xref: /linux/net/ipv4/tcp_input.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_nometrics_save __read_mostly;
90 
91 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92 int sysctl_tcp_abc __read_mostly;
93 
94 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
95 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
96 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
97 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
98 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
99 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
100 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
101 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
102 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
110 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
111 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112 
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114 
115 /* Adapt the MSS value used to make delayed ack decision to the
116  * real world.
117  */
118 static void tcp_measure_rcv_mss(struct sock *sk,
119 				const struct sk_buff *skb)
120 {
121 	struct inet_connection_sock *icsk = inet_csk(sk);
122 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
123 	unsigned int len;
124 
125 	icsk->icsk_ack.last_seg_size = 0;
126 
127 	/* skb->len may jitter because of SACKs, even if peer
128 	 * sends good full-sized frames.
129 	 */
130 	len = skb_shinfo(skb)->gso_size ?: skb->len;
131 	if (len >= icsk->icsk_ack.rcv_mss) {
132 		icsk->icsk_ack.rcv_mss = len;
133 	} else {
134 		/* Otherwise, we make more careful check taking into account,
135 		 * that SACKs block is variable.
136 		 *
137 		 * "len" is invariant segment length, including TCP header.
138 		 */
139 		len += skb->data - skb->h.raw;
140 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
141 		    /* If PSH is not set, packet should be
142 		     * full sized, provided peer TCP is not badly broken.
143 		     * This observation (if it is correct 8)) allows
144 		     * to handle super-low mtu links fairly.
145 		     */
146 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
147 		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
148 			/* Subtract also invariant (if peer is RFC compliant),
149 			 * tcp header plus fixed timestamp option length.
150 			 * Resulting "len" is MSS free of SACK jitter.
151 			 */
152 			len -= tcp_sk(sk)->tcp_header_len;
153 			icsk->icsk_ack.last_seg_size = len;
154 			if (len == lss) {
155 				icsk->icsk_ack.rcv_mss = len;
156 				return;
157 			}
158 		}
159 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
160 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
161 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
162 	}
163 }
164 
165 static void tcp_incr_quickack(struct sock *sk)
166 {
167 	struct inet_connection_sock *icsk = inet_csk(sk);
168 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
169 
170 	if (quickacks==0)
171 		quickacks=2;
172 	if (quickacks > icsk->icsk_ack.quick)
173 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
174 }
175 
176 void tcp_enter_quickack_mode(struct sock *sk)
177 {
178 	struct inet_connection_sock *icsk = inet_csk(sk);
179 	tcp_incr_quickack(sk);
180 	icsk->icsk_ack.pingpong = 0;
181 	icsk->icsk_ack.ato = TCP_ATO_MIN;
182 }
183 
184 /* Send ACKs quickly, if "quick" count is not exhausted
185  * and the session is not interactive.
186  */
187 
188 static inline int tcp_in_quickack_mode(const struct sock *sk)
189 {
190 	const struct inet_connection_sock *icsk = inet_csk(sk);
191 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
192 }
193 
194 /* Buffer size and advertised window tuning.
195  *
196  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
197  */
198 
199 static void tcp_fixup_sndbuf(struct sock *sk)
200 {
201 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
202 		     sizeof(struct sk_buff);
203 
204 	if (sk->sk_sndbuf < 3 * sndmem)
205 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
206 }
207 
208 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
209  *
210  * All tcp_full_space() is split to two parts: "network" buffer, allocated
211  * forward and advertised in receiver window (tp->rcv_wnd) and
212  * "application buffer", required to isolate scheduling/application
213  * latencies from network.
214  * window_clamp is maximal advertised window. It can be less than
215  * tcp_full_space(), in this case tcp_full_space() - window_clamp
216  * is reserved for "application" buffer. The less window_clamp is
217  * the smoother our behaviour from viewpoint of network, but the lower
218  * throughput and the higher sensitivity of the connection to losses. 8)
219  *
220  * rcv_ssthresh is more strict window_clamp used at "slow start"
221  * phase to predict further behaviour of this connection.
222  * It is used for two goals:
223  * - to enforce header prediction at sender, even when application
224  *   requires some significant "application buffer". It is check #1.
225  * - to prevent pruning of receive queue because of misprediction
226  *   of receiver window. Check #2.
227  *
228  * The scheme does not work when sender sends good segments opening
229  * window and then starts to feed us spaghetti. But it should work
230  * in common situations. Otherwise, we have to rely on queue collapsing.
231  */
232 
233 /* Slow part of check#2. */
234 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
235 			     const struct sk_buff *skb)
236 {
237 	/* Optimize this! */
238 	int truesize = tcp_win_from_space(skb->truesize)/2;
239 	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
240 
241 	while (tp->rcv_ssthresh <= window) {
242 		if (truesize <= skb->len)
243 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
244 
245 		truesize >>= 1;
246 		window >>= 1;
247 	}
248 	return 0;
249 }
250 
251 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
252 			    struct sk_buff *skb)
253 {
254 	/* Check #1 */
255 	if (tp->rcv_ssthresh < tp->window_clamp &&
256 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
257 	    !tcp_memory_pressure) {
258 		int incr;
259 
260 		/* Check #2. Increase window, if skb with such overhead
261 		 * will fit to rcvbuf in future.
262 		 */
263 		if (tcp_win_from_space(skb->truesize) <= skb->len)
264 			incr = 2*tp->advmss;
265 		else
266 			incr = __tcp_grow_window(sk, tp, skb);
267 
268 		if (incr) {
269 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
270 			inet_csk(sk)->icsk_ack.quick |= 1;
271 		}
272 	}
273 }
274 
275 /* 3. Tuning rcvbuf, when connection enters established state. */
276 
277 static void tcp_fixup_rcvbuf(struct sock *sk)
278 {
279 	struct tcp_sock *tp = tcp_sk(sk);
280 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
281 
282 	/* Try to select rcvbuf so that 4 mss-sized segments
283 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
284 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
285 	 */
286 	while (tcp_win_from_space(rcvmem) < tp->advmss)
287 		rcvmem += 128;
288 	if (sk->sk_rcvbuf < 4 * rcvmem)
289 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
290 }
291 
292 /* 4. Try to fixup all. It is made immediately after connection enters
293  *    established state.
294  */
295 static void tcp_init_buffer_space(struct sock *sk)
296 {
297 	struct tcp_sock *tp = tcp_sk(sk);
298 	int maxwin;
299 
300 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
301 		tcp_fixup_rcvbuf(sk);
302 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
303 		tcp_fixup_sndbuf(sk);
304 
305 	tp->rcvq_space.space = tp->rcv_wnd;
306 
307 	maxwin = tcp_full_space(sk);
308 
309 	if (tp->window_clamp >= maxwin) {
310 		tp->window_clamp = maxwin;
311 
312 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
313 			tp->window_clamp = max(maxwin -
314 					       (maxwin >> sysctl_tcp_app_win),
315 					       4 * tp->advmss);
316 	}
317 
318 	/* Force reservation of one segment. */
319 	if (sysctl_tcp_app_win &&
320 	    tp->window_clamp > 2 * tp->advmss &&
321 	    tp->window_clamp + tp->advmss > maxwin)
322 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
323 
324 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
325 	tp->snd_cwnd_stamp = tcp_time_stamp;
326 }
327 
328 /* 5. Recalculate window clamp after socket hit its memory bounds. */
329 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
330 {
331 	struct inet_connection_sock *icsk = inet_csk(sk);
332 
333 	icsk->icsk_ack.quick = 0;
334 
335 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
336 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
337 	    !tcp_memory_pressure &&
338 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
339 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
340 				    sysctl_tcp_rmem[2]);
341 	}
342 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
343 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
344 }
345 
346 
347 /* Initialize RCV_MSS value.
348  * RCV_MSS is an our guess about MSS used by the peer.
349  * We haven't any direct information about the MSS.
350  * It's better to underestimate the RCV_MSS rather than overestimate.
351  * Overestimations make us ACKing less frequently than needed.
352  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
353  */
354 void tcp_initialize_rcv_mss(struct sock *sk)
355 {
356 	struct tcp_sock *tp = tcp_sk(sk);
357 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
358 
359 	hint = min(hint, tp->rcv_wnd/2);
360 	hint = min(hint, TCP_MIN_RCVMSS);
361 	hint = max(hint, TCP_MIN_MSS);
362 
363 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
364 }
365 
366 /* Receiver "autotuning" code.
367  *
368  * The algorithm for RTT estimation w/o timestamps is based on
369  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
370  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
371  *
372  * More detail on this code can be found at
373  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
374  * though this reference is out of date.  A new paper
375  * is pending.
376  */
377 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
378 {
379 	u32 new_sample = tp->rcv_rtt_est.rtt;
380 	long m = sample;
381 
382 	if (m == 0)
383 		m = 1;
384 
385 	if (new_sample != 0) {
386 		/* If we sample in larger samples in the non-timestamp
387 		 * case, we could grossly overestimate the RTT especially
388 		 * with chatty applications or bulk transfer apps which
389 		 * are stalled on filesystem I/O.
390 		 *
391 		 * Also, since we are only going for a minimum in the
392 		 * non-timestamp case, we do not smooth things out
393 		 * else with timestamps disabled convergence takes too
394 		 * long.
395 		 */
396 		if (!win_dep) {
397 			m -= (new_sample >> 3);
398 			new_sample += m;
399 		} else if (m < new_sample)
400 			new_sample = m << 3;
401 	} else {
402 		/* No previous measure. */
403 		new_sample = m << 3;
404 	}
405 
406 	if (tp->rcv_rtt_est.rtt != new_sample)
407 		tp->rcv_rtt_est.rtt = new_sample;
408 }
409 
410 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
411 {
412 	if (tp->rcv_rtt_est.time == 0)
413 		goto new_measure;
414 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
415 		return;
416 	tcp_rcv_rtt_update(tp,
417 			   jiffies - tp->rcv_rtt_est.time,
418 			   1);
419 
420 new_measure:
421 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
422 	tp->rcv_rtt_est.time = tcp_time_stamp;
423 }
424 
425 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
426 {
427 	struct tcp_sock *tp = tcp_sk(sk);
428 	if (tp->rx_opt.rcv_tsecr &&
429 	    (TCP_SKB_CB(skb)->end_seq -
430 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
431 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
432 }
433 
434 /*
435  * This function should be called every time data is copied to user space.
436  * It calculates the appropriate TCP receive buffer space.
437  */
438 void tcp_rcv_space_adjust(struct sock *sk)
439 {
440 	struct tcp_sock *tp = tcp_sk(sk);
441 	int time;
442 	int space;
443 
444 	if (tp->rcvq_space.time == 0)
445 		goto new_measure;
446 
447 	time = tcp_time_stamp - tp->rcvq_space.time;
448 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
449 	    tp->rcv_rtt_est.rtt == 0)
450 		return;
451 
452 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
453 
454 	space = max(tp->rcvq_space.space, space);
455 
456 	if (tp->rcvq_space.space != space) {
457 		int rcvmem;
458 
459 		tp->rcvq_space.space = space;
460 
461 		if (sysctl_tcp_moderate_rcvbuf &&
462 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
463 			int new_clamp = space;
464 
465 			/* Receive space grows, normalize in order to
466 			 * take into account packet headers and sk_buff
467 			 * structure overhead.
468 			 */
469 			space /= tp->advmss;
470 			if (!space)
471 				space = 1;
472 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
473 				  16 + sizeof(struct sk_buff));
474 			while (tcp_win_from_space(rcvmem) < tp->advmss)
475 				rcvmem += 128;
476 			space *= rcvmem;
477 			space = min(space, sysctl_tcp_rmem[2]);
478 			if (space > sk->sk_rcvbuf) {
479 				sk->sk_rcvbuf = space;
480 
481 				/* Make the window clamp follow along.  */
482 				tp->window_clamp = new_clamp;
483 			}
484 		}
485 	}
486 
487 new_measure:
488 	tp->rcvq_space.seq = tp->copied_seq;
489 	tp->rcvq_space.time = tcp_time_stamp;
490 }
491 
492 /* There is something which you must keep in mind when you analyze the
493  * behavior of the tp->ato delayed ack timeout interval.  When a
494  * connection starts up, we want to ack as quickly as possible.  The
495  * problem is that "good" TCP's do slow start at the beginning of data
496  * transmission.  The means that until we send the first few ACK's the
497  * sender will sit on his end and only queue most of his data, because
498  * he can only send snd_cwnd unacked packets at any given time.  For
499  * each ACK we send, he increments snd_cwnd and transmits more of his
500  * queue.  -DaveM
501  */
502 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
503 {
504 	struct inet_connection_sock *icsk = inet_csk(sk);
505 	u32 now;
506 
507 	inet_csk_schedule_ack(sk);
508 
509 	tcp_measure_rcv_mss(sk, skb);
510 
511 	tcp_rcv_rtt_measure(tp);
512 
513 	now = tcp_time_stamp;
514 
515 	if (!icsk->icsk_ack.ato) {
516 		/* The _first_ data packet received, initialize
517 		 * delayed ACK engine.
518 		 */
519 		tcp_incr_quickack(sk);
520 		icsk->icsk_ack.ato = TCP_ATO_MIN;
521 	} else {
522 		int m = now - icsk->icsk_ack.lrcvtime;
523 
524 		if (m <= TCP_ATO_MIN/2) {
525 			/* The fastest case is the first. */
526 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
527 		} else if (m < icsk->icsk_ack.ato) {
528 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
529 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
530 				icsk->icsk_ack.ato = icsk->icsk_rto;
531 		} else if (m > icsk->icsk_rto) {
532 			/* Too long gap. Apparently sender failed to
533 			 * restart window, so that we send ACKs quickly.
534 			 */
535 			tcp_incr_quickack(sk);
536 			sk_stream_mem_reclaim(sk);
537 		}
538 	}
539 	icsk->icsk_ack.lrcvtime = now;
540 
541 	TCP_ECN_check_ce(tp, skb);
542 
543 	if (skb->len >= 128)
544 		tcp_grow_window(sk, tp, skb);
545 }
546 
547 /* Called to compute a smoothed rtt estimate. The data fed to this
548  * routine either comes from timestamps, or from segments that were
549  * known _not_ to have been retransmitted [see Karn/Partridge
550  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
551  * piece by Van Jacobson.
552  * NOTE: the next three routines used to be one big routine.
553  * To save cycles in the RFC 1323 implementation it was better to break
554  * it up into three procedures. -- erics
555  */
556 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
557 {
558 	struct tcp_sock *tp = tcp_sk(sk);
559 	long m = mrtt; /* RTT */
560 
561 	/*	The following amusing code comes from Jacobson's
562 	 *	article in SIGCOMM '88.  Note that rtt and mdev
563 	 *	are scaled versions of rtt and mean deviation.
564 	 *	This is designed to be as fast as possible
565 	 *	m stands for "measurement".
566 	 *
567 	 *	On a 1990 paper the rto value is changed to:
568 	 *	RTO = rtt + 4 * mdev
569 	 *
570 	 * Funny. This algorithm seems to be very broken.
571 	 * These formulae increase RTO, when it should be decreased, increase
572 	 * too slowly, when it should be increased quickly, decrease too quickly
573 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
574 	 * does not matter how to _calculate_ it. Seems, it was trap
575 	 * that VJ failed to avoid. 8)
576 	 */
577 	if(m == 0)
578 		m = 1;
579 	if (tp->srtt != 0) {
580 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
581 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
582 		if (m < 0) {
583 			m = -m;		/* m is now abs(error) */
584 			m -= (tp->mdev >> 2);   /* similar update on mdev */
585 			/* This is similar to one of Eifel findings.
586 			 * Eifel blocks mdev updates when rtt decreases.
587 			 * This solution is a bit different: we use finer gain
588 			 * for mdev in this case (alpha*beta).
589 			 * Like Eifel it also prevents growth of rto,
590 			 * but also it limits too fast rto decreases,
591 			 * happening in pure Eifel.
592 			 */
593 			if (m > 0)
594 				m >>= 3;
595 		} else {
596 			m -= (tp->mdev >> 2);   /* similar update on mdev */
597 		}
598 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
599 		if (tp->mdev > tp->mdev_max) {
600 			tp->mdev_max = tp->mdev;
601 			if (tp->mdev_max > tp->rttvar)
602 				tp->rttvar = tp->mdev_max;
603 		}
604 		if (after(tp->snd_una, tp->rtt_seq)) {
605 			if (tp->mdev_max < tp->rttvar)
606 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
607 			tp->rtt_seq = tp->snd_nxt;
608 			tp->mdev_max = TCP_RTO_MIN;
609 		}
610 	} else {
611 		/* no previous measure. */
612 		tp->srtt = m<<3;	/* take the measured time to be rtt */
613 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
614 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
615 		tp->rtt_seq = tp->snd_nxt;
616 	}
617 }
618 
619 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
620  * routine referred to above.
621  */
622 static inline void tcp_set_rto(struct sock *sk)
623 {
624 	const struct tcp_sock *tp = tcp_sk(sk);
625 	/* Old crap is replaced with new one. 8)
626 	 *
627 	 * More seriously:
628 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
629 	 *    It cannot be less due to utterly erratic ACK generation made
630 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
631 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
632 	 *    is invisible. Actually, Linux-2.4 also generates erratic
633 	 *    ACKs in some circumstances.
634 	 */
635 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
636 
637 	/* 2. Fixups made earlier cannot be right.
638 	 *    If we do not estimate RTO correctly without them,
639 	 *    all the algo is pure shit and should be replaced
640 	 *    with correct one. It is exactly, which we pretend to do.
641 	 */
642 }
643 
644 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
645  * guarantees that rto is higher.
646  */
647 static inline void tcp_bound_rto(struct sock *sk)
648 {
649 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
650 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
651 }
652 
653 /* Save metrics learned by this TCP session.
654    This function is called only, when TCP finishes successfully
655    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
656  */
657 void tcp_update_metrics(struct sock *sk)
658 {
659 	struct tcp_sock *tp = tcp_sk(sk);
660 	struct dst_entry *dst = __sk_dst_get(sk);
661 
662 	if (sysctl_tcp_nometrics_save)
663 		return;
664 
665 	dst_confirm(dst);
666 
667 	if (dst && (dst->flags&DST_HOST)) {
668 		const struct inet_connection_sock *icsk = inet_csk(sk);
669 		int m;
670 
671 		if (icsk->icsk_backoff || !tp->srtt) {
672 			/* This session failed to estimate rtt. Why?
673 			 * Probably, no packets returned in time.
674 			 * Reset our results.
675 			 */
676 			if (!(dst_metric_locked(dst, RTAX_RTT)))
677 				dst->metrics[RTAX_RTT-1] = 0;
678 			return;
679 		}
680 
681 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
682 
683 		/* If newly calculated rtt larger than stored one,
684 		 * store new one. Otherwise, use EWMA. Remember,
685 		 * rtt overestimation is always better than underestimation.
686 		 */
687 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
688 			if (m <= 0)
689 				dst->metrics[RTAX_RTT-1] = tp->srtt;
690 			else
691 				dst->metrics[RTAX_RTT-1] -= (m>>3);
692 		}
693 
694 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
695 			if (m < 0)
696 				m = -m;
697 
698 			/* Scale deviation to rttvar fixed point */
699 			m >>= 1;
700 			if (m < tp->mdev)
701 				m = tp->mdev;
702 
703 			if (m >= dst_metric(dst, RTAX_RTTVAR))
704 				dst->metrics[RTAX_RTTVAR-1] = m;
705 			else
706 				dst->metrics[RTAX_RTTVAR-1] -=
707 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
708 		}
709 
710 		if (tp->snd_ssthresh >= 0xFFFF) {
711 			/* Slow start still did not finish. */
712 			if (dst_metric(dst, RTAX_SSTHRESH) &&
713 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
714 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
715 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
716 			if (!dst_metric_locked(dst, RTAX_CWND) &&
717 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
718 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
719 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
720 			   icsk->icsk_ca_state == TCP_CA_Open) {
721 			/* Cong. avoidance phase, cwnd is reliable. */
722 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
723 				dst->metrics[RTAX_SSTHRESH-1] =
724 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
725 			if (!dst_metric_locked(dst, RTAX_CWND))
726 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
727 		} else {
728 			/* Else slow start did not finish, cwnd is non-sense,
729 			   ssthresh may be also invalid.
730 			 */
731 			if (!dst_metric_locked(dst, RTAX_CWND))
732 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
733 			if (dst->metrics[RTAX_SSTHRESH-1] &&
734 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
735 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
736 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
737 		}
738 
739 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
740 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
741 			    tp->reordering != sysctl_tcp_reordering)
742 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
743 		}
744 	}
745 }
746 
747 /* Numbers are taken from RFC2414.  */
748 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
749 {
750 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
751 
752 	if (!cwnd) {
753 		if (tp->mss_cache > 1460)
754 			cwnd = 2;
755 		else
756 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
757 	}
758 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
759 }
760 
761 /* Set slow start threshold and cwnd not falling to slow start */
762 void tcp_enter_cwr(struct sock *sk)
763 {
764 	struct tcp_sock *tp = tcp_sk(sk);
765 
766 	tp->prior_ssthresh = 0;
767 	tp->bytes_acked = 0;
768 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
769 		tp->undo_marker = 0;
770 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
771 		tp->snd_cwnd = min(tp->snd_cwnd,
772 				   tcp_packets_in_flight(tp) + 1U);
773 		tp->snd_cwnd_cnt = 0;
774 		tp->high_seq = tp->snd_nxt;
775 		tp->snd_cwnd_stamp = tcp_time_stamp;
776 		TCP_ECN_queue_cwr(tp);
777 
778 		tcp_set_ca_state(sk, TCP_CA_CWR);
779 	}
780 }
781 
782 /* Initialize metrics on socket. */
783 
784 static void tcp_init_metrics(struct sock *sk)
785 {
786 	struct tcp_sock *tp = tcp_sk(sk);
787 	struct dst_entry *dst = __sk_dst_get(sk);
788 
789 	if (dst == NULL)
790 		goto reset;
791 
792 	dst_confirm(dst);
793 
794 	if (dst_metric_locked(dst, RTAX_CWND))
795 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
796 	if (dst_metric(dst, RTAX_SSTHRESH)) {
797 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
798 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
799 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
800 	}
801 	if (dst_metric(dst, RTAX_REORDERING) &&
802 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
803 		tp->rx_opt.sack_ok &= ~2;
804 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
805 	}
806 
807 	if (dst_metric(dst, RTAX_RTT) == 0)
808 		goto reset;
809 
810 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
811 		goto reset;
812 
813 	/* Initial rtt is determined from SYN,SYN-ACK.
814 	 * The segment is small and rtt may appear much
815 	 * less than real one. Use per-dst memory
816 	 * to make it more realistic.
817 	 *
818 	 * A bit of theory. RTT is time passed after "normal" sized packet
819 	 * is sent until it is ACKed. In normal circumstances sending small
820 	 * packets force peer to delay ACKs and calculation is correct too.
821 	 * The algorithm is adaptive and, provided we follow specs, it
822 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
823 	 * tricks sort of "quick acks" for time long enough to decrease RTT
824 	 * to low value, and then abruptly stops to do it and starts to delay
825 	 * ACKs, wait for troubles.
826 	 */
827 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
828 		tp->srtt = dst_metric(dst, RTAX_RTT);
829 		tp->rtt_seq = tp->snd_nxt;
830 	}
831 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
832 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
833 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
834 	}
835 	tcp_set_rto(sk);
836 	tcp_bound_rto(sk);
837 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
838 		goto reset;
839 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
840 	tp->snd_cwnd_stamp = tcp_time_stamp;
841 	return;
842 
843 reset:
844 	/* Play conservative. If timestamps are not
845 	 * supported, TCP will fail to recalculate correct
846 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
847 	 */
848 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
849 		tp->srtt = 0;
850 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
851 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
852 	}
853 }
854 
855 static void tcp_update_reordering(struct sock *sk, const int metric,
856 				  const int ts)
857 {
858 	struct tcp_sock *tp = tcp_sk(sk);
859 	if (metric > tp->reordering) {
860 		tp->reordering = min(TCP_MAX_REORDERING, metric);
861 
862 		/* This exciting event is worth to be remembered. 8) */
863 		if (ts)
864 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
865 		else if (IsReno(tp))
866 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
867 		else if (IsFack(tp))
868 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
869 		else
870 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
871 #if FASTRETRANS_DEBUG > 1
872 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
873 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874 		       tp->reordering,
875 		       tp->fackets_out,
876 		       tp->sacked_out,
877 		       tp->undo_marker ? tp->undo_retrans : 0);
878 #endif
879 		/* Disable FACK yet. */
880 		tp->rx_opt.sack_ok &= ~2;
881 	}
882 }
883 
884 /* This procedure tags the retransmission queue when SACKs arrive.
885  *
886  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
887  * Packets in queue with these bits set are counted in variables
888  * sacked_out, retrans_out and lost_out, correspondingly.
889  *
890  * Valid combinations are:
891  * Tag  InFlight	Description
892  * 0	1		- orig segment is in flight.
893  * S	0		- nothing flies, orig reached receiver.
894  * L	0		- nothing flies, orig lost by net.
895  * R	2		- both orig and retransmit are in flight.
896  * L|R	1		- orig is lost, retransmit is in flight.
897  * S|R  1		- orig reached receiver, retrans is still in flight.
898  * (L|S|R is logically valid, it could occur when L|R is sacked,
899  *  but it is equivalent to plain S and code short-curcuits it to S.
900  *  L|S is logically invalid, it would mean -1 packet in flight 8))
901  *
902  * These 6 states form finite state machine, controlled by the following events:
903  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
904  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
905  * 3. Loss detection event of one of three flavors:
906  *	A. Scoreboard estimator decided the packet is lost.
907  *	   A'. Reno "three dupacks" marks head of queue lost.
908  *	   A''. Its FACK modfication, head until snd.fack is lost.
909  *	B. SACK arrives sacking data transmitted after never retransmitted
910  *	   hole was sent out.
911  *	C. SACK arrives sacking SND.NXT at the moment, when the
912  *	   segment was retransmitted.
913  * 4. D-SACK added new rule: D-SACK changes any tag to S.
914  *
915  * It is pleasant to note, that state diagram turns out to be commutative,
916  * so that we are allowed not to be bothered by order of our actions,
917  * when multiple events arrive simultaneously. (see the function below).
918  *
919  * Reordering detection.
920  * --------------------
921  * Reordering metric is maximal distance, which a packet can be displaced
922  * in packet stream. With SACKs we can estimate it:
923  *
924  * 1. SACK fills old hole and the corresponding segment was not
925  *    ever retransmitted -> reordering. Alas, we cannot use it
926  *    when segment was retransmitted.
927  * 2. The last flaw is solved with D-SACK. D-SACK arrives
928  *    for retransmitted and already SACKed segment -> reordering..
929  * Both of these heuristics are not used in Loss state, when we cannot
930  * account for retransmits accurately.
931  */
932 static int
933 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
934 {
935 	const struct inet_connection_sock *icsk = inet_csk(sk);
936 	struct tcp_sock *tp = tcp_sk(sk);
937 	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
938 	struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
939 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
940 	int reord = tp->packets_out;
941 	int prior_fackets;
942 	u32 lost_retrans = 0;
943 	int flag = 0;
944 	int dup_sack = 0;
945 	int i;
946 
947 	if (!tp->sacked_out)
948 		tp->fackets_out = 0;
949 	prior_fackets = tp->fackets_out;
950 
951 	/* SACK fastpath:
952 	 * if the only SACK change is the increase of the end_seq of
953 	 * the first block then only apply that SACK block
954 	 * and use retrans queue hinting otherwise slowpath */
955 	flag = 1;
956 	for (i = 0; i< num_sacks; i++) {
957 		__u32 start_seq = ntohl(sp[i].start_seq);
958 		__u32 end_seq =	 ntohl(sp[i].end_seq);
959 
960 		if (i == 0){
961 			if (tp->recv_sack_cache[i].start_seq != start_seq)
962 				flag = 0;
963 		} else {
964 			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
965 			    (tp->recv_sack_cache[i].end_seq != end_seq))
966 				flag = 0;
967 		}
968 		tp->recv_sack_cache[i].start_seq = start_seq;
969 		tp->recv_sack_cache[i].end_seq = end_seq;
970 
971 		/* Check for D-SACK. */
972 		if (i == 0) {
973 			u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
974 
975 			if (before(start_seq, ack)) {
976 				dup_sack = 1;
977 				tp->rx_opt.sack_ok |= 4;
978 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
979 			} else if (num_sacks > 1 &&
980 				   !after(end_seq, ntohl(sp[1].end_seq)) &&
981 				   !before(start_seq, ntohl(sp[1].start_seq))) {
982 				dup_sack = 1;
983 				tp->rx_opt.sack_ok |= 4;
984 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
985 			}
986 
987 			/* D-SACK for already forgotten data...
988 			 * Do dumb counting. */
989 			if (dup_sack &&
990 			    !after(end_seq, prior_snd_una) &&
991 			    after(end_seq, tp->undo_marker))
992 				tp->undo_retrans--;
993 
994 			/* Eliminate too old ACKs, but take into
995 			 * account more or less fresh ones, they can
996 			 * contain valid SACK info.
997 			 */
998 			if (before(ack, prior_snd_una - tp->max_window))
999 				return 0;
1000 		}
1001 	}
1002 
1003 	if (flag)
1004 		num_sacks = 1;
1005 	else {
1006 		int j;
1007 		tp->fastpath_skb_hint = NULL;
1008 
1009 		/* order SACK blocks to allow in order walk of the retrans queue */
1010 		for (i = num_sacks-1; i > 0; i--) {
1011 			for (j = 0; j < i; j++){
1012 				if (after(ntohl(sp[j].start_seq),
1013 					  ntohl(sp[j+1].start_seq))){
1014 					sp[j].start_seq = htonl(tp->recv_sack_cache[j+1].start_seq);
1015 					sp[j].end_seq = htonl(tp->recv_sack_cache[j+1].end_seq);
1016 					sp[j+1].start_seq = htonl(tp->recv_sack_cache[j].start_seq);
1017 					sp[j+1].end_seq = htonl(tp->recv_sack_cache[j].end_seq);
1018 				}
1019 
1020 			}
1021 		}
1022 	}
1023 
1024 	/* clear flag as used for different purpose in following code */
1025 	flag = 0;
1026 
1027 	for (i=0; i<num_sacks; i++, sp++) {
1028 		struct sk_buff *skb;
1029 		__u32 start_seq = ntohl(sp->start_seq);
1030 		__u32 end_seq = ntohl(sp->end_seq);
1031 		int fack_count;
1032 
1033 		/* Use SACK fastpath hint if valid */
1034 		if (tp->fastpath_skb_hint) {
1035 			skb = tp->fastpath_skb_hint;
1036 			fack_count = tp->fastpath_cnt_hint;
1037 		} else {
1038 			skb = sk->sk_write_queue.next;
1039 			fack_count = 0;
1040 		}
1041 
1042 		/* Event "B" in the comment above. */
1043 		if (after(end_seq, tp->high_seq))
1044 			flag |= FLAG_DATA_LOST;
1045 
1046 		sk_stream_for_retrans_queue_from(skb, sk) {
1047 			int in_sack, pcount;
1048 			u8 sacked;
1049 
1050 			tp->fastpath_skb_hint = skb;
1051 			tp->fastpath_cnt_hint = fack_count;
1052 
1053 			/* The retransmission queue is always in order, so
1054 			 * we can short-circuit the walk early.
1055 			 */
1056 			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1057 				break;
1058 
1059 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1060 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
1061 
1062 			pcount = tcp_skb_pcount(skb);
1063 
1064 			if (pcount > 1 && !in_sack &&
1065 			    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1066 				unsigned int pkt_len;
1067 
1068 				in_sack = !after(start_seq,
1069 						 TCP_SKB_CB(skb)->seq);
1070 
1071 				if (!in_sack)
1072 					pkt_len = (start_seq -
1073 						   TCP_SKB_CB(skb)->seq);
1074 				else
1075 					pkt_len = (end_seq -
1076 						   TCP_SKB_CB(skb)->seq);
1077 				if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1078 					break;
1079 				pcount = tcp_skb_pcount(skb);
1080 			}
1081 
1082 			fack_count += pcount;
1083 
1084 			sacked = TCP_SKB_CB(skb)->sacked;
1085 
1086 			/* Account D-SACK for retransmitted packet. */
1087 			if ((dup_sack && in_sack) &&
1088 			    (sacked & TCPCB_RETRANS) &&
1089 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1090 				tp->undo_retrans--;
1091 
1092 			/* The frame is ACKed. */
1093 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1094 				if (sacked&TCPCB_RETRANS) {
1095 					if ((dup_sack && in_sack) &&
1096 					    (sacked&TCPCB_SACKED_ACKED))
1097 						reord = min(fack_count, reord);
1098 				} else {
1099 					/* If it was in a hole, we detected reordering. */
1100 					if (fack_count < prior_fackets &&
1101 					    !(sacked&TCPCB_SACKED_ACKED))
1102 						reord = min(fack_count, reord);
1103 				}
1104 
1105 				/* Nothing to do; acked frame is about to be dropped. */
1106 				continue;
1107 			}
1108 
1109 			if ((sacked&TCPCB_SACKED_RETRANS) &&
1110 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1111 			    (!lost_retrans || after(end_seq, lost_retrans)))
1112 				lost_retrans = end_seq;
1113 
1114 			if (!in_sack)
1115 				continue;
1116 
1117 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1118 				if (sacked & TCPCB_SACKED_RETRANS) {
1119 					/* If the segment is not tagged as lost,
1120 					 * we do not clear RETRANS, believing
1121 					 * that retransmission is still in flight.
1122 					 */
1123 					if (sacked & TCPCB_LOST) {
1124 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1125 						tp->lost_out -= tcp_skb_pcount(skb);
1126 						tp->retrans_out -= tcp_skb_pcount(skb);
1127 
1128 						/* clear lost hint */
1129 						tp->retransmit_skb_hint = NULL;
1130 					}
1131 				} else {
1132 					/* New sack for not retransmitted frame,
1133 					 * which was in hole. It is reordering.
1134 					 */
1135 					if (!(sacked & TCPCB_RETRANS) &&
1136 					    fack_count < prior_fackets)
1137 						reord = min(fack_count, reord);
1138 
1139 					if (sacked & TCPCB_LOST) {
1140 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1141 						tp->lost_out -= tcp_skb_pcount(skb);
1142 
1143 						/* clear lost hint */
1144 						tp->retransmit_skb_hint = NULL;
1145 					}
1146 				}
1147 
1148 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1149 				flag |= FLAG_DATA_SACKED;
1150 				tp->sacked_out += tcp_skb_pcount(skb);
1151 
1152 				if (fack_count > tp->fackets_out)
1153 					tp->fackets_out = fack_count;
1154 			} else {
1155 				if (dup_sack && (sacked&TCPCB_RETRANS))
1156 					reord = min(fack_count, reord);
1157 			}
1158 
1159 			/* D-SACK. We can detect redundant retransmission
1160 			 * in S|R and plain R frames and clear it.
1161 			 * undo_retrans is decreased above, L|R frames
1162 			 * are accounted above as well.
1163 			 */
1164 			if (dup_sack &&
1165 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1166 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1167 				tp->retrans_out -= tcp_skb_pcount(skb);
1168 				tp->retransmit_skb_hint = NULL;
1169 			}
1170 		}
1171 	}
1172 
1173 	/* Check for lost retransmit. This superb idea is
1174 	 * borrowed from "ratehalving". Event "C".
1175 	 * Later note: FACK people cheated me again 8),
1176 	 * we have to account for reordering! Ugly,
1177 	 * but should help.
1178 	 */
1179 	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1180 		struct sk_buff *skb;
1181 
1182 		sk_stream_for_retrans_queue(skb, sk) {
1183 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1184 				break;
1185 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1186 				continue;
1187 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1188 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1189 			    (IsFack(tp) ||
1190 			     !before(lost_retrans,
1191 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1192 				     tp->mss_cache))) {
1193 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1194 				tp->retrans_out -= tcp_skb_pcount(skb);
1195 
1196 				/* clear lost hint */
1197 				tp->retransmit_skb_hint = NULL;
1198 
1199 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1200 					tp->lost_out += tcp_skb_pcount(skb);
1201 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1202 					flag |= FLAG_DATA_SACKED;
1203 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1204 				}
1205 			}
1206 		}
1207 	}
1208 
1209 	tp->left_out = tp->sacked_out + tp->lost_out;
1210 
1211 	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1212 		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1213 
1214 #if FASTRETRANS_DEBUG > 0
1215 	BUG_TRAP((int)tp->sacked_out >= 0);
1216 	BUG_TRAP((int)tp->lost_out >= 0);
1217 	BUG_TRAP((int)tp->retrans_out >= 0);
1218 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1219 #endif
1220 	return flag;
1221 }
1222 
1223 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1224  * segments to see from the next ACKs whether any data was really missing.
1225  * If the RTO was spurious, new ACKs should arrive.
1226  */
1227 void tcp_enter_frto(struct sock *sk)
1228 {
1229 	const struct inet_connection_sock *icsk = inet_csk(sk);
1230 	struct tcp_sock *tp = tcp_sk(sk);
1231 	struct sk_buff *skb;
1232 
1233 	tp->frto_counter = 1;
1234 
1235 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1236             tp->snd_una == tp->high_seq ||
1237             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1238 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1239 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1240 		tcp_ca_event(sk, CA_EVENT_FRTO);
1241 	}
1242 
1243 	/* Have to clear retransmission markers here to keep the bookkeeping
1244 	 * in shape, even though we are not yet in Loss state.
1245 	 * If something was really lost, it is eventually caught up
1246 	 * in tcp_enter_frto_loss.
1247 	 */
1248 	tp->retrans_out = 0;
1249 	tp->undo_marker = tp->snd_una;
1250 	tp->undo_retrans = 0;
1251 
1252 	sk_stream_for_retrans_queue(skb, sk) {
1253 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1254 	}
1255 	tcp_sync_left_out(tp);
1256 
1257 	tcp_set_ca_state(sk, TCP_CA_Open);
1258 	tp->frto_highmark = tp->snd_nxt;
1259 }
1260 
1261 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1262  * which indicates that we should follow the traditional RTO recovery,
1263  * i.e. mark everything lost and do go-back-N retransmission.
1264  */
1265 static void tcp_enter_frto_loss(struct sock *sk)
1266 {
1267 	struct tcp_sock *tp = tcp_sk(sk);
1268 	struct sk_buff *skb;
1269 	int cnt = 0;
1270 
1271 	tp->sacked_out = 0;
1272 	tp->lost_out = 0;
1273 	tp->fackets_out = 0;
1274 
1275 	sk_stream_for_retrans_queue(skb, sk) {
1276 		cnt += tcp_skb_pcount(skb);
1277 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1278 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1279 
1280 			/* Do not mark those segments lost that were
1281 			 * forward transmitted after RTO
1282 			 */
1283 			if (!after(TCP_SKB_CB(skb)->end_seq,
1284 				   tp->frto_highmark)) {
1285 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1286 				tp->lost_out += tcp_skb_pcount(skb);
1287 			}
1288 		} else {
1289 			tp->sacked_out += tcp_skb_pcount(skb);
1290 			tp->fackets_out = cnt;
1291 		}
1292 	}
1293 	tcp_sync_left_out(tp);
1294 
1295 	tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1296 	tp->snd_cwnd_cnt = 0;
1297 	tp->snd_cwnd_stamp = tcp_time_stamp;
1298 	tp->undo_marker = 0;
1299 	tp->frto_counter = 0;
1300 
1301 	tp->reordering = min_t(unsigned int, tp->reordering,
1302 					     sysctl_tcp_reordering);
1303 	tcp_set_ca_state(sk, TCP_CA_Loss);
1304 	tp->high_seq = tp->frto_highmark;
1305 	TCP_ECN_queue_cwr(tp);
1306 
1307 	clear_all_retrans_hints(tp);
1308 }
1309 
1310 void tcp_clear_retrans(struct tcp_sock *tp)
1311 {
1312 	tp->left_out = 0;
1313 	tp->retrans_out = 0;
1314 
1315 	tp->fackets_out = 0;
1316 	tp->sacked_out = 0;
1317 	tp->lost_out = 0;
1318 
1319 	tp->undo_marker = 0;
1320 	tp->undo_retrans = 0;
1321 }
1322 
1323 /* Enter Loss state. If "how" is not zero, forget all SACK information
1324  * and reset tags completely, otherwise preserve SACKs. If receiver
1325  * dropped its ofo queue, we will know this due to reneging detection.
1326  */
1327 void tcp_enter_loss(struct sock *sk, int how)
1328 {
1329 	const struct inet_connection_sock *icsk = inet_csk(sk);
1330 	struct tcp_sock *tp = tcp_sk(sk);
1331 	struct sk_buff *skb;
1332 	int cnt = 0;
1333 
1334 	/* Reduce ssthresh if it has not yet been made inside this window. */
1335 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1336 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1337 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1338 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1339 		tcp_ca_event(sk, CA_EVENT_LOSS);
1340 	}
1341 	tp->snd_cwnd	   = 1;
1342 	tp->snd_cwnd_cnt   = 0;
1343 	tp->snd_cwnd_stamp = tcp_time_stamp;
1344 
1345 	tp->bytes_acked = 0;
1346 	tcp_clear_retrans(tp);
1347 
1348 	/* Push undo marker, if it was plain RTO and nothing
1349 	 * was retransmitted. */
1350 	if (!how)
1351 		tp->undo_marker = tp->snd_una;
1352 
1353 	sk_stream_for_retrans_queue(skb, sk) {
1354 		cnt += tcp_skb_pcount(skb);
1355 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1356 			tp->undo_marker = 0;
1357 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1358 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1359 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1360 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1361 			tp->lost_out += tcp_skb_pcount(skb);
1362 		} else {
1363 			tp->sacked_out += tcp_skb_pcount(skb);
1364 			tp->fackets_out = cnt;
1365 		}
1366 	}
1367 	tcp_sync_left_out(tp);
1368 
1369 	tp->reordering = min_t(unsigned int, tp->reordering,
1370 					     sysctl_tcp_reordering);
1371 	tcp_set_ca_state(sk, TCP_CA_Loss);
1372 	tp->high_seq = tp->snd_nxt;
1373 	TCP_ECN_queue_cwr(tp);
1374 
1375 	clear_all_retrans_hints(tp);
1376 }
1377 
1378 static int tcp_check_sack_reneging(struct sock *sk)
1379 {
1380 	struct sk_buff *skb;
1381 
1382 	/* If ACK arrived pointing to a remembered SACK,
1383 	 * it means that our remembered SACKs do not reflect
1384 	 * real state of receiver i.e.
1385 	 * receiver _host_ is heavily congested (or buggy).
1386 	 * Do processing similar to RTO timeout.
1387 	 */
1388 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1389 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1390 		struct inet_connection_sock *icsk = inet_csk(sk);
1391 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1392 
1393 		tcp_enter_loss(sk, 1);
1394 		icsk->icsk_retransmits++;
1395 		tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1396 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1397 					  icsk->icsk_rto, TCP_RTO_MAX);
1398 		return 1;
1399 	}
1400 	return 0;
1401 }
1402 
1403 static inline int tcp_fackets_out(struct tcp_sock *tp)
1404 {
1405 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1406 }
1407 
1408 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1409 {
1410 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1411 }
1412 
1413 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1414 {
1415 	return tp->packets_out &&
1416 	       tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1417 }
1418 
1419 /* Linux NewReno/SACK/FACK/ECN state machine.
1420  * --------------------------------------
1421  *
1422  * "Open"	Normal state, no dubious events, fast path.
1423  * "Disorder"   In all the respects it is "Open",
1424  *		but requires a bit more attention. It is entered when
1425  *		we see some SACKs or dupacks. It is split of "Open"
1426  *		mainly to move some processing from fast path to slow one.
1427  * "CWR"	CWND was reduced due to some Congestion Notification event.
1428  *		It can be ECN, ICMP source quench, local device congestion.
1429  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1430  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1431  *
1432  * tcp_fastretrans_alert() is entered:
1433  * - each incoming ACK, if state is not "Open"
1434  * - when arrived ACK is unusual, namely:
1435  *	* SACK
1436  *	* Duplicate ACK.
1437  *	* ECN ECE.
1438  *
1439  * Counting packets in flight is pretty simple.
1440  *
1441  *	in_flight = packets_out - left_out + retrans_out
1442  *
1443  *	packets_out is SND.NXT-SND.UNA counted in packets.
1444  *
1445  *	retrans_out is number of retransmitted segments.
1446  *
1447  *	left_out is number of segments left network, but not ACKed yet.
1448  *
1449  *		left_out = sacked_out + lost_out
1450  *
1451  *     sacked_out: Packets, which arrived to receiver out of order
1452  *		   and hence not ACKed. With SACKs this number is simply
1453  *		   amount of SACKed data. Even without SACKs
1454  *		   it is easy to give pretty reliable estimate of this number,
1455  *		   counting duplicate ACKs.
1456  *
1457  *       lost_out: Packets lost by network. TCP has no explicit
1458  *		   "loss notification" feedback from network (for now).
1459  *		   It means that this number can be only _guessed_.
1460  *		   Actually, it is the heuristics to predict lossage that
1461  *		   distinguishes different algorithms.
1462  *
1463  *	F.e. after RTO, when all the queue is considered as lost,
1464  *	lost_out = packets_out and in_flight = retrans_out.
1465  *
1466  *		Essentially, we have now two algorithms counting
1467  *		lost packets.
1468  *
1469  *		FACK: It is the simplest heuristics. As soon as we decided
1470  *		that something is lost, we decide that _all_ not SACKed
1471  *		packets until the most forward SACK are lost. I.e.
1472  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1473  *		It is absolutely correct estimate, if network does not reorder
1474  *		packets. And it loses any connection to reality when reordering
1475  *		takes place. We use FACK by default until reordering
1476  *		is suspected on the path to this destination.
1477  *
1478  *		NewReno: when Recovery is entered, we assume that one segment
1479  *		is lost (classic Reno). While we are in Recovery and
1480  *		a partial ACK arrives, we assume that one more packet
1481  *		is lost (NewReno). This heuristics are the same in NewReno
1482  *		and SACK.
1483  *
1484  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1485  *  deflation etc. CWND is real congestion window, never inflated, changes
1486  *  only according to classic VJ rules.
1487  *
1488  * Really tricky (and requiring careful tuning) part of algorithm
1489  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1490  * The first determines the moment _when_ we should reduce CWND and,
1491  * hence, slow down forward transmission. In fact, it determines the moment
1492  * when we decide that hole is caused by loss, rather than by a reorder.
1493  *
1494  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1495  * holes, caused by lost packets.
1496  *
1497  * And the most logically complicated part of algorithm is undo
1498  * heuristics. We detect false retransmits due to both too early
1499  * fast retransmit (reordering) and underestimated RTO, analyzing
1500  * timestamps and D-SACKs. When we detect that some segments were
1501  * retransmitted by mistake and CWND reduction was wrong, we undo
1502  * window reduction and abort recovery phase. This logic is hidden
1503  * inside several functions named tcp_try_undo_<something>.
1504  */
1505 
1506 /* This function decides, when we should leave Disordered state
1507  * and enter Recovery phase, reducing congestion window.
1508  *
1509  * Main question: may we further continue forward transmission
1510  * with the same cwnd?
1511  */
1512 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1513 {
1514 	__u32 packets_out;
1515 
1516 	/* Trick#1: The loss is proven. */
1517 	if (tp->lost_out)
1518 		return 1;
1519 
1520 	/* Not-A-Trick#2 : Classic rule... */
1521 	if (tcp_fackets_out(tp) > tp->reordering)
1522 		return 1;
1523 
1524 	/* Trick#3 : when we use RFC2988 timer restart, fast
1525 	 * retransmit can be triggered by timeout of queue head.
1526 	 */
1527 	if (tcp_head_timedout(sk, tp))
1528 		return 1;
1529 
1530 	/* Trick#4: It is still not OK... But will it be useful to delay
1531 	 * recovery more?
1532 	 */
1533 	packets_out = tp->packets_out;
1534 	if (packets_out <= tp->reordering &&
1535 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1536 	    !tcp_may_send_now(sk, tp)) {
1537 		/* We have nothing to send. This connection is limited
1538 		 * either by receiver window or by application.
1539 		 */
1540 		return 1;
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 /* If we receive more dupacks than we expected counting segments
1547  * in assumption of absent reordering, interpret this as reordering.
1548  * The only another reason could be bug in receiver TCP.
1549  */
1550 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1551 {
1552 	struct tcp_sock *tp = tcp_sk(sk);
1553 	u32 holes;
1554 
1555 	holes = max(tp->lost_out, 1U);
1556 	holes = min(holes, tp->packets_out);
1557 
1558 	if ((tp->sacked_out + holes) > tp->packets_out) {
1559 		tp->sacked_out = tp->packets_out - holes;
1560 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1561 	}
1562 }
1563 
1564 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1565 
1566 static void tcp_add_reno_sack(struct sock *sk)
1567 {
1568 	struct tcp_sock *tp = tcp_sk(sk);
1569 	tp->sacked_out++;
1570 	tcp_check_reno_reordering(sk, 0);
1571 	tcp_sync_left_out(tp);
1572 }
1573 
1574 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1575 
1576 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1577 {
1578 	if (acked > 0) {
1579 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1580 		if (acked-1 >= tp->sacked_out)
1581 			tp->sacked_out = 0;
1582 		else
1583 			tp->sacked_out -= acked-1;
1584 	}
1585 	tcp_check_reno_reordering(sk, acked);
1586 	tcp_sync_left_out(tp);
1587 }
1588 
1589 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1590 {
1591 	tp->sacked_out = 0;
1592 	tp->left_out = tp->lost_out;
1593 }
1594 
1595 /* Mark head of queue up as lost. */
1596 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1597 			       int packets, u32 high_seq)
1598 {
1599 	struct sk_buff *skb;
1600 	int cnt;
1601 
1602 	BUG_TRAP(packets <= tp->packets_out);
1603 	if (tp->lost_skb_hint) {
1604 		skb = tp->lost_skb_hint;
1605 		cnt = tp->lost_cnt_hint;
1606 	} else {
1607 		skb = sk->sk_write_queue.next;
1608 		cnt = 0;
1609 	}
1610 
1611 	sk_stream_for_retrans_queue_from(skb, sk) {
1612 		/* TODO: do this better */
1613 		/* this is not the most efficient way to do this... */
1614 		tp->lost_skb_hint = skb;
1615 		tp->lost_cnt_hint = cnt;
1616 		cnt += tcp_skb_pcount(skb);
1617 		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1618 			break;
1619 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1620 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1621 			tp->lost_out += tcp_skb_pcount(skb);
1622 
1623 			/* clear xmit_retransmit_queue hints
1624 			 *  if this is beyond hint */
1625 			if(tp->retransmit_skb_hint != NULL &&
1626 			   before(TCP_SKB_CB(skb)->seq,
1627 				  TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1628 
1629 				tp->retransmit_skb_hint = NULL;
1630 			}
1631 		}
1632 	}
1633 	tcp_sync_left_out(tp);
1634 }
1635 
1636 /* Account newly detected lost packet(s) */
1637 
1638 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1639 {
1640 	if (IsFack(tp)) {
1641 		int lost = tp->fackets_out - tp->reordering;
1642 		if (lost <= 0)
1643 			lost = 1;
1644 		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1645 	} else {
1646 		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1647 	}
1648 
1649 	/* New heuristics: it is possible only after we switched
1650 	 * to restart timer each time when something is ACKed.
1651 	 * Hence, we can detect timed out packets during fast
1652 	 * retransmit without falling to slow start.
1653 	 */
1654 	if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1655 		struct sk_buff *skb;
1656 
1657 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1658 			: sk->sk_write_queue.next;
1659 
1660 		sk_stream_for_retrans_queue_from(skb, sk) {
1661 			if (!tcp_skb_timedout(sk, skb))
1662 				break;
1663 
1664 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1665 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1666 				tp->lost_out += tcp_skb_pcount(skb);
1667 
1668 				/* clear xmit_retrans hint */
1669 				if (tp->retransmit_skb_hint &&
1670 				    before(TCP_SKB_CB(skb)->seq,
1671 					   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1672 
1673 					tp->retransmit_skb_hint = NULL;
1674 			}
1675 		}
1676 
1677 		tp->scoreboard_skb_hint = skb;
1678 
1679 		tcp_sync_left_out(tp);
1680 	}
1681 }
1682 
1683 /* CWND moderation, preventing bursts due to too big ACKs
1684  * in dubious situations.
1685  */
1686 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1687 {
1688 	tp->snd_cwnd = min(tp->snd_cwnd,
1689 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1690 	tp->snd_cwnd_stamp = tcp_time_stamp;
1691 }
1692 
1693 /* Lower bound on congestion window is slow start threshold
1694  * unless congestion avoidance choice decides to overide it.
1695  */
1696 static inline u32 tcp_cwnd_min(const struct sock *sk)
1697 {
1698 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1699 
1700 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1701 }
1702 
1703 /* Decrease cwnd each second ack. */
1704 static void tcp_cwnd_down(struct sock *sk)
1705 {
1706 	struct tcp_sock *tp = tcp_sk(sk);
1707 	int decr = tp->snd_cwnd_cnt + 1;
1708 
1709 	tp->snd_cwnd_cnt = decr&1;
1710 	decr >>= 1;
1711 
1712 	if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1713 		tp->snd_cwnd -= decr;
1714 
1715 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1716 	tp->snd_cwnd_stamp = tcp_time_stamp;
1717 }
1718 
1719 /* Nothing was retransmitted or returned timestamp is less
1720  * than timestamp of the first retransmission.
1721  */
1722 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1723 {
1724 	return !tp->retrans_stamp ||
1725 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1726 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1727 }
1728 
1729 /* Undo procedures. */
1730 
1731 #if FASTRETRANS_DEBUG > 1
1732 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1733 {
1734 	struct inet_sock *inet = inet_sk(sk);
1735 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1736 	       msg,
1737 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1738 	       tp->snd_cwnd, tp->left_out,
1739 	       tp->snd_ssthresh, tp->prior_ssthresh,
1740 	       tp->packets_out);
1741 }
1742 #else
1743 #define DBGUNDO(x...) do { } while (0)
1744 #endif
1745 
1746 static void tcp_undo_cwr(struct sock *sk, const int undo)
1747 {
1748 	struct tcp_sock *tp = tcp_sk(sk);
1749 
1750 	if (tp->prior_ssthresh) {
1751 		const struct inet_connection_sock *icsk = inet_csk(sk);
1752 
1753 		if (icsk->icsk_ca_ops->undo_cwnd)
1754 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1755 		else
1756 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1757 
1758 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1759 			tp->snd_ssthresh = tp->prior_ssthresh;
1760 			TCP_ECN_withdraw_cwr(tp);
1761 		}
1762 	} else {
1763 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1764 	}
1765 	tcp_moderate_cwnd(tp);
1766 	tp->snd_cwnd_stamp = tcp_time_stamp;
1767 
1768 	/* There is something screwy going on with the retrans hints after
1769 	   an undo */
1770 	clear_all_retrans_hints(tp);
1771 }
1772 
1773 static inline int tcp_may_undo(struct tcp_sock *tp)
1774 {
1775 	return tp->undo_marker &&
1776 		(!tp->undo_retrans || tcp_packet_delayed(tp));
1777 }
1778 
1779 /* People celebrate: "We love our President!" */
1780 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1781 {
1782 	if (tcp_may_undo(tp)) {
1783 		/* Happy end! We did not retransmit anything
1784 		 * or our original transmission succeeded.
1785 		 */
1786 		DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1787 		tcp_undo_cwr(sk, 1);
1788 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1789 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1790 		else
1791 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1792 		tp->undo_marker = 0;
1793 	}
1794 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1795 		/* Hold old state until something *above* high_seq
1796 		 * is ACKed. For Reno it is MUST to prevent false
1797 		 * fast retransmits (RFC2582). SACK TCP is safe. */
1798 		tcp_moderate_cwnd(tp);
1799 		return 1;
1800 	}
1801 	tcp_set_ca_state(sk, TCP_CA_Open);
1802 	return 0;
1803 }
1804 
1805 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1806 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1807 {
1808 	if (tp->undo_marker && !tp->undo_retrans) {
1809 		DBGUNDO(sk, tp, "D-SACK");
1810 		tcp_undo_cwr(sk, 1);
1811 		tp->undo_marker = 0;
1812 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1813 	}
1814 }
1815 
1816 /* Undo during fast recovery after partial ACK. */
1817 
1818 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1819 				int acked)
1820 {
1821 	/* Partial ACK arrived. Force Hoe's retransmit. */
1822 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1823 
1824 	if (tcp_may_undo(tp)) {
1825 		/* Plain luck! Hole if filled with delayed
1826 		 * packet, rather than with a retransmit.
1827 		 */
1828 		if (tp->retrans_out == 0)
1829 			tp->retrans_stamp = 0;
1830 
1831 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1832 
1833 		DBGUNDO(sk, tp, "Hoe");
1834 		tcp_undo_cwr(sk, 0);
1835 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1836 
1837 		/* So... Do not make Hoe's retransmit yet.
1838 		 * If the first packet was delayed, the rest
1839 		 * ones are most probably delayed as well.
1840 		 */
1841 		failed = 0;
1842 	}
1843 	return failed;
1844 }
1845 
1846 /* Undo during loss recovery after partial ACK. */
1847 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1848 {
1849 	if (tcp_may_undo(tp)) {
1850 		struct sk_buff *skb;
1851 		sk_stream_for_retrans_queue(skb, sk) {
1852 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1853 		}
1854 
1855 		clear_all_retrans_hints(tp);
1856 
1857 		DBGUNDO(sk, tp, "partial loss");
1858 		tp->lost_out = 0;
1859 		tp->left_out = tp->sacked_out;
1860 		tcp_undo_cwr(sk, 1);
1861 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1862 		inet_csk(sk)->icsk_retransmits = 0;
1863 		tp->undo_marker = 0;
1864 		if (!IsReno(tp))
1865 			tcp_set_ca_state(sk, TCP_CA_Open);
1866 		return 1;
1867 	}
1868 	return 0;
1869 }
1870 
1871 static inline void tcp_complete_cwr(struct sock *sk)
1872 {
1873 	struct tcp_sock *tp = tcp_sk(sk);
1874 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1875 	tp->snd_cwnd_stamp = tcp_time_stamp;
1876 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1877 }
1878 
1879 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1880 {
1881 	tp->left_out = tp->sacked_out;
1882 
1883 	if (tp->retrans_out == 0)
1884 		tp->retrans_stamp = 0;
1885 
1886 	if (flag&FLAG_ECE)
1887 		tcp_enter_cwr(sk);
1888 
1889 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1890 		int state = TCP_CA_Open;
1891 
1892 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
1893 			state = TCP_CA_Disorder;
1894 
1895 		if (inet_csk(sk)->icsk_ca_state != state) {
1896 			tcp_set_ca_state(sk, state);
1897 			tp->high_seq = tp->snd_nxt;
1898 		}
1899 		tcp_moderate_cwnd(tp);
1900 	} else {
1901 		tcp_cwnd_down(sk);
1902 	}
1903 }
1904 
1905 static void tcp_mtup_probe_failed(struct sock *sk)
1906 {
1907 	struct inet_connection_sock *icsk = inet_csk(sk);
1908 
1909 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
1910 	icsk->icsk_mtup.probe_size = 0;
1911 }
1912 
1913 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
1914 {
1915 	struct tcp_sock *tp = tcp_sk(sk);
1916 	struct inet_connection_sock *icsk = inet_csk(sk);
1917 
1918 	/* FIXME: breaks with very large cwnd */
1919 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
1920 	tp->snd_cwnd = tp->snd_cwnd *
1921 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
1922 		       icsk->icsk_mtup.probe_size;
1923 	tp->snd_cwnd_cnt = 0;
1924 	tp->snd_cwnd_stamp = tcp_time_stamp;
1925 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
1926 
1927 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
1928 	icsk->icsk_mtup.probe_size = 0;
1929 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1930 }
1931 
1932 
1933 /* Process an event, which can update packets-in-flight not trivially.
1934  * Main goal of this function is to calculate new estimate for left_out,
1935  * taking into account both packets sitting in receiver's buffer and
1936  * packets lost by network.
1937  *
1938  * Besides that it does CWND reduction, when packet loss is detected
1939  * and changes state of machine.
1940  *
1941  * It does _not_ decide what to send, it is made in function
1942  * tcp_xmit_retransmit_queue().
1943  */
1944 static void
1945 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1946 		      int prior_packets, int flag)
1947 {
1948 	struct inet_connection_sock *icsk = inet_csk(sk);
1949 	struct tcp_sock *tp = tcp_sk(sk);
1950 	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1951 
1952 	/* Some technical things:
1953 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
1954 	if (!tp->packets_out)
1955 		tp->sacked_out = 0;
1956         /* 2. SACK counts snd_fack in packets inaccurately. */
1957 	if (tp->sacked_out == 0)
1958 		tp->fackets_out = 0;
1959 
1960         /* Now state machine starts.
1961 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1962 	if (flag&FLAG_ECE)
1963 		tp->prior_ssthresh = 0;
1964 
1965 	/* B. In all the states check for reneging SACKs. */
1966 	if (tp->sacked_out && tcp_check_sack_reneging(sk))
1967 		return;
1968 
1969 	/* C. Process data loss notification, provided it is valid. */
1970 	if ((flag&FLAG_DATA_LOST) &&
1971 	    before(tp->snd_una, tp->high_seq) &&
1972 	    icsk->icsk_ca_state != TCP_CA_Open &&
1973 	    tp->fackets_out > tp->reordering) {
1974 		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1975 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1976 	}
1977 
1978 	/* D. Synchronize left_out to current state. */
1979 	tcp_sync_left_out(tp);
1980 
1981 	/* E. Check state exit conditions. State can be terminated
1982 	 *    when high_seq is ACKed. */
1983 	if (icsk->icsk_ca_state == TCP_CA_Open) {
1984 		if (!sysctl_tcp_frto)
1985 			BUG_TRAP(tp->retrans_out == 0);
1986 		tp->retrans_stamp = 0;
1987 	} else if (!before(tp->snd_una, tp->high_seq)) {
1988 		switch (icsk->icsk_ca_state) {
1989 		case TCP_CA_Loss:
1990 			icsk->icsk_retransmits = 0;
1991 			if (tcp_try_undo_recovery(sk, tp))
1992 				return;
1993 			break;
1994 
1995 		case TCP_CA_CWR:
1996 			/* CWR is to be held something *above* high_seq
1997 			 * is ACKed for CWR bit to reach receiver. */
1998 			if (tp->snd_una != tp->high_seq) {
1999 				tcp_complete_cwr(sk);
2000 				tcp_set_ca_state(sk, TCP_CA_Open);
2001 			}
2002 			break;
2003 
2004 		case TCP_CA_Disorder:
2005 			tcp_try_undo_dsack(sk, tp);
2006 			if (!tp->undo_marker ||
2007 			    /* For SACK case do not Open to allow to undo
2008 			     * catching for all duplicate ACKs. */
2009 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
2010 				tp->undo_marker = 0;
2011 				tcp_set_ca_state(sk, TCP_CA_Open);
2012 			}
2013 			break;
2014 
2015 		case TCP_CA_Recovery:
2016 			if (IsReno(tp))
2017 				tcp_reset_reno_sack(tp);
2018 			if (tcp_try_undo_recovery(sk, tp))
2019 				return;
2020 			tcp_complete_cwr(sk);
2021 			break;
2022 		}
2023 	}
2024 
2025 	/* F. Process state. */
2026 	switch (icsk->icsk_ca_state) {
2027 	case TCP_CA_Recovery:
2028 		if (prior_snd_una == tp->snd_una) {
2029 			if (IsReno(tp) && is_dupack)
2030 				tcp_add_reno_sack(sk);
2031 		} else {
2032 			int acked = prior_packets - tp->packets_out;
2033 			if (IsReno(tp))
2034 				tcp_remove_reno_sacks(sk, tp, acked);
2035 			is_dupack = tcp_try_undo_partial(sk, tp, acked);
2036 		}
2037 		break;
2038 	case TCP_CA_Loss:
2039 		if (flag&FLAG_DATA_ACKED)
2040 			icsk->icsk_retransmits = 0;
2041 		if (!tcp_try_undo_loss(sk, tp)) {
2042 			tcp_moderate_cwnd(tp);
2043 			tcp_xmit_retransmit_queue(sk);
2044 			return;
2045 		}
2046 		if (icsk->icsk_ca_state != TCP_CA_Open)
2047 			return;
2048 		/* Loss is undone; fall through to processing in Open state. */
2049 	default:
2050 		if (IsReno(tp)) {
2051 			if (tp->snd_una != prior_snd_una)
2052 				tcp_reset_reno_sack(tp);
2053 			if (is_dupack)
2054 				tcp_add_reno_sack(sk);
2055 		}
2056 
2057 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2058 			tcp_try_undo_dsack(sk, tp);
2059 
2060 		if (!tcp_time_to_recover(sk, tp)) {
2061 			tcp_try_to_open(sk, tp, flag);
2062 			return;
2063 		}
2064 
2065 		/* MTU probe failure: don't reduce cwnd */
2066 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2067 		    icsk->icsk_mtup.probe_size &&
2068 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2069 			tcp_mtup_probe_failed(sk);
2070 			/* Restores the reduction we did in tcp_mtup_probe() */
2071 			tp->snd_cwnd++;
2072 			tcp_simple_retransmit(sk);
2073 			return;
2074 		}
2075 
2076 		/* Otherwise enter Recovery state */
2077 
2078 		if (IsReno(tp))
2079 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2080 		else
2081 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2082 
2083 		tp->high_seq = tp->snd_nxt;
2084 		tp->prior_ssthresh = 0;
2085 		tp->undo_marker = tp->snd_una;
2086 		tp->undo_retrans = tp->retrans_out;
2087 
2088 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2089 			if (!(flag&FLAG_ECE))
2090 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2091 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2092 			TCP_ECN_queue_cwr(tp);
2093 		}
2094 
2095 		tp->bytes_acked = 0;
2096 		tp->snd_cwnd_cnt = 0;
2097 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2098 	}
2099 
2100 	if (is_dupack || tcp_head_timedout(sk, tp))
2101 		tcp_update_scoreboard(sk, tp);
2102 	tcp_cwnd_down(sk);
2103 	tcp_xmit_retransmit_queue(sk);
2104 }
2105 
2106 /* Read draft-ietf-tcplw-high-performance before mucking
2107  * with this code. (Supersedes RFC1323)
2108  */
2109 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2110 {
2111 	/* RTTM Rule: A TSecr value received in a segment is used to
2112 	 * update the averaged RTT measurement only if the segment
2113 	 * acknowledges some new data, i.e., only if it advances the
2114 	 * left edge of the send window.
2115 	 *
2116 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2117 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2118 	 *
2119 	 * Changed: reset backoff as soon as we see the first valid sample.
2120 	 * If we do not, we get strongly overestimated rto. With timestamps
2121 	 * samples are accepted even from very old segments: f.e., when rtt=1
2122 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2123 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2124 	 * in window is lost... Voila.	 			--ANK (010210)
2125 	 */
2126 	struct tcp_sock *tp = tcp_sk(sk);
2127 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2128 	tcp_rtt_estimator(sk, seq_rtt);
2129 	tcp_set_rto(sk);
2130 	inet_csk(sk)->icsk_backoff = 0;
2131 	tcp_bound_rto(sk);
2132 }
2133 
2134 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2135 {
2136 	/* We don't have a timestamp. Can only use
2137 	 * packets that are not retransmitted to determine
2138 	 * rtt estimates. Also, we must not reset the
2139 	 * backoff for rto until we get a non-retransmitted
2140 	 * packet. This allows us to deal with a situation
2141 	 * where the network delay has increased suddenly.
2142 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2143 	 */
2144 
2145 	if (flag & FLAG_RETRANS_DATA_ACKED)
2146 		return;
2147 
2148 	tcp_rtt_estimator(sk, seq_rtt);
2149 	tcp_set_rto(sk);
2150 	inet_csk(sk)->icsk_backoff = 0;
2151 	tcp_bound_rto(sk);
2152 }
2153 
2154 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2155 				      const s32 seq_rtt)
2156 {
2157 	const struct tcp_sock *tp = tcp_sk(sk);
2158 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2159 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2160 		tcp_ack_saw_tstamp(sk, flag);
2161 	else if (seq_rtt >= 0)
2162 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2163 }
2164 
2165 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2166 			   u32 in_flight, int good)
2167 {
2168 	const struct inet_connection_sock *icsk = inet_csk(sk);
2169 	icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2170 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2171 }
2172 
2173 /* Restart timer after forward progress on connection.
2174  * RFC2988 recommends to restart timer to now+rto.
2175  */
2176 
2177 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2178 {
2179 	if (!tp->packets_out) {
2180 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2181 	} else {
2182 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2183 	}
2184 }
2185 
2186 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2187 			 __u32 now, __s32 *seq_rtt)
2188 {
2189 	struct tcp_sock *tp = tcp_sk(sk);
2190 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2191 	__u32 seq = tp->snd_una;
2192 	__u32 packets_acked;
2193 	int acked = 0;
2194 
2195 	/* If we get here, the whole TSO packet has not been
2196 	 * acked.
2197 	 */
2198 	BUG_ON(!after(scb->end_seq, seq));
2199 
2200 	packets_acked = tcp_skb_pcount(skb);
2201 	if (tcp_trim_head(sk, skb, seq - scb->seq))
2202 		return 0;
2203 	packets_acked -= tcp_skb_pcount(skb);
2204 
2205 	if (packets_acked) {
2206 		__u8 sacked = scb->sacked;
2207 
2208 		acked |= FLAG_DATA_ACKED;
2209 		if (sacked) {
2210 			if (sacked & TCPCB_RETRANS) {
2211 				if (sacked & TCPCB_SACKED_RETRANS)
2212 					tp->retrans_out -= packets_acked;
2213 				acked |= FLAG_RETRANS_DATA_ACKED;
2214 				*seq_rtt = -1;
2215 			} else if (*seq_rtt < 0)
2216 				*seq_rtt = now - scb->when;
2217 			if (sacked & TCPCB_SACKED_ACKED)
2218 				tp->sacked_out -= packets_acked;
2219 			if (sacked & TCPCB_LOST)
2220 				tp->lost_out -= packets_acked;
2221 			if (sacked & TCPCB_URG) {
2222 				if (tp->urg_mode &&
2223 				    !before(seq, tp->snd_up))
2224 					tp->urg_mode = 0;
2225 			}
2226 		} else if (*seq_rtt < 0)
2227 			*seq_rtt = now - scb->when;
2228 
2229 		if (tp->fackets_out) {
2230 			__u32 dval = min(tp->fackets_out, packets_acked);
2231 			tp->fackets_out -= dval;
2232 		}
2233 		tp->packets_out -= packets_acked;
2234 
2235 		BUG_ON(tcp_skb_pcount(skb) == 0);
2236 		BUG_ON(!before(scb->seq, scb->end_seq));
2237 	}
2238 
2239 	return acked;
2240 }
2241 
2242 static u32 tcp_usrtt(struct timeval *tv)
2243 {
2244 	struct timeval now;
2245 
2246 	do_gettimeofday(&now);
2247 	return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2248 }
2249 
2250 /* Remove acknowledged frames from the retransmission queue. */
2251 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2252 {
2253 	struct tcp_sock *tp = tcp_sk(sk);
2254 	const struct inet_connection_sock *icsk = inet_csk(sk);
2255 	struct sk_buff *skb;
2256 	__u32 now = tcp_time_stamp;
2257 	int acked = 0;
2258 	__s32 seq_rtt = -1;
2259 	u32 pkts_acked = 0;
2260 	void (*rtt_sample)(struct sock *sk, u32 usrtt)
2261 		= icsk->icsk_ca_ops->rtt_sample;
2262 	struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
2263 
2264 	while ((skb = skb_peek(&sk->sk_write_queue)) &&
2265 	       skb != sk->sk_send_head) {
2266 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2267 		__u8 sacked = scb->sacked;
2268 
2269 		/* If our packet is before the ack sequence we can
2270 		 * discard it as it's confirmed to have arrived at
2271 		 * the other end.
2272 		 */
2273 		if (after(scb->end_seq, tp->snd_una)) {
2274 			if (tcp_skb_pcount(skb) > 1 &&
2275 			    after(tp->snd_una, scb->seq))
2276 				acked |= tcp_tso_acked(sk, skb,
2277 						       now, &seq_rtt);
2278 			break;
2279 		}
2280 
2281 		/* Initial outgoing SYN's get put onto the write_queue
2282 		 * just like anything else we transmit.  It is not
2283 		 * true data, and if we misinform our callers that
2284 		 * this ACK acks real data, we will erroneously exit
2285 		 * connection startup slow start one packet too
2286 		 * quickly.  This is severely frowned upon behavior.
2287 		 */
2288 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2289 			acked |= FLAG_DATA_ACKED;
2290 			++pkts_acked;
2291 		} else {
2292 			acked |= FLAG_SYN_ACKED;
2293 			tp->retrans_stamp = 0;
2294 		}
2295 
2296 		/* MTU probing checks */
2297 		if (icsk->icsk_mtup.probe_size) {
2298 			if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2299 				tcp_mtup_probe_success(sk, skb);
2300 			}
2301 		}
2302 
2303 		if (sacked) {
2304 			if (sacked & TCPCB_RETRANS) {
2305 				if(sacked & TCPCB_SACKED_RETRANS)
2306 					tp->retrans_out -= tcp_skb_pcount(skb);
2307 				acked |= FLAG_RETRANS_DATA_ACKED;
2308 				seq_rtt = -1;
2309 			} else if (seq_rtt < 0) {
2310 				seq_rtt = now - scb->when;
2311 				skb_get_timestamp(skb, &tv);
2312 			}
2313 			if (sacked & TCPCB_SACKED_ACKED)
2314 				tp->sacked_out -= tcp_skb_pcount(skb);
2315 			if (sacked & TCPCB_LOST)
2316 				tp->lost_out -= tcp_skb_pcount(skb);
2317 			if (sacked & TCPCB_URG) {
2318 				if (tp->urg_mode &&
2319 				    !before(scb->end_seq, tp->snd_up))
2320 					tp->urg_mode = 0;
2321 			}
2322 		} else if (seq_rtt < 0) {
2323 			seq_rtt = now - scb->when;
2324 			skb_get_timestamp(skb, &tv);
2325 		}
2326 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2327 		tcp_packets_out_dec(tp, skb);
2328 		__skb_unlink(skb, &sk->sk_write_queue);
2329 		sk_stream_free_skb(sk, skb);
2330 		clear_all_retrans_hints(tp);
2331 	}
2332 
2333 	if (acked&FLAG_ACKED) {
2334 		tcp_ack_update_rtt(sk, acked, seq_rtt);
2335 		tcp_ack_packets_out(sk, tp);
2336 		if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2337 			(*rtt_sample)(sk, tcp_usrtt(&tv));
2338 
2339 		if (icsk->icsk_ca_ops->pkts_acked)
2340 			icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2341 	}
2342 
2343 #if FASTRETRANS_DEBUG > 0
2344 	BUG_TRAP((int)tp->sacked_out >= 0);
2345 	BUG_TRAP((int)tp->lost_out >= 0);
2346 	BUG_TRAP((int)tp->retrans_out >= 0);
2347 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2348 		const struct inet_connection_sock *icsk = inet_csk(sk);
2349 		if (tp->lost_out) {
2350 			printk(KERN_DEBUG "Leak l=%u %d\n",
2351 			       tp->lost_out, icsk->icsk_ca_state);
2352 			tp->lost_out = 0;
2353 		}
2354 		if (tp->sacked_out) {
2355 			printk(KERN_DEBUG "Leak s=%u %d\n",
2356 			       tp->sacked_out, icsk->icsk_ca_state);
2357 			tp->sacked_out = 0;
2358 		}
2359 		if (tp->retrans_out) {
2360 			printk(KERN_DEBUG "Leak r=%u %d\n",
2361 			       tp->retrans_out, icsk->icsk_ca_state);
2362 			tp->retrans_out = 0;
2363 		}
2364 	}
2365 #endif
2366 	*seq_rtt_p = seq_rtt;
2367 	return acked;
2368 }
2369 
2370 static void tcp_ack_probe(struct sock *sk)
2371 {
2372 	const struct tcp_sock *tp = tcp_sk(sk);
2373 	struct inet_connection_sock *icsk = inet_csk(sk);
2374 
2375 	/* Was it a usable window open? */
2376 
2377 	if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2378 		   tp->snd_una + tp->snd_wnd)) {
2379 		icsk->icsk_backoff = 0;
2380 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2381 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2382 		 * This function is not for random using!
2383 		 */
2384 	} else {
2385 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2386 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2387 					  TCP_RTO_MAX);
2388 	}
2389 }
2390 
2391 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2392 {
2393 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2394 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2395 }
2396 
2397 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2398 {
2399 	const struct tcp_sock *tp = tcp_sk(sk);
2400 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2401 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2402 }
2403 
2404 /* Check that window update is acceptable.
2405  * The function assumes that snd_una<=ack<=snd_next.
2406  */
2407 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2408 					const u32 ack_seq, const u32 nwin)
2409 {
2410 	return (after(ack, tp->snd_una) ||
2411 		after(ack_seq, tp->snd_wl1) ||
2412 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2413 }
2414 
2415 /* Update our send window.
2416  *
2417  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2418  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2419  */
2420 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2421 				 struct sk_buff *skb, u32 ack, u32 ack_seq)
2422 {
2423 	int flag = 0;
2424 	u32 nwin = ntohs(skb->h.th->window);
2425 
2426 	if (likely(!skb->h.th->syn))
2427 		nwin <<= tp->rx_opt.snd_wscale;
2428 
2429 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2430 		flag |= FLAG_WIN_UPDATE;
2431 		tcp_update_wl(tp, ack, ack_seq);
2432 
2433 		if (tp->snd_wnd != nwin) {
2434 			tp->snd_wnd = nwin;
2435 
2436 			/* Note, it is the only place, where
2437 			 * fast path is recovered for sending TCP.
2438 			 */
2439 			tp->pred_flags = 0;
2440 			tcp_fast_path_check(sk, tp);
2441 
2442 			if (nwin > tp->max_window) {
2443 				tp->max_window = nwin;
2444 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2445 			}
2446 		}
2447 	}
2448 
2449 	tp->snd_una = ack;
2450 
2451 	return flag;
2452 }
2453 
2454 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2455 {
2456 	struct tcp_sock *tp = tcp_sk(sk);
2457 
2458 	tcp_sync_left_out(tp);
2459 
2460 	if (tp->snd_una == prior_snd_una ||
2461 	    !before(tp->snd_una, tp->frto_highmark)) {
2462 		/* RTO was caused by loss, start retransmitting in
2463 		 * go-back-N slow start
2464 		 */
2465 		tcp_enter_frto_loss(sk);
2466 		return;
2467 	}
2468 
2469 	if (tp->frto_counter == 1) {
2470 		/* First ACK after RTO advances the window: allow two new
2471 		 * segments out.
2472 		 */
2473 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2474 	} else {
2475 		/* Also the second ACK after RTO advances the window.
2476 		 * The RTO was likely spurious. Reduce cwnd and continue
2477 		 * in congestion avoidance
2478 		 */
2479 		tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2480 		tcp_moderate_cwnd(tp);
2481 	}
2482 
2483 	/* F-RTO affects on two new ACKs following RTO.
2484 	 * At latest on third ACK the TCP behavior is back to normal.
2485 	 */
2486 	tp->frto_counter = (tp->frto_counter + 1) % 3;
2487 }
2488 
2489 /* This routine deals with incoming acks, but not outgoing ones. */
2490 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2491 {
2492 	struct inet_connection_sock *icsk = inet_csk(sk);
2493 	struct tcp_sock *tp = tcp_sk(sk);
2494 	u32 prior_snd_una = tp->snd_una;
2495 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2496 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2497 	u32 prior_in_flight;
2498 	s32 seq_rtt;
2499 	int prior_packets;
2500 
2501 	/* If the ack is newer than sent or older than previous acks
2502 	 * then we can probably ignore it.
2503 	 */
2504 	if (after(ack, tp->snd_nxt))
2505 		goto uninteresting_ack;
2506 
2507 	if (before(ack, prior_snd_una))
2508 		goto old_ack;
2509 
2510 	if (sysctl_tcp_abc) {
2511 		if (icsk->icsk_ca_state < TCP_CA_CWR)
2512 			tp->bytes_acked += ack - prior_snd_una;
2513 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
2514 			/* we assume just one segment left network */
2515 			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2516 	}
2517 
2518 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2519 		/* Window is constant, pure forward advance.
2520 		 * No more checks are required.
2521 		 * Note, we use the fact that SND.UNA>=SND.WL2.
2522 		 */
2523 		tcp_update_wl(tp, ack, ack_seq);
2524 		tp->snd_una = ack;
2525 		flag |= FLAG_WIN_UPDATE;
2526 
2527 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2528 
2529 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2530 	} else {
2531 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2532 			flag |= FLAG_DATA;
2533 		else
2534 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2535 
2536 		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2537 
2538 		if (TCP_SKB_CB(skb)->sacked)
2539 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2540 
2541 		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2542 			flag |= FLAG_ECE;
2543 
2544 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2545 	}
2546 
2547 	/* We passed data and got it acked, remove any soft error
2548 	 * log. Something worked...
2549 	 */
2550 	sk->sk_err_soft = 0;
2551 	tp->rcv_tstamp = tcp_time_stamp;
2552 	prior_packets = tp->packets_out;
2553 	if (!prior_packets)
2554 		goto no_queue;
2555 
2556 	prior_in_flight = tcp_packets_in_flight(tp);
2557 
2558 	/* See if we can take anything off of the retransmit queue. */
2559 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2560 
2561 	if (tp->frto_counter)
2562 		tcp_process_frto(sk, prior_snd_una);
2563 
2564 	if (tcp_ack_is_dubious(sk, flag)) {
2565 		/* Advance CWND, if state allows this. */
2566 		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2567 			tcp_cong_avoid(sk, ack,  seq_rtt, prior_in_flight, 0);
2568 		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2569 	} else {
2570 		if ((flag & FLAG_DATA_ACKED))
2571 			tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2572 	}
2573 
2574 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2575 		dst_confirm(sk->sk_dst_cache);
2576 
2577 	return 1;
2578 
2579 no_queue:
2580 	icsk->icsk_probes_out = 0;
2581 
2582 	/* If this ack opens up a zero window, clear backoff.  It was
2583 	 * being used to time the probes, and is probably far higher than
2584 	 * it needs to be for normal retransmission.
2585 	 */
2586 	if (sk->sk_send_head)
2587 		tcp_ack_probe(sk);
2588 	return 1;
2589 
2590 old_ack:
2591 	if (TCP_SKB_CB(skb)->sacked)
2592 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2593 
2594 uninteresting_ack:
2595 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2596 	return 0;
2597 }
2598 
2599 
2600 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2601  * But, this can also be called on packets in the established flow when
2602  * the fast version below fails.
2603  */
2604 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2605 {
2606 	unsigned char *ptr;
2607 	struct tcphdr *th = skb->h.th;
2608 	int length=(th->doff*4)-sizeof(struct tcphdr);
2609 
2610 	ptr = (unsigned char *)(th + 1);
2611 	opt_rx->saw_tstamp = 0;
2612 
2613 	while(length>0) {
2614 	  	int opcode=*ptr++;
2615 		int opsize;
2616 
2617 		switch (opcode) {
2618 			case TCPOPT_EOL:
2619 				return;
2620 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2621 				length--;
2622 				continue;
2623 			default:
2624 				opsize=*ptr++;
2625 				if (opsize < 2) /* "silly options" */
2626 					return;
2627 				if (opsize > length)
2628 					return;	/* don't parse partial options */
2629 	  			switch(opcode) {
2630 				case TCPOPT_MSS:
2631 					if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2632 						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2633 						if (in_mss) {
2634 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2635 								in_mss = opt_rx->user_mss;
2636 							opt_rx->mss_clamp = in_mss;
2637 						}
2638 					}
2639 					break;
2640 				case TCPOPT_WINDOW:
2641 					if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2642 						if (sysctl_tcp_window_scaling) {
2643 							__u8 snd_wscale = *(__u8 *) ptr;
2644 							opt_rx->wscale_ok = 1;
2645 							if (snd_wscale > 14) {
2646 								if(net_ratelimit())
2647 									printk(KERN_INFO "tcp_parse_options: Illegal window "
2648 									       "scaling value %d >14 received.\n",
2649 									       snd_wscale);
2650 								snd_wscale = 14;
2651 							}
2652 							opt_rx->snd_wscale = snd_wscale;
2653 						}
2654 					break;
2655 				case TCPOPT_TIMESTAMP:
2656 					if(opsize==TCPOLEN_TIMESTAMP) {
2657 						if ((estab && opt_rx->tstamp_ok) ||
2658 						    (!estab && sysctl_tcp_timestamps)) {
2659 							opt_rx->saw_tstamp = 1;
2660 							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2661 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2662 						}
2663 					}
2664 					break;
2665 				case TCPOPT_SACK_PERM:
2666 					if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2667 						if (sysctl_tcp_sack) {
2668 							opt_rx->sack_ok = 1;
2669 							tcp_sack_reset(opt_rx);
2670 						}
2671 					}
2672 					break;
2673 
2674 				case TCPOPT_SACK:
2675 					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2676 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2677 					   opt_rx->sack_ok) {
2678 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2679 					}
2680 #ifdef CONFIG_TCP_MD5SIG
2681 				case TCPOPT_MD5SIG:
2682 					/*
2683 					 * The MD5 Hash has already been
2684 					 * checked (see tcp_v{4,6}_do_rcv()).
2685 					 */
2686 					break;
2687 #endif
2688 	  			};
2689 	  			ptr+=opsize-2;
2690 	  			length-=opsize;
2691 	  	};
2692 	}
2693 }
2694 
2695 /* Fast parse options. This hopes to only see timestamps.
2696  * If it is wrong it falls back on tcp_parse_options().
2697  */
2698 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2699 				  struct tcp_sock *tp)
2700 {
2701 	if (th->doff == sizeof(struct tcphdr)>>2) {
2702 		tp->rx_opt.saw_tstamp = 0;
2703 		return 0;
2704 	} else if (tp->rx_opt.tstamp_ok &&
2705 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2706 		__be32 *ptr = (__be32 *)(th + 1);
2707 		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2708 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2709 			tp->rx_opt.saw_tstamp = 1;
2710 			++ptr;
2711 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2712 			++ptr;
2713 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2714 			return 1;
2715 		}
2716 	}
2717 	tcp_parse_options(skb, &tp->rx_opt, 1);
2718 	return 1;
2719 }
2720 
2721 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2722 {
2723 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2724 	tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2725 }
2726 
2727 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2728 {
2729 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2730 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2731 		 * extra check below makes sure this can only happen
2732 		 * for pure ACK frames.  -DaveM
2733 		 *
2734 		 * Not only, also it occurs for expired timestamps.
2735 		 */
2736 
2737 		if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2738 		   xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2739 			tcp_store_ts_recent(tp);
2740 	}
2741 }
2742 
2743 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2744  *
2745  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2746  * it can pass through stack. So, the following predicate verifies that
2747  * this segment is not used for anything but congestion avoidance or
2748  * fast retransmit. Moreover, we even are able to eliminate most of such
2749  * second order effects, if we apply some small "replay" window (~RTO)
2750  * to timestamp space.
2751  *
2752  * All these measures still do not guarantee that we reject wrapped ACKs
2753  * on networks with high bandwidth, when sequence space is recycled fastly,
2754  * but it guarantees that such events will be very rare and do not affect
2755  * connection seriously. This doesn't look nice, but alas, PAWS is really
2756  * buggy extension.
2757  *
2758  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2759  * states that events when retransmit arrives after original data are rare.
2760  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2761  * the biggest problem on large power networks even with minor reordering.
2762  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2763  * up to bandwidth of 18Gigabit/sec. 8) ]
2764  */
2765 
2766 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2767 {
2768 	struct tcp_sock *tp = tcp_sk(sk);
2769 	struct tcphdr *th = skb->h.th;
2770 	u32 seq = TCP_SKB_CB(skb)->seq;
2771 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2772 
2773 	return (/* 1. Pure ACK with correct sequence number. */
2774 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2775 
2776 		/* 2. ... and duplicate ACK. */
2777 		ack == tp->snd_una &&
2778 
2779 		/* 3. ... and does not update window. */
2780 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2781 
2782 		/* 4. ... and sits in replay window. */
2783 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2784 }
2785 
2786 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2787 {
2788 	const struct tcp_sock *tp = tcp_sk(sk);
2789 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2790 		xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2791 		!tcp_disordered_ack(sk, skb));
2792 }
2793 
2794 /* Check segment sequence number for validity.
2795  *
2796  * Segment controls are considered valid, if the segment
2797  * fits to the window after truncation to the window. Acceptability
2798  * of data (and SYN, FIN, of course) is checked separately.
2799  * See tcp_data_queue(), for example.
2800  *
2801  * Also, controls (RST is main one) are accepted using RCV.WUP instead
2802  * of RCV.NXT. Peer still did not advance his SND.UNA when we
2803  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2804  * (borrowed from freebsd)
2805  */
2806 
2807 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2808 {
2809 	return	!before(end_seq, tp->rcv_wup) &&
2810 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2811 }
2812 
2813 /* When we get a reset we do this. */
2814 static void tcp_reset(struct sock *sk)
2815 {
2816 	/* We want the right error as BSD sees it (and indeed as we do). */
2817 	switch (sk->sk_state) {
2818 		case TCP_SYN_SENT:
2819 			sk->sk_err = ECONNREFUSED;
2820 			break;
2821 		case TCP_CLOSE_WAIT:
2822 			sk->sk_err = EPIPE;
2823 			break;
2824 		case TCP_CLOSE:
2825 			return;
2826 		default:
2827 			sk->sk_err = ECONNRESET;
2828 	}
2829 
2830 	if (!sock_flag(sk, SOCK_DEAD))
2831 		sk->sk_error_report(sk);
2832 
2833 	tcp_done(sk);
2834 }
2835 
2836 /*
2837  * 	Process the FIN bit. This now behaves as it is supposed to work
2838  *	and the FIN takes effect when it is validly part of sequence
2839  *	space. Not before when we get holes.
2840  *
2841  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2842  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
2843  *	TIME-WAIT)
2844  *
2845  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
2846  *	close and we go into CLOSING (and later onto TIME-WAIT)
2847  *
2848  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2849  */
2850 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2851 {
2852 	struct tcp_sock *tp = tcp_sk(sk);
2853 
2854 	inet_csk_schedule_ack(sk);
2855 
2856 	sk->sk_shutdown |= RCV_SHUTDOWN;
2857 	sock_set_flag(sk, SOCK_DONE);
2858 
2859 	switch (sk->sk_state) {
2860 		case TCP_SYN_RECV:
2861 		case TCP_ESTABLISHED:
2862 			/* Move to CLOSE_WAIT */
2863 			tcp_set_state(sk, TCP_CLOSE_WAIT);
2864 			inet_csk(sk)->icsk_ack.pingpong = 1;
2865 			break;
2866 
2867 		case TCP_CLOSE_WAIT:
2868 		case TCP_CLOSING:
2869 			/* Received a retransmission of the FIN, do
2870 			 * nothing.
2871 			 */
2872 			break;
2873 		case TCP_LAST_ACK:
2874 			/* RFC793: Remain in the LAST-ACK state. */
2875 			break;
2876 
2877 		case TCP_FIN_WAIT1:
2878 			/* This case occurs when a simultaneous close
2879 			 * happens, we must ack the received FIN and
2880 			 * enter the CLOSING state.
2881 			 */
2882 			tcp_send_ack(sk);
2883 			tcp_set_state(sk, TCP_CLOSING);
2884 			break;
2885 		case TCP_FIN_WAIT2:
2886 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
2887 			tcp_send_ack(sk);
2888 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2889 			break;
2890 		default:
2891 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
2892 			 * cases we should never reach this piece of code.
2893 			 */
2894 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2895 			       __FUNCTION__, sk->sk_state);
2896 			break;
2897 	};
2898 
2899 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
2900 	 * Probably, we should reset in this case. For now drop them.
2901 	 */
2902 	__skb_queue_purge(&tp->out_of_order_queue);
2903 	if (tp->rx_opt.sack_ok)
2904 		tcp_sack_reset(&tp->rx_opt);
2905 	sk_stream_mem_reclaim(sk);
2906 
2907 	if (!sock_flag(sk, SOCK_DEAD)) {
2908 		sk->sk_state_change(sk);
2909 
2910 		/* Do not send POLL_HUP for half duplex close. */
2911 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
2912 		    sk->sk_state == TCP_CLOSE)
2913 			sk_wake_async(sk, 1, POLL_HUP);
2914 		else
2915 			sk_wake_async(sk, 1, POLL_IN);
2916 	}
2917 }
2918 
2919 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2920 {
2921 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2922 		if (before(seq, sp->start_seq))
2923 			sp->start_seq = seq;
2924 		if (after(end_seq, sp->end_seq))
2925 			sp->end_seq = end_seq;
2926 		return 1;
2927 	}
2928 	return 0;
2929 }
2930 
2931 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2932 {
2933 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2934 		if (before(seq, tp->rcv_nxt))
2935 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2936 		else
2937 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2938 
2939 		tp->rx_opt.dsack = 1;
2940 		tp->duplicate_sack[0].start_seq = seq;
2941 		tp->duplicate_sack[0].end_seq = end_seq;
2942 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2943 	}
2944 }
2945 
2946 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2947 {
2948 	if (!tp->rx_opt.dsack)
2949 		tcp_dsack_set(tp, seq, end_seq);
2950 	else
2951 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2952 }
2953 
2954 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2955 {
2956 	struct tcp_sock *tp = tcp_sk(sk);
2957 
2958 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2959 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2960 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2961 		tcp_enter_quickack_mode(sk);
2962 
2963 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2964 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2965 
2966 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2967 				end_seq = tp->rcv_nxt;
2968 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2969 		}
2970 	}
2971 
2972 	tcp_send_ack(sk);
2973 }
2974 
2975 /* These routines update the SACK block as out-of-order packets arrive or
2976  * in-order packets close up the sequence space.
2977  */
2978 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2979 {
2980 	int this_sack;
2981 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2982 	struct tcp_sack_block *swalk = sp+1;
2983 
2984 	/* See if the recent change to the first SACK eats into
2985 	 * or hits the sequence space of other SACK blocks, if so coalesce.
2986 	 */
2987 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2988 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2989 			int i;
2990 
2991 			/* Zap SWALK, by moving every further SACK up by one slot.
2992 			 * Decrease num_sacks.
2993 			 */
2994 			tp->rx_opt.num_sacks--;
2995 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2996 			for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2997 				sp[i] = sp[i+1];
2998 			continue;
2999 		}
3000 		this_sack++, swalk++;
3001 	}
3002 }
3003 
3004 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3005 {
3006 	__u32 tmp;
3007 
3008 	tmp = sack1->start_seq;
3009 	sack1->start_seq = sack2->start_seq;
3010 	sack2->start_seq = tmp;
3011 
3012 	tmp = sack1->end_seq;
3013 	sack1->end_seq = sack2->end_seq;
3014 	sack2->end_seq = tmp;
3015 }
3016 
3017 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3018 {
3019 	struct tcp_sock *tp = tcp_sk(sk);
3020 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3021 	int cur_sacks = tp->rx_opt.num_sacks;
3022 	int this_sack;
3023 
3024 	if (!cur_sacks)
3025 		goto new_sack;
3026 
3027 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3028 		if (tcp_sack_extend(sp, seq, end_seq)) {
3029 			/* Rotate this_sack to the first one. */
3030 			for (; this_sack>0; this_sack--, sp--)
3031 				tcp_sack_swap(sp, sp-1);
3032 			if (cur_sacks > 1)
3033 				tcp_sack_maybe_coalesce(tp);
3034 			return;
3035 		}
3036 	}
3037 
3038 	/* Could not find an adjacent existing SACK, build a new one,
3039 	 * put it at the front, and shift everyone else down.  We
3040 	 * always know there is at least one SACK present already here.
3041 	 *
3042 	 * If the sack array is full, forget about the last one.
3043 	 */
3044 	if (this_sack >= 4) {
3045 		this_sack--;
3046 		tp->rx_opt.num_sacks--;
3047 		sp--;
3048 	}
3049 	for(; this_sack > 0; this_sack--, sp--)
3050 		*sp = *(sp-1);
3051 
3052 new_sack:
3053 	/* Build the new head SACK, and we're done. */
3054 	sp->start_seq = seq;
3055 	sp->end_seq = end_seq;
3056 	tp->rx_opt.num_sacks++;
3057 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3058 }
3059 
3060 /* RCV.NXT advances, some SACKs should be eaten. */
3061 
3062 static void tcp_sack_remove(struct tcp_sock *tp)
3063 {
3064 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3065 	int num_sacks = tp->rx_opt.num_sacks;
3066 	int this_sack;
3067 
3068 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3069 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3070 		tp->rx_opt.num_sacks = 0;
3071 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3072 		return;
3073 	}
3074 
3075 	for(this_sack = 0; this_sack < num_sacks; ) {
3076 		/* Check if the start of the sack is covered by RCV.NXT. */
3077 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3078 			int i;
3079 
3080 			/* RCV.NXT must cover all the block! */
3081 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3082 
3083 			/* Zap this SACK, by moving forward any other SACKS. */
3084 			for (i=this_sack+1; i < num_sacks; i++)
3085 				tp->selective_acks[i-1] = tp->selective_acks[i];
3086 			num_sacks--;
3087 			continue;
3088 		}
3089 		this_sack++;
3090 		sp++;
3091 	}
3092 	if (num_sacks != tp->rx_opt.num_sacks) {
3093 		tp->rx_opt.num_sacks = num_sacks;
3094 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3095 	}
3096 }
3097 
3098 /* This one checks to see if we can put data from the
3099  * out_of_order queue into the receive_queue.
3100  */
3101 static void tcp_ofo_queue(struct sock *sk)
3102 {
3103 	struct tcp_sock *tp = tcp_sk(sk);
3104 	__u32 dsack_high = tp->rcv_nxt;
3105 	struct sk_buff *skb;
3106 
3107 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3108 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3109 			break;
3110 
3111 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3112 			__u32 dsack = dsack_high;
3113 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3114 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3115 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3116 		}
3117 
3118 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3119 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3120 			__skb_unlink(skb, &tp->out_of_order_queue);
3121 			__kfree_skb(skb);
3122 			continue;
3123 		}
3124 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3125 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3126 			   TCP_SKB_CB(skb)->end_seq);
3127 
3128 		__skb_unlink(skb, &tp->out_of_order_queue);
3129 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3130 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3131 		if(skb->h.th->fin)
3132 			tcp_fin(skb, sk, skb->h.th);
3133 	}
3134 }
3135 
3136 static int tcp_prune_queue(struct sock *sk);
3137 
3138 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3139 {
3140 	struct tcphdr *th = skb->h.th;
3141 	struct tcp_sock *tp = tcp_sk(sk);
3142 	int eaten = -1;
3143 
3144 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3145 		goto drop;
3146 
3147 	__skb_pull(skb, th->doff*4);
3148 
3149 	TCP_ECN_accept_cwr(tp, skb);
3150 
3151 	if (tp->rx_opt.dsack) {
3152 		tp->rx_opt.dsack = 0;
3153 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3154 						    4 - tp->rx_opt.tstamp_ok);
3155 	}
3156 
3157 	/*  Queue data for delivery to the user.
3158 	 *  Packets in sequence go to the receive queue.
3159 	 *  Out of sequence packets to the out_of_order_queue.
3160 	 */
3161 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3162 		if (tcp_receive_window(tp) == 0)
3163 			goto out_of_window;
3164 
3165 		/* Ok. In sequence. In window. */
3166 		if (tp->ucopy.task == current &&
3167 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3168 		    sock_owned_by_user(sk) && !tp->urg_data) {
3169 			int chunk = min_t(unsigned int, skb->len,
3170 							tp->ucopy.len);
3171 
3172 			__set_current_state(TASK_RUNNING);
3173 
3174 			local_bh_enable();
3175 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3176 				tp->ucopy.len -= chunk;
3177 				tp->copied_seq += chunk;
3178 				eaten = (chunk == skb->len && !th->fin);
3179 				tcp_rcv_space_adjust(sk);
3180 			}
3181 			local_bh_disable();
3182 		}
3183 
3184 		if (eaten <= 0) {
3185 queue_and_out:
3186 			if (eaten < 0 &&
3187 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3188 			     !sk_stream_rmem_schedule(sk, skb))) {
3189 				if (tcp_prune_queue(sk) < 0 ||
3190 				    !sk_stream_rmem_schedule(sk, skb))
3191 					goto drop;
3192 			}
3193 			sk_stream_set_owner_r(skb, sk);
3194 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3195 		}
3196 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3197 		if(skb->len)
3198 			tcp_event_data_recv(sk, tp, skb);
3199 		if(th->fin)
3200 			tcp_fin(skb, sk, th);
3201 
3202 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3203 			tcp_ofo_queue(sk);
3204 
3205 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3206 			 * gap in queue is filled.
3207 			 */
3208 			if (skb_queue_empty(&tp->out_of_order_queue))
3209 				inet_csk(sk)->icsk_ack.pingpong = 0;
3210 		}
3211 
3212 		if (tp->rx_opt.num_sacks)
3213 			tcp_sack_remove(tp);
3214 
3215 		tcp_fast_path_check(sk, tp);
3216 
3217 		if (eaten > 0)
3218 			__kfree_skb(skb);
3219 		else if (!sock_flag(sk, SOCK_DEAD))
3220 			sk->sk_data_ready(sk, 0);
3221 		return;
3222 	}
3223 
3224 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3225 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3226 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3227 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3228 
3229 out_of_window:
3230 		tcp_enter_quickack_mode(sk);
3231 		inet_csk_schedule_ack(sk);
3232 drop:
3233 		__kfree_skb(skb);
3234 		return;
3235 	}
3236 
3237 	/* Out of window. F.e. zero window probe. */
3238 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3239 		goto out_of_window;
3240 
3241 	tcp_enter_quickack_mode(sk);
3242 
3243 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3244 		/* Partial packet, seq < rcv_next < end_seq */
3245 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3246 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3247 			   TCP_SKB_CB(skb)->end_seq);
3248 
3249 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3250 
3251 		/* If window is closed, drop tail of packet. But after
3252 		 * remembering D-SACK for its head made in previous line.
3253 		 */
3254 		if (!tcp_receive_window(tp))
3255 			goto out_of_window;
3256 		goto queue_and_out;
3257 	}
3258 
3259 	TCP_ECN_check_ce(tp, skb);
3260 
3261 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3262 	    !sk_stream_rmem_schedule(sk, skb)) {
3263 		if (tcp_prune_queue(sk) < 0 ||
3264 		    !sk_stream_rmem_schedule(sk, skb))
3265 			goto drop;
3266 	}
3267 
3268 	/* Disable header prediction. */
3269 	tp->pred_flags = 0;
3270 	inet_csk_schedule_ack(sk);
3271 
3272 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3273 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3274 
3275 	sk_stream_set_owner_r(skb, sk);
3276 
3277 	if (!skb_peek(&tp->out_of_order_queue)) {
3278 		/* Initial out of order segment, build 1 SACK. */
3279 		if (tp->rx_opt.sack_ok) {
3280 			tp->rx_opt.num_sacks = 1;
3281 			tp->rx_opt.dsack     = 0;
3282 			tp->rx_opt.eff_sacks = 1;
3283 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3284 			tp->selective_acks[0].end_seq =
3285 						TCP_SKB_CB(skb)->end_seq;
3286 		}
3287 		__skb_queue_head(&tp->out_of_order_queue,skb);
3288 	} else {
3289 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3290 		u32 seq = TCP_SKB_CB(skb)->seq;
3291 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3292 
3293 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3294 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3295 
3296 			if (!tp->rx_opt.num_sacks ||
3297 			    tp->selective_acks[0].end_seq != seq)
3298 				goto add_sack;
3299 
3300 			/* Common case: data arrive in order after hole. */
3301 			tp->selective_acks[0].end_seq = end_seq;
3302 			return;
3303 		}
3304 
3305 		/* Find place to insert this segment. */
3306 		do {
3307 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3308 				break;
3309 		} while ((skb1 = skb1->prev) !=
3310 			 (struct sk_buff*)&tp->out_of_order_queue);
3311 
3312 		/* Do skb overlap to previous one? */
3313 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3314 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3315 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3316 				/* All the bits are present. Drop. */
3317 				__kfree_skb(skb);
3318 				tcp_dsack_set(tp, seq, end_seq);
3319 				goto add_sack;
3320 			}
3321 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3322 				/* Partial overlap. */
3323 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3324 			} else {
3325 				skb1 = skb1->prev;
3326 			}
3327 		}
3328 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3329 
3330 		/* And clean segments covered by new one as whole. */
3331 		while ((skb1 = skb->next) !=
3332 		       (struct sk_buff*)&tp->out_of_order_queue &&
3333 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3334 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3335 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3336 			       break;
3337 		       }
3338 		       __skb_unlink(skb1, &tp->out_of_order_queue);
3339 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3340 		       __kfree_skb(skb1);
3341 		}
3342 
3343 add_sack:
3344 		if (tp->rx_opt.sack_ok)
3345 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3346 	}
3347 }
3348 
3349 /* Collapse contiguous sequence of skbs head..tail with
3350  * sequence numbers start..end.
3351  * Segments with FIN/SYN are not collapsed (only because this
3352  * simplifies code)
3353  */
3354 static void
3355 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3356 	     struct sk_buff *head, struct sk_buff *tail,
3357 	     u32 start, u32 end)
3358 {
3359 	struct sk_buff *skb;
3360 
3361 	/* First, check that queue is collapsible and find
3362 	 * the point where collapsing can be useful. */
3363 	for (skb = head; skb != tail; ) {
3364 		/* No new bits? It is possible on ofo queue. */
3365 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3366 			struct sk_buff *next = skb->next;
3367 			__skb_unlink(skb, list);
3368 			__kfree_skb(skb);
3369 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3370 			skb = next;
3371 			continue;
3372 		}
3373 
3374 		/* The first skb to collapse is:
3375 		 * - not SYN/FIN and
3376 		 * - bloated or contains data before "start" or
3377 		 *   overlaps to the next one.
3378 		 */
3379 		if (!skb->h.th->syn && !skb->h.th->fin &&
3380 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3381 		     before(TCP_SKB_CB(skb)->seq, start) ||
3382 		     (skb->next != tail &&
3383 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3384 			break;
3385 
3386 		/* Decided to skip this, advance start seq. */
3387 		start = TCP_SKB_CB(skb)->end_seq;
3388 		skb = skb->next;
3389 	}
3390 	if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3391 		return;
3392 
3393 	while (before(start, end)) {
3394 		struct sk_buff *nskb;
3395 		int header = skb_headroom(skb);
3396 		int copy = SKB_MAX_ORDER(header, 0);
3397 
3398 		/* Too big header? This can happen with IPv6. */
3399 		if (copy < 0)
3400 			return;
3401 		if (end-start < copy)
3402 			copy = end-start;
3403 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3404 		if (!nskb)
3405 			return;
3406 		skb_reserve(nskb, header);
3407 		memcpy(nskb->head, skb->head, header);
3408 		nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3409 		nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3410 		nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3411 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3412 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3413 		__skb_insert(nskb, skb->prev, skb, list);
3414 		sk_stream_set_owner_r(nskb, sk);
3415 
3416 		/* Copy data, releasing collapsed skbs. */
3417 		while (copy > 0) {
3418 			int offset = start - TCP_SKB_CB(skb)->seq;
3419 			int size = TCP_SKB_CB(skb)->end_seq - start;
3420 
3421 			BUG_ON(offset < 0);
3422 			if (size > 0) {
3423 				size = min(copy, size);
3424 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3425 					BUG();
3426 				TCP_SKB_CB(nskb)->end_seq += size;
3427 				copy -= size;
3428 				start += size;
3429 			}
3430 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3431 				struct sk_buff *next = skb->next;
3432 				__skb_unlink(skb, list);
3433 				__kfree_skb(skb);
3434 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3435 				skb = next;
3436 				if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3437 					return;
3438 			}
3439 		}
3440 	}
3441 }
3442 
3443 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3444  * and tcp_collapse() them until all the queue is collapsed.
3445  */
3446 static void tcp_collapse_ofo_queue(struct sock *sk)
3447 {
3448 	struct tcp_sock *tp = tcp_sk(sk);
3449 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3450 	struct sk_buff *head;
3451 	u32 start, end;
3452 
3453 	if (skb == NULL)
3454 		return;
3455 
3456 	start = TCP_SKB_CB(skb)->seq;
3457 	end = TCP_SKB_CB(skb)->end_seq;
3458 	head = skb;
3459 
3460 	for (;;) {
3461 		skb = skb->next;
3462 
3463 		/* Segment is terminated when we see gap or when
3464 		 * we are at the end of all the queue. */
3465 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3466 		    after(TCP_SKB_CB(skb)->seq, end) ||
3467 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3468 			tcp_collapse(sk, &tp->out_of_order_queue,
3469 				     head, skb, start, end);
3470 			head = skb;
3471 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3472 				break;
3473 			/* Start new segment */
3474 			start = TCP_SKB_CB(skb)->seq;
3475 			end = TCP_SKB_CB(skb)->end_seq;
3476 		} else {
3477 			if (before(TCP_SKB_CB(skb)->seq, start))
3478 				start = TCP_SKB_CB(skb)->seq;
3479 			if (after(TCP_SKB_CB(skb)->end_seq, end))
3480 				end = TCP_SKB_CB(skb)->end_seq;
3481 		}
3482 	}
3483 }
3484 
3485 /* Reduce allocated memory if we can, trying to get
3486  * the socket within its memory limits again.
3487  *
3488  * Return less than zero if we should start dropping frames
3489  * until the socket owning process reads some of the data
3490  * to stabilize the situation.
3491  */
3492 static int tcp_prune_queue(struct sock *sk)
3493 {
3494 	struct tcp_sock *tp = tcp_sk(sk);
3495 
3496 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3497 
3498 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3499 
3500 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3501 		tcp_clamp_window(sk, tp);
3502 	else if (tcp_memory_pressure)
3503 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3504 
3505 	tcp_collapse_ofo_queue(sk);
3506 	tcp_collapse(sk, &sk->sk_receive_queue,
3507 		     sk->sk_receive_queue.next,
3508 		     (struct sk_buff*)&sk->sk_receive_queue,
3509 		     tp->copied_seq, tp->rcv_nxt);
3510 	sk_stream_mem_reclaim(sk);
3511 
3512 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3513 		return 0;
3514 
3515 	/* Collapsing did not help, destructive actions follow.
3516 	 * This must not ever occur. */
3517 
3518 	/* First, purge the out_of_order queue. */
3519 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3520 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3521 		__skb_queue_purge(&tp->out_of_order_queue);
3522 
3523 		/* Reset SACK state.  A conforming SACK implementation will
3524 		 * do the same at a timeout based retransmit.  When a connection
3525 		 * is in a sad state like this, we care only about integrity
3526 		 * of the connection not performance.
3527 		 */
3528 		if (tp->rx_opt.sack_ok)
3529 			tcp_sack_reset(&tp->rx_opt);
3530 		sk_stream_mem_reclaim(sk);
3531 	}
3532 
3533 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3534 		return 0;
3535 
3536 	/* If we are really being abused, tell the caller to silently
3537 	 * drop receive data on the floor.  It will get retransmitted
3538 	 * and hopefully then we'll have sufficient space.
3539 	 */
3540 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3541 
3542 	/* Massive buffer overcommit. */
3543 	tp->pred_flags = 0;
3544 	return -1;
3545 }
3546 
3547 
3548 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3549  * As additional protections, we do not touch cwnd in retransmission phases,
3550  * and if application hit its sndbuf limit recently.
3551  */
3552 void tcp_cwnd_application_limited(struct sock *sk)
3553 {
3554 	struct tcp_sock *tp = tcp_sk(sk);
3555 
3556 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3557 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3558 		/* Limited by application or receiver window. */
3559 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3560 		u32 win_used = max(tp->snd_cwnd_used, init_win);
3561 		if (win_used < tp->snd_cwnd) {
3562 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3563 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3564 		}
3565 		tp->snd_cwnd_used = 0;
3566 	}
3567 	tp->snd_cwnd_stamp = tcp_time_stamp;
3568 }
3569 
3570 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3571 {
3572 	/* If the user specified a specific send buffer setting, do
3573 	 * not modify it.
3574 	 */
3575 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3576 		return 0;
3577 
3578 	/* If we are under global TCP memory pressure, do not expand.  */
3579 	if (tcp_memory_pressure)
3580 		return 0;
3581 
3582 	/* If we are under soft global TCP memory pressure, do not expand.  */
3583 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3584 		return 0;
3585 
3586 	/* If we filled the congestion window, do not expand.  */
3587 	if (tp->packets_out >= tp->snd_cwnd)
3588 		return 0;
3589 
3590 	return 1;
3591 }
3592 
3593 /* When incoming ACK allowed to free some skb from write_queue,
3594  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3595  * on the exit from tcp input handler.
3596  *
3597  * PROBLEM: sndbuf expansion does not work well with largesend.
3598  */
3599 static void tcp_new_space(struct sock *sk)
3600 {
3601 	struct tcp_sock *tp = tcp_sk(sk);
3602 
3603 	if (tcp_should_expand_sndbuf(sk, tp)) {
3604  		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3605 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3606 		    demanded = max_t(unsigned int, tp->snd_cwnd,
3607 						   tp->reordering + 1);
3608 		sndmem *= 2*demanded;
3609 		if (sndmem > sk->sk_sndbuf)
3610 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3611 		tp->snd_cwnd_stamp = tcp_time_stamp;
3612 	}
3613 
3614 	sk->sk_write_space(sk);
3615 }
3616 
3617 static void tcp_check_space(struct sock *sk)
3618 {
3619 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3620 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3621 		if (sk->sk_socket &&
3622 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3623 			tcp_new_space(sk);
3624 	}
3625 }
3626 
3627 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3628 {
3629 	tcp_push_pending_frames(sk, tp);
3630 	tcp_check_space(sk);
3631 }
3632 
3633 /*
3634  * Check if sending an ack is needed.
3635  */
3636 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3637 {
3638 	struct tcp_sock *tp = tcp_sk(sk);
3639 
3640 	    /* More than one full frame received... */
3641 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3642 	     /* ... and right edge of window advances far enough.
3643 	      * (tcp_recvmsg() will send ACK otherwise). Or...
3644 	      */
3645 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3646 	    /* We ACK each frame or... */
3647 	    tcp_in_quickack_mode(sk) ||
3648 	    /* We have out of order data. */
3649 	    (ofo_possible &&
3650 	     skb_peek(&tp->out_of_order_queue))) {
3651 		/* Then ack it now */
3652 		tcp_send_ack(sk);
3653 	} else {
3654 		/* Else, send delayed ack. */
3655 		tcp_send_delayed_ack(sk);
3656 	}
3657 }
3658 
3659 static inline void tcp_ack_snd_check(struct sock *sk)
3660 {
3661 	if (!inet_csk_ack_scheduled(sk)) {
3662 		/* We sent a data segment already. */
3663 		return;
3664 	}
3665 	__tcp_ack_snd_check(sk, 1);
3666 }
3667 
3668 /*
3669  *	This routine is only called when we have urgent data
3670  *	signaled. Its the 'slow' part of tcp_urg. It could be
3671  *	moved inline now as tcp_urg is only called from one
3672  *	place. We handle URGent data wrong. We have to - as
3673  *	BSD still doesn't use the correction from RFC961.
3674  *	For 1003.1g we should support a new option TCP_STDURG to permit
3675  *	either form (or just set the sysctl tcp_stdurg).
3676  */
3677 
3678 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3679 {
3680 	struct tcp_sock *tp = tcp_sk(sk);
3681 	u32 ptr = ntohs(th->urg_ptr);
3682 
3683 	if (ptr && !sysctl_tcp_stdurg)
3684 		ptr--;
3685 	ptr += ntohl(th->seq);
3686 
3687 	/* Ignore urgent data that we've already seen and read. */
3688 	if (after(tp->copied_seq, ptr))
3689 		return;
3690 
3691 	/* Do not replay urg ptr.
3692 	 *
3693 	 * NOTE: interesting situation not covered by specs.
3694 	 * Misbehaving sender may send urg ptr, pointing to segment,
3695 	 * which we already have in ofo queue. We are not able to fetch
3696 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3697 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3698 	 * situations. But it is worth to think about possibility of some
3699 	 * DoSes using some hypothetical application level deadlock.
3700 	 */
3701 	if (before(ptr, tp->rcv_nxt))
3702 		return;
3703 
3704 	/* Do we already have a newer (or duplicate) urgent pointer? */
3705 	if (tp->urg_data && !after(ptr, tp->urg_seq))
3706 		return;
3707 
3708 	/* Tell the world about our new urgent pointer. */
3709 	sk_send_sigurg(sk);
3710 
3711 	/* We may be adding urgent data when the last byte read was
3712 	 * urgent. To do this requires some care. We cannot just ignore
3713 	 * tp->copied_seq since we would read the last urgent byte again
3714 	 * as data, nor can we alter copied_seq until this data arrives
3715 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3716 	 *
3717 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3718 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3719 	 * and expect that both A and B disappear from stream. This is _wrong_.
3720 	 * Though this happens in BSD with high probability, this is occasional.
3721 	 * Any application relying on this is buggy. Note also, that fix "works"
3722 	 * only in this artificial test. Insert some normal data between A and B and we will
3723 	 * decline of BSD again. Verdict: it is better to remove to trap
3724 	 * buggy users.
3725 	 */
3726 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3727 	    !sock_flag(sk, SOCK_URGINLINE) &&
3728 	    tp->copied_seq != tp->rcv_nxt) {
3729 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3730 		tp->copied_seq++;
3731 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3732 			__skb_unlink(skb, &sk->sk_receive_queue);
3733 			__kfree_skb(skb);
3734 		}
3735 	}
3736 
3737 	tp->urg_data   = TCP_URG_NOTYET;
3738 	tp->urg_seq    = ptr;
3739 
3740 	/* Disable header prediction. */
3741 	tp->pred_flags = 0;
3742 }
3743 
3744 /* This is the 'fast' part of urgent handling. */
3745 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3746 {
3747 	struct tcp_sock *tp = tcp_sk(sk);
3748 
3749 	/* Check if we get a new urgent pointer - normally not. */
3750 	if (th->urg)
3751 		tcp_check_urg(sk,th);
3752 
3753 	/* Do we wait for any urgent data? - normally not... */
3754 	if (tp->urg_data == TCP_URG_NOTYET) {
3755 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3756 			  th->syn;
3757 
3758 		/* Is the urgent pointer pointing into this packet? */
3759 		if (ptr < skb->len) {
3760 			u8 tmp;
3761 			if (skb_copy_bits(skb, ptr, &tmp, 1))
3762 				BUG();
3763 			tp->urg_data = TCP_URG_VALID | tmp;
3764 			if (!sock_flag(sk, SOCK_DEAD))
3765 				sk->sk_data_ready(sk, 0);
3766 		}
3767 	}
3768 }
3769 
3770 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3771 {
3772 	struct tcp_sock *tp = tcp_sk(sk);
3773 	int chunk = skb->len - hlen;
3774 	int err;
3775 
3776 	local_bh_enable();
3777 	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3778 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3779 	else
3780 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3781 						       tp->ucopy.iov);
3782 
3783 	if (!err) {
3784 		tp->ucopy.len -= chunk;
3785 		tp->copied_seq += chunk;
3786 		tcp_rcv_space_adjust(sk);
3787 	}
3788 
3789 	local_bh_disable();
3790 	return err;
3791 }
3792 
3793 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3794 {
3795 	__sum16 result;
3796 
3797 	if (sock_owned_by_user(sk)) {
3798 		local_bh_enable();
3799 		result = __tcp_checksum_complete(skb);
3800 		local_bh_disable();
3801 	} else {
3802 		result = __tcp_checksum_complete(skb);
3803 	}
3804 	return result;
3805 }
3806 
3807 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3808 {
3809 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3810 		__tcp_checksum_complete_user(sk, skb);
3811 }
3812 
3813 #ifdef CONFIG_NET_DMA
3814 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3815 {
3816 	struct tcp_sock *tp = tcp_sk(sk);
3817 	int chunk = skb->len - hlen;
3818 	int dma_cookie;
3819 	int copied_early = 0;
3820 
3821 	if (tp->ucopy.wakeup)
3822           	return 0;
3823 
3824 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
3825 		tp->ucopy.dma_chan = get_softnet_dma();
3826 
3827 	if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
3828 
3829 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
3830 			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
3831 
3832 		if (dma_cookie < 0)
3833 			goto out;
3834 
3835 		tp->ucopy.dma_cookie = dma_cookie;
3836 		copied_early = 1;
3837 
3838 		tp->ucopy.len -= chunk;
3839 		tp->copied_seq += chunk;
3840 		tcp_rcv_space_adjust(sk);
3841 
3842 		if ((tp->ucopy.len == 0) ||
3843 		    (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
3844 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
3845 			tp->ucopy.wakeup = 1;
3846 			sk->sk_data_ready(sk, 0);
3847 		}
3848 	} else if (chunk > 0) {
3849 		tp->ucopy.wakeup = 1;
3850 		sk->sk_data_ready(sk, 0);
3851 	}
3852 out:
3853 	return copied_early;
3854 }
3855 #endif /* CONFIG_NET_DMA */
3856 
3857 /*
3858  *	TCP receive function for the ESTABLISHED state.
3859  *
3860  *	It is split into a fast path and a slow path. The fast path is
3861  * 	disabled when:
3862  *	- A zero window was announced from us - zero window probing
3863  *        is only handled properly in the slow path.
3864  *	- Out of order segments arrived.
3865  *	- Urgent data is expected.
3866  *	- There is no buffer space left
3867  *	- Unexpected TCP flags/window values/header lengths are received
3868  *	  (detected by checking the TCP header against pred_flags)
3869  *	- Data is sent in both directions. Fast path only supports pure senders
3870  *	  or pure receivers (this means either the sequence number or the ack
3871  *	  value must stay constant)
3872  *	- Unexpected TCP option.
3873  *
3874  *	When these conditions are not satisfied it drops into a standard
3875  *	receive procedure patterned after RFC793 to handle all cases.
3876  *	The first three cases are guaranteed by proper pred_flags setting,
3877  *	the rest is checked inline. Fast processing is turned on in
3878  *	tcp_data_queue when everything is OK.
3879  */
3880 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3881 			struct tcphdr *th, unsigned len)
3882 {
3883 	struct tcp_sock *tp = tcp_sk(sk);
3884 
3885 	/*
3886 	 *	Header prediction.
3887 	 *	The code loosely follows the one in the famous
3888 	 *	"30 instruction TCP receive" Van Jacobson mail.
3889 	 *
3890 	 *	Van's trick is to deposit buffers into socket queue
3891 	 *	on a device interrupt, to call tcp_recv function
3892 	 *	on the receive process context and checksum and copy
3893 	 *	the buffer to user space. smart...
3894 	 *
3895 	 *	Our current scheme is not silly either but we take the
3896 	 *	extra cost of the net_bh soft interrupt processing...
3897 	 *	We do checksum and copy also but from device to kernel.
3898 	 */
3899 
3900 	tp->rx_opt.saw_tstamp = 0;
3901 
3902 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
3903 	 *	if header_prediction is to be made
3904 	 *	'S' will always be tp->tcp_header_len >> 2
3905 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
3906 	 *  turn it off	(when there are holes in the receive
3907 	 *	 space for instance)
3908 	 *	PSH flag is ignored.
3909 	 */
3910 
3911 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3912 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3913 		int tcp_header_len = tp->tcp_header_len;
3914 
3915 		/* Timestamp header prediction: tcp_header_len
3916 		 * is automatically equal to th->doff*4 due to pred_flags
3917 		 * match.
3918 		 */
3919 
3920 		/* Check timestamp */
3921 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3922 			__be32 *ptr = (__be32 *)(th + 1);
3923 
3924 			/* No? Slow path! */
3925 			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3926 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3927 				goto slow_path;
3928 
3929 			tp->rx_opt.saw_tstamp = 1;
3930 			++ptr;
3931 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3932 			++ptr;
3933 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3934 
3935 			/* If PAWS failed, check it more carefully in slow path */
3936 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3937 				goto slow_path;
3938 
3939 			/* DO NOT update ts_recent here, if checksum fails
3940 			 * and timestamp was corrupted part, it will result
3941 			 * in a hung connection since we will drop all
3942 			 * future packets due to the PAWS test.
3943 			 */
3944 		}
3945 
3946 		if (len <= tcp_header_len) {
3947 			/* Bulk data transfer: sender */
3948 			if (len == tcp_header_len) {
3949 				/* Predicted packet is in window by definition.
3950 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3951 				 * Hence, check seq<=rcv_wup reduces to:
3952 				 */
3953 				if (tcp_header_len ==
3954 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3955 				    tp->rcv_nxt == tp->rcv_wup)
3956 					tcp_store_ts_recent(tp);
3957 
3958 				/* We know that such packets are checksummed
3959 				 * on entry.
3960 				 */
3961 				tcp_ack(sk, skb, 0);
3962 				__kfree_skb(skb);
3963 				tcp_data_snd_check(sk, tp);
3964 				return 0;
3965 			} else { /* Header too small */
3966 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
3967 				goto discard;
3968 			}
3969 		} else {
3970 			int eaten = 0;
3971 			int copied_early = 0;
3972 
3973 			if (tp->copied_seq == tp->rcv_nxt &&
3974 			    len - tcp_header_len <= tp->ucopy.len) {
3975 #ifdef CONFIG_NET_DMA
3976 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
3977 					copied_early = 1;
3978 					eaten = 1;
3979 				}
3980 #endif
3981 				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
3982 					__set_current_state(TASK_RUNNING);
3983 
3984 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
3985 						eaten = 1;
3986 				}
3987 				if (eaten) {
3988 					/* Predicted packet is in window by definition.
3989 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3990 					 * Hence, check seq<=rcv_wup reduces to:
3991 					 */
3992 					if (tcp_header_len ==
3993 					    (sizeof(struct tcphdr) +
3994 					     TCPOLEN_TSTAMP_ALIGNED) &&
3995 					    tp->rcv_nxt == tp->rcv_wup)
3996 						tcp_store_ts_recent(tp);
3997 
3998 					tcp_rcv_rtt_measure_ts(sk, skb);
3999 
4000 					__skb_pull(skb, tcp_header_len);
4001 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4002 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4003 				}
4004 				if (copied_early)
4005 					tcp_cleanup_rbuf(sk, skb->len);
4006 			}
4007 			if (!eaten) {
4008 				if (tcp_checksum_complete_user(sk, skb))
4009 					goto csum_error;
4010 
4011 				/* Predicted packet is in window by definition.
4012 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4013 				 * Hence, check seq<=rcv_wup reduces to:
4014 				 */
4015 				if (tcp_header_len ==
4016 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4017 				    tp->rcv_nxt == tp->rcv_wup)
4018 					tcp_store_ts_recent(tp);
4019 
4020 				tcp_rcv_rtt_measure_ts(sk, skb);
4021 
4022 				if ((int)skb->truesize > sk->sk_forward_alloc)
4023 					goto step5;
4024 
4025 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4026 
4027 				/* Bulk data transfer: receiver */
4028 				__skb_pull(skb,tcp_header_len);
4029 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4030 				sk_stream_set_owner_r(skb, sk);
4031 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4032 			}
4033 
4034 			tcp_event_data_recv(sk, tp, skb);
4035 
4036 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4037 				/* Well, only one small jumplet in fast path... */
4038 				tcp_ack(sk, skb, FLAG_DATA);
4039 				tcp_data_snd_check(sk, tp);
4040 				if (!inet_csk_ack_scheduled(sk))
4041 					goto no_ack;
4042 			}
4043 
4044 			__tcp_ack_snd_check(sk, 0);
4045 no_ack:
4046 #ifdef CONFIG_NET_DMA
4047 			if (copied_early)
4048 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4049 			else
4050 #endif
4051 			if (eaten)
4052 				__kfree_skb(skb);
4053 			else
4054 				sk->sk_data_ready(sk, 0);
4055 			return 0;
4056 		}
4057 	}
4058 
4059 slow_path:
4060 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4061 		goto csum_error;
4062 
4063 	/*
4064 	 * RFC1323: H1. Apply PAWS check first.
4065 	 */
4066 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4067 	    tcp_paws_discard(sk, skb)) {
4068 		if (!th->rst) {
4069 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4070 			tcp_send_dupack(sk, skb);
4071 			goto discard;
4072 		}
4073 		/* Resets are accepted even if PAWS failed.
4074 
4075 		   ts_recent update must be made after we are sure
4076 		   that the packet is in window.
4077 		 */
4078 	}
4079 
4080 	/*
4081 	 *	Standard slow path.
4082 	 */
4083 
4084 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4085 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4086 		 * (RST) segments are validated by checking their SEQ-fields."
4087 		 * And page 69: "If an incoming segment is not acceptable,
4088 		 * an acknowledgment should be sent in reply (unless the RST bit
4089 		 * is set, if so drop the segment and return)".
4090 		 */
4091 		if (!th->rst)
4092 			tcp_send_dupack(sk, skb);
4093 		goto discard;
4094 	}
4095 
4096 	if(th->rst) {
4097 		tcp_reset(sk);
4098 		goto discard;
4099 	}
4100 
4101 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4102 
4103 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4104 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4105 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4106 		tcp_reset(sk);
4107 		return 1;
4108 	}
4109 
4110 step5:
4111 	if(th->ack)
4112 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4113 
4114 	tcp_rcv_rtt_measure_ts(sk, skb);
4115 
4116 	/* Process urgent data. */
4117 	tcp_urg(sk, skb, th);
4118 
4119 	/* step 7: process the segment text */
4120 	tcp_data_queue(sk, skb);
4121 
4122 	tcp_data_snd_check(sk, tp);
4123 	tcp_ack_snd_check(sk);
4124 	return 0;
4125 
4126 csum_error:
4127 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4128 
4129 discard:
4130 	__kfree_skb(skb);
4131 	return 0;
4132 }
4133 
4134 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4135 					 struct tcphdr *th, unsigned len)
4136 {
4137 	struct tcp_sock *tp = tcp_sk(sk);
4138 	struct inet_connection_sock *icsk = inet_csk(sk);
4139 	int saved_clamp = tp->rx_opt.mss_clamp;
4140 
4141 	tcp_parse_options(skb, &tp->rx_opt, 0);
4142 
4143 	if (th->ack) {
4144 		/* rfc793:
4145 		 * "If the state is SYN-SENT then
4146 		 *    first check the ACK bit
4147 		 *      If the ACK bit is set
4148 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4149 		 *        a reset (unless the RST bit is set, if so drop
4150 		 *        the segment and return)"
4151 		 *
4152 		 *  We do not send data with SYN, so that RFC-correct
4153 		 *  test reduces to:
4154 		 */
4155 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4156 			goto reset_and_undo;
4157 
4158 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4159 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4160 			     tcp_time_stamp)) {
4161 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4162 			goto reset_and_undo;
4163 		}
4164 
4165 		/* Now ACK is acceptable.
4166 		 *
4167 		 * "If the RST bit is set
4168 		 *    If the ACK was acceptable then signal the user "error:
4169 		 *    connection reset", drop the segment, enter CLOSED state,
4170 		 *    delete TCB, and return."
4171 		 */
4172 
4173 		if (th->rst) {
4174 			tcp_reset(sk);
4175 			goto discard;
4176 		}
4177 
4178 		/* rfc793:
4179 		 *   "fifth, if neither of the SYN or RST bits is set then
4180 		 *    drop the segment and return."
4181 		 *
4182 		 *    See note below!
4183 		 *                                        --ANK(990513)
4184 		 */
4185 		if (!th->syn)
4186 			goto discard_and_undo;
4187 
4188 		/* rfc793:
4189 		 *   "If the SYN bit is on ...
4190 		 *    are acceptable then ...
4191 		 *    (our SYN has been ACKed), change the connection
4192 		 *    state to ESTABLISHED..."
4193 		 */
4194 
4195 		TCP_ECN_rcv_synack(tp, th);
4196 
4197 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4198 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4199 
4200 		/* Ok.. it's good. Set up sequence numbers and
4201 		 * move to established.
4202 		 */
4203 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4204 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4205 
4206 		/* RFC1323: The window in SYN & SYN/ACK segments is
4207 		 * never scaled.
4208 		 */
4209 		tp->snd_wnd = ntohs(th->window);
4210 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4211 
4212 		if (!tp->rx_opt.wscale_ok) {
4213 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4214 			tp->window_clamp = min(tp->window_clamp, 65535U);
4215 		}
4216 
4217 		if (tp->rx_opt.saw_tstamp) {
4218 			tp->rx_opt.tstamp_ok	   = 1;
4219 			tp->tcp_header_len =
4220 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4221 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4222 			tcp_store_ts_recent(tp);
4223 		} else {
4224 			tp->tcp_header_len = sizeof(struct tcphdr);
4225 		}
4226 
4227 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4228 			tp->rx_opt.sack_ok |= 2;
4229 
4230 		tcp_mtup_init(sk);
4231 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4232 		tcp_initialize_rcv_mss(sk);
4233 
4234 		/* Remember, tcp_poll() does not lock socket!
4235 		 * Change state from SYN-SENT only after copied_seq
4236 		 * is initialized. */
4237 		tp->copied_seq = tp->rcv_nxt;
4238 		smp_mb();
4239 		tcp_set_state(sk, TCP_ESTABLISHED);
4240 
4241 		security_inet_conn_established(sk, skb);
4242 
4243 		/* Make sure socket is routed, for correct metrics.  */
4244 		icsk->icsk_af_ops->rebuild_header(sk);
4245 
4246 		tcp_init_metrics(sk);
4247 
4248 		tcp_init_congestion_control(sk);
4249 
4250 		/* Prevent spurious tcp_cwnd_restart() on first data
4251 		 * packet.
4252 		 */
4253 		tp->lsndtime = tcp_time_stamp;
4254 
4255 		tcp_init_buffer_space(sk);
4256 
4257 		if (sock_flag(sk, SOCK_KEEPOPEN))
4258 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4259 
4260 		if (!tp->rx_opt.snd_wscale)
4261 			__tcp_fast_path_on(tp, tp->snd_wnd);
4262 		else
4263 			tp->pred_flags = 0;
4264 
4265 		if (!sock_flag(sk, SOCK_DEAD)) {
4266 			sk->sk_state_change(sk);
4267 			sk_wake_async(sk, 0, POLL_OUT);
4268 		}
4269 
4270 		if (sk->sk_write_pending ||
4271 		    icsk->icsk_accept_queue.rskq_defer_accept ||
4272 		    icsk->icsk_ack.pingpong) {
4273 			/* Save one ACK. Data will be ready after
4274 			 * several ticks, if write_pending is set.
4275 			 *
4276 			 * It may be deleted, but with this feature tcpdumps
4277 			 * look so _wonderfully_ clever, that I was not able
4278 			 * to stand against the temptation 8)     --ANK
4279 			 */
4280 			inet_csk_schedule_ack(sk);
4281 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4282 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4283 			tcp_incr_quickack(sk);
4284 			tcp_enter_quickack_mode(sk);
4285 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4286 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4287 
4288 discard:
4289 			__kfree_skb(skb);
4290 			return 0;
4291 		} else {
4292 			tcp_send_ack(sk);
4293 		}
4294 		return -1;
4295 	}
4296 
4297 	/* No ACK in the segment */
4298 
4299 	if (th->rst) {
4300 		/* rfc793:
4301 		 * "If the RST bit is set
4302 		 *
4303 		 *      Otherwise (no ACK) drop the segment and return."
4304 		 */
4305 
4306 		goto discard_and_undo;
4307 	}
4308 
4309 	/* PAWS check. */
4310 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4311 		goto discard_and_undo;
4312 
4313 	if (th->syn) {
4314 		/* We see SYN without ACK. It is attempt of
4315 		 * simultaneous connect with crossed SYNs.
4316 		 * Particularly, it can be connect to self.
4317 		 */
4318 		tcp_set_state(sk, TCP_SYN_RECV);
4319 
4320 		if (tp->rx_opt.saw_tstamp) {
4321 			tp->rx_opt.tstamp_ok = 1;
4322 			tcp_store_ts_recent(tp);
4323 			tp->tcp_header_len =
4324 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4325 		} else {
4326 			tp->tcp_header_len = sizeof(struct tcphdr);
4327 		}
4328 
4329 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4330 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4331 
4332 		/* RFC1323: The window in SYN & SYN/ACK segments is
4333 		 * never scaled.
4334 		 */
4335 		tp->snd_wnd    = ntohs(th->window);
4336 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4337 		tp->max_window = tp->snd_wnd;
4338 
4339 		TCP_ECN_rcv_syn(tp, th);
4340 
4341 		tcp_mtup_init(sk);
4342 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4343 		tcp_initialize_rcv_mss(sk);
4344 
4345 
4346 		tcp_send_synack(sk);
4347 #if 0
4348 		/* Note, we could accept data and URG from this segment.
4349 		 * There are no obstacles to make this.
4350 		 *
4351 		 * However, if we ignore data in ACKless segments sometimes,
4352 		 * we have no reasons to accept it sometimes.
4353 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4354 		 * is not flawless. So, discard packet for sanity.
4355 		 * Uncomment this return to process the data.
4356 		 */
4357 		return -1;
4358 #else
4359 		goto discard;
4360 #endif
4361 	}
4362 	/* "fifth, if neither of the SYN or RST bits is set then
4363 	 * drop the segment and return."
4364 	 */
4365 
4366 discard_and_undo:
4367 	tcp_clear_options(&tp->rx_opt);
4368 	tp->rx_opt.mss_clamp = saved_clamp;
4369 	goto discard;
4370 
4371 reset_and_undo:
4372 	tcp_clear_options(&tp->rx_opt);
4373 	tp->rx_opt.mss_clamp = saved_clamp;
4374 	return 1;
4375 }
4376 
4377 
4378 /*
4379  *	This function implements the receiving procedure of RFC 793 for
4380  *	all states except ESTABLISHED and TIME_WAIT.
4381  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4382  *	address independent.
4383  */
4384 
4385 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4386 			  struct tcphdr *th, unsigned len)
4387 {
4388 	struct tcp_sock *tp = tcp_sk(sk);
4389 	struct inet_connection_sock *icsk = inet_csk(sk);
4390 	int queued = 0;
4391 
4392 	tp->rx_opt.saw_tstamp = 0;
4393 
4394 	switch (sk->sk_state) {
4395 	case TCP_CLOSE:
4396 		goto discard;
4397 
4398 	case TCP_LISTEN:
4399 		if(th->ack)
4400 			return 1;
4401 
4402 		if(th->rst)
4403 			goto discard;
4404 
4405 		if(th->syn) {
4406 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4407 				return 1;
4408 
4409 			/* Now we have several options: In theory there is
4410 			 * nothing else in the frame. KA9Q has an option to
4411 			 * send data with the syn, BSD accepts data with the
4412 			 * syn up to the [to be] advertised window and
4413 			 * Solaris 2.1 gives you a protocol error. For now
4414 			 * we just ignore it, that fits the spec precisely
4415 			 * and avoids incompatibilities. It would be nice in
4416 			 * future to drop through and process the data.
4417 			 *
4418 			 * Now that TTCP is starting to be used we ought to
4419 			 * queue this data.
4420 			 * But, this leaves one open to an easy denial of
4421 		 	 * service attack, and SYN cookies can't defend
4422 			 * against this problem. So, we drop the data
4423 			 * in the interest of security over speed.
4424 			 */
4425 			goto discard;
4426 		}
4427 		goto discard;
4428 
4429 	case TCP_SYN_SENT:
4430 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4431 		if (queued >= 0)
4432 			return queued;
4433 
4434 		/* Do step6 onward by hand. */
4435 		tcp_urg(sk, skb, th);
4436 		__kfree_skb(skb);
4437 		tcp_data_snd_check(sk, tp);
4438 		return 0;
4439 	}
4440 
4441 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4442 	    tcp_paws_discard(sk, skb)) {
4443 		if (!th->rst) {
4444 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4445 			tcp_send_dupack(sk, skb);
4446 			goto discard;
4447 		}
4448 		/* Reset is accepted even if it did not pass PAWS. */
4449 	}
4450 
4451 	/* step 1: check sequence number */
4452 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4453 		if (!th->rst)
4454 			tcp_send_dupack(sk, skb);
4455 		goto discard;
4456 	}
4457 
4458 	/* step 2: check RST bit */
4459 	if(th->rst) {
4460 		tcp_reset(sk);
4461 		goto discard;
4462 	}
4463 
4464 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4465 
4466 	/* step 3: check security and precedence [ignored] */
4467 
4468 	/*	step 4:
4469 	 *
4470 	 *	Check for a SYN in window.
4471 	 */
4472 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4473 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4474 		tcp_reset(sk);
4475 		return 1;
4476 	}
4477 
4478 	/* step 5: check the ACK field */
4479 	if (th->ack) {
4480 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4481 
4482 		switch(sk->sk_state) {
4483 		case TCP_SYN_RECV:
4484 			if (acceptable) {
4485 				tp->copied_seq = tp->rcv_nxt;
4486 				smp_mb();
4487 				tcp_set_state(sk, TCP_ESTABLISHED);
4488 				sk->sk_state_change(sk);
4489 
4490 				/* Note, that this wakeup is only for marginal
4491 				 * crossed SYN case. Passively open sockets
4492 				 * are not waked up, because sk->sk_sleep ==
4493 				 * NULL and sk->sk_socket == NULL.
4494 				 */
4495 				if (sk->sk_socket) {
4496 					sk_wake_async(sk,0,POLL_OUT);
4497 				}
4498 
4499 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4500 				tp->snd_wnd = ntohs(th->window) <<
4501 					      tp->rx_opt.snd_wscale;
4502 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4503 					    TCP_SKB_CB(skb)->seq);
4504 
4505 				/* tcp_ack considers this ACK as duplicate
4506 				 * and does not calculate rtt.
4507 				 * Fix it at least with timestamps.
4508 				 */
4509 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4510 				    !tp->srtt)
4511 					tcp_ack_saw_tstamp(sk, 0);
4512 
4513 				if (tp->rx_opt.tstamp_ok)
4514 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4515 
4516 				/* Make sure socket is routed, for
4517 				 * correct metrics.
4518 				 */
4519 				icsk->icsk_af_ops->rebuild_header(sk);
4520 
4521 				tcp_init_metrics(sk);
4522 
4523 				tcp_init_congestion_control(sk);
4524 
4525 				/* Prevent spurious tcp_cwnd_restart() on
4526 				 * first data packet.
4527 				 */
4528 				tp->lsndtime = tcp_time_stamp;
4529 
4530 				tcp_mtup_init(sk);
4531 				tcp_initialize_rcv_mss(sk);
4532 				tcp_init_buffer_space(sk);
4533 				tcp_fast_path_on(tp);
4534 			} else {
4535 				return 1;
4536 			}
4537 			break;
4538 
4539 		case TCP_FIN_WAIT1:
4540 			if (tp->snd_una == tp->write_seq) {
4541 				tcp_set_state(sk, TCP_FIN_WAIT2);
4542 				sk->sk_shutdown |= SEND_SHUTDOWN;
4543 				dst_confirm(sk->sk_dst_cache);
4544 
4545 				if (!sock_flag(sk, SOCK_DEAD))
4546 					/* Wake up lingering close() */
4547 					sk->sk_state_change(sk);
4548 				else {
4549 					int tmo;
4550 
4551 					if (tp->linger2 < 0 ||
4552 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4553 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4554 						tcp_done(sk);
4555 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4556 						return 1;
4557 					}
4558 
4559 					tmo = tcp_fin_time(sk);
4560 					if (tmo > TCP_TIMEWAIT_LEN) {
4561 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4562 					} else if (th->fin || sock_owned_by_user(sk)) {
4563 						/* Bad case. We could lose such FIN otherwise.
4564 						 * It is not a big problem, but it looks confusing
4565 						 * and not so rare event. We still can lose it now,
4566 						 * if it spins in bh_lock_sock(), but it is really
4567 						 * marginal case.
4568 						 */
4569 						inet_csk_reset_keepalive_timer(sk, tmo);
4570 					} else {
4571 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4572 						goto discard;
4573 					}
4574 				}
4575 			}
4576 			break;
4577 
4578 		case TCP_CLOSING:
4579 			if (tp->snd_una == tp->write_seq) {
4580 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4581 				goto discard;
4582 			}
4583 			break;
4584 
4585 		case TCP_LAST_ACK:
4586 			if (tp->snd_una == tp->write_seq) {
4587 				tcp_update_metrics(sk);
4588 				tcp_done(sk);
4589 				goto discard;
4590 			}
4591 			break;
4592 		}
4593 	} else
4594 		goto discard;
4595 
4596 	/* step 6: check the URG bit */
4597 	tcp_urg(sk, skb, th);
4598 
4599 	/* step 7: process the segment text */
4600 	switch (sk->sk_state) {
4601 	case TCP_CLOSE_WAIT:
4602 	case TCP_CLOSING:
4603 	case TCP_LAST_ACK:
4604 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4605 			break;
4606 	case TCP_FIN_WAIT1:
4607 	case TCP_FIN_WAIT2:
4608 		/* RFC 793 says to queue data in these states,
4609 		 * RFC 1122 says we MUST send a reset.
4610 		 * BSD 4.4 also does reset.
4611 		 */
4612 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4613 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4614 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4615 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4616 				tcp_reset(sk);
4617 				return 1;
4618 			}
4619 		}
4620 		/* Fall through */
4621 	case TCP_ESTABLISHED:
4622 		tcp_data_queue(sk, skb);
4623 		queued = 1;
4624 		break;
4625 	}
4626 
4627 	/* tcp_data could move socket to TIME-WAIT */
4628 	if (sk->sk_state != TCP_CLOSE) {
4629 		tcp_data_snd_check(sk, tp);
4630 		tcp_ack_snd_check(sk);
4631 	}
4632 
4633 	if (!queued) {
4634 discard:
4635 		__kfree_skb(skb);
4636 	}
4637 	return 0;
4638 }
4639 
4640 EXPORT_SYMBOL(sysctl_tcp_ecn);
4641 EXPORT_SYMBOL(sysctl_tcp_reordering);
4642 EXPORT_SYMBOL(tcp_parse_options);
4643 EXPORT_SYMBOL(tcp_rcv_established);
4644 EXPORT_SYMBOL(tcp_rcv_state_process);
4645 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
4646