xref: /linux/net/ipv4/tcp_input.c (revision 515c0ead788f4118a91b3ae55fe51f95543553ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/tcp_ecn.h>
76 #include <net/proto_memory.h>
77 #include <net/inet_common.h>
78 #include <linux/ipsec.h>
79 #include <linux/unaligned.h>
80 #include <linux/errqueue.h>
81 #include <trace/events/tcp.h>
82 #include <linux/jump_label_ratelimit.h>
83 #include <net/busy_poll.h>
84 #include <net/mptcp.h>
85 
86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
87 
88 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
89 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
90 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
91 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
92 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
93 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
94 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
95 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
96 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
97 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
98 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
99 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
100 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
101 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
102 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
103 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
104 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
105 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
106 #define FLAG_TS_PROGRESS	0x40000 /* Positive timestamp delta */
107 
108 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
109 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
110 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
111 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
112 
113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
115 
116 #define REXMIT_NONE	0 /* no loss recovery to do */
117 #define REXMIT_LOST	1 /* retransmit packets marked lost */
118 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
119 
120 #if IS_ENABLED(CONFIG_TLS_DEVICE)
121 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
122 
123 void clean_acked_data_enable(struct tcp_sock *tp,
124 			     void (*cad)(struct sock *sk, u32 ack_seq))
125 {
126 	tp->tcp_clean_acked = cad;
127 	static_branch_deferred_inc(&clean_acked_data_enabled);
128 }
129 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
130 
131 void clean_acked_data_disable(struct tcp_sock *tp)
132 {
133 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
134 	tp->tcp_clean_acked = NULL;
135 }
136 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
137 
138 void clean_acked_data_flush(void)
139 {
140 	static_key_deferred_flush(&clean_acked_data_enabled);
141 }
142 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
143 #endif
144 
145 #ifdef CONFIG_CGROUP_BPF
146 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
147 {
148 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
149 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
150 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
151 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
152 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
153 	struct bpf_sock_ops_kern sock_ops;
154 
155 	if (likely(!unknown_opt && !parse_all_opt))
156 		return;
157 
158 	/* The skb will be handled in the
159 	 * bpf_skops_established() or
160 	 * bpf_skops_write_hdr_opt().
161 	 */
162 	switch (sk->sk_state) {
163 	case TCP_SYN_RECV:
164 	case TCP_SYN_SENT:
165 	case TCP_LISTEN:
166 		return;
167 	}
168 
169 	sock_owned_by_me(sk);
170 
171 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
172 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
173 	sock_ops.is_fullsock = 1;
174 	sock_ops.is_locked_tcp_sock = 1;
175 	sock_ops.sk = sk;
176 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
177 
178 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
179 }
180 
181 static void bpf_skops_established(struct sock *sk, int bpf_op,
182 				  struct sk_buff *skb)
183 {
184 	struct bpf_sock_ops_kern sock_ops;
185 
186 	sock_owned_by_me(sk);
187 
188 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
189 	sock_ops.op = bpf_op;
190 	sock_ops.is_fullsock = 1;
191 	sock_ops.is_locked_tcp_sock = 1;
192 	sock_ops.sk = sk;
193 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
194 	if (skb)
195 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
196 
197 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
198 }
199 #else
200 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
201 {
202 }
203 
204 static void bpf_skops_established(struct sock *sk, int bpf_op,
205 				  struct sk_buff *skb)
206 {
207 }
208 #endif
209 
210 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
211 				    unsigned int len)
212 {
213 	struct net_device *dev;
214 
215 	rcu_read_lock();
216 	dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 	if (!dev || len >= READ_ONCE(dev->mtu))
218 		pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 			dev ? dev->name : "Unknown driver");
220 	rcu_read_unlock();
221 }
222 
223 /* Adapt the MSS value used to make delayed ack decision to the
224  * real world.
225  */
226 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
227 {
228 	struct inet_connection_sock *icsk = inet_csk(sk);
229 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
230 	unsigned int len;
231 
232 	icsk->icsk_ack.last_seg_size = 0;
233 
234 	/* skb->len may jitter because of SACKs, even if peer
235 	 * sends good full-sized frames.
236 	 */
237 	len = skb_shinfo(skb)->gso_size ? : skb->len;
238 	if (len >= icsk->icsk_ack.rcv_mss) {
239 		/* Note: divides are still a bit expensive.
240 		 * For the moment, only adjust scaling_ratio
241 		 * when we update icsk_ack.rcv_mss.
242 		 */
243 		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
244 			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
245 			u8 old_ratio = tcp_sk(sk)->scaling_ratio;
246 
247 			do_div(val, skb->truesize);
248 			tcp_sk(sk)->scaling_ratio = val ? val : 1;
249 
250 			if (old_ratio != tcp_sk(sk)->scaling_ratio) {
251 				struct tcp_sock *tp = tcp_sk(sk);
252 
253 				val = tcp_win_from_space(sk, sk->sk_rcvbuf);
254 				tcp_set_window_clamp(sk, val);
255 
256 				if (tp->window_clamp < tp->rcvq_space.space)
257 					tp->rcvq_space.space = tp->window_clamp;
258 			}
259 		}
260 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
261 					       tcp_sk(sk)->advmss);
262 		/* Account for possibly-removed options */
263 		DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
264 				tcp_gro_dev_warn, sk, skb, len);
265 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
266 		 * set then it is likely the end of an application write. So
267 		 * more data may not be arriving soon, and yet the data sender
268 		 * may be waiting for an ACK if cwnd-bound or using TX zero
269 		 * copy. So we set ICSK_ACK_PUSHED here so that
270 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
271 		 * reads all of the data and is not ping-pong. If len > MSS
272 		 * then this logic does not matter (and does not hurt) because
273 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
274 		 * reads data and there is more than an MSS of unACKed data.
275 		 */
276 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
277 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
278 	} else {
279 		/* Otherwise, we make more careful check taking into account,
280 		 * that SACKs block is variable.
281 		 *
282 		 * "len" is invariant segment length, including TCP header.
283 		 */
284 		len += skb->data - skb_transport_header(skb);
285 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
286 		    /* If PSH is not set, packet should be
287 		     * full sized, provided peer TCP is not badly broken.
288 		     * This observation (if it is correct 8)) allows
289 		     * to handle super-low mtu links fairly.
290 		     */
291 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
292 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
293 			/* Subtract also invariant (if peer is RFC compliant),
294 			 * tcp header plus fixed timestamp option length.
295 			 * Resulting "len" is MSS free of SACK jitter.
296 			 */
297 			len -= tcp_sk(sk)->tcp_header_len;
298 			icsk->icsk_ack.last_seg_size = len;
299 			if (len == lss) {
300 				icsk->icsk_ack.rcv_mss = len;
301 				return;
302 			}
303 		}
304 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
305 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
306 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
307 	}
308 }
309 
310 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
311 {
312 	struct inet_connection_sock *icsk = inet_csk(sk);
313 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
314 
315 	if (quickacks == 0)
316 		quickacks = 2;
317 	quickacks = min(quickacks, max_quickacks);
318 	if (quickacks > icsk->icsk_ack.quick)
319 		icsk->icsk_ack.quick = quickacks;
320 }
321 
322 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
323 {
324 	struct inet_connection_sock *icsk = inet_csk(sk);
325 
326 	tcp_incr_quickack(sk, max_quickacks);
327 	inet_csk_exit_pingpong_mode(sk);
328 	icsk->icsk_ack.ato = TCP_ATO_MIN;
329 }
330 
331 /* Send ACKs quickly, if "quick" count is not exhausted
332  * and the session is not interactive.
333  */
334 
335 static bool tcp_in_quickack_mode(struct sock *sk)
336 {
337 	const struct inet_connection_sock *icsk = inet_csk(sk);
338 
339 	return icsk->icsk_ack.dst_quick_ack ||
340 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
341 }
342 
343 static void tcp_data_ecn_check(struct sock *sk, const struct sk_buff *skb)
344 {
345 	struct tcp_sock *tp = tcp_sk(sk);
346 
347 	if (tcp_ecn_disabled(tp))
348 		return;
349 
350 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
351 	case INET_ECN_NOT_ECT:
352 		/* Funny extension: if ECT is not set on a segment,
353 		 * and we already seen ECT on a previous segment,
354 		 * it is probably a retransmit.
355 		 */
356 		if (tp->ecn_flags & TCP_ECN_SEEN)
357 			tcp_enter_quickack_mode(sk, 2);
358 		break;
359 	case INET_ECN_CE:
360 		if (tcp_ca_needs_ecn(sk))
361 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
362 
363 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
364 			/* Better not delay acks, sender can have a very low cwnd */
365 			tcp_enter_quickack_mode(sk, 2);
366 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
367 		}
368 		tp->ecn_flags |= TCP_ECN_SEEN;
369 		break;
370 	default:
371 		if (tcp_ca_needs_ecn(sk))
372 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
373 		tp->ecn_flags |= TCP_ECN_SEEN;
374 		break;
375 	}
376 }
377 
378 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count)
379 {
380 	tp->delivered_ce += ecn_count;
381 }
382 
383 /* Updates the delivered and delivered_ce counts */
384 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
385 				bool ece_ack)
386 {
387 	tp->delivered += delivered;
388 	if (ece_ack)
389 		tcp_count_delivered_ce(tp, delivered);
390 }
391 
392 /* Buffer size and advertised window tuning.
393  *
394  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
395  */
396 
397 static void tcp_sndbuf_expand(struct sock *sk)
398 {
399 	const struct tcp_sock *tp = tcp_sk(sk);
400 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
401 	int sndmem, per_mss;
402 	u32 nr_segs;
403 
404 	/* Worst case is non GSO/TSO : each frame consumes one skb
405 	 * and skb->head is kmalloced using power of two area of memory
406 	 */
407 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
408 		  MAX_TCP_HEADER +
409 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
410 
411 	per_mss = roundup_pow_of_two(per_mss) +
412 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
413 
414 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
415 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
416 
417 	/* Fast Recovery (RFC 5681 3.2) :
418 	 * Cubic needs 1.7 factor, rounded to 2 to include
419 	 * extra cushion (application might react slowly to EPOLLOUT)
420 	 */
421 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
422 	sndmem *= nr_segs * per_mss;
423 
424 	if (sk->sk_sndbuf < sndmem)
425 		WRITE_ONCE(sk->sk_sndbuf,
426 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
427 }
428 
429 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
430  *
431  * All tcp_full_space() is split to two parts: "network" buffer, allocated
432  * forward and advertised in receiver window (tp->rcv_wnd) and
433  * "application buffer", required to isolate scheduling/application
434  * latencies from network.
435  * window_clamp is maximal advertised window. It can be less than
436  * tcp_full_space(), in this case tcp_full_space() - window_clamp
437  * is reserved for "application" buffer. The less window_clamp is
438  * the smoother our behaviour from viewpoint of network, but the lower
439  * throughput and the higher sensitivity of the connection to losses. 8)
440  *
441  * rcv_ssthresh is more strict window_clamp used at "slow start"
442  * phase to predict further behaviour of this connection.
443  * It is used for two goals:
444  * - to enforce header prediction at sender, even when application
445  *   requires some significant "application buffer". It is check #1.
446  * - to prevent pruning of receive queue because of misprediction
447  *   of receiver window. Check #2.
448  *
449  * The scheme does not work when sender sends good segments opening
450  * window and then starts to feed us spaghetti. But it should work
451  * in common situations. Otherwise, we have to rely on queue collapsing.
452  */
453 
454 /* Slow part of check#2. */
455 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
456 			     unsigned int skbtruesize)
457 {
458 	const struct tcp_sock *tp = tcp_sk(sk);
459 	/* Optimize this! */
460 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
461 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
462 
463 	while (tp->rcv_ssthresh <= window) {
464 		if (truesize <= skb->len)
465 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
466 
467 		truesize >>= 1;
468 		window >>= 1;
469 	}
470 	return 0;
471 }
472 
473 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
474  * can play nice with us, as sk_buff and skb->head might be either
475  * freed or shared with up to MAX_SKB_FRAGS segments.
476  * Only give a boost to drivers using page frag(s) to hold the frame(s),
477  * and if no payload was pulled in skb->head before reaching us.
478  */
479 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
480 {
481 	u32 truesize = skb->truesize;
482 
483 	if (adjust && !skb_headlen(skb)) {
484 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
485 		/* paranoid check, some drivers might be buggy */
486 		if (unlikely((int)truesize < (int)skb->len))
487 			truesize = skb->truesize;
488 	}
489 	return truesize;
490 }
491 
492 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
493 			    bool adjust)
494 {
495 	struct tcp_sock *tp = tcp_sk(sk);
496 	int room;
497 
498 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
499 
500 	if (room <= 0)
501 		return;
502 
503 	/* Check #1 */
504 	if (!tcp_under_memory_pressure(sk)) {
505 		unsigned int truesize = truesize_adjust(adjust, skb);
506 		int incr;
507 
508 		/* Check #2. Increase window, if skb with such overhead
509 		 * will fit to rcvbuf in future.
510 		 */
511 		if (tcp_win_from_space(sk, truesize) <= skb->len)
512 			incr = 2 * tp->advmss;
513 		else
514 			incr = __tcp_grow_window(sk, skb, truesize);
515 
516 		if (incr) {
517 			incr = max_t(int, incr, 2 * skb->len);
518 			tp->rcv_ssthresh += min(room, incr);
519 			inet_csk(sk)->icsk_ack.quick |= 1;
520 		}
521 	} else {
522 		/* Under pressure:
523 		 * Adjust rcv_ssthresh according to reserved mem
524 		 */
525 		tcp_adjust_rcv_ssthresh(sk);
526 	}
527 }
528 
529 /* 3. Try to fixup all. It is made immediately after connection enters
530  *    established state.
531  */
532 static void tcp_init_buffer_space(struct sock *sk)
533 {
534 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
535 	struct tcp_sock *tp = tcp_sk(sk);
536 	int maxwin;
537 
538 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
539 		tcp_sndbuf_expand(sk);
540 
541 	tcp_mstamp_refresh(tp);
542 	tp->rcvq_space.time = tp->tcp_mstamp;
543 	tp->rcvq_space.seq = tp->copied_seq;
544 
545 	maxwin = tcp_full_space(sk);
546 
547 	if (tp->window_clamp >= maxwin) {
548 		WRITE_ONCE(tp->window_clamp, maxwin);
549 
550 		if (tcp_app_win && maxwin > 4 * tp->advmss)
551 			WRITE_ONCE(tp->window_clamp,
552 				   max(maxwin - (maxwin >> tcp_app_win),
553 				       4 * tp->advmss));
554 	}
555 
556 	/* Force reservation of one segment. */
557 	if (tcp_app_win &&
558 	    tp->window_clamp > 2 * tp->advmss &&
559 	    tp->window_clamp + tp->advmss > maxwin)
560 		WRITE_ONCE(tp->window_clamp,
561 			   max(2 * tp->advmss, maxwin - tp->advmss));
562 
563 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
564 	tp->snd_cwnd_stamp = tcp_jiffies32;
565 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
566 				    (u32)TCP_INIT_CWND * tp->advmss);
567 }
568 
569 /* 4. Recalculate window clamp after socket hit its memory bounds. */
570 static void tcp_clamp_window(struct sock *sk)
571 {
572 	struct tcp_sock *tp = tcp_sk(sk);
573 	struct inet_connection_sock *icsk = inet_csk(sk);
574 	struct net *net = sock_net(sk);
575 	int rmem2;
576 
577 	icsk->icsk_ack.quick = 0;
578 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
579 
580 	if (sk->sk_rcvbuf < rmem2 &&
581 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
582 	    !tcp_under_memory_pressure(sk) &&
583 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
584 		WRITE_ONCE(sk->sk_rcvbuf,
585 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
586 	}
587 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
588 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
589 }
590 
591 /* Initialize RCV_MSS value.
592  * RCV_MSS is an our guess about MSS used by the peer.
593  * We haven't any direct information about the MSS.
594  * It's better to underestimate the RCV_MSS rather than overestimate.
595  * Overestimations make us ACKing less frequently than needed.
596  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
597  */
598 void tcp_initialize_rcv_mss(struct sock *sk)
599 {
600 	const struct tcp_sock *tp = tcp_sk(sk);
601 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
602 
603 	hint = min(hint, tp->rcv_wnd / 2);
604 	hint = min(hint, TCP_MSS_DEFAULT);
605 	hint = max(hint, TCP_MIN_MSS);
606 
607 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
608 }
609 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss);
610 
611 /* Receiver "autotuning" code.
612  *
613  * The algorithm for RTT estimation w/o timestamps is based on
614  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
615  * <https://public.lanl.gov/radiant/pubs.html#DRS>
616  *
617  * More detail on this code can be found at
618  * <http://staff.psc.edu/jheffner/>,
619  * though this reference is out of date.  A new paper
620  * is pending.
621  */
622 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
623 {
624 	u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us;
625 	long m = sample << 3;
626 
627 	if (old_sample == 0 || m < old_sample) {
628 		new_sample = m;
629 	} else {
630 		/* If we sample in larger samples in the non-timestamp
631 		 * case, we could grossly overestimate the RTT especially
632 		 * with chatty applications or bulk transfer apps which
633 		 * are stalled on filesystem I/O.
634 		 *
635 		 * Also, since we are only going for a minimum in the
636 		 * non-timestamp case, we do not smooth things out
637 		 * else with timestamps disabled convergence takes too
638 		 * long.
639 		 */
640 		if (win_dep)
641 			return;
642 		/* Do not use this sample if receive queue is not empty. */
643 		if (tp->rcv_nxt != tp->copied_seq)
644 			return;
645 		new_sample = old_sample - (old_sample >> 3) + sample;
646 	}
647 
648 	tp->rcv_rtt_est.rtt_us = new_sample;
649 }
650 
651 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
652 {
653 	u32 delta_us;
654 
655 	if (tp->rcv_rtt_est.time == 0)
656 		goto new_measure;
657 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
658 		return;
659 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
660 	if (!delta_us)
661 		delta_us = 1;
662 	tcp_rcv_rtt_update(tp, delta_us, 1);
663 
664 new_measure:
665 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
666 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
667 }
668 
669 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp, u32 min_delta)
670 {
671 	u32 delta, delta_us;
672 
673 	delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
674 	if (tp->tcp_usec_ts)
675 		return delta;
676 
677 	if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
678 		if (!delta)
679 			delta = min_delta;
680 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
681 		return delta_us;
682 	}
683 	return -1;
684 }
685 
686 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
687 					  const struct sk_buff *skb)
688 {
689 	struct tcp_sock *tp = tcp_sk(sk);
690 
691 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
692 		return;
693 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
694 
695 	if (TCP_SKB_CB(skb)->end_seq -
696 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
697 		s32 delta = tcp_rtt_tsopt_us(tp, 0);
698 
699 		if (delta > 0)
700 			tcp_rcv_rtt_update(tp, delta, 0);
701 	}
702 }
703 
704 static void tcp_rcvbuf_grow(struct sock *sk)
705 {
706 	const struct net *net = sock_net(sk);
707 	struct tcp_sock *tp = tcp_sk(sk);
708 	int rcvwin, rcvbuf, cap;
709 
710 	if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
711 	    (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
712 		return;
713 
714 	/* slow start: allow the sender to double its rate. */
715 	rcvwin = tp->rcvq_space.space << 1;
716 
717 	if (!RB_EMPTY_ROOT(&tp->out_of_order_queue))
718 		rcvwin += TCP_SKB_CB(tp->ooo_last_skb)->end_seq - tp->rcv_nxt;
719 
720 	cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
721 
722 	rcvbuf = min_t(u32, tcp_space_from_win(sk, rcvwin), cap);
723 	if (rcvbuf > sk->sk_rcvbuf) {
724 		WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
725 		/* Make the window clamp follow along.  */
726 		WRITE_ONCE(tp->window_clamp,
727 			   tcp_win_from_space(sk, rcvbuf));
728 	}
729 }
730 /*
731  * This function should be called every time data is copied to user space.
732  * It calculates the appropriate TCP receive buffer space.
733  */
734 void tcp_rcv_space_adjust(struct sock *sk)
735 {
736 	struct tcp_sock *tp = tcp_sk(sk);
737 	int time, inq, copied;
738 
739 	trace_tcp_rcv_space_adjust(sk);
740 
741 	tcp_mstamp_refresh(tp);
742 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
743 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
744 		return;
745 
746 	/* Number of bytes copied to user in last RTT */
747 	copied = tp->copied_seq - tp->rcvq_space.seq;
748 	/* Number of bytes in receive queue. */
749 	inq = tp->rcv_nxt - tp->copied_seq;
750 	copied -= inq;
751 	if (copied <= tp->rcvq_space.space)
752 		goto new_measure;
753 
754 	trace_tcp_rcvbuf_grow(sk, time);
755 
756 	tp->rcvq_space.space = copied;
757 
758 	tcp_rcvbuf_grow(sk);
759 
760 new_measure:
761 	tp->rcvq_space.seq = tp->copied_seq;
762 	tp->rcvq_space.time = tp->tcp_mstamp;
763 }
764 
765 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
766 {
767 #if IS_ENABLED(CONFIG_IPV6)
768 	struct inet_connection_sock *icsk = inet_csk(sk);
769 
770 	if (skb->protocol == htons(ETH_P_IPV6))
771 		icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
772 #endif
773 }
774 
775 /* There is something which you must keep in mind when you analyze the
776  * behavior of the tp->ato delayed ack timeout interval.  When a
777  * connection starts up, we want to ack as quickly as possible.  The
778  * problem is that "good" TCP's do slow start at the beginning of data
779  * transmission.  The means that until we send the first few ACK's the
780  * sender will sit on his end and only queue most of his data, because
781  * he can only send snd_cwnd unacked packets at any given time.  For
782  * each ACK we send, he increments snd_cwnd and transmits more of his
783  * queue.  -DaveM
784  */
785 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
786 {
787 	struct tcp_sock *tp = tcp_sk(sk);
788 	struct inet_connection_sock *icsk = inet_csk(sk);
789 	u32 now;
790 
791 	inet_csk_schedule_ack(sk);
792 
793 	tcp_measure_rcv_mss(sk, skb);
794 
795 	tcp_rcv_rtt_measure(tp);
796 
797 	now = tcp_jiffies32;
798 
799 	if (!icsk->icsk_ack.ato) {
800 		/* The _first_ data packet received, initialize
801 		 * delayed ACK engine.
802 		 */
803 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
804 		icsk->icsk_ack.ato = TCP_ATO_MIN;
805 	} else {
806 		int m = now - icsk->icsk_ack.lrcvtime;
807 
808 		if (m <= TCP_ATO_MIN / 2) {
809 			/* The fastest case is the first. */
810 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
811 		} else if (m < icsk->icsk_ack.ato) {
812 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
813 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
814 				icsk->icsk_ack.ato = icsk->icsk_rto;
815 		} else if (m > icsk->icsk_rto) {
816 			/* Too long gap. Apparently sender failed to
817 			 * restart window, so that we send ACKs quickly.
818 			 */
819 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
820 		}
821 	}
822 	icsk->icsk_ack.lrcvtime = now;
823 	tcp_save_lrcv_flowlabel(sk, skb);
824 
825 	tcp_data_ecn_check(sk, skb);
826 
827 	if (skb->len >= 128)
828 		tcp_grow_window(sk, skb, true);
829 }
830 
831 /* Called to compute a smoothed rtt estimate. The data fed to this
832  * routine either comes from timestamps, or from segments that were
833  * known _not_ to have been retransmitted [see Karn/Partridge
834  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
835  * piece by Van Jacobson.
836  * NOTE: the next three routines used to be one big routine.
837  * To save cycles in the RFC 1323 implementation it was better to break
838  * it up into three procedures. -- erics
839  */
840 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
841 {
842 	struct tcp_sock *tp = tcp_sk(sk);
843 	long m = mrtt_us; /* RTT */
844 	u32 srtt = tp->srtt_us;
845 
846 	/*	The following amusing code comes from Jacobson's
847 	 *	article in SIGCOMM '88.  Note that rtt and mdev
848 	 *	are scaled versions of rtt and mean deviation.
849 	 *	This is designed to be as fast as possible
850 	 *	m stands for "measurement".
851 	 *
852 	 *	On a 1990 paper the rto value is changed to:
853 	 *	RTO = rtt + 4 * mdev
854 	 *
855 	 * Funny. This algorithm seems to be very broken.
856 	 * These formulae increase RTO, when it should be decreased, increase
857 	 * too slowly, when it should be increased quickly, decrease too quickly
858 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
859 	 * does not matter how to _calculate_ it. Seems, it was trap
860 	 * that VJ failed to avoid. 8)
861 	 */
862 	if (srtt != 0) {
863 		m -= (srtt >> 3);	/* m is now error in rtt est */
864 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
865 		if (m < 0) {
866 			m = -m;		/* m is now abs(error) */
867 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
868 			/* This is similar to one of Eifel findings.
869 			 * Eifel blocks mdev updates when rtt decreases.
870 			 * This solution is a bit different: we use finer gain
871 			 * for mdev in this case (alpha*beta).
872 			 * Like Eifel it also prevents growth of rto,
873 			 * but also it limits too fast rto decreases,
874 			 * happening in pure Eifel.
875 			 */
876 			if (m > 0)
877 				m >>= 3;
878 		} else {
879 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
880 		}
881 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
882 		if (tp->mdev_us > tp->mdev_max_us) {
883 			tp->mdev_max_us = tp->mdev_us;
884 			if (tp->mdev_max_us > tp->rttvar_us)
885 				tp->rttvar_us = tp->mdev_max_us;
886 		}
887 		if (after(tp->snd_una, tp->rtt_seq)) {
888 			if (tp->mdev_max_us < tp->rttvar_us)
889 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
890 			tp->rtt_seq = tp->snd_nxt;
891 			tp->mdev_max_us = tcp_rto_min_us(sk);
892 
893 			tcp_bpf_rtt(sk, mrtt_us, srtt);
894 		}
895 	} else {
896 		/* no previous measure. */
897 		srtt = m << 3;		/* take the measured time to be rtt */
898 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
899 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
900 		tp->mdev_max_us = tp->rttvar_us;
901 		tp->rtt_seq = tp->snd_nxt;
902 
903 		tcp_bpf_rtt(sk, mrtt_us, srtt);
904 	}
905 	tp->srtt_us = max(1U, srtt);
906 }
907 
908 static void tcp_update_pacing_rate(struct sock *sk)
909 {
910 	const struct tcp_sock *tp = tcp_sk(sk);
911 	u64 rate;
912 
913 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
914 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
915 
916 	/* current rate is (cwnd * mss) / srtt
917 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
918 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
919 	 *
920 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
921 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
922 	 *	 end of slow start and should slow down.
923 	 */
924 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
925 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
926 	else
927 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
928 
929 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
930 
931 	if (likely(tp->srtt_us))
932 		do_div(rate, tp->srtt_us);
933 
934 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
935 	 * without any lock. We want to make sure compiler wont store
936 	 * intermediate values in this location.
937 	 */
938 	WRITE_ONCE(sk->sk_pacing_rate,
939 		   min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
940 }
941 
942 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
943  * routine referred to above.
944  */
945 static void tcp_set_rto(struct sock *sk)
946 {
947 	const struct tcp_sock *tp = tcp_sk(sk);
948 	/* Old crap is replaced with new one. 8)
949 	 *
950 	 * More seriously:
951 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
952 	 *    It cannot be less due to utterly erratic ACK generation made
953 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
954 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
955 	 *    is invisible. Actually, Linux-2.4 also generates erratic
956 	 *    ACKs in some circumstances.
957 	 */
958 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
959 
960 	/* 2. Fixups made earlier cannot be right.
961 	 *    If we do not estimate RTO correctly without them,
962 	 *    all the algo is pure shit and should be replaced
963 	 *    with correct one. It is exactly, which we pretend to do.
964 	 */
965 
966 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
967 	 * guarantees that rto is higher.
968 	 */
969 	tcp_bound_rto(sk);
970 }
971 
972 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
973 {
974 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
975 
976 	if (!cwnd)
977 		cwnd = TCP_INIT_CWND;
978 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
979 }
980 
981 struct tcp_sacktag_state {
982 	/* Timestamps for earliest and latest never-retransmitted segment
983 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
984 	 * but congestion control should still get an accurate delay signal.
985 	 */
986 	u64	first_sackt;
987 	u64	last_sackt;
988 	u32	reord;
989 	u32	sack_delivered;
990 	int	flag;
991 	unsigned int mss_now;
992 	struct rate_sample *rate;
993 };
994 
995 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
996  * and spurious retransmission information if this DSACK is unlikely caused by
997  * sender's action:
998  * - DSACKed sequence range is larger than maximum receiver's window.
999  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1000  */
1001 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1002 			  u32 end_seq, struct tcp_sacktag_state *state)
1003 {
1004 	u32 seq_len, dup_segs = 1;
1005 
1006 	if (!before(start_seq, end_seq))
1007 		return 0;
1008 
1009 	seq_len = end_seq - start_seq;
1010 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1011 	if (seq_len > tp->max_window)
1012 		return 0;
1013 	if (seq_len > tp->mss_cache)
1014 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1015 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1016 		state->flag |= FLAG_DSACK_TLP;
1017 
1018 	tp->dsack_dups += dup_segs;
1019 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1020 	if (tp->dsack_dups > tp->total_retrans)
1021 		return 0;
1022 
1023 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1024 	/* We increase the RACK ordering window in rounds where we receive
1025 	 * DSACKs that may have been due to reordering causing RACK to trigger
1026 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1027 	 * without having seen reordering, or that match TLP probes (TLP
1028 	 * is timer-driven, not triggered by RACK).
1029 	 */
1030 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1031 		tp->rack.dsack_seen = 1;
1032 
1033 	state->flag |= FLAG_DSACKING_ACK;
1034 	/* A spurious retransmission is delivered */
1035 	state->sack_delivered += dup_segs;
1036 
1037 	return dup_segs;
1038 }
1039 
1040 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1041  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1042  * distance is approximated in full-mss packet distance ("reordering").
1043  */
1044 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1045 				      const int ts)
1046 {
1047 	struct tcp_sock *tp = tcp_sk(sk);
1048 	const u32 mss = tp->mss_cache;
1049 	u32 fack, metric;
1050 
1051 	fack = tcp_highest_sack_seq(tp);
1052 	if (!before(low_seq, fack))
1053 		return;
1054 
1055 	metric = fack - low_seq;
1056 	if ((metric > tp->reordering * mss) && mss) {
1057 #if FASTRETRANS_DEBUG > 1
1058 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1059 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1060 			 tp->reordering,
1061 			 0,
1062 			 tp->sacked_out,
1063 			 tp->undo_marker ? tp->undo_retrans : 0);
1064 #endif
1065 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1066 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1067 	}
1068 
1069 	/* This exciting event is worth to be remembered. 8) */
1070 	tp->reord_seen++;
1071 	NET_INC_STATS(sock_net(sk),
1072 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1073 }
1074 
1075  /* This must be called before lost_out or retrans_out are updated
1076   * on a new loss, because we want to know if all skbs previously
1077   * known to be lost have already been retransmitted, indicating
1078   * that this newly lost skb is our next skb to retransmit.
1079   */
1080 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1081 {
1082 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1083 	    (tp->retransmit_skb_hint &&
1084 	     before(TCP_SKB_CB(skb)->seq,
1085 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1086 		tp->retransmit_skb_hint = skb;
1087 }
1088 
1089 /* Sum the number of packets on the wire we have marked as lost, and
1090  * notify the congestion control module that the given skb was marked lost.
1091  */
1092 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1093 {
1094 	tp->lost += tcp_skb_pcount(skb);
1095 }
1096 
1097 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1098 {
1099 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1100 	struct tcp_sock *tp = tcp_sk(sk);
1101 
1102 	if (sacked & TCPCB_SACKED_ACKED)
1103 		return;
1104 
1105 	tcp_verify_retransmit_hint(tp, skb);
1106 	if (sacked & TCPCB_LOST) {
1107 		if (sacked & TCPCB_SACKED_RETRANS) {
1108 			/* Account for retransmits that are lost again */
1109 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1110 			tp->retrans_out -= tcp_skb_pcount(skb);
1111 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1112 				      tcp_skb_pcount(skb));
1113 			tcp_notify_skb_loss_event(tp, skb);
1114 		}
1115 	} else {
1116 		tp->lost_out += tcp_skb_pcount(skb);
1117 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1118 		tcp_notify_skb_loss_event(tp, skb);
1119 	}
1120 }
1121 
1122 /* This procedure tags the retransmission queue when SACKs arrive.
1123  *
1124  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1125  * Packets in queue with these bits set are counted in variables
1126  * sacked_out, retrans_out and lost_out, correspondingly.
1127  *
1128  * Valid combinations are:
1129  * Tag  InFlight	Description
1130  * 0	1		- orig segment is in flight.
1131  * S	0		- nothing flies, orig reached receiver.
1132  * L	0		- nothing flies, orig lost by net.
1133  * R	2		- both orig and retransmit are in flight.
1134  * L|R	1		- orig is lost, retransmit is in flight.
1135  * S|R  1		- orig reached receiver, retrans is still in flight.
1136  * (L|S|R is logically valid, it could occur when L|R is sacked,
1137  *  but it is equivalent to plain S and code short-circuits it to S.
1138  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1139  *
1140  * These 6 states form finite state machine, controlled by the following events:
1141  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1142  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1143  * 3. Loss detection event of two flavors:
1144  *	A. Scoreboard estimator decided the packet is lost.
1145  *	   A'. Reno "three dupacks" marks head of queue lost.
1146  *	B. SACK arrives sacking SND.NXT at the moment, when the
1147  *	   segment was retransmitted.
1148  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1149  *
1150  * It is pleasant to note, that state diagram turns out to be commutative,
1151  * so that we are allowed not to be bothered by order of our actions,
1152  * when multiple events arrive simultaneously. (see the function below).
1153  *
1154  * Reordering detection.
1155  * --------------------
1156  * Reordering metric is maximal distance, which a packet can be displaced
1157  * in packet stream. With SACKs we can estimate it:
1158  *
1159  * 1. SACK fills old hole and the corresponding segment was not
1160  *    ever retransmitted -> reordering. Alas, we cannot use it
1161  *    when segment was retransmitted.
1162  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1163  *    for retransmitted and already SACKed segment -> reordering..
1164  * Both of these heuristics are not used in Loss state, when we cannot
1165  * account for retransmits accurately.
1166  *
1167  * SACK block validation.
1168  * ----------------------
1169  *
1170  * SACK block range validation checks that the received SACK block fits to
1171  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1172  * Note that SND.UNA is not included to the range though being valid because
1173  * it means that the receiver is rather inconsistent with itself reporting
1174  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1175  * perfectly valid, however, in light of RFC2018 which explicitly states
1176  * that "SACK block MUST reflect the newest segment.  Even if the newest
1177  * segment is going to be discarded ...", not that it looks very clever
1178  * in case of head skb. Due to potentional receiver driven attacks, we
1179  * choose to avoid immediate execution of a walk in write queue due to
1180  * reneging and defer head skb's loss recovery to standard loss recovery
1181  * procedure that will eventually trigger (nothing forbids us doing this).
1182  *
1183  * Implements also blockage to start_seq wrap-around. Problem lies in the
1184  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1185  * there's no guarantee that it will be before snd_nxt (n). The problem
1186  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1187  * wrap (s_w):
1188  *
1189  *         <- outs wnd ->                          <- wrapzone ->
1190  *         u     e      n                         u_w   e_w  s n_w
1191  *         |     |      |                          |     |   |  |
1192  * |<------------+------+----- TCP seqno space --------------+---------->|
1193  * ...-- <2^31 ->|                                           |<--------...
1194  * ...---- >2^31 ------>|                                    |<--------...
1195  *
1196  * Current code wouldn't be vulnerable but it's better still to discard such
1197  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1198  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1199  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1200  * equal to the ideal case (infinite seqno space without wrap caused issues).
1201  *
1202  * With D-SACK the lower bound is extended to cover sequence space below
1203  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1204  * again, D-SACK block must not to go across snd_una (for the same reason as
1205  * for the normal SACK blocks, explained above). But there all simplicity
1206  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1207  * fully below undo_marker they do not affect behavior in anyway and can
1208  * therefore be safely ignored. In rare cases (which are more or less
1209  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1210  * fragmentation and packet reordering past skb's retransmission. To consider
1211  * them correctly, the acceptable range must be extended even more though
1212  * the exact amount is rather hard to quantify. However, tp->max_window can
1213  * be used as an exaggerated estimate.
1214  */
1215 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1216 				   u32 start_seq, u32 end_seq)
1217 {
1218 	/* Too far in future, or reversed (interpretation is ambiguous) */
1219 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1220 		return false;
1221 
1222 	/* Nasty start_seq wrap-around check (see comments above) */
1223 	if (!before(start_seq, tp->snd_nxt))
1224 		return false;
1225 
1226 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1227 	 * start_seq == snd_una is non-sensical (see comments above)
1228 	 */
1229 	if (after(start_seq, tp->snd_una))
1230 		return true;
1231 
1232 	if (!is_dsack || !tp->undo_marker)
1233 		return false;
1234 
1235 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1236 	if (after(end_seq, tp->snd_una))
1237 		return false;
1238 
1239 	if (!before(start_seq, tp->undo_marker))
1240 		return true;
1241 
1242 	/* Too old */
1243 	if (!after(end_seq, tp->undo_marker))
1244 		return false;
1245 
1246 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1247 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1248 	 */
1249 	return !before(start_seq, end_seq - tp->max_window);
1250 }
1251 
1252 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1253 			    struct tcp_sack_block_wire *sp, int num_sacks,
1254 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1255 {
1256 	struct tcp_sock *tp = tcp_sk(sk);
1257 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1258 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1259 	u32 dup_segs;
1260 
1261 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1262 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1263 	} else if (num_sacks > 1) {
1264 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1265 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1266 
1267 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1268 			return false;
1269 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1270 	} else {
1271 		return false;
1272 	}
1273 
1274 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1275 	if (!dup_segs) {	/* Skip dubious DSACK */
1276 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1277 		return false;
1278 	}
1279 
1280 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1281 
1282 	/* D-SACK for already forgotten data... Do dumb counting. */
1283 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1284 	    !after(end_seq_0, prior_snd_una) &&
1285 	    after(end_seq_0, tp->undo_marker))
1286 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1287 
1288 	return true;
1289 }
1290 
1291 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1292  * the incoming SACK may not exactly match but we can find smaller MSS
1293  * aligned portion of it that matches. Therefore we might need to fragment
1294  * which may fail and creates some hassle (caller must handle error case
1295  * returns).
1296  *
1297  * FIXME: this could be merged to shift decision code
1298  */
1299 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1300 				  u32 start_seq, u32 end_seq)
1301 {
1302 	int err;
1303 	bool in_sack;
1304 	unsigned int pkt_len;
1305 	unsigned int mss;
1306 
1307 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1308 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1309 
1310 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1311 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1312 		mss = tcp_skb_mss(skb);
1313 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1314 
1315 		if (!in_sack) {
1316 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1317 			if (pkt_len < mss)
1318 				pkt_len = mss;
1319 		} else {
1320 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1321 			if (pkt_len < mss)
1322 				return -EINVAL;
1323 		}
1324 
1325 		/* Round if necessary so that SACKs cover only full MSSes
1326 		 * and/or the remaining small portion (if present)
1327 		 */
1328 		if (pkt_len > mss) {
1329 			unsigned int new_len = (pkt_len / mss) * mss;
1330 			if (!in_sack && new_len < pkt_len)
1331 				new_len += mss;
1332 			pkt_len = new_len;
1333 		}
1334 
1335 		if (pkt_len >= skb->len && !in_sack)
1336 			return 0;
1337 
1338 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1339 				   pkt_len, mss, GFP_ATOMIC);
1340 		if (err < 0)
1341 			return err;
1342 	}
1343 
1344 	return in_sack;
1345 }
1346 
1347 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1348 static u8 tcp_sacktag_one(struct sock *sk,
1349 			  struct tcp_sacktag_state *state, u8 sacked,
1350 			  u32 start_seq, u32 end_seq,
1351 			  int dup_sack, int pcount,
1352 			  u64 xmit_time)
1353 {
1354 	struct tcp_sock *tp = tcp_sk(sk);
1355 
1356 	/* Account D-SACK for retransmitted packet. */
1357 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1358 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1359 		    after(end_seq, tp->undo_marker))
1360 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1361 		if ((sacked & TCPCB_SACKED_ACKED) &&
1362 		    before(start_seq, state->reord))
1363 				state->reord = start_seq;
1364 	}
1365 
1366 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1367 	if (!after(end_seq, tp->snd_una))
1368 		return sacked;
1369 
1370 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1371 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1372 
1373 		if (sacked & TCPCB_SACKED_RETRANS) {
1374 			/* If the segment is not tagged as lost,
1375 			 * we do not clear RETRANS, believing
1376 			 * that retransmission is still in flight.
1377 			 */
1378 			if (sacked & TCPCB_LOST) {
1379 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1380 				tp->lost_out -= pcount;
1381 				tp->retrans_out -= pcount;
1382 			}
1383 		} else {
1384 			if (!(sacked & TCPCB_RETRANS)) {
1385 				/* New sack for not retransmitted frame,
1386 				 * which was in hole. It is reordering.
1387 				 */
1388 				if (before(start_seq,
1389 					   tcp_highest_sack_seq(tp)) &&
1390 				    before(start_seq, state->reord))
1391 					state->reord = start_seq;
1392 
1393 				if (!after(end_seq, tp->high_seq))
1394 					state->flag |= FLAG_ORIG_SACK_ACKED;
1395 				if (state->first_sackt == 0)
1396 					state->first_sackt = xmit_time;
1397 				state->last_sackt = xmit_time;
1398 			}
1399 
1400 			if (sacked & TCPCB_LOST) {
1401 				sacked &= ~TCPCB_LOST;
1402 				tp->lost_out -= pcount;
1403 			}
1404 		}
1405 
1406 		sacked |= TCPCB_SACKED_ACKED;
1407 		state->flag |= FLAG_DATA_SACKED;
1408 		tp->sacked_out += pcount;
1409 		/* Out-of-order packets delivered */
1410 		state->sack_delivered += pcount;
1411 	}
1412 
1413 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1414 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1415 	 * are accounted above as well.
1416 	 */
1417 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1418 		sacked &= ~TCPCB_SACKED_RETRANS;
1419 		tp->retrans_out -= pcount;
1420 	}
1421 
1422 	return sacked;
1423 }
1424 
1425 /* Shift newly-SACKed bytes from this skb to the immediately previous
1426  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1427  */
1428 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1429 			    struct sk_buff *skb,
1430 			    struct tcp_sacktag_state *state,
1431 			    unsigned int pcount, int shifted, int mss,
1432 			    bool dup_sack)
1433 {
1434 	struct tcp_sock *tp = tcp_sk(sk);
1435 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1436 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1437 
1438 	BUG_ON(!pcount);
1439 
1440 	/* Adjust counters and hints for the newly sacked sequence
1441 	 * range but discard the return value since prev is already
1442 	 * marked. We must tag the range first because the seq
1443 	 * advancement below implicitly advances
1444 	 * tcp_highest_sack_seq() when skb is highest_sack.
1445 	 */
1446 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1447 			start_seq, end_seq, dup_sack, pcount,
1448 			tcp_skb_timestamp_us(skb));
1449 	tcp_rate_skb_delivered(sk, skb, state->rate);
1450 
1451 	TCP_SKB_CB(prev)->end_seq += shifted;
1452 	TCP_SKB_CB(skb)->seq += shifted;
1453 
1454 	tcp_skb_pcount_add(prev, pcount);
1455 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1456 	tcp_skb_pcount_add(skb, -pcount);
1457 
1458 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1459 	 * in theory this shouldn't be necessary but as long as DSACK
1460 	 * code can come after this skb later on it's better to keep
1461 	 * setting gso_size to something.
1462 	 */
1463 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1464 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1465 
1466 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1467 	if (tcp_skb_pcount(skb) <= 1)
1468 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1469 
1470 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1471 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1472 
1473 	if (skb->len > 0) {
1474 		BUG_ON(!tcp_skb_pcount(skb));
1475 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1476 		return false;
1477 	}
1478 
1479 	/* Whole SKB was eaten :-) */
1480 
1481 	if (skb == tp->retransmit_skb_hint)
1482 		tp->retransmit_skb_hint = prev;
1483 
1484 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1485 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1486 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1487 		TCP_SKB_CB(prev)->end_seq++;
1488 
1489 	if (skb == tcp_highest_sack(sk))
1490 		tcp_advance_highest_sack(sk, skb);
1491 
1492 	tcp_skb_collapse_tstamp(prev, skb);
1493 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1494 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1495 
1496 	tcp_rtx_queue_unlink_and_free(skb, sk);
1497 
1498 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1499 
1500 	return true;
1501 }
1502 
1503 /* I wish gso_size would have a bit more sane initialization than
1504  * something-or-zero which complicates things
1505  */
1506 static int tcp_skb_seglen(const struct sk_buff *skb)
1507 {
1508 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1509 }
1510 
1511 /* Shifting pages past head area doesn't work */
1512 static int skb_can_shift(const struct sk_buff *skb)
1513 {
1514 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1515 }
1516 
1517 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1518 		  int pcount, int shiftlen)
1519 {
1520 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1521 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1522 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1523 	 * even if current MSS is bigger.
1524 	 */
1525 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1526 		return 0;
1527 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1528 		return 0;
1529 	return skb_shift(to, from, shiftlen);
1530 }
1531 
1532 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1533  * skb.
1534  */
1535 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1536 					  struct tcp_sacktag_state *state,
1537 					  u32 start_seq, u32 end_seq,
1538 					  bool dup_sack)
1539 {
1540 	struct tcp_sock *tp = tcp_sk(sk);
1541 	struct sk_buff *prev;
1542 	int mss;
1543 	int pcount = 0;
1544 	int len;
1545 	int in_sack;
1546 
1547 	/* Normally R but no L won't result in plain S */
1548 	if (!dup_sack &&
1549 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1550 		goto fallback;
1551 	if (!skb_can_shift(skb))
1552 		goto fallback;
1553 	/* This frame is about to be dropped (was ACKed). */
1554 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1555 		goto fallback;
1556 
1557 	/* Can only happen with delayed DSACK + discard craziness */
1558 	prev = skb_rb_prev(skb);
1559 	if (!prev)
1560 		goto fallback;
1561 
1562 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1563 		goto fallback;
1564 
1565 	if (!tcp_skb_can_collapse(prev, skb))
1566 		goto fallback;
1567 
1568 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1569 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1570 
1571 	if (in_sack) {
1572 		len = skb->len;
1573 		pcount = tcp_skb_pcount(skb);
1574 		mss = tcp_skb_seglen(skb);
1575 
1576 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1577 		 * drop this restriction as unnecessary
1578 		 */
1579 		if (mss != tcp_skb_seglen(prev))
1580 			goto fallback;
1581 	} else {
1582 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1583 			goto noop;
1584 		/* CHECKME: This is non-MSS split case only?, this will
1585 		 * cause skipped skbs due to advancing loop btw, original
1586 		 * has that feature too
1587 		 */
1588 		if (tcp_skb_pcount(skb) <= 1)
1589 			goto noop;
1590 
1591 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1592 		if (!in_sack) {
1593 			/* TODO: head merge to next could be attempted here
1594 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1595 			 * though it might not be worth of the additional hassle
1596 			 *
1597 			 * ...we can probably just fallback to what was done
1598 			 * previously. We could try merging non-SACKed ones
1599 			 * as well but it probably isn't going to buy off
1600 			 * because later SACKs might again split them, and
1601 			 * it would make skb timestamp tracking considerably
1602 			 * harder problem.
1603 			 */
1604 			goto fallback;
1605 		}
1606 
1607 		len = end_seq - TCP_SKB_CB(skb)->seq;
1608 		BUG_ON(len < 0);
1609 		BUG_ON(len > skb->len);
1610 
1611 		/* MSS boundaries should be honoured or else pcount will
1612 		 * severely break even though it makes things bit trickier.
1613 		 * Optimize common case to avoid most of the divides
1614 		 */
1615 		mss = tcp_skb_mss(skb);
1616 
1617 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1618 		 * drop this restriction as unnecessary
1619 		 */
1620 		if (mss != tcp_skb_seglen(prev))
1621 			goto fallback;
1622 
1623 		if (len == mss) {
1624 			pcount = 1;
1625 		} else if (len < mss) {
1626 			goto noop;
1627 		} else {
1628 			pcount = len / mss;
1629 			len = pcount * mss;
1630 		}
1631 	}
1632 
1633 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1634 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1635 		goto fallback;
1636 
1637 	if (!tcp_skb_shift(prev, skb, pcount, len))
1638 		goto fallback;
1639 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1640 		goto out;
1641 
1642 	/* Hole filled allows collapsing with the next as well, this is very
1643 	 * useful when hole on every nth skb pattern happens
1644 	 */
1645 	skb = skb_rb_next(prev);
1646 	if (!skb)
1647 		goto out;
1648 
1649 	if (!skb_can_shift(skb) ||
1650 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1651 	    (mss != tcp_skb_seglen(skb)))
1652 		goto out;
1653 
1654 	if (!tcp_skb_can_collapse(prev, skb))
1655 		goto out;
1656 	len = skb->len;
1657 	pcount = tcp_skb_pcount(skb);
1658 	if (tcp_skb_shift(prev, skb, pcount, len))
1659 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1660 				len, mss, 0);
1661 
1662 out:
1663 	return prev;
1664 
1665 noop:
1666 	return skb;
1667 
1668 fallback:
1669 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1670 	return NULL;
1671 }
1672 
1673 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1674 					struct tcp_sack_block *next_dup,
1675 					struct tcp_sacktag_state *state,
1676 					u32 start_seq, u32 end_seq,
1677 					bool dup_sack_in)
1678 {
1679 	struct tcp_sock *tp = tcp_sk(sk);
1680 	struct sk_buff *tmp;
1681 
1682 	skb_rbtree_walk_from(skb) {
1683 		int in_sack = 0;
1684 		bool dup_sack = dup_sack_in;
1685 
1686 		/* queue is in-order => we can short-circuit the walk early */
1687 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1688 			break;
1689 
1690 		if (next_dup  &&
1691 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1692 			in_sack = tcp_match_skb_to_sack(sk, skb,
1693 							next_dup->start_seq,
1694 							next_dup->end_seq);
1695 			if (in_sack > 0)
1696 				dup_sack = true;
1697 		}
1698 
1699 		/* skb reference here is a bit tricky to get right, since
1700 		 * shifting can eat and free both this skb and the next,
1701 		 * so not even _safe variant of the loop is enough.
1702 		 */
1703 		if (in_sack <= 0) {
1704 			tmp = tcp_shift_skb_data(sk, skb, state,
1705 						 start_seq, end_seq, dup_sack);
1706 			if (tmp) {
1707 				if (tmp != skb) {
1708 					skb = tmp;
1709 					continue;
1710 				}
1711 
1712 				in_sack = 0;
1713 			} else {
1714 				in_sack = tcp_match_skb_to_sack(sk, skb,
1715 								start_seq,
1716 								end_seq);
1717 			}
1718 		}
1719 
1720 		if (unlikely(in_sack < 0))
1721 			break;
1722 
1723 		if (in_sack) {
1724 			TCP_SKB_CB(skb)->sacked =
1725 				tcp_sacktag_one(sk,
1726 						state,
1727 						TCP_SKB_CB(skb)->sacked,
1728 						TCP_SKB_CB(skb)->seq,
1729 						TCP_SKB_CB(skb)->end_seq,
1730 						dup_sack,
1731 						tcp_skb_pcount(skb),
1732 						tcp_skb_timestamp_us(skb));
1733 			tcp_rate_skb_delivered(sk, skb, state->rate);
1734 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1735 				list_del_init(&skb->tcp_tsorted_anchor);
1736 
1737 			if (!before(TCP_SKB_CB(skb)->seq,
1738 				    tcp_highest_sack_seq(tp)))
1739 				tcp_advance_highest_sack(sk, skb);
1740 		}
1741 	}
1742 	return skb;
1743 }
1744 
1745 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1746 {
1747 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1748 	struct sk_buff *skb;
1749 
1750 	while (*p) {
1751 		parent = *p;
1752 		skb = rb_to_skb(parent);
1753 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1754 			p = &parent->rb_left;
1755 			continue;
1756 		}
1757 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1758 			p = &parent->rb_right;
1759 			continue;
1760 		}
1761 		return skb;
1762 	}
1763 	return NULL;
1764 }
1765 
1766 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1767 					u32 skip_to_seq)
1768 {
1769 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1770 		return skb;
1771 
1772 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1773 }
1774 
1775 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1776 						struct sock *sk,
1777 						struct tcp_sack_block *next_dup,
1778 						struct tcp_sacktag_state *state,
1779 						u32 skip_to_seq)
1780 {
1781 	if (!next_dup)
1782 		return skb;
1783 
1784 	if (before(next_dup->start_seq, skip_to_seq)) {
1785 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1786 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1787 				       next_dup->start_seq, next_dup->end_seq,
1788 				       1);
1789 	}
1790 
1791 	return skb;
1792 }
1793 
1794 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1795 {
1796 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1797 }
1798 
1799 static int
1800 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1801 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1802 {
1803 	struct tcp_sock *tp = tcp_sk(sk);
1804 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1805 				    TCP_SKB_CB(ack_skb)->sacked);
1806 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1807 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1808 	struct tcp_sack_block *cache;
1809 	struct sk_buff *skb;
1810 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1811 	int used_sacks;
1812 	bool found_dup_sack = false;
1813 	int i, j;
1814 	int first_sack_index;
1815 
1816 	state->flag = 0;
1817 	state->reord = tp->snd_nxt;
1818 
1819 	if (!tp->sacked_out)
1820 		tcp_highest_sack_reset(sk);
1821 
1822 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1823 					 num_sacks, prior_snd_una, state);
1824 
1825 	/* Eliminate too old ACKs, but take into
1826 	 * account more or less fresh ones, they can
1827 	 * contain valid SACK info.
1828 	 */
1829 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1830 		return 0;
1831 
1832 	if (!tp->packets_out)
1833 		goto out;
1834 
1835 	used_sacks = 0;
1836 	first_sack_index = 0;
1837 	for (i = 0; i < num_sacks; i++) {
1838 		bool dup_sack = !i && found_dup_sack;
1839 
1840 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1841 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1842 
1843 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1844 					    sp[used_sacks].start_seq,
1845 					    sp[used_sacks].end_seq)) {
1846 			int mib_idx;
1847 
1848 			if (dup_sack) {
1849 				if (!tp->undo_marker)
1850 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1851 				else
1852 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1853 			} else {
1854 				/* Don't count olds caused by ACK reordering */
1855 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1856 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1857 					continue;
1858 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1859 			}
1860 
1861 			NET_INC_STATS(sock_net(sk), mib_idx);
1862 			if (i == 0)
1863 				first_sack_index = -1;
1864 			continue;
1865 		}
1866 
1867 		/* Ignore very old stuff early */
1868 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1869 			if (i == 0)
1870 				first_sack_index = -1;
1871 			continue;
1872 		}
1873 
1874 		used_sacks++;
1875 	}
1876 
1877 	/* order SACK blocks to allow in order walk of the retrans queue */
1878 	for (i = used_sacks - 1; i > 0; i--) {
1879 		for (j = 0; j < i; j++) {
1880 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1881 				swap(sp[j], sp[j + 1]);
1882 
1883 				/* Track where the first SACK block goes to */
1884 				if (j == first_sack_index)
1885 					first_sack_index = j + 1;
1886 			}
1887 		}
1888 	}
1889 
1890 	state->mss_now = tcp_current_mss(sk);
1891 	skb = NULL;
1892 	i = 0;
1893 
1894 	if (!tp->sacked_out) {
1895 		/* It's already past, so skip checking against it */
1896 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1897 	} else {
1898 		cache = tp->recv_sack_cache;
1899 		/* Skip empty blocks in at head of the cache */
1900 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1901 		       !cache->end_seq)
1902 			cache++;
1903 	}
1904 
1905 	while (i < used_sacks) {
1906 		u32 start_seq = sp[i].start_seq;
1907 		u32 end_seq = sp[i].end_seq;
1908 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1909 		struct tcp_sack_block *next_dup = NULL;
1910 
1911 		if (found_dup_sack && ((i + 1) == first_sack_index))
1912 			next_dup = &sp[i + 1];
1913 
1914 		/* Skip too early cached blocks */
1915 		while (tcp_sack_cache_ok(tp, cache) &&
1916 		       !before(start_seq, cache->end_seq))
1917 			cache++;
1918 
1919 		/* Can skip some work by looking recv_sack_cache? */
1920 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1921 		    after(end_seq, cache->start_seq)) {
1922 
1923 			/* Head todo? */
1924 			if (before(start_seq, cache->start_seq)) {
1925 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1926 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1927 						       state,
1928 						       start_seq,
1929 						       cache->start_seq,
1930 						       dup_sack);
1931 			}
1932 
1933 			/* Rest of the block already fully processed? */
1934 			if (!after(end_seq, cache->end_seq))
1935 				goto advance_sp;
1936 
1937 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1938 						       state,
1939 						       cache->end_seq);
1940 
1941 			/* ...tail remains todo... */
1942 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1943 				/* ...but better entrypoint exists! */
1944 				skb = tcp_highest_sack(sk);
1945 				if (!skb)
1946 					break;
1947 				cache++;
1948 				goto walk;
1949 			}
1950 
1951 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1952 			/* Check overlap against next cached too (past this one already) */
1953 			cache++;
1954 			continue;
1955 		}
1956 
1957 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1958 			skb = tcp_highest_sack(sk);
1959 			if (!skb)
1960 				break;
1961 		}
1962 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1963 
1964 walk:
1965 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1966 				       start_seq, end_seq, dup_sack);
1967 
1968 advance_sp:
1969 		i++;
1970 	}
1971 
1972 	/* Clear the head of the cache sack blocks so we can skip it next time */
1973 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1974 		tp->recv_sack_cache[i].start_seq = 0;
1975 		tp->recv_sack_cache[i].end_seq = 0;
1976 	}
1977 	for (j = 0; j < used_sacks; j++)
1978 		tp->recv_sack_cache[i++] = sp[j];
1979 
1980 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1981 		tcp_check_sack_reordering(sk, state->reord, 0);
1982 
1983 	tcp_verify_left_out(tp);
1984 out:
1985 
1986 #if FASTRETRANS_DEBUG > 0
1987 	WARN_ON((int)tp->sacked_out < 0);
1988 	WARN_ON((int)tp->lost_out < 0);
1989 	WARN_ON((int)tp->retrans_out < 0);
1990 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1991 #endif
1992 	return state->flag;
1993 }
1994 
1995 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1996  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1997  */
1998 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1999 {
2000 	u32 holes;
2001 
2002 	holes = max(tp->lost_out, 1U);
2003 	holes = min(holes, tp->packets_out);
2004 
2005 	if ((tp->sacked_out + holes) > tp->packets_out) {
2006 		tp->sacked_out = tp->packets_out - holes;
2007 		return true;
2008 	}
2009 	return false;
2010 }
2011 
2012 /* If we receive more dupacks than we expected counting segments
2013  * in assumption of absent reordering, interpret this as reordering.
2014  * The only another reason could be bug in receiver TCP.
2015  */
2016 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2017 {
2018 	struct tcp_sock *tp = tcp_sk(sk);
2019 
2020 	if (!tcp_limit_reno_sacked(tp))
2021 		return;
2022 
2023 	tp->reordering = min_t(u32, tp->packets_out + addend,
2024 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2025 	tp->reord_seen++;
2026 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2027 }
2028 
2029 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2030 
2031 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2032 {
2033 	if (num_dupack) {
2034 		struct tcp_sock *tp = tcp_sk(sk);
2035 		u32 prior_sacked = tp->sacked_out;
2036 		s32 delivered;
2037 
2038 		tp->sacked_out += num_dupack;
2039 		tcp_check_reno_reordering(sk, 0);
2040 		delivered = tp->sacked_out - prior_sacked;
2041 		if (delivered > 0)
2042 			tcp_count_delivered(tp, delivered, ece_ack);
2043 		tcp_verify_left_out(tp);
2044 	}
2045 }
2046 
2047 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2048 
2049 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2050 {
2051 	struct tcp_sock *tp = tcp_sk(sk);
2052 
2053 	if (acked > 0) {
2054 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2055 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2056 				    ece_ack);
2057 		if (acked - 1 >= tp->sacked_out)
2058 			tp->sacked_out = 0;
2059 		else
2060 			tp->sacked_out -= acked - 1;
2061 	}
2062 	tcp_check_reno_reordering(sk, acked);
2063 	tcp_verify_left_out(tp);
2064 }
2065 
2066 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2067 {
2068 	tp->sacked_out = 0;
2069 }
2070 
2071 void tcp_clear_retrans(struct tcp_sock *tp)
2072 {
2073 	tp->retrans_out = 0;
2074 	tp->lost_out = 0;
2075 	tp->undo_marker = 0;
2076 	tp->undo_retrans = -1;
2077 	tp->sacked_out = 0;
2078 	tp->rto_stamp = 0;
2079 	tp->total_rto = 0;
2080 	tp->total_rto_recoveries = 0;
2081 	tp->total_rto_time = 0;
2082 }
2083 
2084 static inline void tcp_init_undo(struct tcp_sock *tp)
2085 {
2086 	tp->undo_marker = tp->snd_una;
2087 
2088 	/* Retransmission still in flight may cause DSACKs later. */
2089 	/* First, account for regular retransmits in flight: */
2090 	tp->undo_retrans = tp->retrans_out;
2091 	/* Next, account for TLP retransmits in flight: */
2092 	if (tp->tlp_high_seq && tp->tlp_retrans)
2093 		tp->undo_retrans++;
2094 	/* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2095 	if (!tp->undo_retrans)
2096 		tp->undo_retrans = -1;
2097 }
2098 
2099 /* If we detect SACK reneging, forget all SACK information
2100  * and reset tags completely, otherwise preserve SACKs. If receiver
2101  * dropped its ofo queue, we will know this due to reneging detection.
2102  */
2103 static void tcp_timeout_mark_lost(struct sock *sk)
2104 {
2105 	struct tcp_sock *tp = tcp_sk(sk);
2106 	struct sk_buff *skb, *head;
2107 	bool is_reneg;			/* is receiver reneging on SACKs? */
2108 
2109 	head = tcp_rtx_queue_head(sk);
2110 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2111 	if (is_reneg) {
2112 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2113 		tp->sacked_out = 0;
2114 		/* Mark SACK reneging until we recover from this loss event. */
2115 		tp->is_sack_reneg = 1;
2116 	} else if (tcp_is_reno(tp)) {
2117 		tcp_reset_reno_sack(tp);
2118 	}
2119 
2120 	skb = head;
2121 	skb_rbtree_walk_from(skb) {
2122 		if (is_reneg)
2123 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2124 		else if (skb != head && tcp_rack_skb_timeout(tp, skb, 0) > 0)
2125 			continue; /* Don't mark recently sent ones lost yet */
2126 		tcp_mark_skb_lost(sk, skb);
2127 	}
2128 	tcp_verify_left_out(tp);
2129 	tcp_clear_all_retrans_hints(tp);
2130 }
2131 
2132 /* Enter Loss state. */
2133 void tcp_enter_loss(struct sock *sk)
2134 {
2135 	const struct inet_connection_sock *icsk = inet_csk(sk);
2136 	struct tcp_sock *tp = tcp_sk(sk);
2137 	struct net *net = sock_net(sk);
2138 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2139 	u8 reordering;
2140 
2141 	tcp_timeout_mark_lost(sk);
2142 
2143 	/* Reduce ssthresh if it has not yet been made inside this window. */
2144 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2145 	    !after(tp->high_seq, tp->snd_una) ||
2146 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2147 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2148 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2149 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2150 		tcp_ca_event(sk, CA_EVENT_LOSS);
2151 		tcp_init_undo(tp);
2152 	}
2153 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2154 	tp->snd_cwnd_cnt   = 0;
2155 	tp->snd_cwnd_stamp = tcp_jiffies32;
2156 
2157 	/* Timeout in disordered state after receiving substantial DUPACKs
2158 	 * suggests that the degree of reordering is over-estimated.
2159 	 */
2160 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2161 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2162 	    tp->sacked_out >= reordering)
2163 		tp->reordering = min_t(unsigned int, tp->reordering,
2164 				       reordering);
2165 
2166 	tcp_set_ca_state(sk, TCP_CA_Loss);
2167 	tp->high_seq = tp->snd_nxt;
2168 	tp->tlp_high_seq = 0;
2169 	tcp_ecn_queue_cwr(tp);
2170 
2171 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2172 	 * loss recovery is underway except recurring timeout(s) on
2173 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2174 	 */
2175 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2176 		   (new_recovery || icsk->icsk_retransmits) &&
2177 		   !inet_csk(sk)->icsk_mtup.probe_size;
2178 }
2179 
2180 /* If ACK arrived pointing to a remembered SACK, it means that our
2181  * remembered SACKs do not reflect real state of receiver i.e.
2182  * receiver _host_ is heavily congested (or buggy).
2183  *
2184  * To avoid big spurious retransmission bursts due to transient SACK
2185  * scoreboard oddities that look like reneging, we give the receiver a
2186  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2187  * restore sanity to the SACK scoreboard. If the apparent reneging
2188  * persists until this RTO then we'll clear the SACK scoreboard.
2189  */
2190 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2191 {
2192 	if (*ack_flag & FLAG_SACK_RENEGING &&
2193 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2194 		struct tcp_sock *tp = tcp_sk(sk);
2195 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2196 					  msecs_to_jiffies(10));
2197 
2198 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false);
2199 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2200 		return true;
2201 	}
2202 	return false;
2203 }
2204 
2205 /* Linux NewReno/SACK/ECN state machine.
2206  * --------------------------------------
2207  *
2208  * "Open"	Normal state, no dubious events, fast path.
2209  * "Disorder"   In all the respects it is "Open",
2210  *		but requires a bit more attention. It is entered when
2211  *		we see some SACKs or dupacks. It is split of "Open"
2212  *		mainly to move some processing from fast path to slow one.
2213  * "CWR"	CWND was reduced due to some Congestion Notification event.
2214  *		It can be ECN, ICMP source quench, local device congestion.
2215  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2216  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2217  *
2218  * tcp_fastretrans_alert() is entered:
2219  * - each incoming ACK, if state is not "Open"
2220  * - when arrived ACK is unusual, namely:
2221  *	* SACK
2222  *	* Duplicate ACK.
2223  *	* ECN ECE.
2224  *
2225  * Counting packets in flight is pretty simple.
2226  *
2227  *	in_flight = packets_out - left_out + retrans_out
2228  *
2229  *	packets_out is SND.NXT-SND.UNA counted in packets.
2230  *
2231  *	retrans_out is number of retransmitted segments.
2232  *
2233  *	left_out is number of segments left network, but not ACKed yet.
2234  *
2235  *		left_out = sacked_out + lost_out
2236  *
2237  *     sacked_out: Packets, which arrived to receiver out of order
2238  *		   and hence not ACKed. With SACKs this number is simply
2239  *		   amount of SACKed data. Even without SACKs
2240  *		   it is easy to give pretty reliable estimate of this number,
2241  *		   counting duplicate ACKs.
2242  *
2243  *       lost_out: Packets lost by network. TCP has no explicit
2244  *		   "loss notification" feedback from network (for now).
2245  *		   It means that this number can be only _guessed_.
2246  *		   Actually, it is the heuristics to predict lossage that
2247  *		   distinguishes different algorithms.
2248  *
2249  *	F.e. after RTO, when all the queue is considered as lost,
2250  *	lost_out = packets_out and in_flight = retrans_out.
2251  *
2252  *		Essentially, we have now a few algorithms detecting
2253  *		lost packets.
2254  *
2255  *		If the receiver supports SACK:
2256  *
2257  *		RACK (RFC8985): RACK is a newer loss detection algorithm
2258  *		(2017-) that checks timing instead of counting DUPACKs.
2259  *		Essentially a packet is considered lost if it's not S/ACKed
2260  *		after RTT + reordering_window, where both metrics are
2261  *		dynamically measured and adjusted. This is implemented in
2262  *		tcp_rack_mark_lost.
2263  *
2264  *		If the receiver does not support SACK:
2265  *
2266  *		NewReno (RFC6582): in Recovery we assume that one segment
2267  *		is lost (classic Reno). While we are in Recovery and
2268  *		a partial ACK arrives, we assume that one more packet
2269  *		is lost (NewReno). This heuristics are the same in NewReno
2270  *		and SACK.
2271  *
2272  * The really tricky (and requiring careful tuning) part of the algorithm
2273  * is hidden in the RACK code in tcp_recovery.c and tcp_xmit_retransmit_queue().
2274  * The first determines the moment _when_ we should reduce CWND and,
2275  * hence, slow down forward transmission. In fact, it determines the moment
2276  * when we decide that hole is caused by loss, rather than by a reorder.
2277  *
2278  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2279  * holes, caused by lost packets.
2280  *
2281  * And the most logically complicated part of algorithm is undo
2282  * heuristics. We detect false retransmits due to both too early
2283  * fast retransmit (reordering) and underestimated RTO, analyzing
2284  * timestamps and D-SACKs. When we detect that some segments were
2285  * retransmitted by mistake and CWND reduction was wrong, we undo
2286  * window reduction and abort recovery phase. This logic is hidden
2287  * inside several functions named tcp_try_undo_<something>.
2288  */
2289 
2290 /* This function decides, when we should leave Disordered state
2291  * and enter Recovery phase, reducing congestion window.
2292  *
2293  * Main question: may we further continue forward transmission
2294  * with the same cwnd?
2295  */
2296 static bool tcp_time_to_recover(const struct tcp_sock *tp)
2297 {
2298 	/* Has loss detection marked at least one packet lost? */
2299 	return tp->lost_out != 0;
2300 }
2301 
2302 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2303 {
2304 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2305 	       before(tp->rx_opt.rcv_tsecr, when);
2306 }
2307 
2308 /* skb is spurious retransmitted if the returned timestamp echo
2309  * reply is prior to the skb transmission time
2310  */
2311 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2312 				     const struct sk_buff *skb)
2313 {
2314 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2315 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2316 }
2317 
2318 /* Nothing was retransmitted or returned timestamp is less
2319  * than timestamp of the first retransmission.
2320  */
2321 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2322 {
2323 	const struct sock *sk = (const struct sock *)tp;
2324 
2325 	/* Received an echoed timestamp before the first retransmission? */
2326 	if (tp->retrans_stamp)
2327 		return tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2328 
2329 	/* We set tp->retrans_stamp upon the first retransmission of a loss
2330 	 * recovery episode, so normally if tp->retrans_stamp is 0 then no
2331 	 * retransmission has happened yet (likely due to TSQ, which can cause
2332 	 * fast retransmits to be delayed). So if snd_una advanced while
2333 	 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed,
2334 	 * not lost. But there are exceptions where we retransmit but then
2335 	 * clear tp->retrans_stamp, so we check for those exceptions.
2336 	 */
2337 
2338 	/* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen()
2339 	 * clears tp->retrans_stamp when snd_una == high_seq.
2340 	 */
2341 	if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq))
2342 		return false;
2343 
2344 	/* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp
2345 	 * when setting FLAG_SYN_ACKED is set, even if the SYN was
2346 	 * retransmitted.
2347 	 */
2348 	if (sk->sk_state == TCP_SYN_SENT)
2349 		return false;
2350 
2351 	return true;	/* tp->retrans_stamp is zero; no retransmit yet */
2352 }
2353 
2354 /* Undo procedures. */
2355 
2356 /* We can clear retrans_stamp when there are no retransmissions in the
2357  * window. It would seem that it is trivially available for us in
2358  * tp->retrans_out, however, that kind of assumptions doesn't consider
2359  * what will happen if errors occur when sending retransmission for the
2360  * second time. ...It could the that such segment has only
2361  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2362  * the head skb is enough except for some reneging corner cases that
2363  * are not worth the effort.
2364  *
2365  * Main reason for all this complexity is the fact that connection dying
2366  * time now depends on the validity of the retrans_stamp, in particular,
2367  * that successive retransmissions of a segment must not advance
2368  * retrans_stamp under any conditions.
2369  */
2370 static bool tcp_any_retrans_done(const struct sock *sk)
2371 {
2372 	const struct tcp_sock *tp = tcp_sk(sk);
2373 	struct sk_buff *skb;
2374 
2375 	if (tp->retrans_out)
2376 		return true;
2377 
2378 	skb = tcp_rtx_queue_head(sk);
2379 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2380 		return true;
2381 
2382 	return false;
2383 }
2384 
2385 /* If loss recovery is finished and there are no retransmits out in the
2386  * network, then we clear retrans_stamp so that upon the next loss recovery
2387  * retransmits_timed_out() and timestamp-undo are using the correct value.
2388  */
2389 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2390 {
2391 	if (!tcp_any_retrans_done(sk))
2392 		tcp_sk(sk)->retrans_stamp = 0;
2393 }
2394 
2395 static void DBGUNDO(struct sock *sk, const char *msg)
2396 {
2397 #if FASTRETRANS_DEBUG > 1
2398 	struct tcp_sock *tp = tcp_sk(sk);
2399 	struct inet_sock *inet = inet_sk(sk);
2400 
2401 	if (sk->sk_family == AF_INET) {
2402 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2403 			 msg,
2404 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2405 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2406 			 tp->snd_ssthresh, tp->prior_ssthresh,
2407 			 tp->packets_out);
2408 	}
2409 #if IS_ENABLED(CONFIG_IPV6)
2410 	else if (sk->sk_family == AF_INET6) {
2411 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2412 			 msg,
2413 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2414 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2415 			 tp->snd_ssthresh, tp->prior_ssthresh,
2416 			 tp->packets_out);
2417 	}
2418 #endif
2419 #endif
2420 }
2421 
2422 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2423 {
2424 	struct tcp_sock *tp = tcp_sk(sk);
2425 
2426 	if (unmark_loss) {
2427 		struct sk_buff *skb;
2428 
2429 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2430 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2431 		}
2432 		tp->lost_out = 0;
2433 		tcp_clear_all_retrans_hints(tp);
2434 	}
2435 
2436 	if (tp->prior_ssthresh) {
2437 		const struct inet_connection_sock *icsk = inet_csk(sk);
2438 
2439 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2440 
2441 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2442 			tp->snd_ssthresh = tp->prior_ssthresh;
2443 			tcp_ecn_withdraw_cwr(tp);
2444 		}
2445 	}
2446 	tp->snd_cwnd_stamp = tcp_jiffies32;
2447 	tp->undo_marker = 0;
2448 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2449 }
2450 
2451 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2452 {
2453 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2454 }
2455 
2456 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2457 {
2458 	struct tcp_sock *tp = tcp_sk(sk);
2459 
2460 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2461 		/* Hold old state until something *above* high_seq
2462 		 * is ACKed. For Reno it is MUST to prevent false
2463 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2464 		if (!tcp_any_retrans_done(sk))
2465 			tp->retrans_stamp = 0;
2466 		return true;
2467 	}
2468 	return false;
2469 }
2470 
2471 /* People celebrate: "We love our President!" */
2472 static bool tcp_try_undo_recovery(struct sock *sk)
2473 {
2474 	struct tcp_sock *tp = tcp_sk(sk);
2475 
2476 	if (tcp_may_undo(tp)) {
2477 		int mib_idx;
2478 
2479 		/* Happy end! We did not retransmit anything
2480 		 * or our original transmission succeeded.
2481 		 */
2482 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2483 		tcp_undo_cwnd_reduction(sk, false);
2484 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2485 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2486 		else
2487 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2488 
2489 		NET_INC_STATS(sock_net(sk), mib_idx);
2490 	} else if (tp->rack.reo_wnd_persist) {
2491 		tp->rack.reo_wnd_persist--;
2492 	}
2493 	if (tcp_is_non_sack_preventing_reopen(sk))
2494 		return true;
2495 	tcp_set_ca_state(sk, TCP_CA_Open);
2496 	tp->is_sack_reneg = 0;
2497 	return false;
2498 }
2499 
2500 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2501 static bool tcp_try_undo_dsack(struct sock *sk)
2502 {
2503 	struct tcp_sock *tp = tcp_sk(sk);
2504 
2505 	if (tp->undo_marker && !tp->undo_retrans) {
2506 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2507 					       tp->rack.reo_wnd_persist + 1);
2508 		DBGUNDO(sk, "D-SACK");
2509 		tcp_undo_cwnd_reduction(sk, false);
2510 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2511 		return true;
2512 	}
2513 	return false;
2514 }
2515 
2516 /* Undo during loss recovery after partial ACK or using F-RTO. */
2517 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2518 {
2519 	struct tcp_sock *tp = tcp_sk(sk);
2520 
2521 	if (frto_undo || tcp_may_undo(tp)) {
2522 		tcp_undo_cwnd_reduction(sk, true);
2523 
2524 		DBGUNDO(sk, "partial loss");
2525 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2526 		if (frto_undo)
2527 			NET_INC_STATS(sock_net(sk),
2528 					LINUX_MIB_TCPSPURIOUSRTOS);
2529 		WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0);
2530 		if (tcp_is_non_sack_preventing_reopen(sk))
2531 			return true;
2532 		if (frto_undo || tcp_is_sack(tp)) {
2533 			tcp_set_ca_state(sk, TCP_CA_Open);
2534 			tp->is_sack_reneg = 0;
2535 		}
2536 		return true;
2537 	}
2538 	return false;
2539 }
2540 
2541 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2542  * It computes the number of packets to send (sndcnt) based on packets newly
2543  * delivered:
2544  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2545  *	cwnd reductions across a full RTT.
2546  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2547  *      But when SND_UNA is acked without further losses,
2548  *      slow starts cwnd up to ssthresh to speed up the recovery.
2549  */
2550 static void tcp_init_cwnd_reduction(struct sock *sk)
2551 {
2552 	struct tcp_sock *tp = tcp_sk(sk);
2553 
2554 	tp->high_seq = tp->snd_nxt;
2555 	tp->tlp_high_seq = 0;
2556 	tp->snd_cwnd_cnt = 0;
2557 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2558 	tp->prr_delivered = 0;
2559 	tp->prr_out = 0;
2560 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2561 	tcp_ecn_queue_cwr(tp);
2562 }
2563 
2564 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2565 {
2566 	struct tcp_sock *tp = tcp_sk(sk);
2567 	int sndcnt = 0;
2568 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2569 
2570 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2571 		return;
2572 
2573 	trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag);
2574 
2575 	tp->prr_delivered += newly_acked_sacked;
2576 	if (delta < 0) {
2577 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2578 			       tp->prior_cwnd - 1;
2579 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2580 	} else {
2581 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2582 			       newly_acked_sacked);
2583 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2584 			sndcnt++;
2585 		sndcnt = min(delta, sndcnt);
2586 	}
2587 	/* Force a fast retransmit upon entering fast recovery */
2588 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2589 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2590 }
2591 
2592 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2593 {
2594 	struct tcp_sock *tp = tcp_sk(sk);
2595 
2596 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2597 		return;
2598 
2599 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2600 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2601 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2602 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2603 		tp->snd_cwnd_stamp = tcp_jiffies32;
2604 	}
2605 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2606 }
2607 
2608 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2609 void tcp_enter_cwr(struct sock *sk)
2610 {
2611 	struct tcp_sock *tp = tcp_sk(sk);
2612 
2613 	tp->prior_ssthresh = 0;
2614 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2615 		tp->undo_marker = 0;
2616 		tcp_init_cwnd_reduction(sk);
2617 		tcp_set_ca_state(sk, TCP_CA_CWR);
2618 	}
2619 }
2620 EXPORT_SYMBOL(tcp_enter_cwr);
2621 
2622 static void tcp_try_keep_open(struct sock *sk)
2623 {
2624 	struct tcp_sock *tp = tcp_sk(sk);
2625 	int state = TCP_CA_Open;
2626 
2627 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2628 		state = TCP_CA_Disorder;
2629 
2630 	if (inet_csk(sk)->icsk_ca_state != state) {
2631 		tcp_set_ca_state(sk, state);
2632 		tp->high_seq = tp->snd_nxt;
2633 	}
2634 }
2635 
2636 static void tcp_try_to_open(struct sock *sk, int flag)
2637 {
2638 	struct tcp_sock *tp = tcp_sk(sk);
2639 
2640 	tcp_verify_left_out(tp);
2641 
2642 	if (!tcp_any_retrans_done(sk))
2643 		tp->retrans_stamp = 0;
2644 
2645 	if (flag & FLAG_ECE)
2646 		tcp_enter_cwr(sk);
2647 
2648 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2649 		tcp_try_keep_open(sk);
2650 	}
2651 }
2652 
2653 static void tcp_mtup_probe_failed(struct sock *sk)
2654 {
2655 	struct inet_connection_sock *icsk = inet_csk(sk);
2656 
2657 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2658 	icsk->icsk_mtup.probe_size = 0;
2659 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2660 }
2661 
2662 static void tcp_mtup_probe_success(struct sock *sk)
2663 {
2664 	struct tcp_sock *tp = tcp_sk(sk);
2665 	struct inet_connection_sock *icsk = inet_csk(sk);
2666 	u64 val;
2667 
2668 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2669 
2670 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2671 	do_div(val, icsk->icsk_mtup.probe_size);
2672 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2673 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2674 
2675 	tp->snd_cwnd_cnt = 0;
2676 	tp->snd_cwnd_stamp = tcp_jiffies32;
2677 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2678 
2679 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2680 	icsk->icsk_mtup.probe_size = 0;
2681 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2682 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2683 }
2684 
2685 /* Sometimes we deduce that packets have been dropped due to reasons other than
2686  * congestion, like path MTU reductions or failed client TFO attempts. In these
2687  * cases we call this function to retransmit as many packets as cwnd allows,
2688  * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2689  * non-zero value (and may do so in a later calling context due to TSQ), we
2690  * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2691  * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2692  * are using the correct retrans_stamp and don't declare ETIMEDOUT
2693  * prematurely).
2694  */
2695 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2696 {
2697 	const struct inet_connection_sock *icsk = inet_csk(sk);
2698 	struct tcp_sock *tp = tcp_sk(sk);
2699 
2700 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2701 		tp->high_seq = tp->snd_nxt;
2702 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2703 		tp->prior_ssthresh = 0;
2704 		tp->undo_marker = 0;
2705 		tcp_set_ca_state(sk, TCP_CA_Loss);
2706 	}
2707 	tcp_xmit_retransmit_queue(sk);
2708 }
2709 
2710 /* Do a simple retransmit without using the backoff mechanisms in
2711  * tcp_timer. This is used for path mtu discovery.
2712  * The socket is already locked here.
2713  */
2714 void tcp_simple_retransmit(struct sock *sk)
2715 {
2716 	struct tcp_sock *tp = tcp_sk(sk);
2717 	struct sk_buff *skb;
2718 	int mss;
2719 
2720 	/* A fastopen SYN request is stored as two separate packets within
2721 	 * the retransmit queue, this is done by tcp_send_syn_data().
2722 	 * As a result simply checking the MSS of the frames in the queue
2723 	 * will not work for the SYN packet.
2724 	 *
2725 	 * Us being here is an indication of a path MTU issue so we can
2726 	 * assume that the fastopen SYN was lost and just mark all the
2727 	 * frames in the retransmit queue as lost. We will use an MSS of
2728 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2729 	 */
2730 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2731 		mss = -1;
2732 	else
2733 		mss = tcp_current_mss(sk);
2734 
2735 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2736 		if (tcp_skb_seglen(skb) > mss)
2737 			tcp_mark_skb_lost(sk, skb);
2738 	}
2739 
2740 	if (!tp->lost_out)
2741 		return;
2742 
2743 	if (tcp_is_reno(tp))
2744 		tcp_limit_reno_sacked(tp);
2745 
2746 	tcp_verify_left_out(tp);
2747 
2748 	/* Don't muck with the congestion window here.
2749 	 * Reason is that we do not increase amount of _data_
2750 	 * in network, but units changed and effective
2751 	 * cwnd/ssthresh really reduced now.
2752 	 */
2753 	tcp_non_congestion_loss_retransmit(sk);
2754 }
2755 EXPORT_IPV6_MOD(tcp_simple_retransmit);
2756 
2757 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2758 {
2759 	struct tcp_sock *tp = tcp_sk(sk);
2760 	int mib_idx;
2761 
2762 	/* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2763 	tcp_retrans_stamp_cleanup(sk);
2764 
2765 	if (tcp_is_reno(tp))
2766 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2767 	else
2768 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2769 
2770 	NET_INC_STATS(sock_net(sk), mib_idx);
2771 
2772 	tp->prior_ssthresh = 0;
2773 	tcp_init_undo(tp);
2774 
2775 	if (!tcp_in_cwnd_reduction(sk)) {
2776 		if (!ece_ack)
2777 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2778 		tcp_init_cwnd_reduction(sk);
2779 	}
2780 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2781 }
2782 
2783 static void tcp_update_rto_time(struct tcp_sock *tp)
2784 {
2785 	if (tp->rto_stamp) {
2786 		tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2787 		tp->rto_stamp = 0;
2788 	}
2789 }
2790 
2791 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2792  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2793  */
2794 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2795 			     int *rexmit)
2796 {
2797 	struct tcp_sock *tp = tcp_sk(sk);
2798 	bool recovered = !before(tp->snd_una, tp->high_seq);
2799 
2800 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2801 	    tcp_try_undo_loss(sk, false))
2802 		return;
2803 
2804 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2805 		/* Step 3.b. A timeout is spurious if not all data are
2806 		 * lost, i.e., never-retransmitted data are (s)acked.
2807 		 */
2808 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2809 		    tcp_try_undo_loss(sk, true))
2810 			return;
2811 
2812 		if (after(tp->snd_nxt, tp->high_seq)) {
2813 			if (flag & FLAG_DATA_SACKED || num_dupack)
2814 				tp->frto = 0; /* Step 3.a. loss was real */
2815 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2816 			tp->high_seq = tp->snd_nxt;
2817 			/* Step 2.b. Try send new data (but deferred until cwnd
2818 			 * is updated in tcp_ack()). Otherwise fall back to
2819 			 * the conventional recovery.
2820 			 */
2821 			if (!tcp_write_queue_empty(sk) &&
2822 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2823 				*rexmit = REXMIT_NEW;
2824 				return;
2825 			}
2826 			tp->frto = 0;
2827 		}
2828 	}
2829 
2830 	if (recovered) {
2831 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2832 		tcp_try_undo_recovery(sk);
2833 		return;
2834 	}
2835 	if (tcp_is_reno(tp)) {
2836 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2837 		 * delivered. Lower inflight to clock out (re)transmissions.
2838 		 */
2839 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2840 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2841 		else if (flag & FLAG_SND_UNA_ADVANCED)
2842 			tcp_reset_reno_sack(tp);
2843 	}
2844 	*rexmit = REXMIT_LOST;
2845 }
2846 
2847 /* Undo during fast recovery after partial ACK. */
2848 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2849 {
2850 	struct tcp_sock *tp = tcp_sk(sk);
2851 
2852 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2853 		/* Plain luck! Hole if filled with delayed
2854 		 * packet, rather than with a retransmit. Check reordering.
2855 		 */
2856 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2857 
2858 		/* We are getting evidence that the reordering degree is higher
2859 		 * than we realized. If there are no retransmits out then we
2860 		 * can undo. Otherwise we clock out new packets but do not
2861 		 * mark more packets lost or retransmit more.
2862 		 */
2863 		if (tp->retrans_out)
2864 			return true;
2865 
2866 		if (!tcp_any_retrans_done(sk))
2867 			tp->retrans_stamp = 0;
2868 
2869 		DBGUNDO(sk, "partial recovery");
2870 		tcp_undo_cwnd_reduction(sk, true);
2871 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2872 		tcp_try_keep_open(sk);
2873 	}
2874 	return false;
2875 }
2876 
2877 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2878 {
2879 	struct tcp_sock *tp = tcp_sk(sk);
2880 
2881 	if (tcp_rtx_queue_empty(sk))
2882 		return;
2883 
2884 	if (unlikely(tcp_is_reno(tp))) {
2885 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2886 	} else {
2887 		u32 prior_retrans = tp->retrans_out;
2888 
2889 		if (tcp_rack_mark_lost(sk))
2890 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2891 		if (prior_retrans > tp->retrans_out)
2892 			*ack_flag |= FLAG_LOST_RETRANS;
2893 	}
2894 }
2895 
2896 /* Process an event, which can update packets-in-flight not trivially.
2897  * Main goal of this function is to calculate new estimate for left_out,
2898  * taking into account both packets sitting in receiver's buffer and
2899  * packets lost by network.
2900  *
2901  * Besides that it updates the congestion state when packet loss or ECN
2902  * is detected. But it does not reduce the cwnd, it is done by the
2903  * congestion control later.
2904  *
2905  * It does _not_ decide what to send, it is made in function
2906  * tcp_xmit_retransmit_queue().
2907  */
2908 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2909 				  int num_dupack, int *ack_flag, int *rexmit)
2910 {
2911 	struct inet_connection_sock *icsk = inet_csk(sk);
2912 	struct tcp_sock *tp = tcp_sk(sk);
2913 	int flag = *ack_flag;
2914 	bool ece_ack = flag & FLAG_ECE;
2915 
2916 	if (!tp->packets_out && tp->sacked_out)
2917 		tp->sacked_out = 0;
2918 
2919 	/* Now state machine starts.
2920 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2921 	if (ece_ack)
2922 		tp->prior_ssthresh = 0;
2923 
2924 	/* B. In all the states check for reneging SACKs. */
2925 	if (tcp_check_sack_reneging(sk, ack_flag))
2926 		return;
2927 
2928 	/* C. Check consistency of the current state. */
2929 	tcp_verify_left_out(tp);
2930 
2931 	/* D. Check state exit conditions. State can be terminated
2932 	 *    when high_seq is ACKed. */
2933 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2934 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2935 		tp->retrans_stamp = 0;
2936 	} else if (!before(tp->snd_una, tp->high_seq)) {
2937 		switch (icsk->icsk_ca_state) {
2938 		case TCP_CA_CWR:
2939 			/* CWR is to be held something *above* high_seq
2940 			 * is ACKed for CWR bit to reach receiver. */
2941 			if (tp->snd_una != tp->high_seq) {
2942 				tcp_end_cwnd_reduction(sk);
2943 				tcp_set_ca_state(sk, TCP_CA_Open);
2944 			}
2945 			break;
2946 
2947 		case TCP_CA_Recovery:
2948 			if (tcp_is_reno(tp))
2949 				tcp_reset_reno_sack(tp);
2950 			if (tcp_try_undo_recovery(sk))
2951 				return;
2952 			tcp_end_cwnd_reduction(sk);
2953 			break;
2954 		}
2955 	}
2956 
2957 	/* E. Process state. */
2958 	switch (icsk->icsk_ca_state) {
2959 	case TCP_CA_Recovery:
2960 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2961 			if (tcp_is_reno(tp))
2962 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2963 		} else if (tcp_try_undo_partial(sk, prior_snd_una))
2964 			return;
2965 
2966 		if (tcp_try_undo_dsack(sk))
2967 			tcp_try_to_open(sk, flag);
2968 
2969 		tcp_identify_packet_loss(sk, ack_flag);
2970 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2971 			if (!tcp_time_to_recover(tp))
2972 				return;
2973 			/* Undo reverts the recovery state. If loss is evident,
2974 			 * starts a new recovery (e.g. reordering then loss);
2975 			 */
2976 			tcp_enter_recovery(sk, ece_ack);
2977 		}
2978 		break;
2979 	case TCP_CA_Loss:
2980 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2981 		if (icsk->icsk_ca_state != TCP_CA_Loss)
2982 			tcp_update_rto_time(tp);
2983 		tcp_identify_packet_loss(sk, ack_flag);
2984 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2985 		      (*ack_flag & FLAG_LOST_RETRANS)))
2986 			return;
2987 		/* Change state if cwnd is undone or retransmits are lost */
2988 		fallthrough;
2989 	default:
2990 		if (tcp_is_reno(tp)) {
2991 			if (flag & FLAG_SND_UNA_ADVANCED)
2992 				tcp_reset_reno_sack(tp);
2993 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
2994 		}
2995 
2996 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2997 			tcp_try_undo_dsack(sk);
2998 
2999 		tcp_identify_packet_loss(sk, ack_flag);
3000 		if (!tcp_time_to_recover(tp)) {
3001 			tcp_try_to_open(sk, flag);
3002 			return;
3003 		}
3004 
3005 		/* MTU probe failure: don't reduce cwnd */
3006 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3007 		    icsk->icsk_mtup.probe_size &&
3008 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3009 			tcp_mtup_probe_failed(sk);
3010 			/* Restores the reduction we did in tcp_mtup_probe() */
3011 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3012 			tcp_simple_retransmit(sk);
3013 			return;
3014 		}
3015 
3016 		/* Otherwise enter Recovery state */
3017 		tcp_enter_recovery(sk, ece_ack);
3018 	}
3019 
3020 	*rexmit = REXMIT_LOST;
3021 }
3022 
3023 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3024 {
3025 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3026 	struct tcp_sock *tp = tcp_sk(sk);
3027 
3028 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3029 		/* If the remote keeps returning delayed ACKs, eventually
3030 		 * the min filter would pick it up and overestimate the
3031 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3032 		 */
3033 		return;
3034 	}
3035 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3036 			   rtt_us ? : jiffies_to_usecs(1));
3037 }
3038 
3039 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3040 			       long seq_rtt_us, long sack_rtt_us,
3041 			       long ca_rtt_us, struct rate_sample *rs)
3042 {
3043 	const struct tcp_sock *tp = tcp_sk(sk);
3044 
3045 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3046 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3047 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3048 	 * is acked (RFC6298).
3049 	 */
3050 	if (seq_rtt_us < 0)
3051 		seq_rtt_us = sack_rtt_us;
3052 
3053 	/* RTTM Rule: A TSecr value received in a segment is used to
3054 	 * update the averaged RTT measurement only if the segment
3055 	 * acknowledges some new data, i.e., only if it advances the
3056 	 * left edge of the send window.
3057 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3058 	 */
3059 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3060 	    tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3061 		seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp, 1);
3062 
3063 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3064 	if (seq_rtt_us < 0)
3065 		return false;
3066 
3067 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3068 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3069 	 * values will be skipped with the seq_rtt_us < 0 check above.
3070 	 */
3071 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3072 	tcp_rtt_estimator(sk, seq_rtt_us);
3073 	tcp_set_rto(sk);
3074 
3075 	/* RFC6298: only reset backoff on valid RTT measurement. */
3076 	inet_csk(sk)->icsk_backoff = 0;
3077 	return true;
3078 }
3079 
3080 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3081 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3082 {
3083 	struct rate_sample rs;
3084 	long rtt_us = -1L;
3085 
3086 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3087 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3088 
3089 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3090 }
3091 
3092 
3093 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3094 {
3095 	const struct inet_connection_sock *icsk = inet_csk(sk);
3096 
3097 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3098 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3099 }
3100 
3101 /* Restart timer after forward progress on connection.
3102  * RFC2988 recommends to restart timer to now+rto.
3103  */
3104 void tcp_rearm_rto(struct sock *sk)
3105 {
3106 	const struct inet_connection_sock *icsk = inet_csk(sk);
3107 	struct tcp_sock *tp = tcp_sk(sk);
3108 
3109 	/* If the retrans timer is currently being used by Fast Open
3110 	 * for SYN-ACK retrans purpose, stay put.
3111 	 */
3112 	if (rcu_access_pointer(tp->fastopen_rsk))
3113 		return;
3114 
3115 	if (!tp->packets_out) {
3116 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3117 	} else {
3118 		u32 rto = inet_csk(sk)->icsk_rto;
3119 		/* Offset the time elapsed after installing regular RTO */
3120 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3121 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3122 			s64 delta_us = tcp_rto_delta_us(sk);
3123 			/* delta_us may not be positive if the socket is locked
3124 			 * when the retrans timer fires and is rescheduled.
3125 			 */
3126 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3127 		}
3128 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true);
3129 	}
3130 }
3131 
3132 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3133 static void tcp_set_xmit_timer(struct sock *sk)
3134 {
3135 	if (!tcp_schedule_loss_probe(sk, true))
3136 		tcp_rearm_rto(sk);
3137 }
3138 
3139 /* If we get here, the whole TSO packet has not been acked. */
3140 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3141 {
3142 	struct tcp_sock *tp = tcp_sk(sk);
3143 	u32 packets_acked;
3144 
3145 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3146 
3147 	packets_acked = tcp_skb_pcount(skb);
3148 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3149 		return 0;
3150 	packets_acked -= tcp_skb_pcount(skb);
3151 
3152 	if (packets_acked) {
3153 		BUG_ON(tcp_skb_pcount(skb) == 0);
3154 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3155 	}
3156 
3157 	return packets_acked;
3158 }
3159 
3160 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3161 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3162 {
3163 	const struct skb_shared_info *shinfo;
3164 
3165 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3166 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3167 		return;
3168 
3169 	shinfo = skb_shinfo(skb);
3170 	if (!before(shinfo->tskey, prior_snd_una) &&
3171 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3172 		tcp_skb_tsorted_save(skb) {
3173 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3174 		} tcp_skb_tsorted_restore(skb);
3175 	}
3176 }
3177 
3178 /* Remove acknowledged frames from the retransmission queue. If our packet
3179  * is before the ack sequence we can discard it as it's confirmed to have
3180  * arrived at the other end.
3181  */
3182 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3183 			       u32 prior_fack, u32 prior_snd_una,
3184 			       struct tcp_sacktag_state *sack, bool ece_ack)
3185 {
3186 	const struct inet_connection_sock *icsk = inet_csk(sk);
3187 	u64 first_ackt, last_ackt;
3188 	struct tcp_sock *tp = tcp_sk(sk);
3189 	u32 prior_sacked = tp->sacked_out;
3190 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3191 	struct sk_buff *skb, *next;
3192 	bool fully_acked = true;
3193 	long sack_rtt_us = -1L;
3194 	long seq_rtt_us = -1L;
3195 	long ca_rtt_us = -1L;
3196 	u32 pkts_acked = 0;
3197 	bool rtt_update;
3198 	int flag = 0;
3199 
3200 	first_ackt = 0;
3201 
3202 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3203 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3204 		const u32 start_seq = scb->seq;
3205 		u8 sacked = scb->sacked;
3206 		u32 acked_pcount;
3207 
3208 		/* Determine how many packets and what bytes were acked, tso and else */
3209 		if (after(scb->end_seq, tp->snd_una)) {
3210 			if (tcp_skb_pcount(skb) == 1 ||
3211 			    !after(tp->snd_una, scb->seq))
3212 				break;
3213 
3214 			acked_pcount = tcp_tso_acked(sk, skb);
3215 			if (!acked_pcount)
3216 				break;
3217 			fully_acked = false;
3218 		} else {
3219 			acked_pcount = tcp_skb_pcount(skb);
3220 		}
3221 
3222 		if (unlikely(sacked & TCPCB_RETRANS)) {
3223 			if (sacked & TCPCB_SACKED_RETRANS)
3224 				tp->retrans_out -= acked_pcount;
3225 			flag |= FLAG_RETRANS_DATA_ACKED;
3226 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3227 			last_ackt = tcp_skb_timestamp_us(skb);
3228 			WARN_ON_ONCE(last_ackt == 0);
3229 			if (!first_ackt)
3230 				first_ackt = last_ackt;
3231 
3232 			if (before(start_seq, reord))
3233 				reord = start_seq;
3234 			if (!after(scb->end_seq, tp->high_seq))
3235 				flag |= FLAG_ORIG_SACK_ACKED;
3236 		}
3237 
3238 		if (sacked & TCPCB_SACKED_ACKED) {
3239 			tp->sacked_out -= acked_pcount;
3240 		} else if (tcp_is_sack(tp)) {
3241 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3242 			if (!tcp_skb_spurious_retrans(tp, skb))
3243 				tcp_rack_advance(tp, sacked, scb->end_seq,
3244 						 tcp_skb_timestamp_us(skb));
3245 		}
3246 		if (sacked & TCPCB_LOST)
3247 			tp->lost_out -= acked_pcount;
3248 
3249 		tp->packets_out -= acked_pcount;
3250 		pkts_acked += acked_pcount;
3251 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3252 
3253 		/* Initial outgoing SYN's get put onto the write_queue
3254 		 * just like anything else we transmit.  It is not
3255 		 * true data, and if we misinform our callers that
3256 		 * this ACK acks real data, we will erroneously exit
3257 		 * connection startup slow start one packet too
3258 		 * quickly.  This is severely frowned upon behavior.
3259 		 */
3260 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3261 			flag |= FLAG_DATA_ACKED;
3262 		} else {
3263 			flag |= FLAG_SYN_ACKED;
3264 			tp->retrans_stamp = 0;
3265 		}
3266 
3267 		if (!fully_acked)
3268 			break;
3269 
3270 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3271 
3272 		next = skb_rb_next(skb);
3273 		if (unlikely(skb == tp->retransmit_skb_hint))
3274 			tp->retransmit_skb_hint = NULL;
3275 		tcp_highest_sack_replace(sk, skb, next);
3276 		tcp_rtx_queue_unlink_and_free(skb, sk);
3277 	}
3278 
3279 	if (!skb)
3280 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3281 
3282 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3283 		tp->snd_up = tp->snd_una;
3284 
3285 	if (skb) {
3286 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3287 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3288 			flag |= FLAG_SACK_RENEGING;
3289 	}
3290 
3291 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3292 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3293 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3294 
3295 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3296 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3297 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3298 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3299 			/* Conservatively mark a delayed ACK. It's typically
3300 			 * from a lone runt packet over the round trip to
3301 			 * a receiver w/o out-of-order or CE events.
3302 			 */
3303 			flag |= FLAG_ACK_MAYBE_DELAYED;
3304 		}
3305 	}
3306 	if (sack->first_sackt) {
3307 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3308 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3309 	}
3310 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3311 					ca_rtt_us, sack->rate);
3312 
3313 	if (flag & FLAG_ACKED) {
3314 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3315 		if (unlikely(icsk->icsk_mtup.probe_size &&
3316 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3317 			tcp_mtup_probe_success(sk);
3318 		}
3319 
3320 		if (tcp_is_reno(tp)) {
3321 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3322 
3323 			/* If any of the cumulatively ACKed segments was
3324 			 * retransmitted, non-SACK case cannot confirm that
3325 			 * progress was due to original transmission due to
3326 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3327 			 * the packets may have been never retransmitted.
3328 			 */
3329 			if (flag & FLAG_RETRANS_DATA_ACKED)
3330 				flag &= ~FLAG_ORIG_SACK_ACKED;
3331 		} else {
3332 			/* Non-retransmitted hole got filled? That's reordering */
3333 			if (before(reord, prior_fack))
3334 				tcp_check_sack_reordering(sk, reord, 0);
3335 		}
3336 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3337 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3338 						    tcp_skb_timestamp_us(skb))) {
3339 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3340 		 * after when the head was last (re)transmitted. Otherwise the
3341 		 * timeout may continue to extend in loss recovery.
3342 		 */
3343 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3344 	}
3345 
3346 	if (icsk->icsk_ca_ops->pkts_acked) {
3347 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3348 					     .rtt_us = sack->rate->rtt_us };
3349 
3350 		sample.in_flight = tp->mss_cache *
3351 			(tp->delivered - sack->rate->prior_delivered);
3352 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3353 	}
3354 
3355 #if FASTRETRANS_DEBUG > 0
3356 	WARN_ON((int)tp->sacked_out < 0);
3357 	WARN_ON((int)tp->lost_out < 0);
3358 	WARN_ON((int)tp->retrans_out < 0);
3359 	if (!tp->packets_out && tcp_is_sack(tp)) {
3360 		icsk = inet_csk(sk);
3361 		if (tp->lost_out) {
3362 			pr_debug("Leak l=%u %d\n",
3363 				 tp->lost_out, icsk->icsk_ca_state);
3364 			tp->lost_out = 0;
3365 		}
3366 		if (tp->sacked_out) {
3367 			pr_debug("Leak s=%u %d\n",
3368 				 tp->sacked_out, icsk->icsk_ca_state);
3369 			tp->sacked_out = 0;
3370 		}
3371 		if (tp->retrans_out) {
3372 			pr_debug("Leak r=%u %d\n",
3373 				 tp->retrans_out, icsk->icsk_ca_state);
3374 			tp->retrans_out = 0;
3375 		}
3376 	}
3377 #endif
3378 	return flag;
3379 }
3380 
3381 static void tcp_ack_probe(struct sock *sk)
3382 {
3383 	struct inet_connection_sock *icsk = inet_csk(sk);
3384 	struct sk_buff *head = tcp_send_head(sk);
3385 	const struct tcp_sock *tp = tcp_sk(sk);
3386 
3387 	/* Was it a usable window open? */
3388 	if (!head)
3389 		return;
3390 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3391 		icsk->icsk_backoff = 0;
3392 		icsk->icsk_probes_tstamp = 0;
3393 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3394 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3395 		 * This function is not for random using!
3396 		 */
3397 	} else {
3398 		unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk));
3399 
3400 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3401 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true);
3402 	}
3403 }
3404 
3405 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3406 {
3407 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3408 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3409 }
3410 
3411 /* Decide wheather to run the increase function of congestion control. */
3412 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3413 {
3414 	/* If reordering is high then always grow cwnd whenever data is
3415 	 * delivered regardless of its ordering. Otherwise stay conservative
3416 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3417 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3418 	 * cwnd in tcp_fastretrans_alert() based on more states.
3419 	 */
3420 	if (tcp_sk(sk)->reordering >
3421 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3422 		return flag & FLAG_FORWARD_PROGRESS;
3423 
3424 	return flag & FLAG_DATA_ACKED;
3425 }
3426 
3427 /* The "ultimate" congestion control function that aims to replace the rigid
3428  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3429  * It's called toward the end of processing an ACK with precise rate
3430  * information. All transmission or retransmission are delayed afterwards.
3431  */
3432 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3433 			     int flag, const struct rate_sample *rs)
3434 {
3435 	const struct inet_connection_sock *icsk = inet_csk(sk);
3436 
3437 	if (icsk->icsk_ca_ops->cong_control) {
3438 		icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3439 		return;
3440 	}
3441 
3442 	if (tcp_in_cwnd_reduction(sk)) {
3443 		/* Reduce cwnd if state mandates */
3444 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3445 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3446 		/* Advance cwnd if state allows */
3447 		tcp_cong_avoid(sk, ack, acked_sacked);
3448 	}
3449 	tcp_update_pacing_rate(sk);
3450 }
3451 
3452 /* Check that window update is acceptable.
3453  * The function assumes that snd_una<=ack<=snd_next.
3454  */
3455 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3456 					const u32 ack, const u32 ack_seq,
3457 					const u32 nwin)
3458 {
3459 	return	after(ack, tp->snd_una) ||
3460 		after(ack_seq, tp->snd_wl1) ||
3461 		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3462 }
3463 
3464 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3465 {
3466 #ifdef CONFIG_TCP_AO
3467 	struct tcp_ao_info *ao;
3468 
3469 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3470 		return;
3471 
3472 	ao = rcu_dereference_protected(tp->ao_info,
3473 				       lockdep_sock_is_held((struct sock *)tp));
3474 	if (ao && ack < tp->snd_una) {
3475 		ao->snd_sne++;
3476 		trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3477 	}
3478 #endif
3479 }
3480 
3481 /* If we update tp->snd_una, also update tp->bytes_acked */
3482 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3483 {
3484 	u32 delta = ack - tp->snd_una;
3485 
3486 	sock_owned_by_me((struct sock *)tp);
3487 	tp->bytes_acked += delta;
3488 	tcp_snd_sne_update(tp, ack);
3489 	tp->snd_una = ack;
3490 }
3491 
3492 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3493 {
3494 #ifdef CONFIG_TCP_AO
3495 	struct tcp_ao_info *ao;
3496 
3497 	if (!static_branch_unlikely(&tcp_ao_needed.key))
3498 		return;
3499 
3500 	ao = rcu_dereference_protected(tp->ao_info,
3501 				       lockdep_sock_is_held((struct sock *)tp));
3502 	if (ao && seq < tp->rcv_nxt) {
3503 		ao->rcv_sne++;
3504 		trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3505 	}
3506 #endif
3507 }
3508 
3509 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3510 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3511 {
3512 	u32 delta = seq - tp->rcv_nxt;
3513 
3514 	sock_owned_by_me((struct sock *)tp);
3515 	tp->bytes_received += delta;
3516 	tcp_rcv_sne_update(tp, seq);
3517 	WRITE_ONCE(tp->rcv_nxt, seq);
3518 }
3519 
3520 /* Update our send window.
3521  *
3522  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3523  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3524  */
3525 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3526 				 u32 ack_seq)
3527 {
3528 	struct tcp_sock *tp = tcp_sk(sk);
3529 	int flag = 0;
3530 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3531 
3532 	if (likely(!tcp_hdr(skb)->syn))
3533 		nwin <<= tp->rx_opt.snd_wscale;
3534 
3535 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3536 		flag |= FLAG_WIN_UPDATE;
3537 		tcp_update_wl(tp, ack_seq);
3538 
3539 		if (tp->snd_wnd != nwin) {
3540 			tp->snd_wnd = nwin;
3541 
3542 			/* Note, it is the only place, where
3543 			 * fast path is recovered for sending TCP.
3544 			 */
3545 			tp->pred_flags = 0;
3546 			tcp_fast_path_check(sk);
3547 
3548 			if (!tcp_write_queue_empty(sk))
3549 				tcp_slow_start_after_idle_check(sk);
3550 
3551 			if (nwin > tp->max_window) {
3552 				tp->max_window = nwin;
3553 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3554 			}
3555 		}
3556 	}
3557 
3558 	tcp_snd_una_update(tp, ack);
3559 
3560 	return flag;
3561 }
3562 
3563 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3564 				   u32 *last_oow_ack_time)
3565 {
3566 	/* Paired with the WRITE_ONCE() in this function. */
3567 	u32 val = READ_ONCE(*last_oow_ack_time);
3568 
3569 	if (val) {
3570 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3571 
3572 		if (0 <= elapsed &&
3573 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3574 			NET_INC_STATS(net, mib_idx);
3575 			return true;	/* rate-limited: don't send yet! */
3576 		}
3577 	}
3578 
3579 	/* Paired with the prior READ_ONCE() and with itself,
3580 	 * as we might be lockless.
3581 	 */
3582 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3583 
3584 	return false;	/* not rate-limited: go ahead, send dupack now! */
3585 }
3586 
3587 /* Return true if we're currently rate-limiting out-of-window ACKs and
3588  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3589  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3590  * attacks that send repeated SYNs or ACKs for the same connection. To
3591  * do this, we do not send a duplicate SYNACK or ACK if the remote
3592  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3593  */
3594 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3595 			  int mib_idx, u32 *last_oow_ack_time)
3596 {
3597 	/* Data packets without SYNs are not likely part of an ACK loop. */
3598 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3599 	    !tcp_hdr(skb)->syn)
3600 		return false;
3601 
3602 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3603 }
3604 
3605 /* RFC 5961 7 [ACK Throttling] */
3606 static void tcp_send_challenge_ack(struct sock *sk)
3607 {
3608 	struct tcp_sock *tp = tcp_sk(sk);
3609 	struct net *net = sock_net(sk);
3610 	u32 count, now, ack_limit;
3611 
3612 	/* First check our per-socket dupack rate limit. */
3613 	if (__tcp_oow_rate_limited(net,
3614 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3615 				   &tp->last_oow_ack_time))
3616 		return;
3617 
3618 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3619 	if (ack_limit == INT_MAX)
3620 		goto send_ack;
3621 
3622 	/* Then check host-wide RFC 5961 rate limit. */
3623 	now = jiffies / HZ;
3624 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3625 		u32 half = (ack_limit + 1) >> 1;
3626 
3627 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3628 		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3629 			   get_random_u32_inclusive(half, ack_limit + half - 1));
3630 	}
3631 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3632 	if (count > 0) {
3633 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3634 send_ack:
3635 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3636 		tcp_send_ack(sk);
3637 	}
3638 }
3639 
3640 static void tcp_store_ts_recent(struct tcp_sock *tp)
3641 {
3642 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3643 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3644 }
3645 
3646 static int __tcp_replace_ts_recent(struct tcp_sock *tp, s32 tstamp_delta)
3647 {
3648 	tcp_store_ts_recent(tp);
3649 	return tstamp_delta > 0 ? FLAG_TS_PROGRESS : 0;
3650 }
3651 
3652 static int tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3653 {
3654 	s32 delta;
3655 
3656 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3657 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3658 		 * extra check below makes sure this can only happen
3659 		 * for pure ACK frames.  -DaveM
3660 		 *
3661 		 * Not only, also it occurs for expired timestamps.
3662 		 */
3663 
3664 		if (tcp_paws_check(&tp->rx_opt, 0)) {
3665 			delta = tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent;
3666 			return __tcp_replace_ts_recent(tp, delta);
3667 		}
3668 	}
3669 
3670 	return 0;
3671 }
3672 
3673 /* This routine deals with acks during a TLP episode and ends an episode by
3674  * resetting tlp_high_seq. Ref: TLP algorithm in RFC8985
3675  */
3676 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3677 {
3678 	struct tcp_sock *tp = tcp_sk(sk);
3679 
3680 	if (before(ack, tp->tlp_high_seq))
3681 		return;
3682 
3683 	if (!tp->tlp_retrans) {
3684 		/* TLP of new data has been acknowledged */
3685 		tp->tlp_high_seq = 0;
3686 	} else if (flag & FLAG_DSACK_TLP) {
3687 		/* This DSACK means original and TLP probe arrived; no loss */
3688 		tp->tlp_high_seq = 0;
3689 	} else if (after(ack, tp->tlp_high_seq)) {
3690 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3691 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3692 		 */
3693 		tcp_init_cwnd_reduction(sk);
3694 		tcp_set_ca_state(sk, TCP_CA_CWR);
3695 		tcp_end_cwnd_reduction(sk);
3696 		tcp_try_keep_open(sk);
3697 		NET_INC_STATS(sock_net(sk),
3698 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3699 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3700 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3701 		/* Pure dupack: original and TLP probe arrived; no loss */
3702 		tp->tlp_high_seq = 0;
3703 	}
3704 }
3705 
3706 static void tcp_in_ack_event(struct sock *sk, int flag)
3707 {
3708 	const struct inet_connection_sock *icsk = inet_csk(sk);
3709 
3710 	if (icsk->icsk_ca_ops->in_ack_event) {
3711 		u32 ack_ev_flags = 0;
3712 
3713 		if (flag & FLAG_WIN_UPDATE)
3714 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3715 		if (flag & FLAG_SLOWPATH) {
3716 			ack_ev_flags |= CA_ACK_SLOWPATH;
3717 			if (flag & FLAG_ECE)
3718 				ack_ev_flags |= CA_ACK_ECE;
3719 		}
3720 
3721 		icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags);
3722 	}
3723 }
3724 
3725 /* Congestion control has updated the cwnd already. So if we're in
3726  * loss recovery then now we do any new sends (for FRTO) or
3727  * retransmits (for CA_Loss or CA_recovery) that make sense.
3728  */
3729 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3730 {
3731 	struct tcp_sock *tp = tcp_sk(sk);
3732 
3733 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3734 		return;
3735 
3736 	if (unlikely(rexmit == REXMIT_NEW)) {
3737 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3738 					  TCP_NAGLE_OFF);
3739 		if (after(tp->snd_nxt, tp->high_seq))
3740 			return;
3741 		tp->frto = 0;
3742 	}
3743 	tcp_xmit_retransmit_queue(sk);
3744 }
3745 
3746 /* Returns the number of packets newly acked or sacked by the current ACK */
3747 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3748 {
3749 	const struct net *net = sock_net(sk);
3750 	struct tcp_sock *tp = tcp_sk(sk);
3751 	u32 delivered;
3752 
3753 	delivered = tp->delivered - prior_delivered;
3754 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3755 	if (flag & FLAG_ECE)
3756 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3757 
3758 	return delivered;
3759 }
3760 
3761 /* This routine deals with incoming acks, but not outgoing ones. */
3762 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3763 {
3764 	struct inet_connection_sock *icsk = inet_csk(sk);
3765 	struct tcp_sock *tp = tcp_sk(sk);
3766 	struct tcp_sacktag_state sack_state;
3767 	struct rate_sample rs = { .prior_delivered = 0 };
3768 	u32 prior_snd_una = tp->snd_una;
3769 	bool is_sack_reneg = tp->is_sack_reneg;
3770 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3771 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3772 	int num_dupack = 0;
3773 	int prior_packets = tp->packets_out;
3774 	u32 delivered = tp->delivered;
3775 	u32 lost = tp->lost;
3776 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3777 	u32 prior_fack;
3778 
3779 	sack_state.first_sackt = 0;
3780 	sack_state.rate = &rs;
3781 	sack_state.sack_delivered = 0;
3782 
3783 	/* We very likely will need to access rtx queue. */
3784 	prefetch(sk->tcp_rtx_queue.rb_node);
3785 
3786 	/* If the ack is older than previous acks
3787 	 * then we can probably ignore it.
3788 	 */
3789 	if (before(ack, prior_snd_una)) {
3790 		u32 max_window;
3791 
3792 		/* do not accept ACK for bytes we never sent. */
3793 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3794 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3795 		if (before(ack, prior_snd_una - max_window)) {
3796 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3797 				tcp_send_challenge_ack(sk);
3798 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3799 		}
3800 		goto old_ack;
3801 	}
3802 
3803 	/* If the ack includes data we haven't sent yet, discard
3804 	 * this segment (RFC793 Section 3.9).
3805 	 */
3806 	if (after(ack, tp->snd_nxt))
3807 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3808 
3809 	if (after(ack, prior_snd_una)) {
3810 		flag |= FLAG_SND_UNA_ADVANCED;
3811 		WRITE_ONCE(icsk->icsk_retransmits, 0);
3812 
3813 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3814 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3815 			if (tp->tcp_clean_acked)
3816 				tp->tcp_clean_acked(sk, ack);
3817 #endif
3818 	}
3819 
3820 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3821 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3822 
3823 	/* ts_recent update must be made after we are sure that the packet
3824 	 * is in window.
3825 	 */
3826 	if (flag & FLAG_UPDATE_TS_RECENT)
3827 		flag |= tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3828 
3829 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3830 	    FLAG_SND_UNA_ADVANCED) {
3831 		/* Window is constant, pure forward advance.
3832 		 * No more checks are required.
3833 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3834 		 */
3835 		tcp_update_wl(tp, ack_seq);
3836 		tcp_snd_una_update(tp, ack);
3837 		flag |= FLAG_WIN_UPDATE;
3838 
3839 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3840 	} else {
3841 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3842 			flag |= FLAG_DATA;
3843 		else
3844 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3845 
3846 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3847 
3848 		if (TCP_SKB_CB(skb)->sacked)
3849 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3850 							&sack_state);
3851 
3852 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb)))
3853 			flag |= FLAG_ECE;
3854 
3855 		if (sack_state.sack_delivered)
3856 			tcp_count_delivered(tp, sack_state.sack_delivered,
3857 					    flag & FLAG_ECE);
3858 	}
3859 
3860 	/* This is a deviation from RFC3168 since it states that:
3861 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3862 	 * the congestion window, it SHOULD set the CWR bit only on the first
3863 	 * new data packet that it transmits."
3864 	 * We accept CWR on pure ACKs to be more robust
3865 	 * with widely-deployed TCP implementations that do this.
3866 	 */
3867 	tcp_ecn_accept_cwr(sk, skb);
3868 
3869 	/* We passed data and got it acked, remove any soft error
3870 	 * log. Something worked...
3871 	 */
3872 	WRITE_ONCE(sk->sk_err_soft, 0);
3873 	WRITE_ONCE(icsk->icsk_probes_out, 0);
3874 	tp->rcv_tstamp = tcp_jiffies32;
3875 	if (!prior_packets)
3876 		goto no_queue;
3877 
3878 	/* See if we can take anything off of the retransmit queue. */
3879 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3880 				    &sack_state, flag & FLAG_ECE);
3881 
3882 	tcp_rack_update_reo_wnd(sk, &rs);
3883 
3884 	tcp_in_ack_event(sk, flag);
3885 
3886 	if (tp->tlp_high_seq)
3887 		tcp_process_tlp_ack(sk, ack, flag);
3888 
3889 	if (tcp_ack_is_dubious(sk, flag)) {
3890 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3891 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3892 			num_dupack = 1;
3893 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3894 			if (!(flag & FLAG_DATA))
3895 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3896 		}
3897 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3898 				      &rexmit);
3899 	}
3900 
3901 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3902 	if (flag & FLAG_SET_XMIT_TIMER)
3903 		tcp_set_xmit_timer(sk);
3904 
3905 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3906 		sk_dst_confirm(sk);
3907 
3908 	delivered = tcp_newly_delivered(sk, delivered, flag);
3909 	lost = tp->lost - lost;			/* freshly marked lost */
3910 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3911 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3912 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3913 	tcp_xmit_recovery(sk, rexmit);
3914 	return 1;
3915 
3916 no_queue:
3917 	tcp_in_ack_event(sk, flag);
3918 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3919 	if (flag & FLAG_DSACKING_ACK) {
3920 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3921 				      &rexmit);
3922 		tcp_newly_delivered(sk, delivered, flag);
3923 	}
3924 	/* If this ack opens up a zero window, clear backoff.  It was
3925 	 * being used to time the probes, and is probably far higher than
3926 	 * it needs to be for normal retransmission.
3927 	 */
3928 	tcp_ack_probe(sk);
3929 
3930 	if (tp->tlp_high_seq)
3931 		tcp_process_tlp_ack(sk, ack, flag);
3932 	return 1;
3933 
3934 old_ack:
3935 	/* If data was SACKed, tag it and see if we should send more data.
3936 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3937 	 */
3938 	if (TCP_SKB_CB(skb)->sacked) {
3939 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3940 						&sack_state);
3941 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3942 				      &rexmit);
3943 		tcp_newly_delivered(sk, delivered, flag);
3944 		tcp_xmit_recovery(sk, rexmit);
3945 	}
3946 
3947 	return 0;
3948 }
3949 
3950 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3951 				      bool syn, struct tcp_fastopen_cookie *foc,
3952 				      bool exp_opt)
3953 {
3954 	/* Valid only in SYN or SYN-ACK with an even length.  */
3955 	if (!foc || !syn || len < 0 || (len & 1))
3956 		return;
3957 
3958 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3959 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3960 		memcpy(foc->val, cookie, len);
3961 	else if (len != 0)
3962 		len = -1;
3963 	foc->len = len;
3964 	foc->exp = exp_opt;
3965 }
3966 
3967 static bool smc_parse_options(const struct tcphdr *th,
3968 			      struct tcp_options_received *opt_rx,
3969 			      const unsigned char *ptr,
3970 			      int opsize)
3971 {
3972 #if IS_ENABLED(CONFIG_SMC)
3973 	if (static_branch_unlikely(&tcp_have_smc)) {
3974 		if (th->syn && !(opsize & 1) &&
3975 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3976 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3977 			opt_rx->smc_ok = 1;
3978 			return true;
3979 		}
3980 	}
3981 #endif
3982 	return false;
3983 }
3984 
3985 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3986  * value on success.
3987  */
3988 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3989 {
3990 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3991 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3992 	u16 mss = 0;
3993 
3994 	while (length > 0) {
3995 		int opcode = *ptr++;
3996 		int opsize;
3997 
3998 		switch (opcode) {
3999 		case TCPOPT_EOL:
4000 			return mss;
4001 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4002 			length--;
4003 			continue;
4004 		default:
4005 			if (length < 2)
4006 				return mss;
4007 			opsize = *ptr++;
4008 			if (opsize < 2) /* "silly options" */
4009 				return mss;
4010 			if (opsize > length)
4011 				return mss;	/* fail on partial options */
4012 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4013 				u16 in_mss = get_unaligned_be16(ptr);
4014 
4015 				if (in_mss) {
4016 					if (user_mss && user_mss < in_mss)
4017 						in_mss = user_mss;
4018 					mss = in_mss;
4019 				}
4020 			}
4021 			ptr += opsize - 2;
4022 			length -= opsize;
4023 		}
4024 	}
4025 	return mss;
4026 }
4027 
4028 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4029  * But, this can also be called on packets in the established flow when
4030  * the fast version below fails.
4031  */
4032 void tcp_parse_options(const struct net *net,
4033 		       const struct sk_buff *skb,
4034 		       struct tcp_options_received *opt_rx, int estab,
4035 		       struct tcp_fastopen_cookie *foc)
4036 {
4037 	const unsigned char *ptr;
4038 	const struct tcphdr *th = tcp_hdr(skb);
4039 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4040 
4041 	ptr = (const unsigned char *)(th + 1);
4042 	opt_rx->saw_tstamp = 0;
4043 	opt_rx->saw_unknown = 0;
4044 
4045 	while (length > 0) {
4046 		int opcode = *ptr++;
4047 		int opsize;
4048 
4049 		switch (opcode) {
4050 		case TCPOPT_EOL:
4051 			return;
4052 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4053 			length--;
4054 			continue;
4055 		default:
4056 			if (length < 2)
4057 				return;
4058 			opsize = *ptr++;
4059 			if (opsize < 2) /* "silly options" */
4060 				return;
4061 			if (opsize > length)
4062 				return;	/* don't parse partial options */
4063 			switch (opcode) {
4064 			case TCPOPT_MSS:
4065 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4066 					u16 in_mss = get_unaligned_be16(ptr);
4067 					if (in_mss) {
4068 						if (opt_rx->user_mss &&
4069 						    opt_rx->user_mss < in_mss)
4070 							in_mss = opt_rx->user_mss;
4071 						opt_rx->mss_clamp = in_mss;
4072 					}
4073 				}
4074 				break;
4075 			case TCPOPT_WINDOW:
4076 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4077 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4078 					__u8 snd_wscale = *(__u8 *)ptr;
4079 					opt_rx->wscale_ok = 1;
4080 					if (snd_wscale > TCP_MAX_WSCALE) {
4081 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4082 								     __func__,
4083 								     snd_wscale,
4084 								     TCP_MAX_WSCALE);
4085 						snd_wscale = TCP_MAX_WSCALE;
4086 					}
4087 					opt_rx->snd_wscale = snd_wscale;
4088 				}
4089 				break;
4090 			case TCPOPT_TIMESTAMP:
4091 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4092 				    ((estab && opt_rx->tstamp_ok) ||
4093 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4094 					opt_rx->saw_tstamp = 1;
4095 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4096 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4097 				}
4098 				break;
4099 			case TCPOPT_SACK_PERM:
4100 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4101 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4102 					opt_rx->sack_ok = TCP_SACK_SEEN;
4103 					tcp_sack_reset(opt_rx);
4104 				}
4105 				break;
4106 
4107 			case TCPOPT_SACK:
4108 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4109 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4110 				   opt_rx->sack_ok) {
4111 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4112 				}
4113 				break;
4114 #ifdef CONFIG_TCP_MD5SIG
4115 			case TCPOPT_MD5SIG:
4116 				/* The MD5 Hash has already been
4117 				 * checked (see tcp_v{4,6}_rcv()).
4118 				 */
4119 				break;
4120 #endif
4121 #ifdef CONFIG_TCP_AO
4122 			case TCPOPT_AO:
4123 				/* TCP AO has already been checked
4124 				 * (see tcp_inbound_ao_hash()).
4125 				 */
4126 				break;
4127 #endif
4128 			case TCPOPT_FASTOPEN:
4129 				tcp_parse_fastopen_option(
4130 					opsize - TCPOLEN_FASTOPEN_BASE,
4131 					ptr, th->syn, foc, false);
4132 				break;
4133 
4134 			case TCPOPT_EXP:
4135 				/* Fast Open option shares code 254 using a
4136 				 * 16 bits magic number.
4137 				 */
4138 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4139 				    get_unaligned_be16(ptr) ==
4140 				    TCPOPT_FASTOPEN_MAGIC) {
4141 					tcp_parse_fastopen_option(opsize -
4142 						TCPOLEN_EXP_FASTOPEN_BASE,
4143 						ptr + 2, th->syn, foc, true);
4144 					break;
4145 				}
4146 
4147 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4148 					break;
4149 
4150 				opt_rx->saw_unknown = 1;
4151 				break;
4152 
4153 			default:
4154 				opt_rx->saw_unknown = 1;
4155 			}
4156 			ptr += opsize-2;
4157 			length -= opsize;
4158 		}
4159 	}
4160 }
4161 EXPORT_SYMBOL(tcp_parse_options);
4162 
4163 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4164 {
4165 	const __be32 *ptr = (const __be32 *)(th + 1);
4166 
4167 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4168 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4169 		tp->rx_opt.saw_tstamp = 1;
4170 		++ptr;
4171 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4172 		++ptr;
4173 		if (*ptr)
4174 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4175 		else
4176 			tp->rx_opt.rcv_tsecr = 0;
4177 		return true;
4178 	}
4179 	return false;
4180 }
4181 
4182 /* Fast parse options. This hopes to only see timestamps.
4183  * If it is wrong it falls back on tcp_parse_options().
4184  */
4185 static bool tcp_fast_parse_options(const struct net *net,
4186 				   const struct sk_buff *skb,
4187 				   const struct tcphdr *th, struct tcp_sock *tp)
4188 {
4189 	/* In the spirit of fast parsing, compare doff directly to constant
4190 	 * values.  Because equality is used, short doff can be ignored here.
4191 	 */
4192 	if (th->doff == (sizeof(*th) / 4)) {
4193 		tp->rx_opt.saw_tstamp = 0;
4194 		return false;
4195 	} else if (tp->rx_opt.tstamp_ok &&
4196 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4197 		if (tcp_parse_aligned_timestamp(tp, th))
4198 			return true;
4199 	}
4200 
4201 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4202 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4203 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4204 
4205 	return true;
4206 }
4207 
4208 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4209 /*
4210  * Parse Signature options
4211  */
4212 int tcp_do_parse_auth_options(const struct tcphdr *th,
4213 			      const u8 **md5_hash, const u8 **ao_hash)
4214 {
4215 	int length = (th->doff << 2) - sizeof(*th);
4216 	const u8 *ptr = (const u8 *)(th + 1);
4217 	unsigned int minlen = TCPOLEN_MD5SIG;
4218 
4219 	if (IS_ENABLED(CONFIG_TCP_AO))
4220 		minlen = sizeof(struct tcp_ao_hdr) + 1;
4221 
4222 	*md5_hash = NULL;
4223 	*ao_hash = NULL;
4224 
4225 	/* If not enough data remaining, we can short cut */
4226 	while (length >= minlen) {
4227 		int opcode = *ptr++;
4228 		int opsize;
4229 
4230 		switch (opcode) {
4231 		case TCPOPT_EOL:
4232 			return 0;
4233 		case TCPOPT_NOP:
4234 			length--;
4235 			continue;
4236 		default:
4237 			opsize = *ptr++;
4238 			if (opsize < 2 || opsize > length)
4239 				return -EINVAL;
4240 			if (opcode == TCPOPT_MD5SIG) {
4241 				if (opsize != TCPOLEN_MD5SIG)
4242 					return -EINVAL;
4243 				if (unlikely(*md5_hash || *ao_hash))
4244 					return -EEXIST;
4245 				*md5_hash = ptr;
4246 			} else if (opcode == TCPOPT_AO) {
4247 				if (opsize <= sizeof(struct tcp_ao_hdr))
4248 					return -EINVAL;
4249 				if (unlikely(*md5_hash || *ao_hash))
4250 					return -EEXIST;
4251 				*ao_hash = ptr;
4252 			}
4253 		}
4254 		ptr += opsize - 2;
4255 		length -= opsize;
4256 	}
4257 	return 0;
4258 }
4259 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4260 #endif
4261 
4262 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4263  *
4264  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4265  * it can pass through stack. So, the following predicate verifies that
4266  * this segment is not used for anything but congestion avoidance or
4267  * fast retransmit. Moreover, we even are able to eliminate most of such
4268  * second order effects, if we apply some small "replay" window (~RTO)
4269  * to timestamp space.
4270  *
4271  * All these measures still do not guarantee that we reject wrapped ACKs
4272  * on networks with high bandwidth, when sequence space is recycled fastly,
4273  * but it guarantees that such events will be very rare and do not affect
4274  * connection seriously. This doesn't look nice, but alas, PAWS is really
4275  * buggy extension.
4276  *
4277  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4278  * states that events when retransmit arrives after original data are rare.
4279  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4280  * the biggest problem on large power networks even with minor reordering.
4281  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4282  * up to bandwidth of 18Gigabit/sec. 8) ]
4283  */
4284 
4285 /* Estimates max number of increments of remote peer TSval in
4286  * a replay window (based on our current RTO estimation).
4287  */
4288 static u32 tcp_tsval_replay(const struct sock *sk)
4289 {
4290 	/* If we use usec TS resolution,
4291 	 * then expect the remote peer to use the same resolution.
4292 	 */
4293 	if (tcp_sk(sk)->tcp_usec_ts)
4294 		return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4295 
4296 	/* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4297 	 * We know that some OS (including old linux) can use 1200 Hz.
4298 	 */
4299 	return inet_csk(sk)->icsk_rto * 1200 / HZ;
4300 }
4301 
4302 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk,
4303 						     const struct sk_buff *skb)
4304 {
4305 	const struct tcp_sock *tp = tcp_sk(sk);
4306 	const struct tcphdr *th = tcp_hdr(skb);
4307 	SKB_DR_INIT(reason, TCP_RFC7323_PAWS);
4308 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4309 	u32 seq = TCP_SKB_CB(skb)->seq;
4310 
4311 	/* 1. Is this not a pure ACK ? */
4312 	if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq)
4313 		return reason;
4314 
4315 	/* 2. Is its sequence not the expected one ? */
4316 	if (seq != tp->rcv_nxt)
4317 		return before(seq, tp->rcv_nxt) ?
4318 			SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK :
4319 			reason;
4320 
4321 	/* 3. Is this not a duplicate ACK ? */
4322 	if (ack != tp->snd_una)
4323 		return reason;
4324 
4325 	/* 4. Is this updating the window ? */
4326 	if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) <<
4327 						tp->rx_opt.snd_wscale))
4328 		return reason;
4329 
4330 	/* 5. Is this not in the replay window ? */
4331 	if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) >
4332 	    tcp_tsval_replay(sk))
4333 		return reason;
4334 
4335 	return 0;
4336 }
4337 
4338 /* Check segment sequence number for validity.
4339  *
4340  * Segment controls are considered valid, if the segment
4341  * fits to the window after truncation to the window. Acceptability
4342  * of data (and SYN, FIN, of course) is checked separately.
4343  * See tcp_data_queue(), for example.
4344  *
4345  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4346  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4347  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4348  * (borrowed from freebsd)
4349  */
4350 
4351 static enum skb_drop_reason tcp_sequence(const struct sock *sk,
4352 					 u32 seq, u32 end_seq)
4353 {
4354 	const struct tcp_sock *tp = tcp_sk(sk);
4355 
4356 	if (before(end_seq, tp->rcv_wup))
4357 		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4358 
4359 	if (after(end_seq, tp->rcv_nxt + tcp_receive_window(tp))) {
4360 		if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4361 			return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4362 
4363 		/* Only accept this packet if receive queue is empty. */
4364 		if (skb_queue_len(&sk->sk_receive_queue))
4365 			return SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE;
4366 	}
4367 
4368 	return SKB_NOT_DROPPED_YET;
4369 }
4370 
4371 
4372 void tcp_done_with_error(struct sock *sk, int err)
4373 {
4374 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4375 	WRITE_ONCE(sk->sk_err, err);
4376 	smp_wmb();
4377 
4378 	tcp_write_queue_purge(sk);
4379 	tcp_done(sk);
4380 
4381 	if (!sock_flag(sk, SOCK_DEAD))
4382 		sk_error_report(sk);
4383 }
4384 EXPORT_IPV6_MOD(tcp_done_with_error);
4385 
4386 /* When we get a reset we do this. */
4387 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4388 {
4389 	int err;
4390 
4391 	trace_tcp_receive_reset(sk);
4392 
4393 	/* mptcp can't tell us to ignore reset pkts,
4394 	 * so just ignore the return value of mptcp_incoming_options().
4395 	 */
4396 	if (sk_is_mptcp(sk))
4397 		mptcp_incoming_options(sk, skb);
4398 
4399 	/* We want the right error as BSD sees it (and indeed as we do). */
4400 	switch (sk->sk_state) {
4401 	case TCP_SYN_SENT:
4402 		err = ECONNREFUSED;
4403 		break;
4404 	case TCP_CLOSE_WAIT:
4405 		err = EPIPE;
4406 		break;
4407 	case TCP_CLOSE:
4408 		return;
4409 	default:
4410 		err = ECONNRESET;
4411 	}
4412 	tcp_done_with_error(sk, err);
4413 }
4414 
4415 /*
4416  * 	Process the FIN bit. This now behaves as it is supposed to work
4417  *	and the FIN takes effect when it is validly part of sequence
4418  *	space. Not before when we get holes.
4419  *
4420  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4421  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4422  *	TIME-WAIT)
4423  *
4424  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4425  *	close and we go into CLOSING (and later onto TIME-WAIT)
4426  *
4427  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4428  */
4429 void tcp_fin(struct sock *sk)
4430 {
4431 	struct tcp_sock *tp = tcp_sk(sk);
4432 
4433 	inet_csk_schedule_ack(sk);
4434 
4435 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4436 	sock_set_flag(sk, SOCK_DONE);
4437 
4438 	switch (sk->sk_state) {
4439 	case TCP_SYN_RECV:
4440 	case TCP_ESTABLISHED:
4441 		/* Move to CLOSE_WAIT */
4442 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4443 		inet_csk_enter_pingpong_mode(sk);
4444 		break;
4445 
4446 	case TCP_CLOSE_WAIT:
4447 	case TCP_CLOSING:
4448 		/* Received a retransmission of the FIN, do
4449 		 * nothing.
4450 		 */
4451 		break;
4452 	case TCP_LAST_ACK:
4453 		/* RFC793: Remain in the LAST-ACK state. */
4454 		break;
4455 
4456 	case TCP_FIN_WAIT1:
4457 		/* This case occurs when a simultaneous close
4458 		 * happens, we must ack the received FIN and
4459 		 * enter the CLOSING state.
4460 		 */
4461 		tcp_send_ack(sk);
4462 		tcp_set_state(sk, TCP_CLOSING);
4463 		break;
4464 	case TCP_FIN_WAIT2:
4465 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4466 		tcp_send_ack(sk);
4467 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4468 		break;
4469 	default:
4470 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4471 		 * cases we should never reach this piece of code.
4472 		 */
4473 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4474 		       __func__, sk->sk_state);
4475 		break;
4476 	}
4477 
4478 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4479 	 * Probably, we should reset in this case. For now drop them.
4480 	 */
4481 	skb_rbtree_purge(&tp->out_of_order_queue);
4482 	if (tcp_is_sack(tp))
4483 		tcp_sack_reset(&tp->rx_opt);
4484 
4485 	if (!sock_flag(sk, SOCK_DEAD)) {
4486 		sk->sk_state_change(sk);
4487 
4488 		/* Do not send POLL_HUP for half duplex close. */
4489 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4490 		    sk->sk_state == TCP_CLOSE)
4491 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4492 		else
4493 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4494 	}
4495 }
4496 
4497 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4498 				  u32 end_seq)
4499 {
4500 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4501 		if (before(seq, sp->start_seq))
4502 			sp->start_seq = seq;
4503 		if (after(end_seq, sp->end_seq))
4504 			sp->end_seq = end_seq;
4505 		return true;
4506 	}
4507 	return false;
4508 }
4509 
4510 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4511 {
4512 	struct tcp_sock *tp = tcp_sk(sk);
4513 
4514 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4515 		int mib_idx;
4516 
4517 		if (before(seq, tp->rcv_nxt))
4518 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4519 		else
4520 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4521 
4522 		NET_INC_STATS(sock_net(sk), mib_idx);
4523 
4524 		tp->rx_opt.dsack = 1;
4525 		tp->duplicate_sack[0].start_seq = seq;
4526 		tp->duplicate_sack[0].end_seq = end_seq;
4527 	}
4528 }
4529 
4530 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4531 {
4532 	struct tcp_sock *tp = tcp_sk(sk);
4533 
4534 	if (!tp->rx_opt.dsack)
4535 		tcp_dsack_set(sk, seq, end_seq);
4536 	else
4537 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4538 }
4539 
4540 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4541 {
4542 	/* When the ACK path fails or drops most ACKs, the sender would
4543 	 * timeout and spuriously retransmit the same segment repeatedly.
4544 	 * If it seems our ACKs are not reaching the other side,
4545 	 * based on receiving a duplicate data segment with new flowlabel
4546 	 * (suggesting the sender suffered an RTO), and we are not already
4547 	 * repathing due to our own RTO, then rehash the socket to repath our
4548 	 * packets.
4549 	 */
4550 #if IS_ENABLED(CONFIG_IPV6)
4551 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4552 	    skb->protocol == htons(ETH_P_IPV6) &&
4553 	    (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4554 	     ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4555 	    sk_rethink_txhash(sk))
4556 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4557 
4558 	/* Save last flowlabel after a spurious retrans. */
4559 	tcp_save_lrcv_flowlabel(sk, skb);
4560 #endif
4561 }
4562 
4563 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4564 {
4565 	struct tcp_sock *tp = tcp_sk(sk);
4566 
4567 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4568 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4569 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4570 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4571 
4572 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4573 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4574 
4575 			tcp_rcv_spurious_retrans(sk, skb);
4576 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4577 				end_seq = tp->rcv_nxt;
4578 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4579 		}
4580 	}
4581 
4582 	tcp_send_ack(sk);
4583 }
4584 
4585 /* These routines update the SACK block as out-of-order packets arrive or
4586  * in-order packets close up the sequence space.
4587  */
4588 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4589 {
4590 	int this_sack;
4591 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4592 	struct tcp_sack_block *swalk = sp + 1;
4593 
4594 	/* See if the recent change to the first SACK eats into
4595 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4596 	 */
4597 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4598 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4599 			int i;
4600 
4601 			/* Zap SWALK, by moving every further SACK up by one slot.
4602 			 * Decrease num_sacks.
4603 			 */
4604 			tp->rx_opt.num_sacks--;
4605 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4606 				sp[i] = sp[i + 1];
4607 			continue;
4608 		}
4609 		this_sack++;
4610 		swalk++;
4611 	}
4612 }
4613 
4614 void tcp_sack_compress_send_ack(struct sock *sk)
4615 {
4616 	struct tcp_sock *tp = tcp_sk(sk);
4617 
4618 	if (!tp->compressed_ack)
4619 		return;
4620 
4621 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4622 		__sock_put(sk);
4623 
4624 	/* Since we have to send one ack finally,
4625 	 * substract one from tp->compressed_ack to keep
4626 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4627 	 */
4628 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4629 		      tp->compressed_ack - 1);
4630 
4631 	tp->compressed_ack = 0;
4632 	tcp_send_ack(sk);
4633 }
4634 
4635 /* Reasonable amount of sack blocks included in TCP SACK option
4636  * The max is 4, but this becomes 3 if TCP timestamps are there.
4637  * Given that SACK packets might be lost, be conservative and use 2.
4638  */
4639 #define TCP_SACK_BLOCKS_EXPECTED 2
4640 
4641 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4642 {
4643 	struct tcp_sock *tp = tcp_sk(sk);
4644 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4645 	int cur_sacks = tp->rx_opt.num_sacks;
4646 	int this_sack;
4647 
4648 	if (!cur_sacks)
4649 		goto new_sack;
4650 
4651 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4652 		if (tcp_sack_extend(sp, seq, end_seq)) {
4653 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4654 				tcp_sack_compress_send_ack(sk);
4655 			/* Rotate this_sack to the first one. */
4656 			for (; this_sack > 0; this_sack--, sp--)
4657 				swap(*sp, *(sp - 1));
4658 			if (cur_sacks > 1)
4659 				tcp_sack_maybe_coalesce(tp);
4660 			return;
4661 		}
4662 	}
4663 
4664 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4665 		tcp_sack_compress_send_ack(sk);
4666 
4667 	/* Could not find an adjacent existing SACK, build a new one,
4668 	 * put it at the front, and shift everyone else down.  We
4669 	 * always know there is at least one SACK present already here.
4670 	 *
4671 	 * If the sack array is full, forget about the last one.
4672 	 */
4673 	if (this_sack >= TCP_NUM_SACKS) {
4674 		this_sack--;
4675 		tp->rx_opt.num_sacks--;
4676 		sp--;
4677 	}
4678 	for (; this_sack > 0; this_sack--, sp--)
4679 		*sp = *(sp - 1);
4680 
4681 new_sack:
4682 	/* Build the new head SACK, and we're done. */
4683 	sp->start_seq = seq;
4684 	sp->end_seq = end_seq;
4685 	tp->rx_opt.num_sacks++;
4686 }
4687 
4688 /* RCV.NXT advances, some SACKs should be eaten. */
4689 
4690 static void tcp_sack_remove(struct tcp_sock *tp)
4691 {
4692 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4693 	int num_sacks = tp->rx_opt.num_sacks;
4694 	int this_sack;
4695 
4696 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4697 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4698 		tp->rx_opt.num_sacks = 0;
4699 		return;
4700 	}
4701 
4702 	for (this_sack = 0; this_sack < num_sacks;) {
4703 		/* Check if the start of the sack is covered by RCV.NXT. */
4704 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4705 			int i;
4706 
4707 			/* RCV.NXT must cover all the block! */
4708 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4709 
4710 			/* Zap this SACK, by moving forward any other SACKS. */
4711 			for (i = this_sack+1; i < num_sacks; i++)
4712 				tp->selective_acks[i-1] = tp->selective_acks[i];
4713 			num_sacks--;
4714 			continue;
4715 		}
4716 		this_sack++;
4717 		sp++;
4718 	}
4719 	tp->rx_opt.num_sacks = num_sacks;
4720 }
4721 
4722 /**
4723  * tcp_try_coalesce - try to merge skb to prior one
4724  * @sk: socket
4725  * @to: prior buffer
4726  * @from: buffer to add in queue
4727  * @fragstolen: pointer to boolean
4728  *
4729  * Before queueing skb @from after @to, try to merge them
4730  * to reduce overall memory use and queue lengths, if cost is small.
4731  * Packets in ofo or receive queues can stay a long time.
4732  * Better try to coalesce them right now to avoid future collapses.
4733  * Returns true if caller should free @from instead of queueing it
4734  */
4735 static bool tcp_try_coalesce(struct sock *sk,
4736 			     struct sk_buff *to,
4737 			     struct sk_buff *from,
4738 			     bool *fragstolen)
4739 {
4740 	int delta;
4741 
4742 	*fragstolen = false;
4743 
4744 	/* Its possible this segment overlaps with prior segment in queue */
4745 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4746 		return false;
4747 
4748 	if (!tcp_skb_can_collapse_rx(to, from))
4749 		return false;
4750 
4751 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4752 		return false;
4753 
4754 	atomic_add(delta, &sk->sk_rmem_alloc);
4755 	sk_mem_charge(sk, delta);
4756 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4757 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4758 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4759 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4760 
4761 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4762 		TCP_SKB_CB(to)->has_rxtstamp = true;
4763 		to->tstamp = from->tstamp;
4764 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4765 	}
4766 
4767 	return true;
4768 }
4769 
4770 static bool tcp_ooo_try_coalesce(struct sock *sk,
4771 			     struct sk_buff *to,
4772 			     struct sk_buff *from,
4773 			     bool *fragstolen)
4774 {
4775 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4776 
4777 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4778 	if (res) {
4779 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4780 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4781 
4782 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4783 	}
4784 	return res;
4785 }
4786 
4787 noinline_for_tracing static void
4788 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
4789 {
4790 	sk_drops_skbadd(sk, skb);
4791 	sk_skb_reason_drop(sk, skb, reason);
4792 }
4793 
4794 /* This one checks to see if we can put data from the
4795  * out_of_order queue into the receive_queue.
4796  */
4797 static void tcp_ofo_queue(struct sock *sk)
4798 {
4799 	struct tcp_sock *tp = tcp_sk(sk);
4800 	__u32 dsack_high = tp->rcv_nxt;
4801 	bool fin, fragstolen, eaten;
4802 	struct sk_buff *skb, *tail;
4803 	struct rb_node *p;
4804 
4805 	p = rb_first(&tp->out_of_order_queue);
4806 	while (p) {
4807 		skb = rb_to_skb(p);
4808 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4809 			break;
4810 
4811 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4812 			__u32 dsack = dsack_high;
4813 
4814 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4815 				dsack = TCP_SKB_CB(skb)->end_seq;
4816 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4817 		}
4818 		p = rb_next(p);
4819 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4820 
4821 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4822 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4823 			continue;
4824 		}
4825 
4826 		tail = skb_peek_tail(&sk->sk_receive_queue);
4827 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4828 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4829 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4830 		if (!eaten)
4831 			tcp_add_receive_queue(sk, skb);
4832 		else
4833 			kfree_skb_partial(skb, fragstolen);
4834 
4835 		if (unlikely(fin)) {
4836 			tcp_fin(sk);
4837 			/* tcp_fin() purges tp->out_of_order_queue,
4838 			 * so we must end this loop right now.
4839 			 */
4840 			break;
4841 		}
4842 	}
4843 }
4844 
4845 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4846 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4847 
4848 /* Check if this incoming skb can be added to socket receive queues
4849  * while satisfying sk->sk_rcvbuf limit.
4850  */
4851 static bool tcp_can_ingest(const struct sock *sk, const struct sk_buff *skb)
4852 {
4853 	unsigned int new_mem = atomic_read(&sk->sk_rmem_alloc) + skb->truesize;
4854 
4855 	return new_mem <= sk->sk_rcvbuf;
4856 }
4857 
4858 static int tcp_try_rmem_schedule(struct sock *sk, const struct sk_buff *skb,
4859 				 unsigned int size)
4860 {
4861 	if (!tcp_can_ingest(sk, skb) ||
4862 	    !sk_rmem_schedule(sk, skb, size)) {
4863 
4864 		if (tcp_prune_queue(sk, skb) < 0)
4865 			return -1;
4866 
4867 		while (!sk_rmem_schedule(sk, skb, size)) {
4868 			if (!tcp_prune_ofo_queue(sk, skb))
4869 				return -1;
4870 		}
4871 	}
4872 	return 0;
4873 }
4874 
4875 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4876 {
4877 	struct tcp_sock *tp = tcp_sk(sk);
4878 	struct rb_node **p, *parent;
4879 	struct sk_buff *skb1;
4880 	u32 seq, end_seq;
4881 	bool fragstolen;
4882 
4883 	tcp_save_lrcv_flowlabel(sk, skb);
4884 	tcp_data_ecn_check(sk, skb);
4885 
4886 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4887 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4888 		sk->sk_data_ready(sk);
4889 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4890 		return;
4891 	}
4892 
4893 	tcp_measure_rcv_mss(sk, skb);
4894 	/* Disable header prediction. */
4895 	tp->pred_flags = 0;
4896 	inet_csk_schedule_ack(sk);
4897 
4898 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4899 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4900 	seq = TCP_SKB_CB(skb)->seq;
4901 	end_seq = TCP_SKB_CB(skb)->end_seq;
4902 
4903 	p = &tp->out_of_order_queue.rb_node;
4904 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4905 		/* Initial out of order segment, build 1 SACK. */
4906 		if (tcp_is_sack(tp)) {
4907 			tp->rx_opt.num_sacks = 1;
4908 			tp->selective_acks[0].start_seq = seq;
4909 			tp->selective_acks[0].end_seq = end_seq;
4910 		}
4911 		rb_link_node(&skb->rbnode, NULL, p);
4912 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4913 		tp->ooo_last_skb = skb;
4914 		goto end;
4915 	}
4916 
4917 	/* In the typical case, we are adding an skb to the end of the list.
4918 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4919 	 */
4920 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4921 				 skb, &fragstolen)) {
4922 coalesce_done:
4923 		/* For non sack flows, do not grow window to force DUPACK
4924 		 * and trigger fast retransmit.
4925 		 */
4926 		if (tcp_is_sack(tp))
4927 			tcp_grow_window(sk, skb, true);
4928 		kfree_skb_partial(skb, fragstolen);
4929 		skb = NULL;
4930 		goto add_sack;
4931 	}
4932 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4933 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4934 		parent = &tp->ooo_last_skb->rbnode;
4935 		p = &parent->rb_right;
4936 		goto insert;
4937 	}
4938 
4939 	/* Find place to insert this segment. Handle overlaps on the way. */
4940 	parent = NULL;
4941 	while (*p) {
4942 		parent = *p;
4943 		skb1 = rb_to_skb(parent);
4944 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4945 			p = &parent->rb_left;
4946 			continue;
4947 		}
4948 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4949 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4950 				/* All the bits are present. Drop. */
4951 				NET_INC_STATS(sock_net(sk),
4952 					      LINUX_MIB_TCPOFOMERGE);
4953 				tcp_drop_reason(sk, skb,
4954 						SKB_DROP_REASON_TCP_OFOMERGE);
4955 				skb = NULL;
4956 				tcp_dsack_set(sk, seq, end_seq);
4957 				goto add_sack;
4958 			}
4959 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4960 				/* Partial overlap. */
4961 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4962 			} else {
4963 				/* skb's seq == skb1's seq and skb covers skb1.
4964 				 * Replace skb1 with skb.
4965 				 */
4966 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4967 						&tp->out_of_order_queue);
4968 				tcp_dsack_extend(sk,
4969 						 TCP_SKB_CB(skb1)->seq,
4970 						 TCP_SKB_CB(skb1)->end_seq);
4971 				NET_INC_STATS(sock_net(sk),
4972 					      LINUX_MIB_TCPOFOMERGE);
4973 				tcp_drop_reason(sk, skb1,
4974 						SKB_DROP_REASON_TCP_OFOMERGE);
4975 				goto merge_right;
4976 			}
4977 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4978 						skb, &fragstolen)) {
4979 			goto coalesce_done;
4980 		}
4981 		p = &parent->rb_right;
4982 	}
4983 insert:
4984 	/* Insert segment into RB tree. */
4985 	rb_link_node(&skb->rbnode, parent, p);
4986 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4987 
4988 merge_right:
4989 	/* Remove other segments covered by skb. */
4990 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4991 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4992 			break;
4993 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4994 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4995 					 end_seq);
4996 			break;
4997 		}
4998 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4999 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5000 				 TCP_SKB_CB(skb1)->end_seq);
5001 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5002 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5003 	}
5004 	/* If there is no skb after us, we are the last_skb ! */
5005 	if (!skb1)
5006 		tp->ooo_last_skb = skb;
5007 
5008 add_sack:
5009 	if (tcp_is_sack(tp))
5010 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
5011 end:
5012 	if (skb) {
5013 		/* For non sack flows, do not grow window to force DUPACK
5014 		 * and trigger fast retransmit.
5015 		 */
5016 		if (tcp_is_sack(tp))
5017 			tcp_grow_window(sk, skb, false);
5018 		skb_condense(skb);
5019 		skb_set_owner_r(skb, sk);
5020 	}
5021 	/* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
5022 	if (sk->sk_socket)
5023 		tcp_rcvbuf_grow(sk);
5024 }
5025 
5026 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5027 				      bool *fragstolen)
5028 {
5029 	int eaten;
5030 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5031 
5032 	eaten = (tail &&
5033 		 tcp_try_coalesce(sk, tail,
5034 				  skb, fragstolen)) ? 1 : 0;
5035 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5036 	if (!eaten) {
5037 		tcp_add_receive_queue(sk, skb);
5038 		skb_set_owner_r(skb, sk);
5039 	}
5040 	return eaten;
5041 }
5042 
5043 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5044 {
5045 	struct sk_buff *skb;
5046 	int err = -ENOMEM;
5047 	int data_len = 0;
5048 	bool fragstolen;
5049 
5050 	if (size == 0)
5051 		return 0;
5052 
5053 	if (size > PAGE_SIZE) {
5054 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5055 
5056 		data_len = npages << PAGE_SHIFT;
5057 		size = data_len + (size & ~PAGE_MASK);
5058 	}
5059 	skb = alloc_skb_with_frags(size - data_len, data_len,
5060 				   PAGE_ALLOC_COSTLY_ORDER,
5061 				   &err, sk->sk_allocation);
5062 	if (!skb)
5063 		goto err;
5064 
5065 	skb_put(skb, size - data_len);
5066 	skb->data_len = data_len;
5067 	skb->len = size;
5068 
5069 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5070 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5071 		goto err_free;
5072 	}
5073 
5074 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5075 	if (err)
5076 		goto err_free;
5077 
5078 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5079 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5080 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5081 
5082 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5083 		WARN_ON_ONCE(fragstolen); /* should not happen */
5084 		__kfree_skb(skb);
5085 	}
5086 	return size;
5087 
5088 err_free:
5089 	kfree_skb(skb);
5090 err:
5091 	return err;
5092 
5093 }
5094 
5095 void tcp_data_ready(struct sock *sk)
5096 {
5097 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5098 		sk->sk_data_ready(sk);
5099 }
5100 
5101 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5102 {
5103 	struct tcp_sock *tp = tcp_sk(sk);
5104 	enum skb_drop_reason reason;
5105 	bool fragstolen;
5106 	int eaten;
5107 
5108 	/* If a subflow has been reset, the packet should not continue
5109 	 * to be processed, drop the packet.
5110 	 */
5111 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5112 		__kfree_skb(skb);
5113 		return;
5114 	}
5115 
5116 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5117 		__kfree_skb(skb);
5118 		return;
5119 	}
5120 	tcp_cleanup_skb(skb);
5121 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5122 
5123 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5124 	tp->rx_opt.dsack = 0;
5125 
5126 	/*  Queue data for delivery to the user.
5127 	 *  Packets in sequence go to the receive queue.
5128 	 *  Out of sequence packets to the out_of_order_queue.
5129 	 */
5130 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5131 		if (tcp_receive_window(tp) == 0) {
5132 			/* Some stacks are known to send bare FIN packets
5133 			 * in a loop even if we send RWIN 0 in our ACK.
5134 			 * Accepting this FIN does not hurt memory pressure
5135 			 * because the FIN flag will simply be merged to the
5136 			 * receive queue tail skb in most cases.
5137 			 */
5138 			if (!skb->len &&
5139 			    (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5140 				goto queue_and_out;
5141 
5142 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5143 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5144 			goto out_of_window;
5145 		}
5146 
5147 		/* Ok. In sequence. In window. */
5148 queue_and_out:
5149 		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5150 			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5151 			inet_csk(sk)->icsk_ack.pending |=
5152 					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5153 			inet_csk_schedule_ack(sk);
5154 			sk->sk_data_ready(sk);
5155 
5156 			if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5157 				reason = SKB_DROP_REASON_PROTO_MEM;
5158 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5159 				goto drop;
5160 			}
5161 			sk_forced_mem_schedule(sk, skb->truesize);
5162 		}
5163 
5164 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5165 		if (skb->len)
5166 			tcp_event_data_recv(sk, skb);
5167 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5168 			tcp_fin(sk);
5169 
5170 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5171 			tcp_ofo_queue(sk);
5172 
5173 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5174 			 * gap in queue is filled.
5175 			 */
5176 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5177 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5178 		}
5179 
5180 		if (tp->rx_opt.num_sacks)
5181 			tcp_sack_remove(tp);
5182 
5183 		tcp_fast_path_check(sk);
5184 
5185 		if (eaten > 0)
5186 			kfree_skb_partial(skb, fragstolen);
5187 		if (!sock_flag(sk, SOCK_DEAD))
5188 			tcp_data_ready(sk);
5189 		return;
5190 	}
5191 
5192 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5193 		tcp_rcv_spurious_retrans(sk, skb);
5194 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5195 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5196 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5197 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5198 
5199 out_of_window:
5200 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5201 		inet_csk_schedule_ack(sk);
5202 drop:
5203 		tcp_drop_reason(sk, skb, reason);
5204 		return;
5205 	}
5206 
5207 	/* Out of window. F.e. zero window probe. */
5208 	if (!before(TCP_SKB_CB(skb)->seq,
5209 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5210 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5211 		goto out_of_window;
5212 	}
5213 
5214 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5215 		/* Partial packet, seq < rcv_next < end_seq */
5216 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5217 
5218 		/* If window is closed, drop tail of packet. But after
5219 		 * remembering D-SACK for its head made in previous line.
5220 		 */
5221 		if (!tcp_receive_window(tp)) {
5222 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5223 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5224 			goto out_of_window;
5225 		}
5226 		goto queue_and_out;
5227 	}
5228 
5229 	tcp_data_queue_ofo(sk, skb);
5230 }
5231 
5232 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5233 {
5234 	if (list)
5235 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5236 
5237 	return skb_rb_next(skb);
5238 }
5239 
5240 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5241 					struct sk_buff_head *list,
5242 					struct rb_root *root)
5243 {
5244 	struct sk_buff *next = tcp_skb_next(skb, list);
5245 
5246 	if (list)
5247 		__skb_unlink(skb, list);
5248 	else
5249 		rb_erase(&skb->rbnode, root);
5250 
5251 	__kfree_skb(skb);
5252 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5253 
5254 	return next;
5255 }
5256 
5257 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5258 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5259 {
5260 	struct rb_node **p = &root->rb_node;
5261 	struct rb_node *parent = NULL;
5262 	struct sk_buff *skb1;
5263 
5264 	while (*p) {
5265 		parent = *p;
5266 		skb1 = rb_to_skb(parent);
5267 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5268 			p = &parent->rb_left;
5269 		else
5270 			p = &parent->rb_right;
5271 	}
5272 	rb_link_node(&skb->rbnode, parent, p);
5273 	rb_insert_color(&skb->rbnode, root);
5274 }
5275 
5276 /* Collapse contiguous sequence of skbs head..tail with
5277  * sequence numbers start..end.
5278  *
5279  * If tail is NULL, this means until the end of the queue.
5280  *
5281  * Segments with FIN/SYN are not collapsed (only because this
5282  * simplifies code)
5283  */
5284 static void
5285 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5286 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5287 {
5288 	struct sk_buff *skb = head, *n;
5289 	struct sk_buff_head tmp;
5290 	bool end_of_skbs;
5291 
5292 	/* First, check that queue is collapsible and find
5293 	 * the point where collapsing can be useful.
5294 	 */
5295 restart:
5296 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5297 		n = tcp_skb_next(skb, list);
5298 
5299 		if (!skb_frags_readable(skb))
5300 			goto skip_this;
5301 
5302 		/* No new bits? It is possible on ofo queue. */
5303 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5304 			skb = tcp_collapse_one(sk, skb, list, root);
5305 			if (!skb)
5306 				break;
5307 			goto restart;
5308 		}
5309 
5310 		/* The first skb to collapse is:
5311 		 * - not SYN/FIN and
5312 		 * - bloated or contains data before "start" or
5313 		 *   overlaps to the next one and mptcp allow collapsing.
5314 		 */
5315 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5316 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5317 		     before(TCP_SKB_CB(skb)->seq, start))) {
5318 			end_of_skbs = false;
5319 			break;
5320 		}
5321 
5322 		if (n && n != tail && skb_frags_readable(n) &&
5323 		    tcp_skb_can_collapse_rx(skb, n) &&
5324 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5325 			end_of_skbs = false;
5326 			break;
5327 		}
5328 
5329 skip_this:
5330 		/* Decided to skip this, advance start seq. */
5331 		start = TCP_SKB_CB(skb)->end_seq;
5332 	}
5333 	if (end_of_skbs ||
5334 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5335 	    !skb_frags_readable(skb))
5336 		return;
5337 
5338 	__skb_queue_head_init(&tmp);
5339 
5340 	while (before(start, end)) {
5341 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5342 		struct sk_buff *nskb;
5343 
5344 		nskb = alloc_skb(copy, GFP_ATOMIC);
5345 		if (!nskb)
5346 			break;
5347 
5348 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5349 		skb_copy_decrypted(nskb, skb);
5350 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5351 		if (list)
5352 			__skb_queue_before(list, skb, nskb);
5353 		else
5354 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5355 		skb_set_owner_r(nskb, sk);
5356 		mptcp_skb_ext_move(nskb, skb);
5357 
5358 		/* Copy data, releasing collapsed skbs. */
5359 		while (copy > 0) {
5360 			int offset = start - TCP_SKB_CB(skb)->seq;
5361 			int size = TCP_SKB_CB(skb)->end_seq - start;
5362 
5363 			BUG_ON(offset < 0);
5364 			if (size > 0) {
5365 				size = min(copy, size);
5366 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5367 					BUG();
5368 				TCP_SKB_CB(nskb)->end_seq += size;
5369 				copy -= size;
5370 				start += size;
5371 			}
5372 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5373 				skb = tcp_collapse_one(sk, skb, list, root);
5374 				if (!skb ||
5375 				    skb == tail ||
5376 				    !tcp_skb_can_collapse_rx(nskb, skb) ||
5377 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5378 				    !skb_frags_readable(skb))
5379 					goto end;
5380 			}
5381 		}
5382 	}
5383 end:
5384 	skb_queue_walk_safe(&tmp, skb, n)
5385 		tcp_rbtree_insert(root, skb);
5386 }
5387 
5388 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5389  * and tcp_collapse() them until all the queue is collapsed.
5390  */
5391 static void tcp_collapse_ofo_queue(struct sock *sk)
5392 {
5393 	struct tcp_sock *tp = tcp_sk(sk);
5394 	u32 range_truesize, sum_tiny = 0;
5395 	struct sk_buff *skb, *head;
5396 	u32 start, end;
5397 
5398 	skb = skb_rb_first(&tp->out_of_order_queue);
5399 new_range:
5400 	if (!skb) {
5401 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5402 		return;
5403 	}
5404 	start = TCP_SKB_CB(skb)->seq;
5405 	end = TCP_SKB_CB(skb)->end_seq;
5406 	range_truesize = skb->truesize;
5407 
5408 	for (head = skb;;) {
5409 		skb = skb_rb_next(skb);
5410 
5411 		/* Range is terminated when we see a gap or when
5412 		 * we are at the queue end.
5413 		 */
5414 		if (!skb ||
5415 		    after(TCP_SKB_CB(skb)->seq, end) ||
5416 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5417 			/* Do not attempt collapsing tiny skbs */
5418 			if (range_truesize != head->truesize ||
5419 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5420 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5421 					     head, skb, start, end);
5422 			} else {
5423 				sum_tiny += range_truesize;
5424 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5425 					return;
5426 			}
5427 			goto new_range;
5428 		}
5429 
5430 		range_truesize += skb->truesize;
5431 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5432 			start = TCP_SKB_CB(skb)->seq;
5433 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5434 			end = TCP_SKB_CB(skb)->end_seq;
5435 	}
5436 }
5437 
5438 /*
5439  * Clean the out-of-order queue to make room.
5440  * We drop high sequences packets to :
5441  * 1) Let a chance for holes to be filled.
5442  *    This means we do not drop packets from ooo queue if their sequence
5443  *    is before incoming packet sequence.
5444  * 2) not add too big latencies if thousands of packets sit there.
5445  *    (But if application shrinks SO_RCVBUF, we could still end up
5446  *     freeing whole queue here)
5447  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5448  *
5449  * Return true if queue has shrunk.
5450  */
5451 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5452 {
5453 	struct tcp_sock *tp = tcp_sk(sk);
5454 	struct rb_node *node, *prev;
5455 	bool pruned = false;
5456 	int goal;
5457 
5458 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5459 		return false;
5460 
5461 	goal = sk->sk_rcvbuf >> 3;
5462 	node = &tp->ooo_last_skb->rbnode;
5463 
5464 	do {
5465 		struct sk_buff *skb = rb_to_skb(node);
5466 
5467 		/* If incoming skb would land last in ofo queue, stop pruning. */
5468 		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5469 			break;
5470 		pruned = true;
5471 		prev = rb_prev(node);
5472 		rb_erase(node, &tp->out_of_order_queue);
5473 		goal -= skb->truesize;
5474 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5475 		tp->ooo_last_skb = rb_to_skb(prev);
5476 		if (!prev || goal <= 0) {
5477 			if (tcp_can_ingest(sk, in_skb) &&
5478 			    !tcp_under_memory_pressure(sk))
5479 				break;
5480 			goal = sk->sk_rcvbuf >> 3;
5481 		}
5482 		node = prev;
5483 	} while (node);
5484 
5485 	if (pruned) {
5486 		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5487 		/* Reset SACK state.  A conforming SACK implementation will
5488 		 * do the same at a timeout based retransmit.  When a connection
5489 		 * is in a sad state like this, we care only about integrity
5490 		 * of the connection not performance.
5491 		 */
5492 		if (tp->rx_opt.sack_ok)
5493 			tcp_sack_reset(&tp->rx_opt);
5494 	}
5495 	return pruned;
5496 }
5497 
5498 /* Reduce allocated memory if we can, trying to get
5499  * the socket within its memory limits again.
5500  *
5501  * Return less than zero if we should start dropping frames
5502  * until the socket owning process reads some of the data
5503  * to stabilize the situation.
5504  */
5505 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5506 {
5507 	struct tcp_sock *tp = tcp_sk(sk);
5508 
5509 	/* Do nothing if our queues are empty. */
5510 	if (!atomic_read(&sk->sk_rmem_alloc))
5511 		return -1;
5512 
5513 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5514 
5515 	if (!tcp_can_ingest(sk, in_skb))
5516 		tcp_clamp_window(sk);
5517 	else if (tcp_under_memory_pressure(sk))
5518 		tcp_adjust_rcv_ssthresh(sk);
5519 
5520 	if (tcp_can_ingest(sk, in_skb))
5521 		return 0;
5522 
5523 	tcp_collapse_ofo_queue(sk);
5524 	if (!skb_queue_empty(&sk->sk_receive_queue))
5525 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5526 			     skb_peek(&sk->sk_receive_queue),
5527 			     NULL,
5528 			     tp->copied_seq, tp->rcv_nxt);
5529 
5530 	if (tcp_can_ingest(sk, in_skb))
5531 		return 0;
5532 
5533 	/* Collapsing did not help, destructive actions follow.
5534 	 * This must not ever occur. */
5535 
5536 	tcp_prune_ofo_queue(sk, in_skb);
5537 
5538 	if (tcp_can_ingest(sk, in_skb))
5539 		return 0;
5540 
5541 	/* If we are really being abused, tell the caller to silently
5542 	 * drop receive data on the floor.  It will get retransmitted
5543 	 * and hopefully then we'll have sufficient space.
5544 	 */
5545 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5546 
5547 	/* Massive buffer overcommit. */
5548 	tp->pred_flags = 0;
5549 	return -1;
5550 }
5551 
5552 static bool tcp_should_expand_sndbuf(struct sock *sk)
5553 {
5554 	const struct tcp_sock *tp = tcp_sk(sk);
5555 
5556 	/* If the user specified a specific send buffer setting, do
5557 	 * not modify it.
5558 	 */
5559 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5560 		return false;
5561 
5562 	/* If we are under global TCP memory pressure, do not expand.  */
5563 	if (tcp_under_memory_pressure(sk)) {
5564 		int unused_mem = sk_unused_reserved_mem(sk);
5565 
5566 		/* Adjust sndbuf according to reserved mem. But make sure
5567 		 * it never goes below SOCK_MIN_SNDBUF.
5568 		 * See sk_stream_moderate_sndbuf() for more details.
5569 		 */
5570 		if (unused_mem > SOCK_MIN_SNDBUF)
5571 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5572 
5573 		return false;
5574 	}
5575 
5576 	/* If we are under soft global TCP memory pressure, do not expand.  */
5577 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5578 		return false;
5579 
5580 	/* If we filled the congestion window, do not expand.  */
5581 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5582 		return false;
5583 
5584 	return true;
5585 }
5586 
5587 static void tcp_new_space(struct sock *sk)
5588 {
5589 	struct tcp_sock *tp = tcp_sk(sk);
5590 
5591 	if (tcp_should_expand_sndbuf(sk)) {
5592 		tcp_sndbuf_expand(sk);
5593 		tp->snd_cwnd_stamp = tcp_jiffies32;
5594 	}
5595 
5596 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5597 }
5598 
5599 /* Caller made space either from:
5600  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5601  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5602  *
5603  * We might be able to generate EPOLLOUT to the application if:
5604  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5605  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5606  *    small enough that tcp_stream_memory_free() decides it
5607  *    is time to generate EPOLLOUT.
5608  */
5609 void tcp_check_space(struct sock *sk)
5610 {
5611 	/* pairs with tcp_poll() */
5612 	smp_mb();
5613 	if (sk->sk_socket &&
5614 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5615 		tcp_new_space(sk);
5616 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5617 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5618 	}
5619 }
5620 
5621 static inline void tcp_data_snd_check(struct sock *sk)
5622 {
5623 	tcp_push_pending_frames(sk);
5624 	tcp_check_space(sk);
5625 }
5626 
5627 /*
5628  * Check if sending an ack is needed.
5629  */
5630 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5631 {
5632 	struct tcp_sock *tp = tcp_sk(sk);
5633 	unsigned long rtt, delay;
5634 
5635 	    /* More than one full frame received... */
5636 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5637 	     /* ... and right edge of window advances far enough.
5638 	      * (tcp_recvmsg() will send ACK otherwise).
5639 	      * If application uses SO_RCVLOWAT, we want send ack now if
5640 	      * we have not received enough bytes to satisfy the condition.
5641 	      */
5642 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5643 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5644 	    /* We ACK each frame or... */
5645 	    tcp_in_quickack_mode(sk) ||
5646 	    /* Protocol state mandates a one-time immediate ACK */
5647 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5648 		/* If we are running from __release_sock() in user context,
5649 		 * Defer the ack until tcp_release_cb().
5650 		 */
5651 		if (sock_owned_by_user_nocheck(sk) &&
5652 		    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5653 			set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5654 			return;
5655 		}
5656 send_now:
5657 		tcp_send_ack(sk);
5658 		return;
5659 	}
5660 
5661 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5662 		tcp_send_delayed_ack(sk);
5663 		return;
5664 	}
5665 
5666 	if (!tcp_is_sack(tp) ||
5667 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5668 		goto send_now;
5669 
5670 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5671 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5672 		tp->dup_ack_counter = 0;
5673 	}
5674 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5675 		tp->dup_ack_counter++;
5676 		goto send_now;
5677 	}
5678 	tp->compressed_ack++;
5679 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5680 		return;
5681 
5682 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5683 
5684 	rtt = tp->rcv_rtt_est.rtt_us;
5685 	if (tp->srtt_us && tp->srtt_us < rtt)
5686 		rtt = tp->srtt_us;
5687 
5688 	delay = min_t(unsigned long,
5689 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5690 		      rtt * (NSEC_PER_USEC >> 3)/20);
5691 	sock_hold(sk);
5692 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5693 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5694 			       HRTIMER_MODE_REL_PINNED_SOFT);
5695 }
5696 
5697 static inline void tcp_ack_snd_check(struct sock *sk)
5698 {
5699 	if (!inet_csk_ack_scheduled(sk)) {
5700 		/* We sent a data segment already. */
5701 		return;
5702 	}
5703 	__tcp_ack_snd_check(sk, 1);
5704 }
5705 
5706 /*
5707  *	This routine is only called when we have urgent data
5708  *	signaled. Its the 'slow' part of tcp_urg. It could be
5709  *	moved inline now as tcp_urg is only called from one
5710  *	place. We handle URGent data wrong. We have to - as
5711  *	BSD still doesn't use the correction from RFC961.
5712  *	For 1003.1g we should support a new option TCP_STDURG to permit
5713  *	either form (or just set the sysctl tcp_stdurg).
5714  */
5715 
5716 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5717 {
5718 	struct tcp_sock *tp = tcp_sk(sk);
5719 	u32 ptr = ntohs(th->urg_ptr);
5720 
5721 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5722 		ptr--;
5723 	ptr += ntohl(th->seq);
5724 
5725 	/* Ignore urgent data that we've already seen and read. */
5726 	if (after(tp->copied_seq, ptr))
5727 		return;
5728 
5729 	/* Do not replay urg ptr.
5730 	 *
5731 	 * NOTE: interesting situation not covered by specs.
5732 	 * Misbehaving sender may send urg ptr, pointing to segment,
5733 	 * which we already have in ofo queue. We are not able to fetch
5734 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5735 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5736 	 * situations. But it is worth to think about possibility of some
5737 	 * DoSes using some hypothetical application level deadlock.
5738 	 */
5739 	if (before(ptr, tp->rcv_nxt))
5740 		return;
5741 
5742 	/* Do we already have a newer (or duplicate) urgent pointer? */
5743 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5744 		return;
5745 
5746 	/* Tell the world about our new urgent pointer. */
5747 	sk_send_sigurg(sk);
5748 
5749 	/* We may be adding urgent data when the last byte read was
5750 	 * urgent. To do this requires some care. We cannot just ignore
5751 	 * tp->copied_seq since we would read the last urgent byte again
5752 	 * as data, nor can we alter copied_seq until this data arrives
5753 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5754 	 *
5755 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5756 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5757 	 * and expect that both A and B disappear from stream. This is _wrong_.
5758 	 * Though this happens in BSD with high probability, this is occasional.
5759 	 * Any application relying on this is buggy. Note also, that fix "works"
5760 	 * only in this artificial test. Insert some normal data between A and B and we will
5761 	 * decline of BSD again. Verdict: it is better to remove to trap
5762 	 * buggy users.
5763 	 */
5764 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5765 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5766 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5767 		tp->copied_seq++;
5768 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5769 			__skb_unlink(skb, &sk->sk_receive_queue);
5770 			__kfree_skb(skb);
5771 		}
5772 	}
5773 
5774 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5775 	WRITE_ONCE(tp->urg_seq, ptr);
5776 
5777 	/* Disable header prediction. */
5778 	tp->pred_flags = 0;
5779 }
5780 
5781 /* This is the 'fast' part of urgent handling. */
5782 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5783 {
5784 	struct tcp_sock *tp = tcp_sk(sk);
5785 
5786 	/* Check if we get a new urgent pointer - normally not. */
5787 	if (unlikely(th->urg))
5788 		tcp_check_urg(sk, th);
5789 
5790 	/* Do we wait for any urgent data? - normally not... */
5791 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5792 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5793 			  th->syn;
5794 
5795 		/* Is the urgent pointer pointing into this packet? */
5796 		if (ptr < skb->len) {
5797 			u8 tmp;
5798 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5799 				BUG();
5800 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5801 			if (!sock_flag(sk, SOCK_DEAD))
5802 				sk->sk_data_ready(sk);
5803 		}
5804 	}
5805 }
5806 
5807 /* Accept RST for rcv_nxt - 1 after a FIN.
5808  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5809  * FIN is sent followed by a RST packet. The RST is sent with the same
5810  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5811  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5812  * ACKs on the closed socket. In addition middleboxes can drop either the
5813  * challenge ACK or a subsequent RST.
5814  */
5815 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5816 {
5817 	const struct tcp_sock *tp = tcp_sk(sk);
5818 
5819 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5820 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5821 					       TCPF_CLOSING));
5822 }
5823 
5824 /* Does PAWS and seqno based validation of an incoming segment, flags will
5825  * play significant role here.
5826  */
5827 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5828 				  const struct tcphdr *th, int syn_inerr)
5829 {
5830 	struct tcp_sock *tp = tcp_sk(sk);
5831 	SKB_DR(reason);
5832 
5833 	/* RFC1323: H1. Apply PAWS check first. */
5834 	if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) ||
5835 	    !tp->rx_opt.saw_tstamp ||
5836 	    tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW))
5837 		goto step1;
5838 
5839 	reason = tcp_disordered_ack_check(sk, skb);
5840 	if (!reason)
5841 		goto step1;
5842 	/* Reset is accepted even if it did not pass PAWS. */
5843 	if (th->rst)
5844 		goto step1;
5845 	if (unlikely(th->syn))
5846 		goto syn_challenge;
5847 
5848 	/* Old ACK are common, increment PAWS_OLD_ACK
5849 	 * and do not send a dupack.
5850 	 */
5851 	if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) {
5852 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK);
5853 		goto discard;
5854 	}
5855 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5856 	if (!tcp_oow_rate_limited(sock_net(sk), skb,
5857 				  LINUX_MIB_TCPACKSKIPPEDPAWS,
5858 				  &tp->last_oow_ack_time))
5859 		tcp_send_dupack(sk, skb);
5860 	goto discard;
5861 
5862 step1:
5863 	/* Step 1: check sequence number */
5864 	reason = tcp_sequence(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5865 	if (reason) {
5866 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5867 		 * (RST) segments are validated by checking their SEQ-fields."
5868 		 * And page 69: "If an incoming segment is not acceptable,
5869 		 * an acknowledgment should be sent in reply (unless the RST
5870 		 * bit is set, if so drop the segment and return)".
5871 		 */
5872 		if (!th->rst) {
5873 			if (th->syn)
5874 				goto syn_challenge;
5875 
5876 			if (reason == SKB_DROP_REASON_TCP_INVALID_SEQUENCE ||
5877 			    reason == SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE)
5878 				NET_INC_STATS(sock_net(sk),
5879 					      LINUX_MIB_BEYOND_WINDOW);
5880 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5881 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5882 						  &tp->last_oow_ack_time))
5883 				tcp_send_dupack(sk, skb);
5884 		} else if (tcp_reset_check(sk, skb)) {
5885 			goto reset;
5886 		}
5887 		goto discard;
5888 	}
5889 
5890 	/* Step 2: check RST bit */
5891 	if (th->rst) {
5892 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5893 		 * FIN and SACK too if available):
5894 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5895 		 * the right-most SACK block,
5896 		 * then
5897 		 *     RESET the connection
5898 		 * else
5899 		 *     Send a challenge ACK
5900 		 */
5901 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5902 		    tcp_reset_check(sk, skb))
5903 			goto reset;
5904 
5905 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5906 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5907 			int max_sack = sp[0].end_seq;
5908 			int this_sack;
5909 
5910 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5911 			     ++this_sack) {
5912 				max_sack = after(sp[this_sack].end_seq,
5913 						 max_sack) ?
5914 					sp[this_sack].end_seq : max_sack;
5915 			}
5916 
5917 			if (TCP_SKB_CB(skb)->seq == max_sack)
5918 				goto reset;
5919 		}
5920 
5921 		/* Disable TFO if RST is out-of-order
5922 		 * and no data has been received
5923 		 * for current active TFO socket
5924 		 */
5925 		if (tp->syn_fastopen && !tp->data_segs_in &&
5926 		    sk->sk_state == TCP_ESTABLISHED)
5927 			tcp_fastopen_active_disable(sk);
5928 		tcp_send_challenge_ack(sk);
5929 		SKB_DR_SET(reason, TCP_RESET);
5930 		goto discard;
5931 	}
5932 
5933 	/* step 3: check security and precedence [ignored] */
5934 
5935 	/* step 4: Check for a SYN
5936 	 * RFC 5961 4.2 : Send a challenge ack
5937 	 */
5938 	if (th->syn) {
5939 		if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
5940 		    TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
5941 		    TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
5942 		    TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
5943 			goto pass;
5944 syn_challenge:
5945 		if (syn_inerr)
5946 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5947 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5948 		tcp_send_challenge_ack(sk);
5949 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5950 		goto discard;
5951 	}
5952 
5953 pass:
5954 	bpf_skops_parse_hdr(sk, skb);
5955 
5956 	return true;
5957 
5958 discard:
5959 	tcp_drop_reason(sk, skb, reason);
5960 	return false;
5961 
5962 reset:
5963 	tcp_reset(sk, skb);
5964 	__kfree_skb(skb);
5965 	return false;
5966 }
5967 
5968 /*
5969  *	TCP receive function for the ESTABLISHED state.
5970  *
5971  *	It is split into a fast path and a slow path. The fast path is
5972  * 	disabled when:
5973  *	- A zero window was announced from us - zero window probing
5974  *        is only handled properly in the slow path.
5975  *	- Out of order segments arrived.
5976  *	- Urgent data is expected.
5977  *	- There is no buffer space left
5978  *	- Unexpected TCP flags/window values/header lengths are received
5979  *	  (detected by checking the TCP header against pred_flags)
5980  *	- Data is sent in both directions. Fast path only supports pure senders
5981  *	  or pure receivers (this means either the sequence number or the ack
5982  *	  value must stay constant)
5983  *	- Unexpected TCP option.
5984  *
5985  *	When these conditions are not satisfied it drops into a standard
5986  *	receive procedure patterned after RFC793 to handle all cases.
5987  *	The first three cases are guaranteed by proper pred_flags setting,
5988  *	the rest is checked inline. Fast processing is turned on in
5989  *	tcp_data_queue when everything is OK.
5990  */
5991 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5992 {
5993 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5994 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5995 	struct tcp_sock *tp = tcp_sk(sk);
5996 	unsigned int len = skb->len;
5997 
5998 	/* TCP congestion window tracking */
5999 	trace_tcp_probe(sk, skb);
6000 
6001 	tcp_mstamp_refresh(tp);
6002 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6003 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6004 	/*
6005 	 *	Header prediction.
6006 	 *	The code loosely follows the one in the famous
6007 	 *	"30 instruction TCP receive" Van Jacobson mail.
6008 	 *
6009 	 *	Van's trick is to deposit buffers into socket queue
6010 	 *	on a device interrupt, to call tcp_recv function
6011 	 *	on the receive process context and checksum and copy
6012 	 *	the buffer to user space. smart...
6013 	 *
6014 	 *	Our current scheme is not silly either but we take the
6015 	 *	extra cost of the net_bh soft interrupt processing...
6016 	 *	We do checksum and copy also but from device to kernel.
6017 	 */
6018 
6019 	tp->rx_opt.saw_tstamp = 0;
6020 
6021 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
6022 	 *	if header_prediction is to be made
6023 	 *	'S' will always be tp->tcp_header_len >> 2
6024 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
6025 	 *  turn it off	(when there are holes in the receive
6026 	 *	 space for instance)
6027 	 *	PSH flag is ignored.
6028 	 */
6029 
6030 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6031 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6032 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6033 		int tcp_header_len = tp->tcp_header_len;
6034 		s32 delta = 0;
6035 		int flag = 0;
6036 
6037 		/* Timestamp header prediction: tcp_header_len
6038 		 * is automatically equal to th->doff*4 due to pred_flags
6039 		 * match.
6040 		 */
6041 
6042 		/* Check timestamp */
6043 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6044 			/* No? Slow path! */
6045 			if (!tcp_parse_aligned_timestamp(tp, th))
6046 				goto slow_path;
6047 
6048 			delta = tp->rx_opt.rcv_tsval -
6049 				tp->rx_opt.ts_recent;
6050 			/* If PAWS failed, check it more carefully in slow path */
6051 			if (delta < 0)
6052 				goto slow_path;
6053 
6054 			/* DO NOT update ts_recent here, if checksum fails
6055 			 * and timestamp was corrupted part, it will result
6056 			 * in a hung connection since we will drop all
6057 			 * future packets due to the PAWS test.
6058 			 */
6059 		}
6060 
6061 		if (len <= tcp_header_len) {
6062 			/* Bulk data transfer: sender */
6063 			if (len == tcp_header_len) {
6064 				/* Predicted packet is in window by definition.
6065 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6066 				 * Hence, check seq<=rcv_wup reduces to:
6067 				 */
6068 				if (tcp_header_len ==
6069 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6070 				    tp->rcv_nxt == tp->rcv_wup)
6071 					flag |= __tcp_replace_ts_recent(tp,
6072 									delta);
6073 
6074 				/* We know that such packets are checksummed
6075 				 * on entry.
6076 				 */
6077 				tcp_ack(sk, skb, flag);
6078 				__kfree_skb(skb);
6079 				tcp_data_snd_check(sk);
6080 				/* When receiving pure ack in fast path, update
6081 				 * last ts ecr directly instead of calling
6082 				 * tcp_rcv_rtt_measure_ts()
6083 				 */
6084 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6085 				return;
6086 			} else { /* Header too small */
6087 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6088 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6089 				goto discard;
6090 			}
6091 		} else {
6092 			int eaten = 0;
6093 			bool fragstolen = false;
6094 
6095 			if (tcp_checksum_complete(skb))
6096 				goto csum_error;
6097 
6098 			if (after(TCP_SKB_CB(skb)->end_seq,
6099 				  tp->rcv_nxt + tcp_receive_window(tp)))
6100 				goto validate;
6101 
6102 			if ((int)skb->truesize > sk->sk_forward_alloc)
6103 				goto step5;
6104 
6105 			/* Predicted packet is in window by definition.
6106 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6107 			 * Hence, check seq<=rcv_wup reduces to:
6108 			 */
6109 			if (tcp_header_len ==
6110 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6111 			    tp->rcv_nxt == tp->rcv_wup)
6112 				flag |= __tcp_replace_ts_recent(tp,
6113 								delta);
6114 
6115 			tcp_rcv_rtt_measure_ts(sk, skb);
6116 
6117 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6118 
6119 			/* Bulk data transfer: receiver */
6120 			tcp_cleanup_skb(skb);
6121 			__skb_pull(skb, tcp_header_len);
6122 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6123 
6124 			tcp_event_data_recv(sk, skb);
6125 
6126 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6127 				/* Well, only one small jumplet in fast path... */
6128 				tcp_ack(sk, skb, flag | FLAG_DATA);
6129 				tcp_data_snd_check(sk);
6130 				if (!inet_csk_ack_scheduled(sk))
6131 					goto no_ack;
6132 			} else {
6133 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6134 			}
6135 
6136 			__tcp_ack_snd_check(sk, 0);
6137 no_ack:
6138 			if (eaten)
6139 				kfree_skb_partial(skb, fragstolen);
6140 			tcp_data_ready(sk);
6141 			return;
6142 		}
6143 	}
6144 
6145 slow_path:
6146 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6147 		goto csum_error;
6148 
6149 	if (!th->ack && !th->rst && !th->syn) {
6150 		reason = SKB_DROP_REASON_TCP_FLAGS;
6151 		goto discard;
6152 	}
6153 
6154 	/*
6155 	 *	Standard slow path.
6156 	 */
6157 validate:
6158 	if (!tcp_validate_incoming(sk, skb, th, 1))
6159 		return;
6160 
6161 step5:
6162 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6163 	if ((int)reason < 0) {
6164 		reason = -reason;
6165 		goto discard;
6166 	}
6167 	tcp_rcv_rtt_measure_ts(sk, skb);
6168 
6169 	/* Process urgent data. */
6170 	tcp_urg(sk, skb, th);
6171 
6172 	/* step 7: process the segment text */
6173 	tcp_data_queue(sk, skb);
6174 
6175 	tcp_data_snd_check(sk);
6176 	tcp_ack_snd_check(sk);
6177 	return;
6178 
6179 csum_error:
6180 	reason = SKB_DROP_REASON_TCP_CSUM;
6181 	trace_tcp_bad_csum(skb);
6182 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6183 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6184 
6185 discard:
6186 	tcp_drop_reason(sk, skb, reason);
6187 }
6188 EXPORT_IPV6_MOD(tcp_rcv_established);
6189 
6190 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6191 {
6192 	struct inet_connection_sock *icsk = inet_csk(sk);
6193 	struct tcp_sock *tp = tcp_sk(sk);
6194 
6195 	tcp_mtup_init(sk);
6196 	icsk->icsk_af_ops->rebuild_header(sk);
6197 	tcp_init_metrics(sk);
6198 
6199 	/* Initialize the congestion window to start the transfer.
6200 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6201 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6202 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6203 	 * retransmission has occurred.
6204 	 */
6205 	if (tp->total_retrans > 1 && tp->undo_marker)
6206 		tcp_snd_cwnd_set(tp, 1);
6207 	else
6208 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6209 	tp->snd_cwnd_stamp = tcp_jiffies32;
6210 
6211 	bpf_skops_established(sk, bpf_op, skb);
6212 	/* Initialize congestion control unless BPF initialized it already: */
6213 	if (!icsk->icsk_ca_initialized)
6214 		tcp_init_congestion_control(sk);
6215 	tcp_init_buffer_space(sk);
6216 }
6217 
6218 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6219 {
6220 	struct tcp_sock *tp = tcp_sk(sk);
6221 	struct inet_connection_sock *icsk = inet_csk(sk);
6222 
6223 	tcp_ao_finish_connect(sk, skb);
6224 	tcp_set_state(sk, TCP_ESTABLISHED);
6225 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6226 
6227 	if (skb) {
6228 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6229 		security_inet_conn_established(sk, skb);
6230 		sk_mark_napi_id(sk, skb);
6231 	}
6232 
6233 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6234 
6235 	/* Prevent spurious tcp_cwnd_restart() on first data
6236 	 * packet.
6237 	 */
6238 	tp->lsndtime = tcp_jiffies32;
6239 
6240 	if (sock_flag(sk, SOCK_KEEPOPEN))
6241 		tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
6242 
6243 	if (!tp->rx_opt.snd_wscale)
6244 		__tcp_fast_path_on(tp, tp->snd_wnd);
6245 	else
6246 		tp->pred_flags = 0;
6247 }
6248 
6249 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6250 				    struct tcp_fastopen_cookie *cookie)
6251 {
6252 	struct tcp_sock *tp = tcp_sk(sk);
6253 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6254 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6255 	bool syn_drop = false;
6256 
6257 	if (mss == READ_ONCE(tp->rx_opt.user_mss)) {
6258 		struct tcp_options_received opt;
6259 
6260 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6261 		tcp_clear_options(&opt);
6262 		opt.user_mss = opt.mss_clamp = 0;
6263 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6264 		mss = opt.mss_clamp;
6265 	}
6266 
6267 	if (!tp->syn_fastopen) {
6268 		/* Ignore an unsolicited cookie */
6269 		cookie->len = -1;
6270 	} else if (tp->total_retrans) {
6271 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6272 		 * acknowledges data. Presumably the remote received only
6273 		 * the retransmitted (regular) SYNs: either the original
6274 		 * SYN-data or the corresponding SYN-ACK was dropped.
6275 		 */
6276 		syn_drop = (cookie->len < 0 && data);
6277 	} else if (cookie->len < 0 && !tp->syn_data) {
6278 		/* We requested a cookie but didn't get it. If we did not use
6279 		 * the (old) exp opt format then try so next time (try_exp=1).
6280 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6281 		 */
6282 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6283 	}
6284 
6285 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6286 
6287 	if (data) { /* Retransmit unacked data in SYN */
6288 		if (tp->total_retrans)
6289 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6290 		else
6291 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6292 		skb_rbtree_walk_from(data)
6293 			 tcp_mark_skb_lost(sk, data);
6294 		tcp_non_congestion_loss_retransmit(sk);
6295 		NET_INC_STATS(sock_net(sk),
6296 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6297 		return true;
6298 	}
6299 	tp->syn_data_acked = tp->syn_data;
6300 	if (tp->syn_data_acked) {
6301 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6302 		/* SYN-data is counted as two separate packets in tcp_ack() */
6303 		if (tp->delivered > 1)
6304 			--tp->delivered;
6305 	}
6306 
6307 	tcp_fastopen_add_skb(sk, synack);
6308 
6309 	return false;
6310 }
6311 
6312 static void smc_check_reset_syn(struct tcp_sock *tp)
6313 {
6314 #if IS_ENABLED(CONFIG_SMC)
6315 	if (static_branch_unlikely(&tcp_have_smc)) {
6316 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6317 			tp->syn_smc = 0;
6318 	}
6319 #endif
6320 }
6321 
6322 static void tcp_try_undo_spurious_syn(struct sock *sk)
6323 {
6324 	struct tcp_sock *tp = tcp_sk(sk);
6325 	u32 syn_stamp;
6326 
6327 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6328 	 * spurious if the ACK's timestamp option echo value matches the
6329 	 * original SYN timestamp.
6330 	 */
6331 	syn_stamp = tp->retrans_stamp;
6332 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6333 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6334 		tp->undo_marker = 0;
6335 }
6336 
6337 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6338 					 const struct tcphdr *th)
6339 {
6340 	struct inet_connection_sock *icsk = inet_csk(sk);
6341 	struct tcp_sock *tp = tcp_sk(sk);
6342 	struct tcp_fastopen_cookie foc = { .len = -1 };
6343 	int saved_clamp = tp->rx_opt.mss_clamp;
6344 	bool fastopen_fail;
6345 	SKB_DR(reason);
6346 
6347 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6348 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6349 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6350 
6351 	if (th->ack) {
6352 		/* rfc793:
6353 		 * "If the state is SYN-SENT then
6354 		 *    first check the ACK bit
6355 		 *      If the ACK bit is set
6356 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6357 		 *        a reset (unless the RST bit is set, if so drop
6358 		 *        the segment and return)"
6359 		 */
6360 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6361 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6362 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6363 			if (icsk->icsk_retransmits == 0)
6364 				tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6365 						     TCP_TIMEOUT_MIN, false);
6366 			SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6367 			goto reset_and_undo;
6368 		}
6369 
6370 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6371 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6372 			     tcp_time_stamp_ts(tp))) {
6373 			NET_INC_STATS(sock_net(sk),
6374 					LINUX_MIB_PAWSACTIVEREJECTED);
6375 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6376 			goto reset_and_undo;
6377 		}
6378 
6379 		/* Now ACK is acceptable.
6380 		 *
6381 		 * "If the RST bit is set
6382 		 *    If the ACK was acceptable then signal the user "error:
6383 		 *    connection reset", drop the segment, enter CLOSED state,
6384 		 *    delete TCB, and return."
6385 		 */
6386 
6387 		if (th->rst) {
6388 			tcp_reset(sk, skb);
6389 consume:
6390 			__kfree_skb(skb);
6391 			return 0;
6392 		}
6393 
6394 		/* rfc793:
6395 		 *   "fifth, if neither of the SYN or RST bits is set then
6396 		 *    drop the segment and return."
6397 		 *
6398 		 *    See note below!
6399 		 *                                        --ANK(990513)
6400 		 */
6401 		if (!th->syn) {
6402 			SKB_DR_SET(reason, TCP_FLAGS);
6403 			goto discard_and_undo;
6404 		}
6405 		/* rfc793:
6406 		 *   "If the SYN bit is on ...
6407 		 *    are acceptable then ...
6408 		 *    (our SYN has been ACKed), change the connection
6409 		 *    state to ESTABLISHED..."
6410 		 */
6411 
6412 		tcp_ecn_rcv_synack(tp, th);
6413 
6414 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6415 		tcp_try_undo_spurious_syn(sk);
6416 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6417 
6418 		/* Ok.. it's good. Set up sequence numbers and
6419 		 * move to established.
6420 		 */
6421 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6422 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6423 
6424 		/* RFC1323: The window in SYN & SYN/ACK segments is
6425 		 * never scaled.
6426 		 */
6427 		tp->snd_wnd = ntohs(th->window);
6428 
6429 		if (!tp->rx_opt.wscale_ok) {
6430 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6431 			WRITE_ONCE(tp->window_clamp,
6432 				   min(tp->window_clamp, 65535U));
6433 		}
6434 
6435 		if (tp->rx_opt.saw_tstamp) {
6436 			tp->rx_opt.tstamp_ok	   = 1;
6437 			tp->tcp_header_len =
6438 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6439 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6440 			tcp_store_ts_recent(tp);
6441 		} else {
6442 			tp->tcp_header_len = sizeof(struct tcphdr);
6443 		}
6444 
6445 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6446 		tcp_initialize_rcv_mss(sk);
6447 
6448 		/* Remember, tcp_poll() does not lock socket!
6449 		 * Change state from SYN-SENT only after copied_seq
6450 		 * is initialized. */
6451 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6452 
6453 		smc_check_reset_syn(tp);
6454 
6455 		smp_mb();
6456 
6457 		tcp_finish_connect(sk, skb);
6458 
6459 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6460 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6461 
6462 		if (!sock_flag(sk, SOCK_DEAD)) {
6463 			sk->sk_state_change(sk);
6464 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6465 		}
6466 		if (fastopen_fail)
6467 			return -1;
6468 		if (sk->sk_write_pending ||
6469 		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6470 		    inet_csk_in_pingpong_mode(sk)) {
6471 			/* Save one ACK. Data will be ready after
6472 			 * several ticks, if write_pending is set.
6473 			 *
6474 			 * It may be deleted, but with this feature tcpdumps
6475 			 * look so _wonderfully_ clever, that I was not able
6476 			 * to stand against the temptation 8)     --ANK
6477 			 */
6478 			inet_csk_schedule_ack(sk);
6479 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6480 			tcp_reset_xmit_timer(sk, ICSK_TIME_DACK,
6481 					     TCP_DELACK_MAX, false);
6482 			goto consume;
6483 		}
6484 		tcp_send_ack(sk);
6485 		return -1;
6486 	}
6487 
6488 	/* No ACK in the segment */
6489 
6490 	if (th->rst) {
6491 		/* rfc793:
6492 		 * "If the RST bit is set
6493 		 *
6494 		 *      Otherwise (no ACK) drop the segment and return."
6495 		 */
6496 		SKB_DR_SET(reason, TCP_RESET);
6497 		goto discard_and_undo;
6498 	}
6499 
6500 	/* PAWS check. */
6501 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6502 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6503 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6504 		goto discard_and_undo;
6505 	}
6506 	if (th->syn) {
6507 		/* We see SYN without ACK. It is attempt of
6508 		 * simultaneous connect with crossed SYNs.
6509 		 * Particularly, it can be connect to self.
6510 		 */
6511 #ifdef CONFIG_TCP_AO
6512 		struct tcp_ao_info *ao;
6513 
6514 		ao = rcu_dereference_protected(tp->ao_info,
6515 					       lockdep_sock_is_held(sk));
6516 		if (ao) {
6517 			WRITE_ONCE(ao->risn, th->seq);
6518 			ao->rcv_sne = 0;
6519 		}
6520 #endif
6521 		tcp_set_state(sk, TCP_SYN_RECV);
6522 
6523 		if (tp->rx_opt.saw_tstamp) {
6524 			tp->rx_opt.tstamp_ok = 1;
6525 			tcp_store_ts_recent(tp);
6526 			tp->tcp_header_len =
6527 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6528 		} else {
6529 			tp->tcp_header_len = sizeof(struct tcphdr);
6530 		}
6531 
6532 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6533 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6534 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6535 
6536 		/* RFC1323: The window in SYN & SYN/ACK segments is
6537 		 * never scaled.
6538 		 */
6539 		tp->snd_wnd    = ntohs(th->window);
6540 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6541 		tp->max_window = tp->snd_wnd;
6542 
6543 		tcp_ecn_rcv_syn(tp, th);
6544 
6545 		tcp_mtup_init(sk);
6546 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6547 		tcp_initialize_rcv_mss(sk);
6548 
6549 		tcp_send_synack(sk);
6550 #if 0
6551 		/* Note, we could accept data and URG from this segment.
6552 		 * There are no obstacles to make this (except that we must
6553 		 * either change tcp_recvmsg() to prevent it from returning data
6554 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6555 		 *
6556 		 * However, if we ignore data in ACKless segments sometimes,
6557 		 * we have no reasons to accept it sometimes.
6558 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6559 		 * is not flawless. So, discard packet for sanity.
6560 		 * Uncomment this return to process the data.
6561 		 */
6562 		return -1;
6563 #else
6564 		goto consume;
6565 #endif
6566 	}
6567 	/* "fifth, if neither of the SYN or RST bits is set then
6568 	 * drop the segment and return."
6569 	 */
6570 
6571 discard_and_undo:
6572 	tcp_clear_options(&tp->rx_opt);
6573 	tp->rx_opt.mss_clamp = saved_clamp;
6574 	tcp_drop_reason(sk, skb, reason);
6575 	return 0;
6576 
6577 reset_and_undo:
6578 	tcp_clear_options(&tp->rx_opt);
6579 	tp->rx_opt.mss_clamp = saved_clamp;
6580 	/* we can reuse/return @reason to its caller to handle the exception */
6581 	return reason;
6582 }
6583 
6584 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6585 {
6586 	struct tcp_sock *tp = tcp_sk(sk);
6587 	struct request_sock *req;
6588 
6589 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6590 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6591 	 */
6592 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6593 		tcp_try_undo_recovery(sk);
6594 
6595 	tcp_update_rto_time(tp);
6596 	WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0);
6597 	/* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6598 	 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6599 	 * need to zero retrans_stamp here to prevent spurious
6600 	 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6601 	 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6602 	 * set entering CA_Recovery, for correct retransmits_timed_out() and
6603 	 * undo behavior.
6604 	 */
6605 	tcp_retrans_stamp_cleanup(sk);
6606 
6607 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6608 	 * we no longer need req so release it.
6609 	 */
6610 	req = rcu_dereference_protected(tp->fastopen_rsk,
6611 					lockdep_sock_is_held(sk));
6612 	reqsk_fastopen_remove(sk, req, false);
6613 
6614 	/* Re-arm the timer because data may have been sent out.
6615 	 * This is similar to the regular data transmission case
6616 	 * when new data has just been ack'ed.
6617 	 *
6618 	 * (TFO) - we could try to be more aggressive and
6619 	 * retransmitting any data sooner based on when they
6620 	 * are sent out.
6621 	 */
6622 	tcp_rearm_rto(sk);
6623 }
6624 
6625 /*
6626  *	This function implements the receiving procedure of RFC 793 for
6627  *	all states except ESTABLISHED and TIME_WAIT.
6628  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6629  *	address independent.
6630  */
6631 
6632 enum skb_drop_reason
6633 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6634 {
6635 	struct tcp_sock *tp = tcp_sk(sk);
6636 	struct inet_connection_sock *icsk = inet_csk(sk);
6637 	const struct tcphdr *th = tcp_hdr(skb);
6638 	struct request_sock *req;
6639 	int queued = 0;
6640 	SKB_DR(reason);
6641 
6642 	switch (sk->sk_state) {
6643 	case TCP_CLOSE:
6644 		SKB_DR_SET(reason, TCP_CLOSE);
6645 		goto discard;
6646 
6647 	case TCP_LISTEN:
6648 		if (th->ack)
6649 			return SKB_DROP_REASON_TCP_FLAGS;
6650 
6651 		if (th->rst) {
6652 			SKB_DR_SET(reason, TCP_RESET);
6653 			goto discard;
6654 		}
6655 		if (th->syn) {
6656 			if (th->fin) {
6657 				SKB_DR_SET(reason, TCP_FLAGS);
6658 				goto discard;
6659 			}
6660 			/* It is possible that we process SYN packets from backlog,
6661 			 * so we need to make sure to disable BH and RCU right there.
6662 			 */
6663 			rcu_read_lock();
6664 			local_bh_disable();
6665 			icsk->icsk_af_ops->conn_request(sk, skb);
6666 			local_bh_enable();
6667 			rcu_read_unlock();
6668 
6669 			consume_skb(skb);
6670 			return 0;
6671 		}
6672 		SKB_DR_SET(reason, TCP_FLAGS);
6673 		goto discard;
6674 
6675 	case TCP_SYN_SENT:
6676 		tp->rx_opt.saw_tstamp = 0;
6677 		tcp_mstamp_refresh(tp);
6678 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6679 		if (queued >= 0)
6680 			return queued;
6681 
6682 		/* Do step6 onward by hand. */
6683 		tcp_urg(sk, skb, th);
6684 		__kfree_skb(skb);
6685 		tcp_data_snd_check(sk);
6686 		return 0;
6687 	}
6688 
6689 	tcp_mstamp_refresh(tp);
6690 	tp->rx_opt.saw_tstamp = 0;
6691 	req = rcu_dereference_protected(tp->fastopen_rsk,
6692 					lockdep_sock_is_held(sk));
6693 	if (req) {
6694 		bool req_stolen;
6695 
6696 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6697 		    sk->sk_state != TCP_FIN_WAIT1);
6698 
6699 		SKB_DR_SET(reason, TCP_FASTOPEN);
6700 		if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason))
6701 			goto discard;
6702 	}
6703 
6704 	if (!th->ack && !th->rst && !th->syn) {
6705 		SKB_DR_SET(reason, TCP_FLAGS);
6706 		goto discard;
6707 	}
6708 	if (!tcp_validate_incoming(sk, skb, th, 0))
6709 		return 0;
6710 
6711 	/* step 5: check the ACK field */
6712 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6713 				  FLAG_UPDATE_TS_RECENT |
6714 				  FLAG_NO_CHALLENGE_ACK);
6715 
6716 	if ((int)reason <= 0) {
6717 		if (sk->sk_state == TCP_SYN_RECV) {
6718 			/* send one RST */
6719 			if (!reason)
6720 				return SKB_DROP_REASON_TCP_OLD_ACK;
6721 			return -reason;
6722 		}
6723 		/* accept old ack during closing */
6724 		if ((int)reason < 0) {
6725 			tcp_send_challenge_ack(sk);
6726 			reason = -reason;
6727 			goto discard;
6728 		}
6729 	}
6730 	SKB_DR_SET(reason, NOT_SPECIFIED);
6731 	switch (sk->sk_state) {
6732 	case TCP_SYN_RECV:
6733 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6734 		if (!tp->srtt_us)
6735 			tcp_synack_rtt_meas(sk, req);
6736 
6737 		if (tp->rx_opt.tstamp_ok)
6738 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6739 
6740 		if (req) {
6741 			tcp_rcv_synrecv_state_fastopen(sk);
6742 		} else {
6743 			tcp_try_undo_spurious_syn(sk);
6744 			tp->retrans_stamp = 0;
6745 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6746 					  skb);
6747 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6748 		}
6749 		tcp_ao_established(sk);
6750 		smp_mb();
6751 		tcp_set_state(sk, TCP_ESTABLISHED);
6752 		sk->sk_state_change(sk);
6753 
6754 		/* Note, that this wakeup is only for marginal crossed SYN case.
6755 		 * Passively open sockets are not waked up, because
6756 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6757 		 */
6758 		if (sk->sk_socket)
6759 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6760 
6761 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6762 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6763 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6764 
6765 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6766 			tcp_update_pacing_rate(sk);
6767 
6768 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6769 		tp->lsndtime = tcp_jiffies32;
6770 
6771 		tcp_initialize_rcv_mss(sk);
6772 		tcp_fast_path_on(tp);
6773 		if (sk->sk_shutdown & SEND_SHUTDOWN)
6774 			tcp_shutdown(sk, SEND_SHUTDOWN);
6775 		break;
6776 
6777 	case TCP_FIN_WAIT1: {
6778 		int tmo;
6779 
6780 		if (req)
6781 			tcp_rcv_synrecv_state_fastopen(sk);
6782 
6783 		if (tp->snd_una != tp->write_seq)
6784 			break;
6785 
6786 		tcp_set_state(sk, TCP_FIN_WAIT2);
6787 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6788 
6789 		sk_dst_confirm(sk);
6790 
6791 		if (!sock_flag(sk, SOCK_DEAD)) {
6792 			/* Wake up lingering close() */
6793 			sk->sk_state_change(sk);
6794 			break;
6795 		}
6796 
6797 		if (READ_ONCE(tp->linger2) < 0) {
6798 			tcp_done(sk);
6799 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6800 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6801 		}
6802 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6803 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6804 			/* Receive out of order FIN after close() */
6805 			if (tp->syn_fastopen && th->fin)
6806 				tcp_fastopen_active_disable(sk);
6807 			tcp_done(sk);
6808 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6809 			return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6810 		}
6811 
6812 		tmo = tcp_fin_time(sk);
6813 		if (tmo > TCP_TIMEWAIT_LEN) {
6814 			tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6815 		} else if (th->fin || sock_owned_by_user(sk)) {
6816 			/* Bad case. We could lose such FIN otherwise.
6817 			 * It is not a big problem, but it looks confusing
6818 			 * and not so rare event. We still can lose it now,
6819 			 * if it spins in bh_lock_sock(), but it is really
6820 			 * marginal case.
6821 			 */
6822 			tcp_reset_keepalive_timer(sk, tmo);
6823 		} else {
6824 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6825 			goto consume;
6826 		}
6827 		break;
6828 	}
6829 
6830 	case TCP_CLOSING:
6831 		if (tp->snd_una == tp->write_seq) {
6832 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6833 			goto consume;
6834 		}
6835 		break;
6836 
6837 	case TCP_LAST_ACK:
6838 		if (tp->snd_una == tp->write_seq) {
6839 			tcp_update_metrics(sk);
6840 			tcp_done(sk);
6841 			goto consume;
6842 		}
6843 		break;
6844 	}
6845 
6846 	/* step 6: check the URG bit */
6847 	tcp_urg(sk, skb, th);
6848 
6849 	/* step 7: process the segment text */
6850 	switch (sk->sk_state) {
6851 	case TCP_CLOSE_WAIT:
6852 	case TCP_CLOSING:
6853 	case TCP_LAST_ACK:
6854 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6855 			/* If a subflow has been reset, the packet should not
6856 			 * continue to be processed, drop the packet.
6857 			 */
6858 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6859 				goto discard;
6860 			break;
6861 		}
6862 		fallthrough;
6863 	case TCP_FIN_WAIT1:
6864 	case TCP_FIN_WAIT2:
6865 		/* RFC 793 says to queue data in these states,
6866 		 * RFC 1122 says we MUST send a reset.
6867 		 * BSD 4.4 also does reset.
6868 		 */
6869 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6870 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6871 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6872 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6873 				tcp_reset(sk, skb);
6874 				return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6875 			}
6876 		}
6877 		fallthrough;
6878 	case TCP_ESTABLISHED:
6879 		tcp_data_queue(sk, skb);
6880 		queued = 1;
6881 		break;
6882 	}
6883 
6884 	/* tcp_data could move socket to TIME-WAIT */
6885 	if (sk->sk_state != TCP_CLOSE) {
6886 		tcp_data_snd_check(sk);
6887 		tcp_ack_snd_check(sk);
6888 	}
6889 
6890 	if (!queued) {
6891 discard:
6892 		tcp_drop_reason(sk, skb, reason);
6893 	}
6894 	return 0;
6895 
6896 consume:
6897 	__kfree_skb(skb);
6898 	return 0;
6899 }
6900 EXPORT_IPV6_MOD(tcp_rcv_state_process);
6901 
6902 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6903 {
6904 	struct inet_request_sock *ireq = inet_rsk(req);
6905 
6906 	if (family == AF_INET)
6907 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6908 				    &ireq->ir_rmt_addr, port);
6909 #if IS_ENABLED(CONFIG_IPV6)
6910 	else if (family == AF_INET6)
6911 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6912 				    &ireq->ir_v6_rmt_addr, port);
6913 #endif
6914 }
6915 
6916 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6917  *
6918  * If we receive a SYN packet with these bits set, it means a
6919  * network is playing bad games with TOS bits. In order to
6920  * avoid possible false congestion notifications, we disable
6921  * TCP ECN negotiation.
6922  *
6923  * Exception: tcp_ca wants ECN. This is required for DCTCP
6924  * congestion control: Linux DCTCP asserts ECT on all packets,
6925  * including SYN, which is most optimal solution; however,
6926  * others, such as FreeBSD do not.
6927  *
6928  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6929  * set, indicating the use of a future TCP extension (such as AccECN). See
6930  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6931  * extensions.
6932  */
6933 static void tcp_ecn_create_request(struct request_sock *req,
6934 				   const struct sk_buff *skb,
6935 				   const struct sock *listen_sk,
6936 				   const struct dst_entry *dst)
6937 {
6938 	const struct tcphdr *th = tcp_hdr(skb);
6939 	const struct net *net = sock_net(listen_sk);
6940 	bool th_ecn = th->ece && th->cwr;
6941 	bool ect, ecn_ok;
6942 	u32 ecn_ok_dst;
6943 
6944 	if (!th_ecn)
6945 		return;
6946 
6947 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6948 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6949 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6950 
6951 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6952 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6953 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6954 		inet_rsk(req)->ecn_ok = 1;
6955 }
6956 
6957 static void tcp_openreq_init(struct request_sock *req,
6958 			     const struct tcp_options_received *rx_opt,
6959 			     struct sk_buff *skb, const struct sock *sk)
6960 {
6961 	struct inet_request_sock *ireq = inet_rsk(req);
6962 
6963 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6964 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6965 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6966 	tcp_rsk(req)->snt_synack = 0;
6967 	tcp_rsk(req)->snt_tsval_first = 0;
6968 	tcp_rsk(req)->last_oow_ack_time = 0;
6969 	req->mss = rx_opt->mss_clamp;
6970 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6971 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6972 	ireq->sack_ok = rx_opt->sack_ok;
6973 	ireq->snd_wscale = rx_opt->snd_wscale;
6974 	ireq->wscale_ok = rx_opt->wscale_ok;
6975 	ireq->acked = 0;
6976 	ireq->ecn_ok = 0;
6977 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6978 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6979 	ireq->ir_mark = inet_request_mark(sk, skb);
6980 #if IS_ENABLED(CONFIG_SMC)
6981 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6982 			tcp_sk(sk)->smc_hs_congested(sk));
6983 #endif
6984 }
6985 
6986 /*
6987  * Return true if a syncookie should be sent
6988  */
6989 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
6990 {
6991 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6992 	const char *msg = "Dropping request";
6993 	struct net *net = sock_net(sk);
6994 	bool want_cookie = false;
6995 	u8 syncookies;
6996 
6997 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6998 
6999 #ifdef CONFIG_SYN_COOKIES
7000 	if (syncookies) {
7001 		msg = "Sending cookies";
7002 		want_cookie = true;
7003 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7004 	} else
7005 #endif
7006 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7007 
7008 	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7009 	    xchg(&queue->synflood_warned, 1) == 0) {
7010 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7011 			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7012 					proto, inet6_rcv_saddr(sk),
7013 					sk->sk_num, msg);
7014 		} else {
7015 			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7016 					proto, &sk->sk_rcv_saddr,
7017 					sk->sk_num, msg);
7018 		}
7019 	}
7020 
7021 	return want_cookie;
7022 }
7023 
7024 static void tcp_reqsk_record_syn(const struct sock *sk,
7025 				 struct request_sock *req,
7026 				 const struct sk_buff *skb)
7027 {
7028 	if (tcp_sk(sk)->save_syn) {
7029 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7030 		struct saved_syn *saved_syn;
7031 		u32 mac_hdrlen;
7032 		void *base;
7033 
7034 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
7035 			base = skb_mac_header(skb);
7036 			mac_hdrlen = skb_mac_header_len(skb);
7037 			len += mac_hdrlen;
7038 		} else {
7039 			base = skb_network_header(skb);
7040 			mac_hdrlen = 0;
7041 		}
7042 
7043 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
7044 				    GFP_ATOMIC);
7045 		if (saved_syn) {
7046 			saved_syn->mac_hdrlen = mac_hdrlen;
7047 			saved_syn->network_hdrlen = skb_network_header_len(skb);
7048 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7049 			memcpy(saved_syn->data, base, len);
7050 			req->saved_syn = saved_syn;
7051 		}
7052 	}
7053 }
7054 
7055 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7056  * used for SYN cookie generation.
7057  */
7058 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7059 			  const struct tcp_request_sock_ops *af_ops,
7060 			  struct sock *sk, struct tcphdr *th)
7061 {
7062 	struct tcp_sock *tp = tcp_sk(sk);
7063 	u16 mss;
7064 
7065 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7066 	    !inet_csk_reqsk_queue_is_full(sk))
7067 		return 0;
7068 
7069 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7070 		return 0;
7071 
7072 	if (sk_acceptq_is_full(sk)) {
7073 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7074 		return 0;
7075 	}
7076 
7077 	mss = tcp_parse_mss_option(th, READ_ONCE(tp->rx_opt.user_mss));
7078 	if (!mss)
7079 		mss = af_ops->mss_clamp;
7080 
7081 	return mss;
7082 }
7083 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss);
7084 
7085 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7086 		     const struct tcp_request_sock_ops *af_ops,
7087 		     struct sock *sk, struct sk_buff *skb)
7088 {
7089 	struct tcp_fastopen_cookie foc = { .len = -1 };
7090 	struct tcp_options_received tmp_opt;
7091 	const struct tcp_sock *tp = tcp_sk(sk);
7092 	struct net *net = sock_net(sk);
7093 	struct sock *fastopen_sk = NULL;
7094 	struct request_sock *req;
7095 	bool want_cookie = false;
7096 	struct dst_entry *dst;
7097 	struct flowi fl;
7098 	u8 syncookies;
7099 	u32 isn;
7100 
7101 #ifdef CONFIG_TCP_AO
7102 	const struct tcp_ao_hdr *aoh;
7103 #endif
7104 
7105 	isn = __this_cpu_read(tcp_tw_isn);
7106 	if (isn) {
7107 		/* TW buckets are converted to open requests without
7108 		 * limitations, they conserve resources and peer is
7109 		 * evidently real one.
7110 		 */
7111 		__this_cpu_write(tcp_tw_isn, 0);
7112 	} else {
7113 		syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7114 
7115 		if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7116 			want_cookie = tcp_syn_flood_action(sk,
7117 							   rsk_ops->slab_name);
7118 			if (!want_cookie)
7119 				goto drop;
7120 		}
7121 	}
7122 
7123 	if (sk_acceptq_is_full(sk)) {
7124 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7125 		goto drop;
7126 	}
7127 
7128 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7129 	if (!req)
7130 		goto drop;
7131 
7132 	req->syncookie = want_cookie;
7133 	tcp_rsk(req)->af_specific = af_ops;
7134 	tcp_rsk(req)->ts_off = 0;
7135 	tcp_rsk(req)->req_usec_ts = false;
7136 #if IS_ENABLED(CONFIG_MPTCP)
7137 	tcp_rsk(req)->is_mptcp = 0;
7138 #endif
7139 
7140 	tcp_clear_options(&tmp_opt);
7141 	tmp_opt.mss_clamp = af_ops->mss_clamp;
7142 	tmp_opt.user_mss  = READ_ONCE(tp->rx_opt.user_mss);
7143 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7144 			  want_cookie ? NULL : &foc);
7145 
7146 	if (want_cookie && !tmp_opt.saw_tstamp)
7147 		tcp_clear_options(&tmp_opt);
7148 
7149 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7150 		tmp_opt.smc_ok = 0;
7151 
7152 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7153 	tcp_openreq_init(req, &tmp_opt, skb, sk);
7154 	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7155 
7156 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7157 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7158 
7159 	dst = af_ops->route_req(sk, skb, &fl, req, isn);
7160 	if (!dst)
7161 		goto drop_and_free;
7162 
7163 	if (tmp_opt.tstamp_ok) {
7164 		tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7165 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7166 	}
7167 	if (!want_cookie && !isn) {
7168 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7169 
7170 		/* Kill the following clause, if you dislike this way. */
7171 		if (!syncookies &&
7172 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7173 		     (max_syn_backlog >> 2)) &&
7174 		    !tcp_peer_is_proven(req, dst)) {
7175 			/* Without syncookies last quarter of
7176 			 * backlog is filled with destinations,
7177 			 * proven to be alive.
7178 			 * It means that we continue to communicate
7179 			 * to destinations, already remembered
7180 			 * to the moment of synflood.
7181 			 */
7182 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7183 				    rsk_ops->family);
7184 			goto drop_and_release;
7185 		}
7186 
7187 		isn = af_ops->init_seq(skb);
7188 	}
7189 
7190 	tcp_ecn_create_request(req, skb, sk, dst);
7191 
7192 	if (want_cookie) {
7193 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7194 		if (!tmp_opt.tstamp_ok)
7195 			inet_rsk(req)->ecn_ok = 0;
7196 	}
7197 
7198 #ifdef CONFIG_TCP_AO
7199 	if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7200 		goto drop_and_release; /* Invalid TCP options */
7201 	if (aoh) {
7202 		tcp_rsk(req)->used_tcp_ao = true;
7203 		tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7204 		tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7205 
7206 	} else {
7207 		tcp_rsk(req)->used_tcp_ao = false;
7208 	}
7209 #endif
7210 	tcp_rsk(req)->snt_isn = isn;
7211 	tcp_rsk(req)->txhash = net_tx_rndhash();
7212 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7213 	tcp_openreq_init_rwin(req, sk, dst);
7214 	sk_rx_queue_set(req_to_sk(req), skb);
7215 	if (!want_cookie) {
7216 		tcp_reqsk_record_syn(sk, req, skb);
7217 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7218 	}
7219 	if (fastopen_sk) {
7220 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7221 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7222 		/* Add the child socket directly into the accept queue */
7223 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7224 			reqsk_fastopen_remove(fastopen_sk, req, false);
7225 			bh_unlock_sock(fastopen_sk);
7226 			sock_put(fastopen_sk);
7227 			goto drop_and_free;
7228 		}
7229 		sk->sk_data_ready(sk);
7230 		bh_unlock_sock(fastopen_sk);
7231 		sock_put(fastopen_sk);
7232 	} else {
7233 		tcp_rsk(req)->tfo_listener = false;
7234 		if (!want_cookie) {
7235 			req->timeout = tcp_timeout_init((struct sock *)req);
7236 			if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7237 								    req->timeout))) {
7238 				reqsk_free(req);
7239 				dst_release(dst);
7240 				return 0;
7241 			}
7242 
7243 		}
7244 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7245 				    !want_cookie ? TCP_SYNACK_NORMAL :
7246 						   TCP_SYNACK_COOKIE,
7247 				    skb);
7248 		if (want_cookie) {
7249 			reqsk_free(req);
7250 			return 0;
7251 		}
7252 	}
7253 	reqsk_put(req);
7254 	return 0;
7255 
7256 drop_and_release:
7257 	dst_release(dst);
7258 drop_and_free:
7259 	__reqsk_free(req);
7260 drop:
7261 	tcp_listendrop(sk);
7262 	return 0;
7263 }
7264 EXPORT_IPV6_MOD(tcp_conn_request);
7265