1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #include <linux/mm.h> 65 #include <linux/slab.h> 66 #include <linux/module.h> 67 #include <linux/sysctl.h> 68 #include <linux/kernel.h> 69 #include <net/dst.h> 70 #include <net/tcp.h> 71 #include <net/inet_common.h> 72 #include <linux/ipsec.h> 73 #include <asm/unaligned.h> 74 #include <net/netdma.h> 75 76 int sysctl_tcp_timestamps __read_mostly = 1; 77 int sysctl_tcp_window_scaling __read_mostly = 1; 78 int sysctl_tcp_sack __read_mostly = 1; 79 int sysctl_tcp_fack __read_mostly = 1; 80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 81 EXPORT_SYMBOL(sysctl_tcp_reordering); 82 int sysctl_tcp_ecn __read_mostly = 2; 83 EXPORT_SYMBOL(sysctl_tcp_ecn); 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 2; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 int sysctl_tcp_stdurg __read_mostly; 90 int sysctl_tcp_rfc1337 __read_mostly; 91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 92 int sysctl_tcp_frto __read_mostly = 2; 93 int sysctl_tcp_frto_response __read_mostly; 94 int sysctl_tcp_nometrics_save __read_mostly; 95 96 int sysctl_tcp_thin_dupack __read_mostly; 97 98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 99 int sysctl_tcp_abc __read_mostly; 100 101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 107 #define FLAG_ECE 0x40 /* ECE in this ACK */ 108 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 109 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */ 110 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 111 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 112 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */ 113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 114 115 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 116 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 117 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 118 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 119 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED) 120 121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 123 124 /* Adapt the MSS value used to make delayed ack decision to the 125 * real world. 126 */ 127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 128 { 129 struct inet_connection_sock *icsk = inet_csk(sk); 130 const unsigned int lss = icsk->icsk_ack.last_seg_size; 131 unsigned int len; 132 133 icsk->icsk_ack.last_seg_size = 0; 134 135 /* skb->len may jitter because of SACKs, even if peer 136 * sends good full-sized frames. 137 */ 138 len = skb_shinfo(skb)->gso_size ? : skb->len; 139 if (len >= icsk->icsk_ack.rcv_mss) { 140 icsk->icsk_ack.rcv_mss = len; 141 } else { 142 /* Otherwise, we make more careful check taking into account, 143 * that SACKs block is variable. 144 * 145 * "len" is invariant segment length, including TCP header. 146 */ 147 len += skb->data - skb_transport_header(skb); 148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 149 /* If PSH is not set, packet should be 150 * full sized, provided peer TCP is not badly broken. 151 * This observation (if it is correct 8)) allows 152 * to handle super-low mtu links fairly. 153 */ 154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 156 /* Subtract also invariant (if peer is RFC compliant), 157 * tcp header plus fixed timestamp option length. 158 * Resulting "len" is MSS free of SACK jitter. 159 */ 160 len -= tcp_sk(sk)->tcp_header_len; 161 icsk->icsk_ack.last_seg_size = len; 162 if (len == lss) { 163 icsk->icsk_ack.rcv_mss = len; 164 return; 165 } 166 } 167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 170 } 171 } 172 173 static void tcp_incr_quickack(struct sock *sk) 174 { 175 struct inet_connection_sock *icsk = inet_csk(sk); 176 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 177 178 if (quickacks == 0) 179 quickacks = 2; 180 if (quickacks > icsk->icsk_ack.quick) 181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 182 } 183 184 static void tcp_enter_quickack_mode(struct sock *sk) 185 { 186 struct inet_connection_sock *icsk = inet_csk(sk); 187 tcp_incr_quickack(sk); 188 icsk->icsk_ack.pingpong = 0; 189 icsk->icsk_ack.ato = TCP_ATO_MIN; 190 } 191 192 /* Send ACKs quickly, if "quick" count is not exhausted 193 * and the session is not interactive. 194 */ 195 196 static inline int tcp_in_quickack_mode(const struct sock *sk) 197 { 198 const struct inet_connection_sock *icsk = inet_csk(sk); 199 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 200 } 201 202 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp) 203 { 204 if (tp->ecn_flags & TCP_ECN_OK) 205 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 206 } 207 208 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 209 { 210 if (tcp_hdr(skb)->cwr) 211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 212 } 213 214 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp) 215 { 216 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 217 } 218 219 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 220 { 221 if (!(tp->ecn_flags & TCP_ECN_OK)) 222 return; 223 224 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 225 case INET_ECN_NOT_ECT: 226 /* Funny extension: if ECT is not set on a segment, 227 * and we already seen ECT on a previous segment, 228 * it is probably a retransmit. 229 */ 230 if (tp->ecn_flags & TCP_ECN_SEEN) 231 tcp_enter_quickack_mode((struct sock *)tp); 232 break; 233 case INET_ECN_CE: 234 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 235 /* fallinto */ 236 default: 237 tp->ecn_flags |= TCP_ECN_SEEN; 238 } 239 } 240 241 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 242 { 243 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 244 tp->ecn_flags &= ~TCP_ECN_OK; 245 } 246 247 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 248 { 249 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 250 tp->ecn_flags &= ~TCP_ECN_OK; 251 } 252 253 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 254 { 255 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 256 return 1; 257 return 0; 258 } 259 260 /* Buffer size and advertised window tuning. 261 * 262 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 263 */ 264 265 static void tcp_fixup_sndbuf(struct sock *sk) 266 { 267 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER); 268 269 sndmem *= TCP_INIT_CWND; 270 if (sk->sk_sndbuf < sndmem) 271 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 272 } 273 274 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 275 * 276 * All tcp_full_space() is split to two parts: "network" buffer, allocated 277 * forward and advertised in receiver window (tp->rcv_wnd) and 278 * "application buffer", required to isolate scheduling/application 279 * latencies from network. 280 * window_clamp is maximal advertised window. It can be less than 281 * tcp_full_space(), in this case tcp_full_space() - window_clamp 282 * is reserved for "application" buffer. The less window_clamp is 283 * the smoother our behaviour from viewpoint of network, but the lower 284 * throughput and the higher sensitivity of the connection to losses. 8) 285 * 286 * rcv_ssthresh is more strict window_clamp used at "slow start" 287 * phase to predict further behaviour of this connection. 288 * It is used for two goals: 289 * - to enforce header prediction at sender, even when application 290 * requires some significant "application buffer". It is check #1. 291 * - to prevent pruning of receive queue because of misprediction 292 * of receiver window. Check #2. 293 * 294 * The scheme does not work when sender sends good segments opening 295 * window and then starts to feed us spaghetti. But it should work 296 * in common situations. Otherwise, we have to rely on queue collapsing. 297 */ 298 299 /* Slow part of check#2. */ 300 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 301 { 302 struct tcp_sock *tp = tcp_sk(sk); 303 /* Optimize this! */ 304 int truesize = tcp_win_from_space(skb->truesize) >> 1; 305 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 306 307 while (tp->rcv_ssthresh <= window) { 308 if (truesize <= skb->len) 309 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 310 311 truesize >>= 1; 312 window >>= 1; 313 } 314 return 0; 315 } 316 317 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 318 { 319 struct tcp_sock *tp = tcp_sk(sk); 320 321 /* Check #1 */ 322 if (tp->rcv_ssthresh < tp->window_clamp && 323 (int)tp->rcv_ssthresh < tcp_space(sk) && 324 !sk_under_memory_pressure(sk)) { 325 int incr; 326 327 /* Check #2. Increase window, if skb with such overhead 328 * will fit to rcvbuf in future. 329 */ 330 if (tcp_win_from_space(skb->truesize) <= skb->len) 331 incr = 2 * tp->advmss; 332 else 333 incr = __tcp_grow_window(sk, skb); 334 335 if (incr) { 336 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 337 tp->window_clamp); 338 inet_csk(sk)->icsk_ack.quick |= 1; 339 } 340 } 341 } 342 343 /* 3. Tuning rcvbuf, when connection enters established state. */ 344 345 static void tcp_fixup_rcvbuf(struct sock *sk) 346 { 347 u32 mss = tcp_sk(sk)->advmss; 348 u32 icwnd = TCP_DEFAULT_INIT_RCVWND; 349 int rcvmem; 350 351 /* Limit to 10 segments if mss <= 1460, 352 * or 14600/mss segments, with a minimum of two segments. 353 */ 354 if (mss > 1460) 355 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2); 356 357 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER); 358 while (tcp_win_from_space(rcvmem) < mss) 359 rcvmem += 128; 360 361 rcvmem *= icwnd; 362 363 if (sk->sk_rcvbuf < rcvmem) 364 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 365 } 366 367 /* 4. Try to fixup all. It is made immediately after connection enters 368 * established state. 369 */ 370 static void tcp_init_buffer_space(struct sock *sk) 371 { 372 struct tcp_sock *tp = tcp_sk(sk); 373 int maxwin; 374 375 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 376 tcp_fixup_rcvbuf(sk); 377 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 378 tcp_fixup_sndbuf(sk); 379 380 tp->rcvq_space.space = tp->rcv_wnd; 381 382 maxwin = tcp_full_space(sk); 383 384 if (tp->window_clamp >= maxwin) { 385 tp->window_clamp = maxwin; 386 387 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 388 tp->window_clamp = max(maxwin - 389 (maxwin >> sysctl_tcp_app_win), 390 4 * tp->advmss); 391 } 392 393 /* Force reservation of one segment. */ 394 if (sysctl_tcp_app_win && 395 tp->window_clamp > 2 * tp->advmss && 396 tp->window_clamp + tp->advmss > maxwin) 397 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 398 399 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 400 tp->snd_cwnd_stamp = tcp_time_stamp; 401 } 402 403 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 404 static void tcp_clamp_window(struct sock *sk) 405 { 406 struct tcp_sock *tp = tcp_sk(sk); 407 struct inet_connection_sock *icsk = inet_csk(sk); 408 409 icsk->icsk_ack.quick = 0; 410 411 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 412 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 413 !sk_under_memory_pressure(sk) && 414 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 415 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 416 sysctl_tcp_rmem[2]); 417 } 418 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 419 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 420 } 421 422 /* Initialize RCV_MSS value. 423 * RCV_MSS is an our guess about MSS used by the peer. 424 * We haven't any direct information about the MSS. 425 * It's better to underestimate the RCV_MSS rather than overestimate. 426 * Overestimations make us ACKing less frequently than needed. 427 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 428 */ 429 void tcp_initialize_rcv_mss(struct sock *sk) 430 { 431 const struct tcp_sock *tp = tcp_sk(sk); 432 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 433 434 hint = min(hint, tp->rcv_wnd / 2); 435 hint = min(hint, TCP_MSS_DEFAULT); 436 hint = max(hint, TCP_MIN_MSS); 437 438 inet_csk(sk)->icsk_ack.rcv_mss = hint; 439 } 440 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 441 442 /* Receiver "autotuning" code. 443 * 444 * The algorithm for RTT estimation w/o timestamps is based on 445 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 446 * <http://public.lanl.gov/radiant/pubs.html#DRS> 447 * 448 * More detail on this code can be found at 449 * <http://staff.psc.edu/jheffner/>, 450 * though this reference is out of date. A new paper 451 * is pending. 452 */ 453 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 454 { 455 u32 new_sample = tp->rcv_rtt_est.rtt; 456 long m = sample; 457 458 if (m == 0) 459 m = 1; 460 461 if (new_sample != 0) { 462 /* If we sample in larger samples in the non-timestamp 463 * case, we could grossly overestimate the RTT especially 464 * with chatty applications or bulk transfer apps which 465 * are stalled on filesystem I/O. 466 * 467 * Also, since we are only going for a minimum in the 468 * non-timestamp case, we do not smooth things out 469 * else with timestamps disabled convergence takes too 470 * long. 471 */ 472 if (!win_dep) { 473 m -= (new_sample >> 3); 474 new_sample += m; 475 } else if (m < new_sample) 476 new_sample = m << 3; 477 } else { 478 /* No previous measure. */ 479 new_sample = m << 3; 480 } 481 482 if (tp->rcv_rtt_est.rtt != new_sample) 483 tp->rcv_rtt_est.rtt = new_sample; 484 } 485 486 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 487 { 488 if (tp->rcv_rtt_est.time == 0) 489 goto new_measure; 490 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 491 return; 492 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1); 493 494 new_measure: 495 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 496 tp->rcv_rtt_est.time = tcp_time_stamp; 497 } 498 499 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 500 const struct sk_buff *skb) 501 { 502 struct tcp_sock *tp = tcp_sk(sk); 503 if (tp->rx_opt.rcv_tsecr && 504 (TCP_SKB_CB(skb)->end_seq - 505 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 506 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 507 } 508 509 /* 510 * This function should be called every time data is copied to user space. 511 * It calculates the appropriate TCP receive buffer space. 512 */ 513 void tcp_rcv_space_adjust(struct sock *sk) 514 { 515 struct tcp_sock *tp = tcp_sk(sk); 516 int time; 517 int space; 518 519 if (tp->rcvq_space.time == 0) 520 goto new_measure; 521 522 time = tcp_time_stamp - tp->rcvq_space.time; 523 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 524 return; 525 526 space = 2 * (tp->copied_seq - tp->rcvq_space.seq); 527 528 space = max(tp->rcvq_space.space, space); 529 530 if (tp->rcvq_space.space != space) { 531 int rcvmem; 532 533 tp->rcvq_space.space = space; 534 535 if (sysctl_tcp_moderate_rcvbuf && 536 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 537 int new_clamp = space; 538 539 /* Receive space grows, normalize in order to 540 * take into account packet headers and sk_buff 541 * structure overhead. 542 */ 543 space /= tp->advmss; 544 if (!space) 545 space = 1; 546 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 547 while (tcp_win_from_space(rcvmem) < tp->advmss) 548 rcvmem += 128; 549 space *= rcvmem; 550 space = min(space, sysctl_tcp_rmem[2]); 551 if (space > sk->sk_rcvbuf) { 552 sk->sk_rcvbuf = space; 553 554 /* Make the window clamp follow along. */ 555 tp->window_clamp = new_clamp; 556 } 557 } 558 } 559 560 new_measure: 561 tp->rcvq_space.seq = tp->copied_seq; 562 tp->rcvq_space.time = tcp_time_stamp; 563 } 564 565 /* There is something which you must keep in mind when you analyze the 566 * behavior of the tp->ato delayed ack timeout interval. When a 567 * connection starts up, we want to ack as quickly as possible. The 568 * problem is that "good" TCP's do slow start at the beginning of data 569 * transmission. The means that until we send the first few ACK's the 570 * sender will sit on his end and only queue most of his data, because 571 * he can only send snd_cwnd unacked packets at any given time. For 572 * each ACK we send, he increments snd_cwnd and transmits more of his 573 * queue. -DaveM 574 */ 575 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 576 { 577 struct tcp_sock *tp = tcp_sk(sk); 578 struct inet_connection_sock *icsk = inet_csk(sk); 579 u32 now; 580 581 inet_csk_schedule_ack(sk); 582 583 tcp_measure_rcv_mss(sk, skb); 584 585 tcp_rcv_rtt_measure(tp); 586 587 now = tcp_time_stamp; 588 589 if (!icsk->icsk_ack.ato) { 590 /* The _first_ data packet received, initialize 591 * delayed ACK engine. 592 */ 593 tcp_incr_quickack(sk); 594 icsk->icsk_ack.ato = TCP_ATO_MIN; 595 } else { 596 int m = now - icsk->icsk_ack.lrcvtime; 597 598 if (m <= TCP_ATO_MIN / 2) { 599 /* The fastest case is the first. */ 600 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 601 } else if (m < icsk->icsk_ack.ato) { 602 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 603 if (icsk->icsk_ack.ato > icsk->icsk_rto) 604 icsk->icsk_ack.ato = icsk->icsk_rto; 605 } else if (m > icsk->icsk_rto) { 606 /* Too long gap. Apparently sender failed to 607 * restart window, so that we send ACKs quickly. 608 */ 609 tcp_incr_quickack(sk); 610 sk_mem_reclaim(sk); 611 } 612 } 613 icsk->icsk_ack.lrcvtime = now; 614 615 TCP_ECN_check_ce(tp, skb); 616 617 if (skb->len >= 128) 618 tcp_grow_window(sk, skb); 619 } 620 621 /* Called to compute a smoothed rtt estimate. The data fed to this 622 * routine either comes from timestamps, or from segments that were 623 * known _not_ to have been retransmitted [see Karn/Partridge 624 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 625 * piece by Van Jacobson. 626 * NOTE: the next three routines used to be one big routine. 627 * To save cycles in the RFC 1323 implementation it was better to break 628 * it up into three procedures. -- erics 629 */ 630 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt) 631 { 632 struct tcp_sock *tp = tcp_sk(sk); 633 long m = mrtt; /* RTT */ 634 635 /* The following amusing code comes from Jacobson's 636 * article in SIGCOMM '88. Note that rtt and mdev 637 * are scaled versions of rtt and mean deviation. 638 * This is designed to be as fast as possible 639 * m stands for "measurement". 640 * 641 * On a 1990 paper the rto value is changed to: 642 * RTO = rtt + 4 * mdev 643 * 644 * Funny. This algorithm seems to be very broken. 645 * These formulae increase RTO, when it should be decreased, increase 646 * too slowly, when it should be increased quickly, decrease too quickly 647 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 648 * does not matter how to _calculate_ it. Seems, it was trap 649 * that VJ failed to avoid. 8) 650 */ 651 if (m == 0) 652 m = 1; 653 if (tp->srtt != 0) { 654 m -= (tp->srtt >> 3); /* m is now error in rtt est */ 655 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 656 if (m < 0) { 657 m = -m; /* m is now abs(error) */ 658 m -= (tp->mdev >> 2); /* similar update on mdev */ 659 /* This is similar to one of Eifel findings. 660 * Eifel blocks mdev updates when rtt decreases. 661 * This solution is a bit different: we use finer gain 662 * for mdev in this case (alpha*beta). 663 * Like Eifel it also prevents growth of rto, 664 * but also it limits too fast rto decreases, 665 * happening in pure Eifel. 666 */ 667 if (m > 0) 668 m >>= 3; 669 } else { 670 m -= (tp->mdev >> 2); /* similar update on mdev */ 671 } 672 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */ 673 if (tp->mdev > tp->mdev_max) { 674 tp->mdev_max = tp->mdev; 675 if (tp->mdev_max > tp->rttvar) 676 tp->rttvar = tp->mdev_max; 677 } 678 if (after(tp->snd_una, tp->rtt_seq)) { 679 if (tp->mdev_max < tp->rttvar) 680 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2; 681 tp->rtt_seq = tp->snd_nxt; 682 tp->mdev_max = tcp_rto_min(sk); 683 } 684 } else { 685 /* no previous measure. */ 686 tp->srtt = m << 3; /* take the measured time to be rtt */ 687 tp->mdev = m << 1; /* make sure rto = 3*rtt */ 688 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 689 tp->rtt_seq = tp->snd_nxt; 690 } 691 } 692 693 /* Calculate rto without backoff. This is the second half of Van Jacobson's 694 * routine referred to above. 695 */ 696 static inline void tcp_set_rto(struct sock *sk) 697 { 698 const struct tcp_sock *tp = tcp_sk(sk); 699 /* Old crap is replaced with new one. 8) 700 * 701 * More seriously: 702 * 1. If rtt variance happened to be less 50msec, it is hallucination. 703 * It cannot be less due to utterly erratic ACK generation made 704 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 705 * to do with delayed acks, because at cwnd>2 true delack timeout 706 * is invisible. Actually, Linux-2.4 also generates erratic 707 * ACKs in some circumstances. 708 */ 709 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 710 711 /* 2. Fixups made earlier cannot be right. 712 * If we do not estimate RTO correctly without them, 713 * all the algo is pure shit and should be replaced 714 * with correct one. It is exactly, which we pretend to do. 715 */ 716 717 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 718 * guarantees that rto is higher. 719 */ 720 tcp_bound_rto(sk); 721 } 722 723 /* Save metrics learned by this TCP session. 724 This function is called only, when TCP finishes successfully 725 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE. 726 */ 727 void tcp_update_metrics(struct sock *sk) 728 { 729 struct tcp_sock *tp = tcp_sk(sk); 730 struct dst_entry *dst = __sk_dst_get(sk); 731 732 if (sysctl_tcp_nometrics_save) 733 return; 734 735 dst_confirm(dst); 736 737 if (dst && (dst->flags & DST_HOST)) { 738 const struct inet_connection_sock *icsk = inet_csk(sk); 739 int m; 740 unsigned long rtt; 741 742 if (icsk->icsk_backoff || !tp->srtt) { 743 /* This session failed to estimate rtt. Why? 744 * Probably, no packets returned in time. 745 * Reset our results. 746 */ 747 if (!(dst_metric_locked(dst, RTAX_RTT))) 748 dst_metric_set(dst, RTAX_RTT, 0); 749 return; 750 } 751 752 rtt = dst_metric_rtt(dst, RTAX_RTT); 753 m = rtt - tp->srtt; 754 755 /* If newly calculated rtt larger than stored one, 756 * store new one. Otherwise, use EWMA. Remember, 757 * rtt overestimation is always better than underestimation. 758 */ 759 if (!(dst_metric_locked(dst, RTAX_RTT))) { 760 if (m <= 0) 761 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt); 762 else 763 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3)); 764 } 765 766 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) { 767 unsigned long var; 768 if (m < 0) 769 m = -m; 770 771 /* Scale deviation to rttvar fixed point */ 772 m >>= 1; 773 if (m < tp->mdev) 774 m = tp->mdev; 775 776 var = dst_metric_rtt(dst, RTAX_RTTVAR); 777 if (m >= var) 778 var = m; 779 else 780 var -= (var - m) >> 2; 781 782 set_dst_metric_rtt(dst, RTAX_RTTVAR, var); 783 } 784 785 if (tcp_in_initial_slowstart(tp)) { 786 /* Slow start still did not finish. */ 787 if (dst_metric(dst, RTAX_SSTHRESH) && 788 !dst_metric_locked(dst, RTAX_SSTHRESH) && 789 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH)) 790 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1); 791 if (!dst_metric_locked(dst, RTAX_CWND) && 792 tp->snd_cwnd > dst_metric(dst, RTAX_CWND)) 793 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd); 794 } else if (tp->snd_cwnd > tp->snd_ssthresh && 795 icsk->icsk_ca_state == TCP_CA_Open) { 796 /* Cong. avoidance phase, cwnd is reliable. */ 797 if (!dst_metric_locked(dst, RTAX_SSTHRESH)) 798 dst_metric_set(dst, RTAX_SSTHRESH, 799 max(tp->snd_cwnd >> 1, tp->snd_ssthresh)); 800 if (!dst_metric_locked(dst, RTAX_CWND)) 801 dst_metric_set(dst, RTAX_CWND, 802 (dst_metric(dst, RTAX_CWND) + 803 tp->snd_cwnd) >> 1); 804 } else { 805 /* Else slow start did not finish, cwnd is non-sense, 806 ssthresh may be also invalid. 807 */ 808 if (!dst_metric_locked(dst, RTAX_CWND)) 809 dst_metric_set(dst, RTAX_CWND, 810 (dst_metric(dst, RTAX_CWND) + 811 tp->snd_ssthresh) >> 1); 812 if (dst_metric(dst, RTAX_SSTHRESH) && 813 !dst_metric_locked(dst, RTAX_SSTHRESH) && 814 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH)) 815 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh); 816 } 817 818 if (!dst_metric_locked(dst, RTAX_REORDERING)) { 819 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering && 820 tp->reordering != sysctl_tcp_reordering) 821 dst_metric_set(dst, RTAX_REORDERING, tp->reordering); 822 } 823 } 824 } 825 826 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 827 { 828 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 829 830 if (!cwnd) 831 cwnd = TCP_INIT_CWND; 832 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 833 } 834 835 /* Set slow start threshold and cwnd not falling to slow start */ 836 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh) 837 { 838 struct tcp_sock *tp = tcp_sk(sk); 839 const struct inet_connection_sock *icsk = inet_csk(sk); 840 841 tp->prior_ssthresh = 0; 842 tp->bytes_acked = 0; 843 if (icsk->icsk_ca_state < TCP_CA_CWR) { 844 tp->undo_marker = 0; 845 if (set_ssthresh) 846 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 847 tp->snd_cwnd = min(tp->snd_cwnd, 848 tcp_packets_in_flight(tp) + 1U); 849 tp->snd_cwnd_cnt = 0; 850 tp->high_seq = tp->snd_nxt; 851 tp->snd_cwnd_stamp = tcp_time_stamp; 852 TCP_ECN_queue_cwr(tp); 853 854 tcp_set_ca_state(sk, TCP_CA_CWR); 855 } 856 } 857 858 /* 859 * Packet counting of FACK is based on in-order assumptions, therefore TCP 860 * disables it when reordering is detected 861 */ 862 static void tcp_disable_fack(struct tcp_sock *tp) 863 { 864 /* RFC3517 uses different metric in lost marker => reset on change */ 865 if (tcp_is_fack(tp)) 866 tp->lost_skb_hint = NULL; 867 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 868 } 869 870 /* Take a notice that peer is sending D-SACKs */ 871 static void tcp_dsack_seen(struct tcp_sock *tp) 872 { 873 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 874 } 875 876 /* Initialize metrics on socket. */ 877 878 static void tcp_init_metrics(struct sock *sk) 879 { 880 struct tcp_sock *tp = tcp_sk(sk); 881 struct dst_entry *dst = __sk_dst_get(sk); 882 883 if (dst == NULL) 884 goto reset; 885 886 dst_confirm(dst); 887 888 if (dst_metric_locked(dst, RTAX_CWND)) 889 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND); 890 if (dst_metric(dst, RTAX_SSTHRESH)) { 891 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH); 892 if (tp->snd_ssthresh > tp->snd_cwnd_clamp) 893 tp->snd_ssthresh = tp->snd_cwnd_clamp; 894 } else { 895 /* ssthresh may have been reduced unnecessarily during. 896 * 3WHS. Restore it back to its initial default. 897 */ 898 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 899 } 900 if (dst_metric(dst, RTAX_REORDERING) && 901 tp->reordering != dst_metric(dst, RTAX_REORDERING)) { 902 tcp_disable_fack(tp); 903 tp->reordering = dst_metric(dst, RTAX_REORDERING); 904 } 905 906 if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0) 907 goto reset; 908 909 /* Initial rtt is determined from SYN,SYN-ACK. 910 * The segment is small and rtt may appear much 911 * less than real one. Use per-dst memory 912 * to make it more realistic. 913 * 914 * A bit of theory. RTT is time passed after "normal" sized packet 915 * is sent until it is ACKed. In normal circumstances sending small 916 * packets force peer to delay ACKs and calculation is correct too. 917 * The algorithm is adaptive and, provided we follow specs, it 918 * NEVER underestimate RTT. BUT! If peer tries to make some clever 919 * tricks sort of "quick acks" for time long enough to decrease RTT 920 * to low value, and then abruptly stops to do it and starts to delay 921 * ACKs, wait for troubles. 922 */ 923 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) { 924 tp->srtt = dst_metric_rtt(dst, RTAX_RTT); 925 tp->rtt_seq = tp->snd_nxt; 926 } 927 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) { 928 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR); 929 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk)); 930 } 931 tcp_set_rto(sk); 932 reset: 933 if (tp->srtt == 0) { 934 /* RFC2988bis: We've failed to get a valid RTT sample from 935 * 3WHS. This is most likely due to retransmission, 936 * including spurious one. Reset the RTO back to 3secs 937 * from the more aggressive 1sec to avoid more spurious 938 * retransmission. 939 */ 940 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK; 941 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK; 942 } 943 /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 944 * retransmitted. In light of RFC2988bis' more aggressive 1sec 945 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 946 * retransmission has occurred. 947 */ 948 if (tp->total_retrans > 1) 949 tp->snd_cwnd = 1; 950 else 951 tp->snd_cwnd = tcp_init_cwnd(tp, dst); 952 tp->snd_cwnd_stamp = tcp_time_stamp; 953 } 954 955 static void tcp_update_reordering(struct sock *sk, const int metric, 956 const int ts) 957 { 958 struct tcp_sock *tp = tcp_sk(sk); 959 if (metric > tp->reordering) { 960 int mib_idx; 961 962 tp->reordering = min(TCP_MAX_REORDERING, metric); 963 964 /* This exciting event is worth to be remembered. 8) */ 965 if (ts) 966 mib_idx = LINUX_MIB_TCPTSREORDER; 967 else if (tcp_is_reno(tp)) 968 mib_idx = LINUX_MIB_TCPRENOREORDER; 969 else if (tcp_is_fack(tp)) 970 mib_idx = LINUX_MIB_TCPFACKREORDER; 971 else 972 mib_idx = LINUX_MIB_TCPSACKREORDER; 973 974 NET_INC_STATS_BH(sock_net(sk), mib_idx); 975 #if FASTRETRANS_DEBUG > 1 976 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n", 977 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 978 tp->reordering, 979 tp->fackets_out, 980 tp->sacked_out, 981 tp->undo_marker ? tp->undo_retrans : 0); 982 #endif 983 tcp_disable_fack(tp); 984 } 985 } 986 987 /* This must be called before lost_out is incremented */ 988 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 989 { 990 if ((tp->retransmit_skb_hint == NULL) || 991 before(TCP_SKB_CB(skb)->seq, 992 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 993 tp->retransmit_skb_hint = skb; 994 995 if (!tp->lost_out || 996 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 997 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 998 } 999 1000 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 1001 { 1002 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1003 tcp_verify_retransmit_hint(tp, skb); 1004 1005 tp->lost_out += tcp_skb_pcount(skb); 1006 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1007 } 1008 } 1009 1010 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 1011 struct sk_buff *skb) 1012 { 1013 tcp_verify_retransmit_hint(tp, skb); 1014 1015 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 1016 tp->lost_out += tcp_skb_pcount(skb); 1017 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1018 } 1019 } 1020 1021 /* This procedure tags the retransmission queue when SACKs arrive. 1022 * 1023 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1024 * Packets in queue with these bits set are counted in variables 1025 * sacked_out, retrans_out and lost_out, correspondingly. 1026 * 1027 * Valid combinations are: 1028 * Tag InFlight Description 1029 * 0 1 - orig segment is in flight. 1030 * S 0 - nothing flies, orig reached receiver. 1031 * L 0 - nothing flies, orig lost by net. 1032 * R 2 - both orig and retransmit are in flight. 1033 * L|R 1 - orig is lost, retransmit is in flight. 1034 * S|R 1 - orig reached receiver, retrans is still in flight. 1035 * (L|S|R is logically valid, it could occur when L|R is sacked, 1036 * but it is equivalent to plain S and code short-curcuits it to S. 1037 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1038 * 1039 * These 6 states form finite state machine, controlled by the following events: 1040 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1041 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1042 * 3. Loss detection event of two flavors: 1043 * A. Scoreboard estimator decided the packet is lost. 1044 * A'. Reno "three dupacks" marks head of queue lost. 1045 * A''. Its FACK modification, head until snd.fack is lost. 1046 * B. SACK arrives sacking SND.NXT at the moment, when the 1047 * segment was retransmitted. 1048 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1049 * 1050 * It is pleasant to note, that state diagram turns out to be commutative, 1051 * so that we are allowed not to be bothered by order of our actions, 1052 * when multiple events arrive simultaneously. (see the function below). 1053 * 1054 * Reordering detection. 1055 * -------------------- 1056 * Reordering metric is maximal distance, which a packet can be displaced 1057 * in packet stream. With SACKs we can estimate it: 1058 * 1059 * 1. SACK fills old hole and the corresponding segment was not 1060 * ever retransmitted -> reordering. Alas, we cannot use it 1061 * when segment was retransmitted. 1062 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1063 * for retransmitted and already SACKed segment -> reordering.. 1064 * Both of these heuristics are not used in Loss state, when we cannot 1065 * account for retransmits accurately. 1066 * 1067 * SACK block validation. 1068 * ---------------------- 1069 * 1070 * SACK block range validation checks that the received SACK block fits to 1071 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1072 * Note that SND.UNA is not included to the range though being valid because 1073 * it means that the receiver is rather inconsistent with itself reporting 1074 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1075 * perfectly valid, however, in light of RFC2018 which explicitly states 1076 * that "SACK block MUST reflect the newest segment. Even if the newest 1077 * segment is going to be discarded ...", not that it looks very clever 1078 * in case of head skb. Due to potentional receiver driven attacks, we 1079 * choose to avoid immediate execution of a walk in write queue due to 1080 * reneging and defer head skb's loss recovery to standard loss recovery 1081 * procedure that will eventually trigger (nothing forbids us doing this). 1082 * 1083 * Implements also blockage to start_seq wrap-around. Problem lies in the 1084 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1085 * there's no guarantee that it will be before snd_nxt (n). The problem 1086 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1087 * wrap (s_w): 1088 * 1089 * <- outs wnd -> <- wrapzone -> 1090 * u e n u_w e_w s n_w 1091 * | | | | | | | 1092 * |<------------+------+----- TCP seqno space --------------+---------->| 1093 * ...-- <2^31 ->| |<--------... 1094 * ...---- >2^31 ------>| |<--------... 1095 * 1096 * Current code wouldn't be vulnerable but it's better still to discard such 1097 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1098 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1099 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1100 * equal to the ideal case (infinite seqno space without wrap caused issues). 1101 * 1102 * With D-SACK the lower bound is extended to cover sequence space below 1103 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1104 * again, D-SACK block must not to go across snd_una (for the same reason as 1105 * for the normal SACK blocks, explained above). But there all simplicity 1106 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1107 * fully below undo_marker they do not affect behavior in anyway and can 1108 * therefore be safely ignored. In rare cases (which are more or less 1109 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1110 * fragmentation and packet reordering past skb's retransmission. To consider 1111 * them correctly, the acceptable range must be extended even more though 1112 * the exact amount is rather hard to quantify. However, tp->max_window can 1113 * be used as an exaggerated estimate. 1114 */ 1115 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack, 1116 u32 start_seq, u32 end_seq) 1117 { 1118 /* Too far in future, or reversed (interpretation is ambiguous) */ 1119 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1120 return 0; 1121 1122 /* Nasty start_seq wrap-around check (see comments above) */ 1123 if (!before(start_seq, tp->snd_nxt)) 1124 return 0; 1125 1126 /* In outstanding window? ...This is valid exit for D-SACKs too. 1127 * start_seq == snd_una is non-sensical (see comments above) 1128 */ 1129 if (after(start_seq, tp->snd_una)) 1130 return 1; 1131 1132 if (!is_dsack || !tp->undo_marker) 1133 return 0; 1134 1135 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1136 if (after(end_seq, tp->snd_una)) 1137 return 0; 1138 1139 if (!before(start_seq, tp->undo_marker)) 1140 return 1; 1141 1142 /* Too old */ 1143 if (!after(end_seq, tp->undo_marker)) 1144 return 0; 1145 1146 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1147 * start_seq < undo_marker and end_seq >= undo_marker. 1148 */ 1149 return !before(start_seq, end_seq - tp->max_window); 1150 } 1151 1152 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1153 * Event "B". Later note: FACK people cheated me again 8), we have to account 1154 * for reordering! Ugly, but should help. 1155 * 1156 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1157 * less than what is now known to be received by the other end (derived from 1158 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1159 * retransmitted skbs to avoid some costly processing per ACKs. 1160 */ 1161 static void tcp_mark_lost_retrans(struct sock *sk) 1162 { 1163 const struct inet_connection_sock *icsk = inet_csk(sk); 1164 struct tcp_sock *tp = tcp_sk(sk); 1165 struct sk_buff *skb; 1166 int cnt = 0; 1167 u32 new_low_seq = tp->snd_nxt; 1168 u32 received_upto = tcp_highest_sack_seq(tp); 1169 1170 if (!tcp_is_fack(tp) || !tp->retrans_out || 1171 !after(received_upto, tp->lost_retrans_low) || 1172 icsk->icsk_ca_state != TCP_CA_Recovery) 1173 return; 1174 1175 tcp_for_write_queue(skb, sk) { 1176 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1177 1178 if (skb == tcp_send_head(sk)) 1179 break; 1180 if (cnt == tp->retrans_out) 1181 break; 1182 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1183 continue; 1184 1185 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1186 continue; 1187 1188 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1189 * constraint here (see above) but figuring out that at 1190 * least tp->reordering SACK blocks reside between ack_seq 1191 * and received_upto is not easy task to do cheaply with 1192 * the available datastructures. 1193 * 1194 * Whether FACK should check here for tp->reordering segs 1195 * in-between one could argue for either way (it would be 1196 * rather simple to implement as we could count fack_count 1197 * during the walk and do tp->fackets_out - fack_count). 1198 */ 1199 if (after(received_upto, ack_seq)) { 1200 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1201 tp->retrans_out -= tcp_skb_pcount(skb); 1202 1203 tcp_skb_mark_lost_uncond_verify(tp, skb); 1204 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1205 } else { 1206 if (before(ack_seq, new_low_seq)) 1207 new_low_seq = ack_seq; 1208 cnt += tcp_skb_pcount(skb); 1209 } 1210 } 1211 1212 if (tp->retrans_out) 1213 tp->lost_retrans_low = new_low_seq; 1214 } 1215 1216 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1217 struct tcp_sack_block_wire *sp, int num_sacks, 1218 u32 prior_snd_una) 1219 { 1220 struct tcp_sock *tp = tcp_sk(sk); 1221 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1222 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1223 int dup_sack = 0; 1224 1225 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1226 dup_sack = 1; 1227 tcp_dsack_seen(tp); 1228 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1229 } else if (num_sacks > 1) { 1230 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1231 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1232 1233 if (!after(end_seq_0, end_seq_1) && 1234 !before(start_seq_0, start_seq_1)) { 1235 dup_sack = 1; 1236 tcp_dsack_seen(tp); 1237 NET_INC_STATS_BH(sock_net(sk), 1238 LINUX_MIB_TCPDSACKOFORECV); 1239 } 1240 } 1241 1242 /* D-SACK for already forgotten data... Do dumb counting. */ 1243 if (dup_sack && tp->undo_marker && tp->undo_retrans && 1244 !after(end_seq_0, prior_snd_una) && 1245 after(end_seq_0, tp->undo_marker)) 1246 tp->undo_retrans--; 1247 1248 return dup_sack; 1249 } 1250 1251 struct tcp_sacktag_state { 1252 int reord; 1253 int fack_count; 1254 int flag; 1255 }; 1256 1257 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1258 * the incoming SACK may not exactly match but we can find smaller MSS 1259 * aligned portion of it that matches. Therefore we might need to fragment 1260 * which may fail and creates some hassle (caller must handle error case 1261 * returns). 1262 * 1263 * FIXME: this could be merged to shift decision code 1264 */ 1265 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1266 u32 start_seq, u32 end_seq) 1267 { 1268 int in_sack, err; 1269 unsigned int pkt_len; 1270 unsigned int mss; 1271 1272 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1273 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1274 1275 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1276 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1277 mss = tcp_skb_mss(skb); 1278 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1279 1280 if (!in_sack) { 1281 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1282 if (pkt_len < mss) 1283 pkt_len = mss; 1284 } else { 1285 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1286 if (pkt_len < mss) 1287 return -EINVAL; 1288 } 1289 1290 /* Round if necessary so that SACKs cover only full MSSes 1291 * and/or the remaining small portion (if present) 1292 */ 1293 if (pkt_len > mss) { 1294 unsigned int new_len = (pkt_len / mss) * mss; 1295 if (!in_sack && new_len < pkt_len) { 1296 new_len += mss; 1297 if (new_len > skb->len) 1298 return 0; 1299 } 1300 pkt_len = new_len; 1301 } 1302 err = tcp_fragment(sk, skb, pkt_len, mss); 1303 if (err < 0) 1304 return err; 1305 } 1306 1307 return in_sack; 1308 } 1309 1310 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1311 static u8 tcp_sacktag_one(struct sock *sk, 1312 struct tcp_sacktag_state *state, u8 sacked, 1313 u32 start_seq, u32 end_seq, 1314 int dup_sack, int pcount) 1315 { 1316 struct tcp_sock *tp = tcp_sk(sk); 1317 int fack_count = state->fack_count; 1318 1319 /* Account D-SACK for retransmitted packet. */ 1320 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1321 if (tp->undo_marker && tp->undo_retrans && 1322 after(end_seq, tp->undo_marker)) 1323 tp->undo_retrans--; 1324 if (sacked & TCPCB_SACKED_ACKED) 1325 state->reord = min(fack_count, state->reord); 1326 } 1327 1328 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1329 if (!after(end_seq, tp->snd_una)) 1330 return sacked; 1331 1332 if (!(sacked & TCPCB_SACKED_ACKED)) { 1333 if (sacked & TCPCB_SACKED_RETRANS) { 1334 /* If the segment is not tagged as lost, 1335 * we do not clear RETRANS, believing 1336 * that retransmission is still in flight. 1337 */ 1338 if (sacked & TCPCB_LOST) { 1339 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1340 tp->lost_out -= pcount; 1341 tp->retrans_out -= pcount; 1342 } 1343 } else { 1344 if (!(sacked & TCPCB_RETRANS)) { 1345 /* New sack for not retransmitted frame, 1346 * which was in hole. It is reordering. 1347 */ 1348 if (before(start_seq, 1349 tcp_highest_sack_seq(tp))) 1350 state->reord = min(fack_count, 1351 state->reord); 1352 1353 /* SACK enhanced F-RTO (RFC4138; Appendix B) */ 1354 if (!after(end_seq, tp->frto_highmark)) 1355 state->flag |= FLAG_ONLY_ORIG_SACKED; 1356 } 1357 1358 if (sacked & TCPCB_LOST) { 1359 sacked &= ~TCPCB_LOST; 1360 tp->lost_out -= pcount; 1361 } 1362 } 1363 1364 sacked |= TCPCB_SACKED_ACKED; 1365 state->flag |= FLAG_DATA_SACKED; 1366 tp->sacked_out += pcount; 1367 1368 fack_count += pcount; 1369 1370 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1371 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1372 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1373 tp->lost_cnt_hint += pcount; 1374 1375 if (fack_count > tp->fackets_out) 1376 tp->fackets_out = fack_count; 1377 } 1378 1379 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1380 * frames and clear it. undo_retrans is decreased above, L|R frames 1381 * are accounted above as well. 1382 */ 1383 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1384 sacked &= ~TCPCB_SACKED_RETRANS; 1385 tp->retrans_out -= pcount; 1386 } 1387 1388 return sacked; 1389 } 1390 1391 /* Shift newly-SACKed bytes from this skb to the immediately previous 1392 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1393 */ 1394 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1395 struct tcp_sacktag_state *state, 1396 unsigned int pcount, int shifted, int mss, 1397 int dup_sack) 1398 { 1399 struct tcp_sock *tp = tcp_sk(sk); 1400 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1401 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1402 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1403 1404 BUG_ON(!pcount); 1405 1406 /* Adjust counters and hints for the newly sacked sequence 1407 * range but discard the return value since prev is already 1408 * marked. We must tag the range first because the seq 1409 * advancement below implicitly advances 1410 * tcp_highest_sack_seq() when skb is highest_sack. 1411 */ 1412 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1413 start_seq, end_seq, dup_sack, pcount); 1414 1415 if (skb == tp->lost_skb_hint) 1416 tp->lost_cnt_hint += pcount; 1417 1418 TCP_SKB_CB(prev)->end_seq += shifted; 1419 TCP_SKB_CB(skb)->seq += shifted; 1420 1421 skb_shinfo(prev)->gso_segs += pcount; 1422 BUG_ON(skb_shinfo(skb)->gso_segs < pcount); 1423 skb_shinfo(skb)->gso_segs -= pcount; 1424 1425 /* When we're adding to gso_segs == 1, gso_size will be zero, 1426 * in theory this shouldn't be necessary but as long as DSACK 1427 * code can come after this skb later on it's better to keep 1428 * setting gso_size to something. 1429 */ 1430 if (!skb_shinfo(prev)->gso_size) { 1431 skb_shinfo(prev)->gso_size = mss; 1432 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1433 } 1434 1435 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1436 if (skb_shinfo(skb)->gso_segs <= 1) { 1437 skb_shinfo(skb)->gso_size = 0; 1438 skb_shinfo(skb)->gso_type = 0; 1439 } 1440 1441 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1442 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1443 1444 if (skb->len > 0) { 1445 BUG_ON(!tcp_skb_pcount(skb)); 1446 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1447 return 0; 1448 } 1449 1450 /* Whole SKB was eaten :-) */ 1451 1452 if (skb == tp->retransmit_skb_hint) 1453 tp->retransmit_skb_hint = prev; 1454 if (skb == tp->scoreboard_skb_hint) 1455 tp->scoreboard_skb_hint = prev; 1456 if (skb == tp->lost_skb_hint) { 1457 tp->lost_skb_hint = prev; 1458 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1459 } 1460 1461 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags; 1462 if (skb == tcp_highest_sack(sk)) 1463 tcp_advance_highest_sack(sk, skb); 1464 1465 tcp_unlink_write_queue(skb, sk); 1466 sk_wmem_free_skb(sk, skb); 1467 1468 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1469 1470 return 1; 1471 } 1472 1473 /* I wish gso_size would have a bit more sane initialization than 1474 * something-or-zero which complicates things 1475 */ 1476 static int tcp_skb_seglen(const struct sk_buff *skb) 1477 { 1478 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1479 } 1480 1481 /* Shifting pages past head area doesn't work */ 1482 static int skb_can_shift(const struct sk_buff *skb) 1483 { 1484 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1485 } 1486 1487 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1488 * skb. 1489 */ 1490 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1491 struct tcp_sacktag_state *state, 1492 u32 start_seq, u32 end_seq, 1493 int dup_sack) 1494 { 1495 struct tcp_sock *tp = tcp_sk(sk); 1496 struct sk_buff *prev; 1497 int mss; 1498 int pcount = 0; 1499 int len; 1500 int in_sack; 1501 1502 if (!sk_can_gso(sk)) 1503 goto fallback; 1504 1505 /* Normally R but no L won't result in plain S */ 1506 if (!dup_sack && 1507 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1508 goto fallback; 1509 if (!skb_can_shift(skb)) 1510 goto fallback; 1511 /* This frame is about to be dropped (was ACKed). */ 1512 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1513 goto fallback; 1514 1515 /* Can only happen with delayed DSACK + discard craziness */ 1516 if (unlikely(skb == tcp_write_queue_head(sk))) 1517 goto fallback; 1518 prev = tcp_write_queue_prev(sk, skb); 1519 1520 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1521 goto fallback; 1522 1523 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1524 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1525 1526 if (in_sack) { 1527 len = skb->len; 1528 pcount = tcp_skb_pcount(skb); 1529 mss = tcp_skb_seglen(skb); 1530 1531 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1532 * drop this restriction as unnecessary 1533 */ 1534 if (mss != tcp_skb_seglen(prev)) 1535 goto fallback; 1536 } else { 1537 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1538 goto noop; 1539 /* CHECKME: This is non-MSS split case only?, this will 1540 * cause skipped skbs due to advancing loop btw, original 1541 * has that feature too 1542 */ 1543 if (tcp_skb_pcount(skb) <= 1) 1544 goto noop; 1545 1546 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1547 if (!in_sack) { 1548 /* TODO: head merge to next could be attempted here 1549 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1550 * though it might not be worth of the additional hassle 1551 * 1552 * ...we can probably just fallback to what was done 1553 * previously. We could try merging non-SACKed ones 1554 * as well but it probably isn't going to buy off 1555 * because later SACKs might again split them, and 1556 * it would make skb timestamp tracking considerably 1557 * harder problem. 1558 */ 1559 goto fallback; 1560 } 1561 1562 len = end_seq - TCP_SKB_CB(skb)->seq; 1563 BUG_ON(len < 0); 1564 BUG_ON(len > skb->len); 1565 1566 /* MSS boundaries should be honoured or else pcount will 1567 * severely break even though it makes things bit trickier. 1568 * Optimize common case to avoid most of the divides 1569 */ 1570 mss = tcp_skb_mss(skb); 1571 1572 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1573 * drop this restriction as unnecessary 1574 */ 1575 if (mss != tcp_skb_seglen(prev)) 1576 goto fallback; 1577 1578 if (len == mss) { 1579 pcount = 1; 1580 } else if (len < mss) { 1581 goto noop; 1582 } else { 1583 pcount = len / mss; 1584 len = pcount * mss; 1585 } 1586 } 1587 1588 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1589 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1590 goto fallback; 1591 1592 if (!skb_shift(prev, skb, len)) 1593 goto fallback; 1594 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1595 goto out; 1596 1597 /* Hole filled allows collapsing with the next as well, this is very 1598 * useful when hole on every nth skb pattern happens 1599 */ 1600 if (prev == tcp_write_queue_tail(sk)) 1601 goto out; 1602 skb = tcp_write_queue_next(sk, prev); 1603 1604 if (!skb_can_shift(skb) || 1605 (skb == tcp_send_head(sk)) || 1606 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1607 (mss != tcp_skb_seglen(skb))) 1608 goto out; 1609 1610 len = skb->len; 1611 if (skb_shift(prev, skb, len)) { 1612 pcount += tcp_skb_pcount(skb); 1613 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1614 } 1615 1616 out: 1617 state->fack_count += pcount; 1618 return prev; 1619 1620 noop: 1621 return skb; 1622 1623 fallback: 1624 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1625 return NULL; 1626 } 1627 1628 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1629 struct tcp_sack_block *next_dup, 1630 struct tcp_sacktag_state *state, 1631 u32 start_seq, u32 end_seq, 1632 int dup_sack_in) 1633 { 1634 struct tcp_sock *tp = tcp_sk(sk); 1635 struct sk_buff *tmp; 1636 1637 tcp_for_write_queue_from(skb, sk) { 1638 int in_sack = 0; 1639 int dup_sack = dup_sack_in; 1640 1641 if (skb == tcp_send_head(sk)) 1642 break; 1643 1644 /* queue is in-order => we can short-circuit the walk early */ 1645 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1646 break; 1647 1648 if ((next_dup != NULL) && 1649 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1650 in_sack = tcp_match_skb_to_sack(sk, skb, 1651 next_dup->start_seq, 1652 next_dup->end_seq); 1653 if (in_sack > 0) 1654 dup_sack = 1; 1655 } 1656 1657 /* skb reference here is a bit tricky to get right, since 1658 * shifting can eat and free both this skb and the next, 1659 * so not even _safe variant of the loop is enough. 1660 */ 1661 if (in_sack <= 0) { 1662 tmp = tcp_shift_skb_data(sk, skb, state, 1663 start_seq, end_seq, dup_sack); 1664 if (tmp != NULL) { 1665 if (tmp != skb) { 1666 skb = tmp; 1667 continue; 1668 } 1669 1670 in_sack = 0; 1671 } else { 1672 in_sack = tcp_match_skb_to_sack(sk, skb, 1673 start_seq, 1674 end_seq); 1675 } 1676 } 1677 1678 if (unlikely(in_sack < 0)) 1679 break; 1680 1681 if (in_sack) { 1682 TCP_SKB_CB(skb)->sacked = 1683 tcp_sacktag_one(sk, 1684 state, 1685 TCP_SKB_CB(skb)->sacked, 1686 TCP_SKB_CB(skb)->seq, 1687 TCP_SKB_CB(skb)->end_seq, 1688 dup_sack, 1689 tcp_skb_pcount(skb)); 1690 1691 if (!before(TCP_SKB_CB(skb)->seq, 1692 tcp_highest_sack_seq(tp))) 1693 tcp_advance_highest_sack(sk, skb); 1694 } 1695 1696 state->fack_count += tcp_skb_pcount(skb); 1697 } 1698 return skb; 1699 } 1700 1701 /* Avoid all extra work that is being done by sacktag while walking in 1702 * a normal way 1703 */ 1704 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1705 struct tcp_sacktag_state *state, 1706 u32 skip_to_seq) 1707 { 1708 tcp_for_write_queue_from(skb, sk) { 1709 if (skb == tcp_send_head(sk)) 1710 break; 1711 1712 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1713 break; 1714 1715 state->fack_count += tcp_skb_pcount(skb); 1716 } 1717 return skb; 1718 } 1719 1720 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1721 struct sock *sk, 1722 struct tcp_sack_block *next_dup, 1723 struct tcp_sacktag_state *state, 1724 u32 skip_to_seq) 1725 { 1726 if (next_dup == NULL) 1727 return skb; 1728 1729 if (before(next_dup->start_seq, skip_to_seq)) { 1730 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1731 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1732 next_dup->start_seq, next_dup->end_seq, 1733 1); 1734 } 1735 1736 return skb; 1737 } 1738 1739 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1740 { 1741 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1742 } 1743 1744 static int 1745 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1746 u32 prior_snd_una) 1747 { 1748 const struct inet_connection_sock *icsk = inet_csk(sk); 1749 struct tcp_sock *tp = tcp_sk(sk); 1750 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1751 TCP_SKB_CB(ack_skb)->sacked); 1752 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1753 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1754 struct tcp_sack_block *cache; 1755 struct tcp_sacktag_state state; 1756 struct sk_buff *skb; 1757 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1758 int used_sacks; 1759 int found_dup_sack = 0; 1760 int i, j; 1761 int first_sack_index; 1762 1763 state.flag = 0; 1764 state.reord = tp->packets_out; 1765 1766 if (!tp->sacked_out) { 1767 if (WARN_ON(tp->fackets_out)) 1768 tp->fackets_out = 0; 1769 tcp_highest_sack_reset(sk); 1770 } 1771 1772 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1773 num_sacks, prior_snd_una); 1774 if (found_dup_sack) 1775 state.flag |= FLAG_DSACKING_ACK; 1776 1777 /* Eliminate too old ACKs, but take into 1778 * account more or less fresh ones, they can 1779 * contain valid SACK info. 1780 */ 1781 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1782 return 0; 1783 1784 if (!tp->packets_out) 1785 goto out; 1786 1787 used_sacks = 0; 1788 first_sack_index = 0; 1789 for (i = 0; i < num_sacks; i++) { 1790 int dup_sack = !i && found_dup_sack; 1791 1792 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1793 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1794 1795 if (!tcp_is_sackblock_valid(tp, dup_sack, 1796 sp[used_sacks].start_seq, 1797 sp[used_sacks].end_seq)) { 1798 int mib_idx; 1799 1800 if (dup_sack) { 1801 if (!tp->undo_marker) 1802 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1803 else 1804 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1805 } else { 1806 /* Don't count olds caused by ACK reordering */ 1807 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1808 !after(sp[used_sacks].end_seq, tp->snd_una)) 1809 continue; 1810 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1811 } 1812 1813 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1814 if (i == 0) 1815 first_sack_index = -1; 1816 continue; 1817 } 1818 1819 /* Ignore very old stuff early */ 1820 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1821 continue; 1822 1823 used_sacks++; 1824 } 1825 1826 /* order SACK blocks to allow in order walk of the retrans queue */ 1827 for (i = used_sacks - 1; i > 0; i--) { 1828 for (j = 0; j < i; j++) { 1829 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1830 swap(sp[j], sp[j + 1]); 1831 1832 /* Track where the first SACK block goes to */ 1833 if (j == first_sack_index) 1834 first_sack_index = j + 1; 1835 } 1836 } 1837 } 1838 1839 skb = tcp_write_queue_head(sk); 1840 state.fack_count = 0; 1841 i = 0; 1842 1843 if (!tp->sacked_out) { 1844 /* It's already past, so skip checking against it */ 1845 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1846 } else { 1847 cache = tp->recv_sack_cache; 1848 /* Skip empty blocks in at head of the cache */ 1849 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1850 !cache->end_seq) 1851 cache++; 1852 } 1853 1854 while (i < used_sacks) { 1855 u32 start_seq = sp[i].start_seq; 1856 u32 end_seq = sp[i].end_seq; 1857 int dup_sack = (found_dup_sack && (i == first_sack_index)); 1858 struct tcp_sack_block *next_dup = NULL; 1859 1860 if (found_dup_sack && ((i + 1) == first_sack_index)) 1861 next_dup = &sp[i + 1]; 1862 1863 /* Skip too early cached blocks */ 1864 while (tcp_sack_cache_ok(tp, cache) && 1865 !before(start_seq, cache->end_seq)) 1866 cache++; 1867 1868 /* Can skip some work by looking recv_sack_cache? */ 1869 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1870 after(end_seq, cache->start_seq)) { 1871 1872 /* Head todo? */ 1873 if (before(start_seq, cache->start_seq)) { 1874 skb = tcp_sacktag_skip(skb, sk, &state, 1875 start_seq); 1876 skb = tcp_sacktag_walk(skb, sk, next_dup, 1877 &state, 1878 start_seq, 1879 cache->start_seq, 1880 dup_sack); 1881 } 1882 1883 /* Rest of the block already fully processed? */ 1884 if (!after(end_seq, cache->end_seq)) 1885 goto advance_sp; 1886 1887 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1888 &state, 1889 cache->end_seq); 1890 1891 /* ...tail remains todo... */ 1892 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1893 /* ...but better entrypoint exists! */ 1894 skb = tcp_highest_sack(sk); 1895 if (skb == NULL) 1896 break; 1897 state.fack_count = tp->fackets_out; 1898 cache++; 1899 goto walk; 1900 } 1901 1902 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1903 /* Check overlap against next cached too (past this one already) */ 1904 cache++; 1905 continue; 1906 } 1907 1908 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1909 skb = tcp_highest_sack(sk); 1910 if (skb == NULL) 1911 break; 1912 state.fack_count = tp->fackets_out; 1913 } 1914 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1915 1916 walk: 1917 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1918 start_seq, end_seq, dup_sack); 1919 1920 advance_sp: 1921 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct 1922 * due to in-order walk 1923 */ 1924 if (after(end_seq, tp->frto_highmark)) 1925 state.flag &= ~FLAG_ONLY_ORIG_SACKED; 1926 1927 i++; 1928 } 1929 1930 /* Clear the head of the cache sack blocks so we can skip it next time */ 1931 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1932 tp->recv_sack_cache[i].start_seq = 0; 1933 tp->recv_sack_cache[i].end_seq = 0; 1934 } 1935 for (j = 0; j < used_sacks; j++) 1936 tp->recv_sack_cache[i++] = sp[j]; 1937 1938 tcp_mark_lost_retrans(sk); 1939 1940 tcp_verify_left_out(tp); 1941 1942 if ((state.reord < tp->fackets_out) && 1943 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) && 1944 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark))) 1945 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1946 1947 out: 1948 1949 #if FASTRETRANS_DEBUG > 0 1950 WARN_ON((int)tp->sacked_out < 0); 1951 WARN_ON((int)tp->lost_out < 0); 1952 WARN_ON((int)tp->retrans_out < 0); 1953 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1954 #endif 1955 return state.flag; 1956 } 1957 1958 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1959 * packets_out. Returns zero if sacked_out adjustement wasn't necessary. 1960 */ 1961 static int tcp_limit_reno_sacked(struct tcp_sock *tp) 1962 { 1963 u32 holes; 1964 1965 holes = max(tp->lost_out, 1U); 1966 holes = min(holes, tp->packets_out); 1967 1968 if ((tp->sacked_out + holes) > tp->packets_out) { 1969 tp->sacked_out = tp->packets_out - holes; 1970 return 1; 1971 } 1972 return 0; 1973 } 1974 1975 /* If we receive more dupacks than we expected counting segments 1976 * in assumption of absent reordering, interpret this as reordering. 1977 * The only another reason could be bug in receiver TCP. 1978 */ 1979 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1980 { 1981 struct tcp_sock *tp = tcp_sk(sk); 1982 if (tcp_limit_reno_sacked(tp)) 1983 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1984 } 1985 1986 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1987 1988 static void tcp_add_reno_sack(struct sock *sk) 1989 { 1990 struct tcp_sock *tp = tcp_sk(sk); 1991 tp->sacked_out++; 1992 tcp_check_reno_reordering(sk, 0); 1993 tcp_verify_left_out(tp); 1994 } 1995 1996 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1997 1998 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1999 { 2000 struct tcp_sock *tp = tcp_sk(sk); 2001 2002 if (acked > 0) { 2003 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2004 if (acked - 1 >= tp->sacked_out) 2005 tp->sacked_out = 0; 2006 else 2007 tp->sacked_out -= acked - 1; 2008 } 2009 tcp_check_reno_reordering(sk, acked); 2010 tcp_verify_left_out(tp); 2011 } 2012 2013 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2014 { 2015 tp->sacked_out = 0; 2016 } 2017 2018 static int tcp_is_sackfrto(const struct tcp_sock *tp) 2019 { 2020 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp); 2021 } 2022 2023 /* F-RTO can only be used if TCP has never retransmitted anything other than 2024 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here) 2025 */ 2026 int tcp_use_frto(struct sock *sk) 2027 { 2028 const struct tcp_sock *tp = tcp_sk(sk); 2029 const struct inet_connection_sock *icsk = inet_csk(sk); 2030 struct sk_buff *skb; 2031 2032 if (!sysctl_tcp_frto) 2033 return 0; 2034 2035 /* MTU probe and F-RTO won't really play nicely along currently */ 2036 if (icsk->icsk_mtup.probe_size) 2037 return 0; 2038 2039 if (tcp_is_sackfrto(tp)) 2040 return 1; 2041 2042 /* Avoid expensive walking of rexmit queue if possible */ 2043 if (tp->retrans_out > 1) 2044 return 0; 2045 2046 skb = tcp_write_queue_head(sk); 2047 if (tcp_skb_is_last(sk, skb)) 2048 return 1; 2049 skb = tcp_write_queue_next(sk, skb); /* Skips head */ 2050 tcp_for_write_queue_from(skb, sk) { 2051 if (skb == tcp_send_head(sk)) 2052 break; 2053 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2054 return 0; 2055 /* Short-circuit when first non-SACKed skb has been checked */ 2056 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2057 break; 2058 } 2059 return 1; 2060 } 2061 2062 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO 2063 * recovery a bit and use heuristics in tcp_process_frto() to detect if 2064 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to 2065 * keep retrans_out counting accurate (with SACK F-RTO, other than head 2066 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS 2067 * bits are handled if the Loss state is really to be entered (in 2068 * tcp_enter_frto_loss). 2069 * 2070 * Do like tcp_enter_loss() would; when RTO expires the second time it 2071 * does: 2072 * "Reduce ssthresh if it has not yet been made inside this window." 2073 */ 2074 void tcp_enter_frto(struct sock *sk) 2075 { 2076 const struct inet_connection_sock *icsk = inet_csk(sk); 2077 struct tcp_sock *tp = tcp_sk(sk); 2078 struct sk_buff *skb; 2079 2080 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) || 2081 tp->snd_una == tp->high_seq || 2082 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) && 2083 !icsk->icsk_retransmits)) { 2084 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2085 /* Our state is too optimistic in ssthresh() call because cwnd 2086 * is not reduced until tcp_enter_frto_loss() when previous F-RTO 2087 * recovery has not yet completed. Pattern would be this: RTO, 2088 * Cumulative ACK, RTO (2xRTO for the same segment does not end 2089 * up here twice). 2090 * RFC4138 should be more specific on what to do, even though 2091 * RTO is quite unlikely to occur after the first Cumulative ACK 2092 * due to back-off and complexity of triggering events ... 2093 */ 2094 if (tp->frto_counter) { 2095 u32 stored_cwnd; 2096 stored_cwnd = tp->snd_cwnd; 2097 tp->snd_cwnd = 2; 2098 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2099 tp->snd_cwnd = stored_cwnd; 2100 } else { 2101 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2102 } 2103 /* ... in theory, cong.control module could do "any tricks" in 2104 * ssthresh(), which means that ca_state, lost bits and lost_out 2105 * counter would have to be faked before the call occurs. We 2106 * consider that too expensive, unlikely and hacky, so modules 2107 * using these in ssthresh() must deal these incompatibility 2108 * issues if they receives CA_EVENT_FRTO and frto_counter != 0 2109 */ 2110 tcp_ca_event(sk, CA_EVENT_FRTO); 2111 } 2112 2113 tp->undo_marker = tp->snd_una; 2114 tp->undo_retrans = 0; 2115 2116 skb = tcp_write_queue_head(sk); 2117 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2118 tp->undo_marker = 0; 2119 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2120 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2121 tp->retrans_out -= tcp_skb_pcount(skb); 2122 } 2123 tcp_verify_left_out(tp); 2124 2125 /* Too bad if TCP was application limited */ 2126 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2127 2128 /* Earlier loss recovery underway (see RFC4138; Appendix B). 2129 * The last condition is necessary at least in tp->frto_counter case. 2130 */ 2131 if (tcp_is_sackfrto(tp) && (tp->frto_counter || 2132 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) && 2133 after(tp->high_seq, tp->snd_una)) { 2134 tp->frto_highmark = tp->high_seq; 2135 } else { 2136 tp->frto_highmark = tp->snd_nxt; 2137 } 2138 tcp_set_ca_state(sk, TCP_CA_Disorder); 2139 tp->high_seq = tp->snd_nxt; 2140 tp->frto_counter = 1; 2141 } 2142 2143 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO, 2144 * which indicates that we should follow the traditional RTO recovery, 2145 * i.e. mark everything lost and do go-back-N retransmission. 2146 */ 2147 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag) 2148 { 2149 struct tcp_sock *tp = tcp_sk(sk); 2150 struct sk_buff *skb; 2151 2152 tp->lost_out = 0; 2153 tp->retrans_out = 0; 2154 if (tcp_is_reno(tp)) 2155 tcp_reset_reno_sack(tp); 2156 2157 tcp_for_write_queue(skb, sk) { 2158 if (skb == tcp_send_head(sk)) 2159 break; 2160 2161 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2162 /* 2163 * Count the retransmission made on RTO correctly (only when 2164 * waiting for the first ACK and did not get it)... 2165 */ 2166 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) { 2167 /* For some reason this R-bit might get cleared? */ 2168 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) 2169 tp->retrans_out += tcp_skb_pcount(skb); 2170 /* ...enter this if branch just for the first segment */ 2171 flag |= FLAG_DATA_ACKED; 2172 } else { 2173 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2174 tp->undo_marker = 0; 2175 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2176 } 2177 2178 /* Marking forward transmissions that were made after RTO lost 2179 * can cause unnecessary retransmissions in some scenarios, 2180 * SACK blocks will mitigate that in some but not in all cases. 2181 * We used to not mark them but it was causing break-ups with 2182 * receivers that do only in-order receival. 2183 * 2184 * TODO: we could detect presence of such receiver and select 2185 * different behavior per flow. 2186 */ 2187 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2188 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2189 tp->lost_out += tcp_skb_pcount(skb); 2190 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2191 } 2192 } 2193 tcp_verify_left_out(tp); 2194 2195 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments; 2196 tp->snd_cwnd_cnt = 0; 2197 tp->snd_cwnd_stamp = tcp_time_stamp; 2198 tp->frto_counter = 0; 2199 tp->bytes_acked = 0; 2200 2201 tp->reordering = min_t(unsigned int, tp->reordering, 2202 sysctl_tcp_reordering); 2203 tcp_set_ca_state(sk, TCP_CA_Loss); 2204 tp->high_seq = tp->snd_nxt; 2205 TCP_ECN_queue_cwr(tp); 2206 2207 tcp_clear_all_retrans_hints(tp); 2208 } 2209 2210 static void tcp_clear_retrans_partial(struct tcp_sock *tp) 2211 { 2212 tp->retrans_out = 0; 2213 tp->lost_out = 0; 2214 2215 tp->undo_marker = 0; 2216 tp->undo_retrans = 0; 2217 } 2218 2219 void tcp_clear_retrans(struct tcp_sock *tp) 2220 { 2221 tcp_clear_retrans_partial(tp); 2222 2223 tp->fackets_out = 0; 2224 tp->sacked_out = 0; 2225 } 2226 2227 /* Enter Loss state. If "how" is not zero, forget all SACK information 2228 * and reset tags completely, otherwise preserve SACKs. If receiver 2229 * dropped its ofo queue, we will know this due to reneging detection. 2230 */ 2231 void tcp_enter_loss(struct sock *sk, int how) 2232 { 2233 const struct inet_connection_sock *icsk = inet_csk(sk); 2234 struct tcp_sock *tp = tcp_sk(sk); 2235 struct sk_buff *skb; 2236 2237 /* Reduce ssthresh if it has not yet been made inside this window. */ 2238 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq || 2239 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2240 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2241 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2242 tcp_ca_event(sk, CA_EVENT_LOSS); 2243 } 2244 tp->snd_cwnd = 1; 2245 tp->snd_cwnd_cnt = 0; 2246 tp->snd_cwnd_stamp = tcp_time_stamp; 2247 2248 tp->bytes_acked = 0; 2249 tcp_clear_retrans_partial(tp); 2250 2251 if (tcp_is_reno(tp)) 2252 tcp_reset_reno_sack(tp); 2253 2254 if (!how) { 2255 /* Push undo marker, if it was plain RTO and nothing 2256 * was retransmitted. */ 2257 tp->undo_marker = tp->snd_una; 2258 } else { 2259 tp->sacked_out = 0; 2260 tp->fackets_out = 0; 2261 } 2262 tcp_clear_all_retrans_hints(tp); 2263 2264 tcp_for_write_queue(skb, sk) { 2265 if (skb == tcp_send_head(sk)) 2266 break; 2267 2268 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) 2269 tp->undo_marker = 0; 2270 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 2271 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) { 2272 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2273 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 2274 tp->lost_out += tcp_skb_pcount(skb); 2275 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 2276 } 2277 } 2278 tcp_verify_left_out(tp); 2279 2280 tp->reordering = min_t(unsigned int, tp->reordering, 2281 sysctl_tcp_reordering); 2282 tcp_set_ca_state(sk, TCP_CA_Loss); 2283 tp->high_seq = tp->snd_nxt; 2284 TCP_ECN_queue_cwr(tp); 2285 /* Abort F-RTO algorithm if one is in progress */ 2286 tp->frto_counter = 0; 2287 } 2288 2289 /* If ACK arrived pointing to a remembered SACK, it means that our 2290 * remembered SACKs do not reflect real state of receiver i.e. 2291 * receiver _host_ is heavily congested (or buggy). 2292 * 2293 * Do processing similar to RTO timeout. 2294 */ 2295 static int tcp_check_sack_reneging(struct sock *sk, int flag) 2296 { 2297 if (flag & FLAG_SACK_RENEGING) { 2298 struct inet_connection_sock *icsk = inet_csk(sk); 2299 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2300 2301 tcp_enter_loss(sk, 1); 2302 icsk->icsk_retransmits++; 2303 tcp_retransmit_skb(sk, tcp_write_queue_head(sk)); 2304 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2305 icsk->icsk_rto, TCP_RTO_MAX); 2306 return 1; 2307 } 2308 return 0; 2309 } 2310 2311 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2312 { 2313 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2314 } 2315 2316 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2317 * counter when SACK is enabled (without SACK, sacked_out is used for 2318 * that purpose). 2319 * 2320 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2321 * segments up to the highest received SACK block so far and holes in 2322 * between them. 2323 * 2324 * With reordering, holes may still be in flight, so RFC3517 recovery 2325 * uses pure sacked_out (total number of SACKed segments) even though 2326 * it violates the RFC that uses duplicate ACKs, often these are equal 2327 * but when e.g. out-of-window ACKs or packet duplication occurs, 2328 * they differ. Since neither occurs due to loss, TCP should really 2329 * ignore them. 2330 */ 2331 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2332 { 2333 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2334 } 2335 2336 static inline int tcp_skb_timedout(const struct sock *sk, 2337 const struct sk_buff *skb) 2338 { 2339 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto; 2340 } 2341 2342 static inline int tcp_head_timedout(const struct sock *sk) 2343 { 2344 const struct tcp_sock *tp = tcp_sk(sk); 2345 2346 return tp->packets_out && 2347 tcp_skb_timedout(sk, tcp_write_queue_head(sk)); 2348 } 2349 2350 /* Linux NewReno/SACK/FACK/ECN state machine. 2351 * -------------------------------------- 2352 * 2353 * "Open" Normal state, no dubious events, fast path. 2354 * "Disorder" In all the respects it is "Open", 2355 * but requires a bit more attention. It is entered when 2356 * we see some SACKs or dupacks. It is split of "Open" 2357 * mainly to move some processing from fast path to slow one. 2358 * "CWR" CWND was reduced due to some Congestion Notification event. 2359 * It can be ECN, ICMP source quench, local device congestion. 2360 * "Recovery" CWND was reduced, we are fast-retransmitting. 2361 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2362 * 2363 * tcp_fastretrans_alert() is entered: 2364 * - each incoming ACK, if state is not "Open" 2365 * - when arrived ACK is unusual, namely: 2366 * * SACK 2367 * * Duplicate ACK. 2368 * * ECN ECE. 2369 * 2370 * Counting packets in flight is pretty simple. 2371 * 2372 * in_flight = packets_out - left_out + retrans_out 2373 * 2374 * packets_out is SND.NXT-SND.UNA counted in packets. 2375 * 2376 * retrans_out is number of retransmitted segments. 2377 * 2378 * left_out is number of segments left network, but not ACKed yet. 2379 * 2380 * left_out = sacked_out + lost_out 2381 * 2382 * sacked_out: Packets, which arrived to receiver out of order 2383 * and hence not ACKed. With SACKs this number is simply 2384 * amount of SACKed data. Even without SACKs 2385 * it is easy to give pretty reliable estimate of this number, 2386 * counting duplicate ACKs. 2387 * 2388 * lost_out: Packets lost by network. TCP has no explicit 2389 * "loss notification" feedback from network (for now). 2390 * It means that this number can be only _guessed_. 2391 * Actually, it is the heuristics to predict lossage that 2392 * distinguishes different algorithms. 2393 * 2394 * F.e. after RTO, when all the queue is considered as lost, 2395 * lost_out = packets_out and in_flight = retrans_out. 2396 * 2397 * Essentially, we have now two algorithms counting 2398 * lost packets. 2399 * 2400 * FACK: It is the simplest heuristics. As soon as we decided 2401 * that something is lost, we decide that _all_ not SACKed 2402 * packets until the most forward SACK are lost. I.e. 2403 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2404 * It is absolutely correct estimate, if network does not reorder 2405 * packets. And it loses any connection to reality when reordering 2406 * takes place. We use FACK by default until reordering 2407 * is suspected on the path to this destination. 2408 * 2409 * NewReno: when Recovery is entered, we assume that one segment 2410 * is lost (classic Reno). While we are in Recovery and 2411 * a partial ACK arrives, we assume that one more packet 2412 * is lost (NewReno). This heuristics are the same in NewReno 2413 * and SACK. 2414 * 2415 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2416 * deflation etc. CWND is real congestion window, never inflated, changes 2417 * only according to classic VJ rules. 2418 * 2419 * Really tricky (and requiring careful tuning) part of algorithm 2420 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2421 * The first determines the moment _when_ we should reduce CWND and, 2422 * hence, slow down forward transmission. In fact, it determines the moment 2423 * when we decide that hole is caused by loss, rather than by a reorder. 2424 * 2425 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2426 * holes, caused by lost packets. 2427 * 2428 * And the most logically complicated part of algorithm is undo 2429 * heuristics. We detect false retransmits due to both too early 2430 * fast retransmit (reordering) and underestimated RTO, analyzing 2431 * timestamps and D-SACKs. When we detect that some segments were 2432 * retransmitted by mistake and CWND reduction was wrong, we undo 2433 * window reduction and abort recovery phase. This logic is hidden 2434 * inside several functions named tcp_try_undo_<something>. 2435 */ 2436 2437 /* This function decides, when we should leave Disordered state 2438 * and enter Recovery phase, reducing congestion window. 2439 * 2440 * Main question: may we further continue forward transmission 2441 * with the same cwnd? 2442 */ 2443 static int tcp_time_to_recover(struct sock *sk) 2444 { 2445 struct tcp_sock *tp = tcp_sk(sk); 2446 __u32 packets_out; 2447 2448 /* Do not perform any recovery during F-RTO algorithm */ 2449 if (tp->frto_counter) 2450 return 0; 2451 2452 /* Trick#1: The loss is proven. */ 2453 if (tp->lost_out) 2454 return 1; 2455 2456 /* Not-A-Trick#2 : Classic rule... */ 2457 if (tcp_dupack_heuristics(tp) > tp->reordering) 2458 return 1; 2459 2460 /* Trick#3 : when we use RFC2988 timer restart, fast 2461 * retransmit can be triggered by timeout of queue head. 2462 */ 2463 if (tcp_is_fack(tp) && tcp_head_timedout(sk)) 2464 return 1; 2465 2466 /* Trick#4: It is still not OK... But will it be useful to delay 2467 * recovery more? 2468 */ 2469 packets_out = tp->packets_out; 2470 if (packets_out <= tp->reordering && 2471 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2472 !tcp_may_send_now(sk)) { 2473 /* We have nothing to send. This connection is limited 2474 * either by receiver window or by application. 2475 */ 2476 return 1; 2477 } 2478 2479 /* If a thin stream is detected, retransmit after first 2480 * received dupack. Employ only if SACK is supported in order 2481 * to avoid possible corner-case series of spurious retransmissions 2482 * Use only if there are no unsent data. 2483 */ 2484 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2485 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2486 tcp_is_sack(tp) && !tcp_send_head(sk)) 2487 return 1; 2488 2489 return 0; 2490 } 2491 2492 /* New heuristics: it is possible only after we switched to restart timer 2493 * each time when something is ACKed. Hence, we can detect timed out packets 2494 * during fast retransmit without falling to slow start. 2495 * 2496 * Usefulness of this as is very questionable, since we should know which of 2497 * the segments is the next to timeout which is relatively expensive to find 2498 * in general case unless we add some data structure just for that. The 2499 * current approach certainly won't find the right one too often and when it 2500 * finally does find _something_ it usually marks large part of the window 2501 * right away (because a retransmission with a larger timestamp blocks the 2502 * loop from advancing). -ij 2503 */ 2504 static void tcp_timeout_skbs(struct sock *sk) 2505 { 2506 struct tcp_sock *tp = tcp_sk(sk); 2507 struct sk_buff *skb; 2508 2509 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk)) 2510 return; 2511 2512 skb = tp->scoreboard_skb_hint; 2513 if (tp->scoreboard_skb_hint == NULL) 2514 skb = tcp_write_queue_head(sk); 2515 2516 tcp_for_write_queue_from(skb, sk) { 2517 if (skb == tcp_send_head(sk)) 2518 break; 2519 if (!tcp_skb_timedout(sk, skb)) 2520 break; 2521 2522 tcp_skb_mark_lost(tp, skb); 2523 } 2524 2525 tp->scoreboard_skb_hint = skb; 2526 2527 tcp_verify_left_out(tp); 2528 } 2529 2530 /* Detect loss in event "A" above by marking head of queue up as lost. 2531 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2532 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2533 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2534 * the maximum SACKed segments to pass before reaching this limit. 2535 */ 2536 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2537 { 2538 struct tcp_sock *tp = tcp_sk(sk); 2539 struct sk_buff *skb; 2540 int cnt, oldcnt; 2541 int err; 2542 unsigned int mss; 2543 /* Use SACK to deduce losses of new sequences sent during recovery */ 2544 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2545 2546 WARN_ON(packets > tp->packets_out); 2547 if (tp->lost_skb_hint) { 2548 skb = tp->lost_skb_hint; 2549 cnt = tp->lost_cnt_hint; 2550 /* Head already handled? */ 2551 if (mark_head && skb != tcp_write_queue_head(sk)) 2552 return; 2553 } else { 2554 skb = tcp_write_queue_head(sk); 2555 cnt = 0; 2556 } 2557 2558 tcp_for_write_queue_from(skb, sk) { 2559 if (skb == tcp_send_head(sk)) 2560 break; 2561 /* TODO: do this better */ 2562 /* this is not the most efficient way to do this... */ 2563 tp->lost_skb_hint = skb; 2564 tp->lost_cnt_hint = cnt; 2565 2566 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2567 break; 2568 2569 oldcnt = cnt; 2570 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2571 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2572 cnt += tcp_skb_pcount(skb); 2573 2574 if (cnt > packets) { 2575 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2576 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2577 (oldcnt >= packets)) 2578 break; 2579 2580 mss = skb_shinfo(skb)->gso_size; 2581 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss); 2582 if (err < 0) 2583 break; 2584 cnt = packets; 2585 } 2586 2587 tcp_skb_mark_lost(tp, skb); 2588 2589 if (mark_head) 2590 break; 2591 } 2592 tcp_verify_left_out(tp); 2593 } 2594 2595 /* Account newly detected lost packet(s) */ 2596 2597 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2598 { 2599 struct tcp_sock *tp = tcp_sk(sk); 2600 2601 if (tcp_is_reno(tp)) { 2602 tcp_mark_head_lost(sk, 1, 1); 2603 } else if (tcp_is_fack(tp)) { 2604 int lost = tp->fackets_out - tp->reordering; 2605 if (lost <= 0) 2606 lost = 1; 2607 tcp_mark_head_lost(sk, lost, 0); 2608 } else { 2609 int sacked_upto = tp->sacked_out - tp->reordering; 2610 if (sacked_upto >= 0) 2611 tcp_mark_head_lost(sk, sacked_upto, 0); 2612 else if (fast_rexmit) 2613 tcp_mark_head_lost(sk, 1, 1); 2614 } 2615 2616 tcp_timeout_skbs(sk); 2617 } 2618 2619 /* CWND moderation, preventing bursts due to too big ACKs 2620 * in dubious situations. 2621 */ 2622 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2623 { 2624 tp->snd_cwnd = min(tp->snd_cwnd, 2625 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2626 tp->snd_cwnd_stamp = tcp_time_stamp; 2627 } 2628 2629 /* Lower bound on congestion window is slow start threshold 2630 * unless congestion avoidance choice decides to overide it. 2631 */ 2632 static inline u32 tcp_cwnd_min(const struct sock *sk) 2633 { 2634 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 2635 2636 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh; 2637 } 2638 2639 /* Decrease cwnd each second ack. */ 2640 static void tcp_cwnd_down(struct sock *sk, int flag) 2641 { 2642 struct tcp_sock *tp = tcp_sk(sk); 2643 int decr = tp->snd_cwnd_cnt + 1; 2644 2645 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) || 2646 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) { 2647 tp->snd_cwnd_cnt = decr & 1; 2648 decr >>= 1; 2649 2650 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk)) 2651 tp->snd_cwnd -= decr; 2652 2653 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1); 2654 tp->snd_cwnd_stamp = tcp_time_stamp; 2655 } 2656 } 2657 2658 /* Nothing was retransmitted or returned timestamp is less 2659 * than timestamp of the first retransmission. 2660 */ 2661 static inline int tcp_packet_delayed(const struct tcp_sock *tp) 2662 { 2663 return !tp->retrans_stamp || 2664 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2665 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2666 } 2667 2668 /* Undo procedures. */ 2669 2670 #if FASTRETRANS_DEBUG > 1 2671 static void DBGUNDO(struct sock *sk, const char *msg) 2672 { 2673 struct tcp_sock *tp = tcp_sk(sk); 2674 struct inet_sock *inet = inet_sk(sk); 2675 2676 if (sk->sk_family == AF_INET) { 2677 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2678 msg, 2679 &inet->inet_daddr, ntohs(inet->inet_dport), 2680 tp->snd_cwnd, tcp_left_out(tp), 2681 tp->snd_ssthresh, tp->prior_ssthresh, 2682 tp->packets_out); 2683 } 2684 #if IS_ENABLED(CONFIG_IPV6) 2685 else if (sk->sk_family == AF_INET6) { 2686 struct ipv6_pinfo *np = inet6_sk(sk); 2687 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2688 msg, 2689 &np->daddr, ntohs(inet->inet_dport), 2690 tp->snd_cwnd, tcp_left_out(tp), 2691 tp->snd_ssthresh, tp->prior_ssthresh, 2692 tp->packets_out); 2693 } 2694 #endif 2695 } 2696 #else 2697 #define DBGUNDO(x...) do { } while (0) 2698 #endif 2699 2700 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh) 2701 { 2702 struct tcp_sock *tp = tcp_sk(sk); 2703 2704 if (tp->prior_ssthresh) { 2705 const struct inet_connection_sock *icsk = inet_csk(sk); 2706 2707 if (icsk->icsk_ca_ops->undo_cwnd) 2708 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2709 else 2710 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2711 2712 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) { 2713 tp->snd_ssthresh = tp->prior_ssthresh; 2714 TCP_ECN_withdraw_cwr(tp); 2715 } 2716 } else { 2717 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2718 } 2719 tp->snd_cwnd_stamp = tcp_time_stamp; 2720 } 2721 2722 static inline int tcp_may_undo(const struct tcp_sock *tp) 2723 { 2724 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2725 } 2726 2727 /* People celebrate: "We love our President!" */ 2728 static int tcp_try_undo_recovery(struct sock *sk) 2729 { 2730 struct tcp_sock *tp = tcp_sk(sk); 2731 2732 if (tcp_may_undo(tp)) { 2733 int mib_idx; 2734 2735 /* Happy end! We did not retransmit anything 2736 * or our original transmission succeeded. 2737 */ 2738 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2739 tcp_undo_cwr(sk, true); 2740 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2741 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2742 else 2743 mib_idx = LINUX_MIB_TCPFULLUNDO; 2744 2745 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2746 tp->undo_marker = 0; 2747 } 2748 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2749 /* Hold old state until something *above* high_seq 2750 * is ACKed. For Reno it is MUST to prevent false 2751 * fast retransmits (RFC2582). SACK TCP is safe. */ 2752 tcp_moderate_cwnd(tp); 2753 return 1; 2754 } 2755 tcp_set_ca_state(sk, TCP_CA_Open); 2756 return 0; 2757 } 2758 2759 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2760 static void tcp_try_undo_dsack(struct sock *sk) 2761 { 2762 struct tcp_sock *tp = tcp_sk(sk); 2763 2764 if (tp->undo_marker && !tp->undo_retrans) { 2765 DBGUNDO(sk, "D-SACK"); 2766 tcp_undo_cwr(sk, true); 2767 tp->undo_marker = 0; 2768 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2769 } 2770 } 2771 2772 /* We can clear retrans_stamp when there are no retransmissions in the 2773 * window. It would seem that it is trivially available for us in 2774 * tp->retrans_out, however, that kind of assumptions doesn't consider 2775 * what will happen if errors occur when sending retransmission for the 2776 * second time. ...It could the that such segment has only 2777 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2778 * the head skb is enough except for some reneging corner cases that 2779 * are not worth the effort. 2780 * 2781 * Main reason for all this complexity is the fact that connection dying 2782 * time now depends on the validity of the retrans_stamp, in particular, 2783 * that successive retransmissions of a segment must not advance 2784 * retrans_stamp under any conditions. 2785 */ 2786 static int tcp_any_retrans_done(const struct sock *sk) 2787 { 2788 const struct tcp_sock *tp = tcp_sk(sk); 2789 struct sk_buff *skb; 2790 2791 if (tp->retrans_out) 2792 return 1; 2793 2794 skb = tcp_write_queue_head(sk); 2795 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2796 return 1; 2797 2798 return 0; 2799 } 2800 2801 /* Undo during fast recovery after partial ACK. */ 2802 2803 static int tcp_try_undo_partial(struct sock *sk, int acked) 2804 { 2805 struct tcp_sock *tp = tcp_sk(sk); 2806 /* Partial ACK arrived. Force Hoe's retransmit. */ 2807 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering); 2808 2809 if (tcp_may_undo(tp)) { 2810 /* Plain luck! Hole if filled with delayed 2811 * packet, rather than with a retransmit. 2812 */ 2813 if (!tcp_any_retrans_done(sk)) 2814 tp->retrans_stamp = 0; 2815 2816 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2817 2818 DBGUNDO(sk, "Hoe"); 2819 tcp_undo_cwr(sk, false); 2820 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2821 2822 /* So... Do not make Hoe's retransmit yet. 2823 * If the first packet was delayed, the rest 2824 * ones are most probably delayed as well. 2825 */ 2826 failed = 0; 2827 } 2828 return failed; 2829 } 2830 2831 /* Undo during loss recovery after partial ACK. */ 2832 static int tcp_try_undo_loss(struct sock *sk) 2833 { 2834 struct tcp_sock *tp = tcp_sk(sk); 2835 2836 if (tcp_may_undo(tp)) { 2837 struct sk_buff *skb; 2838 tcp_for_write_queue(skb, sk) { 2839 if (skb == tcp_send_head(sk)) 2840 break; 2841 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2842 } 2843 2844 tcp_clear_all_retrans_hints(tp); 2845 2846 DBGUNDO(sk, "partial loss"); 2847 tp->lost_out = 0; 2848 tcp_undo_cwr(sk, true); 2849 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2850 inet_csk(sk)->icsk_retransmits = 0; 2851 tp->undo_marker = 0; 2852 if (tcp_is_sack(tp)) 2853 tcp_set_ca_state(sk, TCP_CA_Open); 2854 return 1; 2855 } 2856 return 0; 2857 } 2858 2859 static inline void tcp_complete_cwr(struct sock *sk) 2860 { 2861 struct tcp_sock *tp = tcp_sk(sk); 2862 2863 /* Do not moderate cwnd if it's already undone in cwr or recovery. */ 2864 if (tp->undo_marker) { 2865 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) 2866 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 2867 else /* PRR */ 2868 tp->snd_cwnd = tp->snd_ssthresh; 2869 tp->snd_cwnd_stamp = tcp_time_stamp; 2870 } 2871 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2872 } 2873 2874 static void tcp_try_keep_open(struct sock *sk) 2875 { 2876 struct tcp_sock *tp = tcp_sk(sk); 2877 int state = TCP_CA_Open; 2878 2879 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2880 state = TCP_CA_Disorder; 2881 2882 if (inet_csk(sk)->icsk_ca_state != state) { 2883 tcp_set_ca_state(sk, state); 2884 tp->high_seq = tp->snd_nxt; 2885 } 2886 } 2887 2888 static void tcp_try_to_open(struct sock *sk, int flag) 2889 { 2890 struct tcp_sock *tp = tcp_sk(sk); 2891 2892 tcp_verify_left_out(tp); 2893 2894 if (!tp->frto_counter && !tcp_any_retrans_done(sk)) 2895 tp->retrans_stamp = 0; 2896 2897 if (flag & FLAG_ECE) 2898 tcp_enter_cwr(sk, 1); 2899 2900 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2901 tcp_try_keep_open(sk); 2902 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open) 2903 tcp_moderate_cwnd(tp); 2904 } else { 2905 tcp_cwnd_down(sk, flag); 2906 } 2907 } 2908 2909 static void tcp_mtup_probe_failed(struct sock *sk) 2910 { 2911 struct inet_connection_sock *icsk = inet_csk(sk); 2912 2913 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2914 icsk->icsk_mtup.probe_size = 0; 2915 } 2916 2917 static void tcp_mtup_probe_success(struct sock *sk) 2918 { 2919 struct tcp_sock *tp = tcp_sk(sk); 2920 struct inet_connection_sock *icsk = inet_csk(sk); 2921 2922 /* FIXME: breaks with very large cwnd */ 2923 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2924 tp->snd_cwnd = tp->snd_cwnd * 2925 tcp_mss_to_mtu(sk, tp->mss_cache) / 2926 icsk->icsk_mtup.probe_size; 2927 tp->snd_cwnd_cnt = 0; 2928 tp->snd_cwnd_stamp = tcp_time_stamp; 2929 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2930 2931 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2932 icsk->icsk_mtup.probe_size = 0; 2933 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2934 } 2935 2936 /* Do a simple retransmit without using the backoff mechanisms in 2937 * tcp_timer. This is used for path mtu discovery. 2938 * The socket is already locked here. 2939 */ 2940 void tcp_simple_retransmit(struct sock *sk) 2941 { 2942 const struct inet_connection_sock *icsk = inet_csk(sk); 2943 struct tcp_sock *tp = tcp_sk(sk); 2944 struct sk_buff *skb; 2945 unsigned int mss = tcp_current_mss(sk); 2946 u32 prior_lost = tp->lost_out; 2947 2948 tcp_for_write_queue(skb, sk) { 2949 if (skb == tcp_send_head(sk)) 2950 break; 2951 if (tcp_skb_seglen(skb) > mss && 2952 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2953 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2954 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2955 tp->retrans_out -= tcp_skb_pcount(skb); 2956 } 2957 tcp_skb_mark_lost_uncond_verify(tp, skb); 2958 } 2959 } 2960 2961 tcp_clear_retrans_hints_partial(tp); 2962 2963 if (prior_lost == tp->lost_out) 2964 return; 2965 2966 if (tcp_is_reno(tp)) 2967 tcp_limit_reno_sacked(tp); 2968 2969 tcp_verify_left_out(tp); 2970 2971 /* Don't muck with the congestion window here. 2972 * Reason is that we do not increase amount of _data_ 2973 * in network, but units changed and effective 2974 * cwnd/ssthresh really reduced now. 2975 */ 2976 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2977 tp->high_seq = tp->snd_nxt; 2978 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2979 tp->prior_ssthresh = 0; 2980 tp->undo_marker = 0; 2981 tcp_set_ca_state(sk, TCP_CA_Loss); 2982 } 2983 tcp_xmit_retransmit_queue(sk); 2984 } 2985 EXPORT_SYMBOL(tcp_simple_retransmit); 2986 2987 /* This function implements the PRR algorithm, specifcally the PRR-SSRB 2988 * (proportional rate reduction with slow start reduction bound) as described in 2989 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt. 2990 * It computes the number of packets to send (sndcnt) based on packets newly 2991 * delivered: 2992 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2993 * cwnd reductions across a full RTT. 2994 * 2) If packets in flight is lower than ssthresh (such as due to excess 2995 * losses and/or application stalls), do not perform any further cwnd 2996 * reductions, but instead slow start up to ssthresh. 2997 */ 2998 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked, 2999 int fast_rexmit, int flag) 3000 { 3001 struct tcp_sock *tp = tcp_sk(sk); 3002 int sndcnt = 0; 3003 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 3004 3005 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 3006 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 3007 tp->prior_cwnd - 1; 3008 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 3009 } else { 3010 sndcnt = min_t(int, delta, 3011 max_t(int, tp->prr_delivered - tp->prr_out, 3012 newly_acked_sacked) + 1); 3013 } 3014 3015 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 3016 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 3017 } 3018 3019 /* Process an event, which can update packets-in-flight not trivially. 3020 * Main goal of this function is to calculate new estimate for left_out, 3021 * taking into account both packets sitting in receiver's buffer and 3022 * packets lost by network. 3023 * 3024 * Besides that it does CWND reduction, when packet loss is detected 3025 * and changes state of machine. 3026 * 3027 * It does _not_ decide what to send, it is made in function 3028 * tcp_xmit_retransmit_queue(). 3029 */ 3030 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, 3031 int newly_acked_sacked, bool is_dupack, 3032 int flag) 3033 { 3034 struct inet_connection_sock *icsk = inet_csk(sk); 3035 struct tcp_sock *tp = tcp_sk(sk); 3036 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 3037 (tcp_fackets_out(tp) > tp->reordering)); 3038 int fast_rexmit = 0, mib_idx; 3039 3040 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 3041 tp->sacked_out = 0; 3042 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 3043 tp->fackets_out = 0; 3044 3045 /* Now state machine starts. 3046 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 3047 if (flag & FLAG_ECE) 3048 tp->prior_ssthresh = 0; 3049 3050 /* B. In all the states check for reneging SACKs. */ 3051 if (tcp_check_sack_reneging(sk, flag)) 3052 return; 3053 3054 /* C. Check consistency of the current state. */ 3055 tcp_verify_left_out(tp); 3056 3057 /* D. Check state exit conditions. State can be terminated 3058 * when high_seq is ACKed. */ 3059 if (icsk->icsk_ca_state == TCP_CA_Open) { 3060 WARN_ON(tp->retrans_out != 0); 3061 tp->retrans_stamp = 0; 3062 } else if (!before(tp->snd_una, tp->high_seq)) { 3063 switch (icsk->icsk_ca_state) { 3064 case TCP_CA_Loss: 3065 icsk->icsk_retransmits = 0; 3066 if (tcp_try_undo_recovery(sk)) 3067 return; 3068 break; 3069 3070 case TCP_CA_CWR: 3071 /* CWR is to be held something *above* high_seq 3072 * is ACKed for CWR bit to reach receiver. */ 3073 if (tp->snd_una != tp->high_seq) { 3074 tcp_complete_cwr(sk); 3075 tcp_set_ca_state(sk, TCP_CA_Open); 3076 } 3077 break; 3078 3079 case TCP_CA_Recovery: 3080 if (tcp_is_reno(tp)) 3081 tcp_reset_reno_sack(tp); 3082 if (tcp_try_undo_recovery(sk)) 3083 return; 3084 tcp_complete_cwr(sk); 3085 break; 3086 } 3087 } 3088 3089 /* E. Process state. */ 3090 switch (icsk->icsk_ca_state) { 3091 case TCP_CA_Recovery: 3092 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 3093 if (tcp_is_reno(tp) && is_dupack) 3094 tcp_add_reno_sack(sk); 3095 } else 3096 do_lost = tcp_try_undo_partial(sk, pkts_acked); 3097 break; 3098 case TCP_CA_Loss: 3099 if (flag & FLAG_DATA_ACKED) 3100 icsk->icsk_retransmits = 0; 3101 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED) 3102 tcp_reset_reno_sack(tp); 3103 if (!tcp_try_undo_loss(sk)) { 3104 tcp_moderate_cwnd(tp); 3105 tcp_xmit_retransmit_queue(sk); 3106 return; 3107 } 3108 if (icsk->icsk_ca_state != TCP_CA_Open) 3109 return; 3110 /* Loss is undone; fall through to processing in Open state. */ 3111 default: 3112 if (tcp_is_reno(tp)) { 3113 if (flag & FLAG_SND_UNA_ADVANCED) 3114 tcp_reset_reno_sack(tp); 3115 if (is_dupack) 3116 tcp_add_reno_sack(sk); 3117 } 3118 3119 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3120 tcp_try_undo_dsack(sk); 3121 3122 if (!tcp_time_to_recover(sk)) { 3123 tcp_try_to_open(sk, flag); 3124 return; 3125 } 3126 3127 /* MTU probe failure: don't reduce cwnd */ 3128 if (icsk->icsk_ca_state < TCP_CA_CWR && 3129 icsk->icsk_mtup.probe_size && 3130 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3131 tcp_mtup_probe_failed(sk); 3132 /* Restores the reduction we did in tcp_mtup_probe() */ 3133 tp->snd_cwnd++; 3134 tcp_simple_retransmit(sk); 3135 return; 3136 } 3137 3138 /* Otherwise enter Recovery state */ 3139 3140 if (tcp_is_reno(tp)) 3141 mib_idx = LINUX_MIB_TCPRENORECOVERY; 3142 else 3143 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 3144 3145 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3146 3147 tp->high_seq = tp->snd_nxt; 3148 tp->prior_ssthresh = 0; 3149 tp->undo_marker = tp->snd_una; 3150 tp->undo_retrans = tp->retrans_out; 3151 3152 if (icsk->icsk_ca_state < TCP_CA_CWR) { 3153 if (!(flag & FLAG_ECE)) 3154 tp->prior_ssthresh = tcp_current_ssthresh(sk); 3155 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 3156 TCP_ECN_queue_cwr(tp); 3157 } 3158 3159 tp->bytes_acked = 0; 3160 tp->snd_cwnd_cnt = 0; 3161 tp->prior_cwnd = tp->snd_cwnd; 3162 tp->prr_delivered = 0; 3163 tp->prr_out = 0; 3164 tcp_set_ca_state(sk, TCP_CA_Recovery); 3165 fast_rexmit = 1; 3166 } 3167 3168 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk))) 3169 tcp_update_scoreboard(sk, fast_rexmit); 3170 tp->prr_delivered += newly_acked_sacked; 3171 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag); 3172 tcp_xmit_retransmit_queue(sk); 3173 } 3174 3175 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt) 3176 { 3177 tcp_rtt_estimator(sk, seq_rtt); 3178 tcp_set_rto(sk); 3179 inet_csk(sk)->icsk_backoff = 0; 3180 } 3181 EXPORT_SYMBOL(tcp_valid_rtt_meas); 3182 3183 /* Read draft-ietf-tcplw-high-performance before mucking 3184 * with this code. (Supersedes RFC1323) 3185 */ 3186 static void tcp_ack_saw_tstamp(struct sock *sk, int flag) 3187 { 3188 /* RTTM Rule: A TSecr value received in a segment is used to 3189 * update the averaged RTT measurement only if the segment 3190 * acknowledges some new data, i.e., only if it advances the 3191 * left edge of the send window. 3192 * 3193 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3194 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru> 3195 * 3196 * Changed: reset backoff as soon as we see the first valid sample. 3197 * If we do not, we get strongly overestimated rto. With timestamps 3198 * samples are accepted even from very old segments: f.e., when rtt=1 3199 * increases to 8, we retransmit 5 times and after 8 seconds delayed 3200 * answer arrives rto becomes 120 seconds! If at least one of segments 3201 * in window is lost... Voila. --ANK (010210) 3202 */ 3203 struct tcp_sock *tp = tcp_sk(sk); 3204 3205 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr); 3206 } 3207 3208 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag) 3209 { 3210 /* We don't have a timestamp. Can only use 3211 * packets that are not retransmitted to determine 3212 * rtt estimates. Also, we must not reset the 3213 * backoff for rto until we get a non-retransmitted 3214 * packet. This allows us to deal with a situation 3215 * where the network delay has increased suddenly. 3216 * I.e. Karn's algorithm. (SIGCOMM '87, p5.) 3217 */ 3218 3219 if (flag & FLAG_RETRANS_DATA_ACKED) 3220 return; 3221 3222 tcp_valid_rtt_meas(sk, seq_rtt); 3223 } 3224 3225 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag, 3226 const s32 seq_rtt) 3227 { 3228 const struct tcp_sock *tp = tcp_sk(sk); 3229 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */ 3230 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3231 tcp_ack_saw_tstamp(sk, flag); 3232 else if (seq_rtt >= 0) 3233 tcp_ack_no_tstamp(sk, seq_rtt, flag); 3234 } 3235 3236 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight) 3237 { 3238 const struct inet_connection_sock *icsk = inet_csk(sk); 3239 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight); 3240 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 3241 } 3242 3243 /* Restart timer after forward progress on connection. 3244 * RFC2988 recommends to restart timer to now+rto. 3245 */ 3246 static void tcp_rearm_rto(struct sock *sk) 3247 { 3248 const struct tcp_sock *tp = tcp_sk(sk); 3249 3250 if (!tp->packets_out) { 3251 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3252 } else { 3253 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 3254 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 3255 } 3256 } 3257 3258 /* If we get here, the whole TSO packet has not been acked. */ 3259 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3260 { 3261 struct tcp_sock *tp = tcp_sk(sk); 3262 u32 packets_acked; 3263 3264 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3265 3266 packets_acked = tcp_skb_pcount(skb); 3267 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3268 return 0; 3269 packets_acked -= tcp_skb_pcount(skb); 3270 3271 if (packets_acked) { 3272 BUG_ON(tcp_skb_pcount(skb) == 0); 3273 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3274 } 3275 3276 return packets_acked; 3277 } 3278 3279 /* Remove acknowledged frames from the retransmission queue. If our packet 3280 * is before the ack sequence we can discard it as it's confirmed to have 3281 * arrived at the other end. 3282 */ 3283 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3284 u32 prior_snd_una) 3285 { 3286 struct tcp_sock *tp = tcp_sk(sk); 3287 const struct inet_connection_sock *icsk = inet_csk(sk); 3288 struct sk_buff *skb; 3289 u32 now = tcp_time_stamp; 3290 int fully_acked = 1; 3291 int flag = 0; 3292 u32 pkts_acked = 0; 3293 u32 reord = tp->packets_out; 3294 u32 prior_sacked = tp->sacked_out; 3295 s32 seq_rtt = -1; 3296 s32 ca_seq_rtt = -1; 3297 ktime_t last_ackt = net_invalid_timestamp(); 3298 3299 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3300 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3301 u32 acked_pcount; 3302 u8 sacked = scb->sacked; 3303 3304 /* Determine how many packets and what bytes were acked, tso and else */ 3305 if (after(scb->end_seq, tp->snd_una)) { 3306 if (tcp_skb_pcount(skb) == 1 || 3307 !after(tp->snd_una, scb->seq)) 3308 break; 3309 3310 acked_pcount = tcp_tso_acked(sk, skb); 3311 if (!acked_pcount) 3312 break; 3313 3314 fully_acked = 0; 3315 } else { 3316 acked_pcount = tcp_skb_pcount(skb); 3317 } 3318 3319 if (sacked & TCPCB_RETRANS) { 3320 if (sacked & TCPCB_SACKED_RETRANS) 3321 tp->retrans_out -= acked_pcount; 3322 flag |= FLAG_RETRANS_DATA_ACKED; 3323 ca_seq_rtt = -1; 3324 seq_rtt = -1; 3325 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1)) 3326 flag |= FLAG_NONHEAD_RETRANS_ACKED; 3327 } else { 3328 ca_seq_rtt = now - scb->when; 3329 last_ackt = skb->tstamp; 3330 if (seq_rtt < 0) { 3331 seq_rtt = ca_seq_rtt; 3332 } 3333 if (!(sacked & TCPCB_SACKED_ACKED)) 3334 reord = min(pkts_acked, reord); 3335 } 3336 3337 if (sacked & TCPCB_SACKED_ACKED) 3338 tp->sacked_out -= acked_pcount; 3339 if (sacked & TCPCB_LOST) 3340 tp->lost_out -= acked_pcount; 3341 3342 tp->packets_out -= acked_pcount; 3343 pkts_acked += acked_pcount; 3344 3345 /* Initial outgoing SYN's get put onto the write_queue 3346 * just like anything else we transmit. It is not 3347 * true data, and if we misinform our callers that 3348 * this ACK acks real data, we will erroneously exit 3349 * connection startup slow start one packet too 3350 * quickly. This is severely frowned upon behavior. 3351 */ 3352 if (!(scb->tcp_flags & TCPHDR_SYN)) { 3353 flag |= FLAG_DATA_ACKED; 3354 } else { 3355 flag |= FLAG_SYN_ACKED; 3356 tp->retrans_stamp = 0; 3357 } 3358 3359 if (!fully_acked) 3360 break; 3361 3362 tcp_unlink_write_queue(skb, sk); 3363 sk_wmem_free_skb(sk, skb); 3364 tp->scoreboard_skb_hint = NULL; 3365 if (skb == tp->retransmit_skb_hint) 3366 tp->retransmit_skb_hint = NULL; 3367 if (skb == tp->lost_skb_hint) 3368 tp->lost_skb_hint = NULL; 3369 } 3370 3371 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3372 tp->snd_up = tp->snd_una; 3373 3374 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3375 flag |= FLAG_SACK_RENEGING; 3376 3377 if (flag & FLAG_ACKED) { 3378 const struct tcp_congestion_ops *ca_ops 3379 = inet_csk(sk)->icsk_ca_ops; 3380 3381 if (unlikely(icsk->icsk_mtup.probe_size && 3382 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3383 tcp_mtup_probe_success(sk); 3384 } 3385 3386 tcp_ack_update_rtt(sk, flag, seq_rtt); 3387 tcp_rearm_rto(sk); 3388 3389 if (tcp_is_reno(tp)) { 3390 tcp_remove_reno_sacks(sk, pkts_acked); 3391 } else { 3392 int delta; 3393 3394 /* Non-retransmitted hole got filled? That's reordering */ 3395 if (reord < prior_fackets) 3396 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3397 3398 delta = tcp_is_fack(tp) ? pkts_acked : 3399 prior_sacked - tp->sacked_out; 3400 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3401 } 3402 3403 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3404 3405 if (ca_ops->pkts_acked) { 3406 s32 rtt_us = -1; 3407 3408 /* Is the ACK triggering packet unambiguous? */ 3409 if (!(flag & FLAG_RETRANS_DATA_ACKED)) { 3410 /* High resolution needed and available? */ 3411 if (ca_ops->flags & TCP_CONG_RTT_STAMP && 3412 !ktime_equal(last_ackt, 3413 net_invalid_timestamp())) 3414 rtt_us = ktime_us_delta(ktime_get_real(), 3415 last_ackt); 3416 else if (ca_seq_rtt >= 0) 3417 rtt_us = jiffies_to_usecs(ca_seq_rtt); 3418 } 3419 3420 ca_ops->pkts_acked(sk, pkts_acked, rtt_us); 3421 } 3422 } 3423 3424 #if FASTRETRANS_DEBUG > 0 3425 WARN_ON((int)tp->sacked_out < 0); 3426 WARN_ON((int)tp->lost_out < 0); 3427 WARN_ON((int)tp->retrans_out < 0); 3428 if (!tp->packets_out && tcp_is_sack(tp)) { 3429 icsk = inet_csk(sk); 3430 if (tp->lost_out) { 3431 printk(KERN_DEBUG "Leak l=%u %d\n", 3432 tp->lost_out, icsk->icsk_ca_state); 3433 tp->lost_out = 0; 3434 } 3435 if (tp->sacked_out) { 3436 printk(KERN_DEBUG "Leak s=%u %d\n", 3437 tp->sacked_out, icsk->icsk_ca_state); 3438 tp->sacked_out = 0; 3439 } 3440 if (tp->retrans_out) { 3441 printk(KERN_DEBUG "Leak r=%u %d\n", 3442 tp->retrans_out, icsk->icsk_ca_state); 3443 tp->retrans_out = 0; 3444 } 3445 } 3446 #endif 3447 return flag; 3448 } 3449 3450 static void tcp_ack_probe(struct sock *sk) 3451 { 3452 const struct tcp_sock *tp = tcp_sk(sk); 3453 struct inet_connection_sock *icsk = inet_csk(sk); 3454 3455 /* Was it a usable window open? */ 3456 3457 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3458 icsk->icsk_backoff = 0; 3459 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3460 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3461 * This function is not for random using! 3462 */ 3463 } else { 3464 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3465 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 3466 TCP_RTO_MAX); 3467 } 3468 } 3469 3470 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag) 3471 { 3472 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3473 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3474 } 3475 3476 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3477 { 3478 const struct tcp_sock *tp = tcp_sk(sk); 3479 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) && 3480 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR)); 3481 } 3482 3483 /* Check that window update is acceptable. 3484 * The function assumes that snd_una<=ack<=snd_next. 3485 */ 3486 static inline int tcp_may_update_window(const struct tcp_sock *tp, 3487 const u32 ack, const u32 ack_seq, 3488 const u32 nwin) 3489 { 3490 return after(ack, tp->snd_una) || 3491 after(ack_seq, tp->snd_wl1) || 3492 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3493 } 3494 3495 /* Update our send window. 3496 * 3497 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3498 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3499 */ 3500 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3501 u32 ack_seq) 3502 { 3503 struct tcp_sock *tp = tcp_sk(sk); 3504 int flag = 0; 3505 u32 nwin = ntohs(tcp_hdr(skb)->window); 3506 3507 if (likely(!tcp_hdr(skb)->syn)) 3508 nwin <<= tp->rx_opt.snd_wscale; 3509 3510 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3511 flag |= FLAG_WIN_UPDATE; 3512 tcp_update_wl(tp, ack_seq); 3513 3514 if (tp->snd_wnd != nwin) { 3515 tp->snd_wnd = nwin; 3516 3517 /* Note, it is the only place, where 3518 * fast path is recovered for sending TCP. 3519 */ 3520 tp->pred_flags = 0; 3521 tcp_fast_path_check(sk); 3522 3523 if (nwin > tp->max_window) { 3524 tp->max_window = nwin; 3525 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3526 } 3527 } 3528 } 3529 3530 tp->snd_una = ack; 3531 3532 return flag; 3533 } 3534 3535 /* A very conservative spurious RTO response algorithm: reduce cwnd and 3536 * continue in congestion avoidance. 3537 */ 3538 static void tcp_conservative_spur_to_response(struct tcp_sock *tp) 3539 { 3540 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh); 3541 tp->snd_cwnd_cnt = 0; 3542 tp->bytes_acked = 0; 3543 TCP_ECN_queue_cwr(tp); 3544 tcp_moderate_cwnd(tp); 3545 } 3546 3547 /* A conservative spurious RTO response algorithm: reduce cwnd using 3548 * rate halving and continue in congestion avoidance. 3549 */ 3550 static void tcp_ratehalving_spur_to_response(struct sock *sk) 3551 { 3552 tcp_enter_cwr(sk, 0); 3553 } 3554 3555 static void tcp_undo_spur_to_response(struct sock *sk, int flag) 3556 { 3557 if (flag & FLAG_ECE) 3558 tcp_ratehalving_spur_to_response(sk); 3559 else 3560 tcp_undo_cwr(sk, true); 3561 } 3562 3563 /* F-RTO spurious RTO detection algorithm (RFC4138) 3564 * 3565 * F-RTO affects during two new ACKs following RTO (well, almost, see inline 3566 * comments). State (ACK number) is kept in frto_counter. When ACK advances 3567 * window (but not to or beyond highest sequence sent before RTO): 3568 * On First ACK, send two new segments out. 3569 * On Second ACK, RTO was likely spurious. Do spurious response (response 3570 * algorithm is not part of the F-RTO detection algorithm 3571 * given in RFC4138 but can be selected separately). 3572 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss 3573 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding 3574 * of Nagle, this is done using frto_counter states 2 and 3, when a new data 3575 * segment of any size sent during F-RTO, state 2 is upgraded to 3. 3576 * 3577 * Rationale: if the RTO was spurious, new ACKs should arrive from the 3578 * original window even after we transmit two new data segments. 3579 * 3580 * SACK version: 3581 * on first step, wait until first cumulative ACK arrives, then move to 3582 * the second step. In second step, the next ACK decides. 3583 * 3584 * F-RTO is implemented (mainly) in four functions: 3585 * - tcp_use_frto() is used to determine if TCP is can use F-RTO 3586 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is 3587 * called when tcp_use_frto() showed green light 3588 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm 3589 * - tcp_enter_frto_loss() is called if there is not enough evidence 3590 * to prove that the RTO is indeed spurious. It transfers the control 3591 * from F-RTO to the conventional RTO recovery 3592 */ 3593 static int tcp_process_frto(struct sock *sk, int flag) 3594 { 3595 struct tcp_sock *tp = tcp_sk(sk); 3596 3597 tcp_verify_left_out(tp); 3598 3599 /* Duplicate the behavior from Loss state (fastretrans_alert) */ 3600 if (flag & FLAG_DATA_ACKED) 3601 inet_csk(sk)->icsk_retransmits = 0; 3602 3603 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) || 3604 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED))) 3605 tp->undo_marker = 0; 3606 3607 if (!before(tp->snd_una, tp->frto_highmark)) { 3608 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag); 3609 return 1; 3610 } 3611 3612 if (!tcp_is_sackfrto(tp)) { 3613 /* RFC4138 shortcoming in step 2; should also have case c): 3614 * ACK isn't duplicate nor advances window, e.g., opposite dir 3615 * data, winupdate 3616 */ 3617 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP)) 3618 return 1; 3619 3620 if (!(flag & FLAG_DATA_ACKED)) { 3621 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3), 3622 flag); 3623 return 1; 3624 } 3625 } else { 3626 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) { 3627 /* Prevent sending of new data. */ 3628 tp->snd_cwnd = min(tp->snd_cwnd, 3629 tcp_packets_in_flight(tp)); 3630 return 1; 3631 } 3632 3633 if ((tp->frto_counter >= 2) && 3634 (!(flag & FLAG_FORWARD_PROGRESS) || 3635 ((flag & FLAG_DATA_SACKED) && 3636 !(flag & FLAG_ONLY_ORIG_SACKED)))) { 3637 /* RFC4138 shortcoming (see comment above) */ 3638 if (!(flag & FLAG_FORWARD_PROGRESS) && 3639 (flag & FLAG_NOT_DUP)) 3640 return 1; 3641 3642 tcp_enter_frto_loss(sk, 3, flag); 3643 return 1; 3644 } 3645 } 3646 3647 if (tp->frto_counter == 1) { 3648 /* tcp_may_send_now needs to see updated state */ 3649 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2; 3650 tp->frto_counter = 2; 3651 3652 if (!tcp_may_send_now(sk)) 3653 tcp_enter_frto_loss(sk, 2, flag); 3654 3655 return 1; 3656 } else { 3657 switch (sysctl_tcp_frto_response) { 3658 case 2: 3659 tcp_undo_spur_to_response(sk, flag); 3660 break; 3661 case 1: 3662 tcp_conservative_spur_to_response(tp); 3663 break; 3664 default: 3665 tcp_ratehalving_spur_to_response(sk); 3666 break; 3667 } 3668 tp->frto_counter = 0; 3669 tp->undo_marker = 0; 3670 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS); 3671 } 3672 return 0; 3673 } 3674 3675 /* This routine deals with incoming acks, but not outgoing ones. */ 3676 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3677 { 3678 struct inet_connection_sock *icsk = inet_csk(sk); 3679 struct tcp_sock *tp = tcp_sk(sk); 3680 u32 prior_snd_una = tp->snd_una; 3681 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3682 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3683 bool is_dupack = false; 3684 u32 prior_in_flight; 3685 u32 prior_fackets; 3686 int prior_packets; 3687 int prior_sacked = tp->sacked_out; 3688 int pkts_acked = 0; 3689 int newly_acked_sacked = 0; 3690 int frto_cwnd = 0; 3691 3692 /* If the ack is older than previous acks 3693 * then we can probably ignore it. 3694 */ 3695 if (before(ack, prior_snd_una)) 3696 goto old_ack; 3697 3698 /* If the ack includes data we haven't sent yet, discard 3699 * this segment (RFC793 Section 3.9). 3700 */ 3701 if (after(ack, tp->snd_nxt)) 3702 goto invalid_ack; 3703 3704 if (after(ack, prior_snd_una)) 3705 flag |= FLAG_SND_UNA_ADVANCED; 3706 3707 if (sysctl_tcp_abc) { 3708 if (icsk->icsk_ca_state < TCP_CA_CWR) 3709 tp->bytes_acked += ack - prior_snd_una; 3710 else if (icsk->icsk_ca_state == TCP_CA_Loss) 3711 /* we assume just one segment left network */ 3712 tp->bytes_acked += min(ack - prior_snd_una, 3713 tp->mss_cache); 3714 } 3715 3716 prior_fackets = tp->fackets_out; 3717 prior_in_flight = tcp_packets_in_flight(tp); 3718 3719 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3720 /* Window is constant, pure forward advance. 3721 * No more checks are required. 3722 * Note, we use the fact that SND.UNA>=SND.WL2. 3723 */ 3724 tcp_update_wl(tp, ack_seq); 3725 tp->snd_una = ack; 3726 flag |= FLAG_WIN_UPDATE; 3727 3728 tcp_ca_event(sk, CA_EVENT_FAST_ACK); 3729 3730 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3731 } else { 3732 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3733 flag |= FLAG_DATA; 3734 else 3735 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3736 3737 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3738 3739 if (TCP_SKB_CB(skb)->sacked) 3740 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3741 3742 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb))) 3743 flag |= FLAG_ECE; 3744 3745 tcp_ca_event(sk, CA_EVENT_SLOW_ACK); 3746 } 3747 3748 /* We passed data and got it acked, remove any soft error 3749 * log. Something worked... 3750 */ 3751 sk->sk_err_soft = 0; 3752 icsk->icsk_probes_out = 0; 3753 tp->rcv_tstamp = tcp_time_stamp; 3754 prior_packets = tp->packets_out; 3755 if (!prior_packets) 3756 goto no_queue; 3757 3758 /* See if we can take anything off of the retransmit queue. */ 3759 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una); 3760 3761 pkts_acked = prior_packets - tp->packets_out; 3762 newly_acked_sacked = (prior_packets - prior_sacked) - 3763 (tp->packets_out - tp->sacked_out); 3764 3765 if (tp->frto_counter) 3766 frto_cwnd = tcp_process_frto(sk, flag); 3767 /* Guarantee sacktag reordering detection against wrap-arounds */ 3768 if (before(tp->frto_highmark, tp->snd_una)) 3769 tp->frto_highmark = 0; 3770 3771 if (tcp_ack_is_dubious(sk, flag)) { 3772 /* Advance CWND, if state allows this. */ 3773 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd && 3774 tcp_may_raise_cwnd(sk, flag)) 3775 tcp_cong_avoid(sk, ack, prior_in_flight); 3776 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3777 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked, 3778 is_dupack, flag); 3779 } else { 3780 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd) 3781 tcp_cong_avoid(sk, ack, prior_in_flight); 3782 } 3783 3784 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3785 dst_confirm(__sk_dst_get(sk)); 3786 3787 return 1; 3788 3789 no_queue: 3790 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3791 if (flag & FLAG_DSACKING_ACK) 3792 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked, 3793 is_dupack, flag); 3794 /* If this ack opens up a zero window, clear backoff. It was 3795 * being used to time the probes, and is probably far higher than 3796 * it needs to be for normal retransmission. 3797 */ 3798 if (tcp_send_head(sk)) 3799 tcp_ack_probe(sk); 3800 return 1; 3801 3802 invalid_ack: 3803 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3804 return -1; 3805 3806 old_ack: 3807 /* If data was SACKed, tag it and see if we should send more data. 3808 * If data was DSACKed, see if we can undo a cwnd reduction. 3809 */ 3810 if (TCP_SKB_CB(skb)->sacked) { 3811 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una); 3812 newly_acked_sacked = tp->sacked_out - prior_sacked; 3813 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked, 3814 is_dupack, flag); 3815 } 3816 3817 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3818 return 0; 3819 } 3820 3821 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3822 * But, this can also be called on packets in the established flow when 3823 * the fast version below fails. 3824 */ 3825 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx, 3826 const u8 **hvpp, int estab) 3827 { 3828 const unsigned char *ptr; 3829 const struct tcphdr *th = tcp_hdr(skb); 3830 int length = (th->doff * 4) - sizeof(struct tcphdr); 3831 3832 ptr = (const unsigned char *)(th + 1); 3833 opt_rx->saw_tstamp = 0; 3834 3835 while (length > 0) { 3836 int opcode = *ptr++; 3837 int opsize; 3838 3839 switch (opcode) { 3840 case TCPOPT_EOL: 3841 return; 3842 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3843 length--; 3844 continue; 3845 default: 3846 opsize = *ptr++; 3847 if (opsize < 2) /* "silly options" */ 3848 return; 3849 if (opsize > length) 3850 return; /* don't parse partial options */ 3851 switch (opcode) { 3852 case TCPOPT_MSS: 3853 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3854 u16 in_mss = get_unaligned_be16(ptr); 3855 if (in_mss) { 3856 if (opt_rx->user_mss && 3857 opt_rx->user_mss < in_mss) 3858 in_mss = opt_rx->user_mss; 3859 opt_rx->mss_clamp = in_mss; 3860 } 3861 } 3862 break; 3863 case TCPOPT_WINDOW: 3864 if (opsize == TCPOLEN_WINDOW && th->syn && 3865 !estab && sysctl_tcp_window_scaling) { 3866 __u8 snd_wscale = *(__u8 *)ptr; 3867 opt_rx->wscale_ok = 1; 3868 if (snd_wscale > 14) { 3869 if (net_ratelimit()) 3870 printk(KERN_INFO "tcp_parse_options: Illegal window " 3871 "scaling value %d >14 received.\n", 3872 snd_wscale); 3873 snd_wscale = 14; 3874 } 3875 opt_rx->snd_wscale = snd_wscale; 3876 } 3877 break; 3878 case TCPOPT_TIMESTAMP: 3879 if ((opsize == TCPOLEN_TIMESTAMP) && 3880 ((estab && opt_rx->tstamp_ok) || 3881 (!estab && sysctl_tcp_timestamps))) { 3882 opt_rx->saw_tstamp = 1; 3883 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3884 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3885 } 3886 break; 3887 case TCPOPT_SACK_PERM: 3888 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3889 !estab && sysctl_tcp_sack) { 3890 opt_rx->sack_ok = TCP_SACK_SEEN; 3891 tcp_sack_reset(opt_rx); 3892 } 3893 break; 3894 3895 case TCPOPT_SACK: 3896 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3897 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3898 opt_rx->sack_ok) { 3899 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3900 } 3901 break; 3902 #ifdef CONFIG_TCP_MD5SIG 3903 case TCPOPT_MD5SIG: 3904 /* 3905 * The MD5 Hash has already been 3906 * checked (see tcp_v{4,6}_do_rcv()). 3907 */ 3908 break; 3909 #endif 3910 case TCPOPT_COOKIE: 3911 /* This option is variable length. 3912 */ 3913 switch (opsize) { 3914 case TCPOLEN_COOKIE_BASE: 3915 /* not yet implemented */ 3916 break; 3917 case TCPOLEN_COOKIE_PAIR: 3918 /* not yet implemented */ 3919 break; 3920 case TCPOLEN_COOKIE_MIN+0: 3921 case TCPOLEN_COOKIE_MIN+2: 3922 case TCPOLEN_COOKIE_MIN+4: 3923 case TCPOLEN_COOKIE_MIN+6: 3924 case TCPOLEN_COOKIE_MAX: 3925 /* 16-bit multiple */ 3926 opt_rx->cookie_plus = opsize; 3927 *hvpp = ptr; 3928 break; 3929 default: 3930 /* ignore option */ 3931 break; 3932 } 3933 break; 3934 } 3935 3936 ptr += opsize-2; 3937 length -= opsize; 3938 } 3939 } 3940 } 3941 EXPORT_SYMBOL(tcp_parse_options); 3942 3943 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3944 { 3945 const __be32 *ptr = (const __be32 *)(th + 1); 3946 3947 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3948 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3949 tp->rx_opt.saw_tstamp = 1; 3950 ++ptr; 3951 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3952 ++ptr; 3953 tp->rx_opt.rcv_tsecr = ntohl(*ptr); 3954 return 1; 3955 } 3956 return 0; 3957 } 3958 3959 /* Fast parse options. This hopes to only see timestamps. 3960 * If it is wrong it falls back on tcp_parse_options(). 3961 */ 3962 static int tcp_fast_parse_options(const struct sk_buff *skb, 3963 const struct tcphdr *th, 3964 struct tcp_sock *tp, const u8 **hvpp) 3965 { 3966 /* In the spirit of fast parsing, compare doff directly to constant 3967 * values. Because equality is used, short doff can be ignored here. 3968 */ 3969 if (th->doff == (sizeof(*th) / 4)) { 3970 tp->rx_opt.saw_tstamp = 0; 3971 return 0; 3972 } else if (tp->rx_opt.tstamp_ok && 3973 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3974 if (tcp_parse_aligned_timestamp(tp, th)) 3975 return 1; 3976 } 3977 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1); 3978 return 1; 3979 } 3980 3981 #ifdef CONFIG_TCP_MD5SIG 3982 /* 3983 * Parse MD5 Signature option 3984 */ 3985 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3986 { 3987 int length = (th->doff << 2) - sizeof(*th); 3988 const u8 *ptr = (const u8 *)(th + 1); 3989 3990 /* If the TCP option is too short, we can short cut */ 3991 if (length < TCPOLEN_MD5SIG) 3992 return NULL; 3993 3994 while (length > 0) { 3995 int opcode = *ptr++; 3996 int opsize; 3997 3998 switch(opcode) { 3999 case TCPOPT_EOL: 4000 return NULL; 4001 case TCPOPT_NOP: 4002 length--; 4003 continue; 4004 default: 4005 opsize = *ptr++; 4006 if (opsize < 2 || opsize > length) 4007 return NULL; 4008 if (opcode == TCPOPT_MD5SIG) 4009 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4010 } 4011 ptr += opsize - 2; 4012 length -= opsize; 4013 } 4014 return NULL; 4015 } 4016 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4017 #endif 4018 4019 static inline void tcp_store_ts_recent(struct tcp_sock *tp) 4020 { 4021 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 4022 tp->rx_opt.ts_recent_stamp = get_seconds(); 4023 } 4024 4025 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 4026 { 4027 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 4028 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 4029 * extra check below makes sure this can only happen 4030 * for pure ACK frames. -DaveM 4031 * 4032 * Not only, also it occurs for expired timestamps. 4033 */ 4034 4035 if (tcp_paws_check(&tp->rx_opt, 0)) 4036 tcp_store_ts_recent(tp); 4037 } 4038 } 4039 4040 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4041 * 4042 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4043 * it can pass through stack. So, the following predicate verifies that 4044 * this segment is not used for anything but congestion avoidance or 4045 * fast retransmit. Moreover, we even are able to eliminate most of such 4046 * second order effects, if we apply some small "replay" window (~RTO) 4047 * to timestamp space. 4048 * 4049 * All these measures still do not guarantee that we reject wrapped ACKs 4050 * on networks with high bandwidth, when sequence space is recycled fastly, 4051 * but it guarantees that such events will be very rare and do not affect 4052 * connection seriously. This doesn't look nice, but alas, PAWS is really 4053 * buggy extension. 4054 * 4055 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4056 * states that events when retransmit arrives after original data are rare. 4057 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4058 * the biggest problem on large power networks even with minor reordering. 4059 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4060 * up to bandwidth of 18Gigabit/sec. 8) ] 4061 */ 4062 4063 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4064 { 4065 const struct tcp_sock *tp = tcp_sk(sk); 4066 const struct tcphdr *th = tcp_hdr(skb); 4067 u32 seq = TCP_SKB_CB(skb)->seq; 4068 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4069 4070 return (/* 1. Pure ACK with correct sequence number. */ 4071 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4072 4073 /* 2. ... and duplicate ACK. */ 4074 ack == tp->snd_una && 4075 4076 /* 3. ... and does not update window. */ 4077 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4078 4079 /* 4. ... and sits in replay window. */ 4080 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4081 } 4082 4083 static inline int tcp_paws_discard(const struct sock *sk, 4084 const struct sk_buff *skb) 4085 { 4086 const struct tcp_sock *tp = tcp_sk(sk); 4087 4088 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4089 !tcp_disordered_ack(sk, skb); 4090 } 4091 4092 /* Check segment sequence number for validity. 4093 * 4094 * Segment controls are considered valid, if the segment 4095 * fits to the window after truncation to the window. Acceptability 4096 * of data (and SYN, FIN, of course) is checked separately. 4097 * See tcp_data_queue(), for example. 4098 * 4099 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4100 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4101 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4102 * (borrowed from freebsd) 4103 */ 4104 4105 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4106 { 4107 return !before(end_seq, tp->rcv_wup) && 4108 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4109 } 4110 4111 /* When we get a reset we do this. */ 4112 static void tcp_reset(struct sock *sk) 4113 { 4114 /* We want the right error as BSD sees it (and indeed as we do). */ 4115 switch (sk->sk_state) { 4116 case TCP_SYN_SENT: 4117 sk->sk_err = ECONNREFUSED; 4118 break; 4119 case TCP_CLOSE_WAIT: 4120 sk->sk_err = EPIPE; 4121 break; 4122 case TCP_CLOSE: 4123 return; 4124 default: 4125 sk->sk_err = ECONNRESET; 4126 } 4127 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4128 smp_wmb(); 4129 4130 if (!sock_flag(sk, SOCK_DEAD)) 4131 sk->sk_error_report(sk); 4132 4133 tcp_done(sk); 4134 } 4135 4136 /* 4137 * Process the FIN bit. This now behaves as it is supposed to work 4138 * and the FIN takes effect when it is validly part of sequence 4139 * space. Not before when we get holes. 4140 * 4141 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4142 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4143 * TIME-WAIT) 4144 * 4145 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4146 * close and we go into CLOSING (and later onto TIME-WAIT) 4147 * 4148 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4149 */ 4150 static void tcp_fin(struct sock *sk) 4151 { 4152 struct tcp_sock *tp = tcp_sk(sk); 4153 4154 inet_csk_schedule_ack(sk); 4155 4156 sk->sk_shutdown |= RCV_SHUTDOWN; 4157 sock_set_flag(sk, SOCK_DONE); 4158 4159 switch (sk->sk_state) { 4160 case TCP_SYN_RECV: 4161 case TCP_ESTABLISHED: 4162 /* Move to CLOSE_WAIT */ 4163 tcp_set_state(sk, TCP_CLOSE_WAIT); 4164 inet_csk(sk)->icsk_ack.pingpong = 1; 4165 break; 4166 4167 case TCP_CLOSE_WAIT: 4168 case TCP_CLOSING: 4169 /* Received a retransmission of the FIN, do 4170 * nothing. 4171 */ 4172 break; 4173 case TCP_LAST_ACK: 4174 /* RFC793: Remain in the LAST-ACK state. */ 4175 break; 4176 4177 case TCP_FIN_WAIT1: 4178 /* This case occurs when a simultaneous close 4179 * happens, we must ack the received FIN and 4180 * enter the CLOSING state. 4181 */ 4182 tcp_send_ack(sk); 4183 tcp_set_state(sk, TCP_CLOSING); 4184 break; 4185 case TCP_FIN_WAIT2: 4186 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4187 tcp_send_ack(sk); 4188 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4189 break; 4190 default: 4191 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4192 * cases we should never reach this piece of code. 4193 */ 4194 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n", 4195 __func__, sk->sk_state); 4196 break; 4197 } 4198 4199 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4200 * Probably, we should reset in this case. For now drop them. 4201 */ 4202 __skb_queue_purge(&tp->out_of_order_queue); 4203 if (tcp_is_sack(tp)) 4204 tcp_sack_reset(&tp->rx_opt); 4205 sk_mem_reclaim(sk); 4206 4207 if (!sock_flag(sk, SOCK_DEAD)) { 4208 sk->sk_state_change(sk); 4209 4210 /* Do not send POLL_HUP for half duplex close. */ 4211 if (sk->sk_shutdown == SHUTDOWN_MASK || 4212 sk->sk_state == TCP_CLOSE) 4213 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4214 else 4215 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4216 } 4217 } 4218 4219 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4220 u32 end_seq) 4221 { 4222 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4223 if (before(seq, sp->start_seq)) 4224 sp->start_seq = seq; 4225 if (after(end_seq, sp->end_seq)) 4226 sp->end_seq = end_seq; 4227 return 1; 4228 } 4229 return 0; 4230 } 4231 4232 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4233 { 4234 struct tcp_sock *tp = tcp_sk(sk); 4235 4236 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4237 int mib_idx; 4238 4239 if (before(seq, tp->rcv_nxt)) 4240 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4241 else 4242 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4243 4244 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4245 4246 tp->rx_opt.dsack = 1; 4247 tp->duplicate_sack[0].start_seq = seq; 4248 tp->duplicate_sack[0].end_seq = end_seq; 4249 } 4250 } 4251 4252 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4253 { 4254 struct tcp_sock *tp = tcp_sk(sk); 4255 4256 if (!tp->rx_opt.dsack) 4257 tcp_dsack_set(sk, seq, end_seq); 4258 else 4259 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4260 } 4261 4262 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4263 { 4264 struct tcp_sock *tp = tcp_sk(sk); 4265 4266 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4267 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4268 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4269 tcp_enter_quickack_mode(sk); 4270 4271 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4272 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4273 4274 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4275 end_seq = tp->rcv_nxt; 4276 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4277 } 4278 } 4279 4280 tcp_send_ack(sk); 4281 } 4282 4283 /* These routines update the SACK block as out-of-order packets arrive or 4284 * in-order packets close up the sequence space. 4285 */ 4286 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4287 { 4288 int this_sack; 4289 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4290 struct tcp_sack_block *swalk = sp + 1; 4291 4292 /* See if the recent change to the first SACK eats into 4293 * or hits the sequence space of other SACK blocks, if so coalesce. 4294 */ 4295 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4296 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4297 int i; 4298 4299 /* Zap SWALK, by moving every further SACK up by one slot. 4300 * Decrease num_sacks. 4301 */ 4302 tp->rx_opt.num_sacks--; 4303 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4304 sp[i] = sp[i + 1]; 4305 continue; 4306 } 4307 this_sack++, swalk++; 4308 } 4309 } 4310 4311 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4312 { 4313 struct tcp_sock *tp = tcp_sk(sk); 4314 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4315 int cur_sacks = tp->rx_opt.num_sacks; 4316 int this_sack; 4317 4318 if (!cur_sacks) 4319 goto new_sack; 4320 4321 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4322 if (tcp_sack_extend(sp, seq, end_seq)) { 4323 /* Rotate this_sack to the first one. */ 4324 for (; this_sack > 0; this_sack--, sp--) 4325 swap(*sp, *(sp - 1)); 4326 if (cur_sacks > 1) 4327 tcp_sack_maybe_coalesce(tp); 4328 return; 4329 } 4330 } 4331 4332 /* Could not find an adjacent existing SACK, build a new one, 4333 * put it at the front, and shift everyone else down. We 4334 * always know there is at least one SACK present already here. 4335 * 4336 * If the sack array is full, forget about the last one. 4337 */ 4338 if (this_sack >= TCP_NUM_SACKS) { 4339 this_sack--; 4340 tp->rx_opt.num_sacks--; 4341 sp--; 4342 } 4343 for (; this_sack > 0; this_sack--, sp--) 4344 *sp = *(sp - 1); 4345 4346 new_sack: 4347 /* Build the new head SACK, and we're done. */ 4348 sp->start_seq = seq; 4349 sp->end_seq = end_seq; 4350 tp->rx_opt.num_sacks++; 4351 } 4352 4353 /* RCV.NXT advances, some SACKs should be eaten. */ 4354 4355 static void tcp_sack_remove(struct tcp_sock *tp) 4356 { 4357 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4358 int num_sacks = tp->rx_opt.num_sacks; 4359 int this_sack; 4360 4361 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4362 if (skb_queue_empty(&tp->out_of_order_queue)) { 4363 tp->rx_opt.num_sacks = 0; 4364 return; 4365 } 4366 4367 for (this_sack = 0; this_sack < num_sacks;) { 4368 /* Check if the start of the sack is covered by RCV.NXT. */ 4369 if (!before(tp->rcv_nxt, sp->start_seq)) { 4370 int i; 4371 4372 /* RCV.NXT must cover all the block! */ 4373 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4374 4375 /* Zap this SACK, by moving forward any other SACKS. */ 4376 for (i=this_sack+1; i < num_sacks; i++) 4377 tp->selective_acks[i-1] = tp->selective_acks[i]; 4378 num_sacks--; 4379 continue; 4380 } 4381 this_sack++; 4382 sp++; 4383 } 4384 tp->rx_opt.num_sacks = num_sacks; 4385 } 4386 4387 /* This one checks to see if we can put data from the 4388 * out_of_order queue into the receive_queue. 4389 */ 4390 static void tcp_ofo_queue(struct sock *sk) 4391 { 4392 struct tcp_sock *tp = tcp_sk(sk); 4393 __u32 dsack_high = tp->rcv_nxt; 4394 struct sk_buff *skb; 4395 4396 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4397 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4398 break; 4399 4400 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4401 __u32 dsack = dsack_high; 4402 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4403 dsack_high = TCP_SKB_CB(skb)->end_seq; 4404 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4405 } 4406 4407 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4408 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4409 __skb_unlink(skb, &tp->out_of_order_queue); 4410 __kfree_skb(skb); 4411 continue; 4412 } 4413 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4414 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4415 TCP_SKB_CB(skb)->end_seq); 4416 4417 __skb_unlink(skb, &tp->out_of_order_queue); 4418 __skb_queue_tail(&sk->sk_receive_queue, skb); 4419 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4420 if (tcp_hdr(skb)->fin) 4421 tcp_fin(sk); 4422 } 4423 } 4424 4425 static int tcp_prune_ofo_queue(struct sock *sk); 4426 static int tcp_prune_queue(struct sock *sk); 4427 4428 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size) 4429 { 4430 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4431 !sk_rmem_schedule(sk, size)) { 4432 4433 if (tcp_prune_queue(sk) < 0) 4434 return -1; 4435 4436 if (!sk_rmem_schedule(sk, size)) { 4437 if (!tcp_prune_ofo_queue(sk)) 4438 return -1; 4439 4440 if (!sk_rmem_schedule(sk, size)) 4441 return -1; 4442 } 4443 } 4444 return 0; 4445 } 4446 4447 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4448 { 4449 const struct tcphdr *th = tcp_hdr(skb); 4450 struct tcp_sock *tp = tcp_sk(sk); 4451 int eaten = -1; 4452 4453 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4454 goto drop; 4455 4456 skb_dst_drop(skb); 4457 __skb_pull(skb, th->doff * 4); 4458 4459 TCP_ECN_accept_cwr(tp, skb); 4460 4461 tp->rx_opt.dsack = 0; 4462 4463 /* Queue data for delivery to the user. 4464 * Packets in sequence go to the receive queue. 4465 * Out of sequence packets to the out_of_order_queue. 4466 */ 4467 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4468 if (tcp_receive_window(tp) == 0) 4469 goto out_of_window; 4470 4471 /* Ok. In sequence. In window. */ 4472 if (tp->ucopy.task == current && 4473 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4474 sock_owned_by_user(sk) && !tp->urg_data) { 4475 int chunk = min_t(unsigned int, skb->len, 4476 tp->ucopy.len); 4477 4478 __set_current_state(TASK_RUNNING); 4479 4480 local_bh_enable(); 4481 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4482 tp->ucopy.len -= chunk; 4483 tp->copied_seq += chunk; 4484 eaten = (chunk == skb->len); 4485 tcp_rcv_space_adjust(sk); 4486 } 4487 local_bh_disable(); 4488 } 4489 4490 if (eaten <= 0) { 4491 queue_and_out: 4492 if (eaten < 0 && 4493 tcp_try_rmem_schedule(sk, skb->truesize)) 4494 goto drop; 4495 4496 skb_set_owner_r(skb, sk); 4497 __skb_queue_tail(&sk->sk_receive_queue, skb); 4498 } 4499 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4500 if (skb->len) 4501 tcp_event_data_recv(sk, skb); 4502 if (th->fin) 4503 tcp_fin(sk); 4504 4505 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4506 tcp_ofo_queue(sk); 4507 4508 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4509 * gap in queue is filled. 4510 */ 4511 if (skb_queue_empty(&tp->out_of_order_queue)) 4512 inet_csk(sk)->icsk_ack.pingpong = 0; 4513 } 4514 4515 if (tp->rx_opt.num_sacks) 4516 tcp_sack_remove(tp); 4517 4518 tcp_fast_path_check(sk); 4519 4520 if (eaten > 0) 4521 __kfree_skb(skb); 4522 else if (!sock_flag(sk, SOCK_DEAD)) 4523 sk->sk_data_ready(sk, 0); 4524 return; 4525 } 4526 4527 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4528 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4529 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4530 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4531 4532 out_of_window: 4533 tcp_enter_quickack_mode(sk); 4534 inet_csk_schedule_ack(sk); 4535 drop: 4536 __kfree_skb(skb); 4537 return; 4538 } 4539 4540 /* Out of window. F.e. zero window probe. */ 4541 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4542 goto out_of_window; 4543 4544 tcp_enter_quickack_mode(sk); 4545 4546 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4547 /* Partial packet, seq < rcv_next < end_seq */ 4548 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4549 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4550 TCP_SKB_CB(skb)->end_seq); 4551 4552 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4553 4554 /* If window is closed, drop tail of packet. But after 4555 * remembering D-SACK for its head made in previous line. 4556 */ 4557 if (!tcp_receive_window(tp)) 4558 goto out_of_window; 4559 goto queue_and_out; 4560 } 4561 4562 TCP_ECN_check_ce(tp, skb); 4563 4564 if (tcp_try_rmem_schedule(sk, skb->truesize)) 4565 goto drop; 4566 4567 /* Disable header prediction. */ 4568 tp->pred_flags = 0; 4569 inet_csk_schedule_ack(sk); 4570 4571 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4572 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4573 4574 skb_set_owner_r(skb, sk); 4575 4576 if (!skb_peek(&tp->out_of_order_queue)) { 4577 /* Initial out of order segment, build 1 SACK. */ 4578 if (tcp_is_sack(tp)) { 4579 tp->rx_opt.num_sacks = 1; 4580 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4581 tp->selective_acks[0].end_seq = 4582 TCP_SKB_CB(skb)->end_seq; 4583 } 4584 __skb_queue_head(&tp->out_of_order_queue, skb); 4585 } else { 4586 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue); 4587 u32 seq = TCP_SKB_CB(skb)->seq; 4588 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4589 4590 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4591 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4592 4593 if (!tp->rx_opt.num_sacks || 4594 tp->selective_acks[0].end_seq != seq) 4595 goto add_sack; 4596 4597 /* Common case: data arrive in order after hole. */ 4598 tp->selective_acks[0].end_seq = end_seq; 4599 return; 4600 } 4601 4602 /* Find place to insert this segment. */ 4603 while (1) { 4604 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4605 break; 4606 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4607 skb1 = NULL; 4608 break; 4609 } 4610 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4611 } 4612 4613 /* Do skb overlap to previous one? */ 4614 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4615 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4616 /* All the bits are present. Drop. */ 4617 __kfree_skb(skb); 4618 tcp_dsack_set(sk, seq, end_seq); 4619 goto add_sack; 4620 } 4621 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4622 /* Partial overlap. */ 4623 tcp_dsack_set(sk, seq, 4624 TCP_SKB_CB(skb1)->end_seq); 4625 } else { 4626 if (skb_queue_is_first(&tp->out_of_order_queue, 4627 skb1)) 4628 skb1 = NULL; 4629 else 4630 skb1 = skb_queue_prev( 4631 &tp->out_of_order_queue, 4632 skb1); 4633 } 4634 } 4635 if (!skb1) 4636 __skb_queue_head(&tp->out_of_order_queue, skb); 4637 else 4638 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4639 4640 /* And clean segments covered by new one as whole. */ 4641 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4642 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4643 4644 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4645 break; 4646 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4647 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4648 end_seq); 4649 break; 4650 } 4651 __skb_unlink(skb1, &tp->out_of_order_queue); 4652 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4653 TCP_SKB_CB(skb1)->end_seq); 4654 __kfree_skb(skb1); 4655 } 4656 4657 add_sack: 4658 if (tcp_is_sack(tp)) 4659 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4660 } 4661 } 4662 4663 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4664 struct sk_buff_head *list) 4665 { 4666 struct sk_buff *next = NULL; 4667 4668 if (!skb_queue_is_last(list, skb)) 4669 next = skb_queue_next(list, skb); 4670 4671 __skb_unlink(skb, list); 4672 __kfree_skb(skb); 4673 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4674 4675 return next; 4676 } 4677 4678 /* Collapse contiguous sequence of skbs head..tail with 4679 * sequence numbers start..end. 4680 * 4681 * If tail is NULL, this means until the end of the list. 4682 * 4683 * Segments with FIN/SYN are not collapsed (only because this 4684 * simplifies code) 4685 */ 4686 static void 4687 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4688 struct sk_buff *head, struct sk_buff *tail, 4689 u32 start, u32 end) 4690 { 4691 struct sk_buff *skb, *n; 4692 bool end_of_skbs; 4693 4694 /* First, check that queue is collapsible and find 4695 * the point where collapsing can be useful. */ 4696 skb = head; 4697 restart: 4698 end_of_skbs = true; 4699 skb_queue_walk_from_safe(list, skb, n) { 4700 if (skb == tail) 4701 break; 4702 /* No new bits? It is possible on ofo queue. */ 4703 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4704 skb = tcp_collapse_one(sk, skb, list); 4705 if (!skb) 4706 break; 4707 goto restart; 4708 } 4709 4710 /* The first skb to collapse is: 4711 * - not SYN/FIN and 4712 * - bloated or contains data before "start" or 4713 * overlaps to the next one. 4714 */ 4715 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin && 4716 (tcp_win_from_space(skb->truesize) > skb->len || 4717 before(TCP_SKB_CB(skb)->seq, start))) { 4718 end_of_skbs = false; 4719 break; 4720 } 4721 4722 if (!skb_queue_is_last(list, skb)) { 4723 struct sk_buff *next = skb_queue_next(list, skb); 4724 if (next != tail && 4725 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4726 end_of_skbs = false; 4727 break; 4728 } 4729 } 4730 4731 /* Decided to skip this, advance start seq. */ 4732 start = TCP_SKB_CB(skb)->end_seq; 4733 } 4734 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin) 4735 return; 4736 4737 while (before(start, end)) { 4738 struct sk_buff *nskb; 4739 unsigned int header = skb_headroom(skb); 4740 int copy = SKB_MAX_ORDER(header, 0); 4741 4742 /* Too big header? This can happen with IPv6. */ 4743 if (copy < 0) 4744 return; 4745 if (end - start < copy) 4746 copy = end - start; 4747 nskb = alloc_skb(copy + header, GFP_ATOMIC); 4748 if (!nskb) 4749 return; 4750 4751 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head); 4752 skb_set_network_header(nskb, (skb_network_header(skb) - 4753 skb->head)); 4754 skb_set_transport_header(nskb, (skb_transport_header(skb) - 4755 skb->head)); 4756 skb_reserve(nskb, header); 4757 memcpy(nskb->head, skb->head, header); 4758 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4759 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4760 __skb_queue_before(list, skb, nskb); 4761 skb_set_owner_r(nskb, sk); 4762 4763 /* Copy data, releasing collapsed skbs. */ 4764 while (copy > 0) { 4765 int offset = start - TCP_SKB_CB(skb)->seq; 4766 int size = TCP_SKB_CB(skb)->end_seq - start; 4767 4768 BUG_ON(offset < 0); 4769 if (size > 0) { 4770 size = min(copy, size); 4771 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4772 BUG(); 4773 TCP_SKB_CB(nskb)->end_seq += size; 4774 copy -= size; 4775 start += size; 4776 } 4777 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4778 skb = tcp_collapse_one(sk, skb, list); 4779 if (!skb || 4780 skb == tail || 4781 tcp_hdr(skb)->syn || 4782 tcp_hdr(skb)->fin) 4783 return; 4784 } 4785 } 4786 } 4787 } 4788 4789 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4790 * and tcp_collapse() them until all the queue is collapsed. 4791 */ 4792 static void tcp_collapse_ofo_queue(struct sock *sk) 4793 { 4794 struct tcp_sock *tp = tcp_sk(sk); 4795 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4796 struct sk_buff *head; 4797 u32 start, end; 4798 4799 if (skb == NULL) 4800 return; 4801 4802 start = TCP_SKB_CB(skb)->seq; 4803 end = TCP_SKB_CB(skb)->end_seq; 4804 head = skb; 4805 4806 for (;;) { 4807 struct sk_buff *next = NULL; 4808 4809 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4810 next = skb_queue_next(&tp->out_of_order_queue, skb); 4811 skb = next; 4812 4813 /* Segment is terminated when we see gap or when 4814 * we are at the end of all the queue. */ 4815 if (!skb || 4816 after(TCP_SKB_CB(skb)->seq, end) || 4817 before(TCP_SKB_CB(skb)->end_seq, start)) { 4818 tcp_collapse(sk, &tp->out_of_order_queue, 4819 head, skb, start, end); 4820 head = skb; 4821 if (!skb) 4822 break; 4823 /* Start new segment */ 4824 start = TCP_SKB_CB(skb)->seq; 4825 end = TCP_SKB_CB(skb)->end_seq; 4826 } else { 4827 if (before(TCP_SKB_CB(skb)->seq, start)) 4828 start = TCP_SKB_CB(skb)->seq; 4829 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4830 end = TCP_SKB_CB(skb)->end_seq; 4831 } 4832 } 4833 } 4834 4835 /* 4836 * Purge the out-of-order queue. 4837 * Return true if queue was pruned. 4838 */ 4839 static int tcp_prune_ofo_queue(struct sock *sk) 4840 { 4841 struct tcp_sock *tp = tcp_sk(sk); 4842 int res = 0; 4843 4844 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4845 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4846 __skb_queue_purge(&tp->out_of_order_queue); 4847 4848 /* Reset SACK state. A conforming SACK implementation will 4849 * do the same at a timeout based retransmit. When a connection 4850 * is in a sad state like this, we care only about integrity 4851 * of the connection not performance. 4852 */ 4853 if (tp->rx_opt.sack_ok) 4854 tcp_sack_reset(&tp->rx_opt); 4855 sk_mem_reclaim(sk); 4856 res = 1; 4857 } 4858 return res; 4859 } 4860 4861 /* Reduce allocated memory if we can, trying to get 4862 * the socket within its memory limits again. 4863 * 4864 * Return less than zero if we should start dropping frames 4865 * until the socket owning process reads some of the data 4866 * to stabilize the situation. 4867 */ 4868 static int tcp_prune_queue(struct sock *sk) 4869 { 4870 struct tcp_sock *tp = tcp_sk(sk); 4871 4872 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4873 4874 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4875 4876 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4877 tcp_clamp_window(sk); 4878 else if (sk_under_memory_pressure(sk)) 4879 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4880 4881 tcp_collapse_ofo_queue(sk); 4882 if (!skb_queue_empty(&sk->sk_receive_queue)) 4883 tcp_collapse(sk, &sk->sk_receive_queue, 4884 skb_peek(&sk->sk_receive_queue), 4885 NULL, 4886 tp->copied_seq, tp->rcv_nxt); 4887 sk_mem_reclaim(sk); 4888 4889 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4890 return 0; 4891 4892 /* Collapsing did not help, destructive actions follow. 4893 * This must not ever occur. */ 4894 4895 tcp_prune_ofo_queue(sk); 4896 4897 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4898 return 0; 4899 4900 /* If we are really being abused, tell the caller to silently 4901 * drop receive data on the floor. It will get retransmitted 4902 * and hopefully then we'll have sufficient space. 4903 */ 4904 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4905 4906 /* Massive buffer overcommit. */ 4907 tp->pred_flags = 0; 4908 return -1; 4909 } 4910 4911 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto. 4912 * As additional protections, we do not touch cwnd in retransmission phases, 4913 * and if application hit its sndbuf limit recently. 4914 */ 4915 void tcp_cwnd_application_limited(struct sock *sk) 4916 { 4917 struct tcp_sock *tp = tcp_sk(sk); 4918 4919 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open && 4920 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 4921 /* Limited by application or receiver window. */ 4922 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk)); 4923 u32 win_used = max(tp->snd_cwnd_used, init_win); 4924 if (win_used < tp->snd_cwnd) { 4925 tp->snd_ssthresh = tcp_current_ssthresh(sk); 4926 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1; 4927 } 4928 tp->snd_cwnd_used = 0; 4929 } 4930 tp->snd_cwnd_stamp = tcp_time_stamp; 4931 } 4932 4933 static int tcp_should_expand_sndbuf(const struct sock *sk) 4934 { 4935 const struct tcp_sock *tp = tcp_sk(sk); 4936 4937 /* If the user specified a specific send buffer setting, do 4938 * not modify it. 4939 */ 4940 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4941 return 0; 4942 4943 /* If we are under global TCP memory pressure, do not expand. */ 4944 if (sk_under_memory_pressure(sk)) 4945 return 0; 4946 4947 /* If we are under soft global TCP memory pressure, do not expand. */ 4948 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4949 return 0; 4950 4951 /* If we filled the congestion window, do not expand. */ 4952 if (tp->packets_out >= tp->snd_cwnd) 4953 return 0; 4954 4955 return 1; 4956 } 4957 4958 /* When incoming ACK allowed to free some skb from write_queue, 4959 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4960 * on the exit from tcp input handler. 4961 * 4962 * PROBLEM: sndbuf expansion does not work well with largesend. 4963 */ 4964 static void tcp_new_space(struct sock *sk) 4965 { 4966 struct tcp_sock *tp = tcp_sk(sk); 4967 4968 if (tcp_should_expand_sndbuf(sk)) { 4969 int sndmem = SKB_TRUESIZE(max_t(u32, 4970 tp->rx_opt.mss_clamp, 4971 tp->mss_cache) + 4972 MAX_TCP_HEADER); 4973 int demanded = max_t(unsigned int, tp->snd_cwnd, 4974 tp->reordering + 1); 4975 sndmem *= 2 * demanded; 4976 if (sndmem > sk->sk_sndbuf) 4977 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 4978 tp->snd_cwnd_stamp = tcp_time_stamp; 4979 } 4980 4981 sk->sk_write_space(sk); 4982 } 4983 4984 static void tcp_check_space(struct sock *sk) 4985 { 4986 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4987 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4988 if (sk->sk_socket && 4989 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4990 tcp_new_space(sk); 4991 } 4992 } 4993 4994 static inline void tcp_data_snd_check(struct sock *sk) 4995 { 4996 tcp_push_pending_frames(sk); 4997 tcp_check_space(sk); 4998 } 4999 5000 /* 5001 * Check if sending an ack is needed. 5002 */ 5003 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5004 { 5005 struct tcp_sock *tp = tcp_sk(sk); 5006 5007 /* More than one full frame received... */ 5008 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5009 /* ... and right edge of window advances far enough. 5010 * (tcp_recvmsg() will send ACK otherwise). Or... 5011 */ 5012 __tcp_select_window(sk) >= tp->rcv_wnd) || 5013 /* We ACK each frame or... */ 5014 tcp_in_quickack_mode(sk) || 5015 /* We have out of order data. */ 5016 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 5017 /* Then ack it now */ 5018 tcp_send_ack(sk); 5019 } else { 5020 /* Else, send delayed ack. */ 5021 tcp_send_delayed_ack(sk); 5022 } 5023 } 5024 5025 static inline void tcp_ack_snd_check(struct sock *sk) 5026 { 5027 if (!inet_csk_ack_scheduled(sk)) { 5028 /* We sent a data segment already. */ 5029 return; 5030 } 5031 __tcp_ack_snd_check(sk, 1); 5032 } 5033 5034 /* 5035 * This routine is only called when we have urgent data 5036 * signaled. Its the 'slow' part of tcp_urg. It could be 5037 * moved inline now as tcp_urg is only called from one 5038 * place. We handle URGent data wrong. We have to - as 5039 * BSD still doesn't use the correction from RFC961. 5040 * For 1003.1g we should support a new option TCP_STDURG to permit 5041 * either form (or just set the sysctl tcp_stdurg). 5042 */ 5043 5044 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5045 { 5046 struct tcp_sock *tp = tcp_sk(sk); 5047 u32 ptr = ntohs(th->urg_ptr); 5048 5049 if (ptr && !sysctl_tcp_stdurg) 5050 ptr--; 5051 ptr += ntohl(th->seq); 5052 5053 /* Ignore urgent data that we've already seen and read. */ 5054 if (after(tp->copied_seq, ptr)) 5055 return; 5056 5057 /* Do not replay urg ptr. 5058 * 5059 * NOTE: interesting situation not covered by specs. 5060 * Misbehaving sender may send urg ptr, pointing to segment, 5061 * which we already have in ofo queue. We are not able to fetch 5062 * such data and will stay in TCP_URG_NOTYET until will be eaten 5063 * by recvmsg(). Seems, we are not obliged to handle such wicked 5064 * situations. But it is worth to think about possibility of some 5065 * DoSes using some hypothetical application level deadlock. 5066 */ 5067 if (before(ptr, tp->rcv_nxt)) 5068 return; 5069 5070 /* Do we already have a newer (or duplicate) urgent pointer? */ 5071 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5072 return; 5073 5074 /* Tell the world about our new urgent pointer. */ 5075 sk_send_sigurg(sk); 5076 5077 /* We may be adding urgent data when the last byte read was 5078 * urgent. To do this requires some care. We cannot just ignore 5079 * tp->copied_seq since we would read the last urgent byte again 5080 * as data, nor can we alter copied_seq until this data arrives 5081 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5082 * 5083 * NOTE. Double Dutch. Rendering to plain English: author of comment 5084 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5085 * and expect that both A and B disappear from stream. This is _wrong_. 5086 * Though this happens in BSD with high probability, this is occasional. 5087 * Any application relying on this is buggy. Note also, that fix "works" 5088 * only in this artificial test. Insert some normal data between A and B and we will 5089 * decline of BSD again. Verdict: it is better to remove to trap 5090 * buggy users. 5091 */ 5092 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5093 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5094 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5095 tp->copied_seq++; 5096 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5097 __skb_unlink(skb, &sk->sk_receive_queue); 5098 __kfree_skb(skb); 5099 } 5100 } 5101 5102 tp->urg_data = TCP_URG_NOTYET; 5103 tp->urg_seq = ptr; 5104 5105 /* Disable header prediction. */ 5106 tp->pred_flags = 0; 5107 } 5108 5109 /* This is the 'fast' part of urgent handling. */ 5110 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5111 { 5112 struct tcp_sock *tp = tcp_sk(sk); 5113 5114 /* Check if we get a new urgent pointer - normally not. */ 5115 if (th->urg) 5116 tcp_check_urg(sk, th); 5117 5118 /* Do we wait for any urgent data? - normally not... */ 5119 if (tp->urg_data == TCP_URG_NOTYET) { 5120 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5121 th->syn; 5122 5123 /* Is the urgent pointer pointing into this packet? */ 5124 if (ptr < skb->len) { 5125 u8 tmp; 5126 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5127 BUG(); 5128 tp->urg_data = TCP_URG_VALID | tmp; 5129 if (!sock_flag(sk, SOCK_DEAD)) 5130 sk->sk_data_ready(sk, 0); 5131 } 5132 } 5133 } 5134 5135 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5136 { 5137 struct tcp_sock *tp = tcp_sk(sk); 5138 int chunk = skb->len - hlen; 5139 int err; 5140 5141 local_bh_enable(); 5142 if (skb_csum_unnecessary(skb)) 5143 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 5144 else 5145 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 5146 tp->ucopy.iov); 5147 5148 if (!err) { 5149 tp->ucopy.len -= chunk; 5150 tp->copied_seq += chunk; 5151 tcp_rcv_space_adjust(sk); 5152 } 5153 5154 local_bh_disable(); 5155 return err; 5156 } 5157 5158 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5159 struct sk_buff *skb) 5160 { 5161 __sum16 result; 5162 5163 if (sock_owned_by_user(sk)) { 5164 local_bh_enable(); 5165 result = __tcp_checksum_complete(skb); 5166 local_bh_disable(); 5167 } else { 5168 result = __tcp_checksum_complete(skb); 5169 } 5170 return result; 5171 } 5172 5173 static inline int tcp_checksum_complete_user(struct sock *sk, 5174 struct sk_buff *skb) 5175 { 5176 return !skb_csum_unnecessary(skb) && 5177 __tcp_checksum_complete_user(sk, skb); 5178 } 5179 5180 #ifdef CONFIG_NET_DMA 5181 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, 5182 int hlen) 5183 { 5184 struct tcp_sock *tp = tcp_sk(sk); 5185 int chunk = skb->len - hlen; 5186 int dma_cookie; 5187 int copied_early = 0; 5188 5189 if (tp->ucopy.wakeup) 5190 return 0; 5191 5192 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list) 5193 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY); 5194 5195 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) { 5196 5197 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan, 5198 skb, hlen, 5199 tp->ucopy.iov, chunk, 5200 tp->ucopy.pinned_list); 5201 5202 if (dma_cookie < 0) 5203 goto out; 5204 5205 tp->ucopy.dma_cookie = dma_cookie; 5206 copied_early = 1; 5207 5208 tp->ucopy.len -= chunk; 5209 tp->copied_seq += chunk; 5210 tcp_rcv_space_adjust(sk); 5211 5212 if ((tp->ucopy.len == 0) || 5213 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) || 5214 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) { 5215 tp->ucopy.wakeup = 1; 5216 sk->sk_data_ready(sk, 0); 5217 } 5218 } else if (chunk > 0) { 5219 tp->ucopy.wakeup = 1; 5220 sk->sk_data_ready(sk, 0); 5221 } 5222 out: 5223 return copied_early; 5224 } 5225 #endif /* CONFIG_NET_DMA */ 5226 5227 /* Does PAWS and seqno based validation of an incoming segment, flags will 5228 * play significant role here. 5229 */ 5230 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5231 const struct tcphdr *th, int syn_inerr) 5232 { 5233 const u8 *hash_location; 5234 struct tcp_sock *tp = tcp_sk(sk); 5235 5236 /* RFC1323: H1. Apply PAWS check first. */ 5237 if (tcp_fast_parse_options(skb, th, tp, &hash_location) && 5238 tp->rx_opt.saw_tstamp && 5239 tcp_paws_discard(sk, skb)) { 5240 if (!th->rst) { 5241 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5242 tcp_send_dupack(sk, skb); 5243 goto discard; 5244 } 5245 /* Reset is accepted even if it did not pass PAWS. */ 5246 } 5247 5248 /* Step 1: check sequence number */ 5249 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5250 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5251 * (RST) segments are validated by checking their SEQ-fields." 5252 * And page 69: "If an incoming segment is not acceptable, 5253 * an acknowledgment should be sent in reply (unless the RST 5254 * bit is set, if so drop the segment and return)". 5255 */ 5256 if (!th->rst) 5257 tcp_send_dupack(sk, skb); 5258 goto discard; 5259 } 5260 5261 /* Step 2: check RST bit */ 5262 if (th->rst) { 5263 tcp_reset(sk); 5264 goto discard; 5265 } 5266 5267 /* ts_recent update must be made after we are sure that the packet 5268 * is in window. 5269 */ 5270 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 5271 5272 /* step 3: check security and precedence [ignored] */ 5273 5274 /* step 4: Check for a SYN in window. */ 5275 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5276 if (syn_inerr) 5277 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5278 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN); 5279 tcp_reset(sk); 5280 return -1; 5281 } 5282 5283 return 1; 5284 5285 discard: 5286 __kfree_skb(skb); 5287 return 0; 5288 } 5289 5290 /* 5291 * TCP receive function for the ESTABLISHED state. 5292 * 5293 * It is split into a fast path and a slow path. The fast path is 5294 * disabled when: 5295 * - A zero window was announced from us - zero window probing 5296 * is only handled properly in the slow path. 5297 * - Out of order segments arrived. 5298 * - Urgent data is expected. 5299 * - There is no buffer space left 5300 * - Unexpected TCP flags/window values/header lengths are received 5301 * (detected by checking the TCP header against pred_flags) 5302 * - Data is sent in both directions. Fast path only supports pure senders 5303 * or pure receivers (this means either the sequence number or the ack 5304 * value must stay constant) 5305 * - Unexpected TCP option. 5306 * 5307 * When these conditions are not satisfied it drops into a standard 5308 * receive procedure patterned after RFC793 to handle all cases. 5309 * The first three cases are guaranteed by proper pred_flags setting, 5310 * the rest is checked inline. Fast processing is turned on in 5311 * tcp_data_queue when everything is OK. 5312 */ 5313 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5314 const struct tcphdr *th, unsigned int len) 5315 { 5316 struct tcp_sock *tp = tcp_sk(sk); 5317 int res; 5318 5319 /* 5320 * Header prediction. 5321 * The code loosely follows the one in the famous 5322 * "30 instruction TCP receive" Van Jacobson mail. 5323 * 5324 * Van's trick is to deposit buffers into socket queue 5325 * on a device interrupt, to call tcp_recv function 5326 * on the receive process context and checksum and copy 5327 * the buffer to user space. smart... 5328 * 5329 * Our current scheme is not silly either but we take the 5330 * extra cost of the net_bh soft interrupt processing... 5331 * We do checksum and copy also but from device to kernel. 5332 */ 5333 5334 tp->rx_opt.saw_tstamp = 0; 5335 5336 /* pred_flags is 0xS?10 << 16 + snd_wnd 5337 * if header_prediction is to be made 5338 * 'S' will always be tp->tcp_header_len >> 2 5339 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5340 * turn it off (when there are holes in the receive 5341 * space for instance) 5342 * PSH flag is ignored. 5343 */ 5344 5345 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5346 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5347 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5348 int tcp_header_len = tp->tcp_header_len; 5349 5350 /* Timestamp header prediction: tcp_header_len 5351 * is automatically equal to th->doff*4 due to pred_flags 5352 * match. 5353 */ 5354 5355 /* Check timestamp */ 5356 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5357 /* No? Slow path! */ 5358 if (!tcp_parse_aligned_timestamp(tp, th)) 5359 goto slow_path; 5360 5361 /* If PAWS failed, check it more carefully in slow path */ 5362 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5363 goto slow_path; 5364 5365 /* DO NOT update ts_recent here, if checksum fails 5366 * and timestamp was corrupted part, it will result 5367 * in a hung connection since we will drop all 5368 * future packets due to the PAWS test. 5369 */ 5370 } 5371 5372 if (len <= tcp_header_len) { 5373 /* Bulk data transfer: sender */ 5374 if (len == tcp_header_len) { 5375 /* Predicted packet is in window by definition. 5376 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5377 * Hence, check seq<=rcv_wup reduces to: 5378 */ 5379 if (tcp_header_len == 5380 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5381 tp->rcv_nxt == tp->rcv_wup) 5382 tcp_store_ts_recent(tp); 5383 5384 /* We know that such packets are checksummed 5385 * on entry. 5386 */ 5387 tcp_ack(sk, skb, 0); 5388 __kfree_skb(skb); 5389 tcp_data_snd_check(sk); 5390 return 0; 5391 } else { /* Header too small */ 5392 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5393 goto discard; 5394 } 5395 } else { 5396 int eaten = 0; 5397 int copied_early = 0; 5398 5399 if (tp->copied_seq == tp->rcv_nxt && 5400 len - tcp_header_len <= tp->ucopy.len) { 5401 #ifdef CONFIG_NET_DMA 5402 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) { 5403 copied_early = 1; 5404 eaten = 1; 5405 } 5406 #endif 5407 if (tp->ucopy.task == current && 5408 sock_owned_by_user(sk) && !copied_early) { 5409 __set_current_state(TASK_RUNNING); 5410 5411 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) 5412 eaten = 1; 5413 } 5414 if (eaten) { 5415 /* Predicted packet is in window by definition. 5416 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5417 * Hence, check seq<=rcv_wup reduces to: 5418 */ 5419 if (tcp_header_len == 5420 (sizeof(struct tcphdr) + 5421 TCPOLEN_TSTAMP_ALIGNED) && 5422 tp->rcv_nxt == tp->rcv_wup) 5423 tcp_store_ts_recent(tp); 5424 5425 tcp_rcv_rtt_measure_ts(sk, skb); 5426 5427 __skb_pull(skb, tcp_header_len); 5428 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5429 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5430 } 5431 if (copied_early) 5432 tcp_cleanup_rbuf(sk, skb->len); 5433 } 5434 if (!eaten) { 5435 if (tcp_checksum_complete_user(sk, skb)) 5436 goto csum_error; 5437 5438 /* Predicted packet is in window by definition. 5439 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5440 * Hence, check seq<=rcv_wup reduces to: 5441 */ 5442 if (tcp_header_len == 5443 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5444 tp->rcv_nxt == tp->rcv_wup) 5445 tcp_store_ts_recent(tp); 5446 5447 tcp_rcv_rtt_measure_ts(sk, skb); 5448 5449 if ((int)skb->truesize > sk->sk_forward_alloc) 5450 goto step5; 5451 5452 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5453 5454 /* Bulk data transfer: receiver */ 5455 __skb_pull(skb, tcp_header_len); 5456 __skb_queue_tail(&sk->sk_receive_queue, skb); 5457 skb_set_owner_r(skb, sk); 5458 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5459 } 5460 5461 tcp_event_data_recv(sk, skb); 5462 5463 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5464 /* Well, only one small jumplet in fast path... */ 5465 tcp_ack(sk, skb, FLAG_DATA); 5466 tcp_data_snd_check(sk); 5467 if (!inet_csk_ack_scheduled(sk)) 5468 goto no_ack; 5469 } 5470 5471 if (!copied_early || tp->rcv_nxt != tp->rcv_wup) 5472 __tcp_ack_snd_check(sk, 0); 5473 no_ack: 5474 #ifdef CONFIG_NET_DMA 5475 if (copied_early) 5476 __skb_queue_tail(&sk->sk_async_wait_queue, skb); 5477 else 5478 #endif 5479 if (eaten) 5480 __kfree_skb(skb); 5481 else 5482 sk->sk_data_ready(sk, 0); 5483 return 0; 5484 } 5485 } 5486 5487 slow_path: 5488 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5489 goto csum_error; 5490 5491 /* 5492 * Standard slow path. 5493 */ 5494 5495 res = tcp_validate_incoming(sk, skb, th, 1); 5496 if (res <= 0) 5497 return -res; 5498 5499 step5: 5500 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0) 5501 goto discard; 5502 5503 tcp_rcv_rtt_measure_ts(sk, skb); 5504 5505 /* Process urgent data. */ 5506 tcp_urg(sk, skb, th); 5507 5508 /* step 7: process the segment text */ 5509 tcp_data_queue(sk, skb); 5510 5511 tcp_data_snd_check(sk); 5512 tcp_ack_snd_check(sk); 5513 return 0; 5514 5515 csum_error: 5516 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5517 5518 discard: 5519 __kfree_skb(skb); 5520 return 0; 5521 } 5522 EXPORT_SYMBOL(tcp_rcv_established); 5523 5524 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5525 const struct tcphdr *th, unsigned int len) 5526 { 5527 const u8 *hash_location; 5528 struct inet_connection_sock *icsk = inet_csk(sk); 5529 struct tcp_sock *tp = tcp_sk(sk); 5530 struct tcp_cookie_values *cvp = tp->cookie_values; 5531 int saved_clamp = tp->rx_opt.mss_clamp; 5532 5533 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0); 5534 5535 if (th->ack) { 5536 /* rfc793: 5537 * "If the state is SYN-SENT then 5538 * first check the ACK bit 5539 * If the ACK bit is set 5540 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5541 * a reset (unless the RST bit is set, if so drop 5542 * the segment and return)" 5543 * 5544 * We do not send data with SYN, so that RFC-correct 5545 * test reduces to: 5546 */ 5547 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt) 5548 goto reset_and_undo; 5549 5550 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5551 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5552 tcp_time_stamp)) { 5553 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5554 goto reset_and_undo; 5555 } 5556 5557 /* Now ACK is acceptable. 5558 * 5559 * "If the RST bit is set 5560 * If the ACK was acceptable then signal the user "error: 5561 * connection reset", drop the segment, enter CLOSED state, 5562 * delete TCB, and return." 5563 */ 5564 5565 if (th->rst) { 5566 tcp_reset(sk); 5567 goto discard; 5568 } 5569 5570 /* rfc793: 5571 * "fifth, if neither of the SYN or RST bits is set then 5572 * drop the segment and return." 5573 * 5574 * See note below! 5575 * --ANK(990513) 5576 */ 5577 if (!th->syn) 5578 goto discard_and_undo; 5579 5580 /* rfc793: 5581 * "If the SYN bit is on ... 5582 * are acceptable then ... 5583 * (our SYN has been ACKed), change the connection 5584 * state to ESTABLISHED..." 5585 */ 5586 5587 TCP_ECN_rcv_synack(tp, th); 5588 5589 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5590 tcp_ack(sk, skb, FLAG_SLOWPATH); 5591 5592 /* Ok.. it's good. Set up sequence numbers and 5593 * move to established. 5594 */ 5595 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5596 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5597 5598 /* RFC1323: The window in SYN & SYN/ACK segments is 5599 * never scaled. 5600 */ 5601 tp->snd_wnd = ntohs(th->window); 5602 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5603 5604 if (!tp->rx_opt.wscale_ok) { 5605 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5606 tp->window_clamp = min(tp->window_clamp, 65535U); 5607 } 5608 5609 if (tp->rx_opt.saw_tstamp) { 5610 tp->rx_opt.tstamp_ok = 1; 5611 tp->tcp_header_len = 5612 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5613 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5614 tcp_store_ts_recent(tp); 5615 } else { 5616 tp->tcp_header_len = sizeof(struct tcphdr); 5617 } 5618 5619 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5620 tcp_enable_fack(tp); 5621 5622 tcp_mtup_init(sk); 5623 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5624 tcp_initialize_rcv_mss(sk); 5625 5626 /* Remember, tcp_poll() does not lock socket! 5627 * Change state from SYN-SENT only after copied_seq 5628 * is initialized. */ 5629 tp->copied_seq = tp->rcv_nxt; 5630 5631 if (cvp != NULL && 5632 cvp->cookie_pair_size > 0 && 5633 tp->rx_opt.cookie_plus > 0) { 5634 int cookie_size = tp->rx_opt.cookie_plus 5635 - TCPOLEN_COOKIE_BASE; 5636 int cookie_pair_size = cookie_size 5637 + cvp->cookie_desired; 5638 5639 /* A cookie extension option was sent and returned. 5640 * Note that each incoming SYNACK replaces the 5641 * Responder cookie. The initial exchange is most 5642 * fragile, as protection against spoofing relies 5643 * entirely upon the sequence and timestamp (above). 5644 * This replacement strategy allows the correct pair to 5645 * pass through, while any others will be filtered via 5646 * Responder verification later. 5647 */ 5648 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) { 5649 memcpy(&cvp->cookie_pair[cvp->cookie_desired], 5650 hash_location, cookie_size); 5651 cvp->cookie_pair_size = cookie_pair_size; 5652 } 5653 } 5654 5655 smp_mb(); 5656 tcp_set_state(sk, TCP_ESTABLISHED); 5657 5658 security_inet_conn_established(sk, skb); 5659 5660 /* Make sure socket is routed, for correct metrics. */ 5661 icsk->icsk_af_ops->rebuild_header(sk); 5662 5663 tcp_init_metrics(sk); 5664 5665 tcp_init_congestion_control(sk); 5666 5667 /* Prevent spurious tcp_cwnd_restart() on first data 5668 * packet. 5669 */ 5670 tp->lsndtime = tcp_time_stamp; 5671 5672 tcp_init_buffer_space(sk); 5673 5674 if (sock_flag(sk, SOCK_KEEPOPEN)) 5675 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5676 5677 if (!tp->rx_opt.snd_wscale) 5678 __tcp_fast_path_on(tp, tp->snd_wnd); 5679 else 5680 tp->pred_flags = 0; 5681 5682 if (!sock_flag(sk, SOCK_DEAD)) { 5683 sk->sk_state_change(sk); 5684 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5685 } 5686 5687 if (sk->sk_write_pending || 5688 icsk->icsk_accept_queue.rskq_defer_accept || 5689 icsk->icsk_ack.pingpong) { 5690 /* Save one ACK. Data will be ready after 5691 * several ticks, if write_pending is set. 5692 * 5693 * It may be deleted, but with this feature tcpdumps 5694 * look so _wonderfully_ clever, that I was not able 5695 * to stand against the temptation 8) --ANK 5696 */ 5697 inet_csk_schedule_ack(sk); 5698 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5699 icsk->icsk_ack.ato = TCP_ATO_MIN; 5700 tcp_incr_quickack(sk); 5701 tcp_enter_quickack_mode(sk); 5702 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5703 TCP_DELACK_MAX, TCP_RTO_MAX); 5704 5705 discard: 5706 __kfree_skb(skb); 5707 return 0; 5708 } else { 5709 tcp_send_ack(sk); 5710 } 5711 return -1; 5712 } 5713 5714 /* No ACK in the segment */ 5715 5716 if (th->rst) { 5717 /* rfc793: 5718 * "If the RST bit is set 5719 * 5720 * Otherwise (no ACK) drop the segment and return." 5721 */ 5722 5723 goto discard_and_undo; 5724 } 5725 5726 /* PAWS check. */ 5727 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5728 tcp_paws_reject(&tp->rx_opt, 0)) 5729 goto discard_and_undo; 5730 5731 if (th->syn) { 5732 /* We see SYN without ACK. It is attempt of 5733 * simultaneous connect with crossed SYNs. 5734 * Particularly, it can be connect to self. 5735 */ 5736 tcp_set_state(sk, TCP_SYN_RECV); 5737 5738 if (tp->rx_opt.saw_tstamp) { 5739 tp->rx_opt.tstamp_ok = 1; 5740 tcp_store_ts_recent(tp); 5741 tp->tcp_header_len = 5742 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5743 } else { 5744 tp->tcp_header_len = sizeof(struct tcphdr); 5745 } 5746 5747 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5748 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5749 5750 /* RFC1323: The window in SYN & SYN/ACK segments is 5751 * never scaled. 5752 */ 5753 tp->snd_wnd = ntohs(th->window); 5754 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5755 tp->max_window = tp->snd_wnd; 5756 5757 TCP_ECN_rcv_syn(tp, th); 5758 5759 tcp_mtup_init(sk); 5760 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5761 tcp_initialize_rcv_mss(sk); 5762 5763 tcp_send_synack(sk); 5764 #if 0 5765 /* Note, we could accept data and URG from this segment. 5766 * There are no obstacles to make this. 5767 * 5768 * However, if we ignore data in ACKless segments sometimes, 5769 * we have no reasons to accept it sometimes. 5770 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5771 * is not flawless. So, discard packet for sanity. 5772 * Uncomment this return to process the data. 5773 */ 5774 return -1; 5775 #else 5776 goto discard; 5777 #endif 5778 } 5779 /* "fifth, if neither of the SYN or RST bits is set then 5780 * drop the segment and return." 5781 */ 5782 5783 discard_and_undo: 5784 tcp_clear_options(&tp->rx_opt); 5785 tp->rx_opt.mss_clamp = saved_clamp; 5786 goto discard; 5787 5788 reset_and_undo: 5789 tcp_clear_options(&tp->rx_opt); 5790 tp->rx_opt.mss_clamp = saved_clamp; 5791 return 1; 5792 } 5793 5794 /* 5795 * This function implements the receiving procedure of RFC 793 for 5796 * all states except ESTABLISHED and TIME_WAIT. 5797 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5798 * address independent. 5799 */ 5800 5801 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5802 const struct tcphdr *th, unsigned int len) 5803 { 5804 struct tcp_sock *tp = tcp_sk(sk); 5805 struct inet_connection_sock *icsk = inet_csk(sk); 5806 int queued = 0; 5807 int res; 5808 5809 tp->rx_opt.saw_tstamp = 0; 5810 5811 switch (sk->sk_state) { 5812 case TCP_CLOSE: 5813 goto discard; 5814 5815 case TCP_LISTEN: 5816 if (th->ack) 5817 return 1; 5818 5819 if (th->rst) 5820 goto discard; 5821 5822 if (th->syn) { 5823 if (th->fin) 5824 goto discard; 5825 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5826 return 1; 5827 5828 /* Now we have several options: In theory there is 5829 * nothing else in the frame. KA9Q has an option to 5830 * send data with the syn, BSD accepts data with the 5831 * syn up to the [to be] advertised window and 5832 * Solaris 2.1 gives you a protocol error. For now 5833 * we just ignore it, that fits the spec precisely 5834 * and avoids incompatibilities. It would be nice in 5835 * future to drop through and process the data. 5836 * 5837 * Now that TTCP is starting to be used we ought to 5838 * queue this data. 5839 * But, this leaves one open to an easy denial of 5840 * service attack, and SYN cookies can't defend 5841 * against this problem. So, we drop the data 5842 * in the interest of security over speed unless 5843 * it's still in use. 5844 */ 5845 kfree_skb(skb); 5846 return 0; 5847 } 5848 goto discard; 5849 5850 case TCP_SYN_SENT: 5851 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5852 if (queued >= 0) 5853 return queued; 5854 5855 /* Do step6 onward by hand. */ 5856 tcp_urg(sk, skb, th); 5857 __kfree_skb(skb); 5858 tcp_data_snd_check(sk); 5859 return 0; 5860 } 5861 5862 res = tcp_validate_incoming(sk, skb, th, 0); 5863 if (res <= 0) 5864 return -res; 5865 5866 /* step 5: check the ACK field */ 5867 if (th->ack) { 5868 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0; 5869 5870 switch (sk->sk_state) { 5871 case TCP_SYN_RECV: 5872 if (acceptable) { 5873 tp->copied_seq = tp->rcv_nxt; 5874 smp_mb(); 5875 tcp_set_state(sk, TCP_ESTABLISHED); 5876 sk->sk_state_change(sk); 5877 5878 /* Note, that this wakeup is only for marginal 5879 * crossed SYN case. Passively open sockets 5880 * are not waked up, because sk->sk_sleep == 5881 * NULL and sk->sk_socket == NULL. 5882 */ 5883 if (sk->sk_socket) 5884 sk_wake_async(sk, 5885 SOCK_WAKE_IO, POLL_OUT); 5886 5887 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5888 tp->snd_wnd = ntohs(th->window) << 5889 tp->rx_opt.snd_wscale; 5890 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5891 5892 if (tp->rx_opt.tstamp_ok) 5893 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5894 5895 /* Make sure socket is routed, for 5896 * correct metrics. 5897 */ 5898 icsk->icsk_af_ops->rebuild_header(sk); 5899 5900 tcp_init_metrics(sk); 5901 5902 tcp_init_congestion_control(sk); 5903 5904 /* Prevent spurious tcp_cwnd_restart() on 5905 * first data packet. 5906 */ 5907 tp->lsndtime = tcp_time_stamp; 5908 5909 tcp_mtup_init(sk); 5910 tcp_initialize_rcv_mss(sk); 5911 tcp_init_buffer_space(sk); 5912 tcp_fast_path_on(tp); 5913 } else { 5914 return 1; 5915 } 5916 break; 5917 5918 case TCP_FIN_WAIT1: 5919 if (tp->snd_una == tp->write_seq) { 5920 tcp_set_state(sk, TCP_FIN_WAIT2); 5921 sk->sk_shutdown |= SEND_SHUTDOWN; 5922 dst_confirm(__sk_dst_get(sk)); 5923 5924 if (!sock_flag(sk, SOCK_DEAD)) 5925 /* Wake up lingering close() */ 5926 sk->sk_state_change(sk); 5927 else { 5928 int tmo; 5929 5930 if (tp->linger2 < 0 || 5931 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5932 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5933 tcp_done(sk); 5934 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5935 return 1; 5936 } 5937 5938 tmo = tcp_fin_time(sk); 5939 if (tmo > TCP_TIMEWAIT_LEN) { 5940 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5941 } else if (th->fin || sock_owned_by_user(sk)) { 5942 /* Bad case. We could lose such FIN otherwise. 5943 * It is not a big problem, but it looks confusing 5944 * and not so rare event. We still can lose it now, 5945 * if it spins in bh_lock_sock(), but it is really 5946 * marginal case. 5947 */ 5948 inet_csk_reset_keepalive_timer(sk, tmo); 5949 } else { 5950 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5951 goto discard; 5952 } 5953 } 5954 } 5955 break; 5956 5957 case TCP_CLOSING: 5958 if (tp->snd_una == tp->write_seq) { 5959 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5960 goto discard; 5961 } 5962 break; 5963 5964 case TCP_LAST_ACK: 5965 if (tp->snd_una == tp->write_seq) { 5966 tcp_update_metrics(sk); 5967 tcp_done(sk); 5968 goto discard; 5969 } 5970 break; 5971 } 5972 } else 5973 goto discard; 5974 5975 /* step 6: check the URG bit */ 5976 tcp_urg(sk, skb, th); 5977 5978 /* step 7: process the segment text */ 5979 switch (sk->sk_state) { 5980 case TCP_CLOSE_WAIT: 5981 case TCP_CLOSING: 5982 case TCP_LAST_ACK: 5983 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5984 break; 5985 case TCP_FIN_WAIT1: 5986 case TCP_FIN_WAIT2: 5987 /* RFC 793 says to queue data in these states, 5988 * RFC 1122 says we MUST send a reset. 5989 * BSD 4.4 also does reset. 5990 */ 5991 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5992 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5993 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5994 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5995 tcp_reset(sk); 5996 return 1; 5997 } 5998 } 5999 /* Fall through */ 6000 case TCP_ESTABLISHED: 6001 tcp_data_queue(sk, skb); 6002 queued = 1; 6003 break; 6004 } 6005 6006 /* tcp_data could move socket to TIME-WAIT */ 6007 if (sk->sk_state != TCP_CLOSE) { 6008 tcp_data_snd_check(sk); 6009 tcp_ack_snd_check(sk); 6010 } 6011 6012 if (!queued) { 6013 discard: 6014 __kfree_skb(skb); 6015 } 6016 return 0; 6017 } 6018 EXPORT_SYMBOL(tcp_rcv_state_process); 6019