1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <net/dst.h> 72 #include <net/tcp.h> 73 #include <net/inet_common.h> 74 #include <linux/ipsec.h> 75 #include <asm/unaligned.h> 76 #include <net/netdma.h> 77 78 int sysctl_tcp_timestamps __read_mostly = 1; 79 int sysctl_tcp_window_scaling __read_mostly = 1; 80 int sysctl_tcp_sack __read_mostly = 1; 81 int sysctl_tcp_fack __read_mostly = 1; 82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 83 EXPORT_SYMBOL(sysctl_tcp_reordering); 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 /* rfc5961 challenge ack rate limiting */ 90 int sysctl_tcp_challenge_ack_limit = 100; 91 92 int sysctl_tcp_stdurg __read_mostly; 93 int sysctl_tcp_rfc1337 __read_mostly; 94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 95 int sysctl_tcp_frto __read_mostly = 2; 96 int sysctl_tcp_frto_response __read_mostly; 97 98 int sysctl_tcp_thin_dupack __read_mostly; 99 100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 101 int sysctl_tcp_early_retrans __read_mostly = 2; 102 103 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 104 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 105 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 106 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 107 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 108 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 109 #define FLAG_ECE 0x40 /* ECE in this ACK */ 110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 111 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 114 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 115 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 116 117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 121 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 122 123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 125 126 /* Adapt the MSS value used to make delayed ack decision to the 127 * real world. 128 */ 129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 130 { 131 struct inet_connection_sock *icsk = inet_csk(sk); 132 const unsigned int lss = icsk->icsk_ack.last_seg_size; 133 unsigned int len; 134 135 icsk->icsk_ack.last_seg_size = 0; 136 137 /* skb->len may jitter because of SACKs, even if peer 138 * sends good full-sized frames. 139 */ 140 len = skb_shinfo(skb)->gso_size ? : skb->len; 141 if (len >= icsk->icsk_ack.rcv_mss) { 142 icsk->icsk_ack.rcv_mss = len; 143 } else { 144 /* Otherwise, we make more careful check taking into account, 145 * that SACKs block is variable. 146 * 147 * "len" is invariant segment length, including TCP header. 148 */ 149 len += skb->data - skb_transport_header(skb); 150 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 151 /* If PSH is not set, packet should be 152 * full sized, provided peer TCP is not badly broken. 153 * This observation (if it is correct 8)) allows 154 * to handle super-low mtu links fairly. 155 */ 156 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 157 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 158 /* Subtract also invariant (if peer is RFC compliant), 159 * tcp header plus fixed timestamp option length. 160 * Resulting "len" is MSS free of SACK jitter. 161 */ 162 len -= tcp_sk(sk)->tcp_header_len; 163 icsk->icsk_ack.last_seg_size = len; 164 if (len == lss) { 165 icsk->icsk_ack.rcv_mss = len; 166 return; 167 } 168 } 169 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 172 } 173 } 174 175 static void tcp_incr_quickack(struct sock *sk) 176 { 177 struct inet_connection_sock *icsk = inet_csk(sk); 178 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 179 180 if (quickacks == 0) 181 quickacks = 2; 182 if (quickacks > icsk->icsk_ack.quick) 183 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 184 } 185 186 static void tcp_enter_quickack_mode(struct sock *sk) 187 { 188 struct inet_connection_sock *icsk = inet_csk(sk); 189 tcp_incr_quickack(sk); 190 icsk->icsk_ack.pingpong = 0; 191 icsk->icsk_ack.ato = TCP_ATO_MIN; 192 } 193 194 /* Send ACKs quickly, if "quick" count is not exhausted 195 * and the session is not interactive. 196 */ 197 198 static inline bool tcp_in_quickack_mode(const struct sock *sk) 199 { 200 const struct inet_connection_sock *icsk = inet_csk(sk); 201 202 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 203 } 204 205 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 206 { 207 if (tp->ecn_flags & TCP_ECN_OK) 208 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 209 } 210 211 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 212 { 213 if (tcp_hdr(skb)->cwr) 214 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 215 } 216 217 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 218 { 219 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 220 } 221 222 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 223 { 224 if (!(tp->ecn_flags & TCP_ECN_OK)) 225 return; 226 227 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 228 case INET_ECN_NOT_ECT: 229 /* Funny extension: if ECT is not set on a segment, 230 * and we already seen ECT on a previous segment, 231 * it is probably a retransmit. 232 */ 233 if (tp->ecn_flags & TCP_ECN_SEEN) 234 tcp_enter_quickack_mode((struct sock *)tp); 235 break; 236 case INET_ECN_CE: 237 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 238 /* Better not delay acks, sender can have a very low cwnd */ 239 tcp_enter_quickack_mode((struct sock *)tp); 240 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 241 } 242 /* fallinto */ 243 default: 244 tp->ecn_flags |= TCP_ECN_SEEN; 245 } 246 } 247 248 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 249 { 250 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 251 tp->ecn_flags &= ~TCP_ECN_OK; 252 } 253 254 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 255 { 256 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 257 tp->ecn_flags &= ~TCP_ECN_OK; 258 } 259 260 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 261 { 262 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 263 return true; 264 return false; 265 } 266 267 /* Buffer size and advertised window tuning. 268 * 269 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 270 */ 271 272 static void tcp_fixup_sndbuf(struct sock *sk) 273 { 274 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER); 275 276 sndmem *= TCP_INIT_CWND; 277 if (sk->sk_sndbuf < sndmem) 278 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 279 } 280 281 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 282 * 283 * All tcp_full_space() is split to two parts: "network" buffer, allocated 284 * forward and advertised in receiver window (tp->rcv_wnd) and 285 * "application buffer", required to isolate scheduling/application 286 * latencies from network. 287 * window_clamp is maximal advertised window. It can be less than 288 * tcp_full_space(), in this case tcp_full_space() - window_clamp 289 * is reserved for "application" buffer. The less window_clamp is 290 * the smoother our behaviour from viewpoint of network, but the lower 291 * throughput and the higher sensitivity of the connection to losses. 8) 292 * 293 * rcv_ssthresh is more strict window_clamp used at "slow start" 294 * phase to predict further behaviour of this connection. 295 * It is used for two goals: 296 * - to enforce header prediction at sender, even when application 297 * requires some significant "application buffer". It is check #1. 298 * - to prevent pruning of receive queue because of misprediction 299 * of receiver window. Check #2. 300 * 301 * The scheme does not work when sender sends good segments opening 302 * window and then starts to feed us spaghetti. But it should work 303 * in common situations. Otherwise, we have to rely on queue collapsing. 304 */ 305 306 /* Slow part of check#2. */ 307 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 308 { 309 struct tcp_sock *tp = tcp_sk(sk); 310 /* Optimize this! */ 311 int truesize = tcp_win_from_space(skb->truesize) >> 1; 312 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 313 314 while (tp->rcv_ssthresh <= window) { 315 if (truesize <= skb->len) 316 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 317 318 truesize >>= 1; 319 window >>= 1; 320 } 321 return 0; 322 } 323 324 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 325 { 326 struct tcp_sock *tp = tcp_sk(sk); 327 328 /* Check #1 */ 329 if (tp->rcv_ssthresh < tp->window_clamp && 330 (int)tp->rcv_ssthresh < tcp_space(sk) && 331 !sk_under_memory_pressure(sk)) { 332 int incr; 333 334 /* Check #2. Increase window, if skb with such overhead 335 * will fit to rcvbuf in future. 336 */ 337 if (tcp_win_from_space(skb->truesize) <= skb->len) 338 incr = 2 * tp->advmss; 339 else 340 incr = __tcp_grow_window(sk, skb); 341 342 if (incr) { 343 incr = max_t(int, incr, 2 * skb->len); 344 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 345 tp->window_clamp); 346 inet_csk(sk)->icsk_ack.quick |= 1; 347 } 348 } 349 } 350 351 /* 3. Tuning rcvbuf, when connection enters established state. */ 352 353 static void tcp_fixup_rcvbuf(struct sock *sk) 354 { 355 u32 mss = tcp_sk(sk)->advmss; 356 u32 icwnd = TCP_DEFAULT_INIT_RCVWND; 357 int rcvmem; 358 359 /* Limit to 10 segments if mss <= 1460, 360 * or 14600/mss segments, with a minimum of two segments. 361 */ 362 if (mss > 1460) 363 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2); 364 365 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER); 366 while (tcp_win_from_space(rcvmem) < mss) 367 rcvmem += 128; 368 369 rcvmem *= icwnd; 370 371 if (sk->sk_rcvbuf < rcvmem) 372 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 373 } 374 375 /* 4. Try to fixup all. It is made immediately after connection enters 376 * established state. 377 */ 378 void tcp_init_buffer_space(struct sock *sk) 379 { 380 struct tcp_sock *tp = tcp_sk(sk); 381 int maxwin; 382 383 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 384 tcp_fixup_rcvbuf(sk); 385 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 386 tcp_fixup_sndbuf(sk); 387 388 tp->rcvq_space.space = tp->rcv_wnd; 389 390 maxwin = tcp_full_space(sk); 391 392 if (tp->window_clamp >= maxwin) { 393 tp->window_clamp = maxwin; 394 395 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 396 tp->window_clamp = max(maxwin - 397 (maxwin >> sysctl_tcp_app_win), 398 4 * tp->advmss); 399 } 400 401 /* Force reservation of one segment. */ 402 if (sysctl_tcp_app_win && 403 tp->window_clamp > 2 * tp->advmss && 404 tp->window_clamp + tp->advmss > maxwin) 405 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 406 407 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 408 tp->snd_cwnd_stamp = tcp_time_stamp; 409 } 410 411 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 412 static void tcp_clamp_window(struct sock *sk) 413 { 414 struct tcp_sock *tp = tcp_sk(sk); 415 struct inet_connection_sock *icsk = inet_csk(sk); 416 417 icsk->icsk_ack.quick = 0; 418 419 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 420 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 421 !sk_under_memory_pressure(sk) && 422 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 423 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 424 sysctl_tcp_rmem[2]); 425 } 426 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 427 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 428 } 429 430 /* Initialize RCV_MSS value. 431 * RCV_MSS is an our guess about MSS used by the peer. 432 * We haven't any direct information about the MSS. 433 * It's better to underestimate the RCV_MSS rather than overestimate. 434 * Overestimations make us ACKing less frequently than needed. 435 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 436 */ 437 void tcp_initialize_rcv_mss(struct sock *sk) 438 { 439 const struct tcp_sock *tp = tcp_sk(sk); 440 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 441 442 hint = min(hint, tp->rcv_wnd / 2); 443 hint = min(hint, TCP_MSS_DEFAULT); 444 hint = max(hint, TCP_MIN_MSS); 445 446 inet_csk(sk)->icsk_ack.rcv_mss = hint; 447 } 448 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 449 450 /* Receiver "autotuning" code. 451 * 452 * The algorithm for RTT estimation w/o timestamps is based on 453 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 454 * <http://public.lanl.gov/radiant/pubs.html#DRS> 455 * 456 * More detail on this code can be found at 457 * <http://staff.psc.edu/jheffner/>, 458 * though this reference is out of date. A new paper 459 * is pending. 460 */ 461 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 462 { 463 u32 new_sample = tp->rcv_rtt_est.rtt; 464 long m = sample; 465 466 if (m == 0) 467 m = 1; 468 469 if (new_sample != 0) { 470 /* If we sample in larger samples in the non-timestamp 471 * case, we could grossly overestimate the RTT especially 472 * with chatty applications or bulk transfer apps which 473 * are stalled on filesystem I/O. 474 * 475 * Also, since we are only going for a minimum in the 476 * non-timestamp case, we do not smooth things out 477 * else with timestamps disabled convergence takes too 478 * long. 479 */ 480 if (!win_dep) { 481 m -= (new_sample >> 3); 482 new_sample += m; 483 } else { 484 m <<= 3; 485 if (m < new_sample) 486 new_sample = m; 487 } 488 } else { 489 /* No previous measure. */ 490 new_sample = m << 3; 491 } 492 493 if (tp->rcv_rtt_est.rtt != new_sample) 494 tp->rcv_rtt_est.rtt = new_sample; 495 } 496 497 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 498 { 499 if (tp->rcv_rtt_est.time == 0) 500 goto new_measure; 501 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 502 return; 503 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 504 505 new_measure: 506 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 507 tp->rcv_rtt_est.time = tcp_time_stamp; 508 } 509 510 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 511 const struct sk_buff *skb) 512 { 513 struct tcp_sock *tp = tcp_sk(sk); 514 if (tp->rx_opt.rcv_tsecr && 515 (TCP_SKB_CB(skb)->end_seq - 516 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 517 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 518 } 519 520 /* 521 * This function should be called every time data is copied to user space. 522 * It calculates the appropriate TCP receive buffer space. 523 */ 524 void tcp_rcv_space_adjust(struct sock *sk) 525 { 526 struct tcp_sock *tp = tcp_sk(sk); 527 int time; 528 int space; 529 530 if (tp->rcvq_space.time == 0) 531 goto new_measure; 532 533 time = tcp_time_stamp - tp->rcvq_space.time; 534 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 535 return; 536 537 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 538 539 space = max(tp->rcvq_space.space, space); 540 541 if (tp->rcvq_space.space != space) { 542 int rcvmem; 543 544 tp->rcvq_space.space = space; 545 546 if (sysctl_tcp_moderate_rcvbuf && 547 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 548 int new_clamp = space; 549 550 /* Receive space grows, normalize in order to 551 * take into account packet headers and sk_buff 552 * structure overhead. 553 */ 554 space /= tp->advmss; 555 if (!space) 556 space = 1; 557 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 558 while (tcp_win_from_space(rcvmem) < tp->advmss) 559 rcvmem += 128; 560 space *= rcvmem; 561 space = min(space, sysctl_tcp_rmem[2]); 562 if (space > sk->sk_rcvbuf) { 563 sk->sk_rcvbuf = space; 564 565 /* Make the window clamp follow along. */ 566 tp->window_clamp = new_clamp; 567 } 568 } 569 } 570 571 new_measure: 572 tp->rcvq_space.seq = tp->copied_seq; 573 tp->rcvq_space.time = tcp_time_stamp; 574 } 575 576 /* There is something which you must keep in mind when you analyze the 577 * behavior of the tp->ato delayed ack timeout interval. When a 578 * connection starts up, we want to ack as quickly as possible. The 579 * problem is that "good" TCP's do slow start at the beginning of data 580 * transmission. The means that until we send the first few ACK's the 581 * sender will sit on his end and only queue most of his data, because 582 * he can only send snd_cwnd unacked packets at any given time. For 583 * each ACK we send, he increments snd_cwnd and transmits more of his 584 * queue. -DaveM 585 */ 586 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 587 { 588 struct tcp_sock *tp = tcp_sk(sk); 589 struct inet_connection_sock *icsk = inet_csk(sk); 590 u32 now; 591 592 inet_csk_schedule_ack(sk); 593 594 tcp_measure_rcv_mss(sk, skb); 595 596 tcp_rcv_rtt_measure(tp); 597 598 now = tcp_time_stamp; 599 600 if (!icsk->icsk_ack.ato) { 601 /* The _first_ data packet received, initialize 602 * delayed ACK engine. 603 */ 604 tcp_incr_quickack(sk); 605 icsk->icsk_ack.ato = TCP_ATO_MIN; 606 } else { 607 int m = now - icsk->icsk_ack.lrcvtime; 608 609 if (m <= TCP_ATO_MIN / 2) { 610 /* The fastest case is the first. */ 611 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 612 } else if (m < icsk->icsk_ack.ato) { 613 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 614 if (icsk->icsk_ack.ato > icsk->icsk_rto) 615 icsk->icsk_ack.ato = icsk->icsk_rto; 616 } else if (m > icsk->icsk_rto) { 617 /* Too long gap. Apparently sender failed to 618 * restart window, so that we send ACKs quickly. 619 */ 620 tcp_incr_quickack(sk); 621 sk_mem_reclaim(sk); 622 } 623 } 624 icsk->icsk_ack.lrcvtime = now; 625 626 TCP_ECN_check_ce(tp, skb); 627 628 if (skb->len >= 128) 629 tcp_grow_window(sk, skb); 630 } 631 632 /* Called to compute a smoothed rtt estimate. The data fed to this 633 * routine either comes from timestamps, or from segments that were 634 * known _not_ to have been retransmitted [see Karn/Partridge 635 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 636 * piece by Van Jacobson. 637 * NOTE: the next three routines used to be one big routine. 638 * To save cycles in the RFC 1323 implementation it was better to break 639 * it up into three procedures. -- erics 640 */ 641 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 642 { 643 struct tcp_sock *tp = tcp_sk(sk); 644 long m = mrtt; /* RTT */ 645 646 /* The following amusing code comes from Jacobson's 647 * article in SIGCOMM '88. Note that rtt and mdev 648 * are scaled versions of rtt and mean deviation. 649 * This is designed to be as fast as possible 650 * m stands for "measurement". 651 * 652 * On a 1990 paper the rto value is changed to: 653 * RTO = rtt + 4 * mdev 654 * 655 * Funny. This algorithm seems to be very broken. 656 * These formulae increase RTO, when it should be decreased, increase 657 * too slowly, when it should be increased quickly, decrease too quickly 658 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 659 * does not matter how to _calculate_ it. Seems, it was trap 660 * that VJ failed to avoid. 8) 661 */ 662 if (m == 0) 663 m = 1; 664 if (tp->srtt != 0) { 665 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 666 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 667 if (m < 0) { 668 m = -m; /* m is now abs(error) */ 669 m -= (tp->mdev >> 2); /* similar update on mdev */ 670 /* This is similar to one of Eifel findings. 671 * Eifel blocks mdev updates when rtt decreases. 672 * This solution is a bit different: we use finer gain 673 * for mdev in this case (alpha*beta). 674 * Like Eifel it also prevents growth of rto, 675 * but also it limits too fast rto decreases, 676 * happening in pure Eifel. 677 */ 678 if (m > 0) 679 m >>= 3; 680 } else { 681 m -= (tp->mdev >> 2); /* similar update on mdev */ 682 } 683 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 684 if (tp->mdev > tp->mdev_max) { 685 tp->mdev_max = tp->mdev; 686 if (tp->mdev_max > tp->rttvar) 687 tp->rttvar = tp->mdev_max; 688 } 689 if (after(tp->snd_una, tp->rtt_seq)) { 690 if (tp->mdev_max < tp->rttvar) 691 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 692 tp->rtt_seq = tp->snd_nxt; 693 tp->mdev_max = tcp_rto_min(sk); 694 } 695 } else { 696 /* no previous measure. */ 697 tp->srtt = m << 3; /* take the measured time to be rtt */ 698 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 699 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 700 tp->rtt_seq = tp->snd_nxt; 701 } 702 } 703 704 /* Calculate rto without backoff. This is the second half of Van Jacobson's 705 * routine referred to above. 706 */ 707 void tcp_set_rto(struct sock *sk) 708 { 709 const struct tcp_sock *tp = tcp_sk(sk); 710 /* Old crap is replaced with new one. 8) 711 * 712 * More seriously: 713 * 1. If rtt variance happened to be less 50msec, it is hallucination. 714 * It cannot be less due to utterly erratic ACK generation made 715 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 716 * to do with delayed acks, because at cwnd>2 true delack timeout 717 * is invisible. Actually, Linux-2.4 also generates erratic 718 * ACKs in some circumstances. 719 */ 720 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 721 722 /* 2. Fixups made earlier cannot be right. 723 * If we do not estimate RTO correctly without them, 724 * all the algo is pure shit and should be replaced 725 * with correct one. It is exactly, which we pretend to do. 726 */ 727 728 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 729 * guarantees that rto is higher. 730 */ 731 tcp_bound_rto(sk); 732 } 733 734 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 735 { 736 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 737 738 if (!cwnd) 739 cwnd = TCP_INIT_CWND; 740 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 741 } 742 743 /* 744 * Packet counting of FACK is based on in-order assumptions, therefore TCP 745 * disables it when reordering is detected 746 */ 747 void tcp_disable_fack(struct tcp_sock *tp) 748 { 749 /* RFC3517 uses different metric in lost marker => reset on change */ 750 if (tcp_is_fack(tp)) 751 tp->lost_skb_hint = NULL; 752 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 753 } 754 755 /* Take a notice that peer is sending D-SACKs */ 756 static void tcp_dsack_seen(struct tcp_sock *tp) 757 { 758 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 759 } 760 761 static void tcp_update_reordering(struct sock *sk, const int metric, 762 const int ts) 763 { 764 struct tcp_sock *tp = tcp_sk(sk); 765 if (metric > tp->reordering) { 766 int mib_idx; 767 768 tp->reordering = min(TCP_MAX_REORDERING, metric); 769 770 /* This exciting event is worth to be remembered. 8) */ 771 if (ts) 772 mib_idx = LINUX_MIB_TCPTSREORDER; 773 else if (tcp_is_reno(tp)) 774 mib_idx = LINUX_MIB_TCPRENOREORDER; 775 else if (tcp_is_fack(tp)) 776 mib_idx = LINUX_MIB_TCPFACKREORDER; 777 else 778 mib_idx = LINUX_MIB_TCPSACKREORDER; 779 780 NET_INC_STATS_BH(sock_net(sk), mib_idx); 781 #if FASTRETRANS_DEBUG > 1 782 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 783 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 784 tp->reordering, 785 tp->fackets_out, 786 tp->sacked_out, 787 tp->undo_marker ? tp->undo_retrans : 0); 788 #endif 789 tcp_disable_fack(tp); 790 } 791 792 if (metric > 0) 793 tcp_disable_early_retrans(tp); 794 } 795 796 /* This must be called before lost_out is incremented */ 797 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 798 { 799 if ((tp->retransmit_skb_hint == NULL) || 800 before(TCP_SKB_CB(skb)->seq, 801 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 802 tp->retransmit_skb_hint = skb; 803 804 if (!tp->lost_out || 805 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 806 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 807 } 808 809 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 810 { 811 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 812 tcp_verify_retransmit_hint(tp, skb); 813 814 tp->lost_out += tcp_skb_pcount(skb); 815 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 816 } 817 } 818 819 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 820 struct sk_buff *skb) 821 { 822 tcp_verify_retransmit_hint(tp, skb); 823 824 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 825 tp->lost_out += tcp_skb_pcount(skb); 826 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 827 } 828 } 829 830 /* This procedure tags the retransmission queue when SACKs arrive. 831 * 832 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 833 * Packets in queue with these bits set are counted in variables 834 * sacked_out, retrans_out and lost_out, correspondingly. 835 * 836 * Valid combinations are: 837 * Tag InFlight Description 838 * 0 1 - orig segment is in flight. 839 * S 0 - nothing flies, orig reached receiver. 840 * L 0 - nothing flies, orig lost by net. 841 * R 2 - both orig and retransmit are in flight. 842 * L|R 1 - orig is lost, retransmit is in flight. 843 * S|R 1 - orig reached receiver, retrans is still in flight. 844 * (L|S|R is logically valid, it could occur when L|R is sacked, 845 * but it is equivalent to plain S and code short-curcuits it to S. 846 * L|S is logically invalid, it would mean -1 packet in flight 8)) 847 * 848 * These 6 states form finite state machine, controlled by the following events: 849 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 850 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 851 * 3. Loss detection event of two flavors: 852 * A. Scoreboard estimator decided the packet is lost. 853 * A'. Reno "three dupacks" marks head of queue lost. 854 * A''. Its FACK modification, head until snd.fack is lost. 855 * B. SACK arrives sacking SND.NXT at the moment, when the 856 * segment was retransmitted. 857 * 4. D-SACK added new rule: D-SACK changes any tag to S. 858 * 859 * It is pleasant to note, that state diagram turns out to be commutative, 860 * so that we are allowed not to be bothered by order of our actions, 861 * when multiple events arrive simultaneously. (see the function below). 862 * 863 * Reordering detection. 864 * -------------------- 865 * Reordering metric is maximal distance, which a packet can be displaced 866 * in packet stream. With SACKs we can estimate it: 867 * 868 * 1. SACK fills old hole and the corresponding segment was not 869 * ever retransmitted -> reordering. Alas, we cannot use it 870 * when segment was retransmitted. 871 * 2. The last flaw is solved with D-SACK. D-SACK arrives 872 * for retransmitted and already SACKed segment -> reordering.. 873 * Both of these heuristics are not used in Loss state, when we cannot 874 * account for retransmits accurately. 875 * 876 * SACK block validation. 877 * ---------------------- 878 * 879 * SACK block range validation checks that the received SACK block fits to 880 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 881 * Note that SND.UNA is not included to the range though being valid because 882 * it means that the receiver is rather inconsistent with itself reporting 883 * SACK reneging when it should advance SND.UNA. Such SACK block this is 884 * perfectly valid, however, in light of RFC2018 which explicitly states 885 * that "SACK block MUST reflect the newest segment. Even if the newest 886 * segment is going to be discarded ...", not that it looks very clever 887 * in case of head skb. Due to potentional receiver driven attacks, we 888 * choose to avoid immediate execution of a walk in write queue due to 889 * reneging and defer head skb's loss recovery to standard loss recovery 890 * procedure that will eventually trigger (nothing forbids us doing this). 891 * 892 * Implements also blockage to start_seq wrap-around. Problem lies in the 893 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 894 * there's no guarantee that it will be before snd_nxt (n). The problem 895 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 896 * wrap (s_w): 897 * 898 * <- outs wnd -> <- wrapzone -> 899 * u e n u_w e_w s n_w 900 * | | | | | | | 901 * |<------------+------+----- TCP seqno space --------------+---------->| 902 * ...-- <2^31 ->| |<--------... 903 * ...---- >2^31 ------>| |<--------... 904 * 905 * Current code wouldn't be vulnerable but it's better still to discard such 906 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 907 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 908 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 909 * equal to the ideal case (infinite seqno space without wrap caused issues). 910 * 911 * With D-SACK the lower bound is extended to cover sequence space below 912 * SND.UNA down to undo_marker, which is the last point of interest. Yet 913 * again, D-SACK block must not to go across snd_una (for the same reason as 914 * for the normal SACK blocks, explained above). But there all simplicity 915 * ends, TCP might receive valid D-SACKs below that. As long as they reside 916 * fully below undo_marker they do not affect behavior in anyway and can 917 * therefore be safely ignored. In rare cases (which are more or less 918 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 919 * fragmentation and packet reordering past skb's retransmission. To consider 920 * them correctly, the acceptable range must be extended even more though 921 * the exact amount is rather hard to quantify. However, tp->max_window can 922 * be used as an exaggerated estimate. 923 */ 924 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 925 u32 start_seq, u32 end_seq) 926 { 927 /* Too far in future, or reversed (interpretation is ambiguous) */ 928 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 929 return false; 930 931 /* Nasty start_seq wrap-around check (see comments above) */ 932 if (!before(start_seq, tp->snd_nxt)) 933 return false; 934 935 /* In outstanding window? ...This is valid exit for D-SACKs too. 936 * start_seq == snd_una is non-sensical (see comments above) 937 */ 938 if (after(start_seq, tp->snd_una)) 939 return true; 940 941 if (!is_dsack || !tp->undo_marker) 942 return false; 943 944 /* ...Then it's D-SACK, and must reside below snd_una completely */ 945 if (after(end_seq, tp->snd_una)) 946 return false; 947 948 if (!before(start_seq, tp->undo_marker)) 949 return true; 950 951 /* Too old */ 952 if (!after(end_seq, tp->undo_marker)) 953 return false; 954 955 /* Undo_marker boundary crossing (overestimates a lot). Known already: 956 * start_seq < undo_marker and end_seq >= undo_marker. 957 */ 958 return !before(start_seq, end_seq - tp->max_window); 959 } 960 961 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 962 * Event "B". Later note: FACK people cheated me again 8), we have to account 963 * for reordering! Ugly, but should help. 964 * 965 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 966 * less than what is now known to be received by the other end (derived from 967 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 968 * retransmitted skbs to avoid some costly processing per ACKs. 969 */ 970 static void tcp_mark_lost_retrans(struct sock *sk) 971 { 972 const struct inet_connection_sock *icsk = inet_csk(sk); 973 struct tcp_sock *tp = tcp_sk(sk); 974 struct sk_buff *skb; 975 int cnt = 0; 976 u32 new_low_seq = tp->snd_nxt; 977 u32 received_upto = tcp_highest_sack_seq(tp); 978 979 if (!tcp_is_fack(tp) || !tp->retrans_out || 980 !after(received_upto, tp->lost_retrans_low) || 981 icsk->icsk_ca_state != TCP_CA_Recovery) 982 return; 983 984 tcp_for_write_queue(skb, sk) { 985 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 986 987 if (skb == tcp_send_head(sk)) 988 break; 989 if (cnt == tp->retrans_out) 990 break; 991 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 992 continue; 993 994 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 995 continue; 996 997 /* TODO: We would like to get rid of tcp_is_fack(tp) only 998 * constraint here (see above) but figuring out that at 999 * least tp->reordering SACK blocks reside between ack_seq 1000 * and received_upto is not easy task to do cheaply with 1001 * the available datastructures. 1002 * 1003 * Whether FACK should check here for tp->reordering segs 1004 * in-between one could argue for either way (it would be 1005 * rather simple to implement as we could count fack_count 1006 * during the walk and do tp->fackets_out - fack_count). 1007 */ 1008 if (after(received_upto, ack_seq)) { 1009 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1010 tp->retrans_out -= tcp_skb_pcount(skb); 1011 1012 tcp_skb_mark_lost_uncond_verify(tp, skb); 1013 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1014 } else { 1015 if (before(ack_seq, new_low_seq)) 1016 new_low_seq = ack_seq; 1017 cnt += tcp_skb_pcount(skb); 1018 } 1019 } 1020 1021 if (tp->retrans_out) 1022 tp->lost_retrans_low = new_low_seq; 1023 } 1024 1025 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1026 struct tcp_sack_block_wire *sp, int num_sacks, 1027 u32 prior_snd_una) 1028 { 1029 struct tcp_sock *tp = tcp_sk(sk); 1030 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1031 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1032 bool dup_sack = false; 1033 1034 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1035 dup_sack = true; 1036 tcp_dsack_seen(tp); 1037 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1038 } else if (num_sacks > 1) { 1039 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1040 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1041 1042 if (!after(end_seq_0, end_seq_1) && 1043 !before(start_seq_0, start_seq_1)) { 1044 dup_sack = true; 1045 tcp_dsack_seen(tp); 1046 NET_INC_STATS_BH(sock_net(sk), 1047 LINUX_MIB_TCPDSACKOFORECV); 1048 } 1049 } 1050 1051 /* D-SACK for already forgotten data... Do dumb counting. */ 1052 if (dup_sack && tp->undo_marker && tp->undo_retrans && 1053 !after(end_seq_0, prior_snd_una) && 1054 after(end_seq_0, tp->undo_marker)) 1055 tp->undo_retrans--; 1056 1057 return dup_sack; 1058 } 1059 1060 struct tcp_sacktag_state { 1061 int reord; 1062 int fack_count; 1063 int flag; 1064 }; 1065 1066 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1067 * the incoming SACK may not exactly match but we can find smaller MSS 1068 * aligned portion of it that matches. Therefore we might need to fragment 1069 * which may fail and creates some hassle (caller must handle error case 1070 * returns). 1071 * 1072 * FIXME: this could be merged to shift decision code 1073 */ 1074 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1075 u32 start_seq, u32 end_seq) 1076 { 1077 int err; 1078 bool in_sack; 1079 unsigned int pkt_len; 1080 unsigned int mss; 1081 1082 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1083 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1084 1085 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1086 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1087 mss = tcp_skb_mss(skb); 1088 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1089 1090 if (!in_sack) { 1091 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1092 if (pkt_len < mss) 1093 pkt_len = mss; 1094 } else { 1095 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1096 if (pkt_len < mss) 1097 return -EINVAL; 1098 } 1099 1100 /* Round if necessary so that SACKs cover only full MSSes 1101 * and/or the remaining small portion (if present) 1102 */ 1103 if (pkt_len > mss) { 1104 unsigned int new_len = (pkt_len / mss) * mss; 1105 if (!in_sack && new_len < pkt_len) { 1106 new_len += mss; 1107 if (new_len > skb->len) 1108 return 0; 1109 } 1110 pkt_len = new_len; 1111 } 1112 err = tcp_fragment(sk, skb, pkt_len, mss); 1113 if (err < 0) 1114 return err; 1115 } 1116 1117 return in_sack; 1118 } 1119 1120 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1121 static u8 tcp_sacktag_one(struct sock *sk, 1122 struct tcp_sacktag_state *state, u8 sacked, 1123 u32 start_seq, u32 end_seq, 1124 bool dup_sack, int pcount) 1125 { 1126 struct tcp_sock *tp = tcp_sk(sk); 1127 int fack_count = state->fack_count; 1128 1129 /* Account D-SACK for retransmitted packet. */ 1130 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1131 if (tp->undo_marker && tp->undo_retrans && 1132 after(end_seq, tp->undo_marker)) 1133 tp->undo_retrans--; 1134 if (sacked & TCPCB_SACKED_ACKED) 1135 state->reord = min(fack_count, state->reord); 1136 } 1137 1138 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1139 if (!after(end_seq, tp->snd_una)) 1140 return sacked; 1141 1142 if (!(sacked & TCPCB_SACKED_ACKED)) { 1143 if (sacked & TCPCB_SACKED_RETRANS) { 1144 /* If the segment is not tagged as lost, 1145 * we do not clear RETRANS, believing 1146 * that retransmission is still in flight. 1147 */ 1148 if (sacked & TCPCB_LOST) { 1149 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1150 tp->lost_out -= pcount; 1151 tp->retrans_out -= pcount; 1152 } 1153 } else { 1154 if (!(sacked & TCPCB_RETRANS)) { 1155 /* New sack for not retransmitted frame, 1156 * which was in hole. It is reordering. 1157 */ 1158 if (before(start_seq, 1159 tcp_highest_sack_seq(tp))) 1160 state->reord = min(fack_count, 1161 state->reord); 1162 1163 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1164 if (!after(end_seq, tp->frto_highmark)) 1165 state->flag |= FLAG_ONLY_ORIG_SACKED; 1166 } 1167 1168 if (sacked & TCPCB_LOST) { 1169 sacked &= ~TCPCB_LOST; 1170 tp->lost_out -= pcount; 1171 } 1172 } 1173 1174 sacked |= TCPCB_SACKED_ACKED; 1175 state->flag |= FLAG_DATA_SACKED; 1176 tp->sacked_out += pcount; 1177 1178 fack_count += pcount; 1179 1180 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1181 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1182 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1183 tp->lost_cnt_hint += pcount; 1184 1185 if (fack_count > tp->fackets_out) 1186 tp->fackets_out = fack_count; 1187 } 1188 1189 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1190 * frames and clear it. undo_retrans is decreased above, L|R frames 1191 * are accounted above as well. 1192 */ 1193 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1194 sacked &= ~TCPCB_SACKED_RETRANS; 1195 tp->retrans_out -= pcount; 1196 } 1197 1198 return sacked; 1199 } 1200 1201 /* Shift newly-SACKed bytes from this skb to the immediately previous 1202 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1203 */ 1204 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1205 struct tcp_sacktag_state *state, 1206 unsigned int pcount, int shifted, int mss, 1207 bool dup_sack) 1208 { 1209 struct tcp_sock *tp = tcp_sk(sk); 1210 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1211 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1212 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1213 1214 BUG_ON(!pcount); 1215 1216 /* Adjust counters and hints for the newly sacked sequence 1217 * range but discard the return value since prev is already 1218 * marked. We must tag the range first because the seq 1219 * advancement below implicitly advances 1220 * tcp_highest_sack_seq() when skb is highest_sack. 1221 */ 1222 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1223 start_seq, end_seq, dup_sack, pcount); 1224 1225 if (skb == tp->lost_skb_hint) 1226 tp->lost_cnt_hint += pcount; 1227 1228 TCP_SKB_CB(prev)->end_seq += shifted; 1229 TCP_SKB_CB(skb)->seq += shifted; 1230 1231 skb_shinfo(prev)->gso_segs += pcount; 1232 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1233 skb_shinfo(skb)->gso_segs -= pcount; 1234 1235 /* When we're adding to gso_segs == 1, gso_size will be zero, 1236 * in theory this shouldn't be necessary but as long as DSACK 1237 * code can come after this skb later on it's better to keep 1238 * setting gso_size to something. 1239 */ 1240 if (!skb_shinfo(prev)->gso_size) { 1241 skb_shinfo(prev)->gso_size = mss; 1242 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1243 } 1244 1245 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1246 if (skb_shinfo(skb)->gso_segs <= 1) { 1247 skb_shinfo(skb)->gso_size = 0; 1248 skb_shinfo(skb)->gso_type = 0; 1249 } 1250 1251 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1252 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1253 1254 if (skb->len > 0) { 1255 BUG_ON(!tcp_skb_pcount(skb)); 1256 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1257 return false; 1258 } 1259 1260 /* Whole SKB was eaten :-) */ 1261 1262 if (skb == tp->retransmit_skb_hint) 1263 tp->retransmit_skb_hint = prev; 1264 if (skb == tp->scoreboard_skb_hint) 1265 tp->scoreboard_skb_hint = prev; 1266 if (skb == tp->lost_skb_hint) { 1267 tp->lost_skb_hint = prev; 1268 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1269 } 1270 1271 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags; 1272 if (skb == tcp_highest_sack(sk)) 1273 tcp_advance_highest_sack(sk, skb); 1274 1275 tcp_unlink_write_queue(skb, sk); 1276 sk_wmem_free_skb(sk, skb); 1277 1278 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1279 1280 return true; 1281 } 1282 1283 /* I wish gso_size would have a bit more sane initialization than 1284 * something-or-zero which complicates things 1285 */ 1286 static int tcp_skb_seglen(const struct sk_buff *skb) 1287 { 1288 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1289 } 1290 1291 /* Shifting pages past head area doesn't work */ 1292 static int skb_can_shift(const struct sk_buff *skb) 1293 { 1294 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1295 } 1296 1297 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1298 * skb. 1299 */ 1300 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1301 struct tcp_sacktag_state *state, 1302 u32 start_seq, u32 end_seq, 1303 bool dup_sack) 1304 { 1305 struct tcp_sock *tp = tcp_sk(sk); 1306 struct sk_buff *prev; 1307 int mss; 1308 int pcount = 0; 1309 int len; 1310 int in_sack; 1311 1312 if (!sk_can_gso(sk)) 1313 goto fallback; 1314 1315 /* Normally R but no L won't result in plain S */ 1316 if (!dup_sack && 1317 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1318 goto fallback; 1319 if (!skb_can_shift(skb)) 1320 goto fallback; 1321 /* This frame is about to be dropped (was ACKed). */ 1322 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1323 goto fallback; 1324 1325 /* Can only happen with delayed DSACK + discard craziness */ 1326 if (unlikely(skb == tcp_write_queue_head(sk))) 1327 goto fallback; 1328 prev = tcp_write_queue_prev(sk, skb); 1329 1330 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1331 goto fallback; 1332 1333 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1334 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1335 1336 if (in_sack) { 1337 len = skb->len; 1338 pcount = tcp_skb_pcount(skb); 1339 mss = tcp_skb_seglen(skb); 1340 1341 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1342 * drop this restriction as unnecessary 1343 */ 1344 if (mss != tcp_skb_seglen(prev)) 1345 goto fallback; 1346 } else { 1347 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1348 goto noop; 1349 /* CHECKME: This is non-MSS split case only?, this will 1350 * cause skipped skbs due to advancing loop btw, original 1351 * has that feature too 1352 */ 1353 if (tcp_skb_pcount(skb) <= 1) 1354 goto noop; 1355 1356 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1357 if (!in_sack) { 1358 /* TODO: head merge to next could be attempted here 1359 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1360 * though it might not be worth of the additional hassle 1361 * 1362 * ...we can probably just fallback to what was done 1363 * previously. We could try merging non-SACKed ones 1364 * as well but it probably isn't going to buy off 1365 * because later SACKs might again split them, and 1366 * it would make skb timestamp tracking considerably 1367 * harder problem. 1368 */ 1369 goto fallback; 1370 } 1371 1372 len = end_seq - TCP_SKB_CB(skb)->seq; 1373 BUG_ON(len < 0); 1374 BUG_ON(len > skb->len); 1375 1376 /* MSS boundaries should be honoured or else pcount will 1377 * severely break even though it makes things bit trickier. 1378 * Optimize common case to avoid most of the divides 1379 */ 1380 mss = tcp_skb_mss(skb); 1381 1382 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1383 * drop this restriction as unnecessary 1384 */ 1385 if (mss != tcp_skb_seglen(prev)) 1386 goto fallback; 1387 1388 if (len == mss) { 1389 pcount = 1; 1390 } else if (len < mss) { 1391 goto noop; 1392 } else { 1393 pcount = len / mss; 1394 len = pcount * mss; 1395 } 1396 } 1397 1398 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1399 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1400 goto fallback; 1401 1402 if (!skb_shift(prev, skb, len)) 1403 goto fallback; 1404 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1405 goto out; 1406 1407 /* Hole filled allows collapsing with the next as well, this is very 1408 * useful when hole on every nth skb pattern happens 1409 */ 1410 if (prev == tcp_write_queue_tail(sk)) 1411 goto out; 1412 skb = tcp_write_queue_next(sk, prev); 1413 1414 if (!skb_can_shift(skb) || 1415 (skb == tcp_send_head(sk)) || 1416 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1417 (mss != tcp_skb_seglen(skb))) 1418 goto out; 1419 1420 len = skb->len; 1421 if (skb_shift(prev, skb, len)) { 1422 pcount += tcp_skb_pcount(skb); 1423 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1424 } 1425 1426 out: 1427 state->fack_count += pcount; 1428 return prev; 1429 1430 noop: 1431 return skb; 1432 1433 fallback: 1434 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1435 return NULL; 1436 } 1437 1438 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1439 struct tcp_sack_block *next_dup, 1440 struct tcp_sacktag_state *state, 1441 u32 start_seq, u32 end_seq, 1442 bool dup_sack_in) 1443 { 1444 struct tcp_sock *tp = tcp_sk(sk); 1445 struct sk_buff *tmp; 1446 1447 tcp_for_write_queue_from(skb, sk) { 1448 int in_sack = 0; 1449 bool dup_sack = dup_sack_in; 1450 1451 if (skb == tcp_send_head(sk)) 1452 break; 1453 1454 /* queue is in-order => we can short-circuit the walk early */ 1455 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1456 break; 1457 1458 if ((next_dup != NULL) && 1459 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1460 in_sack = tcp_match_skb_to_sack(sk, skb, 1461 next_dup->start_seq, 1462 next_dup->end_seq); 1463 if (in_sack > 0) 1464 dup_sack = true; 1465 } 1466 1467 /* skb reference here is a bit tricky to get right, since 1468 * shifting can eat and free both this skb and the next, 1469 * so not even _safe variant of the loop is enough. 1470 */ 1471 if (in_sack <= 0) { 1472 tmp = tcp_shift_skb_data(sk, skb, state, 1473 start_seq, end_seq, dup_sack); 1474 if (tmp != NULL) { 1475 if (tmp != skb) { 1476 skb = tmp; 1477 continue; 1478 } 1479 1480 in_sack = 0; 1481 } else { 1482 in_sack = tcp_match_skb_to_sack(sk, skb, 1483 start_seq, 1484 end_seq); 1485 } 1486 } 1487 1488 if (unlikely(in_sack < 0)) 1489 break; 1490 1491 if (in_sack) { 1492 TCP_SKB_CB(skb)->sacked = 1493 tcp_sacktag_one(sk, 1494 state, 1495 TCP_SKB_CB(skb)->sacked, 1496 TCP_SKB_CB(skb)->seq, 1497 TCP_SKB_CB(skb)->end_seq, 1498 dup_sack, 1499 tcp_skb_pcount(skb)); 1500 1501 if (!before(TCP_SKB_CB(skb)->seq, 1502 tcp_highest_sack_seq(tp))) 1503 tcp_advance_highest_sack(sk, skb); 1504 } 1505 1506 state->fack_count += tcp_skb_pcount(skb); 1507 } 1508 return skb; 1509 } 1510 1511 /* Avoid all extra work that is being done by sacktag while walking in 1512 * a normal way 1513 */ 1514 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1515 struct tcp_sacktag_state *state, 1516 u32 skip_to_seq) 1517 { 1518 tcp_for_write_queue_from(skb, sk) { 1519 if (skb == tcp_send_head(sk)) 1520 break; 1521 1522 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1523 break; 1524 1525 state->fack_count += tcp_skb_pcount(skb); 1526 } 1527 return skb; 1528 } 1529 1530 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1531 struct sock *sk, 1532 struct tcp_sack_block *next_dup, 1533 struct tcp_sacktag_state *state, 1534 u32 skip_to_seq) 1535 { 1536 if (next_dup == NULL) 1537 return skb; 1538 1539 if (before(next_dup->start_seq, skip_to_seq)) { 1540 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1541 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1542 next_dup->start_seq, next_dup->end_seq, 1543 1); 1544 } 1545 1546 return skb; 1547 } 1548 1549 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1550 { 1551 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1552 } 1553 1554 static int 1555 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1556 u32 prior_snd_una) 1557 { 1558 const struct inet_connection_sock *icsk = inet_csk(sk); 1559 struct tcp_sock *tp = tcp_sk(sk); 1560 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1561 TCP_SKB_CB(ack_skb)->sacked); 1562 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1563 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1564 struct tcp_sack_block *cache; 1565 struct tcp_sacktag_state state; 1566 struct sk_buff *skb; 1567 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1568 int used_sacks; 1569 bool found_dup_sack = false; 1570 int i, j; 1571 int first_sack_index; 1572 1573 state.flag = 0; 1574 state.reord = tp->packets_out; 1575 1576 if (!tp->sacked_out) { 1577 if (WARN_ON(tp->fackets_out)) 1578 tp->fackets_out = 0; 1579 tcp_highest_sack_reset(sk); 1580 } 1581 1582 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1583 num_sacks, prior_snd_una); 1584 if (found_dup_sack) 1585 state.flag |= FLAG_DSACKING_ACK; 1586 1587 /* Eliminate too old ACKs, but take into 1588 * account more or less fresh ones, they can 1589 * contain valid SACK info. 1590 */ 1591 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1592 return 0; 1593 1594 if (!tp->packets_out) 1595 goto out; 1596 1597 used_sacks = 0; 1598 first_sack_index = 0; 1599 for (i = 0; i < num_sacks; i++) { 1600 bool dup_sack = !i && found_dup_sack; 1601 1602 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1603 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1604 1605 if (!tcp_is_sackblock_valid(tp, dup_sack, 1606 sp[used_sacks].start_seq, 1607 sp[used_sacks].end_seq)) { 1608 int mib_idx; 1609 1610 if (dup_sack) { 1611 if (!tp->undo_marker) 1612 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1613 else 1614 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1615 } else { 1616 /* Don't count olds caused by ACK reordering */ 1617 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1618 !after(sp[used_sacks].end_seq, tp->snd_una)) 1619 continue; 1620 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1621 } 1622 1623 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1624 if (i == 0) 1625 first_sack_index = -1; 1626 continue; 1627 } 1628 1629 /* Ignore very old stuff early */ 1630 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1631 continue; 1632 1633 used_sacks++; 1634 } 1635 1636 /* order SACK blocks to allow in order walk of the retrans queue */ 1637 for (i = used_sacks - 1; i > 0; i--) { 1638 for (j = 0; j < i; j++) { 1639 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1640 swap(sp[j], sp[j + 1]); 1641 1642 /* Track where the first SACK block goes to */ 1643 if (j == first_sack_index) 1644 first_sack_index = j + 1; 1645 } 1646 } 1647 } 1648 1649 skb = tcp_write_queue_head(sk); 1650 state.fack_count = 0; 1651 i = 0; 1652 1653 if (!tp->sacked_out) { 1654 /* It's already past, so skip checking against it */ 1655 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1656 } else { 1657 cache = tp->recv_sack_cache; 1658 /* Skip empty blocks in at head of the cache */ 1659 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1660 !cache->end_seq) 1661 cache++; 1662 } 1663 1664 while (i < used_sacks) { 1665 u32 start_seq = sp[i].start_seq; 1666 u32 end_seq = sp[i].end_seq; 1667 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1668 struct tcp_sack_block *next_dup = NULL; 1669 1670 if (found_dup_sack && ((i + 1) == first_sack_index)) 1671 next_dup = &sp[i + 1]; 1672 1673 /* Skip too early cached blocks */ 1674 while (tcp_sack_cache_ok(tp, cache) && 1675 !before(start_seq, cache->end_seq)) 1676 cache++; 1677 1678 /* Can skip some work by looking recv_sack_cache? */ 1679 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1680 after(end_seq, cache->start_seq)) { 1681 1682 /* Head todo? */ 1683 if (before(start_seq, cache->start_seq)) { 1684 skb = tcp_sacktag_skip(skb, sk, &state, 1685 start_seq); 1686 skb = tcp_sacktag_walk(skb, sk, next_dup, 1687 &state, 1688 start_seq, 1689 cache->start_seq, 1690 dup_sack); 1691 } 1692 1693 /* Rest of the block already fully processed? */ 1694 if (!after(end_seq, cache->end_seq)) 1695 goto advance_sp; 1696 1697 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1698 &state, 1699 cache->end_seq); 1700 1701 /* ...tail remains todo... */ 1702 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1703 /* ...but better entrypoint exists! */ 1704 skb = tcp_highest_sack(sk); 1705 if (skb == NULL) 1706 break; 1707 state.fack_count = tp->fackets_out; 1708 cache++; 1709 goto walk; 1710 } 1711 1712 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1713 /* Check overlap against next cached too (past this one already) */ 1714 cache++; 1715 continue; 1716 } 1717 1718 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1719 skb = tcp_highest_sack(sk); 1720 if (skb == NULL) 1721 break; 1722 state.fack_count = tp->fackets_out; 1723 } 1724 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1725 1726 walk: 1727 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1728 start_seq, end_seq, dup_sack); 1729 1730 advance_sp: 1731 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1732 * due to in-order walk 1733 */ 1734 if (after(end_seq, tp->frto_highmark)) 1735 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1736 1737 i++; 1738 } 1739 1740 /* Clear the head of the cache sack blocks so we can skip it next time */ 1741 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1742 tp->recv_sack_cache[i].start_seq = 0; 1743 tp->recv_sack_cache[i].end_seq = 0; 1744 } 1745 for (j = 0; j < used_sacks; j++) 1746 tp->recv_sack_cache[i++] = sp[j]; 1747 1748 tcp_mark_lost_retrans(sk); 1749 1750 tcp_verify_left_out(tp); 1751 1752 if ((state.reord < tp->fackets_out) && 1753 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1754 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1755 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1756 1757 out: 1758 1759 #if FASTRETRANS_DEBUG > 0 1760 WARN_ON((int)tp->sacked_out < 0); 1761 WARN_ON((int)tp->lost_out < 0); 1762 WARN_ON((int)tp->retrans_out < 0); 1763 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1764 #endif 1765 return state.flag; 1766 } 1767 1768 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1769 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1770 */ 1771 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1772 { 1773 u32 holes; 1774 1775 holes = max(tp->lost_out, 1U); 1776 holes = min(holes, tp->packets_out); 1777 1778 if ((tp->sacked_out + holes) > tp->packets_out) { 1779 tp->sacked_out = tp->packets_out - holes; 1780 return true; 1781 } 1782 return false; 1783 } 1784 1785 /* If we receive more dupacks than we expected counting segments 1786 * in assumption of absent reordering, interpret this as reordering. 1787 * The only another reason could be bug in receiver TCP. 1788 */ 1789 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1790 { 1791 struct tcp_sock *tp = tcp_sk(sk); 1792 if (tcp_limit_reno_sacked(tp)) 1793 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1794 } 1795 1796 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1797 1798 static void tcp_add_reno_sack(struct sock *sk) 1799 { 1800 struct tcp_sock *tp = tcp_sk(sk); 1801 tp->sacked_out++; 1802 tcp_check_reno_reordering(sk, 0); 1803 tcp_verify_left_out(tp); 1804 } 1805 1806 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1807 1808 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1809 { 1810 struct tcp_sock *tp = tcp_sk(sk); 1811 1812 if (acked > 0) { 1813 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1814 if (acked - 1 >= tp->sacked_out) 1815 tp->sacked_out = 0; 1816 else 1817 tp->sacked_out -= acked - 1; 1818 } 1819 tcp_check_reno_reordering(sk, acked); 1820 tcp_verify_left_out(tp); 1821 } 1822 1823 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1824 { 1825 tp->sacked_out = 0; 1826 } 1827 1828 static int tcp_is_sackfrto(const struct tcp_sock *tp) 1829 { 1830 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 1831 } 1832 1833 /* F-RTO can only be used if TCP has never retransmitted anything other than 1834 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 1835 */ 1836 bool tcp_use_frto(struct sock *sk) 1837 { 1838 const struct tcp_sock *tp = tcp_sk(sk); 1839 const struct inet_connection_sock *icsk = inet_csk(sk); 1840 struct sk_buff *skb; 1841 1842 if (!sysctl_tcp_frto) 1843 return false; 1844 1845 /* MTU probe and F-RTO won't really play nicely along currently */ 1846 if (icsk->icsk_mtup.probe_size) 1847 return false; 1848 1849 if (tcp_is_sackfrto(tp)) 1850 return true; 1851 1852 /* Avoid expensive walking of rexmit queue if possible */ 1853 if (tp->retrans_out > 1) 1854 return false; 1855 1856 skb = tcp_write_queue_head(sk); 1857 if (tcp_skb_is_last(sk, skb)) 1858 return true; 1859 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 1860 tcp_for_write_queue_from(skb, sk) { 1861 if (skb == tcp_send_head(sk)) 1862 break; 1863 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1864 return false; 1865 /* Short-circuit when first non-SACKed skb has been checked */ 1866 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 1867 break; 1868 } 1869 return true; 1870 } 1871 1872 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 1873 * recovery a bit and use heuristics in tcp_process_frto() to detect if 1874 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 1875 * keep retrans_out counting accurate (with SACK F-RTO, other than head 1876 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 1877 * bits are handled if the Loss state is really to be entered (in 1878 * tcp_enter_frto_loss). 1879 * 1880 * Do like tcp_enter_loss() would; when RTO expires the second time it 1881 * does: 1882 * "Reduce ssthresh if it has not yet been made inside this window." 1883 */ 1884 void tcp_enter_frto(struct sock *sk) 1885 { 1886 const struct inet_connection_sock *icsk = inet_csk(sk); 1887 struct tcp_sock *tp = tcp_sk(sk); 1888 struct sk_buff *skb; 1889 1890 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 1891 tp->snd_una == tp->high_seq || 1892 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 1893 !icsk->icsk_retransmits)) { 1894 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1895 /* Our state is too optimistic in ssthresh() call because cwnd 1896 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 1897 * recovery has not yet completed. Pattern would be this: RTO, 1898 * Cumulative ACK, RTO (2xRTO for the same segment does not end 1899 * up here twice). 1900 * RFC4138 should be more specific on what to do, even though 1901 * RTO is quite unlikely to occur after the first Cumulative ACK 1902 * due to back-off and complexity of triggering events ... 1903 */ 1904 if (tp->frto_counter) { 1905 u32 stored_cwnd; 1906 stored_cwnd = tp->snd_cwnd; 1907 tp->snd_cwnd = 2; 1908 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1909 tp->snd_cwnd = stored_cwnd; 1910 } else { 1911 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1912 } 1913 /* ... in theory, cong.control module could do "any tricks" in 1914 * ssthresh(), which means that ca_state, lost bits and lost_out 1915 * counter would have to be faked before the call occurs. We 1916 * consider that too expensive, unlikely and hacky, so modules 1917 * using these in ssthresh() must deal these incompatibility 1918 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 1919 */ 1920 tcp_ca_event(sk, CA_EVENT_FRTO); 1921 } 1922 1923 tp->undo_marker = tp->snd_una; 1924 tp->undo_retrans = 0; 1925 1926 skb = tcp_write_queue_head(sk); 1927 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1928 tp->undo_marker = 0; 1929 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 1930 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1931 tp->retrans_out -= tcp_skb_pcount(skb); 1932 } 1933 tcp_verify_left_out(tp); 1934 1935 /* Too bad if TCP was application limited */ 1936 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 1937 1938 /* Earlier loss recovery underway (see RFC4138; Appendix B). 1939 * The last condition is necessary at least in tp->frto_counter case. 1940 */ 1941 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 1942 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 1943 after(tp->high_seq, tp->snd_una)) { 1944 tp->frto_highmark = tp->high_seq; 1945 } else { 1946 tp->frto_highmark = tp->snd_nxt; 1947 } 1948 tcp_set_ca_state(sk, TCP_CA_Disorder); 1949 tp->high_seq = tp->snd_nxt; 1950 tp->frto_counter = 1; 1951 } 1952 1953 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 1954 * which indicates that we should follow the traditional RTO recovery, 1955 * i.e. mark everything lost and do go-back-N retransmission. 1956 */ 1957 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 1958 { 1959 struct tcp_sock *tp = tcp_sk(sk); 1960 struct sk_buff *skb; 1961 1962 tp->lost_out = 0; 1963 tp->retrans_out = 0; 1964 if (tcp_is_reno(tp)) 1965 tcp_reset_reno_sack(tp); 1966 1967 tcp_for_write_queue(skb, sk) { 1968 if (skb == tcp_send_head(sk)) 1969 break; 1970 1971 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 1972 /* 1973 * Count the retransmission made on RTO correctly (only when 1974 * waiting for the first ACK and did not get it)... 1975 */ 1976 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 1977 /* For some reason this R-bit might get cleared? */ 1978 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 1979 tp->retrans_out += tcp_skb_pcount(skb); 1980 /* ...enter this if branch just for the first segment */ 1981 flag |= FLAG_DATA_ACKED; 1982 } else { 1983 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 1984 tp->undo_marker = 0; 1985 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1986 } 1987 1988 /* Marking forward transmissions that were made after RTO lost 1989 * can cause unnecessary retransmissions in some scenarios, 1990 * SACK blocks will mitigate that in some but not in all cases. 1991 * We used to not mark them but it was causing break-ups with 1992 * receivers that do only in-order receival. 1993 * 1994 * TODO: we could detect presence of such receiver and select 1995 * different behavior per flow. 1996 */ 1997 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 1998 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1999 tp->lost_out += tcp_skb_pcount(skb); 2000 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2001 } 2002 } 2003 tcp_verify_left_out(tp); 2004 2005 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2006 tp->snd_cwnd_cnt = 0; 2007 tp->snd_cwnd_stamp = tcp_time_stamp; 2008 tp->frto_counter = 0; 2009 2010 tp->reordering = min_t(unsigned int, tp->reordering, 2011 sysctl_tcp_reordering); 2012 tcp_set_ca_state(sk, TCP_CA_Loss); 2013 tp->high_seq = tp->snd_nxt; 2014 TCP_ECN_queue_cwr(tp); 2015 2016 tcp_clear_all_retrans_hints(tp); 2017 } 2018 2019 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2020 { 2021 tp->retrans_out = 0; 2022 tp->lost_out = 0; 2023 2024 tp->undo_marker = 0; 2025 tp->undo_retrans = 0; 2026 } 2027 2028 void tcp_clear_retrans(struct tcp_sock *tp) 2029 { 2030 tcp_clear_retrans_partial(tp); 2031 2032 tp->fackets_out = 0; 2033 tp->sacked_out = 0; 2034 } 2035 2036 /* Enter Loss state. If "how" is not zero, forget all SACK information 2037 * and reset tags completely, otherwise preserve SACKs. If receiver 2038 * dropped its ofo queue, we will know this due to reneging detection. 2039 */ 2040 void tcp_enter_loss(struct sock *sk, int how) 2041 { 2042 const struct inet_connection_sock *icsk = inet_csk(sk); 2043 struct tcp_sock *tp = tcp_sk(sk); 2044 struct sk_buff *skb; 2045 2046 /* Reduce ssthresh if it has not yet been made inside this window. */ 2047 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2048 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2049 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2050 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2051 tcp_ca_event(sk, CA_EVENT_LOSS); 2052 } 2053 tp->snd_cwnd = 1; 2054 tp->snd_cwnd_cnt = 0; 2055 tp->snd_cwnd_stamp = tcp_time_stamp; 2056 2057 tcp_clear_retrans_partial(tp); 2058 2059 if (tcp_is_reno(tp)) 2060 tcp_reset_reno_sack(tp); 2061 2062 tp->undo_marker = tp->snd_una; 2063 if (how) { 2064 tp->sacked_out = 0; 2065 tp->fackets_out = 0; 2066 } 2067 tcp_clear_all_retrans_hints(tp); 2068 2069 tcp_for_write_queue(skb, sk) { 2070 if (skb == tcp_send_head(sk)) 2071 break; 2072 2073 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2074 tp->undo_marker = 0; 2075 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2076 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2077 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2078 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2079 tp->lost_out += tcp_skb_pcount(skb); 2080 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2081 } 2082 } 2083 tcp_verify_left_out(tp); 2084 2085 tp->reordering = min_t(unsigned int, tp->reordering, 2086 sysctl_tcp_reordering); 2087 tcp_set_ca_state(sk, TCP_CA_Loss); 2088 tp->high_seq = tp->snd_nxt; 2089 TCP_ECN_queue_cwr(tp); 2090 /* Abort F-RTO algorithm if one is in progress */ 2091 tp->frto_counter = 0; 2092 } 2093 2094 /* If ACK arrived pointing to a remembered SACK, it means that our 2095 * remembered SACKs do not reflect real state of receiver i.e. 2096 * receiver _host_ is heavily congested (or buggy). 2097 * 2098 * Do processing similar to RTO timeout. 2099 */ 2100 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2101 { 2102 if (flag & FLAG_SACK_RENEGING) { 2103 struct inet_connection_sock *icsk = inet_csk(sk); 2104 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2105 2106 tcp_enter_loss(sk, 1); 2107 icsk->icsk_retransmits++; 2108 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2109 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2110 icsk->icsk_rto, TCP_RTO_MAX); 2111 return true; 2112 } 2113 return false; 2114 } 2115 2116 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2117 { 2118 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2119 } 2120 2121 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2122 * counter when SACK is enabled (without SACK, sacked_out is used for 2123 * that purpose). 2124 * 2125 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2126 * segments up to the highest received SACK block so far and holes in 2127 * between them. 2128 * 2129 * With reordering, holes may still be in flight, so RFC3517 recovery 2130 * uses pure sacked_out (total number of SACKed segments) even though 2131 * it violates the RFC that uses duplicate ACKs, often these are equal 2132 * but when e.g. out-of-window ACKs or packet duplication occurs, 2133 * they differ. Since neither occurs due to loss, TCP should really 2134 * ignore them. 2135 */ 2136 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2137 { 2138 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2139 } 2140 2141 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2142 { 2143 struct tcp_sock *tp = tcp_sk(sk); 2144 unsigned long delay; 2145 2146 /* Delay early retransmit and entering fast recovery for 2147 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2148 * available, or RTO is scheduled to fire first. 2149 */ 2150 if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt) 2151 return false; 2152 2153 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2)); 2154 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2155 return false; 2156 2157 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX); 2158 tp->early_retrans_delayed = 1; 2159 return true; 2160 } 2161 2162 static inline int tcp_skb_timedout(const struct sock *sk, 2163 const struct sk_buff *skb) 2164 { 2165 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto; 2166 } 2167 2168 static inline int tcp_head_timedout(const struct sock *sk) 2169 { 2170 const struct tcp_sock *tp = tcp_sk(sk); 2171 2172 return tp->packets_out && 2173 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2174 } 2175 2176 /* Linux NewReno/SACK/FACK/ECN state machine. 2177 * -------------------------------------- 2178 * 2179 * "Open" Normal state, no dubious events, fast path. 2180 * "Disorder" In all the respects it is "Open", 2181 * but requires a bit more attention. It is entered when 2182 * we see some SACKs or dupacks. It is split of "Open" 2183 * mainly to move some processing from fast path to slow one. 2184 * "CWR" CWND was reduced due to some Congestion Notification event. 2185 * It can be ECN, ICMP source quench, local device congestion. 2186 * "Recovery" CWND was reduced, we are fast-retransmitting. 2187 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2188 * 2189 * tcp_fastretrans_alert() is entered: 2190 * - each incoming ACK, if state is not "Open" 2191 * - when arrived ACK is unusual, namely: 2192 * * SACK 2193 * * Duplicate ACK. 2194 * * ECN ECE. 2195 * 2196 * Counting packets in flight is pretty simple. 2197 * 2198 * in_flight = packets_out - left_out + retrans_out 2199 * 2200 * packets_out is SND.NXT-SND.UNA counted in packets. 2201 * 2202 * retrans_out is number of retransmitted segments. 2203 * 2204 * left_out is number of segments left network, but not ACKed yet. 2205 * 2206 * left_out = sacked_out + lost_out 2207 * 2208 * sacked_out: Packets, which arrived to receiver out of order 2209 * and hence not ACKed. With SACKs this number is simply 2210 * amount of SACKed data. Even without SACKs 2211 * it is easy to give pretty reliable estimate of this number, 2212 * counting duplicate ACKs. 2213 * 2214 * lost_out: Packets lost by network. TCP has no explicit 2215 * "loss notification" feedback from network (for now). 2216 * It means that this number can be only _guessed_. 2217 * Actually, it is the heuristics to predict lossage that 2218 * distinguishes different algorithms. 2219 * 2220 * F.e. after RTO, when all the queue is considered as lost, 2221 * lost_out = packets_out and in_flight = retrans_out. 2222 * 2223 * Essentially, we have now two algorithms counting 2224 * lost packets. 2225 * 2226 * FACK: It is the simplest heuristics. As soon as we decided 2227 * that something is lost, we decide that _all_ not SACKed 2228 * packets until the most forward SACK are lost. I.e. 2229 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2230 * It is absolutely correct estimate, if network does not reorder 2231 * packets. And it loses any connection to reality when reordering 2232 * takes place. We use FACK by default until reordering 2233 * is suspected on the path to this destination. 2234 * 2235 * NewReno: when Recovery is entered, we assume that one segment 2236 * is lost (classic Reno). While we are in Recovery and 2237 * a partial ACK arrives, we assume that one more packet 2238 * is lost (NewReno). This heuristics are the same in NewReno 2239 * and SACK. 2240 * 2241 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2242 * deflation etc. CWND is real congestion window, never inflated, changes 2243 * only according to classic VJ rules. 2244 * 2245 * Really tricky (and requiring careful tuning) part of algorithm 2246 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2247 * The first determines the moment _when_ we should reduce CWND and, 2248 * hence, slow down forward transmission. In fact, it determines the moment 2249 * when we decide that hole is caused by loss, rather than by a reorder. 2250 * 2251 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2252 * holes, caused by lost packets. 2253 * 2254 * And the most logically complicated part of algorithm is undo 2255 * heuristics. We detect false retransmits due to both too early 2256 * fast retransmit (reordering) and underestimated RTO, analyzing 2257 * timestamps and D-SACKs. When we detect that some segments were 2258 * retransmitted by mistake and CWND reduction was wrong, we undo 2259 * window reduction and abort recovery phase. This logic is hidden 2260 * inside several functions named tcp_try_undo_<something>. 2261 */ 2262 2263 /* This function decides, when we should leave Disordered state 2264 * and enter Recovery phase, reducing congestion window. 2265 * 2266 * Main question: may we further continue forward transmission 2267 * with the same cwnd? 2268 */ 2269 static bool tcp_time_to_recover(struct sock *sk, int flag) 2270 { 2271 struct tcp_sock *tp = tcp_sk(sk); 2272 __u32 packets_out; 2273 2274 /* Do not perform any recovery during F-RTO algorithm */ 2275 if (tp->frto_counter) 2276 return false; 2277 2278 /* Trick#1: The loss is proven. */ 2279 if (tp->lost_out) 2280 return true; 2281 2282 /* Not-A-Trick#2 : Classic rule... */ 2283 if (tcp_dupack_heuristics(tp) > tp->reordering) 2284 return true; 2285 2286 /* Trick#3 : when we use RFC2988 timer restart, fast 2287 * retransmit can be triggered by timeout of queue head. 2288 */ 2289 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2290 return true; 2291 2292 /* Trick#4: It is still not OK... But will it be useful to delay 2293 * recovery more? 2294 */ 2295 packets_out = tp->packets_out; 2296 if (packets_out <= tp->reordering && 2297 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2298 !tcp_may_send_now(sk)) { 2299 /* We have nothing to send. This connection is limited 2300 * either by receiver window or by application. 2301 */ 2302 return true; 2303 } 2304 2305 /* If a thin stream is detected, retransmit after first 2306 * received dupack. Employ only if SACK is supported in order 2307 * to avoid possible corner-case series of spurious retransmissions 2308 * Use only if there are no unsent data. 2309 */ 2310 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2311 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2312 tcp_is_sack(tp) && !tcp_send_head(sk)) 2313 return true; 2314 2315 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2316 * retransmissions due to small network reorderings, we implement 2317 * Mitigation A.3 in the RFC and delay the retransmission for a short 2318 * interval if appropriate. 2319 */ 2320 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2321 (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) && 2322 !tcp_may_send_now(sk)) 2323 return !tcp_pause_early_retransmit(sk, flag); 2324 2325 return false; 2326 } 2327 2328 /* New heuristics: it is possible only after we switched to restart timer 2329 * each time when something is ACKed. Hence, we can detect timed out packets 2330 * during fast retransmit without falling to slow start. 2331 * 2332 * Usefulness of this as is very questionable, since we should know which of 2333 * the segments is the next to timeout which is relatively expensive to find 2334 * in general case unless we add some data structure just for that. The 2335 * current approach certainly won't find the right one too often and when it 2336 * finally does find _something_ it usually marks large part of the window 2337 * right away (because a retransmission with a larger timestamp blocks the 2338 * loop from advancing). -ij 2339 */ 2340 static void tcp_timeout_skbs(struct sock *sk) 2341 { 2342 struct tcp_sock *tp = tcp_sk(sk); 2343 struct sk_buff *skb; 2344 2345 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk)) 2346 return; 2347 2348 skb = tp->scoreboard_skb_hint; 2349 if (tp->scoreboard_skb_hint == NULL) 2350 skb = tcp_write_queue_head(sk); 2351 2352 tcp_for_write_queue_from(skb, sk) { 2353 if (skb == tcp_send_head(sk)) 2354 break; 2355 if (!tcp_skb_timedout(sk, skb)) 2356 break; 2357 2358 tcp_skb_mark_lost(tp, skb); 2359 } 2360 2361 tp->scoreboard_skb_hint = skb; 2362 2363 tcp_verify_left_out(tp); 2364 } 2365 2366 /* Detect loss in event "A" above by marking head of queue up as lost. 2367 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2368 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2369 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2370 * the maximum SACKed segments to pass before reaching this limit. 2371 */ 2372 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2373 { 2374 struct tcp_sock *tp = tcp_sk(sk); 2375 struct sk_buff *skb; 2376 int cnt, oldcnt; 2377 int err; 2378 unsigned int mss; 2379 /* Use SACK to deduce losses of new sequences sent during recovery */ 2380 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2381 2382 WARN_ON(packets > tp->packets_out); 2383 if (tp->lost_skb_hint) { 2384 skb = tp->lost_skb_hint; 2385 cnt = tp->lost_cnt_hint; 2386 /* Head already handled? */ 2387 if (mark_head && skb != tcp_write_queue_head(sk)) 2388 return; 2389 } else { 2390 skb = tcp_write_queue_head(sk); 2391 cnt = 0; 2392 } 2393 2394 tcp_for_write_queue_from(skb, sk) { 2395 if (skb == tcp_send_head(sk)) 2396 break; 2397 /* TODO: do this better */ 2398 /* this is not the most efficient way to do this... */ 2399 tp->lost_skb_hint = skb; 2400 tp->lost_cnt_hint = cnt; 2401 2402 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2403 break; 2404 2405 oldcnt = cnt; 2406 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2407 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2408 cnt += tcp_skb_pcount(skb); 2409 2410 if (cnt > packets) { 2411 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2412 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2413 (oldcnt >= packets)) 2414 break; 2415 2416 mss = skb_shinfo(skb)->gso_size; 2417 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2418 if (err < 0) 2419 break; 2420 cnt = packets; 2421 } 2422 2423 tcp_skb_mark_lost(tp, skb); 2424 2425 if (mark_head) 2426 break; 2427 } 2428 tcp_verify_left_out(tp); 2429 } 2430 2431 /* Account newly detected lost packet(s) */ 2432 2433 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2434 { 2435 struct tcp_sock *tp = tcp_sk(sk); 2436 2437 if (tcp_is_reno(tp)) { 2438 tcp_mark_head_lost(sk, 1, 1); 2439 } else if (tcp_is_fack(tp)) { 2440 int lost = tp->fackets_out - tp->reordering; 2441 if (lost <= 0) 2442 lost = 1; 2443 tcp_mark_head_lost(sk, lost, 0); 2444 } else { 2445 int sacked_upto = tp->sacked_out - tp->reordering; 2446 if (sacked_upto >= 0) 2447 tcp_mark_head_lost(sk, sacked_upto, 0); 2448 else if (fast_rexmit) 2449 tcp_mark_head_lost(sk, 1, 1); 2450 } 2451 2452 tcp_timeout_skbs(sk); 2453 } 2454 2455 /* CWND moderation, preventing bursts due to too big ACKs 2456 * in dubious situations. 2457 */ 2458 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2459 { 2460 tp->snd_cwnd = min(tp->snd_cwnd, 2461 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2462 tp->snd_cwnd_stamp = tcp_time_stamp; 2463 } 2464 2465 /* Nothing was retransmitted or returned timestamp is less 2466 * than timestamp of the first retransmission. 2467 */ 2468 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2469 { 2470 return !tp->retrans_stamp || 2471 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2472 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2473 } 2474 2475 /* Undo procedures. */ 2476 2477 #if FASTRETRANS_DEBUG > 1 2478 static void DBGUNDO(struct sock *sk, const char *msg) 2479 { 2480 struct tcp_sock *tp = tcp_sk(sk); 2481 struct inet_sock *inet = inet_sk(sk); 2482 2483 if (sk->sk_family == AF_INET) { 2484 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2485 msg, 2486 &inet->inet_daddr, ntohs(inet->inet_dport), 2487 tp->snd_cwnd, tcp_left_out(tp), 2488 tp->snd_ssthresh, tp->prior_ssthresh, 2489 tp->packets_out); 2490 } 2491 #if IS_ENABLED(CONFIG_IPV6) 2492 else if (sk->sk_family == AF_INET6) { 2493 struct ipv6_pinfo *np = inet6_sk(sk); 2494 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2495 msg, 2496 &np->daddr, ntohs(inet->inet_dport), 2497 tp->snd_cwnd, tcp_left_out(tp), 2498 tp->snd_ssthresh, tp->prior_ssthresh, 2499 tp->packets_out); 2500 } 2501 #endif 2502 } 2503 #else 2504 #define DBGUNDO(x...) do { } while (0) 2505 #endif 2506 2507 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh) 2508 { 2509 struct tcp_sock *tp = tcp_sk(sk); 2510 2511 if (tp->prior_ssthresh) { 2512 const struct inet_connection_sock *icsk = inet_csk(sk); 2513 2514 if (icsk->icsk_ca_ops->undo_cwnd) 2515 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2516 else 2517 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2518 2519 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) { 2520 tp->snd_ssthresh = tp->prior_ssthresh; 2521 TCP_ECN_withdraw_cwr(tp); 2522 } 2523 } else { 2524 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2525 } 2526 tp->snd_cwnd_stamp = tcp_time_stamp; 2527 } 2528 2529 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2530 { 2531 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2532 } 2533 2534 /* People celebrate: "We love our President!" */ 2535 static bool tcp_try_undo_recovery(struct sock *sk) 2536 { 2537 struct tcp_sock *tp = tcp_sk(sk); 2538 2539 if (tcp_may_undo(tp)) { 2540 int mib_idx; 2541 2542 /* Happy end! We did not retransmit anything 2543 * or our original transmission succeeded. 2544 */ 2545 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2546 tcp_undo_cwr(sk, true); 2547 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2548 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2549 else 2550 mib_idx = LINUX_MIB_TCPFULLUNDO; 2551 2552 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2553 tp->undo_marker = 0; 2554 } 2555 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2556 /* Hold old state until something *above* high_seq 2557 * is ACKed. For Reno it is MUST to prevent false 2558 * fast retransmits (RFC2582). SACK TCP is safe. */ 2559 tcp_moderate_cwnd(tp); 2560 return true; 2561 } 2562 tcp_set_ca_state(sk, TCP_CA_Open); 2563 return false; 2564 } 2565 2566 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2567 static void tcp_try_undo_dsack(struct sock *sk) 2568 { 2569 struct tcp_sock *tp = tcp_sk(sk); 2570 2571 if (tp->undo_marker && !tp->undo_retrans) { 2572 DBGUNDO(sk, "D-SACK"); 2573 tcp_undo_cwr(sk, true); 2574 tp->undo_marker = 0; 2575 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2576 } 2577 } 2578 2579 /* We can clear retrans_stamp when there are no retransmissions in the 2580 * window. It would seem that it is trivially available for us in 2581 * tp->retrans_out, however, that kind of assumptions doesn't consider 2582 * what will happen if errors occur when sending retransmission for the 2583 * second time. ...It could the that such segment has only 2584 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2585 * the head skb is enough except for some reneging corner cases that 2586 * are not worth the effort. 2587 * 2588 * Main reason for all this complexity is the fact that connection dying 2589 * time now depends on the validity of the retrans_stamp, in particular, 2590 * that successive retransmissions of a segment must not advance 2591 * retrans_stamp under any conditions. 2592 */ 2593 static bool tcp_any_retrans_done(const struct sock *sk) 2594 { 2595 const struct tcp_sock *tp = tcp_sk(sk); 2596 struct sk_buff *skb; 2597 2598 if (tp->retrans_out) 2599 return true; 2600 2601 skb = tcp_write_queue_head(sk); 2602 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2603 return true; 2604 2605 return false; 2606 } 2607 2608 /* Undo during fast recovery after partial ACK. */ 2609 2610 static int tcp_try_undo_partial(struct sock *sk, int acked) 2611 { 2612 struct tcp_sock *tp = tcp_sk(sk); 2613 /* Partial ACK arrived. Force Hoe's retransmit. */ 2614 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2615 2616 if (tcp_may_undo(tp)) { 2617 /* Plain luck! Hole if filled with delayed 2618 * packet, rather than with a retransmit. 2619 */ 2620 if (!tcp_any_retrans_done(sk)) 2621 tp->retrans_stamp = 0; 2622 2623 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2624 2625 DBGUNDO(sk, "Hoe"); 2626 tcp_undo_cwr(sk, false); 2627 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2628 2629 /* So... Do not make Hoe's retransmit yet. 2630 * If the first packet was delayed, the rest 2631 * ones are most probably delayed as well. 2632 */ 2633 failed = 0; 2634 } 2635 return failed; 2636 } 2637 2638 /* Undo during loss recovery after partial ACK. */ 2639 static bool tcp_try_undo_loss(struct sock *sk) 2640 { 2641 struct tcp_sock *tp = tcp_sk(sk); 2642 2643 if (tcp_may_undo(tp)) { 2644 struct sk_buff *skb; 2645 tcp_for_write_queue(skb, sk) { 2646 if (skb == tcp_send_head(sk)) 2647 break; 2648 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2649 } 2650 2651 tcp_clear_all_retrans_hints(tp); 2652 2653 DBGUNDO(sk, "partial loss"); 2654 tp->lost_out = 0; 2655 tcp_undo_cwr(sk, true); 2656 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2657 inet_csk(sk)->icsk_retransmits = 0; 2658 tp->undo_marker = 0; 2659 if (tcp_is_sack(tp)) 2660 tcp_set_ca_state(sk, TCP_CA_Open); 2661 return true; 2662 } 2663 return false; 2664 } 2665 2666 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2667 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2668 * It computes the number of packets to send (sndcnt) based on packets newly 2669 * delivered: 2670 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2671 * cwnd reductions across a full RTT. 2672 * 2) If packets in flight is lower than ssthresh (such as due to excess 2673 * losses and/or application stalls), do not perform any further cwnd 2674 * reductions, but instead slow start up to ssthresh. 2675 */ 2676 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh) 2677 { 2678 struct tcp_sock *tp = tcp_sk(sk); 2679 2680 tp->high_seq = tp->snd_nxt; 2681 tp->snd_cwnd_cnt = 0; 2682 tp->prior_cwnd = tp->snd_cwnd; 2683 tp->prr_delivered = 0; 2684 tp->prr_out = 0; 2685 if (set_ssthresh) 2686 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2687 TCP_ECN_queue_cwr(tp); 2688 } 2689 2690 static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, 2691 int fast_rexmit) 2692 { 2693 struct tcp_sock *tp = tcp_sk(sk); 2694 int sndcnt = 0; 2695 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2696 2697 tp->prr_delivered += newly_acked_sacked; 2698 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2699 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2700 tp->prior_cwnd - 1; 2701 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2702 } else { 2703 sndcnt = min_t(int, delta, 2704 max_t(int, tp->prr_delivered - tp->prr_out, 2705 newly_acked_sacked) + 1); 2706 } 2707 2708 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2709 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2710 } 2711 2712 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2713 { 2714 struct tcp_sock *tp = tcp_sk(sk); 2715 2716 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2717 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2718 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2719 tp->snd_cwnd = tp->snd_ssthresh; 2720 tp->snd_cwnd_stamp = tcp_time_stamp; 2721 } 2722 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2723 } 2724 2725 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2726 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 2727 { 2728 struct tcp_sock *tp = tcp_sk(sk); 2729 2730 tp->prior_ssthresh = 0; 2731 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2732 tp->undo_marker = 0; 2733 tcp_init_cwnd_reduction(sk, set_ssthresh); 2734 tcp_set_ca_state(sk, TCP_CA_CWR); 2735 } 2736 } 2737 2738 static void tcp_try_keep_open(struct sock *sk) 2739 { 2740 struct tcp_sock *tp = tcp_sk(sk); 2741 int state = TCP_CA_Open; 2742 2743 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2744 state = TCP_CA_Disorder; 2745 2746 if (inet_csk(sk)->icsk_ca_state != state) { 2747 tcp_set_ca_state(sk, state); 2748 tp->high_seq = tp->snd_nxt; 2749 } 2750 } 2751 2752 static void tcp_try_to_open(struct sock *sk, int flag, int newly_acked_sacked) 2753 { 2754 struct tcp_sock *tp = tcp_sk(sk); 2755 2756 tcp_verify_left_out(tp); 2757 2758 if (!tp->frto_counter && !tcp_any_retrans_done(sk)) 2759 tp->retrans_stamp = 0; 2760 2761 if (flag & FLAG_ECE) 2762 tcp_enter_cwr(sk, 1); 2763 2764 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2765 tcp_try_keep_open(sk); 2766 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2767 tcp_moderate_cwnd(tp); 2768 } else { 2769 tcp_cwnd_reduction(sk, newly_acked_sacked, 0); 2770 } 2771 } 2772 2773 static void tcp_mtup_probe_failed(struct sock *sk) 2774 { 2775 struct inet_connection_sock *icsk = inet_csk(sk); 2776 2777 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2778 icsk->icsk_mtup.probe_size = 0; 2779 } 2780 2781 static void tcp_mtup_probe_success(struct sock *sk) 2782 { 2783 struct tcp_sock *tp = tcp_sk(sk); 2784 struct inet_connection_sock *icsk = inet_csk(sk); 2785 2786 /* FIXME: breaks with very large cwnd */ 2787 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2788 tp->snd_cwnd = tp->snd_cwnd * 2789 tcp_mss_to_mtu(sk, tp->mss_cache) / 2790 icsk->icsk_mtup.probe_size; 2791 tp->snd_cwnd_cnt = 0; 2792 tp->snd_cwnd_stamp = tcp_time_stamp; 2793 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2794 2795 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2796 icsk->icsk_mtup.probe_size = 0; 2797 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2798 } 2799 2800 /* Do a simple retransmit without using the backoff mechanisms in 2801 * tcp_timer. This is used for path mtu discovery. 2802 * The socket is already locked here. 2803 */ 2804 void tcp_simple_retransmit(struct sock *sk) 2805 { 2806 const struct inet_connection_sock *icsk = inet_csk(sk); 2807 struct tcp_sock *tp = tcp_sk(sk); 2808 struct sk_buff *skb; 2809 unsigned int mss = tcp_current_mss(sk); 2810 u32 prior_lost = tp->lost_out; 2811 2812 tcp_for_write_queue(skb, sk) { 2813 if (skb == tcp_send_head(sk)) 2814 break; 2815 if (tcp_skb_seglen(skb) > mss && 2816 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2817 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2818 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2819 tp->retrans_out -= tcp_skb_pcount(skb); 2820 } 2821 tcp_skb_mark_lost_uncond_verify(tp, skb); 2822 } 2823 } 2824 2825 tcp_clear_retrans_hints_partial(tp); 2826 2827 if (prior_lost == tp->lost_out) 2828 return; 2829 2830 if (tcp_is_reno(tp)) 2831 tcp_limit_reno_sacked(tp); 2832 2833 tcp_verify_left_out(tp); 2834 2835 /* Don't muck with the congestion window here. 2836 * Reason is that we do not increase amount of _data_ 2837 * in network, but units changed and effective 2838 * cwnd/ssthresh really reduced now. 2839 */ 2840 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2841 tp->high_seq = tp->snd_nxt; 2842 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2843 tp->prior_ssthresh = 0; 2844 tp->undo_marker = 0; 2845 tcp_set_ca_state(sk, TCP_CA_Loss); 2846 } 2847 tcp_xmit_retransmit_queue(sk); 2848 } 2849 EXPORT_SYMBOL(tcp_simple_retransmit); 2850 2851 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2852 { 2853 struct tcp_sock *tp = tcp_sk(sk); 2854 int mib_idx; 2855 2856 if (tcp_is_reno(tp)) 2857 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2858 else 2859 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2860 2861 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2862 2863 tp->prior_ssthresh = 0; 2864 tp->undo_marker = tp->snd_una; 2865 tp->undo_retrans = tp->retrans_out; 2866 2867 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2868 if (!ece_ack) 2869 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2870 tcp_init_cwnd_reduction(sk, true); 2871 } 2872 tcp_set_ca_state(sk, TCP_CA_Recovery); 2873 } 2874 2875 /* Process an event, which can update packets-in-flight not trivially. 2876 * Main goal of this function is to calculate new estimate for left_out, 2877 * taking into account both packets sitting in receiver's buffer and 2878 * packets lost by network. 2879 * 2880 * Besides that it does CWND reduction, when packet loss is detected 2881 * and changes state of machine. 2882 * 2883 * It does _not_ decide what to send, it is made in function 2884 * tcp_xmit_retransmit_queue(). 2885 */ 2886 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, 2887 int prior_sacked, bool is_dupack, 2888 int flag) 2889 { 2890 struct inet_connection_sock *icsk = inet_csk(sk); 2891 struct tcp_sock *tp = tcp_sk(sk); 2892 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2893 (tcp_fackets_out(tp) > tp->reordering)); 2894 int newly_acked_sacked = 0; 2895 int fast_rexmit = 0; 2896 2897 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2898 tp->sacked_out = 0; 2899 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2900 tp->fackets_out = 0; 2901 2902 /* Now state machine starts. 2903 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2904 if (flag & FLAG_ECE) 2905 tp->prior_ssthresh = 0; 2906 2907 /* B. In all the states check for reneging SACKs. */ 2908 if (tcp_check_sack_reneging(sk, flag)) 2909 return; 2910 2911 /* C. Check consistency of the current state. */ 2912 tcp_verify_left_out(tp); 2913 2914 /* D. Check state exit conditions. State can be terminated 2915 * when high_seq is ACKed. */ 2916 if (icsk->icsk_ca_state == TCP_CA_Open) { 2917 WARN_ON(tp->retrans_out != 0); 2918 tp->retrans_stamp = 0; 2919 } else if (!before(tp->snd_una, tp->high_seq)) { 2920 switch (icsk->icsk_ca_state) { 2921 case TCP_CA_Loss: 2922 icsk->icsk_retransmits = 0; 2923 if (tcp_try_undo_recovery(sk)) 2924 return; 2925 break; 2926 2927 case TCP_CA_CWR: 2928 /* CWR is to be held something *above* high_seq 2929 * is ACKed for CWR bit to reach receiver. */ 2930 if (tp->snd_una != tp->high_seq) { 2931 tcp_end_cwnd_reduction(sk); 2932 tcp_set_ca_state(sk, TCP_CA_Open); 2933 } 2934 break; 2935 2936 case TCP_CA_Recovery: 2937 if (tcp_is_reno(tp)) 2938 tcp_reset_reno_sack(tp); 2939 if (tcp_try_undo_recovery(sk)) 2940 return; 2941 tcp_end_cwnd_reduction(sk); 2942 break; 2943 } 2944 } 2945 2946 /* E. Process state. */ 2947 switch (icsk->icsk_ca_state) { 2948 case TCP_CA_Recovery: 2949 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2950 if (tcp_is_reno(tp) && is_dupack) 2951 tcp_add_reno_sack(sk); 2952 } else 2953 do_lost = tcp_try_undo_partial(sk, pkts_acked); 2954 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked; 2955 break; 2956 case TCP_CA_Loss: 2957 if (flag & FLAG_DATA_ACKED) 2958 icsk->icsk_retransmits = 0; 2959 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 2960 tcp_reset_reno_sack(tp); 2961 if (!tcp_try_undo_loss(sk)) { 2962 tcp_moderate_cwnd(tp); 2963 tcp_xmit_retransmit_queue(sk); 2964 return; 2965 } 2966 if (icsk->icsk_ca_state != TCP_CA_Open) 2967 return; 2968 /* Loss is undone; fall through to processing in Open state. */ 2969 default: 2970 if (tcp_is_reno(tp)) { 2971 if (flag & FLAG_SND_UNA_ADVANCED) 2972 tcp_reset_reno_sack(tp); 2973 if (is_dupack) 2974 tcp_add_reno_sack(sk); 2975 } 2976 newly_acked_sacked = pkts_acked + tp->sacked_out - prior_sacked; 2977 2978 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2979 tcp_try_undo_dsack(sk); 2980 2981 if (!tcp_time_to_recover(sk, flag)) { 2982 tcp_try_to_open(sk, flag, newly_acked_sacked); 2983 return; 2984 } 2985 2986 /* MTU probe failure: don't reduce cwnd */ 2987 if (icsk->icsk_ca_state < TCP_CA_CWR && 2988 icsk->icsk_mtup.probe_size && 2989 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2990 tcp_mtup_probe_failed(sk); 2991 /* Restores the reduction we did in tcp_mtup_probe() */ 2992 tp->snd_cwnd++; 2993 tcp_simple_retransmit(sk); 2994 return; 2995 } 2996 2997 /* Otherwise enter Recovery state */ 2998 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2999 fast_rexmit = 1; 3000 } 3001 3002 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3003 tcp_update_scoreboard(sk, fast_rexmit); 3004 tcp_cwnd_reduction(sk, newly_acked_sacked, fast_rexmit); 3005 tcp_xmit_retransmit_queue(sk); 3006 } 3007 3008 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3009 { 3010 tcp_rtt_estimator(sk, seq_rtt); 3011 tcp_set_rto(sk); 3012 inet_csk(sk)->icsk_backoff = 0; 3013 } 3014 EXPORT_SYMBOL(tcp_valid_rtt_meas); 3015 3016 /* Read draft-ietf-tcplw-high-performance before mucking 3017 * with this code. (Supersedes RFC1323) 3018 */ 3019 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3020 { 3021 /* RTTM Rule: A TSecr value received in a segment is used to 3022 * update the averaged RTT measurement only if the segment 3023 * acknowledges some new data, i.e., only if it advances the 3024 * left edge of the send window. 3025 * 3026 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3027 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3028 * 3029 * Changed: reset backoff as soon as we see the first valid sample. 3030 * If we do not, we get strongly overestimated rto. With timestamps 3031 * samples are accepted even from very old segments: f.e., when rtt=1 3032 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3033 * answer arrives rto becomes 120 seconds! If at least one of segments 3034 * in window is lost... Voila. --ANK (010210) 3035 */ 3036 struct tcp_sock *tp = tcp_sk(sk); 3037 3038 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3039 } 3040 3041 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3042 { 3043 /* We don't have a timestamp. Can only use 3044 * packets that are not retransmitted to determine 3045 * rtt estimates. Also, we must not reset the 3046 * backoff for rto until we get a non-retransmitted 3047 * packet. This allows us to deal with a situation 3048 * where the network delay has increased suddenly. 3049 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3050 */ 3051 3052 if (flag & FLAG_RETRANS_DATA_ACKED) 3053 return; 3054 3055 tcp_valid_rtt_meas(sk, seq_rtt); 3056 } 3057 3058 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3059 const s32 seq_rtt) 3060 { 3061 const struct tcp_sock *tp = tcp_sk(sk); 3062 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3063 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3064 tcp_ack_saw_tstamp(sk, flag); 3065 else if (seq_rtt >= 0) 3066 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3067 } 3068 3069 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3070 { 3071 const struct inet_connection_sock *icsk = inet_csk(sk); 3072 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3073 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3074 } 3075 3076 /* Restart timer after forward progress on connection. 3077 * RFC2988 recommends to restart timer to now+rto. 3078 */ 3079 void tcp_rearm_rto(struct sock *sk) 3080 { 3081 struct tcp_sock *tp = tcp_sk(sk); 3082 3083 /* If the retrans timer is currently being used by Fast Open 3084 * for SYN-ACK retrans purpose, stay put. 3085 */ 3086 if (tp->fastopen_rsk) 3087 return; 3088 3089 if (!tp->packets_out) { 3090 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3091 } else { 3092 u32 rto = inet_csk(sk)->icsk_rto; 3093 /* Offset the time elapsed after installing regular RTO */ 3094 if (tp->early_retrans_delayed) { 3095 struct sk_buff *skb = tcp_write_queue_head(sk); 3096 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto; 3097 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 3098 /* delta may not be positive if the socket is locked 3099 * when the delayed ER timer fires and is rescheduled. 3100 */ 3101 if (delta > 0) 3102 rto = delta; 3103 } 3104 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3105 TCP_RTO_MAX); 3106 } 3107 tp->early_retrans_delayed = 0; 3108 } 3109 3110 /* This function is called when the delayed ER timer fires. TCP enters 3111 * fast recovery and performs fast-retransmit. 3112 */ 3113 void tcp_resume_early_retransmit(struct sock *sk) 3114 { 3115 struct tcp_sock *tp = tcp_sk(sk); 3116 3117 tcp_rearm_rto(sk); 3118 3119 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3120 if (!tp->do_early_retrans) 3121 return; 3122 3123 tcp_enter_recovery(sk, false); 3124 tcp_update_scoreboard(sk, 1); 3125 tcp_xmit_retransmit_queue(sk); 3126 } 3127 3128 /* If we get here, the whole TSO packet has not been acked. */ 3129 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3130 { 3131 struct tcp_sock *tp = tcp_sk(sk); 3132 u32 packets_acked; 3133 3134 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3135 3136 packets_acked = tcp_skb_pcount(skb); 3137 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3138 return 0; 3139 packets_acked -= tcp_skb_pcount(skb); 3140 3141 if (packets_acked) { 3142 BUG_ON(tcp_skb_pcount(skb) == 0); 3143 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3144 } 3145 3146 return packets_acked; 3147 } 3148 3149 /* Remove acknowledged frames from the retransmission queue. If our packet 3150 * is before the ack sequence we can discard it as it's confirmed to have 3151 * arrived at the other end. 3152 */ 3153 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3154 u32 prior_snd_una) 3155 { 3156 struct tcp_sock *tp = tcp_sk(sk); 3157 const struct inet_connection_sock *icsk = inet_csk(sk); 3158 struct sk_buff *skb; 3159 u32 now = tcp_time_stamp; 3160 int fully_acked = true; 3161 int flag = 0; 3162 u32 pkts_acked = 0; 3163 u32 reord = tp->packets_out; 3164 u32 prior_sacked = tp->sacked_out; 3165 s32 seq_rtt = -1; 3166 s32 ca_seq_rtt = -1; 3167 ktime_t last_ackt = net_invalid_timestamp(); 3168 3169 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3170 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3171 u32 acked_pcount; 3172 u8 sacked = scb->sacked; 3173 3174 /* Determine how many packets and what bytes were acked, tso and else */ 3175 if (after(scb->end_seq, tp->snd_una)) { 3176 if (tcp_skb_pcount(skb) == 1 || 3177 !after(tp->snd_una, scb->seq)) 3178 break; 3179 3180 acked_pcount = tcp_tso_acked(sk, skb); 3181 if (!acked_pcount) 3182 break; 3183 3184 fully_acked = false; 3185 } else { 3186 acked_pcount = tcp_skb_pcount(skb); 3187 } 3188 3189 if (sacked & TCPCB_RETRANS) { 3190 if (sacked & TCPCB_SACKED_RETRANS) 3191 tp->retrans_out -= acked_pcount; 3192 flag |= FLAG_RETRANS_DATA_ACKED; 3193 ca_seq_rtt = -1; 3194 seq_rtt = -1; 3195 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3196 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3197 } else { 3198 ca_seq_rtt = now - scb->when; 3199 last_ackt = skb->tstamp; 3200 if (seq_rtt < 0) { 3201 seq_rtt = ca_seq_rtt; 3202 } 3203 if (!(sacked & TCPCB_SACKED_ACKED)) 3204 reord = min(pkts_acked, reord); 3205 } 3206 3207 if (sacked & TCPCB_SACKED_ACKED) 3208 tp->sacked_out -= acked_pcount; 3209 if (sacked & TCPCB_LOST) 3210 tp->lost_out -= acked_pcount; 3211 3212 tp->packets_out -= acked_pcount; 3213 pkts_acked += acked_pcount; 3214 3215 /* Initial outgoing SYN's get put onto the write_queue 3216 * just like anything else we transmit. It is not 3217 * true data, and if we misinform our callers that 3218 * this ACK acks real data, we will erroneously exit 3219 * connection startup slow start one packet too 3220 * quickly. This is severely frowned upon behavior. 3221 */ 3222 if (!(scb->tcp_flags & TCPHDR_SYN)) { 3223 flag |= FLAG_DATA_ACKED; 3224 } else { 3225 flag |= FLAG_SYN_ACKED; 3226 tp->retrans_stamp = 0; 3227 } 3228 3229 if (!fully_acked) 3230 break; 3231 3232 tcp_unlink_write_queue(skb, sk); 3233 sk_wmem_free_skb(sk, skb); 3234 tp->scoreboard_skb_hint = NULL; 3235 if (skb == tp->retransmit_skb_hint) 3236 tp->retransmit_skb_hint = NULL; 3237 if (skb == tp->lost_skb_hint) 3238 tp->lost_skb_hint = NULL; 3239 } 3240 3241 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3242 tp->snd_up = tp->snd_una; 3243 3244 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3245 flag |= FLAG_SACK_RENEGING; 3246 3247 if (flag & FLAG_ACKED) { 3248 const struct tcp_congestion_ops *ca_ops 3249 = inet_csk(sk)->icsk_ca_ops; 3250 3251 if (unlikely(icsk->icsk_mtup.probe_size && 3252 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3253 tcp_mtup_probe_success(sk); 3254 } 3255 3256 tcp_ack_update_rtt(sk, flag, seq_rtt); 3257 tcp_rearm_rto(sk); 3258 3259 if (tcp_is_reno(tp)) { 3260 tcp_remove_reno_sacks(sk, pkts_acked); 3261 } else { 3262 int delta; 3263 3264 /* Non-retransmitted hole got filled? That's reordering */ 3265 if (reord < prior_fackets) 3266 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3267 3268 delta = tcp_is_fack(tp) ? pkts_acked : 3269 prior_sacked - tp->sacked_out; 3270 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3271 } 3272 3273 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3274 3275 if (ca_ops->pkts_acked) { 3276 s32 rtt_us = -1; 3277 3278 /* Is the ACK triggering packet unambiguous? */ 3279 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3280 /* High resolution needed and available? */ 3281 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3282 !ktime_equal(last_ackt, 3283 net_invalid_timestamp())) 3284 rtt_us = ktime_us_delta(ktime_get_real(), 3285 last_ackt); 3286 else if (ca_seq_rtt >= 0) 3287 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3288 } 3289 3290 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3291 } 3292 } 3293 3294 #if FASTRETRANS_DEBUG > 0 3295 WARN_ON((int)tp->sacked_out < 0); 3296 WARN_ON((int)tp->lost_out < 0); 3297 WARN_ON((int)tp->retrans_out < 0); 3298 if (!tp->packets_out && tcp_is_sack(tp)) { 3299 icsk = inet_csk(sk); 3300 if (tp->lost_out) { 3301 pr_debug("Leak l=%u %d\n", 3302 tp->lost_out, icsk->icsk_ca_state); 3303 tp->lost_out = 0; 3304 } 3305 if (tp->sacked_out) { 3306 pr_debug("Leak s=%u %d\n", 3307 tp->sacked_out, icsk->icsk_ca_state); 3308 tp->sacked_out = 0; 3309 } 3310 if (tp->retrans_out) { 3311 pr_debug("Leak r=%u %d\n", 3312 tp->retrans_out, icsk->icsk_ca_state); 3313 tp->retrans_out = 0; 3314 } 3315 } 3316 #endif 3317 return flag; 3318 } 3319 3320 static void tcp_ack_probe(struct sock *sk) 3321 { 3322 const struct tcp_sock *tp = tcp_sk(sk); 3323 struct inet_connection_sock *icsk = inet_csk(sk); 3324 3325 /* Was it a usable window open? */ 3326 3327 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3328 icsk->icsk_backoff = 0; 3329 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3330 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3331 * This function is not for random using! 3332 */ 3333 } else { 3334 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3335 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3336 TCP_RTO_MAX); 3337 } 3338 } 3339 3340 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3341 { 3342 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3343 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3344 } 3345 3346 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3347 { 3348 const struct tcp_sock *tp = tcp_sk(sk); 3349 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3350 !tcp_in_cwnd_reduction(sk); 3351 } 3352 3353 /* Check that window update is acceptable. 3354 * The function assumes that snd_una<=ack<=snd_next. 3355 */ 3356 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3357 const u32 ack, const u32 ack_seq, 3358 const u32 nwin) 3359 { 3360 return after(ack, tp->snd_una) || 3361 after(ack_seq, tp->snd_wl1) || 3362 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3363 } 3364 3365 /* Update our send window. 3366 * 3367 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3368 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3369 */ 3370 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3371 u32 ack_seq) 3372 { 3373 struct tcp_sock *tp = tcp_sk(sk); 3374 int flag = 0; 3375 u32 nwin = ntohs(tcp_hdr(skb)->window); 3376 3377 if (likely(!tcp_hdr(skb)->syn)) 3378 nwin <<= tp->rx_opt.snd_wscale; 3379 3380 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3381 flag |= FLAG_WIN_UPDATE; 3382 tcp_update_wl(tp, ack_seq); 3383 3384 if (tp->snd_wnd != nwin) { 3385 tp->snd_wnd = nwin; 3386 3387 /* Note, it is the only place, where 3388 * fast path is recovered for sending TCP. 3389 */ 3390 tp->pred_flags = 0; 3391 tcp_fast_path_check(sk); 3392 3393 if (nwin > tp->max_window) { 3394 tp->max_window = nwin; 3395 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3396 } 3397 } 3398 } 3399 3400 tp->snd_una = ack; 3401 3402 return flag; 3403 } 3404 3405 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3406 * continue in congestion avoidance. 3407 */ 3408 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3409 { 3410 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3411 tp->snd_cwnd_cnt = 0; 3412 TCP_ECN_queue_cwr(tp); 3413 tcp_moderate_cwnd(tp); 3414 } 3415 3416 /* A conservative spurious RTO response algorithm: reduce cwnd using 3417 * PRR and continue in congestion avoidance. 3418 */ 3419 static void tcp_cwr_spur_to_response(struct sock *sk) 3420 { 3421 tcp_enter_cwr(sk, 0); 3422 } 3423 3424 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3425 { 3426 if (flag & FLAG_ECE) 3427 tcp_cwr_spur_to_response(sk); 3428 else 3429 tcp_undo_cwr(sk, true); 3430 } 3431 3432 /* F-RTO spurious RTO detection algorithm (RFC4138) 3433 * 3434 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3435 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3436 * window (but not to or beyond highest sequence sent before RTO): 3437 * On First ACK, send two new segments out. 3438 * On Second ACK, RTO was likely spurious. Do spurious response (response 3439 * algorithm is not part of the F-RTO detection algorithm 3440 * given in RFC4138 but can be selected separately). 3441 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3442 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3443 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3444 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3445 * 3446 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3447 * original window even after we transmit two new data segments. 3448 * 3449 * SACK version: 3450 * on first step, wait until first cumulative ACK arrives, then move to 3451 * the second step. In second step, the next ACK decides. 3452 * 3453 * F-RTO is implemented (mainly) in four functions: 3454 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3455 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3456 * called when tcp_use_frto() showed green light 3457 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3458 * - tcp_enter_frto_loss() is called if there is not enough evidence 3459 * to prove that the RTO is indeed spurious. It transfers the control 3460 * from F-RTO to the conventional RTO recovery 3461 */ 3462 static bool tcp_process_frto(struct sock *sk, int flag) 3463 { 3464 struct tcp_sock *tp = tcp_sk(sk); 3465 3466 tcp_verify_left_out(tp); 3467 3468 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3469 if (flag & FLAG_DATA_ACKED) 3470 inet_csk(sk)->icsk_retransmits = 0; 3471 3472 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3473 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3474 tp->undo_marker = 0; 3475 3476 if (!before(tp->snd_una, tp->frto_highmark)) { 3477 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3478 return true; 3479 } 3480 3481 if (!tcp_is_sackfrto(tp)) { 3482 /* RFC4138 shortcoming in step 2; should also have case c): 3483 * ACK isn't duplicate nor advances window, e.g., opposite dir 3484 * data, winupdate 3485 */ 3486 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3487 return true; 3488 3489 if (!(flag & FLAG_DATA_ACKED)) { 3490 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3491 flag); 3492 return true; 3493 } 3494 } else { 3495 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3496 if (!tcp_packets_in_flight(tp)) { 3497 tcp_enter_frto_loss(sk, 2, flag); 3498 return true; 3499 } 3500 3501 /* Prevent sending of new data. */ 3502 tp->snd_cwnd = min(tp->snd_cwnd, 3503 tcp_packets_in_flight(tp)); 3504 return true; 3505 } 3506 3507 if ((tp->frto_counter >= 2) && 3508 (!(flag & FLAG_FORWARD_PROGRESS) || 3509 ((flag & FLAG_DATA_SACKED) && 3510 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3511 /* RFC4138 shortcoming (see comment above) */ 3512 if (!(flag & FLAG_FORWARD_PROGRESS) && 3513 (flag & FLAG_NOT_DUP)) 3514 return true; 3515 3516 tcp_enter_frto_loss(sk, 3, flag); 3517 return true; 3518 } 3519 } 3520 3521 if (tp->frto_counter == 1) { 3522 /* tcp_may_send_now needs to see updated state */ 3523 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3524 tp->frto_counter = 2; 3525 3526 if (!tcp_may_send_now(sk)) 3527 tcp_enter_frto_loss(sk, 2, flag); 3528 3529 return true; 3530 } else { 3531 switch (sysctl_tcp_frto_response) { 3532 case 2: 3533 tcp_undo_spur_to_response(sk, flag); 3534 break; 3535 case 1: 3536 tcp_conservative_spur_to_response(tp); 3537 break; 3538 default: 3539 tcp_cwr_spur_to_response(sk); 3540 break; 3541 } 3542 tp->frto_counter = 0; 3543 tp->undo_marker = 0; 3544 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3545 } 3546 return false; 3547 } 3548 3549 /* RFC 5961 7 [ACK Throttling] */ 3550 static void tcp_send_challenge_ack(struct sock *sk) 3551 { 3552 /* unprotected vars, we dont care of overwrites */ 3553 static u32 challenge_timestamp; 3554 static unsigned int challenge_count; 3555 u32 now = jiffies / HZ; 3556 3557 if (now != challenge_timestamp) { 3558 challenge_timestamp = now; 3559 challenge_count = 0; 3560 } 3561 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3562 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3563 tcp_send_ack(sk); 3564 } 3565 } 3566 3567 /* This routine deals with incoming acks, but not outgoing ones. */ 3568 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3569 { 3570 struct inet_connection_sock *icsk = inet_csk(sk); 3571 struct tcp_sock *tp = tcp_sk(sk); 3572 u32 prior_snd_una = tp->snd_una; 3573 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3574 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3575 bool is_dupack = false; 3576 u32 prior_in_flight; 3577 u32 prior_fackets; 3578 int prior_packets; 3579 int prior_sacked = tp->sacked_out; 3580 int pkts_acked = 0; 3581 bool frto_cwnd = false; 3582 3583 /* If the ack is older than previous acks 3584 * then we can probably ignore it. 3585 */ 3586 if (before(ack, prior_snd_una)) { 3587 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3588 if (before(ack, prior_snd_una - tp->max_window)) { 3589 tcp_send_challenge_ack(sk); 3590 return -1; 3591 } 3592 goto old_ack; 3593 } 3594 3595 /* If the ack includes data we haven't sent yet, discard 3596 * this segment (RFC793 Section 3.9). 3597 */ 3598 if (after(ack, tp->snd_nxt)) 3599 goto invalid_ack; 3600 3601 if (tp->early_retrans_delayed) 3602 tcp_rearm_rto(sk); 3603 3604 if (after(ack, prior_snd_una)) 3605 flag |= FLAG_SND_UNA_ADVANCED; 3606 3607 prior_fackets = tp->fackets_out; 3608 prior_in_flight = tcp_packets_in_flight(tp); 3609 3610 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3611 /* Window is constant, pure forward advance. 3612 * No more checks are required. 3613 * Note, we use the fact that SND.UNA>=SND.WL2. 3614 */ 3615 tcp_update_wl(tp, ack_seq); 3616 tp->snd_una = ack; 3617 flag |= FLAG_WIN_UPDATE; 3618 3619 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3620 3621 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3622 } else { 3623 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3624 flag |= FLAG_DATA; 3625 else 3626 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3627 3628 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3629 3630 if (TCP_SKB_CB(skb)->sacked) 3631 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3632 3633 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3634 flag |= FLAG_ECE; 3635 3636 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3637 } 3638 3639 /* We passed data and got it acked, remove any soft error 3640 * log. Something worked... 3641 */ 3642 sk->sk_err_soft = 0; 3643 icsk->icsk_probes_out = 0; 3644 tp->rcv_tstamp = tcp_time_stamp; 3645 prior_packets = tp->packets_out; 3646 if (!prior_packets) 3647 goto no_queue; 3648 3649 /* See if we can take anything off of the retransmit queue. */ 3650 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3651 3652 pkts_acked = prior_packets - tp->packets_out; 3653 3654 if (tp->frto_counter) 3655 frto_cwnd = tcp_process_frto(sk, flag); 3656 /* Guarantee sacktag reordering detection against wrap-arounds */ 3657 if (before(tp->frto_highmark, tp->snd_una)) 3658 tp->frto_highmark = 0; 3659 3660 if (tcp_ack_is_dubious(sk, flag)) { 3661 /* Advance CWND, if state allows this. */ 3662 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3663 tcp_may_raise_cwnd(sk, flag)) 3664 tcp_cong_avoid(sk, ack, prior_in_flight); 3665 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3666 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked, 3667 is_dupack, flag); 3668 } else { 3669 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3670 tcp_cong_avoid(sk, ack, prior_in_flight); 3671 } 3672 3673 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3674 struct dst_entry *dst = __sk_dst_get(sk); 3675 if (dst) 3676 dst_confirm(dst); 3677 } 3678 return 1; 3679 3680 no_queue: 3681 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3682 if (flag & FLAG_DSACKING_ACK) 3683 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked, 3684 is_dupack, flag); 3685 /* If this ack opens up a zero window, clear backoff. It was 3686 * being used to time the probes, and is probably far higher than 3687 * it needs to be for normal retransmission. 3688 */ 3689 if (tcp_send_head(sk)) 3690 tcp_ack_probe(sk); 3691 return 1; 3692 3693 invalid_ack: 3694 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3695 return -1; 3696 3697 old_ack: 3698 /* If data was SACKed, tag it and see if we should send more data. 3699 * If data was DSACKed, see if we can undo a cwnd reduction. 3700 */ 3701 if (TCP_SKB_CB(skb)->sacked) { 3702 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3703 tcp_fastretrans_alert(sk, pkts_acked, prior_sacked, 3704 is_dupack, flag); 3705 } 3706 3707 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3708 return 0; 3709 } 3710 3711 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3712 * But, this can also be called on packets in the established flow when 3713 * the fast version below fails. 3714 */ 3715 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx, 3716 const u8 **hvpp, int estab, 3717 struct tcp_fastopen_cookie *foc) 3718 { 3719 const unsigned char *ptr; 3720 const struct tcphdr *th = tcp_hdr(skb); 3721 int length = (th->doff * 4) - sizeof(struct tcphdr); 3722 3723 ptr = (const unsigned char *)(th + 1); 3724 opt_rx->saw_tstamp = 0; 3725 3726 while (length > 0) { 3727 int opcode = *ptr++; 3728 int opsize; 3729 3730 switch (opcode) { 3731 case TCPOPT_EOL: 3732 return; 3733 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3734 length--; 3735 continue; 3736 default: 3737 opsize = *ptr++; 3738 if (opsize < 2) /* "silly options" */ 3739 return; 3740 if (opsize > length) 3741 return; /* don't parse partial options */ 3742 switch (opcode) { 3743 case TCPOPT_MSS: 3744 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3745 u16 in_mss = get_unaligned_be16(ptr); 3746 if (in_mss) { 3747 if (opt_rx->user_mss && 3748 opt_rx->user_mss < in_mss) 3749 in_mss = opt_rx->user_mss; 3750 opt_rx->mss_clamp = in_mss; 3751 } 3752 } 3753 break; 3754 case TCPOPT_WINDOW: 3755 if (opsize == TCPOLEN_WINDOW && th->syn && 3756 !estab && sysctl_tcp_window_scaling) { 3757 __u8 snd_wscale = *(__u8 *)ptr; 3758 opt_rx->wscale_ok = 1; 3759 if (snd_wscale > 14) { 3760 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3761 __func__, 3762 snd_wscale); 3763 snd_wscale = 14; 3764 } 3765 opt_rx->snd_wscale = snd_wscale; 3766 } 3767 break; 3768 case TCPOPT_TIMESTAMP: 3769 if ((opsize == TCPOLEN_TIMESTAMP) && 3770 ((estab && opt_rx->tstamp_ok) || 3771 (!estab && sysctl_tcp_timestamps))) { 3772 opt_rx->saw_tstamp = 1; 3773 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3774 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3775 } 3776 break; 3777 case TCPOPT_SACK_PERM: 3778 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3779 !estab && sysctl_tcp_sack) { 3780 opt_rx->sack_ok = TCP_SACK_SEEN; 3781 tcp_sack_reset(opt_rx); 3782 } 3783 break; 3784 3785 case TCPOPT_SACK: 3786 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3787 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3788 opt_rx->sack_ok) { 3789 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3790 } 3791 break; 3792 #ifdef CONFIG_TCP_MD5SIG 3793 case TCPOPT_MD5SIG: 3794 /* 3795 * The MD5 Hash has already been 3796 * checked (see tcp_v{4,6}_do_rcv()). 3797 */ 3798 break; 3799 #endif 3800 case TCPOPT_COOKIE: 3801 /* This option is variable length. 3802 */ 3803 switch (opsize) { 3804 case TCPOLEN_COOKIE_BASE: 3805 /* not yet implemented */ 3806 break; 3807 case TCPOLEN_COOKIE_PAIR: 3808 /* not yet implemented */ 3809 break; 3810 case TCPOLEN_COOKIE_MIN+0: 3811 case TCPOLEN_COOKIE_MIN+2: 3812 case TCPOLEN_COOKIE_MIN+4: 3813 case TCPOLEN_COOKIE_MIN+6: 3814 case TCPOLEN_COOKIE_MAX: 3815 /* 16-bit multiple */ 3816 opt_rx->cookie_plus = opsize; 3817 *hvpp = ptr; 3818 break; 3819 default: 3820 /* ignore option */ 3821 break; 3822 } 3823 break; 3824 3825 case TCPOPT_EXP: 3826 /* Fast Open option shares code 254 using a 3827 * 16 bits magic number. It's valid only in 3828 * SYN or SYN-ACK with an even size. 3829 */ 3830 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE || 3831 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC || 3832 foc == NULL || !th->syn || (opsize & 1)) 3833 break; 3834 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE; 3835 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN && 3836 foc->len <= TCP_FASTOPEN_COOKIE_MAX) 3837 memcpy(foc->val, ptr + 2, foc->len); 3838 else if (foc->len != 0) 3839 foc->len = -1; 3840 break; 3841 3842 } 3843 ptr += opsize-2; 3844 length -= opsize; 3845 } 3846 } 3847 } 3848 EXPORT_SYMBOL(tcp_parse_options); 3849 3850 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3851 { 3852 const __be32 *ptr = (const __be32 *)(th + 1); 3853 3854 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3855 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3856 tp->rx_opt.saw_tstamp = 1; 3857 ++ptr; 3858 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3859 ++ptr; 3860 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3861 return true; 3862 } 3863 return false; 3864 } 3865 3866 /* Fast parse options. This hopes to only see timestamps. 3867 * If it is wrong it falls back on tcp_parse_options(). 3868 */ 3869 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3870 const struct tcphdr *th, 3871 struct tcp_sock *tp, const u8 **hvpp) 3872 { 3873 /* In the spirit of fast parsing, compare doff directly to constant 3874 * values. Because equality is used, short doff can be ignored here. 3875 */ 3876 if (th->doff == (sizeof(*th) / 4)) { 3877 tp->rx_opt.saw_tstamp = 0; 3878 return false; 3879 } else if (tp->rx_opt.tstamp_ok && 3880 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3881 if (tcp_parse_aligned_timestamp(tp, th)) 3882 return true; 3883 } 3884 3885 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL); 3886 if (tp->rx_opt.saw_tstamp) 3887 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3888 3889 return true; 3890 } 3891 3892 #ifdef CONFIG_TCP_MD5SIG 3893 /* 3894 * Parse MD5 Signature option 3895 */ 3896 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3897 { 3898 int length = (th->doff << 2) - sizeof(*th); 3899 const u8 *ptr = (const u8 *)(th + 1); 3900 3901 /* If the TCP option is too short, we can short cut */ 3902 if (length < TCPOLEN_MD5SIG) 3903 return NULL; 3904 3905 while (length > 0) { 3906 int opcode = *ptr++; 3907 int opsize; 3908 3909 switch(opcode) { 3910 case TCPOPT_EOL: 3911 return NULL; 3912 case TCPOPT_NOP: 3913 length--; 3914 continue; 3915 default: 3916 opsize = *ptr++; 3917 if (opsize < 2 || opsize > length) 3918 return NULL; 3919 if (opcode == TCPOPT_MD5SIG) 3920 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3921 } 3922 ptr += opsize - 2; 3923 length -= opsize; 3924 } 3925 return NULL; 3926 } 3927 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3928 #endif 3929 3930 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 3931 { 3932 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3933 tp->rx_opt.ts_recent_stamp = get_seconds(); 3934 } 3935 3936 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3937 { 3938 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3939 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3940 * extra check below makes sure this can only happen 3941 * for pure ACK frames. -DaveM 3942 * 3943 * Not only, also it occurs for expired timestamps. 3944 */ 3945 3946 if (tcp_paws_check(&tp->rx_opt, 0)) 3947 tcp_store_ts_recent(tp); 3948 } 3949 } 3950 3951 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3952 * 3953 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3954 * it can pass through stack. So, the following predicate verifies that 3955 * this segment is not used for anything but congestion avoidance or 3956 * fast retransmit. Moreover, we even are able to eliminate most of such 3957 * second order effects, if we apply some small "replay" window (~RTO) 3958 * to timestamp space. 3959 * 3960 * All these measures still do not guarantee that we reject wrapped ACKs 3961 * on networks with high bandwidth, when sequence space is recycled fastly, 3962 * but it guarantees that such events will be very rare and do not affect 3963 * connection seriously. This doesn't look nice, but alas, PAWS is really 3964 * buggy extension. 3965 * 3966 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3967 * states that events when retransmit arrives after original data are rare. 3968 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3969 * the biggest problem on large power networks even with minor reordering. 3970 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3971 * up to bandwidth of 18Gigabit/sec. 8) ] 3972 */ 3973 3974 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3975 { 3976 const struct tcp_sock *tp = tcp_sk(sk); 3977 const struct tcphdr *th = tcp_hdr(skb); 3978 u32 seq = TCP_SKB_CB(skb)->seq; 3979 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3980 3981 return (/* 1. Pure ACK with correct sequence number. */ 3982 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3983 3984 /* 2. ... and duplicate ACK. */ 3985 ack == tp->snd_una && 3986 3987 /* 3. ... and does not update window. */ 3988 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3989 3990 /* 4. ... and sits in replay window. */ 3991 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3992 } 3993 3994 static inline bool tcp_paws_discard(const struct sock *sk, 3995 const struct sk_buff *skb) 3996 { 3997 const struct tcp_sock *tp = tcp_sk(sk); 3998 3999 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4000 !tcp_disordered_ack(sk, skb); 4001 } 4002 4003 /* Check segment sequence number for validity. 4004 * 4005 * Segment controls are considered valid, if the segment 4006 * fits to the window after truncation to the window. Acceptability 4007 * of data (and SYN, FIN, of course) is checked separately. 4008 * See tcp_data_queue(), for example. 4009 * 4010 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4011 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4012 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4013 * (borrowed from freebsd) 4014 */ 4015 4016 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4017 { 4018 return !before(end_seq, tp->rcv_wup) && 4019 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4020 } 4021 4022 /* When we get a reset we do this. */ 4023 void tcp_reset(struct sock *sk) 4024 { 4025 /* We want the right error as BSD sees it (and indeed as we do). */ 4026 switch (sk->sk_state) { 4027 case TCP_SYN_SENT: 4028 sk->sk_err = ECONNREFUSED; 4029 break; 4030 case TCP_CLOSE_WAIT: 4031 sk->sk_err = EPIPE; 4032 break; 4033 case TCP_CLOSE: 4034 return; 4035 default: 4036 sk->sk_err = ECONNRESET; 4037 } 4038 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4039 smp_wmb(); 4040 4041 if (!sock_flag(sk, SOCK_DEAD)) 4042 sk->sk_error_report(sk); 4043 4044 tcp_done(sk); 4045 } 4046 4047 /* 4048 * Process the FIN bit. This now behaves as it is supposed to work 4049 * and the FIN takes effect when it is validly part of sequence 4050 * space. Not before when we get holes. 4051 * 4052 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4053 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4054 * TIME-WAIT) 4055 * 4056 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4057 * close and we go into CLOSING (and later onto TIME-WAIT) 4058 * 4059 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4060 */ 4061 static void tcp_fin(struct sock *sk) 4062 { 4063 struct tcp_sock *tp = tcp_sk(sk); 4064 4065 inet_csk_schedule_ack(sk); 4066 4067 sk->sk_shutdown |= RCV_SHUTDOWN; 4068 sock_set_flag(sk, SOCK_DONE); 4069 4070 switch (sk->sk_state) { 4071 case TCP_SYN_RECV: 4072 case TCP_ESTABLISHED: 4073 /* Move to CLOSE_WAIT */ 4074 tcp_set_state(sk, TCP_CLOSE_WAIT); 4075 inet_csk(sk)->icsk_ack.pingpong = 1; 4076 break; 4077 4078 case TCP_CLOSE_WAIT: 4079 case TCP_CLOSING: 4080 /* Received a retransmission of the FIN, do 4081 * nothing. 4082 */ 4083 break; 4084 case TCP_LAST_ACK: 4085 /* RFC793: Remain in the LAST-ACK state. */ 4086 break; 4087 4088 case TCP_FIN_WAIT1: 4089 /* This case occurs when a simultaneous close 4090 * happens, we must ack the received FIN and 4091 * enter the CLOSING state. 4092 */ 4093 tcp_send_ack(sk); 4094 tcp_set_state(sk, TCP_CLOSING); 4095 break; 4096 case TCP_FIN_WAIT2: 4097 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4098 tcp_send_ack(sk); 4099 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4100 break; 4101 default: 4102 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4103 * cases we should never reach this piece of code. 4104 */ 4105 pr_err("%s: Impossible, sk->sk_state=%d\n", 4106 __func__, sk->sk_state); 4107 break; 4108 } 4109 4110 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4111 * Probably, we should reset in this case. For now drop them. 4112 */ 4113 __skb_queue_purge(&tp->out_of_order_queue); 4114 if (tcp_is_sack(tp)) 4115 tcp_sack_reset(&tp->rx_opt); 4116 sk_mem_reclaim(sk); 4117 4118 if (!sock_flag(sk, SOCK_DEAD)) { 4119 sk->sk_state_change(sk); 4120 4121 /* Do not send POLL_HUP for half duplex close. */ 4122 if (sk->sk_shutdown == SHUTDOWN_MASK || 4123 sk->sk_state == TCP_CLOSE) 4124 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4125 else 4126 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4127 } 4128 } 4129 4130 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4131 u32 end_seq) 4132 { 4133 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4134 if (before(seq, sp->start_seq)) 4135 sp->start_seq = seq; 4136 if (after(end_seq, sp->end_seq)) 4137 sp->end_seq = end_seq; 4138 return true; 4139 } 4140 return false; 4141 } 4142 4143 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4144 { 4145 struct tcp_sock *tp = tcp_sk(sk); 4146 4147 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4148 int mib_idx; 4149 4150 if (before(seq, tp->rcv_nxt)) 4151 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4152 else 4153 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4154 4155 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4156 4157 tp->rx_opt.dsack = 1; 4158 tp->duplicate_sack[0].start_seq = seq; 4159 tp->duplicate_sack[0].end_seq = end_seq; 4160 } 4161 } 4162 4163 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4164 { 4165 struct tcp_sock *tp = tcp_sk(sk); 4166 4167 if (!tp->rx_opt.dsack) 4168 tcp_dsack_set(sk, seq, end_seq); 4169 else 4170 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4171 } 4172 4173 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4174 { 4175 struct tcp_sock *tp = tcp_sk(sk); 4176 4177 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4178 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4179 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4180 tcp_enter_quickack_mode(sk); 4181 4182 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4183 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4184 4185 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4186 end_seq = tp->rcv_nxt; 4187 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4188 } 4189 } 4190 4191 tcp_send_ack(sk); 4192 } 4193 4194 /* These routines update the SACK block as out-of-order packets arrive or 4195 * in-order packets close up the sequence space. 4196 */ 4197 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4198 { 4199 int this_sack; 4200 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4201 struct tcp_sack_block *swalk = sp + 1; 4202 4203 /* See if the recent change to the first SACK eats into 4204 * or hits the sequence space of other SACK blocks, if so coalesce. 4205 */ 4206 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4207 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4208 int i; 4209 4210 /* Zap SWALK, by moving every further SACK up by one slot. 4211 * Decrease num_sacks. 4212 */ 4213 tp->rx_opt.num_sacks--; 4214 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4215 sp[i] = sp[i + 1]; 4216 continue; 4217 } 4218 this_sack++, swalk++; 4219 } 4220 } 4221 4222 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4223 { 4224 struct tcp_sock *tp = tcp_sk(sk); 4225 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4226 int cur_sacks = tp->rx_opt.num_sacks; 4227 int this_sack; 4228 4229 if (!cur_sacks) 4230 goto new_sack; 4231 4232 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4233 if (tcp_sack_extend(sp, seq, end_seq)) { 4234 /* Rotate this_sack to the first one. */ 4235 for (; this_sack > 0; this_sack--, sp--) 4236 swap(*sp, *(sp - 1)); 4237 if (cur_sacks > 1) 4238 tcp_sack_maybe_coalesce(tp); 4239 return; 4240 } 4241 } 4242 4243 /* Could not find an adjacent existing SACK, build a new one, 4244 * put it at the front, and shift everyone else down. We 4245 * always know there is at least one SACK present already here. 4246 * 4247 * If the sack array is full, forget about the last one. 4248 */ 4249 if (this_sack >= TCP_NUM_SACKS) { 4250 this_sack--; 4251 tp->rx_opt.num_sacks--; 4252 sp--; 4253 } 4254 for (; this_sack > 0; this_sack--, sp--) 4255 *sp = *(sp - 1); 4256 4257 new_sack: 4258 /* Build the new head SACK, and we're done. */ 4259 sp->start_seq = seq; 4260 sp->end_seq = end_seq; 4261 tp->rx_opt.num_sacks++; 4262 } 4263 4264 /* RCV.NXT advances, some SACKs should be eaten. */ 4265 4266 static void tcp_sack_remove(struct tcp_sock *tp) 4267 { 4268 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4269 int num_sacks = tp->rx_opt.num_sacks; 4270 int this_sack; 4271 4272 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4273 if (skb_queue_empty(&tp->out_of_order_queue)) { 4274 tp->rx_opt.num_sacks = 0; 4275 return; 4276 } 4277 4278 for (this_sack = 0; this_sack < num_sacks;) { 4279 /* Check if the start of the sack is covered by RCV.NXT. */ 4280 if (!before(tp->rcv_nxt, sp->start_seq)) { 4281 int i; 4282 4283 /* RCV.NXT must cover all the block! */ 4284 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4285 4286 /* Zap this SACK, by moving forward any other SACKS. */ 4287 for (i=this_sack+1; i < num_sacks; i++) 4288 tp->selective_acks[i-1] = tp->selective_acks[i]; 4289 num_sacks--; 4290 continue; 4291 } 4292 this_sack++; 4293 sp++; 4294 } 4295 tp->rx_opt.num_sacks = num_sacks; 4296 } 4297 4298 /* This one checks to see if we can put data from the 4299 * out_of_order queue into the receive_queue. 4300 */ 4301 static void tcp_ofo_queue(struct sock *sk) 4302 { 4303 struct tcp_sock *tp = tcp_sk(sk); 4304 __u32 dsack_high = tp->rcv_nxt; 4305 struct sk_buff *skb; 4306 4307 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4308 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4309 break; 4310 4311 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4312 __u32 dsack = dsack_high; 4313 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4314 dsack_high = TCP_SKB_CB(skb)->end_seq; 4315 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4316 } 4317 4318 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4319 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4320 __skb_unlink(skb, &tp->out_of_order_queue); 4321 __kfree_skb(skb); 4322 continue; 4323 } 4324 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4325 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4326 TCP_SKB_CB(skb)->end_seq); 4327 4328 __skb_unlink(skb, &tp->out_of_order_queue); 4329 __skb_queue_tail(&sk->sk_receive_queue, skb); 4330 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4331 if (tcp_hdr(skb)->fin) 4332 tcp_fin(sk); 4333 } 4334 } 4335 4336 static bool tcp_prune_ofo_queue(struct sock *sk); 4337 static int tcp_prune_queue(struct sock *sk); 4338 4339 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4340 unsigned int size) 4341 { 4342 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4343 !sk_rmem_schedule(sk, skb, size)) { 4344 4345 if (tcp_prune_queue(sk) < 0) 4346 return -1; 4347 4348 if (!sk_rmem_schedule(sk, skb, size)) { 4349 if (!tcp_prune_ofo_queue(sk)) 4350 return -1; 4351 4352 if (!sk_rmem_schedule(sk, skb, size)) 4353 return -1; 4354 } 4355 } 4356 return 0; 4357 } 4358 4359 /** 4360 * tcp_try_coalesce - try to merge skb to prior one 4361 * @sk: socket 4362 * @to: prior buffer 4363 * @from: buffer to add in queue 4364 * @fragstolen: pointer to boolean 4365 * 4366 * Before queueing skb @from after @to, try to merge them 4367 * to reduce overall memory use and queue lengths, if cost is small. 4368 * Packets in ofo or receive queues can stay a long time. 4369 * Better try to coalesce them right now to avoid future collapses. 4370 * Returns true if caller should free @from instead of queueing it 4371 */ 4372 static bool tcp_try_coalesce(struct sock *sk, 4373 struct sk_buff *to, 4374 struct sk_buff *from, 4375 bool *fragstolen) 4376 { 4377 int delta; 4378 4379 *fragstolen = false; 4380 4381 if (tcp_hdr(from)->fin) 4382 return false; 4383 4384 /* Its possible this segment overlaps with prior segment in queue */ 4385 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4386 return false; 4387 4388 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4389 return false; 4390 4391 atomic_add(delta, &sk->sk_rmem_alloc); 4392 sk_mem_charge(sk, delta); 4393 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4394 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4395 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4396 return true; 4397 } 4398 4399 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4400 { 4401 struct tcp_sock *tp = tcp_sk(sk); 4402 struct sk_buff *skb1; 4403 u32 seq, end_seq; 4404 4405 TCP_ECN_check_ce(tp, skb); 4406 4407 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4408 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4409 __kfree_skb(skb); 4410 return; 4411 } 4412 4413 /* Disable header prediction. */ 4414 tp->pred_flags = 0; 4415 inet_csk_schedule_ack(sk); 4416 4417 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4418 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4419 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4420 4421 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4422 if (!skb1) { 4423 /* Initial out of order segment, build 1 SACK. */ 4424 if (tcp_is_sack(tp)) { 4425 tp->rx_opt.num_sacks = 1; 4426 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4427 tp->selective_acks[0].end_seq = 4428 TCP_SKB_CB(skb)->end_seq; 4429 } 4430 __skb_queue_head(&tp->out_of_order_queue, skb); 4431 goto end; 4432 } 4433 4434 seq = TCP_SKB_CB(skb)->seq; 4435 end_seq = TCP_SKB_CB(skb)->end_seq; 4436 4437 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4438 bool fragstolen; 4439 4440 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4441 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4442 } else { 4443 kfree_skb_partial(skb, fragstolen); 4444 skb = NULL; 4445 } 4446 4447 if (!tp->rx_opt.num_sacks || 4448 tp->selective_acks[0].end_seq != seq) 4449 goto add_sack; 4450 4451 /* Common case: data arrive in order after hole. */ 4452 tp->selective_acks[0].end_seq = end_seq; 4453 goto end; 4454 } 4455 4456 /* Find place to insert this segment. */ 4457 while (1) { 4458 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4459 break; 4460 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4461 skb1 = NULL; 4462 break; 4463 } 4464 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4465 } 4466 4467 /* Do skb overlap to previous one? */ 4468 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4469 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4470 /* All the bits are present. Drop. */ 4471 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4472 __kfree_skb(skb); 4473 skb = NULL; 4474 tcp_dsack_set(sk, seq, end_seq); 4475 goto add_sack; 4476 } 4477 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4478 /* Partial overlap. */ 4479 tcp_dsack_set(sk, seq, 4480 TCP_SKB_CB(skb1)->end_seq); 4481 } else { 4482 if (skb_queue_is_first(&tp->out_of_order_queue, 4483 skb1)) 4484 skb1 = NULL; 4485 else 4486 skb1 = skb_queue_prev( 4487 &tp->out_of_order_queue, 4488 skb1); 4489 } 4490 } 4491 if (!skb1) 4492 __skb_queue_head(&tp->out_of_order_queue, skb); 4493 else 4494 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4495 4496 /* And clean segments covered by new one as whole. */ 4497 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4498 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4499 4500 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4501 break; 4502 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4503 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4504 end_seq); 4505 break; 4506 } 4507 __skb_unlink(skb1, &tp->out_of_order_queue); 4508 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4509 TCP_SKB_CB(skb1)->end_seq); 4510 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4511 __kfree_skb(skb1); 4512 } 4513 4514 add_sack: 4515 if (tcp_is_sack(tp)) 4516 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4517 end: 4518 if (skb) 4519 skb_set_owner_r(skb, sk); 4520 } 4521 4522 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4523 bool *fragstolen) 4524 { 4525 int eaten; 4526 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4527 4528 __skb_pull(skb, hdrlen); 4529 eaten = (tail && 4530 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4531 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4532 if (!eaten) { 4533 __skb_queue_tail(&sk->sk_receive_queue, skb); 4534 skb_set_owner_r(skb, sk); 4535 } 4536 return eaten; 4537 } 4538 4539 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4540 { 4541 struct sk_buff *skb = NULL; 4542 struct tcphdr *th; 4543 bool fragstolen; 4544 4545 if (size == 0) 4546 return 0; 4547 4548 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation); 4549 if (!skb) 4550 goto err; 4551 4552 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th))) 4553 goto err_free; 4554 4555 th = (struct tcphdr *)skb_put(skb, sizeof(*th)); 4556 skb_reset_transport_header(skb); 4557 memset(th, 0, sizeof(*th)); 4558 4559 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size)) 4560 goto err_free; 4561 4562 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4563 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4564 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4565 4566 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) { 4567 WARN_ON_ONCE(fragstolen); /* should not happen */ 4568 __kfree_skb(skb); 4569 } 4570 return size; 4571 4572 err_free: 4573 kfree_skb(skb); 4574 err: 4575 return -ENOMEM; 4576 } 4577 4578 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4579 { 4580 const struct tcphdr *th = tcp_hdr(skb); 4581 struct tcp_sock *tp = tcp_sk(sk); 4582 int eaten = -1; 4583 bool fragstolen = false; 4584 4585 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4586 goto drop; 4587 4588 skb_dst_drop(skb); 4589 __skb_pull(skb, th->doff * 4); 4590 4591 TCP_ECN_accept_cwr(tp, skb); 4592 4593 tp->rx_opt.dsack = 0; 4594 4595 /* Queue data for delivery to the user. 4596 * Packets in sequence go to the receive queue. 4597 * Out of sequence packets to the out_of_order_queue. 4598 */ 4599 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4600 if (tcp_receive_window(tp) == 0) 4601 goto out_of_window; 4602 4603 /* Ok. In sequence. In window. */ 4604 if (tp->ucopy.task == current && 4605 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4606 sock_owned_by_user(sk) && !tp->urg_data) { 4607 int chunk = min_t(unsigned int, skb->len, 4608 tp->ucopy.len); 4609 4610 __set_current_state(TASK_RUNNING); 4611 4612 local_bh_enable(); 4613 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4614 tp->ucopy.len -= chunk; 4615 tp->copied_seq += chunk; 4616 eaten = (chunk == skb->len); 4617 tcp_rcv_space_adjust(sk); 4618 } 4619 local_bh_disable(); 4620 } 4621 4622 if (eaten <= 0) { 4623 queue_and_out: 4624 if (eaten < 0 && 4625 tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4626 goto drop; 4627 4628 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4629 } 4630 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4631 if (skb->len) 4632 tcp_event_data_recv(sk, skb); 4633 if (th->fin) 4634 tcp_fin(sk); 4635 4636 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4637 tcp_ofo_queue(sk); 4638 4639 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4640 * gap in queue is filled. 4641 */ 4642 if (skb_queue_empty(&tp->out_of_order_queue)) 4643 inet_csk(sk)->icsk_ack.pingpong = 0; 4644 } 4645 4646 if (tp->rx_opt.num_sacks) 4647 tcp_sack_remove(tp); 4648 4649 tcp_fast_path_check(sk); 4650 4651 if (eaten > 0) 4652 kfree_skb_partial(skb, fragstolen); 4653 if (!sock_flag(sk, SOCK_DEAD)) 4654 sk->sk_data_ready(sk, 0); 4655 return; 4656 } 4657 4658 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4659 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4660 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4661 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4662 4663 out_of_window: 4664 tcp_enter_quickack_mode(sk); 4665 inet_csk_schedule_ack(sk); 4666 drop: 4667 __kfree_skb(skb); 4668 return; 4669 } 4670 4671 /* Out of window. F.e. zero window probe. */ 4672 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4673 goto out_of_window; 4674 4675 tcp_enter_quickack_mode(sk); 4676 4677 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4678 /* Partial packet, seq < rcv_next < end_seq */ 4679 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4680 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4681 TCP_SKB_CB(skb)->end_seq); 4682 4683 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4684 4685 /* If window is closed, drop tail of packet. But after 4686 * remembering D-SACK for its head made in previous line. 4687 */ 4688 if (!tcp_receive_window(tp)) 4689 goto out_of_window; 4690 goto queue_and_out; 4691 } 4692 4693 tcp_data_queue_ofo(sk, skb); 4694 } 4695 4696 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4697 struct sk_buff_head *list) 4698 { 4699 struct sk_buff *next = NULL; 4700 4701 if (!skb_queue_is_last(list, skb)) 4702 next = skb_queue_next(list, skb); 4703 4704 __skb_unlink(skb, list); 4705 __kfree_skb(skb); 4706 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4707 4708 return next; 4709 } 4710 4711 /* Collapse contiguous sequence of skbs head..tail with 4712 * sequence numbers start..end. 4713 * 4714 * If tail is NULL, this means until the end of the list. 4715 * 4716 * Segments with FIN/SYN are not collapsed (only because this 4717 * simplifies code) 4718 */ 4719 static void 4720 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4721 struct sk_buff *head, struct sk_buff *tail, 4722 u32 start, u32 end) 4723 { 4724 struct sk_buff *skb, *n; 4725 bool end_of_skbs; 4726 4727 /* First, check that queue is collapsible and find 4728 * the point where collapsing can be useful. */ 4729 skb = head; 4730 restart: 4731 end_of_skbs = true; 4732 skb_queue_walk_from_safe(list, skb, n) { 4733 if (skb == tail) 4734 break; 4735 /* No new bits? It is possible on ofo queue. */ 4736 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4737 skb = tcp_collapse_one(sk, skb, list); 4738 if (!skb) 4739 break; 4740 goto restart; 4741 } 4742 4743 /* The first skb to collapse is: 4744 * - not SYN/FIN and 4745 * - bloated or contains data before "start" or 4746 * overlaps to the next one. 4747 */ 4748 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4749 (tcp_win_from_space(skb->truesize) > skb->len || 4750 before(TCP_SKB_CB(skb)->seq, start))) { 4751 end_of_skbs = false; 4752 break; 4753 } 4754 4755 if (!skb_queue_is_last(list, skb)) { 4756 struct sk_buff *next = skb_queue_next(list, skb); 4757 if (next != tail && 4758 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4759 end_of_skbs = false; 4760 break; 4761 } 4762 } 4763 4764 /* Decided to skip this, advance start seq. */ 4765 start = TCP_SKB_CB(skb)->end_seq; 4766 } 4767 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4768 return; 4769 4770 while (before(start, end)) { 4771 struct sk_buff *nskb; 4772 unsigned int header = skb_headroom(skb); 4773 int copy = SKB_MAX_ORDER(header, 0); 4774 4775 /* Too big header? This can happen with IPv6. */ 4776 if (copy < 0) 4777 return; 4778 if (end - start < copy) 4779 copy = end - start; 4780 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4781 if (!nskb) 4782 return; 4783 4784 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4785 skb_set_network_header(nskb, (skb_network_header(skb) - 4786 skb->head)); 4787 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4788 skb->head)); 4789 skb_reserve(nskb, header); 4790 memcpy(nskb->head, skb->head, header); 4791 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4792 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4793 __skb_queue_before(list, skb, nskb); 4794 skb_set_owner_r(nskb, sk); 4795 4796 /* Copy data, releasing collapsed skbs. */ 4797 while (copy > 0) { 4798 int offset = start - TCP_SKB_CB(skb)->seq; 4799 int size = TCP_SKB_CB(skb)->end_seq - start; 4800 4801 BUG_ON(offset < 0); 4802 if (size > 0) { 4803 size = min(copy, size); 4804 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4805 BUG(); 4806 TCP_SKB_CB(nskb)->end_seq += size; 4807 copy -= size; 4808 start += size; 4809 } 4810 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4811 skb = tcp_collapse_one(sk, skb, list); 4812 if (!skb || 4813 skb == tail || 4814 tcp_hdr(skb)->syn || 4815 tcp_hdr(skb)->fin) 4816 return; 4817 } 4818 } 4819 } 4820 } 4821 4822 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4823 * and tcp_collapse() them until all the queue is collapsed. 4824 */ 4825 static void tcp_collapse_ofo_queue(struct sock *sk) 4826 { 4827 struct tcp_sock *tp = tcp_sk(sk); 4828 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4829 struct sk_buff *head; 4830 u32 start, end; 4831 4832 if (skb == NULL) 4833 return; 4834 4835 start = TCP_SKB_CB(skb)->seq; 4836 end = TCP_SKB_CB(skb)->end_seq; 4837 head = skb; 4838 4839 for (;;) { 4840 struct sk_buff *next = NULL; 4841 4842 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4843 next = skb_queue_next(&tp->out_of_order_queue, skb); 4844 skb = next; 4845 4846 /* Segment is terminated when we see gap or when 4847 * we are at the end of all the queue. */ 4848 if (!skb || 4849 after(TCP_SKB_CB(skb)->seq, end) || 4850 before(TCP_SKB_CB(skb)->end_seq, start)) { 4851 tcp_collapse(sk, &tp->out_of_order_queue, 4852 head, skb, start, end); 4853 head = skb; 4854 if (!skb) 4855 break; 4856 /* Start new segment */ 4857 start = TCP_SKB_CB(skb)->seq; 4858 end = TCP_SKB_CB(skb)->end_seq; 4859 } else { 4860 if (before(TCP_SKB_CB(skb)->seq, start)) 4861 start = TCP_SKB_CB(skb)->seq; 4862 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4863 end = TCP_SKB_CB(skb)->end_seq; 4864 } 4865 } 4866 } 4867 4868 /* 4869 * Purge the out-of-order queue. 4870 * Return true if queue was pruned. 4871 */ 4872 static bool tcp_prune_ofo_queue(struct sock *sk) 4873 { 4874 struct tcp_sock *tp = tcp_sk(sk); 4875 bool res = false; 4876 4877 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4878 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4879 __skb_queue_purge(&tp->out_of_order_queue); 4880 4881 /* Reset SACK state. A conforming SACK implementation will 4882 * do the same at a timeout based retransmit. When a connection 4883 * is in a sad state like this, we care only about integrity 4884 * of the connection not performance. 4885 */ 4886 if (tp->rx_opt.sack_ok) 4887 tcp_sack_reset(&tp->rx_opt); 4888 sk_mem_reclaim(sk); 4889 res = true; 4890 } 4891 return res; 4892 } 4893 4894 /* Reduce allocated memory if we can, trying to get 4895 * the socket within its memory limits again. 4896 * 4897 * Return less than zero if we should start dropping frames 4898 * until the socket owning process reads some of the data 4899 * to stabilize the situation. 4900 */ 4901 static int tcp_prune_queue(struct sock *sk) 4902 { 4903 struct tcp_sock *tp = tcp_sk(sk); 4904 4905 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4906 4907 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4908 4909 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4910 tcp_clamp_window(sk); 4911 else if (sk_under_memory_pressure(sk)) 4912 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4913 4914 tcp_collapse_ofo_queue(sk); 4915 if (!skb_queue_empty(&sk->sk_receive_queue)) 4916 tcp_collapse(sk, &sk->sk_receive_queue, 4917 skb_peek(&sk->sk_receive_queue), 4918 NULL, 4919 tp->copied_seq, tp->rcv_nxt); 4920 sk_mem_reclaim(sk); 4921 4922 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4923 return 0; 4924 4925 /* Collapsing did not help, destructive actions follow. 4926 * This must not ever occur. */ 4927 4928 tcp_prune_ofo_queue(sk); 4929 4930 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4931 return 0; 4932 4933 /* If we are really being abused, tell the caller to silently 4934 * drop receive data on the floor. It will get retransmitted 4935 * and hopefully then we'll have sufficient space. 4936 */ 4937 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4938 4939 /* Massive buffer overcommit. */ 4940 tp->pred_flags = 0; 4941 return -1; 4942 } 4943 4944 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4945 * As additional protections, we do not touch cwnd in retransmission phases, 4946 * and if application hit its sndbuf limit recently. 4947 */ 4948 void tcp_cwnd_application_limited(struct sock *sk) 4949 { 4950 struct tcp_sock *tp = tcp_sk(sk); 4951 4952 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4953 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4954 /* Limited by application or receiver window. */ 4955 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4956 u32 win_used = max(tp->snd_cwnd_used, init_win); 4957 if (win_used < tp->snd_cwnd) { 4958 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4959 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4960 } 4961 tp->snd_cwnd_used = 0; 4962 } 4963 tp->snd_cwnd_stamp = tcp_time_stamp; 4964 } 4965 4966 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4967 { 4968 const struct tcp_sock *tp = tcp_sk(sk); 4969 4970 /* If the user specified a specific send buffer setting, do 4971 * not modify it. 4972 */ 4973 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4974 return false; 4975 4976 /* If we are under global TCP memory pressure, do not expand. */ 4977 if (sk_under_memory_pressure(sk)) 4978 return false; 4979 4980 /* If we are under soft global TCP memory pressure, do not expand. */ 4981 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4982 return false; 4983 4984 /* If we filled the congestion window, do not expand. */ 4985 if (tp->packets_out >= tp->snd_cwnd) 4986 return false; 4987 4988 return true; 4989 } 4990 4991 /* When incoming ACK allowed to free some skb from write_queue, 4992 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4993 * on the exit from tcp input handler. 4994 * 4995 * PROBLEM: sndbuf expansion does not work well with largesend. 4996 */ 4997 static void tcp_new_space(struct sock *sk) 4998 { 4999 struct tcp_sock *tp = tcp_sk(sk); 5000 5001 if (tcp_should_expand_sndbuf(sk)) { 5002 int sndmem = SKB_TRUESIZE(max_t(u32, 5003 tp->rx_opt.mss_clamp, 5004 tp->mss_cache) + 5005 MAX_TCP_HEADER); 5006 int demanded = max_t(unsigned int, tp->snd_cwnd, 5007 tp->reordering + 1); 5008 sndmem *= 2 * demanded; 5009 if (sndmem > sk->sk_sndbuf) 5010 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 5011 tp->snd_cwnd_stamp = tcp_time_stamp; 5012 } 5013 5014 sk->sk_write_space(sk); 5015 } 5016 5017 static void tcp_check_space(struct sock *sk) 5018 { 5019 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5020 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5021 if (sk->sk_socket && 5022 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5023 tcp_new_space(sk); 5024 } 5025 } 5026 5027 static inline void tcp_data_snd_check(struct sock *sk) 5028 { 5029 tcp_push_pending_frames(sk); 5030 tcp_check_space(sk); 5031 } 5032 5033 /* 5034 * Check if sending an ack is needed. 5035 */ 5036 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5037 { 5038 struct tcp_sock *tp = tcp_sk(sk); 5039 5040 /* More than one full frame received... */ 5041 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5042 /* ... and right edge of window advances far enough. 5043 * (tcp_recvmsg() will send ACK otherwise). Or... 5044 */ 5045 __tcp_select_window(sk) >= tp->rcv_wnd) || 5046 /* We ACK each frame or... */ 5047 tcp_in_quickack_mode(sk) || 5048 /* We have out of order data. */ 5049 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 5050 /* Then ack it now */ 5051 tcp_send_ack(sk); 5052 } else { 5053 /* Else, send delayed ack. */ 5054 tcp_send_delayed_ack(sk); 5055 } 5056 } 5057 5058 static inline void tcp_ack_snd_check(struct sock *sk) 5059 { 5060 if (!inet_csk_ack_scheduled(sk)) { 5061 /* We sent a data segment already. */ 5062 return; 5063 } 5064 __tcp_ack_snd_check(sk, 1); 5065 } 5066 5067 /* 5068 * This routine is only called when we have urgent data 5069 * signaled. Its the 'slow' part of tcp_urg. It could be 5070 * moved inline now as tcp_urg is only called from one 5071 * place. We handle URGent data wrong. We have to - as 5072 * BSD still doesn't use the correction from RFC961. 5073 * For 1003.1g we should support a new option TCP_STDURG to permit 5074 * either form (or just set the sysctl tcp_stdurg). 5075 */ 5076 5077 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5078 { 5079 struct tcp_sock *tp = tcp_sk(sk); 5080 u32 ptr = ntohs(th->urg_ptr); 5081 5082 if (ptr && !sysctl_tcp_stdurg) 5083 ptr--; 5084 ptr += ntohl(th->seq); 5085 5086 /* Ignore urgent data that we've already seen and read. */ 5087 if (after(tp->copied_seq, ptr)) 5088 return; 5089 5090 /* Do not replay urg ptr. 5091 * 5092 * NOTE: interesting situation not covered by specs. 5093 * Misbehaving sender may send urg ptr, pointing to segment, 5094 * which we already have in ofo queue. We are not able to fetch 5095 * such data and will stay in TCP_URG_NOTYET until will be eaten 5096 * by recvmsg(). Seems, we are not obliged to handle such wicked 5097 * situations. But it is worth to think about possibility of some 5098 * DoSes using some hypothetical application level deadlock. 5099 */ 5100 if (before(ptr, tp->rcv_nxt)) 5101 return; 5102 5103 /* Do we already have a newer (or duplicate) urgent pointer? */ 5104 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5105 return; 5106 5107 /* Tell the world about our new urgent pointer. */ 5108 sk_send_sigurg(sk); 5109 5110 /* We may be adding urgent data when the last byte read was 5111 * urgent. To do this requires some care. We cannot just ignore 5112 * tp->copied_seq since we would read the last urgent byte again 5113 * as data, nor can we alter copied_seq until this data arrives 5114 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5115 * 5116 * NOTE. Double Dutch. Rendering to plain English: author of comment 5117 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5118 * and expect that both A and B disappear from stream. This is _wrong_. 5119 * Though this happens in BSD with high probability, this is occasional. 5120 * Any application relying on this is buggy. Note also, that fix "works" 5121 * only in this artificial test. Insert some normal data between A and B and we will 5122 * decline of BSD again. Verdict: it is better to remove to trap 5123 * buggy users. 5124 */ 5125 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5126 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5127 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5128 tp->copied_seq++; 5129 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5130 __skb_unlink(skb, &sk->sk_receive_queue); 5131 __kfree_skb(skb); 5132 } 5133 } 5134 5135 tp->urg_data = TCP_URG_NOTYET; 5136 tp->urg_seq = ptr; 5137 5138 /* Disable header prediction. */ 5139 tp->pred_flags = 0; 5140 } 5141 5142 /* This is the 'fast' part of urgent handling. */ 5143 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5144 { 5145 struct tcp_sock *tp = tcp_sk(sk); 5146 5147 /* Check if we get a new urgent pointer - normally not. */ 5148 if (th->urg) 5149 tcp_check_urg(sk, th); 5150 5151 /* Do we wait for any urgent data? - normally not... */ 5152 if (tp->urg_data == TCP_URG_NOTYET) { 5153 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5154 th->syn; 5155 5156 /* Is the urgent pointer pointing into this packet? */ 5157 if (ptr < skb->len) { 5158 u8 tmp; 5159 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5160 BUG(); 5161 tp->urg_data = TCP_URG_VALID | tmp; 5162 if (!sock_flag(sk, SOCK_DEAD)) 5163 sk->sk_data_ready(sk, 0); 5164 } 5165 } 5166 } 5167 5168 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5169 { 5170 struct tcp_sock *tp = tcp_sk(sk); 5171 int chunk = skb->len - hlen; 5172 int err; 5173 5174 local_bh_enable(); 5175 if (skb_csum_unnecessary(skb)) 5176 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 5177 else 5178 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 5179 tp->ucopy.iov); 5180 5181 if (!err) { 5182 tp->ucopy.len -= chunk; 5183 tp->copied_seq += chunk; 5184 tcp_rcv_space_adjust(sk); 5185 } 5186 5187 local_bh_disable(); 5188 return err; 5189 } 5190 5191 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5192 struct sk_buff *skb) 5193 { 5194 __sum16 result; 5195 5196 if (sock_owned_by_user(sk)) { 5197 local_bh_enable(); 5198 result = __tcp_checksum_complete(skb); 5199 local_bh_disable(); 5200 } else { 5201 result = __tcp_checksum_complete(skb); 5202 } 5203 return result; 5204 } 5205 5206 static inline bool tcp_checksum_complete_user(struct sock *sk, 5207 struct sk_buff *skb) 5208 { 5209 return !skb_csum_unnecessary(skb) && 5210 __tcp_checksum_complete_user(sk, skb); 5211 } 5212 5213 #ifdef CONFIG_NET_DMA 5214 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 5215 int hlen) 5216 { 5217 struct tcp_sock *tp = tcp_sk(sk); 5218 int chunk = skb->len - hlen; 5219 int dma_cookie; 5220 bool copied_early = false; 5221 5222 if (tp->ucopy.wakeup) 5223 return false; 5224 5225 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 5226 tp->ucopy.dma_chan = net_dma_find_channel(); 5227 5228 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 5229 5230 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 5231 skb, hlen, 5232 tp->ucopy.iov, chunk, 5233 tp->ucopy.pinned_list); 5234 5235 if (dma_cookie < 0) 5236 goto out; 5237 5238 tp->ucopy.dma_cookie = dma_cookie; 5239 copied_early = true; 5240 5241 tp->ucopy.len -= chunk; 5242 tp->copied_seq += chunk; 5243 tcp_rcv_space_adjust(sk); 5244 5245 if ((tp->ucopy.len == 0) || 5246 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5247 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5248 tp->ucopy.wakeup = 1; 5249 sk->sk_data_ready(sk, 0); 5250 } 5251 } else if (chunk > 0) { 5252 tp->ucopy.wakeup = 1; 5253 sk->sk_data_ready(sk, 0); 5254 } 5255 out: 5256 return copied_early; 5257 } 5258 #endif /* CONFIG_NET_DMA */ 5259 5260 /* Does PAWS and seqno based validation of an incoming segment, flags will 5261 * play significant role here. 5262 */ 5263 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5264 const struct tcphdr *th, int syn_inerr) 5265 { 5266 const u8 *hash_location; 5267 struct tcp_sock *tp = tcp_sk(sk); 5268 5269 /* RFC1323: H1. Apply PAWS check first. */ 5270 if (tcp_fast_parse_options(skb, th, tp, &hash_location) && 5271 tp->rx_opt.saw_tstamp && 5272 tcp_paws_discard(sk, skb)) { 5273 if (!th->rst) { 5274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5275 tcp_send_dupack(sk, skb); 5276 goto discard; 5277 } 5278 /* Reset is accepted even if it did not pass PAWS. */ 5279 } 5280 5281 /* Step 1: check sequence number */ 5282 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5283 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5284 * (RST) segments are validated by checking their SEQ-fields." 5285 * And page 69: "If an incoming segment is not acceptable, 5286 * an acknowledgment should be sent in reply (unless the RST 5287 * bit is set, if so drop the segment and return)". 5288 */ 5289 if (!th->rst) { 5290 if (th->syn) 5291 goto syn_challenge; 5292 tcp_send_dupack(sk, skb); 5293 } 5294 goto discard; 5295 } 5296 5297 /* Step 2: check RST bit */ 5298 if (th->rst) { 5299 /* RFC 5961 3.2 : 5300 * If sequence number exactly matches RCV.NXT, then 5301 * RESET the connection 5302 * else 5303 * Send a challenge ACK 5304 */ 5305 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5306 tcp_reset(sk); 5307 else 5308 tcp_send_challenge_ack(sk); 5309 goto discard; 5310 } 5311 5312 /* step 3: check security and precedence [ignored] */ 5313 5314 /* step 4: Check for a SYN 5315 * RFC 5691 4.2 : Send a challenge ack 5316 */ 5317 if (th->syn) { 5318 syn_challenge: 5319 if (syn_inerr) 5320 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5321 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5322 tcp_send_challenge_ack(sk); 5323 goto discard; 5324 } 5325 5326 return true; 5327 5328 discard: 5329 __kfree_skb(skb); 5330 return false; 5331 } 5332 5333 /* 5334 * TCP receive function for the ESTABLISHED state. 5335 * 5336 * It is split into a fast path and a slow path. The fast path is 5337 * disabled when: 5338 * - A zero window was announced from us - zero window probing 5339 * is only handled properly in the slow path. 5340 * - Out of order segments arrived. 5341 * - Urgent data is expected. 5342 * - There is no buffer space left 5343 * - Unexpected TCP flags/window values/header lengths are received 5344 * (detected by checking the TCP header against pred_flags) 5345 * - Data is sent in both directions. Fast path only supports pure senders 5346 * or pure receivers (this means either the sequence number or the ack 5347 * value must stay constant) 5348 * - Unexpected TCP option. 5349 * 5350 * When these conditions are not satisfied it drops into a standard 5351 * receive procedure patterned after RFC793 to handle all cases. 5352 * The first three cases are guaranteed by proper pred_flags setting, 5353 * the rest is checked inline. Fast processing is turned on in 5354 * tcp_data_queue when everything is OK. 5355 */ 5356 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5357 const struct tcphdr *th, unsigned int len) 5358 { 5359 struct tcp_sock *tp = tcp_sk(sk); 5360 5361 if (unlikely(sk->sk_rx_dst == NULL)) 5362 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5363 /* 5364 * Header prediction. 5365 * The code loosely follows the one in the famous 5366 * "30 instruction TCP receive" Van Jacobson mail. 5367 * 5368 * Van's trick is to deposit buffers into socket queue 5369 * on a device interrupt, to call tcp_recv function 5370 * on the receive process context and checksum and copy 5371 * the buffer to user space. smart... 5372 * 5373 * Our current scheme is not silly either but we take the 5374 * extra cost of the net_bh soft interrupt processing... 5375 * We do checksum and copy also but from device to kernel. 5376 */ 5377 5378 tp->rx_opt.saw_tstamp = 0; 5379 5380 /* pred_flags is 0xS?10 << 16 + snd_wnd 5381 * if header_prediction is to be made 5382 * 'S' will always be tp->tcp_header_len >> 2 5383 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5384 * turn it off (when there are holes in the receive 5385 * space for instance) 5386 * PSH flag is ignored. 5387 */ 5388 5389 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5390 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5391 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5392 int tcp_header_len = tp->tcp_header_len; 5393 5394 /* Timestamp header prediction: tcp_header_len 5395 * is automatically equal to th->doff*4 due to pred_flags 5396 * match. 5397 */ 5398 5399 /* Check timestamp */ 5400 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5401 /* No? Slow path! */ 5402 if (!tcp_parse_aligned_timestamp(tp, th)) 5403 goto slow_path; 5404 5405 /* If PAWS failed, check it more carefully in slow path */ 5406 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5407 goto slow_path; 5408 5409 /* DO NOT update ts_recent here, if checksum fails 5410 * and timestamp was corrupted part, it will result 5411 * in a hung connection since we will drop all 5412 * future packets due to the PAWS test. 5413 */ 5414 } 5415 5416 if (len <= tcp_header_len) { 5417 /* Bulk data transfer: sender */ 5418 if (len == tcp_header_len) { 5419 /* Predicted packet is in window by definition. 5420 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5421 * Hence, check seq<=rcv_wup reduces to: 5422 */ 5423 if (tcp_header_len == 5424 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5425 tp->rcv_nxt == tp->rcv_wup) 5426 tcp_store_ts_recent(tp); 5427 5428 /* We know that such packets are checksummed 5429 * on entry. 5430 */ 5431 tcp_ack(sk, skb, 0); 5432 __kfree_skb(skb); 5433 tcp_data_snd_check(sk); 5434 return 0; 5435 } else { /* Header too small */ 5436 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5437 goto discard; 5438 } 5439 } else { 5440 int eaten = 0; 5441 int copied_early = 0; 5442 bool fragstolen = false; 5443 5444 if (tp->copied_seq == tp->rcv_nxt && 5445 len - tcp_header_len <= tp->ucopy.len) { 5446 #ifdef CONFIG_NET_DMA 5447 if (tp->ucopy.task == current && 5448 sock_owned_by_user(sk) && 5449 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5450 copied_early = 1; 5451 eaten = 1; 5452 } 5453 #endif 5454 if (tp->ucopy.task == current && 5455 sock_owned_by_user(sk) && !copied_early) { 5456 __set_current_state(TASK_RUNNING); 5457 5458 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5459 eaten = 1; 5460 } 5461 if (eaten) { 5462 /* Predicted packet is in window by definition. 5463 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5464 * Hence, check seq<=rcv_wup reduces to: 5465 */ 5466 if (tcp_header_len == 5467 (sizeof(struct tcphdr) + 5468 TCPOLEN_TSTAMP_ALIGNED) && 5469 tp->rcv_nxt == tp->rcv_wup) 5470 tcp_store_ts_recent(tp); 5471 5472 tcp_rcv_rtt_measure_ts(sk, skb); 5473 5474 __skb_pull(skb, tcp_header_len); 5475 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5476 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5477 } 5478 if (copied_early) 5479 tcp_cleanup_rbuf(sk, skb->len); 5480 } 5481 if (!eaten) { 5482 if (tcp_checksum_complete_user(sk, skb)) 5483 goto csum_error; 5484 5485 if ((int)skb->truesize > sk->sk_forward_alloc) 5486 goto step5; 5487 5488 /* Predicted packet is in window by definition. 5489 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5490 * Hence, check seq<=rcv_wup reduces to: 5491 */ 5492 if (tcp_header_len == 5493 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5494 tp->rcv_nxt == tp->rcv_wup) 5495 tcp_store_ts_recent(tp); 5496 5497 tcp_rcv_rtt_measure_ts(sk, skb); 5498 5499 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5500 5501 /* Bulk data transfer: receiver */ 5502 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5503 &fragstolen); 5504 } 5505 5506 tcp_event_data_recv(sk, skb); 5507 5508 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5509 /* Well, only one small jumplet in fast path... */ 5510 tcp_ack(sk, skb, FLAG_DATA); 5511 tcp_data_snd_check(sk); 5512 if (!inet_csk_ack_scheduled(sk)) 5513 goto no_ack; 5514 } 5515 5516 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5517 __tcp_ack_snd_check(sk, 0); 5518 no_ack: 5519 #ifdef CONFIG_NET_DMA 5520 if (copied_early) 5521 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5522 else 5523 #endif 5524 if (eaten) 5525 kfree_skb_partial(skb, fragstolen); 5526 sk->sk_data_ready(sk, 0); 5527 return 0; 5528 } 5529 } 5530 5531 slow_path: 5532 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5533 goto csum_error; 5534 5535 if (!th->ack && !th->rst) 5536 goto discard; 5537 5538 /* 5539 * Standard slow path. 5540 */ 5541 5542 if (!tcp_validate_incoming(sk, skb, th, 1)) 5543 return 0; 5544 5545 step5: 5546 if (tcp_ack(sk, skb, FLAG_SLOWPATH) < 0) 5547 goto discard; 5548 5549 /* ts_recent update must be made after we are sure that the packet 5550 * is in window. 5551 */ 5552 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5553 5554 tcp_rcv_rtt_measure_ts(sk, skb); 5555 5556 /* Process urgent data. */ 5557 tcp_urg(sk, skb, th); 5558 5559 /* step 7: process the segment text */ 5560 tcp_data_queue(sk, skb); 5561 5562 tcp_data_snd_check(sk); 5563 tcp_ack_snd_check(sk); 5564 return 0; 5565 5566 csum_error: 5567 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5568 5569 discard: 5570 __kfree_skb(skb); 5571 return 0; 5572 } 5573 EXPORT_SYMBOL(tcp_rcv_established); 5574 5575 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5576 { 5577 struct tcp_sock *tp = tcp_sk(sk); 5578 struct inet_connection_sock *icsk = inet_csk(sk); 5579 5580 tcp_set_state(sk, TCP_ESTABLISHED); 5581 5582 if (skb != NULL) { 5583 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5584 security_inet_conn_established(sk, skb); 5585 } 5586 5587 /* Make sure socket is routed, for correct metrics. */ 5588 icsk->icsk_af_ops->rebuild_header(sk); 5589 5590 tcp_init_metrics(sk); 5591 5592 tcp_init_congestion_control(sk); 5593 5594 /* Prevent spurious tcp_cwnd_restart() on first data 5595 * packet. 5596 */ 5597 tp->lsndtime = tcp_time_stamp; 5598 5599 tcp_init_buffer_space(sk); 5600 5601 if (sock_flag(sk, SOCK_KEEPOPEN)) 5602 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5603 5604 if (!tp->rx_opt.snd_wscale) 5605 __tcp_fast_path_on(tp, tp->snd_wnd); 5606 else 5607 tp->pred_flags = 0; 5608 5609 if (!sock_flag(sk, SOCK_DEAD)) { 5610 sk->sk_state_change(sk); 5611 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5612 } 5613 } 5614 5615 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5616 struct tcp_fastopen_cookie *cookie) 5617 { 5618 struct tcp_sock *tp = tcp_sk(sk); 5619 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5620 u16 mss = tp->rx_opt.mss_clamp; 5621 bool syn_drop; 5622 5623 if (mss == tp->rx_opt.user_mss) { 5624 struct tcp_options_received opt; 5625 const u8 *hash_location; 5626 5627 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5628 tcp_clear_options(&opt); 5629 opt.user_mss = opt.mss_clamp = 0; 5630 tcp_parse_options(synack, &opt, &hash_location, 0, NULL); 5631 mss = opt.mss_clamp; 5632 } 5633 5634 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */ 5635 cookie->len = -1; 5636 5637 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably 5638 * the remote receives only the retransmitted (regular) SYNs: either 5639 * the original SYN-data or the corresponding SYN-ACK is lost. 5640 */ 5641 syn_drop = (cookie->len <= 0 && data && tp->total_retrans); 5642 5643 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop); 5644 5645 if (data) { /* Retransmit unacked data in SYN */ 5646 tcp_for_write_queue_from(data, sk) { 5647 if (data == tcp_send_head(sk) || 5648 __tcp_retransmit_skb(sk, data)) 5649 break; 5650 } 5651 tcp_rearm_rto(sk); 5652 return true; 5653 } 5654 tp->syn_data_acked = tp->syn_data; 5655 return false; 5656 } 5657 5658 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5659 const struct tcphdr *th, unsigned int len) 5660 { 5661 const u8 *hash_location; 5662 struct inet_connection_sock *icsk = inet_csk(sk); 5663 struct tcp_sock *tp = tcp_sk(sk); 5664 struct tcp_cookie_values *cvp = tp->cookie_values; 5665 struct tcp_fastopen_cookie foc = { .len = -1 }; 5666 int saved_clamp = tp->rx_opt.mss_clamp; 5667 5668 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc); 5669 if (tp->rx_opt.saw_tstamp) 5670 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5671 5672 if (th->ack) { 5673 /* rfc793: 5674 * "If the state is SYN-SENT then 5675 * first check the ACK bit 5676 * If the ACK bit is set 5677 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5678 * a reset (unless the RST bit is set, if so drop 5679 * the segment and return)" 5680 */ 5681 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5682 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5683 goto reset_and_undo; 5684 5685 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5686 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5687 tcp_time_stamp)) { 5688 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5689 goto reset_and_undo; 5690 } 5691 5692 /* Now ACK is acceptable. 5693 * 5694 * "If the RST bit is set 5695 * If the ACK was acceptable then signal the user "error: 5696 * connection reset", drop the segment, enter CLOSED state, 5697 * delete TCB, and return." 5698 */ 5699 5700 if (th->rst) { 5701 tcp_reset(sk); 5702 goto discard; 5703 } 5704 5705 /* rfc793: 5706 * "fifth, if neither of the SYN or RST bits is set then 5707 * drop the segment and return." 5708 * 5709 * See note below! 5710 * --ANK(990513) 5711 */ 5712 if (!th->syn) 5713 goto discard_and_undo; 5714 5715 /* rfc793: 5716 * "If the SYN bit is on ... 5717 * are acceptable then ... 5718 * (our SYN has been ACKed), change the connection 5719 * state to ESTABLISHED..." 5720 */ 5721 5722 TCP_ECN_rcv_synack(tp, th); 5723 5724 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5725 tcp_ack(sk, skb, FLAG_SLOWPATH); 5726 5727 /* Ok.. it's good. Set up sequence numbers and 5728 * move to established. 5729 */ 5730 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5731 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5732 5733 /* RFC1323: The window in SYN & SYN/ACK segments is 5734 * never scaled. 5735 */ 5736 tp->snd_wnd = ntohs(th->window); 5737 5738 if (!tp->rx_opt.wscale_ok) { 5739 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5740 tp->window_clamp = min(tp->window_clamp, 65535U); 5741 } 5742 5743 if (tp->rx_opt.saw_tstamp) { 5744 tp->rx_opt.tstamp_ok = 1; 5745 tp->tcp_header_len = 5746 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5747 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5748 tcp_store_ts_recent(tp); 5749 } else { 5750 tp->tcp_header_len = sizeof(struct tcphdr); 5751 } 5752 5753 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5754 tcp_enable_fack(tp); 5755 5756 tcp_mtup_init(sk); 5757 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5758 tcp_initialize_rcv_mss(sk); 5759 5760 /* Remember, tcp_poll() does not lock socket! 5761 * Change state from SYN-SENT only after copied_seq 5762 * is initialized. */ 5763 tp->copied_seq = tp->rcv_nxt; 5764 5765 if (cvp != NULL && 5766 cvp->cookie_pair_size > 0 && 5767 tp->rx_opt.cookie_plus > 0) { 5768 int cookie_size = tp->rx_opt.cookie_plus 5769 - TCPOLEN_COOKIE_BASE; 5770 int cookie_pair_size = cookie_size 5771 + cvp->cookie_desired; 5772 5773 /* A cookie extension option was sent and returned. 5774 * Note that each incoming SYNACK replaces the 5775 * Responder cookie. The initial exchange is most 5776 * fragile, as protection against spoofing relies 5777 * entirely upon the sequence and timestamp (above). 5778 * This replacement strategy allows the correct pair to 5779 * pass through, while any others will be filtered via 5780 * Responder verification later. 5781 */ 5782 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) { 5783 memcpy(&cvp->cookie_pair[cvp->cookie_desired], 5784 hash_location, cookie_size); 5785 cvp->cookie_pair_size = cookie_pair_size; 5786 } 5787 } 5788 5789 smp_mb(); 5790 5791 tcp_finish_connect(sk, skb); 5792 5793 if ((tp->syn_fastopen || tp->syn_data) && 5794 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5795 return -1; 5796 5797 if (sk->sk_write_pending || 5798 icsk->icsk_accept_queue.rskq_defer_accept || 5799 icsk->icsk_ack.pingpong) { 5800 /* Save one ACK. Data will be ready after 5801 * several ticks, if write_pending is set. 5802 * 5803 * It may be deleted, but with this feature tcpdumps 5804 * look so _wonderfully_ clever, that I was not able 5805 * to stand against the temptation 8) --ANK 5806 */ 5807 inet_csk_schedule_ack(sk); 5808 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5809 tcp_enter_quickack_mode(sk); 5810 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5811 TCP_DELACK_MAX, TCP_RTO_MAX); 5812 5813 discard: 5814 __kfree_skb(skb); 5815 return 0; 5816 } else { 5817 tcp_send_ack(sk); 5818 } 5819 return -1; 5820 } 5821 5822 /* No ACK in the segment */ 5823 5824 if (th->rst) { 5825 /* rfc793: 5826 * "If the RST bit is set 5827 * 5828 * Otherwise (no ACK) drop the segment and return." 5829 */ 5830 5831 goto discard_and_undo; 5832 } 5833 5834 /* PAWS check. */ 5835 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5836 tcp_paws_reject(&tp->rx_opt, 0)) 5837 goto discard_and_undo; 5838 5839 if (th->syn) { 5840 /* We see SYN without ACK. It is attempt of 5841 * simultaneous connect with crossed SYNs. 5842 * Particularly, it can be connect to self. 5843 */ 5844 tcp_set_state(sk, TCP_SYN_RECV); 5845 5846 if (tp->rx_opt.saw_tstamp) { 5847 tp->rx_opt.tstamp_ok = 1; 5848 tcp_store_ts_recent(tp); 5849 tp->tcp_header_len = 5850 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5851 } else { 5852 tp->tcp_header_len = sizeof(struct tcphdr); 5853 } 5854 5855 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5856 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5857 5858 /* RFC1323: The window in SYN & SYN/ACK segments is 5859 * never scaled. 5860 */ 5861 tp->snd_wnd = ntohs(th->window); 5862 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5863 tp->max_window = tp->snd_wnd; 5864 5865 TCP_ECN_rcv_syn(tp, th); 5866 5867 tcp_mtup_init(sk); 5868 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5869 tcp_initialize_rcv_mss(sk); 5870 5871 tcp_send_synack(sk); 5872 #if 0 5873 /* Note, we could accept data and URG from this segment. 5874 * There are no obstacles to make this (except that we must 5875 * either change tcp_recvmsg() to prevent it from returning data 5876 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5877 * 5878 * However, if we ignore data in ACKless segments sometimes, 5879 * we have no reasons to accept it sometimes. 5880 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5881 * is not flawless. So, discard packet for sanity. 5882 * Uncomment this return to process the data. 5883 */ 5884 return -1; 5885 #else 5886 goto discard; 5887 #endif 5888 } 5889 /* "fifth, if neither of the SYN or RST bits is set then 5890 * drop the segment and return." 5891 */ 5892 5893 discard_and_undo: 5894 tcp_clear_options(&tp->rx_opt); 5895 tp->rx_opt.mss_clamp = saved_clamp; 5896 goto discard; 5897 5898 reset_and_undo: 5899 tcp_clear_options(&tp->rx_opt); 5900 tp->rx_opt.mss_clamp = saved_clamp; 5901 return 1; 5902 } 5903 5904 /* 5905 * This function implements the receiving procedure of RFC 793 for 5906 * all states except ESTABLISHED and TIME_WAIT. 5907 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5908 * address independent. 5909 */ 5910 5911 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5912 const struct tcphdr *th, unsigned int len) 5913 { 5914 struct tcp_sock *tp = tcp_sk(sk); 5915 struct inet_connection_sock *icsk = inet_csk(sk); 5916 struct request_sock *req; 5917 int queued = 0; 5918 5919 tp->rx_opt.saw_tstamp = 0; 5920 5921 switch (sk->sk_state) { 5922 case TCP_CLOSE: 5923 goto discard; 5924 5925 case TCP_LISTEN: 5926 if (th->ack) 5927 return 1; 5928 5929 if (th->rst) 5930 goto discard; 5931 5932 if (th->syn) { 5933 if (th->fin) 5934 goto discard; 5935 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5936 return 1; 5937 5938 /* Now we have several options: In theory there is 5939 * nothing else in the frame. KA9Q has an option to 5940 * send data with the syn, BSD accepts data with the 5941 * syn up to the [to be] advertised window and 5942 * Solaris 2.1 gives you a protocol error. For now 5943 * we just ignore it, that fits the spec precisely 5944 * and avoids incompatibilities. It would be nice in 5945 * future to drop through and process the data. 5946 * 5947 * Now that TTCP is starting to be used we ought to 5948 * queue this data. 5949 * But, this leaves one open to an easy denial of 5950 * service attack, and SYN cookies can't defend 5951 * against this problem. So, we drop the data 5952 * in the interest of security over speed unless 5953 * it's still in use. 5954 */ 5955 kfree_skb(skb); 5956 return 0; 5957 } 5958 goto discard; 5959 5960 case TCP_SYN_SENT: 5961 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5962 if (queued >= 0) 5963 return queued; 5964 5965 /* Do step6 onward by hand. */ 5966 tcp_urg(sk, skb, th); 5967 __kfree_skb(skb); 5968 tcp_data_snd_check(sk); 5969 return 0; 5970 } 5971 5972 req = tp->fastopen_rsk; 5973 if (req != NULL) { 5974 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5975 sk->sk_state != TCP_FIN_WAIT1); 5976 5977 if (tcp_check_req(sk, skb, req, NULL, true) == NULL) 5978 goto discard; 5979 } 5980 5981 if (!th->ack && !th->rst) 5982 goto discard; 5983 5984 if (!tcp_validate_incoming(sk, skb, th, 0)) 5985 return 0; 5986 5987 /* step 5: check the ACK field */ 5988 if (true) { 5989 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; 5990 5991 switch (sk->sk_state) { 5992 case TCP_SYN_RECV: 5993 if (acceptable) { 5994 /* Once we leave TCP_SYN_RECV, we no longer 5995 * need req so release it. 5996 */ 5997 if (req) { 5998 tcp_synack_rtt_meas(sk, req); 5999 tp->total_retrans = req->num_retrans; 6000 6001 reqsk_fastopen_remove(sk, req, false); 6002 } else { 6003 /* Make sure socket is routed, for 6004 * correct metrics. 6005 */ 6006 icsk->icsk_af_ops->rebuild_header(sk); 6007 tcp_init_congestion_control(sk); 6008 6009 tcp_mtup_init(sk); 6010 tcp_init_buffer_space(sk); 6011 tp->copied_seq = tp->rcv_nxt; 6012 } 6013 smp_mb(); 6014 tcp_set_state(sk, TCP_ESTABLISHED); 6015 sk->sk_state_change(sk); 6016 6017 /* Note, that this wakeup is only for marginal 6018 * crossed SYN case. Passively open sockets 6019 * are not waked up, because sk->sk_sleep == 6020 * NULL and sk->sk_socket == NULL. 6021 */ 6022 if (sk->sk_socket) 6023 sk_wake_async(sk, 6024 SOCK_WAKE_IO, POLL_OUT); 6025 6026 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6027 tp->snd_wnd = ntohs(th->window) << 6028 tp->rx_opt.snd_wscale; 6029 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6030 6031 if (tp->rx_opt.tstamp_ok) 6032 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6033 6034 if (req) { 6035 /* Re-arm the timer because data may 6036 * have been sent out. This is similar 6037 * to the regular data transmission case 6038 * when new data has just been ack'ed. 6039 * 6040 * (TFO) - we could try to be more 6041 * aggressive and retranmitting any data 6042 * sooner based on when they were sent 6043 * out. 6044 */ 6045 tcp_rearm_rto(sk); 6046 } else 6047 tcp_init_metrics(sk); 6048 6049 /* Prevent spurious tcp_cwnd_restart() on 6050 * first data packet. 6051 */ 6052 tp->lsndtime = tcp_time_stamp; 6053 6054 tcp_initialize_rcv_mss(sk); 6055 tcp_fast_path_on(tp); 6056 } else { 6057 return 1; 6058 } 6059 break; 6060 6061 case TCP_FIN_WAIT1: 6062 /* If we enter the TCP_FIN_WAIT1 state and we are a 6063 * Fast Open socket and this is the first acceptable 6064 * ACK we have received, this would have acknowledged 6065 * our SYNACK so stop the SYNACK timer. 6066 */ 6067 if (req != NULL) { 6068 /* Return RST if ack_seq is invalid. 6069 * Note that RFC793 only says to generate a 6070 * DUPACK for it but for TCP Fast Open it seems 6071 * better to treat this case like TCP_SYN_RECV 6072 * above. 6073 */ 6074 if (!acceptable) 6075 return 1; 6076 /* We no longer need the request sock. */ 6077 reqsk_fastopen_remove(sk, req, false); 6078 tcp_rearm_rto(sk); 6079 } 6080 if (tp->snd_una == tp->write_seq) { 6081 struct dst_entry *dst; 6082 6083 tcp_set_state(sk, TCP_FIN_WAIT2); 6084 sk->sk_shutdown |= SEND_SHUTDOWN; 6085 6086 dst = __sk_dst_get(sk); 6087 if (dst) 6088 dst_confirm(dst); 6089 6090 if (!sock_flag(sk, SOCK_DEAD)) 6091 /* Wake up lingering close() */ 6092 sk->sk_state_change(sk); 6093 else { 6094 int tmo; 6095 6096 if (tp->linger2 < 0 || 6097 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6098 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 6099 tcp_done(sk); 6100 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6101 return 1; 6102 } 6103 6104 tmo = tcp_fin_time(sk); 6105 if (tmo > TCP_TIMEWAIT_LEN) { 6106 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6107 } else if (th->fin || sock_owned_by_user(sk)) { 6108 /* Bad case. We could lose such FIN otherwise. 6109 * It is not a big problem, but it looks confusing 6110 * and not so rare event. We still can lose it now, 6111 * if it spins in bh_lock_sock(), but it is really 6112 * marginal case. 6113 */ 6114 inet_csk_reset_keepalive_timer(sk, tmo); 6115 } else { 6116 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6117 goto discard; 6118 } 6119 } 6120 } 6121 break; 6122 6123 case TCP_CLOSING: 6124 if (tp->snd_una == tp->write_seq) { 6125 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6126 goto discard; 6127 } 6128 break; 6129 6130 case TCP_LAST_ACK: 6131 if (tp->snd_una == tp->write_seq) { 6132 tcp_update_metrics(sk); 6133 tcp_done(sk); 6134 goto discard; 6135 } 6136 break; 6137 } 6138 } 6139 6140 /* ts_recent update must be made after we are sure that the packet 6141 * is in window. 6142 */ 6143 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 6144 6145 /* step 6: check the URG bit */ 6146 tcp_urg(sk, skb, th); 6147 6148 /* step 7: process the segment text */ 6149 switch (sk->sk_state) { 6150 case TCP_CLOSE_WAIT: 6151 case TCP_CLOSING: 6152 case TCP_LAST_ACK: 6153 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6154 break; 6155 case TCP_FIN_WAIT1: 6156 case TCP_FIN_WAIT2: 6157 /* RFC 793 says to queue data in these states, 6158 * RFC 1122 says we MUST send a reset. 6159 * BSD 4.4 also does reset. 6160 */ 6161 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6162 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6163 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6164 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6165 tcp_reset(sk); 6166 return 1; 6167 } 6168 } 6169 /* Fall through */ 6170 case TCP_ESTABLISHED: 6171 tcp_data_queue(sk, skb); 6172 queued = 1; 6173 break; 6174 } 6175 6176 /* tcp_data could move socket to TIME-WAIT */ 6177 if (sk->sk_state != TCP_CLOSE) { 6178 tcp_data_snd_check(sk); 6179 tcp_ack_snd_check(sk); 6180 } 6181 6182 if (!queued) { 6183 discard: 6184 __kfree_skb(skb); 6185 } 6186 return 0; 6187 } 6188 EXPORT_SYMBOL(tcp_rcv_state_process); 6189