xref: /linux/net/ipv4/tcp_input.c (revision 5a0e3ad6af8660be21ca98a971cd00f331318c05)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
75 
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 int sysctl_tcp_ecn __read_mostly = 2;
82 int sysctl_tcp_dsack __read_mostly = 1;
83 int sysctl_tcp_app_win __read_mostly = 31;
84 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85 
86 int sysctl_tcp_stdurg __read_mostly;
87 int sysctl_tcp_rfc1337 __read_mostly;
88 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
89 int sysctl_tcp_frto __read_mostly = 2;
90 int sysctl_tcp_frto_response __read_mostly;
91 int sysctl_tcp_nometrics_save __read_mostly;
92 
93 int sysctl_tcp_thin_dupack __read_mostly;
94 
95 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
96 int sysctl_tcp_abc __read_mostly;
97 
98 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
99 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
100 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
101 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
102 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
103 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
104 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
105 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
106 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
107 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
108 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
109 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
110 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
111 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
112 
113 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
114 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
115 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
116 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
117 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
118 
119 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
120 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
121 
122 /* Adapt the MSS value used to make delayed ack decision to the
123  * real world.
124  */
125 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
126 {
127 	struct inet_connection_sock *icsk = inet_csk(sk);
128 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
129 	unsigned int len;
130 
131 	icsk->icsk_ack.last_seg_size = 0;
132 
133 	/* skb->len may jitter because of SACKs, even if peer
134 	 * sends good full-sized frames.
135 	 */
136 	len = skb_shinfo(skb)->gso_size ? : skb->len;
137 	if (len >= icsk->icsk_ack.rcv_mss) {
138 		icsk->icsk_ack.rcv_mss = len;
139 	} else {
140 		/* Otherwise, we make more careful check taking into account,
141 		 * that SACKs block is variable.
142 		 *
143 		 * "len" is invariant segment length, including TCP header.
144 		 */
145 		len += skb->data - skb_transport_header(skb);
146 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
147 		    /* If PSH is not set, packet should be
148 		     * full sized, provided peer TCP is not badly broken.
149 		     * This observation (if it is correct 8)) allows
150 		     * to handle super-low mtu links fairly.
151 		     */
152 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
153 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
154 			/* Subtract also invariant (if peer is RFC compliant),
155 			 * tcp header plus fixed timestamp option length.
156 			 * Resulting "len" is MSS free of SACK jitter.
157 			 */
158 			len -= tcp_sk(sk)->tcp_header_len;
159 			icsk->icsk_ack.last_seg_size = len;
160 			if (len == lss) {
161 				icsk->icsk_ack.rcv_mss = len;
162 				return;
163 			}
164 		}
165 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
166 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
167 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
168 	}
169 }
170 
171 static void tcp_incr_quickack(struct sock *sk)
172 {
173 	struct inet_connection_sock *icsk = inet_csk(sk);
174 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
175 
176 	if (quickacks == 0)
177 		quickacks = 2;
178 	if (quickacks > icsk->icsk_ack.quick)
179 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
180 }
181 
182 void tcp_enter_quickack_mode(struct sock *sk)
183 {
184 	struct inet_connection_sock *icsk = inet_csk(sk);
185 	tcp_incr_quickack(sk);
186 	icsk->icsk_ack.pingpong = 0;
187 	icsk->icsk_ack.ato = TCP_ATO_MIN;
188 }
189 
190 /* Send ACKs quickly, if "quick" count is not exhausted
191  * and the session is not interactive.
192  */
193 
194 static inline int tcp_in_quickack_mode(const struct sock *sk)
195 {
196 	const struct inet_connection_sock *icsk = inet_csk(sk);
197 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
198 }
199 
200 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
201 {
202 	if (tp->ecn_flags & TCP_ECN_OK)
203 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
204 }
205 
206 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
207 {
208 	if (tcp_hdr(skb)->cwr)
209 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
210 }
211 
212 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
213 {
214 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 }
216 
217 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
218 {
219 	if (tp->ecn_flags & TCP_ECN_OK) {
220 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
221 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
222 		/* Funny extension: if ECT is not set on a segment,
223 		 * it is surely retransmit. It is not in ECN RFC,
224 		 * but Linux follows this rule. */
225 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
226 			tcp_enter_quickack_mode((struct sock *)tp);
227 	}
228 }
229 
230 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
231 {
232 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
233 		tp->ecn_flags &= ~TCP_ECN_OK;
234 }
235 
236 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
237 {
238 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
239 		tp->ecn_flags &= ~TCP_ECN_OK;
240 }
241 
242 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
243 {
244 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
245 		return 1;
246 	return 0;
247 }
248 
249 /* Buffer size and advertised window tuning.
250  *
251  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
252  */
253 
254 static void tcp_fixup_sndbuf(struct sock *sk)
255 {
256 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
257 		     sizeof(struct sk_buff);
258 
259 	if (sk->sk_sndbuf < 3 * sndmem)
260 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
261 }
262 
263 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
264  *
265  * All tcp_full_space() is split to two parts: "network" buffer, allocated
266  * forward and advertised in receiver window (tp->rcv_wnd) and
267  * "application buffer", required to isolate scheduling/application
268  * latencies from network.
269  * window_clamp is maximal advertised window. It can be less than
270  * tcp_full_space(), in this case tcp_full_space() - window_clamp
271  * is reserved for "application" buffer. The less window_clamp is
272  * the smoother our behaviour from viewpoint of network, but the lower
273  * throughput and the higher sensitivity of the connection to losses. 8)
274  *
275  * rcv_ssthresh is more strict window_clamp used at "slow start"
276  * phase to predict further behaviour of this connection.
277  * It is used for two goals:
278  * - to enforce header prediction at sender, even when application
279  *   requires some significant "application buffer". It is check #1.
280  * - to prevent pruning of receive queue because of misprediction
281  *   of receiver window. Check #2.
282  *
283  * The scheme does not work when sender sends good segments opening
284  * window and then starts to feed us spaghetti. But it should work
285  * in common situations. Otherwise, we have to rely on queue collapsing.
286  */
287 
288 /* Slow part of check#2. */
289 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
290 {
291 	struct tcp_sock *tp = tcp_sk(sk);
292 	/* Optimize this! */
293 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
294 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
295 
296 	while (tp->rcv_ssthresh <= window) {
297 		if (truesize <= skb->len)
298 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
299 
300 		truesize >>= 1;
301 		window >>= 1;
302 	}
303 	return 0;
304 }
305 
306 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
307 {
308 	struct tcp_sock *tp = tcp_sk(sk);
309 
310 	/* Check #1 */
311 	if (tp->rcv_ssthresh < tp->window_clamp &&
312 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 	    !tcp_memory_pressure) {
314 		int incr;
315 
316 		/* Check #2. Increase window, if skb with such overhead
317 		 * will fit to rcvbuf in future.
318 		 */
319 		if (tcp_win_from_space(skb->truesize) <= skb->len)
320 			incr = 2 * tp->advmss;
321 		else
322 			incr = __tcp_grow_window(sk, skb);
323 
324 		if (incr) {
325 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
326 					       tp->window_clamp);
327 			inet_csk(sk)->icsk_ack.quick |= 1;
328 		}
329 	}
330 }
331 
332 /* 3. Tuning rcvbuf, when connection enters established state. */
333 
334 static void tcp_fixup_rcvbuf(struct sock *sk)
335 {
336 	struct tcp_sock *tp = tcp_sk(sk);
337 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
338 
339 	/* Try to select rcvbuf so that 4 mss-sized segments
340 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
341 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
342 	 */
343 	while (tcp_win_from_space(rcvmem) < tp->advmss)
344 		rcvmem += 128;
345 	if (sk->sk_rcvbuf < 4 * rcvmem)
346 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
347 }
348 
349 /* 4. Try to fixup all. It is made immediately after connection enters
350  *    established state.
351  */
352 static void tcp_init_buffer_space(struct sock *sk)
353 {
354 	struct tcp_sock *tp = tcp_sk(sk);
355 	int maxwin;
356 
357 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
358 		tcp_fixup_rcvbuf(sk);
359 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
360 		tcp_fixup_sndbuf(sk);
361 
362 	tp->rcvq_space.space = tp->rcv_wnd;
363 
364 	maxwin = tcp_full_space(sk);
365 
366 	if (tp->window_clamp >= maxwin) {
367 		tp->window_clamp = maxwin;
368 
369 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
370 			tp->window_clamp = max(maxwin -
371 					       (maxwin >> sysctl_tcp_app_win),
372 					       4 * tp->advmss);
373 	}
374 
375 	/* Force reservation of one segment. */
376 	if (sysctl_tcp_app_win &&
377 	    tp->window_clamp > 2 * tp->advmss &&
378 	    tp->window_clamp + tp->advmss > maxwin)
379 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
380 
381 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
382 	tp->snd_cwnd_stamp = tcp_time_stamp;
383 }
384 
385 /* 5. Recalculate window clamp after socket hit its memory bounds. */
386 static void tcp_clamp_window(struct sock *sk)
387 {
388 	struct tcp_sock *tp = tcp_sk(sk);
389 	struct inet_connection_sock *icsk = inet_csk(sk);
390 
391 	icsk->icsk_ack.quick = 0;
392 
393 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
394 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
395 	    !tcp_memory_pressure &&
396 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
397 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
398 				    sysctl_tcp_rmem[2]);
399 	}
400 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
401 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
402 }
403 
404 /* Initialize RCV_MSS value.
405  * RCV_MSS is an our guess about MSS used by the peer.
406  * We haven't any direct information about the MSS.
407  * It's better to underestimate the RCV_MSS rather than overestimate.
408  * Overestimations make us ACKing less frequently than needed.
409  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410  */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413 	struct tcp_sock *tp = tcp_sk(sk);
414 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415 
416 	hint = min(hint, tp->rcv_wnd / 2);
417 	hint = min(hint, TCP_MSS_DEFAULT);
418 	hint = max(hint, TCP_MIN_MSS);
419 
420 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422 
423 /* Receiver "autotuning" code.
424  *
425  * The algorithm for RTT estimation w/o timestamps is based on
426  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428  *
429  * More detail on this code can be found at
430  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431  * though this reference is out of date.  A new paper
432  * is pending.
433  */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436 	u32 new_sample = tp->rcv_rtt_est.rtt;
437 	long m = sample;
438 
439 	if (m == 0)
440 		m = 1;
441 
442 	if (new_sample != 0) {
443 		/* If we sample in larger samples in the non-timestamp
444 		 * case, we could grossly overestimate the RTT especially
445 		 * with chatty applications or bulk transfer apps which
446 		 * are stalled on filesystem I/O.
447 		 *
448 		 * Also, since we are only going for a minimum in the
449 		 * non-timestamp case, we do not smooth things out
450 		 * else with timestamps disabled convergence takes too
451 		 * long.
452 		 */
453 		if (!win_dep) {
454 			m -= (new_sample >> 3);
455 			new_sample += m;
456 		} else if (m < new_sample)
457 			new_sample = m << 3;
458 	} else {
459 		/* No previous measure. */
460 		new_sample = m << 3;
461 	}
462 
463 	if (tp->rcv_rtt_est.rtt != new_sample)
464 		tp->rcv_rtt_est.rtt = new_sample;
465 }
466 
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469 	if (tp->rcv_rtt_est.time == 0)
470 		goto new_measure;
471 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 		return;
473 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
474 
475 new_measure:
476 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
477 	tp->rcv_rtt_est.time = tcp_time_stamp;
478 }
479 
480 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
481 					  const struct sk_buff *skb)
482 {
483 	struct tcp_sock *tp = tcp_sk(sk);
484 	if (tp->rx_opt.rcv_tsecr &&
485 	    (TCP_SKB_CB(skb)->end_seq -
486 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
487 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
488 }
489 
490 /*
491  * This function should be called every time data is copied to user space.
492  * It calculates the appropriate TCP receive buffer space.
493  */
494 void tcp_rcv_space_adjust(struct sock *sk)
495 {
496 	struct tcp_sock *tp = tcp_sk(sk);
497 	int time;
498 	int space;
499 
500 	if (tp->rcvq_space.time == 0)
501 		goto new_measure;
502 
503 	time = tcp_time_stamp - tp->rcvq_space.time;
504 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
505 		return;
506 
507 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
508 
509 	space = max(tp->rcvq_space.space, space);
510 
511 	if (tp->rcvq_space.space != space) {
512 		int rcvmem;
513 
514 		tp->rcvq_space.space = space;
515 
516 		if (sysctl_tcp_moderate_rcvbuf &&
517 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
518 			int new_clamp = space;
519 
520 			/* Receive space grows, normalize in order to
521 			 * take into account packet headers and sk_buff
522 			 * structure overhead.
523 			 */
524 			space /= tp->advmss;
525 			if (!space)
526 				space = 1;
527 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
528 				  16 + sizeof(struct sk_buff));
529 			while (tcp_win_from_space(rcvmem) < tp->advmss)
530 				rcvmem += 128;
531 			space *= rcvmem;
532 			space = min(space, sysctl_tcp_rmem[2]);
533 			if (space > sk->sk_rcvbuf) {
534 				sk->sk_rcvbuf = space;
535 
536 				/* Make the window clamp follow along.  */
537 				tp->window_clamp = new_clamp;
538 			}
539 		}
540 	}
541 
542 new_measure:
543 	tp->rcvq_space.seq = tp->copied_seq;
544 	tp->rcvq_space.time = tcp_time_stamp;
545 }
546 
547 /* There is something which you must keep in mind when you analyze the
548  * behavior of the tp->ato delayed ack timeout interval.  When a
549  * connection starts up, we want to ack as quickly as possible.  The
550  * problem is that "good" TCP's do slow start at the beginning of data
551  * transmission.  The means that until we send the first few ACK's the
552  * sender will sit on his end and only queue most of his data, because
553  * he can only send snd_cwnd unacked packets at any given time.  For
554  * each ACK we send, he increments snd_cwnd and transmits more of his
555  * queue.  -DaveM
556  */
557 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
558 {
559 	struct tcp_sock *tp = tcp_sk(sk);
560 	struct inet_connection_sock *icsk = inet_csk(sk);
561 	u32 now;
562 
563 	inet_csk_schedule_ack(sk);
564 
565 	tcp_measure_rcv_mss(sk, skb);
566 
567 	tcp_rcv_rtt_measure(tp);
568 
569 	now = tcp_time_stamp;
570 
571 	if (!icsk->icsk_ack.ato) {
572 		/* The _first_ data packet received, initialize
573 		 * delayed ACK engine.
574 		 */
575 		tcp_incr_quickack(sk);
576 		icsk->icsk_ack.ato = TCP_ATO_MIN;
577 	} else {
578 		int m = now - icsk->icsk_ack.lrcvtime;
579 
580 		if (m <= TCP_ATO_MIN / 2) {
581 			/* The fastest case is the first. */
582 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
583 		} else if (m < icsk->icsk_ack.ato) {
584 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
585 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
586 				icsk->icsk_ack.ato = icsk->icsk_rto;
587 		} else if (m > icsk->icsk_rto) {
588 			/* Too long gap. Apparently sender failed to
589 			 * restart window, so that we send ACKs quickly.
590 			 */
591 			tcp_incr_quickack(sk);
592 			sk_mem_reclaim(sk);
593 		}
594 	}
595 	icsk->icsk_ack.lrcvtime = now;
596 
597 	TCP_ECN_check_ce(tp, skb);
598 
599 	if (skb->len >= 128)
600 		tcp_grow_window(sk, skb);
601 }
602 
603 /* Called to compute a smoothed rtt estimate. The data fed to this
604  * routine either comes from timestamps, or from segments that were
605  * known _not_ to have been retransmitted [see Karn/Partridge
606  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
607  * piece by Van Jacobson.
608  * NOTE: the next three routines used to be one big routine.
609  * To save cycles in the RFC 1323 implementation it was better to break
610  * it up into three procedures. -- erics
611  */
612 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
613 {
614 	struct tcp_sock *tp = tcp_sk(sk);
615 	long m = mrtt; /* RTT */
616 
617 	/*	The following amusing code comes from Jacobson's
618 	 *	article in SIGCOMM '88.  Note that rtt and mdev
619 	 *	are scaled versions of rtt and mean deviation.
620 	 *	This is designed to be as fast as possible
621 	 *	m stands for "measurement".
622 	 *
623 	 *	On a 1990 paper the rto value is changed to:
624 	 *	RTO = rtt + 4 * mdev
625 	 *
626 	 * Funny. This algorithm seems to be very broken.
627 	 * These formulae increase RTO, when it should be decreased, increase
628 	 * too slowly, when it should be increased quickly, decrease too quickly
629 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
630 	 * does not matter how to _calculate_ it. Seems, it was trap
631 	 * that VJ failed to avoid. 8)
632 	 */
633 	if (m == 0)
634 		m = 1;
635 	if (tp->srtt != 0) {
636 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
637 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
638 		if (m < 0) {
639 			m = -m;		/* m is now abs(error) */
640 			m -= (tp->mdev >> 2);   /* similar update on mdev */
641 			/* This is similar to one of Eifel findings.
642 			 * Eifel blocks mdev updates when rtt decreases.
643 			 * This solution is a bit different: we use finer gain
644 			 * for mdev in this case (alpha*beta).
645 			 * Like Eifel it also prevents growth of rto,
646 			 * but also it limits too fast rto decreases,
647 			 * happening in pure Eifel.
648 			 */
649 			if (m > 0)
650 				m >>= 3;
651 		} else {
652 			m -= (tp->mdev >> 2);   /* similar update on mdev */
653 		}
654 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
655 		if (tp->mdev > tp->mdev_max) {
656 			tp->mdev_max = tp->mdev;
657 			if (tp->mdev_max > tp->rttvar)
658 				tp->rttvar = tp->mdev_max;
659 		}
660 		if (after(tp->snd_una, tp->rtt_seq)) {
661 			if (tp->mdev_max < tp->rttvar)
662 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
663 			tp->rtt_seq = tp->snd_nxt;
664 			tp->mdev_max = tcp_rto_min(sk);
665 		}
666 	} else {
667 		/* no previous measure. */
668 		tp->srtt = m << 3;	/* take the measured time to be rtt */
669 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
670 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
671 		tp->rtt_seq = tp->snd_nxt;
672 	}
673 }
674 
675 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
676  * routine referred to above.
677  */
678 static inline void tcp_set_rto(struct sock *sk)
679 {
680 	const struct tcp_sock *tp = tcp_sk(sk);
681 	/* Old crap is replaced with new one. 8)
682 	 *
683 	 * More seriously:
684 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
685 	 *    It cannot be less due to utterly erratic ACK generation made
686 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
687 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
688 	 *    is invisible. Actually, Linux-2.4 also generates erratic
689 	 *    ACKs in some circumstances.
690 	 */
691 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
692 
693 	/* 2. Fixups made earlier cannot be right.
694 	 *    If we do not estimate RTO correctly without them,
695 	 *    all the algo is pure shit and should be replaced
696 	 *    with correct one. It is exactly, which we pretend to do.
697 	 */
698 
699 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
700 	 * guarantees that rto is higher.
701 	 */
702 	tcp_bound_rto(sk);
703 }
704 
705 /* Save metrics learned by this TCP session.
706    This function is called only, when TCP finishes successfully
707    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
708  */
709 void tcp_update_metrics(struct sock *sk)
710 {
711 	struct tcp_sock *tp = tcp_sk(sk);
712 	struct dst_entry *dst = __sk_dst_get(sk);
713 
714 	if (sysctl_tcp_nometrics_save)
715 		return;
716 
717 	dst_confirm(dst);
718 
719 	if (dst && (dst->flags & DST_HOST)) {
720 		const struct inet_connection_sock *icsk = inet_csk(sk);
721 		int m;
722 		unsigned long rtt;
723 
724 		if (icsk->icsk_backoff || !tp->srtt) {
725 			/* This session failed to estimate rtt. Why?
726 			 * Probably, no packets returned in time.
727 			 * Reset our results.
728 			 */
729 			if (!(dst_metric_locked(dst, RTAX_RTT)))
730 				dst->metrics[RTAX_RTT - 1] = 0;
731 			return;
732 		}
733 
734 		rtt = dst_metric_rtt(dst, RTAX_RTT);
735 		m = rtt - tp->srtt;
736 
737 		/* If newly calculated rtt larger than stored one,
738 		 * store new one. Otherwise, use EWMA. Remember,
739 		 * rtt overestimation is always better than underestimation.
740 		 */
741 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
742 			if (m <= 0)
743 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
744 			else
745 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
746 		}
747 
748 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
749 			unsigned long var;
750 			if (m < 0)
751 				m = -m;
752 
753 			/* Scale deviation to rttvar fixed point */
754 			m >>= 1;
755 			if (m < tp->mdev)
756 				m = tp->mdev;
757 
758 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
759 			if (m >= var)
760 				var = m;
761 			else
762 				var -= (var - m) >> 2;
763 
764 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
765 		}
766 
767 		if (tcp_in_initial_slowstart(tp)) {
768 			/* Slow start still did not finish. */
769 			if (dst_metric(dst, RTAX_SSTHRESH) &&
770 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
771 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
772 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
773 			if (!dst_metric_locked(dst, RTAX_CWND) &&
774 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
775 				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
776 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
777 			   icsk->icsk_ca_state == TCP_CA_Open) {
778 			/* Cong. avoidance phase, cwnd is reliable. */
779 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
780 				dst->metrics[RTAX_SSTHRESH-1] =
781 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
782 			if (!dst_metric_locked(dst, RTAX_CWND))
783 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
784 		} else {
785 			/* Else slow start did not finish, cwnd is non-sense,
786 			   ssthresh may be also invalid.
787 			 */
788 			if (!dst_metric_locked(dst, RTAX_CWND))
789 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
790 			if (dst_metric(dst, RTAX_SSTHRESH) &&
791 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
792 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
793 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
794 		}
795 
796 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
797 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
798 			    tp->reordering != sysctl_tcp_reordering)
799 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
800 		}
801 	}
802 }
803 
804 /* Numbers are taken from RFC3390.
805  *
806  * John Heffner states:
807  *
808  *	The RFC specifies a window of no more than 4380 bytes
809  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
810  *	is a bit misleading because they use a clamp at 4380 bytes
811  *	rather than use a multiplier in the relevant range.
812  */
813 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
814 {
815 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
816 
817 	if (!cwnd) {
818 		if (tp->mss_cache > 1460)
819 			cwnd = 2;
820 		else
821 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
822 	}
823 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
824 }
825 
826 /* Set slow start threshold and cwnd not falling to slow start */
827 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
828 {
829 	struct tcp_sock *tp = tcp_sk(sk);
830 	const struct inet_connection_sock *icsk = inet_csk(sk);
831 
832 	tp->prior_ssthresh = 0;
833 	tp->bytes_acked = 0;
834 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
835 		tp->undo_marker = 0;
836 		if (set_ssthresh)
837 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
838 		tp->snd_cwnd = min(tp->snd_cwnd,
839 				   tcp_packets_in_flight(tp) + 1U);
840 		tp->snd_cwnd_cnt = 0;
841 		tp->high_seq = tp->snd_nxt;
842 		tp->snd_cwnd_stamp = tcp_time_stamp;
843 		TCP_ECN_queue_cwr(tp);
844 
845 		tcp_set_ca_state(sk, TCP_CA_CWR);
846 	}
847 }
848 
849 /*
850  * Packet counting of FACK is based on in-order assumptions, therefore TCP
851  * disables it when reordering is detected
852  */
853 static void tcp_disable_fack(struct tcp_sock *tp)
854 {
855 	/* RFC3517 uses different metric in lost marker => reset on change */
856 	if (tcp_is_fack(tp))
857 		tp->lost_skb_hint = NULL;
858 	tp->rx_opt.sack_ok &= ~2;
859 }
860 
861 /* Take a notice that peer is sending D-SACKs */
862 static void tcp_dsack_seen(struct tcp_sock *tp)
863 {
864 	tp->rx_opt.sack_ok |= 4;
865 }
866 
867 /* Initialize metrics on socket. */
868 
869 static void tcp_init_metrics(struct sock *sk)
870 {
871 	struct tcp_sock *tp = tcp_sk(sk);
872 	struct dst_entry *dst = __sk_dst_get(sk);
873 
874 	if (dst == NULL)
875 		goto reset;
876 
877 	dst_confirm(dst);
878 
879 	if (dst_metric_locked(dst, RTAX_CWND))
880 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
881 	if (dst_metric(dst, RTAX_SSTHRESH)) {
882 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
883 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
884 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
885 	}
886 	if (dst_metric(dst, RTAX_REORDERING) &&
887 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
888 		tcp_disable_fack(tp);
889 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
890 	}
891 
892 	if (dst_metric(dst, RTAX_RTT) == 0)
893 		goto reset;
894 
895 	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
896 		goto reset;
897 
898 	/* Initial rtt is determined from SYN,SYN-ACK.
899 	 * The segment is small and rtt may appear much
900 	 * less than real one. Use per-dst memory
901 	 * to make it more realistic.
902 	 *
903 	 * A bit of theory. RTT is time passed after "normal" sized packet
904 	 * is sent until it is ACKed. In normal circumstances sending small
905 	 * packets force peer to delay ACKs and calculation is correct too.
906 	 * The algorithm is adaptive and, provided we follow specs, it
907 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
908 	 * tricks sort of "quick acks" for time long enough to decrease RTT
909 	 * to low value, and then abruptly stops to do it and starts to delay
910 	 * ACKs, wait for troubles.
911 	 */
912 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
913 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
914 		tp->rtt_seq = tp->snd_nxt;
915 	}
916 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
917 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
918 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
919 	}
920 	tcp_set_rto(sk);
921 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
922 		goto reset;
923 
924 cwnd:
925 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
926 	tp->snd_cwnd_stamp = tcp_time_stamp;
927 	return;
928 
929 reset:
930 	/* Play conservative. If timestamps are not
931 	 * supported, TCP will fail to recalculate correct
932 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
933 	 */
934 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
935 		tp->srtt = 0;
936 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
937 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
938 	}
939 	goto cwnd;
940 }
941 
942 static void tcp_update_reordering(struct sock *sk, const int metric,
943 				  const int ts)
944 {
945 	struct tcp_sock *tp = tcp_sk(sk);
946 	if (metric > tp->reordering) {
947 		int mib_idx;
948 
949 		tp->reordering = min(TCP_MAX_REORDERING, metric);
950 
951 		/* This exciting event is worth to be remembered. 8) */
952 		if (ts)
953 			mib_idx = LINUX_MIB_TCPTSREORDER;
954 		else if (tcp_is_reno(tp))
955 			mib_idx = LINUX_MIB_TCPRENOREORDER;
956 		else if (tcp_is_fack(tp))
957 			mib_idx = LINUX_MIB_TCPFACKREORDER;
958 		else
959 			mib_idx = LINUX_MIB_TCPSACKREORDER;
960 
961 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
962 #if FASTRETRANS_DEBUG > 1
963 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
964 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
965 		       tp->reordering,
966 		       tp->fackets_out,
967 		       tp->sacked_out,
968 		       tp->undo_marker ? tp->undo_retrans : 0);
969 #endif
970 		tcp_disable_fack(tp);
971 	}
972 }
973 
974 /* This must be called before lost_out is incremented */
975 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
976 {
977 	if ((tp->retransmit_skb_hint == NULL) ||
978 	    before(TCP_SKB_CB(skb)->seq,
979 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
980 		tp->retransmit_skb_hint = skb;
981 
982 	if (!tp->lost_out ||
983 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
984 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
985 }
986 
987 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
988 {
989 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
990 		tcp_verify_retransmit_hint(tp, skb);
991 
992 		tp->lost_out += tcp_skb_pcount(skb);
993 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
994 	}
995 }
996 
997 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
998 					    struct sk_buff *skb)
999 {
1000 	tcp_verify_retransmit_hint(tp, skb);
1001 
1002 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1003 		tp->lost_out += tcp_skb_pcount(skb);
1004 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1005 	}
1006 }
1007 
1008 /* This procedure tags the retransmission queue when SACKs arrive.
1009  *
1010  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1011  * Packets in queue with these bits set are counted in variables
1012  * sacked_out, retrans_out and lost_out, correspondingly.
1013  *
1014  * Valid combinations are:
1015  * Tag  InFlight	Description
1016  * 0	1		- orig segment is in flight.
1017  * S	0		- nothing flies, orig reached receiver.
1018  * L	0		- nothing flies, orig lost by net.
1019  * R	2		- both orig and retransmit are in flight.
1020  * L|R	1		- orig is lost, retransmit is in flight.
1021  * S|R  1		- orig reached receiver, retrans is still in flight.
1022  * (L|S|R is logically valid, it could occur when L|R is sacked,
1023  *  but it is equivalent to plain S and code short-curcuits it to S.
1024  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1025  *
1026  * These 6 states form finite state machine, controlled by the following events:
1027  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1028  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1029  * 3. Loss detection event of one of three flavors:
1030  *	A. Scoreboard estimator decided the packet is lost.
1031  *	   A'. Reno "three dupacks" marks head of queue lost.
1032  *	   A''. Its FACK modfication, head until snd.fack is lost.
1033  *	B. SACK arrives sacking data transmitted after never retransmitted
1034  *	   hole was sent out.
1035  *	C. SACK arrives sacking SND.NXT at the moment, when the
1036  *	   segment was retransmitted.
1037  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1038  *
1039  * It is pleasant to note, that state diagram turns out to be commutative,
1040  * so that we are allowed not to be bothered by order of our actions,
1041  * when multiple events arrive simultaneously. (see the function below).
1042  *
1043  * Reordering detection.
1044  * --------------------
1045  * Reordering metric is maximal distance, which a packet can be displaced
1046  * in packet stream. With SACKs we can estimate it:
1047  *
1048  * 1. SACK fills old hole and the corresponding segment was not
1049  *    ever retransmitted -> reordering. Alas, we cannot use it
1050  *    when segment was retransmitted.
1051  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1052  *    for retransmitted and already SACKed segment -> reordering..
1053  * Both of these heuristics are not used in Loss state, when we cannot
1054  * account for retransmits accurately.
1055  *
1056  * SACK block validation.
1057  * ----------------------
1058  *
1059  * SACK block range validation checks that the received SACK block fits to
1060  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1061  * Note that SND.UNA is not included to the range though being valid because
1062  * it means that the receiver is rather inconsistent with itself reporting
1063  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1064  * perfectly valid, however, in light of RFC2018 which explicitly states
1065  * that "SACK block MUST reflect the newest segment.  Even if the newest
1066  * segment is going to be discarded ...", not that it looks very clever
1067  * in case of head skb. Due to potentional receiver driven attacks, we
1068  * choose to avoid immediate execution of a walk in write queue due to
1069  * reneging and defer head skb's loss recovery to standard loss recovery
1070  * procedure that will eventually trigger (nothing forbids us doing this).
1071  *
1072  * Implements also blockage to start_seq wrap-around. Problem lies in the
1073  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1074  * there's no guarantee that it will be before snd_nxt (n). The problem
1075  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1076  * wrap (s_w):
1077  *
1078  *         <- outs wnd ->                          <- wrapzone ->
1079  *         u     e      n                         u_w   e_w  s n_w
1080  *         |     |      |                          |     |   |  |
1081  * |<------------+------+----- TCP seqno space --------------+---------->|
1082  * ...-- <2^31 ->|                                           |<--------...
1083  * ...---- >2^31 ------>|                                    |<--------...
1084  *
1085  * Current code wouldn't be vulnerable but it's better still to discard such
1086  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1087  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1088  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1089  * equal to the ideal case (infinite seqno space without wrap caused issues).
1090  *
1091  * With D-SACK the lower bound is extended to cover sequence space below
1092  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1093  * again, D-SACK block must not to go across snd_una (for the same reason as
1094  * for the normal SACK blocks, explained above). But there all simplicity
1095  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1096  * fully below undo_marker they do not affect behavior in anyway and can
1097  * therefore be safely ignored. In rare cases (which are more or less
1098  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1099  * fragmentation and packet reordering past skb's retransmission. To consider
1100  * them correctly, the acceptable range must be extended even more though
1101  * the exact amount is rather hard to quantify. However, tp->max_window can
1102  * be used as an exaggerated estimate.
1103  */
1104 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1105 				  u32 start_seq, u32 end_seq)
1106 {
1107 	/* Too far in future, or reversed (interpretation is ambiguous) */
1108 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1109 		return 0;
1110 
1111 	/* Nasty start_seq wrap-around check (see comments above) */
1112 	if (!before(start_seq, tp->snd_nxt))
1113 		return 0;
1114 
1115 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1116 	 * start_seq == snd_una is non-sensical (see comments above)
1117 	 */
1118 	if (after(start_seq, tp->snd_una))
1119 		return 1;
1120 
1121 	if (!is_dsack || !tp->undo_marker)
1122 		return 0;
1123 
1124 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1125 	if (!after(end_seq, tp->snd_una))
1126 		return 0;
1127 
1128 	if (!before(start_seq, tp->undo_marker))
1129 		return 1;
1130 
1131 	/* Too old */
1132 	if (!after(end_seq, tp->undo_marker))
1133 		return 0;
1134 
1135 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1136 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1137 	 */
1138 	return !before(start_seq, end_seq - tp->max_window);
1139 }
1140 
1141 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1142  * Event "C". Later note: FACK people cheated me again 8), we have to account
1143  * for reordering! Ugly, but should help.
1144  *
1145  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1146  * less than what is now known to be received by the other end (derived from
1147  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1148  * retransmitted skbs to avoid some costly processing per ACKs.
1149  */
1150 static void tcp_mark_lost_retrans(struct sock *sk)
1151 {
1152 	const struct inet_connection_sock *icsk = inet_csk(sk);
1153 	struct tcp_sock *tp = tcp_sk(sk);
1154 	struct sk_buff *skb;
1155 	int cnt = 0;
1156 	u32 new_low_seq = tp->snd_nxt;
1157 	u32 received_upto = tcp_highest_sack_seq(tp);
1158 
1159 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1160 	    !after(received_upto, tp->lost_retrans_low) ||
1161 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1162 		return;
1163 
1164 	tcp_for_write_queue(skb, sk) {
1165 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1166 
1167 		if (skb == tcp_send_head(sk))
1168 			break;
1169 		if (cnt == tp->retrans_out)
1170 			break;
1171 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1172 			continue;
1173 
1174 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1175 			continue;
1176 
1177 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1178 		 * constraint here (see above) but figuring out that at
1179 		 * least tp->reordering SACK blocks reside between ack_seq
1180 		 * and received_upto is not easy task to do cheaply with
1181 		 * the available datastructures.
1182 		 *
1183 		 * Whether FACK should check here for tp->reordering segs
1184 		 * in-between one could argue for either way (it would be
1185 		 * rather simple to implement as we could count fack_count
1186 		 * during the walk and do tp->fackets_out - fack_count).
1187 		 */
1188 		if (after(received_upto, ack_seq)) {
1189 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1190 			tp->retrans_out -= tcp_skb_pcount(skb);
1191 
1192 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1193 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1194 		} else {
1195 			if (before(ack_seq, new_low_seq))
1196 				new_low_seq = ack_seq;
1197 			cnt += tcp_skb_pcount(skb);
1198 		}
1199 	}
1200 
1201 	if (tp->retrans_out)
1202 		tp->lost_retrans_low = new_low_seq;
1203 }
1204 
1205 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1206 			   struct tcp_sack_block_wire *sp, int num_sacks,
1207 			   u32 prior_snd_una)
1208 {
1209 	struct tcp_sock *tp = tcp_sk(sk);
1210 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1211 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1212 	int dup_sack = 0;
1213 
1214 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1215 		dup_sack = 1;
1216 		tcp_dsack_seen(tp);
1217 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1218 	} else if (num_sacks > 1) {
1219 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1220 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1221 
1222 		if (!after(end_seq_0, end_seq_1) &&
1223 		    !before(start_seq_0, start_seq_1)) {
1224 			dup_sack = 1;
1225 			tcp_dsack_seen(tp);
1226 			NET_INC_STATS_BH(sock_net(sk),
1227 					LINUX_MIB_TCPDSACKOFORECV);
1228 		}
1229 	}
1230 
1231 	/* D-SACK for already forgotten data... Do dumb counting. */
1232 	if (dup_sack &&
1233 	    !after(end_seq_0, prior_snd_una) &&
1234 	    after(end_seq_0, tp->undo_marker))
1235 		tp->undo_retrans--;
1236 
1237 	return dup_sack;
1238 }
1239 
1240 struct tcp_sacktag_state {
1241 	int reord;
1242 	int fack_count;
1243 	int flag;
1244 };
1245 
1246 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1247  * the incoming SACK may not exactly match but we can find smaller MSS
1248  * aligned portion of it that matches. Therefore we might need to fragment
1249  * which may fail and creates some hassle (caller must handle error case
1250  * returns).
1251  *
1252  * FIXME: this could be merged to shift decision code
1253  */
1254 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1255 				 u32 start_seq, u32 end_seq)
1256 {
1257 	int in_sack, err;
1258 	unsigned int pkt_len;
1259 	unsigned int mss;
1260 
1261 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1262 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1263 
1264 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1265 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1266 		mss = tcp_skb_mss(skb);
1267 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1268 
1269 		if (!in_sack) {
1270 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1271 			if (pkt_len < mss)
1272 				pkt_len = mss;
1273 		} else {
1274 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1275 			if (pkt_len < mss)
1276 				return -EINVAL;
1277 		}
1278 
1279 		/* Round if necessary so that SACKs cover only full MSSes
1280 		 * and/or the remaining small portion (if present)
1281 		 */
1282 		if (pkt_len > mss) {
1283 			unsigned int new_len = (pkt_len / mss) * mss;
1284 			if (!in_sack && new_len < pkt_len) {
1285 				new_len += mss;
1286 				if (new_len > skb->len)
1287 					return 0;
1288 			}
1289 			pkt_len = new_len;
1290 		}
1291 		err = tcp_fragment(sk, skb, pkt_len, mss);
1292 		if (err < 0)
1293 			return err;
1294 	}
1295 
1296 	return in_sack;
1297 }
1298 
1299 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1300 			  struct tcp_sacktag_state *state,
1301 			  int dup_sack, int pcount)
1302 {
1303 	struct tcp_sock *tp = tcp_sk(sk);
1304 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1305 	int fack_count = state->fack_count;
1306 
1307 	/* Account D-SACK for retransmitted packet. */
1308 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1309 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1310 			tp->undo_retrans--;
1311 		if (sacked & TCPCB_SACKED_ACKED)
1312 			state->reord = min(fack_count, state->reord);
1313 	}
1314 
1315 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1316 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1317 		return sacked;
1318 
1319 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1320 		if (sacked & TCPCB_SACKED_RETRANS) {
1321 			/* If the segment is not tagged as lost,
1322 			 * we do not clear RETRANS, believing
1323 			 * that retransmission is still in flight.
1324 			 */
1325 			if (sacked & TCPCB_LOST) {
1326 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1327 				tp->lost_out -= pcount;
1328 				tp->retrans_out -= pcount;
1329 			}
1330 		} else {
1331 			if (!(sacked & TCPCB_RETRANS)) {
1332 				/* New sack for not retransmitted frame,
1333 				 * which was in hole. It is reordering.
1334 				 */
1335 				if (before(TCP_SKB_CB(skb)->seq,
1336 					   tcp_highest_sack_seq(tp)))
1337 					state->reord = min(fack_count,
1338 							   state->reord);
1339 
1340 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1341 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1342 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1343 			}
1344 
1345 			if (sacked & TCPCB_LOST) {
1346 				sacked &= ~TCPCB_LOST;
1347 				tp->lost_out -= pcount;
1348 			}
1349 		}
1350 
1351 		sacked |= TCPCB_SACKED_ACKED;
1352 		state->flag |= FLAG_DATA_SACKED;
1353 		tp->sacked_out += pcount;
1354 
1355 		fack_count += pcount;
1356 
1357 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1358 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1359 		    before(TCP_SKB_CB(skb)->seq,
1360 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1361 			tp->lost_cnt_hint += pcount;
1362 
1363 		if (fack_count > tp->fackets_out)
1364 			tp->fackets_out = fack_count;
1365 	}
1366 
1367 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1368 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1369 	 * are accounted above as well.
1370 	 */
1371 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1372 		sacked &= ~TCPCB_SACKED_RETRANS;
1373 		tp->retrans_out -= pcount;
1374 	}
1375 
1376 	return sacked;
1377 }
1378 
1379 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1380 			   struct tcp_sacktag_state *state,
1381 			   unsigned int pcount, int shifted, int mss,
1382 			   int dup_sack)
1383 {
1384 	struct tcp_sock *tp = tcp_sk(sk);
1385 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1386 
1387 	BUG_ON(!pcount);
1388 
1389 	/* Tweak before seqno plays */
1390 	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1391 	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1392 		tp->lost_cnt_hint += pcount;
1393 
1394 	TCP_SKB_CB(prev)->end_seq += shifted;
1395 	TCP_SKB_CB(skb)->seq += shifted;
1396 
1397 	skb_shinfo(prev)->gso_segs += pcount;
1398 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1399 	skb_shinfo(skb)->gso_segs -= pcount;
1400 
1401 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1402 	 * in theory this shouldn't be necessary but as long as DSACK
1403 	 * code can come after this skb later on it's better to keep
1404 	 * setting gso_size to something.
1405 	 */
1406 	if (!skb_shinfo(prev)->gso_size) {
1407 		skb_shinfo(prev)->gso_size = mss;
1408 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1409 	}
1410 
1411 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1412 	if (skb_shinfo(skb)->gso_segs <= 1) {
1413 		skb_shinfo(skb)->gso_size = 0;
1414 		skb_shinfo(skb)->gso_type = 0;
1415 	}
1416 
1417 	/* We discard results */
1418 	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1419 
1420 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1421 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1422 
1423 	if (skb->len > 0) {
1424 		BUG_ON(!tcp_skb_pcount(skb));
1425 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1426 		return 0;
1427 	}
1428 
1429 	/* Whole SKB was eaten :-) */
1430 
1431 	if (skb == tp->retransmit_skb_hint)
1432 		tp->retransmit_skb_hint = prev;
1433 	if (skb == tp->scoreboard_skb_hint)
1434 		tp->scoreboard_skb_hint = prev;
1435 	if (skb == tp->lost_skb_hint) {
1436 		tp->lost_skb_hint = prev;
1437 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1438 	}
1439 
1440 	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1441 	if (skb == tcp_highest_sack(sk))
1442 		tcp_advance_highest_sack(sk, skb);
1443 
1444 	tcp_unlink_write_queue(skb, sk);
1445 	sk_wmem_free_skb(sk, skb);
1446 
1447 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1448 
1449 	return 1;
1450 }
1451 
1452 /* I wish gso_size would have a bit more sane initialization than
1453  * something-or-zero which complicates things
1454  */
1455 static int tcp_skb_seglen(struct sk_buff *skb)
1456 {
1457 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1458 }
1459 
1460 /* Shifting pages past head area doesn't work */
1461 static int skb_can_shift(struct sk_buff *skb)
1462 {
1463 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1464 }
1465 
1466 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1467  * skb.
1468  */
1469 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1470 					  struct tcp_sacktag_state *state,
1471 					  u32 start_seq, u32 end_seq,
1472 					  int dup_sack)
1473 {
1474 	struct tcp_sock *tp = tcp_sk(sk);
1475 	struct sk_buff *prev;
1476 	int mss;
1477 	int pcount = 0;
1478 	int len;
1479 	int in_sack;
1480 
1481 	if (!sk_can_gso(sk))
1482 		goto fallback;
1483 
1484 	/* Normally R but no L won't result in plain S */
1485 	if (!dup_sack &&
1486 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1487 		goto fallback;
1488 	if (!skb_can_shift(skb))
1489 		goto fallback;
1490 	/* This frame is about to be dropped (was ACKed). */
1491 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1492 		goto fallback;
1493 
1494 	/* Can only happen with delayed DSACK + discard craziness */
1495 	if (unlikely(skb == tcp_write_queue_head(sk)))
1496 		goto fallback;
1497 	prev = tcp_write_queue_prev(sk, skb);
1498 
1499 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1500 		goto fallback;
1501 
1502 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1503 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1504 
1505 	if (in_sack) {
1506 		len = skb->len;
1507 		pcount = tcp_skb_pcount(skb);
1508 		mss = tcp_skb_seglen(skb);
1509 
1510 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1511 		 * drop this restriction as unnecessary
1512 		 */
1513 		if (mss != tcp_skb_seglen(prev))
1514 			goto fallback;
1515 	} else {
1516 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1517 			goto noop;
1518 		/* CHECKME: This is non-MSS split case only?, this will
1519 		 * cause skipped skbs due to advancing loop btw, original
1520 		 * has that feature too
1521 		 */
1522 		if (tcp_skb_pcount(skb) <= 1)
1523 			goto noop;
1524 
1525 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1526 		if (!in_sack) {
1527 			/* TODO: head merge to next could be attempted here
1528 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1529 			 * though it might not be worth of the additional hassle
1530 			 *
1531 			 * ...we can probably just fallback to what was done
1532 			 * previously. We could try merging non-SACKed ones
1533 			 * as well but it probably isn't going to buy off
1534 			 * because later SACKs might again split them, and
1535 			 * it would make skb timestamp tracking considerably
1536 			 * harder problem.
1537 			 */
1538 			goto fallback;
1539 		}
1540 
1541 		len = end_seq - TCP_SKB_CB(skb)->seq;
1542 		BUG_ON(len < 0);
1543 		BUG_ON(len > skb->len);
1544 
1545 		/* MSS boundaries should be honoured or else pcount will
1546 		 * severely break even though it makes things bit trickier.
1547 		 * Optimize common case to avoid most of the divides
1548 		 */
1549 		mss = tcp_skb_mss(skb);
1550 
1551 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1552 		 * drop this restriction as unnecessary
1553 		 */
1554 		if (mss != tcp_skb_seglen(prev))
1555 			goto fallback;
1556 
1557 		if (len == mss) {
1558 			pcount = 1;
1559 		} else if (len < mss) {
1560 			goto noop;
1561 		} else {
1562 			pcount = len / mss;
1563 			len = pcount * mss;
1564 		}
1565 	}
1566 
1567 	if (!skb_shift(prev, skb, len))
1568 		goto fallback;
1569 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1570 		goto out;
1571 
1572 	/* Hole filled allows collapsing with the next as well, this is very
1573 	 * useful when hole on every nth skb pattern happens
1574 	 */
1575 	if (prev == tcp_write_queue_tail(sk))
1576 		goto out;
1577 	skb = tcp_write_queue_next(sk, prev);
1578 
1579 	if (!skb_can_shift(skb) ||
1580 	    (skb == tcp_send_head(sk)) ||
1581 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1582 	    (mss != tcp_skb_seglen(skb)))
1583 		goto out;
1584 
1585 	len = skb->len;
1586 	if (skb_shift(prev, skb, len)) {
1587 		pcount += tcp_skb_pcount(skb);
1588 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1589 	}
1590 
1591 out:
1592 	state->fack_count += pcount;
1593 	return prev;
1594 
1595 noop:
1596 	return skb;
1597 
1598 fallback:
1599 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1600 	return NULL;
1601 }
1602 
1603 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1604 					struct tcp_sack_block *next_dup,
1605 					struct tcp_sacktag_state *state,
1606 					u32 start_seq, u32 end_seq,
1607 					int dup_sack_in)
1608 {
1609 	struct tcp_sock *tp = tcp_sk(sk);
1610 	struct sk_buff *tmp;
1611 
1612 	tcp_for_write_queue_from(skb, sk) {
1613 		int in_sack = 0;
1614 		int dup_sack = dup_sack_in;
1615 
1616 		if (skb == tcp_send_head(sk))
1617 			break;
1618 
1619 		/* queue is in-order => we can short-circuit the walk early */
1620 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1621 			break;
1622 
1623 		if ((next_dup != NULL) &&
1624 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1625 			in_sack = tcp_match_skb_to_sack(sk, skb,
1626 							next_dup->start_seq,
1627 							next_dup->end_seq);
1628 			if (in_sack > 0)
1629 				dup_sack = 1;
1630 		}
1631 
1632 		/* skb reference here is a bit tricky to get right, since
1633 		 * shifting can eat and free both this skb and the next,
1634 		 * so not even _safe variant of the loop is enough.
1635 		 */
1636 		if (in_sack <= 0) {
1637 			tmp = tcp_shift_skb_data(sk, skb, state,
1638 						 start_seq, end_seq, dup_sack);
1639 			if (tmp != NULL) {
1640 				if (tmp != skb) {
1641 					skb = tmp;
1642 					continue;
1643 				}
1644 
1645 				in_sack = 0;
1646 			} else {
1647 				in_sack = tcp_match_skb_to_sack(sk, skb,
1648 								start_seq,
1649 								end_seq);
1650 			}
1651 		}
1652 
1653 		if (unlikely(in_sack < 0))
1654 			break;
1655 
1656 		if (in_sack) {
1657 			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1658 								  state,
1659 								  dup_sack,
1660 								  tcp_skb_pcount(skb));
1661 
1662 			if (!before(TCP_SKB_CB(skb)->seq,
1663 				    tcp_highest_sack_seq(tp)))
1664 				tcp_advance_highest_sack(sk, skb);
1665 		}
1666 
1667 		state->fack_count += tcp_skb_pcount(skb);
1668 	}
1669 	return skb;
1670 }
1671 
1672 /* Avoid all extra work that is being done by sacktag while walking in
1673  * a normal way
1674  */
1675 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1676 					struct tcp_sacktag_state *state,
1677 					u32 skip_to_seq)
1678 {
1679 	tcp_for_write_queue_from(skb, sk) {
1680 		if (skb == tcp_send_head(sk))
1681 			break;
1682 
1683 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1684 			break;
1685 
1686 		state->fack_count += tcp_skb_pcount(skb);
1687 	}
1688 	return skb;
1689 }
1690 
1691 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1692 						struct sock *sk,
1693 						struct tcp_sack_block *next_dup,
1694 						struct tcp_sacktag_state *state,
1695 						u32 skip_to_seq)
1696 {
1697 	if (next_dup == NULL)
1698 		return skb;
1699 
1700 	if (before(next_dup->start_seq, skip_to_seq)) {
1701 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1702 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1703 				       next_dup->start_seq, next_dup->end_seq,
1704 				       1);
1705 	}
1706 
1707 	return skb;
1708 }
1709 
1710 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1711 {
1712 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1713 }
1714 
1715 static int
1716 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1717 			u32 prior_snd_una)
1718 {
1719 	const struct inet_connection_sock *icsk = inet_csk(sk);
1720 	struct tcp_sock *tp = tcp_sk(sk);
1721 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1722 			      TCP_SKB_CB(ack_skb)->sacked);
1723 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1724 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1725 	struct tcp_sack_block *cache;
1726 	struct tcp_sacktag_state state;
1727 	struct sk_buff *skb;
1728 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1729 	int used_sacks;
1730 	int found_dup_sack = 0;
1731 	int i, j;
1732 	int first_sack_index;
1733 
1734 	state.flag = 0;
1735 	state.reord = tp->packets_out;
1736 
1737 	if (!tp->sacked_out) {
1738 		if (WARN_ON(tp->fackets_out))
1739 			tp->fackets_out = 0;
1740 		tcp_highest_sack_reset(sk);
1741 	}
1742 
1743 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1744 					 num_sacks, prior_snd_una);
1745 	if (found_dup_sack)
1746 		state.flag |= FLAG_DSACKING_ACK;
1747 
1748 	/* Eliminate too old ACKs, but take into
1749 	 * account more or less fresh ones, they can
1750 	 * contain valid SACK info.
1751 	 */
1752 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1753 		return 0;
1754 
1755 	if (!tp->packets_out)
1756 		goto out;
1757 
1758 	used_sacks = 0;
1759 	first_sack_index = 0;
1760 	for (i = 0; i < num_sacks; i++) {
1761 		int dup_sack = !i && found_dup_sack;
1762 
1763 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1764 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1765 
1766 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1767 					    sp[used_sacks].start_seq,
1768 					    sp[used_sacks].end_seq)) {
1769 			int mib_idx;
1770 
1771 			if (dup_sack) {
1772 				if (!tp->undo_marker)
1773 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1774 				else
1775 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1776 			} else {
1777 				/* Don't count olds caused by ACK reordering */
1778 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1779 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1780 					continue;
1781 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1782 			}
1783 
1784 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1785 			if (i == 0)
1786 				first_sack_index = -1;
1787 			continue;
1788 		}
1789 
1790 		/* Ignore very old stuff early */
1791 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1792 			continue;
1793 
1794 		used_sacks++;
1795 	}
1796 
1797 	/* order SACK blocks to allow in order walk of the retrans queue */
1798 	for (i = used_sacks - 1; i > 0; i--) {
1799 		for (j = 0; j < i; j++) {
1800 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1801 				swap(sp[j], sp[j + 1]);
1802 
1803 				/* Track where the first SACK block goes to */
1804 				if (j == first_sack_index)
1805 					first_sack_index = j + 1;
1806 			}
1807 		}
1808 	}
1809 
1810 	skb = tcp_write_queue_head(sk);
1811 	state.fack_count = 0;
1812 	i = 0;
1813 
1814 	if (!tp->sacked_out) {
1815 		/* It's already past, so skip checking against it */
1816 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1817 	} else {
1818 		cache = tp->recv_sack_cache;
1819 		/* Skip empty blocks in at head of the cache */
1820 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1821 		       !cache->end_seq)
1822 			cache++;
1823 	}
1824 
1825 	while (i < used_sacks) {
1826 		u32 start_seq = sp[i].start_seq;
1827 		u32 end_seq = sp[i].end_seq;
1828 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1829 		struct tcp_sack_block *next_dup = NULL;
1830 
1831 		if (found_dup_sack && ((i + 1) == first_sack_index))
1832 			next_dup = &sp[i + 1];
1833 
1834 		/* Event "B" in the comment above. */
1835 		if (after(end_seq, tp->high_seq))
1836 			state.flag |= FLAG_DATA_LOST;
1837 
1838 		/* Skip too early cached blocks */
1839 		while (tcp_sack_cache_ok(tp, cache) &&
1840 		       !before(start_seq, cache->end_seq))
1841 			cache++;
1842 
1843 		/* Can skip some work by looking recv_sack_cache? */
1844 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1845 		    after(end_seq, cache->start_seq)) {
1846 
1847 			/* Head todo? */
1848 			if (before(start_seq, cache->start_seq)) {
1849 				skb = tcp_sacktag_skip(skb, sk, &state,
1850 						       start_seq);
1851 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1852 						       &state,
1853 						       start_seq,
1854 						       cache->start_seq,
1855 						       dup_sack);
1856 			}
1857 
1858 			/* Rest of the block already fully processed? */
1859 			if (!after(end_seq, cache->end_seq))
1860 				goto advance_sp;
1861 
1862 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1863 						       &state,
1864 						       cache->end_seq);
1865 
1866 			/* ...tail remains todo... */
1867 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1868 				/* ...but better entrypoint exists! */
1869 				skb = tcp_highest_sack(sk);
1870 				if (skb == NULL)
1871 					break;
1872 				state.fack_count = tp->fackets_out;
1873 				cache++;
1874 				goto walk;
1875 			}
1876 
1877 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1878 			/* Check overlap against next cached too (past this one already) */
1879 			cache++;
1880 			continue;
1881 		}
1882 
1883 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1884 			skb = tcp_highest_sack(sk);
1885 			if (skb == NULL)
1886 				break;
1887 			state.fack_count = tp->fackets_out;
1888 		}
1889 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1890 
1891 walk:
1892 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1893 				       start_seq, end_seq, dup_sack);
1894 
1895 advance_sp:
1896 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1897 		 * due to in-order walk
1898 		 */
1899 		if (after(end_seq, tp->frto_highmark))
1900 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1901 
1902 		i++;
1903 	}
1904 
1905 	/* Clear the head of the cache sack blocks so we can skip it next time */
1906 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1907 		tp->recv_sack_cache[i].start_seq = 0;
1908 		tp->recv_sack_cache[i].end_seq = 0;
1909 	}
1910 	for (j = 0; j < used_sacks; j++)
1911 		tp->recv_sack_cache[i++] = sp[j];
1912 
1913 	tcp_mark_lost_retrans(sk);
1914 
1915 	tcp_verify_left_out(tp);
1916 
1917 	if ((state.reord < tp->fackets_out) &&
1918 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1919 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1920 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1921 
1922 out:
1923 
1924 #if FASTRETRANS_DEBUG > 0
1925 	WARN_ON((int)tp->sacked_out < 0);
1926 	WARN_ON((int)tp->lost_out < 0);
1927 	WARN_ON((int)tp->retrans_out < 0);
1928 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1929 #endif
1930 	return state.flag;
1931 }
1932 
1933 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1934  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1935  */
1936 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1937 {
1938 	u32 holes;
1939 
1940 	holes = max(tp->lost_out, 1U);
1941 	holes = min(holes, tp->packets_out);
1942 
1943 	if ((tp->sacked_out + holes) > tp->packets_out) {
1944 		tp->sacked_out = tp->packets_out - holes;
1945 		return 1;
1946 	}
1947 	return 0;
1948 }
1949 
1950 /* If we receive more dupacks than we expected counting segments
1951  * in assumption of absent reordering, interpret this as reordering.
1952  * The only another reason could be bug in receiver TCP.
1953  */
1954 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1955 {
1956 	struct tcp_sock *tp = tcp_sk(sk);
1957 	if (tcp_limit_reno_sacked(tp))
1958 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1959 }
1960 
1961 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1962 
1963 static void tcp_add_reno_sack(struct sock *sk)
1964 {
1965 	struct tcp_sock *tp = tcp_sk(sk);
1966 	tp->sacked_out++;
1967 	tcp_check_reno_reordering(sk, 0);
1968 	tcp_verify_left_out(tp);
1969 }
1970 
1971 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1972 
1973 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1974 {
1975 	struct tcp_sock *tp = tcp_sk(sk);
1976 
1977 	if (acked > 0) {
1978 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1979 		if (acked - 1 >= tp->sacked_out)
1980 			tp->sacked_out = 0;
1981 		else
1982 			tp->sacked_out -= acked - 1;
1983 	}
1984 	tcp_check_reno_reordering(sk, acked);
1985 	tcp_verify_left_out(tp);
1986 }
1987 
1988 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1989 {
1990 	tp->sacked_out = 0;
1991 }
1992 
1993 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1994 {
1995 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1996 }
1997 
1998 /* F-RTO can only be used if TCP has never retransmitted anything other than
1999  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2000  */
2001 int tcp_use_frto(struct sock *sk)
2002 {
2003 	const struct tcp_sock *tp = tcp_sk(sk);
2004 	const struct inet_connection_sock *icsk = inet_csk(sk);
2005 	struct sk_buff *skb;
2006 
2007 	if (!sysctl_tcp_frto)
2008 		return 0;
2009 
2010 	/* MTU probe and F-RTO won't really play nicely along currently */
2011 	if (icsk->icsk_mtup.probe_size)
2012 		return 0;
2013 
2014 	if (tcp_is_sackfrto(tp))
2015 		return 1;
2016 
2017 	/* Avoid expensive walking of rexmit queue if possible */
2018 	if (tp->retrans_out > 1)
2019 		return 0;
2020 
2021 	skb = tcp_write_queue_head(sk);
2022 	if (tcp_skb_is_last(sk, skb))
2023 		return 1;
2024 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2025 	tcp_for_write_queue_from(skb, sk) {
2026 		if (skb == tcp_send_head(sk))
2027 			break;
2028 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2029 			return 0;
2030 		/* Short-circuit when first non-SACKed skb has been checked */
2031 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2032 			break;
2033 	}
2034 	return 1;
2035 }
2036 
2037 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2038  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2039  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2040  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2041  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2042  * bits are handled if the Loss state is really to be entered (in
2043  * tcp_enter_frto_loss).
2044  *
2045  * Do like tcp_enter_loss() would; when RTO expires the second time it
2046  * does:
2047  *  "Reduce ssthresh if it has not yet been made inside this window."
2048  */
2049 void tcp_enter_frto(struct sock *sk)
2050 {
2051 	const struct inet_connection_sock *icsk = inet_csk(sk);
2052 	struct tcp_sock *tp = tcp_sk(sk);
2053 	struct sk_buff *skb;
2054 
2055 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2056 	    tp->snd_una == tp->high_seq ||
2057 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2058 	     !icsk->icsk_retransmits)) {
2059 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2060 		/* Our state is too optimistic in ssthresh() call because cwnd
2061 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2062 		 * recovery has not yet completed. Pattern would be this: RTO,
2063 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2064 		 * up here twice).
2065 		 * RFC4138 should be more specific on what to do, even though
2066 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2067 		 * due to back-off and complexity of triggering events ...
2068 		 */
2069 		if (tp->frto_counter) {
2070 			u32 stored_cwnd;
2071 			stored_cwnd = tp->snd_cwnd;
2072 			tp->snd_cwnd = 2;
2073 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2074 			tp->snd_cwnd = stored_cwnd;
2075 		} else {
2076 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2077 		}
2078 		/* ... in theory, cong.control module could do "any tricks" in
2079 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2080 		 * counter would have to be faked before the call occurs. We
2081 		 * consider that too expensive, unlikely and hacky, so modules
2082 		 * using these in ssthresh() must deal these incompatibility
2083 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2084 		 */
2085 		tcp_ca_event(sk, CA_EVENT_FRTO);
2086 	}
2087 
2088 	tp->undo_marker = tp->snd_una;
2089 	tp->undo_retrans = 0;
2090 
2091 	skb = tcp_write_queue_head(sk);
2092 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2093 		tp->undo_marker = 0;
2094 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2095 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2096 		tp->retrans_out -= tcp_skb_pcount(skb);
2097 	}
2098 	tcp_verify_left_out(tp);
2099 
2100 	/* Too bad if TCP was application limited */
2101 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2102 
2103 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2104 	 * The last condition is necessary at least in tp->frto_counter case.
2105 	 */
2106 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2107 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2108 	    after(tp->high_seq, tp->snd_una)) {
2109 		tp->frto_highmark = tp->high_seq;
2110 	} else {
2111 		tp->frto_highmark = tp->snd_nxt;
2112 	}
2113 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2114 	tp->high_seq = tp->snd_nxt;
2115 	tp->frto_counter = 1;
2116 }
2117 
2118 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2119  * which indicates that we should follow the traditional RTO recovery,
2120  * i.e. mark everything lost and do go-back-N retransmission.
2121  */
2122 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2123 {
2124 	struct tcp_sock *tp = tcp_sk(sk);
2125 	struct sk_buff *skb;
2126 
2127 	tp->lost_out = 0;
2128 	tp->retrans_out = 0;
2129 	if (tcp_is_reno(tp))
2130 		tcp_reset_reno_sack(tp);
2131 
2132 	tcp_for_write_queue(skb, sk) {
2133 		if (skb == tcp_send_head(sk))
2134 			break;
2135 
2136 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2137 		/*
2138 		 * Count the retransmission made on RTO correctly (only when
2139 		 * waiting for the first ACK and did not get it)...
2140 		 */
2141 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2142 			/* For some reason this R-bit might get cleared? */
2143 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2144 				tp->retrans_out += tcp_skb_pcount(skb);
2145 			/* ...enter this if branch just for the first segment */
2146 			flag |= FLAG_DATA_ACKED;
2147 		} else {
2148 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2149 				tp->undo_marker = 0;
2150 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2151 		}
2152 
2153 		/* Marking forward transmissions that were made after RTO lost
2154 		 * can cause unnecessary retransmissions in some scenarios,
2155 		 * SACK blocks will mitigate that in some but not in all cases.
2156 		 * We used to not mark them but it was causing break-ups with
2157 		 * receivers that do only in-order receival.
2158 		 *
2159 		 * TODO: we could detect presence of such receiver and select
2160 		 * different behavior per flow.
2161 		 */
2162 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2163 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2164 			tp->lost_out += tcp_skb_pcount(skb);
2165 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2166 		}
2167 	}
2168 	tcp_verify_left_out(tp);
2169 
2170 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2171 	tp->snd_cwnd_cnt = 0;
2172 	tp->snd_cwnd_stamp = tcp_time_stamp;
2173 	tp->frto_counter = 0;
2174 	tp->bytes_acked = 0;
2175 
2176 	tp->reordering = min_t(unsigned int, tp->reordering,
2177 			       sysctl_tcp_reordering);
2178 	tcp_set_ca_state(sk, TCP_CA_Loss);
2179 	tp->high_seq = tp->snd_nxt;
2180 	TCP_ECN_queue_cwr(tp);
2181 
2182 	tcp_clear_all_retrans_hints(tp);
2183 }
2184 
2185 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2186 {
2187 	tp->retrans_out = 0;
2188 	tp->lost_out = 0;
2189 
2190 	tp->undo_marker = 0;
2191 	tp->undo_retrans = 0;
2192 }
2193 
2194 void tcp_clear_retrans(struct tcp_sock *tp)
2195 {
2196 	tcp_clear_retrans_partial(tp);
2197 
2198 	tp->fackets_out = 0;
2199 	tp->sacked_out = 0;
2200 }
2201 
2202 /* Enter Loss state. If "how" is not zero, forget all SACK information
2203  * and reset tags completely, otherwise preserve SACKs. If receiver
2204  * dropped its ofo queue, we will know this due to reneging detection.
2205  */
2206 void tcp_enter_loss(struct sock *sk, int how)
2207 {
2208 	const struct inet_connection_sock *icsk = inet_csk(sk);
2209 	struct tcp_sock *tp = tcp_sk(sk);
2210 	struct sk_buff *skb;
2211 
2212 	/* Reduce ssthresh if it has not yet been made inside this window. */
2213 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2214 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2215 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2216 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2217 		tcp_ca_event(sk, CA_EVENT_LOSS);
2218 	}
2219 	tp->snd_cwnd	   = 1;
2220 	tp->snd_cwnd_cnt   = 0;
2221 	tp->snd_cwnd_stamp = tcp_time_stamp;
2222 
2223 	tp->bytes_acked = 0;
2224 	tcp_clear_retrans_partial(tp);
2225 
2226 	if (tcp_is_reno(tp))
2227 		tcp_reset_reno_sack(tp);
2228 
2229 	if (!how) {
2230 		/* Push undo marker, if it was plain RTO and nothing
2231 		 * was retransmitted. */
2232 		tp->undo_marker = tp->snd_una;
2233 	} else {
2234 		tp->sacked_out = 0;
2235 		tp->fackets_out = 0;
2236 	}
2237 	tcp_clear_all_retrans_hints(tp);
2238 
2239 	tcp_for_write_queue(skb, sk) {
2240 		if (skb == tcp_send_head(sk))
2241 			break;
2242 
2243 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2244 			tp->undo_marker = 0;
2245 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2246 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2247 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2248 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2249 			tp->lost_out += tcp_skb_pcount(skb);
2250 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2251 		}
2252 	}
2253 	tcp_verify_left_out(tp);
2254 
2255 	tp->reordering = min_t(unsigned int, tp->reordering,
2256 			       sysctl_tcp_reordering);
2257 	tcp_set_ca_state(sk, TCP_CA_Loss);
2258 	tp->high_seq = tp->snd_nxt;
2259 	TCP_ECN_queue_cwr(tp);
2260 	/* Abort F-RTO algorithm if one is in progress */
2261 	tp->frto_counter = 0;
2262 }
2263 
2264 /* If ACK arrived pointing to a remembered SACK, it means that our
2265  * remembered SACKs do not reflect real state of receiver i.e.
2266  * receiver _host_ is heavily congested (or buggy).
2267  *
2268  * Do processing similar to RTO timeout.
2269  */
2270 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2271 {
2272 	if (flag & FLAG_SACK_RENEGING) {
2273 		struct inet_connection_sock *icsk = inet_csk(sk);
2274 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2275 
2276 		tcp_enter_loss(sk, 1);
2277 		icsk->icsk_retransmits++;
2278 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2279 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2280 					  icsk->icsk_rto, TCP_RTO_MAX);
2281 		return 1;
2282 	}
2283 	return 0;
2284 }
2285 
2286 static inline int tcp_fackets_out(struct tcp_sock *tp)
2287 {
2288 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2289 }
2290 
2291 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2292  * counter when SACK is enabled (without SACK, sacked_out is used for
2293  * that purpose).
2294  *
2295  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2296  * segments up to the highest received SACK block so far and holes in
2297  * between them.
2298  *
2299  * With reordering, holes may still be in flight, so RFC3517 recovery
2300  * uses pure sacked_out (total number of SACKed segments) even though
2301  * it violates the RFC that uses duplicate ACKs, often these are equal
2302  * but when e.g. out-of-window ACKs or packet duplication occurs,
2303  * they differ. Since neither occurs due to loss, TCP should really
2304  * ignore them.
2305  */
2306 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2307 {
2308 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2309 }
2310 
2311 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2312 {
2313 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2314 }
2315 
2316 static inline int tcp_head_timedout(struct sock *sk)
2317 {
2318 	struct tcp_sock *tp = tcp_sk(sk);
2319 
2320 	return tp->packets_out &&
2321 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2322 }
2323 
2324 /* Linux NewReno/SACK/FACK/ECN state machine.
2325  * --------------------------------------
2326  *
2327  * "Open"	Normal state, no dubious events, fast path.
2328  * "Disorder"   In all the respects it is "Open",
2329  *		but requires a bit more attention. It is entered when
2330  *		we see some SACKs or dupacks. It is split of "Open"
2331  *		mainly to move some processing from fast path to slow one.
2332  * "CWR"	CWND was reduced due to some Congestion Notification event.
2333  *		It can be ECN, ICMP source quench, local device congestion.
2334  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2335  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2336  *
2337  * tcp_fastretrans_alert() is entered:
2338  * - each incoming ACK, if state is not "Open"
2339  * - when arrived ACK is unusual, namely:
2340  *	* SACK
2341  *	* Duplicate ACK.
2342  *	* ECN ECE.
2343  *
2344  * Counting packets in flight is pretty simple.
2345  *
2346  *	in_flight = packets_out - left_out + retrans_out
2347  *
2348  *	packets_out is SND.NXT-SND.UNA counted in packets.
2349  *
2350  *	retrans_out is number of retransmitted segments.
2351  *
2352  *	left_out is number of segments left network, but not ACKed yet.
2353  *
2354  *		left_out = sacked_out + lost_out
2355  *
2356  *     sacked_out: Packets, which arrived to receiver out of order
2357  *		   and hence not ACKed. With SACKs this number is simply
2358  *		   amount of SACKed data. Even without SACKs
2359  *		   it is easy to give pretty reliable estimate of this number,
2360  *		   counting duplicate ACKs.
2361  *
2362  *       lost_out: Packets lost by network. TCP has no explicit
2363  *		   "loss notification" feedback from network (for now).
2364  *		   It means that this number can be only _guessed_.
2365  *		   Actually, it is the heuristics to predict lossage that
2366  *		   distinguishes different algorithms.
2367  *
2368  *	F.e. after RTO, when all the queue is considered as lost,
2369  *	lost_out = packets_out and in_flight = retrans_out.
2370  *
2371  *		Essentially, we have now two algorithms counting
2372  *		lost packets.
2373  *
2374  *		FACK: It is the simplest heuristics. As soon as we decided
2375  *		that something is lost, we decide that _all_ not SACKed
2376  *		packets until the most forward SACK are lost. I.e.
2377  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2378  *		It is absolutely correct estimate, if network does not reorder
2379  *		packets. And it loses any connection to reality when reordering
2380  *		takes place. We use FACK by default until reordering
2381  *		is suspected on the path to this destination.
2382  *
2383  *		NewReno: when Recovery is entered, we assume that one segment
2384  *		is lost (classic Reno). While we are in Recovery and
2385  *		a partial ACK arrives, we assume that one more packet
2386  *		is lost (NewReno). This heuristics are the same in NewReno
2387  *		and SACK.
2388  *
2389  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2390  *  deflation etc. CWND is real congestion window, never inflated, changes
2391  *  only according to classic VJ rules.
2392  *
2393  * Really tricky (and requiring careful tuning) part of algorithm
2394  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2395  * The first determines the moment _when_ we should reduce CWND and,
2396  * hence, slow down forward transmission. In fact, it determines the moment
2397  * when we decide that hole is caused by loss, rather than by a reorder.
2398  *
2399  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2400  * holes, caused by lost packets.
2401  *
2402  * And the most logically complicated part of algorithm is undo
2403  * heuristics. We detect false retransmits due to both too early
2404  * fast retransmit (reordering) and underestimated RTO, analyzing
2405  * timestamps and D-SACKs. When we detect that some segments were
2406  * retransmitted by mistake and CWND reduction was wrong, we undo
2407  * window reduction and abort recovery phase. This logic is hidden
2408  * inside several functions named tcp_try_undo_<something>.
2409  */
2410 
2411 /* This function decides, when we should leave Disordered state
2412  * and enter Recovery phase, reducing congestion window.
2413  *
2414  * Main question: may we further continue forward transmission
2415  * with the same cwnd?
2416  */
2417 static int tcp_time_to_recover(struct sock *sk)
2418 {
2419 	struct tcp_sock *tp = tcp_sk(sk);
2420 	__u32 packets_out;
2421 
2422 	/* Do not perform any recovery during F-RTO algorithm */
2423 	if (tp->frto_counter)
2424 		return 0;
2425 
2426 	/* Trick#1: The loss is proven. */
2427 	if (tp->lost_out)
2428 		return 1;
2429 
2430 	/* Not-A-Trick#2 : Classic rule... */
2431 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2432 		return 1;
2433 
2434 	/* Trick#3 : when we use RFC2988 timer restart, fast
2435 	 * retransmit can be triggered by timeout of queue head.
2436 	 */
2437 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2438 		return 1;
2439 
2440 	/* Trick#4: It is still not OK... But will it be useful to delay
2441 	 * recovery more?
2442 	 */
2443 	packets_out = tp->packets_out;
2444 	if (packets_out <= tp->reordering &&
2445 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2446 	    !tcp_may_send_now(sk)) {
2447 		/* We have nothing to send. This connection is limited
2448 		 * either by receiver window or by application.
2449 		 */
2450 		return 1;
2451 	}
2452 
2453 	/* If a thin stream is detected, retransmit after first
2454 	 * received dupack. Employ only if SACK is supported in order
2455 	 * to avoid possible corner-case series of spurious retransmissions
2456 	 * Use only if there are no unsent data.
2457 	 */
2458 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2459 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2460 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2461 		return 1;
2462 
2463 	return 0;
2464 }
2465 
2466 /* New heuristics: it is possible only after we switched to restart timer
2467  * each time when something is ACKed. Hence, we can detect timed out packets
2468  * during fast retransmit without falling to slow start.
2469  *
2470  * Usefulness of this as is very questionable, since we should know which of
2471  * the segments is the next to timeout which is relatively expensive to find
2472  * in general case unless we add some data structure just for that. The
2473  * current approach certainly won't find the right one too often and when it
2474  * finally does find _something_ it usually marks large part of the window
2475  * right away (because a retransmission with a larger timestamp blocks the
2476  * loop from advancing). -ij
2477  */
2478 static void tcp_timeout_skbs(struct sock *sk)
2479 {
2480 	struct tcp_sock *tp = tcp_sk(sk);
2481 	struct sk_buff *skb;
2482 
2483 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2484 		return;
2485 
2486 	skb = tp->scoreboard_skb_hint;
2487 	if (tp->scoreboard_skb_hint == NULL)
2488 		skb = tcp_write_queue_head(sk);
2489 
2490 	tcp_for_write_queue_from(skb, sk) {
2491 		if (skb == tcp_send_head(sk))
2492 			break;
2493 		if (!tcp_skb_timedout(sk, skb))
2494 			break;
2495 
2496 		tcp_skb_mark_lost(tp, skb);
2497 	}
2498 
2499 	tp->scoreboard_skb_hint = skb;
2500 
2501 	tcp_verify_left_out(tp);
2502 }
2503 
2504 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2505  * is against sacked "cnt", otherwise it's against facked "cnt"
2506  */
2507 static void tcp_mark_head_lost(struct sock *sk, int packets)
2508 {
2509 	struct tcp_sock *tp = tcp_sk(sk);
2510 	struct sk_buff *skb;
2511 	int cnt, oldcnt;
2512 	int err;
2513 	unsigned int mss;
2514 
2515 	if (packets == 0)
2516 		return;
2517 
2518 	WARN_ON(packets > tp->packets_out);
2519 	if (tp->lost_skb_hint) {
2520 		skb = tp->lost_skb_hint;
2521 		cnt = tp->lost_cnt_hint;
2522 	} else {
2523 		skb = tcp_write_queue_head(sk);
2524 		cnt = 0;
2525 	}
2526 
2527 	tcp_for_write_queue_from(skb, sk) {
2528 		if (skb == tcp_send_head(sk))
2529 			break;
2530 		/* TODO: do this better */
2531 		/* this is not the most efficient way to do this... */
2532 		tp->lost_skb_hint = skb;
2533 		tp->lost_cnt_hint = cnt;
2534 
2535 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2536 			break;
2537 
2538 		oldcnt = cnt;
2539 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2540 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2541 			cnt += tcp_skb_pcount(skb);
2542 
2543 		if (cnt > packets) {
2544 			if (tcp_is_sack(tp) || (oldcnt >= packets))
2545 				break;
2546 
2547 			mss = skb_shinfo(skb)->gso_size;
2548 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2549 			if (err < 0)
2550 				break;
2551 			cnt = packets;
2552 		}
2553 
2554 		tcp_skb_mark_lost(tp, skb);
2555 	}
2556 	tcp_verify_left_out(tp);
2557 }
2558 
2559 /* Account newly detected lost packet(s) */
2560 
2561 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2562 {
2563 	struct tcp_sock *tp = tcp_sk(sk);
2564 
2565 	if (tcp_is_reno(tp)) {
2566 		tcp_mark_head_lost(sk, 1);
2567 	} else if (tcp_is_fack(tp)) {
2568 		int lost = tp->fackets_out - tp->reordering;
2569 		if (lost <= 0)
2570 			lost = 1;
2571 		tcp_mark_head_lost(sk, lost);
2572 	} else {
2573 		int sacked_upto = tp->sacked_out - tp->reordering;
2574 		if (sacked_upto < fast_rexmit)
2575 			sacked_upto = fast_rexmit;
2576 		tcp_mark_head_lost(sk, sacked_upto);
2577 	}
2578 
2579 	tcp_timeout_skbs(sk);
2580 }
2581 
2582 /* CWND moderation, preventing bursts due to too big ACKs
2583  * in dubious situations.
2584  */
2585 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2586 {
2587 	tp->snd_cwnd = min(tp->snd_cwnd,
2588 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2589 	tp->snd_cwnd_stamp = tcp_time_stamp;
2590 }
2591 
2592 /* Lower bound on congestion window is slow start threshold
2593  * unless congestion avoidance choice decides to overide it.
2594  */
2595 static inline u32 tcp_cwnd_min(const struct sock *sk)
2596 {
2597 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2598 
2599 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2600 }
2601 
2602 /* Decrease cwnd each second ack. */
2603 static void tcp_cwnd_down(struct sock *sk, int flag)
2604 {
2605 	struct tcp_sock *tp = tcp_sk(sk);
2606 	int decr = tp->snd_cwnd_cnt + 1;
2607 
2608 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2609 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2610 		tp->snd_cwnd_cnt = decr & 1;
2611 		decr >>= 1;
2612 
2613 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2614 			tp->snd_cwnd -= decr;
2615 
2616 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2617 		tp->snd_cwnd_stamp = tcp_time_stamp;
2618 	}
2619 }
2620 
2621 /* Nothing was retransmitted or returned timestamp is less
2622  * than timestamp of the first retransmission.
2623  */
2624 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2625 {
2626 	return !tp->retrans_stamp ||
2627 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2628 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2629 }
2630 
2631 /* Undo procedures. */
2632 
2633 #if FASTRETRANS_DEBUG > 1
2634 static void DBGUNDO(struct sock *sk, const char *msg)
2635 {
2636 	struct tcp_sock *tp = tcp_sk(sk);
2637 	struct inet_sock *inet = inet_sk(sk);
2638 
2639 	if (sk->sk_family == AF_INET) {
2640 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2641 		       msg,
2642 		       &inet->daddr, ntohs(inet->dport),
2643 		       tp->snd_cwnd, tcp_left_out(tp),
2644 		       tp->snd_ssthresh, tp->prior_ssthresh,
2645 		       tp->packets_out);
2646 	}
2647 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2648 	else if (sk->sk_family == AF_INET6) {
2649 		struct ipv6_pinfo *np = inet6_sk(sk);
2650 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2651 		       msg,
2652 		       &np->daddr, ntohs(inet->dport),
2653 		       tp->snd_cwnd, tcp_left_out(tp),
2654 		       tp->snd_ssthresh, tp->prior_ssthresh,
2655 		       tp->packets_out);
2656 	}
2657 #endif
2658 }
2659 #else
2660 #define DBGUNDO(x...) do { } while (0)
2661 #endif
2662 
2663 static void tcp_undo_cwr(struct sock *sk, const int undo)
2664 {
2665 	struct tcp_sock *tp = tcp_sk(sk);
2666 
2667 	if (tp->prior_ssthresh) {
2668 		const struct inet_connection_sock *icsk = inet_csk(sk);
2669 
2670 		if (icsk->icsk_ca_ops->undo_cwnd)
2671 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2672 		else
2673 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2674 
2675 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2676 			tp->snd_ssthresh = tp->prior_ssthresh;
2677 			TCP_ECN_withdraw_cwr(tp);
2678 		}
2679 	} else {
2680 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2681 	}
2682 	tcp_moderate_cwnd(tp);
2683 	tp->snd_cwnd_stamp = tcp_time_stamp;
2684 }
2685 
2686 static inline int tcp_may_undo(struct tcp_sock *tp)
2687 {
2688 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2689 }
2690 
2691 /* People celebrate: "We love our President!" */
2692 static int tcp_try_undo_recovery(struct sock *sk)
2693 {
2694 	struct tcp_sock *tp = tcp_sk(sk);
2695 
2696 	if (tcp_may_undo(tp)) {
2697 		int mib_idx;
2698 
2699 		/* Happy end! We did not retransmit anything
2700 		 * or our original transmission succeeded.
2701 		 */
2702 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2703 		tcp_undo_cwr(sk, 1);
2704 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2705 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2706 		else
2707 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2708 
2709 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2710 		tp->undo_marker = 0;
2711 	}
2712 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2713 		/* Hold old state until something *above* high_seq
2714 		 * is ACKed. For Reno it is MUST to prevent false
2715 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2716 		tcp_moderate_cwnd(tp);
2717 		return 1;
2718 	}
2719 	tcp_set_ca_state(sk, TCP_CA_Open);
2720 	return 0;
2721 }
2722 
2723 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2724 static void tcp_try_undo_dsack(struct sock *sk)
2725 {
2726 	struct tcp_sock *tp = tcp_sk(sk);
2727 
2728 	if (tp->undo_marker && !tp->undo_retrans) {
2729 		DBGUNDO(sk, "D-SACK");
2730 		tcp_undo_cwr(sk, 1);
2731 		tp->undo_marker = 0;
2732 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2733 	}
2734 }
2735 
2736 /* We can clear retrans_stamp when there are no retransmissions in the
2737  * window. It would seem that it is trivially available for us in
2738  * tp->retrans_out, however, that kind of assumptions doesn't consider
2739  * what will happen if errors occur when sending retransmission for the
2740  * second time. ...It could the that such segment has only
2741  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2742  * the head skb is enough except for some reneging corner cases that
2743  * are not worth the effort.
2744  *
2745  * Main reason for all this complexity is the fact that connection dying
2746  * time now depends on the validity of the retrans_stamp, in particular,
2747  * that successive retransmissions of a segment must not advance
2748  * retrans_stamp under any conditions.
2749  */
2750 static int tcp_any_retrans_done(struct sock *sk)
2751 {
2752 	struct tcp_sock *tp = tcp_sk(sk);
2753 	struct sk_buff *skb;
2754 
2755 	if (tp->retrans_out)
2756 		return 1;
2757 
2758 	skb = tcp_write_queue_head(sk);
2759 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2760 		return 1;
2761 
2762 	return 0;
2763 }
2764 
2765 /* Undo during fast recovery after partial ACK. */
2766 
2767 static int tcp_try_undo_partial(struct sock *sk, int acked)
2768 {
2769 	struct tcp_sock *tp = tcp_sk(sk);
2770 	/* Partial ACK arrived. Force Hoe's retransmit. */
2771 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2772 
2773 	if (tcp_may_undo(tp)) {
2774 		/* Plain luck! Hole if filled with delayed
2775 		 * packet, rather than with a retransmit.
2776 		 */
2777 		if (!tcp_any_retrans_done(sk))
2778 			tp->retrans_stamp = 0;
2779 
2780 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2781 
2782 		DBGUNDO(sk, "Hoe");
2783 		tcp_undo_cwr(sk, 0);
2784 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2785 
2786 		/* So... Do not make Hoe's retransmit yet.
2787 		 * If the first packet was delayed, the rest
2788 		 * ones are most probably delayed as well.
2789 		 */
2790 		failed = 0;
2791 	}
2792 	return failed;
2793 }
2794 
2795 /* Undo during loss recovery after partial ACK. */
2796 static int tcp_try_undo_loss(struct sock *sk)
2797 {
2798 	struct tcp_sock *tp = tcp_sk(sk);
2799 
2800 	if (tcp_may_undo(tp)) {
2801 		struct sk_buff *skb;
2802 		tcp_for_write_queue(skb, sk) {
2803 			if (skb == tcp_send_head(sk))
2804 				break;
2805 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2806 		}
2807 
2808 		tcp_clear_all_retrans_hints(tp);
2809 
2810 		DBGUNDO(sk, "partial loss");
2811 		tp->lost_out = 0;
2812 		tcp_undo_cwr(sk, 1);
2813 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2814 		inet_csk(sk)->icsk_retransmits = 0;
2815 		tp->undo_marker = 0;
2816 		if (tcp_is_sack(tp))
2817 			tcp_set_ca_state(sk, TCP_CA_Open);
2818 		return 1;
2819 	}
2820 	return 0;
2821 }
2822 
2823 static inline void tcp_complete_cwr(struct sock *sk)
2824 {
2825 	struct tcp_sock *tp = tcp_sk(sk);
2826 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2827 	tp->snd_cwnd_stamp = tcp_time_stamp;
2828 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2829 }
2830 
2831 static void tcp_try_keep_open(struct sock *sk)
2832 {
2833 	struct tcp_sock *tp = tcp_sk(sk);
2834 	int state = TCP_CA_Open;
2835 
2836 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2837 		state = TCP_CA_Disorder;
2838 
2839 	if (inet_csk(sk)->icsk_ca_state != state) {
2840 		tcp_set_ca_state(sk, state);
2841 		tp->high_seq = tp->snd_nxt;
2842 	}
2843 }
2844 
2845 static void tcp_try_to_open(struct sock *sk, int flag)
2846 {
2847 	struct tcp_sock *tp = tcp_sk(sk);
2848 
2849 	tcp_verify_left_out(tp);
2850 
2851 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2852 		tp->retrans_stamp = 0;
2853 
2854 	if (flag & FLAG_ECE)
2855 		tcp_enter_cwr(sk, 1);
2856 
2857 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2858 		tcp_try_keep_open(sk);
2859 		tcp_moderate_cwnd(tp);
2860 	} else {
2861 		tcp_cwnd_down(sk, flag);
2862 	}
2863 }
2864 
2865 static void tcp_mtup_probe_failed(struct sock *sk)
2866 {
2867 	struct inet_connection_sock *icsk = inet_csk(sk);
2868 
2869 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2870 	icsk->icsk_mtup.probe_size = 0;
2871 }
2872 
2873 static void tcp_mtup_probe_success(struct sock *sk)
2874 {
2875 	struct tcp_sock *tp = tcp_sk(sk);
2876 	struct inet_connection_sock *icsk = inet_csk(sk);
2877 
2878 	/* FIXME: breaks with very large cwnd */
2879 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2880 	tp->snd_cwnd = tp->snd_cwnd *
2881 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2882 		       icsk->icsk_mtup.probe_size;
2883 	tp->snd_cwnd_cnt = 0;
2884 	tp->snd_cwnd_stamp = tcp_time_stamp;
2885 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2886 
2887 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2888 	icsk->icsk_mtup.probe_size = 0;
2889 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2890 }
2891 
2892 /* Do a simple retransmit without using the backoff mechanisms in
2893  * tcp_timer. This is used for path mtu discovery.
2894  * The socket is already locked here.
2895  */
2896 void tcp_simple_retransmit(struct sock *sk)
2897 {
2898 	const struct inet_connection_sock *icsk = inet_csk(sk);
2899 	struct tcp_sock *tp = tcp_sk(sk);
2900 	struct sk_buff *skb;
2901 	unsigned int mss = tcp_current_mss(sk);
2902 	u32 prior_lost = tp->lost_out;
2903 
2904 	tcp_for_write_queue(skb, sk) {
2905 		if (skb == tcp_send_head(sk))
2906 			break;
2907 		if (tcp_skb_seglen(skb) > mss &&
2908 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2909 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2910 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2911 				tp->retrans_out -= tcp_skb_pcount(skb);
2912 			}
2913 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2914 		}
2915 	}
2916 
2917 	tcp_clear_retrans_hints_partial(tp);
2918 
2919 	if (prior_lost == tp->lost_out)
2920 		return;
2921 
2922 	if (tcp_is_reno(tp))
2923 		tcp_limit_reno_sacked(tp);
2924 
2925 	tcp_verify_left_out(tp);
2926 
2927 	/* Don't muck with the congestion window here.
2928 	 * Reason is that we do not increase amount of _data_
2929 	 * in network, but units changed and effective
2930 	 * cwnd/ssthresh really reduced now.
2931 	 */
2932 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2933 		tp->high_seq = tp->snd_nxt;
2934 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2935 		tp->prior_ssthresh = 0;
2936 		tp->undo_marker = 0;
2937 		tcp_set_ca_state(sk, TCP_CA_Loss);
2938 	}
2939 	tcp_xmit_retransmit_queue(sk);
2940 }
2941 
2942 /* Process an event, which can update packets-in-flight not trivially.
2943  * Main goal of this function is to calculate new estimate for left_out,
2944  * taking into account both packets sitting in receiver's buffer and
2945  * packets lost by network.
2946  *
2947  * Besides that it does CWND reduction, when packet loss is detected
2948  * and changes state of machine.
2949  *
2950  * It does _not_ decide what to send, it is made in function
2951  * tcp_xmit_retransmit_queue().
2952  */
2953 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2954 {
2955 	struct inet_connection_sock *icsk = inet_csk(sk);
2956 	struct tcp_sock *tp = tcp_sk(sk);
2957 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2958 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2959 				    (tcp_fackets_out(tp) > tp->reordering));
2960 	int fast_rexmit = 0, mib_idx;
2961 
2962 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2963 		tp->sacked_out = 0;
2964 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2965 		tp->fackets_out = 0;
2966 
2967 	/* Now state machine starts.
2968 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2969 	if (flag & FLAG_ECE)
2970 		tp->prior_ssthresh = 0;
2971 
2972 	/* B. In all the states check for reneging SACKs. */
2973 	if (tcp_check_sack_reneging(sk, flag))
2974 		return;
2975 
2976 	/* C. Process data loss notification, provided it is valid. */
2977 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2978 	    before(tp->snd_una, tp->high_seq) &&
2979 	    icsk->icsk_ca_state != TCP_CA_Open &&
2980 	    tp->fackets_out > tp->reordering) {
2981 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2982 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2983 	}
2984 
2985 	/* D. Check consistency of the current state. */
2986 	tcp_verify_left_out(tp);
2987 
2988 	/* E. Check state exit conditions. State can be terminated
2989 	 *    when high_seq is ACKed. */
2990 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2991 		WARN_ON(tp->retrans_out != 0);
2992 		tp->retrans_stamp = 0;
2993 	} else if (!before(tp->snd_una, tp->high_seq)) {
2994 		switch (icsk->icsk_ca_state) {
2995 		case TCP_CA_Loss:
2996 			icsk->icsk_retransmits = 0;
2997 			if (tcp_try_undo_recovery(sk))
2998 				return;
2999 			break;
3000 
3001 		case TCP_CA_CWR:
3002 			/* CWR is to be held something *above* high_seq
3003 			 * is ACKed for CWR bit to reach receiver. */
3004 			if (tp->snd_una != tp->high_seq) {
3005 				tcp_complete_cwr(sk);
3006 				tcp_set_ca_state(sk, TCP_CA_Open);
3007 			}
3008 			break;
3009 
3010 		case TCP_CA_Disorder:
3011 			tcp_try_undo_dsack(sk);
3012 			if (!tp->undo_marker ||
3013 			    /* For SACK case do not Open to allow to undo
3014 			     * catching for all duplicate ACKs. */
3015 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3016 				tp->undo_marker = 0;
3017 				tcp_set_ca_state(sk, TCP_CA_Open);
3018 			}
3019 			break;
3020 
3021 		case TCP_CA_Recovery:
3022 			if (tcp_is_reno(tp))
3023 				tcp_reset_reno_sack(tp);
3024 			if (tcp_try_undo_recovery(sk))
3025 				return;
3026 			tcp_complete_cwr(sk);
3027 			break;
3028 		}
3029 	}
3030 
3031 	/* F. Process state. */
3032 	switch (icsk->icsk_ca_state) {
3033 	case TCP_CA_Recovery:
3034 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3035 			if (tcp_is_reno(tp) && is_dupack)
3036 				tcp_add_reno_sack(sk);
3037 		} else
3038 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3039 		break;
3040 	case TCP_CA_Loss:
3041 		if (flag & FLAG_DATA_ACKED)
3042 			icsk->icsk_retransmits = 0;
3043 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3044 			tcp_reset_reno_sack(tp);
3045 		if (!tcp_try_undo_loss(sk)) {
3046 			tcp_moderate_cwnd(tp);
3047 			tcp_xmit_retransmit_queue(sk);
3048 			return;
3049 		}
3050 		if (icsk->icsk_ca_state != TCP_CA_Open)
3051 			return;
3052 		/* Loss is undone; fall through to processing in Open state. */
3053 	default:
3054 		if (tcp_is_reno(tp)) {
3055 			if (flag & FLAG_SND_UNA_ADVANCED)
3056 				tcp_reset_reno_sack(tp);
3057 			if (is_dupack)
3058 				tcp_add_reno_sack(sk);
3059 		}
3060 
3061 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3062 			tcp_try_undo_dsack(sk);
3063 
3064 		if (!tcp_time_to_recover(sk)) {
3065 			tcp_try_to_open(sk, flag);
3066 			return;
3067 		}
3068 
3069 		/* MTU probe failure: don't reduce cwnd */
3070 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3071 		    icsk->icsk_mtup.probe_size &&
3072 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3073 			tcp_mtup_probe_failed(sk);
3074 			/* Restores the reduction we did in tcp_mtup_probe() */
3075 			tp->snd_cwnd++;
3076 			tcp_simple_retransmit(sk);
3077 			return;
3078 		}
3079 
3080 		/* Otherwise enter Recovery state */
3081 
3082 		if (tcp_is_reno(tp))
3083 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3084 		else
3085 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3086 
3087 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3088 
3089 		tp->high_seq = tp->snd_nxt;
3090 		tp->prior_ssthresh = 0;
3091 		tp->undo_marker = tp->snd_una;
3092 		tp->undo_retrans = tp->retrans_out;
3093 
3094 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3095 			if (!(flag & FLAG_ECE))
3096 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3097 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3098 			TCP_ECN_queue_cwr(tp);
3099 		}
3100 
3101 		tp->bytes_acked = 0;
3102 		tp->snd_cwnd_cnt = 0;
3103 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3104 		fast_rexmit = 1;
3105 	}
3106 
3107 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3108 		tcp_update_scoreboard(sk, fast_rexmit);
3109 	tcp_cwnd_down(sk, flag);
3110 	tcp_xmit_retransmit_queue(sk);
3111 }
3112 
3113 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3114 {
3115 	tcp_rtt_estimator(sk, seq_rtt);
3116 	tcp_set_rto(sk);
3117 	inet_csk(sk)->icsk_backoff = 0;
3118 }
3119 
3120 /* Read draft-ietf-tcplw-high-performance before mucking
3121  * with this code. (Supersedes RFC1323)
3122  */
3123 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3124 {
3125 	/* RTTM Rule: A TSecr value received in a segment is used to
3126 	 * update the averaged RTT measurement only if the segment
3127 	 * acknowledges some new data, i.e., only if it advances the
3128 	 * left edge of the send window.
3129 	 *
3130 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3131 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3132 	 *
3133 	 * Changed: reset backoff as soon as we see the first valid sample.
3134 	 * If we do not, we get strongly overestimated rto. With timestamps
3135 	 * samples are accepted even from very old segments: f.e., when rtt=1
3136 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3137 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3138 	 * in window is lost... Voila.	 			--ANK (010210)
3139 	 */
3140 	struct tcp_sock *tp = tcp_sk(sk);
3141 
3142 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3143 }
3144 
3145 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3146 {
3147 	/* We don't have a timestamp. Can only use
3148 	 * packets that are not retransmitted to determine
3149 	 * rtt estimates. Also, we must not reset the
3150 	 * backoff for rto until we get a non-retransmitted
3151 	 * packet. This allows us to deal with a situation
3152 	 * where the network delay has increased suddenly.
3153 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3154 	 */
3155 
3156 	if (flag & FLAG_RETRANS_DATA_ACKED)
3157 		return;
3158 
3159 	tcp_valid_rtt_meas(sk, seq_rtt);
3160 }
3161 
3162 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3163 				      const s32 seq_rtt)
3164 {
3165 	const struct tcp_sock *tp = tcp_sk(sk);
3166 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3167 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3168 		tcp_ack_saw_tstamp(sk, flag);
3169 	else if (seq_rtt >= 0)
3170 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3171 }
3172 
3173 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3174 {
3175 	const struct inet_connection_sock *icsk = inet_csk(sk);
3176 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3177 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3178 }
3179 
3180 /* Restart timer after forward progress on connection.
3181  * RFC2988 recommends to restart timer to now+rto.
3182  */
3183 static void tcp_rearm_rto(struct sock *sk)
3184 {
3185 	struct tcp_sock *tp = tcp_sk(sk);
3186 
3187 	if (!tp->packets_out) {
3188 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3189 	} else {
3190 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3191 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3192 	}
3193 }
3194 
3195 /* If we get here, the whole TSO packet has not been acked. */
3196 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3197 {
3198 	struct tcp_sock *tp = tcp_sk(sk);
3199 	u32 packets_acked;
3200 
3201 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3202 
3203 	packets_acked = tcp_skb_pcount(skb);
3204 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3205 		return 0;
3206 	packets_acked -= tcp_skb_pcount(skb);
3207 
3208 	if (packets_acked) {
3209 		BUG_ON(tcp_skb_pcount(skb) == 0);
3210 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3211 	}
3212 
3213 	return packets_acked;
3214 }
3215 
3216 /* Remove acknowledged frames from the retransmission queue. If our packet
3217  * is before the ack sequence we can discard it as it's confirmed to have
3218  * arrived at the other end.
3219  */
3220 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3221 			       u32 prior_snd_una)
3222 {
3223 	struct tcp_sock *tp = tcp_sk(sk);
3224 	const struct inet_connection_sock *icsk = inet_csk(sk);
3225 	struct sk_buff *skb;
3226 	u32 now = tcp_time_stamp;
3227 	int fully_acked = 1;
3228 	int flag = 0;
3229 	u32 pkts_acked = 0;
3230 	u32 reord = tp->packets_out;
3231 	u32 prior_sacked = tp->sacked_out;
3232 	s32 seq_rtt = -1;
3233 	s32 ca_seq_rtt = -1;
3234 	ktime_t last_ackt = net_invalid_timestamp();
3235 
3236 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3237 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3238 		u32 acked_pcount;
3239 		u8 sacked = scb->sacked;
3240 
3241 		/* Determine how many packets and what bytes were acked, tso and else */
3242 		if (after(scb->end_seq, tp->snd_una)) {
3243 			if (tcp_skb_pcount(skb) == 1 ||
3244 			    !after(tp->snd_una, scb->seq))
3245 				break;
3246 
3247 			acked_pcount = tcp_tso_acked(sk, skb);
3248 			if (!acked_pcount)
3249 				break;
3250 
3251 			fully_acked = 0;
3252 		} else {
3253 			acked_pcount = tcp_skb_pcount(skb);
3254 		}
3255 
3256 		if (sacked & TCPCB_RETRANS) {
3257 			if (sacked & TCPCB_SACKED_RETRANS)
3258 				tp->retrans_out -= acked_pcount;
3259 			flag |= FLAG_RETRANS_DATA_ACKED;
3260 			ca_seq_rtt = -1;
3261 			seq_rtt = -1;
3262 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3263 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3264 		} else {
3265 			ca_seq_rtt = now - scb->when;
3266 			last_ackt = skb->tstamp;
3267 			if (seq_rtt < 0) {
3268 				seq_rtt = ca_seq_rtt;
3269 			}
3270 			if (!(sacked & TCPCB_SACKED_ACKED))
3271 				reord = min(pkts_acked, reord);
3272 		}
3273 
3274 		if (sacked & TCPCB_SACKED_ACKED)
3275 			tp->sacked_out -= acked_pcount;
3276 		if (sacked & TCPCB_LOST)
3277 			tp->lost_out -= acked_pcount;
3278 
3279 		tp->packets_out -= acked_pcount;
3280 		pkts_acked += acked_pcount;
3281 
3282 		/* Initial outgoing SYN's get put onto the write_queue
3283 		 * just like anything else we transmit.  It is not
3284 		 * true data, and if we misinform our callers that
3285 		 * this ACK acks real data, we will erroneously exit
3286 		 * connection startup slow start one packet too
3287 		 * quickly.  This is severely frowned upon behavior.
3288 		 */
3289 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
3290 			flag |= FLAG_DATA_ACKED;
3291 		} else {
3292 			flag |= FLAG_SYN_ACKED;
3293 			tp->retrans_stamp = 0;
3294 		}
3295 
3296 		if (!fully_acked)
3297 			break;
3298 
3299 		tcp_unlink_write_queue(skb, sk);
3300 		sk_wmem_free_skb(sk, skb);
3301 		tp->scoreboard_skb_hint = NULL;
3302 		if (skb == tp->retransmit_skb_hint)
3303 			tp->retransmit_skb_hint = NULL;
3304 		if (skb == tp->lost_skb_hint)
3305 			tp->lost_skb_hint = NULL;
3306 	}
3307 
3308 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3309 		tp->snd_up = tp->snd_una;
3310 
3311 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3312 		flag |= FLAG_SACK_RENEGING;
3313 
3314 	if (flag & FLAG_ACKED) {
3315 		const struct tcp_congestion_ops *ca_ops
3316 			= inet_csk(sk)->icsk_ca_ops;
3317 
3318 		if (unlikely(icsk->icsk_mtup.probe_size &&
3319 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3320 			tcp_mtup_probe_success(sk);
3321 		}
3322 
3323 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3324 		tcp_rearm_rto(sk);
3325 
3326 		if (tcp_is_reno(tp)) {
3327 			tcp_remove_reno_sacks(sk, pkts_acked);
3328 		} else {
3329 			int delta;
3330 
3331 			/* Non-retransmitted hole got filled? That's reordering */
3332 			if (reord < prior_fackets)
3333 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3334 
3335 			delta = tcp_is_fack(tp) ? pkts_acked :
3336 						  prior_sacked - tp->sacked_out;
3337 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3338 		}
3339 
3340 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3341 
3342 		if (ca_ops->pkts_acked) {
3343 			s32 rtt_us = -1;
3344 
3345 			/* Is the ACK triggering packet unambiguous? */
3346 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3347 				/* High resolution needed and available? */
3348 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3349 				    !ktime_equal(last_ackt,
3350 						 net_invalid_timestamp()))
3351 					rtt_us = ktime_us_delta(ktime_get_real(),
3352 								last_ackt);
3353 				else if (ca_seq_rtt > 0)
3354 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3355 			}
3356 
3357 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3358 		}
3359 	}
3360 
3361 #if FASTRETRANS_DEBUG > 0
3362 	WARN_ON((int)tp->sacked_out < 0);
3363 	WARN_ON((int)tp->lost_out < 0);
3364 	WARN_ON((int)tp->retrans_out < 0);
3365 	if (!tp->packets_out && tcp_is_sack(tp)) {
3366 		icsk = inet_csk(sk);
3367 		if (tp->lost_out) {
3368 			printk(KERN_DEBUG "Leak l=%u %d\n",
3369 			       tp->lost_out, icsk->icsk_ca_state);
3370 			tp->lost_out = 0;
3371 		}
3372 		if (tp->sacked_out) {
3373 			printk(KERN_DEBUG "Leak s=%u %d\n",
3374 			       tp->sacked_out, icsk->icsk_ca_state);
3375 			tp->sacked_out = 0;
3376 		}
3377 		if (tp->retrans_out) {
3378 			printk(KERN_DEBUG "Leak r=%u %d\n",
3379 			       tp->retrans_out, icsk->icsk_ca_state);
3380 			tp->retrans_out = 0;
3381 		}
3382 	}
3383 #endif
3384 	return flag;
3385 }
3386 
3387 static void tcp_ack_probe(struct sock *sk)
3388 {
3389 	const struct tcp_sock *tp = tcp_sk(sk);
3390 	struct inet_connection_sock *icsk = inet_csk(sk);
3391 
3392 	/* Was it a usable window open? */
3393 
3394 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3395 		icsk->icsk_backoff = 0;
3396 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3397 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3398 		 * This function is not for random using!
3399 		 */
3400 	} else {
3401 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3402 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3403 					  TCP_RTO_MAX);
3404 	}
3405 }
3406 
3407 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3408 {
3409 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3410 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3411 }
3412 
3413 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3414 {
3415 	const struct tcp_sock *tp = tcp_sk(sk);
3416 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3417 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3418 }
3419 
3420 /* Check that window update is acceptable.
3421  * The function assumes that snd_una<=ack<=snd_next.
3422  */
3423 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3424 					const u32 ack, const u32 ack_seq,
3425 					const u32 nwin)
3426 {
3427 	return (after(ack, tp->snd_una) ||
3428 		after(ack_seq, tp->snd_wl1) ||
3429 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3430 }
3431 
3432 /* Update our send window.
3433  *
3434  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3435  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3436  */
3437 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3438 				 u32 ack_seq)
3439 {
3440 	struct tcp_sock *tp = tcp_sk(sk);
3441 	int flag = 0;
3442 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3443 
3444 	if (likely(!tcp_hdr(skb)->syn))
3445 		nwin <<= tp->rx_opt.snd_wscale;
3446 
3447 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3448 		flag |= FLAG_WIN_UPDATE;
3449 		tcp_update_wl(tp, ack_seq);
3450 
3451 		if (tp->snd_wnd != nwin) {
3452 			tp->snd_wnd = nwin;
3453 
3454 			/* Note, it is the only place, where
3455 			 * fast path is recovered for sending TCP.
3456 			 */
3457 			tp->pred_flags = 0;
3458 			tcp_fast_path_check(sk);
3459 
3460 			if (nwin > tp->max_window) {
3461 				tp->max_window = nwin;
3462 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3463 			}
3464 		}
3465 	}
3466 
3467 	tp->snd_una = ack;
3468 
3469 	return flag;
3470 }
3471 
3472 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3473  * continue in congestion avoidance.
3474  */
3475 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3476 {
3477 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3478 	tp->snd_cwnd_cnt = 0;
3479 	tp->bytes_acked = 0;
3480 	TCP_ECN_queue_cwr(tp);
3481 	tcp_moderate_cwnd(tp);
3482 }
3483 
3484 /* A conservative spurious RTO response algorithm: reduce cwnd using
3485  * rate halving and continue in congestion avoidance.
3486  */
3487 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3488 {
3489 	tcp_enter_cwr(sk, 0);
3490 }
3491 
3492 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3493 {
3494 	if (flag & FLAG_ECE)
3495 		tcp_ratehalving_spur_to_response(sk);
3496 	else
3497 		tcp_undo_cwr(sk, 1);
3498 }
3499 
3500 /* F-RTO spurious RTO detection algorithm (RFC4138)
3501  *
3502  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3503  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3504  * window (but not to or beyond highest sequence sent before RTO):
3505  *   On First ACK,  send two new segments out.
3506  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3507  *                  algorithm is not part of the F-RTO detection algorithm
3508  *                  given in RFC4138 but can be selected separately).
3509  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3510  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3511  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3512  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3513  *
3514  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3515  * original window even after we transmit two new data segments.
3516  *
3517  * SACK version:
3518  *   on first step, wait until first cumulative ACK arrives, then move to
3519  *   the second step. In second step, the next ACK decides.
3520  *
3521  * F-RTO is implemented (mainly) in four functions:
3522  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3523  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3524  *     called when tcp_use_frto() showed green light
3525  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3526  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3527  *     to prove that the RTO is indeed spurious. It transfers the control
3528  *     from F-RTO to the conventional RTO recovery
3529  */
3530 static int tcp_process_frto(struct sock *sk, int flag)
3531 {
3532 	struct tcp_sock *tp = tcp_sk(sk);
3533 
3534 	tcp_verify_left_out(tp);
3535 
3536 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3537 	if (flag & FLAG_DATA_ACKED)
3538 		inet_csk(sk)->icsk_retransmits = 0;
3539 
3540 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3541 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3542 		tp->undo_marker = 0;
3543 
3544 	if (!before(tp->snd_una, tp->frto_highmark)) {
3545 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3546 		return 1;
3547 	}
3548 
3549 	if (!tcp_is_sackfrto(tp)) {
3550 		/* RFC4138 shortcoming in step 2; should also have case c):
3551 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3552 		 * data, winupdate
3553 		 */
3554 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3555 			return 1;
3556 
3557 		if (!(flag & FLAG_DATA_ACKED)) {
3558 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3559 					    flag);
3560 			return 1;
3561 		}
3562 	} else {
3563 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3564 			/* Prevent sending of new data. */
3565 			tp->snd_cwnd = min(tp->snd_cwnd,
3566 					   tcp_packets_in_flight(tp));
3567 			return 1;
3568 		}
3569 
3570 		if ((tp->frto_counter >= 2) &&
3571 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3572 		     ((flag & FLAG_DATA_SACKED) &&
3573 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3574 			/* RFC4138 shortcoming (see comment above) */
3575 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3576 			    (flag & FLAG_NOT_DUP))
3577 				return 1;
3578 
3579 			tcp_enter_frto_loss(sk, 3, flag);
3580 			return 1;
3581 		}
3582 	}
3583 
3584 	if (tp->frto_counter == 1) {
3585 		/* tcp_may_send_now needs to see updated state */
3586 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3587 		tp->frto_counter = 2;
3588 
3589 		if (!tcp_may_send_now(sk))
3590 			tcp_enter_frto_loss(sk, 2, flag);
3591 
3592 		return 1;
3593 	} else {
3594 		switch (sysctl_tcp_frto_response) {
3595 		case 2:
3596 			tcp_undo_spur_to_response(sk, flag);
3597 			break;
3598 		case 1:
3599 			tcp_conservative_spur_to_response(tp);
3600 			break;
3601 		default:
3602 			tcp_ratehalving_spur_to_response(sk);
3603 			break;
3604 		}
3605 		tp->frto_counter = 0;
3606 		tp->undo_marker = 0;
3607 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3608 	}
3609 	return 0;
3610 }
3611 
3612 /* This routine deals with incoming acks, but not outgoing ones. */
3613 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3614 {
3615 	struct inet_connection_sock *icsk = inet_csk(sk);
3616 	struct tcp_sock *tp = tcp_sk(sk);
3617 	u32 prior_snd_una = tp->snd_una;
3618 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3619 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3620 	u32 prior_in_flight;
3621 	u32 prior_fackets;
3622 	int prior_packets;
3623 	int frto_cwnd = 0;
3624 
3625 	/* If the ack is older than previous acks
3626 	 * then we can probably ignore it.
3627 	 */
3628 	if (before(ack, prior_snd_una))
3629 		goto old_ack;
3630 
3631 	/* If the ack includes data we haven't sent yet, discard
3632 	 * this segment (RFC793 Section 3.9).
3633 	 */
3634 	if (after(ack, tp->snd_nxt))
3635 		goto invalid_ack;
3636 
3637 	if (after(ack, prior_snd_una))
3638 		flag |= FLAG_SND_UNA_ADVANCED;
3639 
3640 	if (sysctl_tcp_abc) {
3641 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3642 			tp->bytes_acked += ack - prior_snd_una;
3643 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3644 			/* we assume just one segment left network */
3645 			tp->bytes_acked += min(ack - prior_snd_una,
3646 					       tp->mss_cache);
3647 	}
3648 
3649 	prior_fackets = tp->fackets_out;
3650 	prior_in_flight = tcp_packets_in_flight(tp);
3651 
3652 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3653 		/* Window is constant, pure forward advance.
3654 		 * No more checks are required.
3655 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3656 		 */
3657 		tcp_update_wl(tp, ack_seq);
3658 		tp->snd_una = ack;
3659 		flag |= FLAG_WIN_UPDATE;
3660 
3661 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3662 
3663 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3664 	} else {
3665 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3666 			flag |= FLAG_DATA;
3667 		else
3668 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3669 
3670 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3671 
3672 		if (TCP_SKB_CB(skb)->sacked)
3673 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3674 
3675 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3676 			flag |= FLAG_ECE;
3677 
3678 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3679 	}
3680 
3681 	/* We passed data and got it acked, remove any soft error
3682 	 * log. Something worked...
3683 	 */
3684 	sk->sk_err_soft = 0;
3685 	icsk->icsk_probes_out = 0;
3686 	tp->rcv_tstamp = tcp_time_stamp;
3687 	prior_packets = tp->packets_out;
3688 	if (!prior_packets)
3689 		goto no_queue;
3690 
3691 	/* See if we can take anything off of the retransmit queue. */
3692 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3693 
3694 	if (tp->frto_counter)
3695 		frto_cwnd = tcp_process_frto(sk, flag);
3696 	/* Guarantee sacktag reordering detection against wrap-arounds */
3697 	if (before(tp->frto_highmark, tp->snd_una))
3698 		tp->frto_highmark = 0;
3699 
3700 	if (tcp_ack_is_dubious(sk, flag)) {
3701 		/* Advance CWND, if state allows this. */
3702 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3703 		    tcp_may_raise_cwnd(sk, flag))
3704 			tcp_cong_avoid(sk, ack, prior_in_flight);
3705 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3706 				      flag);
3707 	} else {
3708 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3709 			tcp_cong_avoid(sk, ack, prior_in_flight);
3710 	}
3711 
3712 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3713 		dst_confirm(sk->sk_dst_cache);
3714 
3715 	return 1;
3716 
3717 no_queue:
3718 	/* If this ack opens up a zero window, clear backoff.  It was
3719 	 * being used to time the probes, and is probably far higher than
3720 	 * it needs to be for normal retransmission.
3721 	 */
3722 	if (tcp_send_head(sk))
3723 		tcp_ack_probe(sk);
3724 	return 1;
3725 
3726 invalid_ack:
3727 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3728 	return -1;
3729 
3730 old_ack:
3731 	if (TCP_SKB_CB(skb)->sacked) {
3732 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3733 		if (icsk->icsk_ca_state == TCP_CA_Open)
3734 			tcp_try_keep_open(sk);
3735 	}
3736 
3737 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3738 	return 0;
3739 }
3740 
3741 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3742  * But, this can also be called on packets in the established flow when
3743  * the fast version below fails.
3744  */
3745 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3746 		       u8 **hvpp, int estab)
3747 {
3748 	unsigned char *ptr;
3749 	struct tcphdr *th = tcp_hdr(skb);
3750 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3751 
3752 	ptr = (unsigned char *)(th + 1);
3753 	opt_rx->saw_tstamp = 0;
3754 
3755 	while (length > 0) {
3756 		int opcode = *ptr++;
3757 		int opsize;
3758 
3759 		switch (opcode) {
3760 		case TCPOPT_EOL:
3761 			return;
3762 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3763 			length--;
3764 			continue;
3765 		default:
3766 			opsize = *ptr++;
3767 			if (opsize < 2) /* "silly options" */
3768 				return;
3769 			if (opsize > length)
3770 				return;	/* don't parse partial options */
3771 			switch (opcode) {
3772 			case TCPOPT_MSS:
3773 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3774 					u16 in_mss = get_unaligned_be16(ptr);
3775 					if (in_mss) {
3776 						if (opt_rx->user_mss &&
3777 						    opt_rx->user_mss < in_mss)
3778 							in_mss = opt_rx->user_mss;
3779 						opt_rx->mss_clamp = in_mss;
3780 					}
3781 				}
3782 				break;
3783 			case TCPOPT_WINDOW:
3784 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3785 				    !estab && sysctl_tcp_window_scaling) {
3786 					__u8 snd_wscale = *(__u8 *)ptr;
3787 					opt_rx->wscale_ok = 1;
3788 					if (snd_wscale > 14) {
3789 						if (net_ratelimit())
3790 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3791 							       "scaling value %d >14 received.\n",
3792 							       snd_wscale);
3793 						snd_wscale = 14;
3794 					}
3795 					opt_rx->snd_wscale = snd_wscale;
3796 				}
3797 				break;
3798 			case TCPOPT_TIMESTAMP:
3799 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3800 				    ((estab && opt_rx->tstamp_ok) ||
3801 				     (!estab && sysctl_tcp_timestamps))) {
3802 					opt_rx->saw_tstamp = 1;
3803 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3804 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3805 				}
3806 				break;
3807 			case TCPOPT_SACK_PERM:
3808 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3809 				    !estab && sysctl_tcp_sack) {
3810 					opt_rx->sack_ok = 1;
3811 					tcp_sack_reset(opt_rx);
3812 				}
3813 				break;
3814 
3815 			case TCPOPT_SACK:
3816 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3817 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3818 				   opt_rx->sack_ok) {
3819 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3820 				}
3821 				break;
3822 #ifdef CONFIG_TCP_MD5SIG
3823 			case TCPOPT_MD5SIG:
3824 				/*
3825 				 * The MD5 Hash has already been
3826 				 * checked (see tcp_v{4,6}_do_rcv()).
3827 				 */
3828 				break;
3829 #endif
3830 			case TCPOPT_COOKIE:
3831 				/* This option is variable length.
3832 				 */
3833 				switch (opsize) {
3834 				case TCPOLEN_COOKIE_BASE:
3835 					/* not yet implemented */
3836 					break;
3837 				case TCPOLEN_COOKIE_PAIR:
3838 					/* not yet implemented */
3839 					break;
3840 				case TCPOLEN_COOKIE_MIN+0:
3841 				case TCPOLEN_COOKIE_MIN+2:
3842 				case TCPOLEN_COOKIE_MIN+4:
3843 				case TCPOLEN_COOKIE_MIN+6:
3844 				case TCPOLEN_COOKIE_MAX:
3845 					/* 16-bit multiple */
3846 					opt_rx->cookie_plus = opsize;
3847 					*hvpp = ptr;
3848 				default:
3849 					/* ignore option */
3850 					break;
3851 				};
3852 				break;
3853 			};
3854 
3855 			ptr += opsize-2;
3856 			length -= opsize;
3857 		}
3858 	}
3859 }
3860 
3861 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3862 {
3863 	__be32 *ptr = (__be32 *)(th + 1);
3864 
3865 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3866 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3867 		tp->rx_opt.saw_tstamp = 1;
3868 		++ptr;
3869 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3870 		++ptr;
3871 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3872 		return 1;
3873 	}
3874 	return 0;
3875 }
3876 
3877 /* Fast parse options. This hopes to only see timestamps.
3878  * If it is wrong it falls back on tcp_parse_options().
3879  */
3880 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3881 				  struct tcp_sock *tp, u8 **hvpp)
3882 {
3883 	/* In the spirit of fast parsing, compare doff directly to constant
3884 	 * values.  Because equality is used, short doff can be ignored here.
3885 	 */
3886 	if (th->doff == (sizeof(*th) / 4)) {
3887 		tp->rx_opt.saw_tstamp = 0;
3888 		return 0;
3889 	} else if (tp->rx_opt.tstamp_ok &&
3890 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3891 		if (tcp_parse_aligned_timestamp(tp, th))
3892 			return 1;
3893 	}
3894 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3895 	return 1;
3896 }
3897 
3898 #ifdef CONFIG_TCP_MD5SIG
3899 /*
3900  * Parse MD5 Signature option
3901  */
3902 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3903 {
3904 	int length = (th->doff << 2) - sizeof (*th);
3905 	u8 *ptr = (u8*)(th + 1);
3906 
3907 	/* If the TCP option is too short, we can short cut */
3908 	if (length < TCPOLEN_MD5SIG)
3909 		return NULL;
3910 
3911 	while (length > 0) {
3912 		int opcode = *ptr++;
3913 		int opsize;
3914 
3915 		switch(opcode) {
3916 		case TCPOPT_EOL:
3917 			return NULL;
3918 		case TCPOPT_NOP:
3919 			length--;
3920 			continue;
3921 		default:
3922 			opsize = *ptr++;
3923 			if (opsize < 2 || opsize > length)
3924 				return NULL;
3925 			if (opcode == TCPOPT_MD5SIG)
3926 				return ptr;
3927 		}
3928 		ptr += opsize - 2;
3929 		length -= opsize;
3930 	}
3931 	return NULL;
3932 }
3933 #endif
3934 
3935 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3936 {
3937 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3938 	tp->rx_opt.ts_recent_stamp = get_seconds();
3939 }
3940 
3941 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3942 {
3943 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3944 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3945 		 * extra check below makes sure this can only happen
3946 		 * for pure ACK frames.  -DaveM
3947 		 *
3948 		 * Not only, also it occurs for expired timestamps.
3949 		 */
3950 
3951 		if (tcp_paws_check(&tp->rx_opt, 0))
3952 			tcp_store_ts_recent(tp);
3953 	}
3954 }
3955 
3956 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3957  *
3958  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3959  * it can pass through stack. So, the following predicate verifies that
3960  * this segment is not used for anything but congestion avoidance or
3961  * fast retransmit. Moreover, we even are able to eliminate most of such
3962  * second order effects, if we apply some small "replay" window (~RTO)
3963  * to timestamp space.
3964  *
3965  * All these measures still do not guarantee that we reject wrapped ACKs
3966  * on networks with high bandwidth, when sequence space is recycled fastly,
3967  * but it guarantees that such events will be very rare and do not affect
3968  * connection seriously. This doesn't look nice, but alas, PAWS is really
3969  * buggy extension.
3970  *
3971  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3972  * states that events when retransmit arrives after original data are rare.
3973  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3974  * the biggest problem on large power networks even with minor reordering.
3975  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3976  * up to bandwidth of 18Gigabit/sec. 8) ]
3977  */
3978 
3979 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3980 {
3981 	struct tcp_sock *tp = tcp_sk(sk);
3982 	struct tcphdr *th = tcp_hdr(skb);
3983 	u32 seq = TCP_SKB_CB(skb)->seq;
3984 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3985 
3986 	return (/* 1. Pure ACK with correct sequence number. */
3987 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3988 
3989 		/* 2. ... and duplicate ACK. */
3990 		ack == tp->snd_una &&
3991 
3992 		/* 3. ... and does not update window. */
3993 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3994 
3995 		/* 4. ... and sits in replay window. */
3996 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3997 }
3998 
3999 static inline int tcp_paws_discard(const struct sock *sk,
4000 				   const struct sk_buff *skb)
4001 {
4002 	const struct tcp_sock *tp = tcp_sk(sk);
4003 
4004 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4005 	       !tcp_disordered_ack(sk, skb);
4006 }
4007 
4008 /* Check segment sequence number for validity.
4009  *
4010  * Segment controls are considered valid, if the segment
4011  * fits to the window after truncation to the window. Acceptability
4012  * of data (and SYN, FIN, of course) is checked separately.
4013  * See tcp_data_queue(), for example.
4014  *
4015  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4016  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4017  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4018  * (borrowed from freebsd)
4019  */
4020 
4021 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4022 {
4023 	return	!before(end_seq, tp->rcv_wup) &&
4024 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4025 }
4026 
4027 /* When we get a reset we do this. */
4028 static void tcp_reset(struct sock *sk)
4029 {
4030 	/* We want the right error as BSD sees it (and indeed as we do). */
4031 	switch (sk->sk_state) {
4032 	case TCP_SYN_SENT:
4033 		sk->sk_err = ECONNREFUSED;
4034 		break;
4035 	case TCP_CLOSE_WAIT:
4036 		sk->sk_err = EPIPE;
4037 		break;
4038 	case TCP_CLOSE:
4039 		return;
4040 	default:
4041 		sk->sk_err = ECONNRESET;
4042 	}
4043 
4044 	if (!sock_flag(sk, SOCK_DEAD))
4045 		sk->sk_error_report(sk);
4046 
4047 	tcp_done(sk);
4048 }
4049 
4050 /*
4051  * 	Process the FIN bit. This now behaves as it is supposed to work
4052  *	and the FIN takes effect when it is validly part of sequence
4053  *	space. Not before when we get holes.
4054  *
4055  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4056  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4057  *	TIME-WAIT)
4058  *
4059  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4060  *	close and we go into CLOSING (and later onto TIME-WAIT)
4061  *
4062  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4063  */
4064 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4065 {
4066 	struct tcp_sock *tp = tcp_sk(sk);
4067 
4068 	inet_csk_schedule_ack(sk);
4069 
4070 	sk->sk_shutdown |= RCV_SHUTDOWN;
4071 	sock_set_flag(sk, SOCK_DONE);
4072 
4073 	switch (sk->sk_state) {
4074 	case TCP_SYN_RECV:
4075 	case TCP_ESTABLISHED:
4076 		/* Move to CLOSE_WAIT */
4077 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4078 		inet_csk(sk)->icsk_ack.pingpong = 1;
4079 		break;
4080 
4081 	case TCP_CLOSE_WAIT:
4082 	case TCP_CLOSING:
4083 		/* Received a retransmission of the FIN, do
4084 		 * nothing.
4085 		 */
4086 		break;
4087 	case TCP_LAST_ACK:
4088 		/* RFC793: Remain in the LAST-ACK state. */
4089 		break;
4090 
4091 	case TCP_FIN_WAIT1:
4092 		/* This case occurs when a simultaneous close
4093 		 * happens, we must ack the received FIN and
4094 		 * enter the CLOSING state.
4095 		 */
4096 		tcp_send_ack(sk);
4097 		tcp_set_state(sk, TCP_CLOSING);
4098 		break;
4099 	case TCP_FIN_WAIT2:
4100 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4101 		tcp_send_ack(sk);
4102 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4103 		break;
4104 	default:
4105 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4106 		 * cases we should never reach this piece of code.
4107 		 */
4108 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4109 		       __func__, sk->sk_state);
4110 		break;
4111 	}
4112 
4113 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4114 	 * Probably, we should reset in this case. For now drop them.
4115 	 */
4116 	__skb_queue_purge(&tp->out_of_order_queue);
4117 	if (tcp_is_sack(tp))
4118 		tcp_sack_reset(&tp->rx_opt);
4119 	sk_mem_reclaim(sk);
4120 
4121 	if (!sock_flag(sk, SOCK_DEAD)) {
4122 		sk->sk_state_change(sk);
4123 
4124 		/* Do not send POLL_HUP for half duplex close. */
4125 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4126 		    sk->sk_state == TCP_CLOSE)
4127 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4128 		else
4129 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4130 	}
4131 }
4132 
4133 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4134 				  u32 end_seq)
4135 {
4136 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4137 		if (before(seq, sp->start_seq))
4138 			sp->start_seq = seq;
4139 		if (after(end_seq, sp->end_seq))
4140 			sp->end_seq = end_seq;
4141 		return 1;
4142 	}
4143 	return 0;
4144 }
4145 
4146 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4147 {
4148 	struct tcp_sock *tp = tcp_sk(sk);
4149 
4150 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4151 		int mib_idx;
4152 
4153 		if (before(seq, tp->rcv_nxt))
4154 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4155 		else
4156 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4157 
4158 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4159 
4160 		tp->rx_opt.dsack = 1;
4161 		tp->duplicate_sack[0].start_seq = seq;
4162 		tp->duplicate_sack[0].end_seq = end_seq;
4163 	}
4164 }
4165 
4166 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4167 {
4168 	struct tcp_sock *tp = tcp_sk(sk);
4169 
4170 	if (!tp->rx_opt.dsack)
4171 		tcp_dsack_set(sk, seq, end_seq);
4172 	else
4173 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4174 }
4175 
4176 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4177 {
4178 	struct tcp_sock *tp = tcp_sk(sk);
4179 
4180 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4181 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4182 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4183 		tcp_enter_quickack_mode(sk);
4184 
4185 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4186 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4187 
4188 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4189 				end_seq = tp->rcv_nxt;
4190 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4191 		}
4192 	}
4193 
4194 	tcp_send_ack(sk);
4195 }
4196 
4197 /* These routines update the SACK block as out-of-order packets arrive or
4198  * in-order packets close up the sequence space.
4199  */
4200 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4201 {
4202 	int this_sack;
4203 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4204 	struct tcp_sack_block *swalk = sp + 1;
4205 
4206 	/* See if the recent change to the first SACK eats into
4207 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4208 	 */
4209 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4210 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4211 			int i;
4212 
4213 			/* Zap SWALK, by moving every further SACK up by one slot.
4214 			 * Decrease num_sacks.
4215 			 */
4216 			tp->rx_opt.num_sacks--;
4217 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4218 				sp[i] = sp[i + 1];
4219 			continue;
4220 		}
4221 		this_sack++, swalk++;
4222 	}
4223 }
4224 
4225 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4226 {
4227 	struct tcp_sock *tp = tcp_sk(sk);
4228 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4229 	int cur_sacks = tp->rx_opt.num_sacks;
4230 	int this_sack;
4231 
4232 	if (!cur_sacks)
4233 		goto new_sack;
4234 
4235 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4236 		if (tcp_sack_extend(sp, seq, end_seq)) {
4237 			/* Rotate this_sack to the first one. */
4238 			for (; this_sack > 0; this_sack--, sp--)
4239 				swap(*sp, *(sp - 1));
4240 			if (cur_sacks > 1)
4241 				tcp_sack_maybe_coalesce(tp);
4242 			return;
4243 		}
4244 	}
4245 
4246 	/* Could not find an adjacent existing SACK, build a new one,
4247 	 * put it at the front, and shift everyone else down.  We
4248 	 * always know there is at least one SACK present already here.
4249 	 *
4250 	 * If the sack array is full, forget about the last one.
4251 	 */
4252 	if (this_sack >= TCP_NUM_SACKS) {
4253 		this_sack--;
4254 		tp->rx_opt.num_sacks--;
4255 		sp--;
4256 	}
4257 	for (; this_sack > 0; this_sack--, sp--)
4258 		*sp = *(sp - 1);
4259 
4260 new_sack:
4261 	/* Build the new head SACK, and we're done. */
4262 	sp->start_seq = seq;
4263 	sp->end_seq = end_seq;
4264 	tp->rx_opt.num_sacks++;
4265 }
4266 
4267 /* RCV.NXT advances, some SACKs should be eaten. */
4268 
4269 static void tcp_sack_remove(struct tcp_sock *tp)
4270 {
4271 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4272 	int num_sacks = tp->rx_opt.num_sacks;
4273 	int this_sack;
4274 
4275 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4276 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4277 		tp->rx_opt.num_sacks = 0;
4278 		return;
4279 	}
4280 
4281 	for (this_sack = 0; this_sack < num_sacks;) {
4282 		/* Check if the start of the sack is covered by RCV.NXT. */
4283 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4284 			int i;
4285 
4286 			/* RCV.NXT must cover all the block! */
4287 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4288 
4289 			/* Zap this SACK, by moving forward any other SACKS. */
4290 			for (i=this_sack+1; i < num_sacks; i++)
4291 				tp->selective_acks[i-1] = tp->selective_acks[i];
4292 			num_sacks--;
4293 			continue;
4294 		}
4295 		this_sack++;
4296 		sp++;
4297 	}
4298 	tp->rx_opt.num_sacks = num_sacks;
4299 }
4300 
4301 /* This one checks to see if we can put data from the
4302  * out_of_order queue into the receive_queue.
4303  */
4304 static void tcp_ofo_queue(struct sock *sk)
4305 {
4306 	struct tcp_sock *tp = tcp_sk(sk);
4307 	__u32 dsack_high = tp->rcv_nxt;
4308 	struct sk_buff *skb;
4309 
4310 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4311 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4312 			break;
4313 
4314 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4315 			__u32 dsack = dsack_high;
4316 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4317 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4318 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4319 		}
4320 
4321 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4322 			SOCK_DEBUG(sk, "ofo packet was already received \n");
4323 			__skb_unlink(skb, &tp->out_of_order_queue);
4324 			__kfree_skb(skb);
4325 			continue;
4326 		}
4327 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4328 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4329 			   TCP_SKB_CB(skb)->end_seq);
4330 
4331 		__skb_unlink(skb, &tp->out_of_order_queue);
4332 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4333 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4334 		if (tcp_hdr(skb)->fin)
4335 			tcp_fin(skb, sk, tcp_hdr(skb));
4336 	}
4337 }
4338 
4339 static int tcp_prune_ofo_queue(struct sock *sk);
4340 static int tcp_prune_queue(struct sock *sk);
4341 
4342 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4343 {
4344 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4345 	    !sk_rmem_schedule(sk, size)) {
4346 
4347 		if (tcp_prune_queue(sk) < 0)
4348 			return -1;
4349 
4350 		if (!sk_rmem_schedule(sk, size)) {
4351 			if (!tcp_prune_ofo_queue(sk))
4352 				return -1;
4353 
4354 			if (!sk_rmem_schedule(sk, size))
4355 				return -1;
4356 		}
4357 	}
4358 	return 0;
4359 }
4360 
4361 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4362 {
4363 	struct tcphdr *th = tcp_hdr(skb);
4364 	struct tcp_sock *tp = tcp_sk(sk);
4365 	int eaten = -1;
4366 
4367 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4368 		goto drop;
4369 
4370 	__skb_pull(skb, th->doff * 4);
4371 
4372 	TCP_ECN_accept_cwr(tp, skb);
4373 
4374 	tp->rx_opt.dsack = 0;
4375 
4376 	/*  Queue data for delivery to the user.
4377 	 *  Packets in sequence go to the receive queue.
4378 	 *  Out of sequence packets to the out_of_order_queue.
4379 	 */
4380 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4381 		if (tcp_receive_window(tp) == 0)
4382 			goto out_of_window;
4383 
4384 		/* Ok. In sequence. In window. */
4385 		if (tp->ucopy.task == current &&
4386 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4387 		    sock_owned_by_user(sk) && !tp->urg_data) {
4388 			int chunk = min_t(unsigned int, skb->len,
4389 					  tp->ucopy.len);
4390 
4391 			__set_current_state(TASK_RUNNING);
4392 
4393 			local_bh_enable();
4394 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4395 				tp->ucopy.len -= chunk;
4396 				tp->copied_seq += chunk;
4397 				eaten = (chunk == skb->len && !th->fin);
4398 				tcp_rcv_space_adjust(sk);
4399 			}
4400 			local_bh_disable();
4401 		}
4402 
4403 		if (eaten <= 0) {
4404 queue_and_out:
4405 			if (eaten < 0 &&
4406 			    tcp_try_rmem_schedule(sk, skb->truesize))
4407 				goto drop;
4408 
4409 			skb_set_owner_r(skb, sk);
4410 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4411 		}
4412 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4413 		if (skb->len)
4414 			tcp_event_data_recv(sk, skb);
4415 		if (th->fin)
4416 			tcp_fin(skb, sk, th);
4417 
4418 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4419 			tcp_ofo_queue(sk);
4420 
4421 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4422 			 * gap in queue is filled.
4423 			 */
4424 			if (skb_queue_empty(&tp->out_of_order_queue))
4425 				inet_csk(sk)->icsk_ack.pingpong = 0;
4426 		}
4427 
4428 		if (tp->rx_opt.num_sacks)
4429 			tcp_sack_remove(tp);
4430 
4431 		tcp_fast_path_check(sk);
4432 
4433 		if (eaten > 0)
4434 			__kfree_skb(skb);
4435 		else if (!sock_flag(sk, SOCK_DEAD))
4436 			sk->sk_data_ready(sk, 0);
4437 		return;
4438 	}
4439 
4440 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4441 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4442 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4443 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4444 
4445 out_of_window:
4446 		tcp_enter_quickack_mode(sk);
4447 		inet_csk_schedule_ack(sk);
4448 drop:
4449 		__kfree_skb(skb);
4450 		return;
4451 	}
4452 
4453 	/* Out of window. F.e. zero window probe. */
4454 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4455 		goto out_of_window;
4456 
4457 	tcp_enter_quickack_mode(sk);
4458 
4459 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4460 		/* Partial packet, seq < rcv_next < end_seq */
4461 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4462 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4463 			   TCP_SKB_CB(skb)->end_seq);
4464 
4465 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4466 
4467 		/* If window is closed, drop tail of packet. But after
4468 		 * remembering D-SACK for its head made in previous line.
4469 		 */
4470 		if (!tcp_receive_window(tp))
4471 			goto out_of_window;
4472 		goto queue_and_out;
4473 	}
4474 
4475 	TCP_ECN_check_ce(tp, skb);
4476 
4477 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4478 		goto drop;
4479 
4480 	/* Disable header prediction. */
4481 	tp->pred_flags = 0;
4482 	inet_csk_schedule_ack(sk);
4483 
4484 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4485 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4486 
4487 	skb_set_owner_r(skb, sk);
4488 
4489 	if (!skb_peek(&tp->out_of_order_queue)) {
4490 		/* Initial out of order segment, build 1 SACK. */
4491 		if (tcp_is_sack(tp)) {
4492 			tp->rx_opt.num_sacks = 1;
4493 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4494 			tp->selective_acks[0].end_seq =
4495 						TCP_SKB_CB(skb)->end_seq;
4496 		}
4497 		__skb_queue_head(&tp->out_of_order_queue, skb);
4498 	} else {
4499 		struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4500 		u32 seq = TCP_SKB_CB(skb)->seq;
4501 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4502 
4503 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4504 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4505 
4506 			if (!tp->rx_opt.num_sacks ||
4507 			    tp->selective_acks[0].end_seq != seq)
4508 				goto add_sack;
4509 
4510 			/* Common case: data arrive in order after hole. */
4511 			tp->selective_acks[0].end_seq = end_seq;
4512 			return;
4513 		}
4514 
4515 		/* Find place to insert this segment. */
4516 		while (1) {
4517 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4518 				break;
4519 			if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4520 				skb1 = NULL;
4521 				break;
4522 			}
4523 			skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4524 		}
4525 
4526 		/* Do skb overlap to previous one? */
4527 		if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4528 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4529 				/* All the bits are present. Drop. */
4530 				__kfree_skb(skb);
4531 				tcp_dsack_set(sk, seq, end_seq);
4532 				goto add_sack;
4533 			}
4534 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4535 				/* Partial overlap. */
4536 				tcp_dsack_set(sk, seq,
4537 					      TCP_SKB_CB(skb1)->end_seq);
4538 			} else {
4539 				if (skb_queue_is_first(&tp->out_of_order_queue,
4540 						       skb1))
4541 					skb1 = NULL;
4542 				else
4543 					skb1 = skb_queue_prev(
4544 						&tp->out_of_order_queue,
4545 						skb1);
4546 			}
4547 		}
4548 		if (!skb1)
4549 			__skb_queue_head(&tp->out_of_order_queue, skb);
4550 		else
4551 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4552 
4553 		/* And clean segments covered by new one as whole. */
4554 		while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4555 			skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4556 
4557 			if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4558 				break;
4559 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4560 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4561 						 end_seq);
4562 				break;
4563 			}
4564 			__skb_unlink(skb1, &tp->out_of_order_queue);
4565 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4566 					 TCP_SKB_CB(skb1)->end_seq);
4567 			__kfree_skb(skb1);
4568 		}
4569 
4570 add_sack:
4571 		if (tcp_is_sack(tp))
4572 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4573 	}
4574 }
4575 
4576 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4577 					struct sk_buff_head *list)
4578 {
4579 	struct sk_buff *next = NULL;
4580 
4581 	if (!skb_queue_is_last(list, skb))
4582 		next = skb_queue_next(list, skb);
4583 
4584 	__skb_unlink(skb, list);
4585 	__kfree_skb(skb);
4586 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4587 
4588 	return next;
4589 }
4590 
4591 /* Collapse contiguous sequence of skbs head..tail with
4592  * sequence numbers start..end.
4593  *
4594  * If tail is NULL, this means until the end of the list.
4595  *
4596  * Segments with FIN/SYN are not collapsed (only because this
4597  * simplifies code)
4598  */
4599 static void
4600 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4601 	     struct sk_buff *head, struct sk_buff *tail,
4602 	     u32 start, u32 end)
4603 {
4604 	struct sk_buff *skb, *n;
4605 	bool end_of_skbs;
4606 
4607 	/* First, check that queue is collapsible and find
4608 	 * the point where collapsing can be useful. */
4609 	skb = head;
4610 restart:
4611 	end_of_skbs = true;
4612 	skb_queue_walk_from_safe(list, skb, n) {
4613 		if (skb == tail)
4614 			break;
4615 		/* No new bits? It is possible on ofo queue. */
4616 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4617 			skb = tcp_collapse_one(sk, skb, list);
4618 			if (!skb)
4619 				break;
4620 			goto restart;
4621 		}
4622 
4623 		/* The first skb to collapse is:
4624 		 * - not SYN/FIN and
4625 		 * - bloated or contains data before "start" or
4626 		 *   overlaps to the next one.
4627 		 */
4628 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4629 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4630 		     before(TCP_SKB_CB(skb)->seq, start))) {
4631 			end_of_skbs = false;
4632 			break;
4633 		}
4634 
4635 		if (!skb_queue_is_last(list, skb)) {
4636 			struct sk_buff *next = skb_queue_next(list, skb);
4637 			if (next != tail &&
4638 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4639 				end_of_skbs = false;
4640 				break;
4641 			}
4642 		}
4643 
4644 		/* Decided to skip this, advance start seq. */
4645 		start = TCP_SKB_CB(skb)->end_seq;
4646 	}
4647 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4648 		return;
4649 
4650 	while (before(start, end)) {
4651 		struct sk_buff *nskb;
4652 		unsigned int header = skb_headroom(skb);
4653 		int copy = SKB_MAX_ORDER(header, 0);
4654 
4655 		/* Too big header? This can happen with IPv6. */
4656 		if (copy < 0)
4657 			return;
4658 		if (end - start < copy)
4659 			copy = end - start;
4660 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4661 		if (!nskb)
4662 			return;
4663 
4664 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4665 		skb_set_network_header(nskb, (skb_network_header(skb) -
4666 					      skb->head));
4667 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4668 						skb->head));
4669 		skb_reserve(nskb, header);
4670 		memcpy(nskb->head, skb->head, header);
4671 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4672 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4673 		__skb_queue_before(list, skb, nskb);
4674 		skb_set_owner_r(nskb, sk);
4675 
4676 		/* Copy data, releasing collapsed skbs. */
4677 		while (copy > 0) {
4678 			int offset = start - TCP_SKB_CB(skb)->seq;
4679 			int size = TCP_SKB_CB(skb)->end_seq - start;
4680 
4681 			BUG_ON(offset < 0);
4682 			if (size > 0) {
4683 				size = min(copy, size);
4684 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4685 					BUG();
4686 				TCP_SKB_CB(nskb)->end_seq += size;
4687 				copy -= size;
4688 				start += size;
4689 			}
4690 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4691 				skb = tcp_collapse_one(sk, skb, list);
4692 				if (!skb ||
4693 				    skb == tail ||
4694 				    tcp_hdr(skb)->syn ||
4695 				    tcp_hdr(skb)->fin)
4696 					return;
4697 			}
4698 		}
4699 	}
4700 }
4701 
4702 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4703  * and tcp_collapse() them until all the queue is collapsed.
4704  */
4705 static void tcp_collapse_ofo_queue(struct sock *sk)
4706 {
4707 	struct tcp_sock *tp = tcp_sk(sk);
4708 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4709 	struct sk_buff *head;
4710 	u32 start, end;
4711 
4712 	if (skb == NULL)
4713 		return;
4714 
4715 	start = TCP_SKB_CB(skb)->seq;
4716 	end = TCP_SKB_CB(skb)->end_seq;
4717 	head = skb;
4718 
4719 	for (;;) {
4720 		struct sk_buff *next = NULL;
4721 
4722 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4723 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4724 		skb = next;
4725 
4726 		/* Segment is terminated when we see gap or when
4727 		 * we are at the end of all the queue. */
4728 		if (!skb ||
4729 		    after(TCP_SKB_CB(skb)->seq, end) ||
4730 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4731 			tcp_collapse(sk, &tp->out_of_order_queue,
4732 				     head, skb, start, end);
4733 			head = skb;
4734 			if (!skb)
4735 				break;
4736 			/* Start new segment */
4737 			start = TCP_SKB_CB(skb)->seq;
4738 			end = TCP_SKB_CB(skb)->end_seq;
4739 		} else {
4740 			if (before(TCP_SKB_CB(skb)->seq, start))
4741 				start = TCP_SKB_CB(skb)->seq;
4742 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4743 				end = TCP_SKB_CB(skb)->end_seq;
4744 		}
4745 	}
4746 }
4747 
4748 /*
4749  * Purge the out-of-order queue.
4750  * Return true if queue was pruned.
4751  */
4752 static int tcp_prune_ofo_queue(struct sock *sk)
4753 {
4754 	struct tcp_sock *tp = tcp_sk(sk);
4755 	int res = 0;
4756 
4757 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4758 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4759 		__skb_queue_purge(&tp->out_of_order_queue);
4760 
4761 		/* Reset SACK state.  A conforming SACK implementation will
4762 		 * do the same at a timeout based retransmit.  When a connection
4763 		 * is in a sad state like this, we care only about integrity
4764 		 * of the connection not performance.
4765 		 */
4766 		if (tp->rx_opt.sack_ok)
4767 			tcp_sack_reset(&tp->rx_opt);
4768 		sk_mem_reclaim(sk);
4769 		res = 1;
4770 	}
4771 	return res;
4772 }
4773 
4774 /* Reduce allocated memory if we can, trying to get
4775  * the socket within its memory limits again.
4776  *
4777  * Return less than zero if we should start dropping frames
4778  * until the socket owning process reads some of the data
4779  * to stabilize the situation.
4780  */
4781 static int tcp_prune_queue(struct sock *sk)
4782 {
4783 	struct tcp_sock *tp = tcp_sk(sk);
4784 
4785 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4786 
4787 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4788 
4789 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4790 		tcp_clamp_window(sk);
4791 	else if (tcp_memory_pressure)
4792 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4793 
4794 	tcp_collapse_ofo_queue(sk);
4795 	if (!skb_queue_empty(&sk->sk_receive_queue))
4796 		tcp_collapse(sk, &sk->sk_receive_queue,
4797 			     skb_peek(&sk->sk_receive_queue),
4798 			     NULL,
4799 			     tp->copied_seq, tp->rcv_nxt);
4800 	sk_mem_reclaim(sk);
4801 
4802 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4803 		return 0;
4804 
4805 	/* Collapsing did not help, destructive actions follow.
4806 	 * This must not ever occur. */
4807 
4808 	tcp_prune_ofo_queue(sk);
4809 
4810 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4811 		return 0;
4812 
4813 	/* If we are really being abused, tell the caller to silently
4814 	 * drop receive data on the floor.  It will get retransmitted
4815 	 * and hopefully then we'll have sufficient space.
4816 	 */
4817 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4818 
4819 	/* Massive buffer overcommit. */
4820 	tp->pred_flags = 0;
4821 	return -1;
4822 }
4823 
4824 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4825  * As additional protections, we do not touch cwnd in retransmission phases,
4826  * and if application hit its sndbuf limit recently.
4827  */
4828 void tcp_cwnd_application_limited(struct sock *sk)
4829 {
4830 	struct tcp_sock *tp = tcp_sk(sk);
4831 
4832 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4833 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4834 		/* Limited by application or receiver window. */
4835 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4836 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4837 		if (win_used < tp->snd_cwnd) {
4838 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4839 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4840 		}
4841 		tp->snd_cwnd_used = 0;
4842 	}
4843 	tp->snd_cwnd_stamp = tcp_time_stamp;
4844 }
4845 
4846 static int tcp_should_expand_sndbuf(struct sock *sk)
4847 {
4848 	struct tcp_sock *tp = tcp_sk(sk);
4849 
4850 	/* If the user specified a specific send buffer setting, do
4851 	 * not modify it.
4852 	 */
4853 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4854 		return 0;
4855 
4856 	/* If we are under global TCP memory pressure, do not expand.  */
4857 	if (tcp_memory_pressure)
4858 		return 0;
4859 
4860 	/* If we are under soft global TCP memory pressure, do not expand.  */
4861 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4862 		return 0;
4863 
4864 	/* If we filled the congestion window, do not expand.  */
4865 	if (tp->packets_out >= tp->snd_cwnd)
4866 		return 0;
4867 
4868 	return 1;
4869 }
4870 
4871 /* When incoming ACK allowed to free some skb from write_queue,
4872  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4873  * on the exit from tcp input handler.
4874  *
4875  * PROBLEM: sndbuf expansion does not work well with largesend.
4876  */
4877 static void tcp_new_space(struct sock *sk)
4878 {
4879 	struct tcp_sock *tp = tcp_sk(sk);
4880 
4881 	if (tcp_should_expand_sndbuf(sk)) {
4882 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4883 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4884 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4885 				     tp->reordering + 1);
4886 		sndmem *= 2 * demanded;
4887 		if (sndmem > sk->sk_sndbuf)
4888 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4889 		tp->snd_cwnd_stamp = tcp_time_stamp;
4890 	}
4891 
4892 	sk->sk_write_space(sk);
4893 }
4894 
4895 static void tcp_check_space(struct sock *sk)
4896 {
4897 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4898 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4899 		if (sk->sk_socket &&
4900 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4901 			tcp_new_space(sk);
4902 	}
4903 }
4904 
4905 static inline void tcp_data_snd_check(struct sock *sk)
4906 {
4907 	tcp_push_pending_frames(sk);
4908 	tcp_check_space(sk);
4909 }
4910 
4911 /*
4912  * Check if sending an ack is needed.
4913  */
4914 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4915 {
4916 	struct tcp_sock *tp = tcp_sk(sk);
4917 
4918 	    /* More than one full frame received... */
4919 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4920 	     /* ... and right edge of window advances far enough.
4921 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4922 	      */
4923 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4924 	    /* We ACK each frame or... */
4925 	    tcp_in_quickack_mode(sk) ||
4926 	    /* We have out of order data. */
4927 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4928 		/* Then ack it now */
4929 		tcp_send_ack(sk);
4930 	} else {
4931 		/* Else, send delayed ack. */
4932 		tcp_send_delayed_ack(sk);
4933 	}
4934 }
4935 
4936 static inline void tcp_ack_snd_check(struct sock *sk)
4937 {
4938 	if (!inet_csk_ack_scheduled(sk)) {
4939 		/* We sent a data segment already. */
4940 		return;
4941 	}
4942 	__tcp_ack_snd_check(sk, 1);
4943 }
4944 
4945 /*
4946  *	This routine is only called when we have urgent data
4947  *	signaled. Its the 'slow' part of tcp_urg. It could be
4948  *	moved inline now as tcp_urg is only called from one
4949  *	place. We handle URGent data wrong. We have to - as
4950  *	BSD still doesn't use the correction from RFC961.
4951  *	For 1003.1g we should support a new option TCP_STDURG to permit
4952  *	either form (or just set the sysctl tcp_stdurg).
4953  */
4954 
4955 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4956 {
4957 	struct tcp_sock *tp = tcp_sk(sk);
4958 	u32 ptr = ntohs(th->urg_ptr);
4959 
4960 	if (ptr && !sysctl_tcp_stdurg)
4961 		ptr--;
4962 	ptr += ntohl(th->seq);
4963 
4964 	/* Ignore urgent data that we've already seen and read. */
4965 	if (after(tp->copied_seq, ptr))
4966 		return;
4967 
4968 	/* Do not replay urg ptr.
4969 	 *
4970 	 * NOTE: interesting situation not covered by specs.
4971 	 * Misbehaving sender may send urg ptr, pointing to segment,
4972 	 * which we already have in ofo queue. We are not able to fetch
4973 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4974 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4975 	 * situations. But it is worth to think about possibility of some
4976 	 * DoSes using some hypothetical application level deadlock.
4977 	 */
4978 	if (before(ptr, tp->rcv_nxt))
4979 		return;
4980 
4981 	/* Do we already have a newer (or duplicate) urgent pointer? */
4982 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4983 		return;
4984 
4985 	/* Tell the world about our new urgent pointer. */
4986 	sk_send_sigurg(sk);
4987 
4988 	/* We may be adding urgent data when the last byte read was
4989 	 * urgent. To do this requires some care. We cannot just ignore
4990 	 * tp->copied_seq since we would read the last urgent byte again
4991 	 * as data, nor can we alter copied_seq until this data arrives
4992 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4993 	 *
4994 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4995 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4996 	 * and expect that both A and B disappear from stream. This is _wrong_.
4997 	 * Though this happens in BSD with high probability, this is occasional.
4998 	 * Any application relying on this is buggy. Note also, that fix "works"
4999 	 * only in this artificial test. Insert some normal data between A and B and we will
5000 	 * decline of BSD again. Verdict: it is better to remove to trap
5001 	 * buggy users.
5002 	 */
5003 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5004 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5005 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5006 		tp->copied_seq++;
5007 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5008 			__skb_unlink(skb, &sk->sk_receive_queue);
5009 			__kfree_skb(skb);
5010 		}
5011 	}
5012 
5013 	tp->urg_data = TCP_URG_NOTYET;
5014 	tp->urg_seq = ptr;
5015 
5016 	/* Disable header prediction. */
5017 	tp->pred_flags = 0;
5018 }
5019 
5020 /* This is the 'fast' part of urgent handling. */
5021 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5022 {
5023 	struct tcp_sock *tp = tcp_sk(sk);
5024 
5025 	/* Check if we get a new urgent pointer - normally not. */
5026 	if (th->urg)
5027 		tcp_check_urg(sk, th);
5028 
5029 	/* Do we wait for any urgent data? - normally not... */
5030 	if (tp->urg_data == TCP_URG_NOTYET) {
5031 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5032 			  th->syn;
5033 
5034 		/* Is the urgent pointer pointing into this packet? */
5035 		if (ptr < skb->len) {
5036 			u8 tmp;
5037 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5038 				BUG();
5039 			tp->urg_data = TCP_URG_VALID | tmp;
5040 			if (!sock_flag(sk, SOCK_DEAD))
5041 				sk->sk_data_ready(sk, 0);
5042 		}
5043 	}
5044 }
5045 
5046 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5047 {
5048 	struct tcp_sock *tp = tcp_sk(sk);
5049 	int chunk = skb->len - hlen;
5050 	int err;
5051 
5052 	local_bh_enable();
5053 	if (skb_csum_unnecessary(skb))
5054 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5055 	else
5056 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5057 						       tp->ucopy.iov);
5058 
5059 	if (!err) {
5060 		tp->ucopy.len -= chunk;
5061 		tp->copied_seq += chunk;
5062 		tcp_rcv_space_adjust(sk);
5063 	}
5064 
5065 	local_bh_disable();
5066 	return err;
5067 }
5068 
5069 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5070 					    struct sk_buff *skb)
5071 {
5072 	__sum16 result;
5073 
5074 	if (sock_owned_by_user(sk)) {
5075 		local_bh_enable();
5076 		result = __tcp_checksum_complete(skb);
5077 		local_bh_disable();
5078 	} else {
5079 		result = __tcp_checksum_complete(skb);
5080 	}
5081 	return result;
5082 }
5083 
5084 static inline int tcp_checksum_complete_user(struct sock *sk,
5085 					     struct sk_buff *skb)
5086 {
5087 	return !skb_csum_unnecessary(skb) &&
5088 	       __tcp_checksum_complete_user(sk, skb);
5089 }
5090 
5091 #ifdef CONFIG_NET_DMA
5092 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5093 				  int hlen)
5094 {
5095 	struct tcp_sock *tp = tcp_sk(sk);
5096 	int chunk = skb->len - hlen;
5097 	int dma_cookie;
5098 	int copied_early = 0;
5099 
5100 	if (tp->ucopy.wakeup)
5101 		return 0;
5102 
5103 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5104 		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5105 
5106 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5107 
5108 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5109 							 skb, hlen,
5110 							 tp->ucopy.iov, chunk,
5111 							 tp->ucopy.pinned_list);
5112 
5113 		if (dma_cookie < 0)
5114 			goto out;
5115 
5116 		tp->ucopy.dma_cookie = dma_cookie;
5117 		copied_early = 1;
5118 
5119 		tp->ucopy.len -= chunk;
5120 		tp->copied_seq += chunk;
5121 		tcp_rcv_space_adjust(sk);
5122 
5123 		if ((tp->ucopy.len == 0) ||
5124 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5125 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5126 			tp->ucopy.wakeup = 1;
5127 			sk->sk_data_ready(sk, 0);
5128 		}
5129 	} else if (chunk > 0) {
5130 		tp->ucopy.wakeup = 1;
5131 		sk->sk_data_ready(sk, 0);
5132 	}
5133 out:
5134 	return copied_early;
5135 }
5136 #endif /* CONFIG_NET_DMA */
5137 
5138 /* Does PAWS and seqno based validation of an incoming segment, flags will
5139  * play significant role here.
5140  */
5141 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5142 			      struct tcphdr *th, int syn_inerr)
5143 {
5144 	u8 *hash_location;
5145 	struct tcp_sock *tp = tcp_sk(sk);
5146 
5147 	/* RFC1323: H1. Apply PAWS check first. */
5148 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5149 	    tp->rx_opt.saw_tstamp &&
5150 	    tcp_paws_discard(sk, skb)) {
5151 		if (!th->rst) {
5152 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5153 			tcp_send_dupack(sk, skb);
5154 			goto discard;
5155 		}
5156 		/* Reset is accepted even if it did not pass PAWS. */
5157 	}
5158 
5159 	/* Step 1: check sequence number */
5160 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5161 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5162 		 * (RST) segments are validated by checking their SEQ-fields."
5163 		 * And page 69: "If an incoming segment is not acceptable,
5164 		 * an acknowledgment should be sent in reply (unless the RST
5165 		 * bit is set, if so drop the segment and return)".
5166 		 */
5167 		if (!th->rst)
5168 			tcp_send_dupack(sk, skb);
5169 		goto discard;
5170 	}
5171 
5172 	/* Step 2: check RST bit */
5173 	if (th->rst) {
5174 		tcp_reset(sk);
5175 		goto discard;
5176 	}
5177 
5178 	/* ts_recent update must be made after we are sure that the packet
5179 	 * is in window.
5180 	 */
5181 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5182 
5183 	/* step 3: check security and precedence [ignored] */
5184 
5185 	/* step 4: Check for a SYN in window. */
5186 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5187 		if (syn_inerr)
5188 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5189 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5190 		tcp_reset(sk);
5191 		return -1;
5192 	}
5193 
5194 	return 1;
5195 
5196 discard:
5197 	__kfree_skb(skb);
5198 	return 0;
5199 }
5200 
5201 /*
5202  *	TCP receive function for the ESTABLISHED state.
5203  *
5204  *	It is split into a fast path and a slow path. The fast path is
5205  * 	disabled when:
5206  *	- A zero window was announced from us - zero window probing
5207  *        is only handled properly in the slow path.
5208  *	- Out of order segments arrived.
5209  *	- Urgent data is expected.
5210  *	- There is no buffer space left
5211  *	- Unexpected TCP flags/window values/header lengths are received
5212  *	  (detected by checking the TCP header against pred_flags)
5213  *	- Data is sent in both directions. Fast path only supports pure senders
5214  *	  or pure receivers (this means either the sequence number or the ack
5215  *	  value must stay constant)
5216  *	- Unexpected TCP option.
5217  *
5218  *	When these conditions are not satisfied it drops into a standard
5219  *	receive procedure patterned after RFC793 to handle all cases.
5220  *	The first three cases are guaranteed by proper pred_flags setting,
5221  *	the rest is checked inline. Fast processing is turned on in
5222  *	tcp_data_queue when everything is OK.
5223  */
5224 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5225 			struct tcphdr *th, unsigned len)
5226 {
5227 	struct tcp_sock *tp = tcp_sk(sk);
5228 	int res;
5229 
5230 	/*
5231 	 *	Header prediction.
5232 	 *	The code loosely follows the one in the famous
5233 	 *	"30 instruction TCP receive" Van Jacobson mail.
5234 	 *
5235 	 *	Van's trick is to deposit buffers into socket queue
5236 	 *	on a device interrupt, to call tcp_recv function
5237 	 *	on the receive process context and checksum and copy
5238 	 *	the buffer to user space. smart...
5239 	 *
5240 	 *	Our current scheme is not silly either but we take the
5241 	 *	extra cost of the net_bh soft interrupt processing...
5242 	 *	We do checksum and copy also but from device to kernel.
5243 	 */
5244 
5245 	tp->rx_opt.saw_tstamp = 0;
5246 
5247 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5248 	 *	if header_prediction is to be made
5249 	 *	'S' will always be tp->tcp_header_len >> 2
5250 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5251 	 *  turn it off	(when there are holes in the receive
5252 	 *	 space for instance)
5253 	 *	PSH flag is ignored.
5254 	 */
5255 
5256 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5257 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5258 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5259 		int tcp_header_len = tp->tcp_header_len;
5260 
5261 		/* Timestamp header prediction: tcp_header_len
5262 		 * is automatically equal to th->doff*4 due to pred_flags
5263 		 * match.
5264 		 */
5265 
5266 		/* Check timestamp */
5267 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5268 			/* No? Slow path! */
5269 			if (!tcp_parse_aligned_timestamp(tp, th))
5270 				goto slow_path;
5271 
5272 			/* If PAWS failed, check it more carefully in slow path */
5273 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5274 				goto slow_path;
5275 
5276 			/* DO NOT update ts_recent here, if checksum fails
5277 			 * and timestamp was corrupted part, it will result
5278 			 * in a hung connection since we will drop all
5279 			 * future packets due to the PAWS test.
5280 			 */
5281 		}
5282 
5283 		if (len <= tcp_header_len) {
5284 			/* Bulk data transfer: sender */
5285 			if (len == tcp_header_len) {
5286 				/* Predicted packet is in window by definition.
5287 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5288 				 * Hence, check seq<=rcv_wup reduces to:
5289 				 */
5290 				if (tcp_header_len ==
5291 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5292 				    tp->rcv_nxt == tp->rcv_wup)
5293 					tcp_store_ts_recent(tp);
5294 
5295 				/* We know that such packets are checksummed
5296 				 * on entry.
5297 				 */
5298 				tcp_ack(sk, skb, 0);
5299 				__kfree_skb(skb);
5300 				tcp_data_snd_check(sk);
5301 				return 0;
5302 			} else { /* Header too small */
5303 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5304 				goto discard;
5305 			}
5306 		} else {
5307 			int eaten = 0;
5308 			int copied_early = 0;
5309 
5310 			if (tp->copied_seq == tp->rcv_nxt &&
5311 			    len - tcp_header_len <= tp->ucopy.len) {
5312 #ifdef CONFIG_NET_DMA
5313 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5314 					copied_early = 1;
5315 					eaten = 1;
5316 				}
5317 #endif
5318 				if (tp->ucopy.task == current &&
5319 				    sock_owned_by_user(sk) && !copied_early) {
5320 					__set_current_state(TASK_RUNNING);
5321 
5322 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5323 						eaten = 1;
5324 				}
5325 				if (eaten) {
5326 					/* Predicted packet is in window by definition.
5327 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5328 					 * Hence, check seq<=rcv_wup reduces to:
5329 					 */
5330 					if (tcp_header_len ==
5331 					    (sizeof(struct tcphdr) +
5332 					     TCPOLEN_TSTAMP_ALIGNED) &&
5333 					    tp->rcv_nxt == tp->rcv_wup)
5334 						tcp_store_ts_recent(tp);
5335 
5336 					tcp_rcv_rtt_measure_ts(sk, skb);
5337 
5338 					__skb_pull(skb, tcp_header_len);
5339 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5340 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5341 				}
5342 				if (copied_early)
5343 					tcp_cleanup_rbuf(sk, skb->len);
5344 			}
5345 			if (!eaten) {
5346 				if (tcp_checksum_complete_user(sk, skb))
5347 					goto csum_error;
5348 
5349 				/* Predicted packet is in window by definition.
5350 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5351 				 * Hence, check seq<=rcv_wup reduces to:
5352 				 */
5353 				if (tcp_header_len ==
5354 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5355 				    tp->rcv_nxt == tp->rcv_wup)
5356 					tcp_store_ts_recent(tp);
5357 
5358 				tcp_rcv_rtt_measure_ts(sk, skb);
5359 
5360 				if ((int)skb->truesize > sk->sk_forward_alloc)
5361 					goto step5;
5362 
5363 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5364 
5365 				/* Bulk data transfer: receiver */
5366 				__skb_pull(skb, tcp_header_len);
5367 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5368 				skb_set_owner_r(skb, sk);
5369 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5370 			}
5371 
5372 			tcp_event_data_recv(sk, skb);
5373 
5374 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5375 				/* Well, only one small jumplet in fast path... */
5376 				tcp_ack(sk, skb, FLAG_DATA);
5377 				tcp_data_snd_check(sk);
5378 				if (!inet_csk_ack_scheduled(sk))
5379 					goto no_ack;
5380 			}
5381 
5382 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5383 				__tcp_ack_snd_check(sk, 0);
5384 no_ack:
5385 #ifdef CONFIG_NET_DMA
5386 			if (copied_early)
5387 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5388 			else
5389 #endif
5390 			if (eaten)
5391 				__kfree_skb(skb);
5392 			else
5393 				sk->sk_data_ready(sk, 0);
5394 			return 0;
5395 		}
5396 	}
5397 
5398 slow_path:
5399 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5400 		goto csum_error;
5401 
5402 	/*
5403 	 *	Standard slow path.
5404 	 */
5405 
5406 	res = tcp_validate_incoming(sk, skb, th, 1);
5407 	if (res <= 0)
5408 		return -res;
5409 
5410 step5:
5411 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5412 		goto discard;
5413 
5414 	tcp_rcv_rtt_measure_ts(sk, skb);
5415 
5416 	/* Process urgent data. */
5417 	tcp_urg(sk, skb, th);
5418 
5419 	/* step 7: process the segment text */
5420 	tcp_data_queue(sk, skb);
5421 
5422 	tcp_data_snd_check(sk);
5423 	tcp_ack_snd_check(sk);
5424 	return 0;
5425 
5426 csum_error:
5427 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5428 
5429 discard:
5430 	__kfree_skb(skb);
5431 	return 0;
5432 }
5433 
5434 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5435 					 struct tcphdr *th, unsigned len)
5436 {
5437 	u8 *hash_location;
5438 	struct inet_connection_sock *icsk = inet_csk(sk);
5439 	struct tcp_sock *tp = tcp_sk(sk);
5440 	struct tcp_cookie_values *cvp = tp->cookie_values;
5441 	int saved_clamp = tp->rx_opt.mss_clamp;
5442 
5443 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5444 
5445 	if (th->ack) {
5446 		/* rfc793:
5447 		 * "If the state is SYN-SENT then
5448 		 *    first check the ACK bit
5449 		 *      If the ACK bit is set
5450 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5451 		 *        a reset (unless the RST bit is set, if so drop
5452 		 *        the segment and return)"
5453 		 *
5454 		 *  We do not send data with SYN, so that RFC-correct
5455 		 *  test reduces to:
5456 		 */
5457 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5458 			goto reset_and_undo;
5459 
5460 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5461 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5462 			     tcp_time_stamp)) {
5463 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5464 			goto reset_and_undo;
5465 		}
5466 
5467 		/* Now ACK is acceptable.
5468 		 *
5469 		 * "If the RST bit is set
5470 		 *    If the ACK was acceptable then signal the user "error:
5471 		 *    connection reset", drop the segment, enter CLOSED state,
5472 		 *    delete TCB, and return."
5473 		 */
5474 
5475 		if (th->rst) {
5476 			tcp_reset(sk);
5477 			goto discard;
5478 		}
5479 
5480 		/* rfc793:
5481 		 *   "fifth, if neither of the SYN or RST bits is set then
5482 		 *    drop the segment and return."
5483 		 *
5484 		 *    See note below!
5485 		 *                                        --ANK(990513)
5486 		 */
5487 		if (!th->syn)
5488 			goto discard_and_undo;
5489 
5490 		/* rfc793:
5491 		 *   "If the SYN bit is on ...
5492 		 *    are acceptable then ...
5493 		 *    (our SYN has been ACKed), change the connection
5494 		 *    state to ESTABLISHED..."
5495 		 */
5496 
5497 		TCP_ECN_rcv_synack(tp, th);
5498 
5499 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5500 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5501 
5502 		/* Ok.. it's good. Set up sequence numbers and
5503 		 * move to established.
5504 		 */
5505 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5506 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5507 
5508 		/* RFC1323: The window in SYN & SYN/ACK segments is
5509 		 * never scaled.
5510 		 */
5511 		tp->snd_wnd = ntohs(th->window);
5512 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5513 
5514 		if (!tp->rx_opt.wscale_ok) {
5515 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5516 			tp->window_clamp = min(tp->window_clamp, 65535U);
5517 		}
5518 
5519 		if (tp->rx_opt.saw_tstamp) {
5520 			tp->rx_opt.tstamp_ok	   = 1;
5521 			tp->tcp_header_len =
5522 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5523 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5524 			tcp_store_ts_recent(tp);
5525 		} else {
5526 			tp->tcp_header_len = sizeof(struct tcphdr);
5527 		}
5528 
5529 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5530 			tcp_enable_fack(tp);
5531 
5532 		tcp_mtup_init(sk);
5533 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5534 		tcp_initialize_rcv_mss(sk);
5535 
5536 		/* Remember, tcp_poll() does not lock socket!
5537 		 * Change state from SYN-SENT only after copied_seq
5538 		 * is initialized. */
5539 		tp->copied_seq = tp->rcv_nxt;
5540 
5541 		if (cvp != NULL &&
5542 		    cvp->cookie_pair_size > 0 &&
5543 		    tp->rx_opt.cookie_plus > 0) {
5544 			int cookie_size = tp->rx_opt.cookie_plus
5545 					- TCPOLEN_COOKIE_BASE;
5546 			int cookie_pair_size = cookie_size
5547 					     + cvp->cookie_desired;
5548 
5549 			/* A cookie extension option was sent and returned.
5550 			 * Note that each incoming SYNACK replaces the
5551 			 * Responder cookie.  The initial exchange is most
5552 			 * fragile, as protection against spoofing relies
5553 			 * entirely upon the sequence and timestamp (above).
5554 			 * This replacement strategy allows the correct pair to
5555 			 * pass through, while any others will be filtered via
5556 			 * Responder verification later.
5557 			 */
5558 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5559 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5560 				       hash_location, cookie_size);
5561 				cvp->cookie_pair_size = cookie_pair_size;
5562 			}
5563 		}
5564 
5565 		smp_mb();
5566 		tcp_set_state(sk, TCP_ESTABLISHED);
5567 
5568 		security_inet_conn_established(sk, skb);
5569 
5570 		/* Make sure socket is routed, for correct metrics.  */
5571 		icsk->icsk_af_ops->rebuild_header(sk);
5572 
5573 		tcp_init_metrics(sk);
5574 
5575 		tcp_init_congestion_control(sk);
5576 
5577 		/* Prevent spurious tcp_cwnd_restart() on first data
5578 		 * packet.
5579 		 */
5580 		tp->lsndtime = tcp_time_stamp;
5581 
5582 		tcp_init_buffer_space(sk);
5583 
5584 		if (sock_flag(sk, SOCK_KEEPOPEN))
5585 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5586 
5587 		if (!tp->rx_opt.snd_wscale)
5588 			__tcp_fast_path_on(tp, tp->snd_wnd);
5589 		else
5590 			tp->pred_flags = 0;
5591 
5592 		if (!sock_flag(sk, SOCK_DEAD)) {
5593 			sk->sk_state_change(sk);
5594 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5595 		}
5596 
5597 		if (sk->sk_write_pending ||
5598 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5599 		    icsk->icsk_ack.pingpong) {
5600 			/* Save one ACK. Data will be ready after
5601 			 * several ticks, if write_pending is set.
5602 			 *
5603 			 * It may be deleted, but with this feature tcpdumps
5604 			 * look so _wonderfully_ clever, that I was not able
5605 			 * to stand against the temptation 8)     --ANK
5606 			 */
5607 			inet_csk_schedule_ack(sk);
5608 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5609 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5610 			tcp_incr_quickack(sk);
5611 			tcp_enter_quickack_mode(sk);
5612 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5613 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5614 
5615 discard:
5616 			__kfree_skb(skb);
5617 			return 0;
5618 		} else {
5619 			tcp_send_ack(sk);
5620 		}
5621 		return -1;
5622 	}
5623 
5624 	/* No ACK in the segment */
5625 
5626 	if (th->rst) {
5627 		/* rfc793:
5628 		 * "If the RST bit is set
5629 		 *
5630 		 *      Otherwise (no ACK) drop the segment and return."
5631 		 */
5632 
5633 		goto discard_and_undo;
5634 	}
5635 
5636 	/* PAWS check. */
5637 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5638 	    tcp_paws_reject(&tp->rx_opt, 0))
5639 		goto discard_and_undo;
5640 
5641 	if (th->syn) {
5642 		/* We see SYN without ACK. It is attempt of
5643 		 * simultaneous connect with crossed SYNs.
5644 		 * Particularly, it can be connect to self.
5645 		 */
5646 		tcp_set_state(sk, TCP_SYN_RECV);
5647 
5648 		if (tp->rx_opt.saw_tstamp) {
5649 			tp->rx_opt.tstamp_ok = 1;
5650 			tcp_store_ts_recent(tp);
5651 			tp->tcp_header_len =
5652 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5653 		} else {
5654 			tp->tcp_header_len = sizeof(struct tcphdr);
5655 		}
5656 
5657 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5658 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5659 
5660 		/* RFC1323: The window in SYN & SYN/ACK segments is
5661 		 * never scaled.
5662 		 */
5663 		tp->snd_wnd    = ntohs(th->window);
5664 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5665 		tp->max_window = tp->snd_wnd;
5666 
5667 		TCP_ECN_rcv_syn(tp, th);
5668 
5669 		tcp_mtup_init(sk);
5670 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5671 		tcp_initialize_rcv_mss(sk);
5672 
5673 		tcp_send_synack(sk);
5674 #if 0
5675 		/* Note, we could accept data and URG from this segment.
5676 		 * There are no obstacles to make this.
5677 		 *
5678 		 * However, if we ignore data in ACKless segments sometimes,
5679 		 * we have no reasons to accept it sometimes.
5680 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5681 		 * is not flawless. So, discard packet for sanity.
5682 		 * Uncomment this return to process the data.
5683 		 */
5684 		return -1;
5685 #else
5686 		goto discard;
5687 #endif
5688 	}
5689 	/* "fifth, if neither of the SYN or RST bits is set then
5690 	 * drop the segment and return."
5691 	 */
5692 
5693 discard_and_undo:
5694 	tcp_clear_options(&tp->rx_opt);
5695 	tp->rx_opt.mss_clamp = saved_clamp;
5696 	goto discard;
5697 
5698 reset_and_undo:
5699 	tcp_clear_options(&tp->rx_opt);
5700 	tp->rx_opt.mss_clamp = saved_clamp;
5701 	return 1;
5702 }
5703 
5704 /*
5705  *	This function implements the receiving procedure of RFC 793 for
5706  *	all states except ESTABLISHED and TIME_WAIT.
5707  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5708  *	address independent.
5709  */
5710 
5711 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5712 			  struct tcphdr *th, unsigned len)
5713 {
5714 	struct tcp_sock *tp = tcp_sk(sk);
5715 	struct inet_connection_sock *icsk = inet_csk(sk);
5716 	int queued = 0;
5717 	int res;
5718 
5719 	tp->rx_opt.saw_tstamp = 0;
5720 
5721 	switch (sk->sk_state) {
5722 	case TCP_CLOSE:
5723 		goto discard;
5724 
5725 	case TCP_LISTEN:
5726 		if (th->ack)
5727 			return 1;
5728 
5729 		if (th->rst)
5730 			goto discard;
5731 
5732 		if (th->syn) {
5733 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5734 				return 1;
5735 
5736 			/* Now we have several options: In theory there is
5737 			 * nothing else in the frame. KA9Q has an option to
5738 			 * send data with the syn, BSD accepts data with the
5739 			 * syn up to the [to be] advertised window and
5740 			 * Solaris 2.1 gives you a protocol error. For now
5741 			 * we just ignore it, that fits the spec precisely
5742 			 * and avoids incompatibilities. It would be nice in
5743 			 * future to drop through and process the data.
5744 			 *
5745 			 * Now that TTCP is starting to be used we ought to
5746 			 * queue this data.
5747 			 * But, this leaves one open to an easy denial of
5748 			 * service attack, and SYN cookies can't defend
5749 			 * against this problem. So, we drop the data
5750 			 * in the interest of security over speed unless
5751 			 * it's still in use.
5752 			 */
5753 			kfree_skb(skb);
5754 			return 0;
5755 		}
5756 		goto discard;
5757 
5758 	case TCP_SYN_SENT:
5759 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5760 		if (queued >= 0)
5761 			return queued;
5762 
5763 		/* Do step6 onward by hand. */
5764 		tcp_urg(sk, skb, th);
5765 		__kfree_skb(skb);
5766 		tcp_data_snd_check(sk);
5767 		return 0;
5768 	}
5769 
5770 	res = tcp_validate_incoming(sk, skb, th, 0);
5771 	if (res <= 0)
5772 		return -res;
5773 
5774 	/* step 5: check the ACK field */
5775 	if (th->ack) {
5776 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5777 
5778 		switch (sk->sk_state) {
5779 		case TCP_SYN_RECV:
5780 			if (acceptable) {
5781 				tp->copied_seq = tp->rcv_nxt;
5782 				smp_mb();
5783 				tcp_set_state(sk, TCP_ESTABLISHED);
5784 				sk->sk_state_change(sk);
5785 
5786 				/* Note, that this wakeup is only for marginal
5787 				 * crossed SYN case. Passively open sockets
5788 				 * are not waked up, because sk->sk_sleep ==
5789 				 * NULL and sk->sk_socket == NULL.
5790 				 */
5791 				if (sk->sk_socket)
5792 					sk_wake_async(sk,
5793 						      SOCK_WAKE_IO, POLL_OUT);
5794 
5795 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5796 				tp->snd_wnd = ntohs(th->window) <<
5797 					      tp->rx_opt.snd_wscale;
5798 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5799 
5800 				/* tcp_ack considers this ACK as duplicate
5801 				 * and does not calculate rtt.
5802 				 * Force it here.
5803 				 */
5804 				tcp_ack_update_rtt(sk, 0, 0);
5805 
5806 				if (tp->rx_opt.tstamp_ok)
5807 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5808 
5809 				/* Make sure socket is routed, for
5810 				 * correct metrics.
5811 				 */
5812 				icsk->icsk_af_ops->rebuild_header(sk);
5813 
5814 				tcp_init_metrics(sk);
5815 
5816 				tcp_init_congestion_control(sk);
5817 
5818 				/* Prevent spurious tcp_cwnd_restart() on
5819 				 * first data packet.
5820 				 */
5821 				tp->lsndtime = tcp_time_stamp;
5822 
5823 				tcp_mtup_init(sk);
5824 				tcp_initialize_rcv_mss(sk);
5825 				tcp_init_buffer_space(sk);
5826 				tcp_fast_path_on(tp);
5827 			} else {
5828 				return 1;
5829 			}
5830 			break;
5831 
5832 		case TCP_FIN_WAIT1:
5833 			if (tp->snd_una == tp->write_seq) {
5834 				tcp_set_state(sk, TCP_FIN_WAIT2);
5835 				sk->sk_shutdown |= SEND_SHUTDOWN;
5836 				dst_confirm(sk->sk_dst_cache);
5837 
5838 				if (!sock_flag(sk, SOCK_DEAD))
5839 					/* Wake up lingering close() */
5840 					sk->sk_state_change(sk);
5841 				else {
5842 					int tmo;
5843 
5844 					if (tp->linger2 < 0 ||
5845 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5846 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5847 						tcp_done(sk);
5848 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5849 						return 1;
5850 					}
5851 
5852 					tmo = tcp_fin_time(sk);
5853 					if (tmo > TCP_TIMEWAIT_LEN) {
5854 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5855 					} else if (th->fin || sock_owned_by_user(sk)) {
5856 						/* Bad case. We could lose such FIN otherwise.
5857 						 * It is not a big problem, but it looks confusing
5858 						 * and not so rare event. We still can lose it now,
5859 						 * if it spins in bh_lock_sock(), but it is really
5860 						 * marginal case.
5861 						 */
5862 						inet_csk_reset_keepalive_timer(sk, tmo);
5863 					} else {
5864 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5865 						goto discard;
5866 					}
5867 				}
5868 			}
5869 			break;
5870 
5871 		case TCP_CLOSING:
5872 			if (tp->snd_una == tp->write_seq) {
5873 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5874 				goto discard;
5875 			}
5876 			break;
5877 
5878 		case TCP_LAST_ACK:
5879 			if (tp->snd_una == tp->write_seq) {
5880 				tcp_update_metrics(sk);
5881 				tcp_done(sk);
5882 				goto discard;
5883 			}
5884 			break;
5885 		}
5886 	} else
5887 		goto discard;
5888 
5889 	/* step 6: check the URG bit */
5890 	tcp_urg(sk, skb, th);
5891 
5892 	/* step 7: process the segment text */
5893 	switch (sk->sk_state) {
5894 	case TCP_CLOSE_WAIT:
5895 	case TCP_CLOSING:
5896 	case TCP_LAST_ACK:
5897 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5898 			break;
5899 	case TCP_FIN_WAIT1:
5900 	case TCP_FIN_WAIT2:
5901 		/* RFC 793 says to queue data in these states,
5902 		 * RFC 1122 says we MUST send a reset.
5903 		 * BSD 4.4 also does reset.
5904 		 */
5905 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5906 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5907 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5908 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5909 				tcp_reset(sk);
5910 				return 1;
5911 			}
5912 		}
5913 		/* Fall through */
5914 	case TCP_ESTABLISHED:
5915 		tcp_data_queue(sk, skb);
5916 		queued = 1;
5917 		break;
5918 	}
5919 
5920 	/* tcp_data could move socket to TIME-WAIT */
5921 	if (sk->sk_state != TCP_CLOSE) {
5922 		tcp_data_snd_check(sk);
5923 		tcp_ack_snd_check(sk);
5924 	}
5925 
5926 	if (!queued) {
5927 discard:
5928 		__kfree_skb(skb);
5929 	}
5930 	return 0;
5931 }
5932 
5933 EXPORT_SYMBOL(sysctl_tcp_ecn);
5934 EXPORT_SYMBOL(sysctl_tcp_reordering);
5935 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5936 EXPORT_SYMBOL(tcp_parse_options);
5937 #ifdef CONFIG_TCP_MD5SIG
5938 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5939 #endif
5940 EXPORT_SYMBOL(tcp_rcv_established);
5941 EXPORT_SYMBOL(tcp_rcv_state_process);
5942 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5943