xref: /linux/net/ipv4/tcp_input.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presence of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91 
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94 
95 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
102 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained DSACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
108 
109 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114 
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116 
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119 
120 /* Adapt the MSS value used to make delayed ack decision to the
121  * real world.
122  */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124 				const struct sk_buff *skb)
125 {
126 	struct inet_connection_sock *icsk = inet_csk(sk);
127 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 	unsigned int len;
129 
130 	icsk->icsk_ack.last_seg_size = 0;
131 
132 	/* skb->len may jitter because of SACKs, even if peer
133 	 * sends good full-sized frames.
134 	 */
135 	len = skb_shinfo(skb)->gso_size ?: skb->len;
136 	if (len >= icsk->icsk_ack.rcv_mss) {
137 		icsk->icsk_ack.rcv_mss = len;
138 	} else {
139 		/* Otherwise, we make more careful check taking into account,
140 		 * that SACKs block is variable.
141 		 *
142 		 * "len" is invariant segment length, including TCP header.
143 		 */
144 		len += skb->data - skb_transport_header(skb);
145 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 		    /* If PSH is not set, packet should be
147 		     * full sized, provided peer TCP is not badly broken.
148 		     * This observation (if it is correct 8)) allows
149 		     * to handle super-low mtu links fairly.
150 		     */
151 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 			/* Subtract also invariant (if peer is RFC compliant),
154 			 * tcp header plus fixed timestamp option length.
155 			 * Resulting "len" is MSS free of SACK jitter.
156 			 */
157 			len -= tcp_sk(sk)->tcp_header_len;
158 			icsk->icsk_ack.last_seg_size = len;
159 			if (len == lss) {
160 				icsk->icsk_ack.rcv_mss = len;
161 				return;
162 			}
163 		}
164 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 	}
168 }
169 
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172 	struct inet_connection_sock *icsk = inet_csk(sk);
173 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174 
175 	if (quickacks==0)
176 		quickacks=2;
177 	if (quickacks > icsk->icsk_ack.quick)
178 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180 
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183 	struct inet_connection_sock *icsk = inet_csk(sk);
184 	tcp_incr_quickack(sk);
185 	icsk->icsk_ack.pingpong = 0;
186 	icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188 
189 /* Send ACKs quickly, if "quick" count is not exhausted
190  * and the session is not interactive.
191  */
192 
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195 	const struct inet_connection_sock *icsk = inet_csk(sk);
196 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198 
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201 	if (tp->ecn_flags&TCP_ECN_OK)
202 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204 
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207 	if (tcp_hdr(skb)->cwr)
208 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210 
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215 
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218 	if (tp->ecn_flags&TCP_ECN_OK) {
219 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 		/* Funny extension: if ECT is not set on a segment,
222 		 * it is surely retransmit. It is not in ECN RFC,
223 		 * but Linux follows this rule. */
224 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 			tcp_enter_quickack_mode((struct sock *)tp);
226 	}
227 }
228 
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231 	if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 		tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234 
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237 	if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 		tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240 
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243 	if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 		return 1;
245 	return 0;
246 }
247 
248 /* Buffer size and advertised window tuning.
249  *
250  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251  */
252 
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 		     sizeof(struct sk_buff);
257 
258 	if (sk->sk_sndbuf < 3 * sndmem)
259 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261 
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263  *
264  * All tcp_full_space() is split to two parts: "network" buffer, allocated
265  * forward and advertised in receiver window (tp->rcv_wnd) and
266  * "application buffer", required to isolate scheduling/application
267  * latencies from network.
268  * window_clamp is maximal advertised window. It can be less than
269  * tcp_full_space(), in this case tcp_full_space() - window_clamp
270  * is reserved for "application" buffer. The less window_clamp is
271  * the smoother our behaviour from viewpoint of network, but the lower
272  * throughput and the higher sensitivity of the connection to losses. 8)
273  *
274  * rcv_ssthresh is more strict window_clamp used at "slow start"
275  * phase to predict further behaviour of this connection.
276  * It is used for two goals:
277  * - to enforce header prediction at sender, even when application
278  *   requires some significant "application buffer". It is check #1.
279  * - to prevent pruning of receive queue because of misprediction
280  *   of receiver window. Check #2.
281  *
282  * The scheme does not work when sender sends good segments opening
283  * window and then starts to feed us spaghetti. But it should work
284  * in common situations. Otherwise, we have to rely on queue collapsing.
285  */
286 
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290 	struct tcp_sock *tp = tcp_sk(sk);
291 	/* Optimize this! */
292 	int truesize = tcp_win_from_space(skb->truesize)/2;
293 	int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294 
295 	while (tp->rcv_ssthresh <= window) {
296 		if (truesize <= skb->len)
297 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298 
299 		truesize >>= 1;
300 		window >>= 1;
301 	}
302 	return 0;
303 }
304 
305 static void tcp_grow_window(struct sock *sk,
306 			    struct sk_buff *skb)
307 {
308 	struct tcp_sock *tp = tcp_sk(sk);
309 
310 	/* Check #1 */
311 	if (tp->rcv_ssthresh < tp->window_clamp &&
312 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 	    !tcp_memory_pressure) {
314 		int incr;
315 
316 		/* Check #2. Increase window, if skb with such overhead
317 		 * will fit to rcvbuf in future.
318 		 */
319 		if (tcp_win_from_space(skb->truesize) <= skb->len)
320 			incr = 2*tp->advmss;
321 		else
322 			incr = __tcp_grow_window(sk, skb);
323 
324 		if (incr) {
325 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326 			inet_csk(sk)->icsk_ack.quick |= 1;
327 		}
328 	}
329 }
330 
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332 
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335 	struct tcp_sock *tp = tcp_sk(sk);
336 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337 
338 	/* Try to select rcvbuf so that 4 mss-sized segments
339 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 	 */
342 	while (tcp_win_from_space(rcvmem) < tp->advmss)
343 		rcvmem += 128;
344 	if (sk->sk_rcvbuf < 4 * rcvmem)
345 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347 
348 /* 4. Try to fixup all. It is made immediately after connection enters
349  *    established state.
350  */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353 	struct tcp_sock *tp = tcp_sk(sk);
354 	int maxwin;
355 
356 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 		tcp_fixup_rcvbuf(sk);
358 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 		tcp_fixup_sndbuf(sk);
360 
361 	tp->rcvq_space.space = tp->rcv_wnd;
362 
363 	maxwin = tcp_full_space(sk);
364 
365 	if (tp->window_clamp >= maxwin) {
366 		tp->window_clamp = maxwin;
367 
368 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 			tp->window_clamp = max(maxwin -
370 					       (maxwin >> sysctl_tcp_app_win),
371 					       4 * tp->advmss);
372 	}
373 
374 	/* Force reservation of one segment. */
375 	if (sysctl_tcp_app_win &&
376 	    tp->window_clamp > 2 * tp->advmss &&
377 	    tp->window_clamp + tp->advmss > maxwin)
378 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379 
380 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 	tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383 
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387 	struct tcp_sock *tp = tcp_sk(sk);
388 	struct inet_connection_sock *icsk = inet_csk(sk);
389 
390 	icsk->icsk_ack.quick = 0;
391 
392 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 	    !tcp_memory_pressure &&
395 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 				    sysctl_tcp_rmem[2]);
398 	}
399 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402 
403 
404 /* Initialize RCV_MSS value.
405  * RCV_MSS is an our guess about MSS used by the peer.
406  * We haven't any direct information about the MSS.
407  * It's better to underestimate the RCV_MSS rather than overestimate.
408  * Overestimations make us ACKing less frequently than needed.
409  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410  */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413 	struct tcp_sock *tp = tcp_sk(sk);
414 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415 
416 	hint = min(hint, tp->rcv_wnd/2);
417 	hint = min(hint, TCP_MIN_RCVMSS);
418 	hint = max(hint, TCP_MIN_MSS);
419 
420 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422 
423 /* Receiver "autotuning" code.
424  *
425  * The algorithm for RTT estimation w/o timestamps is based on
426  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428  *
429  * More detail on this code can be found at
430  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431  * though this reference is out of date.  A new paper
432  * is pending.
433  */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436 	u32 new_sample = tp->rcv_rtt_est.rtt;
437 	long m = sample;
438 
439 	if (m == 0)
440 		m = 1;
441 
442 	if (new_sample != 0) {
443 		/* If we sample in larger samples in the non-timestamp
444 		 * case, we could grossly overestimate the RTT especially
445 		 * with chatty applications or bulk transfer apps which
446 		 * are stalled on filesystem I/O.
447 		 *
448 		 * Also, since we are only going for a minimum in the
449 		 * non-timestamp case, we do not smooth things out
450 		 * else with timestamps disabled convergence takes too
451 		 * long.
452 		 */
453 		if (!win_dep) {
454 			m -= (new_sample >> 3);
455 			new_sample += m;
456 		} else if (m < new_sample)
457 			new_sample = m << 3;
458 	} else {
459 		/* No previous measure. */
460 		new_sample = m << 3;
461 	}
462 
463 	if (tp->rcv_rtt_est.rtt != new_sample)
464 		tp->rcv_rtt_est.rtt = new_sample;
465 }
466 
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469 	if (tp->rcv_rtt_est.time == 0)
470 		goto new_measure;
471 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 		return;
473 	tcp_rcv_rtt_update(tp,
474 			   jiffies - tp->rcv_rtt_est.time,
475 			   1);
476 
477 new_measure:
478 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 	tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481 
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484 	struct tcp_sock *tp = tcp_sk(sk);
485 	if (tp->rx_opt.rcv_tsecr &&
486 	    (TCP_SKB_CB(skb)->end_seq -
487 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490 
491 /*
492  * This function should be called every time data is copied to user space.
493  * It calculates the appropriate TCP receive buffer space.
494  */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497 	struct tcp_sock *tp = tcp_sk(sk);
498 	int time;
499 	int space;
500 
501 	if (tp->rcvq_space.time == 0)
502 		goto new_measure;
503 
504 	time = tcp_time_stamp - tp->rcvq_space.time;
505 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 	    tp->rcv_rtt_est.rtt == 0)
507 		return;
508 
509 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510 
511 	space = max(tp->rcvq_space.space, space);
512 
513 	if (tp->rcvq_space.space != space) {
514 		int rcvmem;
515 
516 		tp->rcvq_space.space = space;
517 
518 		if (sysctl_tcp_moderate_rcvbuf &&
519 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520 			int new_clamp = space;
521 
522 			/* Receive space grows, normalize in order to
523 			 * take into account packet headers and sk_buff
524 			 * structure overhead.
525 			 */
526 			space /= tp->advmss;
527 			if (!space)
528 				space = 1;
529 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 				  16 + sizeof(struct sk_buff));
531 			while (tcp_win_from_space(rcvmem) < tp->advmss)
532 				rcvmem += 128;
533 			space *= rcvmem;
534 			space = min(space, sysctl_tcp_rmem[2]);
535 			if (space > sk->sk_rcvbuf) {
536 				sk->sk_rcvbuf = space;
537 
538 				/* Make the window clamp follow along.  */
539 				tp->window_clamp = new_clamp;
540 			}
541 		}
542 	}
543 
544 new_measure:
545 	tp->rcvq_space.seq = tp->copied_seq;
546 	tp->rcvq_space.time = tcp_time_stamp;
547 }
548 
549 /* There is something which you must keep in mind when you analyze the
550  * behavior of the tp->ato delayed ack timeout interval.  When a
551  * connection starts up, we want to ack as quickly as possible.  The
552  * problem is that "good" TCP's do slow start at the beginning of data
553  * transmission.  The means that until we send the first few ACK's the
554  * sender will sit on his end and only queue most of his data, because
555  * he can only send snd_cwnd unacked packets at any given time.  For
556  * each ACK we send, he increments snd_cwnd and transmits more of his
557  * queue.  -DaveM
558  */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561 	struct tcp_sock *tp = tcp_sk(sk);
562 	struct inet_connection_sock *icsk = inet_csk(sk);
563 	u32 now;
564 
565 	inet_csk_schedule_ack(sk);
566 
567 	tcp_measure_rcv_mss(sk, skb);
568 
569 	tcp_rcv_rtt_measure(tp);
570 
571 	now = tcp_time_stamp;
572 
573 	if (!icsk->icsk_ack.ato) {
574 		/* The _first_ data packet received, initialize
575 		 * delayed ACK engine.
576 		 */
577 		tcp_incr_quickack(sk);
578 		icsk->icsk_ack.ato = TCP_ATO_MIN;
579 	} else {
580 		int m = now - icsk->icsk_ack.lrcvtime;
581 
582 		if (m <= TCP_ATO_MIN/2) {
583 			/* The fastest case is the first. */
584 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 		} else if (m < icsk->icsk_ack.ato) {
586 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 				icsk->icsk_ack.ato = icsk->icsk_rto;
589 		} else if (m > icsk->icsk_rto) {
590 			/* Too long gap. Apparently sender failed to
591 			 * restart window, so that we send ACKs quickly.
592 			 */
593 			tcp_incr_quickack(sk);
594 			sk_stream_mem_reclaim(sk);
595 		}
596 	}
597 	icsk->icsk_ack.lrcvtime = now;
598 
599 	TCP_ECN_check_ce(tp, skb);
600 
601 	if (skb->len >= 128)
602 		tcp_grow_window(sk, skb);
603 }
604 
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607 	struct dst_entry *dst = __sk_dst_get(sk);
608 	u32 rto_min = TCP_RTO_MIN;
609 
610 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611 		rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 	return rto_min;
613 }
614 
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616  * routine either comes from timestamps, or from segments that were
617  * known _not_ to have been retransmitted [see Karn/Partridge
618  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619  * piece by Van Jacobson.
620  * NOTE: the next three routines used to be one big routine.
621  * To save cycles in the RFC 1323 implementation it was better to break
622  * it up into three procedures. -- erics
623  */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626 	struct tcp_sock *tp = tcp_sk(sk);
627 	long m = mrtt; /* RTT */
628 
629 	/*	The following amusing code comes from Jacobson's
630 	 *	article in SIGCOMM '88.  Note that rtt and mdev
631 	 *	are scaled versions of rtt and mean deviation.
632 	 *	This is designed to be as fast as possible
633 	 *	m stands for "measurement".
634 	 *
635 	 *	On a 1990 paper the rto value is changed to:
636 	 *	RTO = rtt + 4 * mdev
637 	 *
638 	 * Funny. This algorithm seems to be very broken.
639 	 * These formulae increase RTO, when it should be decreased, increase
640 	 * too slowly, when it should be increased quickly, decrease too quickly
641 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 	 * does not matter how to _calculate_ it. Seems, it was trap
643 	 * that VJ failed to avoid. 8)
644 	 */
645 	if (m == 0)
646 		m = 1;
647 	if (tp->srtt != 0) {
648 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
649 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
650 		if (m < 0) {
651 			m = -m;		/* m is now abs(error) */
652 			m -= (tp->mdev >> 2);   /* similar update on mdev */
653 			/* This is similar to one of Eifel findings.
654 			 * Eifel blocks mdev updates when rtt decreases.
655 			 * This solution is a bit different: we use finer gain
656 			 * for mdev in this case (alpha*beta).
657 			 * Like Eifel it also prevents growth of rto,
658 			 * but also it limits too fast rto decreases,
659 			 * happening in pure Eifel.
660 			 */
661 			if (m > 0)
662 				m >>= 3;
663 		} else {
664 			m -= (tp->mdev >> 2);   /* similar update on mdev */
665 		}
666 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
667 		if (tp->mdev > tp->mdev_max) {
668 			tp->mdev_max = tp->mdev;
669 			if (tp->mdev_max > tp->rttvar)
670 				tp->rttvar = tp->mdev_max;
671 		}
672 		if (after(tp->snd_una, tp->rtt_seq)) {
673 			if (tp->mdev_max < tp->rttvar)
674 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 			tp->rtt_seq = tp->snd_nxt;
676 			tp->mdev_max = tcp_rto_min(sk);
677 		}
678 	} else {
679 		/* no previous measure. */
680 		tp->srtt = m<<3;	/* take the measured time to be rtt */
681 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
682 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683 		tp->rtt_seq = tp->snd_nxt;
684 	}
685 }
686 
687 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
688  * routine referred to above.
689  */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692 	const struct tcp_sock *tp = tcp_sk(sk);
693 	/* Old crap is replaced with new one. 8)
694 	 *
695 	 * More seriously:
696 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 	 *    It cannot be less due to utterly erratic ACK generation made
698 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
700 	 *    is invisible. Actually, Linux-2.4 also generates erratic
701 	 *    ACKs in some circumstances.
702 	 */
703 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704 
705 	/* 2. Fixups made earlier cannot be right.
706 	 *    If we do not estimate RTO correctly without them,
707 	 *    all the algo is pure shit and should be replaced
708 	 *    with correct one. It is exactly, which we pretend to do.
709 	 */
710 }
711 
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713  * guarantees that rto is higher.
714  */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720 
721 /* Save metrics learned by this TCP session.
722    This function is called only, when TCP finishes successfully
723    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724  */
725 void tcp_update_metrics(struct sock *sk)
726 {
727 	struct tcp_sock *tp = tcp_sk(sk);
728 	struct dst_entry *dst = __sk_dst_get(sk);
729 
730 	if (sysctl_tcp_nometrics_save)
731 		return;
732 
733 	dst_confirm(dst);
734 
735 	if (dst && (dst->flags&DST_HOST)) {
736 		const struct inet_connection_sock *icsk = inet_csk(sk);
737 		int m;
738 
739 		if (icsk->icsk_backoff || !tp->srtt) {
740 			/* This session failed to estimate rtt. Why?
741 			 * Probably, no packets returned in time.
742 			 * Reset our results.
743 			 */
744 			if (!(dst_metric_locked(dst, RTAX_RTT)))
745 				dst->metrics[RTAX_RTT-1] = 0;
746 			return;
747 		}
748 
749 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750 
751 		/* If newly calculated rtt larger than stored one,
752 		 * store new one. Otherwise, use EWMA. Remember,
753 		 * rtt overestimation is always better than underestimation.
754 		 */
755 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 			if (m <= 0)
757 				dst->metrics[RTAX_RTT-1] = tp->srtt;
758 			else
759 				dst->metrics[RTAX_RTT-1] -= (m>>3);
760 		}
761 
762 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 			if (m < 0)
764 				m = -m;
765 
766 			/* Scale deviation to rttvar fixed point */
767 			m >>= 1;
768 			if (m < tp->mdev)
769 				m = tp->mdev;
770 
771 			if (m >= dst_metric(dst, RTAX_RTTVAR))
772 				dst->metrics[RTAX_RTTVAR-1] = m;
773 			else
774 				dst->metrics[RTAX_RTTVAR-1] -=
775 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 		}
777 
778 		if (tp->snd_ssthresh >= 0xFFFF) {
779 			/* Slow start still did not finish. */
780 			if (dst_metric(dst, RTAX_SSTHRESH) &&
781 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 			if (!dst_metric_locked(dst, RTAX_CWND) &&
785 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 			   icsk->icsk_ca_state == TCP_CA_Open) {
789 			/* Cong. avoidance phase, cwnd is reliable. */
790 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 				dst->metrics[RTAX_SSTHRESH-1] =
792 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 			if (!dst_metric_locked(dst, RTAX_CWND))
794 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 		} else {
796 			/* Else slow start did not finish, cwnd is non-sense,
797 			   ssthresh may be also invalid.
798 			 */
799 			if (!dst_metric_locked(dst, RTAX_CWND))
800 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 			if (dst->metrics[RTAX_SSTHRESH-1] &&
802 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 		}
806 
807 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 			    tp->reordering != sysctl_tcp_reordering)
810 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 		}
812 	}
813 }
814 
815 /* Numbers are taken from RFC3390.
816  *
817  * John Heffner states:
818  *
819  *	The RFC specifies a window of no more than 4380 bytes
820  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
821  *	is a bit misleading because they use a clamp at 4380 bytes
822  *	rather than use a multiplier in the relevant range.
823  */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827 
828 	if (!cwnd) {
829 		if (tp->mss_cache > 1460)
830 			cwnd = 2;
831 		else
832 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 	}
834 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836 
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840 	struct tcp_sock *tp = tcp_sk(sk);
841 	const struct inet_connection_sock *icsk = inet_csk(sk);
842 
843 	tp->prior_ssthresh = 0;
844 	tp->bytes_acked = 0;
845 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
846 		tp->undo_marker = 0;
847 		if (set_ssthresh)
848 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 		tp->snd_cwnd = min(tp->snd_cwnd,
850 				   tcp_packets_in_flight(tp) + 1U);
851 		tp->snd_cwnd_cnt = 0;
852 		tp->high_seq = tp->snd_nxt;
853 		tp->snd_cwnd_stamp = tcp_time_stamp;
854 		TCP_ECN_queue_cwr(tp);
855 
856 		tcp_set_ca_state(sk, TCP_CA_CWR);
857 	}
858 }
859 
860 /*
861  * Packet counting of FACK is based on in-order assumptions, therefore TCP
862  * disables it when reordering is detected
863  */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866 	tp->rx_opt.sack_ok &= ~2;
867 }
868 
869 /* Take a notice that peer is sending DSACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872 	tp->rx_opt.sack_ok |= 4;
873 }
874 
875 /* Initialize metrics on socket. */
876 
877 static void tcp_init_metrics(struct sock *sk)
878 {
879 	struct tcp_sock *tp = tcp_sk(sk);
880 	struct dst_entry *dst = __sk_dst_get(sk);
881 
882 	if (dst == NULL)
883 		goto reset;
884 
885 	dst_confirm(dst);
886 
887 	if (dst_metric_locked(dst, RTAX_CWND))
888 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 	if (dst_metric(dst, RTAX_SSTHRESH)) {
890 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 	}
894 	if (dst_metric(dst, RTAX_REORDERING) &&
895 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 		tcp_disable_fack(tp);
897 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 	}
899 
900 	if (dst_metric(dst, RTAX_RTT) == 0)
901 		goto reset;
902 
903 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 		goto reset;
905 
906 	/* Initial rtt is determined from SYN,SYN-ACK.
907 	 * The segment is small and rtt may appear much
908 	 * less than real one. Use per-dst memory
909 	 * to make it more realistic.
910 	 *
911 	 * A bit of theory. RTT is time passed after "normal" sized packet
912 	 * is sent until it is ACKed. In normal circumstances sending small
913 	 * packets force peer to delay ACKs and calculation is correct too.
914 	 * The algorithm is adaptive and, provided we follow specs, it
915 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 	 * tricks sort of "quick acks" for time long enough to decrease RTT
917 	 * to low value, and then abruptly stops to do it and starts to delay
918 	 * ACKs, wait for troubles.
919 	 */
920 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 		tp->srtt = dst_metric(dst, RTAX_RTT);
922 		tp->rtt_seq = tp->snd_nxt;
923 	}
924 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927 	}
928 	tcp_set_rto(sk);
929 	tcp_bound_rto(sk);
930 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931 		goto reset;
932 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 	tp->snd_cwnd_stamp = tcp_time_stamp;
934 	return;
935 
936 reset:
937 	/* Play conservative. If timestamps are not
938 	 * supported, TCP will fail to recalculate correct
939 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 	 */
941 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 		tp->srtt = 0;
943 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945 	}
946 }
947 
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949 				  const int ts)
950 {
951 	struct tcp_sock *tp = tcp_sk(sk);
952 	if (metric > tp->reordering) {
953 		tp->reordering = min(TCP_MAX_REORDERING, metric);
954 
955 		/* This exciting event is worth to be remembered. 8) */
956 		if (ts)
957 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958 		else if (tcp_is_reno(tp))
959 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960 		else if (tcp_is_fack(tp))
961 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 		else
963 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967 		       tp->reordering,
968 		       tp->fackets_out,
969 		       tp->sacked_out,
970 		       tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972 		tcp_disable_fack(tp);
973 	}
974 }
975 
976 /* This procedure tags the retransmission queue when SACKs arrive.
977  *
978  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979  * Packets in queue with these bits set are counted in variables
980  * sacked_out, retrans_out and lost_out, correspondingly.
981  *
982  * Valid combinations are:
983  * Tag  InFlight	Description
984  * 0	1		- orig segment is in flight.
985  * S	0		- nothing flies, orig reached receiver.
986  * L	0		- nothing flies, orig lost by net.
987  * R	2		- both orig and retransmit are in flight.
988  * L|R	1		- orig is lost, retransmit is in flight.
989  * S|R  1		- orig reached receiver, retrans is still in flight.
990  * (L|S|R is logically valid, it could occur when L|R is sacked,
991  *  but it is equivalent to plain S and code short-curcuits it to S.
992  *  L|S is logically invalid, it would mean -1 packet in flight 8))
993  *
994  * These 6 states form finite state machine, controlled by the following events:
995  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997  * 3. Loss detection event of one of three flavors:
998  *	A. Scoreboard estimator decided the packet is lost.
999  *	   A'. Reno "three dupacks" marks head of queue lost.
1000  *	   A''. Its FACK modfication, head until snd.fack is lost.
1001  *	B. SACK arrives sacking data transmitted after never retransmitted
1002  *	   hole was sent out.
1003  *	C. SACK arrives sacking SND.NXT at the moment, when the
1004  *	   segment was retransmitted.
1005  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006  *
1007  * It is pleasant to note, that state diagram turns out to be commutative,
1008  * so that we are allowed not to be bothered by order of our actions,
1009  * when multiple events arrive simultaneously. (see the function below).
1010  *
1011  * Reordering detection.
1012  * --------------------
1013  * Reordering metric is maximal distance, which a packet can be displaced
1014  * in packet stream. With SACKs we can estimate it:
1015  *
1016  * 1. SACK fills old hole and the corresponding segment was not
1017  *    ever retransmitted -> reordering. Alas, we cannot use it
1018  *    when segment was retransmitted.
1019  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020  *    for retransmitted and already SACKed segment -> reordering..
1021  * Both of these heuristics are not used in Loss state, when we cannot
1022  * account for retransmits accurately.
1023  *
1024  * SACK block validation.
1025  * ----------------------
1026  *
1027  * SACK block range validation checks that the received SACK block fits to
1028  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029  * Note that SND.UNA is not included to the range though being valid because
1030  * it means that the receiver is rather inconsistent with itself reporting
1031  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032  * perfectly valid, however, in light of RFC2018 which explicitly states
1033  * that "SACK block MUST reflect the newest segment.  Even if the newest
1034  * segment is going to be discarded ...", not that it looks very clever
1035  * in case of head skb. Due to potentional receiver driven attacks, we
1036  * choose to avoid immediate execution of a walk in write queue due to
1037  * reneging and defer head skb's loss recovery to standard loss recovery
1038  * procedure that will eventually trigger (nothing forbids us doing this).
1039  *
1040  * Implements also blockage to start_seq wrap-around. Problem lies in the
1041  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042  * there's no guarantee that it will be before snd_nxt (n). The problem
1043  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044  * wrap (s_w):
1045  *
1046  *         <- outs wnd ->                          <- wrapzone ->
1047  *         u     e      n                         u_w   e_w  s n_w
1048  *         |     |      |                          |     |   |  |
1049  * |<------------+------+----- TCP seqno space --------------+---------->|
1050  * ...-- <2^31 ->|                                           |<--------...
1051  * ...---- >2^31 ------>|                                    |<--------...
1052  *
1053  * Current code wouldn't be vulnerable but it's better still to discard such
1054  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057  * equal to the ideal case (infinite seqno space without wrap caused issues).
1058  *
1059  * With D-SACK the lower bound is extended to cover sequence space below
1060  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061  * again, DSACK block must not to go across snd_una (for the same reason as
1062  * for the normal SACK blocks, explained above). But there all simplicity
1063  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064  * fully below undo_marker they do not affect behavior in anyway and can
1065  * therefore be safely ignored. In rare cases (which are more or less
1066  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067  * fragmentation and packet reordering past skb's retransmission. To consider
1068  * them correctly, the acceptable range must be extended even more though
1069  * the exact amount is rather hard to quantify. However, tp->max_window can
1070  * be used as an exaggerated estimate.
1071  */
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073 				  u32 start_seq, u32 end_seq)
1074 {
1075 	/* Too far in future, or reversed (interpretation is ambiguous) */
1076 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077 		return 0;
1078 
1079 	/* Nasty start_seq wrap-around check (see comments above) */
1080 	if (!before(start_seq, tp->snd_nxt))
1081 		return 0;
1082 
1083 	/* In outstanding window? ...This is valid exit for DSACKs too.
1084 	 * start_seq == snd_una is non-sensical (see comments above)
1085 	 */
1086 	if (after(start_seq, tp->snd_una))
1087 		return 1;
1088 
1089 	if (!is_dsack || !tp->undo_marker)
1090 		return 0;
1091 
1092 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1093 	if (!after(end_seq, tp->snd_una))
1094 		return 0;
1095 
1096 	if (!before(start_seq, tp->undo_marker))
1097 		return 1;
1098 
1099 	/* Too old */
1100 	if (!after(end_seq, tp->undo_marker))
1101 		return 0;
1102 
1103 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1104 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1105 	 */
1106 	return !before(start_seq, end_seq - tp->max_window);
1107 }
1108 
1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110  * Event "C". Later note: FACK people cheated me again 8), we have to account
1111  * for reordering! Ugly, but should help.
1112  *
1113  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114  * less than what is now known to be received by the other end (derived from
1115  * SACK blocks by the caller). Also calculate the lowest snd_nxt among the
1116  * remaining retransmitted skbs to avoid some costly processing per ACKs.
1117  */
1118 static int tcp_mark_lost_retrans(struct sock *sk, u32 received_upto)
1119 {
1120 	struct tcp_sock *tp = tcp_sk(sk);
1121 	struct sk_buff *skb;
1122 	int flag = 0;
1123 	int cnt = 0;
1124 	u32 new_low_seq = 0;
1125 
1126 	tcp_for_write_queue(skb, sk) {
1127 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1128 
1129 		if (skb == tcp_send_head(sk))
1130 			break;
1131 		if (cnt == tp->retrans_out)
1132 			break;
1133 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1134 			continue;
1135 
1136 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1137 			continue;
1138 
1139 		if (after(received_upto, ack_seq) &&
1140 		    (tcp_is_fack(tp) ||
1141 		     !before(received_upto,
1142 			     ack_seq + tp->reordering * tp->mss_cache))) {
1143 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1144 			tp->retrans_out -= tcp_skb_pcount(skb);
1145 
1146 			/* clear lost hint */
1147 			tp->retransmit_skb_hint = NULL;
1148 
1149 			if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1150 				tp->lost_out += tcp_skb_pcount(skb);
1151 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1152 				flag |= FLAG_DATA_SACKED;
1153 				NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1154 			}
1155 		} else {
1156 			if (!new_low_seq || before(ack_seq, new_low_seq))
1157 				new_low_seq = ack_seq;
1158 			cnt += tcp_skb_pcount(skb);
1159 		}
1160 	}
1161 
1162 	if (tp->retrans_out)
1163 		tp->lost_retrans_low = new_low_seq;
1164 
1165 	return flag;
1166 }
1167 
1168 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1169 			   struct tcp_sack_block_wire *sp, int num_sacks,
1170 			   u32 prior_snd_una)
1171 {
1172 	u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1173 	u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1174 	int dup_sack = 0;
1175 
1176 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1177 		dup_sack = 1;
1178 		tcp_dsack_seen(tp);
1179 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1180 	} else if (num_sacks > 1) {
1181 		u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1182 		u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1183 
1184 		if (!after(end_seq_0, end_seq_1) &&
1185 		    !before(start_seq_0, start_seq_1)) {
1186 			dup_sack = 1;
1187 			tcp_dsack_seen(tp);
1188 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1189 		}
1190 	}
1191 
1192 	/* D-SACK for already forgotten data... Do dumb counting. */
1193 	if (dup_sack &&
1194 	    !after(end_seq_0, prior_snd_una) &&
1195 	    after(end_seq_0, tp->undo_marker))
1196 		tp->undo_retrans--;
1197 
1198 	return dup_sack;
1199 }
1200 
1201 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1202  * the incoming SACK may not exactly match but we can find smaller MSS
1203  * aligned portion of it that matches. Therefore we might need to fragment
1204  * which may fail and creates some hassle (caller must handle error case
1205  * returns).
1206  */
1207 int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1208 			  u32 start_seq, u32 end_seq)
1209 {
1210 	int in_sack, err;
1211 	unsigned int pkt_len;
1212 
1213 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1214 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1215 
1216 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1217 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1218 
1219 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1220 
1221 		if (!in_sack)
1222 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1223 		else
1224 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1225 		err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1226 		if (err < 0)
1227 			return err;
1228 	}
1229 
1230 	return in_sack;
1231 }
1232 
1233 static int
1234 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1235 {
1236 	const struct inet_connection_sock *icsk = inet_csk(sk);
1237 	struct tcp_sock *tp = tcp_sk(sk);
1238 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1239 			      TCP_SKB_CB(ack_skb)->sacked);
1240 	struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
1241 	struct sk_buff *cached_skb;
1242 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1243 	int reord = tp->packets_out;
1244 	int prior_fackets;
1245 	u32 highest_sack_end_seq = 0;
1246 	int flag = 0;
1247 	int found_dup_sack = 0;
1248 	int cached_fack_count;
1249 	int i;
1250 	int first_sack_index;
1251 
1252 	if (!tp->sacked_out) {
1253 		if (WARN_ON(tp->fackets_out))
1254 			tp->fackets_out = 0;
1255 		tp->highest_sack = tp->snd_una;
1256 	}
1257 	prior_fackets = tp->fackets_out;
1258 
1259 	found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1260 					 num_sacks, prior_snd_una);
1261 	if (found_dup_sack)
1262 		flag |= FLAG_DSACKING_ACK;
1263 
1264 	/* Eliminate too old ACKs, but take into
1265 	 * account more or less fresh ones, they can
1266 	 * contain valid SACK info.
1267 	 */
1268 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1269 		return 0;
1270 
1271 	/* SACK fastpath:
1272 	 * if the only SACK change is the increase of the end_seq of
1273 	 * the first block then only apply that SACK block
1274 	 * and use retrans queue hinting otherwise slowpath */
1275 	flag = 1;
1276 	for (i = 0; i < num_sacks; i++) {
1277 		__be32 start_seq = sp[i].start_seq;
1278 		__be32 end_seq = sp[i].end_seq;
1279 
1280 		if (i == 0) {
1281 			if (tp->recv_sack_cache[i].start_seq != start_seq)
1282 				flag = 0;
1283 		} else {
1284 			if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1285 			    (tp->recv_sack_cache[i].end_seq != end_seq))
1286 				flag = 0;
1287 		}
1288 		tp->recv_sack_cache[i].start_seq = start_seq;
1289 		tp->recv_sack_cache[i].end_seq = end_seq;
1290 	}
1291 	/* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1292 	for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1293 		tp->recv_sack_cache[i].start_seq = 0;
1294 		tp->recv_sack_cache[i].end_seq = 0;
1295 	}
1296 
1297 	first_sack_index = 0;
1298 	if (flag)
1299 		num_sacks = 1;
1300 	else {
1301 		int j;
1302 		tp->fastpath_skb_hint = NULL;
1303 
1304 		/* order SACK blocks to allow in order walk of the retrans queue */
1305 		for (i = num_sacks-1; i > 0; i--) {
1306 			for (j = 0; j < i; j++){
1307 				if (after(ntohl(sp[j].start_seq),
1308 					  ntohl(sp[j+1].start_seq))){
1309 					struct tcp_sack_block_wire tmp;
1310 
1311 					tmp = sp[j];
1312 					sp[j] = sp[j+1];
1313 					sp[j+1] = tmp;
1314 
1315 					/* Track where the first SACK block goes to */
1316 					if (j == first_sack_index)
1317 						first_sack_index = j+1;
1318 				}
1319 
1320 			}
1321 		}
1322 	}
1323 
1324 	/* clear flag as used for different purpose in following code */
1325 	flag = 0;
1326 
1327 	/* Use SACK fastpath hint if valid */
1328 	cached_skb = tp->fastpath_skb_hint;
1329 	cached_fack_count = tp->fastpath_cnt_hint;
1330 	if (!cached_skb) {
1331 		cached_skb = tcp_write_queue_head(sk);
1332 		cached_fack_count = 0;
1333 	}
1334 
1335 	for (i=0; i<num_sacks; i++, sp++) {
1336 		struct sk_buff *skb;
1337 		__u32 start_seq = ntohl(sp->start_seq);
1338 		__u32 end_seq = ntohl(sp->end_seq);
1339 		int fack_count;
1340 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1341 
1342 		if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1343 			if (dup_sack) {
1344 				if (!tp->undo_marker)
1345 					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1346 				else
1347 					NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1348 			} else {
1349 				/* Don't count olds caused by ACK reordering */
1350 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1351 				    !after(end_seq, tp->snd_una))
1352 					continue;
1353 				NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1354 			}
1355 			continue;
1356 		}
1357 
1358 		skb = cached_skb;
1359 		fack_count = cached_fack_count;
1360 
1361 		/* Event "B" in the comment above. */
1362 		if (after(end_seq, tp->high_seq))
1363 			flag |= FLAG_DATA_LOST;
1364 
1365 		tcp_for_write_queue_from(skb, sk) {
1366 			int in_sack;
1367 			u8 sacked;
1368 
1369 			if (skb == tcp_send_head(sk))
1370 				break;
1371 
1372 			cached_skb = skb;
1373 			cached_fack_count = fack_count;
1374 			if (i == first_sack_index) {
1375 				tp->fastpath_skb_hint = skb;
1376 				tp->fastpath_cnt_hint = fack_count;
1377 			}
1378 
1379 			/* The retransmission queue is always in order, so
1380 			 * we can short-circuit the walk early.
1381 			 */
1382 			if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1383 				break;
1384 
1385 			in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1386 			if (in_sack < 0)
1387 				break;
1388 
1389 			fack_count += tcp_skb_pcount(skb);
1390 
1391 			sacked = TCP_SKB_CB(skb)->sacked;
1392 
1393 			/* Account D-SACK for retransmitted packet. */
1394 			if ((dup_sack && in_sack) &&
1395 			    (sacked & TCPCB_RETRANS) &&
1396 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1397 				tp->undo_retrans--;
1398 
1399 			/* The frame is ACKed. */
1400 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1401 				if (sacked&TCPCB_RETRANS) {
1402 					if ((dup_sack && in_sack) &&
1403 					    (sacked&TCPCB_SACKED_ACKED))
1404 						reord = min(fack_count, reord);
1405 				} else {
1406 					/* If it was in a hole, we detected reordering. */
1407 					if (fack_count < prior_fackets &&
1408 					    !(sacked&TCPCB_SACKED_ACKED))
1409 						reord = min(fack_count, reord);
1410 				}
1411 
1412 				/* Nothing to do; acked frame is about to be dropped. */
1413 				continue;
1414 			}
1415 
1416 			if (!in_sack)
1417 				continue;
1418 
1419 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1420 				if (sacked & TCPCB_SACKED_RETRANS) {
1421 					/* If the segment is not tagged as lost,
1422 					 * we do not clear RETRANS, believing
1423 					 * that retransmission is still in flight.
1424 					 */
1425 					if (sacked & TCPCB_LOST) {
1426 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1427 						tp->lost_out -= tcp_skb_pcount(skb);
1428 						tp->retrans_out -= tcp_skb_pcount(skb);
1429 
1430 						/* clear lost hint */
1431 						tp->retransmit_skb_hint = NULL;
1432 					}
1433 				} else {
1434 					/* New sack for not retransmitted frame,
1435 					 * which was in hole. It is reordering.
1436 					 */
1437 					if (!(sacked & TCPCB_RETRANS) &&
1438 					    fack_count < prior_fackets)
1439 						reord = min(fack_count, reord);
1440 
1441 					if (sacked & TCPCB_LOST) {
1442 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1443 						tp->lost_out -= tcp_skb_pcount(skb);
1444 
1445 						/* clear lost hint */
1446 						tp->retransmit_skb_hint = NULL;
1447 					}
1448 					/* SACK enhanced F-RTO detection.
1449 					 * Set flag if and only if non-rexmitted
1450 					 * segments below frto_highmark are
1451 					 * SACKed (RFC4138; Appendix B).
1452 					 * Clearing correct due to in-order walk
1453 					 */
1454 					if (after(end_seq, tp->frto_highmark)) {
1455 						flag &= ~FLAG_ONLY_ORIG_SACKED;
1456 					} else {
1457 						if (!(sacked & TCPCB_RETRANS))
1458 							flag |= FLAG_ONLY_ORIG_SACKED;
1459 					}
1460 				}
1461 
1462 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1463 				flag |= FLAG_DATA_SACKED;
1464 				tp->sacked_out += tcp_skb_pcount(skb);
1465 
1466 				if (fack_count > tp->fackets_out)
1467 					tp->fackets_out = fack_count;
1468 
1469 				if (after(TCP_SKB_CB(skb)->seq, tp->highest_sack)) {
1470 					tp->highest_sack = TCP_SKB_CB(skb)->seq;
1471 					highest_sack_end_seq = TCP_SKB_CB(skb)->end_seq;
1472 				}
1473 			} else {
1474 				if (dup_sack && (sacked&TCPCB_RETRANS))
1475 					reord = min(fack_count, reord);
1476 			}
1477 
1478 			/* D-SACK. We can detect redundant retransmission
1479 			 * in S|R and plain R frames and clear it.
1480 			 * undo_retrans is decreased above, L|R frames
1481 			 * are accounted above as well.
1482 			 */
1483 			if (dup_sack &&
1484 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1485 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1486 				tp->retrans_out -= tcp_skb_pcount(skb);
1487 				tp->retransmit_skb_hint = NULL;
1488 			}
1489 		}
1490 	}
1491 
1492 	if (tp->retrans_out &&
1493 	    after(highest_sack_end_seq, tp->lost_retrans_low) &&
1494 	    icsk->icsk_ca_state == TCP_CA_Recovery)
1495 		flag |= tcp_mark_lost_retrans(sk, highest_sack_end_seq);
1496 
1497 	tcp_verify_left_out(tp);
1498 
1499 	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1500 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1501 		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1502 
1503 #if FASTRETRANS_DEBUG > 0
1504 	BUG_TRAP((int)tp->sacked_out >= 0);
1505 	BUG_TRAP((int)tp->lost_out >= 0);
1506 	BUG_TRAP((int)tp->retrans_out >= 0);
1507 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1508 #endif
1509 	return flag;
1510 }
1511 
1512 /* If we receive more dupacks than we expected counting segments
1513  * in assumption of absent reordering, interpret this as reordering.
1514  * The only another reason could be bug in receiver TCP.
1515  */
1516 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1517 {
1518 	struct tcp_sock *tp = tcp_sk(sk);
1519 	u32 holes;
1520 
1521 	holes = max(tp->lost_out, 1U);
1522 	holes = min(holes, tp->packets_out);
1523 
1524 	if ((tp->sacked_out + holes) > tp->packets_out) {
1525 		tp->sacked_out = tp->packets_out - holes;
1526 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1527 	}
1528 }
1529 
1530 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1531 
1532 static void tcp_add_reno_sack(struct sock *sk)
1533 {
1534 	struct tcp_sock *tp = tcp_sk(sk);
1535 	tp->sacked_out++;
1536 	tcp_check_reno_reordering(sk, 0);
1537 	tcp_verify_left_out(tp);
1538 }
1539 
1540 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1541 
1542 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1543 {
1544 	struct tcp_sock *tp = tcp_sk(sk);
1545 
1546 	if (acked > 0) {
1547 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1548 		if (acked-1 >= tp->sacked_out)
1549 			tp->sacked_out = 0;
1550 		else
1551 			tp->sacked_out -= acked-1;
1552 	}
1553 	tcp_check_reno_reordering(sk, acked);
1554 	tcp_verify_left_out(tp);
1555 }
1556 
1557 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1558 {
1559 	tp->sacked_out = 0;
1560 }
1561 
1562 /* F-RTO can only be used if TCP has never retransmitted anything other than
1563  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1564  */
1565 int tcp_use_frto(struct sock *sk)
1566 {
1567 	const struct tcp_sock *tp = tcp_sk(sk);
1568 	struct sk_buff *skb;
1569 
1570 	if (!sysctl_tcp_frto)
1571 		return 0;
1572 
1573 	if (IsSackFrto())
1574 		return 1;
1575 
1576 	/* Avoid expensive walking of rexmit queue if possible */
1577 	if (tp->retrans_out > 1)
1578 		return 0;
1579 
1580 	skb = tcp_write_queue_head(sk);
1581 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1582 	tcp_for_write_queue_from(skb, sk) {
1583 		if (skb == tcp_send_head(sk))
1584 			break;
1585 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1586 			return 0;
1587 		/* Short-circuit when first non-SACKed skb has been checked */
1588 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1589 			break;
1590 	}
1591 	return 1;
1592 }
1593 
1594 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1595  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1596  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1597  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1598  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1599  * bits are handled if the Loss state is really to be entered (in
1600  * tcp_enter_frto_loss).
1601  *
1602  * Do like tcp_enter_loss() would; when RTO expires the second time it
1603  * does:
1604  *  "Reduce ssthresh if it has not yet been made inside this window."
1605  */
1606 void tcp_enter_frto(struct sock *sk)
1607 {
1608 	const struct inet_connection_sock *icsk = inet_csk(sk);
1609 	struct tcp_sock *tp = tcp_sk(sk);
1610 	struct sk_buff *skb;
1611 
1612 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1613 	    tp->snd_una == tp->high_seq ||
1614 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1615 	     !icsk->icsk_retransmits)) {
1616 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1617 		/* Our state is too optimistic in ssthresh() call because cwnd
1618 		 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1619 		 * recovery has not yet completed. Pattern would be this: RTO,
1620 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1621 		 * up here twice).
1622 		 * RFC4138 should be more specific on what to do, even though
1623 		 * RTO is quite unlikely to occur after the first Cumulative ACK
1624 		 * due to back-off and complexity of triggering events ...
1625 		 */
1626 		if (tp->frto_counter) {
1627 			u32 stored_cwnd;
1628 			stored_cwnd = tp->snd_cwnd;
1629 			tp->snd_cwnd = 2;
1630 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1631 			tp->snd_cwnd = stored_cwnd;
1632 		} else {
1633 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1634 		}
1635 		/* ... in theory, cong.control module could do "any tricks" in
1636 		 * ssthresh(), which means that ca_state, lost bits and lost_out
1637 		 * counter would have to be faked before the call occurs. We
1638 		 * consider that too expensive, unlikely and hacky, so modules
1639 		 * using these in ssthresh() must deal these incompatibility
1640 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1641 		 */
1642 		tcp_ca_event(sk, CA_EVENT_FRTO);
1643 	}
1644 
1645 	tp->undo_marker = tp->snd_una;
1646 	tp->undo_retrans = 0;
1647 
1648 	skb = tcp_write_queue_head(sk);
1649 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1650 		tp->undo_marker = 0;
1651 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1652 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1653 		tp->retrans_out -= tcp_skb_pcount(skb);
1654 	}
1655 	tcp_verify_left_out(tp);
1656 
1657 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1658 	 * The last condition is necessary at least in tp->frto_counter case.
1659 	 */
1660 	if (IsSackFrto() && (tp->frto_counter ||
1661 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1662 	    after(tp->high_seq, tp->snd_una)) {
1663 		tp->frto_highmark = tp->high_seq;
1664 	} else {
1665 		tp->frto_highmark = tp->snd_nxt;
1666 	}
1667 	tcp_set_ca_state(sk, TCP_CA_Disorder);
1668 	tp->high_seq = tp->snd_nxt;
1669 	tp->frto_counter = 1;
1670 }
1671 
1672 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1673  * which indicates that we should follow the traditional RTO recovery,
1674  * i.e. mark everything lost and do go-back-N retransmission.
1675  */
1676 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1677 {
1678 	struct tcp_sock *tp = tcp_sk(sk);
1679 	struct sk_buff *skb;
1680 
1681 	tp->lost_out = 0;
1682 	tp->retrans_out = 0;
1683 	if (tcp_is_reno(tp))
1684 		tcp_reset_reno_sack(tp);
1685 
1686 	tcp_for_write_queue(skb, sk) {
1687 		if (skb == tcp_send_head(sk))
1688 			break;
1689 		/*
1690 		 * Count the retransmission made on RTO correctly (only when
1691 		 * waiting for the first ACK and did not get it)...
1692 		 */
1693 		if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1694 			/* For some reason this R-bit might get cleared? */
1695 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1696 				tp->retrans_out += tcp_skb_pcount(skb);
1697 			/* ...enter this if branch just for the first segment */
1698 			flag |= FLAG_DATA_ACKED;
1699 		} else {
1700 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1701 				tp->undo_marker = 0;
1702 			TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1703 		}
1704 
1705 		/* Don't lost mark skbs that were fwd transmitted after RTO */
1706 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1707 		    !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1708 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1709 			tp->lost_out += tcp_skb_pcount(skb);
1710 		}
1711 	}
1712 	tcp_verify_left_out(tp);
1713 
1714 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1715 	tp->snd_cwnd_cnt = 0;
1716 	tp->snd_cwnd_stamp = tcp_time_stamp;
1717 	tp->frto_counter = 0;
1718 	tp->bytes_acked = 0;
1719 
1720 	tp->reordering = min_t(unsigned int, tp->reordering,
1721 					     sysctl_tcp_reordering);
1722 	tcp_set_ca_state(sk, TCP_CA_Loss);
1723 	tp->high_seq = tp->frto_highmark;
1724 	TCP_ECN_queue_cwr(tp);
1725 
1726 	tcp_clear_retrans_hints_partial(tp);
1727 }
1728 
1729 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1730 {
1731 	tp->retrans_out = 0;
1732 	tp->lost_out = 0;
1733 
1734 	tp->undo_marker = 0;
1735 	tp->undo_retrans = 0;
1736 }
1737 
1738 void tcp_clear_retrans(struct tcp_sock *tp)
1739 {
1740 	tcp_clear_retrans_partial(tp);
1741 
1742 	tp->fackets_out = 0;
1743 	tp->sacked_out = 0;
1744 }
1745 
1746 /* Enter Loss state. If "how" is not zero, forget all SACK information
1747  * and reset tags completely, otherwise preserve SACKs. If receiver
1748  * dropped its ofo queue, we will know this due to reneging detection.
1749  */
1750 void tcp_enter_loss(struct sock *sk, int how)
1751 {
1752 	const struct inet_connection_sock *icsk = inet_csk(sk);
1753 	struct tcp_sock *tp = tcp_sk(sk);
1754 	struct sk_buff *skb;
1755 
1756 	/* Reduce ssthresh if it has not yet been made inside this window. */
1757 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1758 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1759 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1760 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1761 		tcp_ca_event(sk, CA_EVENT_LOSS);
1762 	}
1763 	tp->snd_cwnd	   = 1;
1764 	tp->snd_cwnd_cnt   = 0;
1765 	tp->snd_cwnd_stamp = tcp_time_stamp;
1766 
1767 	tp->bytes_acked = 0;
1768 	tcp_clear_retrans_partial(tp);
1769 
1770 	if (tcp_is_reno(tp))
1771 		tcp_reset_reno_sack(tp);
1772 
1773 	if (!how) {
1774 		/* Push undo marker, if it was plain RTO and nothing
1775 		 * was retransmitted. */
1776 		tp->undo_marker = tp->snd_una;
1777 		tcp_clear_retrans_hints_partial(tp);
1778 	} else {
1779 		tp->sacked_out = 0;
1780 		tp->fackets_out = 0;
1781 		tcp_clear_all_retrans_hints(tp);
1782 	}
1783 
1784 	tcp_for_write_queue(skb, sk) {
1785 		if (skb == tcp_send_head(sk))
1786 			break;
1787 
1788 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1789 			tp->undo_marker = 0;
1790 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1791 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1792 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1793 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1794 			tp->lost_out += tcp_skb_pcount(skb);
1795 		}
1796 	}
1797 	tcp_verify_left_out(tp);
1798 
1799 	tp->reordering = min_t(unsigned int, tp->reordering,
1800 					     sysctl_tcp_reordering);
1801 	tcp_set_ca_state(sk, TCP_CA_Loss);
1802 	tp->high_seq = tp->snd_nxt;
1803 	TCP_ECN_queue_cwr(tp);
1804 	/* Abort FRTO algorithm if one is in progress */
1805 	tp->frto_counter = 0;
1806 }
1807 
1808 static int tcp_check_sack_reneging(struct sock *sk)
1809 {
1810 	struct sk_buff *skb;
1811 
1812 	/* If ACK arrived pointing to a remembered SACK,
1813 	 * it means that our remembered SACKs do not reflect
1814 	 * real state of receiver i.e.
1815 	 * receiver _host_ is heavily congested (or buggy).
1816 	 * Do processing similar to RTO timeout.
1817 	 */
1818 	if ((skb = tcp_write_queue_head(sk)) != NULL &&
1819 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1820 		struct inet_connection_sock *icsk = inet_csk(sk);
1821 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1822 
1823 		tcp_enter_loss(sk, 1);
1824 		icsk->icsk_retransmits++;
1825 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1826 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1827 					  icsk->icsk_rto, TCP_RTO_MAX);
1828 		return 1;
1829 	}
1830 	return 0;
1831 }
1832 
1833 static inline int tcp_fackets_out(struct tcp_sock *tp)
1834 {
1835 	return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1836 }
1837 
1838 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1839 {
1840 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1841 }
1842 
1843 static inline int tcp_head_timedout(struct sock *sk)
1844 {
1845 	struct tcp_sock *tp = tcp_sk(sk);
1846 
1847 	return tp->packets_out &&
1848 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1849 }
1850 
1851 /* Linux NewReno/SACK/FACK/ECN state machine.
1852  * --------------------------------------
1853  *
1854  * "Open"	Normal state, no dubious events, fast path.
1855  * "Disorder"   In all the respects it is "Open",
1856  *		but requires a bit more attention. It is entered when
1857  *		we see some SACKs or dupacks. It is split of "Open"
1858  *		mainly to move some processing from fast path to slow one.
1859  * "CWR"	CWND was reduced due to some Congestion Notification event.
1860  *		It can be ECN, ICMP source quench, local device congestion.
1861  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1862  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1863  *
1864  * tcp_fastretrans_alert() is entered:
1865  * - each incoming ACK, if state is not "Open"
1866  * - when arrived ACK is unusual, namely:
1867  *	* SACK
1868  *	* Duplicate ACK.
1869  *	* ECN ECE.
1870  *
1871  * Counting packets in flight is pretty simple.
1872  *
1873  *	in_flight = packets_out - left_out + retrans_out
1874  *
1875  *	packets_out is SND.NXT-SND.UNA counted in packets.
1876  *
1877  *	retrans_out is number of retransmitted segments.
1878  *
1879  *	left_out is number of segments left network, but not ACKed yet.
1880  *
1881  *		left_out = sacked_out + lost_out
1882  *
1883  *     sacked_out: Packets, which arrived to receiver out of order
1884  *		   and hence not ACKed. With SACKs this number is simply
1885  *		   amount of SACKed data. Even without SACKs
1886  *		   it is easy to give pretty reliable estimate of this number,
1887  *		   counting duplicate ACKs.
1888  *
1889  *       lost_out: Packets lost by network. TCP has no explicit
1890  *		   "loss notification" feedback from network (for now).
1891  *		   It means that this number can be only _guessed_.
1892  *		   Actually, it is the heuristics to predict lossage that
1893  *		   distinguishes different algorithms.
1894  *
1895  *	F.e. after RTO, when all the queue is considered as lost,
1896  *	lost_out = packets_out and in_flight = retrans_out.
1897  *
1898  *		Essentially, we have now two algorithms counting
1899  *		lost packets.
1900  *
1901  *		FACK: It is the simplest heuristics. As soon as we decided
1902  *		that something is lost, we decide that _all_ not SACKed
1903  *		packets until the most forward SACK are lost. I.e.
1904  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1905  *		It is absolutely correct estimate, if network does not reorder
1906  *		packets. And it loses any connection to reality when reordering
1907  *		takes place. We use FACK by default until reordering
1908  *		is suspected on the path to this destination.
1909  *
1910  *		NewReno: when Recovery is entered, we assume that one segment
1911  *		is lost (classic Reno). While we are in Recovery and
1912  *		a partial ACK arrives, we assume that one more packet
1913  *		is lost (NewReno). This heuristics are the same in NewReno
1914  *		and SACK.
1915  *
1916  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1917  *  deflation etc. CWND is real congestion window, never inflated, changes
1918  *  only according to classic VJ rules.
1919  *
1920  * Really tricky (and requiring careful tuning) part of algorithm
1921  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1922  * The first determines the moment _when_ we should reduce CWND and,
1923  * hence, slow down forward transmission. In fact, it determines the moment
1924  * when we decide that hole is caused by loss, rather than by a reorder.
1925  *
1926  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1927  * holes, caused by lost packets.
1928  *
1929  * And the most logically complicated part of algorithm is undo
1930  * heuristics. We detect false retransmits due to both too early
1931  * fast retransmit (reordering) and underestimated RTO, analyzing
1932  * timestamps and D-SACKs. When we detect that some segments were
1933  * retransmitted by mistake and CWND reduction was wrong, we undo
1934  * window reduction and abort recovery phase. This logic is hidden
1935  * inside several functions named tcp_try_undo_<something>.
1936  */
1937 
1938 /* This function decides, when we should leave Disordered state
1939  * and enter Recovery phase, reducing congestion window.
1940  *
1941  * Main question: may we further continue forward transmission
1942  * with the same cwnd?
1943  */
1944 static int tcp_time_to_recover(struct sock *sk)
1945 {
1946 	struct tcp_sock *tp = tcp_sk(sk);
1947 	__u32 packets_out;
1948 
1949 	/* Do not perform any recovery during FRTO algorithm */
1950 	if (tp->frto_counter)
1951 		return 0;
1952 
1953 	/* Trick#1: The loss is proven. */
1954 	if (tp->lost_out)
1955 		return 1;
1956 
1957 	/* Not-A-Trick#2 : Classic rule... */
1958 	if (tcp_fackets_out(tp) > tp->reordering)
1959 		return 1;
1960 
1961 	/* Trick#3 : when we use RFC2988 timer restart, fast
1962 	 * retransmit can be triggered by timeout of queue head.
1963 	 */
1964 	if (tcp_head_timedout(sk))
1965 		return 1;
1966 
1967 	/* Trick#4: It is still not OK... But will it be useful to delay
1968 	 * recovery more?
1969 	 */
1970 	packets_out = tp->packets_out;
1971 	if (packets_out <= tp->reordering &&
1972 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1973 	    !tcp_may_send_now(sk)) {
1974 		/* We have nothing to send. This connection is limited
1975 		 * either by receiver window or by application.
1976 		 */
1977 		return 1;
1978 	}
1979 
1980 	return 0;
1981 }
1982 
1983 /* RFC: This is from the original, I doubt that this is necessary at all:
1984  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1985  * retransmitted past LOST markings in the first place? I'm not fully sure
1986  * about undo and end of connection cases, which can cause R without L?
1987  */
1988 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1989 				       struct sk_buff *skb)
1990 {
1991 	if ((tp->retransmit_skb_hint != NULL) &&
1992 	    before(TCP_SKB_CB(skb)->seq,
1993 	    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1994 		tp->retransmit_skb_hint = NULL;
1995 }
1996 
1997 /* Mark head of queue up as lost. */
1998 static void tcp_mark_head_lost(struct sock *sk, int packets)
1999 {
2000 	struct tcp_sock *tp = tcp_sk(sk);
2001 	struct sk_buff *skb;
2002 	int cnt;
2003 
2004 	BUG_TRAP(packets <= tp->packets_out);
2005 	if (tp->lost_skb_hint) {
2006 		skb = tp->lost_skb_hint;
2007 		cnt = tp->lost_cnt_hint;
2008 	} else {
2009 		skb = tcp_write_queue_head(sk);
2010 		cnt = 0;
2011 	}
2012 
2013 	tcp_for_write_queue_from(skb, sk) {
2014 		if (skb == tcp_send_head(sk))
2015 			break;
2016 		/* TODO: do this better */
2017 		/* this is not the most efficient way to do this... */
2018 		tp->lost_skb_hint = skb;
2019 		tp->lost_cnt_hint = cnt;
2020 		cnt += tcp_skb_pcount(skb);
2021 		if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2022 			break;
2023 		if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2024 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2025 			tp->lost_out += tcp_skb_pcount(skb);
2026 			tcp_verify_retransmit_hint(tp, skb);
2027 		}
2028 	}
2029 	tcp_verify_left_out(tp);
2030 }
2031 
2032 /* Account newly detected lost packet(s) */
2033 
2034 static void tcp_update_scoreboard(struct sock *sk)
2035 {
2036 	struct tcp_sock *tp = tcp_sk(sk);
2037 
2038 	if (tcp_is_fack(tp)) {
2039 		int lost = tp->fackets_out - tp->reordering;
2040 		if (lost <= 0)
2041 			lost = 1;
2042 		tcp_mark_head_lost(sk, lost);
2043 	} else {
2044 		tcp_mark_head_lost(sk, 1);
2045 	}
2046 
2047 	/* New heuristics: it is possible only after we switched
2048 	 * to restart timer each time when something is ACKed.
2049 	 * Hence, we can detect timed out packets during fast
2050 	 * retransmit without falling to slow start.
2051 	 */
2052 	if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
2053 		struct sk_buff *skb;
2054 
2055 		skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2056 			: tcp_write_queue_head(sk);
2057 
2058 		tcp_for_write_queue_from(skb, sk) {
2059 			if (skb == tcp_send_head(sk))
2060 				break;
2061 			if (!tcp_skb_timedout(sk, skb))
2062 				break;
2063 
2064 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
2065 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2066 				tp->lost_out += tcp_skb_pcount(skb);
2067 				tcp_verify_retransmit_hint(tp, skb);
2068 			}
2069 		}
2070 
2071 		tp->scoreboard_skb_hint = skb;
2072 
2073 		tcp_verify_left_out(tp);
2074 	}
2075 }
2076 
2077 /* CWND moderation, preventing bursts due to too big ACKs
2078  * in dubious situations.
2079  */
2080 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2081 {
2082 	tp->snd_cwnd = min(tp->snd_cwnd,
2083 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2084 	tp->snd_cwnd_stamp = tcp_time_stamp;
2085 }
2086 
2087 /* Lower bound on congestion window is slow start threshold
2088  * unless congestion avoidance choice decides to overide it.
2089  */
2090 static inline u32 tcp_cwnd_min(const struct sock *sk)
2091 {
2092 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2093 
2094 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2095 }
2096 
2097 /* Decrease cwnd each second ack. */
2098 static void tcp_cwnd_down(struct sock *sk, int flag)
2099 {
2100 	struct tcp_sock *tp = tcp_sk(sk);
2101 	int decr = tp->snd_cwnd_cnt + 1;
2102 
2103 	if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2104 	    (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2105 		tp->snd_cwnd_cnt = decr&1;
2106 		decr >>= 1;
2107 
2108 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2109 			tp->snd_cwnd -= decr;
2110 
2111 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2112 		tp->snd_cwnd_stamp = tcp_time_stamp;
2113 	}
2114 }
2115 
2116 /* Nothing was retransmitted or returned timestamp is less
2117  * than timestamp of the first retransmission.
2118  */
2119 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2120 {
2121 	return !tp->retrans_stamp ||
2122 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2123 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2124 }
2125 
2126 /* Undo procedures. */
2127 
2128 #if FASTRETRANS_DEBUG > 1
2129 static void DBGUNDO(struct sock *sk, const char *msg)
2130 {
2131 	struct tcp_sock *tp = tcp_sk(sk);
2132 	struct inet_sock *inet = inet_sk(sk);
2133 
2134 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2135 	       msg,
2136 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
2137 	       tp->snd_cwnd, tcp_left_out(tp),
2138 	       tp->snd_ssthresh, tp->prior_ssthresh,
2139 	       tp->packets_out);
2140 }
2141 #else
2142 #define DBGUNDO(x...) do { } while (0)
2143 #endif
2144 
2145 static void tcp_undo_cwr(struct sock *sk, const int undo)
2146 {
2147 	struct tcp_sock *tp = tcp_sk(sk);
2148 
2149 	if (tp->prior_ssthresh) {
2150 		const struct inet_connection_sock *icsk = inet_csk(sk);
2151 
2152 		if (icsk->icsk_ca_ops->undo_cwnd)
2153 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2154 		else
2155 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2156 
2157 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2158 			tp->snd_ssthresh = tp->prior_ssthresh;
2159 			TCP_ECN_withdraw_cwr(tp);
2160 		}
2161 	} else {
2162 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2163 	}
2164 	tcp_moderate_cwnd(tp);
2165 	tp->snd_cwnd_stamp = tcp_time_stamp;
2166 
2167 	/* There is something screwy going on with the retrans hints after
2168 	   an undo */
2169 	tcp_clear_all_retrans_hints(tp);
2170 }
2171 
2172 static inline int tcp_may_undo(struct tcp_sock *tp)
2173 {
2174 	return tp->undo_marker &&
2175 		(!tp->undo_retrans || tcp_packet_delayed(tp));
2176 }
2177 
2178 /* People celebrate: "We love our President!" */
2179 static int tcp_try_undo_recovery(struct sock *sk)
2180 {
2181 	struct tcp_sock *tp = tcp_sk(sk);
2182 
2183 	if (tcp_may_undo(tp)) {
2184 		/* Happy end! We did not retransmit anything
2185 		 * or our original transmission succeeded.
2186 		 */
2187 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2188 		tcp_undo_cwr(sk, 1);
2189 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2190 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2191 		else
2192 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2193 		tp->undo_marker = 0;
2194 	}
2195 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2196 		/* Hold old state until something *above* high_seq
2197 		 * is ACKed. For Reno it is MUST to prevent false
2198 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2199 		tcp_moderate_cwnd(tp);
2200 		return 1;
2201 	}
2202 	tcp_set_ca_state(sk, TCP_CA_Open);
2203 	return 0;
2204 }
2205 
2206 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2207 static void tcp_try_undo_dsack(struct sock *sk)
2208 {
2209 	struct tcp_sock *tp = tcp_sk(sk);
2210 
2211 	if (tp->undo_marker && !tp->undo_retrans) {
2212 		DBGUNDO(sk, "D-SACK");
2213 		tcp_undo_cwr(sk, 1);
2214 		tp->undo_marker = 0;
2215 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2216 	}
2217 }
2218 
2219 /* Undo during fast recovery after partial ACK. */
2220 
2221 static int tcp_try_undo_partial(struct sock *sk, int acked)
2222 {
2223 	struct tcp_sock *tp = tcp_sk(sk);
2224 	/* Partial ACK arrived. Force Hoe's retransmit. */
2225 	int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
2226 
2227 	if (tcp_may_undo(tp)) {
2228 		/* Plain luck! Hole if filled with delayed
2229 		 * packet, rather than with a retransmit.
2230 		 */
2231 		if (tp->retrans_out == 0)
2232 			tp->retrans_stamp = 0;
2233 
2234 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2235 
2236 		DBGUNDO(sk, "Hoe");
2237 		tcp_undo_cwr(sk, 0);
2238 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2239 
2240 		/* So... Do not make Hoe's retransmit yet.
2241 		 * If the first packet was delayed, the rest
2242 		 * ones are most probably delayed as well.
2243 		 */
2244 		failed = 0;
2245 	}
2246 	return failed;
2247 }
2248 
2249 /* Undo during loss recovery after partial ACK. */
2250 static int tcp_try_undo_loss(struct sock *sk)
2251 {
2252 	struct tcp_sock *tp = tcp_sk(sk);
2253 
2254 	if (tcp_may_undo(tp)) {
2255 		struct sk_buff *skb;
2256 		tcp_for_write_queue(skb, sk) {
2257 			if (skb == tcp_send_head(sk))
2258 				break;
2259 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2260 		}
2261 
2262 		tcp_clear_all_retrans_hints(tp);
2263 
2264 		DBGUNDO(sk, "partial loss");
2265 		tp->lost_out = 0;
2266 		tcp_undo_cwr(sk, 1);
2267 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2268 		inet_csk(sk)->icsk_retransmits = 0;
2269 		tp->undo_marker = 0;
2270 		if (tcp_is_sack(tp))
2271 			tcp_set_ca_state(sk, TCP_CA_Open);
2272 		return 1;
2273 	}
2274 	return 0;
2275 }
2276 
2277 static inline void tcp_complete_cwr(struct sock *sk)
2278 {
2279 	struct tcp_sock *tp = tcp_sk(sk);
2280 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2281 	tp->snd_cwnd_stamp = tcp_time_stamp;
2282 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2283 }
2284 
2285 static void tcp_try_to_open(struct sock *sk, int flag)
2286 {
2287 	struct tcp_sock *tp = tcp_sk(sk);
2288 
2289 	tcp_verify_left_out(tp);
2290 
2291 	if (tp->retrans_out == 0)
2292 		tp->retrans_stamp = 0;
2293 
2294 	if (flag&FLAG_ECE)
2295 		tcp_enter_cwr(sk, 1);
2296 
2297 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2298 		int state = TCP_CA_Open;
2299 
2300 		if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2301 			state = TCP_CA_Disorder;
2302 
2303 		if (inet_csk(sk)->icsk_ca_state != state) {
2304 			tcp_set_ca_state(sk, state);
2305 			tp->high_seq = tp->snd_nxt;
2306 		}
2307 		tcp_moderate_cwnd(tp);
2308 	} else {
2309 		tcp_cwnd_down(sk, flag);
2310 	}
2311 }
2312 
2313 static void tcp_mtup_probe_failed(struct sock *sk)
2314 {
2315 	struct inet_connection_sock *icsk = inet_csk(sk);
2316 
2317 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2318 	icsk->icsk_mtup.probe_size = 0;
2319 }
2320 
2321 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2322 {
2323 	struct tcp_sock *tp = tcp_sk(sk);
2324 	struct inet_connection_sock *icsk = inet_csk(sk);
2325 
2326 	/* FIXME: breaks with very large cwnd */
2327 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2328 	tp->snd_cwnd = tp->snd_cwnd *
2329 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2330 		       icsk->icsk_mtup.probe_size;
2331 	tp->snd_cwnd_cnt = 0;
2332 	tp->snd_cwnd_stamp = tcp_time_stamp;
2333 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2334 
2335 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2336 	icsk->icsk_mtup.probe_size = 0;
2337 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2338 }
2339 
2340 
2341 /* Process an event, which can update packets-in-flight not trivially.
2342  * Main goal of this function is to calculate new estimate for left_out,
2343  * taking into account both packets sitting in receiver's buffer and
2344  * packets lost by network.
2345  *
2346  * Besides that it does CWND reduction, when packet loss is detected
2347  * and changes state of machine.
2348  *
2349  * It does _not_ decide what to send, it is made in function
2350  * tcp_xmit_retransmit_queue().
2351  */
2352 static void
2353 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2354 {
2355 	struct inet_connection_sock *icsk = inet_csk(sk);
2356 	struct tcp_sock *tp = tcp_sk(sk);
2357 	int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2358 	int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2359 				    (tp->fackets_out > tp->reordering));
2360 
2361 	/* Some technical things:
2362 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
2363 	if (!tp->packets_out)
2364 		tp->sacked_out = 0;
2365 
2366 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2367 		tp->fackets_out = 0;
2368 
2369 	/* Now state machine starts.
2370 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2371 	if (flag&FLAG_ECE)
2372 		tp->prior_ssthresh = 0;
2373 
2374 	/* B. In all the states check for reneging SACKs. */
2375 	if (tp->sacked_out && tcp_check_sack_reneging(sk))
2376 		return;
2377 
2378 	/* C. Process data loss notification, provided it is valid. */
2379 	if ((flag&FLAG_DATA_LOST) &&
2380 	    before(tp->snd_una, tp->high_seq) &&
2381 	    icsk->icsk_ca_state != TCP_CA_Open &&
2382 	    tp->fackets_out > tp->reordering) {
2383 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2384 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2385 	}
2386 
2387 	/* D. Check consistency of the current state. */
2388 	tcp_verify_left_out(tp);
2389 
2390 	/* E. Check state exit conditions. State can be terminated
2391 	 *    when high_seq is ACKed. */
2392 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2393 		BUG_TRAP(tp->retrans_out == 0);
2394 		tp->retrans_stamp = 0;
2395 	} else if (!before(tp->snd_una, tp->high_seq)) {
2396 		switch (icsk->icsk_ca_state) {
2397 		case TCP_CA_Loss:
2398 			icsk->icsk_retransmits = 0;
2399 			if (tcp_try_undo_recovery(sk))
2400 				return;
2401 			break;
2402 
2403 		case TCP_CA_CWR:
2404 			/* CWR is to be held something *above* high_seq
2405 			 * is ACKed for CWR bit to reach receiver. */
2406 			if (tp->snd_una != tp->high_seq) {
2407 				tcp_complete_cwr(sk);
2408 				tcp_set_ca_state(sk, TCP_CA_Open);
2409 			}
2410 			break;
2411 
2412 		case TCP_CA_Disorder:
2413 			tcp_try_undo_dsack(sk);
2414 			if (!tp->undo_marker ||
2415 			    /* For SACK case do not Open to allow to undo
2416 			     * catching for all duplicate ACKs. */
2417 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2418 				tp->undo_marker = 0;
2419 				tcp_set_ca_state(sk, TCP_CA_Open);
2420 			}
2421 			break;
2422 
2423 		case TCP_CA_Recovery:
2424 			if (tcp_is_reno(tp))
2425 				tcp_reset_reno_sack(tp);
2426 			if (tcp_try_undo_recovery(sk))
2427 				return;
2428 			tcp_complete_cwr(sk);
2429 			break;
2430 		}
2431 	}
2432 
2433 	/* F. Process state. */
2434 	switch (icsk->icsk_ca_state) {
2435 	case TCP_CA_Recovery:
2436 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2437 			if (tcp_is_reno(tp) && is_dupack)
2438 				tcp_add_reno_sack(sk);
2439 		} else
2440 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2441 		break;
2442 	case TCP_CA_Loss:
2443 		if (flag&FLAG_DATA_ACKED)
2444 			icsk->icsk_retransmits = 0;
2445 		if (!tcp_try_undo_loss(sk)) {
2446 			tcp_moderate_cwnd(tp);
2447 			tcp_xmit_retransmit_queue(sk);
2448 			return;
2449 		}
2450 		if (icsk->icsk_ca_state != TCP_CA_Open)
2451 			return;
2452 		/* Loss is undone; fall through to processing in Open state. */
2453 	default:
2454 		if (tcp_is_reno(tp)) {
2455 			if (flag & FLAG_SND_UNA_ADVANCED)
2456 				tcp_reset_reno_sack(tp);
2457 			if (is_dupack)
2458 				tcp_add_reno_sack(sk);
2459 		}
2460 
2461 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
2462 			tcp_try_undo_dsack(sk);
2463 
2464 		if (!tcp_time_to_recover(sk)) {
2465 			tcp_try_to_open(sk, flag);
2466 			return;
2467 		}
2468 
2469 		/* MTU probe failure: don't reduce cwnd */
2470 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2471 		    icsk->icsk_mtup.probe_size &&
2472 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2473 			tcp_mtup_probe_failed(sk);
2474 			/* Restores the reduction we did in tcp_mtup_probe() */
2475 			tp->snd_cwnd++;
2476 			tcp_simple_retransmit(sk);
2477 			return;
2478 		}
2479 
2480 		/* Otherwise enter Recovery state */
2481 
2482 		if (tcp_is_reno(tp))
2483 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2484 		else
2485 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2486 
2487 		tp->high_seq = tp->snd_nxt;
2488 		tp->prior_ssthresh = 0;
2489 		tp->undo_marker = tp->snd_una;
2490 		tp->undo_retrans = tp->retrans_out;
2491 
2492 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
2493 			if (!(flag&FLAG_ECE))
2494 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
2495 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2496 			TCP_ECN_queue_cwr(tp);
2497 		}
2498 
2499 		tp->bytes_acked = 0;
2500 		tp->snd_cwnd_cnt = 0;
2501 		tcp_set_ca_state(sk, TCP_CA_Recovery);
2502 	}
2503 
2504 	if (do_lost || tcp_head_timedout(sk))
2505 		tcp_update_scoreboard(sk);
2506 	tcp_cwnd_down(sk, flag);
2507 	tcp_xmit_retransmit_queue(sk);
2508 }
2509 
2510 /* Read draft-ietf-tcplw-high-performance before mucking
2511  * with this code. (Supersedes RFC1323)
2512  */
2513 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2514 {
2515 	/* RTTM Rule: A TSecr value received in a segment is used to
2516 	 * update the averaged RTT measurement only if the segment
2517 	 * acknowledges some new data, i.e., only if it advances the
2518 	 * left edge of the send window.
2519 	 *
2520 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2521 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2522 	 *
2523 	 * Changed: reset backoff as soon as we see the first valid sample.
2524 	 * If we do not, we get strongly overestimated rto. With timestamps
2525 	 * samples are accepted even from very old segments: f.e., when rtt=1
2526 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2527 	 * answer arrives rto becomes 120 seconds! If at least one of segments
2528 	 * in window is lost... Voila.	 			--ANK (010210)
2529 	 */
2530 	struct tcp_sock *tp = tcp_sk(sk);
2531 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2532 	tcp_rtt_estimator(sk, seq_rtt);
2533 	tcp_set_rto(sk);
2534 	inet_csk(sk)->icsk_backoff = 0;
2535 	tcp_bound_rto(sk);
2536 }
2537 
2538 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2539 {
2540 	/* We don't have a timestamp. Can only use
2541 	 * packets that are not retransmitted to determine
2542 	 * rtt estimates. Also, we must not reset the
2543 	 * backoff for rto until we get a non-retransmitted
2544 	 * packet. This allows us to deal with a situation
2545 	 * where the network delay has increased suddenly.
2546 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2547 	 */
2548 
2549 	if (flag & FLAG_RETRANS_DATA_ACKED)
2550 		return;
2551 
2552 	tcp_rtt_estimator(sk, seq_rtt);
2553 	tcp_set_rto(sk);
2554 	inet_csk(sk)->icsk_backoff = 0;
2555 	tcp_bound_rto(sk);
2556 }
2557 
2558 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2559 				      const s32 seq_rtt)
2560 {
2561 	const struct tcp_sock *tp = tcp_sk(sk);
2562 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2563 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2564 		tcp_ack_saw_tstamp(sk, flag);
2565 	else if (seq_rtt >= 0)
2566 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
2567 }
2568 
2569 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2570 			   u32 in_flight, int good)
2571 {
2572 	const struct inet_connection_sock *icsk = inet_csk(sk);
2573 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2574 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2575 }
2576 
2577 /* Restart timer after forward progress on connection.
2578  * RFC2988 recommends to restart timer to now+rto.
2579  */
2580 static void tcp_rearm_rto(struct sock *sk)
2581 {
2582 	struct tcp_sock *tp = tcp_sk(sk);
2583 
2584 	if (!tp->packets_out) {
2585 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2586 	} else {
2587 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2588 	}
2589 }
2590 
2591 /* If we get here, the whole TSO packet has not been acked. */
2592 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2593 {
2594 	struct tcp_sock *tp = tcp_sk(sk);
2595 	u32 packets_acked;
2596 
2597 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2598 
2599 	packets_acked = tcp_skb_pcount(skb);
2600 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2601 		return 0;
2602 	packets_acked -= tcp_skb_pcount(skb);
2603 
2604 	if (packets_acked) {
2605 		BUG_ON(tcp_skb_pcount(skb) == 0);
2606 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2607 	}
2608 
2609 	return packets_acked;
2610 }
2611 
2612 /* Remove acknowledged frames from the retransmission queue. If our packet
2613  * is before the ack sequence we can discard it as it's confirmed to have
2614  * arrived at the other end.
2615  */
2616 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p)
2617 {
2618 	struct tcp_sock *tp = tcp_sk(sk);
2619 	const struct inet_connection_sock *icsk = inet_csk(sk);
2620 	struct sk_buff *skb;
2621 	u32 now = tcp_time_stamp;
2622 	int fully_acked = 1;
2623 	int flag = 0;
2624 	int prior_packets = tp->packets_out;
2625 	s32 seq_rtt = -1;
2626 	ktime_t last_ackt = net_invalid_timestamp();
2627 
2628 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2629 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2630 		u32 end_seq;
2631 		u32 packets_acked;
2632 		u8 sacked = scb->sacked;
2633 
2634 		if (after(scb->end_seq, tp->snd_una)) {
2635 			if (tcp_skb_pcount(skb) == 1 ||
2636 			    !after(tp->snd_una, scb->seq))
2637 				break;
2638 
2639 			packets_acked = tcp_tso_acked(sk, skb);
2640 			if (!packets_acked)
2641 				break;
2642 
2643 			fully_acked = 0;
2644 			end_seq = tp->snd_una;
2645 		} else {
2646 			packets_acked = tcp_skb_pcount(skb);
2647 			end_seq = scb->end_seq;
2648 		}
2649 
2650 		/* MTU probing checks */
2651 		if (fully_acked && icsk->icsk_mtup.probe_size &&
2652 		    !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2653 			tcp_mtup_probe_success(sk, skb);
2654 		}
2655 
2656 		if (sacked) {
2657 			if (sacked & TCPCB_RETRANS) {
2658 				if (sacked & TCPCB_SACKED_RETRANS)
2659 					tp->retrans_out -= packets_acked;
2660 				flag |= FLAG_RETRANS_DATA_ACKED;
2661 				seq_rtt = -1;
2662 				if ((flag & FLAG_DATA_ACKED) ||
2663 				    (packets_acked > 1))
2664 					flag |= FLAG_NONHEAD_RETRANS_ACKED;
2665 			} else if (seq_rtt < 0) {
2666 				seq_rtt = now - scb->when;
2667 				if (fully_acked)
2668 					last_ackt = skb->tstamp;
2669 			}
2670 
2671 			if (sacked & TCPCB_SACKED_ACKED)
2672 				tp->sacked_out -= packets_acked;
2673 			if (sacked & TCPCB_LOST)
2674 				tp->lost_out -= packets_acked;
2675 
2676 			if ((sacked & TCPCB_URG) && tp->urg_mode &&
2677 			    !before(end_seq, tp->snd_up))
2678 				tp->urg_mode = 0;
2679 		} else if (seq_rtt < 0) {
2680 			seq_rtt = now - scb->when;
2681 			if (fully_acked)
2682 				last_ackt = skb->tstamp;
2683 		}
2684 		tp->packets_out -= packets_acked;
2685 
2686 		/* Initial outgoing SYN's get put onto the write_queue
2687 		 * just like anything else we transmit.  It is not
2688 		 * true data, and if we misinform our callers that
2689 		 * this ACK acks real data, we will erroneously exit
2690 		 * connection startup slow start one packet too
2691 		 * quickly.  This is severely frowned upon behavior.
2692 		 */
2693 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2694 			flag |= FLAG_DATA_ACKED;
2695 		} else {
2696 			flag |= FLAG_SYN_ACKED;
2697 			tp->retrans_stamp = 0;
2698 		}
2699 
2700 		if (!fully_acked)
2701 			break;
2702 
2703 		tcp_unlink_write_queue(skb, sk);
2704 		sk_stream_free_skb(sk, skb);
2705 		tcp_clear_all_retrans_hints(tp);
2706 	}
2707 
2708 	if (flag & FLAG_ACKED) {
2709 		u32 pkts_acked = prior_packets - tp->packets_out;
2710 		const struct tcp_congestion_ops *ca_ops
2711 			= inet_csk(sk)->icsk_ca_ops;
2712 
2713 		tcp_ack_update_rtt(sk, flag, seq_rtt);
2714 		tcp_rearm_rto(sk);
2715 
2716 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2717 		/* hint's skb might be NULL but we don't need to care */
2718 		tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2719 					       tp->fastpath_cnt_hint);
2720 		if (tcp_is_reno(tp))
2721 			tcp_remove_reno_sacks(sk, pkts_acked);
2722 
2723 		if (ca_ops->pkts_acked) {
2724 			s32 rtt_us = -1;
2725 
2726 			/* Is the ACK triggering packet unambiguous? */
2727 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2728 				/* High resolution needed and available? */
2729 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2730 				    !ktime_equal(last_ackt,
2731 						 net_invalid_timestamp()))
2732 					rtt_us = ktime_us_delta(ktime_get_real(),
2733 								last_ackt);
2734 				else if (seq_rtt > 0)
2735 					rtt_us = jiffies_to_usecs(seq_rtt);
2736 			}
2737 
2738 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2739 		}
2740 	}
2741 
2742 #if FASTRETRANS_DEBUG > 0
2743 	BUG_TRAP((int)tp->sacked_out >= 0);
2744 	BUG_TRAP((int)tp->lost_out >= 0);
2745 	BUG_TRAP((int)tp->retrans_out >= 0);
2746 	if (!tp->packets_out && tcp_is_sack(tp)) {
2747 		icsk = inet_csk(sk);
2748 		if (tp->lost_out) {
2749 			printk(KERN_DEBUG "Leak l=%u %d\n",
2750 			       tp->lost_out, icsk->icsk_ca_state);
2751 			tp->lost_out = 0;
2752 		}
2753 		if (tp->sacked_out) {
2754 			printk(KERN_DEBUG "Leak s=%u %d\n",
2755 			       tp->sacked_out, icsk->icsk_ca_state);
2756 			tp->sacked_out = 0;
2757 		}
2758 		if (tp->retrans_out) {
2759 			printk(KERN_DEBUG "Leak r=%u %d\n",
2760 			       tp->retrans_out, icsk->icsk_ca_state);
2761 			tp->retrans_out = 0;
2762 		}
2763 	}
2764 #endif
2765 	*seq_rtt_p = seq_rtt;
2766 	return flag;
2767 }
2768 
2769 static void tcp_ack_probe(struct sock *sk)
2770 {
2771 	const struct tcp_sock *tp = tcp_sk(sk);
2772 	struct inet_connection_sock *icsk = inet_csk(sk);
2773 
2774 	/* Was it a usable window open? */
2775 
2776 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2777 		   tp->snd_una + tp->snd_wnd)) {
2778 		icsk->icsk_backoff = 0;
2779 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2780 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2781 		 * This function is not for random using!
2782 		 */
2783 	} else {
2784 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2785 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2786 					  TCP_RTO_MAX);
2787 	}
2788 }
2789 
2790 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2791 {
2792 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2793 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2794 }
2795 
2796 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2797 {
2798 	const struct tcp_sock *tp = tcp_sk(sk);
2799 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2800 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2801 }
2802 
2803 /* Check that window update is acceptable.
2804  * The function assumes that snd_una<=ack<=snd_next.
2805  */
2806 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2807 					const u32 ack_seq, const u32 nwin)
2808 {
2809 	return (after(ack, tp->snd_una) ||
2810 		after(ack_seq, tp->snd_wl1) ||
2811 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2812 }
2813 
2814 /* Update our send window.
2815  *
2816  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2817  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2818  */
2819 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2820 				 u32 ack_seq)
2821 {
2822 	struct tcp_sock *tp = tcp_sk(sk);
2823 	int flag = 0;
2824 	u32 nwin = ntohs(tcp_hdr(skb)->window);
2825 
2826 	if (likely(!tcp_hdr(skb)->syn))
2827 		nwin <<= tp->rx_opt.snd_wscale;
2828 
2829 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2830 		flag |= FLAG_WIN_UPDATE;
2831 		tcp_update_wl(tp, ack, ack_seq);
2832 
2833 		if (tp->snd_wnd != nwin) {
2834 			tp->snd_wnd = nwin;
2835 
2836 			/* Note, it is the only place, where
2837 			 * fast path is recovered for sending TCP.
2838 			 */
2839 			tp->pred_flags = 0;
2840 			tcp_fast_path_check(sk);
2841 
2842 			if (nwin > tp->max_window) {
2843 				tp->max_window = nwin;
2844 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2845 			}
2846 		}
2847 	}
2848 
2849 	tp->snd_una = ack;
2850 
2851 	return flag;
2852 }
2853 
2854 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2855  * continue in congestion avoidance.
2856  */
2857 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2858 {
2859 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2860 	tp->snd_cwnd_cnt = 0;
2861 	tp->bytes_acked = 0;
2862 	TCP_ECN_queue_cwr(tp);
2863 	tcp_moderate_cwnd(tp);
2864 }
2865 
2866 /* A conservative spurious RTO response algorithm: reduce cwnd using
2867  * rate halving and continue in congestion avoidance.
2868  */
2869 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2870 {
2871 	tcp_enter_cwr(sk, 0);
2872 }
2873 
2874 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2875 {
2876 	if (flag&FLAG_ECE)
2877 		tcp_ratehalving_spur_to_response(sk);
2878 	else
2879 		tcp_undo_cwr(sk, 1);
2880 }
2881 
2882 /* F-RTO spurious RTO detection algorithm (RFC4138)
2883  *
2884  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2885  * comments). State (ACK number) is kept in frto_counter. When ACK advances
2886  * window (but not to or beyond highest sequence sent before RTO):
2887  *   On First ACK,  send two new segments out.
2888  *   On Second ACK, RTO was likely spurious. Do spurious response (response
2889  *                  algorithm is not part of the F-RTO detection algorithm
2890  *                  given in RFC4138 but can be selected separately).
2891  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2892  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2893  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2894  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2895  *
2896  * Rationale: if the RTO was spurious, new ACKs should arrive from the
2897  * original window even after we transmit two new data segments.
2898  *
2899  * SACK version:
2900  *   on first step, wait until first cumulative ACK arrives, then move to
2901  *   the second step. In second step, the next ACK decides.
2902  *
2903  * F-RTO is implemented (mainly) in four functions:
2904  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
2905  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2906  *     called when tcp_use_frto() showed green light
2907  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2908  *   - tcp_enter_frto_loss() is called if there is not enough evidence
2909  *     to prove that the RTO is indeed spurious. It transfers the control
2910  *     from F-RTO to the conventional RTO recovery
2911  */
2912 static int tcp_process_frto(struct sock *sk, int flag)
2913 {
2914 	struct tcp_sock *tp = tcp_sk(sk);
2915 
2916 	tcp_verify_left_out(tp);
2917 
2918 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
2919 	if (flag&FLAG_DATA_ACKED)
2920 		inet_csk(sk)->icsk_retransmits = 0;
2921 
2922 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2923 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2924 		tp->undo_marker = 0;
2925 
2926 	if (!before(tp->snd_una, tp->frto_highmark)) {
2927 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2928 		return 1;
2929 	}
2930 
2931 	if (!IsSackFrto() || tcp_is_reno(tp)) {
2932 		/* RFC4138 shortcoming in step 2; should also have case c):
2933 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
2934 		 * data, winupdate
2935 		 */
2936 		if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2937 			return 1;
2938 
2939 		if (!(flag&FLAG_DATA_ACKED)) {
2940 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2941 					    flag);
2942 			return 1;
2943 		}
2944 	} else {
2945 		if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2946 			/* Prevent sending of new data. */
2947 			tp->snd_cwnd = min(tp->snd_cwnd,
2948 					   tcp_packets_in_flight(tp));
2949 			return 1;
2950 		}
2951 
2952 		if ((tp->frto_counter >= 2) &&
2953 		    (!(flag&FLAG_FORWARD_PROGRESS) ||
2954 		     ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2955 			/* RFC4138 shortcoming (see comment above) */
2956 			if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2957 				return 1;
2958 
2959 			tcp_enter_frto_loss(sk, 3, flag);
2960 			return 1;
2961 		}
2962 	}
2963 
2964 	if (tp->frto_counter == 1) {
2965 		/* Sending of the next skb must be allowed or no FRTO */
2966 		if (!tcp_send_head(sk) ||
2967 		    after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2968 				     tp->snd_una + tp->snd_wnd)) {
2969 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2970 					    flag);
2971 			return 1;
2972 		}
2973 
2974 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2975 		tp->frto_counter = 2;
2976 		return 1;
2977 	} else {
2978 		switch (sysctl_tcp_frto_response) {
2979 		case 2:
2980 			tcp_undo_spur_to_response(sk, flag);
2981 			break;
2982 		case 1:
2983 			tcp_conservative_spur_to_response(tp);
2984 			break;
2985 		default:
2986 			tcp_ratehalving_spur_to_response(sk);
2987 			break;
2988 		}
2989 		tp->frto_counter = 0;
2990 		tp->undo_marker = 0;
2991 		NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
2992 	}
2993 	return 0;
2994 }
2995 
2996 /* This routine deals with incoming acks, but not outgoing ones. */
2997 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2998 {
2999 	struct inet_connection_sock *icsk = inet_csk(sk);
3000 	struct tcp_sock *tp = tcp_sk(sk);
3001 	u32 prior_snd_una = tp->snd_una;
3002 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3003 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3004 	u32 prior_in_flight;
3005 	s32 seq_rtt;
3006 	int prior_packets;
3007 	int frto_cwnd = 0;
3008 
3009 	/* If the ack is newer than sent or older than previous acks
3010 	 * then we can probably ignore it.
3011 	 */
3012 	if (after(ack, tp->snd_nxt))
3013 		goto uninteresting_ack;
3014 
3015 	if (before(ack, prior_snd_una))
3016 		goto old_ack;
3017 
3018 	if (after(ack, prior_snd_una))
3019 		flag |= FLAG_SND_UNA_ADVANCED;
3020 
3021 	if (sysctl_tcp_abc) {
3022 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3023 			tp->bytes_acked += ack - prior_snd_una;
3024 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3025 			/* we assume just one segment left network */
3026 			tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3027 	}
3028 
3029 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3030 		/* Window is constant, pure forward advance.
3031 		 * No more checks are required.
3032 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3033 		 */
3034 		tcp_update_wl(tp, ack, ack_seq);
3035 		tp->snd_una = ack;
3036 		flag |= FLAG_WIN_UPDATE;
3037 
3038 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3039 
3040 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3041 	} else {
3042 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3043 			flag |= FLAG_DATA;
3044 		else
3045 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3046 
3047 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3048 
3049 		if (TCP_SKB_CB(skb)->sacked)
3050 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3051 
3052 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3053 			flag |= FLAG_ECE;
3054 
3055 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3056 	}
3057 
3058 	/* We passed data and got it acked, remove any soft error
3059 	 * log. Something worked...
3060 	 */
3061 	sk->sk_err_soft = 0;
3062 	tp->rcv_tstamp = tcp_time_stamp;
3063 	prior_packets = tp->packets_out;
3064 	if (!prior_packets)
3065 		goto no_queue;
3066 
3067 	prior_in_flight = tcp_packets_in_flight(tp);
3068 
3069 	/* See if we can take anything off of the retransmit queue. */
3070 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
3071 
3072 	/* Guarantee sacktag reordering detection against wrap-arounds */
3073 	if (before(tp->frto_highmark, tp->snd_una))
3074 		tp->frto_highmark = 0;
3075 	if (tp->frto_counter)
3076 		frto_cwnd = tcp_process_frto(sk, flag);
3077 
3078 	if (tcp_ack_is_dubious(sk, flag)) {
3079 		/* Advance CWND, if state allows this. */
3080 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3081 		    tcp_may_raise_cwnd(sk, flag))
3082 			tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3083 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3084 	} else {
3085 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3086 			tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3087 	}
3088 
3089 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3090 		dst_confirm(sk->sk_dst_cache);
3091 
3092 	return 1;
3093 
3094 no_queue:
3095 	icsk->icsk_probes_out = 0;
3096 
3097 	/* If this ack opens up a zero window, clear backoff.  It was
3098 	 * being used to time the probes, and is probably far higher than
3099 	 * it needs to be for normal retransmission.
3100 	 */
3101 	if (tcp_send_head(sk))
3102 		tcp_ack_probe(sk);
3103 	return 1;
3104 
3105 old_ack:
3106 	if (TCP_SKB_CB(skb)->sacked)
3107 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3108 
3109 uninteresting_ack:
3110 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3111 	return 0;
3112 }
3113 
3114 
3115 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3116  * But, this can also be called on packets in the established flow when
3117  * the fast version below fails.
3118  */
3119 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3120 {
3121 	unsigned char *ptr;
3122 	struct tcphdr *th = tcp_hdr(skb);
3123 	int length=(th->doff*4)-sizeof(struct tcphdr);
3124 
3125 	ptr = (unsigned char *)(th + 1);
3126 	opt_rx->saw_tstamp = 0;
3127 
3128 	while (length > 0) {
3129 		int opcode=*ptr++;
3130 		int opsize;
3131 
3132 		switch (opcode) {
3133 			case TCPOPT_EOL:
3134 				return;
3135 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3136 				length--;
3137 				continue;
3138 			default:
3139 				opsize=*ptr++;
3140 				if (opsize < 2) /* "silly options" */
3141 					return;
3142 				if (opsize > length)
3143 					return;	/* don't parse partial options */
3144 				switch (opcode) {
3145 				case TCPOPT_MSS:
3146 					if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3147 						u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3148 						if (in_mss) {
3149 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3150 								in_mss = opt_rx->user_mss;
3151 							opt_rx->mss_clamp = in_mss;
3152 						}
3153 					}
3154 					break;
3155 				case TCPOPT_WINDOW:
3156 					if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3157 						if (sysctl_tcp_window_scaling) {
3158 							__u8 snd_wscale = *(__u8 *) ptr;
3159 							opt_rx->wscale_ok = 1;
3160 							if (snd_wscale > 14) {
3161 								if (net_ratelimit())
3162 									printk(KERN_INFO "tcp_parse_options: Illegal window "
3163 									       "scaling value %d >14 received.\n",
3164 									       snd_wscale);
3165 								snd_wscale = 14;
3166 							}
3167 							opt_rx->snd_wscale = snd_wscale;
3168 						}
3169 					break;
3170 				case TCPOPT_TIMESTAMP:
3171 					if (opsize==TCPOLEN_TIMESTAMP) {
3172 						if ((estab && opt_rx->tstamp_ok) ||
3173 						    (!estab && sysctl_tcp_timestamps)) {
3174 							opt_rx->saw_tstamp = 1;
3175 							opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3176 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3177 						}
3178 					}
3179 					break;
3180 				case TCPOPT_SACK_PERM:
3181 					if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3182 						if (sysctl_tcp_sack) {
3183 							opt_rx->sack_ok = 1;
3184 							tcp_sack_reset(opt_rx);
3185 						}
3186 					}
3187 					break;
3188 
3189 				case TCPOPT_SACK:
3190 					if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3191 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3192 					   opt_rx->sack_ok) {
3193 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3194 					}
3195 					break;
3196 #ifdef CONFIG_TCP_MD5SIG
3197 				case TCPOPT_MD5SIG:
3198 					/*
3199 					 * The MD5 Hash has already been
3200 					 * checked (see tcp_v{4,6}_do_rcv()).
3201 					 */
3202 					break;
3203 #endif
3204 				}
3205 
3206 				ptr+=opsize-2;
3207 				length-=opsize;
3208 		}
3209 	}
3210 }
3211 
3212 /* Fast parse options. This hopes to only see timestamps.
3213  * If it is wrong it falls back on tcp_parse_options().
3214  */
3215 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3216 				  struct tcp_sock *tp)
3217 {
3218 	if (th->doff == sizeof(struct tcphdr)>>2) {
3219 		tp->rx_opt.saw_tstamp = 0;
3220 		return 0;
3221 	} else if (tp->rx_opt.tstamp_ok &&
3222 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3223 		__be32 *ptr = (__be32 *)(th + 1);
3224 		if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3225 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3226 			tp->rx_opt.saw_tstamp = 1;
3227 			++ptr;
3228 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3229 			++ptr;
3230 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3231 			return 1;
3232 		}
3233 	}
3234 	tcp_parse_options(skb, &tp->rx_opt, 1);
3235 	return 1;
3236 }
3237 
3238 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3239 {
3240 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3241 	tp->rx_opt.ts_recent_stamp = get_seconds();
3242 }
3243 
3244 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3245 {
3246 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3247 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3248 		 * extra check below makes sure this can only happen
3249 		 * for pure ACK frames.  -DaveM
3250 		 *
3251 		 * Not only, also it occurs for expired timestamps.
3252 		 */
3253 
3254 		if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3255 		   get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3256 			tcp_store_ts_recent(tp);
3257 	}
3258 }
3259 
3260 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3261  *
3262  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3263  * it can pass through stack. So, the following predicate verifies that
3264  * this segment is not used for anything but congestion avoidance or
3265  * fast retransmit. Moreover, we even are able to eliminate most of such
3266  * second order effects, if we apply some small "replay" window (~RTO)
3267  * to timestamp space.
3268  *
3269  * All these measures still do not guarantee that we reject wrapped ACKs
3270  * on networks with high bandwidth, when sequence space is recycled fastly,
3271  * but it guarantees that such events will be very rare and do not affect
3272  * connection seriously. This doesn't look nice, but alas, PAWS is really
3273  * buggy extension.
3274  *
3275  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3276  * states that events when retransmit arrives after original data are rare.
3277  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3278  * the biggest problem on large power networks even with minor reordering.
3279  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3280  * up to bandwidth of 18Gigabit/sec. 8) ]
3281  */
3282 
3283 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3284 {
3285 	struct tcp_sock *tp = tcp_sk(sk);
3286 	struct tcphdr *th = tcp_hdr(skb);
3287 	u32 seq = TCP_SKB_CB(skb)->seq;
3288 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3289 
3290 	return (/* 1. Pure ACK with correct sequence number. */
3291 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3292 
3293 		/* 2. ... and duplicate ACK. */
3294 		ack == tp->snd_una &&
3295 
3296 		/* 3. ... and does not update window. */
3297 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3298 
3299 		/* 4. ... and sits in replay window. */
3300 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3301 }
3302 
3303 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3304 {
3305 	const struct tcp_sock *tp = tcp_sk(sk);
3306 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3307 		get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3308 		!tcp_disordered_ack(sk, skb));
3309 }
3310 
3311 /* Check segment sequence number for validity.
3312  *
3313  * Segment controls are considered valid, if the segment
3314  * fits to the window after truncation to the window. Acceptability
3315  * of data (and SYN, FIN, of course) is checked separately.
3316  * See tcp_data_queue(), for example.
3317  *
3318  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3319  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3320  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3321  * (borrowed from freebsd)
3322  */
3323 
3324 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3325 {
3326 	return	!before(end_seq, tp->rcv_wup) &&
3327 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3328 }
3329 
3330 /* When we get a reset we do this. */
3331 static void tcp_reset(struct sock *sk)
3332 {
3333 	/* We want the right error as BSD sees it (and indeed as we do). */
3334 	switch (sk->sk_state) {
3335 		case TCP_SYN_SENT:
3336 			sk->sk_err = ECONNREFUSED;
3337 			break;
3338 		case TCP_CLOSE_WAIT:
3339 			sk->sk_err = EPIPE;
3340 			break;
3341 		case TCP_CLOSE:
3342 			return;
3343 		default:
3344 			sk->sk_err = ECONNRESET;
3345 	}
3346 
3347 	if (!sock_flag(sk, SOCK_DEAD))
3348 		sk->sk_error_report(sk);
3349 
3350 	tcp_done(sk);
3351 }
3352 
3353 /*
3354  * 	Process the FIN bit. This now behaves as it is supposed to work
3355  *	and the FIN takes effect when it is validly part of sequence
3356  *	space. Not before when we get holes.
3357  *
3358  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3359  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3360  *	TIME-WAIT)
3361  *
3362  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3363  *	close and we go into CLOSING (and later onto TIME-WAIT)
3364  *
3365  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3366  */
3367 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3368 {
3369 	struct tcp_sock *tp = tcp_sk(sk);
3370 
3371 	inet_csk_schedule_ack(sk);
3372 
3373 	sk->sk_shutdown |= RCV_SHUTDOWN;
3374 	sock_set_flag(sk, SOCK_DONE);
3375 
3376 	switch (sk->sk_state) {
3377 		case TCP_SYN_RECV:
3378 		case TCP_ESTABLISHED:
3379 			/* Move to CLOSE_WAIT */
3380 			tcp_set_state(sk, TCP_CLOSE_WAIT);
3381 			inet_csk(sk)->icsk_ack.pingpong = 1;
3382 			break;
3383 
3384 		case TCP_CLOSE_WAIT:
3385 		case TCP_CLOSING:
3386 			/* Received a retransmission of the FIN, do
3387 			 * nothing.
3388 			 */
3389 			break;
3390 		case TCP_LAST_ACK:
3391 			/* RFC793: Remain in the LAST-ACK state. */
3392 			break;
3393 
3394 		case TCP_FIN_WAIT1:
3395 			/* This case occurs when a simultaneous close
3396 			 * happens, we must ack the received FIN and
3397 			 * enter the CLOSING state.
3398 			 */
3399 			tcp_send_ack(sk);
3400 			tcp_set_state(sk, TCP_CLOSING);
3401 			break;
3402 		case TCP_FIN_WAIT2:
3403 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
3404 			tcp_send_ack(sk);
3405 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3406 			break;
3407 		default:
3408 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3409 			 * cases we should never reach this piece of code.
3410 			 */
3411 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3412 			       __FUNCTION__, sk->sk_state);
3413 			break;
3414 	}
3415 
3416 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3417 	 * Probably, we should reset in this case. For now drop them.
3418 	 */
3419 	__skb_queue_purge(&tp->out_of_order_queue);
3420 	if (tcp_is_sack(tp))
3421 		tcp_sack_reset(&tp->rx_opt);
3422 	sk_stream_mem_reclaim(sk);
3423 
3424 	if (!sock_flag(sk, SOCK_DEAD)) {
3425 		sk->sk_state_change(sk);
3426 
3427 		/* Do not send POLL_HUP for half duplex close. */
3428 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3429 		    sk->sk_state == TCP_CLOSE)
3430 			sk_wake_async(sk, 1, POLL_HUP);
3431 		else
3432 			sk_wake_async(sk, 1, POLL_IN);
3433 	}
3434 }
3435 
3436 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3437 {
3438 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3439 		if (before(seq, sp->start_seq))
3440 			sp->start_seq = seq;
3441 		if (after(end_seq, sp->end_seq))
3442 			sp->end_seq = end_seq;
3443 		return 1;
3444 	}
3445 	return 0;
3446 }
3447 
3448 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3449 {
3450 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3451 		if (before(seq, tp->rcv_nxt))
3452 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3453 		else
3454 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3455 
3456 		tp->rx_opt.dsack = 1;
3457 		tp->duplicate_sack[0].start_seq = seq;
3458 		tp->duplicate_sack[0].end_seq = end_seq;
3459 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3460 	}
3461 }
3462 
3463 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3464 {
3465 	if (!tp->rx_opt.dsack)
3466 		tcp_dsack_set(tp, seq, end_seq);
3467 	else
3468 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3469 }
3470 
3471 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3472 {
3473 	struct tcp_sock *tp = tcp_sk(sk);
3474 
3475 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3476 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3477 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3478 		tcp_enter_quickack_mode(sk);
3479 
3480 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3481 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3482 
3483 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3484 				end_seq = tp->rcv_nxt;
3485 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3486 		}
3487 	}
3488 
3489 	tcp_send_ack(sk);
3490 }
3491 
3492 /* These routines update the SACK block as out-of-order packets arrive or
3493  * in-order packets close up the sequence space.
3494  */
3495 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3496 {
3497 	int this_sack;
3498 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3499 	struct tcp_sack_block *swalk = sp+1;
3500 
3501 	/* See if the recent change to the first SACK eats into
3502 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3503 	 */
3504 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3505 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3506 			int i;
3507 
3508 			/* Zap SWALK, by moving every further SACK up by one slot.
3509 			 * Decrease num_sacks.
3510 			 */
3511 			tp->rx_opt.num_sacks--;
3512 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3513 			for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3514 				sp[i] = sp[i+1];
3515 			continue;
3516 		}
3517 		this_sack++, swalk++;
3518 	}
3519 }
3520 
3521 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3522 {
3523 	__u32 tmp;
3524 
3525 	tmp = sack1->start_seq;
3526 	sack1->start_seq = sack2->start_seq;
3527 	sack2->start_seq = tmp;
3528 
3529 	tmp = sack1->end_seq;
3530 	sack1->end_seq = sack2->end_seq;
3531 	sack2->end_seq = tmp;
3532 }
3533 
3534 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3535 {
3536 	struct tcp_sock *tp = tcp_sk(sk);
3537 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3538 	int cur_sacks = tp->rx_opt.num_sacks;
3539 	int this_sack;
3540 
3541 	if (!cur_sacks)
3542 		goto new_sack;
3543 
3544 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3545 		if (tcp_sack_extend(sp, seq, end_seq)) {
3546 			/* Rotate this_sack to the first one. */
3547 			for (; this_sack>0; this_sack--, sp--)
3548 				tcp_sack_swap(sp, sp-1);
3549 			if (cur_sacks > 1)
3550 				tcp_sack_maybe_coalesce(tp);
3551 			return;
3552 		}
3553 	}
3554 
3555 	/* Could not find an adjacent existing SACK, build a new one,
3556 	 * put it at the front, and shift everyone else down.  We
3557 	 * always know there is at least one SACK present already here.
3558 	 *
3559 	 * If the sack array is full, forget about the last one.
3560 	 */
3561 	if (this_sack >= 4) {
3562 		this_sack--;
3563 		tp->rx_opt.num_sacks--;
3564 		sp--;
3565 	}
3566 	for (; this_sack > 0; this_sack--, sp--)
3567 		*sp = *(sp-1);
3568 
3569 new_sack:
3570 	/* Build the new head SACK, and we're done. */
3571 	sp->start_seq = seq;
3572 	sp->end_seq = end_seq;
3573 	tp->rx_opt.num_sacks++;
3574 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3575 }
3576 
3577 /* RCV.NXT advances, some SACKs should be eaten. */
3578 
3579 static void tcp_sack_remove(struct tcp_sock *tp)
3580 {
3581 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3582 	int num_sacks = tp->rx_opt.num_sacks;
3583 	int this_sack;
3584 
3585 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3586 	if (skb_queue_empty(&tp->out_of_order_queue)) {
3587 		tp->rx_opt.num_sacks = 0;
3588 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3589 		return;
3590 	}
3591 
3592 	for (this_sack = 0; this_sack < num_sacks; ) {
3593 		/* Check if the start of the sack is covered by RCV.NXT. */
3594 		if (!before(tp->rcv_nxt, sp->start_seq)) {
3595 			int i;
3596 
3597 			/* RCV.NXT must cover all the block! */
3598 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3599 
3600 			/* Zap this SACK, by moving forward any other SACKS. */
3601 			for (i=this_sack+1; i < num_sacks; i++)
3602 				tp->selective_acks[i-1] = tp->selective_acks[i];
3603 			num_sacks--;
3604 			continue;
3605 		}
3606 		this_sack++;
3607 		sp++;
3608 	}
3609 	if (num_sacks != tp->rx_opt.num_sacks) {
3610 		tp->rx_opt.num_sacks = num_sacks;
3611 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3612 	}
3613 }
3614 
3615 /* This one checks to see if we can put data from the
3616  * out_of_order queue into the receive_queue.
3617  */
3618 static void tcp_ofo_queue(struct sock *sk)
3619 {
3620 	struct tcp_sock *tp = tcp_sk(sk);
3621 	__u32 dsack_high = tp->rcv_nxt;
3622 	struct sk_buff *skb;
3623 
3624 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3625 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3626 			break;
3627 
3628 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3629 			__u32 dsack = dsack_high;
3630 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3631 				dsack_high = TCP_SKB_CB(skb)->end_seq;
3632 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3633 		}
3634 
3635 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3636 			SOCK_DEBUG(sk, "ofo packet was already received \n");
3637 			__skb_unlink(skb, &tp->out_of_order_queue);
3638 			__kfree_skb(skb);
3639 			continue;
3640 		}
3641 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3642 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3643 			   TCP_SKB_CB(skb)->end_seq);
3644 
3645 		__skb_unlink(skb, &tp->out_of_order_queue);
3646 		__skb_queue_tail(&sk->sk_receive_queue, skb);
3647 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3648 		if (tcp_hdr(skb)->fin)
3649 			tcp_fin(skb, sk, tcp_hdr(skb));
3650 	}
3651 }
3652 
3653 static int tcp_prune_queue(struct sock *sk);
3654 
3655 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3656 {
3657 	struct tcphdr *th = tcp_hdr(skb);
3658 	struct tcp_sock *tp = tcp_sk(sk);
3659 	int eaten = -1;
3660 
3661 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3662 		goto drop;
3663 
3664 	__skb_pull(skb, th->doff*4);
3665 
3666 	TCP_ECN_accept_cwr(tp, skb);
3667 
3668 	if (tp->rx_opt.dsack) {
3669 		tp->rx_opt.dsack = 0;
3670 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3671 						    4 - tp->rx_opt.tstamp_ok);
3672 	}
3673 
3674 	/*  Queue data for delivery to the user.
3675 	 *  Packets in sequence go to the receive queue.
3676 	 *  Out of sequence packets to the out_of_order_queue.
3677 	 */
3678 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3679 		if (tcp_receive_window(tp) == 0)
3680 			goto out_of_window;
3681 
3682 		/* Ok. In sequence. In window. */
3683 		if (tp->ucopy.task == current &&
3684 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3685 		    sock_owned_by_user(sk) && !tp->urg_data) {
3686 			int chunk = min_t(unsigned int, skb->len,
3687 							tp->ucopy.len);
3688 
3689 			__set_current_state(TASK_RUNNING);
3690 
3691 			local_bh_enable();
3692 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3693 				tp->ucopy.len -= chunk;
3694 				tp->copied_seq += chunk;
3695 				eaten = (chunk == skb->len && !th->fin);
3696 				tcp_rcv_space_adjust(sk);
3697 			}
3698 			local_bh_disable();
3699 		}
3700 
3701 		if (eaten <= 0) {
3702 queue_and_out:
3703 			if (eaten < 0 &&
3704 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3705 			     !sk_stream_rmem_schedule(sk, skb))) {
3706 				if (tcp_prune_queue(sk) < 0 ||
3707 				    !sk_stream_rmem_schedule(sk, skb))
3708 					goto drop;
3709 			}
3710 			sk_stream_set_owner_r(skb, sk);
3711 			__skb_queue_tail(&sk->sk_receive_queue, skb);
3712 		}
3713 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3714 		if (skb->len)
3715 			tcp_event_data_recv(sk, skb);
3716 		if (th->fin)
3717 			tcp_fin(skb, sk, th);
3718 
3719 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
3720 			tcp_ofo_queue(sk);
3721 
3722 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
3723 			 * gap in queue is filled.
3724 			 */
3725 			if (skb_queue_empty(&tp->out_of_order_queue))
3726 				inet_csk(sk)->icsk_ack.pingpong = 0;
3727 		}
3728 
3729 		if (tp->rx_opt.num_sacks)
3730 			tcp_sack_remove(tp);
3731 
3732 		tcp_fast_path_check(sk);
3733 
3734 		if (eaten > 0)
3735 			__kfree_skb(skb);
3736 		else if (!sock_flag(sk, SOCK_DEAD))
3737 			sk->sk_data_ready(sk, 0);
3738 		return;
3739 	}
3740 
3741 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3742 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3743 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3744 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3745 
3746 out_of_window:
3747 		tcp_enter_quickack_mode(sk);
3748 		inet_csk_schedule_ack(sk);
3749 drop:
3750 		__kfree_skb(skb);
3751 		return;
3752 	}
3753 
3754 	/* Out of window. F.e. zero window probe. */
3755 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3756 		goto out_of_window;
3757 
3758 	tcp_enter_quickack_mode(sk);
3759 
3760 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3761 		/* Partial packet, seq < rcv_next < end_seq */
3762 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3763 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3764 			   TCP_SKB_CB(skb)->end_seq);
3765 
3766 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3767 
3768 		/* If window is closed, drop tail of packet. But after
3769 		 * remembering D-SACK for its head made in previous line.
3770 		 */
3771 		if (!tcp_receive_window(tp))
3772 			goto out_of_window;
3773 		goto queue_and_out;
3774 	}
3775 
3776 	TCP_ECN_check_ce(tp, skb);
3777 
3778 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3779 	    !sk_stream_rmem_schedule(sk, skb)) {
3780 		if (tcp_prune_queue(sk) < 0 ||
3781 		    !sk_stream_rmem_schedule(sk, skb))
3782 			goto drop;
3783 	}
3784 
3785 	/* Disable header prediction. */
3786 	tp->pred_flags = 0;
3787 	inet_csk_schedule_ack(sk);
3788 
3789 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3790 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3791 
3792 	sk_stream_set_owner_r(skb, sk);
3793 
3794 	if (!skb_peek(&tp->out_of_order_queue)) {
3795 		/* Initial out of order segment, build 1 SACK. */
3796 		if (tcp_is_sack(tp)) {
3797 			tp->rx_opt.num_sacks = 1;
3798 			tp->rx_opt.dsack     = 0;
3799 			tp->rx_opt.eff_sacks = 1;
3800 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3801 			tp->selective_acks[0].end_seq =
3802 						TCP_SKB_CB(skb)->end_seq;
3803 		}
3804 		__skb_queue_head(&tp->out_of_order_queue,skb);
3805 	} else {
3806 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3807 		u32 seq = TCP_SKB_CB(skb)->seq;
3808 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3809 
3810 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3811 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3812 
3813 			if (!tp->rx_opt.num_sacks ||
3814 			    tp->selective_acks[0].end_seq != seq)
3815 				goto add_sack;
3816 
3817 			/* Common case: data arrive in order after hole. */
3818 			tp->selective_acks[0].end_seq = end_seq;
3819 			return;
3820 		}
3821 
3822 		/* Find place to insert this segment. */
3823 		do {
3824 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3825 				break;
3826 		} while ((skb1 = skb1->prev) !=
3827 			 (struct sk_buff*)&tp->out_of_order_queue);
3828 
3829 		/* Do skb overlap to previous one? */
3830 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3831 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3832 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3833 				/* All the bits are present. Drop. */
3834 				__kfree_skb(skb);
3835 				tcp_dsack_set(tp, seq, end_seq);
3836 				goto add_sack;
3837 			}
3838 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3839 				/* Partial overlap. */
3840 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3841 			} else {
3842 				skb1 = skb1->prev;
3843 			}
3844 		}
3845 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3846 
3847 		/* And clean segments covered by new one as whole. */
3848 		while ((skb1 = skb->next) !=
3849 		       (struct sk_buff*)&tp->out_of_order_queue &&
3850 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3851 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3852 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3853 			       break;
3854 		       }
3855 		       __skb_unlink(skb1, &tp->out_of_order_queue);
3856 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3857 		       __kfree_skb(skb1);
3858 		}
3859 
3860 add_sack:
3861 		if (tcp_is_sack(tp))
3862 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3863 	}
3864 }
3865 
3866 /* Collapse contiguous sequence of skbs head..tail with
3867  * sequence numbers start..end.
3868  * Segments with FIN/SYN are not collapsed (only because this
3869  * simplifies code)
3870  */
3871 static void
3872 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3873 	     struct sk_buff *head, struct sk_buff *tail,
3874 	     u32 start, u32 end)
3875 {
3876 	struct sk_buff *skb;
3877 
3878 	/* First, check that queue is collapsible and find
3879 	 * the point where collapsing can be useful. */
3880 	for (skb = head; skb != tail; ) {
3881 		/* No new bits? It is possible on ofo queue. */
3882 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3883 			struct sk_buff *next = skb->next;
3884 			__skb_unlink(skb, list);
3885 			__kfree_skb(skb);
3886 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3887 			skb = next;
3888 			continue;
3889 		}
3890 
3891 		/* The first skb to collapse is:
3892 		 * - not SYN/FIN and
3893 		 * - bloated or contains data before "start" or
3894 		 *   overlaps to the next one.
3895 		 */
3896 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3897 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3898 		     before(TCP_SKB_CB(skb)->seq, start) ||
3899 		     (skb->next != tail &&
3900 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3901 			break;
3902 
3903 		/* Decided to skip this, advance start seq. */
3904 		start = TCP_SKB_CB(skb)->end_seq;
3905 		skb = skb->next;
3906 	}
3907 	if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3908 		return;
3909 
3910 	while (before(start, end)) {
3911 		struct sk_buff *nskb;
3912 		int header = skb_headroom(skb);
3913 		int copy = SKB_MAX_ORDER(header, 0);
3914 
3915 		/* Too big header? This can happen with IPv6. */
3916 		if (copy < 0)
3917 			return;
3918 		if (end-start < copy)
3919 			copy = end-start;
3920 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3921 		if (!nskb)
3922 			return;
3923 
3924 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3925 		skb_set_network_header(nskb, (skb_network_header(skb) -
3926 					      skb->head));
3927 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
3928 						skb->head));
3929 		skb_reserve(nskb, header);
3930 		memcpy(nskb->head, skb->head, header);
3931 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3932 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3933 		__skb_insert(nskb, skb->prev, skb, list);
3934 		sk_stream_set_owner_r(nskb, sk);
3935 
3936 		/* Copy data, releasing collapsed skbs. */
3937 		while (copy > 0) {
3938 			int offset = start - TCP_SKB_CB(skb)->seq;
3939 			int size = TCP_SKB_CB(skb)->end_seq - start;
3940 
3941 			BUG_ON(offset < 0);
3942 			if (size > 0) {
3943 				size = min(copy, size);
3944 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3945 					BUG();
3946 				TCP_SKB_CB(nskb)->end_seq += size;
3947 				copy -= size;
3948 				start += size;
3949 			}
3950 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3951 				struct sk_buff *next = skb->next;
3952 				__skb_unlink(skb, list);
3953 				__kfree_skb(skb);
3954 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3955 				skb = next;
3956 				if (skb == tail ||
3957 				    tcp_hdr(skb)->syn ||
3958 				    tcp_hdr(skb)->fin)
3959 					return;
3960 			}
3961 		}
3962 	}
3963 }
3964 
3965 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3966  * and tcp_collapse() them until all the queue is collapsed.
3967  */
3968 static void tcp_collapse_ofo_queue(struct sock *sk)
3969 {
3970 	struct tcp_sock *tp = tcp_sk(sk);
3971 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3972 	struct sk_buff *head;
3973 	u32 start, end;
3974 
3975 	if (skb == NULL)
3976 		return;
3977 
3978 	start = TCP_SKB_CB(skb)->seq;
3979 	end = TCP_SKB_CB(skb)->end_seq;
3980 	head = skb;
3981 
3982 	for (;;) {
3983 		skb = skb->next;
3984 
3985 		/* Segment is terminated when we see gap or when
3986 		 * we are at the end of all the queue. */
3987 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3988 		    after(TCP_SKB_CB(skb)->seq, end) ||
3989 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3990 			tcp_collapse(sk, &tp->out_of_order_queue,
3991 				     head, skb, start, end);
3992 			head = skb;
3993 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3994 				break;
3995 			/* Start new segment */
3996 			start = TCP_SKB_CB(skb)->seq;
3997 			end = TCP_SKB_CB(skb)->end_seq;
3998 		} else {
3999 			if (before(TCP_SKB_CB(skb)->seq, start))
4000 				start = TCP_SKB_CB(skb)->seq;
4001 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4002 				end = TCP_SKB_CB(skb)->end_seq;
4003 		}
4004 	}
4005 }
4006 
4007 /* Reduce allocated memory if we can, trying to get
4008  * the socket within its memory limits again.
4009  *
4010  * Return less than zero if we should start dropping frames
4011  * until the socket owning process reads some of the data
4012  * to stabilize the situation.
4013  */
4014 static int tcp_prune_queue(struct sock *sk)
4015 {
4016 	struct tcp_sock *tp = tcp_sk(sk);
4017 
4018 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4019 
4020 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
4021 
4022 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4023 		tcp_clamp_window(sk);
4024 	else if (tcp_memory_pressure)
4025 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4026 
4027 	tcp_collapse_ofo_queue(sk);
4028 	tcp_collapse(sk, &sk->sk_receive_queue,
4029 		     sk->sk_receive_queue.next,
4030 		     (struct sk_buff*)&sk->sk_receive_queue,
4031 		     tp->copied_seq, tp->rcv_nxt);
4032 	sk_stream_mem_reclaim(sk);
4033 
4034 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4035 		return 0;
4036 
4037 	/* Collapsing did not help, destructive actions follow.
4038 	 * This must not ever occur. */
4039 
4040 	/* First, purge the out_of_order queue. */
4041 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4042 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
4043 		__skb_queue_purge(&tp->out_of_order_queue);
4044 
4045 		/* Reset SACK state.  A conforming SACK implementation will
4046 		 * do the same at a timeout based retransmit.  When a connection
4047 		 * is in a sad state like this, we care only about integrity
4048 		 * of the connection not performance.
4049 		 */
4050 		if (tcp_is_sack(tp))
4051 			tcp_sack_reset(&tp->rx_opt);
4052 		sk_stream_mem_reclaim(sk);
4053 	}
4054 
4055 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4056 		return 0;
4057 
4058 	/* If we are really being abused, tell the caller to silently
4059 	 * drop receive data on the floor.  It will get retransmitted
4060 	 * and hopefully then we'll have sufficient space.
4061 	 */
4062 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4063 
4064 	/* Massive buffer overcommit. */
4065 	tp->pred_flags = 0;
4066 	return -1;
4067 }
4068 
4069 
4070 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4071  * As additional protections, we do not touch cwnd in retransmission phases,
4072  * and if application hit its sndbuf limit recently.
4073  */
4074 void tcp_cwnd_application_limited(struct sock *sk)
4075 {
4076 	struct tcp_sock *tp = tcp_sk(sk);
4077 
4078 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4079 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4080 		/* Limited by application or receiver window. */
4081 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4082 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4083 		if (win_used < tp->snd_cwnd) {
4084 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4085 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4086 		}
4087 		tp->snd_cwnd_used = 0;
4088 	}
4089 	tp->snd_cwnd_stamp = tcp_time_stamp;
4090 }
4091 
4092 static int tcp_should_expand_sndbuf(struct sock *sk)
4093 {
4094 	struct tcp_sock *tp = tcp_sk(sk);
4095 
4096 	/* If the user specified a specific send buffer setting, do
4097 	 * not modify it.
4098 	 */
4099 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4100 		return 0;
4101 
4102 	/* If we are under global TCP memory pressure, do not expand.  */
4103 	if (tcp_memory_pressure)
4104 		return 0;
4105 
4106 	/* If we are under soft global TCP memory pressure, do not expand.  */
4107 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4108 		return 0;
4109 
4110 	/* If we filled the congestion window, do not expand.  */
4111 	if (tp->packets_out >= tp->snd_cwnd)
4112 		return 0;
4113 
4114 	return 1;
4115 }
4116 
4117 /* When incoming ACK allowed to free some skb from write_queue,
4118  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4119  * on the exit from tcp input handler.
4120  *
4121  * PROBLEM: sndbuf expansion does not work well with largesend.
4122  */
4123 static void tcp_new_space(struct sock *sk)
4124 {
4125 	struct tcp_sock *tp = tcp_sk(sk);
4126 
4127 	if (tcp_should_expand_sndbuf(sk)) {
4128 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4129 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4130 		    demanded = max_t(unsigned int, tp->snd_cwnd,
4131 						   tp->reordering + 1);
4132 		sndmem *= 2*demanded;
4133 		if (sndmem > sk->sk_sndbuf)
4134 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4135 		tp->snd_cwnd_stamp = tcp_time_stamp;
4136 	}
4137 
4138 	sk->sk_write_space(sk);
4139 }
4140 
4141 static void tcp_check_space(struct sock *sk)
4142 {
4143 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4144 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4145 		if (sk->sk_socket &&
4146 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4147 			tcp_new_space(sk);
4148 	}
4149 }
4150 
4151 static inline void tcp_data_snd_check(struct sock *sk)
4152 {
4153 	tcp_push_pending_frames(sk);
4154 	tcp_check_space(sk);
4155 }
4156 
4157 /*
4158  * Check if sending an ack is needed.
4159  */
4160 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4161 {
4162 	struct tcp_sock *tp = tcp_sk(sk);
4163 
4164 	    /* More than one full frame received... */
4165 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4166 	     /* ... and right edge of window advances far enough.
4167 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4168 	      */
4169 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4170 	    /* We ACK each frame or... */
4171 	    tcp_in_quickack_mode(sk) ||
4172 	    /* We have out of order data. */
4173 	    (ofo_possible &&
4174 	     skb_peek(&tp->out_of_order_queue))) {
4175 		/* Then ack it now */
4176 		tcp_send_ack(sk);
4177 	} else {
4178 		/* Else, send delayed ack. */
4179 		tcp_send_delayed_ack(sk);
4180 	}
4181 }
4182 
4183 static inline void tcp_ack_snd_check(struct sock *sk)
4184 {
4185 	if (!inet_csk_ack_scheduled(sk)) {
4186 		/* We sent a data segment already. */
4187 		return;
4188 	}
4189 	__tcp_ack_snd_check(sk, 1);
4190 }
4191 
4192 /*
4193  *	This routine is only called when we have urgent data
4194  *	signaled. Its the 'slow' part of tcp_urg. It could be
4195  *	moved inline now as tcp_urg is only called from one
4196  *	place. We handle URGent data wrong. We have to - as
4197  *	BSD still doesn't use the correction from RFC961.
4198  *	For 1003.1g we should support a new option TCP_STDURG to permit
4199  *	either form (or just set the sysctl tcp_stdurg).
4200  */
4201 
4202 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4203 {
4204 	struct tcp_sock *tp = tcp_sk(sk);
4205 	u32 ptr = ntohs(th->urg_ptr);
4206 
4207 	if (ptr && !sysctl_tcp_stdurg)
4208 		ptr--;
4209 	ptr += ntohl(th->seq);
4210 
4211 	/* Ignore urgent data that we've already seen and read. */
4212 	if (after(tp->copied_seq, ptr))
4213 		return;
4214 
4215 	/* Do not replay urg ptr.
4216 	 *
4217 	 * NOTE: interesting situation not covered by specs.
4218 	 * Misbehaving sender may send urg ptr, pointing to segment,
4219 	 * which we already have in ofo queue. We are not able to fetch
4220 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4221 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4222 	 * situations. But it is worth to think about possibility of some
4223 	 * DoSes using some hypothetical application level deadlock.
4224 	 */
4225 	if (before(ptr, tp->rcv_nxt))
4226 		return;
4227 
4228 	/* Do we already have a newer (or duplicate) urgent pointer? */
4229 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4230 		return;
4231 
4232 	/* Tell the world about our new urgent pointer. */
4233 	sk_send_sigurg(sk);
4234 
4235 	/* We may be adding urgent data when the last byte read was
4236 	 * urgent. To do this requires some care. We cannot just ignore
4237 	 * tp->copied_seq since we would read the last urgent byte again
4238 	 * as data, nor can we alter copied_seq until this data arrives
4239 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4240 	 *
4241 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4242 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4243 	 * and expect that both A and B disappear from stream. This is _wrong_.
4244 	 * Though this happens in BSD with high probability, this is occasional.
4245 	 * Any application relying on this is buggy. Note also, that fix "works"
4246 	 * only in this artificial test. Insert some normal data between A and B and we will
4247 	 * decline of BSD again. Verdict: it is better to remove to trap
4248 	 * buggy users.
4249 	 */
4250 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4251 	    !sock_flag(sk, SOCK_URGINLINE) &&
4252 	    tp->copied_seq != tp->rcv_nxt) {
4253 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4254 		tp->copied_seq++;
4255 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4256 			__skb_unlink(skb, &sk->sk_receive_queue);
4257 			__kfree_skb(skb);
4258 		}
4259 	}
4260 
4261 	tp->urg_data   = TCP_URG_NOTYET;
4262 	tp->urg_seq    = ptr;
4263 
4264 	/* Disable header prediction. */
4265 	tp->pred_flags = 0;
4266 }
4267 
4268 /* This is the 'fast' part of urgent handling. */
4269 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4270 {
4271 	struct tcp_sock *tp = tcp_sk(sk);
4272 
4273 	/* Check if we get a new urgent pointer - normally not. */
4274 	if (th->urg)
4275 		tcp_check_urg(sk,th);
4276 
4277 	/* Do we wait for any urgent data? - normally not... */
4278 	if (tp->urg_data == TCP_URG_NOTYET) {
4279 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4280 			  th->syn;
4281 
4282 		/* Is the urgent pointer pointing into this packet? */
4283 		if (ptr < skb->len) {
4284 			u8 tmp;
4285 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4286 				BUG();
4287 			tp->urg_data = TCP_URG_VALID | tmp;
4288 			if (!sock_flag(sk, SOCK_DEAD))
4289 				sk->sk_data_ready(sk, 0);
4290 		}
4291 	}
4292 }
4293 
4294 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4295 {
4296 	struct tcp_sock *tp = tcp_sk(sk);
4297 	int chunk = skb->len - hlen;
4298 	int err;
4299 
4300 	local_bh_enable();
4301 	if (skb_csum_unnecessary(skb))
4302 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4303 	else
4304 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4305 						       tp->ucopy.iov);
4306 
4307 	if (!err) {
4308 		tp->ucopy.len -= chunk;
4309 		tp->copied_seq += chunk;
4310 		tcp_rcv_space_adjust(sk);
4311 	}
4312 
4313 	local_bh_disable();
4314 	return err;
4315 }
4316 
4317 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4318 {
4319 	__sum16 result;
4320 
4321 	if (sock_owned_by_user(sk)) {
4322 		local_bh_enable();
4323 		result = __tcp_checksum_complete(skb);
4324 		local_bh_disable();
4325 	} else {
4326 		result = __tcp_checksum_complete(skb);
4327 	}
4328 	return result;
4329 }
4330 
4331 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4332 {
4333 	return !skb_csum_unnecessary(skb) &&
4334 		__tcp_checksum_complete_user(sk, skb);
4335 }
4336 
4337 #ifdef CONFIG_NET_DMA
4338 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4339 {
4340 	struct tcp_sock *tp = tcp_sk(sk);
4341 	int chunk = skb->len - hlen;
4342 	int dma_cookie;
4343 	int copied_early = 0;
4344 
4345 	if (tp->ucopy.wakeup)
4346 		return 0;
4347 
4348 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4349 		tp->ucopy.dma_chan = get_softnet_dma();
4350 
4351 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4352 
4353 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4354 			skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4355 
4356 		if (dma_cookie < 0)
4357 			goto out;
4358 
4359 		tp->ucopy.dma_cookie = dma_cookie;
4360 		copied_early = 1;
4361 
4362 		tp->ucopy.len -= chunk;
4363 		tp->copied_seq += chunk;
4364 		tcp_rcv_space_adjust(sk);
4365 
4366 		if ((tp->ucopy.len == 0) ||
4367 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4368 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4369 			tp->ucopy.wakeup = 1;
4370 			sk->sk_data_ready(sk, 0);
4371 		}
4372 	} else if (chunk > 0) {
4373 		tp->ucopy.wakeup = 1;
4374 		sk->sk_data_ready(sk, 0);
4375 	}
4376 out:
4377 	return copied_early;
4378 }
4379 #endif /* CONFIG_NET_DMA */
4380 
4381 /*
4382  *	TCP receive function for the ESTABLISHED state.
4383  *
4384  *	It is split into a fast path and a slow path. The fast path is
4385  * 	disabled when:
4386  *	- A zero window was announced from us - zero window probing
4387  *        is only handled properly in the slow path.
4388  *	- Out of order segments arrived.
4389  *	- Urgent data is expected.
4390  *	- There is no buffer space left
4391  *	- Unexpected TCP flags/window values/header lengths are received
4392  *	  (detected by checking the TCP header against pred_flags)
4393  *	- Data is sent in both directions. Fast path only supports pure senders
4394  *	  or pure receivers (this means either the sequence number or the ack
4395  *	  value must stay constant)
4396  *	- Unexpected TCP option.
4397  *
4398  *	When these conditions are not satisfied it drops into a standard
4399  *	receive procedure patterned after RFC793 to handle all cases.
4400  *	The first three cases are guaranteed by proper pred_flags setting,
4401  *	the rest is checked inline. Fast processing is turned on in
4402  *	tcp_data_queue when everything is OK.
4403  */
4404 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4405 			struct tcphdr *th, unsigned len)
4406 {
4407 	struct tcp_sock *tp = tcp_sk(sk);
4408 
4409 	/*
4410 	 *	Header prediction.
4411 	 *	The code loosely follows the one in the famous
4412 	 *	"30 instruction TCP receive" Van Jacobson mail.
4413 	 *
4414 	 *	Van's trick is to deposit buffers into socket queue
4415 	 *	on a device interrupt, to call tcp_recv function
4416 	 *	on the receive process context and checksum and copy
4417 	 *	the buffer to user space. smart...
4418 	 *
4419 	 *	Our current scheme is not silly either but we take the
4420 	 *	extra cost of the net_bh soft interrupt processing...
4421 	 *	We do checksum and copy also but from device to kernel.
4422 	 */
4423 
4424 	tp->rx_opt.saw_tstamp = 0;
4425 
4426 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
4427 	 *	if header_prediction is to be made
4428 	 *	'S' will always be tp->tcp_header_len >> 2
4429 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
4430 	 *  turn it off	(when there are holes in the receive
4431 	 *	 space for instance)
4432 	 *	PSH flag is ignored.
4433 	 */
4434 
4435 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4436 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4437 		int tcp_header_len = tp->tcp_header_len;
4438 
4439 		/* Timestamp header prediction: tcp_header_len
4440 		 * is automatically equal to th->doff*4 due to pred_flags
4441 		 * match.
4442 		 */
4443 
4444 		/* Check timestamp */
4445 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4446 			__be32 *ptr = (__be32 *)(th + 1);
4447 
4448 			/* No? Slow path! */
4449 			if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4450 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4451 				goto slow_path;
4452 
4453 			tp->rx_opt.saw_tstamp = 1;
4454 			++ptr;
4455 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
4456 			++ptr;
4457 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4458 
4459 			/* If PAWS failed, check it more carefully in slow path */
4460 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4461 				goto slow_path;
4462 
4463 			/* DO NOT update ts_recent here, if checksum fails
4464 			 * and timestamp was corrupted part, it will result
4465 			 * in a hung connection since we will drop all
4466 			 * future packets due to the PAWS test.
4467 			 */
4468 		}
4469 
4470 		if (len <= tcp_header_len) {
4471 			/* Bulk data transfer: sender */
4472 			if (len == tcp_header_len) {
4473 				/* Predicted packet is in window by definition.
4474 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4475 				 * Hence, check seq<=rcv_wup reduces to:
4476 				 */
4477 				if (tcp_header_len ==
4478 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4479 				    tp->rcv_nxt == tp->rcv_wup)
4480 					tcp_store_ts_recent(tp);
4481 
4482 				/* We know that such packets are checksummed
4483 				 * on entry.
4484 				 */
4485 				tcp_ack(sk, skb, 0);
4486 				__kfree_skb(skb);
4487 				tcp_data_snd_check(sk);
4488 				return 0;
4489 			} else { /* Header too small */
4490 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
4491 				goto discard;
4492 			}
4493 		} else {
4494 			int eaten = 0;
4495 			int copied_early = 0;
4496 
4497 			if (tp->copied_seq == tp->rcv_nxt &&
4498 			    len - tcp_header_len <= tp->ucopy.len) {
4499 #ifdef CONFIG_NET_DMA
4500 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4501 					copied_early = 1;
4502 					eaten = 1;
4503 				}
4504 #endif
4505 				if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4506 					__set_current_state(TASK_RUNNING);
4507 
4508 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4509 						eaten = 1;
4510 				}
4511 				if (eaten) {
4512 					/* Predicted packet is in window by definition.
4513 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4514 					 * Hence, check seq<=rcv_wup reduces to:
4515 					 */
4516 					if (tcp_header_len ==
4517 					    (sizeof(struct tcphdr) +
4518 					     TCPOLEN_TSTAMP_ALIGNED) &&
4519 					    tp->rcv_nxt == tp->rcv_wup)
4520 						tcp_store_ts_recent(tp);
4521 
4522 					tcp_rcv_rtt_measure_ts(sk, skb);
4523 
4524 					__skb_pull(skb, tcp_header_len);
4525 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4526 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4527 				}
4528 				if (copied_early)
4529 					tcp_cleanup_rbuf(sk, skb->len);
4530 			}
4531 			if (!eaten) {
4532 				if (tcp_checksum_complete_user(sk, skb))
4533 					goto csum_error;
4534 
4535 				/* Predicted packet is in window by definition.
4536 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4537 				 * Hence, check seq<=rcv_wup reduces to:
4538 				 */
4539 				if (tcp_header_len ==
4540 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4541 				    tp->rcv_nxt == tp->rcv_wup)
4542 					tcp_store_ts_recent(tp);
4543 
4544 				tcp_rcv_rtt_measure_ts(sk, skb);
4545 
4546 				if ((int)skb->truesize > sk->sk_forward_alloc)
4547 					goto step5;
4548 
4549 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4550 
4551 				/* Bulk data transfer: receiver */
4552 				__skb_pull(skb,tcp_header_len);
4553 				__skb_queue_tail(&sk->sk_receive_queue, skb);
4554 				sk_stream_set_owner_r(skb, sk);
4555 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4556 			}
4557 
4558 			tcp_event_data_recv(sk, skb);
4559 
4560 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4561 				/* Well, only one small jumplet in fast path... */
4562 				tcp_ack(sk, skb, FLAG_DATA);
4563 				tcp_data_snd_check(sk);
4564 				if (!inet_csk_ack_scheduled(sk))
4565 					goto no_ack;
4566 			}
4567 
4568 			__tcp_ack_snd_check(sk, 0);
4569 no_ack:
4570 #ifdef CONFIG_NET_DMA
4571 			if (copied_early)
4572 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
4573 			else
4574 #endif
4575 			if (eaten)
4576 				__kfree_skb(skb);
4577 			else
4578 				sk->sk_data_ready(sk, 0);
4579 			return 0;
4580 		}
4581 	}
4582 
4583 slow_path:
4584 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4585 		goto csum_error;
4586 
4587 	/*
4588 	 * RFC1323: H1. Apply PAWS check first.
4589 	 */
4590 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4591 	    tcp_paws_discard(sk, skb)) {
4592 		if (!th->rst) {
4593 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4594 			tcp_send_dupack(sk, skb);
4595 			goto discard;
4596 		}
4597 		/* Resets are accepted even if PAWS failed.
4598 
4599 		   ts_recent update must be made after we are sure
4600 		   that the packet is in window.
4601 		 */
4602 	}
4603 
4604 	/*
4605 	 *	Standard slow path.
4606 	 */
4607 
4608 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4609 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4610 		 * (RST) segments are validated by checking their SEQ-fields."
4611 		 * And page 69: "If an incoming segment is not acceptable,
4612 		 * an acknowledgment should be sent in reply (unless the RST bit
4613 		 * is set, if so drop the segment and return)".
4614 		 */
4615 		if (!th->rst)
4616 			tcp_send_dupack(sk, skb);
4617 		goto discard;
4618 	}
4619 
4620 	if (th->rst) {
4621 		tcp_reset(sk);
4622 		goto discard;
4623 	}
4624 
4625 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4626 
4627 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4628 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
4629 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4630 		tcp_reset(sk);
4631 		return 1;
4632 	}
4633 
4634 step5:
4635 	if (th->ack)
4636 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4637 
4638 	tcp_rcv_rtt_measure_ts(sk, skb);
4639 
4640 	/* Process urgent data. */
4641 	tcp_urg(sk, skb, th);
4642 
4643 	/* step 7: process the segment text */
4644 	tcp_data_queue(sk, skb);
4645 
4646 	tcp_data_snd_check(sk);
4647 	tcp_ack_snd_check(sk);
4648 	return 0;
4649 
4650 csum_error:
4651 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
4652 
4653 discard:
4654 	__kfree_skb(skb);
4655 	return 0;
4656 }
4657 
4658 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4659 					 struct tcphdr *th, unsigned len)
4660 {
4661 	struct tcp_sock *tp = tcp_sk(sk);
4662 	struct inet_connection_sock *icsk = inet_csk(sk);
4663 	int saved_clamp = tp->rx_opt.mss_clamp;
4664 
4665 	tcp_parse_options(skb, &tp->rx_opt, 0);
4666 
4667 	if (th->ack) {
4668 		/* rfc793:
4669 		 * "If the state is SYN-SENT then
4670 		 *    first check the ACK bit
4671 		 *      If the ACK bit is set
4672 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4673 		 *        a reset (unless the RST bit is set, if so drop
4674 		 *        the segment and return)"
4675 		 *
4676 		 *  We do not send data with SYN, so that RFC-correct
4677 		 *  test reduces to:
4678 		 */
4679 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4680 			goto reset_and_undo;
4681 
4682 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4683 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4684 			     tcp_time_stamp)) {
4685 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4686 			goto reset_and_undo;
4687 		}
4688 
4689 		/* Now ACK is acceptable.
4690 		 *
4691 		 * "If the RST bit is set
4692 		 *    If the ACK was acceptable then signal the user "error:
4693 		 *    connection reset", drop the segment, enter CLOSED state,
4694 		 *    delete TCB, and return."
4695 		 */
4696 
4697 		if (th->rst) {
4698 			tcp_reset(sk);
4699 			goto discard;
4700 		}
4701 
4702 		/* rfc793:
4703 		 *   "fifth, if neither of the SYN or RST bits is set then
4704 		 *    drop the segment and return."
4705 		 *
4706 		 *    See note below!
4707 		 *                                        --ANK(990513)
4708 		 */
4709 		if (!th->syn)
4710 			goto discard_and_undo;
4711 
4712 		/* rfc793:
4713 		 *   "If the SYN bit is on ...
4714 		 *    are acceptable then ...
4715 		 *    (our SYN has been ACKed), change the connection
4716 		 *    state to ESTABLISHED..."
4717 		 */
4718 
4719 		TCP_ECN_rcv_synack(tp, th);
4720 
4721 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4722 		tcp_ack(sk, skb, FLAG_SLOWPATH);
4723 
4724 		/* Ok.. it's good. Set up sequence numbers and
4725 		 * move to established.
4726 		 */
4727 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4728 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4729 
4730 		/* RFC1323: The window in SYN & SYN/ACK segments is
4731 		 * never scaled.
4732 		 */
4733 		tp->snd_wnd = ntohs(th->window);
4734 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4735 
4736 		if (!tp->rx_opt.wscale_ok) {
4737 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4738 			tp->window_clamp = min(tp->window_clamp, 65535U);
4739 		}
4740 
4741 		if (tp->rx_opt.saw_tstamp) {
4742 			tp->rx_opt.tstamp_ok	   = 1;
4743 			tp->tcp_header_len =
4744 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4745 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
4746 			tcp_store_ts_recent(tp);
4747 		} else {
4748 			tp->tcp_header_len = sizeof(struct tcphdr);
4749 		}
4750 
4751 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
4752 			tcp_enable_fack(tp);
4753 
4754 		tcp_mtup_init(sk);
4755 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4756 		tcp_initialize_rcv_mss(sk);
4757 
4758 		/* Remember, tcp_poll() does not lock socket!
4759 		 * Change state from SYN-SENT only after copied_seq
4760 		 * is initialized. */
4761 		tp->copied_seq = tp->rcv_nxt;
4762 		smp_mb();
4763 		tcp_set_state(sk, TCP_ESTABLISHED);
4764 
4765 		security_inet_conn_established(sk, skb);
4766 
4767 		/* Make sure socket is routed, for correct metrics.  */
4768 		icsk->icsk_af_ops->rebuild_header(sk);
4769 
4770 		tcp_init_metrics(sk);
4771 
4772 		tcp_init_congestion_control(sk);
4773 
4774 		/* Prevent spurious tcp_cwnd_restart() on first data
4775 		 * packet.
4776 		 */
4777 		tp->lsndtime = tcp_time_stamp;
4778 
4779 		tcp_init_buffer_space(sk);
4780 
4781 		if (sock_flag(sk, SOCK_KEEPOPEN))
4782 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4783 
4784 		if (!tp->rx_opt.snd_wscale)
4785 			__tcp_fast_path_on(tp, tp->snd_wnd);
4786 		else
4787 			tp->pred_flags = 0;
4788 
4789 		if (!sock_flag(sk, SOCK_DEAD)) {
4790 			sk->sk_state_change(sk);
4791 			sk_wake_async(sk, 0, POLL_OUT);
4792 		}
4793 
4794 		if (sk->sk_write_pending ||
4795 		    icsk->icsk_accept_queue.rskq_defer_accept ||
4796 		    icsk->icsk_ack.pingpong) {
4797 			/* Save one ACK. Data will be ready after
4798 			 * several ticks, if write_pending is set.
4799 			 *
4800 			 * It may be deleted, but with this feature tcpdumps
4801 			 * look so _wonderfully_ clever, that I was not able
4802 			 * to stand against the temptation 8)     --ANK
4803 			 */
4804 			inet_csk_schedule_ack(sk);
4805 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4806 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4807 			tcp_incr_quickack(sk);
4808 			tcp_enter_quickack_mode(sk);
4809 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4810 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4811 
4812 discard:
4813 			__kfree_skb(skb);
4814 			return 0;
4815 		} else {
4816 			tcp_send_ack(sk);
4817 		}
4818 		return -1;
4819 	}
4820 
4821 	/* No ACK in the segment */
4822 
4823 	if (th->rst) {
4824 		/* rfc793:
4825 		 * "If the RST bit is set
4826 		 *
4827 		 *      Otherwise (no ACK) drop the segment and return."
4828 		 */
4829 
4830 		goto discard_and_undo;
4831 	}
4832 
4833 	/* PAWS check. */
4834 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4835 		goto discard_and_undo;
4836 
4837 	if (th->syn) {
4838 		/* We see SYN without ACK. It is attempt of
4839 		 * simultaneous connect with crossed SYNs.
4840 		 * Particularly, it can be connect to self.
4841 		 */
4842 		tcp_set_state(sk, TCP_SYN_RECV);
4843 
4844 		if (tp->rx_opt.saw_tstamp) {
4845 			tp->rx_opt.tstamp_ok = 1;
4846 			tcp_store_ts_recent(tp);
4847 			tp->tcp_header_len =
4848 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4849 		} else {
4850 			tp->tcp_header_len = sizeof(struct tcphdr);
4851 		}
4852 
4853 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4854 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4855 
4856 		/* RFC1323: The window in SYN & SYN/ACK segments is
4857 		 * never scaled.
4858 		 */
4859 		tp->snd_wnd    = ntohs(th->window);
4860 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4861 		tp->max_window = tp->snd_wnd;
4862 
4863 		TCP_ECN_rcv_syn(tp, th);
4864 
4865 		tcp_mtup_init(sk);
4866 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4867 		tcp_initialize_rcv_mss(sk);
4868 
4869 
4870 		tcp_send_synack(sk);
4871 #if 0
4872 		/* Note, we could accept data and URG from this segment.
4873 		 * There are no obstacles to make this.
4874 		 *
4875 		 * However, if we ignore data in ACKless segments sometimes,
4876 		 * we have no reasons to accept it sometimes.
4877 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4878 		 * is not flawless. So, discard packet for sanity.
4879 		 * Uncomment this return to process the data.
4880 		 */
4881 		return -1;
4882 #else
4883 		goto discard;
4884 #endif
4885 	}
4886 	/* "fifth, if neither of the SYN or RST bits is set then
4887 	 * drop the segment and return."
4888 	 */
4889 
4890 discard_and_undo:
4891 	tcp_clear_options(&tp->rx_opt);
4892 	tp->rx_opt.mss_clamp = saved_clamp;
4893 	goto discard;
4894 
4895 reset_and_undo:
4896 	tcp_clear_options(&tp->rx_opt);
4897 	tp->rx_opt.mss_clamp = saved_clamp;
4898 	return 1;
4899 }
4900 
4901 
4902 /*
4903  *	This function implements the receiving procedure of RFC 793 for
4904  *	all states except ESTABLISHED and TIME_WAIT.
4905  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4906  *	address independent.
4907  */
4908 
4909 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4910 			  struct tcphdr *th, unsigned len)
4911 {
4912 	struct tcp_sock *tp = tcp_sk(sk);
4913 	struct inet_connection_sock *icsk = inet_csk(sk);
4914 	int queued = 0;
4915 
4916 	tp->rx_opt.saw_tstamp = 0;
4917 
4918 	switch (sk->sk_state) {
4919 	case TCP_CLOSE:
4920 		goto discard;
4921 
4922 	case TCP_LISTEN:
4923 		if (th->ack)
4924 			return 1;
4925 
4926 		if (th->rst)
4927 			goto discard;
4928 
4929 		if (th->syn) {
4930 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4931 				return 1;
4932 
4933 			/* Now we have several options: In theory there is
4934 			 * nothing else in the frame. KA9Q has an option to
4935 			 * send data with the syn, BSD accepts data with the
4936 			 * syn up to the [to be] advertised window and
4937 			 * Solaris 2.1 gives you a protocol error. For now
4938 			 * we just ignore it, that fits the spec precisely
4939 			 * and avoids incompatibilities. It would be nice in
4940 			 * future to drop through and process the data.
4941 			 *
4942 			 * Now that TTCP is starting to be used we ought to
4943 			 * queue this data.
4944 			 * But, this leaves one open to an easy denial of
4945 			 * service attack, and SYN cookies can't defend
4946 			 * against this problem. So, we drop the data
4947 			 * in the interest of security over speed unless
4948 			 * it's still in use.
4949 			 */
4950 			kfree_skb(skb);
4951 			return 0;
4952 		}
4953 		goto discard;
4954 
4955 	case TCP_SYN_SENT:
4956 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4957 		if (queued >= 0)
4958 			return queued;
4959 
4960 		/* Do step6 onward by hand. */
4961 		tcp_urg(sk, skb, th);
4962 		__kfree_skb(skb);
4963 		tcp_data_snd_check(sk);
4964 		return 0;
4965 	}
4966 
4967 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4968 	    tcp_paws_discard(sk, skb)) {
4969 		if (!th->rst) {
4970 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4971 			tcp_send_dupack(sk, skb);
4972 			goto discard;
4973 		}
4974 		/* Reset is accepted even if it did not pass PAWS. */
4975 	}
4976 
4977 	/* step 1: check sequence number */
4978 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4979 		if (!th->rst)
4980 			tcp_send_dupack(sk, skb);
4981 		goto discard;
4982 	}
4983 
4984 	/* step 2: check RST bit */
4985 	if (th->rst) {
4986 		tcp_reset(sk);
4987 		goto discard;
4988 	}
4989 
4990 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4991 
4992 	/* step 3: check security and precedence [ignored] */
4993 
4994 	/*	step 4:
4995 	 *
4996 	 *	Check for a SYN in window.
4997 	 */
4998 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4999 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
5000 		tcp_reset(sk);
5001 		return 1;
5002 	}
5003 
5004 	/* step 5: check the ACK field */
5005 	if (th->ack) {
5006 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
5007 
5008 		switch (sk->sk_state) {
5009 		case TCP_SYN_RECV:
5010 			if (acceptable) {
5011 				tp->copied_seq = tp->rcv_nxt;
5012 				smp_mb();
5013 				tcp_set_state(sk, TCP_ESTABLISHED);
5014 				sk->sk_state_change(sk);
5015 
5016 				/* Note, that this wakeup is only for marginal
5017 				 * crossed SYN case. Passively open sockets
5018 				 * are not waked up, because sk->sk_sleep ==
5019 				 * NULL and sk->sk_socket == NULL.
5020 				 */
5021 				if (sk->sk_socket) {
5022 					sk_wake_async(sk,0,POLL_OUT);
5023 				}
5024 
5025 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5026 				tp->snd_wnd = ntohs(th->window) <<
5027 					      tp->rx_opt.snd_wscale;
5028 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
5029 					    TCP_SKB_CB(skb)->seq);
5030 
5031 				/* tcp_ack considers this ACK as duplicate
5032 				 * and does not calculate rtt.
5033 				 * Fix it at least with timestamps.
5034 				 */
5035 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5036 				    !tp->srtt)
5037 					tcp_ack_saw_tstamp(sk, 0);
5038 
5039 				if (tp->rx_opt.tstamp_ok)
5040 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5041 
5042 				/* Make sure socket is routed, for
5043 				 * correct metrics.
5044 				 */
5045 				icsk->icsk_af_ops->rebuild_header(sk);
5046 
5047 				tcp_init_metrics(sk);
5048 
5049 				tcp_init_congestion_control(sk);
5050 
5051 				/* Prevent spurious tcp_cwnd_restart() on
5052 				 * first data packet.
5053 				 */
5054 				tp->lsndtime = tcp_time_stamp;
5055 
5056 				tcp_mtup_init(sk);
5057 				tcp_initialize_rcv_mss(sk);
5058 				tcp_init_buffer_space(sk);
5059 				tcp_fast_path_on(tp);
5060 			} else {
5061 				return 1;
5062 			}
5063 			break;
5064 
5065 		case TCP_FIN_WAIT1:
5066 			if (tp->snd_una == tp->write_seq) {
5067 				tcp_set_state(sk, TCP_FIN_WAIT2);
5068 				sk->sk_shutdown |= SEND_SHUTDOWN;
5069 				dst_confirm(sk->sk_dst_cache);
5070 
5071 				if (!sock_flag(sk, SOCK_DEAD))
5072 					/* Wake up lingering close() */
5073 					sk->sk_state_change(sk);
5074 				else {
5075 					int tmo;
5076 
5077 					if (tp->linger2 < 0 ||
5078 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5079 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5080 						tcp_done(sk);
5081 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5082 						return 1;
5083 					}
5084 
5085 					tmo = tcp_fin_time(sk);
5086 					if (tmo > TCP_TIMEWAIT_LEN) {
5087 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5088 					} else if (th->fin || sock_owned_by_user(sk)) {
5089 						/* Bad case. We could lose such FIN otherwise.
5090 						 * It is not a big problem, but it looks confusing
5091 						 * and not so rare event. We still can lose it now,
5092 						 * if it spins in bh_lock_sock(), but it is really
5093 						 * marginal case.
5094 						 */
5095 						inet_csk_reset_keepalive_timer(sk, tmo);
5096 					} else {
5097 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5098 						goto discard;
5099 					}
5100 				}
5101 			}
5102 			break;
5103 
5104 		case TCP_CLOSING:
5105 			if (tp->snd_una == tp->write_seq) {
5106 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5107 				goto discard;
5108 			}
5109 			break;
5110 
5111 		case TCP_LAST_ACK:
5112 			if (tp->snd_una == tp->write_seq) {
5113 				tcp_update_metrics(sk);
5114 				tcp_done(sk);
5115 				goto discard;
5116 			}
5117 			break;
5118 		}
5119 	} else
5120 		goto discard;
5121 
5122 	/* step 6: check the URG bit */
5123 	tcp_urg(sk, skb, th);
5124 
5125 	/* step 7: process the segment text */
5126 	switch (sk->sk_state) {
5127 	case TCP_CLOSE_WAIT:
5128 	case TCP_CLOSING:
5129 	case TCP_LAST_ACK:
5130 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5131 			break;
5132 	case TCP_FIN_WAIT1:
5133 	case TCP_FIN_WAIT2:
5134 		/* RFC 793 says to queue data in these states,
5135 		 * RFC 1122 says we MUST send a reset.
5136 		 * BSD 4.4 also does reset.
5137 		 */
5138 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5139 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5140 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5141 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5142 				tcp_reset(sk);
5143 				return 1;
5144 			}
5145 		}
5146 		/* Fall through */
5147 	case TCP_ESTABLISHED:
5148 		tcp_data_queue(sk, skb);
5149 		queued = 1;
5150 		break;
5151 	}
5152 
5153 	/* tcp_data could move socket to TIME-WAIT */
5154 	if (sk->sk_state != TCP_CLOSE) {
5155 		tcp_data_snd_check(sk);
5156 		tcp_ack_snd_check(sk);
5157 	}
5158 
5159 	if (!queued) {
5160 discard:
5161 		__kfree_skb(skb);
5162 	}
5163 	return 0;
5164 }
5165 
5166 EXPORT_SYMBOL(sysctl_tcp_ecn);
5167 EXPORT_SYMBOL(sysctl_tcp_reordering);
5168 EXPORT_SYMBOL(tcp_parse_options);
5169 EXPORT_SYMBOL(tcp_rcv_established);
5170 EXPORT_SYMBOL(tcp_rcv_state_process);
5171 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5172