1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/static_key.h> 81 82 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 83 84 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 85 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 86 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 87 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 88 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 89 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 90 #define FLAG_ECE 0x40 /* ECE in this ACK */ 91 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 92 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 93 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 94 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 95 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 96 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 97 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 98 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 99 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 100 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 101 102 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 103 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 104 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 105 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 106 107 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 108 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 109 110 #define REXMIT_NONE 0 /* no loss recovery to do */ 111 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 112 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 113 114 #if IS_ENABLED(CONFIG_TLS_DEVICE) 115 static DEFINE_STATIC_KEY_FALSE(clean_acked_data_enabled); 116 117 void clean_acked_data_enable(struct inet_connection_sock *icsk, 118 void (*cad)(struct sock *sk, u32 ack_seq)) 119 { 120 icsk->icsk_clean_acked = cad; 121 static_branch_inc(&clean_acked_data_enabled); 122 } 123 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 124 125 void clean_acked_data_disable(struct inet_connection_sock *icsk) 126 { 127 static_branch_dec(&clean_acked_data_enabled); 128 icsk->icsk_clean_acked = NULL; 129 } 130 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 131 #endif 132 133 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 134 unsigned int len) 135 { 136 static bool __once __read_mostly; 137 138 if (!__once) { 139 struct net_device *dev; 140 141 __once = true; 142 143 rcu_read_lock(); 144 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 145 if (!dev || len >= dev->mtu) 146 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 147 dev ? dev->name : "Unknown driver"); 148 rcu_read_unlock(); 149 } 150 } 151 152 /* Adapt the MSS value used to make delayed ack decision to the 153 * real world. 154 */ 155 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 156 { 157 struct inet_connection_sock *icsk = inet_csk(sk); 158 const unsigned int lss = icsk->icsk_ack.last_seg_size; 159 unsigned int len; 160 161 icsk->icsk_ack.last_seg_size = 0; 162 163 /* skb->len may jitter because of SACKs, even if peer 164 * sends good full-sized frames. 165 */ 166 len = skb_shinfo(skb)->gso_size ? : skb->len; 167 if (len >= icsk->icsk_ack.rcv_mss) { 168 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 169 tcp_sk(sk)->advmss); 170 /* Account for possibly-removed options */ 171 if (unlikely(len > icsk->icsk_ack.rcv_mss + 172 MAX_TCP_OPTION_SPACE)) 173 tcp_gro_dev_warn(sk, skb, len); 174 } else { 175 /* Otherwise, we make more careful check taking into account, 176 * that SACKs block is variable. 177 * 178 * "len" is invariant segment length, including TCP header. 179 */ 180 len += skb->data - skb_transport_header(skb); 181 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 182 /* If PSH is not set, packet should be 183 * full sized, provided peer TCP is not badly broken. 184 * This observation (if it is correct 8)) allows 185 * to handle super-low mtu links fairly. 186 */ 187 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 188 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 189 /* Subtract also invariant (if peer is RFC compliant), 190 * tcp header plus fixed timestamp option length. 191 * Resulting "len" is MSS free of SACK jitter. 192 */ 193 len -= tcp_sk(sk)->tcp_header_len; 194 icsk->icsk_ack.last_seg_size = len; 195 if (len == lss) { 196 icsk->icsk_ack.rcv_mss = len; 197 return; 198 } 199 } 200 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 201 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 202 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 203 } 204 } 205 206 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 207 { 208 struct inet_connection_sock *icsk = inet_csk(sk); 209 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 210 211 if (quickacks == 0) 212 quickacks = 2; 213 quickacks = min(quickacks, max_quickacks); 214 if (quickacks > icsk->icsk_ack.quick) 215 icsk->icsk_ack.quick = quickacks; 216 } 217 218 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 219 { 220 struct inet_connection_sock *icsk = inet_csk(sk); 221 222 tcp_incr_quickack(sk, max_quickacks); 223 icsk->icsk_ack.pingpong = 0; 224 icsk->icsk_ack.ato = TCP_ATO_MIN; 225 } 226 EXPORT_SYMBOL(tcp_enter_quickack_mode); 227 228 /* Send ACKs quickly, if "quick" count is not exhausted 229 * and the session is not interactive. 230 */ 231 232 static bool tcp_in_quickack_mode(struct sock *sk) 233 { 234 const struct inet_connection_sock *icsk = inet_csk(sk); 235 const struct dst_entry *dst = __sk_dst_get(sk); 236 237 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 238 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong); 239 } 240 241 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 242 { 243 if (tp->ecn_flags & TCP_ECN_OK) 244 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 245 } 246 247 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 248 { 249 if (tcp_hdr(skb)->cwr) 250 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 251 } 252 253 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 254 { 255 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 256 } 257 258 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 259 { 260 struct tcp_sock *tp = tcp_sk(sk); 261 262 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 263 case INET_ECN_NOT_ECT: 264 /* Funny extension: if ECT is not set on a segment, 265 * and we already seen ECT on a previous segment, 266 * it is probably a retransmit. 267 */ 268 if (tp->ecn_flags & TCP_ECN_SEEN) 269 tcp_enter_quickack_mode(sk, 2); 270 break; 271 case INET_ECN_CE: 272 if (tcp_ca_needs_ecn(sk)) 273 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 274 275 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 276 /* Better not delay acks, sender can have a very low cwnd */ 277 tcp_enter_quickack_mode(sk, 2); 278 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 279 } 280 tp->ecn_flags |= TCP_ECN_SEEN; 281 break; 282 default: 283 if (tcp_ca_needs_ecn(sk)) 284 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 285 tp->ecn_flags |= TCP_ECN_SEEN; 286 break; 287 } 288 } 289 290 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 291 { 292 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 293 __tcp_ecn_check_ce(sk, skb); 294 } 295 296 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 297 { 298 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 299 tp->ecn_flags &= ~TCP_ECN_OK; 300 } 301 302 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 303 { 304 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 305 tp->ecn_flags &= ~TCP_ECN_OK; 306 } 307 308 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 309 { 310 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 311 return true; 312 return false; 313 } 314 315 /* Buffer size and advertised window tuning. 316 * 317 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 318 */ 319 320 static void tcp_sndbuf_expand(struct sock *sk) 321 { 322 const struct tcp_sock *tp = tcp_sk(sk); 323 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 324 int sndmem, per_mss; 325 u32 nr_segs; 326 327 /* Worst case is non GSO/TSO : each frame consumes one skb 328 * and skb->head is kmalloced using power of two area of memory 329 */ 330 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 331 MAX_TCP_HEADER + 332 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 333 334 per_mss = roundup_pow_of_two(per_mss) + 335 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 336 337 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 338 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 339 340 /* Fast Recovery (RFC 5681 3.2) : 341 * Cubic needs 1.7 factor, rounded to 2 to include 342 * extra cushion (application might react slowly to EPOLLOUT) 343 */ 344 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 345 sndmem *= nr_segs * per_mss; 346 347 if (sk->sk_sndbuf < sndmem) 348 sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]); 349 } 350 351 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 352 * 353 * All tcp_full_space() is split to two parts: "network" buffer, allocated 354 * forward and advertised in receiver window (tp->rcv_wnd) and 355 * "application buffer", required to isolate scheduling/application 356 * latencies from network. 357 * window_clamp is maximal advertised window. It can be less than 358 * tcp_full_space(), in this case tcp_full_space() - window_clamp 359 * is reserved for "application" buffer. The less window_clamp is 360 * the smoother our behaviour from viewpoint of network, but the lower 361 * throughput and the higher sensitivity of the connection to losses. 8) 362 * 363 * rcv_ssthresh is more strict window_clamp used at "slow start" 364 * phase to predict further behaviour of this connection. 365 * It is used for two goals: 366 * - to enforce header prediction at sender, even when application 367 * requires some significant "application buffer". It is check #1. 368 * - to prevent pruning of receive queue because of misprediction 369 * of receiver window. Check #2. 370 * 371 * The scheme does not work when sender sends good segments opening 372 * window and then starts to feed us spaghetti. But it should work 373 * in common situations. Otherwise, we have to rely on queue collapsing. 374 */ 375 376 /* Slow part of check#2. */ 377 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 378 { 379 struct tcp_sock *tp = tcp_sk(sk); 380 /* Optimize this! */ 381 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 382 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 383 384 while (tp->rcv_ssthresh <= window) { 385 if (truesize <= skb->len) 386 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 387 388 truesize >>= 1; 389 window >>= 1; 390 } 391 return 0; 392 } 393 394 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 395 { 396 struct tcp_sock *tp = tcp_sk(sk); 397 398 /* Check #1 */ 399 if (tp->rcv_ssthresh < tp->window_clamp && 400 (int)tp->rcv_ssthresh < tcp_space(sk) && 401 !tcp_under_memory_pressure(sk)) { 402 int incr; 403 404 /* Check #2. Increase window, if skb with such overhead 405 * will fit to rcvbuf in future. 406 */ 407 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 408 incr = 2 * tp->advmss; 409 else 410 incr = __tcp_grow_window(sk, skb); 411 412 if (incr) { 413 incr = max_t(int, incr, 2 * skb->len); 414 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 415 tp->window_clamp); 416 inet_csk(sk)->icsk_ack.quick |= 1; 417 } 418 } 419 } 420 421 /* 3. Tuning rcvbuf, when connection enters established state. */ 422 static void tcp_fixup_rcvbuf(struct sock *sk) 423 { 424 u32 mss = tcp_sk(sk)->advmss; 425 int rcvmem; 426 427 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 428 tcp_default_init_rwnd(mss); 429 430 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 431 * Allow enough cushion so that sender is not limited by our window 432 */ 433 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) 434 rcvmem <<= 2; 435 436 if (sk->sk_rcvbuf < rcvmem) 437 sk->sk_rcvbuf = min(rcvmem, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 438 } 439 440 /* 4. Try to fixup all. It is made immediately after connection enters 441 * established state. 442 */ 443 void tcp_init_buffer_space(struct sock *sk) 444 { 445 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 446 struct tcp_sock *tp = tcp_sk(sk); 447 int maxwin; 448 449 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 450 tcp_fixup_rcvbuf(sk); 451 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 452 tcp_sndbuf_expand(sk); 453 454 tp->rcvq_space.space = tp->rcv_wnd; 455 tcp_mstamp_refresh(tp); 456 tp->rcvq_space.time = tp->tcp_mstamp; 457 tp->rcvq_space.seq = tp->copied_seq; 458 459 maxwin = tcp_full_space(sk); 460 461 if (tp->window_clamp >= maxwin) { 462 tp->window_clamp = maxwin; 463 464 if (tcp_app_win && maxwin > 4 * tp->advmss) 465 tp->window_clamp = max(maxwin - 466 (maxwin >> tcp_app_win), 467 4 * tp->advmss); 468 } 469 470 /* Force reservation of one segment. */ 471 if (tcp_app_win && 472 tp->window_clamp > 2 * tp->advmss && 473 tp->window_clamp + tp->advmss > maxwin) 474 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 475 476 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 477 tp->snd_cwnd_stamp = tcp_jiffies32; 478 } 479 480 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 481 static void tcp_clamp_window(struct sock *sk) 482 { 483 struct tcp_sock *tp = tcp_sk(sk); 484 struct inet_connection_sock *icsk = inet_csk(sk); 485 struct net *net = sock_net(sk); 486 487 icsk->icsk_ack.quick = 0; 488 489 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 490 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 491 !tcp_under_memory_pressure(sk) && 492 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 493 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 494 net->ipv4.sysctl_tcp_rmem[2]); 495 } 496 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 497 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 498 } 499 500 /* Initialize RCV_MSS value. 501 * RCV_MSS is an our guess about MSS used by the peer. 502 * We haven't any direct information about the MSS. 503 * It's better to underestimate the RCV_MSS rather than overestimate. 504 * Overestimations make us ACKing less frequently than needed. 505 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 506 */ 507 void tcp_initialize_rcv_mss(struct sock *sk) 508 { 509 const struct tcp_sock *tp = tcp_sk(sk); 510 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 511 512 hint = min(hint, tp->rcv_wnd / 2); 513 hint = min(hint, TCP_MSS_DEFAULT); 514 hint = max(hint, TCP_MIN_MSS); 515 516 inet_csk(sk)->icsk_ack.rcv_mss = hint; 517 } 518 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 519 520 /* Receiver "autotuning" code. 521 * 522 * The algorithm for RTT estimation w/o timestamps is based on 523 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 524 * <http://public.lanl.gov/radiant/pubs.html#DRS> 525 * 526 * More detail on this code can be found at 527 * <http://staff.psc.edu/jheffner/>, 528 * though this reference is out of date. A new paper 529 * is pending. 530 */ 531 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 532 { 533 u32 new_sample = tp->rcv_rtt_est.rtt_us; 534 long m = sample; 535 536 if (new_sample != 0) { 537 /* If we sample in larger samples in the non-timestamp 538 * case, we could grossly overestimate the RTT especially 539 * with chatty applications or bulk transfer apps which 540 * are stalled on filesystem I/O. 541 * 542 * Also, since we are only going for a minimum in the 543 * non-timestamp case, we do not smooth things out 544 * else with timestamps disabled convergence takes too 545 * long. 546 */ 547 if (!win_dep) { 548 m -= (new_sample >> 3); 549 new_sample += m; 550 } else { 551 m <<= 3; 552 if (m < new_sample) 553 new_sample = m; 554 } 555 } else { 556 /* No previous measure. */ 557 new_sample = m << 3; 558 } 559 560 tp->rcv_rtt_est.rtt_us = new_sample; 561 } 562 563 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 564 { 565 u32 delta_us; 566 567 if (tp->rcv_rtt_est.time == 0) 568 goto new_measure; 569 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 570 return; 571 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 572 if (!delta_us) 573 delta_us = 1; 574 tcp_rcv_rtt_update(tp, delta_us, 1); 575 576 new_measure: 577 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 578 tp->rcv_rtt_est.time = tp->tcp_mstamp; 579 } 580 581 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 582 const struct sk_buff *skb) 583 { 584 struct tcp_sock *tp = tcp_sk(sk); 585 586 if (tp->rx_opt.rcv_tsecr && 587 (TCP_SKB_CB(skb)->end_seq - 588 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) { 589 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 590 u32 delta_us; 591 592 if (!delta) 593 delta = 1; 594 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 595 tcp_rcv_rtt_update(tp, delta_us, 0); 596 } 597 } 598 599 /* 600 * This function should be called every time data is copied to user space. 601 * It calculates the appropriate TCP receive buffer space. 602 */ 603 void tcp_rcv_space_adjust(struct sock *sk) 604 { 605 struct tcp_sock *tp = tcp_sk(sk); 606 u32 copied; 607 int time; 608 609 trace_tcp_rcv_space_adjust(sk); 610 611 tcp_mstamp_refresh(tp); 612 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 613 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 614 return; 615 616 /* Number of bytes copied to user in last RTT */ 617 copied = tp->copied_seq - tp->rcvq_space.seq; 618 if (copied <= tp->rcvq_space.space) 619 goto new_measure; 620 621 /* A bit of theory : 622 * copied = bytes received in previous RTT, our base window 623 * To cope with packet losses, we need a 2x factor 624 * To cope with slow start, and sender growing its cwin by 100 % 625 * every RTT, we need a 4x factor, because the ACK we are sending 626 * now is for the next RTT, not the current one : 627 * <prev RTT . ><current RTT .. ><next RTT .... > 628 */ 629 630 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 631 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 632 int rcvmem, rcvbuf; 633 u64 rcvwin, grow; 634 635 /* minimal window to cope with packet losses, assuming 636 * steady state. Add some cushion because of small variations. 637 */ 638 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 639 640 /* Accommodate for sender rate increase (eg. slow start) */ 641 grow = rcvwin * (copied - tp->rcvq_space.space); 642 do_div(grow, tp->rcvq_space.space); 643 rcvwin += (grow << 1); 644 645 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 646 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 647 rcvmem += 128; 648 649 do_div(rcvwin, tp->advmss); 650 rcvbuf = min_t(u64, rcvwin * rcvmem, 651 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 652 if (rcvbuf > sk->sk_rcvbuf) { 653 sk->sk_rcvbuf = rcvbuf; 654 655 /* Make the window clamp follow along. */ 656 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 657 } 658 } 659 tp->rcvq_space.space = copied; 660 661 new_measure: 662 tp->rcvq_space.seq = tp->copied_seq; 663 tp->rcvq_space.time = tp->tcp_mstamp; 664 } 665 666 /* There is something which you must keep in mind when you analyze the 667 * behavior of the tp->ato delayed ack timeout interval. When a 668 * connection starts up, we want to ack as quickly as possible. The 669 * problem is that "good" TCP's do slow start at the beginning of data 670 * transmission. The means that until we send the first few ACK's the 671 * sender will sit on his end and only queue most of his data, because 672 * he can only send snd_cwnd unacked packets at any given time. For 673 * each ACK we send, he increments snd_cwnd and transmits more of his 674 * queue. -DaveM 675 */ 676 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 677 { 678 struct tcp_sock *tp = tcp_sk(sk); 679 struct inet_connection_sock *icsk = inet_csk(sk); 680 u32 now; 681 682 inet_csk_schedule_ack(sk); 683 684 tcp_measure_rcv_mss(sk, skb); 685 686 tcp_rcv_rtt_measure(tp); 687 688 now = tcp_jiffies32; 689 690 if (!icsk->icsk_ack.ato) { 691 /* The _first_ data packet received, initialize 692 * delayed ACK engine. 693 */ 694 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 695 icsk->icsk_ack.ato = TCP_ATO_MIN; 696 } else { 697 int m = now - icsk->icsk_ack.lrcvtime; 698 699 if (m <= TCP_ATO_MIN / 2) { 700 /* The fastest case is the first. */ 701 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 702 } else if (m < icsk->icsk_ack.ato) { 703 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 704 if (icsk->icsk_ack.ato > icsk->icsk_rto) 705 icsk->icsk_ack.ato = icsk->icsk_rto; 706 } else if (m > icsk->icsk_rto) { 707 /* Too long gap. Apparently sender failed to 708 * restart window, so that we send ACKs quickly. 709 */ 710 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 711 sk_mem_reclaim(sk); 712 } 713 } 714 icsk->icsk_ack.lrcvtime = now; 715 716 tcp_ecn_check_ce(sk, skb); 717 718 if (skb->len >= 128) 719 tcp_grow_window(sk, skb); 720 } 721 722 /* Called to compute a smoothed rtt estimate. The data fed to this 723 * routine either comes from timestamps, or from segments that were 724 * known _not_ to have been retransmitted [see Karn/Partridge 725 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 726 * piece by Van Jacobson. 727 * NOTE: the next three routines used to be one big routine. 728 * To save cycles in the RFC 1323 implementation it was better to break 729 * it up into three procedures. -- erics 730 */ 731 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 732 { 733 struct tcp_sock *tp = tcp_sk(sk); 734 long m = mrtt_us; /* RTT */ 735 u32 srtt = tp->srtt_us; 736 737 /* The following amusing code comes from Jacobson's 738 * article in SIGCOMM '88. Note that rtt and mdev 739 * are scaled versions of rtt and mean deviation. 740 * This is designed to be as fast as possible 741 * m stands for "measurement". 742 * 743 * On a 1990 paper the rto value is changed to: 744 * RTO = rtt + 4 * mdev 745 * 746 * Funny. This algorithm seems to be very broken. 747 * These formulae increase RTO, when it should be decreased, increase 748 * too slowly, when it should be increased quickly, decrease too quickly 749 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 750 * does not matter how to _calculate_ it. Seems, it was trap 751 * that VJ failed to avoid. 8) 752 */ 753 if (srtt != 0) { 754 m -= (srtt >> 3); /* m is now error in rtt est */ 755 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 756 if (m < 0) { 757 m = -m; /* m is now abs(error) */ 758 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 759 /* This is similar to one of Eifel findings. 760 * Eifel blocks mdev updates when rtt decreases. 761 * This solution is a bit different: we use finer gain 762 * for mdev in this case (alpha*beta). 763 * Like Eifel it also prevents growth of rto, 764 * but also it limits too fast rto decreases, 765 * happening in pure Eifel. 766 */ 767 if (m > 0) 768 m >>= 3; 769 } else { 770 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 771 } 772 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 773 if (tp->mdev_us > tp->mdev_max_us) { 774 tp->mdev_max_us = tp->mdev_us; 775 if (tp->mdev_max_us > tp->rttvar_us) 776 tp->rttvar_us = tp->mdev_max_us; 777 } 778 if (after(tp->snd_una, tp->rtt_seq)) { 779 if (tp->mdev_max_us < tp->rttvar_us) 780 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 781 tp->rtt_seq = tp->snd_nxt; 782 tp->mdev_max_us = tcp_rto_min_us(sk); 783 } 784 } else { 785 /* no previous measure. */ 786 srtt = m << 3; /* take the measured time to be rtt */ 787 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 788 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 789 tp->mdev_max_us = tp->rttvar_us; 790 tp->rtt_seq = tp->snd_nxt; 791 } 792 tp->srtt_us = max(1U, srtt); 793 } 794 795 static void tcp_update_pacing_rate(struct sock *sk) 796 { 797 const struct tcp_sock *tp = tcp_sk(sk); 798 u64 rate; 799 800 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 801 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 802 803 /* current rate is (cwnd * mss) / srtt 804 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 805 * In Congestion Avoidance phase, set it to 120 % the current rate. 806 * 807 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 808 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 809 * end of slow start and should slow down. 810 */ 811 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 812 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 813 else 814 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 815 816 rate *= max(tp->snd_cwnd, tp->packets_out); 817 818 if (likely(tp->srtt_us)) 819 do_div(rate, tp->srtt_us); 820 821 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 822 * without any lock. We want to make sure compiler wont store 823 * intermediate values in this location. 824 */ 825 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 826 sk->sk_max_pacing_rate)); 827 } 828 829 /* Calculate rto without backoff. This is the second half of Van Jacobson's 830 * routine referred to above. 831 */ 832 static void tcp_set_rto(struct sock *sk) 833 { 834 const struct tcp_sock *tp = tcp_sk(sk); 835 /* Old crap is replaced with new one. 8) 836 * 837 * More seriously: 838 * 1. If rtt variance happened to be less 50msec, it is hallucination. 839 * It cannot be less due to utterly erratic ACK generation made 840 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 841 * to do with delayed acks, because at cwnd>2 true delack timeout 842 * is invisible. Actually, Linux-2.4 also generates erratic 843 * ACKs in some circumstances. 844 */ 845 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 846 847 /* 2. Fixups made earlier cannot be right. 848 * If we do not estimate RTO correctly without them, 849 * all the algo is pure shit and should be replaced 850 * with correct one. It is exactly, which we pretend to do. 851 */ 852 853 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 854 * guarantees that rto is higher. 855 */ 856 tcp_bound_rto(sk); 857 } 858 859 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 860 { 861 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 862 863 if (!cwnd) 864 cwnd = TCP_INIT_CWND; 865 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 866 } 867 868 /* Take a notice that peer is sending D-SACKs */ 869 static void tcp_dsack_seen(struct tcp_sock *tp) 870 { 871 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 872 tp->rack.dsack_seen = 1; 873 } 874 875 /* It's reordering when higher sequence was delivered (i.e. sacked) before 876 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 877 * distance is approximated in full-mss packet distance ("reordering"). 878 */ 879 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 880 const int ts) 881 { 882 struct tcp_sock *tp = tcp_sk(sk); 883 const u32 mss = tp->mss_cache; 884 u32 fack, metric; 885 886 fack = tcp_highest_sack_seq(tp); 887 if (!before(low_seq, fack)) 888 return; 889 890 metric = fack - low_seq; 891 if ((metric > tp->reordering * mss) && mss) { 892 #if FASTRETRANS_DEBUG > 1 893 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 894 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 895 tp->reordering, 896 0, 897 tp->sacked_out, 898 tp->undo_marker ? tp->undo_retrans : 0); 899 #endif 900 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 901 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 902 } 903 904 tp->rack.reord = 1; 905 /* This exciting event is worth to be remembered. 8) */ 906 NET_INC_STATS(sock_net(sk), 907 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 908 } 909 910 /* This must be called before lost_out is incremented */ 911 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 912 { 913 if (!tp->retransmit_skb_hint || 914 before(TCP_SKB_CB(skb)->seq, 915 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 916 tp->retransmit_skb_hint = skb; 917 } 918 919 /* Sum the number of packets on the wire we have marked as lost. 920 * There are two cases we care about here: 921 * a) Packet hasn't been marked lost (nor retransmitted), 922 * and this is the first loss. 923 * b) Packet has been marked both lost and retransmitted, 924 * and this means we think it was lost again. 925 */ 926 static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb) 927 { 928 __u8 sacked = TCP_SKB_CB(skb)->sacked; 929 930 if (!(sacked & TCPCB_LOST) || 931 ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS))) 932 tp->lost += tcp_skb_pcount(skb); 933 } 934 935 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 936 { 937 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 938 tcp_verify_retransmit_hint(tp, skb); 939 940 tp->lost_out += tcp_skb_pcount(skb); 941 tcp_sum_lost(tp, skb); 942 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 943 } 944 } 945 946 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb) 947 { 948 tcp_verify_retransmit_hint(tp, skb); 949 950 tcp_sum_lost(tp, skb); 951 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 952 tp->lost_out += tcp_skb_pcount(skb); 953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 954 } 955 } 956 957 /* This procedure tags the retransmission queue when SACKs arrive. 958 * 959 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 960 * Packets in queue with these bits set are counted in variables 961 * sacked_out, retrans_out and lost_out, correspondingly. 962 * 963 * Valid combinations are: 964 * Tag InFlight Description 965 * 0 1 - orig segment is in flight. 966 * S 0 - nothing flies, orig reached receiver. 967 * L 0 - nothing flies, orig lost by net. 968 * R 2 - both orig and retransmit are in flight. 969 * L|R 1 - orig is lost, retransmit is in flight. 970 * S|R 1 - orig reached receiver, retrans is still in flight. 971 * (L|S|R is logically valid, it could occur when L|R is sacked, 972 * but it is equivalent to plain S and code short-curcuits it to S. 973 * L|S is logically invalid, it would mean -1 packet in flight 8)) 974 * 975 * These 6 states form finite state machine, controlled by the following events: 976 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 977 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 978 * 3. Loss detection event of two flavors: 979 * A. Scoreboard estimator decided the packet is lost. 980 * A'. Reno "three dupacks" marks head of queue lost. 981 * B. SACK arrives sacking SND.NXT at the moment, when the 982 * segment was retransmitted. 983 * 4. D-SACK added new rule: D-SACK changes any tag to S. 984 * 985 * It is pleasant to note, that state diagram turns out to be commutative, 986 * so that we are allowed not to be bothered by order of our actions, 987 * when multiple events arrive simultaneously. (see the function below). 988 * 989 * Reordering detection. 990 * -------------------- 991 * Reordering metric is maximal distance, which a packet can be displaced 992 * in packet stream. With SACKs we can estimate it: 993 * 994 * 1. SACK fills old hole and the corresponding segment was not 995 * ever retransmitted -> reordering. Alas, we cannot use it 996 * when segment was retransmitted. 997 * 2. The last flaw is solved with D-SACK. D-SACK arrives 998 * for retransmitted and already SACKed segment -> reordering.. 999 * Both of these heuristics are not used in Loss state, when we cannot 1000 * account for retransmits accurately. 1001 * 1002 * SACK block validation. 1003 * ---------------------- 1004 * 1005 * SACK block range validation checks that the received SACK block fits to 1006 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1007 * Note that SND.UNA is not included to the range though being valid because 1008 * it means that the receiver is rather inconsistent with itself reporting 1009 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1010 * perfectly valid, however, in light of RFC2018 which explicitly states 1011 * that "SACK block MUST reflect the newest segment. Even if the newest 1012 * segment is going to be discarded ...", not that it looks very clever 1013 * in case of head skb. Due to potentional receiver driven attacks, we 1014 * choose to avoid immediate execution of a walk in write queue due to 1015 * reneging and defer head skb's loss recovery to standard loss recovery 1016 * procedure that will eventually trigger (nothing forbids us doing this). 1017 * 1018 * Implements also blockage to start_seq wrap-around. Problem lies in the 1019 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1020 * there's no guarantee that it will be before snd_nxt (n). The problem 1021 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1022 * wrap (s_w): 1023 * 1024 * <- outs wnd -> <- wrapzone -> 1025 * u e n u_w e_w s n_w 1026 * | | | | | | | 1027 * |<------------+------+----- TCP seqno space --------------+---------->| 1028 * ...-- <2^31 ->| |<--------... 1029 * ...---- >2^31 ------>| |<--------... 1030 * 1031 * Current code wouldn't be vulnerable but it's better still to discard such 1032 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1033 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1034 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1035 * equal to the ideal case (infinite seqno space without wrap caused issues). 1036 * 1037 * With D-SACK the lower bound is extended to cover sequence space below 1038 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1039 * again, D-SACK block must not to go across snd_una (for the same reason as 1040 * for the normal SACK blocks, explained above). But there all simplicity 1041 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1042 * fully below undo_marker they do not affect behavior in anyway and can 1043 * therefore be safely ignored. In rare cases (which are more or less 1044 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1045 * fragmentation and packet reordering past skb's retransmission. To consider 1046 * them correctly, the acceptable range must be extended even more though 1047 * the exact amount is rather hard to quantify. However, tp->max_window can 1048 * be used as an exaggerated estimate. 1049 */ 1050 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1051 u32 start_seq, u32 end_seq) 1052 { 1053 /* Too far in future, or reversed (interpretation is ambiguous) */ 1054 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1055 return false; 1056 1057 /* Nasty start_seq wrap-around check (see comments above) */ 1058 if (!before(start_seq, tp->snd_nxt)) 1059 return false; 1060 1061 /* In outstanding window? ...This is valid exit for D-SACKs too. 1062 * start_seq == snd_una is non-sensical (see comments above) 1063 */ 1064 if (after(start_seq, tp->snd_una)) 1065 return true; 1066 1067 if (!is_dsack || !tp->undo_marker) 1068 return false; 1069 1070 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1071 if (after(end_seq, tp->snd_una)) 1072 return false; 1073 1074 if (!before(start_seq, tp->undo_marker)) 1075 return true; 1076 1077 /* Too old */ 1078 if (!after(end_seq, tp->undo_marker)) 1079 return false; 1080 1081 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1082 * start_seq < undo_marker and end_seq >= undo_marker. 1083 */ 1084 return !before(start_seq, end_seq - tp->max_window); 1085 } 1086 1087 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1088 struct tcp_sack_block_wire *sp, int num_sacks, 1089 u32 prior_snd_una) 1090 { 1091 struct tcp_sock *tp = tcp_sk(sk); 1092 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1093 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1094 bool dup_sack = false; 1095 1096 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1097 dup_sack = true; 1098 tcp_dsack_seen(tp); 1099 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1100 } else if (num_sacks > 1) { 1101 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1102 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1103 1104 if (!after(end_seq_0, end_seq_1) && 1105 !before(start_seq_0, start_seq_1)) { 1106 dup_sack = true; 1107 tcp_dsack_seen(tp); 1108 NET_INC_STATS(sock_net(sk), 1109 LINUX_MIB_TCPDSACKOFORECV); 1110 } 1111 } 1112 1113 /* D-SACK for already forgotten data... Do dumb counting. */ 1114 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1115 !after(end_seq_0, prior_snd_una) && 1116 after(end_seq_0, tp->undo_marker)) 1117 tp->undo_retrans--; 1118 1119 return dup_sack; 1120 } 1121 1122 struct tcp_sacktag_state { 1123 u32 reord; 1124 /* Timestamps for earliest and latest never-retransmitted segment 1125 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1126 * but congestion control should still get an accurate delay signal. 1127 */ 1128 u64 first_sackt; 1129 u64 last_sackt; 1130 struct rate_sample *rate; 1131 int flag; 1132 unsigned int mss_now; 1133 }; 1134 1135 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1136 * the incoming SACK may not exactly match but we can find smaller MSS 1137 * aligned portion of it that matches. Therefore we might need to fragment 1138 * which may fail and creates some hassle (caller must handle error case 1139 * returns). 1140 * 1141 * FIXME: this could be merged to shift decision code 1142 */ 1143 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1144 u32 start_seq, u32 end_seq) 1145 { 1146 int err; 1147 bool in_sack; 1148 unsigned int pkt_len; 1149 unsigned int mss; 1150 1151 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1152 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1153 1154 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1155 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1156 mss = tcp_skb_mss(skb); 1157 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1158 1159 if (!in_sack) { 1160 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1161 if (pkt_len < mss) 1162 pkt_len = mss; 1163 } else { 1164 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1165 if (pkt_len < mss) 1166 return -EINVAL; 1167 } 1168 1169 /* Round if necessary so that SACKs cover only full MSSes 1170 * and/or the remaining small portion (if present) 1171 */ 1172 if (pkt_len > mss) { 1173 unsigned int new_len = (pkt_len / mss) * mss; 1174 if (!in_sack && new_len < pkt_len) 1175 new_len += mss; 1176 pkt_len = new_len; 1177 } 1178 1179 if (pkt_len >= skb->len && !in_sack) 1180 return 0; 1181 1182 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1183 pkt_len, mss, GFP_ATOMIC); 1184 if (err < 0) 1185 return err; 1186 } 1187 1188 return in_sack; 1189 } 1190 1191 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1192 static u8 tcp_sacktag_one(struct sock *sk, 1193 struct tcp_sacktag_state *state, u8 sacked, 1194 u32 start_seq, u32 end_seq, 1195 int dup_sack, int pcount, 1196 u64 xmit_time) 1197 { 1198 struct tcp_sock *tp = tcp_sk(sk); 1199 1200 /* Account D-SACK for retransmitted packet. */ 1201 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1202 if (tp->undo_marker && tp->undo_retrans > 0 && 1203 after(end_seq, tp->undo_marker)) 1204 tp->undo_retrans--; 1205 if ((sacked & TCPCB_SACKED_ACKED) && 1206 before(start_seq, state->reord)) 1207 state->reord = start_seq; 1208 } 1209 1210 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1211 if (!after(end_seq, tp->snd_una)) 1212 return sacked; 1213 1214 if (!(sacked & TCPCB_SACKED_ACKED)) { 1215 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1216 1217 if (sacked & TCPCB_SACKED_RETRANS) { 1218 /* If the segment is not tagged as lost, 1219 * we do not clear RETRANS, believing 1220 * that retransmission is still in flight. 1221 */ 1222 if (sacked & TCPCB_LOST) { 1223 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1224 tp->lost_out -= pcount; 1225 tp->retrans_out -= pcount; 1226 } 1227 } else { 1228 if (!(sacked & TCPCB_RETRANS)) { 1229 /* New sack for not retransmitted frame, 1230 * which was in hole. It is reordering. 1231 */ 1232 if (before(start_seq, 1233 tcp_highest_sack_seq(tp)) && 1234 before(start_seq, state->reord)) 1235 state->reord = start_seq; 1236 1237 if (!after(end_seq, tp->high_seq)) 1238 state->flag |= FLAG_ORIG_SACK_ACKED; 1239 if (state->first_sackt == 0) 1240 state->first_sackt = xmit_time; 1241 state->last_sackt = xmit_time; 1242 } 1243 1244 if (sacked & TCPCB_LOST) { 1245 sacked &= ~TCPCB_LOST; 1246 tp->lost_out -= pcount; 1247 } 1248 } 1249 1250 sacked |= TCPCB_SACKED_ACKED; 1251 state->flag |= FLAG_DATA_SACKED; 1252 tp->sacked_out += pcount; 1253 tp->delivered += pcount; /* Out-of-order packets delivered */ 1254 1255 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1256 if (tp->lost_skb_hint && 1257 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1258 tp->lost_cnt_hint += pcount; 1259 } 1260 1261 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1262 * frames and clear it. undo_retrans is decreased above, L|R frames 1263 * are accounted above as well. 1264 */ 1265 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1266 sacked &= ~TCPCB_SACKED_RETRANS; 1267 tp->retrans_out -= pcount; 1268 } 1269 1270 return sacked; 1271 } 1272 1273 /* Shift newly-SACKed bytes from this skb to the immediately previous 1274 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1275 */ 1276 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1277 struct sk_buff *skb, 1278 struct tcp_sacktag_state *state, 1279 unsigned int pcount, int shifted, int mss, 1280 bool dup_sack) 1281 { 1282 struct tcp_sock *tp = tcp_sk(sk); 1283 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1284 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1285 1286 BUG_ON(!pcount); 1287 1288 /* Adjust counters and hints for the newly sacked sequence 1289 * range but discard the return value since prev is already 1290 * marked. We must tag the range first because the seq 1291 * advancement below implicitly advances 1292 * tcp_highest_sack_seq() when skb is highest_sack. 1293 */ 1294 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1295 start_seq, end_seq, dup_sack, pcount, 1296 skb->skb_mstamp); 1297 tcp_rate_skb_delivered(sk, skb, state->rate); 1298 1299 if (skb == tp->lost_skb_hint) 1300 tp->lost_cnt_hint += pcount; 1301 1302 TCP_SKB_CB(prev)->end_seq += shifted; 1303 TCP_SKB_CB(skb)->seq += shifted; 1304 1305 tcp_skb_pcount_add(prev, pcount); 1306 BUG_ON(tcp_skb_pcount(skb) < pcount); 1307 tcp_skb_pcount_add(skb, -pcount); 1308 1309 /* When we're adding to gso_segs == 1, gso_size will be zero, 1310 * in theory this shouldn't be necessary but as long as DSACK 1311 * code can come after this skb later on it's better to keep 1312 * setting gso_size to something. 1313 */ 1314 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1315 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1316 1317 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1318 if (tcp_skb_pcount(skb) <= 1) 1319 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1320 1321 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1322 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1323 1324 if (skb->len > 0) { 1325 BUG_ON(!tcp_skb_pcount(skb)); 1326 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1327 return false; 1328 } 1329 1330 /* Whole SKB was eaten :-) */ 1331 1332 if (skb == tp->retransmit_skb_hint) 1333 tp->retransmit_skb_hint = prev; 1334 if (skb == tp->lost_skb_hint) { 1335 tp->lost_skb_hint = prev; 1336 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1337 } 1338 1339 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1340 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1341 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1342 TCP_SKB_CB(prev)->end_seq++; 1343 1344 if (skb == tcp_highest_sack(sk)) 1345 tcp_advance_highest_sack(sk, skb); 1346 1347 tcp_skb_collapse_tstamp(prev, skb); 1348 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1349 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1350 1351 tcp_rtx_queue_unlink_and_free(skb, sk); 1352 1353 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1354 1355 return true; 1356 } 1357 1358 /* I wish gso_size would have a bit more sane initialization than 1359 * something-or-zero which complicates things 1360 */ 1361 static int tcp_skb_seglen(const struct sk_buff *skb) 1362 { 1363 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1364 } 1365 1366 /* Shifting pages past head area doesn't work */ 1367 static int skb_can_shift(const struct sk_buff *skb) 1368 { 1369 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1370 } 1371 1372 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1373 * skb. 1374 */ 1375 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1376 struct tcp_sacktag_state *state, 1377 u32 start_seq, u32 end_seq, 1378 bool dup_sack) 1379 { 1380 struct tcp_sock *tp = tcp_sk(sk); 1381 struct sk_buff *prev; 1382 int mss; 1383 int pcount = 0; 1384 int len; 1385 int in_sack; 1386 1387 /* Normally R but no L won't result in plain S */ 1388 if (!dup_sack && 1389 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1390 goto fallback; 1391 if (!skb_can_shift(skb)) 1392 goto fallback; 1393 /* This frame is about to be dropped (was ACKed). */ 1394 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1395 goto fallback; 1396 1397 /* Can only happen with delayed DSACK + discard craziness */ 1398 prev = skb_rb_prev(skb); 1399 if (!prev) 1400 goto fallback; 1401 1402 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1403 goto fallback; 1404 1405 if (!tcp_skb_can_collapse_to(prev)) 1406 goto fallback; 1407 1408 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1409 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1410 1411 if (in_sack) { 1412 len = skb->len; 1413 pcount = tcp_skb_pcount(skb); 1414 mss = tcp_skb_seglen(skb); 1415 1416 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1417 * drop this restriction as unnecessary 1418 */ 1419 if (mss != tcp_skb_seglen(prev)) 1420 goto fallback; 1421 } else { 1422 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1423 goto noop; 1424 /* CHECKME: This is non-MSS split case only?, this will 1425 * cause skipped skbs due to advancing loop btw, original 1426 * has that feature too 1427 */ 1428 if (tcp_skb_pcount(skb) <= 1) 1429 goto noop; 1430 1431 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1432 if (!in_sack) { 1433 /* TODO: head merge to next could be attempted here 1434 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1435 * though it might not be worth of the additional hassle 1436 * 1437 * ...we can probably just fallback to what was done 1438 * previously. We could try merging non-SACKed ones 1439 * as well but it probably isn't going to buy off 1440 * because later SACKs might again split them, and 1441 * it would make skb timestamp tracking considerably 1442 * harder problem. 1443 */ 1444 goto fallback; 1445 } 1446 1447 len = end_seq - TCP_SKB_CB(skb)->seq; 1448 BUG_ON(len < 0); 1449 BUG_ON(len > skb->len); 1450 1451 /* MSS boundaries should be honoured or else pcount will 1452 * severely break even though it makes things bit trickier. 1453 * Optimize common case to avoid most of the divides 1454 */ 1455 mss = tcp_skb_mss(skb); 1456 1457 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1458 * drop this restriction as unnecessary 1459 */ 1460 if (mss != tcp_skb_seglen(prev)) 1461 goto fallback; 1462 1463 if (len == mss) { 1464 pcount = 1; 1465 } else if (len < mss) { 1466 goto noop; 1467 } else { 1468 pcount = len / mss; 1469 len = pcount * mss; 1470 } 1471 } 1472 1473 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1474 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1475 goto fallback; 1476 1477 if (!skb_shift(prev, skb, len)) 1478 goto fallback; 1479 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1480 goto out; 1481 1482 /* Hole filled allows collapsing with the next as well, this is very 1483 * useful when hole on every nth skb pattern happens 1484 */ 1485 skb = skb_rb_next(prev); 1486 if (!skb) 1487 goto out; 1488 1489 if (!skb_can_shift(skb) || 1490 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1491 (mss != tcp_skb_seglen(skb))) 1492 goto out; 1493 1494 len = skb->len; 1495 if (skb_shift(prev, skb, len)) { 1496 pcount += tcp_skb_pcount(skb); 1497 tcp_shifted_skb(sk, prev, skb, state, tcp_skb_pcount(skb), 1498 len, mss, 0); 1499 } 1500 1501 out: 1502 return prev; 1503 1504 noop: 1505 return skb; 1506 1507 fallback: 1508 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1509 return NULL; 1510 } 1511 1512 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1513 struct tcp_sack_block *next_dup, 1514 struct tcp_sacktag_state *state, 1515 u32 start_seq, u32 end_seq, 1516 bool dup_sack_in) 1517 { 1518 struct tcp_sock *tp = tcp_sk(sk); 1519 struct sk_buff *tmp; 1520 1521 skb_rbtree_walk_from(skb) { 1522 int in_sack = 0; 1523 bool dup_sack = dup_sack_in; 1524 1525 /* queue is in-order => we can short-circuit the walk early */ 1526 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1527 break; 1528 1529 if (next_dup && 1530 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1531 in_sack = tcp_match_skb_to_sack(sk, skb, 1532 next_dup->start_seq, 1533 next_dup->end_seq); 1534 if (in_sack > 0) 1535 dup_sack = true; 1536 } 1537 1538 /* skb reference here is a bit tricky to get right, since 1539 * shifting can eat and free both this skb and the next, 1540 * so not even _safe variant of the loop is enough. 1541 */ 1542 if (in_sack <= 0) { 1543 tmp = tcp_shift_skb_data(sk, skb, state, 1544 start_seq, end_seq, dup_sack); 1545 if (tmp) { 1546 if (tmp != skb) { 1547 skb = tmp; 1548 continue; 1549 } 1550 1551 in_sack = 0; 1552 } else { 1553 in_sack = tcp_match_skb_to_sack(sk, skb, 1554 start_seq, 1555 end_seq); 1556 } 1557 } 1558 1559 if (unlikely(in_sack < 0)) 1560 break; 1561 1562 if (in_sack) { 1563 TCP_SKB_CB(skb)->sacked = 1564 tcp_sacktag_one(sk, 1565 state, 1566 TCP_SKB_CB(skb)->sacked, 1567 TCP_SKB_CB(skb)->seq, 1568 TCP_SKB_CB(skb)->end_seq, 1569 dup_sack, 1570 tcp_skb_pcount(skb), 1571 skb->skb_mstamp); 1572 tcp_rate_skb_delivered(sk, skb, state->rate); 1573 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1574 list_del_init(&skb->tcp_tsorted_anchor); 1575 1576 if (!before(TCP_SKB_CB(skb)->seq, 1577 tcp_highest_sack_seq(tp))) 1578 tcp_advance_highest_sack(sk, skb); 1579 } 1580 } 1581 return skb; 1582 } 1583 1584 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, 1585 struct tcp_sacktag_state *state, 1586 u32 seq) 1587 { 1588 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1589 struct sk_buff *skb; 1590 1591 while (*p) { 1592 parent = *p; 1593 skb = rb_to_skb(parent); 1594 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1595 p = &parent->rb_left; 1596 continue; 1597 } 1598 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1599 p = &parent->rb_right; 1600 continue; 1601 } 1602 return skb; 1603 } 1604 return NULL; 1605 } 1606 1607 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1608 struct tcp_sacktag_state *state, 1609 u32 skip_to_seq) 1610 { 1611 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1612 return skb; 1613 1614 return tcp_sacktag_bsearch(sk, state, skip_to_seq); 1615 } 1616 1617 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1618 struct sock *sk, 1619 struct tcp_sack_block *next_dup, 1620 struct tcp_sacktag_state *state, 1621 u32 skip_to_seq) 1622 { 1623 if (!next_dup) 1624 return skb; 1625 1626 if (before(next_dup->start_seq, skip_to_seq)) { 1627 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1628 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1629 next_dup->start_seq, next_dup->end_seq, 1630 1); 1631 } 1632 1633 return skb; 1634 } 1635 1636 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1637 { 1638 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1639 } 1640 1641 static int 1642 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1643 u32 prior_snd_una, struct tcp_sacktag_state *state) 1644 { 1645 struct tcp_sock *tp = tcp_sk(sk); 1646 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1647 TCP_SKB_CB(ack_skb)->sacked); 1648 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1649 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1650 struct tcp_sack_block *cache; 1651 struct sk_buff *skb; 1652 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1653 int used_sacks; 1654 bool found_dup_sack = false; 1655 int i, j; 1656 int first_sack_index; 1657 1658 state->flag = 0; 1659 state->reord = tp->snd_nxt; 1660 1661 if (!tp->sacked_out) 1662 tcp_highest_sack_reset(sk); 1663 1664 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1665 num_sacks, prior_snd_una); 1666 if (found_dup_sack) { 1667 state->flag |= FLAG_DSACKING_ACK; 1668 tp->delivered++; /* A spurious retransmission is delivered */ 1669 } 1670 1671 /* Eliminate too old ACKs, but take into 1672 * account more or less fresh ones, they can 1673 * contain valid SACK info. 1674 */ 1675 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1676 return 0; 1677 1678 if (!tp->packets_out) 1679 goto out; 1680 1681 used_sacks = 0; 1682 first_sack_index = 0; 1683 for (i = 0; i < num_sacks; i++) { 1684 bool dup_sack = !i && found_dup_sack; 1685 1686 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1687 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1688 1689 if (!tcp_is_sackblock_valid(tp, dup_sack, 1690 sp[used_sacks].start_seq, 1691 sp[used_sacks].end_seq)) { 1692 int mib_idx; 1693 1694 if (dup_sack) { 1695 if (!tp->undo_marker) 1696 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1697 else 1698 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1699 } else { 1700 /* Don't count olds caused by ACK reordering */ 1701 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1702 !after(sp[used_sacks].end_seq, tp->snd_una)) 1703 continue; 1704 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1705 } 1706 1707 NET_INC_STATS(sock_net(sk), mib_idx); 1708 if (i == 0) 1709 first_sack_index = -1; 1710 continue; 1711 } 1712 1713 /* Ignore very old stuff early */ 1714 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1715 continue; 1716 1717 used_sacks++; 1718 } 1719 1720 /* order SACK blocks to allow in order walk of the retrans queue */ 1721 for (i = used_sacks - 1; i > 0; i--) { 1722 for (j = 0; j < i; j++) { 1723 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1724 swap(sp[j], sp[j + 1]); 1725 1726 /* Track where the first SACK block goes to */ 1727 if (j == first_sack_index) 1728 first_sack_index = j + 1; 1729 } 1730 } 1731 } 1732 1733 state->mss_now = tcp_current_mss(sk); 1734 skb = NULL; 1735 i = 0; 1736 1737 if (!tp->sacked_out) { 1738 /* It's already past, so skip checking against it */ 1739 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1740 } else { 1741 cache = tp->recv_sack_cache; 1742 /* Skip empty blocks in at head of the cache */ 1743 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1744 !cache->end_seq) 1745 cache++; 1746 } 1747 1748 while (i < used_sacks) { 1749 u32 start_seq = sp[i].start_seq; 1750 u32 end_seq = sp[i].end_seq; 1751 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1752 struct tcp_sack_block *next_dup = NULL; 1753 1754 if (found_dup_sack && ((i + 1) == first_sack_index)) 1755 next_dup = &sp[i + 1]; 1756 1757 /* Skip too early cached blocks */ 1758 while (tcp_sack_cache_ok(tp, cache) && 1759 !before(start_seq, cache->end_seq)) 1760 cache++; 1761 1762 /* Can skip some work by looking recv_sack_cache? */ 1763 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1764 after(end_seq, cache->start_seq)) { 1765 1766 /* Head todo? */ 1767 if (before(start_seq, cache->start_seq)) { 1768 skb = tcp_sacktag_skip(skb, sk, state, 1769 start_seq); 1770 skb = tcp_sacktag_walk(skb, sk, next_dup, 1771 state, 1772 start_seq, 1773 cache->start_seq, 1774 dup_sack); 1775 } 1776 1777 /* Rest of the block already fully processed? */ 1778 if (!after(end_seq, cache->end_seq)) 1779 goto advance_sp; 1780 1781 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1782 state, 1783 cache->end_seq); 1784 1785 /* ...tail remains todo... */ 1786 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1787 /* ...but better entrypoint exists! */ 1788 skb = tcp_highest_sack(sk); 1789 if (!skb) 1790 break; 1791 cache++; 1792 goto walk; 1793 } 1794 1795 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1796 /* Check overlap against next cached too (past this one already) */ 1797 cache++; 1798 continue; 1799 } 1800 1801 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1802 skb = tcp_highest_sack(sk); 1803 if (!skb) 1804 break; 1805 } 1806 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1807 1808 walk: 1809 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1810 start_seq, end_seq, dup_sack); 1811 1812 advance_sp: 1813 i++; 1814 } 1815 1816 /* Clear the head of the cache sack blocks so we can skip it next time */ 1817 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1818 tp->recv_sack_cache[i].start_seq = 0; 1819 tp->recv_sack_cache[i].end_seq = 0; 1820 } 1821 for (j = 0; j < used_sacks; j++) 1822 tp->recv_sack_cache[i++] = sp[j]; 1823 1824 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1825 tcp_check_sack_reordering(sk, state->reord, 0); 1826 1827 tcp_verify_left_out(tp); 1828 out: 1829 1830 #if FASTRETRANS_DEBUG > 0 1831 WARN_ON((int)tp->sacked_out < 0); 1832 WARN_ON((int)tp->lost_out < 0); 1833 WARN_ON((int)tp->retrans_out < 0); 1834 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1835 #endif 1836 return state->flag; 1837 } 1838 1839 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1840 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1841 */ 1842 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1843 { 1844 u32 holes; 1845 1846 holes = max(tp->lost_out, 1U); 1847 holes = min(holes, tp->packets_out); 1848 1849 if ((tp->sacked_out + holes) > tp->packets_out) { 1850 tp->sacked_out = tp->packets_out - holes; 1851 return true; 1852 } 1853 return false; 1854 } 1855 1856 /* If we receive more dupacks than we expected counting segments 1857 * in assumption of absent reordering, interpret this as reordering. 1858 * The only another reason could be bug in receiver TCP. 1859 */ 1860 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1861 { 1862 struct tcp_sock *tp = tcp_sk(sk); 1863 1864 if (!tcp_limit_reno_sacked(tp)) 1865 return; 1866 1867 tp->reordering = min_t(u32, tp->packets_out + addend, 1868 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1869 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1870 } 1871 1872 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1873 1874 static void tcp_add_reno_sack(struct sock *sk) 1875 { 1876 struct tcp_sock *tp = tcp_sk(sk); 1877 u32 prior_sacked = tp->sacked_out; 1878 1879 tp->sacked_out++; 1880 tcp_check_reno_reordering(sk, 0); 1881 if (tp->sacked_out > prior_sacked) 1882 tp->delivered++; /* Some out-of-order packet is delivered */ 1883 tcp_verify_left_out(tp); 1884 } 1885 1886 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1887 1888 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1889 { 1890 struct tcp_sock *tp = tcp_sk(sk); 1891 1892 if (acked > 0) { 1893 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1894 tp->delivered += max_t(int, acked - tp->sacked_out, 1); 1895 if (acked - 1 >= tp->sacked_out) 1896 tp->sacked_out = 0; 1897 else 1898 tp->sacked_out -= acked - 1; 1899 } 1900 tcp_check_reno_reordering(sk, acked); 1901 tcp_verify_left_out(tp); 1902 } 1903 1904 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1905 { 1906 tp->sacked_out = 0; 1907 } 1908 1909 void tcp_clear_retrans(struct tcp_sock *tp) 1910 { 1911 tp->retrans_out = 0; 1912 tp->lost_out = 0; 1913 tp->undo_marker = 0; 1914 tp->undo_retrans = -1; 1915 tp->sacked_out = 0; 1916 } 1917 1918 static inline void tcp_init_undo(struct tcp_sock *tp) 1919 { 1920 tp->undo_marker = tp->snd_una; 1921 /* Retransmission still in flight may cause DSACKs later. */ 1922 tp->undo_retrans = tp->retrans_out ? : -1; 1923 } 1924 1925 static bool tcp_is_rack(const struct sock *sk) 1926 { 1927 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 1928 } 1929 1930 /* If we detect SACK reneging, forget all SACK information 1931 * and reset tags completely, otherwise preserve SACKs. If receiver 1932 * dropped its ofo queue, we will know this due to reneging detection. 1933 */ 1934 static void tcp_timeout_mark_lost(struct sock *sk) 1935 { 1936 struct tcp_sock *tp = tcp_sk(sk); 1937 struct sk_buff *skb, *head; 1938 bool is_reneg; /* is receiver reneging on SACKs? */ 1939 1940 head = tcp_rtx_queue_head(sk); 1941 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 1942 if (is_reneg) { 1943 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1944 tp->sacked_out = 0; 1945 /* Mark SACK reneging until we recover from this loss event. */ 1946 tp->is_sack_reneg = 1; 1947 } else if (tcp_is_reno(tp)) { 1948 tcp_reset_reno_sack(tp); 1949 } 1950 1951 skb = head; 1952 skb_rbtree_walk_from(skb) { 1953 if (is_reneg) 1954 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1955 else if (tcp_is_rack(sk) && skb != head && 1956 tcp_rack_skb_timeout(tp, skb, 0) > 0) 1957 continue; /* Don't mark recently sent ones lost yet */ 1958 tcp_mark_skb_lost(sk, skb); 1959 } 1960 tcp_verify_left_out(tp); 1961 tcp_clear_all_retrans_hints(tp); 1962 } 1963 1964 /* Enter Loss state. */ 1965 void tcp_enter_loss(struct sock *sk) 1966 { 1967 const struct inet_connection_sock *icsk = inet_csk(sk); 1968 struct tcp_sock *tp = tcp_sk(sk); 1969 struct net *net = sock_net(sk); 1970 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 1971 1972 tcp_timeout_mark_lost(sk); 1973 1974 /* Reduce ssthresh if it has not yet been made inside this window. */ 1975 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1976 !after(tp->high_seq, tp->snd_una) || 1977 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1978 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1979 tp->prior_cwnd = tp->snd_cwnd; 1980 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1981 tcp_ca_event(sk, CA_EVENT_LOSS); 1982 tcp_init_undo(tp); 1983 } 1984 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 1985 tp->snd_cwnd_cnt = 0; 1986 tp->snd_cwnd_stamp = tcp_jiffies32; 1987 1988 /* Timeout in disordered state after receiving substantial DUPACKs 1989 * suggests that the degree of reordering is over-estimated. 1990 */ 1991 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1992 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 1993 tp->reordering = min_t(unsigned int, tp->reordering, 1994 net->ipv4.sysctl_tcp_reordering); 1995 tcp_set_ca_state(sk, TCP_CA_Loss); 1996 tp->high_seq = tp->snd_nxt; 1997 tcp_ecn_queue_cwr(tp); 1998 1999 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2000 * loss recovery is underway except recurring timeout(s) on 2001 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2002 */ 2003 tp->frto = net->ipv4.sysctl_tcp_frto && 2004 (new_recovery || icsk->icsk_retransmits) && 2005 !inet_csk(sk)->icsk_mtup.probe_size; 2006 } 2007 2008 /* If ACK arrived pointing to a remembered SACK, it means that our 2009 * remembered SACKs do not reflect real state of receiver i.e. 2010 * receiver _host_ is heavily congested (or buggy). 2011 * 2012 * To avoid big spurious retransmission bursts due to transient SACK 2013 * scoreboard oddities that look like reneging, we give the receiver a 2014 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2015 * restore sanity to the SACK scoreboard. If the apparent reneging 2016 * persists until this RTO then we'll clear the SACK scoreboard. 2017 */ 2018 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2019 { 2020 if (flag & FLAG_SACK_RENEGING) { 2021 struct tcp_sock *tp = tcp_sk(sk); 2022 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2023 msecs_to_jiffies(10)); 2024 2025 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2026 delay, TCP_RTO_MAX); 2027 return true; 2028 } 2029 return false; 2030 } 2031 2032 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2033 * counter when SACK is enabled (without SACK, sacked_out is used for 2034 * that purpose). 2035 * 2036 * With reordering, holes may still be in flight, so RFC3517 recovery 2037 * uses pure sacked_out (total number of SACKed segments) even though 2038 * it violates the RFC that uses duplicate ACKs, often these are equal 2039 * but when e.g. out-of-window ACKs or packet duplication occurs, 2040 * they differ. Since neither occurs due to loss, TCP should really 2041 * ignore them. 2042 */ 2043 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2044 { 2045 return tp->sacked_out + 1; 2046 } 2047 2048 /* Linux NewReno/SACK/ECN state machine. 2049 * -------------------------------------- 2050 * 2051 * "Open" Normal state, no dubious events, fast path. 2052 * "Disorder" In all the respects it is "Open", 2053 * but requires a bit more attention. It is entered when 2054 * we see some SACKs or dupacks. It is split of "Open" 2055 * mainly to move some processing from fast path to slow one. 2056 * "CWR" CWND was reduced due to some Congestion Notification event. 2057 * It can be ECN, ICMP source quench, local device congestion. 2058 * "Recovery" CWND was reduced, we are fast-retransmitting. 2059 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2060 * 2061 * tcp_fastretrans_alert() is entered: 2062 * - each incoming ACK, if state is not "Open" 2063 * - when arrived ACK is unusual, namely: 2064 * * SACK 2065 * * Duplicate ACK. 2066 * * ECN ECE. 2067 * 2068 * Counting packets in flight is pretty simple. 2069 * 2070 * in_flight = packets_out - left_out + retrans_out 2071 * 2072 * packets_out is SND.NXT-SND.UNA counted in packets. 2073 * 2074 * retrans_out is number of retransmitted segments. 2075 * 2076 * left_out is number of segments left network, but not ACKed yet. 2077 * 2078 * left_out = sacked_out + lost_out 2079 * 2080 * sacked_out: Packets, which arrived to receiver out of order 2081 * and hence not ACKed. With SACKs this number is simply 2082 * amount of SACKed data. Even without SACKs 2083 * it is easy to give pretty reliable estimate of this number, 2084 * counting duplicate ACKs. 2085 * 2086 * lost_out: Packets lost by network. TCP has no explicit 2087 * "loss notification" feedback from network (for now). 2088 * It means that this number can be only _guessed_. 2089 * Actually, it is the heuristics to predict lossage that 2090 * distinguishes different algorithms. 2091 * 2092 * F.e. after RTO, when all the queue is considered as lost, 2093 * lost_out = packets_out and in_flight = retrans_out. 2094 * 2095 * Essentially, we have now a few algorithms detecting 2096 * lost packets. 2097 * 2098 * If the receiver supports SACK: 2099 * 2100 * RFC6675/3517: It is the conventional algorithm. A packet is 2101 * considered lost if the number of higher sequence packets 2102 * SACKed is greater than or equal the DUPACK thoreshold 2103 * (reordering). This is implemented in tcp_mark_head_lost and 2104 * tcp_update_scoreboard. 2105 * 2106 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2107 * (2017-) that checks timing instead of counting DUPACKs. 2108 * Essentially a packet is considered lost if it's not S/ACKed 2109 * after RTT + reordering_window, where both metrics are 2110 * dynamically measured and adjusted. This is implemented in 2111 * tcp_rack_mark_lost. 2112 * 2113 * If the receiver does not support SACK: 2114 * 2115 * NewReno (RFC6582): in Recovery we assume that one segment 2116 * is lost (classic Reno). While we are in Recovery and 2117 * a partial ACK arrives, we assume that one more packet 2118 * is lost (NewReno). This heuristics are the same in NewReno 2119 * and SACK. 2120 * 2121 * Really tricky (and requiring careful tuning) part of algorithm 2122 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2123 * The first determines the moment _when_ we should reduce CWND and, 2124 * hence, slow down forward transmission. In fact, it determines the moment 2125 * when we decide that hole is caused by loss, rather than by a reorder. 2126 * 2127 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2128 * holes, caused by lost packets. 2129 * 2130 * And the most logically complicated part of algorithm is undo 2131 * heuristics. We detect false retransmits due to both too early 2132 * fast retransmit (reordering) and underestimated RTO, analyzing 2133 * timestamps and D-SACKs. When we detect that some segments were 2134 * retransmitted by mistake and CWND reduction was wrong, we undo 2135 * window reduction and abort recovery phase. This logic is hidden 2136 * inside several functions named tcp_try_undo_<something>. 2137 */ 2138 2139 /* This function decides, when we should leave Disordered state 2140 * and enter Recovery phase, reducing congestion window. 2141 * 2142 * Main question: may we further continue forward transmission 2143 * with the same cwnd? 2144 */ 2145 static bool tcp_time_to_recover(struct sock *sk, int flag) 2146 { 2147 struct tcp_sock *tp = tcp_sk(sk); 2148 2149 /* Trick#1: The loss is proven. */ 2150 if (tp->lost_out) 2151 return true; 2152 2153 /* Not-A-Trick#2 : Classic rule... */ 2154 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2155 return true; 2156 2157 return false; 2158 } 2159 2160 /* Detect loss in event "A" above by marking head of queue up as lost. 2161 * For non-SACK(Reno) senders, the first "packets" number of segments 2162 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2163 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2164 * the maximum SACKed segments to pass before reaching this limit. 2165 */ 2166 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2167 { 2168 struct tcp_sock *tp = tcp_sk(sk); 2169 struct sk_buff *skb; 2170 int cnt, oldcnt, lost; 2171 unsigned int mss; 2172 /* Use SACK to deduce losses of new sequences sent during recovery */ 2173 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2174 2175 WARN_ON(packets > tp->packets_out); 2176 skb = tp->lost_skb_hint; 2177 if (skb) { 2178 /* Head already handled? */ 2179 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2180 return; 2181 cnt = tp->lost_cnt_hint; 2182 } else { 2183 skb = tcp_rtx_queue_head(sk); 2184 cnt = 0; 2185 } 2186 2187 skb_rbtree_walk_from(skb) { 2188 /* TODO: do this better */ 2189 /* this is not the most efficient way to do this... */ 2190 tp->lost_skb_hint = skb; 2191 tp->lost_cnt_hint = cnt; 2192 2193 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2194 break; 2195 2196 oldcnt = cnt; 2197 if (tcp_is_reno(tp) || 2198 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2199 cnt += tcp_skb_pcount(skb); 2200 2201 if (cnt > packets) { 2202 if (tcp_is_sack(tp) || 2203 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2204 (oldcnt >= packets)) 2205 break; 2206 2207 mss = tcp_skb_mss(skb); 2208 /* If needed, chop off the prefix to mark as lost. */ 2209 lost = (packets - oldcnt) * mss; 2210 if (lost < skb->len && 2211 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 2212 lost, mss, GFP_ATOMIC) < 0) 2213 break; 2214 cnt = packets; 2215 } 2216 2217 tcp_skb_mark_lost(tp, skb); 2218 2219 if (mark_head) 2220 break; 2221 } 2222 tcp_verify_left_out(tp); 2223 } 2224 2225 /* Account newly detected lost packet(s) */ 2226 2227 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2228 { 2229 struct tcp_sock *tp = tcp_sk(sk); 2230 2231 if (tcp_is_sack(tp)) { 2232 int sacked_upto = tp->sacked_out - tp->reordering; 2233 if (sacked_upto >= 0) 2234 tcp_mark_head_lost(sk, sacked_upto, 0); 2235 else if (fast_rexmit) 2236 tcp_mark_head_lost(sk, 1, 1); 2237 } 2238 } 2239 2240 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2241 { 2242 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2243 before(tp->rx_opt.rcv_tsecr, when); 2244 } 2245 2246 /* skb is spurious retransmitted if the returned timestamp echo 2247 * reply is prior to the skb transmission time 2248 */ 2249 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2250 const struct sk_buff *skb) 2251 { 2252 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2253 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2254 } 2255 2256 /* Nothing was retransmitted or returned timestamp is less 2257 * than timestamp of the first retransmission. 2258 */ 2259 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2260 { 2261 return !tp->retrans_stamp || 2262 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2263 } 2264 2265 /* Undo procedures. */ 2266 2267 /* We can clear retrans_stamp when there are no retransmissions in the 2268 * window. It would seem that it is trivially available for us in 2269 * tp->retrans_out, however, that kind of assumptions doesn't consider 2270 * what will happen if errors occur when sending retransmission for the 2271 * second time. ...It could the that such segment has only 2272 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2273 * the head skb is enough except for some reneging corner cases that 2274 * are not worth the effort. 2275 * 2276 * Main reason for all this complexity is the fact that connection dying 2277 * time now depends on the validity of the retrans_stamp, in particular, 2278 * that successive retransmissions of a segment must not advance 2279 * retrans_stamp under any conditions. 2280 */ 2281 static bool tcp_any_retrans_done(const struct sock *sk) 2282 { 2283 const struct tcp_sock *tp = tcp_sk(sk); 2284 struct sk_buff *skb; 2285 2286 if (tp->retrans_out) 2287 return true; 2288 2289 skb = tcp_rtx_queue_head(sk); 2290 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2291 return true; 2292 2293 return false; 2294 } 2295 2296 static void DBGUNDO(struct sock *sk, const char *msg) 2297 { 2298 #if FASTRETRANS_DEBUG > 1 2299 struct tcp_sock *tp = tcp_sk(sk); 2300 struct inet_sock *inet = inet_sk(sk); 2301 2302 if (sk->sk_family == AF_INET) { 2303 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2304 msg, 2305 &inet->inet_daddr, ntohs(inet->inet_dport), 2306 tp->snd_cwnd, tcp_left_out(tp), 2307 tp->snd_ssthresh, tp->prior_ssthresh, 2308 tp->packets_out); 2309 } 2310 #if IS_ENABLED(CONFIG_IPV6) 2311 else if (sk->sk_family == AF_INET6) { 2312 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2313 msg, 2314 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2315 tp->snd_cwnd, tcp_left_out(tp), 2316 tp->snd_ssthresh, tp->prior_ssthresh, 2317 tp->packets_out); 2318 } 2319 #endif 2320 #endif 2321 } 2322 2323 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2324 { 2325 struct tcp_sock *tp = tcp_sk(sk); 2326 2327 if (unmark_loss) { 2328 struct sk_buff *skb; 2329 2330 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2331 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2332 } 2333 tp->lost_out = 0; 2334 tcp_clear_all_retrans_hints(tp); 2335 } 2336 2337 if (tp->prior_ssthresh) { 2338 const struct inet_connection_sock *icsk = inet_csk(sk); 2339 2340 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2341 2342 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2343 tp->snd_ssthresh = tp->prior_ssthresh; 2344 tcp_ecn_withdraw_cwr(tp); 2345 } 2346 } 2347 tp->snd_cwnd_stamp = tcp_jiffies32; 2348 tp->undo_marker = 0; 2349 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2350 } 2351 2352 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2353 { 2354 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2355 } 2356 2357 /* People celebrate: "We love our President!" */ 2358 static bool tcp_try_undo_recovery(struct sock *sk) 2359 { 2360 struct tcp_sock *tp = tcp_sk(sk); 2361 2362 if (tcp_may_undo(tp)) { 2363 int mib_idx; 2364 2365 /* Happy end! We did not retransmit anything 2366 * or our original transmission succeeded. 2367 */ 2368 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2369 tcp_undo_cwnd_reduction(sk, false); 2370 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2371 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2372 else 2373 mib_idx = LINUX_MIB_TCPFULLUNDO; 2374 2375 NET_INC_STATS(sock_net(sk), mib_idx); 2376 } else if (tp->rack.reo_wnd_persist) { 2377 tp->rack.reo_wnd_persist--; 2378 } 2379 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2380 /* Hold old state until something *above* high_seq 2381 * is ACKed. For Reno it is MUST to prevent false 2382 * fast retransmits (RFC2582). SACK TCP is safe. */ 2383 if (!tcp_any_retrans_done(sk)) 2384 tp->retrans_stamp = 0; 2385 return true; 2386 } 2387 tcp_set_ca_state(sk, TCP_CA_Open); 2388 tp->is_sack_reneg = 0; 2389 return false; 2390 } 2391 2392 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2393 static bool tcp_try_undo_dsack(struct sock *sk) 2394 { 2395 struct tcp_sock *tp = tcp_sk(sk); 2396 2397 if (tp->undo_marker && !tp->undo_retrans) { 2398 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2399 tp->rack.reo_wnd_persist + 1); 2400 DBGUNDO(sk, "D-SACK"); 2401 tcp_undo_cwnd_reduction(sk, false); 2402 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2403 return true; 2404 } 2405 return false; 2406 } 2407 2408 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2409 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2410 { 2411 struct tcp_sock *tp = tcp_sk(sk); 2412 2413 if (frto_undo || tcp_may_undo(tp)) { 2414 tcp_undo_cwnd_reduction(sk, true); 2415 2416 DBGUNDO(sk, "partial loss"); 2417 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2418 if (frto_undo) 2419 NET_INC_STATS(sock_net(sk), 2420 LINUX_MIB_TCPSPURIOUSRTOS); 2421 inet_csk(sk)->icsk_retransmits = 0; 2422 if (frto_undo || tcp_is_sack(tp)) { 2423 tcp_set_ca_state(sk, TCP_CA_Open); 2424 tp->is_sack_reneg = 0; 2425 } 2426 return true; 2427 } 2428 return false; 2429 } 2430 2431 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2432 * It computes the number of packets to send (sndcnt) based on packets newly 2433 * delivered: 2434 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2435 * cwnd reductions across a full RTT. 2436 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2437 * But when the retransmits are acked without further losses, PRR 2438 * slow starts cwnd up to ssthresh to speed up the recovery. 2439 */ 2440 static void tcp_init_cwnd_reduction(struct sock *sk) 2441 { 2442 struct tcp_sock *tp = tcp_sk(sk); 2443 2444 tp->high_seq = tp->snd_nxt; 2445 tp->tlp_high_seq = 0; 2446 tp->snd_cwnd_cnt = 0; 2447 tp->prior_cwnd = tp->snd_cwnd; 2448 tp->prr_delivered = 0; 2449 tp->prr_out = 0; 2450 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2451 tcp_ecn_queue_cwr(tp); 2452 } 2453 2454 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2455 { 2456 struct tcp_sock *tp = tcp_sk(sk); 2457 int sndcnt = 0; 2458 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2459 2460 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2461 return; 2462 2463 tp->prr_delivered += newly_acked_sacked; 2464 if (delta < 0) { 2465 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2466 tp->prior_cwnd - 1; 2467 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2468 } else if ((flag & FLAG_RETRANS_DATA_ACKED) && 2469 !(flag & FLAG_LOST_RETRANS)) { 2470 sndcnt = min_t(int, delta, 2471 max_t(int, tp->prr_delivered - tp->prr_out, 2472 newly_acked_sacked) + 1); 2473 } else { 2474 sndcnt = min(delta, newly_acked_sacked); 2475 } 2476 /* Force a fast retransmit upon entering fast recovery */ 2477 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2478 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2479 } 2480 2481 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2482 { 2483 struct tcp_sock *tp = tcp_sk(sk); 2484 2485 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2486 return; 2487 2488 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2489 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2490 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2491 tp->snd_cwnd = tp->snd_ssthresh; 2492 tp->snd_cwnd_stamp = tcp_jiffies32; 2493 } 2494 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2495 } 2496 2497 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2498 void tcp_enter_cwr(struct sock *sk) 2499 { 2500 struct tcp_sock *tp = tcp_sk(sk); 2501 2502 tp->prior_ssthresh = 0; 2503 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2504 tp->undo_marker = 0; 2505 tcp_init_cwnd_reduction(sk); 2506 tcp_set_ca_state(sk, TCP_CA_CWR); 2507 } 2508 } 2509 EXPORT_SYMBOL(tcp_enter_cwr); 2510 2511 static void tcp_try_keep_open(struct sock *sk) 2512 { 2513 struct tcp_sock *tp = tcp_sk(sk); 2514 int state = TCP_CA_Open; 2515 2516 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2517 state = TCP_CA_Disorder; 2518 2519 if (inet_csk(sk)->icsk_ca_state != state) { 2520 tcp_set_ca_state(sk, state); 2521 tp->high_seq = tp->snd_nxt; 2522 } 2523 } 2524 2525 static void tcp_try_to_open(struct sock *sk, int flag) 2526 { 2527 struct tcp_sock *tp = tcp_sk(sk); 2528 2529 tcp_verify_left_out(tp); 2530 2531 if (!tcp_any_retrans_done(sk)) 2532 tp->retrans_stamp = 0; 2533 2534 if (flag & FLAG_ECE) 2535 tcp_enter_cwr(sk); 2536 2537 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2538 tcp_try_keep_open(sk); 2539 } 2540 } 2541 2542 static void tcp_mtup_probe_failed(struct sock *sk) 2543 { 2544 struct inet_connection_sock *icsk = inet_csk(sk); 2545 2546 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2547 icsk->icsk_mtup.probe_size = 0; 2548 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2549 } 2550 2551 static void tcp_mtup_probe_success(struct sock *sk) 2552 { 2553 struct tcp_sock *tp = tcp_sk(sk); 2554 struct inet_connection_sock *icsk = inet_csk(sk); 2555 2556 /* FIXME: breaks with very large cwnd */ 2557 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2558 tp->snd_cwnd = tp->snd_cwnd * 2559 tcp_mss_to_mtu(sk, tp->mss_cache) / 2560 icsk->icsk_mtup.probe_size; 2561 tp->snd_cwnd_cnt = 0; 2562 tp->snd_cwnd_stamp = tcp_jiffies32; 2563 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2564 2565 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2566 icsk->icsk_mtup.probe_size = 0; 2567 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2568 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2569 } 2570 2571 /* Do a simple retransmit without using the backoff mechanisms in 2572 * tcp_timer. This is used for path mtu discovery. 2573 * The socket is already locked here. 2574 */ 2575 void tcp_simple_retransmit(struct sock *sk) 2576 { 2577 const struct inet_connection_sock *icsk = inet_csk(sk); 2578 struct tcp_sock *tp = tcp_sk(sk); 2579 struct sk_buff *skb; 2580 unsigned int mss = tcp_current_mss(sk); 2581 2582 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2583 if (tcp_skb_seglen(skb) > mss && 2584 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2585 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2586 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2587 tp->retrans_out -= tcp_skb_pcount(skb); 2588 } 2589 tcp_skb_mark_lost_uncond_verify(tp, skb); 2590 } 2591 } 2592 2593 tcp_clear_retrans_hints_partial(tp); 2594 2595 if (!tp->lost_out) 2596 return; 2597 2598 if (tcp_is_reno(tp)) 2599 tcp_limit_reno_sacked(tp); 2600 2601 tcp_verify_left_out(tp); 2602 2603 /* Don't muck with the congestion window here. 2604 * Reason is that we do not increase amount of _data_ 2605 * in network, but units changed and effective 2606 * cwnd/ssthresh really reduced now. 2607 */ 2608 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2609 tp->high_seq = tp->snd_nxt; 2610 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2611 tp->prior_ssthresh = 0; 2612 tp->undo_marker = 0; 2613 tcp_set_ca_state(sk, TCP_CA_Loss); 2614 } 2615 tcp_xmit_retransmit_queue(sk); 2616 } 2617 EXPORT_SYMBOL(tcp_simple_retransmit); 2618 2619 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2620 { 2621 struct tcp_sock *tp = tcp_sk(sk); 2622 int mib_idx; 2623 2624 if (tcp_is_reno(tp)) 2625 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2626 else 2627 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2628 2629 NET_INC_STATS(sock_net(sk), mib_idx); 2630 2631 tp->prior_ssthresh = 0; 2632 tcp_init_undo(tp); 2633 2634 if (!tcp_in_cwnd_reduction(sk)) { 2635 if (!ece_ack) 2636 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2637 tcp_init_cwnd_reduction(sk); 2638 } 2639 tcp_set_ca_state(sk, TCP_CA_Recovery); 2640 } 2641 2642 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2643 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2644 */ 2645 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack, 2646 int *rexmit) 2647 { 2648 struct tcp_sock *tp = tcp_sk(sk); 2649 bool recovered = !before(tp->snd_una, tp->high_seq); 2650 2651 if ((flag & FLAG_SND_UNA_ADVANCED) && 2652 tcp_try_undo_loss(sk, false)) 2653 return; 2654 2655 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2656 /* Step 3.b. A timeout is spurious if not all data are 2657 * lost, i.e., never-retransmitted data are (s)acked. 2658 */ 2659 if ((flag & FLAG_ORIG_SACK_ACKED) && 2660 tcp_try_undo_loss(sk, true)) 2661 return; 2662 2663 if (after(tp->snd_nxt, tp->high_seq)) { 2664 if (flag & FLAG_DATA_SACKED || is_dupack) 2665 tp->frto = 0; /* Step 3.a. loss was real */ 2666 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2667 tp->high_seq = tp->snd_nxt; 2668 /* Step 2.b. Try send new data (but deferred until cwnd 2669 * is updated in tcp_ack()). Otherwise fall back to 2670 * the conventional recovery. 2671 */ 2672 if (!tcp_write_queue_empty(sk) && 2673 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2674 *rexmit = REXMIT_NEW; 2675 return; 2676 } 2677 tp->frto = 0; 2678 } 2679 } 2680 2681 if (recovered) { 2682 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2683 tcp_try_undo_recovery(sk); 2684 return; 2685 } 2686 if (tcp_is_reno(tp)) { 2687 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2688 * delivered. Lower inflight to clock out (re)tranmissions. 2689 */ 2690 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2691 tcp_add_reno_sack(sk); 2692 else if (flag & FLAG_SND_UNA_ADVANCED) 2693 tcp_reset_reno_sack(tp); 2694 } 2695 *rexmit = REXMIT_LOST; 2696 } 2697 2698 /* Undo during fast recovery after partial ACK. */ 2699 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2700 { 2701 struct tcp_sock *tp = tcp_sk(sk); 2702 2703 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2704 /* Plain luck! Hole if filled with delayed 2705 * packet, rather than with a retransmit. Check reordering. 2706 */ 2707 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2708 2709 /* We are getting evidence that the reordering degree is higher 2710 * than we realized. If there are no retransmits out then we 2711 * can undo. Otherwise we clock out new packets but do not 2712 * mark more packets lost or retransmit more. 2713 */ 2714 if (tp->retrans_out) 2715 return true; 2716 2717 if (!tcp_any_retrans_done(sk)) 2718 tp->retrans_stamp = 0; 2719 2720 DBGUNDO(sk, "partial recovery"); 2721 tcp_undo_cwnd_reduction(sk, true); 2722 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2723 tcp_try_keep_open(sk); 2724 return true; 2725 } 2726 return false; 2727 } 2728 2729 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2730 { 2731 struct tcp_sock *tp = tcp_sk(sk); 2732 2733 if (tcp_rtx_queue_empty(sk)) 2734 return; 2735 2736 if (unlikely(tcp_is_reno(tp))) { 2737 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2738 } else if (tcp_is_rack(sk)) { 2739 u32 prior_retrans = tp->retrans_out; 2740 2741 tcp_rack_mark_lost(sk); 2742 if (prior_retrans > tp->retrans_out) 2743 *ack_flag |= FLAG_LOST_RETRANS; 2744 } 2745 } 2746 2747 static bool tcp_force_fast_retransmit(struct sock *sk) 2748 { 2749 struct tcp_sock *tp = tcp_sk(sk); 2750 2751 return after(tcp_highest_sack_seq(tp), 2752 tp->snd_una + tp->reordering * tp->mss_cache); 2753 } 2754 2755 /* Process an event, which can update packets-in-flight not trivially. 2756 * Main goal of this function is to calculate new estimate for left_out, 2757 * taking into account both packets sitting in receiver's buffer and 2758 * packets lost by network. 2759 * 2760 * Besides that it updates the congestion state when packet loss or ECN 2761 * is detected. But it does not reduce the cwnd, it is done by the 2762 * congestion control later. 2763 * 2764 * It does _not_ decide what to send, it is made in function 2765 * tcp_xmit_retransmit_queue(). 2766 */ 2767 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2768 bool is_dupack, int *ack_flag, int *rexmit) 2769 { 2770 struct inet_connection_sock *icsk = inet_csk(sk); 2771 struct tcp_sock *tp = tcp_sk(sk); 2772 int fast_rexmit = 0, flag = *ack_flag; 2773 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2774 tcp_force_fast_retransmit(sk)); 2775 2776 if (!tp->packets_out && tp->sacked_out) 2777 tp->sacked_out = 0; 2778 2779 /* Now state machine starts. 2780 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2781 if (flag & FLAG_ECE) 2782 tp->prior_ssthresh = 0; 2783 2784 /* B. In all the states check for reneging SACKs. */ 2785 if (tcp_check_sack_reneging(sk, flag)) 2786 return; 2787 2788 /* C. Check consistency of the current state. */ 2789 tcp_verify_left_out(tp); 2790 2791 /* D. Check state exit conditions. State can be terminated 2792 * when high_seq is ACKed. */ 2793 if (icsk->icsk_ca_state == TCP_CA_Open) { 2794 WARN_ON(tp->retrans_out != 0); 2795 tp->retrans_stamp = 0; 2796 } else if (!before(tp->snd_una, tp->high_seq)) { 2797 switch (icsk->icsk_ca_state) { 2798 case TCP_CA_CWR: 2799 /* CWR is to be held something *above* high_seq 2800 * is ACKed for CWR bit to reach receiver. */ 2801 if (tp->snd_una != tp->high_seq) { 2802 tcp_end_cwnd_reduction(sk); 2803 tcp_set_ca_state(sk, TCP_CA_Open); 2804 } 2805 break; 2806 2807 case TCP_CA_Recovery: 2808 if (tcp_is_reno(tp)) 2809 tcp_reset_reno_sack(tp); 2810 if (tcp_try_undo_recovery(sk)) 2811 return; 2812 tcp_end_cwnd_reduction(sk); 2813 break; 2814 } 2815 } 2816 2817 /* E. Process state. */ 2818 switch (icsk->icsk_ca_state) { 2819 case TCP_CA_Recovery: 2820 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2821 if (tcp_is_reno(tp) && is_dupack) 2822 tcp_add_reno_sack(sk); 2823 } else { 2824 if (tcp_try_undo_partial(sk, prior_snd_una)) 2825 return; 2826 /* Partial ACK arrived. Force fast retransmit. */ 2827 do_lost = tcp_is_reno(tp) || 2828 tcp_force_fast_retransmit(sk); 2829 } 2830 if (tcp_try_undo_dsack(sk)) { 2831 tcp_try_keep_open(sk); 2832 return; 2833 } 2834 tcp_identify_packet_loss(sk, ack_flag); 2835 break; 2836 case TCP_CA_Loss: 2837 tcp_process_loss(sk, flag, is_dupack, rexmit); 2838 tcp_identify_packet_loss(sk, ack_flag); 2839 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2840 (*ack_flag & FLAG_LOST_RETRANS))) 2841 return; 2842 /* Change state if cwnd is undone or retransmits are lost */ 2843 /* fall through */ 2844 default: 2845 if (tcp_is_reno(tp)) { 2846 if (flag & FLAG_SND_UNA_ADVANCED) 2847 tcp_reset_reno_sack(tp); 2848 if (is_dupack) 2849 tcp_add_reno_sack(sk); 2850 } 2851 2852 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2853 tcp_try_undo_dsack(sk); 2854 2855 tcp_identify_packet_loss(sk, ack_flag); 2856 if (!tcp_time_to_recover(sk, flag)) { 2857 tcp_try_to_open(sk, flag); 2858 return; 2859 } 2860 2861 /* MTU probe failure: don't reduce cwnd */ 2862 if (icsk->icsk_ca_state < TCP_CA_CWR && 2863 icsk->icsk_mtup.probe_size && 2864 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2865 tcp_mtup_probe_failed(sk); 2866 /* Restores the reduction we did in tcp_mtup_probe() */ 2867 tp->snd_cwnd++; 2868 tcp_simple_retransmit(sk); 2869 return; 2870 } 2871 2872 /* Otherwise enter Recovery state */ 2873 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2874 fast_rexmit = 1; 2875 } 2876 2877 if (!tcp_is_rack(sk) && do_lost) 2878 tcp_update_scoreboard(sk, fast_rexmit); 2879 *rexmit = REXMIT_LOST; 2880 } 2881 2882 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2883 { 2884 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2885 struct tcp_sock *tp = tcp_sk(sk); 2886 2887 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2888 /* If the remote keeps returning delayed ACKs, eventually 2889 * the min filter would pick it up and overestimate the 2890 * prop. delay when it expires. Skip suspected delayed ACKs. 2891 */ 2892 return; 2893 } 2894 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 2895 rtt_us ? : jiffies_to_usecs(1)); 2896 } 2897 2898 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2899 long seq_rtt_us, long sack_rtt_us, 2900 long ca_rtt_us, struct rate_sample *rs) 2901 { 2902 const struct tcp_sock *tp = tcp_sk(sk); 2903 2904 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2905 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2906 * Karn's algorithm forbids taking RTT if some retransmitted data 2907 * is acked (RFC6298). 2908 */ 2909 if (seq_rtt_us < 0) 2910 seq_rtt_us = sack_rtt_us; 2911 2912 /* RTTM Rule: A TSecr value received in a segment is used to 2913 * update the averaged RTT measurement only if the segment 2914 * acknowledges some new data, i.e., only if it advances the 2915 * left edge of the send window. 2916 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2917 */ 2918 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2919 flag & FLAG_ACKED) { 2920 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 2921 u32 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 2922 2923 seq_rtt_us = ca_rtt_us = delta_us; 2924 } 2925 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 2926 if (seq_rtt_us < 0) 2927 return false; 2928 2929 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 2930 * always taken together with ACK, SACK, or TS-opts. Any negative 2931 * values will be skipped with the seq_rtt_us < 0 check above. 2932 */ 2933 tcp_update_rtt_min(sk, ca_rtt_us, flag); 2934 tcp_rtt_estimator(sk, seq_rtt_us); 2935 tcp_set_rto(sk); 2936 2937 /* RFC6298: only reset backoff on valid RTT measurement. */ 2938 inet_csk(sk)->icsk_backoff = 0; 2939 return true; 2940 } 2941 2942 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2943 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 2944 { 2945 struct rate_sample rs; 2946 long rtt_us = -1L; 2947 2948 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 2949 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 2950 2951 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 2952 } 2953 2954 2955 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2956 { 2957 const struct inet_connection_sock *icsk = inet_csk(sk); 2958 2959 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2960 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 2961 } 2962 2963 /* Restart timer after forward progress on connection. 2964 * RFC2988 recommends to restart timer to now+rto. 2965 */ 2966 void tcp_rearm_rto(struct sock *sk) 2967 { 2968 const struct inet_connection_sock *icsk = inet_csk(sk); 2969 struct tcp_sock *tp = tcp_sk(sk); 2970 2971 /* If the retrans timer is currently being used by Fast Open 2972 * for SYN-ACK retrans purpose, stay put. 2973 */ 2974 if (tp->fastopen_rsk) 2975 return; 2976 2977 if (!tp->packets_out) { 2978 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2979 } else { 2980 u32 rto = inet_csk(sk)->icsk_rto; 2981 /* Offset the time elapsed after installing regular RTO */ 2982 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 2983 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2984 s64 delta_us = tcp_rto_delta_us(sk); 2985 /* delta_us may not be positive if the socket is locked 2986 * when the retrans timer fires and is rescheduled. 2987 */ 2988 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 2989 } 2990 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2991 TCP_RTO_MAX); 2992 } 2993 } 2994 2995 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 2996 static void tcp_set_xmit_timer(struct sock *sk) 2997 { 2998 if (!tcp_schedule_loss_probe(sk, true)) 2999 tcp_rearm_rto(sk); 3000 } 3001 3002 /* If we get here, the whole TSO packet has not been acked. */ 3003 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3004 { 3005 struct tcp_sock *tp = tcp_sk(sk); 3006 u32 packets_acked; 3007 3008 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3009 3010 packets_acked = tcp_skb_pcount(skb); 3011 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3012 return 0; 3013 packets_acked -= tcp_skb_pcount(skb); 3014 3015 if (packets_acked) { 3016 BUG_ON(tcp_skb_pcount(skb) == 0); 3017 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3018 } 3019 3020 return packets_acked; 3021 } 3022 3023 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3024 u32 prior_snd_una) 3025 { 3026 const struct skb_shared_info *shinfo; 3027 3028 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3029 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3030 return; 3031 3032 shinfo = skb_shinfo(skb); 3033 if (!before(shinfo->tskey, prior_snd_una) && 3034 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3035 tcp_skb_tsorted_save(skb) { 3036 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3037 } tcp_skb_tsorted_restore(skb); 3038 } 3039 } 3040 3041 /* Remove acknowledged frames from the retransmission queue. If our packet 3042 * is before the ack sequence we can discard it as it's confirmed to have 3043 * arrived at the other end. 3044 */ 3045 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3046 u32 prior_snd_una, 3047 struct tcp_sacktag_state *sack) 3048 { 3049 const struct inet_connection_sock *icsk = inet_csk(sk); 3050 u64 first_ackt, last_ackt; 3051 struct tcp_sock *tp = tcp_sk(sk); 3052 u32 prior_sacked = tp->sacked_out; 3053 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3054 struct sk_buff *skb, *next; 3055 bool fully_acked = true; 3056 long sack_rtt_us = -1L; 3057 long seq_rtt_us = -1L; 3058 long ca_rtt_us = -1L; 3059 u32 pkts_acked = 0; 3060 u32 last_in_flight = 0; 3061 bool rtt_update; 3062 int flag = 0; 3063 3064 first_ackt = 0; 3065 3066 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3067 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3068 const u32 start_seq = scb->seq; 3069 u8 sacked = scb->sacked; 3070 u32 acked_pcount; 3071 3072 tcp_ack_tstamp(sk, skb, prior_snd_una); 3073 3074 /* Determine how many packets and what bytes were acked, tso and else */ 3075 if (after(scb->end_seq, tp->snd_una)) { 3076 if (tcp_skb_pcount(skb) == 1 || 3077 !after(tp->snd_una, scb->seq)) 3078 break; 3079 3080 acked_pcount = tcp_tso_acked(sk, skb); 3081 if (!acked_pcount) 3082 break; 3083 fully_acked = false; 3084 } else { 3085 acked_pcount = tcp_skb_pcount(skb); 3086 } 3087 3088 if (unlikely(sacked & TCPCB_RETRANS)) { 3089 if (sacked & TCPCB_SACKED_RETRANS) 3090 tp->retrans_out -= acked_pcount; 3091 flag |= FLAG_RETRANS_DATA_ACKED; 3092 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3093 last_ackt = skb->skb_mstamp; 3094 WARN_ON_ONCE(last_ackt == 0); 3095 if (!first_ackt) 3096 first_ackt = last_ackt; 3097 3098 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3099 if (before(start_seq, reord)) 3100 reord = start_seq; 3101 if (!after(scb->end_seq, tp->high_seq)) 3102 flag |= FLAG_ORIG_SACK_ACKED; 3103 } 3104 3105 if (sacked & TCPCB_SACKED_ACKED) { 3106 tp->sacked_out -= acked_pcount; 3107 } else if (tcp_is_sack(tp)) { 3108 tp->delivered += acked_pcount; 3109 if (!tcp_skb_spurious_retrans(tp, skb)) 3110 tcp_rack_advance(tp, sacked, scb->end_seq, 3111 skb->skb_mstamp); 3112 } 3113 if (sacked & TCPCB_LOST) 3114 tp->lost_out -= acked_pcount; 3115 3116 tp->packets_out -= acked_pcount; 3117 pkts_acked += acked_pcount; 3118 tcp_rate_skb_delivered(sk, skb, sack->rate); 3119 3120 /* Initial outgoing SYN's get put onto the write_queue 3121 * just like anything else we transmit. It is not 3122 * true data, and if we misinform our callers that 3123 * this ACK acks real data, we will erroneously exit 3124 * connection startup slow start one packet too 3125 * quickly. This is severely frowned upon behavior. 3126 */ 3127 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3128 flag |= FLAG_DATA_ACKED; 3129 } else { 3130 flag |= FLAG_SYN_ACKED; 3131 tp->retrans_stamp = 0; 3132 } 3133 3134 if (!fully_acked) 3135 break; 3136 3137 next = skb_rb_next(skb); 3138 if (unlikely(skb == tp->retransmit_skb_hint)) 3139 tp->retransmit_skb_hint = NULL; 3140 if (unlikely(skb == tp->lost_skb_hint)) 3141 tp->lost_skb_hint = NULL; 3142 tcp_rtx_queue_unlink_and_free(skb, sk); 3143 } 3144 3145 if (!skb) 3146 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3147 3148 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3149 tp->snd_up = tp->snd_una; 3150 3151 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3152 flag |= FLAG_SACK_RENEGING; 3153 3154 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3155 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3156 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3157 3158 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3159 last_in_flight && !prior_sacked && fully_acked && 3160 sack->rate->prior_delivered + 1 == tp->delivered && 3161 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3162 /* Conservatively mark a delayed ACK. It's typically 3163 * from a lone runt packet over the round trip to 3164 * a receiver w/o out-of-order or CE events. 3165 */ 3166 flag |= FLAG_ACK_MAYBE_DELAYED; 3167 } 3168 } 3169 if (sack->first_sackt) { 3170 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3171 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3172 } 3173 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3174 ca_rtt_us, sack->rate); 3175 3176 if (flag & FLAG_ACKED) { 3177 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3178 if (unlikely(icsk->icsk_mtup.probe_size && 3179 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3180 tcp_mtup_probe_success(sk); 3181 } 3182 3183 if (tcp_is_reno(tp)) { 3184 tcp_remove_reno_sacks(sk, pkts_acked); 3185 3186 /* If any of the cumulatively ACKed segments was 3187 * retransmitted, non-SACK case cannot confirm that 3188 * progress was due to original transmission due to 3189 * lack of TCPCB_SACKED_ACKED bits even if some of 3190 * the packets may have been never retransmitted. 3191 */ 3192 if (flag & FLAG_RETRANS_DATA_ACKED) 3193 flag &= ~FLAG_ORIG_SACK_ACKED; 3194 } else { 3195 int delta; 3196 3197 /* Non-retransmitted hole got filled? That's reordering */ 3198 if (before(reord, prior_fack)) 3199 tcp_check_sack_reordering(sk, reord, 0); 3200 3201 delta = prior_sacked - tp->sacked_out; 3202 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3203 } 3204 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3205 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, skb->skb_mstamp)) { 3206 /* Do not re-arm RTO if the sack RTT is measured from data sent 3207 * after when the head was last (re)transmitted. Otherwise the 3208 * timeout may continue to extend in loss recovery. 3209 */ 3210 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3211 } 3212 3213 if (icsk->icsk_ca_ops->pkts_acked) { 3214 struct ack_sample sample = { .pkts_acked = pkts_acked, 3215 .rtt_us = sack->rate->rtt_us, 3216 .in_flight = last_in_flight }; 3217 3218 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3219 } 3220 3221 #if FASTRETRANS_DEBUG > 0 3222 WARN_ON((int)tp->sacked_out < 0); 3223 WARN_ON((int)tp->lost_out < 0); 3224 WARN_ON((int)tp->retrans_out < 0); 3225 if (!tp->packets_out && tcp_is_sack(tp)) { 3226 icsk = inet_csk(sk); 3227 if (tp->lost_out) { 3228 pr_debug("Leak l=%u %d\n", 3229 tp->lost_out, icsk->icsk_ca_state); 3230 tp->lost_out = 0; 3231 } 3232 if (tp->sacked_out) { 3233 pr_debug("Leak s=%u %d\n", 3234 tp->sacked_out, icsk->icsk_ca_state); 3235 tp->sacked_out = 0; 3236 } 3237 if (tp->retrans_out) { 3238 pr_debug("Leak r=%u %d\n", 3239 tp->retrans_out, icsk->icsk_ca_state); 3240 tp->retrans_out = 0; 3241 } 3242 } 3243 #endif 3244 return flag; 3245 } 3246 3247 static void tcp_ack_probe(struct sock *sk) 3248 { 3249 struct inet_connection_sock *icsk = inet_csk(sk); 3250 struct sk_buff *head = tcp_send_head(sk); 3251 const struct tcp_sock *tp = tcp_sk(sk); 3252 3253 /* Was it a usable window open? */ 3254 if (!head) 3255 return; 3256 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3257 icsk->icsk_backoff = 0; 3258 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3259 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3260 * This function is not for random using! 3261 */ 3262 } else { 3263 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3264 3265 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3266 when, TCP_RTO_MAX); 3267 } 3268 } 3269 3270 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3271 { 3272 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3273 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3274 } 3275 3276 /* Decide wheather to run the increase function of congestion control. */ 3277 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3278 { 3279 /* If reordering is high then always grow cwnd whenever data is 3280 * delivered regardless of its ordering. Otherwise stay conservative 3281 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3282 * new SACK or ECE mark may first advance cwnd here and later reduce 3283 * cwnd in tcp_fastretrans_alert() based on more states. 3284 */ 3285 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3286 return flag & FLAG_FORWARD_PROGRESS; 3287 3288 return flag & FLAG_DATA_ACKED; 3289 } 3290 3291 /* The "ultimate" congestion control function that aims to replace the rigid 3292 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3293 * It's called toward the end of processing an ACK with precise rate 3294 * information. All transmission or retransmission are delayed afterwards. 3295 */ 3296 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3297 int flag, const struct rate_sample *rs) 3298 { 3299 const struct inet_connection_sock *icsk = inet_csk(sk); 3300 3301 if (icsk->icsk_ca_ops->cong_control) { 3302 icsk->icsk_ca_ops->cong_control(sk, rs); 3303 return; 3304 } 3305 3306 if (tcp_in_cwnd_reduction(sk)) { 3307 /* Reduce cwnd if state mandates */ 3308 tcp_cwnd_reduction(sk, acked_sacked, flag); 3309 } else if (tcp_may_raise_cwnd(sk, flag)) { 3310 /* Advance cwnd if state allows */ 3311 tcp_cong_avoid(sk, ack, acked_sacked); 3312 } 3313 tcp_update_pacing_rate(sk); 3314 } 3315 3316 /* Check that window update is acceptable. 3317 * The function assumes that snd_una<=ack<=snd_next. 3318 */ 3319 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3320 const u32 ack, const u32 ack_seq, 3321 const u32 nwin) 3322 { 3323 return after(ack, tp->snd_una) || 3324 after(ack_seq, tp->snd_wl1) || 3325 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3326 } 3327 3328 /* If we update tp->snd_una, also update tp->bytes_acked */ 3329 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3330 { 3331 u32 delta = ack - tp->snd_una; 3332 3333 sock_owned_by_me((struct sock *)tp); 3334 tp->bytes_acked += delta; 3335 tp->snd_una = ack; 3336 } 3337 3338 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3339 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3340 { 3341 u32 delta = seq - tp->rcv_nxt; 3342 3343 sock_owned_by_me((struct sock *)tp); 3344 tp->bytes_received += delta; 3345 tp->rcv_nxt = seq; 3346 } 3347 3348 /* Update our send window. 3349 * 3350 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3351 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3352 */ 3353 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3354 u32 ack_seq) 3355 { 3356 struct tcp_sock *tp = tcp_sk(sk); 3357 int flag = 0; 3358 u32 nwin = ntohs(tcp_hdr(skb)->window); 3359 3360 if (likely(!tcp_hdr(skb)->syn)) 3361 nwin <<= tp->rx_opt.snd_wscale; 3362 3363 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3364 flag |= FLAG_WIN_UPDATE; 3365 tcp_update_wl(tp, ack_seq); 3366 3367 if (tp->snd_wnd != nwin) { 3368 tp->snd_wnd = nwin; 3369 3370 /* Note, it is the only place, where 3371 * fast path is recovered for sending TCP. 3372 */ 3373 tp->pred_flags = 0; 3374 tcp_fast_path_check(sk); 3375 3376 if (!tcp_write_queue_empty(sk)) 3377 tcp_slow_start_after_idle_check(sk); 3378 3379 if (nwin > tp->max_window) { 3380 tp->max_window = nwin; 3381 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3382 } 3383 } 3384 } 3385 3386 tcp_snd_una_update(tp, ack); 3387 3388 return flag; 3389 } 3390 3391 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3392 u32 *last_oow_ack_time) 3393 { 3394 if (*last_oow_ack_time) { 3395 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3396 3397 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3398 NET_INC_STATS(net, mib_idx); 3399 return true; /* rate-limited: don't send yet! */ 3400 } 3401 } 3402 3403 *last_oow_ack_time = tcp_jiffies32; 3404 3405 return false; /* not rate-limited: go ahead, send dupack now! */ 3406 } 3407 3408 /* Return true if we're currently rate-limiting out-of-window ACKs and 3409 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3410 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3411 * attacks that send repeated SYNs or ACKs for the same connection. To 3412 * do this, we do not send a duplicate SYNACK or ACK if the remote 3413 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3414 */ 3415 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3416 int mib_idx, u32 *last_oow_ack_time) 3417 { 3418 /* Data packets without SYNs are not likely part of an ACK loop. */ 3419 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3420 !tcp_hdr(skb)->syn) 3421 return false; 3422 3423 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3424 } 3425 3426 /* RFC 5961 7 [ACK Throttling] */ 3427 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3428 { 3429 /* unprotected vars, we dont care of overwrites */ 3430 static u32 challenge_timestamp; 3431 static unsigned int challenge_count; 3432 struct tcp_sock *tp = tcp_sk(sk); 3433 struct net *net = sock_net(sk); 3434 u32 count, now; 3435 3436 /* First check our per-socket dupack rate limit. */ 3437 if (__tcp_oow_rate_limited(net, 3438 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3439 &tp->last_oow_ack_time)) 3440 return; 3441 3442 /* Then check host-wide RFC 5961 rate limit. */ 3443 now = jiffies / HZ; 3444 if (now != challenge_timestamp) { 3445 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3446 u32 half = (ack_limit + 1) >> 1; 3447 3448 challenge_timestamp = now; 3449 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3450 } 3451 count = READ_ONCE(challenge_count); 3452 if (count > 0) { 3453 WRITE_ONCE(challenge_count, count - 1); 3454 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3455 tcp_send_ack(sk); 3456 } 3457 } 3458 3459 static void tcp_store_ts_recent(struct tcp_sock *tp) 3460 { 3461 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3462 tp->rx_opt.ts_recent_stamp = get_seconds(); 3463 } 3464 3465 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3466 { 3467 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3468 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3469 * extra check below makes sure this can only happen 3470 * for pure ACK frames. -DaveM 3471 * 3472 * Not only, also it occurs for expired timestamps. 3473 */ 3474 3475 if (tcp_paws_check(&tp->rx_opt, 0)) 3476 tcp_store_ts_recent(tp); 3477 } 3478 } 3479 3480 /* This routine deals with acks during a TLP episode. 3481 * We mark the end of a TLP episode on receiving TLP dupack or when 3482 * ack is after tlp_high_seq. 3483 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3484 */ 3485 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3486 { 3487 struct tcp_sock *tp = tcp_sk(sk); 3488 3489 if (before(ack, tp->tlp_high_seq)) 3490 return; 3491 3492 if (flag & FLAG_DSACKING_ACK) { 3493 /* This DSACK means original and TLP probe arrived; no loss */ 3494 tp->tlp_high_seq = 0; 3495 } else if (after(ack, tp->tlp_high_seq)) { 3496 /* ACK advances: there was a loss, so reduce cwnd. Reset 3497 * tlp_high_seq in tcp_init_cwnd_reduction() 3498 */ 3499 tcp_init_cwnd_reduction(sk); 3500 tcp_set_ca_state(sk, TCP_CA_CWR); 3501 tcp_end_cwnd_reduction(sk); 3502 tcp_try_keep_open(sk); 3503 NET_INC_STATS(sock_net(sk), 3504 LINUX_MIB_TCPLOSSPROBERECOVERY); 3505 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3506 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3507 /* Pure dupack: original and TLP probe arrived; no loss */ 3508 tp->tlp_high_seq = 0; 3509 } 3510 } 3511 3512 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3513 { 3514 const struct inet_connection_sock *icsk = inet_csk(sk); 3515 3516 if (icsk->icsk_ca_ops->in_ack_event) 3517 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3518 } 3519 3520 /* Congestion control has updated the cwnd already. So if we're in 3521 * loss recovery then now we do any new sends (for FRTO) or 3522 * retransmits (for CA_Loss or CA_recovery) that make sense. 3523 */ 3524 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3525 { 3526 struct tcp_sock *tp = tcp_sk(sk); 3527 3528 if (rexmit == REXMIT_NONE) 3529 return; 3530 3531 if (unlikely(rexmit == 2)) { 3532 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3533 TCP_NAGLE_OFF); 3534 if (after(tp->snd_nxt, tp->high_seq)) 3535 return; 3536 tp->frto = 0; 3537 } 3538 tcp_xmit_retransmit_queue(sk); 3539 } 3540 3541 /* Returns the number of packets newly acked or sacked by the current ACK */ 3542 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3543 { 3544 const struct net *net = sock_net(sk); 3545 struct tcp_sock *tp = tcp_sk(sk); 3546 u32 delivered; 3547 3548 delivered = tp->delivered - prior_delivered; 3549 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3550 if (flag & FLAG_ECE) { 3551 tp->delivered_ce += delivered; 3552 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3553 } 3554 return delivered; 3555 } 3556 3557 /* This routine deals with incoming acks, but not outgoing ones. */ 3558 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3559 { 3560 struct inet_connection_sock *icsk = inet_csk(sk); 3561 struct tcp_sock *tp = tcp_sk(sk); 3562 struct tcp_sacktag_state sack_state; 3563 struct rate_sample rs = { .prior_delivered = 0 }; 3564 u32 prior_snd_una = tp->snd_una; 3565 bool is_sack_reneg = tp->is_sack_reneg; 3566 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3567 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3568 bool is_dupack = false; 3569 int prior_packets = tp->packets_out; 3570 u32 delivered = tp->delivered; 3571 u32 lost = tp->lost; 3572 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3573 u32 prior_fack; 3574 3575 sack_state.first_sackt = 0; 3576 sack_state.rate = &rs; 3577 3578 /* We very likely will need to access rtx queue. */ 3579 prefetch(sk->tcp_rtx_queue.rb_node); 3580 3581 /* If the ack is older than previous acks 3582 * then we can probably ignore it. 3583 */ 3584 if (before(ack, prior_snd_una)) { 3585 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3586 if (before(ack, prior_snd_una - tp->max_window)) { 3587 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3588 tcp_send_challenge_ack(sk, skb); 3589 return -1; 3590 } 3591 goto old_ack; 3592 } 3593 3594 /* If the ack includes data we haven't sent yet, discard 3595 * this segment (RFC793 Section 3.9). 3596 */ 3597 if (after(ack, tp->snd_nxt)) 3598 goto invalid_ack; 3599 3600 if (after(ack, prior_snd_una)) { 3601 flag |= FLAG_SND_UNA_ADVANCED; 3602 icsk->icsk_retransmits = 0; 3603 3604 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3605 if (static_branch_unlikely(&clean_acked_data_enabled)) 3606 if (icsk->icsk_clean_acked) 3607 icsk->icsk_clean_acked(sk, ack); 3608 #endif 3609 } 3610 3611 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3612 rs.prior_in_flight = tcp_packets_in_flight(tp); 3613 3614 /* ts_recent update must be made after we are sure that the packet 3615 * is in window. 3616 */ 3617 if (flag & FLAG_UPDATE_TS_RECENT) 3618 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3619 3620 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3621 /* Window is constant, pure forward advance. 3622 * No more checks are required. 3623 * Note, we use the fact that SND.UNA>=SND.WL2. 3624 */ 3625 tcp_update_wl(tp, ack_seq); 3626 tcp_snd_una_update(tp, ack); 3627 flag |= FLAG_WIN_UPDATE; 3628 3629 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3630 3631 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3632 } else { 3633 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3634 3635 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3636 flag |= FLAG_DATA; 3637 else 3638 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3639 3640 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3641 3642 if (TCP_SKB_CB(skb)->sacked) 3643 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3644 &sack_state); 3645 3646 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3647 flag |= FLAG_ECE; 3648 ack_ev_flags |= CA_ACK_ECE; 3649 } 3650 3651 if (flag & FLAG_WIN_UPDATE) 3652 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3653 3654 tcp_in_ack_event(sk, ack_ev_flags); 3655 } 3656 3657 /* We passed data and got it acked, remove any soft error 3658 * log. Something worked... 3659 */ 3660 sk->sk_err_soft = 0; 3661 icsk->icsk_probes_out = 0; 3662 tp->rcv_tstamp = tcp_jiffies32; 3663 if (!prior_packets) 3664 goto no_queue; 3665 3666 /* See if we can take anything off of the retransmit queue. */ 3667 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state); 3668 3669 tcp_rack_update_reo_wnd(sk, &rs); 3670 3671 if (tp->tlp_high_seq) 3672 tcp_process_tlp_ack(sk, ack, flag); 3673 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3674 if (flag & FLAG_SET_XMIT_TIMER) 3675 tcp_set_xmit_timer(sk); 3676 3677 if (tcp_ack_is_dubious(sk, flag)) { 3678 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3679 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3680 &rexmit); 3681 } 3682 3683 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3684 sk_dst_confirm(sk); 3685 3686 delivered = tcp_newly_delivered(sk, delivered, flag); 3687 lost = tp->lost - lost; /* freshly marked lost */ 3688 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3689 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3690 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3691 tcp_xmit_recovery(sk, rexmit); 3692 return 1; 3693 3694 no_queue: 3695 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3696 if (flag & FLAG_DSACKING_ACK) { 3697 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3698 &rexmit); 3699 tcp_newly_delivered(sk, delivered, flag); 3700 } 3701 /* If this ack opens up a zero window, clear backoff. It was 3702 * being used to time the probes, and is probably far higher than 3703 * it needs to be for normal retransmission. 3704 */ 3705 tcp_ack_probe(sk); 3706 3707 if (tp->tlp_high_seq) 3708 tcp_process_tlp_ack(sk, ack, flag); 3709 return 1; 3710 3711 invalid_ack: 3712 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3713 return -1; 3714 3715 old_ack: 3716 /* If data was SACKed, tag it and see if we should send more data. 3717 * If data was DSACKed, see if we can undo a cwnd reduction. 3718 */ 3719 if (TCP_SKB_CB(skb)->sacked) { 3720 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3721 &sack_state); 3722 tcp_fastretrans_alert(sk, prior_snd_una, is_dupack, &flag, 3723 &rexmit); 3724 tcp_newly_delivered(sk, delivered, flag); 3725 tcp_xmit_recovery(sk, rexmit); 3726 } 3727 3728 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3729 return 0; 3730 } 3731 3732 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3733 bool syn, struct tcp_fastopen_cookie *foc, 3734 bool exp_opt) 3735 { 3736 /* Valid only in SYN or SYN-ACK with an even length. */ 3737 if (!foc || !syn || len < 0 || (len & 1)) 3738 return; 3739 3740 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3741 len <= TCP_FASTOPEN_COOKIE_MAX) 3742 memcpy(foc->val, cookie, len); 3743 else if (len != 0) 3744 len = -1; 3745 foc->len = len; 3746 foc->exp = exp_opt; 3747 } 3748 3749 static void smc_parse_options(const struct tcphdr *th, 3750 struct tcp_options_received *opt_rx, 3751 const unsigned char *ptr, 3752 int opsize) 3753 { 3754 #if IS_ENABLED(CONFIG_SMC) 3755 if (static_branch_unlikely(&tcp_have_smc)) { 3756 if (th->syn && !(opsize & 1) && 3757 opsize >= TCPOLEN_EXP_SMC_BASE && 3758 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) 3759 opt_rx->smc_ok = 1; 3760 } 3761 #endif 3762 } 3763 3764 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3765 * But, this can also be called on packets in the established flow when 3766 * the fast version below fails. 3767 */ 3768 void tcp_parse_options(const struct net *net, 3769 const struct sk_buff *skb, 3770 struct tcp_options_received *opt_rx, int estab, 3771 struct tcp_fastopen_cookie *foc) 3772 { 3773 const unsigned char *ptr; 3774 const struct tcphdr *th = tcp_hdr(skb); 3775 int length = (th->doff * 4) - sizeof(struct tcphdr); 3776 3777 ptr = (const unsigned char *)(th + 1); 3778 opt_rx->saw_tstamp = 0; 3779 3780 while (length > 0) { 3781 int opcode = *ptr++; 3782 int opsize; 3783 3784 switch (opcode) { 3785 case TCPOPT_EOL: 3786 return; 3787 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3788 length--; 3789 continue; 3790 default: 3791 opsize = *ptr++; 3792 if (opsize < 2) /* "silly options" */ 3793 return; 3794 if (opsize > length) 3795 return; /* don't parse partial options */ 3796 switch (opcode) { 3797 case TCPOPT_MSS: 3798 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3799 u16 in_mss = get_unaligned_be16(ptr); 3800 if (in_mss) { 3801 if (opt_rx->user_mss && 3802 opt_rx->user_mss < in_mss) 3803 in_mss = opt_rx->user_mss; 3804 opt_rx->mss_clamp = in_mss; 3805 } 3806 } 3807 break; 3808 case TCPOPT_WINDOW: 3809 if (opsize == TCPOLEN_WINDOW && th->syn && 3810 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3811 __u8 snd_wscale = *(__u8 *)ptr; 3812 opt_rx->wscale_ok = 1; 3813 if (snd_wscale > TCP_MAX_WSCALE) { 3814 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3815 __func__, 3816 snd_wscale, 3817 TCP_MAX_WSCALE); 3818 snd_wscale = TCP_MAX_WSCALE; 3819 } 3820 opt_rx->snd_wscale = snd_wscale; 3821 } 3822 break; 3823 case TCPOPT_TIMESTAMP: 3824 if ((opsize == TCPOLEN_TIMESTAMP) && 3825 ((estab && opt_rx->tstamp_ok) || 3826 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 3827 opt_rx->saw_tstamp = 1; 3828 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3829 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3830 } 3831 break; 3832 case TCPOPT_SACK_PERM: 3833 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3834 !estab && net->ipv4.sysctl_tcp_sack) { 3835 opt_rx->sack_ok = TCP_SACK_SEEN; 3836 tcp_sack_reset(opt_rx); 3837 } 3838 break; 3839 3840 case TCPOPT_SACK: 3841 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3842 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3843 opt_rx->sack_ok) { 3844 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3845 } 3846 break; 3847 #ifdef CONFIG_TCP_MD5SIG 3848 case TCPOPT_MD5SIG: 3849 /* 3850 * The MD5 Hash has already been 3851 * checked (see tcp_v{4,6}_do_rcv()). 3852 */ 3853 break; 3854 #endif 3855 case TCPOPT_FASTOPEN: 3856 tcp_parse_fastopen_option( 3857 opsize - TCPOLEN_FASTOPEN_BASE, 3858 ptr, th->syn, foc, false); 3859 break; 3860 3861 case TCPOPT_EXP: 3862 /* Fast Open option shares code 254 using a 3863 * 16 bits magic number. 3864 */ 3865 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3866 get_unaligned_be16(ptr) == 3867 TCPOPT_FASTOPEN_MAGIC) 3868 tcp_parse_fastopen_option(opsize - 3869 TCPOLEN_EXP_FASTOPEN_BASE, 3870 ptr + 2, th->syn, foc, true); 3871 else 3872 smc_parse_options(th, opt_rx, ptr, 3873 opsize); 3874 break; 3875 3876 } 3877 ptr += opsize-2; 3878 length -= opsize; 3879 } 3880 } 3881 } 3882 EXPORT_SYMBOL(tcp_parse_options); 3883 3884 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3885 { 3886 const __be32 *ptr = (const __be32 *)(th + 1); 3887 3888 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3889 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3890 tp->rx_opt.saw_tstamp = 1; 3891 ++ptr; 3892 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3893 ++ptr; 3894 if (*ptr) 3895 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3896 else 3897 tp->rx_opt.rcv_tsecr = 0; 3898 return true; 3899 } 3900 return false; 3901 } 3902 3903 /* Fast parse options. This hopes to only see timestamps. 3904 * If it is wrong it falls back on tcp_parse_options(). 3905 */ 3906 static bool tcp_fast_parse_options(const struct net *net, 3907 const struct sk_buff *skb, 3908 const struct tcphdr *th, struct tcp_sock *tp) 3909 { 3910 /* In the spirit of fast parsing, compare doff directly to constant 3911 * values. Because equality is used, short doff can be ignored here. 3912 */ 3913 if (th->doff == (sizeof(*th) / 4)) { 3914 tp->rx_opt.saw_tstamp = 0; 3915 return false; 3916 } else if (tp->rx_opt.tstamp_ok && 3917 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3918 if (tcp_parse_aligned_timestamp(tp, th)) 3919 return true; 3920 } 3921 3922 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 3923 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3924 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3925 3926 return true; 3927 } 3928 3929 #ifdef CONFIG_TCP_MD5SIG 3930 /* 3931 * Parse MD5 Signature option 3932 */ 3933 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3934 { 3935 int length = (th->doff << 2) - sizeof(*th); 3936 const u8 *ptr = (const u8 *)(th + 1); 3937 3938 /* If not enough data remaining, we can short cut */ 3939 while (length >= TCPOLEN_MD5SIG) { 3940 int opcode = *ptr++; 3941 int opsize; 3942 3943 switch (opcode) { 3944 case TCPOPT_EOL: 3945 return NULL; 3946 case TCPOPT_NOP: 3947 length--; 3948 continue; 3949 default: 3950 opsize = *ptr++; 3951 if (opsize < 2 || opsize > length) 3952 return NULL; 3953 if (opcode == TCPOPT_MD5SIG) 3954 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3955 } 3956 ptr += opsize - 2; 3957 length -= opsize; 3958 } 3959 return NULL; 3960 } 3961 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3962 #endif 3963 3964 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3965 * 3966 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3967 * it can pass through stack. So, the following predicate verifies that 3968 * this segment is not used for anything but congestion avoidance or 3969 * fast retransmit. Moreover, we even are able to eliminate most of such 3970 * second order effects, if we apply some small "replay" window (~RTO) 3971 * to timestamp space. 3972 * 3973 * All these measures still do not guarantee that we reject wrapped ACKs 3974 * on networks with high bandwidth, when sequence space is recycled fastly, 3975 * but it guarantees that such events will be very rare and do not affect 3976 * connection seriously. This doesn't look nice, but alas, PAWS is really 3977 * buggy extension. 3978 * 3979 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3980 * states that events when retransmit arrives after original data are rare. 3981 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3982 * the biggest problem on large power networks even with minor reordering. 3983 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3984 * up to bandwidth of 18Gigabit/sec. 8) ] 3985 */ 3986 3987 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3988 { 3989 const struct tcp_sock *tp = tcp_sk(sk); 3990 const struct tcphdr *th = tcp_hdr(skb); 3991 u32 seq = TCP_SKB_CB(skb)->seq; 3992 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3993 3994 return (/* 1. Pure ACK with correct sequence number. */ 3995 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3996 3997 /* 2. ... and duplicate ACK. */ 3998 ack == tp->snd_una && 3999 4000 /* 3. ... and does not update window. */ 4001 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4002 4003 /* 4. ... and sits in replay window. */ 4004 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4005 } 4006 4007 static inline bool tcp_paws_discard(const struct sock *sk, 4008 const struct sk_buff *skb) 4009 { 4010 const struct tcp_sock *tp = tcp_sk(sk); 4011 4012 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4013 !tcp_disordered_ack(sk, skb); 4014 } 4015 4016 /* Check segment sequence number for validity. 4017 * 4018 * Segment controls are considered valid, if the segment 4019 * fits to the window after truncation to the window. Acceptability 4020 * of data (and SYN, FIN, of course) is checked separately. 4021 * See tcp_data_queue(), for example. 4022 * 4023 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4024 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4025 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4026 * (borrowed from freebsd) 4027 */ 4028 4029 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4030 { 4031 return !before(end_seq, tp->rcv_wup) && 4032 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4033 } 4034 4035 /* When we get a reset we do this. */ 4036 void tcp_reset(struct sock *sk) 4037 { 4038 trace_tcp_receive_reset(sk); 4039 4040 /* We want the right error as BSD sees it (and indeed as we do). */ 4041 switch (sk->sk_state) { 4042 case TCP_SYN_SENT: 4043 sk->sk_err = ECONNREFUSED; 4044 break; 4045 case TCP_CLOSE_WAIT: 4046 sk->sk_err = EPIPE; 4047 break; 4048 case TCP_CLOSE: 4049 return; 4050 default: 4051 sk->sk_err = ECONNRESET; 4052 } 4053 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4054 smp_wmb(); 4055 4056 tcp_write_queue_purge(sk); 4057 tcp_done(sk); 4058 4059 if (!sock_flag(sk, SOCK_DEAD)) 4060 sk->sk_error_report(sk); 4061 } 4062 4063 /* 4064 * Process the FIN bit. This now behaves as it is supposed to work 4065 * and the FIN takes effect when it is validly part of sequence 4066 * space. Not before when we get holes. 4067 * 4068 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4069 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4070 * TIME-WAIT) 4071 * 4072 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4073 * close and we go into CLOSING (and later onto TIME-WAIT) 4074 * 4075 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4076 */ 4077 void tcp_fin(struct sock *sk) 4078 { 4079 struct tcp_sock *tp = tcp_sk(sk); 4080 4081 inet_csk_schedule_ack(sk); 4082 4083 sk->sk_shutdown |= RCV_SHUTDOWN; 4084 sock_set_flag(sk, SOCK_DONE); 4085 4086 switch (sk->sk_state) { 4087 case TCP_SYN_RECV: 4088 case TCP_ESTABLISHED: 4089 /* Move to CLOSE_WAIT */ 4090 tcp_set_state(sk, TCP_CLOSE_WAIT); 4091 inet_csk(sk)->icsk_ack.pingpong = 1; 4092 break; 4093 4094 case TCP_CLOSE_WAIT: 4095 case TCP_CLOSING: 4096 /* Received a retransmission of the FIN, do 4097 * nothing. 4098 */ 4099 break; 4100 case TCP_LAST_ACK: 4101 /* RFC793: Remain in the LAST-ACK state. */ 4102 break; 4103 4104 case TCP_FIN_WAIT1: 4105 /* This case occurs when a simultaneous close 4106 * happens, we must ack the received FIN and 4107 * enter the CLOSING state. 4108 */ 4109 tcp_send_ack(sk); 4110 tcp_set_state(sk, TCP_CLOSING); 4111 break; 4112 case TCP_FIN_WAIT2: 4113 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4114 tcp_send_ack(sk); 4115 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4116 break; 4117 default: 4118 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4119 * cases we should never reach this piece of code. 4120 */ 4121 pr_err("%s: Impossible, sk->sk_state=%d\n", 4122 __func__, sk->sk_state); 4123 break; 4124 } 4125 4126 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4127 * Probably, we should reset in this case. For now drop them. 4128 */ 4129 skb_rbtree_purge(&tp->out_of_order_queue); 4130 if (tcp_is_sack(tp)) 4131 tcp_sack_reset(&tp->rx_opt); 4132 sk_mem_reclaim(sk); 4133 4134 if (!sock_flag(sk, SOCK_DEAD)) { 4135 sk->sk_state_change(sk); 4136 4137 /* Do not send POLL_HUP for half duplex close. */ 4138 if (sk->sk_shutdown == SHUTDOWN_MASK || 4139 sk->sk_state == TCP_CLOSE) 4140 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4141 else 4142 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4143 } 4144 } 4145 4146 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4147 u32 end_seq) 4148 { 4149 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4150 if (before(seq, sp->start_seq)) 4151 sp->start_seq = seq; 4152 if (after(end_seq, sp->end_seq)) 4153 sp->end_seq = end_seq; 4154 return true; 4155 } 4156 return false; 4157 } 4158 4159 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4160 { 4161 struct tcp_sock *tp = tcp_sk(sk); 4162 4163 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4164 int mib_idx; 4165 4166 if (before(seq, tp->rcv_nxt)) 4167 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4168 else 4169 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4170 4171 NET_INC_STATS(sock_net(sk), mib_idx); 4172 4173 tp->rx_opt.dsack = 1; 4174 tp->duplicate_sack[0].start_seq = seq; 4175 tp->duplicate_sack[0].end_seq = end_seq; 4176 } 4177 } 4178 4179 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4180 { 4181 struct tcp_sock *tp = tcp_sk(sk); 4182 4183 if (!tp->rx_opt.dsack) 4184 tcp_dsack_set(sk, seq, end_seq); 4185 else 4186 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4187 } 4188 4189 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4190 { 4191 struct tcp_sock *tp = tcp_sk(sk); 4192 4193 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4194 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4195 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4196 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4197 4198 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4199 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4200 4201 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4202 end_seq = tp->rcv_nxt; 4203 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4204 } 4205 } 4206 4207 tcp_send_ack(sk); 4208 } 4209 4210 /* These routines update the SACK block as out-of-order packets arrive or 4211 * in-order packets close up the sequence space. 4212 */ 4213 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4214 { 4215 int this_sack; 4216 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4217 struct tcp_sack_block *swalk = sp + 1; 4218 4219 /* See if the recent change to the first SACK eats into 4220 * or hits the sequence space of other SACK blocks, if so coalesce. 4221 */ 4222 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4223 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4224 int i; 4225 4226 /* Zap SWALK, by moving every further SACK up by one slot. 4227 * Decrease num_sacks. 4228 */ 4229 tp->rx_opt.num_sacks--; 4230 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4231 sp[i] = sp[i + 1]; 4232 continue; 4233 } 4234 this_sack++, swalk++; 4235 } 4236 } 4237 4238 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4239 { 4240 struct tcp_sock *tp = tcp_sk(sk); 4241 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4242 int cur_sacks = tp->rx_opt.num_sacks; 4243 int this_sack; 4244 4245 if (!cur_sacks) 4246 goto new_sack; 4247 4248 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4249 if (tcp_sack_extend(sp, seq, end_seq)) { 4250 /* Rotate this_sack to the first one. */ 4251 for (; this_sack > 0; this_sack--, sp--) 4252 swap(*sp, *(sp - 1)); 4253 if (cur_sacks > 1) 4254 tcp_sack_maybe_coalesce(tp); 4255 return; 4256 } 4257 } 4258 4259 /* Could not find an adjacent existing SACK, build a new one, 4260 * put it at the front, and shift everyone else down. We 4261 * always know there is at least one SACK present already here. 4262 * 4263 * If the sack array is full, forget about the last one. 4264 */ 4265 if (this_sack >= TCP_NUM_SACKS) { 4266 if (tp->compressed_ack) 4267 tcp_send_ack(sk); 4268 this_sack--; 4269 tp->rx_opt.num_sacks--; 4270 sp--; 4271 } 4272 for (; this_sack > 0; this_sack--, sp--) 4273 *sp = *(sp - 1); 4274 4275 new_sack: 4276 /* Build the new head SACK, and we're done. */ 4277 sp->start_seq = seq; 4278 sp->end_seq = end_seq; 4279 tp->rx_opt.num_sacks++; 4280 } 4281 4282 /* RCV.NXT advances, some SACKs should be eaten. */ 4283 4284 static void tcp_sack_remove(struct tcp_sock *tp) 4285 { 4286 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4287 int num_sacks = tp->rx_opt.num_sacks; 4288 int this_sack; 4289 4290 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4291 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4292 tp->rx_opt.num_sacks = 0; 4293 return; 4294 } 4295 4296 for (this_sack = 0; this_sack < num_sacks;) { 4297 /* Check if the start of the sack is covered by RCV.NXT. */ 4298 if (!before(tp->rcv_nxt, sp->start_seq)) { 4299 int i; 4300 4301 /* RCV.NXT must cover all the block! */ 4302 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4303 4304 /* Zap this SACK, by moving forward any other SACKS. */ 4305 for (i = this_sack+1; i < num_sacks; i++) 4306 tp->selective_acks[i-1] = tp->selective_acks[i]; 4307 num_sacks--; 4308 continue; 4309 } 4310 this_sack++; 4311 sp++; 4312 } 4313 tp->rx_opt.num_sacks = num_sacks; 4314 } 4315 4316 /** 4317 * tcp_try_coalesce - try to merge skb to prior one 4318 * @sk: socket 4319 * @dest: destination queue 4320 * @to: prior buffer 4321 * @from: buffer to add in queue 4322 * @fragstolen: pointer to boolean 4323 * 4324 * Before queueing skb @from after @to, try to merge them 4325 * to reduce overall memory use and queue lengths, if cost is small. 4326 * Packets in ofo or receive queues can stay a long time. 4327 * Better try to coalesce them right now to avoid future collapses. 4328 * Returns true if caller should free @from instead of queueing it 4329 */ 4330 static bool tcp_try_coalesce(struct sock *sk, 4331 struct sk_buff *to, 4332 struct sk_buff *from, 4333 bool *fragstolen) 4334 { 4335 int delta; 4336 4337 *fragstolen = false; 4338 4339 /* Its possible this segment overlaps with prior segment in queue */ 4340 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4341 return false; 4342 4343 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4344 return false; 4345 4346 atomic_add(delta, &sk->sk_rmem_alloc); 4347 sk_mem_charge(sk, delta); 4348 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4349 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4350 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4351 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4352 4353 if (TCP_SKB_CB(from)->has_rxtstamp) { 4354 TCP_SKB_CB(to)->has_rxtstamp = true; 4355 to->tstamp = from->tstamp; 4356 } 4357 4358 return true; 4359 } 4360 4361 static bool tcp_ooo_try_coalesce(struct sock *sk, 4362 struct sk_buff *to, 4363 struct sk_buff *from, 4364 bool *fragstolen) 4365 { 4366 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4367 4368 /* In case tcp_drop() is called later, update to->gso_segs */ 4369 if (res) { 4370 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4371 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4372 4373 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4374 } 4375 return res; 4376 } 4377 4378 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4379 { 4380 sk_drops_add(sk, skb); 4381 __kfree_skb(skb); 4382 } 4383 4384 /* This one checks to see if we can put data from the 4385 * out_of_order queue into the receive_queue. 4386 */ 4387 static void tcp_ofo_queue(struct sock *sk) 4388 { 4389 struct tcp_sock *tp = tcp_sk(sk); 4390 __u32 dsack_high = tp->rcv_nxt; 4391 bool fin, fragstolen, eaten; 4392 struct sk_buff *skb, *tail; 4393 struct rb_node *p; 4394 4395 p = rb_first(&tp->out_of_order_queue); 4396 while (p) { 4397 skb = rb_to_skb(p); 4398 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4399 break; 4400 4401 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4402 __u32 dsack = dsack_high; 4403 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4404 dsack_high = TCP_SKB_CB(skb)->end_seq; 4405 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4406 } 4407 p = rb_next(p); 4408 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4409 4410 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4411 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4412 tcp_drop(sk, skb); 4413 continue; 4414 } 4415 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4416 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4417 TCP_SKB_CB(skb)->end_seq); 4418 4419 tail = skb_peek_tail(&sk->sk_receive_queue); 4420 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4421 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4422 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4423 if (!eaten) 4424 __skb_queue_tail(&sk->sk_receive_queue, skb); 4425 else 4426 kfree_skb_partial(skb, fragstolen); 4427 4428 if (unlikely(fin)) { 4429 tcp_fin(sk); 4430 /* tcp_fin() purges tp->out_of_order_queue, 4431 * so we must end this loop right now. 4432 */ 4433 break; 4434 } 4435 } 4436 } 4437 4438 static bool tcp_prune_ofo_queue(struct sock *sk); 4439 static int tcp_prune_queue(struct sock *sk); 4440 4441 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4442 unsigned int size) 4443 { 4444 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4445 !sk_rmem_schedule(sk, skb, size)) { 4446 4447 if (tcp_prune_queue(sk) < 0) 4448 return -1; 4449 4450 while (!sk_rmem_schedule(sk, skb, size)) { 4451 if (!tcp_prune_ofo_queue(sk)) 4452 return -1; 4453 } 4454 } 4455 return 0; 4456 } 4457 4458 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4459 { 4460 struct tcp_sock *tp = tcp_sk(sk); 4461 struct rb_node **p, *parent; 4462 struct sk_buff *skb1; 4463 u32 seq, end_seq; 4464 bool fragstolen; 4465 4466 tcp_ecn_check_ce(sk, skb); 4467 4468 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4469 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4470 tcp_drop(sk, skb); 4471 return; 4472 } 4473 4474 /* Disable header prediction. */ 4475 tp->pred_flags = 0; 4476 inet_csk_schedule_ack(sk); 4477 4478 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4479 seq = TCP_SKB_CB(skb)->seq; 4480 end_seq = TCP_SKB_CB(skb)->end_seq; 4481 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4482 tp->rcv_nxt, seq, end_seq); 4483 4484 p = &tp->out_of_order_queue.rb_node; 4485 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4486 /* Initial out of order segment, build 1 SACK. */ 4487 if (tcp_is_sack(tp)) { 4488 tp->rx_opt.num_sacks = 1; 4489 tp->selective_acks[0].start_seq = seq; 4490 tp->selective_acks[0].end_seq = end_seq; 4491 } 4492 rb_link_node(&skb->rbnode, NULL, p); 4493 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4494 tp->ooo_last_skb = skb; 4495 goto end; 4496 } 4497 4498 /* In the typical case, we are adding an skb to the end of the list. 4499 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4500 */ 4501 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4502 skb, &fragstolen)) { 4503 coalesce_done: 4504 tcp_grow_window(sk, skb); 4505 kfree_skb_partial(skb, fragstolen); 4506 skb = NULL; 4507 goto add_sack; 4508 } 4509 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4510 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4511 parent = &tp->ooo_last_skb->rbnode; 4512 p = &parent->rb_right; 4513 goto insert; 4514 } 4515 4516 /* Find place to insert this segment. Handle overlaps on the way. */ 4517 parent = NULL; 4518 while (*p) { 4519 parent = *p; 4520 skb1 = rb_to_skb(parent); 4521 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4522 p = &parent->rb_left; 4523 continue; 4524 } 4525 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4526 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4527 /* All the bits are present. Drop. */ 4528 NET_INC_STATS(sock_net(sk), 4529 LINUX_MIB_TCPOFOMERGE); 4530 tcp_drop(sk, skb); 4531 skb = NULL; 4532 tcp_dsack_set(sk, seq, end_seq); 4533 goto add_sack; 4534 } 4535 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4536 /* Partial overlap. */ 4537 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4538 } else { 4539 /* skb's seq == skb1's seq and skb covers skb1. 4540 * Replace skb1 with skb. 4541 */ 4542 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4543 &tp->out_of_order_queue); 4544 tcp_dsack_extend(sk, 4545 TCP_SKB_CB(skb1)->seq, 4546 TCP_SKB_CB(skb1)->end_seq); 4547 NET_INC_STATS(sock_net(sk), 4548 LINUX_MIB_TCPOFOMERGE); 4549 tcp_drop(sk, skb1); 4550 goto merge_right; 4551 } 4552 } else if (tcp_ooo_try_coalesce(sk, skb1, 4553 skb, &fragstolen)) { 4554 goto coalesce_done; 4555 } 4556 p = &parent->rb_right; 4557 } 4558 insert: 4559 /* Insert segment into RB tree. */ 4560 rb_link_node(&skb->rbnode, parent, p); 4561 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4562 4563 merge_right: 4564 /* Remove other segments covered by skb. */ 4565 while ((skb1 = skb_rb_next(skb)) != NULL) { 4566 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4567 break; 4568 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4569 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4570 end_seq); 4571 break; 4572 } 4573 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4574 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4575 TCP_SKB_CB(skb1)->end_seq); 4576 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4577 tcp_drop(sk, skb1); 4578 } 4579 /* If there is no skb after us, we are the last_skb ! */ 4580 if (!skb1) 4581 tp->ooo_last_skb = skb; 4582 4583 add_sack: 4584 if (tcp_is_sack(tp)) 4585 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4586 end: 4587 if (skb) { 4588 tcp_grow_window(sk, skb); 4589 skb_condense(skb); 4590 skb_set_owner_r(skb, sk); 4591 } 4592 } 4593 4594 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4595 bool *fragstolen) 4596 { 4597 int eaten; 4598 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4599 4600 __skb_pull(skb, hdrlen); 4601 eaten = (tail && 4602 tcp_try_coalesce(sk, tail, 4603 skb, fragstolen)) ? 1 : 0; 4604 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4605 if (!eaten) { 4606 __skb_queue_tail(&sk->sk_receive_queue, skb); 4607 skb_set_owner_r(skb, sk); 4608 } 4609 return eaten; 4610 } 4611 4612 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4613 { 4614 struct sk_buff *skb; 4615 int err = -ENOMEM; 4616 int data_len = 0; 4617 bool fragstolen; 4618 4619 if (size == 0) 4620 return 0; 4621 4622 if (size > PAGE_SIZE) { 4623 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4624 4625 data_len = npages << PAGE_SHIFT; 4626 size = data_len + (size & ~PAGE_MASK); 4627 } 4628 skb = alloc_skb_with_frags(size - data_len, data_len, 4629 PAGE_ALLOC_COSTLY_ORDER, 4630 &err, sk->sk_allocation); 4631 if (!skb) 4632 goto err; 4633 4634 skb_put(skb, size - data_len); 4635 skb->data_len = data_len; 4636 skb->len = size; 4637 4638 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4639 goto err_free; 4640 4641 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4642 if (err) 4643 goto err_free; 4644 4645 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4646 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4647 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4648 4649 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4650 WARN_ON_ONCE(fragstolen); /* should not happen */ 4651 __kfree_skb(skb); 4652 } 4653 return size; 4654 4655 err_free: 4656 kfree_skb(skb); 4657 err: 4658 return err; 4659 4660 } 4661 4662 void tcp_data_ready(struct sock *sk) 4663 { 4664 const struct tcp_sock *tp = tcp_sk(sk); 4665 int avail = tp->rcv_nxt - tp->copied_seq; 4666 4667 if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE)) 4668 return; 4669 4670 sk->sk_data_ready(sk); 4671 } 4672 4673 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4674 { 4675 struct tcp_sock *tp = tcp_sk(sk); 4676 bool fragstolen; 4677 int eaten; 4678 4679 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4680 __kfree_skb(skb); 4681 return; 4682 } 4683 skb_dst_drop(skb); 4684 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4685 4686 tcp_ecn_accept_cwr(tp, skb); 4687 4688 tp->rx_opt.dsack = 0; 4689 4690 /* Queue data for delivery to the user. 4691 * Packets in sequence go to the receive queue. 4692 * Out of sequence packets to the out_of_order_queue. 4693 */ 4694 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4695 if (tcp_receive_window(tp) == 0) 4696 goto out_of_window; 4697 4698 /* Ok. In sequence. In window. */ 4699 queue_and_out: 4700 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4701 sk_forced_mem_schedule(sk, skb->truesize); 4702 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4703 goto drop; 4704 4705 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4706 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4707 if (skb->len) 4708 tcp_event_data_recv(sk, skb); 4709 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4710 tcp_fin(sk); 4711 4712 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4713 tcp_ofo_queue(sk); 4714 4715 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4716 * gap in queue is filled. 4717 */ 4718 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4719 inet_csk(sk)->icsk_ack.pingpong = 0; 4720 } 4721 4722 if (tp->rx_opt.num_sacks) 4723 tcp_sack_remove(tp); 4724 4725 tcp_fast_path_check(sk); 4726 4727 if (eaten > 0) 4728 kfree_skb_partial(skb, fragstolen); 4729 if (!sock_flag(sk, SOCK_DEAD)) 4730 tcp_data_ready(sk); 4731 return; 4732 } 4733 4734 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4735 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4736 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4737 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4738 4739 out_of_window: 4740 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4741 inet_csk_schedule_ack(sk); 4742 drop: 4743 tcp_drop(sk, skb); 4744 return; 4745 } 4746 4747 /* Out of window. F.e. zero window probe. */ 4748 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4749 goto out_of_window; 4750 4751 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4752 /* Partial packet, seq < rcv_next < end_seq */ 4753 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4754 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4755 TCP_SKB_CB(skb)->end_seq); 4756 4757 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4758 4759 /* If window is closed, drop tail of packet. But after 4760 * remembering D-SACK for its head made in previous line. 4761 */ 4762 if (!tcp_receive_window(tp)) 4763 goto out_of_window; 4764 goto queue_and_out; 4765 } 4766 4767 tcp_data_queue_ofo(sk, skb); 4768 } 4769 4770 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 4771 { 4772 if (list) 4773 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 4774 4775 return skb_rb_next(skb); 4776 } 4777 4778 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4779 struct sk_buff_head *list, 4780 struct rb_root *root) 4781 { 4782 struct sk_buff *next = tcp_skb_next(skb, list); 4783 4784 if (list) 4785 __skb_unlink(skb, list); 4786 else 4787 rb_erase(&skb->rbnode, root); 4788 4789 __kfree_skb(skb); 4790 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4791 4792 return next; 4793 } 4794 4795 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 4796 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 4797 { 4798 struct rb_node **p = &root->rb_node; 4799 struct rb_node *parent = NULL; 4800 struct sk_buff *skb1; 4801 4802 while (*p) { 4803 parent = *p; 4804 skb1 = rb_to_skb(parent); 4805 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 4806 p = &parent->rb_left; 4807 else 4808 p = &parent->rb_right; 4809 } 4810 rb_link_node(&skb->rbnode, parent, p); 4811 rb_insert_color(&skb->rbnode, root); 4812 } 4813 4814 /* Collapse contiguous sequence of skbs head..tail with 4815 * sequence numbers start..end. 4816 * 4817 * If tail is NULL, this means until the end of the queue. 4818 * 4819 * Segments with FIN/SYN are not collapsed (only because this 4820 * simplifies code) 4821 */ 4822 static void 4823 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 4824 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 4825 { 4826 struct sk_buff *skb = head, *n; 4827 struct sk_buff_head tmp; 4828 bool end_of_skbs; 4829 4830 /* First, check that queue is collapsible and find 4831 * the point where collapsing can be useful. 4832 */ 4833 restart: 4834 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 4835 n = tcp_skb_next(skb, list); 4836 4837 /* No new bits? It is possible on ofo queue. */ 4838 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4839 skb = tcp_collapse_one(sk, skb, list, root); 4840 if (!skb) 4841 break; 4842 goto restart; 4843 } 4844 4845 /* The first skb to collapse is: 4846 * - not SYN/FIN and 4847 * - bloated or contains data before "start" or 4848 * overlaps to the next one. 4849 */ 4850 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4851 (tcp_win_from_space(sk, skb->truesize) > skb->len || 4852 before(TCP_SKB_CB(skb)->seq, start))) { 4853 end_of_skbs = false; 4854 break; 4855 } 4856 4857 if (n && n != tail && 4858 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 4859 end_of_skbs = false; 4860 break; 4861 } 4862 4863 /* Decided to skip this, advance start seq. */ 4864 start = TCP_SKB_CB(skb)->end_seq; 4865 } 4866 if (end_of_skbs || 4867 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4868 return; 4869 4870 __skb_queue_head_init(&tmp); 4871 4872 while (before(start, end)) { 4873 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4874 struct sk_buff *nskb; 4875 4876 nskb = alloc_skb(copy, GFP_ATOMIC); 4877 if (!nskb) 4878 break; 4879 4880 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4881 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4882 if (list) 4883 __skb_queue_before(list, skb, nskb); 4884 else 4885 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 4886 skb_set_owner_r(nskb, sk); 4887 4888 /* Copy data, releasing collapsed skbs. */ 4889 while (copy > 0) { 4890 int offset = start - TCP_SKB_CB(skb)->seq; 4891 int size = TCP_SKB_CB(skb)->end_seq - start; 4892 4893 BUG_ON(offset < 0); 4894 if (size > 0) { 4895 size = min(copy, size); 4896 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4897 BUG(); 4898 TCP_SKB_CB(nskb)->end_seq += size; 4899 copy -= size; 4900 start += size; 4901 } 4902 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4903 skb = tcp_collapse_one(sk, skb, list, root); 4904 if (!skb || 4905 skb == tail || 4906 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4907 goto end; 4908 } 4909 } 4910 } 4911 end: 4912 skb_queue_walk_safe(&tmp, skb, n) 4913 tcp_rbtree_insert(root, skb); 4914 } 4915 4916 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4917 * and tcp_collapse() them until all the queue is collapsed. 4918 */ 4919 static void tcp_collapse_ofo_queue(struct sock *sk) 4920 { 4921 struct tcp_sock *tp = tcp_sk(sk); 4922 u32 range_truesize, sum_tiny = 0; 4923 struct sk_buff *skb, *head; 4924 u32 start, end; 4925 4926 skb = skb_rb_first(&tp->out_of_order_queue); 4927 new_range: 4928 if (!skb) { 4929 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 4930 return; 4931 } 4932 start = TCP_SKB_CB(skb)->seq; 4933 end = TCP_SKB_CB(skb)->end_seq; 4934 range_truesize = skb->truesize; 4935 4936 for (head = skb;;) { 4937 skb = skb_rb_next(skb); 4938 4939 /* Range is terminated when we see a gap or when 4940 * we are at the queue end. 4941 */ 4942 if (!skb || 4943 after(TCP_SKB_CB(skb)->seq, end) || 4944 before(TCP_SKB_CB(skb)->end_seq, start)) { 4945 /* Do not attempt collapsing tiny skbs */ 4946 if (range_truesize != head->truesize || 4947 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 4948 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 4949 head, skb, start, end); 4950 } else { 4951 sum_tiny += range_truesize; 4952 if (sum_tiny > sk->sk_rcvbuf >> 3) 4953 return; 4954 } 4955 goto new_range; 4956 } 4957 4958 range_truesize += skb->truesize; 4959 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 4960 start = TCP_SKB_CB(skb)->seq; 4961 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4962 end = TCP_SKB_CB(skb)->end_seq; 4963 } 4964 } 4965 4966 /* 4967 * Clean the out-of-order queue to make room. 4968 * We drop high sequences packets to : 4969 * 1) Let a chance for holes to be filled. 4970 * 2) not add too big latencies if thousands of packets sit there. 4971 * (But if application shrinks SO_RCVBUF, we could still end up 4972 * freeing whole queue here) 4973 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 4974 * 4975 * Return true if queue has shrunk. 4976 */ 4977 static bool tcp_prune_ofo_queue(struct sock *sk) 4978 { 4979 struct tcp_sock *tp = tcp_sk(sk); 4980 struct rb_node *node, *prev; 4981 int goal; 4982 4983 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4984 return false; 4985 4986 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 4987 goal = sk->sk_rcvbuf >> 3; 4988 node = &tp->ooo_last_skb->rbnode; 4989 do { 4990 prev = rb_prev(node); 4991 rb_erase(node, &tp->out_of_order_queue); 4992 goal -= rb_to_skb(node)->truesize; 4993 tcp_drop(sk, rb_to_skb(node)); 4994 if (!prev || goal <= 0) { 4995 sk_mem_reclaim(sk); 4996 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 4997 !tcp_under_memory_pressure(sk)) 4998 break; 4999 goal = sk->sk_rcvbuf >> 3; 5000 } 5001 node = prev; 5002 } while (node); 5003 tp->ooo_last_skb = rb_to_skb(prev); 5004 5005 /* Reset SACK state. A conforming SACK implementation will 5006 * do the same at a timeout based retransmit. When a connection 5007 * is in a sad state like this, we care only about integrity 5008 * of the connection not performance. 5009 */ 5010 if (tp->rx_opt.sack_ok) 5011 tcp_sack_reset(&tp->rx_opt); 5012 return true; 5013 } 5014 5015 /* Reduce allocated memory if we can, trying to get 5016 * the socket within its memory limits again. 5017 * 5018 * Return less than zero if we should start dropping frames 5019 * until the socket owning process reads some of the data 5020 * to stabilize the situation. 5021 */ 5022 static int tcp_prune_queue(struct sock *sk) 5023 { 5024 struct tcp_sock *tp = tcp_sk(sk); 5025 5026 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 5027 5028 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5029 5030 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5031 tcp_clamp_window(sk); 5032 else if (tcp_under_memory_pressure(sk)) 5033 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5034 5035 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5036 return 0; 5037 5038 tcp_collapse_ofo_queue(sk); 5039 if (!skb_queue_empty(&sk->sk_receive_queue)) 5040 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5041 skb_peek(&sk->sk_receive_queue), 5042 NULL, 5043 tp->copied_seq, tp->rcv_nxt); 5044 sk_mem_reclaim(sk); 5045 5046 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5047 return 0; 5048 5049 /* Collapsing did not help, destructive actions follow. 5050 * This must not ever occur. */ 5051 5052 tcp_prune_ofo_queue(sk); 5053 5054 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5055 return 0; 5056 5057 /* If we are really being abused, tell the caller to silently 5058 * drop receive data on the floor. It will get retransmitted 5059 * and hopefully then we'll have sufficient space. 5060 */ 5061 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5062 5063 /* Massive buffer overcommit. */ 5064 tp->pred_flags = 0; 5065 return -1; 5066 } 5067 5068 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5069 { 5070 const struct tcp_sock *tp = tcp_sk(sk); 5071 5072 /* If the user specified a specific send buffer setting, do 5073 * not modify it. 5074 */ 5075 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5076 return false; 5077 5078 /* If we are under global TCP memory pressure, do not expand. */ 5079 if (tcp_under_memory_pressure(sk)) 5080 return false; 5081 5082 /* If we are under soft global TCP memory pressure, do not expand. */ 5083 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5084 return false; 5085 5086 /* If we filled the congestion window, do not expand. */ 5087 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5088 return false; 5089 5090 return true; 5091 } 5092 5093 /* When incoming ACK allowed to free some skb from write_queue, 5094 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 5095 * on the exit from tcp input handler. 5096 * 5097 * PROBLEM: sndbuf expansion does not work well with largesend. 5098 */ 5099 static void tcp_new_space(struct sock *sk) 5100 { 5101 struct tcp_sock *tp = tcp_sk(sk); 5102 5103 if (tcp_should_expand_sndbuf(sk)) { 5104 tcp_sndbuf_expand(sk); 5105 tp->snd_cwnd_stamp = tcp_jiffies32; 5106 } 5107 5108 sk->sk_write_space(sk); 5109 } 5110 5111 static void tcp_check_space(struct sock *sk) 5112 { 5113 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 5114 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 5115 /* pairs with tcp_poll() */ 5116 smp_mb(); 5117 if (sk->sk_socket && 5118 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5119 tcp_new_space(sk); 5120 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5121 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5122 } 5123 } 5124 } 5125 5126 static inline void tcp_data_snd_check(struct sock *sk) 5127 { 5128 tcp_push_pending_frames(sk); 5129 tcp_check_space(sk); 5130 } 5131 5132 /* 5133 * Check if sending an ack is needed. 5134 */ 5135 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5136 { 5137 struct tcp_sock *tp = tcp_sk(sk); 5138 unsigned long rtt, delay; 5139 5140 /* More than one full frame received... */ 5141 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5142 /* ... and right edge of window advances far enough. 5143 * (tcp_recvmsg() will send ACK otherwise). 5144 * If application uses SO_RCVLOWAT, we want send ack now if 5145 * we have not received enough bytes to satisfy the condition. 5146 */ 5147 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5148 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5149 /* We ACK each frame or... */ 5150 tcp_in_quickack_mode(sk)) { 5151 send_now: 5152 tcp_send_ack(sk); 5153 return; 5154 } 5155 5156 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5157 tcp_send_delayed_ack(sk); 5158 return; 5159 } 5160 5161 if (!tcp_is_sack(tp) || 5162 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5163 goto send_now; 5164 tp->compressed_ack++; 5165 5166 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5167 return; 5168 5169 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5170 5171 rtt = tp->rcv_rtt_est.rtt_us; 5172 if (tp->srtt_us && tp->srtt_us < rtt) 5173 rtt = tp->srtt_us; 5174 5175 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5176 rtt * (NSEC_PER_USEC >> 3)/20); 5177 sock_hold(sk); 5178 hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay), 5179 HRTIMER_MODE_REL_PINNED_SOFT); 5180 } 5181 5182 static inline void tcp_ack_snd_check(struct sock *sk) 5183 { 5184 if (!inet_csk_ack_scheduled(sk)) { 5185 /* We sent a data segment already. */ 5186 return; 5187 } 5188 __tcp_ack_snd_check(sk, 1); 5189 } 5190 5191 /* 5192 * This routine is only called when we have urgent data 5193 * signaled. Its the 'slow' part of tcp_urg. It could be 5194 * moved inline now as tcp_urg is only called from one 5195 * place. We handle URGent data wrong. We have to - as 5196 * BSD still doesn't use the correction from RFC961. 5197 * For 1003.1g we should support a new option TCP_STDURG to permit 5198 * either form (or just set the sysctl tcp_stdurg). 5199 */ 5200 5201 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5202 { 5203 struct tcp_sock *tp = tcp_sk(sk); 5204 u32 ptr = ntohs(th->urg_ptr); 5205 5206 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5207 ptr--; 5208 ptr += ntohl(th->seq); 5209 5210 /* Ignore urgent data that we've already seen and read. */ 5211 if (after(tp->copied_seq, ptr)) 5212 return; 5213 5214 /* Do not replay urg ptr. 5215 * 5216 * NOTE: interesting situation not covered by specs. 5217 * Misbehaving sender may send urg ptr, pointing to segment, 5218 * which we already have in ofo queue. We are not able to fetch 5219 * such data and will stay in TCP_URG_NOTYET until will be eaten 5220 * by recvmsg(). Seems, we are not obliged to handle such wicked 5221 * situations. But it is worth to think about possibility of some 5222 * DoSes using some hypothetical application level deadlock. 5223 */ 5224 if (before(ptr, tp->rcv_nxt)) 5225 return; 5226 5227 /* Do we already have a newer (or duplicate) urgent pointer? */ 5228 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5229 return; 5230 5231 /* Tell the world about our new urgent pointer. */ 5232 sk_send_sigurg(sk); 5233 5234 /* We may be adding urgent data when the last byte read was 5235 * urgent. To do this requires some care. We cannot just ignore 5236 * tp->copied_seq since we would read the last urgent byte again 5237 * as data, nor can we alter copied_seq until this data arrives 5238 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5239 * 5240 * NOTE. Double Dutch. Rendering to plain English: author of comment 5241 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5242 * and expect that both A and B disappear from stream. This is _wrong_. 5243 * Though this happens in BSD with high probability, this is occasional. 5244 * Any application relying on this is buggy. Note also, that fix "works" 5245 * only in this artificial test. Insert some normal data between A and B and we will 5246 * decline of BSD again. Verdict: it is better to remove to trap 5247 * buggy users. 5248 */ 5249 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5250 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5251 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5252 tp->copied_seq++; 5253 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5254 __skb_unlink(skb, &sk->sk_receive_queue); 5255 __kfree_skb(skb); 5256 } 5257 } 5258 5259 tp->urg_data = TCP_URG_NOTYET; 5260 tp->urg_seq = ptr; 5261 5262 /* Disable header prediction. */ 5263 tp->pred_flags = 0; 5264 } 5265 5266 /* This is the 'fast' part of urgent handling. */ 5267 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5268 { 5269 struct tcp_sock *tp = tcp_sk(sk); 5270 5271 /* Check if we get a new urgent pointer - normally not. */ 5272 if (th->urg) 5273 tcp_check_urg(sk, th); 5274 5275 /* Do we wait for any urgent data? - normally not... */ 5276 if (tp->urg_data == TCP_URG_NOTYET) { 5277 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5278 th->syn; 5279 5280 /* Is the urgent pointer pointing into this packet? */ 5281 if (ptr < skb->len) { 5282 u8 tmp; 5283 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5284 BUG(); 5285 tp->urg_data = TCP_URG_VALID | tmp; 5286 if (!sock_flag(sk, SOCK_DEAD)) 5287 sk->sk_data_ready(sk); 5288 } 5289 } 5290 } 5291 5292 /* Accept RST for rcv_nxt - 1 after a FIN. 5293 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5294 * FIN is sent followed by a RST packet. The RST is sent with the same 5295 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5296 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5297 * ACKs on the closed socket. In addition middleboxes can drop either the 5298 * challenge ACK or a subsequent RST. 5299 */ 5300 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5301 { 5302 struct tcp_sock *tp = tcp_sk(sk); 5303 5304 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5305 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5306 TCPF_CLOSING)); 5307 } 5308 5309 /* Does PAWS and seqno based validation of an incoming segment, flags will 5310 * play significant role here. 5311 */ 5312 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5313 const struct tcphdr *th, int syn_inerr) 5314 { 5315 struct tcp_sock *tp = tcp_sk(sk); 5316 bool rst_seq_match = false; 5317 5318 /* RFC1323: H1. Apply PAWS check first. */ 5319 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5320 tp->rx_opt.saw_tstamp && 5321 tcp_paws_discard(sk, skb)) { 5322 if (!th->rst) { 5323 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5324 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5325 LINUX_MIB_TCPACKSKIPPEDPAWS, 5326 &tp->last_oow_ack_time)) 5327 tcp_send_dupack(sk, skb); 5328 goto discard; 5329 } 5330 /* Reset is accepted even if it did not pass PAWS. */ 5331 } 5332 5333 /* Step 1: check sequence number */ 5334 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5335 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5336 * (RST) segments are validated by checking their SEQ-fields." 5337 * And page 69: "If an incoming segment is not acceptable, 5338 * an acknowledgment should be sent in reply (unless the RST 5339 * bit is set, if so drop the segment and return)". 5340 */ 5341 if (!th->rst) { 5342 if (th->syn) 5343 goto syn_challenge; 5344 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5345 LINUX_MIB_TCPACKSKIPPEDSEQ, 5346 &tp->last_oow_ack_time)) 5347 tcp_send_dupack(sk, skb); 5348 } else if (tcp_reset_check(sk, skb)) { 5349 tcp_reset(sk); 5350 } 5351 goto discard; 5352 } 5353 5354 /* Step 2: check RST bit */ 5355 if (th->rst) { 5356 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5357 * FIN and SACK too if available): 5358 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5359 * the right-most SACK block, 5360 * then 5361 * RESET the connection 5362 * else 5363 * Send a challenge ACK 5364 */ 5365 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5366 tcp_reset_check(sk, skb)) { 5367 rst_seq_match = true; 5368 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5369 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5370 int max_sack = sp[0].end_seq; 5371 int this_sack; 5372 5373 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5374 ++this_sack) { 5375 max_sack = after(sp[this_sack].end_seq, 5376 max_sack) ? 5377 sp[this_sack].end_seq : max_sack; 5378 } 5379 5380 if (TCP_SKB_CB(skb)->seq == max_sack) 5381 rst_seq_match = true; 5382 } 5383 5384 if (rst_seq_match) 5385 tcp_reset(sk); 5386 else { 5387 /* Disable TFO if RST is out-of-order 5388 * and no data has been received 5389 * for current active TFO socket 5390 */ 5391 if (tp->syn_fastopen && !tp->data_segs_in && 5392 sk->sk_state == TCP_ESTABLISHED) 5393 tcp_fastopen_active_disable(sk); 5394 tcp_send_challenge_ack(sk, skb); 5395 } 5396 goto discard; 5397 } 5398 5399 /* step 3: check security and precedence [ignored] */ 5400 5401 /* step 4: Check for a SYN 5402 * RFC 5961 4.2 : Send a challenge ack 5403 */ 5404 if (th->syn) { 5405 syn_challenge: 5406 if (syn_inerr) 5407 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5408 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5409 tcp_send_challenge_ack(sk, skb); 5410 goto discard; 5411 } 5412 5413 return true; 5414 5415 discard: 5416 tcp_drop(sk, skb); 5417 return false; 5418 } 5419 5420 /* 5421 * TCP receive function for the ESTABLISHED state. 5422 * 5423 * It is split into a fast path and a slow path. The fast path is 5424 * disabled when: 5425 * - A zero window was announced from us - zero window probing 5426 * is only handled properly in the slow path. 5427 * - Out of order segments arrived. 5428 * - Urgent data is expected. 5429 * - There is no buffer space left 5430 * - Unexpected TCP flags/window values/header lengths are received 5431 * (detected by checking the TCP header against pred_flags) 5432 * - Data is sent in both directions. Fast path only supports pure senders 5433 * or pure receivers (this means either the sequence number or the ack 5434 * value must stay constant) 5435 * - Unexpected TCP option. 5436 * 5437 * When these conditions are not satisfied it drops into a standard 5438 * receive procedure patterned after RFC793 to handle all cases. 5439 * The first three cases are guaranteed by proper pred_flags setting, 5440 * the rest is checked inline. Fast processing is turned on in 5441 * tcp_data_queue when everything is OK. 5442 */ 5443 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5444 { 5445 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5446 struct tcp_sock *tp = tcp_sk(sk); 5447 unsigned int len = skb->len; 5448 5449 /* TCP congestion window tracking */ 5450 trace_tcp_probe(sk, skb); 5451 5452 tcp_mstamp_refresh(tp); 5453 if (unlikely(!sk->sk_rx_dst)) 5454 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5455 /* 5456 * Header prediction. 5457 * The code loosely follows the one in the famous 5458 * "30 instruction TCP receive" Van Jacobson mail. 5459 * 5460 * Van's trick is to deposit buffers into socket queue 5461 * on a device interrupt, to call tcp_recv function 5462 * on the receive process context and checksum and copy 5463 * the buffer to user space. smart... 5464 * 5465 * Our current scheme is not silly either but we take the 5466 * extra cost of the net_bh soft interrupt processing... 5467 * We do checksum and copy also but from device to kernel. 5468 */ 5469 5470 tp->rx_opt.saw_tstamp = 0; 5471 5472 /* pred_flags is 0xS?10 << 16 + snd_wnd 5473 * if header_prediction is to be made 5474 * 'S' will always be tp->tcp_header_len >> 2 5475 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5476 * turn it off (when there are holes in the receive 5477 * space for instance) 5478 * PSH flag is ignored. 5479 */ 5480 5481 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5482 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5483 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5484 int tcp_header_len = tp->tcp_header_len; 5485 5486 /* Timestamp header prediction: tcp_header_len 5487 * is automatically equal to th->doff*4 due to pred_flags 5488 * match. 5489 */ 5490 5491 /* Check timestamp */ 5492 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5493 /* No? Slow path! */ 5494 if (!tcp_parse_aligned_timestamp(tp, th)) 5495 goto slow_path; 5496 5497 /* If PAWS failed, check it more carefully in slow path */ 5498 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5499 goto slow_path; 5500 5501 /* DO NOT update ts_recent here, if checksum fails 5502 * and timestamp was corrupted part, it will result 5503 * in a hung connection since we will drop all 5504 * future packets due to the PAWS test. 5505 */ 5506 } 5507 5508 if (len <= tcp_header_len) { 5509 /* Bulk data transfer: sender */ 5510 if (len == tcp_header_len) { 5511 /* Predicted packet is in window by definition. 5512 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5513 * Hence, check seq<=rcv_wup reduces to: 5514 */ 5515 if (tcp_header_len == 5516 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5517 tp->rcv_nxt == tp->rcv_wup) 5518 tcp_store_ts_recent(tp); 5519 5520 /* We know that such packets are checksummed 5521 * on entry. 5522 */ 5523 tcp_ack(sk, skb, 0); 5524 __kfree_skb(skb); 5525 tcp_data_snd_check(sk); 5526 return; 5527 } else { /* Header too small */ 5528 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5529 goto discard; 5530 } 5531 } else { 5532 int eaten = 0; 5533 bool fragstolen = false; 5534 5535 if (tcp_checksum_complete(skb)) 5536 goto csum_error; 5537 5538 if ((int)skb->truesize > sk->sk_forward_alloc) 5539 goto step5; 5540 5541 /* Predicted packet is in window by definition. 5542 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5543 * Hence, check seq<=rcv_wup reduces to: 5544 */ 5545 if (tcp_header_len == 5546 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5547 tp->rcv_nxt == tp->rcv_wup) 5548 tcp_store_ts_recent(tp); 5549 5550 tcp_rcv_rtt_measure_ts(sk, skb); 5551 5552 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5553 5554 /* Bulk data transfer: receiver */ 5555 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5556 &fragstolen); 5557 5558 tcp_event_data_recv(sk, skb); 5559 5560 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5561 /* Well, only one small jumplet in fast path... */ 5562 tcp_ack(sk, skb, FLAG_DATA); 5563 tcp_data_snd_check(sk); 5564 if (!inet_csk_ack_scheduled(sk)) 5565 goto no_ack; 5566 } 5567 5568 __tcp_ack_snd_check(sk, 0); 5569 no_ack: 5570 if (eaten) 5571 kfree_skb_partial(skb, fragstolen); 5572 tcp_data_ready(sk); 5573 return; 5574 } 5575 } 5576 5577 slow_path: 5578 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5579 goto csum_error; 5580 5581 if (!th->ack && !th->rst && !th->syn) 5582 goto discard; 5583 5584 /* 5585 * Standard slow path. 5586 */ 5587 5588 if (!tcp_validate_incoming(sk, skb, th, 1)) 5589 return; 5590 5591 step5: 5592 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5593 goto discard; 5594 5595 tcp_rcv_rtt_measure_ts(sk, skb); 5596 5597 /* Process urgent data. */ 5598 tcp_urg(sk, skb, th); 5599 5600 /* step 7: process the segment text */ 5601 tcp_data_queue(sk, skb); 5602 5603 tcp_data_snd_check(sk); 5604 tcp_ack_snd_check(sk); 5605 return; 5606 5607 csum_error: 5608 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5609 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5610 5611 discard: 5612 tcp_drop(sk, skb); 5613 } 5614 EXPORT_SYMBOL(tcp_rcv_established); 5615 5616 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5617 { 5618 struct tcp_sock *tp = tcp_sk(sk); 5619 struct inet_connection_sock *icsk = inet_csk(sk); 5620 5621 tcp_set_state(sk, TCP_ESTABLISHED); 5622 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5623 5624 if (skb) { 5625 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5626 security_inet_conn_established(sk, skb); 5627 } 5628 5629 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB); 5630 5631 /* Prevent spurious tcp_cwnd_restart() on first data 5632 * packet. 5633 */ 5634 tp->lsndtime = tcp_jiffies32; 5635 5636 if (sock_flag(sk, SOCK_KEEPOPEN)) 5637 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5638 5639 if (!tp->rx_opt.snd_wscale) 5640 __tcp_fast_path_on(tp, tp->snd_wnd); 5641 else 5642 tp->pred_flags = 0; 5643 } 5644 5645 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5646 struct tcp_fastopen_cookie *cookie) 5647 { 5648 struct tcp_sock *tp = tcp_sk(sk); 5649 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5650 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5651 bool syn_drop = false; 5652 5653 if (mss == tp->rx_opt.user_mss) { 5654 struct tcp_options_received opt; 5655 5656 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5657 tcp_clear_options(&opt); 5658 opt.user_mss = opt.mss_clamp = 0; 5659 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5660 mss = opt.mss_clamp; 5661 } 5662 5663 if (!tp->syn_fastopen) { 5664 /* Ignore an unsolicited cookie */ 5665 cookie->len = -1; 5666 } else if (tp->total_retrans) { 5667 /* SYN timed out and the SYN-ACK neither has a cookie nor 5668 * acknowledges data. Presumably the remote received only 5669 * the retransmitted (regular) SYNs: either the original 5670 * SYN-data or the corresponding SYN-ACK was dropped. 5671 */ 5672 syn_drop = (cookie->len < 0 && data); 5673 } else if (cookie->len < 0 && !tp->syn_data) { 5674 /* We requested a cookie but didn't get it. If we did not use 5675 * the (old) exp opt format then try so next time (try_exp=1). 5676 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5677 */ 5678 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5679 } 5680 5681 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5682 5683 if (data) { /* Retransmit unacked data in SYN */ 5684 skb_rbtree_walk_from(data) { 5685 if (__tcp_retransmit_skb(sk, data, 1)) 5686 break; 5687 } 5688 tcp_rearm_rto(sk); 5689 NET_INC_STATS(sock_net(sk), 5690 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5691 return true; 5692 } 5693 tp->syn_data_acked = tp->syn_data; 5694 if (tp->syn_data_acked) { 5695 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5696 /* SYN-data is counted as two separate packets in tcp_ack() */ 5697 if (tp->delivered > 1) 5698 --tp->delivered; 5699 } 5700 5701 tcp_fastopen_add_skb(sk, synack); 5702 5703 return false; 5704 } 5705 5706 static void smc_check_reset_syn(struct tcp_sock *tp) 5707 { 5708 #if IS_ENABLED(CONFIG_SMC) 5709 if (static_branch_unlikely(&tcp_have_smc)) { 5710 if (tp->syn_smc && !tp->rx_opt.smc_ok) 5711 tp->syn_smc = 0; 5712 } 5713 #endif 5714 } 5715 5716 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5717 const struct tcphdr *th) 5718 { 5719 struct inet_connection_sock *icsk = inet_csk(sk); 5720 struct tcp_sock *tp = tcp_sk(sk); 5721 struct tcp_fastopen_cookie foc = { .len = -1 }; 5722 int saved_clamp = tp->rx_opt.mss_clamp; 5723 bool fastopen_fail; 5724 5725 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 5726 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5727 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5728 5729 if (th->ack) { 5730 /* rfc793: 5731 * "If the state is SYN-SENT then 5732 * first check the ACK bit 5733 * If the ACK bit is set 5734 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5735 * a reset (unless the RST bit is set, if so drop 5736 * the segment and return)" 5737 */ 5738 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5739 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5740 goto reset_and_undo; 5741 5742 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5743 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5744 tcp_time_stamp(tp))) { 5745 NET_INC_STATS(sock_net(sk), 5746 LINUX_MIB_PAWSACTIVEREJECTED); 5747 goto reset_and_undo; 5748 } 5749 5750 /* Now ACK is acceptable. 5751 * 5752 * "If the RST bit is set 5753 * If the ACK was acceptable then signal the user "error: 5754 * connection reset", drop the segment, enter CLOSED state, 5755 * delete TCB, and return." 5756 */ 5757 5758 if (th->rst) { 5759 tcp_reset(sk); 5760 goto discard; 5761 } 5762 5763 /* rfc793: 5764 * "fifth, if neither of the SYN or RST bits is set then 5765 * drop the segment and return." 5766 * 5767 * See note below! 5768 * --ANK(990513) 5769 */ 5770 if (!th->syn) 5771 goto discard_and_undo; 5772 5773 /* rfc793: 5774 * "If the SYN bit is on ... 5775 * are acceptable then ... 5776 * (our SYN has been ACKed), change the connection 5777 * state to ESTABLISHED..." 5778 */ 5779 5780 tcp_ecn_rcv_synack(tp, th); 5781 5782 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5783 tcp_ack(sk, skb, FLAG_SLOWPATH); 5784 5785 /* Ok.. it's good. Set up sequence numbers and 5786 * move to established. 5787 */ 5788 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5789 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5790 5791 /* RFC1323: The window in SYN & SYN/ACK segments is 5792 * never scaled. 5793 */ 5794 tp->snd_wnd = ntohs(th->window); 5795 5796 if (!tp->rx_opt.wscale_ok) { 5797 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5798 tp->window_clamp = min(tp->window_clamp, 65535U); 5799 } 5800 5801 if (tp->rx_opt.saw_tstamp) { 5802 tp->rx_opt.tstamp_ok = 1; 5803 tp->tcp_header_len = 5804 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5805 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5806 tcp_store_ts_recent(tp); 5807 } else { 5808 tp->tcp_header_len = sizeof(struct tcphdr); 5809 } 5810 5811 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5812 tcp_initialize_rcv_mss(sk); 5813 5814 /* Remember, tcp_poll() does not lock socket! 5815 * Change state from SYN-SENT only after copied_seq 5816 * is initialized. */ 5817 tp->copied_seq = tp->rcv_nxt; 5818 5819 smc_check_reset_syn(tp); 5820 5821 smp_mb(); 5822 5823 tcp_finish_connect(sk, skb); 5824 5825 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 5826 tcp_rcv_fastopen_synack(sk, skb, &foc); 5827 5828 if (!sock_flag(sk, SOCK_DEAD)) { 5829 sk->sk_state_change(sk); 5830 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5831 } 5832 if (fastopen_fail) 5833 return -1; 5834 if (sk->sk_write_pending || 5835 icsk->icsk_accept_queue.rskq_defer_accept || 5836 icsk->icsk_ack.pingpong) { 5837 /* Save one ACK. Data will be ready after 5838 * several ticks, if write_pending is set. 5839 * 5840 * It may be deleted, but with this feature tcpdumps 5841 * look so _wonderfully_ clever, that I was not able 5842 * to stand against the temptation 8) --ANK 5843 */ 5844 inet_csk_schedule_ack(sk); 5845 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5846 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5847 TCP_DELACK_MAX, TCP_RTO_MAX); 5848 5849 discard: 5850 tcp_drop(sk, skb); 5851 return 0; 5852 } else { 5853 tcp_send_ack(sk); 5854 } 5855 return -1; 5856 } 5857 5858 /* No ACK in the segment */ 5859 5860 if (th->rst) { 5861 /* rfc793: 5862 * "If the RST bit is set 5863 * 5864 * Otherwise (no ACK) drop the segment and return." 5865 */ 5866 5867 goto discard_and_undo; 5868 } 5869 5870 /* PAWS check. */ 5871 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5872 tcp_paws_reject(&tp->rx_opt, 0)) 5873 goto discard_and_undo; 5874 5875 if (th->syn) { 5876 /* We see SYN without ACK. It is attempt of 5877 * simultaneous connect with crossed SYNs. 5878 * Particularly, it can be connect to self. 5879 */ 5880 tcp_set_state(sk, TCP_SYN_RECV); 5881 5882 if (tp->rx_opt.saw_tstamp) { 5883 tp->rx_opt.tstamp_ok = 1; 5884 tcp_store_ts_recent(tp); 5885 tp->tcp_header_len = 5886 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5887 } else { 5888 tp->tcp_header_len = sizeof(struct tcphdr); 5889 } 5890 5891 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5892 tp->copied_seq = tp->rcv_nxt; 5893 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5894 5895 /* RFC1323: The window in SYN & SYN/ACK segments is 5896 * never scaled. 5897 */ 5898 tp->snd_wnd = ntohs(th->window); 5899 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5900 tp->max_window = tp->snd_wnd; 5901 5902 tcp_ecn_rcv_syn(tp, th); 5903 5904 tcp_mtup_init(sk); 5905 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5906 tcp_initialize_rcv_mss(sk); 5907 5908 tcp_send_synack(sk); 5909 #if 0 5910 /* Note, we could accept data and URG from this segment. 5911 * There are no obstacles to make this (except that we must 5912 * either change tcp_recvmsg() to prevent it from returning data 5913 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5914 * 5915 * However, if we ignore data in ACKless segments sometimes, 5916 * we have no reasons to accept it sometimes. 5917 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5918 * is not flawless. So, discard packet for sanity. 5919 * Uncomment this return to process the data. 5920 */ 5921 return -1; 5922 #else 5923 goto discard; 5924 #endif 5925 } 5926 /* "fifth, if neither of the SYN or RST bits is set then 5927 * drop the segment and return." 5928 */ 5929 5930 discard_and_undo: 5931 tcp_clear_options(&tp->rx_opt); 5932 tp->rx_opt.mss_clamp = saved_clamp; 5933 goto discard; 5934 5935 reset_and_undo: 5936 tcp_clear_options(&tp->rx_opt); 5937 tp->rx_opt.mss_clamp = saved_clamp; 5938 return 1; 5939 } 5940 5941 /* 5942 * This function implements the receiving procedure of RFC 793 for 5943 * all states except ESTABLISHED and TIME_WAIT. 5944 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5945 * address independent. 5946 */ 5947 5948 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 5949 { 5950 struct tcp_sock *tp = tcp_sk(sk); 5951 struct inet_connection_sock *icsk = inet_csk(sk); 5952 const struct tcphdr *th = tcp_hdr(skb); 5953 struct request_sock *req; 5954 int queued = 0; 5955 bool acceptable; 5956 5957 switch (sk->sk_state) { 5958 case TCP_CLOSE: 5959 goto discard; 5960 5961 case TCP_LISTEN: 5962 if (th->ack) 5963 return 1; 5964 5965 if (th->rst) 5966 goto discard; 5967 5968 if (th->syn) { 5969 if (th->fin) 5970 goto discard; 5971 /* It is possible that we process SYN packets from backlog, 5972 * so we need to make sure to disable BH right there. 5973 */ 5974 local_bh_disable(); 5975 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 5976 local_bh_enable(); 5977 5978 if (!acceptable) 5979 return 1; 5980 consume_skb(skb); 5981 return 0; 5982 } 5983 goto discard; 5984 5985 case TCP_SYN_SENT: 5986 tp->rx_opt.saw_tstamp = 0; 5987 tcp_mstamp_refresh(tp); 5988 queued = tcp_rcv_synsent_state_process(sk, skb, th); 5989 if (queued >= 0) 5990 return queued; 5991 5992 /* Do step6 onward by hand. */ 5993 tcp_urg(sk, skb, th); 5994 __kfree_skb(skb); 5995 tcp_data_snd_check(sk); 5996 return 0; 5997 } 5998 5999 tcp_mstamp_refresh(tp); 6000 tp->rx_opt.saw_tstamp = 0; 6001 req = tp->fastopen_rsk; 6002 if (req) { 6003 bool req_stolen; 6004 6005 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6006 sk->sk_state != TCP_FIN_WAIT1); 6007 6008 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6009 goto discard; 6010 } 6011 6012 if (!th->ack && !th->rst && !th->syn) 6013 goto discard; 6014 6015 if (!tcp_validate_incoming(sk, skb, th, 0)) 6016 return 0; 6017 6018 /* step 5: check the ACK field */ 6019 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6020 FLAG_UPDATE_TS_RECENT | 6021 FLAG_NO_CHALLENGE_ACK) > 0; 6022 6023 if (!acceptable) { 6024 if (sk->sk_state == TCP_SYN_RECV) 6025 return 1; /* send one RST */ 6026 tcp_send_challenge_ack(sk, skb); 6027 goto discard; 6028 } 6029 switch (sk->sk_state) { 6030 case TCP_SYN_RECV: 6031 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6032 if (!tp->srtt_us) 6033 tcp_synack_rtt_meas(sk, req); 6034 6035 /* Once we leave TCP_SYN_RECV, we no longer need req 6036 * so release it. 6037 */ 6038 if (req) { 6039 inet_csk(sk)->icsk_retransmits = 0; 6040 reqsk_fastopen_remove(sk, req, false); 6041 /* Re-arm the timer because data may have been sent out. 6042 * This is similar to the regular data transmission case 6043 * when new data has just been ack'ed. 6044 * 6045 * (TFO) - we could try to be more aggressive and 6046 * retransmitting any data sooner based on when they 6047 * are sent out. 6048 */ 6049 tcp_rearm_rto(sk); 6050 } else { 6051 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); 6052 tp->copied_seq = tp->rcv_nxt; 6053 } 6054 smp_mb(); 6055 tcp_set_state(sk, TCP_ESTABLISHED); 6056 sk->sk_state_change(sk); 6057 6058 /* Note, that this wakeup is only for marginal crossed SYN case. 6059 * Passively open sockets are not waked up, because 6060 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6061 */ 6062 if (sk->sk_socket) 6063 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6064 6065 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6066 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6067 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6068 6069 if (tp->rx_opt.tstamp_ok) 6070 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6071 6072 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6073 tcp_update_pacing_rate(sk); 6074 6075 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6076 tp->lsndtime = tcp_jiffies32; 6077 6078 tcp_initialize_rcv_mss(sk); 6079 tcp_fast_path_on(tp); 6080 break; 6081 6082 case TCP_FIN_WAIT1: { 6083 int tmo; 6084 6085 /* If we enter the TCP_FIN_WAIT1 state and we are a 6086 * Fast Open socket and this is the first acceptable 6087 * ACK we have received, this would have acknowledged 6088 * our SYNACK so stop the SYNACK timer. 6089 */ 6090 if (req) { 6091 /* We no longer need the request sock. */ 6092 reqsk_fastopen_remove(sk, req, false); 6093 tcp_rearm_rto(sk); 6094 } 6095 if (tp->snd_una != tp->write_seq) 6096 break; 6097 6098 tcp_set_state(sk, TCP_FIN_WAIT2); 6099 sk->sk_shutdown |= SEND_SHUTDOWN; 6100 6101 sk_dst_confirm(sk); 6102 6103 if (!sock_flag(sk, SOCK_DEAD)) { 6104 /* Wake up lingering close() */ 6105 sk->sk_state_change(sk); 6106 break; 6107 } 6108 6109 if (tp->linger2 < 0) { 6110 tcp_done(sk); 6111 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6112 return 1; 6113 } 6114 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6115 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6116 /* Receive out of order FIN after close() */ 6117 if (tp->syn_fastopen && th->fin) 6118 tcp_fastopen_active_disable(sk); 6119 tcp_done(sk); 6120 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6121 return 1; 6122 } 6123 6124 tmo = tcp_fin_time(sk); 6125 if (tmo > TCP_TIMEWAIT_LEN) { 6126 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6127 } else if (th->fin || sock_owned_by_user(sk)) { 6128 /* Bad case. We could lose such FIN otherwise. 6129 * It is not a big problem, but it looks confusing 6130 * and not so rare event. We still can lose it now, 6131 * if it spins in bh_lock_sock(), but it is really 6132 * marginal case. 6133 */ 6134 inet_csk_reset_keepalive_timer(sk, tmo); 6135 } else { 6136 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6137 goto discard; 6138 } 6139 break; 6140 } 6141 6142 case TCP_CLOSING: 6143 if (tp->snd_una == tp->write_seq) { 6144 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6145 goto discard; 6146 } 6147 break; 6148 6149 case TCP_LAST_ACK: 6150 if (tp->snd_una == tp->write_seq) { 6151 tcp_update_metrics(sk); 6152 tcp_done(sk); 6153 goto discard; 6154 } 6155 break; 6156 } 6157 6158 /* step 6: check the URG bit */ 6159 tcp_urg(sk, skb, th); 6160 6161 /* step 7: process the segment text */ 6162 switch (sk->sk_state) { 6163 case TCP_CLOSE_WAIT: 6164 case TCP_CLOSING: 6165 case TCP_LAST_ACK: 6166 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 6167 break; 6168 /* fall through */ 6169 case TCP_FIN_WAIT1: 6170 case TCP_FIN_WAIT2: 6171 /* RFC 793 says to queue data in these states, 6172 * RFC 1122 says we MUST send a reset. 6173 * BSD 4.4 also does reset. 6174 */ 6175 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6176 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6177 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6178 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6179 tcp_reset(sk); 6180 return 1; 6181 } 6182 } 6183 /* Fall through */ 6184 case TCP_ESTABLISHED: 6185 tcp_data_queue(sk, skb); 6186 queued = 1; 6187 break; 6188 } 6189 6190 /* tcp_data could move socket to TIME-WAIT */ 6191 if (sk->sk_state != TCP_CLOSE) { 6192 tcp_data_snd_check(sk); 6193 tcp_ack_snd_check(sk); 6194 } 6195 6196 if (!queued) { 6197 discard: 6198 tcp_drop(sk, skb); 6199 } 6200 return 0; 6201 } 6202 EXPORT_SYMBOL(tcp_rcv_state_process); 6203 6204 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6205 { 6206 struct inet_request_sock *ireq = inet_rsk(req); 6207 6208 if (family == AF_INET) 6209 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6210 &ireq->ir_rmt_addr, port); 6211 #if IS_ENABLED(CONFIG_IPV6) 6212 else if (family == AF_INET6) 6213 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6214 &ireq->ir_v6_rmt_addr, port); 6215 #endif 6216 } 6217 6218 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6219 * 6220 * If we receive a SYN packet with these bits set, it means a 6221 * network is playing bad games with TOS bits. In order to 6222 * avoid possible false congestion notifications, we disable 6223 * TCP ECN negotiation. 6224 * 6225 * Exception: tcp_ca wants ECN. This is required for DCTCP 6226 * congestion control: Linux DCTCP asserts ECT on all packets, 6227 * including SYN, which is most optimal solution; however, 6228 * others, such as FreeBSD do not. 6229 */ 6230 static void tcp_ecn_create_request(struct request_sock *req, 6231 const struct sk_buff *skb, 6232 const struct sock *listen_sk, 6233 const struct dst_entry *dst) 6234 { 6235 const struct tcphdr *th = tcp_hdr(skb); 6236 const struct net *net = sock_net(listen_sk); 6237 bool th_ecn = th->ece && th->cwr; 6238 bool ect, ecn_ok; 6239 u32 ecn_ok_dst; 6240 6241 if (!th_ecn) 6242 return; 6243 6244 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6245 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6246 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6247 6248 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6249 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6250 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6251 inet_rsk(req)->ecn_ok = 1; 6252 } 6253 6254 static void tcp_openreq_init(struct request_sock *req, 6255 const struct tcp_options_received *rx_opt, 6256 struct sk_buff *skb, const struct sock *sk) 6257 { 6258 struct inet_request_sock *ireq = inet_rsk(req); 6259 6260 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6261 req->cookie_ts = 0; 6262 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6263 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6264 tcp_rsk(req)->snt_synack = tcp_clock_us(); 6265 tcp_rsk(req)->last_oow_ack_time = 0; 6266 req->mss = rx_opt->mss_clamp; 6267 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6268 ireq->tstamp_ok = rx_opt->tstamp_ok; 6269 ireq->sack_ok = rx_opt->sack_ok; 6270 ireq->snd_wscale = rx_opt->snd_wscale; 6271 ireq->wscale_ok = rx_opt->wscale_ok; 6272 ireq->acked = 0; 6273 ireq->ecn_ok = 0; 6274 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6275 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6276 ireq->ir_mark = inet_request_mark(sk, skb); 6277 #if IS_ENABLED(CONFIG_SMC) 6278 ireq->smc_ok = rx_opt->smc_ok; 6279 #endif 6280 } 6281 6282 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6283 struct sock *sk_listener, 6284 bool attach_listener) 6285 { 6286 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6287 attach_listener); 6288 6289 if (req) { 6290 struct inet_request_sock *ireq = inet_rsk(req); 6291 6292 ireq->ireq_opt = NULL; 6293 #if IS_ENABLED(CONFIG_IPV6) 6294 ireq->pktopts = NULL; 6295 #endif 6296 atomic64_set(&ireq->ir_cookie, 0); 6297 ireq->ireq_state = TCP_NEW_SYN_RECV; 6298 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6299 ireq->ireq_family = sk_listener->sk_family; 6300 } 6301 6302 return req; 6303 } 6304 EXPORT_SYMBOL(inet_reqsk_alloc); 6305 6306 /* 6307 * Return true if a syncookie should be sent 6308 */ 6309 static bool tcp_syn_flood_action(const struct sock *sk, 6310 const struct sk_buff *skb, 6311 const char *proto) 6312 { 6313 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6314 const char *msg = "Dropping request"; 6315 bool want_cookie = false; 6316 struct net *net = sock_net(sk); 6317 6318 #ifdef CONFIG_SYN_COOKIES 6319 if (net->ipv4.sysctl_tcp_syncookies) { 6320 msg = "Sending cookies"; 6321 want_cookie = true; 6322 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6323 } else 6324 #endif 6325 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6326 6327 if (!queue->synflood_warned && 6328 net->ipv4.sysctl_tcp_syncookies != 2 && 6329 xchg(&queue->synflood_warned, 1) == 0) 6330 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6331 proto, ntohs(tcp_hdr(skb)->dest), msg); 6332 6333 return want_cookie; 6334 } 6335 6336 static void tcp_reqsk_record_syn(const struct sock *sk, 6337 struct request_sock *req, 6338 const struct sk_buff *skb) 6339 { 6340 if (tcp_sk(sk)->save_syn) { 6341 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6342 u32 *copy; 6343 6344 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6345 if (copy) { 6346 copy[0] = len; 6347 memcpy(©[1], skb_network_header(skb), len); 6348 req->saved_syn = copy; 6349 } 6350 } 6351 } 6352 6353 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6354 const struct tcp_request_sock_ops *af_ops, 6355 struct sock *sk, struct sk_buff *skb) 6356 { 6357 struct tcp_fastopen_cookie foc = { .len = -1 }; 6358 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6359 struct tcp_options_received tmp_opt; 6360 struct tcp_sock *tp = tcp_sk(sk); 6361 struct net *net = sock_net(sk); 6362 struct sock *fastopen_sk = NULL; 6363 struct request_sock *req; 6364 bool want_cookie = false; 6365 struct dst_entry *dst; 6366 struct flowi fl; 6367 6368 /* TW buckets are converted to open requests without 6369 * limitations, they conserve resources and peer is 6370 * evidently real one. 6371 */ 6372 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6373 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6374 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6375 if (!want_cookie) 6376 goto drop; 6377 } 6378 6379 if (sk_acceptq_is_full(sk)) { 6380 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6381 goto drop; 6382 } 6383 6384 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6385 if (!req) 6386 goto drop; 6387 6388 tcp_rsk(req)->af_specific = af_ops; 6389 tcp_rsk(req)->ts_off = 0; 6390 6391 tcp_clear_options(&tmp_opt); 6392 tmp_opt.mss_clamp = af_ops->mss_clamp; 6393 tmp_opt.user_mss = tp->rx_opt.user_mss; 6394 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6395 want_cookie ? NULL : &foc); 6396 6397 if (want_cookie && !tmp_opt.saw_tstamp) 6398 tcp_clear_options(&tmp_opt); 6399 6400 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6401 tmp_opt.smc_ok = 0; 6402 6403 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6404 tcp_openreq_init(req, &tmp_opt, skb, sk); 6405 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6406 6407 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6408 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6409 6410 af_ops->init_req(req, sk, skb); 6411 6412 if (security_inet_conn_request(sk, skb, req)) 6413 goto drop_and_free; 6414 6415 if (tmp_opt.tstamp_ok) 6416 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6417 6418 dst = af_ops->route_req(sk, &fl, req); 6419 if (!dst) 6420 goto drop_and_free; 6421 6422 if (!want_cookie && !isn) { 6423 /* Kill the following clause, if you dislike this way. */ 6424 if (!net->ipv4.sysctl_tcp_syncookies && 6425 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6426 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6427 !tcp_peer_is_proven(req, dst)) { 6428 /* Without syncookies last quarter of 6429 * backlog is filled with destinations, 6430 * proven to be alive. 6431 * It means that we continue to communicate 6432 * to destinations, already remembered 6433 * to the moment of synflood. 6434 */ 6435 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6436 rsk_ops->family); 6437 goto drop_and_release; 6438 } 6439 6440 isn = af_ops->init_seq(skb); 6441 } 6442 6443 tcp_ecn_create_request(req, skb, sk, dst); 6444 6445 if (want_cookie) { 6446 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6447 req->cookie_ts = tmp_opt.tstamp_ok; 6448 if (!tmp_opt.tstamp_ok) 6449 inet_rsk(req)->ecn_ok = 0; 6450 } 6451 6452 tcp_rsk(req)->snt_isn = isn; 6453 tcp_rsk(req)->txhash = net_tx_rndhash(); 6454 tcp_openreq_init_rwin(req, sk, dst); 6455 if (!want_cookie) { 6456 tcp_reqsk_record_syn(sk, req, skb); 6457 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6458 } 6459 if (fastopen_sk) { 6460 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6461 &foc, TCP_SYNACK_FASTOPEN); 6462 /* Add the child socket directly into the accept queue */ 6463 inet_csk_reqsk_queue_add(sk, req, fastopen_sk); 6464 sk->sk_data_ready(sk); 6465 bh_unlock_sock(fastopen_sk); 6466 sock_put(fastopen_sk); 6467 } else { 6468 tcp_rsk(req)->tfo_listener = false; 6469 if (!want_cookie) 6470 inet_csk_reqsk_queue_hash_add(sk, req, 6471 tcp_timeout_init((struct sock *)req)); 6472 af_ops->send_synack(sk, dst, &fl, req, &foc, 6473 !want_cookie ? TCP_SYNACK_NORMAL : 6474 TCP_SYNACK_COOKIE); 6475 if (want_cookie) { 6476 reqsk_free(req); 6477 return 0; 6478 } 6479 } 6480 reqsk_put(req); 6481 return 0; 6482 6483 drop_and_release: 6484 dst_release(dst); 6485 drop_and_free: 6486 reqsk_free(req); 6487 drop: 6488 tcp_listendrop(sk); 6489 return 0; 6490 } 6491 EXPORT_SYMBOL(tcp_conn_request); 6492