xref: /linux/net/ipv4/tcp_input.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90 
91 int sysctl_tcp_stdurg __read_mostly;
92 int sysctl_tcp_rfc1337 __read_mostly;
93 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
94 int sysctl_tcp_frto __read_mostly = 2;
95 int sysctl_tcp_frto_response __read_mostly;
96 int sysctl_tcp_nometrics_save __read_mostly;
97 
98 int sysctl_tcp_thin_dupack __read_mostly;
99 
100 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
101 int sysctl_tcp_abc __read_mostly;
102 int sysctl_tcp_early_retrans __read_mostly = 2;
103 
104 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
105 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
106 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
107 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
108 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
109 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
110 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
111 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
112 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
113 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
114 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
115 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
116 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
117 
118 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
119 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
120 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
121 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
122 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
123 
124 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
125 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
126 
127 /* Adapt the MSS value used to make delayed ack decision to the
128  * real world.
129  */
130 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
131 {
132 	struct inet_connection_sock *icsk = inet_csk(sk);
133 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
134 	unsigned int len;
135 
136 	icsk->icsk_ack.last_seg_size = 0;
137 
138 	/* skb->len may jitter because of SACKs, even if peer
139 	 * sends good full-sized frames.
140 	 */
141 	len = skb_shinfo(skb)->gso_size ? : skb->len;
142 	if (len >= icsk->icsk_ack.rcv_mss) {
143 		icsk->icsk_ack.rcv_mss = len;
144 	} else {
145 		/* Otherwise, we make more careful check taking into account,
146 		 * that SACKs block is variable.
147 		 *
148 		 * "len" is invariant segment length, including TCP header.
149 		 */
150 		len += skb->data - skb_transport_header(skb);
151 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
152 		    /* If PSH is not set, packet should be
153 		     * full sized, provided peer TCP is not badly broken.
154 		     * This observation (if it is correct 8)) allows
155 		     * to handle super-low mtu links fairly.
156 		     */
157 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
158 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
159 			/* Subtract also invariant (if peer is RFC compliant),
160 			 * tcp header plus fixed timestamp option length.
161 			 * Resulting "len" is MSS free of SACK jitter.
162 			 */
163 			len -= tcp_sk(sk)->tcp_header_len;
164 			icsk->icsk_ack.last_seg_size = len;
165 			if (len == lss) {
166 				icsk->icsk_ack.rcv_mss = len;
167 				return;
168 			}
169 		}
170 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
171 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
172 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
173 	}
174 }
175 
176 static void tcp_incr_quickack(struct sock *sk)
177 {
178 	struct inet_connection_sock *icsk = inet_csk(sk);
179 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
180 
181 	if (quickacks == 0)
182 		quickacks = 2;
183 	if (quickacks > icsk->icsk_ack.quick)
184 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 }
186 
187 static void tcp_enter_quickack_mode(struct sock *sk)
188 {
189 	struct inet_connection_sock *icsk = inet_csk(sk);
190 	tcp_incr_quickack(sk);
191 	icsk->icsk_ack.pingpong = 0;
192 	icsk->icsk_ack.ato = TCP_ATO_MIN;
193 }
194 
195 /* Send ACKs quickly, if "quick" count is not exhausted
196  * and the session is not interactive.
197  */
198 
199 static inline bool tcp_in_quickack_mode(const struct sock *sk)
200 {
201 	const struct inet_connection_sock *icsk = inet_csk(sk);
202 
203 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
204 }
205 
206 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
207 {
208 	if (tp->ecn_flags & TCP_ECN_OK)
209 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
210 }
211 
212 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
213 {
214 	if (tcp_hdr(skb)->cwr)
215 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
216 }
217 
218 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
219 {
220 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
221 }
222 
223 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
224 {
225 	if (!(tp->ecn_flags & TCP_ECN_OK))
226 		return;
227 
228 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
229 	case INET_ECN_NOT_ECT:
230 		/* Funny extension: if ECT is not set on a segment,
231 		 * and we already seen ECT on a previous segment,
232 		 * it is probably a retransmit.
233 		 */
234 		if (tp->ecn_flags & TCP_ECN_SEEN)
235 			tcp_enter_quickack_mode((struct sock *)tp);
236 		break;
237 	case INET_ECN_CE:
238 		tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 		/* fallinto */
240 	default:
241 		tp->ecn_flags |= TCP_ECN_SEEN;
242 	}
243 }
244 
245 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
246 {
247 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
248 		tp->ecn_flags &= ~TCP_ECN_OK;
249 }
250 
251 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
252 {
253 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
254 		tp->ecn_flags &= ~TCP_ECN_OK;
255 }
256 
257 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
258 {
259 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
260 		return true;
261 	return false;
262 }
263 
264 /* Buffer size and advertised window tuning.
265  *
266  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
267  */
268 
269 static void tcp_fixup_sndbuf(struct sock *sk)
270 {
271 	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
272 
273 	sndmem *= TCP_INIT_CWND;
274 	if (sk->sk_sndbuf < sndmem)
275 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
276 }
277 
278 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
279  *
280  * All tcp_full_space() is split to two parts: "network" buffer, allocated
281  * forward and advertised in receiver window (tp->rcv_wnd) and
282  * "application buffer", required to isolate scheduling/application
283  * latencies from network.
284  * window_clamp is maximal advertised window. It can be less than
285  * tcp_full_space(), in this case tcp_full_space() - window_clamp
286  * is reserved for "application" buffer. The less window_clamp is
287  * the smoother our behaviour from viewpoint of network, but the lower
288  * throughput and the higher sensitivity of the connection to losses. 8)
289  *
290  * rcv_ssthresh is more strict window_clamp used at "slow start"
291  * phase to predict further behaviour of this connection.
292  * It is used for two goals:
293  * - to enforce header prediction at sender, even when application
294  *   requires some significant "application buffer". It is check #1.
295  * - to prevent pruning of receive queue because of misprediction
296  *   of receiver window. Check #2.
297  *
298  * The scheme does not work when sender sends good segments opening
299  * window and then starts to feed us spaghetti. But it should work
300  * in common situations. Otherwise, we have to rely on queue collapsing.
301  */
302 
303 /* Slow part of check#2. */
304 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
305 {
306 	struct tcp_sock *tp = tcp_sk(sk);
307 	/* Optimize this! */
308 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
309 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
310 
311 	while (tp->rcv_ssthresh <= window) {
312 		if (truesize <= skb->len)
313 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
314 
315 		truesize >>= 1;
316 		window >>= 1;
317 	}
318 	return 0;
319 }
320 
321 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
322 {
323 	struct tcp_sock *tp = tcp_sk(sk);
324 
325 	/* Check #1 */
326 	if (tp->rcv_ssthresh < tp->window_clamp &&
327 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
328 	    !sk_under_memory_pressure(sk)) {
329 		int incr;
330 
331 		/* Check #2. Increase window, if skb with such overhead
332 		 * will fit to rcvbuf in future.
333 		 */
334 		if (tcp_win_from_space(skb->truesize) <= skb->len)
335 			incr = 2 * tp->advmss;
336 		else
337 			incr = __tcp_grow_window(sk, skb);
338 
339 		if (incr) {
340 			incr = max_t(int, incr, 2 * skb->len);
341 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
342 					       tp->window_clamp);
343 			inet_csk(sk)->icsk_ack.quick |= 1;
344 		}
345 	}
346 }
347 
348 /* 3. Tuning rcvbuf, when connection enters established state. */
349 
350 static void tcp_fixup_rcvbuf(struct sock *sk)
351 {
352 	u32 mss = tcp_sk(sk)->advmss;
353 	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
354 	int rcvmem;
355 
356 	/* Limit to 10 segments if mss <= 1460,
357 	 * or 14600/mss segments, with a minimum of two segments.
358 	 */
359 	if (mss > 1460)
360 		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
361 
362 	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
363 	while (tcp_win_from_space(rcvmem) < mss)
364 		rcvmem += 128;
365 
366 	rcvmem *= icwnd;
367 
368 	if (sk->sk_rcvbuf < rcvmem)
369 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
370 }
371 
372 /* 4. Try to fixup all. It is made immediately after connection enters
373  *    established state.
374  */
375 static void tcp_init_buffer_space(struct sock *sk)
376 {
377 	struct tcp_sock *tp = tcp_sk(sk);
378 	int maxwin;
379 
380 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
381 		tcp_fixup_rcvbuf(sk);
382 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
383 		tcp_fixup_sndbuf(sk);
384 
385 	tp->rcvq_space.space = tp->rcv_wnd;
386 
387 	maxwin = tcp_full_space(sk);
388 
389 	if (tp->window_clamp >= maxwin) {
390 		tp->window_clamp = maxwin;
391 
392 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
393 			tp->window_clamp = max(maxwin -
394 					       (maxwin >> sysctl_tcp_app_win),
395 					       4 * tp->advmss);
396 	}
397 
398 	/* Force reservation of one segment. */
399 	if (sysctl_tcp_app_win &&
400 	    tp->window_clamp > 2 * tp->advmss &&
401 	    tp->window_clamp + tp->advmss > maxwin)
402 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
403 
404 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
405 	tp->snd_cwnd_stamp = tcp_time_stamp;
406 }
407 
408 /* 5. Recalculate window clamp after socket hit its memory bounds. */
409 static void tcp_clamp_window(struct sock *sk)
410 {
411 	struct tcp_sock *tp = tcp_sk(sk);
412 	struct inet_connection_sock *icsk = inet_csk(sk);
413 
414 	icsk->icsk_ack.quick = 0;
415 
416 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
417 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
418 	    !sk_under_memory_pressure(sk) &&
419 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
420 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
421 				    sysctl_tcp_rmem[2]);
422 	}
423 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
424 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
425 }
426 
427 /* Initialize RCV_MSS value.
428  * RCV_MSS is an our guess about MSS used by the peer.
429  * We haven't any direct information about the MSS.
430  * It's better to underestimate the RCV_MSS rather than overestimate.
431  * Overestimations make us ACKing less frequently than needed.
432  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
433  */
434 void tcp_initialize_rcv_mss(struct sock *sk)
435 {
436 	const struct tcp_sock *tp = tcp_sk(sk);
437 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
438 
439 	hint = min(hint, tp->rcv_wnd / 2);
440 	hint = min(hint, TCP_MSS_DEFAULT);
441 	hint = max(hint, TCP_MIN_MSS);
442 
443 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
444 }
445 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
446 
447 /* Receiver "autotuning" code.
448  *
449  * The algorithm for RTT estimation w/o timestamps is based on
450  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
451  * <http://public.lanl.gov/radiant/pubs.html#DRS>
452  *
453  * More detail on this code can be found at
454  * <http://staff.psc.edu/jheffner/>,
455  * though this reference is out of date.  A new paper
456  * is pending.
457  */
458 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
459 {
460 	u32 new_sample = tp->rcv_rtt_est.rtt;
461 	long m = sample;
462 
463 	if (m == 0)
464 		m = 1;
465 
466 	if (new_sample != 0) {
467 		/* If we sample in larger samples in the non-timestamp
468 		 * case, we could grossly overestimate the RTT especially
469 		 * with chatty applications or bulk transfer apps which
470 		 * are stalled on filesystem I/O.
471 		 *
472 		 * Also, since we are only going for a minimum in the
473 		 * non-timestamp case, we do not smooth things out
474 		 * else with timestamps disabled convergence takes too
475 		 * long.
476 		 */
477 		if (!win_dep) {
478 			m -= (new_sample >> 3);
479 			new_sample += m;
480 		} else {
481 			m <<= 3;
482 			if (m < new_sample)
483 				new_sample = m;
484 		}
485 	} else {
486 		/* No previous measure. */
487 		new_sample = m << 3;
488 	}
489 
490 	if (tp->rcv_rtt_est.rtt != new_sample)
491 		tp->rcv_rtt_est.rtt = new_sample;
492 }
493 
494 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
495 {
496 	if (tp->rcv_rtt_est.time == 0)
497 		goto new_measure;
498 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
499 		return;
500 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
501 
502 new_measure:
503 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
504 	tp->rcv_rtt_est.time = tcp_time_stamp;
505 }
506 
507 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
508 					  const struct sk_buff *skb)
509 {
510 	struct tcp_sock *tp = tcp_sk(sk);
511 	if (tp->rx_opt.rcv_tsecr &&
512 	    (TCP_SKB_CB(skb)->end_seq -
513 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
514 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
515 }
516 
517 /*
518  * This function should be called every time data is copied to user space.
519  * It calculates the appropriate TCP receive buffer space.
520  */
521 void tcp_rcv_space_adjust(struct sock *sk)
522 {
523 	struct tcp_sock *tp = tcp_sk(sk);
524 	int time;
525 	int space;
526 
527 	if (tp->rcvq_space.time == 0)
528 		goto new_measure;
529 
530 	time = tcp_time_stamp - tp->rcvq_space.time;
531 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
532 		return;
533 
534 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
535 
536 	space = max(tp->rcvq_space.space, space);
537 
538 	if (tp->rcvq_space.space != space) {
539 		int rcvmem;
540 
541 		tp->rcvq_space.space = space;
542 
543 		if (sysctl_tcp_moderate_rcvbuf &&
544 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
545 			int new_clamp = space;
546 
547 			/* Receive space grows, normalize in order to
548 			 * take into account packet headers and sk_buff
549 			 * structure overhead.
550 			 */
551 			space /= tp->advmss;
552 			if (!space)
553 				space = 1;
554 			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
555 			while (tcp_win_from_space(rcvmem) < tp->advmss)
556 				rcvmem += 128;
557 			space *= rcvmem;
558 			space = min(space, sysctl_tcp_rmem[2]);
559 			if (space > sk->sk_rcvbuf) {
560 				sk->sk_rcvbuf = space;
561 
562 				/* Make the window clamp follow along.  */
563 				tp->window_clamp = new_clamp;
564 			}
565 		}
566 	}
567 
568 new_measure:
569 	tp->rcvq_space.seq = tp->copied_seq;
570 	tp->rcvq_space.time = tcp_time_stamp;
571 }
572 
573 /* There is something which you must keep in mind when you analyze the
574  * behavior of the tp->ato delayed ack timeout interval.  When a
575  * connection starts up, we want to ack as quickly as possible.  The
576  * problem is that "good" TCP's do slow start at the beginning of data
577  * transmission.  The means that until we send the first few ACK's the
578  * sender will sit on his end and only queue most of his data, because
579  * he can only send snd_cwnd unacked packets at any given time.  For
580  * each ACK we send, he increments snd_cwnd and transmits more of his
581  * queue.  -DaveM
582  */
583 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
584 {
585 	struct tcp_sock *tp = tcp_sk(sk);
586 	struct inet_connection_sock *icsk = inet_csk(sk);
587 	u32 now;
588 
589 	inet_csk_schedule_ack(sk);
590 
591 	tcp_measure_rcv_mss(sk, skb);
592 
593 	tcp_rcv_rtt_measure(tp);
594 
595 	now = tcp_time_stamp;
596 
597 	if (!icsk->icsk_ack.ato) {
598 		/* The _first_ data packet received, initialize
599 		 * delayed ACK engine.
600 		 */
601 		tcp_incr_quickack(sk);
602 		icsk->icsk_ack.ato = TCP_ATO_MIN;
603 	} else {
604 		int m = now - icsk->icsk_ack.lrcvtime;
605 
606 		if (m <= TCP_ATO_MIN / 2) {
607 			/* The fastest case is the first. */
608 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
609 		} else if (m < icsk->icsk_ack.ato) {
610 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
611 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
612 				icsk->icsk_ack.ato = icsk->icsk_rto;
613 		} else if (m > icsk->icsk_rto) {
614 			/* Too long gap. Apparently sender failed to
615 			 * restart window, so that we send ACKs quickly.
616 			 */
617 			tcp_incr_quickack(sk);
618 			sk_mem_reclaim(sk);
619 		}
620 	}
621 	icsk->icsk_ack.lrcvtime = now;
622 
623 	TCP_ECN_check_ce(tp, skb);
624 
625 	if (skb->len >= 128)
626 		tcp_grow_window(sk, skb);
627 }
628 
629 /* Called to compute a smoothed rtt estimate. The data fed to this
630  * routine either comes from timestamps, or from segments that were
631  * known _not_ to have been retransmitted [see Karn/Partridge
632  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
633  * piece by Van Jacobson.
634  * NOTE: the next three routines used to be one big routine.
635  * To save cycles in the RFC 1323 implementation it was better to break
636  * it up into three procedures. -- erics
637  */
638 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
639 {
640 	struct tcp_sock *tp = tcp_sk(sk);
641 	long m = mrtt; /* RTT */
642 
643 	/*	The following amusing code comes from Jacobson's
644 	 *	article in SIGCOMM '88.  Note that rtt and mdev
645 	 *	are scaled versions of rtt and mean deviation.
646 	 *	This is designed to be as fast as possible
647 	 *	m stands for "measurement".
648 	 *
649 	 *	On a 1990 paper the rto value is changed to:
650 	 *	RTO = rtt + 4 * mdev
651 	 *
652 	 * Funny. This algorithm seems to be very broken.
653 	 * These formulae increase RTO, when it should be decreased, increase
654 	 * too slowly, when it should be increased quickly, decrease too quickly
655 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
656 	 * does not matter how to _calculate_ it. Seems, it was trap
657 	 * that VJ failed to avoid. 8)
658 	 */
659 	if (m == 0)
660 		m = 1;
661 	if (tp->srtt != 0) {
662 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
663 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
664 		if (m < 0) {
665 			m = -m;		/* m is now abs(error) */
666 			m -= (tp->mdev >> 2);   /* similar update on mdev */
667 			/* This is similar to one of Eifel findings.
668 			 * Eifel blocks mdev updates when rtt decreases.
669 			 * This solution is a bit different: we use finer gain
670 			 * for mdev in this case (alpha*beta).
671 			 * Like Eifel it also prevents growth of rto,
672 			 * but also it limits too fast rto decreases,
673 			 * happening in pure Eifel.
674 			 */
675 			if (m > 0)
676 				m >>= 3;
677 		} else {
678 			m -= (tp->mdev >> 2);   /* similar update on mdev */
679 		}
680 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
681 		if (tp->mdev > tp->mdev_max) {
682 			tp->mdev_max = tp->mdev;
683 			if (tp->mdev_max > tp->rttvar)
684 				tp->rttvar = tp->mdev_max;
685 		}
686 		if (after(tp->snd_una, tp->rtt_seq)) {
687 			if (tp->mdev_max < tp->rttvar)
688 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
689 			tp->rtt_seq = tp->snd_nxt;
690 			tp->mdev_max = tcp_rto_min(sk);
691 		}
692 	} else {
693 		/* no previous measure. */
694 		tp->srtt = m << 3;	/* take the measured time to be rtt */
695 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
696 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
697 		tp->rtt_seq = tp->snd_nxt;
698 	}
699 }
700 
701 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
702  * routine referred to above.
703  */
704 static inline void tcp_set_rto(struct sock *sk)
705 {
706 	const struct tcp_sock *tp = tcp_sk(sk);
707 	/* Old crap is replaced with new one. 8)
708 	 *
709 	 * More seriously:
710 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
711 	 *    It cannot be less due to utterly erratic ACK generation made
712 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
713 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
714 	 *    is invisible. Actually, Linux-2.4 also generates erratic
715 	 *    ACKs in some circumstances.
716 	 */
717 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
718 
719 	/* 2. Fixups made earlier cannot be right.
720 	 *    If we do not estimate RTO correctly without them,
721 	 *    all the algo is pure shit and should be replaced
722 	 *    with correct one. It is exactly, which we pretend to do.
723 	 */
724 
725 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
726 	 * guarantees that rto is higher.
727 	 */
728 	tcp_bound_rto(sk);
729 }
730 
731 /* Save metrics learned by this TCP session.
732    This function is called only, when TCP finishes successfully
733    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
734  */
735 void tcp_update_metrics(struct sock *sk)
736 {
737 	struct tcp_sock *tp = tcp_sk(sk);
738 	struct dst_entry *dst = __sk_dst_get(sk);
739 
740 	if (sysctl_tcp_nometrics_save)
741 		return;
742 
743 	dst_confirm(dst);
744 
745 	if (dst && (dst->flags & DST_HOST)) {
746 		const struct inet_connection_sock *icsk = inet_csk(sk);
747 		int m;
748 		unsigned long rtt;
749 
750 		if (icsk->icsk_backoff || !tp->srtt) {
751 			/* This session failed to estimate rtt. Why?
752 			 * Probably, no packets returned in time.
753 			 * Reset our results.
754 			 */
755 			if (!(dst_metric_locked(dst, RTAX_RTT)))
756 				dst_metric_set(dst, RTAX_RTT, 0);
757 			return;
758 		}
759 
760 		rtt = dst_metric_rtt(dst, RTAX_RTT);
761 		m = rtt - tp->srtt;
762 
763 		/* If newly calculated rtt larger than stored one,
764 		 * store new one. Otherwise, use EWMA. Remember,
765 		 * rtt overestimation is always better than underestimation.
766 		 */
767 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
768 			if (m <= 0)
769 				set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
770 			else
771 				set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
772 		}
773 
774 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
775 			unsigned long var;
776 			if (m < 0)
777 				m = -m;
778 
779 			/* Scale deviation to rttvar fixed point */
780 			m >>= 1;
781 			if (m < tp->mdev)
782 				m = tp->mdev;
783 
784 			var = dst_metric_rtt(dst, RTAX_RTTVAR);
785 			if (m >= var)
786 				var = m;
787 			else
788 				var -= (var - m) >> 2;
789 
790 			set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
791 		}
792 
793 		if (tcp_in_initial_slowstart(tp)) {
794 			/* Slow start still did not finish. */
795 			if (dst_metric(dst, RTAX_SSTHRESH) &&
796 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
797 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
798 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
799 			if (!dst_metric_locked(dst, RTAX_CWND) &&
800 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
801 				dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
802 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
803 			   icsk->icsk_ca_state == TCP_CA_Open) {
804 			/* Cong. avoidance phase, cwnd is reliable. */
805 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
806 				dst_metric_set(dst, RTAX_SSTHRESH,
807 					       max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
808 			if (!dst_metric_locked(dst, RTAX_CWND))
809 				dst_metric_set(dst, RTAX_CWND,
810 					       (dst_metric(dst, RTAX_CWND) +
811 						tp->snd_cwnd) >> 1);
812 		} else {
813 			/* Else slow start did not finish, cwnd is non-sense,
814 			   ssthresh may be also invalid.
815 			 */
816 			if (!dst_metric_locked(dst, RTAX_CWND))
817 				dst_metric_set(dst, RTAX_CWND,
818 					       (dst_metric(dst, RTAX_CWND) +
819 						tp->snd_ssthresh) >> 1);
820 			if (dst_metric(dst, RTAX_SSTHRESH) &&
821 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
822 			    tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
823 				dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
824 		}
825 
826 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
827 			if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
828 			    tp->reordering != sysctl_tcp_reordering)
829 				dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
830 		}
831 	}
832 }
833 
834 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
835 {
836 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
837 
838 	if (!cwnd)
839 		cwnd = TCP_INIT_CWND;
840 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
841 }
842 
843 /* Set slow start threshold and cwnd not falling to slow start */
844 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
845 {
846 	struct tcp_sock *tp = tcp_sk(sk);
847 	const struct inet_connection_sock *icsk = inet_csk(sk);
848 
849 	tp->prior_ssthresh = 0;
850 	tp->bytes_acked = 0;
851 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
852 		tp->undo_marker = 0;
853 		if (set_ssthresh)
854 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
855 		tp->snd_cwnd = min(tp->snd_cwnd,
856 				   tcp_packets_in_flight(tp) + 1U);
857 		tp->snd_cwnd_cnt = 0;
858 		tp->high_seq = tp->snd_nxt;
859 		tp->snd_cwnd_stamp = tcp_time_stamp;
860 		TCP_ECN_queue_cwr(tp);
861 
862 		tcp_set_ca_state(sk, TCP_CA_CWR);
863 	}
864 }
865 
866 /*
867  * Packet counting of FACK is based on in-order assumptions, therefore TCP
868  * disables it when reordering is detected
869  */
870 static void tcp_disable_fack(struct tcp_sock *tp)
871 {
872 	/* RFC3517 uses different metric in lost marker => reset on change */
873 	if (tcp_is_fack(tp))
874 		tp->lost_skb_hint = NULL;
875 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
876 }
877 
878 /* Take a notice that peer is sending D-SACKs */
879 static void tcp_dsack_seen(struct tcp_sock *tp)
880 {
881 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
882 }
883 
884 /* Initialize metrics on socket. */
885 
886 static void tcp_init_metrics(struct sock *sk)
887 {
888 	struct tcp_sock *tp = tcp_sk(sk);
889 	struct dst_entry *dst = __sk_dst_get(sk);
890 
891 	if (dst == NULL)
892 		goto reset;
893 
894 	dst_confirm(dst);
895 
896 	if (dst_metric_locked(dst, RTAX_CWND))
897 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
898 	if (dst_metric(dst, RTAX_SSTHRESH)) {
899 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
900 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
901 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
902 	} else {
903 		/* ssthresh may have been reduced unnecessarily during.
904 		 * 3WHS. Restore it back to its initial default.
905 		 */
906 		tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
907 	}
908 	if (dst_metric(dst, RTAX_REORDERING) &&
909 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
910 		tcp_disable_fack(tp);
911 		tcp_disable_early_retrans(tp);
912 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
913 	}
914 
915 	if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
916 		goto reset;
917 
918 	/* Initial rtt is determined from SYN,SYN-ACK.
919 	 * The segment is small and rtt may appear much
920 	 * less than real one. Use per-dst memory
921 	 * to make it more realistic.
922 	 *
923 	 * A bit of theory. RTT is time passed after "normal" sized packet
924 	 * is sent until it is ACKed. In normal circumstances sending small
925 	 * packets force peer to delay ACKs and calculation is correct too.
926 	 * The algorithm is adaptive and, provided we follow specs, it
927 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
928 	 * tricks sort of "quick acks" for time long enough to decrease RTT
929 	 * to low value, and then abruptly stops to do it and starts to delay
930 	 * ACKs, wait for troubles.
931 	 */
932 	if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
933 		tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
934 		tp->rtt_seq = tp->snd_nxt;
935 	}
936 	if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
937 		tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
938 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
939 	}
940 	tcp_set_rto(sk);
941 reset:
942 	if (tp->srtt == 0) {
943 		/* RFC6298: 5.7 We've failed to get a valid RTT sample from
944 		 * 3WHS. This is most likely due to retransmission,
945 		 * including spurious one. Reset the RTO back to 3secs
946 		 * from the more aggressive 1sec to avoid more spurious
947 		 * retransmission.
948 		 */
949 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
950 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
951 	}
952 	/* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
953 	 * retransmitted. In light of RFC6298 more aggressive 1sec
954 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
955 	 * retransmission has occurred.
956 	 */
957 	if (tp->total_retrans > 1)
958 		tp->snd_cwnd = 1;
959 	else
960 		tp->snd_cwnd = tcp_init_cwnd(tp, dst);
961 	tp->snd_cwnd_stamp = tcp_time_stamp;
962 }
963 
964 static void tcp_update_reordering(struct sock *sk, const int metric,
965 				  const int ts)
966 {
967 	struct tcp_sock *tp = tcp_sk(sk);
968 	if (metric > tp->reordering) {
969 		int mib_idx;
970 
971 		tp->reordering = min(TCP_MAX_REORDERING, metric);
972 
973 		/* This exciting event is worth to be remembered. 8) */
974 		if (ts)
975 			mib_idx = LINUX_MIB_TCPTSREORDER;
976 		else if (tcp_is_reno(tp))
977 			mib_idx = LINUX_MIB_TCPRENOREORDER;
978 		else if (tcp_is_fack(tp))
979 			mib_idx = LINUX_MIB_TCPFACKREORDER;
980 		else
981 			mib_idx = LINUX_MIB_TCPSACKREORDER;
982 
983 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
984 #if FASTRETRANS_DEBUG > 1
985 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
986 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
987 			 tp->reordering,
988 			 tp->fackets_out,
989 			 tp->sacked_out,
990 			 tp->undo_marker ? tp->undo_retrans : 0);
991 #endif
992 		tcp_disable_fack(tp);
993 	}
994 
995 	if (metric > 0)
996 		tcp_disable_early_retrans(tp);
997 }
998 
999 /* This must be called before lost_out is incremented */
1000 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1001 {
1002 	if ((tp->retransmit_skb_hint == NULL) ||
1003 	    before(TCP_SKB_CB(skb)->seq,
1004 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1005 		tp->retransmit_skb_hint = skb;
1006 
1007 	if (!tp->lost_out ||
1008 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
1009 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1010 }
1011 
1012 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
1013 {
1014 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1015 		tcp_verify_retransmit_hint(tp, skb);
1016 
1017 		tp->lost_out += tcp_skb_pcount(skb);
1018 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1019 	}
1020 }
1021 
1022 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
1023 					    struct sk_buff *skb)
1024 {
1025 	tcp_verify_retransmit_hint(tp, skb);
1026 
1027 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1028 		tp->lost_out += tcp_skb_pcount(skb);
1029 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1030 	}
1031 }
1032 
1033 /* This procedure tags the retransmission queue when SACKs arrive.
1034  *
1035  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1036  * Packets in queue with these bits set are counted in variables
1037  * sacked_out, retrans_out and lost_out, correspondingly.
1038  *
1039  * Valid combinations are:
1040  * Tag  InFlight	Description
1041  * 0	1		- orig segment is in flight.
1042  * S	0		- nothing flies, orig reached receiver.
1043  * L	0		- nothing flies, orig lost by net.
1044  * R	2		- both orig and retransmit are in flight.
1045  * L|R	1		- orig is lost, retransmit is in flight.
1046  * S|R  1		- orig reached receiver, retrans is still in flight.
1047  * (L|S|R is logically valid, it could occur when L|R is sacked,
1048  *  but it is equivalent to plain S and code short-curcuits it to S.
1049  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1050  *
1051  * These 6 states form finite state machine, controlled by the following events:
1052  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1053  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1054  * 3. Loss detection event of two flavors:
1055  *	A. Scoreboard estimator decided the packet is lost.
1056  *	   A'. Reno "three dupacks" marks head of queue lost.
1057  *	   A''. Its FACK modification, head until snd.fack is lost.
1058  *	B. SACK arrives sacking SND.NXT at the moment, when the
1059  *	   segment was retransmitted.
1060  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1061  *
1062  * It is pleasant to note, that state diagram turns out to be commutative,
1063  * so that we are allowed not to be bothered by order of our actions,
1064  * when multiple events arrive simultaneously. (see the function below).
1065  *
1066  * Reordering detection.
1067  * --------------------
1068  * Reordering metric is maximal distance, which a packet can be displaced
1069  * in packet stream. With SACKs we can estimate it:
1070  *
1071  * 1. SACK fills old hole and the corresponding segment was not
1072  *    ever retransmitted -> reordering. Alas, we cannot use it
1073  *    when segment was retransmitted.
1074  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1075  *    for retransmitted and already SACKed segment -> reordering..
1076  * Both of these heuristics are not used in Loss state, when we cannot
1077  * account for retransmits accurately.
1078  *
1079  * SACK block validation.
1080  * ----------------------
1081  *
1082  * SACK block range validation checks that the received SACK block fits to
1083  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1084  * Note that SND.UNA is not included to the range though being valid because
1085  * it means that the receiver is rather inconsistent with itself reporting
1086  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1087  * perfectly valid, however, in light of RFC2018 which explicitly states
1088  * that "SACK block MUST reflect the newest segment.  Even if the newest
1089  * segment is going to be discarded ...", not that it looks very clever
1090  * in case of head skb. Due to potentional receiver driven attacks, we
1091  * choose to avoid immediate execution of a walk in write queue due to
1092  * reneging and defer head skb's loss recovery to standard loss recovery
1093  * procedure that will eventually trigger (nothing forbids us doing this).
1094  *
1095  * Implements also blockage to start_seq wrap-around. Problem lies in the
1096  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1097  * there's no guarantee that it will be before snd_nxt (n). The problem
1098  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1099  * wrap (s_w):
1100  *
1101  *         <- outs wnd ->                          <- wrapzone ->
1102  *         u     e      n                         u_w   e_w  s n_w
1103  *         |     |      |                          |     |   |  |
1104  * |<------------+------+----- TCP seqno space --------------+---------->|
1105  * ...-- <2^31 ->|                                           |<--------...
1106  * ...---- >2^31 ------>|                                    |<--------...
1107  *
1108  * Current code wouldn't be vulnerable but it's better still to discard such
1109  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1110  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1111  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1112  * equal to the ideal case (infinite seqno space without wrap caused issues).
1113  *
1114  * With D-SACK the lower bound is extended to cover sequence space below
1115  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1116  * again, D-SACK block must not to go across snd_una (for the same reason as
1117  * for the normal SACK blocks, explained above). But there all simplicity
1118  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1119  * fully below undo_marker they do not affect behavior in anyway and can
1120  * therefore be safely ignored. In rare cases (which are more or less
1121  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1122  * fragmentation and packet reordering past skb's retransmission. To consider
1123  * them correctly, the acceptable range must be extended even more though
1124  * the exact amount is rather hard to quantify. However, tp->max_window can
1125  * be used as an exaggerated estimate.
1126  */
1127 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1128 				   u32 start_seq, u32 end_seq)
1129 {
1130 	/* Too far in future, or reversed (interpretation is ambiguous) */
1131 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1132 		return false;
1133 
1134 	/* Nasty start_seq wrap-around check (see comments above) */
1135 	if (!before(start_seq, tp->snd_nxt))
1136 		return false;
1137 
1138 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1139 	 * start_seq == snd_una is non-sensical (see comments above)
1140 	 */
1141 	if (after(start_seq, tp->snd_una))
1142 		return true;
1143 
1144 	if (!is_dsack || !tp->undo_marker)
1145 		return false;
1146 
1147 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1148 	if (after(end_seq, tp->snd_una))
1149 		return false;
1150 
1151 	if (!before(start_seq, tp->undo_marker))
1152 		return true;
1153 
1154 	/* Too old */
1155 	if (!after(end_seq, tp->undo_marker))
1156 		return false;
1157 
1158 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1159 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1160 	 */
1161 	return !before(start_seq, end_seq - tp->max_window);
1162 }
1163 
1164 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1165  * Event "B". Later note: FACK people cheated me again 8), we have to account
1166  * for reordering! Ugly, but should help.
1167  *
1168  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1169  * less than what is now known to be received by the other end (derived from
1170  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1171  * retransmitted skbs to avoid some costly processing per ACKs.
1172  */
1173 static void tcp_mark_lost_retrans(struct sock *sk)
1174 {
1175 	const struct inet_connection_sock *icsk = inet_csk(sk);
1176 	struct tcp_sock *tp = tcp_sk(sk);
1177 	struct sk_buff *skb;
1178 	int cnt = 0;
1179 	u32 new_low_seq = tp->snd_nxt;
1180 	u32 received_upto = tcp_highest_sack_seq(tp);
1181 
1182 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1183 	    !after(received_upto, tp->lost_retrans_low) ||
1184 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1185 		return;
1186 
1187 	tcp_for_write_queue(skb, sk) {
1188 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1189 
1190 		if (skb == tcp_send_head(sk))
1191 			break;
1192 		if (cnt == tp->retrans_out)
1193 			break;
1194 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1195 			continue;
1196 
1197 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1198 			continue;
1199 
1200 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1201 		 * constraint here (see above) but figuring out that at
1202 		 * least tp->reordering SACK blocks reside between ack_seq
1203 		 * and received_upto is not easy task to do cheaply with
1204 		 * the available datastructures.
1205 		 *
1206 		 * Whether FACK should check here for tp->reordering segs
1207 		 * in-between one could argue for either way (it would be
1208 		 * rather simple to implement as we could count fack_count
1209 		 * during the walk and do tp->fackets_out - fack_count).
1210 		 */
1211 		if (after(received_upto, ack_seq)) {
1212 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1213 			tp->retrans_out -= tcp_skb_pcount(skb);
1214 
1215 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1216 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1217 		} else {
1218 			if (before(ack_seq, new_low_seq))
1219 				new_low_seq = ack_seq;
1220 			cnt += tcp_skb_pcount(skb);
1221 		}
1222 	}
1223 
1224 	if (tp->retrans_out)
1225 		tp->lost_retrans_low = new_low_seq;
1226 }
1227 
1228 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1229 			    struct tcp_sack_block_wire *sp, int num_sacks,
1230 			    u32 prior_snd_una)
1231 {
1232 	struct tcp_sock *tp = tcp_sk(sk);
1233 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1234 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1235 	bool dup_sack = false;
1236 
1237 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1238 		dup_sack = true;
1239 		tcp_dsack_seen(tp);
1240 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1241 	} else if (num_sacks > 1) {
1242 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1243 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1244 
1245 		if (!after(end_seq_0, end_seq_1) &&
1246 		    !before(start_seq_0, start_seq_1)) {
1247 			dup_sack = true;
1248 			tcp_dsack_seen(tp);
1249 			NET_INC_STATS_BH(sock_net(sk),
1250 					LINUX_MIB_TCPDSACKOFORECV);
1251 		}
1252 	}
1253 
1254 	/* D-SACK for already forgotten data... Do dumb counting. */
1255 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1256 	    !after(end_seq_0, prior_snd_una) &&
1257 	    after(end_seq_0, tp->undo_marker))
1258 		tp->undo_retrans--;
1259 
1260 	return dup_sack;
1261 }
1262 
1263 struct tcp_sacktag_state {
1264 	int reord;
1265 	int fack_count;
1266 	int flag;
1267 };
1268 
1269 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1270  * the incoming SACK may not exactly match but we can find smaller MSS
1271  * aligned portion of it that matches. Therefore we might need to fragment
1272  * which may fail and creates some hassle (caller must handle error case
1273  * returns).
1274  *
1275  * FIXME: this could be merged to shift decision code
1276  */
1277 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1278 				  u32 start_seq, u32 end_seq)
1279 {
1280 	int err;
1281 	bool in_sack;
1282 	unsigned int pkt_len;
1283 	unsigned int mss;
1284 
1285 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1286 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1287 
1288 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1289 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1290 		mss = tcp_skb_mss(skb);
1291 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1292 
1293 		if (!in_sack) {
1294 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1295 			if (pkt_len < mss)
1296 				pkt_len = mss;
1297 		} else {
1298 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1299 			if (pkt_len < mss)
1300 				return -EINVAL;
1301 		}
1302 
1303 		/* Round if necessary so that SACKs cover only full MSSes
1304 		 * and/or the remaining small portion (if present)
1305 		 */
1306 		if (pkt_len > mss) {
1307 			unsigned int new_len = (pkt_len / mss) * mss;
1308 			if (!in_sack && new_len < pkt_len) {
1309 				new_len += mss;
1310 				if (new_len > skb->len)
1311 					return 0;
1312 			}
1313 			pkt_len = new_len;
1314 		}
1315 		err = tcp_fragment(sk, skb, pkt_len, mss);
1316 		if (err < 0)
1317 			return err;
1318 	}
1319 
1320 	return in_sack;
1321 }
1322 
1323 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1324 static u8 tcp_sacktag_one(struct sock *sk,
1325 			  struct tcp_sacktag_state *state, u8 sacked,
1326 			  u32 start_seq, u32 end_seq,
1327 			  bool dup_sack, int pcount)
1328 {
1329 	struct tcp_sock *tp = tcp_sk(sk);
1330 	int fack_count = state->fack_count;
1331 
1332 	/* Account D-SACK for retransmitted packet. */
1333 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1334 		if (tp->undo_marker && tp->undo_retrans &&
1335 		    after(end_seq, tp->undo_marker))
1336 			tp->undo_retrans--;
1337 		if (sacked & TCPCB_SACKED_ACKED)
1338 			state->reord = min(fack_count, state->reord);
1339 	}
1340 
1341 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1342 	if (!after(end_seq, tp->snd_una))
1343 		return sacked;
1344 
1345 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1346 		if (sacked & TCPCB_SACKED_RETRANS) {
1347 			/* If the segment is not tagged as lost,
1348 			 * we do not clear RETRANS, believing
1349 			 * that retransmission is still in flight.
1350 			 */
1351 			if (sacked & TCPCB_LOST) {
1352 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1353 				tp->lost_out -= pcount;
1354 				tp->retrans_out -= pcount;
1355 			}
1356 		} else {
1357 			if (!(sacked & TCPCB_RETRANS)) {
1358 				/* New sack for not retransmitted frame,
1359 				 * which was in hole. It is reordering.
1360 				 */
1361 				if (before(start_seq,
1362 					   tcp_highest_sack_seq(tp)))
1363 					state->reord = min(fack_count,
1364 							   state->reord);
1365 
1366 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1367 				if (!after(end_seq, tp->frto_highmark))
1368 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1369 			}
1370 
1371 			if (sacked & TCPCB_LOST) {
1372 				sacked &= ~TCPCB_LOST;
1373 				tp->lost_out -= pcount;
1374 			}
1375 		}
1376 
1377 		sacked |= TCPCB_SACKED_ACKED;
1378 		state->flag |= FLAG_DATA_SACKED;
1379 		tp->sacked_out += pcount;
1380 
1381 		fack_count += pcount;
1382 
1383 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1384 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1385 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1386 			tp->lost_cnt_hint += pcount;
1387 
1388 		if (fack_count > tp->fackets_out)
1389 			tp->fackets_out = fack_count;
1390 	}
1391 
1392 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1393 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1394 	 * are accounted above as well.
1395 	 */
1396 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1397 		sacked &= ~TCPCB_SACKED_RETRANS;
1398 		tp->retrans_out -= pcount;
1399 	}
1400 
1401 	return sacked;
1402 }
1403 
1404 /* Shift newly-SACKed bytes from this skb to the immediately previous
1405  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1406  */
1407 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1408 			    struct tcp_sacktag_state *state,
1409 			    unsigned int pcount, int shifted, int mss,
1410 			    bool dup_sack)
1411 {
1412 	struct tcp_sock *tp = tcp_sk(sk);
1413 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1414 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1415 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1416 
1417 	BUG_ON(!pcount);
1418 
1419 	/* Adjust counters and hints for the newly sacked sequence
1420 	 * range but discard the return value since prev is already
1421 	 * marked. We must tag the range first because the seq
1422 	 * advancement below implicitly advances
1423 	 * tcp_highest_sack_seq() when skb is highest_sack.
1424 	 */
1425 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1426 			start_seq, end_seq, dup_sack, pcount);
1427 
1428 	if (skb == tp->lost_skb_hint)
1429 		tp->lost_cnt_hint += pcount;
1430 
1431 	TCP_SKB_CB(prev)->end_seq += shifted;
1432 	TCP_SKB_CB(skb)->seq += shifted;
1433 
1434 	skb_shinfo(prev)->gso_segs += pcount;
1435 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1436 	skb_shinfo(skb)->gso_segs -= pcount;
1437 
1438 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1439 	 * in theory this shouldn't be necessary but as long as DSACK
1440 	 * code can come after this skb later on it's better to keep
1441 	 * setting gso_size to something.
1442 	 */
1443 	if (!skb_shinfo(prev)->gso_size) {
1444 		skb_shinfo(prev)->gso_size = mss;
1445 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1446 	}
1447 
1448 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1449 	if (skb_shinfo(skb)->gso_segs <= 1) {
1450 		skb_shinfo(skb)->gso_size = 0;
1451 		skb_shinfo(skb)->gso_type = 0;
1452 	}
1453 
1454 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1455 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1456 
1457 	if (skb->len > 0) {
1458 		BUG_ON(!tcp_skb_pcount(skb));
1459 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1460 		return false;
1461 	}
1462 
1463 	/* Whole SKB was eaten :-) */
1464 
1465 	if (skb == tp->retransmit_skb_hint)
1466 		tp->retransmit_skb_hint = prev;
1467 	if (skb == tp->scoreboard_skb_hint)
1468 		tp->scoreboard_skb_hint = prev;
1469 	if (skb == tp->lost_skb_hint) {
1470 		tp->lost_skb_hint = prev;
1471 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1472 	}
1473 
1474 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1475 	if (skb == tcp_highest_sack(sk))
1476 		tcp_advance_highest_sack(sk, skb);
1477 
1478 	tcp_unlink_write_queue(skb, sk);
1479 	sk_wmem_free_skb(sk, skb);
1480 
1481 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1482 
1483 	return true;
1484 }
1485 
1486 /* I wish gso_size would have a bit more sane initialization than
1487  * something-or-zero which complicates things
1488  */
1489 static int tcp_skb_seglen(const struct sk_buff *skb)
1490 {
1491 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1492 }
1493 
1494 /* Shifting pages past head area doesn't work */
1495 static int skb_can_shift(const struct sk_buff *skb)
1496 {
1497 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1498 }
1499 
1500 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1501  * skb.
1502  */
1503 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1504 					  struct tcp_sacktag_state *state,
1505 					  u32 start_seq, u32 end_seq,
1506 					  bool dup_sack)
1507 {
1508 	struct tcp_sock *tp = tcp_sk(sk);
1509 	struct sk_buff *prev;
1510 	int mss;
1511 	int pcount = 0;
1512 	int len;
1513 	int in_sack;
1514 
1515 	if (!sk_can_gso(sk))
1516 		goto fallback;
1517 
1518 	/* Normally R but no L won't result in plain S */
1519 	if (!dup_sack &&
1520 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1521 		goto fallback;
1522 	if (!skb_can_shift(skb))
1523 		goto fallback;
1524 	/* This frame is about to be dropped (was ACKed). */
1525 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1526 		goto fallback;
1527 
1528 	/* Can only happen with delayed DSACK + discard craziness */
1529 	if (unlikely(skb == tcp_write_queue_head(sk)))
1530 		goto fallback;
1531 	prev = tcp_write_queue_prev(sk, skb);
1532 
1533 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1534 		goto fallback;
1535 
1536 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1537 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1538 
1539 	if (in_sack) {
1540 		len = skb->len;
1541 		pcount = tcp_skb_pcount(skb);
1542 		mss = tcp_skb_seglen(skb);
1543 
1544 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1545 		 * drop this restriction as unnecessary
1546 		 */
1547 		if (mss != tcp_skb_seglen(prev))
1548 			goto fallback;
1549 	} else {
1550 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1551 			goto noop;
1552 		/* CHECKME: This is non-MSS split case only?, this will
1553 		 * cause skipped skbs due to advancing loop btw, original
1554 		 * has that feature too
1555 		 */
1556 		if (tcp_skb_pcount(skb) <= 1)
1557 			goto noop;
1558 
1559 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1560 		if (!in_sack) {
1561 			/* TODO: head merge to next could be attempted here
1562 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1563 			 * though it might not be worth of the additional hassle
1564 			 *
1565 			 * ...we can probably just fallback to what was done
1566 			 * previously. We could try merging non-SACKed ones
1567 			 * as well but it probably isn't going to buy off
1568 			 * because later SACKs might again split them, and
1569 			 * it would make skb timestamp tracking considerably
1570 			 * harder problem.
1571 			 */
1572 			goto fallback;
1573 		}
1574 
1575 		len = end_seq - TCP_SKB_CB(skb)->seq;
1576 		BUG_ON(len < 0);
1577 		BUG_ON(len > skb->len);
1578 
1579 		/* MSS boundaries should be honoured or else pcount will
1580 		 * severely break even though it makes things bit trickier.
1581 		 * Optimize common case to avoid most of the divides
1582 		 */
1583 		mss = tcp_skb_mss(skb);
1584 
1585 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1586 		 * drop this restriction as unnecessary
1587 		 */
1588 		if (mss != tcp_skb_seglen(prev))
1589 			goto fallback;
1590 
1591 		if (len == mss) {
1592 			pcount = 1;
1593 		} else if (len < mss) {
1594 			goto noop;
1595 		} else {
1596 			pcount = len / mss;
1597 			len = pcount * mss;
1598 		}
1599 	}
1600 
1601 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1602 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1603 		goto fallback;
1604 
1605 	if (!skb_shift(prev, skb, len))
1606 		goto fallback;
1607 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1608 		goto out;
1609 
1610 	/* Hole filled allows collapsing with the next as well, this is very
1611 	 * useful when hole on every nth skb pattern happens
1612 	 */
1613 	if (prev == tcp_write_queue_tail(sk))
1614 		goto out;
1615 	skb = tcp_write_queue_next(sk, prev);
1616 
1617 	if (!skb_can_shift(skb) ||
1618 	    (skb == tcp_send_head(sk)) ||
1619 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1620 	    (mss != tcp_skb_seglen(skb)))
1621 		goto out;
1622 
1623 	len = skb->len;
1624 	if (skb_shift(prev, skb, len)) {
1625 		pcount += tcp_skb_pcount(skb);
1626 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1627 	}
1628 
1629 out:
1630 	state->fack_count += pcount;
1631 	return prev;
1632 
1633 noop:
1634 	return skb;
1635 
1636 fallback:
1637 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1638 	return NULL;
1639 }
1640 
1641 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1642 					struct tcp_sack_block *next_dup,
1643 					struct tcp_sacktag_state *state,
1644 					u32 start_seq, u32 end_seq,
1645 					bool dup_sack_in)
1646 {
1647 	struct tcp_sock *tp = tcp_sk(sk);
1648 	struct sk_buff *tmp;
1649 
1650 	tcp_for_write_queue_from(skb, sk) {
1651 		int in_sack = 0;
1652 		bool dup_sack = dup_sack_in;
1653 
1654 		if (skb == tcp_send_head(sk))
1655 			break;
1656 
1657 		/* queue is in-order => we can short-circuit the walk early */
1658 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1659 			break;
1660 
1661 		if ((next_dup != NULL) &&
1662 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1663 			in_sack = tcp_match_skb_to_sack(sk, skb,
1664 							next_dup->start_seq,
1665 							next_dup->end_seq);
1666 			if (in_sack > 0)
1667 				dup_sack = true;
1668 		}
1669 
1670 		/* skb reference here is a bit tricky to get right, since
1671 		 * shifting can eat and free both this skb and the next,
1672 		 * so not even _safe variant of the loop is enough.
1673 		 */
1674 		if (in_sack <= 0) {
1675 			tmp = tcp_shift_skb_data(sk, skb, state,
1676 						 start_seq, end_seq, dup_sack);
1677 			if (tmp != NULL) {
1678 				if (tmp != skb) {
1679 					skb = tmp;
1680 					continue;
1681 				}
1682 
1683 				in_sack = 0;
1684 			} else {
1685 				in_sack = tcp_match_skb_to_sack(sk, skb,
1686 								start_seq,
1687 								end_seq);
1688 			}
1689 		}
1690 
1691 		if (unlikely(in_sack < 0))
1692 			break;
1693 
1694 		if (in_sack) {
1695 			TCP_SKB_CB(skb)->sacked =
1696 				tcp_sacktag_one(sk,
1697 						state,
1698 						TCP_SKB_CB(skb)->sacked,
1699 						TCP_SKB_CB(skb)->seq,
1700 						TCP_SKB_CB(skb)->end_seq,
1701 						dup_sack,
1702 						tcp_skb_pcount(skb));
1703 
1704 			if (!before(TCP_SKB_CB(skb)->seq,
1705 				    tcp_highest_sack_seq(tp)))
1706 				tcp_advance_highest_sack(sk, skb);
1707 		}
1708 
1709 		state->fack_count += tcp_skb_pcount(skb);
1710 	}
1711 	return skb;
1712 }
1713 
1714 /* Avoid all extra work that is being done by sacktag while walking in
1715  * a normal way
1716  */
1717 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1718 					struct tcp_sacktag_state *state,
1719 					u32 skip_to_seq)
1720 {
1721 	tcp_for_write_queue_from(skb, sk) {
1722 		if (skb == tcp_send_head(sk))
1723 			break;
1724 
1725 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1726 			break;
1727 
1728 		state->fack_count += tcp_skb_pcount(skb);
1729 	}
1730 	return skb;
1731 }
1732 
1733 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1734 						struct sock *sk,
1735 						struct tcp_sack_block *next_dup,
1736 						struct tcp_sacktag_state *state,
1737 						u32 skip_to_seq)
1738 {
1739 	if (next_dup == NULL)
1740 		return skb;
1741 
1742 	if (before(next_dup->start_seq, skip_to_seq)) {
1743 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1744 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1745 				       next_dup->start_seq, next_dup->end_seq,
1746 				       1);
1747 	}
1748 
1749 	return skb;
1750 }
1751 
1752 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1753 {
1754 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1755 }
1756 
1757 static int
1758 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1759 			u32 prior_snd_una)
1760 {
1761 	const struct inet_connection_sock *icsk = inet_csk(sk);
1762 	struct tcp_sock *tp = tcp_sk(sk);
1763 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1764 				    TCP_SKB_CB(ack_skb)->sacked);
1765 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1766 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1767 	struct tcp_sack_block *cache;
1768 	struct tcp_sacktag_state state;
1769 	struct sk_buff *skb;
1770 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1771 	int used_sacks;
1772 	bool found_dup_sack = false;
1773 	int i, j;
1774 	int first_sack_index;
1775 
1776 	state.flag = 0;
1777 	state.reord = tp->packets_out;
1778 
1779 	if (!tp->sacked_out) {
1780 		if (WARN_ON(tp->fackets_out))
1781 			tp->fackets_out = 0;
1782 		tcp_highest_sack_reset(sk);
1783 	}
1784 
1785 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1786 					 num_sacks, prior_snd_una);
1787 	if (found_dup_sack)
1788 		state.flag |= FLAG_DSACKING_ACK;
1789 
1790 	/* Eliminate too old ACKs, but take into
1791 	 * account more or less fresh ones, they can
1792 	 * contain valid SACK info.
1793 	 */
1794 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1795 		return 0;
1796 
1797 	if (!tp->packets_out)
1798 		goto out;
1799 
1800 	used_sacks = 0;
1801 	first_sack_index = 0;
1802 	for (i = 0; i < num_sacks; i++) {
1803 		bool dup_sack = !i && found_dup_sack;
1804 
1805 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1806 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1807 
1808 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1809 					    sp[used_sacks].start_seq,
1810 					    sp[used_sacks].end_seq)) {
1811 			int mib_idx;
1812 
1813 			if (dup_sack) {
1814 				if (!tp->undo_marker)
1815 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1816 				else
1817 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1818 			} else {
1819 				/* Don't count olds caused by ACK reordering */
1820 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1821 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1822 					continue;
1823 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1824 			}
1825 
1826 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1827 			if (i == 0)
1828 				first_sack_index = -1;
1829 			continue;
1830 		}
1831 
1832 		/* Ignore very old stuff early */
1833 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1834 			continue;
1835 
1836 		used_sacks++;
1837 	}
1838 
1839 	/* order SACK blocks to allow in order walk of the retrans queue */
1840 	for (i = used_sacks - 1; i > 0; i--) {
1841 		for (j = 0; j < i; j++) {
1842 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1843 				swap(sp[j], sp[j + 1]);
1844 
1845 				/* Track where the first SACK block goes to */
1846 				if (j == first_sack_index)
1847 					first_sack_index = j + 1;
1848 			}
1849 		}
1850 	}
1851 
1852 	skb = tcp_write_queue_head(sk);
1853 	state.fack_count = 0;
1854 	i = 0;
1855 
1856 	if (!tp->sacked_out) {
1857 		/* It's already past, so skip checking against it */
1858 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1859 	} else {
1860 		cache = tp->recv_sack_cache;
1861 		/* Skip empty blocks in at head of the cache */
1862 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1863 		       !cache->end_seq)
1864 			cache++;
1865 	}
1866 
1867 	while (i < used_sacks) {
1868 		u32 start_seq = sp[i].start_seq;
1869 		u32 end_seq = sp[i].end_seq;
1870 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1871 		struct tcp_sack_block *next_dup = NULL;
1872 
1873 		if (found_dup_sack && ((i + 1) == first_sack_index))
1874 			next_dup = &sp[i + 1];
1875 
1876 		/* Skip too early cached blocks */
1877 		while (tcp_sack_cache_ok(tp, cache) &&
1878 		       !before(start_seq, cache->end_seq))
1879 			cache++;
1880 
1881 		/* Can skip some work by looking recv_sack_cache? */
1882 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1883 		    after(end_seq, cache->start_seq)) {
1884 
1885 			/* Head todo? */
1886 			if (before(start_seq, cache->start_seq)) {
1887 				skb = tcp_sacktag_skip(skb, sk, &state,
1888 						       start_seq);
1889 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1890 						       &state,
1891 						       start_seq,
1892 						       cache->start_seq,
1893 						       dup_sack);
1894 			}
1895 
1896 			/* Rest of the block already fully processed? */
1897 			if (!after(end_seq, cache->end_seq))
1898 				goto advance_sp;
1899 
1900 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1901 						       &state,
1902 						       cache->end_seq);
1903 
1904 			/* ...tail remains todo... */
1905 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1906 				/* ...but better entrypoint exists! */
1907 				skb = tcp_highest_sack(sk);
1908 				if (skb == NULL)
1909 					break;
1910 				state.fack_count = tp->fackets_out;
1911 				cache++;
1912 				goto walk;
1913 			}
1914 
1915 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1916 			/* Check overlap against next cached too (past this one already) */
1917 			cache++;
1918 			continue;
1919 		}
1920 
1921 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1922 			skb = tcp_highest_sack(sk);
1923 			if (skb == NULL)
1924 				break;
1925 			state.fack_count = tp->fackets_out;
1926 		}
1927 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1928 
1929 walk:
1930 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1931 				       start_seq, end_seq, dup_sack);
1932 
1933 advance_sp:
1934 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1935 		 * due to in-order walk
1936 		 */
1937 		if (after(end_seq, tp->frto_highmark))
1938 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1939 
1940 		i++;
1941 	}
1942 
1943 	/* Clear the head of the cache sack blocks so we can skip it next time */
1944 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1945 		tp->recv_sack_cache[i].start_seq = 0;
1946 		tp->recv_sack_cache[i].end_seq = 0;
1947 	}
1948 	for (j = 0; j < used_sacks; j++)
1949 		tp->recv_sack_cache[i++] = sp[j];
1950 
1951 	tcp_mark_lost_retrans(sk);
1952 
1953 	tcp_verify_left_out(tp);
1954 
1955 	if ((state.reord < tp->fackets_out) &&
1956 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1957 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1958 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1959 
1960 out:
1961 
1962 #if FASTRETRANS_DEBUG > 0
1963 	WARN_ON((int)tp->sacked_out < 0);
1964 	WARN_ON((int)tp->lost_out < 0);
1965 	WARN_ON((int)tp->retrans_out < 0);
1966 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1967 #endif
1968 	return state.flag;
1969 }
1970 
1971 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1972  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1973  */
1974 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1975 {
1976 	u32 holes;
1977 
1978 	holes = max(tp->lost_out, 1U);
1979 	holes = min(holes, tp->packets_out);
1980 
1981 	if ((tp->sacked_out + holes) > tp->packets_out) {
1982 		tp->sacked_out = tp->packets_out - holes;
1983 		return true;
1984 	}
1985 	return false;
1986 }
1987 
1988 /* If we receive more dupacks than we expected counting segments
1989  * in assumption of absent reordering, interpret this as reordering.
1990  * The only another reason could be bug in receiver TCP.
1991  */
1992 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1993 {
1994 	struct tcp_sock *tp = tcp_sk(sk);
1995 	if (tcp_limit_reno_sacked(tp))
1996 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1997 }
1998 
1999 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2000 
2001 static void tcp_add_reno_sack(struct sock *sk)
2002 {
2003 	struct tcp_sock *tp = tcp_sk(sk);
2004 	tp->sacked_out++;
2005 	tcp_check_reno_reordering(sk, 0);
2006 	tcp_verify_left_out(tp);
2007 }
2008 
2009 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2010 
2011 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
2012 {
2013 	struct tcp_sock *tp = tcp_sk(sk);
2014 
2015 	if (acked > 0) {
2016 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2017 		if (acked - 1 >= tp->sacked_out)
2018 			tp->sacked_out = 0;
2019 		else
2020 			tp->sacked_out -= acked - 1;
2021 	}
2022 	tcp_check_reno_reordering(sk, acked);
2023 	tcp_verify_left_out(tp);
2024 }
2025 
2026 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2027 {
2028 	tp->sacked_out = 0;
2029 }
2030 
2031 static int tcp_is_sackfrto(const struct tcp_sock *tp)
2032 {
2033 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
2034 }
2035 
2036 /* F-RTO can only be used if TCP has never retransmitted anything other than
2037  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
2038  */
2039 bool tcp_use_frto(struct sock *sk)
2040 {
2041 	const struct tcp_sock *tp = tcp_sk(sk);
2042 	const struct inet_connection_sock *icsk = inet_csk(sk);
2043 	struct sk_buff *skb;
2044 
2045 	if (!sysctl_tcp_frto)
2046 		return false;
2047 
2048 	/* MTU probe and F-RTO won't really play nicely along currently */
2049 	if (icsk->icsk_mtup.probe_size)
2050 		return false;
2051 
2052 	if (tcp_is_sackfrto(tp))
2053 		return true;
2054 
2055 	/* Avoid expensive walking of rexmit queue if possible */
2056 	if (tp->retrans_out > 1)
2057 		return false;
2058 
2059 	skb = tcp_write_queue_head(sk);
2060 	if (tcp_skb_is_last(sk, skb))
2061 		return true;
2062 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
2063 	tcp_for_write_queue_from(skb, sk) {
2064 		if (skb == tcp_send_head(sk))
2065 			break;
2066 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2067 			return false;
2068 		/* Short-circuit when first non-SACKed skb has been checked */
2069 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2070 			break;
2071 	}
2072 	return true;
2073 }
2074 
2075 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2076  * recovery a bit and use heuristics in tcp_process_frto() to detect if
2077  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2078  * keep retrans_out counting accurate (with SACK F-RTO, other than head
2079  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2080  * bits are handled if the Loss state is really to be entered (in
2081  * tcp_enter_frto_loss).
2082  *
2083  * Do like tcp_enter_loss() would; when RTO expires the second time it
2084  * does:
2085  *  "Reduce ssthresh if it has not yet been made inside this window."
2086  */
2087 void tcp_enter_frto(struct sock *sk)
2088 {
2089 	const struct inet_connection_sock *icsk = inet_csk(sk);
2090 	struct tcp_sock *tp = tcp_sk(sk);
2091 	struct sk_buff *skb;
2092 
2093 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2094 	    tp->snd_una == tp->high_seq ||
2095 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2096 	     !icsk->icsk_retransmits)) {
2097 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2098 		/* Our state is too optimistic in ssthresh() call because cwnd
2099 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2100 		 * recovery has not yet completed. Pattern would be this: RTO,
2101 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2102 		 * up here twice).
2103 		 * RFC4138 should be more specific on what to do, even though
2104 		 * RTO is quite unlikely to occur after the first Cumulative ACK
2105 		 * due to back-off and complexity of triggering events ...
2106 		 */
2107 		if (tp->frto_counter) {
2108 			u32 stored_cwnd;
2109 			stored_cwnd = tp->snd_cwnd;
2110 			tp->snd_cwnd = 2;
2111 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2112 			tp->snd_cwnd = stored_cwnd;
2113 		} else {
2114 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2115 		}
2116 		/* ... in theory, cong.control module could do "any tricks" in
2117 		 * ssthresh(), which means that ca_state, lost bits and lost_out
2118 		 * counter would have to be faked before the call occurs. We
2119 		 * consider that too expensive, unlikely and hacky, so modules
2120 		 * using these in ssthresh() must deal these incompatibility
2121 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2122 		 */
2123 		tcp_ca_event(sk, CA_EVENT_FRTO);
2124 	}
2125 
2126 	tp->undo_marker = tp->snd_una;
2127 	tp->undo_retrans = 0;
2128 
2129 	skb = tcp_write_queue_head(sk);
2130 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2131 		tp->undo_marker = 0;
2132 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2133 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2134 		tp->retrans_out -= tcp_skb_pcount(skb);
2135 	}
2136 	tcp_verify_left_out(tp);
2137 
2138 	/* Too bad if TCP was application limited */
2139 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2140 
2141 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
2142 	 * The last condition is necessary at least in tp->frto_counter case.
2143 	 */
2144 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2145 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2146 	    after(tp->high_seq, tp->snd_una)) {
2147 		tp->frto_highmark = tp->high_seq;
2148 	} else {
2149 		tp->frto_highmark = tp->snd_nxt;
2150 	}
2151 	tcp_set_ca_state(sk, TCP_CA_Disorder);
2152 	tp->high_seq = tp->snd_nxt;
2153 	tp->frto_counter = 1;
2154 }
2155 
2156 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2157  * which indicates that we should follow the traditional RTO recovery,
2158  * i.e. mark everything lost and do go-back-N retransmission.
2159  */
2160 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2161 {
2162 	struct tcp_sock *tp = tcp_sk(sk);
2163 	struct sk_buff *skb;
2164 
2165 	tp->lost_out = 0;
2166 	tp->retrans_out = 0;
2167 	if (tcp_is_reno(tp))
2168 		tcp_reset_reno_sack(tp);
2169 
2170 	tcp_for_write_queue(skb, sk) {
2171 		if (skb == tcp_send_head(sk))
2172 			break;
2173 
2174 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2175 		/*
2176 		 * Count the retransmission made on RTO correctly (only when
2177 		 * waiting for the first ACK and did not get it)...
2178 		 */
2179 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2180 			/* For some reason this R-bit might get cleared? */
2181 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2182 				tp->retrans_out += tcp_skb_pcount(skb);
2183 			/* ...enter this if branch just for the first segment */
2184 			flag |= FLAG_DATA_ACKED;
2185 		} else {
2186 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2187 				tp->undo_marker = 0;
2188 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2189 		}
2190 
2191 		/* Marking forward transmissions that were made after RTO lost
2192 		 * can cause unnecessary retransmissions in some scenarios,
2193 		 * SACK blocks will mitigate that in some but not in all cases.
2194 		 * We used to not mark them but it was causing break-ups with
2195 		 * receivers that do only in-order receival.
2196 		 *
2197 		 * TODO: we could detect presence of such receiver and select
2198 		 * different behavior per flow.
2199 		 */
2200 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2201 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2202 			tp->lost_out += tcp_skb_pcount(skb);
2203 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2204 		}
2205 	}
2206 	tcp_verify_left_out(tp);
2207 
2208 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2209 	tp->snd_cwnd_cnt = 0;
2210 	tp->snd_cwnd_stamp = tcp_time_stamp;
2211 	tp->frto_counter = 0;
2212 	tp->bytes_acked = 0;
2213 
2214 	tp->reordering = min_t(unsigned int, tp->reordering,
2215 			       sysctl_tcp_reordering);
2216 	tcp_set_ca_state(sk, TCP_CA_Loss);
2217 	tp->high_seq = tp->snd_nxt;
2218 	TCP_ECN_queue_cwr(tp);
2219 
2220 	tcp_clear_all_retrans_hints(tp);
2221 }
2222 
2223 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2224 {
2225 	tp->retrans_out = 0;
2226 	tp->lost_out = 0;
2227 
2228 	tp->undo_marker = 0;
2229 	tp->undo_retrans = 0;
2230 }
2231 
2232 void tcp_clear_retrans(struct tcp_sock *tp)
2233 {
2234 	tcp_clear_retrans_partial(tp);
2235 
2236 	tp->fackets_out = 0;
2237 	tp->sacked_out = 0;
2238 }
2239 
2240 /* Enter Loss state. If "how" is not zero, forget all SACK information
2241  * and reset tags completely, otherwise preserve SACKs. If receiver
2242  * dropped its ofo queue, we will know this due to reneging detection.
2243  */
2244 void tcp_enter_loss(struct sock *sk, int how)
2245 {
2246 	const struct inet_connection_sock *icsk = inet_csk(sk);
2247 	struct tcp_sock *tp = tcp_sk(sk);
2248 	struct sk_buff *skb;
2249 
2250 	/* Reduce ssthresh if it has not yet been made inside this window. */
2251 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2252 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2253 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2254 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2255 		tcp_ca_event(sk, CA_EVENT_LOSS);
2256 	}
2257 	tp->snd_cwnd	   = 1;
2258 	tp->snd_cwnd_cnt   = 0;
2259 	tp->snd_cwnd_stamp = tcp_time_stamp;
2260 
2261 	tp->bytes_acked = 0;
2262 	tcp_clear_retrans_partial(tp);
2263 
2264 	if (tcp_is_reno(tp))
2265 		tcp_reset_reno_sack(tp);
2266 
2267 	if (!how) {
2268 		/* Push undo marker, if it was plain RTO and nothing
2269 		 * was retransmitted. */
2270 		tp->undo_marker = tp->snd_una;
2271 	} else {
2272 		tp->sacked_out = 0;
2273 		tp->fackets_out = 0;
2274 	}
2275 	tcp_clear_all_retrans_hints(tp);
2276 
2277 	tcp_for_write_queue(skb, sk) {
2278 		if (skb == tcp_send_head(sk))
2279 			break;
2280 
2281 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2282 			tp->undo_marker = 0;
2283 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2284 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2285 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2286 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2287 			tp->lost_out += tcp_skb_pcount(skb);
2288 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2289 		}
2290 	}
2291 	tcp_verify_left_out(tp);
2292 
2293 	tp->reordering = min_t(unsigned int, tp->reordering,
2294 			       sysctl_tcp_reordering);
2295 	tcp_set_ca_state(sk, TCP_CA_Loss);
2296 	tp->high_seq = tp->snd_nxt;
2297 	TCP_ECN_queue_cwr(tp);
2298 	/* Abort F-RTO algorithm if one is in progress */
2299 	tp->frto_counter = 0;
2300 }
2301 
2302 /* If ACK arrived pointing to a remembered SACK, it means that our
2303  * remembered SACKs do not reflect real state of receiver i.e.
2304  * receiver _host_ is heavily congested (or buggy).
2305  *
2306  * Do processing similar to RTO timeout.
2307  */
2308 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2309 {
2310 	if (flag & FLAG_SACK_RENEGING) {
2311 		struct inet_connection_sock *icsk = inet_csk(sk);
2312 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2313 
2314 		tcp_enter_loss(sk, 1);
2315 		icsk->icsk_retransmits++;
2316 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2317 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2318 					  icsk->icsk_rto, TCP_RTO_MAX);
2319 		return true;
2320 	}
2321 	return false;
2322 }
2323 
2324 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2325 {
2326 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2327 }
2328 
2329 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2330  * counter when SACK is enabled (without SACK, sacked_out is used for
2331  * that purpose).
2332  *
2333  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2334  * segments up to the highest received SACK block so far and holes in
2335  * between them.
2336  *
2337  * With reordering, holes may still be in flight, so RFC3517 recovery
2338  * uses pure sacked_out (total number of SACKed segments) even though
2339  * it violates the RFC that uses duplicate ACKs, often these are equal
2340  * but when e.g. out-of-window ACKs or packet duplication occurs,
2341  * they differ. Since neither occurs due to loss, TCP should really
2342  * ignore them.
2343  */
2344 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2345 {
2346 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2347 }
2348 
2349 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2350 {
2351 	struct tcp_sock *tp = tcp_sk(sk);
2352 	unsigned long delay;
2353 
2354 	/* Delay early retransmit and entering fast recovery for
2355 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2356 	 * available, or RTO is scheduled to fire first.
2357 	 */
2358 	if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2359 		return false;
2360 
2361 	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2362 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2363 		return false;
2364 
2365 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2366 	tp->early_retrans_delayed = 1;
2367 	return true;
2368 }
2369 
2370 static inline int tcp_skb_timedout(const struct sock *sk,
2371 				   const struct sk_buff *skb)
2372 {
2373 	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2374 }
2375 
2376 static inline int tcp_head_timedout(const struct sock *sk)
2377 {
2378 	const struct tcp_sock *tp = tcp_sk(sk);
2379 
2380 	return tp->packets_out &&
2381 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2382 }
2383 
2384 /* Linux NewReno/SACK/FACK/ECN state machine.
2385  * --------------------------------------
2386  *
2387  * "Open"	Normal state, no dubious events, fast path.
2388  * "Disorder"   In all the respects it is "Open",
2389  *		but requires a bit more attention. It is entered when
2390  *		we see some SACKs or dupacks. It is split of "Open"
2391  *		mainly to move some processing from fast path to slow one.
2392  * "CWR"	CWND was reduced due to some Congestion Notification event.
2393  *		It can be ECN, ICMP source quench, local device congestion.
2394  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2395  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2396  *
2397  * tcp_fastretrans_alert() is entered:
2398  * - each incoming ACK, if state is not "Open"
2399  * - when arrived ACK is unusual, namely:
2400  *	* SACK
2401  *	* Duplicate ACK.
2402  *	* ECN ECE.
2403  *
2404  * Counting packets in flight is pretty simple.
2405  *
2406  *	in_flight = packets_out - left_out + retrans_out
2407  *
2408  *	packets_out is SND.NXT-SND.UNA counted in packets.
2409  *
2410  *	retrans_out is number of retransmitted segments.
2411  *
2412  *	left_out is number of segments left network, but not ACKed yet.
2413  *
2414  *		left_out = sacked_out + lost_out
2415  *
2416  *     sacked_out: Packets, which arrived to receiver out of order
2417  *		   and hence not ACKed. With SACKs this number is simply
2418  *		   amount of SACKed data. Even without SACKs
2419  *		   it is easy to give pretty reliable estimate of this number,
2420  *		   counting duplicate ACKs.
2421  *
2422  *       lost_out: Packets lost by network. TCP has no explicit
2423  *		   "loss notification" feedback from network (for now).
2424  *		   It means that this number can be only _guessed_.
2425  *		   Actually, it is the heuristics to predict lossage that
2426  *		   distinguishes different algorithms.
2427  *
2428  *	F.e. after RTO, when all the queue is considered as lost,
2429  *	lost_out = packets_out and in_flight = retrans_out.
2430  *
2431  *		Essentially, we have now two algorithms counting
2432  *		lost packets.
2433  *
2434  *		FACK: It is the simplest heuristics. As soon as we decided
2435  *		that something is lost, we decide that _all_ not SACKed
2436  *		packets until the most forward SACK are lost. I.e.
2437  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2438  *		It is absolutely correct estimate, if network does not reorder
2439  *		packets. And it loses any connection to reality when reordering
2440  *		takes place. We use FACK by default until reordering
2441  *		is suspected on the path to this destination.
2442  *
2443  *		NewReno: when Recovery is entered, we assume that one segment
2444  *		is lost (classic Reno). While we are in Recovery and
2445  *		a partial ACK arrives, we assume that one more packet
2446  *		is lost (NewReno). This heuristics are the same in NewReno
2447  *		and SACK.
2448  *
2449  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2450  *  deflation etc. CWND is real congestion window, never inflated, changes
2451  *  only according to classic VJ rules.
2452  *
2453  * Really tricky (and requiring careful tuning) part of algorithm
2454  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2455  * The first determines the moment _when_ we should reduce CWND and,
2456  * hence, slow down forward transmission. In fact, it determines the moment
2457  * when we decide that hole is caused by loss, rather than by a reorder.
2458  *
2459  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2460  * holes, caused by lost packets.
2461  *
2462  * And the most logically complicated part of algorithm is undo
2463  * heuristics. We detect false retransmits due to both too early
2464  * fast retransmit (reordering) and underestimated RTO, analyzing
2465  * timestamps and D-SACKs. When we detect that some segments were
2466  * retransmitted by mistake and CWND reduction was wrong, we undo
2467  * window reduction and abort recovery phase. This logic is hidden
2468  * inside several functions named tcp_try_undo_<something>.
2469  */
2470 
2471 /* This function decides, when we should leave Disordered state
2472  * and enter Recovery phase, reducing congestion window.
2473  *
2474  * Main question: may we further continue forward transmission
2475  * with the same cwnd?
2476  */
2477 static bool tcp_time_to_recover(struct sock *sk, int flag)
2478 {
2479 	struct tcp_sock *tp = tcp_sk(sk);
2480 	__u32 packets_out;
2481 
2482 	/* Do not perform any recovery during F-RTO algorithm */
2483 	if (tp->frto_counter)
2484 		return false;
2485 
2486 	/* Trick#1: The loss is proven. */
2487 	if (tp->lost_out)
2488 		return true;
2489 
2490 	/* Not-A-Trick#2 : Classic rule... */
2491 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2492 		return true;
2493 
2494 	/* Trick#3 : when we use RFC2988 timer restart, fast
2495 	 * retransmit can be triggered by timeout of queue head.
2496 	 */
2497 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2498 		return true;
2499 
2500 	/* Trick#4: It is still not OK... But will it be useful to delay
2501 	 * recovery more?
2502 	 */
2503 	packets_out = tp->packets_out;
2504 	if (packets_out <= tp->reordering &&
2505 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2506 	    !tcp_may_send_now(sk)) {
2507 		/* We have nothing to send. This connection is limited
2508 		 * either by receiver window or by application.
2509 		 */
2510 		return true;
2511 	}
2512 
2513 	/* If a thin stream is detected, retransmit after first
2514 	 * received dupack. Employ only if SACK is supported in order
2515 	 * to avoid possible corner-case series of spurious retransmissions
2516 	 * Use only if there are no unsent data.
2517 	 */
2518 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2519 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2520 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2521 		return true;
2522 
2523 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2524 	 * retransmissions due to small network reorderings, we implement
2525 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2526 	 * interval if appropriate.
2527 	 */
2528 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2529 	    (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2530 	    !tcp_may_send_now(sk))
2531 		return !tcp_pause_early_retransmit(sk, flag);
2532 
2533 	return false;
2534 }
2535 
2536 /* New heuristics: it is possible only after we switched to restart timer
2537  * each time when something is ACKed. Hence, we can detect timed out packets
2538  * during fast retransmit without falling to slow start.
2539  *
2540  * Usefulness of this as is very questionable, since we should know which of
2541  * the segments is the next to timeout which is relatively expensive to find
2542  * in general case unless we add some data structure just for that. The
2543  * current approach certainly won't find the right one too often and when it
2544  * finally does find _something_ it usually marks large part of the window
2545  * right away (because a retransmission with a larger timestamp blocks the
2546  * loop from advancing). -ij
2547  */
2548 static void tcp_timeout_skbs(struct sock *sk)
2549 {
2550 	struct tcp_sock *tp = tcp_sk(sk);
2551 	struct sk_buff *skb;
2552 
2553 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2554 		return;
2555 
2556 	skb = tp->scoreboard_skb_hint;
2557 	if (tp->scoreboard_skb_hint == NULL)
2558 		skb = tcp_write_queue_head(sk);
2559 
2560 	tcp_for_write_queue_from(skb, sk) {
2561 		if (skb == tcp_send_head(sk))
2562 			break;
2563 		if (!tcp_skb_timedout(sk, skb))
2564 			break;
2565 
2566 		tcp_skb_mark_lost(tp, skb);
2567 	}
2568 
2569 	tp->scoreboard_skb_hint = skb;
2570 
2571 	tcp_verify_left_out(tp);
2572 }
2573 
2574 /* Detect loss in event "A" above by marking head of queue up as lost.
2575  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2576  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2577  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2578  * the maximum SACKed segments to pass before reaching this limit.
2579  */
2580 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2581 {
2582 	struct tcp_sock *tp = tcp_sk(sk);
2583 	struct sk_buff *skb;
2584 	int cnt, oldcnt;
2585 	int err;
2586 	unsigned int mss;
2587 	/* Use SACK to deduce losses of new sequences sent during recovery */
2588 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2589 
2590 	WARN_ON(packets > tp->packets_out);
2591 	if (tp->lost_skb_hint) {
2592 		skb = tp->lost_skb_hint;
2593 		cnt = tp->lost_cnt_hint;
2594 		/* Head already handled? */
2595 		if (mark_head && skb != tcp_write_queue_head(sk))
2596 			return;
2597 	} else {
2598 		skb = tcp_write_queue_head(sk);
2599 		cnt = 0;
2600 	}
2601 
2602 	tcp_for_write_queue_from(skb, sk) {
2603 		if (skb == tcp_send_head(sk))
2604 			break;
2605 		/* TODO: do this better */
2606 		/* this is not the most efficient way to do this... */
2607 		tp->lost_skb_hint = skb;
2608 		tp->lost_cnt_hint = cnt;
2609 
2610 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2611 			break;
2612 
2613 		oldcnt = cnt;
2614 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2615 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2616 			cnt += tcp_skb_pcount(skb);
2617 
2618 		if (cnt > packets) {
2619 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2620 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2621 			    (oldcnt >= packets))
2622 				break;
2623 
2624 			mss = skb_shinfo(skb)->gso_size;
2625 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2626 			if (err < 0)
2627 				break;
2628 			cnt = packets;
2629 		}
2630 
2631 		tcp_skb_mark_lost(tp, skb);
2632 
2633 		if (mark_head)
2634 			break;
2635 	}
2636 	tcp_verify_left_out(tp);
2637 }
2638 
2639 /* Account newly detected lost packet(s) */
2640 
2641 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2642 {
2643 	struct tcp_sock *tp = tcp_sk(sk);
2644 
2645 	if (tcp_is_reno(tp)) {
2646 		tcp_mark_head_lost(sk, 1, 1);
2647 	} else if (tcp_is_fack(tp)) {
2648 		int lost = tp->fackets_out - tp->reordering;
2649 		if (lost <= 0)
2650 			lost = 1;
2651 		tcp_mark_head_lost(sk, lost, 0);
2652 	} else {
2653 		int sacked_upto = tp->sacked_out - tp->reordering;
2654 		if (sacked_upto >= 0)
2655 			tcp_mark_head_lost(sk, sacked_upto, 0);
2656 		else if (fast_rexmit)
2657 			tcp_mark_head_lost(sk, 1, 1);
2658 	}
2659 
2660 	tcp_timeout_skbs(sk);
2661 }
2662 
2663 /* CWND moderation, preventing bursts due to too big ACKs
2664  * in dubious situations.
2665  */
2666 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2667 {
2668 	tp->snd_cwnd = min(tp->snd_cwnd,
2669 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2670 	tp->snd_cwnd_stamp = tcp_time_stamp;
2671 }
2672 
2673 /* Lower bound on congestion window is slow start threshold
2674  * unless congestion avoidance choice decides to overide it.
2675  */
2676 static inline u32 tcp_cwnd_min(const struct sock *sk)
2677 {
2678 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2679 
2680 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2681 }
2682 
2683 /* Decrease cwnd each second ack. */
2684 static void tcp_cwnd_down(struct sock *sk, int flag)
2685 {
2686 	struct tcp_sock *tp = tcp_sk(sk);
2687 	int decr = tp->snd_cwnd_cnt + 1;
2688 
2689 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2690 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2691 		tp->snd_cwnd_cnt = decr & 1;
2692 		decr >>= 1;
2693 
2694 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2695 			tp->snd_cwnd -= decr;
2696 
2697 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2698 		tp->snd_cwnd_stamp = tcp_time_stamp;
2699 	}
2700 }
2701 
2702 /* Nothing was retransmitted or returned timestamp is less
2703  * than timestamp of the first retransmission.
2704  */
2705 static inline int tcp_packet_delayed(const struct tcp_sock *tp)
2706 {
2707 	return !tp->retrans_stamp ||
2708 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2709 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2710 }
2711 
2712 /* Undo procedures. */
2713 
2714 #if FASTRETRANS_DEBUG > 1
2715 static void DBGUNDO(struct sock *sk, const char *msg)
2716 {
2717 	struct tcp_sock *tp = tcp_sk(sk);
2718 	struct inet_sock *inet = inet_sk(sk);
2719 
2720 	if (sk->sk_family == AF_INET) {
2721 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2722 			 msg,
2723 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2724 			 tp->snd_cwnd, tcp_left_out(tp),
2725 			 tp->snd_ssthresh, tp->prior_ssthresh,
2726 			 tp->packets_out);
2727 	}
2728 #if IS_ENABLED(CONFIG_IPV6)
2729 	else if (sk->sk_family == AF_INET6) {
2730 		struct ipv6_pinfo *np = inet6_sk(sk);
2731 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2732 			 msg,
2733 			 &np->daddr, ntohs(inet->inet_dport),
2734 			 tp->snd_cwnd, tcp_left_out(tp),
2735 			 tp->snd_ssthresh, tp->prior_ssthresh,
2736 			 tp->packets_out);
2737 	}
2738 #endif
2739 }
2740 #else
2741 #define DBGUNDO(x...) do { } while (0)
2742 #endif
2743 
2744 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2745 {
2746 	struct tcp_sock *tp = tcp_sk(sk);
2747 
2748 	if (tp->prior_ssthresh) {
2749 		const struct inet_connection_sock *icsk = inet_csk(sk);
2750 
2751 		if (icsk->icsk_ca_ops->undo_cwnd)
2752 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2753 		else
2754 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2755 
2756 		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2757 			tp->snd_ssthresh = tp->prior_ssthresh;
2758 			TCP_ECN_withdraw_cwr(tp);
2759 		}
2760 	} else {
2761 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2762 	}
2763 	tp->snd_cwnd_stamp = tcp_time_stamp;
2764 }
2765 
2766 static inline int tcp_may_undo(const struct tcp_sock *tp)
2767 {
2768 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2769 }
2770 
2771 /* People celebrate: "We love our President!" */
2772 static bool tcp_try_undo_recovery(struct sock *sk)
2773 {
2774 	struct tcp_sock *tp = tcp_sk(sk);
2775 
2776 	if (tcp_may_undo(tp)) {
2777 		int mib_idx;
2778 
2779 		/* Happy end! We did not retransmit anything
2780 		 * or our original transmission succeeded.
2781 		 */
2782 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2783 		tcp_undo_cwr(sk, true);
2784 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2785 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2786 		else
2787 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2788 
2789 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2790 		tp->undo_marker = 0;
2791 	}
2792 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2793 		/* Hold old state until something *above* high_seq
2794 		 * is ACKed. For Reno it is MUST to prevent false
2795 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2796 		tcp_moderate_cwnd(tp);
2797 		return true;
2798 	}
2799 	tcp_set_ca_state(sk, TCP_CA_Open);
2800 	return false;
2801 }
2802 
2803 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2804 static void tcp_try_undo_dsack(struct sock *sk)
2805 {
2806 	struct tcp_sock *tp = tcp_sk(sk);
2807 
2808 	if (tp->undo_marker && !tp->undo_retrans) {
2809 		DBGUNDO(sk, "D-SACK");
2810 		tcp_undo_cwr(sk, true);
2811 		tp->undo_marker = 0;
2812 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2813 	}
2814 }
2815 
2816 /* We can clear retrans_stamp when there are no retransmissions in the
2817  * window. It would seem that it is trivially available for us in
2818  * tp->retrans_out, however, that kind of assumptions doesn't consider
2819  * what will happen if errors occur when sending retransmission for the
2820  * second time. ...It could the that such segment has only
2821  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2822  * the head skb is enough except for some reneging corner cases that
2823  * are not worth the effort.
2824  *
2825  * Main reason for all this complexity is the fact that connection dying
2826  * time now depends on the validity of the retrans_stamp, in particular,
2827  * that successive retransmissions of a segment must not advance
2828  * retrans_stamp under any conditions.
2829  */
2830 static bool tcp_any_retrans_done(const struct sock *sk)
2831 {
2832 	const struct tcp_sock *tp = tcp_sk(sk);
2833 	struct sk_buff *skb;
2834 
2835 	if (tp->retrans_out)
2836 		return true;
2837 
2838 	skb = tcp_write_queue_head(sk);
2839 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2840 		return true;
2841 
2842 	return false;
2843 }
2844 
2845 /* Undo during fast recovery after partial ACK. */
2846 
2847 static int tcp_try_undo_partial(struct sock *sk, int acked)
2848 {
2849 	struct tcp_sock *tp = tcp_sk(sk);
2850 	/* Partial ACK arrived. Force Hoe's retransmit. */
2851 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2852 
2853 	if (tcp_may_undo(tp)) {
2854 		/* Plain luck! Hole if filled with delayed
2855 		 * packet, rather than with a retransmit.
2856 		 */
2857 		if (!tcp_any_retrans_done(sk))
2858 			tp->retrans_stamp = 0;
2859 
2860 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2861 
2862 		DBGUNDO(sk, "Hoe");
2863 		tcp_undo_cwr(sk, false);
2864 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2865 
2866 		/* So... Do not make Hoe's retransmit yet.
2867 		 * If the first packet was delayed, the rest
2868 		 * ones are most probably delayed as well.
2869 		 */
2870 		failed = 0;
2871 	}
2872 	return failed;
2873 }
2874 
2875 /* Undo during loss recovery after partial ACK. */
2876 static bool tcp_try_undo_loss(struct sock *sk)
2877 {
2878 	struct tcp_sock *tp = tcp_sk(sk);
2879 
2880 	if (tcp_may_undo(tp)) {
2881 		struct sk_buff *skb;
2882 		tcp_for_write_queue(skb, sk) {
2883 			if (skb == tcp_send_head(sk))
2884 				break;
2885 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2886 		}
2887 
2888 		tcp_clear_all_retrans_hints(tp);
2889 
2890 		DBGUNDO(sk, "partial loss");
2891 		tp->lost_out = 0;
2892 		tcp_undo_cwr(sk, true);
2893 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2894 		inet_csk(sk)->icsk_retransmits = 0;
2895 		tp->undo_marker = 0;
2896 		if (tcp_is_sack(tp))
2897 			tcp_set_ca_state(sk, TCP_CA_Open);
2898 		return true;
2899 	}
2900 	return false;
2901 }
2902 
2903 static inline void tcp_complete_cwr(struct sock *sk)
2904 {
2905 	struct tcp_sock *tp = tcp_sk(sk);
2906 
2907 	/* Do not moderate cwnd if it's already undone in cwr or recovery. */
2908 	if (tp->undo_marker) {
2909 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2910 			tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2911 			tp->snd_cwnd_stamp = tcp_time_stamp;
2912 		} else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2913 			/* PRR algorithm. */
2914 			tp->snd_cwnd = tp->snd_ssthresh;
2915 			tp->snd_cwnd_stamp = tcp_time_stamp;
2916 		}
2917 	}
2918 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2919 }
2920 
2921 static void tcp_try_keep_open(struct sock *sk)
2922 {
2923 	struct tcp_sock *tp = tcp_sk(sk);
2924 	int state = TCP_CA_Open;
2925 
2926 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2927 		state = TCP_CA_Disorder;
2928 
2929 	if (inet_csk(sk)->icsk_ca_state != state) {
2930 		tcp_set_ca_state(sk, state);
2931 		tp->high_seq = tp->snd_nxt;
2932 	}
2933 }
2934 
2935 static void tcp_try_to_open(struct sock *sk, int flag)
2936 {
2937 	struct tcp_sock *tp = tcp_sk(sk);
2938 
2939 	tcp_verify_left_out(tp);
2940 
2941 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2942 		tp->retrans_stamp = 0;
2943 
2944 	if (flag & FLAG_ECE)
2945 		tcp_enter_cwr(sk, 1);
2946 
2947 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2948 		tcp_try_keep_open(sk);
2949 		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2950 			tcp_moderate_cwnd(tp);
2951 	} else {
2952 		tcp_cwnd_down(sk, flag);
2953 	}
2954 }
2955 
2956 static void tcp_mtup_probe_failed(struct sock *sk)
2957 {
2958 	struct inet_connection_sock *icsk = inet_csk(sk);
2959 
2960 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2961 	icsk->icsk_mtup.probe_size = 0;
2962 }
2963 
2964 static void tcp_mtup_probe_success(struct sock *sk)
2965 {
2966 	struct tcp_sock *tp = tcp_sk(sk);
2967 	struct inet_connection_sock *icsk = inet_csk(sk);
2968 
2969 	/* FIXME: breaks with very large cwnd */
2970 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2971 	tp->snd_cwnd = tp->snd_cwnd *
2972 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2973 		       icsk->icsk_mtup.probe_size;
2974 	tp->snd_cwnd_cnt = 0;
2975 	tp->snd_cwnd_stamp = tcp_time_stamp;
2976 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2977 
2978 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2979 	icsk->icsk_mtup.probe_size = 0;
2980 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2981 }
2982 
2983 /* Do a simple retransmit without using the backoff mechanisms in
2984  * tcp_timer. This is used for path mtu discovery.
2985  * The socket is already locked here.
2986  */
2987 void tcp_simple_retransmit(struct sock *sk)
2988 {
2989 	const struct inet_connection_sock *icsk = inet_csk(sk);
2990 	struct tcp_sock *tp = tcp_sk(sk);
2991 	struct sk_buff *skb;
2992 	unsigned int mss = tcp_current_mss(sk);
2993 	u32 prior_lost = tp->lost_out;
2994 
2995 	tcp_for_write_queue(skb, sk) {
2996 		if (skb == tcp_send_head(sk))
2997 			break;
2998 		if (tcp_skb_seglen(skb) > mss &&
2999 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
3000 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3001 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
3002 				tp->retrans_out -= tcp_skb_pcount(skb);
3003 			}
3004 			tcp_skb_mark_lost_uncond_verify(tp, skb);
3005 		}
3006 	}
3007 
3008 	tcp_clear_retrans_hints_partial(tp);
3009 
3010 	if (prior_lost == tp->lost_out)
3011 		return;
3012 
3013 	if (tcp_is_reno(tp))
3014 		tcp_limit_reno_sacked(tp);
3015 
3016 	tcp_verify_left_out(tp);
3017 
3018 	/* Don't muck with the congestion window here.
3019 	 * Reason is that we do not increase amount of _data_
3020 	 * in network, but units changed and effective
3021 	 * cwnd/ssthresh really reduced now.
3022 	 */
3023 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
3024 		tp->high_seq = tp->snd_nxt;
3025 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
3026 		tp->prior_ssthresh = 0;
3027 		tp->undo_marker = 0;
3028 		tcp_set_ca_state(sk, TCP_CA_Loss);
3029 	}
3030 	tcp_xmit_retransmit_queue(sk);
3031 }
3032 EXPORT_SYMBOL(tcp_simple_retransmit);
3033 
3034 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
3035  * (proportional rate reduction with slow start reduction bound) as described in
3036  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
3037  * It computes the number of packets to send (sndcnt) based on packets newly
3038  * delivered:
3039  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
3040  *	cwnd reductions across a full RTT.
3041  *   2) If packets in flight is lower than ssthresh (such as due to excess
3042  *	losses and/or application stalls), do not perform any further cwnd
3043  *	reductions, but instead slow start up to ssthresh.
3044  */
3045 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
3046 					int fast_rexmit, int flag)
3047 {
3048 	struct tcp_sock *tp = tcp_sk(sk);
3049 	int sndcnt = 0;
3050 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
3051 
3052 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
3053 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
3054 			       tp->prior_cwnd - 1;
3055 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
3056 	} else {
3057 		sndcnt = min_t(int, delta,
3058 			       max_t(int, tp->prr_delivered - tp->prr_out,
3059 				     newly_acked_sacked) + 1);
3060 	}
3061 
3062 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
3063 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
3064 }
3065 
3066 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
3067 {
3068 	struct tcp_sock *tp = tcp_sk(sk);
3069 	int mib_idx;
3070 
3071 	if (tcp_is_reno(tp))
3072 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
3073 	else
3074 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3075 
3076 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
3077 
3078 	tp->high_seq = tp->snd_nxt;
3079 	tp->prior_ssthresh = 0;
3080 	tp->undo_marker = tp->snd_una;
3081 	tp->undo_retrans = tp->retrans_out;
3082 
3083 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
3084 		if (!ece_ack)
3085 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
3086 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
3087 		TCP_ECN_queue_cwr(tp);
3088 	}
3089 
3090 	tp->bytes_acked = 0;
3091 	tp->snd_cwnd_cnt = 0;
3092 	tp->prior_cwnd = tp->snd_cwnd;
3093 	tp->prr_delivered = 0;
3094 	tp->prr_out = 0;
3095 	tcp_set_ca_state(sk, TCP_CA_Recovery);
3096 }
3097 
3098 /* Process an event, which can update packets-in-flight not trivially.
3099  * Main goal of this function is to calculate new estimate for left_out,
3100  * taking into account both packets sitting in receiver's buffer and
3101  * packets lost by network.
3102  *
3103  * Besides that it does CWND reduction, when packet loss is detected
3104  * and changes state of machine.
3105  *
3106  * It does _not_ decide what to send, it is made in function
3107  * tcp_xmit_retransmit_queue().
3108  */
3109 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
3110 				  int newly_acked_sacked, bool is_dupack,
3111 				  int flag)
3112 {
3113 	struct inet_connection_sock *icsk = inet_csk(sk);
3114 	struct tcp_sock *tp = tcp_sk(sk);
3115 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
3116 				    (tcp_fackets_out(tp) > tp->reordering));
3117 	int fast_rexmit = 0;
3118 
3119 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
3120 		tp->sacked_out = 0;
3121 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
3122 		tp->fackets_out = 0;
3123 
3124 	/* Now state machine starts.
3125 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3126 	if (flag & FLAG_ECE)
3127 		tp->prior_ssthresh = 0;
3128 
3129 	/* B. In all the states check for reneging SACKs. */
3130 	if (tcp_check_sack_reneging(sk, flag))
3131 		return;
3132 
3133 	/* C. Check consistency of the current state. */
3134 	tcp_verify_left_out(tp);
3135 
3136 	/* D. Check state exit conditions. State can be terminated
3137 	 *    when high_seq is ACKed. */
3138 	if (icsk->icsk_ca_state == TCP_CA_Open) {
3139 		WARN_ON(tp->retrans_out != 0);
3140 		tp->retrans_stamp = 0;
3141 	} else if (!before(tp->snd_una, tp->high_seq)) {
3142 		switch (icsk->icsk_ca_state) {
3143 		case TCP_CA_Loss:
3144 			icsk->icsk_retransmits = 0;
3145 			if (tcp_try_undo_recovery(sk))
3146 				return;
3147 			break;
3148 
3149 		case TCP_CA_CWR:
3150 			/* CWR is to be held something *above* high_seq
3151 			 * is ACKed for CWR bit to reach receiver. */
3152 			if (tp->snd_una != tp->high_seq) {
3153 				tcp_complete_cwr(sk);
3154 				tcp_set_ca_state(sk, TCP_CA_Open);
3155 			}
3156 			break;
3157 
3158 		case TCP_CA_Recovery:
3159 			if (tcp_is_reno(tp))
3160 				tcp_reset_reno_sack(tp);
3161 			if (tcp_try_undo_recovery(sk))
3162 				return;
3163 			tcp_complete_cwr(sk);
3164 			break;
3165 		}
3166 	}
3167 
3168 	/* E. Process state. */
3169 	switch (icsk->icsk_ca_state) {
3170 	case TCP_CA_Recovery:
3171 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3172 			if (tcp_is_reno(tp) && is_dupack)
3173 				tcp_add_reno_sack(sk);
3174 		} else
3175 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
3176 		break;
3177 	case TCP_CA_Loss:
3178 		if (flag & FLAG_DATA_ACKED)
3179 			icsk->icsk_retransmits = 0;
3180 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3181 			tcp_reset_reno_sack(tp);
3182 		if (!tcp_try_undo_loss(sk)) {
3183 			tcp_moderate_cwnd(tp);
3184 			tcp_xmit_retransmit_queue(sk);
3185 			return;
3186 		}
3187 		if (icsk->icsk_ca_state != TCP_CA_Open)
3188 			return;
3189 		/* Loss is undone; fall through to processing in Open state. */
3190 	default:
3191 		if (tcp_is_reno(tp)) {
3192 			if (flag & FLAG_SND_UNA_ADVANCED)
3193 				tcp_reset_reno_sack(tp);
3194 			if (is_dupack)
3195 				tcp_add_reno_sack(sk);
3196 		}
3197 
3198 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3199 			tcp_try_undo_dsack(sk);
3200 
3201 		if (!tcp_time_to_recover(sk, flag)) {
3202 			tcp_try_to_open(sk, flag);
3203 			return;
3204 		}
3205 
3206 		/* MTU probe failure: don't reduce cwnd */
3207 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3208 		    icsk->icsk_mtup.probe_size &&
3209 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3210 			tcp_mtup_probe_failed(sk);
3211 			/* Restores the reduction we did in tcp_mtup_probe() */
3212 			tp->snd_cwnd++;
3213 			tcp_simple_retransmit(sk);
3214 			return;
3215 		}
3216 
3217 		/* Otherwise enter Recovery state */
3218 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
3219 		fast_rexmit = 1;
3220 	}
3221 
3222 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3223 		tcp_update_scoreboard(sk, fast_rexmit);
3224 	tp->prr_delivered += newly_acked_sacked;
3225 	tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3226 	tcp_xmit_retransmit_queue(sk);
3227 }
3228 
3229 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3230 {
3231 	tcp_rtt_estimator(sk, seq_rtt);
3232 	tcp_set_rto(sk);
3233 	inet_csk(sk)->icsk_backoff = 0;
3234 }
3235 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3236 
3237 /* Read draft-ietf-tcplw-high-performance before mucking
3238  * with this code. (Supersedes RFC1323)
3239  */
3240 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3241 {
3242 	/* RTTM Rule: A TSecr value received in a segment is used to
3243 	 * update the averaged RTT measurement only if the segment
3244 	 * acknowledges some new data, i.e., only if it advances the
3245 	 * left edge of the send window.
3246 	 *
3247 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3248 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3249 	 *
3250 	 * Changed: reset backoff as soon as we see the first valid sample.
3251 	 * If we do not, we get strongly overestimated rto. With timestamps
3252 	 * samples are accepted even from very old segments: f.e., when rtt=1
3253 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3254 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3255 	 * in window is lost... Voila.	 			--ANK (010210)
3256 	 */
3257 	struct tcp_sock *tp = tcp_sk(sk);
3258 
3259 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3260 }
3261 
3262 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3263 {
3264 	/* We don't have a timestamp. Can only use
3265 	 * packets that are not retransmitted to determine
3266 	 * rtt estimates. Also, we must not reset the
3267 	 * backoff for rto until we get a non-retransmitted
3268 	 * packet. This allows us to deal with a situation
3269 	 * where the network delay has increased suddenly.
3270 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3271 	 */
3272 
3273 	if (flag & FLAG_RETRANS_DATA_ACKED)
3274 		return;
3275 
3276 	tcp_valid_rtt_meas(sk, seq_rtt);
3277 }
3278 
3279 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3280 				      const s32 seq_rtt)
3281 {
3282 	const struct tcp_sock *tp = tcp_sk(sk);
3283 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3284 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3285 		tcp_ack_saw_tstamp(sk, flag);
3286 	else if (seq_rtt >= 0)
3287 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3288 }
3289 
3290 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3291 {
3292 	const struct inet_connection_sock *icsk = inet_csk(sk);
3293 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3294 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3295 }
3296 
3297 /* Restart timer after forward progress on connection.
3298  * RFC2988 recommends to restart timer to now+rto.
3299  */
3300 void tcp_rearm_rto(struct sock *sk)
3301 {
3302 	struct tcp_sock *tp = tcp_sk(sk);
3303 
3304 	if (!tp->packets_out) {
3305 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3306 	} else {
3307 		u32 rto = inet_csk(sk)->icsk_rto;
3308 		/* Offset the time elapsed after installing regular RTO */
3309 		if (tp->early_retrans_delayed) {
3310 			struct sk_buff *skb = tcp_write_queue_head(sk);
3311 			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3312 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3313 			/* delta may not be positive if the socket is locked
3314 			 * when the delayed ER timer fires and is rescheduled.
3315 			 */
3316 			if (delta > 0)
3317 				rto = delta;
3318 		}
3319 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3320 					  TCP_RTO_MAX);
3321 	}
3322 	tp->early_retrans_delayed = 0;
3323 }
3324 
3325 /* This function is called when the delayed ER timer fires. TCP enters
3326  * fast recovery and performs fast-retransmit.
3327  */
3328 void tcp_resume_early_retransmit(struct sock *sk)
3329 {
3330 	struct tcp_sock *tp = tcp_sk(sk);
3331 
3332 	tcp_rearm_rto(sk);
3333 
3334 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3335 	if (!tp->do_early_retrans)
3336 		return;
3337 
3338 	tcp_enter_recovery(sk, false);
3339 	tcp_update_scoreboard(sk, 1);
3340 	tcp_xmit_retransmit_queue(sk);
3341 }
3342 
3343 /* If we get here, the whole TSO packet has not been acked. */
3344 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3345 {
3346 	struct tcp_sock *tp = tcp_sk(sk);
3347 	u32 packets_acked;
3348 
3349 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3350 
3351 	packets_acked = tcp_skb_pcount(skb);
3352 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3353 		return 0;
3354 	packets_acked -= tcp_skb_pcount(skb);
3355 
3356 	if (packets_acked) {
3357 		BUG_ON(tcp_skb_pcount(skb) == 0);
3358 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3359 	}
3360 
3361 	return packets_acked;
3362 }
3363 
3364 /* Remove acknowledged frames from the retransmission queue. If our packet
3365  * is before the ack sequence we can discard it as it's confirmed to have
3366  * arrived at the other end.
3367  */
3368 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3369 			       u32 prior_snd_una)
3370 {
3371 	struct tcp_sock *tp = tcp_sk(sk);
3372 	const struct inet_connection_sock *icsk = inet_csk(sk);
3373 	struct sk_buff *skb;
3374 	u32 now = tcp_time_stamp;
3375 	int fully_acked = true;
3376 	int flag = 0;
3377 	u32 pkts_acked = 0;
3378 	u32 reord = tp->packets_out;
3379 	u32 prior_sacked = tp->sacked_out;
3380 	s32 seq_rtt = -1;
3381 	s32 ca_seq_rtt = -1;
3382 	ktime_t last_ackt = net_invalid_timestamp();
3383 
3384 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3385 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3386 		u32 acked_pcount;
3387 		u8 sacked = scb->sacked;
3388 
3389 		/* Determine how many packets and what bytes were acked, tso and else */
3390 		if (after(scb->end_seq, tp->snd_una)) {
3391 			if (tcp_skb_pcount(skb) == 1 ||
3392 			    !after(tp->snd_una, scb->seq))
3393 				break;
3394 
3395 			acked_pcount = tcp_tso_acked(sk, skb);
3396 			if (!acked_pcount)
3397 				break;
3398 
3399 			fully_acked = false;
3400 		} else {
3401 			acked_pcount = tcp_skb_pcount(skb);
3402 		}
3403 
3404 		if (sacked & TCPCB_RETRANS) {
3405 			if (sacked & TCPCB_SACKED_RETRANS)
3406 				tp->retrans_out -= acked_pcount;
3407 			flag |= FLAG_RETRANS_DATA_ACKED;
3408 			ca_seq_rtt = -1;
3409 			seq_rtt = -1;
3410 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3411 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3412 		} else {
3413 			ca_seq_rtt = now - scb->when;
3414 			last_ackt = skb->tstamp;
3415 			if (seq_rtt < 0) {
3416 				seq_rtt = ca_seq_rtt;
3417 			}
3418 			if (!(sacked & TCPCB_SACKED_ACKED))
3419 				reord = min(pkts_acked, reord);
3420 		}
3421 
3422 		if (sacked & TCPCB_SACKED_ACKED)
3423 			tp->sacked_out -= acked_pcount;
3424 		if (sacked & TCPCB_LOST)
3425 			tp->lost_out -= acked_pcount;
3426 
3427 		tp->packets_out -= acked_pcount;
3428 		pkts_acked += acked_pcount;
3429 
3430 		/* Initial outgoing SYN's get put onto the write_queue
3431 		 * just like anything else we transmit.  It is not
3432 		 * true data, and if we misinform our callers that
3433 		 * this ACK acks real data, we will erroneously exit
3434 		 * connection startup slow start one packet too
3435 		 * quickly.  This is severely frowned upon behavior.
3436 		 */
3437 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3438 			flag |= FLAG_DATA_ACKED;
3439 		} else {
3440 			flag |= FLAG_SYN_ACKED;
3441 			tp->retrans_stamp = 0;
3442 		}
3443 
3444 		if (!fully_acked)
3445 			break;
3446 
3447 		tcp_unlink_write_queue(skb, sk);
3448 		sk_wmem_free_skb(sk, skb);
3449 		tp->scoreboard_skb_hint = NULL;
3450 		if (skb == tp->retransmit_skb_hint)
3451 			tp->retransmit_skb_hint = NULL;
3452 		if (skb == tp->lost_skb_hint)
3453 			tp->lost_skb_hint = NULL;
3454 	}
3455 
3456 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3457 		tp->snd_up = tp->snd_una;
3458 
3459 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3460 		flag |= FLAG_SACK_RENEGING;
3461 
3462 	if (flag & FLAG_ACKED) {
3463 		const struct tcp_congestion_ops *ca_ops
3464 			= inet_csk(sk)->icsk_ca_ops;
3465 
3466 		if (unlikely(icsk->icsk_mtup.probe_size &&
3467 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3468 			tcp_mtup_probe_success(sk);
3469 		}
3470 
3471 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3472 		tcp_rearm_rto(sk);
3473 
3474 		if (tcp_is_reno(tp)) {
3475 			tcp_remove_reno_sacks(sk, pkts_acked);
3476 		} else {
3477 			int delta;
3478 
3479 			/* Non-retransmitted hole got filled? That's reordering */
3480 			if (reord < prior_fackets)
3481 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3482 
3483 			delta = tcp_is_fack(tp) ? pkts_acked :
3484 						  prior_sacked - tp->sacked_out;
3485 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3486 		}
3487 
3488 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3489 
3490 		if (ca_ops->pkts_acked) {
3491 			s32 rtt_us = -1;
3492 
3493 			/* Is the ACK triggering packet unambiguous? */
3494 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3495 				/* High resolution needed and available? */
3496 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3497 				    !ktime_equal(last_ackt,
3498 						 net_invalid_timestamp()))
3499 					rtt_us = ktime_us_delta(ktime_get_real(),
3500 								last_ackt);
3501 				else if (ca_seq_rtt >= 0)
3502 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3503 			}
3504 
3505 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3506 		}
3507 	}
3508 
3509 #if FASTRETRANS_DEBUG > 0
3510 	WARN_ON((int)tp->sacked_out < 0);
3511 	WARN_ON((int)tp->lost_out < 0);
3512 	WARN_ON((int)tp->retrans_out < 0);
3513 	if (!tp->packets_out && tcp_is_sack(tp)) {
3514 		icsk = inet_csk(sk);
3515 		if (tp->lost_out) {
3516 			pr_debug("Leak l=%u %d\n",
3517 				 tp->lost_out, icsk->icsk_ca_state);
3518 			tp->lost_out = 0;
3519 		}
3520 		if (tp->sacked_out) {
3521 			pr_debug("Leak s=%u %d\n",
3522 				 tp->sacked_out, icsk->icsk_ca_state);
3523 			tp->sacked_out = 0;
3524 		}
3525 		if (tp->retrans_out) {
3526 			pr_debug("Leak r=%u %d\n",
3527 				 tp->retrans_out, icsk->icsk_ca_state);
3528 			tp->retrans_out = 0;
3529 		}
3530 	}
3531 #endif
3532 	return flag;
3533 }
3534 
3535 static void tcp_ack_probe(struct sock *sk)
3536 {
3537 	const struct tcp_sock *tp = tcp_sk(sk);
3538 	struct inet_connection_sock *icsk = inet_csk(sk);
3539 
3540 	/* Was it a usable window open? */
3541 
3542 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3543 		icsk->icsk_backoff = 0;
3544 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3545 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3546 		 * This function is not for random using!
3547 		 */
3548 	} else {
3549 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3550 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3551 					  TCP_RTO_MAX);
3552 	}
3553 }
3554 
3555 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3556 {
3557 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3558 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3559 }
3560 
3561 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3562 {
3563 	const struct tcp_sock *tp = tcp_sk(sk);
3564 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3565 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3566 }
3567 
3568 /* Check that window update is acceptable.
3569  * The function assumes that snd_una<=ack<=snd_next.
3570  */
3571 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3572 					const u32 ack, const u32 ack_seq,
3573 					const u32 nwin)
3574 {
3575 	return	after(ack, tp->snd_una) ||
3576 		after(ack_seq, tp->snd_wl1) ||
3577 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3578 }
3579 
3580 /* Update our send window.
3581  *
3582  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3583  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3584  */
3585 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3586 				 u32 ack_seq)
3587 {
3588 	struct tcp_sock *tp = tcp_sk(sk);
3589 	int flag = 0;
3590 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3591 
3592 	if (likely(!tcp_hdr(skb)->syn))
3593 		nwin <<= tp->rx_opt.snd_wscale;
3594 
3595 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3596 		flag |= FLAG_WIN_UPDATE;
3597 		tcp_update_wl(tp, ack_seq);
3598 
3599 		if (tp->snd_wnd != nwin) {
3600 			tp->snd_wnd = nwin;
3601 
3602 			/* Note, it is the only place, where
3603 			 * fast path is recovered for sending TCP.
3604 			 */
3605 			tp->pred_flags = 0;
3606 			tcp_fast_path_check(sk);
3607 
3608 			if (nwin > tp->max_window) {
3609 				tp->max_window = nwin;
3610 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3611 			}
3612 		}
3613 	}
3614 
3615 	tp->snd_una = ack;
3616 
3617 	return flag;
3618 }
3619 
3620 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3621  * continue in congestion avoidance.
3622  */
3623 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3624 {
3625 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3626 	tp->snd_cwnd_cnt = 0;
3627 	tp->bytes_acked = 0;
3628 	TCP_ECN_queue_cwr(tp);
3629 	tcp_moderate_cwnd(tp);
3630 }
3631 
3632 /* A conservative spurious RTO response algorithm: reduce cwnd using
3633  * rate halving and continue in congestion avoidance.
3634  */
3635 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3636 {
3637 	tcp_enter_cwr(sk, 0);
3638 }
3639 
3640 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3641 {
3642 	if (flag & FLAG_ECE)
3643 		tcp_ratehalving_spur_to_response(sk);
3644 	else
3645 		tcp_undo_cwr(sk, true);
3646 }
3647 
3648 /* F-RTO spurious RTO detection algorithm (RFC4138)
3649  *
3650  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3651  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3652  * window (but not to or beyond highest sequence sent before RTO):
3653  *   On First ACK,  send two new segments out.
3654  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3655  *                  algorithm is not part of the F-RTO detection algorithm
3656  *                  given in RFC4138 but can be selected separately).
3657  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3658  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3659  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3660  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3661  *
3662  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3663  * original window even after we transmit two new data segments.
3664  *
3665  * SACK version:
3666  *   on first step, wait until first cumulative ACK arrives, then move to
3667  *   the second step. In second step, the next ACK decides.
3668  *
3669  * F-RTO is implemented (mainly) in four functions:
3670  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3671  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3672  *     called when tcp_use_frto() showed green light
3673  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3674  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3675  *     to prove that the RTO is indeed spurious. It transfers the control
3676  *     from F-RTO to the conventional RTO recovery
3677  */
3678 static bool tcp_process_frto(struct sock *sk, int flag)
3679 {
3680 	struct tcp_sock *tp = tcp_sk(sk);
3681 
3682 	tcp_verify_left_out(tp);
3683 
3684 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3685 	if (flag & FLAG_DATA_ACKED)
3686 		inet_csk(sk)->icsk_retransmits = 0;
3687 
3688 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3689 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3690 		tp->undo_marker = 0;
3691 
3692 	if (!before(tp->snd_una, tp->frto_highmark)) {
3693 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3694 		return true;
3695 	}
3696 
3697 	if (!tcp_is_sackfrto(tp)) {
3698 		/* RFC4138 shortcoming in step 2; should also have case c):
3699 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3700 		 * data, winupdate
3701 		 */
3702 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3703 			return true;
3704 
3705 		if (!(flag & FLAG_DATA_ACKED)) {
3706 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3707 					    flag);
3708 			return true;
3709 		}
3710 	} else {
3711 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3712 			/* Prevent sending of new data. */
3713 			tp->snd_cwnd = min(tp->snd_cwnd,
3714 					   tcp_packets_in_flight(tp));
3715 			return true;
3716 		}
3717 
3718 		if ((tp->frto_counter >= 2) &&
3719 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3720 		     ((flag & FLAG_DATA_SACKED) &&
3721 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3722 			/* RFC4138 shortcoming (see comment above) */
3723 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3724 			    (flag & FLAG_NOT_DUP))
3725 				return true;
3726 
3727 			tcp_enter_frto_loss(sk, 3, flag);
3728 			return true;
3729 		}
3730 	}
3731 
3732 	if (tp->frto_counter == 1) {
3733 		/* tcp_may_send_now needs to see updated state */
3734 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3735 		tp->frto_counter = 2;
3736 
3737 		if (!tcp_may_send_now(sk))
3738 			tcp_enter_frto_loss(sk, 2, flag);
3739 
3740 		return true;
3741 	} else {
3742 		switch (sysctl_tcp_frto_response) {
3743 		case 2:
3744 			tcp_undo_spur_to_response(sk, flag);
3745 			break;
3746 		case 1:
3747 			tcp_conservative_spur_to_response(tp);
3748 			break;
3749 		default:
3750 			tcp_ratehalving_spur_to_response(sk);
3751 			break;
3752 		}
3753 		tp->frto_counter = 0;
3754 		tp->undo_marker = 0;
3755 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3756 	}
3757 	return false;
3758 }
3759 
3760 /* This routine deals with incoming acks, but not outgoing ones. */
3761 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3762 {
3763 	struct inet_connection_sock *icsk = inet_csk(sk);
3764 	struct tcp_sock *tp = tcp_sk(sk);
3765 	u32 prior_snd_una = tp->snd_una;
3766 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3767 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3768 	bool is_dupack = false;
3769 	u32 prior_in_flight;
3770 	u32 prior_fackets;
3771 	int prior_packets;
3772 	int prior_sacked = tp->sacked_out;
3773 	int pkts_acked = 0;
3774 	int newly_acked_sacked = 0;
3775 	bool frto_cwnd = false;
3776 
3777 	/* If the ack is older than previous acks
3778 	 * then we can probably ignore it.
3779 	 */
3780 	if (before(ack, prior_snd_una))
3781 		goto old_ack;
3782 
3783 	/* If the ack includes data we haven't sent yet, discard
3784 	 * this segment (RFC793 Section 3.9).
3785 	 */
3786 	if (after(ack, tp->snd_nxt))
3787 		goto invalid_ack;
3788 
3789 	if (tp->early_retrans_delayed)
3790 		tcp_rearm_rto(sk);
3791 
3792 	if (after(ack, prior_snd_una))
3793 		flag |= FLAG_SND_UNA_ADVANCED;
3794 
3795 	if (sysctl_tcp_abc) {
3796 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3797 			tp->bytes_acked += ack - prior_snd_una;
3798 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3799 			/* we assume just one segment left network */
3800 			tp->bytes_acked += min(ack - prior_snd_una,
3801 					       tp->mss_cache);
3802 	}
3803 
3804 	prior_fackets = tp->fackets_out;
3805 	prior_in_flight = tcp_packets_in_flight(tp);
3806 
3807 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3808 		/* Window is constant, pure forward advance.
3809 		 * No more checks are required.
3810 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3811 		 */
3812 		tcp_update_wl(tp, ack_seq);
3813 		tp->snd_una = ack;
3814 		flag |= FLAG_WIN_UPDATE;
3815 
3816 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3817 
3818 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3819 	} else {
3820 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3821 			flag |= FLAG_DATA;
3822 		else
3823 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3824 
3825 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3826 
3827 		if (TCP_SKB_CB(skb)->sacked)
3828 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3829 
3830 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3831 			flag |= FLAG_ECE;
3832 
3833 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3834 	}
3835 
3836 	/* We passed data and got it acked, remove any soft error
3837 	 * log. Something worked...
3838 	 */
3839 	sk->sk_err_soft = 0;
3840 	icsk->icsk_probes_out = 0;
3841 	tp->rcv_tstamp = tcp_time_stamp;
3842 	prior_packets = tp->packets_out;
3843 	if (!prior_packets)
3844 		goto no_queue;
3845 
3846 	/* See if we can take anything off of the retransmit queue. */
3847 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3848 
3849 	pkts_acked = prior_packets - tp->packets_out;
3850 	newly_acked_sacked = (prior_packets - prior_sacked) -
3851 			     (tp->packets_out - tp->sacked_out);
3852 
3853 	if (tp->frto_counter)
3854 		frto_cwnd = tcp_process_frto(sk, flag);
3855 	/* Guarantee sacktag reordering detection against wrap-arounds */
3856 	if (before(tp->frto_highmark, tp->snd_una))
3857 		tp->frto_highmark = 0;
3858 
3859 	if (tcp_ack_is_dubious(sk, flag)) {
3860 		/* Advance CWND, if state allows this. */
3861 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3862 		    tcp_may_raise_cwnd(sk, flag))
3863 			tcp_cong_avoid(sk, ack, prior_in_flight);
3864 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3865 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3866 				      is_dupack, flag);
3867 	} else {
3868 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3869 			tcp_cong_avoid(sk, ack, prior_in_flight);
3870 	}
3871 
3872 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3873 		dst_confirm(__sk_dst_get(sk));
3874 
3875 	return 1;
3876 
3877 no_queue:
3878 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3879 	if (flag & FLAG_DSACKING_ACK)
3880 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3881 				      is_dupack, flag);
3882 	/* If this ack opens up a zero window, clear backoff.  It was
3883 	 * being used to time the probes, and is probably far higher than
3884 	 * it needs to be for normal retransmission.
3885 	 */
3886 	if (tcp_send_head(sk))
3887 		tcp_ack_probe(sk);
3888 	return 1;
3889 
3890 invalid_ack:
3891 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3892 	return -1;
3893 
3894 old_ack:
3895 	/* If data was SACKed, tag it and see if we should send more data.
3896 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3897 	 */
3898 	if (TCP_SKB_CB(skb)->sacked) {
3899 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3900 		newly_acked_sacked = tp->sacked_out - prior_sacked;
3901 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3902 				      is_dupack, flag);
3903 	}
3904 
3905 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3906 	return 0;
3907 }
3908 
3909 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3910  * But, this can also be called on packets in the established flow when
3911  * the fast version below fails.
3912  */
3913 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3914 		       const u8 **hvpp, int estab)
3915 {
3916 	const unsigned char *ptr;
3917 	const struct tcphdr *th = tcp_hdr(skb);
3918 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3919 
3920 	ptr = (const unsigned char *)(th + 1);
3921 	opt_rx->saw_tstamp = 0;
3922 
3923 	while (length > 0) {
3924 		int opcode = *ptr++;
3925 		int opsize;
3926 
3927 		switch (opcode) {
3928 		case TCPOPT_EOL:
3929 			return;
3930 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3931 			length--;
3932 			continue;
3933 		default:
3934 			opsize = *ptr++;
3935 			if (opsize < 2) /* "silly options" */
3936 				return;
3937 			if (opsize > length)
3938 				return;	/* don't parse partial options */
3939 			switch (opcode) {
3940 			case TCPOPT_MSS:
3941 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3942 					u16 in_mss = get_unaligned_be16(ptr);
3943 					if (in_mss) {
3944 						if (opt_rx->user_mss &&
3945 						    opt_rx->user_mss < in_mss)
3946 							in_mss = opt_rx->user_mss;
3947 						opt_rx->mss_clamp = in_mss;
3948 					}
3949 				}
3950 				break;
3951 			case TCPOPT_WINDOW:
3952 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3953 				    !estab && sysctl_tcp_window_scaling) {
3954 					__u8 snd_wscale = *(__u8 *)ptr;
3955 					opt_rx->wscale_ok = 1;
3956 					if (snd_wscale > 14) {
3957 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3958 								     __func__,
3959 								     snd_wscale);
3960 						snd_wscale = 14;
3961 					}
3962 					opt_rx->snd_wscale = snd_wscale;
3963 				}
3964 				break;
3965 			case TCPOPT_TIMESTAMP:
3966 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3967 				    ((estab && opt_rx->tstamp_ok) ||
3968 				     (!estab && sysctl_tcp_timestamps))) {
3969 					opt_rx->saw_tstamp = 1;
3970 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3971 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3972 				}
3973 				break;
3974 			case TCPOPT_SACK_PERM:
3975 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3976 				    !estab && sysctl_tcp_sack) {
3977 					opt_rx->sack_ok = TCP_SACK_SEEN;
3978 					tcp_sack_reset(opt_rx);
3979 				}
3980 				break;
3981 
3982 			case TCPOPT_SACK:
3983 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3984 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3985 				   opt_rx->sack_ok) {
3986 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3987 				}
3988 				break;
3989 #ifdef CONFIG_TCP_MD5SIG
3990 			case TCPOPT_MD5SIG:
3991 				/*
3992 				 * The MD5 Hash has already been
3993 				 * checked (see tcp_v{4,6}_do_rcv()).
3994 				 */
3995 				break;
3996 #endif
3997 			case TCPOPT_COOKIE:
3998 				/* This option is variable length.
3999 				 */
4000 				switch (opsize) {
4001 				case TCPOLEN_COOKIE_BASE:
4002 					/* not yet implemented */
4003 					break;
4004 				case TCPOLEN_COOKIE_PAIR:
4005 					/* not yet implemented */
4006 					break;
4007 				case TCPOLEN_COOKIE_MIN+0:
4008 				case TCPOLEN_COOKIE_MIN+2:
4009 				case TCPOLEN_COOKIE_MIN+4:
4010 				case TCPOLEN_COOKIE_MIN+6:
4011 				case TCPOLEN_COOKIE_MAX:
4012 					/* 16-bit multiple */
4013 					opt_rx->cookie_plus = opsize;
4014 					*hvpp = ptr;
4015 					break;
4016 				default:
4017 					/* ignore option */
4018 					break;
4019 				}
4020 				break;
4021 			}
4022 
4023 			ptr += opsize-2;
4024 			length -= opsize;
4025 		}
4026 	}
4027 }
4028 EXPORT_SYMBOL(tcp_parse_options);
4029 
4030 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4031 {
4032 	const __be32 *ptr = (const __be32 *)(th + 1);
4033 
4034 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4035 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4036 		tp->rx_opt.saw_tstamp = 1;
4037 		++ptr;
4038 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4039 		++ptr;
4040 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4041 		return true;
4042 	}
4043 	return false;
4044 }
4045 
4046 /* Fast parse options. This hopes to only see timestamps.
4047  * If it is wrong it falls back on tcp_parse_options().
4048  */
4049 static bool tcp_fast_parse_options(const struct sk_buff *skb,
4050 				   const struct tcphdr *th,
4051 				   struct tcp_sock *tp, const u8 **hvpp)
4052 {
4053 	/* In the spirit of fast parsing, compare doff directly to constant
4054 	 * values.  Because equality is used, short doff can be ignored here.
4055 	 */
4056 	if (th->doff == (sizeof(*th) / 4)) {
4057 		tp->rx_opt.saw_tstamp = 0;
4058 		return false;
4059 	} else if (tp->rx_opt.tstamp_ok &&
4060 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4061 		if (tcp_parse_aligned_timestamp(tp, th))
4062 			return true;
4063 	}
4064 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
4065 	return true;
4066 }
4067 
4068 #ifdef CONFIG_TCP_MD5SIG
4069 /*
4070  * Parse MD5 Signature option
4071  */
4072 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4073 {
4074 	int length = (th->doff << 2) - sizeof(*th);
4075 	const u8 *ptr = (const u8 *)(th + 1);
4076 
4077 	/* If the TCP option is too short, we can short cut */
4078 	if (length < TCPOLEN_MD5SIG)
4079 		return NULL;
4080 
4081 	while (length > 0) {
4082 		int opcode = *ptr++;
4083 		int opsize;
4084 
4085 		switch(opcode) {
4086 		case TCPOPT_EOL:
4087 			return NULL;
4088 		case TCPOPT_NOP:
4089 			length--;
4090 			continue;
4091 		default:
4092 			opsize = *ptr++;
4093 			if (opsize < 2 || opsize > length)
4094 				return NULL;
4095 			if (opcode == TCPOPT_MD5SIG)
4096 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4097 		}
4098 		ptr += opsize - 2;
4099 		length -= opsize;
4100 	}
4101 	return NULL;
4102 }
4103 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4104 #endif
4105 
4106 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
4107 {
4108 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
4109 	tp->rx_opt.ts_recent_stamp = get_seconds();
4110 }
4111 
4112 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
4113 {
4114 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
4115 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
4116 		 * extra check below makes sure this can only happen
4117 		 * for pure ACK frames.  -DaveM
4118 		 *
4119 		 * Not only, also it occurs for expired timestamps.
4120 		 */
4121 
4122 		if (tcp_paws_check(&tp->rx_opt, 0))
4123 			tcp_store_ts_recent(tp);
4124 	}
4125 }
4126 
4127 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4128  *
4129  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4130  * it can pass through stack. So, the following predicate verifies that
4131  * this segment is not used for anything but congestion avoidance or
4132  * fast retransmit. Moreover, we even are able to eliminate most of such
4133  * second order effects, if we apply some small "replay" window (~RTO)
4134  * to timestamp space.
4135  *
4136  * All these measures still do not guarantee that we reject wrapped ACKs
4137  * on networks with high bandwidth, when sequence space is recycled fastly,
4138  * but it guarantees that such events will be very rare and do not affect
4139  * connection seriously. This doesn't look nice, but alas, PAWS is really
4140  * buggy extension.
4141  *
4142  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4143  * states that events when retransmit arrives after original data are rare.
4144  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4145  * the biggest problem on large power networks even with minor reordering.
4146  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4147  * up to bandwidth of 18Gigabit/sec. 8) ]
4148  */
4149 
4150 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4151 {
4152 	const struct tcp_sock *tp = tcp_sk(sk);
4153 	const struct tcphdr *th = tcp_hdr(skb);
4154 	u32 seq = TCP_SKB_CB(skb)->seq;
4155 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4156 
4157 	return (/* 1. Pure ACK with correct sequence number. */
4158 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4159 
4160 		/* 2. ... and duplicate ACK. */
4161 		ack == tp->snd_una &&
4162 
4163 		/* 3. ... and does not update window. */
4164 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4165 
4166 		/* 4. ... and sits in replay window. */
4167 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4168 }
4169 
4170 static inline int tcp_paws_discard(const struct sock *sk,
4171 				   const struct sk_buff *skb)
4172 {
4173 	const struct tcp_sock *tp = tcp_sk(sk);
4174 
4175 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4176 	       !tcp_disordered_ack(sk, skb);
4177 }
4178 
4179 /* Check segment sequence number for validity.
4180  *
4181  * Segment controls are considered valid, if the segment
4182  * fits to the window after truncation to the window. Acceptability
4183  * of data (and SYN, FIN, of course) is checked separately.
4184  * See tcp_data_queue(), for example.
4185  *
4186  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4187  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4188  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4189  * (borrowed from freebsd)
4190  */
4191 
4192 static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4193 {
4194 	return	!before(end_seq, tp->rcv_wup) &&
4195 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4196 }
4197 
4198 /* When we get a reset we do this. */
4199 static void tcp_reset(struct sock *sk)
4200 {
4201 	/* We want the right error as BSD sees it (and indeed as we do). */
4202 	switch (sk->sk_state) {
4203 	case TCP_SYN_SENT:
4204 		sk->sk_err = ECONNREFUSED;
4205 		break;
4206 	case TCP_CLOSE_WAIT:
4207 		sk->sk_err = EPIPE;
4208 		break;
4209 	case TCP_CLOSE:
4210 		return;
4211 	default:
4212 		sk->sk_err = ECONNRESET;
4213 	}
4214 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4215 	smp_wmb();
4216 
4217 	if (!sock_flag(sk, SOCK_DEAD))
4218 		sk->sk_error_report(sk);
4219 
4220 	tcp_done(sk);
4221 }
4222 
4223 /*
4224  * 	Process the FIN bit. This now behaves as it is supposed to work
4225  *	and the FIN takes effect when it is validly part of sequence
4226  *	space. Not before when we get holes.
4227  *
4228  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4229  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4230  *	TIME-WAIT)
4231  *
4232  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4233  *	close and we go into CLOSING (and later onto TIME-WAIT)
4234  *
4235  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4236  */
4237 static void tcp_fin(struct sock *sk)
4238 {
4239 	struct tcp_sock *tp = tcp_sk(sk);
4240 
4241 	inet_csk_schedule_ack(sk);
4242 
4243 	sk->sk_shutdown |= RCV_SHUTDOWN;
4244 	sock_set_flag(sk, SOCK_DONE);
4245 
4246 	switch (sk->sk_state) {
4247 	case TCP_SYN_RECV:
4248 	case TCP_ESTABLISHED:
4249 		/* Move to CLOSE_WAIT */
4250 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4251 		inet_csk(sk)->icsk_ack.pingpong = 1;
4252 		break;
4253 
4254 	case TCP_CLOSE_WAIT:
4255 	case TCP_CLOSING:
4256 		/* Received a retransmission of the FIN, do
4257 		 * nothing.
4258 		 */
4259 		break;
4260 	case TCP_LAST_ACK:
4261 		/* RFC793: Remain in the LAST-ACK state. */
4262 		break;
4263 
4264 	case TCP_FIN_WAIT1:
4265 		/* This case occurs when a simultaneous close
4266 		 * happens, we must ack the received FIN and
4267 		 * enter the CLOSING state.
4268 		 */
4269 		tcp_send_ack(sk);
4270 		tcp_set_state(sk, TCP_CLOSING);
4271 		break;
4272 	case TCP_FIN_WAIT2:
4273 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4274 		tcp_send_ack(sk);
4275 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4276 		break;
4277 	default:
4278 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4279 		 * cases we should never reach this piece of code.
4280 		 */
4281 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4282 		       __func__, sk->sk_state);
4283 		break;
4284 	}
4285 
4286 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4287 	 * Probably, we should reset in this case. For now drop them.
4288 	 */
4289 	__skb_queue_purge(&tp->out_of_order_queue);
4290 	if (tcp_is_sack(tp))
4291 		tcp_sack_reset(&tp->rx_opt);
4292 	sk_mem_reclaim(sk);
4293 
4294 	if (!sock_flag(sk, SOCK_DEAD)) {
4295 		sk->sk_state_change(sk);
4296 
4297 		/* Do not send POLL_HUP for half duplex close. */
4298 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4299 		    sk->sk_state == TCP_CLOSE)
4300 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4301 		else
4302 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4303 	}
4304 }
4305 
4306 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4307 				  u32 end_seq)
4308 {
4309 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4310 		if (before(seq, sp->start_seq))
4311 			sp->start_seq = seq;
4312 		if (after(end_seq, sp->end_seq))
4313 			sp->end_seq = end_seq;
4314 		return true;
4315 	}
4316 	return false;
4317 }
4318 
4319 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4320 {
4321 	struct tcp_sock *tp = tcp_sk(sk);
4322 
4323 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4324 		int mib_idx;
4325 
4326 		if (before(seq, tp->rcv_nxt))
4327 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4328 		else
4329 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4330 
4331 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4332 
4333 		tp->rx_opt.dsack = 1;
4334 		tp->duplicate_sack[0].start_seq = seq;
4335 		tp->duplicate_sack[0].end_seq = end_seq;
4336 	}
4337 }
4338 
4339 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4340 {
4341 	struct tcp_sock *tp = tcp_sk(sk);
4342 
4343 	if (!tp->rx_opt.dsack)
4344 		tcp_dsack_set(sk, seq, end_seq);
4345 	else
4346 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4347 }
4348 
4349 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4350 {
4351 	struct tcp_sock *tp = tcp_sk(sk);
4352 
4353 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4354 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4355 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4356 		tcp_enter_quickack_mode(sk);
4357 
4358 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4359 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4360 
4361 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4362 				end_seq = tp->rcv_nxt;
4363 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4364 		}
4365 	}
4366 
4367 	tcp_send_ack(sk);
4368 }
4369 
4370 /* These routines update the SACK block as out-of-order packets arrive or
4371  * in-order packets close up the sequence space.
4372  */
4373 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4374 {
4375 	int this_sack;
4376 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4377 	struct tcp_sack_block *swalk = sp + 1;
4378 
4379 	/* See if the recent change to the first SACK eats into
4380 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4381 	 */
4382 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4383 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4384 			int i;
4385 
4386 			/* Zap SWALK, by moving every further SACK up by one slot.
4387 			 * Decrease num_sacks.
4388 			 */
4389 			tp->rx_opt.num_sacks--;
4390 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4391 				sp[i] = sp[i + 1];
4392 			continue;
4393 		}
4394 		this_sack++, swalk++;
4395 	}
4396 }
4397 
4398 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4399 {
4400 	struct tcp_sock *tp = tcp_sk(sk);
4401 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4402 	int cur_sacks = tp->rx_opt.num_sacks;
4403 	int this_sack;
4404 
4405 	if (!cur_sacks)
4406 		goto new_sack;
4407 
4408 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4409 		if (tcp_sack_extend(sp, seq, end_seq)) {
4410 			/* Rotate this_sack to the first one. */
4411 			for (; this_sack > 0; this_sack--, sp--)
4412 				swap(*sp, *(sp - 1));
4413 			if (cur_sacks > 1)
4414 				tcp_sack_maybe_coalesce(tp);
4415 			return;
4416 		}
4417 	}
4418 
4419 	/* Could not find an adjacent existing SACK, build a new one,
4420 	 * put it at the front, and shift everyone else down.  We
4421 	 * always know there is at least one SACK present already here.
4422 	 *
4423 	 * If the sack array is full, forget about the last one.
4424 	 */
4425 	if (this_sack >= TCP_NUM_SACKS) {
4426 		this_sack--;
4427 		tp->rx_opt.num_sacks--;
4428 		sp--;
4429 	}
4430 	for (; this_sack > 0; this_sack--, sp--)
4431 		*sp = *(sp - 1);
4432 
4433 new_sack:
4434 	/* Build the new head SACK, and we're done. */
4435 	sp->start_seq = seq;
4436 	sp->end_seq = end_seq;
4437 	tp->rx_opt.num_sacks++;
4438 }
4439 
4440 /* RCV.NXT advances, some SACKs should be eaten. */
4441 
4442 static void tcp_sack_remove(struct tcp_sock *tp)
4443 {
4444 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4445 	int num_sacks = tp->rx_opt.num_sacks;
4446 	int this_sack;
4447 
4448 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4449 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4450 		tp->rx_opt.num_sacks = 0;
4451 		return;
4452 	}
4453 
4454 	for (this_sack = 0; this_sack < num_sacks;) {
4455 		/* Check if the start of the sack is covered by RCV.NXT. */
4456 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4457 			int i;
4458 
4459 			/* RCV.NXT must cover all the block! */
4460 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4461 
4462 			/* Zap this SACK, by moving forward any other SACKS. */
4463 			for (i=this_sack+1; i < num_sacks; i++)
4464 				tp->selective_acks[i-1] = tp->selective_acks[i];
4465 			num_sacks--;
4466 			continue;
4467 		}
4468 		this_sack++;
4469 		sp++;
4470 	}
4471 	tp->rx_opt.num_sacks = num_sacks;
4472 }
4473 
4474 /* This one checks to see if we can put data from the
4475  * out_of_order queue into the receive_queue.
4476  */
4477 static void tcp_ofo_queue(struct sock *sk)
4478 {
4479 	struct tcp_sock *tp = tcp_sk(sk);
4480 	__u32 dsack_high = tp->rcv_nxt;
4481 	struct sk_buff *skb;
4482 
4483 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4484 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4485 			break;
4486 
4487 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4488 			__u32 dsack = dsack_high;
4489 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4490 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4491 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4492 		}
4493 
4494 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4495 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4496 			__skb_unlink(skb, &tp->out_of_order_queue);
4497 			__kfree_skb(skb);
4498 			continue;
4499 		}
4500 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4501 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4502 			   TCP_SKB_CB(skb)->end_seq);
4503 
4504 		__skb_unlink(skb, &tp->out_of_order_queue);
4505 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4506 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4507 		if (tcp_hdr(skb)->fin)
4508 			tcp_fin(sk);
4509 	}
4510 }
4511 
4512 static bool tcp_prune_ofo_queue(struct sock *sk);
4513 static int tcp_prune_queue(struct sock *sk);
4514 
4515 static int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4516 {
4517 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4518 	    !sk_rmem_schedule(sk, size)) {
4519 
4520 		if (tcp_prune_queue(sk) < 0)
4521 			return -1;
4522 
4523 		if (!sk_rmem_schedule(sk, size)) {
4524 			if (!tcp_prune_ofo_queue(sk))
4525 				return -1;
4526 
4527 			if (!sk_rmem_schedule(sk, size))
4528 				return -1;
4529 		}
4530 	}
4531 	return 0;
4532 }
4533 
4534 /**
4535  * tcp_try_coalesce - try to merge skb to prior one
4536  * @sk: socket
4537  * @to: prior buffer
4538  * @from: buffer to add in queue
4539  * @fragstolen: pointer to boolean
4540  *
4541  * Before queueing skb @from after @to, try to merge them
4542  * to reduce overall memory use and queue lengths, if cost is small.
4543  * Packets in ofo or receive queues can stay a long time.
4544  * Better try to coalesce them right now to avoid future collapses.
4545  * Returns true if caller should free @from instead of queueing it
4546  */
4547 static bool tcp_try_coalesce(struct sock *sk,
4548 			     struct sk_buff *to,
4549 			     struct sk_buff *from,
4550 			     bool *fragstolen)
4551 {
4552 	int delta;
4553 
4554 	*fragstolen = false;
4555 
4556 	if (tcp_hdr(from)->fin)
4557 		return false;
4558 
4559 	/* Its possible this segment overlaps with prior segment in queue */
4560 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4561 		return false;
4562 
4563 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4564 		return false;
4565 
4566 	atomic_add(delta, &sk->sk_rmem_alloc);
4567 	sk_mem_charge(sk, delta);
4568 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4569 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4570 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4571 	return true;
4572 }
4573 
4574 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4575 {
4576 	struct tcp_sock *tp = tcp_sk(sk);
4577 	struct sk_buff *skb1;
4578 	u32 seq, end_seq;
4579 
4580 	TCP_ECN_check_ce(tp, skb);
4581 
4582 	if (tcp_try_rmem_schedule(sk, skb->truesize)) {
4583 		/* TODO: should increment a counter */
4584 		__kfree_skb(skb);
4585 		return;
4586 	}
4587 
4588 	/* Disable header prediction. */
4589 	tp->pred_flags = 0;
4590 	inet_csk_schedule_ack(sk);
4591 
4592 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4593 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4594 
4595 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4596 	if (!skb1) {
4597 		/* Initial out of order segment, build 1 SACK. */
4598 		if (tcp_is_sack(tp)) {
4599 			tp->rx_opt.num_sacks = 1;
4600 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4601 			tp->selective_acks[0].end_seq =
4602 						TCP_SKB_CB(skb)->end_seq;
4603 		}
4604 		__skb_queue_head(&tp->out_of_order_queue, skb);
4605 		goto end;
4606 	}
4607 
4608 	seq = TCP_SKB_CB(skb)->seq;
4609 	end_seq = TCP_SKB_CB(skb)->end_seq;
4610 
4611 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4612 		bool fragstolen;
4613 
4614 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4615 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4616 		} else {
4617 			kfree_skb_partial(skb, fragstolen);
4618 			skb = NULL;
4619 		}
4620 
4621 		if (!tp->rx_opt.num_sacks ||
4622 		    tp->selective_acks[0].end_seq != seq)
4623 			goto add_sack;
4624 
4625 		/* Common case: data arrive in order after hole. */
4626 		tp->selective_acks[0].end_seq = end_seq;
4627 		goto end;
4628 	}
4629 
4630 	/* Find place to insert this segment. */
4631 	while (1) {
4632 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4633 			break;
4634 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4635 			skb1 = NULL;
4636 			break;
4637 		}
4638 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4639 	}
4640 
4641 	/* Do skb overlap to previous one? */
4642 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4643 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4644 			/* All the bits are present. Drop. */
4645 			__kfree_skb(skb);
4646 			skb = NULL;
4647 			tcp_dsack_set(sk, seq, end_seq);
4648 			goto add_sack;
4649 		}
4650 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4651 			/* Partial overlap. */
4652 			tcp_dsack_set(sk, seq,
4653 				      TCP_SKB_CB(skb1)->end_seq);
4654 		} else {
4655 			if (skb_queue_is_first(&tp->out_of_order_queue,
4656 					       skb1))
4657 				skb1 = NULL;
4658 			else
4659 				skb1 = skb_queue_prev(
4660 					&tp->out_of_order_queue,
4661 					skb1);
4662 		}
4663 	}
4664 	if (!skb1)
4665 		__skb_queue_head(&tp->out_of_order_queue, skb);
4666 	else
4667 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4668 
4669 	/* And clean segments covered by new one as whole. */
4670 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4671 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4672 
4673 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4674 			break;
4675 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4676 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4677 					 end_seq);
4678 			break;
4679 		}
4680 		__skb_unlink(skb1, &tp->out_of_order_queue);
4681 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4682 				 TCP_SKB_CB(skb1)->end_seq);
4683 		__kfree_skb(skb1);
4684 	}
4685 
4686 add_sack:
4687 	if (tcp_is_sack(tp))
4688 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4689 end:
4690 	if (skb)
4691 		skb_set_owner_r(skb, sk);
4692 }
4693 
4694 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4695 		  bool *fragstolen)
4696 {
4697 	int eaten;
4698 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4699 
4700 	__skb_pull(skb, hdrlen);
4701 	eaten = (tail &&
4702 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4703 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4704 	if (!eaten) {
4705 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4706 		skb_set_owner_r(skb, sk);
4707 	}
4708 	return eaten;
4709 }
4710 
4711 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4712 {
4713 	struct sk_buff *skb;
4714 	struct tcphdr *th;
4715 	bool fragstolen;
4716 
4717 	if (tcp_try_rmem_schedule(sk, size + sizeof(*th)))
4718 		goto err;
4719 
4720 	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4721 	if (!skb)
4722 		goto err;
4723 
4724 	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4725 	skb_reset_transport_header(skb);
4726 	memset(th, 0, sizeof(*th));
4727 
4728 	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4729 		goto err_free;
4730 
4731 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4732 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4733 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4734 
4735 	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4736 		WARN_ON_ONCE(fragstolen); /* should not happen */
4737 		__kfree_skb(skb);
4738 	}
4739 	return size;
4740 
4741 err_free:
4742 	kfree_skb(skb);
4743 err:
4744 	return -ENOMEM;
4745 }
4746 
4747 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4748 {
4749 	const struct tcphdr *th = tcp_hdr(skb);
4750 	struct tcp_sock *tp = tcp_sk(sk);
4751 	int eaten = -1;
4752 	bool fragstolen = false;
4753 
4754 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4755 		goto drop;
4756 
4757 	skb_dst_drop(skb);
4758 	__skb_pull(skb, th->doff * 4);
4759 
4760 	TCP_ECN_accept_cwr(tp, skb);
4761 
4762 	tp->rx_opt.dsack = 0;
4763 
4764 	/*  Queue data for delivery to the user.
4765 	 *  Packets in sequence go to the receive queue.
4766 	 *  Out of sequence packets to the out_of_order_queue.
4767 	 */
4768 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4769 		if (tcp_receive_window(tp) == 0)
4770 			goto out_of_window;
4771 
4772 		/* Ok. In sequence. In window. */
4773 		if (tp->ucopy.task == current &&
4774 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4775 		    sock_owned_by_user(sk) && !tp->urg_data) {
4776 			int chunk = min_t(unsigned int, skb->len,
4777 					  tp->ucopy.len);
4778 
4779 			__set_current_state(TASK_RUNNING);
4780 
4781 			local_bh_enable();
4782 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4783 				tp->ucopy.len -= chunk;
4784 				tp->copied_seq += chunk;
4785 				eaten = (chunk == skb->len);
4786 				tcp_rcv_space_adjust(sk);
4787 			}
4788 			local_bh_disable();
4789 		}
4790 
4791 		if (eaten <= 0) {
4792 queue_and_out:
4793 			if (eaten < 0 &&
4794 			    tcp_try_rmem_schedule(sk, skb->truesize))
4795 				goto drop;
4796 
4797 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4798 		}
4799 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4800 		if (skb->len)
4801 			tcp_event_data_recv(sk, skb);
4802 		if (th->fin)
4803 			tcp_fin(sk);
4804 
4805 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4806 			tcp_ofo_queue(sk);
4807 
4808 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4809 			 * gap in queue is filled.
4810 			 */
4811 			if (skb_queue_empty(&tp->out_of_order_queue))
4812 				inet_csk(sk)->icsk_ack.pingpong = 0;
4813 		}
4814 
4815 		if (tp->rx_opt.num_sacks)
4816 			tcp_sack_remove(tp);
4817 
4818 		tcp_fast_path_check(sk);
4819 
4820 		if (eaten > 0)
4821 			kfree_skb_partial(skb, fragstolen);
4822 		else if (!sock_flag(sk, SOCK_DEAD))
4823 			sk->sk_data_ready(sk, 0);
4824 		return;
4825 	}
4826 
4827 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4828 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4829 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4830 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4831 
4832 out_of_window:
4833 		tcp_enter_quickack_mode(sk);
4834 		inet_csk_schedule_ack(sk);
4835 drop:
4836 		__kfree_skb(skb);
4837 		return;
4838 	}
4839 
4840 	/* Out of window. F.e. zero window probe. */
4841 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4842 		goto out_of_window;
4843 
4844 	tcp_enter_quickack_mode(sk);
4845 
4846 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4847 		/* Partial packet, seq < rcv_next < end_seq */
4848 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4849 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4850 			   TCP_SKB_CB(skb)->end_seq);
4851 
4852 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4853 
4854 		/* If window is closed, drop tail of packet. But after
4855 		 * remembering D-SACK for its head made in previous line.
4856 		 */
4857 		if (!tcp_receive_window(tp))
4858 			goto out_of_window;
4859 		goto queue_and_out;
4860 	}
4861 
4862 	tcp_data_queue_ofo(sk, skb);
4863 }
4864 
4865 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4866 					struct sk_buff_head *list)
4867 {
4868 	struct sk_buff *next = NULL;
4869 
4870 	if (!skb_queue_is_last(list, skb))
4871 		next = skb_queue_next(list, skb);
4872 
4873 	__skb_unlink(skb, list);
4874 	__kfree_skb(skb);
4875 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4876 
4877 	return next;
4878 }
4879 
4880 /* Collapse contiguous sequence of skbs head..tail with
4881  * sequence numbers start..end.
4882  *
4883  * If tail is NULL, this means until the end of the list.
4884  *
4885  * Segments with FIN/SYN are not collapsed (only because this
4886  * simplifies code)
4887  */
4888 static void
4889 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4890 	     struct sk_buff *head, struct sk_buff *tail,
4891 	     u32 start, u32 end)
4892 {
4893 	struct sk_buff *skb, *n;
4894 	bool end_of_skbs;
4895 
4896 	/* First, check that queue is collapsible and find
4897 	 * the point where collapsing can be useful. */
4898 	skb = head;
4899 restart:
4900 	end_of_skbs = true;
4901 	skb_queue_walk_from_safe(list, skb, n) {
4902 		if (skb == tail)
4903 			break;
4904 		/* No new bits? It is possible on ofo queue. */
4905 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4906 			skb = tcp_collapse_one(sk, skb, list);
4907 			if (!skb)
4908 				break;
4909 			goto restart;
4910 		}
4911 
4912 		/* The first skb to collapse is:
4913 		 * - not SYN/FIN and
4914 		 * - bloated or contains data before "start" or
4915 		 *   overlaps to the next one.
4916 		 */
4917 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4918 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4919 		     before(TCP_SKB_CB(skb)->seq, start))) {
4920 			end_of_skbs = false;
4921 			break;
4922 		}
4923 
4924 		if (!skb_queue_is_last(list, skb)) {
4925 			struct sk_buff *next = skb_queue_next(list, skb);
4926 			if (next != tail &&
4927 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4928 				end_of_skbs = false;
4929 				break;
4930 			}
4931 		}
4932 
4933 		/* Decided to skip this, advance start seq. */
4934 		start = TCP_SKB_CB(skb)->end_seq;
4935 	}
4936 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4937 		return;
4938 
4939 	while (before(start, end)) {
4940 		struct sk_buff *nskb;
4941 		unsigned int header = skb_headroom(skb);
4942 		int copy = SKB_MAX_ORDER(header, 0);
4943 
4944 		/* Too big header? This can happen with IPv6. */
4945 		if (copy < 0)
4946 			return;
4947 		if (end - start < copy)
4948 			copy = end - start;
4949 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4950 		if (!nskb)
4951 			return;
4952 
4953 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4954 		skb_set_network_header(nskb, (skb_network_header(skb) -
4955 					      skb->head));
4956 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4957 						skb->head));
4958 		skb_reserve(nskb, header);
4959 		memcpy(nskb->head, skb->head, header);
4960 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4961 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4962 		__skb_queue_before(list, skb, nskb);
4963 		skb_set_owner_r(nskb, sk);
4964 
4965 		/* Copy data, releasing collapsed skbs. */
4966 		while (copy > 0) {
4967 			int offset = start - TCP_SKB_CB(skb)->seq;
4968 			int size = TCP_SKB_CB(skb)->end_seq - start;
4969 
4970 			BUG_ON(offset < 0);
4971 			if (size > 0) {
4972 				size = min(copy, size);
4973 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4974 					BUG();
4975 				TCP_SKB_CB(nskb)->end_seq += size;
4976 				copy -= size;
4977 				start += size;
4978 			}
4979 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4980 				skb = tcp_collapse_one(sk, skb, list);
4981 				if (!skb ||
4982 				    skb == tail ||
4983 				    tcp_hdr(skb)->syn ||
4984 				    tcp_hdr(skb)->fin)
4985 					return;
4986 			}
4987 		}
4988 	}
4989 }
4990 
4991 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4992  * and tcp_collapse() them until all the queue is collapsed.
4993  */
4994 static void tcp_collapse_ofo_queue(struct sock *sk)
4995 {
4996 	struct tcp_sock *tp = tcp_sk(sk);
4997 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4998 	struct sk_buff *head;
4999 	u32 start, end;
5000 
5001 	if (skb == NULL)
5002 		return;
5003 
5004 	start = TCP_SKB_CB(skb)->seq;
5005 	end = TCP_SKB_CB(skb)->end_seq;
5006 	head = skb;
5007 
5008 	for (;;) {
5009 		struct sk_buff *next = NULL;
5010 
5011 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
5012 			next = skb_queue_next(&tp->out_of_order_queue, skb);
5013 		skb = next;
5014 
5015 		/* Segment is terminated when we see gap or when
5016 		 * we are at the end of all the queue. */
5017 		if (!skb ||
5018 		    after(TCP_SKB_CB(skb)->seq, end) ||
5019 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5020 			tcp_collapse(sk, &tp->out_of_order_queue,
5021 				     head, skb, start, end);
5022 			head = skb;
5023 			if (!skb)
5024 				break;
5025 			/* Start new segment */
5026 			start = TCP_SKB_CB(skb)->seq;
5027 			end = TCP_SKB_CB(skb)->end_seq;
5028 		} else {
5029 			if (before(TCP_SKB_CB(skb)->seq, start))
5030 				start = TCP_SKB_CB(skb)->seq;
5031 			if (after(TCP_SKB_CB(skb)->end_seq, end))
5032 				end = TCP_SKB_CB(skb)->end_seq;
5033 		}
5034 	}
5035 }
5036 
5037 /*
5038  * Purge the out-of-order queue.
5039  * Return true if queue was pruned.
5040  */
5041 static bool tcp_prune_ofo_queue(struct sock *sk)
5042 {
5043 	struct tcp_sock *tp = tcp_sk(sk);
5044 	bool res = false;
5045 
5046 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
5047 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
5048 		__skb_queue_purge(&tp->out_of_order_queue);
5049 
5050 		/* Reset SACK state.  A conforming SACK implementation will
5051 		 * do the same at a timeout based retransmit.  When a connection
5052 		 * is in a sad state like this, we care only about integrity
5053 		 * of the connection not performance.
5054 		 */
5055 		if (tp->rx_opt.sack_ok)
5056 			tcp_sack_reset(&tp->rx_opt);
5057 		sk_mem_reclaim(sk);
5058 		res = true;
5059 	}
5060 	return res;
5061 }
5062 
5063 /* Reduce allocated memory if we can, trying to get
5064  * the socket within its memory limits again.
5065  *
5066  * Return less than zero if we should start dropping frames
5067  * until the socket owning process reads some of the data
5068  * to stabilize the situation.
5069  */
5070 static int tcp_prune_queue(struct sock *sk)
5071 {
5072 	struct tcp_sock *tp = tcp_sk(sk);
5073 
5074 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
5075 
5076 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
5077 
5078 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5079 		tcp_clamp_window(sk);
5080 	else if (sk_under_memory_pressure(sk))
5081 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5082 
5083 	tcp_collapse_ofo_queue(sk);
5084 	if (!skb_queue_empty(&sk->sk_receive_queue))
5085 		tcp_collapse(sk, &sk->sk_receive_queue,
5086 			     skb_peek(&sk->sk_receive_queue),
5087 			     NULL,
5088 			     tp->copied_seq, tp->rcv_nxt);
5089 	sk_mem_reclaim(sk);
5090 
5091 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5092 		return 0;
5093 
5094 	/* Collapsing did not help, destructive actions follow.
5095 	 * This must not ever occur. */
5096 
5097 	tcp_prune_ofo_queue(sk);
5098 
5099 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5100 		return 0;
5101 
5102 	/* If we are really being abused, tell the caller to silently
5103 	 * drop receive data on the floor.  It will get retransmitted
5104 	 * and hopefully then we'll have sufficient space.
5105 	 */
5106 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
5107 
5108 	/* Massive buffer overcommit. */
5109 	tp->pred_flags = 0;
5110 	return -1;
5111 }
5112 
5113 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
5114  * As additional protections, we do not touch cwnd in retransmission phases,
5115  * and if application hit its sndbuf limit recently.
5116  */
5117 void tcp_cwnd_application_limited(struct sock *sk)
5118 {
5119 	struct tcp_sock *tp = tcp_sk(sk);
5120 
5121 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
5122 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5123 		/* Limited by application or receiver window. */
5124 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
5125 		u32 win_used = max(tp->snd_cwnd_used, init_win);
5126 		if (win_used < tp->snd_cwnd) {
5127 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
5128 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
5129 		}
5130 		tp->snd_cwnd_used = 0;
5131 	}
5132 	tp->snd_cwnd_stamp = tcp_time_stamp;
5133 }
5134 
5135 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5136 {
5137 	const struct tcp_sock *tp = tcp_sk(sk);
5138 
5139 	/* If the user specified a specific send buffer setting, do
5140 	 * not modify it.
5141 	 */
5142 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5143 		return false;
5144 
5145 	/* If we are under global TCP memory pressure, do not expand.  */
5146 	if (sk_under_memory_pressure(sk))
5147 		return false;
5148 
5149 	/* If we are under soft global TCP memory pressure, do not expand.  */
5150 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5151 		return false;
5152 
5153 	/* If we filled the congestion window, do not expand.  */
5154 	if (tp->packets_out >= tp->snd_cwnd)
5155 		return false;
5156 
5157 	return true;
5158 }
5159 
5160 /* When incoming ACK allowed to free some skb from write_queue,
5161  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5162  * on the exit from tcp input handler.
5163  *
5164  * PROBLEM: sndbuf expansion does not work well with largesend.
5165  */
5166 static void tcp_new_space(struct sock *sk)
5167 {
5168 	struct tcp_sock *tp = tcp_sk(sk);
5169 
5170 	if (tcp_should_expand_sndbuf(sk)) {
5171 		int sndmem = SKB_TRUESIZE(max_t(u32,
5172 						tp->rx_opt.mss_clamp,
5173 						tp->mss_cache) +
5174 					  MAX_TCP_HEADER);
5175 		int demanded = max_t(unsigned int, tp->snd_cwnd,
5176 				     tp->reordering + 1);
5177 		sndmem *= 2 * demanded;
5178 		if (sndmem > sk->sk_sndbuf)
5179 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5180 		tp->snd_cwnd_stamp = tcp_time_stamp;
5181 	}
5182 
5183 	sk->sk_write_space(sk);
5184 }
5185 
5186 static void tcp_check_space(struct sock *sk)
5187 {
5188 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5189 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5190 		if (sk->sk_socket &&
5191 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5192 			tcp_new_space(sk);
5193 	}
5194 }
5195 
5196 static inline void tcp_data_snd_check(struct sock *sk)
5197 {
5198 	tcp_push_pending_frames(sk);
5199 	tcp_check_space(sk);
5200 }
5201 
5202 /*
5203  * Check if sending an ack is needed.
5204  */
5205 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5206 {
5207 	struct tcp_sock *tp = tcp_sk(sk);
5208 
5209 	    /* More than one full frame received... */
5210 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5211 	     /* ... and right edge of window advances far enough.
5212 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5213 	      */
5214 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5215 	    /* We ACK each frame or... */
5216 	    tcp_in_quickack_mode(sk) ||
5217 	    /* We have out of order data. */
5218 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5219 		/* Then ack it now */
5220 		tcp_send_ack(sk);
5221 	} else {
5222 		/* Else, send delayed ack. */
5223 		tcp_send_delayed_ack(sk);
5224 	}
5225 }
5226 
5227 static inline void tcp_ack_snd_check(struct sock *sk)
5228 {
5229 	if (!inet_csk_ack_scheduled(sk)) {
5230 		/* We sent a data segment already. */
5231 		return;
5232 	}
5233 	__tcp_ack_snd_check(sk, 1);
5234 }
5235 
5236 /*
5237  *	This routine is only called when we have urgent data
5238  *	signaled. Its the 'slow' part of tcp_urg. It could be
5239  *	moved inline now as tcp_urg is only called from one
5240  *	place. We handle URGent data wrong. We have to - as
5241  *	BSD still doesn't use the correction from RFC961.
5242  *	For 1003.1g we should support a new option TCP_STDURG to permit
5243  *	either form (or just set the sysctl tcp_stdurg).
5244  */
5245 
5246 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5247 {
5248 	struct tcp_sock *tp = tcp_sk(sk);
5249 	u32 ptr = ntohs(th->urg_ptr);
5250 
5251 	if (ptr && !sysctl_tcp_stdurg)
5252 		ptr--;
5253 	ptr += ntohl(th->seq);
5254 
5255 	/* Ignore urgent data that we've already seen and read. */
5256 	if (after(tp->copied_seq, ptr))
5257 		return;
5258 
5259 	/* Do not replay urg ptr.
5260 	 *
5261 	 * NOTE: interesting situation not covered by specs.
5262 	 * Misbehaving sender may send urg ptr, pointing to segment,
5263 	 * which we already have in ofo queue. We are not able to fetch
5264 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5265 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5266 	 * situations. But it is worth to think about possibility of some
5267 	 * DoSes using some hypothetical application level deadlock.
5268 	 */
5269 	if (before(ptr, tp->rcv_nxt))
5270 		return;
5271 
5272 	/* Do we already have a newer (or duplicate) urgent pointer? */
5273 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5274 		return;
5275 
5276 	/* Tell the world about our new urgent pointer. */
5277 	sk_send_sigurg(sk);
5278 
5279 	/* We may be adding urgent data when the last byte read was
5280 	 * urgent. To do this requires some care. We cannot just ignore
5281 	 * tp->copied_seq since we would read the last urgent byte again
5282 	 * as data, nor can we alter copied_seq until this data arrives
5283 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5284 	 *
5285 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5286 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5287 	 * and expect that both A and B disappear from stream. This is _wrong_.
5288 	 * Though this happens in BSD with high probability, this is occasional.
5289 	 * Any application relying on this is buggy. Note also, that fix "works"
5290 	 * only in this artificial test. Insert some normal data between A and B and we will
5291 	 * decline of BSD again. Verdict: it is better to remove to trap
5292 	 * buggy users.
5293 	 */
5294 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5295 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5296 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5297 		tp->copied_seq++;
5298 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5299 			__skb_unlink(skb, &sk->sk_receive_queue);
5300 			__kfree_skb(skb);
5301 		}
5302 	}
5303 
5304 	tp->urg_data = TCP_URG_NOTYET;
5305 	tp->urg_seq = ptr;
5306 
5307 	/* Disable header prediction. */
5308 	tp->pred_flags = 0;
5309 }
5310 
5311 /* This is the 'fast' part of urgent handling. */
5312 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5313 {
5314 	struct tcp_sock *tp = tcp_sk(sk);
5315 
5316 	/* Check if we get a new urgent pointer - normally not. */
5317 	if (th->urg)
5318 		tcp_check_urg(sk, th);
5319 
5320 	/* Do we wait for any urgent data? - normally not... */
5321 	if (tp->urg_data == TCP_URG_NOTYET) {
5322 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5323 			  th->syn;
5324 
5325 		/* Is the urgent pointer pointing into this packet? */
5326 		if (ptr < skb->len) {
5327 			u8 tmp;
5328 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5329 				BUG();
5330 			tp->urg_data = TCP_URG_VALID | tmp;
5331 			if (!sock_flag(sk, SOCK_DEAD))
5332 				sk->sk_data_ready(sk, 0);
5333 		}
5334 	}
5335 }
5336 
5337 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5338 {
5339 	struct tcp_sock *tp = tcp_sk(sk);
5340 	int chunk = skb->len - hlen;
5341 	int err;
5342 
5343 	local_bh_enable();
5344 	if (skb_csum_unnecessary(skb))
5345 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5346 	else
5347 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5348 						       tp->ucopy.iov);
5349 
5350 	if (!err) {
5351 		tp->ucopy.len -= chunk;
5352 		tp->copied_seq += chunk;
5353 		tcp_rcv_space_adjust(sk);
5354 	}
5355 
5356 	local_bh_disable();
5357 	return err;
5358 }
5359 
5360 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5361 					    struct sk_buff *skb)
5362 {
5363 	__sum16 result;
5364 
5365 	if (sock_owned_by_user(sk)) {
5366 		local_bh_enable();
5367 		result = __tcp_checksum_complete(skb);
5368 		local_bh_disable();
5369 	} else {
5370 		result = __tcp_checksum_complete(skb);
5371 	}
5372 	return result;
5373 }
5374 
5375 static inline int tcp_checksum_complete_user(struct sock *sk,
5376 					     struct sk_buff *skb)
5377 {
5378 	return !skb_csum_unnecessary(skb) &&
5379 	       __tcp_checksum_complete_user(sk, skb);
5380 }
5381 
5382 #ifdef CONFIG_NET_DMA
5383 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5384 				  int hlen)
5385 {
5386 	struct tcp_sock *tp = tcp_sk(sk);
5387 	int chunk = skb->len - hlen;
5388 	int dma_cookie;
5389 	bool copied_early = false;
5390 
5391 	if (tp->ucopy.wakeup)
5392 		return false;
5393 
5394 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5395 		tp->ucopy.dma_chan = net_dma_find_channel();
5396 
5397 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5398 
5399 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5400 							 skb, hlen,
5401 							 tp->ucopy.iov, chunk,
5402 							 tp->ucopy.pinned_list);
5403 
5404 		if (dma_cookie < 0)
5405 			goto out;
5406 
5407 		tp->ucopy.dma_cookie = dma_cookie;
5408 		copied_early = true;
5409 
5410 		tp->ucopy.len -= chunk;
5411 		tp->copied_seq += chunk;
5412 		tcp_rcv_space_adjust(sk);
5413 
5414 		if ((tp->ucopy.len == 0) ||
5415 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5416 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5417 			tp->ucopy.wakeup = 1;
5418 			sk->sk_data_ready(sk, 0);
5419 		}
5420 	} else if (chunk > 0) {
5421 		tp->ucopy.wakeup = 1;
5422 		sk->sk_data_ready(sk, 0);
5423 	}
5424 out:
5425 	return copied_early;
5426 }
5427 #endif /* CONFIG_NET_DMA */
5428 
5429 /* Does PAWS and seqno based validation of an incoming segment, flags will
5430  * play significant role here.
5431  */
5432 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5433 			      const struct tcphdr *th, int syn_inerr)
5434 {
5435 	const u8 *hash_location;
5436 	struct tcp_sock *tp = tcp_sk(sk);
5437 
5438 	/* RFC1323: H1. Apply PAWS check first. */
5439 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5440 	    tp->rx_opt.saw_tstamp &&
5441 	    tcp_paws_discard(sk, skb)) {
5442 		if (!th->rst) {
5443 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5444 			tcp_send_dupack(sk, skb);
5445 			goto discard;
5446 		}
5447 		/* Reset is accepted even if it did not pass PAWS. */
5448 	}
5449 
5450 	/* Step 1: check sequence number */
5451 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5452 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5453 		 * (RST) segments are validated by checking their SEQ-fields."
5454 		 * And page 69: "If an incoming segment is not acceptable,
5455 		 * an acknowledgment should be sent in reply (unless the RST
5456 		 * bit is set, if so drop the segment and return)".
5457 		 */
5458 		if (!th->rst)
5459 			tcp_send_dupack(sk, skb);
5460 		goto discard;
5461 	}
5462 
5463 	/* Step 2: check RST bit */
5464 	if (th->rst) {
5465 		tcp_reset(sk);
5466 		goto discard;
5467 	}
5468 
5469 	/* ts_recent update must be made after we are sure that the packet
5470 	 * is in window.
5471 	 */
5472 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5473 
5474 	/* step 3: check security and precedence [ignored] */
5475 
5476 	/* step 4: Check for a SYN in window. */
5477 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5478 		if (syn_inerr)
5479 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5480 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5481 		tcp_reset(sk);
5482 		return -1;
5483 	}
5484 
5485 	return 1;
5486 
5487 discard:
5488 	__kfree_skb(skb);
5489 	return 0;
5490 }
5491 
5492 /*
5493  *	TCP receive function for the ESTABLISHED state.
5494  *
5495  *	It is split into a fast path and a slow path. The fast path is
5496  * 	disabled when:
5497  *	- A zero window was announced from us - zero window probing
5498  *        is only handled properly in the slow path.
5499  *	- Out of order segments arrived.
5500  *	- Urgent data is expected.
5501  *	- There is no buffer space left
5502  *	- Unexpected TCP flags/window values/header lengths are received
5503  *	  (detected by checking the TCP header against pred_flags)
5504  *	- Data is sent in both directions. Fast path only supports pure senders
5505  *	  or pure receivers (this means either the sequence number or the ack
5506  *	  value must stay constant)
5507  *	- Unexpected TCP option.
5508  *
5509  *	When these conditions are not satisfied it drops into a standard
5510  *	receive procedure patterned after RFC793 to handle all cases.
5511  *	The first three cases are guaranteed by proper pred_flags setting,
5512  *	the rest is checked inline. Fast processing is turned on in
5513  *	tcp_data_queue when everything is OK.
5514  */
5515 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5516 			const struct tcphdr *th, unsigned int len)
5517 {
5518 	struct tcp_sock *tp = tcp_sk(sk);
5519 	int res;
5520 
5521 	/*
5522 	 *	Header prediction.
5523 	 *	The code loosely follows the one in the famous
5524 	 *	"30 instruction TCP receive" Van Jacobson mail.
5525 	 *
5526 	 *	Van's trick is to deposit buffers into socket queue
5527 	 *	on a device interrupt, to call tcp_recv function
5528 	 *	on the receive process context and checksum and copy
5529 	 *	the buffer to user space. smart...
5530 	 *
5531 	 *	Our current scheme is not silly either but we take the
5532 	 *	extra cost of the net_bh soft interrupt processing...
5533 	 *	We do checksum and copy also but from device to kernel.
5534 	 */
5535 
5536 	tp->rx_opt.saw_tstamp = 0;
5537 
5538 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5539 	 *	if header_prediction is to be made
5540 	 *	'S' will always be tp->tcp_header_len >> 2
5541 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5542 	 *  turn it off	(when there are holes in the receive
5543 	 *	 space for instance)
5544 	 *	PSH flag is ignored.
5545 	 */
5546 
5547 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5548 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5549 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5550 		int tcp_header_len = tp->tcp_header_len;
5551 
5552 		/* Timestamp header prediction: tcp_header_len
5553 		 * is automatically equal to th->doff*4 due to pred_flags
5554 		 * match.
5555 		 */
5556 
5557 		/* Check timestamp */
5558 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5559 			/* No? Slow path! */
5560 			if (!tcp_parse_aligned_timestamp(tp, th))
5561 				goto slow_path;
5562 
5563 			/* If PAWS failed, check it more carefully in slow path */
5564 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5565 				goto slow_path;
5566 
5567 			/* DO NOT update ts_recent here, if checksum fails
5568 			 * and timestamp was corrupted part, it will result
5569 			 * in a hung connection since we will drop all
5570 			 * future packets due to the PAWS test.
5571 			 */
5572 		}
5573 
5574 		if (len <= tcp_header_len) {
5575 			/* Bulk data transfer: sender */
5576 			if (len == tcp_header_len) {
5577 				/* Predicted packet is in window by definition.
5578 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5579 				 * Hence, check seq<=rcv_wup reduces to:
5580 				 */
5581 				if (tcp_header_len ==
5582 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5583 				    tp->rcv_nxt == tp->rcv_wup)
5584 					tcp_store_ts_recent(tp);
5585 
5586 				/* We know that such packets are checksummed
5587 				 * on entry.
5588 				 */
5589 				tcp_ack(sk, skb, 0);
5590 				__kfree_skb(skb);
5591 				tcp_data_snd_check(sk);
5592 				return 0;
5593 			} else { /* Header too small */
5594 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5595 				goto discard;
5596 			}
5597 		} else {
5598 			int eaten = 0;
5599 			int copied_early = 0;
5600 			bool fragstolen = false;
5601 
5602 			if (tp->copied_seq == tp->rcv_nxt &&
5603 			    len - tcp_header_len <= tp->ucopy.len) {
5604 #ifdef CONFIG_NET_DMA
5605 				if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5606 					copied_early = 1;
5607 					eaten = 1;
5608 				}
5609 #endif
5610 				if (tp->ucopy.task == current &&
5611 				    sock_owned_by_user(sk) && !copied_early) {
5612 					__set_current_state(TASK_RUNNING);
5613 
5614 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5615 						eaten = 1;
5616 				}
5617 				if (eaten) {
5618 					/* Predicted packet is in window by definition.
5619 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5620 					 * Hence, check seq<=rcv_wup reduces to:
5621 					 */
5622 					if (tcp_header_len ==
5623 					    (sizeof(struct tcphdr) +
5624 					     TCPOLEN_TSTAMP_ALIGNED) &&
5625 					    tp->rcv_nxt == tp->rcv_wup)
5626 						tcp_store_ts_recent(tp);
5627 
5628 					tcp_rcv_rtt_measure_ts(sk, skb);
5629 
5630 					__skb_pull(skb, tcp_header_len);
5631 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5632 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5633 				}
5634 				if (copied_early)
5635 					tcp_cleanup_rbuf(sk, skb->len);
5636 			}
5637 			if (!eaten) {
5638 				if (tcp_checksum_complete_user(sk, skb))
5639 					goto csum_error;
5640 
5641 				/* Predicted packet is in window by definition.
5642 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5643 				 * Hence, check seq<=rcv_wup reduces to:
5644 				 */
5645 				if (tcp_header_len ==
5646 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5647 				    tp->rcv_nxt == tp->rcv_wup)
5648 					tcp_store_ts_recent(tp);
5649 
5650 				tcp_rcv_rtt_measure_ts(sk, skb);
5651 
5652 				if ((int)skb->truesize > sk->sk_forward_alloc)
5653 					goto step5;
5654 
5655 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5656 
5657 				/* Bulk data transfer: receiver */
5658 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5659 						      &fragstolen);
5660 			}
5661 
5662 			tcp_event_data_recv(sk, skb);
5663 
5664 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5665 				/* Well, only one small jumplet in fast path... */
5666 				tcp_ack(sk, skb, FLAG_DATA);
5667 				tcp_data_snd_check(sk);
5668 				if (!inet_csk_ack_scheduled(sk))
5669 					goto no_ack;
5670 			}
5671 
5672 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5673 				__tcp_ack_snd_check(sk, 0);
5674 no_ack:
5675 #ifdef CONFIG_NET_DMA
5676 			if (copied_early)
5677 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5678 			else
5679 #endif
5680 			if (eaten)
5681 				kfree_skb_partial(skb, fragstolen);
5682 			else
5683 				sk->sk_data_ready(sk, 0);
5684 			return 0;
5685 		}
5686 	}
5687 
5688 slow_path:
5689 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5690 		goto csum_error;
5691 
5692 	/*
5693 	 *	Standard slow path.
5694 	 */
5695 
5696 	res = tcp_validate_incoming(sk, skb, th, 1);
5697 	if (res <= 0)
5698 		return -res;
5699 
5700 step5:
5701 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5702 		goto discard;
5703 
5704 	tcp_rcv_rtt_measure_ts(sk, skb);
5705 
5706 	/* Process urgent data. */
5707 	tcp_urg(sk, skb, th);
5708 
5709 	/* step 7: process the segment text */
5710 	tcp_data_queue(sk, skb);
5711 
5712 	tcp_data_snd_check(sk);
5713 	tcp_ack_snd_check(sk);
5714 	return 0;
5715 
5716 csum_error:
5717 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5718 
5719 discard:
5720 	__kfree_skb(skb);
5721 	return 0;
5722 }
5723 EXPORT_SYMBOL(tcp_rcv_established);
5724 
5725 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5726 {
5727 	struct tcp_sock *tp = tcp_sk(sk);
5728 	struct inet_connection_sock *icsk = inet_csk(sk);
5729 
5730 	tcp_set_state(sk, TCP_ESTABLISHED);
5731 
5732 	if (skb != NULL)
5733 		security_inet_conn_established(sk, skb);
5734 
5735 	/* Make sure socket is routed, for correct metrics.  */
5736 	icsk->icsk_af_ops->rebuild_header(sk);
5737 
5738 	tcp_init_metrics(sk);
5739 
5740 	tcp_init_congestion_control(sk);
5741 
5742 	/* Prevent spurious tcp_cwnd_restart() on first data
5743 	 * packet.
5744 	 */
5745 	tp->lsndtime = tcp_time_stamp;
5746 
5747 	tcp_init_buffer_space(sk);
5748 
5749 	if (sock_flag(sk, SOCK_KEEPOPEN))
5750 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5751 
5752 	if (!tp->rx_opt.snd_wscale)
5753 		__tcp_fast_path_on(tp, tp->snd_wnd);
5754 	else
5755 		tp->pred_flags = 0;
5756 
5757 	if (!sock_flag(sk, SOCK_DEAD)) {
5758 		sk->sk_state_change(sk);
5759 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5760 	}
5761 }
5762 
5763 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5764 					 const struct tcphdr *th, unsigned int len)
5765 {
5766 	const u8 *hash_location;
5767 	struct inet_connection_sock *icsk = inet_csk(sk);
5768 	struct tcp_sock *tp = tcp_sk(sk);
5769 	struct tcp_cookie_values *cvp = tp->cookie_values;
5770 	int saved_clamp = tp->rx_opt.mss_clamp;
5771 
5772 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5773 
5774 	if (th->ack) {
5775 		/* rfc793:
5776 		 * "If the state is SYN-SENT then
5777 		 *    first check the ACK bit
5778 		 *      If the ACK bit is set
5779 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5780 		 *        a reset (unless the RST bit is set, if so drop
5781 		 *        the segment and return)"
5782 		 *
5783 		 *  We do not send data with SYN, so that RFC-correct
5784 		 *  test reduces to:
5785 		 */
5786 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5787 			goto reset_and_undo;
5788 
5789 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5790 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5791 			     tcp_time_stamp)) {
5792 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5793 			goto reset_and_undo;
5794 		}
5795 
5796 		/* Now ACK is acceptable.
5797 		 *
5798 		 * "If the RST bit is set
5799 		 *    If the ACK was acceptable then signal the user "error:
5800 		 *    connection reset", drop the segment, enter CLOSED state,
5801 		 *    delete TCB, and return."
5802 		 */
5803 
5804 		if (th->rst) {
5805 			tcp_reset(sk);
5806 			goto discard;
5807 		}
5808 
5809 		/* rfc793:
5810 		 *   "fifth, if neither of the SYN or RST bits is set then
5811 		 *    drop the segment and return."
5812 		 *
5813 		 *    See note below!
5814 		 *                                        --ANK(990513)
5815 		 */
5816 		if (!th->syn)
5817 			goto discard_and_undo;
5818 
5819 		/* rfc793:
5820 		 *   "If the SYN bit is on ...
5821 		 *    are acceptable then ...
5822 		 *    (our SYN has been ACKed), change the connection
5823 		 *    state to ESTABLISHED..."
5824 		 */
5825 
5826 		TCP_ECN_rcv_synack(tp, th);
5827 
5828 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5829 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5830 
5831 		/* Ok.. it's good. Set up sequence numbers and
5832 		 * move to established.
5833 		 */
5834 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5835 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5836 
5837 		/* RFC1323: The window in SYN & SYN/ACK segments is
5838 		 * never scaled.
5839 		 */
5840 		tp->snd_wnd = ntohs(th->window);
5841 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5842 
5843 		if (!tp->rx_opt.wscale_ok) {
5844 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5845 			tp->window_clamp = min(tp->window_clamp, 65535U);
5846 		}
5847 
5848 		if (tp->rx_opt.saw_tstamp) {
5849 			tp->rx_opt.tstamp_ok	   = 1;
5850 			tp->tcp_header_len =
5851 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5852 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5853 			tcp_store_ts_recent(tp);
5854 		} else {
5855 			tp->tcp_header_len = sizeof(struct tcphdr);
5856 		}
5857 
5858 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5859 			tcp_enable_fack(tp);
5860 
5861 		tcp_mtup_init(sk);
5862 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5863 		tcp_initialize_rcv_mss(sk);
5864 
5865 		/* Remember, tcp_poll() does not lock socket!
5866 		 * Change state from SYN-SENT only after copied_seq
5867 		 * is initialized. */
5868 		tp->copied_seq = tp->rcv_nxt;
5869 
5870 		if (cvp != NULL &&
5871 		    cvp->cookie_pair_size > 0 &&
5872 		    tp->rx_opt.cookie_plus > 0) {
5873 			int cookie_size = tp->rx_opt.cookie_plus
5874 					- TCPOLEN_COOKIE_BASE;
5875 			int cookie_pair_size = cookie_size
5876 					     + cvp->cookie_desired;
5877 
5878 			/* A cookie extension option was sent and returned.
5879 			 * Note that each incoming SYNACK replaces the
5880 			 * Responder cookie.  The initial exchange is most
5881 			 * fragile, as protection against spoofing relies
5882 			 * entirely upon the sequence and timestamp (above).
5883 			 * This replacement strategy allows the correct pair to
5884 			 * pass through, while any others will be filtered via
5885 			 * Responder verification later.
5886 			 */
5887 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5888 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5889 				       hash_location, cookie_size);
5890 				cvp->cookie_pair_size = cookie_pair_size;
5891 			}
5892 		}
5893 
5894 		smp_mb();
5895 
5896 		tcp_finish_connect(sk, skb);
5897 
5898 		if (sk->sk_write_pending ||
5899 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5900 		    icsk->icsk_ack.pingpong) {
5901 			/* Save one ACK. Data will be ready after
5902 			 * several ticks, if write_pending is set.
5903 			 *
5904 			 * It may be deleted, but with this feature tcpdumps
5905 			 * look so _wonderfully_ clever, that I was not able
5906 			 * to stand against the temptation 8)     --ANK
5907 			 */
5908 			inet_csk_schedule_ack(sk);
5909 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5910 			tcp_enter_quickack_mode(sk);
5911 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5912 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5913 
5914 discard:
5915 			__kfree_skb(skb);
5916 			return 0;
5917 		} else {
5918 			tcp_send_ack(sk);
5919 		}
5920 		return -1;
5921 	}
5922 
5923 	/* No ACK in the segment */
5924 
5925 	if (th->rst) {
5926 		/* rfc793:
5927 		 * "If the RST bit is set
5928 		 *
5929 		 *      Otherwise (no ACK) drop the segment and return."
5930 		 */
5931 
5932 		goto discard_and_undo;
5933 	}
5934 
5935 	/* PAWS check. */
5936 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5937 	    tcp_paws_reject(&tp->rx_opt, 0))
5938 		goto discard_and_undo;
5939 
5940 	if (th->syn) {
5941 		/* We see SYN without ACK. It is attempt of
5942 		 * simultaneous connect with crossed SYNs.
5943 		 * Particularly, it can be connect to self.
5944 		 */
5945 		tcp_set_state(sk, TCP_SYN_RECV);
5946 
5947 		if (tp->rx_opt.saw_tstamp) {
5948 			tp->rx_opt.tstamp_ok = 1;
5949 			tcp_store_ts_recent(tp);
5950 			tp->tcp_header_len =
5951 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5952 		} else {
5953 			tp->tcp_header_len = sizeof(struct tcphdr);
5954 		}
5955 
5956 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5957 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5958 
5959 		/* RFC1323: The window in SYN & SYN/ACK segments is
5960 		 * never scaled.
5961 		 */
5962 		tp->snd_wnd    = ntohs(th->window);
5963 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5964 		tp->max_window = tp->snd_wnd;
5965 
5966 		TCP_ECN_rcv_syn(tp, th);
5967 
5968 		tcp_mtup_init(sk);
5969 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5970 		tcp_initialize_rcv_mss(sk);
5971 
5972 		tcp_send_synack(sk);
5973 #if 0
5974 		/* Note, we could accept data and URG from this segment.
5975 		 * There are no obstacles to make this.
5976 		 *
5977 		 * However, if we ignore data in ACKless segments sometimes,
5978 		 * we have no reasons to accept it sometimes.
5979 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5980 		 * is not flawless. So, discard packet for sanity.
5981 		 * Uncomment this return to process the data.
5982 		 */
5983 		return -1;
5984 #else
5985 		goto discard;
5986 #endif
5987 	}
5988 	/* "fifth, if neither of the SYN or RST bits is set then
5989 	 * drop the segment and return."
5990 	 */
5991 
5992 discard_and_undo:
5993 	tcp_clear_options(&tp->rx_opt);
5994 	tp->rx_opt.mss_clamp = saved_clamp;
5995 	goto discard;
5996 
5997 reset_and_undo:
5998 	tcp_clear_options(&tp->rx_opt);
5999 	tp->rx_opt.mss_clamp = saved_clamp;
6000 	return 1;
6001 }
6002 
6003 /*
6004  *	This function implements the receiving procedure of RFC 793 for
6005  *	all states except ESTABLISHED and TIME_WAIT.
6006  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6007  *	address independent.
6008  */
6009 
6010 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
6011 			  const struct tcphdr *th, unsigned int len)
6012 {
6013 	struct tcp_sock *tp = tcp_sk(sk);
6014 	struct inet_connection_sock *icsk = inet_csk(sk);
6015 	int queued = 0;
6016 	int res;
6017 
6018 	tp->rx_opt.saw_tstamp = 0;
6019 
6020 	switch (sk->sk_state) {
6021 	case TCP_CLOSE:
6022 		goto discard;
6023 
6024 	case TCP_LISTEN:
6025 		if (th->ack)
6026 			return 1;
6027 
6028 		if (th->rst)
6029 			goto discard;
6030 
6031 		if (th->syn) {
6032 			if (th->fin)
6033 				goto discard;
6034 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
6035 				return 1;
6036 
6037 			/* Now we have several options: In theory there is
6038 			 * nothing else in the frame. KA9Q has an option to
6039 			 * send data with the syn, BSD accepts data with the
6040 			 * syn up to the [to be] advertised window and
6041 			 * Solaris 2.1 gives you a protocol error. For now
6042 			 * we just ignore it, that fits the spec precisely
6043 			 * and avoids incompatibilities. It would be nice in
6044 			 * future to drop through and process the data.
6045 			 *
6046 			 * Now that TTCP is starting to be used we ought to
6047 			 * queue this data.
6048 			 * But, this leaves one open to an easy denial of
6049 			 * service attack, and SYN cookies can't defend
6050 			 * against this problem. So, we drop the data
6051 			 * in the interest of security over speed unless
6052 			 * it's still in use.
6053 			 */
6054 			kfree_skb(skb);
6055 			return 0;
6056 		}
6057 		goto discard;
6058 
6059 	case TCP_SYN_SENT:
6060 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
6061 		if (queued >= 0)
6062 			return queued;
6063 
6064 		/* Do step6 onward by hand. */
6065 		tcp_urg(sk, skb, th);
6066 		__kfree_skb(skb);
6067 		tcp_data_snd_check(sk);
6068 		return 0;
6069 	}
6070 
6071 	res = tcp_validate_incoming(sk, skb, th, 0);
6072 	if (res <= 0)
6073 		return -res;
6074 
6075 	/* step 5: check the ACK field */
6076 	if (th->ack) {
6077 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
6078 
6079 		switch (sk->sk_state) {
6080 		case TCP_SYN_RECV:
6081 			if (acceptable) {
6082 				tp->copied_seq = tp->rcv_nxt;
6083 				smp_mb();
6084 				tcp_set_state(sk, TCP_ESTABLISHED);
6085 				sk->sk_state_change(sk);
6086 
6087 				/* Note, that this wakeup is only for marginal
6088 				 * crossed SYN case. Passively open sockets
6089 				 * are not waked up, because sk->sk_sleep ==
6090 				 * NULL and sk->sk_socket == NULL.
6091 				 */
6092 				if (sk->sk_socket)
6093 					sk_wake_async(sk,
6094 						      SOCK_WAKE_IO, POLL_OUT);
6095 
6096 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6097 				tp->snd_wnd = ntohs(th->window) <<
6098 					      tp->rx_opt.snd_wscale;
6099 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6100 
6101 				if (tp->rx_opt.tstamp_ok)
6102 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6103 
6104 				/* Make sure socket is routed, for
6105 				 * correct metrics.
6106 				 */
6107 				icsk->icsk_af_ops->rebuild_header(sk);
6108 
6109 				tcp_init_metrics(sk);
6110 
6111 				tcp_init_congestion_control(sk);
6112 
6113 				/* Prevent spurious tcp_cwnd_restart() on
6114 				 * first data packet.
6115 				 */
6116 				tp->lsndtime = tcp_time_stamp;
6117 
6118 				tcp_mtup_init(sk);
6119 				tcp_initialize_rcv_mss(sk);
6120 				tcp_init_buffer_space(sk);
6121 				tcp_fast_path_on(tp);
6122 			} else {
6123 				return 1;
6124 			}
6125 			break;
6126 
6127 		case TCP_FIN_WAIT1:
6128 			if (tp->snd_una == tp->write_seq) {
6129 				tcp_set_state(sk, TCP_FIN_WAIT2);
6130 				sk->sk_shutdown |= SEND_SHUTDOWN;
6131 				dst_confirm(__sk_dst_get(sk));
6132 
6133 				if (!sock_flag(sk, SOCK_DEAD))
6134 					/* Wake up lingering close() */
6135 					sk->sk_state_change(sk);
6136 				else {
6137 					int tmo;
6138 
6139 					if (tp->linger2 < 0 ||
6140 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6141 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6142 						tcp_done(sk);
6143 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6144 						return 1;
6145 					}
6146 
6147 					tmo = tcp_fin_time(sk);
6148 					if (tmo > TCP_TIMEWAIT_LEN) {
6149 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6150 					} else if (th->fin || sock_owned_by_user(sk)) {
6151 						/* Bad case. We could lose such FIN otherwise.
6152 						 * It is not a big problem, but it looks confusing
6153 						 * and not so rare event. We still can lose it now,
6154 						 * if it spins in bh_lock_sock(), but it is really
6155 						 * marginal case.
6156 						 */
6157 						inet_csk_reset_keepalive_timer(sk, tmo);
6158 					} else {
6159 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6160 						goto discard;
6161 					}
6162 				}
6163 			}
6164 			break;
6165 
6166 		case TCP_CLOSING:
6167 			if (tp->snd_una == tp->write_seq) {
6168 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6169 				goto discard;
6170 			}
6171 			break;
6172 
6173 		case TCP_LAST_ACK:
6174 			if (tp->snd_una == tp->write_seq) {
6175 				tcp_update_metrics(sk);
6176 				tcp_done(sk);
6177 				goto discard;
6178 			}
6179 			break;
6180 		}
6181 	} else
6182 		goto discard;
6183 
6184 	/* step 6: check the URG bit */
6185 	tcp_urg(sk, skb, th);
6186 
6187 	/* step 7: process the segment text */
6188 	switch (sk->sk_state) {
6189 	case TCP_CLOSE_WAIT:
6190 	case TCP_CLOSING:
6191 	case TCP_LAST_ACK:
6192 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6193 			break;
6194 	case TCP_FIN_WAIT1:
6195 	case TCP_FIN_WAIT2:
6196 		/* RFC 793 says to queue data in these states,
6197 		 * RFC 1122 says we MUST send a reset.
6198 		 * BSD 4.4 also does reset.
6199 		 */
6200 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6201 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6202 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6203 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6204 				tcp_reset(sk);
6205 				return 1;
6206 			}
6207 		}
6208 		/* Fall through */
6209 	case TCP_ESTABLISHED:
6210 		tcp_data_queue(sk, skb);
6211 		queued = 1;
6212 		break;
6213 	}
6214 
6215 	/* tcp_data could move socket to TIME-WAIT */
6216 	if (sk->sk_state != TCP_CLOSE) {
6217 		tcp_data_snd_check(sk);
6218 		tcp_ack_snd_check(sk);
6219 	}
6220 
6221 	if (!queued) {
6222 discard:
6223 		__kfree_skb(skb);
6224 	}
6225 	return 0;
6226 }
6227 EXPORT_SYMBOL(tcp_rcv_state_process);
6228