xref: /linux/net/ipv4/tcp_input.c (revision 4cf1bc1f10452065a29d576fc5693fc4fab5b919)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 
104 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
108 
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
111 
112 #define REXMIT_NONE	0 /* no loss recovery to do */
113 #define REXMIT_LOST	1 /* retransmit packets marked lost */
114 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
115 
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
118 
119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 			     void (*cad)(struct sock *sk, u32 ack_seq))
121 {
122 	icsk->icsk_clean_acked = cad;
123 	static_branch_deferred_inc(&clean_acked_data_enabled);
124 }
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
126 
127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
128 {
129 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 	icsk->icsk_clean_acked = NULL;
131 }
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
133 
134 void clean_acked_data_flush(void)
135 {
136 	static_key_deferred_flush(&clean_acked_data_enabled);
137 }
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
139 #endif
140 
141 #ifdef CONFIG_CGROUP_BPF
142 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
143 {
144 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
145 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
146 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
147 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
149 	struct bpf_sock_ops_kern sock_ops;
150 
151 	if (likely(!unknown_opt && !parse_all_opt))
152 		return;
153 
154 	/* The skb will be handled in the
155 	 * bpf_skops_established() or
156 	 * bpf_skops_write_hdr_opt().
157 	 */
158 	switch (sk->sk_state) {
159 	case TCP_SYN_RECV:
160 	case TCP_SYN_SENT:
161 	case TCP_LISTEN:
162 		return;
163 	}
164 
165 	sock_owned_by_me(sk);
166 
167 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
168 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
169 	sock_ops.is_fullsock = 1;
170 	sock_ops.sk = sk;
171 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
172 
173 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
174 }
175 
176 static void bpf_skops_established(struct sock *sk, int bpf_op,
177 				  struct sk_buff *skb)
178 {
179 	struct bpf_sock_ops_kern sock_ops;
180 
181 	sock_owned_by_me(sk);
182 
183 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
184 	sock_ops.op = bpf_op;
185 	sock_ops.is_fullsock = 1;
186 	sock_ops.sk = sk;
187 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
188 	if (skb)
189 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
190 
191 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
192 }
193 #else
194 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
195 {
196 }
197 
198 static void bpf_skops_established(struct sock *sk, int bpf_op,
199 				  struct sk_buff *skb)
200 {
201 }
202 #endif
203 
204 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
205 			     unsigned int len)
206 {
207 	static bool __once __read_mostly;
208 
209 	if (!__once) {
210 		struct net_device *dev;
211 
212 		__once = true;
213 
214 		rcu_read_lock();
215 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
216 		if (!dev || len >= dev->mtu)
217 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
218 				dev ? dev->name : "Unknown driver");
219 		rcu_read_unlock();
220 	}
221 }
222 
223 /* Adapt the MSS value used to make delayed ack decision to the
224  * real world.
225  */
226 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
227 {
228 	struct inet_connection_sock *icsk = inet_csk(sk);
229 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
230 	unsigned int len;
231 
232 	icsk->icsk_ack.last_seg_size = 0;
233 
234 	/* skb->len may jitter because of SACKs, even if peer
235 	 * sends good full-sized frames.
236 	 */
237 	len = skb_shinfo(skb)->gso_size ? : skb->len;
238 	if (len >= icsk->icsk_ack.rcv_mss) {
239 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
240 					       tcp_sk(sk)->advmss);
241 		/* Account for possibly-removed options */
242 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
243 				   MAX_TCP_OPTION_SPACE))
244 			tcp_gro_dev_warn(sk, skb, len);
245 	} else {
246 		/* Otherwise, we make more careful check taking into account,
247 		 * that SACKs block is variable.
248 		 *
249 		 * "len" is invariant segment length, including TCP header.
250 		 */
251 		len += skb->data - skb_transport_header(skb);
252 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
253 		    /* If PSH is not set, packet should be
254 		     * full sized, provided peer TCP is not badly broken.
255 		     * This observation (if it is correct 8)) allows
256 		     * to handle super-low mtu links fairly.
257 		     */
258 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
259 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
260 			/* Subtract also invariant (if peer is RFC compliant),
261 			 * tcp header plus fixed timestamp option length.
262 			 * Resulting "len" is MSS free of SACK jitter.
263 			 */
264 			len -= tcp_sk(sk)->tcp_header_len;
265 			icsk->icsk_ack.last_seg_size = len;
266 			if (len == lss) {
267 				icsk->icsk_ack.rcv_mss = len;
268 				return;
269 			}
270 		}
271 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
272 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
273 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
274 	}
275 }
276 
277 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
278 {
279 	struct inet_connection_sock *icsk = inet_csk(sk);
280 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
281 
282 	if (quickacks == 0)
283 		quickacks = 2;
284 	quickacks = min(quickacks, max_quickacks);
285 	if (quickacks > icsk->icsk_ack.quick)
286 		icsk->icsk_ack.quick = quickacks;
287 }
288 
289 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
290 {
291 	struct inet_connection_sock *icsk = inet_csk(sk);
292 
293 	tcp_incr_quickack(sk, max_quickacks);
294 	inet_csk_exit_pingpong_mode(sk);
295 	icsk->icsk_ack.ato = TCP_ATO_MIN;
296 }
297 EXPORT_SYMBOL(tcp_enter_quickack_mode);
298 
299 /* Send ACKs quickly, if "quick" count is not exhausted
300  * and the session is not interactive.
301  */
302 
303 static bool tcp_in_quickack_mode(struct sock *sk)
304 {
305 	const struct inet_connection_sock *icsk = inet_csk(sk);
306 	const struct dst_entry *dst = __sk_dst_get(sk);
307 
308 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
309 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
310 }
311 
312 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
313 {
314 	if (tp->ecn_flags & TCP_ECN_OK)
315 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
316 }
317 
318 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
319 {
320 	if (tcp_hdr(skb)->cwr) {
321 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
322 
323 		/* If the sender is telling us it has entered CWR, then its
324 		 * cwnd may be very low (even just 1 packet), so we should ACK
325 		 * immediately.
326 		 */
327 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
328 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
329 	}
330 }
331 
332 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
333 {
334 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
335 }
336 
337 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
338 {
339 	struct tcp_sock *tp = tcp_sk(sk);
340 
341 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
342 	case INET_ECN_NOT_ECT:
343 		/* Funny extension: if ECT is not set on a segment,
344 		 * and we already seen ECT on a previous segment,
345 		 * it is probably a retransmit.
346 		 */
347 		if (tp->ecn_flags & TCP_ECN_SEEN)
348 			tcp_enter_quickack_mode(sk, 2);
349 		break;
350 	case INET_ECN_CE:
351 		if (tcp_ca_needs_ecn(sk))
352 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
353 
354 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
355 			/* Better not delay acks, sender can have a very low cwnd */
356 			tcp_enter_quickack_mode(sk, 2);
357 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
358 		}
359 		tp->ecn_flags |= TCP_ECN_SEEN;
360 		break;
361 	default:
362 		if (tcp_ca_needs_ecn(sk))
363 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
364 		tp->ecn_flags |= TCP_ECN_SEEN;
365 		break;
366 	}
367 }
368 
369 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
370 {
371 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
372 		__tcp_ecn_check_ce(sk, skb);
373 }
374 
375 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
376 {
377 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
378 		tp->ecn_flags &= ~TCP_ECN_OK;
379 }
380 
381 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
382 {
383 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
384 		tp->ecn_flags &= ~TCP_ECN_OK;
385 }
386 
387 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
388 {
389 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
390 		return true;
391 	return false;
392 }
393 
394 /* Buffer size and advertised window tuning.
395  *
396  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
397  */
398 
399 static void tcp_sndbuf_expand(struct sock *sk)
400 {
401 	const struct tcp_sock *tp = tcp_sk(sk);
402 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
403 	int sndmem, per_mss;
404 	u32 nr_segs;
405 
406 	/* Worst case is non GSO/TSO : each frame consumes one skb
407 	 * and skb->head is kmalloced using power of two area of memory
408 	 */
409 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
410 		  MAX_TCP_HEADER +
411 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
412 
413 	per_mss = roundup_pow_of_two(per_mss) +
414 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
415 
416 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
417 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
418 
419 	/* Fast Recovery (RFC 5681 3.2) :
420 	 * Cubic needs 1.7 factor, rounded to 2 to include
421 	 * extra cushion (application might react slowly to EPOLLOUT)
422 	 */
423 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
424 	sndmem *= nr_segs * per_mss;
425 
426 	if (sk->sk_sndbuf < sndmem)
427 		WRITE_ONCE(sk->sk_sndbuf,
428 			   min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
429 }
430 
431 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
432  *
433  * All tcp_full_space() is split to two parts: "network" buffer, allocated
434  * forward and advertised in receiver window (tp->rcv_wnd) and
435  * "application buffer", required to isolate scheduling/application
436  * latencies from network.
437  * window_clamp is maximal advertised window. It can be less than
438  * tcp_full_space(), in this case tcp_full_space() - window_clamp
439  * is reserved for "application" buffer. The less window_clamp is
440  * the smoother our behaviour from viewpoint of network, but the lower
441  * throughput and the higher sensitivity of the connection to losses. 8)
442  *
443  * rcv_ssthresh is more strict window_clamp used at "slow start"
444  * phase to predict further behaviour of this connection.
445  * It is used for two goals:
446  * - to enforce header prediction at sender, even when application
447  *   requires some significant "application buffer". It is check #1.
448  * - to prevent pruning of receive queue because of misprediction
449  *   of receiver window. Check #2.
450  *
451  * The scheme does not work when sender sends good segments opening
452  * window and then starts to feed us spaghetti. But it should work
453  * in common situations. Otherwise, we have to rely on queue collapsing.
454  */
455 
456 /* Slow part of check#2. */
457 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
458 {
459 	struct tcp_sock *tp = tcp_sk(sk);
460 	/* Optimize this! */
461 	int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
462 	int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
463 
464 	while (tp->rcv_ssthresh <= window) {
465 		if (truesize <= skb->len)
466 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
467 
468 		truesize >>= 1;
469 		window >>= 1;
470 	}
471 	return 0;
472 }
473 
474 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
475 {
476 	struct tcp_sock *tp = tcp_sk(sk);
477 	int room;
478 
479 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
480 
481 	/* Check #1 */
482 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
483 		int incr;
484 
485 		/* Check #2. Increase window, if skb with such overhead
486 		 * will fit to rcvbuf in future.
487 		 */
488 		if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
489 			incr = 2 * tp->advmss;
490 		else
491 			incr = __tcp_grow_window(sk, skb);
492 
493 		if (incr) {
494 			incr = max_t(int, incr, 2 * skb->len);
495 			tp->rcv_ssthresh += min(room, incr);
496 			inet_csk(sk)->icsk_ack.quick |= 1;
497 		}
498 	}
499 }
500 
501 /* 3. Try to fixup all. It is made immediately after connection enters
502  *    established state.
503  */
504 static void tcp_init_buffer_space(struct sock *sk)
505 {
506 	int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
507 	struct tcp_sock *tp = tcp_sk(sk);
508 	int maxwin;
509 
510 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
511 		tcp_sndbuf_expand(sk);
512 
513 	tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
514 	tcp_mstamp_refresh(tp);
515 	tp->rcvq_space.time = tp->tcp_mstamp;
516 	tp->rcvq_space.seq = tp->copied_seq;
517 
518 	maxwin = tcp_full_space(sk);
519 
520 	if (tp->window_clamp >= maxwin) {
521 		tp->window_clamp = maxwin;
522 
523 		if (tcp_app_win && maxwin > 4 * tp->advmss)
524 			tp->window_clamp = max(maxwin -
525 					       (maxwin >> tcp_app_win),
526 					       4 * tp->advmss);
527 	}
528 
529 	/* Force reservation of one segment. */
530 	if (tcp_app_win &&
531 	    tp->window_clamp > 2 * tp->advmss &&
532 	    tp->window_clamp + tp->advmss > maxwin)
533 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
534 
535 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
536 	tp->snd_cwnd_stamp = tcp_jiffies32;
537 }
538 
539 /* 4. Recalculate window clamp after socket hit its memory bounds. */
540 static void tcp_clamp_window(struct sock *sk)
541 {
542 	struct tcp_sock *tp = tcp_sk(sk);
543 	struct inet_connection_sock *icsk = inet_csk(sk);
544 	struct net *net = sock_net(sk);
545 
546 	icsk->icsk_ack.quick = 0;
547 
548 	if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
549 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
550 	    !tcp_under_memory_pressure(sk) &&
551 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
552 		WRITE_ONCE(sk->sk_rcvbuf,
553 			   min(atomic_read(&sk->sk_rmem_alloc),
554 			       net->ipv4.sysctl_tcp_rmem[2]));
555 	}
556 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
557 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
558 }
559 
560 /* Initialize RCV_MSS value.
561  * RCV_MSS is an our guess about MSS used by the peer.
562  * We haven't any direct information about the MSS.
563  * It's better to underestimate the RCV_MSS rather than overestimate.
564  * Overestimations make us ACKing less frequently than needed.
565  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
566  */
567 void tcp_initialize_rcv_mss(struct sock *sk)
568 {
569 	const struct tcp_sock *tp = tcp_sk(sk);
570 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
571 
572 	hint = min(hint, tp->rcv_wnd / 2);
573 	hint = min(hint, TCP_MSS_DEFAULT);
574 	hint = max(hint, TCP_MIN_MSS);
575 
576 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
577 }
578 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
579 
580 /* Receiver "autotuning" code.
581  *
582  * The algorithm for RTT estimation w/o timestamps is based on
583  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
584  * <https://public.lanl.gov/radiant/pubs.html#DRS>
585  *
586  * More detail on this code can be found at
587  * <http://staff.psc.edu/jheffner/>,
588  * though this reference is out of date.  A new paper
589  * is pending.
590  */
591 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
592 {
593 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
594 	long m = sample;
595 
596 	if (new_sample != 0) {
597 		/* If we sample in larger samples in the non-timestamp
598 		 * case, we could grossly overestimate the RTT especially
599 		 * with chatty applications or bulk transfer apps which
600 		 * are stalled on filesystem I/O.
601 		 *
602 		 * Also, since we are only going for a minimum in the
603 		 * non-timestamp case, we do not smooth things out
604 		 * else with timestamps disabled convergence takes too
605 		 * long.
606 		 */
607 		if (!win_dep) {
608 			m -= (new_sample >> 3);
609 			new_sample += m;
610 		} else {
611 			m <<= 3;
612 			if (m < new_sample)
613 				new_sample = m;
614 		}
615 	} else {
616 		/* No previous measure. */
617 		new_sample = m << 3;
618 	}
619 
620 	tp->rcv_rtt_est.rtt_us = new_sample;
621 }
622 
623 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
624 {
625 	u32 delta_us;
626 
627 	if (tp->rcv_rtt_est.time == 0)
628 		goto new_measure;
629 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
630 		return;
631 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
632 	if (!delta_us)
633 		delta_us = 1;
634 	tcp_rcv_rtt_update(tp, delta_us, 1);
635 
636 new_measure:
637 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
638 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
639 }
640 
641 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
642 					  const struct sk_buff *skb)
643 {
644 	struct tcp_sock *tp = tcp_sk(sk);
645 
646 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
647 		return;
648 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
649 
650 	if (TCP_SKB_CB(skb)->end_seq -
651 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
652 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
653 		u32 delta_us;
654 
655 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
656 			if (!delta)
657 				delta = 1;
658 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
659 			tcp_rcv_rtt_update(tp, delta_us, 0);
660 		}
661 	}
662 }
663 
664 /*
665  * This function should be called every time data is copied to user space.
666  * It calculates the appropriate TCP receive buffer space.
667  */
668 void tcp_rcv_space_adjust(struct sock *sk)
669 {
670 	struct tcp_sock *tp = tcp_sk(sk);
671 	u32 copied;
672 	int time;
673 
674 	trace_tcp_rcv_space_adjust(sk);
675 
676 	tcp_mstamp_refresh(tp);
677 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
678 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
679 		return;
680 
681 	/* Number of bytes copied to user in last RTT */
682 	copied = tp->copied_seq - tp->rcvq_space.seq;
683 	if (copied <= tp->rcvq_space.space)
684 		goto new_measure;
685 
686 	/* A bit of theory :
687 	 * copied = bytes received in previous RTT, our base window
688 	 * To cope with packet losses, we need a 2x factor
689 	 * To cope with slow start, and sender growing its cwin by 100 %
690 	 * every RTT, we need a 4x factor, because the ACK we are sending
691 	 * now is for the next RTT, not the current one :
692 	 * <prev RTT . ><current RTT .. ><next RTT .... >
693 	 */
694 
695 	if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
696 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
697 		int rcvmem, rcvbuf;
698 		u64 rcvwin, grow;
699 
700 		/* minimal window to cope with packet losses, assuming
701 		 * steady state. Add some cushion because of small variations.
702 		 */
703 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
704 
705 		/* Accommodate for sender rate increase (eg. slow start) */
706 		grow = rcvwin * (copied - tp->rcvq_space.space);
707 		do_div(grow, tp->rcvq_space.space);
708 		rcvwin += (grow << 1);
709 
710 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
711 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
712 			rcvmem += 128;
713 
714 		do_div(rcvwin, tp->advmss);
715 		rcvbuf = min_t(u64, rcvwin * rcvmem,
716 			       sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
717 		if (rcvbuf > sk->sk_rcvbuf) {
718 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
719 
720 			/* Make the window clamp follow along.  */
721 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
722 		}
723 	}
724 	tp->rcvq_space.space = copied;
725 
726 new_measure:
727 	tp->rcvq_space.seq = tp->copied_seq;
728 	tp->rcvq_space.time = tp->tcp_mstamp;
729 }
730 
731 /* There is something which you must keep in mind when you analyze the
732  * behavior of the tp->ato delayed ack timeout interval.  When a
733  * connection starts up, we want to ack as quickly as possible.  The
734  * problem is that "good" TCP's do slow start at the beginning of data
735  * transmission.  The means that until we send the first few ACK's the
736  * sender will sit on his end and only queue most of his data, because
737  * he can only send snd_cwnd unacked packets at any given time.  For
738  * each ACK we send, he increments snd_cwnd and transmits more of his
739  * queue.  -DaveM
740  */
741 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
742 {
743 	struct tcp_sock *tp = tcp_sk(sk);
744 	struct inet_connection_sock *icsk = inet_csk(sk);
745 	u32 now;
746 
747 	inet_csk_schedule_ack(sk);
748 
749 	tcp_measure_rcv_mss(sk, skb);
750 
751 	tcp_rcv_rtt_measure(tp);
752 
753 	now = tcp_jiffies32;
754 
755 	if (!icsk->icsk_ack.ato) {
756 		/* The _first_ data packet received, initialize
757 		 * delayed ACK engine.
758 		 */
759 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
760 		icsk->icsk_ack.ato = TCP_ATO_MIN;
761 	} else {
762 		int m = now - icsk->icsk_ack.lrcvtime;
763 
764 		if (m <= TCP_ATO_MIN / 2) {
765 			/* The fastest case is the first. */
766 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
767 		} else if (m < icsk->icsk_ack.ato) {
768 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
769 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
770 				icsk->icsk_ack.ato = icsk->icsk_rto;
771 		} else if (m > icsk->icsk_rto) {
772 			/* Too long gap. Apparently sender failed to
773 			 * restart window, so that we send ACKs quickly.
774 			 */
775 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
776 			sk_mem_reclaim(sk);
777 		}
778 	}
779 	icsk->icsk_ack.lrcvtime = now;
780 
781 	tcp_ecn_check_ce(sk, skb);
782 
783 	if (skb->len >= 128)
784 		tcp_grow_window(sk, skb);
785 }
786 
787 /* Called to compute a smoothed rtt estimate. The data fed to this
788  * routine either comes from timestamps, or from segments that were
789  * known _not_ to have been retransmitted [see Karn/Partridge
790  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
791  * piece by Van Jacobson.
792  * NOTE: the next three routines used to be one big routine.
793  * To save cycles in the RFC 1323 implementation it was better to break
794  * it up into three procedures. -- erics
795  */
796 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
797 {
798 	struct tcp_sock *tp = tcp_sk(sk);
799 	long m = mrtt_us; /* RTT */
800 	u32 srtt = tp->srtt_us;
801 
802 	/*	The following amusing code comes from Jacobson's
803 	 *	article in SIGCOMM '88.  Note that rtt and mdev
804 	 *	are scaled versions of rtt and mean deviation.
805 	 *	This is designed to be as fast as possible
806 	 *	m stands for "measurement".
807 	 *
808 	 *	On a 1990 paper the rto value is changed to:
809 	 *	RTO = rtt + 4 * mdev
810 	 *
811 	 * Funny. This algorithm seems to be very broken.
812 	 * These formulae increase RTO, when it should be decreased, increase
813 	 * too slowly, when it should be increased quickly, decrease too quickly
814 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
815 	 * does not matter how to _calculate_ it. Seems, it was trap
816 	 * that VJ failed to avoid. 8)
817 	 */
818 	if (srtt != 0) {
819 		m -= (srtt >> 3);	/* m is now error in rtt est */
820 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
821 		if (m < 0) {
822 			m = -m;		/* m is now abs(error) */
823 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
824 			/* This is similar to one of Eifel findings.
825 			 * Eifel blocks mdev updates when rtt decreases.
826 			 * This solution is a bit different: we use finer gain
827 			 * for mdev in this case (alpha*beta).
828 			 * Like Eifel it also prevents growth of rto,
829 			 * but also it limits too fast rto decreases,
830 			 * happening in pure Eifel.
831 			 */
832 			if (m > 0)
833 				m >>= 3;
834 		} else {
835 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
836 		}
837 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
838 		if (tp->mdev_us > tp->mdev_max_us) {
839 			tp->mdev_max_us = tp->mdev_us;
840 			if (tp->mdev_max_us > tp->rttvar_us)
841 				tp->rttvar_us = tp->mdev_max_us;
842 		}
843 		if (after(tp->snd_una, tp->rtt_seq)) {
844 			if (tp->mdev_max_us < tp->rttvar_us)
845 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
846 			tp->rtt_seq = tp->snd_nxt;
847 			tp->mdev_max_us = tcp_rto_min_us(sk);
848 
849 			tcp_bpf_rtt(sk);
850 		}
851 	} else {
852 		/* no previous measure. */
853 		srtt = m << 3;		/* take the measured time to be rtt */
854 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
855 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
856 		tp->mdev_max_us = tp->rttvar_us;
857 		tp->rtt_seq = tp->snd_nxt;
858 
859 		tcp_bpf_rtt(sk);
860 	}
861 	tp->srtt_us = max(1U, srtt);
862 }
863 
864 static void tcp_update_pacing_rate(struct sock *sk)
865 {
866 	const struct tcp_sock *tp = tcp_sk(sk);
867 	u64 rate;
868 
869 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
870 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
871 
872 	/* current rate is (cwnd * mss) / srtt
873 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
874 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
875 	 *
876 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
877 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
878 	 *	 end of slow start and should slow down.
879 	 */
880 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
881 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
882 	else
883 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
884 
885 	rate *= max(tp->snd_cwnd, tp->packets_out);
886 
887 	if (likely(tp->srtt_us))
888 		do_div(rate, tp->srtt_us);
889 
890 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
891 	 * without any lock. We want to make sure compiler wont store
892 	 * intermediate values in this location.
893 	 */
894 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
895 					     sk->sk_max_pacing_rate));
896 }
897 
898 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
899  * routine referred to above.
900  */
901 static void tcp_set_rto(struct sock *sk)
902 {
903 	const struct tcp_sock *tp = tcp_sk(sk);
904 	/* Old crap is replaced with new one. 8)
905 	 *
906 	 * More seriously:
907 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
908 	 *    It cannot be less due to utterly erratic ACK generation made
909 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
910 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
911 	 *    is invisible. Actually, Linux-2.4 also generates erratic
912 	 *    ACKs in some circumstances.
913 	 */
914 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
915 
916 	/* 2. Fixups made earlier cannot be right.
917 	 *    If we do not estimate RTO correctly without them,
918 	 *    all the algo is pure shit and should be replaced
919 	 *    with correct one. It is exactly, which we pretend to do.
920 	 */
921 
922 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
923 	 * guarantees that rto is higher.
924 	 */
925 	tcp_bound_rto(sk);
926 }
927 
928 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
929 {
930 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
931 
932 	if (!cwnd)
933 		cwnd = TCP_INIT_CWND;
934 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
935 }
936 
937 struct tcp_sacktag_state {
938 	/* Timestamps for earliest and latest never-retransmitted segment
939 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
940 	 * but congestion control should still get an accurate delay signal.
941 	 */
942 	u64	first_sackt;
943 	u64	last_sackt;
944 	u32	reord;
945 	u32	sack_delivered;
946 	int	flag;
947 	unsigned int mss_now;
948 	struct rate_sample *rate;
949 };
950 
951 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
952  * and spurious retransmission information if this DSACK is unlikely caused by
953  * sender's action:
954  * - DSACKed sequence range is larger than maximum receiver's window.
955  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
956  */
957 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
958 			  u32 end_seq, struct tcp_sacktag_state *state)
959 {
960 	u32 seq_len, dup_segs = 1;
961 
962 	if (!before(start_seq, end_seq))
963 		return 0;
964 
965 	seq_len = end_seq - start_seq;
966 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
967 	if (seq_len > tp->max_window)
968 		return 0;
969 	if (seq_len > tp->mss_cache)
970 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
971 
972 	tp->dsack_dups += dup_segs;
973 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
974 	if (tp->dsack_dups > tp->total_retrans)
975 		return 0;
976 
977 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
978 	tp->rack.dsack_seen = 1;
979 
980 	state->flag |= FLAG_DSACKING_ACK;
981 	/* A spurious retransmission is delivered */
982 	state->sack_delivered += dup_segs;
983 
984 	return dup_segs;
985 }
986 
987 /* It's reordering when higher sequence was delivered (i.e. sacked) before
988  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
989  * distance is approximated in full-mss packet distance ("reordering").
990  */
991 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
992 				      const int ts)
993 {
994 	struct tcp_sock *tp = tcp_sk(sk);
995 	const u32 mss = tp->mss_cache;
996 	u32 fack, metric;
997 
998 	fack = tcp_highest_sack_seq(tp);
999 	if (!before(low_seq, fack))
1000 		return;
1001 
1002 	metric = fack - low_seq;
1003 	if ((metric > tp->reordering * mss) && mss) {
1004 #if FASTRETRANS_DEBUG > 1
1005 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1006 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1007 			 tp->reordering,
1008 			 0,
1009 			 tp->sacked_out,
1010 			 tp->undo_marker ? tp->undo_retrans : 0);
1011 #endif
1012 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1013 				       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1014 	}
1015 
1016 	/* This exciting event is worth to be remembered. 8) */
1017 	tp->reord_seen++;
1018 	NET_INC_STATS(sock_net(sk),
1019 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1020 }
1021 
1022  /* This must be called before lost_out or retrans_out are updated
1023   * on a new loss, because we want to know if all skbs previously
1024   * known to be lost have already been retransmitted, indicating
1025   * that this newly lost skb is our next skb to retransmit.
1026   */
1027 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1028 {
1029 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1030 	    (tp->retransmit_skb_hint &&
1031 	     before(TCP_SKB_CB(skb)->seq,
1032 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1033 		tp->retransmit_skb_hint = skb;
1034 }
1035 
1036 /* Sum the number of packets on the wire we have marked as lost, and
1037  * notify the congestion control module that the given skb was marked lost.
1038  */
1039 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1040 {
1041 	tp->lost += tcp_skb_pcount(skb);
1042 }
1043 
1044 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1045 {
1046 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1047 	struct tcp_sock *tp = tcp_sk(sk);
1048 
1049 	if (sacked & TCPCB_SACKED_ACKED)
1050 		return;
1051 
1052 	tcp_verify_retransmit_hint(tp, skb);
1053 	if (sacked & TCPCB_LOST) {
1054 		if (sacked & TCPCB_SACKED_RETRANS) {
1055 			/* Account for retransmits that are lost again */
1056 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1057 			tp->retrans_out -= tcp_skb_pcount(skb);
1058 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1059 				      tcp_skb_pcount(skb));
1060 			tcp_notify_skb_loss_event(tp, skb);
1061 		}
1062 	} else {
1063 		tp->lost_out += tcp_skb_pcount(skb);
1064 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1065 		tcp_notify_skb_loss_event(tp, skb);
1066 	}
1067 }
1068 
1069 /* Updates the delivered and delivered_ce counts */
1070 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1071 				bool ece_ack)
1072 {
1073 	tp->delivered += delivered;
1074 	if (ece_ack)
1075 		tp->delivered_ce += delivered;
1076 }
1077 
1078 /* This procedure tags the retransmission queue when SACKs arrive.
1079  *
1080  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1081  * Packets in queue with these bits set are counted in variables
1082  * sacked_out, retrans_out and lost_out, correspondingly.
1083  *
1084  * Valid combinations are:
1085  * Tag  InFlight	Description
1086  * 0	1		- orig segment is in flight.
1087  * S	0		- nothing flies, orig reached receiver.
1088  * L	0		- nothing flies, orig lost by net.
1089  * R	2		- both orig and retransmit are in flight.
1090  * L|R	1		- orig is lost, retransmit is in flight.
1091  * S|R  1		- orig reached receiver, retrans is still in flight.
1092  * (L|S|R is logically valid, it could occur when L|R is sacked,
1093  *  but it is equivalent to plain S and code short-curcuits it to S.
1094  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1095  *
1096  * These 6 states form finite state machine, controlled by the following events:
1097  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1098  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1099  * 3. Loss detection event of two flavors:
1100  *	A. Scoreboard estimator decided the packet is lost.
1101  *	   A'. Reno "three dupacks" marks head of queue lost.
1102  *	B. SACK arrives sacking SND.NXT at the moment, when the
1103  *	   segment was retransmitted.
1104  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1105  *
1106  * It is pleasant to note, that state diagram turns out to be commutative,
1107  * so that we are allowed not to be bothered by order of our actions,
1108  * when multiple events arrive simultaneously. (see the function below).
1109  *
1110  * Reordering detection.
1111  * --------------------
1112  * Reordering metric is maximal distance, which a packet can be displaced
1113  * in packet stream. With SACKs we can estimate it:
1114  *
1115  * 1. SACK fills old hole and the corresponding segment was not
1116  *    ever retransmitted -> reordering. Alas, we cannot use it
1117  *    when segment was retransmitted.
1118  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1119  *    for retransmitted and already SACKed segment -> reordering..
1120  * Both of these heuristics are not used in Loss state, when we cannot
1121  * account for retransmits accurately.
1122  *
1123  * SACK block validation.
1124  * ----------------------
1125  *
1126  * SACK block range validation checks that the received SACK block fits to
1127  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1128  * Note that SND.UNA is not included to the range though being valid because
1129  * it means that the receiver is rather inconsistent with itself reporting
1130  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1131  * perfectly valid, however, in light of RFC2018 which explicitly states
1132  * that "SACK block MUST reflect the newest segment.  Even if the newest
1133  * segment is going to be discarded ...", not that it looks very clever
1134  * in case of head skb. Due to potentional receiver driven attacks, we
1135  * choose to avoid immediate execution of a walk in write queue due to
1136  * reneging and defer head skb's loss recovery to standard loss recovery
1137  * procedure that will eventually trigger (nothing forbids us doing this).
1138  *
1139  * Implements also blockage to start_seq wrap-around. Problem lies in the
1140  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1141  * there's no guarantee that it will be before snd_nxt (n). The problem
1142  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1143  * wrap (s_w):
1144  *
1145  *         <- outs wnd ->                          <- wrapzone ->
1146  *         u     e      n                         u_w   e_w  s n_w
1147  *         |     |      |                          |     |   |  |
1148  * |<------------+------+----- TCP seqno space --------------+---------->|
1149  * ...-- <2^31 ->|                                           |<--------...
1150  * ...---- >2^31 ------>|                                    |<--------...
1151  *
1152  * Current code wouldn't be vulnerable but it's better still to discard such
1153  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1154  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1155  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1156  * equal to the ideal case (infinite seqno space without wrap caused issues).
1157  *
1158  * With D-SACK the lower bound is extended to cover sequence space below
1159  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1160  * again, D-SACK block must not to go across snd_una (for the same reason as
1161  * for the normal SACK blocks, explained above). But there all simplicity
1162  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1163  * fully below undo_marker they do not affect behavior in anyway and can
1164  * therefore be safely ignored. In rare cases (which are more or less
1165  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1166  * fragmentation and packet reordering past skb's retransmission. To consider
1167  * them correctly, the acceptable range must be extended even more though
1168  * the exact amount is rather hard to quantify. However, tp->max_window can
1169  * be used as an exaggerated estimate.
1170  */
1171 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1172 				   u32 start_seq, u32 end_seq)
1173 {
1174 	/* Too far in future, or reversed (interpretation is ambiguous) */
1175 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1176 		return false;
1177 
1178 	/* Nasty start_seq wrap-around check (see comments above) */
1179 	if (!before(start_seq, tp->snd_nxt))
1180 		return false;
1181 
1182 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1183 	 * start_seq == snd_una is non-sensical (see comments above)
1184 	 */
1185 	if (after(start_seq, tp->snd_una))
1186 		return true;
1187 
1188 	if (!is_dsack || !tp->undo_marker)
1189 		return false;
1190 
1191 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1192 	if (after(end_seq, tp->snd_una))
1193 		return false;
1194 
1195 	if (!before(start_seq, tp->undo_marker))
1196 		return true;
1197 
1198 	/* Too old */
1199 	if (!after(end_seq, tp->undo_marker))
1200 		return false;
1201 
1202 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1203 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1204 	 */
1205 	return !before(start_seq, end_seq - tp->max_window);
1206 }
1207 
1208 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1209 			    struct tcp_sack_block_wire *sp, int num_sacks,
1210 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1211 {
1212 	struct tcp_sock *tp = tcp_sk(sk);
1213 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1214 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1215 	u32 dup_segs;
1216 
1217 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1218 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1219 	} else if (num_sacks > 1) {
1220 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1221 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1222 
1223 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1224 			return false;
1225 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1226 	} else {
1227 		return false;
1228 	}
1229 
1230 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1231 	if (!dup_segs) {	/* Skip dubious DSACK */
1232 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1233 		return false;
1234 	}
1235 
1236 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1237 
1238 	/* D-SACK for already forgotten data... Do dumb counting. */
1239 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1240 	    !after(end_seq_0, prior_snd_una) &&
1241 	    after(end_seq_0, tp->undo_marker))
1242 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1243 
1244 	return true;
1245 }
1246 
1247 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1248  * the incoming SACK may not exactly match but we can find smaller MSS
1249  * aligned portion of it that matches. Therefore we might need to fragment
1250  * which may fail and creates some hassle (caller must handle error case
1251  * returns).
1252  *
1253  * FIXME: this could be merged to shift decision code
1254  */
1255 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1256 				  u32 start_seq, u32 end_seq)
1257 {
1258 	int err;
1259 	bool in_sack;
1260 	unsigned int pkt_len;
1261 	unsigned int mss;
1262 
1263 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1264 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1265 
1266 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1267 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1268 		mss = tcp_skb_mss(skb);
1269 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1270 
1271 		if (!in_sack) {
1272 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1273 			if (pkt_len < mss)
1274 				pkt_len = mss;
1275 		} else {
1276 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1277 			if (pkt_len < mss)
1278 				return -EINVAL;
1279 		}
1280 
1281 		/* Round if necessary so that SACKs cover only full MSSes
1282 		 * and/or the remaining small portion (if present)
1283 		 */
1284 		if (pkt_len > mss) {
1285 			unsigned int new_len = (pkt_len / mss) * mss;
1286 			if (!in_sack && new_len < pkt_len)
1287 				new_len += mss;
1288 			pkt_len = new_len;
1289 		}
1290 
1291 		if (pkt_len >= skb->len && !in_sack)
1292 			return 0;
1293 
1294 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1295 				   pkt_len, mss, GFP_ATOMIC);
1296 		if (err < 0)
1297 			return err;
1298 	}
1299 
1300 	return in_sack;
1301 }
1302 
1303 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1304 static u8 tcp_sacktag_one(struct sock *sk,
1305 			  struct tcp_sacktag_state *state, u8 sacked,
1306 			  u32 start_seq, u32 end_seq,
1307 			  int dup_sack, int pcount,
1308 			  u64 xmit_time)
1309 {
1310 	struct tcp_sock *tp = tcp_sk(sk);
1311 
1312 	/* Account D-SACK for retransmitted packet. */
1313 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1314 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1315 		    after(end_seq, tp->undo_marker))
1316 			tp->undo_retrans--;
1317 		if ((sacked & TCPCB_SACKED_ACKED) &&
1318 		    before(start_seq, state->reord))
1319 				state->reord = start_seq;
1320 	}
1321 
1322 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1323 	if (!after(end_seq, tp->snd_una))
1324 		return sacked;
1325 
1326 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1327 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1328 
1329 		if (sacked & TCPCB_SACKED_RETRANS) {
1330 			/* If the segment is not tagged as lost,
1331 			 * we do not clear RETRANS, believing
1332 			 * that retransmission is still in flight.
1333 			 */
1334 			if (sacked & TCPCB_LOST) {
1335 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1336 				tp->lost_out -= pcount;
1337 				tp->retrans_out -= pcount;
1338 			}
1339 		} else {
1340 			if (!(sacked & TCPCB_RETRANS)) {
1341 				/* New sack for not retransmitted frame,
1342 				 * which was in hole. It is reordering.
1343 				 */
1344 				if (before(start_seq,
1345 					   tcp_highest_sack_seq(tp)) &&
1346 				    before(start_seq, state->reord))
1347 					state->reord = start_seq;
1348 
1349 				if (!after(end_seq, tp->high_seq))
1350 					state->flag |= FLAG_ORIG_SACK_ACKED;
1351 				if (state->first_sackt == 0)
1352 					state->first_sackt = xmit_time;
1353 				state->last_sackt = xmit_time;
1354 			}
1355 
1356 			if (sacked & TCPCB_LOST) {
1357 				sacked &= ~TCPCB_LOST;
1358 				tp->lost_out -= pcount;
1359 			}
1360 		}
1361 
1362 		sacked |= TCPCB_SACKED_ACKED;
1363 		state->flag |= FLAG_DATA_SACKED;
1364 		tp->sacked_out += pcount;
1365 		/* Out-of-order packets delivered */
1366 		state->sack_delivered += pcount;
1367 
1368 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1369 		if (tp->lost_skb_hint &&
1370 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1371 			tp->lost_cnt_hint += pcount;
1372 	}
1373 
1374 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1375 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1376 	 * are accounted above as well.
1377 	 */
1378 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1379 		sacked &= ~TCPCB_SACKED_RETRANS;
1380 		tp->retrans_out -= pcount;
1381 	}
1382 
1383 	return sacked;
1384 }
1385 
1386 /* Shift newly-SACKed bytes from this skb to the immediately previous
1387  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1388  */
1389 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1390 			    struct sk_buff *skb,
1391 			    struct tcp_sacktag_state *state,
1392 			    unsigned int pcount, int shifted, int mss,
1393 			    bool dup_sack)
1394 {
1395 	struct tcp_sock *tp = tcp_sk(sk);
1396 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1397 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1398 
1399 	BUG_ON(!pcount);
1400 
1401 	/* Adjust counters and hints for the newly sacked sequence
1402 	 * range but discard the return value since prev is already
1403 	 * marked. We must tag the range first because the seq
1404 	 * advancement below implicitly advances
1405 	 * tcp_highest_sack_seq() when skb is highest_sack.
1406 	 */
1407 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1408 			start_seq, end_seq, dup_sack, pcount,
1409 			tcp_skb_timestamp_us(skb));
1410 	tcp_rate_skb_delivered(sk, skb, state->rate);
1411 
1412 	if (skb == tp->lost_skb_hint)
1413 		tp->lost_cnt_hint += pcount;
1414 
1415 	TCP_SKB_CB(prev)->end_seq += shifted;
1416 	TCP_SKB_CB(skb)->seq += shifted;
1417 
1418 	tcp_skb_pcount_add(prev, pcount);
1419 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1420 	tcp_skb_pcount_add(skb, -pcount);
1421 
1422 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1423 	 * in theory this shouldn't be necessary but as long as DSACK
1424 	 * code can come after this skb later on it's better to keep
1425 	 * setting gso_size to something.
1426 	 */
1427 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1428 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1429 
1430 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1431 	if (tcp_skb_pcount(skb) <= 1)
1432 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1433 
1434 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1435 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1436 
1437 	if (skb->len > 0) {
1438 		BUG_ON(!tcp_skb_pcount(skb));
1439 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1440 		return false;
1441 	}
1442 
1443 	/* Whole SKB was eaten :-) */
1444 
1445 	if (skb == tp->retransmit_skb_hint)
1446 		tp->retransmit_skb_hint = prev;
1447 	if (skb == tp->lost_skb_hint) {
1448 		tp->lost_skb_hint = prev;
1449 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1450 	}
1451 
1452 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1453 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1454 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1455 		TCP_SKB_CB(prev)->end_seq++;
1456 
1457 	if (skb == tcp_highest_sack(sk))
1458 		tcp_advance_highest_sack(sk, skb);
1459 
1460 	tcp_skb_collapse_tstamp(prev, skb);
1461 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1462 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1463 
1464 	tcp_rtx_queue_unlink_and_free(skb, sk);
1465 
1466 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1467 
1468 	return true;
1469 }
1470 
1471 /* I wish gso_size would have a bit more sane initialization than
1472  * something-or-zero which complicates things
1473  */
1474 static int tcp_skb_seglen(const struct sk_buff *skb)
1475 {
1476 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1477 }
1478 
1479 /* Shifting pages past head area doesn't work */
1480 static int skb_can_shift(const struct sk_buff *skb)
1481 {
1482 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1483 }
1484 
1485 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1486 		  int pcount, int shiftlen)
1487 {
1488 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1489 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1490 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1491 	 * even if current MSS is bigger.
1492 	 */
1493 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1494 		return 0;
1495 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1496 		return 0;
1497 	return skb_shift(to, from, shiftlen);
1498 }
1499 
1500 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1501  * skb.
1502  */
1503 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1504 					  struct tcp_sacktag_state *state,
1505 					  u32 start_seq, u32 end_seq,
1506 					  bool dup_sack)
1507 {
1508 	struct tcp_sock *tp = tcp_sk(sk);
1509 	struct sk_buff *prev;
1510 	int mss;
1511 	int pcount = 0;
1512 	int len;
1513 	int in_sack;
1514 
1515 	/* Normally R but no L won't result in plain S */
1516 	if (!dup_sack &&
1517 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1518 		goto fallback;
1519 	if (!skb_can_shift(skb))
1520 		goto fallback;
1521 	/* This frame is about to be dropped (was ACKed). */
1522 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1523 		goto fallback;
1524 
1525 	/* Can only happen with delayed DSACK + discard craziness */
1526 	prev = skb_rb_prev(skb);
1527 	if (!prev)
1528 		goto fallback;
1529 
1530 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1531 		goto fallback;
1532 
1533 	if (!tcp_skb_can_collapse(prev, skb))
1534 		goto fallback;
1535 
1536 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1537 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1538 
1539 	if (in_sack) {
1540 		len = skb->len;
1541 		pcount = tcp_skb_pcount(skb);
1542 		mss = tcp_skb_seglen(skb);
1543 
1544 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1545 		 * drop this restriction as unnecessary
1546 		 */
1547 		if (mss != tcp_skb_seglen(prev))
1548 			goto fallback;
1549 	} else {
1550 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1551 			goto noop;
1552 		/* CHECKME: This is non-MSS split case only?, this will
1553 		 * cause skipped skbs due to advancing loop btw, original
1554 		 * has that feature too
1555 		 */
1556 		if (tcp_skb_pcount(skb) <= 1)
1557 			goto noop;
1558 
1559 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1560 		if (!in_sack) {
1561 			/* TODO: head merge to next could be attempted here
1562 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1563 			 * though it might not be worth of the additional hassle
1564 			 *
1565 			 * ...we can probably just fallback to what was done
1566 			 * previously. We could try merging non-SACKed ones
1567 			 * as well but it probably isn't going to buy off
1568 			 * because later SACKs might again split them, and
1569 			 * it would make skb timestamp tracking considerably
1570 			 * harder problem.
1571 			 */
1572 			goto fallback;
1573 		}
1574 
1575 		len = end_seq - TCP_SKB_CB(skb)->seq;
1576 		BUG_ON(len < 0);
1577 		BUG_ON(len > skb->len);
1578 
1579 		/* MSS boundaries should be honoured or else pcount will
1580 		 * severely break even though it makes things bit trickier.
1581 		 * Optimize common case to avoid most of the divides
1582 		 */
1583 		mss = tcp_skb_mss(skb);
1584 
1585 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1586 		 * drop this restriction as unnecessary
1587 		 */
1588 		if (mss != tcp_skb_seglen(prev))
1589 			goto fallback;
1590 
1591 		if (len == mss) {
1592 			pcount = 1;
1593 		} else if (len < mss) {
1594 			goto noop;
1595 		} else {
1596 			pcount = len / mss;
1597 			len = pcount * mss;
1598 		}
1599 	}
1600 
1601 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1602 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1603 		goto fallback;
1604 
1605 	if (!tcp_skb_shift(prev, skb, pcount, len))
1606 		goto fallback;
1607 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1608 		goto out;
1609 
1610 	/* Hole filled allows collapsing with the next as well, this is very
1611 	 * useful when hole on every nth skb pattern happens
1612 	 */
1613 	skb = skb_rb_next(prev);
1614 	if (!skb)
1615 		goto out;
1616 
1617 	if (!skb_can_shift(skb) ||
1618 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1619 	    (mss != tcp_skb_seglen(skb)))
1620 		goto out;
1621 
1622 	len = skb->len;
1623 	pcount = tcp_skb_pcount(skb);
1624 	if (tcp_skb_shift(prev, skb, pcount, len))
1625 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1626 				len, mss, 0);
1627 
1628 out:
1629 	return prev;
1630 
1631 noop:
1632 	return skb;
1633 
1634 fallback:
1635 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1636 	return NULL;
1637 }
1638 
1639 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1640 					struct tcp_sack_block *next_dup,
1641 					struct tcp_sacktag_state *state,
1642 					u32 start_seq, u32 end_seq,
1643 					bool dup_sack_in)
1644 {
1645 	struct tcp_sock *tp = tcp_sk(sk);
1646 	struct sk_buff *tmp;
1647 
1648 	skb_rbtree_walk_from(skb) {
1649 		int in_sack = 0;
1650 		bool dup_sack = dup_sack_in;
1651 
1652 		/* queue is in-order => we can short-circuit the walk early */
1653 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1654 			break;
1655 
1656 		if (next_dup  &&
1657 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1658 			in_sack = tcp_match_skb_to_sack(sk, skb,
1659 							next_dup->start_seq,
1660 							next_dup->end_seq);
1661 			if (in_sack > 0)
1662 				dup_sack = true;
1663 		}
1664 
1665 		/* skb reference here is a bit tricky to get right, since
1666 		 * shifting can eat and free both this skb and the next,
1667 		 * so not even _safe variant of the loop is enough.
1668 		 */
1669 		if (in_sack <= 0) {
1670 			tmp = tcp_shift_skb_data(sk, skb, state,
1671 						 start_seq, end_seq, dup_sack);
1672 			if (tmp) {
1673 				if (tmp != skb) {
1674 					skb = tmp;
1675 					continue;
1676 				}
1677 
1678 				in_sack = 0;
1679 			} else {
1680 				in_sack = tcp_match_skb_to_sack(sk, skb,
1681 								start_seq,
1682 								end_seq);
1683 			}
1684 		}
1685 
1686 		if (unlikely(in_sack < 0))
1687 			break;
1688 
1689 		if (in_sack) {
1690 			TCP_SKB_CB(skb)->sacked =
1691 				tcp_sacktag_one(sk,
1692 						state,
1693 						TCP_SKB_CB(skb)->sacked,
1694 						TCP_SKB_CB(skb)->seq,
1695 						TCP_SKB_CB(skb)->end_seq,
1696 						dup_sack,
1697 						tcp_skb_pcount(skb),
1698 						tcp_skb_timestamp_us(skb));
1699 			tcp_rate_skb_delivered(sk, skb, state->rate);
1700 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1701 				list_del_init(&skb->tcp_tsorted_anchor);
1702 
1703 			if (!before(TCP_SKB_CB(skb)->seq,
1704 				    tcp_highest_sack_seq(tp)))
1705 				tcp_advance_highest_sack(sk, skb);
1706 		}
1707 	}
1708 	return skb;
1709 }
1710 
1711 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1712 {
1713 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1714 	struct sk_buff *skb;
1715 
1716 	while (*p) {
1717 		parent = *p;
1718 		skb = rb_to_skb(parent);
1719 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1720 			p = &parent->rb_left;
1721 			continue;
1722 		}
1723 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1724 			p = &parent->rb_right;
1725 			continue;
1726 		}
1727 		return skb;
1728 	}
1729 	return NULL;
1730 }
1731 
1732 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1733 					u32 skip_to_seq)
1734 {
1735 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1736 		return skb;
1737 
1738 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1739 }
1740 
1741 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1742 						struct sock *sk,
1743 						struct tcp_sack_block *next_dup,
1744 						struct tcp_sacktag_state *state,
1745 						u32 skip_to_seq)
1746 {
1747 	if (!next_dup)
1748 		return skb;
1749 
1750 	if (before(next_dup->start_seq, skip_to_seq)) {
1751 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1752 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1753 				       next_dup->start_seq, next_dup->end_seq,
1754 				       1);
1755 	}
1756 
1757 	return skb;
1758 }
1759 
1760 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1761 {
1762 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1763 }
1764 
1765 static int
1766 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1767 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1768 {
1769 	struct tcp_sock *tp = tcp_sk(sk);
1770 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1771 				    TCP_SKB_CB(ack_skb)->sacked);
1772 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1773 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1774 	struct tcp_sack_block *cache;
1775 	struct sk_buff *skb;
1776 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1777 	int used_sacks;
1778 	bool found_dup_sack = false;
1779 	int i, j;
1780 	int first_sack_index;
1781 
1782 	state->flag = 0;
1783 	state->reord = tp->snd_nxt;
1784 
1785 	if (!tp->sacked_out)
1786 		tcp_highest_sack_reset(sk);
1787 
1788 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1789 					 num_sacks, prior_snd_una, state);
1790 
1791 	/* Eliminate too old ACKs, but take into
1792 	 * account more or less fresh ones, they can
1793 	 * contain valid SACK info.
1794 	 */
1795 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1796 		return 0;
1797 
1798 	if (!tp->packets_out)
1799 		goto out;
1800 
1801 	used_sacks = 0;
1802 	first_sack_index = 0;
1803 	for (i = 0; i < num_sacks; i++) {
1804 		bool dup_sack = !i && found_dup_sack;
1805 
1806 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1807 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1808 
1809 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1810 					    sp[used_sacks].start_seq,
1811 					    sp[used_sacks].end_seq)) {
1812 			int mib_idx;
1813 
1814 			if (dup_sack) {
1815 				if (!tp->undo_marker)
1816 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1817 				else
1818 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1819 			} else {
1820 				/* Don't count olds caused by ACK reordering */
1821 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1822 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1823 					continue;
1824 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1825 			}
1826 
1827 			NET_INC_STATS(sock_net(sk), mib_idx);
1828 			if (i == 0)
1829 				first_sack_index = -1;
1830 			continue;
1831 		}
1832 
1833 		/* Ignore very old stuff early */
1834 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1835 			if (i == 0)
1836 				first_sack_index = -1;
1837 			continue;
1838 		}
1839 
1840 		used_sacks++;
1841 	}
1842 
1843 	/* order SACK blocks to allow in order walk of the retrans queue */
1844 	for (i = used_sacks - 1; i > 0; i--) {
1845 		for (j = 0; j < i; j++) {
1846 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1847 				swap(sp[j], sp[j + 1]);
1848 
1849 				/* Track where the first SACK block goes to */
1850 				if (j == first_sack_index)
1851 					first_sack_index = j + 1;
1852 			}
1853 		}
1854 	}
1855 
1856 	state->mss_now = tcp_current_mss(sk);
1857 	skb = NULL;
1858 	i = 0;
1859 
1860 	if (!tp->sacked_out) {
1861 		/* It's already past, so skip checking against it */
1862 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1863 	} else {
1864 		cache = tp->recv_sack_cache;
1865 		/* Skip empty blocks in at head of the cache */
1866 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1867 		       !cache->end_seq)
1868 			cache++;
1869 	}
1870 
1871 	while (i < used_sacks) {
1872 		u32 start_seq = sp[i].start_seq;
1873 		u32 end_seq = sp[i].end_seq;
1874 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1875 		struct tcp_sack_block *next_dup = NULL;
1876 
1877 		if (found_dup_sack && ((i + 1) == first_sack_index))
1878 			next_dup = &sp[i + 1];
1879 
1880 		/* Skip too early cached blocks */
1881 		while (tcp_sack_cache_ok(tp, cache) &&
1882 		       !before(start_seq, cache->end_seq))
1883 			cache++;
1884 
1885 		/* Can skip some work by looking recv_sack_cache? */
1886 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1887 		    after(end_seq, cache->start_seq)) {
1888 
1889 			/* Head todo? */
1890 			if (before(start_seq, cache->start_seq)) {
1891 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1892 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1893 						       state,
1894 						       start_seq,
1895 						       cache->start_seq,
1896 						       dup_sack);
1897 			}
1898 
1899 			/* Rest of the block already fully processed? */
1900 			if (!after(end_seq, cache->end_seq))
1901 				goto advance_sp;
1902 
1903 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1904 						       state,
1905 						       cache->end_seq);
1906 
1907 			/* ...tail remains todo... */
1908 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1909 				/* ...but better entrypoint exists! */
1910 				skb = tcp_highest_sack(sk);
1911 				if (!skb)
1912 					break;
1913 				cache++;
1914 				goto walk;
1915 			}
1916 
1917 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1918 			/* Check overlap against next cached too (past this one already) */
1919 			cache++;
1920 			continue;
1921 		}
1922 
1923 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1924 			skb = tcp_highest_sack(sk);
1925 			if (!skb)
1926 				break;
1927 		}
1928 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1929 
1930 walk:
1931 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1932 				       start_seq, end_seq, dup_sack);
1933 
1934 advance_sp:
1935 		i++;
1936 	}
1937 
1938 	/* Clear the head of the cache sack blocks so we can skip it next time */
1939 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1940 		tp->recv_sack_cache[i].start_seq = 0;
1941 		tp->recv_sack_cache[i].end_seq = 0;
1942 	}
1943 	for (j = 0; j < used_sacks; j++)
1944 		tp->recv_sack_cache[i++] = sp[j];
1945 
1946 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1947 		tcp_check_sack_reordering(sk, state->reord, 0);
1948 
1949 	tcp_verify_left_out(tp);
1950 out:
1951 
1952 #if FASTRETRANS_DEBUG > 0
1953 	WARN_ON((int)tp->sacked_out < 0);
1954 	WARN_ON((int)tp->lost_out < 0);
1955 	WARN_ON((int)tp->retrans_out < 0);
1956 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1957 #endif
1958 	return state->flag;
1959 }
1960 
1961 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1962  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1963  */
1964 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1965 {
1966 	u32 holes;
1967 
1968 	holes = max(tp->lost_out, 1U);
1969 	holes = min(holes, tp->packets_out);
1970 
1971 	if ((tp->sacked_out + holes) > tp->packets_out) {
1972 		tp->sacked_out = tp->packets_out - holes;
1973 		return true;
1974 	}
1975 	return false;
1976 }
1977 
1978 /* If we receive more dupacks than we expected counting segments
1979  * in assumption of absent reordering, interpret this as reordering.
1980  * The only another reason could be bug in receiver TCP.
1981  */
1982 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1983 {
1984 	struct tcp_sock *tp = tcp_sk(sk);
1985 
1986 	if (!tcp_limit_reno_sacked(tp))
1987 		return;
1988 
1989 	tp->reordering = min_t(u32, tp->packets_out + addend,
1990 			       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1991 	tp->reord_seen++;
1992 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1993 }
1994 
1995 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1996 
1997 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
1998 {
1999 	if (num_dupack) {
2000 		struct tcp_sock *tp = tcp_sk(sk);
2001 		u32 prior_sacked = tp->sacked_out;
2002 		s32 delivered;
2003 
2004 		tp->sacked_out += num_dupack;
2005 		tcp_check_reno_reordering(sk, 0);
2006 		delivered = tp->sacked_out - prior_sacked;
2007 		if (delivered > 0)
2008 			tcp_count_delivered(tp, delivered, ece_ack);
2009 		tcp_verify_left_out(tp);
2010 	}
2011 }
2012 
2013 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2014 
2015 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2016 {
2017 	struct tcp_sock *tp = tcp_sk(sk);
2018 
2019 	if (acked > 0) {
2020 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2021 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2022 				    ece_ack);
2023 		if (acked - 1 >= tp->sacked_out)
2024 			tp->sacked_out = 0;
2025 		else
2026 			tp->sacked_out -= acked - 1;
2027 	}
2028 	tcp_check_reno_reordering(sk, acked);
2029 	tcp_verify_left_out(tp);
2030 }
2031 
2032 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2033 {
2034 	tp->sacked_out = 0;
2035 }
2036 
2037 void tcp_clear_retrans(struct tcp_sock *tp)
2038 {
2039 	tp->retrans_out = 0;
2040 	tp->lost_out = 0;
2041 	tp->undo_marker = 0;
2042 	tp->undo_retrans = -1;
2043 	tp->sacked_out = 0;
2044 }
2045 
2046 static inline void tcp_init_undo(struct tcp_sock *tp)
2047 {
2048 	tp->undo_marker = tp->snd_una;
2049 	/* Retransmission still in flight may cause DSACKs later. */
2050 	tp->undo_retrans = tp->retrans_out ? : -1;
2051 }
2052 
2053 static bool tcp_is_rack(const struct sock *sk)
2054 {
2055 	return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2056 }
2057 
2058 /* If we detect SACK reneging, forget all SACK information
2059  * and reset tags completely, otherwise preserve SACKs. If receiver
2060  * dropped its ofo queue, we will know this due to reneging detection.
2061  */
2062 static void tcp_timeout_mark_lost(struct sock *sk)
2063 {
2064 	struct tcp_sock *tp = tcp_sk(sk);
2065 	struct sk_buff *skb, *head;
2066 	bool is_reneg;			/* is receiver reneging on SACKs? */
2067 
2068 	head = tcp_rtx_queue_head(sk);
2069 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2070 	if (is_reneg) {
2071 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2072 		tp->sacked_out = 0;
2073 		/* Mark SACK reneging until we recover from this loss event. */
2074 		tp->is_sack_reneg = 1;
2075 	} else if (tcp_is_reno(tp)) {
2076 		tcp_reset_reno_sack(tp);
2077 	}
2078 
2079 	skb = head;
2080 	skb_rbtree_walk_from(skb) {
2081 		if (is_reneg)
2082 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2083 		else if (tcp_is_rack(sk) && skb != head &&
2084 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2085 			continue; /* Don't mark recently sent ones lost yet */
2086 		tcp_mark_skb_lost(sk, skb);
2087 	}
2088 	tcp_verify_left_out(tp);
2089 	tcp_clear_all_retrans_hints(tp);
2090 }
2091 
2092 /* Enter Loss state. */
2093 void tcp_enter_loss(struct sock *sk)
2094 {
2095 	const struct inet_connection_sock *icsk = inet_csk(sk);
2096 	struct tcp_sock *tp = tcp_sk(sk);
2097 	struct net *net = sock_net(sk);
2098 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2099 
2100 	tcp_timeout_mark_lost(sk);
2101 
2102 	/* Reduce ssthresh if it has not yet been made inside this window. */
2103 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2104 	    !after(tp->high_seq, tp->snd_una) ||
2105 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2106 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2107 		tp->prior_cwnd = tp->snd_cwnd;
2108 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2109 		tcp_ca_event(sk, CA_EVENT_LOSS);
2110 		tcp_init_undo(tp);
2111 	}
2112 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2113 	tp->snd_cwnd_cnt   = 0;
2114 	tp->snd_cwnd_stamp = tcp_jiffies32;
2115 
2116 	/* Timeout in disordered state after receiving substantial DUPACKs
2117 	 * suggests that the degree of reordering is over-estimated.
2118 	 */
2119 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2120 	    tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2121 		tp->reordering = min_t(unsigned int, tp->reordering,
2122 				       net->ipv4.sysctl_tcp_reordering);
2123 	tcp_set_ca_state(sk, TCP_CA_Loss);
2124 	tp->high_seq = tp->snd_nxt;
2125 	tcp_ecn_queue_cwr(tp);
2126 
2127 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2128 	 * loss recovery is underway except recurring timeout(s) on
2129 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2130 	 */
2131 	tp->frto = net->ipv4.sysctl_tcp_frto &&
2132 		   (new_recovery || icsk->icsk_retransmits) &&
2133 		   !inet_csk(sk)->icsk_mtup.probe_size;
2134 }
2135 
2136 /* If ACK arrived pointing to a remembered SACK, it means that our
2137  * remembered SACKs do not reflect real state of receiver i.e.
2138  * receiver _host_ is heavily congested (or buggy).
2139  *
2140  * To avoid big spurious retransmission bursts due to transient SACK
2141  * scoreboard oddities that look like reneging, we give the receiver a
2142  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2143  * restore sanity to the SACK scoreboard. If the apparent reneging
2144  * persists until this RTO then we'll clear the SACK scoreboard.
2145  */
2146 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2147 {
2148 	if (flag & FLAG_SACK_RENEGING) {
2149 		struct tcp_sock *tp = tcp_sk(sk);
2150 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2151 					  msecs_to_jiffies(10));
2152 
2153 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2154 					  delay, TCP_RTO_MAX);
2155 		return true;
2156 	}
2157 	return false;
2158 }
2159 
2160 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2161  * counter when SACK is enabled (without SACK, sacked_out is used for
2162  * that purpose).
2163  *
2164  * With reordering, holes may still be in flight, so RFC3517 recovery
2165  * uses pure sacked_out (total number of SACKed segments) even though
2166  * it violates the RFC that uses duplicate ACKs, often these are equal
2167  * but when e.g. out-of-window ACKs or packet duplication occurs,
2168  * they differ. Since neither occurs due to loss, TCP should really
2169  * ignore them.
2170  */
2171 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2172 {
2173 	return tp->sacked_out + 1;
2174 }
2175 
2176 /* Linux NewReno/SACK/ECN state machine.
2177  * --------------------------------------
2178  *
2179  * "Open"	Normal state, no dubious events, fast path.
2180  * "Disorder"   In all the respects it is "Open",
2181  *		but requires a bit more attention. It is entered when
2182  *		we see some SACKs or dupacks. It is split of "Open"
2183  *		mainly to move some processing from fast path to slow one.
2184  * "CWR"	CWND was reduced due to some Congestion Notification event.
2185  *		It can be ECN, ICMP source quench, local device congestion.
2186  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2187  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2188  *
2189  * tcp_fastretrans_alert() is entered:
2190  * - each incoming ACK, if state is not "Open"
2191  * - when arrived ACK is unusual, namely:
2192  *	* SACK
2193  *	* Duplicate ACK.
2194  *	* ECN ECE.
2195  *
2196  * Counting packets in flight is pretty simple.
2197  *
2198  *	in_flight = packets_out - left_out + retrans_out
2199  *
2200  *	packets_out is SND.NXT-SND.UNA counted in packets.
2201  *
2202  *	retrans_out is number of retransmitted segments.
2203  *
2204  *	left_out is number of segments left network, but not ACKed yet.
2205  *
2206  *		left_out = sacked_out + lost_out
2207  *
2208  *     sacked_out: Packets, which arrived to receiver out of order
2209  *		   and hence not ACKed. With SACKs this number is simply
2210  *		   amount of SACKed data. Even without SACKs
2211  *		   it is easy to give pretty reliable estimate of this number,
2212  *		   counting duplicate ACKs.
2213  *
2214  *       lost_out: Packets lost by network. TCP has no explicit
2215  *		   "loss notification" feedback from network (for now).
2216  *		   It means that this number can be only _guessed_.
2217  *		   Actually, it is the heuristics to predict lossage that
2218  *		   distinguishes different algorithms.
2219  *
2220  *	F.e. after RTO, when all the queue is considered as lost,
2221  *	lost_out = packets_out and in_flight = retrans_out.
2222  *
2223  *		Essentially, we have now a few algorithms detecting
2224  *		lost packets.
2225  *
2226  *		If the receiver supports SACK:
2227  *
2228  *		RFC6675/3517: It is the conventional algorithm. A packet is
2229  *		considered lost if the number of higher sequence packets
2230  *		SACKed is greater than or equal the DUPACK thoreshold
2231  *		(reordering). This is implemented in tcp_mark_head_lost and
2232  *		tcp_update_scoreboard.
2233  *
2234  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2235  *		(2017-) that checks timing instead of counting DUPACKs.
2236  *		Essentially a packet is considered lost if it's not S/ACKed
2237  *		after RTT + reordering_window, where both metrics are
2238  *		dynamically measured and adjusted. This is implemented in
2239  *		tcp_rack_mark_lost.
2240  *
2241  *		If the receiver does not support SACK:
2242  *
2243  *		NewReno (RFC6582): in Recovery we assume that one segment
2244  *		is lost (classic Reno). While we are in Recovery and
2245  *		a partial ACK arrives, we assume that one more packet
2246  *		is lost (NewReno). This heuristics are the same in NewReno
2247  *		and SACK.
2248  *
2249  * Really tricky (and requiring careful tuning) part of algorithm
2250  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2251  * The first determines the moment _when_ we should reduce CWND and,
2252  * hence, slow down forward transmission. In fact, it determines the moment
2253  * when we decide that hole is caused by loss, rather than by a reorder.
2254  *
2255  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2256  * holes, caused by lost packets.
2257  *
2258  * And the most logically complicated part of algorithm is undo
2259  * heuristics. We detect false retransmits due to both too early
2260  * fast retransmit (reordering) and underestimated RTO, analyzing
2261  * timestamps and D-SACKs. When we detect that some segments were
2262  * retransmitted by mistake and CWND reduction was wrong, we undo
2263  * window reduction and abort recovery phase. This logic is hidden
2264  * inside several functions named tcp_try_undo_<something>.
2265  */
2266 
2267 /* This function decides, when we should leave Disordered state
2268  * and enter Recovery phase, reducing congestion window.
2269  *
2270  * Main question: may we further continue forward transmission
2271  * with the same cwnd?
2272  */
2273 static bool tcp_time_to_recover(struct sock *sk, int flag)
2274 {
2275 	struct tcp_sock *tp = tcp_sk(sk);
2276 
2277 	/* Trick#1: The loss is proven. */
2278 	if (tp->lost_out)
2279 		return true;
2280 
2281 	/* Not-A-Trick#2 : Classic rule... */
2282 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2283 		return true;
2284 
2285 	return false;
2286 }
2287 
2288 /* Detect loss in event "A" above by marking head of queue up as lost.
2289  * For RFC3517 SACK, a segment is considered lost if it
2290  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2291  * the maximum SACKed segments to pass before reaching this limit.
2292  */
2293 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2294 {
2295 	struct tcp_sock *tp = tcp_sk(sk);
2296 	struct sk_buff *skb;
2297 	int cnt;
2298 	/* Use SACK to deduce losses of new sequences sent during recovery */
2299 	const u32 loss_high = tp->snd_nxt;
2300 
2301 	WARN_ON(packets > tp->packets_out);
2302 	skb = tp->lost_skb_hint;
2303 	if (skb) {
2304 		/* Head already handled? */
2305 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2306 			return;
2307 		cnt = tp->lost_cnt_hint;
2308 	} else {
2309 		skb = tcp_rtx_queue_head(sk);
2310 		cnt = 0;
2311 	}
2312 
2313 	skb_rbtree_walk_from(skb) {
2314 		/* TODO: do this better */
2315 		/* this is not the most efficient way to do this... */
2316 		tp->lost_skb_hint = skb;
2317 		tp->lost_cnt_hint = cnt;
2318 
2319 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2320 			break;
2321 
2322 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2323 			cnt += tcp_skb_pcount(skb);
2324 
2325 		if (cnt > packets)
2326 			break;
2327 
2328 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2329 			tcp_mark_skb_lost(sk, skb);
2330 
2331 		if (mark_head)
2332 			break;
2333 	}
2334 	tcp_verify_left_out(tp);
2335 }
2336 
2337 /* Account newly detected lost packet(s) */
2338 
2339 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2340 {
2341 	struct tcp_sock *tp = tcp_sk(sk);
2342 
2343 	if (tcp_is_sack(tp)) {
2344 		int sacked_upto = tp->sacked_out - tp->reordering;
2345 		if (sacked_upto >= 0)
2346 			tcp_mark_head_lost(sk, sacked_upto, 0);
2347 		else if (fast_rexmit)
2348 			tcp_mark_head_lost(sk, 1, 1);
2349 	}
2350 }
2351 
2352 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2353 {
2354 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2355 	       before(tp->rx_opt.rcv_tsecr, when);
2356 }
2357 
2358 /* skb is spurious retransmitted if the returned timestamp echo
2359  * reply is prior to the skb transmission time
2360  */
2361 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2362 				     const struct sk_buff *skb)
2363 {
2364 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2365 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2366 }
2367 
2368 /* Nothing was retransmitted or returned timestamp is less
2369  * than timestamp of the first retransmission.
2370  */
2371 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2372 {
2373 	return tp->retrans_stamp &&
2374 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2375 }
2376 
2377 /* Undo procedures. */
2378 
2379 /* We can clear retrans_stamp when there are no retransmissions in the
2380  * window. It would seem that it is trivially available for us in
2381  * tp->retrans_out, however, that kind of assumptions doesn't consider
2382  * what will happen if errors occur when sending retransmission for the
2383  * second time. ...It could the that such segment has only
2384  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2385  * the head skb is enough except for some reneging corner cases that
2386  * are not worth the effort.
2387  *
2388  * Main reason for all this complexity is the fact that connection dying
2389  * time now depends on the validity of the retrans_stamp, in particular,
2390  * that successive retransmissions of a segment must not advance
2391  * retrans_stamp under any conditions.
2392  */
2393 static bool tcp_any_retrans_done(const struct sock *sk)
2394 {
2395 	const struct tcp_sock *tp = tcp_sk(sk);
2396 	struct sk_buff *skb;
2397 
2398 	if (tp->retrans_out)
2399 		return true;
2400 
2401 	skb = tcp_rtx_queue_head(sk);
2402 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2403 		return true;
2404 
2405 	return false;
2406 }
2407 
2408 static void DBGUNDO(struct sock *sk, const char *msg)
2409 {
2410 #if FASTRETRANS_DEBUG > 1
2411 	struct tcp_sock *tp = tcp_sk(sk);
2412 	struct inet_sock *inet = inet_sk(sk);
2413 
2414 	if (sk->sk_family == AF_INET) {
2415 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2416 			 msg,
2417 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2418 			 tp->snd_cwnd, tcp_left_out(tp),
2419 			 tp->snd_ssthresh, tp->prior_ssthresh,
2420 			 tp->packets_out);
2421 	}
2422 #if IS_ENABLED(CONFIG_IPV6)
2423 	else if (sk->sk_family == AF_INET6) {
2424 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2425 			 msg,
2426 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2427 			 tp->snd_cwnd, tcp_left_out(tp),
2428 			 tp->snd_ssthresh, tp->prior_ssthresh,
2429 			 tp->packets_out);
2430 	}
2431 #endif
2432 #endif
2433 }
2434 
2435 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2436 {
2437 	struct tcp_sock *tp = tcp_sk(sk);
2438 
2439 	if (unmark_loss) {
2440 		struct sk_buff *skb;
2441 
2442 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2443 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2444 		}
2445 		tp->lost_out = 0;
2446 		tcp_clear_all_retrans_hints(tp);
2447 	}
2448 
2449 	if (tp->prior_ssthresh) {
2450 		const struct inet_connection_sock *icsk = inet_csk(sk);
2451 
2452 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2453 
2454 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2455 			tp->snd_ssthresh = tp->prior_ssthresh;
2456 			tcp_ecn_withdraw_cwr(tp);
2457 		}
2458 	}
2459 	tp->snd_cwnd_stamp = tcp_jiffies32;
2460 	tp->undo_marker = 0;
2461 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2462 }
2463 
2464 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2465 {
2466 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2467 }
2468 
2469 /* People celebrate: "We love our President!" */
2470 static bool tcp_try_undo_recovery(struct sock *sk)
2471 {
2472 	struct tcp_sock *tp = tcp_sk(sk);
2473 
2474 	if (tcp_may_undo(tp)) {
2475 		int mib_idx;
2476 
2477 		/* Happy end! We did not retransmit anything
2478 		 * or our original transmission succeeded.
2479 		 */
2480 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2481 		tcp_undo_cwnd_reduction(sk, false);
2482 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2483 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2484 		else
2485 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2486 
2487 		NET_INC_STATS(sock_net(sk), mib_idx);
2488 	} else if (tp->rack.reo_wnd_persist) {
2489 		tp->rack.reo_wnd_persist--;
2490 	}
2491 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2492 		/* Hold old state until something *above* high_seq
2493 		 * is ACKed. For Reno it is MUST to prevent false
2494 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2495 		if (!tcp_any_retrans_done(sk))
2496 			tp->retrans_stamp = 0;
2497 		return true;
2498 	}
2499 	tcp_set_ca_state(sk, TCP_CA_Open);
2500 	tp->is_sack_reneg = 0;
2501 	return false;
2502 }
2503 
2504 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2505 static bool tcp_try_undo_dsack(struct sock *sk)
2506 {
2507 	struct tcp_sock *tp = tcp_sk(sk);
2508 
2509 	if (tp->undo_marker && !tp->undo_retrans) {
2510 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2511 					       tp->rack.reo_wnd_persist + 1);
2512 		DBGUNDO(sk, "D-SACK");
2513 		tcp_undo_cwnd_reduction(sk, false);
2514 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2515 		return true;
2516 	}
2517 	return false;
2518 }
2519 
2520 /* Undo during loss recovery after partial ACK or using F-RTO. */
2521 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2522 {
2523 	struct tcp_sock *tp = tcp_sk(sk);
2524 
2525 	if (frto_undo || tcp_may_undo(tp)) {
2526 		tcp_undo_cwnd_reduction(sk, true);
2527 
2528 		DBGUNDO(sk, "partial loss");
2529 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2530 		if (frto_undo)
2531 			NET_INC_STATS(sock_net(sk),
2532 					LINUX_MIB_TCPSPURIOUSRTOS);
2533 		inet_csk(sk)->icsk_retransmits = 0;
2534 		if (frto_undo || tcp_is_sack(tp)) {
2535 			tcp_set_ca_state(sk, TCP_CA_Open);
2536 			tp->is_sack_reneg = 0;
2537 		}
2538 		return true;
2539 	}
2540 	return false;
2541 }
2542 
2543 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2544  * It computes the number of packets to send (sndcnt) based on packets newly
2545  * delivered:
2546  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2547  *	cwnd reductions across a full RTT.
2548  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2549  *      But when the retransmits are acked without further losses, PRR
2550  *      slow starts cwnd up to ssthresh to speed up the recovery.
2551  */
2552 static void tcp_init_cwnd_reduction(struct sock *sk)
2553 {
2554 	struct tcp_sock *tp = tcp_sk(sk);
2555 
2556 	tp->high_seq = tp->snd_nxt;
2557 	tp->tlp_high_seq = 0;
2558 	tp->snd_cwnd_cnt = 0;
2559 	tp->prior_cwnd = tp->snd_cwnd;
2560 	tp->prr_delivered = 0;
2561 	tp->prr_out = 0;
2562 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2563 	tcp_ecn_queue_cwr(tp);
2564 }
2565 
2566 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2567 {
2568 	struct tcp_sock *tp = tcp_sk(sk);
2569 	int sndcnt = 0;
2570 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2571 
2572 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2573 		return;
2574 
2575 	tp->prr_delivered += newly_acked_sacked;
2576 	if (delta < 0) {
2577 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2578 			       tp->prior_cwnd - 1;
2579 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2580 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2581 		   FLAG_RETRANS_DATA_ACKED) {
2582 		sndcnt = min_t(int, delta,
2583 			       max_t(int, tp->prr_delivered - tp->prr_out,
2584 				     newly_acked_sacked) + 1);
2585 	} else {
2586 		sndcnt = min(delta, newly_acked_sacked);
2587 	}
2588 	/* Force a fast retransmit upon entering fast recovery */
2589 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2590 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2591 }
2592 
2593 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2594 {
2595 	struct tcp_sock *tp = tcp_sk(sk);
2596 
2597 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2598 		return;
2599 
2600 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2601 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2602 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2603 		tp->snd_cwnd = tp->snd_ssthresh;
2604 		tp->snd_cwnd_stamp = tcp_jiffies32;
2605 	}
2606 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2607 }
2608 
2609 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2610 void tcp_enter_cwr(struct sock *sk)
2611 {
2612 	struct tcp_sock *tp = tcp_sk(sk);
2613 
2614 	tp->prior_ssthresh = 0;
2615 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2616 		tp->undo_marker = 0;
2617 		tcp_init_cwnd_reduction(sk);
2618 		tcp_set_ca_state(sk, TCP_CA_CWR);
2619 	}
2620 }
2621 EXPORT_SYMBOL(tcp_enter_cwr);
2622 
2623 static void tcp_try_keep_open(struct sock *sk)
2624 {
2625 	struct tcp_sock *tp = tcp_sk(sk);
2626 	int state = TCP_CA_Open;
2627 
2628 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2629 		state = TCP_CA_Disorder;
2630 
2631 	if (inet_csk(sk)->icsk_ca_state != state) {
2632 		tcp_set_ca_state(sk, state);
2633 		tp->high_seq = tp->snd_nxt;
2634 	}
2635 }
2636 
2637 static void tcp_try_to_open(struct sock *sk, int flag)
2638 {
2639 	struct tcp_sock *tp = tcp_sk(sk);
2640 
2641 	tcp_verify_left_out(tp);
2642 
2643 	if (!tcp_any_retrans_done(sk))
2644 		tp->retrans_stamp = 0;
2645 
2646 	if (flag & FLAG_ECE)
2647 		tcp_enter_cwr(sk);
2648 
2649 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2650 		tcp_try_keep_open(sk);
2651 	}
2652 }
2653 
2654 static void tcp_mtup_probe_failed(struct sock *sk)
2655 {
2656 	struct inet_connection_sock *icsk = inet_csk(sk);
2657 
2658 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2659 	icsk->icsk_mtup.probe_size = 0;
2660 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2661 }
2662 
2663 static void tcp_mtup_probe_success(struct sock *sk)
2664 {
2665 	struct tcp_sock *tp = tcp_sk(sk);
2666 	struct inet_connection_sock *icsk = inet_csk(sk);
2667 
2668 	/* FIXME: breaks with very large cwnd */
2669 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2670 	tp->snd_cwnd = tp->snd_cwnd *
2671 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2672 		       icsk->icsk_mtup.probe_size;
2673 	tp->snd_cwnd_cnt = 0;
2674 	tp->snd_cwnd_stamp = tcp_jiffies32;
2675 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2676 
2677 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2678 	icsk->icsk_mtup.probe_size = 0;
2679 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2680 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2681 }
2682 
2683 /* Do a simple retransmit without using the backoff mechanisms in
2684  * tcp_timer. This is used for path mtu discovery.
2685  * The socket is already locked here.
2686  */
2687 void tcp_simple_retransmit(struct sock *sk)
2688 {
2689 	const struct inet_connection_sock *icsk = inet_csk(sk);
2690 	struct tcp_sock *tp = tcp_sk(sk);
2691 	struct sk_buff *skb;
2692 	unsigned int mss = tcp_current_mss(sk);
2693 
2694 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2695 		if (tcp_skb_seglen(skb) > mss)
2696 			tcp_mark_skb_lost(sk, skb);
2697 	}
2698 
2699 	tcp_clear_retrans_hints_partial(tp);
2700 
2701 	if (!tp->lost_out)
2702 		return;
2703 
2704 	if (tcp_is_reno(tp))
2705 		tcp_limit_reno_sacked(tp);
2706 
2707 	tcp_verify_left_out(tp);
2708 
2709 	/* Don't muck with the congestion window here.
2710 	 * Reason is that we do not increase amount of _data_
2711 	 * in network, but units changed and effective
2712 	 * cwnd/ssthresh really reduced now.
2713 	 */
2714 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2715 		tp->high_seq = tp->snd_nxt;
2716 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2717 		tp->prior_ssthresh = 0;
2718 		tp->undo_marker = 0;
2719 		tcp_set_ca_state(sk, TCP_CA_Loss);
2720 	}
2721 	tcp_xmit_retransmit_queue(sk);
2722 }
2723 EXPORT_SYMBOL(tcp_simple_retransmit);
2724 
2725 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2726 {
2727 	struct tcp_sock *tp = tcp_sk(sk);
2728 	int mib_idx;
2729 
2730 	if (tcp_is_reno(tp))
2731 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2732 	else
2733 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2734 
2735 	NET_INC_STATS(sock_net(sk), mib_idx);
2736 
2737 	tp->prior_ssthresh = 0;
2738 	tcp_init_undo(tp);
2739 
2740 	if (!tcp_in_cwnd_reduction(sk)) {
2741 		if (!ece_ack)
2742 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2743 		tcp_init_cwnd_reduction(sk);
2744 	}
2745 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2746 }
2747 
2748 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2749  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2750  */
2751 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2752 			     int *rexmit)
2753 {
2754 	struct tcp_sock *tp = tcp_sk(sk);
2755 	bool recovered = !before(tp->snd_una, tp->high_seq);
2756 
2757 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2758 	    tcp_try_undo_loss(sk, false))
2759 		return;
2760 
2761 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2762 		/* Step 3.b. A timeout is spurious if not all data are
2763 		 * lost, i.e., never-retransmitted data are (s)acked.
2764 		 */
2765 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2766 		    tcp_try_undo_loss(sk, true))
2767 			return;
2768 
2769 		if (after(tp->snd_nxt, tp->high_seq)) {
2770 			if (flag & FLAG_DATA_SACKED || num_dupack)
2771 				tp->frto = 0; /* Step 3.a. loss was real */
2772 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2773 			tp->high_seq = tp->snd_nxt;
2774 			/* Step 2.b. Try send new data (but deferred until cwnd
2775 			 * is updated in tcp_ack()). Otherwise fall back to
2776 			 * the conventional recovery.
2777 			 */
2778 			if (!tcp_write_queue_empty(sk) &&
2779 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2780 				*rexmit = REXMIT_NEW;
2781 				return;
2782 			}
2783 			tp->frto = 0;
2784 		}
2785 	}
2786 
2787 	if (recovered) {
2788 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2789 		tcp_try_undo_recovery(sk);
2790 		return;
2791 	}
2792 	if (tcp_is_reno(tp)) {
2793 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2794 		 * delivered. Lower inflight to clock out (re)tranmissions.
2795 		 */
2796 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2797 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2798 		else if (flag & FLAG_SND_UNA_ADVANCED)
2799 			tcp_reset_reno_sack(tp);
2800 	}
2801 	*rexmit = REXMIT_LOST;
2802 }
2803 
2804 /* Undo during fast recovery after partial ACK. */
2805 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2806 {
2807 	struct tcp_sock *tp = tcp_sk(sk);
2808 
2809 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2810 		/* Plain luck! Hole if filled with delayed
2811 		 * packet, rather than with a retransmit. Check reordering.
2812 		 */
2813 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2814 
2815 		/* We are getting evidence that the reordering degree is higher
2816 		 * than we realized. If there are no retransmits out then we
2817 		 * can undo. Otherwise we clock out new packets but do not
2818 		 * mark more packets lost or retransmit more.
2819 		 */
2820 		if (tp->retrans_out)
2821 			return true;
2822 
2823 		if (!tcp_any_retrans_done(sk))
2824 			tp->retrans_stamp = 0;
2825 
2826 		DBGUNDO(sk, "partial recovery");
2827 		tcp_undo_cwnd_reduction(sk, true);
2828 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2829 		tcp_try_keep_open(sk);
2830 		return true;
2831 	}
2832 	return false;
2833 }
2834 
2835 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2836 {
2837 	struct tcp_sock *tp = tcp_sk(sk);
2838 
2839 	if (tcp_rtx_queue_empty(sk))
2840 		return;
2841 
2842 	if (unlikely(tcp_is_reno(tp))) {
2843 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2844 	} else if (tcp_is_rack(sk)) {
2845 		u32 prior_retrans = tp->retrans_out;
2846 
2847 		tcp_rack_mark_lost(sk);
2848 		if (prior_retrans > tp->retrans_out)
2849 			*ack_flag |= FLAG_LOST_RETRANS;
2850 	}
2851 }
2852 
2853 static bool tcp_force_fast_retransmit(struct sock *sk)
2854 {
2855 	struct tcp_sock *tp = tcp_sk(sk);
2856 
2857 	return after(tcp_highest_sack_seq(tp),
2858 		     tp->snd_una + tp->reordering * tp->mss_cache);
2859 }
2860 
2861 /* Process an event, which can update packets-in-flight not trivially.
2862  * Main goal of this function is to calculate new estimate for left_out,
2863  * taking into account both packets sitting in receiver's buffer and
2864  * packets lost by network.
2865  *
2866  * Besides that it updates the congestion state when packet loss or ECN
2867  * is detected. But it does not reduce the cwnd, it is done by the
2868  * congestion control later.
2869  *
2870  * It does _not_ decide what to send, it is made in function
2871  * tcp_xmit_retransmit_queue().
2872  */
2873 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2874 				  int num_dupack, int *ack_flag, int *rexmit)
2875 {
2876 	struct inet_connection_sock *icsk = inet_csk(sk);
2877 	struct tcp_sock *tp = tcp_sk(sk);
2878 	int fast_rexmit = 0, flag = *ack_flag;
2879 	bool ece_ack = flag & FLAG_ECE;
2880 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2881 				      tcp_force_fast_retransmit(sk));
2882 
2883 	if (!tp->packets_out && tp->sacked_out)
2884 		tp->sacked_out = 0;
2885 
2886 	/* Now state machine starts.
2887 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2888 	if (ece_ack)
2889 		tp->prior_ssthresh = 0;
2890 
2891 	/* B. In all the states check for reneging SACKs. */
2892 	if (tcp_check_sack_reneging(sk, flag))
2893 		return;
2894 
2895 	/* C. Check consistency of the current state. */
2896 	tcp_verify_left_out(tp);
2897 
2898 	/* D. Check state exit conditions. State can be terminated
2899 	 *    when high_seq is ACKed. */
2900 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2901 		WARN_ON(tp->retrans_out != 0);
2902 		tp->retrans_stamp = 0;
2903 	} else if (!before(tp->snd_una, tp->high_seq)) {
2904 		switch (icsk->icsk_ca_state) {
2905 		case TCP_CA_CWR:
2906 			/* CWR is to be held something *above* high_seq
2907 			 * is ACKed for CWR bit to reach receiver. */
2908 			if (tp->snd_una != tp->high_seq) {
2909 				tcp_end_cwnd_reduction(sk);
2910 				tcp_set_ca_state(sk, TCP_CA_Open);
2911 			}
2912 			break;
2913 
2914 		case TCP_CA_Recovery:
2915 			if (tcp_is_reno(tp))
2916 				tcp_reset_reno_sack(tp);
2917 			if (tcp_try_undo_recovery(sk))
2918 				return;
2919 			tcp_end_cwnd_reduction(sk);
2920 			break;
2921 		}
2922 	}
2923 
2924 	/* E. Process state. */
2925 	switch (icsk->icsk_ca_state) {
2926 	case TCP_CA_Recovery:
2927 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2928 			if (tcp_is_reno(tp))
2929 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2930 		} else {
2931 			if (tcp_try_undo_partial(sk, prior_snd_una))
2932 				return;
2933 			/* Partial ACK arrived. Force fast retransmit. */
2934 			do_lost = tcp_force_fast_retransmit(sk);
2935 		}
2936 		if (tcp_try_undo_dsack(sk)) {
2937 			tcp_try_keep_open(sk);
2938 			return;
2939 		}
2940 		tcp_identify_packet_loss(sk, ack_flag);
2941 		break;
2942 	case TCP_CA_Loss:
2943 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2944 		tcp_identify_packet_loss(sk, ack_flag);
2945 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2946 		      (*ack_flag & FLAG_LOST_RETRANS)))
2947 			return;
2948 		/* Change state if cwnd is undone or retransmits are lost */
2949 		fallthrough;
2950 	default:
2951 		if (tcp_is_reno(tp)) {
2952 			if (flag & FLAG_SND_UNA_ADVANCED)
2953 				tcp_reset_reno_sack(tp);
2954 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
2955 		}
2956 
2957 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2958 			tcp_try_undo_dsack(sk);
2959 
2960 		tcp_identify_packet_loss(sk, ack_flag);
2961 		if (!tcp_time_to_recover(sk, flag)) {
2962 			tcp_try_to_open(sk, flag);
2963 			return;
2964 		}
2965 
2966 		/* MTU probe failure: don't reduce cwnd */
2967 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2968 		    icsk->icsk_mtup.probe_size &&
2969 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2970 			tcp_mtup_probe_failed(sk);
2971 			/* Restores the reduction we did in tcp_mtup_probe() */
2972 			tp->snd_cwnd++;
2973 			tcp_simple_retransmit(sk);
2974 			return;
2975 		}
2976 
2977 		/* Otherwise enter Recovery state */
2978 		tcp_enter_recovery(sk, ece_ack);
2979 		fast_rexmit = 1;
2980 	}
2981 
2982 	if (!tcp_is_rack(sk) && do_lost)
2983 		tcp_update_scoreboard(sk, fast_rexmit);
2984 	*rexmit = REXMIT_LOST;
2985 }
2986 
2987 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2988 {
2989 	u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2990 	struct tcp_sock *tp = tcp_sk(sk);
2991 
2992 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2993 		/* If the remote keeps returning delayed ACKs, eventually
2994 		 * the min filter would pick it up and overestimate the
2995 		 * prop. delay when it expires. Skip suspected delayed ACKs.
2996 		 */
2997 		return;
2998 	}
2999 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3000 			   rtt_us ? : jiffies_to_usecs(1));
3001 }
3002 
3003 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3004 			       long seq_rtt_us, long sack_rtt_us,
3005 			       long ca_rtt_us, struct rate_sample *rs)
3006 {
3007 	const struct tcp_sock *tp = tcp_sk(sk);
3008 
3009 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3010 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3011 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3012 	 * is acked (RFC6298).
3013 	 */
3014 	if (seq_rtt_us < 0)
3015 		seq_rtt_us = sack_rtt_us;
3016 
3017 	/* RTTM Rule: A TSecr value received in a segment is used to
3018 	 * update the averaged RTT measurement only if the segment
3019 	 * acknowledges some new data, i.e., only if it advances the
3020 	 * left edge of the send window.
3021 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3022 	 */
3023 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3024 	    flag & FLAG_ACKED) {
3025 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3026 
3027 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3028 			if (!delta)
3029 				delta = 1;
3030 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3031 			ca_rtt_us = seq_rtt_us;
3032 		}
3033 	}
3034 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3035 	if (seq_rtt_us < 0)
3036 		return false;
3037 
3038 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3039 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3040 	 * values will be skipped with the seq_rtt_us < 0 check above.
3041 	 */
3042 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3043 	tcp_rtt_estimator(sk, seq_rtt_us);
3044 	tcp_set_rto(sk);
3045 
3046 	/* RFC6298: only reset backoff on valid RTT measurement. */
3047 	inet_csk(sk)->icsk_backoff = 0;
3048 	return true;
3049 }
3050 
3051 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3052 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3053 {
3054 	struct rate_sample rs;
3055 	long rtt_us = -1L;
3056 
3057 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3058 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3059 
3060 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3061 }
3062 
3063 
3064 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3065 {
3066 	const struct inet_connection_sock *icsk = inet_csk(sk);
3067 
3068 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3069 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3070 }
3071 
3072 /* Restart timer after forward progress on connection.
3073  * RFC2988 recommends to restart timer to now+rto.
3074  */
3075 void tcp_rearm_rto(struct sock *sk)
3076 {
3077 	const struct inet_connection_sock *icsk = inet_csk(sk);
3078 	struct tcp_sock *tp = tcp_sk(sk);
3079 
3080 	/* If the retrans timer is currently being used by Fast Open
3081 	 * for SYN-ACK retrans purpose, stay put.
3082 	 */
3083 	if (rcu_access_pointer(tp->fastopen_rsk))
3084 		return;
3085 
3086 	if (!tp->packets_out) {
3087 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3088 	} else {
3089 		u32 rto = inet_csk(sk)->icsk_rto;
3090 		/* Offset the time elapsed after installing regular RTO */
3091 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3092 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3093 			s64 delta_us = tcp_rto_delta_us(sk);
3094 			/* delta_us may not be positive if the socket is locked
3095 			 * when the retrans timer fires and is rescheduled.
3096 			 */
3097 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3098 		}
3099 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3100 				     TCP_RTO_MAX);
3101 	}
3102 }
3103 
3104 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3105 static void tcp_set_xmit_timer(struct sock *sk)
3106 {
3107 	if (!tcp_schedule_loss_probe(sk, true))
3108 		tcp_rearm_rto(sk);
3109 }
3110 
3111 /* If we get here, the whole TSO packet has not been acked. */
3112 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3113 {
3114 	struct tcp_sock *tp = tcp_sk(sk);
3115 	u32 packets_acked;
3116 
3117 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3118 
3119 	packets_acked = tcp_skb_pcount(skb);
3120 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3121 		return 0;
3122 	packets_acked -= tcp_skb_pcount(skb);
3123 
3124 	if (packets_acked) {
3125 		BUG_ON(tcp_skb_pcount(skb) == 0);
3126 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3127 	}
3128 
3129 	return packets_acked;
3130 }
3131 
3132 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3133 			   u32 prior_snd_una)
3134 {
3135 	const struct skb_shared_info *shinfo;
3136 
3137 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3138 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3139 		return;
3140 
3141 	shinfo = skb_shinfo(skb);
3142 	if (!before(shinfo->tskey, prior_snd_una) &&
3143 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3144 		tcp_skb_tsorted_save(skb) {
3145 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3146 		} tcp_skb_tsorted_restore(skb);
3147 	}
3148 }
3149 
3150 /* Remove acknowledged frames from the retransmission queue. If our packet
3151  * is before the ack sequence we can discard it as it's confirmed to have
3152  * arrived at the other end.
3153  */
3154 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3155 			       u32 prior_snd_una,
3156 			       struct tcp_sacktag_state *sack, bool ece_ack)
3157 {
3158 	const struct inet_connection_sock *icsk = inet_csk(sk);
3159 	u64 first_ackt, last_ackt;
3160 	struct tcp_sock *tp = tcp_sk(sk);
3161 	u32 prior_sacked = tp->sacked_out;
3162 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3163 	struct sk_buff *skb, *next;
3164 	bool fully_acked = true;
3165 	long sack_rtt_us = -1L;
3166 	long seq_rtt_us = -1L;
3167 	long ca_rtt_us = -1L;
3168 	u32 pkts_acked = 0;
3169 	u32 last_in_flight = 0;
3170 	bool rtt_update;
3171 	int flag = 0;
3172 
3173 	first_ackt = 0;
3174 
3175 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3176 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3177 		const u32 start_seq = scb->seq;
3178 		u8 sacked = scb->sacked;
3179 		u32 acked_pcount;
3180 
3181 		/* Determine how many packets and what bytes were acked, tso and else */
3182 		if (after(scb->end_seq, tp->snd_una)) {
3183 			if (tcp_skb_pcount(skb) == 1 ||
3184 			    !after(tp->snd_una, scb->seq))
3185 				break;
3186 
3187 			acked_pcount = tcp_tso_acked(sk, skb);
3188 			if (!acked_pcount)
3189 				break;
3190 			fully_acked = false;
3191 		} else {
3192 			acked_pcount = tcp_skb_pcount(skb);
3193 		}
3194 
3195 		if (unlikely(sacked & TCPCB_RETRANS)) {
3196 			if (sacked & TCPCB_SACKED_RETRANS)
3197 				tp->retrans_out -= acked_pcount;
3198 			flag |= FLAG_RETRANS_DATA_ACKED;
3199 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3200 			last_ackt = tcp_skb_timestamp_us(skb);
3201 			WARN_ON_ONCE(last_ackt == 0);
3202 			if (!first_ackt)
3203 				first_ackt = last_ackt;
3204 
3205 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3206 			if (before(start_seq, reord))
3207 				reord = start_seq;
3208 			if (!after(scb->end_seq, tp->high_seq))
3209 				flag |= FLAG_ORIG_SACK_ACKED;
3210 		}
3211 
3212 		if (sacked & TCPCB_SACKED_ACKED) {
3213 			tp->sacked_out -= acked_pcount;
3214 		} else if (tcp_is_sack(tp)) {
3215 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3216 			if (!tcp_skb_spurious_retrans(tp, skb))
3217 				tcp_rack_advance(tp, sacked, scb->end_seq,
3218 						 tcp_skb_timestamp_us(skb));
3219 		}
3220 		if (sacked & TCPCB_LOST)
3221 			tp->lost_out -= acked_pcount;
3222 
3223 		tp->packets_out -= acked_pcount;
3224 		pkts_acked += acked_pcount;
3225 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3226 
3227 		/* Initial outgoing SYN's get put onto the write_queue
3228 		 * just like anything else we transmit.  It is not
3229 		 * true data, and if we misinform our callers that
3230 		 * this ACK acks real data, we will erroneously exit
3231 		 * connection startup slow start one packet too
3232 		 * quickly.  This is severely frowned upon behavior.
3233 		 */
3234 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3235 			flag |= FLAG_DATA_ACKED;
3236 		} else {
3237 			flag |= FLAG_SYN_ACKED;
3238 			tp->retrans_stamp = 0;
3239 		}
3240 
3241 		if (!fully_acked)
3242 			break;
3243 
3244 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3245 
3246 		next = skb_rb_next(skb);
3247 		if (unlikely(skb == tp->retransmit_skb_hint))
3248 			tp->retransmit_skb_hint = NULL;
3249 		if (unlikely(skb == tp->lost_skb_hint))
3250 			tp->lost_skb_hint = NULL;
3251 		tcp_highest_sack_replace(sk, skb, next);
3252 		tcp_rtx_queue_unlink_and_free(skb, sk);
3253 	}
3254 
3255 	if (!skb)
3256 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3257 
3258 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3259 		tp->snd_up = tp->snd_una;
3260 
3261 	if (skb) {
3262 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3263 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3264 			flag |= FLAG_SACK_RENEGING;
3265 	}
3266 
3267 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3268 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3269 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3270 
3271 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3272 		    last_in_flight && !prior_sacked && fully_acked &&
3273 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3274 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3275 			/* Conservatively mark a delayed ACK. It's typically
3276 			 * from a lone runt packet over the round trip to
3277 			 * a receiver w/o out-of-order or CE events.
3278 			 */
3279 			flag |= FLAG_ACK_MAYBE_DELAYED;
3280 		}
3281 	}
3282 	if (sack->first_sackt) {
3283 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3284 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3285 	}
3286 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3287 					ca_rtt_us, sack->rate);
3288 
3289 	if (flag & FLAG_ACKED) {
3290 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3291 		if (unlikely(icsk->icsk_mtup.probe_size &&
3292 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3293 			tcp_mtup_probe_success(sk);
3294 		}
3295 
3296 		if (tcp_is_reno(tp)) {
3297 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3298 
3299 			/* If any of the cumulatively ACKed segments was
3300 			 * retransmitted, non-SACK case cannot confirm that
3301 			 * progress was due to original transmission due to
3302 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3303 			 * the packets may have been never retransmitted.
3304 			 */
3305 			if (flag & FLAG_RETRANS_DATA_ACKED)
3306 				flag &= ~FLAG_ORIG_SACK_ACKED;
3307 		} else {
3308 			int delta;
3309 
3310 			/* Non-retransmitted hole got filled? That's reordering */
3311 			if (before(reord, prior_fack))
3312 				tcp_check_sack_reordering(sk, reord, 0);
3313 
3314 			delta = prior_sacked - tp->sacked_out;
3315 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3316 		}
3317 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3318 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3319 						    tcp_skb_timestamp_us(skb))) {
3320 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3321 		 * after when the head was last (re)transmitted. Otherwise the
3322 		 * timeout may continue to extend in loss recovery.
3323 		 */
3324 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3325 	}
3326 
3327 	if (icsk->icsk_ca_ops->pkts_acked) {
3328 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3329 					     .rtt_us = sack->rate->rtt_us,
3330 					     .in_flight = last_in_flight };
3331 
3332 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3333 	}
3334 
3335 #if FASTRETRANS_DEBUG > 0
3336 	WARN_ON((int)tp->sacked_out < 0);
3337 	WARN_ON((int)tp->lost_out < 0);
3338 	WARN_ON((int)tp->retrans_out < 0);
3339 	if (!tp->packets_out && tcp_is_sack(tp)) {
3340 		icsk = inet_csk(sk);
3341 		if (tp->lost_out) {
3342 			pr_debug("Leak l=%u %d\n",
3343 				 tp->lost_out, icsk->icsk_ca_state);
3344 			tp->lost_out = 0;
3345 		}
3346 		if (tp->sacked_out) {
3347 			pr_debug("Leak s=%u %d\n",
3348 				 tp->sacked_out, icsk->icsk_ca_state);
3349 			tp->sacked_out = 0;
3350 		}
3351 		if (tp->retrans_out) {
3352 			pr_debug("Leak r=%u %d\n",
3353 				 tp->retrans_out, icsk->icsk_ca_state);
3354 			tp->retrans_out = 0;
3355 		}
3356 	}
3357 #endif
3358 	return flag;
3359 }
3360 
3361 static void tcp_ack_probe(struct sock *sk)
3362 {
3363 	struct inet_connection_sock *icsk = inet_csk(sk);
3364 	struct sk_buff *head = tcp_send_head(sk);
3365 	const struct tcp_sock *tp = tcp_sk(sk);
3366 
3367 	/* Was it a usable window open? */
3368 	if (!head)
3369 		return;
3370 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3371 		icsk->icsk_backoff = 0;
3372 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3373 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3374 		 * This function is not for random using!
3375 		 */
3376 	} else {
3377 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3378 
3379 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3380 				     when, TCP_RTO_MAX);
3381 	}
3382 }
3383 
3384 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3385 {
3386 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3387 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3388 }
3389 
3390 /* Decide wheather to run the increase function of congestion control. */
3391 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3392 {
3393 	/* If reordering is high then always grow cwnd whenever data is
3394 	 * delivered regardless of its ordering. Otherwise stay conservative
3395 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3396 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3397 	 * cwnd in tcp_fastretrans_alert() based on more states.
3398 	 */
3399 	if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3400 		return flag & FLAG_FORWARD_PROGRESS;
3401 
3402 	return flag & FLAG_DATA_ACKED;
3403 }
3404 
3405 /* The "ultimate" congestion control function that aims to replace the rigid
3406  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3407  * It's called toward the end of processing an ACK with precise rate
3408  * information. All transmission or retransmission are delayed afterwards.
3409  */
3410 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3411 			     int flag, const struct rate_sample *rs)
3412 {
3413 	const struct inet_connection_sock *icsk = inet_csk(sk);
3414 
3415 	if (icsk->icsk_ca_ops->cong_control) {
3416 		icsk->icsk_ca_ops->cong_control(sk, rs);
3417 		return;
3418 	}
3419 
3420 	if (tcp_in_cwnd_reduction(sk)) {
3421 		/* Reduce cwnd if state mandates */
3422 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3423 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3424 		/* Advance cwnd if state allows */
3425 		tcp_cong_avoid(sk, ack, acked_sacked);
3426 	}
3427 	tcp_update_pacing_rate(sk);
3428 }
3429 
3430 /* Check that window update is acceptable.
3431  * The function assumes that snd_una<=ack<=snd_next.
3432  */
3433 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3434 					const u32 ack, const u32 ack_seq,
3435 					const u32 nwin)
3436 {
3437 	return	after(ack, tp->snd_una) ||
3438 		after(ack_seq, tp->snd_wl1) ||
3439 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3440 }
3441 
3442 /* If we update tp->snd_una, also update tp->bytes_acked */
3443 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3444 {
3445 	u32 delta = ack - tp->snd_una;
3446 
3447 	sock_owned_by_me((struct sock *)tp);
3448 	tp->bytes_acked += delta;
3449 	tp->snd_una = ack;
3450 }
3451 
3452 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3453 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3454 {
3455 	u32 delta = seq - tp->rcv_nxt;
3456 
3457 	sock_owned_by_me((struct sock *)tp);
3458 	tp->bytes_received += delta;
3459 	WRITE_ONCE(tp->rcv_nxt, seq);
3460 }
3461 
3462 /* Update our send window.
3463  *
3464  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3465  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3466  */
3467 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3468 				 u32 ack_seq)
3469 {
3470 	struct tcp_sock *tp = tcp_sk(sk);
3471 	int flag = 0;
3472 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3473 
3474 	if (likely(!tcp_hdr(skb)->syn))
3475 		nwin <<= tp->rx_opt.snd_wscale;
3476 
3477 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3478 		flag |= FLAG_WIN_UPDATE;
3479 		tcp_update_wl(tp, ack_seq);
3480 
3481 		if (tp->snd_wnd != nwin) {
3482 			tp->snd_wnd = nwin;
3483 
3484 			/* Note, it is the only place, where
3485 			 * fast path is recovered for sending TCP.
3486 			 */
3487 			tp->pred_flags = 0;
3488 			tcp_fast_path_check(sk);
3489 
3490 			if (!tcp_write_queue_empty(sk))
3491 				tcp_slow_start_after_idle_check(sk);
3492 
3493 			if (nwin > tp->max_window) {
3494 				tp->max_window = nwin;
3495 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3496 			}
3497 		}
3498 	}
3499 
3500 	tcp_snd_una_update(tp, ack);
3501 
3502 	return flag;
3503 }
3504 
3505 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3506 				   u32 *last_oow_ack_time)
3507 {
3508 	if (*last_oow_ack_time) {
3509 		s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3510 
3511 		if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3512 			NET_INC_STATS(net, mib_idx);
3513 			return true;	/* rate-limited: don't send yet! */
3514 		}
3515 	}
3516 
3517 	*last_oow_ack_time = tcp_jiffies32;
3518 
3519 	return false;	/* not rate-limited: go ahead, send dupack now! */
3520 }
3521 
3522 /* Return true if we're currently rate-limiting out-of-window ACKs and
3523  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3524  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3525  * attacks that send repeated SYNs or ACKs for the same connection. To
3526  * do this, we do not send a duplicate SYNACK or ACK if the remote
3527  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3528  */
3529 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3530 			  int mib_idx, u32 *last_oow_ack_time)
3531 {
3532 	/* Data packets without SYNs are not likely part of an ACK loop. */
3533 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3534 	    !tcp_hdr(skb)->syn)
3535 		return false;
3536 
3537 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3538 }
3539 
3540 /* RFC 5961 7 [ACK Throttling] */
3541 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3542 {
3543 	/* unprotected vars, we dont care of overwrites */
3544 	static u32 challenge_timestamp;
3545 	static unsigned int challenge_count;
3546 	struct tcp_sock *tp = tcp_sk(sk);
3547 	struct net *net = sock_net(sk);
3548 	u32 count, now;
3549 
3550 	/* First check our per-socket dupack rate limit. */
3551 	if (__tcp_oow_rate_limited(net,
3552 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3553 				   &tp->last_oow_ack_time))
3554 		return;
3555 
3556 	/* Then check host-wide RFC 5961 rate limit. */
3557 	now = jiffies / HZ;
3558 	if (now != challenge_timestamp) {
3559 		u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3560 		u32 half = (ack_limit + 1) >> 1;
3561 
3562 		challenge_timestamp = now;
3563 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3564 	}
3565 	count = READ_ONCE(challenge_count);
3566 	if (count > 0) {
3567 		WRITE_ONCE(challenge_count, count - 1);
3568 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3569 		tcp_send_ack(sk);
3570 	}
3571 }
3572 
3573 static void tcp_store_ts_recent(struct tcp_sock *tp)
3574 {
3575 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3576 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3577 }
3578 
3579 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3580 {
3581 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3582 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3583 		 * extra check below makes sure this can only happen
3584 		 * for pure ACK frames.  -DaveM
3585 		 *
3586 		 * Not only, also it occurs for expired timestamps.
3587 		 */
3588 
3589 		if (tcp_paws_check(&tp->rx_opt, 0))
3590 			tcp_store_ts_recent(tp);
3591 	}
3592 }
3593 
3594 /* This routine deals with acks during a TLP episode and ends an episode by
3595  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3596  */
3597 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3598 {
3599 	struct tcp_sock *tp = tcp_sk(sk);
3600 
3601 	if (before(ack, tp->tlp_high_seq))
3602 		return;
3603 
3604 	if (!tp->tlp_retrans) {
3605 		/* TLP of new data has been acknowledged */
3606 		tp->tlp_high_seq = 0;
3607 	} else if (flag & FLAG_DSACKING_ACK) {
3608 		/* This DSACK means original and TLP probe arrived; no loss */
3609 		tp->tlp_high_seq = 0;
3610 	} else if (after(ack, tp->tlp_high_seq)) {
3611 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3612 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3613 		 */
3614 		tcp_init_cwnd_reduction(sk);
3615 		tcp_set_ca_state(sk, TCP_CA_CWR);
3616 		tcp_end_cwnd_reduction(sk);
3617 		tcp_try_keep_open(sk);
3618 		NET_INC_STATS(sock_net(sk),
3619 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3620 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3621 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3622 		/* Pure dupack: original and TLP probe arrived; no loss */
3623 		tp->tlp_high_seq = 0;
3624 	}
3625 }
3626 
3627 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3628 {
3629 	const struct inet_connection_sock *icsk = inet_csk(sk);
3630 
3631 	if (icsk->icsk_ca_ops->in_ack_event)
3632 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3633 }
3634 
3635 /* Congestion control has updated the cwnd already. So if we're in
3636  * loss recovery then now we do any new sends (for FRTO) or
3637  * retransmits (for CA_Loss or CA_recovery) that make sense.
3638  */
3639 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3640 {
3641 	struct tcp_sock *tp = tcp_sk(sk);
3642 
3643 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3644 		return;
3645 
3646 	if (unlikely(rexmit == REXMIT_NEW)) {
3647 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3648 					  TCP_NAGLE_OFF);
3649 		if (after(tp->snd_nxt, tp->high_seq))
3650 			return;
3651 		tp->frto = 0;
3652 	}
3653 	tcp_xmit_retransmit_queue(sk);
3654 }
3655 
3656 /* Returns the number of packets newly acked or sacked by the current ACK */
3657 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3658 {
3659 	const struct net *net = sock_net(sk);
3660 	struct tcp_sock *tp = tcp_sk(sk);
3661 	u32 delivered;
3662 
3663 	delivered = tp->delivered - prior_delivered;
3664 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3665 	if (flag & FLAG_ECE)
3666 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3667 
3668 	return delivered;
3669 }
3670 
3671 /* This routine deals with incoming acks, but not outgoing ones. */
3672 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3673 {
3674 	struct inet_connection_sock *icsk = inet_csk(sk);
3675 	struct tcp_sock *tp = tcp_sk(sk);
3676 	struct tcp_sacktag_state sack_state;
3677 	struct rate_sample rs = { .prior_delivered = 0 };
3678 	u32 prior_snd_una = tp->snd_una;
3679 	bool is_sack_reneg = tp->is_sack_reneg;
3680 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3681 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3682 	int num_dupack = 0;
3683 	int prior_packets = tp->packets_out;
3684 	u32 delivered = tp->delivered;
3685 	u32 lost = tp->lost;
3686 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3687 	u32 prior_fack;
3688 
3689 	sack_state.first_sackt = 0;
3690 	sack_state.rate = &rs;
3691 	sack_state.sack_delivered = 0;
3692 
3693 	/* We very likely will need to access rtx queue. */
3694 	prefetch(sk->tcp_rtx_queue.rb_node);
3695 
3696 	/* If the ack is older than previous acks
3697 	 * then we can probably ignore it.
3698 	 */
3699 	if (before(ack, prior_snd_una)) {
3700 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3701 		if (before(ack, prior_snd_una - tp->max_window)) {
3702 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3703 				tcp_send_challenge_ack(sk, skb);
3704 			return -1;
3705 		}
3706 		goto old_ack;
3707 	}
3708 
3709 	/* If the ack includes data we haven't sent yet, discard
3710 	 * this segment (RFC793 Section 3.9).
3711 	 */
3712 	if (after(ack, tp->snd_nxt))
3713 		return -1;
3714 
3715 	if (after(ack, prior_snd_una)) {
3716 		flag |= FLAG_SND_UNA_ADVANCED;
3717 		icsk->icsk_retransmits = 0;
3718 
3719 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3720 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3721 			if (icsk->icsk_clean_acked)
3722 				icsk->icsk_clean_acked(sk, ack);
3723 #endif
3724 	}
3725 
3726 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3727 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3728 
3729 	/* ts_recent update must be made after we are sure that the packet
3730 	 * is in window.
3731 	 */
3732 	if (flag & FLAG_UPDATE_TS_RECENT)
3733 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3734 
3735 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3736 	    FLAG_SND_UNA_ADVANCED) {
3737 		/* Window is constant, pure forward advance.
3738 		 * No more checks are required.
3739 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3740 		 */
3741 		tcp_update_wl(tp, ack_seq);
3742 		tcp_snd_una_update(tp, ack);
3743 		flag |= FLAG_WIN_UPDATE;
3744 
3745 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3746 
3747 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3748 	} else {
3749 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3750 
3751 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3752 			flag |= FLAG_DATA;
3753 		else
3754 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3755 
3756 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3757 
3758 		if (TCP_SKB_CB(skb)->sacked)
3759 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3760 							&sack_state);
3761 
3762 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3763 			flag |= FLAG_ECE;
3764 			ack_ev_flags |= CA_ACK_ECE;
3765 		}
3766 
3767 		if (sack_state.sack_delivered)
3768 			tcp_count_delivered(tp, sack_state.sack_delivered,
3769 					    flag & FLAG_ECE);
3770 
3771 		if (flag & FLAG_WIN_UPDATE)
3772 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3773 
3774 		tcp_in_ack_event(sk, ack_ev_flags);
3775 	}
3776 
3777 	/* This is a deviation from RFC3168 since it states that:
3778 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3779 	 * the congestion window, it SHOULD set the CWR bit only on the first
3780 	 * new data packet that it transmits."
3781 	 * We accept CWR on pure ACKs to be more robust
3782 	 * with widely-deployed TCP implementations that do this.
3783 	 */
3784 	tcp_ecn_accept_cwr(sk, skb);
3785 
3786 	/* We passed data and got it acked, remove any soft error
3787 	 * log. Something worked...
3788 	 */
3789 	sk->sk_err_soft = 0;
3790 	icsk->icsk_probes_out = 0;
3791 	tp->rcv_tstamp = tcp_jiffies32;
3792 	if (!prior_packets)
3793 		goto no_queue;
3794 
3795 	/* See if we can take anything off of the retransmit queue. */
3796 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3797 				    flag & FLAG_ECE);
3798 
3799 	tcp_rack_update_reo_wnd(sk, &rs);
3800 
3801 	if (tp->tlp_high_seq)
3802 		tcp_process_tlp_ack(sk, ack, flag);
3803 	/* If needed, reset TLP/RTO timer; RACK may later override this. */
3804 	if (flag & FLAG_SET_XMIT_TIMER)
3805 		tcp_set_xmit_timer(sk);
3806 
3807 	if (tcp_ack_is_dubious(sk, flag)) {
3808 		if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3809 			num_dupack = 1;
3810 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3811 			if (!(flag & FLAG_DATA))
3812 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3813 		}
3814 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3815 				      &rexmit);
3816 	}
3817 
3818 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3819 		sk_dst_confirm(sk);
3820 
3821 	delivered = tcp_newly_delivered(sk, delivered, flag);
3822 	lost = tp->lost - lost;			/* freshly marked lost */
3823 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3824 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3825 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3826 	tcp_xmit_recovery(sk, rexmit);
3827 	return 1;
3828 
3829 no_queue:
3830 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3831 	if (flag & FLAG_DSACKING_ACK) {
3832 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3833 				      &rexmit);
3834 		tcp_newly_delivered(sk, delivered, flag);
3835 	}
3836 	/* If this ack opens up a zero window, clear backoff.  It was
3837 	 * being used to time the probes, and is probably far higher than
3838 	 * it needs to be for normal retransmission.
3839 	 */
3840 	tcp_ack_probe(sk);
3841 
3842 	if (tp->tlp_high_seq)
3843 		tcp_process_tlp_ack(sk, ack, flag);
3844 	return 1;
3845 
3846 old_ack:
3847 	/* If data was SACKed, tag it and see if we should send more data.
3848 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3849 	 */
3850 	if (TCP_SKB_CB(skb)->sacked) {
3851 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3852 						&sack_state);
3853 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3854 				      &rexmit);
3855 		tcp_newly_delivered(sk, delivered, flag);
3856 		tcp_xmit_recovery(sk, rexmit);
3857 	}
3858 
3859 	return 0;
3860 }
3861 
3862 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3863 				      bool syn, struct tcp_fastopen_cookie *foc,
3864 				      bool exp_opt)
3865 {
3866 	/* Valid only in SYN or SYN-ACK with an even length.  */
3867 	if (!foc || !syn || len < 0 || (len & 1))
3868 		return;
3869 
3870 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3871 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3872 		memcpy(foc->val, cookie, len);
3873 	else if (len != 0)
3874 		len = -1;
3875 	foc->len = len;
3876 	foc->exp = exp_opt;
3877 }
3878 
3879 static bool smc_parse_options(const struct tcphdr *th,
3880 			      struct tcp_options_received *opt_rx,
3881 			      const unsigned char *ptr,
3882 			      int opsize)
3883 {
3884 #if IS_ENABLED(CONFIG_SMC)
3885 	if (static_branch_unlikely(&tcp_have_smc)) {
3886 		if (th->syn && !(opsize & 1) &&
3887 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3888 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3889 			opt_rx->smc_ok = 1;
3890 			return true;
3891 		}
3892 	}
3893 #endif
3894 	return false;
3895 }
3896 
3897 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3898  * value on success.
3899  */
3900 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3901 {
3902 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3903 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3904 	u16 mss = 0;
3905 
3906 	while (length > 0) {
3907 		int opcode = *ptr++;
3908 		int opsize;
3909 
3910 		switch (opcode) {
3911 		case TCPOPT_EOL:
3912 			return mss;
3913 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3914 			length--;
3915 			continue;
3916 		default:
3917 			if (length < 2)
3918 				return mss;
3919 			opsize = *ptr++;
3920 			if (opsize < 2) /* "silly options" */
3921 				return mss;
3922 			if (opsize > length)
3923 				return mss;	/* fail on partial options */
3924 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3925 				u16 in_mss = get_unaligned_be16(ptr);
3926 
3927 				if (in_mss) {
3928 					if (user_mss && user_mss < in_mss)
3929 						in_mss = user_mss;
3930 					mss = in_mss;
3931 				}
3932 			}
3933 			ptr += opsize - 2;
3934 			length -= opsize;
3935 		}
3936 	}
3937 	return mss;
3938 }
3939 
3940 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3941  * But, this can also be called on packets in the established flow when
3942  * the fast version below fails.
3943  */
3944 void tcp_parse_options(const struct net *net,
3945 		       const struct sk_buff *skb,
3946 		       struct tcp_options_received *opt_rx, int estab,
3947 		       struct tcp_fastopen_cookie *foc)
3948 {
3949 	const unsigned char *ptr;
3950 	const struct tcphdr *th = tcp_hdr(skb);
3951 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3952 
3953 	ptr = (const unsigned char *)(th + 1);
3954 	opt_rx->saw_tstamp = 0;
3955 	opt_rx->saw_unknown = 0;
3956 
3957 	while (length > 0) {
3958 		int opcode = *ptr++;
3959 		int opsize;
3960 
3961 		switch (opcode) {
3962 		case TCPOPT_EOL:
3963 			return;
3964 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3965 			length--;
3966 			continue;
3967 		default:
3968 			if (length < 2)
3969 				return;
3970 			opsize = *ptr++;
3971 			if (opsize < 2) /* "silly options" */
3972 				return;
3973 			if (opsize > length)
3974 				return;	/* don't parse partial options */
3975 			switch (opcode) {
3976 			case TCPOPT_MSS:
3977 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3978 					u16 in_mss = get_unaligned_be16(ptr);
3979 					if (in_mss) {
3980 						if (opt_rx->user_mss &&
3981 						    opt_rx->user_mss < in_mss)
3982 							in_mss = opt_rx->user_mss;
3983 						opt_rx->mss_clamp = in_mss;
3984 					}
3985 				}
3986 				break;
3987 			case TCPOPT_WINDOW:
3988 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3989 				    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3990 					__u8 snd_wscale = *(__u8 *)ptr;
3991 					opt_rx->wscale_ok = 1;
3992 					if (snd_wscale > TCP_MAX_WSCALE) {
3993 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3994 								     __func__,
3995 								     snd_wscale,
3996 								     TCP_MAX_WSCALE);
3997 						snd_wscale = TCP_MAX_WSCALE;
3998 					}
3999 					opt_rx->snd_wscale = snd_wscale;
4000 				}
4001 				break;
4002 			case TCPOPT_TIMESTAMP:
4003 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4004 				    ((estab && opt_rx->tstamp_ok) ||
4005 				     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4006 					opt_rx->saw_tstamp = 1;
4007 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4008 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4009 				}
4010 				break;
4011 			case TCPOPT_SACK_PERM:
4012 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4013 				    !estab && net->ipv4.sysctl_tcp_sack) {
4014 					opt_rx->sack_ok = TCP_SACK_SEEN;
4015 					tcp_sack_reset(opt_rx);
4016 				}
4017 				break;
4018 
4019 			case TCPOPT_SACK:
4020 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4021 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4022 				   opt_rx->sack_ok) {
4023 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4024 				}
4025 				break;
4026 #ifdef CONFIG_TCP_MD5SIG
4027 			case TCPOPT_MD5SIG:
4028 				/*
4029 				 * The MD5 Hash has already been
4030 				 * checked (see tcp_v{4,6}_do_rcv()).
4031 				 */
4032 				break;
4033 #endif
4034 			case TCPOPT_FASTOPEN:
4035 				tcp_parse_fastopen_option(
4036 					opsize - TCPOLEN_FASTOPEN_BASE,
4037 					ptr, th->syn, foc, false);
4038 				break;
4039 
4040 			case TCPOPT_EXP:
4041 				/* Fast Open option shares code 254 using a
4042 				 * 16 bits magic number.
4043 				 */
4044 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4045 				    get_unaligned_be16(ptr) ==
4046 				    TCPOPT_FASTOPEN_MAGIC) {
4047 					tcp_parse_fastopen_option(opsize -
4048 						TCPOLEN_EXP_FASTOPEN_BASE,
4049 						ptr + 2, th->syn, foc, true);
4050 					break;
4051 				}
4052 
4053 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4054 					break;
4055 
4056 				opt_rx->saw_unknown = 1;
4057 				break;
4058 
4059 			default:
4060 				opt_rx->saw_unknown = 1;
4061 			}
4062 			ptr += opsize-2;
4063 			length -= opsize;
4064 		}
4065 	}
4066 }
4067 EXPORT_SYMBOL(tcp_parse_options);
4068 
4069 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4070 {
4071 	const __be32 *ptr = (const __be32 *)(th + 1);
4072 
4073 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4074 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4075 		tp->rx_opt.saw_tstamp = 1;
4076 		++ptr;
4077 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4078 		++ptr;
4079 		if (*ptr)
4080 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4081 		else
4082 			tp->rx_opt.rcv_tsecr = 0;
4083 		return true;
4084 	}
4085 	return false;
4086 }
4087 
4088 /* Fast parse options. This hopes to only see timestamps.
4089  * If it is wrong it falls back on tcp_parse_options().
4090  */
4091 static bool tcp_fast_parse_options(const struct net *net,
4092 				   const struct sk_buff *skb,
4093 				   const struct tcphdr *th, struct tcp_sock *tp)
4094 {
4095 	/* In the spirit of fast parsing, compare doff directly to constant
4096 	 * values.  Because equality is used, short doff can be ignored here.
4097 	 */
4098 	if (th->doff == (sizeof(*th) / 4)) {
4099 		tp->rx_opt.saw_tstamp = 0;
4100 		return false;
4101 	} else if (tp->rx_opt.tstamp_ok &&
4102 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4103 		if (tcp_parse_aligned_timestamp(tp, th))
4104 			return true;
4105 	}
4106 
4107 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4108 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4109 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4110 
4111 	return true;
4112 }
4113 
4114 #ifdef CONFIG_TCP_MD5SIG
4115 /*
4116  * Parse MD5 Signature option
4117  */
4118 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4119 {
4120 	int length = (th->doff << 2) - sizeof(*th);
4121 	const u8 *ptr = (const u8 *)(th + 1);
4122 
4123 	/* If not enough data remaining, we can short cut */
4124 	while (length >= TCPOLEN_MD5SIG) {
4125 		int opcode = *ptr++;
4126 		int opsize;
4127 
4128 		switch (opcode) {
4129 		case TCPOPT_EOL:
4130 			return NULL;
4131 		case TCPOPT_NOP:
4132 			length--;
4133 			continue;
4134 		default:
4135 			opsize = *ptr++;
4136 			if (opsize < 2 || opsize > length)
4137 				return NULL;
4138 			if (opcode == TCPOPT_MD5SIG)
4139 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4140 		}
4141 		ptr += opsize - 2;
4142 		length -= opsize;
4143 	}
4144 	return NULL;
4145 }
4146 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4147 #endif
4148 
4149 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4150  *
4151  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4152  * it can pass through stack. So, the following predicate verifies that
4153  * this segment is not used for anything but congestion avoidance or
4154  * fast retransmit. Moreover, we even are able to eliminate most of such
4155  * second order effects, if we apply some small "replay" window (~RTO)
4156  * to timestamp space.
4157  *
4158  * All these measures still do not guarantee that we reject wrapped ACKs
4159  * on networks with high bandwidth, when sequence space is recycled fastly,
4160  * but it guarantees that such events will be very rare and do not affect
4161  * connection seriously. This doesn't look nice, but alas, PAWS is really
4162  * buggy extension.
4163  *
4164  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4165  * states that events when retransmit arrives after original data are rare.
4166  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4167  * the biggest problem on large power networks even with minor reordering.
4168  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4169  * up to bandwidth of 18Gigabit/sec. 8) ]
4170  */
4171 
4172 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4173 {
4174 	const struct tcp_sock *tp = tcp_sk(sk);
4175 	const struct tcphdr *th = tcp_hdr(skb);
4176 	u32 seq = TCP_SKB_CB(skb)->seq;
4177 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4178 
4179 	return (/* 1. Pure ACK with correct sequence number. */
4180 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4181 
4182 		/* 2. ... and duplicate ACK. */
4183 		ack == tp->snd_una &&
4184 
4185 		/* 3. ... and does not update window. */
4186 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4187 
4188 		/* 4. ... and sits in replay window. */
4189 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4190 }
4191 
4192 static inline bool tcp_paws_discard(const struct sock *sk,
4193 				   const struct sk_buff *skb)
4194 {
4195 	const struct tcp_sock *tp = tcp_sk(sk);
4196 
4197 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4198 	       !tcp_disordered_ack(sk, skb);
4199 }
4200 
4201 /* Check segment sequence number for validity.
4202  *
4203  * Segment controls are considered valid, if the segment
4204  * fits to the window after truncation to the window. Acceptability
4205  * of data (and SYN, FIN, of course) is checked separately.
4206  * See tcp_data_queue(), for example.
4207  *
4208  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4209  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4210  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4211  * (borrowed from freebsd)
4212  */
4213 
4214 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4215 {
4216 	return	!before(end_seq, tp->rcv_wup) &&
4217 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4218 }
4219 
4220 /* When we get a reset we do this. */
4221 void tcp_reset(struct sock *sk)
4222 {
4223 	trace_tcp_receive_reset(sk);
4224 
4225 	/* We want the right error as BSD sees it (and indeed as we do). */
4226 	switch (sk->sk_state) {
4227 	case TCP_SYN_SENT:
4228 		sk->sk_err = ECONNREFUSED;
4229 		break;
4230 	case TCP_CLOSE_WAIT:
4231 		sk->sk_err = EPIPE;
4232 		break;
4233 	case TCP_CLOSE:
4234 		return;
4235 	default:
4236 		sk->sk_err = ECONNRESET;
4237 	}
4238 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4239 	smp_wmb();
4240 
4241 	tcp_write_queue_purge(sk);
4242 	tcp_done(sk);
4243 
4244 	if (!sock_flag(sk, SOCK_DEAD))
4245 		sk->sk_error_report(sk);
4246 }
4247 
4248 /*
4249  * 	Process the FIN bit. This now behaves as it is supposed to work
4250  *	and the FIN takes effect when it is validly part of sequence
4251  *	space. Not before when we get holes.
4252  *
4253  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4254  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4255  *	TIME-WAIT)
4256  *
4257  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4258  *	close and we go into CLOSING (and later onto TIME-WAIT)
4259  *
4260  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4261  */
4262 void tcp_fin(struct sock *sk)
4263 {
4264 	struct tcp_sock *tp = tcp_sk(sk);
4265 
4266 	inet_csk_schedule_ack(sk);
4267 
4268 	sk->sk_shutdown |= RCV_SHUTDOWN;
4269 	sock_set_flag(sk, SOCK_DONE);
4270 
4271 	switch (sk->sk_state) {
4272 	case TCP_SYN_RECV:
4273 	case TCP_ESTABLISHED:
4274 		/* Move to CLOSE_WAIT */
4275 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4276 		inet_csk_enter_pingpong_mode(sk);
4277 		break;
4278 
4279 	case TCP_CLOSE_WAIT:
4280 	case TCP_CLOSING:
4281 		/* Received a retransmission of the FIN, do
4282 		 * nothing.
4283 		 */
4284 		break;
4285 	case TCP_LAST_ACK:
4286 		/* RFC793: Remain in the LAST-ACK state. */
4287 		break;
4288 
4289 	case TCP_FIN_WAIT1:
4290 		/* This case occurs when a simultaneous close
4291 		 * happens, we must ack the received FIN and
4292 		 * enter the CLOSING state.
4293 		 */
4294 		tcp_send_ack(sk);
4295 		tcp_set_state(sk, TCP_CLOSING);
4296 		break;
4297 	case TCP_FIN_WAIT2:
4298 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4299 		tcp_send_ack(sk);
4300 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4301 		break;
4302 	default:
4303 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4304 		 * cases we should never reach this piece of code.
4305 		 */
4306 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4307 		       __func__, sk->sk_state);
4308 		break;
4309 	}
4310 
4311 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4312 	 * Probably, we should reset in this case. For now drop them.
4313 	 */
4314 	skb_rbtree_purge(&tp->out_of_order_queue);
4315 	if (tcp_is_sack(tp))
4316 		tcp_sack_reset(&tp->rx_opt);
4317 	sk_mem_reclaim(sk);
4318 
4319 	if (!sock_flag(sk, SOCK_DEAD)) {
4320 		sk->sk_state_change(sk);
4321 
4322 		/* Do not send POLL_HUP for half duplex close. */
4323 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4324 		    sk->sk_state == TCP_CLOSE)
4325 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4326 		else
4327 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4328 	}
4329 }
4330 
4331 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4332 				  u32 end_seq)
4333 {
4334 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4335 		if (before(seq, sp->start_seq))
4336 			sp->start_seq = seq;
4337 		if (after(end_seq, sp->end_seq))
4338 			sp->end_seq = end_seq;
4339 		return true;
4340 	}
4341 	return false;
4342 }
4343 
4344 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4345 {
4346 	struct tcp_sock *tp = tcp_sk(sk);
4347 
4348 	if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4349 		int mib_idx;
4350 
4351 		if (before(seq, tp->rcv_nxt))
4352 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4353 		else
4354 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4355 
4356 		NET_INC_STATS(sock_net(sk), mib_idx);
4357 
4358 		tp->rx_opt.dsack = 1;
4359 		tp->duplicate_sack[0].start_seq = seq;
4360 		tp->duplicate_sack[0].end_seq = end_seq;
4361 	}
4362 }
4363 
4364 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4365 {
4366 	struct tcp_sock *tp = tcp_sk(sk);
4367 
4368 	if (!tp->rx_opt.dsack)
4369 		tcp_dsack_set(sk, seq, end_seq);
4370 	else
4371 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4372 }
4373 
4374 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4375 {
4376 	/* When the ACK path fails or drops most ACKs, the sender would
4377 	 * timeout and spuriously retransmit the same segment repeatedly.
4378 	 * The receiver remembers and reflects via DSACKs. Leverage the
4379 	 * DSACK state and change the txhash to re-route speculatively.
4380 	 */
4381 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) {
4382 		sk_rethink_txhash(sk);
4383 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4384 	}
4385 }
4386 
4387 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4388 {
4389 	struct tcp_sock *tp = tcp_sk(sk);
4390 
4391 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4392 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4393 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4394 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4395 
4396 		if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4397 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4398 
4399 			tcp_rcv_spurious_retrans(sk, skb);
4400 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4401 				end_seq = tp->rcv_nxt;
4402 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4403 		}
4404 	}
4405 
4406 	tcp_send_ack(sk);
4407 }
4408 
4409 /* These routines update the SACK block as out-of-order packets arrive or
4410  * in-order packets close up the sequence space.
4411  */
4412 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4413 {
4414 	int this_sack;
4415 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4416 	struct tcp_sack_block *swalk = sp + 1;
4417 
4418 	/* See if the recent change to the first SACK eats into
4419 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4420 	 */
4421 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4422 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4423 			int i;
4424 
4425 			/* Zap SWALK, by moving every further SACK up by one slot.
4426 			 * Decrease num_sacks.
4427 			 */
4428 			tp->rx_opt.num_sacks--;
4429 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4430 				sp[i] = sp[i + 1];
4431 			continue;
4432 		}
4433 		this_sack++;
4434 		swalk++;
4435 	}
4436 }
4437 
4438 static void tcp_sack_compress_send_ack(struct sock *sk)
4439 {
4440 	struct tcp_sock *tp = tcp_sk(sk);
4441 
4442 	if (!tp->compressed_ack)
4443 		return;
4444 
4445 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4446 		__sock_put(sk);
4447 
4448 	/* Since we have to send one ack finally,
4449 	 * substract one from tp->compressed_ack to keep
4450 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4451 	 */
4452 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4453 		      tp->compressed_ack - 1);
4454 
4455 	tp->compressed_ack = 0;
4456 	tcp_send_ack(sk);
4457 }
4458 
4459 /* Reasonable amount of sack blocks included in TCP SACK option
4460  * The max is 4, but this becomes 3 if TCP timestamps are there.
4461  * Given that SACK packets might be lost, be conservative and use 2.
4462  */
4463 #define TCP_SACK_BLOCKS_EXPECTED 2
4464 
4465 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4466 {
4467 	struct tcp_sock *tp = tcp_sk(sk);
4468 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4469 	int cur_sacks = tp->rx_opt.num_sacks;
4470 	int this_sack;
4471 
4472 	if (!cur_sacks)
4473 		goto new_sack;
4474 
4475 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4476 		if (tcp_sack_extend(sp, seq, end_seq)) {
4477 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4478 				tcp_sack_compress_send_ack(sk);
4479 			/* Rotate this_sack to the first one. */
4480 			for (; this_sack > 0; this_sack--, sp--)
4481 				swap(*sp, *(sp - 1));
4482 			if (cur_sacks > 1)
4483 				tcp_sack_maybe_coalesce(tp);
4484 			return;
4485 		}
4486 	}
4487 
4488 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4489 		tcp_sack_compress_send_ack(sk);
4490 
4491 	/* Could not find an adjacent existing SACK, build a new one,
4492 	 * put it at the front, and shift everyone else down.  We
4493 	 * always know there is at least one SACK present already here.
4494 	 *
4495 	 * If the sack array is full, forget about the last one.
4496 	 */
4497 	if (this_sack >= TCP_NUM_SACKS) {
4498 		this_sack--;
4499 		tp->rx_opt.num_sacks--;
4500 		sp--;
4501 	}
4502 	for (; this_sack > 0; this_sack--, sp--)
4503 		*sp = *(sp - 1);
4504 
4505 new_sack:
4506 	/* Build the new head SACK, and we're done. */
4507 	sp->start_seq = seq;
4508 	sp->end_seq = end_seq;
4509 	tp->rx_opt.num_sacks++;
4510 }
4511 
4512 /* RCV.NXT advances, some SACKs should be eaten. */
4513 
4514 static void tcp_sack_remove(struct tcp_sock *tp)
4515 {
4516 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4517 	int num_sacks = tp->rx_opt.num_sacks;
4518 	int this_sack;
4519 
4520 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4521 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4522 		tp->rx_opt.num_sacks = 0;
4523 		return;
4524 	}
4525 
4526 	for (this_sack = 0; this_sack < num_sacks;) {
4527 		/* Check if the start of the sack is covered by RCV.NXT. */
4528 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4529 			int i;
4530 
4531 			/* RCV.NXT must cover all the block! */
4532 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4533 
4534 			/* Zap this SACK, by moving forward any other SACKS. */
4535 			for (i = this_sack+1; i < num_sacks; i++)
4536 				tp->selective_acks[i-1] = tp->selective_acks[i];
4537 			num_sacks--;
4538 			continue;
4539 		}
4540 		this_sack++;
4541 		sp++;
4542 	}
4543 	tp->rx_opt.num_sacks = num_sacks;
4544 }
4545 
4546 /**
4547  * tcp_try_coalesce - try to merge skb to prior one
4548  * @sk: socket
4549  * @to: prior buffer
4550  * @from: buffer to add in queue
4551  * @fragstolen: pointer to boolean
4552  *
4553  * Before queueing skb @from after @to, try to merge them
4554  * to reduce overall memory use and queue lengths, if cost is small.
4555  * Packets in ofo or receive queues can stay a long time.
4556  * Better try to coalesce them right now to avoid future collapses.
4557  * Returns true if caller should free @from instead of queueing it
4558  */
4559 static bool tcp_try_coalesce(struct sock *sk,
4560 			     struct sk_buff *to,
4561 			     struct sk_buff *from,
4562 			     bool *fragstolen)
4563 {
4564 	int delta;
4565 
4566 	*fragstolen = false;
4567 
4568 	/* Its possible this segment overlaps with prior segment in queue */
4569 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4570 		return false;
4571 
4572 	if (!mptcp_skb_can_collapse(to, from))
4573 		return false;
4574 
4575 #ifdef CONFIG_TLS_DEVICE
4576 	if (from->decrypted != to->decrypted)
4577 		return false;
4578 #endif
4579 
4580 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4581 		return false;
4582 
4583 	atomic_add(delta, &sk->sk_rmem_alloc);
4584 	sk_mem_charge(sk, delta);
4585 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4586 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4587 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4588 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4589 
4590 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4591 		TCP_SKB_CB(to)->has_rxtstamp = true;
4592 		to->tstamp = from->tstamp;
4593 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4594 	}
4595 
4596 	return true;
4597 }
4598 
4599 static bool tcp_ooo_try_coalesce(struct sock *sk,
4600 			     struct sk_buff *to,
4601 			     struct sk_buff *from,
4602 			     bool *fragstolen)
4603 {
4604 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4605 
4606 	/* In case tcp_drop() is called later, update to->gso_segs */
4607 	if (res) {
4608 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4609 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4610 
4611 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4612 	}
4613 	return res;
4614 }
4615 
4616 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4617 {
4618 	sk_drops_add(sk, skb);
4619 	__kfree_skb(skb);
4620 }
4621 
4622 /* This one checks to see if we can put data from the
4623  * out_of_order queue into the receive_queue.
4624  */
4625 static void tcp_ofo_queue(struct sock *sk)
4626 {
4627 	struct tcp_sock *tp = tcp_sk(sk);
4628 	__u32 dsack_high = tp->rcv_nxt;
4629 	bool fin, fragstolen, eaten;
4630 	struct sk_buff *skb, *tail;
4631 	struct rb_node *p;
4632 
4633 	p = rb_first(&tp->out_of_order_queue);
4634 	while (p) {
4635 		skb = rb_to_skb(p);
4636 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4637 			break;
4638 
4639 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4640 			__u32 dsack = dsack_high;
4641 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4642 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4643 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4644 		}
4645 		p = rb_next(p);
4646 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4647 
4648 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4649 			tcp_drop(sk, skb);
4650 			continue;
4651 		}
4652 
4653 		tail = skb_peek_tail(&sk->sk_receive_queue);
4654 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4655 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4656 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4657 		if (!eaten)
4658 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4659 		else
4660 			kfree_skb_partial(skb, fragstolen);
4661 
4662 		if (unlikely(fin)) {
4663 			tcp_fin(sk);
4664 			/* tcp_fin() purges tp->out_of_order_queue,
4665 			 * so we must end this loop right now.
4666 			 */
4667 			break;
4668 		}
4669 	}
4670 }
4671 
4672 static bool tcp_prune_ofo_queue(struct sock *sk);
4673 static int tcp_prune_queue(struct sock *sk);
4674 
4675 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4676 				 unsigned int size)
4677 {
4678 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4679 	    !sk_rmem_schedule(sk, skb, size)) {
4680 
4681 		if (tcp_prune_queue(sk) < 0)
4682 			return -1;
4683 
4684 		while (!sk_rmem_schedule(sk, skb, size)) {
4685 			if (!tcp_prune_ofo_queue(sk))
4686 				return -1;
4687 		}
4688 	}
4689 	return 0;
4690 }
4691 
4692 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4693 {
4694 	struct tcp_sock *tp = tcp_sk(sk);
4695 	struct rb_node **p, *parent;
4696 	struct sk_buff *skb1;
4697 	u32 seq, end_seq;
4698 	bool fragstolen;
4699 
4700 	tcp_ecn_check_ce(sk, skb);
4701 
4702 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4703 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4704 		sk->sk_data_ready(sk);
4705 		tcp_drop(sk, skb);
4706 		return;
4707 	}
4708 
4709 	/* Disable header prediction. */
4710 	tp->pred_flags = 0;
4711 	inet_csk_schedule_ack(sk);
4712 
4713 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4714 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4715 	seq = TCP_SKB_CB(skb)->seq;
4716 	end_seq = TCP_SKB_CB(skb)->end_seq;
4717 
4718 	p = &tp->out_of_order_queue.rb_node;
4719 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4720 		/* Initial out of order segment, build 1 SACK. */
4721 		if (tcp_is_sack(tp)) {
4722 			tp->rx_opt.num_sacks = 1;
4723 			tp->selective_acks[0].start_seq = seq;
4724 			tp->selective_acks[0].end_seq = end_seq;
4725 		}
4726 		rb_link_node(&skb->rbnode, NULL, p);
4727 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4728 		tp->ooo_last_skb = skb;
4729 		goto end;
4730 	}
4731 
4732 	/* In the typical case, we are adding an skb to the end of the list.
4733 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4734 	 */
4735 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4736 				 skb, &fragstolen)) {
4737 coalesce_done:
4738 		/* For non sack flows, do not grow window to force DUPACK
4739 		 * and trigger fast retransmit.
4740 		 */
4741 		if (tcp_is_sack(tp))
4742 			tcp_grow_window(sk, skb);
4743 		kfree_skb_partial(skb, fragstolen);
4744 		skb = NULL;
4745 		goto add_sack;
4746 	}
4747 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4748 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4749 		parent = &tp->ooo_last_skb->rbnode;
4750 		p = &parent->rb_right;
4751 		goto insert;
4752 	}
4753 
4754 	/* Find place to insert this segment. Handle overlaps on the way. */
4755 	parent = NULL;
4756 	while (*p) {
4757 		parent = *p;
4758 		skb1 = rb_to_skb(parent);
4759 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4760 			p = &parent->rb_left;
4761 			continue;
4762 		}
4763 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4764 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4765 				/* All the bits are present. Drop. */
4766 				NET_INC_STATS(sock_net(sk),
4767 					      LINUX_MIB_TCPOFOMERGE);
4768 				tcp_drop(sk, skb);
4769 				skb = NULL;
4770 				tcp_dsack_set(sk, seq, end_seq);
4771 				goto add_sack;
4772 			}
4773 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4774 				/* Partial overlap. */
4775 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4776 			} else {
4777 				/* skb's seq == skb1's seq and skb covers skb1.
4778 				 * Replace skb1 with skb.
4779 				 */
4780 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4781 						&tp->out_of_order_queue);
4782 				tcp_dsack_extend(sk,
4783 						 TCP_SKB_CB(skb1)->seq,
4784 						 TCP_SKB_CB(skb1)->end_seq);
4785 				NET_INC_STATS(sock_net(sk),
4786 					      LINUX_MIB_TCPOFOMERGE);
4787 				tcp_drop(sk, skb1);
4788 				goto merge_right;
4789 			}
4790 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4791 						skb, &fragstolen)) {
4792 			goto coalesce_done;
4793 		}
4794 		p = &parent->rb_right;
4795 	}
4796 insert:
4797 	/* Insert segment into RB tree. */
4798 	rb_link_node(&skb->rbnode, parent, p);
4799 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4800 
4801 merge_right:
4802 	/* Remove other segments covered by skb. */
4803 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4804 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4805 			break;
4806 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4807 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4808 					 end_seq);
4809 			break;
4810 		}
4811 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4812 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4813 				 TCP_SKB_CB(skb1)->end_seq);
4814 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4815 		tcp_drop(sk, skb1);
4816 	}
4817 	/* If there is no skb after us, we are the last_skb ! */
4818 	if (!skb1)
4819 		tp->ooo_last_skb = skb;
4820 
4821 add_sack:
4822 	if (tcp_is_sack(tp))
4823 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4824 end:
4825 	if (skb) {
4826 		/* For non sack flows, do not grow window to force DUPACK
4827 		 * and trigger fast retransmit.
4828 		 */
4829 		if (tcp_is_sack(tp))
4830 			tcp_grow_window(sk, skb);
4831 		skb_condense(skb);
4832 		skb_set_owner_r(skb, sk);
4833 	}
4834 }
4835 
4836 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4837 				      bool *fragstolen)
4838 {
4839 	int eaten;
4840 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4841 
4842 	eaten = (tail &&
4843 		 tcp_try_coalesce(sk, tail,
4844 				  skb, fragstolen)) ? 1 : 0;
4845 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4846 	if (!eaten) {
4847 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4848 		skb_set_owner_r(skb, sk);
4849 	}
4850 	return eaten;
4851 }
4852 
4853 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4854 {
4855 	struct sk_buff *skb;
4856 	int err = -ENOMEM;
4857 	int data_len = 0;
4858 	bool fragstolen;
4859 
4860 	if (size == 0)
4861 		return 0;
4862 
4863 	if (size > PAGE_SIZE) {
4864 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4865 
4866 		data_len = npages << PAGE_SHIFT;
4867 		size = data_len + (size & ~PAGE_MASK);
4868 	}
4869 	skb = alloc_skb_with_frags(size - data_len, data_len,
4870 				   PAGE_ALLOC_COSTLY_ORDER,
4871 				   &err, sk->sk_allocation);
4872 	if (!skb)
4873 		goto err;
4874 
4875 	skb_put(skb, size - data_len);
4876 	skb->data_len = data_len;
4877 	skb->len = size;
4878 
4879 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4880 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4881 		goto err_free;
4882 	}
4883 
4884 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4885 	if (err)
4886 		goto err_free;
4887 
4888 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4889 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4890 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4891 
4892 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4893 		WARN_ON_ONCE(fragstolen); /* should not happen */
4894 		__kfree_skb(skb);
4895 	}
4896 	return size;
4897 
4898 err_free:
4899 	kfree_skb(skb);
4900 err:
4901 	return err;
4902 
4903 }
4904 
4905 void tcp_data_ready(struct sock *sk)
4906 {
4907 	const struct tcp_sock *tp = tcp_sk(sk);
4908 	int avail = tp->rcv_nxt - tp->copied_seq;
4909 
4910 	if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4911 	    !sock_flag(sk, SOCK_DONE))
4912 		return;
4913 
4914 	sk->sk_data_ready(sk);
4915 }
4916 
4917 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4918 {
4919 	struct tcp_sock *tp = tcp_sk(sk);
4920 	bool fragstolen;
4921 	int eaten;
4922 
4923 	if (sk_is_mptcp(sk))
4924 		mptcp_incoming_options(sk, skb);
4925 
4926 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4927 		__kfree_skb(skb);
4928 		return;
4929 	}
4930 	skb_dst_drop(skb);
4931 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4932 
4933 	tp->rx_opt.dsack = 0;
4934 
4935 	/*  Queue data for delivery to the user.
4936 	 *  Packets in sequence go to the receive queue.
4937 	 *  Out of sequence packets to the out_of_order_queue.
4938 	 */
4939 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4940 		if (tcp_receive_window(tp) == 0) {
4941 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4942 			goto out_of_window;
4943 		}
4944 
4945 		/* Ok. In sequence. In window. */
4946 queue_and_out:
4947 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
4948 			sk_forced_mem_schedule(sk, skb->truesize);
4949 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4950 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4951 			sk->sk_data_ready(sk);
4952 			goto drop;
4953 		}
4954 
4955 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4956 		if (skb->len)
4957 			tcp_event_data_recv(sk, skb);
4958 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4959 			tcp_fin(sk);
4960 
4961 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4962 			tcp_ofo_queue(sk);
4963 
4964 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
4965 			 * gap in queue is filled.
4966 			 */
4967 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4968 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4969 		}
4970 
4971 		if (tp->rx_opt.num_sacks)
4972 			tcp_sack_remove(tp);
4973 
4974 		tcp_fast_path_check(sk);
4975 
4976 		if (eaten > 0)
4977 			kfree_skb_partial(skb, fragstolen);
4978 		if (!sock_flag(sk, SOCK_DEAD))
4979 			tcp_data_ready(sk);
4980 		return;
4981 	}
4982 
4983 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4984 		tcp_rcv_spurious_retrans(sk, skb);
4985 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4986 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4987 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4988 
4989 out_of_window:
4990 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4991 		inet_csk_schedule_ack(sk);
4992 drop:
4993 		tcp_drop(sk, skb);
4994 		return;
4995 	}
4996 
4997 	/* Out of window. F.e. zero window probe. */
4998 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4999 		goto out_of_window;
5000 
5001 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5002 		/* Partial packet, seq < rcv_next < end_seq */
5003 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5004 
5005 		/* If window is closed, drop tail of packet. But after
5006 		 * remembering D-SACK for its head made in previous line.
5007 		 */
5008 		if (!tcp_receive_window(tp)) {
5009 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5010 			goto out_of_window;
5011 		}
5012 		goto queue_and_out;
5013 	}
5014 
5015 	tcp_data_queue_ofo(sk, skb);
5016 }
5017 
5018 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5019 {
5020 	if (list)
5021 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5022 
5023 	return skb_rb_next(skb);
5024 }
5025 
5026 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5027 					struct sk_buff_head *list,
5028 					struct rb_root *root)
5029 {
5030 	struct sk_buff *next = tcp_skb_next(skb, list);
5031 
5032 	if (list)
5033 		__skb_unlink(skb, list);
5034 	else
5035 		rb_erase(&skb->rbnode, root);
5036 
5037 	__kfree_skb(skb);
5038 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5039 
5040 	return next;
5041 }
5042 
5043 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5044 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5045 {
5046 	struct rb_node **p = &root->rb_node;
5047 	struct rb_node *parent = NULL;
5048 	struct sk_buff *skb1;
5049 
5050 	while (*p) {
5051 		parent = *p;
5052 		skb1 = rb_to_skb(parent);
5053 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5054 			p = &parent->rb_left;
5055 		else
5056 			p = &parent->rb_right;
5057 	}
5058 	rb_link_node(&skb->rbnode, parent, p);
5059 	rb_insert_color(&skb->rbnode, root);
5060 }
5061 
5062 /* Collapse contiguous sequence of skbs head..tail with
5063  * sequence numbers start..end.
5064  *
5065  * If tail is NULL, this means until the end of the queue.
5066  *
5067  * Segments with FIN/SYN are not collapsed (only because this
5068  * simplifies code)
5069  */
5070 static void
5071 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5072 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5073 {
5074 	struct sk_buff *skb = head, *n;
5075 	struct sk_buff_head tmp;
5076 	bool end_of_skbs;
5077 
5078 	/* First, check that queue is collapsible and find
5079 	 * the point where collapsing can be useful.
5080 	 */
5081 restart:
5082 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5083 		n = tcp_skb_next(skb, list);
5084 
5085 		/* No new bits? It is possible on ofo queue. */
5086 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5087 			skb = tcp_collapse_one(sk, skb, list, root);
5088 			if (!skb)
5089 				break;
5090 			goto restart;
5091 		}
5092 
5093 		/* The first skb to collapse is:
5094 		 * - not SYN/FIN and
5095 		 * - bloated or contains data before "start" or
5096 		 *   overlaps to the next one and mptcp allow collapsing.
5097 		 */
5098 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5099 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5100 		     before(TCP_SKB_CB(skb)->seq, start))) {
5101 			end_of_skbs = false;
5102 			break;
5103 		}
5104 
5105 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5106 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5107 			end_of_skbs = false;
5108 			break;
5109 		}
5110 
5111 		/* Decided to skip this, advance start seq. */
5112 		start = TCP_SKB_CB(skb)->end_seq;
5113 	}
5114 	if (end_of_skbs ||
5115 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5116 		return;
5117 
5118 	__skb_queue_head_init(&tmp);
5119 
5120 	while (before(start, end)) {
5121 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5122 		struct sk_buff *nskb;
5123 
5124 		nskb = alloc_skb(copy, GFP_ATOMIC);
5125 		if (!nskb)
5126 			break;
5127 
5128 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5129 #ifdef CONFIG_TLS_DEVICE
5130 		nskb->decrypted = skb->decrypted;
5131 #endif
5132 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5133 		if (list)
5134 			__skb_queue_before(list, skb, nskb);
5135 		else
5136 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5137 		skb_set_owner_r(nskb, sk);
5138 		mptcp_skb_ext_move(nskb, skb);
5139 
5140 		/* Copy data, releasing collapsed skbs. */
5141 		while (copy > 0) {
5142 			int offset = start - TCP_SKB_CB(skb)->seq;
5143 			int size = TCP_SKB_CB(skb)->end_seq - start;
5144 
5145 			BUG_ON(offset < 0);
5146 			if (size > 0) {
5147 				size = min(copy, size);
5148 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5149 					BUG();
5150 				TCP_SKB_CB(nskb)->end_seq += size;
5151 				copy -= size;
5152 				start += size;
5153 			}
5154 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5155 				skb = tcp_collapse_one(sk, skb, list, root);
5156 				if (!skb ||
5157 				    skb == tail ||
5158 				    !mptcp_skb_can_collapse(nskb, skb) ||
5159 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5160 					goto end;
5161 #ifdef CONFIG_TLS_DEVICE
5162 				if (skb->decrypted != nskb->decrypted)
5163 					goto end;
5164 #endif
5165 			}
5166 		}
5167 	}
5168 end:
5169 	skb_queue_walk_safe(&tmp, skb, n)
5170 		tcp_rbtree_insert(root, skb);
5171 }
5172 
5173 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5174  * and tcp_collapse() them until all the queue is collapsed.
5175  */
5176 static void tcp_collapse_ofo_queue(struct sock *sk)
5177 {
5178 	struct tcp_sock *tp = tcp_sk(sk);
5179 	u32 range_truesize, sum_tiny = 0;
5180 	struct sk_buff *skb, *head;
5181 	u32 start, end;
5182 
5183 	skb = skb_rb_first(&tp->out_of_order_queue);
5184 new_range:
5185 	if (!skb) {
5186 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5187 		return;
5188 	}
5189 	start = TCP_SKB_CB(skb)->seq;
5190 	end = TCP_SKB_CB(skb)->end_seq;
5191 	range_truesize = skb->truesize;
5192 
5193 	for (head = skb;;) {
5194 		skb = skb_rb_next(skb);
5195 
5196 		/* Range is terminated when we see a gap or when
5197 		 * we are at the queue end.
5198 		 */
5199 		if (!skb ||
5200 		    after(TCP_SKB_CB(skb)->seq, end) ||
5201 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5202 			/* Do not attempt collapsing tiny skbs */
5203 			if (range_truesize != head->truesize ||
5204 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5205 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5206 					     head, skb, start, end);
5207 			} else {
5208 				sum_tiny += range_truesize;
5209 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5210 					return;
5211 			}
5212 			goto new_range;
5213 		}
5214 
5215 		range_truesize += skb->truesize;
5216 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5217 			start = TCP_SKB_CB(skb)->seq;
5218 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5219 			end = TCP_SKB_CB(skb)->end_seq;
5220 	}
5221 }
5222 
5223 /*
5224  * Clean the out-of-order queue to make room.
5225  * We drop high sequences packets to :
5226  * 1) Let a chance for holes to be filled.
5227  * 2) not add too big latencies if thousands of packets sit there.
5228  *    (But if application shrinks SO_RCVBUF, we could still end up
5229  *     freeing whole queue here)
5230  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5231  *
5232  * Return true if queue has shrunk.
5233  */
5234 static bool tcp_prune_ofo_queue(struct sock *sk)
5235 {
5236 	struct tcp_sock *tp = tcp_sk(sk);
5237 	struct rb_node *node, *prev;
5238 	int goal;
5239 
5240 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5241 		return false;
5242 
5243 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5244 	goal = sk->sk_rcvbuf >> 3;
5245 	node = &tp->ooo_last_skb->rbnode;
5246 	do {
5247 		prev = rb_prev(node);
5248 		rb_erase(node, &tp->out_of_order_queue);
5249 		goal -= rb_to_skb(node)->truesize;
5250 		tcp_drop(sk, rb_to_skb(node));
5251 		if (!prev || goal <= 0) {
5252 			sk_mem_reclaim(sk);
5253 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5254 			    !tcp_under_memory_pressure(sk))
5255 				break;
5256 			goal = sk->sk_rcvbuf >> 3;
5257 		}
5258 		node = prev;
5259 	} while (node);
5260 	tp->ooo_last_skb = rb_to_skb(prev);
5261 
5262 	/* Reset SACK state.  A conforming SACK implementation will
5263 	 * do the same at a timeout based retransmit.  When a connection
5264 	 * is in a sad state like this, we care only about integrity
5265 	 * of the connection not performance.
5266 	 */
5267 	if (tp->rx_opt.sack_ok)
5268 		tcp_sack_reset(&tp->rx_opt);
5269 	return true;
5270 }
5271 
5272 /* Reduce allocated memory if we can, trying to get
5273  * the socket within its memory limits again.
5274  *
5275  * Return less than zero if we should start dropping frames
5276  * until the socket owning process reads some of the data
5277  * to stabilize the situation.
5278  */
5279 static int tcp_prune_queue(struct sock *sk)
5280 {
5281 	struct tcp_sock *tp = tcp_sk(sk);
5282 
5283 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5284 
5285 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5286 		tcp_clamp_window(sk);
5287 	else if (tcp_under_memory_pressure(sk))
5288 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5289 
5290 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5291 		return 0;
5292 
5293 	tcp_collapse_ofo_queue(sk);
5294 	if (!skb_queue_empty(&sk->sk_receive_queue))
5295 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5296 			     skb_peek(&sk->sk_receive_queue),
5297 			     NULL,
5298 			     tp->copied_seq, tp->rcv_nxt);
5299 	sk_mem_reclaim(sk);
5300 
5301 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5302 		return 0;
5303 
5304 	/* Collapsing did not help, destructive actions follow.
5305 	 * This must not ever occur. */
5306 
5307 	tcp_prune_ofo_queue(sk);
5308 
5309 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5310 		return 0;
5311 
5312 	/* If we are really being abused, tell the caller to silently
5313 	 * drop receive data on the floor.  It will get retransmitted
5314 	 * and hopefully then we'll have sufficient space.
5315 	 */
5316 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5317 
5318 	/* Massive buffer overcommit. */
5319 	tp->pred_flags = 0;
5320 	return -1;
5321 }
5322 
5323 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5324 {
5325 	const struct tcp_sock *tp = tcp_sk(sk);
5326 
5327 	/* If the user specified a specific send buffer setting, do
5328 	 * not modify it.
5329 	 */
5330 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5331 		return false;
5332 
5333 	/* If we are under global TCP memory pressure, do not expand.  */
5334 	if (tcp_under_memory_pressure(sk))
5335 		return false;
5336 
5337 	/* If we are under soft global TCP memory pressure, do not expand.  */
5338 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5339 		return false;
5340 
5341 	/* If we filled the congestion window, do not expand.  */
5342 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5343 		return false;
5344 
5345 	return true;
5346 }
5347 
5348 static void tcp_new_space(struct sock *sk)
5349 {
5350 	struct tcp_sock *tp = tcp_sk(sk);
5351 
5352 	if (tcp_should_expand_sndbuf(sk)) {
5353 		tcp_sndbuf_expand(sk);
5354 		tp->snd_cwnd_stamp = tcp_jiffies32;
5355 	}
5356 
5357 	sk->sk_write_space(sk);
5358 }
5359 
5360 static void tcp_check_space(struct sock *sk)
5361 {
5362 	/* pairs with tcp_poll() */
5363 	smp_mb();
5364 	if (sk->sk_socket &&
5365 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5366 		tcp_new_space(sk);
5367 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5368 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5369 	}
5370 }
5371 
5372 static inline void tcp_data_snd_check(struct sock *sk)
5373 {
5374 	tcp_push_pending_frames(sk);
5375 	tcp_check_space(sk);
5376 }
5377 
5378 /*
5379  * Check if sending an ack is needed.
5380  */
5381 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5382 {
5383 	struct tcp_sock *tp = tcp_sk(sk);
5384 	unsigned long rtt, delay;
5385 
5386 	    /* More than one full frame received... */
5387 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5388 	     /* ... and right edge of window advances far enough.
5389 	      * (tcp_recvmsg() will send ACK otherwise).
5390 	      * If application uses SO_RCVLOWAT, we want send ack now if
5391 	      * we have not received enough bytes to satisfy the condition.
5392 	      */
5393 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5394 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5395 	    /* We ACK each frame or... */
5396 	    tcp_in_quickack_mode(sk) ||
5397 	    /* Protocol state mandates a one-time immediate ACK */
5398 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5399 send_now:
5400 		tcp_send_ack(sk);
5401 		return;
5402 	}
5403 
5404 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5405 		tcp_send_delayed_ack(sk);
5406 		return;
5407 	}
5408 
5409 	if (!tcp_is_sack(tp) ||
5410 	    tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5411 		goto send_now;
5412 
5413 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5414 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5415 		tp->dup_ack_counter = 0;
5416 	}
5417 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5418 		tp->dup_ack_counter++;
5419 		goto send_now;
5420 	}
5421 	tp->compressed_ack++;
5422 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5423 		return;
5424 
5425 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5426 
5427 	rtt = tp->rcv_rtt_est.rtt_us;
5428 	if (tp->srtt_us && tp->srtt_us < rtt)
5429 		rtt = tp->srtt_us;
5430 
5431 	delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5432 		      rtt * (NSEC_PER_USEC >> 3)/20);
5433 	sock_hold(sk);
5434 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5435 			       sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5436 			       HRTIMER_MODE_REL_PINNED_SOFT);
5437 }
5438 
5439 static inline void tcp_ack_snd_check(struct sock *sk)
5440 {
5441 	if (!inet_csk_ack_scheduled(sk)) {
5442 		/* We sent a data segment already. */
5443 		return;
5444 	}
5445 	__tcp_ack_snd_check(sk, 1);
5446 }
5447 
5448 /*
5449  *	This routine is only called when we have urgent data
5450  *	signaled. Its the 'slow' part of tcp_urg. It could be
5451  *	moved inline now as tcp_urg is only called from one
5452  *	place. We handle URGent data wrong. We have to - as
5453  *	BSD still doesn't use the correction from RFC961.
5454  *	For 1003.1g we should support a new option TCP_STDURG to permit
5455  *	either form (or just set the sysctl tcp_stdurg).
5456  */
5457 
5458 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5459 {
5460 	struct tcp_sock *tp = tcp_sk(sk);
5461 	u32 ptr = ntohs(th->urg_ptr);
5462 
5463 	if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5464 		ptr--;
5465 	ptr += ntohl(th->seq);
5466 
5467 	/* Ignore urgent data that we've already seen and read. */
5468 	if (after(tp->copied_seq, ptr))
5469 		return;
5470 
5471 	/* Do not replay urg ptr.
5472 	 *
5473 	 * NOTE: interesting situation not covered by specs.
5474 	 * Misbehaving sender may send urg ptr, pointing to segment,
5475 	 * which we already have in ofo queue. We are not able to fetch
5476 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5477 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5478 	 * situations. But it is worth to think about possibility of some
5479 	 * DoSes using some hypothetical application level deadlock.
5480 	 */
5481 	if (before(ptr, tp->rcv_nxt))
5482 		return;
5483 
5484 	/* Do we already have a newer (or duplicate) urgent pointer? */
5485 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5486 		return;
5487 
5488 	/* Tell the world about our new urgent pointer. */
5489 	sk_send_sigurg(sk);
5490 
5491 	/* We may be adding urgent data when the last byte read was
5492 	 * urgent. To do this requires some care. We cannot just ignore
5493 	 * tp->copied_seq since we would read the last urgent byte again
5494 	 * as data, nor can we alter copied_seq until this data arrives
5495 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5496 	 *
5497 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5498 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5499 	 * and expect that both A and B disappear from stream. This is _wrong_.
5500 	 * Though this happens in BSD with high probability, this is occasional.
5501 	 * Any application relying on this is buggy. Note also, that fix "works"
5502 	 * only in this artificial test. Insert some normal data between A and B and we will
5503 	 * decline of BSD again. Verdict: it is better to remove to trap
5504 	 * buggy users.
5505 	 */
5506 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5507 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5508 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5509 		tp->copied_seq++;
5510 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5511 			__skb_unlink(skb, &sk->sk_receive_queue);
5512 			__kfree_skb(skb);
5513 		}
5514 	}
5515 
5516 	tp->urg_data = TCP_URG_NOTYET;
5517 	WRITE_ONCE(tp->urg_seq, ptr);
5518 
5519 	/* Disable header prediction. */
5520 	tp->pred_flags = 0;
5521 }
5522 
5523 /* This is the 'fast' part of urgent handling. */
5524 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5525 {
5526 	struct tcp_sock *tp = tcp_sk(sk);
5527 
5528 	/* Check if we get a new urgent pointer - normally not. */
5529 	if (th->urg)
5530 		tcp_check_urg(sk, th);
5531 
5532 	/* Do we wait for any urgent data? - normally not... */
5533 	if (tp->urg_data == TCP_URG_NOTYET) {
5534 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5535 			  th->syn;
5536 
5537 		/* Is the urgent pointer pointing into this packet? */
5538 		if (ptr < skb->len) {
5539 			u8 tmp;
5540 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5541 				BUG();
5542 			tp->urg_data = TCP_URG_VALID | tmp;
5543 			if (!sock_flag(sk, SOCK_DEAD))
5544 				sk->sk_data_ready(sk);
5545 		}
5546 	}
5547 }
5548 
5549 /* Accept RST for rcv_nxt - 1 after a FIN.
5550  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5551  * FIN is sent followed by a RST packet. The RST is sent with the same
5552  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5553  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5554  * ACKs on the closed socket. In addition middleboxes can drop either the
5555  * challenge ACK or a subsequent RST.
5556  */
5557 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5558 {
5559 	struct tcp_sock *tp = tcp_sk(sk);
5560 
5561 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5562 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5563 					       TCPF_CLOSING));
5564 }
5565 
5566 /* Does PAWS and seqno based validation of an incoming segment, flags will
5567  * play significant role here.
5568  */
5569 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5570 				  const struct tcphdr *th, int syn_inerr)
5571 {
5572 	struct tcp_sock *tp = tcp_sk(sk);
5573 	bool rst_seq_match = false;
5574 
5575 	/* RFC1323: H1. Apply PAWS check first. */
5576 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5577 	    tp->rx_opt.saw_tstamp &&
5578 	    tcp_paws_discard(sk, skb)) {
5579 		if (!th->rst) {
5580 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5581 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5582 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5583 						  &tp->last_oow_ack_time))
5584 				tcp_send_dupack(sk, skb);
5585 			goto discard;
5586 		}
5587 		/* Reset is accepted even if it did not pass PAWS. */
5588 	}
5589 
5590 	/* Step 1: check sequence number */
5591 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5592 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5593 		 * (RST) segments are validated by checking their SEQ-fields."
5594 		 * And page 69: "If an incoming segment is not acceptable,
5595 		 * an acknowledgment should be sent in reply (unless the RST
5596 		 * bit is set, if so drop the segment and return)".
5597 		 */
5598 		if (!th->rst) {
5599 			if (th->syn)
5600 				goto syn_challenge;
5601 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5602 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5603 						  &tp->last_oow_ack_time))
5604 				tcp_send_dupack(sk, skb);
5605 		} else if (tcp_reset_check(sk, skb)) {
5606 			tcp_reset(sk);
5607 		}
5608 		goto discard;
5609 	}
5610 
5611 	/* Step 2: check RST bit */
5612 	if (th->rst) {
5613 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5614 		 * FIN and SACK too if available):
5615 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5616 		 * the right-most SACK block,
5617 		 * then
5618 		 *     RESET the connection
5619 		 * else
5620 		 *     Send a challenge ACK
5621 		 */
5622 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5623 		    tcp_reset_check(sk, skb)) {
5624 			rst_seq_match = true;
5625 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5626 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5627 			int max_sack = sp[0].end_seq;
5628 			int this_sack;
5629 
5630 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5631 			     ++this_sack) {
5632 				max_sack = after(sp[this_sack].end_seq,
5633 						 max_sack) ?
5634 					sp[this_sack].end_seq : max_sack;
5635 			}
5636 
5637 			if (TCP_SKB_CB(skb)->seq == max_sack)
5638 				rst_seq_match = true;
5639 		}
5640 
5641 		if (rst_seq_match)
5642 			tcp_reset(sk);
5643 		else {
5644 			/* Disable TFO if RST is out-of-order
5645 			 * and no data has been received
5646 			 * for current active TFO socket
5647 			 */
5648 			if (tp->syn_fastopen && !tp->data_segs_in &&
5649 			    sk->sk_state == TCP_ESTABLISHED)
5650 				tcp_fastopen_active_disable(sk);
5651 			tcp_send_challenge_ack(sk, skb);
5652 		}
5653 		goto discard;
5654 	}
5655 
5656 	/* step 3: check security and precedence [ignored] */
5657 
5658 	/* step 4: Check for a SYN
5659 	 * RFC 5961 4.2 : Send a challenge ack
5660 	 */
5661 	if (th->syn) {
5662 syn_challenge:
5663 		if (syn_inerr)
5664 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5665 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5666 		tcp_send_challenge_ack(sk, skb);
5667 		goto discard;
5668 	}
5669 
5670 	bpf_skops_parse_hdr(sk, skb);
5671 
5672 	return true;
5673 
5674 discard:
5675 	tcp_drop(sk, skb);
5676 	return false;
5677 }
5678 
5679 /*
5680  *	TCP receive function for the ESTABLISHED state.
5681  *
5682  *	It is split into a fast path and a slow path. The fast path is
5683  * 	disabled when:
5684  *	- A zero window was announced from us - zero window probing
5685  *        is only handled properly in the slow path.
5686  *	- Out of order segments arrived.
5687  *	- Urgent data is expected.
5688  *	- There is no buffer space left
5689  *	- Unexpected TCP flags/window values/header lengths are received
5690  *	  (detected by checking the TCP header against pred_flags)
5691  *	- Data is sent in both directions. Fast path only supports pure senders
5692  *	  or pure receivers (this means either the sequence number or the ack
5693  *	  value must stay constant)
5694  *	- Unexpected TCP option.
5695  *
5696  *	When these conditions are not satisfied it drops into a standard
5697  *	receive procedure patterned after RFC793 to handle all cases.
5698  *	The first three cases are guaranteed by proper pred_flags setting,
5699  *	the rest is checked inline. Fast processing is turned on in
5700  *	tcp_data_queue when everything is OK.
5701  */
5702 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5703 {
5704 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5705 	struct tcp_sock *tp = tcp_sk(sk);
5706 	unsigned int len = skb->len;
5707 
5708 	/* TCP congestion window tracking */
5709 	trace_tcp_probe(sk, skb);
5710 
5711 	tcp_mstamp_refresh(tp);
5712 	if (unlikely(!sk->sk_rx_dst))
5713 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5714 	/*
5715 	 *	Header prediction.
5716 	 *	The code loosely follows the one in the famous
5717 	 *	"30 instruction TCP receive" Van Jacobson mail.
5718 	 *
5719 	 *	Van's trick is to deposit buffers into socket queue
5720 	 *	on a device interrupt, to call tcp_recv function
5721 	 *	on the receive process context and checksum and copy
5722 	 *	the buffer to user space. smart...
5723 	 *
5724 	 *	Our current scheme is not silly either but we take the
5725 	 *	extra cost of the net_bh soft interrupt processing...
5726 	 *	We do checksum and copy also but from device to kernel.
5727 	 */
5728 
5729 	tp->rx_opt.saw_tstamp = 0;
5730 
5731 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5732 	 *	if header_prediction is to be made
5733 	 *	'S' will always be tp->tcp_header_len >> 2
5734 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5735 	 *  turn it off	(when there are holes in the receive
5736 	 *	 space for instance)
5737 	 *	PSH flag is ignored.
5738 	 */
5739 
5740 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5741 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5742 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5743 		int tcp_header_len = tp->tcp_header_len;
5744 
5745 		/* Timestamp header prediction: tcp_header_len
5746 		 * is automatically equal to th->doff*4 due to pred_flags
5747 		 * match.
5748 		 */
5749 
5750 		/* Check timestamp */
5751 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5752 			/* No? Slow path! */
5753 			if (!tcp_parse_aligned_timestamp(tp, th))
5754 				goto slow_path;
5755 
5756 			/* If PAWS failed, check it more carefully in slow path */
5757 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5758 				goto slow_path;
5759 
5760 			/* DO NOT update ts_recent here, if checksum fails
5761 			 * and timestamp was corrupted part, it will result
5762 			 * in a hung connection since we will drop all
5763 			 * future packets due to the PAWS test.
5764 			 */
5765 		}
5766 
5767 		if (len <= tcp_header_len) {
5768 			/* Bulk data transfer: sender */
5769 			if (len == tcp_header_len) {
5770 				/* Predicted packet is in window by definition.
5771 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5772 				 * Hence, check seq<=rcv_wup reduces to:
5773 				 */
5774 				if (tcp_header_len ==
5775 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5776 				    tp->rcv_nxt == tp->rcv_wup)
5777 					tcp_store_ts_recent(tp);
5778 
5779 				/* We know that such packets are checksummed
5780 				 * on entry.
5781 				 */
5782 				tcp_ack(sk, skb, 0);
5783 				__kfree_skb(skb);
5784 				tcp_data_snd_check(sk);
5785 				/* When receiving pure ack in fast path, update
5786 				 * last ts ecr directly instead of calling
5787 				 * tcp_rcv_rtt_measure_ts()
5788 				 */
5789 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5790 				return;
5791 			} else { /* Header too small */
5792 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5793 				goto discard;
5794 			}
5795 		} else {
5796 			int eaten = 0;
5797 			bool fragstolen = false;
5798 
5799 			if (tcp_checksum_complete(skb))
5800 				goto csum_error;
5801 
5802 			if ((int)skb->truesize > sk->sk_forward_alloc)
5803 				goto step5;
5804 
5805 			/* Predicted packet is in window by definition.
5806 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5807 			 * Hence, check seq<=rcv_wup reduces to:
5808 			 */
5809 			if (tcp_header_len ==
5810 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5811 			    tp->rcv_nxt == tp->rcv_wup)
5812 				tcp_store_ts_recent(tp);
5813 
5814 			tcp_rcv_rtt_measure_ts(sk, skb);
5815 
5816 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5817 
5818 			/* Bulk data transfer: receiver */
5819 			__skb_pull(skb, tcp_header_len);
5820 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5821 
5822 			tcp_event_data_recv(sk, skb);
5823 
5824 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5825 				/* Well, only one small jumplet in fast path... */
5826 				tcp_ack(sk, skb, FLAG_DATA);
5827 				tcp_data_snd_check(sk);
5828 				if (!inet_csk_ack_scheduled(sk))
5829 					goto no_ack;
5830 			} else {
5831 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5832 			}
5833 
5834 			__tcp_ack_snd_check(sk, 0);
5835 no_ack:
5836 			if (eaten)
5837 				kfree_skb_partial(skb, fragstolen);
5838 			tcp_data_ready(sk);
5839 			return;
5840 		}
5841 	}
5842 
5843 slow_path:
5844 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5845 		goto csum_error;
5846 
5847 	if (!th->ack && !th->rst && !th->syn)
5848 		goto discard;
5849 
5850 	/*
5851 	 *	Standard slow path.
5852 	 */
5853 
5854 	if (!tcp_validate_incoming(sk, skb, th, 1))
5855 		return;
5856 
5857 step5:
5858 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5859 		goto discard;
5860 
5861 	tcp_rcv_rtt_measure_ts(sk, skb);
5862 
5863 	/* Process urgent data. */
5864 	tcp_urg(sk, skb, th);
5865 
5866 	/* step 7: process the segment text */
5867 	tcp_data_queue(sk, skb);
5868 
5869 	tcp_data_snd_check(sk);
5870 	tcp_ack_snd_check(sk);
5871 	return;
5872 
5873 csum_error:
5874 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5875 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5876 
5877 discard:
5878 	tcp_drop(sk, skb);
5879 }
5880 EXPORT_SYMBOL(tcp_rcv_established);
5881 
5882 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5883 {
5884 	struct inet_connection_sock *icsk = inet_csk(sk);
5885 	struct tcp_sock *tp = tcp_sk(sk);
5886 
5887 	tcp_mtup_init(sk);
5888 	icsk->icsk_af_ops->rebuild_header(sk);
5889 	tcp_init_metrics(sk);
5890 
5891 	/* Initialize the congestion window to start the transfer.
5892 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5893 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5894 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5895 	 * retransmission has occurred.
5896 	 */
5897 	if (tp->total_retrans > 1 && tp->undo_marker)
5898 		tp->snd_cwnd = 1;
5899 	else
5900 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5901 	tp->snd_cwnd_stamp = tcp_jiffies32;
5902 
5903 	icsk->icsk_ca_initialized = 0;
5904 	bpf_skops_established(sk, bpf_op, skb);
5905 	if (!icsk->icsk_ca_initialized)
5906 		tcp_init_congestion_control(sk);
5907 	tcp_init_buffer_space(sk);
5908 }
5909 
5910 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5911 {
5912 	struct tcp_sock *tp = tcp_sk(sk);
5913 	struct inet_connection_sock *icsk = inet_csk(sk);
5914 
5915 	tcp_set_state(sk, TCP_ESTABLISHED);
5916 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5917 
5918 	if (skb) {
5919 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5920 		security_inet_conn_established(sk, skb);
5921 		sk_mark_napi_id(sk, skb);
5922 	}
5923 
5924 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
5925 
5926 	/* Prevent spurious tcp_cwnd_restart() on first data
5927 	 * packet.
5928 	 */
5929 	tp->lsndtime = tcp_jiffies32;
5930 
5931 	if (sock_flag(sk, SOCK_KEEPOPEN))
5932 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5933 
5934 	if (!tp->rx_opt.snd_wscale)
5935 		__tcp_fast_path_on(tp, tp->snd_wnd);
5936 	else
5937 		tp->pred_flags = 0;
5938 }
5939 
5940 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5941 				    struct tcp_fastopen_cookie *cookie)
5942 {
5943 	struct tcp_sock *tp = tcp_sk(sk);
5944 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5945 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5946 	bool syn_drop = false;
5947 
5948 	if (mss == tp->rx_opt.user_mss) {
5949 		struct tcp_options_received opt;
5950 
5951 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5952 		tcp_clear_options(&opt);
5953 		opt.user_mss = opt.mss_clamp = 0;
5954 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5955 		mss = opt.mss_clamp;
5956 	}
5957 
5958 	if (!tp->syn_fastopen) {
5959 		/* Ignore an unsolicited cookie */
5960 		cookie->len = -1;
5961 	} else if (tp->total_retrans) {
5962 		/* SYN timed out and the SYN-ACK neither has a cookie nor
5963 		 * acknowledges data. Presumably the remote received only
5964 		 * the retransmitted (regular) SYNs: either the original
5965 		 * SYN-data or the corresponding SYN-ACK was dropped.
5966 		 */
5967 		syn_drop = (cookie->len < 0 && data);
5968 	} else if (cookie->len < 0 && !tp->syn_data) {
5969 		/* We requested a cookie but didn't get it. If we did not use
5970 		 * the (old) exp opt format then try so next time (try_exp=1).
5971 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5972 		 */
5973 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
5974 	}
5975 
5976 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5977 
5978 	if (data) { /* Retransmit unacked data in SYN */
5979 		if (tp->total_retrans)
5980 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5981 		else
5982 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5983 		skb_rbtree_walk_from(data) {
5984 			if (__tcp_retransmit_skb(sk, data, 1))
5985 				break;
5986 		}
5987 		tcp_rearm_rto(sk);
5988 		NET_INC_STATS(sock_net(sk),
5989 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5990 		return true;
5991 	}
5992 	tp->syn_data_acked = tp->syn_data;
5993 	if (tp->syn_data_acked) {
5994 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5995 		/* SYN-data is counted as two separate packets in tcp_ack() */
5996 		if (tp->delivered > 1)
5997 			--tp->delivered;
5998 	}
5999 
6000 	tcp_fastopen_add_skb(sk, synack);
6001 
6002 	return false;
6003 }
6004 
6005 static void smc_check_reset_syn(struct tcp_sock *tp)
6006 {
6007 #if IS_ENABLED(CONFIG_SMC)
6008 	if (static_branch_unlikely(&tcp_have_smc)) {
6009 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6010 			tp->syn_smc = 0;
6011 	}
6012 #endif
6013 }
6014 
6015 static void tcp_try_undo_spurious_syn(struct sock *sk)
6016 {
6017 	struct tcp_sock *tp = tcp_sk(sk);
6018 	u32 syn_stamp;
6019 
6020 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6021 	 * spurious if the ACK's timestamp option echo value matches the
6022 	 * original SYN timestamp.
6023 	 */
6024 	syn_stamp = tp->retrans_stamp;
6025 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6026 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6027 		tp->undo_marker = 0;
6028 }
6029 
6030 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6031 					 const struct tcphdr *th)
6032 {
6033 	struct inet_connection_sock *icsk = inet_csk(sk);
6034 	struct tcp_sock *tp = tcp_sk(sk);
6035 	struct tcp_fastopen_cookie foc = { .len = -1 };
6036 	int saved_clamp = tp->rx_opt.mss_clamp;
6037 	bool fastopen_fail;
6038 
6039 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6040 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6041 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6042 
6043 	if (th->ack) {
6044 		/* rfc793:
6045 		 * "If the state is SYN-SENT then
6046 		 *    first check the ACK bit
6047 		 *      If the ACK bit is set
6048 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6049 		 *        a reset (unless the RST bit is set, if so drop
6050 		 *        the segment and return)"
6051 		 */
6052 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6053 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6054 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6055 			if (icsk->icsk_retransmits == 0)
6056 				inet_csk_reset_xmit_timer(sk,
6057 						ICSK_TIME_RETRANS,
6058 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6059 			goto reset_and_undo;
6060 		}
6061 
6062 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6063 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6064 			     tcp_time_stamp(tp))) {
6065 			NET_INC_STATS(sock_net(sk),
6066 					LINUX_MIB_PAWSACTIVEREJECTED);
6067 			goto reset_and_undo;
6068 		}
6069 
6070 		/* Now ACK is acceptable.
6071 		 *
6072 		 * "If the RST bit is set
6073 		 *    If the ACK was acceptable then signal the user "error:
6074 		 *    connection reset", drop the segment, enter CLOSED state,
6075 		 *    delete TCB, and return."
6076 		 */
6077 
6078 		if (th->rst) {
6079 			tcp_reset(sk);
6080 			goto discard;
6081 		}
6082 
6083 		/* rfc793:
6084 		 *   "fifth, if neither of the SYN or RST bits is set then
6085 		 *    drop the segment and return."
6086 		 *
6087 		 *    See note below!
6088 		 *                                        --ANK(990513)
6089 		 */
6090 		if (!th->syn)
6091 			goto discard_and_undo;
6092 
6093 		/* rfc793:
6094 		 *   "If the SYN bit is on ...
6095 		 *    are acceptable then ...
6096 		 *    (our SYN has been ACKed), change the connection
6097 		 *    state to ESTABLISHED..."
6098 		 */
6099 
6100 		tcp_ecn_rcv_synack(tp, th);
6101 
6102 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6103 		tcp_try_undo_spurious_syn(sk);
6104 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6105 
6106 		/* Ok.. it's good. Set up sequence numbers and
6107 		 * move to established.
6108 		 */
6109 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6110 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6111 
6112 		/* RFC1323: The window in SYN & SYN/ACK segments is
6113 		 * never scaled.
6114 		 */
6115 		tp->snd_wnd = ntohs(th->window);
6116 
6117 		if (!tp->rx_opt.wscale_ok) {
6118 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6119 			tp->window_clamp = min(tp->window_clamp, 65535U);
6120 		}
6121 
6122 		if (tp->rx_opt.saw_tstamp) {
6123 			tp->rx_opt.tstamp_ok	   = 1;
6124 			tp->tcp_header_len =
6125 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6126 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6127 			tcp_store_ts_recent(tp);
6128 		} else {
6129 			tp->tcp_header_len = sizeof(struct tcphdr);
6130 		}
6131 
6132 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6133 		tcp_initialize_rcv_mss(sk);
6134 
6135 		/* Remember, tcp_poll() does not lock socket!
6136 		 * Change state from SYN-SENT only after copied_seq
6137 		 * is initialized. */
6138 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6139 
6140 		smc_check_reset_syn(tp);
6141 
6142 		smp_mb();
6143 
6144 		tcp_finish_connect(sk, skb);
6145 
6146 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6147 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6148 
6149 		if (!sock_flag(sk, SOCK_DEAD)) {
6150 			sk->sk_state_change(sk);
6151 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6152 		}
6153 		if (fastopen_fail)
6154 			return -1;
6155 		if (sk->sk_write_pending ||
6156 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6157 		    inet_csk_in_pingpong_mode(sk)) {
6158 			/* Save one ACK. Data will be ready after
6159 			 * several ticks, if write_pending is set.
6160 			 *
6161 			 * It may be deleted, but with this feature tcpdumps
6162 			 * look so _wonderfully_ clever, that I was not able
6163 			 * to stand against the temptation 8)     --ANK
6164 			 */
6165 			inet_csk_schedule_ack(sk);
6166 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6167 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6168 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6169 
6170 discard:
6171 			tcp_drop(sk, skb);
6172 			return 0;
6173 		} else {
6174 			tcp_send_ack(sk);
6175 		}
6176 		return -1;
6177 	}
6178 
6179 	/* No ACK in the segment */
6180 
6181 	if (th->rst) {
6182 		/* rfc793:
6183 		 * "If the RST bit is set
6184 		 *
6185 		 *      Otherwise (no ACK) drop the segment and return."
6186 		 */
6187 
6188 		goto discard_and_undo;
6189 	}
6190 
6191 	/* PAWS check. */
6192 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6193 	    tcp_paws_reject(&tp->rx_opt, 0))
6194 		goto discard_and_undo;
6195 
6196 	if (th->syn) {
6197 		/* We see SYN without ACK. It is attempt of
6198 		 * simultaneous connect with crossed SYNs.
6199 		 * Particularly, it can be connect to self.
6200 		 */
6201 		tcp_set_state(sk, TCP_SYN_RECV);
6202 
6203 		if (tp->rx_opt.saw_tstamp) {
6204 			tp->rx_opt.tstamp_ok = 1;
6205 			tcp_store_ts_recent(tp);
6206 			tp->tcp_header_len =
6207 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6208 		} else {
6209 			tp->tcp_header_len = sizeof(struct tcphdr);
6210 		}
6211 
6212 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6213 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6214 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6215 
6216 		/* RFC1323: The window in SYN & SYN/ACK segments is
6217 		 * never scaled.
6218 		 */
6219 		tp->snd_wnd    = ntohs(th->window);
6220 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6221 		tp->max_window = tp->snd_wnd;
6222 
6223 		tcp_ecn_rcv_syn(tp, th);
6224 
6225 		tcp_mtup_init(sk);
6226 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6227 		tcp_initialize_rcv_mss(sk);
6228 
6229 		tcp_send_synack(sk);
6230 #if 0
6231 		/* Note, we could accept data and URG from this segment.
6232 		 * There are no obstacles to make this (except that we must
6233 		 * either change tcp_recvmsg() to prevent it from returning data
6234 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6235 		 *
6236 		 * However, if we ignore data in ACKless segments sometimes,
6237 		 * we have no reasons to accept it sometimes.
6238 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6239 		 * is not flawless. So, discard packet for sanity.
6240 		 * Uncomment this return to process the data.
6241 		 */
6242 		return -1;
6243 #else
6244 		goto discard;
6245 #endif
6246 	}
6247 	/* "fifth, if neither of the SYN or RST bits is set then
6248 	 * drop the segment and return."
6249 	 */
6250 
6251 discard_and_undo:
6252 	tcp_clear_options(&tp->rx_opt);
6253 	tp->rx_opt.mss_clamp = saved_clamp;
6254 	goto discard;
6255 
6256 reset_and_undo:
6257 	tcp_clear_options(&tp->rx_opt);
6258 	tp->rx_opt.mss_clamp = saved_clamp;
6259 	return 1;
6260 }
6261 
6262 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6263 {
6264 	struct request_sock *req;
6265 
6266 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6267 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6268 	 */
6269 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6270 		tcp_try_undo_loss(sk, false);
6271 
6272 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6273 	tcp_sk(sk)->retrans_stamp = 0;
6274 	inet_csk(sk)->icsk_retransmits = 0;
6275 
6276 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6277 	 * we no longer need req so release it.
6278 	 */
6279 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6280 					lockdep_sock_is_held(sk));
6281 	reqsk_fastopen_remove(sk, req, false);
6282 
6283 	/* Re-arm the timer because data may have been sent out.
6284 	 * This is similar to the regular data transmission case
6285 	 * when new data has just been ack'ed.
6286 	 *
6287 	 * (TFO) - we could try to be more aggressive and
6288 	 * retransmitting any data sooner based on when they
6289 	 * are sent out.
6290 	 */
6291 	tcp_rearm_rto(sk);
6292 }
6293 
6294 /*
6295  *	This function implements the receiving procedure of RFC 793 for
6296  *	all states except ESTABLISHED and TIME_WAIT.
6297  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6298  *	address independent.
6299  */
6300 
6301 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6302 {
6303 	struct tcp_sock *tp = tcp_sk(sk);
6304 	struct inet_connection_sock *icsk = inet_csk(sk);
6305 	const struct tcphdr *th = tcp_hdr(skb);
6306 	struct request_sock *req;
6307 	int queued = 0;
6308 	bool acceptable;
6309 
6310 	switch (sk->sk_state) {
6311 	case TCP_CLOSE:
6312 		goto discard;
6313 
6314 	case TCP_LISTEN:
6315 		if (th->ack)
6316 			return 1;
6317 
6318 		if (th->rst)
6319 			goto discard;
6320 
6321 		if (th->syn) {
6322 			if (th->fin)
6323 				goto discard;
6324 			/* It is possible that we process SYN packets from backlog,
6325 			 * so we need to make sure to disable BH and RCU right there.
6326 			 */
6327 			rcu_read_lock();
6328 			local_bh_disable();
6329 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6330 			local_bh_enable();
6331 			rcu_read_unlock();
6332 
6333 			if (!acceptable)
6334 				return 1;
6335 			consume_skb(skb);
6336 			return 0;
6337 		}
6338 		goto discard;
6339 
6340 	case TCP_SYN_SENT:
6341 		tp->rx_opt.saw_tstamp = 0;
6342 		tcp_mstamp_refresh(tp);
6343 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6344 		if (queued >= 0)
6345 			return queued;
6346 
6347 		/* Do step6 onward by hand. */
6348 		tcp_urg(sk, skb, th);
6349 		__kfree_skb(skb);
6350 		tcp_data_snd_check(sk);
6351 		return 0;
6352 	}
6353 
6354 	tcp_mstamp_refresh(tp);
6355 	tp->rx_opt.saw_tstamp = 0;
6356 	req = rcu_dereference_protected(tp->fastopen_rsk,
6357 					lockdep_sock_is_held(sk));
6358 	if (req) {
6359 		bool req_stolen;
6360 
6361 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6362 		    sk->sk_state != TCP_FIN_WAIT1);
6363 
6364 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6365 			goto discard;
6366 	}
6367 
6368 	if (!th->ack && !th->rst && !th->syn)
6369 		goto discard;
6370 
6371 	if (!tcp_validate_incoming(sk, skb, th, 0))
6372 		return 0;
6373 
6374 	/* step 5: check the ACK field */
6375 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6376 				      FLAG_UPDATE_TS_RECENT |
6377 				      FLAG_NO_CHALLENGE_ACK) > 0;
6378 
6379 	if (!acceptable) {
6380 		if (sk->sk_state == TCP_SYN_RECV)
6381 			return 1;	/* send one RST */
6382 		tcp_send_challenge_ack(sk, skb);
6383 		goto discard;
6384 	}
6385 	switch (sk->sk_state) {
6386 	case TCP_SYN_RECV:
6387 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6388 		if (!tp->srtt_us)
6389 			tcp_synack_rtt_meas(sk, req);
6390 
6391 		if (req) {
6392 			tcp_rcv_synrecv_state_fastopen(sk);
6393 		} else {
6394 			tcp_try_undo_spurious_syn(sk);
6395 			tp->retrans_stamp = 0;
6396 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6397 					  skb);
6398 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6399 		}
6400 		smp_mb();
6401 		tcp_set_state(sk, TCP_ESTABLISHED);
6402 		sk->sk_state_change(sk);
6403 
6404 		/* Note, that this wakeup is only for marginal crossed SYN case.
6405 		 * Passively open sockets are not waked up, because
6406 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6407 		 */
6408 		if (sk->sk_socket)
6409 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6410 
6411 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6412 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6413 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6414 
6415 		if (tp->rx_opt.tstamp_ok)
6416 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6417 
6418 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6419 			tcp_update_pacing_rate(sk);
6420 
6421 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6422 		tp->lsndtime = tcp_jiffies32;
6423 
6424 		tcp_initialize_rcv_mss(sk);
6425 		tcp_fast_path_on(tp);
6426 		break;
6427 
6428 	case TCP_FIN_WAIT1: {
6429 		int tmo;
6430 
6431 		if (req)
6432 			tcp_rcv_synrecv_state_fastopen(sk);
6433 
6434 		if (tp->snd_una != tp->write_seq)
6435 			break;
6436 
6437 		tcp_set_state(sk, TCP_FIN_WAIT2);
6438 		sk->sk_shutdown |= SEND_SHUTDOWN;
6439 
6440 		sk_dst_confirm(sk);
6441 
6442 		if (!sock_flag(sk, SOCK_DEAD)) {
6443 			/* Wake up lingering close() */
6444 			sk->sk_state_change(sk);
6445 			break;
6446 		}
6447 
6448 		if (tp->linger2 < 0) {
6449 			tcp_done(sk);
6450 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6451 			return 1;
6452 		}
6453 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6454 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6455 			/* Receive out of order FIN after close() */
6456 			if (tp->syn_fastopen && th->fin)
6457 				tcp_fastopen_active_disable(sk);
6458 			tcp_done(sk);
6459 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6460 			return 1;
6461 		}
6462 
6463 		tmo = tcp_fin_time(sk);
6464 		if (tmo > TCP_TIMEWAIT_LEN) {
6465 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6466 		} else if (th->fin || sock_owned_by_user(sk)) {
6467 			/* Bad case. We could lose such FIN otherwise.
6468 			 * It is not a big problem, but it looks confusing
6469 			 * and not so rare event. We still can lose it now,
6470 			 * if it spins in bh_lock_sock(), but it is really
6471 			 * marginal case.
6472 			 */
6473 			inet_csk_reset_keepalive_timer(sk, tmo);
6474 		} else {
6475 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6476 			goto discard;
6477 		}
6478 		break;
6479 	}
6480 
6481 	case TCP_CLOSING:
6482 		if (tp->snd_una == tp->write_seq) {
6483 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6484 			goto discard;
6485 		}
6486 		break;
6487 
6488 	case TCP_LAST_ACK:
6489 		if (tp->snd_una == tp->write_seq) {
6490 			tcp_update_metrics(sk);
6491 			tcp_done(sk);
6492 			goto discard;
6493 		}
6494 		break;
6495 	}
6496 
6497 	/* step 6: check the URG bit */
6498 	tcp_urg(sk, skb, th);
6499 
6500 	/* step 7: process the segment text */
6501 	switch (sk->sk_state) {
6502 	case TCP_CLOSE_WAIT:
6503 	case TCP_CLOSING:
6504 	case TCP_LAST_ACK:
6505 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6506 			if (sk_is_mptcp(sk))
6507 				mptcp_incoming_options(sk, skb);
6508 			break;
6509 		}
6510 		fallthrough;
6511 	case TCP_FIN_WAIT1:
6512 	case TCP_FIN_WAIT2:
6513 		/* RFC 793 says to queue data in these states,
6514 		 * RFC 1122 says we MUST send a reset.
6515 		 * BSD 4.4 also does reset.
6516 		 */
6517 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6518 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6519 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6520 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6521 				tcp_reset(sk);
6522 				return 1;
6523 			}
6524 		}
6525 		fallthrough;
6526 	case TCP_ESTABLISHED:
6527 		tcp_data_queue(sk, skb);
6528 		queued = 1;
6529 		break;
6530 	}
6531 
6532 	/* tcp_data could move socket to TIME-WAIT */
6533 	if (sk->sk_state != TCP_CLOSE) {
6534 		tcp_data_snd_check(sk);
6535 		tcp_ack_snd_check(sk);
6536 	}
6537 
6538 	if (!queued) {
6539 discard:
6540 		tcp_drop(sk, skb);
6541 	}
6542 	return 0;
6543 }
6544 EXPORT_SYMBOL(tcp_rcv_state_process);
6545 
6546 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6547 {
6548 	struct inet_request_sock *ireq = inet_rsk(req);
6549 
6550 	if (family == AF_INET)
6551 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6552 				    &ireq->ir_rmt_addr, port);
6553 #if IS_ENABLED(CONFIG_IPV6)
6554 	else if (family == AF_INET6)
6555 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6556 				    &ireq->ir_v6_rmt_addr, port);
6557 #endif
6558 }
6559 
6560 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6561  *
6562  * If we receive a SYN packet with these bits set, it means a
6563  * network is playing bad games with TOS bits. In order to
6564  * avoid possible false congestion notifications, we disable
6565  * TCP ECN negotiation.
6566  *
6567  * Exception: tcp_ca wants ECN. This is required for DCTCP
6568  * congestion control: Linux DCTCP asserts ECT on all packets,
6569  * including SYN, which is most optimal solution; however,
6570  * others, such as FreeBSD do not.
6571  *
6572  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6573  * set, indicating the use of a future TCP extension (such as AccECN). See
6574  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6575  * extensions.
6576  */
6577 static void tcp_ecn_create_request(struct request_sock *req,
6578 				   const struct sk_buff *skb,
6579 				   const struct sock *listen_sk,
6580 				   const struct dst_entry *dst)
6581 {
6582 	const struct tcphdr *th = tcp_hdr(skb);
6583 	const struct net *net = sock_net(listen_sk);
6584 	bool th_ecn = th->ece && th->cwr;
6585 	bool ect, ecn_ok;
6586 	u32 ecn_ok_dst;
6587 
6588 	if (!th_ecn)
6589 		return;
6590 
6591 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6592 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6593 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6594 
6595 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6596 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6597 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6598 		inet_rsk(req)->ecn_ok = 1;
6599 }
6600 
6601 static void tcp_openreq_init(struct request_sock *req,
6602 			     const struct tcp_options_received *rx_opt,
6603 			     struct sk_buff *skb, const struct sock *sk)
6604 {
6605 	struct inet_request_sock *ireq = inet_rsk(req);
6606 
6607 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6608 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6609 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6610 	tcp_rsk(req)->snt_synack = 0;
6611 	tcp_rsk(req)->last_oow_ack_time = 0;
6612 	req->mss = rx_opt->mss_clamp;
6613 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6614 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6615 	ireq->sack_ok = rx_opt->sack_ok;
6616 	ireq->snd_wscale = rx_opt->snd_wscale;
6617 	ireq->wscale_ok = rx_opt->wscale_ok;
6618 	ireq->acked = 0;
6619 	ireq->ecn_ok = 0;
6620 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6621 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6622 	ireq->ir_mark = inet_request_mark(sk, skb);
6623 #if IS_ENABLED(CONFIG_SMC)
6624 	ireq->smc_ok = rx_opt->smc_ok;
6625 #endif
6626 }
6627 
6628 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6629 				      struct sock *sk_listener,
6630 				      bool attach_listener)
6631 {
6632 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6633 					       attach_listener);
6634 
6635 	if (req) {
6636 		struct inet_request_sock *ireq = inet_rsk(req);
6637 
6638 		ireq->ireq_opt = NULL;
6639 #if IS_ENABLED(CONFIG_IPV6)
6640 		ireq->pktopts = NULL;
6641 #endif
6642 		atomic64_set(&ireq->ir_cookie, 0);
6643 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6644 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6645 		ireq->ireq_family = sk_listener->sk_family;
6646 	}
6647 
6648 	return req;
6649 }
6650 EXPORT_SYMBOL(inet_reqsk_alloc);
6651 
6652 /*
6653  * Return true if a syncookie should be sent
6654  */
6655 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6656 {
6657 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6658 	const char *msg = "Dropping request";
6659 	bool want_cookie = false;
6660 	struct net *net = sock_net(sk);
6661 
6662 #ifdef CONFIG_SYN_COOKIES
6663 	if (net->ipv4.sysctl_tcp_syncookies) {
6664 		msg = "Sending cookies";
6665 		want_cookie = true;
6666 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6667 	} else
6668 #endif
6669 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6670 
6671 	if (!queue->synflood_warned &&
6672 	    net->ipv4.sysctl_tcp_syncookies != 2 &&
6673 	    xchg(&queue->synflood_warned, 1) == 0)
6674 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6675 				     proto, sk->sk_num, msg);
6676 
6677 	return want_cookie;
6678 }
6679 
6680 static void tcp_reqsk_record_syn(const struct sock *sk,
6681 				 struct request_sock *req,
6682 				 const struct sk_buff *skb)
6683 {
6684 	if (tcp_sk(sk)->save_syn) {
6685 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6686 		struct saved_syn *saved_syn;
6687 		u32 mac_hdrlen;
6688 		void *base;
6689 
6690 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6691 			base = skb_mac_header(skb);
6692 			mac_hdrlen = skb_mac_header_len(skb);
6693 			len += mac_hdrlen;
6694 		} else {
6695 			base = skb_network_header(skb);
6696 			mac_hdrlen = 0;
6697 		}
6698 
6699 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6700 				    GFP_ATOMIC);
6701 		if (saved_syn) {
6702 			saved_syn->mac_hdrlen = mac_hdrlen;
6703 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6704 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6705 			memcpy(saved_syn->data, base, len);
6706 			req->saved_syn = saved_syn;
6707 		}
6708 	}
6709 }
6710 
6711 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6712  * used for SYN cookie generation.
6713  */
6714 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6715 			  const struct tcp_request_sock_ops *af_ops,
6716 			  struct sock *sk, struct tcphdr *th)
6717 {
6718 	struct tcp_sock *tp = tcp_sk(sk);
6719 	u16 mss;
6720 
6721 	if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6722 	    !inet_csk_reqsk_queue_is_full(sk))
6723 		return 0;
6724 
6725 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6726 		return 0;
6727 
6728 	if (sk_acceptq_is_full(sk)) {
6729 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6730 		return 0;
6731 	}
6732 
6733 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6734 	if (!mss)
6735 		mss = af_ops->mss_clamp;
6736 
6737 	return mss;
6738 }
6739 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6740 
6741 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6742 		     const struct tcp_request_sock_ops *af_ops,
6743 		     struct sock *sk, struct sk_buff *skb)
6744 {
6745 	struct tcp_fastopen_cookie foc = { .len = -1 };
6746 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6747 	struct tcp_options_received tmp_opt;
6748 	struct tcp_sock *tp = tcp_sk(sk);
6749 	struct net *net = sock_net(sk);
6750 	struct sock *fastopen_sk = NULL;
6751 	struct request_sock *req;
6752 	bool want_cookie = false;
6753 	struct dst_entry *dst;
6754 	struct flowi fl;
6755 
6756 	/* TW buckets are converted to open requests without
6757 	 * limitations, they conserve resources and peer is
6758 	 * evidently real one.
6759 	 */
6760 	if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6761 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6762 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6763 		if (!want_cookie)
6764 			goto drop;
6765 	}
6766 
6767 	if (sk_acceptq_is_full(sk)) {
6768 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6769 		goto drop;
6770 	}
6771 
6772 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6773 	if (!req)
6774 		goto drop;
6775 
6776 	req->syncookie = want_cookie;
6777 	tcp_rsk(req)->af_specific = af_ops;
6778 	tcp_rsk(req)->ts_off = 0;
6779 #if IS_ENABLED(CONFIG_MPTCP)
6780 	tcp_rsk(req)->is_mptcp = 0;
6781 #endif
6782 
6783 	tcp_clear_options(&tmp_opt);
6784 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6785 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6786 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6787 			  want_cookie ? NULL : &foc);
6788 
6789 	if (want_cookie && !tmp_opt.saw_tstamp)
6790 		tcp_clear_options(&tmp_opt);
6791 
6792 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6793 		tmp_opt.smc_ok = 0;
6794 
6795 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6796 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6797 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6798 
6799 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6800 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6801 
6802 	af_ops->init_req(req, sk, skb);
6803 
6804 	if (security_inet_conn_request(sk, skb, req))
6805 		goto drop_and_free;
6806 
6807 	if (tmp_opt.tstamp_ok)
6808 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6809 
6810 	dst = af_ops->route_req(sk, &fl, req);
6811 	if (!dst)
6812 		goto drop_and_free;
6813 
6814 	if (!want_cookie && !isn) {
6815 		/* Kill the following clause, if you dislike this way. */
6816 		if (!net->ipv4.sysctl_tcp_syncookies &&
6817 		    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6818 		     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6819 		    !tcp_peer_is_proven(req, dst)) {
6820 			/* Without syncookies last quarter of
6821 			 * backlog is filled with destinations,
6822 			 * proven to be alive.
6823 			 * It means that we continue to communicate
6824 			 * to destinations, already remembered
6825 			 * to the moment of synflood.
6826 			 */
6827 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6828 				    rsk_ops->family);
6829 			goto drop_and_release;
6830 		}
6831 
6832 		isn = af_ops->init_seq(skb);
6833 	}
6834 
6835 	tcp_ecn_create_request(req, skb, sk, dst);
6836 
6837 	if (want_cookie) {
6838 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6839 		if (!tmp_opt.tstamp_ok)
6840 			inet_rsk(req)->ecn_ok = 0;
6841 	}
6842 
6843 	tcp_rsk(req)->snt_isn = isn;
6844 	tcp_rsk(req)->txhash = net_tx_rndhash();
6845 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6846 	tcp_openreq_init_rwin(req, sk, dst);
6847 	sk_rx_queue_set(req_to_sk(req), skb);
6848 	if (!want_cookie) {
6849 		tcp_reqsk_record_syn(sk, req, skb);
6850 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6851 	}
6852 	if (fastopen_sk) {
6853 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6854 				    &foc, TCP_SYNACK_FASTOPEN, skb);
6855 		/* Add the child socket directly into the accept queue */
6856 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6857 			reqsk_fastopen_remove(fastopen_sk, req, false);
6858 			bh_unlock_sock(fastopen_sk);
6859 			sock_put(fastopen_sk);
6860 			goto drop_and_free;
6861 		}
6862 		sk->sk_data_ready(sk);
6863 		bh_unlock_sock(fastopen_sk);
6864 		sock_put(fastopen_sk);
6865 	} else {
6866 		tcp_rsk(req)->tfo_listener = false;
6867 		if (!want_cookie)
6868 			inet_csk_reqsk_queue_hash_add(sk, req,
6869 				tcp_timeout_init((struct sock *)req));
6870 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6871 				    !want_cookie ? TCP_SYNACK_NORMAL :
6872 						   TCP_SYNACK_COOKIE,
6873 				    skb);
6874 		if (want_cookie) {
6875 			reqsk_free(req);
6876 			return 0;
6877 		}
6878 	}
6879 	reqsk_put(req);
6880 	return 0;
6881 
6882 drop_and_release:
6883 	dst_release(dst);
6884 drop_and_free:
6885 	__reqsk_free(req);
6886 drop:
6887 	tcp_listendrop(sk);
6888 	return 0;
6889 }
6890 EXPORT_SYMBOL(tcp_conn_request);
6891