1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly; 83 int sysctl_tcp_max_reordering __read_mostly = 300; 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 EXPORT_SYMBOL(sysctl_tcp_timestamps); 89 90 /* rfc5961 challenge ack rate limiting */ 91 int sysctl_tcp_challenge_ack_limit = 1000; 92 93 int sysctl_tcp_stdurg __read_mostly; 94 int sysctl_tcp_rfc1337 __read_mostly; 95 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 96 int sysctl_tcp_frto __read_mostly = 2; 97 int sysctl_tcp_min_rtt_wlen __read_mostly = 300; 98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 99 int sysctl_tcp_early_retrans __read_mostly = 3; 100 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 101 102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 108 #define FLAG_ECE 0x40 /* ECE in this ACK */ 109 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 110 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 111 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 112 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 113 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 115 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 116 117 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 118 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 119 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 120 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 121 122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 124 125 #define REXMIT_NONE 0 /* no loss recovery to do */ 126 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 127 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 128 129 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 130 unsigned int len) 131 { 132 static bool __once __read_mostly; 133 134 if (!__once) { 135 struct net_device *dev; 136 137 __once = true; 138 139 rcu_read_lock(); 140 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 141 if (!dev || len >= dev->mtu) 142 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 143 dev ? dev->name : "Unknown driver"); 144 rcu_read_unlock(); 145 } 146 } 147 148 /* Adapt the MSS value used to make delayed ack decision to the 149 * real world. 150 */ 151 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 152 { 153 struct inet_connection_sock *icsk = inet_csk(sk); 154 const unsigned int lss = icsk->icsk_ack.last_seg_size; 155 unsigned int len; 156 157 icsk->icsk_ack.last_seg_size = 0; 158 159 /* skb->len may jitter because of SACKs, even if peer 160 * sends good full-sized frames. 161 */ 162 len = skb_shinfo(skb)->gso_size ? : skb->len; 163 if (len >= icsk->icsk_ack.rcv_mss) { 164 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 165 tcp_sk(sk)->advmss); 166 /* Account for possibly-removed options */ 167 if (unlikely(len > icsk->icsk_ack.rcv_mss + 168 MAX_TCP_OPTION_SPACE)) 169 tcp_gro_dev_warn(sk, skb, len); 170 } else { 171 /* Otherwise, we make more careful check taking into account, 172 * that SACKs block is variable. 173 * 174 * "len" is invariant segment length, including TCP header. 175 */ 176 len += skb->data - skb_transport_header(skb); 177 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 178 /* If PSH is not set, packet should be 179 * full sized, provided peer TCP is not badly broken. 180 * This observation (if it is correct 8)) allows 181 * to handle super-low mtu links fairly. 182 */ 183 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 184 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 185 /* Subtract also invariant (if peer is RFC compliant), 186 * tcp header plus fixed timestamp option length. 187 * Resulting "len" is MSS free of SACK jitter. 188 */ 189 len -= tcp_sk(sk)->tcp_header_len; 190 icsk->icsk_ack.last_seg_size = len; 191 if (len == lss) { 192 icsk->icsk_ack.rcv_mss = len; 193 return; 194 } 195 } 196 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 197 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 198 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 199 } 200 } 201 202 static void tcp_incr_quickack(struct sock *sk) 203 { 204 struct inet_connection_sock *icsk = inet_csk(sk); 205 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 206 207 if (quickacks == 0) 208 quickacks = 2; 209 if (quickacks > icsk->icsk_ack.quick) 210 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 211 } 212 213 static void tcp_enter_quickack_mode(struct sock *sk) 214 { 215 struct inet_connection_sock *icsk = inet_csk(sk); 216 tcp_incr_quickack(sk); 217 icsk->icsk_ack.pingpong = 0; 218 icsk->icsk_ack.ato = TCP_ATO_MIN; 219 } 220 221 /* Send ACKs quickly, if "quick" count is not exhausted 222 * and the session is not interactive. 223 */ 224 225 static bool tcp_in_quickack_mode(struct sock *sk) 226 { 227 const struct inet_connection_sock *icsk = inet_csk(sk); 228 const struct dst_entry *dst = __sk_dst_get(sk); 229 230 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 231 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 232 } 233 234 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 235 { 236 if (tp->ecn_flags & TCP_ECN_OK) 237 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 238 } 239 240 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 241 { 242 if (tcp_hdr(skb)->cwr) 243 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 244 } 245 246 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 247 { 248 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 249 } 250 251 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 252 { 253 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 254 case INET_ECN_NOT_ECT: 255 /* Funny extension: if ECT is not set on a segment, 256 * and we already seen ECT on a previous segment, 257 * it is probably a retransmit. 258 */ 259 if (tp->ecn_flags & TCP_ECN_SEEN) 260 tcp_enter_quickack_mode((struct sock *)tp); 261 break; 262 case INET_ECN_CE: 263 if (tcp_ca_needs_ecn((struct sock *)tp)) 264 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 265 266 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 267 /* Better not delay acks, sender can have a very low cwnd */ 268 tcp_enter_quickack_mode((struct sock *)tp); 269 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 270 } 271 tp->ecn_flags |= TCP_ECN_SEEN; 272 break; 273 default: 274 if (tcp_ca_needs_ecn((struct sock *)tp)) 275 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 276 tp->ecn_flags |= TCP_ECN_SEEN; 277 break; 278 } 279 } 280 281 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 282 { 283 if (tp->ecn_flags & TCP_ECN_OK) 284 __tcp_ecn_check_ce(tp, skb); 285 } 286 287 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 288 { 289 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 290 tp->ecn_flags &= ~TCP_ECN_OK; 291 } 292 293 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 294 { 295 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 296 tp->ecn_flags &= ~TCP_ECN_OK; 297 } 298 299 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 300 { 301 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 302 return true; 303 return false; 304 } 305 306 /* Buffer size and advertised window tuning. 307 * 308 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 309 */ 310 311 static void tcp_sndbuf_expand(struct sock *sk) 312 { 313 const struct tcp_sock *tp = tcp_sk(sk); 314 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 315 int sndmem, per_mss; 316 u32 nr_segs; 317 318 /* Worst case is non GSO/TSO : each frame consumes one skb 319 * and skb->head is kmalloced using power of two area of memory 320 */ 321 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 322 MAX_TCP_HEADER + 323 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 324 325 per_mss = roundup_pow_of_two(per_mss) + 326 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 327 328 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 329 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 330 331 /* Fast Recovery (RFC 5681 3.2) : 332 * Cubic needs 1.7 factor, rounded to 2 to include 333 * extra cushion (application might react slowly to POLLOUT) 334 */ 335 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 336 sndmem *= nr_segs * per_mss; 337 338 if (sk->sk_sndbuf < sndmem) 339 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 340 } 341 342 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 343 * 344 * All tcp_full_space() is split to two parts: "network" buffer, allocated 345 * forward and advertised in receiver window (tp->rcv_wnd) and 346 * "application buffer", required to isolate scheduling/application 347 * latencies from network. 348 * window_clamp is maximal advertised window. It can be less than 349 * tcp_full_space(), in this case tcp_full_space() - window_clamp 350 * is reserved for "application" buffer. The less window_clamp is 351 * the smoother our behaviour from viewpoint of network, but the lower 352 * throughput and the higher sensitivity of the connection to losses. 8) 353 * 354 * rcv_ssthresh is more strict window_clamp used at "slow start" 355 * phase to predict further behaviour of this connection. 356 * It is used for two goals: 357 * - to enforce header prediction at sender, even when application 358 * requires some significant "application buffer". It is check #1. 359 * - to prevent pruning of receive queue because of misprediction 360 * of receiver window. Check #2. 361 * 362 * The scheme does not work when sender sends good segments opening 363 * window and then starts to feed us spaghetti. But it should work 364 * in common situations. Otherwise, we have to rely on queue collapsing. 365 */ 366 367 /* Slow part of check#2. */ 368 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 369 { 370 struct tcp_sock *tp = tcp_sk(sk); 371 /* Optimize this! */ 372 int truesize = tcp_win_from_space(skb->truesize) >> 1; 373 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 374 375 while (tp->rcv_ssthresh <= window) { 376 if (truesize <= skb->len) 377 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 378 379 truesize >>= 1; 380 window >>= 1; 381 } 382 return 0; 383 } 384 385 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 386 { 387 struct tcp_sock *tp = tcp_sk(sk); 388 389 /* Check #1 */ 390 if (tp->rcv_ssthresh < tp->window_clamp && 391 (int)tp->rcv_ssthresh < tcp_space(sk) && 392 !tcp_under_memory_pressure(sk)) { 393 int incr; 394 395 /* Check #2. Increase window, if skb with such overhead 396 * will fit to rcvbuf in future. 397 */ 398 if (tcp_win_from_space(skb->truesize) <= skb->len) 399 incr = 2 * tp->advmss; 400 else 401 incr = __tcp_grow_window(sk, skb); 402 403 if (incr) { 404 incr = max_t(int, incr, 2 * skb->len); 405 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 406 tp->window_clamp); 407 inet_csk(sk)->icsk_ack.quick |= 1; 408 } 409 } 410 } 411 412 /* 3. Tuning rcvbuf, when connection enters established state. */ 413 static void tcp_fixup_rcvbuf(struct sock *sk) 414 { 415 u32 mss = tcp_sk(sk)->advmss; 416 int rcvmem; 417 418 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 419 tcp_default_init_rwnd(mss); 420 421 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 422 * Allow enough cushion so that sender is not limited by our window 423 */ 424 if (sysctl_tcp_moderate_rcvbuf) 425 rcvmem <<= 2; 426 427 if (sk->sk_rcvbuf < rcvmem) 428 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 429 } 430 431 /* 4. Try to fixup all. It is made immediately after connection enters 432 * established state. 433 */ 434 void tcp_init_buffer_space(struct sock *sk) 435 { 436 struct tcp_sock *tp = tcp_sk(sk); 437 int maxwin; 438 439 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 440 tcp_fixup_rcvbuf(sk); 441 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 442 tcp_sndbuf_expand(sk); 443 444 tp->rcvq_space.space = tp->rcv_wnd; 445 tp->rcvq_space.time = tcp_time_stamp; 446 tp->rcvq_space.seq = tp->copied_seq; 447 448 maxwin = tcp_full_space(sk); 449 450 if (tp->window_clamp >= maxwin) { 451 tp->window_clamp = maxwin; 452 453 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 454 tp->window_clamp = max(maxwin - 455 (maxwin >> sysctl_tcp_app_win), 456 4 * tp->advmss); 457 } 458 459 /* Force reservation of one segment. */ 460 if (sysctl_tcp_app_win && 461 tp->window_clamp > 2 * tp->advmss && 462 tp->window_clamp + tp->advmss > maxwin) 463 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 464 465 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 466 tp->snd_cwnd_stamp = tcp_time_stamp; 467 } 468 469 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 470 static void tcp_clamp_window(struct sock *sk) 471 { 472 struct tcp_sock *tp = tcp_sk(sk); 473 struct inet_connection_sock *icsk = inet_csk(sk); 474 475 icsk->icsk_ack.quick = 0; 476 477 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 478 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 479 !tcp_under_memory_pressure(sk) && 480 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 481 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 482 sysctl_tcp_rmem[2]); 483 } 484 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 485 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 486 } 487 488 /* Initialize RCV_MSS value. 489 * RCV_MSS is an our guess about MSS used by the peer. 490 * We haven't any direct information about the MSS. 491 * It's better to underestimate the RCV_MSS rather than overestimate. 492 * Overestimations make us ACKing less frequently than needed. 493 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 494 */ 495 void tcp_initialize_rcv_mss(struct sock *sk) 496 { 497 const struct tcp_sock *tp = tcp_sk(sk); 498 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 499 500 hint = min(hint, tp->rcv_wnd / 2); 501 hint = min(hint, TCP_MSS_DEFAULT); 502 hint = max(hint, TCP_MIN_MSS); 503 504 inet_csk(sk)->icsk_ack.rcv_mss = hint; 505 } 506 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 507 508 /* Receiver "autotuning" code. 509 * 510 * The algorithm for RTT estimation w/o timestamps is based on 511 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 512 * <http://public.lanl.gov/radiant/pubs.html#DRS> 513 * 514 * More detail on this code can be found at 515 * <http://staff.psc.edu/jheffner/>, 516 * though this reference is out of date. A new paper 517 * is pending. 518 */ 519 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 520 { 521 u32 new_sample = tp->rcv_rtt_est.rtt; 522 long m = sample; 523 524 if (m == 0) 525 m = 1; 526 527 if (new_sample != 0) { 528 /* If we sample in larger samples in the non-timestamp 529 * case, we could grossly overestimate the RTT especially 530 * with chatty applications or bulk transfer apps which 531 * are stalled on filesystem I/O. 532 * 533 * Also, since we are only going for a minimum in the 534 * non-timestamp case, we do not smooth things out 535 * else with timestamps disabled convergence takes too 536 * long. 537 */ 538 if (!win_dep) { 539 m -= (new_sample >> 3); 540 new_sample += m; 541 } else { 542 m <<= 3; 543 if (m < new_sample) 544 new_sample = m; 545 } 546 } else { 547 /* No previous measure. */ 548 new_sample = m << 3; 549 } 550 551 if (tp->rcv_rtt_est.rtt != new_sample) 552 tp->rcv_rtt_est.rtt = new_sample; 553 } 554 555 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 556 { 557 if (tp->rcv_rtt_est.time == 0) 558 goto new_measure; 559 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 560 return; 561 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 562 563 new_measure: 564 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 565 tp->rcv_rtt_est.time = tcp_time_stamp; 566 } 567 568 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 569 const struct sk_buff *skb) 570 { 571 struct tcp_sock *tp = tcp_sk(sk); 572 if (tp->rx_opt.rcv_tsecr && 573 (TCP_SKB_CB(skb)->end_seq - 574 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 575 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 576 } 577 578 /* 579 * This function should be called every time data is copied to user space. 580 * It calculates the appropriate TCP receive buffer space. 581 */ 582 void tcp_rcv_space_adjust(struct sock *sk) 583 { 584 struct tcp_sock *tp = tcp_sk(sk); 585 int time; 586 int copied; 587 588 time = tcp_time_stamp - tp->rcvq_space.time; 589 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 590 return; 591 592 /* Number of bytes copied to user in last RTT */ 593 copied = tp->copied_seq - tp->rcvq_space.seq; 594 if (copied <= tp->rcvq_space.space) 595 goto new_measure; 596 597 /* A bit of theory : 598 * copied = bytes received in previous RTT, our base window 599 * To cope with packet losses, we need a 2x factor 600 * To cope with slow start, and sender growing its cwin by 100 % 601 * every RTT, we need a 4x factor, because the ACK we are sending 602 * now is for the next RTT, not the current one : 603 * <prev RTT . ><current RTT .. ><next RTT .... > 604 */ 605 606 if (sysctl_tcp_moderate_rcvbuf && 607 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 608 int rcvwin, rcvmem, rcvbuf; 609 610 /* minimal window to cope with packet losses, assuming 611 * steady state. Add some cushion because of small variations. 612 */ 613 rcvwin = (copied << 1) + 16 * tp->advmss; 614 615 /* If rate increased by 25%, 616 * assume slow start, rcvwin = 3 * copied 617 * If rate increased by 50%, 618 * assume sender can use 2x growth, rcvwin = 4 * copied 619 */ 620 if (copied >= 621 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 622 if (copied >= 623 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 624 rcvwin <<= 1; 625 else 626 rcvwin += (rcvwin >> 1); 627 } 628 629 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 630 while (tcp_win_from_space(rcvmem) < tp->advmss) 631 rcvmem += 128; 632 633 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 634 if (rcvbuf > sk->sk_rcvbuf) { 635 sk->sk_rcvbuf = rcvbuf; 636 637 /* Make the window clamp follow along. */ 638 tp->window_clamp = rcvwin; 639 } 640 } 641 tp->rcvq_space.space = copied; 642 643 new_measure: 644 tp->rcvq_space.seq = tp->copied_seq; 645 tp->rcvq_space.time = tcp_time_stamp; 646 } 647 648 /* There is something which you must keep in mind when you analyze the 649 * behavior of the tp->ato delayed ack timeout interval. When a 650 * connection starts up, we want to ack as quickly as possible. The 651 * problem is that "good" TCP's do slow start at the beginning of data 652 * transmission. The means that until we send the first few ACK's the 653 * sender will sit on his end and only queue most of his data, because 654 * he can only send snd_cwnd unacked packets at any given time. For 655 * each ACK we send, he increments snd_cwnd and transmits more of his 656 * queue. -DaveM 657 */ 658 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 659 { 660 struct tcp_sock *tp = tcp_sk(sk); 661 struct inet_connection_sock *icsk = inet_csk(sk); 662 u32 now; 663 664 inet_csk_schedule_ack(sk); 665 666 tcp_measure_rcv_mss(sk, skb); 667 668 tcp_rcv_rtt_measure(tp); 669 670 now = tcp_time_stamp; 671 672 if (!icsk->icsk_ack.ato) { 673 /* The _first_ data packet received, initialize 674 * delayed ACK engine. 675 */ 676 tcp_incr_quickack(sk); 677 icsk->icsk_ack.ato = TCP_ATO_MIN; 678 } else { 679 int m = now - icsk->icsk_ack.lrcvtime; 680 681 if (m <= TCP_ATO_MIN / 2) { 682 /* The fastest case is the first. */ 683 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 684 } else if (m < icsk->icsk_ack.ato) { 685 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 686 if (icsk->icsk_ack.ato > icsk->icsk_rto) 687 icsk->icsk_ack.ato = icsk->icsk_rto; 688 } else if (m > icsk->icsk_rto) { 689 /* Too long gap. Apparently sender failed to 690 * restart window, so that we send ACKs quickly. 691 */ 692 tcp_incr_quickack(sk); 693 sk_mem_reclaim(sk); 694 } 695 } 696 icsk->icsk_ack.lrcvtime = now; 697 698 tcp_ecn_check_ce(tp, skb); 699 700 if (skb->len >= 128) 701 tcp_grow_window(sk, skb); 702 } 703 704 /* Called to compute a smoothed rtt estimate. The data fed to this 705 * routine either comes from timestamps, or from segments that were 706 * known _not_ to have been retransmitted [see Karn/Partridge 707 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 708 * piece by Van Jacobson. 709 * NOTE: the next three routines used to be one big routine. 710 * To save cycles in the RFC 1323 implementation it was better to break 711 * it up into three procedures. -- erics 712 */ 713 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 714 { 715 struct tcp_sock *tp = tcp_sk(sk); 716 long m = mrtt_us; /* RTT */ 717 u32 srtt = tp->srtt_us; 718 719 /* The following amusing code comes from Jacobson's 720 * article in SIGCOMM '88. Note that rtt and mdev 721 * are scaled versions of rtt and mean deviation. 722 * This is designed to be as fast as possible 723 * m stands for "measurement". 724 * 725 * On a 1990 paper the rto value is changed to: 726 * RTO = rtt + 4 * mdev 727 * 728 * Funny. This algorithm seems to be very broken. 729 * These formulae increase RTO, when it should be decreased, increase 730 * too slowly, when it should be increased quickly, decrease too quickly 731 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 732 * does not matter how to _calculate_ it. Seems, it was trap 733 * that VJ failed to avoid. 8) 734 */ 735 if (srtt != 0) { 736 m -= (srtt >> 3); /* m is now error in rtt est */ 737 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 738 if (m < 0) { 739 m = -m; /* m is now abs(error) */ 740 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 741 /* This is similar to one of Eifel findings. 742 * Eifel blocks mdev updates when rtt decreases. 743 * This solution is a bit different: we use finer gain 744 * for mdev in this case (alpha*beta). 745 * Like Eifel it also prevents growth of rto, 746 * but also it limits too fast rto decreases, 747 * happening in pure Eifel. 748 */ 749 if (m > 0) 750 m >>= 3; 751 } else { 752 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 753 } 754 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 755 if (tp->mdev_us > tp->mdev_max_us) { 756 tp->mdev_max_us = tp->mdev_us; 757 if (tp->mdev_max_us > tp->rttvar_us) 758 tp->rttvar_us = tp->mdev_max_us; 759 } 760 if (after(tp->snd_una, tp->rtt_seq)) { 761 if (tp->mdev_max_us < tp->rttvar_us) 762 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 763 tp->rtt_seq = tp->snd_nxt; 764 tp->mdev_max_us = tcp_rto_min_us(sk); 765 } 766 } else { 767 /* no previous measure. */ 768 srtt = m << 3; /* take the measured time to be rtt */ 769 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 770 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 771 tp->mdev_max_us = tp->rttvar_us; 772 tp->rtt_seq = tp->snd_nxt; 773 } 774 tp->srtt_us = max(1U, srtt); 775 } 776 777 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 778 * Note: TCP stack does not yet implement pacing. 779 * FQ packet scheduler can be used to implement cheap but effective 780 * TCP pacing, to smooth the burst on large writes when packets 781 * in flight is significantly lower than cwnd (or rwin) 782 */ 783 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200; 784 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120; 785 786 static void tcp_update_pacing_rate(struct sock *sk) 787 { 788 const struct tcp_sock *tp = tcp_sk(sk); 789 u64 rate; 790 791 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 792 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 793 794 /* current rate is (cwnd * mss) / srtt 795 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 796 * In Congestion Avoidance phase, set it to 120 % the current rate. 797 * 798 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 799 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 800 * end of slow start and should slow down. 801 */ 802 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 803 rate *= sysctl_tcp_pacing_ss_ratio; 804 else 805 rate *= sysctl_tcp_pacing_ca_ratio; 806 807 rate *= max(tp->snd_cwnd, tp->packets_out); 808 809 if (likely(tp->srtt_us)) 810 do_div(rate, tp->srtt_us); 811 812 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 813 * without any lock. We want to make sure compiler wont store 814 * intermediate values in this location. 815 */ 816 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 817 sk->sk_max_pacing_rate); 818 } 819 820 /* Calculate rto without backoff. This is the second half of Van Jacobson's 821 * routine referred to above. 822 */ 823 static void tcp_set_rto(struct sock *sk) 824 { 825 const struct tcp_sock *tp = tcp_sk(sk); 826 /* Old crap is replaced with new one. 8) 827 * 828 * More seriously: 829 * 1. If rtt variance happened to be less 50msec, it is hallucination. 830 * It cannot be less due to utterly erratic ACK generation made 831 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 832 * to do with delayed acks, because at cwnd>2 true delack timeout 833 * is invisible. Actually, Linux-2.4 also generates erratic 834 * ACKs in some circumstances. 835 */ 836 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 837 838 /* 2. Fixups made earlier cannot be right. 839 * If we do not estimate RTO correctly without them, 840 * all the algo is pure shit and should be replaced 841 * with correct one. It is exactly, which we pretend to do. 842 */ 843 844 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 845 * guarantees that rto is higher. 846 */ 847 tcp_bound_rto(sk); 848 } 849 850 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 851 { 852 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 853 854 if (!cwnd) 855 cwnd = TCP_INIT_CWND; 856 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 857 } 858 859 /* 860 * Packet counting of FACK is based on in-order assumptions, therefore TCP 861 * disables it when reordering is detected 862 */ 863 void tcp_disable_fack(struct tcp_sock *tp) 864 { 865 /* RFC3517 uses different metric in lost marker => reset on change */ 866 if (tcp_is_fack(tp)) 867 tp->lost_skb_hint = NULL; 868 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 869 } 870 871 /* Take a notice that peer is sending D-SACKs */ 872 static void tcp_dsack_seen(struct tcp_sock *tp) 873 { 874 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 875 } 876 877 static void tcp_update_reordering(struct sock *sk, const int metric, 878 const int ts) 879 { 880 struct tcp_sock *tp = tcp_sk(sk); 881 int mib_idx; 882 883 if (metric > tp->reordering) { 884 tp->reordering = min(sysctl_tcp_max_reordering, metric); 885 886 #if FASTRETRANS_DEBUG > 1 887 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 888 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 889 tp->reordering, 890 tp->fackets_out, 891 tp->sacked_out, 892 tp->undo_marker ? tp->undo_retrans : 0); 893 #endif 894 tcp_disable_fack(tp); 895 } 896 897 tp->rack.reord = 1; 898 899 /* This exciting event is worth to be remembered. 8) */ 900 if (ts) 901 mib_idx = LINUX_MIB_TCPTSREORDER; 902 else if (tcp_is_reno(tp)) 903 mib_idx = LINUX_MIB_TCPRENOREORDER; 904 else if (tcp_is_fack(tp)) 905 mib_idx = LINUX_MIB_TCPFACKREORDER; 906 else 907 mib_idx = LINUX_MIB_TCPSACKREORDER; 908 909 NET_INC_STATS(sock_net(sk), mib_idx); 910 } 911 912 /* This must be called before lost_out is incremented */ 913 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 914 { 915 if (!tp->retransmit_skb_hint || 916 before(TCP_SKB_CB(skb)->seq, 917 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 918 tp->retransmit_skb_hint = skb; 919 } 920 921 /* Sum the number of packets on the wire we have marked as lost. 922 * There are two cases we care about here: 923 * a) Packet hasn't been marked lost (nor retransmitted), 924 * and this is the first loss. 925 * b) Packet has been marked both lost and retransmitted, 926 * and this means we think it was lost again. 927 */ 928 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 929 { 930 __u8 sacked = TCP_SKB_CB(skb)->sacked; 931 932 if (!(sacked & TCPCB_LOST) || 933 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 934 tp->lost += tcp_skb_pcount(skb); 935 } 936 937 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 938 { 939 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 940 tcp_verify_retransmit_hint(tp, skb); 941 942 tp->lost_out += tcp_skb_pcount(skb); 943 tcp_sum_lost(tp, skb); 944 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 945 } 946 } 947 948 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 949 { 950 tcp_verify_retransmit_hint(tp, skb); 951 952 tcp_sum_lost(tp, skb); 953 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 954 tp->lost_out += tcp_skb_pcount(skb); 955 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 956 } 957 } 958 959 /* This procedure tags the retransmission queue when SACKs arrive. 960 * 961 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 962 * Packets in queue with these bits set are counted in variables 963 * sacked_out, retrans_out and lost_out, correspondingly. 964 * 965 * Valid combinations are: 966 * Tag InFlight Description 967 * 0 1 - orig segment is in flight. 968 * S 0 - nothing flies, orig reached receiver. 969 * L 0 - nothing flies, orig lost by net. 970 * R 2 - both orig and retransmit are in flight. 971 * L|R 1 - orig is lost, retransmit is in flight. 972 * S|R 1 - orig reached receiver, retrans is still in flight. 973 * (L|S|R is logically valid, it could occur when L|R is sacked, 974 * but it is equivalent to plain S and code short-curcuits it to S. 975 * L|S is logically invalid, it would mean -1 packet in flight 8)) 976 * 977 * These 6 states form finite state machine, controlled by the following events: 978 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 979 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 980 * 3. Loss detection event of two flavors: 981 * A. Scoreboard estimator decided the packet is lost. 982 * A'. Reno "three dupacks" marks head of queue lost. 983 * A''. Its FACK modification, head until snd.fack is lost. 984 * B. SACK arrives sacking SND.NXT at the moment, when the 985 * segment was retransmitted. 986 * 4. D-SACK added new rule: D-SACK changes any tag to S. 987 * 988 * It is pleasant to note, that state diagram turns out to be commutative, 989 * so that we are allowed not to be bothered by order of our actions, 990 * when multiple events arrive simultaneously. (see the function below). 991 * 992 * Reordering detection. 993 * -------------------- 994 * Reordering metric is maximal distance, which a packet can be displaced 995 * in packet stream. With SACKs we can estimate it: 996 * 997 * 1. SACK fills old hole and the corresponding segment was not 998 * ever retransmitted -> reordering. Alas, we cannot use it 999 * when segment was retransmitted. 1000 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1001 * for retransmitted and already SACKed segment -> reordering.. 1002 * Both of these heuristics are not used in Loss state, when we cannot 1003 * account for retransmits accurately. 1004 * 1005 * SACK block validation. 1006 * ---------------------- 1007 * 1008 * SACK block range validation checks that the received SACK block fits to 1009 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1010 * Note that SND.UNA is not included to the range though being valid because 1011 * it means that the receiver is rather inconsistent with itself reporting 1012 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1013 * perfectly valid, however, in light of RFC2018 which explicitly states 1014 * that "SACK block MUST reflect the newest segment. Even if the newest 1015 * segment is going to be discarded ...", not that it looks very clever 1016 * in case of head skb. Due to potentional receiver driven attacks, we 1017 * choose to avoid immediate execution of a walk in write queue due to 1018 * reneging and defer head skb's loss recovery to standard loss recovery 1019 * procedure that will eventually trigger (nothing forbids us doing this). 1020 * 1021 * Implements also blockage to start_seq wrap-around. Problem lies in the 1022 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1023 * there's no guarantee that it will be before snd_nxt (n). The problem 1024 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1025 * wrap (s_w): 1026 * 1027 * <- outs wnd -> <- wrapzone -> 1028 * u e n u_w e_w s n_w 1029 * | | | | | | | 1030 * |<------------+------+----- TCP seqno space --------------+---------->| 1031 * ...-- <2^31 ->| |<--------... 1032 * ...---- >2^31 ------>| |<--------... 1033 * 1034 * Current code wouldn't be vulnerable but it's better still to discard such 1035 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1036 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1037 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1038 * equal to the ideal case (infinite seqno space without wrap caused issues). 1039 * 1040 * With D-SACK the lower bound is extended to cover sequence space below 1041 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1042 * again, D-SACK block must not to go across snd_una (for the same reason as 1043 * for the normal SACK blocks, explained above). But there all simplicity 1044 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1045 * fully below undo_marker they do not affect behavior in anyway and can 1046 * therefore be safely ignored. In rare cases (which are more or less 1047 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1048 * fragmentation and packet reordering past skb's retransmission. To consider 1049 * them correctly, the acceptable range must be extended even more though 1050 * the exact amount is rather hard to quantify. However, tp->max_window can 1051 * be used as an exaggerated estimate. 1052 */ 1053 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1054 u32 start_seq, u32 end_seq) 1055 { 1056 /* Too far in future, or reversed (interpretation is ambiguous) */ 1057 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1058 return false; 1059 1060 /* Nasty start_seq wrap-around check (see comments above) */ 1061 if (!before(start_seq, tp->snd_nxt)) 1062 return false; 1063 1064 /* In outstanding window? ...This is valid exit for D-SACKs too. 1065 * start_seq == snd_una is non-sensical (see comments above) 1066 */ 1067 if (after(start_seq, tp->snd_una)) 1068 return true; 1069 1070 if (!is_dsack || !tp->undo_marker) 1071 return false; 1072 1073 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1074 if (after(end_seq, tp->snd_una)) 1075 return false; 1076 1077 if (!before(start_seq, tp->undo_marker)) 1078 return true; 1079 1080 /* Too old */ 1081 if (!after(end_seq, tp->undo_marker)) 1082 return false; 1083 1084 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1085 * start_seq < undo_marker and end_seq >= undo_marker. 1086 */ 1087 return !before(start_seq, end_seq - tp->max_window); 1088 } 1089 1090 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1091 struct tcp_sack_block_wire *sp, int num_sacks, 1092 u32 prior_snd_una) 1093 { 1094 struct tcp_sock *tp = tcp_sk(sk); 1095 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1096 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1097 bool dup_sack = false; 1098 1099 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1100 dup_sack = true; 1101 tcp_dsack_seen(tp); 1102 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1103 } else if (num_sacks > 1) { 1104 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1105 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1106 1107 if (!after(end_seq_0, end_seq_1) && 1108 !before(start_seq_0, start_seq_1)) { 1109 dup_sack = true; 1110 tcp_dsack_seen(tp); 1111 NET_INC_STATS(sock_net(sk), 1112 LINUX_MIB_TCPDSACKOFORECV); 1113 } 1114 } 1115 1116 /* D-SACK for already forgotten data... Do dumb counting. */ 1117 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1118 !after(end_seq_0, prior_snd_una) && 1119 after(end_seq_0, tp->undo_marker)) 1120 tp->undo_retrans--; 1121 1122 return dup_sack; 1123 } 1124 1125 struct tcp_sacktag_state { 1126 int reord; 1127 int fack_count; 1128 /* Timestamps for earliest and latest never-retransmitted segment 1129 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1130 * but congestion control should still get an accurate delay signal. 1131 */ 1132 struct skb_mstamp first_sackt; 1133 struct skb_mstamp last_sackt; 1134 struct skb_mstamp ack_time; /* Timestamp when the S/ACK was received */ 1135 struct rate_sample *rate; 1136 int flag; 1137 }; 1138 1139 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1140 * the incoming SACK may not exactly match but we can find smaller MSS 1141 * aligned portion of it that matches. Therefore we might need to fragment 1142 * which may fail and creates some hassle (caller must handle error case 1143 * returns). 1144 * 1145 * FIXME: this could be merged to shift decision code 1146 */ 1147 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1148 u32 start_seq, u32 end_seq) 1149 { 1150 int err; 1151 bool in_sack; 1152 unsigned int pkt_len; 1153 unsigned int mss; 1154 1155 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1156 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1157 1158 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1159 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1160 mss = tcp_skb_mss(skb); 1161 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1162 1163 if (!in_sack) { 1164 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1165 if (pkt_len < mss) 1166 pkt_len = mss; 1167 } else { 1168 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1169 if (pkt_len < mss) 1170 return -EINVAL; 1171 } 1172 1173 /* Round if necessary so that SACKs cover only full MSSes 1174 * and/or the remaining small portion (if present) 1175 */ 1176 if (pkt_len > mss) { 1177 unsigned int new_len = (pkt_len / mss) * mss; 1178 if (!in_sack && new_len < pkt_len) { 1179 new_len += mss; 1180 if (new_len >= skb->len) 1181 return 0; 1182 } 1183 pkt_len = new_len; 1184 } 1185 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1186 if (err < 0) 1187 return err; 1188 } 1189 1190 return in_sack; 1191 } 1192 1193 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1194 static u8 tcp_sacktag_one(struct sock *sk, 1195 struct tcp_sacktag_state *state, u8 sacked, 1196 u32 start_seq, u32 end_seq, 1197 int dup_sack, int pcount, 1198 const struct skb_mstamp *xmit_time) 1199 { 1200 struct tcp_sock *tp = tcp_sk(sk); 1201 int fack_count = state->fack_count; 1202 1203 /* Account D-SACK for retransmitted packet. */ 1204 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1205 if (tp->undo_marker && tp->undo_retrans > 0 && 1206 after(end_seq, tp->undo_marker)) 1207 tp->undo_retrans--; 1208 if (sacked & TCPCB_SACKED_ACKED) 1209 state->reord = min(fack_count, state->reord); 1210 } 1211 1212 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1213 if (!after(end_seq, tp->snd_una)) 1214 return sacked; 1215 1216 if (!(sacked & TCPCB_SACKED_ACKED)) { 1217 tcp_rack_advance(tp, sacked, end_seq, 1218 xmit_time, &state->ack_time); 1219 1220 if (sacked & TCPCB_SACKED_RETRANS) { 1221 /* If the segment is not tagged as lost, 1222 * we do not clear RETRANS, believing 1223 * that retransmission is still in flight. 1224 */ 1225 if (sacked & TCPCB_LOST) { 1226 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1227 tp->lost_out -= pcount; 1228 tp->retrans_out -= pcount; 1229 } 1230 } else { 1231 if (!(sacked & TCPCB_RETRANS)) { 1232 /* New sack for not retransmitted frame, 1233 * which was in hole. It is reordering. 1234 */ 1235 if (before(start_seq, 1236 tcp_highest_sack_seq(tp))) 1237 state->reord = min(fack_count, 1238 state->reord); 1239 if (!after(end_seq, tp->high_seq)) 1240 state->flag |= FLAG_ORIG_SACK_ACKED; 1241 if (state->first_sackt.v64 == 0) 1242 state->first_sackt = *xmit_time; 1243 state->last_sackt = *xmit_time; 1244 } 1245 1246 if (sacked & TCPCB_LOST) { 1247 sacked &= ~TCPCB_LOST; 1248 tp->lost_out -= pcount; 1249 } 1250 } 1251 1252 sacked |= TCPCB_SACKED_ACKED; 1253 state->flag |= FLAG_DATA_SACKED; 1254 tp->sacked_out += pcount; 1255 tp->delivered += pcount; /* Out-of-order packets delivered */ 1256 1257 fack_count += pcount; 1258 1259 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1260 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1261 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1262 tp->lost_cnt_hint += pcount; 1263 1264 if (fack_count > tp->fackets_out) 1265 tp->fackets_out = fack_count; 1266 } 1267 1268 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1269 * frames and clear it. undo_retrans is decreased above, L|R frames 1270 * are accounted above as well. 1271 */ 1272 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1273 sacked &= ~TCPCB_SACKED_RETRANS; 1274 tp->retrans_out -= pcount; 1275 } 1276 1277 return sacked; 1278 } 1279 1280 /* Shift newly-SACKed bytes from this skb to the immediately previous 1281 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1282 */ 1283 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1284 struct tcp_sacktag_state *state, 1285 unsigned int pcount, int shifted, int mss, 1286 bool dup_sack) 1287 { 1288 struct tcp_sock *tp = tcp_sk(sk); 1289 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1290 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1291 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1292 1293 BUG_ON(!pcount); 1294 1295 /* Adjust counters and hints for the newly sacked sequence 1296 * range but discard the return value since prev is already 1297 * marked. We must tag the range first because the seq 1298 * advancement below implicitly advances 1299 * tcp_highest_sack_seq() when skb is highest_sack. 1300 */ 1301 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1302 start_seq, end_seq, dup_sack, pcount, 1303 &skb->skb_mstamp); 1304 tcp_rate_skb_delivered(sk, skb, state->rate); 1305 1306 if (skb == tp->lost_skb_hint) 1307 tp->lost_cnt_hint += pcount; 1308 1309 TCP_SKB_CB(prev)->end_seq += shifted; 1310 TCP_SKB_CB(skb)->seq += shifted; 1311 1312 tcp_skb_pcount_add(prev, pcount); 1313 BUG_ON(tcp_skb_pcount(skb) < pcount); 1314 tcp_skb_pcount_add(skb, -pcount); 1315 1316 /* When we're adding to gso_segs == 1, gso_size will be zero, 1317 * in theory this shouldn't be necessary but as long as DSACK 1318 * code can come after this skb later on it's better to keep 1319 * setting gso_size to something. 1320 */ 1321 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1322 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1323 1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1325 if (tcp_skb_pcount(skb) <= 1) 1326 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1327 1328 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1329 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1330 1331 if (skb->len > 0) { 1332 BUG_ON(!tcp_skb_pcount(skb)); 1333 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1334 return false; 1335 } 1336 1337 /* Whole SKB was eaten :-) */ 1338 1339 if (skb == tp->retransmit_skb_hint) 1340 tp->retransmit_skb_hint = prev; 1341 if (skb == tp->lost_skb_hint) { 1342 tp->lost_skb_hint = prev; 1343 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1344 } 1345 1346 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1347 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1348 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1349 TCP_SKB_CB(prev)->end_seq++; 1350 1351 if (skb == tcp_highest_sack(sk)) 1352 tcp_advance_highest_sack(sk, skb); 1353 1354 tcp_skb_collapse_tstamp(prev, skb); 1355 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp.v64)) 1356 TCP_SKB_CB(prev)->tx.delivered_mstamp.v64 = 0; 1357 1358 tcp_unlink_write_queue(skb, sk); 1359 sk_wmem_free_skb(sk, skb); 1360 1361 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1362 1363 return true; 1364 } 1365 1366 /* I wish gso_size would have a bit more sane initialization than 1367 * something-or-zero which complicates things 1368 */ 1369 static int tcp_skb_seglen(const struct sk_buff *skb) 1370 { 1371 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1372 } 1373 1374 /* Shifting pages past head area doesn't work */ 1375 static int skb_can_shift(const struct sk_buff *skb) 1376 { 1377 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1378 } 1379 1380 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1381 * skb. 1382 */ 1383 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1384 struct tcp_sacktag_state *state, 1385 u32 start_seq, u32 end_seq, 1386 bool dup_sack) 1387 { 1388 struct tcp_sock *tp = tcp_sk(sk); 1389 struct sk_buff *prev; 1390 int mss; 1391 int pcount = 0; 1392 int len; 1393 int in_sack; 1394 1395 if (!sk_can_gso(sk)) 1396 goto fallback; 1397 1398 /* Normally R but no L won't result in plain S */ 1399 if (!dup_sack && 1400 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1401 goto fallback; 1402 if (!skb_can_shift(skb)) 1403 goto fallback; 1404 /* This frame is about to be dropped (was ACKed). */ 1405 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1406 goto fallback; 1407 1408 /* Can only happen with delayed DSACK + discard craziness */ 1409 if (unlikely(skb == tcp_write_queue_head(sk))) 1410 goto fallback; 1411 prev = tcp_write_queue_prev(sk, skb); 1412 1413 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1414 goto fallback; 1415 1416 if (!tcp_skb_can_collapse_to(prev)) 1417 goto fallback; 1418 1419 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1420 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1421 1422 if (in_sack) { 1423 len = skb->len; 1424 pcount = tcp_skb_pcount(skb); 1425 mss = tcp_skb_seglen(skb); 1426 1427 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1428 * drop this restriction as unnecessary 1429 */ 1430 if (mss != tcp_skb_seglen(prev)) 1431 goto fallback; 1432 } else { 1433 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1434 goto noop; 1435 /* CHECKME: This is non-MSS split case only?, this will 1436 * cause skipped skbs due to advancing loop btw, original 1437 * has that feature too 1438 */ 1439 if (tcp_skb_pcount(skb) <= 1) 1440 goto noop; 1441 1442 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1443 if (!in_sack) { 1444 /* TODO: head merge to next could be attempted here 1445 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1446 * though it might not be worth of the additional hassle 1447 * 1448 * ...we can probably just fallback to what was done 1449 * previously. We could try merging non-SACKed ones 1450 * as well but it probably isn't going to buy off 1451 * because later SACKs might again split them, and 1452 * it would make skb timestamp tracking considerably 1453 * harder problem. 1454 */ 1455 goto fallback; 1456 } 1457 1458 len = end_seq - TCP_SKB_CB(skb)->seq; 1459 BUG_ON(len < 0); 1460 BUG_ON(len > skb->len); 1461 1462 /* MSS boundaries should be honoured or else pcount will 1463 * severely break even though it makes things bit trickier. 1464 * Optimize common case to avoid most of the divides 1465 */ 1466 mss = tcp_skb_mss(skb); 1467 1468 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1469 * drop this restriction as unnecessary 1470 */ 1471 if (mss != tcp_skb_seglen(prev)) 1472 goto fallback; 1473 1474 if (len == mss) { 1475 pcount = 1; 1476 } else if (len < mss) { 1477 goto noop; 1478 } else { 1479 pcount = len / mss; 1480 len = pcount * mss; 1481 } 1482 } 1483 1484 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1485 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1486 goto fallback; 1487 1488 if (!skb_shift(prev, skb, len)) 1489 goto fallback; 1490 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1491 goto out; 1492 1493 /* Hole filled allows collapsing with the next as well, this is very 1494 * useful when hole on every nth skb pattern happens 1495 */ 1496 if (prev == tcp_write_queue_tail(sk)) 1497 goto out; 1498 skb = tcp_write_queue_next(sk, prev); 1499 1500 if (!skb_can_shift(skb) || 1501 (skb == tcp_send_head(sk)) || 1502 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1503 (mss != tcp_skb_seglen(skb))) 1504 goto out; 1505 1506 len = skb->len; 1507 if (skb_shift(prev, skb, len)) { 1508 pcount += tcp_skb_pcount(skb); 1509 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1510 } 1511 1512 out: 1513 state->fack_count += pcount; 1514 return prev; 1515 1516 noop: 1517 return skb; 1518 1519 fallback: 1520 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1521 return NULL; 1522 } 1523 1524 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1525 struct tcp_sack_block *next_dup, 1526 struct tcp_sacktag_state *state, 1527 u32 start_seq, u32 end_seq, 1528 bool dup_sack_in) 1529 { 1530 struct tcp_sock *tp = tcp_sk(sk); 1531 struct sk_buff *tmp; 1532 1533 tcp_for_write_queue_from(skb, sk) { 1534 int in_sack = 0; 1535 bool dup_sack = dup_sack_in; 1536 1537 if (skb == tcp_send_head(sk)) 1538 break; 1539 1540 /* queue is in-order => we can short-circuit the walk early */ 1541 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1542 break; 1543 1544 if (next_dup && 1545 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1546 in_sack = tcp_match_skb_to_sack(sk, skb, 1547 next_dup->start_seq, 1548 next_dup->end_seq); 1549 if (in_sack > 0) 1550 dup_sack = true; 1551 } 1552 1553 /* skb reference here is a bit tricky to get right, since 1554 * shifting can eat and free both this skb and the next, 1555 * so not even _safe variant of the loop is enough. 1556 */ 1557 if (in_sack <= 0) { 1558 tmp = tcp_shift_skb_data(sk, skb, state, 1559 start_seq, end_seq, dup_sack); 1560 if (tmp) { 1561 if (tmp != skb) { 1562 skb = tmp; 1563 continue; 1564 } 1565 1566 in_sack = 0; 1567 } else { 1568 in_sack = tcp_match_skb_to_sack(sk, skb, 1569 start_seq, 1570 end_seq); 1571 } 1572 } 1573 1574 if (unlikely(in_sack < 0)) 1575 break; 1576 1577 if (in_sack) { 1578 TCP_SKB_CB(skb)->sacked = 1579 tcp_sacktag_one(sk, 1580 state, 1581 TCP_SKB_CB(skb)->sacked, 1582 TCP_SKB_CB(skb)->seq, 1583 TCP_SKB_CB(skb)->end_seq, 1584 dup_sack, 1585 tcp_skb_pcount(skb), 1586 &skb->skb_mstamp); 1587 tcp_rate_skb_delivered(sk, skb, state->rate); 1588 1589 if (!before(TCP_SKB_CB(skb)->seq, 1590 tcp_highest_sack_seq(tp))) 1591 tcp_advance_highest_sack(sk, skb); 1592 } 1593 1594 state->fack_count += tcp_skb_pcount(skb); 1595 } 1596 return skb; 1597 } 1598 1599 /* Avoid all extra work that is being done by sacktag while walking in 1600 * a normal way 1601 */ 1602 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1603 struct tcp_sacktag_state *state, 1604 u32 skip_to_seq) 1605 { 1606 tcp_for_write_queue_from(skb, sk) { 1607 if (skb == tcp_send_head(sk)) 1608 break; 1609 1610 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1611 break; 1612 1613 state->fack_count += tcp_skb_pcount(skb); 1614 } 1615 return skb; 1616 } 1617 1618 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1619 struct sock *sk, 1620 struct tcp_sack_block *next_dup, 1621 struct tcp_sacktag_state *state, 1622 u32 skip_to_seq) 1623 { 1624 if (!next_dup) 1625 return skb; 1626 1627 if (before(next_dup->start_seq, skip_to_seq)) { 1628 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1629 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1630 next_dup->start_seq, next_dup->end_seq, 1631 1); 1632 } 1633 1634 return skb; 1635 } 1636 1637 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1638 { 1639 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1640 } 1641 1642 static int 1643 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1644 u32 prior_snd_una, struct tcp_sacktag_state *state) 1645 { 1646 struct tcp_sock *tp = tcp_sk(sk); 1647 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1648 TCP_SKB_CB(ack_skb)->sacked); 1649 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1650 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1651 struct tcp_sack_block *cache; 1652 struct sk_buff *skb; 1653 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1654 int used_sacks; 1655 bool found_dup_sack = false; 1656 int i, j; 1657 int first_sack_index; 1658 1659 state->flag = 0; 1660 state->reord = tp->packets_out; 1661 1662 if (!tp->sacked_out) { 1663 if (WARN_ON(tp->fackets_out)) 1664 tp->fackets_out = 0; 1665 tcp_highest_sack_reset(sk); 1666 } 1667 1668 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1669 num_sacks, prior_snd_una); 1670 if (found_dup_sack) { 1671 state->flag |= FLAG_DSACKING_ACK; 1672 tp->delivered++; /* A spurious retransmission is delivered */ 1673 } 1674 1675 /* Eliminate too old ACKs, but take into 1676 * account more or less fresh ones, they can 1677 * contain valid SACK info. 1678 */ 1679 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1680 return 0; 1681 1682 if (!tp->packets_out) 1683 goto out; 1684 1685 used_sacks = 0; 1686 first_sack_index = 0; 1687 for (i = 0; i < num_sacks; i++) { 1688 bool dup_sack = !i && found_dup_sack; 1689 1690 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1691 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1692 1693 if (!tcp_is_sackblock_valid(tp, dup_sack, 1694 sp[used_sacks].start_seq, 1695 sp[used_sacks].end_seq)) { 1696 int mib_idx; 1697 1698 if (dup_sack) { 1699 if (!tp->undo_marker) 1700 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1701 else 1702 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1703 } else { 1704 /* Don't count olds caused by ACK reordering */ 1705 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1706 !after(sp[used_sacks].end_seq, tp->snd_una)) 1707 continue; 1708 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1709 } 1710 1711 NET_INC_STATS(sock_net(sk), mib_idx); 1712 if (i == 0) 1713 first_sack_index = -1; 1714 continue; 1715 } 1716 1717 /* Ignore very old stuff early */ 1718 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1719 continue; 1720 1721 used_sacks++; 1722 } 1723 1724 /* order SACK blocks to allow in order walk of the retrans queue */ 1725 for (i = used_sacks - 1; i > 0; i--) { 1726 for (j = 0; j < i; j++) { 1727 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1728 swap(sp[j], sp[j + 1]); 1729 1730 /* Track where the first SACK block goes to */ 1731 if (j == first_sack_index) 1732 first_sack_index = j + 1; 1733 } 1734 } 1735 } 1736 1737 skb = tcp_write_queue_head(sk); 1738 state->fack_count = 0; 1739 i = 0; 1740 1741 if (!tp->sacked_out) { 1742 /* It's already past, so skip checking against it */ 1743 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1744 } else { 1745 cache = tp->recv_sack_cache; 1746 /* Skip empty blocks in at head of the cache */ 1747 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1748 !cache->end_seq) 1749 cache++; 1750 } 1751 1752 while (i < used_sacks) { 1753 u32 start_seq = sp[i].start_seq; 1754 u32 end_seq = sp[i].end_seq; 1755 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1756 struct tcp_sack_block *next_dup = NULL; 1757 1758 if (found_dup_sack && ((i + 1) == first_sack_index)) 1759 next_dup = &sp[i + 1]; 1760 1761 /* Skip too early cached blocks */ 1762 while (tcp_sack_cache_ok(tp, cache) && 1763 !before(start_seq, cache->end_seq)) 1764 cache++; 1765 1766 /* Can skip some work by looking recv_sack_cache? */ 1767 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1768 after(end_seq, cache->start_seq)) { 1769 1770 /* Head todo? */ 1771 if (before(start_seq, cache->start_seq)) { 1772 skb = tcp_sacktag_skip(skb, sk, state, 1773 start_seq); 1774 skb = tcp_sacktag_walk(skb, sk, next_dup, 1775 state, 1776 start_seq, 1777 cache->start_seq, 1778 dup_sack); 1779 } 1780 1781 /* Rest of the block already fully processed? */ 1782 if (!after(end_seq, cache->end_seq)) 1783 goto advance_sp; 1784 1785 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1786 state, 1787 cache->end_seq); 1788 1789 /* ...tail remains todo... */ 1790 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1791 /* ...but better entrypoint exists! */ 1792 skb = tcp_highest_sack(sk); 1793 if (!skb) 1794 break; 1795 state->fack_count = tp->fackets_out; 1796 cache++; 1797 goto walk; 1798 } 1799 1800 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1801 /* Check overlap against next cached too (past this one already) */ 1802 cache++; 1803 continue; 1804 } 1805 1806 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1807 skb = tcp_highest_sack(sk); 1808 if (!skb) 1809 break; 1810 state->fack_count = tp->fackets_out; 1811 } 1812 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1813 1814 walk: 1815 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1816 start_seq, end_seq, dup_sack); 1817 1818 advance_sp: 1819 i++; 1820 } 1821 1822 /* Clear the head of the cache sack blocks so we can skip it next time */ 1823 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1824 tp->recv_sack_cache[i].start_seq = 0; 1825 tp->recv_sack_cache[i].end_seq = 0; 1826 } 1827 for (j = 0; j < used_sacks; j++) 1828 tp->recv_sack_cache[i++] = sp[j]; 1829 1830 if ((state->reord < tp->fackets_out) && 1831 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1832 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1833 1834 tcp_verify_left_out(tp); 1835 out: 1836 1837 #if FASTRETRANS_DEBUG > 0 1838 WARN_ON((int)tp->sacked_out < 0); 1839 WARN_ON((int)tp->lost_out < 0); 1840 WARN_ON((int)tp->retrans_out < 0); 1841 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1842 #endif 1843 return state->flag; 1844 } 1845 1846 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1847 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1848 */ 1849 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1850 { 1851 u32 holes; 1852 1853 holes = max(tp->lost_out, 1U); 1854 holes = min(holes, tp->packets_out); 1855 1856 if ((tp->sacked_out + holes) > tp->packets_out) { 1857 tp->sacked_out = tp->packets_out - holes; 1858 return true; 1859 } 1860 return false; 1861 } 1862 1863 /* If we receive more dupacks than we expected counting segments 1864 * in assumption of absent reordering, interpret this as reordering. 1865 * The only another reason could be bug in receiver TCP. 1866 */ 1867 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1868 { 1869 struct tcp_sock *tp = tcp_sk(sk); 1870 if (tcp_limit_reno_sacked(tp)) 1871 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1872 } 1873 1874 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1875 1876 static void tcp_add_reno_sack(struct sock *sk) 1877 { 1878 struct tcp_sock *tp = tcp_sk(sk); 1879 u32 prior_sacked = tp->sacked_out; 1880 1881 tp->sacked_out++; 1882 tcp_check_reno_reordering(sk, 0); 1883 if (tp->sacked_out > prior_sacked) 1884 tp->delivered++; /* Some out-of-order packet is delivered */ 1885 tcp_verify_left_out(tp); 1886 } 1887 1888 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1889 1890 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1891 { 1892 struct tcp_sock *tp = tcp_sk(sk); 1893 1894 if (acked > 0) { 1895 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1896 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1897 if (acked - 1 >= tp->sacked_out) 1898 tp->sacked_out = 0; 1899 else 1900 tp->sacked_out -= acked - 1; 1901 } 1902 tcp_check_reno_reordering(sk, acked); 1903 tcp_verify_left_out(tp); 1904 } 1905 1906 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1907 { 1908 tp->sacked_out = 0; 1909 } 1910 1911 void tcp_clear_retrans(struct tcp_sock *tp) 1912 { 1913 tp->retrans_out = 0; 1914 tp->lost_out = 0; 1915 tp->undo_marker = 0; 1916 tp->undo_retrans = -1; 1917 tp->fackets_out = 0; 1918 tp->sacked_out = 0; 1919 } 1920 1921 static inline void tcp_init_undo(struct tcp_sock *tp) 1922 { 1923 tp->undo_marker = tp->snd_una; 1924 /* Retransmission still in flight may cause DSACKs later. */ 1925 tp->undo_retrans = tp->retrans_out ? : -1; 1926 } 1927 1928 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1929 * and reset tags completely, otherwise preserve SACKs. If receiver 1930 * dropped its ofo queue, we will know this due to reneging detection. 1931 */ 1932 void tcp_enter_loss(struct sock *sk) 1933 { 1934 const struct inet_connection_sock *icsk = inet_csk(sk); 1935 struct tcp_sock *tp = tcp_sk(sk); 1936 struct net *net = sock_net(sk); 1937 struct sk_buff *skb; 1938 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1939 bool is_reneg; /* is receiver reneging on SACKs? */ 1940 bool mark_lost; 1941 1942 /* Reduce ssthresh if it has not yet been made inside this window. */ 1943 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1944 !after(tp->high_seq, tp->snd_una) || 1945 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1946 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1947 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1948 tcp_ca_event(sk, CA_EVENT_LOSS); 1949 tcp_init_undo(tp); 1950 } 1951 tp->snd_cwnd = 1; 1952 tp->snd_cwnd_cnt = 0; 1953 tp->snd_cwnd_stamp = tcp_time_stamp; 1954 1955 tp->retrans_out = 0; 1956 tp->lost_out = 0; 1957 1958 if (tcp_is_reno(tp)) 1959 tcp_reset_reno_sack(tp); 1960 1961 skb = tcp_write_queue_head(sk); 1962 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1963 if (is_reneg) { 1964 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1965 tp->sacked_out = 0; 1966 tp->fackets_out = 0; 1967 } 1968 tcp_clear_all_retrans_hints(tp); 1969 1970 tcp_for_write_queue(skb, sk) { 1971 if (skb == tcp_send_head(sk)) 1972 break; 1973 1974 mark_lost = (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 1975 is_reneg); 1976 if (mark_lost) 1977 tcp_sum_lost(tp, skb); 1978 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1979 if (mark_lost) { 1980 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1981 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1982 tp->lost_out += tcp_skb_pcount(skb); 1983 } 1984 } 1985 tcp_verify_left_out(tp); 1986 1987 /* Timeout in disordered state after receiving substantial DUPACKs 1988 * suggests that the degree of reordering is over-estimated. 1989 */ 1990 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1991 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1992 tp->reordering = min_t(unsigned int, tp->reordering, 1993 net->ipv4.sysctl_tcp_reordering); 1994 tcp_set_ca_state(sk, TCP_CA_Loss); 1995 tp->high_seq = tp->snd_nxt; 1996 tcp_ecn_queue_cwr(tp); 1997 1998 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1999 * loss recovery is underway except recurring timeout(s) on 2000 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2001 * 2002 * In theory F-RTO can be used repeatedly during loss recovery. 2003 * In practice this interacts badly with broken middle-boxes that 2004 * falsely raise the receive window, which results in repeated 2005 * timeouts and stop-and-go behavior. 2006 */ 2007 tp->frto = sysctl_tcp_frto && 2008 (new_recovery || icsk->icsk_retransmits) && 2009 !inet_csk(sk)->icsk_mtup.probe_size; 2010 } 2011 2012 /* If ACK arrived pointing to a remembered SACK, it means that our 2013 * remembered SACKs do not reflect real state of receiver i.e. 2014 * receiver _host_ is heavily congested (or buggy). 2015 * 2016 * To avoid big spurious retransmission bursts due to transient SACK 2017 * scoreboard oddities that look like reneging, we give the receiver a 2018 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2019 * restore sanity to the SACK scoreboard. If the apparent reneging 2020 * persists until this RTO then we'll clear the SACK scoreboard. 2021 */ 2022 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2023 { 2024 if (flag & FLAG_SACK_RENEGING) { 2025 struct tcp_sock *tp = tcp_sk(sk); 2026 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2027 msecs_to_jiffies(10)); 2028 2029 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2030 delay, TCP_RTO_MAX); 2031 return true; 2032 } 2033 return false; 2034 } 2035 2036 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2037 { 2038 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2039 } 2040 2041 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2042 * counter when SACK is enabled (without SACK, sacked_out is used for 2043 * that purpose). 2044 * 2045 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2046 * segments up to the highest received SACK block so far and holes in 2047 * between them. 2048 * 2049 * With reordering, holes may still be in flight, so RFC3517 recovery 2050 * uses pure sacked_out (total number of SACKed segments) even though 2051 * it violates the RFC that uses duplicate ACKs, often these are equal 2052 * but when e.g. out-of-window ACKs or packet duplication occurs, 2053 * they differ. Since neither occurs due to loss, TCP should really 2054 * ignore them. 2055 */ 2056 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2057 { 2058 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2059 } 2060 2061 /* Linux NewReno/SACK/FACK/ECN state machine. 2062 * -------------------------------------- 2063 * 2064 * "Open" Normal state, no dubious events, fast path. 2065 * "Disorder" In all the respects it is "Open", 2066 * but requires a bit more attention. It is entered when 2067 * we see some SACKs or dupacks. It is split of "Open" 2068 * mainly to move some processing from fast path to slow one. 2069 * "CWR" CWND was reduced due to some Congestion Notification event. 2070 * It can be ECN, ICMP source quench, local device congestion. 2071 * "Recovery" CWND was reduced, we are fast-retransmitting. 2072 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2073 * 2074 * tcp_fastretrans_alert() is entered: 2075 * - each incoming ACK, if state is not "Open" 2076 * - when arrived ACK is unusual, namely: 2077 * * SACK 2078 * * Duplicate ACK. 2079 * * ECN ECE. 2080 * 2081 * Counting packets in flight is pretty simple. 2082 * 2083 * in_flight = packets_out - left_out + retrans_out 2084 * 2085 * packets_out is SND.NXT-SND.UNA counted in packets. 2086 * 2087 * retrans_out is number of retransmitted segments. 2088 * 2089 * left_out is number of segments left network, but not ACKed yet. 2090 * 2091 * left_out = sacked_out + lost_out 2092 * 2093 * sacked_out: Packets, which arrived to receiver out of order 2094 * and hence not ACKed. With SACKs this number is simply 2095 * amount of SACKed data. Even without SACKs 2096 * it is easy to give pretty reliable estimate of this number, 2097 * counting duplicate ACKs. 2098 * 2099 * lost_out: Packets lost by network. TCP has no explicit 2100 * "loss notification" feedback from network (for now). 2101 * It means that this number can be only _guessed_. 2102 * Actually, it is the heuristics to predict lossage that 2103 * distinguishes different algorithms. 2104 * 2105 * F.e. after RTO, when all the queue is considered as lost, 2106 * lost_out = packets_out and in_flight = retrans_out. 2107 * 2108 * Essentially, we have now a few algorithms detecting 2109 * lost packets. 2110 * 2111 * If the receiver supports SACK: 2112 * 2113 * RFC6675/3517: It is the conventional algorithm. A packet is 2114 * considered lost if the number of higher sequence packets 2115 * SACKed is greater than or equal the DUPACK thoreshold 2116 * (reordering). This is implemented in tcp_mark_head_lost and 2117 * tcp_update_scoreboard. 2118 * 2119 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2120 * (2017-) that checks timing instead of counting DUPACKs. 2121 * Essentially a packet is considered lost if it's not S/ACKed 2122 * after RTT + reordering_window, where both metrics are 2123 * dynamically measured and adjusted. This is implemented in 2124 * tcp_rack_mark_lost. 2125 * 2126 * FACK (Disabled by default. Subsumbed by RACK): 2127 * It is the simplest heuristics. As soon as we decided 2128 * that something is lost, we decide that _all_ not SACKed 2129 * packets until the most forward SACK are lost. I.e. 2130 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2131 * It is absolutely correct estimate, if network does not reorder 2132 * packets. And it loses any connection to reality when reordering 2133 * takes place. We use FACK by default until reordering 2134 * is suspected on the path to this destination. 2135 * 2136 * If the receiver does not support SACK: 2137 * 2138 * NewReno (RFC6582): in Recovery we assume that one segment 2139 * is lost (classic Reno). While we are in Recovery and 2140 * a partial ACK arrives, we assume that one more packet 2141 * is lost (NewReno). This heuristics are the same in NewReno 2142 * and SACK. 2143 * 2144 * Really tricky (and requiring careful tuning) part of algorithm 2145 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2146 * The first determines the moment _when_ we should reduce CWND and, 2147 * hence, slow down forward transmission. In fact, it determines the moment 2148 * when we decide that hole is caused by loss, rather than by a reorder. 2149 * 2150 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2151 * holes, caused by lost packets. 2152 * 2153 * And the most logically complicated part of algorithm is undo 2154 * heuristics. We detect false retransmits due to both too early 2155 * fast retransmit (reordering) and underestimated RTO, analyzing 2156 * timestamps and D-SACKs. When we detect that some segments were 2157 * retransmitted by mistake and CWND reduction was wrong, we undo 2158 * window reduction and abort recovery phase. This logic is hidden 2159 * inside several functions named tcp_try_undo_<something>. 2160 */ 2161 2162 /* This function decides, when we should leave Disordered state 2163 * and enter Recovery phase, reducing congestion window. 2164 * 2165 * Main question: may we further continue forward transmission 2166 * with the same cwnd? 2167 */ 2168 static bool tcp_time_to_recover(struct sock *sk, int flag) 2169 { 2170 struct tcp_sock *tp = tcp_sk(sk); 2171 2172 /* Trick#1: The loss is proven. */ 2173 if (tp->lost_out) 2174 return true; 2175 2176 /* Not-A-Trick#2 : Classic rule... */ 2177 if (tcp_dupack_heuristics(tp) > tp->reordering) 2178 return true; 2179 2180 return false; 2181 } 2182 2183 /* Detect loss in event "A" above by marking head of queue up as lost. 2184 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2185 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2186 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2187 * the maximum SACKed segments to pass before reaching this limit. 2188 */ 2189 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2190 { 2191 struct tcp_sock *tp = tcp_sk(sk); 2192 struct sk_buff *skb; 2193 int cnt, oldcnt, lost; 2194 unsigned int mss; 2195 /* Use SACK to deduce losses of new sequences sent during recovery */ 2196 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2197 2198 WARN_ON(packets > tp->packets_out); 2199 if (tp->lost_skb_hint) { 2200 skb = tp->lost_skb_hint; 2201 cnt = tp->lost_cnt_hint; 2202 /* Head already handled? */ 2203 if (mark_head && skb != tcp_write_queue_head(sk)) 2204 return; 2205 } else { 2206 skb = tcp_write_queue_head(sk); 2207 cnt = 0; 2208 } 2209 2210 tcp_for_write_queue_from(skb, sk) { 2211 if (skb == tcp_send_head(sk)) 2212 break; 2213 /* TODO: do this better */ 2214 /* this is not the most efficient way to do this... */ 2215 tp->lost_skb_hint = skb; 2216 tp->lost_cnt_hint = cnt; 2217 2218 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2219 break; 2220 2221 oldcnt = cnt; 2222 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2223 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2224 cnt += tcp_skb_pcount(skb); 2225 2226 if (cnt > packets) { 2227 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2228 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2229 (oldcnt >= packets)) 2230 break; 2231 2232 mss = tcp_skb_mss(skb); 2233 /* If needed, chop off the prefix to mark as lost. */ 2234 lost = (packets - oldcnt) * mss; 2235 if (lost < skb->len && 2236 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0) 2237 break; 2238 cnt = packets; 2239 } 2240 2241 tcp_skb_mark_lost(tp, skb); 2242 2243 if (mark_head) 2244 break; 2245 } 2246 tcp_verify_left_out(tp); 2247 } 2248 2249 /* Account newly detected lost packet(s) */ 2250 2251 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2252 { 2253 struct tcp_sock *tp = tcp_sk(sk); 2254 2255 if (tcp_is_reno(tp)) { 2256 tcp_mark_head_lost(sk, 1, 1); 2257 } else if (tcp_is_fack(tp)) { 2258 int lost = tp->fackets_out - tp->reordering; 2259 if (lost <= 0) 2260 lost = 1; 2261 tcp_mark_head_lost(sk, lost, 0); 2262 } else { 2263 int sacked_upto = tp->sacked_out - tp->reordering; 2264 if (sacked_upto >= 0) 2265 tcp_mark_head_lost(sk, sacked_upto, 0); 2266 else if (fast_rexmit) 2267 tcp_mark_head_lost(sk, 1, 1); 2268 } 2269 } 2270 2271 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2272 { 2273 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2274 before(tp->rx_opt.rcv_tsecr, when); 2275 } 2276 2277 /* skb is spurious retransmitted if the returned timestamp echo 2278 * reply is prior to the skb transmission time 2279 */ 2280 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2281 const struct sk_buff *skb) 2282 { 2283 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2284 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2285 } 2286 2287 /* Nothing was retransmitted or returned timestamp is less 2288 * than timestamp of the first retransmission. 2289 */ 2290 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2291 { 2292 return !tp->retrans_stamp || 2293 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2294 } 2295 2296 /* Undo procedures. */ 2297 2298 /* We can clear retrans_stamp when there are no retransmissions in the 2299 * window. It would seem that it is trivially available for us in 2300 * tp->retrans_out, however, that kind of assumptions doesn't consider 2301 * what will happen if errors occur when sending retransmission for the 2302 * second time. ...It could the that such segment has only 2303 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2304 * the head skb is enough except for some reneging corner cases that 2305 * are not worth the effort. 2306 * 2307 * Main reason for all this complexity is the fact that connection dying 2308 * time now depends on the validity of the retrans_stamp, in particular, 2309 * that successive retransmissions of a segment must not advance 2310 * retrans_stamp under any conditions. 2311 */ 2312 static bool tcp_any_retrans_done(const struct sock *sk) 2313 { 2314 const struct tcp_sock *tp = tcp_sk(sk); 2315 struct sk_buff *skb; 2316 2317 if (tp->retrans_out) 2318 return true; 2319 2320 skb = tcp_write_queue_head(sk); 2321 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2322 return true; 2323 2324 return false; 2325 } 2326 2327 #if FASTRETRANS_DEBUG > 1 2328 static void DBGUNDO(struct sock *sk, const char *msg) 2329 { 2330 struct tcp_sock *tp = tcp_sk(sk); 2331 struct inet_sock *inet = inet_sk(sk); 2332 2333 if (sk->sk_family == AF_INET) { 2334 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2335 msg, 2336 &inet->inet_daddr, ntohs(inet->inet_dport), 2337 tp->snd_cwnd, tcp_left_out(tp), 2338 tp->snd_ssthresh, tp->prior_ssthresh, 2339 tp->packets_out); 2340 } 2341 #if IS_ENABLED(CONFIG_IPV6) 2342 else if (sk->sk_family == AF_INET6) { 2343 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2344 msg, 2345 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2346 tp->snd_cwnd, tcp_left_out(tp), 2347 tp->snd_ssthresh, tp->prior_ssthresh, 2348 tp->packets_out); 2349 } 2350 #endif 2351 } 2352 #else 2353 #define DBGUNDO(x...) do { } while (0) 2354 #endif 2355 2356 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2357 { 2358 struct tcp_sock *tp = tcp_sk(sk); 2359 2360 if (unmark_loss) { 2361 struct sk_buff *skb; 2362 2363 tcp_for_write_queue(skb, sk) { 2364 if (skb == tcp_send_head(sk)) 2365 break; 2366 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2367 } 2368 tp->lost_out = 0; 2369 tcp_clear_all_retrans_hints(tp); 2370 } 2371 2372 if (tp->prior_ssthresh) { 2373 const struct inet_connection_sock *icsk = inet_csk(sk); 2374 2375 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2376 2377 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2378 tp->snd_ssthresh = tp->prior_ssthresh; 2379 tcp_ecn_withdraw_cwr(tp); 2380 } 2381 } 2382 tp->snd_cwnd_stamp = tcp_time_stamp; 2383 tp->undo_marker = 0; 2384 } 2385 2386 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2387 { 2388 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2389 } 2390 2391 /* People celebrate: "We love our President!" */ 2392 static bool tcp_try_undo_recovery(struct sock *sk) 2393 { 2394 struct tcp_sock *tp = tcp_sk(sk); 2395 2396 if (tcp_may_undo(tp)) { 2397 int mib_idx; 2398 2399 /* Happy end! We did not retransmit anything 2400 * or our original transmission succeeded. 2401 */ 2402 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2403 tcp_undo_cwnd_reduction(sk, false); 2404 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2405 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2406 else 2407 mib_idx = LINUX_MIB_TCPFULLUNDO; 2408 2409 NET_INC_STATS(sock_net(sk), mib_idx); 2410 } 2411 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2412 /* Hold old state until something *above* high_seq 2413 * is ACKed. For Reno it is MUST to prevent false 2414 * fast retransmits (RFC2582). SACK TCP is safe. */ 2415 if (!tcp_any_retrans_done(sk)) 2416 tp->retrans_stamp = 0; 2417 return true; 2418 } 2419 tcp_set_ca_state(sk, TCP_CA_Open); 2420 return false; 2421 } 2422 2423 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2424 static bool tcp_try_undo_dsack(struct sock *sk) 2425 { 2426 struct tcp_sock *tp = tcp_sk(sk); 2427 2428 if (tp->undo_marker && !tp->undo_retrans) { 2429 DBGUNDO(sk, "D-SACK"); 2430 tcp_undo_cwnd_reduction(sk, false); 2431 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2432 return true; 2433 } 2434 return false; 2435 } 2436 2437 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2438 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2439 { 2440 struct tcp_sock *tp = tcp_sk(sk); 2441 2442 if (frto_undo || tcp_may_undo(tp)) { 2443 tcp_undo_cwnd_reduction(sk, true); 2444 2445 DBGUNDO(sk, "partial loss"); 2446 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2447 if (frto_undo) 2448 NET_INC_STATS(sock_net(sk), 2449 LINUX_MIB_TCPSPURIOUSRTOS); 2450 inet_csk(sk)->icsk_retransmits = 0; 2451 if (frto_undo || tcp_is_sack(tp)) 2452 tcp_set_ca_state(sk, TCP_CA_Open); 2453 return true; 2454 } 2455 return false; 2456 } 2457 2458 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2459 * It computes the number of packets to send (sndcnt) based on packets newly 2460 * delivered: 2461 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2462 * cwnd reductions across a full RTT. 2463 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2464 * But when the retransmits are acked without further losses, PRR 2465 * slow starts cwnd up to ssthresh to speed up the recovery. 2466 */ 2467 static void tcp_init_cwnd_reduction(struct sock *sk) 2468 { 2469 struct tcp_sock *tp = tcp_sk(sk); 2470 2471 tp->high_seq = tp->snd_nxt; 2472 tp->tlp_high_seq = 0; 2473 tp->snd_cwnd_cnt = 0; 2474 tp->prior_cwnd = tp->snd_cwnd; 2475 tp->prr_delivered = 0; 2476 tp->prr_out = 0; 2477 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2478 tcp_ecn_queue_cwr(tp); 2479 } 2480 2481 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2482 { 2483 struct tcp_sock *tp = tcp_sk(sk); 2484 int sndcnt = 0; 2485 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2486 2487 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2488 return; 2489 2490 tp->prr_delivered += newly_acked_sacked; 2491 if (delta < 0) { 2492 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2493 tp->prior_cwnd - 1; 2494 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2495 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2496 !(flag & FLAG_LOST_RETRANS)) { 2497 sndcnt = min_t(int, delta, 2498 max_t(int, tp->prr_delivered - tp->prr_out, 2499 newly_acked_sacked) + 1); 2500 } else { 2501 sndcnt = min(delta, newly_acked_sacked); 2502 } 2503 /* Force a fast retransmit upon entering fast recovery */ 2504 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2505 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2506 } 2507 2508 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2509 { 2510 struct tcp_sock *tp = tcp_sk(sk); 2511 2512 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2513 return; 2514 2515 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2516 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2517 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2518 tp->snd_cwnd = tp->snd_ssthresh; 2519 tp->snd_cwnd_stamp = tcp_time_stamp; 2520 } 2521 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2522 } 2523 2524 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2525 void tcp_enter_cwr(struct sock *sk) 2526 { 2527 struct tcp_sock *tp = tcp_sk(sk); 2528 2529 tp->prior_ssthresh = 0; 2530 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2531 tp->undo_marker = 0; 2532 tcp_init_cwnd_reduction(sk); 2533 tcp_set_ca_state(sk, TCP_CA_CWR); 2534 } 2535 } 2536 EXPORT_SYMBOL(tcp_enter_cwr); 2537 2538 static void tcp_try_keep_open(struct sock *sk) 2539 { 2540 struct tcp_sock *tp = tcp_sk(sk); 2541 int state = TCP_CA_Open; 2542 2543 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2544 state = TCP_CA_Disorder; 2545 2546 if (inet_csk(sk)->icsk_ca_state != state) { 2547 tcp_set_ca_state(sk, state); 2548 tp->high_seq = tp->snd_nxt; 2549 } 2550 } 2551 2552 static void tcp_try_to_open(struct sock *sk, int flag) 2553 { 2554 struct tcp_sock *tp = tcp_sk(sk); 2555 2556 tcp_verify_left_out(tp); 2557 2558 if (!tcp_any_retrans_done(sk)) 2559 tp->retrans_stamp = 0; 2560 2561 if (flag & FLAG_ECE) 2562 tcp_enter_cwr(sk); 2563 2564 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2565 tcp_try_keep_open(sk); 2566 } 2567 } 2568 2569 static void tcp_mtup_probe_failed(struct sock *sk) 2570 { 2571 struct inet_connection_sock *icsk = inet_csk(sk); 2572 2573 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2574 icsk->icsk_mtup.probe_size = 0; 2575 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2576 } 2577 2578 static void tcp_mtup_probe_success(struct sock *sk) 2579 { 2580 struct tcp_sock *tp = tcp_sk(sk); 2581 struct inet_connection_sock *icsk = inet_csk(sk); 2582 2583 /* FIXME: breaks with very large cwnd */ 2584 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2585 tp->snd_cwnd = tp->snd_cwnd * 2586 tcp_mss_to_mtu(sk, tp->mss_cache) / 2587 icsk->icsk_mtup.probe_size; 2588 tp->snd_cwnd_cnt = 0; 2589 tp->snd_cwnd_stamp = tcp_time_stamp; 2590 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2591 2592 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2593 icsk->icsk_mtup.probe_size = 0; 2594 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2595 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2596 } 2597 2598 /* Do a simple retransmit without using the backoff mechanisms in 2599 * tcp_timer. This is used for path mtu discovery. 2600 * The socket is already locked here. 2601 */ 2602 void tcp_simple_retransmit(struct sock *sk) 2603 { 2604 const struct inet_connection_sock *icsk = inet_csk(sk); 2605 struct tcp_sock *tp = tcp_sk(sk); 2606 struct sk_buff *skb; 2607 unsigned int mss = tcp_current_mss(sk); 2608 u32 prior_lost = tp->lost_out; 2609 2610 tcp_for_write_queue(skb, sk) { 2611 if (skb == tcp_send_head(sk)) 2612 break; 2613 if (tcp_skb_seglen(skb) > mss && 2614 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2615 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2616 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2617 tp->retrans_out -= tcp_skb_pcount(skb); 2618 } 2619 tcp_skb_mark_lost_uncond_verify(tp, skb); 2620 } 2621 } 2622 2623 tcp_clear_retrans_hints_partial(tp); 2624 2625 if (prior_lost == tp->lost_out) 2626 return; 2627 2628 if (tcp_is_reno(tp)) 2629 tcp_limit_reno_sacked(tp); 2630 2631 tcp_verify_left_out(tp); 2632 2633 /* Don't muck with the congestion window here. 2634 * Reason is that we do not increase amount of _data_ 2635 * in network, but units changed and effective 2636 * cwnd/ssthresh really reduced now. 2637 */ 2638 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2639 tp->high_seq = tp->snd_nxt; 2640 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2641 tp->prior_ssthresh = 0; 2642 tp->undo_marker = 0; 2643 tcp_set_ca_state(sk, TCP_CA_Loss); 2644 } 2645 tcp_xmit_retransmit_queue(sk); 2646 } 2647 EXPORT_SYMBOL(tcp_simple_retransmit); 2648 2649 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2650 { 2651 struct tcp_sock *tp = tcp_sk(sk); 2652 int mib_idx; 2653 2654 if (tcp_is_reno(tp)) 2655 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2656 else 2657 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2658 2659 NET_INC_STATS(sock_net(sk), mib_idx); 2660 2661 tp->prior_ssthresh = 0; 2662 tcp_init_undo(tp); 2663 2664 if (!tcp_in_cwnd_reduction(sk)) { 2665 if (!ece_ack) 2666 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2667 tcp_init_cwnd_reduction(sk); 2668 } 2669 tcp_set_ca_state(sk, TCP_CA_Recovery); 2670 } 2671 2672 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2673 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2674 */ 2675 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2676 int *rexmit) 2677 { 2678 struct tcp_sock *tp = tcp_sk(sk); 2679 bool recovered = !before(tp->snd_una, tp->high_seq); 2680 2681 if ((flag & FLAG_SND_UNA_ADVANCED) && 2682 tcp_try_undo_loss(sk, false)) 2683 return; 2684 2685 /* The ACK (s)acks some never-retransmitted data meaning not all 2686 * the data packets before the timeout were lost. Therefore we 2687 * undo the congestion window and state. This is essentially 2688 * the operation in F-RTO (RFC5682 section 3.1 step 3.b). Since 2689 * a retransmitted skb is permantly marked, we can apply such an 2690 * operation even if F-RTO was not used. 2691 */ 2692 if ((flag & FLAG_ORIG_SACK_ACKED) && 2693 tcp_try_undo_loss(sk, tp->undo_marker)) 2694 return; 2695 2696 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2697 if (after(tp->snd_nxt, tp->high_seq)) { 2698 if (flag & FLAG_DATA_SACKED || is_dupack) 2699 tp->frto = 0; /* Step 3.a. loss was real */ 2700 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2701 tp->high_seq = tp->snd_nxt; 2702 /* Step 2.b. Try send new data (but deferred until cwnd 2703 * is updated in tcp_ack()). Otherwise fall back to 2704 * the conventional recovery. 2705 */ 2706 if (tcp_send_head(sk) && 2707 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2708 *rexmit = REXMIT_NEW; 2709 return; 2710 } 2711 tp->frto = 0; 2712 } 2713 } 2714 2715 if (recovered) { 2716 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2717 tcp_try_undo_recovery(sk); 2718 return; 2719 } 2720 if (tcp_is_reno(tp)) { 2721 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2722 * delivered. Lower inflight to clock out (re)tranmissions. 2723 */ 2724 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2725 tcp_add_reno_sack(sk); 2726 else if (flag & FLAG_SND_UNA_ADVANCED) 2727 tcp_reset_reno_sack(tp); 2728 } 2729 *rexmit = REXMIT_LOST; 2730 } 2731 2732 /* Undo during fast recovery after partial ACK. */ 2733 static bool tcp_try_undo_partial(struct sock *sk, const int acked) 2734 { 2735 struct tcp_sock *tp = tcp_sk(sk); 2736 2737 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2738 /* Plain luck! Hole if filled with delayed 2739 * packet, rather than with a retransmit. 2740 */ 2741 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2742 2743 /* We are getting evidence that the reordering degree is higher 2744 * than we realized. If there are no retransmits out then we 2745 * can undo. Otherwise we clock out new packets but do not 2746 * mark more packets lost or retransmit more. 2747 */ 2748 if (tp->retrans_out) 2749 return true; 2750 2751 if (!tcp_any_retrans_done(sk)) 2752 tp->retrans_stamp = 0; 2753 2754 DBGUNDO(sk, "partial recovery"); 2755 tcp_undo_cwnd_reduction(sk, true); 2756 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2757 tcp_try_keep_open(sk); 2758 return true; 2759 } 2760 return false; 2761 } 2762 2763 static void tcp_rack_identify_loss(struct sock *sk, int *ack_flag, 2764 const struct skb_mstamp *ack_time) 2765 { 2766 struct tcp_sock *tp = tcp_sk(sk); 2767 2768 /* Use RACK to detect loss */ 2769 if (sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION) { 2770 u32 prior_retrans = tp->retrans_out; 2771 2772 tcp_rack_mark_lost(sk, ack_time); 2773 if (prior_retrans > tp->retrans_out) 2774 *ack_flag |= FLAG_LOST_RETRANS; 2775 } 2776 } 2777 2778 /* Process an event, which can update packets-in-flight not trivially. 2779 * Main goal of this function is to calculate new estimate for left_out, 2780 * taking into account both packets sitting in receiver's buffer and 2781 * packets lost by network. 2782 * 2783 * Besides that it updates the congestion state when packet loss or ECN 2784 * is detected. But it does not reduce the cwnd, it is done by the 2785 * congestion control later. 2786 * 2787 * It does _not_ decide what to send, it is made in function 2788 * tcp_xmit_retransmit_queue(). 2789 */ 2790 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2791 bool is_dupack, int *ack_flag, int *rexmit, 2792 const struct skb_mstamp *ack_time) 2793 { 2794 struct inet_connection_sock *icsk = inet_csk(sk); 2795 struct tcp_sock *tp = tcp_sk(sk); 2796 int fast_rexmit = 0, flag = *ack_flag; 2797 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2798 (tcp_fackets_out(tp) > tp->reordering)); 2799 2800 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2801 tp->sacked_out = 0; 2802 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2803 tp->fackets_out = 0; 2804 2805 /* Now state machine starts. 2806 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2807 if (flag & FLAG_ECE) 2808 tp->prior_ssthresh = 0; 2809 2810 /* B. In all the states check for reneging SACKs. */ 2811 if (tcp_check_sack_reneging(sk, flag)) 2812 return; 2813 2814 /* C. Check consistency of the current state. */ 2815 tcp_verify_left_out(tp); 2816 2817 /* D. Check state exit conditions. State can be terminated 2818 * when high_seq is ACKed. */ 2819 if (icsk->icsk_ca_state == TCP_CA_Open) { 2820 WARN_ON(tp->retrans_out != 0); 2821 tp->retrans_stamp = 0; 2822 } else if (!before(tp->snd_una, tp->high_seq)) { 2823 switch (icsk->icsk_ca_state) { 2824 case TCP_CA_CWR: 2825 /* CWR is to be held something *above* high_seq 2826 * is ACKed for CWR bit to reach receiver. */ 2827 if (tp->snd_una != tp->high_seq) { 2828 tcp_end_cwnd_reduction(sk); 2829 tcp_set_ca_state(sk, TCP_CA_Open); 2830 } 2831 break; 2832 2833 case TCP_CA_Recovery: 2834 if (tcp_is_reno(tp)) 2835 tcp_reset_reno_sack(tp); 2836 if (tcp_try_undo_recovery(sk)) 2837 return; 2838 tcp_end_cwnd_reduction(sk); 2839 break; 2840 } 2841 } 2842 2843 /* E. Process state. */ 2844 switch (icsk->icsk_ca_state) { 2845 case TCP_CA_Recovery: 2846 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2847 if (tcp_is_reno(tp) && is_dupack) 2848 tcp_add_reno_sack(sk); 2849 } else { 2850 if (tcp_try_undo_partial(sk, acked)) 2851 return; 2852 /* Partial ACK arrived. Force fast retransmit. */ 2853 do_lost = tcp_is_reno(tp) || 2854 tcp_fackets_out(tp) > tp->reordering; 2855 } 2856 if (tcp_try_undo_dsack(sk)) { 2857 tcp_try_keep_open(sk); 2858 return; 2859 } 2860 tcp_rack_identify_loss(sk, ack_flag, ack_time); 2861 break; 2862 case TCP_CA_Loss: 2863 tcp_process_loss(sk, flag, is_dupack, rexmit); 2864 tcp_rack_identify_loss(sk, ack_flag, ack_time); 2865 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2866 (*ack_flag & FLAG_LOST_RETRANS))) 2867 return; 2868 /* Change state if cwnd is undone or retransmits are lost */ 2869 default: 2870 if (tcp_is_reno(tp)) { 2871 if (flag & FLAG_SND_UNA_ADVANCED) 2872 tcp_reset_reno_sack(tp); 2873 if (is_dupack) 2874 tcp_add_reno_sack(sk); 2875 } 2876 2877 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2878 tcp_try_undo_dsack(sk); 2879 2880 tcp_rack_identify_loss(sk, ack_flag, ack_time); 2881 if (!tcp_time_to_recover(sk, flag)) { 2882 tcp_try_to_open(sk, flag); 2883 return; 2884 } 2885 2886 /* MTU probe failure: don't reduce cwnd */ 2887 if (icsk->icsk_ca_state < TCP_CA_CWR && 2888 icsk->icsk_mtup.probe_size && 2889 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2890 tcp_mtup_probe_failed(sk); 2891 /* Restores the reduction we did in tcp_mtup_probe() */ 2892 tp->snd_cwnd++; 2893 tcp_simple_retransmit(sk); 2894 return; 2895 } 2896 2897 /* Otherwise enter Recovery state */ 2898 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2899 fast_rexmit = 1; 2900 } 2901 2902 if (do_lost) 2903 tcp_update_scoreboard(sk, fast_rexmit); 2904 *rexmit = REXMIT_LOST; 2905 } 2906 2907 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us) 2908 { 2909 struct tcp_sock *tp = tcp_sk(sk); 2910 u32 wlen = sysctl_tcp_min_rtt_wlen * HZ; 2911 2912 minmax_running_min(&tp->rtt_min, wlen, tcp_time_stamp, 2913 rtt_us ? : jiffies_to_usecs(1)); 2914 } 2915 2916 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2917 long seq_rtt_us, long sack_rtt_us, 2918 long ca_rtt_us) 2919 { 2920 const struct tcp_sock *tp = tcp_sk(sk); 2921 2922 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2923 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2924 * Karn's algorithm forbids taking RTT if some retransmitted data 2925 * is acked (RFC6298). 2926 */ 2927 if (seq_rtt_us < 0) 2928 seq_rtt_us = sack_rtt_us; 2929 2930 /* RTTM Rule: A TSecr value received in a segment is used to 2931 * update the averaged RTT measurement only if the segment 2932 * acknowledges some new data, i.e., only if it advances the 2933 * left edge of the send window. 2934 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2935 */ 2936 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2937 flag & FLAG_ACKED) 2938 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp - 2939 tp->rx_opt.rcv_tsecr); 2940 if (seq_rtt_us < 0) 2941 return false; 2942 2943 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2944 * always taken together with ACK, SACK, or TS-opts. Any negative 2945 * values will be skipped with the seq_rtt_us < 0 check above. 2946 */ 2947 tcp_update_rtt_min(sk, ca_rtt_us); 2948 tcp_rtt_estimator(sk, seq_rtt_us); 2949 tcp_set_rto(sk); 2950 2951 /* RFC6298: only reset backoff on valid RTT measurement. */ 2952 inet_csk(sk)->icsk_backoff = 0; 2953 return true; 2954 } 2955 2956 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2957 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2958 { 2959 long rtt_us = -1L; 2960 2961 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) { 2962 struct skb_mstamp now; 2963 2964 skb_mstamp_get(&now); 2965 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack); 2966 } 2967 2968 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us); 2969 } 2970 2971 2972 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2973 { 2974 const struct inet_connection_sock *icsk = inet_csk(sk); 2975 2976 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2977 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2978 } 2979 2980 /* Restart timer after forward progress on connection. 2981 * RFC2988 recommends to restart timer to now+rto. 2982 */ 2983 void tcp_rearm_rto(struct sock *sk) 2984 { 2985 const struct inet_connection_sock *icsk = inet_csk(sk); 2986 struct tcp_sock *tp = tcp_sk(sk); 2987 2988 /* If the retrans timer is currently being used by Fast Open 2989 * for SYN-ACK retrans purpose, stay put. 2990 */ 2991 if (tp->fastopen_rsk) 2992 return; 2993 2994 if (!tp->packets_out) { 2995 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2996 } else { 2997 u32 rto = inet_csk(sk)->icsk_rto; 2998 /* Offset the time elapsed after installing regular RTO */ 2999 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3000 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3001 struct sk_buff *skb = tcp_write_queue_head(sk); 3002 const u32 rto_time_stamp = 3003 tcp_skb_timestamp(skb) + rto; 3004 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 3005 /* delta may not be positive if the socket is locked 3006 * when the retrans timer fires and is rescheduled. 3007 */ 3008 if (delta > 0) 3009 rto = delta; 3010 } 3011 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3012 TCP_RTO_MAX); 3013 } 3014 } 3015 3016 /* If we get here, the whole TSO packet has not been acked. */ 3017 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3018 { 3019 struct tcp_sock *tp = tcp_sk(sk); 3020 u32 packets_acked; 3021 3022 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3023 3024 packets_acked = tcp_skb_pcount(skb); 3025 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3026 return 0; 3027 packets_acked -= tcp_skb_pcount(skb); 3028 3029 if (packets_acked) { 3030 BUG_ON(tcp_skb_pcount(skb) == 0); 3031 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3032 } 3033 3034 return packets_acked; 3035 } 3036 3037 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3038 u32 prior_snd_una) 3039 { 3040 const struct skb_shared_info *shinfo; 3041 3042 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3043 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3044 return; 3045 3046 shinfo = skb_shinfo(skb); 3047 if (!before(shinfo->tskey, prior_snd_una) && 3048 before(shinfo->tskey, tcp_sk(sk)->snd_una)) 3049 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3050 } 3051 3052 /* Remove acknowledged frames from the retransmission queue. If our packet 3053 * is before the ack sequence we can discard it as it's confirmed to have 3054 * arrived at the other end. 3055 */ 3056 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3057 u32 prior_snd_una, int *acked, 3058 struct tcp_sacktag_state *sack) 3059 { 3060 const struct inet_connection_sock *icsk = inet_csk(sk); 3061 struct skb_mstamp first_ackt, last_ackt; 3062 struct skb_mstamp *now = &sack->ack_time; 3063 struct tcp_sock *tp = tcp_sk(sk); 3064 u32 prior_sacked = tp->sacked_out; 3065 u32 reord = tp->packets_out; 3066 bool fully_acked = true; 3067 long sack_rtt_us = -1L; 3068 long seq_rtt_us = -1L; 3069 long ca_rtt_us = -1L; 3070 struct sk_buff *skb; 3071 u32 pkts_acked = 0; 3072 u32 last_in_flight = 0; 3073 bool rtt_update; 3074 int flag = 0; 3075 3076 first_ackt.v64 = 0; 3077 3078 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3079 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3080 u8 sacked = scb->sacked; 3081 u32 acked_pcount; 3082 3083 tcp_ack_tstamp(sk, skb, prior_snd_una); 3084 3085 /* Determine how many packets and what bytes were acked, tso and else */ 3086 if (after(scb->end_seq, tp->snd_una)) { 3087 if (tcp_skb_pcount(skb) == 1 || 3088 !after(tp->snd_una, scb->seq)) 3089 break; 3090 3091 acked_pcount = tcp_tso_acked(sk, skb); 3092 if (!acked_pcount) 3093 break; 3094 fully_acked = false; 3095 } else { 3096 /* Speedup tcp_unlink_write_queue() and next loop */ 3097 prefetchw(skb->next); 3098 acked_pcount = tcp_skb_pcount(skb); 3099 } 3100 3101 if (unlikely(sacked & TCPCB_RETRANS)) { 3102 if (sacked & TCPCB_SACKED_RETRANS) 3103 tp->retrans_out -= acked_pcount; 3104 flag |= FLAG_RETRANS_DATA_ACKED; 3105 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3106 last_ackt = skb->skb_mstamp; 3107 WARN_ON_ONCE(last_ackt.v64 == 0); 3108 if (!first_ackt.v64) 3109 first_ackt = last_ackt; 3110 3111 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3112 reord = min(pkts_acked, reord); 3113 if (!after(scb->end_seq, tp->high_seq)) 3114 flag |= FLAG_ORIG_SACK_ACKED; 3115 } 3116 3117 if (sacked & TCPCB_SACKED_ACKED) { 3118 tp->sacked_out -= acked_pcount; 3119 } else if (tcp_is_sack(tp)) { 3120 tp->delivered += acked_pcount; 3121 if (!tcp_skb_spurious_retrans(tp, skb)) 3122 tcp_rack_advance(tp, sacked, scb->end_seq, 3123 &skb->skb_mstamp, 3124 &sack->ack_time); 3125 } 3126 if (sacked & TCPCB_LOST) 3127 tp->lost_out -= acked_pcount; 3128 3129 tp->packets_out -= acked_pcount; 3130 pkts_acked += acked_pcount; 3131 tcp_rate_skb_delivered(sk, skb, sack->rate); 3132 3133 /* Initial outgoing SYN's get put onto the write_queue 3134 * just like anything else we transmit. It is not 3135 * true data, and if we misinform our callers that 3136 * this ACK acks real data, we will erroneously exit 3137 * connection startup slow start one packet too 3138 * quickly. This is severely frowned upon behavior. 3139 */ 3140 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3141 flag |= FLAG_DATA_ACKED; 3142 } else { 3143 flag |= FLAG_SYN_ACKED; 3144 tp->retrans_stamp = 0; 3145 } 3146 3147 if (!fully_acked) 3148 break; 3149 3150 tcp_unlink_write_queue(skb, sk); 3151 sk_wmem_free_skb(sk, skb); 3152 if (unlikely(skb == tp->retransmit_skb_hint)) 3153 tp->retransmit_skb_hint = NULL; 3154 if (unlikely(skb == tp->lost_skb_hint)) 3155 tp->lost_skb_hint = NULL; 3156 } 3157 3158 if (!skb) 3159 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3160 3161 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3162 tp->snd_up = tp->snd_una; 3163 3164 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3165 flag |= FLAG_SACK_RENEGING; 3166 3167 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3168 seq_rtt_us = skb_mstamp_us_delta(now, &first_ackt); 3169 ca_rtt_us = skb_mstamp_us_delta(now, &last_ackt); 3170 } 3171 if (sack->first_sackt.v64) { 3172 sack_rtt_us = skb_mstamp_us_delta(now, &sack->first_sackt); 3173 ca_rtt_us = skb_mstamp_us_delta(now, &sack->last_sackt); 3174 } 3175 sack->rate->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet, or -1 */ 3176 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3177 ca_rtt_us); 3178 3179 if (flag & FLAG_ACKED) { 3180 tcp_rearm_rto(sk); 3181 if (unlikely(icsk->icsk_mtup.probe_size && 3182 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3183 tcp_mtup_probe_success(sk); 3184 } 3185 3186 if (tcp_is_reno(tp)) { 3187 tcp_remove_reno_sacks(sk, pkts_acked); 3188 } else { 3189 int delta; 3190 3191 /* Non-retransmitted hole got filled? That's reordering */ 3192 if (reord < prior_fackets) 3193 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3194 3195 delta = tcp_is_fack(tp) ? pkts_acked : 3196 prior_sacked - tp->sacked_out; 3197 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3198 } 3199 3200 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3201 3202 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3203 sack_rtt_us > skb_mstamp_us_delta(now, &skb->skb_mstamp)) { 3204 /* Do not re-arm RTO if the sack RTT is measured from data sent 3205 * after when the head was last (re)transmitted. Otherwise the 3206 * timeout may continue to extend in loss recovery. 3207 */ 3208 tcp_rearm_rto(sk); 3209 } 3210 3211 if (icsk->icsk_ca_ops->pkts_acked) { 3212 struct ack_sample sample = { .pkts_acked = pkts_acked, 3213 .rtt_us = ca_rtt_us, 3214 .in_flight = last_in_flight }; 3215 3216 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3217 } 3218 3219 #if FASTRETRANS_DEBUG > 0 3220 WARN_ON((int)tp->sacked_out < 0); 3221 WARN_ON((int)tp->lost_out < 0); 3222 WARN_ON((int)tp->retrans_out < 0); 3223 if (!tp->packets_out && tcp_is_sack(tp)) { 3224 icsk = inet_csk(sk); 3225 if (tp->lost_out) { 3226 pr_debug("Leak l=%u %d\n", 3227 tp->lost_out, icsk->icsk_ca_state); 3228 tp->lost_out = 0; 3229 } 3230 if (tp->sacked_out) { 3231 pr_debug("Leak s=%u %d\n", 3232 tp->sacked_out, icsk->icsk_ca_state); 3233 tp->sacked_out = 0; 3234 } 3235 if (tp->retrans_out) { 3236 pr_debug("Leak r=%u %d\n", 3237 tp->retrans_out, icsk->icsk_ca_state); 3238 tp->retrans_out = 0; 3239 } 3240 } 3241 #endif 3242 *acked = pkts_acked; 3243 return flag; 3244 } 3245 3246 static void tcp_ack_probe(struct sock *sk) 3247 { 3248 const struct tcp_sock *tp = tcp_sk(sk); 3249 struct inet_connection_sock *icsk = inet_csk(sk); 3250 3251 /* Was it a usable window open? */ 3252 3253 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3254 icsk->icsk_backoff = 0; 3255 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3256 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3257 * This function is not for random using! 3258 */ 3259 } else { 3260 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3261 3262 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3263 when, TCP_RTO_MAX); 3264 } 3265 } 3266 3267 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3268 { 3269 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3270 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3271 } 3272 3273 /* Decide wheather to run the increase function of congestion control. */ 3274 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3275 { 3276 /* If reordering is high then always grow cwnd whenever data is 3277 * delivered regardless of its ordering. Otherwise stay conservative 3278 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3279 * new SACK or ECE mark may first advance cwnd here and later reduce 3280 * cwnd in tcp_fastretrans_alert() based on more states. 3281 */ 3282 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3283 return flag & FLAG_FORWARD_PROGRESS; 3284 3285 return flag & FLAG_DATA_ACKED; 3286 } 3287 3288 /* The "ultimate" congestion control function that aims to replace the rigid 3289 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3290 * It's called toward the end of processing an ACK with precise rate 3291 * information. All transmission or retransmission are delayed afterwards. 3292 */ 3293 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3294 int flag, const struct rate_sample *rs) 3295 { 3296 const struct inet_connection_sock *icsk = inet_csk(sk); 3297 3298 if (icsk->icsk_ca_ops->cong_control) { 3299 icsk->icsk_ca_ops->cong_control(sk, rs); 3300 return; 3301 } 3302 3303 if (tcp_in_cwnd_reduction(sk)) { 3304 /* Reduce cwnd if state mandates */ 3305 tcp_cwnd_reduction(sk, acked_sacked, flag); 3306 } else if (tcp_may_raise_cwnd(sk, flag)) { 3307 /* Advance cwnd if state allows */ 3308 tcp_cong_avoid(sk, ack, acked_sacked); 3309 } 3310 tcp_update_pacing_rate(sk); 3311 } 3312 3313 /* Check that window update is acceptable. 3314 * The function assumes that snd_una<=ack<=snd_next. 3315 */ 3316 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3317 const u32 ack, const u32 ack_seq, 3318 const u32 nwin) 3319 { 3320 return after(ack, tp->snd_una) || 3321 after(ack_seq, tp->snd_wl1) || 3322 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3323 } 3324 3325 /* If we update tp->snd_una, also update tp->bytes_acked */ 3326 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3327 { 3328 u32 delta = ack - tp->snd_una; 3329 3330 sock_owned_by_me((struct sock *)tp); 3331 tp->bytes_acked += delta; 3332 tp->snd_una = ack; 3333 } 3334 3335 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3336 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3337 { 3338 u32 delta = seq - tp->rcv_nxt; 3339 3340 sock_owned_by_me((struct sock *)tp); 3341 tp->bytes_received += delta; 3342 tp->rcv_nxt = seq; 3343 } 3344 3345 /* Update our send window. 3346 * 3347 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3348 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3349 */ 3350 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3351 u32 ack_seq) 3352 { 3353 struct tcp_sock *tp = tcp_sk(sk); 3354 int flag = 0; 3355 u32 nwin = ntohs(tcp_hdr(skb)->window); 3356 3357 if (likely(!tcp_hdr(skb)->syn)) 3358 nwin <<= tp->rx_opt.snd_wscale; 3359 3360 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3361 flag |= FLAG_WIN_UPDATE; 3362 tcp_update_wl(tp, ack_seq); 3363 3364 if (tp->snd_wnd != nwin) { 3365 tp->snd_wnd = nwin; 3366 3367 /* Note, it is the only place, where 3368 * fast path is recovered for sending TCP. 3369 */ 3370 tp->pred_flags = 0; 3371 tcp_fast_path_check(sk); 3372 3373 if (tcp_send_head(sk)) 3374 tcp_slow_start_after_idle_check(sk); 3375 3376 if (nwin > tp->max_window) { 3377 tp->max_window = nwin; 3378 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3379 } 3380 } 3381 } 3382 3383 tcp_snd_una_update(tp, ack); 3384 3385 return flag; 3386 } 3387 3388 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3389 u32 *last_oow_ack_time) 3390 { 3391 if (*last_oow_ack_time) { 3392 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); 3393 3394 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3395 NET_INC_STATS(net, mib_idx); 3396 return true; /* rate-limited: don't send yet! */ 3397 } 3398 } 3399 3400 *last_oow_ack_time = tcp_time_stamp; 3401 3402 return false; /* not rate-limited: go ahead, send dupack now! */ 3403 } 3404 3405 /* Return true if we're currently rate-limiting out-of-window ACKs and 3406 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3407 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3408 * attacks that send repeated SYNs or ACKs for the same connection. To 3409 * do this, we do not send a duplicate SYNACK or ACK if the remote 3410 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3411 */ 3412 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3413 int mib_idx, u32 *last_oow_ack_time) 3414 { 3415 /* Data packets without SYNs are not likely part of an ACK loop. */ 3416 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3417 !tcp_hdr(skb)->syn) 3418 return false; 3419 3420 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3421 } 3422 3423 /* RFC 5961 7 [ACK Throttling] */ 3424 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3425 { 3426 /* unprotected vars, we dont care of overwrites */ 3427 static u32 challenge_timestamp; 3428 static unsigned int challenge_count; 3429 struct tcp_sock *tp = tcp_sk(sk); 3430 u32 count, now; 3431 3432 /* First check our per-socket dupack rate limit. */ 3433 if (__tcp_oow_rate_limited(sock_net(sk), 3434 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3435 &tp->last_oow_ack_time)) 3436 return; 3437 3438 /* Then check host-wide RFC 5961 rate limit. */ 3439 now = jiffies / HZ; 3440 if (now != challenge_timestamp) { 3441 u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1; 3442 3443 challenge_timestamp = now; 3444 WRITE_ONCE(challenge_count, half + 3445 prandom_u32_max(sysctl_tcp_challenge_ack_limit)); 3446 } 3447 count = READ_ONCE(challenge_count); 3448 if (count > 0) { 3449 WRITE_ONCE(challenge_count, count - 1); 3450 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3451 tcp_send_ack(sk); 3452 } 3453 } 3454 3455 static void tcp_store_ts_recent(struct tcp_sock *tp) 3456 { 3457 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3458 tp->rx_opt.ts_recent_stamp = get_seconds(); 3459 } 3460 3461 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3462 { 3463 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3464 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3465 * extra check below makes sure this can only happen 3466 * for pure ACK frames. -DaveM 3467 * 3468 * Not only, also it occurs for expired timestamps. 3469 */ 3470 3471 if (tcp_paws_check(&tp->rx_opt, 0)) 3472 tcp_store_ts_recent(tp); 3473 } 3474 } 3475 3476 /* This routine deals with acks during a TLP episode. 3477 * We mark the end of a TLP episode on receiving TLP dupack or when 3478 * ack is after tlp_high_seq. 3479 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3480 */ 3481 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3482 { 3483 struct tcp_sock *tp = tcp_sk(sk); 3484 3485 if (before(ack, tp->tlp_high_seq)) 3486 return; 3487 3488 if (flag & FLAG_DSACKING_ACK) { 3489 /* This DSACK means original and TLP probe arrived; no loss */ 3490 tp->tlp_high_seq = 0; 3491 } else if (after(ack, tp->tlp_high_seq)) { 3492 /* ACK advances: there was a loss, so reduce cwnd. Reset 3493 * tlp_high_seq in tcp_init_cwnd_reduction() 3494 */ 3495 tcp_init_cwnd_reduction(sk); 3496 tcp_set_ca_state(sk, TCP_CA_CWR); 3497 tcp_end_cwnd_reduction(sk); 3498 tcp_try_keep_open(sk); 3499 NET_INC_STATS(sock_net(sk), 3500 LINUX_MIB_TCPLOSSPROBERECOVERY); 3501 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3502 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3503 /* Pure dupack: original and TLP probe arrived; no loss */ 3504 tp->tlp_high_seq = 0; 3505 } 3506 } 3507 3508 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3509 { 3510 const struct inet_connection_sock *icsk = inet_csk(sk); 3511 3512 if (icsk->icsk_ca_ops->in_ack_event) 3513 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3514 } 3515 3516 /* Congestion control has updated the cwnd already. So if we're in 3517 * loss recovery then now we do any new sends (for FRTO) or 3518 * retransmits (for CA_Loss or CA_recovery) that make sense. 3519 */ 3520 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3521 { 3522 struct tcp_sock *tp = tcp_sk(sk); 3523 3524 if (rexmit == REXMIT_NONE) 3525 return; 3526 3527 if (unlikely(rexmit == 2)) { 3528 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3529 TCP_NAGLE_OFF); 3530 if (after(tp->snd_nxt, tp->high_seq)) 3531 return; 3532 tp->frto = 0; 3533 } 3534 tcp_xmit_retransmit_queue(sk); 3535 } 3536 3537 /* This routine deals with incoming acks, but not outgoing ones. */ 3538 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3539 { 3540 struct inet_connection_sock *icsk = inet_csk(sk); 3541 struct tcp_sock *tp = tcp_sk(sk); 3542 struct tcp_sacktag_state sack_state; 3543 struct rate_sample rs = { .prior_delivered = 0 }; 3544 u32 prior_snd_una = tp->snd_una; 3545 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3546 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3547 bool is_dupack = false; 3548 u32 prior_fackets; 3549 int prior_packets = tp->packets_out; 3550 u32 delivered = tp->delivered; 3551 u32 lost = tp->lost; 3552 int acked = 0; /* Number of packets newly acked */ 3553 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3554 3555 sack_state.first_sackt.v64 = 0; 3556 sack_state.rate = &rs; 3557 3558 /* We very likely will need to access write queue head. */ 3559 prefetchw(sk->sk_write_queue.next); 3560 3561 /* If the ack is older than previous acks 3562 * then we can probably ignore it. 3563 */ 3564 if (before(ack, prior_snd_una)) { 3565 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3566 if (before(ack, prior_snd_una - tp->max_window)) { 3567 tcp_send_challenge_ack(sk, skb); 3568 return -1; 3569 } 3570 goto old_ack; 3571 } 3572 3573 /* If the ack includes data we haven't sent yet, discard 3574 * this segment (RFC793 Section 3.9). 3575 */ 3576 if (after(ack, tp->snd_nxt)) 3577 goto invalid_ack; 3578 3579 skb_mstamp_get(&sack_state.ack_time); 3580 3581 if (icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3582 tcp_rearm_rto(sk); 3583 3584 if (after(ack, prior_snd_una)) { 3585 flag |= FLAG_SND_UNA_ADVANCED; 3586 icsk->icsk_retransmits = 0; 3587 } 3588 3589 prior_fackets = tp->fackets_out; 3590 rs.prior_in_flight = tcp_packets_in_flight(tp); 3591 3592 /* ts_recent update must be made after we are sure that the packet 3593 * is in window. 3594 */ 3595 if (flag & FLAG_UPDATE_TS_RECENT) 3596 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3597 3598 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3599 /* Window is constant, pure forward advance. 3600 * No more checks are required. 3601 * Note, we use the fact that SND.UNA>=SND.WL2. 3602 */ 3603 tcp_update_wl(tp, ack_seq); 3604 tcp_snd_una_update(tp, ack); 3605 flag |= FLAG_WIN_UPDATE; 3606 3607 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3608 3609 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3610 } else { 3611 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3612 3613 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3614 flag |= FLAG_DATA; 3615 else 3616 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3617 3618 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3619 3620 if (TCP_SKB_CB(skb)->sacked) 3621 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3622 &sack_state); 3623 3624 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3625 flag |= FLAG_ECE; 3626 ack_ev_flags |= CA_ACK_ECE; 3627 } 3628 3629 if (flag & FLAG_WIN_UPDATE) 3630 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3631 3632 tcp_in_ack_event(sk, ack_ev_flags); 3633 } 3634 3635 /* We passed data and got it acked, remove any soft error 3636 * log. Something worked... 3637 */ 3638 sk->sk_err_soft = 0; 3639 icsk->icsk_probes_out = 0; 3640 tp->rcv_tstamp = tcp_time_stamp; 3641 if (!prior_packets) 3642 goto no_queue; 3643 3644 /* See if we can take anything off of the retransmit queue. */ 3645 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked, 3646 &sack_state); 3647 3648 if (tcp_ack_is_dubious(sk, flag)) { 3649 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3650 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit, 3651 &sack_state.ack_time); 3652 } 3653 if (tp->tlp_high_seq) 3654 tcp_process_tlp_ack(sk, ack, flag); 3655 3656 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3657 sk_dst_confirm(sk); 3658 3659 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3660 tcp_schedule_loss_probe(sk); 3661 delivered = tp->delivered - delivered; /* freshly ACKed or SACKed */ 3662 lost = tp->lost - lost; /* freshly marked lost */ 3663 tcp_rate_gen(sk, delivered, lost, &sack_state.ack_time, 3664 sack_state.rate); 3665 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3666 tcp_xmit_recovery(sk, rexmit); 3667 return 1; 3668 3669 no_queue: 3670 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3671 if (flag & FLAG_DSACKING_ACK) 3672 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit, 3673 &sack_state.ack_time); 3674 /* If this ack opens up a zero window, clear backoff. It was 3675 * being used to time the probes, and is probably far higher than 3676 * it needs to be for normal retransmission. 3677 */ 3678 if (tcp_send_head(sk)) 3679 tcp_ack_probe(sk); 3680 3681 if (tp->tlp_high_seq) 3682 tcp_process_tlp_ack(sk, ack, flag); 3683 return 1; 3684 3685 invalid_ack: 3686 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3687 return -1; 3688 3689 old_ack: 3690 /* If data was SACKed, tag it and see if we should send more data. 3691 * If data was DSACKed, see if we can undo a cwnd reduction. 3692 */ 3693 if (TCP_SKB_CB(skb)->sacked) { 3694 skb_mstamp_get(&sack_state.ack_time); 3695 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3696 &sack_state); 3697 tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit, 3698 &sack_state.ack_time); 3699 tcp_xmit_recovery(sk, rexmit); 3700 } 3701 3702 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3703 return 0; 3704 } 3705 3706 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3707 bool syn, struct tcp_fastopen_cookie *foc, 3708 bool exp_opt) 3709 { 3710 /* Valid only in SYN or SYN-ACK with an even length. */ 3711 if (!foc || !syn || len < 0 || (len & 1)) 3712 return; 3713 3714 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3715 len <= TCP_FASTOPEN_COOKIE_MAX) 3716 memcpy(foc->val, cookie, len); 3717 else if (len != 0) 3718 len = -1; 3719 foc->len = len; 3720 foc->exp = exp_opt; 3721 } 3722 3723 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3724 * But, this can also be called on packets in the established flow when 3725 * the fast version below fails. 3726 */ 3727 void tcp_parse_options(const struct sk_buff *skb, 3728 struct tcp_options_received *opt_rx, int estab, 3729 struct tcp_fastopen_cookie *foc) 3730 { 3731 const unsigned char *ptr; 3732 const struct tcphdr *th = tcp_hdr(skb); 3733 int length = (th->doff * 4) - sizeof(struct tcphdr); 3734 3735 ptr = (const unsigned char *)(th + 1); 3736 opt_rx->saw_tstamp = 0; 3737 3738 while (length > 0) { 3739 int opcode = *ptr++; 3740 int opsize; 3741 3742 switch (opcode) { 3743 case TCPOPT_EOL: 3744 return; 3745 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3746 length--; 3747 continue; 3748 default: 3749 opsize = *ptr++; 3750 if (opsize < 2) /* "silly options" */ 3751 return; 3752 if (opsize > length) 3753 return; /* don't parse partial options */ 3754 switch (opcode) { 3755 case TCPOPT_MSS: 3756 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3757 u16 in_mss = get_unaligned_be16(ptr); 3758 if (in_mss) { 3759 if (opt_rx->user_mss && 3760 opt_rx->user_mss < in_mss) 3761 in_mss = opt_rx->user_mss; 3762 opt_rx->mss_clamp = in_mss; 3763 } 3764 } 3765 break; 3766 case TCPOPT_WINDOW: 3767 if (opsize == TCPOLEN_WINDOW && th->syn && 3768 !estab && sysctl_tcp_window_scaling) { 3769 __u8 snd_wscale = *(__u8 *)ptr; 3770 opt_rx->wscale_ok = 1; 3771 if (snd_wscale > 14) { 3772 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3773 __func__, 3774 snd_wscale); 3775 snd_wscale = 14; 3776 } 3777 opt_rx->snd_wscale = snd_wscale; 3778 } 3779 break; 3780 case TCPOPT_TIMESTAMP: 3781 if ((opsize == TCPOLEN_TIMESTAMP) && 3782 ((estab && opt_rx->tstamp_ok) || 3783 (!estab && sysctl_tcp_timestamps))) { 3784 opt_rx->saw_tstamp = 1; 3785 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3786 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3787 } 3788 break; 3789 case TCPOPT_SACK_PERM: 3790 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3791 !estab && sysctl_tcp_sack) { 3792 opt_rx->sack_ok = TCP_SACK_SEEN; 3793 tcp_sack_reset(opt_rx); 3794 } 3795 break; 3796 3797 case TCPOPT_SACK: 3798 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3799 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3800 opt_rx->sack_ok) { 3801 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3802 } 3803 break; 3804 #ifdef CONFIG_TCP_MD5SIG 3805 case TCPOPT_MD5SIG: 3806 /* 3807 * The MD5 Hash has already been 3808 * checked (see tcp_v{4,6}_do_rcv()). 3809 */ 3810 break; 3811 #endif 3812 case TCPOPT_FASTOPEN: 3813 tcp_parse_fastopen_option( 3814 opsize - TCPOLEN_FASTOPEN_BASE, 3815 ptr, th->syn, foc, false); 3816 break; 3817 3818 case TCPOPT_EXP: 3819 /* Fast Open option shares code 254 using a 3820 * 16 bits magic number. 3821 */ 3822 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3823 get_unaligned_be16(ptr) == 3824 TCPOPT_FASTOPEN_MAGIC) 3825 tcp_parse_fastopen_option(opsize - 3826 TCPOLEN_EXP_FASTOPEN_BASE, 3827 ptr + 2, th->syn, foc, true); 3828 break; 3829 3830 } 3831 ptr += opsize-2; 3832 length -= opsize; 3833 } 3834 } 3835 } 3836 EXPORT_SYMBOL(tcp_parse_options); 3837 3838 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3839 { 3840 const __be32 *ptr = (const __be32 *)(th + 1); 3841 3842 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3843 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3844 tp->rx_opt.saw_tstamp = 1; 3845 ++ptr; 3846 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3847 ++ptr; 3848 if (*ptr) 3849 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3850 else 3851 tp->rx_opt.rcv_tsecr = 0; 3852 return true; 3853 } 3854 return false; 3855 } 3856 3857 /* Fast parse options. This hopes to only see timestamps. 3858 * If it is wrong it falls back on tcp_parse_options(). 3859 */ 3860 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3861 const struct tcphdr *th, struct tcp_sock *tp) 3862 { 3863 /* In the spirit of fast parsing, compare doff directly to constant 3864 * values. Because equality is used, short doff can be ignored here. 3865 */ 3866 if (th->doff == (sizeof(*th) / 4)) { 3867 tp->rx_opt.saw_tstamp = 0; 3868 return false; 3869 } else if (tp->rx_opt.tstamp_ok && 3870 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3871 if (tcp_parse_aligned_timestamp(tp, th)) 3872 return true; 3873 } 3874 3875 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3876 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3877 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3878 3879 return true; 3880 } 3881 3882 #ifdef CONFIG_TCP_MD5SIG 3883 /* 3884 * Parse MD5 Signature option 3885 */ 3886 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3887 { 3888 int length = (th->doff << 2) - sizeof(*th); 3889 const u8 *ptr = (const u8 *)(th + 1); 3890 3891 /* If the TCP option is too short, we can short cut */ 3892 if (length < TCPOLEN_MD5SIG) 3893 return NULL; 3894 3895 while (length > 0) { 3896 int opcode = *ptr++; 3897 int opsize; 3898 3899 switch (opcode) { 3900 case TCPOPT_EOL: 3901 return NULL; 3902 case TCPOPT_NOP: 3903 length--; 3904 continue; 3905 default: 3906 opsize = *ptr++; 3907 if (opsize < 2 || opsize > length) 3908 return NULL; 3909 if (opcode == TCPOPT_MD5SIG) 3910 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3911 } 3912 ptr += opsize - 2; 3913 length -= opsize; 3914 } 3915 return NULL; 3916 } 3917 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3918 #endif 3919 3920 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3921 * 3922 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3923 * it can pass through stack. So, the following predicate verifies that 3924 * this segment is not used for anything but congestion avoidance or 3925 * fast retransmit. Moreover, we even are able to eliminate most of such 3926 * second order effects, if we apply some small "replay" window (~RTO) 3927 * to timestamp space. 3928 * 3929 * All these measures still do not guarantee that we reject wrapped ACKs 3930 * on networks with high bandwidth, when sequence space is recycled fastly, 3931 * but it guarantees that such events will be very rare and do not affect 3932 * connection seriously. This doesn't look nice, but alas, PAWS is really 3933 * buggy extension. 3934 * 3935 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3936 * states that events when retransmit arrives after original data are rare. 3937 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3938 * the biggest problem on large power networks even with minor reordering. 3939 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3940 * up to bandwidth of 18Gigabit/sec. 8) ] 3941 */ 3942 3943 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3944 { 3945 const struct tcp_sock *tp = tcp_sk(sk); 3946 const struct tcphdr *th = tcp_hdr(skb); 3947 u32 seq = TCP_SKB_CB(skb)->seq; 3948 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3949 3950 return (/* 1. Pure ACK with correct sequence number. */ 3951 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3952 3953 /* 2. ... and duplicate ACK. */ 3954 ack == tp->snd_una && 3955 3956 /* 3. ... and does not update window. */ 3957 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3958 3959 /* 4. ... and sits in replay window. */ 3960 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3961 } 3962 3963 static inline bool tcp_paws_discard(const struct sock *sk, 3964 const struct sk_buff *skb) 3965 { 3966 const struct tcp_sock *tp = tcp_sk(sk); 3967 3968 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3969 !tcp_disordered_ack(sk, skb); 3970 } 3971 3972 /* Check segment sequence number for validity. 3973 * 3974 * Segment controls are considered valid, if the segment 3975 * fits to the window after truncation to the window. Acceptability 3976 * of data (and SYN, FIN, of course) is checked separately. 3977 * See tcp_data_queue(), for example. 3978 * 3979 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3980 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3981 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3982 * (borrowed from freebsd) 3983 */ 3984 3985 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3986 { 3987 return !before(end_seq, tp->rcv_wup) && 3988 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3989 } 3990 3991 /* When we get a reset we do this. */ 3992 void tcp_reset(struct sock *sk) 3993 { 3994 /* We want the right error as BSD sees it (and indeed as we do). */ 3995 switch (sk->sk_state) { 3996 case TCP_SYN_SENT: 3997 sk->sk_err = ECONNREFUSED; 3998 break; 3999 case TCP_CLOSE_WAIT: 4000 sk->sk_err = EPIPE; 4001 break; 4002 case TCP_CLOSE: 4003 return; 4004 default: 4005 sk->sk_err = ECONNRESET; 4006 } 4007 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4008 smp_wmb(); 4009 4010 if (!sock_flag(sk, SOCK_DEAD)) 4011 sk->sk_error_report(sk); 4012 4013 tcp_done(sk); 4014 } 4015 4016 /* 4017 * Process the FIN bit. This now behaves as it is supposed to work 4018 * and the FIN takes effect when it is validly part of sequence 4019 * space. Not before when we get holes. 4020 * 4021 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4022 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4023 * TIME-WAIT) 4024 * 4025 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4026 * close and we go into CLOSING (and later onto TIME-WAIT) 4027 * 4028 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4029 */ 4030 void tcp_fin(struct sock *sk) 4031 { 4032 struct tcp_sock *tp = tcp_sk(sk); 4033 4034 inet_csk_schedule_ack(sk); 4035 4036 sk->sk_shutdown |= RCV_SHUTDOWN; 4037 sock_set_flag(sk, SOCK_DONE); 4038 4039 switch (sk->sk_state) { 4040 case TCP_SYN_RECV: 4041 case TCP_ESTABLISHED: 4042 /* Move to CLOSE_WAIT */ 4043 tcp_set_state(sk, TCP_CLOSE_WAIT); 4044 inet_csk(sk)->icsk_ack.pingpong = 1; 4045 break; 4046 4047 case TCP_CLOSE_WAIT: 4048 case TCP_CLOSING: 4049 /* Received a retransmission of the FIN, do 4050 * nothing. 4051 */ 4052 break; 4053 case TCP_LAST_ACK: 4054 /* RFC793: Remain in the LAST-ACK state. */ 4055 break; 4056 4057 case TCP_FIN_WAIT1: 4058 /* This case occurs when a simultaneous close 4059 * happens, we must ack the received FIN and 4060 * enter the CLOSING state. 4061 */ 4062 tcp_send_ack(sk); 4063 tcp_set_state(sk, TCP_CLOSING); 4064 break; 4065 case TCP_FIN_WAIT2: 4066 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4067 tcp_send_ack(sk); 4068 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4069 break; 4070 default: 4071 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4072 * cases we should never reach this piece of code. 4073 */ 4074 pr_err("%s: Impossible, sk->sk_state=%d\n", 4075 __func__, sk->sk_state); 4076 break; 4077 } 4078 4079 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4080 * Probably, we should reset in this case. For now drop them. 4081 */ 4082 skb_rbtree_purge(&tp->out_of_order_queue); 4083 if (tcp_is_sack(tp)) 4084 tcp_sack_reset(&tp->rx_opt); 4085 sk_mem_reclaim(sk); 4086 4087 if (!sock_flag(sk, SOCK_DEAD)) { 4088 sk->sk_state_change(sk); 4089 4090 /* Do not send POLL_HUP for half duplex close. */ 4091 if (sk->sk_shutdown == SHUTDOWN_MASK || 4092 sk->sk_state == TCP_CLOSE) 4093 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4094 else 4095 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4096 } 4097 } 4098 4099 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4100 u32 end_seq) 4101 { 4102 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4103 if (before(seq, sp->start_seq)) 4104 sp->start_seq = seq; 4105 if (after(end_seq, sp->end_seq)) 4106 sp->end_seq = end_seq; 4107 return true; 4108 } 4109 return false; 4110 } 4111 4112 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4113 { 4114 struct tcp_sock *tp = tcp_sk(sk); 4115 4116 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4117 int mib_idx; 4118 4119 if (before(seq, tp->rcv_nxt)) 4120 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4121 else 4122 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4123 4124 NET_INC_STATS(sock_net(sk), mib_idx); 4125 4126 tp->rx_opt.dsack = 1; 4127 tp->duplicate_sack[0].start_seq = seq; 4128 tp->duplicate_sack[0].end_seq = end_seq; 4129 } 4130 } 4131 4132 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4133 { 4134 struct tcp_sock *tp = tcp_sk(sk); 4135 4136 if (!tp->rx_opt.dsack) 4137 tcp_dsack_set(sk, seq, end_seq); 4138 else 4139 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4140 } 4141 4142 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4143 { 4144 struct tcp_sock *tp = tcp_sk(sk); 4145 4146 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4147 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4148 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4149 tcp_enter_quickack_mode(sk); 4150 4151 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4152 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4153 4154 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4155 end_seq = tp->rcv_nxt; 4156 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4157 } 4158 } 4159 4160 tcp_send_ack(sk); 4161 } 4162 4163 /* These routines update the SACK block as out-of-order packets arrive or 4164 * in-order packets close up the sequence space. 4165 */ 4166 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4167 { 4168 int this_sack; 4169 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4170 struct tcp_sack_block *swalk = sp + 1; 4171 4172 /* See if the recent change to the first SACK eats into 4173 * or hits the sequence space of other SACK blocks, if so coalesce. 4174 */ 4175 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4176 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4177 int i; 4178 4179 /* Zap SWALK, by moving every further SACK up by one slot. 4180 * Decrease num_sacks. 4181 */ 4182 tp->rx_opt.num_sacks--; 4183 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4184 sp[i] = sp[i + 1]; 4185 continue; 4186 } 4187 this_sack++, swalk++; 4188 } 4189 } 4190 4191 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4192 { 4193 struct tcp_sock *tp = tcp_sk(sk); 4194 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4195 int cur_sacks = tp->rx_opt.num_sacks; 4196 int this_sack; 4197 4198 if (!cur_sacks) 4199 goto new_sack; 4200 4201 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4202 if (tcp_sack_extend(sp, seq, end_seq)) { 4203 /* Rotate this_sack to the first one. */ 4204 for (; this_sack > 0; this_sack--, sp--) 4205 swap(*sp, *(sp - 1)); 4206 if (cur_sacks > 1) 4207 tcp_sack_maybe_coalesce(tp); 4208 return; 4209 } 4210 } 4211 4212 /* Could not find an adjacent existing SACK, build a new one, 4213 * put it at the front, and shift everyone else down. We 4214 * always know there is at least one SACK present already here. 4215 * 4216 * If the sack array is full, forget about the last one. 4217 */ 4218 if (this_sack >= TCP_NUM_SACKS) { 4219 this_sack--; 4220 tp->rx_opt.num_sacks--; 4221 sp--; 4222 } 4223 for (; this_sack > 0; this_sack--, sp--) 4224 *sp = *(sp - 1); 4225 4226 new_sack: 4227 /* Build the new head SACK, and we're done. */ 4228 sp->start_seq = seq; 4229 sp->end_seq = end_seq; 4230 tp->rx_opt.num_sacks++; 4231 } 4232 4233 /* RCV.NXT advances, some SACKs should be eaten. */ 4234 4235 static void tcp_sack_remove(struct tcp_sock *tp) 4236 { 4237 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4238 int num_sacks = tp->rx_opt.num_sacks; 4239 int this_sack; 4240 4241 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4242 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4243 tp->rx_opt.num_sacks = 0; 4244 return; 4245 } 4246 4247 for (this_sack = 0; this_sack < num_sacks;) { 4248 /* Check if the start of the sack is covered by RCV.NXT. */ 4249 if (!before(tp->rcv_nxt, sp->start_seq)) { 4250 int i; 4251 4252 /* RCV.NXT must cover all the block! */ 4253 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4254 4255 /* Zap this SACK, by moving forward any other SACKS. */ 4256 for (i = this_sack+1; i < num_sacks; i++) 4257 tp->selective_acks[i-1] = tp->selective_acks[i]; 4258 num_sacks--; 4259 continue; 4260 } 4261 this_sack++; 4262 sp++; 4263 } 4264 tp->rx_opt.num_sacks = num_sacks; 4265 } 4266 4267 /** 4268 * tcp_try_coalesce - try to merge skb to prior one 4269 * @sk: socket 4270 * @to: prior buffer 4271 * @from: buffer to add in queue 4272 * @fragstolen: pointer to boolean 4273 * 4274 * Before queueing skb @from after @to, try to merge them 4275 * to reduce overall memory use and queue lengths, if cost is small. 4276 * Packets in ofo or receive queues can stay a long time. 4277 * Better try to coalesce them right now to avoid future collapses. 4278 * Returns true if caller should free @from instead of queueing it 4279 */ 4280 static bool tcp_try_coalesce(struct sock *sk, 4281 struct sk_buff *to, 4282 struct sk_buff *from, 4283 bool *fragstolen) 4284 { 4285 int delta; 4286 4287 *fragstolen = false; 4288 4289 /* Its possible this segment overlaps with prior segment in queue */ 4290 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4291 return false; 4292 4293 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4294 return false; 4295 4296 atomic_add(delta, &sk->sk_rmem_alloc); 4297 sk_mem_charge(sk, delta); 4298 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4299 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4300 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4301 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4302 return true; 4303 } 4304 4305 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4306 { 4307 sk_drops_add(sk, skb); 4308 __kfree_skb(skb); 4309 } 4310 4311 /* This one checks to see if we can put data from the 4312 * out_of_order queue into the receive_queue. 4313 */ 4314 static void tcp_ofo_queue(struct sock *sk) 4315 { 4316 struct tcp_sock *tp = tcp_sk(sk); 4317 __u32 dsack_high = tp->rcv_nxt; 4318 bool fin, fragstolen, eaten; 4319 struct sk_buff *skb, *tail; 4320 struct rb_node *p; 4321 4322 p = rb_first(&tp->out_of_order_queue); 4323 while (p) { 4324 skb = rb_entry(p, struct sk_buff, rbnode); 4325 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4326 break; 4327 4328 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4329 __u32 dsack = dsack_high; 4330 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4331 dsack_high = TCP_SKB_CB(skb)->end_seq; 4332 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4333 } 4334 p = rb_next(p); 4335 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4336 4337 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4338 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4339 tcp_drop(sk, skb); 4340 continue; 4341 } 4342 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4343 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4344 TCP_SKB_CB(skb)->end_seq); 4345 4346 tail = skb_peek_tail(&sk->sk_receive_queue); 4347 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4348 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4349 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4350 if (!eaten) 4351 __skb_queue_tail(&sk->sk_receive_queue, skb); 4352 else 4353 kfree_skb_partial(skb, fragstolen); 4354 4355 if (unlikely(fin)) { 4356 tcp_fin(sk); 4357 /* tcp_fin() purges tp->out_of_order_queue, 4358 * so we must end this loop right now. 4359 */ 4360 break; 4361 } 4362 } 4363 } 4364 4365 static bool tcp_prune_ofo_queue(struct sock *sk); 4366 static int tcp_prune_queue(struct sock *sk); 4367 4368 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4369 unsigned int size) 4370 { 4371 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4372 !sk_rmem_schedule(sk, skb, size)) { 4373 4374 if (tcp_prune_queue(sk) < 0) 4375 return -1; 4376 4377 while (!sk_rmem_schedule(sk, skb, size)) { 4378 if (!tcp_prune_ofo_queue(sk)) 4379 return -1; 4380 } 4381 } 4382 return 0; 4383 } 4384 4385 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4386 { 4387 struct tcp_sock *tp = tcp_sk(sk); 4388 struct rb_node **p, *q, *parent; 4389 struct sk_buff *skb1; 4390 u32 seq, end_seq; 4391 bool fragstolen; 4392 4393 tcp_ecn_check_ce(tp, skb); 4394 4395 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4396 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4397 tcp_drop(sk, skb); 4398 return; 4399 } 4400 4401 /* Disable header prediction. */ 4402 tp->pred_flags = 0; 4403 inet_csk_schedule_ack(sk); 4404 4405 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4406 seq = TCP_SKB_CB(skb)->seq; 4407 end_seq = TCP_SKB_CB(skb)->end_seq; 4408 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4409 tp->rcv_nxt, seq, end_seq); 4410 4411 p = &tp->out_of_order_queue.rb_node; 4412 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4413 /* Initial out of order segment, build 1 SACK. */ 4414 if (tcp_is_sack(tp)) { 4415 tp->rx_opt.num_sacks = 1; 4416 tp->selective_acks[0].start_seq = seq; 4417 tp->selective_acks[0].end_seq = end_seq; 4418 } 4419 rb_link_node(&skb->rbnode, NULL, p); 4420 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4421 tp->ooo_last_skb = skb; 4422 goto end; 4423 } 4424 4425 /* In the typical case, we are adding an skb to the end of the list. 4426 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4427 */ 4428 if (tcp_try_coalesce(sk, tp->ooo_last_skb, skb, &fragstolen)) { 4429 coalesce_done: 4430 tcp_grow_window(sk, skb); 4431 kfree_skb_partial(skb, fragstolen); 4432 skb = NULL; 4433 goto add_sack; 4434 } 4435 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4436 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4437 parent = &tp->ooo_last_skb->rbnode; 4438 p = &parent->rb_right; 4439 goto insert; 4440 } 4441 4442 /* Find place to insert this segment. Handle overlaps on the way. */ 4443 parent = NULL; 4444 while (*p) { 4445 parent = *p; 4446 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4447 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4448 p = &parent->rb_left; 4449 continue; 4450 } 4451 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4452 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4453 /* All the bits are present. Drop. */ 4454 NET_INC_STATS(sock_net(sk), 4455 LINUX_MIB_TCPOFOMERGE); 4456 __kfree_skb(skb); 4457 skb = NULL; 4458 tcp_dsack_set(sk, seq, end_seq); 4459 goto add_sack; 4460 } 4461 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4462 /* Partial overlap. */ 4463 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4464 } else { 4465 /* skb's seq == skb1's seq and skb covers skb1. 4466 * Replace skb1 with skb. 4467 */ 4468 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4469 &tp->out_of_order_queue); 4470 tcp_dsack_extend(sk, 4471 TCP_SKB_CB(skb1)->seq, 4472 TCP_SKB_CB(skb1)->end_seq); 4473 NET_INC_STATS(sock_net(sk), 4474 LINUX_MIB_TCPOFOMERGE); 4475 __kfree_skb(skb1); 4476 goto merge_right; 4477 } 4478 } else if (tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4479 goto coalesce_done; 4480 } 4481 p = &parent->rb_right; 4482 } 4483 insert: 4484 /* Insert segment into RB tree. */ 4485 rb_link_node(&skb->rbnode, parent, p); 4486 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4487 4488 merge_right: 4489 /* Remove other segments covered by skb. */ 4490 while ((q = rb_next(&skb->rbnode)) != NULL) { 4491 skb1 = rb_entry(q, struct sk_buff, rbnode); 4492 4493 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4494 break; 4495 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4496 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4497 end_seq); 4498 break; 4499 } 4500 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4501 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4502 TCP_SKB_CB(skb1)->end_seq); 4503 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4504 tcp_drop(sk, skb1); 4505 } 4506 /* If there is no skb after us, we are the last_skb ! */ 4507 if (!q) 4508 tp->ooo_last_skb = skb; 4509 4510 add_sack: 4511 if (tcp_is_sack(tp)) 4512 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4513 end: 4514 if (skb) { 4515 tcp_grow_window(sk, skb); 4516 skb_condense(skb); 4517 skb_set_owner_r(skb, sk); 4518 } 4519 } 4520 4521 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4522 bool *fragstolen) 4523 { 4524 int eaten; 4525 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4526 4527 __skb_pull(skb, hdrlen); 4528 eaten = (tail && 4529 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4530 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4531 if (!eaten) { 4532 __skb_queue_tail(&sk->sk_receive_queue, skb); 4533 skb_set_owner_r(skb, sk); 4534 } 4535 return eaten; 4536 } 4537 4538 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4539 { 4540 struct sk_buff *skb; 4541 int err = -ENOMEM; 4542 int data_len = 0; 4543 bool fragstolen; 4544 4545 if (size == 0) 4546 return 0; 4547 4548 if (size > PAGE_SIZE) { 4549 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4550 4551 data_len = npages << PAGE_SHIFT; 4552 size = data_len + (size & ~PAGE_MASK); 4553 } 4554 skb = alloc_skb_with_frags(size - data_len, data_len, 4555 PAGE_ALLOC_COSTLY_ORDER, 4556 &err, sk->sk_allocation); 4557 if (!skb) 4558 goto err; 4559 4560 skb_put(skb, size - data_len); 4561 skb->data_len = data_len; 4562 skb->len = size; 4563 4564 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4565 goto err_free; 4566 4567 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4568 if (err) 4569 goto err_free; 4570 4571 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4572 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4573 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4574 4575 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4576 WARN_ON_ONCE(fragstolen); /* should not happen */ 4577 __kfree_skb(skb); 4578 } 4579 return size; 4580 4581 err_free: 4582 kfree_skb(skb); 4583 err: 4584 return err; 4585 4586 } 4587 4588 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4589 { 4590 struct tcp_sock *tp = tcp_sk(sk); 4591 bool fragstolen = false; 4592 int eaten = -1; 4593 4594 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4595 __kfree_skb(skb); 4596 return; 4597 } 4598 skb_dst_drop(skb); 4599 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4600 4601 tcp_ecn_accept_cwr(tp, skb); 4602 4603 tp->rx_opt.dsack = 0; 4604 4605 /* Queue data for delivery to the user. 4606 * Packets in sequence go to the receive queue. 4607 * Out of sequence packets to the out_of_order_queue. 4608 */ 4609 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4610 if (tcp_receive_window(tp) == 0) 4611 goto out_of_window; 4612 4613 /* Ok. In sequence. In window. */ 4614 if (tp->ucopy.task == current && 4615 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4616 sock_owned_by_user(sk) && !tp->urg_data) { 4617 int chunk = min_t(unsigned int, skb->len, 4618 tp->ucopy.len); 4619 4620 __set_current_state(TASK_RUNNING); 4621 4622 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4623 tp->ucopy.len -= chunk; 4624 tp->copied_seq += chunk; 4625 eaten = (chunk == skb->len); 4626 tcp_rcv_space_adjust(sk); 4627 } 4628 } 4629 4630 if (eaten <= 0) { 4631 queue_and_out: 4632 if (eaten < 0) { 4633 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4634 sk_forced_mem_schedule(sk, skb->truesize); 4635 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4636 goto drop; 4637 } 4638 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4639 } 4640 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4641 if (skb->len) 4642 tcp_event_data_recv(sk, skb); 4643 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4644 tcp_fin(sk); 4645 4646 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4647 tcp_ofo_queue(sk); 4648 4649 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4650 * gap in queue is filled. 4651 */ 4652 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4653 inet_csk(sk)->icsk_ack.pingpong = 0; 4654 } 4655 4656 if (tp->rx_opt.num_sacks) 4657 tcp_sack_remove(tp); 4658 4659 tcp_fast_path_check(sk); 4660 4661 if (eaten > 0) 4662 kfree_skb_partial(skb, fragstolen); 4663 if (!sock_flag(sk, SOCK_DEAD)) 4664 sk->sk_data_ready(sk); 4665 return; 4666 } 4667 4668 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4669 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4670 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4671 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4672 4673 out_of_window: 4674 tcp_enter_quickack_mode(sk); 4675 inet_csk_schedule_ack(sk); 4676 drop: 4677 tcp_drop(sk, skb); 4678 return; 4679 } 4680 4681 /* Out of window. F.e. zero window probe. */ 4682 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4683 goto out_of_window; 4684 4685 tcp_enter_quickack_mode(sk); 4686 4687 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4688 /* Partial packet, seq < rcv_next < end_seq */ 4689 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4690 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4691 TCP_SKB_CB(skb)->end_seq); 4692 4693 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4694 4695 /* If window is closed, drop tail of packet. But after 4696 * remembering D-SACK for its head made in previous line. 4697 */ 4698 if (!tcp_receive_window(tp)) 4699 goto out_of_window; 4700 goto queue_and_out; 4701 } 4702 4703 tcp_data_queue_ofo(sk, skb); 4704 } 4705 4706 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4707 { 4708 if (list) 4709 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4710 4711 return rb_entry_safe(rb_next(&skb->rbnode), struct sk_buff, rbnode); 4712 } 4713 4714 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4715 struct sk_buff_head *list, 4716 struct rb_root *root) 4717 { 4718 struct sk_buff *next = tcp_skb_next(skb, list); 4719 4720 if (list) 4721 __skb_unlink(skb, list); 4722 else 4723 rb_erase(&skb->rbnode, root); 4724 4725 __kfree_skb(skb); 4726 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4727 4728 return next; 4729 } 4730 4731 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4732 static void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4733 { 4734 struct rb_node **p = &root->rb_node; 4735 struct rb_node *parent = NULL; 4736 struct sk_buff *skb1; 4737 4738 while (*p) { 4739 parent = *p; 4740 skb1 = rb_entry(parent, struct sk_buff, rbnode); 4741 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4742 p = &parent->rb_left; 4743 else 4744 p = &parent->rb_right; 4745 } 4746 rb_link_node(&skb->rbnode, parent, p); 4747 rb_insert_color(&skb->rbnode, root); 4748 } 4749 4750 /* Collapse contiguous sequence of skbs head..tail with 4751 * sequence numbers start..end. 4752 * 4753 * If tail is NULL, this means until the end of the queue. 4754 * 4755 * Segments with FIN/SYN are not collapsed (only because this 4756 * simplifies code) 4757 */ 4758 static void 4759 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4760 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4761 { 4762 struct sk_buff *skb = head, *n; 4763 struct sk_buff_head tmp; 4764 bool end_of_skbs; 4765 4766 /* First, check that queue is collapsible and find 4767 * the point where collapsing can be useful. 4768 */ 4769 restart: 4770 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4771 n = tcp_skb_next(skb, list); 4772 4773 /* No new bits? It is possible on ofo queue. */ 4774 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4775 skb = tcp_collapse_one(sk, skb, list, root); 4776 if (!skb) 4777 break; 4778 goto restart; 4779 } 4780 4781 /* The first skb to collapse is: 4782 * - not SYN/FIN and 4783 * - bloated or contains data before "start" or 4784 * overlaps to the next one. 4785 */ 4786 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4787 (tcp_win_from_space(skb->truesize) > skb->len || 4788 before(TCP_SKB_CB(skb)->seq, start))) { 4789 end_of_skbs = false; 4790 break; 4791 } 4792 4793 if (n && n != tail && 4794 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4795 end_of_skbs = false; 4796 break; 4797 } 4798 4799 /* Decided to skip this, advance start seq. */ 4800 start = TCP_SKB_CB(skb)->end_seq; 4801 } 4802 if (end_of_skbs || 4803 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4804 return; 4805 4806 __skb_queue_head_init(&tmp); 4807 4808 while (before(start, end)) { 4809 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4810 struct sk_buff *nskb; 4811 4812 nskb = alloc_skb(copy, GFP_ATOMIC); 4813 if (!nskb) 4814 break; 4815 4816 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4817 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4818 if (list) 4819 __skb_queue_before(list, skb, nskb); 4820 else 4821 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4822 skb_set_owner_r(nskb, sk); 4823 4824 /* Copy data, releasing collapsed skbs. */ 4825 while (copy > 0) { 4826 int offset = start - TCP_SKB_CB(skb)->seq; 4827 int size = TCP_SKB_CB(skb)->end_seq - start; 4828 4829 BUG_ON(offset < 0); 4830 if (size > 0) { 4831 size = min(copy, size); 4832 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4833 BUG(); 4834 TCP_SKB_CB(nskb)->end_seq += size; 4835 copy -= size; 4836 start += size; 4837 } 4838 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4839 skb = tcp_collapse_one(sk, skb, list, root); 4840 if (!skb || 4841 skb == tail || 4842 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4843 goto end; 4844 } 4845 } 4846 } 4847 end: 4848 skb_queue_walk_safe(&tmp, skb, n) 4849 tcp_rbtree_insert(root, skb); 4850 } 4851 4852 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4853 * and tcp_collapse() them until all the queue is collapsed. 4854 */ 4855 static void tcp_collapse_ofo_queue(struct sock *sk) 4856 { 4857 struct tcp_sock *tp = tcp_sk(sk); 4858 struct sk_buff *skb, *head; 4859 struct rb_node *p; 4860 u32 start, end; 4861 4862 p = rb_first(&tp->out_of_order_queue); 4863 skb = rb_entry_safe(p, struct sk_buff, rbnode); 4864 new_range: 4865 if (!skb) { 4866 p = rb_last(&tp->out_of_order_queue); 4867 /* Note: This is possible p is NULL here. We do not 4868 * use rb_entry_safe(), as ooo_last_skb is valid only 4869 * if rbtree is not empty. 4870 */ 4871 tp->ooo_last_skb = rb_entry(p, struct sk_buff, rbnode); 4872 return; 4873 } 4874 start = TCP_SKB_CB(skb)->seq; 4875 end = TCP_SKB_CB(skb)->end_seq; 4876 4877 for (head = skb;;) { 4878 skb = tcp_skb_next(skb, NULL); 4879 4880 /* Range is terminated when we see a gap or when 4881 * we are at the queue end. 4882 */ 4883 if (!skb || 4884 after(TCP_SKB_CB(skb)->seq, end) || 4885 before(TCP_SKB_CB(skb)->end_seq, start)) { 4886 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4887 head, skb, start, end); 4888 goto new_range; 4889 } 4890 4891 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4892 start = TCP_SKB_CB(skb)->seq; 4893 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4894 end = TCP_SKB_CB(skb)->end_seq; 4895 } 4896 } 4897 4898 /* 4899 * Clean the out-of-order queue to make room. 4900 * We drop high sequences packets to : 4901 * 1) Let a chance for holes to be filled. 4902 * 2) not add too big latencies if thousands of packets sit there. 4903 * (But if application shrinks SO_RCVBUF, we could still end up 4904 * freeing whole queue here) 4905 * 4906 * Return true if queue has shrunk. 4907 */ 4908 static bool tcp_prune_ofo_queue(struct sock *sk) 4909 { 4910 struct tcp_sock *tp = tcp_sk(sk); 4911 struct rb_node *node, *prev; 4912 4913 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4914 return false; 4915 4916 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4917 node = &tp->ooo_last_skb->rbnode; 4918 do { 4919 prev = rb_prev(node); 4920 rb_erase(node, &tp->out_of_order_queue); 4921 tcp_drop(sk, rb_entry(node, struct sk_buff, rbnode)); 4922 sk_mem_reclaim(sk); 4923 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4924 !tcp_under_memory_pressure(sk)) 4925 break; 4926 node = prev; 4927 } while (node); 4928 tp->ooo_last_skb = rb_entry(prev, struct sk_buff, rbnode); 4929 4930 /* Reset SACK state. A conforming SACK implementation will 4931 * do the same at a timeout based retransmit. When a connection 4932 * is in a sad state like this, we care only about integrity 4933 * of the connection not performance. 4934 */ 4935 if (tp->rx_opt.sack_ok) 4936 tcp_sack_reset(&tp->rx_opt); 4937 return true; 4938 } 4939 4940 /* Reduce allocated memory if we can, trying to get 4941 * the socket within its memory limits again. 4942 * 4943 * Return less than zero if we should start dropping frames 4944 * until the socket owning process reads some of the data 4945 * to stabilize the situation. 4946 */ 4947 static int tcp_prune_queue(struct sock *sk) 4948 { 4949 struct tcp_sock *tp = tcp_sk(sk); 4950 4951 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4952 4953 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 4954 4955 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4956 tcp_clamp_window(sk); 4957 else if (tcp_under_memory_pressure(sk)) 4958 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4959 4960 tcp_collapse_ofo_queue(sk); 4961 if (!skb_queue_empty(&sk->sk_receive_queue)) 4962 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 4963 skb_peek(&sk->sk_receive_queue), 4964 NULL, 4965 tp->copied_seq, tp->rcv_nxt); 4966 sk_mem_reclaim(sk); 4967 4968 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4969 return 0; 4970 4971 /* Collapsing did not help, destructive actions follow. 4972 * This must not ever occur. */ 4973 4974 tcp_prune_ofo_queue(sk); 4975 4976 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4977 return 0; 4978 4979 /* If we are really being abused, tell the caller to silently 4980 * drop receive data on the floor. It will get retransmitted 4981 * and hopefully then we'll have sufficient space. 4982 */ 4983 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 4984 4985 /* Massive buffer overcommit. */ 4986 tp->pred_flags = 0; 4987 return -1; 4988 } 4989 4990 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4991 { 4992 const struct tcp_sock *tp = tcp_sk(sk); 4993 4994 /* If the user specified a specific send buffer setting, do 4995 * not modify it. 4996 */ 4997 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4998 return false; 4999 5000 /* If we are under global TCP memory pressure, do not expand. */ 5001 if (tcp_under_memory_pressure(sk)) 5002 return false; 5003 5004 /* If we are under soft global TCP memory pressure, do not expand. */ 5005 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5006 return false; 5007 5008 /* If we filled the congestion window, do not expand. */ 5009 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5010 return false; 5011 5012 return true; 5013 } 5014 5015 /* When incoming ACK allowed to free some skb from write_queue, 5016 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5017 * on the exit from tcp input handler. 5018 * 5019 * PROBLEM: sndbuf expansion does not work well with largesend. 5020 */ 5021 static void tcp_new_space(struct sock *sk) 5022 { 5023 struct tcp_sock *tp = tcp_sk(sk); 5024 5025 if (tcp_should_expand_sndbuf(sk)) { 5026 tcp_sndbuf_expand(sk); 5027 tp->snd_cwnd_stamp = tcp_time_stamp; 5028 } 5029 5030 sk->sk_write_space(sk); 5031 } 5032 5033 static void tcp_check_space(struct sock *sk) 5034 { 5035 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5036 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5037 /* pairs with tcp_poll() */ 5038 smp_mb(); 5039 if (sk->sk_socket && 5040 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5041 tcp_new_space(sk); 5042 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5043 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5044 } 5045 } 5046 } 5047 5048 static inline void tcp_data_snd_check(struct sock *sk) 5049 { 5050 tcp_push_pending_frames(sk); 5051 tcp_check_space(sk); 5052 } 5053 5054 /* 5055 * Check if sending an ack is needed. 5056 */ 5057 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5058 { 5059 struct tcp_sock *tp = tcp_sk(sk); 5060 5061 /* More than one full frame received... */ 5062 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5063 /* ... and right edge of window advances far enough. 5064 * (tcp_recvmsg() will send ACK otherwise). Or... 5065 */ 5066 __tcp_select_window(sk) >= tp->rcv_wnd) || 5067 /* We ACK each frame or... */ 5068 tcp_in_quickack_mode(sk) || 5069 /* We have out of order data. */ 5070 (ofo_possible && !RB_EMPTY_ROOT(&tp->out_of_order_queue))) { 5071 /* Then ack it now */ 5072 tcp_send_ack(sk); 5073 } else { 5074 /* Else, send delayed ack. */ 5075 tcp_send_delayed_ack(sk); 5076 } 5077 } 5078 5079 static inline void tcp_ack_snd_check(struct sock *sk) 5080 { 5081 if (!inet_csk_ack_scheduled(sk)) { 5082 /* We sent a data segment already. */ 5083 return; 5084 } 5085 __tcp_ack_snd_check(sk, 1); 5086 } 5087 5088 /* 5089 * This routine is only called when we have urgent data 5090 * signaled. Its the 'slow' part of tcp_urg. It could be 5091 * moved inline now as tcp_urg is only called from one 5092 * place. We handle URGent data wrong. We have to - as 5093 * BSD still doesn't use the correction from RFC961. 5094 * For 1003.1g we should support a new option TCP_STDURG to permit 5095 * either form (or just set the sysctl tcp_stdurg). 5096 */ 5097 5098 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5099 { 5100 struct tcp_sock *tp = tcp_sk(sk); 5101 u32 ptr = ntohs(th->urg_ptr); 5102 5103 if (ptr && !sysctl_tcp_stdurg) 5104 ptr--; 5105 ptr += ntohl(th->seq); 5106 5107 /* Ignore urgent data that we've already seen and read. */ 5108 if (after(tp->copied_seq, ptr)) 5109 return; 5110 5111 /* Do not replay urg ptr. 5112 * 5113 * NOTE: interesting situation not covered by specs. 5114 * Misbehaving sender may send urg ptr, pointing to segment, 5115 * which we already have in ofo queue. We are not able to fetch 5116 * such data and will stay in TCP_URG_NOTYET until will be eaten 5117 * by recvmsg(). Seems, we are not obliged to handle such wicked 5118 * situations. But it is worth to think about possibility of some 5119 * DoSes using some hypothetical application level deadlock. 5120 */ 5121 if (before(ptr, tp->rcv_nxt)) 5122 return; 5123 5124 /* Do we already have a newer (or duplicate) urgent pointer? */ 5125 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5126 return; 5127 5128 /* Tell the world about our new urgent pointer. */ 5129 sk_send_sigurg(sk); 5130 5131 /* We may be adding urgent data when the last byte read was 5132 * urgent. To do this requires some care. We cannot just ignore 5133 * tp->copied_seq since we would read the last urgent byte again 5134 * as data, nor can we alter copied_seq until this data arrives 5135 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5136 * 5137 * NOTE. Double Dutch. Rendering to plain English: author of comment 5138 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5139 * and expect that both A and B disappear from stream. This is _wrong_. 5140 * Though this happens in BSD with high probability, this is occasional. 5141 * Any application relying on this is buggy. Note also, that fix "works" 5142 * only in this artificial test. Insert some normal data between A and B and we will 5143 * decline of BSD again. Verdict: it is better to remove to trap 5144 * buggy users. 5145 */ 5146 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5147 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5148 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5149 tp->copied_seq++; 5150 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5151 __skb_unlink(skb, &sk->sk_receive_queue); 5152 __kfree_skb(skb); 5153 } 5154 } 5155 5156 tp->urg_data = TCP_URG_NOTYET; 5157 tp->urg_seq = ptr; 5158 5159 /* Disable header prediction. */ 5160 tp->pred_flags = 0; 5161 } 5162 5163 /* This is the 'fast' part of urgent handling. */ 5164 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5165 { 5166 struct tcp_sock *tp = tcp_sk(sk); 5167 5168 /* Check if we get a new urgent pointer - normally not. */ 5169 if (th->urg) 5170 tcp_check_urg(sk, th); 5171 5172 /* Do we wait for any urgent data? - normally not... */ 5173 if (tp->urg_data == TCP_URG_NOTYET) { 5174 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5175 th->syn; 5176 5177 /* Is the urgent pointer pointing into this packet? */ 5178 if (ptr < skb->len) { 5179 u8 tmp; 5180 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5181 BUG(); 5182 tp->urg_data = TCP_URG_VALID | tmp; 5183 if (!sock_flag(sk, SOCK_DEAD)) 5184 sk->sk_data_ready(sk); 5185 } 5186 } 5187 } 5188 5189 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5190 { 5191 struct tcp_sock *tp = tcp_sk(sk); 5192 int chunk = skb->len - hlen; 5193 int err; 5194 5195 if (skb_csum_unnecessary(skb)) 5196 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5197 else 5198 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5199 5200 if (!err) { 5201 tp->ucopy.len -= chunk; 5202 tp->copied_seq += chunk; 5203 tcp_rcv_space_adjust(sk); 5204 } 5205 5206 return err; 5207 } 5208 5209 /* Accept RST for rcv_nxt - 1 after a FIN. 5210 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5211 * FIN is sent followed by a RST packet. The RST is sent with the same 5212 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5213 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5214 * ACKs on the closed socket. In addition middleboxes can drop either the 5215 * challenge ACK or a subsequent RST. 5216 */ 5217 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5218 { 5219 struct tcp_sock *tp = tcp_sk(sk); 5220 5221 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5222 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5223 TCPF_CLOSING)); 5224 } 5225 5226 /* Does PAWS and seqno based validation of an incoming segment, flags will 5227 * play significant role here. 5228 */ 5229 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5230 const struct tcphdr *th, int syn_inerr) 5231 { 5232 struct tcp_sock *tp = tcp_sk(sk); 5233 bool rst_seq_match = false; 5234 5235 /* RFC1323: H1. Apply PAWS check first. */ 5236 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5237 tcp_paws_discard(sk, skb)) { 5238 if (!th->rst) { 5239 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5240 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5241 LINUX_MIB_TCPACKSKIPPEDPAWS, 5242 &tp->last_oow_ack_time)) 5243 tcp_send_dupack(sk, skb); 5244 goto discard; 5245 } 5246 /* Reset is accepted even if it did not pass PAWS. */ 5247 } 5248 5249 /* Step 1: check sequence number */ 5250 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5251 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5252 * (RST) segments are validated by checking their SEQ-fields." 5253 * And page 69: "If an incoming segment is not acceptable, 5254 * an acknowledgment should be sent in reply (unless the RST 5255 * bit is set, if so drop the segment and return)". 5256 */ 5257 if (!th->rst) { 5258 if (th->syn) 5259 goto syn_challenge; 5260 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5261 LINUX_MIB_TCPACKSKIPPEDSEQ, 5262 &tp->last_oow_ack_time)) 5263 tcp_send_dupack(sk, skb); 5264 } else if (tcp_reset_check(sk, skb)) { 5265 tcp_reset(sk); 5266 } 5267 goto discard; 5268 } 5269 5270 /* Step 2: check RST bit */ 5271 if (th->rst) { 5272 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5273 * FIN and SACK too if available): 5274 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5275 * the right-most SACK block, 5276 * then 5277 * RESET the connection 5278 * else 5279 * Send a challenge ACK 5280 */ 5281 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5282 tcp_reset_check(sk, skb)) { 5283 rst_seq_match = true; 5284 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5285 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5286 int max_sack = sp[0].end_seq; 5287 int this_sack; 5288 5289 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5290 ++this_sack) { 5291 max_sack = after(sp[this_sack].end_seq, 5292 max_sack) ? 5293 sp[this_sack].end_seq : max_sack; 5294 } 5295 5296 if (TCP_SKB_CB(skb)->seq == max_sack) 5297 rst_seq_match = true; 5298 } 5299 5300 if (rst_seq_match) 5301 tcp_reset(sk); 5302 else 5303 tcp_send_challenge_ack(sk, skb); 5304 goto discard; 5305 } 5306 5307 /* step 3: check security and precedence [ignored] */ 5308 5309 /* step 4: Check for a SYN 5310 * RFC 5961 4.2 : Send a challenge ack 5311 */ 5312 if (th->syn) { 5313 syn_challenge: 5314 if (syn_inerr) 5315 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5316 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5317 tcp_send_challenge_ack(sk, skb); 5318 goto discard; 5319 } 5320 5321 return true; 5322 5323 discard: 5324 tcp_drop(sk, skb); 5325 return false; 5326 } 5327 5328 /* 5329 * TCP receive function for the ESTABLISHED state. 5330 * 5331 * It is split into a fast path and a slow path. The fast path is 5332 * disabled when: 5333 * - A zero window was announced from us - zero window probing 5334 * is only handled properly in the slow path. 5335 * - Out of order segments arrived. 5336 * - Urgent data is expected. 5337 * - There is no buffer space left 5338 * - Unexpected TCP flags/window values/header lengths are received 5339 * (detected by checking the TCP header against pred_flags) 5340 * - Data is sent in both directions. Fast path only supports pure senders 5341 * or pure receivers (this means either the sequence number or the ack 5342 * value must stay constant) 5343 * - Unexpected TCP option. 5344 * 5345 * When these conditions are not satisfied it drops into a standard 5346 * receive procedure patterned after RFC793 to handle all cases. 5347 * The first three cases are guaranteed by proper pred_flags setting, 5348 * the rest is checked inline. Fast processing is turned on in 5349 * tcp_data_queue when everything is OK. 5350 */ 5351 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5352 const struct tcphdr *th, unsigned int len) 5353 { 5354 struct tcp_sock *tp = tcp_sk(sk); 5355 5356 if (unlikely(!sk->sk_rx_dst)) 5357 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5358 /* 5359 * Header prediction. 5360 * The code loosely follows the one in the famous 5361 * "30 instruction TCP receive" Van Jacobson mail. 5362 * 5363 * Van's trick is to deposit buffers into socket queue 5364 * on a device interrupt, to call tcp_recv function 5365 * on the receive process context and checksum and copy 5366 * the buffer to user space. smart... 5367 * 5368 * Our current scheme is not silly either but we take the 5369 * extra cost of the net_bh soft interrupt processing... 5370 * We do checksum and copy also but from device to kernel. 5371 */ 5372 5373 tp->rx_opt.saw_tstamp = 0; 5374 5375 /* pred_flags is 0xS?10 << 16 + snd_wnd 5376 * if header_prediction is to be made 5377 * 'S' will always be tp->tcp_header_len >> 2 5378 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5379 * turn it off (when there are holes in the receive 5380 * space for instance) 5381 * PSH flag is ignored. 5382 */ 5383 5384 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5385 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5386 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5387 int tcp_header_len = tp->tcp_header_len; 5388 5389 /* Timestamp header prediction: tcp_header_len 5390 * is automatically equal to th->doff*4 due to pred_flags 5391 * match. 5392 */ 5393 5394 /* Check timestamp */ 5395 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5396 /* No? Slow path! */ 5397 if (!tcp_parse_aligned_timestamp(tp, th)) 5398 goto slow_path; 5399 5400 /* If PAWS failed, check it more carefully in slow path */ 5401 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5402 goto slow_path; 5403 5404 /* DO NOT update ts_recent here, if checksum fails 5405 * and timestamp was corrupted part, it will result 5406 * in a hung connection since we will drop all 5407 * future packets due to the PAWS test. 5408 */ 5409 } 5410 5411 if (len <= tcp_header_len) { 5412 /* Bulk data transfer: sender */ 5413 if (len == tcp_header_len) { 5414 /* Predicted packet is in window by definition. 5415 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5416 * Hence, check seq<=rcv_wup reduces to: 5417 */ 5418 if (tcp_header_len == 5419 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5420 tp->rcv_nxt == tp->rcv_wup) 5421 tcp_store_ts_recent(tp); 5422 5423 /* We know that such packets are checksummed 5424 * on entry. 5425 */ 5426 tcp_ack(sk, skb, 0); 5427 __kfree_skb(skb); 5428 tcp_data_snd_check(sk); 5429 return; 5430 } else { /* Header too small */ 5431 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5432 goto discard; 5433 } 5434 } else { 5435 int eaten = 0; 5436 bool fragstolen = false; 5437 5438 if (tp->ucopy.task == current && 5439 tp->copied_seq == tp->rcv_nxt && 5440 len - tcp_header_len <= tp->ucopy.len && 5441 sock_owned_by_user(sk)) { 5442 __set_current_state(TASK_RUNNING); 5443 5444 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5445 /* Predicted packet is in window by definition. 5446 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5447 * Hence, check seq<=rcv_wup reduces to: 5448 */ 5449 if (tcp_header_len == 5450 (sizeof(struct tcphdr) + 5451 TCPOLEN_TSTAMP_ALIGNED) && 5452 tp->rcv_nxt == tp->rcv_wup) 5453 tcp_store_ts_recent(tp); 5454 5455 tcp_rcv_rtt_measure_ts(sk, skb); 5456 5457 __skb_pull(skb, tcp_header_len); 5458 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5459 NET_INC_STATS(sock_net(sk), 5460 LINUX_MIB_TCPHPHITSTOUSER); 5461 eaten = 1; 5462 } 5463 } 5464 if (!eaten) { 5465 if (tcp_checksum_complete(skb)) 5466 goto csum_error; 5467 5468 if ((int)skb->truesize > sk->sk_forward_alloc) 5469 goto step5; 5470 5471 /* Predicted packet is in window by definition. 5472 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5473 * Hence, check seq<=rcv_wup reduces to: 5474 */ 5475 if (tcp_header_len == 5476 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5477 tp->rcv_nxt == tp->rcv_wup) 5478 tcp_store_ts_recent(tp); 5479 5480 tcp_rcv_rtt_measure_ts(sk, skb); 5481 5482 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5483 5484 /* Bulk data transfer: receiver */ 5485 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5486 &fragstolen); 5487 } 5488 5489 tcp_event_data_recv(sk, skb); 5490 5491 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5492 /* Well, only one small jumplet in fast path... */ 5493 tcp_ack(sk, skb, FLAG_DATA); 5494 tcp_data_snd_check(sk); 5495 if (!inet_csk_ack_scheduled(sk)) 5496 goto no_ack; 5497 } 5498 5499 __tcp_ack_snd_check(sk, 0); 5500 no_ack: 5501 if (eaten) 5502 kfree_skb_partial(skb, fragstolen); 5503 sk->sk_data_ready(sk); 5504 return; 5505 } 5506 } 5507 5508 slow_path: 5509 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5510 goto csum_error; 5511 5512 if (!th->ack && !th->rst && !th->syn) 5513 goto discard; 5514 5515 /* 5516 * Standard slow path. 5517 */ 5518 5519 if (!tcp_validate_incoming(sk, skb, th, 1)) 5520 return; 5521 5522 step5: 5523 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5524 goto discard; 5525 5526 tcp_rcv_rtt_measure_ts(sk, skb); 5527 5528 /* Process urgent data. */ 5529 tcp_urg(sk, skb, th); 5530 5531 /* step 7: process the segment text */ 5532 tcp_data_queue(sk, skb); 5533 5534 tcp_data_snd_check(sk); 5535 tcp_ack_snd_check(sk); 5536 return; 5537 5538 csum_error: 5539 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5540 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5541 5542 discard: 5543 tcp_drop(sk, skb); 5544 } 5545 EXPORT_SYMBOL(tcp_rcv_established); 5546 5547 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5548 { 5549 struct tcp_sock *tp = tcp_sk(sk); 5550 struct inet_connection_sock *icsk = inet_csk(sk); 5551 5552 tcp_set_state(sk, TCP_ESTABLISHED); 5553 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5554 5555 if (skb) { 5556 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5557 security_inet_conn_established(sk, skb); 5558 } 5559 5560 /* Make sure socket is routed, for correct metrics. */ 5561 icsk->icsk_af_ops->rebuild_header(sk); 5562 5563 tcp_init_metrics(sk); 5564 5565 tcp_init_congestion_control(sk); 5566 5567 /* Prevent spurious tcp_cwnd_restart() on first data 5568 * packet. 5569 */ 5570 tp->lsndtime = tcp_time_stamp; 5571 5572 tcp_init_buffer_space(sk); 5573 5574 if (sock_flag(sk, SOCK_KEEPOPEN)) 5575 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5576 5577 if (!tp->rx_opt.snd_wscale) 5578 __tcp_fast_path_on(tp, tp->snd_wnd); 5579 else 5580 tp->pred_flags = 0; 5581 5582 if (!sock_flag(sk, SOCK_DEAD)) { 5583 sk->sk_state_change(sk); 5584 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5585 } 5586 } 5587 5588 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5589 struct tcp_fastopen_cookie *cookie) 5590 { 5591 struct tcp_sock *tp = tcp_sk(sk); 5592 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5593 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5594 bool syn_drop = false; 5595 5596 if (mss == tp->rx_opt.user_mss) { 5597 struct tcp_options_received opt; 5598 5599 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5600 tcp_clear_options(&opt); 5601 opt.user_mss = opt.mss_clamp = 0; 5602 tcp_parse_options(synack, &opt, 0, NULL); 5603 mss = opt.mss_clamp; 5604 } 5605 5606 if (!tp->syn_fastopen) { 5607 /* Ignore an unsolicited cookie */ 5608 cookie->len = -1; 5609 } else if (tp->total_retrans) { 5610 /* SYN timed out and the SYN-ACK neither has a cookie nor 5611 * acknowledges data. Presumably the remote received only 5612 * the retransmitted (regular) SYNs: either the original 5613 * SYN-data or the corresponding SYN-ACK was dropped. 5614 */ 5615 syn_drop = (cookie->len < 0 && data); 5616 } else if (cookie->len < 0 && !tp->syn_data) { 5617 /* We requested a cookie but didn't get it. If we did not use 5618 * the (old) exp opt format then try so next time (try_exp=1). 5619 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5620 */ 5621 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5622 } 5623 5624 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5625 5626 if (data) { /* Retransmit unacked data in SYN */ 5627 tcp_for_write_queue_from(data, sk) { 5628 if (data == tcp_send_head(sk) || 5629 __tcp_retransmit_skb(sk, data, 1)) 5630 break; 5631 } 5632 tcp_rearm_rto(sk); 5633 NET_INC_STATS(sock_net(sk), 5634 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5635 return true; 5636 } 5637 tp->syn_data_acked = tp->syn_data; 5638 if (tp->syn_data_acked) 5639 NET_INC_STATS(sock_net(sk), 5640 LINUX_MIB_TCPFASTOPENACTIVE); 5641 5642 tcp_fastopen_add_skb(sk, synack); 5643 5644 return false; 5645 } 5646 5647 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5648 const struct tcphdr *th) 5649 { 5650 struct inet_connection_sock *icsk = inet_csk(sk); 5651 struct tcp_sock *tp = tcp_sk(sk); 5652 struct tcp_fastopen_cookie foc = { .len = -1 }; 5653 int saved_clamp = tp->rx_opt.mss_clamp; 5654 5655 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5656 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5657 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5658 5659 if (th->ack) { 5660 /* rfc793: 5661 * "If the state is SYN-SENT then 5662 * first check the ACK bit 5663 * If the ACK bit is set 5664 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5665 * a reset (unless the RST bit is set, if so drop 5666 * the segment and return)" 5667 */ 5668 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5669 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5670 goto reset_and_undo; 5671 5672 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5673 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5674 tcp_time_stamp)) { 5675 NET_INC_STATS(sock_net(sk), 5676 LINUX_MIB_PAWSACTIVEREJECTED); 5677 goto reset_and_undo; 5678 } 5679 5680 /* Now ACK is acceptable. 5681 * 5682 * "If the RST bit is set 5683 * If the ACK was acceptable then signal the user "error: 5684 * connection reset", drop the segment, enter CLOSED state, 5685 * delete TCB, and return." 5686 */ 5687 5688 if (th->rst) { 5689 tcp_reset(sk); 5690 goto discard; 5691 } 5692 5693 /* rfc793: 5694 * "fifth, if neither of the SYN or RST bits is set then 5695 * drop the segment and return." 5696 * 5697 * See note below! 5698 * --ANK(990513) 5699 */ 5700 if (!th->syn) 5701 goto discard_and_undo; 5702 5703 /* rfc793: 5704 * "If the SYN bit is on ... 5705 * are acceptable then ... 5706 * (our SYN has been ACKed), change the connection 5707 * state to ESTABLISHED..." 5708 */ 5709 5710 tcp_ecn_rcv_synack(tp, th); 5711 5712 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5713 tcp_ack(sk, skb, FLAG_SLOWPATH); 5714 5715 /* Ok.. it's good. Set up sequence numbers and 5716 * move to established. 5717 */ 5718 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5719 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5720 5721 /* RFC1323: The window in SYN & SYN/ACK segments is 5722 * never scaled. 5723 */ 5724 tp->snd_wnd = ntohs(th->window); 5725 5726 if (!tp->rx_opt.wscale_ok) { 5727 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5728 tp->window_clamp = min(tp->window_clamp, 65535U); 5729 } 5730 5731 if (tp->rx_opt.saw_tstamp) { 5732 tp->rx_opt.tstamp_ok = 1; 5733 tp->tcp_header_len = 5734 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5735 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5736 tcp_store_ts_recent(tp); 5737 } else { 5738 tp->tcp_header_len = sizeof(struct tcphdr); 5739 } 5740 5741 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5742 tcp_enable_fack(tp); 5743 5744 tcp_mtup_init(sk); 5745 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5746 tcp_initialize_rcv_mss(sk); 5747 5748 /* Remember, tcp_poll() does not lock socket! 5749 * Change state from SYN-SENT only after copied_seq 5750 * is initialized. */ 5751 tp->copied_seq = tp->rcv_nxt; 5752 5753 smp_mb(); 5754 5755 tcp_finish_connect(sk, skb); 5756 5757 if ((tp->syn_fastopen || tp->syn_data) && 5758 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5759 return -1; 5760 5761 if (sk->sk_write_pending || 5762 icsk->icsk_accept_queue.rskq_defer_accept || 5763 icsk->icsk_ack.pingpong) { 5764 /* Save one ACK. Data will be ready after 5765 * several ticks, if write_pending is set. 5766 * 5767 * It may be deleted, but with this feature tcpdumps 5768 * look so _wonderfully_ clever, that I was not able 5769 * to stand against the temptation 8) --ANK 5770 */ 5771 inet_csk_schedule_ack(sk); 5772 tcp_enter_quickack_mode(sk); 5773 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5774 TCP_DELACK_MAX, TCP_RTO_MAX); 5775 5776 discard: 5777 tcp_drop(sk, skb); 5778 return 0; 5779 } else { 5780 tcp_send_ack(sk); 5781 } 5782 return -1; 5783 } 5784 5785 /* No ACK in the segment */ 5786 5787 if (th->rst) { 5788 /* rfc793: 5789 * "If the RST bit is set 5790 * 5791 * Otherwise (no ACK) drop the segment and return." 5792 */ 5793 5794 goto discard_and_undo; 5795 } 5796 5797 /* PAWS check. */ 5798 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5799 tcp_paws_reject(&tp->rx_opt, 0)) 5800 goto discard_and_undo; 5801 5802 if (th->syn) { 5803 /* We see SYN without ACK. It is attempt of 5804 * simultaneous connect with crossed SYNs. 5805 * Particularly, it can be connect to self. 5806 */ 5807 tcp_set_state(sk, TCP_SYN_RECV); 5808 5809 if (tp->rx_opt.saw_tstamp) { 5810 tp->rx_opt.tstamp_ok = 1; 5811 tcp_store_ts_recent(tp); 5812 tp->tcp_header_len = 5813 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5814 } else { 5815 tp->tcp_header_len = sizeof(struct tcphdr); 5816 } 5817 5818 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5819 tp->copied_seq = tp->rcv_nxt; 5820 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5821 5822 /* RFC1323: The window in SYN & SYN/ACK segments is 5823 * never scaled. 5824 */ 5825 tp->snd_wnd = ntohs(th->window); 5826 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5827 tp->max_window = tp->snd_wnd; 5828 5829 tcp_ecn_rcv_syn(tp, th); 5830 5831 tcp_mtup_init(sk); 5832 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5833 tcp_initialize_rcv_mss(sk); 5834 5835 tcp_send_synack(sk); 5836 #if 0 5837 /* Note, we could accept data and URG from this segment. 5838 * There are no obstacles to make this (except that we must 5839 * either change tcp_recvmsg() to prevent it from returning data 5840 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5841 * 5842 * However, if we ignore data in ACKless segments sometimes, 5843 * we have no reasons to accept it sometimes. 5844 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5845 * is not flawless. So, discard packet for sanity. 5846 * Uncomment this return to process the data. 5847 */ 5848 return -1; 5849 #else 5850 goto discard; 5851 #endif 5852 } 5853 /* "fifth, if neither of the SYN or RST bits is set then 5854 * drop the segment and return." 5855 */ 5856 5857 discard_and_undo: 5858 tcp_clear_options(&tp->rx_opt); 5859 tp->rx_opt.mss_clamp = saved_clamp; 5860 goto discard; 5861 5862 reset_and_undo: 5863 tcp_clear_options(&tp->rx_opt); 5864 tp->rx_opt.mss_clamp = saved_clamp; 5865 return 1; 5866 } 5867 5868 /* 5869 * This function implements the receiving procedure of RFC 793 for 5870 * all states except ESTABLISHED and TIME_WAIT. 5871 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5872 * address independent. 5873 */ 5874 5875 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5876 { 5877 struct tcp_sock *tp = tcp_sk(sk); 5878 struct inet_connection_sock *icsk = inet_csk(sk); 5879 const struct tcphdr *th = tcp_hdr(skb); 5880 struct request_sock *req; 5881 int queued = 0; 5882 bool acceptable; 5883 5884 switch (sk->sk_state) { 5885 case TCP_CLOSE: 5886 goto discard; 5887 5888 case TCP_LISTEN: 5889 if (th->ack) 5890 return 1; 5891 5892 if (th->rst) 5893 goto discard; 5894 5895 if (th->syn) { 5896 if (th->fin) 5897 goto discard; 5898 /* It is possible that we process SYN packets from backlog, 5899 * so we need to make sure to disable BH right there. 5900 */ 5901 local_bh_disable(); 5902 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5903 local_bh_enable(); 5904 5905 if (!acceptable) 5906 return 1; 5907 consume_skb(skb); 5908 return 0; 5909 } 5910 goto discard; 5911 5912 case TCP_SYN_SENT: 5913 tp->rx_opt.saw_tstamp = 0; 5914 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5915 if (queued >= 0) 5916 return queued; 5917 5918 /* Do step6 onward by hand. */ 5919 tcp_urg(sk, skb, th); 5920 __kfree_skb(skb); 5921 tcp_data_snd_check(sk); 5922 return 0; 5923 } 5924 5925 tp->rx_opt.saw_tstamp = 0; 5926 req = tp->fastopen_rsk; 5927 if (req) { 5928 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5929 sk->sk_state != TCP_FIN_WAIT1); 5930 5931 if (!tcp_check_req(sk, skb, req, true)) 5932 goto discard; 5933 } 5934 5935 if (!th->ack && !th->rst && !th->syn) 5936 goto discard; 5937 5938 if (!tcp_validate_incoming(sk, skb, th, 0)) 5939 return 0; 5940 5941 /* step 5: check the ACK field */ 5942 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5943 FLAG_UPDATE_TS_RECENT) > 0; 5944 5945 switch (sk->sk_state) { 5946 case TCP_SYN_RECV: 5947 if (!acceptable) 5948 return 1; 5949 5950 if (!tp->srtt_us) 5951 tcp_synack_rtt_meas(sk, req); 5952 5953 /* Once we leave TCP_SYN_RECV, we no longer need req 5954 * so release it. 5955 */ 5956 if (req) { 5957 inet_csk(sk)->icsk_retransmits = 0; 5958 reqsk_fastopen_remove(sk, req, false); 5959 } else { 5960 /* Make sure socket is routed, for correct metrics. */ 5961 icsk->icsk_af_ops->rebuild_header(sk); 5962 tcp_init_congestion_control(sk); 5963 5964 tcp_mtup_init(sk); 5965 tp->copied_seq = tp->rcv_nxt; 5966 tcp_init_buffer_space(sk); 5967 } 5968 smp_mb(); 5969 tcp_set_state(sk, TCP_ESTABLISHED); 5970 sk->sk_state_change(sk); 5971 5972 /* Note, that this wakeup is only for marginal crossed SYN case. 5973 * Passively open sockets are not waked up, because 5974 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5975 */ 5976 if (sk->sk_socket) 5977 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5978 5979 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5980 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5981 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5982 5983 if (tp->rx_opt.tstamp_ok) 5984 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5985 5986 if (req) { 5987 /* Re-arm the timer because data may have been sent out. 5988 * This is similar to the regular data transmission case 5989 * when new data has just been ack'ed. 5990 * 5991 * (TFO) - we could try to be more aggressive and 5992 * retransmitting any data sooner based on when they 5993 * are sent out. 5994 */ 5995 tcp_rearm_rto(sk); 5996 } else 5997 tcp_init_metrics(sk); 5998 5999 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6000 tcp_update_pacing_rate(sk); 6001 6002 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6003 tp->lsndtime = tcp_time_stamp; 6004 6005 tcp_initialize_rcv_mss(sk); 6006 tcp_fast_path_on(tp); 6007 break; 6008 6009 case TCP_FIN_WAIT1: { 6010 int tmo; 6011 6012 /* If we enter the TCP_FIN_WAIT1 state and we are a 6013 * Fast Open socket and this is the first acceptable 6014 * ACK we have received, this would have acknowledged 6015 * our SYNACK so stop the SYNACK timer. 6016 */ 6017 if (req) { 6018 /* Return RST if ack_seq is invalid. 6019 * Note that RFC793 only says to generate a 6020 * DUPACK for it but for TCP Fast Open it seems 6021 * better to treat this case like TCP_SYN_RECV 6022 * above. 6023 */ 6024 if (!acceptable) 6025 return 1; 6026 /* We no longer need the request sock. */ 6027 reqsk_fastopen_remove(sk, req, false); 6028 tcp_rearm_rto(sk); 6029 } 6030 if (tp->snd_una != tp->write_seq) 6031 break; 6032 6033 tcp_set_state(sk, TCP_FIN_WAIT2); 6034 sk->sk_shutdown |= SEND_SHUTDOWN; 6035 6036 sk_dst_confirm(sk); 6037 6038 if (!sock_flag(sk, SOCK_DEAD)) { 6039 /* Wake up lingering close() */ 6040 sk->sk_state_change(sk); 6041 break; 6042 } 6043 6044 if (tp->linger2 < 0 || 6045 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6046 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 6047 tcp_done(sk); 6048 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6049 return 1; 6050 } 6051 6052 tmo = tcp_fin_time(sk); 6053 if (tmo > TCP_TIMEWAIT_LEN) { 6054 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6055 } else if (th->fin || sock_owned_by_user(sk)) { 6056 /* Bad case. We could lose such FIN otherwise. 6057 * It is not a big problem, but it looks confusing 6058 * and not so rare event. We still can lose it now, 6059 * if it spins in bh_lock_sock(), but it is really 6060 * marginal case. 6061 */ 6062 inet_csk_reset_keepalive_timer(sk, tmo); 6063 } else { 6064 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6065 goto discard; 6066 } 6067 break; 6068 } 6069 6070 case TCP_CLOSING: 6071 if (tp->snd_una == tp->write_seq) { 6072 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6073 goto discard; 6074 } 6075 break; 6076 6077 case TCP_LAST_ACK: 6078 if (tp->snd_una == tp->write_seq) { 6079 tcp_update_metrics(sk); 6080 tcp_done(sk); 6081 goto discard; 6082 } 6083 break; 6084 } 6085 6086 /* step 6: check the URG bit */ 6087 tcp_urg(sk, skb, th); 6088 6089 /* step 7: process the segment text */ 6090 switch (sk->sk_state) { 6091 case TCP_CLOSE_WAIT: 6092 case TCP_CLOSING: 6093 case TCP_LAST_ACK: 6094 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6095 break; 6096 case TCP_FIN_WAIT1: 6097 case TCP_FIN_WAIT2: 6098 /* RFC 793 says to queue data in these states, 6099 * RFC 1122 says we MUST send a reset. 6100 * BSD 4.4 also does reset. 6101 */ 6102 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6103 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6104 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6105 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6106 tcp_reset(sk); 6107 return 1; 6108 } 6109 } 6110 /* Fall through */ 6111 case TCP_ESTABLISHED: 6112 tcp_data_queue(sk, skb); 6113 queued = 1; 6114 break; 6115 } 6116 6117 /* tcp_data could move socket to TIME-WAIT */ 6118 if (sk->sk_state != TCP_CLOSE) { 6119 tcp_data_snd_check(sk); 6120 tcp_ack_snd_check(sk); 6121 } 6122 6123 if (!queued) { 6124 discard: 6125 tcp_drop(sk, skb); 6126 } 6127 return 0; 6128 } 6129 EXPORT_SYMBOL(tcp_rcv_state_process); 6130 6131 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6132 { 6133 struct inet_request_sock *ireq = inet_rsk(req); 6134 6135 if (family == AF_INET) 6136 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6137 &ireq->ir_rmt_addr, port); 6138 #if IS_ENABLED(CONFIG_IPV6) 6139 else if (family == AF_INET6) 6140 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6141 &ireq->ir_v6_rmt_addr, port); 6142 #endif 6143 } 6144 6145 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6146 * 6147 * If we receive a SYN packet with these bits set, it means a 6148 * network is playing bad games with TOS bits. In order to 6149 * avoid possible false congestion notifications, we disable 6150 * TCP ECN negotiation. 6151 * 6152 * Exception: tcp_ca wants ECN. This is required for DCTCP 6153 * congestion control: Linux DCTCP asserts ECT on all packets, 6154 * including SYN, which is most optimal solution; however, 6155 * others, such as FreeBSD do not. 6156 */ 6157 static void tcp_ecn_create_request(struct request_sock *req, 6158 const struct sk_buff *skb, 6159 const struct sock *listen_sk, 6160 const struct dst_entry *dst) 6161 { 6162 const struct tcphdr *th = tcp_hdr(skb); 6163 const struct net *net = sock_net(listen_sk); 6164 bool th_ecn = th->ece && th->cwr; 6165 bool ect, ecn_ok; 6166 u32 ecn_ok_dst; 6167 6168 if (!th_ecn) 6169 return; 6170 6171 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6172 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6173 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6174 6175 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6176 (ecn_ok_dst & DST_FEATURE_ECN_CA)) 6177 inet_rsk(req)->ecn_ok = 1; 6178 } 6179 6180 static void tcp_openreq_init(struct request_sock *req, 6181 const struct tcp_options_received *rx_opt, 6182 struct sk_buff *skb, const struct sock *sk) 6183 { 6184 struct inet_request_sock *ireq = inet_rsk(req); 6185 6186 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6187 req->cookie_ts = 0; 6188 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6189 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6190 skb_mstamp_get(&tcp_rsk(req)->snt_synack); 6191 tcp_rsk(req)->last_oow_ack_time = 0; 6192 req->mss = rx_opt->mss_clamp; 6193 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6194 ireq->tstamp_ok = rx_opt->tstamp_ok; 6195 ireq->sack_ok = rx_opt->sack_ok; 6196 ireq->snd_wscale = rx_opt->snd_wscale; 6197 ireq->wscale_ok = rx_opt->wscale_ok; 6198 ireq->acked = 0; 6199 ireq->ecn_ok = 0; 6200 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6201 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6202 ireq->ir_mark = inet_request_mark(sk, skb); 6203 } 6204 6205 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6206 struct sock *sk_listener, 6207 bool attach_listener) 6208 { 6209 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6210 attach_listener); 6211 6212 if (req) { 6213 struct inet_request_sock *ireq = inet_rsk(req); 6214 6215 kmemcheck_annotate_bitfield(ireq, flags); 6216 ireq->opt = NULL; 6217 #if IS_ENABLED(CONFIG_IPV6) 6218 ireq->pktopts = NULL; 6219 #endif 6220 atomic64_set(&ireq->ir_cookie, 0); 6221 ireq->ireq_state = TCP_NEW_SYN_RECV; 6222 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6223 ireq->ireq_family = sk_listener->sk_family; 6224 } 6225 6226 return req; 6227 } 6228 EXPORT_SYMBOL(inet_reqsk_alloc); 6229 6230 /* 6231 * Return true if a syncookie should be sent 6232 */ 6233 static bool tcp_syn_flood_action(const struct sock *sk, 6234 const struct sk_buff *skb, 6235 const char *proto) 6236 { 6237 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6238 const char *msg = "Dropping request"; 6239 bool want_cookie = false; 6240 struct net *net = sock_net(sk); 6241 6242 #ifdef CONFIG_SYN_COOKIES 6243 if (net->ipv4.sysctl_tcp_syncookies) { 6244 msg = "Sending cookies"; 6245 want_cookie = true; 6246 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6247 } else 6248 #endif 6249 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6250 6251 if (!queue->synflood_warned && 6252 net->ipv4.sysctl_tcp_syncookies != 2 && 6253 xchg(&queue->synflood_warned, 1) == 0) 6254 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6255 proto, ntohs(tcp_hdr(skb)->dest), msg); 6256 6257 return want_cookie; 6258 } 6259 6260 static void tcp_reqsk_record_syn(const struct sock *sk, 6261 struct request_sock *req, 6262 const struct sk_buff *skb) 6263 { 6264 if (tcp_sk(sk)->save_syn) { 6265 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6266 u32 *copy; 6267 6268 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6269 if (copy) { 6270 copy[0] = len; 6271 memcpy(©[1], skb_network_header(skb), len); 6272 req->saved_syn = copy; 6273 } 6274 } 6275 } 6276 6277 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6278 const struct tcp_request_sock_ops *af_ops, 6279 struct sock *sk, struct sk_buff *skb) 6280 { 6281 struct tcp_fastopen_cookie foc = { .len = -1 }; 6282 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6283 struct tcp_options_received tmp_opt; 6284 struct tcp_sock *tp = tcp_sk(sk); 6285 struct net *net = sock_net(sk); 6286 struct sock *fastopen_sk = NULL; 6287 struct dst_entry *dst = NULL; 6288 struct request_sock *req; 6289 bool want_cookie = false; 6290 struct flowi fl; 6291 6292 /* TW buckets are converted to open requests without 6293 * limitations, they conserve resources and peer is 6294 * evidently real one. 6295 */ 6296 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6297 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6298 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6299 if (!want_cookie) 6300 goto drop; 6301 } 6302 6303 if (sk_acceptq_is_full(sk)) { 6304 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6305 goto drop; 6306 } 6307 6308 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6309 if (!req) 6310 goto drop; 6311 6312 tcp_rsk(req)->af_specific = af_ops; 6313 tcp_rsk(req)->ts_off = 0; 6314 6315 tcp_clear_options(&tmp_opt); 6316 tmp_opt.mss_clamp = af_ops->mss_clamp; 6317 tmp_opt.user_mss = tp->rx_opt.user_mss; 6318 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 6319 6320 if (want_cookie && !tmp_opt.saw_tstamp) 6321 tcp_clear_options(&tmp_opt); 6322 6323 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6324 tcp_openreq_init(req, &tmp_opt, skb, sk); 6325 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6326 6327 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6328 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6329 6330 af_ops->init_req(req, sk, skb); 6331 6332 if (security_inet_conn_request(sk, skb, req)) 6333 goto drop_and_free; 6334 6335 if (isn && tmp_opt.tstamp_ok) 6336 af_ops->init_seq(skb, &tcp_rsk(req)->ts_off); 6337 6338 if (!want_cookie && !isn) { 6339 /* VJ's idea. We save last timestamp seen 6340 * from the destination in peer table, when entering 6341 * state TIME-WAIT, and check against it before 6342 * accepting new connection request. 6343 * 6344 * If "isn" is not zero, this request hit alive 6345 * timewait bucket, so that all the necessary checks 6346 * are made in the function processing timewait state. 6347 */ 6348 if (net->ipv4.tcp_death_row.sysctl_tw_recycle) { 6349 bool strict; 6350 6351 dst = af_ops->route_req(sk, &fl, req, &strict); 6352 6353 if (dst && strict && 6354 !tcp_peer_is_proven(req, dst, true, 6355 tmp_opt.saw_tstamp)) { 6356 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 6357 goto drop_and_release; 6358 } 6359 } 6360 /* Kill the following clause, if you dislike this way. */ 6361 else if (!net->ipv4.sysctl_tcp_syncookies && 6362 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6363 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6364 !tcp_peer_is_proven(req, dst, false, 6365 tmp_opt.saw_tstamp)) { 6366 /* Without syncookies last quarter of 6367 * backlog is filled with destinations, 6368 * proven to be alive. 6369 * It means that we continue to communicate 6370 * to destinations, already remembered 6371 * to the moment of synflood. 6372 */ 6373 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6374 rsk_ops->family); 6375 goto drop_and_release; 6376 } 6377 6378 isn = af_ops->init_seq(skb, &tcp_rsk(req)->ts_off); 6379 } 6380 if (!dst) { 6381 dst = af_ops->route_req(sk, &fl, req, NULL); 6382 if (!dst) 6383 goto drop_and_free; 6384 } 6385 6386 tcp_ecn_create_request(req, skb, sk, dst); 6387 6388 if (want_cookie) { 6389 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6390 tcp_rsk(req)->ts_off = 0; 6391 req->cookie_ts = tmp_opt.tstamp_ok; 6392 if (!tmp_opt.tstamp_ok) 6393 inet_rsk(req)->ecn_ok = 0; 6394 } 6395 6396 tcp_rsk(req)->snt_isn = isn; 6397 tcp_rsk(req)->txhash = net_tx_rndhash(); 6398 tcp_openreq_init_rwin(req, sk, dst); 6399 if (!want_cookie) { 6400 tcp_reqsk_record_syn(sk, req, skb); 6401 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6402 } 6403 if (fastopen_sk) { 6404 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6405 &foc, TCP_SYNACK_FASTOPEN); 6406 /* Add the child socket directly into the accept queue */ 6407 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6408 sk->sk_data_ready(sk); 6409 bh_unlock_sock(fastopen_sk); 6410 sock_put(fastopen_sk); 6411 } else { 6412 tcp_rsk(req)->tfo_listener = false; 6413 if (!want_cookie) 6414 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6415 af_ops->send_synack(sk, dst, &fl, req, &foc, 6416 !want_cookie ? TCP_SYNACK_NORMAL : 6417 TCP_SYNACK_COOKIE); 6418 if (want_cookie) { 6419 reqsk_free(req); 6420 return 0; 6421 } 6422 } 6423 reqsk_put(req); 6424 return 0; 6425 6426 drop_and_release: 6427 dst_release(dst); 6428 drop_and_free: 6429 reqsk_free(req); 6430 drop: 6431 tcp_listendrop(sk); 6432 return 0; 6433 } 6434 EXPORT_SYMBOL(tcp_conn_request); 6435