xref: /linux/net/ipv4/tcp_input.c (revision 4de17aea5ceffe6d8350fde9d903a02037b221c6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/static_key.h>
81 
82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
83 
84 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
85 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
86 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
87 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
88 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
89 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
90 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
91 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
92 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
93 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
94 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
95 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
96 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
97 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
98 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
99 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
100 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
101 
102 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
103 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
104 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
105 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
106 
107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
109 
110 #define REXMIT_NONE	0 /* no loss recovery to do */
111 #define REXMIT_LOST	1 /* retransmit packets marked lost */
112 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
113 
114 #if IS_ENABLED(CONFIG_TLS_DEVICE)
115 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled);
116 
117 void clean_acked_data_enable(struct inet_connection_sock *icsk,
118 			     void (*cad)(struct sock *sk, u32 ack_seq))
119 {
120 	icsk->icsk_clean_acked = cad;
121 	static_branch_inc(&clean_acked_data_enabled);
122 }
123 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
124 
125 void clean_acked_data_disable(struct inet_connection_sock *icsk)
126 {
127 	static_branch_dec(&clean_acked_data_enabled);
128 	icsk->icsk_clean_acked = NULL;
129 }
130 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
131 #endif
132 
133 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
134 			     unsigned int len)
135 {
136 	static bool __once __read_mostly;
137 
138 	if (!__once) {
139 		struct net_device *dev;
140 
141 		__once = true;
142 
143 		rcu_read_lock();
144 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
145 		if (!dev || len >= dev->mtu)
146 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
147 				dev ? dev->name : "Unknown driver");
148 		rcu_read_unlock();
149 	}
150 }
151 
152 /* Adapt the MSS value used to make delayed ack decision to the
153  * real world.
154  */
155 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
156 {
157 	struct inet_connection_sock *icsk = inet_csk(sk);
158 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
159 	unsigned int len;
160 
161 	icsk->icsk_ack.last_seg_size = 0;
162 
163 	/* skb->len may jitter because of SACKs, even if peer
164 	 * sends good full-sized frames.
165 	 */
166 	len = skb_shinfo(skb)->gso_size ? : skb->len;
167 	if (len >= icsk->icsk_ack.rcv_mss) {
168 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
169 					       tcp_sk(sk)->advmss);
170 		/* Account for possibly-removed options */
171 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
172 				   MAX_TCP_OPTION_SPACE))
173 			tcp_gro_dev_warn(sk, skb, len);
174 	} else {
175 		/* Otherwise, we make more careful check taking into account,
176 		 * that SACKs block is variable.
177 		 *
178 		 * "len" is invariant segment length, including TCP header.
179 		 */
180 		len += skb->data - skb_transport_header(skb);
181 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
182 		    /* If PSH is not set, packet should be
183 		     * full sized, provided peer TCP is not badly broken.
184 		     * This observation (if it is correct 8)) allows
185 		     * to handle super-low mtu links fairly.
186 		     */
187 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
188 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
189 			/* Subtract also invariant (if peer is RFC compliant),
190 			 * tcp header plus fixed timestamp option length.
191 			 * Resulting "len" is MSS free of SACK jitter.
192 			 */
193 			len -= tcp_sk(sk)->tcp_header_len;
194 			icsk->icsk_ack.last_seg_size = len;
195 			if (len == lss) {
196 				icsk->icsk_ack.rcv_mss = len;
197 				return;
198 			}
199 		}
200 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
201 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
202 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
203 	}
204 }
205 
206 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
207 {
208 	struct inet_connection_sock *icsk = inet_csk(sk);
209 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
210 
211 	if (quickacks == 0)
212 		quickacks = 2;
213 	quickacks = min(quickacks, max_quickacks);
214 	if (quickacks > icsk->icsk_ack.quick)
215 		icsk->icsk_ack.quick = quickacks;
216 }
217 
218 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
219 {
220 	struct inet_connection_sock *icsk = inet_csk(sk);
221 
222 	tcp_incr_quickack(sk, max_quickacks);
223 	icsk->icsk_ack.pingpong = 0;
224 	icsk->icsk_ack.ato = TCP_ATO_MIN;
225 }
226 EXPORT_SYMBOL(tcp_enter_quickack_mode);
227 
228 /* Send ACKs quickly, if "quick" count is not exhausted
229  * and the session is not interactive.
230  */
231 
232 static bool tcp_in_quickack_mode(struct sock *sk)
233 {
234 	const struct inet_connection_sock *icsk = inet_csk(sk);
235 	const struct dst_entry *dst = __sk_dst_get(sk);
236 
237 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
238 		(icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
239 }
240 
241 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
242 {
243 	if (tp->ecn_flags & TCP_ECN_OK)
244 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
245 }
246 
247 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
248 {
249 	if (tcp_hdr(skb)->cwr)
250 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
251 }
252 
253 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
254 {
255 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
256 }
257 
258 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
259 {
260 	struct tcp_sock *tp = tcp_sk(sk);
261 
262 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
263 	case INET_ECN_NOT_ECT:
264 		/* Funny extension: if ECT is not set on a segment,
265 		 * and we already seen ECT on a previous segment,
266 		 * it is probably a retransmit.
267 		 */
268 		if (tp->ecn_flags & TCP_ECN_SEEN)
269 			tcp_enter_quickack_mode(sk, 2);
270 		break;
271 	case INET_ECN_CE:
272 		if (tcp_ca_needs_ecn(sk))
273 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
274 
275 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
276 			/* Better not delay acks, sender can have a very low cwnd */
277 			tcp_enter_quickack_mode(sk, 2);
278 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
279 		}
280 		tp->ecn_flags |= TCP_ECN_SEEN;
281 		break;
282 	default:
283 		if (tcp_ca_needs_ecn(sk))
284 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
285 		tp->ecn_flags |= TCP_ECN_SEEN;
286 		break;
287 	}
288 }
289 
290 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
291 {
292 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
293 		__tcp_ecn_check_ce(sk, skb);
294 }
295 
296 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
297 {
298 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
299 		tp->ecn_flags &= ~TCP_ECN_OK;
300 }
301 
302 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
303 {
304 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
305 		tp->ecn_flags &= ~TCP_ECN_OK;
306 }
307 
308 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
309 {
310 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
311 		return true;
312 	return false;
313 }
314 
315 /* Buffer size and advertised window tuning.
316  *
317  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
318  */
319 
320 static void tcp_sndbuf_expand(struct sock *sk)
321 {
322 	const struct tcp_sock *tp = tcp_sk(sk);
323 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
324 	int sndmem, per_mss;
325 	u32 nr_segs;
326 
327 	/* Worst case is non GSO/TSO : each frame consumes one skb
328 	 * and skb->head is kmalloced using power of two area of memory
329 	 */
330 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
331 		  MAX_TCP_HEADER +
332 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
333 
334 	per_mss = roundup_pow_of_two(per_mss) +
335 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
336 
337 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
338 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
339 
340 	/* Fast Recovery (RFC 5681 3.2) :
341 	 * Cubic needs 1.7 factor, rounded to 2 to include
342 	 * extra cushion (application might react slowly to EPOLLOUT)
343 	 */
344 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
345 	sndmem *= nr_segs * per_mss;
346 
347 	if (sk->sk_sndbuf < sndmem)
348 		sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
349 }
350 
351 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
352  *
353  * All tcp_full_space() is split to two parts: "network" buffer, allocated
354  * forward and advertised in receiver window (tp->rcv_wnd) and
355  * "application buffer", required to isolate scheduling/application
356  * latencies from network.
357  * window_clamp is maximal advertised window. It can be less than
358  * tcp_full_space(), in this case tcp_full_space() - window_clamp
359  * is reserved for "application" buffer. The less window_clamp is
360  * the smoother our behaviour from viewpoint of network, but the lower
361  * throughput and the higher sensitivity of the connection to losses. 8)
362  *
363  * rcv_ssthresh is more strict window_clamp used at "slow start"
364  * phase to predict further behaviour of this connection.
365  * It is used for two goals:
366  * - to enforce header prediction at sender, even when application
367  *   requires some significant "application buffer". It is check #1.
368  * - to prevent pruning of receive queue because of misprediction
369  *   of receiver window. Check #2.
370  *
371  * The scheme does not work when sender sends good segments opening
372  * window and then starts to feed us spaghetti. But it should work
373  * in common situations. Otherwise, we have to rely on queue collapsing.
374  */
375 
376 /* Slow part of check#2. */
377 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
378 {
379 	struct tcp_sock *tp = tcp_sk(sk);
380 	/* Optimize this! */
381 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
382 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
383 
384 	while (tp->rcv_ssthresh <= window) {
385 		if (truesize <= skb->len)
386 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
387 
388 		truesize >>= 1;
389 		window >>= 1;
390 	}
391 	return 0;
392 }
393 
394 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
395 {
396 	struct tcp_sock *tp = tcp_sk(sk);
397 
398 	/* Check #1 */
399 	if (tp->rcv_ssthresh < tp->window_clamp &&
400 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
401 	    !tcp_under_memory_pressure(sk)) {
402 		int incr;
403 
404 		/* Check #2. Increase window, if skb with such overhead
405 		 * will fit to rcvbuf in future.
406 		 */
407 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
408 			incr = 2 * tp->advmss;
409 		else
410 			incr = __tcp_grow_window(sk, skb);
411 
412 		if (incr) {
413 			incr = max_t(int, incr, 2 * skb->len);
414 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
415 					       tp->window_clamp);
416 			inet_csk(sk)->icsk_ack.quick |= 1;
417 		}
418 	}
419 }
420 
421 /* 3. Tuning rcvbuf, when connection enters established state. */
422 static void tcp_fixup_rcvbuf(struct sock *sk)
423 {
424 	u32 mss = tcp_sk(sk)->advmss;
425 	int rcvmem;
426 
427 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
428 		 tcp_default_init_rwnd(mss);
429 
430 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
431 	 * Allow enough cushion so that sender is not limited by our window
432 	 */
433 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf)
434 		rcvmem <<= 2;
435 
436 	if (sk->sk_rcvbuf < rcvmem)
437 		sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
438 }
439 
440 /* 4. Try to fixup all. It is made immediately after connection enters
441  *    established state.
442  */
443 void tcp_init_buffer_space(struct sock *sk)
444 {
445 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
446 	struct tcp_sock *tp = tcp_sk(sk);
447 	int maxwin;
448 
449 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
450 		tcp_fixup_rcvbuf(sk);
451 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
452 		tcp_sndbuf_expand(sk);
453 
454 	tp->rcvq_space.space = tp->rcv_wnd;
455 	tcp_mstamp_refresh(tp);
456 	tp->rcvq_space.time = tp->tcp_mstamp;
457 	tp->rcvq_space.seq = tp->copied_seq;
458 
459 	maxwin = tcp_full_space(sk);
460 
461 	if (tp->window_clamp >= maxwin) {
462 		tp->window_clamp = maxwin;
463 
464 		if (tcp_app_win && maxwin > 4 * tp->advmss)
465 			tp->window_clamp = max(maxwin -
466 					       (maxwin >> tcp_app_win),
467 					       4 * tp->advmss);
468 	}
469 
470 	/* Force reservation of one segment. */
471 	if (tcp_app_win &&
472 	    tp->window_clamp > 2 * tp->advmss &&
473 	    tp->window_clamp + tp->advmss > maxwin)
474 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
475 
476 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
477 	tp->snd_cwnd_stamp = tcp_jiffies32;
478 }
479 
480 /* 5. Recalculate window clamp after socket hit its memory bounds. */
481 static void tcp_clamp_window(struct sock *sk)
482 {
483 	struct tcp_sock *tp = tcp_sk(sk);
484 	struct inet_connection_sock *icsk = inet_csk(sk);
485 	struct net *net = sock_net(sk);
486 
487 	icsk->icsk_ack.quick = 0;
488 
489 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
490 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
491 	    !tcp_under_memory_pressure(sk) &&
492 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
493 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
494 				    net->ipv4.sysctl_tcp_rmem[2]);
495 	}
496 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
497 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
498 }
499 
500 /* Initialize RCV_MSS value.
501  * RCV_MSS is an our guess about MSS used by the peer.
502  * We haven't any direct information about the MSS.
503  * It's better to underestimate the RCV_MSS rather than overestimate.
504  * Overestimations make us ACKing less frequently than needed.
505  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
506  */
507 void tcp_initialize_rcv_mss(struct sock *sk)
508 {
509 	const struct tcp_sock *tp = tcp_sk(sk);
510 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
511 
512 	hint = min(hint, tp->rcv_wnd / 2);
513 	hint = min(hint, TCP_MSS_DEFAULT);
514 	hint = max(hint, TCP_MIN_MSS);
515 
516 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
517 }
518 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
519 
520 /* Receiver "autotuning" code.
521  *
522  * The algorithm for RTT estimation w/o timestamps is based on
523  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
524  * <http://public.lanl.gov/radiant/pubs.html#DRS>
525  *
526  * More detail on this code can be found at
527  * <http://staff.psc.edu/jheffner/>,
528  * though this reference is out of date.  A new paper
529  * is pending.
530  */
531 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
532 {
533 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
534 	long m = sample;
535 
536 	if (new_sample != 0) {
537 		/* If we sample in larger samples in the non-timestamp
538 		 * case, we could grossly overestimate the RTT especially
539 		 * with chatty applications or bulk transfer apps which
540 		 * are stalled on filesystem I/O.
541 		 *
542 		 * Also, since we are only going for a minimum in the
543 		 * non-timestamp case, we do not smooth things out
544 		 * else with timestamps disabled convergence takes too
545 		 * long.
546 		 */
547 		if (!win_dep) {
548 			m -= (new_sample >> 3);
549 			new_sample += m;
550 		} else {
551 			m <<= 3;
552 			if (m < new_sample)
553 				new_sample = m;
554 		}
555 	} else {
556 		/* No previous measure. */
557 		new_sample = m << 3;
558 	}
559 
560 	tp->rcv_rtt_est.rtt_us = new_sample;
561 }
562 
563 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
564 {
565 	u32 delta_us;
566 
567 	if (tp->rcv_rtt_est.time == 0)
568 		goto new_measure;
569 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
570 		return;
571 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
572 	if (!delta_us)
573 		delta_us = 1;
574 	tcp_rcv_rtt_update(tp, delta_us, 1);
575 
576 new_measure:
577 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
578 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
579 }
580 
581 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
582 					  const struct sk_buff *skb)
583 {
584 	struct tcp_sock *tp = tcp_sk(sk);
585 
586 	if (tp->rx_opt.rcv_tsecr &&
587 	    (TCP_SKB_CB(skb)->end_seq -
588 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) {
589 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
590 		u32 delta_us;
591 
592 		if (!delta)
593 			delta = 1;
594 		delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
595 		tcp_rcv_rtt_update(tp, delta_us, 0);
596 	}
597 }
598 
599 /*
600  * This function should be called every time data is copied to user space.
601  * It calculates the appropriate TCP receive buffer space.
602  */
603 void tcp_rcv_space_adjust(struct sock *sk)
604 {
605 	struct tcp_sock *tp = tcp_sk(sk);
606 	u32 copied;
607 	int time;
608 
609 	trace_tcp_rcv_space_adjust(sk);
610 
611 	tcp_mstamp_refresh(tp);
612 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
613 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
614 		return;
615 
616 	/* Number of bytes copied to user in last RTT */
617 	copied = tp->copied_seq - tp->rcvq_space.seq;
618 	if (copied <= tp->rcvq_space.space)
619 		goto new_measure;
620 
621 	/* A bit of theory :
622 	 * copied = bytes received in previous RTT, our base window
623 	 * To cope with packet losses, we need a 2x factor
624 	 * To cope with slow start, and sender growing its cwin by 100 %
625 	 * every RTT, we need a 4x factor, because the ACK we are sending
626 	 * now is for the next RTT, not the current one :
627 	 * <prev RTT . ><current RTT .. ><next RTT .... >
628 	 */
629 
630 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
631 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
632 		int rcvmem, rcvbuf;
633 		u64 rcvwin, grow;
634 
635 		/* minimal window to cope with packet losses, assuming
636 		 * steady state. Add some cushion because of small variations.
637 		 */
638 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
639 
640 		/* Accommodate for sender rate increase (eg. slow start) */
641 		grow = rcvwin * (copied - tp->rcvq_space.space);
642 		do_div(grow, tp->rcvq_space.space);
643 		rcvwin += (grow << 1);
644 
645 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
646 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
647 			rcvmem += 128;
648 
649 		do_div(rcvwin, tp->advmss);
650 		rcvbuf = min_t(u64, rcvwin * rcvmem,
651 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
652 		if (rcvbuf > sk->sk_rcvbuf) {
653 			sk->sk_rcvbuf = rcvbuf;
654 
655 			/* Make the window clamp follow along.  */
656 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
657 		}
658 	}
659 	tp->rcvq_space.space = copied;
660 
661 new_measure:
662 	tp->rcvq_space.seq = tp->copied_seq;
663 	tp->rcvq_space.time = tp->tcp_mstamp;
664 }
665 
666 /* There is something which you must keep in mind when you analyze the
667  * behavior of the tp->ato delayed ack timeout interval.  When a
668  * connection starts up, we want to ack as quickly as possible.  The
669  * problem is that "good" TCP's do slow start at the beginning of data
670  * transmission.  The means that until we send the first few ACK's the
671  * sender will sit on his end and only queue most of his data, because
672  * he can only send snd_cwnd unacked packets at any given time.  For
673  * each ACK we send, he increments snd_cwnd and transmits more of his
674  * queue.  -DaveM
675  */
676 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
677 {
678 	struct tcp_sock *tp = tcp_sk(sk);
679 	struct inet_connection_sock *icsk = inet_csk(sk);
680 	u32 now;
681 
682 	inet_csk_schedule_ack(sk);
683 
684 	tcp_measure_rcv_mss(sk, skb);
685 
686 	tcp_rcv_rtt_measure(tp);
687 
688 	now = tcp_jiffies32;
689 
690 	if (!icsk->icsk_ack.ato) {
691 		/* The _first_ data packet received, initialize
692 		 * delayed ACK engine.
693 		 */
694 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
695 		icsk->icsk_ack.ato = TCP_ATO_MIN;
696 	} else {
697 		int m = now - icsk->icsk_ack.lrcvtime;
698 
699 		if (m <= TCP_ATO_MIN / 2) {
700 			/* The fastest case is the first. */
701 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
702 		} else if (m < icsk->icsk_ack.ato) {
703 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
704 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
705 				icsk->icsk_ack.ato = icsk->icsk_rto;
706 		} else if (m > icsk->icsk_rto) {
707 			/* Too long gap. Apparently sender failed to
708 			 * restart window, so that we send ACKs quickly.
709 			 */
710 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
711 			sk_mem_reclaim(sk);
712 		}
713 	}
714 	icsk->icsk_ack.lrcvtime = now;
715 
716 	tcp_ecn_check_ce(sk, skb);
717 
718 	if (skb->len >= 128)
719 		tcp_grow_window(sk, skb);
720 }
721 
722 /* Called to compute a smoothed rtt estimate. The data fed to this
723  * routine either comes from timestamps, or from segments that were
724  * known _not_ to have been retransmitted [see Karn/Partridge
725  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
726  * piece by Van Jacobson.
727  * NOTE: the next three routines used to be one big routine.
728  * To save cycles in the RFC 1323 implementation it was better to break
729  * it up into three procedures. -- erics
730  */
731 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
732 {
733 	struct tcp_sock *tp = tcp_sk(sk);
734 	long m = mrtt_us; /* RTT */
735 	u32 srtt = tp->srtt_us;
736 
737 	/*	The following amusing code comes from Jacobson's
738 	 *	article in SIGCOMM '88.  Note that rtt and mdev
739 	 *	are scaled versions of rtt and mean deviation.
740 	 *	This is designed to be as fast as possible
741 	 *	m stands for "measurement".
742 	 *
743 	 *	On a 1990 paper the rto value is changed to:
744 	 *	RTO = rtt + 4 * mdev
745 	 *
746 	 * Funny. This algorithm seems to be very broken.
747 	 * These formulae increase RTO, when it should be decreased, increase
748 	 * too slowly, when it should be increased quickly, decrease too quickly
749 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
750 	 * does not matter how to _calculate_ it. Seems, it was trap
751 	 * that VJ failed to avoid. 8)
752 	 */
753 	if (srtt != 0) {
754 		m -= (srtt >> 3);	/* m is now error in rtt est */
755 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
756 		if (m < 0) {
757 			m = -m;		/* m is now abs(error) */
758 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
759 			/* This is similar to one of Eifel findings.
760 			 * Eifel blocks mdev updates when rtt decreases.
761 			 * This solution is a bit different: we use finer gain
762 			 * for mdev in this case (alpha*beta).
763 			 * Like Eifel it also prevents growth of rto,
764 			 * but also it limits too fast rto decreases,
765 			 * happening in pure Eifel.
766 			 */
767 			if (m > 0)
768 				m >>= 3;
769 		} else {
770 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
771 		}
772 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
773 		if (tp->mdev_us > tp->mdev_max_us) {
774 			tp->mdev_max_us = tp->mdev_us;
775 			if (tp->mdev_max_us > tp->rttvar_us)
776 				tp->rttvar_us = tp->mdev_max_us;
777 		}
778 		if (after(tp->snd_una, tp->rtt_seq)) {
779 			if (tp->mdev_max_us < tp->rttvar_us)
780 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
781 			tp->rtt_seq = tp->snd_nxt;
782 			tp->mdev_max_us = tcp_rto_min_us(sk);
783 		}
784 	} else {
785 		/* no previous measure. */
786 		srtt = m << 3;		/* take the measured time to be rtt */
787 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
788 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
789 		tp->mdev_max_us = tp->rttvar_us;
790 		tp->rtt_seq = tp->snd_nxt;
791 	}
792 	tp->srtt_us = max(1U, srtt);
793 }
794 
795 static void tcp_update_pacing_rate(struct sock *sk)
796 {
797 	const struct tcp_sock *tp = tcp_sk(sk);
798 	u64 rate;
799 
800 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
801 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
802 
803 	/* current rate is (cwnd * mss) / srtt
804 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
805 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
806 	 *
807 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
808 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
809 	 *	 end of slow start and should slow down.
810 	 */
811 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
812 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
813 	else
814 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
815 
816 	rate *= max(tp->snd_cwnd, tp->packets_out);
817 
818 	if (likely(tp->srtt_us))
819 		do_div(rate, tp->srtt_us);
820 
821 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
822 	 * without any lock. We want to make sure compiler wont store
823 	 * intermediate values in this location.
824 	 */
825 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
826 					     sk->sk_max_pacing_rate));
827 }
828 
829 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
830  * routine referred to above.
831  */
832 static void tcp_set_rto(struct sock *sk)
833 {
834 	const struct tcp_sock *tp = tcp_sk(sk);
835 	/* Old crap is replaced with new one. 8)
836 	 *
837 	 * More seriously:
838 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
839 	 *    It cannot be less due to utterly erratic ACK generation made
840 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
841 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
842 	 *    is invisible. Actually, Linux-2.4 also generates erratic
843 	 *    ACKs in some circumstances.
844 	 */
845 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
846 
847 	/* 2. Fixups made earlier cannot be right.
848 	 *    If we do not estimate RTO correctly without them,
849 	 *    all the algo is pure shit and should be replaced
850 	 *    with correct one. It is exactly, which we pretend to do.
851 	 */
852 
853 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
854 	 * guarantees that rto is higher.
855 	 */
856 	tcp_bound_rto(sk);
857 }
858 
859 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
860 {
861 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
862 
863 	if (!cwnd)
864 		cwnd = TCP_INIT_CWND;
865 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
866 }
867 
868 /* Take a notice that peer is sending D-SACKs */
869 static void tcp_dsack_seen(struct tcp_sock *tp)
870 {
871 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
872 	tp->rack.dsack_seen = 1;
873 }
874 
875 /* It's reordering when higher sequence was delivered (i.e. sacked) before
876  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
877  * distance is approximated in full-mss packet distance ("reordering").
878  */
879 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
880 				      const int ts)
881 {
882 	struct tcp_sock *tp = tcp_sk(sk);
883 	const u32 mss = tp->mss_cache;
884 	u32 fack, metric;
885 
886 	fack = tcp_highest_sack_seq(tp);
887 	if (!before(low_seq, fack))
888 		return;
889 
890 	metric = fack - low_seq;
891 	if ((metric > tp->reordering * mss) && mss) {
892 #if FASTRETRANS_DEBUG > 1
893 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
894 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
895 			 tp->reordering,
896 			 0,
897 			 tp->sacked_out,
898 			 tp->undo_marker ? tp->undo_retrans : 0);
899 #endif
900 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
901 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
902 	}
903 
904 	tp->rack.reord = 1;
905 	/* This exciting event is worth to be remembered. 8) */
906 	NET_INC_STATS(sock_net(sk),
907 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
908 }
909 
910 /* This must be called before lost_out is incremented */
911 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
912 {
913 	if (!tp->retransmit_skb_hint ||
914 	    before(TCP_SKB_CB(skb)->seq,
915 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
916 		tp->retransmit_skb_hint = skb;
917 }
918 
919 /* Sum the number of packets on the wire we have marked as lost.
920  * There are two cases we care about here:
921  * a) Packet hasn't been marked lost (nor retransmitted),
922  *    and this is the first loss.
923  * b) Packet has been marked both lost and retransmitted,
924  *    and this means we think it was lost again.
925  */
926 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
927 {
928 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
929 
930 	if (!(sacked & TCPCB_LOST) ||
931 	    ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
932 		tp->lost += tcp_skb_pcount(skb);
933 }
934 
935 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
936 {
937 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
938 		tcp_verify_retransmit_hint(tp, skb);
939 
940 		tp->lost_out += tcp_skb_pcount(skb);
941 		tcp_sum_lost(tp, skb);
942 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
943 	}
944 }
945 
946 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
947 {
948 	tcp_verify_retransmit_hint(tp, skb);
949 
950 	tcp_sum_lost(tp, skb);
951 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
952 		tp->lost_out += tcp_skb_pcount(skb);
953 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
954 	}
955 }
956 
957 /* This procedure tags the retransmission queue when SACKs arrive.
958  *
959  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
960  * Packets in queue with these bits set are counted in variables
961  * sacked_out, retrans_out and lost_out, correspondingly.
962  *
963  * Valid combinations are:
964  * Tag  InFlight	Description
965  * 0	1		- orig segment is in flight.
966  * S	0		- nothing flies, orig reached receiver.
967  * L	0		- nothing flies, orig lost by net.
968  * R	2		- both orig and retransmit are in flight.
969  * L|R	1		- orig is lost, retransmit is in flight.
970  * S|R  1		- orig reached receiver, retrans is still in flight.
971  * (L|S|R is logically valid, it could occur when L|R is sacked,
972  *  but it is equivalent to plain S and code short-curcuits it to S.
973  *  L|S is logically invalid, it would mean -1 packet in flight 8))
974  *
975  * These 6 states form finite state machine, controlled by the following events:
976  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
977  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
978  * 3. Loss detection event of two flavors:
979  *	A. Scoreboard estimator decided the packet is lost.
980  *	   A'. Reno "three dupacks" marks head of queue lost.
981  *	B. SACK arrives sacking SND.NXT at the moment, when the
982  *	   segment was retransmitted.
983  * 4. D-SACK added new rule: D-SACK changes any tag to S.
984  *
985  * It is pleasant to note, that state diagram turns out to be commutative,
986  * so that we are allowed not to be bothered by order of our actions,
987  * when multiple events arrive simultaneously. (see the function below).
988  *
989  * Reordering detection.
990  * --------------------
991  * Reordering metric is maximal distance, which a packet can be displaced
992  * in packet stream. With SACKs we can estimate it:
993  *
994  * 1. SACK fills old hole and the corresponding segment was not
995  *    ever retransmitted -> reordering. Alas, we cannot use it
996  *    when segment was retransmitted.
997  * 2. The last flaw is solved with D-SACK. D-SACK arrives
998  *    for retransmitted and already SACKed segment -> reordering..
999  * Both of these heuristics are not used in Loss state, when we cannot
1000  * account for retransmits accurately.
1001  *
1002  * SACK block validation.
1003  * ----------------------
1004  *
1005  * SACK block range validation checks that the received SACK block fits to
1006  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1007  * Note that SND.UNA is not included to the range though being valid because
1008  * it means that the receiver is rather inconsistent with itself reporting
1009  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1010  * perfectly valid, however, in light of RFC2018 which explicitly states
1011  * that "SACK block MUST reflect the newest segment.  Even if the newest
1012  * segment is going to be discarded ...", not that it looks very clever
1013  * in case of head skb. Due to potentional receiver driven attacks, we
1014  * choose to avoid immediate execution of a walk in write queue due to
1015  * reneging and defer head skb's loss recovery to standard loss recovery
1016  * procedure that will eventually trigger (nothing forbids us doing this).
1017  *
1018  * Implements also blockage to start_seq wrap-around. Problem lies in the
1019  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1020  * there's no guarantee that it will be before snd_nxt (n). The problem
1021  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1022  * wrap (s_w):
1023  *
1024  *         <- outs wnd ->                          <- wrapzone ->
1025  *         u     e      n                         u_w   e_w  s n_w
1026  *         |     |      |                          |     |   |  |
1027  * |<------------+------+----- TCP seqno space --------------+---------->|
1028  * ...-- <2^31 ->|                                           |<--------...
1029  * ...---- >2^31 ------>|                                    |<--------...
1030  *
1031  * Current code wouldn't be vulnerable but it's better still to discard such
1032  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1033  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1034  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1035  * equal to the ideal case (infinite seqno space without wrap caused issues).
1036  *
1037  * With D-SACK the lower bound is extended to cover sequence space below
1038  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1039  * again, D-SACK block must not to go across snd_una (for the same reason as
1040  * for the normal SACK blocks, explained above). But there all simplicity
1041  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1042  * fully below undo_marker they do not affect behavior in anyway and can
1043  * therefore be safely ignored. In rare cases (which are more or less
1044  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1045  * fragmentation and packet reordering past skb's retransmission. To consider
1046  * them correctly, the acceptable range must be extended even more though
1047  * the exact amount is rather hard to quantify. However, tp->max_window can
1048  * be used as an exaggerated estimate.
1049  */
1050 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1051 				   u32 start_seq, u32 end_seq)
1052 {
1053 	/* Too far in future, or reversed (interpretation is ambiguous) */
1054 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1055 		return false;
1056 
1057 	/* Nasty start_seq wrap-around check (see comments above) */
1058 	if (!before(start_seq, tp->snd_nxt))
1059 		return false;
1060 
1061 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1062 	 * start_seq == snd_una is non-sensical (see comments above)
1063 	 */
1064 	if (after(start_seq, tp->snd_una))
1065 		return true;
1066 
1067 	if (!is_dsack || !tp->undo_marker)
1068 		return false;
1069 
1070 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1071 	if (after(end_seq, tp->snd_una))
1072 		return false;
1073 
1074 	if (!before(start_seq, tp->undo_marker))
1075 		return true;
1076 
1077 	/* Too old */
1078 	if (!after(end_seq, tp->undo_marker))
1079 		return false;
1080 
1081 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1082 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1083 	 */
1084 	return !before(start_seq, end_seq - tp->max_window);
1085 }
1086 
1087 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1088 			    struct tcp_sack_block_wire *sp, int num_sacks,
1089 			    u32 prior_snd_una)
1090 {
1091 	struct tcp_sock *tp = tcp_sk(sk);
1092 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1093 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1094 	bool dup_sack = false;
1095 
1096 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1097 		dup_sack = true;
1098 		tcp_dsack_seen(tp);
1099 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1100 	} else if (num_sacks > 1) {
1101 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1102 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1103 
1104 		if (!after(end_seq_0, end_seq_1) &&
1105 		    !before(start_seq_0, start_seq_1)) {
1106 			dup_sack = true;
1107 			tcp_dsack_seen(tp);
1108 			NET_INC_STATS(sock_net(sk),
1109 					LINUX_MIB_TCPDSACKOFORECV);
1110 		}
1111 	}
1112 
1113 	/* D-SACK for already forgotten data... Do dumb counting. */
1114 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1115 	    !after(end_seq_0, prior_snd_una) &&
1116 	    after(end_seq_0, tp->undo_marker))
1117 		tp->undo_retrans--;
1118 
1119 	return dup_sack;
1120 }
1121 
1122 struct tcp_sacktag_state {
1123 	u32	reord;
1124 	/* Timestamps for earliest and latest never-retransmitted segment
1125 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1126 	 * but congestion control should still get an accurate delay signal.
1127 	 */
1128 	u64	first_sackt;
1129 	u64	last_sackt;
1130 	struct rate_sample *rate;
1131 	int	flag;
1132 	unsigned int mss_now;
1133 };
1134 
1135 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1136  * the incoming SACK may not exactly match but we can find smaller MSS
1137  * aligned portion of it that matches. Therefore we might need to fragment
1138  * which may fail and creates some hassle (caller must handle error case
1139  * returns).
1140  *
1141  * FIXME: this could be merged to shift decision code
1142  */
1143 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1144 				  u32 start_seq, u32 end_seq)
1145 {
1146 	int err;
1147 	bool in_sack;
1148 	unsigned int pkt_len;
1149 	unsigned int mss;
1150 
1151 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1152 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1153 
1154 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1155 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1156 		mss = tcp_skb_mss(skb);
1157 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1158 
1159 		if (!in_sack) {
1160 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1161 			if (pkt_len < mss)
1162 				pkt_len = mss;
1163 		} else {
1164 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1165 			if (pkt_len < mss)
1166 				return -EINVAL;
1167 		}
1168 
1169 		/* Round if necessary so that SACKs cover only full MSSes
1170 		 * and/or the remaining small portion (if present)
1171 		 */
1172 		if (pkt_len > mss) {
1173 			unsigned int new_len = (pkt_len / mss) * mss;
1174 			if (!in_sack && new_len < pkt_len)
1175 				new_len += mss;
1176 			pkt_len = new_len;
1177 		}
1178 
1179 		if (pkt_len >= skb->len && !in_sack)
1180 			return 0;
1181 
1182 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1183 				   pkt_len, mss, GFP_ATOMIC);
1184 		if (err < 0)
1185 			return err;
1186 	}
1187 
1188 	return in_sack;
1189 }
1190 
1191 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1192 static u8 tcp_sacktag_one(struct sock *sk,
1193 			  struct tcp_sacktag_state *state, u8 sacked,
1194 			  u32 start_seq, u32 end_seq,
1195 			  int dup_sack, int pcount,
1196 			  u64 xmit_time)
1197 {
1198 	struct tcp_sock *tp = tcp_sk(sk);
1199 
1200 	/* Account D-SACK for retransmitted packet. */
1201 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1202 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1203 		    after(end_seq, tp->undo_marker))
1204 			tp->undo_retrans--;
1205 		if ((sacked & TCPCB_SACKED_ACKED) &&
1206 		    before(start_seq, state->reord))
1207 				state->reord = start_seq;
1208 	}
1209 
1210 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1211 	if (!after(end_seq, tp->snd_una))
1212 		return sacked;
1213 
1214 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1215 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1216 
1217 		if (sacked & TCPCB_SACKED_RETRANS) {
1218 			/* If the segment is not tagged as lost,
1219 			 * we do not clear RETRANS, believing
1220 			 * that retransmission is still in flight.
1221 			 */
1222 			if (sacked & TCPCB_LOST) {
1223 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1224 				tp->lost_out -= pcount;
1225 				tp->retrans_out -= pcount;
1226 			}
1227 		} else {
1228 			if (!(sacked & TCPCB_RETRANS)) {
1229 				/* New sack for not retransmitted frame,
1230 				 * which was in hole. It is reordering.
1231 				 */
1232 				if (before(start_seq,
1233 					   tcp_highest_sack_seq(tp)) &&
1234 				    before(start_seq, state->reord))
1235 					state->reord = start_seq;
1236 
1237 				if (!after(end_seq, tp->high_seq))
1238 					state->flag |= FLAG_ORIG_SACK_ACKED;
1239 				if (state->first_sackt == 0)
1240 					state->first_sackt = xmit_time;
1241 				state->last_sackt = xmit_time;
1242 			}
1243 
1244 			if (sacked & TCPCB_LOST) {
1245 				sacked &= ~TCPCB_LOST;
1246 				tp->lost_out -= pcount;
1247 			}
1248 		}
1249 
1250 		sacked |= TCPCB_SACKED_ACKED;
1251 		state->flag |= FLAG_DATA_SACKED;
1252 		tp->sacked_out += pcount;
1253 		tp->delivered += pcount;  /* Out-of-order packets delivered */
1254 
1255 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1256 		if (tp->lost_skb_hint &&
1257 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1258 			tp->lost_cnt_hint += pcount;
1259 	}
1260 
1261 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1262 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1263 	 * are accounted above as well.
1264 	 */
1265 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1266 		sacked &= ~TCPCB_SACKED_RETRANS;
1267 		tp->retrans_out -= pcount;
1268 	}
1269 
1270 	return sacked;
1271 }
1272 
1273 /* Shift newly-SACKed bytes from this skb to the immediately previous
1274  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1275  */
1276 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1277 			    struct sk_buff *skb,
1278 			    struct tcp_sacktag_state *state,
1279 			    unsigned int pcount, int shifted, int mss,
1280 			    bool dup_sack)
1281 {
1282 	struct tcp_sock *tp = tcp_sk(sk);
1283 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1284 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1285 
1286 	BUG_ON(!pcount);
1287 
1288 	/* Adjust counters and hints for the newly sacked sequence
1289 	 * range but discard the return value since prev is already
1290 	 * marked. We must tag the range first because the seq
1291 	 * advancement below implicitly advances
1292 	 * tcp_highest_sack_seq() when skb is highest_sack.
1293 	 */
1294 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1295 			start_seq, end_seq, dup_sack, pcount,
1296 			skb->skb_mstamp);
1297 	tcp_rate_skb_delivered(sk, skb, state->rate);
1298 
1299 	if (skb == tp->lost_skb_hint)
1300 		tp->lost_cnt_hint += pcount;
1301 
1302 	TCP_SKB_CB(prev)->end_seq += shifted;
1303 	TCP_SKB_CB(skb)->seq += shifted;
1304 
1305 	tcp_skb_pcount_add(prev, pcount);
1306 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1307 	tcp_skb_pcount_add(skb, -pcount);
1308 
1309 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1310 	 * in theory this shouldn't be necessary but as long as DSACK
1311 	 * code can come after this skb later on it's better to keep
1312 	 * setting gso_size to something.
1313 	 */
1314 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1315 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1316 
1317 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1318 	if (tcp_skb_pcount(skb) <= 1)
1319 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1320 
1321 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1322 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1323 
1324 	if (skb->len > 0) {
1325 		BUG_ON(!tcp_skb_pcount(skb));
1326 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1327 		return false;
1328 	}
1329 
1330 	/* Whole SKB was eaten :-) */
1331 
1332 	if (skb == tp->retransmit_skb_hint)
1333 		tp->retransmit_skb_hint = prev;
1334 	if (skb == tp->lost_skb_hint) {
1335 		tp->lost_skb_hint = prev;
1336 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1337 	}
1338 
1339 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1340 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1341 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1342 		TCP_SKB_CB(prev)->end_seq++;
1343 
1344 	if (skb == tcp_highest_sack(sk))
1345 		tcp_advance_highest_sack(sk, skb);
1346 
1347 	tcp_skb_collapse_tstamp(prev, skb);
1348 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1349 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1350 
1351 	tcp_rtx_queue_unlink_and_free(skb, sk);
1352 
1353 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1354 
1355 	return true;
1356 }
1357 
1358 /* I wish gso_size would have a bit more sane initialization than
1359  * something-or-zero which complicates things
1360  */
1361 static int tcp_skb_seglen(const struct sk_buff *skb)
1362 {
1363 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1364 }
1365 
1366 /* Shifting pages past head area doesn't work */
1367 static int skb_can_shift(const struct sk_buff *skb)
1368 {
1369 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1370 }
1371 
1372 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1373  * skb.
1374  */
1375 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1376 					  struct tcp_sacktag_state *state,
1377 					  u32 start_seq, u32 end_seq,
1378 					  bool dup_sack)
1379 {
1380 	struct tcp_sock *tp = tcp_sk(sk);
1381 	struct sk_buff *prev;
1382 	int mss;
1383 	int pcount = 0;
1384 	int len;
1385 	int in_sack;
1386 
1387 	/* Normally R but no L won't result in plain S */
1388 	if (!dup_sack &&
1389 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1390 		goto fallback;
1391 	if (!skb_can_shift(skb))
1392 		goto fallback;
1393 	/* This frame is about to be dropped (was ACKed). */
1394 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1395 		goto fallback;
1396 
1397 	/* Can only happen with delayed DSACK + discard craziness */
1398 	prev = skb_rb_prev(skb);
1399 	if (!prev)
1400 		goto fallback;
1401 
1402 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1403 		goto fallback;
1404 
1405 	if (!tcp_skb_can_collapse_to(prev))
1406 		goto fallback;
1407 
1408 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1409 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1410 
1411 	if (in_sack) {
1412 		len = skb->len;
1413 		pcount = tcp_skb_pcount(skb);
1414 		mss = tcp_skb_seglen(skb);
1415 
1416 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1417 		 * drop this restriction as unnecessary
1418 		 */
1419 		if (mss != tcp_skb_seglen(prev))
1420 			goto fallback;
1421 	} else {
1422 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1423 			goto noop;
1424 		/* CHECKME: This is non-MSS split case only?, this will
1425 		 * cause skipped skbs due to advancing loop btw, original
1426 		 * has that feature too
1427 		 */
1428 		if (tcp_skb_pcount(skb) <= 1)
1429 			goto noop;
1430 
1431 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1432 		if (!in_sack) {
1433 			/* TODO: head merge to next could be attempted here
1434 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1435 			 * though it might not be worth of the additional hassle
1436 			 *
1437 			 * ...we can probably just fallback to what was done
1438 			 * previously. We could try merging non-SACKed ones
1439 			 * as well but it probably isn't going to buy off
1440 			 * because later SACKs might again split them, and
1441 			 * it would make skb timestamp tracking considerably
1442 			 * harder problem.
1443 			 */
1444 			goto fallback;
1445 		}
1446 
1447 		len = end_seq - TCP_SKB_CB(skb)->seq;
1448 		BUG_ON(len < 0);
1449 		BUG_ON(len > skb->len);
1450 
1451 		/* MSS boundaries should be honoured or else pcount will
1452 		 * severely break even though it makes things bit trickier.
1453 		 * Optimize common case to avoid most of the divides
1454 		 */
1455 		mss = tcp_skb_mss(skb);
1456 
1457 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1458 		 * drop this restriction as unnecessary
1459 		 */
1460 		if (mss != tcp_skb_seglen(prev))
1461 			goto fallback;
1462 
1463 		if (len == mss) {
1464 			pcount = 1;
1465 		} else if (len < mss) {
1466 			goto noop;
1467 		} else {
1468 			pcount = len / mss;
1469 			len = pcount * mss;
1470 		}
1471 	}
1472 
1473 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1474 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1475 		goto fallback;
1476 
1477 	if (!skb_shift(prev, skb, len))
1478 		goto fallback;
1479 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1480 		goto out;
1481 
1482 	/* Hole filled allows collapsing with the next as well, this is very
1483 	 * useful when hole on every nth skb pattern happens
1484 	 */
1485 	skb = skb_rb_next(prev);
1486 	if (!skb)
1487 		goto out;
1488 
1489 	if (!skb_can_shift(skb) ||
1490 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1491 	    (mss != tcp_skb_seglen(skb)))
1492 		goto out;
1493 
1494 	len = skb->len;
1495 	if (skb_shift(prev, skb, len)) {
1496 		pcount += tcp_skb_pcount(skb);
1497 		tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb),
1498 				len, mss, 0);
1499 	}
1500 
1501 out:
1502 	return prev;
1503 
1504 noop:
1505 	return skb;
1506 
1507 fallback:
1508 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1509 	return NULL;
1510 }
1511 
1512 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1513 					struct tcp_sack_block *next_dup,
1514 					struct tcp_sacktag_state *state,
1515 					u32 start_seq, u32 end_seq,
1516 					bool dup_sack_in)
1517 {
1518 	struct tcp_sock *tp = tcp_sk(sk);
1519 	struct sk_buff *tmp;
1520 
1521 	skb_rbtree_walk_from(skb) {
1522 		int in_sack = 0;
1523 		bool dup_sack = dup_sack_in;
1524 
1525 		/* queue is in-order => we can short-circuit the walk early */
1526 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1527 			break;
1528 
1529 		if (next_dup  &&
1530 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1531 			in_sack = tcp_match_skb_to_sack(sk, skb,
1532 							next_dup->start_seq,
1533 							next_dup->end_seq);
1534 			if (in_sack > 0)
1535 				dup_sack = true;
1536 		}
1537 
1538 		/* skb reference here is a bit tricky to get right, since
1539 		 * shifting can eat and free both this skb and the next,
1540 		 * so not even _safe variant of the loop is enough.
1541 		 */
1542 		if (in_sack <= 0) {
1543 			tmp = tcp_shift_skb_data(sk, skb, state,
1544 						 start_seq, end_seq, dup_sack);
1545 			if (tmp) {
1546 				if (tmp != skb) {
1547 					skb = tmp;
1548 					continue;
1549 				}
1550 
1551 				in_sack = 0;
1552 			} else {
1553 				in_sack = tcp_match_skb_to_sack(sk, skb,
1554 								start_seq,
1555 								end_seq);
1556 			}
1557 		}
1558 
1559 		if (unlikely(in_sack < 0))
1560 			break;
1561 
1562 		if (in_sack) {
1563 			TCP_SKB_CB(skb)->sacked =
1564 				tcp_sacktag_one(sk,
1565 						state,
1566 						TCP_SKB_CB(skb)->sacked,
1567 						TCP_SKB_CB(skb)->seq,
1568 						TCP_SKB_CB(skb)->end_seq,
1569 						dup_sack,
1570 						tcp_skb_pcount(skb),
1571 						skb->skb_mstamp);
1572 			tcp_rate_skb_delivered(sk, skb, state->rate);
1573 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1574 				list_del_init(&skb->tcp_tsorted_anchor);
1575 
1576 			if (!before(TCP_SKB_CB(skb)->seq,
1577 				    tcp_highest_sack_seq(tp)))
1578 				tcp_advance_highest_sack(sk, skb);
1579 		}
1580 	}
1581 	return skb;
1582 }
1583 
1584 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk,
1585 					   struct tcp_sacktag_state *state,
1586 					   u32 seq)
1587 {
1588 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1589 	struct sk_buff *skb;
1590 
1591 	while (*p) {
1592 		parent = *p;
1593 		skb = rb_to_skb(parent);
1594 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1595 			p = &parent->rb_left;
1596 			continue;
1597 		}
1598 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1599 			p = &parent->rb_right;
1600 			continue;
1601 		}
1602 		return skb;
1603 	}
1604 	return NULL;
1605 }
1606 
1607 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1608 					struct tcp_sacktag_state *state,
1609 					u32 skip_to_seq)
1610 {
1611 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1612 		return skb;
1613 
1614 	return tcp_sacktag_bsearch(sk, state, skip_to_seq);
1615 }
1616 
1617 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1618 						struct sock *sk,
1619 						struct tcp_sack_block *next_dup,
1620 						struct tcp_sacktag_state *state,
1621 						u32 skip_to_seq)
1622 {
1623 	if (!next_dup)
1624 		return skb;
1625 
1626 	if (before(next_dup->start_seq, skip_to_seq)) {
1627 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1628 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1629 				       next_dup->start_seq, next_dup->end_seq,
1630 				       1);
1631 	}
1632 
1633 	return skb;
1634 }
1635 
1636 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1637 {
1638 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1639 }
1640 
1641 static int
1642 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1643 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1644 {
1645 	struct tcp_sock *tp = tcp_sk(sk);
1646 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1647 				    TCP_SKB_CB(ack_skb)->sacked);
1648 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1649 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1650 	struct tcp_sack_block *cache;
1651 	struct sk_buff *skb;
1652 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1653 	int used_sacks;
1654 	bool found_dup_sack = false;
1655 	int i, j;
1656 	int first_sack_index;
1657 
1658 	state->flag = 0;
1659 	state->reord = tp->snd_nxt;
1660 
1661 	if (!tp->sacked_out)
1662 		tcp_highest_sack_reset(sk);
1663 
1664 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1665 					 num_sacks, prior_snd_una);
1666 	if (found_dup_sack) {
1667 		state->flag |= FLAG_DSACKING_ACK;
1668 		tp->delivered++; /* A spurious retransmission is delivered */
1669 	}
1670 
1671 	/* Eliminate too old ACKs, but take into
1672 	 * account more or less fresh ones, they can
1673 	 * contain valid SACK info.
1674 	 */
1675 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1676 		return 0;
1677 
1678 	if (!tp->packets_out)
1679 		goto out;
1680 
1681 	used_sacks = 0;
1682 	first_sack_index = 0;
1683 	for (i = 0; i < num_sacks; i++) {
1684 		bool dup_sack = !i && found_dup_sack;
1685 
1686 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1687 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1688 
1689 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1690 					    sp[used_sacks].start_seq,
1691 					    sp[used_sacks].end_seq)) {
1692 			int mib_idx;
1693 
1694 			if (dup_sack) {
1695 				if (!tp->undo_marker)
1696 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1697 				else
1698 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1699 			} else {
1700 				/* Don't count olds caused by ACK reordering */
1701 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1702 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1703 					continue;
1704 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1705 			}
1706 
1707 			NET_INC_STATS(sock_net(sk), mib_idx);
1708 			if (i == 0)
1709 				first_sack_index = -1;
1710 			continue;
1711 		}
1712 
1713 		/* Ignore very old stuff early */
1714 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1715 			continue;
1716 
1717 		used_sacks++;
1718 	}
1719 
1720 	/* order SACK blocks to allow in order walk of the retrans queue */
1721 	for (i = used_sacks - 1; i > 0; i--) {
1722 		for (j = 0; j < i; j++) {
1723 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1724 				swap(sp[j], sp[j + 1]);
1725 
1726 				/* Track where the first SACK block goes to */
1727 				if (j == first_sack_index)
1728 					first_sack_index = j + 1;
1729 			}
1730 		}
1731 	}
1732 
1733 	state->mss_now = tcp_current_mss(sk);
1734 	skb = NULL;
1735 	i = 0;
1736 
1737 	if (!tp->sacked_out) {
1738 		/* It's already past, so skip checking against it */
1739 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1740 	} else {
1741 		cache = tp->recv_sack_cache;
1742 		/* Skip empty blocks in at head of the cache */
1743 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1744 		       !cache->end_seq)
1745 			cache++;
1746 	}
1747 
1748 	while (i < used_sacks) {
1749 		u32 start_seq = sp[i].start_seq;
1750 		u32 end_seq = sp[i].end_seq;
1751 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1752 		struct tcp_sack_block *next_dup = NULL;
1753 
1754 		if (found_dup_sack && ((i + 1) == first_sack_index))
1755 			next_dup = &sp[i + 1];
1756 
1757 		/* Skip too early cached blocks */
1758 		while (tcp_sack_cache_ok(tp, cache) &&
1759 		       !before(start_seq, cache->end_seq))
1760 			cache++;
1761 
1762 		/* Can skip some work by looking recv_sack_cache? */
1763 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1764 		    after(end_seq, cache->start_seq)) {
1765 
1766 			/* Head todo? */
1767 			if (before(start_seq, cache->start_seq)) {
1768 				skb = tcp_sacktag_skip(skb, sk, state,
1769 						       start_seq);
1770 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1771 						       state,
1772 						       start_seq,
1773 						       cache->start_seq,
1774 						       dup_sack);
1775 			}
1776 
1777 			/* Rest of the block already fully processed? */
1778 			if (!after(end_seq, cache->end_seq))
1779 				goto advance_sp;
1780 
1781 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1782 						       state,
1783 						       cache->end_seq);
1784 
1785 			/* ...tail remains todo... */
1786 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1787 				/* ...but better entrypoint exists! */
1788 				skb = tcp_highest_sack(sk);
1789 				if (!skb)
1790 					break;
1791 				cache++;
1792 				goto walk;
1793 			}
1794 
1795 			skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1796 			/* Check overlap against next cached too (past this one already) */
1797 			cache++;
1798 			continue;
1799 		}
1800 
1801 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1802 			skb = tcp_highest_sack(sk);
1803 			if (!skb)
1804 				break;
1805 		}
1806 		skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1807 
1808 walk:
1809 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1810 				       start_seq, end_seq, dup_sack);
1811 
1812 advance_sp:
1813 		i++;
1814 	}
1815 
1816 	/* Clear the head of the cache sack blocks so we can skip it next time */
1817 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1818 		tp->recv_sack_cache[i].start_seq = 0;
1819 		tp->recv_sack_cache[i].end_seq = 0;
1820 	}
1821 	for (j = 0; j < used_sacks; j++)
1822 		tp->recv_sack_cache[i++] = sp[j];
1823 
1824 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1825 		tcp_check_sack_reordering(sk, state->reord, 0);
1826 
1827 	tcp_verify_left_out(tp);
1828 out:
1829 
1830 #if FASTRETRANS_DEBUG > 0
1831 	WARN_ON((int)tp->sacked_out < 0);
1832 	WARN_ON((int)tp->lost_out < 0);
1833 	WARN_ON((int)tp->retrans_out < 0);
1834 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1835 #endif
1836 	return state->flag;
1837 }
1838 
1839 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1840  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1841  */
1842 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1843 {
1844 	u32 holes;
1845 
1846 	holes = max(tp->lost_out, 1U);
1847 	holes = min(holes, tp->packets_out);
1848 
1849 	if ((tp->sacked_out + holes) > tp->packets_out) {
1850 		tp->sacked_out = tp->packets_out - holes;
1851 		return true;
1852 	}
1853 	return false;
1854 }
1855 
1856 /* If we receive more dupacks than we expected counting segments
1857  * in assumption of absent reordering, interpret this as reordering.
1858  * The only another reason could be bug in receiver TCP.
1859  */
1860 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1861 {
1862 	struct tcp_sock *tp = tcp_sk(sk);
1863 
1864 	if (!tcp_limit_reno_sacked(tp))
1865 		return;
1866 
1867 	tp->reordering = min_t(u32, tp->packets_out + addend,
1868 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1869 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1870 }
1871 
1872 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1873 
1874 static void tcp_add_reno_sack(struct sock *sk)
1875 {
1876 	struct tcp_sock *tp = tcp_sk(sk);
1877 	u32 prior_sacked = tp->sacked_out;
1878 
1879 	tp->sacked_out++;
1880 	tcp_check_reno_reordering(sk, 0);
1881 	if (tp->sacked_out > prior_sacked)
1882 		tp->delivered++; /* Some out-of-order packet is delivered */
1883 	tcp_verify_left_out(tp);
1884 }
1885 
1886 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1887 
1888 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1889 {
1890 	struct tcp_sock *tp = tcp_sk(sk);
1891 
1892 	if (acked > 0) {
1893 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1894 		tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1895 		if (acked - 1 >= tp->sacked_out)
1896 			tp->sacked_out = 0;
1897 		else
1898 			tp->sacked_out -= acked - 1;
1899 	}
1900 	tcp_check_reno_reordering(sk, acked);
1901 	tcp_verify_left_out(tp);
1902 }
1903 
1904 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1905 {
1906 	tp->sacked_out = 0;
1907 }
1908 
1909 void tcp_clear_retrans(struct tcp_sock *tp)
1910 {
1911 	tp->retrans_out = 0;
1912 	tp->lost_out = 0;
1913 	tp->undo_marker = 0;
1914 	tp->undo_retrans = -1;
1915 	tp->sacked_out = 0;
1916 }
1917 
1918 static inline void tcp_init_undo(struct tcp_sock *tp)
1919 {
1920 	tp->undo_marker = tp->snd_una;
1921 	/* Retransmission still in flight may cause DSACKs later. */
1922 	tp->undo_retrans = tp->retrans_out ? : -1;
1923 }
1924 
1925 static bool tcp_is_rack(const struct sock *sk)
1926 {
1927 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1928 }
1929 
1930 /* If we detect SACK reneging, forget all SACK information
1931  * and reset tags completely, otherwise preserve SACKs. If receiver
1932  * dropped its ofo queue, we will know this due to reneging detection.
1933  */
1934 static void tcp_timeout_mark_lost(struct sock *sk)
1935 {
1936 	struct tcp_sock *tp = tcp_sk(sk);
1937 	struct sk_buff *skb, *head;
1938 	bool is_reneg;			/* is receiver reneging on SACKs? */
1939 
1940 	head = tcp_rtx_queue_head(sk);
1941 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1942 	if (is_reneg) {
1943 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1944 		tp->sacked_out = 0;
1945 		/* Mark SACK reneging until we recover from this loss event. */
1946 		tp->is_sack_reneg = 1;
1947 	} else if (tcp_is_reno(tp)) {
1948 		tcp_reset_reno_sack(tp);
1949 	}
1950 
1951 	skb = head;
1952 	skb_rbtree_walk_from(skb) {
1953 		if (is_reneg)
1954 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1955 		else if (tcp_is_rack(sk) && skb != head &&
1956 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
1957 			continue; /* Don't mark recently sent ones lost yet */
1958 		tcp_mark_skb_lost(sk, skb);
1959 	}
1960 	tcp_verify_left_out(tp);
1961 	tcp_clear_all_retrans_hints(tp);
1962 }
1963 
1964 /* Enter Loss state. */
1965 void tcp_enter_loss(struct sock *sk)
1966 {
1967 	const struct inet_connection_sock *icsk = inet_csk(sk);
1968 	struct tcp_sock *tp = tcp_sk(sk);
1969 	struct net *net = sock_net(sk);
1970 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1971 
1972 	tcp_timeout_mark_lost(sk);
1973 
1974 	/* Reduce ssthresh if it has not yet been made inside this window. */
1975 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1976 	    !after(tp->high_seq, tp->snd_una) ||
1977 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1978 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1979 		tp->prior_cwnd = tp->snd_cwnd;
1980 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1981 		tcp_ca_event(sk, CA_EVENT_LOSS);
1982 		tcp_init_undo(tp);
1983 	}
1984 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
1985 	tp->snd_cwnd_cnt   = 0;
1986 	tp->snd_cwnd_stamp = tcp_jiffies32;
1987 
1988 	/* Timeout in disordered state after receiving substantial DUPACKs
1989 	 * suggests that the degree of reordering is over-estimated.
1990 	 */
1991 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1992 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1993 		tp->reordering = min_t(unsigned int, tp->reordering,
1994 				       net->ipv4.sysctl_tcp_reordering);
1995 	tcp_set_ca_state(sk, TCP_CA_Loss);
1996 	tp->high_seq = tp->snd_nxt;
1997 	tcp_ecn_queue_cwr(tp);
1998 
1999 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2000 	 * loss recovery is underway except recurring timeout(s) on
2001 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2002 	 */
2003 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2004 		   (new_recovery || icsk->icsk_retransmits) &&
2005 		   !inet_csk(sk)->icsk_mtup.probe_size;
2006 }
2007 
2008 /* If ACK arrived pointing to a remembered SACK, it means that our
2009  * remembered SACKs do not reflect real state of receiver i.e.
2010  * receiver _host_ is heavily congested (or buggy).
2011  *
2012  * To avoid big spurious retransmission bursts due to transient SACK
2013  * scoreboard oddities that look like reneging, we give the receiver a
2014  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2015  * restore sanity to the SACK scoreboard. If the apparent reneging
2016  * persists until this RTO then we'll clear the SACK scoreboard.
2017  */
2018 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2019 {
2020 	if (flag & FLAG_SACK_RENEGING) {
2021 		struct tcp_sock *tp = tcp_sk(sk);
2022 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2023 					  msecs_to_jiffies(10));
2024 
2025 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2026 					  delay, TCP_RTO_MAX);
2027 		return true;
2028 	}
2029 	return false;
2030 }
2031 
2032 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2033  * counter when SACK is enabled (without SACK, sacked_out is used for
2034  * that purpose).
2035  *
2036  * With reordering, holes may still be in flight, so RFC3517 recovery
2037  * uses pure sacked_out (total number of SACKed segments) even though
2038  * it violates the RFC that uses duplicate ACKs, often these are equal
2039  * but when e.g. out-of-window ACKs or packet duplication occurs,
2040  * they differ. Since neither occurs due to loss, TCP should really
2041  * ignore them.
2042  */
2043 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2044 {
2045 	return tp->sacked_out + 1;
2046 }
2047 
2048 /* Linux NewReno/SACK/ECN state machine.
2049  * --------------------------------------
2050  *
2051  * "Open"	Normal state, no dubious events, fast path.
2052  * "Disorder"   In all the respects it is "Open",
2053  *		but requires a bit more attention. It is entered when
2054  *		we see some SACKs or dupacks. It is split of "Open"
2055  *		mainly to move some processing from fast path to slow one.
2056  * "CWR"	CWND was reduced due to some Congestion Notification event.
2057  *		It can be ECN, ICMP source quench, local device congestion.
2058  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2059  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2060  *
2061  * tcp_fastretrans_alert() is entered:
2062  * - each incoming ACK, if state is not "Open"
2063  * - when arrived ACK is unusual, namely:
2064  *	* SACK
2065  *	* Duplicate ACK.
2066  *	* ECN ECE.
2067  *
2068  * Counting packets in flight is pretty simple.
2069  *
2070  *	in_flight = packets_out - left_out + retrans_out
2071  *
2072  *	packets_out is SND.NXT-SND.UNA counted in packets.
2073  *
2074  *	retrans_out is number of retransmitted segments.
2075  *
2076  *	left_out is number of segments left network, but not ACKed yet.
2077  *
2078  *		left_out = sacked_out + lost_out
2079  *
2080  *     sacked_out: Packets, which arrived to receiver out of order
2081  *		   and hence not ACKed. With SACKs this number is simply
2082  *		   amount of SACKed data. Even without SACKs
2083  *		   it is easy to give pretty reliable estimate of this number,
2084  *		   counting duplicate ACKs.
2085  *
2086  *       lost_out: Packets lost by network. TCP has no explicit
2087  *		   "loss notification" feedback from network (for now).
2088  *		   It means that this number can be only _guessed_.
2089  *		   Actually, it is the heuristics to predict lossage that
2090  *		   distinguishes different algorithms.
2091  *
2092  *	F.e. after RTO, when all the queue is considered as lost,
2093  *	lost_out = packets_out and in_flight = retrans_out.
2094  *
2095  *		Essentially, we have now a few algorithms detecting
2096  *		lost packets.
2097  *
2098  *		If the receiver supports SACK:
2099  *
2100  *		RFC6675/3517: It is the conventional algorithm. A packet is
2101  *		considered lost if the number of higher sequence packets
2102  *		SACKed is greater than or equal the DUPACK thoreshold
2103  *		(reordering). This is implemented in tcp_mark_head_lost and
2104  *		tcp_update_scoreboard.
2105  *
2106  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2107  *		(2017-) that checks timing instead of counting DUPACKs.
2108  *		Essentially a packet is considered lost if it's not S/ACKed
2109  *		after RTT + reordering_window, where both metrics are
2110  *		dynamically measured and adjusted. This is implemented in
2111  *		tcp_rack_mark_lost.
2112  *
2113  *		If the receiver does not support SACK:
2114  *
2115  *		NewReno (RFC6582): in Recovery we assume that one segment
2116  *		is lost (classic Reno). While we are in Recovery and
2117  *		a partial ACK arrives, we assume that one more packet
2118  *		is lost (NewReno). This heuristics are the same in NewReno
2119  *		and SACK.
2120  *
2121  * Really tricky (and requiring careful tuning) part of algorithm
2122  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2123  * The first determines the moment _when_ we should reduce CWND and,
2124  * hence, slow down forward transmission. In fact, it determines the moment
2125  * when we decide that hole is caused by loss, rather than by a reorder.
2126  *
2127  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2128  * holes, caused by lost packets.
2129  *
2130  * And the most logically complicated part of algorithm is undo
2131  * heuristics. We detect false retransmits due to both too early
2132  * fast retransmit (reordering) and underestimated RTO, analyzing
2133  * timestamps and D-SACKs. When we detect that some segments were
2134  * retransmitted by mistake and CWND reduction was wrong, we undo
2135  * window reduction and abort recovery phase. This logic is hidden
2136  * inside several functions named tcp_try_undo_<something>.
2137  */
2138 
2139 /* This function decides, when we should leave Disordered state
2140  * and enter Recovery phase, reducing congestion window.
2141  *
2142  * Main question: may we further continue forward transmission
2143  * with the same cwnd?
2144  */
2145 static bool tcp_time_to_recover(struct sock *sk, int flag)
2146 {
2147 	struct tcp_sock *tp = tcp_sk(sk);
2148 
2149 	/* Trick#1: The loss is proven. */
2150 	if (tp->lost_out)
2151 		return true;
2152 
2153 	/* Not-A-Trick#2 : Classic rule... */
2154 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2155 		return true;
2156 
2157 	return false;
2158 }
2159 
2160 /* Detect loss in event "A" above by marking head of queue up as lost.
2161  * For non-SACK(Reno) senders, the first "packets" number of segments
2162  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2163  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2164  * the maximum SACKed segments to pass before reaching this limit.
2165  */
2166 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2167 {
2168 	struct tcp_sock *tp = tcp_sk(sk);
2169 	struct sk_buff *skb;
2170 	int cnt, oldcnt, lost;
2171 	unsigned int mss;
2172 	/* Use SACK to deduce losses of new sequences sent during recovery */
2173 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2174 
2175 	WARN_ON(packets > tp->packets_out);
2176 	skb = tp->lost_skb_hint;
2177 	if (skb) {
2178 		/* Head already handled? */
2179 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2180 			return;
2181 		cnt = tp->lost_cnt_hint;
2182 	} else {
2183 		skb = tcp_rtx_queue_head(sk);
2184 		cnt = 0;
2185 	}
2186 
2187 	skb_rbtree_walk_from(skb) {
2188 		/* TODO: do this better */
2189 		/* this is not the most efficient way to do this... */
2190 		tp->lost_skb_hint = skb;
2191 		tp->lost_cnt_hint = cnt;
2192 
2193 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2194 			break;
2195 
2196 		oldcnt = cnt;
2197 		if (tcp_is_reno(tp) ||
2198 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2199 			cnt += tcp_skb_pcount(skb);
2200 
2201 		if (cnt > packets) {
2202 			if (tcp_is_sack(tp) ||
2203 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2204 			    (oldcnt >= packets))
2205 				break;
2206 
2207 			mss = tcp_skb_mss(skb);
2208 			/* If needed, chop off the prefix to mark as lost. */
2209 			lost = (packets - oldcnt) * mss;
2210 			if (lost < skb->len &&
2211 			    tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2212 					 lost, mss, GFP_ATOMIC) < 0)
2213 				break;
2214 			cnt = packets;
2215 		}
2216 
2217 		tcp_skb_mark_lost(tp, skb);
2218 
2219 		if (mark_head)
2220 			break;
2221 	}
2222 	tcp_verify_left_out(tp);
2223 }
2224 
2225 /* Account newly detected lost packet(s) */
2226 
2227 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2228 {
2229 	struct tcp_sock *tp = tcp_sk(sk);
2230 
2231 	if (tcp_is_sack(tp)) {
2232 		int sacked_upto = tp->sacked_out - tp->reordering;
2233 		if (sacked_upto >= 0)
2234 			tcp_mark_head_lost(sk, sacked_upto, 0);
2235 		else if (fast_rexmit)
2236 			tcp_mark_head_lost(sk, 1, 1);
2237 	}
2238 }
2239 
2240 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2241 {
2242 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2243 	       before(tp->rx_opt.rcv_tsecr, when);
2244 }
2245 
2246 /* skb is spurious retransmitted if the returned timestamp echo
2247  * reply is prior to the skb transmission time
2248  */
2249 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2250 				     const struct sk_buff *skb)
2251 {
2252 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2253 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2254 }
2255 
2256 /* Nothing was retransmitted or returned timestamp is less
2257  * than timestamp of the first retransmission.
2258  */
2259 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2260 {
2261 	return !tp->retrans_stamp ||
2262 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2263 }
2264 
2265 /* Undo procedures. */
2266 
2267 /* We can clear retrans_stamp when there are no retransmissions in the
2268  * window. It would seem that it is trivially available for us in
2269  * tp->retrans_out, however, that kind of assumptions doesn't consider
2270  * what will happen if errors occur when sending retransmission for the
2271  * second time. ...It could the that such segment has only
2272  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2273  * the head skb is enough except for some reneging corner cases that
2274  * are not worth the effort.
2275  *
2276  * Main reason for all this complexity is the fact that connection dying
2277  * time now depends on the validity of the retrans_stamp, in particular,
2278  * that successive retransmissions of a segment must not advance
2279  * retrans_stamp under any conditions.
2280  */
2281 static bool tcp_any_retrans_done(const struct sock *sk)
2282 {
2283 	const struct tcp_sock *tp = tcp_sk(sk);
2284 	struct sk_buff *skb;
2285 
2286 	if (tp->retrans_out)
2287 		return true;
2288 
2289 	skb = tcp_rtx_queue_head(sk);
2290 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2291 		return true;
2292 
2293 	return false;
2294 }
2295 
2296 static void DBGUNDO(struct sock *sk, const char *msg)
2297 {
2298 #if FASTRETRANS_DEBUG > 1
2299 	struct tcp_sock *tp = tcp_sk(sk);
2300 	struct inet_sock *inet = inet_sk(sk);
2301 
2302 	if (sk->sk_family == AF_INET) {
2303 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2304 			 msg,
2305 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2306 			 tp->snd_cwnd, tcp_left_out(tp),
2307 			 tp->snd_ssthresh, tp->prior_ssthresh,
2308 			 tp->packets_out);
2309 	}
2310 #if IS_ENABLED(CONFIG_IPV6)
2311 	else if (sk->sk_family == AF_INET6) {
2312 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2313 			 msg,
2314 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2315 			 tp->snd_cwnd, tcp_left_out(tp),
2316 			 tp->snd_ssthresh, tp->prior_ssthresh,
2317 			 tp->packets_out);
2318 	}
2319 #endif
2320 #endif
2321 }
2322 
2323 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2324 {
2325 	struct tcp_sock *tp = tcp_sk(sk);
2326 
2327 	if (unmark_loss) {
2328 		struct sk_buff *skb;
2329 
2330 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2331 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2332 		}
2333 		tp->lost_out = 0;
2334 		tcp_clear_all_retrans_hints(tp);
2335 	}
2336 
2337 	if (tp->prior_ssthresh) {
2338 		const struct inet_connection_sock *icsk = inet_csk(sk);
2339 
2340 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2341 
2342 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2343 			tp->snd_ssthresh = tp->prior_ssthresh;
2344 			tcp_ecn_withdraw_cwr(tp);
2345 		}
2346 	}
2347 	tp->snd_cwnd_stamp = tcp_jiffies32;
2348 	tp->undo_marker = 0;
2349 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2350 }
2351 
2352 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2353 {
2354 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2355 }
2356 
2357 /* People celebrate: "We love our President!" */
2358 static bool tcp_try_undo_recovery(struct sock *sk)
2359 {
2360 	struct tcp_sock *tp = tcp_sk(sk);
2361 
2362 	if (tcp_may_undo(tp)) {
2363 		int mib_idx;
2364 
2365 		/* Happy end! We did not retransmit anything
2366 		 * or our original transmission succeeded.
2367 		 */
2368 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2369 		tcp_undo_cwnd_reduction(sk, false);
2370 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2371 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2372 		else
2373 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2374 
2375 		NET_INC_STATS(sock_net(sk), mib_idx);
2376 	} else if (tp->rack.reo_wnd_persist) {
2377 		tp->rack.reo_wnd_persist--;
2378 	}
2379 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2380 		/* Hold old state until something *above* high_seq
2381 		 * is ACKed. For Reno it is MUST to prevent false
2382 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2383 		if (!tcp_any_retrans_done(sk))
2384 			tp->retrans_stamp = 0;
2385 		return true;
2386 	}
2387 	tcp_set_ca_state(sk, TCP_CA_Open);
2388 	tp->is_sack_reneg = 0;
2389 	return false;
2390 }
2391 
2392 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2393 static bool tcp_try_undo_dsack(struct sock *sk)
2394 {
2395 	struct tcp_sock *tp = tcp_sk(sk);
2396 
2397 	if (tp->undo_marker && !tp->undo_retrans) {
2398 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2399 					       tp->rack.reo_wnd_persist + 1);
2400 		DBGUNDO(sk, "D-SACK");
2401 		tcp_undo_cwnd_reduction(sk, false);
2402 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2403 		return true;
2404 	}
2405 	return false;
2406 }
2407 
2408 /* Undo during loss recovery after partial ACK or using F-RTO. */
2409 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2410 {
2411 	struct tcp_sock *tp = tcp_sk(sk);
2412 
2413 	if (frto_undo || tcp_may_undo(tp)) {
2414 		tcp_undo_cwnd_reduction(sk, true);
2415 
2416 		DBGUNDO(sk, "partial loss");
2417 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2418 		if (frto_undo)
2419 			NET_INC_STATS(sock_net(sk),
2420 					LINUX_MIB_TCPSPURIOUSRTOS);
2421 		inet_csk(sk)->icsk_retransmits = 0;
2422 		if (frto_undo || tcp_is_sack(tp)) {
2423 			tcp_set_ca_state(sk, TCP_CA_Open);
2424 			tp->is_sack_reneg = 0;
2425 		}
2426 		return true;
2427 	}
2428 	return false;
2429 }
2430 
2431 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2432  * It computes the number of packets to send (sndcnt) based on packets newly
2433  * delivered:
2434  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2435  *	cwnd reductions across a full RTT.
2436  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2437  *      But when the retransmits are acked without further losses, PRR
2438  *      slow starts cwnd up to ssthresh to speed up the recovery.
2439  */
2440 static void tcp_init_cwnd_reduction(struct sock *sk)
2441 {
2442 	struct tcp_sock *tp = tcp_sk(sk);
2443 
2444 	tp->high_seq = tp->snd_nxt;
2445 	tp->tlp_high_seq = 0;
2446 	tp->snd_cwnd_cnt = 0;
2447 	tp->prior_cwnd = tp->snd_cwnd;
2448 	tp->prr_delivered = 0;
2449 	tp->prr_out = 0;
2450 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2451 	tcp_ecn_queue_cwr(tp);
2452 }
2453 
2454 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2455 {
2456 	struct tcp_sock *tp = tcp_sk(sk);
2457 	int sndcnt = 0;
2458 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2459 
2460 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2461 		return;
2462 
2463 	tp->prr_delivered += newly_acked_sacked;
2464 	if (delta < 0) {
2465 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2466 			       tp->prior_cwnd - 1;
2467 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2468 	} else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2469 		   !(flag & FLAG_LOST_RETRANS)) {
2470 		sndcnt = min_t(int, delta,
2471 			       max_t(int, tp->prr_delivered - tp->prr_out,
2472 				     newly_acked_sacked) + 1);
2473 	} else {
2474 		sndcnt = min(delta, newly_acked_sacked);
2475 	}
2476 	/* Force a fast retransmit upon entering fast recovery */
2477 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2478 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2479 }
2480 
2481 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2482 {
2483 	struct tcp_sock *tp = tcp_sk(sk);
2484 
2485 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2486 		return;
2487 
2488 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2489 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2490 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2491 		tp->snd_cwnd = tp->snd_ssthresh;
2492 		tp->snd_cwnd_stamp = tcp_jiffies32;
2493 	}
2494 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2495 }
2496 
2497 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2498 void tcp_enter_cwr(struct sock *sk)
2499 {
2500 	struct tcp_sock *tp = tcp_sk(sk);
2501 
2502 	tp->prior_ssthresh = 0;
2503 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2504 		tp->undo_marker = 0;
2505 		tcp_init_cwnd_reduction(sk);
2506 		tcp_set_ca_state(sk, TCP_CA_CWR);
2507 	}
2508 }
2509 EXPORT_SYMBOL(tcp_enter_cwr);
2510 
2511 static void tcp_try_keep_open(struct sock *sk)
2512 {
2513 	struct tcp_sock *tp = tcp_sk(sk);
2514 	int state = TCP_CA_Open;
2515 
2516 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2517 		state = TCP_CA_Disorder;
2518 
2519 	if (inet_csk(sk)->icsk_ca_state != state) {
2520 		tcp_set_ca_state(sk, state);
2521 		tp->high_seq = tp->snd_nxt;
2522 	}
2523 }
2524 
2525 static void tcp_try_to_open(struct sock *sk, int flag)
2526 {
2527 	struct tcp_sock *tp = tcp_sk(sk);
2528 
2529 	tcp_verify_left_out(tp);
2530 
2531 	if (!tcp_any_retrans_done(sk))
2532 		tp->retrans_stamp = 0;
2533 
2534 	if (flag & FLAG_ECE)
2535 		tcp_enter_cwr(sk);
2536 
2537 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2538 		tcp_try_keep_open(sk);
2539 	}
2540 }
2541 
2542 static void tcp_mtup_probe_failed(struct sock *sk)
2543 {
2544 	struct inet_connection_sock *icsk = inet_csk(sk);
2545 
2546 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2547 	icsk->icsk_mtup.probe_size = 0;
2548 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2549 }
2550 
2551 static void tcp_mtup_probe_success(struct sock *sk)
2552 {
2553 	struct tcp_sock *tp = tcp_sk(sk);
2554 	struct inet_connection_sock *icsk = inet_csk(sk);
2555 
2556 	/* FIXME: breaks with very large cwnd */
2557 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2558 	tp->snd_cwnd = tp->snd_cwnd *
2559 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2560 		       icsk->icsk_mtup.probe_size;
2561 	tp->snd_cwnd_cnt = 0;
2562 	tp->snd_cwnd_stamp = tcp_jiffies32;
2563 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2564 
2565 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2566 	icsk->icsk_mtup.probe_size = 0;
2567 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2568 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2569 }
2570 
2571 /* Do a simple retransmit without using the backoff mechanisms in
2572  * tcp_timer. This is used for path mtu discovery.
2573  * The socket is already locked here.
2574  */
2575 void tcp_simple_retransmit(struct sock *sk)
2576 {
2577 	const struct inet_connection_sock *icsk = inet_csk(sk);
2578 	struct tcp_sock *tp = tcp_sk(sk);
2579 	struct sk_buff *skb;
2580 	unsigned int mss = tcp_current_mss(sk);
2581 
2582 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2583 		if (tcp_skb_seglen(skb) > mss &&
2584 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2585 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2586 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2587 				tp->retrans_out -= tcp_skb_pcount(skb);
2588 			}
2589 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2590 		}
2591 	}
2592 
2593 	tcp_clear_retrans_hints_partial(tp);
2594 
2595 	if (!tp->lost_out)
2596 		return;
2597 
2598 	if (tcp_is_reno(tp))
2599 		tcp_limit_reno_sacked(tp);
2600 
2601 	tcp_verify_left_out(tp);
2602 
2603 	/* Don't muck with the congestion window here.
2604 	 * Reason is that we do not increase amount of _data_
2605 	 * in network, but units changed and effective
2606 	 * cwnd/ssthresh really reduced now.
2607 	 */
2608 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2609 		tp->high_seq = tp->snd_nxt;
2610 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2611 		tp->prior_ssthresh = 0;
2612 		tp->undo_marker = 0;
2613 		tcp_set_ca_state(sk, TCP_CA_Loss);
2614 	}
2615 	tcp_xmit_retransmit_queue(sk);
2616 }
2617 EXPORT_SYMBOL(tcp_simple_retransmit);
2618 
2619 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2620 {
2621 	struct tcp_sock *tp = tcp_sk(sk);
2622 	int mib_idx;
2623 
2624 	if (tcp_is_reno(tp))
2625 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2626 	else
2627 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2628 
2629 	NET_INC_STATS(sock_net(sk), mib_idx);
2630 
2631 	tp->prior_ssthresh = 0;
2632 	tcp_init_undo(tp);
2633 
2634 	if (!tcp_in_cwnd_reduction(sk)) {
2635 		if (!ece_ack)
2636 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2637 		tcp_init_cwnd_reduction(sk);
2638 	}
2639 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2640 }
2641 
2642 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2643  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2644  */
2645 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2646 			     int *rexmit)
2647 {
2648 	struct tcp_sock *tp = tcp_sk(sk);
2649 	bool recovered = !before(tp->snd_una, tp->high_seq);
2650 
2651 	if ((flag & FLAG_SND_UNA_ADVANCED) &&
2652 	    tcp_try_undo_loss(sk, false))
2653 		return;
2654 
2655 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2656 		/* Step 3.b. A timeout is spurious if not all data are
2657 		 * lost, i.e., never-retransmitted data are (s)acked.
2658 		 */
2659 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2660 		    tcp_try_undo_loss(sk, true))
2661 			return;
2662 
2663 		if (after(tp->snd_nxt, tp->high_seq)) {
2664 			if (flag & FLAG_DATA_SACKED || is_dupack)
2665 				tp->frto = 0; /* Step 3.a. loss was real */
2666 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2667 			tp->high_seq = tp->snd_nxt;
2668 			/* Step 2.b. Try send new data (but deferred until cwnd
2669 			 * is updated in tcp_ack()). Otherwise fall back to
2670 			 * the conventional recovery.
2671 			 */
2672 			if (!tcp_write_queue_empty(sk) &&
2673 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2674 				*rexmit = REXMIT_NEW;
2675 				return;
2676 			}
2677 			tp->frto = 0;
2678 		}
2679 	}
2680 
2681 	if (recovered) {
2682 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2683 		tcp_try_undo_recovery(sk);
2684 		return;
2685 	}
2686 	if (tcp_is_reno(tp)) {
2687 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2688 		 * delivered. Lower inflight to clock out (re)tranmissions.
2689 		 */
2690 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2691 			tcp_add_reno_sack(sk);
2692 		else if (flag & FLAG_SND_UNA_ADVANCED)
2693 			tcp_reset_reno_sack(tp);
2694 	}
2695 	*rexmit = REXMIT_LOST;
2696 }
2697 
2698 /* Undo during fast recovery after partial ACK. */
2699 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2700 {
2701 	struct tcp_sock *tp = tcp_sk(sk);
2702 
2703 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2704 		/* Plain luck! Hole if filled with delayed
2705 		 * packet, rather than with a retransmit. Check reordering.
2706 		 */
2707 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2708 
2709 		/* We are getting evidence that the reordering degree is higher
2710 		 * than we realized. If there are no retransmits out then we
2711 		 * can undo. Otherwise we clock out new packets but do not
2712 		 * mark more packets lost or retransmit more.
2713 		 */
2714 		if (tp->retrans_out)
2715 			return true;
2716 
2717 		if (!tcp_any_retrans_done(sk))
2718 			tp->retrans_stamp = 0;
2719 
2720 		DBGUNDO(sk, "partial recovery");
2721 		tcp_undo_cwnd_reduction(sk, true);
2722 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2723 		tcp_try_keep_open(sk);
2724 		return true;
2725 	}
2726 	return false;
2727 }
2728 
2729 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2730 {
2731 	struct tcp_sock *tp = tcp_sk(sk);
2732 
2733 	if (tcp_rtx_queue_empty(sk))
2734 		return;
2735 
2736 	if (unlikely(tcp_is_reno(tp))) {
2737 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2738 	} else if (tcp_is_rack(sk)) {
2739 		u32 prior_retrans = tp->retrans_out;
2740 
2741 		tcp_rack_mark_lost(sk);
2742 		if (prior_retrans > tp->retrans_out)
2743 			*ack_flag |= FLAG_LOST_RETRANS;
2744 	}
2745 }
2746 
2747 static bool tcp_force_fast_retransmit(struct sock *sk)
2748 {
2749 	struct tcp_sock *tp = tcp_sk(sk);
2750 
2751 	return after(tcp_highest_sack_seq(tp),
2752 		     tp->snd_una + tp->reordering * tp->mss_cache);
2753 }
2754 
2755 /* Process an event, which can update packets-in-flight not trivially.
2756  * Main goal of this function is to calculate new estimate for left_out,
2757  * taking into account both packets sitting in receiver's buffer and
2758  * packets lost by network.
2759  *
2760  * Besides that it updates the congestion state when packet loss or ECN
2761  * is detected. But it does not reduce the cwnd, it is done by the
2762  * congestion control later.
2763  *
2764  * It does _not_ decide what to send, it is made in function
2765  * tcp_xmit_retransmit_queue().
2766  */
2767 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2768 				  bool is_dupack, int *ack_flag, int *rexmit)
2769 {
2770 	struct inet_connection_sock *icsk = inet_csk(sk);
2771 	struct tcp_sock *tp = tcp_sk(sk);
2772 	int fast_rexmit = 0, flag = *ack_flag;
2773 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2774 				     tcp_force_fast_retransmit(sk));
2775 
2776 	if (!tp->packets_out && tp->sacked_out)
2777 		tp->sacked_out = 0;
2778 
2779 	/* Now state machine starts.
2780 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2781 	if (flag & FLAG_ECE)
2782 		tp->prior_ssthresh = 0;
2783 
2784 	/* B. In all the states check for reneging SACKs. */
2785 	if (tcp_check_sack_reneging(sk, flag))
2786 		return;
2787 
2788 	/* C. Check consistency of the current state. */
2789 	tcp_verify_left_out(tp);
2790 
2791 	/* D. Check state exit conditions. State can be terminated
2792 	 *    when high_seq is ACKed. */
2793 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2794 		WARN_ON(tp->retrans_out != 0);
2795 		tp->retrans_stamp = 0;
2796 	} else if (!before(tp->snd_una, tp->high_seq)) {
2797 		switch (icsk->icsk_ca_state) {
2798 		case TCP_CA_CWR:
2799 			/* CWR is to be held something *above* high_seq
2800 			 * is ACKed for CWR bit to reach receiver. */
2801 			if (tp->snd_una != tp->high_seq) {
2802 				tcp_end_cwnd_reduction(sk);
2803 				tcp_set_ca_state(sk, TCP_CA_Open);
2804 			}
2805 			break;
2806 
2807 		case TCP_CA_Recovery:
2808 			if (tcp_is_reno(tp))
2809 				tcp_reset_reno_sack(tp);
2810 			if (tcp_try_undo_recovery(sk))
2811 				return;
2812 			tcp_end_cwnd_reduction(sk);
2813 			break;
2814 		}
2815 	}
2816 
2817 	/* E. Process state. */
2818 	switch (icsk->icsk_ca_state) {
2819 	case TCP_CA_Recovery:
2820 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2821 			if (tcp_is_reno(tp) && is_dupack)
2822 				tcp_add_reno_sack(sk);
2823 		} else {
2824 			if (tcp_try_undo_partial(sk, prior_snd_una))
2825 				return;
2826 			/* Partial ACK arrived. Force fast retransmit. */
2827 			do_lost = tcp_is_reno(tp) ||
2828 				  tcp_force_fast_retransmit(sk);
2829 		}
2830 		if (tcp_try_undo_dsack(sk)) {
2831 			tcp_try_keep_open(sk);
2832 			return;
2833 		}
2834 		tcp_identify_packet_loss(sk, ack_flag);
2835 		break;
2836 	case TCP_CA_Loss:
2837 		tcp_process_loss(sk, flag, is_dupack, rexmit);
2838 		tcp_identify_packet_loss(sk, ack_flag);
2839 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2840 		      (*ack_flag & FLAG_LOST_RETRANS)))
2841 			return;
2842 		/* Change state if cwnd is undone or retransmits are lost */
2843 		/* fall through */
2844 	default:
2845 		if (tcp_is_reno(tp)) {
2846 			if (flag & FLAG_SND_UNA_ADVANCED)
2847 				tcp_reset_reno_sack(tp);
2848 			if (is_dupack)
2849 				tcp_add_reno_sack(sk);
2850 		}
2851 
2852 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2853 			tcp_try_undo_dsack(sk);
2854 
2855 		tcp_identify_packet_loss(sk, ack_flag);
2856 		if (!tcp_time_to_recover(sk, flag)) {
2857 			tcp_try_to_open(sk, flag);
2858 			return;
2859 		}
2860 
2861 		/* MTU probe failure: don't reduce cwnd */
2862 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2863 		    icsk->icsk_mtup.probe_size &&
2864 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2865 			tcp_mtup_probe_failed(sk);
2866 			/* Restores the reduction we did in tcp_mtup_probe() */
2867 			tp->snd_cwnd++;
2868 			tcp_simple_retransmit(sk);
2869 			return;
2870 		}
2871 
2872 		/* Otherwise enter Recovery state */
2873 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2874 		fast_rexmit = 1;
2875 	}
2876 
2877 	if (!tcp_is_rack(sk) && do_lost)
2878 		tcp_update_scoreboard(sk, fast_rexmit);
2879 	*rexmit = REXMIT_LOST;
2880 }
2881 
2882 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2883 {
2884 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2885 	struct tcp_sock *tp = tcp_sk(sk);
2886 
2887 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2888 		/* If the remote keeps returning delayed ACKs, eventually
2889 		 * the min filter would pick it up and overestimate the
2890 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2891 		 */
2892 		return;
2893 	}
2894 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2895 			   rtt_us ? : jiffies_to_usecs(1));
2896 }
2897 
2898 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2899 			       long seq_rtt_us, long sack_rtt_us,
2900 			       long ca_rtt_us, struct rate_sample *rs)
2901 {
2902 	const struct tcp_sock *tp = tcp_sk(sk);
2903 
2904 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2905 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2906 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2907 	 * is acked (RFC6298).
2908 	 */
2909 	if (seq_rtt_us < 0)
2910 		seq_rtt_us = sack_rtt_us;
2911 
2912 	/* RTTM Rule: A TSecr value received in a segment is used to
2913 	 * update the averaged RTT measurement only if the segment
2914 	 * acknowledges some new data, i.e., only if it advances the
2915 	 * left edge of the send window.
2916 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2917 	 */
2918 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2919 	    flag & FLAG_ACKED) {
2920 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2921 		u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2922 
2923 		seq_rtt_us = ca_rtt_us = delta_us;
2924 	}
2925 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2926 	if (seq_rtt_us < 0)
2927 		return false;
2928 
2929 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2930 	 * always taken together with ACK, SACK, or TS-opts. Any negative
2931 	 * values will be skipped with the seq_rtt_us < 0 check above.
2932 	 */
2933 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
2934 	tcp_rtt_estimator(sk, seq_rtt_us);
2935 	tcp_set_rto(sk);
2936 
2937 	/* RFC6298: only reset backoff on valid RTT measurement. */
2938 	inet_csk(sk)->icsk_backoff = 0;
2939 	return true;
2940 }
2941 
2942 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2943 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2944 {
2945 	struct rate_sample rs;
2946 	long rtt_us = -1L;
2947 
2948 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2949 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2950 
2951 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2952 }
2953 
2954 
2955 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2956 {
2957 	const struct inet_connection_sock *icsk = inet_csk(sk);
2958 
2959 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2960 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2961 }
2962 
2963 /* Restart timer after forward progress on connection.
2964  * RFC2988 recommends to restart timer to now+rto.
2965  */
2966 void tcp_rearm_rto(struct sock *sk)
2967 {
2968 	const struct inet_connection_sock *icsk = inet_csk(sk);
2969 	struct tcp_sock *tp = tcp_sk(sk);
2970 
2971 	/* If the retrans timer is currently being used by Fast Open
2972 	 * for SYN-ACK retrans purpose, stay put.
2973 	 */
2974 	if (tp->fastopen_rsk)
2975 		return;
2976 
2977 	if (!tp->packets_out) {
2978 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2979 	} else {
2980 		u32 rto = inet_csk(sk)->icsk_rto;
2981 		/* Offset the time elapsed after installing regular RTO */
2982 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
2983 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2984 			s64 delta_us = tcp_rto_delta_us(sk);
2985 			/* delta_us may not be positive if the socket is locked
2986 			 * when the retrans timer fires and is rescheduled.
2987 			 */
2988 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
2989 		}
2990 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2991 					  TCP_RTO_MAX);
2992 	}
2993 }
2994 
2995 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
2996 static void tcp_set_xmit_timer(struct sock *sk)
2997 {
2998 	if (!tcp_schedule_loss_probe(sk, true))
2999 		tcp_rearm_rto(sk);
3000 }
3001 
3002 /* If we get here, the whole TSO packet has not been acked. */
3003 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3004 {
3005 	struct tcp_sock *tp = tcp_sk(sk);
3006 	u32 packets_acked;
3007 
3008 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3009 
3010 	packets_acked = tcp_skb_pcount(skb);
3011 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3012 		return 0;
3013 	packets_acked -= tcp_skb_pcount(skb);
3014 
3015 	if (packets_acked) {
3016 		BUG_ON(tcp_skb_pcount(skb) == 0);
3017 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3018 	}
3019 
3020 	return packets_acked;
3021 }
3022 
3023 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3024 			   u32 prior_snd_una)
3025 {
3026 	const struct skb_shared_info *shinfo;
3027 
3028 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3029 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3030 		return;
3031 
3032 	shinfo = skb_shinfo(skb);
3033 	if (!before(shinfo->tskey, prior_snd_una) &&
3034 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3035 		tcp_skb_tsorted_save(skb) {
3036 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3037 		} tcp_skb_tsorted_restore(skb);
3038 	}
3039 }
3040 
3041 /* Remove acknowledged frames from the retransmission queue. If our packet
3042  * is before the ack sequence we can discard it as it's confirmed to have
3043  * arrived at the other end.
3044  */
3045 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3046 			       u32 prior_snd_una,
3047 			       struct tcp_sacktag_state *sack)
3048 {
3049 	const struct inet_connection_sock *icsk = inet_csk(sk);
3050 	u64 first_ackt, last_ackt;
3051 	struct tcp_sock *tp = tcp_sk(sk);
3052 	u32 prior_sacked = tp->sacked_out;
3053 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3054 	struct sk_buff *skb, *next;
3055 	bool fully_acked = true;
3056 	long sack_rtt_us = -1L;
3057 	long seq_rtt_us = -1L;
3058 	long ca_rtt_us = -1L;
3059 	u32 pkts_acked = 0;
3060 	u32 last_in_flight = 0;
3061 	bool rtt_update;
3062 	int flag = 0;
3063 
3064 	first_ackt = 0;
3065 
3066 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3067 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3068 		const u32 start_seq = scb->seq;
3069 		u8 sacked = scb->sacked;
3070 		u32 acked_pcount;
3071 
3072 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3073 
3074 		/* Determine how many packets and what bytes were acked, tso and else */
3075 		if (after(scb->end_seq, tp->snd_una)) {
3076 			if (tcp_skb_pcount(skb) == 1 ||
3077 			    !after(tp->snd_una, scb->seq))
3078 				break;
3079 
3080 			acked_pcount = tcp_tso_acked(sk, skb);
3081 			if (!acked_pcount)
3082 				break;
3083 			fully_acked = false;
3084 		} else {
3085 			acked_pcount = tcp_skb_pcount(skb);
3086 		}
3087 
3088 		if (unlikely(sacked & TCPCB_RETRANS)) {
3089 			if (sacked & TCPCB_SACKED_RETRANS)
3090 				tp->retrans_out -= acked_pcount;
3091 			flag |= FLAG_RETRANS_DATA_ACKED;
3092 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3093 			last_ackt = skb->skb_mstamp;
3094 			WARN_ON_ONCE(last_ackt == 0);
3095 			if (!first_ackt)
3096 				first_ackt = last_ackt;
3097 
3098 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3099 			if (before(start_seq, reord))
3100 				reord = start_seq;
3101 			if (!after(scb->end_seq, tp->high_seq))
3102 				flag |= FLAG_ORIG_SACK_ACKED;
3103 		}
3104 
3105 		if (sacked & TCPCB_SACKED_ACKED) {
3106 			tp->sacked_out -= acked_pcount;
3107 		} else if (tcp_is_sack(tp)) {
3108 			tp->delivered += acked_pcount;
3109 			if (!tcp_skb_spurious_retrans(tp, skb))
3110 				tcp_rack_advance(tp, sacked, scb->end_seq,
3111 						 skb->skb_mstamp);
3112 		}
3113 		if (sacked & TCPCB_LOST)
3114 			tp->lost_out -= acked_pcount;
3115 
3116 		tp->packets_out -= acked_pcount;
3117 		pkts_acked += acked_pcount;
3118 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3119 
3120 		/* Initial outgoing SYN's get put onto the write_queue
3121 		 * just like anything else we transmit.  It is not
3122 		 * true data, and if we misinform our callers that
3123 		 * this ACK acks real data, we will erroneously exit
3124 		 * connection startup slow start one packet too
3125 		 * quickly.  This is severely frowned upon behavior.
3126 		 */
3127 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3128 			flag |= FLAG_DATA_ACKED;
3129 		} else {
3130 			flag |= FLAG_SYN_ACKED;
3131 			tp->retrans_stamp = 0;
3132 		}
3133 
3134 		if (!fully_acked)
3135 			break;
3136 
3137 		next = skb_rb_next(skb);
3138 		if (unlikely(skb == tp->retransmit_skb_hint))
3139 			tp->retransmit_skb_hint = NULL;
3140 		if (unlikely(skb == tp->lost_skb_hint))
3141 			tp->lost_skb_hint = NULL;
3142 		tcp_rtx_queue_unlink_and_free(skb, sk);
3143 	}
3144 
3145 	if (!skb)
3146 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3147 
3148 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3149 		tp->snd_up = tp->snd_una;
3150 
3151 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3152 		flag |= FLAG_SACK_RENEGING;
3153 
3154 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3155 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3156 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3157 
3158 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3159 		    last_in_flight && !prior_sacked && fully_acked &&
3160 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3161 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3162 			/* Conservatively mark a delayed ACK. It's typically
3163 			 * from a lone runt packet over the round trip to
3164 			 * a receiver w/o out-of-order or CE events.
3165 			 */
3166 			flag |= FLAG_ACK_MAYBE_DELAYED;
3167 		}
3168 	}
3169 	if (sack->first_sackt) {
3170 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3171 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3172 	}
3173 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3174 					ca_rtt_us, sack->rate);
3175 
3176 	if (flag & FLAG_ACKED) {
3177 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3178 		if (unlikely(icsk->icsk_mtup.probe_size &&
3179 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3180 			tcp_mtup_probe_success(sk);
3181 		}
3182 
3183 		if (tcp_is_reno(tp)) {
3184 			tcp_remove_reno_sacks(sk, pkts_acked);
3185 
3186 			/* If any of the cumulatively ACKed segments was
3187 			 * retransmitted, non-SACK case cannot confirm that
3188 			 * progress was due to original transmission due to
3189 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3190 			 * the packets may have been never retransmitted.
3191 			 */
3192 			if (flag & FLAG_RETRANS_DATA_ACKED)
3193 				flag &= ~FLAG_ORIG_SACK_ACKED;
3194 		} else {
3195 			int delta;
3196 
3197 			/* Non-retransmitted hole got filled? That's reordering */
3198 			if (before(reord, prior_fack))
3199 				tcp_check_sack_reordering(sk, reord, 0);
3200 
3201 			delta = prior_sacked - tp->sacked_out;
3202 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3203 		}
3204 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3205 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) {
3206 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3207 		 * after when the head was last (re)transmitted. Otherwise the
3208 		 * timeout may continue to extend in loss recovery.
3209 		 */
3210 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3211 	}
3212 
3213 	if (icsk->icsk_ca_ops->pkts_acked) {
3214 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3215 					     .rtt_us = sack->rate->rtt_us,
3216 					     .in_flight = last_in_flight };
3217 
3218 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3219 	}
3220 
3221 #if FASTRETRANS_DEBUG > 0
3222 	WARN_ON((int)tp->sacked_out < 0);
3223 	WARN_ON((int)tp->lost_out < 0);
3224 	WARN_ON((int)tp->retrans_out < 0);
3225 	if (!tp->packets_out && tcp_is_sack(tp)) {
3226 		icsk = inet_csk(sk);
3227 		if (tp->lost_out) {
3228 			pr_debug("Leak l=%u %d\n",
3229 				 tp->lost_out, icsk->icsk_ca_state);
3230 			tp->lost_out = 0;
3231 		}
3232 		if (tp->sacked_out) {
3233 			pr_debug("Leak s=%u %d\n",
3234 				 tp->sacked_out, icsk->icsk_ca_state);
3235 			tp->sacked_out = 0;
3236 		}
3237 		if (tp->retrans_out) {
3238 			pr_debug("Leak r=%u %d\n",
3239 				 tp->retrans_out, icsk->icsk_ca_state);
3240 			tp->retrans_out = 0;
3241 		}
3242 	}
3243 #endif
3244 	return flag;
3245 }
3246 
3247 static void tcp_ack_probe(struct sock *sk)
3248 {
3249 	struct inet_connection_sock *icsk = inet_csk(sk);
3250 	struct sk_buff *head = tcp_send_head(sk);
3251 	const struct tcp_sock *tp = tcp_sk(sk);
3252 
3253 	/* Was it a usable window open? */
3254 	if (!head)
3255 		return;
3256 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3257 		icsk->icsk_backoff = 0;
3258 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3259 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3260 		 * This function is not for random using!
3261 		 */
3262 	} else {
3263 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3264 
3265 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3266 					  when, TCP_RTO_MAX);
3267 	}
3268 }
3269 
3270 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3271 {
3272 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3273 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3274 }
3275 
3276 /* Decide wheather to run the increase function of congestion control. */
3277 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3278 {
3279 	/* If reordering is high then always grow cwnd whenever data is
3280 	 * delivered regardless of its ordering. Otherwise stay conservative
3281 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3282 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3283 	 * cwnd in tcp_fastretrans_alert() based on more states.
3284 	 */
3285 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3286 		return flag & FLAG_FORWARD_PROGRESS;
3287 
3288 	return flag & FLAG_DATA_ACKED;
3289 }
3290 
3291 /* The "ultimate" congestion control function that aims to replace the rigid
3292  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3293  * It's called toward the end of processing an ACK with precise rate
3294  * information. All transmission or retransmission are delayed afterwards.
3295  */
3296 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3297 			     int flag, const struct rate_sample *rs)
3298 {
3299 	const struct inet_connection_sock *icsk = inet_csk(sk);
3300 
3301 	if (icsk->icsk_ca_ops->cong_control) {
3302 		icsk->icsk_ca_ops->cong_control(sk, rs);
3303 		return;
3304 	}
3305 
3306 	if (tcp_in_cwnd_reduction(sk)) {
3307 		/* Reduce cwnd if state mandates */
3308 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3309 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3310 		/* Advance cwnd if state allows */
3311 		tcp_cong_avoid(sk, ack, acked_sacked);
3312 	}
3313 	tcp_update_pacing_rate(sk);
3314 }
3315 
3316 /* Check that window update is acceptable.
3317  * The function assumes that snd_una<=ack<=snd_next.
3318  */
3319 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3320 					const u32 ack, const u32 ack_seq,
3321 					const u32 nwin)
3322 {
3323 	return	after(ack, tp->snd_una) ||
3324 		after(ack_seq, tp->snd_wl1) ||
3325 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3326 }
3327 
3328 /* If we update tp->snd_una, also update tp->bytes_acked */
3329 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3330 {
3331 	u32 delta = ack - tp->snd_una;
3332 
3333 	sock_owned_by_me((struct sock *)tp);
3334 	tp->bytes_acked += delta;
3335 	tp->snd_una = ack;
3336 }
3337 
3338 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3339 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3340 {
3341 	u32 delta = seq - tp->rcv_nxt;
3342 
3343 	sock_owned_by_me((struct sock *)tp);
3344 	tp->bytes_received += delta;
3345 	tp->rcv_nxt = seq;
3346 }
3347 
3348 /* Update our send window.
3349  *
3350  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3351  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3352  */
3353 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3354 				 u32 ack_seq)
3355 {
3356 	struct tcp_sock *tp = tcp_sk(sk);
3357 	int flag = 0;
3358 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3359 
3360 	if (likely(!tcp_hdr(skb)->syn))
3361 		nwin <<= tp->rx_opt.snd_wscale;
3362 
3363 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3364 		flag |= FLAG_WIN_UPDATE;
3365 		tcp_update_wl(tp, ack_seq);
3366 
3367 		if (tp->snd_wnd != nwin) {
3368 			tp->snd_wnd = nwin;
3369 
3370 			/* Note, it is the only place, where
3371 			 * fast path is recovered for sending TCP.
3372 			 */
3373 			tp->pred_flags = 0;
3374 			tcp_fast_path_check(sk);
3375 
3376 			if (!tcp_write_queue_empty(sk))
3377 				tcp_slow_start_after_idle_check(sk);
3378 
3379 			if (nwin > tp->max_window) {
3380 				tp->max_window = nwin;
3381 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3382 			}
3383 		}
3384 	}
3385 
3386 	tcp_snd_una_update(tp, ack);
3387 
3388 	return flag;
3389 }
3390 
3391 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3392 				   u32 *last_oow_ack_time)
3393 {
3394 	if (*last_oow_ack_time) {
3395 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3396 
3397 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3398 			NET_INC_STATS(net, mib_idx);
3399 			return true;	/* rate-limited: don't send yet! */
3400 		}
3401 	}
3402 
3403 	*last_oow_ack_time = tcp_jiffies32;
3404 
3405 	return false;	/* not rate-limited: go ahead, send dupack now! */
3406 }
3407 
3408 /* Return true if we're currently rate-limiting out-of-window ACKs and
3409  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3410  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3411  * attacks that send repeated SYNs or ACKs for the same connection. To
3412  * do this, we do not send a duplicate SYNACK or ACK if the remote
3413  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3414  */
3415 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3416 			  int mib_idx, u32 *last_oow_ack_time)
3417 {
3418 	/* Data packets without SYNs are not likely part of an ACK loop. */
3419 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3420 	    !tcp_hdr(skb)->syn)
3421 		return false;
3422 
3423 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3424 }
3425 
3426 /* RFC 5961 7 [ACK Throttling] */
3427 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3428 {
3429 	/* unprotected vars, we dont care of overwrites */
3430 	static u32 challenge_timestamp;
3431 	static unsigned int challenge_count;
3432 	struct tcp_sock *tp = tcp_sk(sk);
3433 	struct net *net = sock_net(sk);
3434 	u32 count, now;
3435 
3436 	/* First check our per-socket dupack rate limit. */
3437 	if (__tcp_oow_rate_limited(net,
3438 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3439 				   &tp->last_oow_ack_time))
3440 		return;
3441 
3442 	/* Then check host-wide RFC 5961 rate limit. */
3443 	now = jiffies / HZ;
3444 	if (now != challenge_timestamp) {
3445 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3446 		u32 half = (ack_limit + 1) >> 1;
3447 
3448 		challenge_timestamp = now;
3449 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3450 	}
3451 	count = READ_ONCE(challenge_count);
3452 	if (count > 0) {
3453 		WRITE_ONCE(challenge_count, count - 1);
3454 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3455 		tcp_send_ack(sk);
3456 	}
3457 }
3458 
3459 static void tcp_store_ts_recent(struct tcp_sock *tp)
3460 {
3461 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3462 	tp->rx_opt.ts_recent_stamp = get_seconds();
3463 }
3464 
3465 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3466 {
3467 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3468 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3469 		 * extra check below makes sure this can only happen
3470 		 * for pure ACK frames.  -DaveM
3471 		 *
3472 		 * Not only, also it occurs for expired timestamps.
3473 		 */
3474 
3475 		if (tcp_paws_check(&tp->rx_opt, 0))
3476 			tcp_store_ts_recent(tp);
3477 	}
3478 }
3479 
3480 /* This routine deals with acks during a TLP episode.
3481  * We mark the end of a TLP episode on receiving TLP dupack or when
3482  * ack is after tlp_high_seq.
3483  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3484  */
3485 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3486 {
3487 	struct tcp_sock *tp = tcp_sk(sk);
3488 
3489 	if (before(ack, tp->tlp_high_seq))
3490 		return;
3491 
3492 	if (flag & FLAG_DSACKING_ACK) {
3493 		/* This DSACK means original and TLP probe arrived; no loss */
3494 		tp->tlp_high_seq = 0;
3495 	} else if (after(ack, tp->tlp_high_seq)) {
3496 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3497 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3498 		 */
3499 		tcp_init_cwnd_reduction(sk);
3500 		tcp_set_ca_state(sk, TCP_CA_CWR);
3501 		tcp_end_cwnd_reduction(sk);
3502 		tcp_try_keep_open(sk);
3503 		NET_INC_STATS(sock_net(sk),
3504 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3505 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3506 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3507 		/* Pure dupack: original and TLP probe arrived; no loss */
3508 		tp->tlp_high_seq = 0;
3509 	}
3510 }
3511 
3512 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3513 {
3514 	const struct inet_connection_sock *icsk = inet_csk(sk);
3515 
3516 	if (icsk->icsk_ca_ops->in_ack_event)
3517 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3518 }
3519 
3520 /* Congestion control has updated the cwnd already. So if we're in
3521  * loss recovery then now we do any new sends (for FRTO) or
3522  * retransmits (for CA_Loss or CA_recovery) that make sense.
3523  */
3524 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3525 {
3526 	struct tcp_sock *tp = tcp_sk(sk);
3527 
3528 	if (rexmit == REXMIT_NONE)
3529 		return;
3530 
3531 	if (unlikely(rexmit == 2)) {
3532 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3533 					  TCP_NAGLE_OFF);
3534 		if (after(tp->snd_nxt, tp->high_seq))
3535 			return;
3536 		tp->frto = 0;
3537 	}
3538 	tcp_xmit_retransmit_queue(sk);
3539 }
3540 
3541 /* Returns the number of packets newly acked or sacked by the current ACK */
3542 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3543 {
3544 	const struct net *net = sock_net(sk);
3545 	struct tcp_sock *tp = tcp_sk(sk);
3546 	u32 delivered;
3547 
3548 	delivered = tp->delivered - prior_delivered;
3549 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3550 	if (flag & FLAG_ECE) {
3551 		tp->delivered_ce += delivered;
3552 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3553 	}
3554 	return delivered;
3555 }
3556 
3557 /* This routine deals with incoming acks, but not outgoing ones. */
3558 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3559 {
3560 	struct inet_connection_sock *icsk = inet_csk(sk);
3561 	struct tcp_sock *tp = tcp_sk(sk);
3562 	struct tcp_sacktag_state sack_state;
3563 	struct rate_sample rs = { .prior_delivered = 0 };
3564 	u32 prior_snd_una = tp->snd_una;
3565 	bool is_sack_reneg = tp->is_sack_reneg;
3566 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3567 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3568 	bool is_dupack = false;
3569 	int prior_packets = tp->packets_out;
3570 	u32 delivered = tp->delivered;
3571 	u32 lost = tp->lost;
3572 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3573 	u32 prior_fack;
3574 
3575 	sack_state.first_sackt = 0;
3576 	sack_state.rate = &rs;
3577 
3578 	/* We very likely will need to access rtx queue. */
3579 	prefetch(sk->tcp_rtx_queue.rb_node);
3580 
3581 	/* If the ack is older than previous acks
3582 	 * then we can probably ignore it.
3583 	 */
3584 	if (before(ack, prior_snd_una)) {
3585 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3586 		if (before(ack, prior_snd_una - tp->max_window)) {
3587 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3588 				tcp_send_challenge_ack(sk, skb);
3589 			return -1;
3590 		}
3591 		goto old_ack;
3592 	}
3593 
3594 	/* If the ack includes data we haven't sent yet, discard
3595 	 * this segment (RFC793 Section 3.9).
3596 	 */
3597 	if (after(ack, tp->snd_nxt))
3598 		goto invalid_ack;
3599 
3600 	if (after(ack, prior_snd_una)) {
3601 		flag |= FLAG_SND_UNA_ADVANCED;
3602 		icsk->icsk_retransmits = 0;
3603 
3604 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3605 		if (static_branch_unlikely(&clean_acked_data_enabled))
3606 			if (icsk->icsk_clean_acked)
3607 				icsk->icsk_clean_acked(sk, ack);
3608 #endif
3609 	}
3610 
3611 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3612 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3613 
3614 	/* ts_recent update must be made after we are sure that the packet
3615 	 * is in window.
3616 	 */
3617 	if (flag & FLAG_UPDATE_TS_RECENT)
3618 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3619 
3620 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3621 		/* Window is constant, pure forward advance.
3622 		 * No more checks are required.
3623 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3624 		 */
3625 		tcp_update_wl(tp, ack_seq);
3626 		tcp_snd_una_update(tp, ack);
3627 		flag |= FLAG_WIN_UPDATE;
3628 
3629 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3630 
3631 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3632 	} else {
3633 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3634 
3635 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3636 			flag |= FLAG_DATA;
3637 		else
3638 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3639 
3640 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3641 
3642 		if (TCP_SKB_CB(skb)->sacked)
3643 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3644 							&sack_state);
3645 
3646 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3647 			flag |= FLAG_ECE;
3648 			ack_ev_flags |= CA_ACK_ECE;
3649 		}
3650 
3651 		if (flag & FLAG_WIN_UPDATE)
3652 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3653 
3654 		tcp_in_ack_event(sk, ack_ev_flags);
3655 	}
3656 
3657 	/* We passed data and got it acked, remove any soft error
3658 	 * log. Something worked...
3659 	 */
3660 	sk->sk_err_soft = 0;
3661 	icsk->icsk_probes_out = 0;
3662 	tp->rcv_tstamp = tcp_jiffies32;
3663 	if (!prior_packets)
3664 		goto no_queue;
3665 
3666 	/* See if we can take anything off of the retransmit queue. */
3667 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3668 
3669 	tcp_rack_update_reo_wnd(sk, &rs);
3670 
3671 	if (tp->tlp_high_seq)
3672 		tcp_process_tlp_ack(sk, ack, flag);
3673 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3674 	if (flag & FLAG_SET_XMIT_TIMER)
3675 		tcp_set_xmit_timer(sk);
3676 
3677 	if (tcp_ack_is_dubious(sk, flag)) {
3678 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3679 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3680 				      &rexmit);
3681 	}
3682 
3683 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3684 		sk_dst_confirm(sk);
3685 
3686 	delivered = tcp_newly_delivered(sk, delivered, flag);
3687 	lost = tp->lost - lost;			/* freshly marked lost */
3688 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3689 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3690 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3691 	tcp_xmit_recovery(sk, rexmit);
3692 	return 1;
3693 
3694 no_queue:
3695 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3696 	if (flag & FLAG_DSACKING_ACK) {
3697 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3698 				      &rexmit);
3699 		tcp_newly_delivered(sk, delivered, flag);
3700 	}
3701 	/* If this ack opens up a zero window, clear backoff.  It was
3702 	 * being used to time the probes, and is probably far higher than
3703 	 * it needs to be for normal retransmission.
3704 	 */
3705 	tcp_ack_probe(sk);
3706 
3707 	if (tp->tlp_high_seq)
3708 		tcp_process_tlp_ack(sk, ack, flag);
3709 	return 1;
3710 
3711 invalid_ack:
3712 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3713 	return -1;
3714 
3715 old_ack:
3716 	/* If data was SACKed, tag it and see if we should send more data.
3717 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3718 	 */
3719 	if (TCP_SKB_CB(skb)->sacked) {
3720 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3721 						&sack_state);
3722 		tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag,
3723 				      &rexmit);
3724 		tcp_newly_delivered(sk, delivered, flag);
3725 		tcp_xmit_recovery(sk, rexmit);
3726 	}
3727 
3728 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3729 	return 0;
3730 }
3731 
3732 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3733 				      bool syn, struct tcp_fastopen_cookie *foc,
3734 				      bool exp_opt)
3735 {
3736 	/* Valid only in SYN or SYN-ACK with an even length.  */
3737 	if (!foc || !syn || len < 0 || (len & 1))
3738 		return;
3739 
3740 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3741 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3742 		memcpy(foc->val, cookie, len);
3743 	else if (len != 0)
3744 		len = -1;
3745 	foc->len = len;
3746 	foc->exp = exp_opt;
3747 }
3748 
3749 static void smc_parse_options(const struct tcphdr *th,
3750 			      struct tcp_options_received *opt_rx,
3751 			      const unsigned char *ptr,
3752 			      int opsize)
3753 {
3754 #if IS_ENABLED(CONFIG_SMC)
3755 	if (static_branch_unlikely(&tcp_have_smc)) {
3756 		if (th->syn && !(opsize & 1) &&
3757 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3758 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3759 			opt_rx->smc_ok = 1;
3760 	}
3761 #endif
3762 }
3763 
3764 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3765  * But, this can also be called on packets in the established flow when
3766  * the fast version below fails.
3767  */
3768 void tcp_parse_options(const struct net *net,
3769 		       const struct sk_buff *skb,
3770 		       struct tcp_options_received *opt_rx, int estab,
3771 		       struct tcp_fastopen_cookie *foc)
3772 {
3773 	const unsigned char *ptr;
3774 	const struct tcphdr *th = tcp_hdr(skb);
3775 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3776 
3777 	ptr = (const unsigned char *)(th + 1);
3778 	opt_rx->saw_tstamp = 0;
3779 
3780 	while (length > 0) {
3781 		int opcode = *ptr++;
3782 		int opsize;
3783 
3784 		switch (opcode) {
3785 		case TCPOPT_EOL:
3786 			return;
3787 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3788 			length--;
3789 			continue;
3790 		default:
3791 			opsize = *ptr++;
3792 			if (opsize < 2) /* "silly options" */
3793 				return;
3794 			if (opsize > length)
3795 				return;	/* don't parse partial options */
3796 			switch (opcode) {
3797 			case TCPOPT_MSS:
3798 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3799 					u16 in_mss = get_unaligned_be16(ptr);
3800 					if (in_mss) {
3801 						if (opt_rx->user_mss &&
3802 						    opt_rx->user_mss < in_mss)
3803 							in_mss = opt_rx->user_mss;
3804 						opt_rx->mss_clamp = in_mss;
3805 					}
3806 				}
3807 				break;
3808 			case TCPOPT_WINDOW:
3809 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3810 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3811 					__u8 snd_wscale = *(__u8 *)ptr;
3812 					opt_rx->wscale_ok = 1;
3813 					if (snd_wscale > TCP_MAX_WSCALE) {
3814 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3815 								     __func__,
3816 								     snd_wscale,
3817 								     TCP_MAX_WSCALE);
3818 						snd_wscale = TCP_MAX_WSCALE;
3819 					}
3820 					opt_rx->snd_wscale = snd_wscale;
3821 				}
3822 				break;
3823 			case TCPOPT_TIMESTAMP:
3824 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3825 				    ((estab && opt_rx->tstamp_ok) ||
3826 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3827 					opt_rx->saw_tstamp = 1;
3828 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3829 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3830 				}
3831 				break;
3832 			case TCPOPT_SACK_PERM:
3833 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3834 				    !estab && net->ipv4.sysctl_tcp_sack) {
3835 					opt_rx->sack_ok = TCP_SACK_SEEN;
3836 					tcp_sack_reset(opt_rx);
3837 				}
3838 				break;
3839 
3840 			case TCPOPT_SACK:
3841 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3842 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3843 				   opt_rx->sack_ok) {
3844 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3845 				}
3846 				break;
3847 #ifdef CONFIG_TCP_MD5SIG
3848 			case TCPOPT_MD5SIG:
3849 				/*
3850 				 * The MD5 Hash has already been
3851 				 * checked (see tcp_v{4,6}_do_rcv()).
3852 				 */
3853 				break;
3854 #endif
3855 			case TCPOPT_FASTOPEN:
3856 				tcp_parse_fastopen_option(
3857 					opsize - TCPOLEN_FASTOPEN_BASE,
3858 					ptr, th->syn, foc, false);
3859 				break;
3860 
3861 			case TCPOPT_EXP:
3862 				/* Fast Open option shares code 254 using a
3863 				 * 16 bits magic number.
3864 				 */
3865 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3866 				    get_unaligned_be16(ptr) ==
3867 				    TCPOPT_FASTOPEN_MAGIC)
3868 					tcp_parse_fastopen_option(opsize -
3869 						TCPOLEN_EXP_FASTOPEN_BASE,
3870 						ptr + 2, th->syn, foc, true);
3871 				else
3872 					smc_parse_options(th, opt_rx, ptr,
3873 							  opsize);
3874 				break;
3875 
3876 			}
3877 			ptr += opsize-2;
3878 			length -= opsize;
3879 		}
3880 	}
3881 }
3882 EXPORT_SYMBOL(tcp_parse_options);
3883 
3884 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3885 {
3886 	const __be32 *ptr = (const __be32 *)(th + 1);
3887 
3888 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3889 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3890 		tp->rx_opt.saw_tstamp = 1;
3891 		++ptr;
3892 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3893 		++ptr;
3894 		if (*ptr)
3895 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3896 		else
3897 			tp->rx_opt.rcv_tsecr = 0;
3898 		return true;
3899 	}
3900 	return false;
3901 }
3902 
3903 /* Fast parse options. This hopes to only see timestamps.
3904  * If it is wrong it falls back on tcp_parse_options().
3905  */
3906 static bool tcp_fast_parse_options(const struct net *net,
3907 				   const struct sk_buff *skb,
3908 				   const struct tcphdr *th, struct tcp_sock *tp)
3909 {
3910 	/* In the spirit of fast parsing, compare doff directly to constant
3911 	 * values.  Because equality is used, short doff can be ignored here.
3912 	 */
3913 	if (th->doff == (sizeof(*th) / 4)) {
3914 		tp->rx_opt.saw_tstamp = 0;
3915 		return false;
3916 	} else if (tp->rx_opt.tstamp_ok &&
3917 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3918 		if (tcp_parse_aligned_timestamp(tp, th))
3919 			return true;
3920 	}
3921 
3922 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3923 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3924 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3925 
3926 	return true;
3927 }
3928 
3929 #ifdef CONFIG_TCP_MD5SIG
3930 /*
3931  * Parse MD5 Signature option
3932  */
3933 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3934 {
3935 	int length = (th->doff << 2) - sizeof(*th);
3936 	const u8 *ptr = (const u8 *)(th + 1);
3937 
3938 	/* If not enough data remaining, we can short cut */
3939 	while (length >= TCPOLEN_MD5SIG) {
3940 		int opcode = *ptr++;
3941 		int opsize;
3942 
3943 		switch (opcode) {
3944 		case TCPOPT_EOL:
3945 			return NULL;
3946 		case TCPOPT_NOP:
3947 			length--;
3948 			continue;
3949 		default:
3950 			opsize = *ptr++;
3951 			if (opsize < 2 || opsize > length)
3952 				return NULL;
3953 			if (opcode == TCPOPT_MD5SIG)
3954 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3955 		}
3956 		ptr += opsize - 2;
3957 		length -= opsize;
3958 	}
3959 	return NULL;
3960 }
3961 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3962 #endif
3963 
3964 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3965  *
3966  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3967  * it can pass through stack. So, the following predicate verifies that
3968  * this segment is not used for anything but congestion avoidance or
3969  * fast retransmit. Moreover, we even are able to eliminate most of such
3970  * second order effects, if we apply some small "replay" window (~RTO)
3971  * to timestamp space.
3972  *
3973  * All these measures still do not guarantee that we reject wrapped ACKs
3974  * on networks with high bandwidth, when sequence space is recycled fastly,
3975  * but it guarantees that such events will be very rare and do not affect
3976  * connection seriously. This doesn't look nice, but alas, PAWS is really
3977  * buggy extension.
3978  *
3979  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3980  * states that events when retransmit arrives after original data are rare.
3981  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3982  * the biggest problem on large power networks even with minor reordering.
3983  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3984  * up to bandwidth of 18Gigabit/sec. 8) ]
3985  */
3986 
3987 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3988 {
3989 	const struct tcp_sock *tp = tcp_sk(sk);
3990 	const struct tcphdr *th = tcp_hdr(skb);
3991 	u32 seq = TCP_SKB_CB(skb)->seq;
3992 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3993 
3994 	return (/* 1. Pure ACK with correct sequence number. */
3995 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3996 
3997 		/* 2. ... and duplicate ACK. */
3998 		ack == tp->snd_una &&
3999 
4000 		/* 3. ... and does not update window. */
4001 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4002 
4003 		/* 4. ... and sits in replay window. */
4004 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4005 }
4006 
4007 static inline bool tcp_paws_discard(const struct sock *sk,
4008 				   const struct sk_buff *skb)
4009 {
4010 	const struct tcp_sock *tp = tcp_sk(sk);
4011 
4012 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4013 	       !tcp_disordered_ack(sk, skb);
4014 }
4015 
4016 /* Check segment sequence number for validity.
4017  *
4018  * Segment controls are considered valid, if the segment
4019  * fits to the window after truncation to the window. Acceptability
4020  * of data (and SYN, FIN, of course) is checked separately.
4021  * See tcp_data_queue(), for example.
4022  *
4023  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4024  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4025  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4026  * (borrowed from freebsd)
4027  */
4028 
4029 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4030 {
4031 	return	!before(end_seq, tp->rcv_wup) &&
4032 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4033 }
4034 
4035 /* When we get a reset we do this. */
4036 void tcp_reset(struct sock *sk)
4037 {
4038 	trace_tcp_receive_reset(sk);
4039 
4040 	/* We want the right error as BSD sees it (and indeed as we do). */
4041 	switch (sk->sk_state) {
4042 	case TCP_SYN_SENT:
4043 		sk->sk_err = ECONNREFUSED;
4044 		break;
4045 	case TCP_CLOSE_WAIT:
4046 		sk->sk_err = EPIPE;
4047 		break;
4048 	case TCP_CLOSE:
4049 		return;
4050 	default:
4051 		sk->sk_err = ECONNRESET;
4052 	}
4053 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4054 	smp_wmb();
4055 
4056 	tcp_write_queue_purge(sk);
4057 	tcp_done(sk);
4058 
4059 	if (!sock_flag(sk, SOCK_DEAD))
4060 		sk->sk_error_report(sk);
4061 }
4062 
4063 /*
4064  * 	Process the FIN bit. This now behaves as it is supposed to work
4065  *	and the FIN takes effect when it is validly part of sequence
4066  *	space. Not before when we get holes.
4067  *
4068  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4069  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4070  *	TIME-WAIT)
4071  *
4072  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4073  *	close and we go into CLOSING (and later onto TIME-WAIT)
4074  *
4075  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4076  */
4077 void tcp_fin(struct sock *sk)
4078 {
4079 	struct tcp_sock *tp = tcp_sk(sk);
4080 
4081 	inet_csk_schedule_ack(sk);
4082 
4083 	sk->sk_shutdown |= RCV_SHUTDOWN;
4084 	sock_set_flag(sk, SOCK_DONE);
4085 
4086 	switch (sk->sk_state) {
4087 	case TCP_SYN_RECV:
4088 	case TCP_ESTABLISHED:
4089 		/* Move to CLOSE_WAIT */
4090 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4091 		inet_csk(sk)->icsk_ack.pingpong = 1;
4092 		break;
4093 
4094 	case TCP_CLOSE_WAIT:
4095 	case TCP_CLOSING:
4096 		/* Received a retransmission of the FIN, do
4097 		 * nothing.
4098 		 */
4099 		break;
4100 	case TCP_LAST_ACK:
4101 		/* RFC793: Remain in the LAST-ACK state. */
4102 		break;
4103 
4104 	case TCP_FIN_WAIT1:
4105 		/* This case occurs when a simultaneous close
4106 		 * happens, we must ack the received FIN and
4107 		 * enter the CLOSING state.
4108 		 */
4109 		tcp_send_ack(sk);
4110 		tcp_set_state(sk, TCP_CLOSING);
4111 		break;
4112 	case TCP_FIN_WAIT2:
4113 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4114 		tcp_send_ack(sk);
4115 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4116 		break;
4117 	default:
4118 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4119 		 * cases we should never reach this piece of code.
4120 		 */
4121 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4122 		       __func__, sk->sk_state);
4123 		break;
4124 	}
4125 
4126 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4127 	 * Probably, we should reset in this case. For now drop them.
4128 	 */
4129 	skb_rbtree_purge(&tp->out_of_order_queue);
4130 	if (tcp_is_sack(tp))
4131 		tcp_sack_reset(&tp->rx_opt);
4132 	sk_mem_reclaim(sk);
4133 
4134 	if (!sock_flag(sk, SOCK_DEAD)) {
4135 		sk->sk_state_change(sk);
4136 
4137 		/* Do not send POLL_HUP for half duplex close. */
4138 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4139 		    sk->sk_state == TCP_CLOSE)
4140 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4141 		else
4142 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4143 	}
4144 }
4145 
4146 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4147 				  u32 end_seq)
4148 {
4149 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4150 		if (before(seq, sp->start_seq))
4151 			sp->start_seq = seq;
4152 		if (after(end_seq, sp->end_seq))
4153 			sp->end_seq = end_seq;
4154 		return true;
4155 	}
4156 	return false;
4157 }
4158 
4159 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4160 {
4161 	struct tcp_sock *tp = tcp_sk(sk);
4162 
4163 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4164 		int mib_idx;
4165 
4166 		if (before(seq, tp->rcv_nxt))
4167 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4168 		else
4169 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4170 
4171 		NET_INC_STATS(sock_net(sk), mib_idx);
4172 
4173 		tp->rx_opt.dsack = 1;
4174 		tp->duplicate_sack[0].start_seq = seq;
4175 		tp->duplicate_sack[0].end_seq = end_seq;
4176 	}
4177 }
4178 
4179 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4180 {
4181 	struct tcp_sock *tp = tcp_sk(sk);
4182 
4183 	if (!tp->rx_opt.dsack)
4184 		tcp_dsack_set(sk, seq, end_seq);
4185 	else
4186 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4187 }
4188 
4189 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4190 {
4191 	struct tcp_sock *tp = tcp_sk(sk);
4192 
4193 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4194 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4195 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4196 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4197 
4198 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4199 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4200 
4201 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4202 				end_seq = tp->rcv_nxt;
4203 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4204 		}
4205 	}
4206 
4207 	tcp_send_ack(sk);
4208 }
4209 
4210 /* These routines update the SACK block as out-of-order packets arrive or
4211  * in-order packets close up the sequence space.
4212  */
4213 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4214 {
4215 	int this_sack;
4216 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4217 	struct tcp_sack_block *swalk = sp + 1;
4218 
4219 	/* See if the recent change to the first SACK eats into
4220 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4221 	 */
4222 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4223 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4224 			int i;
4225 
4226 			/* Zap SWALK, by moving every further SACK up by one slot.
4227 			 * Decrease num_sacks.
4228 			 */
4229 			tp->rx_opt.num_sacks--;
4230 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4231 				sp[i] = sp[i + 1];
4232 			continue;
4233 		}
4234 		this_sack++, swalk++;
4235 	}
4236 }
4237 
4238 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4239 {
4240 	struct tcp_sock *tp = tcp_sk(sk);
4241 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4242 	int cur_sacks = tp->rx_opt.num_sacks;
4243 	int this_sack;
4244 
4245 	if (!cur_sacks)
4246 		goto new_sack;
4247 
4248 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4249 		if (tcp_sack_extend(sp, seq, end_seq)) {
4250 			/* Rotate this_sack to the first one. */
4251 			for (; this_sack > 0; this_sack--, sp--)
4252 				swap(*sp, *(sp - 1));
4253 			if (cur_sacks > 1)
4254 				tcp_sack_maybe_coalesce(tp);
4255 			return;
4256 		}
4257 	}
4258 
4259 	/* Could not find an adjacent existing SACK, build a new one,
4260 	 * put it at the front, and shift everyone else down.  We
4261 	 * always know there is at least one SACK present already here.
4262 	 *
4263 	 * If the sack array is full, forget about the last one.
4264 	 */
4265 	if (this_sack >= TCP_NUM_SACKS) {
4266 		if (tp->compressed_ack)
4267 			tcp_send_ack(sk);
4268 		this_sack--;
4269 		tp->rx_opt.num_sacks--;
4270 		sp--;
4271 	}
4272 	for (; this_sack > 0; this_sack--, sp--)
4273 		*sp = *(sp - 1);
4274 
4275 new_sack:
4276 	/* Build the new head SACK, and we're done. */
4277 	sp->start_seq = seq;
4278 	sp->end_seq = end_seq;
4279 	tp->rx_opt.num_sacks++;
4280 }
4281 
4282 /* RCV.NXT advances, some SACKs should be eaten. */
4283 
4284 static void tcp_sack_remove(struct tcp_sock *tp)
4285 {
4286 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4287 	int num_sacks = tp->rx_opt.num_sacks;
4288 	int this_sack;
4289 
4290 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4291 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4292 		tp->rx_opt.num_sacks = 0;
4293 		return;
4294 	}
4295 
4296 	for (this_sack = 0; this_sack < num_sacks;) {
4297 		/* Check if the start of the sack is covered by RCV.NXT. */
4298 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4299 			int i;
4300 
4301 			/* RCV.NXT must cover all the block! */
4302 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4303 
4304 			/* Zap this SACK, by moving forward any other SACKS. */
4305 			for (i = this_sack+1; i < num_sacks; i++)
4306 				tp->selective_acks[i-1] = tp->selective_acks[i];
4307 			num_sacks--;
4308 			continue;
4309 		}
4310 		this_sack++;
4311 		sp++;
4312 	}
4313 	tp->rx_opt.num_sacks = num_sacks;
4314 }
4315 
4316 /**
4317  * tcp_try_coalesce - try to merge skb to prior one
4318  * @sk: socket
4319  * @dest: destination queue
4320  * @to: prior buffer
4321  * @from: buffer to add in queue
4322  * @fragstolen: pointer to boolean
4323  *
4324  * Before queueing skb @from after @to, try to merge them
4325  * to reduce overall memory use and queue lengths, if cost is small.
4326  * Packets in ofo or receive queues can stay a long time.
4327  * Better try to coalesce them right now to avoid future collapses.
4328  * Returns true if caller should free @from instead of queueing it
4329  */
4330 static bool tcp_try_coalesce(struct sock *sk,
4331 			     struct sk_buff *to,
4332 			     struct sk_buff *from,
4333 			     bool *fragstolen)
4334 {
4335 	int delta;
4336 
4337 	*fragstolen = false;
4338 
4339 	/* Its possible this segment overlaps with prior segment in queue */
4340 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4341 		return false;
4342 
4343 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4344 		return false;
4345 
4346 	atomic_add(delta, &sk->sk_rmem_alloc);
4347 	sk_mem_charge(sk, delta);
4348 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4349 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4350 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4351 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4352 
4353 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4354 		TCP_SKB_CB(to)->has_rxtstamp = true;
4355 		to->tstamp = from->tstamp;
4356 	}
4357 
4358 	return true;
4359 }
4360 
4361 static bool tcp_ooo_try_coalesce(struct sock *sk,
4362 			     struct sk_buff *to,
4363 			     struct sk_buff *from,
4364 			     bool *fragstolen)
4365 {
4366 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4367 
4368 	/* In case tcp_drop() is called later, update to->gso_segs */
4369 	if (res) {
4370 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4371 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4372 
4373 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4374 	}
4375 	return res;
4376 }
4377 
4378 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4379 {
4380 	sk_drops_add(sk, skb);
4381 	__kfree_skb(skb);
4382 }
4383 
4384 /* This one checks to see if we can put data from the
4385  * out_of_order queue into the receive_queue.
4386  */
4387 static void tcp_ofo_queue(struct sock *sk)
4388 {
4389 	struct tcp_sock *tp = tcp_sk(sk);
4390 	__u32 dsack_high = tp->rcv_nxt;
4391 	bool fin, fragstolen, eaten;
4392 	struct sk_buff *skb, *tail;
4393 	struct rb_node *p;
4394 
4395 	p = rb_first(&tp->out_of_order_queue);
4396 	while (p) {
4397 		skb = rb_to_skb(p);
4398 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4399 			break;
4400 
4401 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4402 			__u32 dsack = dsack_high;
4403 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4404 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4405 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4406 		}
4407 		p = rb_next(p);
4408 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4409 
4410 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4411 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4412 			tcp_drop(sk, skb);
4413 			continue;
4414 		}
4415 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4416 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4417 			   TCP_SKB_CB(skb)->end_seq);
4418 
4419 		tail = skb_peek_tail(&sk->sk_receive_queue);
4420 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4421 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4422 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4423 		if (!eaten)
4424 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4425 		else
4426 			kfree_skb_partial(skb, fragstolen);
4427 
4428 		if (unlikely(fin)) {
4429 			tcp_fin(sk);
4430 			/* tcp_fin() purges tp->out_of_order_queue,
4431 			 * so we must end this loop right now.
4432 			 */
4433 			break;
4434 		}
4435 	}
4436 }
4437 
4438 static bool tcp_prune_ofo_queue(struct sock *sk);
4439 static int tcp_prune_queue(struct sock *sk);
4440 
4441 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4442 				 unsigned int size)
4443 {
4444 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4445 	    !sk_rmem_schedule(sk, skb, size)) {
4446 
4447 		if (tcp_prune_queue(sk) < 0)
4448 			return -1;
4449 
4450 		while (!sk_rmem_schedule(sk, skb, size)) {
4451 			if (!tcp_prune_ofo_queue(sk))
4452 				return -1;
4453 		}
4454 	}
4455 	return 0;
4456 }
4457 
4458 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4459 {
4460 	struct tcp_sock *tp = tcp_sk(sk);
4461 	struct rb_node **p, *parent;
4462 	struct sk_buff *skb1;
4463 	u32 seq, end_seq;
4464 	bool fragstolen;
4465 
4466 	tcp_ecn_check_ce(sk, skb);
4467 
4468 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4469 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4470 		tcp_drop(sk, skb);
4471 		return;
4472 	}
4473 
4474 	/* Disable header prediction. */
4475 	tp->pred_flags = 0;
4476 	inet_csk_schedule_ack(sk);
4477 
4478 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4479 	seq = TCP_SKB_CB(skb)->seq;
4480 	end_seq = TCP_SKB_CB(skb)->end_seq;
4481 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4482 		   tp->rcv_nxt, seq, end_seq);
4483 
4484 	p = &tp->out_of_order_queue.rb_node;
4485 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4486 		/* Initial out of order segment, build 1 SACK. */
4487 		if (tcp_is_sack(tp)) {
4488 			tp->rx_opt.num_sacks = 1;
4489 			tp->selective_acks[0].start_seq = seq;
4490 			tp->selective_acks[0].end_seq = end_seq;
4491 		}
4492 		rb_link_node(&skb->rbnode, NULL, p);
4493 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4494 		tp->ooo_last_skb = skb;
4495 		goto end;
4496 	}
4497 
4498 	/* In the typical case, we are adding an skb to the end of the list.
4499 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4500 	 */
4501 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4502 				 skb, &fragstolen)) {
4503 coalesce_done:
4504 		tcp_grow_window(sk, skb);
4505 		kfree_skb_partial(skb, fragstolen);
4506 		skb = NULL;
4507 		goto add_sack;
4508 	}
4509 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4510 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4511 		parent = &tp->ooo_last_skb->rbnode;
4512 		p = &parent->rb_right;
4513 		goto insert;
4514 	}
4515 
4516 	/* Find place to insert this segment. Handle overlaps on the way. */
4517 	parent = NULL;
4518 	while (*p) {
4519 		parent = *p;
4520 		skb1 = rb_to_skb(parent);
4521 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4522 			p = &parent->rb_left;
4523 			continue;
4524 		}
4525 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4526 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4527 				/* All the bits are present. Drop. */
4528 				NET_INC_STATS(sock_net(sk),
4529 					      LINUX_MIB_TCPOFOMERGE);
4530 				tcp_drop(sk, skb);
4531 				skb = NULL;
4532 				tcp_dsack_set(sk, seq, end_seq);
4533 				goto add_sack;
4534 			}
4535 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4536 				/* Partial overlap. */
4537 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4538 			} else {
4539 				/* skb's seq == skb1's seq and skb covers skb1.
4540 				 * Replace skb1 with skb.
4541 				 */
4542 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4543 						&tp->out_of_order_queue);
4544 				tcp_dsack_extend(sk,
4545 						 TCP_SKB_CB(skb1)->seq,
4546 						 TCP_SKB_CB(skb1)->end_seq);
4547 				NET_INC_STATS(sock_net(sk),
4548 					      LINUX_MIB_TCPOFOMERGE);
4549 				tcp_drop(sk, skb1);
4550 				goto merge_right;
4551 			}
4552 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4553 						skb, &fragstolen)) {
4554 			goto coalesce_done;
4555 		}
4556 		p = &parent->rb_right;
4557 	}
4558 insert:
4559 	/* Insert segment into RB tree. */
4560 	rb_link_node(&skb->rbnode, parent, p);
4561 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4562 
4563 merge_right:
4564 	/* Remove other segments covered by skb. */
4565 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4566 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4567 			break;
4568 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4569 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4570 					 end_seq);
4571 			break;
4572 		}
4573 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4574 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4575 				 TCP_SKB_CB(skb1)->end_seq);
4576 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4577 		tcp_drop(sk, skb1);
4578 	}
4579 	/* If there is no skb after us, we are the last_skb ! */
4580 	if (!skb1)
4581 		tp->ooo_last_skb = skb;
4582 
4583 add_sack:
4584 	if (tcp_is_sack(tp))
4585 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4586 end:
4587 	if (skb) {
4588 		tcp_grow_window(sk, skb);
4589 		skb_condense(skb);
4590 		skb_set_owner_r(skb, sk);
4591 	}
4592 }
4593 
4594 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4595 		  bool *fragstolen)
4596 {
4597 	int eaten;
4598 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4599 
4600 	__skb_pull(skb, hdrlen);
4601 	eaten = (tail &&
4602 		 tcp_try_coalesce(sk, tail,
4603 				  skb, fragstolen)) ? 1 : 0;
4604 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4605 	if (!eaten) {
4606 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4607 		skb_set_owner_r(skb, sk);
4608 	}
4609 	return eaten;
4610 }
4611 
4612 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4613 {
4614 	struct sk_buff *skb;
4615 	int err = -ENOMEM;
4616 	int data_len = 0;
4617 	bool fragstolen;
4618 
4619 	if (size == 0)
4620 		return 0;
4621 
4622 	if (size > PAGE_SIZE) {
4623 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4624 
4625 		data_len = npages << PAGE_SHIFT;
4626 		size = data_len + (size & ~PAGE_MASK);
4627 	}
4628 	skb = alloc_skb_with_frags(size - data_len, data_len,
4629 				   PAGE_ALLOC_COSTLY_ORDER,
4630 				   &err, sk->sk_allocation);
4631 	if (!skb)
4632 		goto err;
4633 
4634 	skb_put(skb, size - data_len);
4635 	skb->data_len = data_len;
4636 	skb->len = size;
4637 
4638 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4639 		goto err_free;
4640 
4641 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4642 	if (err)
4643 		goto err_free;
4644 
4645 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4646 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4647 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4648 
4649 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4650 		WARN_ON_ONCE(fragstolen); /* should not happen */
4651 		__kfree_skb(skb);
4652 	}
4653 	return size;
4654 
4655 err_free:
4656 	kfree_skb(skb);
4657 err:
4658 	return err;
4659 
4660 }
4661 
4662 void tcp_data_ready(struct sock *sk)
4663 {
4664 	const struct tcp_sock *tp = tcp_sk(sk);
4665 	int avail = tp->rcv_nxt - tp->copied_seq;
4666 
4667 	if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4668 		return;
4669 
4670 	sk->sk_data_ready(sk);
4671 }
4672 
4673 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4674 {
4675 	struct tcp_sock *tp = tcp_sk(sk);
4676 	bool fragstolen;
4677 	int eaten;
4678 
4679 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4680 		__kfree_skb(skb);
4681 		return;
4682 	}
4683 	skb_dst_drop(skb);
4684 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4685 
4686 	tcp_ecn_accept_cwr(tp, skb);
4687 
4688 	tp->rx_opt.dsack = 0;
4689 
4690 	/*  Queue data for delivery to the user.
4691 	 *  Packets in sequence go to the receive queue.
4692 	 *  Out of sequence packets to the out_of_order_queue.
4693 	 */
4694 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4695 		if (tcp_receive_window(tp) == 0)
4696 			goto out_of_window;
4697 
4698 		/* Ok. In sequence. In window. */
4699 queue_and_out:
4700 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4701 			sk_forced_mem_schedule(sk, skb->truesize);
4702 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4703 			goto drop;
4704 
4705 		eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4706 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4707 		if (skb->len)
4708 			tcp_event_data_recv(sk, skb);
4709 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4710 			tcp_fin(sk);
4711 
4712 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4713 			tcp_ofo_queue(sk);
4714 
4715 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4716 			 * gap in queue is filled.
4717 			 */
4718 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4719 				inet_csk(sk)->icsk_ack.pingpong = 0;
4720 		}
4721 
4722 		if (tp->rx_opt.num_sacks)
4723 			tcp_sack_remove(tp);
4724 
4725 		tcp_fast_path_check(sk);
4726 
4727 		if (eaten > 0)
4728 			kfree_skb_partial(skb, fragstolen);
4729 		if (!sock_flag(sk, SOCK_DEAD))
4730 			tcp_data_ready(sk);
4731 		return;
4732 	}
4733 
4734 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4735 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4736 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4737 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4738 
4739 out_of_window:
4740 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4741 		inet_csk_schedule_ack(sk);
4742 drop:
4743 		tcp_drop(sk, skb);
4744 		return;
4745 	}
4746 
4747 	/* Out of window. F.e. zero window probe. */
4748 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4749 		goto out_of_window;
4750 
4751 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4752 		/* Partial packet, seq < rcv_next < end_seq */
4753 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4754 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4755 			   TCP_SKB_CB(skb)->end_seq);
4756 
4757 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4758 
4759 		/* If window is closed, drop tail of packet. But after
4760 		 * remembering D-SACK for its head made in previous line.
4761 		 */
4762 		if (!tcp_receive_window(tp))
4763 			goto out_of_window;
4764 		goto queue_and_out;
4765 	}
4766 
4767 	tcp_data_queue_ofo(sk, skb);
4768 }
4769 
4770 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4771 {
4772 	if (list)
4773 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4774 
4775 	return skb_rb_next(skb);
4776 }
4777 
4778 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4779 					struct sk_buff_head *list,
4780 					struct rb_root *root)
4781 {
4782 	struct sk_buff *next = tcp_skb_next(skb, list);
4783 
4784 	if (list)
4785 		__skb_unlink(skb, list);
4786 	else
4787 		rb_erase(&skb->rbnode, root);
4788 
4789 	__kfree_skb(skb);
4790 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4791 
4792 	return next;
4793 }
4794 
4795 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4796 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4797 {
4798 	struct rb_node **p = &root->rb_node;
4799 	struct rb_node *parent = NULL;
4800 	struct sk_buff *skb1;
4801 
4802 	while (*p) {
4803 		parent = *p;
4804 		skb1 = rb_to_skb(parent);
4805 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4806 			p = &parent->rb_left;
4807 		else
4808 			p = &parent->rb_right;
4809 	}
4810 	rb_link_node(&skb->rbnode, parent, p);
4811 	rb_insert_color(&skb->rbnode, root);
4812 }
4813 
4814 /* Collapse contiguous sequence of skbs head..tail with
4815  * sequence numbers start..end.
4816  *
4817  * If tail is NULL, this means until the end of the queue.
4818  *
4819  * Segments with FIN/SYN are not collapsed (only because this
4820  * simplifies code)
4821  */
4822 static void
4823 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4824 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4825 {
4826 	struct sk_buff *skb = head, *n;
4827 	struct sk_buff_head tmp;
4828 	bool end_of_skbs;
4829 
4830 	/* First, check that queue is collapsible and find
4831 	 * the point where collapsing can be useful.
4832 	 */
4833 restart:
4834 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4835 		n = tcp_skb_next(skb, list);
4836 
4837 		/* No new bits? It is possible on ofo queue. */
4838 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4839 			skb = tcp_collapse_one(sk, skb, list, root);
4840 			if (!skb)
4841 				break;
4842 			goto restart;
4843 		}
4844 
4845 		/* The first skb to collapse is:
4846 		 * - not SYN/FIN and
4847 		 * - bloated or contains data before "start" or
4848 		 *   overlaps to the next one.
4849 		 */
4850 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4851 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4852 		     before(TCP_SKB_CB(skb)->seq, start))) {
4853 			end_of_skbs = false;
4854 			break;
4855 		}
4856 
4857 		if (n && n != tail &&
4858 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4859 			end_of_skbs = false;
4860 			break;
4861 		}
4862 
4863 		/* Decided to skip this, advance start seq. */
4864 		start = TCP_SKB_CB(skb)->end_seq;
4865 	}
4866 	if (end_of_skbs ||
4867 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4868 		return;
4869 
4870 	__skb_queue_head_init(&tmp);
4871 
4872 	while (before(start, end)) {
4873 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4874 		struct sk_buff *nskb;
4875 
4876 		nskb = alloc_skb(copy, GFP_ATOMIC);
4877 		if (!nskb)
4878 			break;
4879 
4880 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4881 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4882 		if (list)
4883 			__skb_queue_before(list, skb, nskb);
4884 		else
4885 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4886 		skb_set_owner_r(nskb, sk);
4887 
4888 		/* Copy data, releasing collapsed skbs. */
4889 		while (copy > 0) {
4890 			int offset = start - TCP_SKB_CB(skb)->seq;
4891 			int size = TCP_SKB_CB(skb)->end_seq - start;
4892 
4893 			BUG_ON(offset < 0);
4894 			if (size > 0) {
4895 				size = min(copy, size);
4896 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4897 					BUG();
4898 				TCP_SKB_CB(nskb)->end_seq += size;
4899 				copy -= size;
4900 				start += size;
4901 			}
4902 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4903 				skb = tcp_collapse_one(sk, skb, list, root);
4904 				if (!skb ||
4905 				    skb == tail ||
4906 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4907 					goto end;
4908 			}
4909 		}
4910 	}
4911 end:
4912 	skb_queue_walk_safe(&tmp, skb, n)
4913 		tcp_rbtree_insert(root, skb);
4914 }
4915 
4916 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4917  * and tcp_collapse() them until all the queue is collapsed.
4918  */
4919 static void tcp_collapse_ofo_queue(struct sock *sk)
4920 {
4921 	struct tcp_sock *tp = tcp_sk(sk);
4922 	u32 range_truesize, sum_tiny = 0;
4923 	struct sk_buff *skb, *head;
4924 	u32 start, end;
4925 
4926 	skb = skb_rb_first(&tp->out_of_order_queue);
4927 new_range:
4928 	if (!skb) {
4929 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4930 		return;
4931 	}
4932 	start = TCP_SKB_CB(skb)->seq;
4933 	end = TCP_SKB_CB(skb)->end_seq;
4934 	range_truesize = skb->truesize;
4935 
4936 	for (head = skb;;) {
4937 		skb = skb_rb_next(skb);
4938 
4939 		/* Range is terminated when we see a gap or when
4940 		 * we are at the queue end.
4941 		 */
4942 		if (!skb ||
4943 		    after(TCP_SKB_CB(skb)->seq, end) ||
4944 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4945 			/* Do not attempt collapsing tiny skbs */
4946 			if (range_truesize != head->truesize ||
4947 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4948 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4949 					     head, skb, start, end);
4950 			} else {
4951 				sum_tiny += range_truesize;
4952 				if (sum_tiny > sk->sk_rcvbuf >> 3)
4953 					return;
4954 			}
4955 			goto new_range;
4956 		}
4957 
4958 		range_truesize += skb->truesize;
4959 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
4960 			start = TCP_SKB_CB(skb)->seq;
4961 		if (after(TCP_SKB_CB(skb)->end_seq, end))
4962 			end = TCP_SKB_CB(skb)->end_seq;
4963 	}
4964 }
4965 
4966 /*
4967  * Clean the out-of-order queue to make room.
4968  * We drop high sequences packets to :
4969  * 1) Let a chance for holes to be filled.
4970  * 2) not add too big latencies if thousands of packets sit there.
4971  *    (But if application shrinks SO_RCVBUF, we could still end up
4972  *     freeing whole queue here)
4973  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
4974  *
4975  * Return true if queue has shrunk.
4976  */
4977 static bool tcp_prune_ofo_queue(struct sock *sk)
4978 {
4979 	struct tcp_sock *tp = tcp_sk(sk);
4980 	struct rb_node *node, *prev;
4981 	int goal;
4982 
4983 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4984 		return false;
4985 
4986 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4987 	goal = sk->sk_rcvbuf >> 3;
4988 	node = &tp->ooo_last_skb->rbnode;
4989 	do {
4990 		prev = rb_prev(node);
4991 		rb_erase(node, &tp->out_of_order_queue);
4992 		goal -= rb_to_skb(node)->truesize;
4993 		tcp_drop(sk, rb_to_skb(node));
4994 		if (!prev || goal <= 0) {
4995 			sk_mem_reclaim(sk);
4996 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
4997 			    !tcp_under_memory_pressure(sk))
4998 				break;
4999 			goal = sk->sk_rcvbuf >> 3;
5000 		}
5001 		node = prev;
5002 	} while (node);
5003 	tp->ooo_last_skb = rb_to_skb(prev);
5004 
5005 	/* Reset SACK state.  A conforming SACK implementation will
5006 	 * do the same at a timeout based retransmit.  When a connection
5007 	 * is in a sad state like this, we care only about integrity
5008 	 * of the connection not performance.
5009 	 */
5010 	if (tp->rx_opt.sack_ok)
5011 		tcp_sack_reset(&tp->rx_opt);
5012 	return true;
5013 }
5014 
5015 /* Reduce allocated memory if we can, trying to get
5016  * the socket within its memory limits again.
5017  *
5018  * Return less than zero if we should start dropping frames
5019  * until the socket owning process reads some of the data
5020  * to stabilize the situation.
5021  */
5022 static int tcp_prune_queue(struct sock *sk)
5023 {
5024 	struct tcp_sock *tp = tcp_sk(sk);
5025 
5026 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5027 
5028 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5029 
5030 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5031 		tcp_clamp_window(sk);
5032 	else if (tcp_under_memory_pressure(sk))
5033 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5034 
5035 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5036 		return 0;
5037 
5038 	tcp_collapse_ofo_queue(sk);
5039 	if (!skb_queue_empty(&sk->sk_receive_queue))
5040 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5041 			     skb_peek(&sk->sk_receive_queue),
5042 			     NULL,
5043 			     tp->copied_seq, tp->rcv_nxt);
5044 	sk_mem_reclaim(sk);
5045 
5046 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5047 		return 0;
5048 
5049 	/* Collapsing did not help, destructive actions follow.
5050 	 * This must not ever occur. */
5051 
5052 	tcp_prune_ofo_queue(sk);
5053 
5054 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5055 		return 0;
5056 
5057 	/* If we are really being abused, tell the caller to silently
5058 	 * drop receive data on the floor.  It will get retransmitted
5059 	 * and hopefully then we'll have sufficient space.
5060 	 */
5061 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5062 
5063 	/* Massive buffer overcommit. */
5064 	tp->pred_flags = 0;
5065 	return -1;
5066 }
5067 
5068 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5069 {
5070 	const struct tcp_sock *tp = tcp_sk(sk);
5071 
5072 	/* If the user specified a specific send buffer setting, do
5073 	 * not modify it.
5074 	 */
5075 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5076 		return false;
5077 
5078 	/* If we are under global TCP memory pressure, do not expand.  */
5079 	if (tcp_under_memory_pressure(sk))
5080 		return false;
5081 
5082 	/* If we are under soft global TCP memory pressure, do not expand.  */
5083 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5084 		return false;
5085 
5086 	/* If we filled the congestion window, do not expand.  */
5087 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5088 		return false;
5089 
5090 	return true;
5091 }
5092 
5093 /* When incoming ACK allowed to free some skb from write_queue,
5094  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5095  * on the exit from tcp input handler.
5096  *
5097  * PROBLEM: sndbuf expansion does not work well with largesend.
5098  */
5099 static void tcp_new_space(struct sock *sk)
5100 {
5101 	struct tcp_sock *tp = tcp_sk(sk);
5102 
5103 	if (tcp_should_expand_sndbuf(sk)) {
5104 		tcp_sndbuf_expand(sk);
5105 		tp->snd_cwnd_stamp = tcp_jiffies32;
5106 	}
5107 
5108 	sk->sk_write_space(sk);
5109 }
5110 
5111 static void tcp_check_space(struct sock *sk)
5112 {
5113 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5114 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5115 		/* pairs with tcp_poll() */
5116 		smp_mb();
5117 		if (sk->sk_socket &&
5118 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5119 			tcp_new_space(sk);
5120 			if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5121 				tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5122 		}
5123 	}
5124 }
5125 
5126 static inline void tcp_data_snd_check(struct sock *sk)
5127 {
5128 	tcp_push_pending_frames(sk);
5129 	tcp_check_space(sk);
5130 }
5131 
5132 /*
5133  * Check if sending an ack is needed.
5134  */
5135 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5136 {
5137 	struct tcp_sock *tp = tcp_sk(sk);
5138 	unsigned long rtt, delay;
5139 
5140 	    /* More than one full frame received... */
5141 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5142 	     /* ... and right edge of window advances far enough.
5143 	      * (tcp_recvmsg() will send ACK otherwise).
5144 	      * If application uses SO_RCVLOWAT, we want send ack now if
5145 	      * we have not received enough bytes to satisfy the condition.
5146 	      */
5147 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5148 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5149 	    /* We ACK each frame or... */
5150 	    tcp_in_quickack_mode(sk)) {
5151 send_now:
5152 		tcp_send_ack(sk);
5153 		return;
5154 	}
5155 
5156 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5157 		tcp_send_delayed_ack(sk);
5158 		return;
5159 	}
5160 
5161 	if (!tcp_is_sack(tp) ||
5162 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5163 		goto send_now;
5164 	tp->compressed_ack++;
5165 
5166 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5167 		return;
5168 
5169 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5170 
5171 	rtt = tp->rcv_rtt_est.rtt_us;
5172 	if (tp->srtt_us && tp->srtt_us < rtt)
5173 		rtt = tp->srtt_us;
5174 
5175 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5176 		      rtt * (NSEC_PER_USEC >> 3)/20);
5177 	sock_hold(sk);
5178 	hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5179 		      HRTIMER_MODE_REL_PINNED_SOFT);
5180 }
5181 
5182 static inline void tcp_ack_snd_check(struct sock *sk)
5183 {
5184 	if (!inet_csk_ack_scheduled(sk)) {
5185 		/* We sent a data segment already. */
5186 		return;
5187 	}
5188 	__tcp_ack_snd_check(sk, 1);
5189 }
5190 
5191 /*
5192  *	This routine is only called when we have urgent data
5193  *	signaled. Its the 'slow' part of tcp_urg. It could be
5194  *	moved inline now as tcp_urg is only called from one
5195  *	place. We handle URGent data wrong. We have to - as
5196  *	BSD still doesn't use the correction from RFC961.
5197  *	For 1003.1g we should support a new option TCP_STDURG to permit
5198  *	either form (or just set the sysctl tcp_stdurg).
5199  */
5200 
5201 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5202 {
5203 	struct tcp_sock *tp = tcp_sk(sk);
5204 	u32 ptr = ntohs(th->urg_ptr);
5205 
5206 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5207 		ptr--;
5208 	ptr += ntohl(th->seq);
5209 
5210 	/* Ignore urgent data that we've already seen and read. */
5211 	if (after(tp->copied_seq, ptr))
5212 		return;
5213 
5214 	/* Do not replay urg ptr.
5215 	 *
5216 	 * NOTE: interesting situation not covered by specs.
5217 	 * Misbehaving sender may send urg ptr, pointing to segment,
5218 	 * which we already have in ofo queue. We are not able to fetch
5219 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5220 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5221 	 * situations. But it is worth to think about possibility of some
5222 	 * DoSes using some hypothetical application level deadlock.
5223 	 */
5224 	if (before(ptr, tp->rcv_nxt))
5225 		return;
5226 
5227 	/* Do we already have a newer (or duplicate) urgent pointer? */
5228 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5229 		return;
5230 
5231 	/* Tell the world about our new urgent pointer. */
5232 	sk_send_sigurg(sk);
5233 
5234 	/* We may be adding urgent data when the last byte read was
5235 	 * urgent. To do this requires some care. We cannot just ignore
5236 	 * tp->copied_seq since we would read the last urgent byte again
5237 	 * as data, nor can we alter copied_seq until this data arrives
5238 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5239 	 *
5240 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5241 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5242 	 * and expect that both A and B disappear from stream. This is _wrong_.
5243 	 * Though this happens in BSD with high probability, this is occasional.
5244 	 * Any application relying on this is buggy. Note also, that fix "works"
5245 	 * only in this artificial test. Insert some normal data between A and B and we will
5246 	 * decline of BSD again. Verdict: it is better to remove to trap
5247 	 * buggy users.
5248 	 */
5249 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5250 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5251 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5252 		tp->copied_seq++;
5253 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5254 			__skb_unlink(skb, &sk->sk_receive_queue);
5255 			__kfree_skb(skb);
5256 		}
5257 	}
5258 
5259 	tp->urg_data = TCP_URG_NOTYET;
5260 	tp->urg_seq = ptr;
5261 
5262 	/* Disable header prediction. */
5263 	tp->pred_flags = 0;
5264 }
5265 
5266 /* This is the 'fast' part of urgent handling. */
5267 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5268 {
5269 	struct tcp_sock *tp = tcp_sk(sk);
5270 
5271 	/* Check if we get a new urgent pointer - normally not. */
5272 	if (th->urg)
5273 		tcp_check_urg(sk, th);
5274 
5275 	/* Do we wait for any urgent data? - normally not... */
5276 	if (tp->urg_data == TCP_URG_NOTYET) {
5277 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5278 			  th->syn;
5279 
5280 		/* Is the urgent pointer pointing into this packet? */
5281 		if (ptr < skb->len) {
5282 			u8 tmp;
5283 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5284 				BUG();
5285 			tp->urg_data = TCP_URG_VALID | tmp;
5286 			if (!sock_flag(sk, SOCK_DEAD))
5287 				sk->sk_data_ready(sk);
5288 		}
5289 	}
5290 }
5291 
5292 /* Accept RST for rcv_nxt - 1 after a FIN.
5293  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5294  * FIN is sent followed by a RST packet. The RST is sent with the same
5295  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5296  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5297  * ACKs on the closed socket. In addition middleboxes can drop either the
5298  * challenge ACK or a subsequent RST.
5299  */
5300 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5301 {
5302 	struct tcp_sock *tp = tcp_sk(sk);
5303 
5304 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5305 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5306 					       TCPF_CLOSING));
5307 }
5308 
5309 /* Does PAWS and seqno based validation of an incoming segment, flags will
5310  * play significant role here.
5311  */
5312 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5313 				  const struct tcphdr *th, int syn_inerr)
5314 {
5315 	struct tcp_sock *tp = tcp_sk(sk);
5316 	bool rst_seq_match = false;
5317 
5318 	/* RFC1323: H1. Apply PAWS check first. */
5319 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5320 	    tp->rx_opt.saw_tstamp &&
5321 	    tcp_paws_discard(sk, skb)) {
5322 		if (!th->rst) {
5323 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5324 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5325 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5326 						  &tp->last_oow_ack_time))
5327 				tcp_send_dupack(sk, skb);
5328 			goto discard;
5329 		}
5330 		/* Reset is accepted even if it did not pass PAWS. */
5331 	}
5332 
5333 	/* Step 1: check sequence number */
5334 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5335 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5336 		 * (RST) segments are validated by checking their SEQ-fields."
5337 		 * And page 69: "If an incoming segment is not acceptable,
5338 		 * an acknowledgment should be sent in reply (unless the RST
5339 		 * bit is set, if so drop the segment and return)".
5340 		 */
5341 		if (!th->rst) {
5342 			if (th->syn)
5343 				goto syn_challenge;
5344 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5345 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5346 						  &tp->last_oow_ack_time))
5347 				tcp_send_dupack(sk, skb);
5348 		} else if (tcp_reset_check(sk, skb)) {
5349 			tcp_reset(sk);
5350 		}
5351 		goto discard;
5352 	}
5353 
5354 	/* Step 2: check RST bit */
5355 	if (th->rst) {
5356 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5357 		 * FIN and SACK too if available):
5358 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5359 		 * the right-most SACK block,
5360 		 * then
5361 		 *     RESET the connection
5362 		 * else
5363 		 *     Send a challenge ACK
5364 		 */
5365 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5366 		    tcp_reset_check(sk, skb)) {
5367 			rst_seq_match = true;
5368 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5369 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5370 			int max_sack = sp[0].end_seq;
5371 			int this_sack;
5372 
5373 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5374 			     ++this_sack) {
5375 				max_sack = after(sp[this_sack].end_seq,
5376 						 max_sack) ?
5377 					sp[this_sack].end_seq : max_sack;
5378 			}
5379 
5380 			if (TCP_SKB_CB(skb)->seq == max_sack)
5381 				rst_seq_match = true;
5382 		}
5383 
5384 		if (rst_seq_match)
5385 			tcp_reset(sk);
5386 		else {
5387 			/* Disable TFO if RST is out-of-order
5388 			 * and no data has been received
5389 			 * for current active TFO socket
5390 			 */
5391 			if (tp->syn_fastopen && !tp->data_segs_in &&
5392 			    sk->sk_state == TCP_ESTABLISHED)
5393 				tcp_fastopen_active_disable(sk);
5394 			tcp_send_challenge_ack(sk, skb);
5395 		}
5396 		goto discard;
5397 	}
5398 
5399 	/* step 3: check security and precedence [ignored] */
5400 
5401 	/* step 4: Check for a SYN
5402 	 * RFC 5961 4.2 : Send a challenge ack
5403 	 */
5404 	if (th->syn) {
5405 syn_challenge:
5406 		if (syn_inerr)
5407 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5408 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5409 		tcp_send_challenge_ack(sk, skb);
5410 		goto discard;
5411 	}
5412 
5413 	return true;
5414 
5415 discard:
5416 	tcp_drop(sk, skb);
5417 	return false;
5418 }
5419 
5420 /*
5421  *	TCP receive function for the ESTABLISHED state.
5422  *
5423  *	It is split into a fast path and a slow path. The fast path is
5424  * 	disabled when:
5425  *	- A zero window was announced from us - zero window probing
5426  *        is only handled properly in the slow path.
5427  *	- Out of order segments arrived.
5428  *	- Urgent data is expected.
5429  *	- There is no buffer space left
5430  *	- Unexpected TCP flags/window values/header lengths are received
5431  *	  (detected by checking the TCP header against pred_flags)
5432  *	- Data is sent in both directions. Fast path only supports pure senders
5433  *	  or pure receivers (this means either the sequence number or the ack
5434  *	  value must stay constant)
5435  *	- Unexpected TCP option.
5436  *
5437  *	When these conditions are not satisfied it drops into a standard
5438  *	receive procedure patterned after RFC793 to handle all cases.
5439  *	The first three cases are guaranteed by proper pred_flags setting,
5440  *	the rest is checked inline. Fast processing is turned on in
5441  *	tcp_data_queue when everything is OK.
5442  */
5443 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5444 {
5445 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5446 	struct tcp_sock *tp = tcp_sk(sk);
5447 	unsigned int len = skb->len;
5448 
5449 	/* TCP congestion window tracking */
5450 	trace_tcp_probe(sk, skb);
5451 
5452 	tcp_mstamp_refresh(tp);
5453 	if (unlikely(!sk->sk_rx_dst))
5454 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5455 	/*
5456 	 *	Header prediction.
5457 	 *	The code loosely follows the one in the famous
5458 	 *	"30 instruction TCP receive" Van Jacobson mail.
5459 	 *
5460 	 *	Van's trick is to deposit buffers into socket queue
5461 	 *	on a device interrupt, to call tcp_recv function
5462 	 *	on the receive process context and checksum and copy
5463 	 *	the buffer to user space. smart...
5464 	 *
5465 	 *	Our current scheme is not silly either but we take the
5466 	 *	extra cost of the net_bh soft interrupt processing...
5467 	 *	We do checksum and copy also but from device to kernel.
5468 	 */
5469 
5470 	tp->rx_opt.saw_tstamp = 0;
5471 
5472 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5473 	 *	if header_prediction is to be made
5474 	 *	'S' will always be tp->tcp_header_len >> 2
5475 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5476 	 *  turn it off	(when there are holes in the receive
5477 	 *	 space for instance)
5478 	 *	PSH flag is ignored.
5479 	 */
5480 
5481 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5482 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5483 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5484 		int tcp_header_len = tp->tcp_header_len;
5485 
5486 		/* Timestamp header prediction: tcp_header_len
5487 		 * is automatically equal to th->doff*4 due to pred_flags
5488 		 * match.
5489 		 */
5490 
5491 		/* Check timestamp */
5492 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5493 			/* No? Slow path! */
5494 			if (!tcp_parse_aligned_timestamp(tp, th))
5495 				goto slow_path;
5496 
5497 			/* If PAWS failed, check it more carefully in slow path */
5498 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5499 				goto slow_path;
5500 
5501 			/* DO NOT update ts_recent here, if checksum fails
5502 			 * and timestamp was corrupted part, it will result
5503 			 * in a hung connection since we will drop all
5504 			 * future packets due to the PAWS test.
5505 			 */
5506 		}
5507 
5508 		if (len <= tcp_header_len) {
5509 			/* Bulk data transfer: sender */
5510 			if (len == tcp_header_len) {
5511 				/* Predicted packet is in window by definition.
5512 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5513 				 * Hence, check seq<=rcv_wup reduces to:
5514 				 */
5515 				if (tcp_header_len ==
5516 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5517 				    tp->rcv_nxt == tp->rcv_wup)
5518 					tcp_store_ts_recent(tp);
5519 
5520 				/* We know that such packets are checksummed
5521 				 * on entry.
5522 				 */
5523 				tcp_ack(sk, skb, 0);
5524 				__kfree_skb(skb);
5525 				tcp_data_snd_check(sk);
5526 				return;
5527 			} else { /* Header too small */
5528 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5529 				goto discard;
5530 			}
5531 		} else {
5532 			int eaten = 0;
5533 			bool fragstolen = false;
5534 
5535 			if (tcp_checksum_complete(skb))
5536 				goto csum_error;
5537 
5538 			if ((int)skb->truesize > sk->sk_forward_alloc)
5539 				goto step5;
5540 
5541 			/* Predicted packet is in window by definition.
5542 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5543 			 * Hence, check seq<=rcv_wup reduces to:
5544 			 */
5545 			if (tcp_header_len ==
5546 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5547 			    tp->rcv_nxt == tp->rcv_wup)
5548 				tcp_store_ts_recent(tp);
5549 
5550 			tcp_rcv_rtt_measure_ts(sk, skb);
5551 
5552 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5553 
5554 			/* Bulk data transfer: receiver */
5555 			eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5556 					      &fragstolen);
5557 
5558 			tcp_event_data_recv(sk, skb);
5559 
5560 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5561 				/* Well, only one small jumplet in fast path... */
5562 				tcp_ack(sk, skb, FLAG_DATA);
5563 				tcp_data_snd_check(sk);
5564 				if (!inet_csk_ack_scheduled(sk))
5565 					goto no_ack;
5566 			}
5567 
5568 			__tcp_ack_snd_check(sk, 0);
5569 no_ack:
5570 			if (eaten)
5571 				kfree_skb_partial(skb, fragstolen);
5572 			tcp_data_ready(sk);
5573 			return;
5574 		}
5575 	}
5576 
5577 slow_path:
5578 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5579 		goto csum_error;
5580 
5581 	if (!th->ack && !th->rst && !th->syn)
5582 		goto discard;
5583 
5584 	/*
5585 	 *	Standard slow path.
5586 	 */
5587 
5588 	if (!tcp_validate_incoming(sk, skb, th, 1))
5589 		return;
5590 
5591 step5:
5592 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5593 		goto discard;
5594 
5595 	tcp_rcv_rtt_measure_ts(sk, skb);
5596 
5597 	/* Process urgent data. */
5598 	tcp_urg(sk, skb, th);
5599 
5600 	/* step 7: process the segment text */
5601 	tcp_data_queue(sk, skb);
5602 
5603 	tcp_data_snd_check(sk);
5604 	tcp_ack_snd_check(sk);
5605 	return;
5606 
5607 csum_error:
5608 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5609 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5610 
5611 discard:
5612 	tcp_drop(sk, skb);
5613 }
5614 EXPORT_SYMBOL(tcp_rcv_established);
5615 
5616 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5617 {
5618 	struct tcp_sock *tp = tcp_sk(sk);
5619 	struct inet_connection_sock *icsk = inet_csk(sk);
5620 
5621 	tcp_set_state(sk, TCP_ESTABLISHED);
5622 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5623 
5624 	if (skb) {
5625 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5626 		security_inet_conn_established(sk, skb);
5627 	}
5628 
5629 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5630 
5631 	/* Prevent spurious tcp_cwnd_restart() on first data
5632 	 * packet.
5633 	 */
5634 	tp->lsndtime = tcp_jiffies32;
5635 
5636 	if (sock_flag(sk, SOCK_KEEPOPEN))
5637 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5638 
5639 	if (!tp->rx_opt.snd_wscale)
5640 		__tcp_fast_path_on(tp, tp->snd_wnd);
5641 	else
5642 		tp->pred_flags = 0;
5643 }
5644 
5645 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5646 				    struct tcp_fastopen_cookie *cookie)
5647 {
5648 	struct tcp_sock *tp = tcp_sk(sk);
5649 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5650 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5651 	bool syn_drop = false;
5652 
5653 	if (mss == tp->rx_opt.user_mss) {
5654 		struct tcp_options_received opt;
5655 
5656 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5657 		tcp_clear_options(&opt);
5658 		opt.user_mss = opt.mss_clamp = 0;
5659 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5660 		mss = opt.mss_clamp;
5661 	}
5662 
5663 	if (!tp->syn_fastopen) {
5664 		/* Ignore an unsolicited cookie */
5665 		cookie->len = -1;
5666 	} else if (tp->total_retrans) {
5667 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5668 		 * acknowledges data. Presumably the remote received only
5669 		 * the retransmitted (regular) SYNs: either the original
5670 		 * SYN-data or the corresponding SYN-ACK was dropped.
5671 		 */
5672 		syn_drop = (cookie->len < 0 && data);
5673 	} else if (cookie->len < 0 && !tp->syn_data) {
5674 		/* We requested a cookie but didn't get it. If we did not use
5675 		 * the (old) exp opt format then try so next time (try_exp=1).
5676 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5677 		 */
5678 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5679 	}
5680 
5681 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5682 
5683 	if (data) { /* Retransmit unacked data in SYN */
5684 		skb_rbtree_walk_from(data) {
5685 			if (__tcp_retransmit_skb(sk, data, 1))
5686 				break;
5687 		}
5688 		tcp_rearm_rto(sk);
5689 		NET_INC_STATS(sock_net(sk),
5690 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5691 		return true;
5692 	}
5693 	tp->syn_data_acked = tp->syn_data;
5694 	if (tp->syn_data_acked) {
5695 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5696 		/* SYN-data is counted as two separate packets in tcp_ack() */
5697 		if (tp->delivered > 1)
5698 			--tp->delivered;
5699 	}
5700 
5701 	tcp_fastopen_add_skb(sk, synack);
5702 
5703 	return false;
5704 }
5705 
5706 static void smc_check_reset_syn(struct tcp_sock *tp)
5707 {
5708 #if IS_ENABLED(CONFIG_SMC)
5709 	if (static_branch_unlikely(&tcp_have_smc)) {
5710 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
5711 			tp->syn_smc = 0;
5712 	}
5713 #endif
5714 }
5715 
5716 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5717 					 const struct tcphdr *th)
5718 {
5719 	struct inet_connection_sock *icsk = inet_csk(sk);
5720 	struct tcp_sock *tp = tcp_sk(sk);
5721 	struct tcp_fastopen_cookie foc = { .len = -1 };
5722 	int saved_clamp = tp->rx_opt.mss_clamp;
5723 	bool fastopen_fail;
5724 
5725 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5726 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5727 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5728 
5729 	if (th->ack) {
5730 		/* rfc793:
5731 		 * "If the state is SYN-SENT then
5732 		 *    first check the ACK bit
5733 		 *      If the ACK bit is set
5734 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5735 		 *        a reset (unless the RST bit is set, if so drop
5736 		 *        the segment and return)"
5737 		 */
5738 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5739 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5740 			goto reset_and_undo;
5741 
5742 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5743 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5744 			     tcp_time_stamp(tp))) {
5745 			NET_INC_STATS(sock_net(sk),
5746 					LINUX_MIB_PAWSACTIVEREJECTED);
5747 			goto reset_and_undo;
5748 		}
5749 
5750 		/* Now ACK is acceptable.
5751 		 *
5752 		 * "If the RST bit is set
5753 		 *    If the ACK was acceptable then signal the user "error:
5754 		 *    connection reset", drop the segment, enter CLOSED state,
5755 		 *    delete TCB, and return."
5756 		 */
5757 
5758 		if (th->rst) {
5759 			tcp_reset(sk);
5760 			goto discard;
5761 		}
5762 
5763 		/* rfc793:
5764 		 *   "fifth, if neither of the SYN or RST bits is set then
5765 		 *    drop the segment and return."
5766 		 *
5767 		 *    See note below!
5768 		 *                                        --ANK(990513)
5769 		 */
5770 		if (!th->syn)
5771 			goto discard_and_undo;
5772 
5773 		/* rfc793:
5774 		 *   "If the SYN bit is on ...
5775 		 *    are acceptable then ...
5776 		 *    (our SYN has been ACKed), change the connection
5777 		 *    state to ESTABLISHED..."
5778 		 */
5779 
5780 		tcp_ecn_rcv_synack(tp, th);
5781 
5782 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5783 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5784 
5785 		/* Ok.. it's good. Set up sequence numbers and
5786 		 * move to established.
5787 		 */
5788 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5789 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5790 
5791 		/* RFC1323: The window in SYN & SYN/ACK segments is
5792 		 * never scaled.
5793 		 */
5794 		tp->snd_wnd = ntohs(th->window);
5795 
5796 		if (!tp->rx_opt.wscale_ok) {
5797 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5798 			tp->window_clamp = min(tp->window_clamp, 65535U);
5799 		}
5800 
5801 		if (tp->rx_opt.saw_tstamp) {
5802 			tp->rx_opt.tstamp_ok	   = 1;
5803 			tp->tcp_header_len =
5804 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5805 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5806 			tcp_store_ts_recent(tp);
5807 		} else {
5808 			tp->tcp_header_len = sizeof(struct tcphdr);
5809 		}
5810 
5811 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5812 		tcp_initialize_rcv_mss(sk);
5813 
5814 		/* Remember, tcp_poll() does not lock socket!
5815 		 * Change state from SYN-SENT only after copied_seq
5816 		 * is initialized. */
5817 		tp->copied_seq = tp->rcv_nxt;
5818 
5819 		smc_check_reset_syn(tp);
5820 
5821 		smp_mb();
5822 
5823 		tcp_finish_connect(sk, skb);
5824 
5825 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5826 				tcp_rcv_fastopen_synack(sk, skb, &foc);
5827 
5828 		if (!sock_flag(sk, SOCK_DEAD)) {
5829 			sk->sk_state_change(sk);
5830 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5831 		}
5832 		if (fastopen_fail)
5833 			return -1;
5834 		if (sk->sk_write_pending ||
5835 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5836 		    icsk->icsk_ack.pingpong) {
5837 			/* Save one ACK. Data will be ready after
5838 			 * several ticks, if write_pending is set.
5839 			 *
5840 			 * It may be deleted, but with this feature tcpdumps
5841 			 * look so _wonderfully_ clever, that I was not able
5842 			 * to stand against the temptation 8)     --ANK
5843 			 */
5844 			inet_csk_schedule_ack(sk);
5845 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5846 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5847 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5848 
5849 discard:
5850 			tcp_drop(sk, skb);
5851 			return 0;
5852 		} else {
5853 			tcp_send_ack(sk);
5854 		}
5855 		return -1;
5856 	}
5857 
5858 	/* No ACK in the segment */
5859 
5860 	if (th->rst) {
5861 		/* rfc793:
5862 		 * "If the RST bit is set
5863 		 *
5864 		 *      Otherwise (no ACK) drop the segment and return."
5865 		 */
5866 
5867 		goto discard_and_undo;
5868 	}
5869 
5870 	/* PAWS check. */
5871 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5872 	    tcp_paws_reject(&tp->rx_opt, 0))
5873 		goto discard_and_undo;
5874 
5875 	if (th->syn) {
5876 		/* We see SYN without ACK. It is attempt of
5877 		 * simultaneous connect with crossed SYNs.
5878 		 * Particularly, it can be connect to self.
5879 		 */
5880 		tcp_set_state(sk, TCP_SYN_RECV);
5881 
5882 		if (tp->rx_opt.saw_tstamp) {
5883 			tp->rx_opt.tstamp_ok = 1;
5884 			tcp_store_ts_recent(tp);
5885 			tp->tcp_header_len =
5886 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5887 		} else {
5888 			tp->tcp_header_len = sizeof(struct tcphdr);
5889 		}
5890 
5891 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5892 		tp->copied_seq = tp->rcv_nxt;
5893 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5894 
5895 		/* RFC1323: The window in SYN & SYN/ACK segments is
5896 		 * never scaled.
5897 		 */
5898 		tp->snd_wnd    = ntohs(th->window);
5899 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5900 		tp->max_window = tp->snd_wnd;
5901 
5902 		tcp_ecn_rcv_syn(tp, th);
5903 
5904 		tcp_mtup_init(sk);
5905 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5906 		tcp_initialize_rcv_mss(sk);
5907 
5908 		tcp_send_synack(sk);
5909 #if 0
5910 		/* Note, we could accept data and URG from this segment.
5911 		 * There are no obstacles to make this (except that we must
5912 		 * either change tcp_recvmsg() to prevent it from returning data
5913 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5914 		 *
5915 		 * However, if we ignore data in ACKless segments sometimes,
5916 		 * we have no reasons to accept it sometimes.
5917 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5918 		 * is not flawless. So, discard packet for sanity.
5919 		 * Uncomment this return to process the data.
5920 		 */
5921 		return -1;
5922 #else
5923 		goto discard;
5924 #endif
5925 	}
5926 	/* "fifth, if neither of the SYN or RST bits is set then
5927 	 * drop the segment and return."
5928 	 */
5929 
5930 discard_and_undo:
5931 	tcp_clear_options(&tp->rx_opt);
5932 	tp->rx_opt.mss_clamp = saved_clamp;
5933 	goto discard;
5934 
5935 reset_and_undo:
5936 	tcp_clear_options(&tp->rx_opt);
5937 	tp->rx_opt.mss_clamp = saved_clamp;
5938 	return 1;
5939 }
5940 
5941 /*
5942  *	This function implements the receiving procedure of RFC 793 for
5943  *	all states except ESTABLISHED and TIME_WAIT.
5944  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5945  *	address independent.
5946  */
5947 
5948 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5949 {
5950 	struct tcp_sock *tp = tcp_sk(sk);
5951 	struct inet_connection_sock *icsk = inet_csk(sk);
5952 	const struct tcphdr *th = tcp_hdr(skb);
5953 	struct request_sock *req;
5954 	int queued = 0;
5955 	bool acceptable;
5956 
5957 	switch (sk->sk_state) {
5958 	case TCP_CLOSE:
5959 		goto discard;
5960 
5961 	case TCP_LISTEN:
5962 		if (th->ack)
5963 			return 1;
5964 
5965 		if (th->rst)
5966 			goto discard;
5967 
5968 		if (th->syn) {
5969 			if (th->fin)
5970 				goto discard;
5971 			/* It is possible that we process SYN packets from backlog,
5972 			 * so we need to make sure to disable BH right there.
5973 			 */
5974 			local_bh_disable();
5975 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
5976 			local_bh_enable();
5977 
5978 			if (!acceptable)
5979 				return 1;
5980 			consume_skb(skb);
5981 			return 0;
5982 		}
5983 		goto discard;
5984 
5985 	case TCP_SYN_SENT:
5986 		tp->rx_opt.saw_tstamp = 0;
5987 		tcp_mstamp_refresh(tp);
5988 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
5989 		if (queued >= 0)
5990 			return queued;
5991 
5992 		/* Do step6 onward by hand. */
5993 		tcp_urg(sk, skb, th);
5994 		__kfree_skb(skb);
5995 		tcp_data_snd_check(sk);
5996 		return 0;
5997 	}
5998 
5999 	tcp_mstamp_refresh(tp);
6000 	tp->rx_opt.saw_tstamp = 0;
6001 	req = tp->fastopen_rsk;
6002 	if (req) {
6003 		bool req_stolen;
6004 
6005 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6006 		    sk->sk_state != TCP_FIN_WAIT1);
6007 
6008 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6009 			goto discard;
6010 	}
6011 
6012 	if (!th->ack && !th->rst && !th->syn)
6013 		goto discard;
6014 
6015 	if (!tcp_validate_incoming(sk, skb, th, 0))
6016 		return 0;
6017 
6018 	/* step 5: check the ACK field */
6019 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6020 				      FLAG_UPDATE_TS_RECENT |
6021 				      FLAG_NO_CHALLENGE_ACK) > 0;
6022 
6023 	if (!acceptable) {
6024 		if (sk->sk_state == TCP_SYN_RECV)
6025 			return 1;	/* send one RST */
6026 		tcp_send_challenge_ack(sk, skb);
6027 		goto discard;
6028 	}
6029 	switch (sk->sk_state) {
6030 	case TCP_SYN_RECV:
6031 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6032 		if (!tp->srtt_us)
6033 			tcp_synack_rtt_meas(sk, req);
6034 
6035 		/* Once we leave TCP_SYN_RECV, we no longer need req
6036 		 * so release it.
6037 		 */
6038 		if (req) {
6039 			inet_csk(sk)->icsk_retransmits = 0;
6040 			reqsk_fastopen_remove(sk, req, false);
6041 			/* Re-arm the timer because data may have been sent out.
6042 			 * This is similar to the regular data transmission case
6043 			 * when new data has just been ack'ed.
6044 			 *
6045 			 * (TFO) - we could try to be more aggressive and
6046 			 * retransmitting any data sooner based on when they
6047 			 * are sent out.
6048 			 */
6049 			tcp_rearm_rto(sk);
6050 		} else {
6051 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6052 			tp->copied_seq = tp->rcv_nxt;
6053 		}
6054 		smp_mb();
6055 		tcp_set_state(sk, TCP_ESTABLISHED);
6056 		sk->sk_state_change(sk);
6057 
6058 		/* Note, that this wakeup is only for marginal crossed SYN case.
6059 		 * Passively open sockets are not waked up, because
6060 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6061 		 */
6062 		if (sk->sk_socket)
6063 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6064 
6065 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6066 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6067 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6068 
6069 		if (tp->rx_opt.tstamp_ok)
6070 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6071 
6072 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6073 			tcp_update_pacing_rate(sk);
6074 
6075 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6076 		tp->lsndtime = tcp_jiffies32;
6077 
6078 		tcp_initialize_rcv_mss(sk);
6079 		tcp_fast_path_on(tp);
6080 		break;
6081 
6082 	case TCP_FIN_WAIT1: {
6083 		int tmo;
6084 
6085 		/* If we enter the TCP_FIN_WAIT1 state and we are a
6086 		 * Fast Open socket and this is the first acceptable
6087 		 * ACK we have received, this would have acknowledged
6088 		 * our SYNACK so stop the SYNACK timer.
6089 		 */
6090 		if (req) {
6091 			/* We no longer need the request sock. */
6092 			reqsk_fastopen_remove(sk, req, false);
6093 			tcp_rearm_rto(sk);
6094 		}
6095 		if (tp->snd_una != tp->write_seq)
6096 			break;
6097 
6098 		tcp_set_state(sk, TCP_FIN_WAIT2);
6099 		sk->sk_shutdown |= SEND_SHUTDOWN;
6100 
6101 		sk_dst_confirm(sk);
6102 
6103 		if (!sock_flag(sk, SOCK_DEAD)) {
6104 			/* Wake up lingering close() */
6105 			sk->sk_state_change(sk);
6106 			break;
6107 		}
6108 
6109 		if (tp->linger2 < 0) {
6110 			tcp_done(sk);
6111 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6112 			return 1;
6113 		}
6114 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6115 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6116 			/* Receive out of order FIN after close() */
6117 			if (tp->syn_fastopen && th->fin)
6118 				tcp_fastopen_active_disable(sk);
6119 			tcp_done(sk);
6120 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6121 			return 1;
6122 		}
6123 
6124 		tmo = tcp_fin_time(sk);
6125 		if (tmo > TCP_TIMEWAIT_LEN) {
6126 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6127 		} else if (th->fin || sock_owned_by_user(sk)) {
6128 			/* Bad case. We could lose such FIN otherwise.
6129 			 * It is not a big problem, but it looks confusing
6130 			 * and not so rare event. We still can lose it now,
6131 			 * if it spins in bh_lock_sock(), but it is really
6132 			 * marginal case.
6133 			 */
6134 			inet_csk_reset_keepalive_timer(sk, tmo);
6135 		} else {
6136 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6137 			goto discard;
6138 		}
6139 		break;
6140 	}
6141 
6142 	case TCP_CLOSING:
6143 		if (tp->snd_una == tp->write_seq) {
6144 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6145 			goto discard;
6146 		}
6147 		break;
6148 
6149 	case TCP_LAST_ACK:
6150 		if (tp->snd_una == tp->write_seq) {
6151 			tcp_update_metrics(sk);
6152 			tcp_done(sk);
6153 			goto discard;
6154 		}
6155 		break;
6156 	}
6157 
6158 	/* step 6: check the URG bit */
6159 	tcp_urg(sk, skb, th);
6160 
6161 	/* step 7: process the segment text */
6162 	switch (sk->sk_state) {
6163 	case TCP_CLOSE_WAIT:
6164 	case TCP_CLOSING:
6165 	case TCP_LAST_ACK:
6166 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6167 			break;
6168 		/* fall through */
6169 	case TCP_FIN_WAIT1:
6170 	case TCP_FIN_WAIT2:
6171 		/* RFC 793 says to queue data in these states,
6172 		 * RFC 1122 says we MUST send a reset.
6173 		 * BSD 4.4 also does reset.
6174 		 */
6175 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6176 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6177 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6178 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6179 				tcp_reset(sk);
6180 				return 1;
6181 			}
6182 		}
6183 		/* Fall through */
6184 	case TCP_ESTABLISHED:
6185 		tcp_data_queue(sk, skb);
6186 		queued = 1;
6187 		break;
6188 	}
6189 
6190 	/* tcp_data could move socket to TIME-WAIT */
6191 	if (sk->sk_state != TCP_CLOSE) {
6192 		tcp_data_snd_check(sk);
6193 		tcp_ack_snd_check(sk);
6194 	}
6195 
6196 	if (!queued) {
6197 discard:
6198 		tcp_drop(sk, skb);
6199 	}
6200 	return 0;
6201 }
6202 EXPORT_SYMBOL(tcp_rcv_state_process);
6203 
6204 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6205 {
6206 	struct inet_request_sock *ireq = inet_rsk(req);
6207 
6208 	if (family == AF_INET)
6209 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6210 				    &ireq->ir_rmt_addr, port);
6211 #if IS_ENABLED(CONFIG_IPV6)
6212 	else if (family == AF_INET6)
6213 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6214 				    &ireq->ir_v6_rmt_addr, port);
6215 #endif
6216 }
6217 
6218 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6219  *
6220  * If we receive a SYN packet with these bits set, it means a
6221  * network is playing bad games with TOS bits. In order to
6222  * avoid possible false congestion notifications, we disable
6223  * TCP ECN negotiation.
6224  *
6225  * Exception: tcp_ca wants ECN. This is required for DCTCP
6226  * congestion control: Linux DCTCP asserts ECT on all packets,
6227  * including SYN, which is most optimal solution; however,
6228  * others, such as FreeBSD do not.
6229  */
6230 static void tcp_ecn_create_request(struct request_sock *req,
6231 				   const struct sk_buff *skb,
6232 				   const struct sock *listen_sk,
6233 				   const struct dst_entry *dst)
6234 {
6235 	const struct tcphdr *th = tcp_hdr(skb);
6236 	const struct net *net = sock_net(listen_sk);
6237 	bool th_ecn = th->ece && th->cwr;
6238 	bool ect, ecn_ok;
6239 	u32 ecn_ok_dst;
6240 
6241 	if (!th_ecn)
6242 		return;
6243 
6244 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6245 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6246 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6247 
6248 	if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6249 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6250 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6251 		inet_rsk(req)->ecn_ok = 1;
6252 }
6253 
6254 static void tcp_openreq_init(struct request_sock *req,
6255 			     const struct tcp_options_received *rx_opt,
6256 			     struct sk_buff *skb, const struct sock *sk)
6257 {
6258 	struct inet_request_sock *ireq = inet_rsk(req);
6259 
6260 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6261 	req->cookie_ts = 0;
6262 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6263 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6264 	tcp_rsk(req)->snt_synack = tcp_clock_us();
6265 	tcp_rsk(req)->last_oow_ack_time = 0;
6266 	req->mss = rx_opt->mss_clamp;
6267 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6268 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6269 	ireq->sack_ok = rx_opt->sack_ok;
6270 	ireq->snd_wscale = rx_opt->snd_wscale;
6271 	ireq->wscale_ok = rx_opt->wscale_ok;
6272 	ireq->acked = 0;
6273 	ireq->ecn_ok = 0;
6274 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6275 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6276 	ireq->ir_mark = inet_request_mark(sk, skb);
6277 #if IS_ENABLED(CONFIG_SMC)
6278 	ireq->smc_ok = rx_opt->smc_ok;
6279 #endif
6280 }
6281 
6282 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6283 				      struct sock *sk_listener,
6284 				      bool attach_listener)
6285 {
6286 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6287 					       attach_listener);
6288 
6289 	if (req) {
6290 		struct inet_request_sock *ireq = inet_rsk(req);
6291 
6292 		ireq->ireq_opt = NULL;
6293 #if IS_ENABLED(CONFIG_IPV6)
6294 		ireq->pktopts = NULL;
6295 #endif
6296 		atomic64_set(&ireq->ir_cookie, 0);
6297 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6298 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6299 		ireq->ireq_family = sk_listener->sk_family;
6300 	}
6301 
6302 	return req;
6303 }
6304 EXPORT_SYMBOL(inet_reqsk_alloc);
6305 
6306 /*
6307  * Return true if a syncookie should be sent
6308  */
6309 static bool tcp_syn_flood_action(const struct sock *sk,
6310 				 const struct sk_buff *skb,
6311 				 const char *proto)
6312 {
6313 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6314 	const char *msg = "Dropping request";
6315 	bool want_cookie = false;
6316 	struct net *net = sock_net(sk);
6317 
6318 #ifdef CONFIG_SYN_COOKIES
6319 	if (net->ipv4.sysctl_tcp_syncookies) {
6320 		msg = "Sending cookies";
6321 		want_cookie = true;
6322 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6323 	} else
6324 #endif
6325 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6326 
6327 	if (!queue->synflood_warned &&
6328 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6329 	    xchg(&queue->synflood_warned, 1) == 0)
6330 		pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6331 			proto, ntohs(tcp_hdr(skb)->dest), msg);
6332 
6333 	return want_cookie;
6334 }
6335 
6336 static void tcp_reqsk_record_syn(const struct sock *sk,
6337 				 struct request_sock *req,
6338 				 const struct sk_buff *skb)
6339 {
6340 	if (tcp_sk(sk)->save_syn) {
6341 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6342 		u32 *copy;
6343 
6344 		copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6345 		if (copy) {
6346 			copy[0] = len;
6347 			memcpy(&copy[1], skb_network_header(skb), len);
6348 			req->saved_syn = copy;
6349 		}
6350 	}
6351 }
6352 
6353 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6354 		     const struct tcp_request_sock_ops *af_ops,
6355 		     struct sock *sk, struct sk_buff *skb)
6356 {
6357 	struct tcp_fastopen_cookie foc = { .len = -1 };
6358 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6359 	struct tcp_options_received tmp_opt;
6360 	struct tcp_sock *tp = tcp_sk(sk);
6361 	struct net *net = sock_net(sk);
6362 	struct sock *fastopen_sk = NULL;
6363 	struct request_sock *req;
6364 	bool want_cookie = false;
6365 	struct dst_entry *dst;
6366 	struct flowi fl;
6367 
6368 	/* TW buckets are converted to open requests without
6369 	 * limitations, they conserve resources and peer is
6370 	 * evidently real one.
6371 	 */
6372 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6373 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6374 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6375 		if (!want_cookie)
6376 			goto drop;
6377 	}
6378 
6379 	if (sk_acceptq_is_full(sk)) {
6380 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6381 		goto drop;
6382 	}
6383 
6384 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6385 	if (!req)
6386 		goto drop;
6387 
6388 	tcp_rsk(req)->af_specific = af_ops;
6389 	tcp_rsk(req)->ts_off = 0;
6390 
6391 	tcp_clear_options(&tmp_opt);
6392 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6393 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6394 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6395 			  want_cookie ? NULL : &foc);
6396 
6397 	if (want_cookie && !tmp_opt.saw_tstamp)
6398 		tcp_clear_options(&tmp_opt);
6399 
6400 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6401 		tmp_opt.smc_ok = 0;
6402 
6403 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6404 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6405 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6406 
6407 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6408 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6409 
6410 	af_ops->init_req(req, sk, skb);
6411 
6412 	if (security_inet_conn_request(sk, skb, req))
6413 		goto drop_and_free;
6414 
6415 	if (tmp_opt.tstamp_ok)
6416 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6417 
6418 	dst = af_ops->route_req(sk, &fl, req);
6419 	if (!dst)
6420 		goto drop_and_free;
6421 
6422 	if (!want_cookie && !isn) {
6423 		/* Kill the following clause, if you dislike this way. */
6424 		if (!net->ipv4.sysctl_tcp_syncookies &&
6425 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6426 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6427 		    !tcp_peer_is_proven(req, dst)) {
6428 			/* Without syncookies last quarter of
6429 			 * backlog is filled with destinations,
6430 			 * proven to be alive.
6431 			 * It means that we continue to communicate
6432 			 * to destinations, already remembered
6433 			 * to the moment of synflood.
6434 			 */
6435 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6436 				    rsk_ops->family);
6437 			goto drop_and_release;
6438 		}
6439 
6440 		isn = af_ops->init_seq(skb);
6441 	}
6442 
6443 	tcp_ecn_create_request(req, skb, sk, dst);
6444 
6445 	if (want_cookie) {
6446 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6447 		req->cookie_ts = tmp_opt.tstamp_ok;
6448 		if (!tmp_opt.tstamp_ok)
6449 			inet_rsk(req)->ecn_ok = 0;
6450 	}
6451 
6452 	tcp_rsk(req)->snt_isn = isn;
6453 	tcp_rsk(req)->txhash = net_tx_rndhash();
6454 	tcp_openreq_init_rwin(req, sk, dst);
6455 	if (!want_cookie) {
6456 		tcp_reqsk_record_syn(sk, req, skb);
6457 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6458 	}
6459 	if (fastopen_sk) {
6460 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6461 				    &foc, TCP_SYNACK_FASTOPEN);
6462 		/* Add the child socket directly into the accept queue */
6463 		inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6464 		sk->sk_data_ready(sk);
6465 		bh_unlock_sock(fastopen_sk);
6466 		sock_put(fastopen_sk);
6467 	} else {
6468 		tcp_rsk(req)->tfo_listener = false;
6469 		if (!want_cookie)
6470 			inet_csk_reqsk_queue_hash_add(sk, req,
6471 				tcp_timeout_init((struct sock *)req));
6472 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6473 				    !want_cookie ? TCP_SYNACK_NORMAL :
6474 						   TCP_SYNACK_COOKIE);
6475 		if (want_cookie) {
6476 			reqsk_free(req);
6477 			return 0;
6478 		}
6479 	}
6480 	reqsk_put(req);
6481 	return 0;
6482 
6483 drop_and_release:
6484 	dst_release(dst);
6485 drop_and_free:
6486 	reqsk_free(req);
6487 drop:
6488 	tcp_listendrop(sk);
6489 	return 0;
6490 }
6491 EXPORT_SYMBOL(tcp_conn_request);
6492