xref: /linux/net/ipv4/tcp_input.c (revision 30614cf34105c5b5b9a39c65a2ea32c58b03aa8e)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <linux/errqueue.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88 
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91 
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96 
97 int sysctl_tcp_thin_dupack __read_mostly;
98 
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101 
102 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
103 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
104 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
105 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
106 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
107 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
108 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
109 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
111 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
115 
116 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
120 
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123 
124 /* Adapt the MSS value used to make delayed ack decision to the
125  * real world.
126  */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 	struct inet_connection_sock *icsk = inet_csk(sk);
130 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 	unsigned int len;
132 
133 	icsk->icsk_ack.last_seg_size = 0;
134 
135 	/* skb->len may jitter because of SACKs, even if peer
136 	 * sends good full-sized frames.
137 	 */
138 	len = skb_shinfo(skb)->gso_size ? : skb->len;
139 	if (len >= icsk->icsk_ack.rcv_mss) {
140 		icsk->icsk_ack.rcv_mss = len;
141 	} else {
142 		/* Otherwise, we make more careful check taking into account,
143 		 * that SACKs block is variable.
144 		 *
145 		 * "len" is invariant segment length, including TCP header.
146 		 */
147 		len += skb->data - skb_transport_header(skb);
148 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 		    /* If PSH is not set, packet should be
150 		     * full sized, provided peer TCP is not badly broken.
151 		     * This observation (if it is correct 8)) allows
152 		     * to handle super-low mtu links fairly.
153 		     */
154 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 			/* Subtract also invariant (if peer is RFC compliant),
157 			 * tcp header plus fixed timestamp option length.
158 			 * Resulting "len" is MSS free of SACK jitter.
159 			 */
160 			len -= tcp_sk(sk)->tcp_header_len;
161 			icsk->icsk_ack.last_seg_size = len;
162 			if (len == lss) {
163 				icsk->icsk_ack.rcv_mss = len;
164 				return;
165 			}
166 		}
167 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 	}
171 }
172 
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 	struct inet_connection_sock *icsk = inet_csk(sk);
176 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177 
178 	if (quickacks == 0)
179 		quickacks = 2;
180 	if (quickacks > icsk->icsk_ack.quick)
181 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183 
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 	struct inet_connection_sock *icsk = inet_csk(sk);
187 	tcp_incr_quickack(sk);
188 	icsk->icsk_ack.pingpong = 0;
189 	icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191 
192 /* Send ACKs quickly, if "quick" count is not exhausted
193  * and the session is not interactive.
194  */
195 
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 	const struct inet_connection_sock *icsk = inet_csk(sk);
199 
200 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202 
203 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
204 {
205 	if (tp->ecn_flags & TCP_ECN_OK)
206 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208 
209 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 	if (tcp_hdr(skb)->cwr)
212 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214 
215 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
216 {
217 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219 
220 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
223 	case INET_ECN_NOT_ECT:
224 		/* Funny extension: if ECT is not set on a segment,
225 		 * and we already seen ECT on a previous segment,
226 		 * it is probably a retransmit.
227 		 */
228 		if (tp->ecn_flags & TCP_ECN_SEEN)
229 			tcp_enter_quickack_mode((struct sock *)tp);
230 		break;
231 	case INET_ECN_CE:
232 		if (tcp_ca_needs_ecn((struct sock *)tp))
233 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
234 
235 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 			/* Better not delay acks, sender can have a very low cwnd */
237 			tcp_enter_quickack_mode((struct sock *)tp);
238 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 		}
240 		tp->ecn_flags |= TCP_ECN_SEEN;
241 		break;
242 	default:
243 		if (tcp_ca_needs_ecn((struct sock *)tp))
244 			tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
245 		tp->ecn_flags |= TCP_ECN_SEEN;
246 		break;
247 	}
248 }
249 
250 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
251 {
252 	if (tp->ecn_flags & TCP_ECN_OK)
253 		__tcp_ecn_check_ce(tp, skb);
254 }
255 
256 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
257 {
258 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
259 		tp->ecn_flags &= ~TCP_ECN_OK;
260 }
261 
262 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
263 {
264 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
265 		tp->ecn_flags &= ~TCP_ECN_OK;
266 }
267 
268 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
269 {
270 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
271 		return true;
272 	return false;
273 }
274 
275 /* Buffer size and advertised window tuning.
276  *
277  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
278  */
279 
280 static void tcp_sndbuf_expand(struct sock *sk)
281 {
282 	const struct tcp_sock *tp = tcp_sk(sk);
283 	int sndmem, per_mss;
284 	u32 nr_segs;
285 
286 	/* Worst case is non GSO/TSO : each frame consumes one skb
287 	 * and skb->head is kmalloced using power of two area of memory
288 	 */
289 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
290 		  MAX_TCP_HEADER +
291 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
292 
293 	per_mss = roundup_pow_of_two(per_mss) +
294 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
295 
296 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
297 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
298 
299 	/* Fast Recovery (RFC 5681 3.2) :
300 	 * Cubic needs 1.7 factor, rounded to 2 to include
301 	 * extra cushion (application might react slowly to POLLOUT)
302 	 */
303 	sndmem = 2 * nr_segs * per_mss;
304 
305 	if (sk->sk_sndbuf < sndmem)
306 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
307 }
308 
309 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
310  *
311  * All tcp_full_space() is split to two parts: "network" buffer, allocated
312  * forward and advertised in receiver window (tp->rcv_wnd) and
313  * "application buffer", required to isolate scheduling/application
314  * latencies from network.
315  * window_clamp is maximal advertised window. It can be less than
316  * tcp_full_space(), in this case tcp_full_space() - window_clamp
317  * is reserved for "application" buffer. The less window_clamp is
318  * the smoother our behaviour from viewpoint of network, but the lower
319  * throughput and the higher sensitivity of the connection to losses. 8)
320  *
321  * rcv_ssthresh is more strict window_clamp used at "slow start"
322  * phase to predict further behaviour of this connection.
323  * It is used for two goals:
324  * - to enforce header prediction at sender, even when application
325  *   requires some significant "application buffer". It is check #1.
326  * - to prevent pruning of receive queue because of misprediction
327  *   of receiver window. Check #2.
328  *
329  * The scheme does not work when sender sends good segments opening
330  * window and then starts to feed us spaghetti. But it should work
331  * in common situations. Otherwise, we have to rely on queue collapsing.
332  */
333 
334 /* Slow part of check#2. */
335 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
336 {
337 	struct tcp_sock *tp = tcp_sk(sk);
338 	/* Optimize this! */
339 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
340 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
341 
342 	while (tp->rcv_ssthresh <= window) {
343 		if (truesize <= skb->len)
344 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
345 
346 		truesize >>= 1;
347 		window >>= 1;
348 	}
349 	return 0;
350 }
351 
352 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
353 {
354 	struct tcp_sock *tp = tcp_sk(sk);
355 
356 	/* Check #1 */
357 	if (tp->rcv_ssthresh < tp->window_clamp &&
358 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
359 	    !sk_under_memory_pressure(sk)) {
360 		int incr;
361 
362 		/* Check #2. Increase window, if skb with such overhead
363 		 * will fit to rcvbuf in future.
364 		 */
365 		if (tcp_win_from_space(skb->truesize) <= skb->len)
366 			incr = 2 * tp->advmss;
367 		else
368 			incr = __tcp_grow_window(sk, skb);
369 
370 		if (incr) {
371 			incr = max_t(int, incr, 2 * skb->len);
372 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
373 					       tp->window_clamp);
374 			inet_csk(sk)->icsk_ack.quick |= 1;
375 		}
376 	}
377 }
378 
379 /* 3. Tuning rcvbuf, when connection enters established state. */
380 static void tcp_fixup_rcvbuf(struct sock *sk)
381 {
382 	u32 mss = tcp_sk(sk)->advmss;
383 	int rcvmem;
384 
385 	rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
386 		 tcp_default_init_rwnd(mss);
387 
388 	/* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
389 	 * Allow enough cushion so that sender is not limited by our window
390 	 */
391 	if (sysctl_tcp_moderate_rcvbuf)
392 		rcvmem <<= 2;
393 
394 	if (sk->sk_rcvbuf < rcvmem)
395 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
396 }
397 
398 /* 4. Try to fixup all. It is made immediately after connection enters
399  *    established state.
400  */
401 void tcp_init_buffer_space(struct sock *sk)
402 {
403 	struct tcp_sock *tp = tcp_sk(sk);
404 	int maxwin;
405 
406 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
407 		tcp_fixup_rcvbuf(sk);
408 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
409 		tcp_sndbuf_expand(sk);
410 
411 	tp->rcvq_space.space = tp->rcv_wnd;
412 	tp->rcvq_space.time = tcp_time_stamp;
413 	tp->rcvq_space.seq = tp->copied_seq;
414 
415 	maxwin = tcp_full_space(sk);
416 
417 	if (tp->window_clamp >= maxwin) {
418 		tp->window_clamp = maxwin;
419 
420 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
421 			tp->window_clamp = max(maxwin -
422 					       (maxwin >> sysctl_tcp_app_win),
423 					       4 * tp->advmss);
424 	}
425 
426 	/* Force reservation of one segment. */
427 	if (sysctl_tcp_app_win &&
428 	    tp->window_clamp > 2 * tp->advmss &&
429 	    tp->window_clamp + tp->advmss > maxwin)
430 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
431 
432 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
433 	tp->snd_cwnd_stamp = tcp_time_stamp;
434 }
435 
436 /* 5. Recalculate window clamp after socket hit its memory bounds. */
437 static void tcp_clamp_window(struct sock *sk)
438 {
439 	struct tcp_sock *tp = tcp_sk(sk);
440 	struct inet_connection_sock *icsk = inet_csk(sk);
441 
442 	icsk->icsk_ack.quick = 0;
443 
444 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
445 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
446 	    !sk_under_memory_pressure(sk) &&
447 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
448 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
449 				    sysctl_tcp_rmem[2]);
450 	}
451 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
452 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
453 }
454 
455 /* Initialize RCV_MSS value.
456  * RCV_MSS is an our guess about MSS used by the peer.
457  * We haven't any direct information about the MSS.
458  * It's better to underestimate the RCV_MSS rather than overestimate.
459  * Overestimations make us ACKing less frequently than needed.
460  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
461  */
462 void tcp_initialize_rcv_mss(struct sock *sk)
463 {
464 	const struct tcp_sock *tp = tcp_sk(sk);
465 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
466 
467 	hint = min(hint, tp->rcv_wnd / 2);
468 	hint = min(hint, TCP_MSS_DEFAULT);
469 	hint = max(hint, TCP_MIN_MSS);
470 
471 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
472 }
473 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
474 
475 /* Receiver "autotuning" code.
476  *
477  * The algorithm for RTT estimation w/o timestamps is based on
478  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
479  * <http://public.lanl.gov/radiant/pubs.html#DRS>
480  *
481  * More detail on this code can be found at
482  * <http://staff.psc.edu/jheffner/>,
483  * though this reference is out of date.  A new paper
484  * is pending.
485  */
486 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
487 {
488 	u32 new_sample = tp->rcv_rtt_est.rtt;
489 	long m = sample;
490 
491 	if (m == 0)
492 		m = 1;
493 
494 	if (new_sample != 0) {
495 		/* If we sample in larger samples in the non-timestamp
496 		 * case, we could grossly overestimate the RTT especially
497 		 * with chatty applications or bulk transfer apps which
498 		 * are stalled on filesystem I/O.
499 		 *
500 		 * Also, since we are only going for a minimum in the
501 		 * non-timestamp case, we do not smooth things out
502 		 * else with timestamps disabled convergence takes too
503 		 * long.
504 		 */
505 		if (!win_dep) {
506 			m -= (new_sample >> 3);
507 			new_sample += m;
508 		} else {
509 			m <<= 3;
510 			if (m < new_sample)
511 				new_sample = m;
512 		}
513 	} else {
514 		/* No previous measure. */
515 		new_sample = m << 3;
516 	}
517 
518 	if (tp->rcv_rtt_est.rtt != new_sample)
519 		tp->rcv_rtt_est.rtt = new_sample;
520 }
521 
522 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
523 {
524 	if (tp->rcv_rtt_est.time == 0)
525 		goto new_measure;
526 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
527 		return;
528 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
529 
530 new_measure:
531 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
532 	tp->rcv_rtt_est.time = tcp_time_stamp;
533 }
534 
535 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
536 					  const struct sk_buff *skb)
537 {
538 	struct tcp_sock *tp = tcp_sk(sk);
539 	if (tp->rx_opt.rcv_tsecr &&
540 	    (TCP_SKB_CB(skb)->end_seq -
541 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
542 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
543 }
544 
545 /*
546  * This function should be called every time data is copied to user space.
547  * It calculates the appropriate TCP receive buffer space.
548  */
549 void tcp_rcv_space_adjust(struct sock *sk)
550 {
551 	struct tcp_sock *tp = tcp_sk(sk);
552 	int time;
553 	int copied;
554 
555 	time = tcp_time_stamp - tp->rcvq_space.time;
556 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
557 		return;
558 
559 	/* Number of bytes copied to user in last RTT */
560 	copied = tp->copied_seq - tp->rcvq_space.seq;
561 	if (copied <= tp->rcvq_space.space)
562 		goto new_measure;
563 
564 	/* A bit of theory :
565 	 * copied = bytes received in previous RTT, our base window
566 	 * To cope with packet losses, we need a 2x factor
567 	 * To cope with slow start, and sender growing its cwin by 100 %
568 	 * every RTT, we need a 4x factor, because the ACK we are sending
569 	 * now is for the next RTT, not the current one :
570 	 * <prev RTT . ><current RTT .. ><next RTT .... >
571 	 */
572 
573 	if (sysctl_tcp_moderate_rcvbuf &&
574 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
575 		int rcvwin, rcvmem, rcvbuf;
576 
577 		/* minimal window to cope with packet losses, assuming
578 		 * steady state. Add some cushion because of small variations.
579 		 */
580 		rcvwin = (copied << 1) + 16 * tp->advmss;
581 
582 		/* If rate increased by 25%,
583 		 *	assume slow start, rcvwin = 3 * copied
584 		 * If rate increased by 50%,
585 		 *	assume sender can use 2x growth, rcvwin = 4 * copied
586 		 */
587 		if (copied >=
588 		    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
589 			if (copied >=
590 			    tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
591 				rcvwin <<= 1;
592 			else
593 				rcvwin += (rcvwin >> 1);
594 		}
595 
596 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
597 		while (tcp_win_from_space(rcvmem) < tp->advmss)
598 			rcvmem += 128;
599 
600 		rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
601 		if (rcvbuf > sk->sk_rcvbuf) {
602 			sk->sk_rcvbuf = rcvbuf;
603 
604 			/* Make the window clamp follow along.  */
605 			tp->window_clamp = rcvwin;
606 		}
607 	}
608 	tp->rcvq_space.space = copied;
609 
610 new_measure:
611 	tp->rcvq_space.seq = tp->copied_seq;
612 	tp->rcvq_space.time = tcp_time_stamp;
613 }
614 
615 /* There is something which you must keep in mind when you analyze the
616  * behavior of the tp->ato delayed ack timeout interval.  When a
617  * connection starts up, we want to ack as quickly as possible.  The
618  * problem is that "good" TCP's do slow start at the beginning of data
619  * transmission.  The means that until we send the first few ACK's the
620  * sender will sit on his end and only queue most of his data, because
621  * he can only send snd_cwnd unacked packets at any given time.  For
622  * each ACK we send, he increments snd_cwnd and transmits more of his
623  * queue.  -DaveM
624  */
625 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
626 {
627 	struct tcp_sock *tp = tcp_sk(sk);
628 	struct inet_connection_sock *icsk = inet_csk(sk);
629 	u32 now;
630 
631 	inet_csk_schedule_ack(sk);
632 
633 	tcp_measure_rcv_mss(sk, skb);
634 
635 	tcp_rcv_rtt_measure(tp);
636 
637 	now = tcp_time_stamp;
638 
639 	if (!icsk->icsk_ack.ato) {
640 		/* The _first_ data packet received, initialize
641 		 * delayed ACK engine.
642 		 */
643 		tcp_incr_quickack(sk);
644 		icsk->icsk_ack.ato = TCP_ATO_MIN;
645 	} else {
646 		int m = now - icsk->icsk_ack.lrcvtime;
647 
648 		if (m <= TCP_ATO_MIN / 2) {
649 			/* The fastest case is the first. */
650 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
651 		} else if (m < icsk->icsk_ack.ato) {
652 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
653 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
654 				icsk->icsk_ack.ato = icsk->icsk_rto;
655 		} else if (m > icsk->icsk_rto) {
656 			/* Too long gap. Apparently sender failed to
657 			 * restart window, so that we send ACKs quickly.
658 			 */
659 			tcp_incr_quickack(sk);
660 			sk_mem_reclaim(sk);
661 		}
662 	}
663 	icsk->icsk_ack.lrcvtime = now;
664 
665 	tcp_ecn_check_ce(tp, skb);
666 
667 	if (skb->len >= 128)
668 		tcp_grow_window(sk, skb);
669 }
670 
671 /* Called to compute a smoothed rtt estimate. The data fed to this
672  * routine either comes from timestamps, or from segments that were
673  * known _not_ to have been retransmitted [see Karn/Partridge
674  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
675  * piece by Van Jacobson.
676  * NOTE: the next three routines used to be one big routine.
677  * To save cycles in the RFC 1323 implementation it was better to break
678  * it up into three procedures. -- erics
679  */
680 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
681 {
682 	struct tcp_sock *tp = tcp_sk(sk);
683 	long m = mrtt_us; /* RTT */
684 	u32 srtt = tp->srtt_us;
685 
686 	/*	The following amusing code comes from Jacobson's
687 	 *	article in SIGCOMM '88.  Note that rtt and mdev
688 	 *	are scaled versions of rtt and mean deviation.
689 	 *	This is designed to be as fast as possible
690 	 *	m stands for "measurement".
691 	 *
692 	 *	On a 1990 paper the rto value is changed to:
693 	 *	RTO = rtt + 4 * mdev
694 	 *
695 	 * Funny. This algorithm seems to be very broken.
696 	 * These formulae increase RTO, when it should be decreased, increase
697 	 * too slowly, when it should be increased quickly, decrease too quickly
698 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
699 	 * does not matter how to _calculate_ it. Seems, it was trap
700 	 * that VJ failed to avoid. 8)
701 	 */
702 	if (srtt != 0) {
703 		m -= (srtt >> 3);	/* m is now error in rtt est */
704 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
705 		if (m < 0) {
706 			m = -m;		/* m is now abs(error) */
707 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
708 			/* This is similar to one of Eifel findings.
709 			 * Eifel blocks mdev updates when rtt decreases.
710 			 * This solution is a bit different: we use finer gain
711 			 * for mdev in this case (alpha*beta).
712 			 * Like Eifel it also prevents growth of rto,
713 			 * but also it limits too fast rto decreases,
714 			 * happening in pure Eifel.
715 			 */
716 			if (m > 0)
717 				m >>= 3;
718 		} else {
719 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
720 		}
721 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
722 		if (tp->mdev_us > tp->mdev_max_us) {
723 			tp->mdev_max_us = tp->mdev_us;
724 			if (tp->mdev_max_us > tp->rttvar_us)
725 				tp->rttvar_us = tp->mdev_max_us;
726 		}
727 		if (after(tp->snd_una, tp->rtt_seq)) {
728 			if (tp->mdev_max_us < tp->rttvar_us)
729 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
730 			tp->rtt_seq = tp->snd_nxt;
731 			tp->mdev_max_us = tcp_rto_min_us(sk);
732 		}
733 	} else {
734 		/* no previous measure. */
735 		srtt = m << 3;		/* take the measured time to be rtt */
736 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
737 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
738 		tp->mdev_max_us = tp->rttvar_us;
739 		tp->rtt_seq = tp->snd_nxt;
740 	}
741 	tp->srtt_us = max(1U, srtt);
742 }
743 
744 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
745  * Note: TCP stack does not yet implement pacing.
746  * FQ packet scheduler can be used to implement cheap but effective
747  * TCP pacing, to smooth the burst on large writes when packets
748  * in flight is significantly lower than cwnd (or rwin)
749  */
750 static void tcp_update_pacing_rate(struct sock *sk)
751 {
752 	const struct tcp_sock *tp = tcp_sk(sk);
753 	u64 rate;
754 
755 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
756 	rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
757 
758 	rate *= max(tp->snd_cwnd, tp->packets_out);
759 
760 	if (likely(tp->srtt_us))
761 		do_div(rate, tp->srtt_us);
762 
763 	/* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
764 	 * without any lock. We want to make sure compiler wont store
765 	 * intermediate values in this location.
766 	 */
767 	ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
768 						sk->sk_max_pacing_rate);
769 }
770 
771 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
772  * routine referred to above.
773  */
774 static void tcp_set_rto(struct sock *sk)
775 {
776 	const struct tcp_sock *tp = tcp_sk(sk);
777 	/* Old crap is replaced with new one. 8)
778 	 *
779 	 * More seriously:
780 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
781 	 *    It cannot be less due to utterly erratic ACK generation made
782 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
783 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
784 	 *    is invisible. Actually, Linux-2.4 also generates erratic
785 	 *    ACKs in some circumstances.
786 	 */
787 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
788 
789 	/* 2. Fixups made earlier cannot be right.
790 	 *    If we do not estimate RTO correctly without them,
791 	 *    all the algo is pure shit and should be replaced
792 	 *    with correct one. It is exactly, which we pretend to do.
793 	 */
794 
795 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
796 	 * guarantees that rto is higher.
797 	 */
798 	tcp_bound_rto(sk);
799 }
800 
801 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
802 {
803 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
804 
805 	if (!cwnd)
806 		cwnd = TCP_INIT_CWND;
807 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
808 }
809 
810 /*
811  * Packet counting of FACK is based on in-order assumptions, therefore TCP
812  * disables it when reordering is detected
813  */
814 void tcp_disable_fack(struct tcp_sock *tp)
815 {
816 	/* RFC3517 uses different metric in lost marker => reset on change */
817 	if (tcp_is_fack(tp))
818 		tp->lost_skb_hint = NULL;
819 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
820 }
821 
822 /* Take a notice that peer is sending D-SACKs */
823 static void tcp_dsack_seen(struct tcp_sock *tp)
824 {
825 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
826 }
827 
828 static void tcp_update_reordering(struct sock *sk, const int metric,
829 				  const int ts)
830 {
831 	struct tcp_sock *tp = tcp_sk(sk);
832 	if (metric > tp->reordering) {
833 		int mib_idx;
834 
835 		tp->reordering = min(TCP_MAX_REORDERING, metric);
836 
837 		/* This exciting event is worth to be remembered. 8) */
838 		if (ts)
839 			mib_idx = LINUX_MIB_TCPTSREORDER;
840 		else if (tcp_is_reno(tp))
841 			mib_idx = LINUX_MIB_TCPRENOREORDER;
842 		else if (tcp_is_fack(tp))
843 			mib_idx = LINUX_MIB_TCPFACKREORDER;
844 		else
845 			mib_idx = LINUX_MIB_TCPSACKREORDER;
846 
847 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
848 #if FASTRETRANS_DEBUG > 1
849 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
850 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
851 			 tp->reordering,
852 			 tp->fackets_out,
853 			 tp->sacked_out,
854 			 tp->undo_marker ? tp->undo_retrans : 0);
855 #endif
856 		tcp_disable_fack(tp);
857 	}
858 
859 	if (metric > 0)
860 		tcp_disable_early_retrans(tp);
861 }
862 
863 /* This must be called before lost_out is incremented */
864 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
865 {
866 	if ((tp->retransmit_skb_hint == NULL) ||
867 	    before(TCP_SKB_CB(skb)->seq,
868 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
869 		tp->retransmit_skb_hint = skb;
870 
871 	if (!tp->lost_out ||
872 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
873 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
874 }
875 
876 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
877 {
878 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
879 		tcp_verify_retransmit_hint(tp, skb);
880 
881 		tp->lost_out += tcp_skb_pcount(skb);
882 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
883 	}
884 }
885 
886 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
887 					    struct sk_buff *skb)
888 {
889 	tcp_verify_retransmit_hint(tp, skb);
890 
891 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
892 		tp->lost_out += tcp_skb_pcount(skb);
893 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
894 	}
895 }
896 
897 /* This procedure tags the retransmission queue when SACKs arrive.
898  *
899  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
900  * Packets in queue with these bits set are counted in variables
901  * sacked_out, retrans_out and lost_out, correspondingly.
902  *
903  * Valid combinations are:
904  * Tag  InFlight	Description
905  * 0	1		- orig segment is in flight.
906  * S	0		- nothing flies, orig reached receiver.
907  * L	0		- nothing flies, orig lost by net.
908  * R	2		- both orig and retransmit are in flight.
909  * L|R	1		- orig is lost, retransmit is in flight.
910  * S|R  1		- orig reached receiver, retrans is still in flight.
911  * (L|S|R is logically valid, it could occur when L|R is sacked,
912  *  but it is equivalent to plain S and code short-curcuits it to S.
913  *  L|S is logically invalid, it would mean -1 packet in flight 8))
914  *
915  * These 6 states form finite state machine, controlled by the following events:
916  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
917  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
918  * 3. Loss detection event of two flavors:
919  *	A. Scoreboard estimator decided the packet is lost.
920  *	   A'. Reno "three dupacks" marks head of queue lost.
921  *	   A''. Its FACK modification, head until snd.fack is lost.
922  *	B. SACK arrives sacking SND.NXT at the moment, when the
923  *	   segment was retransmitted.
924  * 4. D-SACK added new rule: D-SACK changes any tag to S.
925  *
926  * It is pleasant to note, that state diagram turns out to be commutative,
927  * so that we are allowed not to be bothered by order of our actions,
928  * when multiple events arrive simultaneously. (see the function below).
929  *
930  * Reordering detection.
931  * --------------------
932  * Reordering metric is maximal distance, which a packet can be displaced
933  * in packet stream. With SACKs we can estimate it:
934  *
935  * 1. SACK fills old hole and the corresponding segment was not
936  *    ever retransmitted -> reordering. Alas, we cannot use it
937  *    when segment was retransmitted.
938  * 2. The last flaw is solved with D-SACK. D-SACK arrives
939  *    for retransmitted and already SACKed segment -> reordering..
940  * Both of these heuristics are not used in Loss state, when we cannot
941  * account for retransmits accurately.
942  *
943  * SACK block validation.
944  * ----------------------
945  *
946  * SACK block range validation checks that the received SACK block fits to
947  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
948  * Note that SND.UNA is not included to the range though being valid because
949  * it means that the receiver is rather inconsistent with itself reporting
950  * SACK reneging when it should advance SND.UNA. Such SACK block this is
951  * perfectly valid, however, in light of RFC2018 which explicitly states
952  * that "SACK block MUST reflect the newest segment.  Even if the newest
953  * segment is going to be discarded ...", not that it looks very clever
954  * in case of head skb. Due to potentional receiver driven attacks, we
955  * choose to avoid immediate execution of a walk in write queue due to
956  * reneging and defer head skb's loss recovery to standard loss recovery
957  * procedure that will eventually trigger (nothing forbids us doing this).
958  *
959  * Implements also blockage to start_seq wrap-around. Problem lies in the
960  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
961  * there's no guarantee that it will be before snd_nxt (n). The problem
962  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
963  * wrap (s_w):
964  *
965  *         <- outs wnd ->                          <- wrapzone ->
966  *         u     e      n                         u_w   e_w  s n_w
967  *         |     |      |                          |     |   |  |
968  * |<------------+------+----- TCP seqno space --------------+---------->|
969  * ...-- <2^31 ->|                                           |<--------...
970  * ...---- >2^31 ------>|                                    |<--------...
971  *
972  * Current code wouldn't be vulnerable but it's better still to discard such
973  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
974  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
975  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
976  * equal to the ideal case (infinite seqno space without wrap caused issues).
977  *
978  * With D-SACK the lower bound is extended to cover sequence space below
979  * SND.UNA down to undo_marker, which is the last point of interest. Yet
980  * again, D-SACK block must not to go across snd_una (for the same reason as
981  * for the normal SACK blocks, explained above). But there all simplicity
982  * ends, TCP might receive valid D-SACKs below that. As long as they reside
983  * fully below undo_marker they do not affect behavior in anyway and can
984  * therefore be safely ignored. In rare cases (which are more or less
985  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
986  * fragmentation and packet reordering past skb's retransmission. To consider
987  * them correctly, the acceptable range must be extended even more though
988  * the exact amount is rather hard to quantify. However, tp->max_window can
989  * be used as an exaggerated estimate.
990  */
991 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
992 				   u32 start_seq, u32 end_seq)
993 {
994 	/* Too far in future, or reversed (interpretation is ambiguous) */
995 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
996 		return false;
997 
998 	/* Nasty start_seq wrap-around check (see comments above) */
999 	if (!before(start_seq, tp->snd_nxt))
1000 		return false;
1001 
1002 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1003 	 * start_seq == snd_una is non-sensical (see comments above)
1004 	 */
1005 	if (after(start_seq, tp->snd_una))
1006 		return true;
1007 
1008 	if (!is_dsack || !tp->undo_marker)
1009 		return false;
1010 
1011 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1012 	if (after(end_seq, tp->snd_una))
1013 		return false;
1014 
1015 	if (!before(start_seq, tp->undo_marker))
1016 		return true;
1017 
1018 	/* Too old */
1019 	if (!after(end_seq, tp->undo_marker))
1020 		return false;
1021 
1022 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1023 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1024 	 */
1025 	return !before(start_seq, end_seq - tp->max_window);
1026 }
1027 
1028 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1029  * Event "B". Later note: FACK people cheated me again 8), we have to account
1030  * for reordering! Ugly, but should help.
1031  *
1032  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1033  * less than what is now known to be received by the other end (derived from
1034  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1035  * retransmitted skbs to avoid some costly processing per ACKs.
1036  */
1037 static void tcp_mark_lost_retrans(struct sock *sk)
1038 {
1039 	const struct inet_connection_sock *icsk = inet_csk(sk);
1040 	struct tcp_sock *tp = tcp_sk(sk);
1041 	struct sk_buff *skb;
1042 	int cnt = 0;
1043 	u32 new_low_seq = tp->snd_nxt;
1044 	u32 received_upto = tcp_highest_sack_seq(tp);
1045 
1046 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1047 	    !after(received_upto, tp->lost_retrans_low) ||
1048 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1049 		return;
1050 
1051 	tcp_for_write_queue(skb, sk) {
1052 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1053 
1054 		if (skb == tcp_send_head(sk))
1055 			break;
1056 		if (cnt == tp->retrans_out)
1057 			break;
1058 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1059 			continue;
1060 
1061 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1062 			continue;
1063 
1064 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1065 		 * constraint here (see above) but figuring out that at
1066 		 * least tp->reordering SACK blocks reside between ack_seq
1067 		 * and received_upto is not easy task to do cheaply with
1068 		 * the available datastructures.
1069 		 *
1070 		 * Whether FACK should check here for tp->reordering segs
1071 		 * in-between one could argue for either way (it would be
1072 		 * rather simple to implement as we could count fack_count
1073 		 * during the walk and do tp->fackets_out - fack_count).
1074 		 */
1075 		if (after(received_upto, ack_seq)) {
1076 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1077 			tp->retrans_out -= tcp_skb_pcount(skb);
1078 
1079 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1080 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1081 		} else {
1082 			if (before(ack_seq, new_low_seq))
1083 				new_low_seq = ack_seq;
1084 			cnt += tcp_skb_pcount(skb);
1085 		}
1086 	}
1087 
1088 	if (tp->retrans_out)
1089 		tp->lost_retrans_low = new_low_seq;
1090 }
1091 
1092 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1093 			    struct tcp_sack_block_wire *sp, int num_sacks,
1094 			    u32 prior_snd_una)
1095 {
1096 	struct tcp_sock *tp = tcp_sk(sk);
1097 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1098 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1099 	bool dup_sack = false;
1100 
1101 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1102 		dup_sack = true;
1103 		tcp_dsack_seen(tp);
1104 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1105 	} else if (num_sacks > 1) {
1106 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1107 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1108 
1109 		if (!after(end_seq_0, end_seq_1) &&
1110 		    !before(start_seq_0, start_seq_1)) {
1111 			dup_sack = true;
1112 			tcp_dsack_seen(tp);
1113 			NET_INC_STATS_BH(sock_net(sk),
1114 					LINUX_MIB_TCPDSACKOFORECV);
1115 		}
1116 	}
1117 
1118 	/* D-SACK for already forgotten data... Do dumb counting. */
1119 	if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1120 	    !after(end_seq_0, prior_snd_una) &&
1121 	    after(end_seq_0, tp->undo_marker))
1122 		tp->undo_retrans--;
1123 
1124 	return dup_sack;
1125 }
1126 
1127 struct tcp_sacktag_state {
1128 	int	reord;
1129 	int	fack_count;
1130 	long	rtt_us; /* RTT measured by SACKing never-retransmitted data */
1131 	int	flag;
1132 };
1133 
1134 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1135  * the incoming SACK may not exactly match but we can find smaller MSS
1136  * aligned portion of it that matches. Therefore we might need to fragment
1137  * which may fail and creates some hassle (caller must handle error case
1138  * returns).
1139  *
1140  * FIXME: this could be merged to shift decision code
1141  */
1142 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1143 				  u32 start_seq, u32 end_seq)
1144 {
1145 	int err;
1146 	bool in_sack;
1147 	unsigned int pkt_len;
1148 	unsigned int mss;
1149 
1150 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1151 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1152 
1153 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1154 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1155 		mss = tcp_skb_mss(skb);
1156 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1157 
1158 		if (!in_sack) {
1159 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1160 			if (pkt_len < mss)
1161 				pkt_len = mss;
1162 		} else {
1163 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1164 			if (pkt_len < mss)
1165 				return -EINVAL;
1166 		}
1167 
1168 		/* Round if necessary so that SACKs cover only full MSSes
1169 		 * and/or the remaining small portion (if present)
1170 		 */
1171 		if (pkt_len > mss) {
1172 			unsigned int new_len = (pkt_len / mss) * mss;
1173 			if (!in_sack && new_len < pkt_len) {
1174 				new_len += mss;
1175 				if (new_len >= skb->len)
1176 					return 0;
1177 			}
1178 			pkt_len = new_len;
1179 		}
1180 		err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1181 		if (err < 0)
1182 			return err;
1183 	}
1184 
1185 	return in_sack;
1186 }
1187 
1188 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1189 static u8 tcp_sacktag_one(struct sock *sk,
1190 			  struct tcp_sacktag_state *state, u8 sacked,
1191 			  u32 start_seq, u32 end_seq,
1192 			  int dup_sack, int pcount,
1193 			  const struct skb_mstamp *xmit_time)
1194 {
1195 	struct tcp_sock *tp = tcp_sk(sk);
1196 	int fack_count = state->fack_count;
1197 
1198 	/* Account D-SACK for retransmitted packet. */
1199 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1200 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1201 		    after(end_seq, tp->undo_marker))
1202 			tp->undo_retrans--;
1203 		if (sacked & TCPCB_SACKED_ACKED)
1204 			state->reord = min(fack_count, state->reord);
1205 	}
1206 
1207 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1208 	if (!after(end_seq, tp->snd_una))
1209 		return sacked;
1210 
1211 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1212 		if (sacked & TCPCB_SACKED_RETRANS) {
1213 			/* If the segment is not tagged as lost,
1214 			 * we do not clear RETRANS, believing
1215 			 * that retransmission is still in flight.
1216 			 */
1217 			if (sacked & TCPCB_LOST) {
1218 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1219 				tp->lost_out -= pcount;
1220 				tp->retrans_out -= pcount;
1221 			}
1222 		} else {
1223 			if (!(sacked & TCPCB_RETRANS)) {
1224 				/* New sack for not retransmitted frame,
1225 				 * which was in hole. It is reordering.
1226 				 */
1227 				if (before(start_seq,
1228 					   tcp_highest_sack_seq(tp)))
1229 					state->reord = min(fack_count,
1230 							   state->reord);
1231 				if (!after(end_seq, tp->high_seq))
1232 					state->flag |= FLAG_ORIG_SACK_ACKED;
1233 				/* Pick the earliest sequence sacked for RTT */
1234 				if (state->rtt_us < 0) {
1235 					struct skb_mstamp now;
1236 
1237 					skb_mstamp_get(&now);
1238 					state->rtt_us = skb_mstamp_us_delta(&now,
1239 								xmit_time);
1240 				}
1241 			}
1242 
1243 			if (sacked & TCPCB_LOST) {
1244 				sacked &= ~TCPCB_LOST;
1245 				tp->lost_out -= pcount;
1246 			}
1247 		}
1248 
1249 		sacked |= TCPCB_SACKED_ACKED;
1250 		state->flag |= FLAG_DATA_SACKED;
1251 		tp->sacked_out += pcount;
1252 
1253 		fack_count += pcount;
1254 
1255 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1256 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1257 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1258 			tp->lost_cnt_hint += pcount;
1259 
1260 		if (fack_count > tp->fackets_out)
1261 			tp->fackets_out = fack_count;
1262 	}
1263 
1264 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1265 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1266 	 * are accounted above as well.
1267 	 */
1268 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1269 		sacked &= ~TCPCB_SACKED_RETRANS;
1270 		tp->retrans_out -= pcount;
1271 	}
1272 
1273 	return sacked;
1274 }
1275 
1276 /* Shift newly-SACKed bytes from this skb to the immediately previous
1277  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1278  */
1279 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1280 			    struct tcp_sacktag_state *state,
1281 			    unsigned int pcount, int shifted, int mss,
1282 			    bool dup_sack)
1283 {
1284 	struct tcp_sock *tp = tcp_sk(sk);
1285 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1286 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1287 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1288 
1289 	BUG_ON(!pcount);
1290 
1291 	/* Adjust counters and hints for the newly sacked sequence
1292 	 * range but discard the return value since prev is already
1293 	 * marked. We must tag the range first because the seq
1294 	 * advancement below implicitly advances
1295 	 * tcp_highest_sack_seq() when skb is highest_sack.
1296 	 */
1297 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1298 			start_seq, end_seq, dup_sack, pcount,
1299 			&skb->skb_mstamp);
1300 
1301 	if (skb == tp->lost_skb_hint)
1302 		tp->lost_cnt_hint += pcount;
1303 
1304 	TCP_SKB_CB(prev)->end_seq += shifted;
1305 	TCP_SKB_CB(skb)->seq += shifted;
1306 
1307 	tcp_skb_pcount_add(prev, pcount);
1308 	BUG_ON(tcp_skb_pcount(skb) < pcount);
1309 	tcp_skb_pcount_add(skb, -pcount);
1310 
1311 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1312 	 * in theory this shouldn't be necessary but as long as DSACK
1313 	 * code can come after this skb later on it's better to keep
1314 	 * setting gso_size to something.
1315 	 */
1316 	if (!skb_shinfo(prev)->gso_size) {
1317 		skb_shinfo(prev)->gso_size = mss;
1318 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1319 	}
1320 
1321 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1322 	if (tcp_skb_pcount(skb) <= 1) {
1323 		skb_shinfo(skb)->gso_size = 0;
1324 		skb_shinfo(skb)->gso_type = 0;
1325 	}
1326 
1327 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1328 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1329 
1330 	if (skb->len > 0) {
1331 		BUG_ON(!tcp_skb_pcount(skb));
1332 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1333 		return false;
1334 	}
1335 
1336 	/* Whole SKB was eaten :-) */
1337 
1338 	if (skb == tp->retransmit_skb_hint)
1339 		tp->retransmit_skb_hint = prev;
1340 	if (skb == tp->lost_skb_hint) {
1341 		tp->lost_skb_hint = prev;
1342 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1343 	}
1344 
1345 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1346 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1347 		TCP_SKB_CB(prev)->end_seq++;
1348 
1349 	if (skb == tcp_highest_sack(sk))
1350 		tcp_advance_highest_sack(sk, skb);
1351 
1352 	tcp_unlink_write_queue(skb, sk);
1353 	sk_wmem_free_skb(sk, skb);
1354 
1355 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1356 
1357 	return true;
1358 }
1359 
1360 /* I wish gso_size would have a bit more sane initialization than
1361  * something-or-zero which complicates things
1362  */
1363 static int tcp_skb_seglen(const struct sk_buff *skb)
1364 {
1365 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1366 }
1367 
1368 /* Shifting pages past head area doesn't work */
1369 static int skb_can_shift(const struct sk_buff *skb)
1370 {
1371 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1372 }
1373 
1374 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1375  * skb.
1376  */
1377 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1378 					  struct tcp_sacktag_state *state,
1379 					  u32 start_seq, u32 end_seq,
1380 					  bool dup_sack)
1381 {
1382 	struct tcp_sock *tp = tcp_sk(sk);
1383 	struct sk_buff *prev;
1384 	int mss;
1385 	int pcount = 0;
1386 	int len;
1387 	int in_sack;
1388 
1389 	if (!sk_can_gso(sk))
1390 		goto fallback;
1391 
1392 	/* Normally R but no L won't result in plain S */
1393 	if (!dup_sack &&
1394 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1395 		goto fallback;
1396 	if (!skb_can_shift(skb))
1397 		goto fallback;
1398 	/* This frame is about to be dropped (was ACKed). */
1399 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1400 		goto fallback;
1401 
1402 	/* Can only happen with delayed DSACK + discard craziness */
1403 	if (unlikely(skb == tcp_write_queue_head(sk)))
1404 		goto fallback;
1405 	prev = tcp_write_queue_prev(sk, skb);
1406 
1407 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1408 		goto fallback;
1409 
1410 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1411 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1412 
1413 	if (in_sack) {
1414 		len = skb->len;
1415 		pcount = tcp_skb_pcount(skb);
1416 		mss = tcp_skb_seglen(skb);
1417 
1418 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1419 		 * drop this restriction as unnecessary
1420 		 */
1421 		if (mss != tcp_skb_seglen(prev))
1422 			goto fallback;
1423 	} else {
1424 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1425 			goto noop;
1426 		/* CHECKME: This is non-MSS split case only?, this will
1427 		 * cause skipped skbs due to advancing loop btw, original
1428 		 * has that feature too
1429 		 */
1430 		if (tcp_skb_pcount(skb) <= 1)
1431 			goto noop;
1432 
1433 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1434 		if (!in_sack) {
1435 			/* TODO: head merge to next could be attempted here
1436 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1437 			 * though it might not be worth of the additional hassle
1438 			 *
1439 			 * ...we can probably just fallback to what was done
1440 			 * previously. We could try merging non-SACKed ones
1441 			 * as well but it probably isn't going to buy off
1442 			 * because later SACKs might again split them, and
1443 			 * it would make skb timestamp tracking considerably
1444 			 * harder problem.
1445 			 */
1446 			goto fallback;
1447 		}
1448 
1449 		len = end_seq - TCP_SKB_CB(skb)->seq;
1450 		BUG_ON(len < 0);
1451 		BUG_ON(len > skb->len);
1452 
1453 		/* MSS boundaries should be honoured or else pcount will
1454 		 * severely break even though it makes things bit trickier.
1455 		 * Optimize common case to avoid most of the divides
1456 		 */
1457 		mss = tcp_skb_mss(skb);
1458 
1459 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1460 		 * drop this restriction as unnecessary
1461 		 */
1462 		if (mss != tcp_skb_seglen(prev))
1463 			goto fallback;
1464 
1465 		if (len == mss) {
1466 			pcount = 1;
1467 		} else if (len < mss) {
1468 			goto noop;
1469 		} else {
1470 			pcount = len / mss;
1471 			len = pcount * mss;
1472 		}
1473 	}
1474 
1475 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1476 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1477 		goto fallback;
1478 
1479 	if (!skb_shift(prev, skb, len))
1480 		goto fallback;
1481 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1482 		goto out;
1483 
1484 	/* Hole filled allows collapsing with the next as well, this is very
1485 	 * useful when hole on every nth skb pattern happens
1486 	 */
1487 	if (prev == tcp_write_queue_tail(sk))
1488 		goto out;
1489 	skb = tcp_write_queue_next(sk, prev);
1490 
1491 	if (!skb_can_shift(skb) ||
1492 	    (skb == tcp_send_head(sk)) ||
1493 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1494 	    (mss != tcp_skb_seglen(skb)))
1495 		goto out;
1496 
1497 	len = skb->len;
1498 	if (skb_shift(prev, skb, len)) {
1499 		pcount += tcp_skb_pcount(skb);
1500 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1501 	}
1502 
1503 out:
1504 	state->fack_count += pcount;
1505 	return prev;
1506 
1507 noop:
1508 	return skb;
1509 
1510 fallback:
1511 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1512 	return NULL;
1513 }
1514 
1515 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1516 					struct tcp_sack_block *next_dup,
1517 					struct tcp_sacktag_state *state,
1518 					u32 start_seq, u32 end_seq,
1519 					bool dup_sack_in)
1520 {
1521 	struct tcp_sock *tp = tcp_sk(sk);
1522 	struct sk_buff *tmp;
1523 
1524 	tcp_for_write_queue_from(skb, sk) {
1525 		int in_sack = 0;
1526 		bool dup_sack = dup_sack_in;
1527 
1528 		if (skb == tcp_send_head(sk))
1529 			break;
1530 
1531 		/* queue is in-order => we can short-circuit the walk early */
1532 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1533 			break;
1534 
1535 		if ((next_dup != NULL) &&
1536 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1537 			in_sack = tcp_match_skb_to_sack(sk, skb,
1538 							next_dup->start_seq,
1539 							next_dup->end_seq);
1540 			if (in_sack > 0)
1541 				dup_sack = true;
1542 		}
1543 
1544 		/* skb reference here is a bit tricky to get right, since
1545 		 * shifting can eat and free both this skb and the next,
1546 		 * so not even _safe variant of the loop is enough.
1547 		 */
1548 		if (in_sack <= 0) {
1549 			tmp = tcp_shift_skb_data(sk, skb, state,
1550 						 start_seq, end_seq, dup_sack);
1551 			if (tmp != NULL) {
1552 				if (tmp != skb) {
1553 					skb = tmp;
1554 					continue;
1555 				}
1556 
1557 				in_sack = 0;
1558 			} else {
1559 				in_sack = tcp_match_skb_to_sack(sk, skb,
1560 								start_seq,
1561 								end_seq);
1562 			}
1563 		}
1564 
1565 		if (unlikely(in_sack < 0))
1566 			break;
1567 
1568 		if (in_sack) {
1569 			TCP_SKB_CB(skb)->sacked =
1570 				tcp_sacktag_one(sk,
1571 						state,
1572 						TCP_SKB_CB(skb)->sacked,
1573 						TCP_SKB_CB(skb)->seq,
1574 						TCP_SKB_CB(skb)->end_seq,
1575 						dup_sack,
1576 						tcp_skb_pcount(skb),
1577 						&skb->skb_mstamp);
1578 
1579 			if (!before(TCP_SKB_CB(skb)->seq,
1580 				    tcp_highest_sack_seq(tp)))
1581 				tcp_advance_highest_sack(sk, skb);
1582 		}
1583 
1584 		state->fack_count += tcp_skb_pcount(skb);
1585 	}
1586 	return skb;
1587 }
1588 
1589 /* Avoid all extra work that is being done by sacktag while walking in
1590  * a normal way
1591  */
1592 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1593 					struct tcp_sacktag_state *state,
1594 					u32 skip_to_seq)
1595 {
1596 	tcp_for_write_queue_from(skb, sk) {
1597 		if (skb == tcp_send_head(sk))
1598 			break;
1599 
1600 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1601 			break;
1602 
1603 		state->fack_count += tcp_skb_pcount(skb);
1604 	}
1605 	return skb;
1606 }
1607 
1608 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1609 						struct sock *sk,
1610 						struct tcp_sack_block *next_dup,
1611 						struct tcp_sacktag_state *state,
1612 						u32 skip_to_seq)
1613 {
1614 	if (next_dup == NULL)
1615 		return skb;
1616 
1617 	if (before(next_dup->start_seq, skip_to_seq)) {
1618 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1619 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1620 				       next_dup->start_seq, next_dup->end_seq,
1621 				       1);
1622 	}
1623 
1624 	return skb;
1625 }
1626 
1627 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1628 {
1629 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1630 }
1631 
1632 static int
1633 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1634 			u32 prior_snd_una, long *sack_rtt_us)
1635 {
1636 	struct tcp_sock *tp = tcp_sk(sk);
1637 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1638 				    TCP_SKB_CB(ack_skb)->sacked);
1639 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1640 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1641 	struct tcp_sack_block *cache;
1642 	struct tcp_sacktag_state state;
1643 	struct sk_buff *skb;
1644 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1645 	int used_sacks;
1646 	bool found_dup_sack = false;
1647 	int i, j;
1648 	int first_sack_index;
1649 
1650 	state.flag = 0;
1651 	state.reord = tp->packets_out;
1652 	state.rtt_us = -1L;
1653 
1654 	if (!tp->sacked_out) {
1655 		if (WARN_ON(tp->fackets_out))
1656 			tp->fackets_out = 0;
1657 		tcp_highest_sack_reset(sk);
1658 	}
1659 
1660 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1661 					 num_sacks, prior_snd_una);
1662 	if (found_dup_sack)
1663 		state.flag |= FLAG_DSACKING_ACK;
1664 
1665 	/* Eliminate too old ACKs, but take into
1666 	 * account more or less fresh ones, they can
1667 	 * contain valid SACK info.
1668 	 */
1669 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1670 		return 0;
1671 
1672 	if (!tp->packets_out)
1673 		goto out;
1674 
1675 	used_sacks = 0;
1676 	first_sack_index = 0;
1677 	for (i = 0; i < num_sacks; i++) {
1678 		bool dup_sack = !i && found_dup_sack;
1679 
1680 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1681 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1682 
1683 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1684 					    sp[used_sacks].start_seq,
1685 					    sp[used_sacks].end_seq)) {
1686 			int mib_idx;
1687 
1688 			if (dup_sack) {
1689 				if (!tp->undo_marker)
1690 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1691 				else
1692 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1693 			} else {
1694 				/* Don't count olds caused by ACK reordering */
1695 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1696 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1697 					continue;
1698 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1699 			}
1700 
1701 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1702 			if (i == 0)
1703 				first_sack_index = -1;
1704 			continue;
1705 		}
1706 
1707 		/* Ignore very old stuff early */
1708 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1709 			continue;
1710 
1711 		used_sacks++;
1712 	}
1713 
1714 	/* order SACK blocks to allow in order walk of the retrans queue */
1715 	for (i = used_sacks - 1; i > 0; i--) {
1716 		for (j = 0; j < i; j++) {
1717 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1718 				swap(sp[j], sp[j + 1]);
1719 
1720 				/* Track where the first SACK block goes to */
1721 				if (j == first_sack_index)
1722 					first_sack_index = j + 1;
1723 			}
1724 		}
1725 	}
1726 
1727 	skb = tcp_write_queue_head(sk);
1728 	state.fack_count = 0;
1729 	i = 0;
1730 
1731 	if (!tp->sacked_out) {
1732 		/* It's already past, so skip checking against it */
1733 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1734 	} else {
1735 		cache = tp->recv_sack_cache;
1736 		/* Skip empty blocks in at head of the cache */
1737 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1738 		       !cache->end_seq)
1739 			cache++;
1740 	}
1741 
1742 	while (i < used_sacks) {
1743 		u32 start_seq = sp[i].start_seq;
1744 		u32 end_seq = sp[i].end_seq;
1745 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1746 		struct tcp_sack_block *next_dup = NULL;
1747 
1748 		if (found_dup_sack && ((i + 1) == first_sack_index))
1749 			next_dup = &sp[i + 1];
1750 
1751 		/* Skip too early cached blocks */
1752 		while (tcp_sack_cache_ok(tp, cache) &&
1753 		       !before(start_seq, cache->end_seq))
1754 			cache++;
1755 
1756 		/* Can skip some work by looking recv_sack_cache? */
1757 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1758 		    after(end_seq, cache->start_seq)) {
1759 
1760 			/* Head todo? */
1761 			if (before(start_seq, cache->start_seq)) {
1762 				skb = tcp_sacktag_skip(skb, sk, &state,
1763 						       start_seq);
1764 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1765 						       &state,
1766 						       start_seq,
1767 						       cache->start_seq,
1768 						       dup_sack);
1769 			}
1770 
1771 			/* Rest of the block already fully processed? */
1772 			if (!after(end_seq, cache->end_seq))
1773 				goto advance_sp;
1774 
1775 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1776 						       &state,
1777 						       cache->end_seq);
1778 
1779 			/* ...tail remains todo... */
1780 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1781 				/* ...but better entrypoint exists! */
1782 				skb = tcp_highest_sack(sk);
1783 				if (skb == NULL)
1784 					break;
1785 				state.fack_count = tp->fackets_out;
1786 				cache++;
1787 				goto walk;
1788 			}
1789 
1790 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1791 			/* Check overlap against next cached too (past this one already) */
1792 			cache++;
1793 			continue;
1794 		}
1795 
1796 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1797 			skb = tcp_highest_sack(sk);
1798 			if (skb == NULL)
1799 				break;
1800 			state.fack_count = tp->fackets_out;
1801 		}
1802 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1803 
1804 walk:
1805 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1806 				       start_seq, end_seq, dup_sack);
1807 
1808 advance_sp:
1809 		i++;
1810 	}
1811 
1812 	/* Clear the head of the cache sack blocks so we can skip it next time */
1813 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1814 		tp->recv_sack_cache[i].start_seq = 0;
1815 		tp->recv_sack_cache[i].end_seq = 0;
1816 	}
1817 	for (j = 0; j < used_sacks; j++)
1818 		tp->recv_sack_cache[i++] = sp[j];
1819 
1820 	tcp_mark_lost_retrans(sk);
1821 
1822 	tcp_verify_left_out(tp);
1823 
1824 	if ((state.reord < tp->fackets_out) &&
1825 	    ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1826 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1827 
1828 out:
1829 
1830 #if FASTRETRANS_DEBUG > 0
1831 	WARN_ON((int)tp->sacked_out < 0);
1832 	WARN_ON((int)tp->lost_out < 0);
1833 	WARN_ON((int)tp->retrans_out < 0);
1834 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1835 #endif
1836 	*sack_rtt_us = state.rtt_us;
1837 	return state.flag;
1838 }
1839 
1840 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1841  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1842  */
1843 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1844 {
1845 	u32 holes;
1846 
1847 	holes = max(tp->lost_out, 1U);
1848 	holes = min(holes, tp->packets_out);
1849 
1850 	if ((tp->sacked_out + holes) > tp->packets_out) {
1851 		tp->sacked_out = tp->packets_out - holes;
1852 		return true;
1853 	}
1854 	return false;
1855 }
1856 
1857 /* If we receive more dupacks than we expected counting segments
1858  * in assumption of absent reordering, interpret this as reordering.
1859  * The only another reason could be bug in receiver TCP.
1860  */
1861 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1862 {
1863 	struct tcp_sock *tp = tcp_sk(sk);
1864 	if (tcp_limit_reno_sacked(tp))
1865 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1866 }
1867 
1868 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1869 
1870 static void tcp_add_reno_sack(struct sock *sk)
1871 {
1872 	struct tcp_sock *tp = tcp_sk(sk);
1873 	tp->sacked_out++;
1874 	tcp_check_reno_reordering(sk, 0);
1875 	tcp_verify_left_out(tp);
1876 }
1877 
1878 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1879 
1880 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1881 {
1882 	struct tcp_sock *tp = tcp_sk(sk);
1883 
1884 	if (acked > 0) {
1885 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1886 		if (acked - 1 >= tp->sacked_out)
1887 			tp->sacked_out = 0;
1888 		else
1889 			tp->sacked_out -= acked - 1;
1890 	}
1891 	tcp_check_reno_reordering(sk, acked);
1892 	tcp_verify_left_out(tp);
1893 }
1894 
1895 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1896 {
1897 	tp->sacked_out = 0;
1898 }
1899 
1900 void tcp_clear_retrans(struct tcp_sock *tp)
1901 {
1902 	tp->retrans_out = 0;
1903 	tp->lost_out = 0;
1904 	tp->undo_marker = 0;
1905 	tp->undo_retrans = -1;
1906 	tp->fackets_out = 0;
1907 	tp->sacked_out = 0;
1908 }
1909 
1910 static inline void tcp_init_undo(struct tcp_sock *tp)
1911 {
1912 	tp->undo_marker = tp->snd_una;
1913 	/* Retransmission still in flight may cause DSACKs later. */
1914 	tp->undo_retrans = tp->retrans_out ? : -1;
1915 }
1916 
1917 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1918  * and reset tags completely, otherwise preserve SACKs. If receiver
1919  * dropped its ofo queue, we will know this due to reneging detection.
1920  */
1921 void tcp_enter_loss(struct sock *sk)
1922 {
1923 	const struct inet_connection_sock *icsk = inet_csk(sk);
1924 	struct tcp_sock *tp = tcp_sk(sk);
1925 	struct sk_buff *skb;
1926 	bool new_recovery = false;
1927 	bool is_reneg;			/* is receiver reneging on SACKs? */
1928 
1929 	/* Reduce ssthresh if it has not yet been made inside this window. */
1930 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1931 	    !after(tp->high_seq, tp->snd_una) ||
1932 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1933 		new_recovery = true;
1934 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1935 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1936 		tcp_ca_event(sk, CA_EVENT_LOSS);
1937 		tcp_init_undo(tp);
1938 	}
1939 	tp->snd_cwnd	   = 1;
1940 	tp->snd_cwnd_cnt   = 0;
1941 	tp->snd_cwnd_stamp = tcp_time_stamp;
1942 
1943 	tp->retrans_out = 0;
1944 	tp->lost_out = 0;
1945 
1946 	if (tcp_is_reno(tp))
1947 		tcp_reset_reno_sack(tp);
1948 
1949 	skb = tcp_write_queue_head(sk);
1950 	is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1951 	if (is_reneg) {
1952 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1953 		tp->sacked_out = 0;
1954 		tp->fackets_out = 0;
1955 	}
1956 	tcp_clear_all_retrans_hints(tp);
1957 
1958 	tcp_for_write_queue(skb, sk) {
1959 		if (skb == tcp_send_head(sk))
1960 			break;
1961 
1962 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1963 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1964 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1965 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1966 			tp->lost_out += tcp_skb_pcount(skb);
1967 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1968 		}
1969 	}
1970 	tcp_verify_left_out(tp);
1971 
1972 	/* Timeout in disordered state after receiving substantial DUPACKs
1973 	 * suggests that the degree of reordering is over-estimated.
1974 	 */
1975 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1976 	    tp->sacked_out >= sysctl_tcp_reordering)
1977 		tp->reordering = min_t(unsigned int, tp->reordering,
1978 				       sysctl_tcp_reordering);
1979 	tcp_set_ca_state(sk, TCP_CA_Loss);
1980 	tp->high_seq = tp->snd_nxt;
1981 	tcp_ecn_queue_cwr(tp);
1982 
1983 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1984 	 * loss recovery is underway except recurring timeout(s) on
1985 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1986 	 */
1987 	tp->frto = sysctl_tcp_frto &&
1988 		   (new_recovery || icsk->icsk_retransmits) &&
1989 		   !inet_csk(sk)->icsk_mtup.probe_size;
1990 }
1991 
1992 /* If ACK arrived pointing to a remembered SACK, it means that our
1993  * remembered SACKs do not reflect real state of receiver i.e.
1994  * receiver _host_ is heavily congested (or buggy).
1995  *
1996  * To avoid big spurious retransmission bursts due to transient SACK
1997  * scoreboard oddities that look like reneging, we give the receiver a
1998  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1999  * restore sanity to the SACK scoreboard. If the apparent reneging
2000  * persists until this RTO then we'll clear the SACK scoreboard.
2001  */
2002 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2003 {
2004 	if (flag & FLAG_SACK_RENEGING) {
2005 		struct tcp_sock *tp = tcp_sk(sk);
2006 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2007 					  msecs_to_jiffies(10));
2008 
2009 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2010 					  delay, TCP_RTO_MAX);
2011 		return true;
2012 	}
2013 	return false;
2014 }
2015 
2016 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2017 {
2018 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2019 }
2020 
2021 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2022  * counter when SACK is enabled (without SACK, sacked_out is used for
2023  * that purpose).
2024  *
2025  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2026  * segments up to the highest received SACK block so far and holes in
2027  * between them.
2028  *
2029  * With reordering, holes may still be in flight, so RFC3517 recovery
2030  * uses pure sacked_out (total number of SACKed segments) even though
2031  * it violates the RFC that uses duplicate ACKs, often these are equal
2032  * but when e.g. out-of-window ACKs or packet duplication occurs,
2033  * they differ. Since neither occurs due to loss, TCP should really
2034  * ignore them.
2035  */
2036 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2037 {
2038 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2039 }
2040 
2041 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2042 {
2043 	struct tcp_sock *tp = tcp_sk(sk);
2044 	unsigned long delay;
2045 
2046 	/* Delay early retransmit and entering fast recovery for
2047 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2048 	 * available, or RTO is scheduled to fire first.
2049 	 */
2050 	if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2051 	    (flag & FLAG_ECE) || !tp->srtt_us)
2052 		return false;
2053 
2054 	delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2055 		    msecs_to_jiffies(2));
2056 
2057 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2058 		return false;
2059 
2060 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2061 				  TCP_RTO_MAX);
2062 	return true;
2063 }
2064 
2065 /* Linux NewReno/SACK/FACK/ECN state machine.
2066  * --------------------------------------
2067  *
2068  * "Open"	Normal state, no dubious events, fast path.
2069  * "Disorder"   In all the respects it is "Open",
2070  *		but requires a bit more attention. It is entered when
2071  *		we see some SACKs or dupacks. It is split of "Open"
2072  *		mainly to move some processing from fast path to slow one.
2073  * "CWR"	CWND was reduced due to some Congestion Notification event.
2074  *		It can be ECN, ICMP source quench, local device congestion.
2075  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2076  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2077  *
2078  * tcp_fastretrans_alert() is entered:
2079  * - each incoming ACK, if state is not "Open"
2080  * - when arrived ACK is unusual, namely:
2081  *	* SACK
2082  *	* Duplicate ACK.
2083  *	* ECN ECE.
2084  *
2085  * Counting packets in flight is pretty simple.
2086  *
2087  *	in_flight = packets_out - left_out + retrans_out
2088  *
2089  *	packets_out is SND.NXT-SND.UNA counted in packets.
2090  *
2091  *	retrans_out is number of retransmitted segments.
2092  *
2093  *	left_out is number of segments left network, but not ACKed yet.
2094  *
2095  *		left_out = sacked_out + lost_out
2096  *
2097  *     sacked_out: Packets, which arrived to receiver out of order
2098  *		   and hence not ACKed. With SACKs this number is simply
2099  *		   amount of SACKed data. Even without SACKs
2100  *		   it is easy to give pretty reliable estimate of this number,
2101  *		   counting duplicate ACKs.
2102  *
2103  *       lost_out: Packets lost by network. TCP has no explicit
2104  *		   "loss notification" feedback from network (for now).
2105  *		   It means that this number can be only _guessed_.
2106  *		   Actually, it is the heuristics to predict lossage that
2107  *		   distinguishes different algorithms.
2108  *
2109  *	F.e. after RTO, when all the queue is considered as lost,
2110  *	lost_out = packets_out and in_flight = retrans_out.
2111  *
2112  *		Essentially, we have now two algorithms counting
2113  *		lost packets.
2114  *
2115  *		FACK: It is the simplest heuristics. As soon as we decided
2116  *		that something is lost, we decide that _all_ not SACKed
2117  *		packets until the most forward SACK are lost. I.e.
2118  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2119  *		It is absolutely correct estimate, if network does not reorder
2120  *		packets. And it loses any connection to reality when reordering
2121  *		takes place. We use FACK by default until reordering
2122  *		is suspected on the path to this destination.
2123  *
2124  *		NewReno: when Recovery is entered, we assume that one segment
2125  *		is lost (classic Reno). While we are in Recovery and
2126  *		a partial ACK arrives, we assume that one more packet
2127  *		is lost (NewReno). This heuristics are the same in NewReno
2128  *		and SACK.
2129  *
2130  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2131  *  deflation etc. CWND is real congestion window, never inflated, changes
2132  *  only according to classic VJ rules.
2133  *
2134  * Really tricky (and requiring careful tuning) part of algorithm
2135  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2136  * The first determines the moment _when_ we should reduce CWND and,
2137  * hence, slow down forward transmission. In fact, it determines the moment
2138  * when we decide that hole is caused by loss, rather than by a reorder.
2139  *
2140  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2141  * holes, caused by lost packets.
2142  *
2143  * And the most logically complicated part of algorithm is undo
2144  * heuristics. We detect false retransmits due to both too early
2145  * fast retransmit (reordering) and underestimated RTO, analyzing
2146  * timestamps and D-SACKs. When we detect that some segments were
2147  * retransmitted by mistake and CWND reduction was wrong, we undo
2148  * window reduction and abort recovery phase. This logic is hidden
2149  * inside several functions named tcp_try_undo_<something>.
2150  */
2151 
2152 /* This function decides, when we should leave Disordered state
2153  * and enter Recovery phase, reducing congestion window.
2154  *
2155  * Main question: may we further continue forward transmission
2156  * with the same cwnd?
2157  */
2158 static bool tcp_time_to_recover(struct sock *sk, int flag)
2159 {
2160 	struct tcp_sock *tp = tcp_sk(sk);
2161 	__u32 packets_out;
2162 
2163 	/* Trick#1: The loss is proven. */
2164 	if (tp->lost_out)
2165 		return true;
2166 
2167 	/* Not-A-Trick#2 : Classic rule... */
2168 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2169 		return true;
2170 
2171 	/* Trick#4: It is still not OK... But will it be useful to delay
2172 	 * recovery more?
2173 	 */
2174 	packets_out = tp->packets_out;
2175 	if (packets_out <= tp->reordering &&
2176 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2177 	    !tcp_may_send_now(sk)) {
2178 		/* We have nothing to send. This connection is limited
2179 		 * either by receiver window or by application.
2180 		 */
2181 		return true;
2182 	}
2183 
2184 	/* If a thin stream is detected, retransmit after first
2185 	 * received dupack. Employ only if SACK is supported in order
2186 	 * to avoid possible corner-case series of spurious retransmissions
2187 	 * Use only if there are no unsent data.
2188 	 */
2189 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2190 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2191 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2192 		return true;
2193 
2194 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2195 	 * retransmissions due to small network reorderings, we implement
2196 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2197 	 * interval if appropriate.
2198 	 */
2199 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2200 	    (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2201 	    !tcp_may_send_now(sk))
2202 		return !tcp_pause_early_retransmit(sk, flag);
2203 
2204 	return false;
2205 }
2206 
2207 /* Detect loss in event "A" above by marking head of queue up as lost.
2208  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2209  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2210  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2211  * the maximum SACKed segments to pass before reaching this limit.
2212  */
2213 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2214 {
2215 	struct tcp_sock *tp = tcp_sk(sk);
2216 	struct sk_buff *skb;
2217 	int cnt, oldcnt;
2218 	int err;
2219 	unsigned int mss;
2220 	/* Use SACK to deduce losses of new sequences sent during recovery */
2221 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2222 
2223 	WARN_ON(packets > tp->packets_out);
2224 	if (tp->lost_skb_hint) {
2225 		skb = tp->lost_skb_hint;
2226 		cnt = tp->lost_cnt_hint;
2227 		/* Head already handled? */
2228 		if (mark_head && skb != tcp_write_queue_head(sk))
2229 			return;
2230 	} else {
2231 		skb = tcp_write_queue_head(sk);
2232 		cnt = 0;
2233 	}
2234 
2235 	tcp_for_write_queue_from(skb, sk) {
2236 		if (skb == tcp_send_head(sk))
2237 			break;
2238 		/* TODO: do this better */
2239 		/* this is not the most efficient way to do this... */
2240 		tp->lost_skb_hint = skb;
2241 		tp->lost_cnt_hint = cnt;
2242 
2243 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2244 			break;
2245 
2246 		oldcnt = cnt;
2247 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2248 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2249 			cnt += tcp_skb_pcount(skb);
2250 
2251 		if (cnt > packets) {
2252 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2253 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2254 			    (oldcnt >= packets))
2255 				break;
2256 
2257 			mss = skb_shinfo(skb)->gso_size;
2258 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
2259 					   mss, GFP_ATOMIC);
2260 			if (err < 0)
2261 				break;
2262 			cnt = packets;
2263 		}
2264 
2265 		tcp_skb_mark_lost(tp, skb);
2266 
2267 		if (mark_head)
2268 			break;
2269 	}
2270 	tcp_verify_left_out(tp);
2271 }
2272 
2273 /* Account newly detected lost packet(s) */
2274 
2275 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2276 {
2277 	struct tcp_sock *tp = tcp_sk(sk);
2278 
2279 	if (tcp_is_reno(tp)) {
2280 		tcp_mark_head_lost(sk, 1, 1);
2281 	} else if (tcp_is_fack(tp)) {
2282 		int lost = tp->fackets_out - tp->reordering;
2283 		if (lost <= 0)
2284 			lost = 1;
2285 		tcp_mark_head_lost(sk, lost, 0);
2286 	} else {
2287 		int sacked_upto = tp->sacked_out - tp->reordering;
2288 		if (sacked_upto >= 0)
2289 			tcp_mark_head_lost(sk, sacked_upto, 0);
2290 		else if (fast_rexmit)
2291 			tcp_mark_head_lost(sk, 1, 1);
2292 	}
2293 }
2294 
2295 /* CWND moderation, preventing bursts due to too big ACKs
2296  * in dubious situations.
2297  */
2298 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2299 {
2300 	tp->snd_cwnd = min(tp->snd_cwnd,
2301 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2302 	tp->snd_cwnd_stamp = tcp_time_stamp;
2303 }
2304 
2305 /* Nothing was retransmitted or returned timestamp is less
2306  * than timestamp of the first retransmission.
2307  */
2308 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2309 {
2310 	return !tp->retrans_stamp ||
2311 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2312 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2313 }
2314 
2315 /* Undo procedures. */
2316 
2317 #if FASTRETRANS_DEBUG > 1
2318 static void DBGUNDO(struct sock *sk, const char *msg)
2319 {
2320 	struct tcp_sock *tp = tcp_sk(sk);
2321 	struct inet_sock *inet = inet_sk(sk);
2322 
2323 	if (sk->sk_family == AF_INET) {
2324 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2325 			 msg,
2326 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2327 			 tp->snd_cwnd, tcp_left_out(tp),
2328 			 tp->snd_ssthresh, tp->prior_ssthresh,
2329 			 tp->packets_out);
2330 	}
2331 #if IS_ENABLED(CONFIG_IPV6)
2332 	else if (sk->sk_family == AF_INET6) {
2333 		struct ipv6_pinfo *np = inet6_sk(sk);
2334 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2335 			 msg,
2336 			 &np->daddr, ntohs(inet->inet_dport),
2337 			 tp->snd_cwnd, tcp_left_out(tp),
2338 			 tp->snd_ssthresh, tp->prior_ssthresh,
2339 			 tp->packets_out);
2340 	}
2341 #endif
2342 }
2343 #else
2344 #define DBGUNDO(x...) do { } while (0)
2345 #endif
2346 
2347 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2348 {
2349 	struct tcp_sock *tp = tcp_sk(sk);
2350 
2351 	if (unmark_loss) {
2352 		struct sk_buff *skb;
2353 
2354 		tcp_for_write_queue(skb, sk) {
2355 			if (skb == tcp_send_head(sk))
2356 				break;
2357 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2358 		}
2359 		tp->lost_out = 0;
2360 		tcp_clear_all_retrans_hints(tp);
2361 	}
2362 
2363 	if (tp->prior_ssthresh) {
2364 		const struct inet_connection_sock *icsk = inet_csk(sk);
2365 
2366 		if (icsk->icsk_ca_ops->undo_cwnd)
2367 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2368 		else
2369 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2370 
2371 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2372 			tp->snd_ssthresh = tp->prior_ssthresh;
2373 			tcp_ecn_withdraw_cwr(tp);
2374 		}
2375 	} else {
2376 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2377 	}
2378 	tp->snd_cwnd_stamp = tcp_time_stamp;
2379 	tp->undo_marker = 0;
2380 }
2381 
2382 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2383 {
2384 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2385 }
2386 
2387 /* People celebrate: "We love our President!" */
2388 static bool tcp_try_undo_recovery(struct sock *sk)
2389 {
2390 	struct tcp_sock *tp = tcp_sk(sk);
2391 
2392 	if (tcp_may_undo(tp)) {
2393 		int mib_idx;
2394 
2395 		/* Happy end! We did not retransmit anything
2396 		 * or our original transmission succeeded.
2397 		 */
2398 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2399 		tcp_undo_cwnd_reduction(sk, false);
2400 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2401 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2402 		else
2403 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2404 
2405 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2406 	}
2407 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2408 		/* Hold old state until something *above* high_seq
2409 		 * is ACKed. For Reno it is MUST to prevent false
2410 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2411 		tcp_moderate_cwnd(tp);
2412 		return true;
2413 	}
2414 	tcp_set_ca_state(sk, TCP_CA_Open);
2415 	return false;
2416 }
2417 
2418 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2419 static bool tcp_try_undo_dsack(struct sock *sk)
2420 {
2421 	struct tcp_sock *tp = tcp_sk(sk);
2422 
2423 	if (tp->undo_marker && !tp->undo_retrans) {
2424 		DBGUNDO(sk, "D-SACK");
2425 		tcp_undo_cwnd_reduction(sk, false);
2426 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2427 		return true;
2428 	}
2429 	return false;
2430 }
2431 
2432 /* We can clear retrans_stamp when there are no retransmissions in the
2433  * window. It would seem that it is trivially available for us in
2434  * tp->retrans_out, however, that kind of assumptions doesn't consider
2435  * what will happen if errors occur when sending retransmission for the
2436  * second time. ...It could the that such segment has only
2437  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2438  * the head skb is enough except for some reneging corner cases that
2439  * are not worth the effort.
2440  *
2441  * Main reason for all this complexity is the fact that connection dying
2442  * time now depends on the validity of the retrans_stamp, in particular,
2443  * that successive retransmissions of a segment must not advance
2444  * retrans_stamp under any conditions.
2445  */
2446 static bool tcp_any_retrans_done(const struct sock *sk)
2447 {
2448 	const struct tcp_sock *tp = tcp_sk(sk);
2449 	struct sk_buff *skb;
2450 
2451 	if (tp->retrans_out)
2452 		return true;
2453 
2454 	skb = tcp_write_queue_head(sk);
2455 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2456 		return true;
2457 
2458 	return false;
2459 }
2460 
2461 /* Undo during loss recovery after partial ACK or using F-RTO. */
2462 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2463 {
2464 	struct tcp_sock *tp = tcp_sk(sk);
2465 
2466 	if (frto_undo || tcp_may_undo(tp)) {
2467 		tcp_undo_cwnd_reduction(sk, true);
2468 
2469 		DBGUNDO(sk, "partial loss");
2470 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2471 		if (frto_undo)
2472 			NET_INC_STATS_BH(sock_net(sk),
2473 					 LINUX_MIB_TCPSPURIOUSRTOS);
2474 		inet_csk(sk)->icsk_retransmits = 0;
2475 		if (frto_undo || tcp_is_sack(tp))
2476 			tcp_set_ca_state(sk, TCP_CA_Open);
2477 		return true;
2478 	}
2479 	return false;
2480 }
2481 
2482 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2483  * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2484  * It computes the number of packets to send (sndcnt) based on packets newly
2485  * delivered:
2486  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2487  *	cwnd reductions across a full RTT.
2488  *   2) If packets in flight is lower than ssthresh (such as due to excess
2489  *	losses and/or application stalls), do not perform any further cwnd
2490  *	reductions, but instead slow start up to ssthresh.
2491  */
2492 static void tcp_init_cwnd_reduction(struct sock *sk)
2493 {
2494 	struct tcp_sock *tp = tcp_sk(sk);
2495 
2496 	tp->high_seq = tp->snd_nxt;
2497 	tp->tlp_high_seq = 0;
2498 	tp->snd_cwnd_cnt = 0;
2499 	tp->prior_cwnd = tp->snd_cwnd;
2500 	tp->prr_delivered = 0;
2501 	tp->prr_out = 0;
2502 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2503 	tcp_ecn_queue_cwr(tp);
2504 }
2505 
2506 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2507 			       int fast_rexmit)
2508 {
2509 	struct tcp_sock *tp = tcp_sk(sk);
2510 	int sndcnt = 0;
2511 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2512 	int newly_acked_sacked = prior_unsacked -
2513 				 (tp->packets_out - tp->sacked_out);
2514 
2515 	tp->prr_delivered += newly_acked_sacked;
2516 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2517 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2518 			       tp->prior_cwnd - 1;
2519 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2520 	} else {
2521 		sndcnt = min_t(int, delta,
2522 			       max_t(int, tp->prr_delivered - tp->prr_out,
2523 				     newly_acked_sacked) + 1);
2524 	}
2525 
2526 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2527 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2528 }
2529 
2530 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2531 {
2532 	struct tcp_sock *tp = tcp_sk(sk);
2533 
2534 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2535 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2536 	    (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2537 		tp->snd_cwnd = tp->snd_ssthresh;
2538 		tp->snd_cwnd_stamp = tcp_time_stamp;
2539 	}
2540 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2541 }
2542 
2543 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2544 void tcp_enter_cwr(struct sock *sk)
2545 {
2546 	struct tcp_sock *tp = tcp_sk(sk);
2547 
2548 	tp->prior_ssthresh = 0;
2549 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2550 		tp->undo_marker = 0;
2551 		tcp_init_cwnd_reduction(sk);
2552 		tcp_set_ca_state(sk, TCP_CA_CWR);
2553 	}
2554 }
2555 
2556 static void tcp_try_keep_open(struct sock *sk)
2557 {
2558 	struct tcp_sock *tp = tcp_sk(sk);
2559 	int state = TCP_CA_Open;
2560 
2561 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2562 		state = TCP_CA_Disorder;
2563 
2564 	if (inet_csk(sk)->icsk_ca_state != state) {
2565 		tcp_set_ca_state(sk, state);
2566 		tp->high_seq = tp->snd_nxt;
2567 	}
2568 }
2569 
2570 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2571 {
2572 	struct tcp_sock *tp = tcp_sk(sk);
2573 
2574 	tcp_verify_left_out(tp);
2575 
2576 	if (!tcp_any_retrans_done(sk))
2577 		tp->retrans_stamp = 0;
2578 
2579 	if (flag & FLAG_ECE)
2580 		tcp_enter_cwr(sk);
2581 
2582 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2583 		tcp_try_keep_open(sk);
2584 	} else {
2585 		tcp_cwnd_reduction(sk, prior_unsacked, 0);
2586 	}
2587 }
2588 
2589 static void tcp_mtup_probe_failed(struct sock *sk)
2590 {
2591 	struct inet_connection_sock *icsk = inet_csk(sk);
2592 
2593 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2594 	icsk->icsk_mtup.probe_size = 0;
2595 }
2596 
2597 static void tcp_mtup_probe_success(struct sock *sk)
2598 {
2599 	struct tcp_sock *tp = tcp_sk(sk);
2600 	struct inet_connection_sock *icsk = inet_csk(sk);
2601 
2602 	/* FIXME: breaks with very large cwnd */
2603 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2604 	tp->snd_cwnd = tp->snd_cwnd *
2605 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2606 		       icsk->icsk_mtup.probe_size;
2607 	tp->snd_cwnd_cnt = 0;
2608 	tp->snd_cwnd_stamp = tcp_time_stamp;
2609 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2610 
2611 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2612 	icsk->icsk_mtup.probe_size = 0;
2613 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2614 }
2615 
2616 /* Do a simple retransmit without using the backoff mechanisms in
2617  * tcp_timer. This is used for path mtu discovery.
2618  * The socket is already locked here.
2619  */
2620 void tcp_simple_retransmit(struct sock *sk)
2621 {
2622 	const struct inet_connection_sock *icsk = inet_csk(sk);
2623 	struct tcp_sock *tp = tcp_sk(sk);
2624 	struct sk_buff *skb;
2625 	unsigned int mss = tcp_current_mss(sk);
2626 	u32 prior_lost = tp->lost_out;
2627 
2628 	tcp_for_write_queue(skb, sk) {
2629 		if (skb == tcp_send_head(sk))
2630 			break;
2631 		if (tcp_skb_seglen(skb) > mss &&
2632 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2633 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2634 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2635 				tp->retrans_out -= tcp_skb_pcount(skb);
2636 			}
2637 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2638 		}
2639 	}
2640 
2641 	tcp_clear_retrans_hints_partial(tp);
2642 
2643 	if (prior_lost == tp->lost_out)
2644 		return;
2645 
2646 	if (tcp_is_reno(tp))
2647 		tcp_limit_reno_sacked(tp);
2648 
2649 	tcp_verify_left_out(tp);
2650 
2651 	/* Don't muck with the congestion window here.
2652 	 * Reason is that we do not increase amount of _data_
2653 	 * in network, but units changed and effective
2654 	 * cwnd/ssthresh really reduced now.
2655 	 */
2656 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2657 		tp->high_seq = tp->snd_nxt;
2658 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2659 		tp->prior_ssthresh = 0;
2660 		tp->undo_marker = 0;
2661 		tcp_set_ca_state(sk, TCP_CA_Loss);
2662 	}
2663 	tcp_xmit_retransmit_queue(sk);
2664 }
2665 EXPORT_SYMBOL(tcp_simple_retransmit);
2666 
2667 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2668 {
2669 	struct tcp_sock *tp = tcp_sk(sk);
2670 	int mib_idx;
2671 
2672 	if (tcp_is_reno(tp))
2673 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2674 	else
2675 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2676 
2677 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2678 
2679 	tp->prior_ssthresh = 0;
2680 	tcp_init_undo(tp);
2681 
2682 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2683 		if (!ece_ack)
2684 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2685 		tcp_init_cwnd_reduction(sk);
2686 	}
2687 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2688 }
2689 
2690 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2691  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2692  */
2693 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2694 {
2695 	struct tcp_sock *tp = tcp_sk(sk);
2696 	bool recovered = !before(tp->snd_una, tp->high_seq);
2697 
2698 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2699 		/* Step 3.b. A timeout is spurious if not all data are
2700 		 * lost, i.e., never-retransmitted data are (s)acked.
2701 		 */
2702 		if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
2703 			return;
2704 
2705 		if (after(tp->snd_nxt, tp->high_seq) &&
2706 		    (flag & FLAG_DATA_SACKED || is_dupack)) {
2707 			tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2708 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2709 			tp->high_seq = tp->snd_nxt;
2710 			__tcp_push_pending_frames(sk, tcp_current_mss(sk),
2711 						  TCP_NAGLE_OFF);
2712 			if (after(tp->snd_nxt, tp->high_seq))
2713 				return; /* Step 2.b */
2714 			tp->frto = 0;
2715 		}
2716 	}
2717 
2718 	if (recovered) {
2719 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2720 		tcp_try_undo_recovery(sk);
2721 		return;
2722 	}
2723 	if (tcp_is_reno(tp)) {
2724 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2725 		 * delivered. Lower inflight to clock out (re)tranmissions.
2726 		 */
2727 		if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2728 			tcp_add_reno_sack(sk);
2729 		else if (flag & FLAG_SND_UNA_ADVANCED)
2730 			tcp_reset_reno_sack(tp);
2731 	}
2732 	if (tcp_try_undo_loss(sk, false))
2733 		return;
2734 	tcp_xmit_retransmit_queue(sk);
2735 }
2736 
2737 /* Undo during fast recovery after partial ACK. */
2738 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2739 				 const int prior_unsacked)
2740 {
2741 	struct tcp_sock *tp = tcp_sk(sk);
2742 
2743 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2744 		/* Plain luck! Hole if filled with delayed
2745 		 * packet, rather than with a retransmit.
2746 		 */
2747 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2748 
2749 		/* We are getting evidence that the reordering degree is higher
2750 		 * than we realized. If there are no retransmits out then we
2751 		 * can undo. Otherwise we clock out new packets but do not
2752 		 * mark more packets lost or retransmit more.
2753 		 */
2754 		if (tp->retrans_out) {
2755 			tcp_cwnd_reduction(sk, prior_unsacked, 0);
2756 			return true;
2757 		}
2758 
2759 		if (!tcp_any_retrans_done(sk))
2760 			tp->retrans_stamp = 0;
2761 
2762 		DBGUNDO(sk, "partial recovery");
2763 		tcp_undo_cwnd_reduction(sk, true);
2764 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2765 		tcp_try_keep_open(sk);
2766 		return true;
2767 	}
2768 	return false;
2769 }
2770 
2771 /* Process an event, which can update packets-in-flight not trivially.
2772  * Main goal of this function is to calculate new estimate for left_out,
2773  * taking into account both packets sitting in receiver's buffer and
2774  * packets lost by network.
2775  *
2776  * Besides that it does CWND reduction, when packet loss is detected
2777  * and changes state of machine.
2778  *
2779  * It does _not_ decide what to send, it is made in function
2780  * tcp_xmit_retransmit_queue().
2781  */
2782 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2783 				  const int prior_unsacked,
2784 				  bool is_dupack, int flag)
2785 {
2786 	struct inet_connection_sock *icsk = inet_csk(sk);
2787 	struct tcp_sock *tp = tcp_sk(sk);
2788 	bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2789 				    (tcp_fackets_out(tp) > tp->reordering));
2790 	int fast_rexmit = 0;
2791 
2792 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2793 		tp->sacked_out = 0;
2794 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2795 		tp->fackets_out = 0;
2796 
2797 	/* Now state machine starts.
2798 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2799 	if (flag & FLAG_ECE)
2800 		tp->prior_ssthresh = 0;
2801 
2802 	/* B. In all the states check for reneging SACKs. */
2803 	if (tcp_check_sack_reneging(sk, flag))
2804 		return;
2805 
2806 	/* C. Check consistency of the current state. */
2807 	tcp_verify_left_out(tp);
2808 
2809 	/* D. Check state exit conditions. State can be terminated
2810 	 *    when high_seq is ACKed. */
2811 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2812 		WARN_ON(tp->retrans_out != 0);
2813 		tp->retrans_stamp = 0;
2814 	} else if (!before(tp->snd_una, tp->high_seq)) {
2815 		switch (icsk->icsk_ca_state) {
2816 		case TCP_CA_CWR:
2817 			/* CWR is to be held something *above* high_seq
2818 			 * is ACKed for CWR bit to reach receiver. */
2819 			if (tp->snd_una != tp->high_seq) {
2820 				tcp_end_cwnd_reduction(sk);
2821 				tcp_set_ca_state(sk, TCP_CA_Open);
2822 			}
2823 			break;
2824 
2825 		case TCP_CA_Recovery:
2826 			if (tcp_is_reno(tp))
2827 				tcp_reset_reno_sack(tp);
2828 			if (tcp_try_undo_recovery(sk))
2829 				return;
2830 			tcp_end_cwnd_reduction(sk);
2831 			break;
2832 		}
2833 	}
2834 
2835 	/* E. Process state. */
2836 	switch (icsk->icsk_ca_state) {
2837 	case TCP_CA_Recovery:
2838 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2839 			if (tcp_is_reno(tp) && is_dupack)
2840 				tcp_add_reno_sack(sk);
2841 		} else {
2842 			if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2843 				return;
2844 			/* Partial ACK arrived. Force fast retransmit. */
2845 			do_lost = tcp_is_reno(tp) ||
2846 				  tcp_fackets_out(tp) > tp->reordering;
2847 		}
2848 		if (tcp_try_undo_dsack(sk)) {
2849 			tcp_try_keep_open(sk);
2850 			return;
2851 		}
2852 		break;
2853 	case TCP_CA_Loss:
2854 		tcp_process_loss(sk, flag, is_dupack);
2855 		if (icsk->icsk_ca_state != TCP_CA_Open)
2856 			return;
2857 		/* Fall through to processing in Open state. */
2858 	default:
2859 		if (tcp_is_reno(tp)) {
2860 			if (flag & FLAG_SND_UNA_ADVANCED)
2861 				tcp_reset_reno_sack(tp);
2862 			if (is_dupack)
2863 				tcp_add_reno_sack(sk);
2864 		}
2865 
2866 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2867 			tcp_try_undo_dsack(sk);
2868 
2869 		if (!tcp_time_to_recover(sk, flag)) {
2870 			tcp_try_to_open(sk, flag, prior_unsacked);
2871 			return;
2872 		}
2873 
2874 		/* MTU probe failure: don't reduce cwnd */
2875 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
2876 		    icsk->icsk_mtup.probe_size &&
2877 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2878 			tcp_mtup_probe_failed(sk);
2879 			/* Restores the reduction we did in tcp_mtup_probe() */
2880 			tp->snd_cwnd++;
2881 			tcp_simple_retransmit(sk);
2882 			return;
2883 		}
2884 
2885 		/* Otherwise enter Recovery state */
2886 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
2887 		fast_rexmit = 1;
2888 	}
2889 
2890 	if (do_lost)
2891 		tcp_update_scoreboard(sk, fast_rexmit);
2892 	tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2893 	tcp_xmit_retransmit_queue(sk);
2894 }
2895 
2896 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2897 				      long seq_rtt_us, long sack_rtt_us)
2898 {
2899 	const struct tcp_sock *tp = tcp_sk(sk);
2900 
2901 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2902 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2903 	 * Karn's algorithm forbids taking RTT if some retransmitted data
2904 	 * is acked (RFC6298).
2905 	 */
2906 	if (flag & FLAG_RETRANS_DATA_ACKED)
2907 		seq_rtt_us = -1L;
2908 
2909 	if (seq_rtt_us < 0)
2910 		seq_rtt_us = sack_rtt_us;
2911 
2912 	/* RTTM Rule: A TSecr value received in a segment is used to
2913 	 * update the averaged RTT measurement only if the segment
2914 	 * acknowledges some new data, i.e., only if it advances the
2915 	 * left edge of the send window.
2916 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2917 	 */
2918 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2919 	    flag & FLAG_ACKED)
2920 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2921 
2922 	if (seq_rtt_us < 0)
2923 		return false;
2924 
2925 	tcp_rtt_estimator(sk, seq_rtt_us);
2926 	tcp_set_rto(sk);
2927 
2928 	/* RFC6298: only reset backoff on valid RTT measurement. */
2929 	inet_csk(sk)->icsk_backoff = 0;
2930 	return true;
2931 }
2932 
2933 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2934 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2935 {
2936 	struct tcp_sock *tp = tcp_sk(sk);
2937 	long seq_rtt_us = -1L;
2938 
2939 	if (synack_stamp && !tp->total_retrans)
2940 		seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2941 
2942 	/* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2943 	 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2944 	 */
2945 	if (!tp->srtt_us)
2946 		tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2947 }
2948 
2949 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2950 {
2951 	const struct inet_connection_sock *icsk = inet_csk(sk);
2952 
2953 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2954 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2955 }
2956 
2957 /* Restart timer after forward progress on connection.
2958  * RFC2988 recommends to restart timer to now+rto.
2959  */
2960 void tcp_rearm_rto(struct sock *sk)
2961 {
2962 	const struct inet_connection_sock *icsk = inet_csk(sk);
2963 	struct tcp_sock *tp = tcp_sk(sk);
2964 
2965 	/* If the retrans timer is currently being used by Fast Open
2966 	 * for SYN-ACK retrans purpose, stay put.
2967 	 */
2968 	if (tp->fastopen_rsk)
2969 		return;
2970 
2971 	if (!tp->packets_out) {
2972 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2973 	} else {
2974 		u32 rto = inet_csk(sk)->icsk_rto;
2975 		/* Offset the time elapsed after installing regular RTO */
2976 		if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2977 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2978 			struct sk_buff *skb = tcp_write_queue_head(sk);
2979 			const u32 rto_time_stamp =
2980 				tcp_skb_timestamp(skb) + rto;
2981 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2982 			/* delta may not be positive if the socket is locked
2983 			 * when the retrans timer fires and is rescheduled.
2984 			 */
2985 			if (delta > 0)
2986 				rto = delta;
2987 		}
2988 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2989 					  TCP_RTO_MAX);
2990 	}
2991 }
2992 
2993 /* This function is called when the delayed ER timer fires. TCP enters
2994  * fast recovery and performs fast-retransmit.
2995  */
2996 void tcp_resume_early_retransmit(struct sock *sk)
2997 {
2998 	struct tcp_sock *tp = tcp_sk(sk);
2999 
3000 	tcp_rearm_rto(sk);
3001 
3002 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3003 	if (!tp->do_early_retrans)
3004 		return;
3005 
3006 	tcp_enter_recovery(sk, false);
3007 	tcp_update_scoreboard(sk, 1);
3008 	tcp_xmit_retransmit_queue(sk);
3009 }
3010 
3011 /* If we get here, the whole TSO packet has not been acked. */
3012 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3013 {
3014 	struct tcp_sock *tp = tcp_sk(sk);
3015 	u32 packets_acked;
3016 
3017 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3018 
3019 	packets_acked = tcp_skb_pcount(skb);
3020 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3021 		return 0;
3022 	packets_acked -= tcp_skb_pcount(skb);
3023 
3024 	if (packets_acked) {
3025 		BUG_ON(tcp_skb_pcount(skb) == 0);
3026 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3027 	}
3028 
3029 	return packets_acked;
3030 }
3031 
3032 /* Remove acknowledged frames from the retransmission queue. If our packet
3033  * is before the ack sequence we can discard it as it's confirmed to have
3034  * arrived at the other end.
3035  */
3036 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3037 			       u32 prior_snd_una, long sack_rtt_us)
3038 {
3039 	const struct inet_connection_sock *icsk = inet_csk(sk);
3040 	struct skb_mstamp first_ackt, last_ackt, now;
3041 	struct tcp_sock *tp = tcp_sk(sk);
3042 	u32 prior_sacked = tp->sacked_out;
3043 	u32 reord = tp->packets_out;
3044 	bool fully_acked = true;
3045 	long ca_seq_rtt_us = -1L;
3046 	long seq_rtt_us = -1L;
3047 	struct sk_buff *skb;
3048 	u32 pkts_acked = 0;
3049 	bool rtt_update;
3050 	int flag = 0;
3051 
3052 	first_ackt.v64 = 0;
3053 
3054 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3055 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3056 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3057 		u8 sacked = scb->sacked;
3058 		u32 acked_pcount;
3059 
3060 		if (unlikely(shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3061 		    between(shinfo->tskey, prior_snd_una, tp->snd_una - 1))
3062 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3063 
3064 		/* Determine how many packets and what bytes were acked, tso and else */
3065 		if (after(scb->end_seq, tp->snd_una)) {
3066 			if (tcp_skb_pcount(skb) == 1 ||
3067 			    !after(tp->snd_una, scb->seq))
3068 				break;
3069 
3070 			acked_pcount = tcp_tso_acked(sk, skb);
3071 			if (!acked_pcount)
3072 				break;
3073 
3074 			fully_acked = false;
3075 		} else {
3076 			acked_pcount = tcp_skb_pcount(skb);
3077 		}
3078 
3079 		if (sacked & TCPCB_RETRANS) {
3080 			if (sacked & TCPCB_SACKED_RETRANS)
3081 				tp->retrans_out -= acked_pcount;
3082 			flag |= FLAG_RETRANS_DATA_ACKED;
3083 		} else {
3084 			last_ackt = skb->skb_mstamp;
3085 			WARN_ON_ONCE(last_ackt.v64 == 0);
3086 			if (!first_ackt.v64)
3087 				first_ackt = last_ackt;
3088 
3089 			if (!(sacked & TCPCB_SACKED_ACKED))
3090 				reord = min(pkts_acked, reord);
3091 			if (!after(scb->end_seq, tp->high_seq))
3092 				flag |= FLAG_ORIG_SACK_ACKED;
3093 		}
3094 
3095 		if (sacked & TCPCB_SACKED_ACKED)
3096 			tp->sacked_out -= acked_pcount;
3097 		if (sacked & TCPCB_LOST)
3098 			tp->lost_out -= acked_pcount;
3099 
3100 		tp->packets_out -= acked_pcount;
3101 		pkts_acked += acked_pcount;
3102 
3103 		/* Initial outgoing SYN's get put onto the write_queue
3104 		 * just like anything else we transmit.  It is not
3105 		 * true data, and if we misinform our callers that
3106 		 * this ACK acks real data, we will erroneously exit
3107 		 * connection startup slow start one packet too
3108 		 * quickly.  This is severely frowned upon behavior.
3109 		 */
3110 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3111 			flag |= FLAG_DATA_ACKED;
3112 		} else {
3113 			flag |= FLAG_SYN_ACKED;
3114 			tp->retrans_stamp = 0;
3115 		}
3116 
3117 		if (!fully_acked)
3118 			break;
3119 
3120 		tcp_unlink_write_queue(skb, sk);
3121 		sk_wmem_free_skb(sk, skb);
3122 		if (skb == tp->retransmit_skb_hint)
3123 			tp->retransmit_skb_hint = NULL;
3124 		if (skb == tp->lost_skb_hint)
3125 			tp->lost_skb_hint = NULL;
3126 	}
3127 
3128 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3129 		tp->snd_up = tp->snd_una;
3130 
3131 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3132 		flag |= FLAG_SACK_RENEGING;
3133 
3134 	skb_mstamp_get(&now);
3135 	if (first_ackt.v64) {
3136 		seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3137 		ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3138 	}
3139 
3140 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3141 
3142 	if (flag & FLAG_ACKED) {
3143 		const struct tcp_congestion_ops *ca_ops
3144 			= inet_csk(sk)->icsk_ca_ops;
3145 
3146 		tcp_rearm_rto(sk);
3147 		if (unlikely(icsk->icsk_mtup.probe_size &&
3148 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3149 			tcp_mtup_probe_success(sk);
3150 		}
3151 
3152 		if (tcp_is_reno(tp)) {
3153 			tcp_remove_reno_sacks(sk, pkts_acked);
3154 		} else {
3155 			int delta;
3156 
3157 			/* Non-retransmitted hole got filled? That's reordering */
3158 			if (reord < prior_fackets)
3159 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3160 
3161 			delta = tcp_is_fack(tp) ? pkts_acked :
3162 						  prior_sacked - tp->sacked_out;
3163 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3164 		}
3165 
3166 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3167 
3168 		if (ca_ops->pkts_acked)
3169 			ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
3170 
3171 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3172 		   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3173 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3174 		 * after when the head was last (re)transmitted. Otherwise the
3175 		 * timeout may continue to extend in loss recovery.
3176 		 */
3177 		tcp_rearm_rto(sk);
3178 	}
3179 
3180 #if FASTRETRANS_DEBUG > 0
3181 	WARN_ON((int)tp->sacked_out < 0);
3182 	WARN_ON((int)tp->lost_out < 0);
3183 	WARN_ON((int)tp->retrans_out < 0);
3184 	if (!tp->packets_out && tcp_is_sack(tp)) {
3185 		icsk = inet_csk(sk);
3186 		if (tp->lost_out) {
3187 			pr_debug("Leak l=%u %d\n",
3188 				 tp->lost_out, icsk->icsk_ca_state);
3189 			tp->lost_out = 0;
3190 		}
3191 		if (tp->sacked_out) {
3192 			pr_debug("Leak s=%u %d\n",
3193 				 tp->sacked_out, icsk->icsk_ca_state);
3194 			tp->sacked_out = 0;
3195 		}
3196 		if (tp->retrans_out) {
3197 			pr_debug("Leak r=%u %d\n",
3198 				 tp->retrans_out, icsk->icsk_ca_state);
3199 			tp->retrans_out = 0;
3200 		}
3201 	}
3202 #endif
3203 	return flag;
3204 }
3205 
3206 static void tcp_ack_probe(struct sock *sk)
3207 {
3208 	const struct tcp_sock *tp = tcp_sk(sk);
3209 	struct inet_connection_sock *icsk = inet_csk(sk);
3210 
3211 	/* Was it a usable window open? */
3212 
3213 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3214 		icsk->icsk_backoff = 0;
3215 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3216 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3217 		 * This function is not for random using!
3218 		 */
3219 	} else {
3220 		unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX);
3221 
3222 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3223 					  when, TCP_RTO_MAX);
3224 	}
3225 }
3226 
3227 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3228 {
3229 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3230 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3231 }
3232 
3233 /* Decide wheather to run the increase function of congestion control. */
3234 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3235 {
3236 	if (tcp_in_cwnd_reduction(sk))
3237 		return false;
3238 
3239 	/* If reordering is high then always grow cwnd whenever data is
3240 	 * delivered regardless of its ordering. Otherwise stay conservative
3241 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3242 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3243 	 * cwnd in tcp_fastretrans_alert() based on more states.
3244 	 */
3245 	if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3246 		return flag & FLAG_FORWARD_PROGRESS;
3247 
3248 	return flag & FLAG_DATA_ACKED;
3249 }
3250 
3251 /* Check that window update is acceptable.
3252  * The function assumes that snd_una<=ack<=snd_next.
3253  */
3254 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3255 					const u32 ack, const u32 ack_seq,
3256 					const u32 nwin)
3257 {
3258 	return	after(ack, tp->snd_una) ||
3259 		after(ack_seq, tp->snd_wl1) ||
3260 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3261 }
3262 
3263 /* Update our send window.
3264  *
3265  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3266  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3267  */
3268 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3269 				 u32 ack_seq)
3270 {
3271 	struct tcp_sock *tp = tcp_sk(sk);
3272 	int flag = 0;
3273 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3274 
3275 	if (likely(!tcp_hdr(skb)->syn))
3276 		nwin <<= tp->rx_opt.snd_wscale;
3277 
3278 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3279 		flag |= FLAG_WIN_UPDATE;
3280 		tcp_update_wl(tp, ack_seq);
3281 
3282 		if (tp->snd_wnd != nwin) {
3283 			tp->snd_wnd = nwin;
3284 
3285 			/* Note, it is the only place, where
3286 			 * fast path is recovered for sending TCP.
3287 			 */
3288 			tp->pred_flags = 0;
3289 			tcp_fast_path_check(sk);
3290 
3291 			if (nwin > tp->max_window) {
3292 				tp->max_window = nwin;
3293 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3294 			}
3295 		}
3296 	}
3297 
3298 	tp->snd_una = ack;
3299 
3300 	return flag;
3301 }
3302 
3303 /* RFC 5961 7 [ACK Throttling] */
3304 static void tcp_send_challenge_ack(struct sock *sk)
3305 {
3306 	/* unprotected vars, we dont care of overwrites */
3307 	static u32 challenge_timestamp;
3308 	static unsigned int challenge_count;
3309 	u32 now = jiffies / HZ;
3310 
3311 	if (now != challenge_timestamp) {
3312 		challenge_timestamp = now;
3313 		challenge_count = 0;
3314 	}
3315 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3316 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3317 		tcp_send_ack(sk);
3318 	}
3319 }
3320 
3321 static void tcp_store_ts_recent(struct tcp_sock *tp)
3322 {
3323 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3324 	tp->rx_opt.ts_recent_stamp = get_seconds();
3325 }
3326 
3327 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3328 {
3329 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3330 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3331 		 * extra check below makes sure this can only happen
3332 		 * for pure ACK frames.  -DaveM
3333 		 *
3334 		 * Not only, also it occurs for expired timestamps.
3335 		 */
3336 
3337 		if (tcp_paws_check(&tp->rx_opt, 0))
3338 			tcp_store_ts_recent(tp);
3339 	}
3340 }
3341 
3342 /* This routine deals with acks during a TLP episode.
3343  * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3344  */
3345 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3346 {
3347 	struct tcp_sock *tp = tcp_sk(sk);
3348 	bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3349 			     !(flag & (FLAG_SND_UNA_ADVANCED |
3350 				       FLAG_NOT_DUP | FLAG_DATA_SACKED));
3351 
3352 	/* Mark the end of TLP episode on receiving TLP dupack or when
3353 	 * ack is after tlp_high_seq.
3354 	 */
3355 	if (is_tlp_dupack) {
3356 		tp->tlp_high_seq = 0;
3357 		return;
3358 	}
3359 
3360 	if (after(ack, tp->tlp_high_seq)) {
3361 		tp->tlp_high_seq = 0;
3362 		/* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3363 		if (!(flag & FLAG_DSACKING_ACK)) {
3364 			tcp_init_cwnd_reduction(sk);
3365 			tcp_set_ca_state(sk, TCP_CA_CWR);
3366 			tcp_end_cwnd_reduction(sk);
3367 			tcp_try_keep_open(sk);
3368 			NET_INC_STATS_BH(sock_net(sk),
3369 					 LINUX_MIB_TCPLOSSPROBERECOVERY);
3370 		}
3371 	}
3372 }
3373 
3374 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3375 {
3376 	const struct inet_connection_sock *icsk = inet_csk(sk);
3377 
3378 	if (icsk->icsk_ca_ops->in_ack_event)
3379 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3380 }
3381 
3382 /* This routine deals with incoming acks, but not outgoing ones. */
3383 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3384 {
3385 	struct inet_connection_sock *icsk = inet_csk(sk);
3386 	struct tcp_sock *tp = tcp_sk(sk);
3387 	u32 prior_snd_una = tp->snd_una;
3388 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3389 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3390 	bool is_dupack = false;
3391 	u32 prior_fackets;
3392 	int prior_packets = tp->packets_out;
3393 	const int prior_unsacked = tp->packets_out - tp->sacked_out;
3394 	int acked = 0; /* Number of packets newly acked */
3395 	long sack_rtt_us = -1L;
3396 
3397 	/* If the ack is older than previous acks
3398 	 * then we can probably ignore it.
3399 	 */
3400 	if (before(ack, prior_snd_una)) {
3401 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3402 		if (before(ack, prior_snd_una - tp->max_window)) {
3403 			tcp_send_challenge_ack(sk);
3404 			return -1;
3405 		}
3406 		goto old_ack;
3407 	}
3408 
3409 	/* If the ack includes data we haven't sent yet, discard
3410 	 * this segment (RFC793 Section 3.9).
3411 	 */
3412 	if (after(ack, tp->snd_nxt))
3413 		goto invalid_ack;
3414 
3415 	if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3416 	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3417 		tcp_rearm_rto(sk);
3418 
3419 	if (after(ack, prior_snd_una)) {
3420 		flag |= FLAG_SND_UNA_ADVANCED;
3421 		icsk->icsk_retransmits = 0;
3422 	}
3423 
3424 	prior_fackets = tp->fackets_out;
3425 
3426 	/* ts_recent update must be made after we are sure that the packet
3427 	 * is in window.
3428 	 */
3429 	if (flag & FLAG_UPDATE_TS_RECENT)
3430 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3431 
3432 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3433 		/* Window is constant, pure forward advance.
3434 		 * No more checks are required.
3435 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3436 		 */
3437 		tcp_update_wl(tp, ack_seq);
3438 		tp->snd_una = ack;
3439 		flag |= FLAG_WIN_UPDATE;
3440 
3441 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3442 
3443 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3444 	} else {
3445 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3446 
3447 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3448 			flag |= FLAG_DATA;
3449 		else
3450 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3451 
3452 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3453 
3454 		if (TCP_SKB_CB(skb)->sacked)
3455 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3456 							&sack_rtt_us);
3457 
3458 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3459 			flag |= FLAG_ECE;
3460 			ack_ev_flags |= CA_ACK_ECE;
3461 		}
3462 
3463 		if (flag & FLAG_WIN_UPDATE)
3464 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3465 
3466 		tcp_in_ack_event(sk, ack_ev_flags);
3467 	}
3468 
3469 	/* We passed data and got it acked, remove any soft error
3470 	 * log. Something worked...
3471 	 */
3472 	sk->sk_err_soft = 0;
3473 	icsk->icsk_probes_out = 0;
3474 	tp->rcv_tstamp = tcp_time_stamp;
3475 	if (!prior_packets)
3476 		goto no_queue;
3477 
3478 	/* See if we can take anything off of the retransmit queue. */
3479 	acked = tp->packets_out;
3480 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3481 				    sack_rtt_us);
3482 	acked -= tp->packets_out;
3483 
3484 	/* Advance cwnd if state allows */
3485 	if (tcp_may_raise_cwnd(sk, flag))
3486 		tcp_cong_avoid(sk, ack, acked);
3487 
3488 	if (tcp_ack_is_dubious(sk, flag)) {
3489 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3490 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3491 				      is_dupack, flag);
3492 	}
3493 	if (tp->tlp_high_seq)
3494 		tcp_process_tlp_ack(sk, ack, flag);
3495 
3496 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3497 		struct dst_entry *dst = __sk_dst_get(sk);
3498 		if (dst)
3499 			dst_confirm(dst);
3500 	}
3501 
3502 	if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3503 		tcp_schedule_loss_probe(sk);
3504 	tcp_update_pacing_rate(sk);
3505 	return 1;
3506 
3507 no_queue:
3508 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3509 	if (flag & FLAG_DSACKING_ACK)
3510 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3511 				      is_dupack, flag);
3512 	/* If this ack opens up a zero window, clear backoff.  It was
3513 	 * being used to time the probes, and is probably far higher than
3514 	 * it needs to be for normal retransmission.
3515 	 */
3516 	if (tcp_send_head(sk))
3517 		tcp_ack_probe(sk);
3518 
3519 	if (tp->tlp_high_seq)
3520 		tcp_process_tlp_ack(sk, ack, flag);
3521 	return 1;
3522 
3523 invalid_ack:
3524 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3525 	return -1;
3526 
3527 old_ack:
3528 	/* If data was SACKed, tag it and see if we should send more data.
3529 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3530 	 */
3531 	if (TCP_SKB_CB(skb)->sacked) {
3532 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3533 						&sack_rtt_us);
3534 		tcp_fastretrans_alert(sk, acked, prior_unsacked,
3535 				      is_dupack, flag);
3536 	}
3537 
3538 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3539 	return 0;
3540 }
3541 
3542 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3543  * But, this can also be called on packets in the established flow when
3544  * the fast version below fails.
3545  */
3546 void tcp_parse_options(const struct sk_buff *skb,
3547 		       struct tcp_options_received *opt_rx, int estab,
3548 		       struct tcp_fastopen_cookie *foc)
3549 {
3550 	const unsigned char *ptr;
3551 	const struct tcphdr *th = tcp_hdr(skb);
3552 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3553 
3554 	ptr = (const unsigned char *)(th + 1);
3555 	opt_rx->saw_tstamp = 0;
3556 
3557 	while (length > 0) {
3558 		int opcode = *ptr++;
3559 		int opsize;
3560 
3561 		switch (opcode) {
3562 		case TCPOPT_EOL:
3563 			return;
3564 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3565 			length--;
3566 			continue;
3567 		default:
3568 			opsize = *ptr++;
3569 			if (opsize < 2) /* "silly options" */
3570 				return;
3571 			if (opsize > length)
3572 				return;	/* don't parse partial options */
3573 			switch (opcode) {
3574 			case TCPOPT_MSS:
3575 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3576 					u16 in_mss = get_unaligned_be16(ptr);
3577 					if (in_mss) {
3578 						if (opt_rx->user_mss &&
3579 						    opt_rx->user_mss < in_mss)
3580 							in_mss = opt_rx->user_mss;
3581 						opt_rx->mss_clamp = in_mss;
3582 					}
3583 				}
3584 				break;
3585 			case TCPOPT_WINDOW:
3586 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3587 				    !estab && sysctl_tcp_window_scaling) {
3588 					__u8 snd_wscale = *(__u8 *)ptr;
3589 					opt_rx->wscale_ok = 1;
3590 					if (snd_wscale > 14) {
3591 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3592 								     __func__,
3593 								     snd_wscale);
3594 						snd_wscale = 14;
3595 					}
3596 					opt_rx->snd_wscale = snd_wscale;
3597 				}
3598 				break;
3599 			case TCPOPT_TIMESTAMP:
3600 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3601 				    ((estab && opt_rx->tstamp_ok) ||
3602 				     (!estab && sysctl_tcp_timestamps))) {
3603 					opt_rx->saw_tstamp = 1;
3604 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3605 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3606 				}
3607 				break;
3608 			case TCPOPT_SACK_PERM:
3609 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3610 				    !estab && sysctl_tcp_sack) {
3611 					opt_rx->sack_ok = TCP_SACK_SEEN;
3612 					tcp_sack_reset(opt_rx);
3613 				}
3614 				break;
3615 
3616 			case TCPOPT_SACK:
3617 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3618 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3619 				   opt_rx->sack_ok) {
3620 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3621 				}
3622 				break;
3623 #ifdef CONFIG_TCP_MD5SIG
3624 			case TCPOPT_MD5SIG:
3625 				/*
3626 				 * The MD5 Hash has already been
3627 				 * checked (see tcp_v{4,6}_do_rcv()).
3628 				 */
3629 				break;
3630 #endif
3631 			case TCPOPT_EXP:
3632 				/* Fast Open option shares code 254 using a
3633 				 * 16 bits magic number. It's valid only in
3634 				 * SYN or SYN-ACK with an even size.
3635 				 */
3636 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3637 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3638 				    foc == NULL || !th->syn || (opsize & 1))
3639 					break;
3640 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3641 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3642 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3643 					memcpy(foc->val, ptr + 2, foc->len);
3644 				else if (foc->len != 0)
3645 					foc->len = -1;
3646 				break;
3647 
3648 			}
3649 			ptr += opsize-2;
3650 			length -= opsize;
3651 		}
3652 	}
3653 }
3654 EXPORT_SYMBOL(tcp_parse_options);
3655 
3656 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3657 {
3658 	const __be32 *ptr = (const __be32 *)(th + 1);
3659 
3660 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3661 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3662 		tp->rx_opt.saw_tstamp = 1;
3663 		++ptr;
3664 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3665 		++ptr;
3666 		if (*ptr)
3667 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3668 		else
3669 			tp->rx_opt.rcv_tsecr = 0;
3670 		return true;
3671 	}
3672 	return false;
3673 }
3674 
3675 /* Fast parse options. This hopes to only see timestamps.
3676  * If it is wrong it falls back on tcp_parse_options().
3677  */
3678 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3679 				   const struct tcphdr *th, struct tcp_sock *tp)
3680 {
3681 	/* In the spirit of fast parsing, compare doff directly to constant
3682 	 * values.  Because equality is used, short doff can be ignored here.
3683 	 */
3684 	if (th->doff == (sizeof(*th) / 4)) {
3685 		tp->rx_opt.saw_tstamp = 0;
3686 		return false;
3687 	} else if (tp->rx_opt.tstamp_ok &&
3688 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3689 		if (tcp_parse_aligned_timestamp(tp, th))
3690 			return true;
3691 	}
3692 
3693 	tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3694 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3695 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3696 
3697 	return true;
3698 }
3699 
3700 #ifdef CONFIG_TCP_MD5SIG
3701 /*
3702  * Parse MD5 Signature option
3703  */
3704 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3705 {
3706 	int length = (th->doff << 2) - sizeof(*th);
3707 	const u8 *ptr = (const u8 *)(th + 1);
3708 
3709 	/* If the TCP option is too short, we can short cut */
3710 	if (length < TCPOLEN_MD5SIG)
3711 		return NULL;
3712 
3713 	while (length > 0) {
3714 		int opcode = *ptr++;
3715 		int opsize;
3716 
3717 		switch (opcode) {
3718 		case TCPOPT_EOL:
3719 			return NULL;
3720 		case TCPOPT_NOP:
3721 			length--;
3722 			continue;
3723 		default:
3724 			opsize = *ptr++;
3725 			if (opsize < 2 || opsize > length)
3726 				return NULL;
3727 			if (opcode == TCPOPT_MD5SIG)
3728 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3729 		}
3730 		ptr += opsize - 2;
3731 		length -= opsize;
3732 	}
3733 	return NULL;
3734 }
3735 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3736 #endif
3737 
3738 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3739  *
3740  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3741  * it can pass through stack. So, the following predicate verifies that
3742  * this segment is not used for anything but congestion avoidance or
3743  * fast retransmit. Moreover, we even are able to eliminate most of such
3744  * second order effects, if we apply some small "replay" window (~RTO)
3745  * to timestamp space.
3746  *
3747  * All these measures still do not guarantee that we reject wrapped ACKs
3748  * on networks with high bandwidth, when sequence space is recycled fastly,
3749  * but it guarantees that such events will be very rare and do not affect
3750  * connection seriously. This doesn't look nice, but alas, PAWS is really
3751  * buggy extension.
3752  *
3753  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3754  * states that events when retransmit arrives after original data are rare.
3755  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3756  * the biggest problem on large power networks even with minor reordering.
3757  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3758  * up to bandwidth of 18Gigabit/sec. 8) ]
3759  */
3760 
3761 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3762 {
3763 	const struct tcp_sock *tp = tcp_sk(sk);
3764 	const struct tcphdr *th = tcp_hdr(skb);
3765 	u32 seq = TCP_SKB_CB(skb)->seq;
3766 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3767 
3768 	return (/* 1. Pure ACK with correct sequence number. */
3769 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3770 
3771 		/* 2. ... and duplicate ACK. */
3772 		ack == tp->snd_una &&
3773 
3774 		/* 3. ... and does not update window. */
3775 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3776 
3777 		/* 4. ... and sits in replay window. */
3778 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3779 }
3780 
3781 static inline bool tcp_paws_discard(const struct sock *sk,
3782 				   const struct sk_buff *skb)
3783 {
3784 	const struct tcp_sock *tp = tcp_sk(sk);
3785 
3786 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3787 	       !tcp_disordered_ack(sk, skb);
3788 }
3789 
3790 /* Check segment sequence number for validity.
3791  *
3792  * Segment controls are considered valid, if the segment
3793  * fits to the window after truncation to the window. Acceptability
3794  * of data (and SYN, FIN, of course) is checked separately.
3795  * See tcp_data_queue(), for example.
3796  *
3797  * Also, controls (RST is main one) are accepted using RCV.WUP instead
3798  * of RCV.NXT. Peer still did not advance his SND.UNA when we
3799  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3800  * (borrowed from freebsd)
3801  */
3802 
3803 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3804 {
3805 	return	!before(end_seq, tp->rcv_wup) &&
3806 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3807 }
3808 
3809 /* When we get a reset we do this. */
3810 void tcp_reset(struct sock *sk)
3811 {
3812 	/* We want the right error as BSD sees it (and indeed as we do). */
3813 	switch (sk->sk_state) {
3814 	case TCP_SYN_SENT:
3815 		sk->sk_err = ECONNREFUSED;
3816 		break;
3817 	case TCP_CLOSE_WAIT:
3818 		sk->sk_err = EPIPE;
3819 		break;
3820 	case TCP_CLOSE:
3821 		return;
3822 	default:
3823 		sk->sk_err = ECONNRESET;
3824 	}
3825 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
3826 	smp_wmb();
3827 
3828 	if (!sock_flag(sk, SOCK_DEAD))
3829 		sk->sk_error_report(sk);
3830 
3831 	tcp_done(sk);
3832 }
3833 
3834 /*
3835  * 	Process the FIN bit. This now behaves as it is supposed to work
3836  *	and the FIN takes effect when it is validly part of sequence
3837  *	space. Not before when we get holes.
3838  *
3839  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3840  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
3841  *	TIME-WAIT)
3842  *
3843  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
3844  *	close and we go into CLOSING (and later onto TIME-WAIT)
3845  *
3846  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3847  */
3848 static void tcp_fin(struct sock *sk)
3849 {
3850 	struct tcp_sock *tp = tcp_sk(sk);
3851 	const struct dst_entry *dst;
3852 
3853 	inet_csk_schedule_ack(sk);
3854 
3855 	sk->sk_shutdown |= RCV_SHUTDOWN;
3856 	sock_set_flag(sk, SOCK_DONE);
3857 
3858 	switch (sk->sk_state) {
3859 	case TCP_SYN_RECV:
3860 	case TCP_ESTABLISHED:
3861 		/* Move to CLOSE_WAIT */
3862 		tcp_set_state(sk, TCP_CLOSE_WAIT);
3863 		dst = __sk_dst_get(sk);
3864 		if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3865 			inet_csk(sk)->icsk_ack.pingpong = 1;
3866 		break;
3867 
3868 	case TCP_CLOSE_WAIT:
3869 	case TCP_CLOSING:
3870 		/* Received a retransmission of the FIN, do
3871 		 * nothing.
3872 		 */
3873 		break;
3874 	case TCP_LAST_ACK:
3875 		/* RFC793: Remain in the LAST-ACK state. */
3876 		break;
3877 
3878 	case TCP_FIN_WAIT1:
3879 		/* This case occurs when a simultaneous close
3880 		 * happens, we must ack the received FIN and
3881 		 * enter the CLOSING state.
3882 		 */
3883 		tcp_send_ack(sk);
3884 		tcp_set_state(sk, TCP_CLOSING);
3885 		break;
3886 	case TCP_FIN_WAIT2:
3887 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
3888 		tcp_send_ack(sk);
3889 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3890 		break;
3891 	default:
3892 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
3893 		 * cases we should never reach this piece of code.
3894 		 */
3895 		pr_err("%s: Impossible, sk->sk_state=%d\n",
3896 		       __func__, sk->sk_state);
3897 		break;
3898 	}
3899 
3900 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
3901 	 * Probably, we should reset in this case. For now drop them.
3902 	 */
3903 	__skb_queue_purge(&tp->out_of_order_queue);
3904 	if (tcp_is_sack(tp))
3905 		tcp_sack_reset(&tp->rx_opt);
3906 	sk_mem_reclaim(sk);
3907 
3908 	if (!sock_flag(sk, SOCK_DEAD)) {
3909 		sk->sk_state_change(sk);
3910 
3911 		/* Do not send POLL_HUP for half duplex close. */
3912 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
3913 		    sk->sk_state == TCP_CLOSE)
3914 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3915 		else
3916 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3917 	}
3918 }
3919 
3920 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3921 				  u32 end_seq)
3922 {
3923 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3924 		if (before(seq, sp->start_seq))
3925 			sp->start_seq = seq;
3926 		if (after(end_seq, sp->end_seq))
3927 			sp->end_seq = end_seq;
3928 		return true;
3929 	}
3930 	return false;
3931 }
3932 
3933 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3934 {
3935 	struct tcp_sock *tp = tcp_sk(sk);
3936 
3937 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3938 		int mib_idx;
3939 
3940 		if (before(seq, tp->rcv_nxt))
3941 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3942 		else
3943 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3944 
3945 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3946 
3947 		tp->rx_opt.dsack = 1;
3948 		tp->duplicate_sack[0].start_seq = seq;
3949 		tp->duplicate_sack[0].end_seq = end_seq;
3950 	}
3951 }
3952 
3953 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3954 {
3955 	struct tcp_sock *tp = tcp_sk(sk);
3956 
3957 	if (!tp->rx_opt.dsack)
3958 		tcp_dsack_set(sk, seq, end_seq);
3959 	else
3960 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3961 }
3962 
3963 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3964 {
3965 	struct tcp_sock *tp = tcp_sk(sk);
3966 
3967 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3968 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3969 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3970 		tcp_enter_quickack_mode(sk);
3971 
3972 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3973 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3974 
3975 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3976 				end_seq = tp->rcv_nxt;
3977 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3978 		}
3979 	}
3980 
3981 	tcp_send_ack(sk);
3982 }
3983 
3984 /* These routines update the SACK block as out-of-order packets arrive or
3985  * in-order packets close up the sequence space.
3986  */
3987 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3988 {
3989 	int this_sack;
3990 	struct tcp_sack_block *sp = &tp->selective_acks[0];
3991 	struct tcp_sack_block *swalk = sp + 1;
3992 
3993 	/* See if the recent change to the first SACK eats into
3994 	 * or hits the sequence space of other SACK blocks, if so coalesce.
3995 	 */
3996 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3997 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3998 			int i;
3999 
4000 			/* Zap SWALK, by moving every further SACK up by one slot.
4001 			 * Decrease num_sacks.
4002 			 */
4003 			tp->rx_opt.num_sacks--;
4004 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4005 				sp[i] = sp[i + 1];
4006 			continue;
4007 		}
4008 		this_sack++, swalk++;
4009 	}
4010 }
4011 
4012 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4013 {
4014 	struct tcp_sock *tp = tcp_sk(sk);
4015 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4016 	int cur_sacks = tp->rx_opt.num_sacks;
4017 	int this_sack;
4018 
4019 	if (!cur_sacks)
4020 		goto new_sack;
4021 
4022 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4023 		if (tcp_sack_extend(sp, seq, end_seq)) {
4024 			/* Rotate this_sack to the first one. */
4025 			for (; this_sack > 0; this_sack--, sp--)
4026 				swap(*sp, *(sp - 1));
4027 			if (cur_sacks > 1)
4028 				tcp_sack_maybe_coalesce(tp);
4029 			return;
4030 		}
4031 	}
4032 
4033 	/* Could not find an adjacent existing SACK, build a new one,
4034 	 * put it at the front, and shift everyone else down.  We
4035 	 * always know there is at least one SACK present already here.
4036 	 *
4037 	 * If the sack array is full, forget about the last one.
4038 	 */
4039 	if (this_sack >= TCP_NUM_SACKS) {
4040 		this_sack--;
4041 		tp->rx_opt.num_sacks--;
4042 		sp--;
4043 	}
4044 	for (; this_sack > 0; this_sack--, sp--)
4045 		*sp = *(sp - 1);
4046 
4047 new_sack:
4048 	/* Build the new head SACK, and we're done. */
4049 	sp->start_seq = seq;
4050 	sp->end_seq = end_seq;
4051 	tp->rx_opt.num_sacks++;
4052 }
4053 
4054 /* RCV.NXT advances, some SACKs should be eaten. */
4055 
4056 static void tcp_sack_remove(struct tcp_sock *tp)
4057 {
4058 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4059 	int num_sacks = tp->rx_opt.num_sacks;
4060 	int this_sack;
4061 
4062 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4063 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4064 		tp->rx_opt.num_sacks = 0;
4065 		return;
4066 	}
4067 
4068 	for (this_sack = 0; this_sack < num_sacks;) {
4069 		/* Check if the start of the sack is covered by RCV.NXT. */
4070 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4071 			int i;
4072 
4073 			/* RCV.NXT must cover all the block! */
4074 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4075 
4076 			/* Zap this SACK, by moving forward any other SACKS. */
4077 			for (i = this_sack+1; i < num_sacks; i++)
4078 				tp->selective_acks[i-1] = tp->selective_acks[i];
4079 			num_sacks--;
4080 			continue;
4081 		}
4082 		this_sack++;
4083 		sp++;
4084 	}
4085 	tp->rx_opt.num_sacks = num_sacks;
4086 }
4087 
4088 /**
4089  * tcp_try_coalesce - try to merge skb to prior one
4090  * @sk: socket
4091  * @to: prior buffer
4092  * @from: buffer to add in queue
4093  * @fragstolen: pointer to boolean
4094  *
4095  * Before queueing skb @from after @to, try to merge them
4096  * to reduce overall memory use and queue lengths, if cost is small.
4097  * Packets in ofo or receive queues can stay a long time.
4098  * Better try to coalesce them right now to avoid future collapses.
4099  * Returns true if caller should free @from instead of queueing it
4100  */
4101 static bool tcp_try_coalesce(struct sock *sk,
4102 			     struct sk_buff *to,
4103 			     struct sk_buff *from,
4104 			     bool *fragstolen)
4105 {
4106 	int delta;
4107 
4108 	*fragstolen = false;
4109 
4110 	/* Its possible this segment overlaps with prior segment in queue */
4111 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4112 		return false;
4113 
4114 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4115 		return false;
4116 
4117 	atomic_add(delta, &sk->sk_rmem_alloc);
4118 	sk_mem_charge(sk, delta);
4119 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4120 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4121 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4122 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4123 	return true;
4124 }
4125 
4126 /* This one checks to see if we can put data from the
4127  * out_of_order queue into the receive_queue.
4128  */
4129 static void tcp_ofo_queue(struct sock *sk)
4130 {
4131 	struct tcp_sock *tp = tcp_sk(sk);
4132 	__u32 dsack_high = tp->rcv_nxt;
4133 	struct sk_buff *skb, *tail;
4134 	bool fragstolen, eaten;
4135 
4136 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4137 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4138 			break;
4139 
4140 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4141 			__u32 dsack = dsack_high;
4142 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4143 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4144 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4145 		}
4146 
4147 		__skb_unlink(skb, &tp->out_of_order_queue);
4148 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4149 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4150 			__kfree_skb(skb);
4151 			continue;
4152 		}
4153 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4154 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4155 			   TCP_SKB_CB(skb)->end_seq);
4156 
4157 		tail = skb_peek_tail(&sk->sk_receive_queue);
4158 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4159 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4160 		if (!eaten)
4161 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4162 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4163 			tcp_fin(sk);
4164 		if (eaten)
4165 			kfree_skb_partial(skb, fragstolen);
4166 	}
4167 }
4168 
4169 static bool tcp_prune_ofo_queue(struct sock *sk);
4170 static int tcp_prune_queue(struct sock *sk);
4171 
4172 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4173 				 unsigned int size)
4174 {
4175 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4176 	    !sk_rmem_schedule(sk, skb, size)) {
4177 
4178 		if (tcp_prune_queue(sk) < 0)
4179 			return -1;
4180 
4181 		if (!sk_rmem_schedule(sk, skb, size)) {
4182 			if (!tcp_prune_ofo_queue(sk))
4183 				return -1;
4184 
4185 			if (!sk_rmem_schedule(sk, skb, size))
4186 				return -1;
4187 		}
4188 	}
4189 	return 0;
4190 }
4191 
4192 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4193 {
4194 	struct tcp_sock *tp = tcp_sk(sk);
4195 	struct sk_buff *skb1;
4196 	u32 seq, end_seq;
4197 
4198 	tcp_ecn_check_ce(tp, skb);
4199 
4200 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4201 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4202 		__kfree_skb(skb);
4203 		return;
4204 	}
4205 
4206 	/* Disable header prediction. */
4207 	tp->pred_flags = 0;
4208 	inet_csk_schedule_ack(sk);
4209 
4210 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4211 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4212 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4213 
4214 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4215 	if (!skb1) {
4216 		/* Initial out of order segment, build 1 SACK. */
4217 		if (tcp_is_sack(tp)) {
4218 			tp->rx_opt.num_sacks = 1;
4219 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4220 			tp->selective_acks[0].end_seq =
4221 						TCP_SKB_CB(skb)->end_seq;
4222 		}
4223 		__skb_queue_head(&tp->out_of_order_queue, skb);
4224 		goto end;
4225 	}
4226 
4227 	seq = TCP_SKB_CB(skb)->seq;
4228 	end_seq = TCP_SKB_CB(skb)->end_seq;
4229 
4230 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4231 		bool fragstolen;
4232 
4233 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4234 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4235 		} else {
4236 			tcp_grow_window(sk, skb);
4237 			kfree_skb_partial(skb, fragstolen);
4238 			skb = NULL;
4239 		}
4240 
4241 		if (!tp->rx_opt.num_sacks ||
4242 		    tp->selective_acks[0].end_seq != seq)
4243 			goto add_sack;
4244 
4245 		/* Common case: data arrive in order after hole. */
4246 		tp->selective_acks[0].end_seq = end_seq;
4247 		goto end;
4248 	}
4249 
4250 	/* Find place to insert this segment. */
4251 	while (1) {
4252 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4253 			break;
4254 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4255 			skb1 = NULL;
4256 			break;
4257 		}
4258 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4259 	}
4260 
4261 	/* Do skb overlap to previous one? */
4262 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4263 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4264 			/* All the bits are present. Drop. */
4265 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4266 			__kfree_skb(skb);
4267 			skb = NULL;
4268 			tcp_dsack_set(sk, seq, end_seq);
4269 			goto add_sack;
4270 		}
4271 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4272 			/* Partial overlap. */
4273 			tcp_dsack_set(sk, seq,
4274 				      TCP_SKB_CB(skb1)->end_seq);
4275 		} else {
4276 			if (skb_queue_is_first(&tp->out_of_order_queue,
4277 					       skb1))
4278 				skb1 = NULL;
4279 			else
4280 				skb1 = skb_queue_prev(
4281 					&tp->out_of_order_queue,
4282 					skb1);
4283 		}
4284 	}
4285 	if (!skb1)
4286 		__skb_queue_head(&tp->out_of_order_queue, skb);
4287 	else
4288 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4289 
4290 	/* And clean segments covered by new one as whole. */
4291 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4292 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4293 
4294 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4295 			break;
4296 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4297 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4298 					 end_seq);
4299 			break;
4300 		}
4301 		__skb_unlink(skb1, &tp->out_of_order_queue);
4302 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4303 				 TCP_SKB_CB(skb1)->end_seq);
4304 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4305 		__kfree_skb(skb1);
4306 	}
4307 
4308 add_sack:
4309 	if (tcp_is_sack(tp))
4310 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4311 end:
4312 	if (skb) {
4313 		tcp_grow_window(sk, skb);
4314 		skb_set_owner_r(skb, sk);
4315 	}
4316 }
4317 
4318 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4319 		  bool *fragstolen)
4320 {
4321 	int eaten;
4322 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4323 
4324 	__skb_pull(skb, hdrlen);
4325 	eaten = (tail &&
4326 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4327 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4328 	if (!eaten) {
4329 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4330 		skb_set_owner_r(skb, sk);
4331 	}
4332 	return eaten;
4333 }
4334 
4335 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4336 {
4337 	struct sk_buff *skb;
4338 	bool fragstolen;
4339 
4340 	if (size == 0)
4341 		return 0;
4342 
4343 	skb = alloc_skb(size, sk->sk_allocation);
4344 	if (!skb)
4345 		goto err;
4346 
4347 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4348 		goto err_free;
4349 
4350 	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4351 		goto err_free;
4352 
4353 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4354 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4355 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4356 
4357 	if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4358 		WARN_ON_ONCE(fragstolen); /* should not happen */
4359 		__kfree_skb(skb);
4360 	}
4361 	return size;
4362 
4363 err_free:
4364 	kfree_skb(skb);
4365 err:
4366 	return -ENOMEM;
4367 }
4368 
4369 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4370 {
4371 	struct tcp_sock *tp = tcp_sk(sk);
4372 	int eaten = -1;
4373 	bool fragstolen = false;
4374 
4375 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4376 		goto drop;
4377 
4378 	skb_dst_drop(skb);
4379 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4380 
4381 	tcp_ecn_accept_cwr(tp, skb);
4382 
4383 	tp->rx_opt.dsack = 0;
4384 
4385 	/*  Queue data for delivery to the user.
4386 	 *  Packets in sequence go to the receive queue.
4387 	 *  Out of sequence packets to the out_of_order_queue.
4388 	 */
4389 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4390 		if (tcp_receive_window(tp) == 0)
4391 			goto out_of_window;
4392 
4393 		/* Ok. In sequence. In window. */
4394 		if (tp->ucopy.task == current &&
4395 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4396 		    sock_owned_by_user(sk) && !tp->urg_data) {
4397 			int chunk = min_t(unsigned int, skb->len,
4398 					  tp->ucopy.len);
4399 
4400 			__set_current_state(TASK_RUNNING);
4401 
4402 			local_bh_enable();
4403 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4404 				tp->ucopy.len -= chunk;
4405 				tp->copied_seq += chunk;
4406 				eaten = (chunk == skb->len);
4407 				tcp_rcv_space_adjust(sk);
4408 			}
4409 			local_bh_disable();
4410 		}
4411 
4412 		if (eaten <= 0) {
4413 queue_and_out:
4414 			if (eaten < 0 &&
4415 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4416 				goto drop;
4417 
4418 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4419 		}
4420 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4421 		if (skb->len)
4422 			tcp_event_data_recv(sk, skb);
4423 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4424 			tcp_fin(sk);
4425 
4426 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4427 			tcp_ofo_queue(sk);
4428 
4429 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4430 			 * gap in queue is filled.
4431 			 */
4432 			if (skb_queue_empty(&tp->out_of_order_queue))
4433 				inet_csk(sk)->icsk_ack.pingpong = 0;
4434 		}
4435 
4436 		if (tp->rx_opt.num_sacks)
4437 			tcp_sack_remove(tp);
4438 
4439 		tcp_fast_path_check(sk);
4440 
4441 		if (eaten > 0)
4442 			kfree_skb_partial(skb, fragstolen);
4443 		if (!sock_flag(sk, SOCK_DEAD))
4444 			sk->sk_data_ready(sk);
4445 		return;
4446 	}
4447 
4448 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4449 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4450 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4451 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4452 
4453 out_of_window:
4454 		tcp_enter_quickack_mode(sk);
4455 		inet_csk_schedule_ack(sk);
4456 drop:
4457 		__kfree_skb(skb);
4458 		return;
4459 	}
4460 
4461 	/* Out of window. F.e. zero window probe. */
4462 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4463 		goto out_of_window;
4464 
4465 	tcp_enter_quickack_mode(sk);
4466 
4467 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4468 		/* Partial packet, seq < rcv_next < end_seq */
4469 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4470 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4471 			   TCP_SKB_CB(skb)->end_seq);
4472 
4473 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4474 
4475 		/* If window is closed, drop tail of packet. But after
4476 		 * remembering D-SACK for its head made in previous line.
4477 		 */
4478 		if (!tcp_receive_window(tp))
4479 			goto out_of_window;
4480 		goto queue_and_out;
4481 	}
4482 
4483 	tcp_data_queue_ofo(sk, skb);
4484 }
4485 
4486 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4487 					struct sk_buff_head *list)
4488 {
4489 	struct sk_buff *next = NULL;
4490 
4491 	if (!skb_queue_is_last(list, skb))
4492 		next = skb_queue_next(list, skb);
4493 
4494 	__skb_unlink(skb, list);
4495 	__kfree_skb(skb);
4496 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4497 
4498 	return next;
4499 }
4500 
4501 /* Collapse contiguous sequence of skbs head..tail with
4502  * sequence numbers start..end.
4503  *
4504  * If tail is NULL, this means until the end of the list.
4505  *
4506  * Segments with FIN/SYN are not collapsed (only because this
4507  * simplifies code)
4508  */
4509 static void
4510 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4511 	     struct sk_buff *head, struct sk_buff *tail,
4512 	     u32 start, u32 end)
4513 {
4514 	struct sk_buff *skb, *n;
4515 	bool end_of_skbs;
4516 
4517 	/* First, check that queue is collapsible and find
4518 	 * the point where collapsing can be useful. */
4519 	skb = head;
4520 restart:
4521 	end_of_skbs = true;
4522 	skb_queue_walk_from_safe(list, skb, n) {
4523 		if (skb == tail)
4524 			break;
4525 		/* No new bits? It is possible on ofo queue. */
4526 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4527 			skb = tcp_collapse_one(sk, skb, list);
4528 			if (!skb)
4529 				break;
4530 			goto restart;
4531 		}
4532 
4533 		/* The first skb to collapse is:
4534 		 * - not SYN/FIN and
4535 		 * - bloated or contains data before "start" or
4536 		 *   overlaps to the next one.
4537 		 */
4538 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4539 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4540 		     before(TCP_SKB_CB(skb)->seq, start))) {
4541 			end_of_skbs = false;
4542 			break;
4543 		}
4544 
4545 		if (!skb_queue_is_last(list, skb)) {
4546 			struct sk_buff *next = skb_queue_next(list, skb);
4547 			if (next != tail &&
4548 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4549 				end_of_skbs = false;
4550 				break;
4551 			}
4552 		}
4553 
4554 		/* Decided to skip this, advance start seq. */
4555 		start = TCP_SKB_CB(skb)->end_seq;
4556 	}
4557 	if (end_of_skbs ||
4558 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4559 		return;
4560 
4561 	while (before(start, end)) {
4562 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4563 		struct sk_buff *nskb;
4564 
4565 		nskb = alloc_skb(copy, GFP_ATOMIC);
4566 		if (!nskb)
4567 			return;
4568 
4569 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4570 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4571 		__skb_queue_before(list, skb, nskb);
4572 		skb_set_owner_r(nskb, sk);
4573 
4574 		/* Copy data, releasing collapsed skbs. */
4575 		while (copy > 0) {
4576 			int offset = start - TCP_SKB_CB(skb)->seq;
4577 			int size = TCP_SKB_CB(skb)->end_seq - start;
4578 
4579 			BUG_ON(offset < 0);
4580 			if (size > 0) {
4581 				size = min(copy, size);
4582 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4583 					BUG();
4584 				TCP_SKB_CB(nskb)->end_seq += size;
4585 				copy -= size;
4586 				start += size;
4587 			}
4588 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4589 				skb = tcp_collapse_one(sk, skb, list);
4590 				if (!skb ||
4591 				    skb == tail ||
4592 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4593 					return;
4594 			}
4595 		}
4596 	}
4597 }
4598 
4599 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4600  * and tcp_collapse() them until all the queue is collapsed.
4601  */
4602 static void tcp_collapse_ofo_queue(struct sock *sk)
4603 {
4604 	struct tcp_sock *tp = tcp_sk(sk);
4605 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4606 	struct sk_buff *head;
4607 	u32 start, end;
4608 
4609 	if (skb == NULL)
4610 		return;
4611 
4612 	start = TCP_SKB_CB(skb)->seq;
4613 	end = TCP_SKB_CB(skb)->end_seq;
4614 	head = skb;
4615 
4616 	for (;;) {
4617 		struct sk_buff *next = NULL;
4618 
4619 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4620 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4621 		skb = next;
4622 
4623 		/* Segment is terminated when we see gap or when
4624 		 * we are at the end of all the queue. */
4625 		if (!skb ||
4626 		    after(TCP_SKB_CB(skb)->seq, end) ||
4627 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4628 			tcp_collapse(sk, &tp->out_of_order_queue,
4629 				     head, skb, start, end);
4630 			head = skb;
4631 			if (!skb)
4632 				break;
4633 			/* Start new segment */
4634 			start = TCP_SKB_CB(skb)->seq;
4635 			end = TCP_SKB_CB(skb)->end_seq;
4636 		} else {
4637 			if (before(TCP_SKB_CB(skb)->seq, start))
4638 				start = TCP_SKB_CB(skb)->seq;
4639 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4640 				end = TCP_SKB_CB(skb)->end_seq;
4641 		}
4642 	}
4643 }
4644 
4645 /*
4646  * Purge the out-of-order queue.
4647  * Return true if queue was pruned.
4648  */
4649 static bool tcp_prune_ofo_queue(struct sock *sk)
4650 {
4651 	struct tcp_sock *tp = tcp_sk(sk);
4652 	bool res = false;
4653 
4654 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4655 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4656 		__skb_queue_purge(&tp->out_of_order_queue);
4657 
4658 		/* Reset SACK state.  A conforming SACK implementation will
4659 		 * do the same at a timeout based retransmit.  When a connection
4660 		 * is in a sad state like this, we care only about integrity
4661 		 * of the connection not performance.
4662 		 */
4663 		if (tp->rx_opt.sack_ok)
4664 			tcp_sack_reset(&tp->rx_opt);
4665 		sk_mem_reclaim(sk);
4666 		res = true;
4667 	}
4668 	return res;
4669 }
4670 
4671 /* Reduce allocated memory if we can, trying to get
4672  * the socket within its memory limits again.
4673  *
4674  * Return less than zero if we should start dropping frames
4675  * until the socket owning process reads some of the data
4676  * to stabilize the situation.
4677  */
4678 static int tcp_prune_queue(struct sock *sk)
4679 {
4680 	struct tcp_sock *tp = tcp_sk(sk);
4681 
4682 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4683 
4684 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4685 
4686 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4687 		tcp_clamp_window(sk);
4688 	else if (sk_under_memory_pressure(sk))
4689 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4690 
4691 	tcp_collapse_ofo_queue(sk);
4692 	if (!skb_queue_empty(&sk->sk_receive_queue))
4693 		tcp_collapse(sk, &sk->sk_receive_queue,
4694 			     skb_peek(&sk->sk_receive_queue),
4695 			     NULL,
4696 			     tp->copied_seq, tp->rcv_nxt);
4697 	sk_mem_reclaim(sk);
4698 
4699 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4700 		return 0;
4701 
4702 	/* Collapsing did not help, destructive actions follow.
4703 	 * This must not ever occur. */
4704 
4705 	tcp_prune_ofo_queue(sk);
4706 
4707 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4708 		return 0;
4709 
4710 	/* If we are really being abused, tell the caller to silently
4711 	 * drop receive data on the floor.  It will get retransmitted
4712 	 * and hopefully then we'll have sufficient space.
4713 	 */
4714 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4715 
4716 	/* Massive buffer overcommit. */
4717 	tp->pred_flags = 0;
4718 	return -1;
4719 }
4720 
4721 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4722 {
4723 	const struct tcp_sock *tp = tcp_sk(sk);
4724 
4725 	/* If the user specified a specific send buffer setting, do
4726 	 * not modify it.
4727 	 */
4728 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4729 		return false;
4730 
4731 	/* If we are under global TCP memory pressure, do not expand.  */
4732 	if (sk_under_memory_pressure(sk))
4733 		return false;
4734 
4735 	/* If we are under soft global TCP memory pressure, do not expand.  */
4736 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4737 		return false;
4738 
4739 	/* If we filled the congestion window, do not expand.  */
4740 	if (tp->packets_out >= tp->snd_cwnd)
4741 		return false;
4742 
4743 	return true;
4744 }
4745 
4746 /* When incoming ACK allowed to free some skb from write_queue,
4747  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4748  * on the exit from tcp input handler.
4749  *
4750  * PROBLEM: sndbuf expansion does not work well with largesend.
4751  */
4752 static void tcp_new_space(struct sock *sk)
4753 {
4754 	struct tcp_sock *tp = tcp_sk(sk);
4755 
4756 	if (tcp_should_expand_sndbuf(sk)) {
4757 		tcp_sndbuf_expand(sk);
4758 		tp->snd_cwnd_stamp = tcp_time_stamp;
4759 	}
4760 
4761 	sk->sk_write_space(sk);
4762 }
4763 
4764 static void tcp_check_space(struct sock *sk)
4765 {
4766 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4767 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4768 		if (sk->sk_socket &&
4769 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4770 			tcp_new_space(sk);
4771 	}
4772 }
4773 
4774 static inline void tcp_data_snd_check(struct sock *sk)
4775 {
4776 	tcp_push_pending_frames(sk);
4777 	tcp_check_space(sk);
4778 }
4779 
4780 /*
4781  * Check if sending an ack is needed.
4782  */
4783 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4784 {
4785 	struct tcp_sock *tp = tcp_sk(sk);
4786 
4787 	    /* More than one full frame received... */
4788 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4789 	     /* ... and right edge of window advances far enough.
4790 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4791 	      */
4792 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4793 	    /* We ACK each frame or... */
4794 	    tcp_in_quickack_mode(sk) ||
4795 	    /* We have out of order data. */
4796 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4797 		/* Then ack it now */
4798 		tcp_send_ack(sk);
4799 	} else {
4800 		/* Else, send delayed ack. */
4801 		tcp_send_delayed_ack(sk);
4802 	}
4803 }
4804 
4805 static inline void tcp_ack_snd_check(struct sock *sk)
4806 {
4807 	if (!inet_csk_ack_scheduled(sk)) {
4808 		/* We sent a data segment already. */
4809 		return;
4810 	}
4811 	__tcp_ack_snd_check(sk, 1);
4812 }
4813 
4814 /*
4815  *	This routine is only called when we have urgent data
4816  *	signaled. Its the 'slow' part of tcp_urg. It could be
4817  *	moved inline now as tcp_urg is only called from one
4818  *	place. We handle URGent data wrong. We have to - as
4819  *	BSD still doesn't use the correction from RFC961.
4820  *	For 1003.1g we should support a new option TCP_STDURG to permit
4821  *	either form (or just set the sysctl tcp_stdurg).
4822  */
4823 
4824 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4825 {
4826 	struct tcp_sock *tp = tcp_sk(sk);
4827 	u32 ptr = ntohs(th->urg_ptr);
4828 
4829 	if (ptr && !sysctl_tcp_stdurg)
4830 		ptr--;
4831 	ptr += ntohl(th->seq);
4832 
4833 	/* Ignore urgent data that we've already seen and read. */
4834 	if (after(tp->copied_seq, ptr))
4835 		return;
4836 
4837 	/* Do not replay urg ptr.
4838 	 *
4839 	 * NOTE: interesting situation not covered by specs.
4840 	 * Misbehaving sender may send urg ptr, pointing to segment,
4841 	 * which we already have in ofo queue. We are not able to fetch
4842 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4843 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4844 	 * situations. But it is worth to think about possibility of some
4845 	 * DoSes using some hypothetical application level deadlock.
4846 	 */
4847 	if (before(ptr, tp->rcv_nxt))
4848 		return;
4849 
4850 	/* Do we already have a newer (or duplicate) urgent pointer? */
4851 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4852 		return;
4853 
4854 	/* Tell the world about our new urgent pointer. */
4855 	sk_send_sigurg(sk);
4856 
4857 	/* We may be adding urgent data when the last byte read was
4858 	 * urgent. To do this requires some care. We cannot just ignore
4859 	 * tp->copied_seq since we would read the last urgent byte again
4860 	 * as data, nor can we alter copied_seq until this data arrives
4861 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4862 	 *
4863 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4864 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4865 	 * and expect that both A and B disappear from stream. This is _wrong_.
4866 	 * Though this happens in BSD with high probability, this is occasional.
4867 	 * Any application relying on this is buggy. Note also, that fix "works"
4868 	 * only in this artificial test. Insert some normal data between A and B and we will
4869 	 * decline of BSD again. Verdict: it is better to remove to trap
4870 	 * buggy users.
4871 	 */
4872 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4873 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4874 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4875 		tp->copied_seq++;
4876 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4877 			__skb_unlink(skb, &sk->sk_receive_queue);
4878 			__kfree_skb(skb);
4879 		}
4880 	}
4881 
4882 	tp->urg_data = TCP_URG_NOTYET;
4883 	tp->urg_seq = ptr;
4884 
4885 	/* Disable header prediction. */
4886 	tp->pred_flags = 0;
4887 }
4888 
4889 /* This is the 'fast' part of urgent handling. */
4890 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4891 {
4892 	struct tcp_sock *tp = tcp_sk(sk);
4893 
4894 	/* Check if we get a new urgent pointer - normally not. */
4895 	if (th->urg)
4896 		tcp_check_urg(sk, th);
4897 
4898 	/* Do we wait for any urgent data? - normally not... */
4899 	if (tp->urg_data == TCP_URG_NOTYET) {
4900 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4901 			  th->syn;
4902 
4903 		/* Is the urgent pointer pointing into this packet? */
4904 		if (ptr < skb->len) {
4905 			u8 tmp;
4906 			if (skb_copy_bits(skb, ptr, &tmp, 1))
4907 				BUG();
4908 			tp->urg_data = TCP_URG_VALID | tmp;
4909 			if (!sock_flag(sk, SOCK_DEAD))
4910 				sk->sk_data_ready(sk);
4911 		}
4912 	}
4913 }
4914 
4915 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4916 {
4917 	struct tcp_sock *tp = tcp_sk(sk);
4918 	int chunk = skb->len - hlen;
4919 	int err;
4920 
4921 	local_bh_enable();
4922 	if (skb_csum_unnecessary(skb))
4923 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4924 	else
4925 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4926 						       tp->ucopy.iov);
4927 
4928 	if (!err) {
4929 		tp->ucopy.len -= chunk;
4930 		tp->copied_seq += chunk;
4931 		tcp_rcv_space_adjust(sk);
4932 	}
4933 
4934 	local_bh_disable();
4935 	return err;
4936 }
4937 
4938 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4939 					    struct sk_buff *skb)
4940 {
4941 	__sum16 result;
4942 
4943 	if (sock_owned_by_user(sk)) {
4944 		local_bh_enable();
4945 		result = __tcp_checksum_complete(skb);
4946 		local_bh_disable();
4947 	} else {
4948 		result = __tcp_checksum_complete(skb);
4949 	}
4950 	return result;
4951 }
4952 
4953 static inline bool tcp_checksum_complete_user(struct sock *sk,
4954 					     struct sk_buff *skb)
4955 {
4956 	return !skb_csum_unnecessary(skb) &&
4957 	       __tcp_checksum_complete_user(sk, skb);
4958 }
4959 
4960 /* Does PAWS and seqno based validation of an incoming segment, flags will
4961  * play significant role here.
4962  */
4963 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4964 				  const struct tcphdr *th, int syn_inerr)
4965 {
4966 	struct tcp_sock *tp = tcp_sk(sk);
4967 
4968 	/* RFC1323: H1. Apply PAWS check first. */
4969 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4970 	    tcp_paws_discard(sk, skb)) {
4971 		if (!th->rst) {
4972 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4973 			tcp_send_dupack(sk, skb);
4974 			goto discard;
4975 		}
4976 		/* Reset is accepted even if it did not pass PAWS. */
4977 	}
4978 
4979 	/* Step 1: check sequence number */
4980 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4981 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
4982 		 * (RST) segments are validated by checking their SEQ-fields."
4983 		 * And page 69: "If an incoming segment is not acceptable,
4984 		 * an acknowledgment should be sent in reply (unless the RST
4985 		 * bit is set, if so drop the segment and return)".
4986 		 */
4987 		if (!th->rst) {
4988 			if (th->syn)
4989 				goto syn_challenge;
4990 			tcp_send_dupack(sk, skb);
4991 		}
4992 		goto discard;
4993 	}
4994 
4995 	/* Step 2: check RST bit */
4996 	if (th->rst) {
4997 		/* RFC 5961 3.2 :
4998 		 * If sequence number exactly matches RCV.NXT, then
4999 		 *     RESET the connection
5000 		 * else
5001 		 *     Send a challenge ACK
5002 		 */
5003 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5004 			tcp_reset(sk);
5005 		else
5006 			tcp_send_challenge_ack(sk);
5007 		goto discard;
5008 	}
5009 
5010 	/* step 3: check security and precedence [ignored] */
5011 
5012 	/* step 4: Check for a SYN
5013 	 * RFC 5691 4.2 : Send a challenge ack
5014 	 */
5015 	if (th->syn) {
5016 syn_challenge:
5017 		if (syn_inerr)
5018 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5019 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5020 		tcp_send_challenge_ack(sk);
5021 		goto discard;
5022 	}
5023 
5024 	return true;
5025 
5026 discard:
5027 	__kfree_skb(skb);
5028 	return false;
5029 }
5030 
5031 /*
5032  *	TCP receive function for the ESTABLISHED state.
5033  *
5034  *	It is split into a fast path and a slow path. The fast path is
5035  * 	disabled when:
5036  *	- A zero window was announced from us - zero window probing
5037  *        is only handled properly in the slow path.
5038  *	- Out of order segments arrived.
5039  *	- Urgent data is expected.
5040  *	- There is no buffer space left
5041  *	- Unexpected TCP flags/window values/header lengths are received
5042  *	  (detected by checking the TCP header against pred_flags)
5043  *	- Data is sent in both directions. Fast path only supports pure senders
5044  *	  or pure receivers (this means either the sequence number or the ack
5045  *	  value must stay constant)
5046  *	- Unexpected TCP option.
5047  *
5048  *	When these conditions are not satisfied it drops into a standard
5049  *	receive procedure patterned after RFC793 to handle all cases.
5050  *	The first three cases are guaranteed by proper pred_flags setting,
5051  *	the rest is checked inline. Fast processing is turned on in
5052  *	tcp_data_queue when everything is OK.
5053  */
5054 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5055 			 const struct tcphdr *th, unsigned int len)
5056 {
5057 	struct tcp_sock *tp = tcp_sk(sk);
5058 
5059 	if (unlikely(sk->sk_rx_dst == NULL))
5060 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5061 	/*
5062 	 *	Header prediction.
5063 	 *	The code loosely follows the one in the famous
5064 	 *	"30 instruction TCP receive" Van Jacobson mail.
5065 	 *
5066 	 *	Van's trick is to deposit buffers into socket queue
5067 	 *	on a device interrupt, to call tcp_recv function
5068 	 *	on the receive process context and checksum and copy
5069 	 *	the buffer to user space. smart...
5070 	 *
5071 	 *	Our current scheme is not silly either but we take the
5072 	 *	extra cost of the net_bh soft interrupt processing...
5073 	 *	We do checksum and copy also but from device to kernel.
5074 	 */
5075 
5076 	tp->rx_opt.saw_tstamp = 0;
5077 
5078 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5079 	 *	if header_prediction is to be made
5080 	 *	'S' will always be tp->tcp_header_len >> 2
5081 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5082 	 *  turn it off	(when there are holes in the receive
5083 	 *	 space for instance)
5084 	 *	PSH flag is ignored.
5085 	 */
5086 
5087 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5088 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5089 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5090 		int tcp_header_len = tp->tcp_header_len;
5091 
5092 		/* Timestamp header prediction: tcp_header_len
5093 		 * is automatically equal to th->doff*4 due to pred_flags
5094 		 * match.
5095 		 */
5096 
5097 		/* Check timestamp */
5098 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5099 			/* No? Slow path! */
5100 			if (!tcp_parse_aligned_timestamp(tp, th))
5101 				goto slow_path;
5102 
5103 			/* If PAWS failed, check it more carefully in slow path */
5104 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5105 				goto slow_path;
5106 
5107 			/* DO NOT update ts_recent here, if checksum fails
5108 			 * and timestamp was corrupted part, it will result
5109 			 * in a hung connection since we will drop all
5110 			 * future packets due to the PAWS test.
5111 			 */
5112 		}
5113 
5114 		if (len <= tcp_header_len) {
5115 			/* Bulk data transfer: sender */
5116 			if (len == tcp_header_len) {
5117 				/* Predicted packet is in window by definition.
5118 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5119 				 * Hence, check seq<=rcv_wup reduces to:
5120 				 */
5121 				if (tcp_header_len ==
5122 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5123 				    tp->rcv_nxt == tp->rcv_wup)
5124 					tcp_store_ts_recent(tp);
5125 
5126 				/* We know that such packets are checksummed
5127 				 * on entry.
5128 				 */
5129 				tcp_ack(sk, skb, 0);
5130 				__kfree_skb(skb);
5131 				tcp_data_snd_check(sk);
5132 				return;
5133 			} else { /* Header too small */
5134 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5135 				goto discard;
5136 			}
5137 		} else {
5138 			int eaten = 0;
5139 			bool fragstolen = false;
5140 
5141 			if (tp->ucopy.task == current &&
5142 			    tp->copied_seq == tp->rcv_nxt &&
5143 			    len - tcp_header_len <= tp->ucopy.len &&
5144 			    sock_owned_by_user(sk)) {
5145 				__set_current_state(TASK_RUNNING);
5146 
5147 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5148 					/* Predicted packet is in window by definition.
5149 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5150 					 * Hence, check seq<=rcv_wup reduces to:
5151 					 */
5152 					if (tcp_header_len ==
5153 					    (sizeof(struct tcphdr) +
5154 					     TCPOLEN_TSTAMP_ALIGNED) &&
5155 					    tp->rcv_nxt == tp->rcv_wup)
5156 						tcp_store_ts_recent(tp);
5157 
5158 					tcp_rcv_rtt_measure_ts(sk, skb);
5159 
5160 					__skb_pull(skb, tcp_header_len);
5161 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5162 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5163 					eaten = 1;
5164 				}
5165 			}
5166 			if (!eaten) {
5167 				if (tcp_checksum_complete_user(sk, skb))
5168 					goto csum_error;
5169 
5170 				if ((int)skb->truesize > sk->sk_forward_alloc)
5171 					goto step5;
5172 
5173 				/* Predicted packet is in window by definition.
5174 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5175 				 * Hence, check seq<=rcv_wup reduces to:
5176 				 */
5177 				if (tcp_header_len ==
5178 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5179 				    tp->rcv_nxt == tp->rcv_wup)
5180 					tcp_store_ts_recent(tp);
5181 
5182 				tcp_rcv_rtt_measure_ts(sk, skb);
5183 
5184 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5185 
5186 				/* Bulk data transfer: receiver */
5187 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5188 						      &fragstolen);
5189 			}
5190 
5191 			tcp_event_data_recv(sk, skb);
5192 
5193 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5194 				/* Well, only one small jumplet in fast path... */
5195 				tcp_ack(sk, skb, FLAG_DATA);
5196 				tcp_data_snd_check(sk);
5197 				if (!inet_csk_ack_scheduled(sk))
5198 					goto no_ack;
5199 			}
5200 
5201 			__tcp_ack_snd_check(sk, 0);
5202 no_ack:
5203 			if (eaten)
5204 				kfree_skb_partial(skb, fragstolen);
5205 			sk->sk_data_ready(sk);
5206 			return;
5207 		}
5208 	}
5209 
5210 slow_path:
5211 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5212 		goto csum_error;
5213 
5214 	if (!th->ack && !th->rst)
5215 		goto discard;
5216 
5217 	/*
5218 	 *	Standard slow path.
5219 	 */
5220 
5221 	if (!tcp_validate_incoming(sk, skb, th, 1))
5222 		return;
5223 
5224 step5:
5225 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5226 		goto discard;
5227 
5228 	tcp_rcv_rtt_measure_ts(sk, skb);
5229 
5230 	/* Process urgent data. */
5231 	tcp_urg(sk, skb, th);
5232 
5233 	/* step 7: process the segment text */
5234 	tcp_data_queue(sk, skb);
5235 
5236 	tcp_data_snd_check(sk);
5237 	tcp_ack_snd_check(sk);
5238 	return;
5239 
5240 csum_error:
5241 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5242 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5243 
5244 discard:
5245 	__kfree_skb(skb);
5246 }
5247 EXPORT_SYMBOL(tcp_rcv_established);
5248 
5249 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5250 {
5251 	struct tcp_sock *tp = tcp_sk(sk);
5252 	struct inet_connection_sock *icsk = inet_csk(sk);
5253 
5254 	tcp_set_state(sk, TCP_ESTABLISHED);
5255 
5256 	if (skb != NULL) {
5257 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5258 		security_inet_conn_established(sk, skb);
5259 	}
5260 
5261 	/* Make sure socket is routed, for correct metrics.  */
5262 	icsk->icsk_af_ops->rebuild_header(sk);
5263 
5264 	tcp_init_metrics(sk);
5265 
5266 	tcp_init_congestion_control(sk);
5267 
5268 	/* Prevent spurious tcp_cwnd_restart() on first data
5269 	 * packet.
5270 	 */
5271 	tp->lsndtime = tcp_time_stamp;
5272 
5273 	tcp_init_buffer_space(sk);
5274 
5275 	if (sock_flag(sk, SOCK_KEEPOPEN))
5276 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5277 
5278 	if (!tp->rx_opt.snd_wscale)
5279 		__tcp_fast_path_on(tp, tp->snd_wnd);
5280 	else
5281 		tp->pred_flags = 0;
5282 
5283 	if (!sock_flag(sk, SOCK_DEAD)) {
5284 		sk->sk_state_change(sk);
5285 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5286 	}
5287 }
5288 
5289 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5290 				    struct tcp_fastopen_cookie *cookie)
5291 {
5292 	struct tcp_sock *tp = tcp_sk(sk);
5293 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5294 	u16 mss = tp->rx_opt.mss_clamp;
5295 	bool syn_drop;
5296 
5297 	if (mss == tp->rx_opt.user_mss) {
5298 		struct tcp_options_received opt;
5299 
5300 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5301 		tcp_clear_options(&opt);
5302 		opt.user_mss = opt.mss_clamp = 0;
5303 		tcp_parse_options(synack, &opt, 0, NULL);
5304 		mss = opt.mss_clamp;
5305 	}
5306 
5307 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5308 		cookie->len = -1;
5309 
5310 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5311 	 * the remote receives only the retransmitted (regular) SYNs: either
5312 	 * the original SYN-data or the corresponding SYN-ACK is lost.
5313 	 */
5314 	syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5315 
5316 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5317 
5318 	if (data) { /* Retransmit unacked data in SYN */
5319 		tcp_for_write_queue_from(data, sk) {
5320 			if (data == tcp_send_head(sk) ||
5321 			    __tcp_retransmit_skb(sk, data))
5322 				break;
5323 		}
5324 		tcp_rearm_rto(sk);
5325 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5326 		return true;
5327 	}
5328 	tp->syn_data_acked = tp->syn_data;
5329 	if (tp->syn_data_acked)
5330 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5331 	return false;
5332 }
5333 
5334 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5335 					 const struct tcphdr *th, unsigned int len)
5336 {
5337 	struct inet_connection_sock *icsk = inet_csk(sk);
5338 	struct tcp_sock *tp = tcp_sk(sk);
5339 	struct tcp_fastopen_cookie foc = { .len = -1 };
5340 	int saved_clamp = tp->rx_opt.mss_clamp;
5341 
5342 	tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5343 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5344 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5345 
5346 	if (th->ack) {
5347 		/* rfc793:
5348 		 * "If the state is SYN-SENT then
5349 		 *    first check the ACK bit
5350 		 *      If the ACK bit is set
5351 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5352 		 *        a reset (unless the RST bit is set, if so drop
5353 		 *        the segment and return)"
5354 		 */
5355 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5356 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5357 			goto reset_and_undo;
5358 
5359 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5360 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5361 			     tcp_time_stamp)) {
5362 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5363 			goto reset_and_undo;
5364 		}
5365 
5366 		/* Now ACK is acceptable.
5367 		 *
5368 		 * "If the RST bit is set
5369 		 *    If the ACK was acceptable then signal the user "error:
5370 		 *    connection reset", drop the segment, enter CLOSED state,
5371 		 *    delete TCB, and return."
5372 		 */
5373 
5374 		if (th->rst) {
5375 			tcp_reset(sk);
5376 			goto discard;
5377 		}
5378 
5379 		/* rfc793:
5380 		 *   "fifth, if neither of the SYN or RST bits is set then
5381 		 *    drop the segment and return."
5382 		 *
5383 		 *    See note below!
5384 		 *                                        --ANK(990513)
5385 		 */
5386 		if (!th->syn)
5387 			goto discard_and_undo;
5388 
5389 		/* rfc793:
5390 		 *   "If the SYN bit is on ...
5391 		 *    are acceptable then ...
5392 		 *    (our SYN has been ACKed), change the connection
5393 		 *    state to ESTABLISHED..."
5394 		 */
5395 
5396 		tcp_ecn_rcv_synack(tp, th);
5397 
5398 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5399 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5400 
5401 		/* Ok.. it's good. Set up sequence numbers and
5402 		 * move to established.
5403 		 */
5404 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5405 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5406 
5407 		/* RFC1323: The window in SYN & SYN/ACK segments is
5408 		 * never scaled.
5409 		 */
5410 		tp->snd_wnd = ntohs(th->window);
5411 
5412 		if (!tp->rx_opt.wscale_ok) {
5413 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5414 			tp->window_clamp = min(tp->window_clamp, 65535U);
5415 		}
5416 
5417 		if (tp->rx_opt.saw_tstamp) {
5418 			tp->rx_opt.tstamp_ok	   = 1;
5419 			tp->tcp_header_len =
5420 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5421 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5422 			tcp_store_ts_recent(tp);
5423 		} else {
5424 			tp->tcp_header_len = sizeof(struct tcphdr);
5425 		}
5426 
5427 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5428 			tcp_enable_fack(tp);
5429 
5430 		tcp_mtup_init(sk);
5431 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5432 		tcp_initialize_rcv_mss(sk);
5433 
5434 		/* Remember, tcp_poll() does not lock socket!
5435 		 * Change state from SYN-SENT only after copied_seq
5436 		 * is initialized. */
5437 		tp->copied_seq = tp->rcv_nxt;
5438 
5439 		smp_mb();
5440 
5441 		tcp_finish_connect(sk, skb);
5442 
5443 		if ((tp->syn_fastopen || tp->syn_data) &&
5444 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5445 			return -1;
5446 
5447 		if (sk->sk_write_pending ||
5448 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5449 		    icsk->icsk_ack.pingpong) {
5450 			/* Save one ACK. Data will be ready after
5451 			 * several ticks, if write_pending is set.
5452 			 *
5453 			 * It may be deleted, but with this feature tcpdumps
5454 			 * look so _wonderfully_ clever, that I was not able
5455 			 * to stand against the temptation 8)     --ANK
5456 			 */
5457 			inet_csk_schedule_ack(sk);
5458 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5459 			tcp_enter_quickack_mode(sk);
5460 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5461 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5462 
5463 discard:
5464 			__kfree_skb(skb);
5465 			return 0;
5466 		} else {
5467 			tcp_send_ack(sk);
5468 		}
5469 		return -1;
5470 	}
5471 
5472 	/* No ACK in the segment */
5473 
5474 	if (th->rst) {
5475 		/* rfc793:
5476 		 * "If the RST bit is set
5477 		 *
5478 		 *      Otherwise (no ACK) drop the segment and return."
5479 		 */
5480 
5481 		goto discard_and_undo;
5482 	}
5483 
5484 	/* PAWS check. */
5485 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5486 	    tcp_paws_reject(&tp->rx_opt, 0))
5487 		goto discard_and_undo;
5488 
5489 	if (th->syn) {
5490 		/* We see SYN without ACK. It is attempt of
5491 		 * simultaneous connect with crossed SYNs.
5492 		 * Particularly, it can be connect to self.
5493 		 */
5494 		tcp_set_state(sk, TCP_SYN_RECV);
5495 
5496 		if (tp->rx_opt.saw_tstamp) {
5497 			tp->rx_opt.tstamp_ok = 1;
5498 			tcp_store_ts_recent(tp);
5499 			tp->tcp_header_len =
5500 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5501 		} else {
5502 			tp->tcp_header_len = sizeof(struct tcphdr);
5503 		}
5504 
5505 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5506 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5507 
5508 		/* RFC1323: The window in SYN & SYN/ACK segments is
5509 		 * never scaled.
5510 		 */
5511 		tp->snd_wnd    = ntohs(th->window);
5512 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5513 		tp->max_window = tp->snd_wnd;
5514 
5515 		tcp_ecn_rcv_syn(tp, th);
5516 
5517 		tcp_mtup_init(sk);
5518 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5519 		tcp_initialize_rcv_mss(sk);
5520 
5521 		tcp_send_synack(sk);
5522 #if 0
5523 		/* Note, we could accept data and URG from this segment.
5524 		 * There are no obstacles to make this (except that we must
5525 		 * either change tcp_recvmsg() to prevent it from returning data
5526 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5527 		 *
5528 		 * However, if we ignore data in ACKless segments sometimes,
5529 		 * we have no reasons to accept it sometimes.
5530 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5531 		 * is not flawless. So, discard packet for sanity.
5532 		 * Uncomment this return to process the data.
5533 		 */
5534 		return -1;
5535 #else
5536 		goto discard;
5537 #endif
5538 	}
5539 	/* "fifth, if neither of the SYN or RST bits is set then
5540 	 * drop the segment and return."
5541 	 */
5542 
5543 discard_and_undo:
5544 	tcp_clear_options(&tp->rx_opt);
5545 	tp->rx_opt.mss_clamp = saved_clamp;
5546 	goto discard;
5547 
5548 reset_and_undo:
5549 	tcp_clear_options(&tp->rx_opt);
5550 	tp->rx_opt.mss_clamp = saved_clamp;
5551 	return 1;
5552 }
5553 
5554 /*
5555  *	This function implements the receiving procedure of RFC 793 for
5556  *	all states except ESTABLISHED and TIME_WAIT.
5557  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5558  *	address independent.
5559  */
5560 
5561 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5562 			  const struct tcphdr *th, unsigned int len)
5563 {
5564 	struct tcp_sock *tp = tcp_sk(sk);
5565 	struct inet_connection_sock *icsk = inet_csk(sk);
5566 	struct request_sock *req;
5567 	int queued = 0;
5568 	bool acceptable;
5569 	u32 synack_stamp;
5570 
5571 	tp->rx_opt.saw_tstamp = 0;
5572 
5573 	switch (sk->sk_state) {
5574 	case TCP_CLOSE:
5575 		goto discard;
5576 
5577 	case TCP_LISTEN:
5578 		if (th->ack)
5579 			return 1;
5580 
5581 		if (th->rst)
5582 			goto discard;
5583 
5584 		if (th->syn) {
5585 			if (th->fin)
5586 				goto discard;
5587 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5588 				return 1;
5589 
5590 			/* Now we have several options: In theory there is
5591 			 * nothing else in the frame. KA9Q has an option to
5592 			 * send data with the syn, BSD accepts data with the
5593 			 * syn up to the [to be] advertised window and
5594 			 * Solaris 2.1 gives you a protocol error. For now
5595 			 * we just ignore it, that fits the spec precisely
5596 			 * and avoids incompatibilities. It would be nice in
5597 			 * future to drop through and process the data.
5598 			 *
5599 			 * Now that TTCP is starting to be used we ought to
5600 			 * queue this data.
5601 			 * But, this leaves one open to an easy denial of
5602 			 * service attack, and SYN cookies can't defend
5603 			 * against this problem. So, we drop the data
5604 			 * in the interest of security over speed unless
5605 			 * it's still in use.
5606 			 */
5607 			kfree_skb(skb);
5608 			return 0;
5609 		}
5610 		goto discard;
5611 
5612 	case TCP_SYN_SENT:
5613 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5614 		if (queued >= 0)
5615 			return queued;
5616 
5617 		/* Do step6 onward by hand. */
5618 		tcp_urg(sk, skb, th);
5619 		__kfree_skb(skb);
5620 		tcp_data_snd_check(sk);
5621 		return 0;
5622 	}
5623 
5624 	req = tp->fastopen_rsk;
5625 	if (req != NULL) {
5626 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5627 		    sk->sk_state != TCP_FIN_WAIT1);
5628 
5629 		if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5630 			goto discard;
5631 	}
5632 
5633 	if (!th->ack && !th->rst)
5634 		goto discard;
5635 
5636 	if (!tcp_validate_incoming(sk, skb, th, 0))
5637 		return 0;
5638 
5639 	/* step 5: check the ACK field */
5640 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5641 				      FLAG_UPDATE_TS_RECENT) > 0;
5642 
5643 	switch (sk->sk_state) {
5644 	case TCP_SYN_RECV:
5645 		if (!acceptable)
5646 			return 1;
5647 
5648 		/* Once we leave TCP_SYN_RECV, we no longer need req
5649 		 * so release it.
5650 		 */
5651 		if (req) {
5652 			synack_stamp = tcp_rsk(req)->snt_synack;
5653 			tp->total_retrans = req->num_retrans;
5654 			reqsk_fastopen_remove(sk, req, false);
5655 		} else {
5656 			synack_stamp = tp->lsndtime;
5657 			/* Make sure socket is routed, for correct metrics. */
5658 			icsk->icsk_af_ops->rebuild_header(sk);
5659 			tcp_init_congestion_control(sk);
5660 
5661 			tcp_mtup_init(sk);
5662 			tp->copied_seq = tp->rcv_nxt;
5663 			tcp_init_buffer_space(sk);
5664 		}
5665 		smp_mb();
5666 		tcp_set_state(sk, TCP_ESTABLISHED);
5667 		sk->sk_state_change(sk);
5668 
5669 		/* Note, that this wakeup is only for marginal crossed SYN case.
5670 		 * Passively open sockets are not waked up, because
5671 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5672 		 */
5673 		if (sk->sk_socket)
5674 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5675 
5676 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5677 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5678 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5679 		tcp_synack_rtt_meas(sk, synack_stamp);
5680 
5681 		if (tp->rx_opt.tstamp_ok)
5682 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5683 
5684 		if (req) {
5685 			/* Re-arm the timer because data may have been sent out.
5686 			 * This is similar to the regular data transmission case
5687 			 * when new data has just been ack'ed.
5688 			 *
5689 			 * (TFO) - we could try to be more aggressive and
5690 			 * retransmitting any data sooner based on when they
5691 			 * are sent out.
5692 			 */
5693 			tcp_rearm_rto(sk);
5694 		} else
5695 			tcp_init_metrics(sk);
5696 
5697 		tcp_update_pacing_rate(sk);
5698 
5699 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
5700 		tp->lsndtime = tcp_time_stamp;
5701 
5702 		tcp_initialize_rcv_mss(sk);
5703 		tcp_fast_path_on(tp);
5704 		break;
5705 
5706 	case TCP_FIN_WAIT1: {
5707 		struct dst_entry *dst;
5708 		int tmo;
5709 
5710 		/* If we enter the TCP_FIN_WAIT1 state and we are a
5711 		 * Fast Open socket and this is the first acceptable
5712 		 * ACK we have received, this would have acknowledged
5713 		 * our SYNACK so stop the SYNACK timer.
5714 		 */
5715 		if (req != NULL) {
5716 			/* Return RST if ack_seq is invalid.
5717 			 * Note that RFC793 only says to generate a
5718 			 * DUPACK for it but for TCP Fast Open it seems
5719 			 * better to treat this case like TCP_SYN_RECV
5720 			 * above.
5721 			 */
5722 			if (!acceptable)
5723 				return 1;
5724 			/* We no longer need the request sock. */
5725 			reqsk_fastopen_remove(sk, req, false);
5726 			tcp_rearm_rto(sk);
5727 		}
5728 		if (tp->snd_una != tp->write_seq)
5729 			break;
5730 
5731 		tcp_set_state(sk, TCP_FIN_WAIT2);
5732 		sk->sk_shutdown |= SEND_SHUTDOWN;
5733 
5734 		dst = __sk_dst_get(sk);
5735 		if (dst)
5736 			dst_confirm(dst);
5737 
5738 		if (!sock_flag(sk, SOCK_DEAD)) {
5739 			/* Wake up lingering close() */
5740 			sk->sk_state_change(sk);
5741 			break;
5742 		}
5743 
5744 		if (tp->linger2 < 0 ||
5745 		    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5746 		     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5747 			tcp_done(sk);
5748 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5749 			return 1;
5750 		}
5751 
5752 		tmo = tcp_fin_time(sk);
5753 		if (tmo > TCP_TIMEWAIT_LEN) {
5754 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5755 		} else if (th->fin || sock_owned_by_user(sk)) {
5756 			/* Bad case. We could lose such FIN otherwise.
5757 			 * It is not a big problem, but it looks confusing
5758 			 * and not so rare event. We still can lose it now,
5759 			 * if it spins in bh_lock_sock(), but it is really
5760 			 * marginal case.
5761 			 */
5762 			inet_csk_reset_keepalive_timer(sk, tmo);
5763 		} else {
5764 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5765 			goto discard;
5766 		}
5767 		break;
5768 	}
5769 
5770 	case TCP_CLOSING:
5771 		if (tp->snd_una == tp->write_seq) {
5772 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5773 			goto discard;
5774 		}
5775 		break;
5776 
5777 	case TCP_LAST_ACK:
5778 		if (tp->snd_una == tp->write_seq) {
5779 			tcp_update_metrics(sk);
5780 			tcp_done(sk);
5781 			goto discard;
5782 		}
5783 		break;
5784 	}
5785 
5786 	/* step 6: check the URG bit */
5787 	tcp_urg(sk, skb, th);
5788 
5789 	/* step 7: process the segment text */
5790 	switch (sk->sk_state) {
5791 	case TCP_CLOSE_WAIT:
5792 	case TCP_CLOSING:
5793 	case TCP_LAST_ACK:
5794 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5795 			break;
5796 	case TCP_FIN_WAIT1:
5797 	case TCP_FIN_WAIT2:
5798 		/* RFC 793 says to queue data in these states,
5799 		 * RFC 1122 says we MUST send a reset.
5800 		 * BSD 4.4 also does reset.
5801 		 */
5802 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5803 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5804 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5805 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5806 				tcp_reset(sk);
5807 				return 1;
5808 			}
5809 		}
5810 		/* Fall through */
5811 	case TCP_ESTABLISHED:
5812 		tcp_data_queue(sk, skb);
5813 		queued = 1;
5814 		break;
5815 	}
5816 
5817 	/* tcp_data could move socket to TIME-WAIT */
5818 	if (sk->sk_state != TCP_CLOSE) {
5819 		tcp_data_snd_check(sk);
5820 		tcp_ack_snd_check(sk);
5821 	}
5822 
5823 	if (!queued) {
5824 discard:
5825 		__kfree_skb(skb);
5826 	}
5827 	return 0;
5828 }
5829 EXPORT_SYMBOL(tcp_rcv_state_process);
5830 
5831 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
5832 {
5833 	struct inet_request_sock *ireq = inet_rsk(req);
5834 
5835 	if (family == AF_INET)
5836 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
5837 			       &ireq->ir_rmt_addr, port);
5838 #if IS_ENABLED(CONFIG_IPV6)
5839 	else if (family == AF_INET6)
5840 		LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI6/%u\n"),
5841 			       &ireq->ir_v6_rmt_addr, port);
5842 #endif
5843 }
5844 
5845 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
5846  *
5847  * If we receive a SYN packet with these bits set, it means a
5848  * network is playing bad games with TOS bits. In order to
5849  * avoid possible false congestion notifications, we disable
5850  * TCP ECN negociation.
5851  *
5852  * Exception: tcp_ca wants ECN. This is required for DCTCP
5853  * congestion control; it requires setting ECT on all packets,
5854  * including SYN. We inverse the test in this case: If our
5855  * local socket wants ECN, but peer only set ece/cwr (but not
5856  * ECT in IP header) its probably a non-DCTCP aware sender.
5857  */
5858 static void tcp_ecn_create_request(struct request_sock *req,
5859 				   const struct sk_buff *skb,
5860 				   const struct sock *listen_sk)
5861 {
5862 	const struct tcphdr *th = tcp_hdr(skb);
5863 	const struct net *net = sock_net(listen_sk);
5864 	bool th_ecn = th->ece && th->cwr;
5865 	bool ect, need_ecn;
5866 
5867 	if (!th_ecn)
5868 		return;
5869 
5870 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
5871 	need_ecn = tcp_ca_needs_ecn(listen_sk);
5872 
5873 	if (!ect && !need_ecn && net->ipv4.sysctl_tcp_ecn)
5874 		inet_rsk(req)->ecn_ok = 1;
5875 	else if (ect && need_ecn)
5876 		inet_rsk(req)->ecn_ok = 1;
5877 }
5878 
5879 int tcp_conn_request(struct request_sock_ops *rsk_ops,
5880 		     const struct tcp_request_sock_ops *af_ops,
5881 		     struct sock *sk, struct sk_buff *skb)
5882 {
5883 	struct tcp_options_received tmp_opt;
5884 	struct request_sock *req;
5885 	struct tcp_sock *tp = tcp_sk(sk);
5886 	struct dst_entry *dst = NULL;
5887 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
5888 	bool want_cookie = false, fastopen;
5889 	struct flowi fl;
5890 	struct tcp_fastopen_cookie foc = { .len = -1 };
5891 	int err;
5892 
5893 
5894 	/* TW buckets are converted to open requests without
5895 	 * limitations, they conserve resources and peer is
5896 	 * evidently real one.
5897 	 */
5898 	if ((sysctl_tcp_syncookies == 2 ||
5899 	     inet_csk_reqsk_queue_is_full(sk)) && !isn) {
5900 		want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
5901 		if (!want_cookie)
5902 			goto drop;
5903 	}
5904 
5905 
5906 	/* Accept backlog is full. If we have already queued enough
5907 	 * of warm entries in syn queue, drop request. It is better than
5908 	 * clogging syn queue with openreqs with exponentially increasing
5909 	 * timeout.
5910 	 */
5911 	if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
5912 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
5913 		goto drop;
5914 	}
5915 
5916 	req = inet_reqsk_alloc(rsk_ops);
5917 	if (!req)
5918 		goto drop;
5919 
5920 	tcp_rsk(req)->af_specific = af_ops;
5921 
5922 	tcp_clear_options(&tmp_opt);
5923 	tmp_opt.mss_clamp = af_ops->mss_clamp;
5924 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
5925 	tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
5926 
5927 	if (want_cookie && !tmp_opt.saw_tstamp)
5928 		tcp_clear_options(&tmp_opt);
5929 
5930 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
5931 	tcp_openreq_init(req, &tmp_opt, skb, sk);
5932 
5933 	af_ops->init_req(req, sk, skb);
5934 
5935 	if (security_inet_conn_request(sk, skb, req))
5936 		goto drop_and_free;
5937 
5938 	if (!want_cookie || tmp_opt.tstamp_ok)
5939 		tcp_ecn_create_request(req, skb, sk);
5940 
5941 	if (want_cookie) {
5942 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
5943 		req->cookie_ts = tmp_opt.tstamp_ok;
5944 	} else if (!isn) {
5945 		/* VJ's idea. We save last timestamp seen
5946 		 * from the destination in peer table, when entering
5947 		 * state TIME-WAIT, and check against it before
5948 		 * accepting new connection request.
5949 		 *
5950 		 * If "isn" is not zero, this request hit alive
5951 		 * timewait bucket, so that all the necessary checks
5952 		 * are made in the function processing timewait state.
5953 		 */
5954 		if (tcp_death_row.sysctl_tw_recycle) {
5955 			bool strict;
5956 
5957 			dst = af_ops->route_req(sk, &fl, req, &strict);
5958 
5959 			if (dst && strict &&
5960 			    !tcp_peer_is_proven(req, dst, true,
5961 						tmp_opt.saw_tstamp)) {
5962 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
5963 				goto drop_and_release;
5964 			}
5965 		}
5966 		/* Kill the following clause, if you dislike this way. */
5967 		else if (!sysctl_tcp_syncookies &&
5968 			 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
5969 			  (sysctl_max_syn_backlog >> 2)) &&
5970 			 !tcp_peer_is_proven(req, dst, false,
5971 					     tmp_opt.saw_tstamp)) {
5972 			/* Without syncookies last quarter of
5973 			 * backlog is filled with destinations,
5974 			 * proven to be alive.
5975 			 * It means that we continue to communicate
5976 			 * to destinations, already remembered
5977 			 * to the moment of synflood.
5978 			 */
5979 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
5980 				    rsk_ops->family);
5981 			goto drop_and_release;
5982 		}
5983 
5984 		isn = af_ops->init_seq(skb);
5985 	}
5986 	if (!dst) {
5987 		dst = af_ops->route_req(sk, &fl, req, NULL);
5988 		if (!dst)
5989 			goto drop_and_free;
5990 	}
5991 
5992 	tcp_rsk(req)->snt_isn = isn;
5993 	tcp_openreq_init_rwin(req, sk, dst);
5994 	fastopen = !want_cookie &&
5995 		   tcp_try_fastopen(sk, skb, req, &foc, dst);
5996 	err = af_ops->send_synack(sk, dst, &fl, req,
5997 				  skb_get_queue_mapping(skb), &foc);
5998 	if (!fastopen) {
5999 		if (err || want_cookie)
6000 			goto drop_and_free;
6001 
6002 		tcp_rsk(req)->listener = NULL;
6003 		af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6004 	}
6005 
6006 	return 0;
6007 
6008 drop_and_release:
6009 	dst_release(dst);
6010 drop_and_free:
6011 	reqsk_free(req);
6012 drop:
6013 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6014 	return 0;
6015 }
6016 EXPORT_SYMBOL(tcp_conn_request);
6017