			for (; this_sack > 0; this_sack--, sp--)
4645 				swap(*sp, *(sp - 1));
4646 			if (cur_sacks > 1)
4647 				tcp_sack_maybe_coalesce(tp);
4648 			return;
4649 		}
4650 	}
4651 
4652 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4653 		tcp_sack_compress_send_ack(sk);
4654 
4655 	/* Could not find an adjacent existing SACK, build a new one,
4656 	 * put it at the front, and shift everyone else down.  We
4657 	 * always know there is at least one SACK present already here.
4658 	 *
4659 	 * If the sack array is full, forget about the last one.
4660 	 */
4661 	if (this_sack >= TCP_NUM_SACKS) {
4662 		this_sack--;
4663 		tp->rx_opt.num_sacks--;
4664 		sp--;
4665 	}
4666 	for (; this_sack > 0; this_sack--, sp--)
4667 		*sp = *(sp - 1);
4668 
4669 new_sack:
4670 	/* Build the new head SACK, and we're done. */
4671 	sp->start_seq = seq;
4672 	sp->end_seq = end_seq;
4673 	tp->rx_opt.num_sacks++;
4674 }
4675 
4676 /* RCV.NXT advances, some SACKs should be eaten. */
4677 
4678 static void tcp_sack_remove(struct tcp_sock *tp)
4679 {
4680 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4681 	int num_sacks = tp->rx_opt.num_sacks;
4682 	int this_sack;
4683 
4684 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4685 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4686 		tp->rx_opt.num_sacks = 0;
4687 		return;
4688 	}
4689 
4690 	for (this_sack = 0; this_sack < num_sacks;) {
4691 		/* Check if the start of the sack is covered by RCV.NXT. */
4692 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4693 			int i;
4694 
4695 			/* RCV.NXT must cover all the block! */
4696 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4697 
4698 			/* Zap this SACK, by moving forward any other SACKS. */
4699 			for (i = this_sack+1; i < num_sacks; i++)
4700 				tp->selective_acks[i-1] = tp->selective_acks[i];
4701 			num_sacks--;
4702 			continue;
4703 		}
4704 		this_sack++;
4705 		sp++;
4706 	}
4707 	tp->rx_opt.num_sacks = num_sacks;
4708 }
4709 
4710 /**
4711  * tcp_try_coalesce - try to merge skb to prior one
4712  * @sk: socket
4713  * @to: prior buffer
4714  * @from: buffer to add in queue
4715  * @fragstolen: pointer to boolean
4716  *
4717  * Before queueing skb @from after @to, try to merge them
4718  * to reduce overall memory use and queue lengths, if cost is small.
4719  * Packets in ofo or receive queues can stay a long time.
4720  * Better try to coalesce them right now to avoid future collapses.
4721  * Returns true if caller should free @from instead of queueing it
4722  */
4723 static bool tcp_try_coalesce(struct sock *sk,
4724 			     struct sk_buff *to,
4725 			     struct sk_buff *from,
4726 			     bool *fragstolen)
4727 {
4728 	int delta;
4729 
4730 	*fragstolen = false;
4731 
4732 	/* Its possible this segment overlaps with prior segment in queue */
4733 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4734 		return false;
4735 
4736 	if (!mptcp_skb_can_collapse(to, from))
4737 		return false;
4738 
4739 #ifdef CONFIG_TLS_DEVICE
4740 	if (from->decrypted != to->decrypted)
4741 		return false;
4742 #endif
4743 
4744 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4745 		return false;
4746 
4747 	atomic_add(delta, &sk->sk_rmem_alloc);
4748 	sk_mem_charge(sk, delta);
4749 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4750 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4751 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4752 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4753 
4754 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4755 		TCP_SKB_CB(to)->has_rxtstamp = true;
4756 		to->tstamp = from->tstamp;
4757 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4758 	}
4759 
4760 	return true;
4761 }
4762 
4763 static bool tcp_ooo_try_coalesce(struct sock *sk,
4764 			     struct sk_buff *to,
4765 			     struct sk_buff *from,
4766 			     bool *fragstolen)
4767 {
4768 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4769 
4770 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4771 	if (res) {
4772 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4773 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4774 
4775 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4776 	}
4777 	return res;
4778 }
4779 
4780 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4781 			    enum skb_drop_reason reason)
4782 {
4783 	sk_drops_add(sk, skb);
4784 	kfree_skb_reason(skb, reason);
4785 }
4786 
4787 /* This one checks to see if we can put data from the
4788  * out_of_order queue into the receive_queue.
4789  */
4790 static void tcp_ofo_queue(struct sock *sk)
4791 {
4792 	struct tcp_sock *tp = tcp_sk(sk);
4793 	__u32 dsack_high = tp->rcv_nxt;
4794 	bool fin, fragstolen, eaten;
4795 	struct sk_buff *skb, *tail;
4796 	struct rb_node *p;
4797 
4798 	p = rb_first(&tp->out_of_order_queue);
4799 	while (p) {
4800 		skb = rb_to_skb(p);
4801 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4802 			break;
4803 
4804 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4805 			__u32 dsack = dsack_high;
4806 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4807 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4808 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4809 		}
4810 		p = rb_next(p);
4811 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4812 
4813 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4814 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4815 			continue;
4816 		}
4817 
4818 		tail = skb_peek_tail(&sk->sk_receive_queue);
4819 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4820 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4821 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4822 		if (!eaten)
4823 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4824 		else
4825 			kfree_skb_partial(skb, fragstolen);
4826 
4827 		if (unlikely(fin)) {
4828 			tcp_fin(sk);
4829 			/* tcp_fin() purges tp->out_of_order_queue,
4830 			 * so we must end this loop right now.
4831 			 */
4832 			break;
4833 		}
4834 	}
4835 }
4836 
4837 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4838 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4839 
4840 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4841 				 unsigned int size)
4842 {
4843 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4844 	    !sk_rmem_schedule(sk, skb, size)) {
4845 
4846 		if (tcp_prune_queue(sk, skb) < 0)
4847 			return -1;
4848 
4849 		while (!sk_rmem_schedule(sk, skb, size)) {
4850 			if (!tcp_prune_ofo_queue(sk, skb))
4851 				return -1;
4852 		}
4853 	}
4854 	return 0;
4855 }
4856 
4857 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4858 {
4859 	struct tcp_sock *tp = tcp_sk(sk);
4860 	struct rb_node **p, *parent;
4861 	struct sk_buff *skb1;
4862 	u32 seq, end_seq;
4863 	bool fragstolen;
4864 
4865 	tcp_save_lrcv_flowlabel(sk, skb);
4866 	tcp_ecn_check_ce(sk, skb);
4867 
4868 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4869 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4870 		sk->sk_data_ready(sk);
4871 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4872 		return;
4873 	}
4874 
4875 	/* Disable header prediction. */
4876 	tp->pred_flags = 0;
4877 	inet_csk_schedule_ack(sk);
4878 
4879 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4880 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4881 	seq = TCP_SKB_CB(skb)->seq;
4882 	end_seq = TCP_SKB_CB(skb)->end_seq;
4883 
4884 	p = &tp->out_of_order_queue.rb_node;
4885 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4886 		/* Initial out of order segment, build 1 SACK. */
4887 		if (tcp_is_sack(tp)) {
4888 			tp->rx_opt.num_sacks = 1;
4889 			tp->selective_acks[0].start_seq = seq;
4890 			tp->selective_acks[0].end_seq = end_seq;
4891 		}
4892 		rb_link_node(&skb->rbnode, NULL, p);
4893 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4894 		tp->ooo_last_skb = skb;
4895 		goto end;
4896 	}
4897 
4898 	/* In the typical case, we are adding an skb to the end of the list.
4899 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4900 	 */
4901 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4902 				 skb, &fragstolen)) {
4903 coalesce_done:
4904 		/* For non sack flows, do not grow window to force DUPACK
4905 		 * and trigger fast retransmit.
4906 		 */
4907 		if (tcp_is_sack(tp))
4908 			tcp_grow_window(sk, skb, true);
4909 		kfree_skb_partial(skb, fragstolen);
4910 		skb = NULL;
4911 		goto add_sack;
4912 	}
4913 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4914 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4915 		parent = &tp->ooo_last_skb->rbnode;
4916 		p = &parent->rb_right;
4917 		goto insert;
4918 	}
4919 
4920 	/* Find place to insert this segment. Handle overlaps on the way. */
4921 	parent = NULL;
4922 	while (*p) {
4923 		parent = *p;
4924 		skb1 = rb_to_skb(parent);
4925 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4926 			p = &parent->rb_left;
4927 			continue;
4928 		}
4929 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4930 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4931 				/* All the bits are present. Drop. */
4932 				NET_INC_STATS(sock_net(sk),
4933 					      LINUX_MIB_TCPOFOMERGE);
4934 				tcp_drop_reason(sk, skb,
4935 						SKB_DROP_REASON_TCP_OFOMERGE);
4936 				skb = NULL;
4937 				tcp_dsack_set(sk, seq, end_seq);
4938 				goto add_sack;
4939 			}
4940 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4941 				/* Partial overlap. */
4942 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4943 			} else {
4944 				/* skb's seq == skb1's seq and skb covers skb1.
4945 				 * Replace skb1 with skb.
4946 				 */
4947 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4948 						&tp->out_of_order_queue);
4949 				tcp_dsack_extend(sk,
4950 						 TCP_SKB_CB(skb1)->seq,
4951 						 TCP_SKB_CB(skb1)->end_seq);
4952 				NET_INC_STATS(sock_net(sk),
4953 					      LINUX_MIB_TCPOFOMERGE);
4954 				tcp_drop_reason(sk, skb1,
4955 						SKB_DROP_REASON_TCP_OFOMERGE);
4956 				goto merge_right;
4957 			}
4958 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4959 						skb, &fragstolen)) {
4960 			goto coalesce_done;
4961 		}
4962 		p = &parent->rb_right;
4963 	}
4964 insert:
4965 	/* Insert segment into RB tree. */
4966 	rb_link_node(&skb->rbnode, parent, p);
4967 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4968 
4969 merge_right:
4970 	/* Remove other segments covered by skb. */
4971 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4972 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4973 			break;
4974 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4975 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4976 					 end_seq);
4977 			break;
4978 		}
4979 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4980 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4981 				 TCP_SKB_CB(skb1)->end_seq);
4982 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4983 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4984 	}
4985 	/* If there is no skb after us, we are the last_skb ! */
4986 	if (!skb1)
4987 		tp->ooo_last_skb = skb;
4988 
4989 add_sack:
4990 	if (tcp_is_sack(tp))
4991 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4992 end:
4993 	if (skb) {
4994 		/* For non sack flows, do not grow window to force DUPACK
4995 		 * and trigger fast retransmit.
4996 		 */
4997 		if (tcp_is_sack(tp))
4998 			tcp_grow_window(sk, skb, false);
4999 		skb_condense(skb);
5000 		skb_set_owner_r(skb, sk);
5001 	}
5002 }
5003 
5004 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5005 				      bool *fragstolen)
5006 {
5007 	int eaten;
5008 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5009 
5010 	eaten = (tail &&
5011 		 tcp_try_coalesce(sk, tail,
5012 				  skb, fragstolen)) ? 1 : 0;
5013 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5014 	if (!eaten) {
5015 		__skb_queue_tail(&sk->sk_receive_queue, skb);
5016 		skb_set_owner_r(skb, sk);
5017 	}
5018 	return eaten;
5019 }
5020 
5021 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5022 {
5023 	struct sk_buff *skb;
5024 	int err = -ENOMEM;
5025 	int data_len = 0;
5026 	bool fragstolen;
5027 
5028 	if (size == 0)
5029 		return 0;
5030 
5031 	if (size > PAGE_SIZE) {
5032 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5033 
5034 		data_len = npages << PAGE_SHIFT;
5035 		size = data_len + (size & ~PAGE_MASK);
5036 	}
5037 	skb = alloc_skb_with_frags(size - data_len, data_len,
5038 				   PAGE_ALLOC_COSTLY_ORDER,
5039 				   &err, sk->sk_allocation);
5040 	if (!skb)
5041 		goto err;
5042 
5043 	skb_put(skb, size - data_len);
5044 	skb->data_len = data_len;
5045 	skb->len = size;
5046 
5047 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5048 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5049 		goto err_free;
5050 	}
5051 
5052 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5053 	if (err)
5054 		goto err_free;
5055 
5056 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5057 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5058 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5059 
5060 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5061 		WARN_ON_ONCE(fragstolen); /* should not happen */
5062 		__kfree_skb(skb);
5063 	}
5064 	return size;
5065 
5066 err_free:
5067 	kfree_skb(skb);
5068 err:
5069 	return err;
5070 
5071 }
5072 
5073 void tcp_data_ready(struct sock *sk)
5074 {
5075 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5076 		sk->sk_data_ready(sk);
5077 }
5078 
5079 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5080 {
5081 	struct tcp_sock *tp = tcp_sk(sk);
5082 	enum skb_drop_reason reason;
5083 	bool fragstolen;
5084 	int eaten;
5085 
5086 	/* If a subflow has been reset, the packet should not continue
5087 	 * to be processed, drop the packet.
5088 	 */
5089 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5090 		__kfree_skb(skb);
5091 		return;
5092 	}
5093 
5094 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5095 		__kfree_skb(skb);
5096 		return;
5097 	}
5098 	skb_dst_drop(skb);
5099 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5100 
5101 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5102 	tp->rx_opt.dsack = 0;
5103 
5104 	/*  Queue data for delivery to the user.
5105 	 *  Packets in sequence go to the receive queue.
5106 	 *  Out of sequence packets to the out_of_order_queue.
5107 	 */
5108 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5109 		if (tcp_receive_window(tp) == 0) {
5110 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5111 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5112 			goto out_of_window;
5113 		}
5114 
5115 		/* Ok. In sequence. In window. */
5116 queue_and_out:
5117 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5118 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5119 			inet_csk(sk)->icsk_ack.pending |=
5120 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5121 			inet_csk_schedule_ack(sk);
5122 			sk->sk_data_ready(sk);
5123 
5124 			if (skb_queue_len(&sk->sk_receive_queue)) {
5125 				reason = SKB_DROP_REASON_PROTO_MEM;
5126 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5127 				goto drop;
5128 			}
5129 			sk_forced_mem_schedule(sk, skb->truesize);
5130 		}
5131 
5132 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5133 		if (skb->len)
5134 			tcp_event_data_recv(sk, skb);
5135 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5136 			tcp_fin(sk);
5137 
5138 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5139 			tcp_ofo_queue(sk);
5140 
5141 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5142 			 * gap in queue is filled.
5143 			 */
5144 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5145 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5146 		}
5147 
5148 		if (tp->rx_opt.num_sacks)
5149 			tcp_sack_remove(tp);
5150 
5151 		tcp_fast_path_check(sk);
5152 
5153 		if (eaten > 0)
5154 			kfree_skb_partial(skb, fragstolen);
5155 		if (!sock_flag(sk, SOCK_DEAD))
5156 			tcp_data_ready(sk);
5157 		return;
5158 	}
5159 
5160 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5161 		tcp_rcv_spurious_retrans(sk, skb);
5162 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5163 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5164 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5165 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5166 
5167 out_of_window:
5168 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5169 		inet_csk_schedule_ack(sk);
5170 drop:
5171 		tcp_drop_reason(sk, skb, reason);
5172 		return;
5173 	}
5174 
5175 	/* Out of window. F.e. zero window probe. */
5176 	if (!before(TCP_SKB_CB(skb)->seq,
5177 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5178 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5179 		goto out_of_window;
5180 	}
5181 
5182 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5183 		/* Partial packet, seq < rcv_next < end_seq */
5184 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5185 
5186 		/* If window is closed, drop tail of packet. But after
5187 		 * remembering D-SACK for its head made in previous line.
5188 		 */
5189 		if (!tcp_receive_window(tp)) {
5190 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5191 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5192 			goto out_of_window;
5193 		}
5194 		goto queue_and_out;
5195 	}
5196 
5197 	tcp_data_queue_ofo(sk, skb);
5198 }
5199 
5200 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5201 {
5202 	if (list)
5203 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5204 
5205 	return skb_rb_next(skb);
5206 }
5207 
5208 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5209 					struct sk_buff_head *list,
5210 					struct rb_root *root)
5211 {
5212 	struct sk_buff *next = tcp_skb_next(skb, list);
5213 
5214 	if (list)
5215 		__skb_unlink(skb, list);
5216 	else
5217 		rb_erase(&skb->rbnode, root);
5218 
5219 	__kfree_skb(skb);
5220 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5221 
5222 	return next;
5223 }
5224 
5225 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5226 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5227 {
5228 	struct rb_node **p = &root->rb_node;
5229 	struct rb_node *parent = NULL;
5230 	struct sk_buff *skb1;
5231 
5232 	while (*p) {
5233 		parent = *p;
5234 		skb1 = rb_to_skb(parent);
5235 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5236 			p = &parent->rb_left;
5237 		else
5238 			p = &parent->rb_right;
5239 	}
5240 	rb_link_node(&skb->rbnode, parent, p);
5241 	rb_insert_color(&skb->rbnode, root);
5242 }
5243 
5244 /* Collapse contiguous sequence of skbs head..tail with
5245  * sequence numbers start..end.
5246  *
5247  * If tail is NULL, this means until the end of the queue.
5248  *
5249  * Segments with FIN/SYN are not collapsed (only because this
5250  * simplifies code)
5251  */
5252 static void
5253 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5254 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5255 {
5256 	struct sk_buff *skb = head, *n;
5257 	struct sk_buff_head tmp;
5258 	bool end_of_skbs;
5259 
5260 	/* First, check that queue is collapsible and find
5261 	 * the point where collapsing can be useful.
5262 	 */
5263 restart:
5264 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5265 		n = tcp_skb_next(skb, list);
5266 
5267 		/* No new bits? It is possible on ofo queue. */
5268 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5269 			skb = tcp_collapse_one(sk, skb, list, root);
5270 			if (!skb)
5271 				break;
5272 			goto restart;
5273 		}
5274 
5275 		/* The first skb to collapse is:
5276 		 * - not SYN/FIN and
5277 		 * - bloated or contains data before "start" or
5278 		 *   overlaps to the next one and mptcp allow collapsing.
5279 		 */
5280 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5281 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5282 		     before(TCP_SKB_CB(skb)->seq, start))) {
5283 			end_of_skbs = false;
5284 			break;
5285 		}
5286 
5287 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5288 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5289 			end_of_skbs = false;
5290 			break;
5291 		}
5292 
5293 		/* Decided to skip this, advance start seq. */
5294 		start = TCP_SKB_CB(skb)->end_seq;
5295 	}
5296 	if (end_of_skbs ||
5297 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5298 		return;
5299 
5300 	__skb_queue_head_init(&tmp);
5301 
5302 	while (before(start, end)) {
5303 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5304 		struct sk_buff *nskb;
5305 
5306 		nskb = alloc_skb(copy, GFP_ATOMIC);
5307 		if (!nskb)
5308 			break;
5309 
5310 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5311 #ifdef CONFIG_TLS_DEVICE
5312 		nskb->decrypted = skb->decrypted;
5313 #endif
5314 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5315 		if (list)
5316 			__skb_queue_before(list, skb, nskb);
5317 		else
5318 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5319 		skb_set_owner_r(nskb, sk);
5320 		mptcp_skb_ext_move(nskb, skb);
5321 
5322 		/* Copy data, releasing collapsed skbs. */
5323 		while (copy > 0) {
5324 			int offset = start - TCP_SKB_CB(skb)->seq;
5325 			int size = TCP_SKB_CB(skb)->end_seq - start;
5326 
5327 			BUG_ON(offset < 0);
5328 			if (size > 0) {
5329 				size = min(copy, size);
5330 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5331 					BUG();
5332 				TCP_SKB_CB(nskb)->end_seq += size;
5333 				copy -= size;
5334 				start += size;
5335 			}
5336 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5337 				skb = tcp_collapse_one(sk, skb, list, root);
5338 				if (!skb ||
5339 				    skb == tail ||
5340 				    !mptcp_skb_can_collapse(nskb, skb) ||
5341 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5342 					goto end;
5343 #ifdef CONFIG_TLS_DEVICE
5344 				if (skb->decrypted != nskb->decrypted)
5345 					goto end;
5346 #endif
5347 			}
5348 		}
5349 	}
5350 end:
5351 	skb_queue_walk_safe(&tmp, skb, n)
5352 		tcp_rbtree_insert(root, skb);
5353 }
5354 
5355 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5356  * and tcp_collapse() them until all the queue is collapsed.
5357  */
5358 static void tcp_collapse_ofo_queue(struct sock *sk)
5359 {
5360 	struct tcp_sock *tp = tcp_sk(sk);
5361 	u32 range_truesize, sum_tiny = 0;
5362 	struct sk_buff *skb, *head;
5363 	u32 start, end;
5364 
5365 	skb = skb_rb_first(&tp->out_of_order_queue);
5366 new_range:
5367 	if (!skb) {
5368 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5369 		return;
5370 	}
5371 	start = TCP_SKB_CB(skb)->seq;
5372 	end = TCP_SKB_CB(skb)->end_seq;
5373 	range_truesize = skb->truesize;
5374 
5375 	for (head = skb;;) {
5376 		skb = skb_rb_next(skb);
5377 
5378 		/* Range is terminated when we see a gap or when
5379 		 * we are at the queue end.
5380 		 */
5381 		if (!skb ||
5382 		    after(TCP_SKB_CB(skb)->seq, end) ||
5383 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5384 			/* Do not attempt collapsing tiny skbs */
5385 			if (range_truesize != head->truesize ||
5386 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5387 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5388 					     head, skb, start, end);
5389 			} else {
5390 				sum_tiny += range_truesize;
5391 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5392 					return;
5393 			}
5394 			goto new_range;
5395 		}
5396 
5397 		range_truesize += skb->truesize;
5398 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5399 			start = TCP_SKB_CB(skb)->seq;
5400 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5401 			end = TCP_SKB_CB(skb)->end_seq;
5402 	}
5403 }
5404 
5405 /*
5406  * Clean the out-of-order queue to make room.
5407  * We drop high sequences packets to :
5408  * 1) Let a chance for holes to be filled.
5409  *    This means we do not drop packets from ooo queue if their sequence
5410  *    is before incoming packet sequence.
5411  * 2) not add too big latencies if thousands of packets sit there.
5412  *    (But if application shrinks SO_RCVBUF, we could still end up
5413  *     freeing whole queue here)
5414  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5415  *
5416  * Return true if queue has shrunk.
5417  */
5418 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5419 {
5420 	struct tcp_sock *tp = tcp_sk(sk);
5421 	struct rb_node *node, *prev;
5422 	bool pruned = false;
5423 	int goal;
5424 
5425 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5426 		return false;
5427 
5428 	goal = sk->sk_rcvbuf >> 3;
5429 	node = &tp->ooo_last_skb->rbnode;
5430 
5431 	do {
5432 		struct sk_buff *skb = rb_to_skb(node);
5433 
5434 		/* If incoming skb would land last in ofo queue, stop pruning. */
5435 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5436 			break;
5437 		pruned = true;
5438 		prev = rb_prev(node);
5439 		rb_erase(node, &tp->out_of_order_queue);
5440 		goal -= skb->truesize;
5441 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5442 		tp->ooo_last_skb = rb_to_skb(prev);
5443 		if (!prev || goal <= 0) {
5444 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5445 			    !tcp_under_memory_pressure(sk))
5446 				break;
5447 			goal = sk->sk_rcvbuf >> 3;
5448 		}
5449 		node = prev;
5450 	} while (node);
5451 
5452 	if (pruned) {
5453 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5454 		/* Reset SACK state.  A conforming SACK implementation will
5455 		 * do the same at a timeout based retransmit.  When a connection
5456 		 * is in a sad state like this, we care only about integrity
5457 		 * of the connection not performance.
5458 		 */
5459 		if (tp->rx_opt.sack_ok)
5460 			tcp_sack_reset(&tp->rx_opt);
5461 	}
5462 	return pruned;
5463 }
5464 
5465 /* Reduce allocated memory if we can, trying to get
5466  * the socket within its memory limits again.
5467  *
5468  * Return less than zero if we should start dropping frames
5469  * until the socket owning process reads some of the data
5470  * to stabilize the situation.
5471  */
5472 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5473 {
5474 	struct tcp_sock *tp = tcp_sk(sk);
5475 
5476 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5477 
5478 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5479 		tcp_clamp_window(sk);
5480 	else if (tcp_under_memory_pressure(sk))
5481 		tcp_adjust_rcv_ssthresh(sk);
5482 
5483 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5484 		return 0;
5485 
5486 	tcp_collapse_ofo_queue(sk);
5487 	if (!skb_queue_empty(&sk->sk_receive_queue))
5488 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5489 			     skb_peek(&sk->sk_receive_queue),
5490 			     NULL,
5491 			     tp->copied_seq, tp->rcv_nxt);
5492 
5493 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5494 		return 0;
5495 
5496 	/* Collapsing did not help, destructive actions follow.
5497 	 * This must not ever occur. */
5498 
5499 	tcp_prune_ofo_queue(sk, in_skb);
5500 
5501 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5502 		return 0;
5503 
5504 	/* If we are really being abused, tell the caller to silently
5505 	 * drop receive data on the floor.  It will get retransmitted
5506 	 * and hopefully then we'll have sufficient space.
5507 	 */
5508 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5509 
5510 	/* Massive buffer overcommit. */
5511 	tp->pred_flags = 0;
5512 	return -1;
5513 }
5514 
5515 static bool tcp_should_expand_sndbuf(struct sock *sk)
5516 {
5517 	const struct tcp_sock *tp = tcp_sk(sk);
5518 
5519 	/* If the user specified a specific send buffer setting, do
5520 	 * not modify it.
5521 	 */
5522 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5523 		return false;
5524 
5525 	/* If we are under global TCP memory pressure, do not expand.  */
5526 	if (tcp_under_memory_pressure(sk)) {
5527 		int unused_mem = sk_unused_reserved_mem(sk);
5528 
5529 		/* Adjust sndbuf according to reserved mem. But make sure
5530 		 * it never goes below SOCK_MIN_SNDBUF.
5531 		 * See sk_stream_moderate_sndbuf() for more details.
5532 		 */
5533 		if (unused_mem > SOCK_MIN_SNDBUF)
5534 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5535 
5536 		return false;
5537 	}
5538 
5539 	/* If we are under soft global TCP memory pressure, do not expand.  */
5540 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5541 		return false;
5542 
5543 	/* If we filled the congestion window, do not expand.  */
5544 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5545 		return false;
5546 
5547 	return true;
5548 }
5549 
5550 static void tcp_new_space(struct sock *sk)
5551 {
5552 	struct tcp_sock *tp = tcp_sk(sk);
5553 
5554 	if (tcp_should_expand_sndbuf(sk)) {
5555 		tcp_sndbuf_expand(sk);
5556 		tp->snd_cwnd_stamp = tcp_jiffies32;
5557 	}
5558 
5559 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5560 }
5561 
5562 /* Caller made space either from:
5563  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5564  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5565  *
5566  * We might be able to generate EPOLLOUT to the application if:
5567  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5568  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5569  *    small enough that tcp_stream_memory_free() decides it
5570  *    is time to generate EPOLLOUT.
5571  */
5572 void tcp_check_space(struct sock *sk)
5573 {
5574 	/* pairs with tcp_poll() */
5575 	smp_mb();
5576 	if (sk->sk_socket &&
5577 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5578 		tcp_new_space(sk);
5579 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5580 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5581 	}
5582 }
5583 
5584 static inline void tcp_data_snd_check(struct sock *sk)
5585 {
5586 	tcp_push_pending_frames(sk);
5587 	tcp_check_space(sk);
5588 }
5589 
5590 /*
5591  * Check if sending an ack is needed.
5592  */
5593 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5594 {
5595 	struct tcp_sock *tp = tcp_sk(sk);
5596 	unsigned long rtt, delay;
5597 
5598 	    /* More than one full frame received... */
5599 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5600 	     /* ... and right edge of window advances far enough.
5601 	      * (tcp_recvmsg() will send ACK otherwise).
5602 	      * If application uses SO_RCVLOWAT, we want send ack now if
5603 	      * we have not received enough bytes to satisfy the condition.
5604 	      */
5605 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5606 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5607 	    /* We ACK each frame or... */
5608 	    tcp_in_quickack_mode(sk) ||
5609 	    /* Protocol state mandates a one-time immediate ACK */
5610 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5611 		/* If we are running from __release_sock() in user context,
5612 		 * Defer the ack until tcp_release_cb().
5613 		 */
5614 		if (sock_owned_by_user_nocheck(sk) &&
5615 		    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5616 			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5617 			return;
5618 		}
5619 send_now:
5620 		tcp_send_ack(sk);
5621 		return;
5622 	}
5623 
5624 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5625 		tcp_send_delayed_ack(sk);
5626 		return;
5627 	}
5628 
5629 	if (!tcp_is_sack(tp) ||
5630 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5631 		goto send_now;
5632 
5633 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5634 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5635 		tp->dup_ack_counter = 0;
5636 	}
5637 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5638 		tp->dup_ack_counter++;
5639 		goto send_now;
5640 	}
5641 	tp->compressed_ack++;
5642 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5643 		return;
5644 
5645 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5646 
5647 	rtt = tp->rcv_rtt_est.rtt_us;
5648 	if (tp->srtt_us && tp->srtt_us < rtt)
5649 		rtt = tp->srtt_us;
5650 
5651 	delay = min_t(unsigned long,
5652 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5653 		      rtt * (NSEC_PER_USEC >> 3)/20);
5654 	sock_hold(sk);
5655 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5656 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5657 			       HRTIMER_MODE_REL_PINNED_SOFT);
5658 }
5659 
5660 static inline void tcp_ack_snd_check(struct sock *sk)
5661 {
5662 	if (!inet_csk_ack_scheduled(sk)) {
5663 		/* We sent a data segment already. */
5664 		return;
5665 	}
5666 	__tcp_ack_snd_check(sk, 1);
5667 }
5668 
5669 /*
5670  *	This routine is only called when we have urgent data
5671  *	signaled. Its the 'slow' part of tcp_urg. It could be
5672  *	moved inline now as tcp_urg is only called from one
5673  *	place. We handle URGent data wrong. We have to - as
5674  *	BSD still doesn't use the correction from RFC961.
5675  *	For 1003.1g we should support a new option TCP_STDURG to permit
5676  *	either form (or just set the sysctl tcp_stdurg).
5677  */
5678 
5679 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5680 {
5681 	struct tcp_sock *tp = tcp_sk(sk);
5682 	u32 ptr = ntohs(th->urg_ptr);
5683 
5684 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5685 		ptr--;
5686 	ptr += ntohl(th->seq);
5687 
5688 	/* Ignore urgent data that we've already seen and read. */
5689 	if (after(tp->copied_seq, ptr))
5690 		return;
5691 
5692 	/* Do not replay urg ptr.
5693 	 *
5694 	 * NOTE: interesting situation not covered by specs.
5695 	 * Misbehaving sender may send urg ptr, pointing to segment,
5696 	 * which we already have in ofo queue. We are not able to fetch
5697 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5698 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5699 	 * situations. But it is worth to think about possibility of some
5700 	 * DoSes using some hypothetical application level deadlock.
5701 	 */
5702 	if (before(ptr, tp->rcv_nxt))
5703 		return;
5704 
5705 	/* Do we already have a newer (or duplicate) urgent pointer? */
5706 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5707 		return;
5708 
5709 	/* Tell the world about our new urgent pointer. */
5710 	sk_send_sigurg(sk);
5711 
5712 	/* We may be adding urgent data when the last byte read was
5713 	 * urgent. To do this requires some care. We cannot just ignore
5714 	 * tp->copied_seq since we would read the last urgent byte again
5715 	 * as data, nor can we alter copied_seq until this data arrives
5716 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5717 	 *
5718 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5719 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5720 	 * and expect that both A and B disappear from stream. This is _wrong_.
5721 	 * Though this happens in BSD with high probability, this is occasional.
5722 	 * Any application relying on this is buggy. Note also, that fix "works"
5723 	 * only in this artificial test. Insert some normal data between A and B and we will
5724 	 * decline of BSD again. Verdict: it is better to remove to trap
5725 	 * buggy users.
5726 	 */
5727 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5728 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5729 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5730 		tp->copied_seq++;
5731 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5732 			__skb_unlink(skb, &sk->sk_receive_queue);
5733 			__kfree_skb(skb);
5734 		}
5735 	}
5736 
5737 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5738 	WRITE_ONCE(tp->urg_seq, ptr);
5739 
5740 	/* Disable header prediction. */
5741 	tp->pred_flags = 0;
5742 }
5743 
5744 /* This is the 'fast' part of urgent handling. */
5745 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5746 {
5747 	struct tcp_sock *tp = tcp_sk(sk);
5748 
5749 	/* Check if we get a new urgent pointer - normally not. */
5750 	if (unlikely(th->urg))
5751 		tcp_check_urg(sk, th);
5752 
5753 	/* Do we wait for any urgent data? - normally not... */
5754 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5755 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5756 			  th->syn;
5757 
5758 		/* Is the urgent pointer pointing into this packet? */
5759 		if (ptr < skb->len) {
5760 			u8 tmp;
5761 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5762 				BUG();
5763 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5764 			if (!sock_flag(sk, SOCK_DEAD))
5765 				sk->sk_data_ready(sk);
5766 		}
5767 	}
5768 }
5769 
5770 /* Accept RST for rcv_nxt - 1 after a FIN.
5771  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5772  * FIN is sent followed by a RST packet. The RST is sent with the same
5773  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5774  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5775  * ACKs on the closed socket. In addition middleboxes can drop either the
5776  * challenge ACK or a subsequent RST.
5777  */
5778 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5779 {
5780 	const struct tcp_sock *tp = tcp_sk(sk);
5781 
5782 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5783 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5784 					       TCPF_CLOSING));
5785 }
5786 
5787 /* Does PAWS and seqno based validation of an incoming segment, flags will
5788  * play significant role here.
5789  */
5790 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5791 				  const struct tcphdr *th, int syn_inerr)
5792 {
5793 	struct tcp_sock *tp = tcp_sk(sk);
5794 	SKB_DR(reason);
5795 
5796 	/* RFC1323: H1. Apply PAWS check first. */
5797 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5798 	    tp->rx_opt.saw_tstamp &&
5799 	    tcp_paws_discard(sk, skb)) {
5800 		if (!th->rst) {
5801 			if (unlikely(th->syn))
5802 				goto syn_challenge;
5803 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5804 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5805 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5806 						  &tp->last_oow_ack_time))
5807 				tcp_send_dupack(sk, skb);
5808 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5809 			goto discard;
5810 		}
5811 		/* Reset is accepted even if it did not pass PAWS. */
5812 	}
5813 
5814 	/* Step 1: check sequence number */
5815 	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5816 	if (reason) {
5817 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5818 		 * (RST) segments are validated by checking their SEQ-fields."
5819 		 * And page 69: "If an incoming segment is not acceptable,
5820 		 * an acknowledgment should be sent in reply (unless the RST
5821 		 * bit is set, if so drop the segment and return)".
5822 		 */
5823 		if (!th->rst) {
5824 			if (th->syn)
5825 				goto syn_challenge;
5826 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5827 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5828 						  &tp->last_oow_ack_time))
5829 				tcp_send_dupack(sk, skb);
5830 		} else if (tcp_reset_check(sk, skb)) {
5831 			goto reset;
5832 		}
5833 		goto discard;
5834 	}
5835 
5836 	/* Step 2: check RST bit */
5837 	if (th->rst) {
5838 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5839 		 * FIN and SACK too if available):
5840 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5841 		 * the right-most SACK block,
5842 		 * then
5843 		 *     RESET the connection
5844 		 * else
5845 		 *     Send a challenge ACK
5846 		 */
5847 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5848 		    tcp_reset_check(sk, skb))
5849 			goto reset;
5850 
5851 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5852 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5853 			int max_sack = sp[0].end_seq;
5854 			int this_sack;
5855 
5856 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5857 			     ++this_sack) {
5858 				max_sack = after(sp[this_sack].end_seq,
5859 						 max_sack) ?
5860 					sp[this_sack].end_seq : max_sack;
5861 			}
5862 
5863 			if (TCP_SKB_CB(skb)->seq == max_sack)
5864 				goto reset;
5865 		}
5866 
5867 		/* Disable TFO if RST is out-of-order
5868 		 * and no data has been received
5869 		 * for current active TFO socket
5870 		 */
5871 		if (tp->syn_fastopen && !tp->data_segs_in &&
5872 		    sk->sk_state == TCP_ESTABLISHED)
5873 			tcp_fastopen_active_disable(sk);
5874 		tcp_send_challenge_ack(sk);
5875 		SKB_DR_SET(reason, TCP_RESET);
5876 		goto discard;
5877 	}
5878 
5879 	/* step 3: check security and precedence [ignored] */
5880 
5881 	/* step 4: Check for a SYN
5882 	 * RFC 5961 4.2 : Send a challenge ack
5883 	 */
5884 	if (th->syn) {
5885 syn_challenge:
5886 		if (syn_inerr)
5887 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5888 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5889 		tcp_send_challenge_ack(sk);
5890 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5891 		goto discard;
5892 	}
5893 
5894 	bpf_skops_parse_hdr(sk, skb);
5895 
5896 	return true;
5897 
5898 discard:
5899 	tcp_drop_reason(sk, skb, reason);
5900 	return false;
5901 
5902 reset:
5903 	tcp_reset(sk, skb);
5904 	__kfree_skb(skb);
5905 	return false;
5906 }
5907 
5908 /*
5909  *	TCP receive function for the ESTABLISHED state.
5910  *
5911  *	It is split into a fast path and a slow path. The fast path is
5912  * 	disabled when:
5913  *	- A zero window was announced from us - zero window probing
5914  *        is only handled properly in the slow path.
5915  *	- Out of order segments arrived.
5916  *	- Urgent data is expected.
5917  *	- There is no buffer space left
5918  *	- Unexpected TCP flags/window values/header lengths are received
5919  *	  (detected by checking the TCP header against pred_flags)
5920  *	- Data is sent in both directions. Fast path only supports pure senders
5921  *	  or pure receivers (this means either the sequence number or the ack
5922  *	  value must stay constant)
5923  *	- Unexpected TCP option.
5924  *
5925  *	When these conditions are not satisfied it drops into a standard
5926  *	receive procedure patterned after RFC793 to handle all cases.
5927  *	The first three cases are guaranteed by proper pred_flags setting,
5928  *	the rest is checked inline. Fast processing is turned on in
5929  *	tcp_data_queue when everything is OK.
5930  */
5931 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5932 {
5933 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5934 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5935 	struct tcp_sock *tp = tcp_sk(sk);
5936 	unsigned int len = skb->len;
5937 
5938 	/* TCP congestion window tracking */
5939 	trace_tcp_probe(sk, skb);
5940 
5941 	tcp_mstamp_refresh(tp);
5942 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5943 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5944 	/*
5945 	 *	Header prediction.
5946 	 *	The code loosely follows the one in the famous
5947 	 *	"30 instruction TCP receive" Van Jacobson mail.
5948 	 *
5949 	 *	Van's trick is to deposit buffers into socket queue
5950 	 *	on a device interrupt, to call tcp_recv function
5951 	 *	on the receive process context and checksum and copy
5952 	 *	the buffer to user space. smart...
5953 	 *
5954 	 *	Our current scheme is not silly either but we take the
5955 	 *	extra cost of the net_bh soft interrupt processing...
5956 	 *	We do checksum and copy also but from device to kernel.
5957 	 */
5958 
5959 	tp->rx_opt.saw_tstamp = 0;
5960 
5961 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5962 	 *	if header_prediction is to be made
5963 	 *	'S' will always be tp->tcp_header_len >> 2
5964 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5965 	 *  turn it off	(when there are holes in the receive
5966 	 *	 space for instance)
5967 	 *	PSH flag is ignored.
5968 	 */
5969 
5970 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5971 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5972 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5973 		int tcp_header_len = tp->tcp_header_len;
5974 
5975 		/* Timestamp header prediction: tcp_header_len
5976 		 * is automatically equal to th->doff*4 due to pred_flags
5977 		 * match.
5978 		 */
5979 
5980 		/* Check timestamp */
5981 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5982 			/* No? Slow path! */
5983 			if (!tcp_parse_aligned_timestamp(tp, th))
5984 				goto slow_path;
5985 
5986 			/* If PAWS failed, check it more carefully in slow path */
5987 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5988 				goto slow_path;
5989 
5990 			/* DO NOT update ts_recent here, if checksum fails
5991 			 * and timestamp was corrupted part, it will result
5992 			 * in a hung connection since we will drop all
5993 			 * future packets due to the PAWS test.
5994 			 */
5995 		}
5996 
5997 		if (len <= tcp_header_len) {
5998 			/* Bulk data transfer: sender */
5999 			if (len == tcp_header_len) {
6000 				/* Predicted packet is in window by definition.
6001 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6002 				 * Hence, check seq<=rcv_wup reduces to:
6003 				 */
6004 				if (tcp_header_len ==
6005 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6006 				    tp->rcv_nxt == tp->rcv_wup)
6007 					tcp_store_ts_recent(tp);
6008 
6009 				/* We know that such packets are checksummed
6010 				 * on entry.
6011 				 */
6012 				tcp_ack(sk, skb, 0);
6013 				__kfree_skb(skb);
6014 				tcp_data_snd_check(sk);
6015 				/* When receiving pure ack in fast path, update
6016 				 * last ts ecr directly instead of calling
6017 				 * tcp_rcv_rtt_measure_ts()
6018 				 */
6019 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6020 				return;
6021 			} else { /* Header too small */
6022 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6023 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6024 				goto discard;
6025 			}
6026 		} else {
6027 			int eaten = 0;
6028 			bool fragstolen = false;
6029 
6030 			if (tcp_checksum_complete(skb))
6031 				goto csum_error;
6032 
6033 			if ((int)skb->truesize > sk->sk_forward_alloc)
6034 				goto step5;
6035 
6036 			/* Predicted packet is in window by definition.
6037 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6038 			 * Hence, check seq<=rcv_wup reduces to:
6039 			 */
6040 			if (tcp_header_len ==
6041 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6042 			    tp->rcv_nxt == tp->rcv_wup)
6043 				tcp_store_ts_recent(tp);
6044 
6045 			tcp_rcv_rtt_measure_ts(sk, skb);
6046 
6047 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6048 
6049 			/* Bulk data transfer: receiver */
6050 			skb_dst_drop(skb);
6051 			__skb_pull(skb, tcp_header_len);
6052 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6053 
6054 			tcp_event_data_recv(sk, skb);
6055 
6056 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6057 				/* Well, only one small jumplet in fast path... */
6058 				tcp_ack(sk, skb, FLAG_DATA);
6059 				tcp_data_snd_check(sk);
6060 				if (!inet_csk_ack_scheduled(sk))
6061 					goto no_ack;
6062 			} else {
6063 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6064 			}
6065 
6066 			__tcp_ack_snd_check(sk, 0);
6067 no_ack:
6068 			if (eaten)
6069 				kfree_skb_partial(skb, fragstolen);
6070 			tcp_data_ready(sk);
6071 			return;
6072 		}
6073 	}
6074 
6075 slow_path:
6076 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6077 		goto csum_error;
6078 
6079 	if (!th->ack && !th->rst && !th->syn) {
6080 		reason = SKB_DROP_REASON_TCP_FLAGS;
6081 		goto discard;
6082 	}
6083 
6084 	/*
6085 	 *	Standard slow path.
6086 	 */
6087 
6088 	if (!tcp_validate_incoming(sk, skb, th, 1))
6089 		return;
6090 
6091 step5:
6092 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6093 	if ((int)reason < 0) {
6094 		reason = -reason;
6095 		goto discard;
6096 	}
6097 	tcp_rcv_rtt_measure_ts(sk, skb);
6098 
6099 	/* Process urgent data. */
6100 	tcp_urg(sk, skb, th);
6101 
6102 	/* step 7: process the segment text */
6103 	tcp_data_queue(sk, skb);
6104 
6105 	tcp_data_snd_check(sk);
6106 	tcp_ack_snd_check(sk);
6107 	return;
6108 
6109 csum_error:
6110 	reason = SKB_DROP_REASON_TCP_CSUM;
6111 	trace_tcp_bad_csum(skb);
6112 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6113 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6114 
6115 discard:
6116 	tcp_drop_reason(sk, skb, reason);
6117 }
6118 EXPORT_SYMBOL(tcp_rcv_established);
6119 
6120 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6121 {
6122 	struct inet_connection_sock *icsk = inet_csk(sk);
6123 	struct tcp_sock *tp = tcp_sk(sk);
6124 
6125 	tcp_mtup_init(sk);
6126 	icsk->icsk_af_ops->rebuild_header(sk);
6127 	tcp_init_metrics(sk);
6128 
6129 	/* Initialize the congestion window to start the transfer.
6130 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6131 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6132 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6133 	 * retransmission has occurred.
6134 	 */
6135 	if (tp->total_retrans > 1 && tp->undo_marker)
6136 		tcp_snd_cwnd_set(tp, 1);
6137 	else
6138 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6139 	tp->snd_cwnd_stamp = tcp_jiffies32;
6140 
6141 	bpf_skops_established(sk, bpf_op, skb);
6142 	/* Initialize congestion control unless BPF initialized it already: */
6143 	if (!icsk->icsk_ca_initialized)
6144 		tcp_init_congestion_control(sk);
6145 	tcp_init_buffer_space(sk);
6146 }
6147 
6148 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6149 {
6150 	struct tcp_sock *tp = tcp_sk(sk);
6151 	struct inet_connection_sock *icsk = inet_csk(sk);
6152 
6153 	tcp_set_state(sk, TCP_ESTABLISHED);
6154 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6155 
6156 	if (skb) {
6157 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6158 		security_inet_conn_established(sk, skb);
6159 		sk_mark_napi_id(sk, skb);
6160 	}
6161 
6162 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6163 
6164 	/* Prevent spurious tcp_cwnd_restart() on first data
6165 	 * packet.
6166 	 */
6167 	tp->lsndtime = tcp_jiffies32;
6168 
6169 	if (sock_flag(sk, SOCK_KEEPOPEN))
6170 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6171 
6172 	if (!tp->rx_opt.snd_wscale)
6173 		__tcp_fast_path_on(tp, tp->snd_wnd);
6174 	else
6175 		tp->pred_flags = 0;
6176 }
6177 
6178 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6179 				    struct tcp_fastopen_cookie *cookie)
6180 {
6181 	struct tcp_sock *tp = tcp_sk(sk);
6182 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6183 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6184 	bool syn_drop = false;
6185 
6186 	if (mss == tp->rx_opt.user_mss) {
6187 		struct tcp_options_received opt;
6188 
6189 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6190 		tcp_clear_options(&opt);
6191 		opt.user_mss = opt.mss_clamp = 0;
6192 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6193 		mss = opt.mss_clamp;
6194 	}
6195 
6196 	if (!tp->syn_fastopen) {
6197 		/* Ignore an unsolicited cookie */
6198 		cookie->len = -1;
6199 	} else if (tp->total_retrans) {
6200 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6201 		 * acknowledges data. Presumably the remote received only
6202 		 * the retransmitted (regular) SYNs: either the original
6203 		 * SYN-data or the corresponding SYN-ACK was dropped.
6204 		 */
6205 		syn_drop = (cookie->len < 0 && data);
6206 	} else if (cookie->len < 0 && !tp->syn_data) {
6207 		/* We requested a cookie but didn't get it. If we did not use
6208 		 * the (old) exp opt format then try so next time (try_exp=1).
6209 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6210 		 */
6211 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6212 	}
6213 
6214 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6215 
6216 	if (data) { /* Retransmit unacked data in SYN */
6217 		if (tp->total_retrans)
6218 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6219 		else
6220 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6221 		skb_rbtree_walk_from(data)
6222 			 tcp_mark_skb_lost(sk, data);
6223 		tcp_xmit_retransmit_queue(sk);
6224 		NET_INC_STATS(sock_net(sk),
6225 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6226 		return true;
6227 	}
6228 	tp->syn_data_acked = tp->syn_data;
6229 	if (tp->syn_data_acked) {
6230 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6231 		/* SYN-data is counted as two separate packets in tcp_ack() */
6232 		if (tp->delivered > 1)
6233 			--tp->delivered;
6234 	}
6235 
6236 	tcp_fastopen_add_skb(sk, synack);
6237 
6238 	return false;
6239 }
6240 
6241 static void smc_check_reset_syn(struct tcp_sock *tp)
6242 {
6243 #if IS_ENABLED(CONFIG_SMC)
6244 	if (static_branch_unlikely(&tcp_have_smc)) {
6245 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6246 			tp->syn_smc = 0;
6247 	}
6248 #endif
6249 }
6250 
6251 static void tcp_try_undo_spurious_syn(struct sock *sk)
6252 {
6253 	struct tcp_sock *tp = tcp_sk(sk);
6254 	u32 syn_stamp;
6255 
6256 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6257 	 * spurious if the ACK's timestamp option echo value matches the
6258 	 * original SYN timestamp.
6259 	 */
6260 	syn_stamp = tp->retrans_stamp;
6261 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6262 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6263 		tp->undo_marker = 0;
6264 }
6265 
6266 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6267 					 const struct tcphdr *th)
6268 {
6269 	struct inet_connection_sock *icsk = inet_csk(sk);
6270 	struct tcp_sock *tp = tcp_sk(sk);
6271 	struct tcp_fastopen_cookie foc = { .len = -1 };
6272 	int saved_clamp = tp->rx_opt.mss_clamp;
6273 	bool fastopen_fail;
6274 	SKB_DR(reason);
6275 
6276 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6277 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6278 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6279 
6280 	if (th->ack) {
6281 		/* rfc793:
6282 		 * "If the state is SYN-SENT then
6283 		 *    first check the ACK bit
6284 		 *      If the ACK bit is set
6285 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6286 		 *        a reset (unless the RST bit is set, if so drop
6287 		 *        the segment and return)"
6288 		 */
6289 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6290 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6291 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6292 			if (icsk->icsk_retransmits == 0)
6293 				inet_csk_reset_xmit_timer(sk,
6294 						ICSK_TIME_RETRANS,
6295 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6296 			goto reset_and_undo;
6297 		}
6298 
6299 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6300 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6301 			     tcp_time_stamp_ts(tp))) {
6302 			NET_INC_STATS(sock_net(sk),
6303 					LINUX_MIB_PAWSACTIVEREJECTED);
6304 			goto reset_and_undo;
6305 		}
6306 
6307 		/* Now ACK is acceptable.
6308 		 *
6309 		 * "If the RST bit is set
6310 		 *    If the ACK was acceptable then signal the user "error:
6311 		 *    connection reset", drop the segment, enter CLOSED state,
6312 		 *    delete TCB, and return."
6313 		 */
6314 
6315 		if (th->rst) {
6316 			tcp_reset(sk, skb);
6317 consume:
6318 			__kfree_skb(skb);
6319 			return 0;
6320 		}
6321 
6322 		/* rfc793:
6323 		 *   "fifth, if neither of the SYN or RST bits is set then
6324 		 *    drop the segment and return."
6325 		 *
6326 		 *    See note below!
6327 		 *                                        --ANK(990513)
6328 		 */
6329 		if (!th->syn) {
6330 			SKB_DR_SET(reason, TCP_FLAGS);
6331 			goto discard_and_undo;
6332 		}
6333 		/* rfc793:
6334 		 *   "If the SYN bit is on ...
6335 		 *    are acceptable then ...
6336 		 *    (our SYN has been ACKed), change the connection
6337 		 *    state to ESTABLISHED..."
6338 		 */
6339 
6340 		tcp_ecn_rcv_synack(tp, th);
6341 
6342 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6343 		tcp_try_undo_spurious_syn(sk);
6344 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6345 
6346 		/* Ok.. it's good. Set up sequence numbers and
6347 		 * move to established.
6348 		 */
6349 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6350 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6351 
6352 		/* RFC1323: The window in SYN & SYN/ACK segments is
6353 		 * never scaled.
6354 		 */
6355 		tp->snd_wnd = ntohs(th->window);
6356 
6357 		if (!tp->rx_opt.wscale_ok) {
6358 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6359 			tp->window_clamp = min(tp->window_clamp, 65535U);
6360 		}
6361 
6362 		if (tp->rx_opt.saw_tstamp) {
6363 			tp->rx_opt.tstamp_ok	   = 1;
6364 			tp->tcp_header_len =
6365 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6366 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6367 			tcp_store_ts_recent(tp);
6368 		} else {
6369 			tp->tcp_header_len = sizeof(struct tcphdr);
6370 		}
6371 
6372 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6373 		tcp_initialize_rcv_mss(sk);
6374 
6375 		/* Remember, tcp_poll() does not lock socket!
6376 		 * Change state from SYN-SENT only after copied_seq
6377 		 * is initialized. */
6378 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6379 
6380 		smc_check_reset_syn(tp);
6381 
6382 		smp_mb();
6383 
6384 		tcp_finish_connect(sk, skb);
6385 
6386 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6387 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6388 
6389 		if (!sock_flag(sk, SOCK_DEAD)) {
6390 			sk->sk_state_change(sk);
6391 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6392 		}
6393 		if (fastopen_fail)
6394 			return -1;
6395 		if (sk->sk_write_pending ||
6396 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6397 		    inet_csk_in_pingpong_mode(sk)) {
6398 			/* Save one ACK. Data will be ready after
6399 			 * several ticks, if write_pending is set.
6400 			 *
6401 			 * It may be deleted, but with this feature tcpdumps
6402 			 * look so _wonderfully_ clever, that I was not able
6403 			 * to stand against the temptation 8)     --ANK
6404 			 */
6405 			inet_csk_schedule_ack(sk);
6406 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6407 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6408 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6409 			goto consume;
6410 		}
6411 		tcp_send_ack(sk);
6412 		return -1;
6413 	}
6414 
6415 	/* No ACK in the segment */
6416 
6417 	if (th->rst) {
6418 		/* rfc793:
6419 		 * "If the RST bit is set
6420 		 *
6421 		 *      Otherwise (no ACK) drop the segment and return."
6422 		 */
6423 		SKB_DR_SET(reason, TCP_RESET);
6424 		goto discard_and_undo;
6425 	}
6426 
6427 	/* PAWS check. */
6428 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6429 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6430 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6431 		goto discard_and_undo;
6432 	}
6433 	if (th->syn) {
6434 		/* We see SYN without ACK. It is attempt of
6435 		 * simultaneous connect with crossed SYNs.
6436 		 * Particularly, it can be connect to self.
6437 		 */
6438 		tcp_set_state(sk, TCP_SYN_RECV);
6439 
6440 		if (tp->rx_opt.saw_tstamp) {
6441 			tp->rx_opt.tstamp_ok = 1;
6442 			tcp_store_ts_recent(tp);
6443 			tp->tcp_header_len =
6444 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6445 		} else {
6446 			tp->tcp_header_len = sizeof(struct tcphdr);
6447 		}
6448 
6449 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6450 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6451 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6452 
6453 		/* RFC1323: The window in SYN & SYN/ACK segments is
6454 		 * never scaled.
6455 		 */
6456 		tp->snd_wnd    = ntohs(th->window);
6457 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6458 		tp->max_window = tp->snd_wnd;
6459 
6460 		tcp_ecn_rcv_syn(tp, th);
6461 
6462 		tcp_mtup_init(sk);
6463 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6464 		tcp_initialize_rcv_mss(sk);
6465 
6466 		tcp_send_synack(sk);
6467 #if 0
6468 		/* Note, we could accept data and URG from this segment.
6469 		 * There are no obstacles to make this (except that we must
6470 		 * either change tcp_recvmsg() to prevent it from returning data
6471 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6472 		 *
6473 		 * However, if we ignore data in ACKless segments sometimes,
6474 		 * we have no reasons to accept it sometimes.
6475 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6476 		 * is not flawless. So, discard packet for sanity.
6477 		 * Uncomment this return to process the data.
6478 		 */
6479 		return -1;
6480 #else
6481 		goto consume;
6482 #endif
6483 	}
6484 	/* "fifth, if neither of the SYN or RST bits is set then
6485 	 * drop the segment and return."
6486 	 */
6487 
6488 discard_and_undo:
6489 	tcp_clear_options(&tp->rx_opt);
6490 	tp->rx_opt.mss_clamp = saved_clamp;
6491 	tcp_drop_reason(sk, skb, reason);
6492 	return 0;
6493 
6494 reset_and_undo:
6495 	tcp_clear_options(&tp->rx_opt);
6496 	tp->rx_opt.mss_clamp = saved_clamp;
6497 	return 1;
6498 }
6499 
6500 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6501 {
6502 	struct tcp_sock *tp = tcp_sk(sk);
6503 	struct request_sock *req;
6504 
6505 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6506 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6507 	 */
6508 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6509 		tcp_try_undo_recovery(sk);
6510 
6511 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6512 	tcp_update_rto_time(tp);
6513 	tp->retrans_stamp = 0;
6514 	inet_csk(sk)->icsk_retransmits = 0;
6515 
6516 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6517 	 * we no longer need req so release it.
6518 	 */
6519 	req = rcu_dereference_protected(tp->fastopen_rsk,
6520 					lockdep_sock_is_held(sk));
6521 	reqsk_fastopen_remove(sk, req, false);
6522 
6523 	/* Re-arm the timer because data may have been sent out.
6524 	 * This is similar to the regular data transmission case
6525 	 * when new data has just been ack'ed.
6526 	 *
6527 	 * (TFO) - we could try to be more aggressive and
6528 	 * retransmitting any data sooner based on when they
6529 	 * are sent out.
6530 	 */
6531 	tcp_rearm_rto(sk);
6532 }
6533 
6534 /*
6535  *	This function implements the receiving procedure of RFC 793 for
6536  *	all states except ESTABLISHED and TIME_WAIT.
6537  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6538  *	address independent.
6539  */
6540 
6541 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6542 {
6543 	struct tcp_sock *tp = tcp_sk(sk);
6544 	struct inet_connection_sock *icsk = inet_csk(sk);
6545 	const struct tcphdr *th = tcp_hdr(skb);
6546 	struct request_sock *req;
6547 	int queued = 0;
6548 	bool acceptable;
6549 	SKB_DR(reason);
6550 
6551 	switch (sk->sk_state) {
6552 	case TCP_CLOSE:
6553 		SKB_DR_SET(reason, TCP_CLOSE);
6554 		goto discard;
6555 
6556 	case TCP_LISTEN:
6557 		if (th->ack)
6558 			return 1;
6559 
6560 		if (th->rst) {
6561 			SKB_DR_SET(reason, TCP_RESET);
6562 			goto discard;
6563 		}
6564 		if (th->syn) {
6565 			if (th->fin) {
6566 				SKB_DR_SET(reason, TCP_FLAGS);
6567 				goto discard;
6568 			}
6569 			/* It is possible that we process SYN packets from backlog,
6570 			 * so we need to make sure to disable BH and RCU right there.
6571 			 */
6572 			rcu_read_lock();
6573 			local_bh_disable();
6574 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6575 			local_bh_enable();
6576 			rcu_read_unlock();
6577 
6578 			if (!acceptable)
6579 				return 1;
6580 			consume_skb(skb);
6581 			return 0;
6582 		}
6583 		SKB_DR_SET(reason, TCP_FLAGS);
6584 		goto discard;
6585 
6586 	case TCP_SYN_SENT:
6587 		tp->rx_opt.saw_tstamp = 0;
6588 		tcp_mstamp_refresh(tp);
6589 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6590 		if (queued >= 0)
6591 			return queued;
6592 
6593 		/* Do step6 onward by hand. */
6594 		tcp_urg(sk, skb, th);
6595 		__kfree_skb(skb);
6596 		tcp_data_snd_check(sk);
6597 		return 0;
6598 	}
6599 
6600 	tcp_mstamp_refresh(tp);
6601 	tp->rx_opt.saw_tstamp = 0;
6602 	req = rcu_dereference_protected(tp->fastopen_rsk,
6603 					lockdep_sock_is_held(sk));
6604 	if (req) {
6605 		bool req_stolen;
6606 
6607 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6608 		    sk->sk_state != TCP_FIN_WAIT1);
6609 
6610 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6611 			SKB_DR_SET(reason, TCP_FASTOPEN);
6612 			goto discard;
6613 		}
6614 	}
6615 
6616 	if (!th->ack && !th->rst && !th->syn) {
6617 		SKB_DR_SET(reason, TCP_FLAGS);
6618 		goto discard;
6619 	}
6620 	if (!tcp_validate_incoming(sk, skb, th, 0))
6621 		return 0;
6622 
6623 	/* step 5: check the ACK field */
6624 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6625 				      FLAG_UPDATE_TS_RECENT |
6626 				      FLAG_NO_CHALLENGE_ACK) > 0;
6627 
6628 	if (!acceptable) {
6629 		if (sk->sk_state == TCP_SYN_RECV)
6630 			return 1;	/* send one RST */
6631 		tcp_send_challenge_ack(sk);
6632 		SKB_DR_SET(reason, TCP_OLD_ACK);
6633 		goto discard;
6634 	}
6635 	switch (sk->sk_state) {
6636 	case TCP_SYN_RECV:
6637 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6638 		if (!tp->srtt_us)
6639 			tcp_synack_rtt_meas(sk, req);
6640 
6641 		if (req) {
6642 			tcp_rcv_synrecv_state_fastopen(sk);
6643 		} else {
6644 			tcp_try_undo_spurious_syn(sk);
6645 			tp->retrans_stamp = 0;
6646 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6647 					  skb);
6648 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6649 		}
6650 		smp_mb();
6651 		tcp_set_state(sk, TCP_ESTABLISHED);
6652 		sk->sk_state_change(sk);
6653 
6654 		/* Note, that this wakeup is only for marginal crossed SYN case.
6655 		 * Passively open sockets are not waked up, because
6656 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6657 		 */
6658 		if (sk->sk_socket)
6659 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6660 
6661 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6662 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6663 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6664 
6665 		if (tp->rx_opt.tstamp_ok)
6666 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6667 
6668 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6669 			tcp_update_pacing_rate(sk);
6670 
6671 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6672 		tp->lsndtime = tcp_jiffies32;
6673 
6674 		tcp_initialize_rcv_mss(sk);
6675 		tcp_fast_path_on(tp);
6676 		break;
6677 
6678 	case TCP_FIN_WAIT1: {
6679 		int tmo;
6680 
6681 		if (req)
6682 			tcp_rcv_synrecv_state_fastopen(sk);
6683 
6684 		if (tp->snd_una != tp->write_seq)
6685 			break;
6686 
6687 		tcp_set_state(sk, TCP_FIN_WAIT2);
6688 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6689 
6690 		sk_dst_confirm(sk);
6691 
6692 		if (!sock_flag(sk, SOCK_DEAD)) {
6693 			/* Wake up lingering close() */
6694 			sk->sk_state_change(sk);
6695 			break;
6696 		}
6697 
6698 		if (READ_ONCE(tp->linger2) < 0) {
6699 			tcp_done(sk);
6700 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6701 			return 1;
6702 		}
6703 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6704 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6705 			/* Receive out of order FIN after close() */
6706 			if (tp->syn_fastopen && th->fin)
6707 				tcp_fastopen_active_disable(sk);
6708 			tcp_done(sk);
6709 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6710 			return 1;
6711 		}
6712 
6713 		tmo = tcp_fin_time(sk);
6714 		if (tmo > TCP_TIMEWAIT_LEN) {
6715 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6716 		} else if (th->fin || sock_owned_by_user(sk)) {
6717 			/* Bad case. We could lose such FIN otherwise.
6718 			 * It is not a big problem, but it looks confusing
6719 			 * and not so rare event. We still can lose it now,
6720 			 * if it spins in bh_lock_sock(), but it is really
6721 			 * marginal case.
6722 			 */
6723 			inet_csk_reset_keepalive_timer(sk, tmo);
6724 		} else {
6725 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6726 			goto consume;
6727 		}
6728 		break;
6729 	}
6730 
6731 	case TCP_CLOSING:
6732 		if (tp->snd_una == tp->write_seq) {
6733 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6734 			goto consume;
6735 		}
6736 		break;
6737 
6738 	case TCP_LAST_ACK:
6739 		if (tp->snd_una == tp->write_seq) {
6740 			tcp_update_metrics(sk);
6741 			tcp_done(sk);
6742 			goto consume;
6743 		}
6744 		break;
6745 	}
6746 
6747 	/* step 6: check the URG bit */
6748 	tcp_urg(sk, skb, th);
6749 
6750 	/* step 7: process the segment text */
6751 	switch (sk->sk_state) {
6752 	case TCP_CLOSE_WAIT:
6753 	case TCP_CLOSING:
6754 	case TCP_LAST_ACK:
6755 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6756 			/* If a subflow has been reset, the packet should not
6757 			 * continue to be processed, drop the packet.
6758 			 */
6759 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6760 				goto discard;
6761 			break;
6762 		}
6763 		fallthrough;
6764 	case TCP_FIN_WAIT1:
6765 	case TCP_FIN_WAIT2:
6766 		/* RFC 793 says to queue data in these states,
6767 		 * RFC 1122 says we MUST send a reset.
6768 		 * BSD 4.4 also does reset.
6769 		 */
6770 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6771 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6772 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6773 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6774 				tcp_reset(sk, skb);
6775 				return 1;
6776 			}
6777 		}
6778 		fallthrough;
6779 	case TCP_ESTABLISHED:
6780 		tcp_data_queue(sk, skb);
6781 		queued = 1;
6782 		break;
6783 	}
6784 
6785 	/* tcp_data could move socket to TIME-WAIT */
6786 	if (sk->sk_state != TCP_CLOSE) {
6787 		tcp_data_snd_check(sk);
6788 		tcp_ack_snd_check(sk);
6789 	}
6790 
6791 	if (!queued) {
6792 discard:
6793 		tcp_drop_reason(sk, skb, reason);
6794 	}
6795 	return 0;
6796 
6797 consume:
6798 	__kfree_skb(skb);
6799 	return 0;
6800 }
6801 EXPORT_SYMBOL(tcp_rcv_state_process);
6802 
6803 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6804 {
6805 	struct inet_request_sock *ireq = inet_rsk(req);
6806 
6807 	if (family == AF_INET)
6808 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6809 				    &ireq->ir_rmt_addr, port);
6810 #if IS_ENABLED(CONFIG_IPV6)
6811 	else if (family == AF_INET6)
6812 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6813 				    &ireq->ir_v6_rmt_addr, port);
6814 #endif
6815 }
6816 
6817 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6818  *
6819  * If we receive a SYN packet with these bits set, it means a
6820  * network is playing bad games with TOS bits. In order to
6821  * avoid possible false congestion notifications, we disable
6822  * TCP ECN negotiation.
6823  *
6824  * Exception: tcp_ca wants ECN. This is required for DCTCP
6825  * congestion control: Linux DCTCP asserts ECT on all packets,
6826  * including SYN, which is most optimal solution; however,
6827  * others, such as FreeBSD do not.
6828  *
6829  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6830  * set, indicating the use of a future TCP extension (such as AccECN). See
6831  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6832  * extensions.
6833  */
6834 static void tcp_ecn_create_request(struct request_sock *req,
6835 				   const struct sk_buff *skb,
6836 				   const struct sock *listen_sk,
6837 				   const struct dst_entry *dst)
6838 {
6839 	const struct tcphdr *th = tcp_hdr(skb);
6840 	const struct net *net = sock_net(listen_sk);
6841 	bool th_ecn = th->ece && th->cwr;
6842 	bool ect, ecn_ok;
6843 	u32 ecn_ok_dst;
6844 
6845 	if (!th_ecn)
6846 		return;
6847 
6848 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6849 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6850 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6851 
6852 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6853 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6854 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6855 		inet_rsk(req)->ecn_ok = 1;
6856 }
6857 
6858 static void tcp_openreq_init(struct request_sock *req,
6859 			     const struct tcp_options_received *rx_opt,
6860 			     struct sk_buff *skb, const struct sock *sk)
6861 {
6862 	struct inet_request_sock *ireq = inet_rsk(req);
6863 
6864 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6865 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6866 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6867 	tcp_rsk(req)->snt_synack = 0;
6868 	tcp_rsk(req)->last_oow_ack_time = 0;
6869 	req->mss = rx_opt->mss_clamp;
6870 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6871 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6872 	ireq->sack_ok = rx_opt->sack_ok;
6873 	ireq->snd_wscale = rx_opt->snd_wscale;
6874 	ireq->wscale_ok = rx_opt->wscale_ok;
6875 	ireq->acked = 0;
6876 	ireq->ecn_ok = 0;
6877 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6878 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6879 	ireq->ir_mark = inet_request_mark(sk, skb);
6880 #if IS_ENABLED(CONFIG_SMC)
6881 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6882 			tcp_sk(sk)->smc_hs_congested(sk));
6883 #endif
6884 }
6885 
6886 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6887 				      struct sock *sk_listener,
6888 				      bool attach_listener)
6889 {
6890 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6891 					       attach_listener);
6892 
6893 	if (req) {
6894 		struct inet_request_sock *ireq = inet_rsk(req);
6895 
6896 		ireq->ireq_opt = NULL;
6897 #if IS_ENABLED(CONFIG_IPV6)
6898 		ireq->pktopts = NULL;
6899 #endif
6900 		atomic64_set(&ireq->ir_cookie, 0);
6901 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6902 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6903 		ireq->ireq_family = sk_listener->sk_family;
6904 		req->timeout = TCP_TIMEOUT_INIT;
6905 	}
6906 
6907 	return req;
6908 }
6909 EXPORT_SYMBOL(inet_reqsk_alloc);
6910 
6911 /*
6912  * Return true if a syncookie should be sent
6913  */
6914 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6915 {
6916 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6917 	const char *msg = "Dropping request";
6918 	struct net *net = sock_net(sk);
6919 	bool want_cookie = false;
6920 	u8 syncookies;
6921 
6922 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6923 
6924 #ifdef CONFIG_SYN_COOKIES
6925 	if (syncookies) {
6926 		msg = "Sending cookies";
6927 		want_cookie = true;
6928 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6929 	} else
6930 #endif
6931 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6932 
6933 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
6934 	    xchg(&queue->synflood_warned, 1) == 0) {
6935 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
6936 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
6937 					proto, inet6_rcv_saddr(sk),
6938 					sk->sk_num, msg);
6939 		} else {
6940 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
6941 					proto, &sk->sk_rcv_saddr,
6942 					sk->sk_num, msg);
6943 		}
6944 	}
6945 
6946 	return want_cookie;
6947 }
6948 
6949 static void tcp_reqsk_record_syn(const struct sock *sk,
6950 				 struct request_sock *req,
6951 				 const struct sk_buff *skb)
6952 {
6953 	if (tcp_sk(sk)->save_syn) {
6954 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6955 		struct saved_syn *saved_syn;
6956 		u32 mac_hdrlen;
6957 		void *base;
6958 
6959 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6960 			base = skb_mac_header(skb);
6961 			mac_hdrlen = skb_mac_header_len(skb);
6962 			len += mac_hdrlen;
6963 		} else {
6964 			base = skb_network_header(skb);
6965 			mac_hdrlen = 0;
6966 		}
6967 
6968 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6969 				    GFP_ATOMIC);
6970 		if (saved_syn) {
6971 			saved_syn->mac_hdrlen = mac_hdrlen;
6972 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6973 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6974 			memcpy(saved_syn->data, base, len);
6975 			req->saved_syn = saved_syn;
6976 		}
6977 	}
6978 }
6979 
6980 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6981  * used for SYN cookie generation.
6982  */
6983 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6984 			  const struct tcp_request_sock_ops *af_ops,
6985 			  struct sock *sk, struct tcphdr *th)
6986 {
6987 	struct tcp_sock *tp = tcp_sk(sk);
6988 	u16 mss;
6989 
6990 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6991 	    !inet_csk_reqsk_queue_is_full(sk))
6992 		return 0;
6993 
6994 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6995 		return 0;
6996 
6997 	if (sk_acceptq_is_full(sk)) {
6998 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6999 		return 0;
7000 	}
7001 
7002 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7003 	if (!mss)
7004 		mss = af_ops->mss_clamp;
7005 
7006 	return mss;
7007 }
7008 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7009 
7010 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7011 		     const struct tcp_request_sock_ops *af_ops,
7012 		     struct sock *sk, struct sk_buff *skb)
7013 {
7014 	struct tcp_fastopen_cookie foc = { .len = -1 };
7015 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
7016 	struct tcp_options_received tmp_opt;
7017 	struct tcp_sock *tp = tcp_sk(sk);
7018 	struct net *net = sock_net(sk);
7019 	struct sock *fastopen_sk = NULL;
7020 	struct request_sock *req;
7021 	bool want_cookie = false;
7022 	struct dst_entry *dst;
7023 	struct flowi fl;
7024 	u8 syncookies;
7025 
7026 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7027 
7028 	/* TW buckets are converted to open requests without
7029 	 * limitations, they conserve resources and peer is
7030 	 * evidently real one.
7031 	 */
7032 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
7033 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
7034 		if (!want_cookie)
7035 			goto drop;
7036 	}
7037 
7038 	if (sk_acceptq_is_full(sk)) {
7039 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7040 		goto drop;
7041 	}
7042 
7043 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7044 	if (!req)
7045 		goto drop;
7046 
7047 	req->syncookie = want_cookie;
7048 	tcp_rsk(req)->af_specific = af_ops;
7049 	tcp_rsk(req)->ts_off = 0;
7050 	tcp_rsk(req)->req_usec_ts = -1;
7051 #if IS_ENABLED(CONFIG_MPTCP)
7052 	tcp_rsk(req)->is_mptcp = 0;
7053 #endif
7054 
7055 	tcp_clear_options(&tmp_opt);
7056 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7057 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7058 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7059 			  want_cookie ? NULL : &foc);
7060 
7061 	if (want_cookie && !tmp_opt.saw_tstamp)
7062 		tcp_clear_options(&tmp_opt);
7063 
7064 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7065 		tmp_opt.smc_ok = 0;
7066 
7067 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7068 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7069 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7070 
7071 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7072 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7073 
7074 	dst = af_ops->route_req(sk, skb, &fl, req);
7075 	if (!dst)
7076 		goto drop_and_free;
7077 
7078 	if (tmp_opt.tstamp_ok)
7079 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7080 
7081 	if (!want_cookie && !isn) {
7082 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7083 
7084 		/* Kill the following clause, if you dislike this way. */
7085 		if (!syncookies &&
7086 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7087 		     (max_syn_backlog >> 2)) &&
7088 		    !tcp_peer_is_proven(req, dst)) {
7089 			/* Without syncookies last quarter of
7090 			 * backlog is filled with destinations,
7091 			 * proven to be alive.
7092 			 * It means that we continue to communicate
7093 			 * to destinations, already remembered
7094 			 * to the moment of synflood.
7095 			 */
7096 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7097 				    rsk_ops->family);
7098 			goto drop_and_release;
7099 		}
7100 
7101 		isn = af_ops->init_seq(skb);
7102 	}
7103 
7104 	tcp_ecn_create_request(req, skb, sk, dst);
7105 
7106 	if (want_cookie) {
7107 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7108 		if (!tmp_opt.tstamp_ok)
7109 			inet_rsk(req)->ecn_ok = 0;
7110 	}
7111 
7112 	tcp_rsk(req)->snt_isn = isn;
7113 	tcp_rsk(req)->txhash = net_tx_rndhash();
7114 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7115 	tcp_openreq_init_rwin(req, sk, dst);
7116 	sk_rx_queue_set(req_to_sk(req), skb);
7117 	if (!want_cookie) {
7118 		tcp_reqsk_record_syn(sk, req, skb);
7119 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7120 	}
7121 	if (fastopen_sk) {
7122 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7123 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7124 		/* Add the child socket directly into the accept queue */
7125 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7126 			reqsk_fastopen_remove(fastopen_sk, req, false);
7127 			bh_unlock_sock(fastopen_sk);
7128 			sock_put(fastopen_sk);
7129 			goto drop_and_free;
7130 		}
7131 		sk->sk_data_ready(sk);
7132 		bh_unlock_sock(fastopen_sk);
7133 		sock_put(fastopen_sk);
7134 	} else {
7135 		tcp_rsk(req)->tfo_listener = false;
7136 		if (!want_cookie) {
7137 			req->timeout = tcp_timeout_init((struct sock *)req);
7138 			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7139 		}
7140 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7141 				    !want_cookie ? TCP_SYNACK_NORMAL :
7142 						   TCP_SYNACK_COOKIE,
7143 				    skb);
7144 		if (want_cookie) {
7145 			reqsk_free(req);
7146 			return 0;
7147 		}
7148 	}
7149 	reqsk_put(req);
7150 	return 0;
7151 
7152 drop_and_release:
7153 	dst_release(dst);
7154 drop_and_free:
7155 	__reqsk_free(req);
7156 drop:
7157 	tcp_listendrop(sk);
7158 	return 0;
7159 }
7160 EXPORT_SYMBOL(tcp_conn_request);
7161