xref: /linux/net/ipv4/tcp_input.c (revision 4bedea94545165364618d403d03b61d797acba0b)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presnce of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
84 
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
90 
91 int sysctl_tcp_moderate_rcvbuf = 1;
92 
93 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
94 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
95 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
96 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
97 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
98 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
99 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
100 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
101 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
102 
103 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
106 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
107 
108 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
109 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
110 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
111 
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113 
114 /* Adapt the MSS value used to make delayed ack decision to the
115  * real world.
116  */
117 static inline void tcp_measure_rcv_mss(struct tcp_sock *tp,
118 				       struct sk_buff *skb)
119 {
120 	unsigned int len, lss;
121 
122 	lss = tp->ack.last_seg_size;
123 	tp->ack.last_seg_size = 0;
124 
125 	/* skb->len may jitter because of SACKs, even if peer
126 	 * sends good full-sized frames.
127 	 */
128 	len = skb->len;
129 	if (len >= tp->ack.rcv_mss) {
130 		tp->ack.rcv_mss = len;
131 	} else {
132 		/* Otherwise, we make more careful check taking into account,
133 		 * that SACKs block is variable.
134 		 *
135 		 * "len" is invariant segment length, including TCP header.
136 		 */
137 		len += skb->data - skb->h.raw;
138 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
139 		    /* If PSH is not set, packet should be
140 		     * full sized, provided peer TCP is not badly broken.
141 		     * This observation (if it is correct 8)) allows
142 		     * to handle super-low mtu links fairly.
143 		     */
144 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
145 		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
146 			/* Subtract also invariant (if peer is RFC compliant),
147 			 * tcp header plus fixed timestamp option length.
148 			 * Resulting "len" is MSS free of SACK jitter.
149 			 */
150 			len -= tp->tcp_header_len;
151 			tp->ack.last_seg_size = len;
152 			if (len == lss) {
153 				tp->ack.rcv_mss = len;
154 				return;
155 			}
156 		}
157 		tp->ack.pending |= TCP_ACK_PUSHED;
158 	}
159 }
160 
161 static void tcp_incr_quickack(struct tcp_sock *tp)
162 {
163 	unsigned quickacks = tp->rcv_wnd/(2*tp->ack.rcv_mss);
164 
165 	if (quickacks==0)
166 		quickacks=2;
167 	if (quickacks > tp->ack.quick)
168 		tp->ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
169 }
170 
171 void tcp_enter_quickack_mode(struct tcp_sock *tp)
172 {
173 	tcp_incr_quickack(tp);
174 	tp->ack.pingpong = 0;
175 	tp->ack.ato = TCP_ATO_MIN;
176 }
177 
178 /* Send ACKs quickly, if "quick" count is not exhausted
179  * and the session is not interactive.
180  */
181 
182 static __inline__ int tcp_in_quickack_mode(struct tcp_sock *tp)
183 {
184 	return (tp->ack.quick && !tp->ack.pingpong);
185 }
186 
187 /* Buffer size and advertised window tuning.
188  *
189  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
190  */
191 
192 static void tcp_fixup_sndbuf(struct sock *sk)
193 {
194 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
195 		     sizeof(struct sk_buff);
196 
197 	if (sk->sk_sndbuf < 3 * sndmem)
198 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
199 }
200 
201 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
202  *
203  * All tcp_full_space() is split to two parts: "network" buffer, allocated
204  * forward and advertised in receiver window (tp->rcv_wnd) and
205  * "application buffer", required to isolate scheduling/application
206  * latencies from network.
207  * window_clamp is maximal advertised window. It can be less than
208  * tcp_full_space(), in this case tcp_full_space() - window_clamp
209  * is reserved for "application" buffer. The less window_clamp is
210  * the smoother our behaviour from viewpoint of network, but the lower
211  * throughput and the higher sensitivity of the connection to losses. 8)
212  *
213  * rcv_ssthresh is more strict window_clamp used at "slow start"
214  * phase to predict further behaviour of this connection.
215  * It is used for two goals:
216  * - to enforce header prediction at sender, even when application
217  *   requires some significant "application buffer". It is check #1.
218  * - to prevent pruning of receive queue because of misprediction
219  *   of receiver window. Check #2.
220  *
221  * The scheme does not work when sender sends good segments opening
222  * window and then starts to feed us spagetti. But it should work
223  * in common situations. Otherwise, we have to rely on queue collapsing.
224  */
225 
226 /* Slow part of check#2. */
227 static int __tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
228 			     struct sk_buff *skb)
229 {
230 	/* Optimize this! */
231 	int truesize = tcp_win_from_space(skb->truesize)/2;
232 	int window = tcp_full_space(sk)/2;
233 
234 	while (tp->rcv_ssthresh <= window) {
235 		if (truesize <= skb->len)
236 			return 2*tp->ack.rcv_mss;
237 
238 		truesize >>= 1;
239 		window >>= 1;
240 	}
241 	return 0;
242 }
243 
244 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
245 				   struct sk_buff *skb)
246 {
247 	/* Check #1 */
248 	if (tp->rcv_ssthresh < tp->window_clamp &&
249 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
250 	    !tcp_memory_pressure) {
251 		int incr;
252 
253 		/* Check #2. Increase window, if skb with such overhead
254 		 * will fit to rcvbuf in future.
255 		 */
256 		if (tcp_win_from_space(skb->truesize) <= skb->len)
257 			incr = 2*tp->advmss;
258 		else
259 			incr = __tcp_grow_window(sk, tp, skb);
260 
261 		if (incr) {
262 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
263 			tp->ack.quick |= 1;
264 		}
265 	}
266 }
267 
268 /* 3. Tuning rcvbuf, when connection enters established state. */
269 
270 static void tcp_fixup_rcvbuf(struct sock *sk)
271 {
272 	struct tcp_sock *tp = tcp_sk(sk);
273 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
274 
275 	/* Try to select rcvbuf so that 4 mss-sized segments
276 	 * will fit to window and correspoding skbs will fit to our rcvbuf.
277 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
278 	 */
279 	while (tcp_win_from_space(rcvmem) < tp->advmss)
280 		rcvmem += 128;
281 	if (sk->sk_rcvbuf < 4 * rcvmem)
282 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
283 }
284 
285 /* 4. Try to fixup all. It is made iimediately after connection enters
286  *    established state.
287  */
288 static void tcp_init_buffer_space(struct sock *sk)
289 {
290 	struct tcp_sock *tp = tcp_sk(sk);
291 	int maxwin;
292 
293 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
294 		tcp_fixup_rcvbuf(sk);
295 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
296 		tcp_fixup_sndbuf(sk);
297 
298 	tp->rcvq_space.space = tp->rcv_wnd;
299 
300 	maxwin = tcp_full_space(sk);
301 
302 	if (tp->window_clamp >= maxwin) {
303 		tp->window_clamp = maxwin;
304 
305 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
306 			tp->window_clamp = max(maxwin -
307 					       (maxwin >> sysctl_tcp_app_win),
308 					       4 * tp->advmss);
309 	}
310 
311 	/* Force reservation of one segment. */
312 	if (sysctl_tcp_app_win &&
313 	    tp->window_clamp > 2 * tp->advmss &&
314 	    tp->window_clamp + tp->advmss > maxwin)
315 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
316 
317 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
318 	tp->snd_cwnd_stamp = tcp_time_stamp;
319 }
320 
321 /* 5. Recalculate window clamp after socket hit its memory bounds. */
322 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
323 {
324 	struct sk_buff *skb;
325 	unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
326 	int ofo_win = 0;
327 
328 	tp->ack.quick = 0;
329 
330 	skb_queue_walk(&tp->out_of_order_queue, skb) {
331 		ofo_win += skb->len;
332 	}
333 
334 	/* If overcommit is due to out of order segments,
335 	 * do not clamp window. Try to expand rcvbuf instead.
336 	 */
337 	if (ofo_win) {
338 		if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
339 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
340 		    !tcp_memory_pressure &&
341 		    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
342 			sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
343 					    sysctl_tcp_rmem[2]);
344 	}
345 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
346 		app_win += ofo_win;
347 		if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf)
348 			app_win >>= 1;
349 		if (app_win > tp->ack.rcv_mss)
350 			app_win -= tp->ack.rcv_mss;
351 		app_win = max(app_win, 2U*tp->advmss);
352 
353 		if (!ofo_win)
354 			tp->window_clamp = min(tp->window_clamp, app_win);
355 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
356 	}
357 }
358 
359 /* Receiver "autotuning" code.
360  *
361  * The algorithm for RTT estimation w/o timestamps is based on
362  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
363  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
364  *
365  * More detail on this code can be found at
366  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
367  * though this reference is out of date.  A new paper
368  * is pending.
369  */
370 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
371 {
372 	u32 new_sample = tp->rcv_rtt_est.rtt;
373 	long m = sample;
374 
375 	if (m == 0)
376 		m = 1;
377 
378 	if (new_sample != 0) {
379 		/* If we sample in larger samples in the non-timestamp
380 		 * case, we could grossly overestimate the RTT especially
381 		 * with chatty applications or bulk transfer apps which
382 		 * are stalled on filesystem I/O.
383 		 *
384 		 * Also, since we are only going for a minimum in the
385 		 * non-timestamp case, we do not smoothe things out
386 		 * else with timestamps disabled convergance takes too
387 		 * long.
388 		 */
389 		if (!win_dep) {
390 			m -= (new_sample >> 3);
391 			new_sample += m;
392 		} else if (m < new_sample)
393 			new_sample = m << 3;
394 	} else {
395 		/* No previous mesaure. */
396 		new_sample = m << 3;
397 	}
398 
399 	if (tp->rcv_rtt_est.rtt != new_sample)
400 		tp->rcv_rtt_est.rtt = new_sample;
401 }
402 
403 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
404 {
405 	if (tp->rcv_rtt_est.time == 0)
406 		goto new_measure;
407 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
408 		return;
409 	tcp_rcv_rtt_update(tp,
410 			   jiffies - tp->rcv_rtt_est.time,
411 			   1);
412 
413 new_measure:
414 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
415 	tp->rcv_rtt_est.time = tcp_time_stamp;
416 }
417 
418 static inline void tcp_rcv_rtt_measure_ts(struct tcp_sock *tp, struct sk_buff *skb)
419 {
420 	if (tp->rx_opt.rcv_tsecr &&
421 	    (TCP_SKB_CB(skb)->end_seq -
422 	     TCP_SKB_CB(skb)->seq >= tp->ack.rcv_mss))
423 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
424 }
425 
426 /*
427  * This function should be called every time data is copied to user space.
428  * It calculates the appropriate TCP receive buffer space.
429  */
430 void tcp_rcv_space_adjust(struct sock *sk)
431 {
432 	struct tcp_sock *tp = tcp_sk(sk);
433 	int time;
434 	int space;
435 
436 	if (tp->rcvq_space.time == 0)
437 		goto new_measure;
438 
439 	time = tcp_time_stamp - tp->rcvq_space.time;
440 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
441 	    tp->rcv_rtt_est.rtt == 0)
442 		return;
443 
444 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
445 
446 	space = max(tp->rcvq_space.space, space);
447 
448 	if (tp->rcvq_space.space != space) {
449 		int rcvmem;
450 
451 		tp->rcvq_space.space = space;
452 
453 		if (sysctl_tcp_moderate_rcvbuf) {
454 			int new_clamp = space;
455 
456 			/* Receive space grows, normalize in order to
457 			 * take into account packet headers and sk_buff
458 			 * structure overhead.
459 			 */
460 			space /= tp->advmss;
461 			if (!space)
462 				space = 1;
463 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
464 				  16 + sizeof(struct sk_buff));
465 			while (tcp_win_from_space(rcvmem) < tp->advmss)
466 				rcvmem += 128;
467 			space *= rcvmem;
468 			space = min(space, sysctl_tcp_rmem[2]);
469 			if (space > sk->sk_rcvbuf) {
470 				sk->sk_rcvbuf = space;
471 
472 				/* Make the window clamp follow along.  */
473 				tp->window_clamp = new_clamp;
474 			}
475 		}
476 	}
477 
478 new_measure:
479 	tp->rcvq_space.seq = tp->copied_seq;
480 	tp->rcvq_space.time = tcp_time_stamp;
481 }
482 
483 /* There is something which you must keep in mind when you analyze the
484  * behavior of the tp->ato delayed ack timeout interval.  When a
485  * connection starts up, we want to ack as quickly as possible.  The
486  * problem is that "good" TCP's do slow start at the beginning of data
487  * transmission.  The means that until we send the first few ACK's the
488  * sender will sit on his end and only queue most of his data, because
489  * he can only send snd_cwnd unacked packets at any given time.  For
490  * each ACK we send, he increments snd_cwnd and transmits more of his
491  * queue.  -DaveM
492  */
493 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
494 {
495 	u32 now;
496 
497 	tcp_schedule_ack(tp);
498 
499 	tcp_measure_rcv_mss(tp, skb);
500 
501 	tcp_rcv_rtt_measure(tp);
502 
503 	now = tcp_time_stamp;
504 
505 	if (!tp->ack.ato) {
506 		/* The _first_ data packet received, initialize
507 		 * delayed ACK engine.
508 		 */
509 		tcp_incr_quickack(tp);
510 		tp->ack.ato = TCP_ATO_MIN;
511 	} else {
512 		int m = now - tp->ack.lrcvtime;
513 
514 		if (m <= TCP_ATO_MIN/2) {
515 			/* The fastest case is the first. */
516 			tp->ack.ato = (tp->ack.ato>>1) + TCP_ATO_MIN/2;
517 		} else if (m < tp->ack.ato) {
518 			tp->ack.ato = (tp->ack.ato>>1) + m;
519 			if (tp->ack.ato > tp->rto)
520 				tp->ack.ato = tp->rto;
521 		} else if (m > tp->rto) {
522 			/* Too long gap. Apparently sender falled to
523 			 * restart window, so that we send ACKs quickly.
524 			 */
525 			tcp_incr_quickack(tp);
526 			sk_stream_mem_reclaim(sk);
527 		}
528 	}
529 	tp->ack.lrcvtime = now;
530 
531 	TCP_ECN_check_ce(tp, skb);
532 
533 	if (skb->len >= 128)
534 		tcp_grow_window(sk, tp, skb);
535 }
536 
537 /* Called to compute a smoothed rtt estimate. The data fed to this
538  * routine either comes from timestamps, or from segments that were
539  * known _not_ to have been retransmitted [see Karn/Partridge
540  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
541  * piece by Van Jacobson.
542  * NOTE: the next three routines used to be one big routine.
543  * To save cycles in the RFC 1323 implementation it was better to break
544  * it up into three procedures. -- erics
545  */
546 static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt, u32 *usrtt)
547 {
548 	long m = mrtt; /* RTT */
549 
550 	/*	The following amusing code comes from Jacobson's
551 	 *	article in SIGCOMM '88.  Note that rtt and mdev
552 	 *	are scaled versions of rtt and mean deviation.
553 	 *	This is designed to be as fast as possible
554 	 *	m stands for "measurement".
555 	 *
556 	 *	On a 1990 paper the rto value is changed to:
557 	 *	RTO = rtt + 4 * mdev
558 	 *
559 	 * Funny. This algorithm seems to be very broken.
560 	 * These formulae increase RTO, when it should be decreased, increase
561 	 * too slowly, when it should be incresed fastly, decrease too fastly
562 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
563 	 * does not matter how to _calculate_ it. Seems, it was trap
564 	 * that VJ failed to avoid. 8)
565 	 */
566 	if(m == 0)
567 		m = 1;
568 	if (tp->srtt != 0) {
569 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
570 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
571 		if (m < 0) {
572 			m = -m;		/* m is now abs(error) */
573 			m -= (tp->mdev >> 2);   /* similar update on mdev */
574 			/* This is similar to one of Eifel findings.
575 			 * Eifel blocks mdev updates when rtt decreases.
576 			 * This solution is a bit different: we use finer gain
577 			 * for mdev in this case (alpha*beta).
578 			 * Like Eifel it also prevents growth of rto,
579 			 * but also it limits too fast rto decreases,
580 			 * happening in pure Eifel.
581 			 */
582 			if (m > 0)
583 				m >>= 3;
584 		} else {
585 			m -= (tp->mdev >> 2);   /* similar update on mdev */
586 		}
587 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
588 		if (tp->mdev > tp->mdev_max) {
589 			tp->mdev_max = tp->mdev;
590 			if (tp->mdev_max > tp->rttvar)
591 				tp->rttvar = tp->mdev_max;
592 		}
593 		if (after(tp->snd_una, tp->rtt_seq)) {
594 			if (tp->mdev_max < tp->rttvar)
595 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
596 			tp->rtt_seq = tp->snd_nxt;
597 			tp->mdev_max = TCP_RTO_MIN;
598 		}
599 	} else {
600 		/* no previous measure. */
601 		tp->srtt = m<<3;	/* take the measured time to be rtt */
602 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
603 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
604 		tp->rtt_seq = tp->snd_nxt;
605 	}
606 
607 	if (tp->ca_ops->rtt_sample)
608 		tp->ca_ops->rtt_sample(tp, *usrtt);
609 }
610 
611 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
612  * routine referred to above.
613  */
614 static inline void tcp_set_rto(struct tcp_sock *tp)
615 {
616 	/* Old crap is replaced with new one. 8)
617 	 *
618 	 * More seriously:
619 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
620 	 *    It cannot be less due to utterly erratic ACK generation made
621 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
622 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
623 	 *    is invisible. Actually, Linux-2.4 also generates erratic
624 	 *    ACKs in some curcumstances.
625 	 */
626 	tp->rto = (tp->srtt >> 3) + tp->rttvar;
627 
628 	/* 2. Fixups made earlier cannot be right.
629 	 *    If we do not estimate RTO correctly without them,
630 	 *    all the algo is pure shit and should be replaced
631 	 *    with correct one. It is exaclty, which we pretend to do.
632 	 */
633 }
634 
635 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
636  * guarantees that rto is higher.
637  */
638 static inline void tcp_bound_rto(struct tcp_sock *tp)
639 {
640 	if (tp->rto > TCP_RTO_MAX)
641 		tp->rto = TCP_RTO_MAX;
642 }
643 
644 /* Save metrics learned by this TCP session.
645    This function is called only, when TCP finishes successfully
646    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
647  */
648 void tcp_update_metrics(struct sock *sk)
649 {
650 	struct tcp_sock *tp = tcp_sk(sk);
651 	struct dst_entry *dst = __sk_dst_get(sk);
652 
653 	if (sysctl_tcp_nometrics_save)
654 		return;
655 
656 	dst_confirm(dst);
657 
658 	if (dst && (dst->flags&DST_HOST)) {
659 		int m;
660 
661 		if (tp->backoff || !tp->srtt) {
662 			/* This session failed to estimate rtt. Why?
663 			 * Probably, no packets returned in time.
664 			 * Reset our results.
665 			 */
666 			if (!(dst_metric_locked(dst, RTAX_RTT)))
667 				dst->metrics[RTAX_RTT-1] = 0;
668 			return;
669 		}
670 
671 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
672 
673 		/* If newly calculated rtt larger than stored one,
674 		 * store new one. Otherwise, use EWMA. Remember,
675 		 * rtt overestimation is always better than underestimation.
676 		 */
677 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
678 			if (m <= 0)
679 				dst->metrics[RTAX_RTT-1] = tp->srtt;
680 			else
681 				dst->metrics[RTAX_RTT-1] -= (m>>3);
682 		}
683 
684 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
685 			if (m < 0)
686 				m = -m;
687 
688 			/* Scale deviation to rttvar fixed point */
689 			m >>= 1;
690 			if (m < tp->mdev)
691 				m = tp->mdev;
692 
693 			if (m >= dst_metric(dst, RTAX_RTTVAR))
694 				dst->metrics[RTAX_RTTVAR-1] = m;
695 			else
696 				dst->metrics[RTAX_RTTVAR-1] -=
697 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
698 		}
699 
700 		if (tp->snd_ssthresh >= 0xFFFF) {
701 			/* Slow start still did not finish. */
702 			if (dst_metric(dst, RTAX_SSTHRESH) &&
703 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
704 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
705 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
706 			if (!dst_metric_locked(dst, RTAX_CWND) &&
707 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
708 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
709 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
710 			   tp->ca_state == TCP_CA_Open) {
711 			/* Cong. avoidance phase, cwnd is reliable. */
712 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
713 				dst->metrics[RTAX_SSTHRESH-1] =
714 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
715 			if (!dst_metric_locked(dst, RTAX_CWND))
716 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
717 		} else {
718 			/* Else slow start did not finish, cwnd is non-sense,
719 			   ssthresh may be also invalid.
720 			 */
721 			if (!dst_metric_locked(dst, RTAX_CWND))
722 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
723 			if (dst->metrics[RTAX_SSTHRESH-1] &&
724 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
725 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
726 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
727 		}
728 
729 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
730 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
731 			    tp->reordering != sysctl_tcp_reordering)
732 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
733 		}
734 	}
735 }
736 
737 /* Numbers are taken from RFC2414.  */
738 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
739 {
740 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
741 
742 	if (!cwnd) {
743 		if (tp->mss_cache_std > 1460)
744 			cwnd = 2;
745 		else
746 			cwnd = (tp->mss_cache_std > 1095) ? 3 : 4;
747 	}
748 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
749 }
750 
751 /* Initialize metrics on socket. */
752 
753 static void tcp_init_metrics(struct sock *sk)
754 {
755 	struct tcp_sock *tp = tcp_sk(sk);
756 	struct dst_entry *dst = __sk_dst_get(sk);
757 
758 	if (dst == NULL)
759 		goto reset;
760 
761 	dst_confirm(dst);
762 
763 	if (dst_metric_locked(dst, RTAX_CWND))
764 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
765 	if (dst_metric(dst, RTAX_SSTHRESH)) {
766 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
767 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
768 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
769 	}
770 	if (dst_metric(dst, RTAX_REORDERING) &&
771 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
772 		tp->rx_opt.sack_ok &= ~2;
773 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
774 	}
775 
776 	if (dst_metric(dst, RTAX_RTT) == 0)
777 		goto reset;
778 
779 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
780 		goto reset;
781 
782 	/* Initial rtt is determined from SYN,SYN-ACK.
783 	 * The segment is small and rtt may appear much
784 	 * less than real one. Use per-dst memory
785 	 * to make it more realistic.
786 	 *
787 	 * A bit of theory. RTT is time passed after "normal" sized packet
788 	 * is sent until it is ACKed. In normal curcumstances sending small
789 	 * packets force peer to delay ACKs and calculation is correct too.
790 	 * The algorithm is adaptive and, provided we follow specs, it
791 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
792 	 * tricks sort of "quick acks" for time long enough to decrease RTT
793 	 * to low value, and then abruptly stops to do it and starts to delay
794 	 * ACKs, wait for troubles.
795 	 */
796 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
797 		tp->srtt = dst_metric(dst, RTAX_RTT);
798 		tp->rtt_seq = tp->snd_nxt;
799 	}
800 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
801 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
802 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
803 	}
804 	tcp_set_rto(tp);
805 	tcp_bound_rto(tp);
806 	if (tp->rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
807 		goto reset;
808 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
809 	tp->snd_cwnd_stamp = tcp_time_stamp;
810 	return;
811 
812 reset:
813 	/* Play conservative. If timestamps are not
814 	 * supported, TCP will fail to recalculate correct
815 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
816 	 */
817 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
818 		tp->srtt = 0;
819 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
820 		tp->rto = TCP_TIMEOUT_INIT;
821 	}
822 }
823 
824 static void tcp_update_reordering(struct tcp_sock *tp, int metric, int ts)
825 {
826 	if (metric > tp->reordering) {
827 		tp->reordering = min(TCP_MAX_REORDERING, metric);
828 
829 		/* This exciting event is worth to be remembered. 8) */
830 		if (ts)
831 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
832 		else if (IsReno(tp))
833 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
834 		else if (IsFack(tp))
835 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
836 		else
837 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
838 #if FASTRETRANS_DEBUG > 1
839 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
840 		       tp->rx_opt.sack_ok, tp->ca_state,
841 		       tp->reordering,
842 		       tp->fackets_out,
843 		       tp->sacked_out,
844 		       tp->undo_marker ? tp->undo_retrans : 0);
845 #endif
846 		/* Disable FACK yet. */
847 		tp->rx_opt.sack_ok &= ~2;
848 	}
849 }
850 
851 /* This procedure tags the retransmission queue when SACKs arrive.
852  *
853  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
854  * Packets in queue with these bits set are counted in variables
855  * sacked_out, retrans_out and lost_out, correspondingly.
856  *
857  * Valid combinations are:
858  * Tag  InFlight	Description
859  * 0	1		- orig segment is in flight.
860  * S	0		- nothing flies, orig reached receiver.
861  * L	0		- nothing flies, orig lost by net.
862  * R	2		- both orig and retransmit are in flight.
863  * L|R	1		- orig is lost, retransmit is in flight.
864  * S|R  1		- orig reached receiver, retrans is still in flight.
865  * (L|S|R is logically valid, it could occur when L|R is sacked,
866  *  but it is equivalent to plain S and code short-curcuits it to S.
867  *  L|S is logically invalid, it would mean -1 packet in flight 8))
868  *
869  * These 6 states form finite state machine, controlled by the following events:
870  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
871  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
872  * 3. Loss detection event of one of three flavors:
873  *	A. Scoreboard estimator decided the packet is lost.
874  *	   A'. Reno "three dupacks" marks head of queue lost.
875  *	   A''. Its FACK modfication, head until snd.fack is lost.
876  *	B. SACK arrives sacking data transmitted after never retransmitted
877  *	   hole was sent out.
878  *	C. SACK arrives sacking SND.NXT at the moment, when the
879  *	   segment was retransmitted.
880  * 4. D-SACK added new rule: D-SACK changes any tag to S.
881  *
882  * It is pleasant to note, that state diagram turns out to be commutative,
883  * so that we are allowed not to be bothered by order of our actions,
884  * when multiple events arrive simultaneously. (see the function below).
885  *
886  * Reordering detection.
887  * --------------------
888  * Reordering metric is maximal distance, which a packet can be displaced
889  * in packet stream. With SACKs we can estimate it:
890  *
891  * 1. SACK fills old hole and the corresponding segment was not
892  *    ever retransmitted -> reordering. Alas, we cannot use it
893  *    when segment was retransmitted.
894  * 2. The last flaw is solved with D-SACK. D-SACK arrives
895  *    for retransmitted and already SACKed segment -> reordering..
896  * Both of these heuristics are not used in Loss state, when we cannot
897  * account for retransmits accurately.
898  */
899 static int
900 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
901 {
902 	struct tcp_sock *tp = tcp_sk(sk);
903 	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
904 	struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
905 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
906 	int reord = tp->packets_out;
907 	int prior_fackets;
908 	u32 lost_retrans = 0;
909 	int flag = 0;
910 	int i;
911 
912 	/* So, SACKs for already sent large segments will be lost.
913 	 * Not good, but alternative is to resegment the queue. */
914 	if (sk->sk_route_caps & NETIF_F_TSO) {
915 		sk->sk_route_caps &= ~NETIF_F_TSO;
916 		sock_set_flag(sk, SOCK_NO_LARGESEND);
917 		tp->mss_cache = tp->mss_cache_std;
918 	}
919 
920 	if (!tp->sacked_out)
921 		tp->fackets_out = 0;
922 	prior_fackets = tp->fackets_out;
923 
924 	for (i=0; i<num_sacks; i++, sp++) {
925 		struct sk_buff *skb;
926 		__u32 start_seq = ntohl(sp->start_seq);
927 		__u32 end_seq = ntohl(sp->end_seq);
928 		int fack_count = 0;
929 		int dup_sack = 0;
930 
931 		/* Check for D-SACK. */
932 		if (i == 0) {
933 			u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
934 
935 			if (before(start_seq, ack)) {
936 				dup_sack = 1;
937 				tp->rx_opt.sack_ok |= 4;
938 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
939 			} else if (num_sacks > 1 &&
940 				   !after(end_seq, ntohl(sp[1].end_seq)) &&
941 				   !before(start_seq, ntohl(sp[1].start_seq))) {
942 				dup_sack = 1;
943 				tp->rx_opt.sack_ok |= 4;
944 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
945 			}
946 
947 			/* D-SACK for already forgotten data...
948 			 * Do dumb counting. */
949 			if (dup_sack &&
950 			    !after(end_seq, prior_snd_una) &&
951 			    after(end_seq, tp->undo_marker))
952 				tp->undo_retrans--;
953 
954 			/* Eliminate too old ACKs, but take into
955 			 * account more or less fresh ones, they can
956 			 * contain valid SACK info.
957 			 */
958 			if (before(ack, prior_snd_una - tp->max_window))
959 				return 0;
960 		}
961 
962 		/* Event "B" in the comment above. */
963 		if (after(end_seq, tp->high_seq))
964 			flag |= FLAG_DATA_LOST;
965 
966 		sk_stream_for_retrans_queue(skb, sk) {
967 			u8 sacked = TCP_SKB_CB(skb)->sacked;
968 			int in_sack;
969 
970 			/* The retransmission queue is always in order, so
971 			 * we can short-circuit the walk early.
972 			 */
973 			if(!before(TCP_SKB_CB(skb)->seq, end_seq))
974 				break;
975 
976 			fack_count += tcp_skb_pcount(skb);
977 
978 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
979 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
980 
981 			/* Account D-SACK for retransmitted packet. */
982 			if ((dup_sack && in_sack) &&
983 			    (sacked & TCPCB_RETRANS) &&
984 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
985 				tp->undo_retrans--;
986 
987 			/* The frame is ACKed. */
988 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
989 				if (sacked&TCPCB_RETRANS) {
990 					if ((dup_sack && in_sack) &&
991 					    (sacked&TCPCB_SACKED_ACKED))
992 						reord = min(fack_count, reord);
993 				} else {
994 					/* If it was in a hole, we detected reordering. */
995 					if (fack_count < prior_fackets &&
996 					    !(sacked&TCPCB_SACKED_ACKED))
997 						reord = min(fack_count, reord);
998 				}
999 
1000 				/* Nothing to do; acked frame is about to be dropped. */
1001 				continue;
1002 			}
1003 
1004 			if ((sacked&TCPCB_SACKED_RETRANS) &&
1005 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1006 			    (!lost_retrans || after(end_seq, lost_retrans)))
1007 				lost_retrans = end_seq;
1008 
1009 			if (!in_sack)
1010 				continue;
1011 
1012 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1013 				if (sacked & TCPCB_SACKED_RETRANS) {
1014 					/* If the segment is not tagged as lost,
1015 					 * we do not clear RETRANS, believing
1016 					 * that retransmission is still in flight.
1017 					 */
1018 					if (sacked & TCPCB_LOST) {
1019 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1020 						tp->lost_out -= tcp_skb_pcount(skb);
1021 						tp->retrans_out -= tcp_skb_pcount(skb);
1022 					}
1023 				} else {
1024 					/* New sack for not retransmitted frame,
1025 					 * which was in hole. It is reordering.
1026 					 */
1027 					if (!(sacked & TCPCB_RETRANS) &&
1028 					    fack_count < prior_fackets)
1029 						reord = min(fack_count, reord);
1030 
1031 					if (sacked & TCPCB_LOST) {
1032 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1033 						tp->lost_out -= tcp_skb_pcount(skb);
1034 					}
1035 				}
1036 
1037 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1038 				flag |= FLAG_DATA_SACKED;
1039 				tp->sacked_out += tcp_skb_pcount(skb);
1040 
1041 				if (fack_count > tp->fackets_out)
1042 					tp->fackets_out = fack_count;
1043 			} else {
1044 				if (dup_sack && (sacked&TCPCB_RETRANS))
1045 					reord = min(fack_count, reord);
1046 			}
1047 
1048 			/* D-SACK. We can detect redundant retransmission
1049 			 * in S|R and plain R frames and clear it.
1050 			 * undo_retrans is decreased above, L|R frames
1051 			 * are accounted above as well.
1052 			 */
1053 			if (dup_sack &&
1054 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1055 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1056 				tp->retrans_out -= tcp_skb_pcount(skb);
1057 			}
1058 		}
1059 	}
1060 
1061 	/* Check for lost retransmit. This superb idea is
1062 	 * borrowed from "ratehalving". Event "C".
1063 	 * Later note: FACK people cheated me again 8),
1064 	 * we have to account for reordering! Ugly,
1065 	 * but should help.
1066 	 */
1067 	if (lost_retrans && tp->ca_state == TCP_CA_Recovery) {
1068 		struct sk_buff *skb;
1069 
1070 		sk_stream_for_retrans_queue(skb, sk) {
1071 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1072 				break;
1073 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1074 				continue;
1075 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1076 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1077 			    (IsFack(tp) ||
1078 			     !before(lost_retrans,
1079 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1080 				     tp->mss_cache_std))) {
1081 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1082 				tp->retrans_out -= tcp_skb_pcount(skb);
1083 
1084 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1085 					tp->lost_out += tcp_skb_pcount(skb);
1086 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1087 					flag |= FLAG_DATA_SACKED;
1088 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1089 				}
1090 			}
1091 		}
1092 	}
1093 
1094 	tp->left_out = tp->sacked_out + tp->lost_out;
1095 
1096 	if ((reord < tp->fackets_out) && tp->ca_state != TCP_CA_Loss)
1097 		tcp_update_reordering(tp, ((tp->fackets_out + 1) - reord), 0);
1098 
1099 #if FASTRETRANS_DEBUG > 0
1100 	BUG_TRAP((int)tp->sacked_out >= 0);
1101 	BUG_TRAP((int)tp->lost_out >= 0);
1102 	BUG_TRAP((int)tp->retrans_out >= 0);
1103 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1104 #endif
1105 	return flag;
1106 }
1107 
1108 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1109  * segments to see from the next ACKs whether any data was really missing.
1110  * If the RTO was spurious, new ACKs should arrive.
1111  */
1112 void tcp_enter_frto(struct sock *sk)
1113 {
1114 	struct tcp_sock *tp = tcp_sk(sk);
1115 	struct sk_buff *skb;
1116 
1117 	tp->frto_counter = 1;
1118 
1119 	if (tp->ca_state <= TCP_CA_Disorder ||
1120             tp->snd_una == tp->high_seq ||
1121             (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
1122 		tp->prior_ssthresh = tcp_current_ssthresh(tp);
1123 		tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1124 		tcp_ca_event(tp, CA_EVENT_FRTO);
1125 	}
1126 
1127 	/* Have to clear retransmission markers here to keep the bookkeeping
1128 	 * in shape, even though we are not yet in Loss state.
1129 	 * If something was really lost, it is eventually caught up
1130 	 * in tcp_enter_frto_loss.
1131 	 */
1132 	tp->retrans_out = 0;
1133 	tp->undo_marker = tp->snd_una;
1134 	tp->undo_retrans = 0;
1135 
1136 	sk_stream_for_retrans_queue(skb, sk) {
1137 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1138 	}
1139 	tcp_sync_left_out(tp);
1140 
1141 	tcp_set_ca_state(tp, TCP_CA_Open);
1142 	tp->frto_highmark = tp->snd_nxt;
1143 }
1144 
1145 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1146  * which indicates that we should follow the traditional RTO recovery,
1147  * i.e. mark everything lost and do go-back-N retransmission.
1148  */
1149 static void tcp_enter_frto_loss(struct sock *sk)
1150 {
1151 	struct tcp_sock *tp = tcp_sk(sk);
1152 	struct sk_buff *skb;
1153 	int cnt = 0;
1154 
1155 	tp->sacked_out = 0;
1156 	tp->lost_out = 0;
1157 	tp->fackets_out = 0;
1158 
1159 	sk_stream_for_retrans_queue(skb, sk) {
1160 		cnt += tcp_skb_pcount(skb);
1161 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1162 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1163 
1164 			/* Do not mark those segments lost that were
1165 			 * forward transmitted after RTO
1166 			 */
1167 			if (!after(TCP_SKB_CB(skb)->end_seq,
1168 				   tp->frto_highmark)) {
1169 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1170 				tp->lost_out += tcp_skb_pcount(skb);
1171 			}
1172 		} else {
1173 			tp->sacked_out += tcp_skb_pcount(skb);
1174 			tp->fackets_out = cnt;
1175 		}
1176 	}
1177 	tcp_sync_left_out(tp);
1178 
1179 	tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1180 	tp->snd_cwnd_cnt = 0;
1181 	tp->snd_cwnd_stamp = tcp_time_stamp;
1182 	tp->undo_marker = 0;
1183 	tp->frto_counter = 0;
1184 
1185 	tp->reordering = min_t(unsigned int, tp->reordering,
1186 					     sysctl_tcp_reordering);
1187 	tcp_set_ca_state(tp, TCP_CA_Loss);
1188 	tp->high_seq = tp->frto_highmark;
1189 	TCP_ECN_queue_cwr(tp);
1190 }
1191 
1192 void tcp_clear_retrans(struct tcp_sock *tp)
1193 {
1194 	tp->left_out = 0;
1195 	tp->retrans_out = 0;
1196 
1197 	tp->fackets_out = 0;
1198 	tp->sacked_out = 0;
1199 	tp->lost_out = 0;
1200 
1201 	tp->undo_marker = 0;
1202 	tp->undo_retrans = 0;
1203 }
1204 
1205 /* Enter Loss state. If "how" is not zero, forget all SACK information
1206  * and reset tags completely, otherwise preserve SACKs. If receiver
1207  * dropped its ofo queue, we will know this due to reneging detection.
1208  */
1209 void tcp_enter_loss(struct sock *sk, int how)
1210 {
1211 	struct tcp_sock *tp = tcp_sk(sk);
1212 	struct sk_buff *skb;
1213 	int cnt = 0;
1214 
1215 	/* Reduce ssthresh if it has not yet been made inside this window. */
1216 	if (tp->ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1217 	    (tp->ca_state == TCP_CA_Loss && !tp->retransmits)) {
1218 		tp->prior_ssthresh = tcp_current_ssthresh(tp);
1219 		tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1220 		tcp_ca_event(tp, CA_EVENT_LOSS);
1221 	}
1222 	tp->snd_cwnd	   = 1;
1223 	tp->snd_cwnd_cnt   = 0;
1224 	tp->snd_cwnd_stamp = tcp_time_stamp;
1225 
1226 	tcp_clear_retrans(tp);
1227 
1228 	/* Push undo marker, if it was plain RTO and nothing
1229 	 * was retransmitted. */
1230 	if (!how)
1231 		tp->undo_marker = tp->snd_una;
1232 
1233 	sk_stream_for_retrans_queue(skb, sk) {
1234 		cnt += tcp_skb_pcount(skb);
1235 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1236 			tp->undo_marker = 0;
1237 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1238 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1239 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1240 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1241 			tp->lost_out += tcp_skb_pcount(skb);
1242 		} else {
1243 			tp->sacked_out += tcp_skb_pcount(skb);
1244 			tp->fackets_out = cnt;
1245 		}
1246 	}
1247 	tcp_sync_left_out(tp);
1248 
1249 	tp->reordering = min_t(unsigned int, tp->reordering,
1250 					     sysctl_tcp_reordering);
1251 	tcp_set_ca_state(tp, TCP_CA_Loss);
1252 	tp->high_seq = tp->snd_nxt;
1253 	TCP_ECN_queue_cwr(tp);
1254 }
1255 
1256 static int tcp_check_sack_reneging(struct sock *sk, struct tcp_sock *tp)
1257 {
1258 	struct sk_buff *skb;
1259 
1260 	/* If ACK arrived pointing to a remembered SACK,
1261 	 * it means that our remembered SACKs do not reflect
1262 	 * real state of receiver i.e.
1263 	 * receiver _host_ is heavily congested (or buggy).
1264 	 * Do processing similar to RTO timeout.
1265 	 */
1266 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1267 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1268 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1269 
1270 		tcp_enter_loss(sk, 1);
1271 		tp->retransmits++;
1272 		tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1273 		tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1274 		return 1;
1275 	}
1276 	return 0;
1277 }
1278 
1279 static inline int tcp_fackets_out(struct tcp_sock *tp)
1280 {
1281 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1282 }
1283 
1284 static inline int tcp_skb_timedout(struct tcp_sock *tp, struct sk_buff *skb)
1285 {
1286 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > tp->rto);
1287 }
1288 
1289 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1290 {
1291 	return tp->packets_out &&
1292 	       tcp_skb_timedout(tp, skb_peek(&sk->sk_write_queue));
1293 }
1294 
1295 /* Linux NewReno/SACK/FACK/ECN state machine.
1296  * --------------------------------------
1297  *
1298  * "Open"	Normal state, no dubious events, fast path.
1299  * "Disorder"   In all the respects it is "Open",
1300  *		but requires a bit more attention. It is entered when
1301  *		we see some SACKs or dupacks. It is split of "Open"
1302  *		mainly to move some processing from fast path to slow one.
1303  * "CWR"	CWND was reduced due to some Congestion Notification event.
1304  *		It can be ECN, ICMP source quench, local device congestion.
1305  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1306  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1307  *
1308  * tcp_fastretrans_alert() is entered:
1309  * - each incoming ACK, if state is not "Open"
1310  * - when arrived ACK is unusual, namely:
1311  *	* SACK
1312  *	* Duplicate ACK.
1313  *	* ECN ECE.
1314  *
1315  * Counting packets in flight is pretty simple.
1316  *
1317  *	in_flight = packets_out - left_out + retrans_out
1318  *
1319  *	packets_out is SND.NXT-SND.UNA counted in packets.
1320  *
1321  *	retrans_out is number of retransmitted segments.
1322  *
1323  *	left_out is number of segments left network, but not ACKed yet.
1324  *
1325  *		left_out = sacked_out + lost_out
1326  *
1327  *     sacked_out: Packets, which arrived to receiver out of order
1328  *		   and hence not ACKed. With SACKs this number is simply
1329  *		   amount of SACKed data. Even without SACKs
1330  *		   it is easy to give pretty reliable estimate of this number,
1331  *		   counting duplicate ACKs.
1332  *
1333  *       lost_out: Packets lost by network. TCP has no explicit
1334  *		   "loss notification" feedback from network (for now).
1335  *		   It means that this number can be only _guessed_.
1336  *		   Actually, it is the heuristics to predict lossage that
1337  *		   distinguishes different algorithms.
1338  *
1339  *	F.e. after RTO, when all the queue is considered as lost,
1340  *	lost_out = packets_out and in_flight = retrans_out.
1341  *
1342  *		Essentially, we have now two algorithms counting
1343  *		lost packets.
1344  *
1345  *		FACK: It is the simplest heuristics. As soon as we decided
1346  *		that something is lost, we decide that _all_ not SACKed
1347  *		packets until the most forward SACK are lost. I.e.
1348  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1349  *		It is absolutely correct estimate, if network does not reorder
1350  *		packets. And it loses any connection to reality when reordering
1351  *		takes place. We use FACK by default until reordering
1352  *		is suspected on the path to this destination.
1353  *
1354  *		NewReno: when Recovery is entered, we assume that one segment
1355  *		is lost (classic Reno). While we are in Recovery and
1356  *		a partial ACK arrives, we assume that one more packet
1357  *		is lost (NewReno). This heuristics are the same in NewReno
1358  *		and SACK.
1359  *
1360  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1361  *  deflation etc. CWND is real congestion window, never inflated, changes
1362  *  only according to classic VJ rules.
1363  *
1364  * Really tricky (and requiring careful tuning) part of algorithm
1365  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1366  * The first determines the moment _when_ we should reduce CWND and,
1367  * hence, slow down forward transmission. In fact, it determines the moment
1368  * when we decide that hole is caused by loss, rather than by a reorder.
1369  *
1370  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1371  * holes, caused by lost packets.
1372  *
1373  * And the most logically complicated part of algorithm is undo
1374  * heuristics. We detect false retransmits due to both too early
1375  * fast retransmit (reordering) and underestimated RTO, analyzing
1376  * timestamps and D-SACKs. When we detect that some segments were
1377  * retransmitted by mistake and CWND reduction was wrong, we undo
1378  * window reduction and abort recovery phase. This logic is hidden
1379  * inside several functions named tcp_try_undo_<something>.
1380  */
1381 
1382 /* This function decides, when we should leave Disordered state
1383  * and enter Recovery phase, reducing congestion window.
1384  *
1385  * Main question: may we further continue forward transmission
1386  * with the same cwnd?
1387  */
1388 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1389 {
1390 	__u32 packets_out;
1391 
1392 	/* Trick#1: The loss is proven. */
1393 	if (tp->lost_out)
1394 		return 1;
1395 
1396 	/* Not-A-Trick#2 : Classic rule... */
1397 	if (tcp_fackets_out(tp) > tp->reordering)
1398 		return 1;
1399 
1400 	/* Trick#3 : when we use RFC2988 timer restart, fast
1401 	 * retransmit can be triggered by timeout of queue head.
1402 	 */
1403 	if (tcp_head_timedout(sk, tp))
1404 		return 1;
1405 
1406 	/* Trick#4: It is still not OK... But will it be useful to delay
1407 	 * recovery more?
1408 	 */
1409 	packets_out = tp->packets_out;
1410 	if (packets_out <= tp->reordering &&
1411 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1412 	    !tcp_may_send_now(sk, tp)) {
1413 		/* We have nothing to send. This connection is limited
1414 		 * either by receiver window or by application.
1415 		 */
1416 		return 1;
1417 	}
1418 
1419 	return 0;
1420 }
1421 
1422 /* If we receive more dupacks than we expected counting segments
1423  * in assumption of absent reordering, interpret this as reordering.
1424  * The only another reason could be bug in receiver TCP.
1425  */
1426 static void tcp_check_reno_reordering(struct tcp_sock *tp, int addend)
1427 {
1428 	u32 holes;
1429 
1430 	holes = max(tp->lost_out, 1U);
1431 	holes = min(holes, tp->packets_out);
1432 
1433 	if ((tp->sacked_out + holes) > tp->packets_out) {
1434 		tp->sacked_out = tp->packets_out - holes;
1435 		tcp_update_reordering(tp, tp->packets_out+addend, 0);
1436 	}
1437 }
1438 
1439 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1440 
1441 static void tcp_add_reno_sack(struct tcp_sock *tp)
1442 {
1443 	tp->sacked_out++;
1444 	tcp_check_reno_reordering(tp, 0);
1445 	tcp_sync_left_out(tp);
1446 }
1447 
1448 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1449 
1450 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1451 {
1452 	if (acked > 0) {
1453 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1454 		if (acked-1 >= tp->sacked_out)
1455 			tp->sacked_out = 0;
1456 		else
1457 			tp->sacked_out -= acked-1;
1458 	}
1459 	tcp_check_reno_reordering(tp, acked);
1460 	tcp_sync_left_out(tp);
1461 }
1462 
1463 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1464 {
1465 	tp->sacked_out = 0;
1466 	tp->left_out = tp->lost_out;
1467 }
1468 
1469 /* Mark head of queue up as lost. */
1470 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1471 			       int packets, u32 high_seq)
1472 {
1473 	struct sk_buff *skb;
1474 	int cnt = packets;
1475 
1476 	BUG_TRAP(cnt <= tp->packets_out);
1477 
1478 	sk_stream_for_retrans_queue(skb, sk) {
1479 		cnt -= tcp_skb_pcount(skb);
1480 		if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1481 			break;
1482 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1483 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1484 			tp->lost_out += tcp_skb_pcount(skb);
1485 		}
1486 	}
1487 	tcp_sync_left_out(tp);
1488 }
1489 
1490 /* Account newly detected lost packet(s) */
1491 
1492 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1493 {
1494 	if (IsFack(tp)) {
1495 		int lost = tp->fackets_out - tp->reordering;
1496 		if (lost <= 0)
1497 			lost = 1;
1498 		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1499 	} else {
1500 		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1501 	}
1502 
1503 	/* New heuristics: it is possible only after we switched
1504 	 * to restart timer each time when something is ACKed.
1505 	 * Hence, we can detect timed out packets during fast
1506 	 * retransmit without falling to slow start.
1507 	 */
1508 	if (tcp_head_timedout(sk, tp)) {
1509 		struct sk_buff *skb;
1510 
1511 		sk_stream_for_retrans_queue(skb, sk) {
1512 			if (tcp_skb_timedout(tp, skb) &&
1513 			    !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1514 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1515 				tp->lost_out += tcp_skb_pcount(skb);
1516 			}
1517 		}
1518 		tcp_sync_left_out(tp);
1519 	}
1520 }
1521 
1522 /* CWND moderation, preventing bursts due to too big ACKs
1523  * in dubious situations.
1524  */
1525 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1526 {
1527 	tp->snd_cwnd = min(tp->snd_cwnd,
1528 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1529 	tp->snd_cwnd_stamp = tcp_time_stamp;
1530 }
1531 
1532 /* Decrease cwnd each second ack. */
1533 static void tcp_cwnd_down(struct tcp_sock *tp)
1534 {
1535 	int decr = tp->snd_cwnd_cnt + 1;
1536 
1537 	tp->snd_cwnd_cnt = decr&1;
1538 	decr >>= 1;
1539 
1540 	if (decr && tp->snd_cwnd > tp->ca_ops->min_cwnd(tp))
1541 		tp->snd_cwnd -= decr;
1542 
1543 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1544 	tp->snd_cwnd_stamp = tcp_time_stamp;
1545 }
1546 
1547 /* Nothing was retransmitted or returned timestamp is less
1548  * than timestamp of the first retransmission.
1549  */
1550 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1551 {
1552 	return !tp->retrans_stamp ||
1553 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1554 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1555 }
1556 
1557 /* Undo procedures. */
1558 
1559 #if FASTRETRANS_DEBUG > 1
1560 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1561 {
1562 	struct inet_sock *inet = inet_sk(sk);
1563 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1564 	       msg,
1565 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1566 	       tp->snd_cwnd, tp->left_out,
1567 	       tp->snd_ssthresh, tp->prior_ssthresh,
1568 	       tp->packets_out);
1569 }
1570 #else
1571 #define DBGUNDO(x...) do { } while (0)
1572 #endif
1573 
1574 static void tcp_undo_cwr(struct tcp_sock *tp, int undo)
1575 {
1576 	if (tp->prior_ssthresh) {
1577 		if (tp->ca_ops->undo_cwnd)
1578 			tp->snd_cwnd = tp->ca_ops->undo_cwnd(tp);
1579 		else
1580 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1581 
1582 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1583 			tp->snd_ssthresh = tp->prior_ssthresh;
1584 			TCP_ECN_withdraw_cwr(tp);
1585 		}
1586 	} else {
1587 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1588 	}
1589 	tcp_moderate_cwnd(tp);
1590 	tp->snd_cwnd_stamp = tcp_time_stamp;
1591 }
1592 
1593 static inline int tcp_may_undo(struct tcp_sock *tp)
1594 {
1595 	return tp->undo_marker &&
1596 		(!tp->undo_retrans || tcp_packet_delayed(tp));
1597 }
1598 
1599 /* People celebrate: "We love our President!" */
1600 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1601 {
1602 	if (tcp_may_undo(tp)) {
1603 		/* Happy end! We did not retransmit anything
1604 		 * or our original transmission succeeded.
1605 		 */
1606 		DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans");
1607 		tcp_undo_cwr(tp, 1);
1608 		if (tp->ca_state == TCP_CA_Loss)
1609 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1610 		else
1611 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1612 		tp->undo_marker = 0;
1613 	}
1614 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1615 		/* Hold old state until something *above* high_seq
1616 		 * is ACKed. For Reno it is MUST to prevent false
1617 		 * fast retransmits (RFC2582). SACK TCP is safe. */
1618 		tcp_moderate_cwnd(tp);
1619 		return 1;
1620 	}
1621 	tcp_set_ca_state(tp, TCP_CA_Open);
1622 	return 0;
1623 }
1624 
1625 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1626 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1627 {
1628 	if (tp->undo_marker && !tp->undo_retrans) {
1629 		DBGUNDO(sk, tp, "D-SACK");
1630 		tcp_undo_cwr(tp, 1);
1631 		tp->undo_marker = 0;
1632 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1633 	}
1634 }
1635 
1636 /* Undo during fast recovery after partial ACK. */
1637 
1638 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1639 				int acked)
1640 {
1641 	/* Partial ACK arrived. Force Hoe's retransmit. */
1642 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1643 
1644 	if (tcp_may_undo(tp)) {
1645 		/* Plain luck! Hole if filled with delayed
1646 		 * packet, rather than with a retransmit.
1647 		 */
1648 		if (tp->retrans_out == 0)
1649 			tp->retrans_stamp = 0;
1650 
1651 		tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1);
1652 
1653 		DBGUNDO(sk, tp, "Hoe");
1654 		tcp_undo_cwr(tp, 0);
1655 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1656 
1657 		/* So... Do not make Hoe's retransmit yet.
1658 		 * If the first packet was delayed, the rest
1659 		 * ones are most probably delayed as well.
1660 		 */
1661 		failed = 0;
1662 	}
1663 	return failed;
1664 }
1665 
1666 /* Undo during loss recovery after partial ACK. */
1667 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1668 {
1669 	if (tcp_may_undo(tp)) {
1670 		struct sk_buff *skb;
1671 		sk_stream_for_retrans_queue(skb, sk) {
1672 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1673 		}
1674 		DBGUNDO(sk, tp, "partial loss");
1675 		tp->lost_out = 0;
1676 		tp->left_out = tp->sacked_out;
1677 		tcp_undo_cwr(tp, 1);
1678 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1679 		tp->retransmits = 0;
1680 		tp->undo_marker = 0;
1681 		if (!IsReno(tp))
1682 			tcp_set_ca_state(tp, TCP_CA_Open);
1683 		return 1;
1684 	}
1685 	return 0;
1686 }
1687 
1688 static inline void tcp_complete_cwr(struct tcp_sock *tp)
1689 {
1690 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1691 	tp->snd_cwnd_stamp = tcp_time_stamp;
1692 	tcp_ca_event(tp, CA_EVENT_COMPLETE_CWR);
1693 }
1694 
1695 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1696 {
1697 	tp->left_out = tp->sacked_out;
1698 
1699 	if (tp->retrans_out == 0)
1700 		tp->retrans_stamp = 0;
1701 
1702 	if (flag&FLAG_ECE)
1703 		tcp_enter_cwr(tp);
1704 
1705 	if (tp->ca_state != TCP_CA_CWR) {
1706 		int state = TCP_CA_Open;
1707 
1708 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
1709 			state = TCP_CA_Disorder;
1710 
1711 		if (tp->ca_state != state) {
1712 			tcp_set_ca_state(tp, state);
1713 			tp->high_seq = tp->snd_nxt;
1714 		}
1715 		tcp_moderate_cwnd(tp);
1716 	} else {
1717 		tcp_cwnd_down(tp);
1718 	}
1719 }
1720 
1721 /* Process an event, which can update packets-in-flight not trivially.
1722  * Main goal of this function is to calculate new estimate for left_out,
1723  * taking into account both packets sitting in receiver's buffer and
1724  * packets lost by network.
1725  *
1726  * Besides that it does CWND reduction, when packet loss is detected
1727  * and changes state of machine.
1728  *
1729  * It does _not_ decide what to send, it is made in function
1730  * tcp_xmit_retransmit_queue().
1731  */
1732 static void
1733 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1734 		      int prior_packets, int flag)
1735 {
1736 	struct tcp_sock *tp = tcp_sk(sk);
1737 	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1738 
1739 	/* Some technical things:
1740 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
1741 	if (!tp->packets_out)
1742 		tp->sacked_out = 0;
1743         /* 2. SACK counts snd_fack in packets inaccurately. */
1744 	if (tp->sacked_out == 0)
1745 		tp->fackets_out = 0;
1746 
1747         /* Now state machine starts.
1748 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1749 	if (flag&FLAG_ECE)
1750 		tp->prior_ssthresh = 0;
1751 
1752 	/* B. In all the states check for reneging SACKs. */
1753 	if (tp->sacked_out && tcp_check_sack_reneging(sk, tp))
1754 		return;
1755 
1756 	/* C. Process data loss notification, provided it is valid. */
1757 	if ((flag&FLAG_DATA_LOST) &&
1758 	    before(tp->snd_una, tp->high_seq) &&
1759 	    tp->ca_state != TCP_CA_Open &&
1760 	    tp->fackets_out > tp->reordering) {
1761 		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1762 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1763 	}
1764 
1765 	/* D. Synchronize left_out to current state. */
1766 	tcp_sync_left_out(tp);
1767 
1768 	/* E. Check state exit conditions. State can be terminated
1769 	 *    when high_seq is ACKed. */
1770 	if (tp->ca_state == TCP_CA_Open) {
1771 		if (!sysctl_tcp_frto)
1772 			BUG_TRAP(tp->retrans_out == 0);
1773 		tp->retrans_stamp = 0;
1774 	} else if (!before(tp->snd_una, tp->high_seq)) {
1775 		switch (tp->ca_state) {
1776 		case TCP_CA_Loss:
1777 			tp->retransmits = 0;
1778 			if (tcp_try_undo_recovery(sk, tp))
1779 				return;
1780 			break;
1781 
1782 		case TCP_CA_CWR:
1783 			/* CWR is to be held something *above* high_seq
1784 			 * is ACKed for CWR bit to reach receiver. */
1785 			if (tp->snd_una != tp->high_seq) {
1786 				tcp_complete_cwr(tp);
1787 				tcp_set_ca_state(tp, TCP_CA_Open);
1788 			}
1789 			break;
1790 
1791 		case TCP_CA_Disorder:
1792 			tcp_try_undo_dsack(sk, tp);
1793 			if (!tp->undo_marker ||
1794 			    /* For SACK case do not Open to allow to undo
1795 			     * catching for all duplicate ACKs. */
1796 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
1797 				tp->undo_marker = 0;
1798 				tcp_set_ca_state(tp, TCP_CA_Open);
1799 			}
1800 			break;
1801 
1802 		case TCP_CA_Recovery:
1803 			if (IsReno(tp))
1804 				tcp_reset_reno_sack(tp);
1805 			if (tcp_try_undo_recovery(sk, tp))
1806 				return;
1807 			tcp_complete_cwr(tp);
1808 			break;
1809 		}
1810 	}
1811 
1812 	/* F. Process state. */
1813 	switch (tp->ca_state) {
1814 	case TCP_CA_Recovery:
1815 		if (prior_snd_una == tp->snd_una) {
1816 			if (IsReno(tp) && is_dupack)
1817 				tcp_add_reno_sack(tp);
1818 		} else {
1819 			int acked = prior_packets - tp->packets_out;
1820 			if (IsReno(tp))
1821 				tcp_remove_reno_sacks(sk, tp, acked);
1822 			is_dupack = tcp_try_undo_partial(sk, tp, acked);
1823 		}
1824 		break;
1825 	case TCP_CA_Loss:
1826 		if (flag&FLAG_DATA_ACKED)
1827 			tp->retransmits = 0;
1828 		if (!tcp_try_undo_loss(sk, tp)) {
1829 			tcp_moderate_cwnd(tp);
1830 			tcp_xmit_retransmit_queue(sk);
1831 			return;
1832 		}
1833 		if (tp->ca_state != TCP_CA_Open)
1834 			return;
1835 		/* Loss is undone; fall through to processing in Open state. */
1836 	default:
1837 		if (IsReno(tp)) {
1838 			if (tp->snd_una != prior_snd_una)
1839 				tcp_reset_reno_sack(tp);
1840 			if (is_dupack)
1841 				tcp_add_reno_sack(tp);
1842 		}
1843 
1844 		if (tp->ca_state == TCP_CA_Disorder)
1845 			tcp_try_undo_dsack(sk, tp);
1846 
1847 		if (!tcp_time_to_recover(sk, tp)) {
1848 			tcp_try_to_open(sk, tp, flag);
1849 			return;
1850 		}
1851 
1852 		/* Otherwise enter Recovery state */
1853 
1854 		if (IsReno(tp))
1855 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
1856 		else
1857 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
1858 
1859 		tp->high_seq = tp->snd_nxt;
1860 		tp->prior_ssthresh = 0;
1861 		tp->undo_marker = tp->snd_una;
1862 		tp->undo_retrans = tp->retrans_out;
1863 
1864 		if (tp->ca_state < TCP_CA_CWR) {
1865 			if (!(flag&FLAG_ECE))
1866 				tp->prior_ssthresh = tcp_current_ssthresh(tp);
1867 			tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1868 			TCP_ECN_queue_cwr(tp);
1869 		}
1870 
1871 		tp->snd_cwnd_cnt = 0;
1872 		tcp_set_ca_state(tp, TCP_CA_Recovery);
1873 	}
1874 
1875 	if (is_dupack || tcp_head_timedout(sk, tp))
1876 		tcp_update_scoreboard(sk, tp);
1877 	tcp_cwnd_down(tp);
1878 	tcp_xmit_retransmit_queue(sk);
1879 }
1880 
1881 /* Read draft-ietf-tcplw-high-performance before mucking
1882  * with this code. (Superceeds RFC1323)
1883  */
1884 static void tcp_ack_saw_tstamp(struct tcp_sock *tp, u32 *usrtt, int flag)
1885 {
1886 	__u32 seq_rtt;
1887 
1888 	/* RTTM Rule: A TSecr value received in a segment is used to
1889 	 * update the averaged RTT measurement only if the segment
1890 	 * acknowledges some new data, i.e., only if it advances the
1891 	 * left edge of the send window.
1892 	 *
1893 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1894 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1895 	 *
1896 	 * Changed: reset backoff as soon as we see the first valid sample.
1897 	 * If we do not, we get strongly overstimated rto. With timestamps
1898 	 * samples are accepted even from very old segments: f.e., when rtt=1
1899 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
1900 	 * answer arrives rto becomes 120 seconds! If at least one of segments
1901 	 * in window is lost... Voila.	 			--ANK (010210)
1902 	 */
1903 	seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
1904 	tcp_rtt_estimator(tp, seq_rtt, usrtt);
1905 	tcp_set_rto(tp);
1906 	tp->backoff = 0;
1907 	tcp_bound_rto(tp);
1908 }
1909 
1910 static void tcp_ack_no_tstamp(struct tcp_sock *tp, u32 seq_rtt, u32 *usrtt, int flag)
1911 {
1912 	/* We don't have a timestamp. Can only use
1913 	 * packets that are not retransmitted to determine
1914 	 * rtt estimates. Also, we must not reset the
1915 	 * backoff for rto until we get a non-retransmitted
1916 	 * packet. This allows us to deal with a situation
1917 	 * where the network delay has increased suddenly.
1918 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
1919 	 */
1920 
1921 	if (flag & FLAG_RETRANS_DATA_ACKED)
1922 		return;
1923 
1924 	tcp_rtt_estimator(tp, seq_rtt, usrtt);
1925 	tcp_set_rto(tp);
1926 	tp->backoff = 0;
1927 	tcp_bound_rto(tp);
1928 }
1929 
1930 static inline void tcp_ack_update_rtt(struct tcp_sock *tp,
1931 				      int flag, s32 seq_rtt, u32 *usrtt)
1932 {
1933 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
1934 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
1935 		tcp_ack_saw_tstamp(tp, usrtt, flag);
1936 	else if (seq_rtt >= 0)
1937 		tcp_ack_no_tstamp(tp, seq_rtt, usrtt, flag);
1938 }
1939 
1940 static inline void tcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 rtt,
1941 				  u32 in_flight, int good)
1942 {
1943 	tp->ca_ops->cong_avoid(tp, ack, rtt, in_flight, good);
1944 	tp->snd_cwnd_stamp = tcp_time_stamp;
1945 }
1946 
1947 /* Restart timer after forward progress on connection.
1948  * RFC2988 recommends to restart timer to now+rto.
1949  */
1950 
1951 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1952 {
1953 	if (!tp->packets_out) {
1954 		tcp_clear_xmit_timer(sk, TCP_TIME_RETRANS);
1955 	} else {
1956 		tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1957 	}
1958 }
1959 
1960 /* There is one downside to this scheme.  Although we keep the
1961  * ACK clock ticking, adjusting packet counters and advancing
1962  * congestion window, we do not liberate socket send buffer
1963  * space.
1964  *
1965  * Mucking with skb->truesize and sk->sk_wmem_alloc et al.
1966  * then making a write space wakeup callback is a possible
1967  * future enhancement.  WARNING: it is not trivial to make.
1968  */
1969 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
1970 			 __u32 now, __s32 *seq_rtt)
1971 {
1972 	struct tcp_sock *tp = tcp_sk(sk);
1973 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1974 	__u32 seq = tp->snd_una;
1975 	__u32 packets_acked;
1976 	int acked = 0;
1977 
1978 	/* If we get here, the whole TSO packet has not been
1979 	 * acked.
1980 	 */
1981 	BUG_ON(!after(scb->end_seq, seq));
1982 
1983 	packets_acked = tcp_skb_pcount(skb);
1984 	if (tcp_trim_head(sk, skb, seq - scb->seq))
1985 		return 0;
1986 	packets_acked -= tcp_skb_pcount(skb);
1987 
1988 	if (packets_acked) {
1989 		__u8 sacked = scb->sacked;
1990 
1991 		acked |= FLAG_DATA_ACKED;
1992 		if (sacked) {
1993 			if (sacked & TCPCB_RETRANS) {
1994 				if (sacked & TCPCB_SACKED_RETRANS)
1995 					tp->retrans_out -= packets_acked;
1996 				acked |= FLAG_RETRANS_DATA_ACKED;
1997 				*seq_rtt = -1;
1998 			} else if (*seq_rtt < 0)
1999 				*seq_rtt = now - scb->when;
2000 			if (sacked & TCPCB_SACKED_ACKED)
2001 				tp->sacked_out -= packets_acked;
2002 			if (sacked & TCPCB_LOST)
2003 				tp->lost_out -= packets_acked;
2004 			if (sacked & TCPCB_URG) {
2005 				if (tp->urg_mode &&
2006 				    !before(seq, tp->snd_up))
2007 					tp->urg_mode = 0;
2008 			}
2009 		} else if (*seq_rtt < 0)
2010 			*seq_rtt = now - scb->when;
2011 
2012 		if (tp->fackets_out) {
2013 			__u32 dval = min(tp->fackets_out, packets_acked);
2014 			tp->fackets_out -= dval;
2015 		}
2016 		tp->packets_out -= packets_acked;
2017 
2018 		BUG_ON(tcp_skb_pcount(skb) == 0);
2019 		BUG_ON(!before(scb->seq, scb->end_seq));
2020 	}
2021 
2022 	return acked;
2023 }
2024 
2025 
2026 /* Remove acknowledged frames from the retransmission queue. */
2027 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p, s32 *seq_usrtt)
2028 {
2029 	struct tcp_sock *tp = tcp_sk(sk);
2030 	struct sk_buff *skb;
2031 	__u32 now = tcp_time_stamp;
2032 	int acked = 0;
2033 	__s32 seq_rtt = -1;
2034 	struct timeval usnow;
2035 	u32 pkts_acked = 0;
2036 
2037 	if (seq_usrtt)
2038 		do_gettimeofday(&usnow);
2039 
2040 	while ((skb = skb_peek(&sk->sk_write_queue)) &&
2041 	       skb != sk->sk_send_head) {
2042 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2043 		__u8 sacked = scb->sacked;
2044 
2045 		/* If our packet is before the ack sequence we can
2046 		 * discard it as it's confirmed to have arrived at
2047 		 * the other end.
2048 		 */
2049 		if (after(scb->end_seq, tp->snd_una)) {
2050 			if (tcp_skb_pcount(skb) > 1)
2051 				acked |= tcp_tso_acked(sk, skb,
2052 						       now, &seq_rtt);
2053 			break;
2054 		}
2055 
2056 		/* Initial outgoing SYN's get put onto the write_queue
2057 		 * just like anything else we transmit.  It is not
2058 		 * true data, and if we misinform our callers that
2059 		 * this ACK acks real data, we will erroneously exit
2060 		 * connection startup slow start one packet too
2061 		 * quickly.  This is severely frowned upon behavior.
2062 		 */
2063 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2064 			acked |= FLAG_DATA_ACKED;
2065 			++pkts_acked;
2066 		} else {
2067 			acked |= FLAG_SYN_ACKED;
2068 			tp->retrans_stamp = 0;
2069 		}
2070 
2071 		if (sacked) {
2072 			if (sacked & TCPCB_RETRANS) {
2073 				if(sacked & TCPCB_SACKED_RETRANS)
2074 					tp->retrans_out -= tcp_skb_pcount(skb);
2075 				acked |= FLAG_RETRANS_DATA_ACKED;
2076 				seq_rtt = -1;
2077 			} else if (seq_rtt < 0)
2078 				seq_rtt = now - scb->when;
2079 			if (seq_usrtt)
2080 				*seq_usrtt = (usnow.tv_sec - skb->stamp.tv_sec) * 1000000
2081 					+ (usnow.tv_usec - skb->stamp.tv_usec);
2082 
2083 			if (sacked & TCPCB_SACKED_ACKED)
2084 				tp->sacked_out -= tcp_skb_pcount(skb);
2085 			if (sacked & TCPCB_LOST)
2086 				tp->lost_out -= tcp_skb_pcount(skb);
2087 			if (sacked & TCPCB_URG) {
2088 				if (tp->urg_mode &&
2089 				    !before(scb->end_seq, tp->snd_up))
2090 					tp->urg_mode = 0;
2091 			}
2092 		} else if (seq_rtt < 0)
2093 			seq_rtt = now - scb->when;
2094 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2095 		tcp_packets_out_dec(tp, skb);
2096 		__skb_unlink(skb, skb->list);
2097 		sk_stream_free_skb(sk, skb);
2098 	}
2099 
2100 	if (acked&FLAG_ACKED) {
2101 		tcp_ack_update_rtt(tp, acked, seq_rtt, seq_usrtt);
2102 		tcp_ack_packets_out(sk, tp);
2103 
2104 		if (tp->ca_ops->pkts_acked)
2105 			tp->ca_ops->pkts_acked(tp, pkts_acked);
2106 	}
2107 
2108 #if FASTRETRANS_DEBUG > 0
2109 	BUG_TRAP((int)tp->sacked_out >= 0);
2110 	BUG_TRAP((int)tp->lost_out >= 0);
2111 	BUG_TRAP((int)tp->retrans_out >= 0);
2112 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2113 		if (tp->lost_out) {
2114 			printk(KERN_DEBUG "Leak l=%u %d\n",
2115 			       tp->lost_out, tp->ca_state);
2116 			tp->lost_out = 0;
2117 		}
2118 		if (tp->sacked_out) {
2119 			printk(KERN_DEBUG "Leak s=%u %d\n",
2120 			       tp->sacked_out, tp->ca_state);
2121 			tp->sacked_out = 0;
2122 		}
2123 		if (tp->retrans_out) {
2124 			printk(KERN_DEBUG "Leak r=%u %d\n",
2125 			       tp->retrans_out, tp->ca_state);
2126 			tp->retrans_out = 0;
2127 		}
2128 	}
2129 #endif
2130 	*seq_rtt_p = seq_rtt;
2131 	return acked;
2132 }
2133 
2134 static void tcp_ack_probe(struct sock *sk)
2135 {
2136 	struct tcp_sock *tp = tcp_sk(sk);
2137 
2138 	/* Was it a usable window open? */
2139 
2140 	if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2141 		   tp->snd_una + tp->snd_wnd)) {
2142 		tp->backoff = 0;
2143 		tcp_clear_xmit_timer(sk, TCP_TIME_PROBE0);
2144 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2145 		 * This function is not for random using!
2146 		 */
2147 	} else {
2148 		tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0,
2149 				     min(tp->rto << tp->backoff, TCP_RTO_MAX));
2150 	}
2151 }
2152 
2153 static inline int tcp_ack_is_dubious(struct tcp_sock *tp, int flag)
2154 {
2155 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2156 		tp->ca_state != TCP_CA_Open);
2157 }
2158 
2159 static inline int tcp_may_raise_cwnd(struct tcp_sock *tp, int flag)
2160 {
2161 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2162 		!((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR));
2163 }
2164 
2165 /* Check that window update is acceptable.
2166  * The function assumes that snd_una<=ack<=snd_next.
2167  */
2168 static inline int tcp_may_update_window(struct tcp_sock *tp, u32 ack,
2169 					u32 ack_seq, u32 nwin)
2170 {
2171 	return (after(ack, tp->snd_una) ||
2172 		after(ack_seq, tp->snd_wl1) ||
2173 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2174 }
2175 
2176 /* Update our send window.
2177  *
2178  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2179  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2180  */
2181 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2182 				 struct sk_buff *skb, u32 ack, u32 ack_seq)
2183 {
2184 	int flag = 0;
2185 	u32 nwin = ntohs(skb->h.th->window);
2186 
2187 	if (likely(!skb->h.th->syn))
2188 		nwin <<= tp->rx_opt.snd_wscale;
2189 
2190 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2191 		flag |= FLAG_WIN_UPDATE;
2192 		tcp_update_wl(tp, ack, ack_seq);
2193 
2194 		if (tp->snd_wnd != nwin) {
2195 			tp->snd_wnd = nwin;
2196 
2197 			/* Note, it is the only place, where
2198 			 * fast path is recovered for sending TCP.
2199 			 */
2200 			tcp_fast_path_check(sk, tp);
2201 
2202 			if (nwin > tp->max_window) {
2203 				tp->max_window = nwin;
2204 				tcp_sync_mss(sk, tp->pmtu_cookie);
2205 			}
2206 		}
2207 	}
2208 
2209 	tp->snd_una = ack;
2210 
2211 	return flag;
2212 }
2213 
2214 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2215 {
2216 	struct tcp_sock *tp = tcp_sk(sk);
2217 
2218 	tcp_sync_left_out(tp);
2219 
2220 	if (tp->snd_una == prior_snd_una ||
2221 	    !before(tp->snd_una, tp->frto_highmark)) {
2222 		/* RTO was caused by loss, start retransmitting in
2223 		 * go-back-N slow start
2224 		 */
2225 		tcp_enter_frto_loss(sk);
2226 		return;
2227 	}
2228 
2229 	if (tp->frto_counter == 1) {
2230 		/* First ACK after RTO advances the window: allow two new
2231 		 * segments out.
2232 		 */
2233 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2234 	} else {
2235 		/* Also the second ACK after RTO advances the window.
2236 		 * The RTO was likely spurious. Reduce cwnd and continue
2237 		 * in congestion avoidance
2238 		 */
2239 		tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2240 		tcp_moderate_cwnd(tp);
2241 	}
2242 
2243 	/* F-RTO affects on two new ACKs following RTO.
2244 	 * At latest on third ACK the TCP behavor is back to normal.
2245 	 */
2246 	tp->frto_counter = (tp->frto_counter + 1) % 3;
2247 }
2248 
2249 /* This routine deals with incoming acks, but not outgoing ones. */
2250 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2251 {
2252 	struct tcp_sock *tp = tcp_sk(sk);
2253 	u32 prior_snd_una = tp->snd_una;
2254 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2255 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2256 	u32 prior_in_flight;
2257 	s32 seq_rtt;
2258 	s32 seq_usrtt = 0;
2259 	int prior_packets;
2260 
2261 	/* If the ack is newer than sent or older than previous acks
2262 	 * then we can probably ignore it.
2263 	 */
2264 	if (after(ack, tp->snd_nxt))
2265 		goto uninteresting_ack;
2266 
2267 	if (before(ack, prior_snd_una))
2268 		goto old_ack;
2269 
2270 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2271 		/* Window is constant, pure forward advance.
2272 		 * No more checks are required.
2273 		 * Note, we use the fact that SND.UNA>=SND.WL2.
2274 		 */
2275 		tcp_update_wl(tp, ack, ack_seq);
2276 		tp->snd_una = ack;
2277 		flag |= FLAG_WIN_UPDATE;
2278 
2279 		tcp_ca_event(tp, CA_EVENT_FAST_ACK);
2280 
2281 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2282 	} else {
2283 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2284 			flag |= FLAG_DATA;
2285 		else
2286 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2287 
2288 		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2289 
2290 		if (TCP_SKB_CB(skb)->sacked)
2291 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2292 
2293 		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2294 			flag |= FLAG_ECE;
2295 
2296 		tcp_ca_event(tp, CA_EVENT_SLOW_ACK);
2297 	}
2298 
2299 	/* We passed data and got it acked, remove any soft error
2300 	 * log. Something worked...
2301 	 */
2302 	sk->sk_err_soft = 0;
2303 	tp->rcv_tstamp = tcp_time_stamp;
2304 	prior_packets = tp->packets_out;
2305 	if (!prior_packets)
2306 		goto no_queue;
2307 
2308 	prior_in_flight = tcp_packets_in_flight(tp);
2309 
2310 	/* See if we can take anything off of the retransmit queue. */
2311 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt,
2312 				    tp->ca_ops->rtt_sample ? &seq_usrtt : NULL);
2313 
2314 	if (tp->frto_counter)
2315 		tcp_process_frto(sk, prior_snd_una);
2316 
2317 	if (tcp_ack_is_dubious(tp, flag)) {
2318 		/* Advanve CWND, if state allows this. */
2319 		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(tp, flag))
2320 			tcp_cong_avoid(tp, ack,  seq_rtt, prior_in_flight, 0);
2321 		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2322 	} else {
2323 		if ((flag & FLAG_DATA_ACKED))
2324 			tcp_cong_avoid(tp, ack, seq_rtt, prior_in_flight, 1);
2325 	}
2326 
2327 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2328 		dst_confirm(sk->sk_dst_cache);
2329 
2330 	return 1;
2331 
2332 no_queue:
2333 	tp->probes_out = 0;
2334 
2335 	/* If this ack opens up a zero window, clear backoff.  It was
2336 	 * being used to time the probes, and is probably far higher than
2337 	 * it needs to be for normal retransmission.
2338 	 */
2339 	if (sk->sk_send_head)
2340 		tcp_ack_probe(sk);
2341 	return 1;
2342 
2343 old_ack:
2344 	if (TCP_SKB_CB(skb)->sacked)
2345 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2346 
2347 uninteresting_ack:
2348 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2349 	return 0;
2350 }
2351 
2352 
2353 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2354  * But, this can also be called on packets in the established flow when
2355  * the fast version below fails.
2356  */
2357 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2358 {
2359 	unsigned char *ptr;
2360 	struct tcphdr *th = skb->h.th;
2361 	int length=(th->doff*4)-sizeof(struct tcphdr);
2362 
2363 	ptr = (unsigned char *)(th + 1);
2364 	opt_rx->saw_tstamp = 0;
2365 
2366 	while(length>0) {
2367 	  	int opcode=*ptr++;
2368 		int opsize;
2369 
2370 		switch (opcode) {
2371 			case TCPOPT_EOL:
2372 				return;
2373 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2374 				length--;
2375 				continue;
2376 			default:
2377 				opsize=*ptr++;
2378 				if (opsize < 2) /* "silly options" */
2379 					return;
2380 				if (opsize > length)
2381 					return;	/* don't parse partial options */
2382 	  			switch(opcode) {
2383 				case TCPOPT_MSS:
2384 					if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2385 						u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2386 						if (in_mss) {
2387 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2388 								in_mss = opt_rx->user_mss;
2389 							opt_rx->mss_clamp = in_mss;
2390 						}
2391 					}
2392 					break;
2393 				case TCPOPT_WINDOW:
2394 					if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2395 						if (sysctl_tcp_window_scaling) {
2396 							__u8 snd_wscale = *(__u8 *) ptr;
2397 							opt_rx->wscale_ok = 1;
2398 							if (snd_wscale > 14) {
2399 								if(net_ratelimit())
2400 									printk(KERN_INFO "tcp_parse_options: Illegal window "
2401 									       "scaling value %d >14 received.\n",
2402 									       snd_wscale);
2403 								snd_wscale = 14;
2404 							}
2405 							opt_rx->snd_wscale = snd_wscale;
2406 						}
2407 					break;
2408 				case TCPOPT_TIMESTAMP:
2409 					if(opsize==TCPOLEN_TIMESTAMP) {
2410 						if ((estab && opt_rx->tstamp_ok) ||
2411 						    (!estab && sysctl_tcp_timestamps)) {
2412 							opt_rx->saw_tstamp = 1;
2413 							opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2414 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2415 						}
2416 					}
2417 					break;
2418 				case TCPOPT_SACK_PERM:
2419 					if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2420 						if (sysctl_tcp_sack) {
2421 							opt_rx->sack_ok = 1;
2422 							tcp_sack_reset(opt_rx);
2423 						}
2424 					}
2425 					break;
2426 
2427 				case TCPOPT_SACK:
2428 					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2429 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2430 					   opt_rx->sack_ok) {
2431 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2432 					}
2433 	  			};
2434 	  			ptr+=opsize-2;
2435 	  			length-=opsize;
2436 	  	};
2437 	}
2438 }
2439 
2440 /* Fast parse options. This hopes to only see timestamps.
2441  * If it is wrong it falls back on tcp_parse_options().
2442  */
2443 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2444 					 struct tcp_sock *tp)
2445 {
2446 	if (th->doff == sizeof(struct tcphdr)>>2) {
2447 		tp->rx_opt.saw_tstamp = 0;
2448 		return 0;
2449 	} else if (tp->rx_opt.tstamp_ok &&
2450 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2451 		__u32 *ptr = (__u32 *)(th + 1);
2452 		if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2453 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2454 			tp->rx_opt.saw_tstamp = 1;
2455 			++ptr;
2456 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2457 			++ptr;
2458 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2459 			return 1;
2460 		}
2461 	}
2462 	tcp_parse_options(skb, &tp->rx_opt, 1);
2463 	return 1;
2464 }
2465 
2466 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2467 {
2468 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2469 	tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2470 }
2471 
2472 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2473 {
2474 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2475 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2476 		 * extra check below makes sure this can only happen
2477 		 * for pure ACK frames.  -DaveM
2478 		 *
2479 		 * Not only, also it occurs for expired timestamps.
2480 		 */
2481 
2482 		if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2483 		   xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2484 			tcp_store_ts_recent(tp);
2485 	}
2486 }
2487 
2488 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2489  *
2490  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2491  * it can pass through stack. So, the following predicate verifies that
2492  * this segment is not used for anything but congestion avoidance or
2493  * fast retransmit. Moreover, we even are able to eliminate most of such
2494  * second order effects, if we apply some small "replay" window (~RTO)
2495  * to timestamp space.
2496  *
2497  * All these measures still do not guarantee that we reject wrapped ACKs
2498  * on networks with high bandwidth, when sequence space is recycled fastly,
2499  * but it guarantees that such events will be very rare and do not affect
2500  * connection seriously. This doesn't look nice, but alas, PAWS is really
2501  * buggy extension.
2502  *
2503  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2504  * states that events when retransmit arrives after original data are rare.
2505  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2506  * the biggest problem on large power networks even with minor reordering.
2507  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2508  * up to bandwidth of 18Gigabit/sec. 8) ]
2509  */
2510 
2511 static int tcp_disordered_ack(struct tcp_sock *tp, struct sk_buff *skb)
2512 {
2513 	struct tcphdr *th = skb->h.th;
2514 	u32 seq = TCP_SKB_CB(skb)->seq;
2515 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2516 
2517 	return (/* 1. Pure ACK with correct sequence number. */
2518 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2519 
2520 		/* 2. ... and duplicate ACK. */
2521 		ack == tp->snd_una &&
2522 
2523 		/* 3. ... and does not update window. */
2524 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2525 
2526 		/* 4. ... and sits in replay window. */
2527 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (tp->rto*1024)/HZ);
2528 }
2529 
2530 static inline int tcp_paws_discard(struct tcp_sock *tp, struct sk_buff *skb)
2531 {
2532 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2533 		xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2534 		!tcp_disordered_ack(tp, skb));
2535 }
2536 
2537 /* Check segment sequence number for validity.
2538  *
2539  * Segment controls are considered valid, if the segment
2540  * fits to the window after truncation to the window. Acceptability
2541  * of data (and SYN, FIN, of course) is checked separately.
2542  * See tcp_data_queue(), for example.
2543  *
2544  * Also, controls (RST is main one) are accepted using RCV.WUP instead
2545  * of RCV.NXT. Peer still did not advance his SND.UNA when we
2546  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2547  * (borrowed from freebsd)
2548  */
2549 
2550 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2551 {
2552 	return	!before(end_seq, tp->rcv_wup) &&
2553 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2554 }
2555 
2556 /* When we get a reset we do this. */
2557 static void tcp_reset(struct sock *sk)
2558 {
2559 	/* We want the right error as BSD sees it (and indeed as we do). */
2560 	switch (sk->sk_state) {
2561 		case TCP_SYN_SENT:
2562 			sk->sk_err = ECONNREFUSED;
2563 			break;
2564 		case TCP_CLOSE_WAIT:
2565 			sk->sk_err = EPIPE;
2566 			break;
2567 		case TCP_CLOSE:
2568 			return;
2569 		default:
2570 			sk->sk_err = ECONNRESET;
2571 	}
2572 
2573 	if (!sock_flag(sk, SOCK_DEAD))
2574 		sk->sk_error_report(sk);
2575 
2576 	tcp_done(sk);
2577 }
2578 
2579 /*
2580  * 	Process the FIN bit. This now behaves as it is supposed to work
2581  *	and the FIN takes effect when it is validly part of sequence
2582  *	space. Not before when we get holes.
2583  *
2584  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2585  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
2586  *	TIME-WAIT)
2587  *
2588  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
2589  *	close and we go into CLOSING (and later onto TIME-WAIT)
2590  *
2591  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2592  */
2593 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2594 {
2595 	struct tcp_sock *tp = tcp_sk(sk);
2596 
2597 	tcp_schedule_ack(tp);
2598 
2599 	sk->sk_shutdown |= RCV_SHUTDOWN;
2600 	sock_set_flag(sk, SOCK_DONE);
2601 
2602 	switch (sk->sk_state) {
2603 		case TCP_SYN_RECV:
2604 		case TCP_ESTABLISHED:
2605 			/* Move to CLOSE_WAIT */
2606 			tcp_set_state(sk, TCP_CLOSE_WAIT);
2607 			tp->ack.pingpong = 1;
2608 			break;
2609 
2610 		case TCP_CLOSE_WAIT:
2611 		case TCP_CLOSING:
2612 			/* Received a retransmission of the FIN, do
2613 			 * nothing.
2614 			 */
2615 			break;
2616 		case TCP_LAST_ACK:
2617 			/* RFC793: Remain in the LAST-ACK state. */
2618 			break;
2619 
2620 		case TCP_FIN_WAIT1:
2621 			/* This case occurs when a simultaneous close
2622 			 * happens, we must ack the received FIN and
2623 			 * enter the CLOSING state.
2624 			 */
2625 			tcp_send_ack(sk);
2626 			tcp_set_state(sk, TCP_CLOSING);
2627 			break;
2628 		case TCP_FIN_WAIT2:
2629 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
2630 			tcp_send_ack(sk);
2631 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2632 			break;
2633 		default:
2634 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
2635 			 * cases we should never reach this piece of code.
2636 			 */
2637 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2638 			       __FUNCTION__, sk->sk_state);
2639 			break;
2640 	};
2641 
2642 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
2643 	 * Probably, we should reset in this case. For now drop them.
2644 	 */
2645 	__skb_queue_purge(&tp->out_of_order_queue);
2646 	if (tp->rx_opt.sack_ok)
2647 		tcp_sack_reset(&tp->rx_opt);
2648 	sk_stream_mem_reclaim(sk);
2649 
2650 	if (!sock_flag(sk, SOCK_DEAD)) {
2651 		sk->sk_state_change(sk);
2652 
2653 		/* Do not send POLL_HUP for half duplex close. */
2654 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
2655 		    sk->sk_state == TCP_CLOSE)
2656 			sk_wake_async(sk, 1, POLL_HUP);
2657 		else
2658 			sk_wake_async(sk, 1, POLL_IN);
2659 	}
2660 }
2661 
2662 static __inline__ int
2663 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2664 {
2665 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2666 		if (before(seq, sp->start_seq))
2667 			sp->start_seq = seq;
2668 		if (after(end_seq, sp->end_seq))
2669 			sp->end_seq = end_seq;
2670 		return 1;
2671 	}
2672 	return 0;
2673 }
2674 
2675 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2676 {
2677 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2678 		if (before(seq, tp->rcv_nxt))
2679 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2680 		else
2681 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2682 
2683 		tp->rx_opt.dsack = 1;
2684 		tp->duplicate_sack[0].start_seq = seq;
2685 		tp->duplicate_sack[0].end_seq = end_seq;
2686 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2687 	}
2688 }
2689 
2690 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2691 {
2692 	if (!tp->rx_opt.dsack)
2693 		tcp_dsack_set(tp, seq, end_seq);
2694 	else
2695 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2696 }
2697 
2698 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2699 {
2700 	struct tcp_sock *tp = tcp_sk(sk);
2701 
2702 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2703 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2704 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2705 		tcp_enter_quickack_mode(tp);
2706 
2707 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2708 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2709 
2710 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2711 				end_seq = tp->rcv_nxt;
2712 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2713 		}
2714 	}
2715 
2716 	tcp_send_ack(sk);
2717 }
2718 
2719 /* These routines update the SACK block as out-of-order packets arrive or
2720  * in-order packets close up the sequence space.
2721  */
2722 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2723 {
2724 	int this_sack;
2725 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2726 	struct tcp_sack_block *swalk = sp+1;
2727 
2728 	/* See if the recent change to the first SACK eats into
2729 	 * or hits the sequence space of other SACK blocks, if so coalesce.
2730 	 */
2731 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2732 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2733 			int i;
2734 
2735 			/* Zap SWALK, by moving every further SACK up by one slot.
2736 			 * Decrease num_sacks.
2737 			 */
2738 			tp->rx_opt.num_sacks--;
2739 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2740 			for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2741 				sp[i] = sp[i+1];
2742 			continue;
2743 		}
2744 		this_sack++, swalk++;
2745 	}
2746 }
2747 
2748 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2749 {
2750 	__u32 tmp;
2751 
2752 	tmp = sack1->start_seq;
2753 	sack1->start_seq = sack2->start_seq;
2754 	sack2->start_seq = tmp;
2755 
2756 	tmp = sack1->end_seq;
2757 	sack1->end_seq = sack2->end_seq;
2758 	sack2->end_seq = tmp;
2759 }
2760 
2761 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2762 {
2763 	struct tcp_sock *tp = tcp_sk(sk);
2764 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2765 	int cur_sacks = tp->rx_opt.num_sacks;
2766 	int this_sack;
2767 
2768 	if (!cur_sacks)
2769 		goto new_sack;
2770 
2771 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2772 		if (tcp_sack_extend(sp, seq, end_seq)) {
2773 			/* Rotate this_sack to the first one. */
2774 			for (; this_sack>0; this_sack--, sp--)
2775 				tcp_sack_swap(sp, sp-1);
2776 			if (cur_sacks > 1)
2777 				tcp_sack_maybe_coalesce(tp);
2778 			return;
2779 		}
2780 	}
2781 
2782 	/* Could not find an adjacent existing SACK, build a new one,
2783 	 * put it at the front, and shift everyone else down.  We
2784 	 * always know there is at least one SACK present already here.
2785 	 *
2786 	 * If the sack array is full, forget about the last one.
2787 	 */
2788 	if (this_sack >= 4) {
2789 		this_sack--;
2790 		tp->rx_opt.num_sacks--;
2791 		sp--;
2792 	}
2793 	for(; this_sack > 0; this_sack--, sp--)
2794 		*sp = *(sp-1);
2795 
2796 new_sack:
2797 	/* Build the new head SACK, and we're done. */
2798 	sp->start_seq = seq;
2799 	sp->end_seq = end_seq;
2800 	tp->rx_opt.num_sacks++;
2801 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2802 }
2803 
2804 /* RCV.NXT advances, some SACKs should be eaten. */
2805 
2806 static void tcp_sack_remove(struct tcp_sock *tp)
2807 {
2808 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2809 	int num_sacks = tp->rx_opt.num_sacks;
2810 	int this_sack;
2811 
2812 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2813 	if (skb_queue_len(&tp->out_of_order_queue) == 0) {
2814 		tp->rx_opt.num_sacks = 0;
2815 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
2816 		return;
2817 	}
2818 
2819 	for(this_sack = 0; this_sack < num_sacks; ) {
2820 		/* Check if the start of the sack is covered by RCV.NXT. */
2821 		if (!before(tp->rcv_nxt, sp->start_seq)) {
2822 			int i;
2823 
2824 			/* RCV.NXT must cover all the block! */
2825 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
2826 
2827 			/* Zap this SACK, by moving forward any other SACKS. */
2828 			for (i=this_sack+1; i < num_sacks; i++)
2829 				tp->selective_acks[i-1] = tp->selective_acks[i];
2830 			num_sacks--;
2831 			continue;
2832 		}
2833 		this_sack++;
2834 		sp++;
2835 	}
2836 	if (num_sacks != tp->rx_opt.num_sacks) {
2837 		tp->rx_opt.num_sacks = num_sacks;
2838 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2839 	}
2840 }
2841 
2842 /* This one checks to see if we can put data from the
2843  * out_of_order queue into the receive_queue.
2844  */
2845 static void tcp_ofo_queue(struct sock *sk)
2846 {
2847 	struct tcp_sock *tp = tcp_sk(sk);
2848 	__u32 dsack_high = tp->rcv_nxt;
2849 	struct sk_buff *skb;
2850 
2851 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
2852 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
2853 			break;
2854 
2855 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
2856 			__u32 dsack = dsack_high;
2857 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
2858 				dsack_high = TCP_SKB_CB(skb)->end_seq;
2859 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
2860 		}
2861 
2862 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2863 			SOCK_DEBUG(sk, "ofo packet was already received \n");
2864 			__skb_unlink(skb, skb->list);
2865 			__kfree_skb(skb);
2866 			continue;
2867 		}
2868 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
2869 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2870 			   TCP_SKB_CB(skb)->end_seq);
2871 
2872 		__skb_unlink(skb, skb->list);
2873 		__skb_queue_tail(&sk->sk_receive_queue, skb);
2874 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2875 		if(skb->h.th->fin)
2876 			tcp_fin(skb, sk, skb->h.th);
2877 	}
2878 }
2879 
2880 static int tcp_prune_queue(struct sock *sk);
2881 
2882 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
2883 {
2884 	struct tcphdr *th = skb->h.th;
2885 	struct tcp_sock *tp = tcp_sk(sk);
2886 	int eaten = -1;
2887 
2888 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
2889 		goto drop;
2890 
2891 	__skb_pull(skb, th->doff*4);
2892 
2893 	TCP_ECN_accept_cwr(tp, skb);
2894 
2895 	if (tp->rx_opt.dsack) {
2896 		tp->rx_opt.dsack = 0;
2897 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
2898 						    4 - tp->rx_opt.tstamp_ok);
2899 	}
2900 
2901 	/*  Queue data for delivery to the user.
2902 	 *  Packets in sequence go to the receive queue.
2903 	 *  Out of sequence packets to the out_of_order_queue.
2904 	 */
2905 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
2906 		if (tcp_receive_window(tp) == 0)
2907 			goto out_of_window;
2908 
2909 		/* Ok. In sequence. In window. */
2910 		if (tp->ucopy.task == current &&
2911 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
2912 		    sock_owned_by_user(sk) && !tp->urg_data) {
2913 			int chunk = min_t(unsigned int, skb->len,
2914 							tp->ucopy.len);
2915 
2916 			__set_current_state(TASK_RUNNING);
2917 
2918 			local_bh_enable();
2919 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
2920 				tp->ucopy.len -= chunk;
2921 				tp->copied_seq += chunk;
2922 				eaten = (chunk == skb->len && !th->fin);
2923 				tcp_rcv_space_adjust(sk);
2924 			}
2925 			local_bh_disable();
2926 		}
2927 
2928 		if (eaten <= 0) {
2929 queue_and_out:
2930 			if (eaten < 0 &&
2931 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
2932 			     !sk_stream_rmem_schedule(sk, skb))) {
2933 				if (tcp_prune_queue(sk) < 0 ||
2934 				    !sk_stream_rmem_schedule(sk, skb))
2935 					goto drop;
2936 			}
2937 			sk_stream_set_owner_r(skb, sk);
2938 			__skb_queue_tail(&sk->sk_receive_queue, skb);
2939 		}
2940 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2941 		if(skb->len)
2942 			tcp_event_data_recv(sk, tp, skb);
2943 		if(th->fin)
2944 			tcp_fin(skb, sk, th);
2945 
2946 		if (skb_queue_len(&tp->out_of_order_queue)) {
2947 			tcp_ofo_queue(sk);
2948 
2949 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
2950 			 * gap in queue is filled.
2951 			 */
2952 			if (!skb_queue_len(&tp->out_of_order_queue))
2953 				tp->ack.pingpong = 0;
2954 		}
2955 
2956 		if (tp->rx_opt.num_sacks)
2957 			tcp_sack_remove(tp);
2958 
2959 		tcp_fast_path_check(sk, tp);
2960 
2961 		if (eaten > 0)
2962 			__kfree_skb(skb);
2963 		else if (!sock_flag(sk, SOCK_DEAD))
2964 			sk->sk_data_ready(sk, 0);
2965 		return;
2966 	}
2967 
2968 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2969 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
2970 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2971 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
2972 
2973 out_of_window:
2974 		tcp_enter_quickack_mode(tp);
2975 		tcp_schedule_ack(tp);
2976 drop:
2977 		__kfree_skb(skb);
2978 		return;
2979 	}
2980 
2981 	/* Out of window. F.e. zero window probe. */
2982 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
2983 		goto out_of_window;
2984 
2985 	tcp_enter_quickack_mode(tp);
2986 
2987 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2988 		/* Partial packet, seq < rcv_next < end_seq */
2989 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
2990 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2991 			   TCP_SKB_CB(skb)->end_seq);
2992 
2993 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
2994 
2995 		/* If window is closed, drop tail of packet. But after
2996 		 * remembering D-SACK for its head made in previous line.
2997 		 */
2998 		if (!tcp_receive_window(tp))
2999 			goto out_of_window;
3000 		goto queue_and_out;
3001 	}
3002 
3003 	TCP_ECN_check_ce(tp, skb);
3004 
3005 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3006 	    !sk_stream_rmem_schedule(sk, skb)) {
3007 		if (tcp_prune_queue(sk) < 0 ||
3008 		    !sk_stream_rmem_schedule(sk, skb))
3009 			goto drop;
3010 	}
3011 
3012 	/* Disable header prediction. */
3013 	tp->pred_flags = 0;
3014 	tcp_schedule_ack(tp);
3015 
3016 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3017 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3018 
3019 	sk_stream_set_owner_r(skb, sk);
3020 
3021 	if (!skb_peek(&tp->out_of_order_queue)) {
3022 		/* Initial out of order segment, build 1 SACK. */
3023 		if (tp->rx_opt.sack_ok) {
3024 			tp->rx_opt.num_sacks = 1;
3025 			tp->rx_opt.dsack     = 0;
3026 			tp->rx_opt.eff_sacks = 1;
3027 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3028 			tp->selective_acks[0].end_seq =
3029 						TCP_SKB_CB(skb)->end_seq;
3030 		}
3031 		__skb_queue_head(&tp->out_of_order_queue,skb);
3032 	} else {
3033 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3034 		u32 seq = TCP_SKB_CB(skb)->seq;
3035 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3036 
3037 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3038 			__skb_append(skb1, skb);
3039 
3040 			if (!tp->rx_opt.num_sacks ||
3041 			    tp->selective_acks[0].end_seq != seq)
3042 				goto add_sack;
3043 
3044 			/* Common case: data arrive in order after hole. */
3045 			tp->selective_acks[0].end_seq = end_seq;
3046 			return;
3047 		}
3048 
3049 		/* Find place to insert this segment. */
3050 		do {
3051 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3052 				break;
3053 		} while ((skb1 = skb1->prev) !=
3054 			 (struct sk_buff*)&tp->out_of_order_queue);
3055 
3056 		/* Do skb overlap to previous one? */
3057 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3058 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3059 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3060 				/* All the bits are present. Drop. */
3061 				__kfree_skb(skb);
3062 				tcp_dsack_set(tp, seq, end_seq);
3063 				goto add_sack;
3064 			}
3065 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3066 				/* Partial overlap. */
3067 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3068 			} else {
3069 				skb1 = skb1->prev;
3070 			}
3071 		}
3072 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3073 
3074 		/* And clean segments covered by new one as whole. */
3075 		while ((skb1 = skb->next) !=
3076 		       (struct sk_buff*)&tp->out_of_order_queue &&
3077 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3078 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3079 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3080 			       break;
3081 		       }
3082 		       __skb_unlink(skb1, skb1->list);
3083 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3084 		       __kfree_skb(skb1);
3085 		}
3086 
3087 add_sack:
3088 		if (tp->rx_opt.sack_ok)
3089 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3090 	}
3091 }
3092 
3093 /* Collapse contiguous sequence of skbs head..tail with
3094  * sequence numbers start..end.
3095  * Segments with FIN/SYN are not collapsed (only because this
3096  * simplifies code)
3097  */
3098 static void
3099 tcp_collapse(struct sock *sk, struct sk_buff *head,
3100 	     struct sk_buff *tail, u32 start, u32 end)
3101 {
3102 	struct sk_buff *skb;
3103 
3104 	/* First, check that queue is collapsable and find
3105 	 * the point where collapsing can be useful. */
3106 	for (skb = head; skb != tail; ) {
3107 		/* No new bits? It is possible on ofo queue. */
3108 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3109 			struct sk_buff *next = skb->next;
3110 			__skb_unlink(skb, skb->list);
3111 			__kfree_skb(skb);
3112 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3113 			skb = next;
3114 			continue;
3115 		}
3116 
3117 		/* The first skb to collapse is:
3118 		 * - not SYN/FIN and
3119 		 * - bloated or contains data before "start" or
3120 		 *   overlaps to the next one.
3121 		 */
3122 		if (!skb->h.th->syn && !skb->h.th->fin &&
3123 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3124 		     before(TCP_SKB_CB(skb)->seq, start) ||
3125 		     (skb->next != tail &&
3126 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3127 			break;
3128 
3129 		/* Decided to skip this, advance start seq. */
3130 		start = TCP_SKB_CB(skb)->end_seq;
3131 		skb = skb->next;
3132 	}
3133 	if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3134 		return;
3135 
3136 	while (before(start, end)) {
3137 		struct sk_buff *nskb;
3138 		int header = skb_headroom(skb);
3139 		int copy = SKB_MAX_ORDER(header, 0);
3140 
3141 		/* Too big header? This can happen with IPv6. */
3142 		if (copy < 0)
3143 			return;
3144 		if (end-start < copy)
3145 			copy = end-start;
3146 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3147 		if (!nskb)
3148 			return;
3149 		skb_reserve(nskb, header);
3150 		memcpy(nskb->head, skb->head, header);
3151 		nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3152 		nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3153 		nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3154 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3155 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3156 		__skb_insert(nskb, skb->prev, skb, skb->list);
3157 		sk_stream_set_owner_r(nskb, sk);
3158 
3159 		/* Copy data, releasing collapsed skbs. */
3160 		while (copy > 0) {
3161 			int offset = start - TCP_SKB_CB(skb)->seq;
3162 			int size = TCP_SKB_CB(skb)->end_seq - start;
3163 
3164 			if (offset < 0) BUG();
3165 			if (size > 0) {
3166 				size = min(copy, size);
3167 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3168 					BUG();
3169 				TCP_SKB_CB(nskb)->end_seq += size;
3170 				copy -= size;
3171 				start += size;
3172 			}
3173 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3174 				struct sk_buff *next = skb->next;
3175 				__skb_unlink(skb, skb->list);
3176 				__kfree_skb(skb);
3177 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3178 				skb = next;
3179 				if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3180 					return;
3181 			}
3182 		}
3183 	}
3184 }
3185 
3186 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3187  * and tcp_collapse() them until all the queue is collapsed.
3188  */
3189 static void tcp_collapse_ofo_queue(struct sock *sk)
3190 {
3191 	struct tcp_sock *tp = tcp_sk(sk);
3192 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3193 	struct sk_buff *head;
3194 	u32 start, end;
3195 
3196 	if (skb == NULL)
3197 		return;
3198 
3199 	start = TCP_SKB_CB(skb)->seq;
3200 	end = TCP_SKB_CB(skb)->end_seq;
3201 	head = skb;
3202 
3203 	for (;;) {
3204 		skb = skb->next;
3205 
3206 		/* Segment is terminated when we see gap or when
3207 		 * we are at the end of all the queue. */
3208 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3209 		    after(TCP_SKB_CB(skb)->seq, end) ||
3210 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3211 			tcp_collapse(sk, head, skb, start, end);
3212 			head = skb;
3213 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3214 				break;
3215 			/* Start new segment */
3216 			start = TCP_SKB_CB(skb)->seq;
3217 			end = TCP_SKB_CB(skb)->end_seq;
3218 		} else {
3219 			if (before(TCP_SKB_CB(skb)->seq, start))
3220 				start = TCP_SKB_CB(skb)->seq;
3221 			if (after(TCP_SKB_CB(skb)->end_seq, end))
3222 				end = TCP_SKB_CB(skb)->end_seq;
3223 		}
3224 	}
3225 }
3226 
3227 /* Reduce allocated memory if we can, trying to get
3228  * the socket within its memory limits again.
3229  *
3230  * Return less than zero if we should start dropping frames
3231  * until the socket owning process reads some of the data
3232  * to stabilize the situation.
3233  */
3234 static int tcp_prune_queue(struct sock *sk)
3235 {
3236 	struct tcp_sock *tp = tcp_sk(sk);
3237 
3238 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3239 
3240 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3241 
3242 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3243 		tcp_clamp_window(sk, tp);
3244 	else if (tcp_memory_pressure)
3245 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3246 
3247 	tcp_collapse_ofo_queue(sk);
3248 	tcp_collapse(sk, sk->sk_receive_queue.next,
3249 		     (struct sk_buff*)&sk->sk_receive_queue,
3250 		     tp->copied_seq, tp->rcv_nxt);
3251 	sk_stream_mem_reclaim(sk);
3252 
3253 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3254 		return 0;
3255 
3256 	/* Collapsing did not help, destructive actions follow.
3257 	 * This must not ever occur. */
3258 
3259 	/* First, purge the out_of_order queue. */
3260 	if (skb_queue_len(&tp->out_of_order_queue)) {
3261 		NET_ADD_STATS_BH(LINUX_MIB_OFOPRUNED,
3262 				 skb_queue_len(&tp->out_of_order_queue));
3263 		__skb_queue_purge(&tp->out_of_order_queue);
3264 
3265 		/* Reset SACK state.  A conforming SACK implementation will
3266 		 * do the same at a timeout based retransmit.  When a connection
3267 		 * is in a sad state like this, we care only about integrity
3268 		 * of the connection not performance.
3269 		 */
3270 		if (tp->rx_opt.sack_ok)
3271 			tcp_sack_reset(&tp->rx_opt);
3272 		sk_stream_mem_reclaim(sk);
3273 	}
3274 
3275 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3276 		return 0;
3277 
3278 	/* If we are really being abused, tell the caller to silently
3279 	 * drop receive data on the floor.  It will get retransmitted
3280 	 * and hopefully then we'll have sufficient space.
3281 	 */
3282 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3283 
3284 	/* Massive buffer overcommit. */
3285 	tp->pred_flags = 0;
3286 	return -1;
3287 }
3288 
3289 
3290 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3291  * As additional protections, we do not touch cwnd in retransmission phases,
3292  * and if application hit its sndbuf limit recently.
3293  */
3294 void tcp_cwnd_application_limited(struct sock *sk)
3295 {
3296 	struct tcp_sock *tp = tcp_sk(sk);
3297 
3298 	if (tp->ca_state == TCP_CA_Open &&
3299 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3300 		/* Limited by application or receiver window. */
3301 		u32 win_used = max(tp->snd_cwnd_used, 2U);
3302 		if (win_used < tp->snd_cwnd) {
3303 			tp->snd_ssthresh = tcp_current_ssthresh(tp);
3304 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3305 		}
3306 		tp->snd_cwnd_used = 0;
3307 	}
3308 	tp->snd_cwnd_stamp = tcp_time_stamp;
3309 }
3310 
3311 
3312 /* When incoming ACK allowed to free some skb from write_queue,
3313  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3314  * on the exit from tcp input handler.
3315  *
3316  * PROBLEM: sndbuf expansion does not work well with largesend.
3317  */
3318 static void tcp_new_space(struct sock *sk)
3319 {
3320 	struct tcp_sock *tp = tcp_sk(sk);
3321 
3322 	if (tp->packets_out < tp->snd_cwnd &&
3323 	    !(sk->sk_userlocks & SOCK_SNDBUF_LOCK) &&
3324 	    !tcp_memory_pressure &&
3325 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
3326  		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache_std) +
3327 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3328 		    demanded = max_t(unsigned int, tp->snd_cwnd,
3329 						   tp->reordering + 1);
3330 		sndmem *= 2*demanded;
3331 		if (sndmem > sk->sk_sndbuf)
3332 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3333 		tp->snd_cwnd_stamp = tcp_time_stamp;
3334 	}
3335 
3336 	sk->sk_write_space(sk);
3337 }
3338 
3339 static inline void tcp_check_space(struct sock *sk)
3340 {
3341 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3342 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3343 		if (sk->sk_socket &&
3344 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3345 			tcp_new_space(sk);
3346 	}
3347 }
3348 
3349 static void __tcp_data_snd_check(struct sock *sk, struct sk_buff *skb)
3350 {
3351 	struct tcp_sock *tp = tcp_sk(sk);
3352 
3353 	if (after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd) ||
3354 	    tcp_packets_in_flight(tp) >= tp->snd_cwnd ||
3355 	    tcp_write_xmit(sk, tp->nonagle))
3356 		tcp_check_probe_timer(sk, tp);
3357 }
3358 
3359 static __inline__ void tcp_data_snd_check(struct sock *sk)
3360 {
3361 	struct sk_buff *skb = sk->sk_send_head;
3362 
3363 	if (skb != NULL)
3364 		__tcp_data_snd_check(sk, skb);
3365 	tcp_check_space(sk);
3366 }
3367 
3368 /*
3369  * Check if sending an ack is needed.
3370  */
3371 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3372 {
3373 	struct tcp_sock *tp = tcp_sk(sk);
3374 
3375 	    /* More than one full frame received... */
3376 	if (((tp->rcv_nxt - tp->rcv_wup) > tp->ack.rcv_mss
3377 	     /* ... and right edge of window advances far enough.
3378 	      * (tcp_recvmsg() will send ACK otherwise). Or...
3379 	      */
3380 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3381 	    /* We ACK each frame or... */
3382 	    tcp_in_quickack_mode(tp) ||
3383 	    /* We have out of order data. */
3384 	    (ofo_possible &&
3385 	     skb_peek(&tp->out_of_order_queue))) {
3386 		/* Then ack it now */
3387 		tcp_send_ack(sk);
3388 	} else {
3389 		/* Else, send delayed ack. */
3390 		tcp_send_delayed_ack(sk);
3391 	}
3392 }
3393 
3394 static __inline__ void tcp_ack_snd_check(struct sock *sk)
3395 {
3396 	struct tcp_sock *tp = tcp_sk(sk);
3397 	if (!tcp_ack_scheduled(tp)) {
3398 		/* We sent a data segment already. */
3399 		return;
3400 	}
3401 	__tcp_ack_snd_check(sk, 1);
3402 }
3403 
3404 /*
3405  *	This routine is only called when we have urgent data
3406  *	signalled. Its the 'slow' part of tcp_urg. It could be
3407  *	moved inline now as tcp_urg is only called from one
3408  *	place. We handle URGent data wrong. We have to - as
3409  *	BSD still doesn't use the correction from RFC961.
3410  *	For 1003.1g we should support a new option TCP_STDURG to permit
3411  *	either form (or just set the sysctl tcp_stdurg).
3412  */
3413 
3414 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3415 {
3416 	struct tcp_sock *tp = tcp_sk(sk);
3417 	u32 ptr = ntohs(th->urg_ptr);
3418 
3419 	if (ptr && !sysctl_tcp_stdurg)
3420 		ptr--;
3421 	ptr += ntohl(th->seq);
3422 
3423 	/* Ignore urgent data that we've already seen and read. */
3424 	if (after(tp->copied_seq, ptr))
3425 		return;
3426 
3427 	/* Do not replay urg ptr.
3428 	 *
3429 	 * NOTE: interesting situation not covered by specs.
3430 	 * Misbehaving sender may send urg ptr, pointing to segment,
3431 	 * which we already have in ofo queue. We are not able to fetch
3432 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3433 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3434 	 * situations. But it is worth to think about possibility of some
3435 	 * DoSes using some hypothetical application level deadlock.
3436 	 */
3437 	if (before(ptr, tp->rcv_nxt))
3438 		return;
3439 
3440 	/* Do we already have a newer (or duplicate) urgent pointer? */
3441 	if (tp->urg_data && !after(ptr, tp->urg_seq))
3442 		return;
3443 
3444 	/* Tell the world about our new urgent pointer. */
3445 	sk_send_sigurg(sk);
3446 
3447 	/* We may be adding urgent data when the last byte read was
3448 	 * urgent. To do this requires some care. We cannot just ignore
3449 	 * tp->copied_seq since we would read the last urgent byte again
3450 	 * as data, nor can we alter copied_seq until this data arrives
3451 	 * or we break the sematics of SIOCATMARK (and thus sockatmark())
3452 	 *
3453 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3454 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3455 	 * and expect that both A and B disappear from stream. This is _wrong_.
3456 	 * Though this happens in BSD with high probability, this is occasional.
3457 	 * Any application relying on this is buggy. Note also, that fix "works"
3458 	 * only in this artificial test. Insert some normal data between A and B and we will
3459 	 * decline of BSD again. Verdict: it is better to remove to trap
3460 	 * buggy users.
3461 	 */
3462 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3463 	    !sock_flag(sk, SOCK_URGINLINE) &&
3464 	    tp->copied_seq != tp->rcv_nxt) {
3465 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3466 		tp->copied_seq++;
3467 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3468 			__skb_unlink(skb, skb->list);
3469 			__kfree_skb(skb);
3470 		}
3471 	}
3472 
3473 	tp->urg_data   = TCP_URG_NOTYET;
3474 	tp->urg_seq    = ptr;
3475 
3476 	/* Disable header prediction. */
3477 	tp->pred_flags = 0;
3478 }
3479 
3480 /* This is the 'fast' part of urgent handling. */
3481 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3482 {
3483 	struct tcp_sock *tp = tcp_sk(sk);
3484 
3485 	/* Check if we get a new urgent pointer - normally not. */
3486 	if (th->urg)
3487 		tcp_check_urg(sk,th);
3488 
3489 	/* Do we wait for any urgent data? - normally not... */
3490 	if (tp->urg_data == TCP_URG_NOTYET) {
3491 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3492 			  th->syn;
3493 
3494 		/* Is the urgent pointer pointing into this packet? */
3495 		if (ptr < skb->len) {
3496 			u8 tmp;
3497 			if (skb_copy_bits(skb, ptr, &tmp, 1))
3498 				BUG();
3499 			tp->urg_data = TCP_URG_VALID | tmp;
3500 			if (!sock_flag(sk, SOCK_DEAD))
3501 				sk->sk_data_ready(sk, 0);
3502 		}
3503 	}
3504 }
3505 
3506 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3507 {
3508 	struct tcp_sock *tp = tcp_sk(sk);
3509 	int chunk = skb->len - hlen;
3510 	int err;
3511 
3512 	local_bh_enable();
3513 	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3514 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3515 	else
3516 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3517 						       tp->ucopy.iov);
3518 
3519 	if (!err) {
3520 		tp->ucopy.len -= chunk;
3521 		tp->copied_seq += chunk;
3522 		tcp_rcv_space_adjust(sk);
3523 	}
3524 
3525 	local_bh_disable();
3526 	return err;
3527 }
3528 
3529 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3530 {
3531 	int result;
3532 
3533 	if (sock_owned_by_user(sk)) {
3534 		local_bh_enable();
3535 		result = __tcp_checksum_complete(skb);
3536 		local_bh_disable();
3537 	} else {
3538 		result = __tcp_checksum_complete(skb);
3539 	}
3540 	return result;
3541 }
3542 
3543 static __inline__ int
3544 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3545 {
3546 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3547 		__tcp_checksum_complete_user(sk, skb);
3548 }
3549 
3550 /*
3551  *	TCP receive function for the ESTABLISHED state.
3552  *
3553  *	It is split into a fast path and a slow path. The fast path is
3554  * 	disabled when:
3555  *	- A zero window was announced from us - zero window probing
3556  *        is only handled properly in the slow path.
3557  *	- Out of order segments arrived.
3558  *	- Urgent data is expected.
3559  *	- There is no buffer space left
3560  *	- Unexpected TCP flags/window values/header lengths are received
3561  *	  (detected by checking the TCP header against pred_flags)
3562  *	- Data is sent in both directions. Fast path only supports pure senders
3563  *	  or pure receivers (this means either the sequence number or the ack
3564  *	  value must stay constant)
3565  *	- Unexpected TCP option.
3566  *
3567  *	When these conditions are not satisfied it drops into a standard
3568  *	receive procedure patterned after RFC793 to handle all cases.
3569  *	The first three cases are guaranteed by proper pred_flags setting,
3570  *	the rest is checked inline. Fast processing is turned on in
3571  *	tcp_data_queue when everything is OK.
3572  */
3573 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3574 			struct tcphdr *th, unsigned len)
3575 {
3576 	struct tcp_sock *tp = tcp_sk(sk);
3577 
3578 	/*
3579 	 *	Header prediction.
3580 	 *	The code loosely follows the one in the famous
3581 	 *	"30 instruction TCP receive" Van Jacobson mail.
3582 	 *
3583 	 *	Van's trick is to deposit buffers into socket queue
3584 	 *	on a device interrupt, to call tcp_recv function
3585 	 *	on the receive process context and checksum and copy
3586 	 *	the buffer to user space. smart...
3587 	 *
3588 	 *	Our current scheme is not silly either but we take the
3589 	 *	extra cost of the net_bh soft interrupt processing...
3590 	 *	We do checksum and copy also but from device to kernel.
3591 	 */
3592 
3593 	tp->rx_opt.saw_tstamp = 0;
3594 
3595 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
3596 	 *	if header_predition is to be made
3597 	 *	'S' will always be tp->tcp_header_len >> 2
3598 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
3599 	 *  turn it off	(when there are holes in the receive
3600 	 *	 space for instance)
3601 	 *	PSH flag is ignored.
3602 	 */
3603 
3604 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3605 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3606 		int tcp_header_len = tp->tcp_header_len;
3607 
3608 		/* Timestamp header prediction: tcp_header_len
3609 		 * is automatically equal to th->doff*4 due to pred_flags
3610 		 * match.
3611 		 */
3612 
3613 		/* Check timestamp */
3614 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3615 			__u32 *ptr = (__u32 *)(th + 1);
3616 
3617 			/* No? Slow path! */
3618 			if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3619 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3620 				goto slow_path;
3621 
3622 			tp->rx_opt.saw_tstamp = 1;
3623 			++ptr;
3624 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3625 			++ptr;
3626 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3627 
3628 			/* If PAWS failed, check it more carefully in slow path */
3629 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3630 				goto slow_path;
3631 
3632 			/* DO NOT update ts_recent here, if checksum fails
3633 			 * and timestamp was corrupted part, it will result
3634 			 * in a hung connection since we will drop all
3635 			 * future packets due to the PAWS test.
3636 			 */
3637 		}
3638 
3639 		if (len <= tcp_header_len) {
3640 			/* Bulk data transfer: sender */
3641 			if (len == tcp_header_len) {
3642 				/* Predicted packet is in window by definition.
3643 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3644 				 * Hence, check seq<=rcv_wup reduces to:
3645 				 */
3646 				if (tcp_header_len ==
3647 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3648 				    tp->rcv_nxt == tp->rcv_wup)
3649 					tcp_store_ts_recent(tp);
3650 
3651 				tcp_rcv_rtt_measure_ts(tp, skb);
3652 
3653 				/* We know that such packets are checksummed
3654 				 * on entry.
3655 				 */
3656 				tcp_ack(sk, skb, 0);
3657 				__kfree_skb(skb);
3658 				tcp_data_snd_check(sk);
3659 				return 0;
3660 			} else { /* Header too small */
3661 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
3662 				goto discard;
3663 			}
3664 		} else {
3665 			int eaten = 0;
3666 
3667 			if (tp->ucopy.task == current &&
3668 			    tp->copied_seq == tp->rcv_nxt &&
3669 			    len - tcp_header_len <= tp->ucopy.len &&
3670 			    sock_owned_by_user(sk)) {
3671 				__set_current_state(TASK_RUNNING);
3672 
3673 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3674 					/* Predicted packet is in window by definition.
3675 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3676 					 * Hence, check seq<=rcv_wup reduces to:
3677 					 */
3678 					if (tcp_header_len ==
3679 					    (sizeof(struct tcphdr) +
3680 					     TCPOLEN_TSTAMP_ALIGNED) &&
3681 					    tp->rcv_nxt == tp->rcv_wup)
3682 						tcp_store_ts_recent(tp);
3683 
3684 					tcp_rcv_rtt_measure_ts(tp, skb);
3685 
3686 					__skb_pull(skb, tcp_header_len);
3687 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3688 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3689 					eaten = 1;
3690 				}
3691 			}
3692 			if (!eaten) {
3693 				if (tcp_checksum_complete_user(sk, skb))
3694 					goto csum_error;
3695 
3696 				/* Predicted packet is in window by definition.
3697 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3698 				 * Hence, check seq<=rcv_wup reduces to:
3699 				 */
3700 				if (tcp_header_len ==
3701 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3702 				    tp->rcv_nxt == tp->rcv_wup)
3703 					tcp_store_ts_recent(tp);
3704 
3705 				tcp_rcv_rtt_measure_ts(tp, skb);
3706 
3707 				if ((int)skb->truesize > sk->sk_forward_alloc)
3708 					goto step5;
3709 
3710 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3711 
3712 				/* Bulk data transfer: receiver */
3713 				__skb_pull(skb,tcp_header_len);
3714 				__skb_queue_tail(&sk->sk_receive_queue, skb);
3715 				sk_stream_set_owner_r(skb, sk);
3716 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3717 			}
3718 
3719 			tcp_event_data_recv(sk, tp, skb);
3720 
3721 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3722 				/* Well, only one small jumplet in fast path... */
3723 				tcp_ack(sk, skb, FLAG_DATA);
3724 				tcp_data_snd_check(sk);
3725 				if (!tcp_ack_scheduled(tp))
3726 					goto no_ack;
3727 			}
3728 
3729 			__tcp_ack_snd_check(sk, 0);
3730 no_ack:
3731 			if (eaten)
3732 				__kfree_skb(skb);
3733 			else
3734 				sk->sk_data_ready(sk, 0);
3735 			return 0;
3736 		}
3737 	}
3738 
3739 slow_path:
3740 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3741 		goto csum_error;
3742 
3743 	/*
3744 	 * RFC1323: H1. Apply PAWS check first.
3745 	 */
3746 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3747 	    tcp_paws_discard(tp, skb)) {
3748 		if (!th->rst) {
3749 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3750 			tcp_send_dupack(sk, skb);
3751 			goto discard;
3752 		}
3753 		/* Resets are accepted even if PAWS failed.
3754 
3755 		   ts_recent update must be made after we are sure
3756 		   that the packet is in window.
3757 		 */
3758 	}
3759 
3760 	/*
3761 	 *	Standard slow path.
3762 	 */
3763 
3764 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
3765 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
3766 		 * (RST) segments are validated by checking their SEQ-fields."
3767 		 * And page 69: "If an incoming segment is not acceptable,
3768 		 * an acknowledgment should be sent in reply (unless the RST bit
3769 		 * is set, if so drop the segment and return)".
3770 		 */
3771 		if (!th->rst)
3772 			tcp_send_dupack(sk, skb);
3773 		goto discard;
3774 	}
3775 
3776 	if(th->rst) {
3777 		tcp_reset(sk);
3778 		goto discard;
3779 	}
3780 
3781 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3782 
3783 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3784 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
3785 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
3786 		tcp_reset(sk);
3787 		return 1;
3788 	}
3789 
3790 step5:
3791 	if(th->ack)
3792 		tcp_ack(sk, skb, FLAG_SLOWPATH);
3793 
3794 	tcp_rcv_rtt_measure_ts(tp, skb);
3795 
3796 	/* Process urgent data. */
3797 	tcp_urg(sk, skb, th);
3798 
3799 	/* step 7: process the segment text */
3800 	tcp_data_queue(sk, skb);
3801 
3802 	tcp_data_snd_check(sk);
3803 	tcp_ack_snd_check(sk);
3804 	return 0;
3805 
3806 csum_error:
3807 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
3808 
3809 discard:
3810 	__kfree_skb(skb);
3811 	return 0;
3812 }
3813 
3814 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
3815 					 struct tcphdr *th, unsigned len)
3816 {
3817 	struct tcp_sock *tp = tcp_sk(sk);
3818 	int saved_clamp = tp->rx_opt.mss_clamp;
3819 
3820 	tcp_parse_options(skb, &tp->rx_opt, 0);
3821 
3822 	if (th->ack) {
3823 		/* rfc793:
3824 		 * "If the state is SYN-SENT then
3825 		 *    first check the ACK bit
3826 		 *      If the ACK bit is set
3827 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
3828 		 *        a reset (unless the RST bit is set, if so drop
3829 		 *        the segment and return)"
3830 		 *
3831 		 *  We do not send data with SYN, so that RFC-correct
3832 		 *  test reduces to:
3833 		 */
3834 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
3835 			goto reset_and_undo;
3836 
3837 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3838 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
3839 			     tcp_time_stamp)) {
3840 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
3841 			goto reset_and_undo;
3842 		}
3843 
3844 		/* Now ACK is acceptable.
3845 		 *
3846 		 * "If the RST bit is set
3847 		 *    If the ACK was acceptable then signal the user "error:
3848 		 *    connection reset", drop the segment, enter CLOSED state,
3849 		 *    delete TCB, and return."
3850 		 */
3851 
3852 		if (th->rst) {
3853 			tcp_reset(sk);
3854 			goto discard;
3855 		}
3856 
3857 		/* rfc793:
3858 		 *   "fifth, if neither of the SYN or RST bits is set then
3859 		 *    drop the segment and return."
3860 		 *
3861 		 *    See note below!
3862 		 *                                        --ANK(990513)
3863 		 */
3864 		if (!th->syn)
3865 			goto discard_and_undo;
3866 
3867 		/* rfc793:
3868 		 *   "If the SYN bit is on ...
3869 		 *    are acceptable then ...
3870 		 *    (our SYN has been ACKed), change the connection
3871 		 *    state to ESTABLISHED..."
3872 		 */
3873 
3874 		TCP_ECN_rcv_synack(tp, th);
3875 		if (tp->ecn_flags&TCP_ECN_OK)
3876 			sock_set_flag(sk, SOCK_NO_LARGESEND);
3877 
3878 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
3879 		tcp_ack(sk, skb, FLAG_SLOWPATH);
3880 
3881 		/* Ok.. it's good. Set up sequence numbers and
3882 		 * move to established.
3883 		 */
3884 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
3885 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
3886 
3887 		/* RFC1323: The window in SYN & SYN/ACK segments is
3888 		 * never scaled.
3889 		 */
3890 		tp->snd_wnd = ntohs(th->window);
3891 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
3892 
3893 		if (!tp->rx_opt.wscale_ok) {
3894 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
3895 			tp->window_clamp = min(tp->window_clamp, 65535U);
3896 		}
3897 
3898 		if (tp->rx_opt.saw_tstamp) {
3899 			tp->rx_opt.tstamp_ok	   = 1;
3900 			tp->tcp_header_len =
3901 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
3902 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
3903 			tcp_store_ts_recent(tp);
3904 		} else {
3905 			tp->tcp_header_len = sizeof(struct tcphdr);
3906 		}
3907 
3908 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
3909 			tp->rx_opt.sack_ok |= 2;
3910 
3911 		tcp_sync_mss(sk, tp->pmtu_cookie);
3912 		tcp_initialize_rcv_mss(sk);
3913 
3914 		/* Remember, tcp_poll() does not lock socket!
3915 		 * Change state from SYN-SENT only after copied_seq
3916 		 * is initialized. */
3917 		tp->copied_seq = tp->rcv_nxt;
3918 		mb();
3919 		tcp_set_state(sk, TCP_ESTABLISHED);
3920 
3921 		/* Make sure socket is routed, for correct metrics.  */
3922 		tp->af_specific->rebuild_header(sk);
3923 
3924 		tcp_init_metrics(sk);
3925 
3926 		tcp_init_congestion_control(tp);
3927 
3928 		/* Prevent spurious tcp_cwnd_restart() on first data
3929 		 * packet.
3930 		 */
3931 		tp->lsndtime = tcp_time_stamp;
3932 
3933 		tcp_init_buffer_space(sk);
3934 
3935 		if (sock_flag(sk, SOCK_KEEPOPEN))
3936 			tcp_reset_keepalive_timer(sk, keepalive_time_when(tp));
3937 
3938 		if (!tp->rx_opt.snd_wscale)
3939 			__tcp_fast_path_on(tp, tp->snd_wnd);
3940 		else
3941 			tp->pred_flags = 0;
3942 
3943 		if (!sock_flag(sk, SOCK_DEAD)) {
3944 			sk->sk_state_change(sk);
3945 			sk_wake_async(sk, 0, POLL_OUT);
3946 		}
3947 
3948 		if (sk->sk_write_pending || tp->defer_accept || tp->ack.pingpong) {
3949 			/* Save one ACK. Data will be ready after
3950 			 * several ticks, if write_pending is set.
3951 			 *
3952 			 * It may be deleted, but with this feature tcpdumps
3953 			 * look so _wonderfully_ clever, that I was not able
3954 			 * to stand against the temptation 8)     --ANK
3955 			 */
3956 			tcp_schedule_ack(tp);
3957 			tp->ack.lrcvtime = tcp_time_stamp;
3958 			tp->ack.ato	 = TCP_ATO_MIN;
3959 			tcp_incr_quickack(tp);
3960 			tcp_enter_quickack_mode(tp);
3961 			tcp_reset_xmit_timer(sk, TCP_TIME_DACK, TCP_DELACK_MAX);
3962 
3963 discard:
3964 			__kfree_skb(skb);
3965 			return 0;
3966 		} else {
3967 			tcp_send_ack(sk);
3968 		}
3969 		return -1;
3970 	}
3971 
3972 	/* No ACK in the segment */
3973 
3974 	if (th->rst) {
3975 		/* rfc793:
3976 		 * "If the RST bit is set
3977 		 *
3978 		 *      Otherwise (no ACK) drop the segment and return."
3979 		 */
3980 
3981 		goto discard_and_undo;
3982 	}
3983 
3984 	/* PAWS check. */
3985 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
3986 		goto discard_and_undo;
3987 
3988 	if (th->syn) {
3989 		/* We see SYN without ACK. It is attempt of
3990 		 * simultaneous connect with crossed SYNs.
3991 		 * Particularly, it can be connect to self.
3992 		 */
3993 		tcp_set_state(sk, TCP_SYN_RECV);
3994 
3995 		if (tp->rx_opt.saw_tstamp) {
3996 			tp->rx_opt.tstamp_ok = 1;
3997 			tcp_store_ts_recent(tp);
3998 			tp->tcp_header_len =
3999 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4000 		} else {
4001 			tp->tcp_header_len = sizeof(struct tcphdr);
4002 		}
4003 
4004 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4005 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4006 
4007 		/* RFC1323: The window in SYN & SYN/ACK segments is
4008 		 * never scaled.
4009 		 */
4010 		tp->snd_wnd    = ntohs(th->window);
4011 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4012 		tp->max_window = tp->snd_wnd;
4013 
4014 		TCP_ECN_rcv_syn(tp, th);
4015 		if (tp->ecn_flags&TCP_ECN_OK)
4016 			sock_set_flag(sk, SOCK_NO_LARGESEND);
4017 
4018 		tcp_sync_mss(sk, tp->pmtu_cookie);
4019 		tcp_initialize_rcv_mss(sk);
4020 
4021 
4022 		tcp_send_synack(sk);
4023 #if 0
4024 		/* Note, we could accept data and URG from this segment.
4025 		 * There are no obstacles to make this.
4026 		 *
4027 		 * However, if we ignore data in ACKless segments sometimes,
4028 		 * we have no reasons to accept it sometimes.
4029 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4030 		 * is not flawless. So, discard packet for sanity.
4031 		 * Uncomment this return to process the data.
4032 		 */
4033 		return -1;
4034 #else
4035 		goto discard;
4036 #endif
4037 	}
4038 	/* "fifth, if neither of the SYN or RST bits is set then
4039 	 * drop the segment and return."
4040 	 */
4041 
4042 discard_and_undo:
4043 	tcp_clear_options(&tp->rx_opt);
4044 	tp->rx_opt.mss_clamp = saved_clamp;
4045 	goto discard;
4046 
4047 reset_and_undo:
4048 	tcp_clear_options(&tp->rx_opt);
4049 	tp->rx_opt.mss_clamp = saved_clamp;
4050 	return 1;
4051 }
4052 
4053 
4054 /*
4055  *	This function implements the receiving procedure of RFC 793 for
4056  *	all states except ESTABLISHED and TIME_WAIT.
4057  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4058  *	address independent.
4059  */
4060 
4061 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4062 			  struct tcphdr *th, unsigned len)
4063 {
4064 	struct tcp_sock *tp = tcp_sk(sk);
4065 	int queued = 0;
4066 
4067 	tp->rx_opt.saw_tstamp = 0;
4068 
4069 	switch (sk->sk_state) {
4070 	case TCP_CLOSE:
4071 		goto discard;
4072 
4073 	case TCP_LISTEN:
4074 		if(th->ack)
4075 			return 1;
4076 
4077 		if(th->rst)
4078 			goto discard;
4079 
4080 		if(th->syn) {
4081 			if(tp->af_specific->conn_request(sk, skb) < 0)
4082 				return 1;
4083 
4084 			/* Now we have several options: In theory there is
4085 			 * nothing else in the frame. KA9Q has an option to
4086 			 * send data with the syn, BSD accepts data with the
4087 			 * syn up to the [to be] advertised window and
4088 			 * Solaris 2.1 gives you a protocol error. For now
4089 			 * we just ignore it, that fits the spec precisely
4090 			 * and avoids incompatibilities. It would be nice in
4091 			 * future to drop through and process the data.
4092 			 *
4093 			 * Now that TTCP is starting to be used we ought to
4094 			 * queue this data.
4095 			 * But, this leaves one open to an easy denial of
4096 		 	 * service attack, and SYN cookies can't defend
4097 			 * against this problem. So, we drop the data
4098 			 * in the interest of security over speed.
4099 			 */
4100 			goto discard;
4101 		}
4102 		goto discard;
4103 
4104 	case TCP_SYN_SENT:
4105 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4106 		if (queued >= 0)
4107 			return queued;
4108 
4109 		/* Do step6 onward by hand. */
4110 		tcp_urg(sk, skb, th);
4111 		__kfree_skb(skb);
4112 		tcp_data_snd_check(sk);
4113 		return 0;
4114 	}
4115 
4116 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4117 	    tcp_paws_discard(tp, skb)) {
4118 		if (!th->rst) {
4119 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4120 			tcp_send_dupack(sk, skb);
4121 			goto discard;
4122 		}
4123 		/* Reset is accepted even if it did not pass PAWS. */
4124 	}
4125 
4126 	/* step 1: check sequence number */
4127 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4128 		if (!th->rst)
4129 			tcp_send_dupack(sk, skb);
4130 		goto discard;
4131 	}
4132 
4133 	/* step 2: check RST bit */
4134 	if(th->rst) {
4135 		tcp_reset(sk);
4136 		goto discard;
4137 	}
4138 
4139 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4140 
4141 	/* step 3: check security and precedence [ignored] */
4142 
4143 	/*	step 4:
4144 	 *
4145 	 *	Check for a SYN in window.
4146 	 */
4147 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4148 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4149 		tcp_reset(sk);
4150 		return 1;
4151 	}
4152 
4153 	/* step 5: check the ACK field */
4154 	if (th->ack) {
4155 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4156 
4157 		switch(sk->sk_state) {
4158 		case TCP_SYN_RECV:
4159 			if (acceptable) {
4160 				tp->copied_seq = tp->rcv_nxt;
4161 				mb();
4162 				tcp_set_state(sk, TCP_ESTABLISHED);
4163 				sk->sk_state_change(sk);
4164 
4165 				/* Note, that this wakeup is only for marginal
4166 				 * crossed SYN case. Passively open sockets
4167 				 * are not waked up, because sk->sk_sleep ==
4168 				 * NULL and sk->sk_socket == NULL.
4169 				 */
4170 				if (sk->sk_socket) {
4171 					sk_wake_async(sk,0,POLL_OUT);
4172 				}
4173 
4174 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4175 				tp->snd_wnd = ntohs(th->window) <<
4176 					      tp->rx_opt.snd_wscale;
4177 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4178 					    TCP_SKB_CB(skb)->seq);
4179 
4180 				/* tcp_ack considers this ACK as duplicate
4181 				 * and does not calculate rtt.
4182 				 * Fix it at least with timestamps.
4183 				 */
4184 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4185 				    !tp->srtt)
4186 					tcp_ack_saw_tstamp(tp, 0, 0);
4187 
4188 				if (tp->rx_opt.tstamp_ok)
4189 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4190 
4191 				/* Make sure socket is routed, for
4192 				 * correct metrics.
4193 				 */
4194 				tp->af_specific->rebuild_header(sk);
4195 
4196 				tcp_init_metrics(sk);
4197 
4198 				tcp_init_congestion_control(tp);
4199 
4200 				/* Prevent spurious tcp_cwnd_restart() on
4201 				 * first data packet.
4202 				 */
4203 				tp->lsndtime = tcp_time_stamp;
4204 
4205 				tcp_initialize_rcv_mss(sk);
4206 				tcp_init_buffer_space(sk);
4207 				tcp_fast_path_on(tp);
4208 			} else {
4209 				return 1;
4210 			}
4211 			break;
4212 
4213 		case TCP_FIN_WAIT1:
4214 			if (tp->snd_una == tp->write_seq) {
4215 				tcp_set_state(sk, TCP_FIN_WAIT2);
4216 				sk->sk_shutdown |= SEND_SHUTDOWN;
4217 				dst_confirm(sk->sk_dst_cache);
4218 
4219 				if (!sock_flag(sk, SOCK_DEAD))
4220 					/* Wake up lingering close() */
4221 					sk->sk_state_change(sk);
4222 				else {
4223 					int tmo;
4224 
4225 					if (tp->linger2 < 0 ||
4226 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4227 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4228 						tcp_done(sk);
4229 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4230 						return 1;
4231 					}
4232 
4233 					tmo = tcp_fin_time(tp);
4234 					if (tmo > TCP_TIMEWAIT_LEN) {
4235 						tcp_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4236 					} else if (th->fin || sock_owned_by_user(sk)) {
4237 						/* Bad case. We could lose such FIN otherwise.
4238 						 * It is not a big problem, but it looks confusing
4239 						 * and not so rare event. We still can lose it now,
4240 						 * if it spins in bh_lock_sock(), but it is really
4241 						 * marginal case.
4242 						 */
4243 						tcp_reset_keepalive_timer(sk, tmo);
4244 					} else {
4245 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4246 						goto discard;
4247 					}
4248 				}
4249 			}
4250 			break;
4251 
4252 		case TCP_CLOSING:
4253 			if (tp->snd_una == tp->write_seq) {
4254 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4255 				goto discard;
4256 			}
4257 			break;
4258 
4259 		case TCP_LAST_ACK:
4260 			if (tp->snd_una == tp->write_seq) {
4261 				tcp_update_metrics(sk);
4262 				tcp_done(sk);
4263 				goto discard;
4264 			}
4265 			break;
4266 		}
4267 	} else
4268 		goto discard;
4269 
4270 	/* step 6: check the URG bit */
4271 	tcp_urg(sk, skb, th);
4272 
4273 	/* step 7: process the segment text */
4274 	switch (sk->sk_state) {
4275 	case TCP_CLOSE_WAIT:
4276 	case TCP_CLOSING:
4277 	case TCP_LAST_ACK:
4278 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4279 			break;
4280 	case TCP_FIN_WAIT1:
4281 	case TCP_FIN_WAIT2:
4282 		/* RFC 793 says to queue data in these states,
4283 		 * RFC 1122 says we MUST send a reset.
4284 		 * BSD 4.4 also does reset.
4285 		 */
4286 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4287 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4288 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4289 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4290 				tcp_reset(sk);
4291 				return 1;
4292 			}
4293 		}
4294 		/* Fall through */
4295 	case TCP_ESTABLISHED:
4296 		tcp_data_queue(sk, skb);
4297 		queued = 1;
4298 		break;
4299 	}
4300 
4301 	/* tcp_data could move socket to TIME-WAIT */
4302 	if (sk->sk_state != TCP_CLOSE) {
4303 		tcp_data_snd_check(sk);
4304 		tcp_ack_snd_check(sk);
4305 	}
4306 
4307 	if (!queued) {
4308 discard:
4309 		__kfree_skb(skb);
4310 	}
4311 	return 0;
4312 }
4313 
4314 EXPORT_SYMBOL(sysctl_tcp_ecn);
4315 EXPORT_SYMBOL(sysctl_tcp_reordering);
4316 EXPORT_SYMBOL(tcp_parse_options);
4317 EXPORT_SYMBOL(tcp_rcv_established);
4318 EXPORT_SYMBOL(tcp_rcv_state_process);
4319