xref: /linux/net/ipv4/tcp_input.c (revision 2dbf708448c836754d25fe6108c5bfe1f5697c95)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 2;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90 
91 int sysctl_tcp_stdurg __read_mostly;
92 int sysctl_tcp_rfc1337 __read_mostly;
93 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94 int sysctl_tcp_frto __read_mostly = 2;
95 int sysctl_tcp_frto_response __read_mostly;
96 int sysctl_tcp_nometrics_save __read_mostly;
97 
98 int sysctl_tcp_thin_dupack __read_mostly;
99 
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_abc __read_mostly;
102 
103 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
104 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
105 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
106 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
107 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
108 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
109 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
110 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
111 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
112 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
113 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
114 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
115 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
116 
117 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
118 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
119 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
120 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
121 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122 
123 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
124 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 
126 /* Adapt the MSS value used to make delayed ack decision to the
127  * real world.
128  */
129 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 {
131 	struct inet_connection_sock *icsk = inet_csk(sk);
132 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
133 	unsigned int len;
134 
135 	icsk->icsk_ack.last_seg_size = 0;
136 
137 	/* skb->len may jitter because of SACKs, even if peer
138 	 * sends good full-sized frames.
139 	 */
140 	len = skb_shinfo(skb)->gso_size ? : skb->len;
141 	if (len >= icsk->icsk_ack.rcv_mss) {
142 		icsk->icsk_ack.rcv_mss = len;
143 	} else {
144 		/* Otherwise, we make more careful check taking into account,
145 		 * that SACKs block is variable.
146 		 *
147 		 * "len" is invariant segment length, including TCP header.
148 		 */
149 		len += skb->data - skb_transport_header(skb);
150 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
151 		    /* If PSH is not set, packet should be
152 		     * full sized, provided peer TCP is not badly broken.
153 		     * This observation (if it is correct 8)) allows
154 		     * to handle super-low mtu links fairly.
155 		     */
156 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
157 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
158 			/* Subtract also invariant (if peer is RFC compliant),
159 			 * tcp header plus fixed timestamp option length.
160 			 * Resulting "len" is MSS free of SACK jitter.
161 			 */
162 			len -= tcp_sk(sk)->tcp_header_len;
163 			icsk->icsk_ack.last_seg_size = len;
164 			if (len == lss) {
165 				icsk->icsk_ack.rcv_mss = len;
166 				return;
167 			}
168 		}
169 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
170 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
171 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
172 	}
173 }
174 
175 static void tcp_incr_quickack(struct sock *sk)
176 {
177 	struct inet_connection_sock *icsk = inet_csk(sk);
178 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179 
180 	if (quickacks == 0)
181 		quickacks = 2;
182 	if (quickacks > icsk->icsk_ack.quick)
183 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
184 }
185 
186 static void tcp_enter_quickack_mode(struct sock *sk)
187 {
188 	struct inet_connection_sock *icsk = inet_csk(sk);
189 	tcp_incr_quickack(sk);
190 	icsk->icsk_ack.pingpong = 0;
191 	icsk->icsk_ack.ato = TCP_ATO_MIN;
192 }
193 
194 /* Send ACKs quickly, if "quick" count is not exhausted
195  * and the session is not interactive.
196  */
197 
198 static inline int tcp_in_quickack_mode(const struct sock *sk)
199 {
200 	const struct inet_connection_sock *icsk = inet_csk(sk);
201 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
202 }
203 
204 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 {
206 	if (tp->ecn_flags & TCP_ECN_OK)
207 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
208 }
209 
210 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
211 {
212 	if (tcp_hdr(skb)->cwr)
213 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215 
216 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 {
218 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
219 }
220 
221 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
222 {
223 	if (!(tp->ecn_flags & TCP_ECN_OK))
224 		return;
225 
226 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
227 	case INET_ECN_NOT_ECT:
228 		/* Funny extension: if ECT is not set on a segment,
229 		 * and we already seen ECT on a previous segment,
230 		 * it is probably a retransmit.
231 		 */
232 		if (tp->ecn_flags & TCP_ECN_SEEN)
233 			tcp_enter_quickack_mode((struct sock *)tp);
234 		break;
235 	case INET_ECN_CE:
236 		tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
237 		/* fallinto */
238 	default:
239 		tp->ecn_flags |= TCP_ECN_SEEN;
240 	}
241 }
242 
243 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
244 {
245 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
246 		tp->ecn_flags &= ~TCP_ECN_OK;
247 }
248 
249 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
250 {
251 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
252 		tp->ecn_flags &= ~TCP_ECN_OK;
253 }
254 
255 static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
256 {
257 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
258 		return 1;
259 	return 0;
260 }
261 
262 /* Buffer size and advertised window tuning.
263  *
264  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
265  */
266 
267 static void tcp_fixup_sndbuf(struct sock *sk)
268 {
269 	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
270 
271 	sndmem *= TCP_INIT_CWND;
272 	if (sk->sk_sndbuf < sndmem)
273 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
274 }
275 
276 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
277  *
278  * All tcp_full_space() is split to two parts: "network" buffer, allocated
279  * forward and advertised in receiver window (tp->rcv_wnd) and
280  * "application buffer", required to isolate scheduling/application
281  * latencies from network.
282  * window_clamp is maximal advertised window. It can be less than
283  * tcp_full_space(), in this case tcp_full_space() - window_clamp
284  * is reserved for "application" buffer. The less window_clamp is
285  * the smoother our behaviour from viewpoint of network, but the lower
286  * throughput and the higher sensitivity of the connection to losses. 8)
287  *
288  * rcv_ssthresh is more strict window_clamp used at "slow start"
289  * phase to predict further behaviour of this connection.
290  * It is used for two goals:
291  * - to enforce header prediction at sender, even when application
292  *   requires some significant "application buffer". It is check #1.
293  * - to prevent pruning of receive queue because of misprediction
294  *   of receiver window. Check #2.
295  *
296  * The scheme does not work when sender sends good segments opening
297  * window and then starts to feed us spaghetti. But it should work
298  * in common situations. Otherwise, we have to rely on queue collapsing.
299  */
300 
301 /* Slow part of check#2. */
302 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
303 {
304 	struct tcp_sock *tp = tcp_sk(sk);
305 	/* Optimize this! */
306 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
307 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
308 
309 	while (tp->rcv_ssthresh <= window) {
310 		if (truesize <= skb->len)
311 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
312 
313 		truesize >>= 1;
314 		window >>= 1;
315 	}
316 	return 0;
317 }
318 
319 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
320 {
321 	struct tcp_sock *tp = tcp_sk(sk);
322 
323 	/* Check #1 */
324 	if (tp->rcv_ssthresh < tp->window_clamp &&
325 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
326 	    !sk_under_memory_pressure(sk)) {
327 		int incr;
328 
329 		/* Check #2. Increase window, if skb with such overhead
330 		 * will fit to rcvbuf in future.
331 		 */
332 		if (tcp_win_from_space(skb->truesize) <= skb->len)
333 			incr = 2 * tp->advmss;
334 		else
335 			incr = __tcp_grow_window(sk, skb);
336 
337 		if (incr) {
338 			incr = max_t(int, incr, 2 * skb->len);
339 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
340 					       tp->window_clamp);
341 			inet_csk(sk)->icsk_ack.quick |= 1;
342 		}
343 	}
344 }
345 
346 /* 3. Tuning rcvbuf, when connection enters established state. */
347 
348 static void tcp_fixup_rcvbuf(struct sock *sk)
349 {
350 	u32 mss = tcp_sk(sk)->advmss;
351 	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
352 	int rcvmem;
353 
354 	/* Limit to 10 segments if mss <= 1460,
355 	 * or 14600/mss segments, with a minimum of two segments.
356 	 */
357 	if (mss > 1460)
358 		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
359 
360 	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
361 	while (tcp_win_from_space(rcvmem) < mss)
362 		rcvmem += 128;
363 
364 	rcvmem *= icwnd;
365 
366 	if (sk->sk_rcvbuf < rcvmem)
367 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
368 }
369 
370 /* 4. Try to fixup all. It is made immediately after connection enters
371  *    established state.
372  */
373 static void tcp_init_buffer_space(struct sock *sk)
374 {
375 	struct tcp_sock *tp = tcp_sk(sk);
376 	int maxwin;
377 
378 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
379 		tcp_fixup_rcvbuf(sk);
380 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
381 		tcp_fixup_sndbuf(sk);
382 
383 	tp->rcvq_space.space = tp->rcv_wnd;
384 
385 	maxwin = tcp_full_space(sk);
386 
387 	if (tp->window_clamp >= maxwin) {
388 		tp->window_clamp = maxwin;
389 
390 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
391 			tp->window_clamp = max(maxwin -
392 					       (maxwin >> sysctl_tcp_app_win),
393 					       4 * tp->advmss);
394 	}
395 
396 	/* Force reservation of one segment. */
397 	if (sysctl_tcp_app_win &&
398 	    tp->window_clamp > 2 * tp->advmss &&
399 	    tp->window_clamp + tp->advmss > maxwin)
400 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
401 
402 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
403 	tp->snd_cwnd_stamp = tcp_time_stamp;
404 }
405 
406 /* 5. Recalculate window clamp after socket hit its memory bounds. */
407 static void tcp_clamp_window(struct sock *sk)
408 {
409 	struct tcp_sock *tp = tcp_sk(sk);
410 	struct inet_connection_sock *icsk = inet_csk(sk);
411 
412 	icsk->icsk_ack.quick = 0;
413 
414 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
415 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
416 	    !sk_under_memory_pressure(sk) &&
417 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
418 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
419 				    sysctl_tcp_rmem[2]);
420 	}
421 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
422 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
423 }
424 
425 /* Initialize RCV_MSS value.
426  * RCV_MSS is an our guess about MSS used by the peer.
427  * We haven't any direct information about the MSS.
428  * It's better to underestimate the RCV_MSS rather than overestimate.
429  * Overestimations make us ACKing less frequently than needed.
430  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
431  */
432 void tcp_initialize_rcv_mss(struct sock *sk)
433 {
434 	const struct tcp_sock *tp = tcp_sk(sk);
435 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
436 
437 	hint = min(hint, tp->rcv_wnd / 2);
438 	hint = min(hint, TCP_MSS_DEFAULT);
439 	hint = max(hint, TCP_MIN_MSS);
440 
441 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
442 }
443 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
444 
445 /* Receiver "autotuning" code.
446  *
447  * The algorithm for RTT estimation w/o timestamps is based on
448  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
449  * <http://public.lanl.gov/radiant/pubs.html#DRS>
450  *
451  * More detail on this code can be found at
452  * <http://staff.psc.edu/jheffner/>,
453  * though this reference is out of date.  A new paper
454  * is pending.
455  */
456 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
457 {
458 	u32 new_sample = tp->rcv_rtt_est.rtt;
459 	long m = sample;
460 
461 	if (m == 0)
462 		m = 1;
463 
464 	if (new_sample != 0) {
465 		/* If we sample in larger samples in the non-timestamp
466 		 * case, we could grossly overestimate the RTT especially
467 		 * with chatty applications or bulk transfer apps which
468 		 * are stalled on filesystem I/O.
469 		 *
470 		 * Also, since we are only going for a minimum in the
471 		 * non-timestamp case, we do not smooth things out
472 		 * else with timestamps disabled convergence takes too
473 		 * long.
474 		 */
475 		if (!win_dep) {
476 			m -= (new_sample >> 3);
477 			new_sample += m;
478 		} else {
479 			m <<= 3;
480 			if (m < new_sample)
481 				new_sample = m;
482 		}
483 	} else {
484 		/* No previous measure. */
485 		new_sample = m << 3;
486 	}
487 
488 	if (tp->rcv_rtt_est.rtt != new_sample)
489 		tp->rcv_rtt_est.rtt = new_sample;
490 }
491 
492 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
493 {
494 	if (tp->rcv_rtt_est.time == 0)
495 		goto new_measure;
496 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
497 		return;
498 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
499 
500 new_measure:
501 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
502 	tp->rcv_rtt_est.time = tcp_time_stamp;
503 }
504 
505 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
506 					  const struct sk_buff *skb)
507 {
508 	struct tcp_sock *tp = tcp_sk(sk);
509 	if (tp->rx_opt.rcv_tsecr &&
510 	    (TCP_SKB_CB(skb)->end_seq -
511 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
512 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
513 }
514 
515 /*
516  * This function should be called every time data is copied to user space.
517  * It calculates the appropriate TCP receive buffer space.
518  */
519 void tcp_rcv_space_adjust(struct sock *sk)
520 {
521 	struct tcp_sock *tp = tcp_sk(sk);
522 	int time;
523 	int space;
524 
525 	if (tp->rcvq_space.time == 0)
526 		goto new_measure;
527 
528 	time = tcp_time_stamp - tp->rcvq_space.time;
529 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
530 		return;
531 
532 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
533 
534 	space = max(tp->rcvq_space.space, space);
535 
536 	if (tp->rcvq_space.space != space) {
537 		int rcvmem;
538 
539 		tp->rcvq_space.space = space;
540 
541 		if (sysctl_tcp_moderate_rcvbuf &&
542 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
543 			int new_clamp = space;
544 
545 			/* Receive space grows, normalize in order to
546 			 * take into account packet headers and sk_buff
547 			 * structure overhead.
548 			 */
549 			space /= tp->advmss;
550 			if (!space)
551 				space = 1;
552 			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
553 			while (tcp_win_from_space(rcvmem) < tp->advmss)
554 				rcvmem += 128;
555 			space *= rcvmem;
556 			space = min(space, sysctl_tcp_rmem[2]);
557 			if (space > sk->sk_rcvbuf) {
558 				sk->sk_rcvbuf = space;
559 
560 				/* Make the window clamp follow along.  */
561 				tp->window_clamp = new_clamp;
562 			}
563 		}
564 	}
565 
566 new_measure:
567 	tp->rcvq_space.seq = tp->copied_seq;
568 	tp->rcvq_space.time = tcp_time_stamp;
569 }
570 
571 /* There is something which you must keep in mind when you analyze the
572  * behavior of the tp->ato delayed ack timeout interval.  When a
573  * connection starts up, we want to ack as quickly as possible.  The
574  * problem is that "good" TCP's do slow start at the beginning of data
575  * transmission.  The means that until we send the first few ACK's the
576  * sender will sit on his end and only queue most of his data, because
577  * he can only send snd_cwnd unacked packets at any given time.  For
578  * each ACK we send, he increments snd_cwnd and transmits more of his
579  * queue.  -DaveM
580  */
581 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
582 {
583 	struct tcp_sock *tp = tcp_sk(sk);
584 	struct inet_connection_sock *icsk = inet_csk(sk);
585 	u32 now;
586 
587 	inet_csk_schedule_ack(sk);
588 
589 	tcp_measure_rcv_mss(sk, skb);
590 
591 	tcp_rcv_rtt_measure(tp);
592 
593 	now = tcp_time_stamp;
594 
595 	if (!icsk->icsk_ack.ato) {
596 		/* The _first_ data packet received, initialize
597 		 * delayed ACK engine.
598 		 */
599 		tcp_incr_quickack(sk);
600 		icsk->icsk_ack.ato = TCP_ATO_MIN;
601 	} else {
602 		int m = now - icsk->icsk_ack.lrcvtime;
603 
604 		if (m <= TCP_ATO_MIN / 2) {
605 			/* The fastest case is the first. */
606 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
607 		} else if (m < icsk->icsk_ack.ato) {
608 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
609 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
610 				icsk->icsk_ack.ato = icsk->icsk_rto;
611 		} else if (m > icsk->icsk_rto) {
612 			/* Too long gap. Apparently sender failed to
613 			 * restart window, so that we send ACKs quickly.
614 			 */
615 			tcp_incr_quickack(sk);
616 			sk_mem_reclaim(sk);
617 		}
618 	}
619 	icsk->icsk_ack.lrcvtime = now;
620 
621 	TCP_ECN_check_ce(tp, skb);
622 
623 	if (skb->len >= 128)
624 		tcp_grow_window(sk, skb);
625 }
626 
627 /* Called to compute a smoothed rtt estimate. The data fed to this
628  * routine either comes from timestamps, or from segments that were
629  * known _not_ to have been retransmitted [see Karn/Partridge
630  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
631  * piece by Van Jacobson.
632  * NOTE: the next three routines used to be one big routine.
633  * To save cycles in the RFC 1323 implementation it was better to break
634  * it up into three procedures. -- erics
635  */
636 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
637 {
638 	struct tcp_sock *tp = tcp_sk(sk);
639 	long m = mrtt; /* RTT */
640 
641 	/*	The following amusing code comes from Jacobson's
642 	 *	article in SIGCOMM '88.  Note that rtt and mdev
643 	 *	are scaled versions of rtt and mean deviation.
644 	 *	This is designed to be as fast as possible
645 	 *	m stands for "measurement".
646 	 *
647 	 *	On a 1990 paper the rto value is changed to:
648 	 *	RTO = rtt + 4 * mdev
649 	 *
650 	 * Funny. This algorithm seems to be very broken.
651 	 * These formulae increase RTO, when it should be decreased, increase
652 	 * too slowly, when it should be increased quickly, decrease too quickly
653 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
654 	 * does not matter how to _calculate_ it. Seems, it was trap
655 	 * that VJ failed to avoid. 8)
656 	 */
657 	if (m == 0)
658 		m = 1;
659 	if (tp->srtt != 0) {
660 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
661 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
662 		if (m < 0) {
663 			m = -m;		/* m is now abs(error) */
664 			m -= (tp->mdev >> 2);   /* similar update on mdev */
665 			/* This is similar to one of Eifel findings.
666 			 * Eifel blocks mdev updates when rtt decreases.
667 			 * This solution is a bit different: we use finer gain
668 			 * for mdev in this case (alpha*beta).
669 			 * Like Eifel it also prevents growth of rto,
670 			 * but also it limits too fast rto decreases,
671 			 * happening in pure Eifel.
672 			 */
673 			if (m > 0)
674 				m >>= 3;
675 		} else {
676 			m -= (tp->mdev >> 2);   /* similar update on mdev */
677 		}
678 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
679 		if (tp->mdev > tp->mdev_max) {
680 			tp->mdev_max = tp->mdev;
681 			if (tp->mdev_max > tp->rttvar)
682 				tp->rttvar = tp->mdev_max;
683 		}
684 		if (after(tp->snd_una, tp->rtt_seq)) {
685 			if (tp->mdev_max < tp->rttvar)
686 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
687 			tp->rtt_seq = tp->snd_nxt;
688 			tp->mdev_max = tcp_rto_min(sk);
689 		}
690 	} else {
691 		/* no previous measure. */
692 		tp->srtt = m << 3;	/* take the measured time to be rtt */
693 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
694 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
695 		tp->rtt_seq = tp->snd_nxt;
696 	}
697 }
698 
699 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
700  * routine referred to above.
701  */
702 static inline void tcp_set_rto(struct sock *sk)
703 {
704 	const struct tcp_sock *tp = tcp_sk(sk);
705 	/* Old crap is replaced with new one. 8)
706 	 *
707 	 * More seriously:
708 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
709 	 *    It cannot be less due to utterly erratic ACK generation made
710 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
711 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
712 	 *    is invisible. Actually, Linux-2.4 also generates erratic
713 	 *    ACKs in some circumstances.
714 	 */
715 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
716 
717 	/* 2. Fixups made earlier cannot be right.
718 	 *    If we do not estimate RTO correctly without them,
719 	 *    all the algo is pure shit and should be replaced
720 	 *    with correct one. It is exactly, which we pretend to do.
721 	 */
722 
723 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
724 	 * guarantees that rto is higher.
725 	 */
726 	tcp_bound_rto(sk);
727 }
728 
729 /* Save metrics learned by this TCP session.
730    This function is called only, when TCP finishes successfully
731    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
732  */
733 void tcp_update_metrics(struct sock *sk)
734 {
735 	struct tcp_sock *tp = tcp_sk(sk);
736 	struct dst_entry *dst = __sk_dst_get(sk);
737 
738 	if (sysctl_tcp_nometrics_save)
739 		return;
740 
741 	dst_confirm(dst);
742 
743 	if (dst && (dst->flags & DST_HOST)) {
744 		const struct inet_connection_sock *icsk = inet_csk(sk);
745 		int m;
746 		unsigned long rtt;
747 
748 		if (icsk->icsk_backoff || !tp->srtt) {
749 			/* This session failed to estimate rtt. Why?
750 			 * Probably, no packets returned in time.
751 			 * Reset our results.
752 			 */
753 			if (!(dst_metric_locked(dst, RTAX_RTT)))
754 				dst_metric_set(dst, RTAX_RTT, 0);
755 			return;
756 		}
757 
758 		rtt = dst_metric_rtt(dst, RTAX_RTT);
759 		m = rtt - tp->srtt;
760 
761 		/* If newly calculated rtt larger than stored one,
762 		 * store new one. Otherwise, use EWMA. Remember,
763 		 * rtt overestimation is always better than underestimation.
764 		 */
765 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
766 			if (m <= 0)
767 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
768 			else
769 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
770 		}
771 
772 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
773 			unsigned long var;
774 			if (m < 0)
775 				m = -m;
776 
777 			/* Scale deviation to rttvar fixed point */
778 			m >>= 1;
779 			if (m < tp->mdev)
780 				m = tp->mdev;
781 
782 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
783 			if (m >= var)
784 				var = m;
785 			else
786 				var -= (var - m) >> 2;
787 
788 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
789 		}
790 
791 		if (tcp_in_initial_slowstart(tp)) {
792 			/* Slow start still did not finish. */
793 			if (dst_metric(dst, RTAX_SSTHRESH) &&
794 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
795 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
796 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
797 			if (!dst_metric_locked(dst, RTAX_CWND) &&
798 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
799 				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
800 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
801 			   icsk->icsk_ca_state == TCP_CA_Open) {
802 			/* Cong. avoidance phase, cwnd is reliable. */
803 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
804 				dst_metric_set(dst, RTAX_SSTHRESH,
805 					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
806 			if (!dst_metric_locked(dst, RTAX_CWND))
807 				dst_metric_set(dst, RTAX_CWND,
808 					       (dst_metric(dst, RTAX_CWND) +
809 						tp->snd_cwnd) >> 1);
810 		} else {
811 			/* Else slow start did not finish, cwnd is non-sense,
812 			   ssthresh may be also invalid.
813 			 */
814 			if (!dst_metric_locked(dst, RTAX_CWND))
815 				dst_metric_set(dst, RTAX_CWND,
816 					       (dst_metric(dst, RTAX_CWND) +
817 						tp->snd_ssthresh) >> 1);
818 			if (dst_metric(dst, RTAX_SSTHRESH) &&
819 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
820 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
821 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
822 		}
823 
824 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
825 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
826 			    tp->reordering != sysctl_tcp_reordering)
827 				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
828 		}
829 	}
830 }
831 
832 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
833 {
834 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
835 
836 	if (!cwnd)
837 		cwnd = TCP_INIT_CWND;
838 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
839 }
840 
841 /* Set slow start threshold and cwnd not falling to slow start */
842 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
843 {
844 	struct tcp_sock *tp = tcp_sk(sk);
845 	const struct inet_connection_sock *icsk = inet_csk(sk);
846 
847 	tp->prior_ssthresh = 0;
848 	tp->bytes_acked = 0;
849 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
850 		tp->undo_marker = 0;
851 		if (set_ssthresh)
852 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
853 		tp->snd_cwnd = min(tp->snd_cwnd,
854 				   tcp_packets_in_flight(tp) + 1U);
855 		tp->snd_cwnd_cnt = 0;
856 		tp->high_seq = tp->snd_nxt;
857 		tp->snd_cwnd_stamp = tcp_time_stamp;
858 		TCP_ECN_queue_cwr(tp);
859 
860 		tcp_set_ca_state(sk, TCP_CA_CWR);
861 	}
862 }
863 
864 /*
865  * Packet counting of FACK is based on in-order assumptions, therefore TCP
866  * disables it when reordering is detected
867  */
868 static void tcp_disable_fack(struct tcp_sock *tp)
869 {
870 	/* RFC3517 uses different metric in lost marker => reset on change */
871 	if (tcp_is_fack(tp))
872 		tp->lost_skb_hint = NULL;
873 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
874 }
875 
876 /* Take a notice that peer is sending D-SACKs */
877 static void tcp_dsack_seen(struct tcp_sock *tp)
878 {
879 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
880 }
881 
882 /* Initialize metrics on socket. */
883 
884 static void tcp_init_metrics(struct sock *sk)
885 {
886 	struct tcp_sock *tp = tcp_sk(sk);
887 	struct dst_entry *dst = __sk_dst_get(sk);
888 
889 	if (dst == NULL)
890 		goto reset;
891 
892 	dst_confirm(dst);
893 
894 	if (dst_metric_locked(dst, RTAX_CWND))
895 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
896 	if (dst_metric(dst, RTAX_SSTHRESH)) {
897 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
898 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
899 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
900 	} else {
901 		/* ssthresh may have been reduced unnecessarily during.
902 		 * 3WHS. Restore it back to its initial default.
903 		 */
904 		tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
905 	}
906 	if (dst_metric(dst, RTAX_REORDERING) &&
907 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
908 		tcp_disable_fack(tp);
909 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
910 	}
911 
912 	if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
913 		goto reset;
914 
915 	/* Initial rtt is determined from SYN,SYN-ACK.
916 	 * The segment is small and rtt may appear much
917 	 * less than real one. Use per-dst memory
918 	 * to make it more realistic.
919 	 *
920 	 * A bit of theory. RTT is time passed after "normal" sized packet
921 	 * is sent until it is ACKed. In normal circumstances sending small
922 	 * packets force peer to delay ACKs and calculation is correct too.
923 	 * The algorithm is adaptive and, provided we follow specs, it
924 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
925 	 * tricks sort of "quick acks" for time long enough to decrease RTT
926 	 * to low value, and then abruptly stops to do it and starts to delay
927 	 * ACKs, wait for troubles.
928 	 */
929 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
930 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
931 		tp->rtt_seq = tp->snd_nxt;
932 	}
933 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
934 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
935 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
936 	}
937 	tcp_set_rto(sk);
938 reset:
939 	if (tp->srtt == 0) {
940 		/* RFC2988bis: We've failed to get a valid RTT sample from
941 		 * 3WHS. This is most likely due to retransmission,
942 		 * including spurious one. Reset the RTO back to 3secs
943 		 * from the more aggressive 1sec to avoid more spurious
944 		 * retransmission.
945 		 */
946 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
947 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
948 	}
949 	/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
950 	 * retransmitted. In light of RFC2988bis' more aggressive 1sec
951 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
952 	 * retransmission has occurred.
953 	 */
954 	if (tp->total_retrans > 1)
955 		tp->snd_cwnd = 1;
956 	else
957 		tp->snd_cwnd = tcp_init_cwnd(tp, dst);
958 	tp->snd_cwnd_stamp = tcp_time_stamp;
959 }
960 
961 static void tcp_update_reordering(struct sock *sk, const int metric,
962 				  const int ts)
963 {
964 	struct tcp_sock *tp = tcp_sk(sk);
965 	if (metric > tp->reordering) {
966 		int mib_idx;
967 
968 		tp->reordering = min(TCP_MAX_REORDERING, metric);
969 
970 		/* This exciting event is worth to be remembered. 8) */
971 		if (ts)
972 			mib_idx = LINUX_MIB_TCPTSREORDER;
973 		else if (tcp_is_reno(tp))
974 			mib_idx = LINUX_MIB_TCPRENOREORDER;
975 		else if (tcp_is_fack(tp))
976 			mib_idx = LINUX_MIB_TCPFACKREORDER;
977 		else
978 			mib_idx = LINUX_MIB_TCPSACKREORDER;
979 
980 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
981 #if FASTRETRANS_DEBUG > 1
982 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
983 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
984 		       tp->reordering,
985 		       tp->fackets_out,
986 		       tp->sacked_out,
987 		       tp->undo_marker ? tp->undo_retrans : 0);
988 #endif
989 		tcp_disable_fack(tp);
990 	}
991 }
992 
993 /* This must be called before lost_out is incremented */
994 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
995 {
996 	if ((tp->retransmit_skb_hint == NULL) ||
997 	    before(TCP_SKB_CB(skb)->seq,
998 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
999 		tp->retransmit_skb_hint = skb;
1000 
1001 	if (!tp->lost_out ||
1002 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1003 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1004 }
1005 
1006 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1007 {
1008 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1009 		tcp_verify_retransmit_hint(tp, skb);
1010 
1011 		tp->lost_out += tcp_skb_pcount(skb);
1012 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1013 	}
1014 }
1015 
1016 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1017 					    struct sk_buff *skb)
1018 {
1019 	tcp_verify_retransmit_hint(tp, skb);
1020 
1021 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1022 		tp->lost_out += tcp_skb_pcount(skb);
1023 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1024 	}
1025 }
1026 
1027 /* This procedure tags the retransmission queue when SACKs arrive.
1028  *
1029  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1030  * Packets in queue with these bits set are counted in variables
1031  * sacked_out, retrans_out and lost_out, correspondingly.
1032  *
1033  * Valid combinations are:
1034  * Tag  InFlight	Description
1035  * 0	1		- orig segment is in flight.
1036  * S	0		- nothing flies, orig reached receiver.
1037  * L	0		- nothing flies, orig lost by net.
1038  * R	2		- both orig and retransmit are in flight.
1039  * L|R	1		- orig is lost, retransmit is in flight.
1040  * S|R  1		- orig reached receiver, retrans is still in flight.
1041  * (L|S|R is logically valid, it could occur when L|R is sacked,
1042  *  but it is equivalent to plain S and code short-curcuits it to S.
1043  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1044  *
1045  * These 6 states form finite state machine, controlled by the following events:
1046  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1047  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1048  * 3. Loss detection event of two flavors:
1049  *	A. Scoreboard estimator decided the packet is lost.
1050  *	   A'. Reno "three dupacks" marks head of queue lost.
1051  *	   A''. Its FACK modification, head until snd.fack is lost.
1052  *	B. SACK arrives sacking SND.NXT at the moment, when the
1053  *	   segment was retransmitted.
1054  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1055  *
1056  * It is pleasant to note, that state diagram turns out to be commutative,
1057  * so that we are allowed not to be bothered by order of our actions,
1058  * when multiple events arrive simultaneously. (see the function below).
1059  *
1060  * Reordering detection.
1061  * --------------------
1062  * Reordering metric is maximal distance, which a packet can be displaced
1063  * in packet stream. With SACKs we can estimate it:
1064  *
1065  * 1. SACK fills old hole and the corresponding segment was not
1066  *    ever retransmitted -> reordering. Alas, we cannot use it
1067  *    when segment was retransmitted.
1068  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1069  *    for retransmitted and already SACKed segment -> reordering..
1070  * Both of these heuristics are not used in Loss state, when we cannot
1071  * account for retransmits accurately.
1072  *
1073  * SACK block validation.
1074  * ----------------------
1075  *
1076  * SACK block range validation checks that the received SACK block fits to
1077  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1078  * Note that SND.UNA is not included to the range though being valid because
1079  * it means that the receiver is rather inconsistent with itself reporting
1080  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1081  * perfectly valid, however, in light of RFC2018 which explicitly states
1082  * that "SACK block MUST reflect the newest segment.  Even if the newest
1083  * segment is going to be discarded ...", not that it looks very clever
1084  * in case of head skb. Due to potentional receiver driven attacks, we
1085  * choose to avoid immediate execution of a walk in write queue due to
1086  * reneging and defer head skb's loss recovery to standard loss recovery
1087  * procedure that will eventually trigger (nothing forbids us doing this).
1088  *
1089  * Implements also blockage to start_seq wrap-around. Problem lies in the
1090  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1091  * there's no guarantee that it will be before snd_nxt (n). The problem
1092  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1093  * wrap (s_w):
1094  *
1095  *         <- outs wnd ->                          <- wrapzone ->
1096  *         u     e      n                         u_w   e_w  s n_w
1097  *         |     |      |                          |     |   |  |
1098  * |<------------+------+----- TCP seqno space --------------+---------->|
1099  * ...-- <2^31 ->|                                           |<--------...
1100  * ...---- >2^31 ------>|                                    |<--------...
1101  *
1102  * Current code wouldn't be vulnerable but it's better still to discard such
1103  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1104  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1105  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1106  * equal to the ideal case (infinite seqno space without wrap caused issues).
1107  *
1108  * With D-SACK the lower bound is extended to cover sequence space below
1109  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1110  * again, D-SACK block must not to go across snd_una (for the same reason as
1111  * for the normal SACK blocks, explained above). But there all simplicity
1112  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1113  * fully below undo_marker they do not affect behavior in anyway and can
1114  * therefore be safely ignored. In rare cases (which are more or less
1115  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1116  * fragmentation and packet reordering past skb's retransmission. To consider
1117  * them correctly, the acceptable range must be extended even more though
1118  * the exact amount is rather hard to quantify. However, tp->max_window can
1119  * be used as an exaggerated estimate.
1120  */
1121 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1122 				  u32 start_seq, u32 end_seq)
1123 {
1124 	/* Too far in future, or reversed (interpretation is ambiguous) */
1125 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1126 		return 0;
1127 
1128 	/* Nasty start_seq wrap-around check (see comments above) */
1129 	if (!before(start_seq, tp->snd_nxt))
1130 		return 0;
1131 
1132 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1133 	 * start_seq == snd_una is non-sensical (see comments above)
1134 	 */
1135 	if (after(start_seq, tp->snd_una))
1136 		return 1;
1137 
1138 	if (!is_dsack || !tp->undo_marker)
1139 		return 0;
1140 
1141 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1142 	if (after(end_seq, tp->snd_una))
1143 		return 0;
1144 
1145 	if (!before(start_seq, tp->undo_marker))
1146 		return 1;
1147 
1148 	/* Too old */
1149 	if (!after(end_seq, tp->undo_marker))
1150 		return 0;
1151 
1152 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1153 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1154 	 */
1155 	return !before(start_seq, end_seq - tp->max_window);
1156 }
1157 
1158 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1159  * Event "B". Later note: FACK people cheated me again 8), we have to account
1160  * for reordering! Ugly, but should help.
1161  *
1162  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1163  * less than what is now known to be received by the other end (derived from
1164  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1165  * retransmitted skbs to avoid some costly processing per ACKs.
1166  */
1167 static void tcp_mark_lost_retrans(struct sock *sk)
1168 {
1169 	const struct inet_connection_sock *icsk = inet_csk(sk);
1170 	struct tcp_sock *tp = tcp_sk(sk);
1171 	struct sk_buff *skb;
1172 	int cnt = 0;
1173 	u32 new_low_seq = tp->snd_nxt;
1174 	u32 received_upto = tcp_highest_sack_seq(tp);
1175 
1176 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1177 	    !after(received_upto, tp->lost_retrans_low) ||
1178 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1179 		return;
1180 
1181 	tcp_for_write_queue(skb, sk) {
1182 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1183 
1184 		if (skb == tcp_send_head(sk))
1185 			break;
1186 		if (cnt == tp->retrans_out)
1187 			break;
1188 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1189 			continue;
1190 
1191 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1192 			continue;
1193 
1194 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1195 		 * constraint here (see above) but figuring out that at
1196 		 * least tp->reordering SACK blocks reside between ack_seq
1197 		 * and received_upto is not easy task to do cheaply with
1198 		 * the available datastructures.
1199 		 *
1200 		 * Whether FACK should check here for tp->reordering segs
1201 		 * in-between one could argue for either way (it would be
1202 		 * rather simple to implement as we could count fack_count
1203 		 * during the walk and do tp->fackets_out - fack_count).
1204 		 */
1205 		if (after(received_upto, ack_seq)) {
1206 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1207 			tp->retrans_out -= tcp_skb_pcount(skb);
1208 
1209 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1210 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1211 		} else {
1212 			if (before(ack_seq, new_low_seq))
1213 				new_low_seq = ack_seq;
1214 			cnt += tcp_skb_pcount(skb);
1215 		}
1216 	}
1217 
1218 	if (tp->retrans_out)
1219 		tp->lost_retrans_low = new_low_seq;
1220 }
1221 
1222 static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1223 			   struct tcp_sack_block_wire *sp, int num_sacks,
1224 			   u32 prior_snd_una)
1225 {
1226 	struct tcp_sock *tp = tcp_sk(sk);
1227 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1228 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1229 	int dup_sack = 0;
1230 
1231 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1232 		dup_sack = 1;
1233 		tcp_dsack_seen(tp);
1234 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1235 	} else if (num_sacks > 1) {
1236 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1237 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1238 
1239 		if (!after(end_seq_0, end_seq_1) &&
1240 		    !before(start_seq_0, start_seq_1)) {
1241 			dup_sack = 1;
1242 			tcp_dsack_seen(tp);
1243 			NET_INC_STATS_BH(sock_net(sk),
1244 					LINUX_MIB_TCPDSACKOFORECV);
1245 		}
1246 	}
1247 
1248 	/* D-SACK for already forgotten data... Do dumb counting. */
1249 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1250 	    !after(end_seq_0, prior_snd_una) &&
1251 	    after(end_seq_0, tp->undo_marker))
1252 		tp->undo_retrans--;
1253 
1254 	return dup_sack;
1255 }
1256 
1257 struct tcp_sacktag_state {
1258 	int reord;
1259 	int fack_count;
1260 	int flag;
1261 };
1262 
1263 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1264  * the incoming SACK may not exactly match but we can find smaller MSS
1265  * aligned portion of it that matches. Therefore we might need to fragment
1266  * which may fail and creates some hassle (caller must handle error case
1267  * returns).
1268  *
1269  * FIXME: this could be merged to shift decision code
1270  */
1271 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1272 				 u32 start_seq, u32 end_seq)
1273 {
1274 	int in_sack, err;
1275 	unsigned int pkt_len;
1276 	unsigned int mss;
1277 
1278 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1279 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1280 
1281 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1282 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1283 		mss = tcp_skb_mss(skb);
1284 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1285 
1286 		if (!in_sack) {
1287 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1288 			if (pkt_len < mss)
1289 				pkt_len = mss;
1290 		} else {
1291 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1292 			if (pkt_len < mss)
1293 				return -EINVAL;
1294 		}
1295 
1296 		/* Round if necessary so that SACKs cover only full MSSes
1297 		 * and/or the remaining small portion (if present)
1298 		 */
1299 		if (pkt_len > mss) {
1300 			unsigned int new_len = (pkt_len / mss) * mss;
1301 			if (!in_sack && new_len < pkt_len) {
1302 				new_len += mss;
1303 				if (new_len > skb->len)
1304 					return 0;
1305 			}
1306 			pkt_len = new_len;
1307 		}
1308 		err = tcp_fragment(sk, skb, pkt_len, mss);
1309 		if (err < 0)
1310 			return err;
1311 	}
1312 
1313 	return in_sack;
1314 }
1315 
1316 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1317 static u8 tcp_sacktag_one(struct sock *sk,
1318 			  struct tcp_sacktag_state *state, u8 sacked,
1319 			  u32 start_seq, u32 end_seq,
1320 			  int dup_sack, int pcount)
1321 {
1322 	struct tcp_sock *tp = tcp_sk(sk);
1323 	int fack_count = state->fack_count;
1324 
1325 	/* Account D-SACK for retransmitted packet. */
1326 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1327 		if (tp->undo_marker && tp->undo_retrans &&
1328 		    after(end_seq, tp->undo_marker))
1329 			tp->undo_retrans--;
1330 		if (sacked & TCPCB_SACKED_ACKED)
1331 			state->reord = min(fack_count, state->reord);
1332 	}
1333 
1334 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1335 	if (!after(end_seq, tp->snd_una))
1336 		return sacked;
1337 
1338 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1339 		if (sacked & TCPCB_SACKED_RETRANS) {
1340 			/* If the segment is not tagged as lost,
1341 			 * we do not clear RETRANS, believing
1342 			 * that retransmission is still in flight.
1343 			 */
1344 			if (sacked & TCPCB_LOST) {
1345 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1346 				tp->lost_out -= pcount;
1347 				tp->retrans_out -= pcount;
1348 			}
1349 		} else {
1350 			if (!(sacked & TCPCB_RETRANS)) {
1351 				/* New sack for not retransmitted frame,
1352 				 * which was in hole. It is reordering.
1353 				 */
1354 				if (before(start_seq,
1355 					   tcp_highest_sack_seq(tp)))
1356 					state->reord = min(fack_count,
1357 							   state->reord);
1358 
1359 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1360 				if (!after(end_seq, tp->frto_highmark))
1361 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1362 			}
1363 
1364 			if (sacked & TCPCB_LOST) {
1365 				sacked &= ~TCPCB_LOST;
1366 				tp->lost_out -= pcount;
1367 			}
1368 		}
1369 
1370 		sacked |= TCPCB_SACKED_ACKED;
1371 		state->flag |= FLAG_DATA_SACKED;
1372 		tp->sacked_out += pcount;
1373 
1374 		fack_count += pcount;
1375 
1376 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1377 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1378 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1379 			tp->lost_cnt_hint += pcount;
1380 
1381 		if (fack_count > tp->fackets_out)
1382 			tp->fackets_out = fack_count;
1383 	}
1384 
1385 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1386 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1387 	 * are accounted above as well.
1388 	 */
1389 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1390 		sacked &= ~TCPCB_SACKED_RETRANS;
1391 		tp->retrans_out -= pcount;
1392 	}
1393 
1394 	return sacked;
1395 }
1396 
1397 /* Shift newly-SACKed bytes from this skb to the immediately previous
1398  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1399  */
1400 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1401 			   struct tcp_sacktag_state *state,
1402 			   unsigned int pcount, int shifted, int mss,
1403 			   int dup_sack)
1404 {
1405 	struct tcp_sock *tp = tcp_sk(sk);
1406 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1407 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1408 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1409 
1410 	BUG_ON(!pcount);
1411 
1412 	/* Adjust counters and hints for the newly sacked sequence
1413 	 * range but discard the return value since prev is already
1414 	 * marked. We must tag the range first because the seq
1415 	 * advancement below implicitly advances
1416 	 * tcp_highest_sack_seq() when skb is highest_sack.
1417 	 */
1418 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1419 			start_seq, end_seq, dup_sack, pcount);
1420 
1421 	if (skb == tp->lost_skb_hint)
1422 		tp->lost_cnt_hint += pcount;
1423 
1424 	TCP_SKB_CB(prev)->end_seq += shifted;
1425 	TCP_SKB_CB(skb)->seq += shifted;
1426 
1427 	skb_shinfo(prev)->gso_segs += pcount;
1428 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1429 	skb_shinfo(skb)->gso_segs -= pcount;
1430 
1431 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1432 	 * in theory this shouldn't be necessary but as long as DSACK
1433 	 * code can come after this skb later on it's better to keep
1434 	 * setting gso_size to something.
1435 	 */
1436 	if (!skb_shinfo(prev)->gso_size) {
1437 		skb_shinfo(prev)->gso_size = mss;
1438 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1439 	}
1440 
1441 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1442 	if (skb_shinfo(skb)->gso_segs <= 1) {
1443 		skb_shinfo(skb)->gso_size = 0;
1444 		skb_shinfo(skb)->gso_type = 0;
1445 	}
1446 
1447 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1448 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1449 
1450 	if (skb->len > 0) {
1451 		BUG_ON(!tcp_skb_pcount(skb));
1452 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1453 		return 0;
1454 	}
1455 
1456 	/* Whole SKB was eaten :-) */
1457 
1458 	if (skb == tp->retransmit_skb_hint)
1459 		tp->retransmit_skb_hint = prev;
1460 	if (skb == tp->scoreboard_skb_hint)
1461 		tp->scoreboard_skb_hint = prev;
1462 	if (skb == tp->lost_skb_hint) {
1463 		tp->lost_skb_hint = prev;
1464 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1465 	}
1466 
1467 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1468 	if (skb == tcp_highest_sack(sk))
1469 		tcp_advance_highest_sack(sk, skb);
1470 
1471 	tcp_unlink_write_queue(skb, sk);
1472 	sk_wmem_free_skb(sk, skb);
1473 
1474 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1475 
1476 	return 1;
1477 }
1478 
1479 /* I wish gso_size would have a bit more sane initialization than
1480  * something-or-zero which complicates things
1481  */
1482 static int tcp_skb_seglen(const struct sk_buff *skb)
1483 {
1484 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1485 }
1486 
1487 /* Shifting pages past head area doesn't work */
1488 static int skb_can_shift(const struct sk_buff *skb)
1489 {
1490 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1491 }
1492 
1493 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1494  * skb.
1495  */
1496 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1497 					  struct tcp_sacktag_state *state,
1498 					  u32 start_seq, u32 end_seq,
1499 					  int dup_sack)
1500 {
1501 	struct tcp_sock *tp = tcp_sk(sk);
1502 	struct sk_buff *prev;
1503 	int mss;
1504 	int pcount = 0;
1505 	int len;
1506 	int in_sack;
1507 
1508 	if (!sk_can_gso(sk))
1509 		goto fallback;
1510 
1511 	/* Normally R but no L won't result in plain S */
1512 	if (!dup_sack &&
1513 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1514 		goto fallback;
1515 	if (!skb_can_shift(skb))
1516 		goto fallback;
1517 	/* This frame is about to be dropped (was ACKed). */
1518 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1519 		goto fallback;
1520 
1521 	/* Can only happen with delayed DSACK + discard craziness */
1522 	if (unlikely(skb == tcp_write_queue_head(sk)))
1523 		goto fallback;
1524 	prev = tcp_write_queue_prev(sk, skb);
1525 
1526 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1527 		goto fallback;
1528 
1529 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1530 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1531 
1532 	if (in_sack) {
1533 		len = skb->len;
1534 		pcount = tcp_skb_pcount(skb);
1535 		mss = tcp_skb_seglen(skb);
1536 
1537 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1538 		 * drop this restriction as unnecessary
1539 		 */
1540 		if (mss != tcp_skb_seglen(prev))
1541 			goto fallback;
1542 	} else {
1543 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1544 			goto noop;
1545 		/* CHECKME: This is non-MSS split case only?, this will
1546 		 * cause skipped skbs due to advancing loop btw, original
1547 		 * has that feature too
1548 		 */
1549 		if (tcp_skb_pcount(skb) <= 1)
1550 			goto noop;
1551 
1552 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1553 		if (!in_sack) {
1554 			/* TODO: head merge to next could be attempted here
1555 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1556 			 * though it might not be worth of the additional hassle
1557 			 *
1558 			 * ...we can probably just fallback to what was done
1559 			 * previously. We could try merging non-SACKed ones
1560 			 * as well but it probably isn't going to buy off
1561 			 * because later SACKs might again split them, and
1562 			 * it would make skb timestamp tracking considerably
1563 			 * harder problem.
1564 			 */
1565 			goto fallback;
1566 		}
1567 
1568 		len = end_seq - TCP_SKB_CB(skb)->seq;
1569 		BUG_ON(len < 0);
1570 		BUG_ON(len > skb->len);
1571 
1572 		/* MSS boundaries should be honoured or else pcount will
1573 		 * severely break even though it makes things bit trickier.
1574 		 * Optimize common case to avoid most of the divides
1575 		 */
1576 		mss = tcp_skb_mss(skb);
1577 
1578 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1579 		 * drop this restriction as unnecessary
1580 		 */
1581 		if (mss != tcp_skb_seglen(prev))
1582 			goto fallback;
1583 
1584 		if (len == mss) {
1585 			pcount = 1;
1586 		} else if (len < mss) {
1587 			goto noop;
1588 		} else {
1589 			pcount = len / mss;
1590 			len = pcount * mss;
1591 		}
1592 	}
1593 
1594 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1595 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1596 		goto fallback;
1597 
1598 	if (!skb_shift(prev, skb, len))
1599 		goto fallback;
1600 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1601 		goto out;
1602 
1603 	/* Hole filled allows collapsing with the next as well, this is very
1604 	 * useful when hole on every nth skb pattern happens
1605 	 */
1606 	if (prev == tcp_write_queue_tail(sk))
1607 		goto out;
1608 	skb = tcp_write_queue_next(sk, prev);
1609 
1610 	if (!skb_can_shift(skb) ||
1611 	    (skb == tcp_send_head(sk)) ||
1612 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1613 	    (mss != tcp_skb_seglen(skb)))
1614 		goto out;
1615 
1616 	len = skb->len;
1617 	if (skb_shift(prev, skb, len)) {
1618 		pcount += tcp_skb_pcount(skb);
1619 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1620 	}
1621 
1622 out:
1623 	state->fack_count += pcount;
1624 	return prev;
1625 
1626 noop:
1627 	return skb;
1628 
1629 fallback:
1630 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1631 	return NULL;
1632 }
1633 
1634 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1635 					struct tcp_sack_block *next_dup,
1636 					struct tcp_sacktag_state *state,
1637 					u32 start_seq, u32 end_seq,
1638 					int dup_sack_in)
1639 {
1640 	struct tcp_sock *tp = tcp_sk(sk);
1641 	struct sk_buff *tmp;
1642 
1643 	tcp_for_write_queue_from(skb, sk) {
1644 		int in_sack = 0;
1645 		int dup_sack = dup_sack_in;
1646 
1647 		if (skb == tcp_send_head(sk))
1648 			break;
1649 
1650 		/* queue is in-order => we can short-circuit the walk early */
1651 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1652 			break;
1653 
1654 		if ((next_dup != NULL) &&
1655 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1656 			in_sack = tcp_match_skb_to_sack(sk, skb,
1657 							next_dup->start_seq,
1658 							next_dup->end_seq);
1659 			if (in_sack > 0)
1660 				dup_sack = 1;
1661 		}
1662 
1663 		/* skb reference here is a bit tricky to get right, since
1664 		 * shifting can eat and free both this skb and the next,
1665 		 * so not even _safe variant of the loop is enough.
1666 		 */
1667 		if (in_sack <= 0) {
1668 			tmp = tcp_shift_skb_data(sk, skb, state,
1669 						 start_seq, end_seq, dup_sack);
1670 			if (tmp != NULL) {
1671 				if (tmp != skb) {
1672 					skb = tmp;
1673 					continue;
1674 				}
1675 
1676 				in_sack = 0;
1677 			} else {
1678 				in_sack = tcp_match_skb_to_sack(sk, skb,
1679 								start_seq,
1680 								end_seq);
1681 			}
1682 		}
1683 
1684 		if (unlikely(in_sack < 0))
1685 			break;
1686 
1687 		if (in_sack) {
1688 			TCP_SKB_CB(skb)->sacked =
1689 				tcp_sacktag_one(sk,
1690 						state,
1691 						TCP_SKB_CB(skb)->sacked,
1692 						TCP_SKB_CB(skb)->seq,
1693 						TCP_SKB_CB(skb)->end_seq,
1694 						dup_sack,
1695 						tcp_skb_pcount(skb));
1696 
1697 			if (!before(TCP_SKB_CB(skb)->seq,
1698 				    tcp_highest_sack_seq(tp)))
1699 				tcp_advance_highest_sack(sk, skb);
1700 		}
1701 
1702 		state->fack_count += tcp_skb_pcount(skb);
1703 	}
1704 	return skb;
1705 }
1706 
1707 /* Avoid all extra work that is being done by sacktag while walking in
1708  * a normal way
1709  */
1710 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1711 					struct tcp_sacktag_state *state,
1712 					u32 skip_to_seq)
1713 {
1714 	tcp_for_write_queue_from(skb, sk) {
1715 		if (skb == tcp_send_head(sk))
1716 			break;
1717 
1718 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1719 			break;
1720 
1721 		state->fack_count += tcp_skb_pcount(skb);
1722 	}
1723 	return skb;
1724 }
1725 
1726 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1727 						struct sock *sk,
1728 						struct tcp_sack_block *next_dup,
1729 						struct tcp_sacktag_state *state,
1730 						u32 skip_to_seq)
1731 {
1732 	if (next_dup == NULL)
1733 		return skb;
1734 
1735 	if (before(next_dup->start_seq, skip_to_seq)) {
1736 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1737 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1738 				       next_dup->start_seq, next_dup->end_seq,
1739 				       1);
1740 	}
1741 
1742 	return skb;
1743 }
1744 
1745 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1746 {
1747 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1748 }
1749 
1750 static int
1751 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1752 			u32 prior_snd_una)
1753 {
1754 	const struct inet_connection_sock *icsk = inet_csk(sk);
1755 	struct tcp_sock *tp = tcp_sk(sk);
1756 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1757 				    TCP_SKB_CB(ack_skb)->sacked);
1758 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1759 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1760 	struct tcp_sack_block *cache;
1761 	struct tcp_sacktag_state state;
1762 	struct sk_buff *skb;
1763 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1764 	int used_sacks;
1765 	int found_dup_sack = 0;
1766 	int i, j;
1767 	int first_sack_index;
1768 
1769 	state.flag = 0;
1770 	state.reord = tp->packets_out;
1771 
1772 	if (!tp->sacked_out) {
1773 		if (WARN_ON(tp->fackets_out))
1774 			tp->fackets_out = 0;
1775 		tcp_highest_sack_reset(sk);
1776 	}
1777 
1778 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1779 					 num_sacks, prior_snd_una);
1780 	if (found_dup_sack)
1781 		state.flag |= FLAG_DSACKING_ACK;
1782 
1783 	/* Eliminate too old ACKs, but take into
1784 	 * account more or less fresh ones, they can
1785 	 * contain valid SACK info.
1786 	 */
1787 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1788 		return 0;
1789 
1790 	if (!tp->packets_out)
1791 		goto out;
1792 
1793 	used_sacks = 0;
1794 	first_sack_index = 0;
1795 	for (i = 0; i < num_sacks; i++) {
1796 		int dup_sack = !i && found_dup_sack;
1797 
1798 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1799 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1800 
1801 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1802 					    sp[used_sacks].start_seq,
1803 					    sp[used_sacks].end_seq)) {
1804 			int mib_idx;
1805 
1806 			if (dup_sack) {
1807 				if (!tp->undo_marker)
1808 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1809 				else
1810 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1811 			} else {
1812 				/* Don't count olds caused by ACK reordering */
1813 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1814 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1815 					continue;
1816 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1817 			}
1818 
1819 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1820 			if (i == 0)
1821 				first_sack_index = -1;
1822 			continue;
1823 		}
1824 
1825 		/* Ignore very old stuff early */
1826 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1827 			continue;
1828 
1829 		used_sacks++;
1830 	}
1831 
1832 	/* order SACK blocks to allow in order walk of the retrans queue */
1833 	for (i = used_sacks - 1; i > 0; i--) {
1834 		for (j = 0; j < i; j++) {
1835 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1836 				swap(sp[j], sp[j + 1]);
1837 
1838 				/* Track where the first SACK block goes to */
1839 				if (j == first_sack_index)
1840 					first_sack_index = j + 1;
1841 			}
1842 		}
1843 	}
1844 
1845 	skb = tcp_write_queue_head(sk);
1846 	state.fack_count = 0;
1847 	i = 0;
1848 
1849 	if (!tp->sacked_out) {
1850 		/* It's already past, so skip checking against it */
1851 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1852 	} else {
1853 		cache = tp->recv_sack_cache;
1854 		/* Skip empty blocks in at head of the cache */
1855 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1856 		       !cache->end_seq)
1857 			cache++;
1858 	}
1859 
1860 	while (i < used_sacks) {
1861 		u32 start_seq = sp[i].start_seq;
1862 		u32 end_seq = sp[i].end_seq;
1863 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1864 		struct tcp_sack_block *next_dup = NULL;
1865 
1866 		if (found_dup_sack && ((i + 1) == first_sack_index))
1867 			next_dup = &sp[i + 1];
1868 
1869 		/* Skip too early cached blocks */
1870 		while (tcp_sack_cache_ok(tp, cache) &&
1871 		       !before(start_seq, cache->end_seq))
1872 			cache++;
1873 
1874 		/* Can skip some work by looking recv_sack_cache? */
1875 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1876 		    after(end_seq, cache->start_seq)) {
1877 
1878 			/* Head todo? */
1879 			if (before(start_seq, cache->start_seq)) {
1880 				skb = tcp_sacktag_skip(skb, sk, &state,
1881 						       start_seq);
1882 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1883 						       &state,
1884 						       start_seq,
1885 						       cache->start_seq,
1886 						       dup_sack);
1887 			}
1888 
1889 			/* Rest of the block already fully processed? */
1890 			if (!after(end_seq, cache->end_seq))
1891 				goto advance_sp;
1892 
1893 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1894 						       &state,
1895 						       cache->end_seq);
1896 
1897 			/* ...tail remains todo... */
1898 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1899 				/* ...but better entrypoint exists! */
1900 				skb = tcp_highest_sack(sk);
1901 				if (skb == NULL)
1902 					break;
1903 				state.fack_count = tp->fackets_out;
1904 				cache++;
1905 				goto walk;
1906 			}
1907 
1908 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1909 			/* Check overlap against next cached too (past this one already) */
1910 			cache++;
1911 			continue;
1912 		}
1913 
1914 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1915 			skb = tcp_highest_sack(sk);
1916 			if (skb == NULL)
1917 				break;
1918 			state.fack_count = tp->fackets_out;
1919 		}
1920 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1921 
1922 walk:
1923 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1924 				       start_seq, end_seq, dup_sack);
1925 
1926 advance_sp:
1927 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1928 		 * due to in-order walk
1929 		 */
1930 		if (after(end_seq, tp->frto_highmark))
1931 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1932 
1933 		i++;
1934 	}
1935 
1936 	/* Clear the head of the cache sack blocks so we can skip it next time */
1937 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1938 		tp->recv_sack_cache[i].start_seq = 0;
1939 		tp->recv_sack_cache[i].end_seq = 0;
1940 	}
1941 	for (j = 0; j < used_sacks; j++)
1942 		tp->recv_sack_cache[i++] = sp[j];
1943 
1944 	tcp_mark_lost_retrans(sk);
1945 
1946 	tcp_verify_left_out(tp);
1947 
1948 	if ((state.reord < tp->fackets_out) &&
1949 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1950 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1951 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1952 
1953 out:
1954 
1955 #if FASTRETRANS_DEBUG > 0
1956 	WARN_ON((int)tp->sacked_out < 0);
1957 	WARN_ON((int)tp->lost_out < 0);
1958 	WARN_ON((int)tp->retrans_out < 0);
1959 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1960 #endif
1961 	return state.flag;
1962 }
1963 
1964 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1965  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1966  */
1967 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1968 {
1969 	u32 holes;
1970 
1971 	holes = max(tp->lost_out, 1U);
1972 	holes = min(holes, tp->packets_out);
1973 
1974 	if ((tp->sacked_out + holes) > tp->packets_out) {
1975 		tp->sacked_out = tp->packets_out - holes;
1976 		return 1;
1977 	}
1978 	return 0;
1979 }
1980 
1981 /* If we receive more dupacks than we expected counting segments
1982  * in assumption of absent reordering, interpret this as reordering.
1983  * The only another reason could be bug in receiver TCP.
1984  */
1985 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1986 {
1987 	struct tcp_sock *tp = tcp_sk(sk);
1988 	if (tcp_limit_reno_sacked(tp))
1989 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1990 }
1991 
1992 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1993 
1994 static void tcp_add_reno_sack(struct sock *sk)
1995 {
1996 	struct tcp_sock *tp = tcp_sk(sk);
1997 	tp->sacked_out++;
1998 	tcp_check_reno_reordering(sk, 0);
1999 	tcp_verify_left_out(tp);
2000 }
2001 
2002 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2003 
2004 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2005 {
2006 	struct tcp_sock *tp = tcp_sk(sk);
2007 
2008 	if (acked > 0) {
2009 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2010 		if (acked - 1 >= tp->sacked_out)
2011 			tp->sacked_out = 0;
2012 		else
2013 			tp->sacked_out -= acked - 1;
2014 	}
2015 	tcp_check_reno_reordering(sk, acked);
2016 	tcp_verify_left_out(tp);
2017 }
2018 
2019 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2020 {
2021 	tp->sacked_out = 0;
2022 }
2023 
2024 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2025 {
2026 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2027 }
2028 
2029 /* F-RTO can only be used if TCP has never retransmitted anything other than
2030  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2031  */
2032 int tcp_use_frto(struct sock *sk)
2033 {
2034 	const struct tcp_sock *tp = tcp_sk(sk);
2035 	const struct inet_connection_sock *icsk = inet_csk(sk);
2036 	struct sk_buff *skb;
2037 
2038 	if (!sysctl_tcp_frto)
2039 		return 0;
2040 
2041 	/* MTU probe and F-RTO won't really play nicely along currently */
2042 	if (icsk->icsk_mtup.probe_size)
2043 		return 0;
2044 
2045 	if (tcp_is_sackfrto(tp))
2046 		return 1;
2047 
2048 	/* Avoid expensive walking of rexmit queue if possible */
2049 	if (tp->retrans_out > 1)
2050 		return 0;
2051 
2052 	skb = tcp_write_queue_head(sk);
2053 	if (tcp_skb_is_last(sk, skb))
2054 		return 1;
2055 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2056 	tcp_for_write_queue_from(skb, sk) {
2057 		if (skb == tcp_send_head(sk))
2058 			break;
2059 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2060 			return 0;
2061 		/* Short-circuit when first non-SACKed skb has been checked */
2062 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2063 			break;
2064 	}
2065 	return 1;
2066 }
2067 
2068 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2069  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2070  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2071  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2072  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2073  * bits are handled if the Loss state is really to be entered (in
2074  * tcp_enter_frto_loss).
2075  *
2076  * Do like tcp_enter_loss() would; when RTO expires the second time it
2077  * does:
2078  *  "Reduce ssthresh if it has not yet been made inside this window."
2079  */
2080 void tcp_enter_frto(struct sock *sk)
2081 {
2082 	const struct inet_connection_sock *icsk = inet_csk(sk);
2083 	struct tcp_sock *tp = tcp_sk(sk);
2084 	struct sk_buff *skb;
2085 
2086 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2087 	    tp->snd_una == tp->high_seq ||
2088 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2089 	     !icsk->icsk_retransmits)) {
2090 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2091 		/* Our state is too optimistic in ssthresh() call because cwnd
2092 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2093 		 * recovery has not yet completed. Pattern would be this: RTO,
2094 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2095 		 * up here twice).
2096 		 * RFC4138 should be more specific on what to do, even though
2097 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2098 		 * due to back-off and complexity of triggering events ...
2099 		 */
2100 		if (tp->frto_counter) {
2101 			u32 stored_cwnd;
2102 			stored_cwnd = tp->snd_cwnd;
2103 			tp->snd_cwnd = 2;
2104 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2105 			tp->snd_cwnd = stored_cwnd;
2106 		} else {
2107 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2108 		}
2109 		/* ... in theory, cong.control module could do "any tricks" in
2110 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2111 		 * counter would have to be faked before the call occurs. We
2112 		 * consider that too expensive, unlikely and hacky, so modules
2113 		 * using these in ssthresh() must deal these incompatibility
2114 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2115 		 */
2116 		tcp_ca_event(sk, CA_EVENT_FRTO);
2117 	}
2118 
2119 	tp->undo_marker = tp->snd_una;
2120 	tp->undo_retrans = 0;
2121 
2122 	skb = tcp_write_queue_head(sk);
2123 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2124 		tp->undo_marker = 0;
2125 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2126 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2127 		tp->retrans_out -= tcp_skb_pcount(skb);
2128 	}
2129 	tcp_verify_left_out(tp);
2130 
2131 	/* Too bad if TCP was application limited */
2132 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2133 
2134 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2135 	 * The last condition is necessary at least in tp->frto_counter case.
2136 	 */
2137 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2138 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2139 	    after(tp->high_seq, tp->snd_una)) {
2140 		tp->frto_highmark = tp->high_seq;
2141 	} else {
2142 		tp->frto_highmark = tp->snd_nxt;
2143 	}
2144 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2145 	tp->high_seq = tp->snd_nxt;
2146 	tp->frto_counter = 1;
2147 }
2148 
2149 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2150  * which indicates that we should follow the traditional RTO recovery,
2151  * i.e. mark everything lost and do go-back-N retransmission.
2152  */
2153 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2154 {
2155 	struct tcp_sock *tp = tcp_sk(sk);
2156 	struct sk_buff *skb;
2157 
2158 	tp->lost_out = 0;
2159 	tp->retrans_out = 0;
2160 	if (tcp_is_reno(tp))
2161 		tcp_reset_reno_sack(tp);
2162 
2163 	tcp_for_write_queue(skb, sk) {
2164 		if (skb == tcp_send_head(sk))
2165 			break;
2166 
2167 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2168 		/*
2169 		 * Count the retransmission made on RTO correctly (only when
2170 		 * waiting for the first ACK and did not get it)...
2171 		 */
2172 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2173 			/* For some reason this R-bit might get cleared? */
2174 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2175 				tp->retrans_out += tcp_skb_pcount(skb);
2176 			/* ...enter this if branch just for the first segment */
2177 			flag |= FLAG_DATA_ACKED;
2178 		} else {
2179 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2180 				tp->undo_marker = 0;
2181 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2182 		}
2183 
2184 		/* Marking forward transmissions that were made after RTO lost
2185 		 * can cause unnecessary retransmissions in some scenarios,
2186 		 * SACK blocks will mitigate that in some but not in all cases.
2187 		 * We used to not mark them but it was causing break-ups with
2188 		 * receivers that do only in-order receival.
2189 		 *
2190 		 * TODO: we could detect presence of such receiver and select
2191 		 * different behavior per flow.
2192 		 */
2193 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2194 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2195 			tp->lost_out += tcp_skb_pcount(skb);
2196 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2197 		}
2198 	}
2199 	tcp_verify_left_out(tp);
2200 
2201 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2202 	tp->snd_cwnd_cnt = 0;
2203 	tp->snd_cwnd_stamp = tcp_time_stamp;
2204 	tp->frto_counter = 0;
2205 	tp->bytes_acked = 0;
2206 
2207 	tp->reordering = min_t(unsigned int, tp->reordering,
2208 			       sysctl_tcp_reordering);
2209 	tcp_set_ca_state(sk, TCP_CA_Loss);
2210 	tp->high_seq = tp->snd_nxt;
2211 	TCP_ECN_queue_cwr(tp);
2212 
2213 	tcp_clear_all_retrans_hints(tp);
2214 }
2215 
2216 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2217 {
2218 	tp->retrans_out = 0;
2219 	tp->lost_out = 0;
2220 
2221 	tp->undo_marker = 0;
2222 	tp->undo_retrans = 0;
2223 }
2224 
2225 void tcp_clear_retrans(struct tcp_sock *tp)
2226 {
2227 	tcp_clear_retrans_partial(tp);
2228 
2229 	tp->fackets_out = 0;
2230 	tp->sacked_out = 0;
2231 }
2232 
2233 /* Enter Loss state. If "how" is not zero, forget all SACK information
2234  * and reset tags completely, otherwise preserve SACKs. If receiver
2235  * dropped its ofo queue, we will know this due to reneging detection.
2236  */
2237 void tcp_enter_loss(struct sock *sk, int how)
2238 {
2239 	const struct inet_connection_sock *icsk = inet_csk(sk);
2240 	struct tcp_sock *tp = tcp_sk(sk);
2241 	struct sk_buff *skb;
2242 
2243 	/* Reduce ssthresh if it has not yet been made inside this window. */
2244 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2245 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2246 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2247 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2248 		tcp_ca_event(sk, CA_EVENT_LOSS);
2249 	}
2250 	tp->snd_cwnd	   = 1;
2251 	tp->snd_cwnd_cnt   = 0;
2252 	tp->snd_cwnd_stamp = tcp_time_stamp;
2253 
2254 	tp->bytes_acked = 0;
2255 	tcp_clear_retrans_partial(tp);
2256 
2257 	if (tcp_is_reno(tp))
2258 		tcp_reset_reno_sack(tp);
2259 
2260 	if (!how) {
2261 		/* Push undo marker, if it was plain RTO and nothing
2262 		 * was retransmitted. */
2263 		tp->undo_marker = tp->snd_una;
2264 	} else {
2265 		tp->sacked_out = 0;
2266 		tp->fackets_out = 0;
2267 	}
2268 	tcp_clear_all_retrans_hints(tp);
2269 
2270 	tcp_for_write_queue(skb, sk) {
2271 		if (skb == tcp_send_head(sk))
2272 			break;
2273 
2274 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2275 			tp->undo_marker = 0;
2276 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2277 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2278 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2279 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2280 			tp->lost_out += tcp_skb_pcount(skb);
2281 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2282 		}
2283 	}
2284 	tcp_verify_left_out(tp);
2285 
2286 	tp->reordering = min_t(unsigned int, tp->reordering,
2287 			       sysctl_tcp_reordering);
2288 	tcp_set_ca_state(sk, TCP_CA_Loss);
2289 	tp->high_seq = tp->snd_nxt;
2290 	TCP_ECN_queue_cwr(tp);
2291 	/* Abort F-RTO algorithm if one is in progress */
2292 	tp->frto_counter = 0;
2293 }
2294 
2295 /* If ACK arrived pointing to a remembered SACK, it means that our
2296  * remembered SACKs do not reflect real state of receiver i.e.
2297  * receiver _host_ is heavily congested (or buggy).
2298  *
2299  * Do processing similar to RTO timeout.
2300  */
2301 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2302 {
2303 	if (flag & FLAG_SACK_RENEGING) {
2304 		struct inet_connection_sock *icsk = inet_csk(sk);
2305 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2306 
2307 		tcp_enter_loss(sk, 1);
2308 		icsk->icsk_retransmits++;
2309 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2310 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2311 					  icsk->icsk_rto, TCP_RTO_MAX);
2312 		return 1;
2313 	}
2314 	return 0;
2315 }
2316 
2317 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2318 {
2319 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2320 }
2321 
2322 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2323  * counter when SACK is enabled (without SACK, sacked_out is used for
2324  * that purpose).
2325  *
2326  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2327  * segments up to the highest received SACK block so far and holes in
2328  * between them.
2329  *
2330  * With reordering, holes may still be in flight, so RFC3517 recovery
2331  * uses pure sacked_out (total number of SACKed segments) even though
2332  * it violates the RFC that uses duplicate ACKs, often these are equal
2333  * but when e.g. out-of-window ACKs or packet duplication occurs,
2334  * they differ. Since neither occurs due to loss, TCP should really
2335  * ignore them.
2336  */
2337 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2338 {
2339 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2340 }
2341 
2342 static inline int tcp_skb_timedout(const struct sock *sk,
2343 				   const struct sk_buff *skb)
2344 {
2345 	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2346 }
2347 
2348 static inline int tcp_head_timedout(const struct sock *sk)
2349 {
2350 	const struct tcp_sock *tp = tcp_sk(sk);
2351 
2352 	return tp->packets_out &&
2353 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2354 }
2355 
2356 /* Linux NewReno/SACK/FACK/ECN state machine.
2357  * --------------------------------------
2358  *
2359  * "Open"	Normal state, no dubious events, fast path.
2360  * "Disorder"   In all the respects it is "Open",
2361  *		but requires a bit more attention. It is entered when
2362  *		we see some SACKs or dupacks. It is split of "Open"
2363  *		mainly to move some processing from fast path to slow one.
2364  * "CWR"	CWND was reduced due to some Congestion Notification event.
2365  *		It can be ECN, ICMP source quench, local device congestion.
2366  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2367  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2368  *
2369  * tcp_fastretrans_alert() is entered:
2370  * - each incoming ACK, if state is not "Open"
2371  * - when arrived ACK is unusual, namely:
2372  *	* SACK
2373  *	* Duplicate ACK.
2374  *	* ECN ECE.
2375  *
2376  * Counting packets in flight is pretty simple.
2377  *
2378  *	in_flight = packets_out - left_out + retrans_out
2379  *
2380  *	packets_out is SND.NXT-SND.UNA counted in packets.
2381  *
2382  *	retrans_out is number of retransmitted segments.
2383  *
2384  *	left_out is number of segments left network, but not ACKed yet.
2385  *
2386  *		left_out = sacked_out + lost_out
2387  *
2388  *     sacked_out: Packets, which arrived to receiver out of order
2389  *		   and hence not ACKed. With SACKs this number is simply
2390  *		   amount of SACKed data. Even without SACKs
2391  *		   it is easy to give pretty reliable estimate of this number,
2392  *		   counting duplicate ACKs.
2393  *
2394  *       lost_out: Packets lost by network. TCP has no explicit
2395  *		   "loss notification" feedback from network (for now).
2396  *		   It means that this number can be only _guessed_.
2397  *		   Actually, it is the heuristics to predict lossage that
2398  *		   distinguishes different algorithms.
2399  *
2400  *	F.e. after RTO, when all the queue is considered as lost,
2401  *	lost_out = packets_out and in_flight = retrans_out.
2402  *
2403  *		Essentially, we have now two algorithms counting
2404  *		lost packets.
2405  *
2406  *		FACK: It is the simplest heuristics. As soon as we decided
2407  *		that something is lost, we decide that _all_ not SACKed
2408  *		packets until the most forward SACK are lost. I.e.
2409  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2410  *		It is absolutely correct estimate, if network does not reorder
2411  *		packets. And it loses any connection to reality when reordering
2412  *		takes place. We use FACK by default until reordering
2413  *		is suspected on the path to this destination.
2414  *
2415  *		NewReno: when Recovery is entered, we assume that one segment
2416  *		is lost (classic Reno). While we are in Recovery and
2417  *		a partial ACK arrives, we assume that one more packet
2418  *		is lost (NewReno). This heuristics are the same in NewReno
2419  *		and SACK.
2420  *
2421  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2422  *  deflation etc. CWND is real congestion window, never inflated, changes
2423  *  only according to classic VJ rules.
2424  *
2425  * Really tricky (and requiring careful tuning) part of algorithm
2426  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2427  * The first determines the moment _when_ we should reduce CWND and,
2428  * hence, slow down forward transmission. In fact, it determines the moment
2429  * when we decide that hole is caused by loss, rather than by a reorder.
2430  *
2431  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2432  * holes, caused by lost packets.
2433  *
2434  * And the most logically complicated part of algorithm is undo
2435  * heuristics. We detect false retransmits due to both too early
2436  * fast retransmit (reordering) and underestimated RTO, analyzing
2437  * timestamps and D-SACKs. When we detect that some segments were
2438  * retransmitted by mistake and CWND reduction was wrong, we undo
2439  * window reduction and abort recovery phase. This logic is hidden
2440  * inside several functions named tcp_try_undo_<something>.
2441  */
2442 
2443 /* This function decides, when we should leave Disordered state
2444  * and enter Recovery phase, reducing congestion window.
2445  *
2446  * Main question: may we further continue forward transmission
2447  * with the same cwnd?
2448  */
2449 static int tcp_time_to_recover(struct sock *sk)
2450 {
2451 	struct tcp_sock *tp = tcp_sk(sk);
2452 	__u32 packets_out;
2453 
2454 	/* Do not perform any recovery during F-RTO algorithm */
2455 	if (tp->frto_counter)
2456 		return 0;
2457 
2458 	/* Trick#1: The loss is proven. */
2459 	if (tp->lost_out)
2460 		return 1;
2461 
2462 	/* Not-A-Trick#2 : Classic rule... */
2463 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2464 		return 1;
2465 
2466 	/* Trick#3 : when we use RFC2988 timer restart, fast
2467 	 * retransmit can be triggered by timeout of queue head.
2468 	 */
2469 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2470 		return 1;
2471 
2472 	/* Trick#4: It is still not OK... But will it be useful to delay
2473 	 * recovery more?
2474 	 */
2475 	packets_out = tp->packets_out;
2476 	if (packets_out <= tp->reordering &&
2477 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2478 	    !tcp_may_send_now(sk)) {
2479 		/* We have nothing to send. This connection is limited
2480 		 * either by receiver window or by application.
2481 		 */
2482 		return 1;
2483 	}
2484 
2485 	/* If a thin stream is detected, retransmit after first
2486 	 * received dupack. Employ only if SACK is supported in order
2487 	 * to avoid possible corner-case series of spurious retransmissions
2488 	 * Use only if there are no unsent data.
2489 	 */
2490 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2491 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2492 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2493 		return 1;
2494 
2495 	return 0;
2496 }
2497 
2498 /* New heuristics: it is possible only after we switched to restart timer
2499  * each time when something is ACKed. Hence, we can detect timed out packets
2500  * during fast retransmit without falling to slow start.
2501  *
2502  * Usefulness of this as is very questionable, since we should know which of
2503  * the segments is the next to timeout which is relatively expensive to find
2504  * in general case unless we add some data structure just for that. The
2505  * current approach certainly won't find the right one too often and when it
2506  * finally does find _something_ it usually marks large part of the window
2507  * right away (because a retransmission with a larger timestamp blocks the
2508  * loop from advancing). -ij
2509  */
2510 static void tcp_timeout_skbs(struct sock *sk)
2511 {
2512 	struct tcp_sock *tp = tcp_sk(sk);
2513 	struct sk_buff *skb;
2514 
2515 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2516 		return;
2517 
2518 	skb = tp->scoreboard_skb_hint;
2519 	if (tp->scoreboard_skb_hint == NULL)
2520 		skb = tcp_write_queue_head(sk);
2521 
2522 	tcp_for_write_queue_from(skb, sk) {
2523 		if (skb == tcp_send_head(sk))
2524 			break;
2525 		if (!tcp_skb_timedout(sk, skb))
2526 			break;
2527 
2528 		tcp_skb_mark_lost(tp, skb);
2529 	}
2530 
2531 	tp->scoreboard_skb_hint = skb;
2532 
2533 	tcp_verify_left_out(tp);
2534 }
2535 
2536 /* Detect loss in event "A" above by marking head of queue up as lost.
2537  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2538  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2539  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2540  * the maximum SACKed segments to pass before reaching this limit.
2541  */
2542 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2543 {
2544 	struct tcp_sock *tp = tcp_sk(sk);
2545 	struct sk_buff *skb;
2546 	int cnt, oldcnt;
2547 	int err;
2548 	unsigned int mss;
2549 	/* Use SACK to deduce losses of new sequences sent during recovery */
2550 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2551 
2552 	WARN_ON(packets > tp->packets_out);
2553 	if (tp->lost_skb_hint) {
2554 		skb = tp->lost_skb_hint;
2555 		cnt = tp->lost_cnt_hint;
2556 		/* Head already handled? */
2557 		if (mark_head && skb != tcp_write_queue_head(sk))
2558 			return;
2559 	} else {
2560 		skb = tcp_write_queue_head(sk);
2561 		cnt = 0;
2562 	}
2563 
2564 	tcp_for_write_queue_from(skb, sk) {
2565 		if (skb == tcp_send_head(sk))
2566 			break;
2567 		/* TODO: do this better */
2568 		/* this is not the most efficient way to do this... */
2569 		tp->lost_skb_hint = skb;
2570 		tp->lost_cnt_hint = cnt;
2571 
2572 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2573 			break;
2574 
2575 		oldcnt = cnt;
2576 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2577 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2578 			cnt += tcp_skb_pcount(skb);
2579 
2580 		if (cnt > packets) {
2581 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2582 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2583 			    (oldcnt >= packets))
2584 				break;
2585 
2586 			mss = skb_shinfo(skb)->gso_size;
2587 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2588 			if (err < 0)
2589 				break;
2590 			cnt = packets;
2591 		}
2592 
2593 		tcp_skb_mark_lost(tp, skb);
2594 
2595 		if (mark_head)
2596 			break;
2597 	}
2598 	tcp_verify_left_out(tp);
2599 }
2600 
2601 /* Account newly detected lost packet(s) */
2602 
2603 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2604 {
2605 	struct tcp_sock *tp = tcp_sk(sk);
2606 
2607 	if (tcp_is_reno(tp)) {
2608 		tcp_mark_head_lost(sk, 1, 1);
2609 	} else if (tcp_is_fack(tp)) {
2610 		int lost = tp->fackets_out - tp->reordering;
2611 		if (lost <= 0)
2612 			lost = 1;
2613 		tcp_mark_head_lost(sk, lost, 0);
2614 	} else {
2615 		int sacked_upto = tp->sacked_out - tp->reordering;
2616 		if (sacked_upto >= 0)
2617 			tcp_mark_head_lost(sk, sacked_upto, 0);
2618 		else if (fast_rexmit)
2619 			tcp_mark_head_lost(sk, 1, 1);
2620 	}
2621 
2622 	tcp_timeout_skbs(sk);
2623 }
2624 
2625 /* CWND moderation, preventing bursts due to too big ACKs
2626  * in dubious situations.
2627  */
2628 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2629 {
2630 	tp->snd_cwnd = min(tp->snd_cwnd,
2631 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2632 	tp->snd_cwnd_stamp = tcp_time_stamp;
2633 }
2634 
2635 /* Lower bound on congestion window is slow start threshold
2636  * unless congestion avoidance choice decides to overide it.
2637  */
2638 static inline u32 tcp_cwnd_min(const struct sock *sk)
2639 {
2640 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2641 
2642 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2643 }
2644 
2645 /* Decrease cwnd each second ack. */
2646 static void tcp_cwnd_down(struct sock *sk, int flag)
2647 {
2648 	struct tcp_sock *tp = tcp_sk(sk);
2649 	int decr = tp->snd_cwnd_cnt + 1;
2650 
2651 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2652 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2653 		tp->snd_cwnd_cnt = decr & 1;
2654 		decr >>= 1;
2655 
2656 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2657 			tp->snd_cwnd -= decr;
2658 
2659 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2660 		tp->snd_cwnd_stamp = tcp_time_stamp;
2661 	}
2662 }
2663 
2664 /* Nothing was retransmitted or returned timestamp is less
2665  * than timestamp of the first retransmission.
2666  */
2667 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2668 {
2669 	return !tp->retrans_stamp ||
2670 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2671 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2672 }
2673 
2674 /* Undo procedures. */
2675 
2676 #if FASTRETRANS_DEBUG > 1
2677 static void DBGUNDO(struct sock *sk, const char *msg)
2678 {
2679 	struct tcp_sock *tp = tcp_sk(sk);
2680 	struct inet_sock *inet = inet_sk(sk);
2681 
2682 	if (sk->sk_family == AF_INET) {
2683 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2684 		       msg,
2685 		       &inet->inet_daddr, ntohs(inet->inet_dport),
2686 		       tp->snd_cwnd, tcp_left_out(tp),
2687 		       tp->snd_ssthresh, tp->prior_ssthresh,
2688 		       tp->packets_out);
2689 	}
2690 #if IS_ENABLED(CONFIG_IPV6)
2691 	else if (sk->sk_family == AF_INET6) {
2692 		struct ipv6_pinfo *np = inet6_sk(sk);
2693 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2694 		       msg,
2695 		       &np->daddr, ntohs(inet->inet_dport),
2696 		       tp->snd_cwnd, tcp_left_out(tp),
2697 		       tp->snd_ssthresh, tp->prior_ssthresh,
2698 		       tp->packets_out);
2699 	}
2700 #endif
2701 }
2702 #else
2703 #define DBGUNDO(x...) do { } while (0)
2704 #endif
2705 
2706 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2707 {
2708 	struct tcp_sock *tp = tcp_sk(sk);
2709 
2710 	if (tp->prior_ssthresh) {
2711 		const struct inet_connection_sock *icsk = inet_csk(sk);
2712 
2713 		if (icsk->icsk_ca_ops->undo_cwnd)
2714 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2715 		else
2716 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2717 
2718 		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2719 			tp->snd_ssthresh = tp->prior_ssthresh;
2720 			TCP_ECN_withdraw_cwr(tp);
2721 		}
2722 	} else {
2723 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2724 	}
2725 	tp->snd_cwnd_stamp = tcp_time_stamp;
2726 }
2727 
2728 static inline int tcp_may_undo(const struct tcp_sock *tp)
2729 {
2730 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2731 }
2732 
2733 /* People celebrate: "We love our President!" */
2734 static int tcp_try_undo_recovery(struct sock *sk)
2735 {
2736 	struct tcp_sock *tp = tcp_sk(sk);
2737 
2738 	if (tcp_may_undo(tp)) {
2739 		int mib_idx;
2740 
2741 		/* Happy end! We did not retransmit anything
2742 		 * or our original transmission succeeded.
2743 		 */
2744 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2745 		tcp_undo_cwr(sk, true);
2746 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2747 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2748 		else
2749 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2750 
2751 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2752 		tp->undo_marker = 0;
2753 	}
2754 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2755 		/* Hold old state until something *above* high_seq
2756 		 * is ACKed. For Reno it is MUST to prevent false
2757 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2758 		tcp_moderate_cwnd(tp);
2759 		return 1;
2760 	}
2761 	tcp_set_ca_state(sk, TCP_CA_Open);
2762 	return 0;
2763 }
2764 
2765 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2766 static void tcp_try_undo_dsack(struct sock *sk)
2767 {
2768 	struct tcp_sock *tp = tcp_sk(sk);
2769 
2770 	if (tp->undo_marker && !tp->undo_retrans) {
2771 		DBGUNDO(sk, "D-SACK");
2772 		tcp_undo_cwr(sk, true);
2773 		tp->undo_marker = 0;
2774 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2775 	}
2776 }
2777 
2778 /* We can clear retrans_stamp when there are no retransmissions in the
2779  * window. It would seem that it is trivially available for us in
2780  * tp->retrans_out, however, that kind of assumptions doesn't consider
2781  * what will happen if errors occur when sending retransmission for the
2782  * second time. ...It could the that such segment has only
2783  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2784  * the head skb is enough except for some reneging corner cases that
2785  * are not worth the effort.
2786  *
2787  * Main reason for all this complexity is the fact that connection dying
2788  * time now depends on the validity of the retrans_stamp, in particular,
2789  * that successive retransmissions of a segment must not advance
2790  * retrans_stamp under any conditions.
2791  */
2792 static int tcp_any_retrans_done(const struct sock *sk)
2793 {
2794 	const struct tcp_sock *tp = tcp_sk(sk);
2795 	struct sk_buff *skb;
2796 
2797 	if (tp->retrans_out)
2798 		return 1;
2799 
2800 	skb = tcp_write_queue_head(sk);
2801 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2802 		return 1;
2803 
2804 	return 0;
2805 }
2806 
2807 /* Undo during fast recovery after partial ACK. */
2808 
2809 static int tcp_try_undo_partial(struct sock *sk, int acked)
2810 {
2811 	struct tcp_sock *tp = tcp_sk(sk);
2812 	/* Partial ACK arrived. Force Hoe's retransmit. */
2813 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2814 
2815 	if (tcp_may_undo(tp)) {
2816 		/* Plain luck! Hole if filled with delayed
2817 		 * packet, rather than with a retransmit.
2818 		 */
2819 		if (!tcp_any_retrans_done(sk))
2820 			tp->retrans_stamp = 0;
2821 
2822 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2823 
2824 		DBGUNDO(sk, "Hoe");
2825 		tcp_undo_cwr(sk, false);
2826 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2827 
2828 		/* So... Do not make Hoe's retransmit yet.
2829 		 * If the first packet was delayed, the rest
2830 		 * ones are most probably delayed as well.
2831 		 */
2832 		failed = 0;
2833 	}
2834 	return failed;
2835 }
2836 
2837 /* Undo during loss recovery after partial ACK. */
2838 static int tcp_try_undo_loss(struct sock *sk)
2839 {
2840 	struct tcp_sock *tp = tcp_sk(sk);
2841 
2842 	if (tcp_may_undo(tp)) {
2843 		struct sk_buff *skb;
2844 		tcp_for_write_queue(skb, sk) {
2845 			if (skb == tcp_send_head(sk))
2846 				break;
2847 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2848 		}
2849 
2850 		tcp_clear_all_retrans_hints(tp);
2851 
2852 		DBGUNDO(sk, "partial loss");
2853 		tp->lost_out = 0;
2854 		tcp_undo_cwr(sk, true);
2855 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2856 		inet_csk(sk)->icsk_retransmits = 0;
2857 		tp->undo_marker = 0;
2858 		if (tcp_is_sack(tp))
2859 			tcp_set_ca_state(sk, TCP_CA_Open);
2860 		return 1;
2861 	}
2862 	return 0;
2863 }
2864 
2865 static inline void tcp_complete_cwr(struct sock *sk)
2866 {
2867 	struct tcp_sock *tp = tcp_sk(sk);
2868 
2869 	/* Do not moderate cwnd if it's already undone in cwr or recovery. */
2870 	if (tp->undo_marker) {
2871 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
2872 			tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2873 		else /* PRR */
2874 			tp->snd_cwnd = tp->snd_ssthresh;
2875 		tp->snd_cwnd_stamp = tcp_time_stamp;
2876 	}
2877 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2878 }
2879 
2880 static void tcp_try_keep_open(struct sock *sk)
2881 {
2882 	struct tcp_sock *tp = tcp_sk(sk);
2883 	int state = TCP_CA_Open;
2884 
2885 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2886 		state = TCP_CA_Disorder;
2887 
2888 	if (inet_csk(sk)->icsk_ca_state != state) {
2889 		tcp_set_ca_state(sk, state);
2890 		tp->high_seq = tp->snd_nxt;
2891 	}
2892 }
2893 
2894 static void tcp_try_to_open(struct sock *sk, int flag)
2895 {
2896 	struct tcp_sock *tp = tcp_sk(sk);
2897 
2898 	tcp_verify_left_out(tp);
2899 
2900 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2901 		tp->retrans_stamp = 0;
2902 
2903 	if (flag & FLAG_ECE)
2904 		tcp_enter_cwr(sk, 1);
2905 
2906 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2907 		tcp_try_keep_open(sk);
2908 		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2909 			tcp_moderate_cwnd(tp);
2910 	} else {
2911 		tcp_cwnd_down(sk, flag);
2912 	}
2913 }
2914 
2915 static void tcp_mtup_probe_failed(struct sock *sk)
2916 {
2917 	struct inet_connection_sock *icsk = inet_csk(sk);
2918 
2919 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2920 	icsk->icsk_mtup.probe_size = 0;
2921 }
2922 
2923 static void tcp_mtup_probe_success(struct sock *sk)
2924 {
2925 	struct tcp_sock *tp = tcp_sk(sk);
2926 	struct inet_connection_sock *icsk = inet_csk(sk);
2927 
2928 	/* FIXME: breaks with very large cwnd */
2929 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2930 	tp->snd_cwnd = tp->snd_cwnd *
2931 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2932 		       icsk->icsk_mtup.probe_size;
2933 	tp->snd_cwnd_cnt = 0;
2934 	tp->snd_cwnd_stamp = tcp_time_stamp;
2935 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2936 
2937 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2938 	icsk->icsk_mtup.probe_size = 0;
2939 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2940 }
2941 
2942 /* Do a simple retransmit without using the backoff mechanisms in
2943  * tcp_timer. This is used for path mtu discovery.
2944  * The socket is already locked here.
2945  */
2946 void tcp_simple_retransmit(struct sock *sk)
2947 {
2948 	const struct inet_connection_sock *icsk = inet_csk(sk);
2949 	struct tcp_sock *tp = tcp_sk(sk);
2950 	struct sk_buff *skb;
2951 	unsigned int mss = tcp_current_mss(sk);
2952 	u32 prior_lost = tp->lost_out;
2953 
2954 	tcp_for_write_queue(skb, sk) {
2955 		if (skb == tcp_send_head(sk))
2956 			break;
2957 		if (tcp_skb_seglen(skb) > mss &&
2958 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2959 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2960 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2961 				tp->retrans_out -= tcp_skb_pcount(skb);
2962 			}
2963 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2964 		}
2965 	}
2966 
2967 	tcp_clear_retrans_hints_partial(tp);
2968 
2969 	if (prior_lost == tp->lost_out)
2970 		return;
2971 
2972 	if (tcp_is_reno(tp))
2973 		tcp_limit_reno_sacked(tp);
2974 
2975 	tcp_verify_left_out(tp);
2976 
2977 	/* Don't muck with the congestion window here.
2978 	 * Reason is that we do not increase amount of _data_
2979 	 * in network, but units changed and effective
2980 	 * cwnd/ssthresh really reduced now.
2981 	 */
2982 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2983 		tp->high_seq = tp->snd_nxt;
2984 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2985 		tp->prior_ssthresh = 0;
2986 		tp->undo_marker = 0;
2987 		tcp_set_ca_state(sk, TCP_CA_Loss);
2988 	}
2989 	tcp_xmit_retransmit_queue(sk);
2990 }
2991 EXPORT_SYMBOL(tcp_simple_retransmit);
2992 
2993 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2994  * (proportional rate reduction with slow start reduction bound) as described in
2995  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2996  * It computes the number of packets to send (sndcnt) based on packets newly
2997  * delivered:
2998  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2999  *	cwnd reductions across a full RTT.
3000  *   2) If packets in flight is lower than ssthresh (such as due to excess
3001  *	losses and/or application stalls), do not perform any further cwnd
3002  *	reductions, but instead slow start up to ssthresh.
3003  */
3004 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3005 					int fast_rexmit, int flag)
3006 {
3007 	struct tcp_sock *tp = tcp_sk(sk);
3008 	int sndcnt = 0;
3009 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3010 
3011 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3012 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3013 			       tp->prior_cwnd - 1;
3014 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3015 	} else {
3016 		sndcnt = min_t(int, delta,
3017 			       max_t(int, tp->prr_delivered - tp->prr_out,
3018 				     newly_acked_sacked) + 1);
3019 	}
3020 
3021 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3022 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3023 }
3024 
3025 /* Process an event, which can update packets-in-flight not trivially.
3026  * Main goal of this function is to calculate new estimate for left_out,
3027  * taking into account both packets sitting in receiver's buffer and
3028  * packets lost by network.
3029  *
3030  * Besides that it does CWND reduction, when packet loss is detected
3031  * and changes state of machine.
3032  *
3033  * It does _not_ decide what to send, it is made in function
3034  * tcp_xmit_retransmit_queue().
3035  */
3036 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3037 				  int newly_acked_sacked, bool is_dupack,
3038 				  int flag)
3039 {
3040 	struct inet_connection_sock *icsk = inet_csk(sk);
3041 	struct tcp_sock *tp = tcp_sk(sk);
3042 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3043 				    (tcp_fackets_out(tp) > tp->reordering));
3044 	int fast_rexmit = 0, mib_idx;
3045 
3046 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
3047 		tp->sacked_out = 0;
3048 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3049 		tp->fackets_out = 0;
3050 
3051 	/* Now state machine starts.
3052 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3053 	if (flag & FLAG_ECE)
3054 		tp->prior_ssthresh = 0;
3055 
3056 	/* B. In all the states check for reneging SACKs. */
3057 	if (tcp_check_sack_reneging(sk, flag))
3058 		return;
3059 
3060 	/* C. Check consistency of the current state. */
3061 	tcp_verify_left_out(tp);
3062 
3063 	/* D. Check state exit conditions. State can be terminated
3064 	 *    when high_seq is ACKed. */
3065 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3066 		WARN_ON(tp->retrans_out != 0);
3067 		tp->retrans_stamp = 0;
3068 	} else if (!before(tp->snd_una, tp->high_seq)) {
3069 		switch (icsk->icsk_ca_state) {
3070 		case TCP_CA_Loss:
3071 			icsk->icsk_retransmits = 0;
3072 			if (tcp_try_undo_recovery(sk))
3073 				return;
3074 			break;
3075 
3076 		case TCP_CA_CWR:
3077 			/* CWR is to be held something *above* high_seq
3078 			 * is ACKed for CWR bit to reach receiver. */
3079 			if (tp->snd_una != tp->high_seq) {
3080 				tcp_complete_cwr(sk);
3081 				tcp_set_ca_state(sk, TCP_CA_Open);
3082 			}
3083 			break;
3084 
3085 		case TCP_CA_Recovery:
3086 			if (tcp_is_reno(tp))
3087 				tcp_reset_reno_sack(tp);
3088 			if (tcp_try_undo_recovery(sk))
3089 				return;
3090 			tcp_complete_cwr(sk);
3091 			break;
3092 		}
3093 	}
3094 
3095 	/* E. Process state. */
3096 	switch (icsk->icsk_ca_state) {
3097 	case TCP_CA_Recovery:
3098 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3099 			if (tcp_is_reno(tp) && is_dupack)
3100 				tcp_add_reno_sack(sk);
3101 		} else
3102 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3103 		break;
3104 	case TCP_CA_Loss:
3105 		if (flag & FLAG_DATA_ACKED)
3106 			icsk->icsk_retransmits = 0;
3107 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3108 			tcp_reset_reno_sack(tp);
3109 		if (!tcp_try_undo_loss(sk)) {
3110 			tcp_moderate_cwnd(tp);
3111 			tcp_xmit_retransmit_queue(sk);
3112 			return;
3113 		}
3114 		if (icsk->icsk_ca_state != TCP_CA_Open)
3115 			return;
3116 		/* Loss is undone; fall through to processing in Open state. */
3117 	default:
3118 		if (tcp_is_reno(tp)) {
3119 			if (flag & FLAG_SND_UNA_ADVANCED)
3120 				tcp_reset_reno_sack(tp);
3121 			if (is_dupack)
3122 				tcp_add_reno_sack(sk);
3123 		}
3124 
3125 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3126 			tcp_try_undo_dsack(sk);
3127 
3128 		if (!tcp_time_to_recover(sk)) {
3129 			tcp_try_to_open(sk, flag);
3130 			return;
3131 		}
3132 
3133 		/* MTU probe failure: don't reduce cwnd */
3134 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3135 		    icsk->icsk_mtup.probe_size &&
3136 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3137 			tcp_mtup_probe_failed(sk);
3138 			/* Restores the reduction we did in tcp_mtup_probe() */
3139 			tp->snd_cwnd++;
3140 			tcp_simple_retransmit(sk);
3141 			return;
3142 		}
3143 
3144 		/* Otherwise enter Recovery state */
3145 
3146 		if (tcp_is_reno(tp))
3147 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3148 		else
3149 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3150 
3151 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3152 
3153 		tp->high_seq = tp->snd_nxt;
3154 		tp->prior_ssthresh = 0;
3155 		tp->undo_marker = tp->snd_una;
3156 		tp->undo_retrans = tp->retrans_out;
3157 
3158 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3159 			if (!(flag & FLAG_ECE))
3160 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3161 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3162 			TCP_ECN_queue_cwr(tp);
3163 		}
3164 
3165 		tp->bytes_acked = 0;
3166 		tp->snd_cwnd_cnt = 0;
3167 		tp->prior_cwnd = tp->snd_cwnd;
3168 		tp->prr_delivered = 0;
3169 		tp->prr_out = 0;
3170 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3171 		fast_rexmit = 1;
3172 	}
3173 
3174 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3175 		tcp_update_scoreboard(sk, fast_rexmit);
3176 	tp->prr_delivered += newly_acked_sacked;
3177 	tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3178 	tcp_xmit_retransmit_queue(sk);
3179 }
3180 
3181 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3182 {
3183 	tcp_rtt_estimator(sk, seq_rtt);
3184 	tcp_set_rto(sk);
3185 	inet_csk(sk)->icsk_backoff = 0;
3186 }
3187 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3188 
3189 /* Read draft-ietf-tcplw-high-performance before mucking
3190  * with this code. (Supersedes RFC1323)
3191  */
3192 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3193 {
3194 	/* RTTM Rule: A TSecr value received in a segment is used to
3195 	 * update the averaged RTT measurement only if the segment
3196 	 * acknowledges some new data, i.e., only if it advances the
3197 	 * left edge of the send window.
3198 	 *
3199 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3200 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3201 	 *
3202 	 * Changed: reset backoff as soon as we see the first valid sample.
3203 	 * If we do not, we get strongly overestimated rto. With timestamps
3204 	 * samples are accepted even from very old segments: f.e., when rtt=1
3205 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3206 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3207 	 * in window is lost... Voila.	 			--ANK (010210)
3208 	 */
3209 	struct tcp_sock *tp = tcp_sk(sk);
3210 
3211 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3212 }
3213 
3214 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3215 {
3216 	/* We don't have a timestamp. Can only use
3217 	 * packets that are not retransmitted to determine
3218 	 * rtt estimates. Also, we must not reset the
3219 	 * backoff for rto until we get a non-retransmitted
3220 	 * packet. This allows us to deal with a situation
3221 	 * where the network delay has increased suddenly.
3222 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3223 	 */
3224 
3225 	if (flag & FLAG_RETRANS_DATA_ACKED)
3226 		return;
3227 
3228 	tcp_valid_rtt_meas(sk, seq_rtt);
3229 }
3230 
3231 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3232 				      const s32 seq_rtt)
3233 {
3234 	const struct tcp_sock *tp = tcp_sk(sk);
3235 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3236 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3237 		tcp_ack_saw_tstamp(sk, flag);
3238 	else if (seq_rtt >= 0)
3239 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3240 }
3241 
3242 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3243 {
3244 	const struct inet_connection_sock *icsk = inet_csk(sk);
3245 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3246 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3247 }
3248 
3249 /* Restart timer after forward progress on connection.
3250  * RFC2988 recommends to restart timer to now+rto.
3251  */
3252 static void tcp_rearm_rto(struct sock *sk)
3253 {
3254 	const struct tcp_sock *tp = tcp_sk(sk);
3255 
3256 	if (!tp->packets_out) {
3257 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3258 	} else {
3259 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3260 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3261 	}
3262 }
3263 
3264 /* If we get here, the whole TSO packet has not been acked. */
3265 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3266 {
3267 	struct tcp_sock *tp = tcp_sk(sk);
3268 	u32 packets_acked;
3269 
3270 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3271 
3272 	packets_acked = tcp_skb_pcount(skb);
3273 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3274 		return 0;
3275 	packets_acked -= tcp_skb_pcount(skb);
3276 
3277 	if (packets_acked) {
3278 		BUG_ON(tcp_skb_pcount(skb) == 0);
3279 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3280 	}
3281 
3282 	return packets_acked;
3283 }
3284 
3285 /* Remove acknowledged frames from the retransmission queue. If our packet
3286  * is before the ack sequence we can discard it as it's confirmed to have
3287  * arrived at the other end.
3288  */
3289 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3290 			       u32 prior_snd_una)
3291 {
3292 	struct tcp_sock *tp = tcp_sk(sk);
3293 	const struct inet_connection_sock *icsk = inet_csk(sk);
3294 	struct sk_buff *skb;
3295 	u32 now = tcp_time_stamp;
3296 	int fully_acked = 1;
3297 	int flag = 0;
3298 	u32 pkts_acked = 0;
3299 	u32 reord = tp->packets_out;
3300 	u32 prior_sacked = tp->sacked_out;
3301 	s32 seq_rtt = -1;
3302 	s32 ca_seq_rtt = -1;
3303 	ktime_t last_ackt = net_invalid_timestamp();
3304 
3305 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3306 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3307 		u32 acked_pcount;
3308 		u8 sacked = scb->sacked;
3309 
3310 		/* Determine how many packets and what bytes were acked, tso and else */
3311 		if (after(scb->end_seq, tp->snd_una)) {
3312 			if (tcp_skb_pcount(skb) == 1 ||
3313 			    !after(tp->snd_una, scb->seq))
3314 				break;
3315 
3316 			acked_pcount = tcp_tso_acked(sk, skb);
3317 			if (!acked_pcount)
3318 				break;
3319 
3320 			fully_acked = 0;
3321 		} else {
3322 			acked_pcount = tcp_skb_pcount(skb);
3323 		}
3324 
3325 		if (sacked & TCPCB_RETRANS) {
3326 			if (sacked & TCPCB_SACKED_RETRANS)
3327 				tp->retrans_out -= acked_pcount;
3328 			flag |= FLAG_RETRANS_DATA_ACKED;
3329 			ca_seq_rtt = -1;
3330 			seq_rtt = -1;
3331 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3332 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3333 		} else {
3334 			ca_seq_rtt = now - scb->when;
3335 			last_ackt = skb->tstamp;
3336 			if (seq_rtt < 0) {
3337 				seq_rtt = ca_seq_rtt;
3338 			}
3339 			if (!(sacked & TCPCB_SACKED_ACKED))
3340 				reord = min(pkts_acked, reord);
3341 		}
3342 
3343 		if (sacked & TCPCB_SACKED_ACKED)
3344 			tp->sacked_out -= acked_pcount;
3345 		if (sacked & TCPCB_LOST)
3346 			tp->lost_out -= acked_pcount;
3347 
3348 		tp->packets_out -= acked_pcount;
3349 		pkts_acked += acked_pcount;
3350 
3351 		/* Initial outgoing SYN's get put onto the write_queue
3352 		 * just like anything else we transmit.  It is not
3353 		 * true data, and if we misinform our callers that
3354 		 * this ACK acks real data, we will erroneously exit
3355 		 * connection startup slow start one packet too
3356 		 * quickly.  This is severely frowned upon behavior.
3357 		 */
3358 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3359 			flag |= FLAG_DATA_ACKED;
3360 		} else {
3361 			flag |= FLAG_SYN_ACKED;
3362 			tp->retrans_stamp = 0;
3363 		}
3364 
3365 		if (!fully_acked)
3366 			break;
3367 
3368 		tcp_unlink_write_queue(skb, sk);
3369 		sk_wmem_free_skb(sk, skb);
3370 		tp->scoreboard_skb_hint = NULL;
3371 		if (skb == tp->retransmit_skb_hint)
3372 			tp->retransmit_skb_hint = NULL;
3373 		if (skb == tp->lost_skb_hint)
3374 			tp->lost_skb_hint = NULL;
3375 	}
3376 
3377 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3378 		tp->snd_up = tp->snd_una;
3379 
3380 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3381 		flag |= FLAG_SACK_RENEGING;
3382 
3383 	if (flag & FLAG_ACKED) {
3384 		const struct tcp_congestion_ops *ca_ops
3385 			= inet_csk(sk)->icsk_ca_ops;
3386 
3387 		if (unlikely(icsk->icsk_mtup.probe_size &&
3388 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3389 			tcp_mtup_probe_success(sk);
3390 		}
3391 
3392 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3393 		tcp_rearm_rto(sk);
3394 
3395 		if (tcp_is_reno(tp)) {
3396 			tcp_remove_reno_sacks(sk, pkts_acked);
3397 		} else {
3398 			int delta;
3399 
3400 			/* Non-retransmitted hole got filled? That's reordering */
3401 			if (reord < prior_fackets)
3402 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3403 
3404 			delta = tcp_is_fack(tp) ? pkts_acked :
3405 						  prior_sacked - tp->sacked_out;
3406 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3407 		}
3408 
3409 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3410 
3411 		if (ca_ops->pkts_acked) {
3412 			s32 rtt_us = -1;
3413 
3414 			/* Is the ACK triggering packet unambiguous? */
3415 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3416 				/* High resolution needed and available? */
3417 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3418 				    !ktime_equal(last_ackt,
3419 						 net_invalid_timestamp()))
3420 					rtt_us = ktime_us_delta(ktime_get_real(),
3421 								last_ackt);
3422 				else if (ca_seq_rtt >= 0)
3423 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3424 			}
3425 
3426 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3427 		}
3428 	}
3429 
3430 #if FASTRETRANS_DEBUG > 0
3431 	WARN_ON((int)tp->sacked_out < 0);
3432 	WARN_ON((int)tp->lost_out < 0);
3433 	WARN_ON((int)tp->retrans_out < 0);
3434 	if (!tp->packets_out && tcp_is_sack(tp)) {
3435 		icsk = inet_csk(sk);
3436 		if (tp->lost_out) {
3437 			printk(KERN_DEBUG "Leak l=%u %d\n",
3438 			       tp->lost_out, icsk->icsk_ca_state);
3439 			tp->lost_out = 0;
3440 		}
3441 		if (tp->sacked_out) {
3442 			printk(KERN_DEBUG "Leak s=%u %d\n",
3443 			       tp->sacked_out, icsk->icsk_ca_state);
3444 			tp->sacked_out = 0;
3445 		}
3446 		if (tp->retrans_out) {
3447 			printk(KERN_DEBUG "Leak r=%u %d\n",
3448 			       tp->retrans_out, icsk->icsk_ca_state);
3449 			tp->retrans_out = 0;
3450 		}
3451 	}
3452 #endif
3453 	return flag;
3454 }
3455 
3456 static void tcp_ack_probe(struct sock *sk)
3457 {
3458 	const struct tcp_sock *tp = tcp_sk(sk);
3459 	struct inet_connection_sock *icsk = inet_csk(sk);
3460 
3461 	/* Was it a usable window open? */
3462 
3463 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3464 		icsk->icsk_backoff = 0;
3465 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3466 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3467 		 * This function is not for random using!
3468 		 */
3469 	} else {
3470 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3471 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3472 					  TCP_RTO_MAX);
3473 	}
3474 }
3475 
3476 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3477 {
3478 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3479 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3480 }
3481 
3482 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3483 {
3484 	const struct tcp_sock *tp = tcp_sk(sk);
3485 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3486 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3487 }
3488 
3489 /* Check that window update is acceptable.
3490  * The function assumes that snd_una<=ack<=snd_next.
3491  */
3492 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3493 					const u32 ack, const u32 ack_seq,
3494 					const u32 nwin)
3495 {
3496 	return	after(ack, tp->snd_una) ||
3497 		after(ack_seq, tp->snd_wl1) ||
3498 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3499 }
3500 
3501 /* Update our send window.
3502  *
3503  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3504  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3505  */
3506 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3507 				 u32 ack_seq)
3508 {
3509 	struct tcp_sock *tp = tcp_sk(sk);
3510 	int flag = 0;
3511 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3512 
3513 	if (likely(!tcp_hdr(skb)->syn))
3514 		nwin <<= tp->rx_opt.snd_wscale;
3515 
3516 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3517 		flag |= FLAG_WIN_UPDATE;
3518 		tcp_update_wl(tp, ack_seq);
3519 
3520 		if (tp->snd_wnd != nwin) {
3521 			tp->snd_wnd = nwin;
3522 
3523 			/* Note, it is the only place, where
3524 			 * fast path is recovered for sending TCP.
3525 			 */
3526 			tp->pred_flags = 0;
3527 			tcp_fast_path_check(sk);
3528 
3529 			if (nwin > tp->max_window) {
3530 				tp->max_window = nwin;
3531 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3532 			}
3533 		}
3534 	}
3535 
3536 	tp->snd_una = ack;
3537 
3538 	return flag;
3539 }
3540 
3541 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3542  * continue in congestion avoidance.
3543  */
3544 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3545 {
3546 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3547 	tp->snd_cwnd_cnt = 0;
3548 	tp->bytes_acked = 0;
3549 	TCP_ECN_queue_cwr(tp);
3550 	tcp_moderate_cwnd(tp);
3551 }
3552 
3553 /* A conservative spurious RTO response algorithm: reduce cwnd using
3554  * rate halving and continue in congestion avoidance.
3555  */
3556 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3557 {
3558 	tcp_enter_cwr(sk, 0);
3559 }
3560 
3561 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3562 {
3563 	if (flag & FLAG_ECE)
3564 		tcp_ratehalving_spur_to_response(sk);
3565 	else
3566 		tcp_undo_cwr(sk, true);
3567 }
3568 
3569 /* F-RTO spurious RTO detection algorithm (RFC4138)
3570  *
3571  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3572  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3573  * window (but not to or beyond highest sequence sent before RTO):
3574  *   On First ACK,  send two new segments out.
3575  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3576  *                  algorithm is not part of the F-RTO detection algorithm
3577  *                  given in RFC4138 but can be selected separately).
3578  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3579  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3580  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3581  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3582  *
3583  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3584  * original window even after we transmit two new data segments.
3585  *
3586  * SACK version:
3587  *   on first step, wait until first cumulative ACK arrives, then move to
3588  *   the second step. In second step, the next ACK decides.
3589  *
3590  * F-RTO is implemented (mainly) in four functions:
3591  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3592  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3593  *     called when tcp_use_frto() showed green light
3594  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3595  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3596  *     to prove that the RTO is indeed spurious. It transfers the control
3597  *     from F-RTO to the conventional RTO recovery
3598  */
3599 static int tcp_process_frto(struct sock *sk, int flag)
3600 {
3601 	struct tcp_sock *tp = tcp_sk(sk);
3602 
3603 	tcp_verify_left_out(tp);
3604 
3605 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3606 	if (flag & FLAG_DATA_ACKED)
3607 		inet_csk(sk)->icsk_retransmits = 0;
3608 
3609 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3610 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3611 		tp->undo_marker = 0;
3612 
3613 	if (!before(tp->snd_una, tp->frto_highmark)) {
3614 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3615 		return 1;
3616 	}
3617 
3618 	if (!tcp_is_sackfrto(tp)) {
3619 		/* RFC4138 shortcoming in step 2; should also have case c):
3620 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3621 		 * data, winupdate
3622 		 */
3623 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3624 			return 1;
3625 
3626 		if (!(flag & FLAG_DATA_ACKED)) {
3627 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3628 					    flag);
3629 			return 1;
3630 		}
3631 	} else {
3632 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3633 			/* Prevent sending of new data. */
3634 			tp->snd_cwnd = min(tp->snd_cwnd,
3635 					   tcp_packets_in_flight(tp));
3636 			return 1;
3637 		}
3638 
3639 		if ((tp->frto_counter >= 2) &&
3640 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3641 		     ((flag & FLAG_DATA_SACKED) &&
3642 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3643 			/* RFC4138 shortcoming (see comment above) */
3644 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3645 			    (flag & FLAG_NOT_DUP))
3646 				return 1;
3647 
3648 			tcp_enter_frto_loss(sk, 3, flag);
3649 			return 1;
3650 		}
3651 	}
3652 
3653 	if (tp->frto_counter == 1) {
3654 		/* tcp_may_send_now needs to see updated state */
3655 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3656 		tp->frto_counter = 2;
3657 
3658 		if (!tcp_may_send_now(sk))
3659 			tcp_enter_frto_loss(sk, 2, flag);
3660 
3661 		return 1;
3662 	} else {
3663 		switch (sysctl_tcp_frto_response) {
3664 		case 2:
3665 			tcp_undo_spur_to_response(sk, flag);
3666 			break;
3667 		case 1:
3668 			tcp_conservative_spur_to_response(tp);
3669 			break;
3670 		default:
3671 			tcp_ratehalving_spur_to_response(sk);
3672 			break;
3673 		}
3674 		tp->frto_counter = 0;
3675 		tp->undo_marker = 0;
3676 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3677 	}
3678 	return 0;
3679 }
3680 
3681 /* This routine deals with incoming acks, but not outgoing ones. */
3682 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3683 {
3684 	struct inet_connection_sock *icsk = inet_csk(sk);
3685 	struct tcp_sock *tp = tcp_sk(sk);
3686 	u32 prior_snd_una = tp->snd_una;
3687 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3688 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3689 	bool is_dupack = false;
3690 	u32 prior_in_flight;
3691 	u32 prior_fackets;
3692 	int prior_packets;
3693 	int prior_sacked = tp->sacked_out;
3694 	int pkts_acked = 0;
3695 	int newly_acked_sacked = 0;
3696 	int frto_cwnd = 0;
3697 
3698 	/* If the ack is older than previous acks
3699 	 * then we can probably ignore it.
3700 	 */
3701 	if (before(ack, prior_snd_una))
3702 		goto old_ack;
3703 
3704 	/* If the ack includes data we haven't sent yet, discard
3705 	 * this segment (RFC793 Section 3.9).
3706 	 */
3707 	if (after(ack, tp->snd_nxt))
3708 		goto invalid_ack;
3709 
3710 	if (after(ack, prior_snd_una))
3711 		flag |= FLAG_SND_UNA_ADVANCED;
3712 
3713 	if (sysctl_tcp_abc) {
3714 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3715 			tp->bytes_acked += ack - prior_snd_una;
3716 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3717 			/* we assume just one segment left network */
3718 			tp->bytes_acked += min(ack - prior_snd_una,
3719 					       tp->mss_cache);
3720 	}
3721 
3722 	prior_fackets = tp->fackets_out;
3723 	prior_in_flight = tcp_packets_in_flight(tp);
3724 
3725 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3726 		/* Window is constant, pure forward advance.
3727 		 * No more checks are required.
3728 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3729 		 */
3730 		tcp_update_wl(tp, ack_seq);
3731 		tp->snd_una = ack;
3732 		flag |= FLAG_WIN_UPDATE;
3733 
3734 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3735 
3736 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3737 	} else {
3738 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3739 			flag |= FLAG_DATA;
3740 		else
3741 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3742 
3743 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3744 
3745 		if (TCP_SKB_CB(skb)->sacked)
3746 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3747 
3748 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3749 			flag |= FLAG_ECE;
3750 
3751 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3752 	}
3753 
3754 	/* We passed data and got it acked, remove any soft error
3755 	 * log. Something worked...
3756 	 */
3757 	sk->sk_err_soft = 0;
3758 	icsk->icsk_probes_out = 0;
3759 	tp->rcv_tstamp = tcp_time_stamp;
3760 	prior_packets = tp->packets_out;
3761 	if (!prior_packets)
3762 		goto no_queue;
3763 
3764 	/* See if we can take anything off of the retransmit queue. */
3765 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3766 
3767 	pkts_acked = prior_packets - tp->packets_out;
3768 	newly_acked_sacked = (prior_packets - prior_sacked) -
3769 			     (tp->packets_out - tp->sacked_out);
3770 
3771 	if (tp->frto_counter)
3772 		frto_cwnd = tcp_process_frto(sk, flag);
3773 	/* Guarantee sacktag reordering detection against wrap-arounds */
3774 	if (before(tp->frto_highmark, tp->snd_una))
3775 		tp->frto_highmark = 0;
3776 
3777 	if (tcp_ack_is_dubious(sk, flag)) {
3778 		/* Advance CWND, if state allows this. */
3779 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3780 		    tcp_may_raise_cwnd(sk, flag))
3781 			tcp_cong_avoid(sk, ack, prior_in_flight);
3782 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3783 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3784 				      is_dupack, flag);
3785 	} else {
3786 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3787 			tcp_cong_avoid(sk, ack, prior_in_flight);
3788 	}
3789 
3790 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3791 		dst_confirm(__sk_dst_get(sk));
3792 
3793 	return 1;
3794 
3795 no_queue:
3796 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3797 	if (flag & FLAG_DSACKING_ACK)
3798 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3799 				      is_dupack, flag);
3800 	/* If this ack opens up a zero window, clear backoff.  It was
3801 	 * being used to time the probes, and is probably far higher than
3802 	 * it needs to be for normal retransmission.
3803 	 */
3804 	if (tcp_send_head(sk))
3805 		tcp_ack_probe(sk);
3806 	return 1;
3807 
3808 invalid_ack:
3809 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3810 	return -1;
3811 
3812 old_ack:
3813 	/* If data was SACKed, tag it and see if we should send more data.
3814 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3815 	 */
3816 	if (TCP_SKB_CB(skb)->sacked) {
3817 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3818 		newly_acked_sacked = tp->sacked_out - prior_sacked;
3819 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3820 				      is_dupack, flag);
3821 	}
3822 
3823 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3824 	return 0;
3825 }
3826 
3827 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3828  * But, this can also be called on packets in the established flow when
3829  * the fast version below fails.
3830  */
3831 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3832 		       const u8 **hvpp, int estab)
3833 {
3834 	const unsigned char *ptr;
3835 	const struct tcphdr *th = tcp_hdr(skb);
3836 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3837 
3838 	ptr = (const unsigned char *)(th + 1);
3839 	opt_rx->saw_tstamp = 0;
3840 
3841 	while (length > 0) {
3842 		int opcode = *ptr++;
3843 		int opsize;
3844 
3845 		switch (opcode) {
3846 		case TCPOPT_EOL:
3847 			return;
3848 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3849 			length--;
3850 			continue;
3851 		default:
3852 			opsize = *ptr++;
3853 			if (opsize < 2) /* "silly options" */
3854 				return;
3855 			if (opsize > length)
3856 				return;	/* don't parse partial options */
3857 			switch (opcode) {
3858 			case TCPOPT_MSS:
3859 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3860 					u16 in_mss = get_unaligned_be16(ptr);
3861 					if (in_mss) {
3862 						if (opt_rx->user_mss &&
3863 						    opt_rx->user_mss < in_mss)
3864 							in_mss = opt_rx->user_mss;
3865 						opt_rx->mss_clamp = in_mss;
3866 					}
3867 				}
3868 				break;
3869 			case TCPOPT_WINDOW:
3870 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3871 				    !estab && sysctl_tcp_window_scaling) {
3872 					__u8 snd_wscale = *(__u8 *)ptr;
3873 					opt_rx->wscale_ok = 1;
3874 					if (snd_wscale > 14) {
3875 						if (net_ratelimit())
3876 							pr_info("%s: Illegal window scaling value %d >14 received\n",
3877 								__func__,
3878 								snd_wscale);
3879 						snd_wscale = 14;
3880 					}
3881 					opt_rx->snd_wscale = snd_wscale;
3882 				}
3883 				break;
3884 			case TCPOPT_TIMESTAMP:
3885 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3886 				    ((estab && opt_rx->tstamp_ok) ||
3887 				     (!estab && sysctl_tcp_timestamps))) {
3888 					opt_rx->saw_tstamp = 1;
3889 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3890 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3891 				}
3892 				break;
3893 			case TCPOPT_SACK_PERM:
3894 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3895 				    !estab && sysctl_tcp_sack) {
3896 					opt_rx->sack_ok = TCP_SACK_SEEN;
3897 					tcp_sack_reset(opt_rx);
3898 				}
3899 				break;
3900 
3901 			case TCPOPT_SACK:
3902 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3903 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3904 				   opt_rx->sack_ok) {
3905 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3906 				}
3907 				break;
3908 #ifdef CONFIG_TCP_MD5SIG
3909 			case TCPOPT_MD5SIG:
3910 				/*
3911 				 * The MD5 Hash has already been
3912 				 * checked (see tcp_v{4,6}_do_rcv()).
3913 				 */
3914 				break;
3915 #endif
3916 			case TCPOPT_COOKIE:
3917 				/* This option is variable length.
3918 				 */
3919 				switch (opsize) {
3920 				case TCPOLEN_COOKIE_BASE:
3921 					/* not yet implemented */
3922 					break;
3923 				case TCPOLEN_COOKIE_PAIR:
3924 					/* not yet implemented */
3925 					break;
3926 				case TCPOLEN_COOKIE_MIN+0:
3927 				case TCPOLEN_COOKIE_MIN+2:
3928 				case TCPOLEN_COOKIE_MIN+4:
3929 				case TCPOLEN_COOKIE_MIN+6:
3930 				case TCPOLEN_COOKIE_MAX:
3931 					/* 16-bit multiple */
3932 					opt_rx->cookie_plus = opsize;
3933 					*hvpp = ptr;
3934 					break;
3935 				default:
3936 					/* ignore option */
3937 					break;
3938 				}
3939 				break;
3940 			}
3941 
3942 			ptr += opsize-2;
3943 			length -= opsize;
3944 		}
3945 	}
3946 }
3947 EXPORT_SYMBOL(tcp_parse_options);
3948 
3949 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3950 {
3951 	const __be32 *ptr = (const __be32 *)(th + 1);
3952 
3953 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3954 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3955 		tp->rx_opt.saw_tstamp = 1;
3956 		++ptr;
3957 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3958 		++ptr;
3959 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3960 		return 1;
3961 	}
3962 	return 0;
3963 }
3964 
3965 /* Fast parse options. This hopes to only see timestamps.
3966  * If it is wrong it falls back on tcp_parse_options().
3967  */
3968 static int tcp_fast_parse_options(const struct sk_buff *skb,
3969 				  const struct tcphdr *th,
3970 				  struct tcp_sock *tp, const u8 **hvpp)
3971 {
3972 	/* In the spirit of fast parsing, compare doff directly to constant
3973 	 * values.  Because equality is used, short doff can be ignored here.
3974 	 */
3975 	if (th->doff == (sizeof(*th) / 4)) {
3976 		tp->rx_opt.saw_tstamp = 0;
3977 		return 0;
3978 	} else if (tp->rx_opt.tstamp_ok &&
3979 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3980 		if (tcp_parse_aligned_timestamp(tp, th))
3981 			return 1;
3982 	}
3983 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3984 	return 1;
3985 }
3986 
3987 #ifdef CONFIG_TCP_MD5SIG
3988 /*
3989  * Parse MD5 Signature option
3990  */
3991 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3992 {
3993 	int length = (th->doff << 2) - sizeof(*th);
3994 	const u8 *ptr = (const u8 *)(th + 1);
3995 
3996 	/* If the TCP option is too short, we can short cut */
3997 	if (length < TCPOLEN_MD5SIG)
3998 		return NULL;
3999 
4000 	while (length > 0) {
4001 		int opcode = *ptr++;
4002 		int opsize;
4003 
4004 		switch(opcode) {
4005 		case TCPOPT_EOL:
4006 			return NULL;
4007 		case TCPOPT_NOP:
4008 			length--;
4009 			continue;
4010 		default:
4011 			opsize = *ptr++;
4012 			if (opsize < 2 || opsize > length)
4013 				return NULL;
4014 			if (opcode == TCPOPT_MD5SIG)
4015 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4016 		}
4017 		ptr += opsize - 2;
4018 		length -= opsize;
4019 	}
4020 	return NULL;
4021 }
4022 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4023 #endif
4024 
4025 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4026 {
4027 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4028 	tp->rx_opt.ts_recent_stamp = get_seconds();
4029 }
4030 
4031 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4032 {
4033 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4034 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
4035 		 * extra check below makes sure this can only happen
4036 		 * for pure ACK frames.  -DaveM
4037 		 *
4038 		 * Not only, also it occurs for expired timestamps.
4039 		 */
4040 
4041 		if (tcp_paws_check(&tp->rx_opt, 0))
4042 			tcp_store_ts_recent(tp);
4043 	}
4044 }
4045 
4046 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4047  *
4048  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4049  * it can pass through stack. So, the following predicate verifies that
4050  * this segment is not used for anything but congestion avoidance or
4051  * fast retransmit. Moreover, we even are able to eliminate most of such
4052  * second order effects, if we apply some small "replay" window (~RTO)
4053  * to timestamp space.
4054  *
4055  * All these measures still do not guarantee that we reject wrapped ACKs
4056  * on networks with high bandwidth, when sequence space is recycled fastly,
4057  * but it guarantees that such events will be very rare and do not affect
4058  * connection seriously. This doesn't look nice, but alas, PAWS is really
4059  * buggy extension.
4060  *
4061  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4062  * states that events when retransmit arrives after original data are rare.
4063  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4064  * the biggest problem on large power networks even with minor reordering.
4065  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4066  * up to bandwidth of 18Gigabit/sec. 8) ]
4067  */
4068 
4069 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4070 {
4071 	const struct tcp_sock *tp = tcp_sk(sk);
4072 	const struct tcphdr *th = tcp_hdr(skb);
4073 	u32 seq = TCP_SKB_CB(skb)->seq;
4074 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4075 
4076 	return (/* 1. Pure ACK with correct sequence number. */
4077 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4078 
4079 		/* 2. ... and duplicate ACK. */
4080 		ack == tp->snd_una &&
4081 
4082 		/* 3. ... and does not update window. */
4083 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4084 
4085 		/* 4. ... and sits in replay window. */
4086 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4087 }
4088 
4089 static inline int tcp_paws_discard(const struct sock *sk,
4090 				   const struct sk_buff *skb)
4091 {
4092 	const struct tcp_sock *tp = tcp_sk(sk);
4093 
4094 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4095 	       !tcp_disordered_ack(sk, skb);
4096 }
4097 
4098 /* Check segment sequence number for validity.
4099  *
4100  * Segment controls are considered valid, if the segment
4101  * fits to the window after truncation to the window. Acceptability
4102  * of data (and SYN, FIN, of course) is checked separately.
4103  * See tcp_data_queue(), for example.
4104  *
4105  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4106  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4107  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4108  * (borrowed from freebsd)
4109  */
4110 
4111 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4112 {
4113 	return	!before(end_seq, tp->rcv_wup) &&
4114 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4115 }
4116 
4117 /* When we get a reset we do this. */
4118 static void tcp_reset(struct sock *sk)
4119 {
4120 	/* We want the right error as BSD sees it (and indeed as we do). */
4121 	switch (sk->sk_state) {
4122 	case TCP_SYN_SENT:
4123 		sk->sk_err = ECONNREFUSED;
4124 		break;
4125 	case TCP_CLOSE_WAIT:
4126 		sk->sk_err = EPIPE;
4127 		break;
4128 	case TCP_CLOSE:
4129 		return;
4130 	default:
4131 		sk->sk_err = ECONNRESET;
4132 	}
4133 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4134 	smp_wmb();
4135 
4136 	if (!sock_flag(sk, SOCK_DEAD))
4137 		sk->sk_error_report(sk);
4138 
4139 	tcp_done(sk);
4140 }
4141 
4142 /*
4143  * 	Process the FIN bit. This now behaves as it is supposed to work
4144  *	and the FIN takes effect when it is validly part of sequence
4145  *	space. Not before when we get holes.
4146  *
4147  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4148  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4149  *	TIME-WAIT)
4150  *
4151  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4152  *	close and we go into CLOSING (and later onto TIME-WAIT)
4153  *
4154  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4155  */
4156 static void tcp_fin(struct sock *sk)
4157 {
4158 	struct tcp_sock *tp = tcp_sk(sk);
4159 
4160 	inet_csk_schedule_ack(sk);
4161 
4162 	sk->sk_shutdown |= RCV_SHUTDOWN;
4163 	sock_set_flag(sk, SOCK_DONE);
4164 
4165 	switch (sk->sk_state) {
4166 	case TCP_SYN_RECV:
4167 	case TCP_ESTABLISHED:
4168 		/* Move to CLOSE_WAIT */
4169 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4170 		inet_csk(sk)->icsk_ack.pingpong = 1;
4171 		break;
4172 
4173 	case TCP_CLOSE_WAIT:
4174 	case TCP_CLOSING:
4175 		/* Received a retransmission of the FIN, do
4176 		 * nothing.
4177 		 */
4178 		break;
4179 	case TCP_LAST_ACK:
4180 		/* RFC793: Remain in the LAST-ACK state. */
4181 		break;
4182 
4183 	case TCP_FIN_WAIT1:
4184 		/* This case occurs when a simultaneous close
4185 		 * happens, we must ack the received FIN and
4186 		 * enter the CLOSING state.
4187 		 */
4188 		tcp_send_ack(sk);
4189 		tcp_set_state(sk, TCP_CLOSING);
4190 		break;
4191 	case TCP_FIN_WAIT2:
4192 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4193 		tcp_send_ack(sk);
4194 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4195 		break;
4196 	default:
4197 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4198 		 * cases we should never reach this piece of code.
4199 		 */
4200 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4201 		       __func__, sk->sk_state);
4202 		break;
4203 	}
4204 
4205 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4206 	 * Probably, we should reset in this case. For now drop them.
4207 	 */
4208 	__skb_queue_purge(&tp->out_of_order_queue);
4209 	if (tcp_is_sack(tp))
4210 		tcp_sack_reset(&tp->rx_opt);
4211 	sk_mem_reclaim(sk);
4212 
4213 	if (!sock_flag(sk, SOCK_DEAD)) {
4214 		sk->sk_state_change(sk);
4215 
4216 		/* Do not send POLL_HUP for half duplex close. */
4217 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4218 		    sk->sk_state == TCP_CLOSE)
4219 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4220 		else
4221 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4222 	}
4223 }
4224 
4225 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4226 				  u32 end_seq)
4227 {
4228 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4229 		if (before(seq, sp->start_seq))
4230 			sp->start_seq = seq;
4231 		if (after(end_seq, sp->end_seq))
4232 			sp->end_seq = end_seq;
4233 		return 1;
4234 	}
4235 	return 0;
4236 }
4237 
4238 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4239 {
4240 	struct tcp_sock *tp = tcp_sk(sk);
4241 
4242 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4243 		int mib_idx;
4244 
4245 		if (before(seq, tp->rcv_nxt))
4246 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4247 		else
4248 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4249 
4250 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4251 
4252 		tp->rx_opt.dsack = 1;
4253 		tp->duplicate_sack[0].start_seq = seq;
4254 		tp->duplicate_sack[0].end_seq = end_seq;
4255 	}
4256 }
4257 
4258 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4259 {
4260 	struct tcp_sock *tp = tcp_sk(sk);
4261 
4262 	if (!tp->rx_opt.dsack)
4263 		tcp_dsack_set(sk, seq, end_seq);
4264 	else
4265 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4266 }
4267 
4268 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4269 {
4270 	struct tcp_sock *tp = tcp_sk(sk);
4271 
4272 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4273 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4274 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4275 		tcp_enter_quickack_mode(sk);
4276 
4277 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4278 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4279 
4280 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4281 				end_seq = tp->rcv_nxt;
4282 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4283 		}
4284 	}
4285 
4286 	tcp_send_ack(sk);
4287 }
4288 
4289 /* These routines update the SACK block as out-of-order packets arrive or
4290  * in-order packets close up the sequence space.
4291  */
4292 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4293 {
4294 	int this_sack;
4295 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4296 	struct tcp_sack_block *swalk = sp + 1;
4297 
4298 	/* See if the recent change to the first SACK eats into
4299 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4300 	 */
4301 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4302 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4303 			int i;
4304 
4305 			/* Zap SWALK, by moving every further SACK up by one slot.
4306 			 * Decrease num_sacks.
4307 			 */
4308 			tp->rx_opt.num_sacks--;
4309 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4310 				sp[i] = sp[i + 1];
4311 			continue;
4312 		}
4313 		this_sack++, swalk++;
4314 	}
4315 }
4316 
4317 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4318 {
4319 	struct tcp_sock *tp = tcp_sk(sk);
4320 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4321 	int cur_sacks = tp->rx_opt.num_sacks;
4322 	int this_sack;
4323 
4324 	if (!cur_sacks)
4325 		goto new_sack;
4326 
4327 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4328 		if (tcp_sack_extend(sp, seq, end_seq)) {
4329 			/* Rotate this_sack to the first one. */
4330 			for (; this_sack > 0; this_sack--, sp--)
4331 				swap(*sp, *(sp - 1));
4332 			if (cur_sacks > 1)
4333 				tcp_sack_maybe_coalesce(tp);
4334 			return;
4335 		}
4336 	}
4337 
4338 	/* Could not find an adjacent existing SACK, build a new one,
4339 	 * put it at the front, and shift everyone else down.  We
4340 	 * always know there is at least one SACK present already here.
4341 	 *
4342 	 * If the sack array is full, forget about the last one.
4343 	 */
4344 	if (this_sack >= TCP_NUM_SACKS) {
4345 		this_sack--;
4346 		tp->rx_opt.num_sacks--;
4347 		sp--;
4348 	}
4349 	for (; this_sack > 0; this_sack--, sp--)
4350 		*sp = *(sp - 1);
4351 
4352 new_sack:
4353 	/* Build the new head SACK, and we're done. */
4354 	sp->start_seq = seq;
4355 	sp->end_seq = end_seq;
4356 	tp->rx_opt.num_sacks++;
4357 }
4358 
4359 /* RCV.NXT advances, some SACKs should be eaten. */
4360 
4361 static void tcp_sack_remove(struct tcp_sock *tp)
4362 {
4363 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4364 	int num_sacks = tp->rx_opt.num_sacks;
4365 	int this_sack;
4366 
4367 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4368 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4369 		tp->rx_opt.num_sacks = 0;
4370 		return;
4371 	}
4372 
4373 	for (this_sack = 0; this_sack < num_sacks;) {
4374 		/* Check if the start of the sack is covered by RCV.NXT. */
4375 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4376 			int i;
4377 
4378 			/* RCV.NXT must cover all the block! */
4379 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4380 
4381 			/* Zap this SACK, by moving forward any other SACKS. */
4382 			for (i=this_sack+1; i < num_sacks; i++)
4383 				tp->selective_acks[i-1] = tp->selective_acks[i];
4384 			num_sacks--;
4385 			continue;
4386 		}
4387 		this_sack++;
4388 		sp++;
4389 	}
4390 	tp->rx_opt.num_sacks = num_sacks;
4391 }
4392 
4393 /* This one checks to see if we can put data from the
4394  * out_of_order queue into the receive_queue.
4395  */
4396 static void tcp_ofo_queue(struct sock *sk)
4397 {
4398 	struct tcp_sock *tp = tcp_sk(sk);
4399 	__u32 dsack_high = tp->rcv_nxt;
4400 	struct sk_buff *skb;
4401 
4402 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4403 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4404 			break;
4405 
4406 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4407 			__u32 dsack = dsack_high;
4408 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4409 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4410 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4411 		}
4412 
4413 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4414 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4415 			__skb_unlink(skb, &tp->out_of_order_queue);
4416 			__kfree_skb(skb);
4417 			continue;
4418 		}
4419 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4420 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4421 			   TCP_SKB_CB(skb)->end_seq);
4422 
4423 		__skb_unlink(skb, &tp->out_of_order_queue);
4424 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4425 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4426 		if (tcp_hdr(skb)->fin)
4427 			tcp_fin(sk);
4428 	}
4429 }
4430 
4431 static int tcp_prune_ofo_queue(struct sock *sk);
4432 static int tcp_prune_queue(struct sock *sk);
4433 
4434 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4435 {
4436 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4437 	    !sk_rmem_schedule(sk, size)) {
4438 
4439 		if (tcp_prune_queue(sk) < 0)
4440 			return -1;
4441 
4442 		if (!sk_rmem_schedule(sk, size)) {
4443 			if (!tcp_prune_ofo_queue(sk))
4444 				return -1;
4445 
4446 			if (!sk_rmem_schedule(sk, size))
4447 				return -1;
4448 		}
4449 	}
4450 	return 0;
4451 }
4452 
4453 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4454 {
4455 	struct tcp_sock *tp = tcp_sk(sk);
4456 	struct sk_buff *skb1;
4457 	u32 seq, end_seq;
4458 
4459 	TCP_ECN_check_ce(tp, skb);
4460 
4461 	if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4462 		/* TODO: should increment a counter */
4463 		__kfree_skb(skb);
4464 		return;
4465 	}
4466 
4467 	/* Disable header prediction. */
4468 	tp->pred_flags = 0;
4469 	inet_csk_schedule_ack(sk);
4470 
4471 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4472 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4473 
4474 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4475 	if (!skb1) {
4476 		/* Initial out of order segment, build 1 SACK. */
4477 		if (tcp_is_sack(tp)) {
4478 			tp->rx_opt.num_sacks = 1;
4479 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4480 			tp->selective_acks[0].end_seq =
4481 						TCP_SKB_CB(skb)->end_seq;
4482 		}
4483 		__skb_queue_head(&tp->out_of_order_queue, skb);
4484 		goto end;
4485 	}
4486 
4487 	seq = TCP_SKB_CB(skb)->seq;
4488 	end_seq = TCP_SKB_CB(skb)->end_seq;
4489 
4490 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4491 		/* Packets in ofo can stay in queue a long time.
4492 		 * Better try to coalesce them right now
4493 		 * to avoid future tcp_collapse_ofo_queue(),
4494 		 * probably the most expensive function in tcp stack.
4495 		 */
4496 		if (skb->len <= skb_tailroom(skb1) && !tcp_hdr(skb)->fin) {
4497 			NET_INC_STATS_BH(sock_net(sk),
4498 					 LINUX_MIB_TCPRCVCOALESCE);
4499 			BUG_ON(skb_copy_bits(skb, 0,
4500 					     skb_put(skb1, skb->len),
4501 					     skb->len));
4502 			TCP_SKB_CB(skb1)->end_seq = end_seq;
4503 			TCP_SKB_CB(skb1)->ack_seq = TCP_SKB_CB(skb)->ack_seq;
4504 			__kfree_skb(skb);
4505 			skb = NULL;
4506 		} else {
4507 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4508 		}
4509 
4510 		if (!tp->rx_opt.num_sacks ||
4511 		    tp->selective_acks[0].end_seq != seq)
4512 			goto add_sack;
4513 
4514 		/* Common case: data arrive in order after hole. */
4515 		tp->selective_acks[0].end_seq = end_seq;
4516 		goto end;
4517 	}
4518 
4519 	/* Find place to insert this segment. */
4520 	while (1) {
4521 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4522 			break;
4523 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4524 			skb1 = NULL;
4525 			break;
4526 		}
4527 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4528 	}
4529 
4530 	/* Do skb overlap to previous one? */
4531 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4532 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4533 			/* All the bits are present. Drop. */
4534 			__kfree_skb(skb);
4535 			skb = NULL;
4536 			tcp_dsack_set(sk, seq, end_seq);
4537 			goto add_sack;
4538 		}
4539 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4540 			/* Partial overlap. */
4541 			tcp_dsack_set(sk, seq,
4542 				      TCP_SKB_CB(skb1)->end_seq);
4543 		} else {
4544 			if (skb_queue_is_first(&tp->out_of_order_queue,
4545 					       skb1))
4546 				skb1 = NULL;
4547 			else
4548 				skb1 = skb_queue_prev(
4549 					&tp->out_of_order_queue,
4550 					skb1);
4551 		}
4552 	}
4553 	if (!skb1)
4554 		__skb_queue_head(&tp->out_of_order_queue, skb);
4555 	else
4556 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4557 
4558 	/* And clean segments covered by new one as whole. */
4559 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4560 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4561 
4562 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4563 			break;
4564 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4565 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4566 					 end_seq);
4567 			break;
4568 		}
4569 		__skb_unlink(skb1, &tp->out_of_order_queue);
4570 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4571 				 TCP_SKB_CB(skb1)->end_seq);
4572 		__kfree_skb(skb1);
4573 	}
4574 
4575 add_sack:
4576 	if (tcp_is_sack(tp))
4577 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4578 end:
4579 	if (skb)
4580 		skb_set_owner_r(skb, sk);
4581 }
4582 
4583 
4584 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4585 {
4586 	const struct tcphdr *th = tcp_hdr(skb);
4587 	struct tcp_sock *tp = tcp_sk(sk);
4588 	int eaten = -1;
4589 
4590 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4591 		goto drop;
4592 
4593 	skb_dst_drop(skb);
4594 	__skb_pull(skb, th->doff * 4);
4595 
4596 	TCP_ECN_accept_cwr(tp, skb);
4597 
4598 	tp->rx_opt.dsack = 0;
4599 
4600 	/*  Queue data for delivery to the user.
4601 	 *  Packets in sequence go to the receive queue.
4602 	 *  Out of sequence packets to the out_of_order_queue.
4603 	 */
4604 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4605 		if (tcp_receive_window(tp) == 0)
4606 			goto out_of_window;
4607 
4608 		/* Ok. In sequence. In window. */
4609 		if (tp->ucopy.task == current &&
4610 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4611 		    sock_owned_by_user(sk) && !tp->urg_data) {
4612 			int chunk = min_t(unsigned int, skb->len,
4613 					  tp->ucopy.len);
4614 
4615 			__set_current_state(TASK_RUNNING);
4616 
4617 			local_bh_enable();
4618 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4619 				tp->ucopy.len -= chunk;
4620 				tp->copied_seq += chunk;
4621 				eaten = (chunk == skb->len);
4622 				tcp_rcv_space_adjust(sk);
4623 			}
4624 			local_bh_disable();
4625 		}
4626 
4627 		if (eaten <= 0) {
4628 queue_and_out:
4629 			if (eaten < 0 &&
4630 			    tcp_try_rmem_schedule(sk, skb->truesize))
4631 				goto drop;
4632 
4633 			skb_set_owner_r(skb, sk);
4634 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4635 		}
4636 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4637 		if (skb->len)
4638 			tcp_event_data_recv(sk, skb);
4639 		if (th->fin)
4640 			tcp_fin(sk);
4641 
4642 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4643 			tcp_ofo_queue(sk);
4644 
4645 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4646 			 * gap in queue is filled.
4647 			 */
4648 			if (skb_queue_empty(&tp->out_of_order_queue))
4649 				inet_csk(sk)->icsk_ack.pingpong = 0;
4650 		}
4651 
4652 		if (tp->rx_opt.num_sacks)
4653 			tcp_sack_remove(tp);
4654 
4655 		tcp_fast_path_check(sk);
4656 
4657 		if (eaten > 0)
4658 			__kfree_skb(skb);
4659 		else if (!sock_flag(sk, SOCK_DEAD))
4660 			sk->sk_data_ready(sk, 0);
4661 		return;
4662 	}
4663 
4664 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4665 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4666 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4667 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4668 
4669 out_of_window:
4670 		tcp_enter_quickack_mode(sk);
4671 		inet_csk_schedule_ack(sk);
4672 drop:
4673 		__kfree_skb(skb);
4674 		return;
4675 	}
4676 
4677 	/* Out of window. F.e. zero window probe. */
4678 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4679 		goto out_of_window;
4680 
4681 	tcp_enter_quickack_mode(sk);
4682 
4683 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4684 		/* Partial packet, seq < rcv_next < end_seq */
4685 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4686 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4687 			   TCP_SKB_CB(skb)->end_seq);
4688 
4689 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4690 
4691 		/* If window is closed, drop tail of packet. But after
4692 		 * remembering D-SACK for its head made in previous line.
4693 		 */
4694 		if (!tcp_receive_window(tp))
4695 			goto out_of_window;
4696 		goto queue_and_out;
4697 	}
4698 
4699 	tcp_data_queue_ofo(sk, skb);
4700 }
4701 
4702 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4703 					struct sk_buff_head *list)
4704 {
4705 	struct sk_buff *next = NULL;
4706 
4707 	if (!skb_queue_is_last(list, skb))
4708 		next = skb_queue_next(list, skb);
4709 
4710 	__skb_unlink(skb, list);
4711 	__kfree_skb(skb);
4712 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4713 
4714 	return next;
4715 }
4716 
4717 /* Collapse contiguous sequence of skbs head..tail with
4718  * sequence numbers start..end.
4719  *
4720  * If tail is NULL, this means until the end of the list.
4721  *
4722  * Segments with FIN/SYN are not collapsed (only because this
4723  * simplifies code)
4724  */
4725 static void
4726 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4727 	     struct sk_buff *head, struct sk_buff *tail,
4728 	     u32 start, u32 end)
4729 {
4730 	struct sk_buff *skb, *n;
4731 	bool end_of_skbs;
4732 
4733 	/* First, check that queue is collapsible and find
4734 	 * the point where collapsing can be useful. */
4735 	skb = head;
4736 restart:
4737 	end_of_skbs = true;
4738 	skb_queue_walk_from_safe(list, skb, n) {
4739 		if (skb == tail)
4740 			break;
4741 		/* No new bits? It is possible on ofo queue. */
4742 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4743 			skb = tcp_collapse_one(sk, skb, list);
4744 			if (!skb)
4745 				break;
4746 			goto restart;
4747 		}
4748 
4749 		/* The first skb to collapse is:
4750 		 * - not SYN/FIN and
4751 		 * - bloated or contains data before "start" or
4752 		 *   overlaps to the next one.
4753 		 */
4754 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4755 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4756 		     before(TCP_SKB_CB(skb)->seq, start))) {
4757 			end_of_skbs = false;
4758 			break;
4759 		}
4760 
4761 		if (!skb_queue_is_last(list, skb)) {
4762 			struct sk_buff *next = skb_queue_next(list, skb);
4763 			if (next != tail &&
4764 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4765 				end_of_skbs = false;
4766 				break;
4767 			}
4768 		}
4769 
4770 		/* Decided to skip this, advance start seq. */
4771 		start = TCP_SKB_CB(skb)->end_seq;
4772 	}
4773 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4774 		return;
4775 
4776 	while (before(start, end)) {
4777 		struct sk_buff *nskb;
4778 		unsigned int header = skb_headroom(skb);
4779 		int copy = SKB_MAX_ORDER(header, 0);
4780 
4781 		/* Too big header? This can happen with IPv6. */
4782 		if (copy < 0)
4783 			return;
4784 		if (end - start < copy)
4785 			copy = end - start;
4786 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4787 		if (!nskb)
4788 			return;
4789 
4790 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4791 		skb_set_network_header(nskb, (skb_network_header(skb) -
4792 					      skb->head));
4793 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4794 						skb->head));
4795 		skb_reserve(nskb, header);
4796 		memcpy(nskb->head, skb->head, header);
4797 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4798 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4799 		__skb_queue_before(list, skb, nskb);
4800 		skb_set_owner_r(nskb, sk);
4801 
4802 		/* Copy data, releasing collapsed skbs. */
4803 		while (copy > 0) {
4804 			int offset = start - TCP_SKB_CB(skb)->seq;
4805 			int size = TCP_SKB_CB(skb)->end_seq - start;
4806 
4807 			BUG_ON(offset < 0);
4808 			if (size > 0) {
4809 				size = min(copy, size);
4810 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4811 					BUG();
4812 				TCP_SKB_CB(nskb)->end_seq += size;
4813 				copy -= size;
4814 				start += size;
4815 			}
4816 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4817 				skb = tcp_collapse_one(sk, skb, list);
4818 				if (!skb ||
4819 				    skb == tail ||
4820 				    tcp_hdr(skb)->syn ||
4821 				    tcp_hdr(skb)->fin)
4822 					return;
4823 			}
4824 		}
4825 	}
4826 }
4827 
4828 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4829  * and tcp_collapse() them until all the queue is collapsed.
4830  */
4831 static void tcp_collapse_ofo_queue(struct sock *sk)
4832 {
4833 	struct tcp_sock *tp = tcp_sk(sk);
4834 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4835 	struct sk_buff *head;
4836 	u32 start, end;
4837 
4838 	if (skb == NULL)
4839 		return;
4840 
4841 	start = TCP_SKB_CB(skb)->seq;
4842 	end = TCP_SKB_CB(skb)->end_seq;
4843 	head = skb;
4844 
4845 	for (;;) {
4846 		struct sk_buff *next = NULL;
4847 
4848 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4849 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4850 		skb = next;
4851 
4852 		/* Segment is terminated when we see gap or when
4853 		 * we are at the end of all the queue. */
4854 		if (!skb ||
4855 		    after(TCP_SKB_CB(skb)->seq, end) ||
4856 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4857 			tcp_collapse(sk, &tp->out_of_order_queue,
4858 				     head, skb, start, end);
4859 			head = skb;
4860 			if (!skb)
4861 				break;
4862 			/* Start new segment */
4863 			start = TCP_SKB_CB(skb)->seq;
4864 			end = TCP_SKB_CB(skb)->end_seq;
4865 		} else {
4866 			if (before(TCP_SKB_CB(skb)->seq, start))
4867 				start = TCP_SKB_CB(skb)->seq;
4868 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4869 				end = TCP_SKB_CB(skb)->end_seq;
4870 		}
4871 	}
4872 }
4873 
4874 /*
4875  * Purge the out-of-order queue.
4876  * Return true if queue was pruned.
4877  */
4878 static int tcp_prune_ofo_queue(struct sock *sk)
4879 {
4880 	struct tcp_sock *tp = tcp_sk(sk);
4881 	int res = 0;
4882 
4883 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4884 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4885 		__skb_queue_purge(&tp->out_of_order_queue);
4886 
4887 		/* Reset SACK state.  A conforming SACK implementation will
4888 		 * do the same at a timeout based retransmit.  When a connection
4889 		 * is in a sad state like this, we care only about integrity
4890 		 * of the connection not performance.
4891 		 */
4892 		if (tp->rx_opt.sack_ok)
4893 			tcp_sack_reset(&tp->rx_opt);
4894 		sk_mem_reclaim(sk);
4895 		res = 1;
4896 	}
4897 	return res;
4898 }
4899 
4900 /* Reduce allocated memory if we can, trying to get
4901  * the socket within its memory limits again.
4902  *
4903  * Return less than zero if we should start dropping frames
4904  * until the socket owning process reads some of the data
4905  * to stabilize the situation.
4906  */
4907 static int tcp_prune_queue(struct sock *sk)
4908 {
4909 	struct tcp_sock *tp = tcp_sk(sk);
4910 
4911 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4912 
4913 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4914 
4915 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4916 		tcp_clamp_window(sk);
4917 	else if (sk_under_memory_pressure(sk))
4918 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4919 
4920 	tcp_collapse_ofo_queue(sk);
4921 	if (!skb_queue_empty(&sk->sk_receive_queue))
4922 		tcp_collapse(sk, &sk->sk_receive_queue,
4923 			     skb_peek(&sk->sk_receive_queue),
4924 			     NULL,
4925 			     tp->copied_seq, tp->rcv_nxt);
4926 	sk_mem_reclaim(sk);
4927 
4928 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4929 		return 0;
4930 
4931 	/* Collapsing did not help, destructive actions follow.
4932 	 * This must not ever occur. */
4933 
4934 	tcp_prune_ofo_queue(sk);
4935 
4936 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4937 		return 0;
4938 
4939 	/* If we are really being abused, tell the caller to silently
4940 	 * drop receive data on the floor.  It will get retransmitted
4941 	 * and hopefully then we'll have sufficient space.
4942 	 */
4943 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4944 
4945 	/* Massive buffer overcommit. */
4946 	tp->pred_flags = 0;
4947 	return -1;
4948 }
4949 
4950 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4951  * As additional protections, we do not touch cwnd in retransmission phases,
4952  * and if application hit its sndbuf limit recently.
4953  */
4954 void tcp_cwnd_application_limited(struct sock *sk)
4955 {
4956 	struct tcp_sock *tp = tcp_sk(sk);
4957 
4958 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4959 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4960 		/* Limited by application or receiver window. */
4961 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4962 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4963 		if (win_used < tp->snd_cwnd) {
4964 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4965 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4966 		}
4967 		tp->snd_cwnd_used = 0;
4968 	}
4969 	tp->snd_cwnd_stamp = tcp_time_stamp;
4970 }
4971 
4972 static int tcp_should_expand_sndbuf(const struct sock *sk)
4973 {
4974 	const struct tcp_sock *tp = tcp_sk(sk);
4975 
4976 	/* If the user specified a specific send buffer setting, do
4977 	 * not modify it.
4978 	 */
4979 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4980 		return 0;
4981 
4982 	/* If we are under global TCP memory pressure, do not expand.  */
4983 	if (sk_under_memory_pressure(sk))
4984 		return 0;
4985 
4986 	/* If we are under soft global TCP memory pressure, do not expand.  */
4987 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4988 		return 0;
4989 
4990 	/* If we filled the congestion window, do not expand.  */
4991 	if (tp->packets_out >= tp->snd_cwnd)
4992 		return 0;
4993 
4994 	return 1;
4995 }
4996 
4997 /* When incoming ACK allowed to free some skb from write_queue,
4998  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4999  * on the exit from tcp input handler.
5000  *
5001  * PROBLEM: sndbuf expansion does not work well with largesend.
5002  */
5003 static void tcp_new_space(struct sock *sk)
5004 {
5005 	struct tcp_sock *tp = tcp_sk(sk);
5006 
5007 	if (tcp_should_expand_sndbuf(sk)) {
5008 		int sndmem = SKB_TRUESIZE(max_t(u32,
5009 						tp->rx_opt.mss_clamp,
5010 						tp->mss_cache) +
5011 					  MAX_TCP_HEADER);
5012 		int demanded = max_t(unsigned int, tp->snd_cwnd,
5013 				     tp->reordering + 1);
5014 		sndmem *= 2 * demanded;
5015 		if (sndmem > sk->sk_sndbuf)
5016 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5017 		tp->snd_cwnd_stamp = tcp_time_stamp;
5018 	}
5019 
5020 	sk->sk_write_space(sk);
5021 }
5022 
5023 static void tcp_check_space(struct sock *sk)
5024 {
5025 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5026 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5027 		if (sk->sk_socket &&
5028 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5029 			tcp_new_space(sk);
5030 	}
5031 }
5032 
5033 static inline void tcp_data_snd_check(struct sock *sk)
5034 {
5035 	tcp_push_pending_frames(sk);
5036 	tcp_check_space(sk);
5037 }
5038 
5039 /*
5040  * Check if sending an ack is needed.
5041  */
5042 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5043 {
5044 	struct tcp_sock *tp = tcp_sk(sk);
5045 
5046 	    /* More than one full frame received... */
5047 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5048 	     /* ... and right edge of window advances far enough.
5049 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5050 	      */
5051 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5052 	    /* We ACK each frame or... */
5053 	    tcp_in_quickack_mode(sk) ||
5054 	    /* We have out of order data. */
5055 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5056 		/* Then ack it now */
5057 		tcp_send_ack(sk);
5058 	} else {
5059 		/* Else, send delayed ack. */
5060 		tcp_send_delayed_ack(sk);
5061 	}
5062 }
5063 
5064 static inline void tcp_ack_snd_check(struct sock *sk)
5065 {
5066 	if (!inet_csk_ack_scheduled(sk)) {
5067 		/* We sent a data segment already. */
5068 		return;
5069 	}
5070 	__tcp_ack_snd_check(sk, 1);
5071 }
5072 
5073 /*
5074  *	This routine is only called when we have urgent data
5075  *	signaled. Its the 'slow' part of tcp_urg. It could be
5076  *	moved inline now as tcp_urg is only called from one
5077  *	place. We handle URGent data wrong. We have to - as
5078  *	BSD still doesn't use the correction from RFC961.
5079  *	For 1003.1g we should support a new option TCP_STDURG to permit
5080  *	either form (or just set the sysctl tcp_stdurg).
5081  */
5082 
5083 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5084 {
5085 	struct tcp_sock *tp = tcp_sk(sk);
5086 	u32 ptr = ntohs(th->urg_ptr);
5087 
5088 	if (ptr && !sysctl_tcp_stdurg)
5089 		ptr--;
5090 	ptr += ntohl(th->seq);
5091 
5092 	/* Ignore urgent data that we've already seen and read. */
5093 	if (after(tp->copied_seq, ptr))
5094 		return;
5095 
5096 	/* Do not replay urg ptr.
5097 	 *
5098 	 * NOTE: interesting situation not covered by specs.
5099 	 * Misbehaving sender may send urg ptr, pointing to segment,
5100 	 * which we already have in ofo queue. We are not able to fetch
5101 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5102 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5103 	 * situations. But it is worth to think about possibility of some
5104 	 * DoSes using some hypothetical application level deadlock.
5105 	 */
5106 	if (before(ptr, tp->rcv_nxt))
5107 		return;
5108 
5109 	/* Do we already have a newer (or duplicate) urgent pointer? */
5110 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5111 		return;
5112 
5113 	/* Tell the world about our new urgent pointer. */
5114 	sk_send_sigurg(sk);
5115 
5116 	/* We may be adding urgent data when the last byte read was
5117 	 * urgent. To do this requires some care. We cannot just ignore
5118 	 * tp->copied_seq since we would read the last urgent byte again
5119 	 * as data, nor can we alter copied_seq until this data arrives
5120 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5121 	 *
5122 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5123 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5124 	 * and expect that both A and B disappear from stream. This is _wrong_.
5125 	 * Though this happens in BSD with high probability, this is occasional.
5126 	 * Any application relying on this is buggy. Note also, that fix "works"
5127 	 * only in this artificial test. Insert some normal data between A and B and we will
5128 	 * decline of BSD again. Verdict: it is better to remove to trap
5129 	 * buggy users.
5130 	 */
5131 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5132 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5133 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5134 		tp->copied_seq++;
5135 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5136 			__skb_unlink(skb, &sk->sk_receive_queue);
5137 			__kfree_skb(skb);
5138 		}
5139 	}
5140 
5141 	tp->urg_data = TCP_URG_NOTYET;
5142 	tp->urg_seq = ptr;
5143 
5144 	/* Disable header prediction. */
5145 	tp->pred_flags = 0;
5146 }
5147 
5148 /* This is the 'fast' part of urgent handling. */
5149 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5150 {
5151 	struct tcp_sock *tp = tcp_sk(sk);
5152 
5153 	/* Check if we get a new urgent pointer - normally not. */
5154 	if (th->urg)
5155 		tcp_check_urg(sk, th);
5156 
5157 	/* Do we wait for any urgent data? - normally not... */
5158 	if (tp->urg_data == TCP_URG_NOTYET) {
5159 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5160 			  th->syn;
5161 
5162 		/* Is the urgent pointer pointing into this packet? */
5163 		if (ptr < skb->len) {
5164 			u8 tmp;
5165 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5166 				BUG();
5167 			tp->urg_data = TCP_URG_VALID | tmp;
5168 			if (!sock_flag(sk, SOCK_DEAD))
5169 				sk->sk_data_ready(sk, 0);
5170 		}
5171 	}
5172 }
5173 
5174 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5175 {
5176 	struct tcp_sock *tp = tcp_sk(sk);
5177 	int chunk = skb->len - hlen;
5178 	int err;
5179 
5180 	local_bh_enable();
5181 	if (skb_csum_unnecessary(skb))
5182 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5183 	else
5184 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5185 						       tp->ucopy.iov);
5186 
5187 	if (!err) {
5188 		tp->ucopy.len -= chunk;
5189 		tp->copied_seq += chunk;
5190 		tcp_rcv_space_adjust(sk);
5191 	}
5192 
5193 	local_bh_disable();
5194 	return err;
5195 }
5196 
5197 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5198 					    struct sk_buff *skb)
5199 {
5200 	__sum16 result;
5201 
5202 	if (sock_owned_by_user(sk)) {
5203 		local_bh_enable();
5204 		result = __tcp_checksum_complete(skb);
5205 		local_bh_disable();
5206 	} else {
5207 		result = __tcp_checksum_complete(skb);
5208 	}
5209 	return result;
5210 }
5211 
5212 static inline int tcp_checksum_complete_user(struct sock *sk,
5213 					     struct sk_buff *skb)
5214 {
5215 	return !skb_csum_unnecessary(skb) &&
5216 	       __tcp_checksum_complete_user(sk, skb);
5217 }
5218 
5219 #ifdef CONFIG_NET_DMA
5220 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5221 				  int hlen)
5222 {
5223 	struct tcp_sock *tp = tcp_sk(sk);
5224 	int chunk = skb->len - hlen;
5225 	int dma_cookie;
5226 	int copied_early = 0;
5227 
5228 	if (tp->ucopy.wakeup)
5229 		return 0;
5230 
5231 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5232 		tp->ucopy.dma_chan = net_dma_find_channel();
5233 
5234 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5235 
5236 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5237 							 skb, hlen,
5238 							 tp->ucopy.iov, chunk,
5239 							 tp->ucopy.pinned_list);
5240 
5241 		if (dma_cookie < 0)
5242 			goto out;
5243 
5244 		tp->ucopy.dma_cookie = dma_cookie;
5245 		copied_early = 1;
5246 
5247 		tp->ucopy.len -= chunk;
5248 		tp->copied_seq += chunk;
5249 		tcp_rcv_space_adjust(sk);
5250 
5251 		if ((tp->ucopy.len == 0) ||
5252 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5253 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5254 			tp->ucopy.wakeup = 1;
5255 			sk->sk_data_ready(sk, 0);
5256 		}
5257 	} else if (chunk > 0) {
5258 		tp->ucopy.wakeup = 1;
5259 		sk->sk_data_ready(sk, 0);
5260 	}
5261 out:
5262 	return copied_early;
5263 }
5264 #endif /* CONFIG_NET_DMA */
5265 
5266 /* Does PAWS and seqno based validation of an incoming segment, flags will
5267  * play significant role here.
5268  */
5269 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5270 			      const struct tcphdr *th, int syn_inerr)
5271 {
5272 	const u8 *hash_location;
5273 	struct tcp_sock *tp = tcp_sk(sk);
5274 
5275 	/* RFC1323: H1. Apply PAWS check first. */
5276 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5277 	    tp->rx_opt.saw_tstamp &&
5278 	    tcp_paws_discard(sk, skb)) {
5279 		if (!th->rst) {
5280 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5281 			tcp_send_dupack(sk, skb);
5282 			goto discard;
5283 		}
5284 		/* Reset is accepted even if it did not pass PAWS. */
5285 	}
5286 
5287 	/* Step 1: check sequence number */
5288 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5289 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5290 		 * (RST) segments are validated by checking their SEQ-fields."
5291 		 * And page 69: "If an incoming segment is not acceptable,
5292 		 * an acknowledgment should be sent in reply (unless the RST
5293 		 * bit is set, if so drop the segment and return)".
5294 		 */
5295 		if (!th->rst)
5296 			tcp_send_dupack(sk, skb);
5297 		goto discard;
5298 	}
5299 
5300 	/* Step 2: check RST bit */
5301 	if (th->rst) {
5302 		tcp_reset(sk);
5303 		goto discard;
5304 	}
5305 
5306 	/* ts_recent update must be made after we are sure that the packet
5307 	 * is in window.
5308 	 */
5309 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5310 
5311 	/* step 3: check security and precedence [ignored] */
5312 
5313 	/* step 4: Check for a SYN in window. */
5314 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5315 		if (syn_inerr)
5316 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5317 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5318 		tcp_reset(sk);
5319 		return -1;
5320 	}
5321 
5322 	return 1;
5323 
5324 discard:
5325 	__kfree_skb(skb);
5326 	return 0;
5327 }
5328 
5329 /*
5330  *	TCP receive function for the ESTABLISHED state.
5331  *
5332  *	It is split into a fast path and a slow path. The fast path is
5333  * 	disabled when:
5334  *	- A zero window was announced from us - zero window probing
5335  *        is only handled properly in the slow path.
5336  *	- Out of order segments arrived.
5337  *	- Urgent data is expected.
5338  *	- There is no buffer space left
5339  *	- Unexpected TCP flags/window values/header lengths are received
5340  *	  (detected by checking the TCP header against pred_flags)
5341  *	- Data is sent in both directions. Fast path only supports pure senders
5342  *	  or pure receivers (this means either the sequence number or the ack
5343  *	  value must stay constant)
5344  *	- Unexpected TCP option.
5345  *
5346  *	When these conditions are not satisfied it drops into a standard
5347  *	receive procedure patterned after RFC793 to handle all cases.
5348  *	The first three cases are guaranteed by proper pred_flags setting,
5349  *	the rest is checked inline. Fast processing is turned on in
5350  *	tcp_data_queue when everything is OK.
5351  */
5352 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5353 			const struct tcphdr *th, unsigned int len)
5354 {
5355 	struct tcp_sock *tp = tcp_sk(sk);
5356 	int res;
5357 
5358 	/*
5359 	 *	Header prediction.
5360 	 *	The code loosely follows the one in the famous
5361 	 *	"30 instruction TCP receive" Van Jacobson mail.
5362 	 *
5363 	 *	Van's trick is to deposit buffers into socket queue
5364 	 *	on a device interrupt, to call tcp_recv function
5365 	 *	on the receive process context and checksum and copy
5366 	 *	the buffer to user space. smart...
5367 	 *
5368 	 *	Our current scheme is not silly either but we take the
5369 	 *	extra cost of the net_bh soft interrupt processing...
5370 	 *	We do checksum and copy also but from device to kernel.
5371 	 */
5372 
5373 	tp->rx_opt.saw_tstamp = 0;
5374 
5375 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5376 	 *	if header_prediction is to be made
5377 	 *	'S' will always be tp->tcp_header_len >> 2
5378 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5379 	 *  turn it off	(when there are holes in the receive
5380 	 *	 space for instance)
5381 	 *	PSH flag is ignored.
5382 	 */
5383 
5384 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5385 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5386 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5387 		int tcp_header_len = tp->tcp_header_len;
5388 
5389 		/* Timestamp header prediction: tcp_header_len
5390 		 * is automatically equal to th->doff*4 due to pred_flags
5391 		 * match.
5392 		 */
5393 
5394 		/* Check timestamp */
5395 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5396 			/* No? Slow path! */
5397 			if (!tcp_parse_aligned_timestamp(tp, th))
5398 				goto slow_path;
5399 
5400 			/* If PAWS failed, check it more carefully in slow path */
5401 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5402 				goto slow_path;
5403 
5404 			/* DO NOT update ts_recent here, if checksum fails
5405 			 * and timestamp was corrupted part, it will result
5406 			 * in a hung connection since we will drop all
5407 			 * future packets due to the PAWS test.
5408 			 */
5409 		}
5410 
5411 		if (len <= tcp_header_len) {
5412 			/* Bulk data transfer: sender */
5413 			if (len == tcp_header_len) {
5414 				/* Predicted packet is in window by definition.
5415 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5416 				 * Hence, check seq<=rcv_wup reduces to:
5417 				 */
5418 				if (tcp_header_len ==
5419 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5420 				    tp->rcv_nxt == tp->rcv_wup)
5421 					tcp_store_ts_recent(tp);
5422 
5423 				/* We know that such packets are checksummed
5424 				 * on entry.
5425 				 */
5426 				tcp_ack(sk, skb, 0);
5427 				__kfree_skb(skb);
5428 				tcp_data_snd_check(sk);
5429 				return 0;
5430 			} else { /* Header too small */
5431 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5432 				goto discard;
5433 			}
5434 		} else {
5435 			int eaten = 0;
5436 			int copied_early = 0;
5437 
5438 			if (tp->copied_seq == tp->rcv_nxt &&
5439 			    len - tcp_header_len <= tp->ucopy.len) {
5440 #ifdef CONFIG_NET_DMA
5441 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5442 					copied_early = 1;
5443 					eaten = 1;
5444 				}
5445 #endif
5446 				if (tp->ucopy.task == current &&
5447 				    sock_owned_by_user(sk) && !copied_early) {
5448 					__set_current_state(TASK_RUNNING);
5449 
5450 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5451 						eaten = 1;
5452 				}
5453 				if (eaten) {
5454 					/* Predicted packet is in window by definition.
5455 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5456 					 * Hence, check seq<=rcv_wup reduces to:
5457 					 */
5458 					if (tcp_header_len ==
5459 					    (sizeof(struct tcphdr) +
5460 					     TCPOLEN_TSTAMP_ALIGNED) &&
5461 					    tp->rcv_nxt == tp->rcv_wup)
5462 						tcp_store_ts_recent(tp);
5463 
5464 					tcp_rcv_rtt_measure_ts(sk, skb);
5465 
5466 					__skb_pull(skb, tcp_header_len);
5467 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5468 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5469 				}
5470 				if (copied_early)
5471 					tcp_cleanup_rbuf(sk, skb->len);
5472 			}
5473 			if (!eaten) {
5474 				if (tcp_checksum_complete_user(sk, skb))
5475 					goto csum_error;
5476 
5477 				/* Predicted packet is in window by definition.
5478 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5479 				 * Hence, check seq<=rcv_wup reduces to:
5480 				 */
5481 				if (tcp_header_len ==
5482 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5483 				    tp->rcv_nxt == tp->rcv_wup)
5484 					tcp_store_ts_recent(tp);
5485 
5486 				tcp_rcv_rtt_measure_ts(sk, skb);
5487 
5488 				if ((int)skb->truesize > sk->sk_forward_alloc)
5489 					goto step5;
5490 
5491 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5492 
5493 				/* Bulk data transfer: receiver */
5494 				__skb_pull(skb, tcp_header_len);
5495 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5496 				skb_set_owner_r(skb, sk);
5497 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5498 			}
5499 
5500 			tcp_event_data_recv(sk, skb);
5501 
5502 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5503 				/* Well, only one small jumplet in fast path... */
5504 				tcp_ack(sk, skb, FLAG_DATA);
5505 				tcp_data_snd_check(sk);
5506 				if (!inet_csk_ack_scheduled(sk))
5507 					goto no_ack;
5508 			}
5509 
5510 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5511 				__tcp_ack_snd_check(sk, 0);
5512 no_ack:
5513 #ifdef CONFIG_NET_DMA
5514 			if (copied_early)
5515 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5516 			else
5517 #endif
5518 			if (eaten)
5519 				__kfree_skb(skb);
5520 			else
5521 				sk->sk_data_ready(sk, 0);
5522 			return 0;
5523 		}
5524 	}
5525 
5526 slow_path:
5527 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5528 		goto csum_error;
5529 
5530 	/*
5531 	 *	Standard slow path.
5532 	 */
5533 
5534 	res = tcp_validate_incoming(sk, skb, th, 1);
5535 	if (res <= 0)
5536 		return -res;
5537 
5538 step5:
5539 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5540 		goto discard;
5541 
5542 	tcp_rcv_rtt_measure_ts(sk, skb);
5543 
5544 	/* Process urgent data. */
5545 	tcp_urg(sk, skb, th);
5546 
5547 	/* step 7: process the segment text */
5548 	tcp_data_queue(sk, skb);
5549 
5550 	tcp_data_snd_check(sk);
5551 	tcp_ack_snd_check(sk);
5552 	return 0;
5553 
5554 csum_error:
5555 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5556 
5557 discard:
5558 	__kfree_skb(skb);
5559 	return 0;
5560 }
5561 EXPORT_SYMBOL(tcp_rcv_established);
5562 
5563 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5564 					 const struct tcphdr *th, unsigned int len)
5565 {
5566 	const u8 *hash_location;
5567 	struct inet_connection_sock *icsk = inet_csk(sk);
5568 	struct tcp_sock *tp = tcp_sk(sk);
5569 	struct tcp_cookie_values *cvp = tp->cookie_values;
5570 	int saved_clamp = tp->rx_opt.mss_clamp;
5571 
5572 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5573 
5574 	if (th->ack) {
5575 		/* rfc793:
5576 		 * "If the state is SYN-SENT then
5577 		 *    first check the ACK bit
5578 		 *      If the ACK bit is set
5579 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5580 		 *        a reset (unless the RST bit is set, if so drop
5581 		 *        the segment and return)"
5582 		 *
5583 		 *  We do not send data with SYN, so that RFC-correct
5584 		 *  test reduces to:
5585 		 */
5586 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5587 			goto reset_and_undo;
5588 
5589 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5590 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5591 			     tcp_time_stamp)) {
5592 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5593 			goto reset_and_undo;
5594 		}
5595 
5596 		/* Now ACK is acceptable.
5597 		 *
5598 		 * "If the RST bit is set
5599 		 *    If the ACK was acceptable then signal the user "error:
5600 		 *    connection reset", drop the segment, enter CLOSED state,
5601 		 *    delete TCB, and return."
5602 		 */
5603 
5604 		if (th->rst) {
5605 			tcp_reset(sk);
5606 			goto discard;
5607 		}
5608 
5609 		/* rfc793:
5610 		 *   "fifth, if neither of the SYN or RST bits is set then
5611 		 *    drop the segment and return."
5612 		 *
5613 		 *    See note below!
5614 		 *                                        --ANK(990513)
5615 		 */
5616 		if (!th->syn)
5617 			goto discard_and_undo;
5618 
5619 		/* rfc793:
5620 		 *   "If the SYN bit is on ...
5621 		 *    are acceptable then ...
5622 		 *    (our SYN has been ACKed), change the connection
5623 		 *    state to ESTABLISHED..."
5624 		 */
5625 
5626 		TCP_ECN_rcv_synack(tp, th);
5627 
5628 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5629 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5630 
5631 		/* Ok.. it's good. Set up sequence numbers and
5632 		 * move to established.
5633 		 */
5634 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5635 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5636 
5637 		/* RFC1323: The window in SYN & SYN/ACK segments is
5638 		 * never scaled.
5639 		 */
5640 		tp->snd_wnd = ntohs(th->window);
5641 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5642 
5643 		if (!tp->rx_opt.wscale_ok) {
5644 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5645 			tp->window_clamp = min(tp->window_clamp, 65535U);
5646 		}
5647 
5648 		if (tp->rx_opt.saw_tstamp) {
5649 			tp->rx_opt.tstamp_ok	   = 1;
5650 			tp->tcp_header_len =
5651 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5652 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5653 			tcp_store_ts_recent(tp);
5654 		} else {
5655 			tp->tcp_header_len = sizeof(struct tcphdr);
5656 		}
5657 
5658 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5659 			tcp_enable_fack(tp);
5660 
5661 		tcp_mtup_init(sk);
5662 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5663 		tcp_initialize_rcv_mss(sk);
5664 
5665 		/* Remember, tcp_poll() does not lock socket!
5666 		 * Change state from SYN-SENT only after copied_seq
5667 		 * is initialized. */
5668 		tp->copied_seq = tp->rcv_nxt;
5669 
5670 		if (cvp != NULL &&
5671 		    cvp->cookie_pair_size > 0 &&
5672 		    tp->rx_opt.cookie_plus > 0) {
5673 			int cookie_size = tp->rx_opt.cookie_plus
5674 					- TCPOLEN_COOKIE_BASE;
5675 			int cookie_pair_size = cookie_size
5676 					     + cvp->cookie_desired;
5677 
5678 			/* A cookie extension option was sent and returned.
5679 			 * Note that each incoming SYNACK replaces the
5680 			 * Responder cookie.  The initial exchange is most
5681 			 * fragile, as protection against spoofing relies
5682 			 * entirely upon the sequence and timestamp (above).
5683 			 * This replacement strategy allows the correct pair to
5684 			 * pass through, while any others will be filtered via
5685 			 * Responder verification later.
5686 			 */
5687 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5688 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5689 				       hash_location, cookie_size);
5690 				cvp->cookie_pair_size = cookie_pair_size;
5691 			}
5692 		}
5693 
5694 		smp_mb();
5695 		tcp_set_state(sk, TCP_ESTABLISHED);
5696 
5697 		security_inet_conn_established(sk, skb);
5698 
5699 		/* Make sure socket is routed, for correct metrics.  */
5700 		icsk->icsk_af_ops->rebuild_header(sk);
5701 
5702 		tcp_init_metrics(sk);
5703 
5704 		tcp_init_congestion_control(sk);
5705 
5706 		/* Prevent spurious tcp_cwnd_restart() on first data
5707 		 * packet.
5708 		 */
5709 		tp->lsndtime = tcp_time_stamp;
5710 
5711 		tcp_init_buffer_space(sk);
5712 
5713 		if (sock_flag(sk, SOCK_KEEPOPEN))
5714 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5715 
5716 		if (!tp->rx_opt.snd_wscale)
5717 			__tcp_fast_path_on(tp, tp->snd_wnd);
5718 		else
5719 			tp->pred_flags = 0;
5720 
5721 		if (!sock_flag(sk, SOCK_DEAD)) {
5722 			sk->sk_state_change(sk);
5723 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5724 		}
5725 
5726 		if (sk->sk_write_pending ||
5727 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5728 		    icsk->icsk_ack.pingpong) {
5729 			/* Save one ACK. Data will be ready after
5730 			 * several ticks, if write_pending is set.
5731 			 *
5732 			 * It may be deleted, but with this feature tcpdumps
5733 			 * look so _wonderfully_ clever, that I was not able
5734 			 * to stand against the temptation 8)     --ANK
5735 			 */
5736 			inet_csk_schedule_ack(sk);
5737 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5738 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5739 			tcp_incr_quickack(sk);
5740 			tcp_enter_quickack_mode(sk);
5741 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5742 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5743 
5744 discard:
5745 			__kfree_skb(skb);
5746 			return 0;
5747 		} else {
5748 			tcp_send_ack(sk);
5749 		}
5750 		return -1;
5751 	}
5752 
5753 	/* No ACK in the segment */
5754 
5755 	if (th->rst) {
5756 		/* rfc793:
5757 		 * "If the RST bit is set
5758 		 *
5759 		 *      Otherwise (no ACK) drop the segment and return."
5760 		 */
5761 
5762 		goto discard_and_undo;
5763 	}
5764 
5765 	/* PAWS check. */
5766 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5767 	    tcp_paws_reject(&tp->rx_opt, 0))
5768 		goto discard_and_undo;
5769 
5770 	if (th->syn) {
5771 		/* We see SYN without ACK. It is attempt of
5772 		 * simultaneous connect with crossed SYNs.
5773 		 * Particularly, it can be connect to self.
5774 		 */
5775 		tcp_set_state(sk, TCP_SYN_RECV);
5776 
5777 		if (tp->rx_opt.saw_tstamp) {
5778 			tp->rx_opt.tstamp_ok = 1;
5779 			tcp_store_ts_recent(tp);
5780 			tp->tcp_header_len =
5781 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5782 		} else {
5783 			tp->tcp_header_len = sizeof(struct tcphdr);
5784 		}
5785 
5786 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5787 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5788 
5789 		/* RFC1323: The window in SYN & SYN/ACK segments is
5790 		 * never scaled.
5791 		 */
5792 		tp->snd_wnd    = ntohs(th->window);
5793 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5794 		tp->max_window = tp->snd_wnd;
5795 
5796 		TCP_ECN_rcv_syn(tp, th);
5797 
5798 		tcp_mtup_init(sk);
5799 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5800 		tcp_initialize_rcv_mss(sk);
5801 
5802 		tcp_send_synack(sk);
5803 #if 0
5804 		/* Note, we could accept data and URG from this segment.
5805 		 * There are no obstacles to make this.
5806 		 *
5807 		 * However, if we ignore data in ACKless segments sometimes,
5808 		 * we have no reasons to accept it sometimes.
5809 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5810 		 * is not flawless. So, discard packet for sanity.
5811 		 * Uncomment this return to process the data.
5812 		 */
5813 		return -1;
5814 #else
5815 		goto discard;
5816 #endif
5817 	}
5818 	/* "fifth, if neither of the SYN or RST bits is set then
5819 	 * drop the segment and return."
5820 	 */
5821 
5822 discard_and_undo:
5823 	tcp_clear_options(&tp->rx_opt);
5824 	tp->rx_opt.mss_clamp = saved_clamp;
5825 	goto discard;
5826 
5827 reset_and_undo:
5828 	tcp_clear_options(&tp->rx_opt);
5829 	tp->rx_opt.mss_clamp = saved_clamp;
5830 	return 1;
5831 }
5832 
5833 /*
5834  *	This function implements the receiving procedure of RFC 793 for
5835  *	all states except ESTABLISHED and TIME_WAIT.
5836  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5837  *	address independent.
5838  */
5839 
5840 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5841 			  const struct tcphdr *th, unsigned int len)
5842 {
5843 	struct tcp_sock *tp = tcp_sk(sk);
5844 	struct inet_connection_sock *icsk = inet_csk(sk);
5845 	int queued = 0;
5846 	int res;
5847 
5848 	tp->rx_opt.saw_tstamp = 0;
5849 
5850 	switch (sk->sk_state) {
5851 	case TCP_CLOSE:
5852 		goto discard;
5853 
5854 	case TCP_LISTEN:
5855 		if (th->ack)
5856 			return 1;
5857 
5858 		if (th->rst)
5859 			goto discard;
5860 
5861 		if (th->syn) {
5862 			if (th->fin)
5863 				goto discard;
5864 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5865 				return 1;
5866 
5867 			/* Now we have several options: In theory there is
5868 			 * nothing else in the frame. KA9Q has an option to
5869 			 * send data with the syn, BSD accepts data with the
5870 			 * syn up to the [to be] advertised window and
5871 			 * Solaris 2.1 gives you a protocol error. For now
5872 			 * we just ignore it, that fits the spec precisely
5873 			 * and avoids incompatibilities. It would be nice in
5874 			 * future to drop through and process the data.
5875 			 *
5876 			 * Now that TTCP is starting to be used we ought to
5877 			 * queue this data.
5878 			 * But, this leaves one open to an easy denial of
5879 			 * service attack, and SYN cookies can't defend
5880 			 * against this problem. So, we drop the data
5881 			 * in the interest of security over speed unless
5882 			 * it's still in use.
5883 			 */
5884 			kfree_skb(skb);
5885 			return 0;
5886 		}
5887 		goto discard;
5888 
5889 	case TCP_SYN_SENT:
5890 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5891 		if (queued >= 0)
5892 			return queued;
5893 
5894 		/* Do step6 onward by hand. */
5895 		tcp_urg(sk, skb, th);
5896 		__kfree_skb(skb);
5897 		tcp_data_snd_check(sk);
5898 		return 0;
5899 	}
5900 
5901 	res = tcp_validate_incoming(sk, skb, th, 0);
5902 	if (res <= 0)
5903 		return -res;
5904 
5905 	/* step 5: check the ACK field */
5906 	if (th->ack) {
5907 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5908 
5909 		switch (sk->sk_state) {
5910 		case TCP_SYN_RECV:
5911 			if (acceptable) {
5912 				tp->copied_seq = tp->rcv_nxt;
5913 				smp_mb();
5914 				tcp_set_state(sk, TCP_ESTABLISHED);
5915 				sk->sk_state_change(sk);
5916 
5917 				/* Note, that this wakeup is only for marginal
5918 				 * crossed SYN case. Passively open sockets
5919 				 * are not waked up, because sk->sk_sleep ==
5920 				 * NULL and sk->sk_socket == NULL.
5921 				 */
5922 				if (sk->sk_socket)
5923 					sk_wake_async(sk,
5924 						      SOCK_WAKE_IO, POLL_OUT);
5925 
5926 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5927 				tp->snd_wnd = ntohs(th->window) <<
5928 					      tp->rx_opt.snd_wscale;
5929 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5930 
5931 				if (tp->rx_opt.tstamp_ok)
5932 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5933 
5934 				/* Make sure socket is routed, for
5935 				 * correct metrics.
5936 				 */
5937 				icsk->icsk_af_ops->rebuild_header(sk);
5938 
5939 				tcp_init_metrics(sk);
5940 
5941 				tcp_init_congestion_control(sk);
5942 
5943 				/* Prevent spurious tcp_cwnd_restart() on
5944 				 * first data packet.
5945 				 */
5946 				tp->lsndtime = tcp_time_stamp;
5947 
5948 				tcp_mtup_init(sk);
5949 				tcp_initialize_rcv_mss(sk);
5950 				tcp_init_buffer_space(sk);
5951 				tcp_fast_path_on(tp);
5952 			} else {
5953 				return 1;
5954 			}
5955 			break;
5956 
5957 		case TCP_FIN_WAIT1:
5958 			if (tp->snd_una == tp->write_seq) {
5959 				tcp_set_state(sk, TCP_FIN_WAIT2);
5960 				sk->sk_shutdown |= SEND_SHUTDOWN;
5961 				dst_confirm(__sk_dst_get(sk));
5962 
5963 				if (!sock_flag(sk, SOCK_DEAD))
5964 					/* Wake up lingering close() */
5965 					sk->sk_state_change(sk);
5966 				else {
5967 					int tmo;
5968 
5969 					if (tp->linger2 < 0 ||
5970 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5971 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5972 						tcp_done(sk);
5973 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5974 						return 1;
5975 					}
5976 
5977 					tmo = tcp_fin_time(sk);
5978 					if (tmo > TCP_TIMEWAIT_LEN) {
5979 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5980 					} else if (th->fin || sock_owned_by_user(sk)) {
5981 						/* Bad case. We could lose such FIN otherwise.
5982 						 * It is not a big problem, but it looks confusing
5983 						 * and not so rare event. We still can lose it now,
5984 						 * if it spins in bh_lock_sock(), but it is really
5985 						 * marginal case.
5986 						 */
5987 						inet_csk_reset_keepalive_timer(sk, tmo);
5988 					} else {
5989 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5990 						goto discard;
5991 					}
5992 				}
5993 			}
5994 			break;
5995 
5996 		case TCP_CLOSING:
5997 			if (tp->snd_una == tp->write_seq) {
5998 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5999 				goto discard;
6000 			}
6001 			break;
6002 
6003 		case TCP_LAST_ACK:
6004 			if (tp->snd_una == tp->write_seq) {
6005 				tcp_update_metrics(sk);
6006 				tcp_done(sk);
6007 				goto discard;
6008 			}
6009 			break;
6010 		}
6011 	} else
6012 		goto discard;
6013 
6014 	/* step 6: check the URG bit */
6015 	tcp_urg(sk, skb, th);
6016 
6017 	/* step 7: process the segment text */
6018 	switch (sk->sk_state) {
6019 	case TCP_CLOSE_WAIT:
6020 	case TCP_CLOSING:
6021 	case TCP_LAST_ACK:
6022 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6023 			break;
6024 	case TCP_FIN_WAIT1:
6025 	case TCP_FIN_WAIT2:
6026 		/* RFC 793 says to queue data in these states,
6027 		 * RFC 1122 says we MUST send a reset.
6028 		 * BSD 4.4 also does reset.
6029 		 */
6030 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6031 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6032 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6033 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6034 				tcp_reset(sk);
6035 				return 1;
6036 			}
6037 		}
6038 		/* Fall through */
6039 	case TCP_ESTABLISHED:
6040 		tcp_data_queue(sk, skb);
6041 		queued = 1;
6042 		break;
6043 	}
6044 
6045 	/* tcp_data could move socket to TIME-WAIT */
6046 	if (sk->sk_state != TCP_CLOSE) {
6047 		tcp_data_snd_check(sk);
6048 		tcp_ack_snd_check(sk);
6049 	}
6050 
6051 	if (!queued) {
6052 discard:
6053 		__kfree_skb(skb);
6054 	}
6055 	return 0;
6056 }
6057 EXPORT_SYMBOL(tcp_rcv_state_process);
6058