1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 */ 20 21 /* 22 * Changes: 23 * Pedro Roque : Fast Retransmit/Recovery. 24 * Two receive queues. 25 * Retransmit queue handled by TCP. 26 * Better retransmit timer handling. 27 * New congestion avoidance. 28 * Header prediction. 29 * Variable renaming. 30 * 31 * Eric : Fast Retransmit. 32 * Randy Scott : MSS option defines. 33 * Eric Schenk : Fixes to slow start algorithm. 34 * Eric Schenk : Yet another double ACK bug. 35 * Eric Schenk : Delayed ACK bug fixes. 36 * Eric Schenk : Floyd style fast retrans war avoidance. 37 * David S. Miller : Don't allow zero congestion window. 38 * Eric Schenk : Fix retransmitter so that it sends 39 * next packet on ack of previous packet. 40 * Andi Kleen : Moved open_request checking here 41 * and process RSTs for open_requests. 42 * Andi Kleen : Better prune_queue, and other fixes. 43 * Andrey Savochkin: Fix RTT measurements in the presence of 44 * timestamps. 45 * Andrey Savochkin: Check sequence numbers correctly when 46 * removing SACKs due to in sequence incoming 47 * data segments. 48 * Andi Kleen: Make sure we never ack data there is not 49 * enough room for. Also make this condition 50 * a fatal error if it might still happen. 51 * Andi Kleen: Add tcp_measure_rcv_mss to make 52 * connections with MSS<min(MTU,ann. MSS) 53 * work without delayed acks. 54 * Andi Kleen: Process packets with PSH set in the 55 * fast path. 56 * J Hadi Salim: ECN support 57 * Andrei Gurtov, 58 * Pasi Sarolahti, 59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission 60 * engine. Lots of bugs are found. 61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs 62 */ 63 64 #define pr_fmt(fmt) "TCP: " fmt 65 66 #include <linux/mm.h> 67 #include <linux/slab.h> 68 #include <linux/module.h> 69 #include <linux/sysctl.h> 70 #include <linux/kernel.h> 71 #include <linux/prefetch.h> 72 #include <net/dst.h> 73 #include <net/tcp.h> 74 #include <net/inet_common.h> 75 #include <linux/ipsec.h> 76 #include <asm/unaligned.h> 77 #include <linux/errqueue.h> 78 79 int sysctl_tcp_timestamps __read_mostly = 1; 80 int sysctl_tcp_window_scaling __read_mostly = 1; 81 int sysctl_tcp_sack __read_mostly = 1; 82 int sysctl_tcp_fack __read_mostly = 1; 83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH; 84 int sysctl_tcp_max_reordering __read_mostly = 300; 85 EXPORT_SYMBOL(sysctl_tcp_reordering); 86 int sysctl_tcp_dsack __read_mostly = 1; 87 int sysctl_tcp_app_win __read_mostly = 31; 88 int sysctl_tcp_adv_win_scale __read_mostly = 1; 89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale); 90 91 /* rfc5961 challenge ack rate limiting */ 92 int sysctl_tcp_challenge_ack_limit = 100; 93 94 int sysctl_tcp_stdurg __read_mostly; 95 int sysctl_tcp_rfc1337 __read_mostly; 96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE; 97 int sysctl_tcp_frto __read_mostly = 2; 98 99 int sysctl_tcp_thin_dupack __read_mostly; 100 101 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1; 102 int sysctl_tcp_early_retrans __read_mostly = 3; 103 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2; 104 105 #define FLAG_DATA 0x01 /* Incoming frame contained data. */ 106 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */ 107 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */ 108 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */ 109 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */ 110 #define FLAG_DATA_SACKED 0x20 /* New SACK. */ 111 #define FLAG_ECE 0x40 /* ECE in this ACK */ 112 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/ 113 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */ 114 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */ 115 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */ 116 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */ 117 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */ 118 119 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED) 120 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED) 121 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE) 122 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED) 123 124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH) 125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH)) 126 127 /* Adapt the MSS value used to make delayed ack decision to the 128 * real world. 129 */ 130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb) 131 { 132 struct inet_connection_sock *icsk = inet_csk(sk); 133 const unsigned int lss = icsk->icsk_ack.last_seg_size; 134 unsigned int len; 135 136 icsk->icsk_ack.last_seg_size = 0; 137 138 /* skb->len may jitter because of SACKs, even if peer 139 * sends good full-sized frames. 140 */ 141 len = skb_shinfo(skb)->gso_size ? : skb->len; 142 if (len >= icsk->icsk_ack.rcv_mss) { 143 icsk->icsk_ack.rcv_mss = len; 144 } else { 145 /* Otherwise, we make more careful check taking into account, 146 * that SACKs block is variable. 147 * 148 * "len" is invariant segment length, including TCP header. 149 */ 150 len += skb->data - skb_transport_header(skb); 151 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) || 152 /* If PSH is not set, packet should be 153 * full sized, provided peer TCP is not badly broken. 154 * This observation (if it is correct 8)) allows 155 * to handle super-low mtu links fairly. 156 */ 157 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) && 158 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) { 159 /* Subtract also invariant (if peer is RFC compliant), 160 * tcp header plus fixed timestamp option length. 161 * Resulting "len" is MSS free of SACK jitter. 162 */ 163 len -= tcp_sk(sk)->tcp_header_len; 164 icsk->icsk_ack.last_seg_size = len; 165 if (len == lss) { 166 icsk->icsk_ack.rcv_mss = len; 167 return; 168 } 169 } 170 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED) 171 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2; 172 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 173 } 174 } 175 176 static void tcp_incr_quickack(struct sock *sk) 177 { 178 struct inet_connection_sock *icsk = inet_csk(sk); 179 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss); 180 181 if (quickacks == 0) 182 quickacks = 2; 183 if (quickacks > icsk->icsk_ack.quick) 184 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS); 185 } 186 187 static void tcp_enter_quickack_mode(struct sock *sk) 188 { 189 struct inet_connection_sock *icsk = inet_csk(sk); 190 tcp_incr_quickack(sk); 191 icsk->icsk_ack.pingpong = 0; 192 icsk->icsk_ack.ato = TCP_ATO_MIN; 193 } 194 195 /* Send ACKs quickly, if "quick" count is not exhausted 196 * and the session is not interactive. 197 */ 198 199 static inline bool tcp_in_quickack_mode(const struct sock *sk) 200 { 201 const struct inet_connection_sock *icsk = inet_csk(sk); 202 203 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong; 204 } 205 206 static void tcp_ecn_queue_cwr(struct tcp_sock *tp) 207 { 208 if (tp->ecn_flags & TCP_ECN_OK) 209 tp->ecn_flags |= TCP_ECN_QUEUE_CWR; 210 } 211 212 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb) 213 { 214 if (tcp_hdr(skb)->cwr) 215 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 216 } 217 218 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp) 219 { 220 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR; 221 } 222 223 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 224 { 225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) { 226 case INET_ECN_NOT_ECT: 227 /* Funny extension: if ECT is not set on a segment, 228 * and we already seen ECT on a previous segment, 229 * it is probably a retransmit. 230 */ 231 if (tp->ecn_flags & TCP_ECN_SEEN) 232 tcp_enter_quickack_mode((struct sock *)tp); 233 break; 234 case INET_ECN_CE: 235 if (tcp_ca_needs_ecn((struct sock *)tp)) 236 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE); 237 238 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) { 239 /* Better not delay acks, sender can have a very low cwnd */ 240 tcp_enter_quickack_mode((struct sock *)tp); 241 tp->ecn_flags |= TCP_ECN_DEMAND_CWR; 242 } 243 tp->ecn_flags |= TCP_ECN_SEEN; 244 break; 245 default: 246 if (tcp_ca_needs_ecn((struct sock *)tp)) 247 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE); 248 tp->ecn_flags |= TCP_ECN_SEEN; 249 break; 250 } 251 } 252 253 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb) 254 { 255 if (tp->ecn_flags & TCP_ECN_OK) 256 __tcp_ecn_check_ce(tp, skb); 257 } 258 259 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th) 260 { 261 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr)) 262 tp->ecn_flags &= ~TCP_ECN_OK; 263 } 264 265 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th) 266 { 267 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr)) 268 tp->ecn_flags &= ~TCP_ECN_OK; 269 } 270 271 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th) 272 { 273 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK)) 274 return true; 275 return false; 276 } 277 278 /* Buffer size and advertised window tuning. 279 * 280 * 1. Tuning sk->sk_sndbuf, when connection enters established state. 281 */ 282 283 static void tcp_sndbuf_expand(struct sock *sk) 284 { 285 const struct tcp_sock *tp = tcp_sk(sk); 286 int sndmem, per_mss; 287 u32 nr_segs; 288 289 /* Worst case is non GSO/TSO : each frame consumes one skb 290 * and skb->head is kmalloced using power of two area of memory 291 */ 292 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) + 293 MAX_TCP_HEADER + 294 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 295 296 per_mss = roundup_pow_of_two(per_mss) + 297 SKB_DATA_ALIGN(sizeof(struct sk_buff)); 298 299 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd); 300 nr_segs = max_t(u32, nr_segs, tp->reordering + 1); 301 302 /* Fast Recovery (RFC 5681 3.2) : 303 * Cubic needs 1.7 factor, rounded to 2 to include 304 * extra cushion (application might react slowly to POLLOUT) 305 */ 306 sndmem = 2 * nr_segs * per_mss; 307 308 if (sk->sk_sndbuf < sndmem) 309 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]); 310 } 311 312 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh) 313 * 314 * All tcp_full_space() is split to two parts: "network" buffer, allocated 315 * forward and advertised in receiver window (tp->rcv_wnd) and 316 * "application buffer", required to isolate scheduling/application 317 * latencies from network. 318 * window_clamp is maximal advertised window. It can be less than 319 * tcp_full_space(), in this case tcp_full_space() - window_clamp 320 * is reserved for "application" buffer. The less window_clamp is 321 * the smoother our behaviour from viewpoint of network, but the lower 322 * throughput and the higher sensitivity of the connection to losses. 8) 323 * 324 * rcv_ssthresh is more strict window_clamp used at "slow start" 325 * phase to predict further behaviour of this connection. 326 * It is used for two goals: 327 * - to enforce header prediction at sender, even when application 328 * requires some significant "application buffer". It is check #1. 329 * - to prevent pruning of receive queue because of misprediction 330 * of receiver window. Check #2. 331 * 332 * The scheme does not work when sender sends good segments opening 333 * window and then starts to feed us spaghetti. But it should work 334 * in common situations. Otherwise, we have to rely on queue collapsing. 335 */ 336 337 /* Slow part of check#2. */ 338 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb) 339 { 340 struct tcp_sock *tp = tcp_sk(sk); 341 /* Optimize this! */ 342 int truesize = tcp_win_from_space(skb->truesize) >> 1; 343 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1; 344 345 while (tp->rcv_ssthresh <= window) { 346 if (truesize <= skb->len) 347 return 2 * inet_csk(sk)->icsk_ack.rcv_mss; 348 349 truesize >>= 1; 350 window >>= 1; 351 } 352 return 0; 353 } 354 355 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb) 356 { 357 struct tcp_sock *tp = tcp_sk(sk); 358 359 /* Check #1 */ 360 if (tp->rcv_ssthresh < tp->window_clamp && 361 (int)tp->rcv_ssthresh < tcp_space(sk) && 362 !tcp_under_memory_pressure(sk)) { 363 int incr; 364 365 /* Check #2. Increase window, if skb with such overhead 366 * will fit to rcvbuf in future. 367 */ 368 if (tcp_win_from_space(skb->truesize) <= skb->len) 369 incr = 2 * tp->advmss; 370 else 371 incr = __tcp_grow_window(sk, skb); 372 373 if (incr) { 374 incr = max_t(int, incr, 2 * skb->len); 375 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, 376 tp->window_clamp); 377 inet_csk(sk)->icsk_ack.quick |= 1; 378 } 379 } 380 } 381 382 /* 3. Tuning rcvbuf, when connection enters established state. */ 383 static void tcp_fixup_rcvbuf(struct sock *sk) 384 { 385 u32 mss = tcp_sk(sk)->advmss; 386 int rcvmem; 387 388 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) * 389 tcp_default_init_rwnd(mss); 390 391 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency 392 * Allow enough cushion so that sender is not limited by our window 393 */ 394 if (sysctl_tcp_moderate_rcvbuf) 395 rcvmem <<= 2; 396 397 if (sk->sk_rcvbuf < rcvmem) 398 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]); 399 } 400 401 /* 4. Try to fixup all. It is made immediately after connection enters 402 * established state. 403 */ 404 void tcp_init_buffer_space(struct sock *sk) 405 { 406 struct tcp_sock *tp = tcp_sk(sk); 407 int maxwin; 408 409 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 410 tcp_fixup_rcvbuf(sk); 411 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) 412 tcp_sndbuf_expand(sk); 413 414 tp->rcvq_space.space = tp->rcv_wnd; 415 tp->rcvq_space.time = tcp_time_stamp; 416 tp->rcvq_space.seq = tp->copied_seq; 417 418 maxwin = tcp_full_space(sk); 419 420 if (tp->window_clamp >= maxwin) { 421 tp->window_clamp = maxwin; 422 423 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss) 424 tp->window_clamp = max(maxwin - 425 (maxwin >> sysctl_tcp_app_win), 426 4 * tp->advmss); 427 } 428 429 /* Force reservation of one segment. */ 430 if (sysctl_tcp_app_win && 431 tp->window_clamp > 2 * tp->advmss && 432 tp->window_clamp + tp->advmss > maxwin) 433 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss); 434 435 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp); 436 tp->snd_cwnd_stamp = tcp_time_stamp; 437 } 438 439 /* 5. Recalculate window clamp after socket hit its memory bounds. */ 440 static void tcp_clamp_window(struct sock *sk) 441 { 442 struct tcp_sock *tp = tcp_sk(sk); 443 struct inet_connection_sock *icsk = inet_csk(sk); 444 445 icsk->icsk_ack.quick = 0; 446 447 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] && 448 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) && 449 !tcp_under_memory_pressure(sk) && 450 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) { 451 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc), 452 sysctl_tcp_rmem[2]); 453 } 454 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) 455 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss); 456 } 457 458 /* Initialize RCV_MSS value. 459 * RCV_MSS is an our guess about MSS used by the peer. 460 * We haven't any direct information about the MSS. 461 * It's better to underestimate the RCV_MSS rather than overestimate. 462 * Overestimations make us ACKing less frequently than needed. 463 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss(). 464 */ 465 void tcp_initialize_rcv_mss(struct sock *sk) 466 { 467 const struct tcp_sock *tp = tcp_sk(sk); 468 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache); 469 470 hint = min(hint, tp->rcv_wnd / 2); 471 hint = min(hint, TCP_MSS_DEFAULT); 472 hint = max(hint, TCP_MIN_MSS); 473 474 inet_csk(sk)->icsk_ack.rcv_mss = hint; 475 } 476 EXPORT_SYMBOL(tcp_initialize_rcv_mss); 477 478 /* Receiver "autotuning" code. 479 * 480 * The algorithm for RTT estimation w/o timestamps is based on 481 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL. 482 * <http://public.lanl.gov/radiant/pubs.html#DRS> 483 * 484 * More detail on this code can be found at 485 * <http://staff.psc.edu/jheffner/>, 486 * though this reference is out of date. A new paper 487 * is pending. 488 */ 489 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep) 490 { 491 u32 new_sample = tp->rcv_rtt_est.rtt; 492 long m = sample; 493 494 if (m == 0) 495 m = 1; 496 497 if (new_sample != 0) { 498 /* If we sample in larger samples in the non-timestamp 499 * case, we could grossly overestimate the RTT especially 500 * with chatty applications or bulk transfer apps which 501 * are stalled on filesystem I/O. 502 * 503 * Also, since we are only going for a minimum in the 504 * non-timestamp case, we do not smooth things out 505 * else with timestamps disabled convergence takes too 506 * long. 507 */ 508 if (!win_dep) { 509 m -= (new_sample >> 3); 510 new_sample += m; 511 } else { 512 m <<= 3; 513 if (m < new_sample) 514 new_sample = m; 515 } 516 } else { 517 /* No previous measure. */ 518 new_sample = m << 3; 519 } 520 521 if (tp->rcv_rtt_est.rtt != new_sample) 522 tp->rcv_rtt_est.rtt = new_sample; 523 } 524 525 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp) 526 { 527 if (tp->rcv_rtt_est.time == 0) 528 goto new_measure; 529 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq)) 530 return; 531 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1); 532 533 new_measure: 534 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd; 535 tp->rcv_rtt_est.time = tcp_time_stamp; 536 } 537 538 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, 539 const struct sk_buff *skb) 540 { 541 struct tcp_sock *tp = tcp_sk(sk); 542 if (tp->rx_opt.rcv_tsecr && 543 (TCP_SKB_CB(skb)->end_seq - 544 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss)) 545 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0); 546 } 547 548 /* 549 * This function should be called every time data is copied to user space. 550 * It calculates the appropriate TCP receive buffer space. 551 */ 552 void tcp_rcv_space_adjust(struct sock *sk) 553 { 554 struct tcp_sock *tp = tcp_sk(sk); 555 int time; 556 int copied; 557 558 time = tcp_time_stamp - tp->rcvq_space.time; 559 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0) 560 return; 561 562 /* Number of bytes copied to user in last RTT */ 563 copied = tp->copied_seq - tp->rcvq_space.seq; 564 if (copied <= tp->rcvq_space.space) 565 goto new_measure; 566 567 /* A bit of theory : 568 * copied = bytes received in previous RTT, our base window 569 * To cope with packet losses, we need a 2x factor 570 * To cope with slow start, and sender growing its cwin by 100 % 571 * every RTT, we need a 4x factor, because the ACK we are sending 572 * now is for the next RTT, not the current one : 573 * <prev RTT . ><current RTT .. ><next RTT .... > 574 */ 575 576 if (sysctl_tcp_moderate_rcvbuf && 577 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 578 int rcvwin, rcvmem, rcvbuf; 579 580 /* minimal window to cope with packet losses, assuming 581 * steady state. Add some cushion because of small variations. 582 */ 583 rcvwin = (copied << 1) + 16 * tp->advmss; 584 585 /* If rate increased by 25%, 586 * assume slow start, rcvwin = 3 * copied 587 * If rate increased by 50%, 588 * assume sender can use 2x growth, rcvwin = 4 * copied 589 */ 590 if (copied >= 591 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) { 592 if (copied >= 593 tp->rcvq_space.space + (tp->rcvq_space.space >> 1)) 594 rcvwin <<= 1; 595 else 596 rcvwin += (rcvwin >> 1); 597 } 598 599 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER); 600 while (tcp_win_from_space(rcvmem) < tp->advmss) 601 rcvmem += 128; 602 603 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]); 604 if (rcvbuf > sk->sk_rcvbuf) { 605 sk->sk_rcvbuf = rcvbuf; 606 607 /* Make the window clamp follow along. */ 608 tp->window_clamp = rcvwin; 609 } 610 } 611 tp->rcvq_space.space = copied; 612 613 new_measure: 614 tp->rcvq_space.seq = tp->copied_seq; 615 tp->rcvq_space.time = tcp_time_stamp; 616 } 617 618 /* There is something which you must keep in mind when you analyze the 619 * behavior of the tp->ato delayed ack timeout interval. When a 620 * connection starts up, we want to ack as quickly as possible. The 621 * problem is that "good" TCP's do slow start at the beginning of data 622 * transmission. The means that until we send the first few ACK's the 623 * sender will sit on his end and only queue most of his data, because 624 * he can only send snd_cwnd unacked packets at any given time. For 625 * each ACK we send, he increments snd_cwnd and transmits more of his 626 * queue. -DaveM 627 */ 628 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb) 629 { 630 struct tcp_sock *tp = tcp_sk(sk); 631 struct inet_connection_sock *icsk = inet_csk(sk); 632 u32 now; 633 634 inet_csk_schedule_ack(sk); 635 636 tcp_measure_rcv_mss(sk, skb); 637 638 tcp_rcv_rtt_measure(tp); 639 640 now = tcp_time_stamp; 641 642 if (!icsk->icsk_ack.ato) { 643 /* The _first_ data packet received, initialize 644 * delayed ACK engine. 645 */ 646 tcp_incr_quickack(sk); 647 icsk->icsk_ack.ato = TCP_ATO_MIN; 648 } else { 649 int m = now - icsk->icsk_ack.lrcvtime; 650 651 if (m <= TCP_ATO_MIN / 2) { 652 /* The fastest case is the first. */ 653 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2; 654 } else if (m < icsk->icsk_ack.ato) { 655 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m; 656 if (icsk->icsk_ack.ato > icsk->icsk_rto) 657 icsk->icsk_ack.ato = icsk->icsk_rto; 658 } else if (m > icsk->icsk_rto) { 659 /* Too long gap. Apparently sender failed to 660 * restart window, so that we send ACKs quickly. 661 */ 662 tcp_incr_quickack(sk); 663 sk_mem_reclaim(sk); 664 } 665 } 666 icsk->icsk_ack.lrcvtime = now; 667 668 tcp_ecn_check_ce(tp, skb); 669 670 if (skb->len >= 128) 671 tcp_grow_window(sk, skb); 672 } 673 674 /* Called to compute a smoothed rtt estimate. The data fed to this 675 * routine either comes from timestamps, or from segments that were 676 * known _not_ to have been retransmitted [see Karn/Partridge 677 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88 678 * piece by Van Jacobson. 679 * NOTE: the next three routines used to be one big routine. 680 * To save cycles in the RFC 1323 implementation it was better to break 681 * it up into three procedures. -- erics 682 */ 683 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us) 684 { 685 struct tcp_sock *tp = tcp_sk(sk); 686 long m = mrtt_us; /* RTT */ 687 u32 srtt = tp->srtt_us; 688 689 /* The following amusing code comes from Jacobson's 690 * article in SIGCOMM '88. Note that rtt and mdev 691 * are scaled versions of rtt and mean deviation. 692 * This is designed to be as fast as possible 693 * m stands for "measurement". 694 * 695 * On a 1990 paper the rto value is changed to: 696 * RTO = rtt + 4 * mdev 697 * 698 * Funny. This algorithm seems to be very broken. 699 * These formulae increase RTO, when it should be decreased, increase 700 * too slowly, when it should be increased quickly, decrease too quickly 701 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely 702 * does not matter how to _calculate_ it. Seems, it was trap 703 * that VJ failed to avoid. 8) 704 */ 705 if (srtt != 0) { 706 m -= (srtt >> 3); /* m is now error in rtt est */ 707 srtt += m; /* rtt = 7/8 rtt + 1/8 new */ 708 if (m < 0) { 709 m = -m; /* m is now abs(error) */ 710 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 711 /* This is similar to one of Eifel findings. 712 * Eifel blocks mdev updates when rtt decreases. 713 * This solution is a bit different: we use finer gain 714 * for mdev in this case (alpha*beta). 715 * Like Eifel it also prevents growth of rto, 716 * but also it limits too fast rto decreases, 717 * happening in pure Eifel. 718 */ 719 if (m > 0) 720 m >>= 3; 721 } else { 722 m -= (tp->mdev_us >> 2); /* similar update on mdev */ 723 } 724 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */ 725 if (tp->mdev_us > tp->mdev_max_us) { 726 tp->mdev_max_us = tp->mdev_us; 727 if (tp->mdev_max_us > tp->rttvar_us) 728 tp->rttvar_us = tp->mdev_max_us; 729 } 730 if (after(tp->snd_una, tp->rtt_seq)) { 731 if (tp->mdev_max_us < tp->rttvar_us) 732 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2; 733 tp->rtt_seq = tp->snd_nxt; 734 tp->mdev_max_us = tcp_rto_min_us(sk); 735 } 736 } else { 737 /* no previous measure. */ 738 srtt = m << 3; /* take the measured time to be rtt */ 739 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */ 740 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk)); 741 tp->mdev_max_us = tp->rttvar_us; 742 tp->rtt_seq = tp->snd_nxt; 743 } 744 tp->srtt_us = max(1U, srtt); 745 } 746 747 /* Set the sk_pacing_rate to allow proper sizing of TSO packets. 748 * Note: TCP stack does not yet implement pacing. 749 * FQ packet scheduler can be used to implement cheap but effective 750 * TCP pacing, to smooth the burst on large writes when packets 751 * in flight is significantly lower than cwnd (or rwin) 752 */ 753 static void tcp_update_pacing_rate(struct sock *sk) 754 { 755 const struct tcp_sock *tp = tcp_sk(sk); 756 u64 rate; 757 758 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */ 759 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3); 760 761 rate *= max(tp->snd_cwnd, tp->packets_out); 762 763 if (likely(tp->srtt_us)) 764 do_div(rate, tp->srtt_us); 765 766 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate 767 * without any lock. We want to make sure compiler wont store 768 * intermediate values in this location. 769 */ 770 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate, 771 sk->sk_max_pacing_rate); 772 } 773 774 /* Calculate rto without backoff. This is the second half of Van Jacobson's 775 * routine referred to above. 776 */ 777 static void tcp_set_rto(struct sock *sk) 778 { 779 const struct tcp_sock *tp = tcp_sk(sk); 780 /* Old crap is replaced with new one. 8) 781 * 782 * More seriously: 783 * 1. If rtt variance happened to be less 50msec, it is hallucination. 784 * It cannot be less due to utterly erratic ACK generation made 785 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_ 786 * to do with delayed acks, because at cwnd>2 true delack timeout 787 * is invisible. Actually, Linux-2.4 also generates erratic 788 * ACKs in some circumstances. 789 */ 790 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp); 791 792 /* 2. Fixups made earlier cannot be right. 793 * If we do not estimate RTO correctly without them, 794 * all the algo is pure shit and should be replaced 795 * with correct one. It is exactly, which we pretend to do. 796 */ 797 798 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo 799 * guarantees that rto is higher. 800 */ 801 tcp_bound_rto(sk); 802 } 803 804 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst) 805 { 806 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0); 807 808 if (!cwnd) 809 cwnd = TCP_INIT_CWND; 810 return min_t(__u32, cwnd, tp->snd_cwnd_clamp); 811 } 812 813 /* 814 * Packet counting of FACK is based on in-order assumptions, therefore TCP 815 * disables it when reordering is detected 816 */ 817 void tcp_disable_fack(struct tcp_sock *tp) 818 { 819 /* RFC3517 uses different metric in lost marker => reset on change */ 820 if (tcp_is_fack(tp)) 821 tp->lost_skb_hint = NULL; 822 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED; 823 } 824 825 /* Take a notice that peer is sending D-SACKs */ 826 static void tcp_dsack_seen(struct tcp_sock *tp) 827 { 828 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN; 829 } 830 831 static void tcp_update_reordering(struct sock *sk, const int metric, 832 const int ts) 833 { 834 struct tcp_sock *tp = tcp_sk(sk); 835 if (metric > tp->reordering) { 836 int mib_idx; 837 838 tp->reordering = min(sysctl_tcp_max_reordering, metric); 839 840 /* This exciting event is worth to be remembered. 8) */ 841 if (ts) 842 mib_idx = LINUX_MIB_TCPTSREORDER; 843 else if (tcp_is_reno(tp)) 844 mib_idx = LINUX_MIB_TCPRENOREORDER; 845 else if (tcp_is_fack(tp)) 846 mib_idx = LINUX_MIB_TCPFACKREORDER; 847 else 848 mib_idx = LINUX_MIB_TCPSACKREORDER; 849 850 NET_INC_STATS_BH(sock_net(sk), mib_idx); 851 #if FASTRETRANS_DEBUG > 1 852 pr_debug("Disorder%d %d %u f%u s%u rr%d\n", 853 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state, 854 tp->reordering, 855 tp->fackets_out, 856 tp->sacked_out, 857 tp->undo_marker ? tp->undo_retrans : 0); 858 #endif 859 tcp_disable_fack(tp); 860 } 861 862 if (metric > 0) 863 tcp_disable_early_retrans(tp); 864 } 865 866 /* This must be called before lost_out is incremented */ 867 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb) 868 { 869 if (!tp->retransmit_skb_hint || 870 before(TCP_SKB_CB(skb)->seq, 871 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) 872 tp->retransmit_skb_hint = skb; 873 874 if (!tp->lost_out || 875 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high)) 876 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 877 } 878 879 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb) 880 { 881 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 882 tcp_verify_retransmit_hint(tp, skb); 883 884 tp->lost_out += tcp_skb_pcount(skb); 885 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 886 } 887 } 888 889 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, 890 struct sk_buff *skb) 891 { 892 tcp_verify_retransmit_hint(tp, skb); 893 894 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) { 895 tp->lost_out += tcp_skb_pcount(skb); 896 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 897 } 898 } 899 900 /* This procedure tags the retransmission queue when SACKs arrive. 901 * 902 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L). 903 * Packets in queue with these bits set are counted in variables 904 * sacked_out, retrans_out and lost_out, correspondingly. 905 * 906 * Valid combinations are: 907 * Tag InFlight Description 908 * 0 1 - orig segment is in flight. 909 * S 0 - nothing flies, orig reached receiver. 910 * L 0 - nothing flies, orig lost by net. 911 * R 2 - both orig and retransmit are in flight. 912 * L|R 1 - orig is lost, retransmit is in flight. 913 * S|R 1 - orig reached receiver, retrans is still in flight. 914 * (L|S|R is logically valid, it could occur when L|R is sacked, 915 * but it is equivalent to plain S and code short-curcuits it to S. 916 * L|S is logically invalid, it would mean -1 packet in flight 8)) 917 * 918 * These 6 states form finite state machine, controlled by the following events: 919 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue()) 920 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue()) 921 * 3. Loss detection event of two flavors: 922 * A. Scoreboard estimator decided the packet is lost. 923 * A'. Reno "three dupacks" marks head of queue lost. 924 * A''. Its FACK modification, head until snd.fack is lost. 925 * B. SACK arrives sacking SND.NXT at the moment, when the 926 * segment was retransmitted. 927 * 4. D-SACK added new rule: D-SACK changes any tag to S. 928 * 929 * It is pleasant to note, that state diagram turns out to be commutative, 930 * so that we are allowed not to be bothered by order of our actions, 931 * when multiple events arrive simultaneously. (see the function below). 932 * 933 * Reordering detection. 934 * -------------------- 935 * Reordering metric is maximal distance, which a packet can be displaced 936 * in packet stream. With SACKs we can estimate it: 937 * 938 * 1. SACK fills old hole and the corresponding segment was not 939 * ever retransmitted -> reordering. Alas, we cannot use it 940 * when segment was retransmitted. 941 * 2. The last flaw is solved with D-SACK. D-SACK arrives 942 * for retransmitted and already SACKed segment -> reordering.. 943 * Both of these heuristics are not used in Loss state, when we cannot 944 * account for retransmits accurately. 945 * 946 * SACK block validation. 947 * ---------------------- 948 * 949 * SACK block range validation checks that the received SACK block fits to 950 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT. 951 * Note that SND.UNA is not included to the range though being valid because 952 * it means that the receiver is rather inconsistent with itself reporting 953 * SACK reneging when it should advance SND.UNA. Such SACK block this is 954 * perfectly valid, however, in light of RFC2018 which explicitly states 955 * that "SACK block MUST reflect the newest segment. Even if the newest 956 * segment is going to be discarded ...", not that it looks very clever 957 * in case of head skb. Due to potentional receiver driven attacks, we 958 * choose to avoid immediate execution of a walk in write queue due to 959 * reneging and defer head skb's loss recovery to standard loss recovery 960 * procedure that will eventually trigger (nothing forbids us doing this). 961 * 962 * Implements also blockage to start_seq wrap-around. Problem lies in the 963 * fact that though start_seq (s) is before end_seq (i.e., not reversed), 964 * there's no guarantee that it will be before snd_nxt (n). The problem 965 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt 966 * wrap (s_w): 967 * 968 * <- outs wnd -> <- wrapzone -> 969 * u e n u_w e_w s n_w 970 * | | | | | | | 971 * |<------------+------+----- TCP seqno space --------------+---------->| 972 * ...-- <2^31 ->| |<--------... 973 * ...---- >2^31 ------>| |<--------... 974 * 975 * Current code wouldn't be vulnerable but it's better still to discard such 976 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat 977 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in 978 * snd_nxt wrap -> snd_una region will then become "well defined", i.e., 979 * equal to the ideal case (infinite seqno space without wrap caused issues). 980 * 981 * With D-SACK the lower bound is extended to cover sequence space below 982 * SND.UNA down to undo_marker, which is the last point of interest. Yet 983 * again, D-SACK block must not to go across snd_una (for the same reason as 984 * for the normal SACK blocks, explained above). But there all simplicity 985 * ends, TCP might receive valid D-SACKs below that. As long as they reside 986 * fully below undo_marker they do not affect behavior in anyway and can 987 * therefore be safely ignored. In rare cases (which are more or less 988 * theoretical ones), the D-SACK will nicely cross that boundary due to skb 989 * fragmentation and packet reordering past skb's retransmission. To consider 990 * them correctly, the acceptable range must be extended even more though 991 * the exact amount is rather hard to quantify. However, tp->max_window can 992 * be used as an exaggerated estimate. 993 */ 994 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack, 995 u32 start_seq, u32 end_seq) 996 { 997 /* Too far in future, or reversed (interpretation is ambiguous) */ 998 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq)) 999 return false; 1000 1001 /* Nasty start_seq wrap-around check (see comments above) */ 1002 if (!before(start_seq, tp->snd_nxt)) 1003 return false; 1004 1005 /* In outstanding window? ...This is valid exit for D-SACKs too. 1006 * start_seq == snd_una is non-sensical (see comments above) 1007 */ 1008 if (after(start_seq, tp->snd_una)) 1009 return true; 1010 1011 if (!is_dsack || !tp->undo_marker) 1012 return false; 1013 1014 /* ...Then it's D-SACK, and must reside below snd_una completely */ 1015 if (after(end_seq, tp->snd_una)) 1016 return false; 1017 1018 if (!before(start_seq, tp->undo_marker)) 1019 return true; 1020 1021 /* Too old */ 1022 if (!after(end_seq, tp->undo_marker)) 1023 return false; 1024 1025 /* Undo_marker boundary crossing (overestimates a lot). Known already: 1026 * start_seq < undo_marker and end_seq >= undo_marker. 1027 */ 1028 return !before(start_seq, end_seq - tp->max_window); 1029 } 1030 1031 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving". 1032 * Event "B". Later note: FACK people cheated me again 8), we have to account 1033 * for reordering! Ugly, but should help. 1034 * 1035 * Search retransmitted skbs from write_queue that were sent when snd_nxt was 1036 * less than what is now known to be received by the other end (derived from 1037 * highest SACK block). Also calculate the lowest snd_nxt among the remaining 1038 * retransmitted skbs to avoid some costly processing per ACKs. 1039 */ 1040 static void tcp_mark_lost_retrans(struct sock *sk) 1041 { 1042 const struct inet_connection_sock *icsk = inet_csk(sk); 1043 struct tcp_sock *tp = tcp_sk(sk); 1044 struct sk_buff *skb; 1045 int cnt = 0; 1046 u32 new_low_seq = tp->snd_nxt; 1047 u32 received_upto = tcp_highest_sack_seq(tp); 1048 1049 if (!tcp_is_fack(tp) || !tp->retrans_out || 1050 !after(received_upto, tp->lost_retrans_low) || 1051 icsk->icsk_ca_state != TCP_CA_Recovery) 1052 return; 1053 1054 tcp_for_write_queue(skb, sk) { 1055 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq; 1056 1057 if (skb == tcp_send_head(sk)) 1058 break; 1059 if (cnt == tp->retrans_out) 1060 break; 1061 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1062 continue; 1063 1064 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) 1065 continue; 1066 1067 /* TODO: We would like to get rid of tcp_is_fack(tp) only 1068 * constraint here (see above) but figuring out that at 1069 * least tp->reordering SACK blocks reside between ack_seq 1070 * and received_upto is not easy task to do cheaply with 1071 * the available datastructures. 1072 * 1073 * Whether FACK should check here for tp->reordering segs 1074 * in-between one could argue for either way (it would be 1075 * rather simple to implement as we could count fack_count 1076 * during the walk and do tp->fackets_out - fack_count). 1077 */ 1078 if (after(received_upto, ack_seq)) { 1079 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1080 tp->retrans_out -= tcp_skb_pcount(skb); 1081 1082 tcp_skb_mark_lost_uncond_verify(tp, skb); 1083 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT); 1084 } else { 1085 if (before(ack_seq, new_low_seq)) 1086 new_low_seq = ack_seq; 1087 cnt += tcp_skb_pcount(skb); 1088 } 1089 } 1090 1091 if (tp->retrans_out) 1092 tp->lost_retrans_low = new_low_seq; 1093 } 1094 1095 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb, 1096 struct tcp_sack_block_wire *sp, int num_sacks, 1097 u32 prior_snd_una) 1098 { 1099 struct tcp_sock *tp = tcp_sk(sk); 1100 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq); 1101 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq); 1102 bool dup_sack = false; 1103 1104 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) { 1105 dup_sack = true; 1106 tcp_dsack_seen(tp); 1107 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV); 1108 } else if (num_sacks > 1) { 1109 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq); 1110 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq); 1111 1112 if (!after(end_seq_0, end_seq_1) && 1113 !before(start_seq_0, start_seq_1)) { 1114 dup_sack = true; 1115 tcp_dsack_seen(tp); 1116 NET_INC_STATS_BH(sock_net(sk), 1117 LINUX_MIB_TCPDSACKOFORECV); 1118 } 1119 } 1120 1121 /* D-SACK for already forgotten data... Do dumb counting. */ 1122 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 && 1123 !after(end_seq_0, prior_snd_una) && 1124 after(end_seq_0, tp->undo_marker)) 1125 tp->undo_retrans--; 1126 1127 return dup_sack; 1128 } 1129 1130 struct tcp_sacktag_state { 1131 int reord; 1132 int fack_count; 1133 /* Timestamps for earliest and latest never-retransmitted segment 1134 * that was SACKed. RTO needs the earliest RTT to stay conservative, 1135 * but congestion control should still get an accurate delay signal. 1136 */ 1137 struct skb_mstamp first_sackt; 1138 struct skb_mstamp last_sackt; 1139 int flag; 1140 }; 1141 1142 /* Check if skb is fully within the SACK block. In presence of GSO skbs, 1143 * the incoming SACK may not exactly match but we can find smaller MSS 1144 * aligned portion of it that matches. Therefore we might need to fragment 1145 * which may fail and creates some hassle (caller must handle error case 1146 * returns). 1147 * 1148 * FIXME: this could be merged to shift decision code 1149 */ 1150 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb, 1151 u32 start_seq, u32 end_seq) 1152 { 1153 int err; 1154 bool in_sack; 1155 unsigned int pkt_len; 1156 unsigned int mss; 1157 1158 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1159 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1160 1161 if (tcp_skb_pcount(skb) > 1 && !in_sack && 1162 after(TCP_SKB_CB(skb)->end_seq, start_seq)) { 1163 mss = tcp_skb_mss(skb); 1164 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1165 1166 if (!in_sack) { 1167 pkt_len = start_seq - TCP_SKB_CB(skb)->seq; 1168 if (pkt_len < mss) 1169 pkt_len = mss; 1170 } else { 1171 pkt_len = end_seq - TCP_SKB_CB(skb)->seq; 1172 if (pkt_len < mss) 1173 return -EINVAL; 1174 } 1175 1176 /* Round if necessary so that SACKs cover only full MSSes 1177 * and/or the remaining small portion (if present) 1178 */ 1179 if (pkt_len > mss) { 1180 unsigned int new_len = (pkt_len / mss) * mss; 1181 if (!in_sack && new_len < pkt_len) { 1182 new_len += mss; 1183 if (new_len >= skb->len) 1184 return 0; 1185 } 1186 pkt_len = new_len; 1187 } 1188 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC); 1189 if (err < 0) 1190 return err; 1191 } 1192 1193 return in_sack; 1194 } 1195 1196 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */ 1197 static u8 tcp_sacktag_one(struct sock *sk, 1198 struct tcp_sacktag_state *state, u8 sacked, 1199 u32 start_seq, u32 end_seq, 1200 int dup_sack, int pcount, 1201 const struct skb_mstamp *xmit_time) 1202 { 1203 struct tcp_sock *tp = tcp_sk(sk); 1204 int fack_count = state->fack_count; 1205 1206 /* Account D-SACK for retransmitted packet. */ 1207 if (dup_sack && (sacked & TCPCB_RETRANS)) { 1208 if (tp->undo_marker && tp->undo_retrans > 0 && 1209 after(end_seq, tp->undo_marker)) 1210 tp->undo_retrans--; 1211 if (sacked & TCPCB_SACKED_ACKED) 1212 state->reord = min(fack_count, state->reord); 1213 } 1214 1215 /* Nothing to do; acked frame is about to be dropped (was ACKed). */ 1216 if (!after(end_seq, tp->snd_una)) 1217 return sacked; 1218 1219 if (!(sacked & TCPCB_SACKED_ACKED)) { 1220 if (sacked & TCPCB_SACKED_RETRANS) { 1221 /* If the segment is not tagged as lost, 1222 * we do not clear RETRANS, believing 1223 * that retransmission is still in flight. 1224 */ 1225 if (sacked & TCPCB_LOST) { 1226 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS); 1227 tp->lost_out -= pcount; 1228 tp->retrans_out -= pcount; 1229 } 1230 } else { 1231 if (!(sacked & TCPCB_RETRANS)) { 1232 /* New sack for not retransmitted frame, 1233 * which was in hole. It is reordering. 1234 */ 1235 if (before(start_seq, 1236 tcp_highest_sack_seq(tp))) 1237 state->reord = min(fack_count, 1238 state->reord); 1239 if (!after(end_seq, tp->high_seq)) 1240 state->flag |= FLAG_ORIG_SACK_ACKED; 1241 if (state->first_sackt.v64 == 0) 1242 state->first_sackt = *xmit_time; 1243 state->last_sackt = *xmit_time; 1244 } 1245 1246 if (sacked & TCPCB_LOST) { 1247 sacked &= ~TCPCB_LOST; 1248 tp->lost_out -= pcount; 1249 } 1250 } 1251 1252 sacked |= TCPCB_SACKED_ACKED; 1253 state->flag |= FLAG_DATA_SACKED; 1254 tp->sacked_out += pcount; 1255 1256 fack_count += pcount; 1257 1258 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */ 1259 if (!tcp_is_fack(tp) && tp->lost_skb_hint && 1260 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq)) 1261 tp->lost_cnt_hint += pcount; 1262 1263 if (fack_count > tp->fackets_out) 1264 tp->fackets_out = fack_count; 1265 } 1266 1267 /* D-SACK. We can detect redundant retransmission in S|R and plain R 1268 * frames and clear it. undo_retrans is decreased above, L|R frames 1269 * are accounted above as well. 1270 */ 1271 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) { 1272 sacked &= ~TCPCB_SACKED_RETRANS; 1273 tp->retrans_out -= pcount; 1274 } 1275 1276 return sacked; 1277 } 1278 1279 /* Shift newly-SACKed bytes from this skb to the immediately previous 1280 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such. 1281 */ 1282 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb, 1283 struct tcp_sacktag_state *state, 1284 unsigned int pcount, int shifted, int mss, 1285 bool dup_sack) 1286 { 1287 struct tcp_sock *tp = tcp_sk(sk); 1288 struct sk_buff *prev = tcp_write_queue_prev(sk, skb); 1289 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */ 1290 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */ 1291 1292 BUG_ON(!pcount); 1293 1294 /* Adjust counters and hints for the newly sacked sequence 1295 * range but discard the return value since prev is already 1296 * marked. We must tag the range first because the seq 1297 * advancement below implicitly advances 1298 * tcp_highest_sack_seq() when skb is highest_sack. 1299 */ 1300 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked, 1301 start_seq, end_seq, dup_sack, pcount, 1302 &skb->skb_mstamp); 1303 1304 if (skb == tp->lost_skb_hint) 1305 tp->lost_cnt_hint += pcount; 1306 1307 TCP_SKB_CB(prev)->end_seq += shifted; 1308 TCP_SKB_CB(skb)->seq += shifted; 1309 1310 tcp_skb_pcount_add(prev, pcount); 1311 BUG_ON(tcp_skb_pcount(skb) < pcount); 1312 tcp_skb_pcount_add(skb, -pcount); 1313 1314 /* When we're adding to gso_segs == 1, gso_size will be zero, 1315 * in theory this shouldn't be necessary but as long as DSACK 1316 * code can come after this skb later on it's better to keep 1317 * setting gso_size to something. 1318 */ 1319 if (!skb_shinfo(prev)->gso_size) { 1320 skb_shinfo(prev)->gso_size = mss; 1321 skb_shinfo(prev)->gso_type = sk->sk_gso_type; 1322 } 1323 1324 /* CHECKME: To clear or not to clear? Mimics normal skb currently */ 1325 if (tcp_skb_pcount(skb) <= 1) { 1326 skb_shinfo(skb)->gso_size = 0; 1327 skb_shinfo(skb)->gso_type = 0; 1328 } 1329 1330 /* Difference in this won't matter, both ACKed by the same cumul. ACK */ 1331 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS); 1332 1333 if (skb->len > 0) { 1334 BUG_ON(!tcp_skb_pcount(skb)); 1335 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED); 1336 return false; 1337 } 1338 1339 /* Whole SKB was eaten :-) */ 1340 1341 if (skb == tp->retransmit_skb_hint) 1342 tp->retransmit_skb_hint = prev; 1343 if (skb == tp->lost_skb_hint) { 1344 tp->lost_skb_hint = prev; 1345 tp->lost_cnt_hint -= tcp_skb_pcount(prev); 1346 } 1347 1348 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; 1349 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 1350 TCP_SKB_CB(prev)->end_seq++; 1351 1352 if (skb == tcp_highest_sack(sk)) 1353 tcp_advance_highest_sack(sk, skb); 1354 1355 tcp_unlink_write_queue(skb, sk); 1356 sk_wmem_free_skb(sk, skb); 1357 1358 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED); 1359 1360 return true; 1361 } 1362 1363 /* I wish gso_size would have a bit more sane initialization than 1364 * something-or-zero which complicates things 1365 */ 1366 static int tcp_skb_seglen(const struct sk_buff *skb) 1367 { 1368 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb); 1369 } 1370 1371 /* Shifting pages past head area doesn't work */ 1372 static int skb_can_shift(const struct sk_buff *skb) 1373 { 1374 return !skb_headlen(skb) && skb_is_nonlinear(skb); 1375 } 1376 1377 /* Try collapsing SACK blocks spanning across multiple skbs to a single 1378 * skb. 1379 */ 1380 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb, 1381 struct tcp_sacktag_state *state, 1382 u32 start_seq, u32 end_seq, 1383 bool dup_sack) 1384 { 1385 struct tcp_sock *tp = tcp_sk(sk); 1386 struct sk_buff *prev; 1387 int mss; 1388 int pcount = 0; 1389 int len; 1390 int in_sack; 1391 1392 if (!sk_can_gso(sk)) 1393 goto fallback; 1394 1395 /* Normally R but no L won't result in plain S */ 1396 if (!dup_sack && 1397 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS) 1398 goto fallback; 1399 if (!skb_can_shift(skb)) 1400 goto fallback; 1401 /* This frame is about to be dropped (was ACKed). */ 1402 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1403 goto fallback; 1404 1405 /* Can only happen with delayed DSACK + discard craziness */ 1406 if (unlikely(skb == tcp_write_queue_head(sk))) 1407 goto fallback; 1408 prev = tcp_write_queue_prev(sk, skb); 1409 1410 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) 1411 goto fallback; 1412 1413 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) && 1414 !before(end_seq, TCP_SKB_CB(skb)->end_seq); 1415 1416 if (in_sack) { 1417 len = skb->len; 1418 pcount = tcp_skb_pcount(skb); 1419 mss = tcp_skb_seglen(skb); 1420 1421 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1422 * drop this restriction as unnecessary 1423 */ 1424 if (mss != tcp_skb_seglen(prev)) 1425 goto fallback; 1426 } else { 1427 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq)) 1428 goto noop; 1429 /* CHECKME: This is non-MSS split case only?, this will 1430 * cause skipped skbs due to advancing loop btw, original 1431 * has that feature too 1432 */ 1433 if (tcp_skb_pcount(skb) <= 1) 1434 goto noop; 1435 1436 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq); 1437 if (!in_sack) { 1438 /* TODO: head merge to next could be attempted here 1439 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)), 1440 * though it might not be worth of the additional hassle 1441 * 1442 * ...we can probably just fallback to what was done 1443 * previously. We could try merging non-SACKed ones 1444 * as well but it probably isn't going to buy off 1445 * because later SACKs might again split them, and 1446 * it would make skb timestamp tracking considerably 1447 * harder problem. 1448 */ 1449 goto fallback; 1450 } 1451 1452 len = end_seq - TCP_SKB_CB(skb)->seq; 1453 BUG_ON(len < 0); 1454 BUG_ON(len > skb->len); 1455 1456 /* MSS boundaries should be honoured or else pcount will 1457 * severely break even though it makes things bit trickier. 1458 * Optimize common case to avoid most of the divides 1459 */ 1460 mss = tcp_skb_mss(skb); 1461 1462 /* TODO: Fix DSACKs to not fragment already SACKed and we can 1463 * drop this restriction as unnecessary 1464 */ 1465 if (mss != tcp_skb_seglen(prev)) 1466 goto fallback; 1467 1468 if (len == mss) { 1469 pcount = 1; 1470 } else if (len < mss) { 1471 goto noop; 1472 } else { 1473 pcount = len / mss; 1474 len = pcount * mss; 1475 } 1476 } 1477 1478 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */ 1479 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una)) 1480 goto fallback; 1481 1482 if (!skb_shift(prev, skb, len)) 1483 goto fallback; 1484 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack)) 1485 goto out; 1486 1487 /* Hole filled allows collapsing with the next as well, this is very 1488 * useful when hole on every nth skb pattern happens 1489 */ 1490 if (prev == tcp_write_queue_tail(sk)) 1491 goto out; 1492 skb = tcp_write_queue_next(sk, prev); 1493 1494 if (!skb_can_shift(skb) || 1495 (skb == tcp_send_head(sk)) || 1496 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) || 1497 (mss != tcp_skb_seglen(skb))) 1498 goto out; 1499 1500 len = skb->len; 1501 if (skb_shift(prev, skb, len)) { 1502 pcount += tcp_skb_pcount(skb); 1503 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0); 1504 } 1505 1506 out: 1507 state->fack_count += pcount; 1508 return prev; 1509 1510 noop: 1511 return skb; 1512 1513 fallback: 1514 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK); 1515 return NULL; 1516 } 1517 1518 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk, 1519 struct tcp_sack_block *next_dup, 1520 struct tcp_sacktag_state *state, 1521 u32 start_seq, u32 end_seq, 1522 bool dup_sack_in) 1523 { 1524 struct tcp_sock *tp = tcp_sk(sk); 1525 struct sk_buff *tmp; 1526 1527 tcp_for_write_queue_from(skb, sk) { 1528 int in_sack = 0; 1529 bool dup_sack = dup_sack_in; 1530 1531 if (skb == tcp_send_head(sk)) 1532 break; 1533 1534 /* queue is in-order => we can short-circuit the walk early */ 1535 if (!before(TCP_SKB_CB(skb)->seq, end_seq)) 1536 break; 1537 1538 if (next_dup && 1539 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) { 1540 in_sack = tcp_match_skb_to_sack(sk, skb, 1541 next_dup->start_seq, 1542 next_dup->end_seq); 1543 if (in_sack > 0) 1544 dup_sack = true; 1545 } 1546 1547 /* skb reference here is a bit tricky to get right, since 1548 * shifting can eat and free both this skb and the next, 1549 * so not even _safe variant of the loop is enough. 1550 */ 1551 if (in_sack <= 0) { 1552 tmp = tcp_shift_skb_data(sk, skb, state, 1553 start_seq, end_seq, dup_sack); 1554 if (tmp) { 1555 if (tmp != skb) { 1556 skb = tmp; 1557 continue; 1558 } 1559 1560 in_sack = 0; 1561 } else { 1562 in_sack = tcp_match_skb_to_sack(sk, skb, 1563 start_seq, 1564 end_seq); 1565 } 1566 } 1567 1568 if (unlikely(in_sack < 0)) 1569 break; 1570 1571 if (in_sack) { 1572 TCP_SKB_CB(skb)->sacked = 1573 tcp_sacktag_one(sk, 1574 state, 1575 TCP_SKB_CB(skb)->sacked, 1576 TCP_SKB_CB(skb)->seq, 1577 TCP_SKB_CB(skb)->end_seq, 1578 dup_sack, 1579 tcp_skb_pcount(skb), 1580 &skb->skb_mstamp); 1581 1582 if (!before(TCP_SKB_CB(skb)->seq, 1583 tcp_highest_sack_seq(tp))) 1584 tcp_advance_highest_sack(sk, skb); 1585 } 1586 1587 state->fack_count += tcp_skb_pcount(skb); 1588 } 1589 return skb; 1590 } 1591 1592 /* Avoid all extra work that is being done by sacktag while walking in 1593 * a normal way 1594 */ 1595 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk, 1596 struct tcp_sacktag_state *state, 1597 u32 skip_to_seq) 1598 { 1599 tcp_for_write_queue_from(skb, sk) { 1600 if (skb == tcp_send_head(sk)) 1601 break; 1602 1603 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq)) 1604 break; 1605 1606 state->fack_count += tcp_skb_pcount(skb); 1607 } 1608 return skb; 1609 } 1610 1611 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb, 1612 struct sock *sk, 1613 struct tcp_sack_block *next_dup, 1614 struct tcp_sacktag_state *state, 1615 u32 skip_to_seq) 1616 { 1617 if (!next_dup) 1618 return skb; 1619 1620 if (before(next_dup->start_seq, skip_to_seq)) { 1621 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq); 1622 skb = tcp_sacktag_walk(skb, sk, NULL, state, 1623 next_dup->start_seq, next_dup->end_seq, 1624 1); 1625 } 1626 1627 return skb; 1628 } 1629 1630 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache) 1631 { 1632 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1633 } 1634 1635 static int 1636 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb, 1637 u32 prior_snd_una, struct tcp_sacktag_state *state) 1638 { 1639 struct tcp_sock *tp = tcp_sk(sk); 1640 const unsigned char *ptr = (skb_transport_header(ack_skb) + 1641 TCP_SKB_CB(ack_skb)->sacked); 1642 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2); 1643 struct tcp_sack_block sp[TCP_NUM_SACKS]; 1644 struct tcp_sack_block *cache; 1645 struct sk_buff *skb; 1646 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3); 1647 int used_sacks; 1648 bool found_dup_sack = false; 1649 int i, j; 1650 int first_sack_index; 1651 1652 state->flag = 0; 1653 state->reord = tp->packets_out; 1654 1655 if (!tp->sacked_out) { 1656 if (WARN_ON(tp->fackets_out)) 1657 tp->fackets_out = 0; 1658 tcp_highest_sack_reset(sk); 1659 } 1660 1661 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire, 1662 num_sacks, prior_snd_una); 1663 if (found_dup_sack) 1664 state->flag |= FLAG_DSACKING_ACK; 1665 1666 /* Eliminate too old ACKs, but take into 1667 * account more or less fresh ones, they can 1668 * contain valid SACK info. 1669 */ 1670 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window)) 1671 return 0; 1672 1673 if (!tp->packets_out) 1674 goto out; 1675 1676 used_sacks = 0; 1677 first_sack_index = 0; 1678 for (i = 0; i < num_sacks; i++) { 1679 bool dup_sack = !i && found_dup_sack; 1680 1681 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq); 1682 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq); 1683 1684 if (!tcp_is_sackblock_valid(tp, dup_sack, 1685 sp[used_sacks].start_seq, 1686 sp[used_sacks].end_seq)) { 1687 int mib_idx; 1688 1689 if (dup_sack) { 1690 if (!tp->undo_marker) 1691 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO; 1692 else 1693 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD; 1694 } else { 1695 /* Don't count olds caused by ACK reordering */ 1696 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) && 1697 !after(sp[used_sacks].end_seq, tp->snd_una)) 1698 continue; 1699 mib_idx = LINUX_MIB_TCPSACKDISCARD; 1700 } 1701 1702 NET_INC_STATS_BH(sock_net(sk), mib_idx); 1703 if (i == 0) 1704 first_sack_index = -1; 1705 continue; 1706 } 1707 1708 /* Ignore very old stuff early */ 1709 if (!after(sp[used_sacks].end_seq, prior_snd_una)) 1710 continue; 1711 1712 used_sacks++; 1713 } 1714 1715 /* order SACK blocks to allow in order walk of the retrans queue */ 1716 for (i = used_sacks - 1; i > 0; i--) { 1717 for (j = 0; j < i; j++) { 1718 if (after(sp[j].start_seq, sp[j + 1].start_seq)) { 1719 swap(sp[j], sp[j + 1]); 1720 1721 /* Track where the first SACK block goes to */ 1722 if (j == first_sack_index) 1723 first_sack_index = j + 1; 1724 } 1725 } 1726 } 1727 1728 skb = tcp_write_queue_head(sk); 1729 state->fack_count = 0; 1730 i = 0; 1731 1732 if (!tp->sacked_out) { 1733 /* It's already past, so skip checking against it */ 1734 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache); 1735 } else { 1736 cache = tp->recv_sack_cache; 1737 /* Skip empty blocks in at head of the cache */ 1738 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq && 1739 !cache->end_seq) 1740 cache++; 1741 } 1742 1743 while (i < used_sacks) { 1744 u32 start_seq = sp[i].start_seq; 1745 u32 end_seq = sp[i].end_seq; 1746 bool dup_sack = (found_dup_sack && (i == first_sack_index)); 1747 struct tcp_sack_block *next_dup = NULL; 1748 1749 if (found_dup_sack && ((i + 1) == first_sack_index)) 1750 next_dup = &sp[i + 1]; 1751 1752 /* Skip too early cached blocks */ 1753 while (tcp_sack_cache_ok(tp, cache) && 1754 !before(start_seq, cache->end_seq)) 1755 cache++; 1756 1757 /* Can skip some work by looking recv_sack_cache? */ 1758 if (tcp_sack_cache_ok(tp, cache) && !dup_sack && 1759 after(end_seq, cache->start_seq)) { 1760 1761 /* Head todo? */ 1762 if (before(start_seq, cache->start_seq)) { 1763 skb = tcp_sacktag_skip(skb, sk, state, 1764 start_seq); 1765 skb = tcp_sacktag_walk(skb, sk, next_dup, 1766 state, 1767 start_seq, 1768 cache->start_seq, 1769 dup_sack); 1770 } 1771 1772 /* Rest of the block already fully processed? */ 1773 if (!after(end_seq, cache->end_seq)) 1774 goto advance_sp; 1775 1776 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup, 1777 state, 1778 cache->end_seq); 1779 1780 /* ...tail remains todo... */ 1781 if (tcp_highest_sack_seq(tp) == cache->end_seq) { 1782 /* ...but better entrypoint exists! */ 1783 skb = tcp_highest_sack(sk); 1784 if (!skb) 1785 break; 1786 state->fack_count = tp->fackets_out; 1787 cache++; 1788 goto walk; 1789 } 1790 1791 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq); 1792 /* Check overlap against next cached too (past this one already) */ 1793 cache++; 1794 continue; 1795 } 1796 1797 if (!before(start_seq, tcp_highest_sack_seq(tp))) { 1798 skb = tcp_highest_sack(sk); 1799 if (!skb) 1800 break; 1801 state->fack_count = tp->fackets_out; 1802 } 1803 skb = tcp_sacktag_skip(skb, sk, state, start_seq); 1804 1805 walk: 1806 skb = tcp_sacktag_walk(skb, sk, next_dup, state, 1807 start_seq, end_seq, dup_sack); 1808 1809 advance_sp: 1810 i++; 1811 } 1812 1813 /* Clear the head of the cache sack blocks so we can skip it next time */ 1814 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) { 1815 tp->recv_sack_cache[i].start_seq = 0; 1816 tp->recv_sack_cache[i].end_seq = 0; 1817 } 1818 for (j = 0; j < used_sacks; j++) 1819 tp->recv_sack_cache[i++] = sp[j]; 1820 1821 if ((state->reord < tp->fackets_out) && 1822 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker)) 1823 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0); 1824 1825 tcp_mark_lost_retrans(sk); 1826 tcp_verify_left_out(tp); 1827 out: 1828 1829 #if FASTRETRANS_DEBUG > 0 1830 WARN_ON((int)tp->sacked_out < 0); 1831 WARN_ON((int)tp->lost_out < 0); 1832 WARN_ON((int)tp->retrans_out < 0); 1833 WARN_ON((int)tcp_packets_in_flight(tp) < 0); 1834 #endif 1835 return state->flag; 1836 } 1837 1838 /* Limits sacked_out so that sum with lost_out isn't ever larger than 1839 * packets_out. Returns false if sacked_out adjustement wasn't necessary. 1840 */ 1841 static bool tcp_limit_reno_sacked(struct tcp_sock *tp) 1842 { 1843 u32 holes; 1844 1845 holes = max(tp->lost_out, 1U); 1846 holes = min(holes, tp->packets_out); 1847 1848 if ((tp->sacked_out + holes) > tp->packets_out) { 1849 tp->sacked_out = tp->packets_out - holes; 1850 return true; 1851 } 1852 return false; 1853 } 1854 1855 /* If we receive more dupacks than we expected counting segments 1856 * in assumption of absent reordering, interpret this as reordering. 1857 * The only another reason could be bug in receiver TCP. 1858 */ 1859 static void tcp_check_reno_reordering(struct sock *sk, const int addend) 1860 { 1861 struct tcp_sock *tp = tcp_sk(sk); 1862 if (tcp_limit_reno_sacked(tp)) 1863 tcp_update_reordering(sk, tp->packets_out + addend, 0); 1864 } 1865 1866 /* Emulate SACKs for SACKless connection: account for a new dupack. */ 1867 1868 static void tcp_add_reno_sack(struct sock *sk) 1869 { 1870 struct tcp_sock *tp = tcp_sk(sk); 1871 tp->sacked_out++; 1872 tcp_check_reno_reordering(sk, 0); 1873 tcp_verify_left_out(tp); 1874 } 1875 1876 /* Account for ACK, ACKing some data in Reno Recovery phase. */ 1877 1878 static void tcp_remove_reno_sacks(struct sock *sk, int acked) 1879 { 1880 struct tcp_sock *tp = tcp_sk(sk); 1881 1882 if (acked > 0) { 1883 /* One ACK acked hole. The rest eat duplicate ACKs. */ 1884 if (acked - 1 >= tp->sacked_out) 1885 tp->sacked_out = 0; 1886 else 1887 tp->sacked_out -= acked - 1; 1888 } 1889 tcp_check_reno_reordering(sk, acked); 1890 tcp_verify_left_out(tp); 1891 } 1892 1893 static inline void tcp_reset_reno_sack(struct tcp_sock *tp) 1894 { 1895 tp->sacked_out = 0; 1896 } 1897 1898 void tcp_clear_retrans(struct tcp_sock *tp) 1899 { 1900 tp->retrans_out = 0; 1901 tp->lost_out = 0; 1902 tp->undo_marker = 0; 1903 tp->undo_retrans = -1; 1904 tp->fackets_out = 0; 1905 tp->sacked_out = 0; 1906 } 1907 1908 static inline void tcp_init_undo(struct tcp_sock *tp) 1909 { 1910 tp->undo_marker = tp->snd_una; 1911 /* Retransmission still in flight may cause DSACKs later. */ 1912 tp->undo_retrans = tp->retrans_out ? : -1; 1913 } 1914 1915 /* Enter Loss state. If we detect SACK reneging, forget all SACK information 1916 * and reset tags completely, otherwise preserve SACKs. If receiver 1917 * dropped its ofo queue, we will know this due to reneging detection. 1918 */ 1919 void tcp_enter_loss(struct sock *sk) 1920 { 1921 const struct inet_connection_sock *icsk = inet_csk(sk); 1922 struct tcp_sock *tp = tcp_sk(sk); 1923 struct sk_buff *skb; 1924 bool new_recovery = false; 1925 bool is_reneg; /* is receiver reneging on SACKs? */ 1926 1927 /* Reduce ssthresh if it has not yet been made inside this window. */ 1928 if (icsk->icsk_ca_state <= TCP_CA_Disorder || 1929 !after(tp->high_seq, tp->snd_una) || 1930 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) { 1931 new_recovery = true; 1932 tp->prior_ssthresh = tcp_current_ssthresh(sk); 1933 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk); 1934 tcp_ca_event(sk, CA_EVENT_LOSS); 1935 tcp_init_undo(tp); 1936 } 1937 tp->snd_cwnd = 1; 1938 tp->snd_cwnd_cnt = 0; 1939 tp->snd_cwnd_stamp = tcp_time_stamp; 1940 1941 tp->retrans_out = 0; 1942 tp->lost_out = 0; 1943 1944 if (tcp_is_reno(tp)) 1945 tcp_reset_reno_sack(tp); 1946 1947 skb = tcp_write_queue_head(sk); 1948 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED); 1949 if (is_reneg) { 1950 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING); 1951 tp->sacked_out = 0; 1952 tp->fackets_out = 0; 1953 } 1954 tcp_clear_all_retrans_hints(tp); 1955 1956 tcp_for_write_queue(skb, sk) { 1957 if (skb == tcp_send_head(sk)) 1958 break; 1959 1960 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED; 1961 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) { 1962 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED; 1963 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1964 tp->lost_out += tcp_skb_pcount(skb); 1965 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq; 1966 } 1967 } 1968 tcp_verify_left_out(tp); 1969 1970 /* Timeout in disordered state after receiving substantial DUPACKs 1971 * suggests that the degree of reordering is over-estimated. 1972 */ 1973 if (icsk->icsk_ca_state <= TCP_CA_Disorder && 1974 tp->sacked_out >= sysctl_tcp_reordering) 1975 tp->reordering = min_t(unsigned int, tp->reordering, 1976 sysctl_tcp_reordering); 1977 tcp_set_ca_state(sk, TCP_CA_Loss); 1978 tp->high_seq = tp->snd_nxt; 1979 tcp_ecn_queue_cwr(tp); 1980 1981 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous 1982 * loss recovery is underway except recurring timeout(s) on 1983 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing 1984 */ 1985 tp->frto = sysctl_tcp_frto && 1986 (new_recovery || icsk->icsk_retransmits) && 1987 !inet_csk(sk)->icsk_mtup.probe_size; 1988 } 1989 1990 /* If ACK arrived pointing to a remembered SACK, it means that our 1991 * remembered SACKs do not reflect real state of receiver i.e. 1992 * receiver _host_ is heavily congested (or buggy). 1993 * 1994 * To avoid big spurious retransmission bursts due to transient SACK 1995 * scoreboard oddities that look like reneging, we give the receiver a 1996 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will 1997 * restore sanity to the SACK scoreboard. If the apparent reneging 1998 * persists until this RTO then we'll clear the SACK scoreboard. 1999 */ 2000 static bool tcp_check_sack_reneging(struct sock *sk, int flag) 2001 { 2002 if (flag & FLAG_SACK_RENEGING) { 2003 struct tcp_sock *tp = tcp_sk(sk); 2004 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4), 2005 msecs_to_jiffies(10)); 2006 2007 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 2008 delay, TCP_RTO_MAX); 2009 return true; 2010 } 2011 return false; 2012 } 2013 2014 static inline int tcp_fackets_out(const struct tcp_sock *tp) 2015 { 2016 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out; 2017 } 2018 2019 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs 2020 * counter when SACK is enabled (without SACK, sacked_out is used for 2021 * that purpose). 2022 * 2023 * Instead, with FACK TCP uses fackets_out that includes both SACKed 2024 * segments up to the highest received SACK block so far and holes in 2025 * between them. 2026 * 2027 * With reordering, holes may still be in flight, so RFC3517 recovery 2028 * uses pure sacked_out (total number of SACKed segments) even though 2029 * it violates the RFC that uses duplicate ACKs, often these are equal 2030 * but when e.g. out-of-window ACKs or packet duplication occurs, 2031 * they differ. Since neither occurs due to loss, TCP should really 2032 * ignore them. 2033 */ 2034 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp) 2035 { 2036 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1; 2037 } 2038 2039 static bool tcp_pause_early_retransmit(struct sock *sk, int flag) 2040 { 2041 struct tcp_sock *tp = tcp_sk(sk); 2042 unsigned long delay; 2043 2044 /* Delay early retransmit and entering fast recovery for 2045 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples 2046 * available, or RTO is scheduled to fire first. 2047 */ 2048 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 || 2049 (flag & FLAG_ECE) || !tp->srtt_us) 2050 return false; 2051 2052 delay = max(usecs_to_jiffies(tp->srtt_us >> 5), 2053 msecs_to_jiffies(2)); 2054 2055 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay))) 2056 return false; 2057 2058 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay, 2059 TCP_RTO_MAX); 2060 return true; 2061 } 2062 2063 /* Linux NewReno/SACK/FACK/ECN state machine. 2064 * -------------------------------------- 2065 * 2066 * "Open" Normal state, no dubious events, fast path. 2067 * "Disorder" In all the respects it is "Open", 2068 * but requires a bit more attention. It is entered when 2069 * we see some SACKs or dupacks. It is split of "Open" 2070 * mainly to move some processing from fast path to slow one. 2071 * "CWR" CWND was reduced due to some Congestion Notification event. 2072 * It can be ECN, ICMP source quench, local device congestion. 2073 * "Recovery" CWND was reduced, we are fast-retransmitting. 2074 * "Loss" CWND was reduced due to RTO timeout or SACK reneging. 2075 * 2076 * tcp_fastretrans_alert() is entered: 2077 * - each incoming ACK, if state is not "Open" 2078 * - when arrived ACK is unusual, namely: 2079 * * SACK 2080 * * Duplicate ACK. 2081 * * ECN ECE. 2082 * 2083 * Counting packets in flight is pretty simple. 2084 * 2085 * in_flight = packets_out - left_out + retrans_out 2086 * 2087 * packets_out is SND.NXT-SND.UNA counted in packets. 2088 * 2089 * retrans_out is number of retransmitted segments. 2090 * 2091 * left_out is number of segments left network, but not ACKed yet. 2092 * 2093 * left_out = sacked_out + lost_out 2094 * 2095 * sacked_out: Packets, which arrived to receiver out of order 2096 * and hence not ACKed. With SACKs this number is simply 2097 * amount of SACKed data. Even without SACKs 2098 * it is easy to give pretty reliable estimate of this number, 2099 * counting duplicate ACKs. 2100 * 2101 * lost_out: Packets lost by network. TCP has no explicit 2102 * "loss notification" feedback from network (for now). 2103 * It means that this number can be only _guessed_. 2104 * Actually, it is the heuristics to predict lossage that 2105 * distinguishes different algorithms. 2106 * 2107 * F.e. after RTO, when all the queue is considered as lost, 2108 * lost_out = packets_out and in_flight = retrans_out. 2109 * 2110 * Essentially, we have now two algorithms counting 2111 * lost packets. 2112 * 2113 * FACK: It is the simplest heuristics. As soon as we decided 2114 * that something is lost, we decide that _all_ not SACKed 2115 * packets until the most forward SACK are lost. I.e. 2116 * lost_out = fackets_out - sacked_out and left_out = fackets_out. 2117 * It is absolutely correct estimate, if network does not reorder 2118 * packets. And it loses any connection to reality when reordering 2119 * takes place. We use FACK by default until reordering 2120 * is suspected on the path to this destination. 2121 * 2122 * NewReno: when Recovery is entered, we assume that one segment 2123 * is lost (classic Reno). While we are in Recovery and 2124 * a partial ACK arrives, we assume that one more packet 2125 * is lost (NewReno). This heuristics are the same in NewReno 2126 * and SACK. 2127 * 2128 * Imagine, that's all! Forget about all this shamanism about CWND inflation 2129 * deflation etc. CWND is real congestion window, never inflated, changes 2130 * only according to classic VJ rules. 2131 * 2132 * Really tricky (and requiring careful tuning) part of algorithm 2133 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue(). 2134 * The first determines the moment _when_ we should reduce CWND and, 2135 * hence, slow down forward transmission. In fact, it determines the moment 2136 * when we decide that hole is caused by loss, rather than by a reorder. 2137 * 2138 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill 2139 * holes, caused by lost packets. 2140 * 2141 * And the most logically complicated part of algorithm is undo 2142 * heuristics. We detect false retransmits due to both too early 2143 * fast retransmit (reordering) and underestimated RTO, analyzing 2144 * timestamps and D-SACKs. When we detect that some segments were 2145 * retransmitted by mistake and CWND reduction was wrong, we undo 2146 * window reduction and abort recovery phase. This logic is hidden 2147 * inside several functions named tcp_try_undo_<something>. 2148 */ 2149 2150 /* This function decides, when we should leave Disordered state 2151 * and enter Recovery phase, reducing congestion window. 2152 * 2153 * Main question: may we further continue forward transmission 2154 * with the same cwnd? 2155 */ 2156 static bool tcp_time_to_recover(struct sock *sk, int flag) 2157 { 2158 struct tcp_sock *tp = tcp_sk(sk); 2159 __u32 packets_out; 2160 2161 /* Trick#1: The loss is proven. */ 2162 if (tp->lost_out) 2163 return true; 2164 2165 /* Not-A-Trick#2 : Classic rule... */ 2166 if (tcp_dupack_heuristics(tp) > tp->reordering) 2167 return true; 2168 2169 /* Trick#4: It is still not OK... But will it be useful to delay 2170 * recovery more? 2171 */ 2172 packets_out = tp->packets_out; 2173 if (packets_out <= tp->reordering && 2174 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) && 2175 !tcp_may_send_now(sk)) { 2176 /* We have nothing to send. This connection is limited 2177 * either by receiver window or by application. 2178 */ 2179 return true; 2180 } 2181 2182 /* If a thin stream is detected, retransmit after first 2183 * received dupack. Employ only if SACK is supported in order 2184 * to avoid possible corner-case series of spurious retransmissions 2185 * Use only if there are no unsent data. 2186 */ 2187 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) && 2188 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 && 2189 tcp_is_sack(tp) && !tcp_send_head(sk)) 2190 return true; 2191 2192 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious 2193 * retransmissions due to small network reorderings, we implement 2194 * Mitigation A.3 in the RFC and delay the retransmission for a short 2195 * interval if appropriate. 2196 */ 2197 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out && 2198 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) && 2199 !tcp_may_send_now(sk)) 2200 return !tcp_pause_early_retransmit(sk, flag); 2201 2202 return false; 2203 } 2204 2205 /* Detect loss in event "A" above by marking head of queue up as lost. 2206 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments 2207 * are considered lost. For RFC3517 SACK, a segment is considered lost if it 2208 * has at least tp->reordering SACKed seqments above it; "packets" refers to 2209 * the maximum SACKed segments to pass before reaching this limit. 2210 */ 2211 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head) 2212 { 2213 struct tcp_sock *tp = tcp_sk(sk); 2214 struct sk_buff *skb; 2215 int cnt, oldcnt; 2216 int err; 2217 unsigned int mss; 2218 /* Use SACK to deduce losses of new sequences sent during recovery */ 2219 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq; 2220 2221 WARN_ON(packets > tp->packets_out); 2222 if (tp->lost_skb_hint) { 2223 skb = tp->lost_skb_hint; 2224 cnt = tp->lost_cnt_hint; 2225 /* Head already handled? */ 2226 if (mark_head && skb != tcp_write_queue_head(sk)) 2227 return; 2228 } else { 2229 skb = tcp_write_queue_head(sk); 2230 cnt = 0; 2231 } 2232 2233 tcp_for_write_queue_from(skb, sk) { 2234 if (skb == tcp_send_head(sk)) 2235 break; 2236 /* TODO: do this better */ 2237 /* this is not the most efficient way to do this... */ 2238 tp->lost_skb_hint = skb; 2239 tp->lost_cnt_hint = cnt; 2240 2241 if (after(TCP_SKB_CB(skb)->end_seq, loss_high)) 2242 break; 2243 2244 oldcnt = cnt; 2245 if (tcp_is_fack(tp) || tcp_is_reno(tp) || 2246 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 2247 cnt += tcp_skb_pcount(skb); 2248 2249 if (cnt > packets) { 2250 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) || 2251 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) || 2252 (oldcnt >= packets)) 2253 break; 2254 2255 mss = skb_shinfo(skb)->gso_size; 2256 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, 2257 mss, GFP_ATOMIC); 2258 if (err < 0) 2259 break; 2260 cnt = packets; 2261 } 2262 2263 tcp_skb_mark_lost(tp, skb); 2264 2265 if (mark_head) 2266 break; 2267 } 2268 tcp_verify_left_out(tp); 2269 } 2270 2271 /* Account newly detected lost packet(s) */ 2272 2273 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit) 2274 { 2275 struct tcp_sock *tp = tcp_sk(sk); 2276 2277 if (tcp_is_reno(tp)) { 2278 tcp_mark_head_lost(sk, 1, 1); 2279 } else if (tcp_is_fack(tp)) { 2280 int lost = tp->fackets_out - tp->reordering; 2281 if (lost <= 0) 2282 lost = 1; 2283 tcp_mark_head_lost(sk, lost, 0); 2284 } else { 2285 int sacked_upto = tp->sacked_out - tp->reordering; 2286 if (sacked_upto >= 0) 2287 tcp_mark_head_lost(sk, sacked_upto, 0); 2288 else if (fast_rexmit) 2289 tcp_mark_head_lost(sk, 1, 1); 2290 } 2291 } 2292 2293 /* CWND moderation, preventing bursts due to too big ACKs 2294 * in dubious situations. 2295 */ 2296 static inline void tcp_moderate_cwnd(struct tcp_sock *tp) 2297 { 2298 tp->snd_cwnd = min(tp->snd_cwnd, 2299 tcp_packets_in_flight(tp) + tcp_max_burst(tp)); 2300 tp->snd_cwnd_stamp = tcp_time_stamp; 2301 } 2302 2303 /* Nothing was retransmitted or returned timestamp is less 2304 * than timestamp of the first retransmission. 2305 */ 2306 static inline bool tcp_packet_delayed(const struct tcp_sock *tp) 2307 { 2308 return !tp->retrans_stamp || 2309 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2310 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp)); 2311 } 2312 2313 /* Undo procedures. */ 2314 2315 /* We can clear retrans_stamp when there are no retransmissions in the 2316 * window. It would seem that it is trivially available for us in 2317 * tp->retrans_out, however, that kind of assumptions doesn't consider 2318 * what will happen if errors occur when sending retransmission for the 2319 * second time. ...It could the that such segment has only 2320 * TCPCB_EVER_RETRANS set at the present time. It seems that checking 2321 * the head skb is enough except for some reneging corner cases that 2322 * are not worth the effort. 2323 * 2324 * Main reason for all this complexity is the fact that connection dying 2325 * time now depends on the validity of the retrans_stamp, in particular, 2326 * that successive retransmissions of a segment must not advance 2327 * retrans_stamp under any conditions. 2328 */ 2329 static bool tcp_any_retrans_done(const struct sock *sk) 2330 { 2331 const struct tcp_sock *tp = tcp_sk(sk); 2332 struct sk_buff *skb; 2333 2334 if (tp->retrans_out) 2335 return true; 2336 2337 skb = tcp_write_queue_head(sk); 2338 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS)) 2339 return true; 2340 2341 return false; 2342 } 2343 2344 #if FASTRETRANS_DEBUG > 1 2345 static void DBGUNDO(struct sock *sk, const char *msg) 2346 { 2347 struct tcp_sock *tp = tcp_sk(sk); 2348 struct inet_sock *inet = inet_sk(sk); 2349 2350 if (sk->sk_family == AF_INET) { 2351 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n", 2352 msg, 2353 &inet->inet_daddr, ntohs(inet->inet_dport), 2354 tp->snd_cwnd, tcp_left_out(tp), 2355 tp->snd_ssthresh, tp->prior_ssthresh, 2356 tp->packets_out); 2357 } 2358 #if IS_ENABLED(CONFIG_IPV6) 2359 else if (sk->sk_family == AF_INET6) { 2360 struct ipv6_pinfo *np = inet6_sk(sk); 2361 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n", 2362 msg, 2363 &np->daddr, ntohs(inet->inet_dport), 2364 tp->snd_cwnd, tcp_left_out(tp), 2365 tp->snd_ssthresh, tp->prior_ssthresh, 2366 tp->packets_out); 2367 } 2368 #endif 2369 } 2370 #else 2371 #define DBGUNDO(x...) do { } while (0) 2372 #endif 2373 2374 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss) 2375 { 2376 struct tcp_sock *tp = tcp_sk(sk); 2377 2378 if (unmark_loss) { 2379 struct sk_buff *skb; 2380 2381 tcp_for_write_queue(skb, sk) { 2382 if (skb == tcp_send_head(sk)) 2383 break; 2384 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST; 2385 } 2386 tp->lost_out = 0; 2387 tcp_clear_all_retrans_hints(tp); 2388 } 2389 2390 if (tp->prior_ssthresh) { 2391 const struct inet_connection_sock *icsk = inet_csk(sk); 2392 2393 if (icsk->icsk_ca_ops->undo_cwnd) 2394 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk); 2395 else 2396 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1); 2397 2398 if (tp->prior_ssthresh > tp->snd_ssthresh) { 2399 tp->snd_ssthresh = tp->prior_ssthresh; 2400 tcp_ecn_withdraw_cwr(tp); 2401 } 2402 } else { 2403 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh); 2404 } 2405 tp->snd_cwnd_stamp = tcp_time_stamp; 2406 tp->undo_marker = 0; 2407 } 2408 2409 static inline bool tcp_may_undo(const struct tcp_sock *tp) 2410 { 2411 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp)); 2412 } 2413 2414 /* People celebrate: "We love our President!" */ 2415 static bool tcp_try_undo_recovery(struct sock *sk) 2416 { 2417 struct tcp_sock *tp = tcp_sk(sk); 2418 2419 if (tcp_may_undo(tp)) { 2420 int mib_idx; 2421 2422 /* Happy end! We did not retransmit anything 2423 * or our original transmission succeeded. 2424 */ 2425 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans"); 2426 tcp_undo_cwnd_reduction(sk, false); 2427 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss) 2428 mib_idx = LINUX_MIB_TCPLOSSUNDO; 2429 else 2430 mib_idx = LINUX_MIB_TCPFULLUNDO; 2431 2432 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2433 } 2434 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) { 2435 /* Hold old state until something *above* high_seq 2436 * is ACKed. For Reno it is MUST to prevent false 2437 * fast retransmits (RFC2582). SACK TCP is safe. */ 2438 tcp_moderate_cwnd(tp); 2439 if (!tcp_any_retrans_done(sk)) 2440 tp->retrans_stamp = 0; 2441 return true; 2442 } 2443 tcp_set_ca_state(sk, TCP_CA_Open); 2444 return false; 2445 } 2446 2447 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */ 2448 static bool tcp_try_undo_dsack(struct sock *sk) 2449 { 2450 struct tcp_sock *tp = tcp_sk(sk); 2451 2452 if (tp->undo_marker && !tp->undo_retrans) { 2453 DBGUNDO(sk, "D-SACK"); 2454 tcp_undo_cwnd_reduction(sk, false); 2455 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO); 2456 return true; 2457 } 2458 return false; 2459 } 2460 2461 /* Undo during loss recovery after partial ACK or using F-RTO. */ 2462 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo) 2463 { 2464 struct tcp_sock *tp = tcp_sk(sk); 2465 2466 if (frto_undo || tcp_may_undo(tp)) { 2467 tcp_undo_cwnd_reduction(sk, true); 2468 2469 DBGUNDO(sk, "partial loss"); 2470 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO); 2471 if (frto_undo) 2472 NET_INC_STATS_BH(sock_net(sk), 2473 LINUX_MIB_TCPSPURIOUSRTOS); 2474 inet_csk(sk)->icsk_retransmits = 0; 2475 if (frto_undo || tcp_is_sack(tp)) 2476 tcp_set_ca_state(sk, TCP_CA_Open); 2477 return true; 2478 } 2479 return false; 2480 } 2481 2482 /* The cwnd reduction in CWR and Recovery use the PRR algorithm 2483 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/ 2484 * It computes the number of packets to send (sndcnt) based on packets newly 2485 * delivered: 2486 * 1) If the packets in flight is larger than ssthresh, PRR spreads the 2487 * cwnd reductions across a full RTT. 2488 * 2) If packets in flight is lower than ssthresh (such as due to excess 2489 * losses and/or application stalls), do not perform any further cwnd 2490 * reductions, but instead slow start up to ssthresh. 2491 */ 2492 static void tcp_init_cwnd_reduction(struct sock *sk) 2493 { 2494 struct tcp_sock *tp = tcp_sk(sk); 2495 2496 tp->high_seq = tp->snd_nxt; 2497 tp->tlp_high_seq = 0; 2498 tp->snd_cwnd_cnt = 0; 2499 tp->prior_cwnd = tp->snd_cwnd; 2500 tp->prr_delivered = 0; 2501 tp->prr_out = 0; 2502 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk); 2503 tcp_ecn_queue_cwr(tp); 2504 } 2505 2506 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked, 2507 int fast_rexmit) 2508 { 2509 struct tcp_sock *tp = tcp_sk(sk); 2510 int sndcnt = 0; 2511 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp); 2512 int newly_acked_sacked = prior_unsacked - 2513 (tp->packets_out - tp->sacked_out); 2514 2515 tp->prr_delivered += newly_acked_sacked; 2516 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) { 2517 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered + 2518 tp->prior_cwnd - 1; 2519 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out; 2520 } else { 2521 sndcnt = min_t(int, delta, 2522 max_t(int, tp->prr_delivered - tp->prr_out, 2523 newly_acked_sacked) + 1); 2524 } 2525 2526 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0)); 2527 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt; 2528 } 2529 2530 static inline void tcp_end_cwnd_reduction(struct sock *sk) 2531 { 2532 struct tcp_sock *tp = tcp_sk(sk); 2533 2534 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */ 2535 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || 2536 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) { 2537 tp->snd_cwnd = tp->snd_ssthresh; 2538 tp->snd_cwnd_stamp = tcp_time_stamp; 2539 } 2540 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR); 2541 } 2542 2543 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */ 2544 void tcp_enter_cwr(struct sock *sk) 2545 { 2546 struct tcp_sock *tp = tcp_sk(sk); 2547 2548 tp->prior_ssthresh = 0; 2549 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2550 tp->undo_marker = 0; 2551 tcp_init_cwnd_reduction(sk); 2552 tcp_set_ca_state(sk, TCP_CA_CWR); 2553 } 2554 } 2555 2556 static void tcp_try_keep_open(struct sock *sk) 2557 { 2558 struct tcp_sock *tp = tcp_sk(sk); 2559 int state = TCP_CA_Open; 2560 2561 if (tcp_left_out(tp) || tcp_any_retrans_done(sk)) 2562 state = TCP_CA_Disorder; 2563 2564 if (inet_csk(sk)->icsk_ca_state != state) { 2565 tcp_set_ca_state(sk, state); 2566 tp->high_seq = tp->snd_nxt; 2567 } 2568 } 2569 2570 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked) 2571 { 2572 struct tcp_sock *tp = tcp_sk(sk); 2573 2574 tcp_verify_left_out(tp); 2575 2576 if (!tcp_any_retrans_done(sk)) 2577 tp->retrans_stamp = 0; 2578 2579 if (flag & FLAG_ECE) 2580 tcp_enter_cwr(sk); 2581 2582 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) { 2583 tcp_try_keep_open(sk); 2584 } else { 2585 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2586 } 2587 } 2588 2589 static void tcp_mtup_probe_failed(struct sock *sk) 2590 { 2591 struct inet_connection_sock *icsk = inet_csk(sk); 2592 2593 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1; 2594 icsk->icsk_mtup.probe_size = 0; 2595 } 2596 2597 static void tcp_mtup_probe_success(struct sock *sk) 2598 { 2599 struct tcp_sock *tp = tcp_sk(sk); 2600 struct inet_connection_sock *icsk = inet_csk(sk); 2601 2602 /* FIXME: breaks with very large cwnd */ 2603 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2604 tp->snd_cwnd = tp->snd_cwnd * 2605 tcp_mss_to_mtu(sk, tp->mss_cache) / 2606 icsk->icsk_mtup.probe_size; 2607 tp->snd_cwnd_cnt = 0; 2608 tp->snd_cwnd_stamp = tcp_time_stamp; 2609 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2610 2611 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size; 2612 icsk->icsk_mtup.probe_size = 0; 2613 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 2614 } 2615 2616 /* Do a simple retransmit without using the backoff mechanisms in 2617 * tcp_timer. This is used for path mtu discovery. 2618 * The socket is already locked here. 2619 */ 2620 void tcp_simple_retransmit(struct sock *sk) 2621 { 2622 const struct inet_connection_sock *icsk = inet_csk(sk); 2623 struct tcp_sock *tp = tcp_sk(sk); 2624 struct sk_buff *skb; 2625 unsigned int mss = tcp_current_mss(sk); 2626 u32 prior_lost = tp->lost_out; 2627 2628 tcp_for_write_queue(skb, sk) { 2629 if (skb == tcp_send_head(sk)) 2630 break; 2631 if (tcp_skb_seglen(skb) > mss && 2632 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) { 2633 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) { 2634 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 2635 tp->retrans_out -= tcp_skb_pcount(skb); 2636 } 2637 tcp_skb_mark_lost_uncond_verify(tp, skb); 2638 } 2639 } 2640 2641 tcp_clear_retrans_hints_partial(tp); 2642 2643 if (prior_lost == tp->lost_out) 2644 return; 2645 2646 if (tcp_is_reno(tp)) 2647 tcp_limit_reno_sacked(tp); 2648 2649 tcp_verify_left_out(tp); 2650 2651 /* Don't muck with the congestion window here. 2652 * Reason is that we do not increase amount of _data_ 2653 * in network, but units changed and effective 2654 * cwnd/ssthresh really reduced now. 2655 */ 2656 if (icsk->icsk_ca_state != TCP_CA_Loss) { 2657 tp->high_seq = tp->snd_nxt; 2658 tp->snd_ssthresh = tcp_current_ssthresh(sk); 2659 tp->prior_ssthresh = 0; 2660 tp->undo_marker = 0; 2661 tcp_set_ca_state(sk, TCP_CA_Loss); 2662 } 2663 tcp_xmit_retransmit_queue(sk); 2664 } 2665 EXPORT_SYMBOL(tcp_simple_retransmit); 2666 2667 static void tcp_enter_recovery(struct sock *sk, bool ece_ack) 2668 { 2669 struct tcp_sock *tp = tcp_sk(sk); 2670 int mib_idx; 2671 2672 if (tcp_is_reno(tp)) 2673 mib_idx = LINUX_MIB_TCPRENORECOVERY; 2674 else 2675 mib_idx = LINUX_MIB_TCPSACKRECOVERY; 2676 2677 NET_INC_STATS_BH(sock_net(sk), mib_idx); 2678 2679 tp->prior_ssthresh = 0; 2680 tcp_init_undo(tp); 2681 2682 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) { 2683 if (!ece_ack) 2684 tp->prior_ssthresh = tcp_current_ssthresh(sk); 2685 tcp_init_cwnd_reduction(sk); 2686 } 2687 tcp_set_ca_state(sk, TCP_CA_Recovery); 2688 } 2689 2690 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are 2691 * recovered or spurious. Otherwise retransmits more on partial ACKs. 2692 */ 2693 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack) 2694 { 2695 struct tcp_sock *tp = tcp_sk(sk); 2696 bool recovered = !before(tp->snd_una, tp->high_seq); 2697 2698 if ((flag & FLAG_SND_UNA_ADVANCED) && 2699 tcp_try_undo_loss(sk, false)) 2700 return; 2701 2702 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */ 2703 /* Step 3.b. A timeout is spurious if not all data are 2704 * lost, i.e., never-retransmitted data are (s)acked. 2705 */ 2706 if ((flag & FLAG_ORIG_SACK_ACKED) && 2707 tcp_try_undo_loss(sk, true)) 2708 return; 2709 2710 if (after(tp->snd_nxt, tp->high_seq)) { 2711 if (flag & FLAG_DATA_SACKED || is_dupack) 2712 tp->frto = 0; /* Step 3.a. loss was real */ 2713 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) { 2714 tp->high_seq = tp->snd_nxt; 2715 __tcp_push_pending_frames(sk, tcp_current_mss(sk), 2716 TCP_NAGLE_OFF); 2717 if (after(tp->snd_nxt, tp->high_seq)) 2718 return; /* Step 2.b */ 2719 tp->frto = 0; 2720 } 2721 } 2722 2723 if (recovered) { 2724 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */ 2725 tcp_try_undo_recovery(sk); 2726 return; 2727 } 2728 if (tcp_is_reno(tp)) { 2729 /* A Reno DUPACK means new data in F-RTO step 2.b above are 2730 * delivered. Lower inflight to clock out (re)tranmissions. 2731 */ 2732 if (after(tp->snd_nxt, tp->high_seq) && is_dupack) 2733 tcp_add_reno_sack(sk); 2734 else if (flag & FLAG_SND_UNA_ADVANCED) 2735 tcp_reset_reno_sack(tp); 2736 } 2737 tcp_xmit_retransmit_queue(sk); 2738 } 2739 2740 /* Undo during fast recovery after partial ACK. */ 2741 static bool tcp_try_undo_partial(struct sock *sk, const int acked, 2742 const int prior_unsacked) 2743 { 2744 struct tcp_sock *tp = tcp_sk(sk); 2745 2746 if (tp->undo_marker && tcp_packet_delayed(tp)) { 2747 /* Plain luck! Hole if filled with delayed 2748 * packet, rather than with a retransmit. 2749 */ 2750 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1); 2751 2752 /* We are getting evidence that the reordering degree is higher 2753 * than we realized. If there are no retransmits out then we 2754 * can undo. Otherwise we clock out new packets but do not 2755 * mark more packets lost or retransmit more. 2756 */ 2757 if (tp->retrans_out) { 2758 tcp_cwnd_reduction(sk, prior_unsacked, 0); 2759 return true; 2760 } 2761 2762 if (!tcp_any_retrans_done(sk)) 2763 tp->retrans_stamp = 0; 2764 2765 DBGUNDO(sk, "partial recovery"); 2766 tcp_undo_cwnd_reduction(sk, true); 2767 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO); 2768 tcp_try_keep_open(sk); 2769 return true; 2770 } 2771 return false; 2772 } 2773 2774 /* Process an event, which can update packets-in-flight not trivially. 2775 * Main goal of this function is to calculate new estimate for left_out, 2776 * taking into account both packets sitting in receiver's buffer and 2777 * packets lost by network. 2778 * 2779 * Besides that it does CWND reduction, when packet loss is detected 2780 * and changes state of machine. 2781 * 2782 * It does _not_ decide what to send, it is made in function 2783 * tcp_xmit_retransmit_queue(). 2784 */ 2785 static void tcp_fastretrans_alert(struct sock *sk, const int acked, 2786 const int prior_unsacked, 2787 bool is_dupack, int flag) 2788 { 2789 struct inet_connection_sock *icsk = inet_csk(sk); 2790 struct tcp_sock *tp = tcp_sk(sk); 2791 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) && 2792 (tcp_fackets_out(tp) > tp->reordering)); 2793 int fast_rexmit = 0; 2794 2795 if (WARN_ON(!tp->packets_out && tp->sacked_out)) 2796 tp->sacked_out = 0; 2797 if (WARN_ON(!tp->sacked_out && tp->fackets_out)) 2798 tp->fackets_out = 0; 2799 2800 /* Now state machine starts. 2801 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */ 2802 if (flag & FLAG_ECE) 2803 tp->prior_ssthresh = 0; 2804 2805 /* B. In all the states check for reneging SACKs. */ 2806 if (tcp_check_sack_reneging(sk, flag)) 2807 return; 2808 2809 /* C. Check consistency of the current state. */ 2810 tcp_verify_left_out(tp); 2811 2812 /* D. Check state exit conditions. State can be terminated 2813 * when high_seq is ACKed. */ 2814 if (icsk->icsk_ca_state == TCP_CA_Open) { 2815 WARN_ON(tp->retrans_out != 0); 2816 tp->retrans_stamp = 0; 2817 } else if (!before(tp->snd_una, tp->high_seq)) { 2818 switch (icsk->icsk_ca_state) { 2819 case TCP_CA_CWR: 2820 /* CWR is to be held something *above* high_seq 2821 * is ACKed for CWR bit to reach receiver. */ 2822 if (tp->snd_una != tp->high_seq) { 2823 tcp_end_cwnd_reduction(sk); 2824 tcp_set_ca_state(sk, TCP_CA_Open); 2825 } 2826 break; 2827 2828 case TCP_CA_Recovery: 2829 if (tcp_is_reno(tp)) 2830 tcp_reset_reno_sack(tp); 2831 if (tcp_try_undo_recovery(sk)) 2832 return; 2833 tcp_end_cwnd_reduction(sk); 2834 break; 2835 } 2836 } 2837 2838 /* E. Process state. */ 2839 switch (icsk->icsk_ca_state) { 2840 case TCP_CA_Recovery: 2841 if (!(flag & FLAG_SND_UNA_ADVANCED)) { 2842 if (tcp_is_reno(tp) && is_dupack) 2843 tcp_add_reno_sack(sk); 2844 } else { 2845 if (tcp_try_undo_partial(sk, acked, prior_unsacked)) 2846 return; 2847 /* Partial ACK arrived. Force fast retransmit. */ 2848 do_lost = tcp_is_reno(tp) || 2849 tcp_fackets_out(tp) > tp->reordering; 2850 } 2851 if (tcp_try_undo_dsack(sk)) { 2852 tcp_try_keep_open(sk); 2853 return; 2854 } 2855 break; 2856 case TCP_CA_Loss: 2857 tcp_process_loss(sk, flag, is_dupack); 2858 if (icsk->icsk_ca_state != TCP_CA_Open) 2859 return; 2860 /* Fall through to processing in Open state. */ 2861 default: 2862 if (tcp_is_reno(tp)) { 2863 if (flag & FLAG_SND_UNA_ADVANCED) 2864 tcp_reset_reno_sack(tp); 2865 if (is_dupack) 2866 tcp_add_reno_sack(sk); 2867 } 2868 2869 if (icsk->icsk_ca_state <= TCP_CA_Disorder) 2870 tcp_try_undo_dsack(sk); 2871 2872 if (!tcp_time_to_recover(sk, flag)) { 2873 tcp_try_to_open(sk, flag, prior_unsacked); 2874 return; 2875 } 2876 2877 /* MTU probe failure: don't reduce cwnd */ 2878 if (icsk->icsk_ca_state < TCP_CA_CWR && 2879 icsk->icsk_mtup.probe_size && 2880 tp->snd_una == tp->mtu_probe.probe_seq_start) { 2881 tcp_mtup_probe_failed(sk); 2882 /* Restores the reduction we did in tcp_mtup_probe() */ 2883 tp->snd_cwnd++; 2884 tcp_simple_retransmit(sk); 2885 return; 2886 } 2887 2888 /* Otherwise enter Recovery state */ 2889 tcp_enter_recovery(sk, (flag & FLAG_ECE)); 2890 fast_rexmit = 1; 2891 } 2892 2893 if (do_lost) 2894 tcp_update_scoreboard(sk, fast_rexmit); 2895 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit); 2896 tcp_xmit_retransmit_queue(sk); 2897 } 2898 2899 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag, 2900 long seq_rtt_us, long sack_rtt_us) 2901 { 2902 const struct tcp_sock *tp = tcp_sk(sk); 2903 2904 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because 2905 * broken middle-boxes or peers may corrupt TS-ECR fields. But 2906 * Karn's algorithm forbids taking RTT if some retransmitted data 2907 * is acked (RFC6298). 2908 */ 2909 if (flag & FLAG_RETRANS_DATA_ACKED) 2910 seq_rtt_us = -1L; 2911 2912 if (seq_rtt_us < 0) 2913 seq_rtt_us = sack_rtt_us; 2914 2915 /* RTTM Rule: A TSecr value received in a segment is used to 2916 * update the averaged RTT measurement only if the segment 2917 * acknowledges some new data, i.e., only if it advances the 2918 * left edge of the send window. 2919 * See draft-ietf-tcplw-high-performance-00, section 3.3. 2920 */ 2921 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 2922 flag & FLAG_ACKED) 2923 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr); 2924 2925 if (seq_rtt_us < 0) 2926 return false; 2927 2928 tcp_rtt_estimator(sk, seq_rtt_us); 2929 tcp_set_rto(sk); 2930 2931 /* RFC6298: only reset backoff on valid RTT measurement. */ 2932 inet_csk(sk)->icsk_backoff = 0; 2933 return true; 2934 } 2935 2936 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */ 2937 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp) 2938 { 2939 struct tcp_sock *tp = tcp_sk(sk); 2940 long seq_rtt_us = -1L; 2941 2942 if (synack_stamp && !tp->total_retrans) 2943 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp); 2944 2945 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets 2946 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack() 2947 */ 2948 if (!tp->srtt_us) 2949 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L); 2950 } 2951 2952 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked) 2953 { 2954 const struct inet_connection_sock *icsk = inet_csk(sk); 2955 2956 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked); 2957 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp; 2958 } 2959 2960 /* Restart timer after forward progress on connection. 2961 * RFC2988 recommends to restart timer to now+rto. 2962 */ 2963 void tcp_rearm_rto(struct sock *sk) 2964 { 2965 const struct inet_connection_sock *icsk = inet_csk(sk); 2966 struct tcp_sock *tp = tcp_sk(sk); 2967 2968 /* If the retrans timer is currently being used by Fast Open 2969 * for SYN-ACK retrans purpose, stay put. 2970 */ 2971 if (tp->fastopen_rsk) 2972 return; 2973 2974 if (!tp->packets_out) { 2975 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); 2976 } else { 2977 u32 rto = inet_csk(sk)->icsk_rto; 2978 /* Offset the time elapsed after installing regular RTO */ 2979 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 2980 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { 2981 struct sk_buff *skb = tcp_write_queue_head(sk); 2982 const u32 rto_time_stamp = 2983 tcp_skb_timestamp(skb) + rto; 2984 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp); 2985 /* delta may not be positive if the socket is locked 2986 * when the retrans timer fires and is rescheduled. 2987 */ 2988 if (delta > 0) 2989 rto = delta; 2990 } 2991 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto, 2992 TCP_RTO_MAX); 2993 } 2994 } 2995 2996 /* This function is called when the delayed ER timer fires. TCP enters 2997 * fast recovery and performs fast-retransmit. 2998 */ 2999 void tcp_resume_early_retransmit(struct sock *sk) 3000 { 3001 struct tcp_sock *tp = tcp_sk(sk); 3002 3003 tcp_rearm_rto(sk); 3004 3005 /* Stop if ER is disabled after the delayed ER timer is scheduled */ 3006 if (!tp->do_early_retrans) 3007 return; 3008 3009 tcp_enter_recovery(sk, false); 3010 tcp_update_scoreboard(sk, 1); 3011 tcp_xmit_retransmit_queue(sk); 3012 } 3013 3014 /* If we get here, the whole TSO packet has not been acked. */ 3015 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb) 3016 { 3017 struct tcp_sock *tp = tcp_sk(sk); 3018 u32 packets_acked; 3019 3020 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)); 3021 3022 packets_acked = tcp_skb_pcount(skb); 3023 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 3024 return 0; 3025 packets_acked -= tcp_skb_pcount(skb); 3026 3027 if (packets_acked) { 3028 BUG_ON(tcp_skb_pcount(skb) == 0); 3029 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)); 3030 } 3031 3032 return packets_acked; 3033 } 3034 3035 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb, 3036 u32 prior_snd_una) 3037 { 3038 const struct skb_shared_info *shinfo; 3039 3040 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */ 3041 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK))) 3042 return; 3043 3044 shinfo = skb_shinfo(skb); 3045 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) && 3046 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1)) 3047 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK); 3048 } 3049 3050 /* Remove acknowledged frames from the retransmission queue. If our packet 3051 * is before the ack sequence we can discard it as it's confirmed to have 3052 * arrived at the other end. 3053 */ 3054 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets, 3055 u32 prior_snd_una, 3056 struct tcp_sacktag_state *sack) 3057 { 3058 const struct inet_connection_sock *icsk = inet_csk(sk); 3059 struct skb_mstamp first_ackt, last_ackt, now; 3060 struct tcp_sock *tp = tcp_sk(sk); 3061 u32 prior_sacked = tp->sacked_out; 3062 u32 reord = tp->packets_out; 3063 bool fully_acked = true; 3064 long sack_rtt_us = -1L; 3065 long seq_rtt_us = -1L; 3066 long ca_rtt_us = -1L; 3067 struct sk_buff *skb; 3068 u32 pkts_acked = 0; 3069 bool rtt_update; 3070 int flag = 0; 3071 3072 first_ackt.v64 = 0; 3073 3074 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) { 3075 struct tcp_skb_cb *scb = TCP_SKB_CB(skb); 3076 u8 sacked = scb->sacked; 3077 u32 acked_pcount; 3078 3079 tcp_ack_tstamp(sk, skb, prior_snd_una); 3080 3081 /* Determine how many packets and what bytes were acked, tso and else */ 3082 if (after(scb->end_seq, tp->snd_una)) { 3083 if (tcp_skb_pcount(skb) == 1 || 3084 !after(tp->snd_una, scb->seq)) 3085 break; 3086 3087 acked_pcount = tcp_tso_acked(sk, skb); 3088 if (!acked_pcount) 3089 break; 3090 3091 fully_acked = false; 3092 } else { 3093 /* Speedup tcp_unlink_write_queue() and next loop */ 3094 prefetchw(skb->next); 3095 acked_pcount = tcp_skb_pcount(skb); 3096 } 3097 3098 if (unlikely(sacked & TCPCB_RETRANS)) { 3099 if (sacked & TCPCB_SACKED_RETRANS) 3100 tp->retrans_out -= acked_pcount; 3101 flag |= FLAG_RETRANS_DATA_ACKED; 3102 } else if (!(sacked & TCPCB_SACKED_ACKED)) { 3103 last_ackt = skb->skb_mstamp; 3104 WARN_ON_ONCE(last_ackt.v64 == 0); 3105 if (!first_ackt.v64) 3106 first_ackt = last_ackt; 3107 3108 reord = min(pkts_acked, reord); 3109 if (!after(scb->end_seq, tp->high_seq)) 3110 flag |= FLAG_ORIG_SACK_ACKED; 3111 } 3112 3113 if (sacked & TCPCB_SACKED_ACKED) 3114 tp->sacked_out -= acked_pcount; 3115 if (sacked & TCPCB_LOST) 3116 tp->lost_out -= acked_pcount; 3117 3118 tp->packets_out -= acked_pcount; 3119 pkts_acked += acked_pcount; 3120 3121 /* Initial outgoing SYN's get put onto the write_queue 3122 * just like anything else we transmit. It is not 3123 * true data, and if we misinform our callers that 3124 * this ACK acks real data, we will erroneously exit 3125 * connection startup slow start one packet too 3126 * quickly. This is severely frowned upon behavior. 3127 */ 3128 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) { 3129 flag |= FLAG_DATA_ACKED; 3130 } else { 3131 flag |= FLAG_SYN_ACKED; 3132 tp->retrans_stamp = 0; 3133 } 3134 3135 if (!fully_acked) 3136 break; 3137 3138 tcp_unlink_write_queue(skb, sk); 3139 sk_wmem_free_skb(sk, skb); 3140 if (unlikely(skb == tp->retransmit_skb_hint)) 3141 tp->retransmit_skb_hint = NULL; 3142 if (unlikely(skb == tp->lost_skb_hint)) 3143 tp->lost_skb_hint = NULL; 3144 } 3145 3146 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una))) 3147 tp->snd_up = tp->snd_una; 3148 3149 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) 3150 flag |= FLAG_SACK_RENEGING; 3151 3152 skb_mstamp_get(&now); 3153 if (likely(first_ackt.v64)) { 3154 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt); 3155 ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt); 3156 } 3157 if (sack->first_sackt.v64) { 3158 sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt); 3159 ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt); 3160 } 3161 3162 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us); 3163 3164 if (flag & FLAG_ACKED) { 3165 tcp_rearm_rto(sk); 3166 if (unlikely(icsk->icsk_mtup.probe_size && 3167 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) { 3168 tcp_mtup_probe_success(sk); 3169 } 3170 3171 if (tcp_is_reno(tp)) { 3172 tcp_remove_reno_sacks(sk, pkts_acked); 3173 } else { 3174 int delta; 3175 3176 /* Non-retransmitted hole got filled? That's reordering */ 3177 if (reord < prior_fackets) 3178 tcp_update_reordering(sk, tp->fackets_out - reord, 0); 3179 3180 delta = tcp_is_fack(tp) ? pkts_acked : 3181 prior_sacked - tp->sacked_out; 3182 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta); 3183 } 3184 3185 tp->fackets_out -= min(pkts_acked, tp->fackets_out); 3186 3187 } else if (skb && rtt_update && sack_rtt_us >= 0 && 3188 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) { 3189 /* Do not re-arm RTO if the sack RTT is measured from data sent 3190 * after when the head was last (re)transmitted. Otherwise the 3191 * timeout may continue to extend in loss recovery. 3192 */ 3193 tcp_rearm_rto(sk); 3194 } 3195 3196 if (icsk->icsk_ca_ops->pkts_acked) 3197 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us); 3198 3199 #if FASTRETRANS_DEBUG > 0 3200 WARN_ON((int)tp->sacked_out < 0); 3201 WARN_ON((int)tp->lost_out < 0); 3202 WARN_ON((int)tp->retrans_out < 0); 3203 if (!tp->packets_out && tcp_is_sack(tp)) { 3204 icsk = inet_csk(sk); 3205 if (tp->lost_out) { 3206 pr_debug("Leak l=%u %d\n", 3207 tp->lost_out, icsk->icsk_ca_state); 3208 tp->lost_out = 0; 3209 } 3210 if (tp->sacked_out) { 3211 pr_debug("Leak s=%u %d\n", 3212 tp->sacked_out, icsk->icsk_ca_state); 3213 tp->sacked_out = 0; 3214 } 3215 if (tp->retrans_out) { 3216 pr_debug("Leak r=%u %d\n", 3217 tp->retrans_out, icsk->icsk_ca_state); 3218 tp->retrans_out = 0; 3219 } 3220 } 3221 #endif 3222 return flag; 3223 } 3224 3225 static void tcp_ack_probe(struct sock *sk) 3226 { 3227 const struct tcp_sock *tp = tcp_sk(sk); 3228 struct inet_connection_sock *icsk = inet_csk(sk); 3229 3230 /* Was it a usable window open? */ 3231 3232 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) { 3233 icsk->icsk_backoff = 0; 3234 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0); 3235 /* Socket must be waked up by subsequent tcp_data_snd_check(). 3236 * This function is not for random using! 3237 */ 3238 } else { 3239 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX); 3240 3241 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 3242 when, TCP_RTO_MAX); 3243 } 3244 } 3245 3246 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag) 3247 { 3248 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) || 3249 inet_csk(sk)->icsk_ca_state != TCP_CA_Open; 3250 } 3251 3252 /* Decide wheather to run the increase function of congestion control. */ 3253 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag) 3254 { 3255 if (tcp_in_cwnd_reduction(sk)) 3256 return false; 3257 3258 /* If reordering is high then always grow cwnd whenever data is 3259 * delivered regardless of its ordering. Otherwise stay conservative 3260 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/ 3261 * new SACK or ECE mark may first advance cwnd here and later reduce 3262 * cwnd in tcp_fastretrans_alert() based on more states. 3263 */ 3264 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering) 3265 return flag & FLAG_FORWARD_PROGRESS; 3266 3267 return flag & FLAG_DATA_ACKED; 3268 } 3269 3270 /* Check that window update is acceptable. 3271 * The function assumes that snd_una<=ack<=snd_next. 3272 */ 3273 static inline bool tcp_may_update_window(const struct tcp_sock *tp, 3274 const u32 ack, const u32 ack_seq, 3275 const u32 nwin) 3276 { 3277 return after(ack, tp->snd_una) || 3278 after(ack_seq, tp->snd_wl1) || 3279 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd); 3280 } 3281 3282 /* If we update tp->snd_una, also update tp->bytes_acked */ 3283 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack) 3284 { 3285 u32 delta = ack - tp->snd_una; 3286 3287 u64_stats_update_begin(&tp->syncp); 3288 tp->bytes_acked += delta; 3289 u64_stats_update_end(&tp->syncp); 3290 tp->snd_una = ack; 3291 } 3292 3293 /* If we update tp->rcv_nxt, also update tp->bytes_received */ 3294 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq) 3295 { 3296 u32 delta = seq - tp->rcv_nxt; 3297 3298 u64_stats_update_begin(&tp->syncp); 3299 tp->bytes_received += delta; 3300 u64_stats_update_end(&tp->syncp); 3301 tp->rcv_nxt = seq; 3302 } 3303 3304 /* Update our send window. 3305 * 3306 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2 3307 * and in FreeBSD. NetBSD's one is even worse.) is wrong. 3308 */ 3309 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack, 3310 u32 ack_seq) 3311 { 3312 struct tcp_sock *tp = tcp_sk(sk); 3313 int flag = 0; 3314 u32 nwin = ntohs(tcp_hdr(skb)->window); 3315 3316 if (likely(!tcp_hdr(skb)->syn)) 3317 nwin <<= tp->rx_opt.snd_wscale; 3318 3319 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) { 3320 flag |= FLAG_WIN_UPDATE; 3321 tcp_update_wl(tp, ack_seq); 3322 3323 if (tp->snd_wnd != nwin) { 3324 tp->snd_wnd = nwin; 3325 3326 /* Note, it is the only place, where 3327 * fast path is recovered for sending TCP. 3328 */ 3329 tp->pred_flags = 0; 3330 tcp_fast_path_check(sk); 3331 3332 if (nwin > tp->max_window) { 3333 tp->max_window = nwin; 3334 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie); 3335 } 3336 } 3337 } 3338 3339 tcp_snd_una_update(tp, ack); 3340 3341 return flag; 3342 } 3343 3344 /* Return true if we're currently rate-limiting out-of-window ACKs and 3345 * thus shouldn't send a dupack right now. We rate-limit dupacks in 3346 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS 3347 * attacks that send repeated SYNs or ACKs for the same connection. To 3348 * do this, we do not send a duplicate SYNACK or ACK if the remote 3349 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate. 3350 */ 3351 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb, 3352 int mib_idx, u32 *last_oow_ack_time) 3353 { 3354 /* Data packets without SYNs are not likely part of an ACK loop. */ 3355 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) && 3356 !tcp_hdr(skb)->syn) 3357 goto not_rate_limited; 3358 3359 if (*last_oow_ack_time) { 3360 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time); 3361 3362 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) { 3363 NET_INC_STATS_BH(net, mib_idx); 3364 return true; /* rate-limited: don't send yet! */ 3365 } 3366 } 3367 3368 *last_oow_ack_time = tcp_time_stamp; 3369 3370 not_rate_limited: 3371 return false; /* not rate-limited: go ahead, send dupack now! */ 3372 } 3373 3374 /* RFC 5961 7 [ACK Throttling] */ 3375 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb) 3376 { 3377 /* unprotected vars, we dont care of overwrites */ 3378 static u32 challenge_timestamp; 3379 static unsigned int challenge_count; 3380 struct tcp_sock *tp = tcp_sk(sk); 3381 u32 now; 3382 3383 /* First check our per-socket dupack rate limit. */ 3384 if (tcp_oow_rate_limited(sock_net(sk), skb, 3385 LINUX_MIB_TCPACKSKIPPEDCHALLENGE, 3386 &tp->last_oow_ack_time)) 3387 return; 3388 3389 /* Then check the check host-wide RFC 5961 rate limit. */ 3390 now = jiffies / HZ; 3391 if (now != challenge_timestamp) { 3392 challenge_timestamp = now; 3393 challenge_count = 0; 3394 } 3395 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) { 3396 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK); 3397 tcp_send_ack(sk); 3398 } 3399 } 3400 3401 static void tcp_store_ts_recent(struct tcp_sock *tp) 3402 { 3403 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval; 3404 tp->rx_opt.ts_recent_stamp = get_seconds(); 3405 } 3406 3407 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq) 3408 { 3409 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) { 3410 /* PAWS bug workaround wrt. ACK frames, the PAWS discard 3411 * extra check below makes sure this can only happen 3412 * for pure ACK frames. -DaveM 3413 * 3414 * Not only, also it occurs for expired timestamps. 3415 */ 3416 3417 if (tcp_paws_check(&tp->rx_opt, 0)) 3418 tcp_store_ts_recent(tp); 3419 } 3420 } 3421 3422 /* This routine deals with acks during a TLP episode. 3423 * We mark the end of a TLP episode on receiving TLP dupack or when 3424 * ack is after tlp_high_seq. 3425 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe. 3426 */ 3427 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag) 3428 { 3429 struct tcp_sock *tp = tcp_sk(sk); 3430 3431 if (before(ack, tp->tlp_high_seq)) 3432 return; 3433 3434 if (flag & FLAG_DSACKING_ACK) { 3435 /* This DSACK means original and TLP probe arrived; no loss */ 3436 tp->tlp_high_seq = 0; 3437 } else if (after(ack, tp->tlp_high_seq)) { 3438 /* ACK advances: there was a loss, so reduce cwnd. Reset 3439 * tlp_high_seq in tcp_init_cwnd_reduction() 3440 */ 3441 tcp_init_cwnd_reduction(sk); 3442 tcp_set_ca_state(sk, TCP_CA_CWR); 3443 tcp_end_cwnd_reduction(sk); 3444 tcp_try_keep_open(sk); 3445 NET_INC_STATS_BH(sock_net(sk), 3446 LINUX_MIB_TCPLOSSPROBERECOVERY); 3447 } else if (!(flag & (FLAG_SND_UNA_ADVANCED | 3448 FLAG_NOT_DUP | FLAG_DATA_SACKED))) { 3449 /* Pure dupack: original and TLP probe arrived; no loss */ 3450 tp->tlp_high_seq = 0; 3451 } 3452 } 3453 3454 static inline void tcp_in_ack_event(struct sock *sk, u32 flags) 3455 { 3456 const struct inet_connection_sock *icsk = inet_csk(sk); 3457 3458 if (icsk->icsk_ca_ops->in_ack_event) 3459 icsk->icsk_ca_ops->in_ack_event(sk, flags); 3460 } 3461 3462 /* This routine deals with incoming acks, but not outgoing ones. */ 3463 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag) 3464 { 3465 struct inet_connection_sock *icsk = inet_csk(sk); 3466 struct tcp_sock *tp = tcp_sk(sk); 3467 struct tcp_sacktag_state sack_state; 3468 u32 prior_snd_una = tp->snd_una; 3469 u32 ack_seq = TCP_SKB_CB(skb)->seq; 3470 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3471 bool is_dupack = false; 3472 u32 prior_fackets; 3473 int prior_packets = tp->packets_out; 3474 const int prior_unsacked = tp->packets_out - tp->sacked_out; 3475 int acked = 0; /* Number of packets newly acked */ 3476 3477 sack_state.first_sackt.v64 = 0; 3478 3479 /* We very likely will need to access write queue head. */ 3480 prefetchw(sk->sk_write_queue.next); 3481 3482 /* If the ack is older than previous acks 3483 * then we can probably ignore it. 3484 */ 3485 if (before(ack, prior_snd_una)) { 3486 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */ 3487 if (before(ack, prior_snd_una - tp->max_window)) { 3488 tcp_send_challenge_ack(sk, skb); 3489 return -1; 3490 } 3491 goto old_ack; 3492 } 3493 3494 /* If the ack includes data we haven't sent yet, discard 3495 * this segment (RFC793 Section 3.9). 3496 */ 3497 if (after(ack, tp->snd_nxt)) 3498 goto invalid_ack; 3499 3500 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS || 3501 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) 3502 tcp_rearm_rto(sk); 3503 3504 if (after(ack, prior_snd_una)) { 3505 flag |= FLAG_SND_UNA_ADVANCED; 3506 icsk->icsk_retransmits = 0; 3507 } 3508 3509 prior_fackets = tp->fackets_out; 3510 3511 /* ts_recent update must be made after we are sure that the packet 3512 * is in window. 3513 */ 3514 if (flag & FLAG_UPDATE_TS_RECENT) 3515 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq); 3516 3517 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) { 3518 /* Window is constant, pure forward advance. 3519 * No more checks are required. 3520 * Note, we use the fact that SND.UNA>=SND.WL2. 3521 */ 3522 tcp_update_wl(tp, ack_seq); 3523 tcp_snd_una_update(tp, ack); 3524 flag |= FLAG_WIN_UPDATE; 3525 3526 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE); 3527 3528 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS); 3529 } else { 3530 u32 ack_ev_flags = CA_ACK_SLOWPATH; 3531 3532 if (ack_seq != TCP_SKB_CB(skb)->end_seq) 3533 flag |= FLAG_DATA; 3534 else 3535 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS); 3536 3537 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq); 3538 3539 if (TCP_SKB_CB(skb)->sacked) 3540 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3541 &sack_state); 3542 3543 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) { 3544 flag |= FLAG_ECE; 3545 ack_ev_flags |= CA_ACK_ECE; 3546 } 3547 3548 if (flag & FLAG_WIN_UPDATE) 3549 ack_ev_flags |= CA_ACK_WIN_UPDATE; 3550 3551 tcp_in_ack_event(sk, ack_ev_flags); 3552 } 3553 3554 /* We passed data and got it acked, remove any soft error 3555 * log. Something worked... 3556 */ 3557 sk->sk_err_soft = 0; 3558 icsk->icsk_probes_out = 0; 3559 tp->rcv_tstamp = tcp_time_stamp; 3560 if (!prior_packets) 3561 goto no_queue; 3562 3563 /* See if we can take anything off of the retransmit queue. */ 3564 acked = tp->packets_out; 3565 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, 3566 &sack_state); 3567 acked -= tp->packets_out; 3568 3569 /* Advance cwnd if state allows */ 3570 if (tcp_may_raise_cwnd(sk, flag)) 3571 tcp_cong_avoid(sk, ack, acked); 3572 3573 if (tcp_ack_is_dubious(sk, flag)) { 3574 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP)); 3575 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3576 is_dupack, flag); 3577 } 3578 if (tp->tlp_high_seq) 3579 tcp_process_tlp_ack(sk, ack, flag); 3580 3581 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) { 3582 struct dst_entry *dst = __sk_dst_get(sk); 3583 if (dst) 3584 dst_confirm(dst); 3585 } 3586 3587 if (icsk->icsk_pending == ICSK_TIME_RETRANS) 3588 tcp_schedule_loss_probe(sk); 3589 tcp_update_pacing_rate(sk); 3590 return 1; 3591 3592 no_queue: 3593 /* If data was DSACKed, see if we can undo a cwnd reduction. */ 3594 if (flag & FLAG_DSACKING_ACK) 3595 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3596 is_dupack, flag); 3597 /* If this ack opens up a zero window, clear backoff. It was 3598 * being used to time the probes, and is probably far higher than 3599 * it needs to be for normal retransmission. 3600 */ 3601 if (tcp_send_head(sk)) 3602 tcp_ack_probe(sk); 3603 3604 if (tp->tlp_high_seq) 3605 tcp_process_tlp_ack(sk, ack, flag); 3606 return 1; 3607 3608 invalid_ack: 3609 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3610 return -1; 3611 3612 old_ack: 3613 /* If data was SACKed, tag it and see if we should send more data. 3614 * If data was DSACKed, see if we can undo a cwnd reduction. 3615 */ 3616 if (TCP_SKB_CB(skb)->sacked) { 3617 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una, 3618 &sack_state); 3619 tcp_fastretrans_alert(sk, acked, prior_unsacked, 3620 is_dupack, flag); 3621 } 3622 3623 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt); 3624 return 0; 3625 } 3626 3627 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie, 3628 bool syn, struct tcp_fastopen_cookie *foc, 3629 bool exp_opt) 3630 { 3631 /* Valid only in SYN or SYN-ACK with an even length. */ 3632 if (!foc || !syn || len < 0 || (len & 1)) 3633 return; 3634 3635 if (len >= TCP_FASTOPEN_COOKIE_MIN && 3636 len <= TCP_FASTOPEN_COOKIE_MAX) 3637 memcpy(foc->val, cookie, len); 3638 else if (len != 0) 3639 len = -1; 3640 foc->len = len; 3641 foc->exp = exp_opt; 3642 } 3643 3644 /* Look for tcp options. Normally only called on SYN and SYNACK packets. 3645 * But, this can also be called on packets in the established flow when 3646 * the fast version below fails. 3647 */ 3648 void tcp_parse_options(const struct sk_buff *skb, 3649 struct tcp_options_received *opt_rx, int estab, 3650 struct tcp_fastopen_cookie *foc) 3651 { 3652 const unsigned char *ptr; 3653 const struct tcphdr *th = tcp_hdr(skb); 3654 int length = (th->doff * 4) - sizeof(struct tcphdr); 3655 3656 ptr = (const unsigned char *)(th + 1); 3657 opt_rx->saw_tstamp = 0; 3658 3659 while (length > 0) { 3660 int opcode = *ptr++; 3661 int opsize; 3662 3663 switch (opcode) { 3664 case TCPOPT_EOL: 3665 return; 3666 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */ 3667 length--; 3668 continue; 3669 default: 3670 opsize = *ptr++; 3671 if (opsize < 2) /* "silly options" */ 3672 return; 3673 if (opsize > length) 3674 return; /* don't parse partial options */ 3675 switch (opcode) { 3676 case TCPOPT_MSS: 3677 if (opsize == TCPOLEN_MSS && th->syn && !estab) { 3678 u16 in_mss = get_unaligned_be16(ptr); 3679 if (in_mss) { 3680 if (opt_rx->user_mss && 3681 opt_rx->user_mss < in_mss) 3682 in_mss = opt_rx->user_mss; 3683 opt_rx->mss_clamp = in_mss; 3684 } 3685 } 3686 break; 3687 case TCPOPT_WINDOW: 3688 if (opsize == TCPOLEN_WINDOW && th->syn && 3689 !estab && sysctl_tcp_window_scaling) { 3690 __u8 snd_wscale = *(__u8 *)ptr; 3691 opt_rx->wscale_ok = 1; 3692 if (snd_wscale > 14) { 3693 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n", 3694 __func__, 3695 snd_wscale); 3696 snd_wscale = 14; 3697 } 3698 opt_rx->snd_wscale = snd_wscale; 3699 } 3700 break; 3701 case TCPOPT_TIMESTAMP: 3702 if ((opsize == TCPOLEN_TIMESTAMP) && 3703 ((estab && opt_rx->tstamp_ok) || 3704 (!estab && sysctl_tcp_timestamps))) { 3705 opt_rx->saw_tstamp = 1; 3706 opt_rx->rcv_tsval = get_unaligned_be32(ptr); 3707 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4); 3708 } 3709 break; 3710 case TCPOPT_SACK_PERM: 3711 if (opsize == TCPOLEN_SACK_PERM && th->syn && 3712 !estab && sysctl_tcp_sack) { 3713 opt_rx->sack_ok = TCP_SACK_SEEN; 3714 tcp_sack_reset(opt_rx); 3715 } 3716 break; 3717 3718 case TCPOPT_SACK: 3719 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) && 3720 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) && 3721 opt_rx->sack_ok) { 3722 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th; 3723 } 3724 break; 3725 #ifdef CONFIG_TCP_MD5SIG 3726 case TCPOPT_MD5SIG: 3727 /* 3728 * The MD5 Hash has already been 3729 * checked (see tcp_v{4,6}_do_rcv()). 3730 */ 3731 break; 3732 #endif 3733 case TCPOPT_FASTOPEN: 3734 tcp_parse_fastopen_option( 3735 opsize - TCPOLEN_FASTOPEN_BASE, 3736 ptr, th->syn, foc, false); 3737 break; 3738 3739 case TCPOPT_EXP: 3740 /* Fast Open option shares code 254 using a 3741 * 16 bits magic number. 3742 */ 3743 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE && 3744 get_unaligned_be16(ptr) == 3745 TCPOPT_FASTOPEN_MAGIC) 3746 tcp_parse_fastopen_option(opsize - 3747 TCPOLEN_EXP_FASTOPEN_BASE, 3748 ptr + 2, th->syn, foc, true); 3749 break; 3750 3751 } 3752 ptr += opsize-2; 3753 length -= opsize; 3754 } 3755 } 3756 } 3757 EXPORT_SYMBOL(tcp_parse_options); 3758 3759 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th) 3760 { 3761 const __be32 *ptr = (const __be32 *)(th + 1); 3762 3763 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) 3764 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) { 3765 tp->rx_opt.saw_tstamp = 1; 3766 ++ptr; 3767 tp->rx_opt.rcv_tsval = ntohl(*ptr); 3768 ++ptr; 3769 if (*ptr) 3770 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset; 3771 else 3772 tp->rx_opt.rcv_tsecr = 0; 3773 return true; 3774 } 3775 return false; 3776 } 3777 3778 /* Fast parse options. This hopes to only see timestamps. 3779 * If it is wrong it falls back on tcp_parse_options(). 3780 */ 3781 static bool tcp_fast_parse_options(const struct sk_buff *skb, 3782 const struct tcphdr *th, struct tcp_sock *tp) 3783 { 3784 /* In the spirit of fast parsing, compare doff directly to constant 3785 * values. Because equality is used, short doff can be ignored here. 3786 */ 3787 if (th->doff == (sizeof(*th) / 4)) { 3788 tp->rx_opt.saw_tstamp = 0; 3789 return false; 3790 } else if (tp->rx_opt.tstamp_ok && 3791 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) { 3792 if (tcp_parse_aligned_timestamp(tp, th)) 3793 return true; 3794 } 3795 3796 tcp_parse_options(skb, &tp->rx_opt, 1, NULL); 3797 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 3798 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 3799 3800 return true; 3801 } 3802 3803 #ifdef CONFIG_TCP_MD5SIG 3804 /* 3805 * Parse MD5 Signature option 3806 */ 3807 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th) 3808 { 3809 int length = (th->doff << 2) - sizeof(*th); 3810 const u8 *ptr = (const u8 *)(th + 1); 3811 3812 /* If the TCP option is too short, we can short cut */ 3813 if (length < TCPOLEN_MD5SIG) 3814 return NULL; 3815 3816 while (length > 0) { 3817 int opcode = *ptr++; 3818 int opsize; 3819 3820 switch (opcode) { 3821 case TCPOPT_EOL: 3822 return NULL; 3823 case TCPOPT_NOP: 3824 length--; 3825 continue; 3826 default: 3827 opsize = *ptr++; 3828 if (opsize < 2 || opsize > length) 3829 return NULL; 3830 if (opcode == TCPOPT_MD5SIG) 3831 return opsize == TCPOLEN_MD5SIG ? ptr : NULL; 3832 } 3833 ptr += opsize - 2; 3834 length -= opsize; 3835 } 3836 return NULL; 3837 } 3838 EXPORT_SYMBOL(tcp_parse_md5sig_option); 3839 #endif 3840 3841 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM 3842 * 3843 * It is not fatal. If this ACK does _not_ change critical state (seqs, window) 3844 * it can pass through stack. So, the following predicate verifies that 3845 * this segment is not used for anything but congestion avoidance or 3846 * fast retransmit. Moreover, we even are able to eliminate most of such 3847 * second order effects, if we apply some small "replay" window (~RTO) 3848 * to timestamp space. 3849 * 3850 * All these measures still do not guarantee that we reject wrapped ACKs 3851 * on networks with high bandwidth, when sequence space is recycled fastly, 3852 * but it guarantees that such events will be very rare and do not affect 3853 * connection seriously. This doesn't look nice, but alas, PAWS is really 3854 * buggy extension. 3855 * 3856 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC 3857 * states that events when retransmit arrives after original data are rare. 3858 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is 3859 * the biggest problem on large power networks even with minor reordering. 3860 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe 3861 * up to bandwidth of 18Gigabit/sec. 8) ] 3862 */ 3863 3864 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb) 3865 { 3866 const struct tcp_sock *tp = tcp_sk(sk); 3867 const struct tcphdr *th = tcp_hdr(skb); 3868 u32 seq = TCP_SKB_CB(skb)->seq; 3869 u32 ack = TCP_SKB_CB(skb)->ack_seq; 3870 3871 return (/* 1. Pure ACK with correct sequence number. */ 3872 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) && 3873 3874 /* 2. ... and duplicate ACK. */ 3875 ack == tp->snd_una && 3876 3877 /* 3. ... and does not update window. */ 3878 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) && 3879 3880 /* 4. ... and sits in replay window. */ 3881 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ); 3882 } 3883 3884 static inline bool tcp_paws_discard(const struct sock *sk, 3885 const struct sk_buff *skb) 3886 { 3887 const struct tcp_sock *tp = tcp_sk(sk); 3888 3889 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) && 3890 !tcp_disordered_ack(sk, skb); 3891 } 3892 3893 /* Check segment sequence number for validity. 3894 * 3895 * Segment controls are considered valid, if the segment 3896 * fits to the window after truncation to the window. Acceptability 3897 * of data (and SYN, FIN, of course) is checked separately. 3898 * See tcp_data_queue(), for example. 3899 * 3900 * Also, controls (RST is main one) are accepted using RCV.WUP instead 3901 * of RCV.NXT. Peer still did not advance his SND.UNA when we 3902 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP. 3903 * (borrowed from freebsd) 3904 */ 3905 3906 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq) 3907 { 3908 return !before(end_seq, tp->rcv_wup) && 3909 !after(seq, tp->rcv_nxt + tcp_receive_window(tp)); 3910 } 3911 3912 /* When we get a reset we do this. */ 3913 void tcp_reset(struct sock *sk) 3914 { 3915 /* We want the right error as BSD sees it (and indeed as we do). */ 3916 switch (sk->sk_state) { 3917 case TCP_SYN_SENT: 3918 sk->sk_err = ECONNREFUSED; 3919 break; 3920 case TCP_CLOSE_WAIT: 3921 sk->sk_err = EPIPE; 3922 break; 3923 case TCP_CLOSE: 3924 return; 3925 default: 3926 sk->sk_err = ECONNRESET; 3927 } 3928 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3929 smp_wmb(); 3930 3931 if (!sock_flag(sk, SOCK_DEAD)) 3932 sk->sk_error_report(sk); 3933 3934 tcp_done(sk); 3935 } 3936 3937 /* 3938 * Process the FIN bit. This now behaves as it is supposed to work 3939 * and the FIN takes effect when it is validly part of sequence 3940 * space. Not before when we get holes. 3941 * 3942 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT 3943 * (and thence onto LAST-ACK and finally, CLOSE, we never enter 3944 * TIME-WAIT) 3945 * 3946 * If we are in FINWAIT-1, a received FIN indicates simultaneous 3947 * close and we go into CLOSING (and later onto TIME-WAIT) 3948 * 3949 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT. 3950 */ 3951 static void tcp_fin(struct sock *sk) 3952 { 3953 struct tcp_sock *tp = tcp_sk(sk); 3954 const struct dst_entry *dst; 3955 3956 inet_csk_schedule_ack(sk); 3957 3958 sk->sk_shutdown |= RCV_SHUTDOWN; 3959 sock_set_flag(sk, SOCK_DONE); 3960 3961 switch (sk->sk_state) { 3962 case TCP_SYN_RECV: 3963 case TCP_ESTABLISHED: 3964 /* Move to CLOSE_WAIT */ 3965 tcp_set_state(sk, TCP_CLOSE_WAIT); 3966 dst = __sk_dst_get(sk); 3967 if (!dst || !dst_metric(dst, RTAX_QUICKACK)) 3968 inet_csk(sk)->icsk_ack.pingpong = 1; 3969 break; 3970 3971 case TCP_CLOSE_WAIT: 3972 case TCP_CLOSING: 3973 /* Received a retransmission of the FIN, do 3974 * nothing. 3975 */ 3976 break; 3977 case TCP_LAST_ACK: 3978 /* RFC793: Remain in the LAST-ACK state. */ 3979 break; 3980 3981 case TCP_FIN_WAIT1: 3982 /* This case occurs when a simultaneous close 3983 * happens, we must ack the received FIN and 3984 * enter the CLOSING state. 3985 */ 3986 tcp_send_ack(sk); 3987 tcp_set_state(sk, TCP_CLOSING); 3988 break; 3989 case TCP_FIN_WAIT2: 3990 /* Received a FIN -- send ACK and enter TIME_WAIT. */ 3991 tcp_send_ack(sk); 3992 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 3993 break; 3994 default: 3995 /* Only TCP_LISTEN and TCP_CLOSE are left, in these 3996 * cases we should never reach this piece of code. 3997 */ 3998 pr_err("%s: Impossible, sk->sk_state=%d\n", 3999 __func__, sk->sk_state); 4000 break; 4001 } 4002 4003 /* It _is_ possible, that we have something out-of-order _after_ FIN. 4004 * Probably, we should reset in this case. For now drop them. 4005 */ 4006 __skb_queue_purge(&tp->out_of_order_queue); 4007 if (tcp_is_sack(tp)) 4008 tcp_sack_reset(&tp->rx_opt); 4009 sk_mem_reclaim(sk); 4010 4011 if (!sock_flag(sk, SOCK_DEAD)) { 4012 sk->sk_state_change(sk); 4013 4014 /* Do not send POLL_HUP for half duplex close. */ 4015 if (sk->sk_shutdown == SHUTDOWN_MASK || 4016 sk->sk_state == TCP_CLOSE) 4017 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 4018 else 4019 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 4020 } 4021 } 4022 4023 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, 4024 u32 end_seq) 4025 { 4026 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) { 4027 if (before(seq, sp->start_seq)) 4028 sp->start_seq = seq; 4029 if (after(end_seq, sp->end_seq)) 4030 sp->end_seq = end_seq; 4031 return true; 4032 } 4033 return false; 4034 } 4035 4036 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq) 4037 { 4038 struct tcp_sock *tp = tcp_sk(sk); 4039 4040 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4041 int mib_idx; 4042 4043 if (before(seq, tp->rcv_nxt)) 4044 mib_idx = LINUX_MIB_TCPDSACKOLDSENT; 4045 else 4046 mib_idx = LINUX_MIB_TCPDSACKOFOSENT; 4047 4048 NET_INC_STATS_BH(sock_net(sk), mib_idx); 4049 4050 tp->rx_opt.dsack = 1; 4051 tp->duplicate_sack[0].start_seq = seq; 4052 tp->duplicate_sack[0].end_seq = end_seq; 4053 } 4054 } 4055 4056 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq) 4057 { 4058 struct tcp_sock *tp = tcp_sk(sk); 4059 4060 if (!tp->rx_opt.dsack) 4061 tcp_dsack_set(sk, seq, end_seq); 4062 else 4063 tcp_sack_extend(tp->duplicate_sack, seq, end_seq); 4064 } 4065 4066 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb) 4067 { 4068 struct tcp_sock *tp = tcp_sk(sk); 4069 4070 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 4071 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4072 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4073 tcp_enter_quickack_mode(sk); 4074 4075 if (tcp_is_sack(tp) && sysctl_tcp_dsack) { 4076 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 4077 4078 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) 4079 end_seq = tp->rcv_nxt; 4080 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq); 4081 } 4082 } 4083 4084 tcp_send_ack(sk); 4085 } 4086 4087 /* These routines update the SACK block as out-of-order packets arrive or 4088 * in-order packets close up the sequence space. 4089 */ 4090 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp) 4091 { 4092 int this_sack; 4093 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4094 struct tcp_sack_block *swalk = sp + 1; 4095 4096 /* See if the recent change to the first SACK eats into 4097 * or hits the sequence space of other SACK blocks, if so coalesce. 4098 */ 4099 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) { 4100 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) { 4101 int i; 4102 4103 /* Zap SWALK, by moving every further SACK up by one slot. 4104 * Decrease num_sacks. 4105 */ 4106 tp->rx_opt.num_sacks--; 4107 for (i = this_sack; i < tp->rx_opt.num_sacks; i++) 4108 sp[i] = sp[i + 1]; 4109 continue; 4110 } 4111 this_sack++, swalk++; 4112 } 4113 } 4114 4115 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq) 4116 { 4117 struct tcp_sock *tp = tcp_sk(sk); 4118 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4119 int cur_sacks = tp->rx_opt.num_sacks; 4120 int this_sack; 4121 4122 if (!cur_sacks) 4123 goto new_sack; 4124 4125 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) { 4126 if (tcp_sack_extend(sp, seq, end_seq)) { 4127 /* Rotate this_sack to the first one. */ 4128 for (; this_sack > 0; this_sack--, sp--) 4129 swap(*sp, *(sp - 1)); 4130 if (cur_sacks > 1) 4131 tcp_sack_maybe_coalesce(tp); 4132 return; 4133 } 4134 } 4135 4136 /* Could not find an adjacent existing SACK, build a new one, 4137 * put it at the front, and shift everyone else down. We 4138 * always know there is at least one SACK present already here. 4139 * 4140 * If the sack array is full, forget about the last one. 4141 */ 4142 if (this_sack >= TCP_NUM_SACKS) { 4143 this_sack--; 4144 tp->rx_opt.num_sacks--; 4145 sp--; 4146 } 4147 for (; this_sack > 0; this_sack--, sp--) 4148 *sp = *(sp - 1); 4149 4150 new_sack: 4151 /* Build the new head SACK, and we're done. */ 4152 sp->start_seq = seq; 4153 sp->end_seq = end_seq; 4154 tp->rx_opt.num_sacks++; 4155 } 4156 4157 /* RCV.NXT advances, some SACKs should be eaten. */ 4158 4159 static void tcp_sack_remove(struct tcp_sock *tp) 4160 { 4161 struct tcp_sack_block *sp = &tp->selective_acks[0]; 4162 int num_sacks = tp->rx_opt.num_sacks; 4163 int this_sack; 4164 4165 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */ 4166 if (skb_queue_empty(&tp->out_of_order_queue)) { 4167 tp->rx_opt.num_sacks = 0; 4168 return; 4169 } 4170 4171 for (this_sack = 0; this_sack < num_sacks;) { 4172 /* Check if the start of the sack is covered by RCV.NXT. */ 4173 if (!before(tp->rcv_nxt, sp->start_seq)) { 4174 int i; 4175 4176 /* RCV.NXT must cover all the block! */ 4177 WARN_ON(before(tp->rcv_nxt, sp->end_seq)); 4178 4179 /* Zap this SACK, by moving forward any other SACKS. */ 4180 for (i = this_sack+1; i < num_sacks; i++) 4181 tp->selective_acks[i-1] = tp->selective_acks[i]; 4182 num_sacks--; 4183 continue; 4184 } 4185 this_sack++; 4186 sp++; 4187 } 4188 tp->rx_opt.num_sacks = num_sacks; 4189 } 4190 4191 /** 4192 * tcp_try_coalesce - try to merge skb to prior one 4193 * @sk: socket 4194 * @to: prior buffer 4195 * @from: buffer to add in queue 4196 * @fragstolen: pointer to boolean 4197 * 4198 * Before queueing skb @from after @to, try to merge them 4199 * to reduce overall memory use and queue lengths, if cost is small. 4200 * Packets in ofo or receive queues can stay a long time. 4201 * Better try to coalesce them right now to avoid future collapses. 4202 * Returns true if caller should free @from instead of queueing it 4203 */ 4204 static bool tcp_try_coalesce(struct sock *sk, 4205 struct sk_buff *to, 4206 struct sk_buff *from, 4207 bool *fragstolen) 4208 { 4209 int delta; 4210 4211 *fragstolen = false; 4212 4213 /* Its possible this segment overlaps with prior segment in queue */ 4214 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq) 4215 return false; 4216 4217 if (!skb_try_coalesce(to, from, fragstolen, &delta)) 4218 return false; 4219 4220 atomic_add(delta, &sk->sk_rmem_alloc); 4221 sk_mem_charge(sk, delta); 4222 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE); 4223 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq; 4224 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq; 4225 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags; 4226 return true; 4227 } 4228 4229 /* This one checks to see if we can put data from the 4230 * out_of_order queue into the receive_queue. 4231 */ 4232 static void tcp_ofo_queue(struct sock *sk) 4233 { 4234 struct tcp_sock *tp = tcp_sk(sk); 4235 __u32 dsack_high = tp->rcv_nxt; 4236 struct sk_buff *skb, *tail; 4237 bool fragstolen, eaten; 4238 4239 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) { 4240 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 4241 break; 4242 4243 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) { 4244 __u32 dsack = dsack_high; 4245 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high)) 4246 dsack_high = TCP_SKB_CB(skb)->end_seq; 4247 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack); 4248 } 4249 4250 __skb_unlink(skb, &tp->out_of_order_queue); 4251 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4252 SOCK_DEBUG(sk, "ofo packet was already received\n"); 4253 __kfree_skb(skb); 4254 continue; 4255 } 4256 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n", 4257 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4258 TCP_SKB_CB(skb)->end_seq); 4259 4260 tail = skb_peek_tail(&sk->sk_receive_queue); 4261 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen); 4262 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4263 if (!eaten) 4264 __skb_queue_tail(&sk->sk_receive_queue, skb); 4265 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4266 tcp_fin(sk); 4267 if (eaten) 4268 kfree_skb_partial(skb, fragstolen); 4269 } 4270 } 4271 4272 static bool tcp_prune_ofo_queue(struct sock *sk); 4273 static int tcp_prune_queue(struct sock *sk); 4274 4275 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb, 4276 unsigned int size) 4277 { 4278 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 4279 !sk_rmem_schedule(sk, skb, size)) { 4280 4281 if (tcp_prune_queue(sk) < 0) 4282 return -1; 4283 4284 if (!sk_rmem_schedule(sk, skb, size)) { 4285 if (!tcp_prune_ofo_queue(sk)) 4286 return -1; 4287 4288 if (!sk_rmem_schedule(sk, skb, size)) 4289 return -1; 4290 } 4291 } 4292 return 0; 4293 } 4294 4295 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb) 4296 { 4297 struct tcp_sock *tp = tcp_sk(sk); 4298 struct sk_buff *skb1; 4299 u32 seq, end_seq; 4300 4301 tcp_ecn_check_ce(tp, skb); 4302 4303 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) { 4304 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP); 4305 __kfree_skb(skb); 4306 return; 4307 } 4308 4309 /* Disable header prediction. */ 4310 tp->pred_flags = 0; 4311 inet_csk_schedule_ack(sk); 4312 4313 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE); 4314 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n", 4315 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4316 4317 skb1 = skb_peek_tail(&tp->out_of_order_queue); 4318 if (!skb1) { 4319 /* Initial out of order segment, build 1 SACK. */ 4320 if (tcp_is_sack(tp)) { 4321 tp->rx_opt.num_sacks = 1; 4322 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq; 4323 tp->selective_acks[0].end_seq = 4324 TCP_SKB_CB(skb)->end_seq; 4325 } 4326 __skb_queue_head(&tp->out_of_order_queue, skb); 4327 goto end; 4328 } 4329 4330 seq = TCP_SKB_CB(skb)->seq; 4331 end_seq = TCP_SKB_CB(skb)->end_seq; 4332 4333 if (seq == TCP_SKB_CB(skb1)->end_seq) { 4334 bool fragstolen; 4335 4336 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) { 4337 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4338 } else { 4339 tcp_grow_window(sk, skb); 4340 kfree_skb_partial(skb, fragstolen); 4341 skb = NULL; 4342 } 4343 4344 if (!tp->rx_opt.num_sacks || 4345 tp->selective_acks[0].end_seq != seq) 4346 goto add_sack; 4347 4348 /* Common case: data arrive in order after hole. */ 4349 tp->selective_acks[0].end_seq = end_seq; 4350 goto end; 4351 } 4352 4353 /* Find place to insert this segment. */ 4354 while (1) { 4355 if (!after(TCP_SKB_CB(skb1)->seq, seq)) 4356 break; 4357 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) { 4358 skb1 = NULL; 4359 break; 4360 } 4361 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1); 4362 } 4363 4364 /* Do skb overlap to previous one? */ 4365 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) { 4366 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4367 /* All the bits are present. Drop. */ 4368 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4369 __kfree_skb(skb); 4370 skb = NULL; 4371 tcp_dsack_set(sk, seq, end_seq); 4372 goto add_sack; 4373 } 4374 if (after(seq, TCP_SKB_CB(skb1)->seq)) { 4375 /* Partial overlap. */ 4376 tcp_dsack_set(sk, seq, 4377 TCP_SKB_CB(skb1)->end_seq); 4378 } else { 4379 if (skb_queue_is_first(&tp->out_of_order_queue, 4380 skb1)) 4381 skb1 = NULL; 4382 else 4383 skb1 = skb_queue_prev( 4384 &tp->out_of_order_queue, 4385 skb1); 4386 } 4387 } 4388 if (!skb1) 4389 __skb_queue_head(&tp->out_of_order_queue, skb); 4390 else 4391 __skb_queue_after(&tp->out_of_order_queue, skb1, skb); 4392 4393 /* And clean segments covered by new one as whole. */ 4394 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) { 4395 skb1 = skb_queue_next(&tp->out_of_order_queue, skb); 4396 4397 if (!after(end_seq, TCP_SKB_CB(skb1)->seq)) 4398 break; 4399 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) { 4400 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4401 end_seq); 4402 break; 4403 } 4404 __skb_unlink(skb1, &tp->out_of_order_queue); 4405 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq, 4406 TCP_SKB_CB(skb1)->end_seq); 4407 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE); 4408 __kfree_skb(skb1); 4409 } 4410 4411 add_sack: 4412 if (tcp_is_sack(tp)) 4413 tcp_sack_new_ofo_skb(sk, seq, end_seq); 4414 end: 4415 if (skb) { 4416 tcp_grow_window(sk, skb); 4417 skb_set_owner_r(skb, sk); 4418 } 4419 } 4420 4421 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen, 4422 bool *fragstolen) 4423 { 4424 int eaten; 4425 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue); 4426 4427 __skb_pull(skb, hdrlen); 4428 eaten = (tail && 4429 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0; 4430 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq); 4431 if (!eaten) { 4432 __skb_queue_tail(&sk->sk_receive_queue, skb); 4433 skb_set_owner_r(skb, sk); 4434 } 4435 return eaten; 4436 } 4437 4438 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size) 4439 { 4440 struct sk_buff *skb; 4441 bool fragstolen; 4442 4443 if (size == 0) 4444 return 0; 4445 4446 skb = alloc_skb(size, sk->sk_allocation); 4447 if (!skb) 4448 goto err; 4449 4450 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4451 goto err_free; 4452 4453 if (memcpy_from_msg(skb_put(skb, size), msg, size)) 4454 goto err_free; 4455 4456 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt; 4457 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size; 4458 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1; 4459 4460 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) { 4461 WARN_ON_ONCE(fragstolen); /* should not happen */ 4462 __kfree_skb(skb); 4463 } 4464 return size; 4465 4466 err_free: 4467 kfree_skb(skb); 4468 err: 4469 return -ENOMEM; 4470 } 4471 4472 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb) 4473 { 4474 struct tcp_sock *tp = tcp_sk(sk); 4475 int eaten = -1; 4476 bool fragstolen = false; 4477 4478 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) 4479 goto drop; 4480 4481 skb_dst_drop(skb); 4482 __skb_pull(skb, tcp_hdr(skb)->doff * 4); 4483 4484 tcp_ecn_accept_cwr(tp, skb); 4485 4486 tp->rx_opt.dsack = 0; 4487 4488 /* Queue data for delivery to the user. 4489 * Packets in sequence go to the receive queue. 4490 * Out of sequence packets to the out_of_order_queue. 4491 */ 4492 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) { 4493 if (tcp_receive_window(tp) == 0) 4494 goto out_of_window; 4495 4496 /* Ok. In sequence. In window. */ 4497 if (tp->ucopy.task == current && 4498 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len && 4499 sock_owned_by_user(sk) && !tp->urg_data) { 4500 int chunk = min_t(unsigned int, skb->len, 4501 tp->ucopy.len); 4502 4503 __set_current_state(TASK_RUNNING); 4504 4505 local_bh_enable(); 4506 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) { 4507 tp->ucopy.len -= chunk; 4508 tp->copied_seq += chunk; 4509 eaten = (chunk == skb->len); 4510 tcp_rcv_space_adjust(sk); 4511 } 4512 local_bh_disable(); 4513 } 4514 4515 if (eaten <= 0) { 4516 queue_and_out: 4517 if (eaten < 0) { 4518 if (skb_queue_len(&sk->sk_receive_queue) == 0) 4519 sk_forced_mem_schedule(sk, skb->truesize); 4520 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) 4521 goto drop; 4522 } 4523 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen); 4524 } 4525 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 4526 if (skb->len) 4527 tcp_event_data_recv(sk, skb); 4528 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 4529 tcp_fin(sk); 4530 4531 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4532 tcp_ofo_queue(sk); 4533 4534 /* RFC2581. 4.2. SHOULD send immediate ACK, when 4535 * gap in queue is filled. 4536 */ 4537 if (skb_queue_empty(&tp->out_of_order_queue)) 4538 inet_csk(sk)->icsk_ack.pingpong = 0; 4539 } 4540 4541 if (tp->rx_opt.num_sacks) 4542 tcp_sack_remove(tp); 4543 4544 tcp_fast_path_check(sk); 4545 4546 if (eaten > 0) 4547 kfree_skb_partial(skb, fragstolen); 4548 if (!sock_flag(sk, SOCK_DEAD)) 4549 sk->sk_data_ready(sk); 4550 return; 4551 } 4552 4553 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) { 4554 /* A retransmit, 2nd most common case. Force an immediate ack. */ 4555 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST); 4556 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq); 4557 4558 out_of_window: 4559 tcp_enter_quickack_mode(sk); 4560 inet_csk_schedule_ack(sk); 4561 drop: 4562 __kfree_skb(skb); 4563 return; 4564 } 4565 4566 /* Out of window. F.e. zero window probe. */ 4567 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp))) 4568 goto out_of_window; 4569 4570 tcp_enter_quickack_mode(sk); 4571 4572 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) { 4573 /* Partial packet, seq < rcv_next < end_seq */ 4574 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n", 4575 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, 4576 TCP_SKB_CB(skb)->end_seq); 4577 4578 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt); 4579 4580 /* If window is closed, drop tail of packet. But after 4581 * remembering D-SACK for its head made in previous line. 4582 */ 4583 if (!tcp_receive_window(tp)) 4584 goto out_of_window; 4585 goto queue_and_out; 4586 } 4587 4588 tcp_data_queue_ofo(sk, skb); 4589 } 4590 4591 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb, 4592 struct sk_buff_head *list) 4593 { 4594 struct sk_buff *next = NULL; 4595 4596 if (!skb_queue_is_last(list, skb)) 4597 next = skb_queue_next(list, skb); 4598 4599 __skb_unlink(skb, list); 4600 __kfree_skb(skb); 4601 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED); 4602 4603 return next; 4604 } 4605 4606 /* Collapse contiguous sequence of skbs head..tail with 4607 * sequence numbers start..end. 4608 * 4609 * If tail is NULL, this means until the end of the list. 4610 * 4611 * Segments with FIN/SYN are not collapsed (only because this 4612 * simplifies code) 4613 */ 4614 static void 4615 tcp_collapse(struct sock *sk, struct sk_buff_head *list, 4616 struct sk_buff *head, struct sk_buff *tail, 4617 u32 start, u32 end) 4618 { 4619 struct sk_buff *skb, *n; 4620 bool end_of_skbs; 4621 4622 /* First, check that queue is collapsible and find 4623 * the point where collapsing can be useful. */ 4624 skb = head; 4625 restart: 4626 end_of_skbs = true; 4627 skb_queue_walk_from_safe(list, skb, n) { 4628 if (skb == tail) 4629 break; 4630 /* No new bits? It is possible on ofo queue. */ 4631 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4632 skb = tcp_collapse_one(sk, skb, list); 4633 if (!skb) 4634 break; 4635 goto restart; 4636 } 4637 4638 /* The first skb to collapse is: 4639 * - not SYN/FIN and 4640 * - bloated or contains data before "start" or 4641 * overlaps to the next one. 4642 */ 4643 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) && 4644 (tcp_win_from_space(skb->truesize) > skb->len || 4645 before(TCP_SKB_CB(skb)->seq, start))) { 4646 end_of_skbs = false; 4647 break; 4648 } 4649 4650 if (!skb_queue_is_last(list, skb)) { 4651 struct sk_buff *next = skb_queue_next(list, skb); 4652 if (next != tail && 4653 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) { 4654 end_of_skbs = false; 4655 break; 4656 } 4657 } 4658 4659 /* Decided to skip this, advance start seq. */ 4660 start = TCP_SKB_CB(skb)->end_seq; 4661 } 4662 if (end_of_skbs || 4663 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4664 return; 4665 4666 while (before(start, end)) { 4667 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start); 4668 struct sk_buff *nskb; 4669 4670 nskb = alloc_skb(copy, GFP_ATOMIC); 4671 if (!nskb) 4672 return; 4673 4674 memcpy(nskb->cb, skb->cb, sizeof(skb->cb)); 4675 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start; 4676 __skb_queue_before(list, skb, nskb); 4677 skb_set_owner_r(nskb, sk); 4678 4679 /* Copy data, releasing collapsed skbs. */ 4680 while (copy > 0) { 4681 int offset = start - TCP_SKB_CB(skb)->seq; 4682 int size = TCP_SKB_CB(skb)->end_seq - start; 4683 4684 BUG_ON(offset < 0); 4685 if (size > 0) { 4686 size = min(copy, size); 4687 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size)) 4688 BUG(); 4689 TCP_SKB_CB(nskb)->end_seq += size; 4690 copy -= size; 4691 start += size; 4692 } 4693 if (!before(start, TCP_SKB_CB(skb)->end_seq)) { 4694 skb = tcp_collapse_one(sk, skb, list); 4695 if (!skb || 4696 skb == tail || 4697 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN))) 4698 return; 4699 } 4700 } 4701 } 4702 } 4703 4704 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs 4705 * and tcp_collapse() them until all the queue is collapsed. 4706 */ 4707 static void tcp_collapse_ofo_queue(struct sock *sk) 4708 { 4709 struct tcp_sock *tp = tcp_sk(sk); 4710 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue); 4711 struct sk_buff *head; 4712 u32 start, end; 4713 4714 if (!skb) 4715 return; 4716 4717 start = TCP_SKB_CB(skb)->seq; 4718 end = TCP_SKB_CB(skb)->end_seq; 4719 head = skb; 4720 4721 for (;;) { 4722 struct sk_buff *next = NULL; 4723 4724 if (!skb_queue_is_last(&tp->out_of_order_queue, skb)) 4725 next = skb_queue_next(&tp->out_of_order_queue, skb); 4726 skb = next; 4727 4728 /* Segment is terminated when we see gap or when 4729 * we are at the end of all the queue. */ 4730 if (!skb || 4731 after(TCP_SKB_CB(skb)->seq, end) || 4732 before(TCP_SKB_CB(skb)->end_seq, start)) { 4733 tcp_collapse(sk, &tp->out_of_order_queue, 4734 head, skb, start, end); 4735 head = skb; 4736 if (!skb) 4737 break; 4738 /* Start new segment */ 4739 start = TCP_SKB_CB(skb)->seq; 4740 end = TCP_SKB_CB(skb)->end_seq; 4741 } else { 4742 if (before(TCP_SKB_CB(skb)->seq, start)) 4743 start = TCP_SKB_CB(skb)->seq; 4744 if (after(TCP_SKB_CB(skb)->end_seq, end)) 4745 end = TCP_SKB_CB(skb)->end_seq; 4746 } 4747 } 4748 } 4749 4750 /* 4751 * Purge the out-of-order queue. 4752 * Return true if queue was pruned. 4753 */ 4754 static bool tcp_prune_ofo_queue(struct sock *sk) 4755 { 4756 struct tcp_sock *tp = tcp_sk(sk); 4757 bool res = false; 4758 4759 if (!skb_queue_empty(&tp->out_of_order_queue)) { 4760 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED); 4761 __skb_queue_purge(&tp->out_of_order_queue); 4762 4763 /* Reset SACK state. A conforming SACK implementation will 4764 * do the same at a timeout based retransmit. When a connection 4765 * is in a sad state like this, we care only about integrity 4766 * of the connection not performance. 4767 */ 4768 if (tp->rx_opt.sack_ok) 4769 tcp_sack_reset(&tp->rx_opt); 4770 sk_mem_reclaim(sk); 4771 res = true; 4772 } 4773 return res; 4774 } 4775 4776 /* Reduce allocated memory if we can, trying to get 4777 * the socket within its memory limits again. 4778 * 4779 * Return less than zero if we should start dropping frames 4780 * until the socket owning process reads some of the data 4781 * to stabilize the situation. 4782 */ 4783 static int tcp_prune_queue(struct sock *sk) 4784 { 4785 struct tcp_sock *tp = tcp_sk(sk); 4786 4787 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq); 4788 4789 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED); 4790 4791 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 4792 tcp_clamp_window(sk); 4793 else if (tcp_under_memory_pressure(sk)) 4794 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss); 4795 4796 tcp_collapse_ofo_queue(sk); 4797 if (!skb_queue_empty(&sk->sk_receive_queue)) 4798 tcp_collapse(sk, &sk->sk_receive_queue, 4799 skb_peek(&sk->sk_receive_queue), 4800 NULL, 4801 tp->copied_seq, tp->rcv_nxt); 4802 sk_mem_reclaim(sk); 4803 4804 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4805 return 0; 4806 4807 /* Collapsing did not help, destructive actions follow. 4808 * This must not ever occur. */ 4809 4810 tcp_prune_ofo_queue(sk); 4811 4812 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) 4813 return 0; 4814 4815 /* If we are really being abused, tell the caller to silently 4816 * drop receive data on the floor. It will get retransmitted 4817 * and hopefully then we'll have sufficient space. 4818 */ 4819 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED); 4820 4821 /* Massive buffer overcommit. */ 4822 tp->pred_flags = 0; 4823 return -1; 4824 } 4825 4826 static bool tcp_should_expand_sndbuf(const struct sock *sk) 4827 { 4828 const struct tcp_sock *tp = tcp_sk(sk); 4829 4830 /* If the user specified a specific send buffer setting, do 4831 * not modify it. 4832 */ 4833 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK) 4834 return false; 4835 4836 /* If we are under global TCP memory pressure, do not expand. */ 4837 if (tcp_under_memory_pressure(sk)) 4838 return false; 4839 4840 /* If we are under soft global TCP memory pressure, do not expand. */ 4841 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0)) 4842 return false; 4843 4844 /* If we filled the congestion window, do not expand. */ 4845 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 4846 return false; 4847 4848 return true; 4849 } 4850 4851 /* When incoming ACK allowed to free some skb from write_queue, 4852 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket 4853 * on the exit from tcp input handler. 4854 * 4855 * PROBLEM: sndbuf expansion does not work well with largesend. 4856 */ 4857 static void tcp_new_space(struct sock *sk) 4858 { 4859 struct tcp_sock *tp = tcp_sk(sk); 4860 4861 if (tcp_should_expand_sndbuf(sk)) { 4862 tcp_sndbuf_expand(sk); 4863 tp->snd_cwnd_stamp = tcp_time_stamp; 4864 } 4865 4866 sk->sk_write_space(sk); 4867 } 4868 4869 static void tcp_check_space(struct sock *sk) 4870 { 4871 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) { 4872 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK); 4873 /* pairs with tcp_poll() */ 4874 smp_mb__after_atomic(); 4875 if (sk->sk_socket && 4876 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) 4877 tcp_new_space(sk); 4878 } 4879 } 4880 4881 static inline void tcp_data_snd_check(struct sock *sk) 4882 { 4883 tcp_push_pending_frames(sk); 4884 tcp_check_space(sk); 4885 } 4886 4887 /* 4888 * Check if sending an ack is needed. 4889 */ 4890 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible) 4891 { 4892 struct tcp_sock *tp = tcp_sk(sk); 4893 4894 /* More than one full frame received... */ 4895 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss && 4896 /* ... and right edge of window advances far enough. 4897 * (tcp_recvmsg() will send ACK otherwise). Or... 4898 */ 4899 __tcp_select_window(sk) >= tp->rcv_wnd) || 4900 /* We ACK each frame or... */ 4901 tcp_in_quickack_mode(sk) || 4902 /* We have out of order data. */ 4903 (ofo_possible && skb_peek(&tp->out_of_order_queue))) { 4904 /* Then ack it now */ 4905 tcp_send_ack(sk); 4906 } else { 4907 /* Else, send delayed ack. */ 4908 tcp_send_delayed_ack(sk); 4909 } 4910 } 4911 4912 static inline void tcp_ack_snd_check(struct sock *sk) 4913 { 4914 if (!inet_csk_ack_scheduled(sk)) { 4915 /* We sent a data segment already. */ 4916 return; 4917 } 4918 __tcp_ack_snd_check(sk, 1); 4919 } 4920 4921 /* 4922 * This routine is only called when we have urgent data 4923 * signaled. Its the 'slow' part of tcp_urg. It could be 4924 * moved inline now as tcp_urg is only called from one 4925 * place. We handle URGent data wrong. We have to - as 4926 * BSD still doesn't use the correction from RFC961. 4927 * For 1003.1g we should support a new option TCP_STDURG to permit 4928 * either form (or just set the sysctl tcp_stdurg). 4929 */ 4930 4931 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th) 4932 { 4933 struct tcp_sock *tp = tcp_sk(sk); 4934 u32 ptr = ntohs(th->urg_ptr); 4935 4936 if (ptr && !sysctl_tcp_stdurg) 4937 ptr--; 4938 ptr += ntohl(th->seq); 4939 4940 /* Ignore urgent data that we've already seen and read. */ 4941 if (after(tp->copied_seq, ptr)) 4942 return; 4943 4944 /* Do not replay urg ptr. 4945 * 4946 * NOTE: interesting situation not covered by specs. 4947 * Misbehaving sender may send urg ptr, pointing to segment, 4948 * which we already have in ofo queue. We are not able to fetch 4949 * such data and will stay in TCP_URG_NOTYET until will be eaten 4950 * by recvmsg(). Seems, we are not obliged to handle such wicked 4951 * situations. But it is worth to think about possibility of some 4952 * DoSes using some hypothetical application level deadlock. 4953 */ 4954 if (before(ptr, tp->rcv_nxt)) 4955 return; 4956 4957 /* Do we already have a newer (or duplicate) urgent pointer? */ 4958 if (tp->urg_data && !after(ptr, tp->urg_seq)) 4959 return; 4960 4961 /* Tell the world about our new urgent pointer. */ 4962 sk_send_sigurg(sk); 4963 4964 /* We may be adding urgent data when the last byte read was 4965 * urgent. To do this requires some care. We cannot just ignore 4966 * tp->copied_seq since we would read the last urgent byte again 4967 * as data, nor can we alter copied_seq until this data arrives 4968 * or we break the semantics of SIOCATMARK (and thus sockatmark()) 4969 * 4970 * NOTE. Double Dutch. Rendering to plain English: author of comment 4971 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB); 4972 * and expect that both A and B disappear from stream. This is _wrong_. 4973 * Though this happens in BSD with high probability, this is occasional. 4974 * Any application relying on this is buggy. Note also, that fix "works" 4975 * only in this artificial test. Insert some normal data between A and B and we will 4976 * decline of BSD again. Verdict: it is better to remove to trap 4977 * buggy users. 4978 */ 4979 if (tp->urg_seq == tp->copied_seq && tp->urg_data && 4980 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) { 4981 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 4982 tp->copied_seq++; 4983 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) { 4984 __skb_unlink(skb, &sk->sk_receive_queue); 4985 __kfree_skb(skb); 4986 } 4987 } 4988 4989 tp->urg_data = TCP_URG_NOTYET; 4990 tp->urg_seq = ptr; 4991 4992 /* Disable header prediction. */ 4993 tp->pred_flags = 0; 4994 } 4995 4996 /* This is the 'fast' part of urgent handling. */ 4997 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th) 4998 { 4999 struct tcp_sock *tp = tcp_sk(sk); 5000 5001 /* Check if we get a new urgent pointer - normally not. */ 5002 if (th->urg) 5003 tcp_check_urg(sk, th); 5004 5005 /* Do we wait for any urgent data? - normally not... */ 5006 if (tp->urg_data == TCP_URG_NOTYET) { 5007 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) - 5008 th->syn; 5009 5010 /* Is the urgent pointer pointing into this packet? */ 5011 if (ptr < skb->len) { 5012 u8 tmp; 5013 if (skb_copy_bits(skb, ptr, &tmp, 1)) 5014 BUG(); 5015 tp->urg_data = TCP_URG_VALID | tmp; 5016 if (!sock_flag(sk, SOCK_DEAD)) 5017 sk->sk_data_ready(sk); 5018 } 5019 } 5020 } 5021 5022 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen) 5023 { 5024 struct tcp_sock *tp = tcp_sk(sk); 5025 int chunk = skb->len - hlen; 5026 int err; 5027 5028 local_bh_enable(); 5029 if (skb_csum_unnecessary(skb)) 5030 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk); 5031 else 5032 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg); 5033 5034 if (!err) { 5035 tp->ucopy.len -= chunk; 5036 tp->copied_seq += chunk; 5037 tcp_rcv_space_adjust(sk); 5038 } 5039 5040 local_bh_disable(); 5041 return err; 5042 } 5043 5044 static __sum16 __tcp_checksum_complete_user(struct sock *sk, 5045 struct sk_buff *skb) 5046 { 5047 __sum16 result; 5048 5049 if (sock_owned_by_user(sk)) { 5050 local_bh_enable(); 5051 result = __tcp_checksum_complete(skb); 5052 local_bh_disable(); 5053 } else { 5054 result = __tcp_checksum_complete(skb); 5055 } 5056 return result; 5057 } 5058 5059 static inline bool tcp_checksum_complete_user(struct sock *sk, 5060 struct sk_buff *skb) 5061 { 5062 return !skb_csum_unnecessary(skb) && 5063 __tcp_checksum_complete_user(sk, skb); 5064 } 5065 5066 /* Does PAWS and seqno based validation of an incoming segment, flags will 5067 * play significant role here. 5068 */ 5069 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb, 5070 const struct tcphdr *th, int syn_inerr) 5071 { 5072 struct tcp_sock *tp = tcp_sk(sk); 5073 5074 /* RFC1323: H1. Apply PAWS check first. */ 5075 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp && 5076 tcp_paws_discard(sk, skb)) { 5077 if (!th->rst) { 5078 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED); 5079 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5080 LINUX_MIB_TCPACKSKIPPEDPAWS, 5081 &tp->last_oow_ack_time)) 5082 tcp_send_dupack(sk, skb); 5083 goto discard; 5084 } 5085 /* Reset is accepted even if it did not pass PAWS. */ 5086 } 5087 5088 /* Step 1: check sequence number */ 5089 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) { 5090 /* RFC793, page 37: "In all states except SYN-SENT, all reset 5091 * (RST) segments are validated by checking their SEQ-fields." 5092 * And page 69: "If an incoming segment is not acceptable, 5093 * an acknowledgment should be sent in reply (unless the RST 5094 * bit is set, if so drop the segment and return)". 5095 */ 5096 if (!th->rst) { 5097 if (th->syn) 5098 goto syn_challenge; 5099 if (!tcp_oow_rate_limited(sock_net(sk), skb, 5100 LINUX_MIB_TCPACKSKIPPEDSEQ, 5101 &tp->last_oow_ack_time)) 5102 tcp_send_dupack(sk, skb); 5103 } 5104 goto discard; 5105 } 5106 5107 /* Step 2: check RST bit */ 5108 if (th->rst) { 5109 /* RFC 5961 3.2 : 5110 * If sequence number exactly matches RCV.NXT, then 5111 * RESET the connection 5112 * else 5113 * Send a challenge ACK 5114 */ 5115 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) 5116 tcp_reset(sk); 5117 else 5118 tcp_send_challenge_ack(sk, skb); 5119 goto discard; 5120 } 5121 5122 /* step 3: check security and precedence [ignored] */ 5123 5124 /* step 4: Check for a SYN 5125 * RFC 5961 4.2 : Send a challenge ack 5126 */ 5127 if (th->syn) { 5128 syn_challenge: 5129 if (syn_inerr) 5130 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5131 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE); 5132 tcp_send_challenge_ack(sk, skb); 5133 goto discard; 5134 } 5135 5136 return true; 5137 5138 discard: 5139 __kfree_skb(skb); 5140 return false; 5141 } 5142 5143 /* 5144 * TCP receive function for the ESTABLISHED state. 5145 * 5146 * It is split into a fast path and a slow path. The fast path is 5147 * disabled when: 5148 * - A zero window was announced from us - zero window probing 5149 * is only handled properly in the slow path. 5150 * - Out of order segments arrived. 5151 * - Urgent data is expected. 5152 * - There is no buffer space left 5153 * - Unexpected TCP flags/window values/header lengths are received 5154 * (detected by checking the TCP header against pred_flags) 5155 * - Data is sent in both directions. Fast path only supports pure senders 5156 * or pure receivers (this means either the sequence number or the ack 5157 * value must stay constant) 5158 * - Unexpected TCP option. 5159 * 5160 * When these conditions are not satisfied it drops into a standard 5161 * receive procedure patterned after RFC793 to handle all cases. 5162 * The first three cases are guaranteed by proper pred_flags setting, 5163 * the rest is checked inline. Fast processing is turned on in 5164 * tcp_data_queue when everything is OK. 5165 */ 5166 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb, 5167 const struct tcphdr *th, unsigned int len) 5168 { 5169 struct tcp_sock *tp = tcp_sk(sk); 5170 5171 if (unlikely(!sk->sk_rx_dst)) 5172 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb); 5173 /* 5174 * Header prediction. 5175 * The code loosely follows the one in the famous 5176 * "30 instruction TCP receive" Van Jacobson mail. 5177 * 5178 * Van's trick is to deposit buffers into socket queue 5179 * on a device interrupt, to call tcp_recv function 5180 * on the receive process context and checksum and copy 5181 * the buffer to user space. smart... 5182 * 5183 * Our current scheme is not silly either but we take the 5184 * extra cost of the net_bh soft interrupt processing... 5185 * We do checksum and copy also but from device to kernel. 5186 */ 5187 5188 tp->rx_opt.saw_tstamp = 0; 5189 5190 /* pred_flags is 0xS?10 << 16 + snd_wnd 5191 * if header_prediction is to be made 5192 * 'S' will always be tp->tcp_header_len >> 2 5193 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to 5194 * turn it off (when there are holes in the receive 5195 * space for instance) 5196 * PSH flag is ignored. 5197 */ 5198 5199 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags && 5200 TCP_SKB_CB(skb)->seq == tp->rcv_nxt && 5201 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) { 5202 int tcp_header_len = tp->tcp_header_len; 5203 5204 /* Timestamp header prediction: tcp_header_len 5205 * is automatically equal to th->doff*4 due to pred_flags 5206 * match. 5207 */ 5208 5209 /* Check timestamp */ 5210 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) { 5211 /* No? Slow path! */ 5212 if (!tcp_parse_aligned_timestamp(tp, th)) 5213 goto slow_path; 5214 5215 /* If PAWS failed, check it more carefully in slow path */ 5216 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0) 5217 goto slow_path; 5218 5219 /* DO NOT update ts_recent here, if checksum fails 5220 * and timestamp was corrupted part, it will result 5221 * in a hung connection since we will drop all 5222 * future packets due to the PAWS test. 5223 */ 5224 } 5225 5226 if (len <= tcp_header_len) { 5227 /* Bulk data transfer: sender */ 5228 if (len == tcp_header_len) { 5229 /* Predicted packet is in window by definition. 5230 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5231 * Hence, check seq<=rcv_wup reduces to: 5232 */ 5233 if (tcp_header_len == 5234 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5235 tp->rcv_nxt == tp->rcv_wup) 5236 tcp_store_ts_recent(tp); 5237 5238 /* We know that such packets are checksummed 5239 * on entry. 5240 */ 5241 tcp_ack(sk, skb, 0); 5242 __kfree_skb(skb); 5243 tcp_data_snd_check(sk); 5244 return; 5245 } else { /* Header too small */ 5246 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5247 goto discard; 5248 } 5249 } else { 5250 int eaten = 0; 5251 bool fragstolen = false; 5252 5253 if (tp->ucopy.task == current && 5254 tp->copied_seq == tp->rcv_nxt && 5255 len - tcp_header_len <= tp->ucopy.len && 5256 sock_owned_by_user(sk)) { 5257 __set_current_state(TASK_RUNNING); 5258 5259 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) { 5260 /* Predicted packet is in window by definition. 5261 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5262 * Hence, check seq<=rcv_wup reduces to: 5263 */ 5264 if (tcp_header_len == 5265 (sizeof(struct tcphdr) + 5266 TCPOLEN_TSTAMP_ALIGNED) && 5267 tp->rcv_nxt == tp->rcv_wup) 5268 tcp_store_ts_recent(tp); 5269 5270 tcp_rcv_rtt_measure_ts(sk, skb); 5271 5272 __skb_pull(skb, tcp_header_len); 5273 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq); 5274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER); 5275 eaten = 1; 5276 } 5277 } 5278 if (!eaten) { 5279 if (tcp_checksum_complete_user(sk, skb)) 5280 goto csum_error; 5281 5282 if ((int)skb->truesize > sk->sk_forward_alloc) 5283 goto step5; 5284 5285 /* Predicted packet is in window by definition. 5286 * seq == rcv_nxt and rcv_wup <= rcv_nxt. 5287 * Hence, check seq<=rcv_wup reduces to: 5288 */ 5289 if (tcp_header_len == 5290 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) && 5291 tp->rcv_nxt == tp->rcv_wup) 5292 tcp_store_ts_recent(tp); 5293 5294 tcp_rcv_rtt_measure_ts(sk, skb); 5295 5296 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS); 5297 5298 /* Bulk data transfer: receiver */ 5299 eaten = tcp_queue_rcv(sk, skb, tcp_header_len, 5300 &fragstolen); 5301 } 5302 5303 tcp_event_data_recv(sk, skb); 5304 5305 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) { 5306 /* Well, only one small jumplet in fast path... */ 5307 tcp_ack(sk, skb, FLAG_DATA); 5308 tcp_data_snd_check(sk); 5309 if (!inet_csk_ack_scheduled(sk)) 5310 goto no_ack; 5311 } 5312 5313 __tcp_ack_snd_check(sk, 0); 5314 no_ack: 5315 if (eaten) 5316 kfree_skb_partial(skb, fragstolen); 5317 sk->sk_data_ready(sk); 5318 return; 5319 } 5320 } 5321 5322 slow_path: 5323 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb)) 5324 goto csum_error; 5325 5326 if (!th->ack && !th->rst && !th->syn) 5327 goto discard; 5328 5329 /* 5330 * Standard slow path. 5331 */ 5332 5333 if (!tcp_validate_incoming(sk, skb, th, 1)) 5334 return; 5335 5336 step5: 5337 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0) 5338 goto discard; 5339 5340 tcp_rcv_rtt_measure_ts(sk, skb); 5341 5342 /* Process urgent data. */ 5343 tcp_urg(sk, skb, th); 5344 5345 /* step 7: process the segment text */ 5346 tcp_data_queue(sk, skb); 5347 5348 tcp_data_snd_check(sk); 5349 tcp_ack_snd_check(sk); 5350 return; 5351 5352 csum_error: 5353 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS); 5354 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS); 5355 5356 discard: 5357 __kfree_skb(skb); 5358 } 5359 EXPORT_SYMBOL(tcp_rcv_established); 5360 5361 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb) 5362 { 5363 struct tcp_sock *tp = tcp_sk(sk); 5364 struct inet_connection_sock *icsk = inet_csk(sk); 5365 5366 tcp_set_state(sk, TCP_ESTABLISHED); 5367 5368 if (skb) { 5369 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb); 5370 security_inet_conn_established(sk, skb); 5371 } 5372 5373 /* Make sure socket is routed, for correct metrics. */ 5374 icsk->icsk_af_ops->rebuild_header(sk); 5375 5376 tcp_init_metrics(sk); 5377 5378 tcp_init_congestion_control(sk); 5379 5380 /* Prevent spurious tcp_cwnd_restart() on first data 5381 * packet. 5382 */ 5383 tp->lsndtime = tcp_time_stamp; 5384 5385 tcp_init_buffer_space(sk); 5386 5387 if (sock_flag(sk, SOCK_KEEPOPEN)) 5388 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp)); 5389 5390 if (!tp->rx_opt.snd_wscale) 5391 __tcp_fast_path_on(tp, tp->snd_wnd); 5392 else 5393 tp->pred_flags = 0; 5394 5395 if (!sock_flag(sk, SOCK_DEAD)) { 5396 sk->sk_state_change(sk); 5397 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5398 } 5399 } 5400 5401 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack, 5402 struct tcp_fastopen_cookie *cookie) 5403 { 5404 struct tcp_sock *tp = tcp_sk(sk); 5405 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL; 5406 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0; 5407 bool syn_drop = false; 5408 5409 if (mss == tp->rx_opt.user_mss) { 5410 struct tcp_options_received opt; 5411 5412 /* Get original SYNACK MSS value if user MSS sets mss_clamp */ 5413 tcp_clear_options(&opt); 5414 opt.user_mss = opt.mss_clamp = 0; 5415 tcp_parse_options(synack, &opt, 0, NULL); 5416 mss = opt.mss_clamp; 5417 } 5418 5419 if (!tp->syn_fastopen) { 5420 /* Ignore an unsolicited cookie */ 5421 cookie->len = -1; 5422 } else if (tp->total_retrans) { 5423 /* SYN timed out and the SYN-ACK neither has a cookie nor 5424 * acknowledges data. Presumably the remote received only 5425 * the retransmitted (regular) SYNs: either the original 5426 * SYN-data or the corresponding SYN-ACK was dropped. 5427 */ 5428 syn_drop = (cookie->len < 0 && data); 5429 } else if (cookie->len < 0 && !tp->syn_data) { 5430 /* We requested a cookie but didn't get it. If we did not use 5431 * the (old) exp opt format then try so next time (try_exp=1). 5432 * Otherwise we go back to use the RFC7413 opt (try_exp=2). 5433 */ 5434 try_exp = tp->syn_fastopen_exp ? 2 : 1; 5435 } 5436 5437 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp); 5438 5439 if (data) { /* Retransmit unacked data in SYN */ 5440 tcp_for_write_queue_from(data, sk) { 5441 if (data == tcp_send_head(sk) || 5442 __tcp_retransmit_skb(sk, data)) 5443 break; 5444 } 5445 tcp_rearm_rto(sk); 5446 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); 5447 return true; 5448 } 5449 tp->syn_data_acked = tp->syn_data; 5450 if (tp->syn_data_acked) 5451 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE); 5452 return false; 5453 } 5454 5455 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb, 5456 const struct tcphdr *th, unsigned int len) 5457 { 5458 struct inet_connection_sock *icsk = inet_csk(sk); 5459 struct tcp_sock *tp = tcp_sk(sk); 5460 struct tcp_fastopen_cookie foc = { .len = -1 }; 5461 int saved_clamp = tp->rx_opt.mss_clamp; 5462 5463 tcp_parse_options(skb, &tp->rx_opt, 0, &foc); 5464 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr) 5465 tp->rx_opt.rcv_tsecr -= tp->tsoffset; 5466 5467 if (th->ack) { 5468 /* rfc793: 5469 * "If the state is SYN-SENT then 5470 * first check the ACK bit 5471 * If the ACK bit is set 5472 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send 5473 * a reset (unless the RST bit is set, if so drop 5474 * the segment and return)" 5475 */ 5476 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) || 5477 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) 5478 goto reset_and_undo; 5479 5480 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr && 5481 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp, 5482 tcp_time_stamp)) { 5483 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED); 5484 goto reset_and_undo; 5485 } 5486 5487 /* Now ACK is acceptable. 5488 * 5489 * "If the RST bit is set 5490 * If the ACK was acceptable then signal the user "error: 5491 * connection reset", drop the segment, enter CLOSED state, 5492 * delete TCB, and return." 5493 */ 5494 5495 if (th->rst) { 5496 tcp_reset(sk); 5497 goto discard; 5498 } 5499 5500 /* rfc793: 5501 * "fifth, if neither of the SYN or RST bits is set then 5502 * drop the segment and return." 5503 * 5504 * See note below! 5505 * --ANK(990513) 5506 */ 5507 if (!th->syn) 5508 goto discard_and_undo; 5509 5510 /* rfc793: 5511 * "If the SYN bit is on ... 5512 * are acceptable then ... 5513 * (our SYN has been ACKed), change the connection 5514 * state to ESTABLISHED..." 5515 */ 5516 5517 tcp_ecn_rcv_synack(tp, th); 5518 5519 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5520 tcp_ack(sk, skb, FLAG_SLOWPATH); 5521 5522 /* Ok.. it's good. Set up sequence numbers and 5523 * move to established. 5524 */ 5525 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5526 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5527 5528 /* RFC1323: The window in SYN & SYN/ACK segments is 5529 * never scaled. 5530 */ 5531 tp->snd_wnd = ntohs(th->window); 5532 5533 if (!tp->rx_opt.wscale_ok) { 5534 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0; 5535 tp->window_clamp = min(tp->window_clamp, 65535U); 5536 } 5537 5538 if (tp->rx_opt.saw_tstamp) { 5539 tp->rx_opt.tstamp_ok = 1; 5540 tp->tcp_header_len = 5541 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5542 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5543 tcp_store_ts_recent(tp); 5544 } else { 5545 tp->tcp_header_len = sizeof(struct tcphdr); 5546 } 5547 5548 if (tcp_is_sack(tp) && sysctl_tcp_fack) 5549 tcp_enable_fack(tp); 5550 5551 tcp_mtup_init(sk); 5552 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5553 tcp_initialize_rcv_mss(sk); 5554 5555 /* Remember, tcp_poll() does not lock socket! 5556 * Change state from SYN-SENT only after copied_seq 5557 * is initialized. */ 5558 tp->copied_seq = tp->rcv_nxt; 5559 5560 smp_mb(); 5561 5562 tcp_finish_connect(sk, skb); 5563 5564 if ((tp->syn_fastopen || tp->syn_data) && 5565 tcp_rcv_fastopen_synack(sk, skb, &foc)) 5566 return -1; 5567 5568 if (sk->sk_write_pending || 5569 icsk->icsk_accept_queue.rskq_defer_accept || 5570 icsk->icsk_ack.pingpong) { 5571 /* Save one ACK. Data will be ready after 5572 * several ticks, if write_pending is set. 5573 * 5574 * It may be deleted, but with this feature tcpdumps 5575 * look so _wonderfully_ clever, that I was not able 5576 * to stand against the temptation 8) --ANK 5577 */ 5578 inet_csk_schedule_ack(sk); 5579 icsk->icsk_ack.lrcvtime = tcp_time_stamp; 5580 tcp_enter_quickack_mode(sk); 5581 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 5582 TCP_DELACK_MAX, TCP_RTO_MAX); 5583 5584 discard: 5585 __kfree_skb(skb); 5586 return 0; 5587 } else { 5588 tcp_send_ack(sk); 5589 } 5590 return -1; 5591 } 5592 5593 /* No ACK in the segment */ 5594 5595 if (th->rst) { 5596 /* rfc793: 5597 * "If the RST bit is set 5598 * 5599 * Otherwise (no ACK) drop the segment and return." 5600 */ 5601 5602 goto discard_and_undo; 5603 } 5604 5605 /* PAWS check. */ 5606 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && 5607 tcp_paws_reject(&tp->rx_opt, 0)) 5608 goto discard_and_undo; 5609 5610 if (th->syn) { 5611 /* We see SYN without ACK. It is attempt of 5612 * simultaneous connect with crossed SYNs. 5613 * Particularly, it can be connect to self. 5614 */ 5615 tcp_set_state(sk, TCP_SYN_RECV); 5616 5617 if (tp->rx_opt.saw_tstamp) { 5618 tp->rx_opt.tstamp_ok = 1; 5619 tcp_store_ts_recent(tp); 5620 tp->tcp_header_len = 5621 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; 5622 } else { 5623 tp->tcp_header_len = sizeof(struct tcphdr); 5624 } 5625 5626 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 5627 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1; 5628 5629 /* RFC1323: The window in SYN & SYN/ACK segments is 5630 * never scaled. 5631 */ 5632 tp->snd_wnd = ntohs(th->window); 5633 tp->snd_wl1 = TCP_SKB_CB(skb)->seq; 5634 tp->max_window = tp->snd_wnd; 5635 5636 tcp_ecn_rcv_syn(tp, th); 5637 5638 tcp_mtup_init(sk); 5639 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie); 5640 tcp_initialize_rcv_mss(sk); 5641 5642 tcp_send_synack(sk); 5643 #if 0 5644 /* Note, we could accept data and URG from this segment. 5645 * There are no obstacles to make this (except that we must 5646 * either change tcp_recvmsg() to prevent it from returning data 5647 * before 3WHS completes per RFC793, or employ TCP Fast Open). 5648 * 5649 * However, if we ignore data in ACKless segments sometimes, 5650 * we have no reasons to accept it sometimes. 5651 * Also, seems the code doing it in step6 of tcp_rcv_state_process 5652 * is not flawless. So, discard packet for sanity. 5653 * Uncomment this return to process the data. 5654 */ 5655 return -1; 5656 #else 5657 goto discard; 5658 #endif 5659 } 5660 /* "fifth, if neither of the SYN or RST bits is set then 5661 * drop the segment and return." 5662 */ 5663 5664 discard_and_undo: 5665 tcp_clear_options(&tp->rx_opt); 5666 tp->rx_opt.mss_clamp = saved_clamp; 5667 goto discard; 5668 5669 reset_and_undo: 5670 tcp_clear_options(&tp->rx_opt); 5671 tp->rx_opt.mss_clamp = saved_clamp; 5672 return 1; 5673 } 5674 5675 /* 5676 * This function implements the receiving procedure of RFC 793 for 5677 * all states except ESTABLISHED and TIME_WAIT. 5678 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be 5679 * address independent. 5680 */ 5681 5682 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb, 5683 const struct tcphdr *th, unsigned int len) 5684 { 5685 struct tcp_sock *tp = tcp_sk(sk); 5686 struct inet_connection_sock *icsk = inet_csk(sk); 5687 struct request_sock *req; 5688 int queued = 0; 5689 bool acceptable; 5690 u32 synack_stamp; 5691 5692 tp->rx_opt.saw_tstamp = 0; 5693 5694 switch (sk->sk_state) { 5695 case TCP_CLOSE: 5696 goto discard; 5697 5698 case TCP_LISTEN: 5699 if (th->ack) 5700 return 1; 5701 5702 if (th->rst) 5703 goto discard; 5704 5705 if (th->syn) { 5706 if (th->fin) 5707 goto discard; 5708 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0) 5709 return 1; 5710 5711 /* Now we have several options: In theory there is 5712 * nothing else in the frame. KA9Q has an option to 5713 * send data with the syn, BSD accepts data with the 5714 * syn up to the [to be] advertised window and 5715 * Solaris 2.1 gives you a protocol error. For now 5716 * we just ignore it, that fits the spec precisely 5717 * and avoids incompatibilities. It would be nice in 5718 * future to drop through and process the data. 5719 * 5720 * Now that TTCP is starting to be used we ought to 5721 * queue this data. 5722 * But, this leaves one open to an easy denial of 5723 * service attack, and SYN cookies can't defend 5724 * against this problem. So, we drop the data 5725 * in the interest of security over speed unless 5726 * it's still in use. 5727 */ 5728 kfree_skb(skb); 5729 return 0; 5730 } 5731 goto discard; 5732 5733 case TCP_SYN_SENT: 5734 queued = tcp_rcv_synsent_state_process(sk, skb, th, len); 5735 if (queued >= 0) 5736 return queued; 5737 5738 /* Do step6 onward by hand. */ 5739 tcp_urg(sk, skb, th); 5740 __kfree_skb(skb); 5741 tcp_data_snd_check(sk); 5742 return 0; 5743 } 5744 5745 req = tp->fastopen_rsk; 5746 if (req) { 5747 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV && 5748 sk->sk_state != TCP_FIN_WAIT1); 5749 5750 if (!tcp_check_req(sk, skb, req, true)) 5751 goto discard; 5752 } 5753 5754 if (!th->ack && !th->rst && !th->syn) 5755 goto discard; 5756 5757 if (!tcp_validate_incoming(sk, skb, th, 0)) 5758 return 0; 5759 5760 /* step 5: check the ACK field */ 5761 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH | 5762 FLAG_UPDATE_TS_RECENT) > 0; 5763 5764 switch (sk->sk_state) { 5765 case TCP_SYN_RECV: 5766 if (!acceptable) 5767 return 1; 5768 5769 /* Once we leave TCP_SYN_RECV, we no longer need req 5770 * so release it. 5771 */ 5772 if (req) { 5773 synack_stamp = tcp_rsk(req)->snt_synack; 5774 tp->total_retrans = req->num_retrans; 5775 reqsk_fastopen_remove(sk, req, false); 5776 } else { 5777 synack_stamp = tp->lsndtime; 5778 /* Make sure socket is routed, for correct metrics. */ 5779 icsk->icsk_af_ops->rebuild_header(sk); 5780 tcp_init_congestion_control(sk); 5781 5782 tcp_mtup_init(sk); 5783 tp->copied_seq = tp->rcv_nxt; 5784 tcp_init_buffer_space(sk); 5785 } 5786 smp_mb(); 5787 tcp_set_state(sk, TCP_ESTABLISHED); 5788 sk->sk_state_change(sk); 5789 5790 /* Note, that this wakeup is only for marginal crossed SYN case. 5791 * Passively open sockets are not waked up, because 5792 * sk->sk_sleep == NULL and sk->sk_socket == NULL. 5793 */ 5794 if (sk->sk_socket) 5795 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); 5796 5797 tp->snd_una = TCP_SKB_CB(skb)->ack_seq; 5798 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale; 5799 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq); 5800 tcp_synack_rtt_meas(sk, synack_stamp); 5801 5802 if (tp->rx_opt.tstamp_ok) 5803 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED; 5804 5805 if (req) { 5806 /* Re-arm the timer because data may have been sent out. 5807 * This is similar to the regular data transmission case 5808 * when new data has just been ack'ed. 5809 * 5810 * (TFO) - we could try to be more aggressive and 5811 * retransmitting any data sooner based on when they 5812 * are sent out. 5813 */ 5814 tcp_rearm_rto(sk); 5815 } else 5816 tcp_init_metrics(sk); 5817 5818 tcp_update_pacing_rate(sk); 5819 5820 /* Prevent spurious tcp_cwnd_restart() on first data packet */ 5821 tp->lsndtime = tcp_time_stamp; 5822 5823 tcp_initialize_rcv_mss(sk); 5824 tcp_fast_path_on(tp); 5825 break; 5826 5827 case TCP_FIN_WAIT1: { 5828 struct dst_entry *dst; 5829 int tmo; 5830 5831 /* If we enter the TCP_FIN_WAIT1 state and we are a 5832 * Fast Open socket and this is the first acceptable 5833 * ACK we have received, this would have acknowledged 5834 * our SYNACK so stop the SYNACK timer. 5835 */ 5836 if (req) { 5837 /* Return RST if ack_seq is invalid. 5838 * Note that RFC793 only says to generate a 5839 * DUPACK for it but for TCP Fast Open it seems 5840 * better to treat this case like TCP_SYN_RECV 5841 * above. 5842 */ 5843 if (!acceptable) 5844 return 1; 5845 /* We no longer need the request sock. */ 5846 reqsk_fastopen_remove(sk, req, false); 5847 tcp_rearm_rto(sk); 5848 } 5849 if (tp->snd_una != tp->write_seq) 5850 break; 5851 5852 tcp_set_state(sk, TCP_FIN_WAIT2); 5853 sk->sk_shutdown |= SEND_SHUTDOWN; 5854 5855 dst = __sk_dst_get(sk); 5856 if (dst) 5857 dst_confirm(dst); 5858 5859 if (!sock_flag(sk, SOCK_DEAD)) { 5860 /* Wake up lingering close() */ 5861 sk->sk_state_change(sk); 5862 break; 5863 } 5864 5865 if (tp->linger2 < 0 || 5866 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5867 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) { 5868 tcp_done(sk); 5869 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5870 return 1; 5871 } 5872 5873 tmo = tcp_fin_time(sk); 5874 if (tmo > TCP_TIMEWAIT_LEN) { 5875 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN); 5876 } else if (th->fin || sock_owned_by_user(sk)) { 5877 /* Bad case. We could lose such FIN otherwise. 5878 * It is not a big problem, but it looks confusing 5879 * and not so rare event. We still can lose it now, 5880 * if it spins in bh_lock_sock(), but it is really 5881 * marginal case. 5882 */ 5883 inet_csk_reset_keepalive_timer(sk, tmo); 5884 } else { 5885 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 5886 goto discard; 5887 } 5888 break; 5889 } 5890 5891 case TCP_CLOSING: 5892 if (tp->snd_una == tp->write_seq) { 5893 tcp_time_wait(sk, TCP_TIME_WAIT, 0); 5894 goto discard; 5895 } 5896 break; 5897 5898 case TCP_LAST_ACK: 5899 if (tp->snd_una == tp->write_seq) { 5900 tcp_update_metrics(sk); 5901 tcp_done(sk); 5902 goto discard; 5903 } 5904 break; 5905 } 5906 5907 /* step 6: check the URG bit */ 5908 tcp_urg(sk, skb, th); 5909 5910 /* step 7: process the segment text */ 5911 switch (sk->sk_state) { 5912 case TCP_CLOSE_WAIT: 5913 case TCP_CLOSING: 5914 case TCP_LAST_ACK: 5915 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) 5916 break; 5917 case TCP_FIN_WAIT1: 5918 case TCP_FIN_WAIT2: 5919 /* RFC 793 says to queue data in these states, 5920 * RFC 1122 says we MUST send a reset. 5921 * BSD 4.4 also does reset. 5922 */ 5923 if (sk->sk_shutdown & RCV_SHUTDOWN) { 5924 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq && 5925 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) { 5926 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 5927 tcp_reset(sk); 5928 return 1; 5929 } 5930 } 5931 /* Fall through */ 5932 case TCP_ESTABLISHED: 5933 tcp_data_queue(sk, skb); 5934 queued = 1; 5935 break; 5936 } 5937 5938 /* tcp_data could move socket to TIME-WAIT */ 5939 if (sk->sk_state != TCP_CLOSE) { 5940 tcp_data_snd_check(sk); 5941 tcp_ack_snd_check(sk); 5942 } 5943 5944 if (!queued) { 5945 discard: 5946 __kfree_skb(skb); 5947 } 5948 return 0; 5949 } 5950 EXPORT_SYMBOL(tcp_rcv_state_process); 5951 5952 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family) 5953 { 5954 struct inet_request_sock *ireq = inet_rsk(req); 5955 5956 if (family == AF_INET) 5957 net_dbg_ratelimited("drop open request from %pI4/%u\n", 5958 &ireq->ir_rmt_addr, port); 5959 #if IS_ENABLED(CONFIG_IPV6) 5960 else if (family == AF_INET6) 5961 net_dbg_ratelimited("drop open request from %pI6/%u\n", 5962 &ireq->ir_v6_rmt_addr, port); 5963 #endif 5964 } 5965 5966 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set 5967 * 5968 * If we receive a SYN packet with these bits set, it means a 5969 * network is playing bad games with TOS bits. In order to 5970 * avoid possible false congestion notifications, we disable 5971 * TCP ECN negotiation. 5972 * 5973 * Exception: tcp_ca wants ECN. This is required for DCTCP 5974 * congestion control: Linux DCTCP asserts ECT on all packets, 5975 * including SYN, which is most optimal solution; however, 5976 * others, such as FreeBSD do not. 5977 */ 5978 static void tcp_ecn_create_request(struct request_sock *req, 5979 const struct sk_buff *skb, 5980 const struct sock *listen_sk, 5981 const struct dst_entry *dst) 5982 { 5983 const struct tcphdr *th = tcp_hdr(skb); 5984 const struct net *net = sock_net(listen_sk); 5985 bool th_ecn = th->ece && th->cwr; 5986 bool ect, ecn_ok; 5987 5988 if (!th_ecn) 5989 return; 5990 5991 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield); 5992 ecn_ok = net->ipv4.sysctl_tcp_ecn || dst_feature(dst, RTAX_FEATURE_ECN); 5993 5994 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk)) 5995 inet_rsk(req)->ecn_ok = 1; 5996 } 5997 5998 static void tcp_openreq_init(struct request_sock *req, 5999 const struct tcp_options_received *rx_opt, 6000 struct sk_buff *skb, const struct sock *sk) 6001 { 6002 struct inet_request_sock *ireq = inet_rsk(req); 6003 6004 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */ 6005 req->cookie_ts = 0; 6006 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq; 6007 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; 6008 tcp_rsk(req)->snt_synack = tcp_time_stamp; 6009 tcp_rsk(req)->last_oow_ack_time = 0; 6010 req->mss = rx_opt->mss_clamp; 6011 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0; 6012 ireq->tstamp_ok = rx_opt->tstamp_ok; 6013 ireq->sack_ok = rx_opt->sack_ok; 6014 ireq->snd_wscale = rx_opt->snd_wscale; 6015 ireq->wscale_ok = rx_opt->wscale_ok; 6016 ireq->acked = 0; 6017 ireq->ecn_ok = 0; 6018 ireq->ir_rmt_port = tcp_hdr(skb)->source; 6019 ireq->ir_num = ntohs(tcp_hdr(skb)->dest); 6020 ireq->ir_mark = inet_request_mark(sk, skb); 6021 } 6022 6023 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops, 6024 struct sock *sk_listener) 6025 { 6026 struct request_sock *req = reqsk_alloc(ops, sk_listener); 6027 6028 if (req) { 6029 struct inet_request_sock *ireq = inet_rsk(req); 6030 6031 kmemcheck_annotate_bitfield(ireq, flags); 6032 ireq->opt = NULL; 6033 atomic64_set(&ireq->ir_cookie, 0); 6034 ireq->ireq_state = TCP_NEW_SYN_RECV; 6035 write_pnet(&ireq->ireq_net, sock_net(sk_listener)); 6036 ireq->ireq_family = sk_listener->sk_family; 6037 } 6038 6039 return req; 6040 } 6041 EXPORT_SYMBOL(inet_reqsk_alloc); 6042 6043 /* 6044 * Return true if a syncookie should be sent 6045 */ 6046 static bool tcp_syn_flood_action(struct sock *sk, 6047 const struct sk_buff *skb, 6048 const char *proto) 6049 { 6050 const char *msg = "Dropping request"; 6051 bool want_cookie = false; 6052 struct listen_sock *lopt; 6053 6054 #ifdef CONFIG_SYN_COOKIES 6055 if (sysctl_tcp_syncookies) { 6056 msg = "Sending cookies"; 6057 want_cookie = true; 6058 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES); 6059 } else 6060 #endif 6061 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP); 6062 6063 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt; 6064 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) { 6065 lopt->synflood_warned = 1; 6066 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n", 6067 proto, ntohs(tcp_hdr(skb)->dest), msg); 6068 } 6069 return want_cookie; 6070 } 6071 6072 static void tcp_reqsk_record_syn(const struct sock *sk, 6073 struct request_sock *req, 6074 const struct sk_buff *skb) 6075 { 6076 if (tcp_sk(sk)->save_syn) { 6077 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb); 6078 u32 *copy; 6079 6080 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC); 6081 if (copy) { 6082 copy[0] = len; 6083 memcpy(©[1], skb_network_header(skb), len); 6084 req->saved_syn = copy; 6085 } 6086 } 6087 } 6088 6089 int tcp_conn_request(struct request_sock_ops *rsk_ops, 6090 const struct tcp_request_sock_ops *af_ops, 6091 struct sock *sk, struct sk_buff *skb) 6092 { 6093 struct tcp_options_received tmp_opt; 6094 struct request_sock *req; 6095 struct tcp_sock *tp = tcp_sk(sk); 6096 struct dst_entry *dst = NULL; 6097 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn; 6098 bool want_cookie = false, fastopen; 6099 struct flowi fl; 6100 struct tcp_fastopen_cookie foc = { .len = -1 }; 6101 int err; 6102 6103 6104 /* TW buckets are converted to open requests without 6105 * limitations, they conserve resources and peer is 6106 * evidently real one. 6107 */ 6108 if ((sysctl_tcp_syncookies == 2 || 6109 inet_csk_reqsk_queue_is_full(sk)) && !isn) { 6110 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name); 6111 if (!want_cookie) 6112 goto drop; 6113 } 6114 6115 6116 /* Accept backlog is full. If we have already queued enough 6117 * of warm entries in syn queue, drop request. It is better than 6118 * clogging syn queue with openreqs with exponentially increasing 6119 * timeout. 6120 */ 6121 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) { 6122 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); 6123 goto drop; 6124 } 6125 6126 req = inet_reqsk_alloc(rsk_ops, sk); 6127 if (!req) 6128 goto drop; 6129 6130 tcp_rsk(req)->af_specific = af_ops; 6131 6132 tcp_clear_options(&tmp_opt); 6133 tmp_opt.mss_clamp = af_ops->mss_clamp; 6134 tmp_opt.user_mss = tp->rx_opt.user_mss; 6135 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc); 6136 6137 if (want_cookie && !tmp_opt.saw_tstamp) 6138 tcp_clear_options(&tmp_opt); 6139 6140 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp; 6141 tcp_openreq_init(req, &tmp_opt, skb, sk); 6142 6143 /* Note: tcp_v6_init_req() might override ir_iif for link locals */ 6144 inet_rsk(req)->ir_iif = sk->sk_bound_dev_if; 6145 6146 af_ops->init_req(req, sk, skb); 6147 6148 if (security_inet_conn_request(sk, skb, req)) 6149 goto drop_and_free; 6150 6151 if (!want_cookie && !isn) { 6152 /* VJ's idea. We save last timestamp seen 6153 * from the destination in peer table, when entering 6154 * state TIME-WAIT, and check against it before 6155 * accepting new connection request. 6156 * 6157 * If "isn" is not zero, this request hit alive 6158 * timewait bucket, so that all the necessary checks 6159 * are made in the function processing timewait state. 6160 */ 6161 if (tcp_death_row.sysctl_tw_recycle) { 6162 bool strict; 6163 6164 dst = af_ops->route_req(sk, &fl, req, &strict); 6165 6166 if (dst && strict && 6167 !tcp_peer_is_proven(req, dst, true, 6168 tmp_opt.saw_tstamp)) { 6169 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED); 6170 goto drop_and_release; 6171 } 6172 } 6173 /* Kill the following clause, if you dislike this way. */ 6174 else if (!sysctl_tcp_syncookies && 6175 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) < 6176 (sysctl_max_syn_backlog >> 2)) && 6177 !tcp_peer_is_proven(req, dst, false, 6178 tmp_opt.saw_tstamp)) { 6179 /* Without syncookies last quarter of 6180 * backlog is filled with destinations, 6181 * proven to be alive. 6182 * It means that we continue to communicate 6183 * to destinations, already remembered 6184 * to the moment of synflood. 6185 */ 6186 pr_drop_req(req, ntohs(tcp_hdr(skb)->source), 6187 rsk_ops->family); 6188 goto drop_and_release; 6189 } 6190 6191 isn = af_ops->init_seq(skb); 6192 } 6193 if (!dst) { 6194 dst = af_ops->route_req(sk, &fl, req, NULL); 6195 if (!dst) 6196 goto drop_and_free; 6197 } 6198 6199 tcp_ecn_create_request(req, skb, sk, dst); 6200 6201 if (want_cookie) { 6202 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss); 6203 req->cookie_ts = tmp_opt.tstamp_ok; 6204 if (!tmp_opt.tstamp_ok) 6205 inet_rsk(req)->ecn_ok = 0; 6206 } 6207 6208 tcp_rsk(req)->snt_isn = isn; 6209 tcp_openreq_init_rwin(req, sk, dst); 6210 fastopen = !want_cookie && 6211 tcp_try_fastopen(sk, skb, req, &foc, dst); 6212 err = af_ops->send_synack(sk, dst, &fl, req, 6213 skb_get_queue_mapping(skb), &foc); 6214 if (!fastopen) { 6215 if (err || want_cookie) 6216 goto drop_and_free; 6217 6218 tcp_rsk(req)->tfo_listener = false; 6219 af_ops->queue_hash_add(sk, req, TCP_TIMEOUT_INIT); 6220 } 6221 tcp_reqsk_record_syn(sk, req, skb); 6222 6223 return 0; 6224 6225 drop_and_release: 6226 dst_release(dst); 6227 drop_and_free: 6228 reqsk_free(req); 6229 drop: 6230 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS); 6231 return 0; 6232 } 6233 EXPORT_SYMBOL(tcp_conn_request); 6234