1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <net/dst.h> 72 #include <net/tcp.h> 73 #include <net/inet_common.h> 74 #include <linux/ipsec.h> 75 #include <asm/unaligned.h> 76 #include <linux/errqueue.h> 77 78 int sysctl_tcp_timestamps __read_mostly = 1; 79 int sysctl_tcp_window_scaling __read_mostly = 1; 80 int sysctl_tcp_sack __read_mostly = 1; 81 int sysctl_tcp_fack __read_mostly = 1; 82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 83 EXPORT_SYMBOL(sysctl_tcp_reordering); 84 int sysctl_tcp_dsack __read_mostly = 1; 85 int sysctl_tcp_app_win __read_mostly = 31; 86 int sysctl_tcp_adv_win_scale __read_mostly = 1; 87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 88 89 /* rfc5961 challenge ack rate limiting */ 90 int sysctl_tcp_challenge_ack_limit = 100; 91 92 int sysctl_tcp_stdurg __read_mostly; 93 int sysctl_tcp_rfc1337 __read_mostly; 94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 95 int sysctl_tcp_frto __read_mostly = 2; 96 97 int sysctl_tcp_thin_dupack __read_mostly; 98 99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 100 int sysctl_tcp_early_retrans __read_mostly = 3; 101 102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 108 #define FLAG_ECE 0x40 /* ECE in this ACK */ 109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 115 116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 120 121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 123 124 /* Adapt the MSS value used to make delayed ack decision to the 125 * real world. 126 */ 127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 128 { 129 struct inet_connection_sock *icsk = inet_csk(sk); 130 const unsigned int lss = icsk->icsk_ack.last_seg_size; 131 unsigned int len; 132 133 icsk->icsk_ack.last_seg_size = 0; 134 135 /* skb->len may jitter because of SACKs, even if peer 136 * sends good full-sized frames. 137 */ 138 len = skb_shinfo(skb)->gso_size ? : skb->len; 139 if (len >= icsk->icsk_ack.rcv_mss) { 140 icsk->icsk_ack.rcv_mss = len; 141 } else { 142 /* Otherwise, we make more careful check taking into account, 143 * that SACKs block is variable. 144 * 145 * "len" is invariant segment length, including TCP header. 146 */ 147 len += skb->data - skb_transport_header(skb); 148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 149 /* If PSH is not set, packet should be 150 * full sized, provided peer TCP is not badly broken. 151 * This observation (if it is correct 8)) allows 152 * to handle super-low mtu links fairly. 153 */ 154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 156 /* Subtract also invariant (if peer is RFC compliant), 157 * tcp header plus fixed timestamp option length. 158 * Resulting "len" is MSS free of SACK jitter. 159 */ 160 len -= tcp_sk(sk)->tcp_header_len; 161 icsk->icsk_ack.last_seg_size = len; 162 if (len == lss) { 163 icsk->icsk_ack.rcv_mss = len; 164 return; 165 } 166 } 167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 170 } 171 } 172 173 static void tcp_incr_quickack(struct sock *sk) 174 { 175 struct inet_connection_sock *icsk = inet_csk(sk); 176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 177 178 if (quickacks == 0) 179 quickacks = 2; 180 if (quickacks > icsk->icsk_ack.quick) 181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 182 } 183 184 static void tcp_enter_quickack_mode(struct sock *sk) 185 { 186 struct inet_connection_sock *icsk = inet_csk(sk); 187 tcp_incr_quickack(sk); 188 icsk->icsk_ack.pingpong = 0; 189 icsk->icsk_ack.ato = TCP_ATO_MIN; 190 } 191 192 /* Send ACKs quickly, if "quick" count is not exhausted 193 * and the session is not interactive. 194 */ 195 196 static inline bool tcp_in_quickack_mode(const struct sock *sk) 197 { 198 const struct inet_connection_sock *icsk = inet_csk(sk); 199 200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 201 } 202 203 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 204 { 205 if (tp->ecn_flags & TCP_ECN_OK) 206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 207 } 208 209 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 210 { 211 if (tcp_hdr(skb)->cwr) 212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 213 } 214 215 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 216 { 217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 218 } 219 220 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 221 { 222 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 223 case INET_ECN_NOT_ECT: 224 /* Funny extension: if ECT is not set on a segment, 225 * and we already seen ECT on a previous segment, 226 * it is probably a retransmit. 227 */ 228 if (tp->ecn_flags & TCP_ECN_SEEN) 229 tcp_enter_quickack_mode((struct sock *)tp); 230 break; 231 case INET_ECN_CE: 232 if (tcp_ca_needs_ecn((struct sock *)tp)) 233 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 234 235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 236 /* Better not delay acks, sender can have a very low cwnd */ 237 tcp_enter_quickack_mode((struct sock *)tp); 238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 239 } 240 tp->ecn_flags |= TCP_ECN_SEEN; 241 break; 242 default: 243 if (tcp_ca_needs_ecn((struct sock *)tp)) 244 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 245 tp->ecn_flags |= TCP_ECN_SEEN; 246 break; 247 } 248 } 249 250 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 251 { 252 if (tp->ecn_flags & TCP_ECN_OK) 253 __tcp_ecn_check_ce(tp, skb); 254 } 255 256 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 257 { 258 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 259 tp->ecn_flags &= ~TCP_ECN_OK; 260 } 261 262 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 263 { 264 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 265 tp->ecn_flags &= ~TCP_ECN_OK; 266 } 267 268 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 269 { 270 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 271 return true; 272 return false; 273 } 274 275 /* Buffer size and advertised window tuning. 276 * 277 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 278 */ 279 280 static void tcp_sndbuf_expand(struct sock *sk) 281 { 282 const struct tcp_sock *tp = tcp_sk(sk); 283 int sndmem, per_mss; 284 u32 nr_segs; 285 286 /* Worst case is non GSO/TSO : each frame consumes one skb 287 * and skb->head is kmalloced using power of two area of memory 288 */ 289 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 290 MAX_TCP_HEADER + 291 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 292 293 per_mss = roundup_pow_of_two(per_mss) + 294 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 295 296 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 297 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 298 299 /* Fast Recovery (RFC 5681 3.2) : 300 * Cubic needs 1.7 factor, rounded to 2 to include 301 * extra cushion (application might react slowly to POLLOUT) 302 */ 303 sndmem = 2 * nr_segs * per_mss; 304 305 if (sk->sk_sndbuf < sndmem) 306 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 307 } 308 309 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 310 * 311 * All tcp_full_space() is split to two parts: "network" buffer, allocated 312 * forward and advertised in receiver window (tp->rcv_wnd) and 313 * "application buffer", required to isolate scheduling/application 314 * latencies from network. 315 * window_clamp is maximal advertised window. It can be less than 316 * tcp_full_space(), in this case tcp_full_space() - window_clamp 317 * is reserved for "application" buffer. The less window_clamp is 318 * the smoother our behaviour from viewpoint of network, but the lower 319 * throughput and the higher sensitivity of the connection to losses. 8) 320 * 321 * rcv_ssthresh is more strict window_clamp used at "slow start" 322 * phase to predict further behaviour of this connection. 323 * It is used for two goals: 324 * - to enforce header prediction at sender, even when application 325 * requires some significant "application buffer". It is check #1. 326 * - to prevent pruning of receive queue because of misprediction 327 * of receiver window. Check #2. 328 * 329 * The scheme does not work when sender sends good segments opening 330 * window and then starts to feed us spaghetti. But it should work 331 * in common situations. Otherwise, we have to rely on queue collapsing. 332 */ 333 334 /* Slow part of check#2. */ 335 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 336 { 337 struct tcp_sock *tp = tcp_sk(sk); 338 /* Optimize this! */ 339 int truesize = tcp_win_from_space(skb->truesize) >> 1; 340 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 341 342 while (tp->rcv_ssthresh <= window) { 343 if (truesize <= skb->len) 344 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 345 346 truesize >>= 1; 347 window >>= 1; 348 } 349 return 0; 350 } 351 352 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 353 { 354 struct tcp_sock *tp = tcp_sk(sk); 355 356 /* Check #1 */ 357 if (tp->rcv_ssthresh < tp->window_clamp && 358 (int)tp->rcv_ssthresh < tcp_space(sk) && 359 !sk_under_memory_pressure(sk)) { 360 int incr; 361 362 /* Check #2. Increase window, if skb with such overhead 363 * will fit to rcvbuf in future. 364 */ 365 if (tcp_win_from_space(skb->truesize) <= skb->len) 366 incr = 2 * tp->advmss; 367 else 368 incr = __tcp_grow_window(sk, skb); 369 370 if (incr) { 371 incr = max_t(int, incr, 2 * skb->len); 372 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 373 tp->window_clamp); 374 inet_csk(sk)->icsk_ack.quick |= 1; 375 } 376 } 377 } 378 379 /* 3. Tuning rcvbuf, when connection enters established state. */ 380 static void tcp_fixup_rcvbuf(struct sock *sk) 381 { 382 u32 mss = tcp_sk(sk)->advmss; 383 int rcvmem; 384 385 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 386 tcp_default_init_rwnd(mss); 387 388 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 389 * Allow enough cushion so that sender is not limited by our window 390 */ 391 if (sysctl_tcp_moderate_rcvbuf) 392 rcvmem <<= 2; 393 394 if (sk->sk_rcvbuf < rcvmem) 395 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 396 } 397 398 /* 4. Try to fixup all. It is made immediately after connection enters 399 * established state. 400 */ 401 void tcp_init_buffer_space(struct sock *sk) 402 { 403 struct tcp_sock *tp = tcp_sk(sk); 404 int maxwin; 405 406 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 407 tcp_fixup_rcvbuf(sk); 408 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 409 tcp_sndbuf_expand(sk); 410 411 tp->rcvq_space.space = tp->rcv_wnd; 412 tp->rcvq_space.time = tcp_time_stamp; 413 tp->rcvq_space.seq = tp->copied_seq; 414 415 maxwin = tcp_full_space(sk); 416 417 if (tp->window_clamp >= maxwin) { 418 tp->window_clamp = maxwin; 419 420 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 421 tp->window_clamp = max(maxwin - 422 (maxwin >> sysctl_tcp_app_win), 423 4 * tp->advmss); 424 } 425 426 /* Force reservation of one segment. */ 427 if (sysctl_tcp_app_win && 428 tp->window_clamp > 2 * tp->advmss && 429 tp->window_clamp + tp->advmss > maxwin) 430 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 431 432 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 433 tp->snd_cwnd_stamp = tcp_time_stamp; 434 } 435 436 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 437 static void tcp_clamp_window(struct sock *sk) 438 { 439 struct tcp_sock *tp = tcp_sk(sk); 440 struct inet_connection_sock *icsk = inet_csk(sk); 441 442 icsk->icsk_ack.quick = 0; 443 444 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 445 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 446 !sk_under_memory_pressure(sk) && 447 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 448 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 449 sysctl_tcp_rmem[2]); 450 } 451 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 452 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 453 } 454 455 /* Initialize RCV_MSS value. 456 * RCV_MSS is an our guess about MSS used by the peer. 457 * We haven't any direct information about the MSS. 458 * It's better to underestimate the RCV_MSS rather than overestimate. 459 * Overestimations make us ACKing less frequently than needed. 460 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 461 */ 462 void tcp_initialize_rcv_mss(struct sock *sk) 463 { 464 const struct tcp_sock *tp = tcp_sk(sk); 465 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 466 467 hint = min(hint, tp->rcv_wnd / 2); 468 hint = min(hint, TCP_MSS_DEFAULT); 469 hint = max(hint, TCP_MIN_MSS); 470 471 inet_csk(sk)->icsk_ack.rcv_mss = hint; 472 } 473 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 474 475 /* Receiver "autotuning" code. 476 * 477 * The algorithm for RTT estimation w/o timestamps is based on 478 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 479 * <http://public.lanl.gov/radiant/pubs.html#DRS> 480 * 481 * More detail on this code can be found at 482 * <http://staff.psc.edu/jheffner/>, 483 * though this reference is out of date. A new paper 484 * is pending. 485 */ 486 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 487 { 488 u32 new_sample = tp->rcv_rtt_est.rtt; 489 long m = sample; 490 491 if (m == 0) 492 m = 1; 493 494 if (new_sample != 0) { 495 /* If we sample in larger samples in the non-timestamp 496 * case, we could grossly overestimate the RTT especially 497 * with chatty applications or bulk transfer apps which 498 * are stalled on filesystem I/O. 499 * 500 * Also, since we are only going for a minimum in the 501 * non-timestamp case, we do not smooth things out 502 * else with timestamps disabled convergence takes too 503 * long. 504 */ 505 if (!win_dep) { 506 m -= (new_sample >> 3); 507 new_sample += m; 508 } else { 509 m <<= 3; 510 if (m < new_sample) 511 new_sample = m; 512 } 513 } else { 514 /* No previous measure. */ 515 new_sample = m << 3; 516 } 517 518 if (tp->rcv_rtt_est.rtt != new_sample) 519 tp->rcv_rtt_est.rtt = new_sample; 520 } 521 522 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 523 { 524 if (tp->rcv_rtt_est.time == 0) 525 goto new_measure; 526 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 527 return; 528 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 529 530 new_measure: 531 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 532 tp->rcv_rtt_est.time = tcp_time_stamp; 533 } 534 535 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 536 const struct sk_buff *skb) 537 { 538 struct tcp_sock *tp = tcp_sk(sk); 539 if (tp->rx_opt.rcv_tsecr && 540 (TCP_SKB_CB(skb)->end_seq - 541 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 542 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 543 } 544 545 /* 546 * This function should be called every time data is copied to user space. 547 * It calculates the appropriate TCP receive buffer space. 548 */ 549 void tcp_rcv_space_adjust(struct sock *sk) 550 { 551 struct tcp_sock *tp = tcp_sk(sk); 552 int time; 553 int copied; 554 555 time = tcp_time_stamp - tp->rcvq_space.time; 556 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 557 return; 558 559 /* Number of bytes copied to user in last RTT */ 560 copied = tp->copied_seq - tp->rcvq_space.seq; 561 if (copied <= tp->rcvq_space.space) 562 goto new_measure; 563 564 /* A bit of theory : 565 * copied = bytes received in previous RTT, our base window 566 * To cope with packet losses, we need a 2x factor 567 * To cope with slow start, and sender growing its cwin by 100 % 568 * every RTT, we need a 4x factor, because the ACK we are sending 569 * now is for the next RTT, not the current one : 570 * <prev RTT . ><current RTT .. ><next RTT .... > 571 */ 572 573 if (sysctl_tcp_moderate_rcvbuf && 574 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 575 int rcvwin, rcvmem, rcvbuf; 576 577 /* minimal window to cope with packet losses, assuming 578 * steady state. Add some cushion because of small variations. 579 */ 580 rcvwin = (copied << 1) + 16 * tp->advmss; 581 582 /* If rate increased by 25%, 583 * assume slow start, rcvwin = 3 * copied 584 * If rate increased by 50%, 585 * assume sender can use 2x growth, rcvwin = 4 * copied 586 */ 587 if (copied >= 588 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 589 if (copied >= 590 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 591 rcvwin <<= 1; 592 else 593 rcvwin += (rcvwin >> 1); 594 } 595 596 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 597 while (tcp_win_from_space(rcvmem) < tp->advmss) 598 rcvmem += 128; 599 600 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 601 if (rcvbuf > sk->sk_rcvbuf) { 602 sk->sk_rcvbuf = rcvbuf; 603 604 /* Make the window clamp follow along. */ 605 tp->window_clamp = rcvwin; 606 } 607 } 608 tp->rcvq_space.space = copied; 609 610 new_measure: 611 tp->rcvq_space.seq = tp->copied_seq; 612 tp->rcvq_space.time = tcp_time_stamp; 613 } 614 615 /* There is something which you must keep in mind when you analyze the 616 * behavior of the tp->ato delayed ack timeout interval. When a 617 * connection starts up, we want to ack as quickly as possible. The 618 * problem is that "good" TCP's do slow start at the beginning of data 619 * transmission. The means that until we send the first few ACK's the 620 * sender will sit on his end and only queue most of his data, because 621 * he can only send snd_cwnd unacked packets at any given time. For 622 * each ACK we send, he increments snd_cwnd and transmits more of his 623 * queue. -DaveM 624 */ 625 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 626 { 627 struct tcp_sock *tp = tcp_sk(sk); 628 struct inet_connection_sock *icsk = inet_csk(sk); 629 u32 now; 630 631 inet_csk_schedule_ack(sk); 632 633 tcp_measure_rcv_mss(sk, skb); 634 635 tcp_rcv_rtt_measure(tp); 636 637 now = tcp_time_stamp; 638 639 if (!icsk->icsk_ack.ato) { 640 /* The _first_ data packet received, initialize 641 * delayed ACK engine. 642 */ 643 tcp_incr_quickack(sk); 644 icsk->icsk_ack.ato = TCP_ATO_MIN; 645 } else { 646 int m = now - icsk->icsk_ack.lrcvtime; 647 648 if (m <= TCP_ATO_MIN / 2) { 649 /* The fastest case is the first. */ 650 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 651 } else if (m < icsk->icsk_ack.ato) { 652 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 653 if (icsk->icsk_ack.ato > icsk->icsk_rto) 654 icsk->icsk_ack.ato = icsk->icsk_rto; 655 } else if (m > icsk->icsk_rto) { 656 /* Too long gap. Apparently sender failed to 657 * restart window, so that we send ACKs quickly. 658 */ 659 tcp_incr_quickack(sk); 660 sk_mem_reclaim(sk); 661 } 662 } 663 icsk->icsk_ack.lrcvtime = now; 664 665 tcp_ecn_check_ce(tp, skb); 666 667 if (skb->len >= 128) 668 tcp_grow_window(sk, skb); 669 } 670 671 /* Called to compute a smoothed rtt estimate. The data fed to this 672 * routine either comes from timestamps, or from segments that were 673 * known _not_ to have been retransmitted [see Karn/Partridge 674 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 675 * piece by Van Jacobson. 676 * NOTE: the next three routines used to be one big routine. 677 * To save cycles in the RFC 1323 implementation it was better to break 678 * it up into three procedures. -- erics 679 */ 680 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 681 { 682 struct tcp_sock *tp = tcp_sk(sk); 683 long m = mrtt_us; /* RTT */ 684 u32 srtt = tp->srtt_us; 685 686 /* The following amusing code comes from Jacobson's 687 * article in SIGCOMM '88. Note that rtt and mdev 688 * are scaled versions of rtt and mean deviation. 689 * This is designed to be as fast as possible 690 * m stands for "measurement". 691 * 692 * On a 1990 paper the rto value is changed to: 693 * RTO = rtt + 4 * mdev 694 * 695 * Funny. This algorithm seems to be very broken. 696 * These formulae increase RTO, when it should be decreased, increase 697 * too slowly, when it should be increased quickly, decrease too quickly 698 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 699 * does not matter how to _calculate_ it. Seems, it was trap 700 * that VJ failed to avoid. 8) 701 */ 702 if (srtt != 0) { 703 m -= (srtt >> 3); /* m is now error in rtt est */ 704 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 705 if (m < 0) { 706 m = -m; /* m is now abs(error) */ 707 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 708 /* This is similar to one of Eifel findings. 709 * Eifel blocks mdev updates when rtt decreases. 710 * This solution is a bit different: we use finer gain 711 * for mdev in this case (alpha*beta). 712 * Like Eifel it also prevents growth of rto, 713 * but also it limits too fast rto decreases, 714 * happening in pure Eifel. 715 */ 716 if (m > 0) 717 m >>= 3; 718 } else { 719 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 720 } 721 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 722 if (tp->mdev_us > tp->mdev_max_us) { 723 tp->mdev_max_us = tp->mdev_us; 724 if (tp->mdev_max_us > tp->rttvar_us) 725 tp->rttvar_us = tp->mdev_max_us; 726 } 727 if (after(tp->snd_una, tp->rtt_seq)) { 728 if (tp->mdev_max_us < tp->rttvar_us) 729 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 730 tp->rtt_seq = tp->snd_nxt; 731 tp->mdev_max_us = tcp_rto_min_us(sk); 732 } 733 } else { 734 /* no previous measure. */ 735 srtt = m << 3; /* take the measured time to be rtt */ 736 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 737 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 738 tp->mdev_max_us = tp->rttvar_us; 739 tp->rtt_seq = tp->snd_nxt; 740 } 741 tp->srtt_us = max(1U, srtt); 742 } 743 744 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 745 * Note: TCP stack does not yet implement pacing. 746 * FQ packet scheduler can be used to implement cheap but effective 747 * TCP pacing, to smooth the burst on large writes when packets 748 * in flight is significantly lower than cwnd (or rwin) 749 */ 750 static void tcp_update_pacing_rate(struct sock *sk) 751 { 752 const struct tcp_sock *tp = tcp_sk(sk); 753 u64 rate; 754 755 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 756 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3); 757 758 rate *= max(tp->snd_cwnd, tp->packets_out); 759 760 if (likely(tp->srtt_us)) 761 do_div(rate, tp->srtt_us); 762 763 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 764 * without any lock. We want to make sure compiler wont store 765 * intermediate values in this location. 766 */ 767 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 768 sk->sk_max_pacing_rate); 769 } 770 771 /* Calculate rto without backoff. This is the second half of Van Jacobson's 772 * routine referred to above. 773 */ 774 static void tcp_set_rto(struct sock *sk) 775 { 776 const struct tcp_sock *tp = tcp_sk(sk); 777 /* Old crap is replaced with new one. 8) 778 * 779 * More seriously: 780 * 1. If rtt variance happened to be less 50msec, it is hallucination. 781 * It cannot be less due to utterly erratic ACK generation made 782 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 783 * to do with delayed acks, because at cwnd>2 true delack timeout 784 * is invisible. Actually, Linux-2.4 also generates erratic 785 * ACKs in some circumstances. 786 */ 787 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 788 789 /* 2. Fixups made earlier cannot be right. 790 * If we do not estimate RTO correctly without them, 791 * all the algo is pure shit and should be replaced 792 * with correct one. It is exactly, which we pretend to do. 793 */ 794 795 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 796 * guarantees that rto is higher. 797 */ 798 tcp_bound_rto(sk); 799 } 800 801 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 802 { 803 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 804 805 if (!cwnd) 806 cwnd = TCP_INIT_CWND; 807 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 808 } 809 810 /* 811 * Packet counting of FACK is based on in-order assumptions, therefore TCP 812 * disables it when reordering is detected 813 */ 814 void tcp_disable_fack(struct tcp_sock *tp) 815 { 816 /* RFC3517 uses different metric in lost marker => reset on change */ 817 if (tcp_is_fack(tp)) 818 tp->lost_skb_hint = NULL; 819 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 820 } 821 822 /* Take a notice that peer is sending D-SACKs */ 823 static void tcp_dsack_seen(struct tcp_sock *tp) 824 { 825 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 826 } 827 828 static void tcp_update_reordering(struct sock *sk, const int metric, 829 const int ts) 830 { 831 struct tcp_sock *tp = tcp_sk(sk); 832 if (metric > tp->reordering) { 833 int mib_idx; 834 835 tp->reordering = min(TCP_MAX_REORDERING, metric); 836 837 /* This exciting event is worth to be remembered. 8) */ 838 if (ts) 839 mib_idx = LINUX_MIB_TCPTSREORDER; 840 else if (tcp_is_reno(tp)) 841 mib_idx = LINUX_MIB_TCPRENOREORDER; 842 else if (tcp_is_fack(tp)) 843 mib_idx = LINUX_MIB_TCPFACKREORDER; 844 else 845 mib_idx = LINUX_MIB_TCPSACKREORDER; 846 847 NET_INC_STATS_BH(sock_net(sk), mib_idx); 848 #if FASTRETRANS_DEBUG > 1 849 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 850 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 851 tp->reordering, 852 tp->fackets_out, 853 tp->sacked_out, 854 tp->undo_marker ? tp->undo_retrans : 0); 855 #endif 856 tcp_disable_fack(tp); 857 } 858 859 if (metric > 0) 860 tcp_disable_early_retrans(tp); 861 } 862 863 /* This must be called before lost_out is incremented */ 864 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 865 { 866 if ((tp->retransmit_skb_hint == NULL) || 867 before(TCP_SKB_CB(skb)->seq, 868 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 869 tp->retransmit_skb_hint = skb; 870 871 if (!tp->lost_out || 872 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 873 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 874 } 875 876 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 877 { 878 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 879 tcp_verify_retransmit_hint(tp, skb); 880 881 tp->lost_out += tcp_skb_pcount(skb); 882 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 883 } 884 } 885 886 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 887 struct sk_buff *skb) 888 { 889 tcp_verify_retransmit_hint(tp, skb); 890 891 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 892 tp->lost_out += tcp_skb_pcount(skb); 893 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 894 } 895 } 896 897 /* This procedure tags the retransmission queue when SACKs arrive. 898 * 899 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 900 * Packets in queue with these bits set are counted in variables 901 * sacked_out, retrans_out and lost_out, correspondingly. 902 * 903 * Valid combinations are: 904 * Tag InFlight Description 905 * 0 1 - orig segment is in flight. 906 * S 0 - nothing flies, orig reached receiver. 907 * L 0 - nothing flies, orig lost by net. 908 * R 2 - both orig and retransmit are in flight. 909 * L|R 1 - orig is lost, retransmit is in flight. 910 * S|R 1 - orig reached receiver, retrans is still in flight. 911 * (L|S|R is logically valid, it could occur when L|R is sacked, 912 * but it is equivalent to plain S and code short-curcuits it to S. 913 * L|S is logically invalid, it would mean -1 packet in flight 8)) 914 * 915 * These 6 states form finite state machine, controlled by the following events: 916 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 917 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 918 * 3. Loss detection event of two flavors: 919 * A. Scoreboard estimator decided the packet is lost. 920 * A'. Reno "three dupacks" marks head of queue lost. 921 * A''. Its FACK modification, head until snd.fack is lost. 922 * B. SACK arrives sacking SND.NXT at the moment, when the 923 * segment was retransmitted. 924 * 4. D-SACK added new rule: D-SACK changes any tag to S. 925 * 926 * It is pleasant to note, that state diagram turns out to be commutative, 927 * so that we are allowed not to be bothered by order of our actions, 928 * when multiple events arrive simultaneously. (see the function below). 929 * 930 * Reordering detection. 931 * -------------------- 932 * Reordering metric is maximal distance, which a packet can be displaced 933 * in packet stream. With SACKs we can estimate it: 934 * 935 * 1. SACK fills old hole and the corresponding segment was not 936 * ever retransmitted -> reordering. Alas, we cannot use it 937 * when segment was retransmitted. 938 * 2. The last flaw is solved with D-SACK. D-SACK arrives 939 * for retransmitted and already SACKed segment -> reordering.. 940 * Both of these heuristics are not used in Loss state, when we cannot 941 * account for retransmits accurately. 942 * 943 * SACK block validation. 944 * ---------------------- 945 * 946 * SACK block range validation checks that the received SACK block fits to 947 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 948 * Note that SND.UNA is not included to the range though being valid because 949 * it means that the receiver is rather inconsistent with itself reporting 950 * SACK reneging when it should advance SND.UNA. Such SACK block this is 951 * perfectly valid, however, in light of RFC2018 which explicitly states 952 * that "SACK block MUST reflect the newest segment. Even if the newest 953 * segment is going to be discarded ...", not that it looks very clever 954 * in case of head skb. Due to potentional receiver driven attacks, we 955 * choose to avoid immediate execution of a walk in write queue due to 956 * reneging and defer head skb's loss recovery to standard loss recovery 957 * procedure that will eventually trigger (nothing forbids us doing this). 958 * 959 * Implements also blockage to start_seq wrap-around. Problem lies in the 960 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 961 * there's no guarantee that it will be before snd_nxt (n). The problem 962 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 963 * wrap (s_w): 964 * 965 * <- outs wnd -> <- wrapzone -> 966 * u e n u_w e_w s n_w 967 * | | | | | | | 968 * |<------------+------+----- TCP seqno space --------------+---------->| 969 * ...-- <2^31 ->| |<--------... 970 * ...---- >2^31 ------>| |<--------... 971 * 972 * Current code wouldn't be vulnerable but it's better still to discard such 973 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 974 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 975 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 976 * equal to the ideal case (infinite seqno space without wrap caused issues). 977 * 978 * With D-SACK the lower bound is extended to cover sequence space below 979 * SND.UNA down to undo_marker, which is the last point of interest. Yet 980 * again, D-SACK block must not to go across snd_una (for the same reason as 981 * for the normal SACK blocks, explained above). But there all simplicity 982 * ends, TCP might receive valid D-SACKs below that. As long as they reside 983 * fully below undo_marker they do not affect behavior in anyway and can 984 * therefore be safely ignored. In rare cases (which are more or less 985 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 986 * fragmentation and packet reordering past skb's retransmission. To consider 987 * them correctly, the acceptable range must be extended even more though 988 * the exact amount is rather hard to quantify. However, tp->max_window can 989 * be used as an exaggerated estimate. 990 */ 991 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 992 u32 start_seq, u32 end_seq) 993 { 994 /* Too far in future, or reversed (interpretation is ambiguous) */ 995 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 996 return false; 997 998 /* Nasty start_seq wrap-around check (see comments above) */ 999 if (!before(start_seq, tp->snd_nxt)) 1000 return false; 1001 1002 /* In outstanding window? ...This is valid exit for D-SACKs too. 1003 * start_seq == snd_una is non-sensical (see comments above) 1004 */ 1005 if (after(start_seq, tp->snd_una)) 1006 return true; 1007 1008 if (!is_dsack || !tp->undo_marker) 1009 return false; 1010 1011 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1012 if (after(end_seq, tp->snd_una)) 1013 return false; 1014 1015 if (!before(start_seq, tp->undo_marker)) 1016 return true; 1017 1018 /* Too old */ 1019 if (!after(end_seq, tp->undo_marker)) 1020 return false; 1021 1022 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1023 * start_seq < undo_marker and end_seq >= undo_marker. 1024 */ 1025 return !before(start_seq, end_seq - tp->max_window); 1026 } 1027 1028 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1029 * Event "B". Later note: FACK people cheated me again 8), we have to account 1030 * for reordering! Ugly, but should help. 1031 * 1032 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1033 * less than what is now known to be received by the other end (derived from 1034 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1035 * retransmitted skbs to avoid some costly processing per ACKs. 1036 */ 1037 static void tcp_mark_lost_retrans(struct sock *sk) 1038 { 1039 const struct inet_connection_sock *icsk = inet_csk(sk); 1040 struct tcp_sock *tp = tcp_sk(sk); 1041 struct sk_buff *skb; 1042 int cnt = 0; 1043 u32 new_low_seq = tp->snd_nxt; 1044 u32 received_upto = tcp_highest_sack_seq(tp); 1045 1046 if (!tcp_is_fack(tp) || !tp->retrans_out || 1047 !after(received_upto, tp->lost_retrans_low) || 1048 icsk->icsk_ca_state != TCP_CA_Recovery) 1049 return; 1050 1051 tcp_for_write_queue(skb, sk) { 1052 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1053 1054 if (skb == tcp_send_head(sk)) 1055 break; 1056 if (cnt == tp->retrans_out) 1057 break; 1058 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1059 continue; 1060 1061 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1062 continue; 1063 1064 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1065 * constraint here (see above) but figuring out that at 1066 * least tp->reordering SACK blocks reside between ack_seq 1067 * and received_upto is not easy task to do cheaply with 1068 * the available datastructures. 1069 * 1070 * Whether FACK should check here for tp->reordering segs 1071 * in-between one could argue for either way (it would be 1072 * rather simple to implement as we could count fack_count 1073 * during the walk and do tp->fackets_out - fack_count). 1074 */ 1075 if (after(received_upto, ack_seq)) { 1076 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1077 tp->retrans_out -= tcp_skb_pcount(skb); 1078 1079 tcp_skb_mark_lost_uncond_verify(tp, skb); 1080 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1081 } else { 1082 if (before(ack_seq, new_low_seq)) 1083 new_low_seq = ack_seq; 1084 cnt += tcp_skb_pcount(skb); 1085 } 1086 } 1087 1088 if (tp->retrans_out) 1089 tp->lost_retrans_low = new_low_seq; 1090 } 1091 1092 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1093 struct tcp_sack_block_wire *sp, int num_sacks, 1094 u32 prior_snd_una) 1095 { 1096 struct tcp_sock *tp = tcp_sk(sk); 1097 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1098 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1099 bool dup_sack = false; 1100 1101 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1102 dup_sack = true; 1103 tcp_dsack_seen(tp); 1104 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1105 } else if (num_sacks > 1) { 1106 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1107 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1108 1109 if (!after(end_seq_0, end_seq_1) && 1110 !before(start_seq_0, start_seq_1)) { 1111 dup_sack = true; 1112 tcp_dsack_seen(tp); 1113 NET_INC_STATS_BH(sock_net(sk), 1114 LINUX_MIB_TCPDSACKOFORECV); 1115 } 1116 } 1117 1118 /* D-SACK for already forgotten data... Do dumb counting. */ 1119 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1120 !after(end_seq_0, prior_snd_una) && 1121 after(end_seq_0, tp->undo_marker)) 1122 tp->undo_retrans--; 1123 1124 return dup_sack; 1125 } 1126 1127 struct tcp_sacktag_state { 1128 int reord; 1129 int fack_count; 1130 long rtt_us; /* RTT measured by SACKing never-retransmitted data */ 1131 int flag; 1132 }; 1133 1134 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1135 * the incoming SACK may not exactly match but we can find smaller MSS 1136 * aligned portion of it that matches. Therefore we might need to fragment 1137 * which may fail and creates some hassle (caller must handle error case 1138 * returns). 1139 * 1140 * FIXME: this could be merged to shift decision code 1141 */ 1142 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1143 u32 start_seq, u32 end_seq) 1144 { 1145 int err; 1146 bool in_sack; 1147 unsigned int pkt_len; 1148 unsigned int mss; 1149 1150 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1151 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1152 1153 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1154 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1155 mss = tcp_skb_mss(skb); 1156 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1157 1158 if (!in_sack) { 1159 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1160 if (pkt_len < mss) 1161 pkt_len = mss; 1162 } else { 1163 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1164 if (pkt_len < mss) 1165 return -EINVAL; 1166 } 1167 1168 /* Round if necessary so that SACKs cover only full MSSes 1169 * and/or the remaining small portion (if present) 1170 */ 1171 if (pkt_len > mss) { 1172 unsigned int new_len = (pkt_len / mss) * mss; 1173 if (!in_sack && new_len < pkt_len) { 1174 new_len += mss; 1175 if (new_len >= skb->len) 1176 return 0; 1177 } 1178 pkt_len = new_len; 1179 } 1180 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1181 if (err < 0) 1182 return err; 1183 } 1184 1185 return in_sack; 1186 } 1187 1188 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1189 static u8 tcp_sacktag_one(struct sock *sk, 1190 struct tcp_sacktag_state *state, u8 sacked, 1191 u32 start_seq, u32 end_seq, 1192 int dup_sack, int pcount, 1193 const struct skb_mstamp *xmit_time) 1194 { 1195 struct tcp_sock *tp = tcp_sk(sk); 1196 int fack_count = state->fack_count; 1197 1198 /* Account D-SACK for retransmitted packet. */ 1199 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1200 if (tp->undo_marker && tp->undo_retrans > 0 && 1201 after(end_seq, tp->undo_marker)) 1202 tp->undo_retrans--; 1203 if (sacked & TCPCB_SACKED_ACKED) 1204 state->reord = min(fack_count, state->reord); 1205 } 1206 1207 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1208 if (!after(end_seq, tp->snd_una)) 1209 return sacked; 1210 1211 if (!(sacked & TCPCB_SACKED_ACKED)) { 1212 if (sacked & TCPCB_SACKED_RETRANS) { 1213 /* If the segment is not tagged as lost, 1214 * we do not clear RETRANS, believing 1215 * that retransmission is still in flight. 1216 */ 1217 if (sacked & TCPCB_LOST) { 1218 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1219 tp->lost_out -= pcount; 1220 tp->retrans_out -= pcount; 1221 } 1222 } else { 1223 if (!(sacked & TCPCB_RETRANS)) { 1224 /* New sack for not retransmitted frame, 1225 * which was in hole. It is reordering. 1226 */ 1227 if (before(start_seq, 1228 tcp_highest_sack_seq(tp))) 1229 state->reord = min(fack_count, 1230 state->reord); 1231 if (!after(end_seq, tp->high_seq)) 1232 state->flag |= FLAG_ORIG_SACK_ACKED; 1233 /* Pick the earliest sequence sacked for RTT */ 1234 if (state->rtt_us < 0) { 1235 struct skb_mstamp now; 1236 1237 skb_mstamp_get(&now); 1238 state->rtt_us = skb_mstamp_us_delta(&now, 1239 xmit_time); 1240 } 1241 } 1242 1243 if (sacked & TCPCB_LOST) { 1244 sacked &= ~TCPCB_LOST; 1245 tp->lost_out -= pcount; 1246 } 1247 } 1248 1249 sacked |= TCPCB_SACKED_ACKED; 1250 state->flag |= FLAG_DATA_SACKED; 1251 tp->sacked_out += pcount; 1252 1253 fack_count += pcount; 1254 1255 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1256 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) && 1257 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1258 tp->lost_cnt_hint += pcount; 1259 1260 if (fack_count > tp->fackets_out) 1261 tp->fackets_out = fack_count; 1262 } 1263 1264 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1265 * frames and clear it. undo_retrans is decreased above, L|R frames 1266 * are accounted above as well. 1267 */ 1268 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1269 sacked &= ~TCPCB_SACKED_RETRANS; 1270 tp->retrans_out -= pcount; 1271 } 1272 1273 return sacked; 1274 } 1275 1276 /* Shift newly-SACKed bytes from this skb to the immediately previous 1277 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1278 */ 1279 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1280 struct tcp_sacktag_state *state, 1281 unsigned int pcount, int shifted, int mss, 1282 bool dup_sack) 1283 { 1284 struct tcp_sock *tp = tcp_sk(sk); 1285 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1286 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1287 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1288 1289 BUG_ON(!pcount); 1290 1291 /* Adjust counters and hints for the newly sacked sequence 1292 * range but discard the return value since prev is already 1293 * marked. We must tag the range first because the seq 1294 * advancement below implicitly advances 1295 * tcp_highest_sack_seq() when skb is highest_sack. 1296 */ 1297 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1298 start_seq, end_seq, dup_sack, pcount, 1299 &skb->skb_mstamp); 1300 1301 if (skb == tp->lost_skb_hint) 1302 tp->lost_cnt_hint += pcount; 1303 1304 TCP_SKB_CB(prev)->end_seq += shifted; 1305 TCP_SKB_CB(skb)->seq += shifted; 1306 1307 tcp_skb_pcount_add(prev, pcount); 1308 BUG_ON(tcp_skb_pcount(skb) < pcount); 1309 tcp_skb_pcount_add(skb, -pcount); 1310 1311 /* When we're adding to gso_segs == 1, gso_size will be zero, 1312 * in theory this shouldn't be necessary but as long as DSACK 1313 * code can come after this skb later on it's better to keep 1314 * setting gso_size to something. 1315 */ 1316 if (!skb_shinfo(prev)->gso_size) { 1317 skb_shinfo(prev)->gso_size = mss; 1318 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1319 } 1320 1321 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1322 if (tcp_skb_pcount(skb) <= 1) { 1323 skb_shinfo(skb)->gso_size = 0; 1324 skb_shinfo(skb)->gso_type = 0; 1325 } 1326 1327 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1328 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1329 1330 if (skb->len > 0) { 1331 BUG_ON(!tcp_skb_pcount(skb)); 1332 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1333 return false; 1334 } 1335 1336 /* Whole SKB was eaten :-) */ 1337 1338 if (skb == tp->retransmit_skb_hint) 1339 tp->retransmit_skb_hint = prev; 1340 if (skb == tp->lost_skb_hint) { 1341 tp->lost_skb_hint = prev; 1342 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1343 } 1344 1345 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1346 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1347 TCP_SKB_CB(prev)->end_seq++; 1348 1349 if (skb == tcp_highest_sack(sk)) 1350 tcp_advance_highest_sack(sk, skb); 1351 1352 tcp_unlink_write_queue(skb, sk); 1353 sk_wmem_free_skb(sk, skb); 1354 1355 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1356 1357 return true; 1358 } 1359 1360 /* I wish gso_size would have a bit more sane initialization than 1361 * something-or-zero which complicates things 1362 */ 1363 static int tcp_skb_seglen(const struct sk_buff *skb) 1364 { 1365 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1366 } 1367 1368 /* Shifting pages past head area doesn't work */ 1369 static int skb_can_shift(const struct sk_buff *skb) 1370 { 1371 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1372 } 1373 1374 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1375 * skb. 1376 */ 1377 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1378 struct tcp_sacktag_state *state, 1379 u32 start_seq, u32 end_seq, 1380 bool dup_sack) 1381 { 1382 struct tcp_sock *tp = tcp_sk(sk); 1383 struct sk_buff *prev; 1384 int mss; 1385 int pcount = 0; 1386 int len; 1387 int in_sack; 1388 1389 if (!sk_can_gso(sk)) 1390 goto fallback; 1391 1392 /* Normally R but no L won't result in plain S */ 1393 if (!dup_sack && 1394 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1395 goto fallback; 1396 if (!skb_can_shift(skb)) 1397 goto fallback; 1398 /* This frame is about to be dropped (was ACKed). */ 1399 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1400 goto fallback; 1401 1402 /* Can only happen with delayed DSACK + discard craziness */ 1403 if (unlikely(skb == tcp_write_queue_head(sk))) 1404 goto fallback; 1405 prev = tcp_write_queue_prev(sk, skb); 1406 1407 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1408 goto fallback; 1409 1410 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1411 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1412 1413 if (in_sack) { 1414 len = skb->len; 1415 pcount = tcp_skb_pcount(skb); 1416 mss = tcp_skb_seglen(skb); 1417 1418 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1419 * drop this restriction as unnecessary 1420 */ 1421 if (mss != tcp_skb_seglen(prev)) 1422 goto fallback; 1423 } else { 1424 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1425 goto noop; 1426 /* CHECKME: This is non-MSS split case only?, this will 1427 * cause skipped skbs due to advancing loop btw, original 1428 * has that feature too 1429 */ 1430 if (tcp_skb_pcount(skb) <= 1) 1431 goto noop; 1432 1433 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1434 if (!in_sack) { 1435 /* TODO: head merge to next could be attempted here 1436 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1437 * though it might not be worth of the additional hassle 1438 * 1439 * ...we can probably just fallback to what was done 1440 * previously. We could try merging non-SACKed ones 1441 * as well but it probably isn't going to buy off 1442 * because later SACKs might again split them, and 1443 * it would make skb timestamp tracking considerably 1444 * harder problem. 1445 */ 1446 goto fallback; 1447 } 1448 1449 len = end_seq - TCP_SKB_CB(skb)->seq; 1450 BUG_ON(len < 0); 1451 BUG_ON(len > skb->len); 1452 1453 /* MSS boundaries should be honoured or else pcount will 1454 * severely break even though it makes things bit trickier. 1455 * Optimize common case to avoid most of the divides 1456 */ 1457 mss = tcp_skb_mss(skb); 1458 1459 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1460 * drop this restriction as unnecessary 1461 */ 1462 if (mss != tcp_skb_seglen(prev)) 1463 goto fallback; 1464 1465 if (len == mss) { 1466 pcount = 1; 1467 } else if (len < mss) { 1468 goto noop; 1469 } else { 1470 pcount = len / mss; 1471 len = pcount * mss; 1472 } 1473 } 1474 1475 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1476 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1477 goto fallback; 1478 1479 if (!skb_shift(prev, skb, len)) 1480 goto fallback; 1481 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1482 goto out; 1483 1484 /* Hole filled allows collapsing with the next as well, this is very 1485 * useful when hole on every nth skb pattern happens 1486 */ 1487 if (prev == tcp_write_queue_tail(sk)) 1488 goto out; 1489 skb = tcp_write_queue_next(sk, prev); 1490 1491 if (!skb_can_shift(skb) || 1492 (skb == tcp_send_head(sk)) || 1493 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1494 (mss != tcp_skb_seglen(skb))) 1495 goto out; 1496 1497 len = skb->len; 1498 if (skb_shift(prev, skb, len)) { 1499 pcount += tcp_skb_pcount(skb); 1500 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1501 } 1502 1503 out: 1504 state->fack_count += pcount; 1505 return prev; 1506 1507 noop: 1508 return skb; 1509 1510 fallback: 1511 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1512 return NULL; 1513 } 1514 1515 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1516 struct tcp_sack_block *next_dup, 1517 struct tcp_sacktag_state *state, 1518 u32 start_seq, u32 end_seq, 1519 bool dup_sack_in) 1520 { 1521 struct tcp_sock *tp = tcp_sk(sk); 1522 struct sk_buff *tmp; 1523 1524 tcp_for_write_queue_from(skb, sk) { 1525 int in_sack = 0; 1526 bool dup_sack = dup_sack_in; 1527 1528 if (skb == tcp_send_head(sk)) 1529 break; 1530 1531 /* queue is in-order => we can short-circuit the walk early */ 1532 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1533 break; 1534 1535 if ((next_dup != NULL) && 1536 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1537 in_sack = tcp_match_skb_to_sack(sk, skb, 1538 next_dup->start_seq, 1539 next_dup->end_seq); 1540 if (in_sack > 0) 1541 dup_sack = true; 1542 } 1543 1544 /* skb reference here is a bit tricky to get right, since 1545 * shifting can eat and free both this skb and the next, 1546 * so not even _safe variant of the loop is enough. 1547 */ 1548 if (in_sack <= 0) { 1549 tmp = tcp_shift_skb_data(sk, skb, state, 1550 start_seq, end_seq, dup_sack); 1551 if (tmp != NULL) { 1552 if (tmp != skb) { 1553 skb = tmp; 1554 continue; 1555 } 1556 1557 in_sack = 0; 1558 } else { 1559 in_sack = tcp_match_skb_to_sack(sk, skb, 1560 start_seq, 1561 end_seq); 1562 } 1563 } 1564 1565 if (unlikely(in_sack < 0)) 1566 break; 1567 1568 if (in_sack) { 1569 TCP_SKB_CB(skb)->sacked = 1570 tcp_sacktag_one(sk, 1571 state, 1572 TCP_SKB_CB(skb)->sacked, 1573 TCP_SKB_CB(skb)->seq, 1574 TCP_SKB_CB(skb)->end_seq, 1575 dup_sack, 1576 tcp_skb_pcount(skb), 1577 &skb->skb_mstamp); 1578 1579 if (!before(TCP_SKB_CB(skb)->seq, 1580 tcp_highest_sack_seq(tp))) 1581 tcp_advance_highest_sack(sk, skb); 1582 } 1583 1584 state->fack_count += tcp_skb_pcount(skb); 1585 } 1586 return skb; 1587 } 1588 1589 /* Avoid all extra work that is being done by sacktag while walking in 1590 * a normal way 1591 */ 1592 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1593 struct tcp_sacktag_state *state, 1594 u32 skip_to_seq) 1595 { 1596 tcp_for_write_queue_from(skb, sk) { 1597 if (skb == tcp_send_head(sk)) 1598 break; 1599 1600 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1601 break; 1602 1603 state->fack_count += tcp_skb_pcount(skb); 1604 } 1605 return skb; 1606 } 1607 1608 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1609 struct sock *sk, 1610 struct tcp_sack_block *next_dup, 1611 struct tcp_sacktag_state *state, 1612 u32 skip_to_seq) 1613 { 1614 if (next_dup == NULL) 1615 return skb; 1616 1617 if (before(next_dup->start_seq, skip_to_seq)) { 1618 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1619 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1620 next_dup->start_seq, next_dup->end_seq, 1621 1); 1622 } 1623 1624 return skb; 1625 } 1626 1627 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1628 { 1629 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1630 } 1631 1632 static int 1633 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1634 u32 prior_snd_una, long *sack_rtt_us) 1635 { 1636 struct tcp_sock *tp = tcp_sk(sk); 1637 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1638 TCP_SKB_CB(ack_skb)->sacked); 1639 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1640 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1641 struct tcp_sack_block *cache; 1642 struct tcp_sacktag_state state; 1643 struct sk_buff *skb; 1644 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1645 int used_sacks; 1646 bool found_dup_sack = false; 1647 int i, j; 1648 int first_sack_index; 1649 1650 state.flag = 0; 1651 state.reord = tp->packets_out; 1652 state.rtt_us = -1L; 1653 1654 if (!tp->sacked_out) { 1655 if (WARN_ON(tp->fackets_out)) 1656 tp->fackets_out = 0; 1657 tcp_highest_sack_reset(sk); 1658 } 1659 1660 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1661 num_sacks, prior_snd_una); 1662 if (found_dup_sack) 1663 state.flag |= FLAG_DSACKING_ACK; 1664 1665 /* Eliminate too old ACKs, but take into 1666 * account more or less fresh ones, they can 1667 * contain valid SACK info. 1668 */ 1669 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1670 return 0; 1671 1672 if (!tp->packets_out) 1673 goto out; 1674 1675 used_sacks = 0; 1676 first_sack_index = 0; 1677 for (i = 0; i < num_sacks; i++) { 1678 bool dup_sack = !i && found_dup_sack; 1679 1680 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1681 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1682 1683 if (!tcp_is_sackblock_valid(tp, dup_sack, 1684 sp[used_sacks].start_seq, 1685 sp[used_sacks].end_seq)) { 1686 int mib_idx; 1687 1688 if (dup_sack) { 1689 if (!tp->undo_marker) 1690 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1691 else 1692 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1693 } else { 1694 /* Don't count olds caused by ACK reordering */ 1695 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1696 !after(sp[used_sacks].end_seq, tp->snd_una)) 1697 continue; 1698 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1699 } 1700 1701 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1702 if (i == 0) 1703 first_sack_index = -1; 1704 continue; 1705 } 1706 1707 /* Ignore very old stuff early */ 1708 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1709 continue; 1710 1711 used_sacks++; 1712 } 1713 1714 /* order SACK blocks to allow in order walk of the retrans queue */ 1715 for (i = used_sacks - 1; i > 0; i--) { 1716 for (j = 0; j < i; j++) { 1717 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1718 swap(sp[j], sp[j + 1]); 1719 1720 /* Track where the first SACK block goes to */ 1721 if (j == first_sack_index) 1722 first_sack_index = j + 1; 1723 } 1724 } 1725 } 1726 1727 skb = tcp_write_queue_head(sk); 1728 state.fack_count = 0; 1729 i = 0; 1730 1731 if (!tp->sacked_out) { 1732 /* It's already past, so skip checking against it */ 1733 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1734 } else { 1735 cache = tp->recv_sack_cache; 1736 /* Skip empty blocks in at head of the cache */ 1737 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1738 !cache->end_seq) 1739 cache++; 1740 } 1741 1742 while (i < used_sacks) { 1743 u32 start_seq = sp[i].start_seq; 1744 u32 end_seq = sp[i].end_seq; 1745 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1746 struct tcp_sack_block *next_dup = NULL; 1747 1748 if (found_dup_sack && ((i + 1) == first_sack_index)) 1749 next_dup = &sp[i + 1]; 1750 1751 /* Skip too early cached blocks */ 1752 while (tcp_sack_cache_ok(tp, cache) && 1753 !before(start_seq, cache->end_seq)) 1754 cache++; 1755 1756 /* Can skip some work by looking recv_sack_cache? */ 1757 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1758 after(end_seq, cache->start_seq)) { 1759 1760 /* Head todo? */ 1761 if (before(start_seq, cache->start_seq)) { 1762 skb = tcp_sacktag_skip(skb, sk, &state, 1763 start_seq); 1764 skb = tcp_sacktag_walk(skb, sk, next_dup, 1765 &state, 1766 start_seq, 1767 cache->start_seq, 1768 dup_sack); 1769 } 1770 1771 /* Rest of the block already fully processed? */ 1772 if (!after(end_seq, cache->end_seq)) 1773 goto advance_sp; 1774 1775 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1776 &state, 1777 cache->end_seq); 1778 1779 /* ...tail remains todo... */ 1780 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1781 /* ...but better entrypoint exists! */ 1782 skb = tcp_highest_sack(sk); 1783 if (skb == NULL) 1784 break; 1785 state.fack_count = tp->fackets_out; 1786 cache++; 1787 goto walk; 1788 } 1789 1790 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq); 1791 /* Check overlap against next cached too (past this one already) */ 1792 cache++; 1793 continue; 1794 } 1795 1796 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1797 skb = tcp_highest_sack(sk); 1798 if (skb == NULL) 1799 break; 1800 state.fack_count = tp->fackets_out; 1801 } 1802 skb = tcp_sacktag_skip(skb, sk, &state, start_seq); 1803 1804 walk: 1805 skb = tcp_sacktag_walk(skb, sk, next_dup, &state, 1806 start_seq, end_seq, dup_sack); 1807 1808 advance_sp: 1809 i++; 1810 } 1811 1812 /* Clear the head of the cache sack blocks so we can skip it next time */ 1813 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1814 tp->recv_sack_cache[i].start_seq = 0; 1815 tp->recv_sack_cache[i].end_seq = 0; 1816 } 1817 for (j = 0; j < used_sacks; j++) 1818 tp->recv_sack_cache[i++] = sp[j]; 1819 1820 tcp_mark_lost_retrans(sk); 1821 1822 tcp_verify_left_out(tp); 1823 1824 if ((state.reord < tp->fackets_out) && 1825 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1826 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0); 1827 1828 out: 1829 1830 #if FASTRETRANS_DEBUG > 0 1831 WARN_ON((int)tp->sacked_out < 0); 1832 WARN_ON((int)tp->lost_out < 0); 1833 WARN_ON((int)tp->retrans_out < 0); 1834 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1835 #endif 1836 *sack_rtt_us = state.rtt_us; 1837 return state.flag; 1838 } 1839 1840 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1841 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1842 */ 1843 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1844 { 1845 u32 holes; 1846 1847 holes = max(tp->lost_out, 1U); 1848 holes = min(holes, tp->packets_out); 1849 1850 if ((tp->sacked_out + holes) > tp->packets_out) { 1851 tp->sacked_out = tp->packets_out - holes; 1852 return true; 1853 } 1854 return false; 1855 } 1856 1857 /* If we receive more dupacks than we expected counting segments 1858 * in assumption of absent reordering, interpret this as reordering. 1859 * The only another reason could be bug in receiver TCP. 1860 */ 1861 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1862 { 1863 struct tcp_sock *tp = tcp_sk(sk); 1864 if (tcp_limit_reno_sacked(tp)) 1865 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1866 } 1867 1868 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1869 1870 static void tcp_add_reno_sack(struct sock *sk) 1871 { 1872 struct tcp_sock *tp = tcp_sk(sk); 1873 tp->sacked_out++; 1874 tcp_check_reno_reordering(sk, 0); 1875 tcp_verify_left_out(tp); 1876 } 1877 1878 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1879 1880 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1881 { 1882 struct tcp_sock *tp = tcp_sk(sk); 1883 1884 if (acked > 0) { 1885 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1886 if (acked - 1 >= tp->sacked_out) 1887 tp->sacked_out = 0; 1888 else 1889 tp->sacked_out -= acked - 1; 1890 } 1891 tcp_check_reno_reordering(sk, acked); 1892 tcp_verify_left_out(tp); 1893 } 1894 1895 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1896 { 1897 tp->sacked_out = 0; 1898 } 1899 1900 void tcp_clear_retrans(struct tcp_sock *tp) 1901 { 1902 tp->retrans_out = 0; 1903 tp->lost_out = 0; 1904 tp->undo_marker = 0; 1905 tp->undo_retrans = -1; 1906 tp->fackets_out = 0; 1907 tp->sacked_out = 0; 1908 } 1909 1910 static inline void tcp_init_undo(struct tcp_sock *tp) 1911 { 1912 tp->undo_marker = tp->snd_una; 1913 /* Retransmission still in flight may cause DSACKs later. */ 1914 tp->undo_retrans = tp->retrans_out ? : -1; 1915 } 1916 1917 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1918 * and reset tags completely, otherwise preserve SACKs. If receiver 1919 * dropped its ofo queue, we will know this due to reneging detection. 1920 */ 1921 void tcp_enter_loss(struct sock *sk) 1922 { 1923 const struct inet_connection_sock *icsk = inet_csk(sk); 1924 struct tcp_sock *tp = tcp_sk(sk); 1925 struct sk_buff *skb; 1926 bool new_recovery = false; 1927 bool is_reneg; /* is receiver reneging on SACKs? */ 1928 1929 /* Reduce ssthresh if it has not yet been made inside this window. */ 1930 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1931 !after(tp->high_seq, tp->snd_una) || 1932 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1933 new_recovery = true; 1934 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1935 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1936 tcp_ca_event(sk, CA_EVENT_LOSS); 1937 tcp_init_undo(tp); 1938 } 1939 tp->snd_cwnd = 1; 1940 tp->snd_cwnd_cnt = 0; 1941 tp->snd_cwnd_stamp = tcp_time_stamp; 1942 1943 tp->retrans_out = 0; 1944 tp->lost_out = 0; 1945 1946 if (tcp_is_reno(tp)) 1947 tcp_reset_reno_sack(tp); 1948 1949 skb = tcp_write_queue_head(sk); 1950 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1951 if (is_reneg) { 1952 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1953 tp->sacked_out = 0; 1954 tp->fackets_out = 0; 1955 } 1956 tcp_clear_all_retrans_hints(tp); 1957 1958 tcp_for_write_queue(skb, sk) { 1959 if (skb == tcp_send_head(sk)) 1960 break; 1961 1962 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1963 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) { 1964 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1965 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1966 tp->lost_out += tcp_skb_pcount(skb); 1967 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1968 } 1969 } 1970 tcp_verify_left_out(tp); 1971 1972 /* Timeout in disordered state after receiving substantial DUPACKs 1973 * suggests that the degree of reordering is over-estimated. 1974 */ 1975 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1976 tp->sacked_out >= sysctl_tcp_reordering) 1977 tp->reordering = min_t(unsigned int, tp->reordering, 1978 sysctl_tcp_reordering); 1979 tcp_set_ca_state(sk, TCP_CA_Loss); 1980 tp->high_seq = tp->snd_nxt; 1981 tcp_ecn_queue_cwr(tp); 1982 1983 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1984 * loss recovery is underway except recurring timeout(s) on 1985 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1986 */ 1987 tp->frto = sysctl_tcp_frto && 1988 (new_recovery || icsk->icsk_retransmits) && 1989 !inet_csk(sk)->icsk_mtup.probe_size; 1990 } 1991 1992 /* If ACK arrived pointing to a remembered SACK, it means that our 1993 * remembered SACKs do not reflect real state of receiver i.e. 1994 * receiver _host_ is heavily congested (or buggy). 1995 * 1996 * To avoid big spurious retransmission bursts due to transient SACK 1997 * scoreboard oddities that look like reneging, we give the receiver a 1998 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 1999 * restore sanity to the SACK scoreboard. If the apparent reneging 2000 * persists until this RTO then we'll clear the SACK scoreboard. 2001 */ 2002 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2003 { 2004 if (flag & FLAG_SACK_RENEGING) { 2005 struct tcp_sock *tp = tcp_sk(sk); 2006 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2007 msecs_to_jiffies(10)); 2008 2009 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2010 delay, TCP_RTO_MAX); 2011 return true; 2012 } 2013 return false; 2014 } 2015 2016 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2017 { 2018 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2019 } 2020 2021 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2022 * counter when SACK is enabled (without SACK, sacked_out is used for 2023 * that purpose). 2024 * 2025 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2026 * segments up to the highest received SACK block so far and holes in 2027 * between them. 2028 * 2029 * With reordering, holes may still be in flight, so RFC3517 recovery 2030 * uses pure sacked_out (total number of SACKed segments) even though 2031 * it violates the RFC that uses duplicate ACKs, often these are equal 2032 * but when e.g. out-of-window ACKs or packet duplication occurs, 2033 * they differ. Since neither occurs due to loss, TCP should really 2034 * ignore them. 2035 */ 2036 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2037 { 2038 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2039 } 2040 2041 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2042 { 2043 struct tcp_sock *tp = tcp_sk(sk); 2044 unsigned long delay; 2045 2046 /* Delay early retransmit and entering fast recovery for 2047 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2048 * available, or RTO is scheduled to fire first. 2049 */ 2050 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2051 (flag & FLAG_ECE) || !tp->srtt_us) 2052 return false; 2053 2054 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2055 msecs_to_jiffies(2)); 2056 2057 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2058 return false; 2059 2060 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2061 TCP_RTO_MAX); 2062 return true; 2063 } 2064 2065 /* Linux NewReno/SACK/FACK/ECN state machine. 2066 * -------------------------------------- 2067 * 2068 * "Open" Normal state, no dubious events, fast path. 2069 * "Disorder" In all the respects it is "Open", 2070 * but requires a bit more attention. It is entered when 2071 * we see some SACKs or dupacks. It is split of "Open" 2072 * mainly to move some processing from fast path to slow one. 2073 * "CWR" CWND was reduced due to some Congestion Notification event. 2074 * It can be ECN, ICMP source quench, local device congestion. 2075 * "Recovery" CWND was reduced, we are fast-retransmitting. 2076 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2077 * 2078 * tcp_fastretrans_alert() is entered: 2079 * - each incoming ACK, if state is not "Open" 2080 * - when arrived ACK is unusual, namely: 2081 * * SACK 2082 * * Duplicate ACK. 2083 * * ECN ECE. 2084 * 2085 * Counting packets in flight is pretty simple. 2086 * 2087 * in_flight = packets_out - left_out + retrans_out 2088 * 2089 * packets_out is SND.NXT-SND.UNA counted in packets. 2090 * 2091 * retrans_out is number of retransmitted segments. 2092 * 2093 * left_out is number of segments left network, but not ACKed yet. 2094 * 2095 * left_out = sacked_out + lost_out 2096 * 2097 * sacked_out: Packets, which arrived to receiver out of order 2098 * and hence not ACKed. With SACKs this number is simply 2099 * amount of SACKed data. Even without SACKs 2100 * it is easy to give pretty reliable estimate of this number, 2101 * counting duplicate ACKs. 2102 * 2103 * lost_out: Packets lost by network. TCP has no explicit 2104 * "loss notification" feedback from network (for now). 2105 * It means that this number can be only _guessed_. 2106 * Actually, it is the heuristics to predict lossage that 2107 * distinguishes different algorithms. 2108 * 2109 * F.e. after RTO, when all the queue is considered as lost, 2110 * lost_out = packets_out and in_flight = retrans_out. 2111 * 2112 * Essentially, we have now two algorithms counting 2113 * lost packets. 2114 * 2115 * FACK: It is the simplest heuristics. As soon as we decided 2116 * that something is lost, we decide that _all_ not SACKed 2117 * packets until the most forward SACK are lost. I.e. 2118 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2119 * It is absolutely correct estimate, if network does not reorder 2120 * packets. And it loses any connection to reality when reordering 2121 * takes place. We use FACK by default until reordering 2122 * is suspected on the path to this destination. 2123 * 2124 * NewReno: when Recovery is entered, we assume that one segment 2125 * is lost (classic Reno). While we are in Recovery and 2126 * a partial ACK arrives, we assume that one more packet 2127 * is lost (NewReno). This heuristics are the same in NewReno 2128 * and SACK. 2129 * 2130 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2131 * deflation etc. CWND is real congestion window, never inflated, changes 2132 * only according to classic VJ rules. 2133 * 2134 * Really tricky (and requiring careful tuning) part of algorithm 2135 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2136 * The first determines the moment _when_ we should reduce CWND and, 2137 * hence, slow down forward transmission. In fact, it determines the moment 2138 * when we decide that hole is caused by loss, rather than by a reorder. 2139 * 2140 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2141 * holes, caused by lost packets. 2142 * 2143 * And the most logically complicated part of algorithm is undo 2144 * heuristics. We detect false retransmits due to both too early 2145 * fast retransmit (reordering) and underestimated RTO, analyzing 2146 * timestamps and D-SACKs. When we detect that some segments were 2147 * retransmitted by mistake and CWND reduction was wrong, we undo 2148 * window reduction and abort recovery phase. This logic is hidden 2149 * inside several functions named tcp_try_undo_<something>. 2150 */ 2151 2152 /* This function decides, when we should leave Disordered state 2153 * and enter Recovery phase, reducing congestion window. 2154 * 2155 * Main question: may we further continue forward transmission 2156 * with the same cwnd? 2157 */ 2158 static bool tcp_time_to_recover(struct sock *sk, int flag) 2159 { 2160 struct tcp_sock *tp = tcp_sk(sk); 2161 __u32 packets_out; 2162 2163 /* Trick#1: The loss is proven. */ 2164 if (tp->lost_out) 2165 return true; 2166 2167 /* Not-A-Trick#2 : Classic rule... */ 2168 if (tcp_dupack_heuristics(tp) > tp->reordering) 2169 return true; 2170 2171 /* Trick#4: It is still not OK... But will it be useful to delay 2172 * recovery more? 2173 */ 2174 packets_out = tp->packets_out; 2175 if (packets_out <= tp->reordering && 2176 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2177 !tcp_may_send_now(sk)) { 2178 /* We have nothing to send. This connection is limited 2179 * either by receiver window or by application. 2180 */ 2181 return true; 2182 } 2183 2184 /* If a thin stream is detected, retransmit after first 2185 * received dupack. Employ only if SACK is supported in order 2186 * to avoid possible corner-case series of spurious retransmissions 2187 * Use only if there are no unsent data. 2188 */ 2189 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2190 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2191 tcp_is_sack(tp) && !tcp_send_head(sk)) 2192 return true; 2193 2194 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2195 * retransmissions due to small network reorderings, we implement 2196 * Mitigation A.3 in the RFC and delay the retransmission for a short 2197 * interval if appropriate. 2198 */ 2199 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2200 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2201 !tcp_may_send_now(sk)) 2202 return !tcp_pause_early_retransmit(sk, flag); 2203 2204 return false; 2205 } 2206 2207 /* Detect loss in event "A" above by marking head of queue up as lost. 2208 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2209 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2210 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2211 * the maximum SACKed segments to pass before reaching this limit. 2212 */ 2213 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2214 { 2215 struct tcp_sock *tp = tcp_sk(sk); 2216 struct sk_buff *skb; 2217 int cnt, oldcnt; 2218 int err; 2219 unsigned int mss; 2220 /* Use SACK to deduce losses of new sequences sent during recovery */ 2221 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2222 2223 WARN_ON(packets > tp->packets_out); 2224 if (tp->lost_skb_hint) { 2225 skb = tp->lost_skb_hint; 2226 cnt = tp->lost_cnt_hint; 2227 /* Head already handled? */ 2228 if (mark_head && skb != tcp_write_queue_head(sk)) 2229 return; 2230 } else { 2231 skb = tcp_write_queue_head(sk); 2232 cnt = 0; 2233 } 2234 2235 tcp_for_write_queue_from(skb, sk) { 2236 if (skb == tcp_send_head(sk)) 2237 break; 2238 /* TODO: do this better */ 2239 /* this is not the most efficient way to do this... */ 2240 tp->lost_skb_hint = skb; 2241 tp->lost_cnt_hint = cnt; 2242 2243 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2244 break; 2245 2246 oldcnt = cnt; 2247 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2248 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2249 cnt += tcp_skb_pcount(skb); 2250 2251 if (cnt > packets) { 2252 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2253 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2254 (oldcnt >= packets)) 2255 break; 2256 2257 mss = skb_shinfo(skb)->gso_size; 2258 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, 2259 mss, GFP_ATOMIC); 2260 if (err < 0) 2261 break; 2262 cnt = packets; 2263 } 2264 2265 tcp_skb_mark_lost(tp, skb); 2266 2267 if (mark_head) 2268 break; 2269 } 2270 tcp_verify_left_out(tp); 2271 } 2272 2273 /* Account newly detected lost packet(s) */ 2274 2275 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2276 { 2277 struct tcp_sock *tp = tcp_sk(sk); 2278 2279 if (tcp_is_reno(tp)) { 2280 tcp_mark_head_lost(sk, 1, 1); 2281 } else if (tcp_is_fack(tp)) { 2282 int lost = tp->fackets_out - tp->reordering; 2283 if (lost <= 0) 2284 lost = 1; 2285 tcp_mark_head_lost(sk, lost, 0); 2286 } else { 2287 int sacked_upto = tp->sacked_out - tp->reordering; 2288 if (sacked_upto >= 0) 2289 tcp_mark_head_lost(sk, sacked_upto, 0); 2290 else if (fast_rexmit) 2291 tcp_mark_head_lost(sk, 1, 1); 2292 } 2293 } 2294 2295 /* CWND moderation, preventing bursts due to too big ACKs 2296 * in dubious situations. 2297 */ 2298 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2299 { 2300 tp->snd_cwnd = min(tp->snd_cwnd, 2301 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2302 tp->snd_cwnd_stamp = tcp_time_stamp; 2303 } 2304 2305 /* Nothing was retransmitted or returned timestamp is less 2306 * than timestamp of the first retransmission. 2307 */ 2308 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2309 { 2310 return !tp->retrans_stamp || 2311 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2312 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2313 } 2314 2315 /* Undo procedures. */ 2316 2317 #if FASTRETRANS_DEBUG > 1 2318 static void DBGUNDO(struct sock *sk, const char *msg) 2319 { 2320 struct tcp_sock *tp = tcp_sk(sk); 2321 struct inet_sock *inet = inet_sk(sk); 2322 2323 if (sk->sk_family == AF_INET) { 2324 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2325 msg, 2326 &inet->inet_daddr, ntohs(inet->inet_dport), 2327 tp->snd_cwnd, tcp_left_out(tp), 2328 tp->snd_ssthresh, tp->prior_ssthresh, 2329 tp->packets_out); 2330 } 2331 #if IS_ENABLED(CONFIG_IPV6) 2332 else if (sk->sk_family == AF_INET6) { 2333 struct ipv6_pinfo *np = inet6_sk(sk); 2334 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2335 msg, 2336 &np->daddr, ntohs(inet->inet_dport), 2337 tp->snd_cwnd, tcp_left_out(tp), 2338 tp->snd_ssthresh, tp->prior_ssthresh, 2339 tp->packets_out); 2340 } 2341 #endif 2342 } 2343 #else 2344 #define DBGUNDO(x...) do { } while (0) 2345 #endif 2346 2347 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2348 { 2349 struct tcp_sock *tp = tcp_sk(sk); 2350 2351 if (unmark_loss) { 2352 struct sk_buff *skb; 2353 2354 tcp_for_write_queue(skb, sk) { 2355 if (skb == tcp_send_head(sk)) 2356 break; 2357 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2358 } 2359 tp->lost_out = 0; 2360 tcp_clear_all_retrans_hints(tp); 2361 } 2362 2363 if (tp->prior_ssthresh) { 2364 const struct inet_connection_sock *icsk = inet_csk(sk); 2365 2366 if (icsk->icsk_ca_ops->undo_cwnd) 2367 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2368 else 2369 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2370 2371 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2372 tp->snd_ssthresh = tp->prior_ssthresh; 2373 tcp_ecn_withdraw_cwr(tp); 2374 } 2375 } else { 2376 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2377 } 2378 tp->snd_cwnd_stamp = tcp_time_stamp; 2379 tp->undo_marker = 0; 2380 } 2381 2382 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2383 { 2384 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2385 } 2386 2387 /* People celebrate: "We love our President!" */ 2388 static bool tcp_try_undo_recovery(struct sock *sk) 2389 { 2390 struct tcp_sock *tp = tcp_sk(sk); 2391 2392 if (tcp_may_undo(tp)) { 2393 int mib_idx; 2394 2395 /* Happy end! We did not retransmit anything 2396 * or our original transmission succeeded. 2397 */ 2398 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2399 tcp_undo_cwnd_reduction(sk, false); 2400 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2401 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2402 else 2403 mib_idx = LINUX_MIB_TCPFULLUNDO; 2404 2405 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2406 } 2407 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2408 /* Hold old state until something *above* high_seq 2409 * is ACKed. For Reno it is MUST to prevent false 2410 * fast retransmits (RFC2582). SACK TCP is safe. */ 2411 tcp_moderate_cwnd(tp); 2412 return true; 2413 } 2414 tcp_set_ca_state(sk, TCP_CA_Open); 2415 return false; 2416 } 2417 2418 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2419 static bool tcp_try_undo_dsack(struct sock *sk) 2420 { 2421 struct tcp_sock *tp = tcp_sk(sk); 2422 2423 if (tp->undo_marker && !tp->undo_retrans) { 2424 DBGUNDO(sk, "D-SACK"); 2425 tcp_undo_cwnd_reduction(sk, false); 2426 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2427 return true; 2428 } 2429 return false; 2430 } 2431 2432 /* We can clear retrans_stamp when there are no retransmissions in the 2433 * window. It would seem that it is trivially available for us in 2434 * tp->retrans_out, however, that kind of assumptions doesn't consider 2435 * what will happen if errors occur when sending retransmission for the 2436 * second time. ...It could the that such segment has only 2437 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2438 * the head skb is enough except for some reneging corner cases that 2439 * are not worth the effort. 2440 * 2441 * Main reason for all this complexity is the fact that connection dying 2442 * time now depends on the validity of the retrans_stamp, in particular, 2443 * that successive retransmissions of a segment must not advance 2444 * retrans_stamp under any conditions. 2445 */ 2446 static bool tcp_any_retrans_done(const struct sock *sk) 2447 { 2448 const struct tcp_sock *tp = tcp_sk(sk); 2449 struct sk_buff *skb; 2450 2451 if (tp->retrans_out) 2452 return true; 2453 2454 skb = tcp_write_queue_head(sk); 2455 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2456 return true; 2457 2458 return false; 2459 } 2460 2461 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2462 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2463 { 2464 struct tcp_sock *tp = tcp_sk(sk); 2465 2466 if (frto_undo || tcp_may_undo(tp)) { 2467 tcp_undo_cwnd_reduction(sk, true); 2468 2469 DBGUNDO(sk, "partial loss"); 2470 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2471 if (frto_undo) 2472 NET_INC_STATS_BH(sock_net(sk), 2473 LINUX_MIB_TCPSPURIOUSRTOS); 2474 inet_csk(sk)->icsk_retransmits = 0; 2475 if (frto_undo || tcp_is_sack(tp)) 2476 tcp_set_ca_state(sk, TCP_CA_Open); 2477 return true; 2478 } 2479 return false; 2480 } 2481 2482 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2483 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2484 * It computes the number of packets to send (sndcnt) based on packets newly 2485 * delivered: 2486 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2487 * cwnd reductions across a full RTT. 2488 * 2) If packets in flight is lower than ssthresh (such as due to excess 2489 * losses and/or application stalls), do not perform any further cwnd 2490 * reductions, but instead slow start up to ssthresh. 2491 */ 2492 static void tcp_init_cwnd_reduction(struct sock *sk) 2493 { 2494 struct tcp_sock *tp = tcp_sk(sk); 2495 2496 tp->high_seq = tp->snd_nxt; 2497 tp->tlp_high_seq = 0; 2498 tp->snd_cwnd_cnt = 0; 2499 tp->prior_cwnd = tp->snd_cwnd; 2500 tp->prr_delivered = 0; 2501 tp->prr_out = 0; 2502 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2503 tcp_ecn_queue_cwr(tp); 2504 } 2505 2506 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, 2507 int fast_rexmit) 2508 { 2509 struct tcp_sock *tp = tcp_sk(sk); 2510 int sndcnt = 0; 2511 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2512 int newly_acked_sacked = prior_unsacked - 2513 (tp->packets_out - tp->sacked_out); 2514 2515 tp->prr_delivered += newly_acked_sacked; 2516 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2517 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2518 tp->prior_cwnd - 1; 2519 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2520 } else { 2521 sndcnt = min_t(int, delta, 2522 max_t(int, tp->prr_delivered - tp->prr_out, 2523 newly_acked_sacked) + 1); 2524 } 2525 2526 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2527 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2528 } 2529 2530 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2531 { 2532 struct tcp_sock *tp = tcp_sk(sk); 2533 2534 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2535 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2536 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2537 tp->snd_cwnd = tp->snd_ssthresh; 2538 tp->snd_cwnd_stamp = tcp_time_stamp; 2539 } 2540 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2541 } 2542 2543 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2544 void tcp_enter_cwr(struct sock *sk) 2545 { 2546 struct tcp_sock *tp = tcp_sk(sk); 2547 2548 tp->prior_ssthresh = 0; 2549 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2550 tp->undo_marker = 0; 2551 tcp_init_cwnd_reduction(sk); 2552 tcp_set_ca_state(sk, TCP_CA_CWR); 2553 } 2554 } 2555 2556 static void tcp_try_keep_open(struct sock *sk) 2557 { 2558 struct tcp_sock *tp = tcp_sk(sk); 2559 int state = TCP_CA_Open; 2560 2561 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2562 state = TCP_CA_Disorder; 2563 2564 if (inet_csk(sk)->icsk_ca_state != state) { 2565 tcp_set_ca_state(sk, state); 2566 tp->high_seq = tp->snd_nxt; 2567 } 2568 } 2569 2570 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) 2571 { 2572 struct tcp_sock *tp = tcp_sk(sk); 2573 2574 tcp_verify_left_out(tp); 2575 2576 if (!tcp_any_retrans_done(sk)) 2577 tp->retrans_stamp = 0; 2578 2579 if (flag & FLAG_ECE) 2580 tcp_enter_cwr(sk); 2581 2582 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2583 tcp_try_keep_open(sk); 2584 } else { 2585 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2586 } 2587 } 2588 2589 static void tcp_mtup_probe_failed(struct sock *sk) 2590 { 2591 struct inet_connection_sock *icsk = inet_csk(sk); 2592 2593 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2594 icsk->icsk_mtup.probe_size = 0; 2595 } 2596 2597 static void tcp_mtup_probe_success(struct sock *sk) 2598 { 2599 struct tcp_sock *tp = tcp_sk(sk); 2600 struct inet_connection_sock *icsk = inet_csk(sk); 2601 2602 /* FIXME: breaks with very large cwnd */ 2603 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2604 tp->snd_cwnd = tp->snd_cwnd * 2605 tcp_mss_to_mtu(sk, tp->mss_cache) / 2606 icsk->icsk_mtup.probe_size; 2607 tp->snd_cwnd_cnt = 0; 2608 tp->snd_cwnd_stamp = tcp_time_stamp; 2609 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2610 2611 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2612 icsk->icsk_mtup.probe_size = 0; 2613 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2614 } 2615 2616 /* Do a simple retransmit without using the backoff mechanisms in 2617 * tcp_timer. This is used for path mtu discovery. 2618 * The socket is already locked here. 2619 */ 2620 void tcp_simple_retransmit(struct sock *sk) 2621 { 2622 const struct inet_connection_sock *icsk = inet_csk(sk); 2623 struct tcp_sock *tp = tcp_sk(sk); 2624 struct sk_buff *skb; 2625 unsigned int mss = tcp_current_mss(sk); 2626 u32 prior_lost = tp->lost_out; 2627 2628 tcp_for_write_queue(skb, sk) { 2629 if (skb == tcp_send_head(sk)) 2630 break; 2631 if (tcp_skb_seglen(skb) > mss && 2632 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2633 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2634 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2635 tp->retrans_out -= tcp_skb_pcount(skb); 2636 } 2637 tcp_skb_mark_lost_uncond_verify(tp, skb); 2638 } 2639 } 2640 2641 tcp_clear_retrans_hints_partial(tp); 2642 2643 if (prior_lost == tp->lost_out) 2644 return; 2645 2646 if (tcp_is_reno(tp)) 2647 tcp_limit_reno_sacked(tp); 2648 2649 tcp_verify_left_out(tp); 2650 2651 /* Don't muck with the congestion window here. 2652 * Reason is that we do not increase amount of _data_ 2653 * in network, but units changed and effective 2654 * cwnd/ssthresh really reduced now. 2655 */ 2656 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2657 tp->high_seq = tp->snd_nxt; 2658 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2659 tp->prior_ssthresh = 0; 2660 tp->undo_marker = 0; 2661 tcp_set_ca_state(sk, TCP_CA_Loss); 2662 } 2663 tcp_xmit_retransmit_queue(sk); 2664 } 2665 EXPORT_SYMBOL(tcp_simple_retransmit); 2666 2667 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2668 { 2669 struct tcp_sock *tp = tcp_sk(sk); 2670 int mib_idx; 2671 2672 if (tcp_is_reno(tp)) 2673 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2674 else 2675 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2676 2677 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2678 2679 tp->prior_ssthresh = 0; 2680 tcp_init_undo(tp); 2681 2682 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2683 if (!ece_ack) 2684 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2685 tcp_init_cwnd_reduction(sk); 2686 } 2687 tcp_set_ca_state(sk, TCP_CA_Recovery); 2688 } 2689 2690 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2691 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2692 */ 2693 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) 2694 { 2695 struct tcp_sock *tp = tcp_sk(sk); 2696 bool recovered = !before(tp->snd_una, tp->high_seq); 2697 2698 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2699 /* Step 3.b. A timeout is spurious if not all data are 2700 * lost, i.e., never-retransmitted data are (s)acked. 2701 */ 2702 if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED)) 2703 return; 2704 2705 if (after(tp->snd_nxt, tp->high_seq) && 2706 (flag & FLAG_DATA_SACKED || is_dupack)) { 2707 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */ 2708 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2709 tp->high_seq = tp->snd_nxt; 2710 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 2711 TCP_NAGLE_OFF); 2712 if (after(tp->snd_nxt, tp->high_seq)) 2713 return; /* Step 2.b */ 2714 tp->frto = 0; 2715 } 2716 } 2717 2718 if (recovered) { 2719 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2720 tcp_try_undo_recovery(sk); 2721 return; 2722 } 2723 if (tcp_is_reno(tp)) { 2724 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2725 * delivered. Lower inflight to clock out (re)tranmissions. 2726 */ 2727 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2728 tcp_add_reno_sack(sk); 2729 else if (flag & FLAG_SND_UNA_ADVANCED) 2730 tcp_reset_reno_sack(tp); 2731 } 2732 if (tcp_try_undo_loss(sk, false)) 2733 return; 2734 tcp_xmit_retransmit_queue(sk); 2735 } 2736 2737 /* Undo during fast recovery after partial ACK. */ 2738 static bool tcp_try_undo_partial(struct sock *sk, const int acked, 2739 const int prior_unsacked) 2740 { 2741 struct tcp_sock *tp = tcp_sk(sk); 2742 2743 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2744 /* Plain luck! Hole if filled with delayed 2745 * packet, rather than with a retransmit. 2746 */ 2747 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2748 2749 /* We are getting evidence that the reordering degree is higher 2750 * than we realized. If there are no retransmits out then we 2751 * can undo. Otherwise we clock out new packets but do not 2752 * mark more packets lost or retransmit more. 2753 */ 2754 if (tp->retrans_out) { 2755 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2756 return true; 2757 } 2758 2759 if (!tcp_any_retrans_done(sk)) 2760 tp->retrans_stamp = 0; 2761 2762 DBGUNDO(sk, "partial recovery"); 2763 tcp_undo_cwnd_reduction(sk, true); 2764 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2765 tcp_try_keep_open(sk); 2766 return true; 2767 } 2768 return false; 2769 } 2770 2771 /* Process an event, which can update packets-in-flight not trivially. 2772 * Main goal of this function is to calculate new estimate for left_out, 2773 * taking into account both packets sitting in receiver's buffer and 2774 * packets lost by network. 2775 * 2776 * Besides that it does CWND reduction, when packet loss is detected 2777 * and changes state of machine. 2778 * 2779 * It does _not_ decide what to send, it is made in function 2780 * tcp_xmit_retransmit_queue(). 2781 */ 2782 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2783 const int prior_unsacked, 2784 bool is_dupack, int flag) 2785 { 2786 struct inet_connection_sock *icsk = inet_csk(sk); 2787 struct tcp_sock *tp = tcp_sk(sk); 2788 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2789 (tcp_fackets_out(tp) > tp->reordering)); 2790 int fast_rexmit = 0; 2791 2792 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2793 tp->sacked_out = 0; 2794 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2795 tp->fackets_out = 0; 2796 2797 /* Now state machine starts. 2798 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2799 if (flag & FLAG_ECE) 2800 tp->prior_ssthresh = 0; 2801 2802 /* B. In all the states check for reneging SACKs. */ 2803 if (tcp_check_sack_reneging(sk, flag)) 2804 return; 2805 2806 /* C. Check consistency of the current state. */ 2807 tcp_verify_left_out(tp); 2808 2809 /* D. Check state exit conditions. State can be terminated 2810 * when high_seq is ACKed. */ 2811 if (icsk->icsk_ca_state == TCP_CA_Open) { 2812 WARN_ON(tp->retrans_out != 0); 2813 tp->retrans_stamp = 0; 2814 } else if (!before(tp->snd_una, tp->high_seq)) { 2815 switch (icsk->icsk_ca_state) { 2816 case TCP_CA_CWR: 2817 /* CWR is to be held something *above* high_seq 2818 * is ACKed for CWR bit to reach receiver. */ 2819 if (tp->snd_una != tp->high_seq) { 2820 tcp_end_cwnd_reduction(sk); 2821 tcp_set_ca_state(sk, TCP_CA_Open); 2822 } 2823 break; 2824 2825 case TCP_CA_Recovery: 2826 if (tcp_is_reno(tp)) 2827 tcp_reset_reno_sack(tp); 2828 if (tcp_try_undo_recovery(sk)) 2829 return; 2830 tcp_end_cwnd_reduction(sk); 2831 break; 2832 } 2833 } 2834 2835 /* E. Process state. */ 2836 switch (icsk->icsk_ca_state) { 2837 case TCP_CA_Recovery: 2838 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2839 if (tcp_is_reno(tp) && is_dupack) 2840 tcp_add_reno_sack(sk); 2841 } else { 2842 if (tcp_try_undo_partial(sk, acked, prior_unsacked)) 2843 return; 2844 /* Partial ACK arrived. Force fast retransmit. */ 2845 do_lost = tcp_is_reno(tp) || 2846 tcp_fackets_out(tp) > tp->reordering; 2847 } 2848 if (tcp_try_undo_dsack(sk)) { 2849 tcp_try_keep_open(sk); 2850 return; 2851 } 2852 break; 2853 case TCP_CA_Loss: 2854 tcp_process_loss(sk, flag, is_dupack); 2855 if (icsk->icsk_ca_state != TCP_CA_Open) 2856 return; 2857 /* Fall through to processing in Open state. */ 2858 default: 2859 if (tcp_is_reno(tp)) { 2860 if (flag & FLAG_SND_UNA_ADVANCED) 2861 tcp_reset_reno_sack(tp); 2862 if (is_dupack) 2863 tcp_add_reno_sack(sk); 2864 } 2865 2866 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2867 tcp_try_undo_dsack(sk); 2868 2869 if (!tcp_time_to_recover(sk, flag)) { 2870 tcp_try_to_open(sk, flag, prior_unsacked); 2871 return; 2872 } 2873 2874 /* MTU probe failure: don't reduce cwnd */ 2875 if (icsk->icsk_ca_state < TCP_CA_CWR && 2876 icsk->icsk_mtup.probe_size && 2877 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2878 tcp_mtup_probe_failed(sk); 2879 /* Restores the reduction we did in tcp_mtup_probe() */ 2880 tp->snd_cwnd++; 2881 tcp_simple_retransmit(sk); 2882 return; 2883 } 2884 2885 /* Otherwise enter Recovery state */ 2886 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2887 fast_rexmit = 1; 2888 } 2889 2890 if (do_lost) 2891 tcp_update_scoreboard(sk, fast_rexmit); 2892 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit); 2893 tcp_xmit_retransmit_queue(sk); 2894 } 2895 2896 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2897 long seq_rtt_us, long sack_rtt_us) 2898 { 2899 const struct tcp_sock *tp = tcp_sk(sk); 2900 2901 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2902 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2903 * Karn's algorithm forbids taking RTT if some retransmitted data 2904 * is acked (RFC6298). 2905 */ 2906 if (flag & FLAG_RETRANS_DATA_ACKED) 2907 seq_rtt_us = -1L; 2908 2909 if (seq_rtt_us < 0) 2910 seq_rtt_us = sack_rtt_us; 2911 2912 /* RTTM Rule: A TSecr value received in a segment is used to 2913 * update the averaged RTT measurement only if the segment 2914 * acknowledges some new data, i.e., only if it advances the 2915 * left edge of the send window. 2916 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2917 */ 2918 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2919 flag & FLAG_ACKED) 2920 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr); 2921 2922 if (seq_rtt_us < 0) 2923 return false; 2924 2925 tcp_rtt_estimator(sk, seq_rtt_us); 2926 tcp_set_rto(sk); 2927 2928 /* RFC6298: only reset backoff on valid RTT measurement. */ 2929 inet_csk(sk)->icsk_backoff = 0; 2930 return true; 2931 } 2932 2933 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2934 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp) 2935 { 2936 struct tcp_sock *tp = tcp_sk(sk); 2937 long seq_rtt_us = -1L; 2938 2939 if (synack_stamp && !tp->total_retrans) 2940 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp); 2941 2942 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets 2943 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack() 2944 */ 2945 if (!tp->srtt_us) 2946 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L); 2947 } 2948 2949 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2950 { 2951 const struct inet_connection_sock *icsk = inet_csk(sk); 2952 2953 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2954 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2955 } 2956 2957 /* Restart timer after forward progress on connection. 2958 * RFC2988 recommends to restart timer to now+rto. 2959 */ 2960 void tcp_rearm_rto(struct sock *sk) 2961 { 2962 const struct inet_connection_sock *icsk = inet_csk(sk); 2963 struct tcp_sock *tp = tcp_sk(sk); 2964 2965 /* If the retrans timer is currently being used by Fast Open 2966 * for SYN-ACK retrans purpose, stay put. 2967 */ 2968 if (tp->fastopen_rsk) 2969 return; 2970 2971 if (!tp->packets_out) { 2972 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2973 } else { 2974 u32 rto = inet_csk(sk)->icsk_rto; 2975 /* Offset the time elapsed after installing regular RTO */ 2976 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2977 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2978 struct sk_buff *skb = tcp_write_queue_head(sk); 2979 const u32 rto_time_stamp = 2980 tcp_skb_timestamp(skb) + rto; 2981 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 2982 /* delta may not be positive if the socket is locked 2983 * when the retrans timer fires and is rescheduled. 2984 */ 2985 if (delta > 0) 2986 rto = delta; 2987 } 2988 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2989 TCP_RTO_MAX); 2990 } 2991 } 2992 2993 /* This function is called when the delayed ER timer fires. TCP enters 2994 * fast recovery and performs fast-retransmit. 2995 */ 2996 void tcp_resume_early_retransmit(struct sock *sk) 2997 { 2998 struct tcp_sock *tp = tcp_sk(sk); 2999 3000 tcp_rearm_rto(sk); 3001 3002 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3003 if (!tp->do_early_retrans) 3004 return; 3005 3006 tcp_enter_recovery(sk, false); 3007 tcp_update_scoreboard(sk, 1); 3008 tcp_xmit_retransmit_queue(sk); 3009 } 3010 3011 /* If we get here, the whole TSO packet has not been acked. */ 3012 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3013 { 3014 struct tcp_sock *tp = tcp_sk(sk); 3015 u32 packets_acked; 3016 3017 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3018 3019 packets_acked = tcp_skb_pcount(skb); 3020 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3021 return 0; 3022 packets_acked -= tcp_skb_pcount(skb); 3023 3024 if (packets_acked) { 3025 BUG_ON(tcp_skb_pcount(skb) == 0); 3026 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3027 } 3028 3029 return packets_acked; 3030 } 3031 3032 /* Remove acknowledged frames from the retransmission queue. If our packet 3033 * is before the ack sequence we can discard it as it's confirmed to have 3034 * arrived at the other end. 3035 */ 3036 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3037 u32 prior_snd_una, long sack_rtt_us) 3038 { 3039 const struct inet_connection_sock *icsk = inet_csk(sk); 3040 struct skb_mstamp first_ackt, last_ackt, now; 3041 struct tcp_sock *tp = tcp_sk(sk); 3042 u32 prior_sacked = tp->sacked_out; 3043 u32 reord = tp->packets_out; 3044 bool fully_acked = true; 3045 long ca_seq_rtt_us = -1L; 3046 long seq_rtt_us = -1L; 3047 struct sk_buff *skb; 3048 u32 pkts_acked = 0; 3049 bool rtt_update; 3050 int flag = 0; 3051 3052 first_ackt.v64 = 0; 3053 3054 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3055 struct skb_shared_info *shinfo = skb_shinfo(skb); 3056 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3057 u8 sacked = scb->sacked; 3058 u32 acked_pcount; 3059 3060 if (unlikely(shinfo->tx_flags & SKBTX_ACK_TSTAMP) && 3061 between(shinfo->tskey, prior_snd_una, tp->snd_una - 1)) 3062 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3063 3064 /* Determine how many packets and what bytes were acked, tso and else */ 3065 if (after(scb->end_seq, tp->snd_una)) { 3066 if (tcp_skb_pcount(skb) == 1 || 3067 !after(tp->snd_una, scb->seq)) 3068 break; 3069 3070 acked_pcount = tcp_tso_acked(sk, skb); 3071 if (!acked_pcount) 3072 break; 3073 3074 fully_acked = false; 3075 } else { 3076 acked_pcount = tcp_skb_pcount(skb); 3077 } 3078 3079 if (sacked & TCPCB_RETRANS) { 3080 if (sacked & TCPCB_SACKED_RETRANS) 3081 tp->retrans_out -= acked_pcount; 3082 flag |= FLAG_RETRANS_DATA_ACKED; 3083 } else { 3084 last_ackt = skb->skb_mstamp; 3085 WARN_ON_ONCE(last_ackt.v64 == 0); 3086 if (!first_ackt.v64) 3087 first_ackt = last_ackt; 3088 3089 if (!(sacked & TCPCB_SACKED_ACKED)) 3090 reord = min(pkts_acked, reord); 3091 if (!after(scb->end_seq, tp->high_seq)) 3092 flag |= FLAG_ORIG_SACK_ACKED; 3093 } 3094 3095 if (sacked & TCPCB_SACKED_ACKED) 3096 tp->sacked_out -= acked_pcount; 3097 if (sacked & TCPCB_LOST) 3098 tp->lost_out -= acked_pcount; 3099 3100 tp->packets_out -= acked_pcount; 3101 pkts_acked += acked_pcount; 3102 3103 /* Initial outgoing SYN's get put onto the write_queue 3104 * just like anything else we transmit. It is not 3105 * true data, and if we misinform our callers that 3106 * this ACK acks real data, we will erroneously exit 3107 * connection startup slow start one packet too 3108 * quickly. This is severely frowned upon behavior. 3109 */ 3110 if (!(scb->tcp_flags & TCPHDR_SYN)) { 3111 flag |= FLAG_DATA_ACKED; 3112 } else { 3113 flag |= FLAG_SYN_ACKED; 3114 tp->retrans_stamp = 0; 3115 } 3116 3117 if (!fully_acked) 3118 break; 3119 3120 tcp_unlink_write_queue(skb, sk); 3121 sk_wmem_free_skb(sk, skb); 3122 if (skb == tp->retransmit_skb_hint) 3123 tp->retransmit_skb_hint = NULL; 3124 if (skb == tp->lost_skb_hint) 3125 tp->lost_skb_hint = NULL; 3126 } 3127 3128 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3129 tp->snd_up = tp->snd_una; 3130 3131 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3132 flag |= FLAG_SACK_RENEGING; 3133 3134 skb_mstamp_get(&now); 3135 if (first_ackt.v64) { 3136 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt); 3137 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt); 3138 } 3139 3140 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us); 3141 3142 if (flag & FLAG_ACKED) { 3143 const struct tcp_congestion_ops *ca_ops 3144 = inet_csk(sk)->icsk_ca_ops; 3145 3146 tcp_rearm_rto(sk); 3147 if (unlikely(icsk->icsk_mtup.probe_size && 3148 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3149 tcp_mtup_probe_success(sk); 3150 } 3151 3152 if (tcp_is_reno(tp)) { 3153 tcp_remove_reno_sacks(sk, pkts_acked); 3154 } else { 3155 int delta; 3156 3157 /* Non-retransmitted hole got filled? That's reordering */ 3158 if (reord < prior_fackets) 3159 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3160 3161 delta = tcp_is_fack(tp) ? pkts_acked : 3162 prior_sacked - tp->sacked_out; 3163 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3164 } 3165 3166 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3167 3168 if (ca_ops->pkts_acked) 3169 ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us); 3170 3171 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3172 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) { 3173 /* Do not re-arm RTO if the sack RTT is measured from data sent 3174 * after when the head was last (re)transmitted. Otherwise the 3175 * timeout may continue to extend in loss recovery. 3176 */ 3177 tcp_rearm_rto(sk); 3178 } 3179 3180 #if FASTRETRANS_DEBUG > 0 3181 WARN_ON((int)tp->sacked_out < 0); 3182 WARN_ON((int)tp->lost_out < 0); 3183 WARN_ON((int)tp->retrans_out < 0); 3184 if (!tp->packets_out && tcp_is_sack(tp)) { 3185 icsk = inet_csk(sk); 3186 if (tp->lost_out) { 3187 pr_debug("Leak l=%u %d\n", 3188 tp->lost_out, icsk->icsk_ca_state); 3189 tp->lost_out = 0; 3190 } 3191 if (tp->sacked_out) { 3192 pr_debug("Leak s=%u %d\n", 3193 tp->sacked_out, icsk->icsk_ca_state); 3194 tp->sacked_out = 0; 3195 } 3196 if (tp->retrans_out) { 3197 pr_debug("Leak r=%u %d\n", 3198 tp->retrans_out, icsk->icsk_ca_state); 3199 tp->retrans_out = 0; 3200 } 3201 } 3202 #endif 3203 return flag; 3204 } 3205 3206 static void tcp_ack_probe(struct sock *sk) 3207 { 3208 const struct tcp_sock *tp = tcp_sk(sk); 3209 struct inet_connection_sock *icsk = inet_csk(sk); 3210 3211 /* Was it a usable window open? */ 3212 3213 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3214 icsk->icsk_backoff = 0; 3215 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3216 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3217 * This function is not for random using! 3218 */ 3219 } else { 3220 unsigned long when = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); 3221 3222 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3223 when, TCP_RTO_MAX); 3224 } 3225 } 3226 3227 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3228 { 3229 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3230 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3231 } 3232 3233 /* Decide wheather to run the increase function of congestion control. */ 3234 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3235 { 3236 if (tcp_in_cwnd_reduction(sk)) 3237 return false; 3238 3239 /* If reordering is high then always grow cwnd whenever data is 3240 * delivered regardless of its ordering. Otherwise stay conservative 3241 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3242 * new SACK or ECE mark may first advance cwnd here and later reduce 3243 * cwnd in tcp_fastretrans_alert() based on more states. 3244 */ 3245 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) 3246 return flag & FLAG_FORWARD_PROGRESS; 3247 3248 return flag & FLAG_DATA_ACKED; 3249 } 3250 3251 /* Check that window update is acceptable. 3252 * The function assumes that snd_una<=ack<=snd_next. 3253 */ 3254 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3255 const u32 ack, const u32 ack_seq, 3256 const u32 nwin) 3257 { 3258 return after(ack, tp->snd_una) || 3259 after(ack_seq, tp->snd_wl1) || 3260 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3261 } 3262 3263 /* Update our send window. 3264 * 3265 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3266 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3267 */ 3268 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3269 u32 ack_seq) 3270 { 3271 struct tcp_sock *tp = tcp_sk(sk); 3272 int flag = 0; 3273 u32 nwin = ntohs(tcp_hdr(skb)->window); 3274 3275 if (likely(!tcp_hdr(skb)->syn)) 3276 nwin <<= tp->rx_opt.snd_wscale; 3277 3278 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3279 flag |= FLAG_WIN_UPDATE; 3280 tcp_update_wl(tp, ack_seq); 3281 3282 if (tp->snd_wnd != nwin) { 3283 tp->snd_wnd = nwin; 3284 3285 /* Note, it is the only place, where 3286 * fast path is recovered for sending TCP. 3287 */ 3288 tp->pred_flags = 0; 3289 tcp_fast_path_check(sk); 3290 3291 if (nwin > tp->max_window) { 3292 tp->max_window = nwin; 3293 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3294 } 3295 } 3296 } 3297 3298 tp->snd_una = ack; 3299 3300 return flag; 3301 } 3302 3303 /* RFC 5961 7 [ACK Throttling] */ 3304 static void tcp_send_challenge_ack(struct sock *sk) 3305 { 3306 /* unprotected vars, we dont care of overwrites */ 3307 static u32 challenge_timestamp; 3308 static unsigned int challenge_count; 3309 u32 now = jiffies / HZ; 3310 3311 if (now != challenge_timestamp) { 3312 challenge_timestamp = now; 3313 challenge_count = 0; 3314 } 3315 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3316 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3317 tcp_send_ack(sk); 3318 } 3319 } 3320 3321 static void tcp_store_ts_recent(struct tcp_sock *tp) 3322 { 3323 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3324 tp->rx_opt.ts_recent_stamp = get_seconds(); 3325 } 3326 3327 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3328 { 3329 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3330 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3331 * extra check below makes sure this can only happen 3332 * for pure ACK frames. -DaveM 3333 * 3334 * Not only, also it occurs for expired timestamps. 3335 */ 3336 3337 if (tcp_paws_check(&tp->rx_opt, 0)) 3338 tcp_store_ts_recent(tp); 3339 } 3340 } 3341 3342 /* This routine deals with acks during a TLP episode. 3343 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3344 */ 3345 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3346 { 3347 struct tcp_sock *tp = tcp_sk(sk); 3348 bool is_tlp_dupack = (ack == tp->tlp_high_seq) && 3349 !(flag & (FLAG_SND_UNA_ADVANCED | 3350 FLAG_NOT_DUP | FLAG_DATA_SACKED)); 3351 3352 /* Mark the end of TLP episode on receiving TLP dupack or when 3353 * ack is after tlp_high_seq. 3354 */ 3355 if (is_tlp_dupack) { 3356 tp->tlp_high_seq = 0; 3357 return; 3358 } 3359 3360 if (after(ack, tp->tlp_high_seq)) { 3361 tp->tlp_high_seq = 0; 3362 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */ 3363 if (!(flag & FLAG_DSACKING_ACK)) { 3364 tcp_init_cwnd_reduction(sk); 3365 tcp_set_ca_state(sk, TCP_CA_CWR); 3366 tcp_end_cwnd_reduction(sk); 3367 tcp_try_keep_open(sk); 3368 NET_INC_STATS_BH(sock_net(sk), 3369 LINUX_MIB_TCPLOSSPROBERECOVERY); 3370 } 3371 } 3372 } 3373 3374 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3375 { 3376 const struct inet_connection_sock *icsk = inet_csk(sk); 3377 3378 if (icsk->icsk_ca_ops->in_ack_event) 3379 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3380 } 3381 3382 /* This routine deals with incoming acks, but not outgoing ones. */ 3383 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3384 { 3385 struct inet_connection_sock *icsk = inet_csk(sk); 3386 struct tcp_sock *tp = tcp_sk(sk); 3387 u32 prior_snd_una = tp->snd_una; 3388 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3389 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3390 bool is_dupack = false; 3391 u32 prior_fackets; 3392 int prior_packets = tp->packets_out; 3393 const int prior_unsacked = tp->packets_out - tp->sacked_out; 3394 int acked = 0; /* Number of packets newly acked */ 3395 long sack_rtt_us = -1L; 3396 3397 /* If the ack is older than previous acks 3398 * then we can probably ignore it. 3399 */ 3400 if (before(ack, prior_snd_una)) { 3401 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3402 if (before(ack, prior_snd_una - tp->max_window)) { 3403 tcp_send_challenge_ack(sk); 3404 return -1; 3405 } 3406 goto old_ack; 3407 } 3408 3409 /* If the ack includes data we haven't sent yet, discard 3410 * this segment (RFC793 Section 3.9). 3411 */ 3412 if (after(ack, tp->snd_nxt)) 3413 goto invalid_ack; 3414 3415 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3416 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3417 tcp_rearm_rto(sk); 3418 3419 if (after(ack, prior_snd_una)) { 3420 flag |= FLAG_SND_UNA_ADVANCED; 3421 icsk->icsk_retransmits = 0; 3422 } 3423 3424 prior_fackets = tp->fackets_out; 3425 3426 /* ts_recent update must be made after we are sure that the packet 3427 * is in window. 3428 */ 3429 if (flag & FLAG_UPDATE_TS_RECENT) 3430 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3431 3432 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3433 /* Window is constant, pure forward advance. 3434 * No more checks are required. 3435 * Note, we use the fact that SND.UNA>=SND.WL2. 3436 */ 3437 tcp_update_wl(tp, ack_seq); 3438 tp->snd_una = ack; 3439 flag |= FLAG_WIN_UPDATE; 3440 3441 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3442 3443 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3444 } else { 3445 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3446 3447 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3448 flag |= FLAG_DATA; 3449 else 3450 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3451 3452 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3453 3454 if (TCP_SKB_CB(skb)->sacked) 3455 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3456 &sack_rtt_us); 3457 3458 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3459 flag |= FLAG_ECE; 3460 ack_ev_flags |= CA_ACK_ECE; 3461 } 3462 3463 if (flag & FLAG_WIN_UPDATE) 3464 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3465 3466 tcp_in_ack_event(sk, ack_ev_flags); 3467 } 3468 3469 /* We passed data and got it acked, remove any soft error 3470 * log. Something worked... 3471 */ 3472 sk->sk_err_soft = 0; 3473 icsk->icsk_probes_out = 0; 3474 tp->rcv_tstamp = tcp_time_stamp; 3475 if (!prior_packets) 3476 goto no_queue; 3477 3478 /* See if we can take anything off of the retransmit queue. */ 3479 acked = tp->packets_out; 3480 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, 3481 sack_rtt_us); 3482 acked -= tp->packets_out; 3483 3484 /* Advance cwnd if state allows */ 3485 if (tcp_may_raise_cwnd(sk, flag)) 3486 tcp_cong_avoid(sk, ack, acked); 3487 3488 if (tcp_ack_is_dubious(sk, flag)) { 3489 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3490 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3491 is_dupack, flag); 3492 } 3493 if (tp->tlp_high_seq) 3494 tcp_process_tlp_ack(sk, ack, flag); 3495 3496 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3497 struct dst_entry *dst = __sk_dst_get(sk); 3498 if (dst) 3499 dst_confirm(dst); 3500 } 3501 3502 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3503 tcp_schedule_loss_probe(sk); 3504 tcp_update_pacing_rate(sk); 3505 return 1; 3506 3507 no_queue: 3508 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3509 if (flag & FLAG_DSACKING_ACK) 3510 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3511 is_dupack, flag); 3512 /* If this ack opens up a zero window, clear backoff. It was 3513 * being used to time the probes, and is probably far higher than 3514 * it needs to be for normal retransmission. 3515 */ 3516 if (tcp_send_head(sk)) 3517 tcp_ack_probe(sk); 3518 3519 if (tp->tlp_high_seq) 3520 tcp_process_tlp_ack(sk, ack, flag); 3521 return 1; 3522 3523 invalid_ack: 3524 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3525 return -1; 3526 3527 old_ack: 3528 /* If data was SACKed, tag it and see if we should send more data. 3529 * If data was DSACKed, see if we can undo a cwnd reduction. 3530 */ 3531 if (TCP_SKB_CB(skb)->sacked) { 3532 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3533 &sack_rtt_us); 3534 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3535 is_dupack, flag); 3536 } 3537 3538 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3539 return 0; 3540 } 3541 3542 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3543 * But, this can also be called on packets in the established flow when 3544 * the fast version below fails. 3545 */ 3546 void tcp_parse_options(const struct sk_buff *skb, 3547 struct tcp_options_received *opt_rx, int estab, 3548 struct tcp_fastopen_cookie *foc) 3549 { 3550 const unsigned char *ptr; 3551 const struct tcphdr *th = tcp_hdr(skb); 3552 int length = (th->doff * 4) - sizeof(struct tcphdr); 3553 3554 ptr = (const unsigned char *)(th + 1); 3555 opt_rx->saw_tstamp = 0; 3556 3557 while (length > 0) { 3558 int opcode = *ptr++; 3559 int opsize; 3560 3561 switch (opcode) { 3562 case TCPOPT_EOL: 3563 return; 3564 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3565 length--; 3566 continue; 3567 default: 3568 opsize = *ptr++; 3569 if (opsize < 2) /* "silly options" */ 3570 return; 3571 if (opsize > length) 3572 return; /* don't parse partial options */ 3573 switch (opcode) { 3574 case TCPOPT_MSS: 3575 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3576 u16 in_mss = get_unaligned_be16(ptr); 3577 if (in_mss) { 3578 if (opt_rx->user_mss && 3579 opt_rx->user_mss < in_mss) 3580 in_mss = opt_rx->user_mss; 3581 opt_rx->mss_clamp = in_mss; 3582 } 3583 } 3584 break; 3585 case TCPOPT_WINDOW: 3586 if (opsize == TCPOLEN_WINDOW && th->syn && 3587 !estab && sysctl_tcp_window_scaling) { 3588 __u8 snd_wscale = *(__u8 *)ptr; 3589 opt_rx->wscale_ok = 1; 3590 if (snd_wscale > 14) { 3591 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3592 __func__, 3593 snd_wscale); 3594 snd_wscale = 14; 3595 } 3596 opt_rx->snd_wscale = snd_wscale; 3597 } 3598 break; 3599 case TCPOPT_TIMESTAMP: 3600 if ((opsize == TCPOLEN_TIMESTAMP) && 3601 ((estab && opt_rx->tstamp_ok) || 3602 (!estab && sysctl_tcp_timestamps))) { 3603 opt_rx->saw_tstamp = 1; 3604 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3605 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3606 } 3607 break; 3608 case TCPOPT_SACK_PERM: 3609 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3610 !estab && sysctl_tcp_sack) { 3611 opt_rx->sack_ok = TCP_SACK_SEEN; 3612 tcp_sack_reset(opt_rx); 3613 } 3614 break; 3615 3616 case TCPOPT_SACK: 3617 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3618 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3619 opt_rx->sack_ok) { 3620 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3621 } 3622 break; 3623 #ifdef CONFIG_TCP_MD5SIG 3624 case TCPOPT_MD5SIG: 3625 /* 3626 * The MD5 Hash has already been 3627 * checked (see tcp_v{4,6}_do_rcv()). 3628 */ 3629 break; 3630 #endif 3631 case TCPOPT_EXP: 3632 /* Fast Open option shares code 254 using a 3633 * 16 bits magic number. It's valid only in 3634 * SYN or SYN-ACK with an even size. 3635 */ 3636 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE || 3637 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC || 3638 foc == NULL || !th->syn || (opsize & 1)) 3639 break; 3640 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE; 3641 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN && 3642 foc->len <= TCP_FASTOPEN_COOKIE_MAX) 3643 memcpy(foc->val, ptr + 2, foc->len); 3644 else if (foc->len != 0) 3645 foc->len = -1; 3646 break; 3647 3648 } 3649 ptr += opsize-2; 3650 length -= opsize; 3651 } 3652 } 3653 } 3654 EXPORT_SYMBOL(tcp_parse_options); 3655 3656 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3657 { 3658 const __be32 *ptr = (const __be32 *)(th + 1); 3659 3660 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3661 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3662 tp->rx_opt.saw_tstamp = 1; 3663 ++ptr; 3664 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3665 ++ptr; 3666 if (*ptr) 3667 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3668 else 3669 tp->rx_opt.rcv_tsecr = 0; 3670 return true; 3671 } 3672 return false; 3673 } 3674 3675 /* Fast parse options. This hopes to only see timestamps. 3676 * If it is wrong it falls back on tcp_parse_options(). 3677 */ 3678 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3679 const struct tcphdr *th, struct tcp_sock *tp) 3680 { 3681 /* In the spirit of fast parsing, compare doff directly to constant 3682 * values. Because equality is used, short doff can be ignored here. 3683 */ 3684 if (th->doff == (sizeof(*th) / 4)) { 3685 tp->rx_opt.saw_tstamp = 0; 3686 return false; 3687 } else if (tp->rx_opt.tstamp_ok && 3688 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3689 if (tcp_parse_aligned_timestamp(tp, th)) 3690 return true; 3691 } 3692 3693 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3694 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3695 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3696 3697 return true; 3698 } 3699 3700 #ifdef CONFIG_TCP_MD5SIG 3701 /* 3702 * Parse MD5 Signature option 3703 */ 3704 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3705 { 3706 int length = (th->doff << 2) - sizeof(*th); 3707 const u8 *ptr = (const u8 *)(th + 1); 3708 3709 /* If the TCP option is too short, we can short cut */ 3710 if (length < TCPOLEN_MD5SIG) 3711 return NULL; 3712 3713 while (length > 0) { 3714 int opcode = *ptr++; 3715 int opsize; 3716 3717 switch (opcode) { 3718 case TCPOPT_EOL: 3719 return NULL; 3720 case TCPOPT_NOP: 3721 length--; 3722 continue; 3723 default: 3724 opsize = *ptr++; 3725 if (opsize < 2 || opsize > length) 3726 return NULL; 3727 if (opcode == TCPOPT_MD5SIG) 3728 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3729 } 3730 ptr += opsize - 2; 3731 length -= opsize; 3732 } 3733 return NULL; 3734 } 3735 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3736 #endif 3737 3738 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3739 * 3740 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3741 * it can pass through stack. So, the following predicate verifies that 3742 * this segment is not used for anything but congestion avoidance or 3743 * fast retransmit. Moreover, we even are able to eliminate most of such 3744 * second order effects, if we apply some small "replay" window (~RTO) 3745 * to timestamp space. 3746 * 3747 * All these measures still do not guarantee that we reject wrapped ACKs 3748 * on networks with high bandwidth, when sequence space is recycled fastly, 3749 * but it guarantees that such events will be very rare and do not affect 3750 * connection seriously. This doesn't look nice, but alas, PAWS is really 3751 * buggy extension. 3752 * 3753 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3754 * states that events when retransmit arrives after original data are rare. 3755 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3756 * the biggest problem on large power networks even with minor reordering. 3757 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3758 * up to bandwidth of 18Gigabit/sec. 8) ] 3759 */ 3760 3761 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3762 { 3763 const struct tcp_sock *tp = tcp_sk(sk); 3764 const struct tcphdr *th = tcp_hdr(skb); 3765 u32 seq = TCP_SKB_CB(skb)->seq; 3766 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3767 3768 return (/* 1. Pure ACK with correct sequence number. */ 3769 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3770 3771 /* 2. ... and duplicate ACK. */ 3772 ack == tp->snd_una && 3773 3774 /* 3. ... and does not update window. */ 3775 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3776 3777 /* 4. ... and sits in replay window. */ 3778 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3779 } 3780 3781 static inline bool tcp_paws_discard(const struct sock *sk, 3782 const struct sk_buff *skb) 3783 { 3784 const struct tcp_sock *tp = tcp_sk(sk); 3785 3786 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3787 !tcp_disordered_ack(sk, skb); 3788 } 3789 3790 /* Check segment sequence number for validity. 3791 * 3792 * Segment controls are considered valid, if the segment 3793 * fits to the window after truncation to the window. Acceptability 3794 * of data (and SYN, FIN, of course) is checked separately. 3795 * See tcp_data_queue(), for example. 3796 * 3797 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3798 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3799 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3800 * (borrowed from freebsd) 3801 */ 3802 3803 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3804 { 3805 return !before(end_seq, tp->rcv_wup) && 3806 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3807 } 3808 3809 /* When we get a reset we do this. */ 3810 void tcp_reset(struct sock *sk) 3811 { 3812 /* We want the right error as BSD sees it (and indeed as we do). */ 3813 switch (sk->sk_state) { 3814 case TCP_SYN_SENT: 3815 sk->sk_err = ECONNREFUSED; 3816 break; 3817 case TCP_CLOSE_WAIT: 3818 sk->sk_err = EPIPE; 3819 break; 3820 case TCP_CLOSE: 3821 return; 3822 default: 3823 sk->sk_err = ECONNRESET; 3824 } 3825 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3826 smp_wmb(); 3827 3828 if (!sock_flag(sk, SOCK_DEAD)) 3829 sk->sk_error_report(sk); 3830 3831 tcp_done(sk); 3832 } 3833 3834 /* 3835 * Process the FIN bit. This now behaves as it is supposed to work 3836 * and the FIN takes effect when it is validly part of sequence 3837 * space. Not before when we get holes. 3838 * 3839 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3840 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3841 * TIME-WAIT) 3842 * 3843 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3844 * close and we go into CLOSING (and later onto TIME-WAIT) 3845 * 3846 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3847 */ 3848 static void tcp_fin(struct sock *sk) 3849 { 3850 struct tcp_sock *tp = tcp_sk(sk); 3851 const struct dst_entry *dst; 3852 3853 inet_csk_schedule_ack(sk); 3854 3855 sk->sk_shutdown |= RCV_SHUTDOWN; 3856 sock_set_flag(sk, SOCK_DONE); 3857 3858 switch (sk->sk_state) { 3859 case TCP_SYN_RECV: 3860 case TCP_ESTABLISHED: 3861 /* Move to CLOSE_WAIT */ 3862 tcp_set_state(sk, TCP_CLOSE_WAIT); 3863 dst = __sk_dst_get(sk); 3864 if (!dst || !dst_metric(dst, RTAX_QUICKACK)) 3865 inet_csk(sk)->icsk_ack.pingpong = 1; 3866 break; 3867 3868 case TCP_CLOSE_WAIT: 3869 case TCP_CLOSING: 3870 /* Received a retransmission of the FIN, do 3871 * nothing. 3872 */ 3873 break; 3874 case TCP_LAST_ACK: 3875 /* RFC793: Remain in the LAST-ACK state. */ 3876 break; 3877 3878 case TCP_FIN_WAIT1: 3879 /* This case occurs when a simultaneous close 3880 * happens, we must ack the received FIN and 3881 * enter the CLOSING state. 3882 */ 3883 tcp_send_ack(sk); 3884 tcp_set_state(sk, TCP_CLOSING); 3885 break; 3886 case TCP_FIN_WAIT2: 3887 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3888 tcp_send_ack(sk); 3889 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3890 break; 3891 default: 3892 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3893 * cases we should never reach this piece of code. 3894 */ 3895 pr_err("%s: Impossible, sk->sk_state=%d\n", 3896 __func__, sk->sk_state); 3897 break; 3898 } 3899 3900 /* It _is_ possible, that we have something out-of-order _after_ FIN. 3901 * Probably, we should reset in this case. For now drop them. 3902 */ 3903 __skb_queue_purge(&tp->out_of_order_queue); 3904 if (tcp_is_sack(tp)) 3905 tcp_sack_reset(&tp->rx_opt); 3906 sk_mem_reclaim(sk); 3907 3908 if (!sock_flag(sk, SOCK_DEAD)) { 3909 sk->sk_state_change(sk); 3910 3911 /* Do not send POLL_HUP for half duplex close. */ 3912 if (sk->sk_shutdown == SHUTDOWN_MASK || 3913 sk->sk_state == TCP_CLOSE) 3914 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 3915 else 3916 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 3917 } 3918 } 3919 3920 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 3921 u32 end_seq) 3922 { 3923 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 3924 if (before(seq, sp->start_seq)) 3925 sp->start_seq = seq; 3926 if (after(end_seq, sp->end_seq)) 3927 sp->end_seq = end_seq; 3928 return true; 3929 } 3930 return false; 3931 } 3932 3933 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 3934 { 3935 struct tcp_sock *tp = tcp_sk(sk); 3936 3937 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3938 int mib_idx; 3939 3940 if (before(seq, tp->rcv_nxt)) 3941 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 3942 else 3943 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 3944 3945 NET_INC_STATS_BH(sock_net(sk), mib_idx); 3946 3947 tp->rx_opt.dsack = 1; 3948 tp->duplicate_sack[0].start_seq = seq; 3949 tp->duplicate_sack[0].end_seq = end_seq; 3950 } 3951 } 3952 3953 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 3954 { 3955 struct tcp_sock *tp = tcp_sk(sk); 3956 3957 if (!tp->rx_opt.dsack) 3958 tcp_dsack_set(sk, seq, end_seq); 3959 else 3960 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 3961 } 3962 3963 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 3964 { 3965 struct tcp_sock *tp = tcp_sk(sk); 3966 3967 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 3968 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 3969 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 3970 tcp_enter_quickack_mode(sk); 3971 3972 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 3973 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 3974 3975 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 3976 end_seq = tp->rcv_nxt; 3977 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 3978 } 3979 } 3980 3981 tcp_send_ack(sk); 3982 } 3983 3984 /* These routines update the SACK block as out-of-order packets arrive or 3985 * in-order packets close up the sequence space. 3986 */ 3987 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 3988 { 3989 int this_sack; 3990 struct tcp_sack_block *sp = &tp->selective_acks[0]; 3991 struct tcp_sack_block *swalk = sp + 1; 3992 3993 /* See if the recent change to the first SACK eats into 3994 * or hits the sequence space of other SACK blocks, if so coalesce. 3995 */ 3996 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 3997 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 3998 int i; 3999 4000 /* Zap SWALK, by moving every further SACK up by one slot. 4001 * Decrease num_sacks. 4002 */ 4003 tp->rx_opt.num_sacks--; 4004 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4005 sp[i] = sp[i + 1]; 4006 continue; 4007 } 4008 this_sack++, swalk++; 4009 } 4010 } 4011 4012 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4013 { 4014 struct tcp_sock *tp = tcp_sk(sk); 4015 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4016 int cur_sacks = tp->rx_opt.num_sacks; 4017 int this_sack; 4018 4019 if (!cur_sacks) 4020 goto new_sack; 4021 4022 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4023 if (tcp_sack_extend(sp, seq, end_seq)) { 4024 /* Rotate this_sack to the first one. */ 4025 for (; this_sack > 0; this_sack--, sp--) 4026 swap(*sp, *(sp - 1)); 4027 if (cur_sacks > 1) 4028 tcp_sack_maybe_coalesce(tp); 4029 return; 4030 } 4031 } 4032 4033 /* Could not find an adjacent existing SACK, build a new one, 4034 * put it at the front, and shift everyone else down. We 4035 * always know there is at least one SACK present already here. 4036 * 4037 * If the sack array is full, forget about the last one. 4038 */ 4039 if (this_sack >= TCP_NUM_SACKS) { 4040 this_sack--; 4041 tp->rx_opt.num_sacks--; 4042 sp--; 4043 } 4044 for (; this_sack > 0; this_sack--, sp--) 4045 *sp = *(sp - 1); 4046 4047 new_sack: 4048 /* Build the new head SACK, and we're done. */ 4049 sp->start_seq = seq; 4050 sp->end_seq = end_seq; 4051 tp->rx_opt.num_sacks++; 4052 } 4053 4054 /* RCV.NXT advances, some SACKs should be eaten. */ 4055 4056 static void tcp_sack_remove(struct tcp_sock *tp) 4057 { 4058 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4059 int num_sacks = tp->rx_opt.num_sacks; 4060 int this_sack; 4061 4062 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4063 if (skb_queue_empty(&tp->out_of_order_queue)) { 4064 tp->rx_opt.num_sacks = 0; 4065 return; 4066 } 4067 4068 for (this_sack = 0; this_sack < num_sacks;) { 4069 /* Check if the start of the sack is covered by RCV.NXT. */ 4070 if (!before(tp->rcv_nxt, sp->start_seq)) { 4071 int i; 4072 4073 /* RCV.NXT must cover all the block! */ 4074 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4075 4076 /* Zap this SACK, by moving forward any other SACKS. */ 4077 for (i = this_sack+1; i < num_sacks; i++) 4078 tp->selective_acks[i-1] = tp->selective_acks[i]; 4079 num_sacks--; 4080 continue; 4081 } 4082 this_sack++; 4083 sp++; 4084 } 4085 tp->rx_opt.num_sacks = num_sacks; 4086 } 4087 4088 /** 4089 * tcp_try_coalesce - try to merge skb to prior one 4090 * @sk: socket 4091 * @to: prior buffer 4092 * @from: buffer to add in queue 4093 * @fragstolen: pointer to boolean 4094 * 4095 * Before queueing skb @from after @to, try to merge them 4096 * to reduce overall memory use and queue lengths, if cost is small. 4097 * Packets in ofo or receive queues can stay a long time. 4098 * Better try to coalesce them right now to avoid future collapses. 4099 * Returns true if caller should free @from instead of queueing it 4100 */ 4101 static bool tcp_try_coalesce(struct sock *sk, 4102 struct sk_buff *to, 4103 struct sk_buff *from, 4104 bool *fragstolen) 4105 { 4106 int delta; 4107 4108 *fragstolen = false; 4109 4110 /* Its possible this segment overlaps with prior segment in queue */ 4111 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4112 return false; 4113 4114 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4115 return false; 4116 4117 atomic_add(delta, &sk->sk_rmem_alloc); 4118 sk_mem_charge(sk, delta); 4119 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4120 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4121 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4122 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4123 return true; 4124 } 4125 4126 /* This one checks to see if we can put data from the 4127 * out_of_order queue into the receive_queue. 4128 */ 4129 static void tcp_ofo_queue(struct sock *sk) 4130 { 4131 struct tcp_sock *tp = tcp_sk(sk); 4132 __u32 dsack_high = tp->rcv_nxt; 4133 struct sk_buff *skb, *tail; 4134 bool fragstolen, eaten; 4135 4136 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4137 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4138 break; 4139 4140 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4141 __u32 dsack = dsack_high; 4142 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4143 dsack_high = TCP_SKB_CB(skb)->end_seq; 4144 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4145 } 4146 4147 __skb_unlink(skb, &tp->out_of_order_queue); 4148 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4149 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4150 __kfree_skb(skb); 4151 continue; 4152 } 4153 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4154 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4155 TCP_SKB_CB(skb)->end_seq); 4156 4157 tail = skb_peek_tail(&sk->sk_receive_queue); 4158 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4159 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4160 if (!eaten) 4161 __skb_queue_tail(&sk->sk_receive_queue, skb); 4162 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4163 tcp_fin(sk); 4164 if (eaten) 4165 kfree_skb_partial(skb, fragstolen); 4166 } 4167 } 4168 4169 static bool tcp_prune_ofo_queue(struct sock *sk); 4170 static int tcp_prune_queue(struct sock *sk); 4171 4172 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4173 unsigned int size) 4174 { 4175 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4176 !sk_rmem_schedule(sk, skb, size)) { 4177 4178 if (tcp_prune_queue(sk) < 0) 4179 return -1; 4180 4181 if (!sk_rmem_schedule(sk, skb, size)) { 4182 if (!tcp_prune_ofo_queue(sk)) 4183 return -1; 4184 4185 if (!sk_rmem_schedule(sk, skb, size)) 4186 return -1; 4187 } 4188 } 4189 return 0; 4190 } 4191 4192 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4193 { 4194 struct tcp_sock *tp = tcp_sk(sk); 4195 struct sk_buff *skb1; 4196 u32 seq, end_seq; 4197 4198 tcp_ecn_check_ce(tp, skb); 4199 4200 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4201 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4202 __kfree_skb(skb); 4203 return; 4204 } 4205 4206 /* Disable header prediction. */ 4207 tp->pred_flags = 0; 4208 inet_csk_schedule_ack(sk); 4209 4210 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4211 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4212 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4213 4214 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4215 if (!skb1) { 4216 /* Initial out of order segment, build 1 SACK. */ 4217 if (tcp_is_sack(tp)) { 4218 tp->rx_opt.num_sacks = 1; 4219 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4220 tp->selective_acks[0].end_seq = 4221 TCP_SKB_CB(skb)->end_seq; 4222 } 4223 __skb_queue_head(&tp->out_of_order_queue, skb); 4224 goto end; 4225 } 4226 4227 seq = TCP_SKB_CB(skb)->seq; 4228 end_seq = TCP_SKB_CB(skb)->end_seq; 4229 4230 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4231 bool fragstolen; 4232 4233 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4234 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4235 } else { 4236 tcp_grow_window(sk, skb); 4237 kfree_skb_partial(skb, fragstolen); 4238 skb = NULL; 4239 } 4240 4241 if (!tp->rx_opt.num_sacks || 4242 tp->selective_acks[0].end_seq != seq) 4243 goto add_sack; 4244 4245 /* Common case: data arrive in order after hole. */ 4246 tp->selective_acks[0].end_seq = end_seq; 4247 goto end; 4248 } 4249 4250 /* Find place to insert this segment. */ 4251 while (1) { 4252 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4253 break; 4254 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4255 skb1 = NULL; 4256 break; 4257 } 4258 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4259 } 4260 4261 /* Do skb overlap to previous one? */ 4262 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4263 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4264 /* All the bits are present. Drop. */ 4265 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4266 __kfree_skb(skb); 4267 skb = NULL; 4268 tcp_dsack_set(sk, seq, end_seq); 4269 goto add_sack; 4270 } 4271 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4272 /* Partial overlap. */ 4273 tcp_dsack_set(sk, seq, 4274 TCP_SKB_CB(skb1)->end_seq); 4275 } else { 4276 if (skb_queue_is_first(&tp->out_of_order_queue, 4277 skb1)) 4278 skb1 = NULL; 4279 else 4280 skb1 = skb_queue_prev( 4281 &tp->out_of_order_queue, 4282 skb1); 4283 } 4284 } 4285 if (!skb1) 4286 __skb_queue_head(&tp->out_of_order_queue, skb); 4287 else 4288 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4289 4290 /* And clean segments covered by new one as whole. */ 4291 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4292 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4293 4294 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4295 break; 4296 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4297 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4298 end_seq); 4299 break; 4300 } 4301 __skb_unlink(skb1, &tp->out_of_order_queue); 4302 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4303 TCP_SKB_CB(skb1)->end_seq); 4304 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4305 __kfree_skb(skb1); 4306 } 4307 4308 add_sack: 4309 if (tcp_is_sack(tp)) 4310 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4311 end: 4312 if (skb) { 4313 tcp_grow_window(sk, skb); 4314 skb_set_owner_r(skb, sk); 4315 } 4316 } 4317 4318 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4319 bool *fragstolen) 4320 { 4321 int eaten; 4322 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4323 4324 __skb_pull(skb, hdrlen); 4325 eaten = (tail && 4326 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4327 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4328 if (!eaten) { 4329 __skb_queue_tail(&sk->sk_receive_queue, skb); 4330 skb_set_owner_r(skb, sk); 4331 } 4332 return eaten; 4333 } 4334 4335 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4336 { 4337 struct sk_buff *skb; 4338 bool fragstolen; 4339 4340 if (size == 0) 4341 return 0; 4342 4343 skb = alloc_skb(size, sk->sk_allocation); 4344 if (!skb) 4345 goto err; 4346 4347 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4348 goto err_free; 4349 4350 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size)) 4351 goto err_free; 4352 4353 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4354 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4355 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4356 4357 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4358 WARN_ON_ONCE(fragstolen); /* should not happen */ 4359 __kfree_skb(skb); 4360 } 4361 return size; 4362 4363 err_free: 4364 kfree_skb(skb); 4365 err: 4366 return -ENOMEM; 4367 } 4368 4369 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4370 { 4371 struct tcp_sock *tp = tcp_sk(sk); 4372 int eaten = -1; 4373 bool fragstolen = false; 4374 4375 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4376 goto drop; 4377 4378 skb_dst_drop(skb); 4379 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4380 4381 tcp_ecn_accept_cwr(tp, skb); 4382 4383 tp->rx_opt.dsack = 0; 4384 4385 /* Queue data for delivery to the user. 4386 * Packets in sequence go to the receive queue. 4387 * Out of sequence packets to the out_of_order_queue. 4388 */ 4389 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4390 if (tcp_receive_window(tp) == 0) 4391 goto out_of_window; 4392 4393 /* Ok. In sequence. In window. */ 4394 if (tp->ucopy.task == current && 4395 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4396 sock_owned_by_user(sk) && !tp->urg_data) { 4397 int chunk = min_t(unsigned int, skb->len, 4398 tp->ucopy.len); 4399 4400 __set_current_state(TASK_RUNNING); 4401 4402 local_bh_enable(); 4403 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) { 4404 tp->ucopy.len -= chunk; 4405 tp->copied_seq += chunk; 4406 eaten = (chunk == skb->len); 4407 tcp_rcv_space_adjust(sk); 4408 } 4409 local_bh_disable(); 4410 } 4411 4412 if (eaten <= 0) { 4413 queue_and_out: 4414 if (eaten < 0 && 4415 tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4416 goto drop; 4417 4418 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4419 } 4420 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 4421 if (skb->len) 4422 tcp_event_data_recv(sk, skb); 4423 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4424 tcp_fin(sk); 4425 4426 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4427 tcp_ofo_queue(sk); 4428 4429 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4430 * gap in queue is filled. 4431 */ 4432 if (skb_queue_empty(&tp->out_of_order_queue)) 4433 inet_csk(sk)->icsk_ack.pingpong = 0; 4434 } 4435 4436 if (tp->rx_opt.num_sacks) 4437 tcp_sack_remove(tp); 4438 4439 tcp_fast_path_check(sk); 4440 4441 if (eaten > 0) 4442 kfree_skb_partial(skb, fragstolen); 4443 if (!sock_flag(sk, SOCK_DEAD)) 4444 sk->sk_data_ready(sk); 4445 return; 4446 } 4447 4448 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4449 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4450 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4451 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4452 4453 out_of_window: 4454 tcp_enter_quickack_mode(sk); 4455 inet_csk_schedule_ack(sk); 4456 drop: 4457 __kfree_skb(skb); 4458 return; 4459 } 4460 4461 /* Out of window. F.e. zero window probe. */ 4462 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4463 goto out_of_window; 4464 4465 tcp_enter_quickack_mode(sk); 4466 4467 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4468 /* Partial packet, seq < rcv_next < end_seq */ 4469 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4470 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4471 TCP_SKB_CB(skb)->end_seq); 4472 4473 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4474 4475 /* If window is closed, drop tail of packet. But after 4476 * remembering D-SACK for its head made in previous line. 4477 */ 4478 if (!tcp_receive_window(tp)) 4479 goto out_of_window; 4480 goto queue_and_out; 4481 } 4482 4483 tcp_data_queue_ofo(sk, skb); 4484 } 4485 4486 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4487 struct sk_buff_head *list) 4488 { 4489 struct sk_buff *next = NULL; 4490 4491 if (!skb_queue_is_last(list, skb)) 4492 next = skb_queue_next(list, skb); 4493 4494 __skb_unlink(skb, list); 4495 __kfree_skb(skb); 4496 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4497 4498 return next; 4499 } 4500 4501 /* Collapse contiguous sequence of skbs head..tail with 4502 * sequence numbers start..end. 4503 * 4504 * If tail is NULL, this means until the end of the list. 4505 * 4506 * Segments with FIN/SYN are not collapsed (only because this 4507 * simplifies code) 4508 */ 4509 static void 4510 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4511 struct sk_buff *head, struct sk_buff *tail, 4512 u32 start, u32 end) 4513 { 4514 struct sk_buff *skb, *n; 4515 bool end_of_skbs; 4516 4517 /* First, check that queue is collapsible and find 4518 * the point where collapsing can be useful. */ 4519 skb = head; 4520 restart: 4521 end_of_skbs = true; 4522 skb_queue_walk_from_safe(list, skb, n) { 4523 if (skb == tail) 4524 break; 4525 /* No new bits? It is possible on ofo queue. */ 4526 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4527 skb = tcp_collapse_one(sk, skb, list); 4528 if (!skb) 4529 break; 4530 goto restart; 4531 } 4532 4533 /* The first skb to collapse is: 4534 * - not SYN/FIN and 4535 * - bloated or contains data before "start" or 4536 * overlaps to the next one. 4537 */ 4538 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4539 (tcp_win_from_space(skb->truesize) > skb->len || 4540 before(TCP_SKB_CB(skb)->seq, start))) { 4541 end_of_skbs = false; 4542 break; 4543 } 4544 4545 if (!skb_queue_is_last(list, skb)) { 4546 struct sk_buff *next = skb_queue_next(list, skb); 4547 if (next != tail && 4548 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4549 end_of_skbs = false; 4550 break; 4551 } 4552 } 4553 4554 /* Decided to skip this, advance start seq. */ 4555 start = TCP_SKB_CB(skb)->end_seq; 4556 } 4557 if (end_of_skbs || 4558 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4559 return; 4560 4561 while (before(start, end)) { 4562 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4563 struct sk_buff *nskb; 4564 4565 nskb = alloc_skb(copy, GFP_ATOMIC); 4566 if (!nskb) 4567 return; 4568 4569 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4570 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4571 __skb_queue_before(list, skb, nskb); 4572 skb_set_owner_r(nskb, sk); 4573 4574 /* Copy data, releasing collapsed skbs. */ 4575 while (copy > 0) { 4576 int offset = start - TCP_SKB_CB(skb)->seq; 4577 int size = TCP_SKB_CB(skb)->end_seq - start; 4578 4579 BUG_ON(offset < 0); 4580 if (size > 0) { 4581 size = min(copy, size); 4582 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4583 BUG(); 4584 TCP_SKB_CB(nskb)->end_seq += size; 4585 copy -= size; 4586 start += size; 4587 } 4588 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4589 skb = tcp_collapse_one(sk, skb, list); 4590 if (!skb || 4591 skb == tail || 4592 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4593 return; 4594 } 4595 } 4596 } 4597 } 4598 4599 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4600 * and tcp_collapse() them until all the queue is collapsed. 4601 */ 4602 static void tcp_collapse_ofo_queue(struct sock *sk) 4603 { 4604 struct tcp_sock *tp = tcp_sk(sk); 4605 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4606 struct sk_buff *head; 4607 u32 start, end; 4608 4609 if (skb == NULL) 4610 return; 4611 4612 start = TCP_SKB_CB(skb)->seq; 4613 end = TCP_SKB_CB(skb)->end_seq; 4614 head = skb; 4615 4616 for (;;) { 4617 struct sk_buff *next = NULL; 4618 4619 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4620 next = skb_queue_next(&tp->out_of_order_queue, skb); 4621 skb = next; 4622 4623 /* Segment is terminated when we see gap or when 4624 * we are at the end of all the queue. */ 4625 if (!skb || 4626 after(TCP_SKB_CB(skb)->seq, end) || 4627 before(TCP_SKB_CB(skb)->end_seq, start)) { 4628 tcp_collapse(sk, &tp->out_of_order_queue, 4629 head, skb, start, end); 4630 head = skb; 4631 if (!skb) 4632 break; 4633 /* Start new segment */ 4634 start = TCP_SKB_CB(skb)->seq; 4635 end = TCP_SKB_CB(skb)->end_seq; 4636 } else { 4637 if (before(TCP_SKB_CB(skb)->seq, start)) 4638 start = TCP_SKB_CB(skb)->seq; 4639 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4640 end = TCP_SKB_CB(skb)->end_seq; 4641 } 4642 } 4643 } 4644 4645 /* 4646 * Purge the out-of-order queue. 4647 * Return true if queue was pruned. 4648 */ 4649 static bool tcp_prune_ofo_queue(struct sock *sk) 4650 { 4651 struct tcp_sock *tp = tcp_sk(sk); 4652 bool res = false; 4653 4654 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4655 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4656 __skb_queue_purge(&tp->out_of_order_queue); 4657 4658 /* Reset SACK state. A conforming SACK implementation will 4659 * do the same at a timeout based retransmit. When a connection 4660 * is in a sad state like this, we care only about integrity 4661 * of the connection not performance. 4662 */ 4663 if (tp->rx_opt.sack_ok) 4664 tcp_sack_reset(&tp->rx_opt); 4665 sk_mem_reclaim(sk); 4666 res = true; 4667 } 4668 return res; 4669 } 4670 4671 /* Reduce allocated memory if we can, trying to get 4672 * the socket within its memory limits again. 4673 * 4674 * Return less than zero if we should start dropping frames 4675 * until the socket owning process reads some of the data 4676 * to stabilize the situation. 4677 */ 4678 static int tcp_prune_queue(struct sock *sk) 4679 { 4680 struct tcp_sock *tp = tcp_sk(sk); 4681 4682 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4683 4684 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4685 4686 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4687 tcp_clamp_window(sk); 4688 else if (sk_under_memory_pressure(sk)) 4689 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4690 4691 tcp_collapse_ofo_queue(sk); 4692 if (!skb_queue_empty(&sk->sk_receive_queue)) 4693 tcp_collapse(sk, &sk->sk_receive_queue, 4694 skb_peek(&sk->sk_receive_queue), 4695 NULL, 4696 tp->copied_seq, tp->rcv_nxt); 4697 sk_mem_reclaim(sk); 4698 4699 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4700 return 0; 4701 4702 /* Collapsing did not help, destructive actions follow. 4703 * This must not ever occur. */ 4704 4705 tcp_prune_ofo_queue(sk); 4706 4707 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4708 return 0; 4709 4710 /* If we are really being abused, tell the caller to silently 4711 * drop receive data on the floor. It will get retransmitted 4712 * and hopefully then we'll have sufficient space. 4713 */ 4714 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4715 4716 /* Massive buffer overcommit. */ 4717 tp->pred_flags = 0; 4718 return -1; 4719 } 4720 4721 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4722 { 4723 const struct tcp_sock *tp = tcp_sk(sk); 4724 4725 /* If the user specified a specific send buffer setting, do 4726 * not modify it. 4727 */ 4728 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4729 return false; 4730 4731 /* If we are under global TCP memory pressure, do not expand. */ 4732 if (sk_under_memory_pressure(sk)) 4733 return false; 4734 4735 /* If we are under soft global TCP memory pressure, do not expand. */ 4736 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4737 return false; 4738 4739 /* If we filled the congestion window, do not expand. */ 4740 if (tp->packets_out >= tp->snd_cwnd) 4741 return false; 4742 4743 return true; 4744 } 4745 4746 /* When incoming ACK allowed to free some skb from write_queue, 4747 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4748 * on the exit from tcp input handler. 4749 * 4750 * PROBLEM: sndbuf expansion does not work well with largesend. 4751 */ 4752 static void tcp_new_space(struct sock *sk) 4753 { 4754 struct tcp_sock *tp = tcp_sk(sk); 4755 4756 if (tcp_should_expand_sndbuf(sk)) { 4757 tcp_sndbuf_expand(sk); 4758 tp->snd_cwnd_stamp = tcp_time_stamp; 4759 } 4760 4761 sk->sk_write_space(sk); 4762 } 4763 4764 static void tcp_check_space(struct sock *sk) 4765 { 4766 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4767 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4768 if (sk->sk_socket && 4769 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4770 tcp_new_space(sk); 4771 } 4772 } 4773 4774 static inline void tcp_data_snd_check(struct sock *sk) 4775 { 4776 tcp_push_pending_frames(sk); 4777 tcp_check_space(sk); 4778 } 4779 4780 /* 4781 * Check if sending an ack is needed. 4782 */ 4783 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4784 { 4785 struct tcp_sock *tp = tcp_sk(sk); 4786 4787 /* More than one full frame received... */ 4788 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4789 /* ... and right edge of window advances far enough. 4790 * (tcp_recvmsg() will send ACK otherwise). Or... 4791 */ 4792 __tcp_select_window(sk) >= tp->rcv_wnd) || 4793 /* We ACK each frame or... */ 4794 tcp_in_quickack_mode(sk) || 4795 /* We have out of order data. */ 4796 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4797 /* Then ack it now */ 4798 tcp_send_ack(sk); 4799 } else { 4800 /* Else, send delayed ack. */ 4801 tcp_send_delayed_ack(sk); 4802 } 4803 } 4804 4805 static inline void tcp_ack_snd_check(struct sock *sk) 4806 { 4807 if (!inet_csk_ack_scheduled(sk)) { 4808 /* We sent a data segment already. */ 4809 return; 4810 } 4811 __tcp_ack_snd_check(sk, 1); 4812 } 4813 4814 /* 4815 * This routine is only called when we have urgent data 4816 * signaled. Its the 'slow' part of tcp_urg. It could be 4817 * moved inline now as tcp_urg is only called from one 4818 * place. We handle URGent data wrong. We have to - as 4819 * BSD still doesn't use the correction from RFC961. 4820 * For 1003.1g we should support a new option TCP_STDURG to permit 4821 * either form (or just set the sysctl tcp_stdurg). 4822 */ 4823 4824 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 4825 { 4826 struct tcp_sock *tp = tcp_sk(sk); 4827 u32 ptr = ntohs(th->urg_ptr); 4828 4829 if (ptr && !sysctl_tcp_stdurg) 4830 ptr--; 4831 ptr += ntohl(th->seq); 4832 4833 /* Ignore urgent data that we've already seen and read. */ 4834 if (after(tp->copied_seq, ptr)) 4835 return; 4836 4837 /* Do not replay urg ptr. 4838 * 4839 * NOTE: interesting situation not covered by specs. 4840 * Misbehaving sender may send urg ptr, pointing to segment, 4841 * which we already have in ofo queue. We are not able to fetch 4842 * such data and will stay in TCP_URG_NOTYET until will be eaten 4843 * by recvmsg(). Seems, we are not obliged to handle such wicked 4844 * situations. But it is worth to think about possibility of some 4845 * DoSes using some hypothetical application level deadlock. 4846 */ 4847 if (before(ptr, tp->rcv_nxt)) 4848 return; 4849 4850 /* Do we already have a newer (or duplicate) urgent pointer? */ 4851 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4852 return; 4853 4854 /* Tell the world about our new urgent pointer. */ 4855 sk_send_sigurg(sk); 4856 4857 /* We may be adding urgent data when the last byte read was 4858 * urgent. To do this requires some care. We cannot just ignore 4859 * tp->copied_seq since we would read the last urgent byte again 4860 * as data, nor can we alter copied_seq until this data arrives 4861 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4862 * 4863 * NOTE. Double Dutch. Rendering to plain English: author of comment 4864 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4865 * and expect that both A and B disappear from stream. This is _wrong_. 4866 * Though this happens in BSD with high probability, this is occasional. 4867 * Any application relying on this is buggy. Note also, that fix "works" 4868 * only in this artificial test. Insert some normal data between A and B and we will 4869 * decline of BSD again. Verdict: it is better to remove to trap 4870 * buggy users. 4871 */ 4872 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4873 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4874 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4875 tp->copied_seq++; 4876 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4877 __skb_unlink(skb, &sk->sk_receive_queue); 4878 __kfree_skb(skb); 4879 } 4880 } 4881 4882 tp->urg_data = TCP_URG_NOTYET; 4883 tp->urg_seq = ptr; 4884 4885 /* Disable header prediction. */ 4886 tp->pred_flags = 0; 4887 } 4888 4889 /* This is the 'fast' part of urgent handling. */ 4890 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 4891 { 4892 struct tcp_sock *tp = tcp_sk(sk); 4893 4894 /* Check if we get a new urgent pointer - normally not. */ 4895 if (th->urg) 4896 tcp_check_urg(sk, th); 4897 4898 /* Do we wait for any urgent data? - normally not... */ 4899 if (tp->urg_data == TCP_URG_NOTYET) { 4900 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 4901 th->syn; 4902 4903 /* Is the urgent pointer pointing into this packet? */ 4904 if (ptr < skb->len) { 4905 u8 tmp; 4906 if (skb_copy_bits(skb, ptr, &tmp, 1)) 4907 BUG(); 4908 tp->urg_data = TCP_URG_VALID | tmp; 4909 if (!sock_flag(sk, SOCK_DEAD)) 4910 sk->sk_data_ready(sk); 4911 } 4912 } 4913 } 4914 4915 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 4916 { 4917 struct tcp_sock *tp = tcp_sk(sk); 4918 int chunk = skb->len - hlen; 4919 int err; 4920 4921 local_bh_enable(); 4922 if (skb_csum_unnecessary(skb)) 4923 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk); 4924 else 4925 err = skb_copy_and_csum_datagram_iovec(skb, hlen, 4926 tp->ucopy.iov); 4927 4928 if (!err) { 4929 tp->ucopy.len -= chunk; 4930 tp->copied_seq += chunk; 4931 tcp_rcv_space_adjust(sk); 4932 } 4933 4934 local_bh_disable(); 4935 return err; 4936 } 4937 4938 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 4939 struct sk_buff *skb) 4940 { 4941 __sum16 result; 4942 4943 if (sock_owned_by_user(sk)) { 4944 local_bh_enable(); 4945 result = __tcp_checksum_complete(skb); 4946 local_bh_disable(); 4947 } else { 4948 result = __tcp_checksum_complete(skb); 4949 } 4950 return result; 4951 } 4952 4953 static inline bool tcp_checksum_complete_user(struct sock *sk, 4954 struct sk_buff *skb) 4955 { 4956 return !skb_csum_unnecessary(skb) && 4957 __tcp_checksum_complete_user(sk, skb); 4958 } 4959 4960 /* Does PAWS and seqno based validation of an incoming segment, flags will 4961 * play significant role here. 4962 */ 4963 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 4964 const struct tcphdr *th, int syn_inerr) 4965 { 4966 struct tcp_sock *tp = tcp_sk(sk); 4967 4968 /* RFC1323: H1. Apply PAWS check first. */ 4969 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 4970 tcp_paws_discard(sk, skb)) { 4971 if (!th->rst) { 4972 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 4973 tcp_send_dupack(sk, skb); 4974 goto discard; 4975 } 4976 /* Reset is accepted even if it did not pass PAWS. */ 4977 } 4978 4979 /* Step 1: check sequence number */ 4980 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 4981 /* RFC793, page 37: "In all states except SYN-SENT, all reset 4982 * (RST) segments are validated by checking their SEQ-fields." 4983 * And page 69: "If an incoming segment is not acceptable, 4984 * an acknowledgment should be sent in reply (unless the RST 4985 * bit is set, if so drop the segment and return)". 4986 */ 4987 if (!th->rst) { 4988 if (th->syn) 4989 goto syn_challenge; 4990 tcp_send_dupack(sk, skb); 4991 } 4992 goto discard; 4993 } 4994 4995 /* Step 2: check RST bit */ 4996 if (th->rst) { 4997 /* RFC 5961 3.2 : 4998 * If sequence number exactly matches RCV.NXT, then 4999 * RESET the connection 5000 * else 5001 * Send a challenge ACK 5002 */ 5003 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5004 tcp_reset(sk); 5005 else 5006 tcp_send_challenge_ack(sk); 5007 goto discard; 5008 } 5009 5010 /* step 3: check security and precedence [ignored] */ 5011 5012 /* step 4: Check for a SYN 5013 * RFC 5691 4.2 : Send a challenge ack 5014 */ 5015 if (th->syn) { 5016 syn_challenge: 5017 if (syn_inerr) 5018 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5019 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5020 tcp_send_challenge_ack(sk); 5021 goto discard; 5022 } 5023 5024 return true; 5025 5026 discard: 5027 __kfree_skb(skb); 5028 return false; 5029 } 5030 5031 /* 5032 * TCP receive function for the ESTABLISHED state. 5033 * 5034 * It is split into a fast path and a slow path. The fast path is 5035 * disabled when: 5036 * - A zero window was announced from us - zero window probing 5037 * is only handled properly in the slow path. 5038 * - Out of order segments arrived. 5039 * - Urgent data is expected. 5040 * - There is no buffer space left 5041 * - Unexpected TCP flags/window values/header lengths are received 5042 * (detected by checking the TCP header against pred_flags) 5043 * - Data is sent in both directions. Fast path only supports pure senders 5044 * or pure receivers (this means either the sequence number or the ack 5045 * value must stay constant) 5046 * - Unexpected TCP option. 5047 * 5048 * When these conditions are not satisfied it drops into a standard 5049 * receive procedure patterned after RFC793 to handle all cases. 5050 * The first three cases are guaranteed by proper pred_flags setting, 5051 * the rest is checked inline. Fast processing is turned on in 5052 * tcp_data_queue when everything is OK. 5053 */ 5054 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5055 const struct tcphdr *th, unsigned int len) 5056 { 5057 struct tcp_sock *tp = tcp_sk(sk); 5058 5059 if (unlikely(sk->sk_rx_dst == NULL)) 5060 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5061 /* 5062 * Header prediction. 5063 * The code loosely follows the one in the famous 5064 * "30 instruction TCP receive" Van Jacobson mail. 5065 * 5066 * Van's trick is to deposit buffers into socket queue 5067 * on a device interrupt, to call tcp_recv function 5068 * on the receive process context and checksum and copy 5069 * the buffer to user space. smart... 5070 * 5071 * Our current scheme is not silly either but we take the 5072 * extra cost of the net_bh soft interrupt processing... 5073 * We do checksum and copy also but from device to kernel. 5074 */ 5075 5076 tp->rx_opt.saw_tstamp = 0; 5077 5078 /* pred_flags is 0xS?10 << 16 + snd_wnd 5079 * if header_prediction is to be made 5080 * 'S' will always be tp->tcp_header_len >> 2 5081 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5082 * turn it off (when there are holes in the receive 5083 * space for instance) 5084 * PSH flag is ignored. 5085 */ 5086 5087 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5088 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5089 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5090 int tcp_header_len = tp->tcp_header_len; 5091 5092 /* Timestamp header prediction: tcp_header_len 5093 * is automatically equal to th->doff*4 due to pred_flags 5094 * match. 5095 */ 5096 5097 /* Check timestamp */ 5098 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5099 /* No? Slow path! */ 5100 if (!tcp_parse_aligned_timestamp(tp, th)) 5101 goto slow_path; 5102 5103 /* If PAWS failed, check it more carefully in slow path */ 5104 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5105 goto slow_path; 5106 5107 /* DO NOT update ts_recent here, if checksum fails 5108 * and timestamp was corrupted part, it will result 5109 * in a hung connection since we will drop all 5110 * future packets due to the PAWS test. 5111 */ 5112 } 5113 5114 if (len <= tcp_header_len) { 5115 /* Bulk data transfer: sender */ 5116 if (len == tcp_header_len) { 5117 /* Predicted packet is in window by definition. 5118 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5119 * Hence, check seq<=rcv_wup reduces to: 5120 */ 5121 if (tcp_header_len == 5122 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5123 tp->rcv_nxt == tp->rcv_wup) 5124 tcp_store_ts_recent(tp); 5125 5126 /* We know that such packets are checksummed 5127 * on entry. 5128 */ 5129 tcp_ack(sk, skb, 0); 5130 __kfree_skb(skb); 5131 tcp_data_snd_check(sk); 5132 return; 5133 } else { /* Header too small */ 5134 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5135 goto discard; 5136 } 5137 } else { 5138 int eaten = 0; 5139 bool fragstolen = false; 5140 5141 if (tp->ucopy.task == current && 5142 tp->copied_seq == tp->rcv_nxt && 5143 len - tcp_header_len <= tp->ucopy.len && 5144 sock_owned_by_user(sk)) { 5145 __set_current_state(TASK_RUNNING); 5146 5147 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5148 /* Predicted packet is in window by definition. 5149 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5150 * Hence, check seq<=rcv_wup reduces to: 5151 */ 5152 if (tcp_header_len == 5153 (sizeof(struct tcphdr) + 5154 TCPOLEN_TSTAMP_ALIGNED) && 5155 tp->rcv_nxt == tp->rcv_wup) 5156 tcp_store_ts_recent(tp); 5157 5158 tcp_rcv_rtt_measure_ts(sk, skb); 5159 5160 __skb_pull(skb, tcp_header_len); 5161 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; 5162 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5163 eaten = 1; 5164 } 5165 } 5166 if (!eaten) { 5167 if (tcp_checksum_complete_user(sk, skb)) 5168 goto csum_error; 5169 5170 if ((int)skb->truesize > sk->sk_forward_alloc) 5171 goto step5; 5172 5173 /* Predicted packet is in window by definition. 5174 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5175 * Hence, check seq<=rcv_wup reduces to: 5176 */ 5177 if (tcp_header_len == 5178 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5179 tp->rcv_nxt == tp->rcv_wup) 5180 tcp_store_ts_recent(tp); 5181 5182 tcp_rcv_rtt_measure_ts(sk, skb); 5183 5184 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5185 5186 /* Bulk data transfer: receiver */ 5187 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5188 &fragstolen); 5189 } 5190 5191 tcp_event_data_recv(sk, skb); 5192 5193 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5194 /* Well, only one small jumplet in fast path... */ 5195 tcp_ack(sk, skb, FLAG_DATA); 5196 tcp_data_snd_check(sk); 5197 if (!inet_csk_ack_scheduled(sk)) 5198 goto no_ack; 5199 } 5200 5201 __tcp_ack_snd_check(sk, 0); 5202 no_ack: 5203 if (eaten) 5204 kfree_skb_partial(skb, fragstolen); 5205 sk->sk_data_ready(sk); 5206 return; 5207 } 5208 } 5209 5210 slow_path: 5211 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5212 goto csum_error; 5213 5214 if (!th->ack && !th->rst) 5215 goto discard; 5216 5217 /* 5218 * Standard slow path. 5219 */ 5220 5221 if (!tcp_validate_incoming(sk, skb, th, 1)) 5222 return; 5223 5224 step5: 5225 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5226 goto discard; 5227 5228 tcp_rcv_rtt_measure_ts(sk, skb); 5229 5230 /* Process urgent data. */ 5231 tcp_urg(sk, skb, th); 5232 5233 /* step 7: process the segment text */ 5234 tcp_data_queue(sk, skb); 5235 5236 tcp_data_snd_check(sk); 5237 tcp_ack_snd_check(sk); 5238 return; 5239 5240 csum_error: 5241 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 5242 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5243 5244 discard: 5245 __kfree_skb(skb); 5246 } 5247 EXPORT_SYMBOL(tcp_rcv_established); 5248 5249 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5250 { 5251 struct tcp_sock *tp = tcp_sk(sk); 5252 struct inet_connection_sock *icsk = inet_csk(sk); 5253 5254 tcp_set_state(sk, TCP_ESTABLISHED); 5255 5256 if (skb != NULL) { 5257 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5258 security_inet_conn_established(sk, skb); 5259 } 5260 5261 /* Make sure socket is routed, for correct metrics. */ 5262 icsk->icsk_af_ops->rebuild_header(sk); 5263 5264 tcp_init_metrics(sk); 5265 5266 tcp_init_congestion_control(sk); 5267 5268 /* Prevent spurious tcp_cwnd_restart() on first data 5269 * packet. 5270 */ 5271 tp->lsndtime = tcp_time_stamp; 5272 5273 tcp_init_buffer_space(sk); 5274 5275 if (sock_flag(sk, SOCK_KEEPOPEN)) 5276 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5277 5278 if (!tp->rx_opt.snd_wscale) 5279 __tcp_fast_path_on(tp, tp->snd_wnd); 5280 else 5281 tp->pred_flags = 0; 5282 5283 if (!sock_flag(sk, SOCK_DEAD)) { 5284 sk->sk_state_change(sk); 5285 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5286 } 5287 } 5288 5289 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5290 struct tcp_fastopen_cookie *cookie) 5291 { 5292 struct tcp_sock *tp = tcp_sk(sk); 5293 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5294 u16 mss = tp->rx_opt.mss_clamp; 5295 bool syn_drop; 5296 5297 if (mss == tp->rx_opt.user_mss) { 5298 struct tcp_options_received opt; 5299 5300 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5301 tcp_clear_options(&opt); 5302 opt.user_mss = opt.mss_clamp = 0; 5303 tcp_parse_options(synack, &opt, 0, NULL); 5304 mss = opt.mss_clamp; 5305 } 5306 5307 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */ 5308 cookie->len = -1; 5309 5310 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably 5311 * the remote receives only the retransmitted (regular) SYNs: either 5312 * the original SYN-data or the corresponding SYN-ACK is lost. 5313 */ 5314 syn_drop = (cookie->len <= 0 && data && tp->total_retrans); 5315 5316 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop); 5317 5318 if (data) { /* Retransmit unacked data in SYN */ 5319 tcp_for_write_queue_from(data, sk) { 5320 if (data == tcp_send_head(sk) || 5321 __tcp_retransmit_skb(sk, data)) 5322 break; 5323 } 5324 tcp_rearm_rto(sk); 5325 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5326 return true; 5327 } 5328 tp->syn_data_acked = tp->syn_data; 5329 if (tp->syn_data_acked) 5330 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5331 return false; 5332 } 5333 5334 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5335 const struct tcphdr *th, unsigned int len) 5336 { 5337 struct inet_connection_sock *icsk = inet_csk(sk); 5338 struct tcp_sock *tp = tcp_sk(sk); 5339 struct tcp_fastopen_cookie foc = { .len = -1 }; 5340 int saved_clamp = tp->rx_opt.mss_clamp; 5341 5342 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5343 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5344 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5345 5346 if (th->ack) { 5347 /* rfc793: 5348 * "If the state is SYN-SENT then 5349 * first check the ACK bit 5350 * If the ACK bit is set 5351 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5352 * a reset (unless the RST bit is set, if so drop 5353 * the segment and return)" 5354 */ 5355 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5356 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5357 goto reset_and_undo; 5358 5359 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5360 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5361 tcp_time_stamp)) { 5362 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5363 goto reset_and_undo; 5364 } 5365 5366 /* Now ACK is acceptable. 5367 * 5368 * "If the RST bit is set 5369 * If the ACK was acceptable then signal the user "error: 5370 * connection reset", drop the segment, enter CLOSED state, 5371 * delete TCB, and return." 5372 */ 5373 5374 if (th->rst) { 5375 tcp_reset(sk); 5376 goto discard; 5377 } 5378 5379 /* rfc793: 5380 * "fifth, if neither of the SYN or RST bits is set then 5381 * drop the segment and return." 5382 * 5383 * See note below! 5384 * --ANK(990513) 5385 */ 5386 if (!th->syn) 5387 goto discard_and_undo; 5388 5389 /* rfc793: 5390 * "If the SYN bit is on ... 5391 * are acceptable then ... 5392 * (our SYN has been ACKed), change the connection 5393 * state to ESTABLISHED..." 5394 */ 5395 5396 tcp_ecn_rcv_synack(tp, th); 5397 5398 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5399 tcp_ack(sk, skb, FLAG_SLOWPATH); 5400 5401 /* Ok.. it's good. Set up sequence numbers and 5402 * move to established. 5403 */ 5404 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5405 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5406 5407 /* RFC1323: The window in SYN & SYN/ACK segments is 5408 * never scaled. 5409 */ 5410 tp->snd_wnd = ntohs(th->window); 5411 5412 if (!tp->rx_opt.wscale_ok) { 5413 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5414 tp->window_clamp = min(tp->window_clamp, 65535U); 5415 } 5416 5417 if (tp->rx_opt.saw_tstamp) { 5418 tp->rx_opt.tstamp_ok = 1; 5419 tp->tcp_header_len = 5420 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5421 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5422 tcp_store_ts_recent(tp); 5423 } else { 5424 tp->tcp_header_len = sizeof(struct tcphdr); 5425 } 5426 5427 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5428 tcp_enable_fack(tp); 5429 5430 tcp_mtup_init(sk); 5431 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5432 tcp_initialize_rcv_mss(sk); 5433 5434 /* Remember, tcp_poll() does not lock socket! 5435 * Change state from SYN-SENT only after copied_seq 5436 * is initialized. */ 5437 tp->copied_seq = tp->rcv_nxt; 5438 5439 smp_mb(); 5440 5441 tcp_finish_connect(sk, skb); 5442 5443 if ((tp->syn_fastopen || tp->syn_data) && 5444 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5445 return -1; 5446 5447 if (sk->sk_write_pending || 5448 icsk->icsk_accept_queue.rskq_defer_accept || 5449 icsk->icsk_ack.pingpong) { 5450 /* Save one ACK. Data will be ready after 5451 * several ticks, if write_pending is set. 5452 * 5453 * It may be deleted, but with this feature tcpdumps 5454 * look so _wonderfully_ clever, that I was not able 5455 * to stand against the temptation 8) --ANK 5456 */ 5457 inet_csk_schedule_ack(sk); 5458 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5459 tcp_enter_quickack_mode(sk); 5460 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5461 TCP_DELACK_MAX, TCP_RTO_MAX); 5462 5463 discard: 5464 __kfree_skb(skb); 5465 return 0; 5466 } else { 5467 tcp_send_ack(sk); 5468 } 5469 return -1; 5470 } 5471 5472 /* No ACK in the segment */ 5473 5474 if (th->rst) { 5475 /* rfc793: 5476 * "If the RST bit is set 5477 * 5478 * Otherwise (no ACK) drop the segment and return." 5479 */ 5480 5481 goto discard_and_undo; 5482 } 5483 5484 /* PAWS check. */ 5485 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5486 tcp_paws_reject(&tp->rx_opt, 0)) 5487 goto discard_and_undo; 5488 5489 if (th->syn) { 5490 /* We see SYN without ACK. It is attempt of 5491 * simultaneous connect with crossed SYNs. 5492 * Particularly, it can be connect to self. 5493 */ 5494 tcp_set_state(sk, TCP_SYN_RECV); 5495 5496 if (tp->rx_opt.saw_tstamp) { 5497 tp->rx_opt.tstamp_ok = 1; 5498 tcp_store_ts_recent(tp); 5499 tp->tcp_header_len = 5500 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5501 } else { 5502 tp->tcp_header_len = sizeof(struct tcphdr); 5503 } 5504 5505 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5506 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5507 5508 /* RFC1323: The window in SYN & SYN/ACK segments is 5509 * never scaled. 5510 */ 5511 tp->snd_wnd = ntohs(th->window); 5512 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5513 tp->max_window = tp->snd_wnd; 5514 5515 tcp_ecn_rcv_syn(tp, th); 5516 5517 tcp_mtup_init(sk); 5518 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5519 tcp_initialize_rcv_mss(sk); 5520 5521 tcp_send_synack(sk); 5522 #if 0 5523 /* Note, we could accept data and URG from this segment. 5524 * There are no obstacles to make this (except that we must 5525 * either change tcp_recvmsg() to prevent it from returning data 5526 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5527 * 5528 * However, if we ignore data in ACKless segments sometimes, 5529 * we have no reasons to accept it sometimes. 5530 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5531 * is not flawless. So, discard packet for sanity. 5532 * Uncomment this return to process the data. 5533 */ 5534 return -1; 5535 #else 5536 goto discard; 5537 #endif 5538 } 5539 /* "fifth, if neither of the SYN or RST bits is set then 5540 * drop the segment and return." 5541 */ 5542 5543 discard_and_undo: 5544 tcp_clear_options(&tp->rx_opt); 5545 tp->rx_opt.mss_clamp = saved_clamp; 5546 goto discard; 5547 5548 reset_and_undo: 5549 tcp_clear_options(&tp->rx_opt); 5550 tp->rx_opt.mss_clamp = saved_clamp; 5551 return 1; 5552 } 5553 5554 /* 5555 * This function implements the receiving procedure of RFC 793 for 5556 * all states except ESTABLISHED and TIME_WAIT. 5557 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5558 * address independent. 5559 */ 5560 5561 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5562 const struct tcphdr *th, unsigned int len) 5563 { 5564 struct tcp_sock *tp = tcp_sk(sk); 5565 struct inet_connection_sock *icsk = inet_csk(sk); 5566 struct request_sock *req; 5567 int queued = 0; 5568 bool acceptable; 5569 u32 synack_stamp; 5570 5571 tp->rx_opt.saw_tstamp = 0; 5572 5573 switch (sk->sk_state) { 5574 case TCP_CLOSE: 5575 goto discard; 5576 5577 case TCP_LISTEN: 5578 if (th->ack) 5579 return 1; 5580 5581 if (th->rst) 5582 goto discard; 5583 5584 if (th->syn) { 5585 if (th->fin) 5586 goto discard; 5587 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5588 return 1; 5589 5590 /* Now we have several options: In theory there is 5591 * nothing else in the frame. KA9Q has an option to 5592 * send data with the syn, BSD accepts data with the 5593 * syn up to the [to be] advertised window and 5594 * Solaris 2.1 gives you a protocol error. For now 5595 * we just ignore it, that fits the spec precisely 5596 * and avoids incompatibilities. It would be nice in 5597 * future to drop through and process the data. 5598 * 5599 * Now that TTCP is starting to be used we ought to 5600 * queue this data. 5601 * But, this leaves one open to an easy denial of 5602 * service attack, and SYN cookies can't defend 5603 * against this problem. So, we drop the data 5604 * in the interest of security over speed unless 5605 * it's still in use. 5606 */ 5607 kfree_skb(skb); 5608 return 0; 5609 } 5610 goto discard; 5611 5612 case TCP_SYN_SENT: 5613 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5614 if (queued >= 0) 5615 return queued; 5616 5617 /* Do step6 onward by hand. */ 5618 tcp_urg(sk, skb, th); 5619 __kfree_skb(skb); 5620 tcp_data_snd_check(sk); 5621 return 0; 5622 } 5623 5624 req = tp->fastopen_rsk; 5625 if (req != NULL) { 5626 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5627 sk->sk_state != TCP_FIN_WAIT1); 5628 5629 if (tcp_check_req(sk, skb, req, NULL, true) == NULL) 5630 goto discard; 5631 } 5632 5633 if (!th->ack && !th->rst) 5634 goto discard; 5635 5636 if (!tcp_validate_incoming(sk, skb, th, 0)) 5637 return 0; 5638 5639 /* step 5: check the ACK field */ 5640 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5641 FLAG_UPDATE_TS_RECENT) > 0; 5642 5643 switch (sk->sk_state) { 5644 case TCP_SYN_RECV: 5645 if (!acceptable) 5646 return 1; 5647 5648 /* Once we leave TCP_SYN_RECV, we no longer need req 5649 * so release it. 5650 */ 5651 if (req) { 5652 synack_stamp = tcp_rsk(req)->snt_synack; 5653 tp->total_retrans = req->num_retrans; 5654 reqsk_fastopen_remove(sk, req, false); 5655 } else { 5656 synack_stamp = tp->lsndtime; 5657 /* Make sure socket is routed, for correct metrics. */ 5658 icsk->icsk_af_ops->rebuild_header(sk); 5659 tcp_init_congestion_control(sk); 5660 5661 tcp_mtup_init(sk); 5662 tp->copied_seq = tp->rcv_nxt; 5663 tcp_init_buffer_space(sk); 5664 } 5665 smp_mb(); 5666 tcp_set_state(sk, TCP_ESTABLISHED); 5667 sk->sk_state_change(sk); 5668 5669 /* Note, that this wakeup is only for marginal crossed SYN case. 5670 * Passively open sockets are not waked up, because 5671 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5672 */ 5673 if (sk->sk_socket) 5674 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5675 5676 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5677 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5678 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5679 tcp_synack_rtt_meas(sk, synack_stamp); 5680 5681 if (tp->rx_opt.tstamp_ok) 5682 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5683 5684 if (req) { 5685 /* Re-arm the timer because data may have been sent out. 5686 * This is similar to the regular data transmission case 5687 * when new data has just been ack'ed. 5688 * 5689 * (TFO) - we could try to be more aggressive and 5690 * retransmitting any data sooner based on when they 5691 * are sent out. 5692 */ 5693 tcp_rearm_rto(sk); 5694 } else 5695 tcp_init_metrics(sk); 5696 5697 tcp_update_pacing_rate(sk); 5698 5699 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5700 tp->lsndtime = tcp_time_stamp; 5701 5702 tcp_initialize_rcv_mss(sk); 5703 tcp_fast_path_on(tp); 5704 break; 5705 5706 case TCP_FIN_WAIT1: { 5707 struct dst_entry *dst; 5708 int tmo; 5709 5710 /* If we enter the TCP_FIN_WAIT1 state and we are a 5711 * Fast Open socket and this is the first acceptable 5712 * ACK we have received, this would have acknowledged 5713 * our SYNACK so stop the SYNACK timer. 5714 */ 5715 if (req != NULL) { 5716 /* Return RST if ack_seq is invalid. 5717 * Note that RFC793 only says to generate a 5718 * DUPACK for it but for TCP Fast Open it seems 5719 * better to treat this case like TCP_SYN_RECV 5720 * above. 5721 */ 5722 if (!acceptable) 5723 return 1; 5724 /* We no longer need the request sock. */ 5725 reqsk_fastopen_remove(sk, req, false); 5726 tcp_rearm_rto(sk); 5727 } 5728 if (tp->snd_una != tp->write_seq) 5729 break; 5730 5731 tcp_set_state(sk, TCP_FIN_WAIT2); 5732 sk->sk_shutdown |= SEND_SHUTDOWN; 5733 5734 dst = __sk_dst_get(sk); 5735 if (dst) 5736 dst_confirm(dst); 5737 5738 if (!sock_flag(sk, SOCK_DEAD)) { 5739 /* Wake up lingering close() */ 5740 sk->sk_state_change(sk); 5741 break; 5742 } 5743 5744 if (tp->linger2 < 0 || 5745 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5746 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5747 tcp_done(sk); 5748 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5749 return 1; 5750 } 5751 5752 tmo = tcp_fin_time(sk); 5753 if (tmo > TCP_TIMEWAIT_LEN) { 5754 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5755 } else if (th->fin || sock_owned_by_user(sk)) { 5756 /* Bad case. We could lose such FIN otherwise. 5757 * It is not a big problem, but it looks confusing 5758 * and not so rare event. We still can lose it now, 5759 * if it spins in bh_lock_sock(), but it is really 5760 * marginal case. 5761 */ 5762 inet_csk_reset_keepalive_timer(sk, tmo); 5763 } else { 5764 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5765 goto discard; 5766 } 5767 break; 5768 } 5769 5770 case TCP_CLOSING: 5771 if (tp->snd_una == tp->write_seq) { 5772 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5773 goto discard; 5774 } 5775 break; 5776 5777 case TCP_LAST_ACK: 5778 if (tp->snd_una == tp->write_seq) { 5779 tcp_update_metrics(sk); 5780 tcp_done(sk); 5781 goto discard; 5782 } 5783 break; 5784 } 5785 5786 /* step 6: check the URG bit */ 5787 tcp_urg(sk, skb, th); 5788 5789 /* step 7: process the segment text */ 5790 switch (sk->sk_state) { 5791 case TCP_CLOSE_WAIT: 5792 case TCP_CLOSING: 5793 case TCP_LAST_ACK: 5794 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5795 break; 5796 case TCP_FIN_WAIT1: 5797 case TCP_FIN_WAIT2: 5798 /* RFC 793 says to queue data in these states, 5799 * RFC 1122 says we MUST send a reset. 5800 * BSD 4.4 also does reset. 5801 */ 5802 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5803 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5804 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5805 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5806 tcp_reset(sk); 5807 return 1; 5808 } 5809 } 5810 /* Fall through */ 5811 case TCP_ESTABLISHED: 5812 tcp_data_queue(sk, skb); 5813 queued = 1; 5814 break; 5815 } 5816 5817 /* tcp_data could move socket to TIME-WAIT */ 5818 if (sk->sk_state != TCP_CLOSE) { 5819 tcp_data_snd_check(sk); 5820 tcp_ack_snd_check(sk); 5821 } 5822 5823 if (!queued) { 5824 discard: 5825 __kfree_skb(skb); 5826 } 5827 return 0; 5828 } 5829 EXPORT_SYMBOL(tcp_rcv_state_process); 5830 5831 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 5832 { 5833 struct inet_request_sock *ireq = inet_rsk(req); 5834 5835 if (family == AF_INET) 5836 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"), 5837 &ireq->ir_rmt_addr, port); 5838 #if IS_ENABLED(CONFIG_IPV6) 5839 else if (family == AF_INET6) 5840 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI6/%u\n"), 5841 &ireq->ir_v6_rmt_addr, port); 5842 #endif 5843 } 5844 5845 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 5846 * 5847 * If we receive a SYN packet with these bits set, it means a 5848 * network is playing bad games with TOS bits. In order to 5849 * avoid possible false congestion notifications, we disable 5850 * TCP ECN negociation. 5851 * 5852 * Exception: tcp_ca wants ECN. This is required for DCTCP 5853 * congestion control; it requires setting ECT on all packets, 5854 * including SYN. We inverse the test in this case: If our 5855 * local socket wants ECN, but peer only set ece/cwr (but not 5856 * ECT in IP header) its probably a non-DCTCP aware sender. 5857 */ 5858 static void tcp_ecn_create_request(struct request_sock *req, 5859 const struct sk_buff *skb, 5860 const struct sock *listen_sk) 5861 { 5862 const struct tcphdr *th = tcp_hdr(skb); 5863 const struct net *net = sock_net(listen_sk); 5864 bool th_ecn = th->ece && th->cwr; 5865 bool ect, need_ecn; 5866 5867 if (!th_ecn) 5868 return; 5869 5870 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 5871 need_ecn = tcp_ca_needs_ecn(listen_sk); 5872 5873 if (!ect && !need_ecn && net->ipv4.sysctl_tcp_ecn) 5874 inet_rsk(req)->ecn_ok = 1; 5875 else if (ect && need_ecn) 5876 inet_rsk(req)->ecn_ok = 1; 5877 } 5878 5879 int tcp_conn_request(struct request_sock_ops *rsk_ops, 5880 const struct tcp_request_sock_ops *af_ops, 5881 struct sock *sk, struct sk_buff *skb) 5882 { 5883 struct tcp_options_received tmp_opt; 5884 struct request_sock *req; 5885 struct tcp_sock *tp = tcp_sk(sk); 5886 struct dst_entry *dst = NULL; 5887 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 5888 bool want_cookie = false, fastopen; 5889 struct flowi fl; 5890 struct tcp_fastopen_cookie foc = { .len = -1 }; 5891 int err; 5892 5893 5894 /* TW buckets are converted to open requests without 5895 * limitations, they conserve resources and peer is 5896 * evidently real one. 5897 */ 5898 if ((sysctl_tcp_syncookies == 2 || 5899 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 5900 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 5901 if (!want_cookie) 5902 goto drop; 5903 } 5904 5905 5906 /* Accept backlog is full. If we have already queued enough 5907 * of warm entries in syn queue, drop request. It is better than 5908 * clogging syn queue with openreqs with exponentially increasing 5909 * timeout. 5910 */ 5911 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 5912 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 5913 goto drop; 5914 } 5915 5916 req = inet_reqsk_alloc(rsk_ops); 5917 if (!req) 5918 goto drop; 5919 5920 tcp_rsk(req)->af_specific = af_ops; 5921 5922 tcp_clear_options(&tmp_opt); 5923 tmp_opt.mss_clamp = af_ops->mss_clamp; 5924 tmp_opt.user_mss = tp->rx_opt.user_mss; 5925 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 5926 5927 if (want_cookie && !tmp_opt.saw_tstamp) 5928 tcp_clear_options(&tmp_opt); 5929 5930 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 5931 tcp_openreq_init(req, &tmp_opt, skb, sk); 5932 5933 af_ops->init_req(req, sk, skb); 5934 5935 if (security_inet_conn_request(sk, skb, req)) 5936 goto drop_and_free; 5937 5938 if (!want_cookie || tmp_opt.tstamp_ok) 5939 tcp_ecn_create_request(req, skb, sk); 5940 5941 if (want_cookie) { 5942 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 5943 req->cookie_ts = tmp_opt.tstamp_ok; 5944 } else if (!isn) { 5945 /* VJ's idea. We save last timestamp seen 5946 * from the destination in peer table, when entering 5947 * state TIME-WAIT, and check against it before 5948 * accepting new connection request. 5949 * 5950 * If "isn" is not zero, this request hit alive 5951 * timewait bucket, so that all the necessary checks 5952 * are made in the function processing timewait state. 5953 */ 5954 if (tcp_death_row.sysctl_tw_recycle) { 5955 bool strict; 5956 5957 dst = af_ops->route_req(sk, &fl, req, &strict); 5958 5959 if (dst && strict && 5960 !tcp_peer_is_proven(req, dst, true, 5961 tmp_opt.saw_tstamp)) { 5962 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 5963 goto drop_and_release; 5964 } 5965 } 5966 /* Kill the following clause, if you dislike this way. */ 5967 else if (!sysctl_tcp_syncookies && 5968 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 5969 (sysctl_max_syn_backlog >> 2)) && 5970 !tcp_peer_is_proven(req, dst, false, 5971 tmp_opt.saw_tstamp)) { 5972 /* Without syncookies last quarter of 5973 * backlog is filled with destinations, 5974 * proven to be alive. 5975 * It means that we continue to communicate 5976 * to destinations, already remembered 5977 * to the moment of synflood. 5978 */ 5979 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 5980 rsk_ops->family); 5981 goto drop_and_release; 5982 } 5983 5984 isn = af_ops->init_seq(skb); 5985 } 5986 if (!dst) { 5987 dst = af_ops->route_req(sk, &fl, req, NULL); 5988 if (!dst) 5989 goto drop_and_free; 5990 } 5991 5992 tcp_rsk(req)->snt_isn = isn; 5993 tcp_openreq_init_rwin(req, sk, dst); 5994 fastopen = !want_cookie && 5995 tcp_try_fastopen(sk, skb, req, &foc, dst); 5996 err = af_ops->send_synack(sk, dst, &fl, req, 5997 skb_get_queue_mapping(skb), &foc); 5998 if (!fastopen) { 5999 if (err || want_cookie) 6000 goto drop_and_free; 6001 6002 tcp_rsk(req)->listener = NULL; 6003 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6004 } 6005 6006 return 0; 6007 6008 drop_and_release: 6009 dst_release(dst); 6010 drop_and_free: 6011 reqsk_free(req); 6012 drop: 6013 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 6014 return 0; 6015 } 6016 EXPORT_SYMBOL(tcp_conn_request); 6017