xref: /linux/net/ipv4/tcp_input.c (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
68 #include <net/dst.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74 
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly = 2;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84 
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91 
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94 
95 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
96 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
97 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
98 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
99 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
100 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
101 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
102 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
103 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
109 
110 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115 
116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
118 
119 /* Adapt the MSS value used to make delayed ack decision to the
120  * real world.
121  */
122 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
123 {
124 	struct inet_connection_sock *icsk = inet_csk(sk);
125 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
126 	unsigned int len;
127 
128 	icsk->icsk_ack.last_seg_size = 0;
129 
130 	/* skb->len may jitter because of SACKs, even if peer
131 	 * sends good full-sized frames.
132 	 */
133 	len = skb_shinfo(skb)->gso_size ? : skb->len;
134 	if (len >= icsk->icsk_ack.rcv_mss) {
135 		icsk->icsk_ack.rcv_mss = len;
136 	} else {
137 		/* Otherwise, we make more careful check taking into account,
138 		 * that SACKs block is variable.
139 		 *
140 		 * "len" is invariant segment length, including TCP header.
141 		 */
142 		len += skb->data - skb_transport_header(skb);
143 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
144 		    /* If PSH is not set, packet should be
145 		     * full sized, provided peer TCP is not badly broken.
146 		     * This observation (if it is correct 8)) allows
147 		     * to handle super-low mtu links fairly.
148 		     */
149 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
150 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
151 			/* Subtract also invariant (if peer is RFC compliant),
152 			 * tcp header plus fixed timestamp option length.
153 			 * Resulting "len" is MSS free of SACK jitter.
154 			 */
155 			len -= tcp_sk(sk)->tcp_header_len;
156 			icsk->icsk_ack.last_seg_size = len;
157 			if (len == lss) {
158 				icsk->icsk_ack.rcv_mss = len;
159 				return;
160 			}
161 		}
162 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
163 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
164 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
165 	}
166 }
167 
168 static void tcp_incr_quickack(struct sock *sk)
169 {
170 	struct inet_connection_sock *icsk = inet_csk(sk);
171 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
172 
173 	if (quickacks == 0)
174 		quickacks = 2;
175 	if (quickacks > icsk->icsk_ack.quick)
176 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
177 }
178 
179 void tcp_enter_quickack_mode(struct sock *sk)
180 {
181 	struct inet_connection_sock *icsk = inet_csk(sk);
182 	tcp_incr_quickack(sk);
183 	icsk->icsk_ack.pingpong = 0;
184 	icsk->icsk_ack.ato = TCP_ATO_MIN;
185 }
186 
187 /* Send ACKs quickly, if "quick" count is not exhausted
188  * and the session is not interactive.
189  */
190 
191 static inline int tcp_in_quickack_mode(const struct sock *sk)
192 {
193 	const struct inet_connection_sock *icsk = inet_csk(sk);
194 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
195 }
196 
197 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
198 {
199 	if (tp->ecn_flags & TCP_ECN_OK)
200 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
201 }
202 
203 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
204 {
205 	if (tcp_hdr(skb)->cwr)
206 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
207 }
208 
209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
210 {
211 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
212 }
213 
214 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
215 {
216 	if (tp->ecn_flags & TCP_ECN_OK) {
217 		if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
218 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
219 		/* Funny extension: if ECT is not set on a segment,
220 		 * it is surely retransmit. It is not in ECN RFC,
221 		 * but Linux follows this rule. */
222 		else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
223 			tcp_enter_quickack_mode((struct sock *)tp);
224 	}
225 }
226 
227 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
228 {
229 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
230 		tp->ecn_flags &= ~TCP_ECN_OK;
231 }
232 
233 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
234 {
235 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
236 		tp->ecn_flags &= ~TCP_ECN_OK;
237 }
238 
239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
240 {
241 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
242 		return 1;
243 	return 0;
244 }
245 
246 /* Buffer size and advertised window tuning.
247  *
248  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
249  */
250 
251 static void tcp_fixup_sndbuf(struct sock *sk)
252 {
253 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
254 		     sizeof(struct sk_buff);
255 
256 	if (sk->sk_sndbuf < 3 * sndmem)
257 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
258 }
259 
260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
261  *
262  * All tcp_full_space() is split to two parts: "network" buffer, allocated
263  * forward and advertised in receiver window (tp->rcv_wnd) and
264  * "application buffer", required to isolate scheduling/application
265  * latencies from network.
266  * window_clamp is maximal advertised window. It can be less than
267  * tcp_full_space(), in this case tcp_full_space() - window_clamp
268  * is reserved for "application" buffer. The less window_clamp is
269  * the smoother our behaviour from viewpoint of network, but the lower
270  * throughput and the higher sensitivity of the connection to losses. 8)
271  *
272  * rcv_ssthresh is more strict window_clamp used at "slow start"
273  * phase to predict further behaviour of this connection.
274  * It is used for two goals:
275  * - to enforce header prediction at sender, even when application
276  *   requires some significant "application buffer". It is check #1.
277  * - to prevent pruning of receive queue because of misprediction
278  *   of receiver window. Check #2.
279  *
280  * The scheme does not work when sender sends good segments opening
281  * window and then starts to feed us spaghetti. But it should work
282  * in common situations. Otherwise, we have to rely on queue collapsing.
283  */
284 
285 /* Slow part of check#2. */
286 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
287 {
288 	struct tcp_sock *tp = tcp_sk(sk);
289 	/* Optimize this! */
290 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
291 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
292 
293 	while (tp->rcv_ssthresh <= window) {
294 		if (truesize <= skb->len)
295 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
296 
297 		truesize >>= 1;
298 		window >>= 1;
299 	}
300 	return 0;
301 }
302 
303 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
304 {
305 	struct tcp_sock *tp = tcp_sk(sk);
306 
307 	/* Check #1 */
308 	if (tp->rcv_ssthresh < tp->window_clamp &&
309 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
310 	    !tcp_memory_pressure) {
311 		int incr;
312 
313 		/* Check #2. Increase window, if skb with such overhead
314 		 * will fit to rcvbuf in future.
315 		 */
316 		if (tcp_win_from_space(skb->truesize) <= skb->len)
317 			incr = 2 * tp->advmss;
318 		else
319 			incr = __tcp_grow_window(sk, skb);
320 
321 		if (incr) {
322 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
323 					       tp->window_clamp);
324 			inet_csk(sk)->icsk_ack.quick |= 1;
325 		}
326 	}
327 }
328 
329 /* 3. Tuning rcvbuf, when connection enters established state. */
330 
331 static void tcp_fixup_rcvbuf(struct sock *sk)
332 {
333 	struct tcp_sock *tp = tcp_sk(sk);
334 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
335 
336 	/* Try to select rcvbuf so that 4 mss-sized segments
337 	 * will fit to window and corresponding skbs will fit to our rcvbuf.
338 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
339 	 */
340 	while (tcp_win_from_space(rcvmem) < tp->advmss)
341 		rcvmem += 128;
342 	if (sk->sk_rcvbuf < 4 * rcvmem)
343 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
344 }
345 
346 /* 4. Try to fixup all. It is made immediately after connection enters
347  *    established state.
348  */
349 static void tcp_init_buffer_space(struct sock *sk)
350 {
351 	struct tcp_sock *tp = tcp_sk(sk);
352 	int maxwin;
353 
354 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
355 		tcp_fixup_rcvbuf(sk);
356 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
357 		tcp_fixup_sndbuf(sk);
358 
359 	tp->rcvq_space.space = tp->rcv_wnd;
360 
361 	maxwin = tcp_full_space(sk);
362 
363 	if (tp->window_clamp >= maxwin) {
364 		tp->window_clamp = maxwin;
365 
366 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
367 			tp->window_clamp = max(maxwin -
368 					       (maxwin >> sysctl_tcp_app_win),
369 					       4 * tp->advmss);
370 	}
371 
372 	/* Force reservation of one segment. */
373 	if (sysctl_tcp_app_win &&
374 	    tp->window_clamp > 2 * tp->advmss &&
375 	    tp->window_clamp + tp->advmss > maxwin)
376 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
377 
378 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
379 	tp->snd_cwnd_stamp = tcp_time_stamp;
380 }
381 
382 /* 5. Recalculate window clamp after socket hit its memory bounds. */
383 static void tcp_clamp_window(struct sock *sk)
384 {
385 	struct tcp_sock *tp = tcp_sk(sk);
386 	struct inet_connection_sock *icsk = inet_csk(sk);
387 
388 	icsk->icsk_ack.quick = 0;
389 
390 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
391 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
392 	    !tcp_memory_pressure &&
393 	    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
394 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
395 				    sysctl_tcp_rmem[2]);
396 	}
397 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
398 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
399 }
400 
401 /* Initialize RCV_MSS value.
402  * RCV_MSS is an our guess about MSS used by the peer.
403  * We haven't any direct information about the MSS.
404  * It's better to underestimate the RCV_MSS rather than overestimate.
405  * Overestimations make us ACKing less frequently than needed.
406  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
407  */
408 void tcp_initialize_rcv_mss(struct sock *sk)
409 {
410 	struct tcp_sock *tp = tcp_sk(sk);
411 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
412 
413 	hint = min(hint, tp->rcv_wnd / 2);
414 	hint = min(hint, TCP_MSS_DEFAULT);
415 	hint = max(hint, TCP_MIN_MSS);
416 
417 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
418 }
419 
420 /* Receiver "autotuning" code.
421  *
422  * The algorithm for RTT estimation w/o timestamps is based on
423  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
424  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
425  *
426  * More detail on this code can be found at
427  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
428  * though this reference is out of date.  A new paper
429  * is pending.
430  */
431 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
432 {
433 	u32 new_sample = tp->rcv_rtt_est.rtt;
434 	long m = sample;
435 
436 	if (m == 0)
437 		m = 1;
438 
439 	if (new_sample != 0) {
440 		/* If we sample in larger samples in the non-timestamp
441 		 * case, we could grossly overestimate the RTT especially
442 		 * with chatty applications or bulk transfer apps which
443 		 * are stalled on filesystem I/O.
444 		 *
445 		 * Also, since we are only going for a minimum in the
446 		 * non-timestamp case, we do not smooth things out
447 		 * else with timestamps disabled convergence takes too
448 		 * long.
449 		 */
450 		if (!win_dep) {
451 			m -= (new_sample >> 3);
452 			new_sample += m;
453 		} else if (m < new_sample)
454 			new_sample = m << 3;
455 	} else {
456 		/* No previous measure. */
457 		new_sample = m << 3;
458 	}
459 
460 	if (tp->rcv_rtt_est.rtt != new_sample)
461 		tp->rcv_rtt_est.rtt = new_sample;
462 }
463 
464 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
465 {
466 	if (tp->rcv_rtt_est.time == 0)
467 		goto new_measure;
468 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
469 		return;
470 	tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
471 
472 new_measure:
473 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
474 	tp->rcv_rtt_est.time = tcp_time_stamp;
475 }
476 
477 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
478 					  const struct sk_buff *skb)
479 {
480 	struct tcp_sock *tp = tcp_sk(sk);
481 	if (tp->rx_opt.rcv_tsecr &&
482 	    (TCP_SKB_CB(skb)->end_seq -
483 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
484 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
485 }
486 
487 /*
488  * This function should be called every time data is copied to user space.
489  * It calculates the appropriate TCP receive buffer space.
490  */
491 void tcp_rcv_space_adjust(struct sock *sk)
492 {
493 	struct tcp_sock *tp = tcp_sk(sk);
494 	int time;
495 	int space;
496 
497 	if (tp->rcvq_space.time == 0)
498 		goto new_measure;
499 
500 	time = tcp_time_stamp - tp->rcvq_space.time;
501 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
502 		return;
503 
504 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
505 
506 	space = max(tp->rcvq_space.space, space);
507 
508 	if (tp->rcvq_space.space != space) {
509 		int rcvmem;
510 
511 		tp->rcvq_space.space = space;
512 
513 		if (sysctl_tcp_moderate_rcvbuf &&
514 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
515 			int new_clamp = space;
516 
517 			/* Receive space grows, normalize in order to
518 			 * take into account packet headers and sk_buff
519 			 * structure overhead.
520 			 */
521 			space /= tp->advmss;
522 			if (!space)
523 				space = 1;
524 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
525 				  16 + sizeof(struct sk_buff));
526 			while (tcp_win_from_space(rcvmem) < tp->advmss)
527 				rcvmem += 128;
528 			space *= rcvmem;
529 			space = min(space, sysctl_tcp_rmem[2]);
530 			if (space > sk->sk_rcvbuf) {
531 				sk->sk_rcvbuf = space;
532 
533 				/* Make the window clamp follow along.  */
534 				tp->window_clamp = new_clamp;
535 			}
536 		}
537 	}
538 
539 new_measure:
540 	tp->rcvq_space.seq = tp->copied_seq;
541 	tp->rcvq_space.time = tcp_time_stamp;
542 }
543 
544 /* There is something which you must keep in mind when you analyze the
545  * behavior of the tp->ato delayed ack timeout interval.  When a
546  * connection starts up, we want to ack as quickly as possible.  The
547  * problem is that "good" TCP's do slow start at the beginning of data
548  * transmission.  The means that until we send the first few ACK's the
549  * sender will sit on his end and only queue most of his data, because
550  * he can only send snd_cwnd unacked packets at any given time.  For
551  * each ACK we send, he increments snd_cwnd and transmits more of his
552  * queue.  -DaveM
553  */
554 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
555 {
556 	struct tcp_sock *tp = tcp_sk(sk);
557 	struct inet_connection_sock *icsk = inet_csk(sk);
558 	u32 now;
559 
560 	inet_csk_schedule_ack(sk);
561 
562 	tcp_measure_rcv_mss(sk, skb);
563 
564 	tcp_rcv_rtt_measure(tp);
565 
566 	now = tcp_time_stamp;
567 
568 	if (!icsk->icsk_ack.ato) {
569 		/* The _first_ data packet received, initialize
570 		 * delayed ACK engine.
571 		 */
572 		tcp_incr_quickack(sk);
573 		icsk->icsk_ack.ato = TCP_ATO_MIN;
574 	} else {
575 		int m = now - icsk->icsk_ack.lrcvtime;
576 
577 		if (m <= TCP_ATO_MIN / 2) {
578 			/* The fastest case is the first. */
579 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
580 		} else if (m < icsk->icsk_ack.ato) {
581 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
582 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
583 				icsk->icsk_ack.ato = icsk->icsk_rto;
584 		} else if (m > icsk->icsk_rto) {
585 			/* Too long gap. Apparently sender failed to
586 			 * restart window, so that we send ACKs quickly.
587 			 */
588 			tcp_incr_quickack(sk);
589 			sk_mem_reclaim(sk);
590 		}
591 	}
592 	icsk->icsk_ack.lrcvtime = now;
593 
594 	TCP_ECN_check_ce(tp, skb);
595 
596 	if (skb->len >= 128)
597 		tcp_grow_window(sk, skb);
598 }
599 
600 /* Called to compute a smoothed rtt estimate. The data fed to this
601  * routine either comes from timestamps, or from segments that were
602  * known _not_ to have been retransmitted [see Karn/Partridge
603  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
604  * piece by Van Jacobson.
605  * NOTE: the next three routines used to be one big routine.
606  * To save cycles in the RFC 1323 implementation it was better to break
607  * it up into three procedures. -- erics
608  */
609 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
610 {
611 	struct tcp_sock *tp = tcp_sk(sk);
612 	long m = mrtt; /* RTT */
613 
614 	/*	The following amusing code comes from Jacobson's
615 	 *	article in SIGCOMM '88.  Note that rtt and mdev
616 	 *	are scaled versions of rtt and mean deviation.
617 	 *	This is designed to be as fast as possible
618 	 *	m stands for "measurement".
619 	 *
620 	 *	On a 1990 paper the rto value is changed to:
621 	 *	RTO = rtt + 4 * mdev
622 	 *
623 	 * Funny. This algorithm seems to be very broken.
624 	 * These formulae increase RTO, when it should be decreased, increase
625 	 * too slowly, when it should be increased quickly, decrease too quickly
626 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
627 	 * does not matter how to _calculate_ it. Seems, it was trap
628 	 * that VJ failed to avoid. 8)
629 	 */
630 	if (m == 0)
631 		m = 1;
632 	if (tp->srtt != 0) {
633 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
634 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
635 		if (m < 0) {
636 			m = -m;		/* m is now abs(error) */
637 			m -= (tp->mdev >> 2);   /* similar update on mdev */
638 			/* This is similar to one of Eifel findings.
639 			 * Eifel blocks mdev updates when rtt decreases.
640 			 * This solution is a bit different: we use finer gain
641 			 * for mdev in this case (alpha*beta).
642 			 * Like Eifel it also prevents growth of rto,
643 			 * but also it limits too fast rto decreases,
644 			 * happening in pure Eifel.
645 			 */
646 			if (m > 0)
647 				m >>= 3;
648 		} else {
649 			m -= (tp->mdev >> 2);   /* similar update on mdev */
650 		}
651 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
652 		if (tp->mdev > tp->mdev_max) {
653 			tp->mdev_max = tp->mdev;
654 			if (tp->mdev_max > tp->rttvar)
655 				tp->rttvar = tp->mdev_max;
656 		}
657 		if (after(tp->snd_una, tp->rtt_seq)) {
658 			if (tp->mdev_max < tp->rttvar)
659 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
660 			tp->rtt_seq = tp->snd_nxt;
661 			tp->mdev_max = tcp_rto_min(sk);
662 		}
663 	} else {
664 		/* no previous measure. */
665 		tp->srtt = m << 3;	/* take the measured time to be rtt */
666 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
667 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
668 		tp->rtt_seq = tp->snd_nxt;
669 	}
670 }
671 
672 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
673  * routine referred to above.
674  */
675 static inline void tcp_set_rto(struct sock *sk)
676 {
677 	const struct tcp_sock *tp = tcp_sk(sk);
678 	/* Old crap is replaced with new one. 8)
679 	 *
680 	 * More seriously:
681 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
682 	 *    It cannot be less due to utterly erratic ACK generation made
683 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
684 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
685 	 *    is invisible. Actually, Linux-2.4 also generates erratic
686 	 *    ACKs in some circumstances.
687 	 */
688 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
689 
690 	/* 2. Fixups made earlier cannot be right.
691 	 *    If we do not estimate RTO correctly without them,
692 	 *    all the algo is pure shit and should be replaced
693 	 *    with correct one. It is exactly, which we pretend to do.
694 	 */
695 
696 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
697 	 * guarantees that rto is higher.
698 	 */
699 	tcp_bound_rto(sk);
700 }
701 
702 /* Save metrics learned by this TCP session.
703    This function is called only, when TCP finishes successfully
704    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
705  */
706 void tcp_update_metrics(struct sock *sk)
707 {
708 	struct tcp_sock *tp = tcp_sk(sk);
709 	struct dst_entry *dst = __sk_dst_get(sk);
710 
711 	if (sysctl_tcp_nometrics_save)
712 		return;
713 
714 	dst_confirm(dst);
715 
716 	if (dst && (dst->flags & DST_HOST)) {
717 		const struct inet_connection_sock *icsk = inet_csk(sk);
718 		int m;
719 		unsigned long rtt;
720 
721 		if (icsk->icsk_backoff || !tp->srtt) {
722 			/* This session failed to estimate rtt. Why?
723 			 * Probably, no packets returned in time.
724 			 * Reset our results.
725 			 */
726 			if (!(dst_metric_locked(dst, RTAX_RTT)))
727 				dst->metrics[RTAX_RTT - 1] = 0;
728 			return;
729 		}
730 
731 		rtt = dst_metric_rtt(dst, RTAX_RTT);
732 		m = rtt - tp->srtt;
733 
734 		/* If newly calculated rtt larger than stored one,
735 		 * store new one. Otherwise, use EWMA. Remember,
736 		 * rtt overestimation is always better than underestimation.
737 		 */
738 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
739 			if (m <= 0)
740 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
741 			else
742 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
743 		}
744 
745 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
746 			unsigned long var;
747 			if (m < 0)
748 				m = -m;
749 
750 			/* Scale deviation to rttvar fixed point */
751 			m >>= 1;
752 			if (m < tp->mdev)
753 				m = tp->mdev;
754 
755 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
756 			if (m >= var)
757 				var = m;
758 			else
759 				var -= (var - m) >> 2;
760 
761 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
762 		}
763 
764 		if (tcp_in_initial_slowstart(tp)) {
765 			/* Slow start still did not finish. */
766 			if (dst_metric(dst, RTAX_SSTHRESH) &&
767 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
768 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
769 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
770 			if (!dst_metric_locked(dst, RTAX_CWND) &&
771 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
772 				dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
773 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
774 			   icsk->icsk_ca_state == TCP_CA_Open) {
775 			/* Cong. avoidance phase, cwnd is reliable. */
776 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
777 				dst->metrics[RTAX_SSTHRESH-1] =
778 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
779 			if (!dst_metric_locked(dst, RTAX_CWND))
780 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
781 		} else {
782 			/* Else slow start did not finish, cwnd is non-sense,
783 			   ssthresh may be also invalid.
784 			 */
785 			if (!dst_metric_locked(dst, RTAX_CWND))
786 				dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
787 			if (dst_metric(dst, RTAX_SSTHRESH) &&
788 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
789 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
790 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
791 		}
792 
793 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
794 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
795 			    tp->reordering != sysctl_tcp_reordering)
796 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
797 		}
798 	}
799 }
800 
801 /* Numbers are taken from RFC3390.
802  *
803  * John Heffner states:
804  *
805  *	The RFC specifies a window of no more than 4380 bytes
806  *	unless 2*MSS > 4380.  Reading the pseudocode in the RFC
807  *	is a bit misleading because they use a clamp at 4380 bytes
808  *	rather than use a multiplier in the relevant range.
809  */
810 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
811 {
812 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
813 
814 	if (!cwnd) {
815 		if (tp->mss_cache > 1460)
816 			cwnd = 2;
817 		else
818 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
819 	}
820 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
821 }
822 
823 /* Set slow start threshold and cwnd not falling to slow start */
824 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
825 {
826 	struct tcp_sock *tp = tcp_sk(sk);
827 	const struct inet_connection_sock *icsk = inet_csk(sk);
828 
829 	tp->prior_ssthresh = 0;
830 	tp->bytes_acked = 0;
831 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
832 		tp->undo_marker = 0;
833 		if (set_ssthresh)
834 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
835 		tp->snd_cwnd = min(tp->snd_cwnd,
836 				   tcp_packets_in_flight(tp) + 1U);
837 		tp->snd_cwnd_cnt = 0;
838 		tp->high_seq = tp->snd_nxt;
839 		tp->snd_cwnd_stamp = tcp_time_stamp;
840 		TCP_ECN_queue_cwr(tp);
841 
842 		tcp_set_ca_state(sk, TCP_CA_CWR);
843 	}
844 }
845 
846 /*
847  * Packet counting of FACK is based on in-order assumptions, therefore TCP
848  * disables it when reordering is detected
849  */
850 static void tcp_disable_fack(struct tcp_sock *tp)
851 {
852 	/* RFC3517 uses different metric in lost marker => reset on change */
853 	if (tcp_is_fack(tp))
854 		tp->lost_skb_hint = NULL;
855 	tp->rx_opt.sack_ok &= ~2;
856 }
857 
858 /* Take a notice that peer is sending D-SACKs */
859 static void tcp_dsack_seen(struct tcp_sock *tp)
860 {
861 	tp->rx_opt.sack_ok |= 4;
862 }
863 
864 /* Initialize metrics on socket. */
865 
866 static void tcp_init_metrics(struct sock *sk)
867 {
868 	struct tcp_sock *tp = tcp_sk(sk);
869 	struct dst_entry *dst = __sk_dst_get(sk);
870 
871 	if (dst == NULL)
872 		goto reset;
873 
874 	dst_confirm(dst);
875 
876 	if (dst_metric_locked(dst, RTAX_CWND))
877 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
878 	if (dst_metric(dst, RTAX_SSTHRESH)) {
879 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
880 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
881 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
882 	}
883 	if (dst_metric(dst, RTAX_REORDERING) &&
884 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
885 		tcp_disable_fack(tp);
886 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
887 	}
888 
889 	if (dst_metric(dst, RTAX_RTT) == 0)
890 		goto reset;
891 
892 	if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
893 		goto reset;
894 
895 	/* Initial rtt is determined from SYN,SYN-ACK.
896 	 * The segment is small and rtt may appear much
897 	 * less than real one. Use per-dst memory
898 	 * to make it more realistic.
899 	 *
900 	 * A bit of theory. RTT is time passed after "normal" sized packet
901 	 * is sent until it is ACKed. In normal circumstances sending small
902 	 * packets force peer to delay ACKs and calculation is correct too.
903 	 * The algorithm is adaptive and, provided we follow specs, it
904 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
905 	 * tricks sort of "quick acks" for time long enough to decrease RTT
906 	 * to low value, and then abruptly stops to do it and starts to delay
907 	 * ACKs, wait for troubles.
908 	 */
909 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
910 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
911 		tp->rtt_seq = tp->snd_nxt;
912 	}
913 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
914 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
915 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
916 	}
917 	tcp_set_rto(sk);
918 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
919 		goto reset;
920 
921 cwnd:
922 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
923 	tp->snd_cwnd_stamp = tcp_time_stamp;
924 	return;
925 
926 reset:
927 	/* Play conservative. If timestamps are not
928 	 * supported, TCP will fail to recalculate correct
929 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
930 	 */
931 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
932 		tp->srtt = 0;
933 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
934 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
935 	}
936 	goto cwnd;
937 }
938 
939 static void tcp_update_reordering(struct sock *sk, const int metric,
940 				  const int ts)
941 {
942 	struct tcp_sock *tp = tcp_sk(sk);
943 	if (metric > tp->reordering) {
944 		int mib_idx;
945 
946 		tp->reordering = min(TCP_MAX_REORDERING, metric);
947 
948 		/* This exciting event is worth to be remembered. 8) */
949 		if (ts)
950 			mib_idx = LINUX_MIB_TCPTSREORDER;
951 		else if (tcp_is_reno(tp))
952 			mib_idx = LINUX_MIB_TCPRENOREORDER;
953 		else if (tcp_is_fack(tp))
954 			mib_idx = LINUX_MIB_TCPFACKREORDER;
955 		else
956 			mib_idx = LINUX_MIB_TCPSACKREORDER;
957 
958 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
959 #if FASTRETRANS_DEBUG > 1
960 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
961 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
962 		       tp->reordering,
963 		       tp->fackets_out,
964 		       tp->sacked_out,
965 		       tp->undo_marker ? tp->undo_retrans : 0);
966 #endif
967 		tcp_disable_fack(tp);
968 	}
969 }
970 
971 /* This must be called before lost_out is incremented */
972 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
973 {
974 	if ((tp->retransmit_skb_hint == NULL) ||
975 	    before(TCP_SKB_CB(skb)->seq,
976 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
977 		tp->retransmit_skb_hint = skb;
978 
979 	if (!tp->lost_out ||
980 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
981 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
982 }
983 
984 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
985 {
986 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
987 		tcp_verify_retransmit_hint(tp, skb);
988 
989 		tp->lost_out += tcp_skb_pcount(skb);
990 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
991 	}
992 }
993 
994 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
995 					    struct sk_buff *skb)
996 {
997 	tcp_verify_retransmit_hint(tp, skb);
998 
999 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1000 		tp->lost_out += tcp_skb_pcount(skb);
1001 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1002 	}
1003 }
1004 
1005 /* This procedure tags the retransmission queue when SACKs arrive.
1006  *
1007  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1008  * Packets in queue with these bits set are counted in variables
1009  * sacked_out, retrans_out and lost_out, correspondingly.
1010  *
1011  * Valid combinations are:
1012  * Tag  InFlight	Description
1013  * 0	1		- orig segment is in flight.
1014  * S	0		- nothing flies, orig reached receiver.
1015  * L	0		- nothing flies, orig lost by net.
1016  * R	2		- both orig and retransmit are in flight.
1017  * L|R	1		- orig is lost, retransmit is in flight.
1018  * S|R  1		- orig reached receiver, retrans is still in flight.
1019  * (L|S|R is logically valid, it could occur when L|R is sacked,
1020  *  but it is equivalent to plain S and code short-curcuits it to S.
1021  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1022  *
1023  * These 6 states form finite state machine, controlled by the following events:
1024  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1025  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1026  * 3. Loss detection event of one of three flavors:
1027  *	A. Scoreboard estimator decided the packet is lost.
1028  *	   A'. Reno "three dupacks" marks head of queue lost.
1029  *	   A''. Its FACK modfication, head until snd.fack is lost.
1030  *	B. SACK arrives sacking data transmitted after never retransmitted
1031  *	   hole was sent out.
1032  *	C. SACK arrives sacking SND.NXT at the moment, when the
1033  *	   segment was retransmitted.
1034  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1035  *
1036  * It is pleasant to note, that state diagram turns out to be commutative,
1037  * so that we are allowed not to be bothered by order of our actions,
1038  * when multiple events arrive simultaneously. (see the function below).
1039  *
1040  * Reordering detection.
1041  * --------------------
1042  * Reordering metric is maximal distance, which a packet can be displaced
1043  * in packet stream. With SACKs we can estimate it:
1044  *
1045  * 1. SACK fills old hole and the corresponding segment was not
1046  *    ever retransmitted -> reordering. Alas, we cannot use it
1047  *    when segment was retransmitted.
1048  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1049  *    for retransmitted and already SACKed segment -> reordering..
1050  * Both of these heuristics are not used in Loss state, when we cannot
1051  * account for retransmits accurately.
1052  *
1053  * SACK block validation.
1054  * ----------------------
1055  *
1056  * SACK block range validation checks that the received SACK block fits to
1057  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1058  * Note that SND.UNA is not included to the range though being valid because
1059  * it means that the receiver is rather inconsistent with itself reporting
1060  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1061  * perfectly valid, however, in light of RFC2018 which explicitly states
1062  * that "SACK block MUST reflect the newest segment.  Even if the newest
1063  * segment is going to be discarded ...", not that it looks very clever
1064  * in case of head skb. Due to potentional receiver driven attacks, we
1065  * choose to avoid immediate execution of a walk in write queue due to
1066  * reneging and defer head skb's loss recovery to standard loss recovery
1067  * procedure that will eventually trigger (nothing forbids us doing this).
1068  *
1069  * Implements also blockage to start_seq wrap-around. Problem lies in the
1070  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1071  * there's no guarantee that it will be before snd_nxt (n). The problem
1072  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1073  * wrap (s_w):
1074  *
1075  *         <- outs wnd ->                          <- wrapzone ->
1076  *         u     e      n                         u_w   e_w  s n_w
1077  *         |     |      |                          |     |   |  |
1078  * |<------------+------+----- TCP seqno space --------------+---------->|
1079  * ...-- <2^31 ->|                                           |<--------...
1080  * ...---- >2^31 ------>|                                    |<--------...
1081  *
1082  * Current code wouldn't be vulnerable but it's better still to discard such
1083  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1084  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1085  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1086  * equal to the ideal case (infinite seqno space without wrap caused issues).
1087  *
1088  * With D-SACK the lower bound is extended to cover sequence space below
1089  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1090  * again, D-SACK block must not to go across snd_una (for the same reason as
1091  * for the normal SACK blocks, explained above). But there all simplicity
1092  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1093  * fully below undo_marker they do not affect behavior in anyway and can
1094  * therefore be safely ignored. In rare cases (which are more or less
1095  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1096  * fragmentation and packet reordering past skb's retransmission. To consider
1097  * them correctly, the acceptable range must be extended even more though
1098  * the exact amount is rather hard to quantify. However, tp->max_window can
1099  * be used as an exaggerated estimate.
1100  */
1101 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1102 				  u32 start_seq, u32 end_seq)
1103 {
1104 	/* Too far in future, or reversed (interpretation is ambiguous) */
1105 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1106 		return 0;
1107 
1108 	/* Nasty start_seq wrap-around check (see comments above) */
1109 	if (!before(start_seq, tp->snd_nxt))
1110 		return 0;
1111 
1112 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1113 	 * start_seq == snd_una is non-sensical (see comments above)
1114 	 */
1115 	if (after(start_seq, tp->snd_una))
1116 		return 1;
1117 
1118 	if (!is_dsack || !tp->undo_marker)
1119 		return 0;
1120 
1121 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1122 	if (!after(end_seq, tp->snd_una))
1123 		return 0;
1124 
1125 	if (!before(start_seq, tp->undo_marker))
1126 		return 1;
1127 
1128 	/* Too old */
1129 	if (!after(end_seq, tp->undo_marker))
1130 		return 0;
1131 
1132 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1133 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1134 	 */
1135 	return !before(start_seq, end_seq - tp->max_window);
1136 }
1137 
1138 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1139  * Event "C". Later note: FACK people cheated me again 8), we have to account
1140  * for reordering! Ugly, but should help.
1141  *
1142  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1143  * less than what is now known to be received by the other end (derived from
1144  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1145  * retransmitted skbs to avoid some costly processing per ACKs.
1146  */
1147 static void tcp_mark_lost_retrans(struct sock *sk)
1148 {
1149 	const struct inet_connection_sock *icsk = inet_csk(sk);
1150 	struct tcp_sock *tp = tcp_sk(sk);
1151 	struct sk_buff *skb;
1152 	int cnt = 0;
1153 	u32 new_low_seq = tp->snd_nxt;
1154 	u32 received_upto = tcp_highest_sack_seq(tp);
1155 
1156 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1157 	    !after(received_upto, tp->lost_retrans_low) ||
1158 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1159 		return;
1160 
1161 	tcp_for_write_queue(skb, sk) {
1162 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1163 
1164 		if (skb == tcp_send_head(sk))
1165 			break;
1166 		if (cnt == tp->retrans_out)
1167 			break;
1168 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1169 			continue;
1170 
1171 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1172 			continue;
1173 
1174 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1175 		 * constraint here (see above) but figuring out that at
1176 		 * least tp->reordering SACK blocks reside between ack_seq
1177 		 * and received_upto is not easy task to do cheaply with
1178 		 * the available datastructures.
1179 		 *
1180 		 * Whether FACK should check here for tp->reordering segs
1181 		 * in-between one could argue for either way (it would be
1182 		 * rather simple to implement as we could count fack_count
1183 		 * during the walk and do tp->fackets_out - fack_count).
1184 		 */
1185 		if (after(received_upto, ack_seq)) {
1186 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1187 			tp->retrans_out -= tcp_skb_pcount(skb);
1188 
1189 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1190 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1191 		} else {
1192 			if (before(ack_seq, new_low_seq))
1193 				new_low_seq = ack_seq;
1194 			cnt += tcp_skb_pcount(skb);
1195 		}
1196 	}
1197 
1198 	if (tp->retrans_out)
1199 		tp->lost_retrans_low = new_low_seq;
1200 }
1201 
1202 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1203 			   struct tcp_sack_block_wire *sp, int num_sacks,
1204 			   u32 prior_snd_una)
1205 {
1206 	struct tcp_sock *tp = tcp_sk(sk);
1207 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1208 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1209 	int dup_sack = 0;
1210 
1211 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1212 		dup_sack = 1;
1213 		tcp_dsack_seen(tp);
1214 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1215 	} else if (num_sacks > 1) {
1216 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1217 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1218 
1219 		if (!after(end_seq_0, end_seq_1) &&
1220 		    !before(start_seq_0, start_seq_1)) {
1221 			dup_sack = 1;
1222 			tcp_dsack_seen(tp);
1223 			NET_INC_STATS_BH(sock_net(sk),
1224 					LINUX_MIB_TCPDSACKOFORECV);
1225 		}
1226 	}
1227 
1228 	/* D-SACK for already forgotten data... Do dumb counting. */
1229 	if (dup_sack &&
1230 	    !after(end_seq_0, prior_snd_una) &&
1231 	    after(end_seq_0, tp->undo_marker))
1232 		tp->undo_retrans--;
1233 
1234 	return dup_sack;
1235 }
1236 
1237 struct tcp_sacktag_state {
1238 	int reord;
1239 	int fack_count;
1240 	int flag;
1241 };
1242 
1243 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1244  * the incoming SACK may not exactly match but we can find smaller MSS
1245  * aligned portion of it that matches. Therefore we might need to fragment
1246  * which may fail and creates some hassle (caller must handle error case
1247  * returns).
1248  *
1249  * FIXME: this could be merged to shift decision code
1250  */
1251 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1252 				 u32 start_seq, u32 end_seq)
1253 {
1254 	int in_sack, err;
1255 	unsigned int pkt_len;
1256 	unsigned int mss;
1257 
1258 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1259 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1260 
1261 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1262 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1263 		mss = tcp_skb_mss(skb);
1264 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1265 
1266 		if (!in_sack) {
1267 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1268 			if (pkt_len < mss)
1269 				pkt_len = mss;
1270 		} else {
1271 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1272 			if (pkt_len < mss)
1273 				return -EINVAL;
1274 		}
1275 
1276 		/* Round if necessary so that SACKs cover only full MSSes
1277 		 * and/or the remaining small portion (if present)
1278 		 */
1279 		if (pkt_len > mss) {
1280 			unsigned int new_len = (pkt_len / mss) * mss;
1281 			if (!in_sack && new_len < pkt_len) {
1282 				new_len += mss;
1283 				if (new_len > skb->len)
1284 					return 0;
1285 			}
1286 			pkt_len = new_len;
1287 		}
1288 		err = tcp_fragment(sk, skb, pkt_len, mss);
1289 		if (err < 0)
1290 			return err;
1291 	}
1292 
1293 	return in_sack;
1294 }
1295 
1296 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1297 			  struct tcp_sacktag_state *state,
1298 			  int dup_sack, int pcount)
1299 {
1300 	struct tcp_sock *tp = tcp_sk(sk);
1301 	u8 sacked = TCP_SKB_CB(skb)->sacked;
1302 	int fack_count = state->fack_count;
1303 
1304 	/* Account D-SACK for retransmitted packet. */
1305 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1306 		if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1307 			tp->undo_retrans--;
1308 		if (sacked & TCPCB_SACKED_ACKED)
1309 			state->reord = min(fack_count, state->reord);
1310 	}
1311 
1312 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1313 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1314 		return sacked;
1315 
1316 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1317 		if (sacked & TCPCB_SACKED_RETRANS) {
1318 			/* If the segment is not tagged as lost,
1319 			 * we do not clear RETRANS, believing
1320 			 * that retransmission is still in flight.
1321 			 */
1322 			if (sacked & TCPCB_LOST) {
1323 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1324 				tp->lost_out -= pcount;
1325 				tp->retrans_out -= pcount;
1326 			}
1327 		} else {
1328 			if (!(sacked & TCPCB_RETRANS)) {
1329 				/* New sack for not retransmitted frame,
1330 				 * which was in hole. It is reordering.
1331 				 */
1332 				if (before(TCP_SKB_CB(skb)->seq,
1333 					   tcp_highest_sack_seq(tp)))
1334 					state->reord = min(fack_count,
1335 							   state->reord);
1336 
1337 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1338 				if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1339 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1340 			}
1341 
1342 			if (sacked & TCPCB_LOST) {
1343 				sacked &= ~TCPCB_LOST;
1344 				tp->lost_out -= pcount;
1345 			}
1346 		}
1347 
1348 		sacked |= TCPCB_SACKED_ACKED;
1349 		state->flag |= FLAG_DATA_SACKED;
1350 		tp->sacked_out += pcount;
1351 
1352 		fack_count += pcount;
1353 
1354 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1355 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1356 		    before(TCP_SKB_CB(skb)->seq,
1357 			   TCP_SKB_CB(tp->lost_skb_hint)->seq))
1358 			tp->lost_cnt_hint += pcount;
1359 
1360 		if (fack_count > tp->fackets_out)
1361 			tp->fackets_out = fack_count;
1362 	}
1363 
1364 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1365 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1366 	 * are accounted above as well.
1367 	 */
1368 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1369 		sacked &= ~TCPCB_SACKED_RETRANS;
1370 		tp->retrans_out -= pcount;
1371 	}
1372 
1373 	return sacked;
1374 }
1375 
1376 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1377 			   struct tcp_sacktag_state *state,
1378 			   unsigned int pcount, int shifted, int mss,
1379 			   int dup_sack)
1380 {
1381 	struct tcp_sock *tp = tcp_sk(sk);
1382 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1383 
1384 	BUG_ON(!pcount);
1385 
1386 	/* Tweak before seqno plays */
1387 	if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1388 	    !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1389 		tp->lost_cnt_hint += pcount;
1390 
1391 	TCP_SKB_CB(prev)->end_seq += shifted;
1392 	TCP_SKB_CB(skb)->seq += shifted;
1393 
1394 	skb_shinfo(prev)->gso_segs += pcount;
1395 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1396 	skb_shinfo(skb)->gso_segs -= pcount;
1397 
1398 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1399 	 * in theory this shouldn't be necessary but as long as DSACK
1400 	 * code can come after this skb later on it's better to keep
1401 	 * setting gso_size to something.
1402 	 */
1403 	if (!skb_shinfo(prev)->gso_size) {
1404 		skb_shinfo(prev)->gso_size = mss;
1405 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1406 	}
1407 
1408 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1409 	if (skb_shinfo(skb)->gso_segs <= 1) {
1410 		skb_shinfo(skb)->gso_size = 0;
1411 		skb_shinfo(skb)->gso_type = 0;
1412 	}
1413 
1414 	/* We discard results */
1415 	tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1416 
1417 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1418 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1419 
1420 	if (skb->len > 0) {
1421 		BUG_ON(!tcp_skb_pcount(skb));
1422 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1423 		return 0;
1424 	}
1425 
1426 	/* Whole SKB was eaten :-) */
1427 
1428 	if (skb == tp->retransmit_skb_hint)
1429 		tp->retransmit_skb_hint = prev;
1430 	if (skb == tp->scoreboard_skb_hint)
1431 		tp->scoreboard_skb_hint = prev;
1432 	if (skb == tp->lost_skb_hint) {
1433 		tp->lost_skb_hint = prev;
1434 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1435 	}
1436 
1437 	TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1438 	if (skb == tcp_highest_sack(sk))
1439 		tcp_advance_highest_sack(sk, skb);
1440 
1441 	tcp_unlink_write_queue(skb, sk);
1442 	sk_wmem_free_skb(sk, skb);
1443 
1444 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1445 
1446 	return 1;
1447 }
1448 
1449 /* I wish gso_size would have a bit more sane initialization than
1450  * something-or-zero which complicates things
1451  */
1452 static int tcp_skb_seglen(struct sk_buff *skb)
1453 {
1454 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1455 }
1456 
1457 /* Shifting pages past head area doesn't work */
1458 static int skb_can_shift(struct sk_buff *skb)
1459 {
1460 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1461 }
1462 
1463 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1464  * skb.
1465  */
1466 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1467 					  struct tcp_sacktag_state *state,
1468 					  u32 start_seq, u32 end_seq,
1469 					  int dup_sack)
1470 {
1471 	struct tcp_sock *tp = tcp_sk(sk);
1472 	struct sk_buff *prev;
1473 	int mss;
1474 	int pcount = 0;
1475 	int len;
1476 	int in_sack;
1477 
1478 	if (!sk_can_gso(sk))
1479 		goto fallback;
1480 
1481 	/* Normally R but no L won't result in plain S */
1482 	if (!dup_sack &&
1483 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1484 		goto fallback;
1485 	if (!skb_can_shift(skb))
1486 		goto fallback;
1487 	/* This frame is about to be dropped (was ACKed). */
1488 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1489 		goto fallback;
1490 
1491 	/* Can only happen with delayed DSACK + discard craziness */
1492 	if (unlikely(skb == tcp_write_queue_head(sk)))
1493 		goto fallback;
1494 	prev = tcp_write_queue_prev(sk, skb);
1495 
1496 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1497 		goto fallback;
1498 
1499 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1500 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1501 
1502 	if (in_sack) {
1503 		len = skb->len;
1504 		pcount = tcp_skb_pcount(skb);
1505 		mss = tcp_skb_seglen(skb);
1506 
1507 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1508 		 * drop this restriction as unnecessary
1509 		 */
1510 		if (mss != tcp_skb_seglen(prev))
1511 			goto fallback;
1512 	} else {
1513 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1514 			goto noop;
1515 		/* CHECKME: This is non-MSS split case only?, this will
1516 		 * cause skipped skbs due to advancing loop btw, original
1517 		 * has that feature too
1518 		 */
1519 		if (tcp_skb_pcount(skb) <= 1)
1520 			goto noop;
1521 
1522 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1523 		if (!in_sack) {
1524 			/* TODO: head merge to next could be attempted here
1525 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1526 			 * though it might not be worth of the additional hassle
1527 			 *
1528 			 * ...we can probably just fallback to what was done
1529 			 * previously. We could try merging non-SACKed ones
1530 			 * as well but it probably isn't going to buy off
1531 			 * because later SACKs might again split them, and
1532 			 * it would make skb timestamp tracking considerably
1533 			 * harder problem.
1534 			 */
1535 			goto fallback;
1536 		}
1537 
1538 		len = end_seq - TCP_SKB_CB(skb)->seq;
1539 		BUG_ON(len < 0);
1540 		BUG_ON(len > skb->len);
1541 
1542 		/* MSS boundaries should be honoured or else pcount will
1543 		 * severely break even though it makes things bit trickier.
1544 		 * Optimize common case to avoid most of the divides
1545 		 */
1546 		mss = tcp_skb_mss(skb);
1547 
1548 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1549 		 * drop this restriction as unnecessary
1550 		 */
1551 		if (mss != tcp_skb_seglen(prev))
1552 			goto fallback;
1553 
1554 		if (len == mss) {
1555 			pcount = 1;
1556 		} else if (len < mss) {
1557 			goto noop;
1558 		} else {
1559 			pcount = len / mss;
1560 			len = pcount * mss;
1561 		}
1562 	}
1563 
1564 	if (!skb_shift(prev, skb, len))
1565 		goto fallback;
1566 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1567 		goto out;
1568 
1569 	/* Hole filled allows collapsing with the next as well, this is very
1570 	 * useful when hole on every nth skb pattern happens
1571 	 */
1572 	if (prev == tcp_write_queue_tail(sk))
1573 		goto out;
1574 	skb = tcp_write_queue_next(sk, prev);
1575 
1576 	if (!skb_can_shift(skb) ||
1577 	    (skb == tcp_send_head(sk)) ||
1578 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1579 	    (mss != tcp_skb_seglen(skb)))
1580 		goto out;
1581 
1582 	len = skb->len;
1583 	if (skb_shift(prev, skb, len)) {
1584 		pcount += tcp_skb_pcount(skb);
1585 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1586 	}
1587 
1588 out:
1589 	state->fack_count += pcount;
1590 	return prev;
1591 
1592 noop:
1593 	return skb;
1594 
1595 fallback:
1596 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1597 	return NULL;
1598 }
1599 
1600 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1601 					struct tcp_sack_block *next_dup,
1602 					struct tcp_sacktag_state *state,
1603 					u32 start_seq, u32 end_seq,
1604 					int dup_sack_in)
1605 {
1606 	struct tcp_sock *tp = tcp_sk(sk);
1607 	struct sk_buff *tmp;
1608 
1609 	tcp_for_write_queue_from(skb, sk) {
1610 		int in_sack = 0;
1611 		int dup_sack = dup_sack_in;
1612 
1613 		if (skb == tcp_send_head(sk))
1614 			break;
1615 
1616 		/* queue is in-order => we can short-circuit the walk early */
1617 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1618 			break;
1619 
1620 		if ((next_dup != NULL) &&
1621 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1622 			in_sack = tcp_match_skb_to_sack(sk, skb,
1623 							next_dup->start_seq,
1624 							next_dup->end_seq);
1625 			if (in_sack > 0)
1626 				dup_sack = 1;
1627 		}
1628 
1629 		/* skb reference here is a bit tricky to get right, since
1630 		 * shifting can eat and free both this skb and the next,
1631 		 * so not even _safe variant of the loop is enough.
1632 		 */
1633 		if (in_sack <= 0) {
1634 			tmp = tcp_shift_skb_data(sk, skb, state,
1635 						 start_seq, end_seq, dup_sack);
1636 			if (tmp != NULL) {
1637 				if (tmp != skb) {
1638 					skb = tmp;
1639 					continue;
1640 				}
1641 
1642 				in_sack = 0;
1643 			} else {
1644 				in_sack = tcp_match_skb_to_sack(sk, skb,
1645 								start_seq,
1646 								end_seq);
1647 			}
1648 		}
1649 
1650 		if (unlikely(in_sack < 0))
1651 			break;
1652 
1653 		if (in_sack) {
1654 			TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1655 								  state,
1656 								  dup_sack,
1657 								  tcp_skb_pcount(skb));
1658 
1659 			if (!before(TCP_SKB_CB(skb)->seq,
1660 				    tcp_highest_sack_seq(tp)))
1661 				tcp_advance_highest_sack(sk, skb);
1662 		}
1663 
1664 		state->fack_count += tcp_skb_pcount(skb);
1665 	}
1666 	return skb;
1667 }
1668 
1669 /* Avoid all extra work that is being done by sacktag while walking in
1670  * a normal way
1671  */
1672 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1673 					struct tcp_sacktag_state *state,
1674 					u32 skip_to_seq)
1675 {
1676 	tcp_for_write_queue_from(skb, sk) {
1677 		if (skb == tcp_send_head(sk))
1678 			break;
1679 
1680 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1681 			break;
1682 
1683 		state->fack_count += tcp_skb_pcount(skb);
1684 	}
1685 	return skb;
1686 }
1687 
1688 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1689 						struct sock *sk,
1690 						struct tcp_sack_block *next_dup,
1691 						struct tcp_sacktag_state *state,
1692 						u32 skip_to_seq)
1693 {
1694 	if (next_dup == NULL)
1695 		return skb;
1696 
1697 	if (before(next_dup->start_seq, skip_to_seq)) {
1698 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1699 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1700 				       next_dup->start_seq, next_dup->end_seq,
1701 				       1);
1702 	}
1703 
1704 	return skb;
1705 }
1706 
1707 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1708 {
1709 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1710 }
1711 
1712 static int
1713 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1714 			u32 prior_snd_una)
1715 {
1716 	const struct inet_connection_sock *icsk = inet_csk(sk);
1717 	struct tcp_sock *tp = tcp_sk(sk);
1718 	unsigned char *ptr = (skb_transport_header(ack_skb) +
1719 			      TCP_SKB_CB(ack_skb)->sacked);
1720 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1721 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1722 	struct tcp_sack_block *cache;
1723 	struct tcp_sacktag_state state;
1724 	struct sk_buff *skb;
1725 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1726 	int used_sacks;
1727 	int found_dup_sack = 0;
1728 	int i, j;
1729 	int first_sack_index;
1730 
1731 	state.flag = 0;
1732 	state.reord = tp->packets_out;
1733 
1734 	if (!tp->sacked_out) {
1735 		if (WARN_ON(tp->fackets_out))
1736 			tp->fackets_out = 0;
1737 		tcp_highest_sack_reset(sk);
1738 	}
1739 
1740 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1741 					 num_sacks, prior_snd_una);
1742 	if (found_dup_sack)
1743 		state.flag |= FLAG_DSACKING_ACK;
1744 
1745 	/* Eliminate too old ACKs, but take into
1746 	 * account more or less fresh ones, they can
1747 	 * contain valid SACK info.
1748 	 */
1749 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1750 		return 0;
1751 
1752 	if (!tp->packets_out)
1753 		goto out;
1754 
1755 	used_sacks = 0;
1756 	first_sack_index = 0;
1757 	for (i = 0; i < num_sacks; i++) {
1758 		int dup_sack = !i && found_dup_sack;
1759 
1760 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1761 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1762 
1763 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1764 					    sp[used_sacks].start_seq,
1765 					    sp[used_sacks].end_seq)) {
1766 			int mib_idx;
1767 
1768 			if (dup_sack) {
1769 				if (!tp->undo_marker)
1770 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1771 				else
1772 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1773 			} else {
1774 				/* Don't count olds caused by ACK reordering */
1775 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1776 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1777 					continue;
1778 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1779 			}
1780 
1781 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1782 			if (i == 0)
1783 				first_sack_index = -1;
1784 			continue;
1785 		}
1786 
1787 		/* Ignore very old stuff early */
1788 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1789 			continue;
1790 
1791 		used_sacks++;
1792 	}
1793 
1794 	/* order SACK blocks to allow in order walk of the retrans queue */
1795 	for (i = used_sacks - 1; i > 0; i--) {
1796 		for (j = 0; j < i; j++) {
1797 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1798 				swap(sp[j], sp[j + 1]);
1799 
1800 				/* Track where the first SACK block goes to */
1801 				if (j == first_sack_index)
1802 					first_sack_index = j + 1;
1803 			}
1804 		}
1805 	}
1806 
1807 	skb = tcp_write_queue_head(sk);
1808 	state.fack_count = 0;
1809 	i = 0;
1810 
1811 	if (!tp->sacked_out) {
1812 		/* It's already past, so skip checking against it */
1813 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1814 	} else {
1815 		cache = tp->recv_sack_cache;
1816 		/* Skip empty blocks in at head of the cache */
1817 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1818 		       !cache->end_seq)
1819 			cache++;
1820 	}
1821 
1822 	while (i < used_sacks) {
1823 		u32 start_seq = sp[i].start_seq;
1824 		u32 end_seq = sp[i].end_seq;
1825 		int dup_sack = (found_dup_sack && (i == first_sack_index));
1826 		struct tcp_sack_block *next_dup = NULL;
1827 
1828 		if (found_dup_sack && ((i + 1) == first_sack_index))
1829 			next_dup = &sp[i + 1];
1830 
1831 		/* Event "B" in the comment above. */
1832 		if (after(end_seq, tp->high_seq))
1833 			state.flag |= FLAG_DATA_LOST;
1834 
1835 		/* Skip too early cached blocks */
1836 		while (tcp_sack_cache_ok(tp, cache) &&
1837 		       !before(start_seq, cache->end_seq))
1838 			cache++;
1839 
1840 		/* Can skip some work by looking recv_sack_cache? */
1841 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1842 		    after(end_seq, cache->start_seq)) {
1843 
1844 			/* Head todo? */
1845 			if (before(start_seq, cache->start_seq)) {
1846 				skb = tcp_sacktag_skip(skb, sk, &state,
1847 						       start_seq);
1848 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1849 						       &state,
1850 						       start_seq,
1851 						       cache->start_seq,
1852 						       dup_sack);
1853 			}
1854 
1855 			/* Rest of the block already fully processed? */
1856 			if (!after(end_seq, cache->end_seq))
1857 				goto advance_sp;
1858 
1859 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1860 						       &state,
1861 						       cache->end_seq);
1862 
1863 			/* ...tail remains todo... */
1864 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1865 				/* ...but better entrypoint exists! */
1866 				skb = tcp_highest_sack(sk);
1867 				if (skb == NULL)
1868 					break;
1869 				state.fack_count = tp->fackets_out;
1870 				cache++;
1871 				goto walk;
1872 			}
1873 
1874 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1875 			/* Check overlap against next cached too (past this one already) */
1876 			cache++;
1877 			continue;
1878 		}
1879 
1880 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1881 			skb = tcp_highest_sack(sk);
1882 			if (skb == NULL)
1883 				break;
1884 			state.fack_count = tp->fackets_out;
1885 		}
1886 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1887 
1888 walk:
1889 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1890 				       start_seq, end_seq, dup_sack);
1891 
1892 advance_sp:
1893 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1894 		 * due to in-order walk
1895 		 */
1896 		if (after(end_seq, tp->frto_highmark))
1897 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1898 
1899 		i++;
1900 	}
1901 
1902 	/* Clear the head of the cache sack blocks so we can skip it next time */
1903 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1904 		tp->recv_sack_cache[i].start_seq = 0;
1905 		tp->recv_sack_cache[i].end_seq = 0;
1906 	}
1907 	for (j = 0; j < used_sacks; j++)
1908 		tp->recv_sack_cache[i++] = sp[j];
1909 
1910 	tcp_mark_lost_retrans(sk);
1911 
1912 	tcp_verify_left_out(tp);
1913 
1914 	if ((state.reord < tp->fackets_out) &&
1915 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1916 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1917 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1918 
1919 out:
1920 
1921 #if FASTRETRANS_DEBUG > 0
1922 	WARN_ON((int)tp->sacked_out < 0);
1923 	WARN_ON((int)tp->lost_out < 0);
1924 	WARN_ON((int)tp->retrans_out < 0);
1925 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1926 #endif
1927 	return state.flag;
1928 }
1929 
1930 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1931  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1932  */
1933 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1934 {
1935 	u32 holes;
1936 
1937 	holes = max(tp->lost_out, 1U);
1938 	holes = min(holes, tp->packets_out);
1939 
1940 	if ((tp->sacked_out + holes) > tp->packets_out) {
1941 		tp->sacked_out = tp->packets_out - holes;
1942 		return 1;
1943 	}
1944 	return 0;
1945 }
1946 
1947 /* If we receive more dupacks than we expected counting segments
1948  * in assumption of absent reordering, interpret this as reordering.
1949  * The only another reason could be bug in receiver TCP.
1950  */
1951 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1952 {
1953 	struct tcp_sock *tp = tcp_sk(sk);
1954 	if (tcp_limit_reno_sacked(tp))
1955 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1956 }
1957 
1958 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1959 
1960 static void tcp_add_reno_sack(struct sock *sk)
1961 {
1962 	struct tcp_sock *tp = tcp_sk(sk);
1963 	tp->sacked_out++;
1964 	tcp_check_reno_reordering(sk, 0);
1965 	tcp_verify_left_out(tp);
1966 }
1967 
1968 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1969 
1970 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1971 {
1972 	struct tcp_sock *tp = tcp_sk(sk);
1973 
1974 	if (acked > 0) {
1975 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1976 		if (acked - 1 >= tp->sacked_out)
1977 			tp->sacked_out = 0;
1978 		else
1979 			tp->sacked_out -= acked - 1;
1980 	}
1981 	tcp_check_reno_reordering(sk, acked);
1982 	tcp_verify_left_out(tp);
1983 }
1984 
1985 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1986 {
1987 	tp->sacked_out = 0;
1988 }
1989 
1990 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1991 {
1992 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1993 }
1994 
1995 /* F-RTO can only be used if TCP has never retransmitted anything other than
1996  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1997  */
1998 int tcp_use_frto(struct sock *sk)
1999 {
2000 	const struct tcp_sock *tp = tcp_sk(sk);
2001 	const struct inet_connection_sock *icsk = inet_csk(sk);
2002 	struct sk_buff *skb;
2003 
2004 	if (!sysctl_tcp_frto)
2005 		return 0;
2006 
2007 	/* MTU probe and F-RTO won't really play nicely along currently */
2008 	if (icsk->icsk_mtup.probe_size)
2009 		return 0;
2010 
2011 	if (tcp_is_sackfrto(tp))
2012 		return 1;
2013 
2014 	/* Avoid expensive walking of rexmit queue if possible */
2015 	if (tp->retrans_out > 1)
2016 		return 0;
2017 
2018 	skb = tcp_write_queue_head(sk);
2019 	if (tcp_skb_is_last(sk, skb))
2020 		return 1;
2021 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2022 	tcp_for_write_queue_from(skb, sk) {
2023 		if (skb == tcp_send_head(sk))
2024 			break;
2025 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2026 			return 0;
2027 		/* Short-circuit when first non-SACKed skb has been checked */
2028 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2029 			break;
2030 	}
2031 	return 1;
2032 }
2033 
2034 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2035  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2036  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2037  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2038  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2039  * bits are handled if the Loss state is really to be entered (in
2040  * tcp_enter_frto_loss).
2041  *
2042  * Do like tcp_enter_loss() would; when RTO expires the second time it
2043  * does:
2044  *  "Reduce ssthresh if it has not yet been made inside this window."
2045  */
2046 void tcp_enter_frto(struct sock *sk)
2047 {
2048 	const struct inet_connection_sock *icsk = inet_csk(sk);
2049 	struct tcp_sock *tp = tcp_sk(sk);
2050 	struct sk_buff *skb;
2051 
2052 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2053 	    tp->snd_una == tp->high_seq ||
2054 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2055 	     !icsk->icsk_retransmits)) {
2056 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2057 		/* Our state is too optimistic in ssthresh() call because cwnd
2058 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2059 		 * recovery has not yet completed. Pattern would be this: RTO,
2060 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2061 		 * up here twice).
2062 		 * RFC4138 should be more specific on what to do, even though
2063 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2064 		 * due to back-off and complexity of triggering events ...
2065 		 */
2066 		if (tp->frto_counter) {
2067 			u32 stored_cwnd;
2068 			stored_cwnd = tp->snd_cwnd;
2069 			tp->snd_cwnd = 2;
2070 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2071 			tp->snd_cwnd = stored_cwnd;
2072 		} else {
2073 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2074 		}
2075 		/* ... in theory, cong.control module could do "any tricks" in
2076 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2077 		 * counter would have to be faked before the call occurs. We
2078 		 * consider that too expensive, unlikely and hacky, so modules
2079 		 * using these in ssthresh() must deal these incompatibility
2080 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2081 		 */
2082 		tcp_ca_event(sk, CA_EVENT_FRTO);
2083 	}
2084 
2085 	tp->undo_marker = tp->snd_una;
2086 	tp->undo_retrans = 0;
2087 
2088 	skb = tcp_write_queue_head(sk);
2089 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2090 		tp->undo_marker = 0;
2091 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2092 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2093 		tp->retrans_out -= tcp_skb_pcount(skb);
2094 	}
2095 	tcp_verify_left_out(tp);
2096 
2097 	/* Too bad if TCP was application limited */
2098 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2099 
2100 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2101 	 * The last condition is necessary at least in tp->frto_counter case.
2102 	 */
2103 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2104 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2105 	    after(tp->high_seq, tp->snd_una)) {
2106 		tp->frto_highmark = tp->high_seq;
2107 	} else {
2108 		tp->frto_highmark = tp->snd_nxt;
2109 	}
2110 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2111 	tp->high_seq = tp->snd_nxt;
2112 	tp->frto_counter = 1;
2113 }
2114 
2115 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2116  * which indicates that we should follow the traditional RTO recovery,
2117  * i.e. mark everything lost and do go-back-N retransmission.
2118  */
2119 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2120 {
2121 	struct tcp_sock *tp = tcp_sk(sk);
2122 	struct sk_buff *skb;
2123 
2124 	tp->lost_out = 0;
2125 	tp->retrans_out = 0;
2126 	if (tcp_is_reno(tp))
2127 		tcp_reset_reno_sack(tp);
2128 
2129 	tcp_for_write_queue(skb, sk) {
2130 		if (skb == tcp_send_head(sk))
2131 			break;
2132 
2133 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2134 		/*
2135 		 * Count the retransmission made on RTO correctly (only when
2136 		 * waiting for the first ACK and did not get it)...
2137 		 */
2138 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2139 			/* For some reason this R-bit might get cleared? */
2140 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2141 				tp->retrans_out += tcp_skb_pcount(skb);
2142 			/* ...enter this if branch just for the first segment */
2143 			flag |= FLAG_DATA_ACKED;
2144 		} else {
2145 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2146 				tp->undo_marker = 0;
2147 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2148 		}
2149 
2150 		/* Marking forward transmissions that were made after RTO lost
2151 		 * can cause unnecessary retransmissions in some scenarios,
2152 		 * SACK blocks will mitigate that in some but not in all cases.
2153 		 * We used to not mark them but it was causing break-ups with
2154 		 * receivers that do only in-order receival.
2155 		 *
2156 		 * TODO: we could detect presence of such receiver and select
2157 		 * different behavior per flow.
2158 		 */
2159 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2160 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2161 			tp->lost_out += tcp_skb_pcount(skb);
2162 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2163 		}
2164 	}
2165 	tcp_verify_left_out(tp);
2166 
2167 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2168 	tp->snd_cwnd_cnt = 0;
2169 	tp->snd_cwnd_stamp = tcp_time_stamp;
2170 	tp->frto_counter = 0;
2171 	tp->bytes_acked = 0;
2172 
2173 	tp->reordering = min_t(unsigned int, tp->reordering,
2174 			       sysctl_tcp_reordering);
2175 	tcp_set_ca_state(sk, TCP_CA_Loss);
2176 	tp->high_seq = tp->snd_nxt;
2177 	TCP_ECN_queue_cwr(tp);
2178 
2179 	tcp_clear_all_retrans_hints(tp);
2180 }
2181 
2182 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2183 {
2184 	tp->retrans_out = 0;
2185 	tp->lost_out = 0;
2186 
2187 	tp->undo_marker = 0;
2188 	tp->undo_retrans = 0;
2189 }
2190 
2191 void tcp_clear_retrans(struct tcp_sock *tp)
2192 {
2193 	tcp_clear_retrans_partial(tp);
2194 
2195 	tp->fackets_out = 0;
2196 	tp->sacked_out = 0;
2197 }
2198 
2199 /* Enter Loss state. If "how" is not zero, forget all SACK information
2200  * and reset tags completely, otherwise preserve SACKs. If receiver
2201  * dropped its ofo queue, we will know this due to reneging detection.
2202  */
2203 void tcp_enter_loss(struct sock *sk, int how)
2204 {
2205 	const struct inet_connection_sock *icsk = inet_csk(sk);
2206 	struct tcp_sock *tp = tcp_sk(sk);
2207 	struct sk_buff *skb;
2208 
2209 	/* Reduce ssthresh if it has not yet been made inside this window. */
2210 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2211 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2212 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2213 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2214 		tcp_ca_event(sk, CA_EVENT_LOSS);
2215 	}
2216 	tp->snd_cwnd	   = 1;
2217 	tp->snd_cwnd_cnt   = 0;
2218 	tp->snd_cwnd_stamp = tcp_time_stamp;
2219 
2220 	tp->bytes_acked = 0;
2221 	tcp_clear_retrans_partial(tp);
2222 
2223 	if (tcp_is_reno(tp))
2224 		tcp_reset_reno_sack(tp);
2225 
2226 	if (!how) {
2227 		/* Push undo marker, if it was plain RTO and nothing
2228 		 * was retransmitted. */
2229 		tp->undo_marker = tp->snd_una;
2230 	} else {
2231 		tp->sacked_out = 0;
2232 		tp->fackets_out = 0;
2233 	}
2234 	tcp_clear_all_retrans_hints(tp);
2235 
2236 	tcp_for_write_queue(skb, sk) {
2237 		if (skb == tcp_send_head(sk))
2238 			break;
2239 
2240 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2241 			tp->undo_marker = 0;
2242 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2243 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2244 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2245 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2246 			tp->lost_out += tcp_skb_pcount(skb);
2247 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2248 		}
2249 	}
2250 	tcp_verify_left_out(tp);
2251 
2252 	tp->reordering = min_t(unsigned int, tp->reordering,
2253 			       sysctl_tcp_reordering);
2254 	tcp_set_ca_state(sk, TCP_CA_Loss);
2255 	tp->high_seq = tp->snd_nxt;
2256 	TCP_ECN_queue_cwr(tp);
2257 	/* Abort F-RTO algorithm if one is in progress */
2258 	tp->frto_counter = 0;
2259 }
2260 
2261 /* If ACK arrived pointing to a remembered SACK, it means that our
2262  * remembered SACKs do not reflect real state of receiver i.e.
2263  * receiver _host_ is heavily congested (or buggy).
2264  *
2265  * Do processing similar to RTO timeout.
2266  */
2267 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2268 {
2269 	if (flag & FLAG_SACK_RENEGING) {
2270 		struct inet_connection_sock *icsk = inet_csk(sk);
2271 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2272 
2273 		tcp_enter_loss(sk, 1);
2274 		icsk->icsk_retransmits++;
2275 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2276 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2277 					  icsk->icsk_rto, TCP_RTO_MAX);
2278 		return 1;
2279 	}
2280 	return 0;
2281 }
2282 
2283 static inline int tcp_fackets_out(struct tcp_sock *tp)
2284 {
2285 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2286 }
2287 
2288 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2289  * counter when SACK is enabled (without SACK, sacked_out is used for
2290  * that purpose).
2291  *
2292  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2293  * segments up to the highest received SACK block so far and holes in
2294  * between them.
2295  *
2296  * With reordering, holes may still be in flight, so RFC3517 recovery
2297  * uses pure sacked_out (total number of SACKed segments) even though
2298  * it violates the RFC that uses duplicate ACKs, often these are equal
2299  * but when e.g. out-of-window ACKs or packet duplication occurs,
2300  * they differ. Since neither occurs due to loss, TCP should really
2301  * ignore them.
2302  */
2303 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2304 {
2305 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2306 }
2307 
2308 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2309 {
2310 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2311 }
2312 
2313 static inline int tcp_head_timedout(struct sock *sk)
2314 {
2315 	struct tcp_sock *tp = tcp_sk(sk);
2316 
2317 	return tp->packets_out &&
2318 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2319 }
2320 
2321 /* Linux NewReno/SACK/FACK/ECN state machine.
2322  * --------------------------------------
2323  *
2324  * "Open"	Normal state, no dubious events, fast path.
2325  * "Disorder"   In all the respects it is "Open",
2326  *		but requires a bit more attention. It is entered when
2327  *		we see some SACKs or dupacks. It is split of "Open"
2328  *		mainly to move some processing from fast path to slow one.
2329  * "CWR"	CWND was reduced due to some Congestion Notification event.
2330  *		It can be ECN, ICMP source quench, local device congestion.
2331  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2332  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2333  *
2334  * tcp_fastretrans_alert() is entered:
2335  * - each incoming ACK, if state is not "Open"
2336  * - when arrived ACK is unusual, namely:
2337  *	* SACK
2338  *	* Duplicate ACK.
2339  *	* ECN ECE.
2340  *
2341  * Counting packets in flight is pretty simple.
2342  *
2343  *	in_flight = packets_out - left_out + retrans_out
2344  *
2345  *	packets_out is SND.NXT-SND.UNA counted in packets.
2346  *
2347  *	retrans_out is number of retransmitted segments.
2348  *
2349  *	left_out is number of segments left network, but not ACKed yet.
2350  *
2351  *		left_out = sacked_out + lost_out
2352  *
2353  *     sacked_out: Packets, which arrived to receiver out of order
2354  *		   and hence not ACKed. With SACKs this number is simply
2355  *		   amount of SACKed data. Even without SACKs
2356  *		   it is easy to give pretty reliable estimate of this number,
2357  *		   counting duplicate ACKs.
2358  *
2359  *       lost_out: Packets lost by network. TCP has no explicit
2360  *		   "loss notification" feedback from network (for now).
2361  *		   It means that this number can be only _guessed_.
2362  *		   Actually, it is the heuristics to predict lossage that
2363  *		   distinguishes different algorithms.
2364  *
2365  *	F.e. after RTO, when all the queue is considered as lost,
2366  *	lost_out = packets_out and in_flight = retrans_out.
2367  *
2368  *		Essentially, we have now two algorithms counting
2369  *		lost packets.
2370  *
2371  *		FACK: It is the simplest heuristics. As soon as we decided
2372  *		that something is lost, we decide that _all_ not SACKed
2373  *		packets until the most forward SACK are lost. I.e.
2374  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2375  *		It is absolutely correct estimate, if network does not reorder
2376  *		packets. And it loses any connection to reality when reordering
2377  *		takes place. We use FACK by default until reordering
2378  *		is suspected on the path to this destination.
2379  *
2380  *		NewReno: when Recovery is entered, we assume that one segment
2381  *		is lost (classic Reno). While we are in Recovery and
2382  *		a partial ACK arrives, we assume that one more packet
2383  *		is lost (NewReno). This heuristics are the same in NewReno
2384  *		and SACK.
2385  *
2386  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2387  *  deflation etc. CWND is real congestion window, never inflated, changes
2388  *  only according to classic VJ rules.
2389  *
2390  * Really tricky (and requiring careful tuning) part of algorithm
2391  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2392  * The first determines the moment _when_ we should reduce CWND and,
2393  * hence, slow down forward transmission. In fact, it determines the moment
2394  * when we decide that hole is caused by loss, rather than by a reorder.
2395  *
2396  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2397  * holes, caused by lost packets.
2398  *
2399  * And the most logically complicated part of algorithm is undo
2400  * heuristics. We detect false retransmits due to both too early
2401  * fast retransmit (reordering) and underestimated RTO, analyzing
2402  * timestamps and D-SACKs. When we detect that some segments were
2403  * retransmitted by mistake and CWND reduction was wrong, we undo
2404  * window reduction and abort recovery phase. This logic is hidden
2405  * inside several functions named tcp_try_undo_<something>.
2406  */
2407 
2408 /* This function decides, when we should leave Disordered state
2409  * and enter Recovery phase, reducing congestion window.
2410  *
2411  * Main question: may we further continue forward transmission
2412  * with the same cwnd?
2413  */
2414 static int tcp_time_to_recover(struct sock *sk)
2415 {
2416 	struct tcp_sock *tp = tcp_sk(sk);
2417 	__u32 packets_out;
2418 
2419 	/* Do not perform any recovery during F-RTO algorithm */
2420 	if (tp->frto_counter)
2421 		return 0;
2422 
2423 	/* Trick#1: The loss is proven. */
2424 	if (tp->lost_out)
2425 		return 1;
2426 
2427 	/* Not-A-Trick#2 : Classic rule... */
2428 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2429 		return 1;
2430 
2431 	/* Trick#3 : when we use RFC2988 timer restart, fast
2432 	 * retransmit can be triggered by timeout of queue head.
2433 	 */
2434 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2435 		return 1;
2436 
2437 	/* Trick#4: It is still not OK... But will it be useful to delay
2438 	 * recovery more?
2439 	 */
2440 	packets_out = tp->packets_out;
2441 	if (packets_out <= tp->reordering &&
2442 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2443 	    !tcp_may_send_now(sk)) {
2444 		/* We have nothing to send. This connection is limited
2445 		 * either by receiver window or by application.
2446 		 */
2447 		return 1;
2448 	}
2449 
2450 	return 0;
2451 }
2452 
2453 /* New heuristics: it is possible only after we switched to restart timer
2454  * each time when something is ACKed. Hence, we can detect timed out packets
2455  * during fast retransmit without falling to slow start.
2456  *
2457  * Usefulness of this as is very questionable, since we should know which of
2458  * the segments is the next to timeout which is relatively expensive to find
2459  * in general case unless we add some data structure just for that. The
2460  * current approach certainly won't find the right one too often and when it
2461  * finally does find _something_ it usually marks large part of the window
2462  * right away (because a retransmission with a larger timestamp blocks the
2463  * loop from advancing). -ij
2464  */
2465 static void tcp_timeout_skbs(struct sock *sk)
2466 {
2467 	struct tcp_sock *tp = tcp_sk(sk);
2468 	struct sk_buff *skb;
2469 
2470 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2471 		return;
2472 
2473 	skb = tp->scoreboard_skb_hint;
2474 	if (tp->scoreboard_skb_hint == NULL)
2475 		skb = tcp_write_queue_head(sk);
2476 
2477 	tcp_for_write_queue_from(skb, sk) {
2478 		if (skb == tcp_send_head(sk))
2479 			break;
2480 		if (!tcp_skb_timedout(sk, skb))
2481 			break;
2482 
2483 		tcp_skb_mark_lost(tp, skb);
2484 	}
2485 
2486 	tp->scoreboard_skb_hint = skb;
2487 
2488 	tcp_verify_left_out(tp);
2489 }
2490 
2491 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2492  * is against sacked "cnt", otherwise it's against facked "cnt"
2493  */
2494 static void tcp_mark_head_lost(struct sock *sk, int packets)
2495 {
2496 	struct tcp_sock *tp = tcp_sk(sk);
2497 	struct sk_buff *skb;
2498 	int cnt, oldcnt;
2499 	int err;
2500 	unsigned int mss;
2501 
2502 	WARN_ON(packets > tp->packets_out);
2503 	if (tp->lost_skb_hint) {
2504 		skb = tp->lost_skb_hint;
2505 		cnt = tp->lost_cnt_hint;
2506 	} else {
2507 		skb = tcp_write_queue_head(sk);
2508 		cnt = 0;
2509 	}
2510 
2511 	tcp_for_write_queue_from(skb, sk) {
2512 		if (skb == tcp_send_head(sk))
2513 			break;
2514 		/* TODO: do this better */
2515 		/* this is not the most efficient way to do this... */
2516 		tp->lost_skb_hint = skb;
2517 		tp->lost_cnt_hint = cnt;
2518 
2519 		if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2520 			break;
2521 
2522 		oldcnt = cnt;
2523 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2524 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2525 			cnt += tcp_skb_pcount(skb);
2526 
2527 		if (cnt > packets) {
2528 			if (tcp_is_sack(tp) || (oldcnt >= packets))
2529 				break;
2530 
2531 			mss = skb_shinfo(skb)->gso_size;
2532 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2533 			if (err < 0)
2534 				break;
2535 			cnt = packets;
2536 		}
2537 
2538 		tcp_skb_mark_lost(tp, skb);
2539 	}
2540 	tcp_verify_left_out(tp);
2541 }
2542 
2543 /* Account newly detected lost packet(s) */
2544 
2545 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2546 {
2547 	struct tcp_sock *tp = tcp_sk(sk);
2548 
2549 	if (tcp_is_reno(tp)) {
2550 		tcp_mark_head_lost(sk, 1);
2551 	} else if (tcp_is_fack(tp)) {
2552 		int lost = tp->fackets_out - tp->reordering;
2553 		if (lost <= 0)
2554 			lost = 1;
2555 		tcp_mark_head_lost(sk, lost);
2556 	} else {
2557 		int sacked_upto = tp->sacked_out - tp->reordering;
2558 		if (sacked_upto < fast_rexmit)
2559 			sacked_upto = fast_rexmit;
2560 		tcp_mark_head_lost(sk, sacked_upto);
2561 	}
2562 
2563 	tcp_timeout_skbs(sk);
2564 }
2565 
2566 /* CWND moderation, preventing bursts due to too big ACKs
2567  * in dubious situations.
2568  */
2569 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2570 {
2571 	tp->snd_cwnd = min(tp->snd_cwnd,
2572 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2573 	tp->snd_cwnd_stamp = tcp_time_stamp;
2574 }
2575 
2576 /* Lower bound on congestion window is slow start threshold
2577  * unless congestion avoidance choice decides to overide it.
2578  */
2579 static inline u32 tcp_cwnd_min(const struct sock *sk)
2580 {
2581 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2582 
2583 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2584 }
2585 
2586 /* Decrease cwnd each second ack. */
2587 static void tcp_cwnd_down(struct sock *sk, int flag)
2588 {
2589 	struct tcp_sock *tp = tcp_sk(sk);
2590 	int decr = tp->snd_cwnd_cnt + 1;
2591 
2592 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2593 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2594 		tp->snd_cwnd_cnt = decr & 1;
2595 		decr >>= 1;
2596 
2597 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2598 			tp->snd_cwnd -= decr;
2599 
2600 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2601 		tp->snd_cwnd_stamp = tcp_time_stamp;
2602 	}
2603 }
2604 
2605 /* Nothing was retransmitted or returned timestamp is less
2606  * than timestamp of the first retransmission.
2607  */
2608 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2609 {
2610 	return !tp->retrans_stamp ||
2611 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2612 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2613 }
2614 
2615 /* Undo procedures. */
2616 
2617 #if FASTRETRANS_DEBUG > 1
2618 static void DBGUNDO(struct sock *sk, const char *msg)
2619 {
2620 	struct tcp_sock *tp = tcp_sk(sk);
2621 	struct inet_sock *inet = inet_sk(sk);
2622 
2623 	if (sk->sk_family == AF_INET) {
2624 		printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2625 		       msg,
2626 		       &inet->daddr, ntohs(inet->dport),
2627 		       tp->snd_cwnd, tcp_left_out(tp),
2628 		       tp->snd_ssthresh, tp->prior_ssthresh,
2629 		       tp->packets_out);
2630 	}
2631 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2632 	else if (sk->sk_family == AF_INET6) {
2633 		struct ipv6_pinfo *np = inet6_sk(sk);
2634 		printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2635 		       msg,
2636 		       &np->daddr, ntohs(inet->dport),
2637 		       tp->snd_cwnd, tcp_left_out(tp),
2638 		       tp->snd_ssthresh, tp->prior_ssthresh,
2639 		       tp->packets_out);
2640 	}
2641 #endif
2642 }
2643 #else
2644 #define DBGUNDO(x...) do { } while (0)
2645 #endif
2646 
2647 static void tcp_undo_cwr(struct sock *sk, const int undo)
2648 {
2649 	struct tcp_sock *tp = tcp_sk(sk);
2650 
2651 	if (tp->prior_ssthresh) {
2652 		const struct inet_connection_sock *icsk = inet_csk(sk);
2653 
2654 		if (icsk->icsk_ca_ops->undo_cwnd)
2655 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2656 		else
2657 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2658 
2659 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2660 			tp->snd_ssthresh = tp->prior_ssthresh;
2661 			TCP_ECN_withdraw_cwr(tp);
2662 		}
2663 	} else {
2664 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2665 	}
2666 	tcp_moderate_cwnd(tp);
2667 	tp->snd_cwnd_stamp = tcp_time_stamp;
2668 }
2669 
2670 static inline int tcp_may_undo(struct tcp_sock *tp)
2671 {
2672 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2673 }
2674 
2675 /* People celebrate: "We love our President!" */
2676 static int tcp_try_undo_recovery(struct sock *sk)
2677 {
2678 	struct tcp_sock *tp = tcp_sk(sk);
2679 
2680 	if (tcp_may_undo(tp)) {
2681 		int mib_idx;
2682 
2683 		/* Happy end! We did not retransmit anything
2684 		 * or our original transmission succeeded.
2685 		 */
2686 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2687 		tcp_undo_cwr(sk, 1);
2688 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2689 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2690 		else
2691 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2692 
2693 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2694 		tp->undo_marker = 0;
2695 	}
2696 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2697 		/* Hold old state until something *above* high_seq
2698 		 * is ACKed. For Reno it is MUST to prevent false
2699 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2700 		tcp_moderate_cwnd(tp);
2701 		return 1;
2702 	}
2703 	tcp_set_ca_state(sk, TCP_CA_Open);
2704 	return 0;
2705 }
2706 
2707 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2708 static void tcp_try_undo_dsack(struct sock *sk)
2709 {
2710 	struct tcp_sock *tp = tcp_sk(sk);
2711 
2712 	if (tp->undo_marker && !tp->undo_retrans) {
2713 		DBGUNDO(sk, "D-SACK");
2714 		tcp_undo_cwr(sk, 1);
2715 		tp->undo_marker = 0;
2716 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2717 	}
2718 }
2719 
2720 /* We can clear retrans_stamp when there are no retransmissions in the
2721  * window. It would seem that it is trivially available for us in
2722  * tp->retrans_out, however, that kind of assumptions doesn't consider
2723  * what will happen if errors occur when sending retransmission for the
2724  * second time. ...It could the that such segment has only
2725  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2726  * the head skb is enough except for some reneging corner cases that
2727  * are not worth the effort.
2728  *
2729  * Main reason for all this complexity is the fact that connection dying
2730  * time now depends on the validity of the retrans_stamp, in particular,
2731  * that successive retransmissions of a segment must not advance
2732  * retrans_stamp under any conditions.
2733  */
2734 static int tcp_any_retrans_done(struct sock *sk)
2735 {
2736 	struct tcp_sock *tp = tcp_sk(sk);
2737 	struct sk_buff *skb;
2738 
2739 	if (tp->retrans_out)
2740 		return 1;
2741 
2742 	skb = tcp_write_queue_head(sk);
2743 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2744 		return 1;
2745 
2746 	return 0;
2747 }
2748 
2749 /* Undo during fast recovery after partial ACK. */
2750 
2751 static int tcp_try_undo_partial(struct sock *sk, int acked)
2752 {
2753 	struct tcp_sock *tp = tcp_sk(sk);
2754 	/* Partial ACK arrived. Force Hoe's retransmit. */
2755 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2756 
2757 	if (tcp_may_undo(tp)) {
2758 		/* Plain luck! Hole if filled with delayed
2759 		 * packet, rather than with a retransmit.
2760 		 */
2761 		if (!tcp_any_retrans_done(sk))
2762 			tp->retrans_stamp = 0;
2763 
2764 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2765 
2766 		DBGUNDO(sk, "Hoe");
2767 		tcp_undo_cwr(sk, 0);
2768 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2769 
2770 		/* So... Do not make Hoe's retransmit yet.
2771 		 * If the first packet was delayed, the rest
2772 		 * ones are most probably delayed as well.
2773 		 */
2774 		failed = 0;
2775 	}
2776 	return failed;
2777 }
2778 
2779 /* Undo during loss recovery after partial ACK. */
2780 static int tcp_try_undo_loss(struct sock *sk)
2781 {
2782 	struct tcp_sock *tp = tcp_sk(sk);
2783 
2784 	if (tcp_may_undo(tp)) {
2785 		struct sk_buff *skb;
2786 		tcp_for_write_queue(skb, sk) {
2787 			if (skb == tcp_send_head(sk))
2788 				break;
2789 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2790 		}
2791 
2792 		tcp_clear_all_retrans_hints(tp);
2793 
2794 		DBGUNDO(sk, "partial loss");
2795 		tp->lost_out = 0;
2796 		tcp_undo_cwr(sk, 1);
2797 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2798 		inet_csk(sk)->icsk_retransmits = 0;
2799 		tp->undo_marker = 0;
2800 		if (tcp_is_sack(tp))
2801 			tcp_set_ca_state(sk, TCP_CA_Open);
2802 		return 1;
2803 	}
2804 	return 0;
2805 }
2806 
2807 static inline void tcp_complete_cwr(struct sock *sk)
2808 {
2809 	struct tcp_sock *tp = tcp_sk(sk);
2810 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2811 	tp->snd_cwnd_stamp = tcp_time_stamp;
2812 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2813 }
2814 
2815 static void tcp_try_keep_open(struct sock *sk)
2816 {
2817 	struct tcp_sock *tp = tcp_sk(sk);
2818 	int state = TCP_CA_Open;
2819 
2820 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2821 		state = TCP_CA_Disorder;
2822 
2823 	if (inet_csk(sk)->icsk_ca_state != state) {
2824 		tcp_set_ca_state(sk, state);
2825 		tp->high_seq = tp->snd_nxt;
2826 	}
2827 }
2828 
2829 static void tcp_try_to_open(struct sock *sk, int flag)
2830 {
2831 	struct tcp_sock *tp = tcp_sk(sk);
2832 
2833 	tcp_verify_left_out(tp);
2834 
2835 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2836 		tp->retrans_stamp = 0;
2837 
2838 	if (flag & FLAG_ECE)
2839 		tcp_enter_cwr(sk, 1);
2840 
2841 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2842 		tcp_try_keep_open(sk);
2843 		tcp_moderate_cwnd(tp);
2844 	} else {
2845 		tcp_cwnd_down(sk, flag);
2846 	}
2847 }
2848 
2849 static void tcp_mtup_probe_failed(struct sock *sk)
2850 {
2851 	struct inet_connection_sock *icsk = inet_csk(sk);
2852 
2853 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2854 	icsk->icsk_mtup.probe_size = 0;
2855 }
2856 
2857 static void tcp_mtup_probe_success(struct sock *sk)
2858 {
2859 	struct tcp_sock *tp = tcp_sk(sk);
2860 	struct inet_connection_sock *icsk = inet_csk(sk);
2861 
2862 	/* FIXME: breaks with very large cwnd */
2863 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2864 	tp->snd_cwnd = tp->snd_cwnd *
2865 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2866 		       icsk->icsk_mtup.probe_size;
2867 	tp->snd_cwnd_cnt = 0;
2868 	tp->snd_cwnd_stamp = tcp_time_stamp;
2869 	tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2870 
2871 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2872 	icsk->icsk_mtup.probe_size = 0;
2873 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2874 }
2875 
2876 /* Do a simple retransmit without using the backoff mechanisms in
2877  * tcp_timer. This is used for path mtu discovery.
2878  * The socket is already locked here.
2879  */
2880 void tcp_simple_retransmit(struct sock *sk)
2881 {
2882 	const struct inet_connection_sock *icsk = inet_csk(sk);
2883 	struct tcp_sock *tp = tcp_sk(sk);
2884 	struct sk_buff *skb;
2885 	unsigned int mss = tcp_current_mss(sk);
2886 	u32 prior_lost = tp->lost_out;
2887 
2888 	tcp_for_write_queue(skb, sk) {
2889 		if (skb == tcp_send_head(sk))
2890 			break;
2891 		if (tcp_skb_seglen(skb) > mss &&
2892 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2893 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2894 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2895 				tp->retrans_out -= tcp_skb_pcount(skb);
2896 			}
2897 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2898 		}
2899 	}
2900 
2901 	tcp_clear_retrans_hints_partial(tp);
2902 
2903 	if (prior_lost == tp->lost_out)
2904 		return;
2905 
2906 	if (tcp_is_reno(tp))
2907 		tcp_limit_reno_sacked(tp);
2908 
2909 	tcp_verify_left_out(tp);
2910 
2911 	/* Don't muck with the congestion window here.
2912 	 * Reason is that we do not increase amount of _data_
2913 	 * in network, but units changed and effective
2914 	 * cwnd/ssthresh really reduced now.
2915 	 */
2916 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2917 		tp->high_seq = tp->snd_nxt;
2918 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2919 		tp->prior_ssthresh = 0;
2920 		tp->undo_marker = 0;
2921 		tcp_set_ca_state(sk, TCP_CA_Loss);
2922 	}
2923 	tcp_xmit_retransmit_queue(sk);
2924 }
2925 
2926 /* Process an event, which can update packets-in-flight not trivially.
2927  * Main goal of this function is to calculate new estimate for left_out,
2928  * taking into account both packets sitting in receiver's buffer and
2929  * packets lost by network.
2930  *
2931  * Besides that it does CWND reduction, when packet loss is detected
2932  * and changes state of machine.
2933  *
2934  * It does _not_ decide what to send, it is made in function
2935  * tcp_xmit_retransmit_queue().
2936  */
2937 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2938 {
2939 	struct inet_connection_sock *icsk = inet_csk(sk);
2940 	struct tcp_sock *tp = tcp_sk(sk);
2941 	int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2942 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2943 				    (tcp_fackets_out(tp) > tp->reordering));
2944 	int fast_rexmit = 0, mib_idx;
2945 
2946 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2947 		tp->sacked_out = 0;
2948 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2949 		tp->fackets_out = 0;
2950 
2951 	/* Now state machine starts.
2952 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2953 	if (flag & FLAG_ECE)
2954 		tp->prior_ssthresh = 0;
2955 
2956 	/* B. In all the states check for reneging SACKs. */
2957 	if (tcp_check_sack_reneging(sk, flag))
2958 		return;
2959 
2960 	/* C. Process data loss notification, provided it is valid. */
2961 	if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2962 	    before(tp->snd_una, tp->high_seq) &&
2963 	    icsk->icsk_ca_state != TCP_CA_Open &&
2964 	    tp->fackets_out > tp->reordering) {
2965 		tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2966 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2967 	}
2968 
2969 	/* D. Check consistency of the current state. */
2970 	tcp_verify_left_out(tp);
2971 
2972 	/* E. Check state exit conditions. State can be terminated
2973 	 *    when high_seq is ACKed. */
2974 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2975 		WARN_ON(tp->retrans_out != 0);
2976 		tp->retrans_stamp = 0;
2977 	} else if (!before(tp->snd_una, tp->high_seq)) {
2978 		switch (icsk->icsk_ca_state) {
2979 		case TCP_CA_Loss:
2980 			icsk->icsk_retransmits = 0;
2981 			if (tcp_try_undo_recovery(sk))
2982 				return;
2983 			break;
2984 
2985 		case TCP_CA_CWR:
2986 			/* CWR is to be held something *above* high_seq
2987 			 * is ACKed for CWR bit to reach receiver. */
2988 			if (tp->snd_una != tp->high_seq) {
2989 				tcp_complete_cwr(sk);
2990 				tcp_set_ca_state(sk, TCP_CA_Open);
2991 			}
2992 			break;
2993 
2994 		case TCP_CA_Disorder:
2995 			tcp_try_undo_dsack(sk);
2996 			if (!tp->undo_marker ||
2997 			    /* For SACK case do not Open to allow to undo
2998 			     * catching for all duplicate ACKs. */
2999 			    tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3000 				tp->undo_marker = 0;
3001 				tcp_set_ca_state(sk, TCP_CA_Open);
3002 			}
3003 			break;
3004 
3005 		case TCP_CA_Recovery:
3006 			if (tcp_is_reno(tp))
3007 				tcp_reset_reno_sack(tp);
3008 			if (tcp_try_undo_recovery(sk))
3009 				return;
3010 			tcp_complete_cwr(sk);
3011 			break;
3012 		}
3013 	}
3014 
3015 	/* F. Process state. */
3016 	switch (icsk->icsk_ca_state) {
3017 	case TCP_CA_Recovery:
3018 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3019 			if (tcp_is_reno(tp) && is_dupack)
3020 				tcp_add_reno_sack(sk);
3021 		} else
3022 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3023 		break;
3024 	case TCP_CA_Loss:
3025 		if (flag & FLAG_DATA_ACKED)
3026 			icsk->icsk_retransmits = 0;
3027 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3028 			tcp_reset_reno_sack(tp);
3029 		if (!tcp_try_undo_loss(sk)) {
3030 			tcp_moderate_cwnd(tp);
3031 			tcp_xmit_retransmit_queue(sk);
3032 			return;
3033 		}
3034 		if (icsk->icsk_ca_state != TCP_CA_Open)
3035 			return;
3036 		/* Loss is undone; fall through to processing in Open state. */
3037 	default:
3038 		if (tcp_is_reno(tp)) {
3039 			if (flag & FLAG_SND_UNA_ADVANCED)
3040 				tcp_reset_reno_sack(tp);
3041 			if (is_dupack)
3042 				tcp_add_reno_sack(sk);
3043 		}
3044 
3045 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
3046 			tcp_try_undo_dsack(sk);
3047 
3048 		if (!tcp_time_to_recover(sk)) {
3049 			tcp_try_to_open(sk, flag);
3050 			return;
3051 		}
3052 
3053 		/* MTU probe failure: don't reduce cwnd */
3054 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3055 		    icsk->icsk_mtup.probe_size &&
3056 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3057 			tcp_mtup_probe_failed(sk);
3058 			/* Restores the reduction we did in tcp_mtup_probe() */
3059 			tp->snd_cwnd++;
3060 			tcp_simple_retransmit(sk);
3061 			return;
3062 		}
3063 
3064 		/* Otherwise enter Recovery state */
3065 
3066 		if (tcp_is_reno(tp))
3067 			mib_idx = LINUX_MIB_TCPRENORECOVERY;
3068 		else
3069 			mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3070 
3071 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
3072 
3073 		tp->high_seq = tp->snd_nxt;
3074 		tp->prior_ssthresh = 0;
3075 		tp->undo_marker = tp->snd_una;
3076 		tp->undo_retrans = tp->retrans_out;
3077 
3078 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
3079 			if (!(flag & FLAG_ECE))
3080 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
3081 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3082 			TCP_ECN_queue_cwr(tp);
3083 		}
3084 
3085 		tp->bytes_acked = 0;
3086 		tp->snd_cwnd_cnt = 0;
3087 		tcp_set_ca_state(sk, TCP_CA_Recovery);
3088 		fast_rexmit = 1;
3089 	}
3090 
3091 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3092 		tcp_update_scoreboard(sk, fast_rexmit);
3093 	tcp_cwnd_down(sk, flag);
3094 	tcp_xmit_retransmit_queue(sk);
3095 }
3096 
3097 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3098 {
3099 	tcp_rtt_estimator(sk, seq_rtt);
3100 	tcp_set_rto(sk);
3101 	inet_csk(sk)->icsk_backoff = 0;
3102 }
3103 
3104 /* Read draft-ietf-tcplw-high-performance before mucking
3105  * with this code. (Supersedes RFC1323)
3106  */
3107 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3108 {
3109 	/* RTTM Rule: A TSecr value received in a segment is used to
3110 	 * update the averaged RTT measurement only if the segment
3111 	 * acknowledges some new data, i.e., only if it advances the
3112 	 * left edge of the send window.
3113 	 *
3114 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3115 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3116 	 *
3117 	 * Changed: reset backoff as soon as we see the first valid sample.
3118 	 * If we do not, we get strongly overestimated rto. With timestamps
3119 	 * samples are accepted even from very old segments: f.e., when rtt=1
3120 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3121 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3122 	 * in window is lost... Voila.	 			--ANK (010210)
3123 	 */
3124 	struct tcp_sock *tp = tcp_sk(sk);
3125 
3126 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3127 }
3128 
3129 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3130 {
3131 	/* We don't have a timestamp. Can only use
3132 	 * packets that are not retransmitted to determine
3133 	 * rtt estimates. Also, we must not reset the
3134 	 * backoff for rto until we get a non-retransmitted
3135 	 * packet. This allows us to deal with a situation
3136 	 * where the network delay has increased suddenly.
3137 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3138 	 */
3139 
3140 	if (flag & FLAG_RETRANS_DATA_ACKED)
3141 		return;
3142 
3143 	tcp_valid_rtt_meas(sk, seq_rtt);
3144 }
3145 
3146 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3147 				      const s32 seq_rtt)
3148 {
3149 	const struct tcp_sock *tp = tcp_sk(sk);
3150 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3151 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3152 		tcp_ack_saw_tstamp(sk, flag);
3153 	else if (seq_rtt >= 0)
3154 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3155 }
3156 
3157 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3158 {
3159 	const struct inet_connection_sock *icsk = inet_csk(sk);
3160 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3161 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3162 }
3163 
3164 /* Restart timer after forward progress on connection.
3165  * RFC2988 recommends to restart timer to now+rto.
3166  */
3167 static void tcp_rearm_rto(struct sock *sk)
3168 {
3169 	struct tcp_sock *tp = tcp_sk(sk);
3170 
3171 	if (!tp->packets_out) {
3172 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3173 	} else {
3174 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3175 					  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3176 	}
3177 }
3178 
3179 /* If we get here, the whole TSO packet has not been acked. */
3180 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3181 {
3182 	struct tcp_sock *tp = tcp_sk(sk);
3183 	u32 packets_acked;
3184 
3185 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3186 
3187 	packets_acked = tcp_skb_pcount(skb);
3188 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3189 		return 0;
3190 	packets_acked -= tcp_skb_pcount(skb);
3191 
3192 	if (packets_acked) {
3193 		BUG_ON(tcp_skb_pcount(skb) == 0);
3194 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3195 	}
3196 
3197 	return packets_acked;
3198 }
3199 
3200 /* Remove acknowledged frames from the retransmission queue. If our packet
3201  * is before the ack sequence we can discard it as it's confirmed to have
3202  * arrived at the other end.
3203  */
3204 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3205 			       u32 prior_snd_una)
3206 {
3207 	struct tcp_sock *tp = tcp_sk(sk);
3208 	const struct inet_connection_sock *icsk = inet_csk(sk);
3209 	struct sk_buff *skb;
3210 	u32 now = tcp_time_stamp;
3211 	int fully_acked = 1;
3212 	int flag = 0;
3213 	u32 pkts_acked = 0;
3214 	u32 reord = tp->packets_out;
3215 	u32 prior_sacked = tp->sacked_out;
3216 	s32 seq_rtt = -1;
3217 	s32 ca_seq_rtt = -1;
3218 	ktime_t last_ackt = net_invalid_timestamp();
3219 
3220 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3221 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3222 		u32 acked_pcount;
3223 		u8 sacked = scb->sacked;
3224 
3225 		/* Determine how many packets and what bytes were acked, tso and else */
3226 		if (after(scb->end_seq, tp->snd_una)) {
3227 			if (tcp_skb_pcount(skb) == 1 ||
3228 			    !after(tp->snd_una, scb->seq))
3229 				break;
3230 
3231 			acked_pcount = tcp_tso_acked(sk, skb);
3232 			if (!acked_pcount)
3233 				break;
3234 
3235 			fully_acked = 0;
3236 		} else {
3237 			acked_pcount = tcp_skb_pcount(skb);
3238 		}
3239 
3240 		if (sacked & TCPCB_RETRANS) {
3241 			if (sacked & TCPCB_SACKED_RETRANS)
3242 				tp->retrans_out -= acked_pcount;
3243 			flag |= FLAG_RETRANS_DATA_ACKED;
3244 			ca_seq_rtt = -1;
3245 			seq_rtt = -1;
3246 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3247 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3248 		} else {
3249 			ca_seq_rtt = now - scb->when;
3250 			last_ackt = skb->tstamp;
3251 			if (seq_rtt < 0) {
3252 				seq_rtt = ca_seq_rtt;
3253 			}
3254 			if (!(sacked & TCPCB_SACKED_ACKED))
3255 				reord = min(pkts_acked, reord);
3256 		}
3257 
3258 		if (sacked & TCPCB_SACKED_ACKED)
3259 			tp->sacked_out -= acked_pcount;
3260 		if (sacked & TCPCB_LOST)
3261 			tp->lost_out -= acked_pcount;
3262 
3263 		tp->packets_out -= acked_pcount;
3264 		pkts_acked += acked_pcount;
3265 
3266 		/* Initial outgoing SYN's get put onto the write_queue
3267 		 * just like anything else we transmit.  It is not
3268 		 * true data, and if we misinform our callers that
3269 		 * this ACK acks real data, we will erroneously exit
3270 		 * connection startup slow start one packet too
3271 		 * quickly.  This is severely frowned upon behavior.
3272 		 */
3273 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
3274 			flag |= FLAG_DATA_ACKED;
3275 		} else {
3276 			flag |= FLAG_SYN_ACKED;
3277 			tp->retrans_stamp = 0;
3278 		}
3279 
3280 		if (!fully_acked)
3281 			break;
3282 
3283 		tcp_unlink_write_queue(skb, sk);
3284 		sk_wmem_free_skb(sk, skb);
3285 		tp->scoreboard_skb_hint = NULL;
3286 		if (skb == tp->retransmit_skb_hint)
3287 			tp->retransmit_skb_hint = NULL;
3288 		if (skb == tp->lost_skb_hint)
3289 			tp->lost_skb_hint = NULL;
3290 	}
3291 
3292 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3293 		tp->snd_up = tp->snd_una;
3294 
3295 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3296 		flag |= FLAG_SACK_RENEGING;
3297 
3298 	if (flag & FLAG_ACKED) {
3299 		const struct tcp_congestion_ops *ca_ops
3300 			= inet_csk(sk)->icsk_ca_ops;
3301 
3302 		if (unlikely(icsk->icsk_mtup.probe_size &&
3303 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3304 			tcp_mtup_probe_success(sk);
3305 		}
3306 
3307 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3308 		tcp_rearm_rto(sk);
3309 
3310 		if (tcp_is_reno(tp)) {
3311 			tcp_remove_reno_sacks(sk, pkts_acked);
3312 		} else {
3313 			int delta;
3314 
3315 			/* Non-retransmitted hole got filled? That's reordering */
3316 			if (reord < prior_fackets)
3317 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3318 
3319 			delta = tcp_is_fack(tp) ? pkts_acked :
3320 						  prior_sacked - tp->sacked_out;
3321 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3322 		}
3323 
3324 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3325 
3326 		if (ca_ops->pkts_acked) {
3327 			s32 rtt_us = -1;
3328 
3329 			/* Is the ACK triggering packet unambiguous? */
3330 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3331 				/* High resolution needed and available? */
3332 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3333 				    !ktime_equal(last_ackt,
3334 						 net_invalid_timestamp()))
3335 					rtt_us = ktime_us_delta(ktime_get_real(),
3336 								last_ackt);
3337 				else if (ca_seq_rtt > 0)
3338 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3339 			}
3340 
3341 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3342 		}
3343 	}
3344 
3345 #if FASTRETRANS_DEBUG > 0
3346 	WARN_ON((int)tp->sacked_out < 0);
3347 	WARN_ON((int)tp->lost_out < 0);
3348 	WARN_ON((int)tp->retrans_out < 0);
3349 	if (!tp->packets_out && tcp_is_sack(tp)) {
3350 		icsk = inet_csk(sk);
3351 		if (tp->lost_out) {
3352 			printk(KERN_DEBUG "Leak l=%u %d\n",
3353 			       tp->lost_out, icsk->icsk_ca_state);
3354 			tp->lost_out = 0;
3355 		}
3356 		if (tp->sacked_out) {
3357 			printk(KERN_DEBUG "Leak s=%u %d\n",
3358 			       tp->sacked_out, icsk->icsk_ca_state);
3359 			tp->sacked_out = 0;
3360 		}
3361 		if (tp->retrans_out) {
3362 			printk(KERN_DEBUG "Leak r=%u %d\n",
3363 			       tp->retrans_out, icsk->icsk_ca_state);
3364 			tp->retrans_out = 0;
3365 		}
3366 	}
3367 #endif
3368 	return flag;
3369 }
3370 
3371 static void tcp_ack_probe(struct sock *sk)
3372 {
3373 	const struct tcp_sock *tp = tcp_sk(sk);
3374 	struct inet_connection_sock *icsk = inet_csk(sk);
3375 
3376 	/* Was it a usable window open? */
3377 
3378 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3379 		icsk->icsk_backoff = 0;
3380 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3381 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3382 		 * This function is not for random using!
3383 		 */
3384 	} else {
3385 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3386 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3387 					  TCP_RTO_MAX);
3388 	}
3389 }
3390 
3391 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3392 {
3393 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3394 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3395 }
3396 
3397 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3398 {
3399 	const struct tcp_sock *tp = tcp_sk(sk);
3400 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3401 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3402 }
3403 
3404 /* Check that window update is acceptable.
3405  * The function assumes that snd_una<=ack<=snd_next.
3406  */
3407 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3408 					const u32 ack, const u32 ack_seq,
3409 					const u32 nwin)
3410 {
3411 	return (after(ack, tp->snd_una) ||
3412 		after(ack_seq, tp->snd_wl1) ||
3413 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3414 }
3415 
3416 /* Update our send window.
3417  *
3418  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3419  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3420  */
3421 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3422 				 u32 ack_seq)
3423 {
3424 	struct tcp_sock *tp = tcp_sk(sk);
3425 	int flag = 0;
3426 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3427 
3428 	if (likely(!tcp_hdr(skb)->syn))
3429 		nwin <<= tp->rx_opt.snd_wscale;
3430 
3431 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3432 		flag |= FLAG_WIN_UPDATE;
3433 		tcp_update_wl(tp, ack_seq);
3434 
3435 		if (tp->snd_wnd != nwin) {
3436 			tp->snd_wnd = nwin;
3437 
3438 			/* Note, it is the only place, where
3439 			 * fast path is recovered for sending TCP.
3440 			 */
3441 			tp->pred_flags = 0;
3442 			tcp_fast_path_check(sk);
3443 
3444 			if (nwin > tp->max_window) {
3445 				tp->max_window = nwin;
3446 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3447 			}
3448 		}
3449 	}
3450 
3451 	tp->snd_una = ack;
3452 
3453 	return flag;
3454 }
3455 
3456 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3457  * continue in congestion avoidance.
3458  */
3459 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3460 {
3461 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3462 	tp->snd_cwnd_cnt = 0;
3463 	tp->bytes_acked = 0;
3464 	TCP_ECN_queue_cwr(tp);
3465 	tcp_moderate_cwnd(tp);
3466 }
3467 
3468 /* A conservative spurious RTO response algorithm: reduce cwnd using
3469  * rate halving and continue in congestion avoidance.
3470  */
3471 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3472 {
3473 	tcp_enter_cwr(sk, 0);
3474 }
3475 
3476 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3477 {
3478 	if (flag & FLAG_ECE)
3479 		tcp_ratehalving_spur_to_response(sk);
3480 	else
3481 		tcp_undo_cwr(sk, 1);
3482 }
3483 
3484 /* F-RTO spurious RTO detection algorithm (RFC4138)
3485  *
3486  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3487  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3488  * window (but not to or beyond highest sequence sent before RTO):
3489  *   On First ACK,  send two new segments out.
3490  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3491  *                  algorithm is not part of the F-RTO detection algorithm
3492  *                  given in RFC4138 but can be selected separately).
3493  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3494  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3495  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3496  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3497  *
3498  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3499  * original window even after we transmit two new data segments.
3500  *
3501  * SACK version:
3502  *   on first step, wait until first cumulative ACK arrives, then move to
3503  *   the second step. In second step, the next ACK decides.
3504  *
3505  * F-RTO is implemented (mainly) in four functions:
3506  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3507  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3508  *     called when tcp_use_frto() showed green light
3509  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3510  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3511  *     to prove that the RTO is indeed spurious. It transfers the control
3512  *     from F-RTO to the conventional RTO recovery
3513  */
3514 static int tcp_process_frto(struct sock *sk, int flag)
3515 {
3516 	struct tcp_sock *tp = tcp_sk(sk);
3517 
3518 	tcp_verify_left_out(tp);
3519 
3520 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3521 	if (flag & FLAG_DATA_ACKED)
3522 		inet_csk(sk)->icsk_retransmits = 0;
3523 
3524 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3525 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3526 		tp->undo_marker = 0;
3527 
3528 	if (!before(tp->snd_una, tp->frto_highmark)) {
3529 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3530 		return 1;
3531 	}
3532 
3533 	if (!tcp_is_sackfrto(tp)) {
3534 		/* RFC4138 shortcoming in step 2; should also have case c):
3535 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3536 		 * data, winupdate
3537 		 */
3538 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3539 			return 1;
3540 
3541 		if (!(flag & FLAG_DATA_ACKED)) {
3542 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3543 					    flag);
3544 			return 1;
3545 		}
3546 	} else {
3547 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3548 			/* Prevent sending of new data. */
3549 			tp->snd_cwnd = min(tp->snd_cwnd,
3550 					   tcp_packets_in_flight(tp));
3551 			return 1;
3552 		}
3553 
3554 		if ((tp->frto_counter >= 2) &&
3555 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3556 		     ((flag & FLAG_DATA_SACKED) &&
3557 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3558 			/* RFC4138 shortcoming (see comment above) */
3559 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3560 			    (flag & FLAG_NOT_DUP))
3561 				return 1;
3562 
3563 			tcp_enter_frto_loss(sk, 3, flag);
3564 			return 1;
3565 		}
3566 	}
3567 
3568 	if (tp->frto_counter == 1) {
3569 		/* tcp_may_send_now needs to see updated state */
3570 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3571 		tp->frto_counter = 2;
3572 
3573 		if (!tcp_may_send_now(sk))
3574 			tcp_enter_frto_loss(sk, 2, flag);
3575 
3576 		return 1;
3577 	} else {
3578 		switch (sysctl_tcp_frto_response) {
3579 		case 2:
3580 			tcp_undo_spur_to_response(sk, flag);
3581 			break;
3582 		case 1:
3583 			tcp_conservative_spur_to_response(tp);
3584 			break;
3585 		default:
3586 			tcp_ratehalving_spur_to_response(sk);
3587 			break;
3588 		}
3589 		tp->frto_counter = 0;
3590 		tp->undo_marker = 0;
3591 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3592 	}
3593 	return 0;
3594 }
3595 
3596 /* This routine deals with incoming acks, but not outgoing ones. */
3597 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3598 {
3599 	struct inet_connection_sock *icsk = inet_csk(sk);
3600 	struct tcp_sock *tp = tcp_sk(sk);
3601 	u32 prior_snd_una = tp->snd_una;
3602 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3603 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3604 	u32 prior_in_flight;
3605 	u32 prior_fackets;
3606 	int prior_packets;
3607 	int frto_cwnd = 0;
3608 
3609 	/* If the ack is older than previous acks
3610 	 * then we can probably ignore it.
3611 	 */
3612 	if (before(ack, prior_snd_una))
3613 		goto old_ack;
3614 
3615 	/* If the ack includes data we haven't sent yet, discard
3616 	 * this segment (RFC793 Section 3.9).
3617 	 */
3618 	if (after(ack, tp->snd_nxt))
3619 		goto invalid_ack;
3620 
3621 	if (after(ack, prior_snd_una))
3622 		flag |= FLAG_SND_UNA_ADVANCED;
3623 
3624 	if (sysctl_tcp_abc) {
3625 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3626 			tp->bytes_acked += ack - prior_snd_una;
3627 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3628 			/* we assume just one segment left network */
3629 			tp->bytes_acked += min(ack - prior_snd_una,
3630 					       tp->mss_cache);
3631 	}
3632 
3633 	prior_fackets = tp->fackets_out;
3634 	prior_in_flight = tcp_packets_in_flight(tp);
3635 
3636 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3637 		/* Window is constant, pure forward advance.
3638 		 * No more checks are required.
3639 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3640 		 */
3641 		tcp_update_wl(tp, ack_seq);
3642 		tp->snd_una = ack;
3643 		flag |= FLAG_WIN_UPDATE;
3644 
3645 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3646 
3647 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3648 	} else {
3649 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3650 			flag |= FLAG_DATA;
3651 		else
3652 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3653 
3654 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3655 
3656 		if (TCP_SKB_CB(skb)->sacked)
3657 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3658 
3659 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3660 			flag |= FLAG_ECE;
3661 
3662 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3663 	}
3664 
3665 	/* We passed data and got it acked, remove any soft error
3666 	 * log. Something worked...
3667 	 */
3668 	sk->sk_err_soft = 0;
3669 	icsk->icsk_probes_out = 0;
3670 	tp->rcv_tstamp = tcp_time_stamp;
3671 	prior_packets = tp->packets_out;
3672 	if (!prior_packets)
3673 		goto no_queue;
3674 
3675 	/* See if we can take anything off of the retransmit queue. */
3676 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3677 
3678 	if (tp->frto_counter)
3679 		frto_cwnd = tcp_process_frto(sk, flag);
3680 	/* Guarantee sacktag reordering detection against wrap-arounds */
3681 	if (before(tp->frto_highmark, tp->snd_una))
3682 		tp->frto_highmark = 0;
3683 
3684 	if (tcp_ack_is_dubious(sk, flag)) {
3685 		/* Advance CWND, if state allows this. */
3686 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3687 		    tcp_may_raise_cwnd(sk, flag))
3688 			tcp_cong_avoid(sk, ack, prior_in_flight);
3689 		tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3690 				      flag);
3691 	} else {
3692 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3693 			tcp_cong_avoid(sk, ack, prior_in_flight);
3694 	}
3695 
3696 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3697 		dst_confirm(sk->sk_dst_cache);
3698 
3699 	return 1;
3700 
3701 no_queue:
3702 	/* If this ack opens up a zero window, clear backoff.  It was
3703 	 * being used to time the probes, and is probably far higher than
3704 	 * it needs to be for normal retransmission.
3705 	 */
3706 	if (tcp_send_head(sk))
3707 		tcp_ack_probe(sk);
3708 	return 1;
3709 
3710 invalid_ack:
3711 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3712 	return -1;
3713 
3714 old_ack:
3715 	if (TCP_SKB_CB(skb)->sacked) {
3716 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3717 		if (icsk->icsk_ca_state == TCP_CA_Open)
3718 			tcp_try_keep_open(sk);
3719 	}
3720 
3721 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3722 	return 0;
3723 }
3724 
3725 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3726  * But, this can also be called on packets in the established flow when
3727  * the fast version below fails.
3728  */
3729 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3730 		       u8 **hvpp, int estab,  struct dst_entry *dst)
3731 {
3732 	unsigned char *ptr;
3733 	struct tcphdr *th = tcp_hdr(skb);
3734 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3735 
3736 	ptr = (unsigned char *)(th + 1);
3737 	opt_rx->saw_tstamp = 0;
3738 
3739 	while (length > 0) {
3740 		int opcode = *ptr++;
3741 		int opsize;
3742 
3743 		switch (opcode) {
3744 		case TCPOPT_EOL:
3745 			return;
3746 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3747 			length--;
3748 			continue;
3749 		default:
3750 			opsize = *ptr++;
3751 			if (opsize < 2) /* "silly options" */
3752 				return;
3753 			if (opsize > length)
3754 				return;	/* don't parse partial options */
3755 			switch (opcode) {
3756 			case TCPOPT_MSS:
3757 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3758 					u16 in_mss = get_unaligned_be16(ptr);
3759 					if (in_mss) {
3760 						if (opt_rx->user_mss &&
3761 						    opt_rx->user_mss < in_mss)
3762 							in_mss = opt_rx->user_mss;
3763 						opt_rx->mss_clamp = in_mss;
3764 					}
3765 				}
3766 				break;
3767 			case TCPOPT_WINDOW:
3768 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3769 				    !estab && sysctl_tcp_window_scaling &&
3770 				    !dst_feature(dst, RTAX_FEATURE_NO_WSCALE)) {
3771 					__u8 snd_wscale = *(__u8 *)ptr;
3772 					opt_rx->wscale_ok = 1;
3773 					if (snd_wscale > 14) {
3774 						if (net_ratelimit())
3775 							printk(KERN_INFO "tcp_parse_options: Illegal window "
3776 							       "scaling value %d >14 received.\n",
3777 							       snd_wscale);
3778 						snd_wscale = 14;
3779 					}
3780 					opt_rx->snd_wscale = snd_wscale;
3781 				}
3782 				break;
3783 			case TCPOPT_TIMESTAMP:
3784 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3785 				    ((estab && opt_rx->tstamp_ok) ||
3786 				     (!estab && sysctl_tcp_timestamps &&
3787 				      !dst_feature(dst, RTAX_FEATURE_NO_TSTAMP)))) {
3788 					opt_rx->saw_tstamp = 1;
3789 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3790 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3791 				}
3792 				break;
3793 			case TCPOPT_SACK_PERM:
3794 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3795 				    !estab && sysctl_tcp_sack &&
3796 				    !dst_feature(dst, RTAX_FEATURE_NO_SACK)) {
3797 					opt_rx->sack_ok = 1;
3798 					tcp_sack_reset(opt_rx);
3799 				}
3800 				break;
3801 
3802 			case TCPOPT_SACK:
3803 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3804 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3805 				   opt_rx->sack_ok) {
3806 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3807 				}
3808 				break;
3809 #ifdef CONFIG_TCP_MD5SIG
3810 			case TCPOPT_MD5SIG:
3811 				/*
3812 				 * The MD5 Hash has already been
3813 				 * checked (see tcp_v{4,6}_do_rcv()).
3814 				 */
3815 				break;
3816 #endif
3817 			case TCPOPT_COOKIE:
3818 				/* This option is variable length.
3819 				 */
3820 				switch (opsize) {
3821 				case TCPOLEN_COOKIE_BASE:
3822 					/* not yet implemented */
3823 					break;
3824 				case TCPOLEN_COOKIE_PAIR:
3825 					/* not yet implemented */
3826 					break;
3827 				case TCPOLEN_COOKIE_MIN+0:
3828 				case TCPOLEN_COOKIE_MIN+2:
3829 				case TCPOLEN_COOKIE_MIN+4:
3830 				case TCPOLEN_COOKIE_MIN+6:
3831 				case TCPOLEN_COOKIE_MAX:
3832 					/* 16-bit multiple */
3833 					opt_rx->cookie_plus = opsize;
3834 					*hvpp = ptr;
3835 				default:
3836 					/* ignore option */
3837 					break;
3838 				};
3839 				break;
3840 			};
3841 
3842 			ptr += opsize-2;
3843 			length -= opsize;
3844 		}
3845 	}
3846 }
3847 
3848 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3849 {
3850 	__be32 *ptr = (__be32 *)(th + 1);
3851 
3852 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3853 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3854 		tp->rx_opt.saw_tstamp = 1;
3855 		++ptr;
3856 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3857 		++ptr;
3858 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3859 		return 1;
3860 	}
3861 	return 0;
3862 }
3863 
3864 /* Fast parse options. This hopes to only see timestamps.
3865  * If it is wrong it falls back on tcp_parse_options().
3866  */
3867 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3868 				  struct tcp_sock *tp, u8 **hvpp)
3869 {
3870 	/* In the spirit of fast parsing, compare doff directly to constant
3871 	 * values.  Because equality is used, short doff can be ignored here.
3872 	 */
3873 	if (th->doff == (sizeof(*th) / 4)) {
3874 		tp->rx_opt.saw_tstamp = 0;
3875 		return 0;
3876 	} else if (tp->rx_opt.tstamp_ok &&
3877 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3878 		if (tcp_parse_aligned_timestamp(tp, th))
3879 			return 1;
3880 	}
3881 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
3882 	return 1;
3883 }
3884 
3885 #ifdef CONFIG_TCP_MD5SIG
3886 /*
3887  * Parse MD5 Signature option
3888  */
3889 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3890 {
3891 	int length = (th->doff << 2) - sizeof (*th);
3892 	u8 *ptr = (u8*)(th + 1);
3893 
3894 	/* If the TCP option is too short, we can short cut */
3895 	if (length < TCPOLEN_MD5SIG)
3896 		return NULL;
3897 
3898 	while (length > 0) {
3899 		int opcode = *ptr++;
3900 		int opsize;
3901 
3902 		switch(opcode) {
3903 		case TCPOPT_EOL:
3904 			return NULL;
3905 		case TCPOPT_NOP:
3906 			length--;
3907 			continue;
3908 		default:
3909 			opsize = *ptr++;
3910 			if (opsize < 2 || opsize > length)
3911 				return NULL;
3912 			if (opcode == TCPOPT_MD5SIG)
3913 				return ptr;
3914 		}
3915 		ptr += opsize - 2;
3916 		length -= opsize;
3917 	}
3918 	return NULL;
3919 }
3920 #endif
3921 
3922 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3923 {
3924 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3925 	tp->rx_opt.ts_recent_stamp = get_seconds();
3926 }
3927 
3928 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3929 {
3930 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3931 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3932 		 * extra check below makes sure this can only happen
3933 		 * for pure ACK frames.  -DaveM
3934 		 *
3935 		 * Not only, also it occurs for expired timestamps.
3936 		 */
3937 
3938 		if (tcp_paws_check(&tp->rx_opt, 0))
3939 			tcp_store_ts_recent(tp);
3940 	}
3941 }
3942 
3943 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3944  *
3945  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3946  * it can pass through stack. So, the following predicate verifies that
3947  * this segment is not used for anything but congestion avoidance or
3948  * fast retransmit. Moreover, we even are able to eliminate most of such
3949  * second order effects, if we apply some small "replay" window (~RTO)
3950  * to timestamp space.
3951  *
3952  * All these measures still do not guarantee that we reject wrapped ACKs
3953  * on networks with high bandwidth, when sequence space is recycled fastly,
3954  * but it guarantees that such events will be very rare and do not affect
3955  * connection seriously. This doesn't look nice, but alas, PAWS is really
3956  * buggy extension.
3957  *
3958  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3959  * states that events when retransmit arrives after original data are rare.
3960  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3961  * the biggest problem on large power networks even with minor reordering.
3962  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3963  * up to bandwidth of 18Gigabit/sec. 8) ]
3964  */
3965 
3966 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3967 {
3968 	struct tcp_sock *tp = tcp_sk(sk);
3969 	struct tcphdr *th = tcp_hdr(skb);
3970 	u32 seq = TCP_SKB_CB(skb)->seq;
3971 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3972 
3973 	return (/* 1. Pure ACK with correct sequence number. */
3974 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3975 
3976 		/* 2. ... and duplicate ACK. */
3977 		ack == tp->snd_una &&
3978 
3979 		/* 3. ... and does not update window. */
3980 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3981 
3982 		/* 4. ... and sits in replay window. */
3983 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3984 }
3985 
3986 static inline int tcp_paws_discard(const struct sock *sk,
3987 				   const struct sk_buff *skb)
3988 {
3989 	const struct tcp_sock *tp = tcp_sk(sk);
3990 
3991 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3992 	       !tcp_disordered_ack(sk, skb);
3993 }
3994 
3995 /* Check segment sequence number for validity.
3996  *
3997  * Segment controls are considered valid, if the segment
3998  * fits to the window after truncation to the window. Acceptability
3999  * of data (and SYN, FIN, of course) is checked separately.
4000  * See tcp_data_queue(), for example.
4001  *
4002  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4003  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4004  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4005  * (borrowed from freebsd)
4006  */
4007 
4008 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4009 {
4010 	return	!before(end_seq, tp->rcv_wup) &&
4011 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4012 }
4013 
4014 /* When we get a reset we do this. */
4015 static void tcp_reset(struct sock *sk)
4016 {
4017 	/* We want the right error as BSD sees it (and indeed as we do). */
4018 	switch (sk->sk_state) {
4019 	case TCP_SYN_SENT:
4020 		sk->sk_err = ECONNREFUSED;
4021 		break;
4022 	case TCP_CLOSE_WAIT:
4023 		sk->sk_err = EPIPE;
4024 		break;
4025 	case TCP_CLOSE:
4026 		return;
4027 	default:
4028 		sk->sk_err = ECONNRESET;
4029 	}
4030 
4031 	if (!sock_flag(sk, SOCK_DEAD))
4032 		sk->sk_error_report(sk);
4033 
4034 	tcp_done(sk);
4035 }
4036 
4037 /*
4038  * 	Process the FIN bit. This now behaves as it is supposed to work
4039  *	and the FIN takes effect when it is validly part of sequence
4040  *	space. Not before when we get holes.
4041  *
4042  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4043  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4044  *	TIME-WAIT)
4045  *
4046  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4047  *	close and we go into CLOSING (and later onto TIME-WAIT)
4048  *
4049  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4050  */
4051 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4052 {
4053 	struct tcp_sock *tp = tcp_sk(sk);
4054 
4055 	inet_csk_schedule_ack(sk);
4056 
4057 	sk->sk_shutdown |= RCV_SHUTDOWN;
4058 	sock_set_flag(sk, SOCK_DONE);
4059 
4060 	switch (sk->sk_state) {
4061 	case TCP_SYN_RECV:
4062 	case TCP_ESTABLISHED:
4063 		/* Move to CLOSE_WAIT */
4064 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4065 		inet_csk(sk)->icsk_ack.pingpong = 1;
4066 		break;
4067 
4068 	case TCP_CLOSE_WAIT:
4069 	case TCP_CLOSING:
4070 		/* Received a retransmission of the FIN, do
4071 		 * nothing.
4072 		 */
4073 		break;
4074 	case TCP_LAST_ACK:
4075 		/* RFC793: Remain in the LAST-ACK state. */
4076 		break;
4077 
4078 	case TCP_FIN_WAIT1:
4079 		/* This case occurs when a simultaneous close
4080 		 * happens, we must ack the received FIN and
4081 		 * enter the CLOSING state.
4082 		 */
4083 		tcp_send_ack(sk);
4084 		tcp_set_state(sk, TCP_CLOSING);
4085 		break;
4086 	case TCP_FIN_WAIT2:
4087 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4088 		tcp_send_ack(sk);
4089 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4090 		break;
4091 	default:
4092 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4093 		 * cases we should never reach this piece of code.
4094 		 */
4095 		printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4096 		       __func__, sk->sk_state);
4097 		break;
4098 	}
4099 
4100 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4101 	 * Probably, we should reset in this case. For now drop them.
4102 	 */
4103 	__skb_queue_purge(&tp->out_of_order_queue);
4104 	if (tcp_is_sack(tp))
4105 		tcp_sack_reset(&tp->rx_opt);
4106 	sk_mem_reclaim(sk);
4107 
4108 	if (!sock_flag(sk, SOCK_DEAD)) {
4109 		sk->sk_state_change(sk);
4110 
4111 		/* Do not send POLL_HUP for half duplex close. */
4112 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4113 		    sk->sk_state == TCP_CLOSE)
4114 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4115 		else
4116 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4117 	}
4118 }
4119 
4120 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4121 				  u32 end_seq)
4122 {
4123 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4124 		if (before(seq, sp->start_seq))
4125 			sp->start_seq = seq;
4126 		if (after(end_seq, sp->end_seq))
4127 			sp->end_seq = end_seq;
4128 		return 1;
4129 	}
4130 	return 0;
4131 }
4132 
4133 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4134 {
4135 	struct tcp_sock *tp = tcp_sk(sk);
4136 	struct dst_entry *dst = __sk_dst_get(sk);
4137 
4138 	if (tcp_is_sack(tp) && sysctl_tcp_dsack &&
4139 	    !dst_feature(dst, RTAX_FEATURE_NO_DSACK)) {
4140 		int mib_idx;
4141 
4142 		if (before(seq, tp->rcv_nxt))
4143 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4144 		else
4145 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4146 
4147 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4148 
4149 		tp->rx_opt.dsack = 1;
4150 		tp->duplicate_sack[0].start_seq = seq;
4151 		tp->duplicate_sack[0].end_seq = end_seq;
4152 	}
4153 }
4154 
4155 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4156 {
4157 	struct tcp_sock *tp = tcp_sk(sk);
4158 
4159 	if (!tp->rx_opt.dsack)
4160 		tcp_dsack_set(sk, seq, end_seq);
4161 	else
4162 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4163 }
4164 
4165 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4166 {
4167 	struct tcp_sock *tp = tcp_sk(sk);
4168 	struct dst_entry *dst = __sk_dst_get(sk);
4169 
4170 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4171 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4172 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4173 		tcp_enter_quickack_mode(sk);
4174 
4175 		if (tcp_is_sack(tp) && sysctl_tcp_dsack &&
4176 		    !dst_feature(dst, RTAX_FEATURE_NO_DSACK)) {
4177 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4178 
4179 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4180 				end_seq = tp->rcv_nxt;
4181 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4182 		}
4183 	}
4184 
4185 	tcp_send_ack(sk);
4186 }
4187 
4188 /* These routines update the SACK block as out-of-order packets arrive or
4189  * in-order packets close up the sequence space.
4190  */
4191 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4192 {
4193 	int this_sack;
4194 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4195 	struct tcp_sack_block *swalk = sp + 1;
4196 
4197 	/* See if the recent change to the first SACK eats into
4198 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4199 	 */
4200 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4201 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4202 			int i;
4203 
4204 			/* Zap SWALK, by moving every further SACK up by one slot.
4205 			 * Decrease num_sacks.
4206 			 */
4207 			tp->rx_opt.num_sacks--;
4208 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4209 				sp[i] = sp[i + 1];
4210 			continue;
4211 		}
4212 		this_sack++, swalk++;
4213 	}
4214 }
4215 
4216 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4217 {
4218 	struct tcp_sock *tp = tcp_sk(sk);
4219 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4220 	int cur_sacks = tp->rx_opt.num_sacks;
4221 	int this_sack;
4222 
4223 	if (!cur_sacks)
4224 		goto new_sack;
4225 
4226 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4227 		if (tcp_sack_extend(sp, seq, end_seq)) {
4228 			/* Rotate this_sack to the first one. */
4229 			for (; this_sack > 0; this_sack--, sp--)
4230 				swap(*sp, *(sp - 1));
4231 			if (cur_sacks > 1)
4232 				tcp_sack_maybe_coalesce(tp);
4233 			return;
4234 		}
4235 	}
4236 
4237 	/* Could not find an adjacent existing SACK, build a new one,
4238 	 * put it at the front, and shift everyone else down.  We
4239 	 * always know there is at least one SACK present already here.
4240 	 *
4241 	 * If the sack array is full, forget about the last one.
4242 	 */
4243 	if (this_sack >= TCP_NUM_SACKS) {
4244 		this_sack--;
4245 		tp->rx_opt.num_sacks--;
4246 		sp--;
4247 	}
4248 	for (; this_sack > 0; this_sack--, sp--)
4249 		*sp = *(sp - 1);
4250 
4251 new_sack:
4252 	/* Build the new head SACK, and we're done. */
4253 	sp->start_seq = seq;
4254 	sp->end_seq = end_seq;
4255 	tp->rx_opt.num_sacks++;
4256 }
4257 
4258 /* RCV.NXT advances, some SACKs should be eaten. */
4259 
4260 static void tcp_sack_remove(struct tcp_sock *tp)
4261 {
4262 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4263 	int num_sacks = tp->rx_opt.num_sacks;
4264 	int this_sack;
4265 
4266 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4267 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4268 		tp->rx_opt.num_sacks = 0;
4269 		return;
4270 	}
4271 
4272 	for (this_sack = 0; this_sack < num_sacks;) {
4273 		/* Check if the start of the sack is covered by RCV.NXT. */
4274 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4275 			int i;
4276 
4277 			/* RCV.NXT must cover all the block! */
4278 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4279 
4280 			/* Zap this SACK, by moving forward any other SACKS. */
4281 			for (i=this_sack+1; i < num_sacks; i++)
4282 				tp->selective_acks[i-1] = tp->selective_acks[i];
4283 			num_sacks--;
4284 			continue;
4285 		}
4286 		this_sack++;
4287 		sp++;
4288 	}
4289 	tp->rx_opt.num_sacks = num_sacks;
4290 }
4291 
4292 /* This one checks to see if we can put data from the
4293  * out_of_order queue into the receive_queue.
4294  */
4295 static void tcp_ofo_queue(struct sock *sk)
4296 {
4297 	struct tcp_sock *tp = tcp_sk(sk);
4298 	__u32 dsack_high = tp->rcv_nxt;
4299 	struct sk_buff *skb;
4300 
4301 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4302 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4303 			break;
4304 
4305 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4306 			__u32 dsack = dsack_high;
4307 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4308 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4309 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4310 		}
4311 
4312 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4313 			SOCK_DEBUG(sk, "ofo packet was already received \n");
4314 			__skb_unlink(skb, &tp->out_of_order_queue);
4315 			__kfree_skb(skb);
4316 			continue;
4317 		}
4318 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4319 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4320 			   TCP_SKB_CB(skb)->end_seq);
4321 
4322 		__skb_unlink(skb, &tp->out_of_order_queue);
4323 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4324 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4325 		if (tcp_hdr(skb)->fin)
4326 			tcp_fin(skb, sk, tcp_hdr(skb));
4327 	}
4328 }
4329 
4330 static int tcp_prune_ofo_queue(struct sock *sk);
4331 static int tcp_prune_queue(struct sock *sk);
4332 
4333 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4334 {
4335 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4336 	    !sk_rmem_schedule(sk, size)) {
4337 
4338 		if (tcp_prune_queue(sk) < 0)
4339 			return -1;
4340 
4341 		if (!sk_rmem_schedule(sk, size)) {
4342 			if (!tcp_prune_ofo_queue(sk))
4343 				return -1;
4344 
4345 			if (!sk_rmem_schedule(sk, size))
4346 				return -1;
4347 		}
4348 	}
4349 	return 0;
4350 }
4351 
4352 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4353 {
4354 	struct tcphdr *th = tcp_hdr(skb);
4355 	struct tcp_sock *tp = tcp_sk(sk);
4356 	int eaten = -1;
4357 
4358 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4359 		goto drop;
4360 
4361 	__skb_pull(skb, th->doff * 4);
4362 
4363 	TCP_ECN_accept_cwr(tp, skb);
4364 
4365 	tp->rx_opt.dsack = 0;
4366 
4367 	/*  Queue data for delivery to the user.
4368 	 *  Packets in sequence go to the receive queue.
4369 	 *  Out of sequence packets to the out_of_order_queue.
4370 	 */
4371 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4372 		if (tcp_receive_window(tp) == 0)
4373 			goto out_of_window;
4374 
4375 		/* Ok. In sequence. In window. */
4376 		if (tp->ucopy.task == current &&
4377 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4378 		    sock_owned_by_user(sk) && !tp->urg_data) {
4379 			int chunk = min_t(unsigned int, skb->len,
4380 					  tp->ucopy.len);
4381 
4382 			__set_current_state(TASK_RUNNING);
4383 
4384 			local_bh_enable();
4385 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4386 				tp->ucopy.len -= chunk;
4387 				tp->copied_seq += chunk;
4388 				eaten = (chunk == skb->len && !th->fin);
4389 				tcp_rcv_space_adjust(sk);
4390 			}
4391 			local_bh_disable();
4392 		}
4393 
4394 		if (eaten <= 0) {
4395 queue_and_out:
4396 			if (eaten < 0 &&
4397 			    tcp_try_rmem_schedule(sk, skb->truesize))
4398 				goto drop;
4399 
4400 			skb_set_owner_r(skb, sk);
4401 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4402 		}
4403 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4404 		if (skb->len)
4405 			tcp_event_data_recv(sk, skb);
4406 		if (th->fin)
4407 			tcp_fin(skb, sk, th);
4408 
4409 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4410 			tcp_ofo_queue(sk);
4411 
4412 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4413 			 * gap in queue is filled.
4414 			 */
4415 			if (skb_queue_empty(&tp->out_of_order_queue))
4416 				inet_csk(sk)->icsk_ack.pingpong = 0;
4417 		}
4418 
4419 		if (tp->rx_opt.num_sacks)
4420 			tcp_sack_remove(tp);
4421 
4422 		tcp_fast_path_check(sk);
4423 
4424 		if (eaten > 0)
4425 			__kfree_skb(skb);
4426 		else if (!sock_flag(sk, SOCK_DEAD))
4427 			sk->sk_data_ready(sk, 0);
4428 		return;
4429 	}
4430 
4431 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4432 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4433 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4434 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4435 
4436 out_of_window:
4437 		tcp_enter_quickack_mode(sk);
4438 		inet_csk_schedule_ack(sk);
4439 drop:
4440 		__kfree_skb(skb);
4441 		return;
4442 	}
4443 
4444 	/* Out of window. F.e. zero window probe. */
4445 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4446 		goto out_of_window;
4447 
4448 	tcp_enter_quickack_mode(sk);
4449 
4450 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4451 		/* Partial packet, seq < rcv_next < end_seq */
4452 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4453 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4454 			   TCP_SKB_CB(skb)->end_seq);
4455 
4456 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4457 
4458 		/* If window is closed, drop tail of packet. But after
4459 		 * remembering D-SACK for its head made in previous line.
4460 		 */
4461 		if (!tcp_receive_window(tp))
4462 			goto out_of_window;
4463 		goto queue_and_out;
4464 	}
4465 
4466 	TCP_ECN_check_ce(tp, skb);
4467 
4468 	if (tcp_try_rmem_schedule(sk, skb->truesize))
4469 		goto drop;
4470 
4471 	/* Disable header prediction. */
4472 	tp->pred_flags = 0;
4473 	inet_csk_schedule_ack(sk);
4474 
4475 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4476 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4477 
4478 	skb_set_owner_r(skb, sk);
4479 
4480 	if (!skb_peek(&tp->out_of_order_queue)) {
4481 		/* Initial out of order segment, build 1 SACK. */
4482 		if (tcp_is_sack(tp)) {
4483 			tp->rx_opt.num_sacks = 1;
4484 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4485 			tp->selective_acks[0].end_seq =
4486 						TCP_SKB_CB(skb)->end_seq;
4487 		}
4488 		__skb_queue_head(&tp->out_of_order_queue, skb);
4489 	} else {
4490 		struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4491 		u32 seq = TCP_SKB_CB(skb)->seq;
4492 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4493 
4494 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
4495 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4496 
4497 			if (!tp->rx_opt.num_sacks ||
4498 			    tp->selective_acks[0].end_seq != seq)
4499 				goto add_sack;
4500 
4501 			/* Common case: data arrive in order after hole. */
4502 			tp->selective_acks[0].end_seq = end_seq;
4503 			return;
4504 		}
4505 
4506 		/* Find place to insert this segment. */
4507 		while (1) {
4508 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
4509 				break;
4510 			if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4511 				skb1 = NULL;
4512 				break;
4513 			}
4514 			skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4515 		}
4516 
4517 		/* Do skb overlap to previous one? */
4518 		if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4519 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4520 				/* All the bits are present. Drop. */
4521 				__kfree_skb(skb);
4522 				tcp_dsack_set(sk, seq, end_seq);
4523 				goto add_sack;
4524 			}
4525 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4526 				/* Partial overlap. */
4527 				tcp_dsack_set(sk, seq,
4528 					      TCP_SKB_CB(skb1)->end_seq);
4529 			} else {
4530 				if (skb_queue_is_first(&tp->out_of_order_queue,
4531 						       skb1))
4532 					skb1 = NULL;
4533 				else
4534 					skb1 = skb_queue_prev(
4535 						&tp->out_of_order_queue,
4536 						skb1);
4537 			}
4538 		}
4539 		if (!skb1)
4540 			__skb_queue_head(&tp->out_of_order_queue, skb);
4541 		else
4542 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4543 
4544 		/* And clean segments covered by new one as whole. */
4545 		while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4546 			skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4547 
4548 			if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4549 				break;
4550 			if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4551 				tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4552 						 end_seq);
4553 				break;
4554 			}
4555 			__skb_unlink(skb1, &tp->out_of_order_queue);
4556 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4557 					 TCP_SKB_CB(skb1)->end_seq);
4558 			__kfree_skb(skb1);
4559 		}
4560 
4561 add_sack:
4562 		if (tcp_is_sack(tp))
4563 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
4564 	}
4565 }
4566 
4567 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4568 					struct sk_buff_head *list)
4569 {
4570 	struct sk_buff *next = NULL;
4571 
4572 	if (!skb_queue_is_last(list, skb))
4573 		next = skb_queue_next(list, skb);
4574 
4575 	__skb_unlink(skb, list);
4576 	__kfree_skb(skb);
4577 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4578 
4579 	return next;
4580 }
4581 
4582 /* Collapse contiguous sequence of skbs head..tail with
4583  * sequence numbers start..end.
4584  *
4585  * If tail is NULL, this means until the end of the list.
4586  *
4587  * Segments with FIN/SYN are not collapsed (only because this
4588  * simplifies code)
4589  */
4590 static void
4591 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4592 	     struct sk_buff *head, struct sk_buff *tail,
4593 	     u32 start, u32 end)
4594 {
4595 	struct sk_buff *skb, *n;
4596 	bool end_of_skbs;
4597 
4598 	/* First, check that queue is collapsible and find
4599 	 * the point where collapsing can be useful. */
4600 	skb = head;
4601 restart:
4602 	end_of_skbs = true;
4603 	skb_queue_walk_from_safe(list, skb, n) {
4604 		if (skb == tail)
4605 			break;
4606 		/* No new bits? It is possible on ofo queue. */
4607 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4608 			skb = tcp_collapse_one(sk, skb, list);
4609 			if (!skb)
4610 				break;
4611 			goto restart;
4612 		}
4613 
4614 		/* The first skb to collapse is:
4615 		 * - not SYN/FIN and
4616 		 * - bloated or contains data before "start" or
4617 		 *   overlaps to the next one.
4618 		 */
4619 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4620 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4621 		     before(TCP_SKB_CB(skb)->seq, start))) {
4622 			end_of_skbs = false;
4623 			break;
4624 		}
4625 
4626 		if (!skb_queue_is_last(list, skb)) {
4627 			struct sk_buff *next = skb_queue_next(list, skb);
4628 			if (next != tail &&
4629 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4630 				end_of_skbs = false;
4631 				break;
4632 			}
4633 		}
4634 
4635 		/* Decided to skip this, advance start seq. */
4636 		start = TCP_SKB_CB(skb)->end_seq;
4637 	}
4638 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4639 		return;
4640 
4641 	while (before(start, end)) {
4642 		struct sk_buff *nskb;
4643 		unsigned int header = skb_headroom(skb);
4644 		int copy = SKB_MAX_ORDER(header, 0);
4645 
4646 		/* Too big header? This can happen with IPv6. */
4647 		if (copy < 0)
4648 			return;
4649 		if (end - start < copy)
4650 			copy = end - start;
4651 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4652 		if (!nskb)
4653 			return;
4654 
4655 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4656 		skb_set_network_header(nskb, (skb_network_header(skb) -
4657 					      skb->head));
4658 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4659 						skb->head));
4660 		skb_reserve(nskb, header);
4661 		memcpy(nskb->head, skb->head, header);
4662 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4663 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4664 		__skb_queue_before(list, skb, nskb);
4665 		skb_set_owner_r(nskb, sk);
4666 
4667 		/* Copy data, releasing collapsed skbs. */
4668 		while (copy > 0) {
4669 			int offset = start - TCP_SKB_CB(skb)->seq;
4670 			int size = TCP_SKB_CB(skb)->end_seq - start;
4671 
4672 			BUG_ON(offset < 0);
4673 			if (size > 0) {
4674 				size = min(copy, size);
4675 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4676 					BUG();
4677 				TCP_SKB_CB(nskb)->end_seq += size;
4678 				copy -= size;
4679 				start += size;
4680 			}
4681 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4682 				skb = tcp_collapse_one(sk, skb, list);
4683 				if (!skb ||
4684 				    skb == tail ||
4685 				    tcp_hdr(skb)->syn ||
4686 				    tcp_hdr(skb)->fin)
4687 					return;
4688 			}
4689 		}
4690 	}
4691 }
4692 
4693 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4694  * and tcp_collapse() them until all the queue is collapsed.
4695  */
4696 static void tcp_collapse_ofo_queue(struct sock *sk)
4697 {
4698 	struct tcp_sock *tp = tcp_sk(sk);
4699 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4700 	struct sk_buff *head;
4701 	u32 start, end;
4702 
4703 	if (skb == NULL)
4704 		return;
4705 
4706 	start = TCP_SKB_CB(skb)->seq;
4707 	end = TCP_SKB_CB(skb)->end_seq;
4708 	head = skb;
4709 
4710 	for (;;) {
4711 		struct sk_buff *next = NULL;
4712 
4713 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4714 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4715 		skb = next;
4716 
4717 		/* Segment is terminated when we see gap or when
4718 		 * we are at the end of all the queue. */
4719 		if (!skb ||
4720 		    after(TCP_SKB_CB(skb)->seq, end) ||
4721 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4722 			tcp_collapse(sk, &tp->out_of_order_queue,
4723 				     head, skb, start, end);
4724 			head = skb;
4725 			if (!skb)
4726 				break;
4727 			/* Start new segment */
4728 			start = TCP_SKB_CB(skb)->seq;
4729 			end = TCP_SKB_CB(skb)->end_seq;
4730 		} else {
4731 			if (before(TCP_SKB_CB(skb)->seq, start))
4732 				start = TCP_SKB_CB(skb)->seq;
4733 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4734 				end = TCP_SKB_CB(skb)->end_seq;
4735 		}
4736 	}
4737 }
4738 
4739 /*
4740  * Purge the out-of-order queue.
4741  * Return true if queue was pruned.
4742  */
4743 static int tcp_prune_ofo_queue(struct sock *sk)
4744 {
4745 	struct tcp_sock *tp = tcp_sk(sk);
4746 	int res = 0;
4747 
4748 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4749 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4750 		__skb_queue_purge(&tp->out_of_order_queue);
4751 
4752 		/* Reset SACK state.  A conforming SACK implementation will
4753 		 * do the same at a timeout based retransmit.  When a connection
4754 		 * is in a sad state like this, we care only about integrity
4755 		 * of the connection not performance.
4756 		 */
4757 		if (tp->rx_opt.sack_ok)
4758 			tcp_sack_reset(&tp->rx_opt);
4759 		sk_mem_reclaim(sk);
4760 		res = 1;
4761 	}
4762 	return res;
4763 }
4764 
4765 /* Reduce allocated memory if we can, trying to get
4766  * the socket within its memory limits again.
4767  *
4768  * Return less than zero if we should start dropping frames
4769  * until the socket owning process reads some of the data
4770  * to stabilize the situation.
4771  */
4772 static int tcp_prune_queue(struct sock *sk)
4773 {
4774 	struct tcp_sock *tp = tcp_sk(sk);
4775 
4776 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4777 
4778 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4779 
4780 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4781 		tcp_clamp_window(sk);
4782 	else if (tcp_memory_pressure)
4783 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4784 
4785 	tcp_collapse_ofo_queue(sk);
4786 	if (!skb_queue_empty(&sk->sk_receive_queue))
4787 		tcp_collapse(sk, &sk->sk_receive_queue,
4788 			     skb_peek(&sk->sk_receive_queue),
4789 			     NULL,
4790 			     tp->copied_seq, tp->rcv_nxt);
4791 	sk_mem_reclaim(sk);
4792 
4793 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4794 		return 0;
4795 
4796 	/* Collapsing did not help, destructive actions follow.
4797 	 * This must not ever occur. */
4798 
4799 	tcp_prune_ofo_queue(sk);
4800 
4801 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4802 		return 0;
4803 
4804 	/* If we are really being abused, tell the caller to silently
4805 	 * drop receive data on the floor.  It will get retransmitted
4806 	 * and hopefully then we'll have sufficient space.
4807 	 */
4808 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4809 
4810 	/* Massive buffer overcommit. */
4811 	tp->pred_flags = 0;
4812 	return -1;
4813 }
4814 
4815 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4816  * As additional protections, we do not touch cwnd in retransmission phases,
4817  * and if application hit its sndbuf limit recently.
4818  */
4819 void tcp_cwnd_application_limited(struct sock *sk)
4820 {
4821 	struct tcp_sock *tp = tcp_sk(sk);
4822 
4823 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4824 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4825 		/* Limited by application or receiver window. */
4826 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4827 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4828 		if (win_used < tp->snd_cwnd) {
4829 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4830 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4831 		}
4832 		tp->snd_cwnd_used = 0;
4833 	}
4834 	tp->snd_cwnd_stamp = tcp_time_stamp;
4835 }
4836 
4837 static int tcp_should_expand_sndbuf(struct sock *sk)
4838 {
4839 	struct tcp_sock *tp = tcp_sk(sk);
4840 
4841 	/* If the user specified a specific send buffer setting, do
4842 	 * not modify it.
4843 	 */
4844 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4845 		return 0;
4846 
4847 	/* If we are under global TCP memory pressure, do not expand.  */
4848 	if (tcp_memory_pressure)
4849 		return 0;
4850 
4851 	/* If we are under soft global TCP memory pressure, do not expand.  */
4852 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4853 		return 0;
4854 
4855 	/* If we filled the congestion window, do not expand.  */
4856 	if (tp->packets_out >= tp->snd_cwnd)
4857 		return 0;
4858 
4859 	return 1;
4860 }
4861 
4862 /* When incoming ACK allowed to free some skb from write_queue,
4863  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4864  * on the exit from tcp input handler.
4865  *
4866  * PROBLEM: sndbuf expansion does not work well with largesend.
4867  */
4868 static void tcp_new_space(struct sock *sk)
4869 {
4870 	struct tcp_sock *tp = tcp_sk(sk);
4871 
4872 	if (tcp_should_expand_sndbuf(sk)) {
4873 		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4874 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4875 		int demanded = max_t(unsigned int, tp->snd_cwnd,
4876 				     tp->reordering + 1);
4877 		sndmem *= 2 * demanded;
4878 		if (sndmem > sk->sk_sndbuf)
4879 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4880 		tp->snd_cwnd_stamp = tcp_time_stamp;
4881 	}
4882 
4883 	sk->sk_write_space(sk);
4884 }
4885 
4886 static void tcp_check_space(struct sock *sk)
4887 {
4888 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4889 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4890 		if (sk->sk_socket &&
4891 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4892 			tcp_new_space(sk);
4893 	}
4894 }
4895 
4896 static inline void tcp_data_snd_check(struct sock *sk)
4897 {
4898 	tcp_push_pending_frames(sk);
4899 	tcp_check_space(sk);
4900 }
4901 
4902 /*
4903  * Check if sending an ack is needed.
4904  */
4905 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4906 {
4907 	struct tcp_sock *tp = tcp_sk(sk);
4908 
4909 	    /* More than one full frame received... */
4910 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4911 	     /* ... and right edge of window advances far enough.
4912 	      * (tcp_recvmsg() will send ACK otherwise). Or...
4913 	      */
4914 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
4915 	    /* We ACK each frame or... */
4916 	    tcp_in_quickack_mode(sk) ||
4917 	    /* We have out of order data. */
4918 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4919 		/* Then ack it now */
4920 		tcp_send_ack(sk);
4921 	} else {
4922 		/* Else, send delayed ack. */
4923 		tcp_send_delayed_ack(sk);
4924 	}
4925 }
4926 
4927 static inline void tcp_ack_snd_check(struct sock *sk)
4928 {
4929 	if (!inet_csk_ack_scheduled(sk)) {
4930 		/* We sent a data segment already. */
4931 		return;
4932 	}
4933 	__tcp_ack_snd_check(sk, 1);
4934 }
4935 
4936 /*
4937  *	This routine is only called when we have urgent data
4938  *	signaled. Its the 'slow' part of tcp_urg. It could be
4939  *	moved inline now as tcp_urg is only called from one
4940  *	place. We handle URGent data wrong. We have to - as
4941  *	BSD still doesn't use the correction from RFC961.
4942  *	For 1003.1g we should support a new option TCP_STDURG to permit
4943  *	either form (or just set the sysctl tcp_stdurg).
4944  */
4945 
4946 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4947 {
4948 	struct tcp_sock *tp = tcp_sk(sk);
4949 	u32 ptr = ntohs(th->urg_ptr);
4950 
4951 	if (ptr && !sysctl_tcp_stdurg)
4952 		ptr--;
4953 	ptr += ntohl(th->seq);
4954 
4955 	/* Ignore urgent data that we've already seen and read. */
4956 	if (after(tp->copied_seq, ptr))
4957 		return;
4958 
4959 	/* Do not replay urg ptr.
4960 	 *
4961 	 * NOTE: interesting situation not covered by specs.
4962 	 * Misbehaving sender may send urg ptr, pointing to segment,
4963 	 * which we already have in ofo queue. We are not able to fetch
4964 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
4965 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
4966 	 * situations. But it is worth to think about possibility of some
4967 	 * DoSes using some hypothetical application level deadlock.
4968 	 */
4969 	if (before(ptr, tp->rcv_nxt))
4970 		return;
4971 
4972 	/* Do we already have a newer (or duplicate) urgent pointer? */
4973 	if (tp->urg_data && !after(ptr, tp->urg_seq))
4974 		return;
4975 
4976 	/* Tell the world about our new urgent pointer. */
4977 	sk_send_sigurg(sk);
4978 
4979 	/* We may be adding urgent data when the last byte read was
4980 	 * urgent. To do this requires some care. We cannot just ignore
4981 	 * tp->copied_seq since we would read the last urgent byte again
4982 	 * as data, nor can we alter copied_seq until this data arrives
4983 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4984 	 *
4985 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
4986 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
4987 	 * and expect that both A and B disappear from stream. This is _wrong_.
4988 	 * Though this happens in BSD with high probability, this is occasional.
4989 	 * Any application relying on this is buggy. Note also, that fix "works"
4990 	 * only in this artificial test. Insert some normal data between A and B and we will
4991 	 * decline of BSD again. Verdict: it is better to remove to trap
4992 	 * buggy users.
4993 	 */
4994 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4995 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4996 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4997 		tp->copied_seq++;
4998 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4999 			__skb_unlink(skb, &sk->sk_receive_queue);
5000 			__kfree_skb(skb);
5001 		}
5002 	}
5003 
5004 	tp->urg_data = TCP_URG_NOTYET;
5005 	tp->urg_seq = ptr;
5006 
5007 	/* Disable header prediction. */
5008 	tp->pred_flags = 0;
5009 }
5010 
5011 /* This is the 'fast' part of urgent handling. */
5012 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5013 {
5014 	struct tcp_sock *tp = tcp_sk(sk);
5015 
5016 	/* Check if we get a new urgent pointer - normally not. */
5017 	if (th->urg)
5018 		tcp_check_urg(sk, th);
5019 
5020 	/* Do we wait for any urgent data? - normally not... */
5021 	if (tp->urg_data == TCP_URG_NOTYET) {
5022 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5023 			  th->syn;
5024 
5025 		/* Is the urgent pointer pointing into this packet? */
5026 		if (ptr < skb->len) {
5027 			u8 tmp;
5028 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5029 				BUG();
5030 			tp->urg_data = TCP_URG_VALID | tmp;
5031 			if (!sock_flag(sk, SOCK_DEAD))
5032 				sk->sk_data_ready(sk, 0);
5033 		}
5034 	}
5035 }
5036 
5037 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5038 {
5039 	struct tcp_sock *tp = tcp_sk(sk);
5040 	int chunk = skb->len - hlen;
5041 	int err;
5042 
5043 	local_bh_enable();
5044 	if (skb_csum_unnecessary(skb))
5045 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5046 	else
5047 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5048 						       tp->ucopy.iov);
5049 
5050 	if (!err) {
5051 		tp->ucopy.len -= chunk;
5052 		tp->copied_seq += chunk;
5053 		tcp_rcv_space_adjust(sk);
5054 	}
5055 
5056 	local_bh_disable();
5057 	return err;
5058 }
5059 
5060 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5061 					    struct sk_buff *skb)
5062 {
5063 	__sum16 result;
5064 
5065 	if (sock_owned_by_user(sk)) {
5066 		local_bh_enable();
5067 		result = __tcp_checksum_complete(skb);
5068 		local_bh_disable();
5069 	} else {
5070 		result = __tcp_checksum_complete(skb);
5071 	}
5072 	return result;
5073 }
5074 
5075 static inline int tcp_checksum_complete_user(struct sock *sk,
5076 					     struct sk_buff *skb)
5077 {
5078 	return !skb_csum_unnecessary(skb) &&
5079 	       __tcp_checksum_complete_user(sk, skb);
5080 }
5081 
5082 #ifdef CONFIG_NET_DMA
5083 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5084 				  int hlen)
5085 {
5086 	struct tcp_sock *tp = tcp_sk(sk);
5087 	int chunk = skb->len - hlen;
5088 	int dma_cookie;
5089 	int copied_early = 0;
5090 
5091 	if (tp->ucopy.wakeup)
5092 		return 0;
5093 
5094 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5095 		tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5096 
5097 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5098 
5099 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5100 							 skb, hlen,
5101 							 tp->ucopy.iov, chunk,
5102 							 tp->ucopy.pinned_list);
5103 
5104 		if (dma_cookie < 0)
5105 			goto out;
5106 
5107 		tp->ucopy.dma_cookie = dma_cookie;
5108 		copied_early = 1;
5109 
5110 		tp->ucopy.len -= chunk;
5111 		tp->copied_seq += chunk;
5112 		tcp_rcv_space_adjust(sk);
5113 
5114 		if ((tp->ucopy.len == 0) ||
5115 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5116 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5117 			tp->ucopy.wakeup = 1;
5118 			sk->sk_data_ready(sk, 0);
5119 		}
5120 	} else if (chunk > 0) {
5121 		tp->ucopy.wakeup = 1;
5122 		sk->sk_data_ready(sk, 0);
5123 	}
5124 out:
5125 	return copied_early;
5126 }
5127 #endif /* CONFIG_NET_DMA */
5128 
5129 /* Does PAWS and seqno based validation of an incoming segment, flags will
5130  * play significant role here.
5131  */
5132 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5133 			      struct tcphdr *th, int syn_inerr)
5134 {
5135 	u8 *hash_location;
5136 	struct tcp_sock *tp = tcp_sk(sk);
5137 
5138 	/* RFC1323: H1. Apply PAWS check first. */
5139 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5140 	    tp->rx_opt.saw_tstamp &&
5141 	    tcp_paws_discard(sk, skb)) {
5142 		if (!th->rst) {
5143 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5144 			tcp_send_dupack(sk, skb);
5145 			goto discard;
5146 		}
5147 		/* Reset is accepted even if it did not pass PAWS. */
5148 	}
5149 
5150 	/* Step 1: check sequence number */
5151 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5152 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5153 		 * (RST) segments are validated by checking their SEQ-fields."
5154 		 * And page 69: "If an incoming segment is not acceptable,
5155 		 * an acknowledgment should be sent in reply (unless the RST
5156 		 * bit is set, if so drop the segment and return)".
5157 		 */
5158 		if (!th->rst)
5159 			tcp_send_dupack(sk, skb);
5160 		goto discard;
5161 	}
5162 
5163 	/* Step 2: check RST bit */
5164 	if (th->rst) {
5165 		tcp_reset(sk);
5166 		goto discard;
5167 	}
5168 
5169 	/* ts_recent update must be made after we are sure that the packet
5170 	 * is in window.
5171 	 */
5172 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5173 
5174 	/* step 3: check security and precedence [ignored] */
5175 
5176 	/* step 4: Check for a SYN in window. */
5177 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5178 		if (syn_inerr)
5179 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5180 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5181 		tcp_reset(sk);
5182 		return -1;
5183 	}
5184 
5185 	return 1;
5186 
5187 discard:
5188 	__kfree_skb(skb);
5189 	return 0;
5190 }
5191 
5192 /*
5193  *	TCP receive function for the ESTABLISHED state.
5194  *
5195  *	It is split into a fast path and a slow path. The fast path is
5196  * 	disabled when:
5197  *	- A zero window was announced from us - zero window probing
5198  *        is only handled properly in the slow path.
5199  *	- Out of order segments arrived.
5200  *	- Urgent data is expected.
5201  *	- There is no buffer space left
5202  *	- Unexpected TCP flags/window values/header lengths are received
5203  *	  (detected by checking the TCP header against pred_flags)
5204  *	- Data is sent in both directions. Fast path only supports pure senders
5205  *	  or pure receivers (this means either the sequence number or the ack
5206  *	  value must stay constant)
5207  *	- Unexpected TCP option.
5208  *
5209  *	When these conditions are not satisfied it drops into a standard
5210  *	receive procedure patterned after RFC793 to handle all cases.
5211  *	The first three cases are guaranteed by proper pred_flags setting,
5212  *	the rest is checked inline. Fast processing is turned on in
5213  *	tcp_data_queue when everything is OK.
5214  */
5215 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5216 			struct tcphdr *th, unsigned len)
5217 {
5218 	struct tcp_sock *tp = tcp_sk(sk);
5219 	int res;
5220 
5221 	/*
5222 	 *	Header prediction.
5223 	 *	The code loosely follows the one in the famous
5224 	 *	"30 instruction TCP receive" Van Jacobson mail.
5225 	 *
5226 	 *	Van's trick is to deposit buffers into socket queue
5227 	 *	on a device interrupt, to call tcp_recv function
5228 	 *	on the receive process context and checksum and copy
5229 	 *	the buffer to user space. smart...
5230 	 *
5231 	 *	Our current scheme is not silly either but we take the
5232 	 *	extra cost of the net_bh soft interrupt processing...
5233 	 *	We do checksum and copy also but from device to kernel.
5234 	 */
5235 
5236 	tp->rx_opt.saw_tstamp = 0;
5237 
5238 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5239 	 *	if header_prediction is to be made
5240 	 *	'S' will always be tp->tcp_header_len >> 2
5241 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5242 	 *  turn it off	(when there are holes in the receive
5243 	 *	 space for instance)
5244 	 *	PSH flag is ignored.
5245 	 */
5246 
5247 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5248 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5249 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5250 		int tcp_header_len = tp->tcp_header_len;
5251 
5252 		/* Timestamp header prediction: tcp_header_len
5253 		 * is automatically equal to th->doff*4 due to pred_flags
5254 		 * match.
5255 		 */
5256 
5257 		/* Check timestamp */
5258 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5259 			/* No? Slow path! */
5260 			if (!tcp_parse_aligned_timestamp(tp, th))
5261 				goto slow_path;
5262 
5263 			/* If PAWS failed, check it more carefully in slow path */
5264 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5265 				goto slow_path;
5266 
5267 			/* DO NOT update ts_recent here, if checksum fails
5268 			 * and timestamp was corrupted part, it will result
5269 			 * in a hung connection since we will drop all
5270 			 * future packets due to the PAWS test.
5271 			 */
5272 		}
5273 
5274 		if (len <= tcp_header_len) {
5275 			/* Bulk data transfer: sender */
5276 			if (len == tcp_header_len) {
5277 				/* Predicted packet is in window by definition.
5278 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5279 				 * Hence, check seq<=rcv_wup reduces to:
5280 				 */
5281 				if (tcp_header_len ==
5282 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5283 				    tp->rcv_nxt == tp->rcv_wup)
5284 					tcp_store_ts_recent(tp);
5285 
5286 				/* We know that such packets are checksummed
5287 				 * on entry.
5288 				 */
5289 				tcp_ack(sk, skb, 0);
5290 				__kfree_skb(skb);
5291 				tcp_data_snd_check(sk);
5292 				return 0;
5293 			} else { /* Header too small */
5294 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5295 				goto discard;
5296 			}
5297 		} else {
5298 			int eaten = 0;
5299 			int copied_early = 0;
5300 
5301 			if (tp->copied_seq == tp->rcv_nxt &&
5302 			    len - tcp_header_len <= tp->ucopy.len) {
5303 #ifdef CONFIG_NET_DMA
5304 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5305 					copied_early = 1;
5306 					eaten = 1;
5307 				}
5308 #endif
5309 				if (tp->ucopy.task == current &&
5310 				    sock_owned_by_user(sk) && !copied_early) {
5311 					__set_current_state(TASK_RUNNING);
5312 
5313 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5314 						eaten = 1;
5315 				}
5316 				if (eaten) {
5317 					/* Predicted packet is in window by definition.
5318 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5319 					 * Hence, check seq<=rcv_wup reduces to:
5320 					 */
5321 					if (tcp_header_len ==
5322 					    (sizeof(struct tcphdr) +
5323 					     TCPOLEN_TSTAMP_ALIGNED) &&
5324 					    tp->rcv_nxt == tp->rcv_wup)
5325 						tcp_store_ts_recent(tp);
5326 
5327 					tcp_rcv_rtt_measure_ts(sk, skb);
5328 
5329 					__skb_pull(skb, tcp_header_len);
5330 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5331 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5332 				}
5333 				if (copied_early)
5334 					tcp_cleanup_rbuf(sk, skb->len);
5335 			}
5336 			if (!eaten) {
5337 				if (tcp_checksum_complete_user(sk, skb))
5338 					goto csum_error;
5339 
5340 				/* Predicted packet is in window by definition.
5341 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5342 				 * Hence, check seq<=rcv_wup reduces to:
5343 				 */
5344 				if (tcp_header_len ==
5345 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5346 				    tp->rcv_nxt == tp->rcv_wup)
5347 					tcp_store_ts_recent(tp);
5348 
5349 				tcp_rcv_rtt_measure_ts(sk, skb);
5350 
5351 				if ((int)skb->truesize > sk->sk_forward_alloc)
5352 					goto step5;
5353 
5354 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5355 
5356 				/* Bulk data transfer: receiver */
5357 				__skb_pull(skb, tcp_header_len);
5358 				__skb_queue_tail(&sk->sk_receive_queue, skb);
5359 				skb_set_owner_r(skb, sk);
5360 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5361 			}
5362 
5363 			tcp_event_data_recv(sk, skb);
5364 
5365 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5366 				/* Well, only one small jumplet in fast path... */
5367 				tcp_ack(sk, skb, FLAG_DATA);
5368 				tcp_data_snd_check(sk);
5369 				if (!inet_csk_ack_scheduled(sk))
5370 					goto no_ack;
5371 			}
5372 
5373 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5374 				__tcp_ack_snd_check(sk, 0);
5375 no_ack:
5376 #ifdef CONFIG_NET_DMA
5377 			if (copied_early)
5378 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5379 			else
5380 #endif
5381 			if (eaten)
5382 				__kfree_skb(skb);
5383 			else
5384 				sk->sk_data_ready(sk, 0);
5385 			return 0;
5386 		}
5387 	}
5388 
5389 slow_path:
5390 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5391 		goto csum_error;
5392 
5393 	/*
5394 	 *	Standard slow path.
5395 	 */
5396 
5397 	res = tcp_validate_incoming(sk, skb, th, 1);
5398 	if (res <= 0)
5399 		return -res;
5400 
5401 step5:
5402 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5403 		goto discard;
5404 
5405 	tcp_rcv_rtt_measure_ts(sk, skb);
5406 
5407 	/* Process urgent data. */
5408 	tcp_urg(sk, skb, th);
5409 
5410 	/* step 7: process the segment text */
5411 	tcp_data_queue(sk, skb);
5412 
5413 	tcp_data_snd_check(sk);
5414 	tcp_ack_snd_check(sk);
5415 	return 0;
5416 
5417 csum_error:
5418 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5419 
5420 discard:
5421 	__kfree_skb(skb);
5422 	return 0;
5423 }
5424 
5425 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5426 					 struct tcphdr *th, unsigned len)
5427 {
5428 	u8 *hash_location;
5429 	struct inet_connection_sock *icsk = inet_csk(sk);
5430 	struct tcp_sock *tp = tcp_sk(sk);
5431 	struct dst_entry *dst = __sk_dst_get(sk);
5432 	struct tcp_cookie_values *cvp = tp->cookie_values;
5433 	int saved_clamp = tp->rx_opt.mss_clamp;
5434 
5435 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, dst);
5436 
5437 	if (th->ack) {
5438 		/* rfc793:
5439 		 * "If the state is SYN-SENT then
5440 		 *    first check the ACK bit
5441 		 *      If the ACK bit is set
5442 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5443 		 *        a reset (unless the RST bit is set, if so drop
5444 		 *        the segment and return)"
5445 		 *
5446 		 *  We do not send data with SYN, so that RFC-correct
5447 		 *  test reduces to:
5448 		 */
5449 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5450 			goto reset_and_undo;
5451 
5452 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5453 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5454 			     tcp_time_stamp)) {
5455 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5456 			goto reset_and_undo;
5457 		}
5458 
5459 		/* Now ACK is acceptable.
5460 		 *
5461 		 * "If the RST bit is set
5462 		 *    If the ACK was acceptable then signal the user "error:
5463 		 *    connection reset", drop the segment, enter CLOSED state,
5464 		 *    delete TCB, and return."
5465 		 */
5466 
5467 		if (th->rst) {
5468 			tcp_reset(sk);
5469 			goto discard;
5470 		}
5471 
5472 		/* rfc793:
5473 		 *   "fifth, if neither of the SYN or RST bits is set then
5474 		 *    drop the segment and return."
5475 		 *
5476 		 *    See note below!
5477 		 *                                        --ANK(990513)
5478 		 */
5479 		if (!th->syn)
5480 			goto discard_and_undo;
5481 
5482 		/* rfc793:
5483 		 *   "If the SYN bit is on ...
5484 		 *    are acceptable then ...
5485 		 *    (our SYN has been ACKed), change the connection
5486 		 *    state to ESTABLISHED..."
5487 		 */
5488 
5489 		TCP_ECN_rcv_synack(tp, th);
5490 
5491 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5492 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5493 
5494 		/* Ok.. it's good. Set up sequence numbers and
5495 		 * move to established.
5496 		 */
5497 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5498 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5499 
5500 		/* RFC1323: The window in SYN & SYN/ACK segments is
5501 		 * never scaled.
5502 		 */
5503 		tp->snd_wnd = ntohs(th->window);
5504 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5505 
5506 		if (!tp->rx_opt.wscale_ok) {
5507 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5508 			tp->window_clamp = min(tp->window_clamp, 65535U);
5509 		}
5510 
5511 		if (tp->rx_opt.saw_tstamp) {
5512 			tp->rx_opt.tstamp_ok	   = 1;
5513 			tp->tcp_header_len =
5514 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5515 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5516 			tcp_store_ts_recent(tp);
5517 		} else {
5518 			tp->tcp_header_len = sizeof(struct tcphdr);
5519 		}
5520 
5521 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5522 			tcp_enable_fack(tp);
5523 
5524 		tcp_mtup_init(sk);
5525 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5526 		tcp_initialize_rcv_mss(sk);
5527 
5528 		/* Remember, tcp_poll() does not lock socket!
5529 		 * Change state from SYN-SENT only after copied_seq
5530 		 * is initialized. */
5531 		tp->copied_seq = tp->rcv_nxt;
5532 
5533 		if (cvp != NULL &&
5534 		    cvp->cookie_pair_size > 0 &&
5535 		    tp->rx_opt.cookie_plus > 0) {
5536 			int cookie_size = tp->rx_opt.cookie_plus
5537 					- TCPOLEN_COOKIE_BASE;
5538 			int cookie_pair_size = cookie_size
5539 					     + cvp->cookie_desired;
5540 
5541 			/* A cookie extension option was sent and returned.
5542 			 * Note that each incoming SYNACK replaces the
5543 			 * Responder cookie.  The initial exchange is most
5544 			 * fragile, as protection against spoofing relies
5545 			 * entirely upon the sequence and timestamp (above).
5546 			 * This replacement strategy allows the correct pair to
5547 			 * pass through, while any others will be filtered via
5548 			 * Responder verification later.
5549 			 */
5550 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5551 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5552 				       hash_location, cookie_size);
5553 				cvp->cookie_pair_size = cookie_pair_size;
5554 			}
5555 		}
5556 
5557 		smp_mb();
5558 		tcp_set_state(sk, TCP_ESTABLISHED);
5559 
5560 		security_inet_conn_established(sk, skb);
5561 
5562 		/* Make sure socket is routed, for correct metrics.  */
5563 		icsk->icsk_af_ops->rebuild_header(sk);
5564 
5565 		tcp_init_metrics(sk);
5566 
5567 		tcp_init_congestion_control(sk);
5568 
5569 		/* Prevent spurious tcp_cwnd_restart() on first data
5570 		 * packet.
5571 		 */
5572 		tp->lsndtime = tcp_time_stamp;
5573 
5574 		tcp_init_buffer_space(sk);
5575 
5576 		if (sock_flag(sk, SOCK_KEEPOPEN))
5577 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5578 
5579 		if (!tp->rx_opt.snd_wscale)
5580 			__tcp_fast_path_on(tp, tp->snd_wnd);
5581 		else
5582 			tp->pred_flags = 0;
5583 
5584 		if (!sock_flag(sk, SOCK_DEAD)) {
5585 			sk->sk_state_change(sk);
5586 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5587 		}
5588 
5589 		if (sk->sk_write_pending ||
5590 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5591 		    icsk->icsk_ack.pingpong) {
5592 			/* Save one ACK. Data will be ready after
5593 			 * several ticks, if write_pending is set.
5594 			 *
5595 			 * It may be deleted, but with this feature tcpdumps
5596 			 * look so _wonderfully_ clever, that I was not able
5597 			 * to stand against the temptation 8)     --ANK
5598 			 */
5599 			inet_csk_schedule_ack(sk);
5600 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5601 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
5602 			tcp_incr_quickack(sk);
5603 			tcp_enter_quickack_mode(sk);
5604 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5605 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5606 
5607 discard:
5608 			__kfree_skb(skb);
5609 			return 0;
5610 		} else {
5611 			tcp_send_ack(sk);
5612 		}
5613 		return -1;
5614 	}
5615 
5616 	/* No ACK in the segment */
5617 
5618 	if (th->rst) {
5619 		/* rfc793:
5620 		 * "If the RST bit is set
5621 		 *
5622 		 *      Otherwise (no ACK) drop the segment and return."
5623 		 */
5624 
5625 		goto discard_and_undo;
5626 	}
5627 
5628 	/* PAWS check. */
5629 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5630 	    tcp_paws_reject(&tp->rx_opt, 0))
5631 		goto discard_and_undo;
5632 
5633 	if (th->syn) {
5634 		/* We see SYN without ACK. It is attempt of
5635 		 * simultaneous connect with crossed SYNs.
5636 		 * Particularly, it can be connect to self.
5637 		 */
5638 		tcp_set_state(sk, TCP_SYN_RECV);
5639 
5640 		if (tp->rx_opt.saw_tstamp) {
5641 			tp->rx_opt.tstamp_ok = 1;
5642 			tcp_store_ts_recent(tp);
5643 			tp->tcp_header_len =
5644 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5645 		} else {
5646 			tp->tcp_header_len = sizeof(struct tcphdr);
5647 		}
5648 
5649 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5650 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5651 
5652 		/* RFC1323: The window in SYN & SYN/ACK segments is
5653 		 * never scaled.
5654 		 */
5655 		tp->snd_wnd    = ntohs(th->window);
5656 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5657 		tp->max_window = tp->snd_wnd;
5658 
5659 		TCP_ECN_rcv_syn(tp, th);
5660 
5661 		tcp_mtup_init(sk);
5662 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5663 		tcp_initialize_rcv_mss(sk);
5664 
5665 		tcp_send_synack(sk);
5666 #if 0
5667 		/* Note, we could accept data and URG from this segment.
5668 		 * There are no obstacles to make this.
5669 		 *
5670 		 * However, if we ignore data in ACKless segments sometimes,
5671 		 * we have no reasons to accept it sometimes.
5672 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5673 		 * is not flawless. So, discard packet for sanity.
5674 		 * Uncomment this return to process the data.
5675 		 */
5676 		return -1;
5677 #else
5678 		goto discard;
5679 #endif
5680 	}
5681 	/* "fifth, if neither of the SYN or RST bits is set then
5682 	 * drop the segment and return."
5683 	 */
5684 
5685 discard_and_undo:
5686 	tcp_clear_options(&tp->rx_opt);
5687 	tp->rx_opt.mss_clamp = saved_clamp;
5688 	goto discard;
5689 
5690 reset_and_undo:
5691 	tcp_clear_options(&tp->rx_opt);
5692 	tp->rx_opt.mss_clamp = saved_clamp;
5693 	return 1;
5694 }
5695 
5696 /*
5697  *	This function implements the receiving procedure of RFC 793 for
5698  *	all states except ESTABLISHED and TIME_WAIT.
5699  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5700  *	address independent.
5701  */
5702 
5703 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5704 			  struct tcphdr *th, unsigned len)
5705 {
5706 	struct tcp_sock *tp = tcp_sk(sk);
5707 	struct inet_connection_sock *icsk = inet_csk(sk);
5708 	int queued = 0;
5709 	int res;
5710 
5711 	tp->rx_opt.saw_tstamp = 0;
5712 
5713 	switch (sk->sk_state) {
5714 	case TCP_CLOSE:
5715 		goto discard;
5716 
5717 	case TCP_LISTEN:
5718 		if (th->ack)
5719 			return 1;
5720 
5721 		if (th->rst)
5722 			goto discard;
5723 
5724 		if (th->syn) {
5725 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5726 				return 1;
5727 
5728 			/* Now we have several options: In theory there is
5729 			 * nothing else in the frame. KA9Q has an option to
5730 			 * send data with the syn, BSD accepts data with the
5731 			 * syn up to the [to be] advertised window and
5732 			 * Solaris 2.1 gives you a protocol error. For now
5733 			 * we just ignore it, that fits the spec precisely
5734 			 * and avoids incompatibilities. It would be nice in
5735 			 * future to drop through and process the data.
5736 			 *
5737 			 * Now that TTCP is starting to be used we ought to
5738 			 * queue this data.
5739 			 * But, this leaves one open to an easy denial of
5740 			 * service attack, and SYN cookies can't defend
5741 			 * against this problem. So, we drop the data
5742 			 * in the interest of security over speed unless
5743 			 * it's still in use.
5744 			 */
5745 			kfree_skb(skb);
5746 			return 0;
5747 		}
5748 		goto discard;
5749 
5750 	case TCP_SYN_SENT:
5751 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5752 		if (queued >= 0)
5753 			return queued;
5754 
5755 		/* Do step6 onward by hand. */
5756 		tcp_urg(sk, skb, th);
5757 		__kfree_skb(skb);
5758 		tcp_data_snd_check(sk);
5759 		return 0;
5760 	}
5761 
5762 	res = tcp_validate_incoming(sk, skb, th, 0);
5763 	if (res <= 0)
5764 		return -res;
5765 
5766 	/* step 5: check the ACK field */
5767 	if (th->ack) {
5768 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5769 
5770 		switch (sk->sk_state) {
5771 		case TCP_SYN_RECV:
5772 			if (acceptable) {
5773 				tp->copied_seq = tp->rcv_nxt;
5774 				smp_mb();
5775 				tcp_set_state(sk, TCP_ESTABLISHED);
5776 				sk->sk_state_change(sk);
5777 
5778 				/* Note, that this wakeup is only for marginal
5779 				 * crossed SYN case. Passively open sockets
5780 				 * are not waked up, because sk->sk_sleep ==
5781 				 * NULL and sk->sk_socket == NULL.
5782 				 */
5783 				if (sk->sk_socket)
5784 					sk_wake_async(sk,
5785 						      SOCK_WAKE_IO, POLL_OUT);
5786 
5787 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5788 				tp->snd_wnd = ntohs(th->window) <<
5789 					      tp->rx_opt.snd_wscale;
5790 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5791 
5792 				/* tcp_ack considers this ACK as duplicate
5793 				 * and does not calculate rtt.
5794 				 * Fix it at least with timestamps.
5795 				 */
5796 				if (tp->rx_opt.saw_tstamp &&
5797 				    tp->rx_opt.rcv_tsecr && !tp->srtt)
5798 					tcp_ack_saw_tstamp(sk, 0);
5799 
5800 				if (tp->rx_opt.tstamp_ok)
5801 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5802 
5803 				/* Make sure socket is routed, for
5804 				 * correct metrics.
5805 				 */
5806 				icsk->icsk_af_ops->rebuild_header(sk);
5807 
5808 				tcp_init_metrics(sk);
5809 
5810 				tcp_init_congestion_control(sk);
5811 
5812 				/* Prevent spurious tcp_cwnd_restart() on
5813 				 * first data packet.
5814 				 */
5815 				tp->lsndtime = tcp_time_stamp;
5816 
5817 				tcp_mtup_init(sk);
5818 				tcp_initialize_rcv_mss(sk);
5819 				tcp_init_buffer_space(sk);
5820 				tcp_fast_path_on(tp);
5821 			} else {
5822 				return 1;
5823 			}
5824 			break;
5825 
5826 		case TCP_FIN_WAIT1:
5827 			if (tp->snd_una == tp->write_seq) {
5828 				tcp_set_state(sk, TCP_FIN_WAIT2);
5829 				sk->sk_shutdown |= SEND_SHUTDOWN;
5830 				dst_confirm(sk->sk_dst_cache);
5831 
5832 				if (!sock_flag(sk, SOCK_DEAD))
5833 					/* Wake up lingering close() */
5834 					sk->sk_state_change(sk);
5835 				else {
5836 					int tmo;
5837 
5838 					if (tp->linger2 < 0 ||
5839 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5840 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5841 						tcp_done(sk);
5842 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5843 						return 1;
5844 					}
5845 
5846 					tmo = tcp_fin_time(sk);
5847 					if (tmo > TCP_TIMEWAIT_LEN) {
5848 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5849 					} else if (th->fin || sock_owned_by_user(sk)) {
5850 						/* Bad case. We could lose such FIN otherwise.
5851 						 * It is not a big problem, but it looks confusing
5852 						 * and not so rare event. We still can lose it now,
5853 						 * if it spins in bh_lock_sock(), but it is really
5854 						 * marginal case.
5855 						 */
5856 						inet_csk_reset_keepalive_timer(sk, tmo);
5857 					} else {
5858 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5859 						goto discard;
5860 					}
5861 				}
5862 			}
5863 			break;
5864 
5865 		case TCP_CLOSING:
5866 			if (tp->snd_una == tp->write_seq) {
5867 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5868 				goto discard;
5869 			}
5870 			break;
5871 
5872 		case TCP_LAST_ACK:
5873 			if (tp->snd_una == tp->write_seq) {
5874 				tcp_update_metrics(sk);
5875 				tcp_done(sk);
5876 				goto discard;
5877 			}
5878 			break;
5879 		}
5880 	} else
5881 		goto discard;
5882 
5883 	/* step 6: check the URG bit */
5884 	tcp_urg(sk, skb, th);
5885 
5886 	/* step 7: process the segment text */
5887 	switch (sk->sk_state) {
5888 	case TCP_CLOSE_WAIT:
5889 	case TCP_CLOSING:
5890 	case TCP_LAST_ACK:
5891 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5892 			break;
5893 	case TCP_FIN_WAIT1:
5894 	case TCP_FIN_WAIT2:
5895 		/* RFC 793 says to queue data in these states,
5896 		 * RFC 1122 says we MUST send a reset.
5897 		 * BSD 4.4 also does reset.
5898 		 */
5899 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
5900 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5901 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5902 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5903 				tcp_reset(sk);
5904 				return 1;
5905 			}
5906 		}
5907 		/* Fall through */
5908 	case TCP_ESTABLISHED:
5909 		tcp_data_queue(sk, skb);
5910 		queued = 1;
5911 		break;
5912 	}
5913 
5914 	/* tcp_data could move socket to TIME-WAIT */
5915 	if (sk->sk_state != TCP_CLOSE) {
5916 		tcp_data_snd_check(sk);
5917 		tcp_ack_snd_check(sk);
5918 	}
5919 
5920 	if (!queued) {
5921 discard:
5922 		__kfree_skb(skb);
5923 	}
5924 	return 0;
5925 }
5926 
5927 EXPORT_SYMBOL(sysctl_tcp_ecn);
5928 EXPORT_SYMBOL(sysctl_tcp_reordering);
5929 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5930 EXPORT_SYMBOL(tcp_parse_options);
5931 #ifdef CONFIG_TCP_MD5SIG
5932 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5933 #endif
5934 EXPORT_SYMBOL(tcp_rcv_established);
5935 EXPORT_SYMBOL(tcp_rcv_state_process);
5936 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
5937