1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * INET An implementation of the TCP/IP protocol suite for the LINUX 4 * operating system. INET is implemented using the BSD Socket 5 * interface as the means of communication with the user level. 6 * 7 * Implementation of the Transmission Control Protocol(TCP). 8 * 9 * Authors: Ross Biro 10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 11 * Mark Evans, <evansmp@uhura.aston.ac.uk> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Florian La Roche, <flla@stud.uni-sb.de> 14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 15 * Linus Torvalds, <torvalds@cs.helsinki.fi> 16 * Alan Cox, <gw4pts@gw4pts.ampr.org> 17 * Matthew Dillon, <dillon@apollo.west.oic.com> 18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 19 * Jorge Cwik, <jorge@laser.satlink.net> 20 */ 21 22 /* 23 * Changes: 24 * Pedro Roque : Fast Retransmit/Recovery. 25 * Two receive queues. 26 * Retransmit queue handled by TCP. 27 * Better retransmit timer handling. 28 * New congestion avoidance. 29 * Header prediction. 30 * Variable renaming. 31 * 32 * Eric : Fast Retransmit. 33 * Randy Scott : MSS option defines. 34 * Eric Schenk : Fixes to slow start algorithm. 35 * Eric Schenk : Yet another double ACK bug. 36 * Eric Schenk : Delayed ACK bug fixes. 37 * Eric Schenk : Floyd style fast retrans war avoidance. 38 * David S. Miller : Don't allow zero congestion window. 39 * Eric Schenk : Fix retransmitter so that it sends 40 * next packet on ack of previous packet. 41 * Andi Kleen : Moved open_request checking here 42 * and process RSTs for open_requests. 43 * Andi Kleen : Better prune_queue, and other fixes. 44 * Andrey Savochkin: Fix RTT measurements in the presence of 45 * timestamps. 46 * Andrey Savochkin: Check sequence numbers correctly when 47 * removing SACKs due to in sequence incoming 48 * data segments. 49 * Andi Kleen: Make sure we never ack data there is not 50 * enough room for. Also make this condition 51 * a fatal error if it might still happen. 52 * Andi Kleen: Add tcp_measure_rcv_mss to make 53 * connections with MSS<min(MTU,ann. MSS) 54 * work without delayed acks. 55 * Andi Kleen: Process packets with PSH set in the 56 * fast path. 57 * J Hadi Salim: ECN support 58 * Andrei Gurtov, 59 * Pasi Sarolahti, 60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 61 * engine. Lots of bugs are found. 62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 63 */ 64 65 #define pr_fmt(fmt) "TCP: " fmt 66 67 #include <linux/mm.h> 68 #include <linux/slab.h> 69 #include <linux/module.h> 70 #include <linux/sysctl.h> 71 #include <linux/kernel.h> 72 #include <linux/prefetch.h> 73 #include <net/dst.h> 74 #include <net/tcp.h> 75 #include <net/inet_common.h> 76 #include <linux/ipsec.h> 77 #include <asm/unaligned.h> 78 #include <linux/errqueue.h> 79 #include <trace/events/tcp.h> 80 #include <linux/jump_label_ratelimit.h> 81 #include <net/busy_poll.h> 82 #include <net/mptcp.h> 83 84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 85 86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 92 #define FLAG_ECE 0x40 /* ECE in this ACK */ 93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */ 94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */ 99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */ 102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */ 103 104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK) 107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 108 109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 111 112 #define REXMIT_NONE 0 /* no loss recovery to do */ 113 #define REXMIT_LOST 1 /* retransmit packets marked lost */ 114 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */ 115 116 #if IS_ENABLED(CONFIG_TLS_DEVICE) 117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ); 118 119 void clean_acked_data_enable(struct inet_connection_sock *icsk, 120 void (*cad)(struct sock *sk, u32 ack_seq)) 121 { 122 icsk->icsk_clean_acked = cad; 123 static_branch_deferred_inc(&clean_acked_data_enabled); 124 } 125 EXPORT_SYMBOL_GPL(clean_acked_data_enable); 126 127 void clean_acked_data_disable(struct inet_connection_sock *icsk) 128 { 129 static_branch_slow_dec_deferred(&clean_acked_data_enabled); 130 icsk->icsk_clean_acked = NULL; 131 } 132 EXPORT_SYMBOL_GPL(clean_acked_data_disable); 133 134 void clean_acked_data_flush(void) 135 { 136 static_key_deferred_flush(&clean_acked_data_enabled); 137 } 138 EXPORT_SYMBOL_GPL(clean_acked_data_flush); 139 #endif 140 141 #ifdef CONFIG_CGROUP_BPF 142 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 143 { 144 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown && 145 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 146 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG); 147 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), 148 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG); 149 struct bpf_sock_ops_kern sock_ops; 150 151 if (likely(!unknown_opt && !parse_all_opt)) 152 return; 153 154 /* The skb will be handled in the 155 * bpf_skops_established() or 156 * bpf_skops_write_hdr_opt(). 157 */ 158 switch (sk->sk_state) { 159 case TCP_SYN_RECV: 160 case TCP_SYN_SENT: 161 case TCP_LISTEN: 162 return; 163 } 164 165 sock_owned_by_me(sk); 166 167 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 168 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB; 169 sock_ops.is_fullsock = 1; 170 sock_ops.sk = sk; 171 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 172 173 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 174 } 175 176 static void bpf_skops_established(struct sock *sk, int bpf_op, 177 struct sk_buff *skb) 178 { 179 struct bpf_sock_ops_kern sock_ops; 180 181 sock_owned_by_me(sk); 182 183 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp)); 184 sock_ops.op = bpf_op; 185 sock_ops.is_fullsock = 1; 186 sock_ops.sk = sk; 187 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */ 188 if (skb) 189 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb)); 190 191 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops); 192 } 193 #else 194 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb) 195 { 196 } 197 198 static void bpf_skops_established(struct sock *sk, int bpf_op, 199 struct sk_buff *skb) 200 { 201 } 202 #endif 203 204 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb, 205 unsigned int len) 206 { 207 static bool __once __read_mostly; 208 209 if (!__once) { 210 struct net_device *dev; 211 212 __once = true; 213 214 rcu_read_lock(); 215 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif); 216 if (!dev || len >= dev->mtu) 217 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n", 218 dev ? dev->name : "Unknown driver"); 219 rcu_read_unlock(); 220 } 221 } 222 223 /* Adapt the MSS value used to make delayed ack decision to the 224 * real world. 225 */ 226 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 227 { 228 struct inet_connection_sock *icsk = inet_csk(sk); 229 const unsigned int lss = icsk->icsk_ack.last_seg_size; 230 unsigned int len; 231 232 icsk->icsk_ack.last_seg_size = 0; 233 234 /* skb->len may jitter because of SACKs, even if peer 235 * sends good full-sized frames. 236 */ 237 len = skb_shinfo(skb)->gso_size ? : skb->len; 238 if (len >= icsk->icsk_ack.rcv_mss) { 239 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len, 240 tcp_sk(sk)->advmss); 241 /* Account for possibly-removed options */ 242 if (unlikely(len > icsk->icsk_ack.rcv_mss + 243 MAX_TCP_OPTION_SPACE)) 244 tcp_gro_dev_warn(sk, skb, len); 245 } else { 246 /* Otherwise, we make more careful check taking into account, 247 * that SACKs block is variable. 248 * 249 * "len" is invariant segment length, including TCP header. 250 */ 251 len += skb->data - skb_transport_header(skb); 252 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 253 /* If PSH is not set, packet should be 254 * full sized, provided peer TCP is not badly broken. 255 * This observation (if it is correct 8)) allows 256 * to handle super-low mtu links fairly. 257 */ 258 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 259 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 260 /* Subtract also invariant (if peer is RFC compliant), 261 * tcp header plus fixed timestamp option length. 262 * Resulting "len" is MSS free of SACK jitter. 263 */ 264 len -= tcp_sk(sk)->tcp_header_len; 265 icsk->icsk_ack.last_seg_size = len; 266 if (len == lss) { 267 icsk->icsk_ack.rcv_mss = len; 268 return; 269 } 270 } 271 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 272 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 274 } 275 } 276 277 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks) 278 { 279 struct inet_connection_sock *icsk = inet_csk(sk); 280 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 281 282 if (quickacks == 0) 283 quickacks = 2; 284 quickacks = min(quickacks, max_quickacks); 285 if (quickacks > icsk->icsk_ack.quick) 286 icsk->icsk_ack.quick = quickacks; 287 } 288 289 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks) 290 { 291 struct inet_connection_sock *icsk = inet_csk(sk); 292 293 tcp_incr_quickack(sk, max_quickacks); 294 inet_csk_exit_pingpong_mode(sk); 295 icsk->icsk_ack.ato = TCP_ATO_MIN; 296 } 297 EXPORT_SYMBOL(tcp_enter_quickack_mode); 298 299 /* Send ACKs quickly, if "quick" count is not exhausted 300 * and the session is not interactive. 301 */ 302 303 static bool tcp_in_quickack_mode(struct sock *sk) 304 { 305 const struct inet_connection_sock *icsk = inet_csk(sk); 306 const struct dst_entry *dst = __sk_dst_get(sk); 307 308 return (dst && dst_metric(dst, RTAX_QUICKACK)) || 309 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk)); 310 } 311 312 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 313 { 314 if (tp->ecn_flags & TCP_ECN_OK) 315 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 316 } 317 318 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb) 319 { 320 if (tcp_hdr(skb)->cwr) { 321 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 322 323 /* If the sender is telling us it has entered CWR, then its 324 * cwnd may be very low (even just 1 packet), so we should ACK 325 * immediately. 326 */ 327 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) 328 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 329 } 330 } 331 332 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 333 { 334 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR; 335 } 336 337 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 338 { 339 struct tcp_sock *tp = tcp_sk(sk); 340 341 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 342 case INET_ECN_NOT_ECT: 343 /* Funny extension: if ECT is not set on a segment, 344 * and we already seen ECT on a previous segment, 345 * it is probably a retransmit. 346 */ 347 if (tp->ecn_flags & TCP_ECN_SEEN) 348 tcp_enter_quickack_mode(sk, 2); 349 break; 350 case INET_ECN_CE: 351 if (tcp_ca_needs_ecn(sk)) 352 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE); 353 354 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 355 /* Better not delay acks, sender can have a very low cwnd */ 356 tcp_enter_quickack_mode(sk, 2); 357 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 358 } 359 tp->ecn_flags |= TCP_ECN_SEEN; 360 break; 361 default: 362 if (tcp_ca_needs_ecn(sk)) 363 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE); 364 tp->ecn_flags |= TCP_ECN_SEEN; 365 break; 366 } 367 } 368 369 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb) 370 { 371 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK) 372 __tcp_ecn_check_ce(sk, skb); 373 } 374 375 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 376 { 377 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 378 tp->ecn_flags &= ~TCP_ECN_OK; 379 } 380 381 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 382 { 383 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 384 tp->ecn_flags &= ~TCP_ECN_OK; 385 } 386 387 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 388 { 389 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 390 return true; 391 return false; 392 } 393 394 /* Buffer size and advertised window tuning. 395 * 396 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 397 */ 398 399 static void tcp_sndbuf_expand(struct sock *sk) 400 { 401 const struct tcp_sock *tp = tcp_sk(sk); 402 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops; 403 int sndmem, per_mss; 404 u32 nr_segs; 405 406 /* Worst case is non GSO/TSO : each frame consumes one skb 407 * and skb->head is kmalloced using power of two area of memory 408 */ 409 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 410 MAX_TCP_HEADER + 411 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 412 413 per_mss = roundup_pow_of_two(per_mss) + 414 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 415 416 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 417 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 418 419 /* Fast Recovery (RFC 5681 3.2) : 420 * Cubic needs 1.7 factor, rounded to 2 to include 421 * extra cushion (application might react slowly to EPOLLOUT) 422 */ 423 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2; 424 sndmem *= nr_segs * per_mss; 425 426 if (sk->sk_sndbuf < sndmem) 427 WRITE_ONCE(sk->sk_sndbuf, 428 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2])); 429 } 430 431 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 432 * 433 * All tcp_full_space() is split to two parts: "network" buffer, allocated 434 * forward and advertised in receiver window (tp->rcv_wnd) and 435 * "application buffer", required to isolate scheduling/application 436 * latencies from network. 437 * window_clamp is maximal advertised window. It can be less than 438 * tcp_full_space(), in this case tcp_full_space() - window_clamp 439 * is reserved for "application" buffer. The less window_clamp is 440 * the smoother our behaviour from viewpoint of network, but the lower 441 * throughput and the higher sensitivity of the connection to losses. 8) 442 * 443 * rcv_ssthresh is more strict window_clamp used at "slow start" 444 * phase to predict further behaviour of this connection. 445 * It is used for two goals: 446 * - to enforce header prediction at sender, even when application 447 * requires some significant "application buffer". It is check #1. 448 * - to prevent pruning of receive queue because of misprediction 449 * of receiver window. Check #2. 450 * 451 * The scheme does not work when sender sends good segments opening 452 * window and then starts to feed us spaghetti. But it should work 453 * in common situations. Otherwise, we have to rely on queue collapsing. 454 */ 455 456 /* Slow part of check#2. */ 457 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb, 458 unsigned int skbtruesize) 459 { 460 struct tcp_sock *tp = tcp_sk(sk); 461 /* Optimize this! */ 462 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1; 463 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1; 464 465 while (tp->rcv_ssthresh <= window) { 466 if (truesize <= skb->len) 467 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 468 469 truesize >>= 1; 470 window >>= 1; 471 } 472 return 0; 473 } 474 475 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing 476 * can play nice with us, as sk_buff and skb->head might be either 477 * freed or shared with up to MAX_SKB_FRAGS segments. 478 * Only give a boost to drivers using page frag(s) to hold the frame(s), 479 * and if no payload was pulled in skb->head before reaching us. 480 */ 481 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb) 482 { 483 u32 truesize = skb->truesize; 484 485 if (adjust && !skb_headlen(skb)) { 486 truesize -= SKB_TRUESIZE(skb_end_offset(skb)); 487 /* paranoid check, some drivers might be buggy */ 488 if (unlikely((int)truesize < (int)skb->len)) 489 truesize = skb->truesize; 490 } 491 return truesize; 492 } 493 494 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb, 495 bool adjust) 496 { 497 struct tcp_sock *tp = tcp_sk(sk); 498 int room; 499 500 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh; 501 502 /* Check #1 */ 503 if (room > 0 && !tcp_under_memory_pressure(sk)) { 504 unsigned int truesize = truesize_adjust(adjust, skb); 505 int incr; 506 507 /* Check #2. Increase window, if skb with such overhead 508 * will fit to rcvbuf in future. 509 */ 510 if (tcp_win_from_space(sk, truesize) <= skb->len) 511 incr = 2 * tp->advmss; 512 else 513 incr = __tcp_grow_window(sk, skb, truesize); 514 515 if (incr) { 516 incr = max_t(int, incr, 2 * skb->len); 517 tp->rcv_ssthresh += min(room, incr); 518 inet_csk(sk)->icsk_ack.quick |= 1; 519 } 520 } 521 } 522 523 /* 3. Try to fixup all. It is made immediately after connection enters 524 * established state. 525 */ 526 static void tcp_init_buffer_space(struct sock *sk) 527 { 528 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win; 529 struct tcp_sock *tp = tcp_sk(sk); 530 int maxwin; 531 532 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 533 tcp_sndbuf_expand(sk); 534 535 tcp_mstamp_refresh(tp); 536 tp->rcvq_space.time = tp->tcp_mstamp; 537 tp->rcvq_space.seq = tp->copied_seq; 538 539 maxwin = tcp_full_space(sk); 540 541 if (tp->window_clamp >= maxwin) { 542 tp->window_clamp = maxwin; 543 544 if (tcp_app_win && maxwin > 4 * tp->advmss) 545 tp->window_clamp = max(maxwin - 546 (maxwin >> tcp_app_win), 547 4 * tp->advmss); 548 } 549 550 /* Force reservation of one segment. */ 551 if (tcp_app_win && 552 tp->window_clamp > 2 * tp->advmss && 553 tp->window_clamp + tp->advmss > maxwin) 554 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 555 556 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 557 tp->snd_cwnd_stamp = tcp_jiffies32; 558 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd, 559 (u32)TCP_INIT_CWND * tp->advmss); 560 } 561 562 /* 4. Recalculate window clamp after socket hit its memory bounds. */ 563 static void tcp_clamp_window(struct sock *sk) 564 { 565 struct tcp_sock *tp = tcp_sk(sk); 566 struct inet_connection_sock *icsk = inet_csk(sk); 567 struct net *net = sock_net(sk); 568 569 icsk->icsk_ack.quick = 0; 570 571 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] && 572 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 573 !tcp_under_memory_pressure(sk) && 574 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 575 WRITE_ONCE(sk->sk_rcvbuf, 576 min(atomic_read(&sk->sk_rmem_alloc), 577 net->ipv4.sysctl_tcp_rmem[2])); 578 } 579 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 580 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 581 } 582 583 /* Initialize RCV_MSS value. 584 * RCV_MSS is an our guess about MSS used by the peer. 585 * We haven't any direct information about the MSS. 586 * It's better to underestimate the RCV_MSS rather than overestimate. 587 * Overestimations make us ACKing less frequently than needed. 588 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 589 */ 590 void tcp_initialize_rcv_mss(struct sock *sk) 591 { 592 const struct tcp_sock *tp = tcp_sk(sk); 593 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 594 595 hint = min(hint, tp->rcv_wnd / 2); 596 hint = min(hint, TCP_MSS_DEFAULT); 597 hint = max(hint, TCP_MIN_MSS); 598 599 inet_csk(sk)->icsk_ack.rcv_mss = hint; 600 } 601 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 602 603 /* Receiver "autotuning" code. 604 * 605 * The algorithm for RTT estimation w/o timestamps is based on 606 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 607 * <https://public.lanl.gov/radiant/pubs.html#DRS> 608 * 609 * More detail on this code can be found at 610 * <http://staff.psc.edu/jheffner/>, 611 * though this reference is out of date. A new paper 612 * is pending. 613 */ 614 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 615 { 616 u32 new_sample = tp->rcv_rtt_est.rtt_us; 617 long m = sample; 618 619 if (new_sample != 0) { 620 /* If we sample in larger samples in the non-timestamp 621 * case, we could grossly overestimate the RTT especially 622 * with chatty applications or bulk transfer apps which 623 * are stalled on filesystem I/O. 624 * 625 * Also, since we are only going for a minimum in the 626 * non-timestamp case, we do not smooth things out 627 * else with timestamps disabled convergence takes too 628 * long. 629 */ 630 if (!win_dep) { 631 m -= (new_sample >> 3); 632 new_sample += m; 633 } else { 634 m <<= 3; 635 if (m < new_sample) 636 new_sample = m; 637 } 638 } else { 639 /* No previous measure. */ 640 new_sample = m << 3; 641 } 642 643 tp->rcv_rtt_est.rtt_us = new_sample; 644 } 645 646 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 647 { 648 u32 delta_us; 649 650 if (tp->rcv_rtt_est.time == 0) 651 goto new_measure; 652 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 653 return; 654 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time); 655 if (!delta_us) 656 delta_us = 1; 657 tcp_rcv_rtt_update(tp, delta_us, 1); 658 659 new_measure: 660 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 661 tp->rcv_rtt_est.time = tp->tcp_mstamp; 662 } 663 664 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 665 const struct sk_buff *skb) 666 { 667 struct tcp_sock *tp = tcp_sk(sk); 668 669 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr) 670 return; 671 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 672 673 if (TCP_SKB_CB(skb)->end_seq - 674 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) { 675 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 676 u32 delta_us; 677 678 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 679 if (!delta) 680 delta = 1; 681 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 682 tcp_rcv_rtt_update(tp, delta_us, 0); 683 } 684 } 685 } 686 687 /* 688 * This function should be called every time data is copied to user space. 689 * It calculates the appropriate TCP receive buffer space. 690 */ 691 void tcp_rcv_space_adjust(struct sock *sk) 692 { 693 struct tcp_sock *tp = tcp_sk(sk); 694 u32 copied; 695 int time; 696 697 trace_tcp_rcv_space_adjust(sk); 698 699 tcp_mstamp_refresh(tp); 700 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time); 701 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0) 702 return; 703 704 /* Number of bytes copied to user in last RTT */ 705 copied = tp->copied_seq - tp->rcvq_space.seq; 706 if (copied <= tp->rcvq_space.space) 707 goto new_measure; 708 709 /* A bit of theory : 710 * copied = bytes received in previous RTT, our base window 711 * To cope with packet losses, we need a 2x factor 712 * To cope with slow start, and sender growing its cwin by 100 % 713 * every RTT, we need a 4x factor, because the ACK we are sending 714 * now is for the next RTT, not the current one : 715 * <prev RTT . ><current RTT .. ><next RTT .... > 716 */ 717 718 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf && 719 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 720 int rcvmem, rcvbuf; 721 u64 rcvwin, grow; 722 723 /* minimal window to cope with packet losses, assuming 724 * steady state. Add some cushion because of small variations. 725 */ 726 rcvwin = ((u64)copied << 1) + 16 * tp->advmss; 727 728 /* Accommodate for sender rate increase (eg. slow start) */ 729 grow = rcvwin * (copied - tp->rcvq_space.space); 730 do_div(grow, tp->rcvq_space.space); 731 rcvwin += (grow << 1); 732 733 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 734 while (tcp_win_from_space(sk, rcvmem) < tp->advmss) 735 rcvmem += 128; 736 737 do_div(rcvwin, tp->advmss); 738 rcvbuf = min_t(u64, rcvwin * rcvmem, 739 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 740 if (rcvbuf > sk->sk_rcvbuf) { 741 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 742 743 /* Make the window clamp follow along. */ 744 tp->window_clamp = tcp_win_from_space(sk, rcvbuf); 745 } 746 } 747 tp->rcvq_space.space = copied; 748 749 new_measure: 750 tp->rcvq_space.seq = tp->copied_seq; 751 tp->rcvq_space.time = tp->tcp_mstamp; 752 } 753 754 /* There is something which you must keep in mind when you analyze the 755 * behavior of the tp->ato delayed ack timeout interval. When a 756 * connection starts up, we want to ack as quickly as possible. The 757 * problem is that "good" TCP's do slow start at the beginning of data 758 * transmission. The means that until we send the first few ACK's the 759 * sender will sit on his end and only queue most of his data, because 760 * he can only send snd_cwnd unacked packets at any given time. For 761 * each ACK we send, he increments snd_cwnd and transmits more of his 762 * queue. -DaveM 763 */ 764 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 765 { 766 struct tcp_sock *tp = tcp_sk(sk); 767 struct inet_connection_sock *icsk = inet_csk(sk); 768 u32 now; 769 770 inet_csk_schedule_ack(sk); 771 772 tcp_measure_rcv_mss(sk, skb); 773 774 tcp_rcv_rtt_measure(tp); 775 776 now = tcp_jiffies32; 777 778 if (!icsk->icsk_ack.ato) { 779 /* The _first_ data packet received, initialize 780 * delayed ACK engine. 781 */ 782 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 783 icsk->icsk_ack.ato = TCP_ATO_MIN; 784 } else { 785 int m = now - icsk->icsk_ack.lrcvtime; 786 787 if (m <= TCP_ATO_MIN / 2) { 788 /* The fastest case is the first. */ 789 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 790 } else if (m < icsk->icsk_ack.ato) { 791 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 792 if (icsk->icsk_ack.ato > icsk->icsk_rto) 793 icsk->icsk_ack.ato = icsk->icsk_rto; 794 } else if (m > icsk->icsk_rto) { 795 /* Too long gap. Apparently sender failed to 796 * restart window, so that we send ACKs quickly. 797 */ 798 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS); 799 sk_mem_reclaim(sk); 800 } 801 } 802 icsk->icsk_ack.lrcvtime = now; 803 804 tcp_ecn_check_ce(sk, skb); 805 806 if (skb->len >= 128) 807 tcp_grow_window(sk, skb, true); 808 } 809 810 /* Called to compute a smoothed rtt estimate. The data fed to this 811 * routine either comes from timestamps, or from segments that were 812 * known _not_ to have been retransmitted [see Karn/Partridge 813 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 814 * piece by Van Jacobson. 815 * NOTE: the next three routines used to be one big routine. 816 * To save cycles in the RFC 1323 implementation it was better to break 817 * it up into three procedures. -- erics 818 */ 819 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 820 { 821 struct tcp_sock *tp = tcp_sk(sk); 822 long m = mrtt_us; /* RTT */ 823 u32 srtt = tp->srtt_us; 824 825 /* The following amusing code comes from Jacobson's 826 * article in SIGCOMM '88. Note that rtt and mdev 827 * are scaled versions of rtt and mean deviation. 828 * This is designed to be as fast as possible 829 * m stands for "measurement". 830 * 831 * On a 1990 paper the rto value is changed to: 832 * RTO = rtt + 4 * mdev 833 * 834 * Funny. This algorithm seems to be very broken. 835 * These formulae increase RTO, when it should be decreased, increase 836 * too slowly, when it should be increased quickly, decrease too quickly 837 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 838 * does not matter how to _calculate_ it. Seems, it was trap 839 * that VJ failed to avoid. 8) 840 */ 841 if (srtt != 0) { 842 m -= (srtt >> 3); /* m is now error in rtt est */ 843 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 844 if (m < 0) { 845 m = -m; /* m is now abs(error) */ 846 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 847 /* This is similar to one of Eifel findings. 848 * Eifel blocks mdev updates when rtt decreases. 849 * This solution is a bit different: we use finer gain 850 * for mdev in this case (alpha*beta). 851 * Like Eifel it also prevents growth of rto, 852 * but also it limits too fast rto decreases, 853 * happening in pure Eifel. 854 */ 855 if (m > 0) 856 m >>= 3; 857 } else { 858 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 859 } 860 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 861 if (tp->mdev_us > tp->mdev_max_us) { 862 tp->mdev_max_us = tp->mdev_us; 863 if (tp->mdev_max_us > tp->rttvar_us) 864 tp->rttvar_us = tp->mdev_max_us; 865 } 866 if (after(tp->snd_una, tp->rtt_seq)) { 867 if (tp->mdev_max_us < tp->rttvar_us) 868 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 869 tp->rtt_seq = tp->snd_nxt; 870 tp->mdev_max_us = tcp_rto_min_us(sk); 871 872 tcp_bpf_rtt(sk); 873 } 874 } else { 875 /* no previous measure. */ 876 srtt = m << 3; /* take the measured time to be rtt */ 877 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 878 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 879 tp->mdev_max_us = tp->rttvar_us; 880 tp->rtt_seq = tp->snd_nxt; 881 882 tcp_bpf_rtt(sk); 883 } 884 tp->srtt_us = max(1U, srtt); 885 } 886 887 static void tcp_update_pacing_rate(struct sock *sk) 888 { 889 const struct tcp_sock *tp = tcp_sk(sk); 890 u64 rate; 891 892 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 893 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3); 894 895 /* current rate is (cwnd * mss) / srtt 896 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate. 897 * In Congestion Avoidance phase, set it to 120 % the current rate. 898 * 899 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh) 900 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching 901 * end of slow start and should slow down. 902 */ 903 if (tp->snd_cwnd < tp->snd_ssthresh / 2) 904 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio; 905 else 906 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio; 907 908 rate *= max(tp->snd_cwnd, tp->packets_out); 909 910 if (likely(tp->srtt_us)) 911 do_div(rate, tp->srtt_us); 912 913 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate 914 * without any lock. We want to make sure compiler wont store 915 * intermediate values in this location. 916 */ 917 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate, 918 sk->sk_max_pacing_rate)); 919 } 920 921 /* Calculate rto without backoff. This is the second half of Van Jacobson's 922 * routine referred to above. 923 */ 924 static void tcp_set_rto(struct sock *sk) 925 { 926 const struct tcp_sock *tp = tcp_sk(sk); 927 /* Old crap is replaced with new one. 8) 928 * 929 * More seriously: 930 * 1. If rtt variance happened to be less 50msec, it is hallucination. 931 * It cannot be less due to utterly erratic ACK generation made 932 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 933 * to do with delayed acks, because at cwnd>2 true delack timeout 934 * is invisible. Actually, Linux-2.4 also generates erratic 935 * ACKs in some circumstances. 936 */ 937 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 938 939 /* 2. Fixups made earlier cannot be right. 940 * If we do not estimate RTO correctly without them, 941 * all the algo is pure shit and should be replaced 942 * with correct one. It is exactly, which we pretend to do. 943 */ 944 945 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 946 * guarantees that rto is higher. 947 */ 948 tcp_bound_rto(sk); 949 } 950 951 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 952 { 953 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 954 955 if (!cwnd) 956 cwnd = TCP_INIT_CWND; 957 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 958 } 959 960 struct tcp_sacktag_state { 961 /* Timestamps for earliest and latest never-retransmitted segment 962 * that was SACKed. RTO needs the earliest RTT to stay conservative, 963 * but congestion control should still get an accurate delay signal. 964 */ 965 u64 first_sackt; 966 u64 last_sackt; 967 u32 reord; 968 u32 sack_delivered; 969 int flag; 970 unsigned int mss_now; 971 struct rate_sample *rate; 972 }; 973 974 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery 975 * and spurious retransmission information if this DSACK is unlikely caused by 976 * sender's action: 977 * - DSACKed sequence range is larger than maximum receiver's window. 978 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs. 979 */ 980 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq, 981 u32 end_seq, struct tcp_sacktag_state *state) 982 { 983 u32 seq_len, dup_segs = 1; 984 985 if (!before(start_seq, end_seq)) 986 return 0; 987 988 seq_len = end_seq - start_seq; 989 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */ 990 if (seq_len > tp->max_window) 991 return 0; 992 if (seq_len > tp->mss_cache) 993 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache); 994 995 tp->dsack_dups += dup_segs; 996 /* Skip the DSACK if dup segs weren't retransmitted by sender */ 997 if (tp->dsack_dups > tp->total_retrans) 998 return 0; 999 1000 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 1001 tp->rack.dsack_seen = 1; 1002 1003 state->flag |= FLAG_DSACKING_ACK; 1004 /* A spurious retransmission is delivered */ 1005 state->sack_delivered += dup_segs; 1006 1007 return dup_segs; 1008 } 1009 1010 /* It's reordering when higher sequence was delivered (i.e. sacked) before 1011 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering 1012 * distance is approximated in full-mss packet distance ("reordering"). 1013 */ 1014 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq, 1015 const int ts) 1016 { 1017 struct tcp_sock *tp = tcp_sk(sk); 1018 const u32 mss = tp->mss_cache; 1019 u32 fack, metric; 1020 1021 fack = tcp_highest_sack_seq(tp); 1022 if (!before(low_seq, fack)) 1023 return; 1024 1025 metric = fack - low_seq; 1026 if ((metric > tp->reordering * mss) && mss) { 1027 #if FASTRETRANS_DEBUG > 1 1028 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 1029 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 1030 tp->reordering, 1031 0, 1032 tp->sacked_out, 1033 tp->undo_marker ? tp->undo_retrans : 0); 1034 #endif 1035 tp->reordering = min_t(u32, (metric + mss - 1) / mss, 1036 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 1037 } 1038 1039 /* This exciting event is worth to be remembered. 8) */ 1040 tp->reord_seen++; 1041 NET_INC_STATS(sock_net(sk), 1042 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER); 1043 } 1044 1045 /* This must be called before lost_out or retrans_out are updated 1046 * on a new loss, because we want to know if all skbs previously 1047 * known to be lost have already been retransmitted, indicating 1048 * that this newly lost skb is our next skb to retransmit. 1049 */ 1050 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 1051 { 1052 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) || 1053 (tp->retransmit_skb_hint && 1054 before(TCP_SKB_CB(skb)->seq, 1055 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))) 1056 tp->retransmit_skb_hint = skb; 1057 } 1058 1059 /* Sum the number of packets on the wire we have marked as lost, and 1060 * notify the congestion control module that the given skb was marked lost. 1061 */ 1062 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb) 1063 { 1064 tp->lost += tcp_skb_pcount(skb); 1065 } 1066 1067 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb) 1068 { 1069 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1070 struct tcp_sock *tp = tcp_sk(sk); 1071 1072 if (sacked & TCPCB_SACKED_ACKED) 1073 return; 1074 1075 tcp_verify_retransmit_hint(tp, skb); 1076 if (sacked & TCPCB_LOST) { 1077 if (sacked & TCPCB_SACKED_RETRANS) { 1078 /* Account for retransmits that are lost again */ 1079 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1080 tp->retrans_out -= tcp_skb_pcount(skb); 1081 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT, 1082 tcp_skb_pcount(skb)); 1083 tcp_notify_skb_loss_event(tp, skb); 1084 } 1085 } else { 1086 tp->lost_out += tcp_skb_pcount(skb); 1087 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1088 tcp_notify_skb_loss_event(tp, skb); 1089 } 1090 } 1091 1092 /* Updates the delivered and delivered_ce counts */ 1093 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered, 1094 bool ece_ack) 1095 { 1096 tp->delivered += delivered; 1097 if (ece_ack) 1098 tp->delivered_ce += delivered; 1099 } 1100 1101 /* This procedure tags the retransmission queue when SACKs arrive. 1102 * 1103 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 1104 * Packets in queue with these bits set are counted in variables 1105 * sacked_out, retrans_out and lost_out, correspondingly. 1106 * 1107 * Valid combinations are: 1108 * Tag InFlight Description 1109 * 0 1 - orig segment is in flight. 1110 * S 0 - nothing flies, orig reached receiver. 1111 * L 0 - nothing flies, orig lost by net. 1112 * R 2 - both orig and retransmit are in flight. 1113 * L|R 1 - orig is lost, retransmit is in flight. 1114 * S|R 1 - orig reached receiver, retrans is still in flight. 1115 * (L|S|R is logically valid, it could occur when L|R is sacked, 1116 * but it is equivalent to plain S and code short-curcuits it to S. 1117 * L|S is logically invalid, it would mean -1 packet in flight 8)) 1118 * 1119 * These 6 states form finite state machine, controlled by the following events: 1120 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 1121 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 1122 * 3. Loss detection event of two flavors: 1123 * A. Scoreboard estimator decided the packet is lost. 1124 * A'. Reno "three dupacks" marks head of queue lost. 1125 * B. SACK arrives sacking SND.NXT at the moment, when the 1126 * segment was retransmitted. 1127 * 4. D-SACK added new rule: D-SACK changes any tag to S. 1128 * 1129 * It is pleasant to note, that state diagram turns out to be commutative, 1130 * so that we are allowed not to be bothered by order of our actions, 1131 * when multiple events arrive simultaneously. (see the function below). 1132 * 1133 * Reordering detection. 1134 * -------------------- 1135 * Reordering metric is maximal distance, which a packet can be displaced 1136 * in packet stream. With SACKs we can estimate it: 1137 * 1138 * 1. SACK fills old hole and the corresponding segment was not 1139 * ever retransmitted -> reordering. Alas, we cannot use it 1140 * when segment was retransmitted. 1141 * 2. The last flaw is solved with D-SACK. D-SACK arrives 1142 * for retransmitted and already SACKed segment -> reordering.. 1143 * Both of these heuristics are not used in Loss state, when we cannot 1144 * account for retransmits accurately. 1145 * 1146 * SACK block validation. 1147 * ---------------------- 1148 * 1149 * SACK block range validation checks that the received SACK block fits to 1150 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 1151 * Note that SND.UNA is not included to the range though being valid because 1152 * it means that the receiver is rather inconsistent with itself reporting 1153 * SACK reneging when it should advance SND.UNA. Such SACK block this is 1154 * perfectly valid, however, in light of RFC2018 which explicitly states 1155 * that "SACK block MUST reflect the newest segment. Even if the newest 1156 * segment is going to be discarded ...", not that it looks very clever 1157 * in case of head skb. Due to potentional receiver driven attacks, we 1158 * choose to avoid immediate execution of a walk in write queue due to 1159 * reneging and defer head skb's loss recovery to standard loss recovery 1160 * procedure that will eventually trigger (nothing forbids us doing this). 1161 * 1162 * Implements also blockage to start_seq wrap-around. Problem lies in the 1163 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 1164 * there's no guarantee that it will be before snd_nxt (n). The problem 1165 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 1166 * wrap (s_w): 1167 * 1168 * <- outs wnd -> <- wrapzone -> 1169 * u e n u_w e_w s n_w 1170 * | | | | | | | 1171 * |<------------+------+----- TCP seqno space --------------+---------->| 1172 * ...-- <2^31 ->| |<--------... 1173 * ...---- >2^31 ------>| |<--------... 1174 * 1175 * Current code wouldn't be vulnerable but it's better still to discard such 1176 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 1177 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 1178 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 1179 * equal to the ideal case (infinite seqno space without wrap caused issues). 1180 * 1181 * With D-SACK the lower bound is extended to cover sequence space below 1182 * SND.UNA down to undo_marker, which is the last point of interest. Yet 1183 * again, D-SACK block must not to go across snd_una (for the same reason as 1184 * for the normal SACK blocks, explained above). But there all simplicity 1185 * ends, TCP might receive valid D-SACKs below that. As long as they reside 1186 * fully below undo_marker they do not affect behavior in anyway and can 1187 * therefore be safely ignored. In rare cases (which are more or less 1188 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 1189 * fragmentation and packet reordering past skb's retransmission. To consider 1190 * them correctly, the acceptable range must be extended even more though 1191 * the exact amount is rather hard to quantify. However, tp->max_window can 1192 * be used as an exaggerated estimate. 1193 */ 1194 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 1195 u32 start_seq, u32 end_seq) 1196 { 1197 /* Too far in future, or reversed (interpretation is ambiguous) */ 1198 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 1199 return false; 1200 1201 /* Nasty start_seq wrap-around check (see comments above) */ 1202 if (!before(start_seq, tp->snd_nxt)) 1203 return false; 1204 1205 /* In outstanding window? ...This is valid exit for D-SACKs too. 1206 * start_seq == snd_una is non-sensical (see comments above) 1207 */ 1208 if (after(start_seq, tp->snd_una)) 1209 return true; 1210 1211 if (!is_dsack || !tp->undo_marker) 1212 return false; 1213 1214 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1215 if (after(end_seq, tp->snd_una)) 1216 return false; 1217 1218 if (!before(start_seq, tp->undo_marker)) 1219 return true; 1220 1221 /* Too old */ 1222 if (!after(end_seq, tp->undo_marker)) 1223 return false; 1224 1225 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1226 * start_seq < undo_marker and end_seq >= undo_marker. 1227 */ 1228 return !before(start_seq, end_seq - tp->max_window); 1229 } 1230 1231 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1232 struct tcp_sack_block_wire *sp, int num_sacks, 1233 u32 prior_snd_una, struct tcp_sacktag_state *state) 1234 { 1235 struct tcp_sock *tp = tcp_sk(sk); 1236 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1237 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1238 u32 dup_segs; 1239 1240 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1241 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1242 } else if (num_sacks > 1) { 1243 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1244 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1245 1246 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1)) 1247 return false; 1248 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV); 1249 } else { 1250 return false; 1251 } 1252 1253 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state); 1254 if (!dup_segs) { /* Skip dubious DSACK */ 1255 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS); 1256 return false; 1257 } 1258 1259 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs); 1260 1261 /* D-SACK for already forgotten data... Do dumb counting. */ 1262 if (tp->undo_marker && tp->undo_retrans > 0 && 1263 !after(end_seq_0, prior_snd_una) && 1264 after(end_seq_0, tp->undo_marker)) 1265 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs); 1266 1267 return true; 1268 } 1269 1270 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1271 * the incoming SACK may not exactly match but we can find smaller MSS 1272 * aligned portion of it that matches. Therefore we might need to fragment 1273 * which may fail and creates some hassle (caller must handle error case 1274 * returns). 1275 * 1276 * FIXME: this could be merged to shift decision code 1277 */ 1278 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1279 u32 start_seq, u32 end_seq) 1280 { 1281 int err; 1282 bool in_sack; 1283 unsigned int pkt_len; 1284 unsigned int mss; 1285 1286 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1287 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1288 1289 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1290 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1291 mss = tcp_skb_mss(skb); 1292 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1293 1294 if (!in_sack) { 1295 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1296 if (pkt_len < mss) 1297 pkt_len = mss; 1298 } else { 1299 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1300 if (pkt_len < mss) 1301 return -EINVAL; 1302 } 1303 1304 /* Round if necessary so that SACKs cover only full MSSes 1305 * and/or the remaining small portion (if present) 1306 */ 1307 if (pkt_len > mss) { 1308 unsigned int new_len = (pkt_len / mss) * mss; 1309 if (!in_sack && new_len < pkt_len) 1310 new_len += mss; 1311 pkt_len = new_len; 1312 } 1313 1314 if (pkt_len >= skb->len && !in_sack) 1315 return 0; 1316 1317 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, 1318 pkt_len, mss, GFP_ATOMIC); 1319 if (err < 0) 1320 return err; 1321 } 1322 1323 return in_sack; 1324 } 1325 1326 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1327 static u8 tcp_sacktag_one(struct sock *sk, 1328 struct tcp_sacktag_state *state, u8 sacked, 1329 u32 start_seq, u32 end_seq, 1330 int dup_sack, int pcount, 1331 u64 xmit_time) 1332 { 1333 struct tcp_sock *tp = tcp_sk(sk); 1334 1335 /* Account D-SACK for retransmitted packet. */ 1336 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1337 if (tp->undo_marker && tp->undo_retrans > 0 && 1338 after(end_seq, tp->undo_marker)) 1339 tp->undo_retrans--; 1340 if ((sacked & TCPCB_SACKED_ACKED) && 1341 before(start_seq, state->reord)) 1342 state->reord = start_seq; 1343 } 1344 1345 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1346 if (!after(end_seq, tp->snd_una)) 1347 return sacked; 1348 1349 if (!(sacked & TCPCB_SACKED_ACKED)) { 1350 tcp_rack_advance(tp, sacked, end_seq, xmit_time); 1351 1352 if (sacked & TCPCB_SACKED_RETRANS) { 1353 /* If the segment is not tagged as lost, 1354 * we do not clear RETRANS, believing 1355 * that retransmission is still in flight. 1356 */ 1357 if (sacked & TCPCB_LOST) { 1358 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1359 tp->lost_out -= pcount; 1360 tp->retrans_out -= pcount; 1361 } 1362 } else { 1363 if (!(sacked & TCPCB_RETRANS)) { 1364 /* New sack for not retransmitted frame, 1365 * which was in hole. It is reordering. 1366 */ 1367 if (before(start_seq, 1368 tcp_highest_sack_seq(tp)) && 1369 before(start_seq, state->reord)) 1370 state->reord = start_seq; 1371 1372 if (!after(end_seq, tp->high_seq)) 1373 state->flag |= FLAG_ORIG_SACK_ACKED; 1374 if (state->first_sackt == 0) 1375 state->first_sackt = xmit_time; 1376 state->last_sackt = xmit_time; 1377 } 1378 1379 if (sacked & TCPCB_LOST) { 1380 sacked &= ~TCPCB_LOST; 1381 tp->lost_out -= pcount; 1382 } 1383 } 1384 1385 sacked |= TCPCB_SACKED_ACKED; 1386 state->flag |= FLAG_DATA_SACKED; 1387 tp->sacked_out += pcount; 1388 /* Out-of-order packets delivered */ 1389 state->sack_delivered += pcount; 1390 1391 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1392 if (tp->lost_skb_hint && 1393 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1394 tp->lost_cnt_hint += pcount; 1395 } 1396 1397 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1398 * frames and clear it. undo_retrans is decreased above, L|R frames 1399 * are accounted above as well. 1400 */ 1401 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1402 sacked &= ~TCPCB_SACKED_RETRANS; 1403 tp->retrans_out -= pcount; 1404 } 1405 1406 return sacked; 1407 } 1408 1409 /* Shift newly-SACKed bytes from this skb to the immediately previous 1410 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1411 */ 1412 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev, 1413 struct sk_buff *skb, 1414 struct tcp_sacktag_state *state, 1415 unsigned int pcount, int shifted, int mss, 1416 bool dup_sack) 1417 { 1418 struct tcp_sock *tp = tcp_sk(sk); 1419 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1420 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1421 1422 BUG_ON(!pcount); 1423 1424 /* Adjust counters and hints for the newly sacked sequence 1425 * range but discard the return value since prev is already 1426 * marked. We must tag the range first because the seq 1427 * advancement below implicitly advances 1428 * tcp_highest_sack_seq() when skb is highest_sack. 1429 */ 1430 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1431 start_seq, end_seq, dup_sack, pcount, 1432 tcp_skb_timestamp_us(skb)); 1433 tcp_rate_skb_delivered(sk, skb, state->rate); 1434 1435 if (skb == tp->lost_skb_hint) 1436 tp->lost_cnt_hint += pcount; 1437 1438 TCP_SKB_CB(prev)->end_seq += shifted; 1439 TCP_SKB_CB(skb)->seq += shifted; 1440 1441 tcp_skb_pcount_add(prev, pcount); 1442 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount); 1443 tcp_skb_pcount_add(skb, -pcount); 1444 1445 /* When we're adding to gso_segs == 1, gso_size will be zero, 1446 * in theory this shouldn't be necessary but as long as DSACK 1447 * code can come after this skb later on it's better to keep 1448 * setting gso_size to something. 1449 */ 1450 if (!TCP_SKB_CB(prev)->tcp_gso_size) 1451 TCP_SKB_CB(prev)->tcp_gso_size = mss; 1452 1453 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1454 if (tcp_skb_pcount(skb) <= 1) 1455 TCP_SKB_CB(skb)->tcp_gso_size = 0; 1456 1457 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1458 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1459 1460 if (skb->len > 0) { 1461 BUG_ON(!tcp_skb_pcount(skb)); 1462 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1463 return false; 1464 } 1465 1466 /* Whole SKB was eaten :-) */ 1467 1468 if (skb == tp->retransmit_skb_hint) 1469 tp->retransmit_skb_hint = prev; 1470 if (skb == tp->lost_skb_hint) { 1471 tp->lost_skb_hint = prev; 1472 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1473 } 1474 1475 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1476 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor; 1477 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1478 TCP_SKB_CB(prev)->end_seq++; 1479 1480 if (skb == tcp_highest_sack(sk)) 1481 tcp_advance_highest_sack(sk, skb); 1482 1483 tcp_skb_collapse_tstamp(prev, skb); 1484 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp)) 1485 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0; 1486 1487 tcp_rtx_queue_unlink_and_free(skb, sk); 1488 1489 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED); 1490 1491 return true; 1492 } 1493 1494 /* I wish gso_size would have a bit more sane initialization than 1495 * something-or-zero which complicates things 1496 */ 1497 static int tcp_skb_seglen(const struct sk_buff *skb) 1498 { 1499 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1500 } 1501 1502 /* Shifting pages past head area doesn't work */ 1503 static int skb_can_shift(const struct sk_buff *skb) 1504 { 1505 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1506 } 1507 1508 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from, 1509 int pcount, int shiftlen) 1510 { 1511 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE) 1512 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need 1513 * to make sure not storing more than 65535 * 8 bytes per skb, 1514 * even if current MSS is bigger. 1515 */ 1516 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE)) 1517 return 0; 1518 if (unlikely(tcp_skb_pcount(to) + pcount > 65535)) 1519 return 0; 1520 return skb_shift(to, from, shiftlen); 1521 } 1522 1523 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1524 * skb. 1525 */ 1526 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1527 struct tcp_sacktag_state *state, 1528 u32 start_seq, u32 end_seq, 1529 bool dup_sack) 1530 { 1531 struct tcp_sock *tp = tcp_sk(sk); 1532 struct sk_buff *prev; 1533 int mss; 1534 int pcount = 0; 1535 int len; 1536 int in_sack; 1537 1538 /* Normally R but no L won't result in plain S */ 1539 if (!dup_sack && 1540 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1541 goto fallback; 1542 if (!skb_can_shift(skb)) 1543 goto fallback; 1544 /* This frame is about to be dropped (was ACKed). */ 1545 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1546 goto fallback; 1547 1548 /* Can only happen with delayed DSACK + discard craziness */ 1549 prev = skb_rb_prev(skb); 1550 if (!prev) 1551 goto fallback; 1552 1553 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1554 goto fallback; 1555 1556 if (!tcp_skb_can_collapse(prev, skb)) 1557 goto fallback; 1558 1559 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1560 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1561 1562 if (in_sack) { 1563 len = skb->len; 1564 pcount = tcp_skb_pcount(skb); 1565 mss = tcp_skb_seglen(skb); 1566 1567 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1568 * drop this restriction as unnecessary 1569 */ 1570 if (mss != tcp_skb_seglen(prev)) 1571 goto fallback; 1572 } else { 1573 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1574 goto noop; 1575 /* CHECKME: This is non-MSS split case only?, this will 1576 * cause skipped skbs due to advancing loop btw, original 1577 * has that feature too 1578 */ 1579 if (tcp_skb_pcount(skb) <= 1) 1580 goto noop; 1581 1582 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1583 if (!in_sack) { 1584 /* TODO: head merge to next could be attempted here 1585 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1586 * though it might not be worth of the additional hassle 1587 * 1588 * ...we can probably just fallback to what was done 1589 * previously. We could try merging non-SACKed ones 1590 * as well but it probably isn't going to buy off 1591 * because later SACKs might again split them, and 1592 * it would make skb timestamp tracking considerably 1593 * harder problem. 1594 */ 1595 goto fallback; 1596 } 1597 1598 len = end_seq - TCP_SKB_CB(skb)->seq; 1599 BUG_ON(len < 0); 1600 BUG_ON(len > skb->len); 1601 1602 /* MSS boundaries should be honoured or else pcount will 1603 * severely break even though it makes things bit trickier. 1604 * Optimize common case to avoid most of the divides 1605 */ 1606 mss = tcp_skb_mss(skb); 1607 1608 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1609 * drop this restriction as unnecessary 1610 */ 1611 if (mss != tcp_skb_seglen(prev)) 1612 goto fallback; 1613 1614 if (len == mss) { 1615 pcount = 1; 1616 } else if (len < mss) { 1617 goto noop; 1618 } else { 1619 pcount = len / mss; 1620 len = pcount * mss; 1621 } 1622 } 1623 1624 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1625 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1626 goto fallback; 1627 1628 if (!tcp_skb_shift(prev, skb, pcount, len)) 1629 goto fallback; 1630 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack)) 1631 goto out; 1632 1633 /* Hole filled allows collapsing with the next as well, this is very 1634 * useful when hole on every nth skb pattern happens 1635 */ 1636 skb = skb_rb_next(prev); 1637 if (!skb) 1638 goto out; 1639 1640 if (!skb_can_shift(skb) || 1641 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1642 (mss != tcp_skb_seglen(skb))) 1643 goto out; 1644 1645 len = skb->len; 1646 pcount = tcp_skb_pcount(skb); 1647 if (tcp_skb_shift(prev, skb, pcount, len)) 1648 tcp_shifted_skb(sk, prev, skb, state, pcount, 1649 len, mss, 0); 1650 1651 out: 1652 return prev; 1653 1654 noop: 1655 return skb; 1656 1657 fallback: 1658 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1659 return NULL; 1660 } 1661 1662 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1663 struct tcp_sack_block *next_dup, 1664 struct tcp_sacktag_state *state, 1665 u32 start_seq, u32 end_seq, 1666 bool dup_sack_in) 1667 { 1668 struct tcp_sock *tp = tcp_sk(sk); 1669 struct sk_buff *tmp; 1670 1671 skb_rbtree_walk_from(skb) { 1672 int in_sack = 0; 1673 bool dup_sack = dup_sack_in; 1674 1675 /* queue is in-order => we can short-circuit the walk early */ 1676 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1677 break; 1678 1679 if (next_dup && 1680 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1681 in_sack = tcp_match_skb_to_sack(sk, skb, 1682 next_dup->start_seq, 1683 next_dup->end_seq); 1684 if (in_sack > 0) 1685 dup_sack = true; 1686 } 1687 1688 /* skb reference here is a bit tricky to get right, since 1689 * shifting can eat and free both this skb and the next, 1690 * so not even _safe variant of the loop is enough. 1691 */ 1692 if (in_sack <= 0) { 1693 tmp = tcp_shift_skb_data(sk, skb, state, 1694 start_seq, end_seq, dup_sack); 1695 if (tmp) { 1696 if (tmp != skb) { 1697 skb = tmp; 1698 continue; 1699 } 1700 1701 in_sack = 0; 1702 } else { 1703 in_sack = tcp_match_skb_to_sack(sk, skb, 1704 start_seq, 1705 end_seq); 1706 } 1707 } 1708 1709 if (unlikely(in_sack < 0)) 1710 break; 1711 1712 if (in_sack) { 1713 TCP_SKB_CB(skb)->sacked = 1714 tcp_sacktag_one(sk, 1715 state, 1716 TCP_SKB_CB(skb)->sacked, 1717 TCP_SKB_CB(skb)->seq, 1718 TCP_SKB_CB(skb)->end_seq, 1719 dup_sack, 1720 tcp_skb_pcount(skb), 1721 tcp_skb_timestamp_us(skb)); 1722 tcp_rate_skb_delivered(sk, skb, state->rate); 1723 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 1724 list_del_init(&skb->tcp_tsorted_anchor); 1725 1726 if (!before(TCP_SKB_CB(skb)->seq, 1727 tcp_highest_sack_seq(tp))) 1728 tcp_advance_highest_sack(sk, skb); 1729 } 1730 } 1731 return skb; 1732 } 1733 1734 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq) 1735 { 1736 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node; 1737 struct sk_buff *skb; 1738 1739 while (*p) { 1740 parent = *p; 1741 skb = rb_to_skb(parent); 1742 if (before(seq, TCP_SKB_CB(skb)->seq)) { 1743 p = &parent->rb_left; 1744 continue; 1745 } 1746 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) { 1747 p = &parent->rb_right; 1748 continue; 1749 } 1750 return skb; 1751 } 1752 return NULL; 1753 } 1754 1755 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1756 u32 skip_to_seq) 1757 { 1758 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq)) 1759 return skb; 1760 1761 return tcp_sacktag_bsearch(sk, skip_to_seq); 1762 } 1763 1764 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1765 struct sock *sk, 1766 struct tcp_sack_block *next_dup, 1767 struct tcp_sacktag_state *state, 1768 u32 skip_to_seq) 1769 { 1770 if (!next_dup) 1771 return skb; 1772 1773 if (before(next_dup->start_seq, skip_to_seq)) { 1774 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq); 1775 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1776 next_dup->start_seq, next_dup->end_seq, 1777 1); 1778 } 1779 1780 return skb; 1781 } 1782 1783 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1784 { 1785 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1786 } 1787 1788 static int 1789 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1790 u32 prior_snd_una, struct tcp_sacktag_state *state) 1791 { 1792 struct tcp_sock *tp = tcp_sk(sk); 1793 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1794 TCP_SKB_CB(ack_skb)->sacked); 1795 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1796 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1797 struct tcp_sack_block *cache; 1798 struct sk_buff *skb; 1799 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1800 int used_sacks; 1801 bool found_dup_sack = false; 1802 int i, j; 1803 int first_sack_index; 1804 1805 state->flag = 0; 1806 state->reord = tp->snd_nxt; 1807 1808 if (!tp->sacked_out) 1809 tcp_highest_sack_reset(sk); 1810 1811 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1812 num_sacks, prior_snd_una, state); 1813 1814 /* Eliminate too old ACKs, but take into 1815 * account more or less fresh ones, they can 1816 * contain valid SACK info. 1817 */ 1818 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1819 return 0; 1820 1821 if (!tp->packets_out) 1822 goto out; 1823 1824 used_sacks = 0; 1825 first_sack_index = 0; 1826 for (i = 0; i < num_sacks; i++) { 1827 bool dup_sack = !i && found_dup_sack; 1828 1829 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1830 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1831 1832 if (!tcp_is_sackblock_valid(tp, dup_sack, 1833 sp[used_sacks].start_seq, 1834 sp[used_sacks].end_seq)) { 1835 int mib_idx; 1836 1837 if (dup_sack) { 1838 if (!tp->undo_marker) 1839 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1840 else 1841 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1842 } else { 1843 /* Don't count olds caused by ACK reordering */ 1844 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1845 !after(sp[used_sacks].end_seq, tp->snd_una)) 1846 continue; 1847 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1848 } 1849 1850 NET_INC_STATS(sock_net(sk), mib_idx); 1851 if (i == 0) 1852 first_sack_index = -1; 1853 continue; 1854 } 1855 1856 /* Ignore very old stuff early */ 1857 if (!after(sp[used_sacks].end_seq, prior_snd_una)) { 1858 if (i == 0) 1859 first_sack_index = -1; 1860 continue; 1861 } 1862 1863 used_sacks++; 1864 } 1865 1866 /* order SACK blocks to allow in order walk of the retrans queue */ 1867 for (i = used_sacks - 1; i > 0; i--) { 1868 for (j = 0; j < i; j++) { 1869 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1870 swap(sp[j], sp[j + 1]); 1871 1872 /* Track where the first SACK block goes to */ 1873 if (j == first_sack_index) 1874 first_sack_index = j + 1; 1875 } 1876 } 1877 } 1878 1879 state->mss_now = tcp_current_mss(sk); 1880 skb = NULL; 1881 i = 0; 1882 1883 if (!tp->sacked_out) { 1884 /* It's already past, so skip checking against it */ 1885 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1886 } else { 1887 cache = tp->recv_sack_cache; 1888 /* Skip empty blocks in at head of the cache */ 1889 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1890 !cache->end_seq) 1891 cache++; 1892 } 1893 1894 while (i < used_sacks) { 1895 u32 start_seq = sp[i].start_seq; 1896 u32 end_seq = sp[i].end_seq; 1897 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1898 struct tcp_sack_block *next_dup = NULL; 1899 1900 if (found_dup_sack && ((i + 1) == first_sack_index)) 1901 next_dup = &sp[i + 1]; 1902 1903 /* Skip too early cached blocks */ 1904 while (tcp_sack_cache_ok(tp, cache) && 1905 !before(start_seq, cache->end_seq)) 1906 cache++; 1907 1908 /* Can skip some work by looking recv_sack_cache? */ 1909 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1910 after(end_seq, cache->start_seq)) { 1911 1912 /* Head todo? */ 1913 if (before(start_seq, cache->start_seq)) { 1914 skb = tcp_sacktag_skip(skb, sk, start_seq); 1915 skb = tcp_sacktag_walk(skb, sk, next_dup, 1916 state, 1917 start_seq, 1918 cache->start_seq, 1919 dup_sack); 1920 } 1921 1922 /* Rest of the block already fully processed? */ 1923 if (!after(end_seq, cache->end_seq)) 1924 goto advance_sp; 1925 1926 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1927 state, 1928 cache->end_seq); 1929 1930 /* ...tail remains todo... */ 1931 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1932 /* ...but better entrypoint exists! */ 1933 skb = tcp_highest_sack(sk); 1934 if (!skb) 1935 break; 1936 cache++; 1937 goto walk; 1938 } 1939 1940 skb = tcp_sacktag_skip(skb, sk, cache->end_seq); 1941 /* Check overlap against next cached too (past this one already) */ 1942 cache++; 1943 continue; 1944 } 1945 1946 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1947 skb = tcp_highest_sack(sk); 1948 if (!skb) 1949 break; 1950 } 1951 skb = tcp_sacktag_skip(skb, sk, start_seq); 1952 1953 walk: 1954 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1955 start_seq, end_seq, dup_sack); 1956 1957 advance_sp: 1958 i++; 1959 } 1960 1961 /* Clear the head of the cache sack blocks so we can skip it next time */ 1962 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1963 tp->recv_sack_cache[i].start_seq = 0; 1964 tp->recv_sack_cache[i].end_seq = 0; 1965 } 1966 for (j = 0; j < used_sacks; j++) 1967 tp->recv_sack_cache[i++] = sp[j]; 1968 1969 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker) 1970 tcp_check_sack_reordering(sk, state->reord, 0); 1971 1972 tcp_verify_left_out(tp); 1973 out: 1974 1975 #if FASTRETRANS_DEBUG > 0 1976 WARN_ON((int)tp->sacked_out < 0); 1977 WARN_ON((int)tp->lost_out < 0); 1978 WARN_ON((int)tp->retrans_out < 0); 1979 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1980 #endif 1981 return state->flag; 1982 } 1983 1984 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1985 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1986 */ 1987 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1988 { 1989 u32 holes; 1990 1991 holes = max(tp->lost_out, 1U); 1992 holes = min(holes, tp->packets_out); 1993 1994 if ((tp->sacked_out + holes) > tp->packets_out) { 1995 tp->sacked_out = tp->packets_out - holes; 1996 return true; 1997 } 1998 return false; 1999 } 2000 2001 /* If we receive more dupacks than we expected counting segments 2002 * in assumption of absent reordering, interpret this as reordering. 2003 * The only another reason could be bug in receiver TCP. 2004 */ 2005 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 2006 { 2007 struct tcp_sock *tp = tcp_sk(sk); 2008 2009 if (!tcp_limit_reno_sacked(tp)) 2010 return; 2011 2012 tp->reordering = min_t(u32, tp->packets_out + addend, 2013 sock_net(sk)->ipv4.sysctl_tcp_max_reordering); 2014 tp->reord_seen++; 2015 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER); 2016 } 2017 2018 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 2019 2020 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack) 2021 { 2022 if (num_dupack) { 2023 struct tcp_sock *tp = tcp_sk(sk); 2024 u32 prior_sacked = tp->sacked_out; 2025 s32 delivered; 2026 2027 tp->sacked_out += num_dupack; 2028 tcp_check_reno_reordering(sk, 0); 2029 delivered = tp->sacked_out - prior_sacked; 2030 if (delivered > 0) 2031 tcp_count_delivered(tp, delivered, ece_ack); 2032 tcp_verify_left_out(tp); 2033 } 2034 } 2035 2036 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 2037 2038 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack) 2039 { 2040 struct tcp_sock *tp = tcp_sk(sk); 2041 2042 if (acked > 0) { 2043 /* One ACK acked hole. The rest eat duplicate ACKs. */ 2044 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1), 2045 ece_ack); 2046 if (acked - 1 >= tp->sacked_out) 2047 tp->sacked_out = 0; 2048 else 2049 tp->sacked_out -= acked - 1; 2050 } 2051 tcp_check_reno_reordering(sk, acked); 2052 tcp_verify_left_out(tp); 2053 } 2054 2055 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 2056 { 2057 tp->sacked_out = 0; 2058 } 2059 2060 void tcp_clear_retrans(struct tcp_sock *tp) 2061 { 2062 tp->retrans_out = 0; 2063 tp->lost_out = 0; 2064 tp->undo_marker = 0; 2065 tp->undo_retrans = -1; 2066 tp->sacked_out = 0; 2067 } 2068 2069 static inline void tcp_init_undo(struct tcp_sock *tp) 2070 { 2071 tp->undo_marker = tp->snd_una; 2072 /* Retransmission still in flight may cause DSACKs later. */ 2073 tp->undo_retrans = tp->retrans_out ? : -1; 2074 } 2075 2076 static bool tcp_is_rack(const struct sock *sk) 2077 { 2078 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION; 2079 } 2080 2081 /* If we detect SACK reneging, forget all SACK information 2082 * and reset tags completely, otherwise preserve SACKs. If receiver 2083 * dropped its ofo queue, we will know this due to reneging detection. 2084 */ 2085 static void tcp_timeout_mark_lost(struct sock *sk) 2086 { 2087 struct tcp_sock *tp = tcp_sk(sk); 2088 struct sk_buff *skb, *head; 2089 bool is_reneg; /* is receiver reneging on SACKs? */ 2090 2091 head = tcp_rtx_queue_head(sk); 2092 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED); 2093 if (is_reneg) { 2094 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 2095 tp->sacked_out = 0; 2096 /* Mark SACK reneging until we recover from this loss event. */ 2097 tp->is_sack_reneg = 1; 2098 } else if (tcp_is_reno(tp)) { 2099 tcp_reset_reno_sack(tp); 2100 } 2101 2102 skb = head; 2103 skb_rbtree_walk_from(skb) { 2104 if (is_reneg) 2105 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 2106 else if (tcp_is_rack(sk) && skb != head && 2107 tcp_rack_skb_timeout(tp, skb, 0) > 0) 2108 continue; /* Don't mark recently sent ones lost yet */ 2109 tcp_mark_skb_lost(sk, skb); 2110 } 2111 tcp_verify_left_out(tp); 2112 tcp_clear_all_retrans_hints(tp); 2113 } 2114 2115 /* Enter Loss state. */ 2116 void tcp_enter_loss(struct sock *sk) 2117 { 2118 const struct inet_connection_sock *icsk = inet_csk(sk); 2119 struct tcp_sock *tp = tcp_sk(sk); 2120 struct net *net = sock_net(sk); 2121 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery; 2122 2123 tcp_timeout_mark_lost(sk); 2124 2125 /* Reduce ssthresh if it has not yet been made inside this window. */ 2126 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 2127 !after(tp->high_seq, tp->snd_una) || 2128 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 2129 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2130 tp->prior_cwnd = tp->snd_cwnd; 2131 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 2132 tcp_ca_event(sk, CA_EVENT_LOSS); 2133 tcp_init_undo(tp); 2134 } 2135 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1; 2136 tp->snd_cwnd_cnt = 0; 2137 tp->snd_cwnd_stamp = tcp_jiffies32; 2138 2139 /* Timeout in disordered state after receiving substantial DUPACKs 2140 * suggests that the degree of reordering is over-estimated. 2141 */ 2142 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 2143 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering) 2144 tp->reordering = min_t(unsigned int, tp->reordering, 2145 net->ipv4.sysctl_tcp_reordering); 2146 tcp_set_ca_state(sk, TCP_CA_Loss); 2147 tp->high_seq = tp->snd_nxt; 2148 tcp_ecn_queue_cwr(tp); 2149 2150 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 2151 * loss recovery is underway except recurring timeout(s) on 2152 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 2153 */ 2154 tp->frto = net->ipv4.sysctl_tcp_frto && 2155 (new_recovery || icsk->icsk_retransmits) && 2156 !inet_csk(sk)->icsk_mtup.probe_size; 2157 } 2158 2159 /* If ACK arrived pointing to a remembered SACK, it means that our 2160 * remembered SACKs do not reflect real state of receiver i.e. 2161 * receiver _host_ is heavily congested (or buggy). 2162 * 2163 * To avoid big spurious retransmission bursts due to transient SACK 2164 * scoreboard oddities that look like reneging, we give the receiver a 2165 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 2166 * restore sanity to the SACK scoreboard. If the apparent reneging 2167 * persists until this RTO then we'll clear the SACK scoreboard. 2168 */ 2169 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2170 { 2171 if (flag & FLAG_SACK_RENEGING) { 2172 struct tcp_sock *tp = tcp_sk(sk); 2173 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2174 msecs_to_jiffies(10)); 2175 2176 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2177 delay, TCP_RTO_MAX); 2178 return true; 2179 } 2180 return false; 2181 } 2182 2183 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2184 * counter when SACK is enabled (without SACK, sacked_out is used for 2185 * that purpose). 2186 * 2187 * With reordering, holes may still be in flight, so RFC3517 recovery 2188 * uses pure sacked_out (total number of SACKed segments) even though 2189 * it violates the RFC that uses duplicate ACKs, often these are equal 2190 * but when e.g. out-of-window ACKs or packet duplication occurs, 2191 * they differ. Since neither occurs due to loss, TCP should really 2192 * ignore them. 2193 */ 2194 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2195 { 2196 return tp->sacked_out + 1; 2197 } 2198 2199 /* Linux NewReno/SACK/ECN state machine. 2200 * -------------------------------------- 2201 * 2202 * "Open" Normal state, no dubious events, fast path. 2203 * "Disorder" In all the respects it is "Open", 2204 * but requires a bit more attention. It is entered when 2205 * we see some SACKs or dupacks. It is split of "Open" 2206 * mainly to move some processing from fast path to slow one. 2207 * "CWR" CWND was reduced due to some Congestion Notification event. 2208 * It can be ECN, ICMP source quench, local device congestion. 2209 * "Recovery" CWND was reduced, we are fast-retransmitting. 2210 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2211 * 2212 * tcp_fastretrans_alert() is entered: 2213 * - each incoming ACK, if state is not "Open" 2214 * - when arrived ACK is unusual, namely: 2215 * * SACK 2216 * * Duplicate ACK. 2217 * * ECN ECE. 2218 * 2219 * Counting packets in flight is pretty simple. 2220 * 2221 * in_flight = packets_out - left_out + retrans_out 2222 * 2223 * packets_out is SND.NXT-SND.UNA counted in packets. 2224 * 2225 * retrans_out is number of retransmitted segments. 2226 * 2227 * left_out is number of segments left network, but not ACKed yet. 2228 * 2229 * left_out = sacked_out + lost_out 2230 * 2231 * sacked_out: Packets, which arrived to receiver out of order 2232 * and hence not ACKed. With SACKs this number is simply 2233 * amount of SACKed data. Even without SACKs 2234 * it is easy to give pretty reliable estimate of this number, 2235 * counting duplicate ACKs. 2236 * 2237 * lost_out: Packets lost by network. TCP has no explicit 2238 * "loss notification" feedback from network (for now). 2239 * It means that this number can be only _guessed_. 2240 * Actually, it is the heuristics to predict lossage that 2241 * distinguishes different algorithms. 2242 * 2243 * F.e. after RTO, when all the queue is considered as lost, 2244 * lost_out = packets_out and in_flight = retrans_out. 2245 * 2246 * Essentially, we have now a few algorithms detecting 2247 * lost packets. 2248 * 2249 * If the receiver supports SACK: 2250 * 2251 * RFC6675/3517: It is the conventional algorithm. A packet is 2252 * considered lost if the number of higher sequence packets 2253 * SACKed is greater than or equal the DUPACK thoreshold 2254 * (reordering). This is implemented in tcp_mark_head_lost and 2255 * tcp_update_scoreboard. 2256 * 2257 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm 2258 * (2017-) that checks timing instead of counting DUPACKs. 2259 * Essentially a packet is considered lost if it's not S/ACKed 2260 * after RTT + reordering_window, where both metrics are 2261 * dynamically measured and adjusted. This is implemented in 2262 * tcp_rack_mark_lost. 2263 * 2264 * If the receiver does not support SACK: 2265 * 2266 * NewReno (RFC6582): in Recovery we assume that one segment 2267 * is lost (classic Reno). While we are in Recovery and 2268 * a partial ACK arrives, we assume that one more packet 2269 * is lost (NewReno). This heuristics are the same in NewReno 2270 * and SACK. 2271 * 2272 * Really tricky (and requiring careful tuning) part of algorithm 2273 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2274 * The first determines the moment _when_ we should reduce CWND and, 2275 * hence, slow down forward transmission. In fact, it determines the moment 2276 * when we decide that hole is caused by loss, rather than by a reorder. 2277 * 2278 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2279 * holes, caused by lost packets. 2280 * 2281 * And the most logically complicated part of algorithm is undo 2282 * heuristics. We detect false retransmits due to both too early 2283 * fast retransmit (reordering) and underestimated RTO, analyzing 2284 * timestamps and D-SACKs. When we detect that some segments were 2285 * retransmitted by mistake and CWND reduction was wrong, we undo 2286 * window reduction and abort recovery phase. This logic is hidden 2287 * inside several functions named tcp_try_undo_<something>. 2288 */ 2289 2290 /* This function decides, when we should leave Disordered state 2291 * and enter Recovery phase, reducing congestion window. 2292 * 2293 * Main question: may we further continue forward transmission 2294 * with the same cwnd? 2295 */ 2296 static bool tcp_time_to_recover(struct sock *sk, int flag) 2297 { 2298 struct tcp_sock *tp = tcp_sk(sk); 2299 2300 /* Trick#1: The loss is proven. */ 2301 if (tp->lost_out) 2302 return true; 2303 2304 /* Not-A-Trick#2 : Classic rule... */ 2305 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering) 2306 return true; 2307 2308 return false; 2309 } 2310 2311 /* Detect loss in event "A" above by marking head of queue up as lost. 2312 * For RFC3517 SACK, a segment is considered lost if it 2313 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2314 * the maximum SACKed segments to pass before reaching this limit. 2315 */ 2316 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2317 { 2318 struct tcp_sock *tp = tcp_sk(sk); 2319 struct sk_buff *skb; 2320 int cnt; 2321 /* Use SACK to deduce losses of new sequences sent during recovery */ 2322 const u32 loss_high = tp->snd_nxt; 2323 2324 WARN_ON(packets > tp->packets_out); 2325 skb = tp->lost_skb_hint; 2326 if (skb) { 2327 /* Head already handled? */ 2328 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una)) 2329 return; 2330 cnt = tp->lost_cnt_hint; 2331 } else { 2332 skb = tcp_rtx_queue_head(sk); 2333 cnt = 0; 2334 } 2335 2336 skb_rbtree_walk_from(skb) { 2337 /* TODO: do this better */ 2338 /* this is not the most efficient way to do this... */ 2339 tp->lost_skb_hint = skb; 2340 tp->lost_cnt_hint = cnt; 2341 2342 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2343 break; 2344 2345 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 2346 cnt += tcp_skb_pcount(skb); 2347 2348 if (cnt > packets) 2349 break; 2350 2351 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST)) 2352 tcp_mark_skb_lost(sk, skb); 2353 2354 if (mark_head) 2355 break; 2356 } 2357 tcp_verify_left_out(tp); 2358 } 2359 2360 /* Account newly detected lost packet(s) */ 2361 2362 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2363 { 2364 struct tcp_sock *tp = tcp_sk(sk); 2365 2366 if (tcp_is_sack(tp)) { 2367 int sacked_upto = tp->sacked_out - tp->reordering; 2368 if (sacked_upto >= 0) 2369 tcp_mark_head_lost(sk, sacked_upto, 0); 2370 else if (fast_rexmit) 2371 tcp_mark_head_lost(sk, 1, 1); 2372 } 2373 } 2374 2375 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when) 2376 { 2377 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2378 before(tp->rx_opt.rcv_tsecr, when); 2379 } 2380 2381 /* skb is spurious retransmitted if the returned timestamp echo 2382 * reply is prior to the skb transmission time 2383 */ 2384 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp, 2385 const struct sk_buff *skb) 2386 { 2387 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) && 2388 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb)); 2389 } 2390 2391 /* Nothing was retransmitted or returned timestamp is less 2392 * than timestamp of the first retransmission. 2393 */ 2394 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2395 { 2396 return tp->retrans_stamp && 2397 tcp_tsopt_ecr_before(tp, tp->retrans_stamp); 2398 } 2399 2400 /* Undo procedures. */ 2401 2402 /* We can clear retrans_stamp when there are no retransmissions in the 2403 * window. It would seem that it is trivially available for us in 2404 * tp->retrans_out, however, that kind of assumptions doesn't consider 2405 * what will happen if errors occur when sending retransmission for the 2406 * second time. ...It could the that such segment has only 2407 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2408 * the head skb is enough except for some reneging corner cases that 2409 * are not worth the effort. 2410 * 2411 * Main reason for all this complexity is the fact that connection dying 2412 * time now depends on the validity of the retrans_stamp, in particular, 2413 * that successive retransmissions of a segment must not advance 2414 * retrans_stamp under any conditions. 2415 */ 2416 static bool tcp_any_retrans_done(const struct sock *sk) 2417 { 2418 const struct tcp_sock *tp = tcp_sk(sk); 2419 struct sk_buff *skb; 2420 2421 if (tp->retrans_out) 2422 return true; 2423 2424 skb = tcp_rtx_queue_head(sk); 2425 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2426 return true; 2427 2428 return false; 2429 } 2430 2431 static void DBGUNDO(struct sock *sk, const char *msg) 2432 { 2433 #if FASTRETRANS_DEBUG > 1 2434 struct tcp_sock *tp = tcp_sk(sk); 2435 struct inet_sock *inet = inet_sk(sk); 2436 2437 if (sk->sk_family == AF_INET) { 2438 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2439 msg, 2440 &inet->inet_daddr, ntohs(inet->inet_dport), 2441 tp->snd_cwnd, tcp_left_out(tp), 2442 tp->snd_ssthresh, tp->prior_ssthresh, 2443 tp->packets_out); 2444 } 2445 #if IS_ENABLED(CONFIG_IPV6) 2446 else if (sk->sk_family == AF_INET6) { 2447 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2448 msg, 2449 &sk->sk_v6_daddr, ntohs(inet->inet_dport), 2450 tp->snd_cwnd, tcp_left_out(tp), 2451 tp->snd_ssthresh, tp->prior_ssthresh, 2452 tp->packets_out); 2453 } 2454 #endif 2455 #endif 2456 } 2457 2458 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2459 { 2460 struct tcp_sock *tp = tcp_sk(sk); 2461 2462 if (unmark_loss) { 2463 struct sk_buff *skb; 2464 2465 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2466 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2467 } 2468 tp->lost_out = 0; 2469 tcp_clear_all_retrans_hints(tp); 2470 } 2471 2472 if (tp->prior_ssthresh) { 2473 const struct inet_connection_sock *icsk = inet_csk(sk); 2474 2475 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2476 2477 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2478 tp->snd_ssthresh = tp->prior_ssthresh; 2479 tcp_ecn_withdraw_cwr(tp); 2480 } 2481 } 2482 tp->snd_cwnd_stamp = tcp_jiffies32; 2483 tp->undo_marker = 0; 2484 tp->rack.advanced = 1; /* Force RACK to re-exam losses */ 2485 } 2486 2487 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2488 { 2489 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2490 } 2491 2492 /* People celebrate: "We love our President!" */ 2493 static bool tcp_try_undo_recovery(struct sock *sk) 2494 { 2495 struct tcp_sock *tp = tcp_sk(sk); 2496 2497 if (tcp_may_undo(tp)) { 2498 int mib_idx; 2499 2500 /* Happy end! We did not retransmit anything 2501 * or our original transmission succeeded. 2502 */ 2503 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2504 tcp_undo_cwnd_reduction(sk, false); 2505 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2506 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2507 else 2508 mib_idx = LINUX_MIB_TCPFULLUNDO; 2509 2510 NET_INC_STATS(sock_net(sk), mib_idx); 2511 } else if (tp->rack.reo_wnd_persist) { 2512 tp->rack.reo_wnd_persist--; 2513 } 2514 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2515 /* Hold old state until something *above* high_seq 2516 * is ACKed. For Reno it is MUST to prevent false 2517 * fast retransmits (RFC2582). SACK TCP is safe. */ 2518 if (!tcp_any_retrans_done(sk)) 2519 tp->retrans_stamp = 0; 2520 return true; 2521 } 2522 tcp_set_ca_state(sk, TCP_CA_Open); 2523 tp->is_sack_reneg = 0; 2524 return false; 2525 } 2526 2527 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2528 static bool tcp_try_undo_dsack(struct sock *sk) 2529 { 2530 struct tcp_sock *tp = tcp_sk(sk); 2531 2532 if (tp->undo_marker && !tp->undo_retrans) { 2533 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH, 2534 tp->rack.reo_wnd_persist + 1); 2535 DBGUNDO(sk, "D-SACK"); 2536 tcp_undo_cwnd_reduction(sk, false); 2537 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2538 return true; 2539 } 2540 return false; 2541 } 2542 2543 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2544 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2545 { 2546 struct tcp_sock *tp = tcp_sk(sk); 2547 2548 if (frto_undo || tcp_may_undo(tp)) { 2549 tcp_undo_cwnd_reduction(sk, true); 2550 2551 DBGUNDO(sk, "partial loss"); 2552 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2553 if (frto_undo) 2554 NET_INC_STATS(sock_net(sk), 2555 LINUX_MIB_TCPSPURIOUSRTOS); 2556 inet_csk(sk)->icsk_retransmits = 0; 2557 if (frto_undo || tcp_is_sack(tp)) { 2558 tcp_set_ca_state(sk, TCP_CA_Open); 2559 tp->is_sack_reneg = 0; 2560 } 2561 return true; 2562 } 2563 return false; 2564 } 2565 2566 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937. 2567 * It computes the number of packets to send (sndcnt) based on packets newly 2568 * delivered: 2569 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2570 * cwnd reductions across a full RTT. 2571 * 2) Otherwise PRR uses packet conservation to send as much as delivered. 2572 * But when SND_UNA is acked without further losses, 2573 * slow starts cwnd up to ssthresh to speed up the recovery. 2574 */ 2575 static void tcp_init_cwnd_reduction(struct sock *sk) 2576 { 2577 struct tcp_sock *tp = tcp_sk(sk); 2578 2579 tp->high_seq = tp->snd_nxt; 2580 tp->tlp_high_seq = 0; 2581 tp->snd_cwnd_cnt = 0; 2582 tp->prior_cwnd = tp->snd_cwnd; 2583 tp->prr_delivered = 0; 2584 tp->prr_out = 0; 2585 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2586 tcp_ecn_queue_cwr(tp); 2587 } 2588 2589 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag) 2590 { 2591 struct tcp_sock *tp = tcp_sk(sk); 2592 int sndcnt = 0; 2593 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2594 2595 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd)) 2596 return; 2597 2598 tp->prr_delivered += newly_acked_sacked; 2599 if (delta < 0) { 2600 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2601 tp->prior_cwnd - 1; 2602 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2603 } else if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost) { 2604 sndcnt = min_t(int, delta, 2605 max_t(int, tp->prr_delivered - tp->prr_out, 2606 newly_acked_sacked) + 1); 2607 } else { 2608 sndcnt = min(delta, newly_acked_sacked); 2609 } 2610 /* Force a fast retransmit upon entering fast recovery */ 2611 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1)); 2612 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2613 } 2614 2615 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2616 { 2617 struct tcp_sock *tp = tcp_sk(sk); 2618 2619 if (inet_csk(sk)->icsk_ca_ops->cong_control) 2620 return; 2621 2622 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2623 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH && 2624 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) { 2625 tp->snd_cwnd = tp->snd_ssthresh; 2626 tp->snd_cwnd_stamp = tcp_jiffies32; 2627 } 2628 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2629 } 2630 2631 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2632 void tcp_enter_cwr(struct sock *sk) 2633 { 2634 struct tcp_sock *tp = tcp_sk(sk); 2635 2636 tp->prior_ssthresh = 0; 2637 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2638 tp->undo_marker = 0; 2639 tcp_init_cwnd_reduction(sk); 2640 tcp_set_ca_state(sk, TCP_CA_CWR); 2641 } 2642 } 2643 EXPORT_SYMBOL(tcp_enter_cwr); 2644 2645 static void tcp_try_keep_open(struct sock *sk) 2646 { 2647 struct tcp_sock *tp = tcp_sk(sk); 2648 int state = TCP_CA_Open; 2649 2650 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2651 state = TCP_CA_Disorder; 2652 2653 if (inet_csk(sk)->icsk_ca_state != state) { 2654 tcp_set_ca_state(sk, state); 2655 tp->high_seq = tp->snd_nxt; 2656 } 2657 } 2658 2659 static void tcp_try_to_open(struct sock *sk, int flag) 2660 { 2661 struct tcp_sock *tp = tcp_sk(sk); 2662 2663 tcp_verify_left_out(tp); 2664 2665 if (!tcp_any_retrans_done(sk)) 2666 tp->retrans_stamp = 0; 2667 2668 if (flag & FLAG_ECE) 2669 tcp_enter_cwr(sk); 2670 2671 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2672 tcp_try_keep_open(sk); 2673 } 2674 } 2675 2676 static void tcp_mtup_probe_failed(struct sock *sk) 2677 { 2678 struct inet_connection_sock *icsk = inet_csk(sk); 2679 2680 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2681 icsk->icsk_mtup.probe_size = 0; 2682 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL); 2683 } 2684 2685 static void tcp_mtup_probe_success(struct sock *sk) 2686 { 2687 struct tcp_sock *tp = tcp_sk(sk); 2688 struct inet_connection_sock *icsk = inet_csk(sk); 2689 2690 /* FIXME: breaks with very large cwnd */ 2691 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2692 tp->snd_cwnd = tp->snd_cwnd * 2693 tcp_mss_to_mtu(sk, tp->mss_cache) / 2694 icsk->icsk_mtup.probe_size; 2695 tp->snd_cwnd_cnt = 0; 2696 tp->snd_cwnd_stamp = tcp_jiffies32; 2697 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2698 2699 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2700 icsk->icsk_mtup.probe_size = 0; 2701 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2702 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS); 2703 } 2704 2705 /* Do a simple retransmit without using the backoff mechanisms in 2706 * tcp_timer. This is used for path mtu discovery. 2707 * The socket is already locked here. 2708 */ 2709 void tcp_simple_retransmit(struct sock *sk) 2710 { 2711 const struct inet_connection_sock *icsk = inet_csk(sk); 2712 struct tcp_sock *tp = tcp_sk(sk); 2713 struct sk_buff *skb; 2714 int mss; 2715 2716 /* A fastopen SYN request is stored as two separate packets within 2717 * the retransmit queue, this is done by tcp_send_syn_data(). 2718 * As a result simply checking the MSS of the frames in the queue 2719 * will not work for the SYN packet. 2720 * 2721 * Us being here is an indication of a path MTU issue so we can 2722 * assume that the fastopen SYN was lost and just mark all the 2723 * frames in the retransmit queue as lost. We will use an MSS of 2724 * -1 to mark all frames as lost, otherwise compute the current MSS. 2725 */ 2726 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT) 2727 mss = -1; 2728 else 2729 mss = tcp_current_mss(sk); 2730 2731 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 2732 if (tcp_skb_seglen(skb) > mss) 2733 tcp_mark_skb_lost(sk, skb); 2734 } 2735 2736 tcp_clear_retrans_hints_partial(tp); 2737 2738 if (!tp->lost_out) 2739 return; 2740 2741 if (tcp_is_reno(tp)) 2742 tcp_limit_reno_sacked(tp); 2743 2744 tcp_verify_left_out(tp); 2745 2746 /* Don't muck with the congestion window here. 2747 * Reason is that we do not increase amount of _data_ 2748 * in network, but units changed and effective 2749 * cwnd/ssthresh really reduced now. 2750 */ 2751 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2752 tp->high_seq = tp->snd_nxt; 2753 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2754 tp->prior_ssthresh = 0; 2755 tp->undo_marker = 0; 2756 tcp_set_ca_state(sk, TCP_CA_Loss); 2757 } 2758 tcp_xmit_retransmit_queue(sk); 2759 } 2760 EXPORT_SYMBOL(tcp_simple_retransmit); 2761 2762 void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2763 { 2764 struct tcp_sock *tp = tcp_sk(sk); 2765 int mib_idx; 2766 2767 if (tcp_is_reno(tp)) 2768 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2769 else 2770 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2771 2772 NET_INC_STATS(sock_net(sk), mib_idx); 2773 2774 tp->prior_ssthresh = 0; 2775 tcp_init_undo(tp); 2776 2777 if (!tcp_in_cwnd_reduction(sk)) { 2778 if (!ece_ack) 2779 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2780 tcp_init_cwnd_reduction(sk); 2781 } 2782 tcp_set_ca_state(sk, TCP_CA_Recovery); 2783 } 2784 2785 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2786 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2787 */ 2788 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack, 2789 int *rexmit) 2790 { 2791 struct tcp_sock *tp = tcp_sk(sk); 2792 bool recovered = !before(tp->snd_una, tp->high_seq); 2793 2794 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) && 2795 tcp_try_undo_loss(sk, false)) 2796 return; 2797 2798 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2799 /* Step 3.b. A timeout is spurious if not all data are 2800 * lost, i.e., never-retransmitted data are (s)acked. 2801 */ 2802 if ((flag & FLAG_ORIG_SACK_ACKED) && 2803 tcp_try_undo_loss(sk, true)) 2804 return; 2805 2806 if (after(tp->snd_nxt, tp->high_seq)) { 2807 if (flag & FLAG_DATA_SACKED || num_dupack) 2808 tp->frto = 0; /* Step 3.a. loss was real */ 2809 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2810 tp->high_seq = tp->snd_nxt; 2811 /* Step 2.b. Try send new data (but deferred until cwnd 2812 * is updated in tcp_ack()). Otherwise fall back to 2813 * the conventional recovery. 2814 */ 2815 if (!tcp_write_queue_empty(sk) && 2816 after(tcp_wnd_end(tp), tp->snd_nxt)) { 2817 *rexmit = REXMIT_NEW; 2818 return; 2819 } 2820 tp->frto = 0; 2821 } 2822 } 2823 2824 if (recovered) { 2825 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2826 tcp_try_undo_recovery(sk); 2827 return; 2828 } 2829 if (tcp_is_reno(tp)) { 2830 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2831 * delivered. Lower inflight to clock out (re)tranmissions. 2832 */ 2833 if (after(tp->snd_nxt, tp->high_seq) && num_dupack) 2834 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE); 2835 else if (flag & FLAG_SND_UNA_ADVANCED) 2836 tcp_reset_reno_sack(tp); 2837 } 2838 *rexmit = REXMIT_LOST; 2839 } 2840 2841 static bool tcp_force_fast_retransmit(struct sock *sk) 2842 { 2843 struct tcp_sock *tp = tcp_sk(sk); 2844 2845 return after(tcp_highest_sack_seq(tp), 2846 tp->snd_una + tp->reordering * tp->mss_cache); 2847 } 2848 2849 /* Undo during fast recovery after partial ACK. */ 2850 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una, 2851 bool *do_lost) 2852 { 2853 struct tcp_sock *tp = tcp_sk(sk); 2854 2855 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2856 /* Plain luck! Hole if filled with delayed 2857 * packet, rather than with a retransmit. Check reordering. 2858 */ 2859 tcp_check_sack_reordering(sk, prior_snd_una, 1); 2860 2861 /* We are getting evidence that the reordering degree is higher 2862 * than we realized. If there are no retransmits out then we 2863 * can undo. Otherwise we clock out new packets but do not 2864 * mark more packets lost or retransmit more. 2865 */ 2866 if (tp->retrans_out) 2867 return true; 2868 2869 if (!tcp_any_retrans_done(sk)) 2870 tp->retrans_stamp = 0; 2871 2872 DBGUNDO(sk, "partial recovery"); 2873 tcp_undo_cwnd_reduction(sk, true); 2874 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2875 tcp_try_keep_open(sk); 2876 } else { 2877 /* Partial ACK arrived. Force fast retransmit. */ 2878 *do_lost = tcp_force_fast_retransmit(sk); 2879 } 2880 return false; 2881 } 2882 2883 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag) 2884 { 2885 struct tcp_sock *tp = tcp_sk(sk); 2886 2887 if (tcp_rtx_queue_empty(sk)) 2888 return; 2889 2890 if (unlikely(tcp_is_reno(tp))) { 2891 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED); 2892 } else if (tcp_is_rack(sk)) { 2893 u32 prior_retrans = tp->retrans_out; 2894 2895 if (tcp_rack_mark_lost(sk)) 2896 *ack_flag &= ~FLAG_SET_XMIT_TIMER; 2897 if (prior_retrans > tp->retrans_out) 2898 *ack_flag |= FLAG_LOST_RETRANS; 2899 } 2900 } 2901 2902 /* Process an event, which can update packets-in-flight not trivially. 2903 * Main goal of this function is to calculate new estimate for left_out, 2904 * taking into account both packets sitting in receiver's buffer and 2905 * packets lost by network. 2906 * 2907 * Besides that it updates the congestion state when packet loss or ECN 2908 * is detected. But it does not reduce the cwnd, it is done by the 2909 * congestion control later. 2910 * 2911 * It does _not_ decide what to send, it is made in function 2912 * tcp_xmit_retransmit_queue(). 2913 */ 2914 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una, 2915 int num_dupack, int *ack_flag, int *rexmit) 2916 { 2917 struct inet_connection_sock *icsk = inet_csk(sk); 2918 struct tcp_sock *tp = tcp_sk(sk); 2919 int fast_rexmit = 0, flag = *ack_flag; 2920 bool ece_ack = flag & FLAG_ECE; 2921 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) && 2922 tcp_force_fast_retransmit(sk)); 2923 2924 if (!tp->packets_out && tp->sacked_out) 2925 tp->sacked_out = 0; 2926 2927 /* Now state machine starts. 2928 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2929 if (ece_ack) 2930 tp->prior_ssthresh = 0; 2931 2932 /* B. In all the states check for reneging SACKs. */ 2933 if (tcp_check_sack_reneging(sk, flag)) 2934 return; 2935 2936 /* C. Check consistency of the current state. */ 2937 tcp_verify_left_out(tp); 2938 2939 /* D. Check state exit conditions. State can be terminated 2940 * when high_seq is ACKed. */ 2941 if (icsk->icsk_ca_state == TCP_CA_Open) { 2942 WARN_ON(tp->retrans_out != 0 && !tp->syn_data); 2943 tp->retrans_stamp = 0; 2944 } else if (!before(tp->snd_una, tp->high_seq)) { 2945 switch (icsk->icsk_ca_state) { 2946 case TCP_CA_CWR: 2947 /* CWR is to be held something *above* high_seq 2948 * is ACKed for CWR bit to reach receiver. */ 2949 if (tp->snd_una != tp->high_seq) { 2950 tcp_end_cwnd_reduction(sk); 2951 tcp_set_ca_state(sk, TCP_CA_Open); 2952 } 2953 break; 2954 2955 case TCP_CA_Recovery: 2956 if (tcp_is_reno(tp)) 2957 tcp_reset_reno_sack(tp); 2958 if (tcp_try_undo_recovery(sk)) 2959 return; 2960 tcp_end_cwnd_reduction(sk); 2961 break; 2962 } 2963 } 2964 2965 /* E. Process state. */ 2966 switch (icsk->icsk_ca_state) { 2967 case TCP_CA_Recovery: 2968 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2969 if (tcp_is_reno(tp)) 2970 tcp_add_reno_sack(sk, num_dupack, ece_ack); 2971 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost)) 2972 return; 2973 2974 if (tcp_try_undo_dsack(sk)) 2975 tcp_try_keep_open(sk); 2976 2977 tcp_identify_packet_loss(sk, ack_flag); 2978 if (icsk->icsk_ca_state != TCP_CA_Recovery) { 2979 if (!tcp_time_to_recover(sk, flag)) 2980 return; 2981 /* Undo reverts the recovery state. If loss is evident, 2982 * starts a new recovery (e.g. reordering then loss); 2983 */ 2984 tcp_enter_recovery(sk, ece_ack); 2985 } 2986 break; 2987 case TCP_CA_Loss: 2988 tcp_process_loss(sk, flag, num_dupack, rexmit); 2989 tcp_identify_packet_loss(sk, ack_flag); 2990 if (!(icsk->icsk_ca_state == TCP_CA_Open || 2991 (*ack_flag & FLAG_LOST_RETRANS))) 2992 return; 2993 /* Change state if cwnd is undone or retransmits are lost */ 2994 fallthrough; 2995 default: 2996 if (tcp_is_reno(tp)) { 2997 if (flag & FLAG_SND_UNA_ADVANCED) 2998 tcp_reset_reno_sack(tp); 2999 tcp_add_reno_sack(sk, num_dupack, ece_ack); 3000 } 3001 3002 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 3003 tcp_try_undo_dsack(sk); 3004 3005 tcp_identify_packet_loss(sk, ack_flag); 3006 if (!tcp_time_to_recover(sk, flag)) { 3007 tcp_try_to_open(sk, flag); 3008 return; 3009 } 3010 3011 /* MTU probe failure: don't reduce cwnd */ 3012 if (icsk->icsk_ca_state < TCP_CA_CWR && 3013 icsk->icsk_mtup.probe_size && 3014 tp->snd_una == tp->mtu_probe.probe_seq_start) { 3015 tcp_mtup_probe_failed(sk); 3016 /* Restores the reduction we did in tcp_mtup_probe() */ 3017 tp->snd_cwnd++; 3018 tcp_simple_retransmit(sk); 3019 return; 3020 } 3021 3022 /* Otherwise enter Recovery state */ 3023 tcp_enter_recovery(sk, ece_ack); 3024 fast_rexmit = 1; 3025 } 3026 3027 if (!tcp_is_rack(sk) && do_lost) 3028 tcp_update_scoreboard(sk, fast_rexmit); 3029 *rexmit = REXMIT_LOST; 3030 } 3031 3032 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag) 3033 { 3034 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ; 3035 struct tcp_sock *tp = tcp_sk(sk); 3036 3037 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) { 3038 /* If the remote keeps returning delayed ACKs, eventually 3039 * the min filter would pick it up and overestimate the 3040 * prop. delay when it expires. Skip suspected delayed ACKs. 3041 */ 3042 return; 3043 } 3044 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32, 3045 rtt_us ? : jiffies_to_usecs(1)); 3046 } 3047 3048 static bool tcp_ack_update_rtt(struct sock *sk, const int flag, 3049 long seq_rtt_us, long sack_rtt_us, 3050 long ca_rtt_us, struct rate_sample *rs) 3051 { 3052 const struct tcp_sock *tp = tcp_sk(sk); 3053 3054 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 3055 * broken middle-boxes or peers may corrupt TS-ECR fields. But 3056 * Karn's algorithm forbids taking RTT if some retransmitted data 3057 * is acked (RFC6298). 3058 */ 3059 if (seq_rtt_us < 0) 3060 seq_rtt_us = sack_rtt_us; 3061 3062 /* RTTM Rule: A TSecr value received in a segment is used to 3063 * update the averaged RTT measurement only if the segment 3064 * acknowledges some new data, i.e., only if it advances the 3065 * left edge of the send window. 3066 * See draft-ietf-tcplw-high-performance-00, section 3.3. 3067 */ 3068 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 3069 flag & FLAG_ACKED) { 3070 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr; 3071 3072 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) { 3073 if (!delta) 3074 delta = 1; 3075 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ); 3076 ca_rtt_us = seq_rtt_us; 3077 } 3078 } 3079 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */ 3080 if (seq_rtt_us < 0) 3081 return false; 3082 3083 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is 3084 * always taken together with ACK, SACK, or TS-opts. Any negative 3085 * values will be skipped with the seq_rtt_us < 0 check above. 3086 */ 3087 tcp_update_rtt_min(sk, ca_rtt_us, flag); 3088 tcp_rtt_estimator(sk, seq_rtt_us); 3089 tcp_set_rto(sk); 3090 3091 /* RFC6298: only reset backoff on valid RTT measurement. */ 3092 inet_csk(sk)->icsk_backoff = 0; 3093 return true; 3094 } 3095 3096 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 3097 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req) 3098 { 3099 struct rate_sample rs; 3100 long rtt_us = -1L; 3101 3102 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack) 3103 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack); 3104 3105 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs); 3106 } 3107 3108 3109 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 3110 { 3111 const struct inet_connection_sock *icsk = inet_csk(sk); 3112 3113 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 3114 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32; 3115 } 3116 3117 /* Restart timer after forward progress on connection. 3118 * RFC2988 recommends to restart timer to now+rto. 3119 */ 3120 void tcp_rearm_rto(struct sock *sk) 3121 { 3122 const struct inet_connection_sock *icsk = inet_csk(sk); 3123 struct tcp_sock *tp = tcp_sk(sk); 3124 3125 /* If the retrans timer is currently being used by Fast Open 3126 * for SYN-ACK retrans purpose, stay put. 3127 */ 3128 if (rcu_access_pointer(tp->fastopen_rsk)) 3129 return; 3130 3131 if (!tp->packets_out) { 3132 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 3133 } else { 3134 u32 rto = inet_csk(sk)->icsk_rto; 3135 /* Offset the time elapsed after installing regular RTO */ 3136 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || 3137 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 3138 s64 delta_us = tcp_rto_delta_us(sk); 3139 /* delta_us may not be positive if the socket is locked 3140 * when the retrans timer fires and is rescheduled. 3141 */ 3142 rto = usecs_to_jiffies(max_t(int, delta_us, 1)); 3143 } 3144 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 3145 TCP_RTO_MAX); 3146 } 3147 } 3148 3149 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */ 3150 static void tcp_set_xmit_timer(struct sock *sk) 3151 { 3152 if (!tcp_schedule_loss_probe(sk, true)) 3153 tcp_rearm_rto(sk); 3154 } 3155 3156 /* If we get here, the whole TSO packet has not been acked. */ 3157 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3158 { 3159 struct tcp_sock *tp = tcp_sk(sk); 3160 u32 packets_acked; 3161 3162 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3163 3164 packets_acked = tcp_skb_pcount(skb); 3165 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3166 return 0; 3167 packets_acked -= tcp_skb_pcount(skb); 3168 3169 if (packets_acked) { 3170 BUG_ON(tcp_skb_pcount(skb) == 0); 3171 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3172 } 3173 3174 return packets_acked; 3175 } 3176 3177 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3178 const struct sk_buff *ack_skb, u32 prior_snd_una) 3179 { 3180 const struct skb_shared_info *shinfo; 3181 3182 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3183 if (likely(!TCP_SKB_CB(skb)->txstamp_ack)) 3184 return; 3185 3186 shinfo = skb_shinfo(skb); 3187 if (!before(shinfo->tskey, prior_snd_una) && 3188 before(shinfo->tskey, tcp_sk(sk)->snd_una)) { 3189 tcp_skb_tsorted_save(skb) { 3190 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK); 3191 } tcp_skb_tsorted_restore(skb); 3192 } 3193 } 3194 3195 /* Remove acknowledged frames from the retransmission queue. If our packet 3196 * is before the ack sequence we can discard it as it's confirmed to have 3197 * arrived at the other end. 3198 */ 3199 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb, 3200 u32 prior_fack, u32 prior_snd_una, 3201 struct tcp_sacktag_state *sack, bool ece_ack) 3202 { 3203 const struct inet_connection_sock *icsk = inet_csk(sk); 3204 u64 first_ackt, last_ackt; 3205 struct tcp_sock *tp = tcp_sk(sk); 3206 u32 prior_sacked = tp->sacked_out; 3207 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */ 3208 struct sk_buff *skb, *next; 3209 bool fully_acked = true; 3210 long sack_rtt_us = -1L; 3211 long seq_rtt_us = -1L; 3212 long ca_rtt_us = -1L; 3213 u32 pkts_acked = 0; 3214 u32 last_in_flight = 0; 3215 bool rtt_update; 3216 int flag = 0; 3217 3218 first_ackt = 0; 3219 3220 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) { 3221 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3222 const u32 start_seq = scb->seq; 3223 u8 sacked = scb->sacked; 3224 u32 acked_pcount; 3225 3226 /* Determine how many packets and what bytes were acked, tso and else */ 3227 if (after(scb->end_seq, tp->snd_una)) { 3228 if (tcp_skb_pcount(skb) == 1 || 3229 !after(tp->snd_una, scb->seq)) 3230 break; 3231 3232 acked_pcount = tcp_tso_acked(sk, skb); 3233 if (!acked_pcount) 3234 break; 3235 fully_acked = false; 3236 } else { 3237 acked_pcount = tcp_skb_pcount(skb); 3238 } 3239 3240 if (unlikely(sacked & TCPCB_RETRANS)) { 3241 if (sacked & TCPCB_SACKED_RETRANS) 3242 tp->retrans_out -= acked_pcount; 3243 flag |= FLAG_RETRANS_DATA_ACKED; 3244 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3245 last_ackt = tcp_skb_timestamp_us(skb); 3246 WARN_ON_ONCE(last_ackt == 0); 3247 if (!first_ackt) 3248 first_ackt = last_ackt; 3249 3250 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight; 3251 if (before(start_seq, reord)) 3252 reord = start_seq; 3253 if (!after(scb->end_seq, tp->high_seq)) 3254 flag |= FLAG_ORIG_SACK_ACKED; 3255 } 3256 3257 if (sacked & TCPCB_SACKED_ACKED) { 3258 tp->sacked_out -= acked_pcount; 3259 } else if (tcp_is_sack(tp)) { 3260 tcp_count_delivered(tp, acked_pcount, ece_ack); 3261 if (!tcp_skb_spurious_retrans(tp, skb)) 3262 tcp_rack_advance(tp, sacked, scb->end_seq, 3263 tcp_skb_timestamp_us(skb)); 3264 } 3265 if (sacked & TCPCB_LOST) 3266 tp->lost_out -= acked_pcount; 3267 3268 tp->packets_out -= acked_pcount; 3269 pkts_acked += acked_pcount; 3270 tcp_rate_skb_delivered(sk, skb, sack->rate); 3271 3272 /* Initial outgoing SYN's get put onto the write_queue 3273 * just like anything else we transmit. It is not 3274 * true data, and if we misinform our callers that 3275 * this ACK acks real data, we will erroneously exit 3276 * connection startup slow start one packet too 3277 * quickly. This is severely frowned upon behavior. 3278 */ 3279 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3280 flag |= FLAG_DATA_ACKED; 3281 } else { 3282 flag |= FLAG_SYN_ACKED; 3283 tp->retrans_stamp = 0; 3284 } 3285 3286 if (!fully_acked) 3287 break; 3288 3289 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3290 3291 next = skb_rb_next(skb); 3292 if (unlikely(skb == tp->retransmit_skb_hint)) 3293 tp->retransmit_skb_hint = NULL; 3294 if (unlikely(skb == tp->lost_skb_hint)) 3295 tp->lost_skb_hint = NULL; 3296 tcp_highest_sack_replace(sk, skb, next); 3297 tcp_rtx_queue_unlink_and_free(skb, sk); 3298 } 3299 3300 if (!skb) 3301 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 3302 3303 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3304 tp->snd_up = tp->snd_una; 3305 3306 if (skb) { 3307 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una); 3308 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) 3309 flag |= FLAG_SACK_RENEGING; 3310 } 3311 3312 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) { 3313 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt); 3314 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt); 3315 3316 if (pkts_acked == 1 && last_in_flight < tp->mss_cache && 3317 last_in_flight && !prior_sacked && fully_acked && 3318 sack->rate->prior_delivered + 1 == tp->delivered && 3319 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) { 3320 /* Conservatively mark a delayed ACK. It's typically 3321 * from a lone runt packet over the round trip to 3322 * a receiver w/o out-of-order or CE events. 3323 */ 3324 flag |= FLAG_ACK_MAYBE_DELAYED; 3325 } 3326 } 3327 if (sack->first_sackt) { 3328 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt); 3329 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt); 3330 } 3331 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us, 3332 ca_rtt_us, sack->rate); 3333 3334 if (flag & FLAG_ACKED) { 3335 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3336 if (unlikely(icsk->icsk_mtup.probe_size && 3337 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3338 tcp_mtup_probe_success(sk); 3339 } 3340 3341 if (tcp_is_reno(tp)) { 3342 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack); 3343 3344 /* If any of the cumulatively ACKed segments was 3345 * retransmitted, non-SACK case cannot confirm that 3346 * progress was due to original transmission due to 3347 * lack of TCPCB_SACKED_ACKED bits even if some of 3348 * the packets may have been never retransmitted. 3349 */ 3350 if (flag & FLAG_RETRANS_DATA_ACKED) 3351 flag &= ~FLAG_ORIG_SACK_ACKED; 3352 } else { 3353 int delta; 3354 3355 /* Non-retransmitted hole got filled? That's reordering */ 3356 if (before(reord, prior_fack)) 3357 tcp_check_sack_reordering(sk, reord, 0); 3358 3359 delta = prior_sacked - tp->sacked_out; 3360 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3361 } 3362 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3363 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp, 3364 tcp_skb_timestamp_us(skb))) { 3365 /* Do not re-arm RTO if the sack RTT is measured from data sent 3366 * after when the head was last (re)transmitted. Otherwise the 3367 * timeout may continue to extend in loss recovery. 3368 */ 3369 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */ 3370 } 3371 3372 if (icsk->icsk_ca_ops->pkts_acked) { 3373 struct ack_sample sample = { .pkts_acked = pkts_acked, 3374 .rtt_us = sack->rate->rtt_us, 3375 .in_flight = last_in_flight }; 3376 3377 icsk->icsk_ca_ops->pkts_acked(sk, &sample); 3378 } 3379 3380 #if FASTRETRANS_DEBUG > 0 3381 WARN_ON((int)tp->sacked_out < 0); 3382 WARN_ON((int)tp->lost_out < 0); 3383 WARN_ON((int)tp->retrans_out < 0); 3384 if (!tp->packets_out && tcp_is_sack(tp)) { 3385 icsk = inet_csk(sk); 3386 if (tp->lost_out) { 3387 pr_debug("Leak l=%u %d\n", 3388 tp->lost_out, icsk->icsk_ca_state); 3389 tp->lost_out = 0; 3390 } 3391 if (tp->sacked_out) { 3392 pr_debug("Leak s=%u %d\n", 3393 tp->sacked_out, icsk->icsk_ca_state); 3394 tp->sacked_out = 0; 3395 } 3396 if (tp->retrans_out) { 3397 pr_debug("Leak r=%u %d\n", 3398 tp->retrans_out, icsk->icsk_ca_state); 3399 tp->retrans_out = 0; 3400 } 3401 } 3402 #endif 3403 return flag; 3404 } 3405 3406 static void tcp_ack_probe(struct sock *sk) 3407 { 3408 struct inet_connection_sock *icsk = inet_csk(sk); 3409 struct sk_buff *head = tcp_send_head(sk); 3410 const struct tcp_sock *tp = tcp_sk(sk); 3411 3412 /* Was it a usable window open? */ 3413 if (!head) 3414 return; 3415 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) { 3416 icsk->icsk_backoff = 0; 3417 icsk->icsk_probes_tstamp = 0; 3418 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3419 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3420 * This function is not for random using! 3421 */ 3422 } else { 3423 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3424 3425 when = tcp_clamp_probe0_to_user_timeout(sk, when); 3426 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX); 3427 } 3428 } 3429 3430 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3431 { 3432 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3433 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3434 } 3435 3436 /* Decide wheather to run the increase function of congestion control. */ 3437 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3438 { 3439 /* If reordering is high then always grow cwnd whenever data is 3440 * delivered regardless of its ordering. Otherwise stay conservative 3441 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3442 * new SACK or ECE mark may first advance cwnd here and later reduce 3443 * cwnd in tcp_fastretrans_alert() based on more states. 3444 */ 3445 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering) 3446 return flag & FLAG_FORWARD_PROGRESS; 3447 3448 return flag & FLAG_DATA_ACKED; 3449 } 3450 3451 /* The "ultimate" congestion control function that aims to replace the rigid 3452 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction). 3453 * It's called toward the end of processing an ACK with precise rate 3454 * information. All transmission or retransmission are delayed afterwards. 3455 */ 3456 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked, 3457 int flag, const struct rate_sample *rs) 3458 { 3459 const struct inet_connection_sock *icsk = inet_csk(sk); 3460 3461 if (icsk->icsk_ca_ops->cong_control) { 3462 icsk->icsk_ca_ops->cong_control(sk, rs); 3463 return; 3464 } 3465 3466 if (tcp_in_cwnd_reduction(sk)) { 3467 /* Reduce cwnd if state mandates */ 3468 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag); 3469 } else if (tcp_may_raise_cwnd(sk, flag)) { 3470 /* Advance cwnd if state allows */ 3471 tcp_cong_avoid(sk, ack, acked_sacked); 3472 } 3473 tcp_update_pacing_rate(sk); 3474 } 3475 3476 /* Check that window update is acceptable. 3477 * The function assumes that snd_una<=ack<=snd_next. 3478 */ 3479 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3480 const u32 ack, const u32 ack_seq, 3481 const u32 nwin) 3482 { 3483 return after(ack, tp->snd_una) || 3484 after(ack_seq, tp->snd_wl1) || 3485 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3486 } 3487 3488 /* If we update tp->snd_una, also update tp->bytes_acked */ 3489 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3490 { 3491 u32 delta = ack - tp->snd_una; 3492 3493 sock_owned_by_me((struct sock *)tp); 3494 tp->bytes_acked += delta; 3495 tp->snd_una = ack; 3496 } 3497 3498 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3499 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3500 { 3501 u32 delta = seq - tp->rcv_nxt; 3502 3503 sock_owned_by_me((struct sock *)tp); 3504 tp->bytes_received += delta; 3505 WRITE_ONCE(tp->rcv_nxt, seq); 3506 } 3507 3508 /* Update our send window. 3509 * 3510 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3511 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3512 */ 3513 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3514 u32 ack_seq) 3515 { 3516 struct tcp_sock *tp = tcp_sk(sk); 3517 int flag = 0; 3518 u32 nwin = ntohs(tcp_hdr(skb)->window); 3519 3520 if (likely(!tcp_hdr(skb)->syn)) 3521 nwin <<= tp->rx_opt.snd_wscale; 3522 3523 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3524 flag |= FLAG_WIN_UPDATE; 3525 tcp_update_wl(tp, ack_seq); 3526 3527 if (tp->snd_wnd != nwin) { 3528 tp->snd_wnd = nwin; 3529 3530 /* Note, it is the only place, where 3531 * fast path is recovered for sending TCP. 3532 */ 3533 tp->pred_flags = 0; 3534 tcp_fast_path_check(sk); 3535 3536 if (!tcp_write_queue_empty(sk)) 3537 tcp_slow_start_after_idle_check(sk); 3538 3539 if (nwin > tp->max_window) { 3540 tp->max_window = nwin; 3541 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3542 } 3543 } 3544 } 3545 3546 tcp_snd_una_update(tp, ack); 3547 3548 return flag; 3549 } 3550 3551 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx, 3552 u32 *last_oow_ack_time) 3553 { 3554 if (*last_oow_ack_time) { 3555 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time); 3556 3557 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) { 3558 NET_INC_STATS(net, mib_idx); 3559 return true; /* rate-limited: don't send yet! */ 3560 } 3561 } 3562 3563 *last_oow_ack_time = tcp_jiffies32; 3564 3565 return false; /* not rate-limited: go ahead, send dupack now! */ 3566 } 3567 3568 /* Return true if we're currently rate-limiting out-of-window ACKs and 3569 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3570 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3571 * attacks that send repeated SYNs or ACKs for the same connection. To 3572 * do this, we do not send a duplicate SYNACK or ACK if the remote 3573 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3574 */ 3575 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3576 int mib_idx, u32 *last_oow_ack_time) 3577 { 3578 /* Data packets without SYNs are not likely part of an ACK loop. */ 3579 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3580 !tcp_hdr(skb)->syn) 3581 return false; 3582 3583 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time); 3584 } 3585 3586 /* RFC 5961 7 [ACK Throttling] */ 3587 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3588 { 3589 /* unprotected vars, we dont care of overwrites */ 3590 static u32 challenge_timestamp; 3591 static unsigned int challenge_count; 3592 struct tcp_sock *tp = tcp_sk(sk); 3593 struct net *net = sock_net(sk); 3594 u32 count, now; 3595 3596 /* First check our per-socket dupack rate limit. */ 3597 if (__tcp_oow_rate_limited(net, 3598 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3599 &tp->last_oow_ack_time)) 3600 return; 3601 3602 /* Then check host-wide RFC 5961 rate limit. */ 3603 now = jiffies / HZ; 3604 if (now != challenge_timestamp) { 3605 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit; 3606 u32 half = (ack_limit + 1) >> 1; 3607 3608 challenge_timestamp = now; 3609 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit)); 3610 } 3611 count = READ_ONCE(challenge_count); 3612 if (count > 0) { 3613 WRITE_ONCE(challenge_count, count - 1); 3614 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK); 3615 tcp_send_ack(sk); 3616 } 3617 } 3618 3619 static void tcp_store_ts_recent(struct tcp_sock *tp) 3620 { 3621 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3622 tp->rx_opt.ts_recent_stamp = ktime_get_seconds(); 3623 } 3624 3625 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3626 { 3627 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3628 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3629 * extra check below makes sure this can only happen 3630 * for pure ACK frames. -DaveM 3631 * 3632 * Not only, also it occurs for expired timestamps. 3633 */ 3634 3635 if (tcp_paws_check(&tp->rx_opt, 0)) 3636 tcp_store_ts_recent(tp); 3637 } 3638 } 3639 3640 /* This routine deals with acks during a TLP episode and ends an episode by 3641 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack 3642 */ 3643 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3644 { 3645 struct tcp_sock *tp = tcp_sk(sk); 3646 3647 if (before(ack, tp->tlp_high_seq)) 3648 return; 3649 3650 if (!tp->tlp_retrans) { 3651 /* TLP of new data has been acknowledged */ 3652 tp->tlp_high_seq = 0; 3653 } else if (flag & FLAG_DSACKING_ACK) { 3654 /* This DSACK means original and TLP probe arrived; no loss */ 3655 tp->tlp_high_seq = 0; 3656 } else if (after(ack, tp->tlp_high_seq)) { 3657 /* ACK advances: there was a loss, so reduce cwnd. Reset 3658 * tlp_high_seq in tcp_init_cwnd_reduction() 3659 */ 3660 tcp_init_cwnd_reduction(sk); 3661 tcp_set_ca_state(sk, TCP_CA_CWR); 3662 tcp_end_cwnd_reduction(sk); 3663 tcp_try_keep_open(sk); 3664 NET_INC_STATS(sock_net(sk), 3665 LINUX_MIB_TCPLOSSPROBERECOVERY); 3666 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3667 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3668 /* Pure dupack: original and TLP probe arrived; no loss */ 3669 tp->tlp_high_seq = 0; 3670 } 3671 } 3672 3673 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3674 { 3675 const struct inet_connection_sock *icsk = inet_csk(sk); 3676 3677 if (icsk->icsk_ca_ops->in_ack_event) 3678 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3679 } 3680 3681 /* Congestion control has updated the cwnd already. So if we're in 3682 * loss recovery then now we do any new sends (for FRTO) or 3683 * retransmits (for CA_Loss or CA_recovery) that make sense. 3684 */ 3685 static void tcp_xmit_recovery(struct sock *sk, int rexmit) 3686 { 3687 struct tcp_sock *tp = tcp_sk(sk); 3688 3689 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT) 3690 return; 3691 3692 if (unlikely(rexmit == REXMIT_NEW)) { 3693 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 3694 TCP_NAGLE_OFF); 3695 if (after(tp->snd_nxt, tp->high_seq)) 3696 return; 3697 tp->frto = 0; 3698 } 3699 tcp_xmit_retransmit_queue(sk); 3700 } 3701 3702 /* Returns the number of packets newly acked or sacked by the current ACK */ 3703 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag) 3704 { 3705 const struct net *net = sock_net(sk); 3706 struct tcp_sock *tp = tcp_sk(sk); 3707 u32 delivered; 3708 3709 delivered = tp->delivered - prior_delivered; 3710 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered); 3711 if (flag & FLAG_ECE) 3712 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered); 3713 3714 return delivered; 3715 } 3716 3717 /* This routine deals with incoming acks, but not outgoing ones. */ 3718 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3719 { 3720 struct inet_connection_sock *icsk = inet_csk(sk); 3721 struct tcp_sock *tp = tcp_sk(sk); 3722 struct tcp_sacktag_state sack_state; 3723 struct rate_sample rs = { .prior_delivered = 0 }; 3724 u32 prior_snd_una = tp->snd_una; 3725 bool is_sack_reneg = tp->is_sack_reneg; 3726 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3727 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3728 int num_dupack = 0; 3729 int prior_packets = tp->packets_out; 3730 u32 delivered = tp->delivered; 3731 u32 lost = tp->lost; 3732 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */ 3733 u32 prior_fack; 3734 3735 sack_state.first_sackt = 0; 3736 sack_state.rate = &rs; 3737 sack_state.sack_delivered = 0; 3738 3739 /* We very likely will need to access rtx queue. */ 3740 prefetch(sk->tcp_rtx_queue.rb_node); 3741 3742 /* If the ack is older than previous acks 3743 * then we can probably ignore it. 3744 */ 3745 if (before(ack, prior_snd_una)) { 3746 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3747 if (before(ack, prior_snd_una - tp->max_window)) { 3748 if (!(flag & FLAG_NO_CHALLENGE_ACK)) 3749 tcp_send_challenge_ack(sk, skb); 3750 return -1; 3751 } 3752 goto old_ack; 3753 } 3754 3755 /* If the ack includes data we haven't sent yet, discard 3756 * this segment (RFC793 Section 3.9). 3757 */ 3758 if (after(ack, tp->snd_nxt)) 3759 return -1; 3760 3761 if (after(ack, prior_snd_una)) { 3762 flag |= FLAG_SND_UNA_ADVANCED; 3763 icsk->icsk_retransmits = 0; 3764 3765 #if IS_ENABLED(CONFIG_TLS_DEVICE) 3766 if (static_branch_unlikely(&clean_acked_data_enabled.key)) 3767 if (icsk->icsk_clean_acked) 3768 icsk->icsk_clean_acked(sk, ack); 3769 #endif 3770 } 3771 3772 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una; 3773 rs.prior_in_flight = tcp_packets_in_flight(tp); 3774 3775 /* ts_recent update must be made after we are sure that the packet 3776 * is in window. 3777 */ 3778 if (flag & FLAG_UPDATE_TS_RECENT) 3779 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3780 3781 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) == 3782 FLAG_SND_UNA_ADVANCED) { 3783 /* Window is constant, pure forward advance. 3784 * No more checks are required. 3785 * Note, we use the fact that SND.UNA>=SND.WL2. 3786 */ 3787 tcp_update_wl(tp, ack_seq); 3788 tcp_snd_una_update(tp, ack); 3789 flag |= FLAG_WIN_UPDATE; 3790 3791 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3792 3793 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS); 3794 } else { 3795 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3796 3797 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3798 flag |= FLAG_DATA; 3799 else 3800 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3801 3802 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3803 3804 if (TCP_SKB_CB(skb)->sacked) 3805 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3806 &sack_state); 3807 3808 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3809 flag |= FLAG_ECE; 3810 ack_ev_flags |= CA_ACK_ECE; 3811 } 3812 3813 if (sack_state.sack_delivered) 3814 tcp_count_delivered(tp, sack_state.sack_delivered, 3815 flag & FLAG_ECE); 3816 3817 if (flag & FLAG_WIN_UPDATE) 3818 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3819 3820 tcp_in_ack_event(sk, ack_ev_flags); 3821 } 3822 3823 /* This is a deviation from RFC3168 since it states that: 3824 * "When the TCP data sender is ready to set the CWR bit after reducing 3825 * the congestion window, it SHOULD set the CWR bit only on the first 3826 * new data packet that it transmits." 3827 * We accept CWR on pure ACKs to be more robust 3828 * with widely-deployed TCP implementations that do this. 3829 */ 3830 tcp_ecn_accept_cwr(sk, skb); 3831 3832 /* We passed data and got it acked, remove any soft error 3833 * log. Something worked... 3834 */ 3835 sk->sk_err_soft = 0; 3836 icsk->icsk_probes_out = 0; 3837 tp->rcv_tstamp = tcp_jiffies32; 3838 if (!prior_packets) 3839 goto no_queue; 3840 3841 /* See if we can take anything off of the retransmit queue. */ 3842 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una, 3843 &sack_state, flag & FLAG_ECE); 3844 3845 tcp_rack_update_reo_wnd(sk, &rs); 3846 3847 if (tp->tlp_high_seq) 3848 tcp_process_tlp_ack(sk, ack, flag); 3849 3850 if (tcp_ack_is_dubious(sk, flag)) { 3851 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) { 3852 num_dupack = 1; 3853 /* Consider if pure acks were aggregated in tcp_add_backlog() */ 3854 if (!(flag & FLAG_DATA)) 3855 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs); 3856 } 3857 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3858 &rexmit); 3859 } 3860 3861 /* If needed, reset TLP/RTO timer when RACK doesn't set. */ 3862 if (flag & FLAG_SET_XMIT_TIMER) 3863 tcp_set_xmit_timer(sk); 3864 3865 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) 3866 sk_dst_confirm(sk); 3867 3868 delivered = tcp_newly_delivered(sk, delivered, flag); 3869 lost = tp->lost - lost; /* freshly marked lost */ 3870 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED); 3871 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate); 3872 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate); 3873 tcp_xmit_recovery(sk, rexmit); 3874 return 1; 3875 3876 no_queue: 3877 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3878 if (flag & FLAG_DSACKING_ACK) { 3879 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3880 &rexmit); 3881 tcp_newly_delivered(sk, delivered, flag); 3882 } 3883 /* If this ack opens up a zero window, clear backoff. It was 3884 * being used to time the probes, and is probably far higher than 3885 * it needs to be for normal retransmission. 3886 */ 3887 tcp_ack_probe(sk); 3888 3889 if (tp->tlp_high_seq) 3890 tcp_process_tlp_ack(sk, ack, flag); 3891 return 1; 3892 3893 old_ack: 3894 /* If data was SACKed, tag it and see if we should send more data. 3895 * If data was DSACKed, see if we can undo a cwnd reduction. 3896 */ 3897 if (TCP_SKB_CB(skb)->sacked) { 3898 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3899 &sack_state); 3900 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag, 3901 &rexmit); 3902 tcp_newly_delivered(sk, delivered, flag); 3903 tcp_xmit_recovery(sk, rexmit); 3904 } 3905 3906 return 0; 3907 } 3908 3909 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3910 bool syn, struct tcp_fastopen_cookie *foc, 3911 bool exp_opt) 3912 { 3913 /* Valid only in SYN or SYN-ACK with an even length. */ 3914 if (!foc || !syn || len < 0 || (len & 1)) 3915 return; 3916 3917 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3918 len <= TCP_FASTOPEN_COOKIE_MAX) 3919 memcpy(foc->val, cookie, len); 3920 else if (len != 0) 3921 len = -1; 3922 foc->len = len; 3923 foc->exp = exp_opt; 3924 } 3925 3926 static bool smc_parse_options(const struct tcphdr *th, 3927 struct tcp_options_received *opt_rx, 3928 const unsigned char *ptr, 3929 int opsize) 3930 { 3931 #if IS_ENABLED(CONFIG_SMC) 3932 if (static_branch_unlikely(&tcp_have_smc)) { 3933 if (th->syn && !(opsize & 1) && 3934 opsize >= TCPOLEN_EXP_SMC_BASE && 3935 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) { 3936 opt_rx->smc_ok = 1; 3937 return true; 3938 } 3939 } 3940 #endif 3941 return false; 3942 } 3943 3944 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped 3945 * value on success. 3946 */ 3947 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss) 3948 { 3949 const unsigned char *ptr = (const unsigned char *)(th + 1); 3950 int length = (th->doff * 4) - sizeof(struct tcphdr); 3951 u16 mss = 0; 3952 3953 while (length > 0) { 3954 int opcode = *ptr++; 3955 int opsize; 3956 3957 switch (opcode) { 3958 case TCPOPT_EOL: 3959 return mss; 3960 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3961 length--; 3962 continue; 3963 default: 3964 if (length < 2) 3965 return mss; 3966 opsize = *ptr++; 3967 if (opsize < 2) /* "silly options" */ 3968 return mss; 3969 if (opsize > length) 3970 return mss; /* fail on partial options */ 3971 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) { 3972 u16 in_mss = get_unaligned_be16(ptr); 3973 3974 if (in_mss) { 3975 if (user_mss && user_mss < in_mss) 3976 in_mss = user_mss; 3977 mss = in_mss; 3978 } 3979 } 3980 ptr += opsize - 2; 3981 length -= opsize; 3982 } 3983 } 3984 return mss; 3985 } 3986 3987 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3988 * But, this can also be called on packets in the established flow when 3989 * the fast version below fails. 3990 */ 3991 void tcp_parse_options(const struct net *net, 3992 const struct sk_buff *skb, 3993 struct tcp_options_received *opt_rx, int estab, 3994 struct tcp_fastopen_cookie *foc) 3995 { 3996 const unsigned char *ptr; 3997 const struct tcphdr *th = tcp_hdr(skb); 3998 int length = (th->doff * 4) - sizeof(struct tcphdr); 3999 4000 ptr = (const unsigned char *)(th + 1); 4001 opt_rx->saw_tstamp = 0; 4002 opt_rx->saw_unknown = 0; 4003 4004 while (length > 0) { 4005 int opcode = *ptr++; 4006 int opsize; 4007 4008 switch (opcode) { 4009 case TCPOPT_EOL: 4010 return; 4011 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 4012 length--; 4013 continue; 4014 default: 4015 if (length < 2) 4016 return; 4017 opsize = *ptr++; 4018 if (opsize < 2) /* "silly options" */ 4019 return; 4020 if (opsize > length) 4021 return; /* don't parse partial options */ 4022 switch (opcode) { 4023 case TCPOPT_MSS: 4024 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 4025 u16 in_mss = get_unaligned_be16(ptr); 4026 if (in_mss) { 4027 if (opt_rx->user_mss && 4028 opt_rx->user_mss < in_mss) 4029 in_mss = opt_rx->user_mss; 4030 opt_rx->mss_clamp = in_mss; 4031 } 4032 } 4033 break; 4034 case TCPOPT_WINDOW: 4035 if (opsize == TCPOLEN_WINDOW && th->syn && 4036 !estab && net->ipv4.sysctl_tcp_window_scaling) { 4037 __u8 snd_wscale = *(__u8 *)ptr; 4038 opt_rx->wscale_ok = 1; 4039 if (snd_wscale > TCP_MAX_WSCALE) { 4040 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n", 4041 __func__, 4042 snd_wscale, 4043 TCP_MAX_WSCALE); 4044 snd_wscale = TCP_MAX_WSCALE; 4045 } 4046 opt_rx->snd_wscale = snd_wscale; 4047 } 4048 break; 4049 case TCPOPT_TIMESTAMP: 4050 if ((opsize == TCPOLEN_TIMESTAMP) && 4051 ((estab && opt_rx->tstamp_ok) || 4052 (!estab && net->ipv4.sysctl_tcp_timestamps))) { 4053 opt_rx->saw_tstamp = 1; 4054 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 4055 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 4056 } 4057 break; 4058 case TCPOPT_SACK_PERM: 4059 if (opsize == TCPOLEN_SACK_PERM && th->syn && 4060 !estab && net->ipv4.sysctl_tcp_sack) { 4061 opt_rx->sack_ok = TCP_SACK_SEEN; 4062 tcp_sack_reset(opt_rx); 4063 } 4064 break; 4065 4066 case TCPOPT_SACK: 4067 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 4068 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 4069 opt_rx->sack_ok) { 4070 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 4071 } 4072 break; 4073 #ifdef CONFIG_TCP_MD5SIG 4074 case TCPOPT_MD5SIG: 4075 /* 4076 * The MD5 Hash has already been 4077 * checked (see tcp_v{4,6}_do_rcv()). 4078 */ 4079 break; 4080 #endif 4081 case TCPOPT_FASTOPEN: 4082 tcp_parse_fastopen_option( 4083 opsize - TCPOLEN_FASTOPEN_BASE, 4084 ptr, th->syn, foc, false); 4085 break; 4086 4087 case TCPOPT_EXP: 4088 /* Fast Open option shares code 254 using a 4089 * 16 bits magic number. 4090 */ 4091 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 4092 get_unaligned_be16(ptr) == 4093 TCPOPT_FASTOPEN_MAGIC) { 4094 tcp_parse_fastopen_option(opsize - 4095 TCPOLEN_EXP_FASTOPEN_BASE, 4096 ptr + 2, th->syn, foc, true); 4097 break; 4098 } 4099 4100 if (smc_parse_options(th, opt_rx, ptr, opsize)) 4101 break; 4102 4103 opt_rx->saw_unknown = 1; 4104 break; 4105 4106 default: 4107 opt_rx->saw_unknown = 1; 4108 } 4109 ptr += opsize-2; 4110 length -= opsize; 4111 } 4112 } 4113 } 4114 EXPORT_SYMBOL(tcp_parse_options); 4115 4116 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 4117 { 4118 const __be32 *ptr = (const __be32 *)(th + 1); 4119 4120 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 4121 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 4122 tp->rx_opt.saw_tstamp = 1; 4123 ++ptr; 4124 tp->rx_opt.rcv_tsval = ntohl(*ptr); 4125 ++ptr; 4126 if (*ptr) 4127 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 4128 else 4129 tp->rx_opt.rcv_tsecr = 0; 4130 return true; 4131 } 4132 return false; 4133 } 4134 4135 /* Fast parse options. This hopes to only see timestamps. 4136 * If it is wrong it falls back on tcp_parse_options(). 4137 */ 4138 static bool tcp_fast_parse_options(const struct net *net, 4139 const struct sk_buff *skb, 4140 const struct tcphdr *th, struct tcp_sock *tp) 4141 { 4142 /* In the spirit of fast parsing, compare doff directly to constant 4143 * values. Because equality is used, short doff can be ignored here. 4144 */ 4145 if (th->doff == (sizeof(*th) / 4)) { 4146 tp->rx_opt.saw_tstamp = 0; 4147 return false; 4148 } else if (tp->rx_opt.tstamp_ok && 4149 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 4150 if (tcp_parse_aligned_timestamp(tp, th)) 4151 return true; 4152 } 4153 4154 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL); 4155 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 4156 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 4157 4158 return true; 4159 } 4160 4161 #ifdef CONFIG_TCP_MD5SIG 4162 /* 4163 * Parse MD5 Signature option 4164 */ 4165 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 4166 { 4167 int length = (th->doff << 2) - sizeof(*th); 4168 const u8 *ptr = (const u8 *)(th + 1); 4169 4170 /* If not enough data remaining, we can short cut */ 4171 while (length >= TCPOLEN_MD5SIG) { 4172 int opcode = *ptr++; 4173 int opsize; 4174 4175 switch (opcode) { 4176 case TCPOPT_EOL: 4177 return NULL; 4178 case TCPOPT_NOP: 4179 length--; 4180 continue; 4181 default: 4182 opsize = *ptr++; 4183 if (opsize < 2 || opsize > length) 4184 return NULL; 4185 if (opcode == TCPOPT_MD5SIG) 4186 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 4187 } 4188 ptr += opsize - 2; 4189 length -= opsize; 4190 } 4191 return NULL; 4192 } 4193 EXPORT_SYMBOL(tcp_parse_md5sig_option); 4194 #endif 4195 4196 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 4197 * 4198 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 4199 * it can pass through stack. So, the following predicate verifies that 4200 * this segment is not used for anything but congestion avoidance or 4201 * fast retransmit. Moreover, we even are able to eliminate most of such 4202 * second order effects, if we apply some small "replay" window (~RTO) 4203 * to timestamp space. 4204 * 4205 * All these measures still do not guarantee that we reject wrapped ACKs 4206 * on networks with high bandwidth, when sequence space is recycled fastly, 4207 * but it guarantees that such events will be very rare and do not affect 4208 * connection seriously. This doesn't look nice, but alas, PAWS is really 4209 * buggy extension. 4210 * 4211 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 4212 * states that events when retransmit arrives after original data are rare. 4213 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 4214 * the biggest problem on large power networks even with minor reordering. 4215 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 4216 * up to bandwidth of 18Gigabit/sec. 8) ] 4217 */ 4218 4219 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 4220 { 4221 const struct tcp_sock *tp = tcp_sk(sk); 4222 const struct tcphdr *th = tcp_hdr(skb); 4223 u32 seq = TCP_SKB_CB(skb)->seq; 4224 u32 ack = TCP_SKB_CB(skb)->ack_seq; 4225 4226 return (/* 1. Pure ACK with correct sequence number. */ 4227 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 4228 4229 /* 2. ... and duplicate ACK. */ 4230 ack == tp->snd_una && 4231 4232 /* 3. ... and does not update window. */ 4233 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 4234 4235 /* 4. ... and sits in replay window. */ 4236 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 4237 } 4238 4239 static inline bool tcp_paws_discard(const struct sock *sk, 4240 const struct sk_buff *skb) 4241 { 4242 const struct tcp_sock *tp = tcp_sk(sk); 4243 4244 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 4245 !tcp_disordered_ack(sk, skb); 4246 } 4247 4248 /* Check segment sequence number for validity. 4249 * 4250 * Segment controls are considered valid, if the segment 4251 * fits to the window after truncation to the window. Acceptability 4252 * of data (and SYN, FIN, of course) is checked separately. 4253 * See tcp_data_queue(), for example. 4254 * 4255 * Also, controls (RST is main one) are accepted using RCV.WUP instead 4256 * of RCV.NXT. Peer still did not advance his SND.UNA when we 4257 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 4258 * (borrowed from freebsd) 4259 */ 4260 4261 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 4262 { 4263 return !before(end_seq, tp->rcv_wup) && 4264 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 4265 } 4266 4267 /* When we get a reset we do this. */ 4268 void tcp_reset(struct sock *sk, struct sk_buff *skb) 4269 { 4270 trace_tcp_receive_reset(sk); 4271 4272 /* mptcp can't tell us to ignore reset pkts, 4273 * so just ignore the return value of mptcp_incoming_options(). 4274 */ 4275 if (sk_is_mptcp(sk)) 4276 mptcp_incoming_options(sk, skb); 4277 4278 /* We want the right error as BSD sees it (and indeed as we do). */ 4279 switch (sk->sk_state) { 4280 case TCP_SYN_SENT: 4281 sk->sk_err = ECONNREFUSED; 4282 break; 4283 case TCP_CLOSE_WAIT: 4284 sk->sk_err = EPIPE; 4285 break; 4286 case TCP_CLOSE: 4287 return; 4288 default: 4289 sk->sk_err = ECONNRESET; 4290 } 4291 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 4292 smp_wmb(); 4293 4294 tcp_write_queue_purge(sk); 4295 tcp_done(sk); 4296 4297 if (!sock_flag(sk, SOCK_DEAD)) 4298 sk_error_report(sk); 4299 } 4300 4301 /* 4302 * Process the FIN bit. This now behaves as it is supposed to work 4303 * and the FIN takes effect when it is validly part of sequence 4304 * space. Not before when we get holes. 4305 * 4306 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 4307 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 4308 * TIME-WAIT) 4309 * 4310 * If we are in FINWAIT-1, a received FIN indicates simultaneous 4311 * close and we go into CLOSING (and later onto TIME-WAIT) 4312 * 4313 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 4314 */ 4315 void tcp_fin(struct sock *sk) 4316 { 4317 struct tcp_sock *tp = tcp_sk(sk); 4318 4319 inet_csk_schedule_ack(sk); 4320 4321 sk->sk_shutdown |= RCV_SHUTDOWN; 4322 sock_set_flag(sk, SOCK_DONE); 4323 4324 switch (sk->sk_state) { 4325 case TCP_SYN_RECV: 4326 case TCP_ESTABLISHED: 4327 /* Move to CLOSE_WAIT */ 4328 tcp_set_state(sk, TCP_CLOSE_WAIT); 4329 inet_csk_enter_pingpong_mode(sk); 4330 break; 4331 4332 case TCP_CLOSE_WAIT: 4333 case TCP_CLOSING: 4334 /* Received a retransmission of the FIN, do 4335 * nothing. 4336 */ 4337 break; 4338 case TCP_LAST_ACK: 4339 /* RFC793: Remain in the LAST-ACK state. */ 4340 break; 4341 4342 case TCP_FIN_WAIT1: 4343 /* This case occurs when a simultaneous close 4344 * happens, we must ack the received FIN and 4345 * enter the CLOSING state. 4346 */ 4347 tcp_send_ack(sk); 4348 tcp_set_state(sk, TCP_CLOSING); 4349 break; 4350 case TCP_FIN_WAIT2: 4351 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 4352 tcp_send_ack(sk); 4353 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 4354 break; 4355 default: 4356 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 4357 * cases we should never reach this piece of code. 4358 */ 4359 pr_err("%s: Impossible, sk->sk_state=%d\n", 4360 __func__, sk->sk_state); 4361 break; 4362 } 4363 4364 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4365 * Probably, we should reset in this case. For now drop them. 4366 */ 4367 skb_rbtree_purge(&tp->out_of_order_queue); 4368 if (tcp_is_sack(tp)) 4369 tcp_sack_reset(&tp->rx_opt); 4370 sk_mem_reclaim(sk); 4371 4372 if (!sock_flag(sk, SOCK_DEAD)) { 4373 sk->sk_state_change(sk); 4374 4375 /* Do not send POLL_HUP for half duplex close. */ 4376 if (sk->sk_shutdown == SHUTDOWN_MASK || 4377 sk->sk_state == TCP_CLOSE) 4378 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4379 else 4380 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4381 } 4382 } 4383 4384 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4385 u32 end_seq) 4386 { 4387 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4388 if (before(seq, sp->start_seq)) 4389 sp->start_seq = seq; 4390 if (after(end_seq, sp->end_seq)) 4391 sp->end_seq = end_seq; 4392 return true; 4393 } 4394 return false; 4395 } 4396 4397 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4398 { 4399 struct tcp_sock *tp = tcp_sk(sk); 4400 4401 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4402 int mib_idx; 4403 4404 if (before(seq, tp->rcv_nxt)) 4405 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4406 else 4407 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4408 4409 NET_INC_STATS(sock_net(sk), mib_idx); 4410 4411 tp->rx_opt.dsack = 1; 4412 tp->duplicate_sack[0].start_seq = seq; 4413 tp->duplicate_sack[0].end_seq = end_seq; 4414 } 4415 } 4416 4417 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4418 { 4419 struct tcp_sock *tp = tcp_sk(sk); 4420 4421 if (!tp->rx_opt.dsack) 4422 tcp_dsack_set(sk, seq, end_seq); 4423 else 4424 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4425 } 4426 4427 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb) 4428 { 4429 /* When the ACK path fails or drops most ACKs, the sender would 4430 * timeout and spuriously retransmit the same segment repeatedly. 4431 * The receiver remembers and reflects via DSACKs. Leverage the 4432 * DSACK state and change the txhash to re-route speculatively. 4433 */ 4434 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq && 4435 sk_rethink_txhash(sk)) 4436 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH); 4437 } 4438 4439 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4440 { 4441 struct tcp_sock *tp = tcp_sk(sk); 4442 4443 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4444 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4445 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4446 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 4447 4448 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) { 4449 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4450 4451 tcp_rcv_spurious_retrans(sk, skb); 4452 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4453 end_seq = tp->rcv_nxt; 4454 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4455 } 4456 } 4457 4458 tcp_send_ack(sk); 4459 } 4460 4461 /* These routines update the SACK block as out-of-order packets arrive or 4462 * in-order packets close up the sequence space. 4463 */ 4464 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4465 { 4466 int this_sack; 4467 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4468 struct tcp_sack_block *swalk = sp + 1; 4469 4470 /* See if the recent change to the first SACK eats into 4471 * or hits the sequence space of other SACK blocks, if so coalesce. 4472 */ 4473 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4474 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4475 int i; 4476 4477 /* Zap SWALK, by moving every further SACK up by one slot. 4478 * Decrease num_sacks. 4479 */ 4480 tp->rx_opt.num_sacks--; 4481 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4482 sp[i] = sp[i + 1]; 4483 continue; 4484 } 4485 this_sack++; 4486 swalk++; 4487 } 4488 } 4489 4490 static void tcp_sack_compress_send_ack(struct sock *sk) 4491 { 4492 struct tcp_sock *tp = tcp_sk(sk); 4493 4494 if (!tp->compressed_ack) 4495 return; 4496 4497 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1) 4498 __sock_put(sk); 4499 4500 /* Since we have to send one ack finally, 4501 * substract one from tp->compressed_ack to keep 4502 * LINUX_MIB_TCPACKCOMPRESSED accurate. 4503 */ 4504 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED, 4505 tp->compressed_ack - 1); 4506 4507 tp->compressed_ack = 0; 4508 tcp_send_ack(sk); 4509 } 4510 4511 /* Reasonable amount of sack blocks included in TCP SACK option 4512 * The max is 4, but this becomes 3 if TCP timestamps are there. 4513 * Given that SACK packets might be lost, be conservative and use 2. 4514 */ 4515 #define TCP_SACK_BLOCKS_EXPECTED 2 4516 4517 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4518 { 4519 struct tcp_sock *tp = tcp_sk(sk); 4520 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4521 int cur_sacks = tp->rx_opt.num_sacks; 4522 int this_sack; 4523 4524 if (!cur_sacks) 4525 goto new_sack; 4526 4527 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4528 if (tcp_sack_extend(sp, seq, end_seq)) { 4529 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4530 tcp_sack_compress_send_ack(sk); 4531 /* Rotate this_sack to the first one. */ 4532 for (; this_sack > 0; this_sack--, sp--) 4533 swap(*sp, *(sp - 1)); 4534 if (cur_sacks > 1) 4535 tcp_sack_maybe_coalesce(tp); 4536 return; 4537 } 4538 } 4539 4540 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED) 4541 tcp_sack_compress_send_ack(sk); 4542 4543 /* Could not find an adjacent existing SACK, build a new one, 4544 * put it at the front, and shift everyone else down. We 4545 * always know there is at least one SACK present already here. 4546 * 4547 * If the sack array is full, forget about the last one. 4548 */ 4549 if (this_sack >= TCP_NUM_SACKS) { 4550 this_sack--; 4551 tp->rx_opt.num_sacks--; 4552 sp--; 4553 } 4554 for (; this_sack > 0; this_sack--, sp--) 4555 *sp = *(sp - 1); 4556 4557 new_sack: 4558 /* Build the new head SACK, and we're done. */ 4559 sp->start_seq = seq; 4560 sp->end_seq = end_seq; 4561 tp->rx_opt.num_sacks++; 4562 } 4563 4564 /* RCV.NXT advances, some SACKs should be eaten. */ 4565 4566 static void tcp_sack_remove(struct tcp_sock *tp) 4567 { 4568 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4569 int num_sacks = tp->rx_opt.num_sacks; 4570 int this_sack; 4571 4572 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4573 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4574 tp->rx_opt.num_sacks = 0; 4575 return; 4576 } 4577 4578 for (this_sack = 0; this_sack < num_sacks;) { 4579 /* Check if the start of the sack is covered by RCV.NXT. */ 4580 if (!before(tp->rcv_nxt, sp->start_seq)) { 4581 int i; 4582 4583 /* RCV.NXT must cover all the block! */ 4584 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4585 4586 /* Zap this SACK, by moving forward any other SACKS. */ 4587 for (i = this_sack+1; i < num_sacks; i++) 4588 tp->selective_acks[i-1] = tp->selective_acks[i]; 4589 num_sacks--; 4590 continue; 4591 } 4592 this_sack++; 4593 sp++; 4594 } 4595 tp->rx_opt.num_sacks = num_sacks; 4596 } 4597 4598 /** 4599 * tcp_try_coalesce - try to merge skb to prior one 4600 * @sk: socket 4601 * @to: prior buffer 4602 * @from: buffer to add in queue 4603 * @fragstolen: pointer to boolean 4604 * 4605 * Before queueing skb @from after @to, try to merge them 4606 * to reduce overall memory use and queue lengths, if cost is small. 4607 * Packets in ofo or receive queues can stay a long time. 4608 * Better try to coalesce them right now to avoid future collapses. 4609 * Returns true if caller should free @from instead of queueing it 4610 */ 4611 static bool tcp_try_coalesce(struct sock *sk, 4612 struct sk_buff *to, 4613 struct sk_buff *from, 4614 bool *fragstolen) 4615 { 4616 int delta; 4617 4618 *fragstolen = false; 4619 4620 /* Its possible this segment overlaps with prior segment in queue */ 4621 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4622 return false; 4623 4624 if (!mptcp_skb_can_collapse(to, from)) 4625 return false; 4626 4627 #ifdef CONFIG_TLS_DEVICE 4628 if (from->decrypted != to->decrypted) 4629 return false; 4630 #endif 4631 4632 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4633 return false; 4634 4635 atomic_add(delta, &sk->sk_rmem_alloc); 4636 sk_mem_charge(sk, delta); 4637 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4638 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4639 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4640 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4641 4642 if (TCP_SKB_CB(from)->has_rxtstamp) { 4643 TCP_SKB_CB(to)->has_rxtstamp = true; 4644 to->tstamp = from->tstamp; 4645 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp; 4646 } 4647 4648 return true; 4649 } 4650 4651 static bool tcp_ooo_try_coalesce(struct sock *sk, 4652 struct sk_buff *to, 4653 struct sk_buff *from, 4654 bool *fragstolen) 4655 { 4656 bool res = tcp_try_coalesce(sk, to, from, fragstolen); 4657 4658 /* In case tcp_drop() is called later, update to->gso_segs */ 4659 if (res) { 4660 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) + 4661 max_t(u16, 1, skb_shinfo(from)->gso_segs); 4662 4663 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF); 4664 } 4665 return res; 4666 } 4667 4668 static void tcp_drop(struct sock *sk, struct sk_buff *skb) 4669 { 4670 sk_drops_add(sk, skb); 4671 __kfree_skb(skb); 4672 } 4673 4674 /* This one checks to see if we can put data from the 4675 * out_of_order queue into the receive_queue. 4676 */ 4677 static void tcp_ofo_queue(struct sock *sk) 4678 { 4679 struct tcp_sock *tp = tcp_sk(sk); 4680 __u32 dsack_high = tp->rcv_nxt; 4681 bool fin, fragstolen, eaten; 4682 struct sk_buff *skb, *tail; 4683 struct rb_node *p; 4684 4685 p = rb_first(&tp->out_of_order_queue); 4686 while (p) { 4687 skb = rb_to_skb(p); 4688 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4689 break; 4690 4691 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4692 __u32 dsack = dsack_high; 4693 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4694 dsack_high = TCP_SKB_CB(skb)->end_seq; 4695 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4696 } 4697 p = rb_next(p); 4698 rb_erase(&skb->rbnode, &tp->out_of_order_queue); 4699 4700 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) { 4701 tcp_drop(sk, skb); 4702 continue; 4703 } 4704 4705 tail = skb_peek_tail(&sk->sk_receive_queue); 4706 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4707 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4708 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 4709 if (!eaten) 4710 __skb_queue_tail(&sk->sk_receive_queue, skb); 4711 else 4712 kfree_skb_partial(skb, fragstolen); 4713 4714 if (unlikely(fin)) { 4715 tcp_fin(sk); 4716 /* tcp_fin() purges tp->out_of_order_queue, 4717 * so we must end this loop right now. 4718 */ 4719 break; 4720 } 4721 } 4722 } 4723 4724 static bool tcp_prune_ofo_queue(struct sock *sk); 4725 static int tcp_prune_queue(struct sock *sk); 4726 4727 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4728 unsigned int size) 4729 { 4730 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4731 !sk_rmem_schedule(sk, skb, size)) { 4732 4733 if (tcp_prune_queue(sk) < 0) 4734 return -1; 4735 4736 while (!sk_rmem_schedule(sk, skb, size)) { 4737 if (!tcp_prune_ofo_queue(sk)) 4738 return -1; 4739 } 4740 } 4741 return 0; 4742 } 4743 4744 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4745 { 4746 struct tcp_sock *tp = tcp_sk(sk); 4747 struct rb_node **p, *parent; 4748 struct sk_buff *skb1; 4749 u32 seq, end_seq; 4750 bool fragstolen; 4751 4752 tcp_ecn_check_ce(sk, skb); 4753 4754 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4755 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP); 4756 sk->sk_data_ready(sk); 4757 tcp_drop(sk, skb); 4758 return; 4759 } 4760 4761 /* Disable header prediction. */ 4762 tp->pred_flags = 0; 4763 inet_csk_schedule_ack(sk); 4764 4765 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs); 4766 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4767 seq = TCP_SKB_CB(skb)->seq; 4768 end_seq = TCP_SKB_CB(skb)->end_seq; 4769 4770 p = &tp->out_of_order_queue.rb_node; 4771 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 4772 /* Initial out of order segment, build 1 SACK. */ 4773 if (tcp_is_sack(tp)) { 4774 tp->rx_opt.num_sacks = 1; 4775 tp->selective_acks[0].start_seq = seq; 4776 tp->selective_acks[0].end_seq = end_seq; 4777 } 4778 rb_link_node(&skb->rbnode, NULL, p); 4779 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4780 tp->ooo_last_skb = skb; 4781 goto end; 4782 } 4783 4784 /* In the typical case, we are adding an skb to the end of the list. 4785 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 4786 */ 4787 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb, 4788 skb, &fragstolen)) { 4789 coalesce_done: 4790 /* For non sack flows, do not grow window to force DUPACK 4791 * and trigger fast retransmit. 4792 */ 4793 if (tcp_is_sack(tp)) 4794 tcp_grow_window(sk, skb, true); 4795 kfree_skb_partial(skb, fragstolen); 4796 skb = NULL; 4797 goto add_sack; 4798 } 4799 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 4800 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) { 4801 parent = &tp->ooo_last_skb->rbnode; 4802 p = &parent->rb_right; 4803 goto insert; 4804 } 4805 4806 /* Find place to insert this segment. Handle overlaps on the way. */ 4807 parent = NULL; 4808 while (*p) { 4809 parent = *p; 4810 skb1 = rb_to_skb(parent); 4811 if (before(seq, TCP_SKB_CB(skb1)->seq)) { 4812 p = &parent->rb_left; 4813 continue; 4814 } 4815 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4816 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4817 /* All the bits are present. Drop. */ 4818 NET_INC_STATS(sock_net(sk), 4819 LINUX_MIB_TCPOFOMERGE); 4820 tcp_drop(sk, skb); 4821 skb = NULL; 4822 tcp_dsack_set(sk, seq, end_seq); 4823 goto add_sack; 4824 } 4825 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4826 /* Partial overlap. */ 4827 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq); 4828 } else { 4829 /* skb's seq == skb1's seq and skb covers skb1. 4830 * Replace skb1 with skb. 4831 */ 4832 rb_replace_node(&skb1->rbnode, &skb->rbnode, 4833 &tp->out_of_order_queue); 4834 tcp_dsack_extend(sk, 4835 TCP_SKB_CB(skb1)->seq, 4836 TCP_SKB_CB(skb1)->end_seq); 4837 NET_INC_STATS(sock_net(sk), 4838 LINUX_MIB_TCPOFOMERGE); 4839 tcp_drop(sk, skb1); 4840 goto merge_right; 4841 } 4842 } else if (tcp_ooo_try_coalesce(sk, skb1, 4843 skb, &fragstolen)) { 4844 goto coalesce_done; 4845 } 4846 p = &parent->rb_right; 4847 } 4848 insert: 4849 /* Insert segment into RB tree. */ 4850 rb_link_node(&skb->rbnode, parent, p); 4851 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue); 4852 4853 merge_right: 4854 /* Remove other segments covered by skb. */ 4855 while ((skb1 = skb_rb_next(skb)) != NULL) { 4856 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4857 break; 4858 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4859 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4860 end_seq); 4861 break; 4862 } 4863 rb_erase(&skb1->rbnode, &tp->out_of_order_queue); 4864 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4865 TCP_SKB_CB(skb1)->end_seq); 4866 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4867 tcp_drop(sk, skb1); 4868 } 4869 /* If there is no skb after us, we are the last_skb ! */ 4870 if (!skb1) 4871 tp->ooo_last_skb = skb; 4872 4873 add_sack: 4874 if (tcp_is_sack(tp)) 4875 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4876 end: 4877 if (skb) { 4878 /* For non sack flows, do not grow window to force DUPACK 4879 * and trigger fast retransmit. 4880 */ 4881 if (tcp_is_sack(tp)) 4882 tcp_grow_window(sk, skb, false); 4883 skb_condense(skb); 4884 skb_set_owner_r(skb, sk); 4885 } 4886 } 4887 4888 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, 4889 bool *fragstolen) 4890 { 4891 int eaten; 4892 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4893 4894 eaten = (tail && 4895 tcp_try_coalesce(sk, tail, 4896 skb, fragstolen)) ? 1 : 0; 4897 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4898 if (!eaten) { 4899 __skb_queue_tail(&sk->sk_receive_queue, skb); 4900 skb_set_owner_r(skb, sk); 4901 } 4902 return eaten; 4903 } 4904 4905 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4906 { 4907 struct sk_buff *skb; 4908 int err = -ENOMEM; 4909 int data_len = 0; 4910 bool fragstolen; 4911 4912 if (size == 0) 4913 return 0; 4914 4915 if (size > PAGE_SIZE) { 4916 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS); 4917 4918 data_len = npages << PAGE_SHIFT; 4919 size = data_len + (size & ~PAGE_MASK); 4920 } 4921 skb = alloc_skb_with_frags(size - data_len, data_len, 4922 PAGE_ALLOC_COSTLY_ORDER, 4923 &err, sk->sk_allocation); 4924 if (!skb) 4925 goto err; 4926 4927 skb_put(skb, size - data_len); 4928 skb->data_len = data_len; 4929 skb->len = size; 4930 4931 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 4932 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 4933 goto err_free; 4934 } 4935 4936 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size); 4937 if (err) 4938 goto err_free; 4939 4940 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4941 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4942 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4943 4944 if (tcp_queue_rcv(sk, skb, &fragstolen)) { 4945 WARN_ON_ONCE(fragstolen); /* should not happen */ 4946 __kfree_skb(skb); 4947 } 4948 return size; 4949 4950 err_free: 4951 kfree_skb(skb); 4952 err: 4953 return err; 4954 4955 } 4956 4957 void tcp_data_ready(struct sock *sk) 4958 { 4959 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE)) 4960 sk->sk_data_ready(sk); 4961 } 4962 4963 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4964 { 4965 struct tcp_sock *tp = tcp_sk(sk); 4966 bool fragstolen; 4967 int eaten; 4968 4969 /* If a subflow has been reset, the packet should not continue 4970 * to be processed, drop the packet. 4971 */ 4972 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) { 4973 __kfree_skb(skb); 4974 return; 4975 } 4976 4977 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) { 4978 __kfree_skb(skb); 4979 return; 4980 } 4981 skb_dst_drop(skb); 4982 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4983 4984 tp->rx_opt.dsack = 0; 4985 4986 /* Queue data for delivery to the user. 4987 * Packets in sequence go to the receive queue. 4988 * Out of sequence packets to the out_of_order_queue. 4989 */ 4990 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4991 if (tcp_receive_window(tp) == 0) { 4992 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 4993 goto out_of_window; 4994 } 4995 4996 /* Ok. In sequence. In window. */ 4997 queue_and_out: 4998 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4999 sk_forced_mem_schedule(sk, skb->truesize); 5000 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) { 5001 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP); 5002 sk->sk_data_ready(sk); 5003 goto drop; 5004 } 5005 5006 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5007 if (skb->len) 5008 tcp_event_data_recv(sk, skb); 5009 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 5010 tcp_fin(sk); 5011 5012 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5013 tcp_ofo_queue(sk); 5014 5015 /* RFC5681. 4.2. SHOULD send immediate ACK, when 5016 * gap in queue is filled. 5017 */ 5018 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5019 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW; 5020 } 5021 5022 if (tp->rx_opt.num_sacks) 5023 tcp_sack_remove(tp); 5024 5025 tcp_fast_path_check(sk); 5026 5027 if (eaten > 0) 5028 kfree_skb_partial(skb, fragstolen); 5029 if (!sock_flag(sk, SOCK_DEAD)) 5030 tcp_data_ready(sk); 5031 return; 5032 } 5033 5034 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 5035 tcp_rcv_spurious_retrans(sk, skb); 5036 /* A retransmit, 2nd most common case. Force an immediate ack. */ 5037 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 5038 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 5039 5040 out_of_window: 5041 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 5042 inet_csk_schedule_ack(sk); 5043 drop: 5044 tcp_drop(sk, skb); 5045 return; 5046 } 5047 5048 /* Out of window. F.e. zero window probe. */ 5049 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 5050 goto out_of_window; 5051 5052 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 5053 /* Partial packet, seq < rcv_next < end_seq */ 5054 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 5055 5056 /* If window is closed, drop tail of packet. But after 5057 * remembering D-SACK for its head made in previous line. 5058 */ 5059 if (!tcp_receive_window(tp)) { 5060 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP); 5061 goto out_of_window; 5062 } 5063 goto queue_and_out; 5064 } 5065 5066 tcp_data_queue_ofo(sk, skb); 5067 } 5068 5069 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list) 5070 { 5071 if (list) 5072 return !skb_queue_is_last(list, skb) ? skb->next : NULL; 5073 5074 return skb_rb_next(skb); 5075 } 5076 5077 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 5078 struct sk_buff_head *list, 5079 struct rb_root *root) 5080 { 5081 struct sk_buff *next = tcp_skb_next(skb, list); 5082 5083 if (list) 5084 __skb_unlink(skb, list); 5085 else 5086 rb_erase(&skb->rbnode, root); 5087 5088 __kfree_skb(skb); 5089 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 5090 5091 return next; 5092 } 5093 5094 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */ 5095 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb) 5096 { 5097 struct rb_node **p = &root->rb_node; 5098 struct rb_node *parent = NULL; 5099 struct sk_buff *skb1; 5100 5101 while (*p) { 5102 parent = *p; 5103 skb1 = rb_to_skb(parent); 5104 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq)) 5105 p = &parent->rb_left; 5106 else 5107 p = &parent->rb_right; 5108 } 5109 rb_link_node(&skb->rbnode, parent, p); 5110 rb_insert_color(&skb->rbnode, root); 5111 } 5112 5113 /* Collapse contiguous sequence of skbs head..tail with 5114 * sequence numbers start..end. 5115 * 5116 * If tail is NULL, this means until the end of the queue. 5117 * 5118 * Segments with FIN/SYN are not collapsed (only because this 5119 * simplifies code) 5120 */ 5121 static void 5122 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root, 5123 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end) 5124 { 5125 struct sk_buff *skb = head, *n; 5126 struct sk_buff_head tmp; 5127 bool end_of_skbs; 5128 5129 /* First, check that queue is collapsible and find 5130 * the point where collapsing can be useful. 5131 */ 5132 restart: 5133 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) { 5134 n = tcp_skb_next(skb, list); 5135 5136 /* No new bits? It is possible on ofo queue. */ 5137 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5138 skb = tcp_collapse_one(sk, skb, list, root); 5139 if (!skb) 5140 break; 5141 goto restart; 5142 } 5143 5144 /* The first skb to collapse is: 5145 * - not SYN/FIN and 5146 * - bloated or contains data before "start" or 5147 * overlaps to the next one and mptcp allow collapsing. 5148 */ 5149 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 5150 (tcp_win_from_space(sk, skb->truesize) > skb->len || 5151 before(TCP_SKB_CB(skb)->seq, start))) { 5152 end_of_skbs = false; 5153 break; 5154 } 5155 5156 if (n && n != tail && mptcp_skb_can_collapse(skb, n) && 5157 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) { 5158 end_of_skbs = false; 5159 break; 5160 } 5161 5162 /* Decided to skip this, advance start seq. */ 5163 start = TCP_SKB_CB(skb)->end_seq; 5164 } 5165 if (end_of_skbs || 5166 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5167 return; 5168 5169 __skb_queue_head_init(&tmp); 5170 5171 while (before(start, end)) { 5172 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 5173 struct sk_buff *nskb; 5174 5175 nskb = alloc_skb(copy, GFP_ATOMIC); 5176 if (!nskb) 5177 break; 5178 5179 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 5180 #ifdef CONFIG_TLS_DEVICE 5181 nskb->decrypted = skb->decrypted; 5182 #endif 5183 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 5184 if (list) 5185 __skb_queue_before(list, skb, nskb); 5186 else 5187 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */ 5188 skb_set_owner_r(nskb, sk); 5189 mptcp_skb_ext_move(nskb, skb); 5190 5191 /* Copy data, releasing collapsed skbs. */ 5192 while (copy > 0) { 5193 int offset = start - TCP_SKB_CB(skb)->seq; 5194 int size = TCP_SKB_CB(skb)->end_seq - start; 5195 5196 BUG_ON(offset < 0); 5197 if (size > 0) { 5198 size = min(copy, size); 5199 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 5200 BUG(); 5201 TCP_SKB_CB(nskb)->end_seq += size; 5202 copy -= size; 5203 start += size; 5204 } 5205 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 5206 skb = tcp_collapse_one(sk, skb, list, root); 5207 if (!skb || 5208 skb == tail || 5209 !mptcp_skb_can_collapse(nskb, skb) || 5210 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 5211 goto end; 5212 #ifdef CONFIG_TLS_DEVICE 5213 if (skb->decrypted != nskb->decrypted) 5214 goto end; 5215 #endif 5216 } 5217 } 5218 } 5219 end: 5220 skb_queue_walk_safe(&tmp, skb, n) 5221 tcp_rbtree_insert(root, skb); 5222 } 5223 5224 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 5225 * and tcp_collapse() them until all the queue is collapsed. 5226 */ 5227 static void tcp_collapse_ofo_queue(struct sock *sk) 5228 { 5229 struct tcp_sock *tp = tcp_sk(sk); 5230 u32 range_truesize, sum_tiny = 0; 5231 struct sk_buff *skb, *head; 5232 u32 start, end; 5233 5234 skb = skb_rb_first(&tp->out_of_order_queue); 5235 new_range: 5236 if (!skb) { 5237 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue); 5238 return; 5239 } 5240 start = TCP_SKB_CB(skb)->seq; 5241 end = TCP_SKB_CB(skb)->end_seq; 5242 range_truesize = skb->truesize; 5243 5244 for (head = skb;;) { 5245 skb = skb_rb_next(skb); 5246 5247 /* Range is terminated when we see a gap or when 5248 * we are at the queue end. 5249 */ 5250 if (!skb || 5251 after(TCP_SKB_CB(skb)->seq, end) || 5252 before(TCP_SKB_CB(skb)->end_seq, start)) { 5253 /* Do not attempt collapsing tiny skbs */ 5254 if (range_truesize != head->truesize || 5255 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) { 5256 tcp_collapse(sk, NULL, &tp->out_of_order_queue, 5257 head, skb, start, end); 5258 } else { 5259 sum_tiny += range_truesize; 5260 if (sum_tiny > sk->sk_rcvbuf >> 3) 5261 return; 5262 } 5263 goto new_range; 5264 } 5265 5266 range_truesize += skb->truesize; 5267 if (unlikely(before(TCP_SKB_CB(skb)->seq, start))) 5268 start = TCP_SKB_CB(skb)->seq; 5269 if (after(TCP_SKB_CB(skb)->end_seq, end)) 5270 end = TCP_SKB_CB(skb)->end_seq; 5271 } 5272 } 5273 5274 /* 5275 * Clean the out-of-order queue to make room. 5276 * We drop high sequences packets to : 5277 * 1) Let a chance for holes to be filled. 5278 * 2) not add too big latencies if thousands of packets sit there. 5279 * (But if application shrinks SO_RCVBUF, we could still end up 5280 * freeing whole queue here) 5281 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks. 5282 * 5283 * Return true if queue has shrunk. 5284 */ 5285 static bool tcp_prune_ofo_queue(struct sock *sk) 5286 { 5287 struct tcp_sock *tp = tcp_sk(sk); 5288 struct rb_node *node, *prev; 5289 int goal; 5290 5291 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) 5292 return false; 5293 5294 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED); 5295 goal = sk->sk_rcvbuf >> 3; 5296 node = &tp->ooo_last_skb->rbnode; 5297 do { 5298 prev = rb_prev(node); 5299 rb_erase(node, &tp->out_of_order_queue); 5300 goal -= rb_to_skb(node)->truesize; 5301 tcp_drop(sk, rb_to_skb(node)); 5302 if (!prev || goal <= 0) { 5303 sk_mem_reclaim(sk); 5304 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 5305 !tcp_under_memory_pressure(sk)) 5306 break; 5307 goal = sk->sk_rcvbuf >> 3; 5308 } 5309 node = prev; 5310 } while (node); 5311 tp->ooo_last_skb = rb_to_skb(prev); 5312 5313 /* Reset SACK state. A conforming SACK implementation will 5314 * do the same at a timeout based retransmit. When a connection 5315 * is in a sad state like this, we care only about integrity 5316 * of the connection not performance. 5317 */ 5318 if (tp->rx_opt.sack_ok) 5319 tcp_sack_reset(&tp->rx_opt); 5320 return true; 5321 } 5322 5323 /* Reduce allocated memory if we can, trying to get 5324 * the socket within its memory limits again. 5325 * 5326 * Return less than zero if we should start dropping frames 5327 * until the socket owning process reads some of the data 5328 * to stabilize the situation. 5329 */ 5330 static int tcp_prune_queue(struct sock *sk) 5331 { 5332 struct tcp_sock *tp = tcp_sk(sk); 5333 5334 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED); 5335 5336 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 5337 tcp_clamp_window(sk); 5338 else if (tcp_under_memory_pressure(sk)) 5339 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 5340 5341 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5342 return 0; 5343 5344 tcp_collapse_ofo_queue(sk); 5345 if (!skb_queue_empty(&sk->sk_receive_queue)) 5346 tcp_collapse(sk, &sk->sk_receive_queue, NULL, 5347 skb_peek(&sk->sk_receive_queue), 5348 NULL, 5349 tp->copied_seq, tp->rcv_nxt); 5350 sk_mem_reclaim(sk); 5351 5352 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5353 return 0; 5354 5355 /* Collapsing did not help, destructive actions follow. 5356 * This must not ever occur. */ 5357 5358 tcp_prune_ofo_queue(sk); 5359 5360 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 5361 return 0; 5362 5363 /* If we are really being abused, tell the caller to silently 5364 * drop receive data on the floor. It will get retransmitted 5365 * and hopefully then we'll have sufficient space. 5366 */ 5367 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED); 5368 5369 /* Massive buffer overcommit. */ 5370 tp->pred_flags = 0; 5371 return -1; 5372 } 5373 5374 static bool tcp_should_expand_sndbuf(const struct sock *sk) 5375 { 5376 const struct tcp_sock *tp = tcp_sk(sk); 5377 5378 /* If the user specified a specific send buffer setting, do 5379 * not modify it. 5380 */ 5381 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 5382 return false; 5383 5384 /* If we are under global TCP memory pressure, do not expand. */ 5385 if (tcp_under_memory_pressure(sk)) 5386 return false; 5387 5388 /* If we are under soft global TCP memory pressure, do not expand. */ 5389 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 5390 return false; 5391 5392 /* If we filled the congestion window, do not expand. */ 5393 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 5394 return false; 5395 5396 return true; 5397 } 5398 5399 static void tcp_new_space(struct sock *sk) 5400 { 5401 struct tcp_sock *tp = tcp_sk(sk); 5402 5403 if (tcp_should_expand_sndbuf(sk)) { 5404 tcp_sndbuf_expand(sk); 5405 tp->snd_cwnd_stamp = tcp_jiffies32; 5406 } 5407 5408 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk); 5409 } 5410 5411 static void tcp_check_space(struct sock *sk) 5412 { 5413 /* pairs with tcp_poll() */ 5414 smp_mb(); 5415 if (sk->sk_socket && 5416 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { 5417 tcp_new_space(sk); 5418 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 5419 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 5420 } 5421 } 5422 5423 static inline void tcp_data_snd_check(struct sock *sk) 5424 { 5425 tcp_push_pending_frames(sk); 5426 tcp_check_space(sk); 5427 } 5428 5429 /* 5430 * Check if sending an ack is needed. 5431 */ 5432 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 5433 { 5434 struct tcp_sock *tp = tcp_sk(sk); 5435 unsigned long rtt, delay; 5436 5437 /* More than one full frame received... */ 5438 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 5439 /* ... and right edge of window advances far enough. 5440 * (tcp_recvmsg() will send ACK otherwise). 5441 * If application uses SO_RCVLOWAT, we want send ack now if 5442 * we have not received enough bytes to satisfy the condition. 5443 */ 5444 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat || 5445 __tcp_select_window(sk) >= tp->rcv_wnd)) || 5446 /* We ACK each frame or... */ 5447 tcp_in_quickack_mode(sk) || 5448 /* Protocol state mandates a one-time immediate ACK */ 5449 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) { 5450 send_now: 5451 tcp_send_ack(sk); 5452 return; 5453 } 5454 5455 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) { 5456 tcp_send_delayed_ack(sk); 5457 return; 5458 } 5459 5460 if (!tcp_is_sack(tp) || 5461 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr) 5462 goto send_now; 5463 5464 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) { 5465 tp->compressed_ack_rcv_nxt = tp->rcv_nxt; 5466 tp->dup_ack_counter = 0; 5467 } 5468 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) { 5469 tp->dup_ack_counter++; 5470 goto send_now; 5471 } 5472 tp->compressed_ack++; 5473 if (hrtimer_is_queued(&tp->compressed_ack_timer)) 5474 return; 5475 5476 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */ 5477 5478 rtt = tp->rcv_rtt_est.rtt_us; 5479 if (tp->srtt_us && tp->srtt_us < rtt) 5480 rtt = tp->srtt_us; 5481 5482 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns, 5483 rtt * (NSEC_PER_USEC >> 3)/20); 5484 sock_hold(sk); 5485 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay), 5486 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns, 5487 HRTIMER_MODE_REL_PINNED_SOFT); 5488 } 5489 5490 static inline void tcp_ack_snd_check(struct sock *sk) 5491 { 5492 if (!inet_csk_ack_scheduled(sk)) { 5493 /* We sent a data segment already. */ 5494 return; 5495 } 5496 __tcp_ack_snd_check(sk, 1); 5497 } 5498 5499 /* 5500 * This routine is only called when we have urgent data 5501 * signaled. Its the 'slow' part of tcp_urg. It could be 5502 * moved inline now as tcp_urg is only called from one 5503 * place. We handle URGent data wrong. We have to - as 5504 * BSD still doesn't use the correction from RFC961. 5505 * For 1003.1g we should support a new option TCP_STDURG to permit 5506 * either form (or just set the sysctl tcp_stdurg). 5507 */ 5508 5509 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 5510 { 5511 struct tcp_sock *tp = tcp_sk(sk); 5512 u32 ptr = ntohs(th->urg_ptr); 5513 5514 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg) 5515 ptr--; 5516 ptr += ntohl(th->seq); 5517 5518 /* Ignore urgent data that we've already seen and read. */ 5519 if (after(tp->copied_seq, ptr)) 5520 return; 5521 5522 /* Do not replay urg ptr. 5523 * 5524 * NOTE: interesting situation not covered by specs. 5525 * Misbehaving sender may send urg ptr, pointing to segment, 5526 * which we already have in ofo queue. We are not able to fetch 5527 * such data and will stay in TCP_URG_NOTYET until will be eaten 5528 * by recvmsg(). Seems, we are not obliged to handle such wicked 5529 * situations. But it is worth to think about possibility of some 5530 * DoSes using some hypothetical application level deadlock. 5531 */ 5532 if (before(ptr, tp->rcv_nxt)) 5533 return; 5534 5535 /* Do we already have a newer (or duplicate) urgent pointer? */ 5536 if (tp->urg_data && !after(ptr, tp->urg_seq)) 5537 return; 5538 5539 /* Tell the world about our new urgent pointer. */ 5540 sk_send_sigurg(sk); 5541 5542 /* We may be adding urgent data when the last byte read was 5543 * urgent. To do this requires some care. We cannot just ignore 5544 * tp->copied_seq since we would read the last urgent byte again 5545 * as data, nor can we alter copied_seq until this data arrives 5546 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 5547 * 5548 * NOTE. Double Dutch. Rendering to plain English: author of comment 5549 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 5550 * and expect that both A and B disappear from stream. This is _wrong_. 5551 * Though this happens in BSD with high probability, this is occasional. 5552 * Any application relying on this is buggy. Note also, that fix "works" 5553 * only in this artificial test. Insert some normal data between A and B and we will 5554 * decline of BSD again. Verdict: it is better to remove to trap 5555 * buggy users. 5556 */ 5557 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 5558 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 5559 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 5560 tp->copied_seq++; 5561 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 5562 __skb_unlink(skb, &sk->sk_receive_queue); 5563 __kfree_skb(skb); 5564 } 5565 } 5566 5567 tp->urg_data = TCP_URG_NOTYET; 5568 WRITE_ONCE(tp->urg_seq, ptr); 5569 5570 /* Disable header prediction. */ 5571 tp->pred_flags = 0; 5572 } 5573 5574 /* This is the 'fast' part of urgent handling. */ 5575 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 5576 { 5577 struct tcp_sock *tp = tcp_sk(sk); 5578 5579 /* Check if we get a new urgent pointer - normally not. */ 5580 if (th->urg) 5581 tcp_check_urg(sk, th); 5582 5583 /* Do we wait for any urgent data? - normally not... */ 5584 if (tp->urg_data == TCP_URG_NOTYET) { 5585 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5586 th->syn; 5587 5588 /* Is the urgent pointer pointing into this packet? */ 5589 if (ptr < skb->len) { 5590 u8 tmp; 5591 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5592 BUG(); 5593 tp->urg_data = TCP_URG_VALID | tmp; 5594 if (!sock_flag(sk, SOCK_DEAD)) 5595 sk->sk_data_ready(sk); 5596 } 5597 } 5598 } 5599 5600 /* Accept RST for rcv_nxt - 1 after a FIN. 5601 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a 5602 * FIN is sent followed by a RST packet. The RST is sent with the same 5603 * sequence number as the FIN, and thus according to RFC 5961 a challenge 5604 * ACK should be sent. However, Mac OSX rate limits replies to challenge 5605 * ACKs on the closed socket. In addition middleboxes can drop either the 5606 * challenge ACK or a subsequent RST. 5607 */ 5608 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb) 5609 { 5610 struct tcp_sock *tp = tcp_sk(sk); 5611 5612 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) && 5613 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK | 5614 TCPF_CLOSING)); 5615 } 5616 5617 /* Does PAWS and seqno based validation of an incoming segment, flags will 5618 * play significant role here. 5619 */ 5620 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5621 const struct tcphdr *th, int syn_inerr) 5622 { 5623 struct tcp_sock *tp = tcp_sk(sk); 5624 bool rst_seq_match = false; 5625 5626 /* RFC1323: H1. Apply PAWS check first. */ 5627 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) && 5628 tp->rx_opt.saw_tstamp && 5629 tcp_paws_discard(sk, skb)) { 5630 if (!th->rst) { 5631 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5632 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5633 LINUX_MIB_TCPACKSKIPPEDPAWS, 5634 &tp->last_oow_ack_time)) 5635 tcp_send_dupack(sk, skb); 5636 goto discard; 5637 } 5638 /* Reset is accepted even if it did not pass PAWS. */ 5639 } 5640 5641 /* Step 1: check sequence number */ 5642 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5643 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5644 * (RST) segments are validated by checking their SEQ-fields." 5645 * And page 69: "If an incoming segment is not acceptable, 5646 * an acknowledgment should be sent in reply (unless the RST 5647 * bit is set, if so drop the segment and return)". 5648 */ 5649 if (!th->rst) { 5650 if (th->syn) 5651 goto syn_challenge; 5652 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5653 LINUX_MIB_TCPACKSKIPPEDSEQ, 5654 &tp->last_oow_ack_time)) 5655 tcp_send_dupack(sk, skb); 5656 } else if (tcp_reset_check(sk, skb)) { 5657 tcp_reset(sk, skb); 5658 } 5659 goto discard; 5660 } 5661 5662 /* Step 2: check RST bit */ 5663 if (th->rst) { 5664 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a 5665 * FIN and SACK too if available): 5666 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or 5667 * the right-most SACK block, 5668 * then 5669 * RESET the connection 5670 * else 5671 * Send a challenge ACK 5672 */ 5673 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt || 5674 tcp_reset_check(sk, skb)) { 5675 rst_seq_match = true; 5676 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) { 5677 struct tcp_sack_block *sp = &tp->selective_acks[0]; 5678 int max_sack = sp[0].end_seq; 5679 int this_sack; 5680 5681 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; 5682 ++this_sack) { 5683 max_sack = after(sp[this_sack].end_seq, 5684 max_sack) ? 5685 sp[this_sack].end_seq : max_sack; 5686 } 5687 5688 if (TCP_SKB_CB(skb)->seq == max_sack) 5689 rst_seq_match = true; 5690 } 5691 5692 if (rst_seq_match) 5693 tcp_reset(sk, skb); 5694 else { 5695 /* Disable TFO if RST is out-of-order 5696 * and no data has been received 5697 * for current active TFO socket 5698 */ 5699 if (tp->syn_fastopen && !tp->data_segs_in && 5700 sk->sk_state == TCP_ESTABLISHED) 5701 tcp_fastopen_active_disable(sk); 5702 tcp_send_challenge_ack(sk, skb); 5703 } 5704 goto discard; 5705 } 5706 5707 /* step 3: check security and precedence [ignored] */ 5708 5709 /* step 4: Check for a SYN 5710 * RFC 5961 4.2 : Send a challenge ack 5711 */ 5712 if (th->syn) { 5713 syn_challenge: 5714 if (syn_inerr) 5715 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5716 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5717 tcp_send_challenge_ack(sk, skb); 5718 goto discard; 5719 } 5720 5721 bpf_skops_parse_hdr(sk, skb); 5722 5723 return true; 5724 5725 discard: 5726 tcp_drop(sk, skb); 5727 return false; 5728 } 5729 5730 /* 5731 * TCP receive function for the ESTABLISHED state. 5732 * 5733 * It is split into a fast path and a slow path. The fast path is 5734 * disabled when: 5735 * - A zero window was announced from us - zero window probing 5736 * is only handled properly in the slow path. 5737 * - Out of order segments arrived. 5738 * - Urgent data is expected. 5739 * - There is no buffer space left 5740 * - Unexpected TCP flags/window values/header lengths are received 5741 * (detected by checking the TCP header against pred_flags) 5742 * - Data is sent in both directions. Fast path only supports pure senders 5743 * or pure receivers (this means either the sequence number or the ack 5744 * value must stay constant) 5745 * - Unexpected TCP option. 5746 * 5747 * When these conditions are not satisfied it drops into a standard 5748 * receive procedure patterned after RFC793 to handle all cases. 5749 * The first three cases are guaranteed by proper pred_flags setting, 5750 * the rest is checked inline. Fast processing is turned on in 5751 * tcp_data_queue when everything is OK. 5752 */ 5753 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb) 5754 { 5755 const struct tcphdr *th = (const struct tcphdr *)skb->data; 5756 struct tcp_sock *tp = tcp_sk(sk); 5757 unsigned int len = skb->len; 5758 5759 /* TCP congestion window tracking */ 5760 trace_tcp_probe(sk, skb); 5761 5762 tcp_mstamp_refresh(tp); 5763 if (unlikely(!sk->sk_rx_dst)) 5764 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5765 /* 5766 * Header prediction. 5767 * The code loosely follows the one in the famous 5768 * "30 instruction TCP receive" Van Jacobson mail. 5769 * 5770 * Van's trick is to deposit buffers into socket queue 5771 * on a device interrupt, to call tcp_recv function 5772 * on the receive process context and checksum and copy 5773 * the buffer to user space. smart... 5774 * 5775 * Our current scheme is not silly either but we take the 5776 * extra cost of the net_bh soft interrupt processing... 5777 * We do checksum and copy also but from device to kernel. 5778 */ 5779 5780 tp->rx_opt.saw_tstamp = 0; 5781 5782 /* pred_flags is 0xS?10 << 16 + snd_wnd 5783 * if header_prediction is to be made 5784 * 'S' will always be tp->tcp_header_len >> 2 5785 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5786 * turn it off (when there are holes in the receive 5787 * space for instance) 5788 * PSH flag is ignored. 5789 */ 5790 5791 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5792 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5793 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5794 int tcp_header_len = tp->tcp_header_len; 5795 5796 /* Timestamp header prediction: tcp_header_len 5797 * is automatically equal to th->doff*4 due to pred_flags 5798 * match. 5799 */ 5800 5801 /* Check timestamp */ 5802 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5803 /* No? Slow path! */ 5804 if (!tcp_parse_aligned_timestamp(tp, th)) 5805 goto slow_path; 5806 5807 /* If PAWS failed, check it more carefully in slow path */ 5808 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5809 goto slow_path; 5810 5811 /* DO NOT update ts_recent here, if checksum fails 5812 * and timestamp was corrupted part, it will result 5813 * in a hung connection since we will drop all 5814 * future packets due to the PAWS test. 5815 */ 5816 } 5817 5818 if (len <= tcp_header_len) { 5819 /* Bulk data transfer: sender */ 5820 if (len == tcp_header_len) { 5821 /* Predicted packet is in window by definition. 5822 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5823 * Hence, check seq<=rcv_wup reduces to: 5824 */ 5825 if (tcp_header_len == 5826 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5827 tp->rcv_nxt == tp->rcv_wup) 5828 tcp_store_ts_recent(tp); 5829 5830 /* We know that such packets are checksummed 5831 * on entry. 5832 */ 5833 tcp_ack(sk, skb, 0); 5834 __kfree_skb(skb); 5835 tcp_data_snd_check(sk); 5836 /* When receiving pure ack in fast path, update 5837 * last ts ecr directly instead of calling 5838 * tcp_rcv_rtt_measure_ts() 5839 */ 5840 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr; 5841 return; 5842 } else { /* Header too small */ 5843 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5844 goto discard; 5845 } 5846 } else { 5847 int eaten = 0; 5848 bool fragstolen = false; 5849 5850 if (tcp_checksum_complete(skb)) 5851 goto csum_error; 5852 5853 if ((int)skb->truesize > sk->sk_forward_alloc) 5854 goto step5; 5855 5856 /* Predicted packet is in window by definition. 5857 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5858 * Hence, check seq<=rcv_wup reduces to: 5859 */ 5860 if (tcp_header_len == 5861 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5862 tp->rcv_nxt == tp->rcv_wup) 5863 tcp_store_ts_recent(tp); 5864 5865 tcp_rcv_rtt_measure_ts(sk, skb); 5866 5867 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS); 5868 5869 /* Bulk data transfer: receiver */ 5870 __skb_pull(skb, tcp_header_len); 5871 eaten = tcp_queue_rcv(sk, skb, &fragstolen); 5872 5873 tcp_event_data_recv(sk, skb); 5874 5875 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5876 /* Well, only one small jumplet in fast path... */ 5877 tcp_ack(sk, skb, FLAG_DATA); 5878 tcp_data_snd_check(sk); 5879 if (!inet_csk_ack_scheduled(sk)) 5880 goto no_ack; 5881 } else { 5882 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq); 5883 } 5884 5885 __tcp_ack_snd_check(sk, 0); 5886 no_ack: 5887 if (eaten) 5888 kfree_skb_partial(skb, fragstolen); 5889 tcp_data_ready(sk); 5890 return; 5891 } 5892 } 5893 5894 slow_path: 5895 if (len < (th->doff << 2) || tcp_checksum_complete(skb)) 5896 goto csum_error; 5897 5898 if (!th->ack && !th->rst && !th->syn) 5899 goto discard; 5900 5901 /* 5902 * Standard slow path. 5903 */ 5904 5905 if (!tcp_validate_incoming(sk, skb, th, 1)) 5906 return; 5907 5908 step5: 5909 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5910 goto discard; 5911 5912 tcp_rcv_rtt_measure_ts(sk, skb); 5913 5914 /* Process urgent data. */ 5915 tcp_urg(sk, skb, th); 5916 5917 /* step 7: process the segment text */ 5918 tcp_data_queue(sk, skb); 5919 5920 tcp_data_snd_check(sk); 5921 tcp_ack_snd_check(sk); 5922 return; 5923 5924 csum_error: 5925 trace_tcp_bad_csum(skb); 5926 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); 5927 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); 5928 5929 discard: 5930 tcp_drop(sk, skb); 5931 } 5932 EXPORT_SYMBOL(tcp_rcv_established); 5933 5934 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb) 5935 { 5936 struct inet_connection_sock *icsk = inet_csk(sk); 5937 struct tcp_sock *tp = tcp_sk(sk); 5938 5939 tcp_mtup_init(sk); 5940 icsk->icsk_af_ops->rebuild_header(sk); 5941 tcp_init_metrics(sk); 5942 5943 /* Initialize the congestion window to start the transfer. 5944 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been 5945 * retransmitted. In light of RFC6298 more aggressive 1sec 5946 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK 5947 * retransmission has occurred. 5948 */ 5949 if (tp->total_retrans > 1 && tp->undo_marker) 5950 tp->snd_cwnd = 1; 5951 else 5952 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk)); 5953 tp->snd_cwnd_stamp = tcp_jiffies32; 5954 5955 bpf_skops_established(sk, bpf_op, skb); 5956 /* Initialize congestion control unless BPF initialized it already: */ 5957 if (!icsk->icsk_ca_initialized) 5958 tcp_init_congestion_control(sk); 5959 tcp_init_buffer_space(sk); 5960 } 5961 5962 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5963 { 5964 struct tcp_sock *tp = tcp_sk(sk); 5965 struct inet_connection_sock *icsk = inet_csk(sk); 5966 5967 tcp_set_state(sk, TCP_ESTABLISHED); 5968 icsk->icsk_ack.lrcvtime = tcp_jiffies32; 5969 5970 if (skb) { 5971 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5972 security_inet_conn_established(sk, skb); 5973 sk_mark_napi_id(sk, skb); 5974 } 5975 5976 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb); 5977 5978 /* Prevent spurious tcp_cwnd_restart() on first data 5979 * packet. 5980 */ 5981 tp->lsndtime = tcp_jiffies32; 5982 5983 if (sock_flag(sk, SOCK_KEEPOPEN)) 5984 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5985 5986 if (!tp->rx_opt.snd_wscale) 5987 __tcp_fast_path_on(tp, tp->snd_wnd); 5988 else 5989 tp->pred_flags = 0; 5990 } 5991 5992 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5993 struct tcp_fastopen_cookie *cookie) 5994 { 5995 struct tcp_sock *tp = tcp_sk(sk); 5996 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL; 5997 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5998 bool syn_drop = false; 5999 6000 if (mss == tp->rx_opt.user_mss) { 6001 struct tcp_options_received opt; 6002 6003 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 6004 tcp_clear_options(&opt); 6005 opt.user_mss = opt.mss_clamp = 0; 6006 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL); 6007 mss = opt.mss_clamp; 6008 } 6009 6010 if (!tp->syn_fastopen) { 6011 /* Ignore an unsolicited cookie */ 6012 cookie->len = -1; 6013 } else if (tp->total_retrans) { 6014 /* SYN timed out and the SYN-ACK neither has a cookie nor 6015 * acknowledges data. Presumably the remote received only 6016 * the retransmitted (regular) SYNs: either the original 6017 * SYN-data or the corresponding SYN-ACK was dropped. 6018 */ 6019 syn_drop = (cookie->len < 0 && data); 6020 } else if (cookie->len < 0 && !tp->syn_data) { 6021 /* We requested a cookie but didn't get it. If we did not use 6022 * the (old) exp opt format then try so next time (try_exp=1). 6023 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 6024 */ 6025 try_exp = tp->syn_fastopen_exp ? 2 : 1; 6026 } 6027 6028 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 6029 6030 if (data) { /* Retransmit unacked data in SYN */ 6031 if (tp->total_retrans) 6032 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED; 6033 else 6034 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED; 6035 skb_rbtree_walk_from(data) 6036 tcp_mark_skb_lost(sk, data); 6037 tcp_xmit_retransmit_queue(sk); 6038 NET_INC_STATS(sock_net(sk), 6039 LINUX_MIB_TCPFASTOPENACTIVEFAIL); 6040 return true; 6041 } 6042 tp->syn_data_acked = tp->syn_data; 6043 if (tp->syn_data_acked) { 6044 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 6045 /* SYN-data is counted as two separate packets in tcp_ack() */ 6046 if (tp->delivered > 1) 6047 --tp->delivered; 6048 } 6049 6050 tcp_fastopen_add_skb(sk, synack); 6051 6052 return false; 6053 } 6054 6055 static void smc_check_reset_syn(struct tcp_sock *tp) 6056 { 6057 #if IS_ENABLED(CONFIG_SMC) 6058 if (static_branch_unlikely(&tcp_have_smc)) { 6059 if (tp->syn_smc && !tp->rx_opt.smc_ok) 6060 tp->syn_smc = 0; 6061 } 6062 #endif 6063 } 6064 6065 static void tcp_try_undo_spurious_syn(struct sock *sk) 6066 { 6067 struct tcp_sock *tp = tcp_sk(sk); 6068 u32 syn_stamp; 6069 6070 /* undo_marker is set when SYN or SYNACK times out. The timeout is 6071 * spurious if the ACK's timestamp option echo value matches the 6072 * original SYN timestamp. 6073 */ 6074 syn_stamp = tp->retrans_stamp; 6075 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp && 6076 syn_stamp == tp->rx_opt.rcv_tsecr) 6077 tp->undo_marker = 0; 6078 } 6079 6080 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 6081 const struct tcphdr *th) 6082 { 6083 struct inet_connection_sock *icsk = inet_csk(sk); 6084 struct tcp_sock *tp = tcp_sk(sk); 6085 struct tcp_fastopen_cookie foc = { .len = -1 }; 6086 int saved_clamp = tp->rx_opt.mss_clamp; 6087 bool fastopen_fail; 6088 6089 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc); 6090 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 6091 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 6092 6093 if (th->ack) { 6094 /* rfc793: 6095 * "If the state is SYN-SENT then 6096 * first check the ACK bit 6097 * If the ACK bit is set 6098 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 6099 * a reset (unless the RST bit is set, if so drop 6100 * the segment and return)" 6101 */ 6102 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 6103 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 6104 /* Previous FIN/ACK or RST/ACK might be ignored. */ 6105 if (icsk->icsk_retransmits == 0) 6106 inet_csk_reset_xmit_timer(sk, 6107 ICSK_TIME_RETRANS, 6108 TCP_TIMEOUT_MIN, TCP_RTO_MAX); 6109 goto reset_and_undo; 6110 } 6111 6112 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 6113 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 6114 tcp_time_stamp(tp))) { 6115 NET_INC_STATS(sock_net(sk), 6116 LINUX_MIB_PAWSACTIVEREJECTED); 6117 goto reset_and_undo; 6118 } 6119 6120 /* Now ACK is acceptable. 6121 * 6122 * "If the RST bit is set 6123 * If the ACK was acceptable then signal the user "error: 6124 * connection reset", drop the segment, enter CLOSED state, 6125 * delete TCB, and return." 6126 */ 6127 6128 if (th->rst) { 6129 tcp_reset(sk, skb); 6130 goto discard; 6131 } 6132 6133 /* rfc793: 6134 * "fifth, if neither of the SYN or RST bits is set then 6135 * drop the segment and return." 6136 * 6137 * See note below! 6138 * --ANK(990513) 6139 */ 6140 if (!th->syn) 6141 goto discard_and_undo; 6142 6143 /* rfc793: 6144 * "If the SYN bit is on ... 6145 * are acceptable then ... 6146 * (our SYN has been ACKed), change the connection 6147 * state to ESTABLISHED..." 6148 */ 6149 6150 tcp_ecn_rcv_synack(tp, th); 6151 6152 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6153 tcp_try_undo_spurious_syn(sk); 6154 tcp_ack(sk, skb, FLAG_SLOWPATH); 6155 6156 /* Ok.. it's good. Set up sequence numbers and 6157 * move to established. 6158 */ 6159 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6160 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6161 6162 /* RFC1323: The window in SYN & SYN/ACK segments is 6163 * never scaled. 6164 */ 6165 tp->snd_wnd = ntohs(th->window); 6166 6167 if (!tp->rx_opt.wscale_ok) { 6168 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 6169 tp->window_clamp = min(tp->window_clamp, 65535U); 6170 } 6171 6172 if (tp->rx_opt.saw_tstamp) { 6173 tp->rx_opt.tstamp_ok = 1; 6174 tp->tcp_header_len = 6175 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6176 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6177 tcp_store_ts_recent(tp); 6178 } else { 6179 tp->tcp_header_len = sizeof(struct tcphdr); 6180 } 6181 6182 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6183 tcp_initialize_rcv_mss(sk); 6184 6185 /* Remember, tcp_poll() does not lock socket! 6186 * Change state from SYN-SENT only after copied_seq 6187 * is initialized. */ 6188 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6189 6190 smc_check_reset_syn(tp); 6191 6192 smp_mb(); 6193 6194 tcp_finish_connect(sk, skb); 6195 6196 fastopen_fail = (tp->syn_fastopen || tp->syn_data) && 6197 tcp_rcv_fastopen_synack(sk, skb, &foc); 6198 6199 if (!sock_flag(sk, SOCK_DEAD)) { 6200 sk->sk_state_change(sk); 6201 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6202 } 6203 if (fastopen_fail) 6204 return -1; 6205 if (sk->sk_write_pending || 6206 icsk->icsk_accept_queue.rskq_defer_accept || 6207 inet_csk_in_pingpong_mode(sk)) { 6208 /* Save one ACK. Data will be ready after 6209 * several ticks, if write_pending is set. 6210 * 6211 * It may be deleted, but with this feature tcpdumps 6212 * look so _wonderfully_ clever, that I was not able 6213 * to stand against the temptation 8) --ANK 6214 */ 6215 inet_csk_schedule_ack(sk); 6216 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS); 6217 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 6218 TCP_DELACK_MAX, TCP_RTO_MAX); 6219 6220 discard: 6221 tcp_drop(sk, skb); 6222 return 0; 6223 } else { 6224 tcp_send_ack(sk); 6225 } 6226 return -1; 6227 } 6228 6229 /* No ACK in the segment */ 6230 6231 if (th->rst) { 6232 /* rfc793: 6233 * "If the RST bit is set 6234 * 6235 * Otherwise (no ACK) drop the segment and return." 6236 */ 6237 6238 goto discard_and_undo; 6239 } 6240 6241 /* PAWS check. */ 6242 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 6243 tcp_paws_reject(&tp->rx_opt, 0)) 6244 goto discard_and_undo; 6245 6246 if (th->syn) { 6247 /* We see SYN without ACK. It is attempt of 6248 * simultaneous connect with crossed SYNs. 6249 * Particularly, it can be connect to self. 6250 */ 6251 tcp_set_state(sk, TCP_SYN_RECV); 6252 6253 if (tp->rx_opt.saw_tstamp) { 6254 tp->rx_opt.tstamp_ok = 1; 6255 tcp_store_ts_recent(tp); 6256 tp->tcp_header_len = 6257 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 6258 } else { 6259 tp->tcp_header_len = sizeof(struct tcphdr); 6260 } 6261 6262 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1); 6263 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6264 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 6265 6266 /* RFC1323: The window in SYN & SYN/ACK segments is 6267 * never scaled. 6268 */ 6269 tp->snd_wnd = ntohs(th->window); 6270 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 6271 tp->max_window = tp->snd_wnd; 6272 6273 tcp_ecn_rcv_syn(tp, th); 6274 6275 tcp_mtup_init(sk); 6276 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 6277 tcp_initialize_rcv_mss(sk); 6278 6279 tcp_send_synack(sk); 6280 #if 0 6281 /* Note, we could accept data and URG from this segment. 6282 * There are no obstacles to make this (except that we must 6283 * either change tcp_recvmsg() to prevent it from returning data 6284 * before 3WHS completes per RFC793, or employ TCP Fast Open). 6285 * 6286 * However, if we ignore data in ACKless segments sometimes, 6287 * we have no reasons to accept it sometimes. 6288 * Also, seems the code doing it in step6 of tcp_rcv_state_process 6289 * is not flawless. So, discard packet for sanity. 6290 * Uncomment this return to process the data. 6291 */ 6292 return -1; 6293 #else 6294 goto discard; 6295 #endif 6296 } 6297 /* "fifth, if neither of the SYN or RST bits is set then 6298 * drop the segment and return." 6299 */ 6300 6301 discard_and_undo: 6302 tcp_clear_options(&tp->rx_opt); 6303 tp->rx_opt.mss_clamp = saved_clamp; 6304 goto discard; 6305 6306 reset_and_undo: 6307 tcp_clear_options(&tp->rx_opt); 6308 tp->rx_opt.mss_clamp = saved_clamp; 6309 return 1; 6310 } 6311 6312 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk) 6313 { 6314 struct request_sock *req; 6315 6316 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows 6317 * undo. If peer SACKs triggered fast recovery, we can't undo here. 6318 */ 6319 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 6320 tcp_try_undo_loss(sk, false); 6321 6322 /* Reset rtx states to prevent spurious retransmits_timed_out() */ 6323 tcp_sk(sk)->retrans_stamp = 0; 6324 inet_csk(sk)->icsk_retransmits = 0; 6325 6326 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1, 6327 * we no longer need req so release it. 6328 */ 6329 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 6330 lockdep_sock_is_held(sk)); 6331 reqsk_fastopen_remove(sk, req, false); 6332 6333 /* Re-arm the timer because data may have been sent out. 6334 * This is similar to the regular data transmission case 6335 * when new data has just been ack'ed. 6336 * 6337 * (TFO) - we could try to be more aggressive and 6338 * retransmitting any data sooner based on when they 6339 * are sent out. 6340 */ 6341 tcp_rearm_rto(sk); 6342 } 6343 6344 /* 6345 * This function implements the receiving procedure of RFC 793 for 6346 * all states except ESTABLISHED and TIME_WAIT. 6347 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 6348 * address independent. 6349 */ 6350 6351 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb) 6352 { 6353 struct tcp_sock *tp = tcp_sk(sk); 6354 struct inet_connection_sock *icsk = inet_csk(sk); 6355 const struct tcphdr *th = tcp_hdr(skb); 6356 struct request_sock *req; 6357 int queued = 0; 6358 bool acceptable; 6359 6360 switch (sk->sk_state) { 6361 case TCP_CLOSE: 6362 goto discard; 6363 6364 case TCP_LISTEN: 6365 if (th->ack) 6366 return 1; 6367 6368 if (th->rst) 6369 goto discard; 6370 6371 if (th->syn) { 6372 if (th->fin) 6373 goto discard; 6374 /* It is possible that we process SYN packets from backlog, 6375 * so we need to make sure to disable BH and RCU right there. 6376 */ 6377 rcu_read_lock(); 6378 local_bh_disable(); 6379 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0; 6380 local_bh_enable(); 6381 rcu_read_unlock(); 6382 6383 if (!acceptable) 6384 return 1; 6385 consume_skb(skb); 6386 return 0; 6387 } 6388 goto discard; 6389 6390 case TCP_SYN_SENT: 6391 tp->rx_opt.saw_tstamp = 0; 6392 tcp_mstamp_refresh(tp); 6393 queued = tcp_rcv_synsent_state_process(sk, skb, th); 6394 if (queued >= 0) 6395 return queued; 6396 6397 /* Do step6 onward by hand. */ 6398 tcp_urg(sk, skb, th); 6399 __kfree_skb(skb); 6400 tcp_data_snd_check(sk); 6401 return 0; 6402 } 6403 6404 tcp_mstamp_refresh(tp); 6405 tp->rx_opt.saw_tstamp = 0; 6406 req = rcu_dereference_protected(tp->fastopen_rsk, 6407 lockdep_sock_is_held(sk)); 6408 if (req) { 6409 bool req_stolen; 6410 6411 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 6412 sk->sk_state != TCP_FIN_WAIT1); 6413 6414 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) 6415 goto discard; 6416 } 6417 6418 if (!th->ack && !th->rst && !th->syn) 6419 goto discard; 6420 6421 if (!tcp_validate_incoming(sk, skb, th, 0)) 6422 return 0; 6423 6424 /* step 5: check the ACK field */ 6425 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 6426 FLAG_UPDATE_TS_RECENT | 6427 FLAG_NO_CHALLENGE_ACK) > 0; 6428 6429 if (!acceptable) { 6430 if (sk->sk_state == TCP_SYN_RECV) 6431 return 1; /* send one RST */ 6432 tcp_send_challenge_ack(sk, skb); 6433 goto discard; 6434 } 6435 switch (sk->sk_state) { 6436 case TCP_SYN_RECV: 6437 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */ 6438 if (!tp->srtt_us) 6439 tcp_synack_rtt_meas(sk, req); 6440 6441 if (req) { 6442 tcp_rcv_synrecv_state_fastopen(sk); 6443 } else { 6444 tcp_try_undo_spurious_syn(sk); 6445 tp->retrans_stamp = 0; 6446 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, 6447 skb); 6448 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt); 6449 } 6450 smp_mb(); 6451 tcp_set_state(sk, TCP_ESTABLISHED); 6452 sk->sk_state_change(sk); 6453 6454 /* Note, that this wakeup is only for marginal crossed SYN case. 6455 * Passively open sockets are not waked up, because 6456 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 6457 */ 6458 if (sk->sk_socket) 6459 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 6460 6461 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 6462 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 6463 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 6464 6465 if (tp->rx_opt.tstamp_ok) 6466 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 6467 6468 if (!inet_csk(sk)->icsk_ca_ops->cong_control) 6469 tcp_update_pacing_rate(sk); 6470 6471 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 6472 tp->lsndtime = tcp_jiffies32; 6473 6474 tcp_initialize_rcv_mss(sk); 6475 tcp_fast_path_on(tp); 6476 break; 6477 6478 case TCP_FIN_WAIT1: { 6479 int tmo; 6480 6481 if (req) 6482 tcp_rcv_synrecv_state_fastopen(sk); 6483 6484 if (tp->snd_una != tp->write_seq) 6485 break; 6486 6487 tcp_set_state(sk, TCP_FIN_WAIT2); 6488 sk->sk_shutdown |= SEND_SHUTDOWN; 6489 6490 sk_dst_confirm(sk); 6491 6492 if (!sock_flag(sk, SOCK_DEAD)) { 6493 /* Wake up lingering close() */ 6494 sk->sk_state_change(sk); 6495 break; 6496 } 6497 6498 if (tp->linger2 < 0) { 6499 tcp_done(sk); 6500 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6501 return 1; 6502 } 6503 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6504 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6505 /* Receive out of order FIN after close() */ 6506 if (tp->syn_fastopen && th->fin) 6507 tcp_fastopen_active_disable(sk); 6508 tcp_done(sk); 6509 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6510 return 1; 6511 } 6512 6513 tmo = tcp_fin_time(sk); 6514 if (tmo > TCP_TIMEWAIT_LEN) { 6515 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 6516 } else if (th->fin || sock_owned_by_user(sk)) { 6517 /* Bad case. We could lose such FIN otherwise. 6518 * It is not a big problem, but it looks confusing 6519 * and not so rare event. We still can lose it now, 6520 * if it spins in bh_lock_sock(), but it is really 6521 * marginal case. 6522 */ 6523 inet_csk_reset_keepalive_timer(sk, tmo); 6524 } else { 6525 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 6526 goto discard; 6527 } 6528 break; 6529 } 6530 6531 case TCP_CLOSING: 6532 if (tp->snd_una == tp->write_seq) { 6533 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 6534 goto discard; 6535 } 6536 break; 6537 6538 case TCP_LAST_ACK: 6539 if (tp->snd_una == tp->write_seq) { 6540 tcp_update_metrics(sk); 6541 tcp_done(sk); 6542 goto discard; 6543 } 6544 break; 6545 } 6546 6547 /* step 6: check the URG bit */ 6548 tcp_urg(sk, skb, th); 6549 6550 /* step 7: process the segment text */ 6551 switch (sk->sk_state) { 6552 case TCP_CLOSE_WAIT: 6553 case TCP_CLOSING: 6554 case TCP_LAST_ACK: 6555 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 6556 /* If a subflow has been reset, the packet should not 6557 * continue to be processed, drop the packet. 6558 */ 6559 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) 6560 goto discard; 6561 break; 6562 } 6563 fallthrough; 6564 case TCP_FIN_WAIT1: 6565 case TCP_FIN_WAIT2: 6566 /* RFC 793 says to queue data in these states, 6567 * RFC 1122 says we MUST send a reset. 6568 * BSD 4.4 also does reset. 6569 */ 6570 if (sk->sk_shutdown & RCV_SHUTDOWN) { 6571 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 6572 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 6573 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 6574 tcp_reset(sk, skb); 6575 return 1; 6576 } 6577 } 6578 fallthrough; 6579 case TCP_ESTABLISHED: 6580 tcp_data_queue(sk, skb); 6581 queued = 1; 6582 break; 6583 } 6584 6585 /* tcp_data could move socket to TIME-WAIT */ 6586 if (sk->sk_state != TCP_CLOSE) { 6587 tcp_data_snd_check(sk); 6588 tcp_ack_snd_check(sk); 6589 } 6590 6591 if (!queued) { 6592 discard: 6593 tcp_drop(sk, skb); 6594 } 6595 return 0; 6596 } 6597 EXPORT_SYMBOL(tcp_rcv_state_process); 6598 6599 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 6600 { 6601 struct inet_request_sock *ireq = inet_rsk(req); 6602 6603 if (family == AF_INET) 6604 net_dbg_ratelimited("drop open request from %pI4/%u\n", 6605 &ireq->ir_rmt_addr, port); 6606 #if IS_ENABLED(CONFIG_IPV6) 6607 else if (family == AF_INET6) 6608 net_dbg_ratelimited("drop open request from %pI6/%u\n", 6609 &ireq->ir_v6_rmt_addr, port); 6610 #endif 6611 } 6612 6613 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 6614 * 6615 * If we receive a SYN packet with these bits set, it means a 6616 * network is playing bad games with TOS bits. In order to 6617 * avoid possible false congestion notifications, we disable 6618 * TCP ECN negotiation. 6619 * 6620 * Exception: tcp_ca wants ECN. This is required for DCTCP 6621 * congestion control: Linux DCTCP asserts ECT on all packets, 6622 * including SYN, which is most optimal solution; however, 6623 * others, such as FreeBSD do not. 6624 * 6625 * Exception: At least one of the reserved bits of the TCP header (th->res1) is 6626 * set, indicating the use of a future TCP extension (such as AccECN). See 6627 * RFC8311 §4.3 which updates RFC3168 to allow the development of such 6628 * extensions. 6629 */ 6630 static void tcp_ecn_create_request(struct request_sock *req, 6631 const struct sk_buff *skb, 6632 const struct sock *listen_sk, 6633 const struct dst_entry *dst) 6634 { 6635 const struct tcphdr *th = tcp_hdr(skb); 6636 const struct net *net = sock_net(listen_sk); 6637 bool th_ecn = th->ece && th->cwr; 6638 bool ect, ecn_ok; 6639 u32 ecn_ok_dst; 6640 6641 if (!th_ecn) 6642 return; 6643 6644 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 6645 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK); 6646 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst; 6647 6648 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) || 6649 (ecn_ok_dst & DST_FEATURE_ECN_CA) || 6650 tcp_bpf_ca_needs_ecn((struct sock *)req)) 6651 inet_rsk(req)->ecn_ok = 1; 6652 } 6653 6654 static void tcp_openreq_init(struct request_sock *req, 6655 const struct tcp_options_received *rx_opt, 6656 struct sk_buff *skb, const struct sock *sk) 6657 { 6658 struct inet_request_sock *ireq = inet_rsk(req); 6659 6660 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6661 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6662 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6663 tcp_rsk(req)->snt_synack = 0; 6664 tcp_rsk(req)->last_oow_ack_time = 0; 6665 req->mss = rx_opt->mss_clamp; 6666 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6667 ireq->tstamp_ok = rx_opt->tstamp_ok; 6668 ireq->sack_ok = rx_opt->sack_ok; 6669 ireq->snd_wscale = rx_opt->snd_wscale; 6670 ireq->wscale_ok = rx_opt->wscale_ok; 6671 ireq->acked = 0; 6672 ireq->ecn_ok = 0; 6673 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6674 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6675 ireq->ir_mark = inet_request_mark(sk, skb); 6676 #if IS_ENABLED(CONFIG_SMC) 6677 ireq->smc_ok = rx_opt->smc_ok; 6678 #endif 6679 } 6680 6681 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6682 struct sock *sk_listener, 6683 bool attach_listener) 6684 { 6685 struct request_sock *req = reqsk_alloc(ops, sk_listener, 6686 attach_listener); 6687 6688 if (req) { 6689 struct inet_request_sock *ireq = inet_rsk(req); 6690 6691 ireq->ireq_opt = NULL; 6692 #if IS_ENABLED(CONFIG_IPV6) 6693 ireq->pktopts = NULL; 6694 #endif 6695 atomic64_set(&ireq->ir_cookie, 0); 6696 ireq->ireq_state = TCP_NEW_SYN_RECV; 6697 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6698 ireq->ireq_family = sk_listener->sk_family; 6699 } 6700 6701 return req; 6702 } 6703 EXPORT_SYMBOL(inet_reqsk_alloc); 6704 6705 /* 6706 * Return true if a syncookie should be sent 6707 */ 6708 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto) 6709 { 6710 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; 6711 const char *msg = "Dropping request"; 6712 bool want_cookie = false; 6713 struct net *net = sock_net(sk); 6714 6715 #ifdef CONFIG_SYN_COOKIES 6716 if (net->ipv4.sysctl_tcp_syncookies) { 6717 msg = "Sending cookies"; 6718 want_cookie = true; 6719 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6720 } else 6721 #endif 6722 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6723 6724 if (!queue->synflood_warned && 6725 net->ipv4.sysctl_tcp_syncookies != 2 && 6726 xchg(&queue->synflood_warned, 1) == 0) 6727 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6728 proto, sk->sk_num, msg); 6729 6730 return want_cookie; 6731 } 6732 6733 static void tcp_reqsk_record_syn(const struct sock *sk, 6734 struct request_sock *req, 6735 const struct sk_buff *skb) 6736 { 6737 if (tcp_sk(sk)->save_syn) { 6738 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6739 struct saved_syn *saved_syn; 6740 u32 mac_hdrlen; 6741 void *base; 6742 6743 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */ 6744 base = skb_mac_header(skb); 6745 mac_hdrlen = skb_mac_header_len(skb); 6746 len += mac_hdrlen; 6747 } else { 6748 base = skb_network_header(skb); 6749 mac_hdrlen = 0; 6750 } 6751 6752 saved_syn = kmalloc(struct_size(saved_syn, data, len), 6753 GFP_ATOMIC); 6754 if (saved_syn) { 6755 saved_syn->mac_hdrlen = mac_hdrlen; 6756 saved_syn->network_hdrlen = skb_network_header_len(skb); 6757 saved_syn->tcp_hdrlen = tcp_hdrlen(skb); 6758 memcpy(saved_syn->data, base, len); 6759 req->saved_syn = saved_syn; 6760 } 6761 } 6762 } 6763 6764 /* If a SYN cookie is required and supported, returns a clamped MSS value to be 6765 * used for SYN cookie generation. 6766 */ 6767 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops, 6768 const struct tcp_request_sock_ops *af_ops, 6769 struct sock *sk, struct tcphdr *th) 6770 { 6771 struct tcp_sock *tp = tcp_sk(sk); 6772 u16 mss; 6773 6774 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 && 6775 !inet_csk_reqsk_queue_is_full(sk)) 6776 return 0; 6777 6778 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name)) 6779 return 0; 6780 6781 if (sk_acceptq_is_full(sk)) { 6782 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6783 return 0; 6784 } 6785 6786 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss); 6787 if (!mss) 6788 mss = af_ops->mss_clamp; 6789 6790 return mss; 6791 } 6792 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss); 6793 6794 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6795 const struct tcp_request_sock_ops *af_ops, 6796 struct sock *sk, struct sk_buff *skb) 6797 { 6798 struct tcp_fastopen_cookie foc = { .len = -1 }; 6799 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6800 struct tcp_options_received tmp_opt; 6801 struct tcp_sock *tp = tcp_sk(sk); 6802 struct net *net = sock_net(sk); 6803 struct sock *fastopen_sk = NULL; 6804 struct request_sock *req; 6805 bool want_cookie = false; 6806 struct dst_entry *dst; 6807 struct flowi fl; 6808 6809 /* TW buckets are converted to open requests without 6810 * limitations, they conserve resources and peer is 6811 * evidently real one. 6812 */ 6813 if ((net->ipv4.sysctl_tcp_syncookies == 2 || 6814 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6815 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name); 6816 if (!want_cookie) 6817 goto drop; 6818 } 6819 6820 if (sk_acceptq_is_full(sk)) { 6821 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6822 goto drop; 6823 } 6824 6825 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie); 6826 if (!req) 6827 goto drop; 6828 6829 req->syncookie = want_cookie; 6830 tcp_rsk(req)->af_specific = af_ops; 6831 tcp_rsk(req)->ts_off = 0; 6832 #if IS_ENABLED(CONFIG_MPTCP) 6833 tcp_rsk(req)->is_mptcp = 0; 6834 #endif 6835 6836 tcp_clear_options(&tmp_opt); 6837 tmp_opt.mss_clamp = af_ops->mss_clamp; 6838 tmp_opt.user_mss = tp->rx_opt.user_mss; 6839 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, 6840 want_cookie ? NULL : &foc); 6841 6842 if (want_cookie && !tmp_opt.saw_tstamp) 6843 tcp_clear_options(&tmp_opt); 6844 6845 if (IS_ENABLED(CONFIG_SMC) && want_cookie) 6846 tmp_opt.smc_ok = 0; 6847 6848 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6849 tcp_openreq_init(req, &tmp_opt, skb, sk); 6850 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent; 6851 6852 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6853 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb); 6854 6855 dst = af_ops->route_req(sk, skb, &fl, req); 6856 if (!dst) 6857 goto drop_and_free; 6858 6859 if (tmp_opt.tstamp_ok) 6860 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb); 6861 6862 if (!want_cookie && !isn) { 6863 /* Kill the following clause, if you dislike this way. */ 6864 if (!net->ipv4.sysctl_tcp_syncookies && 6865 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6866 (net->ipv4.sysctl_max_syn_backlog >> 2)) && 6867 !tcp_peer_is_proven(req, dst)) { 6868 /* Without syncookies last quarter of 6869 * backlog is filled with destinations, 6870 * proven to be alive. 6871 * It means that we continue to communicate 6872 * to destinations, already remembered 6873 * to the moment of synflood. 6874 */ 6875 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6876 rsk_ops->family); 6877 goto drop_and_release; 6878 } 6879 6880 isn = af_ops->init_seq(skb); 6881 } 6882 6883 tcp_ecn_create_request(req, skb, sk, dst); 6884 6885 if (want_cookie) { 6886 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6887 if (!tmp_opt.tstamp_ok) 6888 inet_rsk(req)->ecn_ok = 0; 6889 } 6890 6891 tcp_rsk(req)->snt_isn = isn; 6892 tcp_rsk(req)->txhash = net_tx_rndhash(); 6893 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield; 6894 tcp_openreq_init_rwin(req, sk, dst); 6895 sk_rx_queue_set(req_to_sk(req), skb); 6896 if (!want_cookie) { 6897 tcp_reqsk_record_syn(sk, req, skb); 6898 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst); 6899 } 6900 if (fastopen_sk) { 6901 af_ops->send_synack(fastopen_sk, dst, &fl, req, 6902 &foc, TCP_SYNACK_FASTOPEN, skb); 6903 /* Add the child socket directly into the accept queue */ 6904 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) { 6905 reqsk_fastopen_remove(fastopen_sk, req, false); 6906 bh_unlock_sock(fastopen_sk); 6907 sock_put(fastopen_sk); 6908 goto drop_and_free; 6909 } 6910 sk->sk_data_ready(sk); 6911 bh_unlock_sock(fastopen_sk); 6912 sock_put(fastopen_sk); 6913 } else { 6914 tcp_rsk(req)->tfo_listener = false; 6915 if (!want_cookie) 6916 inet_csk_reqsk_queue_hash_add(sk, req, 6917 tcp_timeout_init((struct sock *)req)); 6918 af_ops->send_synack(sk, dst, &fl, req, &foc, 6919 !want_cookie ? TCP_SYNACK_NORMAL : 6920 TCP_SYNACK_COOKIE, 6921 skb); 6922 if (want_cookie) { 6923 reqsk_free(req); 6924 return 0; 6925 } 6926 } 6927 reqsk_put(req); 6928 return 0; 6929 6930 drop_and_release: 6931 dst_release(dst); 6932 drop_and_free: 6933 __reqsk_free(req); 6934 drop: 6935 tcp_listendrop(sk); 6936 return 0; 6937 } 6938 EXPORT_SYMBOL(tcp_conn_request); 6939