1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 108 109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 111 112 #define REXMIT_NONE 0 /* no loss recovery to do */ 113 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 114 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 115 116 #if IS_ENABLED(CONFIG_TLS_DEVICE) 117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 118 119 void clean_acked_data_enable(struct inet_connection_sock *icsk, 120 void (*cad)(struct sock *sk, u32 ack_seq)) 121 { 122 icsk->icsk_clean_acked = cad; 123 static_branch_deferred_inc(&clean_acked_data_enabled); 124 } 125 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 126 127 void clean_acked_data_disable(struct inet_connection_sock *icsk) 128 { 129 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 130 icsk->icsk_clean_acked = NULL; 131 } 132 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 133 134 void clean_acked_data_flush(void) 135 { 136 static_key_deferred_flush(&clean_acked_data_enabled); 137 } 138 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 139 #endif 140 141 #ifdef CONFIG_CGROUP_BPF 142 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 143 { 144 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 145 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 146 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 147 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 148 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 149 struct bpf_sock_ops_kern sock_ops; 150 151 if (likely(!unknown_opt && !parse_all_opt)) 152 return; 153 154 /* The skb will be handled in the 155 * bpf_skops_established() or 156 * bpf_skops_write_hdr_opt(). 157 */ 158 switch (sk->sk_state) { 159 case TCP_SYN_RECV: 160 case TCP_SYN_SENT: 161 case TCP_LISTEN: 162 return; 163 } 164 165 sock_owned_by_me(sk); 166 167 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 168 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 169 sock_ops.is_fullsock = 1; 170 sock_ops.sk = sk; 171 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 172 173 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 174 } 175 176 static void bpf_skops_established(struct sock *sk, int bpf_op, 177 struct sk_buff *skb) 178 { 179 struct bpf_sock_ops_kern sock_ops; 180 181 sock_owned_by_me(sk); 182 183 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 184 sock_ops.op = bpf_op; 185 sock_ops.is_fullsock = 1; 186 sock_ops.sk = sk; 187 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 188 if (skb) 189 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 190 191 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 192 } 193 #else 194 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 195 { 196 } 197 198 static void bpf_skops_established(struct sock *sk, int bpf_op, 199 struct sk_buff *skb) 200 { 201 } 202 #endif 203 204 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 205 unsigned int len) 206 { 207 static bool __once __read_mostly; 208 209 if (!__once) { 210 struct net_device *dev; 211 212 __once = true; 213 214 rcu_read_lock(); 215 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 216 if (!dev || len >= dev->mtu) 217 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 218 dev ? dev->name : "Unknown driver"); 219 rcu_read_unlock(); 220 } 221 } 222 223 /* Adapt the MSS value used to make delayed ack decision to the 224 * real world. 225 */ 226 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 227 { 228 struct inet_connection_sock *icsk = inet_csk(sk); 229 const unsigned int lss = icsk->icsk_ack.last_seg_size; 230 unsigned int len; 231 232 icsk->icsk_ack.last_seg_size = 0; 233 234 /* skb->len may jitter because of SACKs, even if peer 235 * sends good full-sized frames. 236 */ 237 len = skb_shinfo(skb)->gso_size ? : skb->len; 238 if (len >= icsk->icsk_ack.rcv_mss) { 239 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 240 tcp_sk(sk)->advmss); 241 /* Account for possibly-removed options */ 242 if (unlikely(len > icsk->icsk_ack.rcv_mss + 243 MAX_TCP_OPTION_SPACE)) 244 tcp_gro_dev_warn(sk, skb, len); 245 } else { 246 /* Otherwise, we make more careful check taking into account, 247 * that SACKs block is variable. 248 * 249 * "len" is invariant segment length, including TCP header. 250 */ 251 len += skb->data - skb_transport_header(skb); 252 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 253 /* If PSH is not set, packet should be 254 * full sized, provided peer TCP is not badly broken. 255 * This observation (if it is correct 8)) allows 256 * to handle super-low mtu links fairly. 257 */ 258 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 259 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 260 /* Subtract also invariant (if peer is RFC compliant), 261 * tcp header plus fixed timestamp option length. 262 * Resulting "len" is MSS free of SACK jitter. 263 */ 264 len -= tcp_sk(sk)->tcp_header_len; 265 icsk->icsk_ack.last_seg_size = len; 266 if (len == lss) { 267 icsk->icsk_ack.rcv_mss = len; 268 return; 269 } 270 } 271 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 272 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 274 } 275 } 276 277 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 278 { 279 struct inet_connection_sock *icsk = inet_csk(sk); 280 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 281 282 if (quickacks == 0) 283 quickacks = 2; 284 quickacks = min(quickacks, max_quickacks); 285 if (quickacks > icsk->icsk_ack.quick) 286 icsk->icsk_ack.quick = quickacks; 287 } 288 289 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 290 { 291 struct inet_connection_sock *icsk = inet_csk(sk); 292 293 tcp_incr_quickack(sk, max_quickacks); 294 inet_csk_exit_pingpong_mode(sk); 295 icsk->icsk_ack.ato = TCP_ATO_MIN; 296 } 297 EXPORT_SYMBOL(tcp_enter_quickack_mode); 298 299 /* Send ACKs quickly, if "quick" count is not exhausted 300 * and the session is not interactive. 301 */ 302 303 static bool tcp_in_quickack_mode(struct sock *sk) 304 { 305 const struct inet_connection_sock *icsk = inet_csk(sk); 306 const struct dst_entry *dst = __sk_dst_get(sk); 307 308 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 309 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 310 } 311 312 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 313 { 314 if (tp->ecn_flags & TCP_ECN_OK) 315 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 316 } 317 318 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 319 { 320 if (tcp_hdr(skb)->cwr) { 321 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 322 323 /* If the sender is telling us it has entered CWR, then its 324 * cwnd may be very low (even just 1 packet), so we should ACK 325 * immediately. 326 */ 327 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 328 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 329 } 330 } 331 332 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 333 { 334 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 335 } 336 337 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 338 { 339 struct tcp_sock *tp = tcp_sk(sk); 340 341 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 342 case INET_ECN_NOT_ECT: 343 /* Funny extension: if ECT is not set on a segment, 344 * and we already seen ECT on a previous segment, 345 * it is probably a retransmit. 346 */ 347 if (tp->ecn_flags & TCP_ECN_SEEN) 348 tcp_enter_quickack_mode(sk, 2); 349 break; 350 case INET_ECN_CE: 351 if (tcp_ca_needs_ecn(sk)) 352 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 353 354 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 355 /* Better not delay acks, sender can have a very low cwnd */ 356 tcp_enter_quickack_mode(sk, 2); 357 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 358 } 359 tp->ecn_flags |= TCP_ECN_SEEN; 360 break; 361 default: 362 if (tcp_ca_needs_ecn(sk)) 363 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 364 tp->ecn_flags |= TCP_ECN_SEEN; 365 break; 366 } 367 } 368 369 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 370 { 371 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 372 __tcp_ecn_check_ce(sk, skb); 373 } 374 375 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 376 { 377 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 378 tp->ecn_flags &= ~TCP_ECN_OK; 379 } 380 381 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 382 { 383 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 384 tp->ecn_flags &= ~TCP_ECN_OK; 385 } 386 387 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 388 { 389 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 390 return true; 391 return false; 392 } 393 394 /* Buffer size and advertised window tuning. 395 * 396 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 397 */ 398 399 static void tcp_sndbuf_expand(struct sock *sk) 400 { 401 const struct tcp_sock *tp = tcp_sk(sk); 402 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 403 int sndmem, per_mss; 404 u32 nr_segs; 405 406 /* Worst case is non GSO/TSO : each frame consumes one skb 407 * and skb->head is kmalloced using power of two area of memory 408 */ 409 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 410 MAX_TCP_HEADER + 411 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 412 413 per_mss = roundup_pow_of_two(per_mss) + 414 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 415 416 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 417 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 418 419 /* Fast Recovery (RFC 5681 3.2) : 420 * Cubic needs 1.7 factor, rounded to 2 to include 421 * extra cushion (application might react slowly to EPOLLOUT) 422 */ 423 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 424 sndmem *= nr_segs * per_mss; 425 426 if (sk->sk_sndbuf < sndmem) 427 WRITE_ONCE(sk->sk_sndbuf, 428 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2])); 429 } 430 431 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 432 * 433 * All tcp_full_space() is split to two parts: "network" buffer, allocated 434 * forward and advertised in receiver window (tp->rcv_wnd) and 435 * "application buffer", required to isolate scheduling/application 436 * latencies from network. 437 * window_clamp is maximal advertised window. It can be less than 438 * tcp_full_space(), in this case tcp_full_space() - window_clamp 439 * is reserved for "application" buffer. The less window_clamp is 440 * the smoother our behaviour from viewpoint of network, but the lower 441 * throughput and the higher sensitivity of the connection to losses. 8) 442 * 443 * rcv_ssthresh is more strict window_clamp used at "slow start" 444 * phase to predict further behaviour of this connection. 445 * It is used for two goals: 446 * - to enforce header prediction at sender, even when application 447 * requires some significant "application buffer". It is check #1. 448 * - to prevent pruning of receive queue because of misprediction 449 * of receiver window. Check #2. 450 * 451 * The scheme does not work when sender sends good segments opening 452 * window and then starts to feed us spaghetti. But it should work 453 * in common situations. Otherwise, we have to rely on queue collapsing. 454 */ 455 456 /* Slow part of check#2. */ 457 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 458 { 459 struct tcp_sock *tp = tcp_sk(sk); 460 /* Optimize this! */ 461 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1; 462 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 463 464 while (tp->rcv_ssthresh <= window) { 465 if (truesize <= skb->len) 466 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 467 468 truesize >>= 1; 469 window >>= 1; 470 } 471 return 0; 472 } 473 474 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 475 { 476 struct tcp_sock *tp = tcp_sk(sk); 477 int room; 478 479 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 480 481 /* Check #1 */ 482 if (room > 0 && !tcp_under_memory_pressure(sk)) { 483 int incr; 484 485 /* Check #2. Increase window, if skb with such overhead 486 * will fit to rcvbuf in future. 487 */ 488 if (tcp_win_from_space(sk, skb->truesize) <= skb->len) 489 incr = 2 * tp->advmss; 490 else 491 incr = __tcp_grow_window(sk, skb); 492 493 if (incr) { 494 incr = max_t(int, incr, 2 * skb->len); 495 tp->rcv_ssthresh += min(room, incr); 496 inet_csk(sk)->icsk_ack.quick |= 1; 497 } 498 } 499 } 500 501 /* 3. Try to fixup all. It is made immediately after connection enters 502 * established state. 503 */ 504 static void tcp_init_buffer_space(struct sock *sk) 505 { 506 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 507 struct tcp_sock *tp = tcp_sk(sk); 508 int maxwin; 509 510 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 511 tcp_sndbuf_expand(sk); 512 513 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss); 514 tcp_mstamp_refresh(tp); 515 tp->rcvq_space.time = tp->tcp_mstamp; 516 tp->rcvq_space.seq = tp->copied_seq; 517 518 maxwin = tcp_full_space(sk); 519 520 if (tp->window_clamp >= maxwin) { 521 tp->window_clamp = maxwin; 522 523 if (tcp_app_win && maxwin > 4 * tp->advmss) 524 tp->window_clamp = max(maxwin - 525 (maxwin >> tcp_app_win), 526 4 * tp->advmss); 527 } 528 529 /* Force reservation of one segment. */ 530 if (tcp_app_win && 531 tp->window_clamp > 2 * tp->advmss && 532 tp->window_clamp + tp->advmss > maxwin) 533 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 534 535 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 536 tp->snd_cwnd_stamp = tcp_jiffies32; 537 } 538 539 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 540 static void tcp_clamp_window(struct sock *sk) 541 { 542 struct tcp_sock *tp = tcp_sk(sk); 543 struct inet_connection_sock *icsk = inet_csk(sk); 544 struct net *net = sock_net(sk); 545 546 icsk->icsk_ack.quick = 0; 547 548 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 549 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 550 !tcp_under_memory_pressure(sk) && 551 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 552 WRITE_ONCE(sk->sk_rcvbuf, 553 min(atomic_read(&sk->sk_rmem_alloc), 554 net->ipv4.sysctl_tcp_rmem[2])); 555 } 556 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 557 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 558 } 559 560 /* Initialize RCV_MSS value. 561 * RCV_MSS is an our guess about MSS used by the peer. 562 * We haven't any direct information about the MSS. 563 * It's better to underestimate the RCV_MSS rather than overestimate. 564 * Overestimations make us ACKing less frequently than needed. 565 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 566 */ 567 void tcp_initialize_rcv_mss(struct sock *sk) 568 { 569 const struct tcp_sock *tp = tcp_sk(sk); 570 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 571 572 hint = min(hint, tp->rcv_wnd / 2); 573 hint = min(hint, TCP_MSS_DEFAULT); 574 hint = max(hint, TCP_MIN_MSS); 575 576 inet_csk(sk)->icsk_ack.rcv_mss = hint; 577 } 578 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 579 580 /* Receiver "autotuning" code. 581 * 582 * The algorithm for RTT estimation w/o timestamps is based on 583 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 584 * <https://public.lanl.gov/radiant/pubs.html#DRS> 585 * 586 * More detail on this code can be found at 587 * <http://staff.psc.edu/jheffner/>, 588 * though this reference is out of date. A new paper 589 * is pending. 590 */ 591 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 592 { 593 u32 new_sample = tp->rcv_rtt_est.rtt_us; 594 long m = sample; 595 596 if (new_sample != 0) { 597 /* If we sample in larger samples in the non-timestamp 598 * case, we could grossly overestimate the RTT especially 599 * with chatty applications or bulk transfer apps which 600 * are stalled on filesystem I/O. 601 * 602 * Also, since we are only going for a minimum in the 603 * non-timestamp case, we do not smooth things out 604 * else with timestamps disabled convergence takes too 605 * long. 606 */ 607 if (!win_dep) { 608 m -= (new_sample >> 3); 609 new_sample += m; 610 } else { 611 m <<= 3; 612 if (m < new_sample) 613 new_sample = m; 614 } 615 } else { 616 /* No previous measure. */ 617 new_sample = m << 3; 618 } 619 620 tp->rcv_rtt_est.rtt_us = new_sample; 621 } 622 623 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 624 { 625 u32 delta_us; 626 627 if (tp->rcv_rtt_est.time == 0) 628 goto new_measure; 629 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 630 return; 631 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 632 if (!delta_us) 633 delta_us = 1; 634 tcp_rcv_rtt_update(tp, delta_us, 1); 635 636 new_measure: 637 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 638 tp->rcv_rtt_est.time = tp->tcp_mstamp; 639 } 640 641 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 642 const struct sk_buff *skb) 643 { 644 struct tcp_sock *tp = tcp_sk(sk); 645 646 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 647 return; 648 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 649 650 if (TCP_SKB_CB(skb)->end_seq - 651 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 652 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 653 u32 delta_us; 654 655 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 656 if (!delta) 657 delta = 1; 658 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 659 tcp_rcv_rtt_update(tp, delta_us, 0); 660 } 661 } 662 } 663 664 /* 665 * This function should be called every time data is copied to user space. 666 * It calculates the appropriate TCP receive buffer space. 667 */ 668 void tcp_rcv_space_adjust(struct sock *sk) 669 { 670 struct tcp_sock *tp = tcp_sk(sk); 671 u32 copied; 672 int time; 673 674 trace_tcp_rcv_space_adjust(sk); 675 676 tcp_mstamp_refresh(tp); 677 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 678 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 679 return; 680 681 /* Number of bytes copied to user in last RTT */ 682 copied = tp->copied_seq - tp->rcvq_space.seq; 683 if (copied <= tp->rcvq_space.space) 684 goto new_measure; 685 686 /* A bit of theory : 687 * copied = bytes received in previous RTT, our base window 688 * To cope with packet losses, we need a 2x factor 689 * To cope with slow start, and sender growing its cwin by 100 % 690 * every RTT, we need a 4x factor, because the ACK we are sending 691 * now is for the next RTT, not the current one : 692 * <prev RTT . ><current RTT .. ><next RTT .... > 693 */ 694 695 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 696 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 697 int rcvmem, rcvbuf; 698 u64 rcvwin, grow; 699 700 /* minimal window to cope with packet losses, assuming 701 * steady state. Add some cushion because of small variations. 702 */ 703 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 704 705 /* Accommodate for sender rate increase (eg. slow start) */ 706 grow = rcvwin * (copied - tp->rcvq_space.space); 707 do_div(grow, tp->rcvq_space.space); 708 rcvwin += (grow << 1); 709 710 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 711 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 712 rcvmem += 128; 713 714 do_div(rcvwin, tp->advmss); 715 rcvbuf = min_t(u64, rcvwin * rcvmem, 716 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 717 if (rcvbuf > sk->sk_rcvbuf) { 718 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 719 720 /* Make the window clamp follow along. */ 721 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 722 } 723 } 724 tp->rcvq_space.space = copied; 725 726 new_measure: 727 tp->rcvq_space.seq = tp->copied_seq; 728 tp->rcvq_space.time = tp->tcp_mstamp; 729 } 730 731 /* There is something which you must keep in mind when you analyze the 732 * behavior of the tp->ato delayed ack timeout interval. When a 733 * connection starts up, we want to ack as quickly as possible. The 734 * problem is that "good" TCP's do slow start at the beginning of data 735 * transmission. The means that until we send the first few ACK's the 736 * sender will sit on his end and only queue most of his data, because 737 * he can only send snd_cwnd unacked packets at any given time. For 738 * each ACK we send, he increments snd_cwnd and transmits more of his 739 * queue. -DaveM 740 */ 741 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 742 { 743 struct tcp_sock *tp = tcp_sk(sk); 744 struct inet_connection_sock *icsk = inet_csk(sk); 745 u32 now; 746 747 inet_csk_schedule_ack(sk); 748 749 tcp_measure_rcv_mss(sk, skb); 750 751 tcp_rcv_rtt_measure(tp); 752 753 now = tcp_jiffies32; 754 755 if (!icsk->icsk_ack.ato) { 756 /* The _first_ data packet received, initialize 757 * delayed ACK engine. 758 */ 759 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 760 icsk->icsk_ack.ato = TCP_ATO_MIN; 761 } else { 762 int m = now - icsk->icsk_ack.lrcvtime; 763 764 if (m <= TCP_ATO_MIN / 2) { 765 /* The fastest case is the first. */ 766 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 767 } else if (m < icsk->icsk_ack.ato) { 768 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 769 if (icsk->icsk_ack.ato > icsk->icsk_rto) 770 icsk->icsk_ack.ato = icsk->icsk_rto; 771 } else if (m > icsk->icsk_rto) { 772 /* Too long gap. Apparently sender failed to 773 * restart window, so that we send ACKs quickly. 774 */ 775 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 776 sk_mem_reclaim(sk); 777 } 778 } 779 icsk->icsk_ack.lrcvtime = now; 780 781 tcp_ecn_check_ce(sk, skb); 782 783 if (skb->len >= 128) 784 tcp_grow_window(sk, skb); 785 } 786 787 /* Called to compute a smoothed rtt estimate. The data fed to this 788 * routine either comes from timestamps, or from segments that were 789 * known _not_ to have been retransmitted [see Karn/Partridge 790 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 791 * piece by Van Jacobson. 792 * NOTE: the next three routines used to be one big routine. 793 * To save cycles in the RFC 1323 implementation it was better to break 794 * it up into three procedures. -- erics 795 */ 796 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 797 { 798 struct tcp_sock *tp = tcp_sk(sk); 799 long m = mrtt_us; /* RTT */ 800 u32 srtt = tp->srtt_us; 801 802 /* The following amusing code comes from Jacobson's 803 * article in SIGCOMM '88. Note that rtt and mdev 804 * are scaled versions of rtt and mean deviation. 805 * This is designed to be as fast as possible 806 * m stands for "measurement". 807 * 808 * On a 1990 paper the rto value is changed to: 809 * RTO = rtt + 4 * mdev 810 * 811 * Funny. This algorithm seems to be very broken. 812 * These formulae increase RTO, when it should be decreased, increase 813 * too slowly, when it should be increased quickly, decrease too quickly 814 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 815 * does not matter how to _calculate_ it. Seems, it was trap 816 * that VJ failed to avoid. 8) 817 */ 818 if (srtt != 0) { 819 m -= (srtt >> 3); /* m is now error in rtt est */ 820 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 821 if (m < 0) { 822 m = -m; /* m is now abs(error) */ 823 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 824 /* This is similar to one of Eifel findings. 825 * Eifel blocks mdev updates when rtt decreases. 826 * This solution is a bit different: we use finer gain 827 * for mdev in this case (alpha*beta). 828 * Like Eifel it also prevents growth of rto, 829 * but also it limits too fast rto decreases, 830 * happening in pure Eifel. 831 */ 832 if (m > 0) 833 m >>= 3; 834 } else { 835 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 836 } 837 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 838 if (tp->mdev_us > tp->mdev_max_us) { 839 tp->mdev_max_us = tp->mdev_us; 840 if (tp->mdev_max_us > tp->rttvar_us) 841 tp->rttvar_us = tp->mdev_max_us; 842 } 843 if (after(tp->snd_una, tp->rtt_seq)) { 844 if (tp->mdev_max_us < tp->rttvar_us) 845 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 846 tp->rtt_seq = tp->snd_nxt; 847 tp->mdev_max_us = tcp_rto_min_us(sk); 848 849 tcp_bpf_rtt(sk); 850 } 851 } else { 852 /* no previous measure. */ 853 srtt = m << 3; /* take the measured time to be rtt */ 854 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 855 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 856 tp->mdev_max_us = tp->rttvar_us; 857 tp->rtt_seq = tp->snd_nxt; 858 859 tcp_bpf_rtt(sk); 860 } 861 tp->srtt_us = max(1U, srtt); 862 } 863 864 static void tcp_update_pacing_rate(struct sock *sk) 865 { 866 const struct tcp_sock *tp = tcp_sk(sk); 867 u64 rate; 868 869 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 870 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 871 872 /* current rate is (cwnd * mss) / srtt 873 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 874 * In Congestion Avoidance phase, set it to 120 % the current rate. 875 * 876 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 877 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 878 * end of slow start and should slow down. 879 */ 880 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 881 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 882 else 883 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 884 885 rate *= max(tp->snd_cwnd, tp->packets_out); 886 887 if (likely(tp->srtt_us)) 888 do_div(rate, tp->srtt_us); 889 890 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 891 * without any lock. We want to make sure compiler wont store 892 * intermediate values in this location. 893 */ 894 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 895 sk->sk_max_pacing_rate)); 896 } 897 898 /* Calculate rto without backoff. This is the second half of Van Jacobson's 899 * routine referred to above. 900 */ 901 static void tcp_set_rto(struct sock *sk) 902 { 903 const struct tcp_sock *tp = tcp_sk(sk); 904 /* Old crap is replaced with new one. 8) 905 * 906 * More seriously: 907 * 1. If rtt variance happened to be less 50msec, it is hallucination. 908 * It cannot be less due to utterly erratic ACK generation made 909 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 910 * to do with delayed acks, because at cwnd>2 true delack timeout 911 * is invisible. Actually, Linux-2.4 also generates erratic 912 * ACKs in some circumstances. 913 */ 914 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 915 916 /* 2. Fixups made earlier cannot be right. 917 * If we do not estimate RTO correctly without them, 918 * all the algo is pure shit and should be replaced 919 * with correct one. It is exactly, which we pretend to do. 920 */ 921 922 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 923 * guarantees that rto is higher. 924 */ 925 tcp_bound_rto(sk); 926 } 927 928 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 929 { 930 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 931 932 if (!cwnd) 933 cwnd = TCP_INIT_CWND; 934 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 935 } 936 937 struct tcp_sacktag_state { 938 /* Timestamps for earliest and latest never-retransmitted segment 939 * that was SACKed. RTO needs the earliest RTT to stay conservative, 940 * but congestion control should still get an accurate delay signal. 941 */ 942 u64 first_sackt; 943 u64 last_sackt; 944 u32 reord; 945 u32 sack_delivered; 946 int flag; 947 unsigned int mss_now; 948 struct rate_sample *rate; 949 }; 950 951 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 952 * and spurious retransmission information if this DSACK is unlikely caused by 953 * sender's action: 954 * - DSACKed sequence range is larger than maximum receiver's window. 955 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 956 */ 957 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 958 u32 end_seq, struct tcp_sacktag_state *state) 959 { 960 u32 seq_len, dup_segs = 1; 961 962 if (!before(start_seq, end_seq)) 963 return 0; 964 965 seq_len = end_seq - start_seq; 966 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 967 if (seq_len > tp->max_window) 968 return 0; 969 if (seq_len > tp->mss_cache) 970 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 971 972 tp->dsack_dups += dup_segs; 973 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 974 if (tp->dsack_dups > tp->total_retrans) 975 return 0; 976 977 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 978 tp->rack.dsack_seen = 1; 979 980 state->flag |= FLAG_DSACKING_ACK; 981 /* A spurious retransmission is delivered */ 982 state->sack_delivered += dup_segs; 983 984 return dup_segs; 985 } 986 987 /* It's reordering when higher sequence was delivered (i.e. sacked) before 988 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 989 * distance is approximated in full-mss packet distance ("reordering"). 990 */ 991 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 992 const int ts) 993 { 994 struct tcp_sock *tp = tcp_sk(sk); 995 const u32 mss = tp->mss_cache; 996 u32 fack, metric; 997 998 fack = tcp_highest_sack_seq(tp); 999 if (!before(low_seq, fack)) 1000 return; 1001 1002 metric = fack - low_seq; 1003 if ((metric > tp->reordering * mss) && mss) { 1004 #if FASTRETRANS_DEBUG > 1 1005 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1006 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1007 tp->reordering, 1008 0, 1009 tp->sacked_out, 1010 tp->undo_marker ? tp->undo_retrans : 0); 1011 #endif 1012 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1013 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1014 } 1015 1016 /* This exciting event is worth to be remembered. 8) */ 1017 tp->reord_seen++; 1018 NET_INC_STATS(sock_net(sk), 1019 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1020 } 1021 1022 /* This must be called before lost_out or retrans_out are updated 1023 * on a new loss, because we want to know if all skbs previously 1024 * known to be lost have already been retransmitted, indicating 1025 * that this newly lost skb is our next skb to retransmit. 1026 */ 1027 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1028 { 1029 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1030 (tp->retransmit_skb_hint && 1031 before(TCP_SKB_CB(skb)->seq, 1032 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1033 tp->retransmit_skb_hint = skb; 1034 } 1035 1036 /* Sum the number of packets on the wire we have marked as lost, and 1037 * notify the congestion control module that the given skb was marked lost. 1038 */ 1039 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1040 { 1041 tp->lost += tcp_skb_pcount(skb); 1042 } 1043 1044 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1045 { 1046 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1047 struct tcp_sock *tp = tcp_sk(sk); 1048 1049 if (sacked & TCPCB_SACKED_ACKED) 1050 return; 1051 1052 tcp_verify_retransmit_hint(tp, skb); 1053 if (sacked & TCPCB_LOST) { 1054 if (sacked & TCPCB_SACKED_RETRANS) { 1055 /* Account for retransmits that are lost again */ 1056 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1057 tp->retrans_out -= tcp_skb_pcount(skb); 1058 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1059 tcp_skb_pcount(skb)); 1060 tcp_notify_skb_loss_event(tp, skb); 1061 } 1062 } else { 1063 tp->lost_out += tcp_skb_pcount(skb); 1064 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1065 tcp_notify_skb_loss_event(tp, skb); 1066 } 1067 } 1068 1069 /* Updates the delivered and delivered_ce counts */ 1070 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1071 bool ece_ack) 1072 { 1073 tp->delivered += delivered; 1074 if (ece_ack) 1075 tp->delivered_ce += delivered; 1076 } 1077 1078 /* This procedure tags the retransmission queue when SACKs arrive. 1079 * 1080 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1081 * Packets in queue with these bits set are counted in variables 1082 * sacked_out, retrans_out and lost_out, correspondingly. 1083 * 1084 * Valid combinations are: 1085 * Tag InFlight Description 1086 * 0 1 - orig segment is in flight. 1087 * S 0 - nothing flies, orig reached receiver. 1088 * L 0 - nothing flies, orig lost by net. 1089 * R 2 - both orig and retransmit are in flight. 1090 * L|R 1 - orig is lost, retransmit is in flight. 1091 * S|R 1 - orig reached receiver, retrans is still in flight. 1092 * (L|S|R is logically valid, it could occur when L|R is sacked, 1093 * but it is equivalent to plain S and code short-curcuits it to S. 1094 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1095 * 1096 * These 6 states form finite state machine, controlled by the following events: 1097 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1098 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1099 * 3. Loss detection event of two flavors: 1100 * A. Scoreboard estimator decided the packet is lost. 1101 * A'. Reno "three dupacks" marks head of queue lost. 1102 * B. SACK arrives sacking SND.NXT at the moment, when the 1103 * segment was retransmitted. 1104 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1105 * 1106 * It is pleasant to note, that state diagram turns out to be commutative, 1107 * so that we are allowed not to be bothered by order of our actions, 1108 * when multiple events arrive simultaneously. (see the function below). 1109 * 1110 * Reordering detection. 1111 * -------------------- 1112 * Reordering metric is maximal distance, which a packet can be displaced 1113 * in packet stream. With SACKs we can estimate it: 1114 * 1115 * 1. SACK fills old hole and the corresponding segment was not 1116 * ever retransmitted -> reordering. Alas, we cannot use it 1117 * when segment was retransmitted. 1118 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1119 * for retransmitted and already SACKed segment -> reordering.. 1120 * Both of these heuristics are not used in Loss state, when we cannot 1121 * account for retransmits accurately. 1122 * 1123 * SACK block validation. 1124 * ---------------------- 1125 * 1126 * SACK block range validation checks that the received SACK block fits to 1127 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1128 * Note that SND.UNA is not included to the range though being valid because 1129 * it means that the receiver is rather inconsistent with itself reporting 1130 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1131 * perfectly valid, however, in light of RFC2018 which explicitly states 1132 * that "SACK block MUST reflect the newest segment. Even if the newest 1133 * segment is going to be discarded ...", not that it looks very clever 1134 * in case of head skb. Due to potentional receiver driven attacks, we 1135 * choose to avoid immediate execution of a walk in write queue due to 1136 * reneging and defer head skb's loss recovery to standard loss recovery 1137 * procedure that will eventually trigger (nothing forbids us doing this). 1138 * 1139 * Implements also blockage to start_seq wrap-around. Problem lies in the 1140 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1141 * there's no guarantee that it will be before snd_nxt (n). The problem 1142 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1143 * wrap (s_w): 1144 * 1145 * <- outs wnd -> <- wrapzone -> 1146 * u e n u_w e_w s n_w 1147 * | | | | | | | 1148 * |<------------+------+----- TCP seqno space --------------+---------->| 1149 * ...-- <2^31 ->| |<--------... 1150 * ...---- >2^31 ------>| |<--------... 1151 * 1152 * Current code wouldn't be vulnerable but it's better still to discard such 1153 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1154 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1155 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1156 * equal to the ideal case (infinite seqno space without wrap caused issues). 1157 * 1158 * With D-SACK the lower bound is extended to cover sequence space below 1159 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1160 * again, D-SACK block must not to go across snd_una (for the same reason as 1161 * for the normal SACK blocks, explained above). But there all simplicity 1162 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1163 * fully below undo_marker they do not affect behavior in anyway and can 1164 * therefore be safely ignored. In rare cases (which are more or less 1165 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1166 * fragmentation and packet reordering past skb's retransmission. To consider 1167 * them correctly, the acceptable range must be extended even more though 1168 * the exact amount is rather hard to quantify. However, tp->max_window can 1169 * be used as an exaggerated estimate. 1170 */ 1171 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1172 u32 start_seq, u32 end_seq) 1173 { 1174 /* Too far in future, or reversed (interpretation is ambiguous) */ 1175 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1176 return false; 1177 1178 /* Nasty start_seq wrap-around check (see comments above) */ 1179 if (!before(start_seq, tp->snd_nxt)) 1180 return false; 1181 1182 /* In outstanding window? ...This is valid exit for D-SACKs too. 1183 * start_seq == snd_una is non-sensical (see comments above) 1184 */ 1185 if (after(start_seq, tp->snd_una)) 1186 return true; 1187 1188 if (!is_dsack || !tp->undo_marker) 1189 return false; 1190 1191 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1192 if (after(end_seq, tp->snd_una)) 1193 return false; 1194 1195 if (!before(start_seq, tp->undo_marker)) 1196 return true; 1197 1198 /* Too old */ 1199 if (!after(end_seq, tp->undo_marker)) 1200 return false; 1201 1202 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1203 * start_seq < undo_marker and end_seq >= undo_marker. 1204 */ 1205 return !before(start_seq, end_seq - tp->max_window); 1206 } 1207 1208 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1209 struct tcp_sack_block_wire *sp, int num_sacks, 1210 u32 prior_snd_una, struct tcp_sacktag_state *state) 1211 { 1212 struct tcp_sock *tp = tcp_sk(sk); 1213 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1214 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1215 u32 dup_segs; 1216 1217 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1218 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1219 } else if (num_sacks > 1) { 1220 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1221 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1222 1223 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1224 return false; 1225 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1226 } else { 1227 return false; 1228 } 1229 1230 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1231 if (!dup_segs) { /* Skip dubious DSACK */ 1232 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1233 return false; 1234 } 1235 1236 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1237 1238 /* D-SACK for already forgotten data... Do dumb counting. */ 1239 if (tp->undo_marker && tp->undo_retrans > 0 && 1240 !after(end_seq_0, prior_snd_una) && 1241 after(end_seq_0, tp->undo_marker)) 1242 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1243 1244 return true; 1245 } 1246 1247 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1248 * the incoming SACK may not exactly match but we can find smaller MSS 1249 * aligned portion of it that matches. Therefore we might need to fragment 1250 * which may fail and creates some hassle (caller must handle error case 1251 * returns). 1252 * 1253 * FIXME: this could be merged to shift decision code 1254 */ 1255 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1256 u32 start_seq, u32 end_seq) 1257 { 1258 int err; 1259 bool in_sack; 1260 unsigned int pkt_len; 1261 unsigned int mss; 1262 1263 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1264 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1265 1266 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1267 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1268 mss = tcp_skb_mss(skb); 1269 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1270 1271 if (!in_sack) { 1272 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1273 if (pkt_len < mss) 1274 pkt_len = mss; 1275 } else { 1276 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1277 if (pkt_len < mss) 1278 return -EINVAL; 1279 } 1280 1281 /* Round if necessary so that SACKs cover only full MSSes 1282 * and/or the remaining small portion (if present) 1283 */ 1284 if (pkt_len > mss) { 1285 unsigned int new_len = (pkt_len / mss) * mss; 1286 if (!in_sack && new_len < pkt_len) 1287 new_len += mss; 1288 pkt_len = new_len; 1289 } 1290 1291 if (pkt_len >= skb->len && !in_sack) 1292 return 0; 1293 1294 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1295 pkt_len, mss, GFP_ATOMIC); 1296 if (err < 0) 1297 return err; 1298 } 1299 1300 return in_sack; 1301 } 1302 1303 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1304 static u8 tcp_sacktag_one(struct sock *sk, 1305 struct tcp_sacktag_state *state, u8 sacked, 1306 u32 start_seq, u32 end_seq, 1307 int dup_sack, int pcount, 1308 u64 xmit_time) 1309 { 1310 struct tcp_sock *tp = tcp_sk(sk); 1311 1312 /* Account D-SACK for retransmitted packet. */ 1313 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1314 if (tp->undo_marker && tp->undo_retrans > 0 && 1315 after(end_seq, tp->undo_marker)) 1316 tp->undo_retrans--; 1317 if ((sacked & TCPCB_SACKED_ACKED) && 1318 before(start_seq, state->reord)) 1319 state->reord = start_seq; 1320 } 1321 1322 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1323 if (!after(end_seq, tp->snd_una)) 1324 return sacked; 1325 1326 if (!(sacked & TCPCB_SACKED_ACKED)) { 1327 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1328 1329 if (sacked & TCPCB_SACKED_RETRANS) { 1330 /* If the segment is not tagged as lost, 1331 * we do not clear RETRANS, believing 1332 * that retransmission is still in flight. 1333 */ 1334 if (sacked & TCPCB_LOST) { 1335 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1336 tp->lost_out -= pcount; 1337 tp->retrans_out -= pcount; 1338 } 1339 } else { 1340 if (!(sacked & TCPCB_RETRANS)) { 1341 /* New sack for not retransmitted frame, 1342 * which was in hole. It is reordering. 1343 */ 1344 if (before(start_seq, 1345 tcp_highest_sack_seq(tp)) && 1346 before(start_seq, state->reord)) 1347 state->reord = start_seq; 1348 1349 if (!after(end_seq, tp->high_seq)) 1350 state->flag |= FLAG_ORIG_SACK_ACKED; 1351 if (state->first_sackt == 0) 1352 state->first_sackt = xmit_time; 1353 state->last_sackt = xmit_time; 1354 } 1355 1356 if (sacked & TCPCB_LOST) { 1357 sacked &= ~TCPCB_LOST; 1358 tp->lost_out -= pcount; 1359 } 1360 } 1361 1362 sacked |= TCPCB_SACKED_ACKED; 1363 state->flag |= FLAG_DATA_SACKED; 1364 tp->sacked_out += pcount; 1365 /* Out-of-order packets delivered */ 1366 state->sack_delivered += pcount; 1367 1368 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1369 if (tp->lost_skb_hint && 1370 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1371 tp->lost_cnt_hint += pcount; 1372 } 1373 1374 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1375 * frames and clear it. undo_retrans is decreased above, L|R frames 1376 * are accounted above as well. 1377 */ 1378 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1379 sacked &= ~TCPCB_SACKED_RETRANS; 1380 tp->retrans_out -= pcount; 1381 } 1382 1383 return sacked; 1384 } 1385 1386 /* Shift newly-SACKed bytes from this skb to the immediately previous 1387 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1388 */ 1389 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1390 struct sk_buff *skb, 1391 struct tcp_sacktag_state *state, 1392 unsigned int pcount, int shifted, int mss, 1393 bool dup_sack) 1394 { 1395 struct tcp_sock *tp = tcp_sk(sk); 1396 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1397 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1398 1399 BUG_ON(!pcount); 1400 1401 /* Adjust counters and hints for the newly sacked sequence 1402 * range but discard the return value since prev is already 1403 * marked. We must tag the range first because the seq 1404 * advancement below implicitly advances 1405 * tcp_highest_sack_seq() when skb is highest_sack. 1406 */ 1407 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1408 start_seq, end_seq, dup_sack, pcount, 1409 tcp_skb_timestamp_us(skb)); 1410 tcp_rate_skb_delivered(sk, skb, state->rate); 1411 1412 if (skb == tp->lost_skb_hint) 1413 tp->lost_cnt_hint += pcount; 1414 1415 TCP_SKB_CB(prev)->end_seq += shifted; 1416 TCP_SKB_CB(skb)->seq += shifted; 1417 1418 tcp_skb_pcount_add(prev, pcount); 1419 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1420 tcp_skb_pcount_add(skb, -pcount); 1421 1422 /* When we're adding to gso_segs == 1, gso_size will be zero, 1423 * in theory this shouldn't be necessary but as long as DSACK 1424 * code can come after this skb later on it's better to keep 1425 * setting gso_size to something. 1426 */ 1427 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1428 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1429 1430 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1431 if (tcp_skb_pcount(skb) <= 1) 1432 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1433 1434 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1435 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1436 1437 if (skb->len > 0) { 1438 BUG_ON(!tcp_skb_pcount(skb)); 1439 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1440 return false; 1441 } 1442 1443 /* Whole SKB was eaten :-) */ 1444 1445 if (skb == tp->retransmit_skb_hint) 1446 tp->retransmit_skb_hint = prev; 1447 if (skb == tp->lost_skb_hint) { 1448 tp->lost_skb_hint = prev; 1449 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1450 } 1451 1452 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1453 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1454 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1455 TCP_SKB_CB(prev)->end_seq++; 1456 1457 if (skb == tcp_highest_sack(sk)) 1458 tcp_advance_highest_sack(sk, skb); 1459 1460 tcp_skb_collapse_tstamp(prev, skb); 1461 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1462 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1463 1464 tcp_rtx_queue_unlink_and_free(skb, sk); 1465 1466 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1467 1468 return true; 1469 } 1470 1471 /* I wish gso_size would have a bit more sane initialization than 1472 * something-or-zero which complicates things 1473 */ 1474 static int tcp_skb_seglen(const struct sk_buff *skb) 1475 { 1476 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1477 } 1478 1479 /* Shifting pages past head area doesn't work */ 1480 static int skb_can_shift(const struct sk_buff *skb) 1481 { 1482 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1483 } 1484 1485 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1486 int pcount, int shiftlen) 1487 { 1488 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1489 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1490 * to make sure not storing more than 65535 * 8 bytes per skb, 1491 * even if current MSS is bigger. 1492 */ 1493 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1494 return 0; 1495 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1496 return 0; 1497 return skb_shift(to, from, shiftlen); 1498 } 1499 1500 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1501 * skb. 1502 */ 1503 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1504 struct tcp_sacktag_state *state, 1505 u32 start_seq, u32 end_seq, 1506 bool dup_sack) 1507 { 1508 struct tcp_sock *tp = tcp_sk(sk); 1509 struct sk_buff *prev; 1510 int mss; 1511 int pcount = 0; 1512 int len; 1513 int in_sack; 1514 1515 /* Normally R but no L won't result in plain S */ 1516 if (!dup_sack && 1517 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1518 goto fallback; 1519 if (!skb_can_shift(skb)) 1520 goto fallback; 1521 /* This frame is about to be dropped (was ACKed). */ 1522 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1523 goto fallback; 1524 1525 /* Can only happen with delayed DSACK + discard craziness */ 1526 prev = skb_rb_prev(skb); 1527 if (!prev) 1528 goto fallback; 1529 1530 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1531 goto fallback; 1532 1533 if (!tcp_skb_can_collapse(prev, skb)) 1534 goto fallback; 1535 1536 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1537 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1538 1539 if (in_sack) { 1540 len = skb->len; 1541 pcount = tcp_skb_pcount(skb); 1542 mss = tcp_skb_seglen(skb); 1543 1544 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1545 * drop this restriction as unnecessary 1546 */ 1547 if (mss != tcp_skb_seglen(prev)) 1548 goto fallback; 1549 } else { 1550 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1551 goto noop; 1552 /* CHECKME: This is non-MSS split case only?, this will 1553 * cause skipped skbs due to advancing loop btw, original 1554 * has that feature too 1555 */ 1556 if (tcp_skb_pcount(skb) <= 1) 1557 goto noop; 1558 1559 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1560 if (!in_sack) { 1561 /* TODO: head merge to next could be attempted here 1562 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1563 * though it might not be worth of the additional hassle 1564 * 1565 * ...we can probably just fallback to what was done 1566 * previously. We could try merging non-SACKed ones 1567 * as well but it probably isn't going to buy off 1568 * because later SACKs might again split them, and 1569 * it would make skb timestamp tracking considerably 1570 * harder problem. 1571 */ 1572 goto fallback; 1573 } 1574 1575 len = end_seq - TCP_SKB_CB(skb)->seq; 1576 BUG_ON(len < 0); 1577 BUG_ON(len > skb->len); 1578 1579 /* MSS boundaries should be honoured or else pcount will 1580 * severely break even though it makes things bit trickier. 1581 * Optimize common case to avoid most of the divides 1582 */ 1583 mss = tcp_skb_mss(skb); 1584 1585 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1586 * drop this restriction as unnecessary 1587 */ 1588 if (mss != tcp_skb_seglen(prev)) 1589 goto fallback; 1590 1591 if (len == mss) { 1592 pcount = 1; 1593 } else if (len < mss) { 1594 goto noop; 1595 } else { 1596 pcount = len / mss; 1597 len = pcount * mss; 1598 } 1599 } 1600 1601 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1602 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1603 goto fallback; 1604 1605 if (!tcp_skb_shift(prev, skb, pcount, len)) 1606 goto fallback; 1607 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1608 goto out; 1609 1610 /* Hole filled allows collapsing with the next as well, this is very 1611 * useful when hole on every nth skb pattern happens 1612 */ 1613 skb = skb_rb_next(prev); 1614 if (!skb) 1615 goto out; 1616 1617 if (!skb_can_shift(skb) || 1618 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1619 (mss != tcp_skb_seglen(skb))) 1620 goto out; 1621 1622 len = skb->len; 1623 pcount = tcp_skb_pcount(skb); 1624 if (tcp_skb_shift(prev, skb, pcount, len)) 1625 tcp_shifted_skb(sk, prev, skb, state, pcount, 1626 len, mss, 0); 1627 1628 out: 1629 return prev; 1630 1631 noop: 1632 return skb; 1633 1634 fallback: 1635 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1636 return NULL; 1637 } 1638 1639 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1640 struct tcp_sack_block *next_dup, 1641 struct tcp_sacktag_state *state, 1642 u32 start_seq, u32 end_seq, 1643 bool dup_sack_in) 1644 { 1645 struct tcp_sock *tp = tcp_sk(sk); 1646 struct sk_buff *tmp; 1647 1648 skb_rbtree_walk_from(skb) { 1649 int in_sack = 0; 1650 bool dup_sack = dup_sack_in; 1651 1652 /* queue is in-order => we can short-circuit the walk early */ 1653 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1654 break; 1655 1656 if (next_dup && 1657 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1658 in_sack = tcp_match_skb_to_sack(sk, skb, 1659 next_dup->start_seq, 1660 next_dup->end_seq); 1661 if (in_sack > 0) 1662 dup_sack = true; 1663 } 1664 1665 /* skb reference here is a bit tricky to get right, since 1666 * shifting can eat and free both this skb and the next, 1667 * so not even _safe variant of the loop is enough. 1668 */ 1669 if (in_sack <= 0) { 1670 tmp = tcp_shift_skb_data(sk, skb, state, 1671 start_seq, end_seq, dup_sack); 1672 if (tmp) { 1673 if (tmp != skb) { 1674 skb = tmp; 1675 continue; 1676 } 1677 1678 in_sack = 0; 1679 } else { 1680 in_sack = tcp_match_skb_to_sack(sk, skb, 1681 start_seq, 1682 end_seq); 1683 } 1684 } 1685 1686 if (unlikely(in_sack < 0)) 1687 break; 1688 1689 if (in_sack) { 1690 TCP_SKB_CB(skb)->sacked = 1691 tcp_sacktag_one(sk, 1692 state, 1693 TCP_SKB_CB(skb)->sacked, 1694 TCP_SKB_CB(skb)->seq, 1695 TCP_SKB_CB(skb)->end_seq, 1696 dup_sack, 1697 tcp_skb_pcount(skb), 1698 tcp_skb_timestamp_us(skb)); 1699 tcp_rate_skb_delivered(sk, skb, state->rate); 1700 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1701 list_del_init(&skb->tcp_tsorted_anchor); 1702 1703 if (!before(TCP_SKB_CB(skb)->seq, 1704 tcp_highest_sack_seq(tp))) 1705 tcp_advance_highest_sack(sk, skb); 1706 } 1707 } 1708 return skb; 1709 } 1710 1711 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1712 { 1713 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1714 struct sk_buff *skb; 1715 1716 while (*p) { 1717 parent = *p; 1718 skb = rb_to_skb(parent); 1719 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1720 p = &parent->rb_left; 1721 continue; 1722 } 1723 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1724 p = &parent->rb_right; 1725 continue; 1726 } 1727 return skb; 1728 } 1729 return NULL; 1730 } 1731 1732 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1733 u32 skip_to_seq) 1734 { 1735 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1736 return skb; 1737 1738 return tcp_sacktag_bsearch(sk, skip_to_seq); 1739 } 1740 1741 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1742 struct sock *sk, 1743 struct tcp_sack_block *next_dup, 1744 struct tcp_sacktag_state *state, 1745 u32 skip_to_seq) 1746 { 1747 if (!next_dup) 1748 return skb; 1749 1750 if (before(next_dup->start_seq, skip_to_seq)) { 1751 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1752 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1753 next_dup->start_seq, next_dup->end_seq, 1754 1); 1755 } 1756 1757 return skb; 1758 } 1759 1760 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1761 { 1762 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1763 } 1764 1765 static int 1766 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1767 u32 prior_snd_una, struct tcp_sacktag_state *state) 1768 { 1769 struct tcp_sock *tp = tcp_sk(sk); 1770 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1771 TCP_SKB_CB(ack_skb)->sacked); 1772 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1773 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1774 struct tcp_sack_block *cache; 1775 struct sk_buff *skb; 1776 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1777 int used_sacks; 1778 bool found_dup_sack = false; 1779 int i, j; 1780 int first_sack_index; 1781 1782 state->flag = 0; 1783 state->reord = tp->snd_nxt; 1784 1785 if (!tp->sacked_out) 1786 tcp_highest_sack_reset(sk); 1787 1788 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1789 num_sacks, prior_snd_una, state); 1790 1791 /* Eliminate too old ACKs, but take into 1792 * account more or less fresh ones, they can 1793 * contain valid SACK info. 1794 */ 1795 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1796 return 0; 1797 1798 if (!tp->packets_out) 1799 goto out; 1800 1801 used_sacks = 0; 1802 first_sack_index = 0; 1803 for (i = 0; i < num_sacks; i++) { 1804 bool dup_sack = !i && found_dup_sack; 1805 1806 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1807 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1808 1809 if (!tcp_is_sackblock_valid(tp, dup_sack, 1810 sp[used_sacks].start_seq, 1811 sp[used_sacks].end_seq)) { 1812 int mib_idx; 1813 1814 if (dup_sack) { 1815 if (!tp->undo_marker) 1816 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1817 else 1818 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1819 } else { 1820 /* Don't count olds caused by ACK reordering */ 1821 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1822 !after(sp[used_sacks].end_seq, tp->snd_una)) 1823 continue; 1824 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1825 } 1826 1827 NET_INC_STATS(sock_net(sk), mib_idx); 1828 if (i == 0) 1829 first_sack_index = -1; 1830 continue; 1831 } 1832 1833 /* Ignore very old stuff early */ 1834 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1835 if (i == 0) 1836 first_sack_index = -1; 1837 continue; 1838 } 1839 1840 used_sacks++; 1841 } 1842 1843 /* order SACK blocks to allow in order walk of the retrans queue */ 1844 for (i = used_sacks - 1; i > 0; i--) { 1845 for (j = 0; j < i; j++) { 1846 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1847 swap(sp[j], sp[j + 1]); 1848 1849 /* Track where the first SACK block goes to */ 1850 if (j == first_sack_index) 1851 first_sack_index = j + 1; 1852 } 1853 } 1854 } 1855 1856 state->mss_now = tcp_current_mss(sk); 1857 skb = NULL; 1858 i = 0; 1859 1860 if (!tp->sacked_out) { 1861 /* It's already past, so skip checking against it */ 1862 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1863 } else { 1864 cache = tp->recv_sack_cache; 1865 /* Skip empty blocks in at head of the cache */ 1866 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1867 !cache->end_seq) 1868 cache++; 1869 } 1870 1871 while (i < used_sacks) { 1872 u32 start_seq = sp[i].start_seq; 1873 u32 end_seq = sp[i].end_seq; 1874 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1875 struct tcp_sack_block *next_dup = NULL; 1876 1877 if (found_dup_sack && ((i + 1) == first_sack_index)) 1878 next_dup = &sp[i + 1]; 1879 1880 /* Skip too early cached blocks */ 1881 while (tcp_sack_cache_ok(tp, cache) && 1882 !before(start_seq, cache->end_seq)) 1883 cache++; 1884 1885 /* Can skip some work by looking recv_sack_cache? */ 1886 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1887 after(end_seq, cache->start_seq)) { 1888 1889 /* Head todo? */ 1890 if (before(start_seq, cache->start_seq)) { 1891 skb = tcp_sacktag_skip(skb, sk, start_seq); 1892 skb = tcp_sacktag_walk(skb, sk, next_dup, 1893 state, 1894 start_seq, 1895 cache->start_seq, 1896 dup_sack); 1897 } 1898 1899 /* Rest of the block already fully processed? */ 1900 if (!after(end_seq, cache->end_seq)) 1901 goto advance_sp; 1902 1903 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1904 state, 1905 cache->end_seq); 1906 1907 /* ...tail remains todo... */ 1908 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1909 /* ...but better entrypoint exists! */ 1910 skb = tcp_highest_sack(sk); 1911 if (!skb) 1912 break; 1913 cache++; 1914 goto walk; 1915 } 1916 1917 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1918 /* Check overlap against next cached too (past this one already) */ 1919 cache++; 1920 continue; 1921 } 1922 1923 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1924 skb = tcp_highest_sack(sk); 1925 if (!skb) 1926 break; 1927 } 1928 skb = tcp_sacktag_skip(skb, sk, start_seq); 1929 1930 walk: 1931 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1932 start_seq, end_seq, dup_sack); 1933 1934 advance_sp: 1935 i++; 1936 } 1937 1938 /* Clear the head of the cache sack blocks so we can skip it next time */ 1939 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1940 tp->recv_sack_cache[i].start_seq = 0; 1941 tp->recv_sack_cache[i].end_seq = 0; 1942 } 1943 for (j = 0; j < used_sacks; j++) 1944 tp->recv_sack_cache[i++] = sp[j]; 1945 1946 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1947 tcp_check_sack_reordering(sk, state->reord, 0); 1948 1949 tcp_verify_left_out(tp); 1950 out: 1951 1952 #if FASTRETRANS_DEBUG > 0 1953 WARN_ON((int)tp->sacked_out < 0); 1954 WARN_ON((int)tp->lost_out < 0); 1955 WARN_ON((int)tp->retrans_out < 0); 1956 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1957 #endif 1958 return state->flag; 1959 } 1960 1961 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1962 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1963 */ 1964 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1965 { 1966 u32 holes; 1967 1968 holes = max(tp->lost_out, 1U); 1969 holes = min(holes, tp->packets_out); 1970 1971 if ((tp->sacked_out + holes) > tp->packets_out) { 1972 tp->sacked_out = tp->packets_out - holes; 1973 return true; 1974 } 1975 return false; 1976 } 1977 1978 /* If we receive more dupacks than we expected counting segments 1979 * in assumption of absent reordering, interpret this as reordering. 1980 * The only another reason could be bug in receiver TCP. 1981 */ 1982 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1983 { 1984 struct tcp_sock *tp = tcp_sk(sk); 1985 1986 if (!tcp_limit_reno_sacked(tp)) 1987 return; 1988 1989 tp->reordering = min_t(u32, tp->packets_out + addend, 1990 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1991 tp->reord_seen++; 1992 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 1993 } 1994 1995 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1996 1997 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 1998 { 1999 if (num_dupack) { 2000 struct tcp_sock *tp = tcp_sk(sk); 2001 u32 prior_sacked = tp->sacked_out; 2002 s32 delivered; 2003 2004 tp->sacked_out += num_dupack; 2005 tcp_check_reno_reordering(sk, 0); 2006 delivered = tp->sacked_out - prior_sacked; 2007 if (delivered > 0) 2008 tcp_count_delivered(tp, delivered, ece_ack); 2009 tcp_verify_left_out(tp); 2010 } 2011 } 2012 2013 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2014 2015 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2016 { 2017 struct tcp_sock *tp = tcp_sk(sk); 2018 2019 if (acked > 0) { 2020 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2021 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2022 ece_ack); 2023 if (acked - 1 >= tp->sacked_out) 2024 tp->sacked_out = 0; 2025 else 2026 tp->sacked_out -= acked - 1; 2027 } 2028 tcp_check_reno_reordering(sk, acked); 2029 tcp_verify_left_out(tp); 2030 } 2031 2032 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2033 { 2034 tp->sacked_out = 0; 2035 } 2036 2037 void tcp_clear_retrans(struct tcp_sock *tp) 2038 { 2039 tp->retrans_out = 0; 2040 tp->lost_out = 0; 2041 tp->undo_marker = 0; 2042 tp->undo_retrans = -1; 2043 tp->sacked_out = 0; 2044 } 2045 2046 static inline void tcp_init_undo(struct tcp_sock *tp) 2047 { 2048 tp->undo_marker = tp->snd_una; 2049 /* Retransmission still in flight may cause DSACKs later. */ 2050 tp->undo_retrans = tp->retrans_out ? : -1; 2051 } 2052 2053 static bool tcp_is_rack(const struct sock *sk) 2054 { 2055 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 2056 } 2057 2058 /* If we detect SACK reneging, forget all SACK information 2059 * and reset tags completely, otherwise preserve SACKs. If receiver 2060 * dropped its ofo queue, we will know this due to reneging detection. 2061 */ 2062 static void tcp_timeout_mark_lost(struct sock *sk) 2063 { 2064 struct tcp_sock *tp = tcp_sk(sk); 2065 struct sk_buff *skb, *head; 2066 bool is_reneg; /* is receiver reneging on SACKs? */ 2067 2068 head = tcp_rtx_queue_head(sk); 2069 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2070 if (is_reneg) { 2071 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2072 tp->sacked_out = 0; 2073 /* Mark SACK reneging until we recover from this loss event. */ 2074 tp->is_sack_reneg = 1; 2075 } else if (tcp_is_reno(tp)) { 2076 tcp_reset_reno_sack(tp); 2077 } 2078 2079 skb = head; 2080 skb_rbtree_walk_from(skb) { 2081 if (is_reneg) 2082 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2083 else if (tcp_is_rack(sk) && skb != head && 2084 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2085 continue; /* Don't mark recently sent ones lost yet */ 2086 tcp_mark_skb_lost(sk, skb); 2087 } 2088 tcp_verify_left_out(tp); 2089 tcp_clear_all_retrans_hints(tp); 2090 } 2091 2092 /* Enter Loss state. */ 2093 void tcp_enter_loss(struct sock *sk) 2094 { 2095 const struct inet_connection_sock *icsk = inet_csk(sk); 2096 struct tcp_sock *tp = tcp_sk(sk); 2097 struct net *net = sock_net(sk); 2098 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2099 2100 tcp_timeout_mark_lost(sk); 2101 2102 /* Reduce ssthresh if it has not yet been made inside this window. */ 2103 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2104 !after(tp->high_seq, tp->snd_una) || 2105 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2106 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2107 tp->prior_cwnd = tp->snd_cwnd; 2108 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2109 tcp_ca_event(sk, CA_EVENT_LOSS); 2110 tcp_init_undo(tp); 2111 } 2112 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2113 tp->snd_cwnd_cnt = 0; 2114 tp->snd_cwnd_stamp = tcp_jiffies32; 2115 2116 /* Timeout in disordered state after receiving substantial DUPACKs 2117 * suggests that the degree of reordering is over-estimated. 2118 */ 2119 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2120 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2121 tp->reordering = min_t(unsigned int, tp->reordering, 2122 net->ipv4.sysctl_tcp_reordering); 2123 tcp_set_ca_state(sk, TCP_CA_Loss); 2124 tp->high_seq = tp->snd_nxt; 2125 tcp_ecn_queue_cwr(tp); 2126 2127 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2128 * loss recovery is underway except recurring timeout(s) on 2129 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2130 */ 2131 tp->frto = net->ipv4.sysctl_tcp_frto && 2132 (new_recovery || icsk->icsk_retransmits) && 2133 !inet_csk(sk)->icsk_mtup.probe_size; 2134 } 2135 2136 /* If ACK arrived pointing to a remembered SACK, it means that our 2137 * remembered SACKs do not reflect real state of receiver i.e. 2138 * receiver _host_ is heavily congested (or buggy). 2139 * 2140 * To avoid big spurious retransmission bursts due to transient SACK 2141 * scoreboard oddities that look like reneging, we give the receiver a 2142 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2143 * restore sanity to the SACK scoreboard. If the apparent reneging 2144 * persists until this RTO then we'll clear the SACK scoreboard. 2145 */ 2146 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2147 { 2148 if (flag & FLAG_SACK_RENEGING) { 2149 struct tcp_sock *tp = tcp_sk(sk); 2150 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2151 msecs_to_jiffies(10)); 2152 2153 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2154 delay, TCP_RTO_MAX); 2155 return true; 2156 } 2157 return false; 2158 } 2159 2160 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2161 * counter when SACK is enabled (without SACK, sacked_out is used for 2162 * that purpose). 2163 * 2164 * With reordering, holes may still be in flight, so RFC3517 recovery 2165 * uses pure sacked_out (total number of SACKed segments) even though 2166 * it violates the RFC that uses duplicate ACKs, often these are equal 2167 * but when e.g. out-of-window ACKs or packet duplication occurs, 2168 * they differ. Since neither occurs due to loss, TCP should really 2169 * ignore them. 2170 */ 2171 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2172 { 2173 return tp->sacked_out + 1; 2174 } 2175 2176 /* Linux NewReno/SACK/ECN state machine. 2177 * -------------------------------------- 2178 * 2179 * "Open" Normal state, no dubious events, fast path. 2180 * "Disorder" In all the respects it is "Open", 2181 * but requires a bit more attention. It is entered when 2182 * we see some SACKs or dupacks. It is split of "Open" 2183 * mainly to move some processing from fast path to slow one. 2184 * "CWR" CWND was reduced due to some Congestion Notification event. 2185 * It can be ECN, ICMP source quench, local device congestion. 2186 * "Recovery" CWND was reduced, we are fast-retransmitting. 2187 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2188 * 2189 * tcp_fastretrans_alert() is entered: 2190 * - each incoming ACK, if state is not "Open" 2191 * - when arrived ACK is unusual, namely: 2192 * * SACK 2193 * * Duplicate ACK. 2194 * * ECN ECE. 2195 * 2196 * Counting packets in flight is pretty simple. 2197 * 2198 * in_flight = packets_out - left_out + retrans_out 2199 * 2200 * packets_out is SND.NXT-SND.UNA counted in packets. 2201 * 2202 * retrans_out is number of retransmitted segments. 2203 * 2204 * left_out is number of segments left network, but not ACKed yet. 2205 * 2206 * left_out = sacked_out + lost_out 2207 * 2208 * sacked_out: Packets, which arrived to receiver out of order 2209 * and hence not ACKed. With SACKs this number is simply 2210 * amount of SACKed data. Even without SACKs 2211 * it is easy to give pretty reliable estimate of this number, 2212 * counting duplicate ACKs. 2213 * 2214 * lost_out: Packets lost by network. TCP has no explicit 2215 * "loss notification" feedback from network (for now). 2216 * It means that this number can be only _guessed_. 2217 * Actually, it is the heuristics to predict lossage that 2218 * distinguishes different algorithms. 2219 * 2220 * F.e. after RTO, when all the queue is considered as lost, 2221 * lost_out = packets_out and in_flight = retrans_out. 2222 * 2223 * Essentially, we have now a few algorithms detecting 2224 * lost packets. 2225 * 2226 * If the receiver supports SACK: 2227 * 2228 * RFC6675/3517: It is the conventional algorithm. A packet is 2229 * considered lost if the number of higher sequence packets 2230 * SACKed is greater than or equal the DUPACK thoreshold 2231 * (reordering). This is implemented in tcp_mark_head_lost and 2232 * tcp_update_scoreboard. 2233 * 2234 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2235 * (2017-) that checks timing instead of counting DUPACKs. 2236 * Essentially a packet is considered lost if it's not S/ACKed 2237 * after RTT + reordering_window, where both metrics are 2238 * dynamically measured and adjusted. This is implemented in 2239 * tcp_rack_mark_lost. 2240 * 2241 * If the receiver does not support SACK: 2242 * 2243 * NewReno (RFC6582): in Recovery we assume that one segment 2244 * is lost (classic Reno). While we are in Recovery and 2245 * a partial ACK arrives, we assume that one more packet 2246 * is lost (NewReno). This heuristics are the same in NewReno 2247 * and SACK. 2248 * 2249 * Really tricky (and requiring careful tuning) part of algorithm 2250 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2251 * The first determines the moment _when_ we should reduce CWND and, 2252 * hence, slow down forward transmission. In fact, it determines the moment 2253 * when we decide that hole is caused by loss, rather than by a reorder. 2254 * 2255 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2256 * holes, caused by lost packets. 2257 * 2258 * And the most logically complicated part of algorithm is undo 2259 * heuristics. We detect false retransmits due to both too early 2260 * fast retransmit (reordering) and underestimated RTO, analyzing 2261 * timestamps and D-SACKs. When we detect that some segments were 2262 * retransmitted by mistake and CWND reduction was wrong, we undo 2263 * window reduction and abort recovery phase. This logic is hidden 2264 * inside several functions named tcp_try_undo_<something>. 2265 */ 2266 2267 /* This function decides, when we should leave Disordered state 2268 * and enter Recovery phase, reducing congestion window. 2269 * 2270 * Main question: may we further continue forward transmission 2271 * with the same cwnd? 2272 */ 2273 static bool tcp_time_to_recover(struct sock *sk, int flag) 2274 { 2275 struct tcp_sock *tp = tcp_sk(sk); 2276 2277 /* Trick#1: The loss is proven. */ 2278 if (tp->lost_out) 2279 return true; 2280 2281 /* Not-A-Trick#2 : Classic rule... */ 2282 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2283 return true; 2284 2285 return false; 2286 } 2287 2288 /* Detect loss in event "A" above by marking head of queue up as lost. 2289 * For RFC3517 SACK, a segment is considered lost if it 2290 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2291 * the maximum SACKed segments to pass before reaching this limit. 2292 */ 2293 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2294 { 2295 struct tcp_sock *tp = tcp_sk(sk); 2296 struct sk_buff *skb; 2297 int cnt; 2298 /* Use SACK to deduce losses of new sequences sent during recovery */ 2299 const u32 loss_high = tp->snd_nxt; 2300 2301 WARN_ON(packets > tp->packets_out); 2302 skb = tp->lost_skb_hint; 2303 if (skb) { 2304 /* Head already handled? */ 2305 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2306 return; 2307 cnt = tp->lost_cnt_hint; 2308 } else { 2309 skb = tcp_rtx_queue_head(sk); 2310 cnt = 0; 2311 } 2312 2313 skb_rbtree_walk_from(skb) { 2314 /* TODO: do this better */ 2315 /* this is not the most efficient way to do this... */ 2316 tp->lost_skb_hint = skb; 2317 tp->lost_cnt_hint = cnt; 2318 2319 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2320 break; 2321 2322 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2323 cnt += tcp_skb_pcount(skb); 2324 2325 if (cnt > packets) 2326 break; 2327 2328 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2329 tcp_mark_skb_lost(sk, skb); 2330 2331 if (mark_head) 2332 break; 2333 } 2334 tcp_verify_left_out(tp); 2335 } 2336 2337 /* Account newly detected lost packet(s) */ 2338 2339 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2340 { 2341 struct tcp_sock *tp = tcp_sk(sk); 2342 2343 if (tcp_is_sack(tp)) { 2344 int sacked_upto = tp->sacked_out - tp->reordering; 2345 if (sacked_upto >= 0) 2346 tcp_mark_head_lost(sk, sacked_upto, 0); 2347 else if (fast_rexmit) 2348 tcp_mark_head_lost(sk, 1, 1); 2349 } 2350 } 2351 2352 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2353 { 2354 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2355 before(tp->rx_opt.rcv_tsecr, when); 2356 } 2357 2358 /* skb is spurious retransmitted if the returned timestamp echo 2359 * reply is prior to the skb transmission time 2360 */ 2361 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2362 const struct sk_buff *skb) 2363 { 2364 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2365 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2366 } 2367 2368 /* Nothing was retransmitted or returned timestamp is less 2369 * than timestamp of the first retransmission. 2370 */ 2371 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2372 { 2373 return tp->retrans_stamp && 2374 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2375 } 2376 2377 /* Undo procedures. */ 2378 2379 /* We can clear retrans_stamp when there are no retransmissions in the 2380 * window. It would seem that it is trivially available for us in 2381 * tp->retrans_out, however, that kind of assumptions doesn't consider 2382 * what will happen if errors occur when sending retransmission for the 2383 * second time. ...It could the that such segment has only 2384 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2385 * the head skb is enough except for some reneging corner cases that 2386 * are not worth the effort. 2387 * 2388 * Main reason for all this complexity is the fact that connection dying 2389 * time now depends on the validity of the retrans_stamp, in particular, 2390 * that successive retransmissions of a segment must not advance 2391 * retrans_stamp under any conditions. 2392 */ 2393 static bool tcp_any_retrans_done(const struct sock *sk) 2394 { 2395 const struct tcp_sock *tp = tcp_sk(sk); 2396 struct sk_buff *skb; 2397 2398 if (tp->retrans_out) 2399 return true; 2400 2401 skb = tcp_rtx_queue_head(sk); 2402 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2403 return true; 2404 2405 return false; 2406 } 2407 2408 static void DBGUNDO(struct sock *sk, const char *msg) 2409 { 2410 #if FASTRETRANS_DEBUG > 1 2411 struct tcp_sock *tp = tcp_sk(sk); 2412 struct inet_sock *inet = inet_sk(sk); 2413 2414 if (sk->sk_family == AF_INET) { 2415 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2416 msg, 2417 &inet->inet_daddr, ntohs(inet->inet_dport), 2418 tp->snd_cwnd, tcp_left_out(tp), 2419 tp->snd_ssthresh, tp->prior_ssthresh, 2420 tp->packets_out); 2421 } 2422 #if IS_ENABLED(CONFIG_IPV6) 2423 else if (sk->sk_family == AF_INET6) { 2424 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2425 msg, 2426 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2427 tp->snd_cwnd, tcp_left_out(tp), 2428 tp->snd_ssthresh, tp->prior_ssthresh, 2429 tp->packets_out); 2430 } 2431 #endif 2432 #endif 2433 } 2434 2435 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2436 { 2437 struct tcp_sock *tp = tcp_sk(sk); 2438 2439 if (unmark_loss) { 2440 struct sk_buff *skb; 2441 2442 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2443 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2444 } 2445 tp->lost_out = 0; 2446 tcp_clear_all_retrans_hints(tp); 2447 } 2448 2449 if (tp->prior_ssthresh) { 2450 const struct inet_connection_sock *icsk = inet_csk(sk); 2451 2452 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2453 2454 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2455 tp->snd_ssthresh = tp->prior_ssthresh; 2456 tcp_ecn_withdraw_cwr(tp); 2457 } 2458 } 2459 tp->snd_cwnd_stamp = tcp_jiffies32; 2460 tp->undo_marker = 0; 2461 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2462 } 2463 2464 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2465 { 2466 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2467 } 2468 2469 /* People celebrate: "We love our President!" */ 2470 static bool tcp_try_undo_recovery(struct sock *sk) 2471 { 2472 struct tcp_sock *tp = tcp_sk(sk); 2473 2474 if (tcp_may_undo(tp)) { 2475 int mib_idx; 2476 2477 /* Happy end! We did not retransmit anything 2478 * or our original transmission succeeded. 2479 */ 2480 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2481 tcp_undo_cwnd_reduction(sk, false); 2482 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2483 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2484 else 2485 mib_idx = LINUX_MIB_TCPFULLUNDO; 2486 2487 NET_INC_STATS(sock_net(sk), mib_idx); 2488 } else if (tp->rack.reo_wnd_persist) { 2489 tp->rack.reo_wnd_persist--; 2490 } 2491 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2492 /* Hold old state until something *above* high_seq 2493 * is ACKed. For Reno it is MUST to prevent false 2494 * fast retransmits (RFC2582). SACK TCP is safe. */ 2495 if (!tcp_any_retrans_done(sk)) 2496 tp->retrans_stamp = 0; 2497 return true; 2498 } 2499 tcp_set_ca_state(sk, TCP_CA_Open); 2500 tp->is_sack_reneg = 0; 2501 return false; 2502 } 2503 2504 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2505 static bool tcp_try_undo_dsack(struct sock *sk) 2506 { 2507 struct tcp_sock *tp = tcp_sk(sk); 2508 2509 if (tp->undo_marker && !tp->undo_retrans) { 2510 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2511 tp->rack.reo_wnd_persist + 1); 2512 DBGUNDO(sk, "D-SACK"); 2513 tcp_undo_cwnd_reduction(sk, false); 2514 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2515 return true; 2516 } 2517 return false; 2518 } 2519 2520 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2521 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2522 { 2523 struct tcp_sock *tp = tcp_sk(sk); 2524 2525 if (frto_undo || tcp_may_undo(tp)) { 2526 tcp_undo_cwnd_reduction(sk, true); 2527 2528 DBGUNDO(sk, "partial loss"); 2529 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2530 if (frto_undo) 2531 NET_INC_STATS(sock_net(sk), 2532 LINUX_MIB_TCPSPURIOUSRTOS); 2533 inet_csk(sk)->icsk_retransmits = 0; 2534 if (frto_undo || tcp_is_sack(tp)) { 2535 tcp_set_ca_state(sk, TCP_CA_Open); 2536 tp->is_sack_reneg = 0; 2537 } 2538 return true; 2539 } 2540 return false; 2541 } 2542 2543 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2544 * It computes the number of packets to send (sndcnt) based on packets newly 2545 * delivered: 2546 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2547 * cwnd reductions across a full RTT. 2548 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2549 * But when the retransmits are acked without further losses, PRR 2550 * slow starts cwnd up to ssthresh to speed up the recovery. 2551 */ 2552 static void tcp_init_cwnd_reduction(struct sock *sk) 2553 { 2554 struct tcp_sock *tp = tcp_sk(sk); 2555 2556 tp->high_seq = tp->snd_nxt; 2557 tp->tlp_high_seq = 0; 2558 tp->snd_cwnd_cnt = 0; 2559 tp->prior_cwnd = tp->snd_cwnd; 2560 tp->prr_delivered = 0; 2561 tp->prr_out = 0; 2562 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2563 tcp_ecn_queue_cwr(tp); 2564 } 2565 2566 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag) 2567 { 2568 struct tcp_sock *tp = tcp_sk(sk); 2569 int sndcnt = 0; 2570 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2571 2572 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2573 return; 2574 2575 tp->prr_delivered += newly_acked_sacked; 2576 if (delta < 0) { 2577 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2578 tp->prior_cwnd - 1; 2579 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2580 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) == 2581 FLAG_RETRANS_DATA_ACKED) { 2582 sndcnt = min_t(int, delta, 2583 max_t(int, tp->prr_delivered - tp->prr_out, 2584 newly_acked_sacked) + 1); 2585 } else { 2586 sndcnt = min(delta, newly_acked_sacked); 2587 } 2588 /* Force a fast retransmit upon entering fast recovery */ 2589 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2590 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2591 } 2592 2593 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2594 { 2595 struct tcp_sock *tp = tcp_sk(sk); 2596 2597 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2598 return; 2599 2600 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2601 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2602 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2603 tp->snd_cwnd = tp->snd_ssthresh; 2604 tp->snd_cwnd_stamp = tcp_jiffies32; 2605 } 2606 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2607 } 2608 2609 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2610 void tcp_enter_cwr(struct sock *sk) 2611 { 2612 struct tcp_sock *tp = tcp_sk(sk); 2613 2614 tp->prior_ssthresh = 0; 2615 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2616 tp->undo_marker = 0; 2617 tcp_init_cwnd_reduction(sk); 2618 tcp_set_ca_state(sk, TCP_CA_CWR); 2619 } 2620 } 2621 EXPORT_SYMBOL(tcp_enter_cwr); 2622 2623 static void tcp_try_keep_open(struct sock *sk) 2624 { 2625 struct tcp_sock *tp = tcp_sk(sk); 2626 int state = TCP_CA_Open; 2627 2628 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2629 state = TCP_CA_Disorder; 2630 2631 if (inet_csk(sk)->icsk_ca_state != state) { 2632 tcp_set_ca_state(sk, state); 2633 tp->high_seq = tp->snd_nxt; 2634 } 2635 } 2636 2637 static void tcp_try_to_open(struct sock *sk, int flag) 2638 { 2639 struct tcp_sock *tp = tcp_sk(sk); 2640 2641 tcp_verify_left_out(tp); 2642 2643 if (!tcp_any_retrans_done(sk)) 2644 tp->retrans_stamp = 0; 2645 2646 if (flag & FLAG_ECE) 2647 tcp_enter_cwr(sk); 2648 2649 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2650 tcp_try_keep_open(sk); 2651 } 2652 } 2653 2654 static void tcp_mtup_probe_failed(struct sock *sk) 2655 { 2656 struct inet_connection_sock *icsk = inet_csk(sk); 2657 2658 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2659 icsk->icsk_mtup.probe_size = 0; 2660 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2661 } 2662 2663 static void tcp_mtup_probe_success(struct sock *sk) 2664 { 2665 struct tcp_sock *tp = tcp_sk(sk); 2666 struct inet_connection_sock *icsk = inet_csk(sk); 2667 2668 /* FIXME: breaks with very large cwnd */ 2669 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2670 tp->snd_cwnd = tp->snd_cwnd * 2671 tcp_mss_to_mtu(sk, tp->mss_cache) / 2672 icsk->icsk_mtup.probe_size; 2673 tp->snd_cwnd_cnt = 0; 2674 tp->snd_cwnd_stamp = tcp_jiffies32; 2675 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2676 2677 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2678 icsk->icsk_mtup.probe_size = 0; 2679 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2680 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2681 } 2682 2683 /* Do a simple retransmit without using the backoff mechanisms in 2684 * tcp_timer. This is used for path mtu discovery. 2685 * The socket is already locked here. 2686 */ 2687 void tcp_simple_retransmit(struct sock *sk) 2688 { 2689 const struct inet_connection_sock *icsk = inet_csk(sk); 2690 struct tcp_sock *tp = tcp_sk(sk); 2691 struct sk_buff *skb; 2692 unsigned int mss = tcp_current_mss(sk); 2693 2694 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2695 if (tcp_skb_seglen(skb) > mss) 2696 tcp_mark_skb_lost(sk, skb); 2697 } 2698 2699 tcp_clear_retrans_hints_partial(tp); 2700 2701 if (!tp->lost_out) 2702 return; 2703 2704 if (tcp_is_reno(tp)) 2705 tcp_limit_reno_sacked(tp); 2706 2707 tcp_verify_left_out(tp); 2708 2709 /* Don't muck with the congestion window here. 2710 * Reason is that we do not increase amount of _data_ 2711 * in network, but units changed and effective 2712 * cwnd/ssthresh really reduced now. 2713 */ 2714 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2715 tp->high_seq = tp->snd_nxt; 2716 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2717 tp->prior_ssthresh = 0; 2718 tp->undo_marker = 0; 2719 tcp_set_ca_state(sk, TCP_CA_Loss); 2720 } 2721 tcp_xmit_retransmit_queue(sk); 2722 } 2723 EXPORT_SYMBOL(tcp_simple_retransmit); 2724 2725 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2726 { 2727 struct tcp_sock *tp = tcp_sk(sk); 2728 int mib_idx; 2729 2730 if (tcp_is_reno(tp)) 2731 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2732 else 2733 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2734 2735 NET_INC_STATS(sock_net(sk), mib_idx); 2736 2737 tp->prior_ssthresh = 0; 2738 tcp_init_undo(tp); 2739 2740 if (!tcp_in_cwnd_reduction(sk)) { 2741 if (!ece_ack) 2742 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2743 tcp_init_cwnd_reduction(sk); 2744 } 2745 tcp_set_ca_state(sk, TCP_CA_Recovery); 2746 } 2747 2748 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2749 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2750 */ 2751 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2752 int *rexmit) 2753 { 2754 struct tcp_sock *tp = tcp_sk(sk); 2755 bool recovered = !before(tp->snd_una, tp->high_seq); 2756 2757 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2758 tcp_try_undo_loss(sk, false)) 2759 return; 2760 2761 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2762 /* Step 3.b. A timeout is spurious if not all data are 2763 * lost, i.e., never-retransmitted data are (s)acked. 2764 */ 2765 if ((flag & FLAG_ORIG_SACK_ACKED) && 2766 tcp_try_undo_loss(sk, true)) 2767 return; 2768 2769 if (after(tp->snd_nxt, tp->high_seq)) { 2770 if (flag & FLAG_DATA_SACKED || num_dupack) 2771 tp->frto = 0; /* Step 3.a. loss was real */ 2772 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2773 tp->high_seq = tp->snd_nxt; 2774 /* Step 2.b. Try send new data (but deferred until cwnd 2775 * is updated in tcp_ack()). Otherwise fall back to 2776 * the conventional recovery. 2777 */ 2778 if (!tcp_write_queue_empty(sk) && 2779 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2780 *rexmit = REXMIT_NEW; 2781 return; 2782 } 2783 tp->frto = 0; 2784 } 2785 } 2786 2787 if (recovered) { 2788 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2789 tcp_try_undo_recovery(sk); 2790 return; 2791 } 2792 if (tcp_is_reno(tp)) { 2793 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2794 * delivered. Lower inflight to clock out (re)tranmissions. 2795 */ 2796 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2797 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2798 else if (flag & FLAG_SND_UNA_ADVANCED) 2799 tcp_reset_reno_sack(tp); 2800 } 2801 *rexmit = REXMIT_LOST; 2802 } 2803 2804 /* Undo during fast recovery after partial ACK. */ 2805 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una) 2806 { 2807 struct tcp_sock *tp = tcp_sk(sk); 2808 2809 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2810 /* Plain luck! Hole if filled with delayed 2811 * packet, rather than with a retransmit. Check reordering. 2812 */ 2813 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2814 2815 /* We are getting evidence that the reordering degree is higher 2816 * than we realized. If there are no retransmits out then we 2817 * can undo. Otherwise we clock out new packets but do not 2818 * mark more packets lost or retransmit more. 2819 */ 2820 if (tp->retrans_out) 2821 return true; 2822 2823 if (!tcp_any_retrans_done(sk)) 2824 tp->retrans_stamp = 0; 2825 2826 DBGUNDO(sk, "partial recovery"); 2827 tcp_undo_cwnd_reduction(sk, true); 2828 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2829 tcp_try_keep_open(sk); 2830 return true; 2831 } 2832 return false; 2833 } 2834 2835 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2836 { 2837 struct tcp_sock *tp = tcp_sk(sk); 2838 2839 if (tcp_rtx_queue_empty(sk)) 2840 return; 2841 2842 if (unlikely(tcp_is_reno(tp))) { 2843 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2844 } else if (tcp_is_rack(sk)) { 2845 u32 prior_retrans = tp->retrans_out; 2846 2847 tcp_rack_mark_lost(sk); 2848 if (prior_retrans > tp->retrans_out) 2849 *ack_flag |= FLAG_LOST_RETRANS; 2850 } 2851 } 2852 2853 static bool tcp_force_fast_retransmit(struct sock *sk) 2854 { 2855 struct tcp_sock *tp = tcp_sk(sk); 2856 2857 return after(tcp_highest_sack_seq(tp), 2858 tp->snd_una + tp->reordering * tp->mss_cache); 2859 } 2860 2861 /* Process an event, which can update packets-in-flight not trivially. 2862 * Main goal of this function is to calculate new estimate for left_out, 2863 * taking into account both packets sitting in receiver's buffer and 2864 * packets lost by network. 2865 * 2866 * Besides that it updates the congestion state when packet loss or ECN 2867 * is detected. But it does not reduce the cwnd, it is done by the 2868 * congestion control later. 2869 * 2870 * It does _not_ decide what to send, it is made in function 2871 * tcp_xmit_retransmit_queue(). 2872 */ 2873 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2874 int num_dupack, int *ack_flag, int *rexmit) 2875 { 2876 struct inet_connection_sock *icsk = inet_csk(sk); 2877 struct tcp_sock *tp = tcp_sk(sk); 2878 int fast_rexmit = 0, flag = *ack_flag; 2879 bool ece_ack = flag & FLAG_ECE; 2880 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2881 tcp_force_fast_retransmit(sk)); 2882 2883 if (!tp->packets_out && tp->sacked_out) 2884 tp->sacked_out = 0; 2885 2886 /* Now state machine starts. 2887 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2888 if (ece_ack) 2889 tp->prior_ssthresh = 0; 2890 2891 /* B. In all the states check for reneging SACKs. */ 2892 if (tcp_check_sack_reneging(sk, flag)) 2893 return; 2894 2895 /* C. Check consistency of the current state. */ 2896 tcp_verify_left_out(tp); 2897 2898 /* D. Check state exit conditions. State can be terminated 2899 * when high_seq is ACKed. */ 2900 if (icsk->icsk_ca_state == TCP_CA_Open) { 2901 WARN_ON(tp->retrans_out != 0); 2902 tp->retrans_stamp = 0; 2903 } else if (!before(tp->snd_una, tp->high_seq)) { 2904 switch (icsk->icsk_ca_state) { 2905 case TCP_CA_CWR: 2906 /* CWR is to be held something *above* high_seq 2907 * is ACKed for CWR bit to reach receiver. */ 2908 if (tp->snd_una != tp->high_seq) { 2909 tcp_end_cwnd_reduction(sk); 2910 tcp_set_ca_state(sk, TCP_CA_Open); 2911 } 2912 break; 2913 2914 case TCP_CA_Recovery: 2915 if (tcp_is_reno(tp)) 2916 tcp_reset_reno_sack(tp); 2917 if (tcp_try_undo_recovery(sk)) 2918 return; 2919 tcp_end_cwnd_reduction(sk); 2920 break; 2921 } 2922 } 2923 2924 /* E. Process state. */ 2925 switch (icsk->icsk_ca_state) { 2926 case TCP_CA_Recovery: 2927 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2928 if (tcp_is_reno(tp)) 2929 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2930 } else { 2931 if (tcp_try_undo_partial(sk, prior_snd_una)) 2932 return; 2933 /* Partial ACK arrived. Force fast retransmit. */ 2934 do_lost = tcp_force_fast_retransmit(sk); 2935 } 2936 if (tcp_try_undo_dsack(sk)) { 2937 tcp_try_keep_open(sk); 2938 return; 2939 } 2940 tcp_identify_packet_loss(sk, ack_flag); 2941 break; 2942 case TCP_CA_Loss: 2943 tcp_process_loss(sk, flag, num_dupack, rexmit); 2944 tcp_identify_packet_loss(sk, ack_flag); 2945 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2946 (*ack_flag & FLAG_LOST_RETRANS))) 2947 return; 2948 /* Change state if cwnd is undone or retransmits are lost */ 2949 fallthrough; 2950 default: 2951 if (tcp_is_reno(tp)) { 2952 if (flag & FLAG_SND_UNA_ADVANCED) 2953 tcp_reset_reno_sack(tp); 2954 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2955 } 2956 2957 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2958 tcp_try_undo_dsack(sk); 2959 2960 tcp_identify_packet_loss(sk, ack_flag); 2961 if (!tcp_time_to_recover(sk, flag)) { 2962 tcp_try_to_open(sk, flag); 2963 return; 2964 } 2965 2966 /* MTU probe failure: don't reduce cwnd */ 2967 if (icsk->icsk_ca_state < TCP_CA_CWR && 2968 icsk->icsk_mtup.probe_size && 2969 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2970 tcp_mtup_probe_failed(sk); 2971 /* Restores the reduction we did in tcp_mtup_probe() */ 2972 tp->snd_cwnd++; 2973 tcp_simple_retransmit(sk); 2974 return; 2975 } 2976 2977 /* Otherwise enter Recovery state */ 2978 tcp_enter_recovery(sk, ece_ack); 2979 fast_rexmit = 1; 2980 } 2981 2982 if (!tcp_is_rack(sk) && do_lost) 2983 tcp_update_scoreboard(sk, fast_rexmit); 2984 *rexmit = REXMIT_LOST; 2985 } 2986 2987 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 2988 { 2989 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 2990 struct tcp_sock *tp = tcp_sk(sk); 2991 2992 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 2993 /* If the remote keeps returning delayed ACKs, eventually 2994 * the min filter would pick it up and overestimate the 2995 * prop. delay when it expires. Skip suspected delayed ACKs. 2996 */ 2997 return; 2998 } 2999 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3000 rtt_us ? : jiffies_to_usecs(1)); 3001 } 3002 3003 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3004 long seq_rtt_us, long sack_rtt_us, 3005 long ca_rtt_us, struct rate_sample *rs) 3006 { 3007 const struct tcp_sock *tp = tcp_sk(sk); 3008 3009 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3010 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3011 * Karn's algorithm forbids taking RTT if some retransmitted data 3012 * is acked (RFC6298). 3013 */ 3014 if (seq_rtt_us < 0) 3015 seq_rtt_us = sack_rtt_us; 3016 3017 /* RTTM Rule: A TSecr value received in a segment is used to 3018 * update the averaged RTT measurement only if the segment 3019 * acknowledges some new data, i.e., only if it advances the 3020 * left edge of the send window. 3021 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3022 */ 3023 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3024 flag & FLAG_ACKED) { 3025 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3026 3027 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3028 if (!delta) 3029 delta = 1; 3030 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3031 ca_rtt_us = seq_rtt_us; 3032 } 3033 } 3034 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3035 if (seq_rtt_us < 0) 3036 return false; 3037 3038 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3039 * always taken together with ACK, SACK, or TS-opts. Any negative 3040 * values will be skipped with the seq_rtt_us < 0 check above. 3041 */ 3042 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3043 tcp_rtt_estimator(sk, seq_rtt_us); 3044 tcp_set_rto(sk); 3045 3046 /* RFC6298: only reset backoff on valid RTT measurement. */ 3047 inet_csk(sk)->icsk_backoff = 0; 3048 return true; 3049 } 3050 3051 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3052 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3053 { 3054 struct rate_sample rs; 3055 long rtt_us = -1L; 3056 3057 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3058 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3059 3060 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3061 } 3062 3063 3064 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3065 { 3066 const struct inet_connection_sock *icsk = inet_csk(sk); 3067 3068 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3069 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3070 } 3071 3072 /* Restart timer after forward progress on connection. 3073 * RFC2988 recommends to restart timer to now+rto. 3074 */ 3075 void tcp_rearm_rto(struct sock *sk) 3076 { 3077 const struct inet_connection_sock *icsk = inet_csk(sk); 3078 struct tcp_sock *tp = tcp_sk(sk); 3079 3080 /* If the retrans timer is currently being used by Fast Open 3081 * for SYN-ACK retrans purpose, stay put. 3082 */ 3083 if (rcu_access_pointer(tp->fastopen_rsk)) 3084 return; 3085 3086 if (!tp->packets_out) { 3087 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3088 } else { 3089 u32 rto = inet_csk(sk)->icsk_rto; 3090 /* Offset the time elapsed after installing regular RTO */ 3091 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3092 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3093 s64 delta_us = tcp_rto_delta_us(sk); 3094 /* delta_us may not be positive if the socket is locked 3095 * when the retrans timer fires and is rescheduled. 3096 */ 3097 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3098 } 3099 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3100 TCP_RTO_MAX); 3101 } 3102 } 3103 3104 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3105 static void tcp_set_xmit_timer(struct sock *sk) 3106 { 3107 if (!tcp_schedule_loss_probe(sk, true)) 3108 tcp_rearm_rto(sk); 3109 } 3110 3111 /* If we get here, the whole TSO packet has not been acked. */ 3112 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3113 { 3114 struct tcp_sock *tp = tcp_sk(sk); 3115 u32 packets_acked; 3116 3117 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3118 3119 packets_acked = tcp_skb_pcount(skb); 3120 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3121 return 0; 3122 packets_acked -= tcp_skb_pcount(skb); 3123 3124 if (packets_acked) { 3125 BUG_ON(tcp_skb_pcount(skb) == 0); 3126 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3127 } 3128 3129 return packets_acked; 3130 } 3131 3132 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3133 u32 prior_snd_una) 3134 { 3135 const struct skb_shared_info *shinfo; 3136 3137 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3138 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3139 return; 3140 3141 shinfo = skb_shinfo(skb); 3142 if (!before(shinfo->tskey, prior_snd_una) && 3143 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3144 tcp_skb_tsorted_save(skb) { 3145 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3146 } tcp_skb_tsorted_restore(skb); 3147 } 3148 } 3149 3150 /* Remove acknowledged frames from the retransmission queue. If our packet 3151 * is before the ack sequence we can discard it as it's confirmed to have 3152 * arrived at the other end. 3153 */ 3154 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack, 3155 u32 prior_snd_una, 3156 struct tcp_sacktag_state *sack, bool ece_ack) 3157 { 3158 const struct inet_connection_sock *icsk = inet_csk(sk); 3159 u64 first_ackt, last_ackt; 3160 struct tcp_sock *tp = tcp_sk(sk); 3161 u32 prior_sacked = tp->sacked_out; 3162 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3163 struct sk_buff *skb, *next; 3164 bool fully_acked = true; 3165 long sack_rtt_us = -1L; 3166 long seq_rtt_us = -1L; 3167 long ca_rtt_us = -1L; 3168 u32 pkts_acked = 0; 3169 u32 last_in_flight = 0; 3170 bool rtt_update; 3171 int flag = 0; 3172 3173 first_ackt = 0; 3174 3175 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3176 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3177 const u32 start_seq = scb->seq; 3178 u8 sacked = scb->sacked; 3179 u32 acked_pcount; 3180 3181 /* Determine how many packets and what bytes were acked, tso and else */ 3182 if (after(scb->end_seq, tp->snd_una)) { 3183 if (tcp_skb_pcount(skb) == 1 || 3184 !after(tp->snd_una, scb->seq)) 3185 break; 3186 3187 acked_pcount = tcp_tso_acked(sk, skb); 3188 if (!acked_pcount) 3189 break; 3190 fully_acked = false; 3191 } else { 3192 acked_pcount = tcp_skb_pcount(skb); 3193 } 3194 3195 if (unlikely(sacked & TCPCB_RETRANS)) { 3196 if (sacked & TCPCB_SACKED_RETRANS) 3197 tp->retrans_out -= acked_pcount; 3198 flag |= FLAG_RETRANS_DATA_ACKED; 3199 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3200 last_ackt = tcp_skb_timestamp_us(skb); 3201 WARN_ON_ONCE(last_ackt == 0); 3202 if (!first_ackt) 3203 first_ackt = last_ackt; 3204 3205 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3206 if (before(start_seq, reord)) 3207 reord = start_seq; 3208 if (!after(scb->end_seq, tp->high_seq)) 3209 flag |= FLAG_ORIG_SACK_ACKED; 3210 } 3211 3212 if (sacked & TCPCB_SACKED_ACKED) { 3213 tp->sacked_out -= acked_pcount; 3214 } else if (tcp_is_sack(tp)) { 3215 tcp_count_delivered(tp, acked_pcount, ece_ack); 3216 if (!tcp_skb_spurious_retrans(tp, skb)) 3217 tcp_rack_advance(tp, sacked, scb->end_seq, 3218 tcp_skb_timestamp_us(skb)); 3219 } 3220 if (sacked & TCPCB_LOST) 3221 tp->lost_out -= acked_pcount; 3222 3223 tp->packets_out -= acked_pcount; 3224 pkts_acked += acked_pcount; 3225 tcp_rate_skb_delivered(sk, skb, sack->rate); 3226 3227 /* Initial outgoing SYN's get put onto the write_queue 3228 * just like anything else we transmit. It is not 3229 * true data, and if we misinform our callers that 3230 * this ACK acks real data, we will erroneously exit 3231 * connection startup slow start one packet too 3232 * quickly. This is severely frowned upon behavior. 3233 */ 3234 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3235 flag |= FLAG_DATA_ACKED; 3236 } else { 3237 flag |= FLAG_SYN_ACKED; 3238 tp->retrans_stamp = 0; 3239 } 3240 3241 if (!fully_acked) 3242 break; 3243 3244 tcp_ack_tstamp(sk, skb, prior_snd_una); 3245 3246 next = skb_rb_next(skb); 3247 if (unlikely(skb == tp->retransmit_skb_hint)) 3248 tp->retransmit_skb_hint = NULL; 3249 if (unlikely(skb == tp->lost_skb_hint)) 3250 tp->lost_skb_hint = NULL; 3251 tcp_highest_sack_replace(sk, skb, next); 3252 tcp_rtx_queue_unlink_and_free(skb, sk); 3253 } 3254 3255 if (!skb) 3256 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3257 3258 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3259 tp->snd_up = tp->snd_una; 3260 3261 if (skb) { 3262 tcp_ack_tstamp(sk, skb, prior_snd_una); 3263 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3264 flag |= FLAG_SACK_RENEGING; 3265 } 3266 3267 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3268 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3269 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3270 3271 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3272 last_in_flight && !prior_sacked && fully_acked && 3273 sack->rate->prior_delivered + 1 == tp->delivered && 3274 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3275 /* Conservatively mark a delayed ACK. It's typically 3276 * from a lone runt packet over the round trip to 3277 * a receiver w/o out-of-order or CE events. 3278 */ 3279 flag |= FLAG_ACK_MAYBE_DELAYED; 3280 } 3281 } 3282 if (sack->first_sackt) { 3283 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3284 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3285 } 3286 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3287 ca_rtt_us, sack->rate); 3288 3289 if (flag & FLAG_ACKED) { 3290 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3291 if (unlikely(icsk->icsk_mtup.probe_size && 3292 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3293 tcp_mtup_probe_success(sk); 3294 } 3295 3296 if (tcp_is_reno(tp)) { 3297 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3298 3299 /* If any of the cumulatively ACKed segments was 3300 * retransmitted, non-SACK case cannot confirm that 3301 * progress was due to original transmission due to 3302 * lack of TCPCB_SACKED_ACKED bits even if some of 3303 * the packets may have been never retransmitted. 3304 */ 3305 if (flag & FLAG_RETRANS_DATA_ACKED) 3306 flag &= ~FLAG_ORIG_SACK_ACKED; 3307 } else { 3308 int delta; 3309 3310 /* Non-retransmitted hole got filled? That's reordering */ 3311 if (before(reord, prior_fack)) 3312 tcp_check_sack_reordering(sk, reord, 0); 3313 3314 delta = prior_sacked - tp->sacked_out; 3315 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3316 } 3317 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3318 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3319 tcp_skb_timestamp_us(skb))) { 3320 /* Do not re-arm RTO if the sack RTT is measured from data sent 3321 * after when the head was last (re)transmitted. Otherwise the 3322 * timeout may continue to extend in loss recovery. 3323 */ 3324 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3325 } 3326 3327 if (icsk->icsk_ca_ops->pkts_acked) { 3328 struct ack_sample sample = { .pkts_acked = pkts_acked, 3329 .rtt_us = sack->rate->rtt_us, 3330 .in_flight = last_in_flight }; 3331 3332 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3333 } 3334 3335 #if FASTRETRANS_DEBUG > 0 3336 WARN_ON((int)tp->sacked_out < 0); 3337 WARN_ON((int)tp->lost_out < 0); 3338 WARN_ON((int)tp->retrans_out < 0); 3339 if (!tp->packets_out && tcp_is_sack(tp)) { 3340 icsk = inet_csk(sk); 3341 if (tp->lost_out) { 3342 pr_debug("Leak l=%u %d\n", 3343 tp->lost_out, icsk->icsk_ca_state); 3344 tp->lost_out = 0; 3345 } 3346 if (tp->sacked_out) { 3347 pr_debug("Leak s=%u %d\n", 3348 tp->sacked_out, icsk->icsk_ca_state); 3349 tp->sacked_out = 0; 3350 } 3351 if (tp->retrans_out) { 3352 pr_debug("Leak r=%u %d\n", 3353 tp->retrans_out, icsk->icsk_ca_state); 3354 tp->retrans_out = 0; 3355 } 3356 } 3357 #endif 3358 return flag; 3359 } 3360 3361 static void tcp_ack_probe(struct sock *sk) 3362 { 3363 struct inet_connection_sock *icsk = inet_csk(sk); 3364 struct sk_buff *head = tcp_send_head(sk); 3365 const struct tcp_sock *tp = tcp_sk(sk); 3366 3367 /* Was it a usable window open? */ 3368 if (!head) 3369 return; 3370 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3371 icsk->icsk_backoff = 0; 3372 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3373 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3374 * This function is not for random using! 3375 */ 3376 } else { 3377 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3378 3379 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3380 when, TCP_RTO_MAX); 3381 } 3382 } 3383 3384 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3385 { 3386 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3387 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3388 } 3389 3390 /* Decide wheather to run the increase function of congestion control. */ 3391 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3392 { 3393 /* If reordering is high then always grow cwnd whenever data is 3394 * delivered regardless of its ordering. Otherwise stay conservative 3395 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3396 * new SACK or ECE mark may first advance cwnd here and later reduce 3397 * cwnd in tcp_fastretrans_alert() based on more states. 3398 */ 3399 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3400 return flag & FLAG_FORWARD_PROGRESS; 3401 3402 return flag & FLAG_DATA_ACKED; 3403 } 3404 3405 /* The "ultimate" congestion control function that aims to replace the rigid 3406 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3407 * It's called toward the end of processing an ACK with precise rate 3408 * information. All transmission or retransmission are delayed afterwards. 3409 */ 3410 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3411 int flag, const struct rate_sample *rs) 3412 { 3413 const struct inet_connection_sock *icsk = inet_csk(sk); 3414 3415 if (icsk->icsk_ca_ops->cong_control) { 3416 icsk->icsk_ca_ops->cong_control(sk, rs); 3417 return; 3418 } 3419 3420 if (tcp_in_cwnd_reduction(sk)) { 3421 /* Reduce cwnd if state mandates */ 3422 tcp_cwnd_reduction(sk, acked_sacked, flag); 3423 } else if (tcp_may_raise_cwnd(sk, flag)) { 3424 /* Advance cwnd if state allows */ 3425 tcp_cong_avoid(sk, ack, acked_sacked); 3426 } 3427 tcp_update_pacing_rate(sk); 3428 } 3429 3430 /* Check that window update is acceptable. 3431 * The function assumes that snd_una<=ack<=snd_next. 3432 */ 3433 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3434 const u32 ack, const u32 ack_seq, 3435 const u32 nwin) 3436 { 3437 return after(ack, tp->snd_una) || 3438 after(ack_seq, tp->snd_wl1) || 3439 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3440 } 3441 3442 /* If we update tp->snd_una, also update tp->bytes_acked */ 3443 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3444 { 3445 u32 delta = ack - tp->snd_una; 3446 3447 sock_owned_by_me((struct sock *)tp); 3448 tp->bytes_acked += delta; 3449 tp->snd_una = ack; 3450 } 3451 3452 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3453 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3454 { 3455 u32 delta = seq - tp->rcv_nxt; 3456 3457 sock_owned_by_me((struct sock *)tp); 3458 tp->bytes_received += delta; 3459 WRITE_ONCE(tp->rcv_nxt, seq); 3460 } 3461 3462 /* Update our send window. 3463 * 3464 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3465 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3466 */ 3467 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3468 u32 ack_seq) 3469 { 3470 struct tcp_sock *tp = tcp_sk(sk); 3471 int flag = 0; 3472 u32 nwin = ntohs(tcp_hdr(skb)->window); 3473 3474 if (likely(!tcp_hdr(skb)->syn)) 3475 nwin <<= tp->rx_opt.snd_wscale; 3476 3477 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3478 flag |= FLAG_WIN_UPDATE; 3479 tcp_update_wl(tp, ack_seq); 3480 3481 if (tp->snd_wnd != nwin) { 3482 tp->snd_wnd = nwin; 3483 3484 /* Note, it is the only place, where 3485 * fast path is recovered for sending TCP. 3486 */ 3487 tp->pred_flags = 0; 3488 tcp_fast_path_check(sk); 3489 3490 if (!tcp_write_queue_empty(sk)) 3491 tcp_slow_start_after_idle_check(sk); 3492 3493 if (nwin > tp->max_window) { 3494 tp->max_window = nwin; 3495 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3496 } 3497 } 3498 } 3499 3500 tcp_snd_una_update(tp, ack); 3501 3502 return flag; 3503 } 3504 3505 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3506 u32 *last_oow_ack_time) 3507 { 3508 if (*last_oow_ack_time) { 3509 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3510 3511 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3512 NET_INC_STATS(net, mib_idx); 3513 return true; /* rate-limited: don't send yet! */ 3514 } 3515 } 3516 3517 *last_oow_ack_time = tcp_jiffies32; 3518 3519 return false; /* not rate-limited: go ahead, send dupack now! */ 3520 } 3521 3522 /* Return true if we're currently rate-limiting out-of-window ACKs and 3523 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3524 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3525 * attacks that send repeated SYNs or ACKs for the same connection. To 3526 * do this, we do not send a duplicate SYNACK or ACK if the remote 3527 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3528 */ 3529 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3530 int mib_idx, u32 *last_oow_ack_time) 3531 { 3532 /* Data packets without SYNs are not likely part of an ACK loop. */ 3533 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3534 !tcp_hdr(skb)->syn) 3535 return false; 3536 3537 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3538 } 3539 3540 /* RFC 5961 7 [ACK Throttling] */ 3541 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3542 { 3543 /* unprotected vars, we dont care of overwrites */ 3544 static u32 challenge_timestamp; 3545 static unsigned int challenge_count; 3546 struct tcp_sock *tp = tcp_sk(sk); 3547 struct net *net = sock_net(sk); 3548 u32 count, now; 3549 3550 /* First check our per-socket dupack rate limit. */ 3551 if (__tcp_oow_rate_limited(net, 3552 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3553 &tp->last_oow_ack_time)) 3554 return; 3555 3556 /* Then check host-wide RFC 5961 rate limit. */ 3557 now = jiffies / HZ; 3558 if (now != challenge_timestamp) { 3559 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3560 u32 half = (ack_limit + 1) >> 1; 3561 3562 challenge_timestamp = now; 3563 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3564 } 3565 count = READ_ONCE(challenge_count); 3566 if (count > 0) { 3567 WRITE_ONCE(challenge_count, count - 1); 3568 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3569 tcp_send_ack(sk); 3570 } 3571 } 3572 3573 static void tcp_store_ts_recent(struct tcp_sock *tp) 3574 { 3575 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3576 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3577 } 3578 3579 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3580 { 3581 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3582 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3583 * extra check below makes sure this can only happen 3584 * for pure ACK frames. -DaveM 3585 * 3586 * Not only, also it occurs for expired timestamps. 3587 */ 3588 3589 if (tcp_paws_check(&tp->rx_opt, 0)) 3590 tcp_store_ts_recent(tp); 3591 } 3592 } 3593 3594 /* This routine deals with acks during a TLP episode and ends an episode by 3595 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3596 */ 3597 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3598 { 3599 struct tcp_sock *tp = tcp_sk(sk); 3600 3601 if (before(ack, tp->tlp_high_seq)) 3602 return; 3603 3604 if (!tp->tlp_retrans) { 3605 /* TLP of new data has been acknowledged */ 3606 tp->tlp_high_seq = 0; 3607 } else if (flag & FLAG_DSACKING_ACK) { 3608 /* This DSACK means original and TLP probe arrived; no loss */ 3609 tp->tlp_high_seq = 0; 3610 } else if (after(ack, tp->tlp_high_seq)) { 3611 /* ACK advances: there was a loss, so reduce cwnd. Reset 3612 * tlp_high_seq in tcp_init_cwnd_reduction() 3613 */ 3614 tcp_init_cwnd_reduction(sk); 3615 tcp_set_ca_state(sk, TCP_CA_CWR); 3616 tcp_end_cwnd_reduction(sk); 3617 tcp_try_keep_open(sk); 3618 NET_INC_STATS(sock_net(sk), 3619 LINUX_MIB_TCPLOSSPROBERECOVERY); 3620 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3621 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3622 /* Pure dupack: original and TLP probe arrived; no loss */ 3623 tp->tlp_high_seq = 0; 3624 } 3625 } 3626 3627 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3628 { 3629 const struct inet_connection_sock *icsk = inet_csk(sk); 3630 3631 if (icsk->icsk_ca_ops->in_ack_event) 3632 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3633 } 3634 3635 /* Congestion control has updated the cwnd already. So if we're in 3636 * loss recovery then now we do any new sends (for FRTO) or 3637 * retransmits (for CA_Loss or CA_recovery) that make sense. 3638 */ 3639 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3640 { 3641 struct tcp_sock *tp = tcp_sk(sk); 3642 3643 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3644 return; 3645 3646 if (unlikely(rexmit == REXMIT_NEW)) { 3647 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3648 TCP_NAGLE_OFF); 3649 if (after(tp->snd_nxt, tp->high_seq)) 3650 return; 3651 tp->frto = 0; 3652 } 3653 tcp_xmit_retransmit_queue(sk); 3654 } 3655 3656 /* Returns the number of packets newly acked or sacked by the current ACK */ 3657 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3658 { 3659 const struct net *net = sock_net(sk); 3660 struct tcp_sock *tp = tcp_sk(sk); 3661 u32 delivered; 3662 3663 delivered = tp->delivered - prior_delivered; 3664 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3665 if (flag & FLAG_ECE) 3666 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3667 3668 return delivered; 3669 } 3670 3671 /* This routine deals with incoming acks, but not outgoing ones. */ 3672 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3673 { 3674 struct inet_connection_sock *icsk = inet_csk(sk); 3675 struct tcp_sock *tp = tcp_sk(sk); 3676 struct tcp_sacktag_state sack_state; 3677 struct rate_sample rs = { .prior_delivered = 0 }; 3678 u32 prior_snd_una = tp->snd_una; 3679 bool is_sack_reneg = tp->is_sack_reneg; 3680 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3681 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3682 int num_dupack = 0; 3683 int prior_packets = tp->packets_out; 3684 u32 delivered = tp->delivered; 3685 u32 lost = tp->lost; 3686 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3687 u32 prior_fack; 3688 3689 sack_state.first_sackt = 0; 3690 sack_state.rate = &rs; 3691 sack_state.sack_delivered = 0; 3692 3693 /* We very likely will need to access rtx queue. */ 3694 prefetch(sk->tcp_rtx_queue.rb_node); 3695 3696 /* If the ack is older than previous acks 3697 * then we can probably ignore it. 3698 */ 3699 if (before(ack, prior_snd_una)) { 3700 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3701 if (before(ack, prior_snd_una - tp->max_window)) { 3702 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3703 tcp_send_challenge_ack(sk, skb); 3704 return -1; 3705 } 3706 goto old_ack; 3707 } 3708 3709 /* If the ack includes data we haven't sent yet, discard 3710 * this segment (RFC793 Section 3.9). 3711 */ 3712 if (after(ack, tp->snd_nxt)) 3713 return -1; 3714 3715 if (after(ack, prior_snd_una)) { 3716 flag |= FLAG_SND_UNA_ADVANCED; 3717 icsk->icsk_retransmits = 0; 3718 3719 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3720 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3721 if (icsk->icsk_clean_acked) 3722 icsk->icsk_clean_acked(sk, ack); 3723 #endif 3724 } 3725 3726 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3727 rs.prior_in_flight = tcp_packets_in_flight(tp); 3728 3729 /* ts_recent update must be made after we are sure that the packet 3730 * is in window. 3731 */ 3732 if (flag & FLAG_UPDATE_TS_RECENT) 3733 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3734 3735 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3736 FLAG_SND_UNA_ADVANCED) { 3737 /* Window is constant, pure forward advance. 3738 * No more checks are required. 3739 * Note, we use the fact that SND.UNA>=SND.WL2. 3740 */ 3741 tcp_update_wl(tp, ack_seq); 3742 tcp_snd_una_update(tp, ack); 3743 flag |= FLAG_WIN_UPDATE; 3744 3745 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3746 3747 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3748 } else { 3749 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3750 3751 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3752 flag |= FLAG_DATA; 3753 else 3754 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3755 3756 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3757 3758 if (TCP_SKB_CB(skb)->sacked) 3759 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3760 &sack_state); 3761 3762 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3763 flag |= FLAG_ECE; 3764 ack_ev_flags |= CA_ACK_ECE; 3765 } 3766 3767 if (sack_state.sack_delivered) 3768 tcp_count_delivered(tp, sack_state.sack_delivered, 3769 flag & FLAG_ECE); 3770 3771 if (flag & FLAG_WIN_UPDATE) 3772 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3773 3774 tcp_in_ack_event(sk, ack_ev_flags); 3775 } 3776 3777 /* This is a deviation from RFC3168 since it states that: 3778 * "When the TCP data sender is ready to set the CWR bit after reducing 3779 * the congestion window, it SHOULD set the CWR bit only on the first 3780 * new data packet that it transmits." 3781 * We accept CWR on pure ACKs to be more robust 3782 * with widely-deployed TCP implementations that do this. 3783 */ 3784 tcp_ecn_accept_cwr(sk, skb); 3785 3786 /* We passed data and got it acked, remove any soft error 3787 * log. Something worked... 3788 */ 3789 sk->sk_err_soft = 0; 3790 icsk->icsk_probes_out = 0; 3791 tp->rcv_tstamp = tcp_jiffies32; 3792 if (!prior_packets) 3793 goto no_queue; 3794 3795 /* See if we can take anything off of the retransmit queue. */ 3796 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state, 3797 flag & FLAG_ECE); 3798 3799 tcp_rack_update_reo_wnd(sk, &rs); 3800 3801 if (tp->tlp_high_seq) 3802 tcp_process_tlp_ack(sk, ack, flag); 3803 /* If needed, reset TLP/RTO timer; RACK may later override this. */ 3804 if (flag & FLAG_SET_XMIT_TIMER) 3805 tcp_set_xmit_timer(sk); 3806 3807 if (tcp_ack_is_dubious(sk, flag)) { 3808 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3809 num_dupack = 1; 3810 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3811 if (!(flag & FLAG_DATA)) 3812 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3813 } 3814 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3815 &rexmit); 3816 } 3817 3818 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3819 sk_dst_confirm(sk); 3820 3821 delivered = tcp_newly_delivered(sk, delivered, flag); 3822 lost = tp->lost - lost; /* freshly marked lost */ 3823 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3824 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3825 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3826 tcp_xmit_recovery(sk, rexmit); 3827 return 1; 3828 3829 no_queue: 3830 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3831 if (flag & FLAG_DSACKING_ACK) { 3832 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3833 &rexmit); 3834 tcp_newly_delivered(sk, delivered, flag); 3835 } 3836 /* If this ack opens up a zero window, clear backoff. It was 3837 * being used to time the probes, and is probably far higher than 3838 * it needs to be for normal retransmission. 3839 */ 3840 tcp_ack_probe(sk); 3841 3842 if (tp->tlp_high_seq) 3843 tcp_process_tlp_ack(sk, ack, flag); 3844 return 1; 3845 3846 old_ack: 3847 /* If data was SACKed, tag it and see if we should send more data. 3848 * If data was DSACKed, see if we can undo a cwnd reduction. 3849 */ 3850 if (TCP_SKB_CB(skb)->sacked) { 3851 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3852 &sack_state); 3853 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3854 &rexmit); 3855 tcp_newly_delivered(sk, delivered, flag); 3856 tcp_xmit_recovery(sk, rexmit); 3857 } 3858 3859 return 0; 3860 } 3861 3862 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3863 bool syn, struct tcp_fastopen_cookie *foc, 3864 bool exp_opt) 3865 { 3866 /* Valid only in SYN or SYN-ACK with an even length. */ 3867 if (!foc || !syn || len < 0 || (len & 1)) 3868 return; 3869 3870 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3871 len <= TCP_FASTOPEN_COOKIE_MAX) 3872 memcpy(foc->val, cookie, len); 3873 else if (len != 0) 3874 len = -1; 3875 foc->len = len; 3876 foc->exp = exp_opt; 3877 } 3878 3879 static bool smc_parse_options(const struct tcphdr *th, 3880 struct tcp_options_received *opt_rx, 3881 const unsigned char *ptr, 3882 int opsize) 3883 { 3884 #if IS_ENABLED(CONFIG_SMC) 3885 if (static_branch_unlikely(&tcp_have_smc)) { 3886 if (th->syn && !(opsize & 1) && 3887 opsize >= TCPOLEN_EXP_SMC_BASE && 3888 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 3889 opt_rx->smc_ok = 1; 3890 return true; 3891 } 3892 } 3893 #endif 3894 return false; 3895 } 3896 3897 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3898 * value on success. 3899 */ 3900 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3901 { 3902 const unsigned char *ptr = (const unsigned char *)(th + 1); 3903 int length = (th->doff * 4) - sizeof(struct tcphdr); 3904 u16 mss = 0; 3905 3906 while (length > 0) { 3907 int opcode = *ptr++; 3908 int opsize; 3909 3910 switch (opcode) { 3911 case TCPOPT_EOL: 3912 return mss; 3913 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3914 length--; 3915 continue; 3916 default: 3917 if (length < 2) 3918 return mss; 3919 opsize = *ptr++; 3920 if (opsize < 2) /* "silly options" */ 3921 return mss; 3922 if (opsize > length) 3923 return mss; /* fail on partial options */ 3924 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 3925 u16 in_mss = get_unaligned_be16(ptr); 3926 3927 if (in_mss) { 3928 if (user_mss && user_mss < in_mss) 3929 in_mss = user_mss; 3930 mss = in_mss; 3931 } 3932 } 3933 ptr += opsize - 2; 3934 length -= opsize; 3935 } 3936 } 3937 return mss; 3938 } 3939 3940 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3941 * But, this can also be called on packets in the established flow when 3942 * the fast version below fails. 3943 */ 3944 void tcp_parse_options(const struct net *net, 3945 const struct sk_buff *skb, 3946 struct tcp_options_received *opt_rx, int estab, 3947 struct tcp_fastopen_cookie *foc) 3948 { 3949 const unsigned char *ptr; 3950 const struct tcphdr *th = tcp_hdr(skb); 3951 int length = (th->doff * 4) - sizeof(struct tcphdr); 3952 3953 ptr = (const unsigned char *)(th + 1); 3954 opt_rx->saw_tstamp = 0; 3955 opt_rx->saw_unknown = 0; 3956 3957 while (length > 0) { 3958 int opcode = *ptr++; 3959 int opsize; 3960 3961 switch (opcode) { 3962 case TCPOPT_EOL: 3963 return; 3964 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3965 length--; 3966 continue; 3967 default: 3968 if (length < 2) 3969 return; 3970 opsize = *ptr++; 3971 if (opsize < 2) /* "silly options" */ 3972 return; 3973 if (opsize > length) 3974 return; /* don't parse partial options */ 3975 switch (opcode) { 3976 case TCPOPT_MSS: 3977 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3978 u16 in_mss = get_unaligned_be16(ptr); 3979 if (in_mss) { 3980 if (opt_rx->user_mss && 3981 opt_rx->user_mss < in_mss) 3982 in_mss = opt_rx->user_mss; 3983 opt_rx->mss_clamp = in_mss; 3984 } 3985 } 3986 break; 3987 case TCPOPT_WINDOW: 3988 if (opsize == TCPOLEN_WINDOW && th->syn && 3989 !estab && net->ipv4.sysctl_tcp_window_scaling) { 3990 __u8 snd_wscale = *(__u8 *)ptr; 3991 opt_rx->wscale_ok = 1; 3992 if (snd_wscale > TCP_MAX_WSCALE) { 3993 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 3994 __func__, 3995 snd_wscale, 3996 TCP_MAX_WSCALE); 3997 snd_wscale = TCP_MAX_WSCALE; 3998 } 3999 opt_rx->snd_wscale = snd_wscale; 4000 } 4001 break; 4002 case TCPOPT_TIMESTAMP: 4003 if ((opsize == TCPOLEN_TIMESTAMP) && 4004 ((estab && opt_rx->tstamp_ok) || 4005 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 4006 opt_rx->saw_tstamp = 1; 4007 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4008 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4009 } 4010 break; 4011 case TCPOPT_SACK_PERM: 4012 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4013 !estab && net->ipv4.sysctl_tcp_sack) { 4014 opt_rx->sack_ok = TCP_SACK_SEEN; 4015 tcp_sack_reset(opt_rx); 4016 } 4017 break; 4018 4019 case TCPOPT_SACK: 4020 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4021 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4022 opt_rx->sack_ok) { 4023 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4024 } 4025 break; 4026 #ifdef CONFIG_TCP_MD5SIG 4027 case TCPOPT_MD5SIG: 4028 /* 4029 * The MD5 Hash has already been 4030 * checked (see tcp_v{4,6}_do_rcv()). 4031 */ 4032 break; 4033 #endif 4034 case TCPOPT_FASTOPEN: 4035 tcp_parse_fastopen_option( 4036 opsize - TCPOLEN_FASTOPEN_BASE, 4037 ptr, th->syn, foc, false); 4038 break; 4039 4040 case TCPOPT_EXP: 4041 /* Fast Open option shares code 254 using a 4042 * 16 bits magic number. 4043 */ 4044 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4045 get_unaligned_be16(ptr) == 4046 TCPOPT_FASTOPEN_MAGIC) { 4047 tcp_parse_fastopen_option(opsize - 4048 TCPOLEN_EXP_FASTOPEN_BASE, 4049 ptr + 2, th->syn, foc, true); 4050 break; 4051 } 4052 4053 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4054 break; 4055 4056 opt_rx->saw_unknown = 1; 4057 break; 4058 4059 default: 4060 opt_rx->saw_unknown = 1; 4061 } 4062 ptr += opsize-2; 4063 length -= opsize; 4064 } 4065 } 4066 } 4067 EXPORT_SYMBOL(tcp_parse_options); 4068 4069 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4070 { 4071 const __be32 *ptr = (const __be32 *)(th + 1); 4072 4073 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4074 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4075 tp->rx_opt.saw_tstamp = 1; 4076 ++ptr; 4077 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4078 ++ptr; 4079 if (*ptr) 4080 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4081 else 4082 tp->rx_opt.rcv_tsecr = 0; 4083 return true; 4084 } 4085 return false; 4086 } 4087 4088 /* Fast parse options. This hopes to only see timestamps. 4089 * If it is wrong it falls back on tcp_parse_options(). 4090 */ 4091 static bool tcp_fast_parse_options(const struct net *net, 4092 const struct sk_buff *skb, 4093 const struct tcphdr *th, struct tcp_sock *tp) 4094 { 4095 /* In the spirit of fast parsing, compare doff directly to constant 4096 * values. Because equality is used, short doff can be ignored here. 4097 */ 4098 if (th->doff == (sizeof(*th) / 4)) { 4099 tp->rx_opt.saw_tstamp = 0; 4100 return false; 4101 } else if (tp->rx_opt.tstamp_ok && 4102 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4103 if (tcp_parse_aligned_timestamp(tp, th)) 4104 return true; 4105 } 4106 4107 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4108 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4109 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4110 4111 return true; 4112 } 4113 4114 #ifdef CONFIG_TCP_MD5SIG 4115 /* 4116 * Parse MD5 Signature option 4117 */ 4118 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4119 { 4120 int length = (th->doff << 2) - sizeof(*th); 4121 const u8 *ptr = (const u8 *)(th + 1); 4122 4123 /* If not enough data remaining, we can short cut */ 4124 while (length >= TCPOLEN_MD5SIG) { 4125 int opcode = *ptr++; 4126 int opsize; 4127 4128 switch (opcode) { 4129 case TCPOPT_EOL: 4130 return NULL; 4131 case TCPOPT_NOP: 4132 length--; 4133 continue; 4134 default: 4135 opsize = *ptr++; 4136 if (opsize < 2 || opsize > length) 4137 return NULL; 4138 if (opcode == TCPOPT_MD5SIG) 4139 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4140 } 4141 ptr += opsize - 2; 4142 length -= opsize; 4143 } 4144 return NULL; 4145 } 4146 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4147 #endif 4148 4149 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4150 * 4151 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4152 * it can pass through stack. So, the following predicate verifies that 4153 * this segment is not used for anything but congestion avoidance or 4154 * fast retransmit. Moreover, we even are able to eliminate most of such 4155 * second order effects, if we apply some small "replay" window (~RTO) 4156 * to timestamp space. 4157 * 4158 * All these measures still do not guarantee that we reject wrapped ACKs 4159 * on networks with high bandwidth, when sequence space is recycled fastly, 4160 * but it guarantees that such events will be very rare and do not affect 4161 * connection seriously. This doesn't look nice, but alas, PAWS is really 4162 * buggy extension. 4163 * 4164 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4165 * states that events when retransmit arrives after original data are rare. 4166 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4167 * the biggest problem on large power networks even with minor reordering. 4168 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4169 * up to bandwidth of 18Gigabit/sec. 8) ] 4170 */ 4171 4172 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4173 { 4174 const struct tcp_sock *tp = tcp_sk(sk); 4175 const struct tcphdr *th = tcp_hdr(skb); 4176 u32 seq = TCP_SKB_CB(skb)->seq; 4177 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4178 4179 return (/* 1. Pure ACK with correct sequence number. */ 4180 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4181 4182 /* 2. ... and duplicate ACK. */ 4183 ack == tp->snd_una && 4184 4185 /* 3. ... and does not update window. */ 4186 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4187 4188 /* 4. ... and sits in replay window. */ 4189 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4190 } 4191 4192 static inline bool tcp_paws_discard(const struct sock *sk, 4193 const struct sk_buff *skb) 4194 { 4195 const struct tcp_sock *tp = tcp_sk(sk); 4196 4197 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4198 !tcp_disordered_ack(sk, skb); 4199 } 4200 4201 /* Check segment sequence number for validity. 4202 * 4203 * Segment controls are considered valid, if the segment 4204 * fits to the window after truncation to the window. Acceptability 4205 * of data (and SYN, FIN, of course) is checked separately. 4206 * See tcp_data_queue(), for example. 4207 * 4208 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4209 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4210 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4211 * (borrowed from freebsd) 4212 */ 4213 4214 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4215 { 4216 return !before(end_seq, tp->rcv_wup) && 4217 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4218 } 4219 4220 /* When we get a reset we do this. */ 4221 void tcp_reset(struct sock *sk) 4222 { 4223 trace_tcp_receive_reset(sk); 4224 4225 /* We want the right error as BSD sees it (and indeed as we do). */ 4226 switch (sk->sk_state) { 4227 case TCP_SYN_SENT: 4228 sk->sk_err = ECONNREFUSED; 4229 break; 4230 case TCP_CLOSE_WAIT: 4231 sk->sk_err = EPIPE; 4232 break; 4233 case TCP_CLOSE: 4234 return; 4235 default: 4236 sk->sk_err = ECONNRESET; 4237 } 4238 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4239 smp_wmb(); 4240 4241 tcp_write_queue_purge(sk); 4242 tcp_done(sk); 4243 4244 if (!sock_flag(sk, SOCK_DEAD)) 4245 sk->sk_error_report(sk); 4246 } 4247 4248 /* 4249 * Process the FIN bit. This now behaves as it is supposed to work 4250 * and the FIN takes effect when it is validly part of sequence 4251 * space. Not before when we get holes. 4252 * 4253 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4254 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4255 * TIME-WAIT) 4256 * 4257 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4258 * close and we go into CLOSING (and later onto TIME-WAIT) 4259 * 4260 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4261 */ 4262 void tcp_fin(struct sock *sk) 4263 { 4264 struct tcp_sock *tp = tcp_sk(sk); 4265 4266 inet_csk_schedule_ack(sk); 4267 4268 sk->sk_shutdown |= RCV_SHUTDOWN; 4269 sock_set_flag(sk, SOCK_DONE); 4270 4271 switch (sk->sk_state) { 4272 case TCP_SYN_RECV: 4273 case TCP_ESTABLISHED: 4274 /* Move to CLOSE_WAIT */ 4275 tcp_set_state(sk, TCP_CLOSE_WAIT); 4276 inet_csk_enter_pingpong_mode(sk); 4277 break; 4278 4279 case TCP_CLOSE_WAIT: 4280 case TCP_CLOSING: 4281 /* Received a retransmission of the FIN, do 4282 * nothing. 4283 */ 4284 break; 4285 case TCP_LAST_ACK: 4286 /* RFC793: Remain in the LAST-ACK state. */ 4287 break; 4288 4289 case TCP_FIN_WAIT1: 4290 /* This case occurs when a simultaneous close 4291 * happens, we must ack the received FIN and 4292 * enter the CLOSING state. 4293 */ 4294 tcp_send_ack(sk); 4295 tcp_set_state(sk, TCP_CLOSING); 4296 break; 4297 case TCP_FIN_WAIT2: 4298 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4299 tcp_send_ack(sk); 4300 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4301 break; 4302 default: 4303 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4304 * cases we should never reach this piece of code. 4305 */ 4306 pr_err("%s: Impossible, sk->sk_state=%d\n", 4307 __func__, sk->sk_state); 4308 break; 4309 } 4310 4311 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4312 * Probably, we should reset in this case. For now drop them. 4313 */ 4314 skb_rbtree_purge(&tp->out_of_order_queue); 4315 if (tcp_is_sack(tp)) 4316 tcp_sack_reset(&tp->rx_opt); 4317 sk_mem_reclaim(sk); 4318 4319 if (!sock_flag(sk, SOCK_DEAD)) { 4320 sk->sk_state_change(sk); 4321 4322 /* Do not send POLL_HUP for half duplex close. */ 4323 if (sk->sk_shutdown == SHUTDOWN_MASK || 4324 sk->sk_state == TCP_CLOSE) 4325 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4326 else 4327 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4328 } 4329 } 4330 4331 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4332 u32 end_seq) 4333 { 4334 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4335 if (before(seq, sp->start_seq)) 4336 sp->start_seq = seq; 4337 if (after(end_seq, sp->end_seq)) 4338 sp->end_seq = end_seq; 4339 return true; 4340 } 4341 return false; 4342 } 4343 4344 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4345 { 4346 struct tcp_sock *tp = tcp_sk(sk); 4347 4348 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4349 int mib_idx; 4350 4351 if (before(seq, tp->rcv_nxt)) 4352 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4353 else 4354 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4355 4356 NET_INC_STATS(sock_net(sk), mib_idx); 4357 4358 tp->rx_opt.dsack = 1; 4359 tp->duplicate_sack[0].start_seq = seq; 4360 tp->duplicate_sack[0].end_seq = end_seq; 4361 } 4362 } 4363 4364 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4365 { 4366 struct tcp_sock *tp = tcp_sk(sk); 4367 4368 if (!tp->rx_opt.dsack) 4369 tcp_dsack_set(sk, seq, end_seq); 4370 else 4371 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4372 } 4373 4374 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4375 { 4376 /* When the ACK path fails or drops most ACKs, the sender would 4377 * timeout and spuriously retransmit the same segment repeatedly. 4378 * The receiver remembers and reflects via DSACKs. Leverage the 4379 * DSACK state and change the txhash to re-route speculatively. 4380 */ 4381 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) { 4382 sk_rethink_txhash(sk); 4383 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4384 } 4385 } 4386 4387 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4388 { 4389 struct tcp_sock *tp = tcp_sk(sk); 4390 4391 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4392 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4393 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4394 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4395 4396 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4397 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4398 4399 tcp_rcv_spurious_retrans(sk, skb); 4400 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4401 end_seq = tp->rcv_nxt; 4402 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4403 } 4404 } 4405 4406 tcp_send_ack(sk); 4407 } 4408 4409 /* These routines update the SACK block as out-of-order packets arrive or 4410 * in-order packets close up the sequence space. 4411 */ 4412 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4413 { 4414 int this_sack; 4415 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4416 struct tcp_sack_block *swalk = sp + 1; 4417 4418 /* See if the recent change to the first SACK eats into 4419 * or hits the sequence space of other SACK blocks, if so coalesce. 4420 */ 4421 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4422 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4423 int i; 4424 4425 /* Zap SWALK, by moving every further SACK up by one slot. 4426 * Decrease num_sacks. 4427 */ 4428 tp->rx_opt.num_sacks--; 4429 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4430 sp[i] = sp[i + 1]; 4431 continue; 4432 } 4433 this_sack++; 4434 swalk++; 4435 } 4436 } 4437 4438 static void tcp_sack_compress_send_ack(struct sock *sk) 4439 { 4440 struct tcp_sock *tp = tcp_sk(sk); 4441 4442 if (!tp->compressed_ack) 4443 return; 4444 4445 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4446 __sock_put(sk); 4447 4448 /* Since we have to send one ack finally, 4449 * substract one from tp->compressed_ack to keep 4450 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4451 */ 4452 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4453 tp->compressed_ack - 1); 4454 4455 tp->compressed_ack = 0; 4456 tcp_send_ack(sk); 4457 } 4458 4459 /* Reasonable amount of sack blocks included in TCP SACK option 4460 * The max is 4, but this becomes 3 if TCP timestamps are there. 4461 * Given that SACK packets might be lost, be conservative and use 2. 4462 */ 4463 #define TCP_SACK_BLOCKS_EXPECTED 2 4464 4465 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4466 { 4467 struct tcp_sock *tp = tcp_sk(sk); 4468 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4469 int cur_sacks = tp->rx_opt.num_sacks; 4470 int this_sack; 4471 4472 if (!cur_sacks) 4473 goto new_sack; 4474 4475 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4476 if (tcp_sack_extend(sp, seq, end_seq)) { 4477 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4478 tcp_sack_compress_send_ack(sk); 4479 /* Rotate this_sack to the first one. */ 4480 for (; this_sack > 0; this_sack--, sp--) 4481 swap(*sp, *(sp - 1)); 4482 if (cur_sacks > 1) 4483 tcp_sack_maybe_coalesce(tp); 4484 return; 4485 } 4486 } 4487 4488 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4489 tcp_sack_compress_send_ack(sk); 4490 4491 /* Could not find an adjacent existing SACK, build a new one, 4492 * put it at the front, and shift everyone else down. We 4493 * always know there is at least one SACK present already here. 4494 * 4495 * If the sack array is full, forget about the last one. 4496 */ 4497 if (this_sack >= TCP_NUM_SACKS) { 4498 this_sack--; 4499 tp->rx_opt.num_sacks--; 4500 sp--; 4501 } 4502 for (; this_sack > 0; this_sack--, sp--) 4503 *sp = *(sp - 1); 4504 4505 new_sack: 4506 /* Build the new head SACK, and we're done. */ 4507 sp->start_seq = seq; 4508 sp->end_seq = end_seq; 4509 tp->rx_opt.num_sacks++; 4510 } 4511 4512 /* RCV.NXT advances, some SACKs should be eaten. */ 4513 4514 static void tcp_sack_remove(struct tcp_sock *tp) 4515 { 4516 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4517 int num_sacks = tp->rx_opt.num_sacks; 4518 int this_sack; 4519 4520 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4521 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4522 tp->rx_opt.num_sacks = 0; 4523 return; 4524 } 4525 4526 for (this_sack = 0; this_sack < num_sacks;) { 4527 /* Check if the start of the sack is covered by RCV.NXT. */ 4528 if (!before(tp->rcv_nxt, sp->start_seq)) { 4529 int i; 4530 4531 /* RCV.NXT must cover all the block! */ 4532 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4533 4534 /* Zap this SACK, by moving forward any other SACKS. */ 4535 for (i = this_sack+1; i < num_sacks; i++) 4536 tp->selective_acks[i-1] = tp->selective_acks[i]; 4537 num_sacks--; 4538 continue; 4539 } 4540 this_sack++; 4541 sp++; 4542 } 4543 tp->rx_opt.num_sacks = num_sacks; 4544 } 4545 4546 /** 4547 * tcp_try_coalesce - try to merge skb to prior one 4548 * @sk: socket 4549 * @to: prior buffer 4550 * @from: buffer to add in queue 4551 * @fragstolen: pointer to boolean 4552 * 4553 * Before queueing skb @from after @to, try to merge them 4554 * to reduce overall memory use and queue lengths, if cost is small. 4555 * Packets in ofo or receive queues can stay a long time. 4556 * Better try to coalesce them right now to avoid future collapses. 4557 * Returns true if caller should free @from instead of queueing it 4558 */ 4559 static bool tcp_try_coalesce(struct sock *sk, 4560 struct sk_buff *to, 4561 struct sk_buff *from, 4562 bool *fragstolen) 4563 { 4564 int delta; 4565 4566 *fragstolen = false; 4567 4568 /* Its possible this segment overlaps with prior segment in queue */ 4569 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4570 return false; 4571 4572 if (!mptcp_skb_can_collapse(to, from)) 4573 return false; 4574 4575 #ifdef CONFIG_TLS_DEVICE 4576 if (from->decrypted != to->decrypted) 4577 return false; 4578 #endif 4579 4580 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4581 return false; 4582 4583 atomic_add(delta, &sk->sk_rmem_alloc); 4584 sk_mem_charge(sk, delta); 4585 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4586 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4587 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4588 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4589 4590 if (TCP_SKB_CB(from)->has_rxtstamp) { 4591 TCP_SKB_CB(to)->has_rxtstamp = true; 4592 to->tstamp = from->tstamp; 4593 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4594 } 4595 4596 return true; 4597 } 4598 4599 static bool tcp_ooo_try_coalesce(struct sock *sk, 4600 struct sk_buff *to, 4601 struct sk_buff *from, 4602 bool *fragstolen) 4603 { 4604 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4605 4606 /* In case tcp_drop() is called later, update to->gso_segs */ 4607 if (res) { 4608 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4609 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4610 4611 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4612 } 4613 return res; 4614 } 4615 4616 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4617 { 4618 sk_drops_add(sk, skb); 4619 __kfree_skb(skb); 4620 } 4621 4622 /* This one checks to see if we can put data from the 4623 * out_of_order queue into the receive_queue. 4624 */ 4625 static void tcp_ofo_queue(struct sock *sk) 4626 { 4627 struct tcp_sock *tp = tcp_sk(sk); 4628 __u32 dsack_high = tp->rcv_nxt; 4629 bool fin, fragstolen, eaten; 4630 struct sk_buff *skb, *tail; 4631 struct rb_node *p; 4632 4633 p = rb_first(&tp->out_of_order_queue); 4634 while (p) { 4635 skb = rb_to_skb(p); 4636 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4637 break; 4638 4639 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4640 __u32 dsack = dsack_high; 4641 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4642 dsack_high = TCP_SKB_CB(skb)->end_seq; 4643 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4644 } 4645 p = rb_next(p); 4646 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4647 4648 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4649 tcp_drop(sk, skb); 4650 continue; 4651 } 4652 4653 tail = skb_peek_tail(&sk->sk_receive_queue); 4654 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4655 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4656 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4657 if (!eaten) 4658 __skb_queue_tail(&sk->sk_receive_queue, skb); 4659 else 4660 kfree_skb_partial(skb, fragstolen); 4661 4662 if (unlikely(fin)) { 4663 tcp_fin(sk); 4664 /* tcp_fin() purges tp->out_of_order_queue, 4665 * so we must end this loop right now. 4666 */ 4667 break; 4668 } 4669 } 4670 } 4671 4672 static bool tcp_prune_ofo_queue(struct sock *sk); 4673 static int tcp_prune_queue(struct sock *sk); 4674 4675 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4676 unsigned int size) 4677 { 4678 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4679 !sk_rmem_schedule(sk, skb, size)) { 4680 4681 if (tcp_prune_queue(sk) < 0) 4682 return -1; 4683 4684 while (!sk_rmem_schedule(sk, skb, size)) { 4685 if (!tcp_prune_ofo_queue(sk)) 4686 return -1; 4687 } 4688 } 4689 return 0; 4690 } 4691 4692 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4693 { 4694 struct tcp_sock *tp = tcp_sk(sk); 4695 struct rb_node **p, *parent; 4696 struct sk_buff *skb1; 4697 u32 seq, end_seq; 4698 bool fragstolen; 4699 4700 tcp_ecn_check_ce(sk, skb); 4701 4702 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4703 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4704 sk->sk_data_ready(sk); 4705 tcp_drop(sk, skb); 4706 return; 4707 } 4708 4709 /* Disable header prediction. */ 4710 tp->pred_flags = 0; 4711 inet_csk_schedule_ack(sk); 4712 4713 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4714 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4715 seq = TCP_SKB_CB(skb)->seq; 4716 end_seq = TCP_SKB_CB(skb)->end_seq; 4717 4718 p = &tp->out_of_order_queue.rb_node; 4719 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4720 /* Initial out of order segment, build 1 SACK. */ 4721 if (tcp_is_sack(tp)) { 4722 tp->rx_opt.num_sacks = 1; 4723 tp->selective_acks[0].start_seq = seq; 4724 tp->selective_acks[0].end_seq = end_seq; 4725 } 4726 rb_link_node(&skb->rbnode, NULL, p); 4727 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4728 tp->ooo_last_skb = skb; 4729 goto end; 4730 } 4731 4732 /* In the typical case, we are adding an skb to the end of the list. 4733 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4734 */ 4735 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4736 skb, &fragstolen)) { 4737 coalesce_done: 4738 /* For non sack flows, do not grow window to force DUPACK 4739 * and trigger fast retransmit. 4740 */ 4741 if (tcp_is_sack(tp)) 4742 tcp_grow_window(sk, skb); 4743 kfree_skb_partial(skb, fragstolen); 4744 skb = NULL; 4745 goto add_sack; 4746 } 4747 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4748 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4749 parent = &tp->ooo_last_skb->rbnode; 4750 p = &parent->rb_right; 4751 goto insert; 4752 } 4753 4754 /* Find place to insert this segment. Handle overlaps on the way. */ 4755 parent = NULL; 4756 while (*p) { 4757 parent = *p; 4758 skb1 = rb_to_skb(parent); 4759 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4760 p = &parent->rb_left; 4761 continue; 4762 } 4763 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4764 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4765 /* All the bits are present. Drop. */ 4766 NET_INC_STATS(sock_net(sk), 4767 LINUX_MIB_TCPOFOMERGE); 4768 tcp_drop(sk, skb); 4769 skb = NULL; 4770 tcp_dsack_set(sk, seq, end_seq); 4771 goto add_sack; 4772 } 4773 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4774 /* Partial overlap. */ 4775 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4776 } else { 4777 /* skb's seq == skb1's seq and skb covers skb1. 4778 * Replace skb1 with skb. 4779 */ 4780 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4781 &tp->out_of_order_queue); 4782 tcp_dsack_extend(sk, 4783 TCP_SKB_CB(skb1)->seq, 4784 TCP_SKB_CB(skb1)->end_seq); 4785 NET_INC_STATS(sock_net(sk), 4786 LINUX_MIB_TCPOFOMERGE); 4787 tcp_drop(sk, skb1); 4788 goto merge_right; 4789 } 4790 } else if (tcp_ooo_try_coalesce(sk, skb1, 4791 skb, &fragstolen)) { 4792 goto coalesce_done; 4793 } 4794 p = &parent->rb_right; 4795 } 4796 insert: 4797 /* Insert segment into RB tree. */ 4798 rb_link_node(&skb->rbnode, parent, p); 4799 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4800 4801 merge_right: 4802 /* Remove other segments covered by skb. */ 4803 while ((skb1 = skb_rb_next(skb)) != NULL) { 4804 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4805 break; 4806 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4807 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4808 end_seq); 4809 break; 4810 } 4811 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4812 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4813 TCP_SKB_CB(skb1)->end_seq); 4814 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4815 tcp_drop(sk, skb1); 4816 } 4817 /* If there is no skb after us, we are the last_skb ! */ 4818 if (!skb1) 4819 tp->ooo_last_skb = skb; 4820 4821 add_sack: 4822 if (tcp_is_sack(tp)) 4823 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4824 end: 4825 if (skb) { 4826 /* For non sack flows, do not grow window to force DUPACK 4827 * and trigger fast retransmit. 4828 */ 4829 if (tcp_is_sack(tp)) 4830 tcp_grow_window(sk, skb); 4831 skb_condense(skb); 4832 skb_set_owner_r(skb, sk); 4833 } 4834 } 4835 4836 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4837 bool *fragstolen) 4838 { 4839 int eaten; 4840 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4841 4842 eaten = (tail && 4843 tcp_try_coalesce(sk, tail, 4844 skb, fragstolen)) ? 1 : 0; 4845 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4846 if (!eaten) { 4847 __skb_queue_tail(&sk->sk_receive_queue, skb); 4848 skb_set_owner_r(skb, sk); 4849 } 4850 return eaten; 4851 } 4852 4853 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4854 { 4855 struct sk_buff *skb; 4856 int err = -ENOMEM; 4857 int data_len = 0; 4858 bool fragstolen; 4859 4860 if (size == 0) 4861 return 0; 4862 4863 if (size > PAGE_SIZE) { 4864 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4865 4866 data_len = npages << PAGE_SHIFT; 4867 size = data_len + (size & ~PAGE_MASK); 4868 } 4869 skb = alloc_skb_with_frags(size - data_len, data_len, 4870 PAGE_ALLOC_COSTLY_ORDER, 4871 &err, sk->sk_allocation); 4872 if (!skb) 4873 goto err; 4874 4875 skb_put(skb, size - data_len); 4876 skb->data_len = data_len; 4877 skb->len = size; 4878 4879 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4880 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4881 goto err_free; 4882 } 4883 4884 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4885 if (err) 4886 goto err_free; 4887 4888 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4889 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4890 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4891 4892 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4893 WARN_ON_ONCE(fragstolen); /* should not happen */ 4894 __kfree_skb(skb); 4895 } 4896 return size; 4897 4898 err_free: 4899 kfree_skb(skb); 4900 err: 4901 return err; 4902 4903 } 4904 4905 void tcp_data_ready(struct sock *sk) 4906 { 4907 const struct tcp_sock *tp = tcp_sk(sk); 4908 int avail = tp->rcv_nxt - tp->copied_seq; 4909 4910 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) && 4911 !sock_flag(sk, SOCK_DONE)) 4912 return; 4913 4914 sk->sk_data_ready(sk); 4915 } 4916 4917 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4918 { 4919 struct tcp_sock *tp = tcp_sk(sk); 4920 bool fragstolen; 4921 int eaten; 4922 4923 if (sk_is_mptcp(sk)) 4924 mptcp_incoming_options(sk, skb); 4925 4926 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4927 __kfree_skb(skb); 4928 return; 4929 } 4930 skb_dst_drop(skb); 4931 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4932 4933 tp->rx_opt.dsack = 0; 4934 4935 /* Queue data for delivery to the user. 4936 * Packets in sequence go to the receive queue. 4937 * Out of sequence packets to the out_of_order_queue. 4938 */ 4939 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4940 if (tcp_receive_window(tp) == 0) { 4941 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4942 goto out_of_window; 4943 } 4944 4945 /* Ok. In sequence. In window. */ 4946 queue_and_out: 4947 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4948 sk_forced_mem_schedule(sk, skb->truesize); 4949 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4950 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4951 sk->sk_data_ready(sk); 4952 goto drop; 4953 } 4954 4955 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 4956 if (skb->len) 4957 tcp_event_data_recv(sk, skb); 4958 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4959 tcp_fin(sk); 4960 4961 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4962 tcp_ofo_queue(sk); 4963 4964 /* RFC5681. 4.2. SHOULD send immediate ACK, when 4965 * gap in queue is filled. 4966 */ 4967 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 4968 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 4969 } 4970 4971 if (tp->rx_opt.num_sacks) 4972 tcp_sack_remove(tp); 4973 4974 tcp_fast_path_check(sk); 4975 4976 if (eaten > 0) 4977 kfree_skb_partial(skb, fragstolen); 4978 if (!sock_flag(sk, SOCK_DEAD)) 4979 tcp_data_ready(sk); 4980 return; 4981 } 4982 4983 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4984 tcp_rcv_spurious_retrans(sk, skb); 4985 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4986 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4987 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4988 4989 out_of_window: 4990 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4991 inet_csk_schedule_ack(sk); 4992 drop: 4993 tcp_drop(sk, skb); 4994 return; 4995 } 4996 4997 /* Out of window. F.e. zero window probe. */ 4998 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4999 goto out_of_window; 5000 5001 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5002 /* Partial packet, seq < rcv_next < end_seq */ 5003 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5004 5005 /* If window is closed, drop tail of packet. But after 5006 * remembering D-SACK for its head made in previous line. 5007 */ 5008 if (!tcp_receive_window(tp)) { 5009 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5010 goto out_of_window; 5011 } 5012 goto queue_and_out; 5013 } 5014 5015 tcp_data_queue_ofo(sk, skb); 5016 } 5017 5018 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5019 { 5020 if (list) 5021 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5022 5023 return skb_rb_next(skb); 5024 } 5025 5026 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5027 struct sk_buff_head *list, 5028 struct rb_root *root) 5029 { 5030 struct sk_buff *next = tcp_skb_next(skb, list); 5031 5032 if (list) 5033 __skb_unlink(skb, list); 5034 else 5035 rb_erase(&skb->rbnode, root); 5036 5037 __kfree_skb(skb); 5038 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5039 5040 return next; 5041 } 5042 5043 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5044 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5045 { 5046 struct rb_node **p = &root->rb_node; 5047 struct rb_node *parent = NULL; 5048 struct sk_buff *skb1; 5049 5050 while (*p) { 5051 parent = *p; 5052 skb1 = rb_to_skb(parent); 5053 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5054 p = &parent->rb_left; 5055 else 5056 p = &parent->rb_right; 5057 } 5058 rb_link_node(&skb->rbnode, parent, p); 5059 rb_insert_color(&skb->rbnode, root); 5060 } 5061 5062 /* Collapse contiguous sequence of skbs head..tail with 5063 * sequence numbers start..end. 5064 * 5065 * If tail is NULL, this means until the end of the queue. 5066 * 5067 * Segments with FIN/SYN are not collapsed (only because this 5068 * simplifies code) 5069 */ 5070 static void 5071 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5072 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5073 { 5074 struct sk_buff *skb = head, *n; 5075 struct sk_buff_head tmp; 5076 bool end_of_skbs; 5077 5078 /* First, check that queue is collapsible and find 5079 * the point where collapsing can be useful. 5080 */ 5081 restart: 5082 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5083 n = tcp_skb_next(skb, list); 5084 5085 /* No new bits? It is possible on ofo queue. */ 5086 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5087 skb = tcp_collapse_one(sk, skb, list, root); 5088 if (!skb) 5089 break; 5090 goto restart; 5091 } 5092 5093 /* The first skb to collapse is: 5094 * - not SYN/FIN and 5095 * - bloated or contains data before "start" or 5096 * overlaps to the next one and mptcp allow collapsing. 5097 */ 5098 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5099 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5100 before(TCP_SKB_CB(skb)->seq, start))) { 5101 end_of_skbs = false; 5102 break; 5103 } 5104 5105 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5106 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5107 end_of_skbs = false; 5108 break; 5109 } 5110 5111 /* Decided to skip this, advance start seq. */ 5112 start = TCP_SKB_CB(skb)->end_seq; 5113 } 5114 if (end_of_skbs || 5115 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5116 return; 5117 5118 __skb_queue_head_init(&tmp); 5119 5120 while (before(start, end)) { 5121 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5122 struct sk_buff *nskb; 5123 5124 nskb = alloc_skb(copy, GFP_ATOMIC); 5125 if (!nskb) 5126 break; 5127 5128 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5129 #ifdef CONFIG_TLS_DEVICE 5130 nskb->decrypted = skb->decrypted; 5131 #endif 5132 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5133 if (list) 5134 __skb_queue_before(list, skb, nskb); 5135 else 5136 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5137 skb_set_owner_r(nskb, sk); 5138 mptcp_skb_ext_move(nskb, skb); 5139 5140 /* Copy data, releasing collapsed skbs. */ 5141 while (copy > 0) { 5142 int offset = start - TCP_SKB_CB(skb)->seq; 5143 int size = TCP_SKB_CB(skb)->end_seq - start; 5144 5145 BUG_ON(offset < 0); 5146 if (size > 0) { 5147 size = min(copy, size); 5148 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5149 BUG(); 5150 TCP_SKB_CB(nskb)->end_seq += size; 5151 copy -= size; 5152 start += size; 5153 } 5154 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5155 skb = tcp_collapse_one(sk, skb, list, root); 5156 if (!skb || 5157 skb == tail || 5158 !mptcp_skb_can_collapse(nskb, skb) || 5159 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5160 goto end; 5161 #ifdef CONFIG_TLS_DEVICE 5162 if (skb->decrypted != nskb->decrypted) 5163 goto end; 5164 #endif 5165 } 5166 } 5167 } 5168 end: 5169 skb_queue_walk_safe(&tmp, skb, n) 5170 tcp_rbtree_insert(root, skb); 5171 } 5172 5173 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5174 * and tcp_collapse() them until all the queue is collapsed. 5175 */ 5176 static void tcp_collapse_ofo_queue(struct sock *sk) 5177 { 5178 struct tcp_sock *tp = tcp_sk(sk); 5179 u32 range_truesize, sum_tiny = 0; 5180 struct sk_buff *skb, *head; 5181 u32 start, end; 5182 5183 skb = skb_rb_first(&tp->out_of_order_queue); 5184 new_range: 5185 if (!skb) { 5186 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5187 return; 5188 } 5189 start = TCP_SKB_CB(skb)->seq; 5190 end = TCP_SKB_CB(skb)->end_seq; 5191 range_truesize = skb->truesize; 5192 5193 for (head = skb;;) { 5194 skb = skb_rb_next(skb); 5195 5196 /* Range is terminated when we see a gap or when 5197 * we are at the queue end. 5198 */ 5199 if (!skb || 5200 after(TCP_SKB_CB(skb)->seq, end) || 5201 before(TCP_SKB_CB(skb)->end_seq, start)) { 5202 /* Do not attempt collapsing tiny skbs */ 5203 if (range_truesize != head->truesize || 5204 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5205 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5206 head, skb, start, end); 5207 } else { 5208 sum_tiny += range_truesize; 5209 if (sum_tiny > sk->sk_rcvbuf >> 3) 5210 return; 5211 } 5212 goto new_range; 5213 } 5214 5215 range_truesize += skb->truesize; 5216 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5217 start = TCP_SKB_CB(skb)->seq; 5218 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5219 end = TCP_SKB_CB(skb)->end_seq; 5220 } 5221 } 5222 5223 /* 5224 * Clean the out-of-order queue to make room. 5225 * We drop high sequences packets to : 5226 * 1) Let a chance for holes to be filled. 5227 * 2) not add too big latencies if thousands of packets sit there. 5228 * (But if application shrinks SO_RCVBUF, we could still end up 5229 * freeing whole queue here) 5230 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5231 * 5232 * Return true if queue has shrunk. 5233 */ 5234 static bool tcp_prune_ofo_queue(struct sock *sk) 5235 { 5236 struct tcp_sock *tp = tcp_sk(sk); 5237 struct rb_node *node, *prev; 5238 int goal; 5239 5240 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5241 return false; 5242 5243 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5244 goal = sk->sk_rcvbuf >> 3; 5245 node = &tp->ooo_last_skb->rbnode; 5246 do { 5247 prev = rb_prev(node); 5248 rb_erase(node, &tp->out_of_order_queue); 5249 goal -= rb_to_skb(node)->truesize; 5250 tcp_drop(sk, rb_to_skb(node)); 5251 if (!prev || goal <= 0) { 5252 sk_mem_reclaim(sk); 5253 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5254 !tcp_under_memory_pressure(sk)) 5255 break; 5256 goal = sk->sk_rcvbuf >> 3; 5257 } 5258 node = prev; 5259 } while (node); 5260 tp->ooo_last_skb = rb_to_skb(prev); 5261 5262 /* Reset SACK state. A conforming SACK implementation will 5263 * do the same at a timeout based retransmit. When a connection 5264 * is in a sad state like this, we care only about integrity 5265 * of the connection not performance. 5266 */ 5267 if (tp->rx_opt.sack_ok) 5268 tcp_sack_reset(&tp->rx_opt); 5269 return true; 5270 } 5271 5272 /* Reduce allocated memory if we can, trying to get 5273 * the socket within its memory limits again. 5274 * 5275 * Return less than zero if we should start dropping frames 5276 * until the socket owning process reads some of the data 5277 * to stabilize the situation. 5278 */ 5279 static int tcp_prune_queue(struct sock *sk) 5280 { 5281 struct tcp_sock *tp = tcp_sk(sk); 5282 5283 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5284 5285 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5286 tcp_clamp_window(sk); 5287 else if (tcp_under_memory_pressure(sk)) 5288 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5289 5290 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5291 return 0; 5292 5293 tcp_collapse_ofo_queue(sk); 5294 if (!skb_queue_empty(&sk->sk_receive_queue)) 5295 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5296 skb_peek(&sk->sk_receive_queue), 5297 NULL, 5298 tp->copied_seq, tp->rcv_nxt); 5299 sk_mem_reclaim(sk); 5300 5301 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5302 return 0; 5303 5304 /* Collapsing did not help, destructive actions follow. 5305 * This must not ever occur. */ 5306 5307 tcp_prune_ofo_queue(sk); 5308 5309 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5310 return 0; 5311 5312 /* If we are really being abused, tell the caller to silently 5313 * drop receive data on the floor. It will get retransmitted 5314 * and hopefully then we'll have sufficient space. 5315 */ 5316 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5317 5318 /* Massive buffer overcommit. */ 5319 tp->pred_flags = 0; 5320 return -1; 5321 } 5322 5323 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5324 { 5325 const struct tcp_sock *tp = tcp_sk(sk); 5326 5327 /* If the user specified a specific send buffer setting, do 5328 * not modify it. 5329 */ 5330 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5331 return false; 5332 5333 /* If we are under global TCP memory pressure, do not expand. */ 5334 if (tcp_under_memory_pressure(sk)) 5335 return false; 5336 5337 /* If we are under soft global TCP memory pressure, do not expand. */ 5338 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5339 return false; 5340 5341 /* If we filled the congestion window, do not expand. */ 5342 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5343 return false; 5344 5345 return true; 5346 } 5347 5348 static void tcp_new_space(struct sock *sk) 5349 { 5350 struct tcp_sock *tp = tcp_sk(sk); 5351 5352 if (tcp_should_expand_sndbuf(sk)) { 5353 tcp_sndbuf_expand(sk); 5354 tp->snd_cwnd_stamp = tcp_jiffies32; 5355 } 5356 5357 sk->sk_write_space(sk); 5358 } 5359 5360 static void tcp_check_space(struct sock *sk) 5361 { 5362 /* pairs with tcp_poll() */ 5363 smp_mb(); 5364 if (sk->sk_socket && 5365 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5366 tcp_new_space(sk); 5367 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5368 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5369 } 5370 } 5371 5372 static inline void tcp_data_snd_check(struct sock *sk) 5373 { 5374 tcp_push_pending_frames(sk); 5375 tcp_check_space(sk); 5376 } 5377 5378 /* 5379 * Check if sending an ack is needed. 5380 */ 5381 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5382 { 5383 struct tcp_sock *tp = tcp_sk(sk); 5384 unsigned long rtt, delay; 5385 5386 /* More than one full frame received... */ 5387 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5388 /* ... and right edge of window advances far enough. 5389 * (tcp_recvmsg() will send ACK otherwise). 5390 * If application uses SO_RCVLOWAT, we want send ack now if 5391 * we have not received enough bytes to satisfy the condition. 5392 */ 5393 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5394 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5395 /* We ACK each frame or... */ 5396 tcp_in_quickack_mode(sk) || 5397 /* Protocol state mandates a one-time immediate ACK */ 5398 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5399 send_now: 5400 tcp_send_ack(sk); 5401 return; 5402 } 5403 5404 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5405 tcp_send_delayed_ack(sk); 5406 return; 5407 } 5408 5409 if (!tcp_is_sack(tp) || 5410 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5411 goto send_now; 5412 5413 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5414 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5415 tp->dup_ack_counter = 0; 5416 } 5417 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5418 tp->dup_ack_counter++; 5419 goto send_now; 5420 } 5421 tp->compressed_ack++; 5422 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5423 return; 5424 5425 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5426 5427 rtt = tp->rcv_rtt_est.rtt_us; 5428 if (tp->srtt_us && tp->srtt_us < rtt) 5429 rtt = tp->srtt_us; 5430 5431 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5432 rtt * (NSEC_PER_USEC >> 3)/20); 5433 sock_hold(sk); 5434 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5435 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns, 5436 HRTIMER_MODE_REL_PINNED_SOFT); 5437 } 5438 5439 static inline void tcp_ack_snd_check(struct sock *sk) 5440 { 5441 if (!inet_csk_ack_scheduled(sk)) { 5442 /* We sent a data segment already. */ 5443 return; 5444 } 5445 __tcp_ack_snd_check(sk, 1); 5446 } 5447 5448 /* 5449 * This routine is only called when we have urgent data 5450 * signaled. Its the 'slow' part of tcp_urg. It could be 5451 * moved inline now as tcp_urg is only called from one 5452 * place. We handle URGent data wrong. We have to - as 5453 * BSD still doesn't use the correction from RFC961. 5454 * For 1003.1g we should support a new option TCP_STDURG to permit 5455 * either form (or just set the sysctl tcp_stdurg). 5456 */ 5457 5458 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5459 { 5460 struct tcp_sock *tp = tcp_sk(sk); 5461 u32 ptr = ntohs(th->urg_ptr); 5462 5463 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5464 ptr--; 5465 ptr += ntohl(th->seq); 5466 5467 /* Ignore urgent data that we've already seen and read. */ 5468 if (after(tp->copied_seq, ptr)) 5469 return; 5470 5471 /* Do not replay urg ptr. 5472 * 5473 * NOTE: interesting situation not covered by specs. 5474 * Misbehaving sender may send urg ptr, pointing to segment, 5475 * which we already have in ofo queue. We are not able to fetch 5476 * such data and will stay in TCP_URG_NOTYET until will be eaten 5477 * by recvmsg(). Seems, we are not obliged to handle such wicked 5478 * situations. But it is worth to think about possibility of some 5479 * DoSes using some hypothetical application level deadlock. 5480 */ 5481 if (before(ptr, tp->rcv_nxt)) 5482 return; 5483 5484 /* Do we already have a newer (or duplicate) urgent pointer? */ 5485 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5486 return; 5487 5488 /* Tell the world about our new urgent pointer. */ 5489 sk_send_sigurg(sk); 5490 5491 /* We may be adding urgent data when the last byte read was 5492 * urgent. To do this requires some care. We cannot just ignore 5493 * tp->copied_seq since we would read the last urgent byte again 5494 * as data, nor can we alter copied_seq until this data arrives 5495 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5496 * 5497 * NOTE. Double Dutch. Rendering to plain English: author of comment 5498 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5499 * and expect that both A and B disappear from stream. This is _wrong_. 5500 * Though this happens in BSD with high probability, this is occasional. 5501 * Any application relying on this is buggy. Note also, that fix "works" 5502 * only in this artificial test. Insert some normal data between A and B and we will 5503 * decline of BSD again. Verdict: it is better to remove to trap 5504 * buggy users. 5505 */ 5506 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5507 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5508 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5509 tp->copied_seq++; 5510 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5511 __skb_unlink(skb, &sk->sk_receive_queue); 5512 __kfree_skb(skb); 5513 } 5514 } 5515 5516 tp->urg_data = TCP_URG_NOTYET; 5517 WRITE_ONCE(tp->urg_seq, ptr); 5518 5519 /* Disable header prediction. */ 5520 tp->pred_flags = 0; 5521 } 5522 5523 /* This is the 'fast' part of urgent handling. */ 5524 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5525 { 5526 struct tcp_sock *tp = tcp_sk(sk); 5527 5528 /* Check if we get a new urgent pointer - normally not. */ 5529 if (th->urg) 5530 tcp_check_urg(sk, th); 5531 5532 /* Do we wait for any urgent data? - normally not... */ 5533 if (tp->urg_data == TCP_URG_NOTYET) { 5534 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5535 th->syn; 5536 5537 /* Is the urgent pointer pointing into this packet? */ 5538 if (ptr < skb->len) { 5539 u8 tmp; 5540 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5541 BUG(); 5542 tp->urg_data = TCP_URG_VALID | tmp; 5543 if (!sock_flag(sk, SOCK_DEAD)) 5544 sk->sk_data_ready(sk); 5545 } 5546 } 5547 } 5548 5549 /* Accept RST for rcv_nxt - 1 after a FIN. 5550 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5551 * FIN is sent followed by a RST packet. The RST is sent with the same 5552 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5553 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5554 * ACKs on the closed socket. In addition middleboxes can drop either the 5555 * challenge ACK or a subsequent RST. 5556 */ 5557 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5558 { 5559 struct tcp_sock *tp = tcp_sk(sk); 5560 5561 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5562 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5563 TCPF_CLOSING)); 5564 } 5565 5566 /* Does PAWS and seqno based validation of an incoming segment, flags will 5567 * play significant role here. 5568 */ 5569 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5570 const struct tcphdr *th, int syn_inerr) 5571 { 5572 struct tcp_sock *tp = tcp_sk(sk); 5573 bool rst_seq_match = false; 5574 5575 /* RFC1323: H1. Apply PAWS check first. */ 5576 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5577 tp->rx_opt.saw_tstamp && 5578 tcp_paws_discard(sk, skb)) { 5579 if (!th->rst) { 5580 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5581 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5582 LINUX_MIB_TCPACKSKIPPEDPAWS, 5583 &tp->last_oow_ack_time)) 5584 tcp_send_dupack(sk, skb); 5585 goto discard; 5586 } 5587 /* Reset is accepted even if it did not pass PAWS. */ 5588 } 5589 5590 /* Step 1: check sequence number */ 5591 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5592 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5593 * (RST) segments are validated by checking their SEQ-fields." 5594 * And page 69: "If an incoming segment is not acceptable, 5595 * an acknowledgment should be sent in reply (unless the RST 5596 * bit is set, if so drop the segment and return)". 5597 */ 5598 if (!th->rst) { 5599 if (th->syn) 5600 goto syn_challenge; 5601 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5602 LINUX_MIB_TCPACKSKIPPEDSEQ, 5603 &tp->last_oow_ack_time)) 5604 tcp_send_dupack(sk, skb); 5605 } else if (tcp_reset_check(sk, skb)) { 5606 tcp_reset(sk); 5607 } 5608 goto discard; 5609 } 5610 5611 /* Step 2: check RST bit */ 5612 if (th->rst) { 5613 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5614 * FIN and SACK too if available): 5615 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5616 * the right-most SACK block, 5617 * then 5618 * RESET the connection 5619 * else 5620 * Send a challenge ACK 5621 */ 5622 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5623 tcp_reset_check(sk, skb)) { 5624 rst_seq_match = true; 5625 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5626 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5627 int max_sack = sp[0].end_seq; 5628 int this_sack; 5629 5630 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5631 ++this_sack) { 5632 max_sack = after(sp[this_sack].end_seq, 5633 max_sack) ? 5634 sp[this_sack].end_seq : max_sack; 5635 } 5636 5637 if (TCP_SKB_CB(skb)->seq == max_sack) 5638 rst_seq_match = true; 5639 } 5640 5641 if (rst_seq_match) 5642 tcp_reset(sk); 5643 else { 5644 /* Disable TFO if RST is out-of-order 5645 * and no data has been received 5646 * for current active TFO socket 5647 */ 5648 if (tp->syn_fastopen && !tp->data_segs_in && 5649 sk->sk_state == TCP_ESTABLISHED) 5650 tcp_fastopen_active_disable(sk); 5651 tcp_send_challenge_ack(sk, skb); 5652 } 5653 goto discard; 5654 } 5655 5656 /* step 3: check security and precedence [ignored] */ 5657 5658 /* step 4: Check for a SYN 5659 * RFC 5961 4.2 : Send a challenge ack 5660 */ 5661 if (th->syn) { 5662 syn_challenge: 5663 if (syn_inerr) 5664 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5665 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5666 tcp_send_challenge_ack(sk, skb); 5667 goto discard; 5668 } 5669 5670 bpf_skops_parse_hdr(sk, skb); 5671 5672 return true; 5673 5674 discard: 5675 tcp_drop(sk, skb); 5676 return false; 5677 } 5678 5679 /* 5680 * TCP receive function for the ESTABLISHED state. 5681 * 5682 * It is split into a fast path and a slow path. The fast path is 5683 * disabled when: 5684 * - A zero window was announced from us - zero window probing 5685 * is only handled properly in the slow path. 5686 * - Out of order segments arrived. 5687 * - Urgent data is expected. 5688 * - There is no buffer space left 5689 * - Unexpected TCP flags/window values/header lengths are received 5690 * (detected by checking the TCP header against pred_flags) 5691 * - Data is sent in both directions. Fast path only supports pure senders 5692 * or pure receivers (this means either the sequence number or the ack 5693 * value must stay constant) 5694 * - Unexpected TCP option. 5695 * 5696 * When these conditions are not satisfied it drops into a standard 5697 * receive procedure patterned after RFC793 to handle all cases. 5698 * The first three cases are guaranteed by proper pred_flags setting, 5699 * the rest is checked inline. Fast processing is turned on in 5700 * tcp_data_queue when everything is OK. 5701 */ 5702 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5703 { 5704 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5705 struct tcp_sock *tp = tcp_sk(sk); 5706 unsigned int len = skb->len; 5707 5708 /* TCP congestion window tracking */ 5709 trace_tcp_probe(sk, skb); 5710 5711 tcp_mstamp_refresh(tp); 5712 if (unlikely(!sk->sk_rx_dst)) 5713 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5714 /* 5715 * Header prediction. 5716 * The code loosely follows the one in the famous 5717 * "30 instruction TCP receive" Van Jacobson mail. 5718 * 5719 * Van's trick is to deposit buffers into socket queue 5720 * on a device interrupt, to call tcp_recv function 5721 * on the receive process context and checksum and copy 5722 * the buffer to user space. smart... 5723 * 5724 * Our current scheme is not silly either but we take the 5725 * extra cost of the net_bh soft interrupt processing... 5726 * We do checksum and copy also but from device to kernel. 5727 */ 5728 5729 tp->rx_opt.saw_tstamp = 0; 5730 5731 /* pred_flags is 0xS?10 << 16 + snd_wnd 5732 * if header_prediction is to be made 5733 * 'S' will always be tp->tcp_header_len >> 2 5734 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5735 * turn it off (when there are holes in the receive 5736 * space for instance) 5737 * PSH flag is ignored. 5738 */ 5739 5740 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5741 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5742 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5743 int tcp_header_len = tp->tcp_header_len; 5744 5745 /* Timestamp header prediction: tcp_header_len 5746 * is automatically equal to th->doff*4 due to pred_flags 5747 * match. 5748 */ 5749 5750 /* Check timestamp */ 5751 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5752 /* No? Slow path! */ 5753 if (!tcp_parse_aligned_timestamp(tp, th)) 5754 goto slow_path; 5755 5756 /* If PAWS failed, check it more carefully in slow path */ 5757 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5758 goto slow_path; 5759 5760 /* DO NOT update ts_recent here, if checksum fails 5761 * and timestamp was corrupted part, it will result 5762 * in a hung connection since we will drop all 5763 * future packets due to the PAWS test. 5764 */ 5765 } 5766 5767 if (len <= tcp_header_len) { 5768 /* Bulk data transfer: sender */ 5769 if (len == tcp_header_len) { 5770 /* Predicted packet is in window by definition. 5771 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5772 * Hence, check seq<=rcv_wup reduces to: 5773 */ 5774 if (tcp_header_len == 5775 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5776 tp->rcv_nxt == tp->rcv_wup) 5777 tcp_store_ts_recent(tp); 5778 5779 /* We know that such packets are checksummed 5780 * on entry. 5781 */ 5782 tcp_ack(sk, skb, 0); 5783 __kfree_skb(skb); 5784 tcp_data_snd_check(sk); 5785 /* When receiving pure ack in fast path, update 5786 * last ts ecr directly instead of calling 5787 * tcp_rcv_rtt_measure_ts() 5788 */ 5789 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5790 return; 5791 } else { /* Header too small */ 5792 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5793 goto discard; 5794 } 5795 } else { 5796 int eaten = 0; 5797 bool fragstolen = false; 5798 5799 if (tcp_checksum_complete(skb)) 5800 goto csum_error; 5801 5802 if ((int)skb->truesize > sk->sk_forward_alloc) 5803 goto step5; 5804 5805 /* Predicted packet is in window by definition. 5806 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5807 * Hence, check seq<=rcv_wup reduces to: 5808 */ 5809 if (tcp_header_len == 5810 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5811 tp->rcv_nxt == tp->rcv_wup) 5812 tcp_store_ts_recent(tp); 5813 5814 tcp_rcv_rtt_measure_ts(sk, skb); 5815 5816 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5817 5818 /* Bulk data transfer: receiver */ 5819 __skb_pull(skb, tcp_header_len); 5820 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5821 5822 tcp_event_data_recv(sk, skb); 5823 5824 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5825 /* Well, only one small jumplet in fast path... */ 5826 tcp_ack(sk, skb, FLAG_DATA); 5827 tcp_data_snd_check(sk); 5828 if (!inet_csk_ack_scheduled(sk)) 5829 goto no_ack; 5830 } else { 5831 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 5832 } 5833 5834 __tcp_ack_snd_check(sk, 0); 5835 no_ack: 5836 if (eaten) 5837 kfree_skb_partial(skb, fragstolen); 5838 tcp_data_ready(sk); 5839 return; 5840 } 5841 } 5842 5843 slow_path: 5844 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5845 goto csum_error; 5846 5847 if (!th->ack && !th->rst && !th->syn) 5848 goto discard; 5849 5850 /* 5851 * Standard slow path. 5852 */ 5853 5854 if (!tcp_validate_incoming(sk, skb, th, 1)) 5855 return; 5856 5857 step5: 5858 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5859 goto discard; 5860 5861 tcp_rcv_rtt_measure_ts(sk, skb); 5862 5863 /* Process urgent data. */ 5864 tcp_urg(sk, skb, th); 5865 5866 /* step 7: process the segment text */ 5867 tcp_data_queue(sk, skb); 5868 5869 tcp_data_snd_check(sk); 5870 tcp_ack_snd_check(sk); 5871 return; 5872 5873 csum_error: 5874 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5875 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5876 5877 discard: 5878 tcp_drop(sk, skb); 5879 } 5880 EXPORT_SYMBOL(tcp_rcv_established); 5881 5882 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 5883 { 5884 struct inet_connection_sock *icsk = inet_csk(sk); 5885 struct tcp_sock *tp = tcp_sk(sk); 5886 5887 tcp_mtup_init(sk); 5888 icsk->icsk_af_ops->rebuild_header(sk); 5889 tcp_init_metrics(sk); 5890 5891 /* Initialize the congestion window to start the transfer. 5892 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5893 * retransmitted. In light of RFC6298 more aggressive 1sec 5894 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5895 * retransmission has occurred. 5896 */ 5897 if (tp->total_retrans > 1 && tp->undo_marker) 5898 tp->snd_cwnd = 1; 5899 else 5900 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5901 tp->snd_cwnd_stamp = tcp_jiffies32; 5902 5903 icsk->icsk_ca_initialized = 0; 5904 bpf_skops_established(sk, bpf_op, skb); 5905 if (!icsk->icsk_ca_initialized) 5906 tcp_init_congestion_control(sk); 5907 tcp_init_buffer_space(sk); 5908 } 5909 5910 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5911 { 5912 struct tcp_sock *tp = tcp_sk(sk); 5913 struct inet_connection_sock *icsk = inet_csk(sk); 5914 5915 tcp_set_state(sk, TCP_ESTABLISHED); 5916 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5917 5918 if (skb) { 5919 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5920 security_inet_conn_established(sk, skb); 5921 sk_mark_napi_id(sk, skb); 5922 } 5923 5924 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 5925 5926 /* Prevent spurious tcp_cwnd_restart() on first data 5927 * packet. 5928 */ 5929 tp->lsndtime = tcp_jiffies32; 5930 5931 if (sock_flag(sk, SOCK_KEEPOPEN)) 5932 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5933 5934 if (!tp->rx_opt.snd_wscale) 5935 __tcp_fast_path_on(tp, tp->snd_wnd); 5936 else 5937 tp->pred_flags = 0; 5938 } 5939 5940 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5941 struct tcp_fastopen_cookie *cookie) 5942 { 5943 struct tcp_sock *tp = tcp_sk(sk); 5944 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5945 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5946 bool syn_drop = false; 5947 5948 if (mss == tp->rx_opt.user_mss) { 5949 struct tcp_options_received opt; 5950 5951 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5952 tcp_clear_options(&opt); 5953 opt.user_mss = opt.mss_clamp = 0; 5954 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 5955 mss = opt.mss_clamp; 5956 } 5957 5958 if (!tp->syn_fastopen) { 5959 /* Ignore an unsolicited cookie */ 5960 cookie->len = -1; 5961 } else if (tp->total_retrans) { 5962 /* SYN timed out and the SYN-ACK neither has a cookie nor 5963 * acknowledges data. Presumably the remote received only 5964 * the retransmitted (regular) SYNs: either the original 5965 * SYN-data or the corresponding SYN-ACK was dropped. 5966 */ 5967 syn_drop = (cookie->len < 0 && data); 5968 } else if (cookie->len < 0 && !tp->syn_data) { 5969 /* We requested a cookie but didn't get it. If we did not use 5970 * the (old) exp opt format then try so next time (try_exp=1). 5971 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5972 */ 5973 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5974 } 5975 5976 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5977 5978 if (data) { /* Retransmit unacked data in SYN */ 5979 if (tp->total_retrans) 5980 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 5981 else 5982 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 5983 skb_rbtree_walk_from(data) { 5984 if (__tcp_retransmit_skb(sk, data, 1)) 5985 break; 5986 } 5987 tcp_rearm_rto(sk); 5988 NET_INC_STATS(sock_net(sk), 5989 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5990 return true; 5991 } 5992 tp->syn_data_acked = tp->syn_data; 5993 if (tp->syn_data_acked) { 5994 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5995 /* SYN-data is counted as two separate packets in tcp_ack() */ 5996 if (tp->delivered > 1) 5997 --tp->delivered; 5998 } 5999 6000 tcp_fastopen_add_skb(sk, synack); 6001 6002 return false; 6003 } 6004 6005 static void smc_check_reset_syn(struct tcp_sock *tp) 6006 { 6007 #if IS_ENABLED(CONFIG_SMC) 6008 if (static_branch_unlikely(&tcp_have_smc)) { 6009 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6010 tp->syn_smc = 0; 6011 } 6012 #endif 6013 } 6014 6015 static void tcp_try_undo_spurious_syn(struct sock *sk) 6016 { 6017 struct tcp_sock *tp = tcp_sk(sk); 6018 u32 syn_stamp; 6019 6020 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6021 * spurious if the ACK's timestamp option echo value matches the 6022 * original SYN timestamp. 6023 */ 6024 syn_stamp = tp->retrans_stamp; 6025 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6026 syn_stamp == tp->rx_opt.rcv_tsecr) 6027 tp->undo_marker = 0; 6028 } 6029 6030 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6031 const struct tcphdr *th) 6032 { 6033 struct inet_connection_sock *icsk = inet_csk(sk); 6034 struct tcp_sock *tp = tcp_sk(sk); 6035 struct tcp_fastopen_cookie foc = { .len = -1 }; 6036 int saved_clamp = tp->rx_opt.mss_clamp; 6037 bool fastopen_fail; 6038 6039 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6040 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6041 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6042 6043 if (th->ack) { 6044 /* rfc793: 6045 * "If the state is SYN-SENT then 6046 * first check the ACK bit 6047 * If the ACK bit is set 6048 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6049 * a reset (unless the RST bit is set, if so drop 6050 * the segment and return)" 6051 */ 6052 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6053 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6054 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6055 if (icsk->icsk_retransmits == 0) 6056 inet_csk_reset_xmit_timer(sk, 6057 ICSK_TIME_RETRANS, 6058 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6059 goto reset_and_undo; 6060 } 6061 6062 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6063 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6064 tcp_time_stamp(tp))) { 6065 NET_INC_STATS(sock_net(sk), 6066 LINUX_MIB_PAWSACTIVEREJECTED); 6067 goto reset_and_undo; 6068 } 6069 6070 /* Now ACK is acceptable. 6071 * 6072 * "If the RST bit is set 6073 * If the ACK was acceptable then signal the user "error: 6074 * connection reset", drop the segment, enter CLOSED state, 6075 * delete TCB, and return." 6076 */ 6077 6078 if (th->rst) { 6079 tcp_reset(sk); 6080 goto discard; 6081 } 6082 6083 /* rfc793: 6084 * "fifth, if neither of the SYN or RST bits is set then 6085 * drop the segment and return." 6086 * 6087 * See note below! 6088 * --ANK(990513) 6089 */ 6090 if (!th->syn) 6091 goto discard_and_undo; 6092 6093 /* rfc793: 6094 * "If the SYN bit is on ... 6095 * are acceptable then ... 6096 * (our SYN has been ACKed), change the connection 6097 * state to ESTABLISHED..." 6098 */ 6099 6100 tcp_ecn_rcv_synack(tp, th); 6101 6102 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6103 tcp_try_undo_spurious_syn(sk); 6104 tcp_ack(sk, skb, FLAG_SLOWPATH); 6105 6106 /* Ok.. it's good. Set up sequence numbers and 6107 * move to established. 6108 */ 6109 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6110 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6111 6112 /* RFC1323: The window in SYN & SYN/ACK segments is 6113 * never scaled. 6114 */ 6115 tp->snd_wnd = ntohs(th->window); 6116 6117 if (!tp->rx_opt.wscale_ok) { 6118 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6119 tp->window_clamp = min(tp->window_clamp, 65535U); 6120 } 6121 6122 if (tp->rx_opt.saw_tstamp) { 6123 tp->rx_opt.tstamp_ok = 1; 6124 tp->tcp_header_len = 6125 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6126 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6127 tcp_store_ts_recent(tp); 6128 } else { 6129 tp->tcp_header_len = sizeof(struct tcphdr); 6130 } 6131 6132 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6133 tcp_initialize_rcv_mss(sk); 6134 6135 /* Remember, tcp_poll() does not lock socket! 6136 * Change state from SYN-SENT only after copied_seq 6137 * is initialized. */ 6138 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6139 6140 smc_check_reset_syn(tp); 6141 6142 smp_mb(); 6143 6144 tcp_finish_connect(sk, skb); 6145 6146 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6147 tcp_rcv_fastopen_synack(sk, skb, &foc); 6148 6149 if (!sock_flag(sk, SOCK_DEAD)) { 6150 sk->sk_state_change(sk); 6151 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6152 } 6153 if (fastopen_fail) 6154 return -1; 6155 if (sk->sk_write_pending || 6156 icsk->icsk_accept_queue.rskq_defer_accept || 6157 inet_csk_in_pingpong_mode(sk)) { 6158 /* Save one ACK. Data will be ready after 6159 * several ticks, if write_pending is set. 6160 * 6161 * It may be deleted, but with this feature tcpdumps 6162 * look so _wonderfully_ clever, that I was not able 6163 * to stand against the temptation 8) --ANK 6164 */ 6165 inet_csk_schedule_ack(sk); 6166 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6167 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6168 TCP_DELACK_MAX, TCP_RTO_MAX); 6169 6170 discard: 6171 tcp_drop(sk, skb); 6172 return 0; 6173 } else { 6174 tcp_send_ack(sk); 6175 } 6176 return -1; 6177 } 6178 6179 /* No ACK in the segment */ 6180 6181 if (th->rst) { 6182 /* rfc793: 6183 * "If the RST bit is set 6184 * 6185 * Otherwise (no ACK) drop the segment and return." 6186 */ 6187 6188 goto discard_and_undo; 6189 } 6190 6191 /* PAWS check. */ 6192 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6193 tcp_paws_reject(&tp->rx_opt, 0)) 6194 goto discard_and_undo; 6195 6196 if (th->syn) { 6197 /* We see SYN without ACK. It is attempt of 6198 * simultaneous connect with crossed SYNs. 6199 * Particularly, it can be connect to self. 6200 */ 6201 tcp_set_state(sk, TCP_SYN_RECV); 6202 6203 if (tp->rx_opt.saw_tstamp) { 6204 tp->rx_opt.tstamp_ok = 1; 6205 tcp_store_ts_recent(tp); 6206 tp->tcp_header_len = 6207 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6208 } else { 6209 tp->tcp_header_len = sizeof(struct tcphdr); 6210 } 6211 6212 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6213 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6214 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6215 6216 /* RFC1323: The window in SYN & SYN/ACK segments is 6217 * never scaled. 6218 */ 6219 tp->snd_wnd = ntohs(th->window); 6220 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6221 tp->max_window = tp->snd_wnd; 6222 6223 tcp_ecn_rcv_syn(tp, th); 6224 6225 tcp_mtup_init(sk); 6226 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6227 tcp_initialize_rcv_mss(sk); 6228 6229 tcp_send_synack(sk); 6230 #if 0 6231 /* Note, we could accept data and URG from this segment. 6232 * There are no obstacles to make this (except that we must 6233 * either change tcp_recvmsg() to prevent it from returning data 6234 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6235 * 6236 * However, if we ignore data in ACKless segments sometimes, 6237 * we have no reasons to accept it sometimes. 6238 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6239 * is not flawless. So, discard packet for sanity. 6240 * Uncomment this return to process the data. 6241 */ 6242 return -1; 6243 #else 6244 goto discard; 6245 #endif 6246 } 6247 /* "fifth, if neither of the SYN or RST bits is set then 6248 * drop the segment and return." 6249 */ 6250 6251 discard_and_undo: 6252 tcp_clear_options(&tp->rx_opt); 6253 tp->rx_opt.mss_clamp = saved_clamp; 6254 goto discard; 6255 6256 reset_and_undo: 6257 tcp_clear_options(&tp->rx_opt); 6258 tp->rx_opt.mss_clamp = saved_clamp; 6259 return 1; 6260 } 6261 6262 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6263 { 6264 struct request_sock *req; 6265 6266 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6267 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6268 */ 6269 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 6270 tcp_try_undo_loss(sk, false); 6271 6272 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6273 tcp_sk(sk)->retrans_stamp = 0; 6274 inet_csk(sk)->icsk_retransmits = 0; 6275 6276 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6277 * we no longer need req so release it. 6278 */ 6279 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6280 lockdep_sock_is_held(sk)); 6281 reqsk_fastopen_remove(sk, req, false); 6282 6283 /* Re-arm the timer because data may have been sent out. 6284 * This is similar to the regular data transmission case 6285 * when new data has just been ack'ed. 6286 * 6287 * (TFO) - we could try to be more aggressive and 6288 * retransmitting any data sooner based on when they 6289 * are sent out. 6290 */ 6291 tcp_rearm_rto(sk); 6292 } 6293 6294 /* 6295 * This function implements the receiving procedure of RFC 793 for 6296 * all states except ESTABLISHED and TIME_WAIT. 6297 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6298 * address independent. 6299 */ 6300 6301 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6302 { 6303 struct tcp_sock *tp = tcp_sk(sk); 6304 struct inet_connection_sock *icsk = inet_csk(sk); 6305 const struct tcphdr *th = tcp_hdr(skb); 6306 struct request_sock *req; 6307 int queued = 0; 6308 bool acceptable; 6309 6310 switch (sk->sk_state) { 6311 case TCP_CLOSE: 6312 goto discard; 6313 6314 case TCP_LISTEN: 6315 if (th->ack) 6316 return 1; 6317 6318 if (th->rst) 6319 goto discard; 6320 6321 if (th->syn) { 6322 if (th->fin) 6323 goto discard; 6324 /* It is possible that we process SYN packets from backlog, 6325 * so we need to make sure to disable BH and RCU right there. 6326 */ 6327 rcu_read_lock(); 6328 local_bh_disable(); 6329 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6330 local_bh_enable(); 6331 rcu_read_unlock(); 6332 6333 if (!acceptable) 6334 return 1; 6335 consume_skb(skb); 6336 return 0; 6337 } 6338 goto discard; 6339 6340 case TCP_SYN_SENT: 6341 tp->rx_opt.saw_tstamp = 0; 6342 tcp_mstamp_refresh(tp); 6343 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6344 if (queued >= 0) 6345 return queued; 6346 6347 /* Do step6 onward by hand. */ 6348 tcp_urg(sk, skb, th); 6349 __kfree_skb(skb); 6350 tcp_data_snd_check(sk); 6351 return 0; 6352 } 6353 6354 tcp_mstamp_refresh(tp); 6355 tp->rx_opt.saw_tstamp = 0; 6356 req = rcu_dereference_protected(tp->fastopen_rsk, 6357 lockdep_sock_is_held(sk)); 6358 if (req) { 6359 bool req_stolen; 6360 6361 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6362 sk->sk_state != TCP_FIN_WAIT1); 6363 6364 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6365 goto discard; 6366 } 6367 6368 if (!th->ack && !th->rst && !th->syn) 6369 goto discard; 6370 6371 if (!tcp_validate_incoming(sk, skb, th, 0)) 6372 return 0; 6373 6374 /* step 5: check the ACK field */ 6375 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6376 FLAG_UPDATE_TS_RECENT | 6377 FLAG_NO_CHALLENGE_ACK) > 0; 6378 6379 if (!acceptable) { 6380 if (sk->sk_state == TCP_SYN_RECV) 6381 return 1; /* send one RST */ 6382 tcp_send_challenge_ack(sk, skb); 6383 goto discard; 6384 } 6385 switch (sk->sk_state) { 6386 case TCP_SYN_RECV: 6387 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6388 if (!tp->srtt_us) 6389 tcp_synack_rtt_meas(sk, req); 6390 6391 if (req) { 6392 tcp_rcv_synrecv_state_fastopen(sk); 6393 } else { 6394 tcp_try_undo_spurious_syn(sk); 6395 tp->retrans_stamp = 0; 6396 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6397 skb); 6398 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6399 } 6400 smp_mb(); 6401 tcp_set_state(sk, TCP_ESTABLISHED); 6402 sk->sk_state_change(sk); 6403 6404 /* Note, that this wakeup is only for marginal crossed SYN case. 6405 * Passively open sockets are not waked up, because 6406 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6407 */ 6408 if (sk->sk_socket) 6409 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6410 6411 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6412 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6413 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6414 6415 if (tp->rx_opt.tstamp_ok) 6416 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6417 6418 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6419 tcp_update_pacing_rate(sk); 6420 6421 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6422 tp->lsndtime = tcp_jiffies32; 6423 6424 tcp_initialize_rcv_mss(sk); 6425 tcp_fast_path_on(tp); 6426 break; 6427 6428 case TCP_FIN_WAIT1: { 6429 int tmo; 6430 6431 if (req) 6432 tcp_rcv_synrecv_state_fastopen(sk); 6433 6434 if (tp->snd_una != tp->write_seq) 6435 break; 6436 6437 tcp_set_state(sk, TCP_FIN_WAIT2); 6438 sk->sk_shutdown |= SEND_SHUTDOWN; 6439 6440 sk_dst_confirm(sk); 6441 6442 if (!sock_flag(sk, SOCK_DEAD)) { 6443 /* Wake up lingering close() */ 6444 sk->sk_state_change(sk); 6445 break; 6446 } 6447 6448 if (tp->linger2 < 0) { 6449 tcp_done(sk); 6450 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6451 return 1; 6452 } 6453 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6454 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6455 /* Receive out of order FIN after close() */ 6456 if (tp->syn_fastopen && th->fin) 6457 tcp_fastopen_active_disable(sk); 6458 tcp_done(sk); 6459 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6460 return 1; 6461 } 6462 6463 tmo = tcp_fin_time(sk); 6464 if (tmo > TCP_TIMEWAIT_LEN) { 6465 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6466 } else if (th->fin || sock_owned_by_user(sk)) { 6467 /* Bad case. We could lose such FIN otherwise. 6468 * It is not a big problem, but it looks confusing 6469 * and not so rare event. We still can lose it now, 6470 * if it spins in bh_lock_sock(), but it is really 6471 * marginal case. 6472 */ 6473 inet_csk_reset_keepalive_timer(sk, tmo); 6474 } else { 6475 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6476 goto discard; 6477 } 6478 break; 6479 } 6480 6481 case TCP_CLOSING: 6482 if (tp->snd_una == tp->write_seq) { 6483 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6484 goto discard; 6485 } 6486 break; 6487 6488 case TCP_LAST_ACK: 6489 if (tp->snd_una == tp->write_seq) { 6490 tcp_update_metrics(sk); 6491 tcp_done(sk); 6492 goto discard; 6493 } 6494 break; 6495 } 6496 6497 /* step 6: check the URG bit */ 6498 tcp_urg(sk, skb, th); 6499 6500 /* step 7: process the segment text */ 6501 switch (sk->sk_state) { 6502 case TCP_CLOSE_WAIT: 6503 case TCP_CLOSING: 6504 case TCP_LAST_ACK: 6505 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6506 if (sk_is_mptcp(sk)) 6507 mptcp_incoming_options(sk, skb); 6508 break; 6509 } 6510 fallthrough; 6511 case TCP_FIN_WAIT1: 6512 case TCP_FIN_WAIT2: 6513 /* RFC 793 says to queue data in these states, 6514 * RFC 1122 says we MUST send a reset. 6515 * BSD 4.4 also does reset. 6516 */ 6517 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6518 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6519 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6520 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6521 tcp_reset(sk); 6522 return 1; 6523 } 6524 } 6525 fallthrough; 6526 case TCP_ESTABLISHED: 6527 tcp_data_queue(sk, skb); 6528 queued = 1; 6529 break; 6530 } 6531 6532 /* tcp_data could move socket to TIME-WAIT */ 6533 if (sk->sk_state != TCP_CLOSE) { 6534 tcp_data_snd_check(sk); 6535 tcp_ack_snd_check(sk); 6536 } 6537 6538 if (!queued) { 6539 discard: 6540 tcp_drop(sk, skb); 6541 } 6542 return 0; 6543 } 6544 EXPORT_SYMBOL(tcp_rcv_state_process); 6545 6546 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6547 { 6548 struct inet_request_sock *ireq = inet_rsk(req); 6549 6550 if (family == AF_INET) 6551 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6552 &ireq->ir_rmt_addr, port); 6553 #if IS_ENABLED(CONFIG_IPV6) 6554 else if (family == AF_INET6) 6555 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6556 &ireq->ir_v6_rmt_addr, port); 6557 #endif 6558 } 6559 6560 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6561 * 6562 * If we receive a SYN packet with these bits set, it means a 6563 * network is playing bad games with TOS bits. In order to 6564 * avoid possible false congestion notifications, we disable 6565 * TCP ECN negotiation. 6566 * 6567 * Exception: tcp_ca wants ECN. This is required for DCTCP 6568 * congestion control: Linux DCTCP asserts ECT on all packets, 6569 * including SYN, which is most optimal solution; however, 6570 * others, such as FreeBSD do not. 6571 * 6572 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6573 * set, indicating the use of a future TCP extension (such as AccECN). See 6574 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6575 * extensions. 6576 */ 6577 static void tcp_ecn_create_request(struct request_sock *req, 6578 const struct sk_buff *skb, 6579 const struct sock *listen_sk, 6580 const struct dst_entry *dst) 6581 { 6582 const struct tcphdr *th = tcp_hdr(skb); 6583 const struct net *net = sock_net(listen_sk); 6584 bool th_ecn = th->ece && th->cwr; 6585 bool ect, ecn_ok; 6586 u32 ecn_ok_dst; 6587 6588 if (!th_ecn) 6589 return; 6590 6591 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6592 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6593 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6594 6595 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6596 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6597 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6598 inet_rsk(req)->ecn_ok = 1; 6599 } 6600 6601 static void tcp_openreq_init(struct request_sock *req, 6602 const struct tcp_options_received *rx_opt, 6603 struct sk_buff *skb, const struct sock *sk) 6604 { 6605 struct inet_request_sock *ireq = inet_rsk(req); 6606 6607 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6608 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6609 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6610 tcp_rsk(req)->snt_synack = 0; 6611 tcp_rsk(req)->last_oow_ack_time = 0; 6612 req->mss = rx_opt->mss_clamp; 6613 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6614 ireq->tstamp_ok = rx_opt->tstamp_ok; 6615 ireq->sack_ok = rx_opt->sack_ok; 6616 ireq->snd_wscale = rx_opt->snd_wscale; 6617 ireq->wscale_ok = rx_opt->wscale_ok; 6618 ireq->acked = 0; 6619 ireq->ecn_ok = 0; 6620 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6621 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6622 ireq->ir_mark = inet_request_mark(sk, skb); 6623 #if IS_ENABLED(CONFIG_SMC) 6624 ireq->smc_ok = rx_opt->smc_ok; 6625 #endif 6626 } 6627 6628 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6629 struct sock *sk_listener, 6630 bool attach_listener) 6631 { 6632 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6633 attach_listener); 6634 6635 if (req) { 6636 struct inet_request_sock *ireq = inet_rsk(req); 6637 6638 ireq->ireq_opt = NULL; 6639 #if IS_ENABLED(CONFIG_IPV6) 6640 ireq->pktopts = NULL; 6641 #endif 6642 atomic64_set(&ireq->ir_cookie, 0); 6643 ireq->ireq_state = TCP_NEW_SYN_RECV; 6644 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6645 ireq->ireq_family = sk_listener->sk_family; 6646 } 6647 6648 return req; 6649 } 6650 EXPORT_SYMBOL(inet_reqsk_alloc); 6651 6652 /* 6653 * Return true if a syncookie should be sent 6654 */ 6655 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6656 { 6657 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6658 const char *msg = "Dropping request"; 6659 bool want_cookie = false; 6660 struct net *net = sock_net(sk); 6661 6662 #ifdef CONFIG_SYN_COOKIES 6663 if (net->ipv4.sysctl_tcp_syncookies) { 6664 msg = "Sending cookies"; 6665 want_cookie = true; 6666 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6667 } else 6668 #endif 6669 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6670 6671 if (!queue->synflood_warned && 6672 net->ipv4.sysctl_tcp_syncookies != 2 && 6673 xchg(&queue->synflood_warned, 1) == 0) 6674 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6675 proto, sk->sk_num, msg); 6676 6677 return want_cookie; 6678 } 6679 6680 static void tcp_reqsk_record_syn(const struct sock *sk, 6681 struct request_sock *req, 6682 const struct sk_buff *skb) 6683 { 6684 if (tcp_sk(sk)->save_syn) { 6685 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6686 struct saved_syn *saved_syn; 6687 u32 mac_hdrlen; 6688 void *base; 6689 6690 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6691 base = skb_mac_header(skb); 6692 mac_hdrlen = skb_mac_header_len(skb); 6693 len += mac_hdrlen; 6694 } else { 6695 base = skb_network_header(skb); 6696 mac_hdrlen = 0; 6697 } 6698 6699 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6700 GFP_ATOMIC); 6701 if (saved_syn) { 6702 saved_syn->mac_hdrlen = mac_hdrlen; 6703 saved_syn->network_hdrlen = skb_network_header_len(skb); 6704 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6705 memcpy(saved_syn->data, base, len); 6706 req->saved_syn = saved_syn; 6707 } 6708 } 6709 } 6710 6711 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6712 * used for SYN cookie generation. 6713 */ 6714 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6715 const struct tcp_request_sock_ops *af_ops, 6716 struct sock *sk, struct tcphdr *th) 6717 { 6718 struct tcp_sock *tp = tcp_sk(sk); 6719 u16 mss; 6720 6721 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 && 6722 !inet_csk_reqsk_queue_is_full(sk)) 6723 return 0; 6724 6725 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6726 return 0; 6727 6728 if (sk_acceptq_is_full(sk)) { 6729 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6730 return 0; 6731 } 6732 6733 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6734 if (!mss) 6735 mss = af_ops->mss_clamp; 6736 6737 return mss; 6738 } 6739 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6740 6741 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6742 const struct tcp_request_sock_ops *af_ops, 6743 struct sock *sk, struct sk_buff *skb) 6744 { 6745 struct tcp_fastopen_cookie foc = { .len = -1 }; 6746 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6747 struct tcp_options_received tmp_opt; 6748 struct tcp_sock *tp = tcp_sk(sk); 6749 struct net *net = sock_net(sk); 6750 struct sock *fastopen_sk = NULL; 6751 struct request_sock *req; 6752 bool want_cookie = false; 6753 struct dst_entry *dst; 6754 struct flowi fl; 6755 6756 /* TW buckets are converted to open requests without 6757 * limitations, they conserve resources and peer is 6758 * evidently real one. 6759 */ 6760 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6761 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6762 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6763 if (!want_cookie) 6764 goto drop; 6765 } 6766 6767 if (sk_acceptq_is_full(sk)) { 6768 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6769 goto drop; 6770 } 6771 6772 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6773 if (!req) 6774 goto drop; 6775 6776 req->syncookie = want_cookie; 6777 tcp_rsk(req)->af_specific = af_ops; 6778 tcp_rsk(req)->ts_off = 0; 6779 #if IS_ENABLED(CONFIG_MPTCP) 6780 tcp_rsk(req)->is_mptcp = 0; 6781 #endif 6782 6783 tcp_clear_options(&tmp_opt); 6784 tmp_opt.mss_clamp = af_ops->mss_clamp; 6785 tmp_opt.user_mss = tp->rx_opt.user_mss; 6786 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6787 want_cookie ? NULL : &foc); 6788 6789 if (want_cookie && !tmp_opt.saw_tstamp) 6790 tcp_clear_options(&tmp_opt); 6791 6792 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6793 tmp_opt.smc_ok = 0; 6794 6795 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6796 tcp_openreq_init(req, &tmp_opt, skb, sk); 6797 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6798 6799 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6800 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6801 6802 af_ops->init_req(req, sk, skb); 6803 6804 if (security_inet_conn_request(sk, skb, req)) 6805 goto drop_and_free; 6806 6807 if (tmp_opt.tstamp_ok) 6808 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6809 6810 dst = af_ops->route_req(sk, &fl, req); 6811 if (!dst) 6812 goto drop_and_free; 6813 6814 if (!want_cookie && !isn) { 6815 /* Kill the following clause, if you dislike this way. */ 6816 if (!net->ipv4.sysctl_tcp_syncookies && 6817 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6818 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6819 !tcp_peer_is_proven(req, dst)) { 6820 /* Without syncookies last quarter of 6821 * backlog is filled with destinations, 6822 * proven to be alive. 6823 * It means that we continue to communicate 6824 * to destinations, already remembered 6825 * to the moment of synflood. 6826 */ 6827 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6828 rsk_ops->family); 6829 goto drop_and_release; 6830 } 6831 6832 isn = af_ops->init_seq(skb); 6833 } 6834 6835 tcp_ecn_create_request(req, skb, sk, dst); 6836 6837 if (want_cookie) { 6838 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6839 if (!tmp_opt.tstamp_ok) 6840 inet_rsk(req)->ecn_ok = 0; 6841 } 6842 6843 tcp_rsk(req)->snt_isn = isn; 6844 tcp_rsk(req)->txhash = net_tx_rndhash(); 6845 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 6846 tcp_openreq_init_rwin(req, sk, dst); 6847 sk_rx_queue_set(req_to_sk(req), skb); 6848 if (!want_cookie) { 6849 tcp_reqsk_record_syn(sk, req, skb); 6850 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6851 } 6852 if (fastopen_sk) { 6853 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6854 &foc, TCP_SYNACK_FASTOPEN, skb); 6855 /* Add the child socket directly into the accept queue */ 6856 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6857 reqsk_fastopen_remove(fastopen_sk, req, false); 6858 bh_unlock_sock(fastopen_sk); 6859 sock_put(fastopen_sk); 6860 goto drop_and_free; 6861 } 6862 sk->sk_data_ready(sk); 6863 bh_unlock_sock(fastopen_sk); 6864 sock_put(fastopen_sk); 6865 } else { 6866 tcp_rsk(req)->tfo_listener = false; 6867 if (!want_cookie) 6868 inet_csk_reqsk_queue_hash_add(sk, req, 6869 tcp_timeout_init((struct sock *)req)); 6870 af_ops->send_synack(sk, dst, &fl, req, &foc, 6871 !want_cookie ? TCP_SYNACK_NORMAL : 6872 TCP_SYNACK_COOKIE, 6873 skb); 6874 if (want_cookie) { 6875 reqsk_free(req); 6876 return 0; 6877 } 6878 } 6879 reqsk_put(req); 6880 return 0; 6881 6882 drop_and_release: 6883 dst_release(dst); 6884 drop_and_free: 6885 __reqsk_free(req); 6886 drop: 6887 tcp_listendrop(sk); 6888 return 0; 6889 } 6890 EXPORT_SYMBOL(tcp_conn_request); 6891