xref: /linux/net/ipv4/tcp_input.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 /*
22  * Changes:
23  *		Pedro Roque	:	Fast Retransmit/Recovery.
24  *					Two receive queues.
25  *					Retransmit queue handled by TCP.
26  *					Better retransmit timer handling.
27  *					New congestion avoidance.
28  *					Header prediction.
29  *					Variable renaming.
30  *
31  *		Eric		:	Fast Retransmit.
32  *		Randy Scott	:	MSS option defines.
33  *		Eric Schenk	:	Fixes to slow start algorithm.
34  *		Eric Schenk	:	Yet another double ACK bug.
35  *		Eric Schenk	:	Delayed ACK bug fixes.
36  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
37  *		David S. Miller	:	Don't allow zero congestion window.
38  *		Eric Schenk	:	Fix retransmitter so that it sends
39  *					next packet on ack of previous packet.
40  *		Andi Kleen	:	Moved open_request checking here
41  *					and process RSTs for open_requests.
42  *		Andi Kleen	:	Better prune_queue, and other fixes.
43  *		Andrey Savochkin:	Fix RTT measurements in the presence of
44  *					timestamps.
45  *		Andrey Savochkin:	Check sequence numbers correctly when
46  *					removing SACKs due to in sequence incoming
47  *					data segments.
48  *		Andi Kleen:		Make sure we never ack data there is not
49  *					enough room for. Also make this condition
50  *					a fatal error if it might still happen.
51  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
52  *					connections with MSS<min(MTU,ann. MSS)
53  *					work without delayed acks.
54  *		Andi Kleen:		Process packets with PSH set in the
55  *					fast path.
56  *		J Hadi Salim:		ECN support
57  *	 	Andrei Gurtov,
58  *		Pasi Sarolahti,
59  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
60  *					engine. Lots of bugs are found.
61  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
62  */
63 
64 #define pr_fmt(fmt) "TCP: " fmt
65 
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77 
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90 
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93 
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98 int sysctl_tcp_frto_response __read_mostly;
99 
100 int sysctl_tcp_thin_dupack __read_mostly;
101 
102 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
103 int sysctl_tcp_abc __read_mostly;
104 int sysctl_tcp_early_retrans __read_mostly = 2;
105 
106 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
107 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
108 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
109 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
110 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
111 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
112 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
113 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ONLY_ORIG_SACKED	0x200 /* SACKs only non-rexmit sent before RTO */
115 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_NONHEAD_RETRANS_ACKED	0x1000 /* Non-head rexmitted data was ACKed */
118 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
119 
120 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
123 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
124 #define FLAG_ANY_PROGRESS	(FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
125 
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128 
129 /* Adapt the MSS value used to make delayed ack decision to the
130  * real world.
131  */
132 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
133 {
134 	struct inet_connection_sock *icsk = inet_csk(sk);
135 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
136 	unsigned int len;
137 
138 	icsk->icsk_ack.last_seg_size = 0;
139 
140 	/* skb->len may jitter because of SACKs, even if peer
141 	 * sends good full-sized frames.
142 	 */
143 	len = skb_shinfo(skb)->gso_size ? : skb->len;
144 	if (len >= icsk->icsk_ack.rcv_mss) {
145 		icsk->icsk_ack.rcv_mss = len;
146 	} else {
147 		/* Otherwise, we make more careful check taking into account,
148 		 * that SACKs block is variable.
149 		 *
150 		 * "len" is invariant segment length, including TCP header.
151 		 */
152 		len += skb->data - skb_transport_header(skb);
153 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
154 		    /* If PSH is not set, packet should be
155 		     * full sized, provided peer TCP is not badly broken.
156 		     * This observation (if it is correct 8)) allows
157 		     * to handle super-low mtu links fairly.
158 		     */
159 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
160 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
161 			/* Subtract also invariant (if peer is RFC compliant),
162 			 * tcp header plus fixed timestamp option length.
163 			 * Resulting "len" is MSS free of SACK jitter.
164 			 */
165 			len -= tcp_sk(sk)->tcp_header_len;
166 			icsk->icsk_ack.last_seg_size = len;
167 			if (len == lss) {
168 				icsk->icsk_ack.rcv_mss = len;
169 				return;
170 			}
171 		}
172 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
174 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
175 	}
176 }
177 
178 static void tcp_incr_quickack(struct sock *sk)
179 {
180 	struct inet_connection_sock *icsk = inet_csk(sk);
181 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
182 
183 	if (quickacks == 0)
184 		quickacks = 2;
185 	if (quickacks > icsk->icsk_ack.quick)
186 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
187 }
188 
189 static void tcp_enter_quickack_mode(struct sock *sk)
190 {
191 	struct inet_connection_sock *icsk = inet_csk(sk);
192 	tcp_incr_quickack(sk);
193 	icsk->icsk_ack.pingpong = 0;
194 	icsk->icsk_ack.ato = TCP_ATO_MIN;
195 }
196 
197 /* Send ACKs quickly, if "quick" count is not exhausted
198  * and the session is not interactive.
199  */
200 
201 static inline bool tcp_in_quickack_mode(const struct sock *sk)
202 {
203 	const struct inet_connection_sock *icsk = inet_csk(sk);
204 
205 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
206 }
207 
208 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
209 {
210 	if (tp->ecn_flags & TCP_ECN_OK)
211 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
212 }
213 
214 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
215 {
216 	if (tcp_hdr(skb)->cwr)
217 		tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219 
220 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
221 {
222 	tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
223 }
224 
225 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
226 {
227 	if (!(tp->ecn_flags & TCP_ECN_OK))
228 		return;
229 
230 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
231 	case INET_ECN_NOT_ECT:
232 		/* Funny extension: if ECT is not set on a segment,
233 		 * and we already seen ECT on a previous segment,
234 		 * it is probably a retransmit.
235 		 */
236 		if (tp->ecn_flags & TCP_ECN_SEEN)
237 			tcp_enter_quickack_mode((struct sock *)tp);
238 		break;
239 	case INET_ECN_CE:
240 		tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
241 		/* fallinto */
242 	default:
243 		tp->ecn_flags |= TCP_ECN_SEEN;
244 	}
245 }
246 
247 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
248 {
249 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
250 		tp->ecn_flags &= ~TCP_ECN_OK;
251 }
252 
253 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
254 {
255 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
256 		tp->ecn_flags &= ~TCP_ECN_OK;
257 }
258 
259 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
260 {
261 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
262 		return true;
263 	return false;
264 }
265 
266 /* Buffer size and advertised window tuning.
267  *
268  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
269  */
270 
271 static void tcp_fixup_sndbuf(struct sock *sk)
272 {
273 	int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
274 
275 	sndmem *= TCP_INIT_CWND;
276 	if (sk->sk_sndbuf < sndmem)
277 		sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
278 }
279 
280 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
281  *
282  * All tcp_full_space() is split to two parts: "network" buffer, allocated
283  * forward and advertised in receiver window (tp->rcv_wnd) and
284  * "application buffer", required to isolate scheduling/application
285  * latencies from network.
286  * window_clamp is maximal advertised window. It can be less than
287  * tcp_full_space(), in this case tcp_full_space() - window_clamp
288  * is reserved for "application" buffer. The less window_clamp is
289  * the smoother our behaviour from viewpoint of network, but the lower
290  * throughput and the higher sensitivity of the connection to losses. 8)
291  *
292  * rcv_ssthresh is more strict window_clamp used at "slow start"
293  * phase to predict further behaviour of this connection.
294  * It is used for two goals:
295  * - to enforce header prediction at sender, even when application
296  *   requires some significant "application buffer". It is check #1.
297  * - to prevent pruning of receive queue because of misprediction
298  *   of receiver window. Check #2.
299  *
300  * The scheme does not work when sender sends good segments opening
301  * window and then starts to feed us spaghetti. But it should work
302  * in common situations. Otherwise, we have to rely on queue collapsing.
303  */
304 
305 /* Slow part of check#2. */
306 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
307 {
308 	struct tcp_sock *tp = tcp_sk(sk);
309 	/* Optimize this! */
310 	int truesize = tcp_win_from_space(skb->truesize) >> 1;
311 	int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
312 
313 	while (tp->rcv_ssthresh <= window) {
314 		if (truesize <= skb->len)
315 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
316 
317 		truesize >>= 1;
318 		window >>= 1;
319 	}
320 	return 0;
321 }
322 
323 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
324 {
325 	struct tcp_sock *tp = tcp_sk(sk);
326 
327 	/* Check #1 */
328 	if (tp->rcv_ssthresh < tp->window_clamp &&
329 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
330 	    !sk_under_memory_pressure(sk)) {
331 		int incr;
332 
333 		/* Check #2. Increase window, if skb with such overhead
334 		 * will fit to rcvbuf in future.
335 		 */
336 		if (tcp_win_from_space(skb->truesize) <= skb->len)
337 			incr = 2 * tp->advmss;
338 		else
339 			incr = __tcp_grow_window(sk, skb);
340 
341 		if (incr) {
342 			incr = max_t(int, incr, 2 * skb->len);
343 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
344 					       tp->window_clamp);
345 			inet_csk(sk)->icsk_ack.quick |= 1;
346 		}
347 	}
348 }
349 
350 /* 3. Tuning rcvbuf, when connection enters established state. */
351 
352 static void tcp_fixup_rcvbuf(struct sock *sk)
353 {
354 	u32 mss = tcp_sk(sk)->advmss;
355 	u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
356 	int rcvmem;
357 
358 	/* Limit to 10 segments if mss <= 1460,
359 	 * or 14600/mss segments, with a minimum of two segments.
360 	 */
361 	if (mss > 1460)
362 		icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
363 
364 	rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
365 	while (tcp_win_from_space(rcvmem) < mss)
366 		rcvmem += 128;
367 
368 	rcvmem *= icwnd;
369 
370 	if (sk->sk_rcvbuf < rcvmem)
371 		sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
372 }
373 
374 /* 4. Try to fixup all. It is made immediately after connection enters
375  *    established state.
376  */
377 static void tcp_init_buffer_space(struct sock *sk)
378 {
379 	struct tcp_sock *tp = tcp_sk(sk);
380 	int maxwin;
381 
382 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
383 		tcp_fixup_rcvbuf(sk);
384 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
385 		tcp_fixup_sndbuf(sk);
386 
387 	tp->rcvq_space.space = tp->rcv_wnd;
388 
389 	maxwin = tcp_full_space(sk);
390 
391 	if (tp->window_clamp >= maxwin) {
392 		tp->window_clamp = maxwin;
393 
394 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
395 			tp->window_clamp = max(maxwin -
396 					       (maxwin >> sysctl_tcp_app_win),
397 					       4 * tp->advmss);
398 	}
399 
400 	/* Force reservation of one segment. */
401 	if (sysctl_tcp_app_win &&
402 	    tp->window_clamp > 2 * tp->advmss &&
403 	    tp->window_clamp + tp->advmss > maxwin)
404 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
405 
406 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
407 	tp->snd_cwnd_stamp = tcp_time_stamp;
408 }
409 
410 /* 5. Recalculate window clamp after socket hit its memory bounds. */
411 static void tcp_clamp_window(struct sock *sk)
412 {
413 	struct tcp_sock *tp = tcp_sk(sk);
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 
416 	icsk->icsk_ack.quick = 0;
417 
418 	if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
419 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
420 	    !sk_under_memory_pressure(sk) &&
421 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
422 		sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
423 				    sysctl_tcp_rmem[2]);
424 	}
425 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
426 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
427 }
428 
429 /* Initialize RCV_MSS value.
430  * RCV_MSS is an our guess about MSS used by the peer.
431  * We haven't any direct information about the MSS.
432  * It's better to underestimate the RCV_MSS rather than overestimate.
433  * Overestimations make us ACKing less frequently than needed.
434  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
435  */
436 void tcp_initialize_rcv_mss(struct sock *sk)
437 {
438 	const struct tcp_sock *tp = tcp_sk(sk);
439 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
440 
441 	hint = min(hint, tp->rcv_wnd / 2);
442 	hint = min(hint, TCP_MSS_DEFAULT);
443 	hint = max(hint, TCP_MIN_MSS);
444 
445 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
446 }
447 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
448 
449 /* Receiver "autotuning" code.
450  *
451  * The algorithm for RTT estimation w/o timestamps is based on
452  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
453  * <http://public.lanl.gov/radiant/pubs.html#DRS>
454  *
455  * More detail on this code can be found at
456  * <http://staff.psc.edu/jheffner/>,
457  * though this reference is out of date.  A new paper
458  * is pending.
459  */
460 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
461 {
462 	u32 new_sample = tp->rcv_rtt_est.rtt;
463 	long m = sample;
464 
465 	if (m == 0)
466 		m = 1;
467 
468 	if (new_sample != 0) {
469 		/* If we sample in larger samples in the non-timestamp
470 		 * case, we could grossly overestimate the RTT especially
471 		 * with chatty applications or bulk transfer apps which
472 		 * are stalled on filesystem I/O.
473 		 *
474 		 * Also, since we are only going for a minimum in the
475 		 * non-timestamp case, we do not smooth things out
476 		 * else with timestamps disabled convergence takes too
477 		 * long.
478 		 */
479 		if (!win_dep) {
480 			m -= (new_sample >> 3);
481 			new_sample += m;
482 		} else {
483 			m <<= 3;
484 			if (m < new_sample)
485 				new_sample = m;
486 		}
487 	} else {
488 		/* No previous measure. */
489 		new_sample = m << 3;
490 	}
491 
492 	if (tp->rcv_rtt_est.rtt != new_sample)
493 		tp->rcv_rtt_est.rtt = new_sample;
494 }
495 
496 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
497 {
498 	if (tp->rcv_rtt_est.time == 0)
499 		goto new_measure;
500 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
501 		return;
502 	tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
503 
504 new_measure:
505 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
506 	tp->rcv_rtt_est.time = tcp_time_stamp;
507 }
508 
509 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
510 					  const struct sk_buff *skb)
511 {
512 	struct tcp_sock *tp = tcp_sk(sk);
513 	if (tp->rx_opt.rcv_tsecr &&
514 	    (TCP_SKB_CB(skb)->end_seq -
515 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
516 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
517 }
518 
519 /*
520  * This function should be called every time data is copied to user space.
521  * It calculates the appropriate TCP receive buffer space.
522  */
523 void tcp_rcv_space_adjust(struct sock *sk)
524 {
525 	struct tcp_sock *tp = tcp_sk(sk);
526 	int time;
527 	int space;
528 
529 	if (tp->rcvq_space.time == 0)
530 		goto new_measure;
531 
532 	time = tcp_time_stamp - tp->rcvq_space.time;
533 	if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
534 		return;
535 
536 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
537 
538 	space = max(tp->rcvq_space.space, space);
539 
540 	if (tp->rcvq_space.space != space) {
541 		int rcvmem;
542 
543 		tp->rcvq_space.space = space;
544 
545 		if (sysctl_tcp_moderate_rcvbuf &&
546 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
547 			int new_clamp = space;
548 
549 			/* Receive space grows, normalize in order to
550 			 * take into account packet headers and sk_buff
551 			 * structure overhead.
552 			 */
553 			space /= tp->advmss;
554 			if (!space)
555 				space = 1;
556 			rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
557 			while (tcp_win_from_space(rcvmem) < tp->advmss)
558 				rcvmem += 128;
559 			space *= rcvmem;
560 			space = min(space, sysctl_tcp_rmem[2]);
561 			if (space > sk->sk_rcvbuf) {
562 				sk->sk_rcvbuf = space;
563 
564 				/* Make the window clamp follow along.  */
565 				tp->window_clamp = new_clamp;
566 			}
567 		}
568 	}
569 
570 new_measure:
571 	tp->rcvq_space.seq = tp->copied_seq;
572 	tp->rcvq_space.time = tcp_time_stamp;
573 }
574 
575 /* There is something which you must keep in mind when you analyze the
576  * behavior of the tp->ato delayed ack timeout interval.  When a
577  * connection starts up, we want to ack as quickly as possible.  The
578  * problem is that "good" TCP's do slow start at the beginning of data
579  * transmission.  The means that until we send the first few ACK's the
580  * sender will sit on his end and only queue most of his data, because
581  * he can only send snd_cwnd unacked packets at any given time.  For
582  * each ACK we send, he increments snd_cwnd and transmits more of his
583  * queue.  -DaveM
584  */
585 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
586 {
587 	struct tcp_sock *tp = tcp_sk(sk);
588 	struct inet_connection_sock *icsk = inet_csk(sk);
589 	u32 now;
590 
591 	inet_csk_schedule_ack(sk);
592 
593 	tcp_measure_rcv_mss(sk, skb);
594 
595 	tcp_rcv_rtt_measure(tp);
596 
597 	now = tcp_time_stamp;
598 
599 	if (!icsk->icsk_ack.ato) {
600 		/* The _first_ data packet received, initialize
601 		 * delayed ACK engine.
602 		 */
603 		tcp_incr_quickack(sk);
604 		icsk->icsk_ack.ato = TCP_ATO_MIN;
605 	} else {
606 		int m = now - icsk->icsk_ack.lrcvtime;
607 
608 		if (m <= TCP_ATO_MIN / 2) {
609 			/* The fastest case is the first. */
610 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
611 		} else if (m < icsk->icsk_ack.ato) {
612 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
613 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
614 				icsk->icsk_ack.ato = icsk->icsk_rto;
615 		} else if (m > icsk->icsk_rto) {
616 			/* Too long gap. Apparently sender failed to
617 			 * restart window, so that we send ACKs quickly.
618 			 */
619 			tcp_incr_quickack(sk);
620 			sk_mem_reclaim(sk);
621 		}
622 	}
623 	icsk->icsk_ack.lrcvtime = now;
624 
625 	TCP_ECN_check_ce(tp, skb);
626 
627 	if (skb->len >= 128)
628 		tcp_grow_window(sk, skb);
629 }
630 
631 /* Called to compute a smoothed rtt estimate. The data fed to this
632  * routine either comes from timestamps, or from segments that were
633  * known _not_ to have been retransmitted [see Karn/Partridge
634  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
635  * piece by Van Jacobson.
636  * NOTE: the next three routines used to be one big routine.
637  * To save cycles in the RFC 1323 implementation it was better to break
638  * it up into three procedures. -- erics
639  */
640 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
641 {
642 	struct tcp_sock *tp = tcp_sk(sk);
643 	long m = mrtt; /* RTT */
644 
645 	/*	The following amusing code comes from Jacobson's
646 	 *	article in SIGCOMM '88.  Note that rtt and mdev
647 	 *	are scaled versions of rtt and mean deviation.
648 	 *	This is designed to be as fast as possible
649 	 *	m stands for "measurement".
650 	 *
651 	 *	On a 1990 paper the rto value is changed to:
652 	 *	RTO = rtt + 4 * mdev
653 	 *
654 	 * Funny. This algorithm seems to be very broken.
655 	 * These formulae increase RTO, when it should be decreased, increase
656 	 * too slowly, when it should be increased quickly, decrease too quickly
657 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
658 	 * does not matter how to _calculate_ it. Seems, it was trap
659 	 * that VJ failed to avoid. 8)
660 	 */
661 	if (m == 0)
662 		m = 1;
663 	if (tp->srtt != 0) {
664 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
665 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
666 		if (m < 0) {
667 			m = -m;		/* m is now abs(error) */
668 			m -= (tp->mdev >> 2);   /* similar update on mdev */
669 			/* This is similar to one of Eifel findings.
670 			 * Eifel blocks mdev updates when rtt decreases.
671 			 * This solution is a bit different: we use finer gain
672 			 * for mdev in this case (alpha*beta).
673 			 * Like Eifel it also prevents growth of rto,
674 			 * but also it limits too fast rto decreases,
675 			 * happening in pure Eifel.
676 			 */
677 			if (m > 0)
678 				m >>= 3;
679 		} else {
680 			m -= (tp->mdev >> 2);   /* similar update on mdev */
681 		}
682 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
683 		if (tp->mdev > tp->mdev_max) {
684 			tp->mdev_max = tp->mdev;
685 			if (tp->mdev_max > tp->rttvar)
686 				tp->rttvar = tp->mdev_max;
687 		}
688 		if (after(tp->snd_una, tp->rtt_seq)) {
689 			if (tp->mdev_max < tp->rttvar)
690 				tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
691 			tp->rtt_seq = tp->snd_nxt;
692 			tp->mdev_max = tcp_rto_min(sk);
693 		}
694 	} else {
695 		/* no previous measure. */
696 		tp->srtt = m << 3;	/* take the measured time to be rtt */
697 		tp->mdev = m << 1;	/* make sure rto = 3*rtt */
698 		tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
699 		tp->rtt_seq = tp->snd_nxt;
700 	}
701 }
702 
703 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
704  * routine referred to above.
705  */
706 void tcp_set_rto(struct sock *sk)
707 {
708 	const struct tcp_sock *tp = tcp_sk(sk);
709 	/* Old crap is replaced with new one. 8)
710 	 *
711 	 * More seriously:
712 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
713 	 *    It cannot be less due to utterly erratic ACK generation made
714 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
715 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
716 	 *    is invisible. Actually, Linux-2.4 also generates erratic
717 	 *    ACKs in some circumstances.
718 	 */
719 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
720 
721 	/* 2. Fixups made earlier cannot be right.
722 	 *    If we do not estimate RTO correctly without them,
723 	 *    all the algo is pure shit and should be replaced
724 	 *    with correct one. It is exactly, which we pretend to do.
725 	 */
726 
727 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
728 	 * guarantees that rto is higher.
729 	 */
730 	tcp_bound_rto(sk);
731 }
732 
733 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
734 {
735 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
736 
737 	if (!cwnd)
738 		cwnd = TCP_INIT_CWND;
739 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
740 }
741 
742 /* Set slow start threshold and cwnd not falling to slow start */
743 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
744 {
745 	struct tcp_sock *tp = tcp_sk(sk);
746 	const struct inet_connection_sock *icsk = inet_csk(sk);
747 
748 	tp->prior_ssthresh = 0;
749 	tp->bytes_acked = 0;
750 	if (icsk->icsk_ca_state < TCP_CA_CWR) {
751 		tp->undo_marker = 0;
752 		if (set_ssthresh)
753 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
754 		tp->snd_cwnd = min(tp->snd_cwnd,
755 				   tcp_packets_in_flight(tp) + 1U);
756 		tp->snd_cwnd_cnt = 0;
757 		tp->high_seq = tp->snd_nxt;
758 		tp->snd_cwnd_stamp = tcp_time_stamp;
759 		TCP_ECN_queue_cwr(tp);
760 
761 		tcp_set_ca_state(sk, TCP_CA_CWR);
762 	}
763 }
764 
765 /*
766  * Packet counting of FACK is based on in-order assumptions, therefore TCP
767  * disables it when reordering is detected
768  */
769 void tcp_disable_fack(struct tcp_sock *tp)
770 {
771 	/* RFC3517 uses different metric in lost marker => reset on change */
772 	if (tcp_is_fack(tp))
773 		tp->lost_skb_hint = NULL;
774 	tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
775 }
776 
777 /* Take a notice that peer is sending D-SACKs */
778 static void tcp_dsack_seen(struct tcp_sock *tp)
779 {
780 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
781 }
782 
783 static void tcp_update_reordering(struct sock *sk, const int metric,
784 				  const int ts)
785 {
786 	struct tcp_sock *tp = tcp_sk(sk);
787 	if (metric > tp->reordering) {
788 		int mib_idx;
789 
790 		tp->reordering = min(TCP_MAX_REORDERING, metric);
791 
792 		/* This exciting event is worth to be remembered. 8) */
793 		if (ts)
794 			mib_idx = LINUX_MIB_TCPTSREORDER;
795 		else if (tcp_is_reno(tp))
796 			mib_idx = LINUX_MIB_TCPRENOREORDER;
797 		else if (tcp_is_fack(tp))
798 			mib_idx = LINUX_MIB_TCPFACKREORDER;
799 		else
800 			mib_idx = LINUX_MIB_TCPSACKREORDER;
801 
802 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
803 #if FASTRETRANS_DEBUG > 1
804 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
805 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
806 			 tp->reordering,
807 			 tp->fackets_out,
808 			 tp->sacked_out,
809 			 tp->undo_marker ? tp->undo_retrans : 0);
810 #endif
811 		tcp_disable_fack(tp);
812 	}
813 
814 	if (metric > 0)
815 		tcp_disable_early_retrans(tp);
816 }
817 
818 /* This must be called before lost_out is incremented */
819 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
820 {
821 	if ((tp->retransmit_skb_hint == NULL) ||
822 	    before(TCP_SKB_CB(skb)->seq,
823 		   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
824 		tp->retransmit_skb_hint = skb;
825 
826 	if (!tp->lost_out ||
827 	    after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
828 		tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
829 }
830 
831 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
832 {
833 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
834 		tcp_verify_retransmit_hint(tp, skb);
835 
836 		tp->lost_out += tcp_skb_pcount(skb);
837 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
838 	}
839 }
840 
841 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
842 					    struct sk_buff *skb)
843 {
844 	tcp_verify_retransmit_hint(tp, skb);
845 
846 	if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
847 		tp->lost_out += tcp_skb_pcount(skb);
848 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
849 	}
850 }
851 
852 /* This procedure tags the retransmission queue when SACKs arrive.
853  *
854  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
855  * Packets in queue with these bits set are counted in variables
856  * sacked_out, retrans_out and lost_out, correspondingly.
857  *
858  * Valid combinations are:
859  * Tag  InFlight	Description
860  * 0	1		- orig segment is in flight.
861  * S	0		- nothing flies, orig reached receiver.
862  * L	0		- nothing flies, orig lost by net.
863  * R	2		- both orig and retransmit are in flight.
864  * L|R	1		- orig is lost, retransmit is in flight.
865  * S|R  1		- orig reached receiver, retrans is still in flight.
866  * (L|S|R is logically valid, it could occur when L|R is sacked,
867  *  but it is equivalent to plain S and code short-curcuits it to S.
868  *  L|S is logically invalid, it would mean -1 packet in flight 8))
869  *
870  * These 6 states form finite state machine, controlled by the following events:
871  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
872  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
873  * 3. Loss detection event of two flavors:
874  *	A. Scoreboard estimator decided the packet is lost.
875  *	   A'. Reno "three dupacks" marks head of queue lost.
876  *	   A''. Its FACK modification, head until snd.fack is lost.
877  *	B. SACK arrives sacking SND.NXT at the moment, when the
878  *	   segment was retransmitted.
879  * 4. D-SACK added new rule: D-SACK changes any tag to S.
880  *
881  * It is pleasant to note, that state diagram turns out to be commutative,
882  * so that we are allowed not to be bothered by order of our actions,
883  * when multiple events arrive simultaneously. (see the function below).
884  *
885  * Reordering detection.
886  * --------------------
887  * Reordering metric is maximal distance, which a packet can be displaced
888  * in packet stream. With SACKs we can estimate it:
889  *
890  * 1. SACK fills old hole and the corresponding segment was not
891  *    ever retransmitted -> reordering. Alas, we cannot use it
892  *    when segment was retransmitted.
893  * 2. The last flaw is solved with D-SACK. D-SACK arrives
894  *    for retransmitted and already SACKed segment -> reordering..
895  * Both of these heuristics are not used in Loss state, when we cannot
896  * account for retransmits accurately.
897  *
898  * SACK block validation.
899  * ----------------------
900  *
901  * SACK block range validation checks that the received SACK block fits to
902  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
903  * Note that SND.UNA is not included to the range though being valid because
904  * it means that the receiver is rather inconsistent with itself reporting
905  * SACK reneging when it should advance SND.UNA. Such SACK block this is
906  * perfectly valid, however, in light of RFC2018 which explicitly states
907  * that "SACK block MUST reflect the newest segment.  Even if the newest
908  * segment is going to be discarded ...", not that it looks very clever
909  * in case of head skb. Due to potentional receiver driven attacks, we
910  * choose to avoid immediate execution of a walk in write queue due to
911  * reneging and defer head skb's loss recovery to standard loss recovery
912  * procedure that will eventually trigger (nothing forbids us doing this).
913  *
914  * Implements also blockage to start_seq wrap-around. Problem lies in the
915  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
916  * there's no guarantee that it will be before snd_nxt (n). The problem
917  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
918  * wrap (s_w):
919  *
920  *         <- outs wnd ->                          <- wrapzone ->
921  *         u     e      n                         u_w   e_w  s n_w
922  *         |     |      |                          |     |   |  |
923  * |<------------+------+----- TCP seqno space --------------+---------->|
924  * ...-- <2^31 ->|                                           |<--------...
925  * ...---- >2^31 ------>|                                    |<--------...
926  *
927  * Current code wouldn't be vulnerable but it's better still to discard such
928  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
929  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
930  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
931  * equal to the ideal case (infinite seqno space without wrap caused issues).
932  *
933  * With D-SACK the lower bound is extended to cover sequence space below
934  * SND.UNA down to undo_marker, which is the last point of interest. Yet
935  * again, D-SACK block must not to go across snd_una (for the same reason as
936  * for the normal SACK blocks, explained above). But there all simplicity
937  * ends, TCP might receive valid D-SACKs below that. As long as they reside
938  * fully below undo_marker they do not affect behavior in anyway and can
939  * therefore be safely ignored. In rare cases (which are more or less
940  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
941  * fragmentation and packet reordering past skb's retransmission. To consider
942  * them correctly, the acceptable range must be extended even more though
943  * the exact amount is rather hard to quantify. However, tp->max_window can
944  * be used as an exaggerated estimate.
945  */
946 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
947 				   u32 start_seq, u32 end_seq)
948 {
949 	/* Too far in future, or reversed (interpretation is ambiguous) */
950 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
951 		return false;
952 
953 	/* Nasty start_seq wrap-around check (see comments above) */
954 	if (!before(start_seq, tp->snd_nxt))
955 		return false;
956 
957 	/* In outstanding window? ...This is valid exit for D-SACKs too.
958 	 * start_seq == snd_una is non-sensical (see comments above)
959 	 */
960 	if (after(start_seq, tp->snd_una))
961 		return true;
962 
963 	if (!is_dsack || !tp->undo_marker)
964 		return false;
965 
966 	/* ...Then it's D-SACK, and must reside below snd_una completely */
967 	if (after(end_seq, tp->snd_una))
968 		return false;
969 
970 	if (!before(start_seq, tp->undo_marker))
971 		return true;
972 
973 	/* Too old */
974 	if (!after(end_seq, tp->undo_marker))
975 		return false;
976 
977 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
978 	 *   start_seq < undo_marker and end_seq >= undo_marker.
979 	 */
980 	return !before(start_seq, end_seq - tp->max_window);
981 }
982 
983 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
984  * Event "B". Later note: FACK people cheated me again 8), we have to account
985  * for reordering! Ugly, but should help.
986  *
987  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
988  * less than what is now known to be received by the other end (derived from
989  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
990  * retransmitted skbs to avoid some costly processing per ACKs.
991  */
992 static void tcp_mark_lost_retrans(struct sock *sk)
993 {
994 	const struct inet_connection_sock *icsk = inet_csk(sk);
995 	struct tcp_sock *tp = tcp_sk(sk);
996 	struct sk_buff *skb;
997 	int cnt = 0;
998 	u32 new_low_seq = tp->snd_nxt;
999 	u32 received_upto = tcp_highest_sack_seq(tp);
1000 
1001 	if (!tcp_is_fack(tp) || !tp->retrans_out ||
1002 	    !after(received_upto, tp->lost_retrans_low) ||
1003 	    icsk->icsk_ca_state != TCP_CA_Recovery)
1004 		return;
1005 
1006 	tcp_for_write_queue(skb, sk) {
1007 		u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1008 
1009 		if (skb == tcp_send_head(sk))
1010 			break;
1011 		if (cnt == tp->retrans_out)
1012 			break;
1013 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1014 			continue;
1015 
1016 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1017 			continue;
1018 
1019 		/* TODO: We would like to get rid of tcp_is_fack(tp) only
1020 		 * constraint here (see above) but figuring out that at
1021 		 * least tp->reordering SACK blocks reside between ack_seq
1022 		 * and received_upto is not easy task to do cheaply with
1023 		 * the available datastructures.
1024 		 *
1025 		 * Whether FACK should check here for tp->reordering segs
1026 		 * in-between one could argue for either way (it would be
1027 		 * rather simple to implement as we could count fack_count
1028 		 * during the walk and do tp->fackets_out - fack_count).
1029 		 */
1030 		if (after(received_upto, ack_seq)) {
1031 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1032 			tp->retrans_out -= tcp_skb_pcount(skb);
1033 
1034 			tcp_skb_mark_lost_uncond_verify(tp, skb);
1035 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1036 		} else {
1037 			if (before(ack_seq, new_low_seq))
1038 				new_low_seq = ack_seq;
1039 			cnt += tcp_skb_pcount(skb);
1040 		}
1041 	}
1042 
1043 	if (tp->retrans_out)
1044 		tp->lost_retrans_low = new_low_seq;
1045 }
1046 
1047 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1048 			    struct tcp_sack_block_wire *sp, int num_sacks,
1049 			    u32 prior_snd_una)
1050 {
1051 	struct tcp_sock *tp = tcp_sk(sk);
1052 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1053 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1054 	bool dup_sack = false;
1055 
1056 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1057 		dup_sack = true;
1058 		tcp_dsack_seen(tp);
1059 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1060 	} else if (num_sacks > 1) {
1061 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1062 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1063 
1064 		if (!after(end_seq_0, end_seq_1) &&
1065 		    !before(start_seq_0, start_seq_1)) {
1066 			dup_sack = true;
1067 			tcp_dsack_seen(tp);
1068 			NET_INC_STATS_BH(sock_net(sk),
1069 					LINUX_MIB_TCPDSACKOFORECV);
1070 		}
1071 	}
1072 
1073 	/* D-SACK for already forgotten data... Do dumb counting. */
1074 	if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1075 	    !after(end_seq_0, prior_snd_una) &&
1076 	    after(end_seq_0, tp->undo_marker))
1077 		tp->undo_retrans--;
1078 
1079 	return dup_sack;
1080 }
1081 
1082 struct tcp_sacktag_state {
1083 	int reord;
1084 	int fack_count;
1085 	int flag;
1086 };
1087 
1088 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1089  * the incoming SACK may not exactly match but we can find smaller MSS
1090  * aligned portion of it that matches. Therefore we might need to fragment
1091  * which may fail and creates some hassle (caller must handle error case
1092  * returns).
1093  *
1094  * FIXME: this could be merged to shift decision code
1095  */
1096 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1097 				  u32 start_seq, u32 end_seq)
1098 {
1099 	int err;
1100 	bool in_sack;
1101 	unsigned int pkt_len;
1102 	unsigned int mss;
1103 
1104 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1105 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1106 
1107 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1108 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1109 		mss = tcp_skb_mss(skb);
1110 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1111 
1112 		if (!in_sack) {
1113 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1114 			if (pkt_len < mss)
1115 				pkt_len = mss;
1116 		} else {
1117 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1118 			if (pkt_len < mss)
1119 				return -EINVAL;
1120 		}
1121 
1122 		/* Round if necessary so that SACKs cover only full MSSes
1123 		 * and/or the remaining small portion (if present)
1124 		 */
1125 		if (pkt_len > mss) {
1126 			unsigned int new_len = (pkt_len / mss) * mss;
1127 			if (!in_sack && new_len < pkt_len) {
1128 				new_len += mss;
1129 				if (new_len > skb->len)
1130 					return 0;
1131 			}
1132 			pkt_len = new_len;
1133 		}
1134 		err = tcp_fragment(sk, skb, pkt_len, mss);
1135 		if (err < 0)
1136 			return err;
1137 	}
1138 
1139 	return in_sack;
1140 }
1141 
1142 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1143 static u8 tcp_sacktag_one(struct sock *sk,
1144 			  struct tcp_sacktag_state *state, u8 sacked,
1145 			  u32 start_seq, u32 end_seq,
1146 			  bool dup_sack, int pcount)
1147 {
1148 	struct tcp_sock *tp = tcp_sk(sk);
1149 	int fack_count = state->fack_count;
1150 
1151 	/* Account D-SACK for retransmitted packet. */
1152 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1153 		if (tp->undo_marker && tp->undo_retrans &&
1154 		    after(end_seq, tp->undo_marker))
1155 			tp->undo_retrans--;
1156 		if (sacked & TCPCB_SACKED_ACKED)
1157 			state->reord = min(fack_count, state->reord);
1158 	}
1159 
1160 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1161 	if (!after(end_seq, tp->snd_una))
1162 		return sacked;
1163 
1164 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1165 		if (sacked & TCPCB_SACKED_RETRANS) {
1166 			/* If the segment is not tagged as lost,
1167 			 * we do not clear RETRANS, believing
1168 			 * that retransmission is still in flight.
1169 			 */
1170 			if (sacked & TCPCB_LOST) {
1171 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1172 				tp->lost_out -= pcount;
1173 				tp->retrans_out -= pcount;
1174 			}
1175 		} else {
1176 			if (!(sacked & TCPCB_RETRANS)) {
1177 				/* New sack for not retransmitted frame,
1178 				 * which was in hole. It is reordering.
1179 				 */
1180 				if (before(start_seq,
1181 					   tcp_highest_sack_seq(tp)))
1182 					state->reord = min(fack_count,
1183 							   state->reord);
1184 
1185 				/* SACK enhanced F-RTO (RFC4138; Appendix B) */
1186 				if (!after(end_seq, tp->frto_highmark))
1187 					state->flag |= FLAG_ONLY_ORIG_SACKED;
1188 			}
1189 
1190 			if (sacked & TCPCB_LOST) {
1191 				sacked &= ~TCPCB_LOST;
1192 				tp->lost_out -= pcount;
1193 			}
1194 		}
1195 
1196 		sacked |= TCPCB_SACKED_ACKED;
1197 		state->flag |= FLAG_DATA_SACKED;
1198 		tp->sacked_out += pcount;
1199 
1200 		fack_count += pcount;
1201 
1202 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1203 		if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1204 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1205 			tp->lost_cnt_hint += pcount;
1206 
1207 		if (fack_count > tp->fackets_out)
1208 			tp->fackets_out = fack_count;
1209 	}
1210 
1211 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1212 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1213 	 * are accounted above as well.
1214 	 */
1215 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1216 		sacked &= ~TCPCB_SACKED_RETRANS;
1217 		tp->retrans_out -= pcount;
1218 	}
1219 
1220 	return sacked;
1221 }
1222 
1223 /* Shift newly-SACKed bytes from this skb to the immediately previous
1224  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1225  */
1226 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1227 			    struct tcp_sacktag_state *state,
1228 			    unsigned int pcount, int shifted, int mss,
1229 			    bool dup_sack)
1230 {
1231 	struct tcp_sock *tp = tcp_sk(sk);
1232 	struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1233 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1234 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1235 
1236 	BUG_ON(!pcount);
1237 
1238 	/* Adjust counters and hints for the newly sacked sequence
1239 	 * range but discard the return value since prev is already
1240 	 * marked. We must tag the range first because the seq
1241 	 * advancement below implicitly advances
1242 	 * tcp_highest_sack_seq() when skb is highest_sack.
1243 	 */
1244 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1245 			start_seq, end_seq, dup_sack, pcount);
1246 
1247 	if (skb == tp->lost_skb_hint)
1248 		tp->lost_cnt_hint += pcount;
1249 
1250 	TCP_SKB_CB(prev)->end_seq += shifted;
1251 	TCP_SKB_CB(skb)->seq += shifted;
1252 
1253 	skb_shinfo(prev)->gso_segs += pcount;
1254 	BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1255 	skb_shinfo(skb)->gso_segs -= pcount;
1256 
1257 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1258 	 * in theory this shouldn't be necessary but as long as DSACK
1259 	 * code can come after this skb later on it's better to keep
1260 	 * setting gso_size to something.
1261 	 */
1262 	if (!skb_shinfo(prev)->gso_size) {
1263 		skb_shinfo(prev)->gso_size = mss;
1264 		skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1265 	}
1266 
1267 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1268 	if (skb_shinfo(skb)->gso_segs <= 1) {
1269 		skb_shinfo(skb)->gso_size = 0;
1270 		skb_shinfo(skb)->gso_type = 0;
1271 	}
1272 
1273 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1274 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1275 
1276 	if (skb->len > 0) {
1277 		BUG_ON(!tcp_skb_pcount(skb));
1278 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1279 		return false;
1280 	}
1281 
1282 	/* Whole SKB was eaten :-) */
1283 
1284 	if (skb == tp->retransmit_skb_hint)
1285 		tp->retransmit_skb_hint = prev;
1286 	if (skb == tp->scoreboard_skb_hint)
1287 		tp->scoreboard_skb_hint = prev;
1288 	if (skb == tp->lost_skb_hint) {
1289 		tp->lost_skb_hint = prev;
1290 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1291 	}
1292 
1293 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1294 	if (skb == tcp_highest_sack(sk))
1295 		tcp_advance_highest_sack(sk, skb);
1296 
1297 	tcp_unlink_write_queue(skb, sk);
1298 	sk_wmem_free_skb(sk, skb);
1299 
1300 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1301 
1302 	return true;
1303 }
1304 
1305 /* I wish gso_size would have a bit more sane initialization than
1306  * something-or-zero which complicates things
1307  */
1308 static int tcp_skb_seglen(const struct sk_buff *skb)
1309 {
1310 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1311 }
1312 
1313 /* Shifting pages past head area doesn't work */
1314 static int skb_can_shift(const struct sk_buff *skb)
1315 {
1316 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1317 }
1318 
1319 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1320  * skb.
1321  */
1322 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1323 					  struct tcp_sacktag_state *state,
1324 					  u32 start_seq, u32 end_seq,
1325 					  bool dup_sack)
1326 {
1327 	struct tcp_sock *tp = tcp_sk(sk);
1328 	struct sk_buff *prev;
1329 	int mss;
1330 	int pcount = 0;
1331 	int len;
1332 	int in_sack;
1333 
1334 	if (!sk_can_gso(sk))
1335 		goto fallback;
1336 
1337 	/* Normally R but no L won't result in plain S */
1338 	if (!dup_sack &&
1339 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1340 		goto fallback;
1341 	if (!skb_can_shift(skb))
1342 		goto fallback;
1343 	/* This frame is about to be dropped (was ACKed). */
1344 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1345 		goto fallback;
1346 
1347 	/* Can only happen with delayed DSACK + discard craziness */
1348 	if (unlikely(skb == tcp_write_queue_head(sk)))
1349 		goto fallback;
1350 	prev = tcp_write_queue_prev(sk, skb);
1351 
1352 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1353 		goto fallback;
1354 
1355 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1356 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1357 
1358 	if (in_sack) {
1359 		len = skb->len;
1360 		pcount = tcp_skb_pcount(skb);
1361 		mss = tcp_skb_seglen(skb);
1362 
1363 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1364 		 * drop this restriction as unnecessary
1365 		 */
1366 		if (mss != tcp_skb_seglen(prev))
1367 			goto fallback;
1368 	} else {
1369 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1370 			goto noop;
1371 		/* CHECKME: This is non-MSS split case only?, this will
1372 		 * cause skipped skbs due to advancing loop btw, original
1373 		 * has that feature too
1374 		 */
1375 		if (tcp_skb_pcount(skb) <= 1)
1376 			goto noop;
1377 
1378 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1379 		if (!in_sack) {
1380 			/* TODO: head merge to next could be attempted here
1381 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1382 			 * though it might not be worth of the additional hassle
1383 			 *
1384 			 * ...we can probably just fallback to what was done
1385 			 * previously. We could try merging non-SACKed ones
1386 			 * as well but it probably isn't going to buy off
1387 			 * because later SACKs might again split them, and
1388 			 * it would make skb timestamp tracking considerably
1389 			 * harder problem.
1390 			 */
1391 			goto fallback;
1392 		}
1393 
1394 		len = end_seq - TCP_SKB_CB(skb)->seq;
1395 		BUG_ON(len < 0);
1396 		BUG_ON(len > skb->len);
1397 
1398 		/* MSS boundaries should be honoured or else pcount will
1399 		 * severely break even though it makes things bit trickier.
1400 		 * Optimize common case to avoid most of the divides
1401 		 */
1402 		mss = tcp_skb_mss(skb);
1403 
1404 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1405 		 * drop this restriction as unnecessary
1406 		 */
1407 		if (mss != tcp_skb_seglen(prev))
1408 			goto fallback;
1409 
1410 		if (len == mss) {
1411 			pcount = 1;
1412 		} else if (len < mss) {
1413 			goto noop;
1414 		} else {
1415 			pcount = len / mss;
1416 			len = pcount * mss;
1417 		}
1418 	}
1419 
1420 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1421 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1422 		goto fallback;
1423 
1424 	if (!skb_shift(prev, skb, len))
1425 		goto fallback;
1426 	if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1427 		goto out;
1428 
1429 	/* Hole filled allows collapsing with the next as well, this is very
1430 	 * useful when hole on every nth skb pattern happens
1431 	 */
1432 	if (prev == tcp_write_queue_tail(sk))
1433 		goto out;
1434 	skb = tcp_write_queue_next(sk, prev);
1435 
1436 	if (!skb_can_shift(skb) ||
1437 	    (skb == tcp_send_head(sk)) ||
1438 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1439 	    (mss != tcp_skb_seglen(skb)))
1440 		goto out;
1441 
1442 	len = skb->len;
1443 	if (skb_shift(prev, skb, len)) {
1444 		pcount += tcp_skb_pcount(skb);
1445 		tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1446 	}
1447 
1448 out:
1449 	state->fack_count += pcount;
1450 	return prev;
1451 
1452 noop:
1453 	return skb;
1454 
1455 fallback:
1456 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1457 	return NULL;
1458 }
1459 
1460 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1461 					struct tcp_sack_block *next_dup,
1462 					struct tcp_sacktag_state *state,
1463 					u32 start_seq, u32 end_seq,
1464 					bool dup_sack_in)
1465 {
1466 	struct tcp_sock *tp = tcp_sk(sk);
1467 	struct sk_buff *tmp;
1468 
1469 	tcp_for_write_queue_from(skb, sk) {
1470 		int in_sack = 0;
1471 		bool dup_sack = dup_sack_in;
1472 
1473 		if (skb == tcp_send_head(sk))
1474 			break;
1475 
1476 		/* queue is in-order => we can short-circuit the walk early */
1477 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1478 			break;
1479 
1480 		if ((next_dup != NULL) &&
1481 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1482 			in_sack = tcp_match_skb_to_sack(sk, skb,
1483 							next_dup->start_seq,
1484 							next_dup->end_seq);
1485 			if (in_sack > 0)
1486 				dup_sack = true;
1487 		}
1488 
1489 		/* skb reference here is a bit tricky to get right, since
1490 		 * shifting can eat and free both this skb and the next,
1491 		 * so not even _safe variant of the loop is enough.
1492 		 */
1493 		if (in_sack <= 0) {
1494 			tmp = tcp_shift_skb_data(sk, skb, state,
1495 						 start_seq, end_seq, dup_sack);
1496 			if (tmp != NULL) {
1497 				if (tmp != skb) {
1498 					skb = tmp;
1499 					continue;
1500 				}
1501 
1502 				in_sack = 0;
1503 			} else {
1504 				in_sack = tcp_match_skb_to_sack(sk, skb,
1505 								start_seq,
1506 								end_seq);
1507 			}
1508 		}
1509 
1510 		if (unlikely(in_sack < 0))
1511 			break;
1512 
1513 		if (in_sack) {
1514 			TCP_SKB_CB(skb)->sacked =
1515 				tcp_sacktag_one(sk,
1516 						state,
1517 						TCP_SKB_CB(skb)->sacked,
1518 						TCP_SKB_CB(skb)->seq,
1519 						TCP_SKB_CB(skb)->end_seq,
1520 						dup_sack,
1521 						tcp_skb_pcount(skb));
1522 
1523 			if (!before(TCP_SKB_CB(skb)->seq,
1524 				    tcp_highest_sack_seq(tp)))
1525 				tcp_advance_highest_sack(sk, skb);
1526 		}
1527 
1528 		state->fack_count += tcp_skb_pcount(skb);
1529 	}
1530 	return skb;
1531 }
1532 
1533 /* Avoid all extra work that is being done by sacktag while walking in
1534  * a normal way
1535  */
1536 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1537 					struct tcp_sacktag_state *state,
1538 					u32 skip_to_seq)
1539 {
1540 	tcp_for_write_queue_from(skb, sk) {
1541 		if (skb == tcp_send_head(sk))
1542 			break;
1543 
1544 		if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1545 			break;
1546 
1547 		state->fack_count += tcp_skb_pcount(skb);
1548 	}
1549 	return skb;
1550 }
1551 
1552 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1553 						struct sock *sk,
1554 						struct tcp_sack_block *next_dup,
1555 						struct tcp_sacktag_state *state,
1556 						u32 skip_to_seq)
1557 {
1558 	if (next_dup == NULL)
1559 		return skb;
1560 
1561 	if (before(next_dup->start_seq, skip_to_seq)) {
1562 		skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1563 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1564 				       next_dup->start_seq, next_dup->end_seq,
1565 				       1);
1566 	}
1567 
1568 	return skb;
1569 }
1570 
1571 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1572 {
1573 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1574 }
1575 
1576 static int
1577 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1578 			u32 prior_snd_una)
1579 {
1580 	const struct inet_connection_sock *icsk = inet_csk(sk);
1581 	struct tcp_sock *tp = tcp_sk(sk);
1582 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1583 				    TCP_SKB_CB(ack_skb)->sacked);
1584 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1585 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1586 	struct tcp_sack_block *cache;
1587 	struct tcp_sacktag_state state;
1588 	struct sk_buff *skb;
1589 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1590 	int used_sacks;
1591 	bool found_dup_sack = false;
1592 	int i, j;
1593 	int first_sack_index;
1594 
1595 	state.flag = 0;
1596 	state.reord = tp->packets_out;
1597 
1598 	if (!tp->sacked_out) {
1599 		if (WARN_ON(tp->fackets_out))
1600 			tp->fackets_out = 0;
1601 		tcp_highest_sack_reset(sk);
1602 	}
1603 
1604 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1605 					 num_sacks, prior_snd_una);
1606 	if (found_dup_sack)
1607 		state.flag |= FLAG_DSACKING_ACK;
1608 
1609 	/* Eliminate too old ACKs, but take into
1610 	 * account more or less fresh ones, they can
1611 	 * contain valid SACK info.
1612 	 */
1613 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1614 		return 0;
1615 
1616 	if (!tp->packets_out)
1617 		goto out;
1618 
1619 	used_sacks = 0;
1620 	first_sack_index = 0;
1621 	for (i = 0; i < num_sacks; i++) {
1622 		bool dup_sack = !i && found_dup_sack;
1623 
1624 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1625 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1626 
1627 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1628 					    sp[used_sacks].start_seq,
1629 					    sp[used_sacks].end_seq)) {
1630 			int mib_idx;
1631 
1632 			if (dup_sack) {
1633 				if (!tp->undo_marker)
1634 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1635 				else
1636 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1637 			} else {
1638 				/* Don't count olds caused by ACK reordering */
1639 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1640 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1641 					continue;
1642 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1643 			}
1644 
1645 			NET_INC_STATS_BH(sock_net(sk), mib_idx);
1646 			if (i == 0)
1647 				first_sack_index = -1;
1648 			continue;
1649 		}
1650 
1651 		/* Ignore very old stuff early */
1652 		if (!after(sp[used_sacks].end_seq, prior_snd_una))
1653 			continue;
1654 
1655 		used_sacks++;
1656 	}
1657 
1658 	/* order SACK blocks to allow in order walk of the retrans queue */
1659 	for (i = used_sacks - 1; i > 0; i--) {
1660 		for (j = 0; j < i; j++) {
1661 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1662 				swap(sp[j], sp[j + 1]);
1663 
1664 				/* Track where the first SACK block goes to */
1665 				if (j == first_sack_index)
1666 					first_sack_index = j + 1;
1667 			}
1668 		}
1669 	}
1670 
1671 	skb = tcp_write_queue_head(sk);
1672 	state.fack_count = 0;
1673 	i = 0;
1674 
1675 	if (!tp->sacked_out) {
1676 		/* It's already past, so skip checking against it */
1677 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1678 	} else {
1679 		cache = tp->recv_sack_cache;
1680 		/* Skip empty blocks in at head of the cache */
1681 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1682 		       !cache->end_seq)
1683 			cache++;
1684 	}
1685 
1686 	while (i < used_sacks) {
1687 		u32 start_seq = sp[i].start_seq;
1688 		u32 end_seq = sp[i].end_seq;
1689 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1690 		struct tcp_sack_block *next_dup = NULL;
1691 
1692 		if (found_dup_sack && ((i + 1) == first_sack_index))
1693 			next_dup = &sp[i + 1];
1694 
1695 		/* Skip too early cached blocks */
1696 		while (tcp_sack_cache_ok(tp, cache) &&
1697 		       !before(start_seq, cache->end_seq))
1698 			cache++;
1699 
1700 		/* Can skip some work by looking recv_sack_cache? */
1701 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1702 		    after(end_seq, cache->start_seq)) {
1703 
1704 			/* Head todo? */
1705 			if (before(start_seq, cache->start_seq)) {
1706 				skb = tcp_sacktag_skip(skb, sk, &state,
1707 						       start_seq);
1708 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1709 						       &state,
1710 						       start_seq,
1711 						       cache->start_seq,
1712 						       dup_sack);
1713 			}
1714 
1715 			/* Rest of the block already fully processed? */
1716 			if (!after(end_seq, cache->end_seq))
1717 				goto advance_sp;
1718 
1719 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1720 						       &state,
1721 						       cache->end_seq);
1722 
1723 			/* ...tail remains todo... */
1724 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1725 				/* ...but better entrypoint exists! */
1726 				skb = tcp_highest_sack(sk);
1727 				if (skb == NULL)
1728 					break;
1729 				state.fack_count = tp->fackets_out;
1730 				cache++;
1731 				goto walk;
1732 			}
1733 
1734 			skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1735 			/* Check overlap against next cached too (past this one already) */
1736 			cache++;
1737 			continue;
1738 		}
1739 
1740 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1741 			skb = tcp_highest_sack(sk);
1742 			if (skb == NULL)
1743 				break;
1744 			state.fack_count = tp->fackets_out;
1745 		}
1746 		skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1747 
1748 walk:
1749 		skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1750 				       start_seq, end_seq, dup_sack);
1751 
1752 advance_sp:
1753 		/* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1754 		 * due to in-order walk
1755 		 */
1756 		if (after(end_seq, tp->frto_highmark))
1757 			state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1758 
1759 		i++;
1760 	}
1761 
1762 	/* Clear the head of the cache sack blocks so we can skip it next time */
1763 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1764 		tp->recv_sack_cache[i].start_seq = 0;
1765 		tp->recv_sack_cache[i].end_seq = 0;
1766 	}
1767 	for (j = 0; j < used_sacks; j++)
1768 		tp->recv_sack_cache[i++] = sp[j];
1769 
1770 	tcp_mark_lost_retrans(sk);
1771 
1772 	tcp_verify_left_out(tp);
1773 
1774 	if ((state.reord < tp->fackets_out) &&
1775 	    ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1776 	    (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1777 		tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1778 
1779 out:
1780 
1781 #if FASTRETRANS_DEBUG > 0
1782 	WARN_ON((int)tp->sacked_out < 0);
1783 	WARN_ON((int)tp->lost_out < 0);
1784 	WARN_ON((int)tp->retrans_out < 0);
1785 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1786 #endif
1787 	return state.flag;
1788 }
1789 
1790 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1791  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1792  */
1793 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1794 {
1795 	u32 holes;
1796 
1797 	holes = max(tp->lost_out, 1U);
1798 	holes = min(holes, tp->packets_out);
1799 
1800 	if ((tp->sacked_out + holes) > tp->packets_out) {
1801 		tp->sacked_out = tp->packets_out - holes;
1802 		return true;
1803 	}
1804 	return false;
1805 }
1806 
1807 /* If we receive more dupacks than we expected counting segments
1808  * in assumption of absent reordering, interpret this as reordering.
1809  * The only another reason could be bug in receiver TCP.
1810  */
1811 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1812 {
1813 	struct tcp_sock *tp = tcp_sk(sk);
1814 	if (tcp_limit_reno_sacked(tp))
1815 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1816 }
1817 
1818 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1819 
1820 static void tcp_add_reno_sack(struct sock *sk)
1821 {
1822 	struct tcp_sock *tp = tcp_sk(sk);
1823 	tp->sacked_out++;
1824 	tcp_check_reno_reordering(sk, 0);
1825 	tcp_verify_left_out(tp);
1826 }
1827 
1828 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1829 
1830 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1831 {
1832 	struct tcp_sock *tp = tcp_sk(sk);
1833 
1834 	if (acked > 0) {
1835 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1836 		if (acked - 1 >= tp->sacked_out)
1837 			tp->sacked_out = 0;
1838 		else
1839 			tp->sacked_out -= acked - 1;
1840 	}
1841 	tcp_check_reno_reordering(sk, acked);
1842 	tcp_verify_left_out(tp);
1843 }
1844 
1845 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1846 {
1847 	tp->sacked_out = 0;
1848 }
1849 
1850 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1851 {
1852 	return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1853 }
1854 
1855 /* F-RTO can only be used if TCP has never retransmitted anything other than
1856  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1857  */
1858 bool tcp_use_frto(struct sock *sk)
1859 {
1860 	const struct tcp_sock *tp = tcp_sk(sk);
1861 	const struct inet_connection_sock *icsk = inet_csk(sk);
1862 	struct sk_buff *skb;
1863 
1864 	if (!sysctl_tcp_frto)
1865 		return false;
1866 
1867 	/* MTU probe and F-RTO won't really play nicely along currently */
1868 	if (icsk->icsk_mtup.probe_size)
1869 		return false;
1870 
1871 	if (tcp_is_sackfrto(tp))
1872 		return true;
1873 
1874 	/* Avoid expensive walking of rexmit queue if possible */
1875 	if (tp->retrans_out > 1)
1876 		return false;
1877 
1878 	skb = tcp_write_queue_head(sk);
1879 	if (tcp_skb_is_last(sk, skb))
1880 		return true;
1881 	skb = tcp_write_queue_next(sk, skb);	/* Skips head */
1882 	tcp_for_write_queue_from(skb, sk) {
1883 		if (skb == tcp_send_head(sk))
1884 			break;
1885 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1886 			return false;
1887 		/* Short-circuit when first non-SACKed skb has been checked */
1888 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1889 			break;
1890 	}
1891 	return true;
1892 }
1893 
1894 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1895  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1896  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1897  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1898  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1899  * bits are handled if the Loss state is really to be entered (in
1900  * tcp_enter_frto_loss).
1901  *
1902  * Do like tcp_enter_loss() would; when RTO expires the second time it
1903  * does:
1904  *  "Reduce ssthresh if it has not yet been made inside this window."
1905  */
1906 void tcp_enter_frto(struct sock *sk)
1907 {
1908 	const struct inet_connection_sock *icsk = inet_csk(sk);
1909 	struct tcp_sock *tp = tcp_sk(sk);
1910 	struct sk_buff *skb;
1911 
1912 	if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1913 	    tp->snd_una == tp->high_seq ||
1914 	    ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1915 	     !icsk->icsk_retransmits)) {
1916 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1917 		/* Our state is too optimistic in ssthresh() call because cwnd
1918 		 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1919 		 * recovery has not yet completed. Pattern would be this: RTO,
1920 		 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1921 		 * up here twice).
1922 		 * RFC4138 should be more specific on what to do, even though
1923 		 * RTO is quite unlikely to occur after the first Cumulative ACK
1924 		 * due to back-off and complexity of triggering events ...
1925 		 */
1926 		if (tp->frto_counter) {
1927 			u32 stored_cwnd;
1928 			stored_cwnd = tp->snd_cwnd;
1929 			tp->snd_cwnd = 2;
1930 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1931 			tp->snd_cwnd = stored_cwnd;
1932 		} else {
1933 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1934 		}
1935 		/* ... in theory, cong.control module could do "any tricks" in
1936 		 * ssthresh(), which means that ca_state, lost bits and lost_out
1937 		 * counter would have to be faked before the call occurs. We
1938 		 * consider that too expensive, unlikely and hacky, so modules
1939 		 * using these in ssthresh() must deal these incompatibility
1940 		 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1941 		 */
1942 		tcp_ca_event(sk, CA_EVENT_FRTO);
1943 	}
1944 
1945 	tp->undo_marker = tp->snd_una;
1946 	tp->undo_retrans = 0;
1947 
1948 	skb = tcp_write_queue_head(sk);
1949 	if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1950 		tp->undo_marker = 0;
1951 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1952 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1953 		tp->retrans_out -= tcp_skb_pcount(skb);
1954 	}
1955 	tcp_verify_left_out(tp);
1956 
1957 	/* Too bad if TCP was application limited */
1958 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1959 
1960 	/* Earlier loss recovery underway (see RFC4138; Appendix B).
1961 	 * The last condition is necessary at least in tp->frto_counter case.
1962 	 */
1963 	if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1964 	    ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1965 	    after(tp->high_seq, tp->snd_una)) {
1966 		tp->frto_highmark = tp->high_seq;
1967 	} else {
1968 		tp->frto_highmark = tp->snd_nxt;
1969 	}
1970 	tcp_set_ca_state(sk, TCP_CA_Disorder);
1971 	tp->high_seq = tp->snd_nxt;
1972 	tp->frto_counter = 1;
1973 }
1974 
1975 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1976  * which indicates that we should follow the traditional RTO recovery,
1977  * i.e. mark everything lost and do go-back-N retransmission.
1978  */
1979 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1980 {
1981 	struct tcp_sock *tp = tcp_sk(sk);
1982 	struct sk_buff *skb;
1983 
1984 	tp->lost_out = 0;
1985 	tp->retrans_out = 0;
1986 	if (tcp_is_reno(tp))
1987 		tcp_reset_reno_sack(tp);
1988 
1989 	tcp_for_write_queue(skb, sk) {
1990 		if (skb == tcp_send_head(sk))
1991 			break;
1992 
1993 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1994 		/*
1995 		 * Count the retransmission made on RTO correctly (only when
1996 		 * waiting for the first ACK and did not get it)...
1997 		 */
1998 		if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1999 			/* For some reason this R-bit might get cleared? */
2000 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2001 				tp->retrans_out += tcp_skb_pcount(skb);
2002 			/* ...enter this if branch just for the first segment */
2003 			flag |= FLAG_DATA_ACKED;
2004 		} else {
2005 			if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2006 				tp->undo_marker = 0;
2007 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2008 		}
2009 
2010 		/* Marking forward transmissions that were made after RTO lost
2011 		 * can cause unnecessary retransmissions in some scenarios,
2012 		 * SACK blocks will mitigate that in some but not in all cases.
2013 		 * We used to not mark them but it was causing break-ups with
2014 		 * receivers that do only in-order receival.
2015 		 *
2016 		 * TODO: we could detect presence of such receiver and select
2017 		 * different behavior per flow.
2018 		 */
2019 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2020 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2021 			tp->lost_out += tcp_skb_pcount(skb);
2022 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2023 		}
2024 	}
2025 	tcp_verify_left_out(tp);
2026 
2027 	tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2028 	tp->snd_cwnd_cnt = 0;
2029 	tp->snd_cwnd_stamp = tcp_time_stamp;
2030 	tp->frto_counter = 0;
2031 	tp->bytes_acked = 0;
2032 
2033 	tp->reordering = min_t(unsigned int, tp->reordering,
2034 			       sysctl_tcp_reordering);
2035 	tcp_set_ca_state(sk, TCP_CA_Loss);
2036 	tp->high_seq = tp->snd_nxt;
2037 	TCP_ECN_queue_cwr(tp);
2038 
2039 	tcp_clear_all_retrans_hints(tp);
2040 }
2041 
2042 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2043 {
2044 	tp->retrans_out = 0;
2045 	tp->lost_out = 0;
2046 
2047 	tp->undo_marker = 0;
2048 	tp->undo_retrans = 0;
2049 }
2050 
2051 void tcp_clear_retrans(struct tcp_sock *tp)
2052 {
2053 	tcp_clear_retrans_partial(tp);
2054 
2055 	tp->fackets_out = 0;
2056 	tp->sacked_out = 0;
2057 }
2058 
2059 /* Enter Loss state. If "how" is not zero, forget all SACK information
2060  * and reset tags completely, otherwise preserve SACKs. If receiver
2061  * dropped its ofo queue, we will know this due to reneging detection.
2062  */
2063 void tcp_enter_loss(struct sock *sk, int how)
2064 {
2065 	const struct inet_connection_sock *icsk = inet_csk(sk);
2066 	struct tcp_sock *tp = tcp_sk(sk);
2067 	struct sk_buff *skb;
2068 
2069 	/* Reduce ssthresh if it has not yet been made inside this window. */
2070 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2071 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2072 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2073 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2074 		tcp_ca_event(sk, CA_EVENT_LOSS);
2075 	}
2076 	tp->snd_cwnd	   = 1;
2077 	tp->snd_cwnd_cnt   = 0;
2078 	tp->snd_cwnd_stamp = tcp_time_stamp;
2079 
2080 	tp->bytes_acked = 0;
2081 	tcp_clear_retrans_partial(tp);
2082 
2083 	if (tcp_is_reno(tp))
2084 		tcp_reset_reno_sack(tp);
2085 
2086 	if (!how) {
2087 		/* Push undo marker, if it was plain RTO and nothing
2088 		 * was retransmitted. */
2089 		tp->undo_marker = tp->snd_una;
2090 	} else {
2091 		tp->sacked_out = 0;
2092 		tp->fackets_out = 0;
2093 	}
2094 	tcp_clear_all_retrans_hints(tp);
2095 
2096 	tcp_for_write_queue(skb, sk) {
2097 		if (skb == tcp_send_head(sk))
2098 			break;
2099 
2100 		if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2101 			tp->undo_marker = 0;
2102 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2103 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2104 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2105 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2106 			tp->lost_out += tcp_skb_pcount(skb);
2107 			tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2108 		}
2109 	}
2110 	tcp_verify_left_out(tp);
2111 
2112 	tp->reordering = min_t(unsigned int, tp->reordering,
2113 			       sysctl_tcp_reordering);
2114 	tcp_set_ca_state(sk, TCP_CA_Loss);
2115 	tp->high_seq = tp->snd_nxt;
2116 	TCP_ECN_queue_cwr(tp);
2117 	/* Abort F-RTO algorithm if one is in progress */
2118 	tp->frto_counter = 0;
2119 }
2120 
2121 /* If ACK arrived pointing to a remembered SACK, it means that our
2122  * remembered SACKs do not reflect real state of receiver i.e.
2123  * receiver _host_ is heavily congested (or buggy).
2124  *
2125  * Do processing similar to RTO timeout.
2126  */
2127 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2128 {
2129 	if (flag & FLAG_SACK_RENEGING) {
2130 		struct inet_connection_sock *icsk = inet_csk(sk);
2131 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2132 
2133 		tcp_enter_loss(sk, 1);
2134 		icsk->icsk_retransmits++;
2135 		tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2136 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2137 					  icsk->icsk_rto, TCP_RTO_MAX);
2138 		return true;
2139 	}
2140 	return false;
2141 }
2142 
2143 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2144 {
2145 	return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2146 }
2147 
2148 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2149  * counter when SACK is enabled (without SACK, sacked_out is used for
2150  * that purpose).
2151  *
2152  * Instead, with FACK TCP uses fackets_out that includes both SACKed
2153  * segments up to the highest received SACK block so far and holes in
2154  * between them.
2155  *
2156  * With reordering, holes may still be in flight, so RFC3517 recovery
2157  * uses pure sacked_out (total number of SACKed segments) even though
2158  * it violates the RFC that uses duplicate ACKs, often these are equal
2159  * but when e.g. out-of-window ACKs or packet duplication occurs,
2160  * they differ. Since neither occurs due to loss, TCP should really
2161  * ignore them.
2162  */
2163 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2164 {
2165 	return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2166 }
2167 
2168 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2169 {
2170 	struct tcp_sock *tp = tcp_sk(sk);
2171 	unsigned long delay;
2172 
2173 	/* Delay early retransmit and entering fast recovery for
2174 	 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2175 	 * available, or RTO is scheduled to fire first.
2176 	 */
2177 	if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2178 		return false;
2179 
2180 	delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2181 	if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2182 		return false;
2183 
2184 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2185 	tp->early_retrans_delayed = 1;
2186 	return true;
2187 }
2188 
2189 static inline int tcp_skb_timedout(const struct sock *sk,
2190 				   const struct sk_buff *skb)
2191 {
2192 	return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2193 }
2194 
2195 static inline int tcp_head_timedout(const struct sock *sk)
2196 {
2197 	const struct tcp_sock *tp = tcp_sk(sk);
2198 
2199 	return tp->packets_out &&
2200 	       tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2201 }
2202 
2203 /* Linux NewReno/SACK/FACK/ECN state machine.
2204  * --------------------------------------
2205  *
2206  * "Open"	Normal state, no dubious events, fast path.
2207  * "Disorder"   In all the respects it is "Open",
2208  *		but requires a bit more attention. It is entered when
2209  *		we see some SACKs or dupacks. It is split of "Open"
2210  *		mainly to move some processing from fast path to slow one.
2211  * "CWR"	CWND was reduced due to some Congestion Notification event.
2212  *		It can be ECN, ICMP source quench, local device congestion.
2213  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2214  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2215  *
2216  * tcp_fastretrans_alert() is entered:
2217  * - each incoming ACK, if state is not "Open"
2218  * - when arrived ACK is unusual, namely:
2219  *	* SACK
2220  *	* Duplicate ACK.
2221  *	* ECN ECE.
2222  *
2223  * Counting packets in flight is pretty simple.
2224  *
2225  *	in_flight = packets_out - left_out + retrans_out
2226  *
2227  *	packets_out is SND.NXT-SND.UNA counted in packets.
2228  *
2229  *	retrans_out is number of retransmitted segments.
2230  *
2231  *	left_out is number of segments left network, but not ACKed yet.
2232  *
2233  *		left_out = sacked_out + lost_out
2234  *
2235  *     sacked_out: Packets, which arrived to receiver out of order
2236  *		   and hence not ACKed. With SACKs this number is simply
2237  *		   amount of SACKed data. Even without SACKs
2238  *		   it is easy to give pretty reliable estimate of this number,
2239  *		   counting duplicate ACKs.
2240  *
2241  *       lost_out: Packets lost by network. TCP has no explicit
2242  *		   "loss notification" feedback from network (for now).
2243  *		   It means that this number can be only _guessed_.
2244  *		   Actually, it is the heuristics to predict lossage that
2245  *		   distinguishes different algorithms.
2246  *
2247  *	F.e. after RTO, when all the queue is considered as lost,
2248  *	lost_out = packets_out and in_flight = retrans_out.
2249  *
2250  *		Essentially, we have now two algorithms counting
2251  *		lost packets.
2252  *
2253  *		FACK: It is the simplest heuristics. As soon as we decided
2254  *		that something is lost, we decide that _all_ not SACKed
2255  *		packets until the most forward SACK are lost. I.e.
2256  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
2257  *		It is absolutely correct estimate, if network does not reorder
2258  *		packets. And it loses any connection to reality when reordering
2259  *		takes place. We use FACK by default until reordering
2260  *		is suspected on the path to this destination.
2261  *
2262  *		NewReno: when Recovery is entered, we assume that one segment
2263  *		is lost (classic Reno). While we are in Recovery and
2264  *		a partial ACK arrives, we assume that one more packet
2265  *		is lost (NewReno). This heuristics are the same in NewReno
2266  *		and SACK.
2267  *
2268  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2269  *  deflation etc. CWND is real congestion window, never inflated, changes
2270  *  only according to classic VJ rules.
2271  *
2272  * Really tricky (and requiring careful tuning) part of algorithm
2273  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2274  * The first determines the moment _when_ we should reduce CWND and,
2275  * hence, slow down forward transmission. In fact, it determines the moment
2276  * when we decide that hole is caused by loss, rather than by a reorder.
2277  *
2278  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2279  * holes, caused by lost packets.
2280  *
2281  * And the most logically complicated part of algorithm is undo
2282  * heuristics. We detect false retransmits due to both too early
2283  * fast retransmit (reordering) and underestimated RTO, analyzing
2284  * timestamps and D-SACKs. When we detect that some segments were
2285  * retransmitted by mistake and CWND reduction was wrong, we undo
2286  * window reduction and abort recovery phase. This logic is hidden
2287  * inside several functions named tcp_try_undo_<something>.
2288  */
2289 
2290 /* This function decides, when we should leave Disordered state
2291  * and enter Recovery phase, reducing congestion window.
2292  *
2293  * Main question: may we further continue forward transmission
2294  * with the same cwnd?
2295  */
2296 static bool tcp_time_to_recover(struct sock *sk, int flag)
2297 {
2298 	struct tcp_sock *tp = tcp_sk(sk);
2299 	__u32 packets_out;
2300 
2301 	/* Do not perform any recovery during F-RTO algorithm */
2302 	if (tp->frto_counter)
2303 		return false;
2304 
2305 	/* Trick#1: The loss is proven. */
2306 	if (tp->lost_out)
2307 		return true;
2308 
2309 	/* Not-A-Trick#2 : Classic rule... */
2310 	if (tcp_dupack_heuristics(tp) > tp->reordering)
2311 		return true;
2312 
2313 	/* Trick#3 : when we use RFC2988 timer restart, fast
2314 	 * retransmit can be triggered by timeout of queue head.
2315 	 */
2316 	if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2317 		return true;
2318 
2319 	/* Trick#4: It is still not OK... But will it be useful to delay
2320 	 * recovery more?
2321 	 */
2322 	packets_out = tp->packets_out;
2323 	if (packets_out <= tp->reordering &&
2324 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2325 	    !tcp_may_send_now(sk)) {
2326 		/* We have nothing to send. This connection is limited
2327 		 * either by receiver window or by application.
2328 		 */
2329 		return true;
2330 	}
2331 
2332 	/* If a thin stream is detected, retransmit after first
2333 	 * received dupack. Employ only if SACK is supported in order
2334 	 * to avoid possible corner-case series of spurious retransmissions
2335 	 * Use only if there are no unsent data.
2336 	 */
2337 	if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2338 	    tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2339 	    tcp_is_sack(tp) && !tcp_send_head(sk))
2340 		return true;
2341 
2342 	/* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2343 	 * retransmissions due to small network reorderings, we implement
2344 	 * Mitigation A.3 in the RFC and delay the retransmission for a short
2345 	 * interval if appropriate.
2346 	 */
2347 	if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2348 	    (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2349 	    !tcp_may_send_now(sk))
2350 		return !tcp_pause_early_retransmit(sk, flag);
2351 
2352 	return false;
2353 }
2354 
2355 /* New heuristics: it is possible only after we switched to restart timer
2356  * each time when something is ACKed. Hence, we can detect timed out packets
2357  * during fast retransmit without falling to slow start.
2358  *
2359  * Usefulness of this as is very questionable, since we should know which of
2360  * the segments is the next to timeout which is relatively expensive to find
2361  * in general case unless we add some data structure just for that. The
2362  * current approach certainly won't find the right one too often and when it
2363  * finally does find _something_ it usually marks large part of the window
2364  * right away (because a retransmission with a larger timestamp blocks the
2365  * loop from advancing). -ij
2366  */
2367 static void tcp_timeout_skbs(struct sock *sk)
2368 {
2369 	struct tcp_sock *tp = tcp_sk(sk);
2370 	struct sk_buff *skb;
2371 
2372 	if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2373 		return;
2374 
2375 	skb = tp->scoreboard_skb_hint;
2376 	if (tp->scoreboard_skb_hint == NULL)
2377 		skb = tcp_write_queue_head(sk);
2378 
2379 	tcp_for_write_queue_from(skb, sk) {
2380 		if (skb == tcp_send_head(sk))
2381 			break;
2382 		if (!tcp_skb_timedout(sk, skb))
2383 			break;
2384 
2385 		tcp_skb_mark_lost(tp, skb);
2386 	}
2387 
2388 	tp->scoreboard_skb_hint = skb;
2389 
2390 	tcp_verify_left_out(tp);
2391 }
2392 
2393 /* Detect loss in event "A" above by marking head of queue up as lost.
2394  * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2395  * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2396  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2397  * the maximum SACKed segments to pass before reaching this limit.
2398  */
2399 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2400 {
2401 	struct tcp_sock *tp = tcp_sk(sk);
2402 	struct sk_buff *skb;
2403 	int cnt, oldcnt;
2404 	int err;
2405 	unsigned int mss;
2406 	/* Use SACK to deduce losses of new sequences sent during recovery */
2407 	const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2408 
2409 	WARN_ON(packets > tp->packets_out);
2410 	if (tp->lost_skb_hint) {
2411 		skb = tp->lost_skb_hint;
2412 		cnt = tp->lost_cnt_hint;
2413 		/* Head already handled? */
2414 		if (mark_head && skb != tcp_write_queue_head(sk))
2415 			return;
2416 	} else {
2417 		skb = tcp_write_queue_head(sk);
2418 		cnt = 0;
2419 	}
2420 
2421 	tcp_for_write_queue_from(skb, sk) {
2422 		if (skb == tcp_send_head(sk))
2423 			break;
2424 		/* TODO: do this better */
2425 		/* this is not the most efficient way to do this... */
2426 		tp->lost_skb_hint = skb;
2427 		tp->lost_cnt_hint = cnt;
2428 
2429 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2430 			break;
2431 
2432 		oldcnt = cnt;
2433 		if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2434 		    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2435 			cnt += tcp_skb_pcount(skb);
2436 
2437 		if (cnt > packets) {
2438 			if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2439 			    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2440 			    (oldcnt >= packets))
2441 				break;
2442 
2443 			mss = skb_shinfo(skb)->gso_size;
2444 			err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2445 			if (err < 0)
2446 				break;
2447 			cnt = packets;
2448 		}
2449 
2450 		tcp_skb_mark_lost(tp, skb);
2451 
2452 		if (mark_head)
2453 			break;
2454 	}
2455 	tcp_verify_left_out(tp);
2456 }
2457 
2458 /* Account newly detected lost packet(s) */
2459 
2460 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2461 {
2462 	struct tcp_sock *tp = tcp_sk(sk);
2463 
2464 	if (tcp_is_reno(tp)) {
2465 		tcp_mark_head_lost(sk, 1, 1);
2466 	} else if (tcp_is_fack(tp)) {
2467 		int lost = tp->fackets_out - tp->reordering;
2468 		if (lost <= 0)
2469 			lost = 1;
2470 		tcp_mark_head_lost(sk, lost, 0);
2471 	} else {
2472 		int sacked_upto = tp->sacked_out - tp->reordering;
2473 		if (sacked_upto >= 0)
2474 			tcp_mark_head_lost(sk, sacked_upto, 0);
2475 		else if (fast_rexmit)
2476 			tcp_mark_head_lost(sk, 1, 1);
2477 	}
2478 
2479 	tcp_timeout_skbs(sk);
2480 }
2481 
2482 /* CWND moderation, preventing bursts due to too big ACKs
2483  * in dubious situations.
2484  */
2485 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2486 {
2487 	tp->snd_cwnd = min(tp->snd_cwnd,
2488 			   tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2489 	tp->snd_cwnd_stamp = tcp_time_stamp;
2490 }
2491 
2492 /* Lower bound on congestion window is slow start threshold
2493  * unless congestion avoidance choice decides to overide it.
2494  */
2495 static inline u32 tcp_cwnd_min(const struct sock *sk)
2496 {
2497 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2498 
2499 	return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2500 }
2501 
2502 /* Decrease cwnd each second ack. */
2503 static void tcp_cwnd_down(struct sock *sk, int flag)
2504 {
2505 	struct tcp_sock *tp = tcp_sk(sk);
2506 	int decr = tp->snd_cwnd_cnt + 1;
2507 
2508 	if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2509 	    (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2510 		tp->snd_cwnd_cnt = decr & 1;
2511 		decr >>= 1;
2512 
2513 		if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2514 			tp->snd_cwnd -= decr;
2515 
2516 		tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2517 		tp->snd_cwnd_stamp = tcp_time_stamp;
2518 	}
2519 }
2520 
2521 /* Nothing was retransmitted or returned timestamp is less
2522  * than timestamp of the first retransmission.
2523  */
2524 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2525 {
2526 	return !tp->retrans_stamp ||
2527 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2528 		 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2529 }
2530 
2531 /* Undo procedures. */
2532 
2533 #if FASTRETRANS_DEBUG > 1
2534 static void DBGUNDO(struct sock *sk, const char *msg)
2535 {
2536 	struct tcp_sock *tp = tcp_sk(sk);
2537 	struct inet_sock *inet = inet_sk(sk);
2538 
2539 	if (sk->sk_family == AF_INET) {
2540 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2541 			 msg,
2542 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2543 			 tp->snd_cwnd, tcp_left_out(tp),
2544 			 tp->snd_ssthresh, tp->prior_ssthresh,
2545 			 tp->packets_out);
2546 	}
2547 #if IS_ENABLED(CONFIG_IPV6)
2548 	else if (sk->sk_family == AF_INET6) {
2549 		struct ipv6_pinfo *np = inet6_sk(sk);
2550 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2551 			 msg,
2552 			 &np->daddr, ntohs(inet->inet_dport),
2553 			 tp->snd_cwnd, tcp_left_out(tp),
2554 			 tp->snd_ssthresh, tp->prior_ssthresh,
2555 			 tp->packets_out);
2556 	}
2557 #endif
2558 }
2559 #else
2560 #define DBGUNDO(x...) do { } while (0)
2561 #endif
2562 
2563 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2564 {
2565 	struct tcp_sock *tp = tcp_sk(sk);
2566 
2567 	if (tp->prior_ssthresh) {
2568 		const struct inet_connection_sock *icsk = inet_csk(sk);
2569 
2570 		if (icsk->icsk_ca_ops->undo_cwnd)
2571 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2572 		else
2573 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2574 
2575 		if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2576 			tp->snd_ssthresh = tp->prior_ssthresh;
2577 			TCP_ECN_withdraw_cwr(tp);
2578 		}
2579 	} else {
2580 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2581 	}
2582 	tp->snd_cwnd_stamp = tcp_time_stamp;
2583 }
2584 
2585 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2586 {
2587 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2588 }
2589 
2590 /* People celebrate: "We love our President!" */
2591 static bool tcp_try_undo_recovery(struct sock *sk)
2592 {
2593 	struct tcp_sock *tp = tcp_sk(sk);
2594 
2595 	if (tcp_may_undo(tp)) {
2596 		int mib_idx;
2597 
2598 		/* Happy end! We did not retransmit anything
2599 		 * or our original transmission succeeded.
2600 		 */
2601 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2602 		tcp_undo_cwr(sk, true);
2603 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2604 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2605 		else
2606 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2607 
2608 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2609 		tp->undo_marker = 0;
2610 	}
2611 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2612 		/* Hold old state until something *above* high_seq
2613 		 * is ACKed. For Reno it is MUST to prevent false
2614 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2615 		tcp_moderate_cwnd(tp);
2616 		return true;
2617 	}
2618 	tcp_set_ca_state(sk, TCP_CA_Open);
2619 	return false;
2620 }
2621 
2622 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2623 static void tcp_try_undo_dsack(struct sock *sk)
2624 {
2625 	struct tcp_sock *tp = tcp_sk(sk);
2626 
2627 	if (tp->undo_marker && !tp->undo_retrans) {
2628 		DBGUNDO(sk, "D-SACK");
2629 		tcp_undo_cwr(sk, true);
2630 		tp->undo_marker = 0;
2631 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2632 	}
2633 }
2634 
2635 /* We can clear retrans_stamp when there are no retransmissions in the
2636  * window. It would seem that it is trivially available for us in
2637  * tp->retrans_out, however, that kind of assumptions doesn't consider
2638  * what will happen if errors occur when sending retransmission for the
2639  * second time. ...It could the that such segment has only
2640  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2641  * the head skb is enough except for some reneging corner cases that
2642  * are not worth the effort.
2643  *
2644  * Main reason for all this complexity is the fact that connection dying
2645  * time now depends on the validity of the retrans_stamp, in particular,
2646  * that successive retransmissions of a segment must not advance
2647  * retrans_stamp under any conditions.
2648  */
2649 static bool tcp_any_retrans_done(const struct sock *sk)
2650 {
2651 	const struct tcp_sock *tp = tcp_sk(sk);
2652 	struct sk_buff *skb;
2653 
2654 	if (tp->retrans_out)
2655 		return true;
2656 
2657 	skb = tcp_write_queue_head(sk);
2658 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2659 		return true;
2660 
2661 	return false;
2662 }
2663 
2664 /* Undo during fast recovery after partial ACK. */
2665 
2666 static int tcp_try_undo_partial(struct sock *sk, int acked)
2667 {
2668 	struct tcp_sock *tp = tcp_sk(sk);
2669 	/* Partial ACK arrived. Force Hoe's retransmit. */
2670 	int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2671 
2672 	if (tcp_may_undo(tp)) {
2673 		/* Plain luck! Hole if filled with delayed
2674 		 * packet, rather than with a retransmit.
2675 		 */
2676 		if (!tcp_any_retrans_done(sk))
2677 			tp->retrans_stamp = 0;
2678 
2679 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2680 
2681 		DBGUNDO(sk, "Hoe");
2682 		tcp_undo_cwr(sk, false);
2683 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2684 
2685 		/* So... Do not make Hoe's retransmit yet.
2686 		 * If the first packet was delayed, the rest
2687 		 * ones are most probably delayed as well.
2688 		 */
2689 		failed = 0;
2690 	}
2691 	return failed;
2692 }
2693 
2694 /* Undo during loss recovery after partial ACK. */
2695 static bool tcp_try_undo_loss(struct sock *sk)
2696 {
2697 	struct tcp_sock *tp = tcp_sk(sk);
2698 
2699 	if (tcp_may_undo(tp)) {
2700 		struct sk_buff *skb;
2701 		tcp_for_write_queue(skb, sk) {
2702 			if (skb == tcp_send_head(sk))
2703 				break;
2704 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2705 		}
2706 
2707 		tcp_clear_all_retrans_hints(tp);
2708 
2709 		DBGUNDO(sk, "partial loss");
2710 		tp->lost_out = 0;
2711 		tcp_undo_cwr(sk, true);
2712 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2713 		inet_csk(sk)->icsk_retransmits = 0;
2714 		tp->undo_marker = 0;
2715 		if (tcp_is_sack(tp))
2716 			tcp_set_ca_state(sk, TCP_CA_Open);
2717 		return true;
2718 	}
2719 	return false;
2720 }
2721 
2722 static inline void tcp_complete_cwr(struct sock *sk)
2723 {
2724 	struct tcp_sock *tp = tcp_sk(sk);
2725 
2726 	/* Do not moderate cwnd if it's already undone in cwr or recovery. */
2727 	if (tp->undo_marker) {
2728 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2729 			tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2730 			tp->snd_cwnd_stamp = tcp_time_stamp;
2731 		} else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2732 			/* PRR algorithm. */
2733 			tp->snd_cwnd = tp->snd_ssthresh;
2734 			tp->snd_cwnd_stamp = tcp_time_stamp;
2735 		}
2736 	}
2737 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2738 }
2739 
2740 static void tcp_try_keep_open(struct sock *sk)
2741 {
2742 	struct tcp_sock *tp = tcp_sk(sk);
2743 	int state = TCP_CA_Open;
2744 
2745 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2746 		state = TCP_CA_Disorder;
2747 
2748 	if (inet_csk(sk)->icsk_ca_state != state) {
2749 		tcp_set_ca_state(sk, state);
2750 		tp->high_seq = tp->snd_nxt;
2751 	}
2752 }
2753 
2754 static void tcp_try_to_open(struct sock *sk, int flag)
2755 {
2756 	struct tcp_sock *tp = tcp_sk(sk);
2757 
2758 	tcp_verify_left_out(tp);
2759 
2760 	if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2761 		tp->retrans_stamp = 0;
2762 
2763 	if (flag & FLAG_ECE)
2764 		tcp_enter_cwr(sk, 1);
2765 
2766 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2767 		tcp_try_keep_open(sk);
2768 		if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2769 			tcp_moderate_cwnd(tp);
2770 	} else {
2771 		tcp_cwnd_down(sk, flag);
2772 	}
2773 }
2774 
2775 static void tcp_mtup_probe_failed(struct sock *sk)
2776 {
2777 	struct inet_connection_sock *icsk = inet_csk(sk);
2778 
2779 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2780 	icsk->icsk_mtup.probe_size = 0;
2781 }
2782 
2783 static void tcp_mtup_probe_success(struct sock *sk)
2784 {
2785 	struct tcp_sock *tp = tcp_sk(sk);
2786 	struct inet_connection_sock *icsk = inet_csk(sk);
2787 
2788 	/* FIXME: breaks with very large cwnd */
2789 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2790 	tp->snd_cwnd = tp->snd_cwnd *
2791 		       tcp_mss_to_mtu(sk, tp->mss_cache) /
2792 		       icsk->icsk_mtup.probe_size;
2793 	tp->snd_cwnd_cnt = 0;
2794 	tp->snd_cwnd_stamp = tcp_time_stamp;
2795 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2796 
2797 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2798 	icsk->icsk_mtup.probe_size = 0;
2799 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2800 }
2801 
2802 /* Do a simple retransmit without using the backoff mechanisms in
2803  * tcp_timer. This is used for path mtu discovery.
2804  * The socket is already locked here.
2805  */
2806 void tcp_simple_retransmit(struct sock *sk)
2807 {
2808 	const struct inet_connection_sock *icsk = inet_csk(sk);
2809 	struct tcp_sock *tp = tcp_sk(sk);
2810 	struct sk_buff *skb;
2811 	unsigned int mss = tcp_current_mss(sk);
2812 	u32 prior_lost = tp->lost_out;
2813 
2814 	tcp_for_write_queue(skb, sk) {
2815 		if (skb == tcp_send_head(sk))
2816 			break;
2817 		if (tcp_skb_seglen(skb) > mss &&
2818 		    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2819 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2820 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2821 				tp->retrans_out -= tcp_skb_pcount(skb);
2822 			}
2823 			tcp_skb_mark_lost_uncond_verify(tp, skb);
2824 		}
2825 	}
2826 
2827 	tcp_clear_retrans_hints_partial(tp);
2828 
2829 	if (prior_lost == tp->lost_out)
2830 		return;
2831 
2832 	if (tcp_is_reno(tp))
2833 		tcp_limit_reno_sacked(tp);
2834 
2835 	tcp_verify_left_out(tp);
2836 
2837 	/* Don't muck with the congestion window here.
2838 	 * Reason is that we do not increase amount of _data_
2839 	 * in network, but units changed and effective
2840 	 * cwnd/ssthresh really reduced now.
2841 	 */
2842 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2843 		tp->high_seq = tp->snd_nxt;
2844 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2845 		tp->prior_ssthresh = 0;
2846 		tp->undo_marker = 0;
2847 		tcp_set_ca_state(sk, TCP_CA_Loss);
2848 	}
2849 	tcp_xmit_retransmit_queue(sk);
2850 }
2851 EXPORT_SYMBOL(tcp_simple_retransmit);
2852 
2853 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2854  * (proportional rate reduction with slow start reduction bound) as described in
2855  * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2856  * It computes the number of packets to send (sndcnt) based on packets newly
2857  * delivered:
2858  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2859  *	cwnd reductions across a full RTT.
2860  *   2) If packets in flight is lower than ssthresh (such as due to excess
2861  *	losses and/or application stalls), do not perform any further cwnd
2862  *	reductions, but instead slow start up to ssthresh.
2863  */
2864 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2865 					int fast_rexmit, int flag)
2866 {
2867 	struct tcp_sock *tp = tcp_sk(sk);
2868 	int sndcnt = 0;
2869 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2870 
2871 	if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2872 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2873 			       tp->prior_cwnd - 1;
2874 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2875 	} else {
2876 		sndcnt = min_t(int, delta,
2877 			       max_t(int, tp->prr_delivered - tp->prr_out,
2878 				     newly_acked_sacked) + 1);
2879 	}
2880 
2881 	sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2882 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2883 }
2884 
2885 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2886 {
2887 	struct tcp_sock *tp = tcp_sk(sk);
2888 	int mib_idx;
2889 
2890 	if (tcp_is_reno(tp))
2891 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2892 	else
2893 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2894 
2895 	NET_INC_STATS_BH(sock_net(sk), mib_idx);
2896 
2897 	tp->high_seq = tp->snd_nxt;
2898 	tp->prior_ssthresh = 0;
2899 	tp->undo_marker = tp->snd_una;
2900 	tp->undo_retrans = tp->retrans_out;
2901 
2902 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2903 		if (!ece_ack)
2904 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2905 		tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2906 		TCP_ECN_queue_cwr(tp);
2907 	}
2908 
2909 	tp->bytes_acked = 0;
2910 	tp->snd_cwnd_cnt = 0;
2911 	tp->prior_cwnd = tp->snd_cwnd;
2912 	tp->prr_delivered = 0;
2913 	tp->prr_out = 0;
2914 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2915 }
2916 
2917 /* Process an event, which can update packets-in-flight not trivially.
2918  * Main goal of this function is to calculate new estimate for left_out,
2919  * taking into account both packets sitting in receiver's buffer and
2920  * packets lost by network.
2921  *
2922  * Besides that it does CWND reduction, when packet loss is detected
2923  * and changes state of machine.
2924  *
2925  * It does _not_ decide what to send, it is made in function
2926  * tcp_xmit_retransmit_queue().
2927  */
2928 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2929 				  int newly_acked_sacked, bool is_dupack,
2930 				  int flag)
2931 {
2932 	struct inet_connection_sock *icsk = inet_csk(sk);
2933 	struct tcp_sock *tp = tcp_sk(sk);
2934 	int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2935 				    (tcp_fackets_out(tp) > tp->reordering));
2936 	int fast_rexmit = 0;
2937 
2938 	if (WARN_ON(!tp->packets_out && tp->sacked_out))
2939 		tp->sacked_out = 0;
2940 	if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2941 		tp->fackets_out = 0;
2942 
2943 	/* Now state machine starts.
2944 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2945 	if (flag & FLAG_ECE)
2946 		tp->prior_ssthresh = 0;
2947 
2948 	/* B. In all the states check for reneging SACKs. */
2949 	if (tcp_check_sack_reneging(sk, flag))
2950 		return;
2951 
2952 	/* C. Check consistency of the current state. */
2953 	tcp_verify_left_out(tp);
2954 
2955 	/* D. Check state exit conditions. State can be terminated
2956 	 *    when high_seq is ACKed. */
2957 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2958 		WARN_ON(tp->retrans_out != 0);
2959 		tp->retrans_stamp = 0;
2960 	} else if (!before(tp->snd_una, tp->high_seq)) {
2961 		switch (icsk->icsk_ca_state) {
2962 		case TCP_CA_Loss:
2963 			icsk->icsk_retransmits = 0;
2964 			if (tcp_try_undo_recovery(sk))
2965 				return;
2966 			break;
2967 
2968 		case TCP_CA_CWR:
2969 			/* CWR is to be held something *above* high_seq
2970 			 * is ACKed for CWR bit to reach receiver. */
2971 			if (tp->snd_una != tp->high_seq) {
2972 				tcp_complete_cwr(sk);
2973 				tcp_set_ca_state(sk, TCP_CA_Open);
2974 			}
2975 			break;
2976 
2977 		case TCP_CA_Recovery:
2978 			if (tcp_is_reno(tp))
2979 				tcp_reset_reno_sack(tp);
2980 			if (tcp_try_undo_recovery(sk))
2981 				return;
2982 			tcp_complete_cwr(sk);
2983 			break;
2984 		}
2985 	}
2986 
2987 	/* E. Process state. */
2988 	switch (icsk->icsk_ca_state) {
2989 	case TCP_CA_Recovery:
2990 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2991 			if (tcp_is_reno(tp) && is_dupack)
2992 				tcp_add_reno_sack(sk);
2993 		} else
2994 			do_lost = tcp_try_undo_partial(sk, pkts_acked);
2995 		break;
2996 	case TCP_CA_Loss:
2997 		if (flag & FLAG_DATA_ACKED)
2998 			icsk->icsk_retransmits = 0;
2999 		if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3000 			tcp_reset_reno_sack(tp);
3001 		if (!tcp_try_undo_loss(sk)) {
3002 			tcp_moderate_cwnd(tp);
3003 			tcp_xmit_retransmit_queue(sk);
3004 			return;
3005 		}
3006 		if (icsk->icsk_ca_state != TCP_CA_Open)
3007 			return;
3008 		/* Loss is undone; fall through to processing in Open state. */
3009 	default:
3010 		if (tcp_is_reno(tp)) {
3011 			if (flag & FLAG_SND_UNA_ADVANCED)
3012 				tcp_reset_reno_sack(tp);
3013 			if (is_dupack)
3014 				tcp_add_reno_sack(sk);
3015 		}
3016 
3017 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3018 			tcp_try_undo_dsack(sk);
3019 
3020 		if (!tcp_time_to_recover(sk, flag)) {
3021 			tcp_try_to_open(sk, flag);
3022 			return;
3023 		}
3024 
3025 		/* MTU probe failure: don't reduce cwnd */
3026 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3027 		    icsk->icsk_mtup.probe_size &&
3028 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3029 			tcp_mtup_probe_failed(sk);
3030 			/* Restores the reduction we did in tcp_mtup_probe() */
3031 			tp->snd_cwnd++;
3032 			tcp_simple_retransmit(sk);
3033 			return;
3034 		}
3035 
3036 		/* Otherwise enter Recovery state */
3037 		tcp_enter_recovery(sk, (flag & FLAG_ECE));
3038 		fast_rexmit = 1;
3039 	}
3040 
3041 	if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3042 		tcp_update_scoreboard(sk, fast_rexmit);
3043 	tp->prr_delivered += newly_acked_sacked;
3044 	tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3045 	tcp_xmit_retransmit_queue(sk);
3046 }
3047 
3048 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3049 {
3050 	tcp_rtt_estimator(sk, seq_rtt);
3051 	tcp_set_rto(sk);
3052 	inet_csk(sk)->icsk_backoff = 0;
3053 }
3054 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3055 
3056 /* Read draft-ietf-tcplw-high-performance before mucking
3057  * with this code. (Supersedes RFC1323)
3058  */
3059 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3060 {
3061 	/* RTTM Rule: A TSecr value received in a segment is used to
3062 	 * update the averaged RTT measurement only if the segment
3063 	 * acknowledges some new data, i.e., only if it advances the
3064 	 * left edge of the send window.
3065 	 *
3066 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3067 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3068 	 *
3069 	 * Changed: reset backoff as soon as we see the first valid sample.
3070 	 * If we do not, we get strongly overestimated rto. With timestamps
3071 	 * samples are accepted even from very old segments: f.e., when rtt=1
3072 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3073 	 * answer arrives rto becomes 120 seconds! If at least one of segments
3074 	 * in window is lost... Voila.	 			--ANK (010210)
3075 	 */
3076 	struct tcp_sock *tp = tcp_sk(sk);
3077 
3078 	tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3079 }
3080 
3081 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3082 {
3083 	/* We don't have a timestamp. Can only use
3084 	 * packets that are not retransmitted to determine
3085 	 * rtt estimates. Also, we must not reset the
3086 	 * backoff for rto until we get a non-retransmitted
3087 	 * packet. This allows us to deal with a situation
3088 	 * where the network delay has increased suddenly.
3089 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3090 	 */
3091 
3092 	if (flag & FLAG_RETRANS_DATA_ACKED)
3093 		return;
3094 
3095 	tcp_valid_rtt_meas(sk, seq_rtt);
3096 }
3097 
3098 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3099 				      const s32 seq_rtt)
3100 {
3101 	const struct tcp_sock *tp = tcp_sk(sk);
3102 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3103 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3104 		tcp_ack_saw_tstamp(sk, flag);
3105 	else if (seq_rtt >= 0)
3106 		tcp_ack_no_tstamp(sk, seq_rtt, flag);
3107 }
3108 
3109 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3110 {
3111 	const struct inet_connection_sock *icsk = inet_csk(sk);
3112 	icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3113 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3114 }
3115 
3116 /* Restart timer after forward progress on connection.
3117  * RFC2988 recommends to restart timer to now+rto.
3118  */
3119 void tcp_rearm_rto(struct sock *sk)
3120 {
3121 	struct tcp_sock *tp = tcp_sk(sk);
3122 
3123 	if (!tp->packets_out) {
3124 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3125 	} else {
3126 		u32 rto = inet_csk(sk)->icsk_rto;
3127 		/* Offset the time elapsed after installing regular RTO */
3128 		if (tp->early_retrans_delayed) {
3129 			struct sk_buff *skb = tcp_write_queue_head(sk);
3130 			const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3131 			s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3132 			/* delta may not be positive if the socket is locked
3133 			 * when the delayed ER timer fires and is rescheduled.
3134 			 */
3135 			if (delta > 0)
3136 				rto = delta;
3137 		}
3138 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3139 					  TCP_RTO_MAX);
3140 	}
3141 	tp->early_retrans_delayed = 0;
3142 }
3143 
3144 /* This function is called when the delayed ER timer fires. TCP enters
3145  * fast recovery and performs fast-retransmit.
3146  */
3147 void tcp_resume_early_retransmit(struct sock *sk)
3148 {
3149 	struct tcp_sock *tp = tcp_sk(sk);
3150 
3151 	tcp_rearm_rto(sk);
3152 
3153 	/* Stop if ER is disabled after the delayed ER timer is scheduled */
3154 	if (!tp->do_early_retrans)
3155 		return;
3156 
3157 	tcp_enter_recovery(sk, false);
3158 	tcp_update_scoreboard(sk, 1);
3159 	tcp_xmit_retransmit_queue(sk);
3160 }
3161 
3162 /* If we get here, the whole TSO packet has not been acked. */
3163 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3164 {
3165 	struct tcp_sock *tp = tcp_sk(sk);
3166 	u32 packets_acked;
3167 
3168 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3169 
3170 	packets_acked = tcp_skb_pcount(skb);
3171 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3172 		return 0;
3173 	packets_acked -= tcp_skb_pcount(skb);
3174 
3175 	if (packets_acked) {
3176 		BUG_ON(tcp_skb_pcount(skb) == 0);
3177 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3178 	}
3179 
3180 	return packets_acked;
3181 }
3182 
3183 /* Remove acknowledged frames from the retransmission queue. If our packet
3184  * is before the ack sequence we can discard it as it's confirmed to have
3185  * arrived at the other end.
3186  */
3187 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3188 			       u32 prior_snd_una)
3189 {
3190 	struct tcp_sock *tp = tcp_sk(sk);
3191 	const struct inet_connection_sock *icsk = inet_csk(sk);
3192 	struct sk_buff *skb;
3193 	u32 now = tcp_time_stamp;
3194 	int fully_acked = true;
3195 	int flag = 0;
3196 	u32 pkts_acked = 0;
3197 	u32 reord = tp->packets_out;
3198 	u32 prior_sacked = tp->sacked_out;
3199 	s32 seq_rtt = -1;
3200 	s32 ca_seq_rtt = -1;
3201 	ktime_t last_ackt = net_invalid_timestamp();
3202 
3203 	while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3204 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3205 		u32 acked_pcount;
3206 		u8 sacked = scb->sacked;
3207 
3208 		/* Determine how many packets and what bytes were acked, tso and else */
3209 		if (after(scb->end_seq, tp->snd_una)) {
3210 			if (tcp_skb_pcount(skb) == 1 ||
3211 			    !after(tp->snd_una, scb->seq))
3212 				break;
3213 
3214 			acked_pcount = tcp_tso_acked(sk, skb);
3215 			if (!acked_pcount)
3216 				break;
3217 
3218 			fully_acked = false;
3219 		} else {
3220 			acked_pcount = tcp_skb_pcount(skb);
3221 		}
3222 
3223 		if (sacked & TCPCB_RETRANS) {
3224 			if (sacked & TCPCB_SACKED_RETRANS)
3225 				tp->retrans_out -= acked_pcount;
3226 			flag |= FLAG_RETRANS_DATA_ACKED;
3227 			ca_seq_rtt = -1;
3228 			seq_rtt = -1;
3229 			if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3230 				flag |= FLAG_NONHEAD_RETRANS_ACKED;
3231 		} else {
3232 			ca_seq_rtt = now - scb->when;
3233 			last_ackt = skb->tstamp;
3234 			if (seq_rtt < 0) {
3235 				seq_rtt = ca_seq_rtt;
3236 			}
3237 			if (!(sacked & TCPCB_SACKED_ACKED))
3238 				reord = min(pkts_acked, reord);
3239 		}
3240 
3241 		if (sacked & TCPCB_SACKED_ACKED)
3242 			tp->sacked_out -= acked_pcount;
3243 		if (sacked & TCPCB_LOST)
3244 			tp->lost_out -= acked_pcount;
3245 
3246 		tp->packets_out -= acked_pcount;
3247 		pkts_acked += acked_pcount;
3248 
3249 		/* Initial outgoing SYN's get put onto the write_queue
3250 		 * just like anything else we transmit.  It is not
3251 		 * true data, and if we misinform our callers that
3252 		 * this ACK acks real data, we will erroneously exit
3253 		 * connection startup slow start one packet too
3254 		 * quickly.  This is severely frowned upon behavior.
3255 		 */
3256 		if (!(scb->tcp_flags & TCPHDR_SYN)) {
3257 			flag |= FLAG_DATA_ACKED;
3258 		} else {
3259 			flag |= FLAG_SYN_ACKED;
3260 			tp->retrans_stamp = 0;
3261 		}
3262 
3263 		if (!fully_acked)
3264 			break;
3265 
3266 		tcp_unlink_write_queue(skb, sk);
3267 		sk_wmem_free_skb(sk, skb);
3268 		tp->scoreboard_skb_hint = NULL;
3269 		if (skb == tp->retransmit_skb_hint)
3270 			tp->retransmit_skb_hint = NULL;
3271 		if (skb == tp->lost_skb_hint)
3272 			tp->lost_skb_hint = NULL;
3273 	}
3274 
3275 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3276 		tp->snd_up = tp->snd_una;
3277 
3278 	if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3279 		flag |= FLAG_SACK_RENEGING;
3280 
3281 	if (flag & FLAG_ACKED) {
3282 		const struct tcp_congestion_ops *ca_ops
3283 			= inet_csk(sk)->icsk_ca_ops;
3284 
3285 		if (unlikely(icsk->icsk_mtup.probe_size &&
3286 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3287 			tcp_mtup_probe_success(sk);
3288 		}
3289 
3290 		tcp_ack_update_rtt(sk, flag, seq_rtt);
3291 		tcp_rearm_rto(sk);
3292 
3293 		if (tcp_is_reno(tp)) {
3294 			tcp_remove_reno_sacks(sk, pkts_acked);
3295 		} else {
3296 			int delta;
3297 
3298 			/* Non-retransmitted hole got filled? That's reordering */
3299 			if (reord < prior_fackets)
3300 				tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3301 
3302 			delta = tcp_is_fack(tp) ? pkts_acked :
3303 						  prior_sacked - tp->sacked_out;
3304 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3305 		}
3306 
3307 		tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3308 
3309 		if (ca_ops->pkts_acked) {
3310 			s32 rtt_us = -1;
3311 
3312 			/* Is the ACK triggering packet unambiguous? */
3313 			if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3314 				/* High resolution needed and available? */
3315 				if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3316 				    !ktime_equal(last_ackt,
3317 						 net_invalid_timestamp()))
3318 					rtt_us = ktime_us_delta(ktime_get_real(),
3319 								last_ackt);
3320 				else if (ca_seq_rtt >= 0)
3321 					rtt_us = jiffies_to_usecs(ca_seq_rtt);
3322 			}
3323 
3324 			ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3325 		}
3326 	}
3327 
3328 #if FASTRETRANS_DEBUG > 0
3329 	WARN_ON((int)tp->sacked_out < 0);
3330 	WARN_ON((int)tp->lost_out < 0);
3331 	WARN_ON((int)tp->retrans_out < 0);
3332 	if (!tp->packets_out && tcp_is_sack(tp)) {
3333 		icsk = inet_csk(sk);
3334 		if (tp->lost_out) {
3335 			pr_debug("Leak l=%u %d\n",
3336 				 tp->lost_out, icsk->icsk_ca_state);
3337 			tp->lost_out = 0;
3338 		}
3339 		if (tp->sacked_out) {
3340 			pr_debug("Leak s=%u %d\n",
3341 				 tp->sacked_out, icsk->icsk_ca_state);
3342 			tp->sacked_out = 0;
3343 		}
3344 		if (tp->retrans_out) {
3345 			pr_debug("Leak r=%u %d\n",
3346 				 tp->retrans_out, icsk->icsk_ca_state);
3347 			tp->retrans_out = 0;
3348 		}
3349 	}
3350 #endif
3351 	return flag;
3352 }
3353 
3354 static void tcp_ack_probe(struct sock *sk)
3355 {
3356 	const struct tcp_sock *tp = tcp_sk(sk);
3357 	struct inet_connection_sock *icsk = inet_csk(sk);
3358 
3359 	/* Was it a usable window open? */
3360 
3361 	if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3362 		icsk->icsk_backoff = 0;
3363 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3364 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3365 		 * This function is not for random using!
3366 		 */
3367 	} else {
3368 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3369 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3370 					  TCP_RTO_MAX);
3371 	}
3372 }
3373 
3374 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3375 {
3376 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3377 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3378 }
3379 
3380 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3381 {
3382 	const struct tcp_sock *tp = tcp_sk(sk);
3383 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3384 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3385 }
3386 
3387 /* Check that window update is acceptable.
3388  * The function assumes that snd_una<=ack<=snd_next.
3389  */
3390 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3391 					const u32 ack, const u32 ack_seq,
3392 					const u32 nwin)
3393 {
3394 	return	after(ack, tp->snd_una) ||
3395 		after(ack_seq, tp->snd_wl1) ||
3396 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3397 }
3398 
3399 /* Update our send window.
3400  *
3401  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3402  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3403  */
3404 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3405 				 u32 ack_seq)
3406 {
3407 	struct tcp_sock *tp = tcp_sk(sk);
3408 	int flag = 0;
3409 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3410 
3411 	if (likely(!tcp_hdr(skb)->syn))
3412 		nwin <<= tp->rx_opt.snd_wscale;
3413 
3414 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3415 		flag |= FLAG_WIN_UPDATE;
3416 		tcp_update_wl(tp, ack_seq);
3417 
3418 		if (tp->snd_wnd != nwin) {
3419 			tp->snd_wnd = nwin;
3420 
3421 			/* Note, it is the only place, where
3422 			 * fast path is recovered for sending TCP.
3423 			 */
3424 			tp->pred_flags = 0;
3425 			tcp_fast_path_check(sk);
3426 
3427 			if (nwin > tp->max_window) {
3428 				tp->max_window = nwin;
3429 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3430 			}
3431 		}
3432 	}
3433 
3434 	tp->snd_una = ack;
3435 
3436 	return flag;
3437 }
3438 
3439 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3440  * continue in congestion avoidance.
3441  */
3442 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3443 {
3444 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3445 	tp->snd_cwnd_cnt = 0;
3446 	tp->bytes_acked = 0;
3447 	TCP_ECN_queue_cwr(tp);
3448 	tcp_moderate_cwnd(tp);
3449 }
3450 
3451 /* A conservative spurious RTO response algorithm: reduce cwnd using
3452  * rate halving and continue in congestion avoidance.
3453  */
3454 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3455 {
3456 	tcp_enter_cwr(sk, 0);
3457 }
3458 
3459 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3460 {
3461 	if (flag & FLAG_ECE)
3462 		tcp_ratehalving_spur_to_response(sk);
3463 	else
3464 		tcp_undo_cwr(sk, true);
3465 }
3466 
3467 /* F-RTO spurious RTO detection algorithm (RFC4138)
3468  *
3469  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3470  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3471  * window (but not to or beyond highest sequence sent before RTO):
3472  *   On First ACK,  send two new segments out.
3473  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3474  *                  algorithm is not part of the F-RTO detection algorithm
3475  *                  given in RFC4138 but can be selected separately).
3476  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3477  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3478  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3479  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3480  *
3481  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3482  * original window even after we transmit two new data segments.
3483  *
3484  * SACK version:
3485  *   on first step, wait until first cumulative ACK arrives, then move to
3486  *   the second step. In second step, the next ACK decides.
3487  *
3488  * F-RTO is implemented (mainly) in four functions:
3489  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3490  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3491  *     called when tcp_use_frto() showed green light
3492  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3493  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3494  *     to prove that the RTO is indeed spurious. It transfers the control
3495  *     from F-RTO to the conventional RTO recovery
3496  */
3497 static bool tcp_process_frto(struct sock *sk, int flag)
3498 {
3499 	struct tcp_sock *tp = tcp_sk(sk);
3500 
3501 	tcp_verify_left_out(tp);
3502 
3503 	/* Duplicate the behavior from Loss state (fastretrans_alert) */
3504 	if (flag & FLAG_DATA_ACKED)
3505 		inet_csk(sk)->icsk_retransmits = 0;
3506 
3507 	if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3508 	    ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3509 		tp->undo_marker = 0;
3510 
3511 	if (!before(tp->snd_una, tp->frto_highmark)) {
3512 		tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3513 		return true;
3514 	}
3515 
3516 	if (!tcp_is_sackfrto(tp)) {
3517 		/* RFC4138 shortcoming in step 2; should also have case c):
3518 		 * ACK isn't duplicate nor advances window, e.g., opposite dir
3519 		 * data, winupdate
3520 		 */
3521 		if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3522 			return true;
3523 
3524 		if (!(flag & FLAG_DATA_ACKED)) {
3525 			tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3526 					    flag);
3527 			return true;
3528 		}
3529 	} else {
3530 		if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3531 			/* Prevent sending of new data. */
3532 			tp->snd_cwnd = min(tp->snd_cwnd,
3533 					   tcp_packets_in_flight(tp));
3534 			return true;
3535 		}
3536 
3537 		if ((tp->frto_counter >= 2) &&
3538 		    (!(flag & FLAG_FORWARD_PROGRESS) ||
3539 		     ((flag & FLAG_DATA_SACKED) &&
3540 		      !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3541 			/* RFC4138 shortcoming (see comment above) */
3542 			if (!(flag & FLAG_FORWARD_PROGRESS) &&
3543 			    (flag & FLAG_NOT_DUP))
3544 				return true;
3545 
3546 			tcp_enter_frto_loss(sk, 3, flag);
3547 			return true;
3548 		}
3549 	}
3550 
3551 	if (tp->frto_counter == 1) {
3552 		/* tcp_may_send_now needs to see updated state */
3553 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3554 		tp->frto_counter = 2;
3555 
3556 		if (!tcp_may_send_now(sk))
3557 			tcp_enter_frto_loss(sk, 2, flag);
3558 
3559 		return true;
3560 	} else {
3561 		switch (sysctl_tcp_frto_response) {
3562 		case 2:
3563 			tcp_undo_spur_to_response(sk, flag);
3564 			break;
3565 		case 1:
3566 			tcp_conservative_spur_to_response(tp);
3567 			break;
3568 		default:
3569 			tcp_ratehalving_spur_to_response(sk);
3570 			break;
3571 		}
3572 		tp->frto_counter = 0;
3573 		tp->undo_marker = 0;
3574 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3575 	}
3576 	return false;
3577 }
3578 
3579 /* This routine deals with incoming acks, but not outgoing ones. */
3580 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3581 {
3582 	struct inet_connection_sock *icsk = inet_csk(sk);
3583 	struct tcp_sock *tp = tcp_sk(sk);
3584 	u32 prior_snd_una = tp->snd_una;
3585 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3586 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3587 	bool is_dupack = false;
3588 	u32 prior_in_flight;
3589 	u32 prior_fackets;
3590 	int prior_packets;
3591 	int prior_sacked = tp->sacked_out;
3592 	int pkts_acked = 0;
3593 	int newly_acked_sacked = 0;
3594 	bool frto_cwnd = false;
3595 
3596 	/* If the ack is older than previous acks
3597 	 * then we can probably ignore it.
3598 	 */
3599 	if (before(ack, prior_snd_una))
3600 		goto old_ack;
3601 
3602 	/* If the ack includes data we haven't sent yet, discard
3603 	 * this segment (RFC793 Section 3.9).
3604 	 */
3605 	if (after(ack, tp->snd_nxt))
3606 		goto invalid_ack;
3607 
3608 	if (tp->early_retrans_delayed)
3609 		tcp_rearm_rto(sk);
3610 
3611 	if (after(ack, prior_snd_una))
3612 		flag |= FLAG_SND_UNA_ADVANCED;
3613 
3614 	if (sysctl_tcp_abc) {
3615 		if (icsk->icsk_ca_state < TCP_CA_CWR)
3616 			tp->bytes_acked += ack - prior_snd_una;
3617 		else if (icsk->icsk_ca_state == TCP_CA_Loss)
3618 			/* we assume just one segment left network */
3619 			tp->bytes_acked += min(ack - prior_snd_una,
3620 					       tp->mss_cache);
3621 	}
3622 
3623 	prior_fackets = tp->fackets_out;
3624 	prior_in_flight = tcp_packets_in_flight(tp);
3625 
3626 	if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3627 		/* Window is constant, pure forward advance.
3628 		 * No more checks are required.
3629 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3630 		 */
3631 		tcp_update_wl(tp, ack_seq);
3632 		tp->snd_una = ack;
3633 		flag |= FLAG_WIN_UPDATE;
3634 
3635 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3636 
3637 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3638 	} else {
3639 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3640 			flag |= FLAG_DATA;
3641 		else
3642 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3643 
3644 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3645 
3646 		if (TCP_SKB_CB(skb)->sacked)
3647 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3648 
3649 		if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3650 			flag |= FLAG_ECE;
3651 
3652 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3653 	}
3654 
3655 	/* We passed data and got it acked, remove any soft error
3656 	 * log. Something worked...
3657 	 */
3658 	sk->sk_err_soft = 0;
3659 	icsk->icsk_probes_out = 0;
3660 	tp->rcv_tstamp = tcp_time_stamp;
3661 	prior_packets = tp->packets_out;
3662 	if (!prior_packets)
3663 		goto no_queue;
3664 
3665 	/* See if we can take anything off of the retransmit queue. */
3666 	flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3667 
3668 	pkts_acked = prior_packets - tp->packets_out;
3669 	newly_acked_sacked = (prior_packets - prior_sacked) -
3670 			     (tp->packets_out - tp->sacked_out);
3671 
3672 	if (tp->frto_counter)
3673 		frto_cwnd = tcp_process_frto(sk, flag);
3674 	/* Guarantee sacktag reordering detection against wrap-arounds */
3675 	if (before(tp->frto_highmark, tp->snd_una))
3676 		tp->frto_highmark = 0;
3677 
3678 	if (tcp_ack_is_dubious(sk, flag)) {
3679 		/* Advance CWND, if state allows this. */
3680 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3681 		    tcp_may_raise_cwnd(sk, flag))
3682 			tcp_cong_avoid(sk, ack, prior_in_flight);
3683 		is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3684 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3685 				      is_dupack, flag);
3686 	} else {
3687 		if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3688 			tcp_cong_avoid(sk, ack, prior_in_flight);
3689 	}
3690 
3691 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3692 		struct dst_entry *dst = __sk_dst_get(sk);
3693 		if (dst)
3694 			dst_confirm(dst);
3695 	}
3696 	return 1;
3697 
3698 no_queue:
3699 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3700 	if (flag & FLAG_DSACKING_ACK)
3701 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3702 				      is_dupack, flag);
3703 	/* If this ack opens up a zero window, clear backoff.  It was
3704 	 * being used to time the probes, and is probably far higher than
3705 	 * it needs to be for normal retransmission.
3706 	 */
3707 	if (tcp_send_head(sk))
3708 		tcp_ack_probe(sk);
3709 	return 1;
3710 
3711 invalid_ack:
3712 	SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3713 	return -1;
3714 
3715 old_ack:
3716 	/* If data was SACKed, tag it and see if we should send more data.
3717 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3718 	 */
3719 	if (TCP_SKB_CB(skb)->sacked) {
3720 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3721 		newly_acked_sacked = tp->sacked_out - prior_sacked;
3722 		tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3723 				      is_dupack, flag);
3724 	}
3725 
3726 	SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3727 	return 0;
3728 }
3729 
3730 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3731  * But, this can also be called on packets in the established flow when
3732  * the fast version below fails.
3733  */
3734 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3735 		       const u8 **hvpp, int estab,
3736 		       struct tcp_fastopen_cookie *foc)
3737 {
3738 	const unsigned char *ptr;
3739 	const struct tcphdr *th = tcp_hdr(skb);
3740 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3741 
3742 	ptr = (const unsigned char *)(th + 1);
3743 	opt_rx->saw_tstamp = 0;
3744 
3745 	while (length > 0) {
3746 		int opcode = *ptr++;
3747 		int opsize;
3748 
3749 		switch (opcode) {
3750 		case TCPOPT_EOL:
3751 			return;
3752 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3753 			length--;
3754 			continue;
3755 		default:
3756 			opsize = *ptr++;
3757 			if (opsize < 2) /* "silly options" */
3758 				return;
3759 			if (opsize > length)
3760 				return;	/* don't parse partial options */
3761 			switch (opcode) {
3762 			case TCPOPT_MSS:
3763 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3764 					u16 in_mss = get_unaligned_be16(ptr);
3765 					if (in_mss) {
3766 						if (opt_rx->user_mss &&
3767 						    opt_rx->user_mss < in_mss)
3768 							in_mss = opt_rx->user_mss;
3769 						opt_rx->mss_clamp = in_mss;
3770 					}
3771 				}
3772 				break;
3773 			case TCPOPT_WINDOW:
3774 				if (opsize == TCPOLEN_WINDOW && th->syn &&
3775 				    !estab && sysctl_tcp_window_scaling) {
3776 					__u8 snd_wscale = *(__u8 *)ptr;
3777 					opt_rx->wscale_ok = 1;
3778 					if (snd_wscale > 14) {
3779 						net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3780 								     __func__,
3781 								     snd_wscale);
3782 						snd_wscale = 14;
3783 					}
3784 					opt_rx->snd_wscale = snd_wscale;
3785 				}
3786 				break;
3787 			case TCPOPT_TIMESTAMP:
3788 				if ((opsize == TCPOLEN_TIMESTAMP) &&
3789 				    ((estab && opt_rx->tstamp_ok) ||
3790 				     (!estab && sysctl_tcp_timestamps))) {
3791 					opt_rx->saw_tstamp = 1;
3792 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3793 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3794 				}
3795 				break;
3796 			case TCPOPT_SACK_PERM:
3797 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3798 				    !estab && sysctl_tcp_sack) {
3799 					opt_rx->sack_ok = TCP_SACK_SEEN;
3800 					tcp_sack_reset(opt_rx);
3801 				}
3802 				break;
3803 
3804 			case TCPOPT_SACK:
3805 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3806 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3807 				   opt_rx->sack_ok) {
3808 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3809 				}
3810 				break;
3811 #ifdef CONFIG_TCP_MD5SIG
3812 			case TCPOPT_MD5SIG:
3813 				/*
3814 				 * The MD5 Hash has already been
3815 				 * checked (see tcp_v{4,6}_do_rcv()).
3816 				 */
3817 				break;
3818 #endif
3819 			case TCPOPT_COOKIE:
3820 				/* This option is variable length.
3821 				 */
3822 				switch (opsize) {
3823 				case TCPOLEN_COOKIE_BASE:
3824 					/* not yet implemented */
3825 					break;
3826 				case TCPOLEN_COOKIE_PAIR:
3827 					/* not yet implemented */
3828 					break;
3829 				case TCPOLEN_COOKIE_MIN+0:
3830 				case TCPOLEN_COOKIE_MIN+2:
3831 				case TCPOLEN_COOKIE_MIN+4:
3832 				case TCPOLEN_COOKIE_MIN+6:
3833 				case TCPOLEN_COOKIE_MAX:
3834 					/* 16-bit multiple */
3835 					opt_rx->cookie_plus = opsize;
3836 					*hvpp = ptr;
3837 					break;
3838 				default:
3839 					/* ignore option */
3840 					break;
3841 				}
3842 				break;
3843 
3844 			case TCPOPT_EXP:
3845 				/* Fast Open option shares code 254 using a
3846 				 * 16 bits magic number. It's valid only in
3847 				 * SYN or SYN-ACK with an even size.
3848 				 */
3849 				if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3850 				    get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3851 				    foc == NULL || !th->syn || (opsize & 1))
3852 					break;
3853 				foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3854 				if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3855 				    foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3856 					memcpy(foc->val, ptr + 2, foc->len);
3857 				else if (foc->len != 0)
3858 					foc->len = -1;
3859 				break;
3860 
3861 			}
3862 			ptr += opsize-2;
3863 			length -= opsize;
3864 		}
3865 	}
3866 }
3867 EXPORT_SYMBOL(tcp_parse_options);
3868 
3869 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3870 {
3871 	const __be32 *ptr = (const __be32 *)(th + 1);
3872 
3873 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3874 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3875 		tp->rx_opt.saw_tstamp = 1;
3876 		++ptr;
3877 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
3878 		++ptr;
3879 		tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3880 		return true;
3881 	}
3882 	return false;
3883 }
3884 
3885 /* Fast parse options. This hopes to only see timestamps.
3886  * If it is wrong it falls back on tcp_parse_options().
3887  */
3888 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3889 				   const struct tcphdr *th,
3890 				   struct tcp_sock *tp, const u8 **hvpp)
3891 {
3892 	/* In the spirit of fast parsing, compare doff directly to constant
3893 	 * values.  Because equality is used, short doff can be ignored here.
3894 	 */
3895 	if (th->doff == (sizeof(*th) / 4)) {
3896 		tp->rx_opt.saw_tstamp = 0;
3897 		return false;
3898 	} else if (tp->rx_opt.tstamp_ok &&
3899 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3900 		if (tcp_parse_aligned_timestamp(tp, th))
3901 			return true;
3902 	}
3903 	tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
3904 	return true;
3905 }
3906 
3907 #ifdef CONFIG_TCP_MD5SIG
3908 /*
3909  * Parse MD5 Signature option
3910  */
3911 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3912 {
3913 	int length = (th->doff << 2) - sizeof(*th);
3914 	const u8 *ptr = (const u8 *)(th + 1);
3915 
3916 	/* If the TCP option is too short, we can short cut */
3917 	if (length < TCPOLEN_MD5SIG)
3918 		return NULL;
3919 
3920 	while (length > 0) {
3921 		int opcode = *ptr++;
3922 		int opsize;
3923 
3924 		switch(opcode) {
3925 		case TCPOPT_EOL:
3926 			return NULL;
3927 		case TCPOPT_NOP:
3928 			length--;
3929 			continue;
3930 		default:
3931 			opsize = *ptr++;
3932 			if (opsize < 2 || opsize > length)
3933 				return NULL;
3934 			if (opcode == TCPOPT_MD5SIG)
3935 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3936 		}
3937 		ptr += opsize - 2;
3938 		length -= opsize;
3939 	}
3940 	return NULL;
3941 }
3942 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3943 #endif
3944 
3945 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3946 {
3947 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3948 	tp->rx_opt.ts_recent_stamp = get_seconds();
3949 }
3950 
3951 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3952 {
3953 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3954 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3955 		 * extra check below makes sure this can only happen
3956 		 * for pure ACK frames.  -DaveM
3957 		 *
3958 		 * Not only, also it occurs for expired timestamps.
3959 		 */
3960 
3961 		if (tcp_paws_check(&tp->rx_opt, 0))
3962 			tcp_store_ts_recent(tp);
3963 	}
3964 }
3965 
3966 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3967  *
3968  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3969  * it can pass through stack. So, the following predicate verifies that
3970  * this segment is not used for anything but congestion avoidance or
3971  * fast retransmit. Moreover, we even are able to eliminate most of such
3972  * second order effects, if we apply some small "replay" window (~RTO)
3973  * to timestamp space.
3974  *
3975  * All these measures still do not guarantee that we reject wrapped ACKs
3976  * on networks with high bandwidth, when sequence space is recycled fastly,
3977  * but it guarantees that such events will be very rare and do not affect
3978  * connection seriously. This doesn't look nice, but alas, PAWS is really
3979  * buggy extension.
3980  *
3981  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3982  * states that events when retransmit arrives after original data are rare.
3983  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3984  * the biggest problem on large power networks even with minor reordering.
3985  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3986  * up to bandwidth of 18Gigabit/sec. 8) ]
3987  */
3988 
3989 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3990 {
3991 	const struct tcp_sock *tp = tcp_sk(sk);
3992 	const struct tcphdr *th = tcp_hdr(skb);
3993 	u32 seq = TCP_SKB_CB(skb)->seq;
3994 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3995 
3996 	return (/* 1. Pure ACK with correct sequence number. */
3997 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3998 
3999 		/* 2. ... and duplicate ACK. */
4000 		ack == tp->snd_una &&
4001 
4002 		/* 3. ... and does not update window. */
4003 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4004 
4005 		/* 4. ... and sits in replay window. */
4006 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4007 }
4008 
4009 static inline bool tcp_paws_discard(const struct sock *sk,
4010 				   const struct sk_buff *skb)
4011 {
4012 	const struct tcp_sock *tp = tcp_sk(sk);
4013 
4014 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4015 	       !tcp_disordered_ack(sk, skb);
4016 }
4017 
4018 /* Check segment sequence number for validity.
4019  *
4020  * Segment controls are considered valid, if the segment
4021  * fits to the window after truncation to the window. Acceptability
4022  * of data (and SYN, FIN, of course) is checked separately.
4023  * See tcp_data_queue(), for example.
4024  *
4025  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4026  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4027  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4028  * (borrowed from freebsd)
4029  */
4030 
4031 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4032 {
4033 	return	!before(end_seq, tp->rcv_wup) &&
4034 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4035 }
4036 
4037 /* When we get a reset we do this. */
4038 static void tcp_reset(struct sock *sk)
4039 {
4040 	/* We want the right error as BSD sees it (and indeed as we do). */
4041 	switch (sk->sk_state) {
4042 	case TCP_SYN_SENT:
4043 		sk->sk_err = ECONNREFUSED;
4044 		break;
4045 	case TCP_CLOSE_WAIT:
4046 		sk->sk_err = EPIPE;
4047 		break;
4048 	case TCP_CLOSE:
4049 		return;
4050 	default:
4051 		sk->sk_err = ECONNRESET;
4052 	}
4053 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4054 	smp_wmb();
4055 
4056 	if (!sock_flag(sk, SOCK_DEAD))
4057 		sk->sk_error_report(sk);
4058 
4059 	tcp_done(sk);
4060 }
4061 
4062 /*
4063  * 	Process the FIN bit. This now behaves as it is supposed to work
4064  *	and the FIN takes effect when it is validly part of sequence
4065  *	space. Not before when we get holes.
4066  *
4067  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4068  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4069  *	TIME-WAIT)
4070  *
4071  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4072  *	close and we go into CLOSING (and later onto TIME-WAIT)
4073  *
4074  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4075  */
4076 static void tcp_fin(struct sock *sk)
4077 {
4078 	struct tcp_sock *tp = tcp_sk(sk);
4079 
4080 	inet_csk_schedule_ack(sk);
4081 
4082 	sk->sk_shutdown |= RCV_SHUTDOWN;
4083 	sock_set_flag(sk, SOCK_DONE);
4084 
4085 	switch (sk->sk_state) {
4086 	case TCP_SYN_RECV:
4087 	case TCP_ESTABLISHED:
4088 		/* Move to CLOSE_WAIT */
4089 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4090 		inet_csk(sk)->icsk_ack.pingpong = 1;
4091 		break;
4092 
4093 	case TCP_CLOSE_WAIT:
4094 	case TCP_CLOSING:
4095 		/* Received a retransmission of the FIN, do
4096 		 * nothing.
4097 		 */
4098 		break;
4099 	case TCP_LAST_ACK:
4100 		/* RFC793: Remain in the LAST-ACK state. */
4101 		break;
4102 
4103 	case TCP_FIN_WAIT1:
4104 		/* This case occurs when a simultaneous close
4105 		 * happens, we must ack the received FIN and
4106 		 * enter the CLOSING state.
4107 		 */
4108 		tcp_send_ack(sk);
4109 		tcp_set_state(sk, TCP_CLOSING);
4110 		break;
4111 	case TCP_FIN_WAIT2:
4112 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4113 		tcp_send_ack(sk);
4114 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4115 		break;
4116 	default:
4117 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4118 		 * cases we should never reach this piece of code.
4119 		 */
4120 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4121 		       __func__, sk->sk_state);
4122 		break;
4123 	}
4124 
4125 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4126 	 * Probably, we should reset in this case. For now drop them.
4127 	 */
4128 	__skb_queue_purge(&tp->out_of_order_queue);
4129 	if (tcp_is_sack(tp))
4130 		tcp_sack_reset(&tp->rx_opt);
4131 	sk_mem_reclaim(sk);
4132 
4133 	if (!sock_flag(sk, SOCK_DEAD)) {
4134 		sk->sk_state_change(sk);
4135 
4136 		/* Do not send POLL_HUP for half duplex close. */
4137 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4138 		    sk->sk_state == TCP_CLOSE)
4139 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4140 		else
4141 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4142 	}
4143 }
4144 
4145 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4146 				  u32 end_seq)
4147 {
4148 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4149 		if (before(seq, sp->start_seq))
4150 			sp->start_seq = seq;
4151 		if (after(end_seq, sp->end_seq))
4152 			sp->end_seq = end_seq;
4153 		return true;
4154 	}
4155 	return false;
4156 }
4157 
4158 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4159 {
4160 	struct tcp_sock *tp = tcp_sk(sk);
4161 
4162 	if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4163 		int mib_idx;
4164 
4165 		if (before(seq, tp->rcv_nxt))
4166 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4167 		else
4168 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4169 
4170 		NET_INC_STATS_BH(sock_net(sk), mib_idx);
4171 
4172 		tp->rx_opt.dsack = 1;
4173 		tp->duplicate_sack[0].start_seq = seq;
4174 		tp->duplicate_sack[0].end_seq = end_seq;
4175 	}
4176 }
4177 
4178 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4179 {
4180 	struct tcp_sock *tp = tcp_sk(sk);
4181 
4182 	if (!tp->rx_opt.dsack)
4183 		tcp_dsack_set(sk, seq, end_seq);
4184 	else
4185 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4186 }
4187 
4188 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4189 {
4190 	struct tcp_sock *tp = tcp_sk(sk);
4191 
4192 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4193 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4194 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4195 		tcp_enter_quickack_mode(sk);
4196 
4197 		if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4198 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4199 
4200 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4201 				end_seq = tp->rcv_nxt;
4202 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4203 		}
4204 	}
4205 
4206 	tcp_send_ack(sk);
4207 }
4208 
4209 /* These routines update the SACK block as out-of-order packets arrive or
4210  * in-order packets close up the sequence space.
4211  */
4212 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4213 {
4214 	int this_sack;
4215 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4216 	struct tcp_sack_block *swalk = sp + 1;
4217 
4218 	/* See if the recent change to the first SACK eats into
4219 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4220 	 */
4221 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4222 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4223 			int i;
4224 
4225 			/* Zap SWALK, by moving every further SACK up by one slot.
4226 			 * Decrease num_sacks.
4227 			 */
4228 			tp->rx_opt.num_sacks--;
4229 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4230 				sp[i] = sp[i + 1];
4231 			continue;
4232 		}
4233 		this_sack++, swalk++;
4234 	}
4235 }
4236 
4237 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4238 {
4239 	struct tcp_sock *tp = tcp_sk(sk);
4240 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4241 	int cur_sacks = tp->rx_opt.num_sacks;
4242 	int this_sack;
4243 
4244 	if (!cur_sacks)
4245 		goto new_sack;
4246 
4247 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4248 		if (tcp_sack_extend(sp, seq, end_seq)) {
4249 			/* Rotate this_sack to the first one. */
4250 			for (; this_sack > 0; this_sack--, sp--)
4251 				swap(*sp, *(sp - 1));
4252 			if (cur_sacks > 1)
4253 				tcp_sack_maybe_coalesce(tp);
4254 			return;
4255 		}
4256 	}
4257 
4258 	/* Could not find an adjacent existing SACK, build a new one,
4259 	 * put it at the front, and shift everyone else down.  We
4260 	 * always know there is at least one SACK present already here.
4261 	 *
4262 	 * If the sack array is full, forget about the last one.
4263 	 */
4264 	if (this_sack >= TCP_NUM_SACKS) {
4265 		this_sack--;
4266 		tp->rx_opt.num_sacks--;
4267 		sp--;
4268 	}
4269 	for (; this_sack > 0; this_sack--, sp--)
4270 		*sp = *(sp - 1);
4271 
4272 new_sack:
4273 	/* Build the new head SACK, and we're done. */
4274 	sp->start_seq = seq;
4275 	sp->end_seq = end_seq;
4276 	tp->rx_opt.num_sacks++;
4277 }
4278 
4279 /* RCV.NXT advances, some SACKs should be eaten. */
4280 
4281 static void tcp_sack_remove(struct tcp_sock *tp)
4282 {
4283 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4284 	int num_sacks = tp->rx_opt.num_sacks;
4285 	int this_sack;
4286 
4287 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4288 	if (skb_queue_empty(&tp->out_of_order_queue)) {
4289 		tp->rx_opt.num_sacks = 0;
4290 		return;
4291 	}
4292 
4293 	for (this_sack = 0; this_sack < num_sacks;) {
4294 		/* Check if the start of the sack is covered by RCV.NXT. */
4295 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4296 			int i;
4297 
4298 			/* RCV.NXT must cover all the block! */
4299 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4300 
4301 			/* Zap this SACK, by moving forward any other SACKS. */
4302 			for (i=this_sack+1; i < num_sacks; i++)
4303 				tp->selective_acks[i-1] = tp->selective_acks[i];
4304 			num_sacks--;
4305 			continue;
4306 		}
4307 		this_sack++;
4308 		sp++;
4309 	}
4310 	tp->rx_opt.num_sacks = num_sacks;
4311 }
4312 
4313 /* This one checks to see if we can put data from the
4314  * out_of_order queue into the receive_queue.
4315  */
4316 static void tcp_ofo_queue(struct sock *sk)
4317 {
4318 	struct tcp_sock *tp = tcp_sk(sk);
4319 	__u32 dsack_high = tp->rcv_nxt;
4320 	struct sk_buff *skb;
4321 
4322 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4323 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4324 			break;
4325 
4326 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4327 			__u32 dsack = dsack_high;
4328 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4329 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4330 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4331 		}
4332 
4333 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4334 			SOCK_DEBUG(sk, "ofo packet was already received\n");
4335 			__skb_unlink(skb, &tp->out_of_order_queue);
4336 			__kfree_skb(skb);
4337 			continue;
4338 		}
4339 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4340 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4341 			   TCP_SKB_CB(skb)->end_seq);
4342 
4343 		__skb_unlink(skb, &tp->out_of_order_queue);
4344 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4345 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4346 		if (tcp_hdr(skb)->fin)
4347 			tcp_fin(sk);
4348 	}
4349 }
4350 
4351 static bool tcp_prune_ofo_queue(struct sock *sk);
4352 static int tcp_prune_queue(struct sock *sk);
4353 
4354 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4355 				 unsigned int size)
4356 {
4357 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4358 	    !sk_rmem_schedule(sk, skb, size)) {
4359 
4360 		if (tcp_prune_queue(sk) < 0)
4361 			return -1;
4362 
4363 		if (!sk_rmem_schedule(sk, skb, size)) {
4364 			if (!tcp_prune_ofo_queue(sk))
4365 				return -1;
4366 
4367 			if (!sk_rmem_schedule(sk, skb, size))
4368 				return -1;
4369 		}
4370 	}
4371 	return 0;
4372 }
4373 
4374 /**
4375  * tcp_try_coalesce - try to merge skb to prior one
4376  * @sk: socket
4377  * @to: prior buffer
4378  * @from: buffer to add in queue
4379  * @fragstolen: pointer to boolean
4380  *
4381  * Before queueing skb @from after @to, try to merge them
4382  * to reduce overall memory use and queue lengths, if cost is small.
4383  * Packets in ofo or receive queues can stay a long time.
4384  * Better try to coalesce them right now to avoid future collapses.
4385  * Returns true if caller should free @from instead of queueing it
4386  */
4387 static bool tcp_try_coalesce(struct sock *sk,
4388 			     struct sk_buff *to,
4389 			     struct sk_buff *from,
4390 			     bool *fragstolen)
4391 {
4392 	int delta;
4393 
4394 	*fragstolen = false;
4395 
4396 	if (tcp_hdr(from)->fin)
4397 		return false;
4398 
4399 	/* Its possible this segment overlaps with prior segment in queue */
4400 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4401 		return false;
4402 
4403 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4404 		return false;
4405 
4406 	atomic_add(delta, &sk->sk_rmem_alloc);
4407 	sk_mem_charge(sk, delta);
4408 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4409 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4410 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4411 	return true;
4412 }
4413 
4414 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4415 {
4416 	struct tcp_sock *tp = tcp_sk(sk);
4417 	struct sk_buff *skb1;
4418 	u32 seq, end_seq;
4419 
4420 	TCP_ECN_check_ce(tp, skb);
4421 
4422 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4423 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4424 		__kfree_skb(skb);
4425 		return;
4426 	}
4427 
4428 	/* Disable header prediction. */
4429 	tp->pred_flags = 0;
4430 	inet_csk_schedule_ack(sk);
4431 
4432 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4433 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4434 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4435 
4436 	skb1 = skb_peek_tail(&tp->out_of_order_queue);
4437 	if (!skb1) {
4438 		/* Initial out of order segment, build 1 SACK. */
4439 		if (tcp_is_sack(tp)) {
4440 			tp->rx_opt.num_sacks = 1;
4441 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4442 			tp->selective_acks[0].end_seq =
4443 						TCP_SKB_CB(skb)->end_seq;
4444 		}
4445 		__skb_queue_head(&tp->out_of_order_queue, skb);
4446 		goto end;
4447 	}
4448 
4449 	seq = TCP_SKB_CB(skb)->seq;
4450 	end_seq = TCP_SKB_CB(skb)->end_seq;
4451 
4452 	if (seq == TCP_SKB_CB(skb1)->end_seq) {
4453 		bool fragstolen;
4454 
4455 		if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4456 			__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4457 		} else {
4458 			kfree_skb_partial(skb, fragstolen);
4459 			skb = NULL;
4460 		}
4461 
4462 		if (!tp->rx_opt.num_sacks ||
4463 		    tp->selective_acks[0].end_seq != seq)
4464 			goto add_sack;
4465 
4466 		/* Common case: data arrive in order after hole. */
4467 		tp->selective_acks[0].end_seq = end_seq;
4468 		goto end;
4469 	}
4470 
4471 	/* Find place to insert this segment. */
4472 	while (1) {
4473 		if (!after(TCP_SKB_CB(skb1)->seq, seq))
4474 			break;
4475 		if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4476 			skb1 = NULL;
4477 			break;
4478 		}
4479 		skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4480 	}
4481 
4482 	/* Do skb overlap to previous one? */
4483 	if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4484 		if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4485 			/* All the bits are present. Drop. */
4486 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4487 			__kfree_skb(skb);
4488 			skb = NULL;
4489 			tcp_dsack_set(sk, seq, end_seq);
4490 			goto add_sack;
4491 		}
4492 		if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4493 			/* Partial overlap. */
4494 			tcp_dsack_set(sk, seq,
4495 				      TCP_SKB_CB(skb1)->end_seq);
4496 		} else {
4497 			if (skb_queue_is_first(&tp->out_of_order_queue,
4498 					       skb1))
4499 				skb1 = NULL;
4500 			else
4501 				skb1 = skb_queue_prev(
4502 					&tp->out_of_order_queue,
4503 					skb1);
4504 		}
4505 	}
4506 	if (!skb1)
4507 		__skb_queue_head(&tp->out_of_order_queue, skb);
4508 	else
4509 		__skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4510 
4511 	/* And clean segments covered by new one as whole. */
4512 	while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4513 		skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4514 
4515 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4516 			break;
4517 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4518 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4519 					 end_seq);
4520 			break;
4521 		}
4522 		__skb_unlink(skb1, &tp->out_of_order_queue);
4523 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4524 				 TCP_SKB_CB(skb1)->end_seq);
4525 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4526 		__kfree_skb(skb1);
4527 	}
4528 
4529 add_sack:
4530 	if (tcp_is_sack(tp))
4531 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4532 end:
4533 	if (skb)
4534 		skb_set_owner_r(skb, sk);
4535 }
4536 
4537 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4538 		  bool *fragstolen)
4539 {
4540 	int eaten;
4541 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4542 
4543 	__skb_pull(skb, hdrlen);
4544 	eaten = (tail &&
4545 		 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4546 	tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4547 	if (!eaten) {
4548 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4549 		skb_set_owner_r(skb, sk);
4550 	}
4551 	return eaten;
4552 }
4553 
4554 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4555 {
4556 	struct sk_buff *skb = NULL;
4557 	struct tcphdr *th;
4558 	bool fragstolen;
4559 
4560 	skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4561 	if (!skb)
4562 		goto err;
4563 
4564 	if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4565 		goto err_free;
4566 
4567 	th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4568 	skb_reset_transport_header(skb);
4569 	memset(th, 0, sizeof(*th));
4570 
4571 	if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4572 		goto err_free;
4573 
4574 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4575 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4576 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4577 
4578 	if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4579 		WARN_ON_ONCE(fragstolen); /* should not happen */
4580 		__kfree_skb(skb);
4581 	}
4582 	return size;
4583 
4584 err_free:
4585 	kfree_skb(skb);
4586 err:
4587 	return -ENOMEM;
4588 }
4589 
4590 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4591 {
4592 	const struct tcphdr *th = tcp_hdr(skb);
4593 	struct tcp_sock *tp = tcp_sk(sk);
4594 	int eaten = -1;
4595 	bool fragstolen = false;
4596 
4597 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4598 		goto drop;
4599 
4600 	skb_dst_drop(skb);
4601 	__skb_pull(skb, th->doff * 4);
4602 
4603 	TCP_ECN_accept_cwr(tp, skb);
4604 
4605 	tp->rx_opt.dsack = 0;
4606 
4607 	/*  Queue data for delivery to the user.
4608 	 *  Packets in sequence go to the receive queue.
4609 	 *  Out of sequence packets to the out_of_order_queue.
4610 	 */
4611 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4612 		if (tcp_receive_window(tp) == 0)
4613 			goto out_of_window;
4614 
4615 		/* Ok. In sequence. In window. */
4616 		if (tp->ucopy.task == current &&
4617 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4618 		    sock_owned_by_user(sk) && !tp->urg_data) {
4619 			int chunk = min_t(unsigned int, skb->len,
4620 					  tp->ucopy.len);
4621 
4622 			__set_current_state(TASK_RUNNING);
4623 
4624 			local_bh_enable();
4625 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4626 				tp->ucopy.len -= chunk;
4627 				tp->copied_seq += chunk;
4628 				eaten = (chunk == skb->len);
4629 				tcp_rcv_space_adjust(sk);
4630 			}
4631 			local_bh_disable();
4632 		}
4633 
4634 		if (eaten <= 0) {
4635 queue_and_out:
4636 			if (eaten < 0 &&
4637 			    tcp_try_rmem_schedule(sk, skb, skb->truesize))
4638 				goto drop;
4639 
4640 			eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4641 		}
4642 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4643 		if (skb->len)
4644 			tcp_event_data_recv(sk, skb);
4645 		if (th->fin)
4646 			tcp_fin(sk);
4647 
4648 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
4649 			tcp_ofo_queue(sk);
4650 
4651 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
4652 			 * gap in queue is filled.
4653 			 */
4654 			if (skb_queue_empty(&tp->out_of_order_queue))
4655 				inet_csk(sk)->icsk_ack.pingpong = 0;
4656 		}
4657 
4658 		if (tp->rx_opt.num_sacks)
4659 			tcp_sack_remove(tp);
4660 
4661 		tcp_fast_path_check(sk);
4662 
4663 		if (eaten > 0)
4664 			kfree_skb_partial(skb, fragstolen);
4665 		else if (!sock_flag(sk, SOCK_DEAD))
4666 			sk->sk_data_ready(sk, 0);
4667 		return;
4668 	}
4669 
4670 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4671 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
4672 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4673 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4674 
4675 out_of_window:
4676 		tcp_enter_quickack_mode(sk);
4677 		inet_csk_schedule_ack(sk);
4678 drop:
4679 		__kfree_skb(skb);
4680 		return;
4681 	}
4682 
4683 	/* Out of window. F.e. zero window probe. */
4684 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4685 		goto out_of_window;
4686 
4687 	tcp_enter_quickack_mode(sk);
4688 
4689 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4690 		/* Partial packet, seq < rcv_next < end_seq */
4691 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4692 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4693 			   TCP_SKB_CB(skb)->end_seq);
4694 
4695 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4696 
4697 		/* If window is closed, drop tail of packet. But after
4698 		 * remembering D-SACK for its head made in previous line.
4699 		 */
4700 		if (!tcp_receive_window(tp))
4701 			goto out_of_window;
4702 		goto queue_and_out;
4703 	}
4704 
4705 	tcp_data_queue_ofo(sk, skb);
4706 }
4707 
4708 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4709 					struct sk_buff_head *list)
4710 {
4711 	struct sk_buff *next = NULL;
4712 
4713 	if (!skb_queue_is_last(list, skb))
4714 		next = skb_queue_next(list, skb);
4715 
4716 	__skb_unlink(skb, list);
4717 	__kfree_skb(skb);
4718 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4719 
4720 	return next;
4721 }
4722 
4723 /* Collapse contiguous sequence of skbs head..tail with
4724  * sequence numbers start..end.
4725  *
4726  * If tail is NULL, this means until the end of the list.
4727  *
4728  * Segments with FIN/SYN are not collapsed (only because this
4729  * simplifies code)
4730  */
4731 static void
4732 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4733 	     struct sk_buff *head, struct sk_buff *tail,
4734 	     u32 start, u32 end)
4735 {
4736 	struct sk_buff *skb, *n;
4737 	bool end_of_skbs;
4738 
4739 	/* First, check that queue is collapsible and find
4740 	 * the point where collapsing can be useful. */
4741 	skb = head;
4742 restart:
4743 	end_of_skbs = true;
4744 	skb_queue_walk_from_safe(list, skb, n) {
4745 		if (skb == tail)
4746 			break;
4747 		/* No new bits? It is possible on ofo queue. */
4748 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4749 			skb = tcp_collapse_one(sk, skb, list);
4750 			if (!skb)
4751 				break;
4752 			goto restart;
4753 		}
4754 
4755 		/* The first skb to collapse is:
4756 		 * - not SYN/FIN and
4757 		 * - bloated or contains data before "start" or
4758 		 *   overlaps to the next one.
4759 		 */
4760 		if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4761 		    (tcp_win_from_space(skb->truesize) > skb->len ||
4762 		     before(TCP_SKB_CB(skb)->seq, start))) {
4763 			end_of_skbs = false;
4764 			break;
4765 		}
4766 
4767 		if (!skb_queue_is_last(list, skb)) {
4768 			struct sk_buff *next = skb_queue_next(list, skb);
4769 			if (next != tail &&
4770 			    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4771 				end_of_skbs = false;
4772 				break;
4773 			}
4774 		}
4775 
4776 		/* Decided to skip this, advance start seq. */
4777 		start = TCP_SKB_CB(skb)->end_seq;
4778 	}
4779 	if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4780 		return;
4781 
4782 	while (before(start, end)) {
4783 		struct sk_buff *nskb;
4784 		unsigned int header = skb_headroom(skb);
4785 		int copy = SKB_MAX_ORDER(header, 0);
4786 
4787 		/* Too big header? This can happen with IPv6. */
4788 		if (copy < 0)
4789 			return;
4790 		if (end - start < copy)
4791 			copy = end - start;
4792 		nskb = alloc_skb(copy + header, GFP_ATOMIC);
4793 		if (!nskb)
4794 			return;
4795 
4796 		skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4797 		skb_set_network_header(nskb, (skb_network_header(skb) -
4798 					      skb->head));
4799 		skb_set_transport_header(nskb, (skb_transport_header(skb) -
4800 						skb->head));
4801 		skb_reserve(nskb, header);
4802 		memcpy(nskb->head, skb->head, header);
4803 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4804 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4805 		__skb_queue_before(list, skb, nskb);
4806 		skb_set_owner_r(nskb, sk);
4807 
4808 		/* Copy data, releasing collapsed skbs. */
4809 		while (copy > 0) {
4810 			int offset = start - TCP_SKB_CB(skb)->seq;
4811 			int size = TCP_SKB_CB(skb)->end_seq - start;
4812 
4813 			BUG_ON(offset < 0);
4814 			if (size > 0) {
4815 				size = min(copy, size);
4816 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4817 					BUG();
4818 				TCP_SKB_CB(nskb)->end_seq += size;
4819 				copy -= size;
4820 				start += size;
4821 			}
4822 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4823 				skb = tcp_collapse_one(sk, skb, list);
4824 				if (!skb ||
4825 				    skb == tail ||
4826 				    tcp_hdr(skb)->syn ||
4827 				    tcp_hdr(skb)->fin)
4828 					return;
4829 			}
4830 		}
4831 	}
4832 }
4833 
4834 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4835  * and tcp_collapse() them until all the queue is collapsed.
4836  */
4837 static void tcp_collapse_ofo_queue(struct sock *sk)
4838 {
4839 	struct tcp_sock *tp = tcp_sk(sk);
4840 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4841 	struct sk_buff *head;
4842 	u32 start, end;
4843 
4844 	if (skb == NULL)
4845 		return;
4846 
4847 	start = TCP_SKB_CB(skb)->seq;
4848 	end = TCP_SKB_CB(skb)->end_seq;
4849 	head = skb;
4850 
4851 	for (;;) {
4852 		struct sk_buff *next = NULL;
4853 
4854 		if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4855 			next = skb_queue_next(&tp->out_of_order_queue, skb);
4856 		skb = next;
4857 
4858 		/* Segment is terminated when we see gap or when
4859 		 * we are at the end of all the queue. */
4860 		if (!skb ||
4861 		    after(TCP_SKB_CB(skb)->seq, end) ||
4862 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
4863 			tcp_collapse(sk, &tp->out_of_order_queue,
4864 				     head, skb, start, end);
4865 			head = skb;
4866 			if (!skb)
4867 				break;
4868 			/* Start new segment */
4869 			start = TCP_SKB_CB(skb)->seq;
4870 			end = TCP_SKB_CB(skb)->end_seq;
4871 		} else {
4872 			if (before(TCP_SKB_CB(skb)->seq, start))
4873 				start = TCP_SKB_CB(skb)->seq;
4874 			if (after(TCP_SKB_CB(skb)->end_seq, end))
4875 				end = TCP_SKB_CB(skb)->end_seq;
4876 		}
4877 	}
4878 }
4879 
4880 /*
4881  * Purge the out-of-order queue.
4882  * Return true if queue was pruned.
4883  */
4884 static bool tcp_prune_ofo_queue(struct sock *sk)
4885 {
4886 	struct tcp_sock *tp = tcp_sk(sk);
4887 	bool res = false;
4888 
4889 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
4890 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4891 		__skb_queue_purge(&tp->out_of_order_queue);
4892 
4893 		/* Reset SACK state.  A conforming SACK implementation will
4894 		 * do the same at a timeout based retransmit.  When a connection
4895 		 * is in a sad state like this, we care only about integrity
4896 		 * of the connection not performance.
4897 		 */
4898 		if (tp->rx_opt.sack_ok)
4899 			tcp_sack_reset(&tp->rx_opt);
4900 		sk_mem_reclaim(sk);
4901 		res = true;
4902 	}
4903 	return res;
4904 }
4905 
4906 /* Reduce allocated memory if we can, trying to get
4907  * the socket within its memory limits again.
4908  *
4909  * Return less than zero if we should start dropping frames
4910  * until the socket owning process reads some of the data
4911  * to stabilize the situation.
4912  */
4913 static int tcp_prune_queue(struct sock *sk)
4914 {
4915 	struct tcp_sock *tp = tcp_sk(sk);
4916 
4917 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4918 
4919 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4920 
4921 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4922 		tcp_clamp_window(sk);
4923 	else if (sk_under_memory_pressure(sk))
4924 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4925 
4926 	tcp_collapse_ofo_queue(sk);
4927 	if (!skb_queue_empty(&sk->sk_receive_queue))
4928 		tcp_collapse(sk, &sk->sk_receive_queue,
4929 			     skb_peek(&sk->sk_receive_queue),
4930 			     NULL,
4931 			     tp->copied_seq, tp->rcv_nxt);
4932 	sk_mem_reclaim(sk);
4933 
4934 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4935 		return 0;
4936 
4937 	/* Collapsing did not help, destructive actions follow.
4938 	 * This must not ever occur. */
4939 
4940 	tcp_prune_ofo_queue(sk);
4941 
4942 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4943 		return 0;
4944 
4945 	/* If we are really being abused, tell the caller to silently
4946 	 * drop receive data on the floor.  It will get retransmitted
4947 	 * and hopefully then we'll have sufficient space.
4948 	 */
4949 	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4950 
4951 	/* Massive buffer overcommit. */
4952 	tp->pred_flags = 0;
4953 	return -1;
4954 }
4955 
4956 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4957  * As additional protections, we do not touch cwnd in retransmission phases,
4958  * and if application hit its sndbuf limit recently.
4959  */
4960 void tcp_cwnd_application_limited(struct sock *sk)
4961 {
4962 	struct tcp_sock *tp = tcp_sk(sk);
4963 
4964 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4965 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4966 		/* Limited by application or receiver window. */
4967 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4968 		u32 win_used = max(tp->snd_cwnd_used, init_win);
4969 		if (win_used < tp->snd_cwnd) {
4970 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
4971 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4972 		}
4973 		tp->snd_cwnd_used = 0;
4974 	}
4975 	tp->snd_cwnd_stamp = tcp_time_stamp;
4976 }
4977 
4978 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4979 {
4980 	const struct tcp_sock *tp = tcp_sk(sk);
4981 
4982 	/* If the user specified a specific send buffer setting, do
4983 	 * not modify it.
4984 	 */
4985 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4986 		return false;
4987 
4988 	/* If we are under global TCP memory pressure, do not expand.  */
4989 	if (sk_under_memory_pressure(sk))
4990 		return false;
4991 
4992 	/* If we are under soft global TCP memory pressure, do not expand.  */
4993 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4994 		return false;
4995 
4996 	/* If we filled the congestion window, do not expand.  */
4997 	if (tp->packets_out >= tp->snd_cwnd)
4998 		return false;
4999 
5000 	return true;
5001 }
5002 
5003 /* When incoming ACK allowed to free some skb from write_queue,
5004  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5005  * on the exit from tcp input handler.
5006  *
5007  * PROBLEM: sndbuf expansion does not work well with largesend.
5008  */
5009 static void tcp_new_space(struct sock *sk)
5010 {
5011 	struct tcp_sock *tp = tcp_sk(sk);
5012 
5013 	if (tcp_should_expand_sndbuf(sk)) {
5014 		int sndmem = SKB_TRUESIZE(max_t(u32,
5015 						tp->rx_opt.mss_clamp,
5016 						tp->mss_cache) +
5017 					  MAX_TCP_HEADER);
5018 		int demanded = max_t(unsigned int, tp->snd_cwnd,
5019 				     tp->reordering + 1);
5020 		sndmem *= 2 * demanded;
5021 		if (sndmem > sk->sk_sndbuf)
5022 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5023 		tp->snd_cwnd_stamp = tcp_time_stamp;
5024 	}
5025 
5026 	sk->sk_write_space(sk);
5027 }
5028 
5029 static void tcp_check_space(struct sock *sk)
5030 {
5031 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5032 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5033 		if (sk->sk_socket &&
5034 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5035 			tcp_new_space(sk);
5036 	}
5037 }
5038 
5039 static inline void tcp_data_snd_check(struct sock *sk)
5040 {
5041 	tcp_push_pending_frames(sk);
5042 	tcp_check_space(sk);
5043 }
5044 
5045 /*
5046  * Check if sending an ack is needed.
5047  */
5048 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5049 {
5050 	struct tcp_sock *tp = tcp_sk(sk);
5051 
5052 	    /* More than one full frame received... */
5053 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5054 	     /* ... and right edge of window advances far enough.
5055 	      * (tcp_recvmsg() will send ACK otherwise). Or...
5056 	      */
5057 	     __tcp_select_window(sk) >= tp->rcv_wnd) ||
5058 	    /* We ACK each frame or... */
5059 	    tcp_in_quickack_mode(sk) ||
5060 	    /* We have out of order data. */
5061 	    (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5062 		/* Then ack it now */
5063 		tcp_send_ack(sk);
5064 	} else {
5065 		/* Else, send delayed ack. */
5066 		tcp_send_delayed_ack(sk);
5067 	}
5068 }
5069 
5070 static inline void tcp_ack_snd_check(struct sock *sk)
5071 {
5072 	if (!inet_csk_ack_scheduled(sk)) {
5073 		/* We sent a data segment already. */
5074 		return;
5075 	}
5076 	__tcp_ack_snd_check(sk, 1);
5077 }
5078 
5079 /*
5080  *	This routine is only called when we have urgent data
5081  *	signaled. Its the 'slow' part of tcp_urg. It could be
5082  *	moved inline now as tcp_urg is only called from one
5083  *	place. We handle URGent data wrong. We have to - as
5084  *	BSD still doesn't use the correction from RFC961.
5085  *	For 1003.1g we should support a new option TCP_STDURG to permit
5086  *	either form (or just set the sysctl tcp_stdurg).
5087  */
5088 
5089 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5090 {
5091 	struct tcp_sock *tp = tcp_sk(sk);
5092 	u32 ptr = ntohs(th->urg_ptr);
5093 
5094 	if (ptr && !sysctl_tcp_stdurg)
5095 		ptr--;
5096 	ptr += ntohl(th->seq);
5097 
5098 	/* Ignore urgent data that we've already seen and read. */
5099 	if (after(tp->copied_seq, ptr))
5100 		return;
5101 
5102 	/* Do not replay urg ptr.
5103 	 *
5104 	 * NOTE: interesting situation not covered by specs.
5105 	 * Misbehaving sender may send urg ptr, pointing to segment,
5106 	 * which we already have in ofo queue. We are not able to fetch
5107 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5108 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5109 	 * situations. But it is worth to think about possibility of some
5110 	 * DoSes using some hypothetical application level deadlock.
5111 	 */
5112 	if (before(ptr, tp->rcv_nxt))
5113 		return;
5114 
5115 	/* Do we already have a newer (or duplicate) urgent pointer? */
5116 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5117 		return;
5118 
5119 	/* Tell the world about our new urgent pointer. */
5120 	sk_send_sigurg(sk);
5121 
5122 	/* We may be adding urgent data when the last byte read was
5123 	 * urgent. To do this requires some care. We cannot just ignore
5124 	 * tp->copied_seq since we would read the last urgent byte again
5125 	 * as data, nor can we alter copied_seq until this data arrives
5126 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5127 	 *
5128 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5129 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5130 	 * and expect that both A and B disappear from stream. This is _wrong_.
5131 	 * Though this happens in BSD with high probability, this is occasional.
5132 	 * Any application relying on this is buggy. Note also, that fix "works"
5133 	 * only in this artificial test. Insert some normal data between A and B and we will
5134 	 * decline of BSD again. Verdict: it is better to remove to trap
5135 	 * buggy users.
5136 	 */
5137 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5138 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5139 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5140 		tp->copied_seq++;
5141 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5142 			__skb_unlink(skb, &sk->sk_receive_queue);
5143 			__kfree_skb(skb);
5144 		}
5145 	}
5146 
5147 	tp->urg_data = TCP_URG_NOTYET;
5148 	tp->urg_seq = ptr;
5149 
5150 	/* Disable header prediction. */
5151 	tp->pred_flags = 0;
5152 }
5153 
5154 /* This is the 'fast' part of urgent handling. */
5155 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5156 {
5157 	struct tcp_sock *tp = tcp_sk(sk);
5158 
5159 	/* Check if we get a new urgent pointer - normally not. */
5160 	if (th->urg)
5161 		tcp_check_urg(sk, th);
5162 
5163 	/* Do we wait for any urgent data? - normally not... */
5164 	if (tp->urg_data == TCP_URG_NOTYET) {
5165 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5166 			  th->syn;
5167 
5168 		/* Is the urgent pointer pointing into this packet? */
5169 		if (ptr < skb->len) {
5170 			u8 tmp;
5171 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5172 				BUG();
5173 			tp->urg_data = TCP_URG_VALID | tmp;
5174 			if (!sock_flag(sk, SOCK_DEAD))
5175 				sk->sk_data_ready(sk, 0);
5176 		}
5177 	}
5178 }
5179 
5180 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5181 {
5182 	struct tcp_sock *tp = tcp_sk(sk);
5183 	int chunk = skb->len - hlen;
5184 	int err;
5185 
5186 	local_bh_enable();
5187 	if (skb_csum_unnecessary(skb))
5188 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5189 	else
5190 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5191 						       tp->ucopy.iov);
5192 
5193 	if (!err) {
5194 		tp->ucopy.len -= chunk;
5195 		tp->copied_seq += chunk;
5196 		tcp_rcv_space_adjust(sk);
5197 	}
5198 
5199 	local_bh_disable();
5200 	return err;
5201 }
5202 
5203 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5204 					    struct sk_buff *skb)
5205 {
5206 	__sum16 result;
5207 
5208 	if (sock_owned_by_user(sk)) {
5209 		local_bh_enable();
5210 		result = __tcp_checksum_complete(skb);
5211 		local_bh_disable();
5212 	} else {
5213 		result = __tcp_checksum_complete(skb);
5214 	}
5215 	return result;
5216 }
5217 
5218 static inline bool tcp_checksum_complete_user(struct sock *sk,
5219 					     struct sk_buff *skb)
5220 {
5221 	return !skb_csum_unnecessary(skb) &&
5222 	       __tcp_checksum_complete_user(sk, skb);
5223 }
5224 
5225 #ifdef CONFIG_NET_DMA
5226 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5227 				  int hlen)
5228 {
5229 	struct tcp_sock *tp = tcp_sk(sk);
5230 	int chunk = skb->len - hlen;
5231 	int dma_cookie;
5232 	bool copied_early = false;
5233 
5234 	if (tp->ucopy.wakeup)
5235 		return false;
5236 
5237 	if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5238 		tp->ucopy.dma_chan = net_dma_find_channel();
5239 
5240 	if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5241 
5242 		dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5243 							 skb, hlen,
5244 							 tp->ucopy.iov, chunk,
5245 							 tp->ucopy.pinned_list);
5246 
5247 		if (dma_cookie < 0)
5248 			goto out;
5249 
5250 		tp->ucopy.dma_cookie = dma_cookie;
5251 		copied_early = true;
5252 
5253 		tp->ucopy.len -= chunk;
5254 		tp->copied_seq += chunk;
5255 		tcp_rcv_space_adjust(sk);
5256 
5257 		if ((tp->ucopy.len == 0) ||
5258 		    (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5259 		    (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5260 			tp->ucopy.wakeup = 1;
5261 			sk->sk_data_ready(sk, 0);
5262 		}
5263 	} else if (chunk > 0) {
5264 		tp->ucopy.wakeup = 1;
5265 		sk->sk_data_ready(sk, 0);
5266 	}
5267 out:
5268 	return copied_early;
5269 }
5270 #endif /* CONFIG_NET_DMA */
5271 
5272 static void tcp_send_challenge_ack(struct sock *sk)
5273 {
5274 	/* unprotected vars, we dont care of overwrites */
5275 	static u32 challenge_timestamp;
5276 	static unsigned int challenge_count;
5277 	u32 now = jiffies / HZ;
5278 
5279 	if (now != challenge_timestamp) {
5280 		challenge_timestamp = now;
5281 		challenge_count = 0;
5282 	}
5283 	if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
5284 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
5285 		tcp_send_ack(sk);
5286 	}
5287 }
5288 
5289 /* Does PAWS and seqno based validation of an incoming segment, flags will
5290  * play significant role here.
5291  */
5292 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5293 				  const struct tcphdr *th, int syn_inerr)
5294 {
5295 	const u8 *hash_location;
5296 	struct tcp_sock *tp = tcp_sk(sk);
5297 
5298 	/* RFC1323: H1. Apply PAWS check first. */
5299 	if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5300 	    tp->rx_opt.saw_tstamp &&
5301 	    tcp_paws_discard(sk, skb)) {
5302 		if (!th->rst) {
5303 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5304 			tcp_send_dupack(sk, skb);
5305 			goto discard;
5306 		}
5307 		/* Reset is accepted even if it did not pass PAWS. */
5308 	}
5309 
5310 	/* Step 1: check sequence number */
5311 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5312 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5313 		 * (RST) segments are validated by checking their SEQ-fields."
5314 		 * And page 69: "If an incoming segment is not acceptable,
5315 		 * an acknowledgment should be sent in reply (unless the RST
5316 		 * bit is set, if so drop the segment and return)".
5317 		 */
5318 		if (!th->rst) {
5319 			if (th->syn)
5320 				goto syn_challenge;
5321 			tcp_send_dupack(sk, skb);
5322 		}
5323 		goto discard;
5324 	}
5325 
5326 	/* Step 2: check RST bit */
5327 	if (th->rst) {
5328 		/* RFC 5961 3.2 :
5329 		 * If sequence number exactly matches RCV.NXT, then
5330 		 *     RESET the connection
5331 		 * else
5332 		 *     Send a challenge ACK
5333 		 */
5334 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5335 			tcp_reset(sk);
5336 		else
5337 			tcp_send_challenge_ack(sk);
5338 		goto discard;
5339 	}
5340 
5341 	/* ts_recent update must be made after we are sure that the packet
5342 	 * is in window.
5343 	 */
5344 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5345 
5346 	/* step 3: check security and precedence [ignored] */
5347 
5348 	/* step 4: Check for a SYN
5349 	 * RFC 5691 4.2 : Send a challenge ack
5350 	 */
5351 	if (th->syn) {
5352 syn_challenge:
5353 		if (syn_inerr)
5354 			TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5355 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5356 		tcp_send_challenge_ack(sk);
5357 		goto discard;
5358 	}
5359 
5360 	return true;
5361 
5362 discard:
5363 	__kfree_skb(skb);
5364 	return false;
5365 }
5366 
5367 /*
5368  *	TCP receive function for the ESTABLISHED state.
5369  *
5370  *	It is split into a fast path and a slow path. The fast path is
5371  * 	disabled when:
5372  *	- A zero window was announced from us - zero window probing
5373  *        is only handled properly in the slow path.
5374  *	- Out of order segments arrived.
5375  *	- Urgent data is expected.
5376  *	- There is no buffer space left
5377  *	- Unexpected TCP flags/window values/header lengths are received
5378  *	  (detected by checking the TCP header against pred_flags)
5379  *	- Data is sent in both directions. Fast path only supports pure senders
5380  *	  or pure receivers (this means either the sequence number or the ack
5381  *	  value must stay constant)
5382  *	- Unexpected TCP option.
5383  *
5384  *	When these conditions are not satisfied it drops into a standard
5385  *	receive procedure patterned after RFC793 to handle all cases.
5386  *	The first three cases are guaranteed by proper pred_flags setting,
5387  *	the rest is checked inline. Fast processing is turned on in
5388  *	tcp_data_queue when everything is OK.
5389  */
5390 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5391 			const struct tcphdr *th, unsigned int len)
5392 {
5393 	struct tcp_sock *tp = tcp_sk(sk);
5394 
5395 	/*
5396 	 *	Header prediction.
5397 	 *	The code loosely follows the one in the famous
5398 	 *	"30 instruction TCP receive" Van Jacobson mail.
5399 	 *
5400 	 *	Van's trick is to deposit buffers into socket queue
5401 	 *	on a device interrupt, to call tcp_recv function
5402 	 *	on the receive process context and checksum and copy
5403 	 *	the buffer to user space. smart...
5404 	 *
5405 	 *	Our current scheme is not silly either but we take the
5406 	 *	extra cost of the net_bh soft interrupt processing...
5407 	 *	We do checksum and copy also but from device to kernel.
5408 	 */
5409 
5410 	tp->rx_opt.saw_tstamp = 0;
5411 
5412 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5413 	 *	if header_prediction is to be made
5414 	 *	'S' will always be tp->tcp_header_len >> 2
5415 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5416 	 *  turn it off	(when there are holes in the receive
5417 	 *	 space for instance)
5418 	 *	PSH flag is ignored.
5419 	 */
5420 
5421 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5422 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5423 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5424 		int tcp_header_len = tp->tcp_header_len;
5425 
5426 		/* Timestamp header prediction: tcp_header_len
5427 		 * is automatically equal to th->doff*4 due to pred_flags
5428 		 * match.
5429 		 */
5430 
5431 		/* Check timestamp */
5432 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5433 			/* No? Slow path! */
5434 			if (!tcp_parse_aligned_timestamp(tp, th))
5435 				goto slow_path;
5436 
5437 			/* If PAWS failed, check it more carefully in slow path */
5438 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5439 				goto slow_path;
5440 
5441 			/* DO NOT update ts_recent here, if checksum fails
5442 			 * and timestamp was corrupted part, it will result
5443 			 * in a hung connection since we will drop all
5444 			 * future packets due to the PAWS test.
5445 			 */
5446 		}
5447 
5448 		if (len <= tcp_header_len) {
5449 			/* Bulk data transfer: sender */
5450 			if (len == tcp_header_len) {
5451 				/* Predicted packet is in window by definition.
5452 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5453 				 * Hence, check seq<=rcv_wup reduces to:
5454 				 */
5455 				if (tcp_header_len ==
5456 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5457 				    tp->rcv_nxt == tp->rcv_wup)
5458 					tcp_store_ts_recent(tp);
5459 
5460 				/* We know that such packets are checksummed
5461 				 * on entry.
5462 				 */
5463 				tcp_ack(sk, skb, 0);
5464 				__kfree_skb(skb);
5465 				tcp_data_snd_check(sk);
5466 				return 0;
5467 			} else { /* Header too small */
5468 				TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5469 				goto discard;
5470 			}
5471 		} else {
5472 			int eaten = 0;
5473 			int copied_early = 0;
5474 			bool fragstolen = false;
5475 
5476 			if (tp->copied_seq == tp->rcv_nxt &&
5477 			    len - tcp_header_len <= tp->ucopy.len) {
5478 #ifdef CONFIG_NET_DMA
5479 				if (tp->ucopy.task == current &&
5480 				    sock_owned_by_user(sk) &&
5481 				    tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5482 					copied_early = 1;
5483 					eaten = 1;
5484 				}
5485 #endif
5486 				if (tp->ucopy.task == current &&
5487 				    sock_owned_by_user(sk) && !copied_early) {
5488 					__set_current_state(TASK_RUNNING);
5489 
5490 					if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5491 						eaten = 1;
5492 				}
5493 				if (eaten) {
5494 					/* Predicted packet is in window by definition.
5495 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5496 					 * Hence, check seq<=rcv_wup reduces to:
5497 					 */
5498 					if (tcp_header_len ==
5499 					    (sizeof(struct tcphdr) +
5500 					     TCPOLEN_TSTAMP_ALIGNED) &&
5501 					    tp->rcv_nxt == tp->rcv_wup)
5502 						tcp_store_ts_recent(tp);
5503 
5504 					tcp_rcv_rtt_measure_ts(sk, skb);
5505 
5506 					__skb_pull(skb, tcp_header_len);
5507 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5508 					NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5509 				}
5510 				if (copied_early)
5511 					tcp_cleanup_rbuf(sk, skb->len);
5512 			}
5513 			if (!eaten) {
5514 				if (tcp_checksum_complete_user(sk, skb))
5515 					goto csum_error;
5516 
5517 				/* Predicted packet is in window by definition.
5518 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5519 				 * Hence, check seq<=rcv_wup reduces to:
5520 				 */
5521 				if (tcp_header_len ==
5522 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5523 				    tp->rcv_nxt == tp->rcv_wup)
5524 					tcp_store_ts_recent(tp);
5525 
5526 				tcp_rcv_rtt_measure_ts(sk, skb);
5527 
5528 				if ((int)skb->truesize > sk->sk_forward_alloc)
5529 					goto step5;
5530 
5531 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5532 
5533 				/* Bulk data transfer: receiver */
5534 				eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5535 						      &fragstolen);
5536 			}
5537 
5538 			tcp_event_data_recv(sk, skb);
5539 
5540 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5541 				/* Well, only one small jumplet in fast path... */
5542 				tcp_ack(sk, skb, FLAG_DATA);
5543 				tcp_data_snd_check(sk);
5544 				if (!inet_csk_ack_scheduled(sk))
5545 					goto no_ack;
5546 			}
5547 
5548 			if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5549 				__tcp_ack_snd_check(sk, 0);
5550 no_ack:
5551 #ifdef CONFIG_NET_DMA
5552 			if (copied_early)
5553 				__skb_queue_tail(&sk->sk_async_wait_queue, skb);
5554 			else
5555 #endif
5556 			if (eaten)
5557 				kfree_skb_partial(skb, fragstolen);
5558 			else
5559 				sk->sk_data_ready(sk, 0);
5560 			return 0;
5561 		}
5562 	}
5563 
5564 slow_path:
5565 	if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5566 		goto csum_error;
5567 
5568 	/*
5569 	 *	Standard slow path.
5570 	 */
5571 
5572 	if (!tcp_validate_incoming(sk, skb, th, 1))
5573 		return 0;
5574 
5575 step5:
5576 	if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5577 		goto discard;
5578 
5579 	tcp_rcv_rtt_measure_ts(sk, skb);
5580 
5581 	/* Process urgent data. */
5582 	tcp_urg(sk, skb, th);
5583 
5584 	/* step 7: process the segment text */
5585 	tcp_data_queue(sk, skb);
5586 
5587 	tcp_data_snd_check(sk);
5588 	tcp_ack_snd_check(sk);
5589 	return 0;
5590 
5591 csum_error:
5592 	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5593 
5594 discard:
5595 	__kfree_skb(skb);
5596 	return 0;
5597 }
5598 EXPORT_SYMBOL(tcp_rcv_established);
5599 
5600 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5601 {
5602 	struct tcp_sock *tp = tcp_sk(sk);
5603 	struct inet_connection_sock *icsk = inet_csk(sk);
5604 
5605 	tcp_set_state(sk, TCP_ESTABLISHED);
5606 
5607 	if (skb != NULL) {
5608 		inet_sk_rx_dst_set(sk, skb);
5609 		security_inet_conn_established(sk, skb);
5610 	}
5611 
5612 	/* Make sure socket is routed, for correct metrics.  */
5613 	icsk->icsk_af_ops->rebuild_header(sk);
5614 
5615 	tcp_init_metrics(sk);
5616 
5617 	tcp_init_congestion_control(sk);
5618 
5619 	/* Prevent spurious tcp_cwnd_restart() on first data
5620 	 * packet.
5621 	 */
5622 	tp->lsndtime = tcp_time_stamp;
5623 
5624 	tcp_init_buffer_space(sk);
5625 
5626 	if (sock_flag(sk, SOCK_KEEPOPEN))
5627 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5628 
5629 	if (!tp->rx_opt.snd_wscale)
5630 		__tcp_fast_path_on(tp, tp->snd_wnd);
5631 	else
5632 		tp->pred_flags = 0;
5633 
5634 	if (!sock_flag(sk, SOCK_DEAD)) {
5635 		sk->sk_state_change(sk);
5636 		sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5637 	}
5638 }
5639 
5640 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5641 				    struct tcp_fastopen_cookie *cookie)
5642 {
5643 	struct tcp_sock *tp = tcp_sk(sk);
5644 	struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5645 	u16 mss = tp->rx_opt.mss_clamp;
5646 	bool syn_drop;
5647 
5648 	if (mss == tp->rx_opt.user_mss) {
5649 		struct tcp_options_received opt;
5650 		const u8 *hash_location;
5651 
5652 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
5653 		tcp_clear_options(&opt);
5654 		opt.user_mss = opt.mss_clamp = 0;
5655 		tcp_parse_options(synack, &opt, &hash_location, 0, NULL);
5656 		mss = opt.mss_clamp;
5657 	}
5658 
5659 	if (!tp->syn_fastopen)  /* Ignore an unsolicited cookie */
5660 		cookie->len = -1;
5661 
5662 	/* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5663 	 * the remote receives only the retransmitted (regular) SYNs: either
5664 	 * the original SYN-data or the corresponding SYN-ACK is lost.
5665 	 */
5666 	syn_drop = (cookie->len <= 0 && data &&
5667 		    inet_csk(sk)->icsk_retransmits);
5668 
5669 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5670 
5671 	if (data) { /* Retransmit unacked data in SYN */
5672 		tcp_retransmit_skb(sk, data);
5673 		tcp_rearm_rto(sk);
5674 		return true;
5675 	}
5676 	return false;
5677 }
5678 
5679 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5680 					 const struct tcphdr *th, unsigned int len)
5681 {
5682 	const u8 *hash_location;
5683 	struct inet_connection_sock *icsk = inet_csk(sk);
5684 	struct tcp_sock *tp = tcp_sk(sk);
5685 	struct tcp_cookie_values *cvp = tp->cookie_values;
5686 	struct tcp_fastopen_cookie foc = { .len = -1 };
5687 	int saved_clamp = tp->rx_opt.mss_clamp;
5688 
5689 	tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc);
5690 
5691 	if (th->ack) {
5692 		/* rfc793:
5693 		 * "If the state is SYN-SENT then
5694 		 *    first check the ACK bit
5695 		 *      If the ACK bit is set
5696 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5697 		 *        a reset (unless the RST bit is set, if so drop
5698 		 *        the segment and return)"
5699 		 */
5700 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5701 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5702 			goto reset_and_undo;
5703 
5704 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5705 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5706 			     tcp_time_stamp)) {
5707 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5708 			goto reset_and_undo;
5709 		}
5710 
5711 		/* Now ACK is acceptable.
5712 		 *
5713 		 * "If the RST bit is set
5714 		 *    If the ACK was acceptable then signal the user "error:
5715 		 *    connection reset", drop the segment, enter CLOSED state,
5716 		 *    delete TCB, and return."
5717 		 */
5718 
5719 		if (th->rst) {
5720 			tcp_reset(sk);
5721 			goto discard;
5722 		}
5723 
5724 		/* rfc793:
5725 		 *   "fifth, if neither of the SYN or RST bits is set then
5726 		 *    drop the segment and return."
5727 		 *
5728 		 *    See note below!
5729 		 *                                        --ANK(990513)
5730 		 */
5731 		if (!th->syn)
5732 			goto discard_and_undo;
5733 
5734 		/* rfc793:
5735 		 *   "If the SYN bit is on ...
5736 		 *    are acceptable then ...
5737 		 *    (our SYN has been ACKed), change the connection
5738 		 *    state to ESTABLISHED..."
5739 		 */
5740 
5741 		TCP_ECN_rcv_synack(tp, th);
5742 
5743 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5744 		tcp_ack(sk, skb, FLAG_SLOWPATH);
5745 
5746 		/* Ok.. it's good. Set up sequence numbers and
5747 		 * move to established.
5748 		 */
5749 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5750 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5751 
5752 		/* RFC1323: The window in SYN & SYN/ACK segments is
5753 		 * never scaled.
5754 		 */
5755 		tp->snd_wnd = ntohs(th->window);
5756 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5757 
5758 		if (!tp->rx_opt.wscale_ok) {
5759 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5760 			tp->window_clamp = min(tp->window_clamp, 65535U);
5761 		}
5762 
5763 		if (tp->rx_opt.saw_tstamp) {
5764 			tp->rx_opt.tstamp_ok	   = 1;
5765 			tp->tcp_header_len =
5766 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5767 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
5768 			tcp_store_ts_recent(tp);
5769 		} else {
5770 			tp->tcp_header_len = sizeof(struct tcphdr);
5771 		}
5772 
5773 		if (tcp_is_sack(tp) && sysctl_tcp_fack)
5774 			tcp_enable_fack(tp);
5775 
5776 		tcp_mtup_init(sk);
5777 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5778 		tcp_initialize_rcv_mss(sk);
5779 
5780 		/* Remember, tcp_poll() does not lock socket!
5781 		 * Change state from SYN-SENT only after copied_seq
5782 		 * is initialized. */
5783 		tp->copied_seq = tp->rcv_nxt;
5784 
5785 		if (cvp != NULL &&
5786 		    cvp->cookie_pair_size > 0 &&
5787 		    tp->rx_opt.cookie_plus > 0) {
5788 			int cookie_size = tp->rx_opt.cookie_plus
5789 					- TCPOLEN_COOKIE_BASE;
5790 			int cookie_pair_size = cookie_size
5791 					     + cvp->cookie_desired;
5792 
5793 			/* A cookie extension option was sent and returned.
5794 			 * Note that each incoming SYNACK replaces the
5795 			 * Responder cookie.  The initial exchange is most
5796 			 * fragile, as protection against spoofing relies
5797 			 * entirely upon the sequence and timestamp (above).
5798 			 * This replacement strategy allows the correct pair to
5799 			 * pass through, while any others will be filtered via
5800 			 * Responder verification later.
5801 			 */
5802 			if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5803 				memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5804 				       hash_location, cookie_size);
5805 				cvp->cookie_pair_size = cookie_pair_size;
5806 			}
5807 		}
5808 
5809 		smp_mb();
5810 
5811 		tcp_finish_connect(sk, skb);
5812 
5813 		if ((tp->syn_fastopen || tp->syn_data) &&
5814 		    tcp_rcv_fastopen_synack(sk, skb, &foc))
5815 			return -1;
5816 
5817 		if (sk->sk_write_pending ||
5818 		    icsk->icsk_accept_queue.rskq_defer_accept ||
5819 		    icsk->icsk_ack.pingpong) {
5820 			/* Save one ACK. Data will be ready after
5821 			 * several ticks, if write_pending is set.
5822 			 *
5823 			 * It may be deleted, but with this feature tcpdumps
5824 			 * look so _wonderfully_ clever, that I was not able
5825 			 * to stand against the temptation 8)     --ANK
5826 			 */
5827 			inet_csk_schedule_ack(sk);
5828 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5829 			tcp_enter_quickack_mode(sk);
5830 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5831 						  TCP_DELACK_MAX, TCP_RTO_MAX);
5832 
5833 discard:
5834 			__kfree_skb(skb);
5835 			return 0;
5836 		} else {
5837 			tcp_send_ack(sk);
5838 		}
5839 		return -1;
5840 	}
5841 
5842 	/* No ACK in the segment */
5843 
5844 	if (th->rst) {
5845 		/* rfc793:
5846 		 * "If the RST bit is set
5847 		 *
5848 		 *      Otherwise (no ACK) drop the segment and return."
5849 		 */
5850 
5851 		goto discard_and_undo;
5852 	}
5853 
5854 	/* PAWS check. */
5855 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5856 	    tcp_paws_reject(&tp->rx_opt, 0))
5857 		goto discard_and_undo;
5858 
5859 	if (th->syn) {
5860 		/* We see SYN without ACK. It is attempt of
5861 		 * simultaneous connect with crossed SYNs.
5862 		 * Particularly, it can be connect to self.
5863 		 */
5864 		tcp_set_state(sk, TCP_SYN_RECV);
5865 
5866 		if (tp->rx_opt.saw_tstamp) {
5867 			tp->rx_opt.tstamp_ok = 1;
5868 			tcp_store_ts_recent(tp);
5869 			tp->tcp_header_len =
5870 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5871 		} else {
5872 			tp->tcp_header_len = sizeof(struct tcphdr);
5873 		}
5874 
5875 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5876 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5877 
5878 		/* RFC1323: The window in SYN & SYN/ACK segments is
5879 		 * never scaled.
5880 		 */
5881 		tp->snd_wnd    = ntohs(th->window);
5882 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5883 		tp->max_window = tp->snd_wnd;
5884 
5885 		TCP_ECN_rcv_syn(tp, th);
5886 
5887 		tcp_mtup_init(sk);
5888 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5889 		tcp_initialize_rcv_mss(sk);
5890 
5891 		tcp_send_synack(sk);
5892 #if 0
5893 		/* Note, we could accept data and URG from this segment.
5894 		 * There are no obstacles to make this.
5895 		 *
5896 		 * However, if we ignore data in ACKless segments sometimes,
5897 		 * we have no reasons to accept it sometimes.
5898 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5899 		 * is not flawless. So, discard packet for sanity.
5900 		 * Uncomment this return to process the data.
5901 		 */
5902 		return -1;
5903 #else
5904 		goto discard;
5905 #endif
5906 	}
5907 	/* "fifth, if neither of the SYN or RST bits is set then
5908 	 * drop the segment and return."
5909 	 */
5910 
5911 discard_and_undo:
5912 	tcp_clear_options(&tp->rx_opt);
5913 	tp->rx_opt.mss_clamp = saved_clamp;
5914 	goto discard;
5915 
5916 reset_and_undo:
5917 	tcp_clear_options(&tp->rx_opt);
5918 	tp->rx_opt.mss_clamp = saved_clamp;
5919 	return 1;
5920 }
5921 
5922 /*
5923  *	This function implements the receiving procedure of RFC 793 for
5924  *	all states except ESTABLISHED and TIME_WAIT.
5925  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5926  *	address independent.
5927  */
5928 
5929 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5930 			  const struct tcphdr *th, unsigned int len)
5931 {
5932 	struct tcp_sock *tp = tcp_sk(sk);
5933 	struct inet_connection_sock *icsk = inet_csk(sk);
5934 	int queued = 0;
5935 
5936 	tp->rx_opt.saw_tstamp = 0;
5937 
5938 	switch (sk->sk_state) {
5939 	case TCP_CLOSE:
5940 		goto discard;
5941 
5942 	case TCP_LISTEN:
5943 		if (th->ack)
5944 			return 1;
5945 
5946 		if (th->rst)
5947 			goto discard;
5948 
5949 		if (th->syn) {
5950 			if (th->fin)
5951 				goto discard;
5952 			if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5953 				return 1;
5954 
5955 			/* Now we have several options: In theory there is
5956 			 * nothing else in the frame. KA9Q has an option to
5957 			 * send data with the syn, BSD accepts data with the
5958 			 * syn up to the [to be] advertised window and
5959 			 * Solaris 2.1 gives you a protocol error. For now
5960 			 * we just ignore it, that fits the spec precisely
5961 			 * and avoids incompatibilities. It would be nice in
5962 			 * future to drop through and process the data.
5963 			 *
5964 			 * Now that TTCP is starting to be used we ought to
5965 			 * queue this data.
5966 			 * But, this leaves one open to an easy denial of
5967 			 * service attack, and SYN cookies can't defend
5968 			 * against this problem. So, we drop the data
5969 			 * in the interest of security over speed unless
5970 			 * it's still in use.
5971 			 */
5972 			kfree_skb(skb);
5973 			return 0;
5974 		}
5975 		goto discard;
5976 
5977 	case TCP_SYN_SENT:
5978 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5979 		if (queued >= 0)
5980 			return queued;
5981 
5982 		/* Do step6 onward by hand. */
5983 		tcp_urg(sk, skb, th);
5984 		__kfree_skb(skb);
5985 		tcp_data_snd_check(sk);
5986 		return 0;
5987 	}
5988 
5989 	if (!tcp_validate_incoming(sk, skb, th, 0))
5990 		return 0;
5991 
5992 	/* step 5: check the ACK field */
5993 	if (th->ack) {
5994 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5995 
5996 		switch (sk->sk_state) {
5997 		case TCP_SYN_RECV:
5998 			if (acceptable) {
5999 				tp->copied_seq = tp->rcv_nxt;
6000 				smp_mb();
6001 				tcp_set_state(sk, TCP_ESTABLISHED);
6002 				sk->sk_state_change(sk);
6003 
6004 				/* Note, that this wakeup is only for marginal
6005 				 * crossed SYN case. Passively open sockets
6006 				 * are not waked up, because sk->sk_sleep ==
6007 				 * NULL and sk->sk_socket == NULL.
6008 				 */
6009 				if (sk->sk_socket)
6010 					sk_wake_async(sk,
6011 						      SOCK_WAKE_IO, POLL_OUT);
6012 
6013 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6014 				tp->snd_wnd = ntohs(th->window) <<
6015 					      tp->rx_opt.snd_wscale;
6016 				tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6017 
6018 				if (tp->rx_opt.tstamp_ok)
6019 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6020 
6021 				/* Make sure socket is routed, for
6022 				 * correct metrics.
6023 				 */
6024 				icsk->icsk_af_ops->rebuild_header(sk);
6025 
6026 				tcp_init_metrics(sk);
6027 
6028 				tcp_init_congestion_control(sk);
6029 
6030 				/* Prevent spurious tcp_cwnd_restart() on
6031 				 * first data packet.
6032 				 */
6033 				tp->lsndtime = tcp_time_stamp;
6034 
6035 				tcp_mtup_init(sk);
6036 				tcp_initialize_rcv_mss(sk);
6037 				tcp_init_buffer_space(sk);
6038 				tcp_fast_path_on(tp);
6039 			} else {
6040 				return 1;
6041 			}
6042 			break;
6043 
6044 		case TCP_FIN_WAIT1:
6045 			if (tp->snd_una == tp->write_seq) {
6046 				struct dst_entry *dst;
6047 
6048 				tcp_set_state(sk, TCP_FIN_WAIT2);
6049 				sk->sk_shutdown |= SEND_SHUTDOWN;
6050 
6051 				dst = __sk_dst_get(sk);
6052 				if (dst)
6053 					dst_confirm(dst);
6054 
6055 				if (!sock_flag(sk, SOCK_DEAD))
6056 					/* Wake up lingering close() */
6057 					sk->sk_state_change(sk);
6058 				else {
6059 					int tmo;
6060 
6061 					if (tp->linger2 < 0 ||
6062 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6063 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6064 						tcp_done(sk);
6065 						NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6066 						return 1;
6067 					}
6068 
6069 					tmo = tcp_fin_time(sk);
6070 					if (tmo > TCP_TIMEWAIT_LEN) {
6071 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6072 					} else if (th->fin || sock_owned_by_user(sk)) {
6073 						/* Bad case. We could lose such FIN otherwise.
6074 						 * It is not a big problem, but it looks confusing
6075 						 * and not so rare event. We still can lose it now,
6076 						 * if it spins in bh_lock_sock(), but it is really
6077 						 * marginal case.
6078 						 */
6079 						inet_csk_reset_keepalive_timer(sk, tmo);
6080 					} else {
6081 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6082 						goto discard;
6083 					}
6084 				}
6085 			}
6086 			break;
6087 
6088 		case TCP_CLOSING:
6089 			if (tp->snd_una == tp->write_seq) {
6090 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6091 				goto discard;
6092 			}
6093 			break;
6094 
6095 		case TCP_LAST_ACK:
6096 			if (tp->snd_una == tp->write_seq) {
6097 				tcp_update_metrics(sk);
6098 				tcp_done(sk);
6099 				goto discard;
6100 			}
6101 			break;
6102 		}
6103 	} else
6104 		goto discard;
6105 
6106 	/* step 6: check the URG bit */
6107 	tcp_urg(sk, skb, th);
6108 
6109 	/* step 7: process the segment text */
6110 	switch (sk->sk_state) {
6111 	case TCP_CLOSE_WAIT:
6112 	case TCP_CLOSING:
6113 	case TCP_LAST_ACK:
6114 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6115 			break;
6116 	case TCP_FIN_WAIT1:
6117 	case TCP_FIN_WAIT2:
6118 		/* RFC 793 says to queue data in these states,
6119 		 * RFC 1122 says we MUST send a reset.
6120 		 * BSD 4.4 also does reset.
6121 		 */
6122 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6123 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6124 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6125 				NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6126 				tcp_reset(sk);
6127 				return 1;
6128 			}
6129 		}
6130 		/* Fall through */
6131 	case TCP_ESTABLISHED:
6132 		tcp_data_queue(sk, skb);
6133 		queued = 1;
6134 		break;
6135 	}
6136 
6137 	/* tcp_data could move socket to TIME-WAIT */
6138 	if (sk->sk_state != TCP_CLOSE) {
6139 		tcp_data_snd_check(sk);
6140 		tcp_ack_snd_check(sk);
6141 	}
6142 
6143 	if (!queued) {
6144 discard:
6145 		__kfree_skb(skb);
6146 	}
6147 	return 0;
6148 }
6149 EXPORT_SYMBOL(tcp_rcv_state_process);
6150