1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/tcp_ecn.h> 76 #include <net/proto_memory.h> 77 #include <net/inet_common.h> 78 #include <linux/ipsec.h> 79 #include <linux/unaligned.h> 80 #include <linux/errqueue.h> 81 #include <trace/events/tcp.h> 82 #include <linux/jump_label_ratelimit.h> 83 #include <net/busy_poll.h> 84 #include <net/mptcp.h> 85 86 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 87 88 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 89 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 90 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 91 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 92 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 93 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 94 #define FLAG_ECE 0x40 /* ECE in this ACK */ 95 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 96 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 97 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 98 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 99 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 100 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 101 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 102 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 103 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 104 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 105 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */ 106 #define FLAG_TS_PROGRESS 0x40000 /* Positive timestamp delta */ 107 108 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 109 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 110 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 111 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 112 113 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 114 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 115 116 #define REXMIT_NONE 0 /* no loss recovery to do */ 117 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 118 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 119 120 #if IS_ENABLED(CONFIG_TLS_DEVICE) 121 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 122 123 void clean_acked_data_enable(struct tcp_sock *tp, 124 void (*cad)(struct sock *sk, u32 ack_seq)) 125 { 126 tp->tcp_clean_acked = cad; 127 static_branch_deferred_inc(&clean_acked_data_enabled); 128 } 129 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 130 131 void clean_acked_data_disable(struct tcp_sock *tp) 132 { 133 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 134 tp->tcp_clean_acked = NULL; 135 } 136 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 137 138 void clean_acked_data_flush(void) 139 { 140 static_key_deferred_flush(&clean_acked_data_enabled); 141 } 142 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 143 #endif 144 145 #ifdef CONFIG_CGROUP_BPF 146 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 147 { 148 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 149 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 150 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 151 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 152 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 153 struct bpf_sock_ops_kern sock_ops; 154 155 if (likely(!unknown_opt && !parse_all_opt)) 156 return; 157 158 /* The skb will be handled in the 159 * bpf_skops_established() or 160 * bpf_skops_write_hdr_opt(). 161 */ 162 switch (sk->sk_state) { 163 case TCP_SYN_RECV: 164 case TCP_SYN_SENT: 165 case TCP_LISTEN: 166 return; 167 } 168 169 sock_owned_by_me(sk); 170 171 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 172 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 173 sock_ops.is_fullsock = 1; 174 sock_ops.is_locked_tcp_sock = 1; 175 sock_ops.sk = sk; 176 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 177 178 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 179 } 180 181 static void bpf_skops_established(struct sock *sk, int bpf_op, 182 struct sk_buff *skb) 183 { 184 struct bpf_sock_ops_kern sock_ops; 185 186 sock_owned_by_me(sk); 187 188 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 189 sock_ops.op = bpf_op; 190 sock_ops.is_fullsock = 1; 191 sock_ops.is_locked_tcp_sock = 1; 192 sock_ops.sk = sk; 193 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 194 if (skb) 195 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 196 197 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 198 } 199 #else 200 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 201 { 202 } 203 204 static void bpf_skops_established(struct sock *sk, int bpf_op, 205 struct sk_buff *skb) 206 { 207 } 208 #endif 209 210 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb, 211 unsigned int len) 212 { 213 struct net_device *dev; 214 215 rcu_read_lock(); 216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 217 if (!dev || len >= READ_ONCE(dev->mtu)) 218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 219 dev ? dev->name : "Unknown driver"); 220 rcu_read_unlock(); 221 } 222 223 /* Adapt the MSS value used to make delayed ack decision to the 224 * real world. 225 */ 226 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 227 { 228 struct inet_connection_sock *icsk = inet_csk(sk); 229 const unsigned int lss = icsk->icsk_ack.last_seg_size; 230 unsigned int len; 231 232 icsk->icsk_ack.last_seg_size = 0; 233 234 /* skb->len may jitter because of SACKs, even if peer 235 * sends good full-sized frames. 236 */ 237 len = skb_shinfo(skb)->gso_size ? : skb->len; 238 if (len >= icsk->icsk_ack.rcv_mss) { 239 /* Note: divides are still a bit expensive. 240 * For the moment, only adjust scaling_ratio 241 * when we update icsk_ack.rcv_mss. 242 */ 243 if (unlikely(len != icsk->icsk_ack.rcv_mss)) { 244 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE; 245 u8 old_ratio = tcp_sk(sk)->scaling_ratio; 246 247 do_div(val, skb->truesize); 248 tcp_sk(sk)->scaling_ratio = val ? val : 1; 249 250 if (old_ratio != tcp_sk(sk)->scaling_ratio) { 251 struct tcp_sock *tp = tcp_sk(sk); 252 253 val = tcp_win_from_space(sk, sk->sk_rcvbuf); 254 tcp_set_window_clamp(sk, val); 255 256 if (tp->window_clamp < tp->rcvq_space.space) 257 tp->rcvq_space.space = tp->window_clamp; 258 } 259 } 260 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 261 tcp_sk(sk)->advmss); 262 /* Account for possibly-removed options */ 263 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE, 264 tcp_gro_dev_warn, sk, skb, len); 265 /* If the skb has a len of exactly 1*MSS and has the PSH bit 266 * set then it is likely the end of an application write. So 267 * more data may not be arriving soon, and yet the data sender 268 * may be waiting for an ACK if cwnd-bound or using TX zero 269 * copy. So we set ICSK_ACK_PUSHED here so that 270 * tcp_cleanup_rbuf() will send an ACK immediately if the app 271 * reads all of the data and is not ping-pong. If len > MSS 272 * then this logic does not matter (and does not hurt) because 273 * tcp_cleanup_rbuf() will always ACK immediately if the app 274 * reads data and there is more than an MSS of unACKed data. 275 */ 276 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH) 277 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 278 } else { 279 /* Otherwise, we make more careful check taking into account, 280 * that SACKs block is variable. 281 * 282 * "len" is invariant segment length, including TCP header. 283 */ 284 len += skb->data - skb_transport_header(skb); 285 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 286 /* If PSH is not set, packet should be 287 * full sized, provided peer TCP is not badly broken. 288 * This observation (if it is correct 8)) allows 289 * to handle super-low mtu links fairly. 290 */ 291 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 292 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 293 /* Subtract also invariant (if peer is RFC compliant), 294 * tcp header plus fixed timestamp option length. 295 * Resulting "len" is MSS free of SACK jitter. 296 */ 297 len -= tcp_sk(sk)->tcp_header_len; 298 icsk->icsk_ack.last_seg_size = len; 299 if (len == lss) { 300 icsk->icsk_ack.rcv_mss = len; 301 return; 302 } 303 } 304 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 305 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 306 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 307 } 308 } 309 310 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 311 { 312 struct inet_connection_sock *icsk = inet_csk(sk); 313 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 314 315 if (quickacks == 0) 316 quickacks = 2; 317 quickacks = min(quickacks, max_quickacks); 318 if (quickacks > icsk->icsk_ack.quick) 319 icsk->icsk_ack.quick = quickacks; 320 } 321 322 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 323 { 324 struct inet_connection_sock *icsk = inet_csk(sk); 325 326 tcp_incr_quickack(sk, max_quickacks); 327 inet_csk_exit_pingpong_mode(sk); 328 icsk->icsk_ack.ato = TCP_ATO_MIN; 329 } 330 331 /* Send ACKs quickly, if "quick" count is not exhausted 332 * and the session is not interactive. 333 */ 334 335 static bool tcp_in_quickack_mode(struct sock *sk) 336 { 337 const struct inet_connection_sock *icsk = inet_csk(sk); 338 339 return icsk->icsk_ack.dst_quick_ack || 340 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 341 } 342 343 static void tcp_data_ecn_check(struct sock *sk, const struct sk_buff *skb) 344 { 345 struct tcp_sock *tp = tcp_sk(sk); 346 347 if (tcp_ecn_disabled(tp)) 348 return; 349 350 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 351 case INET_ECN_NOT_ECT: 352 /* Funny extension: if ECT is not set on a segment, 353 * and we already seen ECT on a previous segment, 354 * it is probably a retransmit. 355 */ 356 if (tp->ecn_flags & TCP_ECN_SEEN) 357 tcp_enter_quickack_mode(sk, 2); 358 break; 359 case INET_ECN_CE: 360 if (tcp_ca_needs_ecn(sk)) 361 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 362 363 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 364 /* Better not delay acks, sender can have a very low cwnd */ 365 tcp_enter_quickack_mode(sk, 2); 366 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 367 } 368 tp->ecn_flags |= TCP_ECN_SEEN; 369 break; 370 default: 371 if (tcp_ca_needs_ecn(sk)) 372 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 373 tp->ecn_flags |= TCP_ECN_SEEN; 374 break; 375 } 376 } 377 378 static void tcp_count_delivered_ce(struct tcp_sock *tp, u32 ecn_count) 379 { 380 tp->delivered_ce += ecn_count; 381 } 382 383 /* Updates the delivered and delivered_ce counts */ 384 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 385 bool ece_ack) 386 { 387 tp->delivered += delivered; 388 if (ece_ack) 389 tcp_count_delivered_ce(tp, delivered); 390 } 391 392 /* Buffer size and advertised window tuning. 393 * 394 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 395 */ 396 397 static void tcp_sndbuf_expand(struct sock *sk) 398 { 399 const struct tcp_sock *tp = tcp_sk(sk); 400 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 401 int sndmem, per_mss; 402 u32 nr_segs; 403 404 /* Worst case is non GSO/TSO : each frame consumes one skb 405 * and skb->head is kmalloced using power of two area of memory 406 */ 407 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 408 MAX_TCP_HEADER + 409 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 410 411 per_mss = roundup_pow_of_two(per_mss) + 412 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 413 414 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp)); 415 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 416 417 /* Fast Recovery (RFC 5681 3.2) : 418 * Cubic needs 1.7 factor, rounded to 2 to include 419 * extra cushion (application might react slowly to EPOLLOUT) 420 */ 421 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 422 sndmem *= nr_segs * per_mss; 423 424 if (sk->sk_sndbuf < sndmem) 425 WRITE_ONCE(sk->sk_sndbuf, 426 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2]))); 427 } 428 429 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 430 * 431 * All tcp_full_space() is split to two parts: "network" buffer, allocated 432 * forward and advertised in receiver window (tp->rcv_wnd) and 433 * "application buffer", required to isolate scheduling/application 434 * latencies from network. 435 * window_clamp is maximal advertised window. It can be less than 436 * tcp_full_space(), in this case tcp_full_space() - window_clamp 437 * is reserved for "application" buffer. The less window_clamp is 438 * the smoother our behaviour from viewpoint of network, but the lower 439 * throughput and the higher sensitivity of the connection to losses. 8) 440 * 441 * rcv_ssthresh is more strict window_clamp used at "slow start" 442 * phase to predict further behaviour of this connection. 443 * It is used for two goals: 444 * - to enforce header prediction at sender, even when application 445 * requires some significant "application buffer". It is check #1. 446 * - to prevent pruning of receive queue because of misprediction 447 * of receiver window. Check #2. 448 * 449 * The scheme does not work when sender sends good segments opening 450 * window and then starts to feed us spaghetti. But it should work 451 * in common situations. Otherwise, we have to rely on queue collapsing. 452 */ 453 454 /* Slow part of check#2. */ 455 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 456 unsigned int skbtruesize) 457 { 458 const struct tcp_sock *tp = tcp_sk(sk); 459 /* Optimize this! */ 460 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 461 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1; 462 463 while (tp->rcv_ssthresh <= window) { 464 if (truesize <= skb->len) 465 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 466 467 truesize >>= 1; 468 window >>= 1; 469 } 470 return 0; 471 } 472 473 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 474 * can play nice with us, as sk_buff and skb->head might be either 475 * freed or shared with up to MAX_SKB_FRAGS segments. 476 * Only give a boost to drivers using page frag(s) to hold the frame(s), 477 * and if no payload was pulled in skb->head before reaching us. 478 */ 479 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 480 { 481 u32 truesize = skb->truesize; 482 483 if (adjust && !skb_headlen(skb)) { 484 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 485 /* paranoid check, some drivers might be buggy */ 486 if (unlikely((int)truesize < (int)skb->len)) 487 truesize = skb->truesize; 488 } 489 return truesize; 490 } 491 492 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 493 bool adjust) 494 { 495 struct tcp_sock *tp = tcp_sk(sk); 496 int room; 497 498 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 499 500 if (room <= 0) 501 return; 502 503 /* Check #1 */ 504 if (!tcp_under_memory_pressure(sk)) { 505 unsigned int truesize = truesize_adjust(adjust, skb); 506 int incr; 507 508 /* Check #2. Increase window, if skb with such overhead 509 * will fit to rcvbuf in future. 510 */ 511 if (tcp_win_from_space(sk, truesize) <= skb->len) 512 incr = 2 * tp->advmss; 513 else 514 incr = __tcp_grow_window(sk, skb, truesize); 515 516 if (incr) { 517 incr = max_t(int, incr, 2 * skb->len); 518 tp->rcv_ssthresh += min(room, incr); 519 inet_csk(sk)->icsk_ack.quick |= 1; 520 } 521 } else { 522 /* Under pressure: 523 * Adjust rcv_ssthresh according to reserved mem 524 */ 525 tcp_adjust_rcv_ssthresh(sk); 526 } 527 } 528 529 /* 3. Try to fixup all. It is made immediately after connection enters 530 * established state. 531 */ 532 static void tcp_init_buffer_space(struct sock *sk) 533 { 534 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win); 535 struct tcp_sock *tp = tcp_sk(sk); 536 int maxwin; 537 538 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 539 tcp_sndbuf_expand(sk); 540 541 tcp_mstamp_refresh(tp); 542 tp->rcvq_space.time = tp->tcp_mstamp; 543 tp->rcvq_space.seq = tp->copied_seq; 544 545 maxwin = tcp_full_space(sk); 546 547 if (tp->window_clamp >= maxwin) { 548 WRITE_ONCE(tp->window_clamp, maxwin); 549 550 if (tcp_app_win && maxwin > 4 * tp->advmss) 551 WRITE_ONCE(tp->window_clamp, 552 max(maxwin - (maxwin >> tcp_app_win), 553 4 * tp->advmss)); 554 } 555 556 /* Force reservation of one segment. */ 557 if (tcp_app_win && 558 tp->window_clamp > 2 * tp->advmss && 559 tp->window_clamp + tp->advmss > maxwin) 560 WRITE_ONCE(tp->window_clamp, 561 max(2 * tp->advmss, maxwin - tp->advmss)); 562 563 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 564 tp->snd_cwnd_stamp = tcp_jiffies32; 565 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 566 (u32)TCP_INIT_CWND * tp->advmss); 567 } 568 569 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 570 static void tcp_clamp_window(struct sock *sk) 571 { 572 struct tcp_sock *tp = tcp_sk(sk); 573 struct inet_connection_sock *icsk = inet_csk(sk); 574 struct net *net = sock_net(sk); 575 int rmem2; 576 577 icsk->icsk_ack.quick = 0; 578 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 579 580 if (sk->sk_rcvbuf < rmem2 && 581 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 582 !tcp_under_memory_pressure(sk) && 583 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 584 WRITE_ONCE(sk->sk_rcvbuf, 585 min(atomic_read(&sk->sk_rmem_alloc), rmem2)); 586 } 587 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 588 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 589 } 590 591 /* Initialize RCV_MSS value. 592 * RCV_MSS is an our guess about MSS used by the peer. 593 * We haven't any direct information about the MSS. 594 * It's better to underestimate the RCV_MSS rather than overestimate. 595 * Overestimations make us ACKing less frequently than needed. 596 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 597 */ 598 void tcp_initialize_rcv_mss(struct sock *sk) 599 { 600 const struct tcp_sock *tp = tcp_sk(sk); 601 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 602 603 hint = min(hint, tp->rcv_wnd / 2); 604 hint = min(hint, TCP_MSS_DEFAULT); 605 hint = max(hint, TCP_MIN_MSS); 606 607 inet_csk(sk)->icsk_ack.rcv_mss = hint; 608 } 609 EXPORT_IPV6_MOD(tcp_initialize_rcv_mss); 610 611 /* Receiver "autotuning" code. 612 * 613 * The algorithm for RTT estimation w/o timestamps is based on 614 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 615 * <https://public.lanl.gov/radiant/pubs.html#DRS> 616 * 617 * More detail on this code can be found at 618 * <http://staff.psc.edu/jheffner/>, 619 * though this reference is out of date. A new paper 620 * is pending. 621 */ 622 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 623 { 624 u32 new_sample, old_sample = tp->rcv_rtt_est.rtt_us; 625 long m = sample << 3; 626 627 if (old_sample == 0 || m < old_sample) { 628 new_sample = m; 629 } else { 630 /* If we sample in larger samples in the non-timestamp 631 * case, we could grossly overestimate the RTT especially 632 * with chatty applications or bulk transfer apps which 633 * are stalled on filesystem I/O. 634 * 635 * Also, since we are only going for a minimum in the 636 * non-timestamp case, we do not smooth things out 637 * else with timestamps disabled convergence takes too 638 * long. 639 */ 640 if (win_dep) 641 return; 642 /* Do not use this sample if receive queue is not empty. */ 643 if (tp->rcv_nxt != tp->copied_seq) 644 return; 645 new_sample = old_sample - (old_sample >> 3) + sample; 646 } 647 648 tp->rcv_rtt_est.rtt_us = new_sample; 649 } 650 651 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 652 { 653 u32 delta_us; 654 655 if (tp->rcv_rtt_est.time == 0) 656 goto new_measure; 657 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 658 return; 659 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 660 if (!delta_us) 661 delta_us = 1; 662 tcp_rcv_rtt_update(tp, delta_us, 1); 663 664 new_measure: 665 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 666 tp->rcv_rtt_est.time = tp->tcp_mstamp; 667 } 668 669 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp, u32 min_delta) 670 { 671 u32 delta, delta_us; 672 673 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr; 674 if (tp->tcp_usec_ts) 675 return delta; 676 677 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 678 if (!delta) 679 delta = min_delta; 680 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 681 return delta_us; 682 } 683 return -1; 684 } 685 686 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 687 const struct sk_buff *skb) 688 { 689 struct tcp_sock *tp = tcp_sk(sk); 690 691 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 692 return; 693 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 694 695 if (TCP_SKB_CB(skb)->end_seq - 696 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 697 s32 delta = tcp_rtt_tsopt_us(tp, 0); 698 699 if (delta > 0) 700 tcp_rcv_rtt_update(tp, delta, 0); 701 } 702 } 703 704 static void tcp_rcvbuf_grow(struct sock *sk) 705 { 706 const struct net *net = sock_net(sk); 707 struct tcp_sock *tp = tcp_sk(sk); 708 int rcvwin, rcvbuf, cap; 709 710 if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) || 711 (sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 712 return; 713 714 /* slow start: allow the sender to double its rate. */ 715 rcvwin = tp->rcvq_space.space << 1; 716 717 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) 718 rcvwin += TCP_SKB_CB(tp->ooo_last_skb)->end_seq - tp->rcv_nxt; 719 720 cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]); 721 722 rcvbuf = min_t(u32, tcp_space_from_win(sk, rcvwin), cap); 723 if (rcvbuf > sk->sk_rcvbuf) { 724 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 725 /* Make the window clamp follow along. */ 726 WRITE_ONCE(tp->window_clamp, 727 tcp_win_from_space(sk, rcvbuf)); 728 } 729 } 730 /* 731 * This function should be called every time data is copied to user space. 732 * It calculates the appropriate TCP receive buffer space. 733 */ 734 void tcp_rcv_space_adjust(struct sock *sk) 735 { 736 struct tcp_sock *tp = tcp_sk(sk); 737 int time, inq, copied; 738 739 trace_tcp_rcv_space_adjust(sk); 740 741 tcp_mstamp_refresh(tp); 742 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 743 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 744 return; 745 746 /* Number of bytes copied to user in last RTT */ 747 copied = tp->copied_seq - tp->rcvq_space.seq; 748 /* Number of bytes in receive queue. */ 749 inq = tp->rcv_nxt - tp->copied_seq; 750 copied -= inq; 751 if (copied <= tp->rcvq_space.space) 752 goto new_measure; 753 754 trace_tcp_rcvbuf_grow(sk, time); 755 756 tp->rcvq_space.space = copied; 757 758 tcp_rcvbuf_grow(sk); 759 760 new_measure: 761 tp->rcvq_space.seq = tp->copied_seq; 762 tp->rcvq_space.time = tp->tcp_mstamp; 763 } 764 765 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb) 766 { 767 #if IS_ENABLED(CONFIG_IPV6) 768 struct inet_connection_sock *icsk = inet_csk(sk); 769 770 if (skb->protocol == htons(ETH_P_IPV6)) 771 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb))); 772 #endif 773 } 774 775 /* There is something which you must keep in mind when you analyze the 776 * behavior of the tp->ato delayed ack timeout interval. When a 777 * connection starts up, we want to ack as quickly as possible. The 778 * problem is that "good" TCP's do slow start at the beginning of data 779 * transmission. The means that until we send the first few ACK's the 780 * sender will sit on his end and only queue most of his data, because 781 * he can only send snd_cwnd unacked packets at any given time. For 782 * each ACK we send, he increments snd_cwnd and transmits more of his 783 * queue. -DaveM 784 */ 785 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 786 { 787 struct tcp_sock *tp = tcp_sk(sk); 788 struct inet_connection_sock *icsk = inet_csk(sk); 789 u32 now; 790 791 inet_csk_schedule_ack(sk); 792 793 tcp_measure_rcv_mss(sk, skb); 794 795 tcp_rcv_rtt_measure(tp); 796 797 now = tcp_jiffies32; 798 799 if (!icsk->icsk_ack.ato) { 800 /* The _first_ data packet received, initialize 801 * delayed ACK engine. 802 */ 803 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 804 icsk->icsk_ack.ato = TCP_ATO_MIN; 805 } else { 806 int m = now - icsk->icsk_ack.lrcvtime; 807 808 if (m <= TCP_ATO_MIN / 2) { 809 /* The fastest case is the first. */ 810 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 811 } else if (m < icsk->icsk_ack.ato) { 812 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 813 if (icsk->icsk_ack.ato > icsk->icsk_rto) 814 icsk->icsk_ack.ato = icsk->icsk_rto; 815 } else if (m > icsk->icsk_rto) { 816 /* Too long gap. Apparently sender failed to 817 * restart window, so that we send ACKs quickly. 818 */ 819 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 820 } 821 } 822 icsk->icsk_ack.lrcvtime = now; 823 tcp_save_lrcv_flowlabel(sk, skb); 824 825 tcp_data_ecn_check(sk, skb); 826 827 if (skb->len >= 128) 828 tcp_grow_window(sk, skb, true); 829 } 830 831 /* Called to compute a smoothed rtt estimate. The data fed to this 832 * routine either comes from timestamps, or from segments that were 833 * known _not_ to have been retransmitted [see Karn/Partridge 834 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 835 * piece by Van Jacobson. 836 * NOTE: the next three routines used to be one big routine. 837 * To save cycles in the RFC 1323 implementation it was better to break 838 * it up into three procedures. -- erics 839 */ 840 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 841 { 842 struct tcp_sock *tp = tcp_sk(sk); 843 long m = mrtt_us; /* RTT */ 844 u32 srtt = tp->srtt_us; 845 846 /* The following amusing code comes from Jacobson's 847 * article in SIGCOMM '88. Note that rtt and mdev 848 * are scaled versions of rtt and mean deviation. 849 * This is designed to be as fast as possible 850 * m stands for "measurement". 851 * 852 * On a 1990 paper the rto value is changed to: 853 * RTO = rtt + 4 * mdev 854 * 855 * Funny. This algorithm seems to be very broken. 856 * These formulae increase RTO, when it should be decreased, increase 857 * too slowly, when it should be increased quickly, decrease too quickly 858 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 859 * does not matter how to _calculate_ it. Seems, it was trap 860 * that VJ failed to avoid. 8) 861 */ 862 if (srtt != 0) { 863 m -= (srtt >> 3); /* m is now error in rtt est */ 864 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 865 if (m < 0) { 866 m = -m; /* m is now abs(error) */ 867 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 868 /* This is similar to one of Eifel findings. 869 * Eifel blocks mdev updates when rtt decreases. 870 * This solution is a bit different: we use finer gain 871 * for mdev in this case (alpha*beta). 872 * Like Eifel it also prevents growth of rto, 873 * but also it limits too fast rto decreases, 874 * happening in pure Eifel. 875 */ 876 if (m > 0) 877 m >>= 3; 878 } else { 879 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 880 } 881 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 882 if (tp->mdev_us > tp->mdev_max_us) { 883 tp->mdev_max_us = tp->mdev_us; 884 if (tp->mdev_max_us > tp->rttvar_us) 885 tp->rttvar_us = tp->mdev_max_us; 886 } 887 if (after(tp->snd_una, tp->rtt_seq)) { 888 if (tp->mdev_max_us < tp->rttvar_us) 889 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 890 tp->rtt_seq = tp->snd_nxt; 891 tp->mdev_max_us = tcp_rto_min_us(sk); 892 893 tcp_bpf_rtt(sk, mrtt_us, srtt); 894 } 895 } else { 896 /* no previous measure. */ 897 srtt = m << 3; /* take the measured time to be rtt */ 898 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 899 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 900 tp->mdev_max_us = tp->rttvar_us; 901 tp->rtt_seq = tp->snd_nxt; 902 903 tcp_bpf_rtt(sk, mrtt_us, srtt); 904 } 905 tp->srtt_us = max(1U, srtt); 906 } 907 908 static void tcp_update_pacing_rate(struct sock *sk) 909 { 910 const struct tcp_sock *tp = tcp_sk(sk); 911 u64 rate; 912 913 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 914 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 915 916 /* current rate is (cwnd * mss) / srtt 917 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 918 * In Congestion Avoidance phase, set it to 120 % the current rate. 919 * 920 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 921 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 922 * end of slow start and should slow down. 923 */ 924 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2) 925 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio); 926 else 927 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio); 928 929 rate *= max(tcp_snd_cwnd(tp), tp->packets_out); 930 931 if (likely(tp->srtt_us)) 932 do_div(rate, tp->srtt_us); 933 934 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 935 * without any lock. We want to make sure compiler wont store 936 * intermediate values in this location. 937 */ 938 WRITE_ONCE(sk->sk_pacing_rate, 939 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate))); 940 } 941 942 /* Calculate rto without backoff. This is the second half of Van Jacobson's 943 * routine referred to above. 944 */ 945 static void tcp_set_rto(struct sock *sk) 946 { 947 const struct tcp_sock *tp = tcp_sk(sk); 948 /* Old crap is replaced with new one. 8) 949 * 950 * More seriously: 951 * 1. If rtt variance happened to be less 50msec, it is hallucination. 952 * It cannot be less due to utterly erratic ACK generation made 953 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 954 * to do with delayed acks, because at cwnd>2 true delack timeout 955 * is invisible. Actually, Linux-2.4 also generates erratic 956 * ACKs in some circumstances. 957 */ 958 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 959 960 /* 2. Fixups made earlier cannot be right. 961 * If we do not estimate RTO correctly without them, 962 * all the algo is pure shit and should be replaced 963 * with correct one. It is exactly, which we pretend to do. 964 */ 965 966 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 967 * guarantees that rto is higher. 968 */ 969 tcp_bound_rto(sk); 970 } 971 972 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 973 { 974 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 975 976 if (!cwnd) 977 cwnd = TCP_INIT_CWND; 978 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 979 } 980 981 struct tcp_sacktag_state { 982 /* Timestamps for earliest and latest never-retransmitted segment 983 * that was SACKed. RTO needs the earliest RTT to stay conservative, 984 * but congestion control should still get an accurate delay signal. 985 */ 986 u64 first_sackt; 987 u64 last_sackt; 988 u32 reord; 989 u32 sack_delivered; 990 int flag; 991 unsigned int mss_now; 992 struct rate_sample *rate; 993 }; 994 995 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 996 * and spurious retransmission information if this DSACK is unlikely caused by 997 * sender's action: 998 * - DSACKed sequence range is larger than maximum receiver's window. 999 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 1000 */ 1001 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 1002 u32 end_seq, struct tcp_sacktag_state *state) 1003 { 1004 u32 seq_len, dup_segs = 1; 1005 1006 if (!before(start_seq, end_seq)) 1007 return 0; 1008 1009 seq_len = end_seq - start_seq; 1010 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 1011 if (seq_len > tp->max_window) 1012 return 0; 1013 if (seq_len > tp->mss_cache) 1014 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 1015 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq) 1016 state->flag |= FLAG_DSACK_TLP; 1017 1018 tp->dsack_dups += dup_segs; 1019 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 1020 if (tp->dsack_dups > tp->total_retrans) 1021 return 0; 1022 1023 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1024 /* We increase the RACK ordering window in rounds where we receive 1025 * DSACKs that may have been due to reordering causing RACK to trigger 1026 * a spurious fast recovery. Thus RACK ignores DSACKs that happen 1027 * without having seen reordering, or that match TLP probes (TLP 1028 * is timer-driven, not triggered by RACK). 1029 */ 1030 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP)) 1031 tp->rack.dsack_seen = 1; 1032 1033 state->flag |= FLAG_DSACKING_ACK; 1034 /* A spurious retransmission is delivered */ 1035 state->sack_delivered += dup_segs; 1036 1037 return dup_segs; 1038 } 1039 1040 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1041 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1042 * distance is approximated in full-mss packet distance ("reordering"). 1043 */ 1044 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1045 const int ts) 1046 { 1047 struct tcp_sock *tp = tcp_sk(sk); 1048 const u32 mss = tp->mss_cache; 1049 u32 fack, metric; 1050 1051 fack = tcp_highest_sack_seq(tp); 1052 if (!before(low_seq, fack)) 1053 return; 1054 1055 metric = fack - low_seq; 1056 if ((metric > tp->reordering * mss) && mss) { 1057 #if FASTRETRANS_DEBUG > 1 1058 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1059 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1060 tp->reordering, 1061 0, 1062 tp->sacked_out, 1063 tp->undo_marker ? tp->undo_retrans : 0); 1064 #endif 1065 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1066 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 1067 } 1068 1069 /* This exciting event is worth to be remembered. 8) */ 1070 tp->reord_seen++; 1071 NET_INC_STATS(sock_net(sk), 1072 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1073 } 1074 1075 /* This must be called before lost_out or retrans_out are updated 1076 * on a new loss, because we want to know if all skbs previously 1077 * known to be lost have already been retransmitted, indicating 1078 * that this newly lost skb is our next skb to retransmit. 1079 */ 1080 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1081 { 1082 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1083 (tp->retransmit_skb_hint && 1084 before(TCP_SKB_CB(skb)->seq, 1085 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1086 tp->retransmit_skb_hint = skb; 1087 } 1088 1089 /* Sum the number of packets on the wire we have marked as lost, and 1090 * notify the congestion control module that the given skb was marked lost. 1091 */ 1092 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1093 { 1094 tp->lost += tcp_skb_pcount(skb); 1095 } 1096 1097 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1098 { 1099 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1100 struct tcp_sock *tp = tcp_sk(sk); 1101 1102 if (sacked & TCPCB_SACKED_ACKED) 1103 return; 1104 1105 tcp_verify_retransmit_hint(tp, skb); 1106 if (sacked & TCPCB_LOST) { 1107 if (sacked & TCPCB_SACKED_RETRANS) { 1108 /* Account for retransmits that are lost again */ 1109 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1110 tp->retrans_out -= tcp_skb_pcount(skb); 1111 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1112 tcp_skb_pcount(skb)); 1113 tcp_notify_skb_loss_event(tp, skb); 1114 } 1115 } else { 1116 tp->lost_out += tcp_skb_pcount(skb); 1117 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1118 tcp_notify_skb_loss_event(tp, skb); 1119 } 1120 } 1121 1122 /* This procedure tags the retransmission queue when SACKs arrive. 1123 * 1124 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1125 * Packets in queue with these bits set are counted in variables 1126 * sacked_out, retrans_out and lost_out, correspondingly. 1127 * 1128 * Valid combinations are: 1129 * Tag InFlight Description 1130 * 0 1 - orig segment is in flight. 1131 * S 0 - nothing flies, orig reached receiver. 1132 * L 0 - nothing flies, orig lost by net. 1133 * R 2 - both orig and retransmit are in flight. 1134 * L|R 1 - orig is lost, retransmit is in flight. 1135 * S|R 1 - orig reached receiver, retrans is still in flight. 1136 * (L|S|R is logically valid, it could occur when L|R is sacked, 1137 * but it is equivalent to plain S and code short-circuits it to S. 1138 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1139 * 1140 * These 6 states form finite state machine, controlled by the following events: 1141 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1142 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1143 * 3. Loss detection event of two flavors: 1144 * A. Scoreboard estimator decided the packet is lost. 1145 * A'. Reno "three dupacks" marks head of queue lost. 1146 * B. SACK arrives sacking SND.NXT at the moment, when the 1147 * segment was retransmitted. 1148 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1149 * 1150 * It is pleasant to note, that state diagram turns out to be commutative, 1151 * so that we are allowed not to be bothered by order of our actions, 1152 * when multiple events arrive simultaneously. (see the function below). 1153 * 1154 * Reordering detection. 1155 * -------------------- 1156 * Reordering metric is maximal distance, which a packet can be displaced 1157 * in packet stream. With SACKs we can estimate it: 1158 * 1159 * 1. SACK fills old hole and the corresponding segment was not 1160 * ever retransmitted -> reordering. Alas, we cannot use it 1161 * when segment was retransmitted. 1162 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1163 * for retransmitted and already SACKed segment -> reordering.. 1164 * Both of these heuristics are not used in Loss state, when we cannot 1165 * account for retransmits accurately. 1166 * 1167 * SACK block validation. 1168 * ---------------------- 1169 * 1170 * SACK block range validation checks that the received SACK block fits to 1171 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1172 * Note that SND.UNA is not included to the range though being valid because 1173 * it means that the receiver is rather inconsistent with itself reporting 1174 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1175 * perfectly valid, however, in light of RFC2018 which explicitly states 1176 * that "SACK block MUST reflect the newest segment. Even if the newest 1177 * segment is going to be discarded ...", not that it looks very clever 1178 * in case of head skb. Due to potentional receiver driven attacks, we 1179 * choose to avoid immediate execution of a walk in write queue due to 1180 * reneging and defer head skb's loss recovery to standard loss recovery 1181 * procedure that will eventually trigger (nothing forbids us doing this). 1182 * 1183 * Implements also blockage to start_seq wrap-around. Problem lies in the 1184 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1185 * there's no guarantee that it will be before snd_nxt (n). The problem 1186 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1187 * wrap (s_w): 1188 * 1189 * <- outs wnd -> <- wrapzone -> 1190 * u e n u_w e_w s n_w 1191 * | | | | | | | 1192 * |<------------+------+----- TCP seqno space --------------+---------->| 1193 * ...-- <2^31 ->| |<--------... 1194 * ...---- >2^31 ------>| |<--------... 1195 * 1196 * Current code wouldn't be vulnerable but it's better still to discard such 1197 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1198 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1199 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1200 * equal to the ideal case (infinite seqno space without wrap caused issues). 1201 * 1202 * With D-SACK the lower bound is extended to cover sequence space below 1203 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1204 * again, D-SACK block must not to go across snd_una (for the same reason as 1205 * for the normal SACK blocks, explained above). But there all simplicity 1206 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1207 * fully below undo_marker they do not affect behavior in anyway and can 1208 * therefore be safely ignored. In rare cases (which are more or less 1209 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1210 * fragmentation and packet reordering past skb's retransmission. To consider 1211 * them correctly, the acceptable range must be extended even more though 1212 * the exact amount is rather hard to quantify. However, tp->max_window can 1213 * be used as an exaggerated estimate. 1214 */ 1215 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1216 u32 start_seq, u32 end_seq) 1217 { 1218 /* Too far in future, or reversed (interpretation is ambiguous) */ 1219 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1220 return false; 1221 1222 /* Nasty start_seq wrap-around check (see comments above) */ 1223 if (!before(start_seq, tp->snd_nxt)) 1224 return false; 1225 1226 /* In outstanding window? ...This is valid exit for D-SACKs too. 1227 * start_seq == snd_una is non-sensical (see comments above) 1228 */ 1229 if (after(start_seq, tp->snd_una)) 1230 return true; 1231 1232 if (!is_dsack || !tp->undo_marker) 1233 return false; 1234 1235 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1236 if (after(end_seq, tp->snd_una)) 1237 return false; 1238 1239 if (!before(start_seq, tp->undo_marker)) 1240 return true; 1241 1242 /* Too old */ 1243 if (!after(end_seq, tp->undo_marker)) 1244 return false; 1245 1246 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1247 * start_seq < undo_marker and end_seq >= undo_marker. 1248 */ 1249 return !before(start_seq, end_seq - tp->max_window); 1250 } 1251 1252 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1253 struct tcp_sack_block_wire *sp, int num_sacks, 1254 u32 prior_snd_una, struct tcp_sacktag_state *state) 1255 { 1256 struct tcp_sock *tp = tcp_sk(sk); 1257 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1258 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1259 u32 dup_segs; 1260 1261 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1262 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1263 } else if (num_sacks > 1) { 1264 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1265 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1266 1267 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1268 return false; 1269 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1270 } else { 1271 return false; 1272 } 1273 1274 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1275 if (!dup_segs) { /* Skip dubious DSACK */ 1276 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1277 return false; 1278 } 1279 1280 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1281 1282 /* D-SACK for already forgotten data... Do dumb counting. */ 1283 if (tp->undo_marker && tp->undo_retrans > 0 && 1284 !after(end_seq_0, prior_snd_una) && 1285 after(end_seq_0, tp->undo_marker)) 1286 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1287 1288 return true; 1289 } 1290 1291 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1292 * the incoming SACK may not exactly match but we can find smaller MSS 1293 * aligned portion of it that matches. Therefore we might need to fragment 1294 * which may fail and creates some hassle (caller must handle error case 1295 * returns). 1296 * 1297 * FIXME: this could be merged to shift decision code 1298 */ 1299 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1300 u32 start_seq, u32 end_seq) 1301 { 1302 int err; 1303 bool in_sack; 1304 unsigned int pkt_len; 1305 unsigned int mss; 1306 1307 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1308 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1309 1310 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1311 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1312 mss = tcp_skb_mss(skb); 1313 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1314 1315 if (!in_sack) { 1316 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1317 if (pkt_len < mss) 1318 pkt_len = mss; 1319 } else { 1320 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1321 if (pkt_len < mss) 1322 return -EINVAL; 1323 } 1324 1325 /* Round if necessary so that SACKs cover only full MSSes 1326 * and/or the remaining small portion (if present) 1327 */ 1328 if (pkt_len > mss) { 1329 unsigned int new_len = (pkt_len / mss) * mss; 1330 if (!in_sack && new_len < pkt_len) 1331 new_len += mss; 1332 pkt_len = new_len; 1333 } 1334 1335 if (pkt_len >= skb->len && !in_sack) 1336 return 0; 1337 1338 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1339 pkt_len, mss, GFP_ATOMIC); 1340 if (err < 0) 1341 return err; 1342 } 1343 1344 return in_sack; 1345 } 1346 1347 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1348 static u8 tcp_sacktag_one(struct sock *sk, 1349 struct tcp_sacktag_state *state, u8 sacked, 1350 u32 start_seq, u32 end_seq, 1351 int dup_sack, int pcount, 1352 u64 xmit_time) 1353 { 1354 struct tcp_sock *tp = tcp_sk(sk); 1355 1356 /* Account D-SACK for retransmitted packet. */ 1357 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1358 if (tp->undo_marker && tp->undo_retrans > 0 && 1359 after(end_seq, tp->undo_marker)) 1360 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount); 1361 if ((sacked & TCPCB_SACKED_ACKED) && 1362 before(start_seq, state->reord)) 1363 state->reord = start_seq; 1364 } 1365 1366 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1367 if (!after(end_seq, tp->snd_una)) 1368 return sacked; 1369 1370 if (!(sacked & TCPCB_SACKED_ACKED)) { 1371 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1372 1373 if (sacked & TCPCB_SACKED_RETRANS) { 1374 /* If the segment is not tagged as lost, 1375 * we do not clear RETRANS, believing 1376 * that retransmission is still in flight. 1377 */ 1378 if (sacked & TCPCB_LOST) { 1379 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1380 tp->lost_out -= pcount; 1381 tp->retrans_out -= pcount; 1382 } 1383 } else { 1384 if (!(sacked & TCPCB_RETRANS)) { 1385 /* New sack for not retransmitted frame, 1386 * which was in hole. It is reordering. 1387 */ 1388 if (before(start_seq, 1389 tcp_highest_sack_seq(tp)) && 1390 before(start_seq, state->reord)) 1391 state->reord = start_seq; 1392 1393 if (!after(end_seq, tp->high_seq)) 1394 state->flag |= FLAG_ORIG_SACK_ACKED; 1395 if (state->first_sackt == 0) 1396 state->first_sackt = xmit_time; 1397 state->last_sackt = xmit_time; 1398 } 1399 1400 if (sacked & TCPCB_LOST) { 1401 sacked &= ~TCPCB_LOST; 1402 tp->lost_out -= pcount; 1403 } 1404 } 1405 1406 sacked |= TCPCB_SACKED_ACKED; 1407 state->flag |= FLAG_DATA_SACKED; 1408 tp->sacked_out += pcount; 1409 /* Out-of-order packets delivered */ 1410 state->sack_delivered += pcount; 1411 } 1412 1413 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1414 * frames and clear it. undo_retrans is decreased above, L|R frames 1415 * are accounted above as well. 1416 */ 1417 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1418 sacked &= ~TCPCB_SACKED_RETRANS; 1419 tp->retrans_out -= pcount; 1420 } 1421 1422 return sacked; 1423 } 1424 1425 /* Shift newly-SACKed bytes from this skb to the immediately previous 1426 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1427 */ 1428 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1429 struct sk_buff *skb, 1430 struct tcp_sacktag_state *state, 1431 unsigned int pcount, int shifted, int mss, 1432 bool dup_sack) 1433 { 1434 struct tcp_sock *tp = tcp_sk(sk); 1435 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1436 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1437 1438 BUG_ON(!pcount); 1439 1440 /* Adjust counters and hints for the newly sacked sequence 1441 * range but discard the return value since prev is already 1442 * marked. We must tag the range first because the seq 1443 * advancement below implicitly advances 1444 * tcp_highest_sack_seq() when skb is highest_sack. 1445 */ 1446 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1447 start_seq, end_seq, dup_sack, pcount, 1448 tcp_skb_timestamp_us(skb)); 1449 tcp_rate_skb_delivered(sk, skb, state->rate); 1450 1451 TCP_SKB_CB(prev)->end_seq += shifted; 1452 TCP_SKB_CB(skb)->seq += shifted; 1453 1454 tcp_skb_pcount_add(prev, pcount); 1455 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1456 tcp_skb_pcount_add(skb, -pcount); 1457 1458 /* When we're adding to gso_segs == 1, gso_size will be zero, 1459 * in theory this shouldn't be necessary but as long as DSACK 1460 * code can come after this skb later on it's better to keep 1461 * setting gso_size to something. 1462 */ 1463 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1464 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1465 1466 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1467 if (tcp_skb_pcount(skb) <= 1) 1468 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1469 1470 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1471 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1472 1473 if (skb->len > 0) { 1474 BUG_ON(!tcp_skb_pcount(skb)); 1475 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1476 return false; 1477 } 1478 1479 /* Whole SKB was eaten :-) */ 1480 1481 if (skb == tp->retransmit_skb_hint) 1482 tp->retransmit_skb_hint = prev; 1483 1484 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1485 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1486 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1487 TCP_SKB_CB(prev)->end_seq++; 1488 1489 if (skb == tcp_highest_sack(sk)) 1490 tcp_advance_highest_sack(sk, skb); 1491 1492 tcp_skb_collapse_tstamp(prev, skb); 1493 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1494 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1495 1496 tcp_rtx_queue_unlink_and_free(skb, sk); 1497 1498 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1499 1500 return true; 1501 } 1502 1503 /* I wish gso_size would have a bit more sane initialization than 1504 * something-or-zero which complicates things 1505 */ 1506 static int tcp_skb_seglen(const struct sk_buff *skb) 1507 { 1508 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1509 } 1510 1511 /* Shifting pages past head area doesn't work */ 1512 static int skb_can_shift(const struct sk_buff *skb) 1513 { 1514 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1515 } 1516 1517 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1518 int pcount, int shiftlen) 1519 { 1520 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1521 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1522 * to make sure not storing more than 65535 * 8 bytes per skb, 1523 * even if current MSS is bigger. 1524 */ 1525 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1526 return 0; 1527 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1528 return 0; 1529 return skb_shift(to, from, shiftlen); 1530 } 1531 1532 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1533 * skb. 1534 */ 1535 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1536 struct tcp_sacktag_state *state, 1537 u32 start_seq, u32 end_seq, 1538 bool dup_sack) 1539 { 1540 struct tcp_sock *tp = tcp_sk(sk); 1541 struct sk_buff *prev; 1542 int mss; 1543 int pcount = 0; 1544 int len; 1545 int in_sack; 1546 1547 /* Normally R but no L won't result in plain S */ 1548 if (!dup_sack && 1549 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1550 goto fallback; 1551 if (!skb_can_shift(skb)) 1552 goto fallback; 1553 /* This frame is about to be dropped (was ACKed). */ 1554 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1555 goto fallback; 1556 1557 /* Can only happen with delayed DSACK + discard craziness */ 1558 prev = skb_rb_prev(skb); 1559 if (!prev) 1560 goto fallback; 1561 1562 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1563 goto fallback; 1564 1565 if (!tcp_skb_can_collapse(prev, skb)) 1566 goto fallback; 1567 1568 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1569 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1570 1571 if (in_sack) { 1572 len = skb->len; 1573 pcount = tcp_skb_pcount(skb); 1574 mss = tcp_skb_seglen(skb); 1575 1576 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1577 * drop this restriction as unnecessary 1578 */ 1579 if (mss != tcp_skb_seglen(prev)) 1580 goto fallback; 1581 } else { 1582 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1583 goto noop; 1584 /* CHECKME: This is non-MSS split case only?, this will 1585 * cause skipped skbs due to advancing loop btw, original 1586 * has that feature too 1587 */ 1588 if (tcp_skb_pcount(skb) <= 1) 1589 goto noop; 1590 1591 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1592 if (!in_sack) { 1593 /* TODO: head merge to next could be attempted here 1594 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1595 * though it might not be worth of the additional hassle 1596 * 1597 * ...we can probably just fallback to what was done 1598 * previously. We could try merging non-SACKed ones 1599 * as well but it probably isn't going to buy off 1600 * because later SACKs might again split them, and 1601 * it would make skb timestamp tracking considerably 1602 * harder problem. 1603 */ 1604 goto fallback; 1605 } 1606 1607 len = end_seq - TCP_SKB_CB(skb)->seq; 1608 BUG_ON(len < 0); 1609 BUG_ON(len > skb->len); 1610 1611 /* MSS boundaries should be honoured or else pcount will 1612 * severely break even though it makes things bit trickier. 1613 * Optimize common case to avoid most of the divides 1614 */ 1615 mss = tcp_skb_mss(skb); 1616 1617 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1618 * drop this restriction as unnecessary 1619 */ 1620 if (mss != tcp_skb_seglen(prev)) 1621 goto fallback; 1622 1623 if (len == mss) { 1624 pcount = 1; 1625 } else if (len < mss) { 1626 goto noop; 1627 } else { 1628 pcount = len / mss; 1629 len = pcount * mss; 1630 } 1631 } 1632 1633 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1634 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1635 goto fallback; 1636 1637 if (!tcp_skb_shift(prev, skb, pcount, len)) 1638 goto fallback; 1639 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1640 goto out; 1641 1642 /* Hole filled allows collapsing with the next as well, this is very 1643 * useful when hole on every nth skb pattern happens 1644 */ 1645 skb = skb_rb_next(prev); 1646 if (!skb) 1647 goto out; 1648 1649 if (!skb_can_shift(skb) || 1650 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1651 (mss != tcp_skb_seglen(skb))) 1652 goto out; 1653 1654 if (!tcp_skb_can_collapse(prev, skb)) 1655 goto out; 1656 len = skb->len; 1657 pcount = tcp_skb_pcount(skb); 1658 if (tcp_skb_shift(prev, skb, pcount, len)) 1659 tcp_shifted_skb(sk, prev, skb, state, pcount, 1660 len, mss, 0); 1661 1662 out: 1663 return prev; 1664 1665 noop: 1666 return skb; 1667 1668 fallback: 1669 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1670 return NULL; 1671 } 1672 1673 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1674 struct tcp_sack_block *next_dup, 1675 struct tcp_sacktag_state *state, 1676 u32 start_seq, u32 end_seq, 1677 bool dup_sack_in) 1678 { 1679 struct tcp_sock *tp = tcp_sk(sk); 1680 struct sk_buff *tmp; 1681 1682 skb_rbtree_walk_from(skb) { 1683 int in_sack = 0; 1684 bool dup_sack = dup_sack_in; 1685 1686 /* queue is in-order => we can short-circuit the walk early */ 1687 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1688 break; 1689 1690 if (next_dup && 1691 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1692 in_sack = tcp_match_skb_to_sack(sk, skb, 1693 next_dup->start_seq, 1694 next_dup->end_seq); 1695 if (in_sack > 0) 1696 dup_sack = true; 1697 } 1698 1699 /* skb reference here is a bit tricky to get right, since 1700 * shifting can eat and free both this skb and the next, 1701 * so not even _safe variant of the loop is enough. 1702 */ 1703 if (in_sack <= 0) { 1704 tmp = tcp_shift_skb_data(sk, skb, state, 1705 start_seq, end_seq, dup_sack); 1706 if (tmp) { 1707 if (tmp != skb) { 1708 skb = tmp; 1709 continue; 1710 } 1711 1712 in_sack = 0; 1713 } else { 1714 in_sack = tcp_match_skb_to_sack(sk, skb, 1715 start_seq, 1716 end_seq); 1717 } 1718 } 1719 1720 if (unlikely(in_sack < 0)) 1721 break; 1722 1723 if (in_sack) { 1724 TCP_SKB_CB(skb)->sacked = 1725 tcp_sacktag_one(sk, 1726 state, 1727 TCP_SKB_CB(skb)->sacked, 1728 TCP_SKB_CB(skb)->seq, 1729 TCP_SKB_CB(skb)->end_seq, 1730 dup_sack, 1731 tcp_skb_pcount(skb), 1732 tcp_skb_timestamp_us(skb)); 1733 tcp_rate_skb_delivered(sk, skb, state->rate); 1734 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1735 list_del_init(&skb->tcp_tsorted_anchor); 1736 1737 if (!before(TCP_SKB_CB(skb)->seq, 1738 tcp_highest_sack_seq(tp))) 1739 tcp_advance_highest_sack(sk, skb); 1740 } 1741 } 1742 return skb; 1743 } 1744 1745 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1746 { 1747 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1748 struct sk_buff *skb; 1749 1750 while (*p) { 1751 parent = *p; 1752 skb = rb_to_skb(parent); 1753 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1754 p = &parent->rb_left; 1755 continue; 1756 } 1757 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1758 p = &parent->rb_right; 1759 continue; 1760 } 1761 return skb; 1762 } 1763 return NULL; 1764 } 1765 1766 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1767 u32 skip_to_seq) 1768 { 1769 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1770 return skb; 1771 1772 return tcp_sacktag_bsearch(sk, skip_to_seq); 1773 } 1774 1775 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1776 struct sock *sk, 1777 struct tcp_sack_block *next_dup, 1778 struct tcp_sacktag_state *state, 1779 u32 skip_to_seq) 1780 { 1781 if (!next_dup) 1782 return skb; 1783 1784 if (before(next_dup->start_seq, skip_to_seq)) { 1785 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1786 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1787 next_dup->start_seq, next_dup->end_seq, 1788 1); 1789 } 1790 1791 return skb; 1792 } 1793 1794 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1795 { 1796 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1797 } 1798 1799 static int 1800 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1801 u32 prior_snd_una, struct tcp_sacktag_state *state) 1802 { 1803 struct tcp_sock *tp = tcp_sk(sk); 1804 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1805 TCP_SKB_CB(ack_skb)->sacked); 1806 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1807 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1808 struct tcp_sack_block *cache; 1809 struct sk_buff *skb; 1810 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1811 int used_sacks; 1812 bool found_dup_sack = false; 1813 int i, j; 1814 int first_sack_index; 1815 1816 state->flag = 0; 1817 state->reord = tp->snd_nxt; 1818 1819 if (!tp->sacked_out) 1820 tcp_highest_sack_reset(sk); 1821 1822 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1823 num_sacks, prior_snd_una, state); 1824 1825 /* Eliminate too old ACKs, but take into 1826 * account more or less fresh ones, they can 1827 * contain valid SACK info. 1828 */ 1829 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1830 return 0; 1831 1832 if (!tp->packets_out) 1833 goto out; 1834 1835 used_sacks = 0; 1836 first_sack_index = 0; 1837 for (i = 0; i < num_sacks; i++) { 1838 bool dup_sack = !i && found_dup_sack; 1839 1840 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1841 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1842 1843 if (!tcp_is_sackblock_valid(tp, dup_sack, 1844 sp[used_sacks].start_seq, 1845 sp[used_sacks].end_seq)) { 1846 int mib_idx; 1847 1848 if (dup_sack) { 1849 if (!tp->undo_marker) 1850 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1851 else 1852 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1853 } else { 1854 /* Don't count olds caused by ACK reordering */ 1855 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1856 !after(sp[used_sacks].end_seq, tp->snd_una)) 1857 continue; 1858 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1859 } 1860 1861 NET_INC_STATS(sock_net(sk), mib_idx); 1862 if (i == 0) 1863 first_sack_index = -1; 1864 continue; 1865 } 1866 1867 /* Ignore very old stuff early */ 1868 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1869 if (i == 0) 1870 first_sack_index = -1; 1871 continue; 1872 } 1873 1874 used_sacks++; 1875 } 1876 1877 /* order SACK blocks to allow in order walk of the retrans queue */ 1878 for (i = used_sacks - 1; i > 0; i--) { 1879 for (j = 0; j < i; j++) { 1880 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1881 swap(sp[j], sp[j + 1]); 1882 1883 /* Track where the first SACK block goes to */ 1884 if (j == first_sack_index) 1885 first_sack_index = j + 1; 1886 } 1887 } 1888 } 1889 1890 state->mss_now = tcp_current_mss(sk); 1891 skb = NULL; 1892 i = 0; 1893 1894 if (!tp->sacked_out) { 1895 /* It's already past, so skip checking against it */ 1896 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1897 } else { 1898 cache = tp->recv_sack_cache; 1899 /* Skip empty blocks in at head of the cache */ 1900 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1901 !cache->end_seq) 1902 cache++; 1903 } 1904 1905 while (i < used_sacks) { 1906 u32 start_seq = sp[i].start_seq; 1907 u32 end_seq = sp[i].end_seq; 1908 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1909 struct tcp_sack_block *next_dup = NULL; 1910 1911 if (found_dup_sack && ((i + 1) == first_sack_index)) 1912 next_dup = &sp[i + 1]; 1913 1914 /* Skip too early cached blocks */ 1915 while (tcp_sack_cache_ok(tp, cache) && 1916 !before(start_seq, cache->end_seq)) 1917 cache++; 1918 1919 /* Can skip some work by looking recv_sack_cache? */ 1920 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1921 after(end_seq, cache->start_seq)) { 1922 1923 /* Head todo? */ 1924 if (before(start_seq, cache->start_seq)) { 1925 skb = tcp_sacktag_skip(skb, sk, start_seq); 1926 skb = tcp_sacktag_walk(skb, sk, next_dup, 1927 state, 1928 start_seq, 1929 cache->start_seq, 1930 dup_sack); 1931 } 1932 1933 /* Rest of the block already fully processed? */ 1934 if (!after(end_seq, cache->end_seq)) 1935 goto advance_sp; 1936 1937 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1938 state, 1939 cache->end_seq); 1940 1941 /* ...tail remains todo... */ 1942 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1943 /* ...but better entrypoint exists! */ 1944 skb = tcp_highest_sack(sk); 1945 if (!skb) 1946 break; 1947 cache++; 1948 goto walk; 1949 } 1950 1951 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1952 /* Check overlap against next cached too (past this one already) */ 1953 cache++; 1954 continue; 1955 } 1956 1957 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1958 skb = tcp_highest_sack(sk); 1959 if (!skb) 1960 break; 1961 } 1962 skb = tcp_sacktag_skip(skb, sk, start_seq); 1963 1964 walk: 1965 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1966 start_seq, end_seq, dup_sack); 1967 1968 advance_sp: 1969 i++; 1970 } 1971 1972 /* Clear the head of the cache sack blocks so we can skip it next time */ 1973 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1974 tp->recv_sack_cache[i].start_seq = 0; 1975 tp->recv_sack_cache[i].end_seq = 0; 1976 } 1977 for (j = 0; j < used_sacks; j++) 1978 tp->recv_sack_cache[i++] = sp[j]; 1979 1980 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1981 tcp_check_sack_reordering(sk, state->reord, 0); 1982 1983 tcp_verify_left_out(tp); 1984 out: 1985 1986 #if FASTRETRANS_DEBUG > 0 1987 WARN_ON((int)tp->sacked_out < 0); 1988 WARN_ON((int)tp->lost_out < 0); 1989 WARN_ON((int)tp->retrans_out < 0); 1990 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1991 #endif 1992 return state->flag; 1993 } 1994 1995 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1996 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1997 */ 1998 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1999 { 2000 u32 holes; 2001 2002 holes = max(tp->lost_out, 1U); 2003 holes = min(holes, tp->packets_out); 2004 2005 if ((tp->sacked_out + holes) > tp->packets_out) { 2006 tp->sacked_out = tp->packets_out - holes; 2007 return true; 2008 } 2009 return false; 2010 } 2011 2012 /* If we receive more dupacks than we expected counting segments 2013 * in assumption of absent reordering, interpret this as reordering. 2014 * The only another reason could be bug in receiver TCP. 2015 */ 2016 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2017 { 2018 struct tcp_sock *tp = tcp_sk(sk); 2019 2020 if (!tcp_limit_reno_sacked(tp)) 2021 return; 2022 2023 tp->reordering = min_t(u32, tp->packets_out + addend, 2024 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering)); 2025 tp->reord_seen++; 2026 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2027 } 2028 2029 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2030 2031 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2032 { 2033 if (num_dupack) { 2034 struct tcp_sock *tp = tcp_sk(sk); 2035 u32 prior_sacked = tp->sacked_out; 2036 s32 delivered; 2037 2038 tp->sacked_out += num_dupack; 2039 tcp_check_reno_reordering(sk, 0); 2040 delivered = tp->sacked_out - prior_sacked; 2041 if (delivered > 0) 2042 tcp_count_delivered(tp, delivered, ece_ack); 2043 tcp_verify_left_out(tp); 2044 } 2045 } 2046 2047 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2048 2049 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2050 { 2051 struct tcp_sock *tp = tcp_sk(sk); 2052 2053 if (acked > 0) { 2054 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2055 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2056 ece_ack); 2057 if (acked - 1 >= tp->sacked_out) 2058 tp->sacked_out = 0; 2059 else 2060 tp->sacked_out -= acked - 1; 2061 } 2062 tcp_check_reno_reordering(sk, acked); 2063 tcp_verify_left_out(tp); 2064 } 2065 2066 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2067 { 2068 tp->sacked_out = 0; 2069 } 2070 2071 void tcp_clear_retrans(struct tcp_sock *tp) 2072 { 2073 tp->retrans_out = 0; 2074 tp->lost_out = 0; 2075 tp->undo_marker = 0; 2076 tp->undo_retrans = -1; 2077 tp->sacked_out = 0; 2078 tp->rto_stamp = 0; 2079 tp->total_rto = 0; 2080 tp->total_rto_recoveries = 0; 2081 tp->total_rto_time = 0; 2082 } 2083 2084 static inline void tcp_init_undo(struct tcp_sock *tp) 2085 { 2086 tp->undo_marker = tp->snd_una; 2087 2088 /* Retransmission still in flight may cause DSACKs later. */ 2089 /* First, account for regular retransmits in flight: */ 2090 tp->undo_retrans = tp->retrans_out; 2091 /* Next, account for TLP retransmits in flight: */ 2092 if (tp->tlp_high_seq && tp->tlp_retrans) 2093 tp->undo_retrans++; 2094 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */ 2095 if (!tp->undo_retrans) 2096 tp->undo_retrans = -1; 2097 } 2098 2099 /* If we detect SACK reneging, forget all SACK information 2100 * and reset tags completely, otherwise preserve SACKs. If receiver 2101 * dropped its ofo queue, we will know this due to reneging detection. 2102 */ 2103 static void tcp_timeout_mark_lost(struct sock *sk) 2104 { 2105 struct tcp_sock *tp = tcp_sk(sk); 2106 struct sk_buff *skb, *head; 2107 bool is_reneg; /* is receiver reneging on SACKs? */ 2108 2109 head = tcp_rtx_queue_head(sk); 2110 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2111 if (is_reneg) { 2112 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2113 tp->sacked_out = 0; 2114 /* Mark SACK reneging until we recover from this loss event. */ 2115 tp->is_sack_reneg = 1; 2116 } else if (tcp_is_reno(tp)) { 2117 tcp_reset_reno_sack(tp); 2118 } 2119 2120 skb = head; 2121 skb_rbtree_walk_from(skb) { 2122 if (is_reneg) 2123 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2124 else if (skb != head && tcp_rack_skb_timeout(tp, skb, 0) > 0) 2125 continue; /* Don't mark recently sent ones lost yet */ 2126 tcp_mark_skb_lost(sk, skb); 2127 } 2128 tcp_verify_left_out(tp); 2129 tcp_clear_all_retrans_hints(tp); 2130 } 2131 2132 /* Enter Loss state. */ 2133 void tcp_enter_loss(struct sock *sk) 2134 { 2135 const struct inet_connection_sock *icsk = inet_csk(sk); 2136 struct tcp_sock *tp = tcp_sk(sk); 2137 struct net *net = sock_net(sk); 2138 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2139 u8 reordering; 2140 2141 tcp_timeout_mark_lost(sk); 2142 2143 /* Reduce ssthresh if it has not yet been made inside this window. */ 2144 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2145 !after(tp->high_seq, tp->snd_una) || 2146 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2147 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2148 tp->prior_cwnd = tcp_snd_cwnd(tp); 2149 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2150 tcp_ca_event(sk, CA_EVENT_LOSS); 2151 tcp_init_undo(tp); 2152 } 2153 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1); 2154 tp->snd_cwnd_cnt = 0; 2155 tp->snd_cwnd_stamp = tcp_jiffies32; 2156 2157 /* Timeout in disordered state after receiving substantial DUPACKs 2158 * suggests that the degree of reordering is over-estimated. 2159 */ 2160 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering); 2161 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2162 tp->sacked_out >= reordering) 2163 tp->reordering = min_t(unsigned int, tp->reordering, 2164 reordering); 2165 2166 tcp_set_ca_state(sk, TCP_CA_Loss); 2167 tp->high_seq = tp->snd_nxt; 2168 tp->tlp_high_seq = 0; 2169 tcp_ecn_queue_cwr(tp); 2170 2171 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2172 * loss recovery is underway except recurring timeout(s) on 2173 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2174 */ 2175 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) && 2176 (new_recovery || icsk->icsk_retransmits) && 2177 !inet_csk(sk)->icsk_mtup.probe_size; 2178 } 2179 2180 /* If ACK arrived pointing to a remembered SACK, it means that our 2181 * remembered SACKs do not reflect real state of receiver i.e. 2182 * receiver _host_ is heavily congested (or buggy). 2183 * 2184 * To avoid big spurious retransmission bursts due to transient SACK 2185 * scoreboard oddities that look like reneging, we give the receiver a 2186 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2187 * restore sanity to the SACK scoreboard. If the apparent reneging 2188 * persists until this RTO then we'll clear the SACK scoreboard. 2189 */ 2190 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag) 2191 { 2192 if (*ack_flag & FLAG_SACK_RENEGING && 2193 *ack_flag & FLAG_SND_UNA_ADVANCED) { 2194 struct tcp_sock *tp = tcp_sk(sk); 2195 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2196 msecs_to_jiffies(10)); 2197 2198 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, false); 2199 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2200 return true; 2201 } 2202 return false; 2203 } 2204 2205 /* Linux NewReno/SACK/ECN state machine. 2206 * -------------------------------------- 2207 * 2208 * "Open" Normal state, no dubious events, fast path. 2209 * "Disorder" In all the respects it is "Open", 2210 * but requires a bit more attention. It is entered when 2211 * we see some SACKs or dupacks. It is split of "Open" 2212 * mainly to move some processing from fast path to slow one. 2213 * "CWR" CWND was reduced due to some Congestion Notification event. 2214 * It can be ECN, ICMP source quench, local device congestion. 2215 * "Recovery" CWND was reduced, we are fast-retransmitting. 2216 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2217 * 2218 * tcp_fastretrans_alert() is entered: 2219 * - each incoming ACK, if state is not "Open" 2220 * - when arrived ACK is unusual, namely: 2221 * * SACK 2222 * * Duplicate ACK. 2223 * * ECN ECE. 2224 * 2225 * Counting packets in flight is pretty simple. 2226 * 2227 * in_flight = packets_out - left_out + retrans_out 2228 * 2229 * packets_out is SND.NXT-SND.UNA counted in packets. 2230 * 2231 * retrans_out is number of retransmitted segments. 2232 * 2233 * left_out is number of segments left network, but not ACKed yet. 2234 * 2235 * left_out = sacked_out + lost_out 2236 * 2237 * sacked_out: Packets, which arrived to receiver out of order 2238 * and hence not ACKed. With SACKs this number is simply 2239 * amount of SACKed data. Even without SACKs 2240 * it is easy to give pretty reliable estimate of this number, 2241 * counting duplicate ACKs. 2242 * 2243 * lost_out: Packets lost by network. TCP has no explicit 2244 * "loss notification" feedback from network (for now). 2245 * It means that this number can be only _guessed_. 2246 * Actually, it is the heuristics to predict lossage that 2247 * distinguishes different algorithms. 2248 * 2249 * F.e. after RTO, when all the queue is considered as lost, 2250 * lost_out = packets_out and in_flight = retrans_out. 2251 * 2252 * Essentially, we have now a few algorithms detecting 2253 * lost packets. 2254 * 2255 * If the receiver supports SACK: 2256 * 2257 * RACK (RFC8985): RACK is a newer loss detection algorithm 2258 * (2017-) that checks timing instead of counting DUPACKs. 2259 * Essentially a packet is considered lost if it's not S/ACKed 2260 * after RTT + reordering_window, where both metrics are 2261 * dynamically measured and adjusted. This is implemented in 2262 * tcp_rack_mark_lost. 2263 * 2264 * If the receiver does not support SACK: 2265 * 2266 * NewReno (RFC6582): in Recovery we assume that one segment 2267 * is lost (classic Reno). While we are in Recovery and 2268 * a partial ACK arrives, we assume that one more packet 2269 * is lost (NewReno). This heuristics are the same in NewReno 2270 * and SACK. 2271 * 2272 * The really tricky (and requiring careful tuning) part of the algorithm 2273 * is hidden in the RACK code in tcp_recovery.c and tcp_xmit_retransmit_queue(). 2274 * The first determines the moment _when_ we should reduce CWND and, 2275 * hence, slow down forward transmission. In fact, it determines the moment 2276 * when we decide that hole is caused by loss, rather than by a reorder. 2277 * 2278 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2279 * holes, caused by lost packets. 2280 * 2281 * And the most logically complicated part of algorithm is undo 2282 * heuristics. We detect false retransmits due to both too early 2283 * fast retransmit (reordering) and underestimated RTO, analyzing 2284 * timestamps and D-SACKs. When we detect that some segments were 2285 * retransmitted by mistake and CWND reduction was wrong, we undo 2286 * window reduction and abort recovery phase. This logic is hidden 2287 * inside several functions named tcp_try_undo_<something>. 2288 */ 2289 2290 /* This function decides, when we should leave Disordered state 2291 * and enter Recovery phase, reducing congestion window. 2292 * 2293 * Main question: may we further continue forward transmission 2294 * with the same cwnd? 2295 */ 2296 static bool tcp_time_to_recover(const struct tcp_sock *tp) 2297 { 2298 /* Has loss detection marked at least one packet lost? */ 2299 return tp->lost_out != 0; 2300 } 2301 2302 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2303 { 2304 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2305 before(tp->rx_opt.rcv_tsecr, when); 2306 } 2307 2308 /* skb is spurious retransmitted if the returned timestamp echo 2309 * reply is prior to the skb transmission time 2310 */ 2311 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2312 const struct sk_buff *skb) 2313 { 2314 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2315 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb)); 2316 } 2317 2318 /* Nothing was retransmitted or returned timestamp is less 2319 * than timestamp of the first retransmission. 2320 */ 2321 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2322 { 2323 const struct sock *sk = (const struct sock *)tp; 2324 2325 /* Received an echoed timestamp before the first retransmission? */ 2326 if (tp->retrans_stamp) 2327 return tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2328 2329 /* We set tp->retrans_stamp upon the first retransmission of a loss 2330 * recovery episode, so normally if tp->retrans_stamp is 0 then no 2331 * retransmission has happened yet (likely due to TSQ, which can cause 2332 * fast retransmits to be delayed). So if snd_una advanced while 2333 * (tp->retrans_stamp is 0 then apparently a packet was merely delayed, 2334 * not lost. But there are exceptions where we retransmit but then 2335 * clear tp->retrans_stamp, so we check for those exceptions. 2336 */ 2337 2338 /* (1) For non-SACK connections, tcp_is_non_sack_preventing_reopen() 2339 * clears tp->retrans_stamp when snd_una == high_seq. 2340 */ 2341 if (!tcp_is_sack(tp) && !before(tp->snd_una, tp->high_seq)) 2342 return false; 2343 2344 /* (2) In TCP_SYN_SENT tcp_clean_rtx_queue() clears tp->retrans_stamp 2345 * when setting FLAG_SYN_ACKED is set, even if the SYN was 2346 * retransmitted. 2347 */ 2348 if (sk->sk_state == TCP_SYN_SENT) 2349 return false; 2350 2351 return true; /* tp->retrans_stamp is zero; no retransmit yet */ 2352 } 2353 2354 /* Undo procedures. */ 2355 2356 /* We can clear retrans_stamp when there are no retransmissions in the 2357 * window. It would seem that it is trivially available for us in 2358 * tp->retrans_out, however, that kind of assumptions doesn't consider 2359 * what will happen if errors occur when sending retransmission for the 2360 * second time. ...It could the that such segment has only 2361 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2362 * the head skb is enough except for some reneging corner cases that 2363 * are not worth the effort. 2364 * 2365 * Main reason for all this complexity is the fact that connection dying 2366 * time now depends on the validity of the retrans_stamp, in particular, 2367 * that successive retransmissions of a segment must not advance 2368 * retrans_stamp under any conditions. 2369 */ 2370 static bool tcp_any_retrans_done(const struct sock *sk) 2371 { 2372 const struct tcp_sock *tp = tcp_sk(sk); 2373 struct sk_buff *skb; 2374 2375 if (tp->retrans_out) 2376 return true; 2377 2378 skb = tcp_rtx_queue_head(sk); 2379 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2380 return true; 2381 2382 return false; 2383 } 2384 2385 /* If loss recovery is finished and there are no retransmits out in the 2386 * network, then we clear retrans_stamp so that upon the next loss recovery 2387 * retransmits_timed_out() and timestamp-undo are using the correct value. 2388 */ 2389 static void tcp_retrans_stamp_cleanup(struct sock *sk) 2390 { 2391 if (!tcp_any_retrans_done(sk)) 2392 tcp_sk(sk)->retrans_stamp = 0; 2393 } 2394 2395 static void DBGUNDO(struct sock *sk, const char *msg) 2396 { 2397 #if FASTRETRANS_DEBUG > 1 2398 struct tcp_sock *tp = tcp_sk(sk); 2399 struct inet_sock *inet = inet_sk(sk); 2400 2401 if (sk->sk_family == AF_INET) { 2402 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2403 msg, 2404 &inet->inet_daddr, ntohs(inet->inet_dport), 2405 tcp_snd_cwnd(tp), tcp_left_out(tp), 2406 tp->snd_ssthresh, tp->prior_ssthresh, 2407 tp->packets_out); 2408 } 2409 #if IS_ENABLED(CONFIG_IPV6) 2410 else if (sk->sk_family == AF_INET6) { 2411 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2412 msg, 2413 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2414 tcp_snd_cwnd(tp), tcp_left_out(tp), 2415 tp->snd_ssthresh, tp->prior_ssthresh, 2416 tp->packets_out); 2417 } 2418 #endif 2419 #endif 2420 } 2421 2422 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2423 { 2424 struct tcp_sock *tp = tcp_sk(sk); 2425 2426 if (unmark_loss) { 2427 struct sk_buff *skb; 2428 2429 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2430 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2431 } 2432 tp->lost_out = 0; 2433 tcp_clear_all_retrans_hints(tp); 2434 } 2435 2436 if (tp->prior_ssthresh) { 2437 const struct inet_connection_sock *icsk = inet_csk(sk); 2438 2439 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk)); 2440 2441 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2442 tp->snd_ssthresh = tp->prior_ssthresh; 2443 tcp_ecn_withdraw_cwr(tp); 2444 } 2445 } 2446 tp->snd_cwnd_stamp = tcp_jiffies32; 2447 tp->undo_marker = 0; 2448 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2449 } 2450 2451 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2452 { 2453 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2454 } 2455 2456 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk) 2457 { 2458 struct tcp_sock *tp = tcp_sk(sk); 2459 2460 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2461 /* Hold old state until something *above* high_seq 2462 * is ACKed. For Reno it is MUST to prevent false 2463 * fast retransmits (RFC2582). SACK TCP is safe. */ 2464 if (!tcp_any_retrans_done(sk)) 2465 tp->retrans_stamp = 0; 2466 return true; 2467 } 2468 return false; 2469 } 2470 2471 /* People celebrate: "We love our President!" */ 2472 static bool tcp_try_undo_recovery(struct sock *sk) 2473 { 2474 struct tcp_sock *tp = tcp_sk(sk); 2475 2476 if (tcp_may_undo(tp)) { 2477 int mib_idx; 2478 2479 /* Happy end! We did not retransmit anything 2480 * or our original transmission succeeded. 2481 */ 2482 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2483 tcp_undo_cwnd_reduction(sk, false); 2484 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2485 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2486 else 2487 mib_idx = LINUX_MIB_TCPFULLUNDO; 2488 2489 NET_INC_STATS(sock_net(sk), mib_idx); 2490 } else if (tp->rack.reo_wnd_persist) { 2491 tp->rack.reo_wnd_persist--; 2492 } 2493 if (tcp_is_non_sack_preventing_reopen(sk)) 2494 return true; 2495 tcp_set_ca_state(sk, TCP_CA_Open); 2496 tp->is_sack_reneg = 0; 2497 return false; 2498 } 2499 2500 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2501 static bool tcp_try_undo_dsack(struct sock *sk) 2502 { 2503 struct tcp_sock *tp = tcp_sk(sk); 2504 2505 if (tp->undo_marker && !tp->undo_retrans) { 2506 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2507 tp->rack.reo_wnd_persist + 1); 2508 DBGUNDO(sk, "D-SACK"); 2509 tcp_undo_cwnd_reduction(sk, false); 2510 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2511 return true; 2512 } 2513 return false; 2514 } 2515 2516 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2517 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2518 { 2519 struct tcp_sock *tp = tcp_sk(sk); 2520 2521 if (frto_undo || tcp_may_undo(tp)) { 2522 tcp_undo_cwnd_reduction(sk, true); 2523 2524 DBGUNDO(sk, "partial loss"); 2525 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2526 if (frto_undo) 2527 NET_INC_STATS(sock_net(sk), 2528 LINUX_MIB_TCPSPURIOUSRTOS); 2529 WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0); 2530 if (tcp_is_non_sack_preventing_reopen(sk)) 2531 return true; 2532 if (frto_undo || tcp_is_sack(tp)) { 2533 tcp_set_ca_state(sk, TCP_CA_Open); 2534 tp->is_sack_reneg = 0; 2535 } 2536 return true; 2537 } 2538 return false; 2539 } 2540 2541 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2542 * It computes the number of packets to send (sndcnt) based on packets newly 2543 * delivered: 2544 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2545 * cwnd reductions across a full RTT. 2546 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2547 * But when SND_UNA is acked without further losses, 2548 * slow starts cwnd up to ssthresh to speed up the recovery. 2549 */ 2550 static void tcp_init_cwnd_reduction(struct sock *sk) 2551 { 2552 struct tcp_sock *tp = tcp_sk(sk); 2553 2554 tp->high_seq = tp->snd_nxt; 2555 tp->tlp_high_seq = 0; 2556 tp->snd_cwnd_cnt = 0; 2557 tp->prior_cwnd = tcp_snd_cwnd(tp); 2558 tp->prr_delivered = 0; 2559 tp->prr_out = 0; 2560 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2561 tcp_ecn_queue_cwr(tp); 2562 } 2563 2564 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2565 { 2566 struct tcp_sock *tp = tcp_sk(sk); 2567 int sndcnt = 0; 2568 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2569 2570 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2571 return; 2572 2573 trace_tcp_cwnd_reduction_tp(sk, newly_acked_sacked, newly_lost, flag); 2574 2575 tp->prr_delivered += newly_acked_sacked; 2576 if (delta < 0) { 2577 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2578 tp->prior_cwnd - 1; 2579 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2580 } else { 2581 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out, 2582 newly_acked_sacked); 2583 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) 2584 sndcnt++; 2585 sndcnt = min(delta, sndcnt); 2586 } 2587 /* Force a fast retransmit upon entering fast recovery */ 2588 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2589 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt); 2590 } 2591 2592 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2593 { 2594 struct tcp_sock *tp = tcp_sk(sk); 2595 2596 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2597 return; 2598 2599 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2600 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2601 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2602 tcp_snd_cwnd_set(tp, tp->snd_ssthresh); 2603 tp->snd_cwnd_stamp = tcp_jiffies32; 2604 } 2605 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2606 } 2607 2608 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2609 void tcp_enter_cwr(struct sock *sk) 2610 { 2611 struct tcp_sock *tp = tcp_sk(sk); 2612 2613 tp->prior_ssthresh = 0; 2614 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2615 tp->undo_marker = 0; 2616 tcp_init_cwnd_reduction(sk); 2617 tcp_set_ca_state(sk, TCP_CA_CWR); 2618 } 2619 } 2620 EXPORT_SYMBOL(tcp_enter_cwr); 2621 2622 static void tcp_try_keep_open(struct sock *sk) 2623 { 2624 struct tcp_sock *tp = tcp_sk(sk); 2625 int state = TCP_CA_Open; 2626 2627 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2628 state = TCP_CA_Disorder; 2629 2630 if (inet_csk(sk)->icsk_ca_state != state) { 2631 tcp_set_ca_state(sk, state); 2632 tp->high_seq = tp->snd_nxt; 2633 } 2634 } 2635 2636 static void tcp_try_to_open(struct sock *sk, int flag) 2637 { 2638 struct tcp_sock *tp = tcp_sk(sk); 2639 2640 tcp_verify_left_out(tp); 2641 2642 if (!tcp_any_retrans_done(sk)) 2643 tp->retrans_stamp = 0; 2644 2645 if (flag & FLAG_ECE) 2646 tcp_enter_cwr(sk); 2647 2648 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2649 tcp_try_keep_open(sk); 2650 } 2651 } 2652 2653 static void tcp_mtup_probe_failed(struct sock *sk) 2654 { 2655 struct inet_connection_sock *icsk = inet_csk(sk); 2656 2657 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2658 icsk->icsk_mtup.probe_size = 0; 2659 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2660 } 2661 2662 static void tcp_mtup_probe_success(struct sock *sk) 2663 { 2664 struct tcp_sock *tp = tcp_sk(sk); 2665 struct inet_connection_sock *icsk = inet_csk(sk); 2666 u64 val; 2667 2668 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2669 2670 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache); 2671 do_div(val, icsk->icsk_mtup.probe_size); 2672 DEBUG_NET_WARN_ON_ONCE((u32)val != val); 2673 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val)); 2674 2675 tp->snd_cwnd_cnt = 0; 2676 tp->snd_cwnd_stamp = tcp_jiffies32; 2677 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2678 2679 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2680 icsk->icsk_mtup.probe_size = 0; 2681 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2682 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2683 } 2684 2685 /* Sometimes we deduce that packets have been dropped due to reasons other than 2686 * congestion, like path MTU reductions or failed client TFO attempts. In these 2687 * cases we call this function to retransmit as many packets as cwnd allows, 2688 * without reducing cwnd. Given that retransmits will set retrans_stamp to a 2689 * non-zero value (and may do so in a later calling context due to TSQ), we 2690 * also enter CA_Loss so that we track when all retransmitted packets are ACKed 2691 * and clear retrans_stamp when that happens (to ensure later recurring RTOs 2692 * are using the correct retrans_stamp and don't declare ETIMEDOUT 2693 * prematurely). 2694 */ 2695 static void tcp_non_congestion_loss_retransmit(struct sock *sk) 2696 { 2697 const struct inet_connection_sock *icsk = inet_csk(sk); 2698 struct tcp_sock *tp = tcp_sk(sk); 2699 2700 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2701 tp->high_seq = tp->snd_nxt; 2702 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2703 tp->prior_ssthresh = 0; 2704 tp->undo_marker = 0; 2705 tcp_set_ca_state(sk, TCP_CA_Loss); 2706 } 2707 tcp_xmit_retransmit_queue(sk); 2708 } 2709 2710 /* Do a simple retransmit without using the backoff mechanisms in 2711 * tcp_timer. This is used for path mtu discovery. 2712 * The socket is already locked here. 2713 */ 2714 void tcp_simple_retransmit(struct sock *sk) 2715 { 2716 struct tcp_sock *tp = tcp_sk(sk); 2717 struct sk_buff *skb; 2718 int mss; 2719 2720 /* A fastopen SYN request is stored as two separate packets within 2721 * the retransmit queue, this is done by tcp_send_syn_data(). 2722 * As a result simply checking the MSS of the frames in the queue 2723 * will not work for the SYN packet. 2724 * 2725 * Us being here is an indication of a path MTU issue so we can 2726 * assume that the fastopen SYN was lost and just mark all the 2727 * frames in the retransmit queue as lost. We will use an MSS of 2728 * -1 to mark all frames as lost, otherwise compute the current MSS. 2729 */ 2730 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2731 mss = -1; 2732 else 2733 mss = tcp_current_mss(sk); 2734 2735 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2736 if (tcp_skb_seglen(skb) > mss) 2737 tcp_mark_skb_lost(sk, skb); 2738 } 2739 2740 if (!tp->lost_out) 2741 return; 2742 2743 if (tcp_is_reno(tp)) 2744 tcp_limit_reno_sacked(tp); 2745 2746 tcp_verify_left_out(tp); 2747 2748 /* Don't muck with the congestion window here. 2749 * Reason is that we do not increase amount of _data_ 2750 * in network, but units changed and effective 2751 * cwnd/ssthresh really reduced now. 2752 */ 2753 tcp_non_congestion_loss_retransmit(sk); 2754 } 2755 EXPORT_IPV6_MOD(tcp_simple_retransmit); 2756 2757 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2758 { 2759 struct tcp_sock *tp = tcp_sk(sk); 2760 int mib_idx; 2761 2762 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */ 2763 tcp_retrans_stamp_cleanup(sk); 2764 2765 if (tcp_is_reno(tp)) 2766 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2767 else 2768 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2769 2770 NET_INC_STATS(sock_net(sk), mib_idx); 2771 2772 tp->prior_ssthresh = 0; 2773 tcp_init_undo(tp); 2774 2775 if (!tcp_in_cwnd_reduction(sk)) { 2776 if (!ece_ack) 2777 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2778 tcp_init_cwnd_reduction(sk); 2779 } 2780 tcp_set_ca_state(sk, TCP_CA_Recovery); 2781 } 2782 2783 static void tcp_update_rto_time(struct tcp_sock *tp) 2784 { 2785 if (tp->rto_stamp) { 2786 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp; 2787 tp->rto_stamp = 0; 2788 } 2789 } 2790 2791 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2792 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2793 */ 2794 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2795 int *rexmit) 2796 { 2797 struct tcp_sock *tp = tcp_sk(sk); 2798 bool recovered = !before(tp->snd_una, tp->high_seq); 2799 2800 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2801 tcp_try_undo_loss(sk, false)) 2802 return; 2803 2804 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2805 /* Step 3.b. A timeout is spurious if not all data are 2806 * lost, i.e., never-retransmitted data are (s)acked. 2807 */ 2808 if ((flag & FLAG_ORIG_SACK_ACKED) && 2809 tcp_try_undo_loss(sk, true)) 2810 return; 2811 2812 if (after(tp->snd_nxt, tp->high_seq)) { 2813 if (flag & FLAG_DATA_SACKED || num_dupack) 2814 tp->frto = 0; /* Step 3.a. loss was real */ 2815 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2816 tp->high_seq = tp->snd_nxt; 2817 /* Step 2.b. Try send new data (but deferred until cwnd 2818 * is updated in tcp_ack()). Otherwise fall back to 2819 * the conventional recovery. 2820 */ 2821 if (!tcp_write_queue_empty(sk) && 2822 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2823 *rexmit = REXMIT_NEW; 2824 return; 2825 } 2826 tp->frto = 0; 2827 } 2828 } 2829 2830 if (recovered) { 2831 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2832 tcp_try_undo_recovery(sk); 2833 return; 2834 } 2835 if (tcp_is_reno(tp)) { 2836 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2837 * delivered. Lower inflight to clock out (re)transmissions. 2838 */ 2839 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2840 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2841 else if (flag & FLAG_SND_UNA_ADVANCED) 2842 tcp_reset_reno_sack(tp); 2843 } 2844 *rexmit = REXMIT_LOST; 2845 } 2846 2847 /* Undo during fast recovery after partial ACK. */ 2848 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2849 { 2850 struct tcp_sock *tp = tcp_sk(sk); 2851 2852 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2853 /* Plain luck! Hole if filled with delayed 2854 * packet, rather than with a retransmit. Check reordering. 2855 */ 2856 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2857 2858 /* We are getting evidence that the reordering degree is higher 2859 * than we realized. If there are no retransmits out then we 2860 * can undo. Otherwise we clock out new packets but do not 2861 * mark more packets lost or retransmit more. 2862 */ 2863 if (tp->retrans_out) 2864 return true; 2865 2866 if (!tcp_any_retrans_done(sk)) 2867 tp->retrans_stamp = 0; 2868 2869 DBGUNDO(sk, "partial recovery"); 2870 tcp_undo_cwnd_reduction(sk, true); 2871 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2872 tcp_try_keep_open(sk); 2873 } 2874 return false; 2875 } 2876 2877 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2878 { 2879 struct tcp_sock *tp = tcp_sk(sk); 2880 2881 if (tcp_rtx_queue_empty(sk)) 2882 return; 2883 2884 if (unlikely(tcp_is_reno(tp))) { 2885 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2886 } else { 2887 u32 prior_retrans = tp->retrans_out; 2888 2889 if (tcp_rack_mark_lost(sk)) 2890 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2891 if (prior_retrans > tp->retrans_out) 2892 *ack_flag |= FLAG_LOST_RETRANS; 2893 } 2894 } 2895 2896 /* Process an event, which can update packets-in-flight not trivially. 2897 * Main goal of this function is to calculate new estimate for left_out, 2898 * taking into account both packets sitting in receiver's buffer and 2899 * packets lost by network. 2900 * 2901 * Besides that it updates the congestion state when packet loss or ECN 2902 * is detected. But it does not reduce the cwnd, it is done by the 2903 * congestion control later. 2904 * 2905 * It does _not_ decide what to send, it is made in function 2906 * tcp_xmit_retransmit_queue(). 2907 */ 2908 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2909 int num_dupack, int *ack_flag, int *rexmit) 2910 { 2911 struct inet_connection_sock *icsk = inet_csk(sk); 2912 struct tcp_sock *tp = tcp_sk(sk); 2913 int flag = *ack_flag; 2914 bool ece_ack = flag & FLAG_ECE; 2915 2916 if (!tp->packets_out && tp->sacked_out) 2917 tp->sacked_out = 0; 2918 2919 /* Now state machine starts. 2920 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2921 if (ece_ack) 2922 tp->prior_ssthresh = 0; 2923 2924 /* B. In all the states check for reneging SACKs. */ 2925 if (tcp_check_sack_reneging(sk, ack_flag)) 2926 return; 2927 2928 /* C. Check consistency of the current state. */ 2929 tcp_verify_left_out(tp); 2930 2931 /* D. Check state exit conditions. State can be terminated 2932 * when high_seq is ACKed. */ 2933 if (icsk->icsk_ca_state == TCP_CA_Open) { 2934 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 2935 tp->retrans_stamp = 0; 2936 } else if (!before(tp->snd_una, tp->high_seq)) { 2937 switch (icsk->icsk_ca_state) { 2938 case TCP_CA_CWR: 2939 /* CWR is to be held something *above* high_seq 2940 * is ACKed for CWR bit to reach receiver. */ 2941 if (tp->snd_una != tp->high_seq) { 2942 tcp_end_cwnd_reduction(sk); 2943 tcp_set_ca_state(sk, TCP_CA_Open); 2944 } 2945 break; 2946 2947 case TCP_CA_Recovery: 2948 if (tcp_is_reno(tp)) 2949 tcp_reset_reno_sack(tp); 2950 if (tcp_try_undo_recovery(sk)) 2951 return; 2952 tcp_end_cwnd_reduction(sk); 2953 break; 2954 } 2955 } 2956 2957 /* E. Process state. */ 2958 switch (icsk->icsk_ca_state) { 2959 case TCP_CA_Recovery: 2960 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2961 if (tcp_is_reno(tp)) 2962 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2963 } else if (tcp_try_undo_partial(sk, prior_snd_una)) 2964 return; 2965 2966 if (tcp_try_undo_dsack(sk)) 2967 tcp_try_to_open(sk, flag); 2968 2969 tcp_identify_packet_loss(sk, ack_flag); 2970 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 2971 if (!tcp_time_to_recover(tp)) 2972 return; 2973 /* Undo reverts the recovery state. If loss is evident, 2974 * starts a new recovery (e.g. reordering then loss); 2975 */ 2976 tcp_enter_recovery(sk, ece_ack); 2977 } 2978 break; 2979 case TCP_CA_Loss: 2980 tcp_process_loss(sk, flag, num_dupack, rexmit); 2981 if (icsk->icsk_ca_state != TCP_CA_Loss) 2982 tcp_update_rto_time(tp); 2983 tcp_identify_packet_loss(sk, ack_flag); 2984 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2985 (*ack_flag & FLAG_LOST_RETRANS))) 2986 return; 2987 /* Change state if cwnd is undone or retransmits are lost */ 2988 fallthrough; 2989 default: 2990 if (tcp_is_reno(tp)) { 2991 if (flag & FLAG_SND_UNA_ADVANCED) 2992 tcp_reset_reno_sack(tp); 2993 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2994 } 2995 2996 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2997 tcp_try_undo_dsack(sk); 2998 2999 tcp_identify_packet_loss(sk, ack_flag); 3000 if (!tcp_time_to_recover(tp)) { 3001 tcp_try_to_open(sk, flag); 3002 return; 3003 } 3004 3005 /* MTU probe failure: don't reduce cwnd */ 3006 if (icsk->icsk_ca_state < TCP_CA_CWR && 3007 icsk->icsk_mtup.probe_size && 3008 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3009 tcp_mtup_probe_failed(sk); 3010 /* Restores the reduction we did in tcp_mtup_probe() */ 3011 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1); 3012 tcp_simple_retransmit(sk); 3013 return; 3014 } 3015 3016 /* Otherwise enter Recovery state */ 3017 tcp_enter_recovery(sk, ece_ack); 3018 } 3019 3020 *rexmit = REXMIT_LOST; 3021 } 3022 3023 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3024 { 3025 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ; 3026 struct tcp_sock *tp = tcp_sk(sk); 3027 3028 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3029 /* If the remote keeps returning delayed ACKs, eventually 3030 * the min filter would pick it up and overestimate the 3031 * prop. delay when it expires. Skip suspected delayed ACKs. 3032 */ 3033 return; 3034 } 3035 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3036 rtt_us ? : jiffies_to_usecs(1)); 3037 } 3038 3039 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3040 long seq_rtt_us, long sack_rtt_us, 3041 long ca_rtt_us, struct rate_sample *rs) 3042 { 3043 const struct tcp_sock *tp = tcp_sk(sk); 3044 3045 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3046 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3047 * Karn's algorithm forbids taking RTT if some retransmitted data 3048 * is acked (RFC6298). 3049 */ 3050 if (seq_rtt_us < 0) 3051 seq_rtt_us = sack_rtt_us; 3052 3053 /* RTTM Rule: A TSecr value received in a segment is used to 3054 * update the averaged RTT measurement only if the segment 3055 * acknowledges some new data, i.e., only if it advances the 3056 * left edge of the send window. 3057 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3058 */ 3059 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && 3060 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED) 3061 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp, 1); 3062 3063 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3064 if (seq_rtt_us < 0) 3065 return false; 3066 3067 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3068 * always taken together with ACK, SACK, or TS-opts. Any negative 3069 * values will be skipped with the seq_rtt_us < 0 check above. 3070 */ 3071 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3072 tcp_rtt_estimator(sk, seq_rtt_us); 3073 tcp_set_rto(sk); 3074 3075 /* RFC6298: only reset backoff on valid RTT measurement. */ 3076 inet_csk(sk)->icsk_backoff = 0; 3077 return true; 3078 } 3079 3080 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3081 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3082 { 3083 struct rate_sample rs; 3084 long rtt_us = -1L; 3085 3086 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3087 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3088 3089 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3090 } 3091 3092 3093 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3094 { 3095 const struct inet_connection_sock *icsk = inet_csk(sk); 3096 3097 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3098 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3099 } 3100 3101 /* Restart timer after forward progress on connection. 3102 * RFC2988 recommends to restart timer to now+rto. 3103 */ 3104 void tcp_rearm_rto(struct sock *sk) 3105 { 3106 const struct inet_connection_sock *icsk = inet_csk(sk); 3107 struct tcp_sock *tp = tcp_sk(sk); 3108 3109 /* If the retrans timer is currently being used by Fast Open 3110 * for SYN-ACK retrans purpose, stay put. 3111 */ 3112 if (rcu_access_pointer(tp->fastopen_rsk)) 3113 return; 3114 3115 if (!tp->packets_out) { 3116 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3117 } else { 3118 u32 rto = inet_csk(sk)->icsk_rto; 3119 /* Offset the time elapsed after installing regular RTO */ 3120 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3121 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3122 s64 delta_us = tcp_rto_delta_us(sk); 3123 /* delta_us may not be positive if the socket is locked 3124 * when the retrans timer fires and is rescheduled. 3125 */ 3126 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3127 } 3128 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, true); 3129 } 3130 } 3131 3132 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3133 static void tcp_set_xmit_timer(struct sock *sk) 3134 { 3135 if (!tcp_schedule_loss_probe(sk, true)) 3136 tcp_rearm_rto(sk); 3137 } 3138 3139 /* If we get here, the whole TSO packet has not been acked. */ 3140 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3141 { 3142 struct tcp_sock *tp = tcp_sk(sk); 3143 u32 packets_acked; 3144 3145 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3146 3147 packets_acked = tcp_skb_pcount(skb); 3148 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3149 return 0; 3150 packets_acked -= tcp_skb_pcount(skb); 3151 3152 if (packets_acked) { 3153 BUG_ON(tcp_skb_pcount(skb) == 0); 3154 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3155 } 3156 3157 return packets_acked; 3158 } 3159 3160 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3161 const struct sk_buff *ack_skb, u32 prior_snd_una) 3162 { 3163 const struct skb_shared_info *shinfo; 3164 3165 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3166 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3167 return; 3168 3169 shinfo = skb_shinfo(skb); 3170 if (!before(shinfo->tskey, prior_snd_una) && 3171 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3172 tcp_skb_tsorted_save(skb) { 3173 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3174 } tcp_skb_tsorted_restore(skb); 3175 } 3176 } 3177 3178 /* Remove acknowledged frames from the retransmission queue. If our packet 3179 * is before the ack sequence we can discard it as it's confirmed to have 3180 * arrived at the other end. 3181 */ 3182 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3183 u32 prior_fack, u32 prior_snd_una, 3184 struct tcp_sacktag_state *sack, bool ece_ack) 3185 { 3186 const struct inet_connection_sock *icsk = inet_csk(sk); 3187 u64 first_ackt, last_ackt; 3188 struct tcp_sock *tp = tcp_sk(sk); 3189 u32 prior_sacked = tp->sacked_out; 3190 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3191 struct sk_buff *skb, *next; 3192 bool fully_acked = true; 3193 long sack_rtt_us = -1L; 3194 long seq_rtt_us = -1L; 3195 long ca_rtt_us = -1L; 3196 u32 pkts_acked = 0; 3197 bool rtt_update; 3198 int flag = 0; 3199 3200 first_ackt = 0; 3201 3202 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3203 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3204 const u32 start_seq = scb->seq; 3205 u8 sacked = scb->sacked; 3206 u32 acked_pcount; 3207 3208 /* Determine how many packets and what bytes were acked, tso and else */ 3209 if (after(scb->end_seq, tp->snd_una)) { 3210 if (tcp_skb_pcount(skb) == 1 || 3211 !after(tp->snd_una, scb->seq)) 3212 break; 3213 3214 acked_pcount = tcp_tso_acked(sk, skb); 3215 if (!acked_pcount) 3216 break; 3217 fully_acked = false; 3218 } else { 3219 acked_pcount = tcp_skb_pcount(skb); 3220 } 3221 3222 if (unlikely(sacked & TCPCB_RETRANS)) { 3223 if (sacked & TCPCB_SACKED_RETRANS) 3224 tp->retrans_out -= acked_pcount; 3225 flag |= FLAG_RETRANS_DATA_ACKED; 3226 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3227 last_ackt = tcp_skb_timestamp_us(skb); 3228 WARN_ON_ONCE(last_ackt == 0); 3229 if (!first_ackt) 3230 first_ackt = last_ackt; 3231 3232 if (before(start_seq, reord)) 3233 reord = start_seq; 3234 if (!after(scb->end_seq, tp->high_seq)) 3235 flag |= FLAG_ORIG_SACK_ACKED; 3236 } 3237 3238 if (sacked & TCPCB_SACKED_ACKED) { 3239 tp->sacked_out -= acked_pcount; 3240 } else if (tcp_is_sack(tp)) { 3241 tcp_count_delivered(tp, acked_pcount, ece_ack); 3242 if (!tcp_skb_spurious_retrans(tp, skb)) 3243 tcp_rack_advance(tp, sacked, scb->end_seq, 3244 tcp_skb_timestamp_us(skb)); 3245 } 3246 if (sacked & TCPCB_LOST) 3247 tp->lost_out -= acked_pcount; 3248 3249 tp->packets_out -= acked_pcount; 3250 pkts_acked += acked_pcount; 3251 tcp_rate_skb_delivered(sk, skb, sack->rate); 3252 3253 /* Initial outgoing SYN's get put onto the write_queue 3254 * just like anything else we transmit. It is not 3255 * true data, and if we misinform our callers that 3256 * this ACK acks real data, we will erroneously exit 3257 * connection startup slow start one packet too 3258 * quickly. This is severely frowned upon behavior. 3259 */ 3260 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3261 flag |= FLAG_DATA_ACKED; 3262 } else { 3263 flag |= FLAG_SYN_ACKED; 3264 tp->retrans_stamp = 0; 3265 } 3266 3267 if (!fully_acked) 3268 break; 3269 3270 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3271 3272 next = skb_rb_next(skb); 3273 if (unlikely(skb == tp->retransmit_skb_hint)) 3274 tp->retransmit_skb_hint = NULL; 3275 tcp_highest_sack_replace(sk, skb, next); 3276 tcp_rtx_queue_unlink_and_free(skb, sk); 3277 } 3278 3279 if (!skb) 3280 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3281 3282 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3283 tp->snd_up = tp->snd_una; 3284 3285 if (skb) { 3286 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3287 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3288 flag |= FLAG_SACK_RENEGING; 3289 } 3290 3291 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3292 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3293 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3294 3295 if (pkts_acked == 1 && fully_acked && !prior_sacked && 3296 (tp->snd_una - prior_snd_una) < tp->mss_cache && 3297 sack->rate->prior_delivered + 1 == tp->delivered && 3298 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3299 /* Conservatively mark a delayed ACK. It's typically 3300 * from a lone runt packet over the round trip to 3301 * a receiver w/o out-of-order or CE events. 3302 */ 3303 flag |= FLAG_ACK_MAYBE_DELAYED; 3304 } 3305 } 3306 if (sack->first_sackt) { 3307 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3308 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3309 } 3310 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3311 ca_rtt_us, sack->rate); 3312 3313 if (flag & FLAG_ACKED) { 3314 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3315 if (unlikely(icsk->icsk_mtup.probe_size && 3316 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3317 tcp_mtup_probe_success(sk); 3318 } 3319 3320 if (tcp_is_reno(tp)) { 3321 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3322 3323 /* If any of the cumulatively ACKed segments was 3324 * retransmitted, non-SACK case cannot confirm that 3325 * progress was due to original transmission due to 3326 * lack of TCPCB_SACKED_ACKED bits even if some of 3327 * the packets may have been never retransmitted. 3328 */ 3329 if (flag & FLAG_RETRANS_DATA_ACKED) 3330 flag &= ~FLAG_ORIG_SACK_ACKED; 3331 } else { 3332 /* Non-retransmitted hole got filled? That's reordering */ 3333 if (before(reord, prior_fack)) 3334 tcp_check_sack_reordering(sk, reord, 0); 3335 } 3336 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3337 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3338 tcp_skb_timestamp_us(skb))) { 3339 /* Do not re-arm RTO if the sack RTT is measured from data sent 3340 * after when the head was last (re)transmitted. Otherwise the 3341 * timeout may continue to extend in loss recovery. 3342 */ 3343 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3344 } 3345 3346 if (icsk->icsk_ca_ops->pkts_acked) { 3347 struct ack_sample sample = { .pkts_acked = pkts_acked, 3348 .rtt_us = sack->rate->rtt_us }; 3349 3350 sample.in_flight = tp->mss_cache * 3351 (tp->delivered - sack->rate->prior_delivered); 3352 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3353 } 3354 3355 #if FASTRETRANS_DEBUG > 0 3356 WARN_ON((int)tp->sacked_out < 0); 3357 WARN_ON((int)tp->lost_out < 0); 3358 WARN_ON((int)tp->retrans_out < 0); 3359 if (!tp->packets_out && tcp_is_sack(tp)) { 3360 icsk = inet_csk(sk); 3361 if (tp->lost_out) { 3362 pr_debug("Leak l=%u %d\n", 3363 tp->lost_out, icsk->icsk_ca_state); 3364 tp->lost_out = 0; 3365 } 3366 if (tp->sacked_out) { 3367 pr_debug("Leak s=%u %d\n", 3368 tp->sacked_out, icsk->icsk_ca_state); 3369 tp->sacked_out = 0; 3370 } 3371 if (tp->retrans_out) { 3372 pr_debug("Leak r=%u %d\n", 3373 tp->retrans_out, icsk->icsk_ca_state); 3374 tp->retrans_out = 0; 3375 } 3376 } 3377 #endif 3378 return flag; 3379 } 3380 3381 static void tcp_ack_probe(struct sock *sk) 3382 { 3383 struct inet_connection_sock *icsk = inet_csk(sk); 3384 struct sk_buff *head = tcp_send_head(sk); 3385 const struct tcp_sock *tp = tcp_sk(sk); 3386 3387 /* Was it a usable window open? */ 3388 if (!head) 3389 return; 3390 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3391 icsk->icsk_backoff = 0; 3392 icsk->icsk_probes_tstamp = 0; 3393 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3394 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3395 * This function is not for random using! 3396 */ 3397 } else { 3398 unsigned long when = tcp_probe0_when(sk, tcp_rto_max(sk)); 3399 3400 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3401 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, true); 3402 } 3403 } 3404 3405 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3406 { 3407 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3408 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3409 } 3410 3411 /* Decide wheather to run the increase function of congestion control. */ 3412 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3413 { 3414 /* If reordering is high then always grow cwnd whenever data is 3415 * delivered regardless of its ordering. Otherwise stay conservative 3416 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3417 * new SACK or ECE mark may first advance cwnd here and later reduce 3418 * cwnd in tcp_fastretrans_alert() based on more states. 3419 */ 3420 if (tcp_sk(sk)->reordering > 3421 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering)) 3422 return flag & FLAG_FORWARD_PROGRESS; 3423 3424 return flag & FLAG_DATA_ACKED; 3425 } 3426 3427 /* The "ultimate" congestion control function that aims to replace the rigid 3428 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3429 * It's called toward the end of processing an ACK with precise rate 3430 * information. All transmission or retransmission are delayed afterwards. 3431 */ 3432 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3433 int flag, const struct rate_sample *rs) 3434 { 3435 const struct inet_connection_sock *icsk = inet_csk(sk); 3436 3437 if (icsk->icsk_ca_ops->cong_control) { 3438 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs); 3439 return; 3440 } 3441 3442 if (tcp_in_cwnd_reduction(sk)) { 3443 /* Reduce cwnd if state mandates */ 3444 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3445 } else if (tcp_may_raise_cwnd(sk, flag)) { 3446 /* Advance cwnd if state allows */ 3447 tcp_cong_avoid(sk, ack, acked_sacked); 3448 } 3449 tcp_update_pacing_rate(sk); 3450 } 3451 3452 /* Check that window update is acceptable. 3453 * The function assumes that snd_una<=ack<=snd_next. 3454 */ 3455 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3456 const u32 ack, const u32 ack_seq, 3457 const u32 nwin) 3458 { 3459 return after(ack, tp->snd_una) || 3460 after(ack_seq, tp->snd_wl1) || 3461 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin)); 3462 } 3463 3464 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack) 3465 { 3466 #ifdef CONFIG_TCP_AO 3467 struct tcp_ao_info *ao; 3468 3469 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3470 return; 3471 3472 ao = rcu_dereference_protected(tp->ao_info, 3473 lockdep_sock_is_held((struct sock *)tp)); 3474 if (ao && ack < tp->snd_una) { 3475 ao->snd_sne++; 3476 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne); 3477 } 3478 #endif 3479 } 3480 3481 /* If we update tp->snd_una, also update tp->bytes_acked */ 3482 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3483 { 3484 u32 delta = ack - tp->snd_una; 3485 3486 sock_owned_by_me((struct sock *)tp); 3487 tp->bytes_acked += delta; 3488 tcp_snd_sne_update(tp, ack); 3489 tp->snd_una = ack; 3490 } 3491 3492 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq) 3493 { 3494 #ifdef CONFIG_TCP_AO 3495 struct tcp_ao_info *ao; 3496 3497 if (!static_branch_unlikely(&tcp_ao_needed.key)) 3498 return; 3499 3500 ao = rcu_dereference_protected(tp->ao_info, 3501 lockdep_sock_is_held((struct sock *)tp)); 3502 if (ao && seq < tp->rcv_nxt) { 3503 ao->rcv_sne++; 3504 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne); 3505 } 3506 #endif 3507 } 3508 3509 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3510 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3511 { 3512 u32 delta = seq - tp->rcv_nxt; 3513 3514 sock_owned_by_me((struct sock *)tp); 3515 tp->bytes_received += delta; 3516 tcp_rcv_sne_update(tp, seq); 3517 WRITE_ONCE(tp->rcv_nxt, seq); 3518 } 3519 3520 /* Update our send window. 3521 * 3522 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3523 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3524 */ 3525 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3526 u32 ack_seq) 3527 { 3528 struct tcp_sock *tp = tcp_sk(sk); 3529 int flag = 0; 3530 u32 nwin = ntohs(tcp_hdr(skb)->window); 3531 3532 if (likely(!tcp_hdr(skb)->syn)) 3533 nwin <<= tp->rx_opt.snd_wscale; 3534 3535 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3536 flag |= FLAG_WIN_UPDATE; 3537 tcp_update_wl(tp, ack_seq); 3538 3539 if (tp->snd_wnd != nwin) { 3540 tp->snd_wnd = nwin; 3541 3542 /* Note, it is the only place, where 3543 * fast path is recovered for sending TCP. 3544 */ 3545 tp->pred_flags = 0; 3546 tcp_fast_path_check(sk); 3547 3548 if (!tcp_write_queue_empty(sk)) 3549 tcp_slow_start_after_idle_check(sk); 3550 3551 if (nwin > tp->max_window) { 3552 tp->max_window = nwin; 3553 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3554 } 3555 } 3556 } 3557 3558 tcp_snd_una_update(tp, ack); 3559 3560 return flag; 3561 } 3562 3563 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3564 u32 *last_oow_ack_time) 3565 { 3566 /* Paired with the WRITE_ONCE() in this function. */ 3567 u32 val = READ_ONCE(*last_oow_ack_time); 3568 3569 if (val) { 3570 s32 elapsed = (s32)(tcp_jiffies32 - val); 3571 3572 if (0 <= elapsed && 3573 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) { 3574 NET_INC_STATS(net, mib_idx); 3575 return true; /* rate-limited: don't send yet! */ 3576 } 3577 } 3578 3579 /* Paired with the prior READ_ONCE() and with itself, 3580 * as we might be lockless. 3581 */ 3582 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32); 3583 3584 return false; /* not rate-limited: go ahead, send dupack now! */ 3585 } 3586 3587 /* Return true if we're currently rate-limiting out-of-window ACKs and 3588 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3589 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3590 * attacks that send repeated SYNs or ACKs for the same connection. To 3591 * do this, we do not send a duplicate SYNACK or ACK if the remote 3592 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3593 */ 3594 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3595 int mib_idx, u32 *last_oow_ack_time) 3596 { 3597 /* Data packets without SYNs are not likely part of an ACK loop. */ 3598 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3599 !tcp_hdr(skb)->syn) 3600 return false; 3601 3602 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3603 } 3604 3605 /* RFC 5961 7 [ACK Throttling] */ 3606 static void tcp_send_challenge_ack(struct sock *sk) 3607 { 3608 struct tcp_sock *tp = tcp_sk(sk); 3609 struct net *net = sock_net(sk); 3610 u32 count, now, ack_limit; 3611 3612 /* First check our per-socket dupack rate limit. */ 3613 if (__tcp_oow_rate_limited(net, 3614 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3615 &tp->last_oow_ack_time)) 3616 return; 3617 3618 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit); 3619 if (ack_limit == INT_MAX) 3620 goto send_ack; 3621 3622 /* Then check host-wide RFC 5961 rate limit. */ 3623 now = jiffies / HZ; 3624 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) { 3625 u32 half = (ack_limit + 1) >> 1; 3626 3627 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now); 3628 WRITE_ONCE(net->ipv4.tcp_challenge_count, 3629 get_random_u32_inclusive(half, ack_limit + half - 1)); 3630 } 3631 count = READ_ONCE(net->ipv4.tcp_challenge_count); 3632 if (count > 0) { 3633 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1); 3634 send_ack: 3635 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3636 tcp_send_ack(sk); 3637 } 3638 } 3639 3640 static void tcp_store_ts_recent(struct tcp_sock *tp) 3641 { 3642 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3643 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3644 } 3645 3646 static int __tcp_replace_ts_recent(struct tcp_sock *tp, s32 tstamp_delta) 3647 { 3648 tcp_store_ts_recent(tp); 3649 return tstamp_delta > 0 ? FLAG_TS_PROGRESS : 0; 3650 } 3651 3652 static int tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3653 { 3654 s32 delta; 3655 3656 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3657 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3658 * extra check below makes sure this can only happen 3659 * for pure ACK frames. -DaveM 3660 * 3661 * Not only, also it occurs for expired timestamps. 3662 */ 3663 3664 if (tcp_paws_check(&tp->rx_opt, 0)) { 3665 delta = tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent; 3666 return __tcp_replace_ts_recent(tp, delta); 3667 } 3668 } 3669 3670 return 0; 3671 } 3672 3673 /* This routine deals with acks during a TLP episode and ends an episode by 3674 * resetting tlp_high_seq. Ref: TLP algorithm in RFC8985 3675 */ 3676 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3677 { 3678 struct tcp_sock *tp = tcp_sk(sk); 3679 3680 if (before(ack, tp->tlp_high_seq)) 3681 return; 3682 3683 if (!tp->tlp_retrans) { 3684 /* TLP of new data has been acknowledged */ 3685 tp->tlp_high_seq = 0; 3686 } else if (flag & FLAG_DSACK_TLP) { 3687 /* This DSACK means original and TLP probe arrived; no loss */ 3688 tp->tlp_high_seq = 0; 3689 } else if (after(ack, tp->tlp_high_seq)) { 3690 /* ACK advances: there was a loss, so reduce cwnd. Reset 3691 * tlp_high_seq in tcp_init_cwnd_reduction() 3692 */ 3693 tcp_init_cwnd_reduction(sk); 3694 tcp_set_ca_state(sk, TCP_CA_CWR); 3695 tcp_end_cwnd_reduction(sk); 3696 tcp_try_keep_open(sk); 3697 NET_INC_STATS(sock_net(sk), 3698 LINUX_MIB_TCPLOSSPROBERECOVERY); 3699 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3700 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3701 /* Pure dupack: original and TLP probe arrived; no loss */ 3702 tp->tlp_high_seq = 0; 3703 } 3704 } 3705 3706 static void tcp_in_ack_event(struct sock *sk, int flag) 3707 { 3708 const struct inet_connection_sock *icsk = inet_csk(sk); 3709 3710 if (icsk->icsk_ca_ops->in_ack_event) { 3711 u32 ack_ev_flags = 0; 3712 3713 if (flag & FLAG_WIN_UPDATE) 3714 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3715 if (flag & FLAG_SLOWPATH) { 3716 ack_ev_flags |= CA_ACK_SLOWPATH; 3717 if (flag & FLAG_ECE) 3718 ack_ev_flags |= CA_ACK_ECE; 3719 } 3720 3721 icsk->icsk_ca_ops->in_ack_event(sk, ack_ev_flags); 3722 } 3723 } 3724 3725 /* Congestion control has updated the cwnd already. So if we're in 3726 * loss recovery then now we do any new sends (for FRTO) or 3727 * retransmits (for CA_Loss or CA_recovery) that make sense. 3728 */ 3729 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3730 { 3731 struct tcp_sock *tp = tcp_sk(sk); 3732 3733 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3734 return; 3735 3736 if (unlikely(rexmit == REXMIT_NEW)) { 3737 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3738 TCP_NAGLE_OFF); 3739 if (after(tp->snd_nxt, tp->high_seq)) 3740 return; 3741 tp->frto = 0; 3742 } 3743 tcp_xmit_retransmit_queue(sk); 3744 } 3745 3746 /* Returns the number of packets newly acked or sacked by the current ACK */ 3747 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3748 { 3749 const struct net *net = sock_net(sk); 3750 struct tcp_sock *tp = tcp_sk(sk); 3751 u32 delivered; 3752 3753 delivered = tp->delivered - prior_delivered; 3754 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3755 if (flag & FLAG_ECE) 3756 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3757 3758 return delivered; 3759 } 3760 3761 /* This routine deals with incoming acks, but not outgoing ones. */ 3762 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3763 { 3764 struct inet_connection_sock *icsk = inet_csk(sk); 3765 struct tcp_sock *tp = tcp_sk(sk); 3766 struct tcp_sacktag_state sack_state; 3767 struct rate_sample rs = { .prior_delivered = 0 }; 3768 u32 prior_snd_una = tp->snd_una; 3769 bool is_sack_reneg = tp->is_sack_reneg; 3770 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3771 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3772 int num_dupack = 0; 3773 int prior_packets = tp->packets_out; 3774 u32 delivered = tp->delivered; 3775 u32 lost = tp->lost; 3776 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3777 u32 prior_fack; 3778 3779 sack_state.first_sackt = 0; 3780 sack_state.rate = &rs; 3781 sack_state.sack_delivered = 0; 3782 3783 /* We very likely will need to access rtx queue. */ 3784 prefetch(sk->tcp_rtx_queue.rb_node); 3785 3786 /* If the ack is older than previous acks 3787 * then we can probably ignore it. 3788 */ 3789 if (before(ack, prior_snd_una)) { 3790 u32 max_window; 3791 3792 /* do not accept ACK for bytes we never sent. */ 3793 max_window = min_t(u64, tp->max_window, tp->bytes_acked); 3794 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3795 if (before(ack, prior_snd_una - max_window)) { 3796 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3797 tcp_send_challenge_ack(sk); 3798 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK; 3799 } 3800 goto old_ack; 3801 } 3802 3803 /* If the ack includes data we haven't sent yet, discard 3804 * this segment (RFC793 Section 3.9). 3805 */ 3806 if (after(ack, tp->snd_nxt)) 3807 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA; 3808 3809 if (after(ack, prior_snd_una)) { 3810 flag |= FLAG_SND_UNA_ADVANCED; 3811 WRITE_ONCE(icsk->icsk_retransmits, 0); 3812 3813 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3814 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3815 if (tp->tcp_clean_acked) 3816 tp->tcp_clean_acked(sk, ack); 3817 #endif 3818 } 3819 3820 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3821 rs.prior_in_flight = tcp_packets_in_flight(tp); 3822 3823 /* ts_recent update must be made after we are sure that the packet 3824 * is in window. 3825 */ 3826 if (flag & FLAG_UPDATE_TS_RECENT) 3827 flag |= tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3828 3829 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3830 FLAG_SND_UNA_ADVANCED) { 3831 /* Window is constant, pure forward advance. 3832 * No more checks are required. 3833 * Note, we use the fact that SND.UNA>=SND.WL2. 3834 */ 3835 tcp_update_wl(tp, ack_seq); 3836 tcp_snd_una_update(tp, ack); 3837 flag |= FLAG_WIN_UPDATE; 3838 3839 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3840 } else { 3841 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3842 flag |= FLAG_DATA; 3843 else 3844 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3845 3846 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3847 3848 if (TCP_SKB_CB(skb)->sacked) 3849 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3850 &sack_state); 3851 3852 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) 3853 flag |= FLAG_ECE; 3854 3855 if (sack_state.sack_delivered) 3856 tcp_count_delivered(tp, sack_state.sack_delivered, 3857 flag & FLAG_ECE); 3858 } 3859 3860 /* This is a deviation from RFC3168 since it states that: 3861 * "When the TCP data sender is ready to set the CWR bit after reducing 3862 * the congestion window, it SHOULD set the CWR bit only on the first 3863 * new data packet that it transmits." 3864 * We accept CWR on pure ACKs to be more robust 3865 * with widely-deployed TCP implementations that do this. 3866 */ 3867 tcp_ecn_accept_cwr(sk, skb); 3868 3869 /* We passed data and got it acked, remove any soft error 3870 * log. Something worked... 3871 */ 3872 WRITE_ONCE(sk->sk_err_soft, 0); 3873 WRITE_ONCE(icsk->icsk_probes_out, 0); 3874 tp->rcv_tstamp = tcp_jiffies32; 3875 if (!prior_packets) 3876 goto no_queue; 3877 3878 /* See if we can take anything off of the retransmit queue. */ 3879 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3880 &sack_state, flag & FLAG_ECE); 3881 3882 tcp_rack_update_reo_wnd(sk, &rs); 3883 3884 tcp_in_ack_event(sk, flag); 3885 3886 if (tp->tlp_high_seq) 3887 tcp_process_tlp_ack(sk, ack, flag); 3888 3889 if (tcp_ack_is_dubious(sk, flag)) { 3890 if (!(flag & (FLAG_SND_UNA_ADVANCED | 3891 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) { 3892 num_dupack = 1; 3893 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3894 if (!(flag & FLAG_DATA)) 3895 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3896 } 3897 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3898 &rexmit); 3899 } 3900 3901 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3902 if (flag & FLAG_SET_XMIT_TIMER) 3903 tcp_set_xmit_timer(sk); 3904 3905 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3906 sk_dst_confirm(sk); 3907 3908 delivered = tcp_newly_delivered(sk, delivered, flag); 3909 lost = tp->lost - lost; /* freshly marked lost */ 3910 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3911 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3912 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3913 tcp_xmit_recovery(sk, rexmit); 3914 return 1; 3915 3916 no_queue: 3917 tcp_in_ack_event(sk, flag); 3918 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3919 if (flag & FLAG_DSACKING_ACK) { 3920 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3921 &rexmit); 3922 tcp_newly_delivered(sk, delivered, flag); 3923 } 3924 /* If this ack opens up a zero window, clear backoff. It was 3925 * being used to time the probes, and is probably far higher than 3926 * it needs to be for normal retransmission. 3927 */ 3928 tcp_ack_probe(sk); 3929 3930 if (tp->tlp_high_seq) 3931 tcp_process_tlp_ack(sk, ack, flag); 3932 return 1; 3933 3934 old_ack: 3935 /* If data was SACKed, tag it and see if we should send more data. 3936 * If data was DSACKed, see if we can undo a cwnd reduction. 3937 */ 3938 if (TCP_SKB_CB(skb)->sacked) { 3939 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3940 &sack_state); 3941 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3942 &rexmit); 3943 tcp_newly_delivered(sk, delivered, flag); 3944 tcp_xmit_recovery(sk, rexmit); 3945 } 3946 3947 return 0; 3948 } 3949 3950 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3951 bool syn, struct tcp_fastopen_cookie *foc, 3952 bool exp_opt) 3953 { 3954 /* Valid only in SYN or SYN-ACK with an even length. */ 3955 if (!foc || !syn || len < 0 || (len & 1)) 3956 return; 3957 3958 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3959 len <= TCP_FASTOPEN_COOKIE_MAX) 3960 memcpy(foc->val, cookie, len); 3961 else if (len != 0) 3962 len = -1; 3963 foc->len = len; 3964 foc->exp = exp_opt; 3965 } 3966 3967 static bool smc_parse_options(const struct tcphdr *th, 3968 struct tcp_options_received *opt_rx, 3969 const unsigned char *ptr, 3970 int opsize) 3971 { 3972 #if IS_ENABLED(CONFIG_SMC) 3973 if (static_branch_unlikely(&tcp_have_smc)) { 3974 if (th->syn && !(opsize & 1) && 3975 opsize >= TCPOLEN_EXP_SMC_BASE && 3976 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 3977 opt_rx->smc_ok = 1; 3978 return true; 3979 } 3980 } 3981 #endif 3982 return false; 3983 } 3984 3985 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3986 * value on success. 3987 */ 3988 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3989 { 3990 const unsigned char *ptr = (const unsigned char *)(th + 1); 3991 int length = (th->doff * 4) - sizeof(struct tcphdr); 3992 u16 mss = 0; 3993 3994 while (length > 0) { 3995 int opcode = *ptr++; 3996 int opsize; 3997 3998 switch (opcode) { 3999 case TCPOPT_EOL: 4000 return mss; 4001 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4002 length--; 4003 continue; 4004 default: 4005 if (length < 2) 4006 return mss; 4007 opsize = *ptr++; 4008 if (opsize < 2) /* "silly options" */ 4009 return mss; 4010 if (opsize > length) 4011 return mss; /* fail on partial options */ 4012 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 4013 u16 in_mss = get_unaligned_be16(ptr); 4014 4015 if (in_mss) { 4016 if (user_mss && user_mss < in_mss) 4017 in_mss = user_mss; 4018 mss = in_mss; 4019 } 4020 } 4021 ptr += opsize - 2; 4022 length -= opsize; 4023 } 4024 } 4025 return mss; 4026 } 4027 4028 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 4029 * But, this can also be called on packets in the established flow when 4030 * the fast version below fails. 4031 */ 4032 void tcp_parse_options(const struct net *net, 4033 const struct sk_buff *skb, 4034 struct tcp_options_received *opt_rx, int estab, 4035 struct tcp_fastopen_cookie *foc) 4036 { 4037 const unsigned char *ptr; 4038 const struct tcphdr *th = tcp_hdr(skb); 4039 int length = (th->doff * 4) - sizeof(struct tcphdr); 4040 4041 ptr = (const unsigned char *)(th + 1); 4042 opt_rx->saw_tstamp = 0; 4043 opt_rx->saw_unknown = 0; 4044 4045 while (length > 0) { 4046 int opcode = *ptr++; 4047 int opsize; 4048 4049 switch (opcode) { 4050 case TCPOPT_EOL: 4051 return; 4052 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4053 length--; 4054 continue; 4055 default: 4056 if (length < 2) 4057 return; 4058 opsize = *ptr++; 4059 if (opsize < 2) /* "silly options" */ 4060 return; 4061 if (opsize > length) 4062 return; /* don't parse partial options */ 4063 switch (opcode) { 4064 case TCPOPT_MSS: 4065 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4066 u16 in_mss = get_unaligned_be16(ptr); 4067 if (in_mss) { 4068 if (opt_rx->user_mss && 4069 opt_rx->user_mss < in_mss) 4070 in_mss = opt_rx->user_mss; 4071 opt_rx->mss_clamp = in_mss; 4072 } 4073 } 4074 break; 4075 case TCPOPT_WINDOW: 4076 if (opsize == TCPOLEN_WINDOW && th->syn && 4077 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) { 4078 __u8 snd_wscale = *(__u8 *)ptr; 4079 opt_rx->wscale_ok = 1; 4080 if (snd_wscale > TCP_MAX_WSCALE) { 4081 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4082 __func__, 4083 snd_wscale, 4084 TCP_MAX_WSCALE); 4085 snd_wscale = TCP_MAX_WSCALE; 4086 } 4087 opt_rx->snd_wscale = snd_wscale; 4088 } 4089 break; 4090 case TCPOPT_TIMESTAMP: 4091 if ((opsize == TCPOLEN_TIMESTAMP) && 4092 ((estab && opt_rx->tstamp_ok) || 4093 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) { 4094 opt_rx->saw_tstamp = 1; 4095 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4096 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4097 } 4098 break; 4099 case TCPOPT_SACK_PERM: 4100 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4101 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) { 4102 opt_rx->sack_ok = TCP_SACK_SEEN; 4103 tcp_sack_reset(opt_rx); 4104 } 4105 break; 4106 4107 case TCPOPT_SACK: 4108 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4109 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4110 opt_rx->sack_ok) { 4111 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4112 } 4113 break; 4114 #ifdef CONFIG_TCP_MD5SIG 4115 case TCPOPT_MD5SIG: 4116 /* The MD5 Hash has already been 4117 * checked (see tcp_v{4,6}_rcv()). 4118 */ 4119 break; 4120 #endif 4121 #ifdef CONFIG_TCP_AO 4122 case TCPOPT_AO: 4123 /* TCP AO has already been checked 4124 * (see tcp_inbound_ao_hash()). 4125 */ 4126 break; 4127 #endif 4128 case TCPOPT_FASTOPEN: 4129 tcp_parse_fastopen_option( 4130 opsize - TCPOLEN_FASTOPEN_BASE, 4131 ptr, th->syn, foc, false); 4132 break; 4133 4134 case TCPOPT_EXP: 4135 /* Fast Open option shares code 254 using a 4136 * 16 bits magic number. 4137 */ 4138 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4139 get_unaligned_be16(ptr) == 4140 TCPOPT_FASTOPEN_MAGIC) { 4141 tcp_parse_fastopen_option(opsize - 4142 TCPOLEN_EXP_FASTOPEN_BASE, 4143 ptr + 2, th->syn, foc, true); 4144 break; 4145 } 4146 4147 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4148 break; 4149 4150 opt_rx->saw_unknown = 1; 4151 break; 4152 4153 default: 4154 opt_rx->saw_unknown = 1; 4155 } 4156 ptr += opsize-2; 4157 length -= opsize; 4158 } 4159 } 4160 } 4161 EXPORT_SYMBOL(tcp_parse_options); 4162 4163 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4164 { 4165 const __be32 *ptr = (const __be32 *)(th + 1); 4166 4167 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4168 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4169 tp->rx_opt.saw_tstamp = 1; 4170 ++ptr; 4171 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4172 ++ptr; 4173 if (*ptr) 4174 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4175 else 4176 tp->rx_opt.rcv_tsecr = 0; 4177 return true; 4178 } 4179 return false; 4180 } 4181 4182 /* Fast parse options. This hopes to only see timestamps. 4183 * If it is wrong it falls back on tcp_parse_options(). 4184 */ 4185 static bool tcp_fast_parse_options(const struct net *net, 4186 const struct sk_buff *skb, 4187 const struct tcphdr *th, struct tcp_sock *tp) 4188 { 4189 /* In the spirit of fast parsing, compare doff directly to constant 4190 * values. Because equality is used, short doff can be ignored here. 4191 */ 4192 if (th->doff == (sizeof(*th) / 4)) { 4193 tp->rx_opt.saw_tstamp = 0; 4194 return false; 4195 } else if (tp->rx_opt.tstamp_ok && 4196 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4197 if (tcp_parse_aligned_timestamp(tp, th)) 4198 return true; 4199 } 4200 4201 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4202 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4203 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4204 4205 return true; 4206 } 4207 4208 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO) 4209 /* 4210 * Parse Signature options 4211 */ 4212 int tcp_do_parse_auth_options(const struct tcphdr *th, 4213 const u8 **md5_hash, const u8 **ao_hash) 4214 { 4215 int length = (th->doff << 2) - sizeof(*th); 4216 const u8 *ptr = (const u8 *)(th + 1); 4217 unsigned int minlen = TCPOLEN_MD5SIG; 4218 4219 if (IS_ENABLED(CONFIG_TCP_AO)) 4220 minlen = sizeof(struct tcp_ao_hdr) + 1; 4221 4222 *md5_hash = NULL; 4223 *ao_hash = NULL; 4224 4225 /* If not enough data remaining, we can short cut */ 4226 while (length >= minlen) { 4227 int opcode = *ptr++; 4228 int opsize; 4229 4230 switch (opcode) { 4231 case TCPOPT_EOL: 4232 return 0; 4233 case TCPOPT_NOP: 4234 length--; 4235 continue; 4236 default: 4237 opsize = *ptr++; 4238 if (opsize < 2 || opsize > length) 4239 return -EINVAL; 4240 if (opcode == TCPOPT_MD5SIG) { 4241 if (opsize != TCPOLEN_MD5SIG) 4242 return -EINVAL; 4243 if (unlikely(*md5_hash || *ao_hash)) 4244 return -EEXIST; 4245 *md5_hash = ptr; 4246 } else if (opcode == TCPOPT_AO) { 4247 if (opsize <= sizeof(struct tcp_ao_hdr)) 4248 return -EINVAL; 4249 if (unlikely(*md5_hash || *ao_hash)) 4250 return -EEXIST; 4251 *ao_hash = ptr; 4252 } 4253 } 4254 ptr += opsize - 2; 4255 length -= opsize; 4256 } 4257 return 0; 4258 } 4259 EXPORT_SYMBOL(tcp_do_parse_auth_options); 4260 #endif 4261 4262 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4263 * 4264 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4265 * it can pass through stack. So, the following predicate verifies that 4266 * this segment is not used for anything but congestion avoidance or 4267 * fast retransmit. Moreover, we even are able to eliminate most of such 4268 * second order effects, if we apply some small "replay" window (~RTO) 4269 * to timestamp space. 4270 * 4271 * All these measures still do not guarantee that we reject wrapped ACKs 4272 * on networks with high bandwidth, when sequence space is recycled fastly, 4273 * but it guarantees that such events will be very rare and do not affect 4274 * connection seriously. This doesn't look nice, but alas, PAWS is really 4275 * buggy extension. 4276 * 4277 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4278 * states that events when retransmit arrives after original data are rare. 4279 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4280 * the biggest problem on large power networks even with minor reordering. 4281 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4282 * up to bandwidth of 18Gigabit/sec. 8) ] 4283 */ 4284 4285 /* Estimates max number of increments of remote peer TSval in 4286 * a replay window (based on our current RTO estimation). 4287 */ 4288 static u32 tcp_tsval_replay(const struct sock *sk) 4289 { 4290 /* If we use usec TS resolution, 4291 * then expect the remote peer to use the same resolution. 4292 */ 4293 if (tcp_sk(sk)->tcp_usec_ts) 4294 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ); 4295 4296 /* RFC 7323 recommends a TSval clock between 1ms and 1sec. 4297 * We know that some OS (including old linux) can use 1200 Hz. 4298 */ 4299 return inet_csk(sk)->icsk_rto * 1200 / HZ; 4300 } 4301 4302 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk, 4303 const struct sk_buff *skb) 4304 { 4305 const struct tcp_sock *tp = tcp_sk(sk); 4306 const struct tcphdr *th = tcp_hdr(skb); 4307 SKB_DR_INIT(reason, TCP_RFC7323_PAWS); 4308 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4309 u32 seq = TCP_SKB_CB(skb)->seq; 4310 4311 /* 1. Is this not a pure ACK ? */ 4312 if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq) 4313 return reason; 4314 4315 /* 2. Is its sequence not the expected one ? */ 4316 if (seq != tp->rcv_nxt) 4317 return before(seq, tp->rcv_nxt) ? 4318 SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK : 4319 reason; 4320 4321 /* 3. Is this not a duplicate ACK ? */ 4322 if (ack != tp->snd_una) 4323 return reason; 4324 4325 /* 4. Is this updating the window ? */ 4326 if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) << 4327 tp->rx_opt.snd_wscale)) 4328 return reason; 4329 4330 /* 5. Is this not in the replay window ? */ 4331 if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > 4332 tcp_tsval_replay(sk)) 4333 return reason; 4334 4335 return 0; 4336 } 4337 4338 /* Check segment sequence number for validity. 4339 * 4340 * Segment controls are considered valid, if the segment 4341 * fits to the window after truncation to the window. Acceptability 4342 * of data (and SYN, FIN, of course) is checked separately. 4343 * See tcp_data_queue(), for example. 4344 * 4345 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4346 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4347 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4348 * (borrowed from freebsd) 4349 */ 4350 4351 static enum skb_drop_reason tcp_sequence(const struct sock *sk, 4352 u32 seq, u32 end_seq) 4353 { 4354 const struct tcp_sock *tp = tcp_sk(sk); 4355 4356 if (before(end_seq, tp->rcv_wup)) 4357 return SKB_DROP_REASON_TCP_OLD_SEQUENCE; 4358 4359 if (after(end_seq, tp->rcv_nxt + tcp_receive_window(tp))) { 4360 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp))) 4361 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE; 4362 4363 /* Only accept this packet if receive queue is empty. */ 4364 if (skb_queue_len(&sk->sk_receive_queue)) 4365 return SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE; 4366 } 4367 4368 return SKB_NOT_DROPPED_YET; 4369 } 4370 4371 4372 void tcp_done_with_error(struct sock *sk, int err) 4373 { 4374 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4375 WRITE_ONCE(sk->sk_err, err); 4376 smp_wmb(); 4377 4378 tcp_write_queue_purge(sk); 4379 tcp_done(sk); 4380 4381 if (!sock_flag(sk, SOCK_DEAD)) 4382 sk_error_report(sk); 4383 } 4384 EXPORT_IPV6_MOD(tcp_done_with_error); 4385 4386 /* When we get a reset we do this. */ 4387 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4388 { 4389 int err; 4390 4391 trace_tcp_receive_reset(sk); 4392 4393 /* mptcp can't tell us to ignore reset pkts, 4394 * so just ignore the return value of mptcp_incoming_options(). 4395 */ 4396 if (sk_is_mptcp(sk)) 4397 mptcp_incoming_options(sk, skb); 4398 4399 /* We want the right error as BSD sees it (and indeed as we do). */ 4400 switch (sk->sk_state) { 4401 case TCP_SYN_SENT: 4402 err = ECONNREFUSED; 4403 break; 4404 case TCP_CLOSE_WAIT: 4405 err = EPIPE; 4406 break; 4407 case TCP_CLOSE: 4408 return; 4409 default: 4410 err = ECONNRESET; 4411 } 4412 tcp_done_with_error(sk, err); 4413 } 4414 4415 /* 4416 * Process the FIN bit. This now behaves as it is supposed to work 4417 * and the FIN takes effect when it is validly part of sequence 4418 * space. Not before when we get holes. 4419 * 4420 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4421 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4422 * TIME-WAIT) 4423 * 4424 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4425 * close and we go into CLOSING (and later onto TIME-WAIT) 4426 * 4427 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4428 */ 4429 void tcp_fin(struct sock *sk) 4430 { 4431 struct tcp_sock *tp = tcp_sk(sk); 4432 4433 inet_csk_schedule_ack(sk); 4434 4435 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 4436 sock_set_flag(sk, SOCK_DONE); 4437 4438 switch (sk->sk_state) { 4439 case TCP_SYN_RECV: 4440 case TCP_ESTABLISHED: 4441 /* Move to CLOSE_WAIT */ 4442 tcp_set_state(sk, TCP_CLOSE_WAIT); 4443 inet_csk_enter_pingpong_mode(sk); 4444 break; 4445 4446 case TCP_CLOSE_WAIT: 4447 case TCP_CLOSING: 4448 /* Received a retransmission of the FIN, do 4449 * nothing. 4450 */ 4451 break; 4452 case TCP_LAST_ACK: 4453 /* RFC793: Remain in the LAST-ACK state. */ 4454 break; 4455 4456 case TCP_FIN_WAIT1: 4457 /* This case occurs when a simultaneous close 4458 * happens, we must ack the received FIN and 4459 * enter the CLOSING state. 4460 */ 4461 tcp_send_ack(sk); 4462 tcp_set_state(sk, TCP_CLOSING); 4463 break; 4464 case TCP_FIN_WAIT2: 4465 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4466 tcp_send_ack(sk); 4467 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4468 break; 4469 default: 4470 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4471 * cases we should never reach this piece of code. 4472 */ 4473 pr_err("%s: Impossible, sk->sk_state=%d\n", 4474 __func__, sk->sk_state); 4475 break; 4476 } 4477 4478 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4479 * Probably, we should reset in this case. For now drop them. 4480 */ 4481 skb_rbtree_purge(&tp->out_of_order_queue); 4482 if (tcp_is_sack(tp)) 4483 tcp_sack_reset(&tp->rx_opt); 4484 4485 if (!sock_flag(sk, SOCK_DEAD)) { 4486 sk->sk_state_change(sk); 4487 4488 /* Do not send POLL_HUP for half duplex close. */ 4489 if (sk->sk_shutdown == SHUTDOWN_MASK || 4490 sk->sk_state == TCP_CLOSE) 4491 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4492 else 4493 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4494 } 4495 } 4496 4497 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4498 u32 end_seq) 4499 { 4500 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4501 if (before(seq, sp->start_seq)) 4502 sp->start_seq = seq; 4503 if (after(end_seq, sp->end_seq)) 4504 sp->end_seq = end_seq; 4505 return true; 4506 } 4507 return false; 4508 } 4509 4510 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4511 { 4512 struct tcp_sock *tp = tcp_sk(sk); 4513 4514 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4515 int mib_idx; 4516 4517 if (before(seq, tp->rcv_nxt)) 4518 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4519 else 4520 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4521 4522 NET_INC_STATS(sock_net(sk), mib_idx); 4523 4524 tp->rx_opt.dsack = 1; 4525 tp->duplicate_sack[0].start_seq = seq; 4526 tp->duplicate_sack[0].end_seq = end_seq; 4527 } 4528 } 4529 4530 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4531 { 4532 struct tcp_sock *tp = tcp_sk(sk); 4533 4534 if (!tp->rx_opt.dsack) 4535 tcp_dsack_set(sk, seq, end_seq); 4536 else 4537 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4538 } 4539 4540 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4541 { 4542 /* When the ACK path fails or drops most ACKs, the sender would 4543 * timeout and spuriously retransmit the same segment repeatedly. 4544 * If it seems our ACKs are not reaching the other side, 4545 * based on receiving a duplicate data segment with new flowlabel 4546 * (suggesting the sender suffered an RTO), and we are not already 4547 * repathing due to our own RTO, then rehash the socket to repath our 4548 * packets. 4549 */ 4550 #if IS_ENABLED(CONFIG_IPV6) 4551 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss && 4552 skb->protocol == htons(ETH_P_IPV6) && 4553 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel != 4554 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) && 4555 sk_rethink_txhash(sk)) 4556 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4557 4558 /* Save last flowlabel after a spurious retrans. */ 4559 tcp_save_lrcv_flowlabel(sk, skb); 4560 #endif 4561 } 4562 4563 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4564 { 4565 struct tcp_sock *tp = tcp_sk(sk); 4566 4567 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4568 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4569 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4570 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4571 4572 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) { 4573 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4574 4575 tcp_rcv_spurious_retrans(sk, skb); 4576 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4577 end_seq = tp->rcv_nxt; 4578 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4579 } 4580 } 4581 4582 tcp_send_ack(sk); 4583 } 4584 4585 /* These routines update the SACK block as out-of-order packets arrive or 4586 * in-order packets close up the sequence space. 4587 */ 4588 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4589 { 4590 int this_sack; 4591 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4592 struct tcp_sack_block *swalk = sp + 1; 4593 4594 /* See if the recent change to the first SACK eats into 4595 * or hits the sequence space of other SACK blocks, if so coalesce. 4596 */ 4597 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4598 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4599 int i; 4600 4601 /* Zap SWALK, by moving every further SACK up by one slot. 4602 * Decrease num_sacks. 4603 */ 4604 tp->rx_opt.num_sacks--; 4605 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4606 sp[i] = sp[i + 1]; 4607 continue; 4608 } 4609 this_sack++; 4610 swalk++; 4611 } 4612 } 4613 4614 void tcp_sack_compress_send_ack(struct sock *sk) 4615 { 4616 struct tcp_sock *tp = tcp_sk(sk); 4617 4618 if (!tp->compressed_ack) 4619 return; 4620 4621 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4622 __sock_put(sk); 4623 4624 /* Since we have to send one ack finally, 4625 * substract one from tp->compressed_ack to keep 4626 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4627 */ 4628 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4629 tp->compressed_ack - 1); 4630 4631 tp->compressed_ack = 0; 4632 tcp_send_ack(sk); 4633 } 4634 4635 /* Reasonable amount of sack blocks included in TCP SACK option 4636 * The max is 4, but this becomes 3 if TCP timestamps are there. 4637 * Given that SACK packets might be lost, be conservative and use 2. 4638 */ 4639 #define TCP_SACK_BLOCKS_EXPECTED 2 4640 4641 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4642 { 4643 struct tcp_sock *tp = tcp_sk(sk); 4644 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4645 int cur_sacks = tp->rx_opt.num_sacks; 4646 int this_sack; 4647 4648 if (!cur_sacks) 4649 goto new_sack; 4650 4651 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4652 if (tcp_sack_extend(sp, seq, end_seq)) { 4653 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4654 tcp_sack_compress_send_ack(sk); 4655 /* Rotate this_sack to the first one. */ 4656 for (; this_sack > 0; this_sack--, sp--) 4657 swap(*sp, *(sp - 1)); 4658 if (cur_sacks > 1) 4659 tcp_sack_maybe_coalesce(tp); 4660 return; 4661 } 4662 } 4663 4664 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4665 tcp_sack_compress_send_ack(sk); 4666 4667 /* Could not find an adjacent existing SACK, build a new one, 4668 * put it at the front, and shift everyone else down. We 4669 * always know there is at least one SACK present already here. 4670 * 4671 * If the sack array is full, forget about the last one. 4672 */ 4673 if (this_sack >= TCP_NUM_SACKS) { 4674 this_sack--; 4675 tp->rx_opt.num_sacks--; 4676 sp--; 4677 } 4678 for (; this_sack > 0; this_sack--, sp--) 4679 *sp = *(sp - 1); 4680 4681 new_sack: 4682 /* Build the new head SACK, and we're done. */ 4683 sp->start_seq = seq; 4684 sp->end_seq = end_seq; 4685 tp->rx_opt.num_sacks++; 4686 } 4687 4688 /* RCV.NXT advances, some SACKs should be eaten. */ 4689 4690 static void tcp_sack_remove(struct tcp_sock *tp) 4691 { 4692 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4693 int num_sacks = tp->rx_opt.num_sacks; 4694 int this_sack; 4695 4696 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4697 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4698 tp->rx_opt.num_sacks = 0; 4699 return; 4700 } 4701 4702 for (this_sack = 0; this_sack < num_sacks;) { 4703 /* Check if the start of the sack is covered by RCV.NXT. */ 4704 if (!before(tp->rcv_nxt, sp->start_seq)) { 4705 int i; 4706 4707 /* RCV.NXT must cover all the block! */ 4708 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4709 4710 /* Zap this SACK, by moving forward any other SACKS. */ 4711 for (i = this_sack+1; i < num_sacks; i++) 4712 tp->selective_acks[i-1] = tp->selective_acks[i]; 4713 num_sacks--; 4714 continue; 4715 } 4716 this_sack++; 4717 sp++; 4718 } 4719 tp->rx_opt.num_sacks = num_sacks; 4720 } 4721 4722 /** 4723 * tcp_try_coalesce - try to merge skb to prior one 4724 * @sk: socket 4725 * @to: prior buffer 4726 * @from: buffer to add in queue 4727 * @fragstolen: pointer to boolean 4728 * 4729 * Before queueing skb @from after @to, try to merge them 4730 * to reduce overall memory use and queue lengths, if cost is small. 4731 * Packets in ofo or receive queues can stay a long time. 4732 * Better try to coalesce them right now to avoid future collapses. 4733 * Returns true if caller should free @from instead of queueing it 4734 */ 4735 static bool tcp_try_coalesce(struct sock *sk, 4736 struct sk_buff *to, 4737 struct sk_buff *from, 4738 bool *fragstolen) 4739 { 4740 int delta; 4741 4742 *fragstolen = false; 4743 4744 /* Its possible this segment overlaps with prior segment in queue */ 4745 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4746 return false; 4747 4748 if (!tcp_skb_can_collapse_rx(to, from)) 4749 return false; 4750 4751 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4752 return false; 4753 4754 atomic_add(delta, &sk->sk_rmem_alloc); 4755 sk_mem_charge(sk, delta); 4756 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4757 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4758 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4759 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4760 4761 if (TCP_SKB_CB(from)->has_rxtstamp) { 4762 TCP_SKB_CB(to)->has_rxtstamp = true; 4763 to->tstamp = from->tstamp; 4764 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4765 } 4766 4767 return true; 4768 } 4769 4770 static bool tcp_ooo_try_coalesce(struct sock *sk, 4771 struct sk_buff *to, 4772 struct sk_buff *from, 4773 bool *fragstolen) 4774 { 4775 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4776 4777 /* In case tcp_drop_reason() is called later, update to->gso_segs */ 4778 if (res) { 4779 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4780 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4781 4782 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4783 } 4784 return res; 4785 } 4786 4787 noinline_for_tracing static void 4788 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 4789 { 4790 sk_drops_skbadd(sk, skb); 4791 sk_skb_reason_drop(sk, skb, reason); 4792 } 4793 4794 /* This one checks to see if we can put data from the 4795 * out_of_order queue into the receive_queue. 4796 */ 4797 static void tcp_ofo_queue(struct sock *sk) 4798 { 4799 struct tcp_sock *tp = tcp_sk(sk); 4800 __u32 dsack_high = tp->rcv_nxt; 4801 bool fin, fragstolen, eaten; 4802 struct sk_buff *skb, *tail; 4803 struct rb_node *p; 4804 4805 p = rb_first(&tp->out_of_order_queue); 4806 while (p) { 4807 skb = rb_to_skb(p); 4808 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4809 break; 4810 4811 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4812 __u32 dsack = dsack_high; 4813 4814 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4815 dsack = TCP_SKB_CB(skb)->end_seq; 4816 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4817 } 4818 p = rb_next(p); 4819 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4820 4821 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4822 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP); 4823 continue; 4824 } 4825 4826 tail = skb_peek_tail(&sk->sk_receive_queue); 4827 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4828 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4829 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4830 if (!eaten) 4831 tcp_add_receive_queue(sk, skb); 4832 else 4833 kfree_skb_partial(skb, fragstolen); 4834 4835 if (unlikely(fin)) { 4836 tcp_fin(sk); 4837 /* tcp_fin() purges tp->out_of_order_queue, 4838 * so we must end this loop right now. 4839 */ 4840 break; 4841 } 4842 } 4843 } 4844 4845 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb); 4846 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb); 4847 4848 /* Check if this incoming skb can be added to socket receive queues 4849 * while satisfying sk->sk_rcvbuf limit. 4850 */ 4851 static bool tcp_can_ingest(const struct sock *sk, const struct sk_buff *skb) 4852 { 4853 unsigned int new_mem = atomic_read(&sk->sk_rmem_alloc) + skb->truesize; 4854 4855 return new_mem <= sk->sk_rcvbuf; 4856 } 4857 4858 static int tcp_try_rmem_schedule(struct sock *sk, const struct sk_buff *skb, 4859 unsigned int size) 4860 { 4861 if (!tcp_can_ingest(sk, skb) || 4862 !sk_rmem_schedule(sk, skb, size)) { 4863 4864 if (tcp_prune_queue(sk, skb) < 0) 4865 return -1; 4866 4867 while (!sk_rmem_schedule(sk, skb, size)) { 4868 if (!tcp_prune_ofo_queue(sk, skb)) 4869 return -1; 4870 } 4871 } 4872 return 0; 4873 } 4874 4875 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4876 { 4877 struct tcp_sock *tp = tcp_sk(sk); 4878 struct rb_node **p, *parent; 4879 struct sk_buff *skb1; 4880 u32 seq, end_seq; 4881 bool fragstolen; 4882 4883 tcp_save_lrcv_flowlabel(sk, skb); 4884 tcp_data_ecn_check(sk, skb); 4885 4886 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4887 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4888 sk->sk_data_ready(sk); 4889 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM); 4890 return; 4891 } 4892 4893 tcp_measure_rcv_mss(sk, skb); 4894 /* Disable header prediction. */ 4895 tp->pred_flags = 0; 4896 inet_csk_schedule_ack(sk); 4897 4898 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4899 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4900 seq = TCP_SKB_CB(skb)->seq; 4901 end_seq = TCP_SKB_CB(skb)->end_seq; 4902 4903 p = &tp->out_of_order_queue.rb_node; 4904 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4905 /* Initial out of order segment, build 1 SACK. */ 4906 if (tcp_is_sack(tp)) { 4907 tp->rx_opt.num_sacks = 1; 4908 tp->selective_acks[0].start_seq = seq; 4909 tp->selective_acks[0].end_seq = end_seq; 4910 } 4911 rb_link_node(&skb->rbnode, NULL, p); 4912 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4913 tp->ooo_last_skb = skb; 4914 goto end; 4915 } 4916 4917 /* In the typical case, we are adding an skb to the end of the list. 4918 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4919 */ 4920 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4921 skb, &fragstolen)) { 4922 coalesce_done: 4923 /* For non sack flows, do not grow window to force DUPACK 4924 * and trigger fast retransmit. 4925 */ 4926 if (tcp_is_sack(tp)) 4927 tcp_grow_window(sk, skb, true); 4928 kfree_skb_partial(skb, fragstolen); 4929 skb = NULL; 4930 goto add_sack; 4931 } 4932 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4933 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4934 parent = &tp->ooo_last_skb->rbnode; 4935 p = &parent->rb_right; 4936 goto insert; 4937 } 4938 4939 /* Find place to insert this segment. Handle overlaps on the way. */ 4940 parent = NULL; 4941 while (*p) { 4942 parent = *p; 4943 skb1 = rb_to_skb(parent); 4944 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4945 p = &parent->rb_left; 4946 continue; 4947 } 4948 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4949 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4950 /* All the bits are present. Drop. */ 4951 NET_INC_STATS(sock_net(sk), 4952 LINUX_MIB_TCPOFOMERGE); 4953 tcp_drop_reason(sk, skb, 4954 SKB_DROP_REASON_TCP_OFOMERGE); 4955 skb = NULL; 4956 tcp_dsack_set(sk, seq, end_seq); 4957 goto add_sack; 4958 } 4959 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4960 /* Partial overlap. */ 4961 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4962 } else { 4963 /* skb's seq == skb1's seq and skb covers skb1. 4964 * Replace skb1 with skb. 4965 */ 4966 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4967 &tp->out_of_order_queue); 4968 tcp_dsack_extend(sk, 4969 TCP_SKB_CB(skb1)->seq, 4970 TCP_SKB_CB(skb1)->end_seq); 4971 NET_INC_STATS(sock_net(sk), 4972 LINUX_MIB_TCPOFOMERGE); 4973 tcp_drop_reason(sk, skb1, 4974 SKB_DROP_REASON_TCP_OFOMERGE); 4975 goto merge_right; 4976 } 4977 } else if (tcp_ooo_try_coalesce(sk, skb1, 4978 skb, &fragstolen)) { 4979 goto coalesce_done; 4980 } 4981 p = &parent->rb_right; 4982 } 4983 insert: 4984 /* Insert segment into RB tree. */ 4985 rb_link_node(&skb->rbnode, parent, p); 4986 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4987 4988 merge_right: 4989 /* Remove other segments covered by skb. */ 4990 while ((skb1 = skb_rb_next(skb)) != NULL) { 4991 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4992 break; 4993 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4994 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4995 end_seq); 4996 break; 4997 } 4998 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4999 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 5000 TCP_SKB_CB(skb1)->end_seq); 5001 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 5002 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE); 5003 } 5004 /* If there is no skb after us, we are the last_skb ! */ 5005 if (!skb1) 5006 tp->ooo_last_skb = skb; 5007 5008 add_sack: 5009 if (tcp_is_sack(tp)) 5010 tcp_sack_new_ofo_skb(sk, seq, end_seq); 5011 end: 5012 if (skb) { 5013 /* For non sack flows, do not grow window to force DUPACK 5014 * and trigger fast retransmit. 5015 */ 5016 if (tcp_is_sack(tp)) 5017 tcp_grow_window(sk, skb, false); 5018 skb_condense(skb); 5019 skb_set_owner_r(skb, sk); 5020 } 5021 /* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */ 5022 if (sk->sk_socket) 5023 tcp_rcvbuf_grow(sk); 5024 } 5025 5026 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 5027 bool *fragstolen) 5028 { 5029 int eaten; 5030 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 5031 5032 eaten = (tail && 5033 tcp_try_coalesce(sk, tail, 5034 skb, fragstolen)) ? 1 : 0; 5035 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 5036 if (!eaten) { 5037 tcp_add_receive_queue(sk, skb); 5038 skb_set_owner_r(skb, sk); 5039 } 5040 return eaten; 5041 } 5042 5043 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 5044 { 5045 struct sk_buff *skb; 5046 int err = -ENOMEM; 5047 int data_len = 0; 5048 bool fragstolen; 5049 5050 if (size == 0) 5051 return 0; 5052 5053 if (size > PAGE_SIZE) { 5054 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 5055 5056 data_len = npages << PAGE_SHIFT; 5057 size = data_len + (size & ~PAGE_MASK); 5058 } 5059 skb = alloc_skb_with_frags(size - data_len, data_len, 5060 PAGE_ALLOC_COSTLY_ORDER, 5061 &err, sk->sk_allocation); 5062 if (!skb) 5063 goto err; 5064 5065 skb_put(skb, size - data_len); 5066 skb->data_len = data_len; 5067 skb->len = size; 5068 5069 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5070 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5071 goto err_free; 5072 } 5073 5074 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 5075 if (err) 5076 goto err_free; 5077 5078 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 5079 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 5080 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 5081 5082 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 5083 WARN_ON_ONCE(fragstolen); /* should not happen */ 5084 __kfree_skb(skb); 5085 } 5086 return size; 5087 5088 err_free: 5089 kfree_skb(skb); 5090 err: 5091 return err; 5092 5093 } 5094 5095 void tcp_data_ready(struct sock *sk) 5096 { 5097 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 5098 sk->sk_data_ready(sk); 5099 } 5100 5101 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 5102 { 5103 struct tcp_sock *tp = tcp_sk(sk); 5104 enum skb_drop_reason reason; 5105 bool fragstolen; 5106 int eaten; 5107 5108 /* If a subflow has been reset, the packet should not continue 5109 * to be processed, drop the packet. 5110 */ 5111 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 5112 __kfree_skb(skb); 5113 return; 5114 } 5115 5116 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 5117 __kfree_skb(skb); 5118 return; 5119 } 5120 tcp_cleanup_skb(skb); 5121 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 5122 5123 reason = SKB_DROP_REASON_NOT_SPECIFIED; 5124 tp->rx_opt.dsack = 0; 5125 5126 /* Queue data for delivery to the user. 5127 * Packets in sequence go to the receive queue. 5128 * Out of sequence packets to the out_of_order_queue. 5129 */ 5130 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 5131 if (tcp_receive_window(tp) == 0) { 5132 /* Some stacks are known to send bare FIN packets 5133 * in a loop even if we send RWIN 0 in our ACK. 5134 * Accepting this FIN does not hurt memory pressure 5135 * because the FIN flag will simply be merged to the 5136 * receive queue tail skb in most cases. 5137 */ 5138 if (!skb->len && 5139 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) 5140 goto queue_and_out; 5141 5142 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5143 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5144 goto out_of_window; 5145 } 5146 5147 /* Ok. In sequence. In window. */ 5148 queue_and_out: 5149 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5150 /* TODO: maybe ratelimit these WIN 0 ACK ? */ 5151 inet_csk(sk)->icsk_ack.pending |= 5152 (ICSK_ACK_NOMEM | ICSK_ACK_NOW); 5153 inet_csk_schedule_ack(sk); 5154 sk->sk_data_ready(sk); 5155 5156 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) { 5157 reason = SKB_DROP_REASON_PROTO_MEM; 5158 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5159 goto drop; 5160 } 5161 sk_forced_mem_schedule(sk, skb->truesize); 5162 } 5163 5164 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5165 if (skb->len) 5166 tcp_event_data_recv(sk, skb); 5167 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5168 tcp_fin(sk); 5169 5170 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5171 tcp_ofo_queue(sk); 5172 5173 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5174 * gap in queue is filled. 5175 */ 5176 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5177 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5178 } 5179 5180 if (tp->rx_opt.num_sacks) 5181 tcp_sack_remove(tp); 5182 5183 tcp_fast_path_check(sk); 5184 5185 if (eaten > 0) 5186 kfree_skb_partial(skb, fragstolen); 5187 if (!sock_flag(sk, SOCK_DEAD)) 5188 tcp_data_ready(sk); 5189 return; 5190 } 5191 5192 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5193 tcp_rcv_spurious_retrans(sk, skb); 5194 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5195 reason = SKB_DROP_REASON_TCP_OLD_DATA; 5196 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5197 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5198 5199 out_of_window: 5200 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5201 inet_csk_schedule_ack(sk); 5202 drop: 5203 tcp_drop_reason(sk, skb, reason); 5204 return; 5205 } 5206 5207 /* Out of window. F.e. zero window probe. */ 5208 if (!before(TCP_SKB_CB(skb)->seq, 5209 tp->rcv_nxt + tcp_receive_window(tp))) { 5210 reason = SKB_DROP_REASON_TCP_OVERWINDOW; 5211 goto out_of_window; 5212 } 5213 5214 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5215 /* Partial packet, seq < rcv_next < end_seq */ 5216 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5217 5218 /* If window is closed, drop tail of packet. But after 5219 * remembering D-SACK for its head made in previous line. 5220 */ 5221 if (!tcp_receive_window(tp)) { 5222 reason = SKB_DROP_REASON_TCP_ZEROWINDOW; 5223 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5224 goto out_of_window; 5225 } 5226 goto queue_and_out; 5227 } 5228 5229 tcp_data_queue_ofo(sk, skb); 5230 } 5231 5232 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5233 { 5234 if (list) 5235 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5236 5237 return skb_rb_next(skb); 5238 } 5239 5240 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5241 struct sk_buff_head *list, 5242 struct rb_root *root) 5243 { 5244 struct sk_buff *next = tcp_skb_next(skb, list); 5245 5246 if (list) 5247 __skb_unlink(skb, list); 5248 else 5249 rb_erase(&skb->rbnode, root); 5250 5251 __kfree_skb(skb); 5252 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5253 5254 return next; 5255 } 5256 5257 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5258 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5259 { 5260 struct rb_node **p = &root->rb_node; 5261 struct rb_node *parent = NULL; 5262 struct sk_buff *skb1; 5263 5264 while (*p) { 5265 parent = *p; 5266 skb1 = rb_to_skb(parent); 5267 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5268 p = &parent->rb_left; 5269 else 5270 p = &parent->rb_right; 5271 } 5272 rb_link_node(&skb->rbnode, parent, p); 5273 rb_insert_color(&skb->rbnode, root); 5274 } 5275 5276 /* Collapse contiguous sequence of skbs head..tail with 5277 * sequence numbers start..end. 5278 * 5279 * If tail is NULL, this means until the end of the queue. 5280 * 5281 * Segments with FIN/SYN are not collapsed (only because this 5282 * simplifies code) 5283 */ 5284 static void 5285 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5286 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5287 { 5288 struct sk_buff *skb = head, *n; 5289 struct sk_buff_head tmp; 5290 bool end_of_skbs; 5291 5292 /* First, check that queue is collapsible and find 5293 * the point where collapsing can be useful. 5294 */ 5295 restart: 5296 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5297 n = tcp_skb_next(skb, list); 5298 5299 if (!skb_frags_readable(skb)) 5300 goto skip_this; 5301 5302 /* No new bits? It is possible on ofo queue. */ 5303 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5304 skb = tcp_collapse_one(sk, skb, list, root); 5305 if (!skb) 5306 break; 5307 goto restart; 5308 } 5309 5310 /* The first skb to collapse is: 5311 * - not SYN/FIN and 5312 * - bloated or contains data before "start" or 5313 * overlaps to the next one and mptcp allow collapsing. 5314 */ 5315 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5316 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5317 before(TCP_SKB_CB(skb)->seq, start))) { 5318 end_of_skbs = false; 5319 break; 5320 } 5321 5322 if (n && n != tail && skb_frags_readable(n) && 5323 tcp_skb_can_collapse_rx(skb, n) && 5324 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5325 end_of_skbs = false; 5326 break; 5327 } 5328 5329 skip_this: 5330 /* Decided to skip this, advance start seq. */ 5331 start = TCP_SKB_CB(skb)->end_seq; 5332 } 5333 if (end_of_skbs || 5334 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5335 !skb_frags_readable(skb)) 5336 return; 5337 5338 __skb_queue_head_init(&tmp); 5339 5340 while (before(start, end)) { 5341 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5342 struct sk_buff *nskb; 5343 5344 nskb = alloc_skb(copy, GFP_ATOMIC); 5345 if (!nskb) 5346 break; 5347 5348 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5349 skb_copy_decrypted(nskb, skb); 5350 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5351 if (list) 5352 __skb_queue_before(list, skb, nskb); 5353 else 5354 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5355 skb_set_owner_r(nskb, sk); 5356 mptcp_skb_ext_move(nskb, skb); 5357 5358 /* Copy data, releasing collapsed skbs. */ 5359 while (copy > 0) { 5360 int offset = start - TCP_SKB_CB(skb)->seq; 5361 int size = TCP_SKB_CB(skb)->end_seq - start; 5362 5363 BUG_ON(offset < 0); 5364 if (size > 0) { 5365 size = min(copy, size); 5366 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5367 BUG(); 5368 TCP_SKB_CB(nskb)->end_seq += size; 5369 copy -= size; 5370 start += size; 5371 } 5372 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5373 skb = tcp_collapse_one(sk, skb, list, root); 5374 if (!skb || 5375 skb == tail || 5376 !tcp_skb_can_collapse_rx(nskb, skb) || 5377 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) || 5378 !skb_frags_readable(skb)) 5379 goto end; 5380 } 5381 } 5382 } 5383 end: 5384 skb_queue_walk_safe(&tmp, skb, n) 5385 tcp_rbtree_insert(root, skb); 5386 } 5387 5388 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5389 * and tcp_collapse() them until all the queue is collapsed. 5390 */ 5391 static void tcp_collapse_ofo_queue(struct sock *sk) 5392 { 5393 struct tcp_sock *tp = tcp_sk(sk); 5394 u32 range_truesize, sum_tiny = 0; 5395 struct sk_buff *skb, *head; 5396 u32 start, end; 5397 5398 skb = skb_rb_first(&tp->out_of_order_queue); 5399 new_range: 5400 if (!skb) { 5401 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5402 return; 5403 } 5404 start = TCP_SKB_CB(skb)->seq; 5405 end = TCP_SKB_CB(skb)->end_seq; 5406 range_truesize = skb->truesize; 5407 5408 for (head = skb;;) { 5409 skb = skb_rb_next(skb); 5410 5411 /* Range is terminated when we see a gap or when 5412 * we are at the queue end. 5413 */ 5414 if (!skb || 5415 after(TCP_SKB_CB(skb)->seq, end) || 5416 before(TCP_SKB_CB(skb)->end_seq, start)) { 5417 /* Do not attempt collapsing tiny skbs */ 5418 if (range_truesize != head->truesize || 5419 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) { 5420 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5421 head, skb, start, end); 5422 } else { 5423 sum_tiny += range_truesize; 5424 if (sum_tiny > sk->sk_rcvbuf >> 3) 5425 return; 5426 } 5427 goto new_range; 5428 } 5429 5430 range_truesize += skb->truesize; 5431 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5432 start = TCP_SKB_CB(skb)->seq; 5433 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5434 end = TCP_SKB_CB(skb)->end_seq; 5435 } 5436 } 5437 5438 /* 5439 * Clean the out-of-order queue to make room. 5440 * We drop high sequences packets to : 5441 * 1) Let a chance for holes to be filled. 5442 * This means we do not drop packets from ooo queue if their sequence 5443 * is before incoming packet sequence. 5444 * 2) not add too big latencies if thousands of packets sit there. 5445 * (But if application shrinks SO_RCVBUF, we could still end up 5446 * freeing whole queue here) 5447 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5448 * 5449 * Return true if queue has shrunk. 5450 */ 5451 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb) 5452 { 5453 struct tcp_sock *tp = tcp_sk(sk); 5454 struct rb_node *node, *prev; 5455 bool pruned = false; 5456 int goal; 5457 5458 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5459 return false; 5460 5461 goal = sk->sk_rcvbuf >> 3; 5462 node = &tp->ooo_last_skb->rbnode; 5463 5464 do { 5465 struct sk_buff *skb = rb_to_skb(node); 5466 5467 /* If incoming skb would land last in ofo queue, stop pruning. */ 5468 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq)) 5469 break; 5470 pruned = true; 5471 prev = rb_prev(node); 5472 rb_erase(node, &tp->out_of_order_queue); 5473 goal -= skb->truesize; 5474 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE); 5475 tp->ooo_last_skb = rb_to_skb(prev); 5476 if (!prev || goal <= 0) { 5477 if (tcp_can_ingest(sk, in_skb) && 5478 !tcp_under_memory_pressure(sk)) 5479 break; 5480 goal = sk->sk_rcvbuf >> 3; 5481 } 5482 node = prev; 5483 } while (node); 5484 5485 if (pruned) { 5486 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5487 /* Reset SACK state. A conforming SACK implementation will 5488 * do the same at a timeout based retransmit. When a connection 5489 * is in a sad state like this, we care only about integrity 5490 * of the connection not performance. 5491 */ 5492 if (tp->rx_opt.sack_ok) 5493 tcp_sack_reset(&tp->rx_opt); 5494 } 5495 return pruned; 5496 } 5497 5498 /* Reduce allocated memory if we can, trying to get 5499 * the socket within its memory limits again. 5500 * 5501 * Return less than zero if we should start dropping frames 5502 * until the socket owning process reads some of the data 5503 * to stabilize the situation. 5504 */ 5505 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb) 5506 { 5507 struct tcp_sock *tp = tcp_sk(sk); 5508 5509 /* Do nothing if our queues are empty. */ 5510 if (!atomic_read(&sk->sk_rmem_alloc)) 5511 return -1; 5512 5513 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5514 5515 if (!tcp_can_ingest(sk, in_skb)) 5516 tcp_clamp_window(sk); 5517 else if (tcp_under_memory_pressure(sk)) 5518 tcp_adjust_rcv_ssthresh(sk); 5519 5520 if (tcp_can_ingest(sk, in_skb)) 5521 return 0; 5522 5523 tcp_collapse_ofo_queue(sk); 5524 if (!skb_queue_empty(&sk->sk_receive_queue)) 5525 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5526 skb_peek(&sk->sk_receive_queue), 5527 NULL, 5528 tp->copied_seq, tp->rcv_nxt); 5529 5530 if (tcp_can_ingest(sk, in_skb)) 5531 return 0; 5532 5533 /* Collapsing did not help, destructive actions follow. 5534 * This must not ever occur. */ 5535 5536 tcp_prune_ofo_queue(sk, in_skb); 5537 5538 if (tcp_can_ingest(sk, in_skb)) 5539 return 0; 5540 5541 /* If we are really being abused, tell the caller to silently 5542 * drop receive data on the floor. It will get retransmitted 5543 * and hopefully then we'll have sufficient space. 5544 */ 5545 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5546 5547 /* Massive buffer overcommit. */ 5548 tp->pred_flags = 0; 5549 return -1; 5550 } 5551 5552 static bool tcp_should_expand_sndbuf(struct sock *sk) 5553 { 5554 const struct tcp_sock *tp = tcp_sk(sk); 5555 5556 /* If the user specified a specific send buffer setting, do 5557 * not modify it. 5558 */ 5559 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5560 return false; 5561 5562 /* If we are under global TCP memory pressure, do not expand. */ 5563 if (tcp_under_memory_pressure(sk)) { 5564 int unused_mem = sk_unused_reserved_mem(sk); 5565 5566 /* Adjust sndbuf according to reserved mem. But make sure 5567 * it never goes below SOCK_MIN_SNDBUF. 5568 * See sk_stream_moderate_sndbuf() for more details. 5569 */ 5570 if (unused_mem > SOCK_MIN_SNDBUF) 5571 WRITE_ONCE(sk->sk_sndbuf, unused_mem); 5572 5573 return false; 5574 } 5575 5576 /* If we are under soft global TCP memory pressure, do not expand. */ 5577 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5578 return false; 5579 5580 /* If we filled the congestion window, do not expand. */ 5581 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp)) 5582 return false; 5583 5584 return true; 5585 } 5586 5587 static void tcp_new_space(struct sock *sk) 5588 { 5589 struct tcp_sock *tp = tcp_sk(sk); 5590 5591 if (tcp_should_expand_sndbuf(sk)) { 5592 tcp_sndbuf_expand(sk); 5593 tp->snd_cwnd_stamp = tcp_jiffies32; 5594 } 5595 5596 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5597 } 5598 5599 /* Caller made space either from: 5600 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced) 5601 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt) 5602 * 5603 * We might be able to generate EPOLLOUT to the application if: 5604 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2 5605 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became 5606 * small enough that tcp_stream_memory_free() decides it 5607 * is time to generate EPOLLOUT. 5608 */ 5609 void tcp_check_space(struct sock *sk) 5610 { 5611 /* pairs with tcp_poll() */ 5612 smp_mb(); 5613 if (sk->sk_socket && 5614 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5615 tcp_new_space(sk); 5616 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5617 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5618 } 5619 } 5620 5621 static inline void tcp_data_snd_check(struct sock *sk) 5622 { 5623 tcp_push_pending_frames(sk); 5624 tcp_check_space(sk); 5625 } 5626 5627 /* 5628 * Check if sending an ack is needed. 5629 */ 5630 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5631 { 5632 struct tcp_sock *tp = tcp_sk(sk); 5633 unsigned long rtt, delay; 5634 5635 /* More than one full frame received... */ 5636 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5637 /* ... and right edge of window advances far enough. 5638 * (tcp_recvmsg() will send ACK otherwise). 5639 * If application uses SO_RCVLOWAT, we want send ack now if 5640 * we have not received enough bytes to satisfy the condition. 5641 */ 5642 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5643 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5644 /* We ACK each frame or... */ 5645 tcp_in_quickack_mode(sk) || 5646 /* Protocol state mandates a one-time immediate ACK */ 5647 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5648 /* If we are running from __release_sock() in user context, 5649 * Defer the ack until tcp_release_cb(). 5650 */ 5651 if (sock_owned_by_user_nocheck(sk) && 5652 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) { 5653 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags); 5654 return; 5655 } 5656 send_now: 5657 tcp_send_ack(sk); 5658 return; 5659 } 5660 5661 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5662 tcp_send_delayed_ack(sk); 5663 return; 5664 } 5665 5666 if (!tcp_is_sack(tp) || 5667 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)) 5668 goto send_now; 5669 5670 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5671 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5672 tp->dup_ack_counter = 0; 5673 } 5674 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5675 tp->dup_ack_counter++; 5676 goto send_now; 5677 } 5678 tp->compressed_ack++; 5679 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5680 return; 5681 5682 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5683 5684 rtt = tp->rcv_rtt_est.rtt_us; 5685 if (tp->srtt_us && tp->srtt_us < rtt) 5686 rtt = tp->srtt_us; 5687 5688 delay = min_t(unsigned long, 5689 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns), 5690 rtt * (NSEC_PER_USEC >> 3)/20); 5691 sock_hold(sk); 5692 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5693 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns), 5694 HRTIMER_MODE_REL_PINNED_SOFT); 5695 } 5696 5697 static inline void tcp_ack_snd_check(struct sock *sk) 5698 { 5699 if (!inet_csk_ack_scheduled(sk)) { 5700 /* We sent a data segment already. */ 5701 return; 5702 } 5703 __tcp_ack_snd_check(sk, 1); 5704 } 5705 5706 /* 5707 * This routine is only called when we have urgent data 5708 * signaled. Its the 'slow' part of tcp_urg. It could be 5709 * moved inline now as tcp_urg is only called from one 5710 * place. We handle URGent data wrong. We have to - as 5711 * BSD still doesn't use the correction from RFC961. 5712 * For 1003.1g we should support a new option TCP_STDURG to permit 5713 * either form (or just set the sysctl tcp_stdurg). 5714 */ 5715 5716 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5717 { 5718 struct tcp_sock *tp = tcp_sk(sk); 5719 u32 ptr = ntohs(th->urg_ptr); 5720 5721 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg)) 5722 ptr--; 5723 ptr += ntohl(th->seq); 5724 5725 /* Ignore urgent data that we've already seen and read. */ 5726 if (after(tp->copied_seq, ptr)) 5727 return; 5728 5729 /* Do not replay urg ptr. 5730 * 5731 * NOTE: interesting situation not covered by specs. 5732 * Misbehaving sender may send urg ptr, pointing to segment, 5733 * which we already have in ofo queue. We are not able to fetch 5734 * such data and will stay in TCP_URG_NOTYET until will be eaten 5735 * by recvmsg(). Seems, we are not obliged to handle such wicked 5736 * situations. But it is worth to think about possibility of some 5737 * DoSes using some hypothetical application level deadlock. 5738 */ 5739 if (before(ptr, tp->rcv_nxt)) 5740 return; 5741 5742 /* Do we already have a newer (or duplicate) urgent pointer? */ 5743 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5744 return; 5745 5746 /* Tell the world about our new urgent pointer. */ 5747 sk_send_sigurg(sk); 5748 5749 /* We may be adding urgent data when the last byte read was 5750 * urgent. To do this requires some care. We cannot just ignore 5751 * tp->copied_seq since we would read the last urgent byte again 5752 * as data, nor can we alter copied_seq until this data arrives 5753 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5754 * 5755 * NOTE. Double Dutch. Rendering to plain English: author of comment 5756 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5757 * and expect that both A and B disappear from stream. This is _wrong_. 5758 * Though this happens in BSD with high probability, this is occasional. 5759 * Any application relying on this is buggy. Note also, that fix "works" 5760 * only in this artificial test. Insert some normal data between A and B and we will 5761 * decline of BSD again. Verdict: it is better to remove to trap 5762 * buggy users. 5763 */ 5764 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5765 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5766 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5767 tp->copied_seq++; 5768 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5769 __skb_unlink(skb, &sk->sk_receive_queue); 5770 __kfree_skb(skb); 5771 } 5772 } 5773 5774 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET); 5775 WRITE_ONCE(tp->urg_seq, ptr); 5776 5777 /* Disable header prediction. */ 5778 tp->pred_flags = 0; 5779 } 5780 5781 /* This is the 'fast' part of urgent handling. */ 5782 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5783 { 5784 struct tcp_sock *tp = tcp_sk(sk); 5785 5786 /* Check if we get a new urgent pointer - normally not. */ 5787 if (unlikely(th->urg)) 5788 tcp_check_urg(sk, th); 5789 5790 /* Do we wait for any urgent data? - normally not... */ 5791 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) { 5792 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5793 th->syn; 5794 5795 /* Is the urgent pointer pointing into this packet? */ 5796 if (ptr < skb->len) { 5797 u8 tmp; 5798 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5799 BUG(); 5800 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp); 5801 if (!sock_flag(sk, SOCK_DEAD)) 5802 sk->sk_data_ready(sk); 5803 } 5804 } 5805 } 5806 5807 /* Accept RST for rcv_nxt - 1 after a FIN. 5808 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5809 * FIN is sent followed by a RST packet. The RST is sent with the same 5810 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5811 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5812 * ACKs on the closed socket. In addition middleboxes can drop either the 5813 * challenge ACK or a subsequent RST. 5814 */ 5815 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5816 { 5817 const struct tcp_sock *tp = tcp_sk(sk); 5818 5819 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5820 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5821 TCPF_CLOSING)); 5822 } 5823 5824 /* Does PAWS and seqno based validation of an incoming segment, flags will 5825 * play significant role here. 5826 */ 5827 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5828 const struct tcphdr *th, int syn_inerr) 5829 { 5830 struct tcp_sock *tp = tcp_sk(sk); 5831 SKB_DR(reason); 5832 5833 /* RFC1323: H1. Apply PAWS check first. */ 5834 if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) || 5835 !tp->rx_opt.saw_tstamp || 5836 tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW)) 5837 goto step1; 5838 5839 reason = tcp_disordered_ack_check(sk, skb); 5840 if (!reason) 5841 goto step1; 5842 /* Reset is accepted even if it did not pass PAWS. */ 5843 if (th->rst) 5844 goto step1; 5845 if (unlikely(th->syn)) 5846 goto syn_challenge; 5847 5848 /* Old ACK are common, increment PAWS_OLD_ACK 5849 * and do not send a dupack. 5850 */ 5851 if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) { 5852 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK); 5853 goto discard; 5854 } 5855 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5856 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5857 LINUX_MIB_TCPACKSKIPPEDPAWS, 5858 &tp->last_oow_ack_time)) 5859 tcp_send_dupack(sk, skb); 5860 goto discard; 5861 5862 step1: 5863 /* Step 1: check sequence number */ 5864 reason = tcp_sequence(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5865 if (reason) { 5866 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5867 * (RST) segments are validated by checking their SEQ-fields." 5868 * And page 69: "If an incoming segment is not acceptable, 5869 * an acknowledgment should be sent in reply (unless the RST 5870 * bit is set, if so drop the segment and return)". 5871 */ 5872 if (!th->rst) { 5873 if (th->syn) 5874 goto syn_challenge; 5875 5876 if (reason == SKB_DROP_REASON_TCP_INVALID_SEQUENCE || 5877 reason == SKB_DROP_REASON_TCP_INVALID_END_SEQUENCE) 5878 NET_INC_STATS(sock_net(sk), 5879 LINUX_MIB_BEYOND_WINDOW); 5880 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5881 LINUX_MIB_TCPACKSKIPPEDSEQ, 5882 &tp->last_oow_ack_time)) 5883 tcp_send_dupack(sk, skb); 5884 } else if (tcp_reset_check(sk, skb)) { 5885 goto reset; 5886 } 5887 goto discard; 5888 } 5889 5890 /* Step 2: check RST bit */ 5891 if (th->rst) { 5892 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5893 * FIN and SACK too if available): 5894 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5895 * the right-most SACK block, 5896 * then 5897 * RESET the connection 5898 * else 5899 * Send a challenge ACK 5900 */ 5901 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5902 tcp_reset_check(sk, skb)) 5903 goto reset; 5904 5905 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5906 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5907 int max_sack = sp[0].end_seq; 5908 int this_sack; 5909 5910 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5911 ++this_sack) { 5912 max_sack = after(sp[this_sack].end_seq, 5913 max_sack) ? 5914 sp[this_sack].end_seq : max_sack; 5915 } 5916 5917 if (TCP_SKB_CB(skb)->seq == max_sack) 5918 goto reset; 5919 } 5920 5921 /* Disable TFO if RST is out-of-order 5922 * and no data has been received 5923 * for current active TFO socket 5924 */ 5925 if (tp->syn_fastopen && !tp->data_segs_in && 5926 sk->sk_state == TCP_ESTABLISHED) 5927 tcp_fastopen_active_disable(sk); 5928 tcp_send_challenge_ack(sk); 5929 SKB_DR_SET(reason, TCP_RESET); 5930 goto discard; 5931 } 5932 5933 /* step 3: check security and precedence [ignored] */ 5934 5935 /* step 4: Check for a SYN 5936 * RFC 5961 4.2 : Send a challenge ack 5937 */ 5938 if (th->syn) { 5939 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack && 5940 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq && 5941 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt && 5942 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt) 5943 goto pass; 5944 syn_challenge: 5945 if (syn_inerr) 5946 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5947 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5948 tcp_send_challenge_ack(sk); 5949 SKB_DR_SET(reason, TCP_INVALID_SYN); 5950 goto discard; 5951 } 5952 5953 pass: 5954 bpf_skops_parse_hdr(sk, skb); 5955 5956 return true; 5957 5958 discard: 5959 tcp_drop_reason(sk, skb, reason); 5960 return false; 5961 5962 reset: 5963 tcp_reset(sk, skb); 5964 __kfree_skb(skb); 5965 return false; 5966 } 5967 5968 /* 5969 * TCP receive function for the ESTABLISHED state. 5970 * 5971 * It is split into a fast path and a slow path. The fast path is 5972 * disabled when: 5973 * - A zero window was announced from us - zero window probing 5974 * is only handled properly in the slow path. 5975 * - Out of order segments arrived. 5976 * - Urgent data is expected. 5977 * - There is no buffer space left 5978 * - Unexpected TCP flags/window values/header lengths are received 5979 * (detected by checking the TCP header against pred_flags) 5980 * - Data is sent in both directions. Fast path only supports pure senders 5981 * or pure receivers (this means either the sequence number or the ack 5982 * value must stay constant) 5983 * - Unexpected TCP option. 5984 * 5985 * When these conditions are not satisfied it drops into a standard 5986 * receive procedure patterned after RFC793 to handle all cases. 5987 * The first three cases are guaranteed by proper pred_flags setting, 5988 * the rest is checked inline. Fast processing is turned on in 5989 * tcp_data_queue when everything is OK. 5990 */ 5991 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5992 { 5993 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED; 5994 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5995 struct tcp_sock *tp = tcp_sk(sk); 5996 unsigned int len = skb->len; 5997 5998 /* TCP congestion window tracking */ 5999 trace_tcp_probe(sk, skb); 6000 6001 tcp_mstamp_refresh(tp); 6002 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst))) 6003 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 6004 /* 6005 * Header prediction. 6006 * The code loosely follows the one in the famous 6007 * "30 instruction TCP receive" Van Jacobson mail. 6008 * 6009 * Van's trick is to deposit buffers into socket queue 6010 * on a device interrupt, to call tcp_recv function 6011 * on the receive process context and checksum and copy 6012 * the buffer to user space. smart... 6013 * 6014 * Our current scheme is not silly either but we take the 6015 * extra cost of the net_bh soft interrupt processing... 6016 * We do checksum and copy also but from device to kernel. 6017 */ 6018 6019 tp->rx_opt.saw_tstamp = 0; 6020 6021 /* pred_flags is 0xS?10 << 16 + snd_wnd 6022 * if header_prediction is to be made 6023 * 'S' will always be tp->tcp_header_len >> 2 6024 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 6025 * turn it off (when there are holes in the receive 6026 * space for instance) 6027 * PSH flag is ignored. 6028 */ 6029 6030 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 6031 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 6032 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6033 int tcp_header_len = tp->tcp_header_len; 6034 s32 delta = 0; 6035 int flag = 0; 6036 6037 /* Timestamp header prediction: tcp_header_len 6038 * is automatically equal to th->doff*4 due to pred_flags 6039 * match. 6040 */ 6041 6042 /* Check timestamp */ 6043 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 6044 /* No? Slow path! */ 6045 if (!tcp_parse_aligned_timestamp(tp, th)) 6046 goto slow_path; 6047 6048 delta = tp->rx_opt.rcv_tsval - 6049 tp->rx_opt.ts_recent; 6050 /* If PAWS failed, check it more carefully in slow path */ 6051 if (delta < 0) 6052 goto slow_path; 6053 6054 /* DO NOT update ts_recent here, if checksum fails 6055 * and timestamp was corrupted part, it will result 6056 * in a hung connection since we will drop all 6057 * future packets due to the PAWS test. 6058 */ 6059 } 6060 6061 if (len <= tcp_header_len) { 6062 /* Bulk data transfer: sender */ 6063 if (len == tcp_header_len) { 6064 /* Predicted packet is in window by definition. 6065 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6066 * Hence, check seq<=rcv_wup reduces to: 6067 */ 6068 if (tcp_header_len == 6069 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6070 tp->rcv_nxt == tp->rcv_wup) 6071 flag |= __tcp_replace_ts_recent(tp, 6072 delta); 6073 6074 /* We know that such packets are checksummed 6075 * on entry. 6076 */ 6077 tcp_ack(sk, skb, flag); 6078 __kfree_skb(skb); 6079 tcp_data_snd_check(sk); 6080 /* When receiving pure ack in fast path, update 6081 * last ts ecr directly instead of calling 6082 * tcp_rcv_rtt_measure_ts() 6083 */ 6084 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 6085 return; 6086 } else { /* Header too small */ 6087 reason = SKB_DROP_REASON_PKT_TOO_SMALL; 6088 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6089 goto discard; 6090 } 6091 } else { 6092 int eaten = 0; 6093 bool fragstolen = false; 6094 6095 if (tcp_checksum_complete(skb)) 6096 goto csum_error; 6097 6098 if (after(TCP_SKB_CB(skb)->end_seq, 6099 tp->rcv_nxt + tcp_receive_window(tp))) 6100 goto validate; 6101 6102 if ((int)skb->truesize > sk->sk_forward_alloc) 6103 goto step5; 6104 6105 /* Predicted packet is in window by definition. 6106 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 6107 * Hence, check seq<=rcv_wup reduces to: 6108 */ 6109 if (tcp_header_len == 6110 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 6111 tp->rcv_nxt == tp->rcv_wup) 6112 flag |= __tcp_replace_ts_recent(tp, 6113 delta); 6114 6115 tcp_rcv_rtt_measure_ts(sk, skb); 6116 6117 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 6118 6119 /* Bulk data transfer: receiver */ 6120 tcp_cleanup_skb(skb); 6121 __skb_pull(skb, tcp_header_len); 6122 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 6123 6124 tcp_event_data_recv(sk, skb); 6125 6126 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 6127 /* Well, only one small jumplet in fast path... */ 6128 tcp_ack(sk, skb, flag | FLAG_DATA); 6129 tcp_data_snd_check(sk); 6130 if (!inet_csk_ack_scheduled(sk)) 6131 goto no_ack; 6132 } else { 6133 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 6134 } 6135 6136 __tcp_ack_snd_check(sk, 0); 6137 no_ack: 6138 if (eaten) 6139 kfree_skb_partial(skb, fragstolen); 6140 tcp_data_ready(sk); 6141 return; 6142 } 6143 } 6144 6145 slow_path: 6146 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 6147 goto csum_error; 6148 6149 if (!th->ack && !th->rst && !th->syn) { 6150 reason = SKB_DROP_REASON_TCP_FLAGS; 6151 goto discard; 6152 } 6153 6154 /* 6155 * Standard slow path. 6156 */ 6157 validate: 6158 if (!tcp_validate_incoming(sk, skb, th, 1)) 6159 return; 6160 6161 step5: 6162 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT); 6163 if ((int)reason < 0) { 6164 reason = -reason; 6165 goto discard; 6166 } 6167 tcp_rcv_rtt_measure_ts(sk, skb); 6168 6169 /* Process urgent data. */ 6170 tcp_urg(sk, skb, th); 6171 6172 /* step 7: process the segment text */ 6173 tcp_data_queue(sk, skb); 6174 6175 tcp_data_snd_check(sk); 6176 tcp_ack_snd_check(sk); 6177 return; 6178 6179 csum_error: 6180 reason = SKB_DROP_REASON_TCP_CSUM; 6181 trace_tcp_bad_csum(skb); 6182 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 6183 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 6184 6185 discard: 6186 tcp_drop_reason(sk, skb, reason); 6187 } 6188 EXPORT_IPV6_MOD(tcp_rcv_established); 6189 6190 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 6191 { 6192 struct inet_connection_sock *icsk = inet_csk(sk); 6193 struct tcp_sock *tp = tcp_sk(sk); 6194 6195 tcp_mtup_init(sk); 6196 icsk->icsk_af_ops->rebuild_header(sk); 6197 tcp_init_metrics(sk); 6198 6199 /* Initialize the congestion window to start the transfer. 6200 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 6201 * retransmitted. In light of RFC6298 more aggressive 1sec 6202 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 6203 * retransmission has occurred. 6204 */ 6205 if (tp->total_retrans > 1 && tp->undo_marker) 6206 tcp_snd_cwnd_set(tp, 1); 6207 else 6208 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk))); 6209 tp->snd_cwnd_stamp = tcp_jiffies32; 6210 6211 bpf_skops_established(sk, bpf_op, skb); 6212 /* Initialize congestion control unless BPF initialized it already: */ 6213 if (!icsk->icsk_ca_initialized) 6214 tcp_init_congestion_control(sk); 6215 tcp_init_buffer_space(sk); 6216 } 6217 6218 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 6219 { 6220 struct tcp_sock *tp = tcp_sk(sk); 6221 struct inet_connection_sock *icsk = inet_csk(sk); 6222 6223 tcp_ao_finish_connect(sk, skb); 6224 tcp_set_state(sk, TCP_ESTABLISHED); 6225 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 6226 6227 if (skb) { 6228 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 6229 security_inet_conn_established(sk, skb); 6230 sk_mark_napi_id(sk, skb); 6231 } 6232 6233 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 6234 6235 /* Prevent spurious tcp_cwnd_restart() on first data 6236 * packet. 6237 */ 6238 tp->lsndtime = tcp_jiffies32; 6239 6240 if (sock_flag(sk, SOCK_KEEPOPEN)) 6241 tcp_reset_keepalive_timer(sk, keepalive_time_when(tp)); 6242 6243 if (!tp->rx_opt.snd_wscale) 6244 __tcp_fast_path_on(tp, tp->snd_wnd); 6245 else 6246 tp->pred_flags = 0; 6247 } 6248 6249 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 6250 struct tcp_fastopen_cookie *cookie) 6251 { 6252 struct tcp_sock *tp = tcp_sk(sk); 6253 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 6254 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 6255 bool syn_drop = false; 6256 6257 if (mss == READ_ONCE(tp->rx_opt.user_mss)) { 6258 struct tcp_options_received opt; 6259 6260 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6261 tcp_clear_options(&opt); 6262 opt.user_mss = opt.mss_clamp = 0; 6263 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6264 mss = opt.mss_clamp; 6265 } 6266 6267 if (!tp->syn_fastopen) { 6268 /* Ignore an unsolicited cookie */ 6269 cookie->len = -1; 6270 } else if (tp->total_retrans) { 6271 /* SYN timed out and the SYN-ACK neither has a cookie nor 6272 * acknowledges data. Presumably the remote received only 6273 * the retransmitted (regular) SYNs: either the original 6274 * SYN-data or the corresponding SYN-ACK was dropped. 6275 */ 6276 syn_drop = (cookie->len < 0 && data); 6277 } else if (cookie->len < 0 && !tp->syn_data) { 6278 /* We requested a cookie but didn't get it. If we did not use 6279 * the (old) exp opt format then try so next time (try_exp=1). 6280 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6281 */ 6282 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6283 } 6284 6285 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6286 6287 if (data) { /* Retransmit unacked data in SYN */ 6288 if (tp->total_retrans) 6289 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6290 else 6291 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6292 skb_rbtree_walk_from(data) 6293 tcp_mark_skb_lost(sk, data); 6294 tcp_non_congestion_loss_retransmit(sk); 6295 NET_INC_STATS(sock_net(sk), 6296 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6297 return true; 6298 } 6299 tp->syn_data_acked = tp->syn_data; 6300 if (tp->syn_data_acked) { 6301 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6302 /* SYN-data is counted as two separate packets in tcp_ack() */ 6303 if (tp->delivered > 1) 6304 --tp->delivered; 6305 } 6306 6307 tcp_fastopen_add_skb(sk, synack); 6308 6309 return false; 6310 } 6311 6312 static void smc_check_reset_syn(struct tcp_sock *tp) 6313 { 6314 #if IS_ENABLED(CONFIG_SMC) 6315 if (static_branch_unlikely(&tcp_have_smc)) { 6316 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6317 tp->syn_smc = 0; 6318 } 6319 #endif 6320 } 6321 6322 static void tcp_try_undo_spurious_syn(struct sock *sk) 6323 { 6324 struct tcp_sock *tp = tcp_sk(sk); 6325 u32 syn_stamp; 6326 6327 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6328 * spurious if the ACK's timestamp option echo value matches the 6329 * original SYN timestamp. 6330 */ 6331 syn_stamp = tp->retrans_stamp; 6332 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6333 syn_stamp == tp->rx_opt.rcv_tsecr) 6334 tp->undo_marker = 0; 6335 } 6336 6337 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6338 const struct tcphdr *th) 6339 { 6340 struct inet_connection_sock *icsk = inet_csk(sk); 6341 struct tcp_sock *tp = tcp_sk(sk); 6342 struct tcp_fastopen_cookie foc = { .len = -1 }; 6343 int saved_clamp = tp->rx_opt.mss_clamp; 6344 bool fastopen_fail; 6345 SKB_DR(reason); 6346 6347 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6348 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6349 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6350 6351 if (th->ack) { 6352 /* rfc793: 6353 * "If the state is SYN-SENT then 6354 * first check the ACK bit 6355 * If the ACK bit is set 6356 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6357 * a reset (unless the RST bit is set, if so drop 6358 * the segment and return)" 6359 */ 6360 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6361 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6362 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6363 if (icsk->icsk_retransmits == 0) 6364 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 6365 TCP_TIMEOUT_MIN, false); 6366 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE); 6367 goto reset_and_undo; 6368 } 6369 6370 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6371 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6372 tcp_time_stamp_ts(tp))) { 6373 NET_INC_STATS(sock_net(sk), 6374 LINUX_MIB_PAWSACTIVEREJECTED); 6375 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6376 goto reset_and_undo; 6377 } 6378 6379 /* Now ACK is acceptable. 6380 * 6381 * "If the RST bit is set 6382 * If the ACK was acceptable then signal the user "error: 6383 * connection reset", drop the segment, enter CLOSED state, 6384 * delete TCB, and return." 6385 */ 6386 6387 if (th->rst) { 6388 tcp_reset(sk, skb); 6389 consume: 6390 __kfree_skb(skb); 6391 return 0; 6392 } 6393 6394 /* rfc793: 6395 * "fifth, if neither of the SYN or RST bits is set then 6396 * drop the segment and return." 6397 * 6398 * See note below! 6399 * --ANK(990513) 6400 */ 6401 if (!th->syn) { 6402 SKB_DR_SET(reason, TCP_FLAGS); 6403 goto discard_and_undo; 6404 } 6405 /* rfc793: 6406 * "If the SYN bit is on ... 6407 * are acceptable then ... 6408 * (our SYN has been ACKed), change the connection 6409 * state to ESTABLISHED..." 6410 */ 6411 6412 tcp_ecn_rcv_synack(tp, th); 6413 6414 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6415 tcp_try_undo_spurious_syn(sk); 6416 tcp_ack(sk, skb, FLAG_SLOWPATH); 6417 6418 /* Ok.. it's good. Set up sequence numbers and 6419 * move to established. 6420 */ 6421 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6422 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6423 6424 /* RFC1323: The window in SYN & SYN/ACK segments is 6425 * never scaled. 6426 */ 6427 tp->snd_wnd = ntohs(th->window); 6428 6429 if (!tp->rx_opt.wscale_ok) { 6430 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6431 WRITE_ONCE(tp->window_clamp, 6432 min(tp->window_clamp, 65535U)); 6433 } 6434 6435 if (tp->rx_opt.saw_tstamp) { 6436 tp->rx_opt.tstamp_ok = 1; 6437 tp->tcp_header_len = 6438 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6439 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6440 tcp_store_ts_recent(tp); 6441 } else { 6442 tp->tcp_header_len = sizeof(struct tcphdr); 6443 } 6444 6445 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6446 tcp_initialize_rcv_mss(sk); 6447 6448 /* Remember, tcp_poll() does not lock socket! 6449 * Change state from SYN-SENT only after copied_seq 6450 * is initialized. */ 6451 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6452 6453 smc_check_reset_syn(tp); 6454 6455 smp_mb(); 6456 6457 tcp_finish_connect(sk, skb); 6458 6459 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6460 tcp_rcv_fastopen_synack(sk, skb, &foc); 6461 6462 if (!sock_flag(sk, SOCK_DEAD)) { 6463 sk->sk_state_change(sk); 6464 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6465 } 6466 if (fastopen_fail) 6467 return -1; 6468 if (sk->sk_write_pending || 6469 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) || 6470 inet_csk_in_pingpong_mode(sk)) { 6471 /* Save one ACK. Data will be ready after 6472 * several ticks, if write_pending is set. 6473 * 6474 * It may be deleted, but with this feature tcpdumps 6475 * look so _wonderfully_ clever, that I was not able 6476 * to stand against the temptation 8) --ANK 6477 */ 6478 inet_csk_schedule_ack(sk); 6479 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6480 tcp_reset_xmit_timer(sk, ICSK_TIME_DACK, 6481 TCP_DELACK_MAX, false); 6482 goto consume; 6483 } 6484 tcp_send_ack(sk); 6485 return -1; 6486 } 6487 6488 /* No ACK in the segment */ 6489 6490 if (th->rst) { 6491 /* rfc793: 6492 * "If the RST bit is set 6493 * 6494 * Otherwise (no ACK) drop the segment and return." 6495 */ 6496 SKB_DR_SET(reason, TCP_RESET); 6497 goto discard_and_undo; 6498 } 6499 6500 /* PAWS check. */ 6501 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6502 tcp_paws_reject(&tp->rx_opt, 0)) { 6503 SKB_DR_SET(reason, TCP_RFC7323_PAWS); 6504 goto discard_and_undo; 6505 } 6506 if (th->syn) { 6507 /* We see SYN without ACK. It is attempt of 6508 * simultaneous connect with crossed SYNs. 6509 * Particularly, it can be connect to self. 6510 */ 6511 #ifdef CONFIG_TCP_AO 6512 struct tcp_ao_info *ao; 6513 6514 ao = rcu_dereference_protected(tp->ao_info, 6515 lockdep_sock_is_held(sk)); 6516 if (ao) { 6517 WRITE_ONCE(ao->risn, th->seq); 6518 ao->rcv_sne = 0; 6519 } 6520 #endif 6521 tcp_set_state(sk, TCP_SYN_RECV); 6522 6523 if (tp->rx_opt.saw_tstamp) { 6524 tp->rx_opt.tstamp_ok = 1; 6525 tcp_store_ts_recent(tp); 6526 tp->tcp_header_len = 6527 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6528 } else { 6529 tp->tcp_header_len = sizeof(struct tcphdr); 6530 } 6531 6532 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6533 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6534 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6535 6536 /* RFC1323: The window in SYN & SYN/ACK segments is 6537 * never scaled. 6538 */ 6539 tp->snd_wnd = ntohs(th->window); 6540 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6541 tp->max_window = tp->snd_wnd; 6542 6543 tcp_ecn_rcv_syn(tp, th); 6544 6545 tcp_mtup_init(sk); 6546 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6547 tcp_initialize_rcv_mss(sk); 6548 6549 tcp_send_synack(sk); 6550 #if 0 6551 /* Note, we could accept data and URG from this segment. 6552 * There are no obstacles to make this (except that we must 6553 * either change tcp_recvmsg() to prevent it from returning data 6554 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6555 * 6556 * However, if we ignore data in ACKless segments sometimes, 6557 * we have no reasons to accept it sometimes. 6558 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6559 * is not flawless. So, discard packet for sanity. 6560 * Uncomment this return to process the data. 6561 */ 6562 return -1; 6563 #else 6564 goto consume; 6565 #endif 6566 } 6567 /* "fifth, if neither of the SYN or RST bits is set then 6568 * drop the segment and return." 6569 */ 6570 6571 discard_and_undo: 6572 tcp_clear_options(&tp->rx_opt); 6573 tp->rx_opt.mss_clamp = saved_clamp; 6574 tcp_drop_reason(sk, skb, reason); 6575 return 0; 6576 6577 reset_and_undo: 6578 tcp_clear_options(&tp->rx_opt); 6579 tp->rx_opt.mss_clamp = saved_clamp; 6580 /* we can reuse/return @reason to its caller to handle the exception */ 6581 return reason; 6582 } 6583 6584 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6585 { 6586 struct tcp_sock *tp = tcp_sk(sk); 6587 struct request_sock *req; 6588 6589 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6590 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6591 */ 6592 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out) 6593 tcp_try_undo_recovery(sk); 6594 6595 tcp_update_rto_time(tp); 6596 WRITE_ONCE(inet_csk(sk)->icsk_retransmits, 0); 6597 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set 6598 * retrans_stamp but don't enter CA_Loss, so in case that happened we 6599 * need to zero retrans_stamp here to prevent spurious 6600 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us 6601 * to enter CA_Recovery then we need to leave retrans_stamp as it was 6602 * set entering CA_Recovery, for correct retransmits_timed_out() and 6603 * undo behavior. 6604 */ 6605 tcp_retrans_stamp_cleanup(sk); 6606 6607 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6608 * we no longer need req so release it. 6609 */ 6610 req = rcu_dereference_protected(tp->fastopen_rsk, 6611 lockdep_sock_is_held(sk)); 6612 reqsk_fastopen_remove(sk, req, false); 6613 6614 /* Re-arm the timer because data may have been sent out. 6615 * This is similar to the regular data transmission case 6616 * when new data has just been ack'ed. 6617 * 6618 * (TFO) - we could try to be more aggressive and 6619 * retransmitting any data sooner based on when they 6620 * are sent out. 6621 */ 6622 tcp_rearm_rto(sk); 6623 } 6624 6625 /* 6626 * This function implements the receiving procedure of RFC 793 for 6627 * all states except ESTABLISHED and TIME_WAIT. 6628 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6629 * address independent. 6630 */ 6631 6632 enum skb_drop_reason 6633 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6634 { 6635 struct tcp_sock *tp = tcp_sk(sk); 6636 struct inet_connection_sock *icsk = inet_csk(sk); 6637 const struct tcphdr *th = tcp_hdr(skb); 6638 struct request_sock *req; 6639 int queued = 0; 6640 SKB_DR(reason); 6641 6642 switch (sk->sk_state) { 6643 case TCP_CLOSE: 6644 SKB_DR_SET(reason, TCP_CLOSE); 6645 goto discard; 6646 6647 case TCP_LISTEN: 6648 if (th->ack) 6649 return SKB_DROP_REASON_TCP_FLAGS; 6650 6651 if (th->rst) { 6652 SKB_DR_SET(reason, TCP_RESET); 6653 goto discard; 6654 } 6655 if (th->syn) { 6656 if (th->fin) { 6657 SKB_DR_SET(reason, TCP_FLAGS); 6658 goto discard; 6659 } 6660 /* It is possible that we process SYN packets from backlog, 6661 * so we need to make sure to disable BH and RCU right there. 6662 */ 6663 rcu_read_lock(); 6664 local_bh_disable(); 6665 icsk->icsk_af_ops->conn_request(sk, skb); 6666 local_bh_enable(); 6667 rcu_read_unlock(); 6668 6669 consume_skb(skb); 6670 return 0; 6671 } 6672 SKB_DR_SET(reason, TCP_FLAGS); 6673 goto discard; 6674 6675 case TCP_SYN_SENT: 6676 tp->rx_opt.saw_tstamp = 0; 6677 tcp_mstamp_refresh(tp); 6678 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6679 if (queued >= 0) 6680 return queued; 6681 6682 /* Do step6 onward by hand. */ 6683 tcp_urg(sk, skb, th); 6684 __kfree_skb(skb); 6685 tcp_data_snd_check(sk); 6686 return 0; 6687 } 6688 6689 tcp_mstamp_refresh(tp); 6690 tp->rx_opt.saw_tstamp = 0; 6691 req = rcu_dereference_protected(tp->fastopen_rsk, 6692 lockdep_sock_is_held(sk)); 6693 if (req) { 6694 bool req_stolen; 6695 6696 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6697 sk->sk_state != TCP_FIN_WAIT1); 6698 6699 SKB_DR_SET(reason, TCP_FASTOPEN); 6700 if (!tcp_check_req(sk, skb, req, true, &req_stolen, &reason)) 6701 goto discard; 6702 } 6703 6704 if (!th->ack && !th->rst && !th->syn) { 6705 SKB_DR_SET(reason, TCP_FLAGS); 6706 goto discard; 6707 } 6708 if (!tcp_validate_incoming(sk, skb, th, 0)) 6709 return 0; 6710 6711 /* step 5: check the ACK field */ 6712 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | 6713 FLAG_UPDATE_TS_RECENT | 6714 FLAG_NO_CHALLENGE_ACK); 6715 6716 if ((int)reason <= 0) { 6717 if (sk->sk_state == TCP_SYN_RECV) { 6718 /* send one RST */ 6719 if (!reason) 6720 return SKB_DROP_REASON_TCP_OLD_ACK; 6721 return -reason; 6722 } 6723 /* accept old ack during closing */ 6724 if ((int)reason < 0) { 6725 tcp_send_challenge_ack(sk); 6726 reason = -reason; 6727 goto discard; 6728 } 6729 } 6730 SKB_DR_SET(reason, NOT_SPECIFIED); 6731 switch (sk->sk_state) { 6732 case TCP_SYN_RECV: 6733 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6734 if (!tp->srtt_us) 6735 tcp_synack_rtt_meas(sk, req); 6736 6737 if (tp->rx_opt.tstamp_ok) 6738 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6739 6740 if (req) { 6741 tcp_rcv_synrecv_state_fastopen(sk); 6742 } else { 6743 tcp_try_undo_spurious_syn(sk); 6744 tp->retrans_stamp = 0; 6745 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6746 skb); 6747 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6748 } 6749 tcp_ao_established(sk); 6750 smp_mb(); 6751 tcp_set_state(sk, TCP_ESTABLISHED); 6752 sk->sk_state_change(sk); 6753 6754 /* Note, that this wakeup is only for marginal crossed SYN case. 6755 * Passively open sockets are not waked up, because 6756 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6757 */ 6758 if (sk->sk_socket) 6759 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6760 6761 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6762 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6763 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6764 6765 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6766 tcp_update_pacing_rate(sk); 6767 6768 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6769 tp->lsndtime = tcp_jiffies32; 6770 6771 tcp_initialize_rcv_mss(sk); 6772 tcp_fast_path_on(tp); 6773 if (sk->sk_shutdown & SEND_SHUTDOWN) 6774 tcp_shutdown(sk, SEND_SHUTDOWN); 6775 break; 6776 6777 case TCP_FIN_WAIT1: { 6778 int tmo; 6779 6780 if (req) 6781 tcp_rcv_synrecv_state_fastopen(sk); 6782 6783 if (tp->snd_una != tp->write_seq) 6784 break; 6785 6786 tcp_set_state(sk, TCP_FIN_WAIT2); 6787 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN); 6788 6789 sk_dst_confirm(sk); 6790 6791 if (!sock_flag(sk, SOCK_DEAD)) { 6792 /* Wake up lingering close() */ 6793 sk->sk_state_change(sk); 6794 break; 6795 } 6796 6797 if (READ_ONCE(tp->linger2) < 0) { 6798 tcp_done(sk); 6799 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6800 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6801 } 6802 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6803 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6804 /* Receive out of order FIN after close() */ 6805 if (tp->syn_fastopen && th->fin) 6806 tcp_fastopen_active_disable(sk); 6807 tcp_done(sk); 6808 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6809 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6810 } 6811 6812 tmo = tcp_fin_time(sk); 6813 if (tmo > TCP_TIMEWAIT_LEN) { 6814 tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6815 } else if (th->fin || sock_owned_by_user(sk)) { 6816 /* Bad case. We could lose such FIN otherwise. 6817 * It is not a big problem, but it looks confusing 6818 * and not so rare event. We still can lose it now, 6819 * if it spins in bh_lock_sock(), but it is really 6820 * marginal case. 6821 */ 6822 tcp_reset_keepalive_timer(sk, tmo); 6823 } else { 6824 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6825 goto consume; 6826 } 6827 break; 6828 } 6829 6830 case TCP_CLOSING: 6831 if (tp->snd_una == tp->write_seq) { 6832 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6833 goto consume; 6834 } 6835 break; 6836 6837 case TCP_LAST_ACK: 6838 if (tp->snd_una == tp->write_seq) { 6839 tcp_update_metrics(sk); 6840 tcp_done(sk); 6841 goto consume; 6842 } 6843 break; 6844 } 6845 6846 /* step 6: check the URG bit */ 6847 tcp_urg(sk, skb, th); 6848 6849 /* step 7: process the segment text */ 6850 switch (sk->sk_state) { 6851 case TCP_CLOSE_WAIT: 6852 case TCP_CLOSING: 6853 case TCP_LAST_ACK: 6854 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6855 /* If a subflow has been reset, the packet should not 6856 * continue to be processed, drop the packet. 6857 */ 6858 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6859 goto discard; 6860 break; 6861 } 6862 fallthrough; 6863 case TCP_FIN_WAIT1: 6864 case TCP_FIN_WAIT2: 6865 /* RFC 793 says to queue data in these states, 6866 * RFC 1122 says we MUST send a reset. 6867 * BSD 4.4 also does reset. 6868 */ 6869 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6870 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6871 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6872 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6873 tcp_reset(sk, skb); 6874 return SKB_DROP_REASON_TCP_ABORT_ON_DATA; 6875 } 6876 } 6877 fallthrough; 6878 case TCP_ESTABLISHED: 6879 tcp_data_queue(sk, skb); 6880 queued = 1; 6881 break; 6882 } 6883 6884 /* tcp_data could move socket to TIME-WAIT */ 6885 if (sk->sk_state != TCP_CLOSE) { 6886 tcp_data_snd_check(sk); 6887 tcp_ack_snd_check(sk); 6888 } 6889 6890 if (!queued) { 6891 discard: 6892 tcp_drop_reason(sk, skb, reason); 6893 } 6894 return 0; 6895 6896 consume: 6897 __kfree_skb(skb); 6898 return 0; 6899 } 6900 EXPORT_IPV6_MOD(tcp_rcv_state_process); 6901 6902 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6903 { 6904 struct inet_request_sock *ireq = inet_rsk(req); 6905 6906 if (family == AF_INET) 6907 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6908 &ireq->ir_rmt_addr, port); 6909 #if IS_ENABLED(CONFIG_IPV6) 6910 else if (family == AF_INET6) 6911 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6912 &ireq->ir_v6_rmt_addr, port); 6913 #endif 6914 } 6915 6916 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6917 * 6918 * If we receive a SYN packet with these bits set, it means a 6919 * network is playing bad games with TOS bits. In order to 6920 * avoid possible false congestion notifications, we disable 6921 * TCP ECN negotiation. 6922 * 6923 * Exception: tcp_ca wants ECN. This is required for DCTCP 6924 * congestion control: Linux DCTCP asserts ECT on all packets, 6925 * including SYN, which is most optimal solution; however, 6926 * others, such as FreeBSD do not. 6927 * 6928 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6929 * set, indicating the use of a future TCP extension (such as AccECN). See 6930 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6931 * extensions. 6932 */ 6933 static void tcp_ecn_create_request(struct request_sock *req, 6934 const struct sk_buff *skb, 6935 const struct sock *listen_sk, 6936 const struct dst_entry *dst) 6937 { 6938 const struct tcphdr *th = tcp_hdr(skb); 6939 const struct net *net = sock_net(listen_sk); 6940 bool th_ecn = th->ece && th->cwr; 6941 bool ect, ecn_ok; 6942 u32 ecn_ok_dst; 6943 6944 if (!th_ecn) 6945 return; 6946 6947 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6948 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6949 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst; 6950 6951 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6952 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6953 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6954 inet_rsk(req)->ecn_ok = 1; 6955 } 6956 6957 static void tcp_openreq_init(struct request_sock *req, 6958 const struct tcp_options_received *rx_opt, 6959 struct sk_buff *skb, const struct sock *sk) 6960 { 6961 struct inet_request_sock *ireq = inet_rsk(req); 6962 6963 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6964 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6965 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6966 tcp_rsk(req)->snt_synack = 0; 6967 tcp_rsk(req)->snt_tsval_first = 0; 6968 tcp_rsk(req)->last_oow_ack_time = 0; 6969 req->mss = rx_opt->mss_clamp; 6970 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6971 ireq->tstamp_ok = rx_opt->tstamp_ok; 6972 ireq->sack_ok = rx_opt->sack_ok; 6973 ireq->snd_wscale = rx_opt->snd_wscale; 6974 ireq->wscale_ok = rx_opt->wscale_ok; 6975 ireq->acked = 0; 6976 ireq->ecn_ok = 0; 6977 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6978 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6979 ireq->ir_mark = inet_request_mark(sk, skb); 6980 #if IS_ENABLED(CONFIG_SMC) 6981 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested && 6982 tcp_sk(sk)->smc_hs_congested(sk)); 6983 #endif 6984 } 6985 6986 /* 6987 * Return true if a syncookie should be sent 6988 */ 6989 static bool tcp_syn_flood_action(struct sock *sk, const char *proto) 6990 { 6991 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6992 const char *msg = "Dropping request"; 6993 struct net *net = sock_net(sk); 6994 bool want_cookie = false; 6995 u8 syncookies; 6996 6997 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 6998 6999 #ifdef CONFIG_SYN_COOKIES 7000 if (syncookies) { 7001 msg = "Sending cookies"; 7002 want_cookie = true; 7003 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 7004 } else 7005 #endif 7006 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 7007 7008 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 && 7009 xchg(&queue->synflood_warned, 1) == 0) { 7010 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) { 7011 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n", 7012 proto, inet6_rcv_saddr(sk), 7013 sk->sk_num, msg); 7014 } else { 7015 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n", 7016 proto, &sk->sk_rcv_saddr, 7017 sk->sk_num, msg); 7018 } 7019 } 7020 7021 return want_cookie; 7022 } 7023 7024 static void tcp_reqsk_record_syn(const struct sock *sk, 7025 struct request_sock *req, 7026 const struct sk_buff *skb) 7027 { 7028 if (tcp_sk(sk)->save_syn) { 7029 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 7030 struct saved_syn *saved_syn; 7031 u32 mac_hdrlen; 7032 void *base; 7033 7034 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 7035 base = skb_mac_header(skb); 7036 mac_hdrlen = skb_mac_header_len(skb); 7037 len += mac_hdrlen; 7038 } else { 7039 base = skb_network_header(skb); 7040 mac_hdrlen = 0; 7041 } 7042 7043 saved_syn = kmalloc(struct_size(saved_syn, data, len), 7044 GFP_ATOMIC); 7045 if (saved_syn) { 7046 saved_syn->mac_hdrlen = mac_hdrlen; 7047 saved_syn->network_hdrlen = skb_network_header_len(skb); 7048 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 7049 memcpy(saved_syn->data, base, len); 7050 req->saved_syn = saved_syn; 7051 } 7052 } 7053 } 7054 7055 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 7056 * used for SYN cookie generation. 7057 */ 7058 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 7059 const struct tcp_request_sock_ops *af_ops, 7060 struct sock *sk, struct tcphdr *th) 7061 { 7062 struct tcp_sock *tp = tcp_sk(sk); 7063 u16 mss; 7064 7065 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 && 7066 !inet_csk_reqsk_queue_is_full(sk)) 7067 return 0; 7068 7069 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 7070 return 0; 7071 7072 if (sk_acceptq_is_full(sk)) { 7073 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7074 return 0; 7075 } 7076 7077 mss = tcp_parse_mss_option(th, READ_ONCE(tp->rx_opt.user_mss)); 7078 if (!mss) 7079 mss = af_ops->mss_clamp; 7080 7081 return mss; 7082 } 7083 EXPORT_IPV6_MOD_GPL(tcp_get_syncookie_mss); 7084 7085 int tcp_conn_request(struct request_sock_ops *rsk_ops, 7086 const struct tcp_request_sock_ops *af_ops, 7087 struct sock *sk, struct sk_buff *skb) 7088 { 7089 struct tcp_fastopen_cookie foc = { .len = -1 }; 7090 struct tcp_options_received tmp_opt; 7091 const struct tcp_sock *tp = tcp_sk(sk); 7092 struct net *net = sock_net(sk); 7093 struct sock *fastopen_sk = NULL; 7094 struct request_sock *req; 7095 bool want_cookie = false; 7096 struct dst_entry *dst; 7097 struct flowi fl; 7098 u8 syncookies; 7099 u32 isn; 7100 7101 #ifdef CONFIG_TCP_AO 7102 const struct tcp_ao_hdr *aoh; 7103 #endif 7104 7105 isn = __this_cpu_read(tcp_tw_isn); 7106 if (isn) { 7107 /* TW buckets are converted to open requests without 7108 * limitations, they conserve resources and peer is 7109 * evidently real one. 7110 */ 7111 __this_cpu_write(tcp_tw_isn, 0); 7112 } else { 7113 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies); 7114 7115 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) { 7116 want_cookie = tcp_syn_flood_action(sk, 7117 rsk_ops->slab_name); 7118 if (!want_cookie) 7119 goto drop; 7120 } 7121 } 7122 7123 if (sk_acceptq_is_full(sk)) { 7124 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 7125 goto drop; 7126 } 7127 7128 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 7129 if (!req) 7130 goto drop; 7131 7132 req->syncookie = want_cookie; 7133 tcp_rsk(req)->af_specific = af_ops; 7134 tcp_rsk(req)->ts_off = 0; 7135 tcp_rsk(req)->req_usec_ts = false; 7136 #if IS_ENABLED(CONFIG_MPTCP) 7137 tcp_rsk(req)->is_mptcp = 0; 7138 #endif 7139 7140 tcp_clear_options(&tmp_opt); 7141 tmp_opt.mss_clamp = af_ops->mss_clamp; 7142 tmp_opt.user_mss = READ_ONCE(tp->rx_opt.user_mss); 7143 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 7144 want_cookie ? NULL : &foc); 7145 7146 if (want_cookie && !tmp_opt.saw_tstamp) 7147 tcp_clear_options(&tmp_opt); 7148 7149 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 7150 tmp_opt.smc_ok = 0; 7151 7152 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 7153 tcp_openreq_init(req, &tmp_opt, skb, sk); 7154 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk); 7155 7156 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 7157 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 7158 7159 dst = af_ops->route_req(sk, skb, &fl, req, isn); 7160 if (!dst) 7161 goto drop_and_free; 7162 7163 if (tmp_opt.tstamp_ok) { 7164 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst); 7165 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 7166 } 7167 if (!want_cookie && !isn) { 7168 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog); 7169 7170 /* Kill the following clause, if you dislike this way. */ 7171 if (!syncookies && 7172 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 7173 (max_syn_backlog >> 2)) && 7174 !tcp_peer_is_proven(req, dst)) { 7175 /* Without syncookies last quarter of 7176 * backlog is filled with destinations, 7177 * proven to be alive. 7178 * It means that we continue to communicate 7179 * to destinations, already remembered 7180 * to the moment of synflood. 7181 */ 7182 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 7183 rsk_ops->family); 7184 goto drop_and_release; 7185 } 7186 7187 isn = af_ops->init_seq(skb); 7188 } 7189 7190 tcp_ecn_create_request(req, skb, sk, dst); 7191 7192 if (want_cookie) { 7193 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 7194 if (!tmp_opt.tstamp_ok) 7195 inet_rsk(req)->ecn_ok = 0; 7196 } 7197 7198 #ifdef CONFIG_TCP_AO 7199 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh)) 7200 goto drop_and_release; /* Invalid TCP options */ 7201 if (aoh) { 7202 tcp_rsk(req)->used_tcp_ao = true; 7203 tcp_rsk(req)->ao_rcv_next = aoh->keyid; 7204 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid; 7205 7206 } else { 7207 tcp_rsk(req)->used_tcp_ao = false; 7208 } 7209 #endif 7210 tcp_rsk(req)->snt_isn = isn; 7211 tcp_rsk(req)->txhash = net_tx_rndhash(); 7212 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 7213 tcp_openreq_init_rwin(req, sk, dst); 7214 sk_rx_queue_set(req_to_sk(req), skb); 7215 if (!want_cookie) { 7216 tcp_reqsk_record_syn(sk, req, skb); 7217 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 7218 } 7219 if (fastopen_sk) { 7220 af_ops->send_synack(fastopen_sk, dst, &fl, req, 7221 &foc, TCP_SYNACK_FASTOPEN, skb); 7222 /* Add the child socket directly into the accept queue */ 7223 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 7224 reqsk_fastopen_remove(fastopen_sk, req, false); 7225 bh_unlock_sock(fastopen_sk); 7226 sock_put(fastopen_sk); 7227 goto drop_and_free; 7228 } 7229 sk->sk_data_ready(sk); 7230 bh_unlock_sock(fastopen_sk); 7231 sock_put(fastopen_sk); 7232 } else { 7233 tcp_rsk(req)->tfo_listener = false; 7234 if (!want_cookie) { 7235 req->timeout = tcp_timeout_init((struct sock *)req); 7236 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req, 7237 req->timeout))) { 7238 reqsk_free(req); 7239 dst_release(dst); 7240 return 0; 7241 } 7242 7243 } 7244 af_ops->send_synack(sk, dst, &fl, req, &foc, 7245 !want_cookie ? TCP_SYNACK_NORMAL : 7246 TCP_SYNACK_COOKIE, 7247 skb); 7248 if (want_cookie) { 7249 reqsk_free(req); 7250 return 0; 7251 } 7252 } 7253 reqsk_put(req); 7254 return 0; 7255 7256 drop_and_release: 7257 dst_release(dst); 7258 drop_and_free: 7259 __reqsk_free(req); 7260 drop: 7261 tcp_listendrop(sk); 7262 return 0; 7263 } 7264 EXPORT_IPV6_MOD(tcp_conn_request); 7265